ABSTRACT

Aspects of the standard least squares method of locating
earthquakes and its extensicns are discussed. It is shown that
there is a need to carefully separate and distinguish between the
statistical and deterministic properties of the least squares
solution and the algorithm used to obtain it. Standard linear
statistical analysis gives reasonable confidence regions for the
hypocentre provided that the errors in the model travel time to
pairs of stations are not correlated. The travel time residuals
which result from the overdetermined system are unreliable
estimates of the model errors, as are the pooled residuals from

groups of events whether or not the data are homogeneous.

The concepts of Absolute and Relative hypocentre deter-
mination are clarified and the Homogeneous Station method 1is
developed and demonstrated to be a good relative location method.
The application of the method to a group of North Island, New
Zealand subcrustal earthquakes chosen for homogeneity revealed
that the carthquakes occurred in a thin, fairly flat dipping
zone that could be as thin as 9 km and is not thicker than 18 km.
The result is a significant refinement of previous estimates

for New Zealand.

The method of Joint Hypocentre Determination first described
by Douglas (1967) is examined. The advantage of the method is
that the error in the travel time model is estimated as well as
allowing for and estimating the effect of an interaction of this

error with the hypocentre parameters of the earthquakes.
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The application of this method to groups of North Island,
New Zealand earthquakes allows very significant improvements
to the travel time model to be made and confirms the result
that there is a velocity contrast for both P and S of between
six and ten percent between paths in and entirely out of the
downgoing Pacific plate. Estimates of the velocities in the
plate are 8.6*.1km/sec. for P and 4.73%.05 km/sec. for S. In
addition, station terms are calculated which describe the average
departure from the new model of travel times to the stations
contributing data to the study. These terms may be interpreted
as arising from crustal structure local to the station which is

different from that of the average crustal model used.

The conclusion is reached that apart from providing better
absolute hypocentre estimates, the method of Joint Hypocentre
Determination can be made to yield worthwhile information about

structure on the scale considered here.
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INTRODUCTION

Where are the earthquakes? The problems of answering this
question and using the knowledge derived from the answer to draw
inferences about the structure of the earth are old and much
discussed ones. It was with two principal objects in mind that
the work described herein was undertaken. First, could an
answer be found to the question: 1is there a best way of locating
earthquakes? and second: how can one make maximum use of the
information contained in the arrival times of seismic waves from

earthquakes at seismograph stations?

The first question is easiest. The answer must be that the
best method is the one for which the predicted uncertainties in
the hypocentre estimate are smallest out of that class of methods
for which the errors are fairly predicted. By way of elaboration
on this we can say that a method is bad if the predicted

uncertainties are themselves badly in error.

The most widely used method for locating earthquakes, the
minimum sum of squares of residuals method (Geiger (1910) and
described in Chapters I and II) is often a bad method not because
the travel time or velocity model used is certain to be in error,
but because extra information, often only qualitative, on the
nature of this error is frequently available which nullifies
the statistical assumptions required to predict the likely errors

in the hypocentre.

At this point a remark must be made about the use of the




"model". Models of several different classes -- statistical,
mathematical (other than statistical), physical -- are referred
to in this thesis and I have tried to qualify the term each
time it is used to make the sense clear. The most important

class of model here is the linear statistical model. From the

theory of this model, Flinn (1965) gave hypocentre error estimates
(as confidence ellipsoids) for the standard least squares method.
Fundamental to the application of the theory are the assumptions
that the observations (arrival time readings) are identically

and normally distributed and independent. None of these
assumptions hold although the failure of some are more important
than others. First, the observations almost never have errors
that are identically distributed. The assumption of equal mean
residuals is widely known to be frequently wrong. Freedman (1968)
mentions the inequality of the variance of residuals (observed
arrival time - predicted arrival time) at different seismograph
stations. Physically, the plausibility of assuming equal
variance will depend largely on the particular circumstances

- on the microearthquake survey level the assumption is usually
quite good. Second, distributions of residuals are almost never
normal. Moreover they frequently exhibit the form of the tele-
seismic residuals from nuclear explosions given by Lomnitz (1970),
namely a sharp central peak and long tails. Jeffreys (1970)
modelled such distributions as the sum of a normal plus uniform
distribution, the latter part representing "blunders'" -- reading
errors with a large variance. Such an explanation can hardly

apply to Lomnitz's distribution.

Finally, when sufficient is known about the earth's structure

to suggest that the arrival times at neighbouring seismograph




stations are likely to be in error by similar amounts, the

assumption of independence is invalid.

This last is the most serious. Lindquist (1971) reports
that the F distribution on which Flinn's confidence regions
depend is robust to mild departures from normality and
homogeneity of variance but can be badly upset by lack of
independence. Evernden (1969a) shows that an F statistic can
be replaced by a X-squared statistic if the number of degrees
of freedom is large enough, but the X-squared distribution
suffers from the same problems as F. It is with caution then
that one determines accuracy of a hypocentre estimate using

standard linear theory.

Let us temporarily leave this problem and turn to the
second: maximum information extraction. N arrival times for
an earthquake are N pieces of information (degrees of freedom)
which are divided by the location method into four location
parameters (assuming origin time, latitude, longitude and depth
are all to be determined) and N residuals which have of course
only M-4 d.f. How can one make best use of these N-4 remaining
pieces of information? In particular, how can the information
be used to improve the travel time or velocity model? In
Chapters I and II it is demonstrated theoretically that the
residuals are a very poor estimate of the model errors and that
combined residuals from groups of earthquakes have properties

which make their interpretation difficult.

Notwithstanding past success of methods which process

pooled residuals -- the Jeffreys-Bullen (1948) travel time model




obtained by this method has been little improved on as a world
average travel-time model by the work of Herrin et al. (1968)

and others -- it was decided not to persist with this method with
its uncertainties of convergence (Douglas § Lilwall, 1972) and
its inability to predict the correlation between errors in the
hypocentre estimates and the error in the derived model. It is
possible to make progress with the method as Veith (1975) has
shown in his careful study of Kuriles to Okhotsk earthquakes

which produced regional travel time corrections.

The most attractive method to date for accomplishing our
task is Douglas's (1967) Joint Hypocentre (or Epicentre) Deter-
mination method. The method is to estimate together the hypo-
centres and the average model error between the group of earth-
quakes and each station contributing information. The method
does not require, as is sometimes stated, the assumption of a
constant model error over the group of events. The statistical
theory of the General Linear Model (see, for example, Zelen,
1962) is all that is required to furnish estimates of uncertainty

in and correlation between the parameters.

The greatest difficulty with the method, reported by
Douglas in his introductory paper, is one of ill-conditioning
of the linear system produced which manifests itself as a near
linear dependence between the station terms and hypocentre

estimates.

There are different ways to view this phenomenon. First,

the purely numerical problem of solving an ill-conditioned




system can be reduced a great deal by using higher precision
techniques. The systems that arose in this thesis were all
sufficiently well conditioned to obtain stable solutions by
the methods described herein. Second, the appearance of large
values for the correlations between station terms and hypo-
centre components in the calculated variance matrix of the
parameters warns us at least that we are seeking a result at
the 1limit of the resolving power of the data - a circumstance

often obscured by other methods.

The ability of JHD and its offshoots to produce better
hypocentre estimates has been demonstrated in a wide variety of
contexts. Apart from Douglas's (1967) relocation of a group
of earthquakes and the nuclear explosion LONGSHOT, work
includes Blaney and Gibbs (1968) who used JHD (more correctly
JED - epicentres only) to relocate groups of explosions with
demonstrably improved relative position estimates. They used
a master event, a given event whose position was fixed to its
known position to yield absolute locations, or in the case of
explosions at Novaya Zenlya, an event given an estimated position
to produce locations of the rest of the group relative to the
master. The use of a master event vastly improves the condition-
ing of the system. The price paid is that in the absence of
an absolute master, that is, an explosion of known origin (or
equivalent), the error in the assumed solution for the master
enters into the picture as a systematic error in all the other
parameter estimates. Numerous examples are given in this thesis
of the rest of the group moving in parallel with a master as

the position of the master is varied.



On a different scale, Dewey (1971) employed JHD on a regional
scale in a seismicity study of Venezuela and environs. In this
study and in preliminary development involving Nevada explosion
data, Dewey invariably found that a master event was necessary
for stability. Much of Dewey's data for the seismicity study

was teleseismic and his depth control depended on pP.

Similarly, Billington and Isacks (1975) apparently had
too few observations (a total of nine stations) to operate
without a master event. Their work shows the power of JHD to
provide excellent relative locations as demonstrated by the
simple geometry found for the distribution of 600 km Figi

earthquakes.

Even with a master event, considerable information about
model errors is forthcoming from the mean model error or station
term estimates. In this the method is superior to Evernden's
(1969b) method of using the residuals from a master event as
station terms to locate a group relative to the master. (JHD
also allows for the effect of reading errors in the arrivals
from the master.) However, the modelling aspect of JHD has
been somewhat overlooked except for the global study of Lilwall
and Douglas (1969). Part of the problem involves suitably
pooling the mean model error estimates from different groups
of earthquakes. Methods such as Bolt and Freedman (1968) suffer
from the problem of ill-conditioning and the imposition of a
particular form of azimuthal dependence, such as a sine function,
runs the risk of obscuring the true nature of the variation if

the applied functional form is totally inappropriate.




Some recent approaches to this problem of modelling are
presented in Chapter VII. Our efforts with JHD have been
directed towards its evaluation in a regional situation (on a
similar scale to Dewey's) where a large amount of data is
available from stations within 500 km of the earthquakes. The
position of the New Zealand seismograph network to record sub-
crustal New Zealand earthquakes has no superior in the world.
Subcrustal events were chosen because possibilities of ambiguous
interpretation of crustal pulses (common from shallow events in
New Zealand) are avoided and because S arrivals from these deeper
events are largely non-emergent and thus S data can be used to
swell the input information. The work of Chapter V demonstrates
the effect, by no means disastrous, of not using a master event,
in groups of such events, and Chapter VI is an attempt at a

regional travel time model improvement using JHD.

In many cases, absolute hypocentre determination is found to
be difficult while relative determination is simpler and all
that the particular circumstances demand. The elementary
technique (from classical analysis of variance) of ensuring no
missing observations - the Homogeneous Station method (Ansell
and Smith (1975) and described in full in Chapter IV) is one
way of achieving this. The idea is not new but its importance
seems to have been overlooked. The excellent relocations
obtained by Engdahl (1972) in the Aleutians are largely due to

his homogeneity of data.

The occupation of this thesis with least squares methods
in their simplest forms has meant that the fairly large class

of alternative methods of location proposed in recent years



has been pretty-well overlooked. Such methods include James

et al. (1969) method of computing the origin time from S-P
values and advancing to a solution by means of a two-stage
iterative process; Keilis-Borok et al. (1972) who apply
empirically determined functions to the incremental improvement
to the hypocentre to improve stability; and Lomnitz's (1977) very
novel use of distance rather than time residuals. Most methods
involve least squares somewhere. Their objects can be summar-
ised as superior stability. In my experience, limited to
regional work but involving depth determinations without special
phases, adequate stability can be attained by suitable damping
of the incremental improvements (Hartley, 1961). The use of
damping also almost always decreases the number of iterations

required to achieve a satisfactory hypocentre.

The achievements of this work can be summarised as follows.
The Joint Hypocentre Determination method is demonstrated on the
regional scale to be a good absolute and relative location
method and also to provide worthwhile information for model
improvement provided the mild restrictions of Chapter III are
observed. The Homogeneous Station method is shown to be an
excellent relative location method which can be applied to
small networks of stations. The application of these tools to
other regi&ns and their extension to crustal earthquakes on

the regional level and to micro-earthquakes is work for the

future.




CHAPTER 1

THE LEAST SQUARES METHOD OF LOCATING A SINGLE EARTHQUAKE

This chapter is in part a summary of known results about
the standard least squares method of determining the longitude,
latitude, depth and origin time of a single earthquake from body
wave arrivals but also includes points about the method which
have not before been clearly explained. In this section the

notation of following chapters is established.

THE EQUATIONS OF CONDITION

Suppose that an earthquake occurs at an unknown point
x = (h, =, y, 2) in space-time, where A& is the origin time, x
and y are the longitude and latitude and z is the depth of the
source. A set of n body wave arrival times @ are obtained from
seismograph stations. We have models for the travel times tj of
the seismic waves, typically tabulated values of the time given
the distance dj and depth of the source z from the receiving

station. We then seek the values h, x, y, 2z which minimise:

and we use these quantities as estimates of the hypocentral
parameters. This is the standard least squares hypocentre
estimate first suggested by Geiger (1910) but only popularised
after the advent of high-speed digital computers made feasible,

algorithmically, the finding of the least squares solution.
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The numerous references in the literature include Bolt (1960)
who describes a computer algorithm for finding the solution and

Flinn (1965) who analyses the solution statistically.

It is important to distinguish between the solution which
has the least squares property and the method of arriving at the

solution.

First, let us deal briefly with the method. From a trial
solution ¢z a set of improvements to the trial o@g are calculated
by solving the set of equations of condition which result when

the travel time model is linearised. From Taylor's Theorem:

3, 9 3, 9
t. d t. d
t.(d., z) = t.lod., 02) + (=i=) oz + (=) oSy
Jd A 97 9 33 3y
at
+‘—‘j052+0q. vea(1.2)
] J
2
where z = oz + o6z and we assume that the travel time model 1is

continuously differentiable, so that q;s the remainder term or

linearisation error, has the property that:

ja;1/lotzll > 0 as ezl > o.

Let B be the reading error associated with the observation @

Denote by Sj the difference between the true travel time

(uj + ej - h) and the model travel time tj(dj’ z). We have
then the equations of condition:
o, 9

t.
o8k + (55752) obe
d =z

3, 9 3

t.%d & - )
i (ad,ja—y')o(sy + (z,j)o(sy - (lj - tj(odj, z) - oh + Ej - Sj qj c..(1.3)
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which may be solved by premultiplying both sides by the transpose
of the matrix 4, the jth row of which is:
3 9
t .
: J)

s t.s
Bd Bx Bd By r

”

and solving the system:
ATAQ&'I_‘,‘ = ATOE ...(1.4)

where °yj = aj - tj(odj, z) - oh. An equivalent method such as

orthogonal transformation of the equations of condition (House-
holder Method, Householder (1953)) may be used. The resulting

estimates 035 have the property that:

9, o 3, o 3 2
2 t. d 4 t.d 4 t. 2
(aj = tj(odj, z) - gh = o(Sh ] a—J—o(S.’I? = -8—;72063/ - a—z‘,jo(SZ)

d % F

™I

Jg=1

is an absolute minimum over all possible values of 6éx. A new
hypocentre estimate is now i1z = ox + o0z, and we proceed
iteratively until the increments igi are considered negligible.
The general conditions for the convergence of such a scheme are
given by Hartley (1961) and depend on the goodness of the linear
approximation to the model. Hartley concludes by showing that
the only way to ensure convergence to the absolute minimum,

which is necessary for statistical purposes, when there may be
secondary local minima, is to start in the 'well" of the absolute
minimum; that is, in some region R about the absolute minimum

in which we can find o,z such that:

S(ox) < 1lim inf S(x)
ZeR
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In practice, it is usual not to check Hartley's criteria
for convergence but to wait and see if the iterative scheme
converges. It has been observed that convergence generally
occurs when there is a good distribution of stations about the
hypocentre. Flinn (1965) points out that this condition of
good distribution is equivalent to a well conditioned system of

equations of condition.

CONVERGENCE TO THE LEAST SQUARES SOLUTION

We shall discuss this convergence question a little more
before proceeding to discuss the properties of the solution

itself.

First, let us note that from Taylor's Theorem, similarly

to (1.2):
t.(. d 2) = .t.(.d z)+(ﬁa—d)8x+(aitja—d)a
i+1%5 ' 441%2 0177 T i%50% 4 8, 9,71 3 8,1 Y
3.ky
+ ( ;ZJ)iGz +a; ceu(1.5)

Thus the jth term of the right hand side of (1.3) for the

(213 ™ irewatien,

= (o h)

i+1Y5 i i+1tj S |

h

differs from the jt residual of the ith iteration:

. (aitj ad) . (aitj ad) .
= Y. = 08, -~ (== 5=).00 - ) -y
vy 1 h Bd ax 7 ad ay 7
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only by the amount qij; explicitly we have:

1Y = 5 Yy .. (1.6)

The residuals ;L have the property that:
AT .r = 0 ewu s 7

iAT denoting the transpose of iA’ and the (i+1)th increment

4102 is the solution of:

T 2 T

Lt® 1%ea™® = e el .. (1.8)

If we write A = iA + iSA, the elements of iGA will be

141
differences between first derivatives of the travel time model
at points igi apart.
The right hand side of (1.8) is thus:
T T
(A~ + iéA )(ig_— gi)
which, by (1.7), equals:
7 T T
=g - Sy
For a perfectly linear model, this term is zero implying that
one iteration would suffice, except for the possible limitations

of finite arithmetic, to find the absolute minimum. Otherwise

this quantity depends on the linearisation error and the rate
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of change of the first derivatives of the model. Thus the rate
of convergence will depend on the smoothness and flatness of the

model.

Further, the definition of the residual vector ;T

= 7:1_ 1,47/8?_ vos (2sG)

and (1.4) show that the least squares process decomposes Y into

two orthogonal vectors _r and iAiSE so that:

[ [ [P . (1.10)

so that for |u3£]|> 0

v

LulE > ILzlP

From (1.6):

Lzl < ILzll + liyl
Lull + lig

A

so that in the presence of a small linearisation error we might
hope to get a sequence of right hand sides getting smaller and
smaller but with large linearisation errors, causable in practice
by starting a long way from the solution, there is no guaranteed

convergence.

Flinn (1965) has examined the linearisation error with the
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particular view of observing its effects on the confidence regions
he calculates for the hypocentre parameters (which will be

discussed in a later chapter).

I have used as examples and tests for the results developed
in this thesis, locations of New Zealand mantle earthquakes
using arrival time data from New Zealand stations only. These
stations are always within about 800 km of the epicentres
calculated herein and the hypocentres are never deeper than
400 km. The Jeffreys-Bullen Seismological Tables are used as
our (initial) model for two reasons: It is the model used by
the New Zealand Seismological Observatory in its routine hypo-
centre determinations; and no better model describing the travel
times in the mantle under the North Island hitherto existed.
Examination of linearisation errors caused by the quadratic
interpolation routine used in this thesis to interpolate in the
tables in the distance/depth range of interest revealed that the
errors were largest near z = 33 km, d = 0 where the errors can be
several seconds if the distance and depth errors in the final
solution are greater than 50 km. The linearisation error
decreased with increasing distance and depth, but for hypocentre
errors of 50 km the linearisation error is always of the order
of one second. When the distance and depth errors are 20 km,
the linearisation errors are never greater than 0.8 seconds but
always of order 0.2 seconds and when the distance and depth
errors are 10 km, the linearisation error is never greater than
0.2 seconds. The magnitude of the linearisation error (in
seconds) for errors of 50 km and 10 km at short epicentral

distance is given in Table 1.1.




TABLE 1.1

MAXIMUM LINEARISATION ERROR (SEC.)

For an error in epicentral distance and depth of < 50 km.

16.

d Zm) 96 159 222 285 348 411 '

(degrees) ‘
K 4.7 2.75 1. 1.1 .85 .55
1.0 3.6  2.65 1. 1.25 1.0 .75
1.5 2.65 2.05 1.6  1.35 9 .65
2.0 2.35 1.9 1.55 1.3 1.1 .65
2.5 1.6 1.75 1.45 1.15 1.05 .75
3.0 1.25 1.35 1.30 1.05 1.0 .8

For an error in epicentral distance and depth < 10 km.

,\z.‘“ ) g

\‘\\\\\\\\\ 96 159 222 285 348 411 i

d )

5 19 .n .06 .04 .03 .02 %
1.0 1411 .08 .05 .04 .03
1.5 11 .08 .06 .05 .04 .03

2.0 .09 .08 .06 .05 .04 .03 i

2.5 .06 .07 .06 .05 .04 .03 ’
3.0 .05 .05 .05 .04 .04 .03
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IMPROVING THE CONDITIONING IN THE STANDARD METHOD

We have not yet discussed the implications of finite
arithmetic in the problem of convergence. A poorly conditioned
system of equations has the property that small changes in the
right hand side Y of (1.4) may give rise to disproportionately
large increments ;8%. A measure of the conditioning is the

condition number A of the matrix ATA (equation (1.4)) defined

by:
A= sup|lataz| - sup l4TaT 2]l , Izl = 1
= sup |44zl / inf |4%az) L el = 1
ce.(1.12)

Thus X is numerically equal to the quotient of the greatest

and least eigenvalues of 474 or aTa™1 (see Dahlquist (1972) as

a general reference).

A is a measure of the greatest magnification that can take

place when solving:

afax = 4Ty ... (1.4a)

by which we mean the following. Solving the above and taking

moduli we have:

T.=1.T
474" a7y ]|

EA

7 T -1
|47yl - ||a"4" "u||

where u is a unit vector parallel to 4 y.
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a /i |
So =zl 4"yl sup [l4"4™"w]| , [lu]] = 1

| A

g
4™y || - oo (1.13)

where A is the greatest eigenvalue of (ATA)-l. If A_._ is
max min
the least eigenvalue (#0 if (ATA)_1 exists) then 1/Amin is the

largest eigenvalue of ata. Using this as a unit for comparison,

that is, expressing HATEH as a multiple of (1/A . J:
T —
&l = ma/a_. )
we have:
lzll < m v (1.14)
Alternatively we can think of scaling (I1.4a) so that A = 1.

min
Thus A gives a bound for the magnification which can be achieved
when ATE is parallel to the eigenvector corresponding to greatest
eigenvalue of ata 1,

The second and third columns of the matrix 4 contain
derivatives of the travel time model with respect to distance
multiplied by quantities which are well approximated in practice
by the cosine and sine of the azimuth of the station from the
earthquake (Bullen, 1965). In view of the comparatively small
changes in 3¢/3d which occur over a wide range of values of
(dy, z) in models like the Jeffreys-Bullen model (Jeffreys and
Bullen, 1948), a wide range of azimuths is required to provide

good conditioning.

The last column contains the entries atj/az. This quantity
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is positive when the ray leaves the source upward -- typically
when the epicentral distance is less than the depth -- and
negative when the ray leaves downward. For models in which
there is an increase in velocity with depth (as distinct from
layered models with constant velocities within the layers) there
is a tendency for the ray to quickly become flatter at the
source. For a wide range of distances 3t/3z will be of small
magnitude. Ideally one requires several stations sufficiently
close to the source that the rays are steeply upward to these
stations, and other stations at a distance where the ray leaves

downward.

For example, using the J-B model and considering a 200 km
deep event, 3t/3z (P) is 1.0 sec./10 km at 100 km from the source
and decreases rapidly to .02 sec./10 km at 800 km and continues
decreasing more slowly to -0.5 sec./10 km 1900 km (where there
is a discontinuity) and does not reach -1.0 sec./10 km until
the distance is 5000 km. (The choice of units here will be
explained later.) More improvement is obtained if a range of
phases which give widely differing values of 3t/3d are available
such as S, pP and core reflections, presuming that P is the

principal source of information.

It is important to note that the inclusion of extra phases
does not automatically provide a better hypocentre estimate.
If for some reason the model travel time for such an auxiliary
phase has larger errors than allowed for (for example, if S is
used with a model very much poorer than the P model used but
with no downweighting of the S data) then the solution is likely

to be poorer. What these phases do ensure is that, by improving




20.

conditioning, an error of given size is less likely to provoke

a magnified error in the parameter estimates.

A recent discussion of conditioning of the equations of
condition by Buland (1976) demonstrates the value of the
Householder method. Buland fails to note the advantage of
scaling the hypocentre parameters, that is, choosing units of
d and z so that 3t¢/3d and 3t/%z are the same order of magnitude
and the same magnitude as the first column of ATA, the origin
time column, which is a column of 1's. As already indicated,
units of 10 km for depth (or larger) are commonly required to
produce numerical values of 8t/8z close to 1 in magnitude and

10 km is an appropriate unit for 4 as well. The value of this

scaling is fully explained in Smith (1976).

A selection of condition numbers for hypocentres discussed
in Chapter IV are plotted in Figure 1.1. The events were
located using a P arrival from end of the seven stations shown
in the figure. A cross section from SE to NW across the middle
of the North Island showing the depth distribution is given in
Figure 4.4. The deepest assigned depths are about 270 km along
the TNZ-KRP line with the events along the WEL-GNZ line being
assigned depths of about 80 km. It is seen immediately that the
condition number rapidly increases as one moves outside the
convex hull of the seismograph stations, and as the assigned

depth increases.

While on the subject of conditioning and stability, we

mention a simple device which greatly improves the chances of

. . : e !
convergence which is to damp the increments, so that the <+1
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estimate is Xt ¢(i§£), 0 < ¢ <1 (Hartley 1961). 1In principle,
¢ is chosen to maximise the improvement to the residual sum of
squares but, in practice, may be predicted by the apparent rate
of convergence. For example, a scheme used herein is: if the

magnitude of the second increment is very much less than the

first, set ¢ = 1. If the increments are of the same order, set
¢ = %. If the second increment is larger than the first, set
¢ = %liggll/ ”i+ 8z||. More elaborate schemes, such as described

by Marquardt (1963), are computationally expensive and not

justifiable in most cases.

To conclude this chapter, we mention other means of obtain-
ing hypocentre estimates which are generally employed when the

system of equations of condition is ill-conditioned.

Keilis-Borok (1971) uses damping to determine teleseismic
hypocentres from a small network of stations in a geographical
region which is small compared to the mean epicentral distance.
James et al. (1969) and others have used the method whereby
the origin time is restrained by some means, often from examinat-
ion of P and S pairs of arrivals, and then the best fit of the
latitude, longitude and depth is found. This method works
essentially because the near linear dependence of depth and
origin time in the equations of condition, caused by the numer-
ically small values of ;E for many values of (d, z), is removed
by fixing the origin timz. This principle can be extended to
the standard method by fixing the origin time, finding a new

epicentre and depth and then adjusting the origin time by the

mean value of the residuals, since in the absence of an origin
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time term in the equations of condition, the mean residual need

not be zero. (See Chapter 1I)

Also common is the restriction of the depth of the event
when there is data such as a core or surface reflection which
indicates a particular depth. 1In the case of a local earthquake,
if the existence of crustal phases indicates a shallow depth
and, in the absence of a station near enough to give depth

control by providing a sufficiently large numerical value of

3
53, the depth may be constrained to some nominal value such as

2
33 km.

The stepwise multiple regression approach to solving the
equations of condition (Lee and Lahr (1975)) is another approach
to stabilising the iterative means by updating those parameters
which make the statistically most significant (by linear theory)

improvement to the sum of squares.

The value of solutions obtained by these methods will be
discussed in the next chapter. Methods which employ information

from more than one event will be discussed in subsequent chapters.
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CHAPTER 11

PROPERTIES OF THE LEAST SQUARES HYPOCENTRE SOLUTION

ALGEBRAIC PROPERTIES OF THE SOLUTION

We have obtained the hypocentre solution ,z with the

property that:
Sz = aTa) Ty =0 c..(2.1)

The vector of residuals for this solution is .,y which has

the property (from (2.1)) that:

T

A 4y vawl8,8)

e
(en]

Thus the number of degrees of freedom of the residuals are
reduced by the number of parameters estimated, generally four.
Equations similar to (1.3) give the relationship between the

residuals, model errors and the error in the final hypocentre:

Ayx = Ly - s+ € - 4 vur{8y8)

Denote the total error - s + € - ,g by ,e. Then e = 4,8z - ,y

and the relation (2.2) gives:

e |l? sz + [lzlP . (2.4)

So that |g|| > |[[sx|l. This is important when the residuals are used
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to obtain extra information. For example, if corrections to the
travel time model are obtained from an analysis of residuals,

there will be a tendency to underestimate the model error.
The exact error ,6x is given by:
Sz = aw i s e - @ o (2.5)

Let us assume we have N seismograph stations observing M earth-
quakes in a geographical region sufficiently small that the

model error 8 can be assumed constant for each station j = 1...WN
at the expense of introducing an error negligible compared to

|| €]|]. Each station may not record each event. The equations

of condition for the %P solution are:

N
P A j8x, = P.y.- I s.(P.gj) + Pole, - 4q;) ..(2.6)

X
T 4 j=IJ 7
where P, is an NxN diagonal matrix with 1 in the jth position
if station j records event 7 and zero otherwise, and Uz is the

jth unit vector with 1 in the jth position and zero elsewhere.

From (2.5) we have (since PiTPi = Pi): |

N
- T -1,T T -1,T
B |

ves(2.7)

This shows that the contribution to the final error *5£i by an

BITOT &4 at station j will depend on which other stations were

present. It is clear that there is likely to be a systematic
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error in the 6z, if there is some systematic variation with
geographic position in the terms Bir B phenomenon referred to as
source biasing. The likelihood of this increases as the number
of stations which record all the earthquakes increases. A
discussion of whether the least squares estimated is biased in

the strict sense will be discussed later in this chapter.

Before turning to the statistical properties of the solution,

_ n
let us return to equation (2.5) and write s = Zsj/n. Let 1 be a
J=1 _
vector of N components, each of which is 1. Let st = Sj - 8.
Then:
gr = 7afzyh -
S = (474) A {- (sl + 6s) + € - ,q} ..(2.8)

lATl is a vector with

Since the first column of 4 is 1, (aTa)”
first component, corresponding to the origin time correction,
equal to 1 and other components zero. Thus the average model
error s will produce an error in the origin time of -s, but will
not contribute to the error in the other hypocentre parameters.
Because the average model error is always transferred to the
origin time, it 1is impossible from earthquake location data alone
to determine the average error of a model. A similar conclusion
is reached by Lomnitz (1970) who discusses the problem of
improving the accuracy of P travel-time models using earthquake
data. Note that there may also be a contribution to the origin

time error from the remainder term s since the columns of 4 are

not orthogonal.
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STATISTICAL PROPERTIES OF THE SOLUTION

We now consider the statistical properties of the least
squares solution. In particular, it would be desirable to say
how accurate the solution is in terms of confidence intervals
for the parameters or joint confidence regions for combinations
of the parameters. Flinn (1965) extensively discusses this
problem using the assumption that the errors, except for the
linearisation error, are normally distributed and independent.
He shows that standard linear confidence ellipses based on the

use of

62(aTa)1

for the estimate of the variance of the parameters, where

j=1
are satisfactory if the dimensions of the confidence region are

n
862 = (¢ *yjz)/(n-p), p being the number of parameters estimated,

small enough to preclude the possibility of the linearisation

error being significant compared to the other errors.

