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Abstract

The class of matroids representable over all fields is the class of regular

matroids. The class of matroids representable over all fields except perhaps

GF (2) is the class of near-regular matroids. Let k be a non-negative integer.

This thesis considers the class of k–regular matroids, a generalization of the last

two classes. Indeed, the classes of regular and near-regular matroids coincide

with the classes of 0–regular and 1–regular matroids, respectively.

This thesis extends many results for regular and near-regular matroids. In

particular, for all k, the class of k–regular matroids is precisely the class of ma-

troids representable over a particular partial field. Every 3–connected member of

the classes of either regular or near-regular matroids has a unique representabil-

ity property. This thesis extends this property to the 3–connected members of

the class of k–regular matroids for all k. A matroid is ω–regular if it is k–regular

for some k. It is shown that, for all k ≥ 0, every 3–connected k–regular matroid

is uniquely representable over the partial field canonically associated with the

class of ω–regular matroids. To prove this result, the excluded-minor character-

ization of the class of k–regular matroids within the class of ω–regular matroids

is first proved. It turns out that, for all k, there are a finite number of ω–regular

excluded minors for the class of k–regular matroids. The proofs of the last two

results on k–regular matroids are closely related. The result referred to next

is quite different in this regard. The thesis determines, for all r and all k, the

maximum number of points that a simple rank–r k–regular matroid can have

and identifies all such matroids having this number. This last result generalizes

the corresponding results for regular and near-regular matroids.

Some of the main results for k–regular matroids are obtained via a ma-

troid operation that is a generalization of the operation of ∆ − Y exchange.

This operation is called segment-cosegment exchange and, like the operation

of ∆ − Y exchange, has a dual operation. This thesis defines the generalized

operation and its dual, and identifies many of their attractive properties. One

property, in particular, is that, for a partial field P, the set of excluded minors

for representability over P is closed under the operations of segment-cosegment

exchange and its dual. This result generalizes the corresponding result for ∆−Y

and Y − ∆ exchanges. Moreover, a consequence of it is that, for a prime power

q, the number of excluded minors for GF (q)–representability is at least 2q−4.
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CHAPTER 1

Introduction

In 1935, Whitney [32] axiomatized the notion of independence. This axiom-

atization reflects the fundamental properties that are common to the following

two collections of subsets:

(1) the linearly independent subsets of a finite set of vectors from a vector

space over a field; and

(2) the subsets of the set of edges of a graph that induce a forest of the

graph.

A collection of subsets of a finite set that satisfies all the properties of this

axiomatization is called a matroid.

A collection of subsets of either type (1) or type (2) gives rise to one of two

fundamental classes of matroids: representable matroids or graphic matroids,

respectively. If a matroid M can be realized as the linearly independent subsets

of a finite multiset of vectors from a vector space over a field F, then M is said

to be representable over F. A matroid is representable if it is representable over

some field. If a matroid M can be realized as the subsets of the set of edges of

a graph that induce a forest of the graph, then M is said to be graphic.

If a matroid M is graphic, then it is straightforward to show that M is rep-

resentable over every field (see [17, Proposition 5.1.2]), so that graphic matroids

are representable matroids. However, the converse does not hold. Moreover, a

matroid that is representable over some field is not necessarily representable over

every field. It appears that obtaining characterizations that distinguish the var-

ious classes of representable matroids is a fundamental and important problem

in matroid theory.

In [32], Whitney gives a characterization of the class of matroids repre-

sentable over GF (2). Since this result, mathematicians have been seeking ways

1



Introduction 2

of distinguishing the other classes of representable matroids. However, it has

turned out to be one of the more difficult problems in matroid theory. Except

for a handful of specific classes of representable matroids, this problem remains

unsolved.

The research in this thesis is in matroid representation theory. It is princi-

pally motivated by two fundamental classes of representable matroids. The class

of regular matroids which is the class of matroids representable over all fields,

and the class of near-regular matroids, studied in [34, 35], which is the class

of matroids representable over all fields except perhaps GF (2). The significance

of the classes of regular and near-regular matroids invite generalization, such

a generalization is provided by the class of k–regular matroids studied in this

thesis.

We assume familiarity with the elements of matroid theory as set forth in

[17]. In particular, we assume familiarity with matroid representation theory

(see [17, Chapter 6]). Notation and terminology follows [17] apart from some

minor exceptions. Two of these are noted below, while the other exceptions will

be noted at the beginning of the appropriate chapter.

We denote the simple matroid canonically associated with a matroid M by

si(M). The other exception is that a rank–2 matroid may have inequivalent

representations over a field.

1.1. Matroid representability

In this section we present a brief history of matroid representability. The

results and discussions of this section motivate the study of k–regular matroids.

We end this section by formally defining a k–regular matroid.

Consider the problem of characterizing the class of matroids representable

over a fixed field F. As this class is closed under the taking of minors, one way

to characterize the class is by listing the minor-minimal matroids that are not

in the class. These minor-minimal matroids are called the excluded minors for

the class of F–representable matroids. To date, the list of excluded minors for

the class of matroids representable over a fixed field have only been found for

each of the three smallest fields. Rota [21] conjectures that, for all prime powers

q, the list of excluded minors for the class of GF (q)–representable matroids
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is finite. The results for q ≤ 4 confirm his conjecture. In particular, Tutte

(1958) showed that there is an unique excluded minor for the class of GF (2)–

representable matroids [28]; Bixby (1979) and Seymour (1979) independently

showed that there are exactly four excluded minors for the class of GF (3)–

representable matroids [2, 26]; and, more recently, Geelen, Gerards, and Kapoor

showed that there are exactly seven excluded minors for the class of GF (4)–

representable matroids [8]. However, Rota’s conjecture remains unsolved for

all q ≥ 5. In contrast to this conjecture for finite fields, Lazarson [16] showed

that, for all fields with characteristic zero, the list of excluded minors is infinite.

Rota’s conjecture is one of the most important problems in matroid theory and

motivates much of the research done in matroid representation theory.

Now consider the general problem of characterizing the class of matroids

representable over all members of a fixed set F of fields. Two types of character-

izations have been pursued: one via excluded minors and the other via matrices.

First suppose that GF (2) is a member of F . If every field in F has characteristic

two, then the class of matroids representable over all members of F is the class of

binary matroids. Therefore assume that F contains a field whose characteristic

is not two. Tutte [29] showed that, in this case, only one class arises. A matrix

over the rationals is totally unimodular if it has the property that all non-zero

subdeterminants are in {−1, 1}. A matroid is regular if it can be represented by

a totally-unimodular matrix. It is shown in [29] that the class of matroids rep-

resentable over all members of F is the class of regular matroids. Tutte (1958)

also established the excluded minors for the class of regular matroids [28].

Now suppose that GF (3) is a member of F , but GF (2) is not a member.

If every member of F has characteristic three, then the class of matroids repre-

sentable over all members of F is the class of ternary matroids. Therefore assume

that F contains a field whose characteristic is not three. To date, only two such

distinct classes have been characterized via excluded minors. Geelen, Gerards,

and Kapoor [8] have determined the excluded minors for the class of matroids

representable over both GF (3) and GF (4); and Geelen [7] has determined the

excluded minors for the class of near-regular matroids, that is, the class of ma-

troids representable over all fields except perhaps GF (2). For characterizations

via matrices, however, the situation is somewhat different.

If F contains GF (2), then two classes arise, namely the classes of binary and

regular matroids. If F contains GF (3), but not GF (2), then, besides the class
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of ternary matroids, Whittle [34, 35] shows that essentially three new distinct

classes of matroids arise. Let Q(α) denote the field obtained by extending the

rationals by the transcendental α. A matrix over Q(α) is near-unimodular if it

has the property that all non-zero subdeterminants are in {±αi(α − 1)j : i, j ∈
Z}. A near-regular matroid is one that can be represented by a near-unimodular

matrix. A matrix over the rationals is dyadic if it has the property that all non-

zero subdeterminants are in {±2i : i ∈ Z}. A dyadic matroid is one that can be

represented by a dyadic matrix. A matrix over the complex numbers is a 6
√

1–

matrix if it has the property that all non-zero subdeterminants are complex sixth

roots of unity. A 6
√

1–matroid is one that can be represented by a 6
√

1–matrix.

It is shown in [34, 35] that the class of matroids representable over GF (3) and

a field, other than GF (2), whose characteristic is not three is either the class of

near-regular matroids, the class of dyadic matroids, the class of 6
√

1–matroids,

or the class of matroids obtained by taking direct sums and 2–sums of dyadic

matroids and 6
√

1–matroids.

Like the class of regular matroids, the classes of near-regular, dyadic, and
6
√

1–matroids are all obtained by restricting the values of all non-zero subdeter-

minants in a certain way. In particular, for each of the four classes, all non-zero

subdeterminants are restricted to some subgroup of the multiplicative group of

some field. This observation led to the study of matroids representable over

subgroups of fields. Let G be a subgroup of the multiplicative group of a field

F with the property that −1 ∈ G. A (G,F)–matroid is one that can be rep-

resented over F by a matrix in which all non-zero subdeterminants are in G.

Of course, the classes of regular, near-regular, dyadic, and 6
√

1–matroids are all

classes of (G,F)–matroids. In particular, the class of regular matroids is the

class of ({−1, 1},Q)–matroids and the class of near-regular matroids is the class

of ({±αi(α − 1)j : i, j ∈ Z},Q(α))–matroids.

The study of (G,F)–matroids led to a further level of generality, achieved

via the notion of partial fields and matroid representation over partial fields.

This is introduced in [25]. The classes of regular, near-regular, dyadic, and 6
√

1–

matroids can be interpreted as classes of matroids representable over a partial

field. The theory of matroid representation over partial fields is very similar to

that for fields. In particular, the class of matroids representable over a certain

partial field is closed under the taking of duals, minors, direct sums, and 2–sums.

A detailed introduction to partial fields and matroid representation over partial

fields is the substance of the next chapter. For the purposes of this chapter, the
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notion of a (G,F)–matroid as a matroid representable over a partial field will

suffice.

We now focus on the two classes of representable matroids that motivate this

thesis, the classes of regular and near-regular matroids. Each of these classes

is an important subclass of the class of matroids representable over GF (2) and

GF (3), respectively. Indeed, with respect to the classes of matroids representable

over some partial field, the classes of regular and near-regular matroids are

significant classes. Let M(P) denote the class of matroids representable over a

partial field P. The matroid U2,3 is a member of M(P) if and only if M(P)

contains the class of regular matroids [25, Corollary 5.6]. The matroid U2,4

is a member of M(P) if and only if M(P) contains the class of near-regular

matroids [25, Corollary 5.6]. This relationship between U2,3, partial fields, and

regular matroids, and between U2,4, partial fields, and near-regular matroids

invites generalization.

Let k be a non-negative integer and let α1, α2, . . . , αk be k algebraically

independent transcendentals over the rationals Q. A matroid is k–regular if

it can be represented by a matrix over Q(α1, α2, . . . , αk) of which all non-zero

subdeterminants are products of positive and negative powers of differences of

distinct pairs of elements in {0, 1, α1, α2, . . . , αk}. Evidently, the classes of 0–

and 1–regular matroids are the classes of regular and near-regular matroids,

respectively. Furthermore, if k′ ≤ k, then the class of k′–regular matroids is a

subset of the class of k–regular matroids.

For all k, the class of k–regular matroids can be interpreted as a class of

matroids representable over a certain partial field. Thus the class of k–regular

matroids is closed under the taking of duals, minors, direct sums, and 2–sums.

Moreover, the above relationship, for k ∈ {0, 1}, between U2,k+3, partial fields,

and k–regular matroids extends to all k ≥ 0. In particular, we shall show that,

for all k ≥ 0, the matroid U2,k+3 is a member of M(P) if and only if M(P)

contains the class of k–regular matroids.

We noted earlier that, for k ∈ {0, 1}, the class of k–regular matroids coincides

with the class of matroids representable over all fields with at least k+2 elements.

Indeed, for all k, we shall show that the class of k–regular matroids is contained

in the class of matroids representable over all fields of size at least k + 2. Sadly

the converse of this result is not true for any k ≥ 2. However, for a prime power
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q, the study of the class of (q − 2)–regular matroids is motivated by the belief

that this class will turn out to be just as important in the study of matroids

representable over GF (q) as the classes of regular and near-regular matroids are

for matroids representable over GF (2) and GF (3), respectively.

1.2. Unique representations

The fact that the class of GF (q)–representable matroids has been charac-

terized by excluded minors only when q ∈ {2, 3, 4} is directly attributed to the

fact that each of these classes has a substantial unique representation property.

All known proofs of results that distinguish each of these classes rely on this

property. All GF (2)–representations of a matroid are equivalent. Similarly, all

GF (3)–representations of a matroid are equivalent (Brylawski and Lucas [5]).

For GF (4)–representations we are forced to have a slightly weaker property:

all GF (4)–representations of a 3–connected matroid are equivalent (Kahn [12]).

For all other prime powers q, a matroid is typically not uniquely representable

over GF (q). Indeed, it follows from results of Oxley, Vertigan, and Whittle [18]

that, for q > 5, we can no longer guarantee that there is an integer n(q) such

that a 3–connected GF (q)–representable matroid has at most n(q) inequivalent

GF (q)–representations.

Now consider matroids representable over a partial field. One can define

inequivalence of representations for partial fields just as for fields. Indeed, one

of the strengths of the partial field approach is that one can, at times, recover

unique representability for a class of matroids by choosing an appropriate partial

field. For example, a 3–connected near-regular matroid typically has inequiv-

alent representations over a given field, however, such a matroid is uniquely

representable over the partial field canonically associated with near-regular ma-

troids. Implicit use of this property plays an important part in the results of

[34, 35].

In this thesis we show that, like the class of near-regular matroids, the class of

k–regular matroids has a substantial unique representation property. A matroid

is ω–regular if it is k–regular for some k ≥ 0. For all k ≥ 0, every 3–connected k–

regular matroid is uniquely representable over the natural partial field for which

the class of matroids representable over this partial field is the class of ω–regular
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matroids. This result is stated as Theorem 6.1.2 and may turn out to be the

most important result of the thesis.

1.3. Main results

In this section we outline the contents of the thesis and highlight the main

results. Further detail of each chapter’s contents and its organization can be

found at the start of the appropriate chapter.

Chapter 2 is a general discussion of partial fields and matroid representation

over partial fields. It is based on [22, 25, 30] and contains no new material.

Chapter 3 begins by showing that, for all k, the class of k–regular matroids

coincides with the class of matroids representable over a particular partial field,

and by relating the class of k–regular matroids to other classes of matroids. In

particular, we show that, for all k, the class of k–regular matroids is contained

in the class of matroids representable over all fields of size at least k + 2.

We mentioned earlier that the theory of matroid representation over partial

fields is similar to that for fields. In particular, there is a well-defined notion of

an automorphism of a partial field and equivalence of representations over partial

fields similar to that for fields. Automorphisms of a partial field P play the same

role in determining the equivalence of representations over P as automorphisms

of a field F play in the equivalence of representations over F. In Chapter 3, we

establish, for all k, the automorphisms of the partial field for which we show

that the class of matroids representable over it coincides with the class of k–

regular matroids. This is stated as Theorem 3.2.2 and is the first step in proving

Theorem 6.1.2.

In Chapter 4, we establish, for all r and all k, the maximum number of points

that a simple rank–r k–regular matroid can have and determine all such matroids

having this number. With one exception, there is exactly one simple rank–

r k–regular matroid with this maximum number of points. Geometrically, this

matroid is obtained from M(Kr+k+1) by freely adding k independent points to a

flat isomorphic to M(Kk+2), contracting each of these points, and simplifying the

resulting matroid. This result generalizes the corresponding results for regular

and near-regular matroids [11, 19].
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In Chapter 5, we define and identify properties of a matroid operation that

will play a fundamental role in proving the main results of Chapter 6. Let

M(K4) denote the cycle matroid of the complete graph on four vertices. Sup-

pose that {a, b, c} is a coindependent triangle of a matroid M . Then a ∆ − Y

exchange on {a, b, c} is obtained by performing the generalized parallel connec-

tion of M and M(K4) across the triangle {a, b, c} and then deleting the elements

of {a, b, c}. In Chapter 5, we generalize the operation of ∆− Y exchange to the

operation of segment-cosegment exchange. Intuitively, a ∆ − Y exchange on

{a, b, c} replaces this triangle with a triad. Suppose that A is a coindependent

subset of E(M) such that every 3–element subset of A is a triangle of M and

|A| ≥ 2. Then, loosely speaking, a segment-cosegment exchange on A replaces

A with a set of elements A′ such that |A| = |A′| and every 3–element subset of

A′ is a triad. In working with ∆ − Y exchanges, one also works with Y − ∆

exchanges. The latter operation is defined from the former operation by duality.

For a segment-cosegment exchange we have a similarly defined dual operation,

cosegment-segment exchange. In Chapter 5, we show that, for a partial field

P, the set of excluded minors for P–representability is closed under the opera-

tions of segment-cosegment and cosegment-segment exchanges. This is stated as

Theorem 5.3.1, and generalizes the corresponding result for ∆ − Y and Y − ∆

exchanges [1].

In Chapter 6, we prove two theorems on the class of k–regular matroids.

We first determine, for all k ≥ 0, the ω–regular excluded minors for the class of

k–regular matroids. It turns out that, for all k, there is a finite list of ω–regular

excluded minors for the class of k–regular matroids. This result is stated as The-

orem 6.1.1. The second theorem is Theorem 6.1.2. Recall that Theorem 6.1.2

states that, for all k ≥ 0, every 3–connected k–regular matroid is uniquely

representable over the natural partial field for which the class of matroids repre-

sentable over this partial field is the class of ω–regular matroids. While proving

Theorems 6.1.1 and 6.1.2, we also prove the following result: for all prime powers

q, the cardinality of the set of excluded minors for GF (q)–representability is at

least 2q−4. This last result is Theorem 6.3.17.

We note that, although the study of partial fields strongly motivates this

thesis, the partial field framework, where possible, is not used. This applies

particularly to Chapters 4, 5, and 6.
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Except where duly and clearly noted, the results of Chapters 3, 4, 5, and 6

are new. Chapters 5 and 6 consists of joint work with James Oxley and Dirk

Vertigan. Furthermore, Chapters 3, 4, 5, and 6 are based on the papers [23],

[24], and [20].



CHAPTER 2

Partial fields and matroid representation

This chapter consists of a general discussion of partial fields and matroid

representation over partial fields based on [22, 25, 30].

2.1. Partial fields and matroid representation

Essentially, a partial field is an algebraic structure that has all the properties

of a field except that addition is a partial binary operation. More precisely, in

[30], Vertigan shows that every partial field can be obtained from a commutative

ring R and a multiplicative subgroup G of units of R in which −1 ∈ G. The

partial field P associated with the pair (G,R) has the elements G∪ {0} and the

binary operations of addition and multiplication which are induced from R and

restricted to G ∪ {0}. Thus multiplication is a complete binary operation, but

addition is a partial binary operation. In other words, if a and b are elements

of G ∪ {0}, then their product ab is always in G ∪ {0}, but their sum a + b may

not be, in which case a + b is undefined. Partial fields were introduced in [25]

where it is shown that one can develop a theory of matroid representation over

partial fields. The rest of this chapter outlines this theory. Making comparisons

between the results stated in this chapter and the corresponding results for fields

will highlight to the reader the strong similarities between matroid representation

over fields and matroid representation over partial fields.

We denote the partial field obtained from a commutative ring R and a mul-

tiplicative subgroup G of units of R in which −1 ∈ G by (G,R). One immediate

way to obtain a partial field is via fields: if G is a multiplicative subgroup of a

field F such that −1 ∈ G, then (G,F) is a partial field. All the partial fields

referred to in this thesis can be obtained in this way.

Let A be an n×n square matrix with entries in a partial field P. Just as for

fields, the determinant of A is defined to be a signed sum of products determined

10



Partial fields and matroid representation 11

by permutations. The next two propositions contain elementary properties of

determinants that generalize to partial fields.

Proposition 2.1.1. [25, Proposition 3.1] Let X be a square matrix with

entries in a partial field P.

(i) If Y is obtained from X by interchanging a pair of rows or columns,

then det(Y ) is defined if and only if det(X) is defined. Moreover, when

det(X) is defined, det(Y ) = −det(X).

(ii) If Y is obtained from X by multiplying each entry of a row or a col-

umn by a non-zero element q of P, then det(Y ) is defined if and only

if det(X) is defined. Moreover, when det(X) is defined, det(Y ) =

qdet(X).

(iii) If det(X) is defined and Y is obtained from X by replacing a row (or

column) by the defined sum of that row (or column) and another, then

det(Y ) is defined and det(Y ) = det(X).

Proposition 2.1.2. [25, Proposition 3.2] Let X be a square matrix (xij) with

entries in a partial field P. Let Xij denote the submatrix obtained by deleting

row i and column j from X.

(i) If X has a row or a column of zeros, then det(X) = 0.

(ii) If xij is the only non-zero entry in its row or column, then det(X) is

defined if and only if det(Xij) is defined. Moreover, when det(X) is

defined, det(X) = (−1)i+jxijdet(Xij).

Recall, from the introduction, the definitions of totally unimodular, near-

unimodular, dyadic, and 6
√

1–matrices. In each case, a particular condition is

placed on all subdeterminants. Generalizing to partial fields, a matrix A over

a partial field P is a P–matrix if, for every square submatrix A′ of A, the

determinant of A′ is defined. Let A be an m×n P–matrix. Let S be a non-empty

set of columns of A. Then the elements of S are independent if the cardinality

of S is at most m and, writing the elements of S as the columns of a matrix, at

least one |S|× |S| submatrix of this matrix has a non-zero determinant. Also an

empty set of columns is independent. The next two results [25, Propositions 3.3

and 3.5] show that certain properties of a P–matrix are preserved under some

standard matrix operations.

Proposition 2.1.3. Let A be a P–matrix. If the matrix B is obtained from

A by one of the following operations, then B is a P–matrix.
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(i) Interchanging a pair of rows or columns.

(ii) Replacing a row or column by a non-zero scalar multiple of that row or

column.

(iii) Performing a pivot on a non-zero entry of A.

Proposition 2.1.4. The independent sets of a P–matrix are preserved under

the operations of interchanging a pair of rows or columns, multiplying a row or

column by a non-zero scalar, and performing a pivot on a non-zero entry of the

matrix.

Theorem 2.1.5. [25, Theorem 3.6] Let A be a P–matrix whose columns are

labelled by a set S. Then the independent subsets of S are the independent sets

of a matroid on S.

If A is a P–matrix for some partial field P, then the matroid obtained from

P via Theorem 2.1.5 is denoted M [A]. A matroid M is representable over P or

P–representable if it is equal to M [A] for some P–matrix A; in this case A is

called a P–representation of M .

In the language of partial fields, the classes of matroids representable over the

partial fields ({−1, 1},Q) and ({±αi(α− 1)j : i, j ∈ Z},Q(α)) are the classes of

regular and near-regular matroids, respectively. These partial fields are denoted

Reg and NR, respectively. It is important to note that the choice of Q in

defining Reg is not unique. In fact, Q can be replaced by any field F whose

characteristic is not two or three. The reason for this is that we simply require

1 + 1 and −1 − 1 to be not defined in the partial field. Similarly, the choice of

Q(α) is not unique in defining NR. One other point we note here is that, in

general, partial fields need not arise from fields. However, if a partial field can

be embedded in some field, as the ones discussed in this thesis can, then we can

regard the elements of the partial field as elements of the embedding field.

Working with a class of matroids representable over a particular partial field

is, in many ways, like working with a class of matroids representable over a

particular field. The reason for this is that both classes of matroids are closed

under certain fundamental matroid operations.

Proposition 2.1.6. [25, Proposition 4.2] Let P be a partial field. Then

the class of matroids representable over P is closed under the taking of duals,

minors, direct sums, series and parallel connections, and 2–sums.
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Let P1 and P2 be partial fields. A function ϕ : P1 → P2 is a homomorphism

if, for all a, b ∈ P1, ϕ(ab) = ϕ(a)ϕ(b), and, whenever a+b is defined, ϕ(a)+ϕ(b)

is defined and ϕ(a+b) = ϕ(a)+ϕ(b). If A is a matrix over P1, then ϕ(A) denotes

the matrix over P2 in which the (i, j)-th entry is ϕ(aij). Homomorphisms of

partial fields provide us with a way of determining relationships between classes

of matroids representable over partial fields.

Proposition 2.1.7. [25, Corollary 5.2] Let P1 and P2 be partial fields and

let ϕ : P1 → P2 be a non-trivial homomorphism. If A is a P1–matrix, then

M [ϕ(A)] = M [A].

Corollary 2.1.8. [25, Corollary 5.3] Let P1 and P2 be partial fields. If

there exists a non-trivial homomorphism ϕ : P1 → P2, then every matroid

representable over P1 is also representable over P2.

Corollary 2.1.8 is an immediate consequence of Proposition 2.1.7. The ho-

momorphism ϕ : P1 → P2 is an isomorphism if it is a bijection and has the

property that a+ b is defined if and only if ϕ(a) + ϕ(b) is defined. By extending

the argument in the proof of [22, Proposition 2.4.4], we can simplify the task of

showing that a function is an isomorphism.

Proposition 2.1.9. Let P1 and P2 be partial fields and let ϕ : P1 → P2

be a function. Then ϕ is an isomorphism if and only if ϕ satisfies all of the

following conditions:

(i) ϕ is a bijection.

(ii) For all x, y ∈ P1, ϕ(xy) = ϕ(x)ϕ(y).

(iii) For all z ∈ P1, z − 1 is defined if and only if ϕ(z) − 1 is defined, in

which case ϕ(z − 1) = ϕ(z) − 1.

An automorphism of a partial field P is an isomorphism ϕ : P → P. Equiv-

alence of representations for partial fields is defined as for fields. Two matrix

representations A1 and A2 of a matroid M over a partial field P are equivalent

representations if A2 can be obtained from A1 by a sequence of the following

operations: interchanging two rows; interchanging two columns (along with la-

bels); multiplying a row or a column by a non-zero element of P; replacing a row

by the sum of that row and another; and applying an automorphism of P to the

entries of A1. A matroid is uniquely representable over P if all representations

of M over P are equivalent.



CHAPTER 3

k–regular matroids

In Chapter 3, we first show that, for all k, the class of k–regular matroids

coincides with the class of matroids representable over certain partial field. This

immediately enables us to state how the class of k–regular matroids behaves un-

der some standard matroid operations. Moreover, it enables us to relate the class

of k–regular matroids to other classes of matroids representable over a partial

field using the theory of Chapter 2. In particular, we show that, for all k ≥ 0, the

class of k–regular matroids is contained in the class of matroids representable

over all fields of size at least k + 2. This result is stated as Corollary 3.1.3. The

rest of Chapter 3 is dedicated to determining, for all k, the automorphisms of

the “certain partial field” mentioned above. This last result is Theorem 3.2.2

and plays an important role in working with k–regular matroids.

Chapter 3 is organized as follows. In Section 3.1, we show that, for all k, the

class of k–regular matroids coincides with the class of matroids representable

over a particular partial field. We establish some relationships between the class

of k–regular matroids and other classes of matroids, including Corollary 3.1.3,

and prove a result that is needed as a lemma for Theorem 3.2.2, which is proved

in Section 3.2.

3.1. k–regular matroids

Recall that, for k a non-negative integer, Q(α1, α2, . . . , αk) denotes the field

obtained by extending the rationals by the algebraically independent transcen-

dentals α1, α2, . . . , αk. Let Ak denote the set whose elements are the products of

integral powers of differences of distinct pairs of elements in {0, 1, α1, α2, . . . , αk},
that is, Ak is the set

{±
k

∏

i=1

αli
i

k
∏

i=1

(αi − 1)mi

∏

1≤i<j≤k

(αi − αj)
ni,j : li,mi, ni,j ∈ Z}.

14
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A matrix over Q(α1, α2, . . . , αk) is k–unimodular if it has the property that

all non-zero subdeterminants are in Ak. Thus a k–regular matroid is one that

can be represented by a k–unimodular matrix. Recall from the introduction

that a 0–regular matroid is just a regular matroid and a 1–regular matroid is

a near-regular matroid. A matrix is ω–unimodular if it is k–unimodular for

some k. Since a matroid is ω–regular if it is k–regular for some k ≥ 0, an ω–

regular matroid is one that can be represented by an ω–unimodular matrix. We

remark here that if k′ < k, then the class of k′–regular matroids is properly

contained in the class of k–regular matroids. The proof of this fact will follow

from Corollary 4.2.2, which is proved in Chapter 4.

We now show that the class of k–regular matroids coincides with the class

of matroids representable over a particular partial field. Since Ak is a subgroup

of the multiplicative group of Q(α1, α2, . . . , αk) and since −1 ∈ Ak, the pair

(Ak,Q(α1, α2, . . . , αk)) is a partial field. We denote this partial field by Rk.

Clearly, a matroid is representable over Rk if and only if it is k–regular, that is,

if and only if it can be represented by a k–unimodular matrix. Note that R0 and

R1 are the partial fields Reg and NR of Chapter 2, respectively. Extending

these ideas, let Aω be the subset of Q(α1, α2, . . .) consisting of all products of

integral powers of differences of distinct pairs of elements in {0, 1, α1, α2, . . .}.
Then the pair (Aω,Q(α1, α2, . . .)) is a partial field, which we denote by Rω.

Clearly, a matroid is Rω–representable if and only if it is ω–regular. It follows

from Proposition 2.1.6 that, for all k, the class of k–regular matroids, and indeed

the class of ω–regular matroids, is closed under the taking of duals, minors, direct

sums, and 2–sums.

We note here that, for all k, it is the automorphisms of Rk that are de-

termined in Theorem 3.2.2. Moreover, we note the following observation. For

all k ≥ 0, the partial field Rk can be embedded in the field Q(α1, α2, . . . , αk).

Now consider the automorphisms of Q(α1, α2, . . . , αk). If k = 0, then the field

is the rationals, which has no non-trivial automorphisms. For k = 1, the field

is Q(α1), in which all non-trivial automorphisms are known (see [6, Proposi-

tion 2.3]). If k ≥ 2, then it appears that the complete set of automorphisms

of Q(α1, α2, . . . , αk) is not known (see [6, Section 5.2]). The fact that we have

determined the automorphisms of Rk, a partial field that can be embedded in

Q(α1, α2, . . . , αk), may reward studying partial fields for reasons other than the

desire to solve problems in matroid representation theory.
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We next consider how the class of k–regular matroids relates to other classes

of matroids representable over a partial field.

Proposition 3.1.1. Let P be a partial field. If there are k distinct elements

a1, a2, . . . , ak of P−{0, 1} such that, for all distinct i and j in {1, 2, . . . , k}, both

ai − 1 and ai − aj are in P, then the class of P–representable matroids contains

the class of k–regular matroids.

Proof. Consider the function ϕ : Rk → P defined by ϕ(0) = 0 and

ϕ(±
k

∏

i=1

αli
i

k
∏

i=1

(αi − 1)mi

∏

1≤i<j≤k

(αi − αj)
ni,j )

= ±
k

∏

i=1

ali
i

k
∏

i=1

(ai − 1)mi

∏

1≤i<j≤k

(ai − aj)
ni,j .

It is easily seen that ϕ is a non-trivial homomorphism and so, by Corollary 2.1.8,

the class of P–representable matroids contains the class of k–regular matroids.

�

Suppose a partial field P has k distinct elements a1, a2, . . . , ak satisfying all

the properties of their namesake in the statement of Proposition 3.1.1. Let A

be a k–unimodular representation of a matroid M . Let ϕ be the non-trivial

homomorphism as defined in the proof of Proposition 3.1.1. Then, by Propo-

sition 2.1.7, ϕ(A), the matrix obtained from A by replacing the (i, j)-th entry

with ϕ(aij), is a P-representation for M .

It is easily seen, for all k, that the matroid U2,k+3 is k–regular. Combining

this fact with Proposition 3.1.1, we get Corollary 3.1.2, one of the motivations

for studying k–regular matroids.

Corollary 3.1.2. Let M(P) be the class of matroids representable over a

partial field P. Then, for all k ≥ 0, U2,k+3 is a member of M(P) if and only if

M(P) contains the class of k–regular matroids.

Recall that the class of regular matroids is the class of matroids representable

over all fields and the class of near-regular matroids is the class of matroids

representable over all fields except possibly GF (2). A further consequence of

Proposition 3.1.1 is Corollary 3.1.3.
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Corollary 3.1.3. Let M be a k–regular matroid and F be a field such that

|F| ≥ k + 2. Then M is representable over F.

We mentioned earlier that, for all k ≥ 2, the converse of Corollary 3.1.3 is

not true. To show that this is indeed the case, let N be the matroid obtained

from the Fano matroid by relaxing exactly two lines. It is routine to deduce that

N is representable over every field of size at least four. However, Lemma 4.2.5

of Chapter 4 shows that, for all k, this matroid is not k–regular.

The remaining result of this section, Theorem 3.1.4, is needed as a lemma

for Theorem 3.2.2, but it has independent importance so we call it a theorem.

We first note that, for all x, y ∈ P∗, x+y is defined if and only if −y(−xy−1−1)

is defined, and the latter expression is defined if and only if −xy−1−1 is defined.

It follows that to know whether the sum of a pair of elements in P is defined it

suffices to know those elements z of P for which z − 1 ∈ P. An element z of a

partial field P is fundamental if z − 1 is defined. Since 0 and 1 are fundamental

elements of all partial fields, z is a non-trivial fundamental element of P if z − 1

is defined and z 6∈ {0, 1}.

Before going any further, we outline the strategy in proving Theorem 3.2.2.

Every automorphism of Rk maps each of the elements α1, α2, . . . , αk to a funda-

mental element of Rk, so we first need to determine the fundamental elements

of Rk (Theorem 3.1.4) and then, since {α1, α2, . . . , αk} is closed under subtrac-

tion, we determine which sets of fundamental elements of Rk are closed under

subtraction (Lemma 3.2.1).

The difficulty in proving Theorem 3.2.2 is in establishing Theorem 3.1.4.

The following observation is used in the proof of Theorem 3.1.4. We may write

an element z of Rk uniquely, up to changing the signs of the numerator and

denominator, as a quotient p1/p2 of polynomials with distinct factors occurring

to non-negative integer powers: more precisely,

z =
p1

p2

where

p1 = ±
k

∏

i=1

αli
i

k
∏

i=1

(αi − 1)mi

∏

1≤i<j≤k

(αi − αj)
ni,j ,

p2 = ±
k

∏

i=1

αri

i

k
∏

i=1

(αi − 1)si

∏

1≤i<j≤k

(αi − αj)
ti,j ,
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li, ri ≥ 0 and liri = 0, mi, si ≥ 0 and misi = 0, and ni,j, ti,j ≥ 0 and ni,jti,j =

0. In the proof of Theorem 3.1.4, we regard all elements of Rk in this way.

Furthermore, to simplify the proof of Theorem 3.1.4 we make the following

definitions. Let p be a polynomial in Rk. By an abuse of language, we say

that a − b is a factor of p if a − b is a linear factor of p in the usual sense or

{a, b} = {0, 1}. In the former case a − b is defined to be a normal factor of p.

Theorem 3.1.4. Let z be an element of Rk. Then z is a non-trivial fun-

damental element of Rk if and only if z can be written in one of the following

forms:

(i)
a − b

c − b

where a, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(ii)

(a − b)(c − d)

(c − b)(a − d)

where a, b, c, and d are distinct elements of {0, 1, α1, α2, . . . , αk}.

Proof. In the proof, we will assume that z is written as a quotient of two

polynomials p1 and p2 as described in the paragraph preceding the statement of

the theorem. It follows that z is a fundamental element of Rk if and only if there

is a polynomial p3 of Rk such that p1 − p2 = p3. Note that z is a fundamental

element if and only if z−1 is. This together with the assumption that z 6= 1 and

the fact that z is not a fundamental element of Rk if z = −1 allows us to assume

that p1 6= ±1. The proof finds all pairs of polynomials p1 and p2 in Rk with the

property that p1 − p2 is also a polynomial in Rk. In doing this we immediately

establish all the fundamental elements of Rk.

First we show that p1, p2, and p3 are relatively prime. If p1 and p3 are not

relatively prime, then they have a common normal factor q. Since p2 = p1−p3, q

is also a normal factor of p2, contradicting the fact that p1 and p2 are relatively

prime. Similarly p2 and p3 are relatively prime. Throughout the proof, we

repeatedly use this fact.

Since p1 6∈ {1,−1}, it has a normal factor a − b where a and b are distinct

elements of {0, 1, α1, α2, . . . , αk}. Without loss of generality assume that a = αi

for some i ∈ {1, 2, . . . , k}. Let p(αi = b) denote the polynomial obtained by
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substituting b for αi in p. Then p1(αi = b) = 0 and so −p2(αi = b) = p3(αi = b).

Since p1, p2, and p3 are relatively prime, it follows that there is an element c

in {0, 1, α1, α2, . . . , αk} − {a, b} such that either c − b or a − c is a factor of p2.

If c − b is a factor of p2, then a − c is a factor of p3. If a − c is a factor of p2,

then c− b is a factor of p3. The rest of the proof is a case analysis based on the

factors of p2.

3.1.4.1. Let d ∈ {0, 1, α1, α2, . . . , αk}−{a, b, c}. If p2 has at most one distinct

normal factor, then one of the following holds: p1 = a−b and p2 ∈ {c−b, a−c};
p1 = b − a and p2 ∈ {b − c, c − a}; p1 = (a − b)(c − d) and p2 = (c − b)(a − d);

or p1 = (b − a)(c − d) and p2 = (b − c)(a − d).

Proof. Assume that p2 has no normal factor. Then p2 ∈ {1,−1}. Since

a ∈ {α1, α2, . . . , αk}, a − c 6∈ {1,−1}. Therefore p2 ∈ {c − b, b − c} where

{b, c} = {0, 1}. Since −p2(αi = b) = p3(αi = b) and since p1, p2, and p3 are

relatively prime, it follows that a − c is the only normal factor of p3. Similarly,

substituting c for a into p1 − p2 = p3, we deduce that a − b is the only normal

factor of p1. It is now easily seen that the multiplicity of both a − b in p1 and

a − c in p3 is 1. Furthermore if p1 = a − b, then p2 = c − b. Also if p1 = b − a,

then p2 = b − c. Hence if p2 has no normal factors, then the result holds.

Assume that p2 has exactly one distinct normal factor. Then either c − b

is a factor of p2, in which case a − c is a normal factor of p3, or a − c is the

only distinct normal factor of p2, in which case c − b is a factor of p3. Assume

that the former case holds. There are two possibilities to consider. Assume first

that c − b is not normal. Since −p2(αi = b) = p3(αi = b) and since p1, p2,

and p3 are relatively prime polynomials, it follows that there is an element d in

{α1, α2, . . . , αk} − {a} such that either b− d or a− d is a normal factor of p2. If

b − d is a normal factor of p2, then a − d is a normal factor of p3. If a − d is a

normal factor of p2, then b− d is a normal factor of p3. We now show that b− d

is not a normal factor of p2. If it was a normal factor, then, by substituting c

for a into p1 − p2 = p3, we see that b− d is a factor of p1. But then the fact that

p1 and p2 are relatively prime is contradicted. Hence a − d is the only distinct

normal factor of p2. Therefore b − d is a normal factor of p3. Using the fact

that −p2(αi = b) = p3(αi = b) again, it follows that a − c and b − d are the

only distinct normal factors of p3. Substituting c for a into p1 − p2 = p3, it

follows that c − d must be a factor of p1. Moreover it also follows that a − b

and c− d are the only distinct normal factors of p1. It is easily seen that all the
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normal factors of p1, p2, and p3 have multiplicity 1. If p1 = (a − b)(c − d), then

p2 = (c − b)(a − d). If p1 = (b − a)(c − d), then p2 = (b − c)(a − d). Therefore

for this possibility the result holds. Now assume that c − b is normal. Then,

arguing as before, a − c is the only distinct normal factor of p3 and a − b is the

only distinct normal factor of p1. Again it is easily seen that all normal factors

of p1, p2, and p3 have multiplicity 1. If p1 = a− b, then p2 = c− b. If p1 = b−a,

then p2 = b − c. Therefore for this possibility the result holds. The case that

a− c is the only distinct normal factor of p2 is treated similarly, completing the

proof of (3.1.4.1). �

3.1.4.2. Let d ∈ {0, 1, α1, α2, . . . , αk}−{a, b, c}. If p2 has exactly two distinct

normal factors, then either p1 = (a − b)(c − d) and p2 ∈ {(c − b)(a − d), (a −
c)(b − d)} or p1 = (b − a)(c − d) and p2 ∈ {(b − c)(a − d), (c − a)(b − d)}.

Proof. Assume first that c − b is a factor of p2. Then, using the argument

in the proof of (3.1.4.1), there is an element d in {0, 1, α1, α2, . . . , αk} − {a, b, c}
such that a− d is a normal factor of p2 and b− d is a factor of p3. We next show

that c − b must be a normal factor of p2. If not, then both a − c and b − d are

normal factors of p3. Since −p2(αi = b) = p3(αi = b) and since p1, p2, and p3 are

relatively prime, it follows that there is an element e of {α1, α2, . . . , αk}−{a, d}
such that either e − b or a − e is a normal factor of p2. Using an argument

similar to that in the proof of (3.1.4.1), it follows that e− b cannot be a normal

factor of p2. Therefore a − e is a normal factor of p2. Substituting b for d into

p1 − p2 = p3, we see that a − e is also a normal factor in p1. This contradicts

the fact that p1 and p2 are relatively prime. Therefore c − b must be a normal

factor of p2. From the proof of (3.1.4.1), it follows that either p1 = (a− b)(c−d)

and p2 = (c− b)(a− d) or p1 = (b− a)(c− d) and p2 = (b− c)(a− d). Therefore

if c− b is a factor of p2, then the result holds. Since p1 − p3 = p2, the roles of p2

and p3 can be interchanged and therefore it is easily seen that the result for the

case that a − c is a normal factor of p2 also holds. �

It readily follows from the proof of (3.1.4.2) that p2 has at most two distinct

normal factors. A similar argument also shows that p1 has at most two distinct

normal factors. Therefore all pairs of polynomials p1 and p2 have been found.

The theorem follows on combining (3.1.4.1) and (3.1.4.2), and appropriately

interchanging the roles of the elements a, b, c, and d if necessary. �
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3.2. Automorphisms of Rk

The next result is needed as a lemma for Theorem 3.2.2. We note that if

z1, z2 ∈ R∗
k
, then z1 − z2 ∈ Rk if and only if z1/z2 − 1 ∈ Rk. The proof of

Lemma 3.2.1 is a routine case analysis using this observation in combination

with Theorem 3.1.4.