The actual distribution of the errors has been a subject of
much discussion, controversy and confusion. It is important to
realise that the errors come from three sources, as shown by
equation (2.3), and that these three errors are not independent,
since the linearisation error depends on the location error

induced by the model and reading errors.

The reading error is the simplest and most easily dealt
with. Freedman (1968) gives a very complete discussion of the
reading error and concludes that, if certain precautions are

taken, the distribution of reading errors for a particular phase
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at a particular station will be normal. The precautions must
exclude the possibilities of blunders by the reader, failure to
identify the correct phase and that the arrivals should not be

of a different character as might result from earthquakes of
greatly differing magnitude. Models which allow for the exist-
ence of such effects can be constructed. Jeffreys (1970) gives
the well-known model of normal plus low level uniform distribution
to account for blunders and derives a method of weighting
observations to remove the effects of blunders. 1 have derived
simple models to account for the possibility of identifying the
wrong crustal phase in a situation where two arrivals are expected
but only one is observed. These distributions all tend to have
the characteristic of a sharp central peak and long persisting

tails which are frequently observed in residuals. (See Lomnitz

(1970), Freedman (1966b), (1967) and Figure 5.3.

We now come to the problem of modelling the travel time
model errors. With the increasing quality of instruments and
concomitant improvement in the precision of observations, it is
clear that the distribution of residuals obtained from explosion
data as in Lomnitz (1970) or Dewey (1971) must reflect the
distribution of model errors for these events and that these
errors with standard deviations of several seconds tend to be
very much greater than the reading errors with standard deviations

of a few tenths of a second.

The author was not in the fortunate position of having
explosion data available to supplement the earthquake data used

in this study. Mention will be made later of the use of such




29,

data. Many of the people investigating different location
techniques have used explosion data to test their methods. See,

for example, Douglas (1967) and Dewey (1971).

The basic difference between explosion residuals and earth-
quake residuals is that since the location of the explosion is
known, the residuals are numerically equal to the total errors
with full number of degrees of freedom (equation (2.3) when
+6x = 0) whereas in the case of earthquakes the residuals are a
linear function of the total error, viz.

iy = facaTa)~ta? - T},e ...(2.9)

with the number of degrees of freedom fewer by p, the number of
hypocentre parameters. From (2.9) certain deductions can be made
about the distribution of the errors. For example, if the
distribution of the residuals is not normal then the errors
cannot be normally distributed. The operator {A(ATA)—IAT - I}

is a projection from the »n dimensional space of the errors to the
n-p dimensional subspace which is the null space of the operator
4%, For any postulated error distribution, the distribution of
the resultant residual distribution may be readily compared with
reality, but, of course, there will be an infinite number of

possible error distributions which give the same residual

distribution.

MODELLING THE MODEL ERROR AS A RANDOM VARIABLE

We have hitherto begged the question somewhat in talking

about the distribution of the travel time model errors, since we
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have not clearly stated how s is a random variable. Consider

the following experiment in which, to observe a particular earth-
quake, a random sample of »n points is made from some region of
the earth's surface Q. Define Q_  to be the subset of @ such that

if e
2

s(x) < =z
Define:

F(z) = [drt / Jdt ...(2.10)

2 Y
z

F is clearly a distribution function and we equate the probabil-
ity of picking a point from @ for which the numerical value of
the travel time model error is less than z to Fs(z). If the
seismograph stations used in the location of the earthquake were
chosen in the manner suggested, then the components of s would be
independent with marginal distribution function F_(z). Ignoring
for the moment the obvious objection that this is not how
observations of an earthquake are made, let us continue and
calculate the expected value of s, E(s). If we define p, =
fwdes, then:

- 00

E(s) = wu,l ... (2.11)

In order that we may apply the statistical theory of linear

models to (2.3), it is mandatory that:

El(yy) = Asbx ven (3.18)
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or equivalently:

E(,e) = 0 seoeil(2.13)

In our case:

E( e) E(-s) + E(g) + E(-,q) ...(2.14)

It is fair to take E(e) = 0. Freedman (1966a) indicates
that the mean reading error will be small compared to its
standard deviation and we may neglect this quantity as making a
negligible contribution to the location error. The linearisation
error is a more difficult case and we shall merely assume that the
location error is sufficiently small to make these errors
negligible compared to the model errors. Unless we are in the
position of having several stations within one or two degrees,
the linearisation error can be neglected for location errors up

to 30-40 km. (See Table 1.1)

Thus we are left with:

E(e) = E(-s)

= —usl sree ()
so that the least squares hypocentre estimate will be a biased
estimate, but only the origin time will be biased, by the

amount Mg because, as we have seen, such an error affects

only the origin time.
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Under these circumstances, if the distribution of model
errors were normal, then the linear confidence regions of Flinn
(1965) would be valid for the parameters other than the origin
time. The studies of D.W. Norton, reported in Lindquist (1971),
compared the F distribution with the analogous distributions
resulting when the distribution of the errors were neither
normal nor homogeneous in form or variance. Norton concluded
that the effect of distributions which were sharply peaked with
long tails (leptokurtic) would produce confidence regions based
on the F distribution which were optimistic by a few percent.
Skew distributions had little effect on the validity of the use
of F. If the observations were drawn from populations with
markedly unequal form or variance, the resulting confidence
region will again be optimistic by a few percent. Independence
of the observations is however a very important requirement.
Thus with the idealised conditions described above for making
the arrival time observations, F based confidence regions would
be reasonable, if slightly optimistic, estimates of the true
confidence region, since under our scheme there is homogeneity
of distribution for observations of a particular phase and this

distribution may be like Lomnitz's (1970) leptokurtic distribution.

More realistically, seismograph stations are sited to
provide what is hoped to be a maximum of information about the
earthquakes they record and the regions through which seismic
waves pass, and the stations used to locate an event are a
subset of those which have information which is at the disposal

of the seismologist making the locations.
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Consider then a single earthquake and let Q be the region
in which the event might be recorded at a seismograph station.
Within this region there are »n seismographs which present
arrival time information to the seismologist. The difference
between the prior situation and this one is the difference
between the prior and posterior sampling of Q. As soon as the
seismologist knows or suspects that there may be a model error
of a particular amount in the travel time to some station, or
that the model errors for a pair of stations may be related to
each other, then the preceding theory becomes invalid. TIf the
seismologist has no more information about the region than the
arrival times from the one earthquake, then, in view of the
robustness of the F statistic, an F based confidence region may

be calculated.

WEIGHTED LEAST SQUARES

Homogeneity of the form of the distribution and hence
homogeneity of variance of the observations has been mentioned
as a desirable property to have. When there is a difference
between the variances, then the simple least squares method
should be replaced by a weighted least squares method, where

the jth observation is given a weight which is inversely

th observation.

proportional to the standard deviation of the j
I1f, as is usually the case, the ratio of variances of observat-
ions is not known exactly, some effort should be made to estimate
this quantity. The F confidence regions will sustain mild
heterogeneity of variance. Chapter V contains a description of

the method used to weight P and S observations which had prior

measures of quality assigned. After one has applied the weights,
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the resulting system of equations is treated as described in
Chapter I. The use of correct weights in no way alters the

properties of the best hypocentre solution (Zelen (1962)).

MORE THAN ONE EVENT

As soon as information from a second nearby earthquake is
available, the situation alters. It is unlikely that the
information used to locate the two events is independent — the
presence of a single common station will suffice to make the
location errors non-independent, since by (2.7) there will be a

common mislocation component.

This means, for instance, that if by chance the first event
lay outside its (100-a) percent confidence region, the probability
that the second event also lay outside the corresponding (100-a)
percent region is greater than o percent. This phenomenon,
commonly referred to as '"source biasing'", is caused by a lack of

independence of errors.

It is possible to construct a statistical model for the
model travel time errors in the experiment of observing and
locating ¥ earthquakes, known to have occurred in some region V,
recorded by various subsets of ¥ stations in a region 9, where
the model travel time error at station j is Sij'

We suppose that all points in V are equally likely to be
earthquake sources or that the probability of an event occurring
within a small volume &t centred upon x is known for each z € V.

Let the probability density function be denoted fo(x). For any
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N vector z let V, 6 be defined to be the subset of V such that

for each z € Vz, the model errors associated with =z, sj(g),

satisfy:

A
n
.,
I
[
=

sj(g)

Define F_(z) by:

F (z) Ifolz)dr e (2.16)

4
:

|
| 22

or, in the case of a uniform seismicity:

F (z) = ( Jfdt) / (Jdr) ...(2.17)

v |4
2

Fs(g) is a distribution function and we equate the probab-

ility that sj(g) E ay for all stations j with FE(E). If this
function were available to us we could compute the expected

value of s and make our linear estimator unbiased. We could
compound the distributions of s and the distribution of the other
errors (which we might fairly approximate as normal) and compute,
within a multiplicative factor, the variance-covariance matrix

of the errors and transform the equations of condition so that

standard linear statistical theory is again applicable (Zelen

(1962)).

However, since a knowledge of s is one of the objects of

our investigations without which the spaces v, cannot be

ascertained and F_(z) remains unknown, this ideal situation

cannot be realised.
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At this stage one might adopt a Bayesian approach and from
any rudimentary information about s construct an approximation
to F_ and hence refine the knowledge of s. One of the objects of
this—thesis is to examine methods of obtaining this preliminary

knowledge.

THE STANDARD DEVIATION OF THE RESIDUALS

Before we finish with the single earthquake, let us discuss

the root mean square residual:

n
G = /{(_z

r.2)/(n - p)} ... (2.18)
j=1 7

which we have already referred to in passing when discussing
confidence regions and which is popularly used as a measure of

the quality of a particular location. The justification for this
is that if the total error e is small, the location error will be
correspondingly small (as shown by equation (2.4)) as will the
residual vector, ,r = ,y. In the case where the hypocentre
estimate is unbiased, ¢ is an unbiased estimate of the standard
deviation of the total error by the Gauss-Markov Theorem (Zelen
(1962)), a property which does not require the assumption of
normal errors. Intuitively, we have projected the n vector e
onto an n-p dimensional subspace in such a way that the directions
of e and the direction of the projection are completely independent
and we wish to compensate for the inevitable loss of magnitude
which results from such a projection by dividing || 5| by the
dimension of the subspace; that is, the number of degrees of
freedom. However, when there is bias, we cannot say that the

directions of e and the projection are independent and the result
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does not hold. We again have the situation that the more we know

about the errors e the less reliable are results which are based

on the assumption of knowing nothing about them.

Even in the ideal situation, however, ¢ has a failing when
used as a rough guide to the quality of the solution. From the
discussion of condition number in Chapter I, it is clear that
when two earthquakes have about the same r.m.s. residual, the
event with the smaller condition number has a smaller likelihood
of being mislocated by errors of a given magnitude than the event
with the larger condition number. The condition number is of
course the condition number of the parameter variance matrix,
being in fact the quotient of the variances of the principal and
least components of this matrix. Thus the use of the r.m.s.
residual by itself without reference to the variance matrix or

condition number is not a satisfactory means of indicating quality.
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CHAPTER ITI

THE THEORY OF MULTIPLE EARTHQUAKE AMALYSES

In this chapter we analyse the different ways of treating
the data from a group of earthquakes. Commonly one wishes to
obtain more information from the arrival times than just the
hypocentre estimates. We might roughly classify such analyses
into three general groups: attempts to produce or improve a
world average travel time model, attempts to produce a regional
travel time model, and other studies which might produce a sub-
regional model. The work in Chapter VI falls into this last

category.

Until the last decade, seismological efforts in this field
tend to have been concentrated on world average models. The
author does not propose to discuss fully the methods of Jeffreys
and Bullen (Jeffreys (1939)) or Herrin et al. (1968), but
sufficient of their methods will be presented to compare their

work with the different methods of Lilwall and Douglas (1969).

In the past few years, more effort has been directed
towards regional modelling or obtaining regional corrections
to a world average model since it has been realised that
considerable regional time discrepancies exist and that the
hypocentre location errors that result are too large if these
quantities are ignored. 1In many ways explosions have been a
spur to this work since explosion data provide test cases for

the different methods.
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The different methods fall into two classes: those which
Douglas and Lilwall (1972) refer to as Methods of Successive
Approximations, where the information in the residuals from a
set of single event locations is pooled in some way to produce
travel time corrections, and Joint Methods of different types,

first suggested by Douglas (1967).

Before we begin discussing methods in detail, we wish to
make a further distinction between different methods which seems
not to be commonly recognised. We will refer to a method as a
"Relative Hypocentre Determination Method" if the results of the
method are a set of locations whose relative errors are satis-
factorily small and estimable in magnitude by some statistical
means while the average error of the group remains unknown. We
will refer to a method as an "Absolute Hypocentre Determination
Method" if the results of the method are a set of locations whose

absolute errors are statistically described.

Let us begin by establishing our data. Suppose N seismograph
stations each record at least some of ¥ earthquakes in a region
V (which might be the whole of the seismically active part of
the earth). Let n, be the number which record the ith event and,

as in Chapter II, let P. be the ¥x¥ diagonal matrix with the jth

th event and zero

diagonal entry 1 if the jth station records the <z
otherwise. Suppose, for convenience, that at the starting point of
our analysis each earthquake is assigned its least squares hypo-

centre as in Chapter I. The equations of condition for the ith

event are:

PyA6z, = P.(y, - s, + €.+ q;) s sl Bndd
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The use of P is convenient to keep track of missing
observations. The residuals from the ith event are the non-

zero entries in Py

VARTATION IN THE MODEL ERROR

We now seek to describe the variation of the model error

th

s.. for the < event and the jth station. In principle, it is

TJ

a function of the position of the earthquake and the position of
the station and will be indeterminate through insufficient data
unless assumptions are made about its behaviour. With certain
reasonable assumptions we can calculate a bound for the differ-
ence between model errors for a pair of events X; and X, recorded
at station §. Let T, and T, be the true travel times to g and
without loss of generality, let T; > T,. Let t, and t, be the

model travel times for the phases to S. Then the difference

between the model error is:

81 = 82 = T: - T, - (tl—tz) 25w (5l

Let X; be the point on the ray from X; to S such that the
time from X, to S is T,. (By hypothesis, X; lies between X,
and §.) Let X3 be point on the ray from X; to S, possibly
extended, such that the model travel time from X5 to S is t,.

(See Figure 3.1)

Let ¢ be the path from ¥; to §. Let o(®, ¢') be the slowness
function for the phase in question and let om(g, ¢') be the model

slowness. The travel time from X; to X{ is then:




Fitjure 3. RQj Pa*.ins ?rom X‘ and XQ to S

41.




42.

X2 d
’ L = 2
S o(¢e, ¢')dLl, ! = dZ¢

X,

Since, by Fermet's principle, the path ¢ is an extremum
time path and, in fact, a minimum for direct body waves (Bath

(1969)), this quantity is not greater than:

X3
S ol(y,y'ldl
X,

where y is the straight line path joining X, to X,.

!

X2
Thus Ty, - T, = Ui 0(9,9')622
X1

X2
I ol(y,y'l)dl
X

| A

alixz - x|
where 0 is the average slowness along y.

Similarly:

!

Xy 3 ,
S 0(3,8')dl = o'l(X2,X,)
X1

6" iz - x|

| v

where o' is the average slowness along ¢ between X, and X, and

7 is the arc length of ¢ between X; and Xz.

So: bz - x4l < ke - x| ...(3.3)
0'
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The model travel time difference ¢, - t, will be less than
X’f
/ 2om(g,g’)dl in magnitude by the minimum time path argument.
X
Xy
Write: to -ty = [ o (4,0)dl + &
% =

where 6§ < 0 if ¢t, - ¢, > 0 and 6 > 0 if t, - t; < 0. (& is the
error caused by integrating along the true ray from X, to b

instead of the model ray.)

Then from (3.2), writing o = o, * do,

’

Xo Xl
s1 -8, = [ (o0 +80)(8,8')dl + S o (3,8')dl + §
m == x m——

X1 XZ

Xz b
= [ S8odl + [ Gmdl + 6
X3 X3
Therefore: §1 - 82 < Bol(Xs,X1) + BmZ(Xz',X;) + |6

8o—|o-Xo || # 5 (X2, X3) + |8] ...(3.4)
0'

| A

Assuming T and t are continuously differentiable where necessary,

we have to the first order in |[[,-X;|| and |Kx,-x37||, if:

_ 4,3 3 3
V= O ap )t
then VT(X5) » (X3 - Xo) = 0
VE(Xy) » (X3 = X)) = 0

* r

> VE(Xs) » (X3 - X5) {(Vt = VT) (X))} + (X5 = X3)
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So that:
|VE(Xo) o (X3-X3) | < |[(Ve=VT) (X0 || « |a=Xs ||
< %H(Vt-w)(xz)ll- Wota ]l ...(3.5)
We now make the following assumptions: Since the rays are

parallel to -VT, Xf—Xé will be parallel to —VT(X{) in the limit
as |¥3 - x;]| > 0. If we assume that V7 and V¢ are not too different

we can take:

2 |[(vE-vT) (x,) |
o r

« Wo-x1 ||/ INE(X2) ||

as a crude bound for |[; - X3||. If we further assume that L(X3-X;)

lki-x]], that |§| is negligible compared to 8o|r2-%1 ]|, and that

1

o = o', we have that:

|s1-s2] < {8o + Em [|(VE-9T) (X2) || /INE(X2) || } |Wa-Xa ||

w o » i BB}

We shall make use of this bound later in assessing the size
of region for which the difference between model errors is of the
same order as other errors contributing to hypocentre error.

At this stage we will limit ourselves to a few remarks about
(3.6). First, the term &0 |j,-X;|| is close to the true error
difference when X, is on the ray through X,. The other term
contains the fractional error in the gradient which is approx-
imately the angle between the two gradient vectors: this can be

guessed very crudely at best.
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One can construct situations such as in Figure 3.2 where

there is an appreciable angle between true ray and the model

ray, which equals the angle between the gradients. Consequently,

the second term may sometimes be quite large.

SLow

FijLu‘G 3-1 T"“e oad

A representative

apart, which is as we

¥ X FAST

mocle\ raxss with \q"\t(*c\\ '\r\iﬁcn‘:3en£'\‘ij

value for intermediate depth events 30 km

have seen about the maximum displacement

for which the linear approximations are worthwhile, with a

local average slowness of 0.1 sec/km, a model slowness error of

ten percent, and five

degree = 0.1 radian ray angle error, is:

|31 - Szl < 0.6 sec
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It must be reiterated that the expression (3.6) applies to
model errors at a particular station and does not give a bound
for the variation in what has been termed the source error

meaning model errors specific to the region containing the source.

We will utilise this expression to give us some idea of
the dimensions of a seismic region in which relative location
error is likely to be describable using standard statistical
methods. We now set out the different methods for dealing with
the information in (3.1), recalling that we have, in principle,
a distribution function F_(z) describing the model errors s

for our group of events.

THE METHODS OF SUCCESSIVE APPROXIMATIONS

With these methods, the first step is to pool the residuals
Y; in some way to estimate the model errors. If the earthquakes
are distributed over a region such that the differences between
model errors for pairs of events is likely to be unsatisfactorily
large, then this must be allowed for in some way, either by
assuming a functional relationship between the model errors, as
for example in the sinusoidal source terms of Herrin et al. (1968)
or by dividing the regions into subregions and utilising the
theory of the analysis of variance as in Bolt and Freedman (1968)
or combine both approaches as in Veith (1975). The analysis of
variance technique has the advantage of not forcing a possibly

incorrect relationship on the errors.

Let us assume then that the model error is estimated by some

linear function of the combined residuals, a process which might
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be no more complicated than taking the mean residual at each
station. The model is then updated and the whole process of
locating the events and reducing the residuals is repeated

until it is considered that convergence has occurred.

We may be critical of such schemes on three counts: The
process may not converge to the combined solution for hypo-
centres and model which gives an absolute minimum to the sum of
squares combined residuals, the model update estimates are not
unbiased and calculating confidence regions for the resultant
solution is difficult. These points are discussed to a certain
extent in Douglas and Lilwall (1972) who point out that in poorly
conditioned two-step linear iterative procedures (as described
above) convergence may be so slow that the occurrence of small
increments would be a misleading test of convergence, and also
that the method makes no allowance for the correlation between
the errors in the model improvement estimates and the errors in
the resulting hypocentre. If this correlation is not allowed
for, one gets an incorrect confidence region for the hypocentres
by using the standard linear statistical theory. We add two more
comments. First, even if convergence occurs, it may not be to
the absolute minimum. Take the simple example of M events
recorded at each of ¥ stations and sufficiently close together

to make SUPISj-Sil =g F reading error standard deviation.

Under this circumstance only the mean model error is worth

estimating. If we set:

, e (3.7)
4

|
ll'Mlg

o>
I




48.

then compute:

~

§e. = (4. 4,0
- 1 T

T, =
Ay (y;-8) s (3.8)

which is, by hypothesis, the same as:

A =1, 7=
6z, = -(a; 4074 s ...(3.9)

Let y_ € {li : 2=1,M} satisfy:
lb-sll < lk-sll  i=1,..m

With an increasing number of earthquakes, this ¥, can be
made as close to s as we please. With the high degree of
consistency which is possible among residuals (see Tables in

Appendix IIT), not too many earthquakes might be required to find

Y, such that:

b, - sll << |l

Then by (3.8):

~

Sz = (4 TA )—-1
e e'e

T =
A, (y, - & ...(3.10)

so we would not expect a large correction Gée. But the only
difference between Gée and Séi is due to the change in the matrix
Ai across the region. We have seen that over regions with
dimensions of several tens of kilometres, the linear approximation
to the model, which is equivalent to assuming 4. is constant, is
a good one. Thus with the method of successive approximations

under these circumstances we would expect only small changes in
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the hypocentre estimates with consequent small further changes
in the model. "Convergence" would have thus occurred, but the
evidence of Chapter V, where a similar scheme is compared

directly with a joint method, shows that the absolute minimum

has not been reached.

The situation is more complicated when it is not the case
that every station records every earthquake (which is the common
situation for any group of earthquakes one might wish to study)
and here particularly we strike the second problem with this

method: the model improvement estimates are biased.

Suppose, as before, that the data only warrants an estimate
of the mean model error, which we will attempt again by taking

the average residual at each station. Then:

~ M ) 1 M
s = (zpP) t£pPy. ... (3.11)
Taking expected values: |
A M 1 M
g) = (:pP.) P.(A.E(8z.) + E(s.)
E(s) (j=1 J) j=1{ J( 5 Eﬁ) s )}

which is not the expected value of s; even if E(égj) = 0, which

is in fact not the case as we have seen.

Having now raised several objections to the successive
approximations method, let us consider the family of alternat-
ives which go under the heading of Joint Epicentre (Hypocentre)

Determinations, first suggested by Douglas (1967) and since used
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with considerable success globally (by Iilwall and Douglas (1969))
and locally (for example, by Blaney and Gibhs (1968), Dewey (1971)

and Billington and Isacks (1975).

These methods have certain practical difficulties as we
shall see, but our theoretical objections to the successive
approximation method are overcome to a greater or lesser extent

by the different versions of this technique.

Let 2, be the expected value of the model error for the

group of events. Write By~ By

equations of condition for the ith event are:

= 6s., so that E(8s.) = 0. The

Pi(Aidgi + §M) = Pi(ﬂ{ - 6§i +E; - gi) =l sl  eal3:12)

and we solve the overdetermined system:

P]A] P1 (le Plﬂl
PA, P, : E
. 3 - : ... (3.13)
Ll gﬁ] -
Py Pu/\ 8, Prtly

by a suitable method to obtain least squares estimates for

ééi, éu. Since E(6£i) = 0 these estimates are now unbiased,
igncring the small biasing effect of E(Ei) and q;- To qualify
as minimum variance unbiased estimates, however, it is necessary
that the variance of the error of each equation in (3.12) be the
same. The assumption of equal station variances is known to be
suspect (Freedman (1968)). Assessing the ratio of the variance

of the model errors at one station to variance at another is

difficult without some knowledge of the real physical situation.
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The problem is eased in that the variance of any error is the

sum of the two variances of the model errors and reading errors.
2 2 5 .

If Ty and o,, are the model variances at stations 1 and 2 and

the observations at each have a common reading error variance

2 > s % R
o s then the observations should be weighted in the ratio:

2
S1

the difference between model error variances

/o’

S2

£

2, 2
If 6 /o >>0
(3 82

< 2
does not matter. If, as ideally would be the case, 052/0;2 =1,

then the ratio becomes:

2 2
1 =
081/082
2

Unless the variances differ by an order of magnitude no
great error is likely to be introduced by assuming equal model
error variances. In Chapter V some of the practical considerations

of calculating appropriate weights are discussed.

An immediate theoretical difficulty in obtaining a solution
to (3.13) is that the matrix on the left-hand-side is not of full
rank. The sum of the first column of each sub-matrix P.A. is the
same as the sum of the columns of the part containing the P,
matrices. In theory the system has a rank deficiency of one and
needs at least one constraint to ensure the least squares
solution to (3.13) is unique. It is the choice of constraint
that determines the particular Joint Method. Broadly, we might
either constrain the model corrections or a subset of the hypo-

centre improvements.
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Appendix I contains the algorithm for reducing (3.13) with
different constraints and obtaining the least squares solution.
For the moment we will confine ourselves to classifying the

different constraints.

N
First, let so = ( I sy )/N be the average model correction.
Jj=1 "g
Let gd =8 - sol. Then equation (3.12) can be rewritten:
! .
Pi(Aidgi + §u) - Pi(ai - 8ol - 6§¢ tE; - gi) i=1,..M

and in equation (3.13), B is replaced by sd which satisfies:

T g!
j:

Il
S

... (3.15)
J

The augmented system (3.13) plus the constraint (3.15) now
has full rank. The model correction estimates are now the
estimates of the deviations about the average model error. The
presence of the term sol in (3.14) means that the new system does
not give rise to unbiased parameter estimates. However, we have
seen in Chapter II that the presence of an error k1l only produces
a bias of -k in the origin time estimates. Thus, apart from a
bias of -sy in all the origin time estimates, the system gives

unbiased parameter estimates.

Appendix II contains a method for obtaining the variance-
covariance matrix for an arbitrary subset of the parameters. To

construct (joint) confidence regions for a subset of parameters




using standard theory requires, as we have seen, the distribution
of errors in (3.12) to be sufficiently close to normal to validate
the use of an F statistic. The assumption that the distribution
of the §s. is close to normal is much more reasonable than the
assumption that the model errors themselves are normal with zero
mean. The use of standard linear confidence regions for subsets
of the parameters which exclude the origin times is thus probably
quite fair. Apart from the unknown bias of the origin time, this

method is an absolute location method according to our definition.

There is a practical problem associated with this method
reported by Lilwall and Douglas (1972), Dewey (1971) and others,
that the system (3.13) plus constraint may be severely ill-
conditioned; in particular, it may be possible to get almost the
same residual sum of squares from widely differing combinations
of parameter estimates. In one sense there is nothing one can
do about this situation if one insists upon using this method
other than using the best numerical techniques available for
minimising the effect of roundoff error in the processing of the
system. The uncertainties of the parameter estimates should be
fairly reflected in the variances of these quantities and para-
meters which are interacting will tend to have large standard
deviations with high correlations between them. It should be
noted, however, that the conditioning of the system will improve
as the geographical spread of the group of earthquakes increases,
and although with the larger region the estimates of the mean
model error for the region will have less value, the method still
has the important property of producing unbiased parameter

estimates.
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A simple extension of this method allows the joint procedure
to be iterative. Indeed, we scek the combined set of hypocentre
estimates plus mean model corrections which yields an absolute
minimum sum of squares. There is no reason to suppose that this
minimum will be reached in one iteration since the system is
still effectively a linearised non-linear system. Douglas (1967)
notes that four or five iterations suffice to produce increments
5Si not greater than 0.01 sec. in the case of teleseismic

location of Aleutian earthquakes.

However, the worse the conditioning the slower the converg-
ence. My experience (Chapter V) suggests that damping the
increments is almost always necessary and that after the first
iteration, improvements to the residual sum of squares tend to
be insignificantly small while the increments to the solution

need not be small.

One method available for improving the conditioning of a
given system is to impose further constraints upon the solutions.
In particular, if there exists a near linear dependence between
the model correction terms and the hypocentre improvements, one
can reduce this by fixing one of the hypocentres. This fixed
event becomes the Master Event of Douglas (1967), Dewey (1971)
and others. This is a singularly appropriate name since the
final estimates of the other hypocentres are slaves to the
solution which is chosen for the Master. In Chapter V it is
demonstrated that the fixing of a Master Event in different
positions resulted in the rest of the solutions moving in unison
with the Master while retaining their relative spatial distrib-

ution for a wide range of positions of the Master.




Let event X, be the Master Event. The equations of

condition for this event are:
Pg§_u = Polye - AoSxy - 889 + €0 - go)

where the hypocentre error term 4,8z, now appears among the errors.
The system to be solved consists of (3.13) with P, appended to the
left-hand side matrix and y, appended to the right-hand side
vector. The system obtained yields quite a different solution
from the method where the station terms are taken to be the
residuals from the Master Event, even though these two methods
tend to produce similar sets of locations, for reasons which we
shall examine. An important advantage of the Master Event method
described above is that the Master Event need not be recorded at
every seismograph station in the network, whereas this is

obviously mandatory in the "Master Residuals'" method.

The increased stability must be paid for elsewhere, and
unless there is additional information about the location error
of the Master Event, such as would be the case if this event were
an explosion with known hypocentre, the presence of the 4,8z, term
means that the estimates in this case will be biased. Determin-
istically, the error in éu will depend linearly on 6zo, and hence
the errors in the 6£i’ which are coupled with the errors in gu,
will depend (linearly) on 8xo,. Thus the Master Event Method is a
relative location method. Confidence regions constructed for the
parameters in this method describe the effect of errors after the
bias A4,8xo has been removed, or in other words, the effect of

errors other than Agdz,.
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The Master Residuals method is also a relative location
method which in an ideal situation produces results similar to
the Master Event method. 1In Chapter II we saw that the residual
vector was orthogonal to the part of the total error which
contributed to the mislocation. We obtained the equation ,y =
{r - aca¥a)~'4 }Je. In the situation where all errors are
negligible compared to the model errors, the residual vector is
a reasonable estimate of that part of the model error which does
not contribute to the mislocation. If over some region the model
errors change slowly, the change in {I - A(ATA)_IAT}g will depend
on how quickly the design matrix 4 alters across the region. 1In
any case, the Master Residual vector can be interpreted as an
TA. =1 T}

) A

estimate of the average value of {I - A.(A. .
2 % 4 i

s. for the
=1
group of events. The equations of condition for the ith event

after correcting the residuals will be:

A’LGQ’I: = (}i/[/—l()) - (§ﬂ:—§o) + Ao(s._'lf_o + (Ei—_E_o)
- (g:-g0)
If we have reached the solution for which ééi = 0, then:

T -1, T
(Ai Ai) Ai'Uﬁp—§i) + A¢8zy + other errors}

$g
]

1

144

T 6B-1,7T
(A, A.) "A. (so-s.) + Sxo
The problems with this method are that one must be certain
of the quality of the observations of a particular event
- contamination of y, with large reading errors will invalidate
the method - and the model correction estimates one obtains are

nearly useless. As demonstrated in Chapter II, the model errors




are certain to be larger than the residuals in magnitude, and the
component that is estimated is the least interesting part of the

model error.