Lemma 3.2.1. Let z1 and z2 be distinct non-trivial fundamental elements of

Rk. Then z1−z2 is defined if and only if {z1, z2} is equal to one of the following

sets:

(i)
{

a1 − b

c − b
,
a2 − b

c − b

}

where a1, a2, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(ii)

{

a − b1

c − b1
,
a − b2

c − b2

}

where a, b1, b2, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(iii)

{

a − b

c1 − b
,

a − b

c2 − b

}

where a, b, c1, and c2 are distinct elements of {0, 1, α1, α2, . . . , αk}.
(iv)

{

a − b

c − b
,
(a − b)(c − d)

(c − b)(a − d)

}

where a, b, c, and d are distinct elements of {0, 1, α1, α2, . . . , αk}.
(v)

{

(a − b)(c − d1)

(c − b)(a − d1)
,
(a − b)(c − d2)

(c − b)(a − d2)

}

where a, b, c, d1, and d2 are distinct elements of {0, 1, α1, α2, . . . , αk}.

Before stating and proving Theorem 3.2.2, we make the following observa-

tion. Let ϕ : {α1, α2, . . . , αk} → Rk be a map. Suppose we can extend ϕ to an

automorphism τ of Rk. Then it follows that

τ(±
k

∏

i=1

αli
i

k
∏

i=1

(αi − 1)mi

∏

1≤i<j≤k

(αi − αj)
ni,j )
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= ±
k

∏

i=1

(ϕ(αi))
li

k
∏

i=1

(ϕ(αi) − 1)mi

∏

1≤i<j≤k

(ϕ(αi) − ϕ(αj))
ni,j .

Hence every automorphism of Rk is determined by its action on {α1, α2, . . . , αk}.

Theorem 3.2.2. Let ϕ : {α1, α2, . . . , αk} → Rk be a map. Then ϕ extends

to an automorphism of Rk if and only if {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to

one of the following sets:

(i)
{

a1 − b

c − b
,
a2 − b

c − b
, . . . ,

ak − b

c − b

}

where {a1, a2, . . . , ak, b, c} = {0, 1, α1, α2, . . . , αk};
(ii)

{

a − b1

c − b1
,
a − b2

c − b2
, . . . ,

a − bk

c − bk

}

where {a, b1, b2, . . . , bk, c} = {0, 1, α1, α2, . . . , αk};
(iii)

{

a − b

c1 − b
,

a − b

c2 − b
, . . . ,

a − b

ck − b

}

where {a, b, c1, c2, . . . , ck} = {0, 1, α1, α2, . . . , αk};
(iv)

{

a − b

c − b
,
(a − b)(c − d1)

(c − b)(a − d1)
,
(a − b)(c − d2)

(c − b)(a − d2)
, . . . ,

(a − b)(c − dk−1)

(c − b)(a − dk−1)

}

where {a, b, c, d1, d2, . . . , dk−1} = {0, 1, α1, α2, . . . , αk}.

Proof. If ϕ extends to an automorphism of Rk, then, by Lemma 3.2.1,

{ϕ(α1), ϕ(α2), . . . , ϕ(αk)} must be equal to one of the sets (i)–(iv) in the state-

ment of the theorem. Suppose, conversely, that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is

equal to one of these sets. Consider the function τ : Rk → Rk defined by

τ(0) = 0 and

τ(±
k

∏

i=1

αli
i

k
∏

i=1

(αi − 1)mi

∏

1≤i<j≤k

(αi − αj)
ni,j )

= ±
k

∏

i=1

(ϕ(αi))
li

k
∏

i=1

(ϕ(αi) − 1)mi

∏

1≤i<j≤k

(ϕ(αi) − ϕ(αj))
ni,j .

Then ϕ extends to an automorphism of Rk if and only if τ is an automorphism

of Rk. Therefore, to prove the converse, it suffices to show that τ satisfies all of

the conditions (i)–(iii) in the statement of Proposition 2.1.9.
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Evidently τ satisfies Proposition 2.1.9(ii). We next show that τ is a bijection.

First assume that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to set (i) in the statement

of the theorem. Without loss of generality, we may assume that, for all i ∈
{1, 2 . . . , k}, ϕ(αi) = ai−b

c−b . Then, for all distinct i and j in {1, 2, . . . , k}, τ(αi) =

ϕ(αi) = ai−b
c−b , τ(αi − 1) = ϕ(αi) − 1 = ai−c

c−b , and τ(αi − αj) = ϕ(αi) − ϕ(αj) =
ai−aj

c−b . Since {a1, a2, . . . , ak, b, c} = {0, 1, α1, α2, . . . , αk}, it follows that, up to a

scalar of ±1, the set

{ai − b, ai − c, ai − aj, c − b : 1 ≤ i < j ≤ k}
is equal to the set

{1, αi, αi − 1, αi − αj : 1 ≤ i < j ≤ k}.
With this in hand, it is now routine to deduce that, in this case, τ is a bijection.

The cases that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to one of the sets (ii)–(iv) are

treated similarly. Thus τ satisfies Proposition 2.1.9(i).

Lastly, we show that τ satisfies Proposition 2.1.9(iii). Since τ is a bijection,

it suffices to show that if z is a fundamental element of Rk, then τ(z) is a

fundamental element of Rk, in which case τ(z − 1) = τ(z) − 1. Since τ(0) = 0

and τ(1) = 1, this is certainly the case if z ∈ {0, 1}. Therefore assume that z

is a non-trivial fundamental element of Rk. First suppose that z = a−b
c−b , where

a, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}. From the definition of

τ and the fact that τ satisfies Proposition 2.1.9(ii), it is routine to deduce that

τ
(

a−b
c−b

)

− 1 = τ
(

a−c
c−b

)

. Hence τ(z) is a fundamental element of Rk. Moreover,

τ(z) − 1 = τ

(

a − b

c − b

)

− 1 = τ

(

a − c

c − b

)

= τ(z − 1).

The argument in the case that z = (a−b)(c−d)
(c−b)(a−d) , where a, b, c, and d are distinct

elements of {0, 1, α1, α2, . . . , αk} is treated similarly. Thus τ satisfies Proposi-

tion 2.1.9(iii). This completes the proof of Theorem 3.2.2. �



CHAPTER 4

Maximum-sized k–regular matroids

A simple rank–r matroid is maximum sized in a class if it has the maxi-

mum number of points amongst all simple rank–r matroids in the class. This

chapter determines, for all r and all k, the maximum size of a rank–r k–regular

matroid and determines all such matroids having this size. It turns out, with

one exception, that there is a single maximum-sized rank–r k–regular matroid.

Geometrically, such a maximum-sized matroid is obtained by freely adding k

independent points to a flat of M(Kr+k+1) which is isomorphic to M(Kk+2),

contracting each of these points, and simplifying the resulting matroid. This re-

sult generalizes the results for regular and near-regular matroids. It follows from

a result of Heller [11] that a simple rank–r regular matroid is maximum sized

if and only if it is isomorphic to M(Kr+1), the cycle matroid of the complete

graph on r + 1 vertices. Oxley, Vertigan, and Whittle show [19, Corollary 2.2]

that a simple rank–r near-regular matroid is maximum sized if and only if it is

isomorphic to the matroid obtained, geometrically, by freely adding a point to

a flat of M(Kr+2) isomorphic to M(K3), contracting this point, and simplify-

ing the resulting matroid. This matroid is isomorphic to the simplification of

TM(K3)(M(Kr+2)).

It is interesting to compare the results of this chapter with other char-

acterizations of maximum-sized members of a class of matroids representable

over a partial field. The class of 6
√

1–matroids is the class of matroids repre-

sentable over GF (3) and GF (4) [35, Theorem 1.2]. With a single exception,

the maximum-sized rank–r 6
√

1–matroid is isomorphic to the maximum-sized

rank–r near-regular matroid [19, Theorem 2.1]. The class of dyadic matroids

is the class of matroids representable over GF (3) and the rationals [34, Theo-

rem 7.1]. It follows from Kung [13], and Kung and Oxley [15] that a simple

rank–r dyadic matroid is maximum sized if and only if it is isomorphic to the

ternary Dowling geometry Qr(GF (3)∗). For each of these classes, if r > 3, then

there is a single maximum-sized rank–r matroid in the class. Moreover, in this

case, the maximum-sized rank–r matroid in this class is a modular hyperplane

24
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of the maximum-sized rank–(r + 1) matroid of the class. It follows that these

maximum-sized matroids share the very attractive structural property of be-

ing supersolvable. For these maximum-sized members of the class of k–regular

matroids we will discuss this property further in the next section.

This chapter has a similar organization to that of Oxley, Vertigan, and Whit-

tle’s paper [19]. Indeed some of the results of [19] with appropriate modifica-

tions generalize straightforwardly. Section 4.1 details some of the properties of

the non-exceptional maximum-sized rank–r k–regular matroid and states the

main result of Chapter 4, Theorem 4.1.3. Recall that a matroid is ω–regular if,

for some k ≥ 0, it is k–regular. In Section 4.2 we prove a number of structural

properties of ω–regular matroids that will be needed to prove Theorem 4.1.3 in

Section 4.3.

For this chapter only, we have one further exception in notation and termi-

nology to those noted in Chapter 1. Since we are only concerned with simple

matroids in this chapter, we adopt the convention that, for an integer n with

n ≥ 2, an n–point line will mean a line that is isomorphic to U2,n.

4.1. The main result

We begin this section with a representation of the non-exceptional maximum-

sized rank–r k–regular matroid. This is followed by a discussion on some of the

special properties of this matroid. The section ends by stating Theorem 4.1.3.

For all r ≥ 2, let Br denote the r ×
(r
2

)

matrix whose columns consist of all

r–tuples with exactly two non-zero entries, the first equal to 1 and the second

equal to −1. For all r ≥ 3 and all k ≥ 0, let Ak
r denote the matrix













1 0 · · · 0 1 · · · 1 α1 · · ·α1 α2 · · ·α2 · · · αk · · ·αk 0 · · · 0
0
... Ir−1 Ir−1 Ir−1 Ir−1 · · · Ir−1 Br−1

0













over Q(α1, α2, . . . , αk). Let Ak
1 =

[

1
]

and let Ak
2 be the matrix
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[

1 0 1 α1 α2 · · · αk

0 1 1 1 1 · · · 1

]

over Q(α1, α2, . . . , αk).

The proof of [19, Lemma 3.1] generalizes straightforwardly to give a proof

of the following result.

Lemma 4.1.1. For all r and all k, the matrix Ak
r is k–unimodular.

It follows from Lemma 4.1.1 that, for all r and all k, M [Ak
r ] is k–regular.

Except for the single case r = 3 and k = 2, it turns out that M [Ak
r ] is the

maximum-sized rank–r k–regular matroid. Furthermore, M [Ak
r ] can be obtained

from M(Kr+k+1) by the matroid operation of “complete principal truncation”.

For a flat F of a matroid M of positive rank, the principal truncation TF (M)

is obtained, geometrically, by freely placing a point on F and then contracting

this point. Geometrically, the complete principal truncation TF (M) is obtained

by freely placing r(F )−1 independent points on F and then contracting each of

these points. For example, the simplification of TM(K3)(M(K4)) is isomorphic

to U2,4. For precise definitions and properties of these matroid operations the

reader is referred to Section 7.4 of Brylawski’s paper in [31]. We now show

that M [Ak
r ] is isomorphic to the simplification of TM(Kk+2)(M(Kr+k+1)), that

is, M [Ak
r ] can be obtained by freely adding k independent points to a flat of

M(Kr+k+1) which is isomorphic to M(Kk+2), contracting each of these points,

and simplifying the resulting matroid. We start by first stating a result [33,

Proposition 4.1.7] of Whittle.

Proposition 4.1.2. Let F1 and F2 be flats of a matroid M and suppose that

r(F2) > r(F1) > 0 and F1 ⊆ F2. Then TF2
(TF1

(M)) = TF2
(M).

Let M(K3),M(K4), . . . ,M(Kk+2) be fixed restrictions of M(Kr+k+1) such

that K3,K4, . . . ,Kk+2 is a chain of cliques in Kr+k+1. Applying Whittle’s result

repeatedly to this chain of flats of M(Kr+k+1) beginning with M(Kk+1) and

M(Kk+2), we get that

TM(Kk+2)(M(Kr+k+1)) = TM(Kk+2)(T M(Kk+1)(· · · (TM(K3)(M(Kr+k+1))) · · · )).
It is easily seen that, geometrically, the simplification of TM(Kk+2)(M(Kr+k+1))

is obtained from M(Kr+k+1) by taking k concurrent 3–point lines and adding
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a point freely to each of these 3–point lines, contracting the added points and

simplifying the resulting matroid. We use this equivalence to show that M [Ak
r ]

is isomorphic to the simplification of TM(Kk+2)(M(Kr+k+1)). Take a totally

unimodular representation of M(Kr+k+1) of the form [Ir+k|Br+k]. Adjoin the

matrix





























−α1 −α2 −αk

1 0 · · · 0

0 1 0
...

. . .

0 0 1
...

0 0 0





























to this representation. Each column corresponds to placing a point freely on a

3–point line of M(Kr+k+1). Moreover, each of the k 3–point lines to which a

point has been freely added contains the point which corresponds to the first

column of [Ir+k|Br+k]. One can now obtain the specified representation for

M [Ak
r ] in the following way. For each column of the adjoined matrix, first

transform the column into a unit vector by pivoting on the second non-zero

entry and then delete this column along with the row containing this entry. This

corresponds to contracting each of the added points. By deleting certain columns

of the resulting matrix, corresponding to simplifying the matroid obtained from

these contractions, we can then obtain Ak
r by simply multiplying some rows and

columns by −1.

To ease notation we define, for r ≥ 1, T k
r to be the simplification of the ma-

troid TM(Kk+2)(M(Kr+k+1)). Hence T k
1
∼= U1,1 and T k

2
∼= U2,k+3. A geometric

representation of T k
3 is shown in Figure 4.1. If k = 0, then T 0

r
∼= M(Kr+1), the

maximum-sized rank–r regular matroid. Furthermore, if k = 1, then T 1
r
∼= Tr,

the maximum-sized rank–r near-regular matroid [19, Corollary 2.2].

A flat F of a matroid M is modular if, for every flat F ′ of M ,

r(F ) + r(F ′) = r(F ∪ F ′) + r(F ∩ F ′).

Furthermore, if there is a set of modular flats {F0, F1, . . . , Fr} of M such that,

for i ∈ {0, 1, . . . , r}, r(Fi) = i and, for i ∈ {1, 2, . . . , r}, Fi−1 ⊆ Fi, then M is said
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k + 2

k + 3

1

3
2

Figure 4.1. The matroid T k
3 .

to be supersolvable and {F0, F1, . . . , Fr} is called a saturated chain of modular

flats of M . Now the matroid M(Kr+k+1) is supersolvable, where the saturated

chain of modular flats is {M(K1),M(K2), . . . ,M(Kr+k+1)}. Therefore, by [33,

Corollary 4.1.9], TM(Kk+2)(M(Kr+k+1)) is also supersolvable. Hence the sim-

plification of this matroid, that is, T k
r is supersolvable. Moreover, defining T k

0

to be U0,0 for all k, its saturated chain of flats is {T k
0 , T k

1 , T k
2 , . . . , T k

r } and so,

for i ∈ {1, 2, . . . , r}, T k
i−1 is a modular hyperplane of T k

i . Thus, in general, the

maximum-sized members of the class of k–regular matroids share the same at-

tractive property of being supersolvable as the maximum-sized members of the

classes of near-regular, dyadic, and 6
√

1–matroids.

At last we state Theorem 4.1.3. A geometric representation for the matroid

S10 appearing in Theorem 4.1.3 is shown in Figure 4.2. By [22], S10 is 2–regular

and therefore, as S10 has a U2,5–minor, it follows that S10 is k–regular if and

only if k ≥ 2.

Theorem 4.1.3. Let M be a simple k–regular matroid having rank r. Then

|E(M)| ≤
(

r + k + 1

2

)

− k

2
(k + 3).

For (r, k) 6= (3, 2), T k
r is the unique simple rank–r k–regular matroid whose

ground set has cardinality equal to this bound. For (r, k) = (3, 2), T 2
3 and S10

are the only simple matroids whose ground sets have cardinality equal to this

bound.
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Figure 4.2. The matroid S10.

The main difficulty in proving Theorem 4.1.3, which generalizes the cor-

responding results for the classes of regular and near-regular matroids, is the

emergence of S10 when k ≥ 2. Much of the argument is devoted to resolving

this difficulty.

4.2. Some structural properties

In this section we obtain a number of structural properties of ω–regular

matroids that will be needed in the proof of Theorem 4.1.3. We begin by showing

that all k–unimodular representations of U2,k+3 are equivalent.

Let n be a non-negative integer and let F be a field. Let a1, a2, . . . , an be

distinct elements of F − {0, 1}. We call an F–representation of U2,n+3 in the

form

[

1 0 1 a1 a2 · · · an

0 1 1 1 1 · · · 1

]

,

a standard representation of U2,n+3 over F. Note that this slightly strengthens

the usual definition of a representation being in standard form (see [17, p. 81]).

Let A be the matrix
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[

1 0 1 α1 α2 · · · αk

0 1 1 1 1 · · · 1

]

over Q(α1, α2, . . . , αk). Evidently, A is a standard k–unimodular representation

for U2,k+3. Recall that if k ≥ 2, then it appears that the complete set of automor-

phisms of Q(α1, α2, . . . , αk) is not known. Theorem 3.2.2, however, determines

exactly when an automorphism ϕ of Q(α1, α2, . . . , αk) has the property that the

matrix

[

1 0 1 ϕ(α1) ϕ(α2) · · · ϕ(αk)

0 1 1 1 1 · · · 1

]

over Q(α1, α2, . . . , αk) is also a standard k–unimodular representation of U2,k+3.

Using this theorem in combination with Theorem 3.1.4 and Lemma 3.2.1, it is

easily seen that if a matrix over Q(α1, α2, . . . , αk) is a standard k–unimodular

representation of U2,k+3, then we can obtain this representation by applying

one of the automorphisms of Q(α1, α2, . . . , αk) mentioned above to the en-

tries of A. Combining this with the fact that the set of all automorphisms

of Q(α1, α2, . . . , αk) is a group under function composition, we deduce the next

lemma.

Lemma 4.2.1. Let k ≥ 0. All k–unimodular representations of U2,k+3 are

equivalent.

A matroid M is strictly k–regular if M is k–regular but not (k − 1)–regular.

Using Lemma 4.2.1 and the results of Chapter 3 again, it is straightforward to

deduce the following corollary.

Corollary 4.2.2. Let k ≥ 0. Then U2,k+3 is strictly k–regular.

Having established Lemma 4.2.1, it is not much more difficult, using the

same results that proved Lemma 4.2.1, to realize Corollary 4.2.3.

Corollary 4.2.3. Let k ≥ 0. Then all ω–unimodular representations of

U2,k+3 are equivalent.
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(i)(h)(g)

(f)(e)(d)

(c)(b)(a)

Figure 4.3. The simple 7–element rank–3 matroids that are not

ω–regular.

With Corollary 4.2.3 in hand we can now easily determine the k–regularity

of matroids of small rank. The next two results are obtained by using the last

corollary in conjunction with Theorem 3.1.4 and Lemma 3.2.1.

Lemma 4.2.4. Let k ≥ 2. Then U3,k+3 is strictly k–regular.

Lemma 4.2.5. Let M be a simple rank–3 matroid with |E(M)| = 7. Then

M is not ω–regular if and only if M is isomorphic to one of the matroids in

Figure 4.3.

We remark that all rank–3 matroids whose ground sets have size at most

six are ω–regular. Furthermore, the matroids in Figure 4.3 are all the ma-

troids that can be obtained from the Fano matroid by relaxing up to six lines.

For completeness, Figure 4.4 gives geometric representations of those simple 7–

element ω–regular matroids of rank–3 having a 3–point line and no 4–point line

as a restriction. It immediately follows from Corollary 4.2.2 that U2,k+3 is the
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(a) (b) (c) (d)

Figure 4.4. The simple 7–element ω–regular matroids of rank–3

having a 3–point line and no 4–point line as a restriction.

maximum-sized rank–2 k–regular matroid. Furthermore, a routine check using

Lemma 4.2.5 shows that S10 is a maximal ω–regular matroid of rank 3, that is,

no rank–3 ω–regular matroid is a single-element extension of S10.

Lemma 4.2.6. Let M be a simple rank–3 k–regular matroid.

(i) If k < 2, then M is a restriction of T k
3 .

(ii) If k = 2, then M is a restriction of T 2
3 or S10.

(iii) If k > 2, then M is a restriction of U3,k+3, T k
3 , or S10.

Proof. The proof is a series of routine case checks which repeatedly use

Lemma 4.2.5. Let M be an ω–regular matroid of rank 3. If M is regular, then

M is a restriction of M(K4), which is isomorphic to T 0
3 . If M is near-regular,

then, by [19, Lemma 4.1], M is a restriction of T 1
3 . Therefore assume that k ≥ 2

and M is not near-regular. Furthermore, we may assume that M is 3–connected,

for otherwise, by Corollary 4.2.2, it is a restriction of T k
3 .

Assume that k = 2. Using the fact that every rank–3 near-regular matroid

is a restriction of T 1
3 , it is easily seen that M has a minor isomorphic to either

U2,5 or U3,5. Since the matroid obtained by placing a point on the intersection

of two lines of U3,5 is the only 3–connected 2–regular single-element extension

of U3,5 and the only 3–connected 2–regular single-element coextension of U2,5,

M has this matroid as a restriction. The rest of the proof for k = 2 is a

straightforward case analysis based on this fact, Lemma 4.2.5, and the fact that

P6, the matroid obtained by freely placing a point on a line of U3,5, is not

quaternary and therefore not 2–regular.

Now assume that k ≥ 3 and that M is not 2–regular. Considering 3–

connected single-element extensions and coextensions of U2,5, and 3–connected

single-element extensions of U3,5, we deduce that M has one of the matroids U2,6,



Maximum-sized k–regular matroids 33

U3,6, or P6 as a minor. Suppose that M has a U3,6–minor. By Lemma 4.2.4,

U3,k+3 is strictly k–regular. Moreover, it is easily seen using Lemma 4.2.5 that

the only single-element extension of U3,k+3 that is ω–regular is U3,k+4. Com-

bining these two results, it follows that M is a restriction of U3,k+3. Suppose

that M has either a U2,6– or P6–minor, but no U3,6–minor. A routine check,

considering 3–connected single-element coextensions of rank–2 simple matroids

with at least six points, now shows that if M has a U2,6–minor, then it has a

P6–minor. So assume that this is indeed the case. By Lemma 4.2.5 again, every

single-element extension of P6 places a point on a line of P6. Geometrically, this

means that, every point of M , except exactly one, can be covered by two lines.

The result follows routinely from this observation. �

A long line of a matroid is a line that contains at least three points. Let

P2k+5 denote the matroid obtained from T k
3 by deleting a point that is on two

(k + 3)–point lines. In particular, if k = 1, then we get the matroid P7. We

note that, for k ≥ 1, this point is unique. Furthermore, call the point of P2k+5

that is on k + 2 3–point lines its tip. We observe that if a point of a rank–3

ω–regular matroid is on at least three long lines, then, for some k, this matroid

is a restriction of T k
3 .

Lemma 4.2.7. If a rank–4 matroid M has four concurrent long lines no three

of which are coplanar, then M is not an ω–regular matroid.

Proof. Assume that M is ω–regular. Let p be the point of concurrency of

four long lines, Lw, Lx, Ly, and Lz, no three of which are coplanar. Furthermore,

let S be the union of these lines and, for all i ∈ {w, x, y, z}, let i1 and i2 be points

of Li −p. Consider M |S. If q ∈ S −p, then, by Lemma 4.2.5, si((M |S)/q) ∼= P7.

Therefore q is in exactly two 4–circuits that are not forced by q being on one of

the four long lines and whose intersection is q. Thus we may assume without loss

of generality that both {w1, x1, y1, z1} and {w1, x2, y2, z2} are 4–circuits of M |S.

It now follows by the same reasoning that one of {z1, w2, x2, y2}, {z1, w2, x1, y2},
and {z1, w2, x2, y1} is a 4–circuit of M |S. If {z1, w2, x2, y2} is a 4–circuit of

M |S, then y2, as well as p, is on at least three 3–point lines in si((M |S)/x2).

This contradicts Lemma 4.2.5 and so {z1, w2, x2, y2} is not a 4–circuit of M |S.

Similarly, neither {z1, w2, x1, y2} nor {z1, w2, x2, y1} is a 4–circuit of M |S. This

completes the proof of Lemma 4.2.7. �
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The next two lemmas are obtained from the statements of [19, Lemmas 4.4

and 4.5] by replacing “ 6
√

1–matroid” with “ω–regular matroid”. Moreover, for

both these lemmas, the arguments used for [19, Lemmas 4.4 and 4.5] work when

applied to ω–regular matroids instead of 6
√

1–matroids.

Lemma 4.2.8. Let M be a 3–connected ω–regular matroid. Then M does not

have as a restriction the parallel connection of P7 and U2,4 in which the basepoint

of the parallel connection is the tip of P7.

Lemma 4.2.9. Let M be a 3–connected ω–regular matroid. Suppose that X

and Y are subsets of E(M) such that M |X ∼= P7
∼= M |Y and r(X ∪ Y ) ≥ 4.

Then the tip of M |Y is not in X.

Lemma 4.2.10. Let M be a 3–connected k–regular matroid of rank r. If p ∈
E(M), then p is on at most r + k− 1 long lines. Moreover, for i ∈ {1, 2, . . . , k},
if the point p is on exactly r + i− 1 long lines, then all long lines through p have

exactly three points.

Proof. Assume that p is on at least r long lines. Let S be the union of

the long lines through p. Consider M |S. It follows by Lemmas 4.2.7 and 4.2.9

and the fact that p is on at least r long lines that exactly one plane P of M |S
spanned by two long lines through p contains more than two long lines. By

Lemma 4.2.6, each of the long lines on P has size three and P7 is a restriction

of P with tip p. Moreover, by Lemma 4.2.6 again, there are at most k + 2 long

lines on P and so p is on at most r + k − 1 long lines. Since M is 3–connected,

it follows by Lemma 4.2.8 that all of the long lines not on P also have size three

and the lemma is proved. �

For the last two lemmas of this section we first need some definitions. Both

of these lemmas are essential in dealing with the difficulty caused by S10 being

ω–regular. Firstly, since all single-element deletions of S10 are isomorphic, we

denote such a matroid by S10 − e. A ring R of n long lines is a matroid with

points x1, x2, . . . , xn such that each of cl({x1, x2}), cl({x2, x3}), . . . , cl({xn, x1})
is a long line of R and the ground set of R, E(R), is the union of these n long

lines (see [14, p. 39]). We call the points x1, x2, . . . , xn the joints of R. If a

ring R consists of r long lines and has rank r, then we say that R is a standard

ring of rank r. Note that if each of the long lines in a standard ring R consists

of three points, then R is isomorphic to either the rank–r whirl or the rank–r

wheel. Let M be a rank–r standard ring with long lines L1, L2, . . . , Lr and x1



Maximum-sized k–regular matroids 35

be the joint of M that is on L1 and Lr. Let M ′ be the matroid obtained from M

by deleting all non-joint elements of Lr. A matroid N that is obtained from M ′

by adjoining a long line L′
r through xr such that r(N\L1) = r(N\L′

r) = r(M)

and L1 ∩ L′
r is empty is called an open ring of rank r.

Lemma 4.2.11. Let r ≥ 4 and let M be a standard ring consisting of r long

lines each of which has size at least four. Then M is not ω–regular.

Proof. By contracting and deleting non-joint points of M , we can obtain a

rank–4 minor N of M isomorphic to a rank–4 standard ring consisting of 4–point

lines. Hence it suffices to prove that N is not ω–regular.

Assume that N is ω–regular. Let x1, x2, x3, and x4 be the joints of N

and let L1 = {x1, u1, v1, x2}, L2 = {x2, u2, v2, x3}, L3 = {x3, u3, v3, x4}, and

L4 = {x4, u4, v4, x1} be the 4–point lines of N . As N is ω–regular, it follows

by Lemma 4.2.6 that si(N/u1) is isomorphic to S10 − e. Thus, without loss of

generality, we may assume that C1 = {u1, u2, u3, u4} and C2 = {u1, v2, v3, v4} are

both 4–circuits of N . Similarly, si(N/v1) is isomorphic to S10 − e and therefore

v1 must be an element of a 4–circuit C3 that contains exactly one non-joint

point from each of the 4–point lines of N . It follows that either |C1 ∩ C3| or

|C2 ∩C3| is equal to two. Say |C1 ∩C3| = 2. Then, by contracting an element of

C1 ∩ C3 from N , we obtain a rank–3 minor of N having three concurrent long

lines one of which has four points; a contradiction to Lemma 4.2.6. Similarly,

if |C2 ∩ C3| = 2, we obtain a contradiction. This completes the proof of the

lemma. �

Lemma 4.2.12. Let r ≥ 3 and let M be a rank–r open ring consisting of r

long lines each of which has size at least four. Then M is not ω–regular.

Proof. By deleting non-joint elements if necessary we may assume that

each of the r long lines has exactly four points. We argue by induction on r.

The result is clear for r = 3. For r = 4 we have

4.2.12.1. Let M be a rank–4 open ring consisting of 4–point lines. Then M

is not ω–regular.

Proof. Assume that M is ω–regular. Let L1 = {x1, u1, v1, x2}, L2 =

{x2, u2, v2, x3}, L3 = {x3, u3, v3, x4}, and L4 = {x4, u4, v4, x5} be the 4–point

lines of M . Now at least two elements of {u4, v4, x5} are not in the closure of
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L1 ∪L2. Without loss of generality we may assume that u4 and v4 are two such

elements. If u4 is in no 3–circuits of M other than those contained in L4, then,

by Lemma 4.2.6, M/u4 is not ω–regular. Therefore {u4, y, z} is a 3–circuit of

M such that y ∈ {x1, u1, v1} and z ∈ {u3, v3}. It is easily seen that we may

assume {u4, x1, u3} is a 3–circuit of M . Moreover, this is the only such circuit

containing u4. It now follows by the same reasoning that {v4, x1, v3} must also

be a 3–circuit of M . Since u2 can be in at most one 3–circuit that contains either

u1 or v1, it follows that, in si(M/u2), the point x1 is the point of concurrency of

three long lines one of which contains four points. By Lemma 4.2.6, si(M/u2) is

not ω–regular and the proof is completed. �

Let M be a rank–r open ring consisting of r 4–point lines, where r ≥ 5, and

assume that the lemma holds for all smaller ranks. Let L be a 4–point line of

M that contains exactly one joint. Let u be a non-joint point on L. Consider

si(M/u). Using the proof of the rank–4 case if need be, it is easily checked that

si(M/u) consists of r−1 long lines each of size four except perhaps one which has

size five. Moreover, either si(M/u) is a rank–(r − 1) open ring or a rank–(r − 1)

standard ring. If si(M/u) is an open ring of rank r − 1, then, by the induction

assumption, si(M/u), and hence M , is not ω–regular. If si(M/u) is a standard

ring of rank r − 1, then, as r − 1 ≥ 4, it follows by Lemma 4.2.11 that si(M/u)

is not ω–regular. �

4.3. Proof of Theorem 4.1.3

In this section we prove Theorem 4.1.3. The proof consists of a sequence of

lemmas and has the same outline as the proof of [19, Theorem 2.1]. Indeed, the

proofs of some lemmas are very similar to the proofs of particular lemmas used

in proving [19, Theorem 2.1]. Where this is the case, the proof of the lemma

is omitted and an appropriate remark is made preceding the statement of the

lemma.

Proof of Theorem 4.1.3. The proof is by induction on r to simulta-

neously prove the bound and a characterization of the matroids whose ground

sets have cardinality equal to this bound. If k = 0, then the result follows from

[11]. If k = 1, then, by [19, Corollary 2.2], the theorem is proved. For r = 2,

the result follows from Corollary 4.2.2. Moreover, by Lemma 4.2.6, the result is

proved for r = 3.
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Let M be a maximum-sized k–regular matroid of rank r, where k ≥ 2 and

r ≥ 4, and assume that the theorem holds for all smaller ranks. Then

|E(M)| ≥ |E(T k
r )| =

(

r + k + 1

2

)

− k

2
(k + 3).(4.1)

Lemma 4.3.1. M is 3–connected.

Proof. The argument that M does not have a 1–separation is similar to

the argument that M has no 2–separation. We present only the latter. Assume

that M has a 2–separation {X1,X2}. Let r1 = r(X1) and r2 = r(X2). Then, by

the induction assumption,

|E(M)| ≤
(

r1 + k + 1

2

)

− k

2
(k + 3) +

(

r2 + k + 1

2

)

− k

2
(k + 3).(4.2)

Furthermore, since r1 + r2 − 1 ≤ r(M), it follows by (4.1) that

|E(M)| ≥
(

(r1 + r2 − 1) + k + 1

2

)

− k

2
(k + 3).(4.3)

Combining (4.2) and (4.3) we get

(r1 − 1)(r2 − 1) ≤ 1.

This last inequality only holds when r1 = r2 = 2, that is, when r = 3. Since

r ≥ 4, the lemma is proved. �

For a positive integer n, a matroid M is vertically n–separated if there is a

partition {X1,X2} of E(M) with the properties that

min{r(X1), r(X2)} ≥ n

and

r(X1) + r(X2) − r(M) ≤ n − 1.

A matroid M is vertically 4–connected if, for all n < 4, it has no vertical n–

separation.

Lemma 4.3.2. M is vertically 4–connected.

Proof. Since M is 3–connected, M has no vertical 1– or 2–separations.

Therefore suppose that M has a vertical 3–separation {X1,X2}. Let r1 = r(X1).

Let p ∈ E(M)− cl(X2) and consider the long lines through p. Note that all such

lines must lie in cl(X1).
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We first show that p is on at most r1 − 1 long lines. Suppose, to the con-

trary, that p is on at least r1 long lines. Since M is 3–connected, for each e

in E(M) − cl(X1), either co(M\e) or si(M/e) is 3–connected [3] (see also [17,

Proposition 8.4.6]). It follows by repeated application of this result that we

can obtain a 3–connected k–regular minor N of M with the properties that

N |X1 = M |X1 and r(N) = r1. As all long lines through p are in the closure

of X1 in M , we deduce that p is on at least r1 long lines in N . Therefore, by

Lemma 4.2.10, p is on at most r1 + k − 1 long lines in N each of which has

exactly three points. This means that, in M , the point p is on at most r1 +k−1

long lines each of which has exactly three points. Therefore

|E(M)| ≤ 1 + (r1 + k − 1) + |E(si(M/p))|,

that is,

|E(si(M/p))| ≥ |E(M)| − (1 + (r1 + k − 1)).

By the induction assumption,

|E(si(M/p))| ≤
(

r + k

2

)

− k

2
(k + 3).

Combining the last two inequalities with (4.1), we obtain a contradiction. Hence

p is on at most r1 − 1 long lines. Assume that p is on at most one line of size at

least four. Then, as this line has at most k + 3 points and p is on at most r1 − 2

3–point lines,

|E(si(M/p))| ≥ |E(M)| − (1 + (k + 1) + (r1 − 2)).

Again, by the induction assumption,

|E(si(M/p))| ≤
(

r + k

2

)

− k

2
(k + 3).

Combining the last two inequalities with (4.1), we get another contradiction. It

now follows that every element of E(M) − cl(X2) is on at least two lines of size

at least four.

We next show that if p is on two 4–point lines, then p is on at least one other

line of size at least four. Suppose not. Then, as p is on exactly two lines of size

four and at most r1 − 3 long lines of size three,

|E(si(M/p))| ≥ |E(M)| − (1 + 4 + (r1 − 3)).

Therefore, by (4.1),

|E(si(M/p))| ≥ 1

2
(r2 + (2k + 1)r − 2k) − (1 + 4 + (r1 − 3)).
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By the induction assumption,

|E(si(M/p))| ≤
(

r + k

2

)

− k

2
(k + 3).

Combining the last two inequalities we obtain r + k ≤ r1 + 2. Since k ≥ 2, we

have a contradiction. Thus if p is on two 4-point lines, then p is on at least one

other line of size at least four.

We complete the proof of Lemma 4.3.2 by first constructing a restriction N of

M |cl(X1) with the following properties: N is isomorphic to a rank–r1 standard

ring with the non-joint elements of exactly one long line deleted and each of

the remaining r1 − 1 long lines has size at least four. Having obtained N , we

use it to show that M |cl(X1) has a restriction of rank r1 isomorphic to either a

standard or open ring in which each of the r1 long lines has size at least four.

In the following construction we repeatedly use the fact that every element of

E(M)−cl(X2) is on at least two long lines of size at least four. Start by choosing

a point x1 of E(M) − cl(X2). Choose a line L1 through x1 of size at least four,

and a point x2 on L1 distinct from x1 and not in the closure of X2. Repeat this

process for x2 to obtain a line L2 of size at least four and a point x3 not in the

closure of X2. Both L1 and L2 are long lines of N . We now show that there is a

line, L3 say, of size at least four through x3 such that L3 6∈ cl(L1∪L2). Suppose,

to the contrary, that this is not the case. Then there is a line L′
3 of size at least

four with the property that L′
3 ∈ cl(L1 ∪ L2). If one of L1, L2, and L′

3 is a line

of size at least five, then, by Lemma 4.2.6, M is not ω–regular. Therefore each

of L1, L2, and L′
3 must have exactly four points. Since x3 is on two lines of size

exactly four, x3 is on a line of size at least four other than L2 and L′
3. Moreover,

by Lemma 4.2.6, this line is not contained in cl(L1 ∪ L2); a contradiction. We

choose L3 to be a long line of N . Repeat this construction for L3 to obtain a

point x4, that is not in the closure of X2, and a line L4 of size at least four

through x4 such that r(L2 ∪L3 ∪L4) ≥ 4. If r(L1 ∪L2 ∪L3 ∪L4) = 4, then, by

Lemmas 4.2.11 and 4.2.12, M is not ω–regular. Therefore r(L1∪L2∪L3∪L4) = 5.

Continuing in this way we eventually obtain the restriction N of M |cl(X1) that

has rank r1 and consists of r1 − 1 lines each of which has at least four points.

Let L1, L2, . . . , Lr1−1 be the long lines of N , and xr1
be a point on Lr1−1 such

that xr1
is not on Lr1−2 and is not in cl(X2). As before, choose a line Lr1

of

size at least four through xr1
such that r(Lr1−2 ∪ Lr1−1 ∪ Lr1

) = 4. It follows

that M |cl(X1), and hence M , has a restriction containing Lr1−2, Lr1−1, and Lr1

that is isomorphic to either a standard or open ring of rank at least four. In



Maximum-sized k–regular matroids 40

both cases each of the ring’s long lines has at least four points and therefore by

Lemmas 4.2.11 and 4.2.12 this restriction, and hence M , is not ω–regular. We

conclude that M is vertically 4–connected. �

Lemma 4.3.3. Suppose p ∈ E(M) and p is on at least r long lines. Then p

is on exactly r + k − 1 long lines. Moreover, each of the r + k − 1 long lines has

exactly three points.

Proof. By Lemma 4.2.10, p is on at most r + k− 1 long lines each of which

has exactly three points. Therefore

|E(M)| ≤ 1 + (r + k − 1) + |E(si(M/p))|.(4.4)

By the induction assumption,

|E(si(M/p))| ≤
(

r + k

2

)

− k

2
(k + 3)(4.5)

and so

|E(M)| ≤
(

r + k + 1

2

)

− k

2
(k + 3).

Hence, by (4.1), equality holds in (4.4) and (4.5). Thus if p is on at least r long

lines, then p is on exactly r + k − 1 long lines each of which has exactly three

points. �

Lemma 4.3.4. Let p ∈ E(M). Let S be the union of the long lines through p

and let e ∈ cl(S). If either

(i) M |S is a union of three point lines in which P2k+5 is a restriction; or

(ii) p is on a line containing at least four points;

then e is on a plane spanned by two long lines through p.

Proof. Assume, to the contrary, that e is not in a plane spanned by two

long lines through p. Say M |S satisfies (i) in the statement of the lemma. Then

it follows from the proof of Lemma 4.2.10 that p is on r(S) + k − 1 3–point

lines. Therefore, in si(M/e), p is on r(S)+k−1 3–point lines and si(M/e)|S has

rank r(S) − 1. Since M is vertically 4–connected, si(M/e) is 3–connected and

therefore we contradict Lemma 4.2.10. This completes the proof of (i). If p is

on a 4–point line, then, by combining Lemmas 4.2.6, 4.2.7, and 4.2.8, it follows

that p is on r(S)−1 long lines. Using an argument similar to that which proved

(i) we again obtain a contradiction and so the lemma is proved. �



Maximum-sized k–regular matroids 41

Corollary 4.3.5. Let p ∈ E(M) and suppose that p is on a line L of size

at least four. If M restricted to the long lines through p has rank r, then all long

lines through points on L lie on a plane spanned by L and a long line through p.

Proof. Let x be a point, other than p, on L. Let Lx be a long line through

x, and let y and z be two other points on Lx. Since M restricted to the long

lines through p has rank r, it follows by Lemma 4.3.4 that y must lie on a plane

spanned by two long lines through p. To prove the corollary, it suffices to show

that y lies on a plane spanned by L and one other long line through p. Suppose,

to the contrary, that this is not the case. Then y does not lie on a long line

through p. Let L′ and L′′ be the unique pair of long lines though p such that y

lies in the span of L′ and L′′. Let S be the union of the lines L, Lx, L′, and L′′.

In M |S, the point z does not lie on a plane spanned by two long lines through p.

Therefore (M |S)/z is a rank–3 minor of M with three concurrent long lines one

of which has at least four points. This contradiction to Lemma 4.2.6 completes

the proof of Corollary 4.3.5. �

Lemma 4.3.6. If p ∈ E(M) and p is on at least two long lines each of which

has at least four points, then M/p is regular.

Proof. Let L1 and L2 be two such lines through p and assume that M/p

is non-regular. Then M/p has a minor isomorphic to one of the matroids U2,4,

F7, and F ∗
7 [28]. Since neither F7 nor F ∗

7 is ω–regular, M/p must have a minor

isomorphic to U2,4. Since M is vertically 4–connected, si(M/p) is 3–connected.

Let x1 and x2 be the points in si(M/p) corresponding to L1 and L2 in M ,

respectively. Then, as M/p has a U2,4–minor, si(M/p) has a U2,4–minor whose

ground set contains x1 and x2 (Seymour [27], see also [17, Proposition 11.3.8]).