It is important to grasp the distinction between absolute
and relative location methods. Very often one's purpose is
achieved by a relative location method, and then the question 1is
which method produces a set of solutions with the smallest
relative errors, the average error of the group being unimportant.
A simple technique which the author has found to produce very
small relative errors under certain favourable circumstances is
the Homogeneous Station Method. Chapter IV comprises the theory

of this method and an example of its use.
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CHAPTER IV

THE HOMOGENEOUS STATION METHOD

RELATIVE LOCATION ERRORS

In Chapter III we saw that there were disadvantages in the
situation which is normal in analysing arrival time data from
a group of earthquakes of not having an observation from each
earthquake at every station. In particular, the relative location
errors of a pair of events will depend on the sets of stations
observing each one. Modifying (2.6) after (3.1) gives the

absolute errors of location for events 7 and j as:

T -1, T
o, = (ASPA) A Pi(_§i + - q;/ 33 (4:1)
sz, = . pa) TP 4k, - g) ...(4.2)
—J Jd dd J d &

so that if the events have identical hypocentres, giving 4. = Aj’

s, = Ej’ q; = 4 5 the difference 6£i - dgj will not be simply a

linear function of e. - ¥ unless P, = Pj; i.e., if the same

stations record both events.

If we insist that this condition apply to a group of earth-
quakes under study, so that we deal only with those which have
an observation of arrival time from each of a given set of
stations, we make the arrival time data homogeneous. The P_, Pj

may now be dropped from (4.1) and (4.2) and the relative location

error 1s:
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o, - bz, = (a4 s, t e, - q)
=4 A i =
ool T
T e e - g ...(4.3
g A Ay et -y sl

Take j as a reference event and write:

r = (aTa)y T L (4.4)

I is a function of the spatial position of the earthquake and
the travel time model which varies according to the departure of

the travel time model from linearity: a linear travel time model

implies L constant for all the events. I1f we write:
. = L.+ YL*(8x.-8x.) + higher order terms
T J )
. = g, 88z
=1 = 5]

<

then, neglecting terms of order, Hdgi-égjﬂz(which include g, ij):

8. - 6o, = -L.8s.. - VL<(8x.-8x.)8s.. - L.(g.~E.)
= B | i=1d 5T g T T

+ YL+ (8z.-8x.)(g.) ve.(4.5)
==

For a given travel time model we can find a sufficiently
small geographical region such that the terms on the RHS of (4.5)
involving VL are negligible compared to the other two terms. The
dimensions of such a region will depend on the magnitude of VL,
that is, on the magnitude of the departure from linearity of the

travel time model. Within such a region then:

6c. - 8x. = -L.8s..+ L.(c.-E.) ... (4.6)
=~ i—ig  d—t
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If we are assuming that the reading errors are normally distrib-
uted with zero mean and variance OZ’ then the difference between
two independent errors will have a normal, mean zero,variance 202
distribution. This source of error defines a lower limit to the
relative location error of two events since this error is present
even when the true locations of the events coincide. If we are
prepared to treat Ggij as a random variable and after the fashion
of Chapter II define a distribution for &s and consequently a
variance ogs, then if distribution of the total error(—@%j-+§¢

- Ej) is such that normal theory applies, we can construct

relative location confidence ellipsoids based, as in Chapter II,

on:
var (8g,-8z.) = (20740} )L.L.E (4.7)
- - 6s" g J
= (20 +o )(A A .) =4 .(4.7a)
so that:
(5.’1? (5.'17)(—262%‘(25—)14 A(G.’XI (Sx)

is approximately a X2 random variable with four degrees of freedom.
Analogous expressions exist for subsets of the parameters of

(Ggi—égj). If we can estimate (20§+ogs)(from the residuals) we
can form F confidence regions as in the single earthquake case
which now represents the confidence of relative location of an

event compared to a reference event.

The most important deviation from the assumption is the

possible lack of independence of the components of ('éiij+£i-£j)’

caused by the likely correlation between entries in 6§ij for
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stations with similar ray paths to the source region. The effect
of this can be minimised by choosing the region small enough so

that:
< 20° ...(4.8)
L 8

I1f we calculate the correlation between the kth and the Zth

components of the total error for events i and j, then:
cov {85y + €9 - €ix " 85, + €;9 - Ejl}

Pr1 2
o
8s

+ 202
€

E(Gs §s )

2

63+20

0]

so that:
Pss, 8s
kg
Pr1 e
20E
¥z,
63

Hence if the variation of 6s across the region is such that

(¢4.8) is satisfied, should be sufficiently small to satisfy

Pr1

the assumptions except when Pss. 6 is large, implying high
51

k
correlations between the model error differences for the k° th and
Zth stations. One can certainly imagine situations where

correlations close to 1 would exist, but in the earth there are

likely to be present heterogeneities at the source and at the

stations such that ps_ oo << 1 except when the stations are very
k

4
close together.

We will establish, shortly, a test that may be applied to




determine whether a region is sufficiently small. In Chapter III
we obtained the bound of 0.6 sec. for lsik - Sjkl when events
and j are 30 km apart, implying a typical dimension for the
region of 60 km. If the differences were distributed uniformly

in the range -0.6 to 0.6, then O™ 0.3 sec.

Alternatively, we could assume a roughly normal distribution
of differences and take 0.6 sec. as being two standard deviations
(exceeded by only five percent of the differences). Again, we

would obtain:

R

o 0.3 sec.

8s
In the case of arrival times read with a precision of 0.1
sec., 0. is in the range 0.1 to 0.2 sec. and so V2 O will not

| be greater than PO This suggests that the regions in which the

analysis is valid may be a little smaller than 60 km in diameter.

ESTIMATING THE TOTAL ERROR VARIANCE FROM THE RESIDUALS

We now turn to the residuals which will provide an estimate
of (ogs + 20;) and hence a check that ogs is not too large
compared with 202. Following the notation of Chapter ITI1, 1&t
Y, be the residuals from the ith event for the usual least

squares solution. By (2.9):

Hj = {Aij = I}{—§j + €. - gj} ...(4.10)

with the same assumptions as before:

- = = 68 . . , - €. Lea (401
Y; =Yg {AjLJ. IH 8,0+ &g gJ} (4.11)
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Rather than calculating the deviations of the residuals

about the residuals of an arbitrary event, we replace B by

M M
- 1 1
=3 7r y; and 8s;. by 8s; = 54 - 3 L s, whence:
z=1 =1
y, -y = UL, - IH-8s; + € - .} c..(4.12)
Thus:

-7 - .. T T
(4-y)" (4;-y) (_6§d+€i—gj) {L; A -1} x {AiLi'I}(—éﬁi

+€ .—€.)
=i =

(86 46 .-€ JTAT-A.L.}(~68 4€.~€.) +..(4.13)
==t - Tt ===

The matrix in the quadratic form on the right-hand side of
(4.13) is idempotent and positive definite and so, by Cochran's
Theorem (Scheffé, 1959), if the total error (-8s. + €, + Ej) is
normally distributed with zero mean and variance o?, the right
hand side divided by o2 is a X2 random variable with p degrees of

freedom, p being the rank of the matrix {r - AiLi} which must be

¥-4 from elementary considerations. Thus:
o -
(y., - y) (y. -y
S Sy R

(y; - 0 gy - B
oT: E( = 0
N -4

Thus the mean square deviation of the residuals from the
ith event is an unbiased estimate of o2. If we pool the mean
square residuals we get:

(y, - 3w - W

M(l-4) ... (4.14)

o,
™=
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Since we have used the residuals to obtain y, this expression
ought to be replaced by:

-7 =

M (y; -4 (y;-y)

= I
=1

A
o M(N—&)—(N—l—)__ ...(4.15) |

with the denominator being reduced by the number of independent
parameters in y, namely N-1, since the average residual will

satisfy:

7. =0 ... (4.16)

With moderate numbers of stations and earthquakes, the
number of degrees of freedom is such that this alteration will

produce no significant change in o©.

With our estimate o of the standard deviation of the total
error we can construct linear relative location confidence regions
and also assess the relative contributions to o2 by 20; and ogs.
If we equate 20; + oés with 02 then with an & priori estimate
of o_ we can estimate o4 - If Oss is too large according to the
rule we earlier formulated, then a smaller region should be
chosen over which to pool the residuals to give the estimate of

g?.

AN APPLICATION - THE NORTH ISLAND. NEW ZEALAND, MANTLE
SEISMIC ZONE

A summary of the results of this study have been published

in Ansell and Smith (1975).
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The purpose of the work was to examine the geometry of the
North Island Mantle Seismic Zone. It was hoped that the
Homogeneous Station Method would yield sufficiently good relative
locations that the fiﬁe structure of the zone would be revealed,
and the study was successful to the extent that it was deter-
mined that the earthquakes studied, with assigned depth greater
than 120 km, could have originated in a zone only nine kilometres

thick.

Briefly, the zone strikes north-east, dipping under the
central North Island with depths assigned by Hamilton and Gale

(1968) of down to 400 km at the north-western edge of the zone.

Prior to this study, Hamilton and Gale (1969) described the zone
having located earthquakes using standard least squares which
produced an estimate of 20 to 40 km for the thickness of the
zone in different sections. They also attributed appreciable

curvature to the zone in the plane perpendicular to the strike.

DATA SELECTION

For this study, we selected all the earthquakes located by
the Seismological Observatory, Wellington in the period November
1965 - December 1972 (excepting 1970, for which year readings
were unavailable) which had a non-emergent P arrival read to
0.1 sec. at each of the North Island stations WEL, MNG, TNZ, CNZ,
KRP, GNZ, ECZ and were assigned sub-crustal depths. There were
only 73 such earthquakes. The problem in deciding on selection
criteria was to have a reasonable number of data per event but

also a reasonable total of earthquakes. To ensure reasonable
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homogeneity of variance, phases designated eP by the seismologist
who made the readings were disregarded. This caused an apprec-
iable reduction in the number of satisfactory earthquakes but it
was hoped that 73 high-quality earthquakes would be a sufficient
number. Of these 73, 26 had a single reading given only to the
nearest second, the remainder being read to 0.1 sec. The readings
were not weighted in any way. At the stage of this study we felt
we knew too little about the errors to apply weights to the
observations, since the weights should be inversely proportional
to the standard deviation of the total error and not just the

reading error.

After relocation by the lomogeneous Station Method, 15 earth-
quakes were excluded from all further analysis because of their
position. It was felt that these excluded events lay too far
outside the station net and were too sparse to yield reliable
relative hypocentre determinations. Those excluded generally
had condition numbers > 10® (see Chapter I, Figure 1), while

none of the rest had condition numbers as large as this.

The remaining 58 earthquakes were divided by inspection into
the eight groups shown in Figure 4.1 for the purpose of analysing
residuals. The borders of groups were drawn to encompass hypo-
centres with similar patterns of residuals and to keep the hypo-
centres within a volume of about 40 km radius. The four isolated
earthquakes in Figure 4.1 could not be assigned to groups, which

left 54 earthquakes for the residual analysis.
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ANALYSIS OF THE RESIDUALS

The residuals pooled by groups are given in Appendix ITI.

By equation (4.15), with ¥ = 7, M = 54:

8
62 = (: 32)A54(7—A)—6X8) ...(4.8)
i=1

where the number of degrees of freedom is reduced by 8x6 = 48
because eight group means are calculated. Thus the total error

estimate is obtained:

& = 0.39 sec. (114 d.f.) ...(4.19)

1f we estimate a standard deviation of 0.2 sec. for the reading
error, which is probably a minimum in the view of the Seismological
Observatory staff who made the readings, this gives, by (4.17):

8; 0.392 - 2x0.22
S

0.27 sec. ...(4.20)

Il

This agrees well with the theoretical value obtained earlier for
Osa for a region in which the assumptions hold and in which

relative location errors can be described by linear theory.

The residuals from the earthquakes in the eight groups, the

means for each group and the standard error

/oo

1=

for each earthquake are listed in Appendix IIT. It is apparent

that the sum of squares of residuals is very significantly reduced
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by the extraction of the group means. However, as pointed out
earlier, no particular physical significance can be attached to
these means. 1In a sense they are estimates of the travel time
model errors, but as was shown in Chapter III the true model
errors must exceed (in a vector magnitude sense) these group
mean values. For this reason, the group means were discarded

and not used as station corrections.

DISTRIBUTION OF THE HYPOCENTRES

Since many subcrustal earthquake zones exhibit a planar or
nearly planar character, particularly on the scale of the
structure being studied here, the first step 1n describing the
structure was to fit a plane by the orthogonal least squares

method described in Appendix IV.

It rapidly became apparent that the earthquakes located
shallower than about 120 km, mostly in group 8 (and one deeper
earthquake mentioned below), did not fit a plane model fitted to
the rest and were omitted from this part of the analysis. The
isolated earthquake located at 38.3°S, 177.2°E 160 km deep (see
Figure 4.1) was the only earthquake of this depth within the net
not assigned to a group because of its remoteness from neighbours.
Other estimates of depth (which conceivably is grossly in error
compared to the other events) are 189 km by the Observatory,

114 km by USCGS, 100 km by ISC.

A plane was then fitted to 49 earthquakes hypocentres. The
standard deviation of the displacements of the hypocentres

perpendicular to this plane was 5.6 km. By way of immediate
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comparison, a plane fitted to the Observatory's original
locations for the same events produced a standard deviation of
perpendicular distance of 10.0 km. This alone suggests a marked
improvement in the quality of the relative locations of the

homogeneous method.

At this point it should be remarked that there was no great
systematic difference between the Observatory's locations, based
on many more observations which invariably include some S
readings, and ours. Generally speaking, there were differences
in latitude of 10 km, which increased rapidly to 30 km or more
for the earthquakes outside the net to the North. There was a
very much smaller difference in longitude, and our depths were
often 10 to 20 km deeper than the Observatory's, but not invar-
iably so. The evidence of the best fitting plane clearly
indicates that the homogeneous method produces better relative
locations than the inhomogeneous standard method. It is not
argued that the absolute locations are any better, or even

necessarily as good.

Also by way of comparison, Hamilton and Gale obtained
standard deviations about their fitted median curves of 9.7
to 17.5 km. They interpreted this, in view of their estimated
location errors, as indicating a standard deviation of the parent
hypocentre distribution of 5.0 to 14.3 km. We will now analyse

our results with a view to ascertaining the parent distribution.




P

STATISTICAL PROPERTIES OF THE BEST FITTED PLANE

We can interpret the distribution of hypocentres as being
precisely planar if 5.6 km is the standard deviation of the
relative location error in the direction normal to the plane.

In order to estimate this quantity, and also to check the
assumption that this quantity is constant for all the earth-
quakes, the standard deviations in the direction of the normal
were calculated for the 49 earthquakes from their relative
location variance matrices using 8 = 0.39 sec. as the scale
factor, as previously described. The assumption that the stand-
ard deviations are equal is certainly not true, which means that
the hypocentres éi in the likelihood function of Appendix IV,
should be replaced by £./0,, where o, = /gTV.g. To solve the
resulting maximum likelihood equations directly would be
impossible because of the appearance of the new term involving
a. One could proceed in two steps by calculating a without
weighting and then using this estimate to calculate the o and
thence recalculate a. However, upon examination, the values of
o, did not differ by more than a factor of 2, with an average
value of 3.5 km. In view of the significant difference between
5.6 km and 3.5 km, the hypothesis that the hypocentres could
originate in a plane must be dropped. However, the best fitting

plane still serves as a convenient reference frame for the

description of the distribution.

The next hypotheses to be tested were that the parent
distribution could be modelled as a uniform slab of width Za, or
as two planes distance 2a apart. In the first case, the distrib-
ution of the distances perpendicular to the best fitting plane,

di’ would be a convolution of a uniform distribution and an
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error distribution. The error distribution assumed was normal
with zero mean and standard deviation 3.5 km (as predicted from
the parameter variance analysis). The observations are then

described by:

. = u. + €. os ol 2.27)
1 T 7
where f(u_.) - L when -a < u. < a; = 0 otherwise.
) % 2a = Ty =
1 1 &
1 7
= L 2 ... (4.22
fley 7 X 3.5 e 3 (3.5)2} (.22

On the assumption that U and e, are independent, which is
strictly valid only where the only source of relative location
error is reading error, the distribution of di is given by the

convolution of f(ui) and f(ei):

d.+a
1 59 1 _-w/2 (4.23)
f(di) = ‘E I o dz_‘) .. .
di—a
( 3.5)
From the log-likelihood function:
M
L = 1log w f(d.)
. 2
7=1

a can be estimated by the method of maximum likelihood. In fact,
the equation arising by setting %% = 0 is quite intractable and

a was estimated by trial.

Similarly, in the second model with two planes, the

distribution of di is given by:
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fld;) = prs s e {3(d -a)?[3.5%)

b (1op) e 5 exp {5(da)?/3.5%) .. (4.2)

From the log-likelihood function, p and a may be estimated
by trial since the equations %g = 0 and %g are analytically
insoluble. The distribution seemed so symmetric that only p = 5
was tried. The values obtained were: model (1), a = 9 km,
model (2), a = 4 km, implying structure thicknesses of 18 km and
8 km for the two models. The actual values of the maximum likeli-
hood for the two models were almost the same, and so these two
models of very different character give quite different estimates
of the thickness of the structure. The models are compared with
the actual distribution of perpendicular distances in Figure
4.2. Since neither model is particularly realistic, but that
each might be considered a limiting case of the family of feasible
parent distributions, the two values obtained for the structure
thickness, 18 km and 8 km, can be interpreted as approximate

bounds for the thickness of a plane slab in which it is hypo-

thesized the earthquakes originate.

FINE STRUCTURE OF THE DISTRIBUTION OF PERPENDICULAR DISTANCES

In Figure 4.3 the positions of the hypocentres with respect
to the best fitting plane are plotted with their perpendicular

distance in kilometres from the plane.

The horizontal axis is a vector striking 45° E of N, and the
vertical axis dips at about 67°. The lateral dimensions of the

plane are 300 km x 200 km, but there are large gaps in the
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seismicity, particularly at the SW end. This absence of

seismicity is readily explained by the increasing failure of \
station ECZ to obtain satisfactory (non-emergent) readings as
one progresses further and further from it. Indeed it would be
dangerous to draw any conclusions about the seismicity within
the structure from the sample here because of the large depend-

ence on station magnification and signal reception.

If one examines the pattern of perpendicular displacements
given in Figure 4.3, it rapidly becomes apparent that there is
a high correlation between displacements on a local scale.

2

Because of this, a second order model d, = az; + byé +oex Y,

+ dmi + ey.

;1 f+ e, was fitted to the perpendicular displacements.

The assumption is that the error in the perpendicular direction
is independent of the errors in x and y, and that these latter
are negligible. Examination of the orientation of the 90 percent
confidence ellipses in Figure 4.4 shows that the first assumption
is quite good but that the second is quite wrong. Notwithstanding,
a quadratic surface was obtained and the standard deviation of
the displacements from the quadratic surface was 4.2 km. Using
an F test of significance, this improvement from 5.6 to 4.2 km

is significant at the 1 percent level, but the difference between
4.2 km and the predicted 3.5 km is also significant at the 1
percent level. This indicates that a simple second order surface

is an inadequate description of the structure also.

If one re-examines Figure 4.3, one notices that there are
several small groups (enclosed by dashed lines) of hypocentres
which have remarkably similar displacements, but all standing

about 10 km above the neighbouring hypocentres. With no more
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justification than this, these ten hypocentres were removed and
a quadratic fitted to the rest. The standard deviation of the

39 about this new quadratic was 3.4 km. The 10 stood at a mean
distance of 8.8 km above this surface, the standard deviation of

this group about its mean being 1.5 km.

Figure 4.4 shows a vertical cross section normal to the
strike showing the projection of this quadratic surface, a parallel
surface 9 km away (and the original best plane) and all these
hypocentres lying within 50 km of AA' (Figure 4.1). Also shown
are the 90 percent confidence ellipses in the plane of the section
for two of the events and a hypothetical extension of the zone
(dashed lines). In view of the remarkably good fit of this model,
one can say that the distribution of hypocentres is described very
well by two slightly curved surfaces 9 km apart with rates of

seismicity in the two surfaces in the ratio of 1 : 4.

The curvature of surface in the direction of the Strike was
an order of magnitude less than in the vertical plane shown. The
surface was in fact saddle-shaped being slightly concave toward

the NW.

CONCLUSION

It is important not to read too much into these results.
First and foremost, the structure in which the earthquakes
originate is very thin: two of the models gave thicknesses of
8 and 9 km, the other gave a thickness of 18 km. The physical
implications of this will be discussed below, but for the moment

it suffices to note that other subcrustal seismic zones have
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been found to be of similar thickness — see, for example,

Engdahl (1973) and Wyss (1973).

It must be remembered that the assumptions lying behind
the theory of the relative location errors cannot be expected to
hold over the whole extent of the region considered. The thick-
ness estimate depends on the assumptions holding within a region \
of larger dimensions than the estimated thickness, and so is the
most reliable piece of information about the fine structure of
the zone. Examination of Figure 4.3 leads one to prefer the
twin curved surface model as being the one which tries to account,
at least in part, for the pattern of perpendicular displacements.
If indeed there are two surfaces or ultra thin sheets in which
all the hypocentres originate, the sorting of the hypocentres
into the two groups is a nearly impossible job and no pretence
is made that the selection and removal of 10 from the 49 picked
all or only those from one group. One could of course try
different partitions of the set of hypocentres. It is unlikely
however that by this means any more would be learned about the

structure.

The physical significance of the curvature of the surface
is another question. The twin planes model and the quadratic
pair model both fit the data well. It is entirely possible that
over the downward extent of the structure, about 200 km, the
systematic location error alters in such a way as to make the
depth errors of the deeper earthquakes larger than the depth
errors of the shallower events. This would explain an apparent
curve. Thus little physical significance should be attached to

the apparent curvature of the structure shown in Figure 4.4.
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For the same reason the dip of the best plane may be appreciably |
in error. Subsequent work (Chapter V, and Adams and Ware (1976))

indicates a dip of 50°-60° rather than 67°.

The question of whether the thinness of the structure
continues into the region shallower than 120 km is made difficult
to answer because of the orientation of the confidence regions.
The long axis of the confidence ellipse of the earthquake at
190 km in the section of Figure 4.4 is almost parallel to the
down dip of the structure. It is fortuitous that the direction
of minimum error is nearly equal to the direction of the normal
to the best fitting plane. For the shallower earthquake, however,
the long axis of the ellipse is almost normal to the hypothesised
structure thus making quite plausible the idea that the shown
earthquakes could have originated between the dashed lines. Again,
subsequent work has considerably changed the picture of the
seismicity in the range 33-100 km, and the problems of these

earthquakes will be discussed in Chapter V.

To summarise, it is beyond doubt that the homogeneous station
method in this application gives higher quality relative locations
than the standard method, and the high degree of agreement between
the theoretical prediction of errors and the scatter of the
hypocentres with respect to the derived models of the regions
in which they originate suggest that the 1limit of relative
location accuracy has been reached for this quality of data. The
quantity of 0.39 sec. for the standard deviation of the total
(relative) time error is unlikely to be made much smaller by more
sophisticated location techniques without the introduction of

more complicated travel time models.
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PHYSICAL IMPLICATIONS OF THE RESULTS

Surveys of several seismic zones by different methods have
revealed that the earthquakes originate in very thin structures.
Engdahl (1973) finds a 10 km thick zone in the Aleutians after
examination of cross sections of seismicity, the earthquakes
being located using a raytracing method to calculate travel
times and a homogeneous station set, so that his work is another
example of the homogeneous station method. Engdahl used a
velocity model constructed by considering teleseismic observations
of arrivals from the nuclear explosion Longshot which featured a
7 percent faster P wave velocity within a dipping slab than in
the surrounding mantle. The earthquakes were located towards
but not exactly in the top of the slab, in a structure parallel
to the slab which Engdahl hypothesises is the coldest and

brittlest part of the slab.

Wyss (1973) deduces a thickness of 11 km for the thickness
of the intermediate seismic zone in the Tonga area from source
dimension considerations. Determinations of the thickness of
the intermediate and deep seismic zones in other regions
generally give values of 10-30 km, but error estimation problems
when standard location methods are used tend to make these

maximum thicknesses for the zones.

Although there is no way of identifying the physical region
within the slab in which the earthquakes studied have originated
from the data discussed here alone, it is usually assumed that
this zone lies towards the top surface of the down-going slab.

There is no reason to suppose that Engdahl's Aleutian model is
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not a reasonable one for the North Island New Zealand mantle zone.

Some recent work by Harris (1975) classified more than 200
earthquakes in the North Island mantle zone into two groups
according to mechanism. The two mechanisms are the common
mechanism of tension down the dip of the zone with compression
normal to the zone and a strike slip mechanism in the plane of
the zone with the tension axis to about 30° to the down dip.
About 70 percent of the earthquakes had this latter mechanism;
of those located below 200 km, more than 90 percent had this
mechanism. Of the 49 earthquakes in Figure 4.3, mechanisms of
31 were given. These are shown in Figure 4.5. There appears to
be no correlation between location of an event in one of the
surfaces of the two surface model and a particular mechanism.
No further discussion of mechanism and its consequences will be
attempted in this chapter but will continue in the following

chapters in the sections on the model of the North Island mantle.
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CHAPTER V

JOINT HYPOCENTRE DETERMINATIONS OF NORTH ISLAND
NEW ZEALAND MANTLE EARTHQUAKES

AN EVALUATION OF THE JOINT HYPOCENTRE METHOD

In this chapter we set out to test the Joint Hypocentre
method on groups of North Island mantle earthquakés. The theory
of the method is given in Chapter III. Joint Hypocentre Deter-
mination (JHD) has not before been applied in a situation quite
like the one discussed here for, although Dewey's (1971) study
in Venezuela involved analysis of some intermediate depth events,
Dewey always used a master event and had available substantial
teleseismic data including pP observations. For reasons to be
discussed, only readings from the net of stations run by the
Seismological Observatory at Wellington, New Zealand, were used
in this study. Also, I was very keen to discover the problems
encountered when one does not use a master event. Various
authors using JHD have been somewhat vague about this, saying
that they had no success or that convergence was too slow.
Because of an anticipated difficulty in being confident about
the location of any master event in the region to be studied, I
felt that JHD without master event was worth trying. In this
section, the theory of JHD is expanded to cover the problems
arising in a particular situation and its performance is
considered under three headings: relative locations, absolute
locations, contribution to model improvement. Chapter VI
contains a description of the use of JHD to model the mantle

structure of part of the North Island of New Zealand.
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DATA SELECTION

It was anticipated that the bulk of the data for the study
would come from seismic arrivals at New Zealand seismograph
stations of earthquakes subsequently located at depths greater
than 33 km by the Seismological Observatory, Wellington. I
expected to be able to include in my groups of earthquakes some
with sufficient teleseismic readings to make them reliable master
events. The discrepancy between locations assigned by the
Observatory, particularly the depth, using only New Zealand
readings and the Jeffreys-Bullen travel time model, compared
with the locations assigned to the same earthquakes by ISC after
teleseismic data has been added is well known and Adams and Ware
(1977) show that this discrepancy can be reduced to a large extent
by assuming 9 percent faster mantle travel times to some stations
than others in a way which is consistent with the presence of
dense material under the North Island (Hatherton (1970b)). A
study of teleseismic residuals by Robinson (1976) independently
reinforces the model of a structure dipping at about 50 degrees
in which the seismic P velocity is 10-11 percent higher than in
the surrounding mantle. Similar values have been found for
other Benioff zomes - in the Aleutians, for example, Jacob (1972)
deduces a 7-10 percent velocity contrast from residual analysis

of the nuclear explosioanﬂshot.

Because of this severe departure from a radially symmetric
travel time model, hypocentre determinations based on the latter
must be suspect even when substantial teleseismic information
is included, for rays to teleseismic stations from an earthquake
at, say, 150 km presumably will penetrate down through a

significant amount of the fast structure.
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Figure 5.1 shows a plot of origin time difference against
depth difference, i.e. Observatory origin time - ISC origin time
versus Observatory depth - ISC depth for the sample of all the
earthquakes from January 1971 to June 1973 inclusive which were
assigned subcrustal depths by ISC south of 38°S under New Zealand
for which there were three or more teleseismic P readings. The
figure illustrates the known linear relationship between the
depth and origin time errors. The spread of values shows the
difficulty in deciding, assuming that earthquakes in this class
are chosen as master events, what an appropriate master event
solution would be. Also, in this sample there were no pP
observations, and the consistency with which any given teleseismic
station provided observations was not high. Thus it was decided
to try at first to use JHD without teleseismic data and without

a master event.

The next problem was to sort the earthquakes into groups
suitable for the application of JHD. The groups should have
dimensions not greater than about 60 km diameter (from Chapter
I11) if the required assumptions for the statistical analysis
of the results are to be valid. Moreover, the groups should
contain as many earthquakes as possible with as high quality
data as possible - in particular, as consistent a set of stations
as possible. These last two requirements are bound to conflict
since any applied quality criteria are bound to reduce the size

of the available population.