Therefore M has a rank–3 minor that contains the two lines L1 and L2, and two

points neither of which is on L1 or L2. If either |L1| ≥ 5 or |L2| ≥ 5, then, by

Lemma 4.2.6, M is not ω-regular. Therefore we may assume that both L1 and

L2 have size four.

Let q ∈ E(M). The next three results establish that q is on at least two

4–point lines if k = 2 and on at least three 4–point lines if k ≥ 3.

4.3.6.1. No line through q has more than four points.

Proof. Assume that q is on a line L containing at least five points. Then,

by Lemma 4.2.10, q is on at most r − 1 long lines. Suppose that q is on a line,
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other than L, which has size at least four. Since q is on a line containing at least

five points, q and p are distinct and so M/q contains a 4–point line. Therefore

M/q is non-binary. Since si(M/q) is 3–connected, we can argue as before to

obtain a contradiction. Therefore, other than L, all long lines through q have

size three. Thus, as L has at most k +3 points and q is on at most r−2 3–point

lines,

|E(M)| ≤ 1 + (k + 1) + (r − 2) + |E(si(M/q))|.(4.6)

By (4.1),

|E(M)| ≥
(

r + k + 1

2

)

− k

2
(k + 3).(4.7)

Combining (4.6) and (4.7) we deduce that equality holds in (4.6). Thus q is

on exactly one (k + 3)–point line and exactly r − 2 3–point lines. By the same

reasoning, each point of L is on exactly r − 2 3–point lines.

By Lemmas 4.2.7 and 4.2.8, M restricted to the long lines through some

point on L has rank r. Since |L| ≥ 4, it follows by Corollary 4.3.5 that every

plane spanned by L and a 3–point line through q contains exactly one 3–point

line that passes through each point on L. By considering such a plane of M , we

obtain a contradiction to Lemma 4.2.6. We conclude that no line through q has

more than four points. �

The next result is obtained by combining the last result with the fact that

if q is on a 4–point line, then q is on at most r − 1 long lines.

4.3.6.2. Suppose that q is on a 4–point line. Then q is on at least k 4–point

lines.

4.3.6.3. q is on at least one 4–point line.

Proof. Suppose that every long line through q has exactly three points.

Then, from the proof of Lemma 4.3.3, q is on exactly r + k − 1 3–point lines.

Let S be the union of the long lines through q. Using Lemma 4.2.6 and the fact

that M has no 5–point line restriction, it is easily seen that in M |S there are

at most four 3–point lines in a plane. Therefore, by Lemmas 4.2.7 and 4.2.9,

r(M |S) = r(M) + k − 2. If k > 2, then we have a contradiction. So assume

that k = 2. Then q is on r + 1 3–point lines and r(M |S) = r(M). Therefore,

by Lemmas 4.2.7 and 4.2.9, M |S has a restriction isomorphic to P9 in which q

is the tip. Let L3 be a 3–point line through q in this restriction. Let x1 be a
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point of L3 − q. Then x1 is on a 4–point line L4 of this restriction. By (4.3.6.2),

x1 is on at least one other 4–point line L′
4. By Lemma 4.2.6, L′

4 does not lie

on the plane of M spanned by the four coplanar 3–point lines through q. Using

the fact that r(M |S) = r(M), it is straightforward to deduce, by Lemma 4.3.4

and an argument similar to the proof of Corollary 4.3.5, that L′
4 lies on a plane

spanned by L3 and a 3–point line, L′
3 say, through q that is not in the closure of

the restriction isomorphic to P9. Let x2 be a point on L′
3 that is on neither L3

nor L′
4. By contracting x2 we obtain a rank–3 minor of M with four concurrent

long lines one of which has four points; a contradiction. Hence every element of

M is on at least one 4–point line. �

Like Lemma 4.3.2, the proof of Lemma 4.3.6 is completed by showing that

M has a restriction isomorphic to either a standard or open ring of rank at least

four in which each of the ring’s long lines has four points and thereby obtaining

a contradiction to Lemmas 4.2.11 and 4.2.12. For k ≥ 3, the argument that M

has such a restriction is similar to, but simpler than, the analogous argument

used in the proof of Lemma 4.3.2. We omit the straightforward details and

remark that the proof relies on the fact that every member of E(M) is on at

least three 4–point lines. To prove the result for k = 2, however, we first require

an additional result.

4.3.6.4. If M has a restriction isomorphic to S10, then, for every 4–point

line of this restriction, there is a pair of points with the property that each point

is on at least three 4–point lines.

Proof. Suppose that M has a restriction isomorphic to S10 and let L be a

4–point line of this restriction. Suppose, to the contrary, that there are three

points x, y, and z on L that are each on exactly two 4–point lines. Then, using

(4.1), it is routine to deduce that each of x, y, and z is on exactly r − 3 3–point

lines. By Lemmas 4.2.7 and 4.2.8, M restricted to the long lines through any

one of x, y, and z has rank r. Therefore, as L is a 4–point line, it follows by

Corollary 4.3.5 that every plane spanned by L and a 3–point line through x

contains exactly one 3–point line that passes through each of y and z. Since

r ≥ 4, there exists such a plane.

Let w denote the fourth point on L. Then, using (4.1) again, we deduce

that, besides the two 4–point lines of the S10–restriction, w is on one other long

line. Furthermore, by Lemma 4.2.6 and Corollary 4.3.5 such a line must lie in
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a plane, P say, spanned by L and a 3–point line through x. Consider the plane

P . Since each of x, y, and z is on exactly two 4–point lines, it is easily checked

by Lemma 4.2.6 that P is a restriction of T 2
3 . A further check now shows that

P has a restriction isomorphic to P7. By (4.3.6.3), the tip of this P7–restriction

is on a 4–point line. Moreover, by Lemma 4.2.6, this 4–point line is not in the

closure of P in M . It now follows by Lemma 4.2.8 that M is not ω–regular.

This contradiction completes the proof of (4.3.6.4). �

As mentioned above, the proof of Lemma 4.3.6, for k = 2, is completed by

showing that M has a restriction isomorphic to either a standard or open ring of

rank at least four in which each of the ring’s long lines has four points. As in the

proof of Lemma 4.3.2, we do this by first constructing a restriction N of M that

is isomorphic to a rank–r standard ring with the non-joint elements of exactly

one long line deleted and in which each of the remaining r−1 long lines has size

exactly four. The construction of N and the obtaining of the desired restriction

is similar to that in the proof of Lemma 4.3.2, but with one important difference.

We highlight this difference with the first few steps in the construction of N and

leave the remaining straightforward details to the reader.

Start by choosing a point x′
1 of E(M). Choose a line L′

1 through x′
1 of size

four and a point x′
2 on L′

1 distinct from x′
1. Now choose a 4–point line L′

2 through

x′
2 that is distinct from L′

1. Unlike the construction in the proof of Lemma 4.3.2,

we cannot arbitrarily choose the third joint element of N . However, (4.3.6.4)

determines such a point for us. This is done in the following way. Suppose

that there is no point on L′
2, distinct from x′

2, that is on a 4–point line which is

not in cl(L′
1 ∪ L′

2). Then, as every point of L′
2 is on at least two 4–point lines,

it follows by Lemma 4.2.6 that M has a restriction isomorphic to S10 that is

spanned by the union of L′
1 and L′

2. Combining (4.3.6.4) with Lemma 4.2.6 we

obtain a contradiction. Hence there is a point on L′
2, distinct from x′

2, that is

on a 4–point line which is not in cl(L′
1 ∪ L′

2). Label this point and 4–point line

x′
3 and L′

3, respectively. The completion of the construction of N is the same

as that in the proof of Lemma 4.3.2, but with the obvious exception. Having

obtained N , the proof of Lemma 4.3.6 for k = 2 is concluded in the same way

that Lemma 4.3.2 was concluded. �

The proof of the next result, which confirms the bound on |E(M)|, is similar

to the proof of [19, Lemma 5.5]. We omit the details here and just remark that
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part (ii) of Lemma 4.3.7 is established by considering a point p of M being on

at most one line of size at least four, and part (iii) of Lemma 4.3.7 is established

by considering a point p of M being on at least two lines of size at least four

and using Lemma 4.3.6.

Lemma 4.3.7. |E(M)| =
(r+k+1

2

)

− k
2 (k + 3). Moreover, every point p of M

satisfies one of the following:

(i) p is on exactly r+k−1 long lines each of which has exactly three points,

and p is the tip of a unique P2k+5–restriction of M ;

(ii) p is on exactly r − 1 long lines, one of which has exactly k + 3 points

and r − 2 of which have exactly three points;

(iii) p is on exactly r − 1 long lines, each of which has exactly k + 3 points,

and si(M/p) ∼= M(Kr).

The three possibilities for a point p of M generalize those for the near-regular

case in [19, Lemma 5.5]. Therefore, as in [19], we shall say that p is of type (i),

(ii), or (iii) depending on which of (i)–(iii) of Lemma 4.3.7 p satisfies.

The next result is needed for Lemma 4.3.9.

Corollary 4.3.8. If M is a maximum-sized 2–regular matroid, then M has

no point p for which si(M/p) ∼= S10.

Proof. Suppose that M has such a point p. Then r(M) = 4 and so, by

Lemma 4.3.7, the union of the long lines through p has rank 4. Therefore, by

Lemma 4.3.4, every element of E(M) is on a plane spanned by two long lines

through p. Say p is of type (ii). Then si(M/p) has at most three long lines in

which each line contains at least four points. Each of these lines corresponds to

one of the three planes spanned by two long lines through p in M . Since S10

has five 4–point lines, we have a contradiction. Therefore assume that p is of

type (i). Then M has a P9–restriction in which p is the tip. Moreover, as every

element of M is of type (i), (ii), or (iii), every point of this P9–restriction, other

than p, is on a 5–point line of M . Hence si(M/p) has a 5–point line restriction

and so it is not isomorphic to S10. �

The proof of Lemma 4.3.9 is a routine modification of the proof of [19,

Lemma 5.6]. We note that Corollary 4.3.8 plays the role of [19, Lemma 5.4] in

this modification and omit the details of the proof.
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Lemma 4.3.9. M has a point of type (i) or (iii).

Lemma 4.3.10. M has a point of type (iii).

Proof. Assume that every point of M is of type (i) or (ii). By Lemma 4.3.9,

M has a point p of type (i). Let N be the P2k+5–restriction of M having p as

its tip. Let L be a 3–point line of N and let L = {p, x1, x2}. Since k ≥ 2, x1

and x2 are on long lines L1 and L2, respectively, of N in which both contain at

least four points and therefore both x1 and x2 must be of type (ii). Thus both

L1 and L2 are of size k + 3, so, by Lemma 4.2.6, M has a rank–3 restriction

isomorphic to T k
3 . But then M has a point that is on two long lines of size k + 3

and the fact that M has no point of type (iii) is contradicted. �

Corollary 4.3.11. M has a unique point po of type (iii).

Proof. By Lemma 4.3.10, M has a point po of type (iii). By Lemma 4.3.6,

M/po is regular. Therefore every (k + 3)–point line of M meets po and so po is

the only point of type (iii). �

The next result follows from Lemma 4.3.4.

Lemma 4.3.12. Every element of M is on a plane spanned by two (k + 3)–

point lines through po.

We are now able to determine, for k ≥ 2, the maximum-sized rank–r k–

regular matroids.

Lemma 4.3.13. M ∼= T k
r .

Proof. By the last lemma, every point of M is on a plane spanned by two

(k +3)–point lines through po. By Lemma 4.2.6, this plane is a restriction of T k
3

and so it has at most one additional point. Since po is of type (iii), M has
(r−1

2

)

such planes. Therefore

|E(M)| ≤ 1 + (k + 2)(r − 1) +

(

r − 1

2

)

.(4.8)

Since |E(M)| =
(r+k+1

2

)

− k
2 (k + 3), which is equal to the right-hand side of

(4.8), it follows that every plane that contains two (k + 3)–point lines through

po contains exactly one additional point and is therefore isomorphic to T k
3 .



Maximum-sized k–regular matroids 47

p0 x1
1 · · · x1

r−1 x2
1 · · · x2

r−1 · · · xk+2
1 · · · xk+2

r−1

1 0 · · · 0 a2
1 · · · a2

r−1 ak+2
1 · · · ak+2

r−1

0

0
... Ir−1 Ir−1 · · · Ir−1

0

0

Figure 4.5. The first k + 3 partitions of X.

We complete the proof of the lemma, and Theorem 4.1.3, by obtaining a k–

regular representation for M . It will turn out that the representation obtained

is a k–regular representation for T k
r and in the same form as the one shown in

Section 4.1. Label the (k + 3)–point lines of M through po by L1, L2, . . . , Lr−1

and, for each i < j, let wij be the unique point of M in cl(Li ∪ Lj) − (Li ∪
Lj). Label the points of L1 − po arbitrarily by x1

1, x
2
1, . . . , x

k+2
1 . Then, for

each i ∈ {2, 3, . . . , r − 1}, let x1
i , x

2
i , . . . , x

k+2
i be the points of intersection of

Li with cl({x1
1, w1i}), cl({x2

1, w1i}), . . . , cl({xk+2
1 , w1i}), respectively. A basis for

M is B = {po, x
1
1, x

1
2, . . . , x

1
r−1}. As M is a k–regular matroid, there is a k–

unimodular matrix X, in standard form, representing M . We will partition X

into k + 4 parts and label the columns of X in the following way. The first and

second partition of X will correspond to po and B − po, respectively. For l ∈
{3, 4, . . . , k+3}, we will label the l–th partition’s columns by xl−1

1 , xl−1
2 , . . . , xl−1

r−1.

In other words, the elements of E(M) corresponding to the columns of the l–

th partition are those elements which share a 3–point line with xl−1
1 . The last

partition consists of columns whose corresponding elements of E(M) have the

form wij . Since, for each i ∈ {2, 3, . . . , r − 1}, {x1
1, w1i, x

1
i } is a 3–circuit, we

deduce that the first entry in each of the columns labelled w12, w13, . . . , w1(r−1)

is zero. We may assume that X is as shown in Figures 4.5 and 4.6. In the

first matrix, the entries a2
1, . . . , a

2
r−1, a

3
1, . . . , a

k+2
r−1 are non-zero. In the second

matrix, the entries b2, b3, . . . , br−1 and d23, d24, . . . , d(r−2)(r−1) are all non-zero,

but the entries c23, c24, . . . , c(r−2)(r−1) may be zero. Whether each of the entries

c23, c24, . . . , c(r−2)(r−1) is zero or not, depends on {wij , x
1
i , x

1
j} being a 3–circuit.

We now determine the unknown entries of X. By scaling the first row

and first column, we may assume that a2
1 = 1. Furthermore, by scaling rows
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w12 w13 · · · w1(r−1) w23 w24 · · · w(r−2)(r−1)

0 0 · · · 0 c23 c24 · · · c(r−2)(r−1)

1 1 · · · 1 0 0 · · · 0

b2 1 1

b3 d23 0
. . . d24

. . .

1

br−1 d(r−2)(r−1)

Figure 4.6. The last partition of X.

3, 4, . . . , r and then those columns whose entries were affected by this row scal-

ing, we may also assume that b2 = b3 = · · · = br−1 = −1. As {xl−1
1 , w1i, x

l−1
i } is

a long line of M , it now follows that, for each l in {3, 4, . . . , k + 3}, al−1
1 = al−1

i ,

for all i in {2, 3, . . . , r − 1}. Moreover, for all l in {3, 4, . . . , k + 3}, the elements

al−1
1 are all distinct.

Next we determine d23, d24, . . . , d(r−2)(r−1). Let S be the union of L1 and two

other (k + 3)–point lines of M through po. Consider the restriction of si(M/po)

to those elements of E(M) in the closure of S. Then, as si(M/po) is regular, this

restriction of si(M/po) must be isomorphic to M(K4). It immediately follows

that for all i and j in {2, 3, . . . , r − 1} with i < j, the matrix







1 1 0

bi 0 1

0 bj dij







has zero determinant. Since bi = bj = −1, dij = −1.

Now we show that cij = 0 for all i and j in {2, 3, . . . , r − 1} with i < j.

Consider M |cl(Li ∪ Lj). Recall that this matroid is isomorphic to T k
3 . If, for

some i and j in{2, 3, . . . , r − 1}, the elements xl−1
i , wij , and xl−1

j are all on the

same long line, then cij = 0. So assume that this is not the case. Then, as

M |cl(Li ∪ Lj) ∼= T k
3 , there exists distinct elements m and n of {1, 2, . . . , k + 2}

such that {x1
i , x

m
j , wij} and {x2

i , x
n
j , wij}, where m 6= 1 and n 6= 2, are both lines

of M . This implies that the submatrices
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





x1
i xm

j wij

0 am
j cij

1 0 1

0 1 −1






and







x2
i xn

j wij

1 an
j cij

1 0 1

0 1 −1







of X both have zero determinant. Thus cij = −am
j and cij = 1 − an

j , and so

−am
j = 1 − an

j . If m = 2, then am
j = 1 and therefore an

j = 2 which is not in Ak.

Hence am
j and an

j are both elements of Ak − {1}. Since X is a k–unimodular

matrix, am
j − 1 and an

j − 1 are also in Ak. One now readily checks, using

Lemma 3.2.1, that no choice of am
j and an

j satisfy an
j − am

j = 1. We conclude

that, for all i and j, cij = 0 and therefore M ∼= T k
r . Hence Lemma 4.3.13 and,

in particular, Theorem 4.1.3 is proved. �



CHAPTER 5

Generalized ∆ − Y exchange

In this chapter, we define and identify properties of a matroid operation that

will play a fundamental role in proving the main results of Chapter 6. Suppose

that {a, b, c} is a coindependent triangle of a matroid M . Then a ∆−Y exchange

on {a, b, c} is obtained by performing the generalized parallel connection of M

and M(K4) across the triangle {a, b, c} and then deleting the elements of {a, b, c}.
In this chapter, we generalize the operation of ∆−Y exchange to the operation of

segment-cosegment exchange. Intuitively, a ∆−Y exchange on {a, b, c} replaces

this triangle with a triad. Suppose that A is a coindependent subset of E(M)

such that every 3–element subset of A is a triangle of M and |A| ≥ 2. Then,

loosely speaking, a segment-cosegment exchange on A replaces A with a set of

elements A′ such that |A| = |A′| and every 3–element subset of A′ is a triad.

In working with ∆ − Y exchanges, one also works with Y − ∆ exchanges. The

latter operation is defined from the former operation by duality. For a segment-

cosegment exchange we have a similarly defined dual operation: cosegment-

segment exchange.

The operations of segment-cosegment exchange and its dual have many at-

tractive properties. In particular, for a partial field P, the set of excluded minors

for P–representability is closed under the operations of segment-cosegment and

cosegment-segment exchanges. This is stated as Theorem 5.3.1, and generalizes

the corresponding result for ∆ − Y and Y − ∆ exchanges. In [1, Theorem 6.1

and Corollary 6.2], Akkari and Oxley show that, for a field F, the set of excluded

minors for F–representability is closed under both ∆−Y and Y −∆ exchanges.

Chapter 5 is organized as follows. The next section consists of some prelim-

inaries that are required for this chapter. In Section 5.2, we formally define the

operations of segment-cosegment exchange and its dual, and identify many of

their attractive properties. These properties are needed for the proof of Theo-

rem 5.3.1, which is proved in Section 5.3, and the proofs of the main results in

Chapter 6.

50
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5.1. Preliminaries

Like the ∆ − Y exchange, the operation of segment-cosegment exchange is

formally defined via the operation of generalized parallel connection.

Generalized parallel connection. Let M1 and M2 be matroids and let T =

E(M1)∩E(M2) such that M1|T = M2|T . Let N = M1|T . If si(N) is a modular

flat of si(M1), then the generalized parallel connection PN (M1,M2) of M1 and

M2 across N is the matroid on E(M1) ∪ E(M2) whose flats are precisely those

subsets F of E(M1)∪E(M2) such that F ∩E(M1) is a flat of M1 and F ∩E(M2)

is a flat of M2. This construction is introduced and studied in [4] when M1 and

M2 are both simple matroids. However, the extension of this work to the more

general case is straightforward (see [17, Section 12.4]). A special case of the

generalized parallel connection is when |T | = 1. For then PN (M1,M2) is the

ordinary parallel connection P (M1,M2) of M1 and M2.

∆ − Y and Y − ∆ exchanges. Suppose that {a, b, c} is a triangle of both

a matroid M and M(K4) such that {a, b, c} is coindependent in M . Then

{a, b, c} is a modular line of M(K4). A ∆ − Y exchange is defined to be

P{a,b,c}(M(K4),M)\{a, b, c}. Geometrically, one attaches the matroid M to

M(K4) along the triangle {a, b, c} so that the elements of E(M(K4)) − {a, b, c}
form a triad in the resulting matroid and then one removes the elements of the

triangle {a, b, c}. If {e, f, g} is a triad of M such that {e, f, g} is independent,

then a Y − ∆ exchange is defined to be [P{e,f,g}(M(K4),M
∗)\{e, f, g}]∗ .

5.2. Generalized ∆ − Y exchange

In this section, we define a generalization of the operation of ∆−Y exchange

and establish a number of its properties. This operation, like the ∆−Y exchange,

is defined using the generalized parallel connection of two matroids. Hence we

begin by defining the family of matroids that play the role in the generalized

operation to that played by M(K4) in the ∆ − Y exchange.

Recall that Q(α1, α2, . . . , αk−3) denotes the field obtained by extending the

rationals by the algebraically independent transcendentals α1, α2, . . . , αk−3. For

k ≥ 4, let Θk be the matroid that is represented over Q(α1, α2, . . . , αk−3) by the

matrix [Ik|Dk], where Dk is the matrix
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

























b1 b2 a3 a4 a5 · · · ak

a1 0 1 1 1 1 · · · 1

a2 −1 0 1 α1 α2 · · · αk−3

b3 1 1 0 0 0 0

b4 1 α1 0 0 0 · · · 0

b5 1 α2 0 0 0 0
...

...
...

...
. . .

...

bk 1 αk−3 0 0 0 · · · 0



























.

Let Θ2 and Θ3 be the matroids represented over the rationals by the matrices

[I2|D2] and [I3|D3], respectively, where D2 and D3 are the matrices

[

b1 b2

a1 0 1

a2 −1 0

]

and







b1 b2 a3

a1 0 1 1

a2 −1 0 1

b3 1 1 0






.

Thus Θ2 is isomorphic to the matroid obtained from U2,2 by adding exactly

one element in parallel with each member of the ground set of U2,2, and Θ3 is

isomorphic to M(K4). Evidently, for all k ≥ 2, the ground set of Θk equals A∪B

where A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}, and A and B are disjoint.

The first lemma is easily deduced by looking at [−DT
k |Ik], a canonical rep-

resentation of Θ∗
k, and scaling appropriate rows and columns.

Lemma 5.2.1. For all k ≥ 2, the matroid Θk is self-dual. In particular,

Θ∗
k
∼= Θk under the map that interchanges ai and bi for all i.

In order to describe the structural properties of Θk, it will be helpful to list

its circuits.

Lemma 5.2.2. For all k ≥ 2, the collection of circuits of Θk consists of the

following sets:

(i) all 3-element subsets of A;

(ii) all sets of the form (B − bi) ∪ ai for which i ∈ {1, 2, . . . , k}; and

(iii) all sets of the form (B − bu)∪ {as, at} for which s, t, and u are distinct

elements of {1, 2, . . . , k}.
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Proof. The lemma is easily checked when k = 2. Now assume that k ≥ 3.

We show next that if σ is the permutation (2, 3, . . . , k, 1) of {1, 2, . . . , k}, then

the map that, for all i takes ai and bi to aσ(i) and bσ(i), respectively, is an

automorphism of Θk. To see this, begin with the matrix [Ik|Dk] as labelled

above. Pivot on the (1, 3)-entry of Dk and then on the (3, 1)-entry of the resulting

matrix, where each pivot includes the natural column interchange to return the

matrix to standard form [Ik|X]. Next interchange the first two rows of the

current matrix, and then interchange column 1 with column 2, and column k+1

with column k + 2. After rescaling rows and columns, the resulting matrix is

[Ik|D′
k] where D′

k is



























b2 b3 a4 a5 · · · ak a1

a2 0 1 1 1 · · · 1 1

a3 −1 0 1 1−α1

1−α2
· · · 1−α1

1−αk−3
1 − α1

b4 1 1 0 0 · · · 0 0

b5 1 1−α1

1−α2
0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

bk 1 1−α1

1−αk−3
0 0 · · · 0 0

b1 1 1 − α1 0 0 · · · 0 0



























.

By Theorem 3.2.2, there is an automorphism ϕ of Q(α1, α2, . . . , αk−3) such

that, for all i ∈ {1, 2, . . . , k − 4}, ϕ(αi) = 1−α1

1−αi+1
and ϕ(αk−3) = 1 − α1.

Thus [Ik|D′
k] can also be obtained from [Ik|Dk] by applying an automorphism

of Q(α1, α2, . . . , αk−3) to each of its entries. It follows that Θk does indeed have

the permutation (b2, b3, . . . , bk, b1)(a2, a3, . . . , ak, a1) as an automorphism.

It is clear that every 3-element subset of A is a circuit of Θk. Hence, by

Lemma 5.2.1, every 3-element subset of B is a cocircuit of Θk. It follows, by

orthogonality, that every circuit of Θk that meets B contains at least |B| − 1

elements of B. From considering the matrix [Ik|Dk], we deduce that (B−b1)∪a1

is the unique k-element circuit of Θk containing B − b1. Thus, by the symmetry

noted above, (B − bi) ∪ ai is a circuit of Θk for all i.

All remaining circuits of Θk must have k + 1 elements and must contain ex-

actly k−1 elements of B. Thus it suffices to determine all such circuits containing

B− b1 and avoiding b1. But, for every such circuit C, the set C−{b3, b4, . . . , bk}
is a circuit of Θk/{b3, b4, . . . , bk}\b1 containing b2. The last matroid is obtained
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from a k-point line on A by adding b2 in parallel with a1. To see this, observe

what happens to [Ik|Dk] when, for all j ∈ {3, 4, . . . , k}, the j-th column and j-th

row are deleted. The 3-element circuits of Θk/{b3, b4, . . . , bk}\b1 containing b2

consist of all sets of the form {b2, as, at} where s and t are distinct elements of

{2, 3, . . . , k}. Thus, for all such s and t, the set {b2, as, at}∪ {b3, b4, . . . , bk} con-

tains a circuit of Θk. Since we have already identified all non-spanning circuits

of Θk and none of these is contained in the last set, we deduce that the last set

itself is a circuit of Θk, and the lemma follows. �

The following is an immediate consequence of the last lemma.

Corollary 5.2.3. For all k ≥ 2 and all permutations σ of {1, 2, . . . , k},
the map that, for all i, takes ai and bi to aσ(i) and bσ(i), respectively, is an

automorphism of Θk.

On combining Lemmas 5.2.1 and 5.2.2, we see that, geometrically, Θk can

be obtained from a free matroid Uk,k by adding a point to each hyperplane of

the latter so that each of these hyperplanes becomes a circuit in the resulting

matroid and so that the restriction of Θk to the set of added points is a k–point

line.

The operation of generalized parallel connection of two matroids relies on

the presence of a modular flat in one of the matroids. Recall that a flat F of a

matroid M is modular if r(F ) + r(F ′) = r(F ∪F ′) + r(F ∩F ′) for all flats F ′ of

M .

Lemma 5.2.4. For all k ≥ 2, the set A is a rank–2 modular flat of Θk, and

B is a basis of Θk.

Proof. It is clear from Lemma 5.2.2 that A is a rank–2 flat and B is a

basis of Θk. Now A is a modular flat of Θk if and only if r(A) + r(F ) = r(Θk)

for all flats F avoiding A such that F ∪ A spans Θk [4, Theorem 3.3] (see also

[17, Proposition 6.9.2 (iii)]). For every such flat, r(F ) ≥ r(Θk) − 2. If r(F ) =

r(Θk)−2, then, certainly, r(A)+r(F ) = r(Θk). Moreover, by Lemmas 5.2.1 and

5.2.2, every hyperplane of Θk meets A. We deduce that A is indeed a modular

flat of Θk. �
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Having established Lemma 5.2.4, we now define a generalization of the op-

eration of ∆ − Y exchange. Let M be a matroid such that M has a U2,k–

restriction. Label the elements of this restriction a1, a2, . . . , ak. As before, let

A = {a1, a2, . . . , ak}. By Lemma 5.2.4, A is a modular line of Θk. Thus the

generalized parallel connection PA(Θk,M) of Θk and M across A exists. Hence

the matroid PA(Θk,M)\A is certainly defined. If |A| = 2, then PA(Θk,M)\A
is obtained from M by adding an element in parallel with each of the elements

of A and then deleting the elements of A. Thus PA(Θ2,M)\A ∼= M . If |A| = 3,

then, since Θ3
∼= M(K4), the matroid PA(Θ3,M)\A is exactly the matroid that

is obtained by performing a ∆ − Y exchange on M at A. While such a ∆ − Y

exchange is defined as long as A is a triangle of M , the set B will be a triad in

PA(Θ3,M)\A only if A is coindependent in M . Indeed, the following extension

of this observation is straightforward to prove.

Lemma 5.2.5. For all k ≥ 2, the restriction of (PA(Θk,M)\A)∗ to B is

isomorphic to U2,k if and only if A is coindependent in M .

Since we should like an operation whose inverse is the dual of the original

operation, in defining this operation we shall impose the additional condition

that A is coindependent in M . Thus let M be a matroid having a U2,k–restriction

on the set A and suppose that A is coindependent in M . We define ∆A(M) to

be PA(Θk,M)\A and call this operation a ∆A–exchange or a segment-cosegment

exchange on A. As |A| = k, such an operation will also be referred to as a

∆k–exchange or a segment-cosegment exchange of size k. Thus, for example, the

matroid U4,6 can be obtained from U2,6 by a segment-cosegment exchange of size

4.

In defining the dual operation of segment-cosegment exchange, we mimic

the definition of Y − ∆ exchange in terms of ∆ − Y exchange or, indeed, the

definition of contraction in terms of deletion. Let M be a matroid for which

M∗ has a U2,k–restriction on the set A. If A is independent in M , we define

∇A(M) to be (∆A(M∗))∗, that is, [PA(Θk,M
∗)\A]∗. This operation is called a

∇A–exchange or a cosegment-segment exchange on A. As |A| = k, the operation

will also be referred to as a ∇k–exchange or a cosegment-segment exchange of

size k.

Lemma 5.2.6. If |A| = k, then

r(∆A(M)) = r(M) + k − 2.
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Proof. Now

r(PA(Θk,M)) = r(Θk) + r(M) − r(A)

[4, Proposition 5.5] (see also [17, p. 418]). Since A is coindependent in M , it is

coindependent in PA(Θk,M). Thus r(PA(Θk,M)) = r(∆A(M)) = k + r(M) −
2. �

The next lemma determines the bases of ∆A(M) in terms of the bases for

M . Recall that E(Θk) − A = B, and B is a basis for Θk.

Lemma 5.2.7. A subset D of E(∆A(M)) is a basis of ∆A(M) if and only if

D satisfies one of the following:

(i) D contains B, and D − B is a basis for M/A;

(ii) D ∩B = B − bi for some i in {1, 2, . . . , k}, and D − (B − bi) is a basis

of M/ai\(A − ai); or

(iii) D∩B = B−{bi, bj} for some distinct elements i and j of {1, 2, . . . , k},
and D − (B − {bi, bj}) is a basis of M\A.

Proof. By Lemma 5.2.6, r(∆A(M)) = r(M) + k − 2, where k = |A|, and

therefore every basis of ∆A(M) must contain at least k− 2 elements of B. First

assume that D contains B. Then D is a basis of ∆A(M) if and only if D −B is

a basis of ∆A(M)/B. Since B spans Θk in PA(Θk,M), it is not difficult to show

that ∆A(M)/B = M/A. Therefore D is a basis of ∆A(M) containing B if and

only if D − B is a basis of M/A.

Now assume that D contains exactly k−1 elements of B. Let D∩B = B−bi,

where i ∈ {1, 2, . . . , k}. Then D is a basis for ∆A(M) if and only if D−(B−bi) is

a basis for ∆A(M)/(B − bi)\bi. By Lemma 5.2.2, B − bi spans a unique element

ai of A in PA(Θk,M). Therefore ∆A(M)/(B − bi)\bi = M/ai\(A− ai). Thus D

is a basis of ∆A(M) containing B − bi if and only if D − (B − bi) is a basis of

M/ai\(A − ai).

Lastly, assume that D contains exactly k−2 elements of B. Let D∩B = B−
{bi, bj}, where i and j are distinct elements of {1, 2, . . . , k}. Then D is a basis of

∆A(M) if and only if D−(B−{bi, bj}) is a basis of ∆A(M)/(B−{bi, bj})\{bi, bj}.
From considering the representation [Ik|Dk] of Θk and using Corollary 5.2.3, we

deduce that Θk/(B−{bi, bj}) is equal to the matroid that is obtained from Θk|A



Generalized ∆ − Y exchange 57

by placing bi and bj in parallel with aj and ai, respectively. Therefore, by [17,

Proposition 12.4.14],

PA(Θk,M)/(B − {bi, bj}) = PA(Θk/(B − {bi, bj}),M).

Thus ∆A(M)/(B − {bi, bj})\{bi, bj} = M\A. Hence D is a basis of ∆A(M)

containing B − {bi, bj} if and only if D − (B − {bi, bj}) is a basis of M\A. �

A natural way of preserving the ground set of M in ∆A(M) is by relabelling

bi with ai, for all i in {1, 2, . . . , k}. For the rest of the thesis, we adopt this

convention to preserve the ground set of a matroid under both ∆k– and ∇k–

exchanges.

Lemma 5.2.8. (i) If ∆A(M) is defined, then ∆A(M)\A = M\A and

∆A(M)/A = M/A. Moreover, ∆A(M)\ai/(A − ai) = M/ai\(A − ai)

for all ai in A.

(ii) If ∇A(M) is defined, then ∇A(M)\A = M\A and ∇A(M)/A = M/A.

Moreover, ∇A(M)/ai\(A − ai) = M\ai/(A − ai) for all ai in A.

Proof. It is clear that (ii) follows from (i) by duality. The first two asser-

tions of (i) are straightforward to check. Moreover, the last follows from (ii) of

the previous lemma. �

The next lemma simply restates Lemma 5.2.7 under the convention that M

and ∆A(M) have the same ground sets.

Lemma 5.2.9. Let ∆A(M) be the matroid with ground set E(M) that is

obtained from M by a ∆A–exchange. Then a subset of E(M) is a basis of

∆A(M) if and only if it is a member of one of the following sets:

(i) {A ∪ B′ : B′ is a basis of M/A};
(ii) {(A − ai) ∪ B′′ : 1 ≤ i ≤ k and B′′ is a basis of M/ai\(A − ai)}; or

(iii) {(A − {ai, aj}) ∪ B′′′ : 1 ≤ i < j ≤ k and B′′′ is a basis of M\A}.

We shall classify each basis of ∆A(M) as being of type (i), (ii), or (iii)

depending on which of the three sets in the last lemma contains the basis. The

remaining results in this section not only show some of the attractive properties

of ∆k– and ∇k–exchanges but are also needed for the proofs of Theorem 5.3.1 and

the main theorems of the next chapter. The proofs of these results make frequent
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use of Lemma 5.2.9. In particular, the first such result follows straightforwardly

from that lemma, and its proof is omitted.

Lemma 5.2.10. Let A be a coindependent set in a matroid M such that every

3-element subset of A is a triangle.

(i) If X is a subset of E(M) avoiding A, then e is in the closure of X in

M if and only if e is in the closure of X in ∆A(M).

(ii) If {e, f} is a cocircuit of M , then {e, f} is a cocircuit of ∆A(M). Con-

versely, if {e, f} is a cocircuit of ∆A(M) avoiding A, then {e, f} is a

cocircuit of M .

Lemma 5.2.11. Let A be a coindependent set in a matroid M such that every

3-element subset of A is a triangle. Then ∇A(∆A(M)) is well-defined and

∇A(∆A(M)) = M.

Proof. Lemma 5.2.9 implies that A is independent in ∆A(M). Moreover,

every 3–element subset of A is a minimal set meeting every basis of ∆A(M) and

hence is a triad of ∆A(M). Therefore ∇A(∆A(M)) is well-defined. Now, by

definition,

∇A(∆A(M)) = [∆A[(∆A(M))∗]]∗.

To prove the rest of the lemma, we shall show that [∆A[(∆A(M))∗]]∗ and M

have the same sets of bases. It follows from Lemma 5.2.9 that a subset of E(M)

is a basis of [∆A(M)]∗ if and only if it is a member of one of the following sets:

(i)′ {E(M\A) − B′ : B′ is a basis of M/A};
(ii)′ {(E(M\A)−B′′)∪ ai : 1 ≤ i ≤ k and B′′ is a basis of M/ai\(A − ai)};

or

(iii)′ {(E(M\A)−B′′′)∪{ai, aj} : 1 ≤ i < j ≤ k and B′′′ is a basis of M\A}.

Now consider the bases of ∆A[(∆A(M))∗]. By Lemma 5.2.9, these bases are

precisely the members of the following sets:

(i)′′ {A ∪ X ′ : X ′ is a basis of (∆A(M))∗/A};
(ii)′′ {(A−ai)∪X ′′ : 1 ≤ i ≤ k and X ′′ is a basis of (∆A(M))∗/ai\(A − ai)};

and

(iii)′′ {(A−{ai, aj})∪X ′′′ : 1 ≤ i < j ≤ k and X ′′′ is a basis of (∆A(M))∗\A}.
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Now X ′ is a basis of (∆A(M))∗/A if and only if X ′ is a basis of [∆A(M)\A]∗.

The latter holds if and only if E(M\A) − X ′ is a basis of ∆A(M)\A, and, by

Lemma 5.2.8,this holds if and only if E(M\A)−X ′ is a basis of M\A. Similarly,

using Lemma 5.2.8 again, we obtain that X ′′ is a basis of (∆A(M))∗/ai\(A−ai)

if and only if E(M\A) −X ′′ is a basis of M/ai\(A − ai). Finally, X ′′′ is a basis

of (∆A(M))∗\A if and only if E(M\A) − X ′′′ is a basis of M/A. Thus a subset

of E(M) is a basis of [∆A[(∆A(M))∗]]∗ if and only if it is a member of one of

the following sets:

(i)′′′ {E(M\A) − X ′ : E(M\A) − X ′ is a basis of M\A};
(ii)′′′ {(E(M\A)−X ′′)∪ai : E(M\A) − X ′′ is a basis of M/ai\(A − ai) and

1 ≤ i ≤ k};
(iii)′′′ {(E(M\A) − X ′′′) ∪ {ai, aj} : E(M\A) − X ′′′ is a basis of M/A and

1 ≤ i < j ≤ k}.

Since the union of the sets (i)′′′-(iii)′′′ is the collection of bases of M , the lemma

is proved. �

The dual of the last result is the following.

Corollary 5.2.12. Let A be an independent set in a matroid M such that

every 3-element subset of A is a triad. Then ∆A(∇A(M)) = M is well-defined

and

∆A(∇A(M)) = M.

In the definition of a segment-cosegment exchange on a set A of M , we

have insisted that A must be a coindependent set of M . As we have seen, this

ensures that a cosegment-segment exchange can be performed on ∆A(M) to

recover M . From the perspective of the excluded-minor characterization that

will be discussed in Chapter 6, there is another good reason for imposing this

condition. As we shall show, if we perform a segment-cosegment exchange on

a matroid M that is an excluded minor for representability over a partial field

P, then we will obtain another excluded minor for the class of P–representable

matroids. However, if A is not coindependent in M , then there is no guarantee

that PA(Θk,M)\A is such an excluded minor. For example, if |A| = 3, then

PA(Θ3, U2,4)\A ∼= U3,4. However, although U2,4 is an excluded minor for the

class of binary matroids, U3,4 is not.

Recall that, for a ∆k–exchange to be defined, k ≥ 2.
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Lemma 5.2.13. Suppose that ∆A(M) is defined. If x ∈ A and |A| = k ≥ 3,

then ∆A−x(M\x) is also defined and

∆A(M)/x = ∆A−x(M\x).

Proof. By relabelling if necessary, we may assume that x = a1. If D is a

basis of ∆A(M)/a1, then D∪a1 is a basis of ∆A(M). Therefore, by Lemma 5.2.9,

the collections of type (i)-(iii) bases of ∆A(M)/a1 are

(i) {(A − a1) ∪ X ′ : X ′ is a basis of M/A};
(ii) {(A − {a1, ai}) ∪ X ′′ : 2 ≤ i ≤ k and X ′′ is a basis of M/ai\(A − ai)};

and

(iii) {(A − {a1, ai, aj}) ∪ X ′′′ : 2 ≤ i < j ≤ k and X ′′′ is a basis of M\A}.

Now ∆A−a1
(M\a1) is easily seen to be defined. By Lemma 5.2.9 again, the

collections of type (i)-(iii) bases of ∆A−a1
(M\a1) are

(i) {(A − a1) ∪ Y ′ : Y ′ is a basis of M\a1/(A − a1)};
(ii)

{(A − {a1, ai}) ∪ Y ′′ : 2 ≤ i ≤ k and Y ′′ is a basis of M\a1/ai\(A − {a1, ai})};

and

(iii)

{(A − {a1, ai, aj}) ∪ Y ′′′ : 2 ≤ i < j ≤ k and Y ′′′ is a basis of M\a1\(A − a1)}.

Since |A| ≥ 3, the element a1 is a loop of M/(A− a1). Hence M\a1/(A− a1) =

M/A. Furthermore, M\a1/ai\(A − {a1, ai}) = M/ai\(A − ai) and M\a1\(A −
a1) = M\A. Hence the collection of bases of ∆A(M)/a1 is equal to the collection

of bases of ∆A−a1
(M\a1), and the lemma follows. �

By dualizing Lemma 5.2.13, we get Corollary 5.2.14.

Corollary 5.2.14. Suppose that ∇A(M) is defined. If x ∈ A and |A| ≥ 3,

then ∇A−x(M/x) is also defined and

∇A(M)\x = ∇A−x(M/x).

Lemma 5.2.15. Suppose x ∈ clM (A) − A and let a be an arbitrary element

of the k–element set A. Then ∆A(M)/x equals the 2-sum, with basepoint p,
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of a copy of Uk−1,k+1 with ground set A ∪ p and the matroid obtained from

M/x\(A − a) by relabelling a as p.