First, earthquakes assigned subcrustal depths by the

Seismological Observatory for the years 1964-1969, and 1971-1974
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inclusive, between latitudes 37°S and 42°S were classified into
arbitrary groups according to latitude and depth. The following

table gives the classifications:

Depth
| 34-49 50-99  100-149 150-199  200-249  250-299  300-

Latitude

37.0-37.98 | 11 12 13 14 15 16 17
(13) (53) (85) (104) (68)

37.9-38.7 21 22 23 24 25 26 27
(23) (62) (317) (117) (26) (10)

38.,7-39.2 31 32 33 34 35 36 37
(12) (67) (101) (68) (11) (0)

39.2-40.0 41 42 43 44 45 46 47
(29) (39) (41) (70)

40.0-40.7 51 52 53 54 55 56 57

40.7-41.3 61 62 63 64 65 66 67

41.3-42.0 71 72 73 74 75 76 77

The figure given in parentheses 1is the total population of
the group - e.g. the most populous group, 24, had 317 events
during the ten years. The groups without population figures
had very few earthquakes and it was felt that these would not be
processable. Subsequent work revealed that at least some of the
groups south of 40°S could be analysed but this has not been
attempted in this thesis. One of the features of the group
classification is the almost total absence of seismicity in the
range 34-50 km (33 km is the depth assigned to 'mormal" earth-
quakes by the Observatory). Indeed, most of the seismicity in
the 50-100 km range is deeper than 70 km. This sparseness of
seismicity has been noted by several authors (see, for example,

Eiby (1971)), but the work of Adams and Wave (1977) and the
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results here suggest this gap is caused by using a too slow
model which has the effect here of increasing the depths of
subcrustal earthquakes by about 40 km. The earthquake groups
north of 37.9°S were not analysed either, because of poor
conditioning of the system of equations resulting from these

events (lying outside the net of stations).

The question of conditioning will be discussed later, but
at this point it suffices to say that this ill-conditioning was
deduced from the appearance of very large standard deviations

for the parameter estimates.

The next question was the choice of stations. To determine
the quality and consistency of the data, the most populous group,
24, was examined to try to find data quality criteria for the

selection of subgroups on which to use JHD.

EARTHQUAKE SELECTION WITHIN GROUP 24

Because it was not initially known how stable, well condition-
ed and sensitive to data heterogeneity the method would be, a
fairly severe rule was found which produced what was hoped would
be a satisfactory number of earthquakes. Twenty-one "stations"
were decided upon, and for the purpose of JHD it is convenient
to think of P and S readings at a given seismograph station as
separate stations. The stations were selected according to the
criterion that each station should record at least half the
earthquakes in the group. The stations were CNZ, P, GNZ, P, S,

KRP, P, S, TUA, P, S, ECZ, P, S, MNG, P, S, TRZ, P, S,




i

wrz, P, s, WEL, P, S, COB, P, S, TNZ, P, GBZ, P. (See
Figure 5.5 for locations of stations.)

A1l those earthquakes from group 24 were then selected
which had: non-emergent P arrivals at stations CNZ, KRP and
either GNZ or TUA; a total of at least 15 arrivals at the 21
stations; not fewer than 11 non-emergent arrivals (P or S) in
total. This provided a sizeable population of 65 events out

of the 317.

A note here is necessary about the use of S arrival data.
It is common for intermediate depth earthquakes in New Zealand,

particularly those located by the Observatory below about 100 km

to give clear, non-emergent S arrivals on New Zealand seismographs.

The information contained in these S data is too valuable to
waste, and so it was intended to use the S arrivals, treating
them independently of the P data, but with a suitable weight

relative to P.

In the same way, it was decided to use rather than omit
emergent arrivals by giving them a suitably low weight relative
to a non-emergent arrival. The method used for obtaining these
weights and the method of dealing with excessive residuals 1s

discussed in the next section.

WEIGHTING THE EQUATIONS OF CONDITION

The theory of the distribution of the total error in an
observation has been discussed in Chapters II and IITI. Although

this distribution cannot be assumed to be normal, even after
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the removal or special treatment of extreme values, the theory
of normal errors will give satisfactory confidence intervals for
parameter estimates provided the observations are independent
and of equal variance. The problem of non-independence of
observations because of coupling through the model error at a
station was extensively discussed in Chapter III with the
conclusion that the correlation between errors should be satis-
factorily decreased for small enough regions. Absence of
correlation does not imply independence for non-normal distrib-
utions, but this minimising of the correlation is all one can do
short of estimating by some means the full variance matrix of
the observations and using this to transform the equations of

condition into an uncorrelated, common variance system.

With the approach adopted here one must be prepared to
examine the confidence intervals obtained for the parameter
estimates to see whether they appear to be too small. Highly
correlated errors at a given station may produce an effect on
the parameters similar to a bias, that is, a systematic error,
which might not be encompassed by the calculated confidence

regions.

It remains therefore to ensure that the observations have
equal variance, or, if as is almost always the case of the
equations of condition and certainly in the case now being
discussed, that the equations are weighted inversely as the
standard deviation of the observations. The resulting trans-
formed system (in the absence of correlations) satisfies the
requirements of the Gauss-Markov Theorem (Zelen (1962)) and so

the resulting parameter estimates are minimum variance unbiased
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estimates, irrespective of the error distribution.

To determine the weights, it was assumed that each

observation had an error variance of the form:

where oé is the variance of the reading error and 0;. is the
variance of the deviation about the mean of the travil time
model error at the jth station. Initial assumptions were made
that the readings classified as emergent and non-emergent come
from two populations; the reading errors for each having common
variance irrespective of whether the arrivals are P or S, and
that the model error variance for P or S was common for all
stations. Also it was assumed that c; = 30; from the normal

relationship that the P wave velocity is about ¥3 times the S

wave velocity.

This leads to the assumption that the weight for non-emergent

S relative to non-emergent P is given by:

v Gl L9

ol

Taking 0. Op gives:

w = 0.7 «es(5.2)
There was some immediate suggestion that this was too high

a relative weight (the assumption of equal reading errors being

a very poor one) and the weight for S was taken to be 0.6.
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Emergent arrivals were given a weight of 0.5 relative to non-
emergent arrivals. This guess was based on personal communic-
ations from some of the Seismologists who made the observations
but subsequent tests of the residuals revealed that this is quite

a reasonable value.

Using these values, the set of 65 earthquakes from group 24
were relocated using JHD. .There were 1125 equations in 4x65 + 21
= 281 unknowns (no master event was used) to be solved for the
least squares solution by the algorithm given in Appendix I.
Of the 1125 observations, 579 were non-emergent P arrivals, 421
were non-emergent S, 57 were eP and 58 were eS; 10 observations
exceeded 3 standard deviations (8 = 0.45) and were not used in

the following analysis.

Under the assumption that the input weights were correct,
the distribution of residuals in the three classes, non-emergent
P, non-emergent S, and emergent (P and S), would have equal
variances. Significantly differing variances would indicate
that the wrong weights had been used. Because of the large
numbers of residuals in each class, quite small differences in
variance would be significant (using an F test). The results

were that:

N

8° = (zr’)/579 = 0.1124

" (zr )/
6 = (wl)/421 = 0.1620 .e.(5.3)
8° = (3r’)/115 = 0.1119
e e .
8 8

so that: 2 - 1.4, 5 = 1.00 ceal5.4)
8 G
p p
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which implies that the weight for emergent arrivals relative to
non-emergent ones is satisfactory, but that the weight for non-

emergent S should be reduced to:

w

s _ 0.6 _

= = gy = 0.5 ...(5.5)
8

s
o

p

This experiment was twice repeated for different input
weights. It was found that the predicted weight plotted against
the input weight gave a straight line. The results are shown
in Figure 5.2. The intersection of the straight lines through
the data points with the line w, = ¥ .+ gives the values w_ =
0.4, w, = 0.5. When these weights were used in fact the output
weights were w_ = 0.41 and w, = 0.55 (shown as a large + and (*)
on Figure 5.2). If a single large residual were removed from the

population of emergent arrivals (and the rule used for the removal

of outliers was quite arbitrary), then w, would be 0.50.

The conclusion of this analysis was that the adoption of
the weights w_ = 0.4 and v, = 0.5 produced internally consistent
results. These values are not too far from the initial estimates
although the S weight is lower than expected for a reason that I
can only assume is due very much to large reading error
- doubling the estimate to 0.4 sec. for the S reading error only
gives w, = 0.63 - coupled with greater variation in the S model

errors than predicted by simple theory.

No subsequent tests on other groups of earthquakes gave any

reason to depart from this weighting scheme which was used
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throughout this study. In the section which follows (discussing
the stability of the hypocentre and model correction estimates

to perturbations of the input control variables), the change

in the solution for the various data sets 1s given. No

very great change in the parameter estimates (nothing significant
compared to the relative error standard deviation estimates) is

observed for small changes in the input weights.

The next aspect of the weighting problem to be dealt with
was the method of dealing with outliers - residuals too large
to be accounted for by any reasonable theory of errors other
than blunders in reading. The number of mistakes detected was
in fact very small for the group of 65 events, but rather than
omit these, it was felt that since good techniques exist for
dealing with such situations, one could be used to deal with
the possibility of greater numbers of extreme outliers in other

groups.

Dewey (1971) used Jeffrey's method (Jeffreys (1939)) which

employs a weight:

wir) = 1/[1 + u exp (r?/200)] ...(5.6)

where oo is the standard deviation of the population without
extreme values, and up is related to the rate of occurrence of

extreme values.

Dewey used Bolt's (1960) value for u of 0.02 and estimated
oo from the distribution of residuals, typical values being of

the order of 1 sec. The very low rate of outliers found in the
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group 24 data indicated that 0.02 was much too large. Figure
5.3 shows the distribution of residuals without outlier removal.
Because this analysis was being conducted concurrently with the
determinations of Wy and W, the data shown is from the case

w, = 0.6, w, = 0.5. The distribution of residuals is markedly
non-normal in that a very much greater than expected number of
residuals are within 0.45 sec., the unbiased estimate of the
standard deviation, but also that too many exceed three standard
deviations - as mentioned before, 10 residuals were greater than
1.3 sec. in magnitude, and most of these were more than four

standard deviations. It was not the case that these extreme

values tended to occur for emergent arrivals.

This gives a "blunder rate'" of 10 per 1125. Calculation of
pu as (height of tail)/(excess height of peak) gives a value of
2><10_3 - an order of magnitude less than the Bolt-Dewey figure.
By trial, a satisfactory value of oo was found to be 0.35 sec.
The unbiased estimate of the total error standard deviation which
resulted from the use of these weights on the group 24 data was
0.33 sec., which is to be interpreted as the standard deviation
of the total error in a non-emergent P observation. This is not
inconsistent with the estimate of 0.39 sec. obtained in Chapter
IV for the same quantity, since no weighting for outliers was
attempted there, and the detection of blunders with only seven
observations per event is made very difficult by the least
squares method which tends to share the error among all the

residuals.

In this regard it cannot be claimed that residuals identified

as extreme outliers are certainly blunders and that these are the
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only such blunders, although this is extremely likely. There is,
however, the possibility that a '"good" reading will appear to be

a blunder and that a blunder will be hidden. The actual method
used to apply the Jeffreys weighting scheme was that some number

of iterations, generally 3-5, would be performed without Jeffreys-
type weighting, then w(r) would be calculated and applied unchanged
for a number of iterations until a sufficiently stable solution

(as indicated by the magnitudes of the increments) was reached.

Figure 5.4 shows w(r) (normalised to g, = 1) and rw(r) for

u = 0.002. The weighting produces little effect on residuals

less than three standard deviations, but then its effect is rapid.
Experiments were carried out with different values of u and oo

and it was found that the solutions were stable to small perturb-
ations of these parameters, but that if too large a value of
were used, say 0.02, a marked change in the solution occurred
after the application of Jeffreys' weighting from which the system

took much longer to recover and find a new minimum.

The final distribution of residuals after application of
the weighting scheme described was l1ittle different from the
prior distribution except for the absence of the tails. Before
concluding this section on weighting, we return to the assumption
of equal station variances made at the beginning of this section.
It is generally accepted that this assumption is false (Freedman
(1968)), but until one removes the mean model error,detection
and removal of the effect of different station variances 1is

difficult.

For each of the 21 stations used, a standard deviation:
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was calculated, where Nj is the number of observations at the
jth station and ¥ the weighted residual from event <. These
quantities ranged from 0.19 (GBZ P) to 0.38 (MNG P). The values
obtained are shown in Figure 5.5. There is no readily apparent
pattern in the values. Although at most seismographs the P
standard deviation was not greater thanlthat for S, the two
largest values were MNG P and COB P. A Bartlett's Test of
Homogeneity of variance (Snedecor and Cochran (1967)) performed
on the station data indicated that the differences between the

standard deviations was highly significant (the test statistic

is approximately X2 on 20 d.f. and the value obtained was 73.13).

Ad hoc explanations of these differences might be attempted.
For example, the COB P data had by far the highest incidence of
emergent arrivals of any station, and so too high a weight for
W, would explain the high value there. However, MNG is one of
the better stations in the set and none of its arrivals were

described as emergent.

It is perhaps convenient here to give the corresponding
results for an adjacent group, group 34. The station standard
deviations are also given in Figure 5.5 and it can be seen that
for some stations the values are consistent and for others highly
inconsistent. In particular, MNG P and TRZ P show large variat-
jons from one group to the other. A Bartlett's Test conducted
on the group 34 data also showed a significant difference between

station variances.
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In light of these results, I feel it is likely to be
difficult to formulate a theory which explains the differences
in station variance. A plausible explanation is in fact that
the observed differences are attributable to incorrect weighting
parameters for S, for emergent arrivals and in the Jeffreys
weighting. If by chance it happened that a rather large number
of large but not extreme residuals were present among the residuals
of MNG P for group 24 and the value of p used were too small,
this would give a larger variance than expected. The Bartlett\
Test is sensitive to departures from normality in much the same

way as the F test (see Chapter 11).

Certainly, the great variation that occurs for some stations
between groups 24 and 34 shows the dangers of simply weighting
the observations at a station inversely as the calculated
standard deviation. It was felt that the results so far justified
not weighting the observations by stations but to bear in mind
the very strong possibility of unequal station variances. This
question is mentioned further when the pooled results of all the
groups are discussed, when it turned out that there was a large

degree of homogeneity of variance between stations.

STABILITY OF PARAMETER ESTIMATES IN GROUP 24

Appendix V contains a complete set of results for group
24 (with no master event), including original Seismological
Observatory Solutions. In this section we discuss these results
with respect to stability of the solutions. In particular, we
discuss the variation in the solution with quantity of data,

achieved by altering both the number of stations and events, and



105.

also the effect of fixing part or all of the hypocentre of one

of the events.

In general terms, the hypocentres were fairly consistently
displaced about 30 km to the NW and 40 km shallower than their
Seismological Observatory solutions. Average model corrections
(the sum over the 21 stations being constrained to be -21.0 sec.)
ranged from +5 sec. for KRP S to -5 sec. for GNZ S. The unbiased

estimate of the total error:

Zer;j
8§ = L

Number of Observations - Number of
Parameters

was 0.326 sec. This is to be interpreted as the estimate of the
standard deviation of the total (model plus reading) error of a
non-emergent P arrival. Total error estimates for other observ-
ations are obtained by dividing through by the weight given to
that observation - thus the estimate for non-emergent S is 0.81

sec.

Even with 845 degrees of freedom, one is not entitled to
quote 3 significant figures for 8. This is done here for compar-
ison with the values of 8 given by the other solutions with
different quantities of data, etc. The change in 8 is so small
as to be completely insignificant even where part or all of the
hypocentre of one event is fixed. In particular, fixing the
depth of a master event to a wide range of values produced
insignificant changes in the value of 8 showing that the 'valley"
of the least squares solution is broad and flat)which must make

one cautious about acceptance of the solution. The details of
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the various solutions are given below. (Solution F is the one

given in Appendix V.)

Solution Number of Number of Master Depth of 8
Station Events Event Master

F 21 65 N - 0.326
G 21 38 N - 0.319
H 19 65 N - 0.335
I 21 19 N - 0.328
J 17 65 N - 0.324
K 14 65 N - 0.322
F 21 65 N - 0.325
R 21 65 Y 157 0.333
S 2. 65 X 125 0.334
T 21 65 Y 140 0.330
0 (Seismological Observatory Solution, 157 km deep)

Figure 5.6 shows the changes for F through K in epicentre,
depth with latitude, and model error for five arbitrary earth-
quakes which approximately define the physical extent for group
24, and five stations spread about the group. 90 percent confid-
ence ellipses are calculated from the variance-covariance matrix
of solution F. Error bars for the model errors are one standard
deviation. It is clear that the changes in the solution produced
by altering the number of stations and/or earthquakes are
insignificant in terms of the predicted errors. One concludes
that the solution is not sensitive to simple changes in the
number of data provided there 1s some minimum number of observat-
ions, suggested by solution I which produces the greatest

deviation from solution F, particularly in the model errors.

Figure 5.7 shows corresponding changes for F through 0.
The model terms here are given for F and R only, plotted against

model travel time for the group to the station. The error bars
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(on the F values) are one standard deviation. This figure
demonstrates the high degree of reliability in the relative
location of the group using JHD with or without a master - the
solutions move in unison as the master 1is constrained to different

solutions.

The conclusion from the lack of significant variation in
8 between these solutions is that even though the conditioning
of the system is good enough for the system of equations to
converge quickly and stably (within 5 iterations, often within
3) to a solution, the number of solutions producing almost as
small a residual sum of squares cover a vast volume of the
solution space. Without some additional information about the
physical appropriateness of a solution it would seem that the
method is less than satisfactory as far as producing improved
absolute hypocentres is concerned. Similarly, the change in the
model error estimates between F and R shows that while qualitat-
ive information is provided as to whether the average path to a
station is fast or slow relative to the original travel time
model, the magnitude of the time correction at a given station
will depend quite a lot on the values of the hypocentre para-

meters chosen for the master event.

THE DISTRIBUTION OF HYPOCENTRES IN GROUP 24

Figure 5.8 is a section perpendicular to the strike of the
North Island Seismic Zone which serves as a location map for
group 24 and again demonstrates the thinness of zone. The
distribution of hypocentres in group 24 confirms the result of

the Homogeneous Method - there the standard deviation perpendicular
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to a best fitting plane was 5.5 km; for group 24 the standard
deviation was 5.7 km. The geographic extent of group 24 is of
course much smaller than the group considered for the Homogeneous
Solution Method, with the extent perpendicular to the section

in Figure 5.8 being only about *50 km.

This agreement between the two methods suggests that both
achieve the same standard of relative hypocentre determination.
Moreover, a plane fitted to the hypocentres of solution R had
a standard deviation perpendicular to the plane of 5.6 km,
showing that the relative location accuracy is very largely

independent of the location errors in the master event.

The other physical characteristics of the best fitting
plane for group 24 were quite a bit different from those obtained
in the previous study. Since there was about a 30 km displacement
of the hypocentres to the North-West relative to their Observatory
locations, the best fitting plane was similarly displaced. The

strike was 41° East of North compared to 45° - a difference

possibly not significant in view of the smaller extent of group
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depth would mean that the model errors for earthquakes at the
top and bottom of the group would differ by too much to make

the assumption required for JHD valid.

However, the good relative locations and the shallower dip
of the zone suggest that the group size chosen is not too large
and it was with some confidence that the next stage of consider-

ing other groups was embarked on.

MODEL ERROR ESTIMATES FROM GROUP 24

Before discussing the results from the other groups, the
model error estimates will be discussed. The great problem with
interpreting these results was that the magnitude of the values
obtained was often very large compared to the model travel time,
the extreme cases being KRP and GNZ where the predicted errors
were +15 percent and -6 percent of the average travel times,
making a velocity contrast across the dipping zone of 20 percent.
Of course the fact that the error terms are calculated only to
within an additive constant means that by a suitable choice of
constant, this figure might be somewhat reduced. However, one
is hardly entitled to choose the additive constant to minimise
the contrast. Also, the uncertainties in the model errors
make quite dubious the acceptance of the results from a group

in isolation.

To begin with, the standard deviation of the model error
estimates as calculated on the basis of normal linear theory
were of reasonable magnitude ranging from 0.22 sec. for TRZ P

and TUA P to 0.95 for KRP S. The S standard deviations were
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larger because of the lesser weight given to § observations.

The geographic position of the station relative to the

hypocentres and the total number of observations at that station

are the other factors involved in determining the magnitude of

the standard deviation.

The magnitudes of the error estimates and standard deviations

were such that it would have been quite impossible to find an

additive constant which would have made any appreciable number

of the station terms insignificantly different from zero in a

statistical sense.

The applicability of the standard errors as a measure of

accuracy however depends on the absence of systematic errors and

the series O-F reveal, as discussed, that 8 changed very little

over a wide range of solutions some of which (R in particular)

involved a large reduction in the magnitude of the error

estimate.

On the other hand, from the linear theory variance covariance

matrix the correlation coefficients for the hypocentre parameters

for one of the events and the model error estimates were

calculated. The results are given in Appendix V.

The results

show only a mild correlation between depth or origin time and

the station terms but a rather larger correlation between latitude

and longitude and the station terms. These correlation coeffic-

ients then reflect the dependence between the model error

estimates and, particularly, the epicentre estimate.

VICTORIA UNIVERSITY OF WELLINGTON

The accuracy



114.

of the estimates of the correlations is subject to the same
requirement of absence of systematic error, yet the values are
not unrealistically small and should be quite fair estimates

of the correlation. This indicates that the linear theory is
coping with the systematic model errors to a large extent in
which case one can accept the values for the standard deviations

of the model errors.

Also, as before briefly mentioned, there is a great deal of
qualitative consistency in the model error estimates. Those
stations which have ray paths through the postulated down-going
lithospheric slab have negative terms which increase in magnitude
with increasing average travel time implying, as expected, faster

than average velocities in the slab.

Thus it was felt that while in isolation the model error
information from group 24 was of unknown quantitative value, the
pooling of such data from several groups might yield an improve-

ment to the model.

THE OTHER GROUPS

As an initial experiment, earthquakes from four other groups
were relocated using JHD; these being the adjacent groups 23, 25,
33, 34 which were generally the next most populous groups. The
northern groups 11-17 were rejected on the grounds that they
were likely to be so unfavourably placed with respect to the
network as to give rise to even more poorly conditioned systems
of equations. Finally a total of nine groups were processed

covering all but the regions of sparsest seismicity between
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37 95 and 39.2S. The set of stations typically used to locate
an event south of 39.2S by the Observatory is quite a little
different from the set for events north of this latitude. It
was hoped that some 250 events in all the groups would be a
satisfactory number from which to obtain an improved velocity

model.

Table 5.1 gives the details of the data available for the
four groups mentioned above together with the number of iterat-
ions used and the largest increment to any of the model estimates
in the last iteration. The maximum number of iterations allowed
was 12 - if the increments became satisfactorily small before
the twelfth, the process ceased. The values of the largest
increment after 6 iterations, when Jeffrey's weighting was

applied, is given for comparison in some cases.

The corresponding data for group 24 is included. In no

case was a master event used.

TABLE 5.1
Group/Run  Events Stations Iterations Last Increment 8

24F 65 21 6 0.04 0.326
G 38 21 8 0.13 0.319
H 65 19 8 0.04 0.355

I 19 21 10 0.05 0.328

b 65 17 9 0.01 0.324
K 65 14 8 0.09 0.322
34A 28 20 8 0.07 0.335
33A 20 17 12 0.46 0.317
(6 0.59 0.318)

25A 31 20 12 1.68 0.363
(6 +95 0.362)

B 31 19 12 .25 0.319
(6 1.59 0.317)

23A 22 16 12 0.00 0.384
(6 0.06 0.384)
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As in the case of group 24, the selection of data was
guided by the need to monitor quality (few emergent arrivals)
and consistency of stations, bearing in mind the available
population of the group. Thus with the more sparsely populated
groups, the criteria for selecting data had to be somewhat
relaxed. The consistency of the results obtained from group
24 with varying data sets and the use of weighting for quality
indicated that the relaxed criteria should be quite satisfactory.
From Table 5.1 it will be noted that (i) except for group 23
the total error estimate 8 was fairly constant and that except
for 33 and 25 the last increment values are very small. In
the case of group 25 it became apparent that P arrivals at
station COB had a very large standard deviation. When this
station was removed (run B) the stability increased quite
appreciably. The extent of the influence of the COB residuals

is further indicated by the drop in 8 between runs A and B.

To be able to combine the model error estimates from the
different groups to produce an improved model, it is necessary
to ensure consistency of solution from group to group. To check
this, an appropriate event from group 24 was seeded into each
group (an event on the boundary between group 24 and the group
in question). The hypocentres of these could be compared with
their group 24 positions: if the difference between the positions
is small compared with the predicted errors for the hypocentre,
the results of the two groups are mutually consistent and the
model estimates can be pooled. Further, the seeded events can
be used as master events in their new groups fixed at their
group 24 hypocentres. The set of model error estimates thus

produced can be compared with the set produced when the group

is free.
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Figures 5.9 to 5.12 summarise the results. The ellipses
shown are 90 percent confidence regions. The error bars on the
model error estimates represent one standard deviation. The +
symbols are the solutions with master event, ® being that event.
Confidence regions for all earthquakes in a group are similar
and an event central in the group was chosen for which to

calculate the confidence region.

Except for group 33, the master event solution fell well
within the region and the model error estimates agreed within

one standard deviation.

A detailed summary of results from all the groups will not
be given at this stage because these results are superseded by
the results discussed in the next chapter. At this stage a few
immediate points can be noted. First, the average hypocentre
displacement relative to the Observatory Bulletin solutions is
much the same for all groups as for group 24. The shallower
dip of the Benioff zone is seen in all groups, and the overall
reduction in depth of about 40 km results in a vanishing of the
apparent sparseness of the North Island seismicity between the
base of the crust and about 80 km. Adams and Ware (1977) also
note this point. The universality of this upward displacement
also suggests that the bottom of the Benioff Zone is at a
shallower depth than previous estimates based on seismicity
profiles using Standard Bulletin Hypocentres. This point,
which has the obvious consequence of indicating a shorter

descending slab, will be further explored in the next chapter.
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INTERPRETATION OF THE MODEL ERROR ESTIMATES FROM THE GROUPS

This heading is the subject of the next chapter. It became
apparent that a simple interpretation of the model error
estimates would be unsatisfactory for the following reasons.
First, the non-estimable mean model error for each group must
be estimated or eliminated before intergroup comparison of model
errors is possible. Second, the naive velocity contrast estimate
is so large that if it were correct, the linearisation approxim-
ation on which JHD hangs would not be valid. (Chapters I and
II1I). Third, the results of Haines (1977) show a large variation
in the travel times in the crust locally to N.Z. seismograph
stations. Ideally, one should improve the mantle model to the
point where the new model error estimates are small enough to
validate the linear approximation, and then interpret these
estimates in terms of an average group term, an average station
term (allowing for a crustal effect local to each station) and
a mantle velocity contrast, with an assumed common contrast for

stations with similar ray paths to any group.

CONCLUSION: THE ACHIEVEMENTS OF JHD

Briefly, the relocation of hypocentres of subcrustal earth-
quakes under the North Island, New Zealand using JHD has
produced: better absolute locations, good relative locations,
more information about the model than standard methods. The
absolute location improvement is the hardest to judge in view
of the absence of an absolutely determined event. The circum-
stantial evidence comprises the filling of the apparent gap in
seismicity in the range 33-80 km and the generally better

agreement in depth with teleseismic estimates. The gain in
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absolute location improvement is due to the avoidance of a

master event. Although in many ways the distribution of stations
used about the hypocentres is far from ideal (all looking down,
with a large majority looking down through the slab), a master
event was not required for stability. On the other hand, the
appearance of large model error estimates and correlation
between uncertainties in these estimates and location errors
indicates that a substantial average location error may still

be present.

The relative location question has been little mentioned so
far - the evidence for this is the reproduction in all groups
of the thinness of the Benioff zone deduced in Chapter IV. On
the whole, little emphasis was placed on this feature of JHD,
the major effort being directed towards model improvement.
However, as an illustration of the capabilities of JHD in this
direction we have the following example. Figure 5.13 shows a
northern section of the east coast of the North Island, part of
the region from which group 22/32 was drawn. Shown are all the
epicentres of earthquakes assigned subcrustal (> 33 km) depths
by the Seismological Observatory between 1964 and 1975. The
arrow-heads show the JHD epicentres of all those which were
selected for relocation (in group 22/32). The fact that only a
very few are so treated makes the linear grouping of the central
five and possibly the easternmost one more remarkable. The
central five lie within 2 km of the line drawn. The strike of
this lineation is 53°W of N (with appreciable uncertainty) and
so is approximately perpendicular to the strike of the Benioff

sone. The relocated depths are in the range 33-57 km (compared
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with original depths 66-90 km) which places these events in the
underlying plate. One might tentatively interpret these events
as lying on a fault in the top of the underlying plate which
strikes roughly parallel to the down-dip of the plate. Unfortun-
ately the most recent study of mechanisms of North Island
subcrustal events (Harris (1975)) lists only two earthquakes

in this region and classifies them as uncertain - in neither case
is there enough data to determine a focal mechanism, nor do they

fit Harris's Categories A and B.

Against this interpretation is the failure to detect any
similar lineations anywhere else among the relocated hypocentres.
On the other hand, the faulting may not persist with descent of
slab, or myriad cracking may make identification of faults
impossible. There were not very many hypocentres relocated in
the depth range 33-60 km, largely because of the comparative
poorness of the data from the shallower events - there tend to
be many more emergent arrivals and many more missing stations
for such events. A search explicitly for this phenomenon might

thus reveal other examples of it.

The final claim made for JHD is the obtaining of better
information about model errors. One can see the improvement if
one compares the model error estimates for stations with the
average residual at the station over a group using the
Observatory solutions, and compares both with what one would
expect on the basis of a model with high velocities in the
down-going slab and low or normal velocities in the surrounding

asthenosphere. The model error estimate for KRP is large and
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positive for group 24. For these events the ray paths must lie
almost wholly in the assumed low velocity asthenosphere and

normal velocity lithosphere of the Indian Plate. A positive

term relative to the stations looking down the slab is expected.

The average S residual for KRP before JHD relocation is -1.3 sec, |
which is in complete disagreement with the model and would suggest

in fact a totally different model. The lesson of Chapter II is

of course that the mean residual depends too much on the station

set to be useful as a source of model improvement. In the next
chapter we show that with JHD we have loosened the bond of

station set dependence somewhat.
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CHAPTER VI
INTERPRETATION OF THE MODEL ERROR ESTIMATES FROM JHD

In this chapter, a travel-time model for part of the North
Island, New Zealand is constructed which gives the best fit for
the arrival time data from 256 earthquakes in nine groups,
subject to certain constraints described below. The positions
of the groups are given in Figure 6.1. Group 2367 is a good
quality sample from the events placed by the Observatory below
250 km (excluding 600 km events which are to the south west of
the area considered (Adams, 1963 and Adams and Ferris, 1976) .
The groups 23/22 and 22/32 are composites formed to provide
adequate data for JHD. Other data on the groups is given 1in

Tables 6.1(a) and (b).

From these groups, a picture of the Benioff Zone in this
area is constructed (Figures 6.2 - 6.4) which is somewhat differ-
ent from that of Adams and Ware (1977) and Hamilton and Gale
(1968). Also, mantle and crustal travel-time models for part

of the North Island are constructed.

METHOD OF INTERPRETATION

Up until this point, the number of assumptions about the
physical situation that we have made has been a minimum: we
have assumed that the travel-time model used (Jeffreys-Bullen)
was accurate to within about ten percent (Chapter III), which
implicitly denies discontinuities or very rapid changes in

velocity of more than this amount.
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TABLE 6.1(a)

132,

~

g
Exoup No. of No. of Master (Total P No of
Events Stations Used error Iterations
estimate)
22/32 31% 15 No 0.371 10
23/22 36% 16 Yes 0.422 10
42 23 17 No 0.426 10
33 21 17 Yes 0.310 10
24 65 21 Yes 0.326 7
34 28 20 Yes 0.344 11
25 31 19 Yes 0.313 11
35 23 20 Yes 0.311 10
2367 19 16 Yes 0.389 10

15 earthquakes in common.
conditioned to process without the additional shocks.

Group 23 was too sparse and poorly

TABLE 6.1(b)

Group(s)

MASTER EVENT (FREE - FIXED)

—

Group | contributing to| Lat. Std. Long. Std. Depth  Std.
Master Event (km) Dev. (km) Dev. (km) Dev.

22/32 - NA NA NA

22/23 22/32 - - - - = = '
24 22/23 4 2 4 2 3 4
25 24 -5 3 0 3 14 5

2367 25 - - - = = -
33 34,42 - - - - - =
34 24 -2 3 5 2 19 5
35 25 - - - - = -
42 - -4 3 4 2 5 6%

This row is the difference between the solutions of the event common
to 42 and 33.
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The preliminary indication from Chapter V is that the
velocity contrast between ray paths entirely within the down-
going slab and entirely outside (as the paths to KRP must be
for most groups) is greater than ten percent. In order to
validate the assumption deemed, in Chapter III, necessary for
application of JHD, a simple modification of the travel-time
model was made, whereby the mantle J-B travel-time would be
increased or decreased according to the hypothesized percentage
of the path in the slab. With the limitations of computer
speed and instability of the linear system resulting if the
average velocity to each station were made a determinable
parameter, the decision was made that the velocity contrast,
relative to J-B, for each station would be chosen subjectively
and arbitrarily except that certain assumptions and constraints
should be satisfied. It will be shown that within the limitations
of these assumptions and constraints little latitude is allowed
in the velocity contrasts for the majority of the stations.
However, alternative assumptions are certainly possible and
an attempt was made to examine the effect of one of the more
fundamental assumptions: that the Jeffreys-Bullen Travel Time
model provides satisfactory ray shapes for the region of interest,
in particular, that rays lying entirely inside or entirely
outside a slab in which velocities are higher than in the
surrounding mantle are approximately the same shape as J-B rays.
In the absence of a fast ray tracing algorithm (and processing
group 24 with 1125 equations, iterating six times, would require
6750 ray calculations) there is no present alternative except
the assumption of some standard ray structure. The Jeffreys-
Bullen Model may not have been the most appropriate in this case

but it is used by the Seismological Observatory for its routine
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locations and has been used in subcrustal seismicity studies
in the past (Hamilton and Gale (1968), Mooney (1970a, b), Adams
and Ware (1977) who apply a scale factor of 0.91 for mantle
travel times for rays adjudged to lie entirely within the slab).
An attempt to test the importance of the ray structure was made
by substituting a homogeneous (constant velocity) mantle for the
J-B upper mantle and the results of this are discussed in a

later section.

With the assumption of the appropriateness of the Jeffreys-
Bullen structure, the next step was to decide upon a scaling
factor for the sub-crustal part of the travel time for each
station and each group. To limit the multitude of possibilities
and to keep the consequent model as simple as possible, the
following constraints were adopted. First, stations with
similar paths to the same group should have the same scale
factor and a station having similar paths to different groups
should have the same scale factor for those groups. The decision
as to what constituted similar paths was arbitrary and subjective,
but basically all stations with paths entirely in the slab had
a common scale factor assigned. P and S were treated independ-
ently however, and the final scale factors for P and S paths

in the slab were not the same.

Table 6.2 shows the final scale factors for all stations
and groups expressed as a percentage contrast to the Jeffreys-
Bullen model. To apply a scale factor o one subtracts from
the J-B travel time T the crustal portion, T,. This was

carefully done by calculating the incidence angle at the base




TABLE 6.2

STATION GROUP

22/32 42 22/23 33 24 34 25 35 2367
ECZ P -9 -9 -9 =9 -9 =4 =5 -9
GNZ P -9 -9 -9 -9 -9 -9 -9 -9 -9
TUA P -9 -9 -9 < = <9 X -9 -9
TRZ P -9 -9 -9 -9 =9 =5 =9 9
MNG P -9 -9 -9 9 -9 -9 -9 -9 -9
WEL P -9 -9 g -9 g =9 =9 -9
WIZ P -9 -9 -9 -9 -9 =9 29 9
CNZ P -9 -9 -9 -9 -9 -9 -9 -9 -9
COB P -4 -8 -8 -8 -8 -8
TNZ P -4 -4 -4 -4 =4 =4 -4 =4 o
KRP P -4 -4 -4 -4 0 0 -4 -4 -4
GBZ P 0 0
ECZ § -6 -6
GNZ S i -6 -6 -6 -6 -6 -6 -6 -6 -6
TUAS | -6 -6 -6 -6 -6 -6 -6 -6 -6
TRZ S -6 & =& 6 6 =B
MNG S -6 -6 -6 -6 -6 -6 -6 -6
WELS | -6 -6 -6 -6 -6 -6 -6 -6 -6
Wiz s | -6 -6 -6 -6 -6
CNZS | -6 -6 -6 -6

;
COBS | & =k =k =k -4
i

TNZ S ? 0 -4
KRP S Lo 0 0 0 6 6 0 0 0

135.
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of the crust (33 km) using:

ol r sin €
T < uxilBe 1)
and assuming a one-layer crust of P velocity 6.1 km/sec.,

S velocity 3.5 km/sec., thickness 33 km. The resulting travel

time is thus:

T, + (1+a/100)(T—Tc) | ...(6.2)

The station COB and possibly TNZ had mixed paths - paths
being partly inside and partly outside the slab. The scale
factors for these stations were determined by trial for each
group with some attempt to keep as much uniformity as possible,

and also to satisfy the other constraints.

The second constraint was that the scale factors should be
chosen so that the internal consistency of the hypocentre
estimates was as great as possible. This was easily tested
for by comparing the positions of the seeded event which a
pair of groups had in common. If the hypocentre estimates for
these events from each group were close enough together, the
model could be judged to be giving internally consistent results
for the pair of groups. In fact, with the finally adopted
model, differences of only 2 to 3 km in the hypocentre estimates
of common events were normal. (See Table 6.1b) The third
constraint was that the model error estimates obtained from JHD
for this new model should be sufficiently small that the linear-
isation approximation could be made. In fact the aim was to
reduce these times to values which could be accounted for by

assuming crustal model variation.
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Fourth was the underlying principle that all changes should
be as small as possible, that is, that consistent with constraints

two and three, the scale factors should be as small as possible.

Within the limited set of satisfactory models left, the
programming required to find the best solution, although feasible
in principle, would surely be impractical, first because of the
limitations of computer speced available, and second because the
resulting (linear) system would be very likely to be too poorly
conditioned to be meaningfully solved; at best one would expect
to have to start the system from an approximate solution quite

close to the final solution.

A discussion of some of the recent attempts to extend the
model improving powers of JHD by different methods is included
in the next chapter. To mention one such method, Aki and Lee
(1976) construct a least squares system in which the model
error estimates as well as the residuals are minimised in the
least squares sense. In view of the third constraint of
requiring small model correction, such a scheme could be applied
to our problem provided good prior crustal models could be used
to calculate initial station terms. Haines (1977) provides a
set of station terms for stations of the New Zealand Seismograph
Network. From arrival time data, Haines calculates regional
P, and s, velocities and crustal delay times for P, and S,
relative to a standard crustal model (5.5, 3.3 km/sec. for P, S
above 12 km; 6.5, 3.7 km/sec. between 12 and 33 km). An attempt
was made to incorporate Haines' station terms in the model and
minimise the resulting error estimates by inspection, but the

existence of one or two small discrepancies between Haines'
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terms and our terms led to the abandonment of this idea. It
was decided not to apply prior station terms. The final set of
station terms (approximately crustal model corrections) reduced
to critically incident ray delay times for the same standard
crustal model (to make them directly comparable with Haines'

results) are shown in Table 6.3 and will be discussed hereunder.

The method of processing the data was thus reduced to a
two-step process with considerable subjective interaction in
each step. A subjective decision based on the constraints was
made for each group on the quality of the fit of the data from
the group using a travel time model selected by trial. Having
decided on the best model for each group (Table 6.2 shows that
there was minimal variation in the model between groups) the
model error estimates from the groups, together with other
pertinent information (average model travel time, incident
angle, etc.) were pooled and a linear model constructed in which
the station terms, average model error for each group, and
velocity adjustments for similar ray paths were parameters to
be determined. The problem here was in deciding how many
different velocity adjustments should be made and what stations
could be assumed to have a similar ray path to a given group.
However, one can make a quantitative comparison between the
sum of squares of residuals for each variation of velocity
parameters and decide which combinations give significantly

smaller values for the sum of squares.
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DERIVATION OF THE LINEAR MODEL FOR DETERMINING STATION
TERMS, GROUP MEANS AND VELOCITY ADJUSTMENTS

Let Cj be the time to be added to the model travel time
To to give the true average travel time in the crust for rays
from station j critically incident at the base of the crust.
Let aij be the calculated model error estimate for station j
from group <. Let H, be the average model error estimate for

group ¢: thus the true model error estimate is:

C.. = H.+C.. ...(6.3)

Let Tij be the average model travel time from the events of
group ¢ to station j and let the part of Tij that is the
crustal travel time be fijT°' (Ty is the critically refracted
model crustal travel time.) Let the mantle part of the travel
time be in error by B percent. Thus the true mantle travel

time is:
(1+aij/100)(Tij—fijT°)
The true crustal travel time is given approximately by:
fij(T° + Cj)
Thus the true travel time is:
(1+aij/100) (Tij'fijT°) + fij(T"*Cj)
which we assume differs from the calculated travel time:

Feo+Coe = T,.+H: #Co.x ...(6.4)
d 1J J L ]
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by a random amount Zij which is normally distributed with zero

mean and variance p?Z.

Thus we have the linear model:

...(6.5)
That is:
ey = -H, + fijcj 4 aij(Tij—féjTo)/IOO + zij

...(6.6)

With N gr;ups and M. stations being used for group %, this would
furnish iélMi equations in N + M + -ElMi unknowns if each
station/g;oup combination were allo;;d a separate velocity
adjustment. Instead (by inspection) we group the station/group
combinations into classes with a common velocity adjustment.

If there are X classes then we replace (6.6) with:

Cpo = By + £305 4 aij(k)(Tij-féjTo)/loo Y

...(6.6a)

and solve the equation by least squares for the ¥ terms #., the

M terms €. and the X terms o..(k).
J 1d

DISCUSSION OF THE RESULTS: FINDING A PRELIMINARY MODEL

The process of reducing the data in the groups in accord-
ance with the constraints can be summarised as follows: find
the simplest modification of the J-B mantle model (by scaling

mantle travel times) which reduces the model error estimates to
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a satisfactory small level and produces consistent locations
for earthquake(s) common to pairs of groups. It would be
wrong to pretend that the solution arrived at in this way is
not the result of subjective decisions and that other models
might not satisfy the constraints to the same extent. We
hereunder present some of the justification in terms of hypo-
centre consistency for adopting the model summarised in Tables

6.2, 6.3.

A further justification is presented in the next section
where the model error estimates (now interpreted as crustal

model error estimates) are compared with Haines' values.

The starting point was the model in which P and S mantle
travel times for stations with rays entirely in the slab were
decreased by ten percent as suggested by the results of Chapter
V, and the scale factors for other stations (in particular KRP,
TNZ, GBZ) were determined by trial. From the results from a
few groups it became apparent that ten percent was too high
and that the scale factor for S should be somewhat less than
that for P. It was intended that once a satisfactory model
had been determined, one group would be a master group and
processed without a master event, and that the other groups
would use as a master event: the event in common with the
master group restricted to its master group position (or, 1if
the group were not adjacent to the master group, a master
event from an already processed group). The original intent
was to use group 24 as the master group. However, it was
finally decided to use one of the groups with the most shallow

events, group 22/32, the decision being made because the travel
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times for the shallow events will be less affected by possible
deficiencies in the structure of the travel time model and also
because the results appeared more consistent that way. Table
6.1(b) shows the source of the master event seeded into each
group, and the difference between the hypocentre estimates for
this event when the group was run without a fixed event and
when the master event was fixed at the position obtained in the
seeding group. Not all groups were run free for comparison 1in
this way. The groups omitted from the comparison tended to
converge more slowly, usually because of sparscness of data.
Where the comparison is made it is apparent that the consistency
is quite good - in no case is the latitude or longitude more
than 5 km different. The variation in depth is greater, the
free depths tending to be greater than the master event
controlled depths. However, for group 24, the most stable of
the groups, the difference is only 3 km. Moreover, the standard
deviations given in the table are the standard deviations for
relative error (being obtained from the fixed event solution).
Typical absolute error standard deviation estimates for depth
for groups 25 and 34 are 12 km and 8 km. Thus 90 percent
absolute error confidence regions for the pair of solutions in
the cases of groups 25 and 34 would substantially overlap.
However, because of this greater discrepancy in the case of
group 34, a different test was made in the case of group 42.

No master event was seeded into group 42. Instead, group 42
contributed an event to group 33 and the difference between

the hypocentre estimates for this event is given in the table
(group 33 being processed with a master event from group 34).
The hypocentre estimates are within 7 km which we consider to

be quite satisfactory.
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At this point one should note that the differences between
the origin time estimates, hitherto unmentioned, are not easily
interpreted because of the unknown average model error for
each group. When using a master event, only the latitude,
longitude, and depth and not the origin time were fixed. It
was hoped that this would allow the average model errors for
each group to be estimated later. As it turned out, the linear
system (6.6a), although not singular, is too badly conditioned

to be sensibly solved without one constraint.

The conclusion from Table 6.1(b) is that the chosen model
produces hypocentre estimates with a sufficiently high degree
of internal consistency that one can confidently combine the

model error estimates from the groups for further analysis.

At this stage, there was one reservation about the results
so far obtained. The stations CNZ and WTZ lie on a line trending
roughly south-west north-east, that is, parallel to the strike
of the Benioff zone, and rather to the north-west of a simple

projection of the steeper part of the zone to the surface. (Figure 6.3)

One might thus expect that, first, the two stations would
have similar ray paths to groups below about 100 km and second,
that the velocity contrast might be somewhat less than that for
stations to the south-east. Table 6.2 shows that the stations
received identical treatment for all groups. However, a
comparison of the (crustal) model error estimates for a sample
of stations from the group 24 analysis and Haines' results for
those stations shows a particularly large disagreement in the

case of WTZ.
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estimate Haines Haines
PRaing Sreup 24 std. dev. estimate std. dev.
KRP P -0.12 0.28 -0.4 0.3
S 0.00 0.56 0.5 0.6
TUA P 0.47 0.11 0.9 0.25
S 1.84 0.35 2.3 0.4
GNZ P 0.20 0117 0.5 0.25
S 0.25 0.29 1.2 0.3
WTZ P -0.59 0.18 0.5 0.25
S 1.06 0.37 2.2 0.5
CNZ P 1.89 0.10 11 043

(The group 24 results were calculated, as are Haines', relative
to MNG P. Variation in angle of incidence at the crust/mantle
boundary has been allowed for.) The group 24 estimates for TUA,
GNZ and WTZ are all smaller than Haines' estimates; in the cases
of TUA and GNZ about half a second smaller but one second for

both P and S for WTZ.

At the same time, the CNZ P estimate is greater than Haines'
figure. This suggests that the mantle travel time to TUA, GNZ
and WTZ, in particular, should be decreased to force an increase
in the crustal term. However, to depart from the otherwise very
uniform scaling of mantle travel times without more substantial
justification was questionable. Thus no change in the model was
made. Some attempts to explain this phenomenon in terms of
model deficiencies other than the scale factor are discussed
below. It should be pointed out that the disagreement is
somewhat worse when Haines' figures and the results obtained
from group 24 without a fixed event are compared. This might
be explained in terms of a systematic error in the hypocentre
estimates arising from model errors which is reduced but not

removed by the fixing of the master event. In the balance, the
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total of evidence would seem to indicate that this error is not
very large and results will be presented to show that the effect
might be attributed to the inappropriateness of using a J-B
mantle model. At the same time, that as good a fit as is here
obtained using scale factors substantially less 1in magnitude
than -9 percent for P and -6 percent for § must be regarded as

being highly unlikely.

DISCUSSION OF THE RESULTS: LINEAR MODELLING OF THE MODEL ERRORS

As explained above, the model error estimates from all the
groups (6ij of (6.3)) were used to estimate average crustal and
mantle model errors. Altogether 160 estimates Eij from 9 groups
and 22 stations were combined. The only problem in the analysis
was to decide which station/group combinations should have a
common travel-time scale factor a. In accordance with the
assumptions, the number of different classes should be as small
as possible. An absolute minimum number would be two: one each
for the P and S travel-times for the bulk of the groups to those
stations for which hypothesized ray paths would be entirely in
the slab. These estimates and their standard deviation estimates
would be one test of the internal consistency of the process

used to derive this final model.

By trial it was found that if scale factors for three other
classes were determined, the fit of the whole model was dramat-
ically improved. These three classes were: P and S from the
shallowest groups to the stations WTZ, TUA, GNZ and S from the
deepest groups to KRP. This latter was the only exception to a

self-imposed rule to avoid dealing with station/group combinations
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where only a single station was involved. The exception was
made in this case because of the obvious and highly significant

improvement obtained.

When the number of scale factor classes was increased from
two to five in this manner, the standard deviation estimate of
the residuals of the Eij was reduced from 0.31 sec. (128 d.f.)
to 0.21 sec. (125 d.f.). This value is the estimate of the
average uncertainty of a P travel-time calculated from the
proposed model. In so far as this agrees well with the value
predicted in Chapter V for this quantity, and the standard
deviation estimates of 2ij for P's from the JHD processing are
typically about 0.2 sec., one can argue that one has reached
a practical limit in extracting information from the data by

the process described above. The distribution of stations in

the classes is given in Table 6.5.

We now give a few more details about the calculation of the
final model and summarize the results. The first problem
concerned the statistical aspects of (6.6a). It is not the
case that the errors Zij are independent with common variance.
Indeed, the output data from each group provides, from standard
linear theory, an estimate of the variance matrix of the station
term estimates aij' (The variance matrix for group 24 can be
determined immediately from correlation matrix for the station
terms given in full in Appendix VI and the standard deviation
estimates.) However, it would be implausible to assume that
there is no correlation in the errors between groups for the

same station. The correlations within group 24 are seldom
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large; the principal systematic features are a small positive
correlation between the stations, both P and S, with all slab
paths and a rather larger negative correlation between these
stations and KRP. These relationships are far from surprising.
They suggest similar correlations between the station term
estimates for adjacent groups. In the absence of such complete
variance information and since there were few large correlations
within groups and the standard deviation estimates for the 8ij
were, within a factor of about two, 0.2 sec. for P terms and

0.4 sec. for S, the approximation was made that the Eij were
uncorrelated and that the standard deviation of the S terms was
twice that of the P, implying half-weighting of the S equations.
As a test, in one model the reciprocals of the estimated standard
deviations of the aij were used as weights and the solution in
this case was very little different from that obtained by the

simpler model.

The second problem was one of conditioning. In practice,
it was found to be impossible to separate the group means from
the station terms without fixing the value of one of the station
terms. This is in fact of comparatively small significance but
illustrates once again the known difficulty of determining the

average error of any model from arrival-time data alone.

Here, without the constraint of a fixed station, the lack
of sufficient variation in the fraction fij meant that the
columns associated with H and Cj of the design matrix for (6.6a)
were close to being linearly dependent in the usual numerical

sense. The lack of conditioning reflected itself in very large
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TABLE 6.3

STATION TERMS NORMALIZED AS CRITICAL REFRACTION
DELAY TIMES;* MNG P = 0

g Station St?:ii?)Term. Std. Dev. S?:i?iz ;23;7) Smith-Haines
: KRP P 0.2 0.1 -0.4 0.6
KRP S 0.1 0.2 0.5 -0.4
WTZ P -0.1 0.2 0.5 -0.6 ?
WIZ S 1.7 0.5 2.2 -0.5 |
CNZ P 2.1 0.1 L 1.0
| oz s 6.4 0.5 2.4 4.0
. TUA P 0.6 0.1 0.9 -0.3
. TUA S 2.3 0.3 2.3 0.0
| oNz P 0.3 0.2 0.5 ~0.2
. GNZ S 1.0 0.3 1.2 -0.2
i ECZ P 0.9 0.2 0.4 0.5
. ECZ S 3.6 0.9 1.6 2.0
TRZ P 1.4 0.1 1.0 0.4
TRZ S 3.9 0.4 3.0 0.9 |
COB P -0.5 0.3 -0.4 -0.1
COB S -0.3 0.2 0.9 ~0.4
MNG S 0.5 0.3 0 0.5
WEL P 0.1 0.3 0 -0.1
WEL S 0.8 0.4 -0.5 1.7 {
INZ P .8 0.1 0.9 0.4 i
GBZ P -1.7 0.2 -1.3 -0.4 ‘

* to obtain vertical path station terms, take .66 x (listed value).




TABLE 6.4

GROUP MEANS

Mean travel time error

Group taac. ) Standard Deviation
24 0.4 0.03
34 0.6 0.04
22/32 0.7 0.05
22/23 0.5 0.05
25 0.7 0.04
42 1.1 0.06
33 0.5 0.04
35 0.5 0.04
2367 0.5 0.04
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TABLE 6.5

CLASSES OF STATION/GROUPS WITH COMMON SCALE FACTOR
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Station

N
s

w
S

22/32

Groups
22/23 25

e
N

w
w

w
w

2367

WTZ
WTZ

CNZ
CNZ

TUA
TUA

GNZ
GNZ

ECZ
ECZ

TRZ
TRZ

COB
COB

MNG

WEL
TNZ
GBZ
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O O NN N OFH NFE NH NH NH O NMNH OO0

O O NH N OF NEFE NDHE NH NH O N OO

S O NMH N OFH NMEFE NDH PW PLW O DWW OO

S O NH N OF NH NKFHE NH NFH O N OO0
© O NH N NFHE NEHE NFHE NDH NHE O N UBOo

O O NH N OFH N NHFH PW P O PPW OO

© O NH N OFH NFE NH NH NH OFH NMH OO

O O NFEF N NDH NHE NEH NH NEHE OF NH U

© O NH N NFEF NFHE NEH NDH NEH OFH NDH UBVO

CLASS VELOCITY CONTRAST (%) STANDARD DEVIATION
1 (P) -0.8 1.1
2 (s) =12 0.4
3 (P) 4.6 7:2
4 (8) 3.4 7.7
5 (8) 4.9 2.3
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TABLE 6.6
MODEL RESIDUALS (STD. DEVS. IN PARENTHESES)
Group
Station 42 32/22 23/22 33 24 34 25 35 2367
KRP P 0.12 0.27 0.00 -0.13 0.16 0.40 =-0.41 -0.32 -0.26
(0.53) (0.22) (0.33) (0.22) (0.19) (0.23) (0.24) (0.24) (0.30)
KRP S 0.22 0.76 -0.42 -0.96 0.04 0.22 -0.24 0.42 -0.20
(1.12) (0.46) (0.54) (0.39) (0.38) (0.41) (0.41) (0.39) (0.54)
WTZ P -0.16 -0.39 -0.04 - 0.24 0.26 0.14 =-0.05 -
(0.52) (0.28) (0.29) - (0.13) (0.19) (0.18) (0.22) -
wIzZ s | 0.68 -0.02 - = 0.12 -0.30 -  -0.64 =
| (1.12) (0.66) - - (0.26) (0.31) - (0.42) -
cNzP | 0.00 0.26 0.09 -0.19 -0.03 -0.27 0.09 -0.16 0.10
(0.33) (0.21) (0.13) (0.15) (0.07) (0.10) (0.11) (0.10) (0.14)
CNZ S - - - - ~  -0.16 0.14 0.12 -0.10
_ - _ " - (0.38) (0.37) (0.41) (0.46)
TUA P _0.13 -0.06 -0.02 0.15 -0.07 ©0.00 0.11 -0.05 0.10
(0.44) (0.17) (0.15) (0.13) (0.08) (0.15) (0.12) (0.15) (0.19)
TUA S 0.12 -0.50 =-0.42 0.26 0.02 0.08 0.50 0.14 -0.14
(1.00) (0.41) (0.43) (0.32) (0.26) (0.31) (0.33) (0.33) (0.48)
GNZ P -0.04 -0.18 0.08 0.17 -0.07 -0.12 -0.02 -0.24 -0.08
(0.84) (0.27) (0.21) (0.16) (0.13) (0.19) (0.17) (0.20) (0.25)
GNZ S _0.08 -1.04 -0.04 -0.72 0.18 0.52 0.12 0.02 -0.34
(0.84) (0.47) (0.42) (0.27) (0.23) (0.28) (0.29) (0.30) (0.44)
ECZ P > 0.10 -0.04 0.32 -0.15 -0.09 -0.06 -0.09 -0.01
~ (0.40) (0.32) (0.21) (0.20) (0.27) (0.26) (0.27) (0.33)
ECZ S o = - - 0.02 - -0.02 - -
3 - - - (0.27) - (0.33) - -
TRZ P -0.10 -0.05 0.24 -0.13 -0.08 0.07 0.05 0.06 -
; (0.52) (0.29) (0.18) (0.13) (0.09) (0.12) (0.12) (0.14) -
TRZ S -0.20 - - _0.06 -0.22 0.22 0.36 -0.06 -
(0.95) - - (0.33) (0.28) (0.31) (0.36) (0.40) -
MNG P | 0.04 0.37 0.15 -0.14 0.0l ~0.27 0.10 -0.24 0.11
| (0.76) (0.27) (0.15) (0.12) (0.12) (0.14) (0.17) (0.15) (0.19)
NG s | -0.12 -  -0.52 0.10 -0.06 0.30 0.08 -0.02 0.20
| (L.25) - (0.38) (0.28) (0.26) (0.30) (0.27) (0.34) (0.42)
WEL P | -0.22 -  =0.21 0,32 -0.12 0.09 -0.09 0.21 -0.08
[ (0.81) - (0.20) (0.15) (0.24) (0.19) (0.23) (0.21) (0.25)
| WELS | 0.40 0.26 0.02 0.02 -0.16 -0.22 -0.38 0.52 -0.46
| | (1.32) (0.50) (0.35) (0.27) (0.09) (0.30) (0.26) (0.31) (0.39)
| cOBP | - + - -0.13 -0.21 0.03 - 0.36 -0.02
: boo- - _ (0.19) (0.19) (0.25) -  (0.32) (0.34)
i coBs - - -0.20 -0.28 0.26 0.30 -0.76 0.72 0.02
; = = 0.42 0.31 0.24 0.33 0.31 0.36 0.42
| TNZ P -0.19 0.00 0.06 -0.21 -0.06 -0.27 0.14 0.22 0.41
i (0.50) (0.24) (0.22) (0.20) (0.15) 0.20 0.21 0.22 0.26
| cBZ P - -0.19 - - 0.22 - - - -
| - (0.35) - - (0.35) - - - -
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standard deviation estimates for all parameters. Thus the
station term for MNG P was arbitrarily set to zero. (Haines
required that the terms for both MNG P and MNG S be zero in
hié analysis. Thus his results and those presented here are
directly comparable.) Last, the additional classes of scale
factors (described above) were determined by an inspection of
the residuals of the simple model with only two scale factors.
In the case of KRP S, large residuals, many times standard
‘deviation came from the deepest groups 25, 35, 2367. Similarly,
consistent residuals were obtained from WTZ, GNZ, TUA P and S
for the shallow groups 32/22, 42. The improvement in the fit
at the expense of three additional parameters is very highly
significant. A complete set of results is given in Tables 6.3

- 6.5. We shall discuss each set of estimates.

The group means are of little interest in themselves since
the overall mean is not estimated. However, the assumption of
internal consistency would require that there be no very large
difference between means for different groups - too large a
variation would imply too large an average difference between
the models for the groups. With the exception of group 42
(which was not tied by a master event to the rest), the consist-
ency of the means is satisfactory compared to the overall

standard deviation of 0.21 sec.

The travel time factor estimates show that on the whole the
original model for the slab paths was correct to about one
percent. The most important values are the -0.4 percent
(standard deviation 1.2) for P times in the slab - an insignific-
ant adjustment - and -1.2 percent (standard deviation 0.4) for

S in the slab. This value is just significant and indicates




La%

that the S contrast estimate is -7 percent rather than -6
percent. Nonetheless, these two values are sufficiently small
that we may adjudge that our modelling process has entirely

satisfied our requirements of internal consistency.

The additional factors: +4.9 percent (2.2) for KRP S for
deep groups indicates a significantly slower travel time than
that assumed. It can be compared to the original factor of +6
percent for groups 24 and 34 (Table 6.2). However, the absolute
isolation of the KRP ray paths from all others, making comparison
with other stations impossible, means that any KRP results must

be interpreted with caution.

The values +5.0 percent (7.4) for P and +3.5 percent (7.6)
for § for shallower paths to WTZ, TUA, GNZ seem to indicate
travel times slower than those assumed with the difficulty that
the standard deviations of the calculated values are too large
to give these values significant worth. Were it not for the
large improvement in the overall fit obtained by including
these classes, one would be tempted to say that the factors are
not significantly different from zero. However, because of the
uncertainty in choosing the right elements for these classes
- it may be that some station is inappropriately placed in the
wrong class - it is probably correct to deduce that the travel
times for this class might be a few percent slower than the
model but that the data cannot resolve this difference. This
would be in agreement with Haines' velocities for this region

which are a few percent slower than in the region south of TRZ.
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In order to test the stability of this final model and
also to see whether the overall standard deviation could be
reduced below 0.2 sec., the combined group data was reprocessed
with two additional velocity classes: P and S for stations WTZ,
GNZ, TUA, ECZ to the groups 24, 25, 2367. These stations and
groups were chosen because the ray paths from these groups to
the stations would be practically straight up the slab with
little lateral displacement across the slab. Significant
travel time factors might be evidence for lateral velocity
variations within the slab; the problem with such an inter-
pretation being the unknown dependence on the assumed ray

structure.