Proof. Clearly ∆A(M)/x = PA(Θk,M)\A/x. Now let

Θ′
k = PA(Θk,M)|(E(Θk) ∪ x).

As A is a modular line of Θk, and x lies in the closure of this line in M , it

follows that A ∪ x is a modular line of Θ′
k. Thus PA(Θk,M) = PA∪x(Θ′

k,M),

so PA(Θk,M)/x = PA∪x(Θ′
k,M)/x. Moreover, by [4, Proposition 5.11], the

last matroid equals P[M |(A∪x)]/x(Θ′
k/x,M/x). But M |(A ∪ x) ∼= U2,k+1, so

[M |(A ∪ x)]/x ∼= U1,k. It follows, since a ∈ A, that PA(Θk,M)/x\(A − a) is

the parallel connection, with basepoint a, of Θ′
k/x\(A − a) and M/x\(A − a).

Thus PA(Θk,M)/x\A is the 2-sum of the last two matroids. When we recall

the ground-set relabelling that is done in forming ∆A(M), we obtain the lemma

provided we can show that Θ′
k/x\(A − a) ∼= Uk−1,k+1. To establish this isomor-

phism, it suffices to show that Θ′
k/x\(A − a) has no non-spanning circuits.

Suppose that Θ′
k/x\(A − a) has a non-spanning circuit C. Then either (i)

C∪x is a non-spanning circuit of Θ′
k\(A−a), or (ii) C is a circuit of Θ′

k\(A−a)\x
of size at most k − 1. But Θ′

k\(A − a)\x = Θk\(A − a) and the last matroid

has no circuits of size less than k. Hence (ii) cannot occur. Suppose that (i)

occurs. Then, since every hyperplane of Θk that is spanned by a proper subset

of B meets A in exactly one element, C must contain a. It follows that C spans

A in Θk, so |C| = k; a contradiction. �

Both parts of the next lemma can be proved by comparing collections of

bases as above. We omit the straightforward details.

Lemma 5.2.16. Suppose that ∆A(M) is defined.

(i) If x ∈ E(M) − A and A is coindependent in M\x, then ∆A(M\x) is

defined and

∆A(M)\x = ∆A(M\x).

(ii) If x ∈ E(M) − cl(A), then ∆A(M/x) is defined and

∆A(M)/x = ∆A(M/x).

The next result is a useful consequence of the last lemma.
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Corollary 5.2.17. Suppose that x ∈ E(M) − A and |A| ≥ 3.

(i) Suppose that ∆A(M) is defined.

(a) If M\x is 3–connected, then ∆A(M\x) is defined and

∆A(M)\x = ∆A(M\x).

(b) If M/x is 3–connected, then ∆A(M/x) is defined and

∆A(M)/x = ∆A(M/x).

(ii) Suppose that ∇A(M) is defined.

(a) If M\x is 3–connected, then ∇A(M\x) is defined and

∇A(M\x) = ∇A(M)\x.

(b) If M/x is 3–connected, then ∇A(M/x) is defined and

∇A(M/x) = ∇A(M)/x.

Proof. By duality, it suffices to prove (i). Clearly (a) holds by part (i) of

Lemma 5.2.16 unless A is not coindependent in M\x. But, in the exceptional

case, since A is a coindependent rank–2 set in M , it follows that {A,E(M) −
(A ∪ x)} is a 2–separation of M\x; a contradiction. Part (b) is an immediate

consequence of Lemma 5.2.16(ii) for, if x ∈ cl(A) − A, then M/x is not 3–

connected since it has A as a parallel class but has at least four elements. �

Lemma 5.2.18. Let M be a matroid, and S and T be disjoint subsets of

E(M) such that |S| ≥ 2 and |T | ≥ 2. If M |S ∼= U2,|S| and M |T ∼= U2,|T |, and

both S and T are coindependent in M , then

∆S(∆T (M)) = ∆T (∆S(M)).

Proof. Since T is coindependent in M , there is a basis of M avoiding

T . It follows, by Lemma 5.2.9, that ∆S(M) has a basis avoiding T , so T is

coindependent in ∆S(M). Moreover, ∆S(M)|T = M |T . Hence ∆T (∆S(M)) is

well-defined and, similarly, so is ∆S(∆T (M)). We now establish the equality of

these two matroids. Using the fact that a set is a flat of a generalized parallel

connection of two matroids if and only if its intersection with each of the matroids

is a flat in that matroid [17, Proposition 12.4.13], it is routine to deduce that

PS(Θ|S|, PT (Θ|T |,M)) = PT (Θ|T |, PS(Θ|S|,M)).
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As S and T are disjoint, this implies that

[PS(Θ|S|, PT (Θ|T |,M))\T ]\S = [PT (Θ|T |, PS(Θ|S|,M))\S]\T.

Therefore, by a result of Brylawski [4, Proposition 5.11] (see also [17, Proposi-

tion 12.4.14]),

PS(Θ|S|, PT (Θ|T |,M)\T )\S = PT (Θ|T |, PS(Θ|S|,M)\S)\T,

which in turn implies that

PS(Θ|S|,∆T (M))\S = PT (Θ|T |,∆S(M))\T.

Hence

∆S(∆T (M)) = ∆T (∆S(M))

as required. �

Corollary 5.2.19. Let M be a matroid, and S and T be disjoint subsets of

E(M) such that |S| ≥ 2 and |T | ≥ 2.

(i) If M∗|S ∼= U2,|S| and M∗|T ∼= U2,|T |, and both S and T are independent

in M , then

∇S(∇T (M)) = ∇T (∇S(M)).

(ii) If M∗|S ∼= U2,|S| and S is independent in M , and M |T ∼= U2,|T | and T

is coindependent in M , then

∇S(∆T (M)) = ∆T (∇S(M)).

Proof. Part (i) follows without difficulty from the last lemma by using

duality. Consider (ii). By Lemma 5.2.11,

∇S(∆T (M)) = ∇S [∆T [∆S(∇S(M))]],

= ∇S [∆S[∆T (∇S(M))]], by Lemma 5.2.18,

= ∆T (∇S(M)), as required.

�

Two elements x and x′ are clones in a matroid M if the map that fixes every

element of E(M) − {x, x′}, but interchanges x and x′, is an automorphism of

M . Thus, up to labelling, two such elements are indistinguishable in M . The

study of clones was initiated in [9, Section 4]. A straightforward consequence of

the definition of clones is that if x and x′ are clones of M , and N is a minor of
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M containing {x, x′}, then x and x′ are clones in N . We use this property in

the next result.

Lemma 5.2.20. Let x and x′ be clones in a matroid M . If A ∩ {x, x′} is

empty or A ⊇ {x, x′}, then x and x′ are clones in ∆A(M). Moreover, if {x, x′}
is independent in M , it is independent in ∆A(M), and if {x, x′} is coindependent

in M , it is coindependent in ∆A(M).

Proof. The lemma is straightforward if A ⊇ {x, x′} and we omit the details.

Now assume that A∩{x, x′} is empty. First suppose that {x, x′} is independent

in M . Since A is coindependent in M , there is a subset of E(M)−A containing

{x, x′} that is a basis of M . Therefore, by Lemma 5.2.9, there is a basis of type

(iii) of ∆A(M) containing {x, x′}, so {x, x′} is independent in ∆A(M). Now

suppose {x, x′} is coindependent in M . Then E(M) − {x, x′} spans M and

therefore spans ∆A(M). Hence {x, x′} is coindependent in ∆A(M).

We show next that x and x′ are clones in ∆A(M). Let B(∆A(M)) denote

the collection of bases of ∆A(M) and let B′(∆A(M)) be the set obtained from

B(∆A(M)) by interchanging the elements x and x′, and fixing every other ele-

ment of E(M). By the definition of clones, it suffices to show that B(∆A(M)) =

B′(∆A(M)). By Lemma 5.2.9, the collection of bases of ∆A(M) consists of the

union, over all subsets A′ of A having size at least |A| − 2, of the collection BA′

of bases that meet A in A′. But each such BA′ is obtained by adjoining A′ to

every basis of some fixed minor MA′ of M , where MA′ has ground set E(M)−A

and depends only on A′. Therefore, since x and x′ are clones in each MA′ , it

follows that B(∆A(M)) = B′(∆A(M)), as desired. �

The dual of the last lemma is as follows.

Corollary 5.2.21. Let x and x′ be clones in a matroid M . If A∩{x, x′} is

empty or A ⊇ {x, x′}, then x and x′ are clones in ∇A(M). Moreover, if {x, x′}
is independent in M , it is independent in ∇A(M), and if {x, x′} is coindependent

in M , it is coindependent in ∇A(M).
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5.3. The excluded minors for P–representability

In this section, we show that, for a partial field P, the set of excluded minors

for P–representability is closed under both ∆– and ∇–exchanges. In particular,

we prove the following theorem.

Theorem 5.3.1. Let P be a partial field and M be an excluded minor for

the class M(P) of matroids representable over P. Let A be a subset of E(M).

(i) If M |A is isomorphic to a rank–2 uniform matroid and A is coindepen-

dent in M , then ∆A(M) is an excluded minor for M(P).

(ii) Dually, if A is independent in M and M∗|A is isomorphic to a rank–2

uniform matroid, then ∇A(M) is an excluded minor for M(P).

The proof of Theorem 5.3.1 will require some more preliminaries.

Evidently both Θ2 and Θ3 are regular matroids. The next two results, Lem-

mas 5.3.2 and 5.3.3, make frequent use of Propositions 2.1.1 and 2.1.2.

Lemma 5.3.2. Θk is (k − 3)–regular for all k ≥ 4.

Proof. By our definition of Θk, it suffices to show that the matrix [Ik|Dk]

over Q(α1, α2, . . . , αk−3) is (k−3)–unimodular. Thus we need to show that if X

is an m×m submatrix of [Ik|Dk], then det(X) is in Ak−3∪{0}. This is certainly

true if m ≤ 2. Now suppose that m ≥ 3. By Proposition 2.1.2, we may assume

that X is a submatrix of Dk. If X avoids one of the first two rows or one of the

first two columns of Dk, then, it follows by Proposition 2.1.2 and the fact that

all non-zero 2 × 2 subdeterminants of Dk are in Ak−3, that the determinant of

X is either zero or in Ak−3. Thus we may also assume that X meets both the

first two rows and the first two columns of Dk. Hence X is of the form























0 1 1 1 · · · 1

−1 0 y1 y2 · · · yn

1 x1 0 0 0

1 x2 0 0 0
...

...
. . .

1 xn 0 0 0























,
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where x1, x2, . . . , xn, y1, y2, . . . , yn are elements of {1, α1, α2, . . . , αk−3}.

Let X ′ be the matrix obtained from X by pivoting on the (1, 3)–entry. Then

X ′ is























0 1 1 1 · · · 1

−1 −y1 0 y2 − y1 · · · yn − y1

1 x1 0 0 0

1 x2 0 0 0
...

...
. . .

1 xn 0 0 0























.

By Proposition 2.1.1, the determinant of X is in Ak−3 ∪ {0} if and only if the

determinant of X ′ is in Ak−3 ∪ {0}. By expanding the determinant of X ′ down

the last column, we see that det(X ′) is either zero or is in Ak−3. We conclude

that [Ik|Dk] is (k − 3)–unimodular and the lemma follows. �

Let X be the following matrix

[

1 0 1 1 1 · · · 1

0 1 1 α1 α2 · · · αk−3

]

over Q(α1, α2, . . . , αk−3). Then X is a (k − 3)–unimodular representation for

U2,k for all k ≥ 3. Moreover, it is clear that we can extend this (k − 3)–

unimodular representation of U2,k to a (k−3)–unimodular representation of Θk.

Up to permuting columns, this extended matrix is [Ik|Dk], which we used to

define the matroid Θk. Now let P be a partial field. Suppose there are k − 3

distinct elements x1, x2, . . . , xk−3 in P − {0, 1} such that, for all distinct i and

j in {1, 2, . . . , k − 3}, both xi − 1 and xi − xj are in P. Let X ′ be the matrix

obtained from X by replacing αi by xi for all i. Then X ′ is a P–representation

for U2,k. Consider the matrix [Ik|Dk]′ obtained from [Ik|Dk] by replacing αi by

xi for all i. Certainly [Ik|Dk]
′ extends the matrix X ′. Moreover, by Lemma 5.3.2

and the remarks following Proposition 3.1.1, [Ik|Dk]
′ is a P–representation for

Θk. Thus, given a P–representation of U2,k in the form displayed above, one can

always extend it to a P–representation for Θk. We make use of this property of

U2,k and P in the next lemma.
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Recall that a matrix X over a partial field P is a P–matrix if det(X ′) is

defined for every square submatrix X ′ of X.

Lemma 5.3.3. Let k ≥ 2 and let M be a matroid such that M |A ∼= U2,k. If

M and Θk are both representable over P, then the generalized parallel connection

PA(Θk,M) of Θk and M across A is representable over P.

Proof. The result is clear for k = 2. Therefore assume that k ≥ 3. By

Proposition 2.1.4, we may assume that M has as a P–representation the matrix

Y =







Y1 0

Y2
1 0 1 1 1 · · · 1

0 1 1 y1 y2 · · · yk−3







where y1, y2, . . . , yk−3 are distinct elements of P− {0, 1} such that, for all i and

j in {1, 2, . . . , k − 3}, both yi − 1 and yi − yj are in P. By Lemma 5.2.4, A is

a modular line of Θk. Furthermore, by the remarks preceding the statement of

this lemma, the 2×k submatrix in the bottom-right corner of Y can be extended

to a P–representation of Θk. Let Z be the matrix









































Y1 0 0 0

Y2
1 0 1 1 1 · · · 1

0 1 1 y1 y2 · · · yk−3
0

0 1

−1 0

0 0 Ik−2

1 1

1 y1

1 y2

...
...

1 yk−3









































.

We shall show that Z is a P–matrix. From this it will follow that Z is a P–

representation of PA(Θk,M). To see this, let N be the matroid that is rep-

resented by Z. Then N/A is isomorphic to (M/A) ⊕ (Θk/A). Thus, by the

extension of [4, Proposition 5.9] to matroids [17, Proposition 12.4.15], N =

PA(Θk,M), as required.



Generalized ∆ − Y exchange 68

To complete the proof, we now show that all subdeterminants of Z are

defined. Label the last two columns of Z by b1 and b2, respectively. Also label

the last k − 2 rows of Z by b3, b4, . . . , bk. Let Z ′ be a square submatrix of Z.

By Proposition 2.1.2, to verify that Z is a P–matrix, we may assume that Z ′

avoids the third column of blocks of Z. If Z ′ avoids both of the columns b1

and b2, or all of the rows b3, b4, . . . , bk, then det(Z ′) is defined since Y is a P–

representation for M . Thus, by Proposition 2.1.2, we may assume that Z ′ meets

the block B in the bottom-right corner of Z. Let Z ′′ be the matrix obtained

from Z ′ by pivoting on a non-zero entry z′ij of Z ′ that is also in B. Then, by

Proposition 2.1.1, det(Z ′) is defined if and only if det(Z ′′) is defined. Now the

only entries of Z ′ that are affected by this pivot are those that correspond to

the last two columns of Z. Let Z ′′
ij denote the matrix obtained from Z ′′ by

deleting the i-th row and j-th column. If Z ′ meets B in one column, then, by

Proposition 2.1.2 and the fact that Y is a P–representation for M , it follows

that det(Z ′′
ij) is defined and, therefore, so is det(Z ′). Therefore we may assume

that Z ′ meets B in two columns. If Z ′ meets B in at least two rows, then, by

pivoting twice in Z ′, once on z′ij and once on an entry of B that is in a different

row and column from z′ij , we deduce that det(Z ′) is defined. Thus we may also

assume that Z ′ meets B in exactly one row and two columns. Hence Z ′ is a

submatrix of the matrix











Y1 0 0

Y2
1 0 1 1 1 · · · 1

0 1 1 y1 y2 · · · yk−3

0 1

−1 0

0 0 1 z′











,

where z′ is an element of {1, y1, y2, . . . , yk−3}. If Z ′ avoids either the second- or

third-last rows of this matrix, then, by Proposition 2.1.2, it is easily seen that

det(Z ′) is defined. Therefore Z ′ meets the last three rows and last two columns of

the above matrix. Now let Z ′′ be the matrix obtained from Z ′ by adding the last

row to the second-last row of Z ′ and then deleting the last row and second-last

column of the resulting matrix. Then, by Propositions 2.1.1 and 2.1.2, det(Z ′) is

defined if and only if the determinant of det(Z ′′) is defined. Since Z ′′ is either a

submatrix of Y or a submatrix of Y with one column repeated, the latter holds.

Thus Z is a P–matrix and so Z is a P–representation for PA(Θk,M). �
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The next result, Corollary 5.3.4, generalizes [36, Lemma 5.7] from a ∆3–

exchange to a segment-cosegment exchange of arbitrary size. Recall that two

matrix representations of a matroid over a partial field P are equivalent if one can

be obtained from the other by a sequence of the following operations: permuting

rows; permuting columns (along with their labels); multiplying a row or column

by a non-zero element of P; replacing a row by the sum of that row and another;

and applying an automorphism of P to the entries of the matrix. The two matrix

representations are strongly equivalent if one can be obtained from the other by

a sequence of these operations that avoids applying an automorphism of the

partial field P.

Corollary 5.3.4. Let P be a partial field and let M be a matroid. If M

is P–representable, then the strong-equivalence classes of P–representations of

M are in one-to-one correspondence with the strong-equivalence classes of P–

representations of ∆A(M).

Proof. By Lemma 5.3.3, ∆A(M) is P–representable. Let Y and Z, respec-

tively, denote the first two matrices in the proof of Lemma 5.3.3. Now consider

the P–representations of M and ∆A(M) given, respectively, by the matrix Y

and the matrix Z ′ obtained from Z by deleting the second column of blocks.

Just as we may assume that a P–representation of M has the same form as Y ,

we may also assume that a P–representation of ∆A(M) has the same form as

Z ′. The corollary now follows by observing the canonical bijection between these

two P–representations. �

Corollary 5.3.5. Let M(P) be the class of matroids representable over the

partial field P. Let M be a matroid. Then M is in M(P) if and only if ∆A(M)

is in M(P).

Proof. If M is in M(P), then, by Lemma 5.3.3, ∆A(M) is in M(P).

Now suppose that ∆A(M) is in M(P). By Lemma 5.2.11, ∇A(∆A(M)) is

well-defined and equal to M . Therefore it suffices to show that ∇A(∆A(M))

is in M(P). By Proposition 2.1.6, M(P) is closed under duality. Therefore,

as ∇A(∆A(M)) = [∆A[(∆A(M))∗]]∗ and ∆A(M) is in M(P), it follows by

Lemma 5.3.3 that ∇A(∆A(M)) is in M(P). �

We now prove Theorem 5.3.1.
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Proof of Theorem 5.3.1. Since (ii) is the dual of (i), the theorem is

proved by showing that (i) holds. Let M ′ = ∆A(M) and let |A| = k. If k = 2,

then M ′ ∼= M and so M ′ is an excluded minor for M(P). Therefore assume

that k ≥ 3. Suppose that M ′ is not an excluded minor for M(P). Then, by

Corollary 5.3.5, there is an element x of E(M ′) such that either M ′\x or M ′/x

is not in M(P). The proof is partitioned into four cases:

(i) x ∈ A and M ′/x 6∈ M(P);

(ii) x ∈ A and M ′\x 6∈ M(P);

(iii) x 6∈ A and M ′/x 6∈ M(P); and

(iv) x 6∈ A and M ′\x 6∈ M(P).

By Proposition 2.1.6, both the parallel connection and the 2-sum of two

matroids in M(P) is also in M(P). In the proof of cases (i)–(iv), we freely use

this fact.

Case (i). x ∈ A and M ′/x 6∈ M(P).

By Lemma 5.2.13, M ′/x = ∆A(M)/x = ∆A−x(M\x). Thus, as M\x ∈
M(P), it follows that ∆A−x(M\x), and hence M ′/x, is also in M(P); a contra-

diction.

Case (ii). x ∈ A and M ′\x 6∈ M(P).

Since every 3-element subset of A is a triad of M ′, it follows that the elements

of A − x are in series in M ′ − x. Thus M ′\x is isomorphic to the 2-sum of

M\(A − x) and a circuit and so M ′\x is certainly in M(P); a contradiction.

Case (iii). x 6∈ A and M ′/x 6∈ M(P).

First suppose that rM/x(A) = 2. Then, by Lemma 5.2.16,

M ′/x = ∆A(M)/x = ∆A(M/x).

Now M/x ∈ M(P). Therefore, by Corollary 5.3.5, ∆A(M/x), and hence M ′/x,

is in M(P). This contradiction implies that rM/x(A) 6= 2. Hence we may assume

that rM/x(A) = 1, that is, x ∈ clM (A). Then M |(A ∪ x) ∼= U2,k+1 and, since

A is coindependent in M , the ground set of M properly contains A ∪ x. Thus

U2,k+1 ∈ M(P) and hence Uk−1,k+1 ∈ M(P). Now, by Lemma 5.2.15, M ′/x

is isomorphic to the 2-sum of M/x\(A − a) and a copy of Uk−1,k+1, where a is
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some element of A. Since the last two matroids are both in M(P), we obtain

the contradiction that M ′/x ∈ M(P).

Case (iv). x 6∈ A and M ′\x 6∈ M(P).