However, the result of the experiment was negative in the
sense that neither factor was significant, the values being -0.2
percent (1.5) for P and -0.8 percent (1.2) for S, while the
total fit was not significantly altered. At the same time the
other parameter estimates hardly varied. It can be concluded
that with a station term fixed, the linear system is stable

to small perturbations in the station/group classes.

Table 6.3 lists the station terms and Haines' estimates
for the same. The agreement between the two sets is good.
The most striking difference is in the values for CNZ P and S
which may in part be attributable to a highly anomalous
structure at CNZ (located on an active volcano). As an
example of the difficulties of interpretation of the station
terms here, the CNZ § figure, +6.4 sec. (0.5) was based on

data from only four groups. Since both the travel time factor
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and the station term had to be determined from these four data,
the station term is far from reliable since the minimum classes
policy required grouping CNZ with other stations. An attempt
to independently estimate both a station term and a factor
would have given ambiguous results. One can conclude, however,
that because of the significant difference between the CNZ S
term estimate and Haines' value, the average mantle travel time
for § to CNZ is appreciably slower than that of our assumed

model.

Haines has shown that his values correlate well with the
isostatic gravity anomalies and that negative anomaly and
positive station term can be explained in terms of a thicker or
lighter (slower) crust or both. Figure 6.6 compares the isostatic
gravity anomaly (Reilly (1965)) with some of my East Coast
station terms. Because of an unavoidable interaction between
mantle model and crustal model in this study and the imposition
of uniformity on the former, the station terms of this study are
not to be preferred as estimates of crustal model error to
Haines' results (which also may suffer somewhat from this latter
problem, but probably not as much). That such similar results
should have been produced by two such dissimilar studies gives
a measure of confidence in both studies and to the station term

estimates.

INTERPRETATION OF THE RESULTS

No further comment will be made about the station terms
except to note that they are small enough to satisfy the

requirement of the third constraint. We now turn our attention
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to the mantle model. The results of the linear analysis
indicate that the model presented in Table 6.2 should be modif-
ied by altering the -6 percent S values to 7 percent and that
the new average values, 9 percent fast for P and 7 percent

fast for S, are correct to within one percent. In the case

of any particular station however (for example GNZ S) the factor
may be quite different. We propose only an average mantle model
for the stations with paths entirely in the slab. This model

is quite close to Adams and Ware's empirically determined model
for the hypothesized slab path rays, and it gives rise to a
picture of the Benioff Zone (Figure 6.7) which is quite similar
to theirs. There is a problem however in interpreting these
travel time results in terms of velocities. If the Jeffreys-
Bullen ray structure (also used by Adams and Ware) is quite
inappropriate for the interior of a downgoing lithospheric slab
then it may be dangerous to even make the interpretation that
the average velocity is 1/(1 + ®/100) times the average J-B
velocity. It does not follow that a model which satisfactorily
gives travel times can be satisfactorily and unambiguously
inverted to give velocities. In particular, the nearly linear
increase with depth of the J-B velocities (Figure 6.8) means
that J-B rays will be flattest near the source and steepest

at the station. The velocity structure within subducting
lithosphere is difficult enough to theorise about in the absence
of enough information about rock properties, temperatures,
pressure, etc. However, it might well be that there is less
velocity variation with depth than in the J-B model. The Herrin
(1968) P velocity model, a global model, has this lesser rate

of change with depth feature. 1In such a case, rays would be

straighter and the same average velocity would give a faster
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time, or conversely, the same time would imply a slower average
velocity. In an attempt to test the effect of such a velocity
model, group 24 was reprocessed using constant mantle P and S
velocities for the paths to WTZ, GNZ, TUA (straight line mantle
rays), the actual values for which were adjusted to produce,
without a fixed event, a solution for the master event of the
previous solution as close to its adopted position as possible.
There were several interesting features of these experiments.
Solutions obtained with greater or lesser velocities than the
one arrived at were less stable and yielded a higher overall
total error estimate. The final solution adopted with this
modification was the best one, in the least squares Sense,
implying an uncertainty in the velocities adopted of less than
one percent. The hypocentre estimates in this solution were
within about 3 km of the J-B estimates. The velocities, 8.51
km/sec. for P and 4.74 km/sec. for S compare with 8.69 km/sec.
for P and 4.72 km/sec. for § from the J-B tables scaled by
factors of 0.91 and 0.93, calculated for vertical rays from

145 km - the average depth of group 24. This result does not
resolve the problem of inverting the travel times to produce a
velocity model, but reinforces one's confidence in the robustness
of the method insofar as the results now seem to be somewhat
independent of the assumed ray structure. 0f course, the
homogeneous mantle model was applied to only six out of 21
stations but if there had been severe dependence on structure,

it might well have been revealed in such an experiment.

We conclude, tentatively, from the proximity of the
solutions obtained using the J-B model and a homogeneous mantle

that the average velocities within the slab are 8.6(*0.1) km/sec.
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for P and 4.73 (#0.05) km/sec. for S. These results are in good
general agreement with other determinations: Robinson (1976)
finds an eleven percent average P velocity increase over the

J-B average velocity from teleseismic P residual differences.
Essentially, Robinson's result depends only on correctly
estimating the length of the ray paths in the slab - a longer
fast path would imply a smaller velocity contrast. The upward
displacement of hypocentres, shortening the apparent length of
slab, tends to oppose a longer slab. Haines defines two regions
for the East Coast of the North Island. For the northern one,
including within it stations GNZ, ECZ, TUA, WTZ, he finds Py
and 5 velocities 8.1 km/sec. (0.1) and 4.65 (0.05). For the
southern region, including stations CNZ, TRZ, MNG, WEL he finds
8.5 km/sec. (0.05) and 4.75 (0.02). These velocities were
inferred from arrival time differences of B, and S, for pairs
of stations approximately alligned with shallow earthquake epi-
centres. The southern region figures agree well with our result.
The northern region values are not inconsistent if they pertain
to a layer which is thicker in the northern region than in the
southern. This would not be inconsistent with the gravity
anomalies. In the southern region, P and S waves would

refract through the thinner layer and it would not be seen.

Earlier determinations include Mooney (1970b) who examined
the change in residuals with distance from subcrustal events
but was unable to produce a quantitative model and Smith, W.D.
(1973) who produced a laterally homogeneous model for the North
Island mantle a few percent faster than the J-B model above

160 km.




162.

As far as the mantle velocities outside the slab are
concerned, little can be concluded from this study. The problem
is twofold. Stations not looking down the slab may tend to have
ray paths which are a mixture of fast and normal or slow segments.
For example, the ray paths to COB for a group such as 24 must
consist of a segment in the slab and a segment outside the slab.
Without a ray-tracing capability and a good model of structure

within a mantle, the exact path cannot be determined.

The second problem is that these stations are relatively
isolated. KRP must have ray paths which are entirely outside
the slab except for the shallowest events. However, its physical
isolation from another station means that inferences about the
mantle beneath KRP must be tentative because they cannot be
checked. If there were a systematic error in the location
estimates all travel times could be substantially in error, but
presumably all the pure slab paths would be in error in a
similar way or else the observed consistency would not be found.
The relative weight of these stations to the rest would indicate
that more of the error in such a case would be distributed
amongst the non-slab stations. With this reservation, the
information from KRP in Table 6.2 is that the average mantle P
velocity is approximately four percent faster than the J-B
average P velocity and that the § velocity is approximately the
J-B average S velocity down to about 100-150 km, deeper than
which the S velocity may be about five percent slower. Also,
for the two groups 24, 34 (average depth about 140 km) the P
velocity is about four percent slower than elsewhere (that is,
it is equal to average J-B). The position from the shallowest
groups 22/32 and 42 1is complicated because the path will be

partly in the fast region and partly under the volcanic region
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where Haines has shown velocities to be quite low. The data

from KRP is then quite consistent with the model in which low

@, low velocity material is located above the down-going slab.
Mooney (1970a) has shown that the material through which pass
rays to KRP certainly has a low @ value. Drawing more inferences
about velocities from this study is unwarranted. There is,
however, some extra information from an unexpected source which

contributes to the picture of the mantle.

VARIATION OF TRAVEL-TIME RESIDUALS BY STATION/GROUPS

In Chapter V while discussing appropriate weighting, the
temporary assumption was made that there was no variation in
model error between stations which would call for weighting by
stations. We can now confirm this to a remarkable extent by
considering the distribution of residuals at each station for
all the groups. Table 6.7 gives the standard deviation of
travel-time residuals at each station by groups. Figure 6.9
shows the average P and § values for each station. With regard
to the latter, the values (estimating the total error standard
deviation = model error plus reading error) are remarkably

constant in the region south-east of the drawn boundary.

One can immediately conclude that there is no significant
variation in model error from station to station within this
region. Beyond this boundary, in a region roughly corresponding
to Mooney's low § region, the values are lower, but not
significantly lower for TNZ or CNZ. The KRP values are very
significantly lower which would suggest the interpretation that
the mantle under KRP is much more uniform than in the slab.

The problem with this interpretation is the result for WTZ.
From all other indications, WTZ should show variation of model

error like TUA and GNZ. These two stations do have the lowest
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TABLE 6.7
GROUP
STATION 22/32 42 22/23 33 24 34 25 35 2367
CNZ P .30 .15 .34 .29 .30 il +32 .31 .30
S .34 .29 .34 .49
WIZ P .29 .26 Bk .20 a2 .30 « 17
S .18 31 .30 i 21
GNZ P .37 w37 .24 .24 .27 .30 w30 .25 .29
S .38 .50 «38 « 521 «29 <31 .28 .18 25
TUA P .25 .27 «35 .24 «29 x 39 <2 .34 .30
S .33 .25 .39 .26 .30 .32 .21 =37 .37
ECZ P .28 +19 «25 .29 .40 + 31 .48 .38
S .33 =35
TRZ P 42 .34 .42 .29 .25 .40 .22 .24
S «31 .43 1 .30 .24 sl
MNG P .33 «39 .43 .16 w39 .25 .28 «29 .28
S .52 .41 .28 29 .24 .28 .18 «33
WEL P .45 A .26 .28 «29 .23 «29 «29
S .24 .30 .28 .32 <27 .30 .26 -21 .31
COB P .25 .36 41 .23 «32
S .38 .20 .25 <29 .17 .30 »29
KRP P 23 .38 .18 .20 .19 .18 .24 .16 .27
S w4 .18 .26 .18 .19 .18 .16 <17 .17
TNZ P .36 .19 .38 .24 a3, .19 .32 .18 eI
S w2
GBZ P .29 .20
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P values of any of the above slab stations, and when one
considers the variation between groups, the difference between
WTZ and GNZ or TUA is barely significant. However, it is a
possibility that this lack of variation for WTZ and KRP is

due to some artifact of the least squares method whereby the
variation at these two relatively isolated and important
stations is minimised. On the whole this seems unlikely in
view of the overall consistency of the slab station values for

a fairly wide geographical spread of groups.

The alternative physical explanation of these low values
for WTZ, which would also account for the slightly faster
travel times, indicated by lower station terms than Haines',
to these three stations (WTZ, GNZ, TUA) is that there is some
very small degree of anisotropy in the slab velocity structure.
If the slab consists of comparatively narrow fingers moving
somewhat independently, one might expect more uniformity of
path within a single finger than for paths which cross boundaries,
and these latter might have different average velocity if the
fingers, because of different rates of subduction, had slightly
different velocity structures. This is highly speculative
and the only mildly corroborating evidence is the possible
existence of faults which strike parallel to the down dip of
the zone. One such is suggested by the hypocentres in Chapter
V (Figure 5.13). A micro-earthquake survey of the East Coast
region of the North Island somewhat south of TRZ, conducted by
M. Reyners, revealed a similar fault, almost vertical with
similar strike at subcrustal depth. I have endeavoured to find
evidence of other faults by looking for south-east/north-west

trending seismicity, but since the Seismological Observatory do
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not attempt depth determinations for shallow earthquakes, and
since the error in epicentre estimates appears to be not
negligible compared to the dimensions of these faults, while
some such sequences of events have been found (compared with
the "normal" south-west/north-east trend of seismicity in this
region), the evidence for other faults is not particularly
convincing. Also, no evidence for any such faulting at depths
below 70 km has been found (where the relative hypocentre
determination is known to produce superior estimates). It may
be that at greater depth the plate becomes more broken up and
the faulting so pervasive that no one fault can be isolated.
Returning to Table 6.7, which shows the between-groups variation,
we note that the majority of the largest values occur amongst
the shallowest groups. This may indicate greater homogeneity
with depth, or may be a consequence of the greater geographical

extent of the two shallowest groups (see Figure 6.1).

One would expect that the wider the aperture of incoming
rays to a station, the larger the variation in residuals. This
is illustrated by the GNZ values for the shallow groups 22/32
and 42 which are the largest for GNZ of all the groups. On
the other hand, WEL P has a much higher value for the shallow
groups than the deep ones and the apertures of all the groups
at WEL must be somewhat similar. The other factor which enters
this discussion is simply the number of data at each station in
a group. No station has its largest value in group 24, the
most populous group, whereas some have largest values in group
34 at a similar average depth. The variation from group to
group may be entirely random, although the range of the values

would deem the variations to be significant on the basis of
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assuming a normal distribution of residuals. We conclude this
section by summarizing the findings: there is uniformity in
the model error variation for all above slab stations with
mild indication that there is more variation for shallow ray
paths. The mantle outside this region seems much more

homogeneous.

A PROFILE OF THE BENIOFF ZONE

The emphasis of this chapter has been on travel-time
modelling, but the mosaic of hypocentre estimates from the nine
groups gives a compact picture of the Benioff Zone (Figures
6.2 - 6.4). The lateral extent of the groups included in this
section is shown in Figure 6.1. All earthquakes located are
plotted except that earthquakes further north than 37.9°S are
omitted except below 200 km where they are shown as open circles.
Several representative 90 percent relative location confidence
ellipses are given. The top-most ellipse is an absolute error
confidence region. The features of this section, which is
similar to that of Adams and Ware in many ways (Figure 6.7),
are that the earthquakes below about 70 km are confined to a
thin plane sheet dipping at about 60 degrees. The hypocentre
estimates here are entirely consistent with the Chapter IV
estimate of 10 to 18 km for the zone's thickness below 70 km.
The shallower events apparently occupy a thicker zone, although
the top-most confidence ellipse indicates the large uncertainty
for these events. However, down to 70 km the bottom of the
zone, dipping at about 25 degrees seems to be well defined.

M. Reyners (personal communication) has found that micro-

earthquake hypocentres somewhat south of this section also
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indicate the bottom of the zone dipping at about 30 degrees.

The seismicity between 33 and 70 km disposes of the
apparent gap in the seismicity between these depths as indicated
by the standard Observatory locations. Adams and Ware note
this also and point out that the apparent gap was almost
certainly an artifact of the model used routinely by the
Observatory. A number of relocations were assigned depths of
33 km by default. Because of problems of stability, crustal
(< 33 km) depths could not be assigned and these events were
omitted from the section. It should be pointed out also that
this section is not a fair sample of the subcrustal seismicity
in the region covered by the groups because the areas of greatest

seismicity are under-represented.

One point of disagreement between this section and the
corresponding one of Adams and Ware is that they find the dip
of the zone to be 50 degrees. Their hypocentre estimates are
much more scattered than the solutions given here, but most of
this difference appears to be due to differences in the model.
The value of the dip for group 24 obtained in Chapter V was 50°
also. For the unmodified J-B hypocentres of Chapter IV, the
value was 67°. It would seem that the relative vertical error
of the hypocentres increases with depth in such a way as to
make the apparent dip of the zone quite model dependent. While
preferring the result obtained here to that of Adams and Ware,
that there is some appreciable uncertainty in the estimate must

be allowed.
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The results of Chapter IV allow us to extrapol ate the
picture of the Benioff Zone over the North Island. One of the
most difficult problems raised by this picture is the sharp
transition between moderate dip (25 degrees) and steep dip
(50 or 60 degrees) which takes place over about 50 km. It is
not feasible to suggest that some 80 km thick oceanic litho-
sphere (Leeds et al. (1975)) can be elastically deformed around
such tight curve. If the plate motion is continuous then plastic
deformation must be invoked to account for such a transition.
An episodic subduction process in which substantial sections of
plate partially crack through and hinge downward could explain

the observed linearity of the hypocentres.

CONCLUSION

It has been shown that the additional model information
provided by Joint Hypocentre determinations can be made to yield
a new travel time model which is much superior in terms of
goodness of fit. The problem remains of not having some absolute

standard by which to judge the results.

First, there is the question of how good the final hypo-
centre estimates are. Figure 6.10 gives a comparison of
solutions for a well observed event from group 24. The
differences are due to differences in data and model: the
Seismological Observatory solution used P and S data from
New Zealand only and a uniform Jeffreys-Bullen model. The
International Seismological Centre solution used 22 New Zealand

and 3 Teleseismic P observations and a uniform J-B model. Adams
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and Ware used P and S New Zealand data and an asymmetric J-B
model. The following conclusions can be drawn. First, the
hypocentre estimate is highly model dependent - the Adams and
Ware epicentre is more than 20 km from the Seismological
Observatory Solution. Second, the effect of adding teleseismic
data has an effect on the solution, particularly the depth,

out of proportion to the number of observations added. This

is because the number of New Zealand rays leaving the source

at a steep angle and thus strongly contributing to the depth
control is not large, whereas the teleseismic rays all leave

the source comparatively steeply. |

We tentatively draw the following inferences. The Adams ‘
and Ware and JHD epicentres are to be preferred to the others
because of the more realistic model employed. Of these two,
the JHD solution gives a very much better fit than Adams and
Ware, whose solutions, in terms of standard deviation of
travel time residuals, fit no better than the Seismological

Observatory solutions.

The question arises though as to the effect of adding
teleseismic data when a better model is employed. For tele-
seismic ray paths to the Northwest, where most teleseismic P
observations of New Zealand earthquakes are made, a significant
popr tion of the ray must travel through the slab where the
velocities are presumed to be higher than in the straight J-B
model. The effect on depth of adding teleseismic observations
to the data is thus difficult to estimate. The average differ-
ence between Adams and Ware and JHD depths for group 24 was

almost 20 km. One should be wary of judging that because the




Adams and Ware depth and the ISC depth are similar, they should
be preferred to the JHD depth. On the other hand, the depth
uncertainty of the JHD solution (standard deviation 6 km*)1is
increased by the possibility of systematic errors. It will be
remembered from Chapter V that a large range of depths for a

master event gave a nearly identical fit.

This problem is not resolvable with the information at
present available. Very well located shallow events which
could be used as masters to bootstrap down the Benioff Zone

using JHD might provide a solution.

We conclude with a brief discussion of the consequences of
the velocities deduced for the slab - 8.6 km/sec. for P and
4.7% km/sec. for S§. First, it is physically possible to obtain
such velocities. Ringwood and Green (1966) show that the basalt
to eclogite transition provides material where velocities can be
this high. Marsh and Carmichael (1974) show the transition
being gradual and starting at very shallow depths soon after
subduction. As subduction proceeds, the transition continues
towards eclogite producing increasing velocities. Following
such a model implies that it is the 0old oceanic crust, converted
to eclogite, which provides the fast paths. This would explain
why WTZ, essentially above the projection of the Benioff Zone,
was found to have fast paths. The existence of fast paths to
GNZ suggests that the transition must be highly advanced in the

shallow dipping part of the zone if this model is correct.

Qualitative support for this model is provided by the

pattern of energy transmission from mantle earthquakes. Mooney

* See Appendix VI, Table 5.
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(1970a) shows that stations looking down the slab receive signals
at higher frequency than the out-of-slab stations and that

there is a correlation between the high @ region and the pattern
of intensities felt from mantle earthquakes - these are felt
strongly by observers up and down the east coast and very weakly
by observers to the northwest. If the down-going plate consists
of normal oceanic lithosphere capped with a higher velocity
layer, the slab will act as a wave guide, while the fast layer

will transmit high frequencies to above slab stations.

Very little information was provided from this study about
the above plate region. If, as was tentatively concluded, the
average velocity is a few percent higher than given by the
Jeffreys-Bullen model, then the contrast between the in-slab
and out-of-slab velocities is reduced to a figure which is more

consistent with the contrasts calculated at other Benioff zones.
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CHAPTER VII

FURTHER EXTENSIONS AND OTHER APPLICATIONS OF JHD

In this chapter we do not attempt a complete survey of all
possible applications of the joint hypocentre methods, but we
will discuss some ideas which scem promising and review some

extensions which have been recently made to JHD.

JHD AND MODELLING

Crosson (1976 a and b) discusses an extension of JHD in
which, for an assumed plane layered geometry, velocity improve-
ments for each layer as well as hypocentres are obtained. The
work bears some resemblance to the work of Chapter VI in that
subjective decisions about the number and thickness of layers,
based on trial solutions, are required. In Crossman (1976 b),
quite notable success 1is achieved in modelling the upper crustal

structure of Puget Sound.

This method is inherently that of determining velocities
for a given geometry, but can be easily extended to more
complicated geometries provided a fast method of calculating
travel times (essentially ray tracing) 1s available. 1In the
case of group 24, 1125 travel time calculations are required at

each iteration. The importance of rapid ray tracing is obvious.

An entirely different extension can be found in the work of

Fitch § Muirhead (1974), Fitch (1975), Fitch & Rynn (1976) in which the

velocity (or velocities) and ray incident angle at the source
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of a group of earthquakes, assumed constant over a volume
containing the earthquakes, are estimated together with the relative
positions of the events to a master event. Fitch and Muirhead (1974)
and Fitch and Rynn (1976) use this method on crustal earthquakes
and Fitch (1975) uses it on deep (600 km) events. We will
briefly develop the required equations here since there are some

difficulties with the method which seem to have escaped notice.

Let rs be the position of the jth slave with respect to

the master event. In polar coordinates we have:

£ = rj(sian cos¢j, sian sin¢j, cost) i 907
Let 2 be the (unit) vector tangent to the ray to a given station
at the master. The assumption is made that rays to all the events

of the groups are parallel. Let 2 be given by:

~

2 = (sin® cos$, sin® sind, cos ©) ...(7.2)

where © is the incindent angle and ¢ the longitude of the ray

at the source.

If v is the velocity of the phase being considered, the

extra travel time to the slave is given by:
§T = (r,+ /v ool 728)
Lyt b

which is equated to the difference in arrival times for slave
and master and the station minus the estimated difference in

origin times.




If rjo, ejo, ¢j°’ Vo, O¢, do are initial estimates of the

unknown parameters, by a Taylor's expansion of 87T we have:

67 = (rs0 - Zo)/vo + é%ﬁéTodrj + %%'Tosej
gg T06¢ + aéTOGO + ggT06¢ + 36 Tobv
+ higher order terms i o o)
Expanding the scalar product of (7.3) gives:
r,
87 = 7§{sin@j sin0 cos(¢;-9) + cosO; cos0) ... (7.5)

whence, by inspection, ¢j and ¢ are not independently obtainable,

as Fitch and Rynn assert.

Writing down the terms jLGTo and deTo we have:

v 30
p rae
556To = = —-—451n@ .0 sinBOg cos(¢ .o=Po)
Uo
Ea costo cosQg) ...(7.6)
0 gy L2
sédTo = v0(51ano cosOy cos(¢jo-¢0)

- cosejo sin0q) v o (7.7)

Now consider what happens if the hypocentres happen to be
distributed in a plane. Without loss of generality, take this
plane to be the equatorial plane of the coordinate system, soO

that Oj = /2 for each j. Then:

P .o
é%éTo = -~ sin g cos(¢i0 - ¢) v (7.6a)
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r.o

3
%‘67'0 = —;7)0 COSOG COS((bJ-o = ¢) ...(7.70)

whence the columns associated with év, 6@ of the design matrix
in the linear model are linearly dependent and so the system
will be singular. Moreover, if the events are not coplanar,
but are closely distributed about a plane, as the earthquakes
studied in this thesis were found to be, one can expect that
the system of equations will be poorly conditioned and that

errors in 6v and 60 will be highly correlated.

In view of this difficulty, some care must be used in the
application of the method. Fitch (1975) tests a simpler me thod
in which only the velocity and not the ray geometry are deter-
mined jointly with the hypocentres. In his study, Fitch
concluded that inclusion of the ray angles were necessary to
obtain a satisfactory solution, but the values obtained for
the P velocity: 10.7(0.1) km/sec. for the velocity only
solution and 11.2(0.4) for velocity plus angles (for Fiji earth-
quakes in the depth range 600-660 km) are not significantly

different, in view of the standard deviations.

Experiments were therefore conducted in which the P and S
source velocities were computed for group 24. The model adopted
was that the true travel time difference between slave and
master is proportional to the model travel time difference, the
constant of proportionality being the fractional error in the
velocity which is jointly solved for with the hypocentres and

station terms. Briefly, the equations of condition become:
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rij = 6Hi + (VT)ijéfd + Roj + A(Tij—Toj) + eij

svs (748)

for the jth residual of the ith event; 6Hi’ 6£i’ Roj and A
being solved for by minimising the errors g in the least

squares sense.

Two sets of solutions were obtained. First, it was
considered unwise to assume that a uniform velocity applied over
the source region in view of the proximity of the source region
to the edge of the slab. Thus two sets of velocities were
solved for, one for the above slab stations, and one for KRP
alone. In the second solution, WIZ, TUA and GNZ were separated
from the above slab stations, and so three sets of velocities

were obtained. The results are given in Table 7.1.

The first thing tonote is that in both sets the ten percent
standard deviation values for KRP make these estimates insignif-
icantly different from zero. More than 60 observations each of
P and S contributed to this solution. One can conclude that in
such circumstances the velocity to a single station cannot be

determined by this method.

The other standard deviation estimates were of the order
of two to three percent. In no case was the determined source
velocity significantly different from the initially assumed
value. Neither solution significantly reduced the residual

sum of squares.




TABLE 7.1

VELOCITY CONTRASTS
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REST

I

WTZ
TUA
GNZ

REST

% CONTRAST
+3.

+4.

~0.

+2

+8,

+0.

B3

+3.

*1a

7

4

STANDARD
DEVIATION
11.4

10.6

12.2

11.6
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Within the limitation again imposed by assuming a J-B
ray structure, we conclude that the velocities initially assumed
at the source for the path in the slab are correct to within
about two percent. The values are, for 145 km (average for

group 24) 8.9(+.2) km/sec. for P and 4.86(+.1) km/sec. for S.

OTHER USES OF JHD

When this study was begun, the possibility that seismic
velocities could vary with time was not considered. There is
an implicit assumption throughout this work of invariance of the
model with time. With the numerous reports of apparent P
velocity decrease in a region prior to an earthquake (a New
Zealand example being Sutton (1974) discussed below), the
possibility arises that, having established a good regional
model, one might use JHD to monitor velocity changes by looking
for changes in the station terms with time. There are many
obvious difficulties in establishing such a scheme, not the
least of which is determining the "normal" model sufficiently

accurately.

The fortuitous station placement of GNZ with respect to
the 1966 Gisborne earthquake (Hamilton, 1969) gave the
opportunity for testing the ability of JHD to detect velocity
changes. Sutton (1974) reported that for a period of some 400
days prior to the Gisborne earthquake, teleseismic P arrivals
were about 0.5 seconds later than an average value established
during the time before and after the quake. The angles of
incidence at GNZ of the rays were in the range 15°-30° and most

of the arrivals were from earthquakes in the NW quadrant from
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GNZ. The rays would thus pass through almost the same crustal
region as rays from group 24 to GNZ. A group of 20 events

which occurred in 1965 and were located by the Seismological
Observatory in approximately the same geographical position as
group 24 were relocated using JHD and the mantle model developed
for group 24. Figure 7.1 shows the aperture of these events

and the position of group 24. Amongst the 65 events of group

24 was one 1965 event. (The reason for the low numbers of
events from the years 1964-1968 is the introduction of TRZ in
1969 and WTZ in 1972 which provided relatively more data for

events from later years.)

This event was used as a master event for the 1965 group.
The object of the experiment was to compare GNZ P station terms
for group 24 and the 1965 group, which under the hypothesis,
should be more positive than the "normal' value, established by

group 24.

A comparison of station terms for the stations common to
the two solutions is given in Table 7.2. There is no significant
increase in GNZ P station term - the difference between GNZ P
and GNZ S for the two groups is almost identical. In order to
verify that the method is capable of detecting an average change
of 0.5 sec, 0.5 second was added to the GNZ P arrivals for the
1965 events. In theory, the GNZ P term should be increased by
0.5 - (0.5)/N, where N is the number of stations, since the sum
of the station terms is constrained to be zero. At the same
time, the other station terms will increase by -(0.5)/N. In

this case N = 16, so:
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STATION TERMS 1965 AND GROUP 24

TABLE 7.2

Station 1965 Group 24 1965 - #24
CNZ P 0.95 0.99 -0.04
ECZ P -0.07 0.20 -0.27

S 1.73 1.95 -0.22
GNZ P -0.36 -0.24 -0.12
S -0.30 -0.20 -0.10
KRP P -0.58 -0.43 -0.15
S -0.74 -0.35 -0.39
MNG P -0.80 -0.42 -0.38
S -0.77 -0.56 -0.21
TNZ P -0.64 0.70 -0.06
WEL P -0.76 -0.76 .00
8 -1.06 -0.32 -0.74
COB S -0.68 -0.91 0.23
TUA P -0.17 -0.03 -0.14
S 0.10 0.97 -0.87

184.




185.

0.5 - (0.5)/N = 0.47

and the observed change in the GNZ P station term was exactly

0.47 sec.

This demonstrates that the average difference in travel
times between 1965 and the normal value established by group 24
(containing only one 1965 event) is estimable by JHD within a
factor of (N-1)/N. It is possible of course that because of
the random errors in the station term estimates, the difference
will be undetected. Assuming that the parameter estimates are
normally distributed, one can deduce from their standard
deviation estimates the probability of obtaining the actual
result assuming a true average change of T, The results of

this analysis are:

X (sec) Probability that Tc > X
0.52 0.05
0.43 0.1
0.32 0.2

(The details of this analysis are contained in Appendix VII.)

This strongly suggested that no travel time change as
large as 0.5 sec. occurred in arrivals from intermediate depth
earthquakes to GNZ in the same apperture as the teleseismic
arrivals which showed a +0.5 sec. change. Work on the cause
of this discrepancy is continuing. While the non-confirmation
of the result is disappointing, the experiment certainly suggests

that JHD may have a role in this field.
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Finally we mention the use of JHD in locating shallow
earthquakes at a regional level where crustal phases are present.
The Bulletins of the Seismological Observatory record numerous
crustal phases, the identifications being based on arrivals
with times close to the model arrival time for the same crustal
phase. The crustal model used (layers 12 km and 21 km thick
with P, S velocities 5.5, 3.3 and 6.5, 3.7) may be very poor
in some areas, in which case identifications based on an
erroneous model are less certain. Herein lies the difficulty
of applying JHD. In our terms, a set of arrival times of a
given crustal phase from a group of crustal earthquakes at a
seismograph station would represent a "station'". The presence
of wrongly identified arrivals in the set would enormously
add to the errors. In brief experiments, the aftershocks of
the 1968 Inangahua earthquake (Adams and Lowry 1971) and the
aftershocks of a magnitude 7.0 earthquake which occurred close
to seismograph station MSZ (Milford Sound) in 1976 were relocated
using JHD without any phase reidentification. It was extremely
difficult to obtain satisfactory solutions in either case (and
quite impossible without a master event). In the case of the
Inangahua earthquakes, the problem seemed to be due to the very
large residuals of star phases (rays penetrating the second
layer but not the mantle) at almost all seismograph stations.

In the case of the Milford Sound earthquake, such solutions as
could be obtained suggested a model very different from the
standard one by which the phase identifications were made. It
would appear that this problem will require considerable work
before joint locations of crustal earthquakes using crustal

phases can be attempted in New Zealand.
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ALGORITHM FOR SOLVING THE JOINT EQUATIONS OF CONDITION

In place of the equations (3.13),

('

(VZ1)A1

—

where there are n.

(772)'42

BY LEAST SQUARES

)

| (ny) /gé:w
o |-
: | *u
(n 5 Ay | (nM)Ié Sy
| N

_/

< N observations for event 7,

we have the system:

ﬁn)ll\

. (A1.1)

,\
=
K\_

«w
\=

(n.)Az 1S an
7

n; X 4 coefficient matrix of the condition equation of event %,

and n.I.
Jd J

identity matrix is deleted if the k

observation.

is a deleted identity matrix:

the kth

th station do

row of an N x N

es not provide an

The least squares solution of this system may be obtained

using Householder's QR method (Householder (1953)) which is space

conserving and numerically efficient.

The object is to find an orthogonal matrix Q@ which reduces

the coefficient matrix of (41.1) to upper triangular form.

" .
2

(ni)QiAi

where U.
1

Qi is such that:

0

1f

.(A1.2)

is a 4 x 4 upper triangular matrix, then:
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Q
(nM) M

is an orthogonal matrix which reduces the left hand side of

(A1.1) to:

(’

(nl)

no

QA

By row interchange,

| A
‘ | (nl)QII;
(Uzl l
(n, Q | (nz)Q?.Iz
~ g | I
CPANN T

which is reduced by the orthogonal matrix

.(A1.3)
this matrix is replaced by:
|
::l | 4MxN
oA = - .(A1.4)
|
wan? 8
Q P
2
g b
= ] . (A1.5)

where

If mTis the matrix of

desired row interchanges,

Q2

RO

row permentation required to produce the

then:
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A = (\];ITQ] c..(A1.6)
is the required orthogonal matrix.

The algorithm then consists of sequentially reducing the
individual condition matrices A, to upper triangular form and
separating the first four rows of the matrix Qi from the
remaining n; - 4, the first being stored in X of (A1.4), the
latter being stored in Z. The matrix Z, which is (.g n, - 4n)

=1
x N, is then reduced to D by Qg (A1.65).

The conditioning of the A is presumed to be sufficiently
good that the rank of the R, (41.3) is 4. The rank of Z, and
hence U,, is theoretically ¥ - 1 because the original equations
have one undetermined parameter (see Chapter IIT). In
practice, it is wise to allow for the possibility that ill-
conditioning of Z makes the effective rank of 2 less than N - 1
-- a circumstance which in fact was never encountered in this

work.

The parameter estimates are then obtained by back substit-
ution against the transformed right hand side of (41.1). By the
nature of (, this transformed vector can be obtained by

sequentially calculating @ .y, and separately storing the first

1

four and remaining (ni-4) components and then applying Q, to the
M

§ (n.-4) vector that results. Call this vector g'. If the rank
=1
of z is N - 1, then:
g\>
N 9 g 0/
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where U, is (N-1) x (N-1) of rank ¥-1, and d is an (N-1) vector.

It is easy to solve:

] é
s !

s y
0 0 L (N-1)

... (A1.7)

so that s, satisfies an arbitrary linear constraint. (See

Appendix II.)

If the required constraint 1is s = 0, then the required

M=

solution 1is:

-1 7 -1 '
-3 (N_l)({EI___(EL_ ii__)é _}_U£ _)_V_

(1)

N-1
where 6 = I (U —ld). - 1. To impose the constraint that one

A L =7

J=1
of the events i be fixed, corresponding to the use of a master
event, one merely deletes the columns of the matrix A, corres-
ponding to the parameters fixed. If the first column (origin

time of Z) is retained, the system still has a rank deficiency

of one. If the origin time is fixed, (41.8) is replaced by:

SRS R
L= Uy N(z ) ... (41.9)

| &

The theory is exactly the same if weights are applied. If a

weighting matrix W is used,

Wy
(?’ll)

W W2 ... (A1.10)
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where W, is diagonal, then (41.1) is replaced by:

\
W14 | wir) /EEI (;111
Wada | WaIz | 6z _ | Wapo L (A1.11)

\ SR R
x .
IREVEL S

s W,y

AN

and the procedure is identical.
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CALCULATION OF LEAST SOUARES PARAMETER ESTIMATE

VARIANCE/COVARIANCE MATRICES WITH STRUCTURED DESIGN

MATRICES AND USING HOUSEHOLDER DECOMPOSITION

The equations we are solving by least squares can be

written:

(

A,

-

(with 4M + N parameters to estimate.

M

I
J

(S T

I

Ir
M

|
I
l
|
|
|
|

\

— -

N -~

J

Ii denote deleted Identities:

the ith

event, the jth

/Gglw

6£2

B

... (A2.1)

kXM/

The dashes on the matrices

if the jth station does not record

row of I, is absent.)

We make the standard

assumption that the LHS is the expected value of the RHS. The

least squares parameter estimates are a linear function of the

RHS:

such that: E(E} = LE

the LHS matrix.

(v)

.os (A2.2)

= B3 1s8= I is a left inverse of

Let B! be any subset of 8, so:

él

L

4

...(42.3)
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(taking the appropriate rows of L). Then:

var (B') E{(R! - 81 (B - 8VT)

- Blp'y - gy - 897

= L‘E{QT}L‘T - g‘(leg)T - paes’T + g'g7
= L'{var (¥) + X§§?XT}L1T - §1§}T

- o2l 4 pagTr T - gt

The last two terms cancel so:

var (B}) = o2t o b (A2 E)
Also: cov (B1,82) = E((B' - 8(B - BV}
- E{(r'y - B*)(L*Y - B*)}
_ pMorr + xesTxTIAT - gtk
_ LIXBBZT + §1_8_2T
= o211%T + BIBZT _ gpT - BIBZT + BlBZT
i.e. cov (B',82) = o?rir*t . (A2.4a)

After applying Householder transformations @ sequentially

to (42.1) we obtain:

a y D 7 o 7
Uy, | @1]w 621 @1¥1 ]
e 4 | . r e
4 Ui. | c:zill. 5§M = Qi%h ...(A2.5)
. | - . ;
Uy | 2l i ATl
i {l v, \d Qy
L‘ | 10 L
\"Y‘J
= )\ y




where the U's are upper triangular matrices and y is the
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formed from the remainders of the vectors Qizi'

Hence §s is estimated by solving:

N-1 1
n-1fv, | d\
| =

1 0

which is an undetermined system.

Write 68 as [=° =1
r,| (1
So we solve: Qﬁh +12é =

And we impose the constraint:

-1
'Z rgtr, =
a=1

where § is arbitrary. This

will require a reworking of

result will be similar. We

From the constraint:

n-1
! e
vy - reé)}j e, =
J=1
p-1 N-1
s T (Wl - (T () -
j=1 / j=1 ¢
- r =

vector
QH}N—I = y' ...(A2.6)
zi'
S cou(A2.7)

necessary introduction of a constraint
the variance computation, but the

first find the operator L of (A2.3).

...(A2.8)
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Let D be the denominator in (42.8) and let 1 be a column of ones

so that ij = ng, whence:

7 -1
1'v. y"' -8
-1 L
T e 1S}
=1 d 7.1 el 5
= = ! =
= U I - 510, V' + (U d)5
v7la
- EE, o =1 ~1,,5, ...(A2.9)
= {1 - (591 Wty + (U d)D
Rewriting (A2.8):
T
— __l_U_l i )
Yo T DYLY TD
allows us to write:
r lT
= -1,= -1 s [ -1
88 = = fr-wd= \Uy +5[V;d
v ) | é---l-)_- 5 D\ _LZ)..(42.10)
y -1
D
i.e. §8 = Iy' +k ...(A42.10a)
Therefore: var (68) = E{(58 - 65)(68 - 88)")
- E{(Iy' - (8s-k))(Ty' - (e-K))7)
: VR I
= L{o®I + (U, |d)8sds” (Up1d) L
| |
] I
_ (88 - R)(L(U {d)8s) - L(U;1d)8s(8s - ®T
- | i
¢ (65 - K)(8e - KT . (A2.11)

It remains to show that:

|
LU id)es = (8 -k ...(A2.12)
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1T |
=\ vl i as
T- M5\ nEte
lT i
D
] I -1 -1 e
= /1-(,d5 |luLg_- (U d)g Up d\ e
[ L
D | 5 W&
N
(remembering that I st= 8}
g=1
-1 ~1 -1.,.7 -1
= Sy~ Uy d(s - éshg + U, QﬁsN - U dl Up éﬁsN
————— D —.—..__.____,___.__,___.——_._.———._
S - GsN l? -1
5 + SV, d)ss,
1
= [b6s._ . + 88,0 1 (D+1)y _ S,-1
=g+l Fhd i+l p - pr e
1 D+1 S
68N{— D + D } D
= 8-k
Hence:
R ...(A2.13)

with I as given in (42.10).
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COMPUTATION OF VAR (82.):

From (A2.5), 6z, is obtained from:

U, o8, + Qilhag_ = Qiyilq ... (42.14)
Hence:
~ . "]. r
&, = U, {Qiyilu - Qilk(Lg_ + k)}
- B0q.] 1T, = U"IQ.I Ly' + k'
PR ATRE S it A A it S
= wile, : vl | Z)[y.\+ k' (42.15)
i el 1TV L =) T = e
| y'
Therefore:
i
A _ 2 -1 | -1 -1 T
var (§2.) = o"(U; QilH i -U; QiluL(f.gﬁ_Qilaz__\
-1 T
(-U, Qi|“L)
=117 -1 T, =1T
= oMU U + U Qi|qLL Qilk U, .. (42.16)
where L is the operator of (42.10), (A2.10a).
cov (82, 88):
From (42.15) and (42.10) and (A2.14):
| ]
cov (68.,68) = o%(U;Q.]| L7l | Z)(g EL)T
> T 'y ! T Ty ~ o
= oz(-UTIQ.I %) ... (A2.17)
T Ty
cov (6%;, 6&;):
From (42.15) and (A2.4):
i I
| |
oy ~ - 2 |"1 | ‘1 "]. T
cov (Gxi,éxj) = Ig (Q :Ui Qill+ =-Ui QilgL) (Uj Qj|“)
1 i T
( 0 )
-1 T
(-U. Q.| L)
J QJ'u
= g2y} Tp | Ty71T ...(A2.18)
= g2l Qi|“LL le“ U )




APPENDIX IT1
RESIDUALS FROM HOMOGENEOUS STATION METHOD LOCATIONS

Group 1

STD.

ECZ GNZ KRP MNG TNZ WEL ERROR

CNZ

— N O
o oo

N MmO
[eNole]

0.27 -0.93 -0.13 1.33 -0.73
0.15

0.21

0.10

o
o

Mean

21

15

15

10

25

0.

Standard

Deviation

Group 2

STD
TNZ WEL ERROR

MNG

ECZ GNZ

CNZ

1410035750

111110011

/40193/4509
111010010

1/43121/431
000000000

114030250

420321383
000000000

110000091

Oﬁ_uooooooo

0.11 0.29 0.02 -0.77 0.02 0.94 =0.63
0.23 0.26 0.30 0.29 0.33

0.30

Mean

0.15

Standard

Deviation

Group 3

STD
ECZ GNZ KRP MNG TNZ WEL ERROR

CNZ

30324814
11111011

wny
769896877

000000000
[ H A N |

2721371/40
101110111

O
221203230
n_UOOOOOOANO

(o))
NN O MO O™
—H OO0 +HOO~O
| A A N A S S S |

(ce]
1411014430

O
555252122

o
33111/4300

=

3]

[}

=

0.12

0.26

0.21

0.26

0.28

29

0.27

Standard

Deviation
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Group 4

STD.
ERROR

ECZ GNZ KRP MNG TNZ WEL

CNZ

1
0.

-0.6
-0.3
-0.4
-0.6

1
0.6
0.6
0.8

-0.2 1.
0.1
-0.1
-0.6 0.2

1
0
-0.8

0

0
=0.5

0.1

~ O
o o

.2

0.7
0
0.3

52/41

-0.2 0.9

-0.8

vk

[eNeRoNole]

NO A<M
[sNeloNoles]

-0.6

0.9

1
-0.05
0.18

<
o

133130

00000
[ I |

0

-0.42
0.19

0.77
0.20

-0.65

0.06
0.27

0,22
0.27

0.02
0.28

Mean

27

0.

Standard

Deviation

Group 5

STD
TNZ WEL ERROR

MNG

ECZ GNZ KRP

CNZ

= v
o o

~ O
(@)

o N
o O

< N
o o

e M 10l
o o

[ Ve]
oo

o~
o o

- O
o o

/41/4.23
00000

- ~NO O
On_uooo

——HONO
[eNeoloNoRe

10310
00000

N O NN
(ool el

NO~H—m
0000_0

MmMoNOoOm
eleloelole

21302
OOOOO

o

0.12
0.18

0.01 -0.07 0.07
0.24

0.04

—0.08

Mean

11

22

20

18

0.20

Standard

Deviation

GrouP b

STD.
ECZ GNZ KRP MNG TNZ ERROR

CNZ

-0.4 0.0 0.2 -0.1 -0.1 0.4
0.4

0.3

0.1

0.5
0.2
0.7

-0.4 0.0

0.0 -0.1

2 0.1
-0.18

0.3
0.
0

0.0
0.5

0.0
-0.2
0.5

[ap o
o O

-0.7

102
OOO

0.20 -0.03
0.08

23
0.26

-0.03 0.

-0.13

—0.05

Mean

0.10

0.17

0.39

0.46

0.13

Standard

Deviation
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STD.
ERROR

WEL

TNZ

MNG

CNZ ECZ GNZ KRP

Group 7

M
o oo
o
N~ ~HO
32
— oA
oo
!
o
M- O
Fade
o
O N~
oo oo
[ |
™~
— N~ O
OOA_UO
(58]
—~ O N O
n_UOOO
on
N O
(el je )
|
=)
[5s]
oY)
=

0.15 0.15 0.10 0.23 0.21 0.17

0.31

Standard
Deviation

Grour 8

STD.
7 J
GNZ KRP MNG TNZ WEL ERROR

ECZ

CNZ

o O
— = O
w0 O ™~
o OO
[
o O @
o ~ O
< N T
o oo
ol s
o oo
et
N~ ™M
o oo
— N~
00n_U
Mmoo
o o

LI

=0.

-0.70

1.02 -0.78

0.28

0.40
0.12

0.16
0.11

18

0.

-0.28

Mean

0.13

0.30

0.26

0.04

Standard
Deviation
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MEAN RESIDUALS (STANDARD DEVIATIONS IN PARENTHESES) BY GROUPS

GROUP CNZ ECZ GNZ KRP MNG TNZ WEL

1 0.03 0.10 0.27 -0.93 -0.13 1.33 -0.73
(0.25) (0.10) (0.21) (0.15) (0.15) (0.15) (0.21)

(0.30)  (0.23) (0.26) (0.30) (0.29)  (0.33)  (0.15)
©.27)  (0.29) (0.28) (0.26) (0.21) (0.26)  (0.12)
0.28) (0.27) (0.27) (0.27) (0.18) (0.20)  (0.19)
020y (0.18) (0.20) (0.22) (0.24) (0.18)  (0.11)
0.13) (0.46) (0.39) (0.26) (0.08) (0.17)  (0.10)
©31) (013 (015 (0.10) (0.23) (0.21)  (0.17)

8 -0.28 0.18 0.16 -0.70 0.40 1.02 -0.78
(0.04) (0.26) (0.11) (0.30) (0.12) (0.28) (0.13)

COMPARISON OF RESIDUALS FOR GROUP 3: HOMOGENECUS METHOD
AND SEISMOLOGICAEﬁBULLETIN SOLUTION

Homogeneous Method

CNZ ECZ GNZ KRP MNG TNZ WEL
0.3 0.5 -0.1 -1.1 -0.2 1.2 -0.7
0.3 0.5 -0.4 -0.7 0,2 0.7 -0.6
0,1 0.5 -0.1 -0.9 O X 1.2 -0.9
-0.1 0.2 0l L -0.7 0.2 1.1 -0.8
0.1 0.5 0.0 -1.0 0.0 L3 -0.9
-0.4 -0.2 0.4 -0.3 0.3 0.7 -0.6
-0.3 -0.1 0.4 -0.6 0.2 1.1 -0.8
0.0 () B 03 -1.0 -0.3 1.4 -0.7
Bulletin Solution
0.6 0.0 -0.1 -1.4 0.0 1.7 -0.4
0.4 -0.5 -1.5 -0.4 0.4 1.7 -0.1
0.1 0.4 -0.1 -1.3 0:5 1.0 -0.6
0x7 -0.5 -0.3 0.0 0.0 150 -1w2
-1.0 0.7 -0.1 -2.7 1.0 1.0 0.8
-0.3 -0.4 0, L 0.1 0.4 0.9 -0.5
-0.1 -1.1 -0.9 -0.3 -0.4 0.3 203
-0.7 0.8 0.6 -1.8 0.2 0.7 0.3
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APPENDIX 1V
[*EAXIMUM LIKELIHOO]}_ESTIW\TE OF A PLANE (ORTHOGONAL LEAST SQUARES)

z..) which lie in a

. < T
Given a set of N points z_ = (x ., ;95 T;q

11

plane:

/i
o (z,-xzy) = 0 . (44.1)

and a set of estimates éi of the points x., the problem is to
estimate o, Zog-. xo is arbitrary to the extent that any point
’ : . R T

in the plane will serve as a reference point or origin. & =

(ay, 02, a3) is the (unit) vector perpendicular to the plane.

Define €. by:
=%

+ €.
=

e

2.
=

where g. is a normal random variable with variance V and mean .

Let ¢! = €. - py.. Hence:
£ T =2 T =
!
. = T.+ Y+ E.
=i L TET =
iz T ,~ T
and o (zo-zo) = O (xp - (Zo-W)) 4 aE;
= 0 ...(44.2)

Thus the difference between z, and u rather than z, will

have to be estimated, as is intuitively obvious, since the mean

location error p cannot be estimated from the éi'
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We have reduced the problem to a one-dimensional problem.

ngé is a normal random variable with zero mean and variance
gTVg - g2, We construct the likelihood function:
N
” 2
1= 1 Ll (e’ @yag) [ 0%) - (44.3)
i=1 /2l
where zo = =, - #. We note that gT(éi-gé)z can be written:

aT(éé—gj)(éi—gé)Tg
Let L = log 1.

Define XT to be the 3xN matrix, the ith column of which 1s

h

(éi—gé). Define gj to be the jt column of X.

To estimate g, xg, 0 we wish to solve the equation obtained
d 9

. 3 -
by setting w7 5%, 5’ BoL = 0.
J J
Rewriting:
¥ I e ' T 2
I = -N log Y2llo + L = %o (z.-xo)(x.~ZTo) 2 / o
=1 i e
- I log V2N - N log © - TéggTXTXg ... (A4.4)

Since o is a unit vector, the solution obtained must satisfy
the constraint ng = 1. By the method of lagrange multipliers,

we replace L by the Lagrangian function:

r = .L+-A(gq1- 1)
2
3 _ 3L
P ¥ >\OLj
J J




I

- —"IT‘{X—’Z:'XO. + QTXTX.} + o
202 g — — J

- L ofxad + 2o ... (A4.5)
02 = = J

(since each term in the brackets is a scalar and hence equal to

its transpose).

A, %% =0 for j§ = 1,2,3 implies:
J
Sl _ . ’
02§§X9.+ Aaj = 0 F=Fy2 53 (A4.6)
that is:
‘lzxjxa'f')\a = 0
O — —
g
XTXQ = o) .. (A4.7)

showing that a is an eigenvector of XTX.

e _ 1 o
B. 551} = Og{aj( 1)X ol }
( )
i, ~ Fm
1
_ 1 - -
= Ozaj E(xiZ xoz) a j=1,2,3 ..(A4.8)
r
{E(xia - o3
o . ar . .
So, by inspection, = 7 = 0 F=1,2;5 1%f:
T3

v
', = . ... (44.9)
Tog (iilxlg)/N (
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g _ N, 1 DTy, BL - g inplics:
C, r 5t g X Yo v i 0 implies:
# = Sk¥n (44.10)

which, multiplying (44.7) through by %gT, and noting that ng=1,
gives:
2 02)\
o = —== ... (A4.11)
N
or A = N. L is now given by:
max
N
o - - e e 4

. N log V2l - N log 0 - 3 ... (A2.12)

Since Ag? = No? is an eigenvalue of XTX, and o should be a

minimum for L to be a maximum, o must be the eigenvector assocC-

jated with the minimum eigenvalue.

Thus the problem is reduced to the mechanical one of finding
the eigenvalues and eigenvectors of the 3x3 matrix xTx. The plane
is described by the eigenvector corresponding to the minimum
cigenvalue. Note that the sum of squares of distances from the

n

plane is given by I gT(gi-g;)z
=1

o'¥ X

Il

= No?

Hence this plane has the property that the sum of squares of

deviations perpendicular to the plane is a minimum.



APPENDIX V
PRELIMINARY RESULTS:

GROUP 24

(Uniform Jeffreys-Bullen Mantle Model)

TABLE

1

Hypocentre Estimates (and standard deviations)

4 e S et St e Y% ¥

SEISMOLOGICAL OBSERVATORY JHD ‘SOLUTTON

SERIAL NO. * |-—=—~~ _SOLQTION- e e T el e B -

Origin Time Lat. Long. Depth Origin Time Lat. Long. Depth
M S (°s) (°E) (km) M S (°s) (°E) (km)
33/1974 18 33.8 -38.57 175.44 176 18  36.9 -38.40 175.33 137
0.5 0.04 0.06 6
34/1974 56 38.4 -38.51 175.72 163 56 41.4 -38.31 175.60 128
0.5 0.04 0.06 6
40/1974 19 34.2 -38.60 175.75 199 19 37.6 -38.33 175.49 154
0.4 0.05 0.07 6

| 188/1974 4 44.1 -38.52 175.84 169 4 45.9 -38.33 175.60 147 |
, 0.5 0.05 0.07 6
190/1974 39 1.1 -38.10 176.08 198 39 2.7 -37.85 175.81 170
i 0.6 0.05 0.06 7
L 281/1974 b 43 7.1 -38.35 175.96 157 43 8.0 -38.13 175.74 139
| ‘ 0.5 0.05 0.06 6
| 485/1974 | 17 7.5 -38.16 176.35 175 17 9.6 -38.03 176.01 147
| 0.5 0.05 0.07 6
' 498/1974 18 24.6 -38.12 176.46 176 18 27.4 -37.91 176.18 138
§ - 0.5 0.04 0.07 6
| 499/1974 39 25.5 -38.66 175.64 181 | 39  28.2 -38.40 175.40 145
5 ! ‘ 0.4 0.04 0.06 6
[ 743/1974 { 40 9.8 -38.38 176.01 193 40 12.8 -38.15 175.81 156
i 0.6 0.05 0.06 6
, 18/1973 51 31.2 -38.51 175.71 190 51 33.9 -38.22 175.48 143
i | 0.5 0.06 0.08 7
| 104/1973 36 46.1 -38.07 176.23 183 | 36  47.5 -37.83 176.05 161
; 0.5 0.05 0.07 6
' 202/1973 } 28 56.7 -38.64 175.85 187 28 59.6 -38.37 175.57 153
: n 0.6 0.05 0.06 6
| 456/1973 9 23.9 -38.65 175.69 182 9 27.1 -38.40 175.49 147
i 0.6 0.05 0.06 6
. 529/1973 40 57.2 -38.66 175.72 190 41 0.4 -38.40 175.40 148
i 0.5 0.04 0.06 6
i 534/1973 10 32.3 -38.62 175.79 169 10 34.9 -38.42 175.54 134
[ 0.5 0.04 0.06 6
! 537/1973 3 9.1 -38.49 175.90 167 3 10.5 -38.30 175.67 145
; ! 0.5 0.05 0.06 6
. 548/1973  } 44 59.4 -38.58 175.79 187 45 2.7 -38.31 175.58 151
; [ 0.5 0.05 0.07 6
i 602/1973 l 41 19.0 -38.57 175.63 191 41 21.1 -38.34 175.35 157
l 0.5 0.05 0.07 6
! 605/1973 ‘ 33 0.8 -38.24 176.09 174 33 3.4 -38.04 175.88 141
i ! 0.5 0.05 0.07 6
! 680/1973 4 6.4 -38.54 175.79 188 4 10.2 -38.31 175.61 145
| 0.4 0.05 0.07 6

(For * see page 208)

(Table 1 is continued on the next page)
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TABLE 1: Hypocentre Estimates (and standard deviations) (continued)

SEISMOLOGICAL OBSERVATORY
[ ] SOLUTION ], JHD SOLUTION
{ SERIAL NO '*f A e e ¢ T e S e T Rl e
| i Origin Time Lat. Long. Depth :Origin Time Lat. Long. Depth
; LM s (°s) (°B) (km) M s (°s) (°E) (km)
' 694/1973 | 18 28.9 -38.56 175.81 182 18 31.6 -38.31 175.58 150
! i 0.5 0.05 0.07 6
706/1973 | 45 1.1 -38.43 175.82 186 45 3.1 -38.20 175.60 160
; 0.6 0.05 0.07 61
16/1972 53 6.1 -38.31 176.13 172 53 8.0 -38.10 175.87 143
! 0.6 0.05 0.06 6
116/1972 | 17 20.5 -38.20 175.77 198 17 22.2 -37.92 175.63 172 |
; 0.5 0.05 0.06 6
215/1972 2 17.8 -38.50 176.23 154 2 21.5 -38.29 175.96 110
| 0.4 0.04 0.06 6|
236/1972 | 12 49.5 -38.54 175.79 191 12 52.1 -38.31 175.53 159
0.6 0.05 0.07 6
241/1972 ! 43 4.8 -37.97 176.47 168 43 6.1 -37.82 176.17 147
| 0.5 0.05 0.07 6
378/1972 l 41  40.7 -38.34 175.89 196 41 44.1 -38.11 175.72 153i
| 0.6 0.05 0.06 61!
580/1972 ¢ 19  21.0 -37.99 176.78 152 19 21.8 -37.78 176.55 139 |
, 0.5 0.05 0.07 6
582/1972 : 51  58.8 -38.39 176.20 153 s2 0.7 -38.22 175.88 128
f 0.4 0.04 0.07 6 .
593/1972 | 28 43.0 -38.61 176.09 161 28  47.9 -38.41 175.81 103 |
: 0.5 0.04 0.05 6|
612/1972 . 28 48.5 -38.39 176.04 183 28  51.4 -38.12 175.80 143 !
' 0.4 0,05 0.08 6|
613/1972 | 53 18.1 -38.28 176.13 176 53 21.1 -38.06 175.96 140 !
1 0.6 0.05 0.06 6
615/1972 ; 34 36.2 -38.25 176.11 168 34 37.8 -38.09 175.88 143
i 0.5 0.05 0.07 6 |
671/1972 | 56 4.9 -38.11 176.38 167 56 7.0 -37.92 176.22 144 |
0.5 0.05 0.07 6 |
62/1971 3 6.0 -38.27 175.71 193 3 8.2 -38.03 175.61 160
0.6 0.05 0.07 6 !
119/1971 1 38.0 -38.17 176.44 176 1 41.0 -37.97 176.26 139 |
0.5 0.04 0.07 6
124/1971 36 54.2 -38.69 175.59 178 36 58.0 -38.43 175.38 129
0.6 0.04 0.06 6|
199/1971 17 46.6 —-38.36 175.68 182 17  48.1 -38.12 175.51 151!
0.6 0.05 0.07 6
203/1971 14 55.5 -38.21 176.31 179 14 58.6 -38.02 176.06 144
0.4 0.05 0.09 6
208/1971 21  35.3 -38.35 175.82 167 21 36.5 -38.15 175.57 140
0.6 0.05 0.06 6
459/1971 55 38.1 -38.43 176.20 152 55  41.5 -38.24 175.97 114
0.5 0.04 0.06 6
461/1971 33 46.2 -38.31 176.02 179 33 49.3 -38.10 175.79 140
0.5 0.05 0.06 6
471/1971 ! 21 10.5 -38.42 175.91 180 21 12.7 -38.18 175.68 148
! 0.5 0.05 0.06 6
600/1971 40 7.2 -38.03 176.72 175 40 10.6 -37.82 176.49 134
0.5 0.05 0.07 7

(Table 1 is continued on the next page)
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TABLE 1: Hypocentre Estimates (and standard deviations) (continued)

SEISMOLOGICAL OBSERVATORY M SOLIPTON
SERTAL NO® |oreroaSOBIEION o v e
Origin Time Lat. Long. Depth ~Origin Time Lat. Long. Depth
M S (°s) (°E) (km) = M s (°s) (°E) (km)
612/1971 53 3.3 -38.45 175.89 180 53 6.4 —38.22 175.74 139
0.5 0.05 0.06 6
631/1971 20 3.8 -38.58 175.74 168 20 6.2 -38.35 175.56 135
0.5 0.05 0.07 6
641/1971 29 29.0 -38.48 176.36 159 29 31.3 -38.24 176.10 132
0.5 0.04 0.06 6
47/1969 55 58.0 -38.20 176.34 173 56 0.1 -37.98 176.13 145
0.4 0.05 0.08 6!
48/1969 45 41.1 -38.67 175.76 174 45  43.5 -38.46 175.51 140 |
0.5 0.04 0.06 6 |
202/1969 52  11.8 -38.30 176.05 190 52 14.7 -38.06 175.88 155!
0.4 0.05 0.08 6
288/1969 25 16.8 -38.54 175.89 185 25 19.5 -38.31 175.68 148 |
0.5 0.05 0.06 6 .
364/1969 57 29.8 -38.47 175.62 199 57 33.0 -38.17 175.45 152
0.5 0.05 0.07 6|
519/1969 4 13.9 -38.28 176.13 180 4 15.9 -38.02 175.89 148 :
0.5 0.05 0.07 6
550/1969 13 47.5 -38.16 176.27 174 13 48.8 -37.94 176.05 149
0.6 0.05 0.07 6
| 655/1969 b4l 6.0 -38.22 176.40 154 41 7.5 -38.05 176.16 132
: 0.6 0.05 0.06 6
| 720/1969 0 19.4 -37.96 176.36 169 0 20.5 -37.73 176.11 147 -
g | 0.5 0.05 0.08 7!
: 778/1969 | 57 37.3 -38.56 176.31 158 57 40.3 -38.30 176.09 122 .
E ! 0.5 0.04 0.06 6 !
i 156/1968 32 57.6 -38.57 175.69 182 33 0.6 -38.36 175.44 145 |
: 0.5 0.04 0.06 6
171/1968 35 32.0 -38.48 176.02 179 35  34.5 -38.24 175.83 144
0.5 0.04 0.07 6
548/1968 25 33.8 -38.01 176.53 193 25  34.5 -37.60 176.22 163
0.7 0.05 0.07 7
625/1968 45 46.3 -38.60 175.70 162 45 47.8 -38.36 175.42 132
0.6 0.04 0.06 6
454/1967 | 34 6.9 -38.56 176.02 176 34 9.9 -38.28 175.72 137
| 0.6 0.04 0.06 6
601/1965 | 19 24.1 -38.38 175.89 196 19 26.6 -38.08 175.58 155
! 0.7 0.05 0.07 6i
| | |

* Serial Numbers are not always exactly the same as Seismological Observatory
Bulletin numbers due to a different sequencing process, but are always
within *3.



TABLE 2

STATION TERM/HYPOCENTRE CORRELATIONS FOR 190/1974

209.

STATTONS I ORIGIN TIME LATITUDE LONGITUDE DEPTH
% | |
CNZ P e -0.01 -0.69 -0.32 i -0.00 g
ECZ P | -0.33 0.40 0.61 | 0.08 a
ECZ S _ 0.01 0.62 0.42  -o.m1 ;
GNZ P 7 ~0.13 0.70 0.24 0.25 |
GNZ S 0.34 0.89 -0.09 -0.01
KRP P -0.29 -0.66 0.74 ~0.53
KRP S 0.01 -0.53 0.55 -0.70
WTZ P <0.,23 0.16 0.78 -0.31
WTZ S 0.19 0.37 0.47 -0.51
MNG P -0.09 -0.17 -0.62 0.59
MNG S 0.34 0.04 -0.87 0.31
TNZ P -0.28 -0.89 0.05 -0.03
WEL P ‘ -0.20 -0.29 <0, 51 0.59
WEL S i 0.19 -0.11 -0.79 0.39
TRZ P 5 0.14 0.58 ~0.65 0.61
TRZ S } 0.63 0.67 -0.82 0.14
GBZ P 1 -0.55 -0.54 0.91 -0.27
TUA P 0.06 0.80 0.09 0.18
TUA S 0.59 0.86 -0.33 -0.15
COB P , -0.38 -0.66 -0.18 0.40
COB S i ~0.07 ~0.56 -0.46 0.26

e - e —




TABLE 3

FINAL ITERATION:

ITERATION NO. 6

210.

[ 1

. STATIONS CNZ P ECZ P ECZ S GNZ P GNZ S KRP P KRP S ’
No. Readings 65 IAA 37 63 62 65 64 |
Last Increment -0.01 0.04 0.03 0.02 0.01 0.00 -0.02 |
Station Term 1.10 -1.63 -1.74 =-2.15 =4.27 2.77 5.00 |
Standard Deviation 0.23 0.53 0.85 0.37 0.67 0.56 0.96
Average Travel Time 25.08 37.91 66.53 33.25 58.66 20.42 36.10 i
Sum of Squared :

Weighted Residuals 5.46 3.66 4.24 4.34 5.01  2.49 2.60 ;

Standard Deviation of 1 :

. Weighted Residuals 3 0.29 0.29 0.34 0.26 0.29 0.20 0.20

; |

r 1

| STATIONS l'wizp wizs MNGP MNG S TNZ P WELP WEL S
No. Readings i 38 26 62 61 45 63 65 |
Last Increment 0.02 0.01 -0.00 -0.04 -0.01 -0.00 -0.04
Station Term -1.01 -1.04 -2.15 =-3.83 2.76 -3.05 -4.05
Standard Deviation 0.40 0.70 0.39 0.73 0.50 0.46 0.80
Average Travel Time L 24.44 43,29 41.12 72.52 28.70 50.73 89.57
Sum of Squared i

Weighted Residuals % 1.51 2.40 8.66 5.38 4.04 4.51 4.73

Standard Deviation of

| Weighted Residuals | 0.20 0.31 0.38 0.30 0.30 0.27 0.27

1 I

' STATIONS g TRZ P TRZ S GBZ P TUA P TUA S COB P COB S

1
No. Readings | 53 51 35 57 58 52 59

i Last Increment : -0.00 -0.02 0.04 0.01 -0.01 -0.00 =-0.03

! Station Term i —-0.97 -1.19 2.08 -1.33 -2.21 -2.38 -1.72

i Standard Deviation ~0.22 0.57 0.88 0.22 0.55 0.55 0.89

! Average Travel Time 30.77 54.31 34.71 27.02 47.78 57.19 101.70
Sum of Squared

| “Weighted Residuals 2.70 5.86 1.26 4.93 5.23 6.17 3.49

| . .

| Standard Deviation of \ 4 53 .34 0.19 0.30 0.30 0.35 0.25

Weighted Residuals

TOTAL ERROR STANDARD DEVIATION ESTIMATE = 0.326 sec.



STATION TERM/HYPOCENTRE CORRELATIONS FOR 33/1974*

APPENDIX VI
FINAL RESULTS: GROUP 24

TABLE

1

211.

STATIONS ORIGIN TIME LATITUDE LONGITUDE DEPTH
CNZ P 0.06 ~0.36 -0.07 -0.16
ECZ P 0,25 ~0.42 0.53 -0.07 |
| Bcz s 0.21 ~0.15 0.29 -0.38 !
| Nz P -0.11 0.35 -0.05 0.22 I
GNZ S 0.44 0.54 -0.33 ~0.31 l
KRP P -0.33 0.20 0.10 0.42 |
KRP S 0.23 0.58 ~0.24 ~0.07 2
| WTZ P ~0.44 -0.03 0.34 0.44 |
% WIZ S -0.10 0.28 0.17 0.28 |
{ MNG P -0.21 -0.20 ~0.27 0.28
. MG S 0.36 0.18 -0.55 ~0.23 |
é TNZ P -0.19 -0.60 0.22 0.02 ;
WEL P ~0.31 ~0.31 -0.15 0.34 |
WEL S 0.21 0.03 -0.51 -0.10 i
TRZ P ~0.03 0.26 -0.39 0.20 }
TRZ S 0.44 0.47 ~0.51 ~0.28 é
GBZ P ~0.43 ~0.44 0.57 0.26 %
TUA P ~0.41 -0.53 0.11 0.35
TUA S -0.01 ~0.38 ~0.20 -0.02
; COB P -0.32 ~0.06 0.51 0.22
| CoB S 0.21 0.27 0.14 ~0.23

* (Compare preliminary results, Appendix V, Table 2).



TABLE 2B

CORRELATION MATRIX FOR STATION TERMS

GNZ P GNZ S KRP P

CNZ P ECZ P ECZ S KRP S
CNz P . 1.00 0.26 0.27 -0.56 -0.29 -0.61 -0.57
ECZ P | 0.26 1.00 0.74 -0.42 -0.46 -0.32 -0.56
ECZ S | 0.27 0.74 1.00 -0.49 0.03 -0.63 -0.27

| eNz P § -0.56 -0.42 -0.49 1.00 0.24 0.70 0.54 |

1 GNZ S | -0.29  -0.46 0.03 0.24 1.00  -0.06 0.67 |

! KRp P | -0.61 -0.32 -0.63 0.70 -0.06 1.00 0.38 !

{ KRP S ! -0.57 -0.56 -0.27 0.54 0.67 0.38 1.00

. Wrz p = -0.51 0.09 -0.38 0.50 -0.36 0.80 0.07 !

| WIZ S -0.68 -0.10 -0.18 0.50 0.17 0.58 0.45

| MNG P 0.29  -0.44  -0.67  -0.00  -0.36 0.13  -0.28

| MNG S 0.29 -0.60 -0.22 -0.16 0.39 -0.39 0.15

| INZ P 0.63 0.57 0.31 -0.60 -0.67 -0.46 -0.83 .

{ WEL P 0.30 -0.28 -0.63 -0.04 -0.53 0.16 -0.41 !

| WEL s 0.38  -0.56  -0.34  -0.20 0.14  -0.34  -0.05 !

| TRZ P -0.18 -0.77 -0.76 0.43 0.19 0.43 0.36

| TRZ S -0.09 -0.66 -0.17 0.13 0.71 -0.16 0.55 1§

| GBZP 0.00 0.76 0.26 -0.12 -0.71 0.18 -0.53 |

{ TUA P 0.40 0.15 -0.31 -0.25 —-0.77 0.02 -0.68 @

. TUA S 0.64 -0.03 -0.08 -0.52 -0.37 -0.50 -0.58

| COB P -0.39 0.48 0.16 0.26 -0.27 0.46 -0.00 }

s COBS -~ -0.36 0.17 0.40 0.05 0.36 -0.05 0.31

L ] ‘-

‘ I WTZ P WTZ S MNG P MNG S TNZ P WEL P WEL S

|

i cNz P | -0.51 -0.68 0.29 0.29 0.63 0.30 0.38

| ECZP ¢ 0.09 «0i 10 -0.44 -0.60 0.57 -0.28 -0.56

| Eczs : -0.38 -0.18  -0.67  -0.22 0.31  -0.63  -0.34

. OGNz P ; 0.50 0.50 -0.00 -0.16 -0.60 -0.04 -0, 20

., GNZ S ! =0.36 0.17 -0.36 0.39 -0.67 ~0.53 0.14

{ KRP P i 0.80 0.58 0.13 -0.39 -0.46 0.16 -0.34 |
KRP S ‘ 0.07 0.45 -0.28 0.15 -0.83 -0.41 -0.05 ¢
Wrz P | 1.00 0.56 0.01 -0.68 -0.17 0.13 -0.58
WTZ S | 0.56 1.00 -0.38 -0.45 -0.56 -0.36 -0.54
MNG P ©  0.01 -0.38 1.00 0.36 0.27 0.87 0.57
MNG S | -0.68 -0.45 0.46 1.00 -0.11 0.20 0.77
TNZ P | -0.17 -0.56 0.27 -0.11 1.00 0.39 0.08
WEL P |, 0.13 -0.36 0.87 0.20 0.39 1.00 0.45
WEL § | -0.58 -0.54 0.57 0.77 0.08 0.45 1.00
TRZ P | 0.10 0.04 0.54 0.38 -0.39 0.44 0.42
TRZ S -0.53 -0.08 -0.02 0.66 -0.54 -0.21 0.49
GBZ P |, 0.58 0.14 -0.14 -0.80 0.49 0.06 -0.65
TUA P ; 0.20 -0.39 0.68 -0.09 0.67 0.81 0.19

| TUA S -0.46 -0.70 0.59 0.43 0.60 0.60 0.59

| COB P 0.68 0.49 -0.42 -0.79 -0.06 -0.28 -0.79
COB S -0.03 0.29 -0.70 -0.24 -0.38 -0.72 -0.43

(Table 4 is continued on the next page)



TABLE 2B: CORRELATION MATRIX FOR STATION TERMS (Continued)

TRZ P TRZ S GBZ P TUA P TUA S COB P COB S

CNZ P| -0.18 -0.09 0.00 0.40 0.64 -0.39 -0.36
ECZ P|{ -0.77 -0.66 0.76 0.15 -0.03 0.48 0.17
ECZ S| -0.76 -0.17 0.26 -0.31 -0.08 0.16 0.40
GNZ P! 0.43 0.13 -0.12 -0.25 -0.52 0.26 0.05
GNZ S: 0.19 0.71 -0.71 -0.77 -0.37 -0.27 0.36
KRP P 0.43 -0.16 0.18 0.02 -0.50 0.46 -0.05
KRP S| 0.36 0.55 -0.53 -0.68 -0.58 -0.00 0.31
WTrz P: 0.10 -0.53 0.58 0.20 -0.46 0.68 -0.03
Wrz S 0.04 -0.08 0.14 -0.39 -0.70 0.49 0.29
MNG P! 0.54 -0.02 -0.14 0.68 0.59 -0.42 -0.70
MNG S 0.38 0.66 -0.80 -0.09 0.43 -0.79 -0.24
TNZ P =0.39 -0.54 0.49 0.67 0.60 -0.06 -0.38
WEL P 0.44 -0.21 0.06 0.81 0.60 -0.28 -0.72
WEL S 0.42 0.49 -0.65 0.19 0.59 -0.79 -0.43
TRZ P, 1.00 0.38 -0.49 0.08 0.05 -0.31 -0.35

i TRZ S  0.38 1.00 -0.87 -0.54 -0.04 -0.56 0.10
i GBZ P -0.49 -0.87 1.00 0.44 -0.10 0.68 -0.03
¢ TUA P 0.08 -0.54 0.44 1.00 0.60 -0.06 -0.64
v TUA S 0.05 -0.04 -0.10 0.60 1.00 -0.56 -0.55
. CoB P -0.31 -0.56 0.68 -0.06 -0.56 1.00 0.26
| COB S -0.35 0.10 -0.03 -0.64 -0.55 0.26 1.00




214,

TABLE 3
FINAL ITERATION: ITERATION NO. 7
P*éTATIONS CNZ P KRPP KRP S TUAP TUAS GNZP GNZ §
Mantle Contrast (%) -9 0 6 -9 -6 -9 -6
No. Readings 65 65 64 57 58 63 62 !
Last Increment | -0.00 0.00 -0.00 -0.00 =-0.00 0.00 0.00 3
Station Term | 0.99 -0.43 -0.35 -0.03 0.97 -0.24 -0.20 ,
Standard Deviation | 0.07 0.19 0.38 0.08 0.26 0.13 0.23
Average Travel Time - 22.67 21.09 38.93 23.19 42.04 28.79 52.06 |
| i
STATIONS F ECZ P ECZ S MNG P MNG S TNZ P WEL P WEL §
Mantle Contrast (%) i -9 -6 -9 -6 -4 -9 -6
No. Readings | 44 37 62 61 45 63 65
Last Increment i 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Station Term | 0.20 1.95 -0.42 -0.56 0.70 0.76 -0.32
Standard Deviation i 0.20 0.27 0.12 0.26 0.15 0.15 0.24
Average Travel Time | 33.50 60.27 36.87 66.76 28.26 45.93 83.35
STATIONS % TRZ P TRZ S GBZ P COB P COB S WITZ P WTZ S
Mantle Contrast (%) ! -9 -6 0 -8 -4 -9 -6
No. Readings | 53 51 35 52 59 38 26
Last Increment | 0.00 -0.00 0.00 -0.00 =-0.00 0.00 0.00
Station Term ©0.59 2.37 -2.15 -1.01 -0.91 -0.78 0.39
Standard Deviation . 0.09 0.28 0.35 0.19 0.24 0.13 0.26
Average Travel Time 26.69 48.26 36.39 52.32 98.40 21.69 39.34

TOTAL ERROR STANDARD DEVIATION ESTIMATE =

.326 (sec.)



TABLE 4

Hypocentre Estimates (and standard deviations)

215.

|

SEISMOLOGICAL OBSERVATORY

B

ik l JHD SOLUTION B
GERLE B [ Origin Time Lat. Long. Depth 1Origin Time Lat. Long. Depth!;
M s (¢ B Gm | M 5 () B (),
33/1974 18  33.8 -38.57 175.44 176 18 39.4 -38.53 175.52 139
0.4 0.02 0.03 4
34/1974 56 38.4 -38.51 175.72 163 56 43.7 -38.43 175.79 128
0.4 0.02 0.03 & °
40/1974 19  34.2 -38.60 175.75 199 19  40.1 -38.46 175.69 154
0.3 0.02 0.03 4
188/1974 4 44,1 -38.52 175.84 169 4 48.4 -38.46 175.80 146
0.4 0.02 0.03 &
190/1974 39 1.1 -38.10 176.08 198 39 5.4 -37.96 176.04 169
0.4 0.03 0.03 5
281/1974 43 7.1 -38.35 175.96 157 43 10.5 -38.25 175.95 137
0.4 0.02 0.03 4
485/1974 17 7.5 -38.16 176.35 175 17  12.2 -38.15 176.23 144
0.4 0.02 0.03 4
498/1974 18 24.6 -38.12 176.46 176 18  30.0 -38,02 176.40 133
0.4 0.02 0.03 &4
499/1974 39  25.5 -38.66 175.64 181 + 39  30.6 -38.53 175.60 146 ,
0.3 0.02 0.03 4
743/1974 40 9.8 -38.38 176.01 193 40 15.3 -38.27 176.02 155
0.4 0.03 0.03 4
18/1973 51 31.2 -38.51 175.71 190 51 36.5 -38.35 176.68 143
0.5 0.03 0.046 5
104/1973 36 46.1 -38.07 176.23 183 36 50.3 -37.95 176.28 158
0.3 0.02 0.04 4
202/1973 28 56.7 -38.64 175.85 187 29 2.1 -38.50 175.77 151
0.4 0.02 0.03 5
456/1973 9 23.9 -38.65 175.69 182 9 29.6 -38.53 175.69 147
0.4 0.02 0.03 5
529/1973 40 57.2 -38.66 175.72 190 41 3.0 -38.53 175.60 148
0.4 0.02 0.03 4
534/1973 10 32.3 -38.62 175.79 169 10 37.3 -38.55 175.73 132
0.4 0.02 0.03 4
537/1973 3 9,1 -38.49 175.90 167 3 13.0 -38.42 175.87 143
0.4 0.02 0.03 4
548/1973 44  59.4 -38.58 175.79 187 45 5.3 -38.44 175.78 151
0.3 0.02 0.03 4
602/1973 41 19.0 -38.57 175.63 191 41 23.7 -38.47 175.54 159
0.4 0.02 0.03 &
605/1973 33 0.8 -38.24 176.09 174 33 6.0 -38.15 176.10 140
0.4 0.02 0.03 4
680/1973 4 6.4 -38.54 175.79 188 4 12.7 -38.44 175.81 145
: 0.4 0.02 0.03 4
694/1973 . 18 28.9 -38.56 175.81 182 18  34.2 -38.43 175.78 149
2 0.4 0.02 0.03 &
706/1973 45 1.1 -38.43 175.82 186 45 5.9 -38.32 175.81 159
0.5 0.03 0.04

(Table 4 is continued on the

next page)

“
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TABLE 4: Hypocentre Estimates (and standard deviations) (continued)
!
| SEISMOEgi;g?SNOBSERVATORY ! NG SOLUTTON
SERIAL NO. | -- . ‘ A . ——
., Origin Time Lat. Long. Depth ‘Origin Time Lat. Long. Depth
.M s (°s) (°e) (Gm) . M s (°s) (B)  (km)
16/1972 53 6.1 -38.31 176.13 172 i 53 10.6 -38.22 176.09 141
§ ‘ 0.4 0.03 0.03 5
116/1972 ¢ 17 20.5 -38.20 175.77 198 i 17 25.0 -38.04 175.85 173
{ ! 0.4 0.02 0.03 4
215¥1972 § 2  17.8 -38.50 176.23 154 2  24.0 -38.42 176.17 103
' 0.1
i 236/1972 ' 12 49.5 -38.54 175.79 191 . 12 54.7 -38.44 175.74 158
! f 0.4 0.02 0.03 5
¢ 241/1972 ¢ 43 4.8 -37.97 176.47 168 b3 8.7 -37.93 176.40 143
b ) 0.4 0.02 0.04 4
378/1972 ! 41 40.7 -38.34 175.89 196 41 46.7 -38.23 175.93 153
; ‘ 0.4 0.03 0.03 4
580/1972 19 21.0 -37.99 176.78 152 19 24.4 -37.88 176.77 131
; 0.4 0,02 0.04 4
582/1972 : 51 58.8 -38.39 176.20 153 52 3.2 -38.34 176.09 126 |
0.4 0.02 0.03 4
593/1972 28  43.0 -38.61 176.09 161 28 50.1 -38.54 176.01 97
, 0.4 0.02 0.03 5
612/1972 28 48.5 -38.39 176.04 183 28  54.0 -38.24 176.02 142
, 0.4 0.02 0.03 4
613/1972 53 18.1 -38.28 176.13 176 ' 53  23.7 -38.18 176.18 136
0.4 0.02 0.03 4
615/1972 34  36.2 -38.25 176.11 168 34 40.4 -38.21 176.09 141
0.4 0.02 0.03 4
671/1972 56 4.9 -38.11 176.38 167 56 9.6 -38.03 176.45 139
0.4 0.02 0.03 4 -
62/1971 3 6.0 -38.27 175.71 193 3 10.9 -38.15 175.82 161
0.4 0.03 0.04 5
119/1971 1 38.0 -38.17 176.44 176 1 43.6 -38.08 176.49 132
; 0.4 0.02 0.03 4
124/1971 36 54.2 -38.69 175.59 178 37 0.4 -38.56 175.57 129
0.5 0.02 0.03 5
199/1971 17 46.6 -38.36 175.68 182 17 50.7 -38.24 175.72 152
0.4 0.02 0.04 4
203/1971 14 55.5 -38.21 176.31 179 15 1.2 -38.14 176.29 139 °
0.4 0.02 0.04 54
208/1971 21 35.3 -38.35 175.82 167 21 39.1 -38.27 175.78 141
0.4 0.03 0.03 4
459/1971 55 38.1 -38.43 176.20 152 55  43.9 -38.37 176.17 109 !
0.4 0.02 0.03 4 |
461/1971 33 46.2 -38.31 176.02 179 33 51.9 -38.22 176.01 139
0.3 0.02 0.03 4
471/1971 21  10.5 -38.42 175.91 180 21 15.3 -38.30 175.89 147
0.4 0.02 0.03 4
. 600/1971 40 7.2 -38.03 176.72 175 40 13.3 -37.92 176.71 126
; 0.4 0.03 0.03 5
612/1971 53 3.3 -38.45 175.89 180 53 8.8 -38.35 175.94 137
0.4 0.02 0.03 4

* MASTER EVENT

(Table 4 is continued on

the

next page)




TABLE 4: Hypocentre Estimates (and standard deviations)

1  SEISMOLOGICAL OBSERVATORY

JHD SOLUTION

217.

(contirued)

| SOLUTION
SERTAL NO. {~~ T s
| . Origin Time Lat. Long. Depth Origin Time Lat. Long. Depth
: I M s (°s) (°E) (km) | M s (°s) (°E) (km)
i ! B
} 631/1971 | 20 3.8 -38.58 175.74 168 20 8.6 —38.48 175.75 134
: | 0.4 0.02 0.03 4%
L 64171971 1 29 29.0 -38.48 176.36 159 29  33.7 -38.36 176.31 126 :
; : 0.4 0.02 0.03 5 i
I 47/1969 55 58.0 -38.20 176.34 173 56 2.7 -38.10 176.36 140 :
| 0.4 0.02 0.04 4 !
. 48/1969 45 41.1 -38.67 175.76 174 45  45.9 -38.59 175.70 139
! 0.4 0.02 0.03 4
. 202/1969 52 11.8 -38.30 176.05 190 52 17.3 -38.18 176.09 153 .
i 0.4 0.02 0.04 4
~ 288/1969 25 16.8 -38.54 175.89 185 25 22.0 -38.44 175.89 146 °
| 0.4 0.02 0.03 4
! 364/1969 57 29.8 -38.47 175.62 199 57 35.7 -38.29 175.65 154
} ; 0.4 0.02 0.03 4
{ 519/1969 4 13.9 -38.28 176.13 180 4 18.4 -38.13 176.11 146
; ' 0.4 0.02 0.03 4
! 550/1969 13 47.5 -38.16 176.27 174 13 51.6 —-38.06 176.27 145
' i 0.4 0.03 0.04 4
655/1969 | 41 6.0 -38.22 176.40 154 41 10.0 -38.17 176.38 129 .
; : 0.4 0.02 0.03 4
720/1969 - 0 19.4 -37.96 176.36 169 0 23.2 -37.84 176.34 143
' 0.4 0.03 0.03 4
' 778/1969 57 37.3 -38.56 176.31 158 57  42.5 -38.41 176.29 117
; 0.4 0.02 0.03 4
. 156/1968 32  57.6 -38.57 175.69 182 33 3.1 -38.49 175.64 145
‘ 0.4 0.02 0.03 4
171/1968 35 32.0 -38.48 176.02 179 35  37.0 -38.37 176.05 141 |
0.4 0.02 0.03 4
© 548/1968 25 33.8 -38.01 176.53 193 25  37.4 -37.70 176.46 159 !
g 0.5 0.03 0.05 5.
| 625/1968 | 45 46.3 -38.60 175.70 162 | 45 50.2 -38.48 175.62 133 .
f i 0.4 0.02 0.03 4
. 454/1967 . 34 6.9 -38.56 176.02 176 34 12.4 -38.40 175.92 135§
: | 0.4 0.02 0.03 4 |
. 601/1965 19 24.1 -38.38 175.89 196 . 19 29.4 -38.20 175.79 154
‘ ! 0.5 0.03 0.04 5{




TABLE 5

Comparison of Solutions

JHD and Adams and Ware (1977)

for a Sample from Group 24

218.

522131 Month Day H M S Lat. Long. Depth
33/1974 1 12 14 18 39.4 -38.53 175.22 139
(0.4)t (0.02)r  (0.03)f (47t
AGW 34.4 -38.33 175.27 180
i 34/1974 1 12 16 56 43.7 -38.43 175.79 128
! (0.4) (0.02) (0.03) (4)
L OAGW 40.0 -38.27 175.58 159
i 40/1974* 1 16 13 19 40.1 -38.46 175.69 154
| (0.3) (0.02) (0.03) (4)
L OAGEW 39.4 -38.38 175.64 171
'\ ISC 36.0 -38.58 175.66 179 |
i 188/1974 3 6 17 4 48.4 -38.46 175.80 146 |
| (0.4) (0.02) (0.03) (4) |
| AGW 47.5 -38.33 175.72 159 i
| 190/1974 3 7 2 39 5.4 -37.96 176.04 169
[ (0.4) (0.03) (0.03) (5)
| AGW 4.8 -37.77 176.01 173
. 281/1974 4 9 6 43 10.5 -38.25 175.95 137
i (0.4) (0.02) (0.03) (4)
| AGW 9.4 -38.09 175.85 152
485/1974 8 2 0 17 12.2 -38.15 176.23 144
: (0.4) (0.02) (0.03) (4) .
| AGW 10.4  -37.96  176.18 163
' 498/1974 8 10 16 18 30.0 -38.02 176.40 133
(0.4) (0.02) (0.03) (4)
Ag&W 29.1 -37.84 176.38 145
. 499/1974 8 11 2 39 30.6 -38.53 175.60 146
(0.3) (0.02) (0.03) 4)
A EW 29.9 -38.42 175.52 161
. 743/1974 11 12 1 40 15.3 -38.27 176.02 155 ;
| (0.4) (0.03) (0.03) (4) |
I AEW 13.1 -38.07 175.94 177 :
|
L

*

+ Relative error standard deviations.

See Figure 6.10.

standard deviations are 0.5, 0.05, 0.06, 6.

Typical absolute error



APPENDIX VII

STATISTICAL SIGNIFICANCE OF A CHANGE IN STATION TERM
AT A GIVEN STATION

We wish to compare the estimated model error for GNZ P
from the 1965 earthquakes with a predicted model for GNZ P

which is T, seconds slower (more positive) than normal.

Let the normal model error be To. This 1is estimated by
the GNZ P value from the years 1969, 1971, 1972, 1973, 1974;
the amount 1s Té. To estimate T, we must add the average
error Hy from all the stations (since the sum of the station
terms is constrained to be zero).

So: Ty (est) To + Ho (2.

Ts _0.24% G, = 0.13% Lo (A .

In 1965, the GNZ P model error estimate 1is:

7'+ H L. (4.
S

6.+ = 0.18% el «

And we wish to consider the difference:

T r =
T = TS+HS—(T0+H0+TC) SRR v [

* See Table 7.2.

i From JHD analysis.
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which has expectation zero under the Null Hypothesis that the

model travel time is To + Tc.

87 = -0.36 - (=0.24) + (H-Ho) - T, ...(A .6)
We estimate ﬁs - H, with the average difference between the
station terms for stations common to the two analyses (except

GNZ P).

Since the hypothesis is that the model for stations other

than GNZ is unchanged, the mean difference has an expected value

equal to —(ﬁs - Hy).

We get:
ﬁ; - Hy = 0.24
06H = 0.08
So: 8T = -0.12 + 0.24 - Tc
= 0.12 =T
c
2 2 [ 2 o 2 e 2
= +
and OéT oTS, + GTJ OGH
so: 86T = 0.24
Then we want:
0.12—Tc
Prob (l——()_._ZTI _>_ zo:) = «

for « = 0.05, 0.1, 0.2.
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The corresponding z_ values are 1.65, 1.28, 0.84 (one-
sided test) and corresponding T, values are 0.52, 0.43, 0.32
sec. Thus the probability that T, could be as great as 0.52
sec. is 0.05; that T could be as great as 0.43 is 0.1; that

T, could be as great as 0.32 is 0.2.

e
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