Since M ′ = PA(Θk,M)\A, it follows that M ′\x = PA(Θk,M\x)\A. But

M\x ∈ M(P), so by Lemma 5.3.3, PA(Θk,M\x) ∈ M(P). Hence M ′\x ∈
M(P); a contradiction. 2



CHAPTER 6

Unique representability of k–regular matroids

In this chapter, we at last prove that, for all k ≥ 0, all ω–unimodular repre-

sentations of a 3–connected matroid are equivalent. Recall that this is stated as

Theorem 6.1.2. Before proving this result, however, we prove two other results.

The first of these results, Theorem 6.3.17, establishes, for a prime power

q, that the number of excluded minors for GF (q)–representability is at least

2q−4. We note that the bound in this theorem can be improved. The point

of the theorem is not to provide a sharp bound but rather to show that the

number of excluded minors for GF (q)–representability is at least exponential

in q. Theorem 6.3.17 highlights the difficulty, in general, of characterizing the

class of GF (q)–representable matroids via excluded minors and the importance

of Rota’s conjecture in matroid representation theory.

The second result, Theorem 6.1.1, determines, for all k ≥ 0, the ω–regular

excluded minors for the class of k–regular matroids. It turns out that, for all

k, there is a finite list of ω–regular excluded minors for the class of k–regular

matroids. Essentially, all of the work in proving Theorem 6.1.2 goes into proving

Theorem 6.1.1. Although much work needs to be done, Theorem 6.1.1, and hence

Theorem 6.1.2, is proved by a finite case check. This case check is provided by

the theory of “stabilizers” and “universal stabilizers” initiated in [36] and [9],

respectively. It would certainly be of interest to know for which other classes

of matroids, that are representable over a partial field, the techniques of this

chapter can be applied and similar results obtained.

The organization of this chapter is as follows. In the next section, we formally

state Theorems 6.1.1 and 6.1.2. Section 6.2 outlines the definitions and results

from the theory of stabilizers and universal stabilizers that will be needed to

prove Theorems 6.1.1 and 6.1.2. In Section 6.3, we study a class of matroids

that plays a fundamental role in Theorem 6.1.1. Section 6.3 ends with the proof

of Theorem 6.3.17. Theorems 6.1.1 and 6.1.2 are proved in Section 6.4.

72
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6.1. Two theorems on k–regular matroids

Let M and N be matroids. Then M is ∆ − ∇–equivalent to N if there is

a sequence M0,M1, . . . ,Mn of matroids such that, for all i in {1, 2, . . . , n}, the

matroid Mi is obtained from Mi−1 by either a ∆–exchange or a ∇–exchange,

M0 = N , and Mn
∼= M . If M is ∆−∇–equivalent to N , then, by Lemma 5.2.11

and Corollary 5.2.12, N is ∆ − ∇–equivalent to M . For m ≥ 4, let Λm denote

the class of matroids that are ∆−∇–equivalent to U2,m. In other words, if M is

a member of Λm, then M can be obtained from U2,m by a sequence of operations

each of which consists of a segment-cosegment or a cosegment-segment exchange.

We can now formally state Theorems 6.1.1 and 6.1.2.

Theorem 6.1.1. Let M be an ω–regular matroid and let k ≥ 1. Then

(i) M is regular if and only if it has no minor isomorphic to U2,4; and

(ii) M is k–regular if and only if it has no minor isomorphic to any member

of Λk+4 ∪ {U3,k+4, Uk+1,k+4}.

Theorem 6.1.2. Let k ≥ 0 and let M be a 3–connected k–regular matroid.

Then all ω–unimodular representations of M are equivalent.

6.2. Preliminaries

The proofs of Theorems 6.1.1 and 6.1.2 both rely on the theory of stabilizers

and universal stabilizers initiated in [36] and [9], respectively. In this section, we

outline the definitions and results from these papers that will be used in proving

Theorems 6.1.1 and 6.1.2. Note that the material presented in this section will

not be needed until Section 6.4.

Stabilizers. A well-closed class of matroids is one that is minor-closed, closed

under isomorphism, and closed under duality. For example, the class of ma-

troids representable over a certain partial field is a well-closed class. Recall

that two matrix representations of a matroid over a partial field P are strongly

equivalent if one can be obtained from the other by a sequence of the matrix

operations that define equivalent representations, but without needing to apply

an automorphism of P.
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Let P be a partial field and let M and N be matroids representable over P

such that N is a minor of M . Then N stabilizes M over P if a P–representation

of M is determined up to strong equivalence by a P–representation of any one

of its N–minors. In other words, if a P–representation of N can be extended

to a P–representation of M , then all such representations of M are strongly

equivalent.

Let N be a well-closed class of P–representable matroids and let N be a

matroid in N . Then N is a P–stabilizer for N (or N stabilizes N over P) if

N stabilizes every 3–connected matroid in N with an N–minor. Surprisingly,

determining whether a matroid is a P–stabilizer is a finite task.

Theorem 6.2.1. ([36, Theorem 5.8]) Let N be a well-closed class of matroids

representable over a partial field P and let N be a 3–connected matroid in N .

Then N stabilizes N over P if and only if N stabilizes every 3–connected matroid

M in N that has one of the following properties.

(i) M has an element x such that M\x = N .

(ii) M has an element y such that M/y = N .

(iii) M has a pair of elements x and y such that M\x/y = N , and both

M\x and M/y are 3–connected.

We can use stabilizers to bound the number of inequivalent representations

of a matroid over a partial field. The next result combines Proposition 5.4 and

Corollary 5.5 of [36]. Recall that a matroid M is uniquely representable over

a partial field P if all P–representations of M are equivalent. The class of all

P–representable matroids will be denoted by M(P).

Proposition 6.2.2. Let N be a P–stabilizer for M(P).

(i) If N has n inequivalent P–representations, then every 3–connected ma-

troid in M(P) with an N–minor has at most n inequivalent represen-

tations over P.

(ii) If N is uniquely representable over P, then every 3–connected matroid

in M(P) with an N–minor is uniquely representable over P.

Universal stabilizers. Recall from the previous chapter that x and x′ are

clones in a matroid M if the map that fixes every element of E(M) − {x, x′},
but interchanges x and x′, is an automorphism of M .
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Let x be an element of the matroid M . The matroid M ′ is obtained from M

by cloning x with x′ if M ′ is a single-element extension of M by x′, and x and x′

are clones in M ′. If it is not possible for x to be cloned with x′ so that {x, x′} is

independent, then x is fixed in M . Dually, x is cofixed in M if no single-element

coextension of M by x′ has the property that {x, x′} is a coindependent pair

of clones in this coextension. The next result [9, Proposition 4.7] enables us to

determine that an element is fixed in a matroid from the fact that it is fixed in

certain minors of the matroid.

Proposition 6.2.3. Let x be an element of a matroid M .

(i) If M has an element e such that x is fixed in M\e, then x is fixed in

M .

(ii) If M has distinct elements e and f such that {e, f, x} is independent in

M , and x is fixed in both M/e and M/f , then x is fixed in M .

Let N be a well-closed class of matroids. Let N be a 3–connected member

of N . Then N is a universal stabilizer for N if the following holds: whenever M

and M\x are 3–connected matroids in N for which M\x has an N–minor, the

element x is fixed in M ; and, whenever M and M/x are 3–connected matroids

in N for which M/x has an N–minor, the element x is cofixed in M . Just as

for stabilizers, the task of determining if a matroid is a universal stabilizer for a

well-closed class of matroids can be decided by a finite case check.

Theorem 6.2.4. ([9, Theorem 6.1]) Let N be a 3–connected matroid in a

well-closed class of matroids N and suppose that |E(N)| ≥ 2. Then N is a

universal stabilizer for N if and only if the following three conditions hold.

(i) If M is a 3–connected member of N with an element x such that M\x =

N , then x is fixed in M .

(ii) If M is a 3–connected member of N with an element y such that M/y =

N , then y is cofixed in M .

(iii) If M is a 3–connected member of N with a pair of elements x and y

such that M\x/y = N , and M\x is 3–connected, then x is fixed in M .

Let N be a member of a well-closed class of matroids N . The notion of

a universal stabilizer was introduced in [9] to identify the underlying matroid
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structure that ensures that, whenever P is a partial field over which N is repre-

sentable, N is a P–stabilizer for all members of N which are P–representable.

Indeed, we have the following result [9, Theorem 5.1].

Theorem 6.2.5. Let N be a 3–connected matroid that is a universal stabilizer

for a well-closed class N of matroids and let P be a partial field over which N

is representable. Then N is a P–stabilizer for the class N ∩M(P).

One last set of preliminaries is required. A flat of a matroid is cyclic if it is

the union of a set of circuits. Let x and y be elements of a matroid M . Then

x is freer than y in M if every cyclic flat of M that contains x also contains y.

Furthermore, if x is freer than y, but y is not freer than x, then x is strictly

freer than y. The next, and last, result of these preliminaries is a combination

of Proposition 4.4(i) and Proposition 4.5(iv) of [10].

Proposition 6.2.6. Let x and y be distinct elements of a matroid M .

(i) If x is fixed in M/y, but not in M , then x is freer than y.

(ii) If x is strictly freer than y in M and x is not a coloop of M , then y is

not cofixed in M .

6.3. Del-con trees

Recall that, for m ≥ 4, the class of matroids that are ∆ − ∇–equivalent

to U2,m is denoted by Λm. This section consists of a study of the class Λm of

matroids for all m ≥ 4. As indicated in the statement of Theorem 6.1.1, this

class is fundamental in the proofs of the main theorems of the next section.

Lemma 6.3.2 shows that Λm is closed under duality. As a step towards that

result, we first show that a rank–2 uniform matroid is ∆ −∇–equivalent to its

dual.

Lemma 6.3.1. Let E be the disjoint union of sets X and Y , and let N be a

rank–2 uniform matroid on E. If |X| ≥ 2 and |Y | ≥ 2, then

∆Y (∆X(N)) = N∗.

Proof. By Lemma 5.2.6, r(∆Y (∆X(N))) = |E| − 2. Now every 3–element

subset of Y is a triad of ∆Y (∆X(N)) and, since ∆Y (∆X(N)) = ∆X(∆Y (N)),
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every 3–element subset of X is a triad of ∆Y (∆X(N)). Thus [∆Y (∆X(N))]∗ is

a rank–2 uniform matroid on E unless it has a 2–circuit {x, y} for some x in X

and some y in Y . Hence we may assume that the exceptional case holds. Then,

for x′ in X − x, Lemma 5.2.20 implies that x and x′ are clones in ∆Y (∆X(N)).

Hence {x′, y} is a circuit of [∆Y (∆X(N))]∗ and, therefore, so too is {x, x′}; a

contradiction. �

Lemma 6.3.2. Let m ≥ 4. If M ∈ Λm, then M∗ ∈ Λm.

Proof. This is a straightforward consequence of the last lemma and the

fact that [∆A(N)]∗ = ∇A(N∗). The details are omitted. �

In general, 3–connectivity is not preserved under a ∆–exchange or, dually,

under a ∇–exchange. To see this, consider the following example. Let Q6 be

the matroid obtained by placing a point on the intersection of two lines of U3,5.

Then the matroid obtained from Q6 by performing a ∆3–exchange on one of

its triangles is not 3–connected. However, as we show next, every matroid in
⋃

m≥4 Λm is 3–connected.

Lemma 6.3.3. Let M be a matroid in
⋃

m≥4 Λm. Then M is 3–connected.

Proof. For all k ≥ 0, it follows from Corollary 4.2.2 that U2,k+4 is an

excluded minor for the class of k–regular matroids. By Theorem 5.3.1, so too is

every matroid that is ∆ −∇–equivalent to U2,k+4. Thus every matroid in Λk+4

is an excluded minor for the class of k–regular matroids. But, for all k ≥ 0, the

class of k–regular matroids is closed under the taking of direct sums and 2–sums.

Hence every excluded minor for this class must be 3–connected. In particular,

every member of Λk+4 is 3–connected, and so every member of
⋃

m≥4 Λm is

3–connected. �

Next we shall associate a particular type of labelled tree with every member

of
⋃

m≥4 Λm. Before specifying this association, we begin by describing the class

of trees being considered. A del-con tree is a tree T for which every vertex v is

labelled by one of the ordered pairs (Ev,del) or (Ev , con) such that the following

conditions hold:

(i) each Ev is a finite, possibly empty, set;

(ii) if u and v are distinct vertices, then Eu and Ev are disjoint;
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(iii) if v is a degree-one vertex of T , then |Ev | ≥ 2; and

(iv) if two vertices of T are adjacent, then the second coordinates of their

labels are different.

A vertex v of a del-con tree T will be referred to as a del or con vertex in the

obvious way, and the corresponding set Ev will be called a del or con class of T .

Now suppose v is a degree-one vertex of T . Let T ′ be the tree obtained from T

by deleting v and keeping all vertex labels inherited from T except on the unique

neighbour u of v in T . In the exceptional case, we retain the second coordinate

of the label, but change the first coordinate to Eu ∪ Ev. This operation on T is

called shrinking, and T ′ is said to be obtained from T by shrinking v into u.

Let T be a del-con tree and let |V (T )| = n. Let E =
⋃

v∈V (T ) Ev and assume

that |E| ≥ 4. We now describe how to obtain, from T , a matroid M(T ) that is

in Λm where m = |E|. Let T1, T2, . . . , Tn be a sequence of del-con trees such that

Tn = T and, for all i in {1, 2, . . . , n−1}, the tree Ti has i vertices and is obtained

from Ti+1 by shrinking a degree-one vertex into its unique neighbour. We call

such a sequence a chain of del-con trees. Since E =
⋃

v∈V (Tn) Ev, it follows that

E =
⋃

u∈V (Ti)
Eu for all i in {1, 2, . . . , n}. In particular, the unique vertex of T1

is labelled (E,del) or (E, con). We define M(T1) to have ground set E and to

be isomorphic to U2,|E| or U|E|−2,|E| depending on whether the vertex of T1 is

a del or a con vertex. In general, for all i ≥ 1, if Ti is obtained from Ti+1 by

shrinking the vertex v into the vertex u, we define M(Ti+1) to be ∆Ev(M(Ti))

or ∇Ev(M(Ti)) according to whether v is labelled (Ev, con) or (Ev ,del). Define

M(T ) = M(Tn). We need to show that M(T ) is well-defined. The proof of this

will use the following lemma, the straightforward proof of which follows from

Lemma 6.3.1 and the definition of a ∇–exchange.

Lemma 6.3.4. Let the ground set E of U2,|E| be the disjoint union of sets X

and Y . If |X| ≥ 2 and |Y | ≥ 2, then

∆X(U2,|E|) = ∇Y (U|E|−2,|E|).

Lemma 6.3.5. Let T be a del-con tree, let E =
⋃

v∈V (T ) Ev, and assume that

|E| ≥ 4. The matroid M(T ) is a well-defined member of Λ|E|. Moreover, if v is

a vertex of T and |Ev| ≥ 2, then either v is a del vertex and M(T )|Ev is uniform

of rank two, or v is a con vertex and M(T ).Ev is uniform of corank two.

Proof. We prove both parts of the lemma simultaneously, arguing by in-

duction on |V (T )|. We note first that the result is certainly true if |V (T )| = 1. If
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|V (T )| = 2, let V (T ) = {v1, v2}. Without loss of generality, we may assume that

v1 is a del vertex and v2 is a con vertex. Then M(T ) can be constructed in ex-

actly two ways: from the del-con tree obtained by shrinking v2 into v1, and from

the del-con tree obtained by shrinking v1 into v2. The first of these constructions

yields ∆Ev2
(U2,|E|) and the second ∇Ev1

(U|E|−2,|E|). But, by Lemma 6.3.4, these

are equal and each is in Λ|E|. Moreover, M(T )|Ev1
is uniform of rank two and

M(T ).Ev2
is uniform of corank two.

Now let |V (T )| = n ≥ 3, and assume that every matroid obtained from a

del-con tree T ′ with fewer vertices is well-defined and is in Λm, where m is the

cardinality of the union of the first coordinates of the vertex labels of T ′. Assume

also that, for every such T ′, the restriction to every del class of M(T ′) of size at

least two is uniform of rank two and the contraction to every con class of M(T ′)

of size at least two is uniform of corank two. We need to show that M(T ) is

independent of the chain of del-con trees used in its construction. For each j in

{1, 2}, let T1j , T2j , . . . , Tnj be a chain of del-con trees such that Tnj = T . We

shall show next that M(Tn1) = M(Tn2) and that this matroid is in Λ|E|.

Suppose first that T(n−1)1 = T(n−1)2. Then, by the induction assumption,

M(T(n−1)1) = M(T(n−1)2) and this matroid is ∆ − ∇–equivalent to U2,|E|. By

Lemma 6.3.3, M(T(n−1)1) is 3–connected. Let the vertex v be shrunk into the

vertex u in Tn1 to produce T(n−1)1. Assume first that u is a del vertex of T(n−1)1.

Then, by the induction assumption, M(T(n−1)1)|(Eu ∪ Ev) is uniform of rank

two. Therefore, as M(T(n−1)1) is 3–connected, Ev is a coindependent set of this

matroid. Thus, when u is a del vertex of T(n−1)1, the matroid M(Tn1), which

equals ∆Ev(M(T(n−1)1), is a well-defined member of Λ|E|. A similar argument

shows that M(Tn1) is a well-defined member of Λ|E| when u is a con vertex of

T(n−1)1.

We may now assume that T(n−1)1 6= T(n−1)2 and that T(n−1)i is obtained by

shrinking vi into ui for each i where v1 6= v2. Since |V (T )| ≥ 3, the vertices v1 and

u2 are distinct, as are v2 and u1. Let T ′′ be the del-con tree obtained from T(n−1)1

by shrinking v2 into u2. Then T ′′ can also be obtained from T(n−1)2 by shrinking

v1 into u1. Now, by the induction assumption, each of M(T ′′), M(T(n−1)1), and

M(T(n−1)2) is a well-defined member of Λ|E| and hence is independent of the

chain of del-con trees used to construct it. First suppose that v1 and v2 are both
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con vertices of T . Then

M(Tn1) = ∆Ev1
(M(T(n−1)1))

= ∆Ev1
[∆Ev2

(M(T ′′))]

= ∆Ev2
[∆Ev1

(M(T ′′))], by Lemma 5.2.18,

= ∆Ev2
(M(T(n−1)2))

= M(Tn2).

Moreover, the matroid M(Tn1) is certainly in Λ|E|. Similar arguments establish

that M(Tn1) = M(Tn2) and that this matroid is in Λ|E| when v1 and v2 are both

del vertices, and when one is a del vertex and one a con vertex.

It remains to establish that the restriction of M(T ) to a del class of size at

least two is uniform of rank two and the contraction of M(T ) to a con class of

size at least two is uniform of corank two.

Recall that T(n−1)1 is obtained from Tn1 by shrinking v1 into u1. We shall

only treat the case when v1 is a con vertex, as a similar argument covers the

other case. Clearly M(Tn1).Ev1
is uniform of corank two and, if |Eu1

| ≥ 2,

then M(Tn1)|Eu1
is uniform of rank two. Now let w be a vertex of T other

than u1 or v1. If w is a del vertex of Tn1, then it is a del vertex of T(n−1)1

and so every 3–element subset X of Ew is a triangle of M(T(n−1)1). Since

M(T(n−1)1)|X = M(Tn1)|X for every such set X, it follows that M(Tn1)|Ew

is uniform of rank two. If w is a con vertex of Tn1, then it is a con vertex of

T(n−1)1 and so every 3–element subset Y of Ew is a triad of M(T(n−1)1) that is

disjoint from Ev1
∪ Eu1

and hence is disjoint from the closure in M(T(n−1)1) of

the last set. Thus Y is a triad of the generalized parallel connection across Ev1
of

M(T(n−1)1) and Θ|Ev1
|. Now M(Tn1) is a spanning restriction of this generalized

parallel connection. Since M(Tn1) is 3–connected, it follows that Y , which must

contain a cocircuit of this matroid, is actually equal to a cocircuit of M(Tn1).

Thus M(Tn1).Ew is uniform of corank two. �

A del-con tree T is reduced if there is no vertex v of V (T ) such that either

d(v) = 1 and |Ev | = 2, or d(v) = 2 and Ev is empty. Given a del-con tree T that

is not reduced, one can obtained a reduced del-con tree T ′ from T by a sequence

of the following two operations:
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(i) Suppose there is an element v of V (T ) such that d(v) = 1 and |Ev| = 2.

Let u be the unique neighbour of v in T . Then T is replaced by the

tree that is obtained from it by shrinking v into u.

(ii) Suppose there is an element v of V (T ) such that d(v) = 2 and Ev is

empty. Let u and w be the neighbours of v in T . Then u and w have

the same second coordinate. Let T/{uv, vw} denote the tree obtained

from T by contracting the edges {u, v} and {v,w}. Then T is replaced

by T/{uv, vw} with all vertices of T/{uv, vw} retaining their labels

from T except the vertex that identifies u, v, and w. That vertex has

Eu ∪Ew as its first coordinate, and its second coordinate is the second

coordinate of u and w.

Lemma 6.3.6. Let T be a del-con tree and let T ′ be obtained from T by

applying either of the reduction operations above. Then M(T ) = M(T ′).

Proof. Suppose there is a vertex v of T such that d(v) = 1 and |Ev| = 2.

Let u be the unique neighbour of v in T and let T ′ be the del-con tree obtained

from T by shrinking v into u. By definition, either M(T ) = ∇Ev(M(T ′)) or

M(T ) = ∆Ev(M(T ′)) depending on whether v is a del or con vertex of T ,

respectively. Since |Ev | = 2, it follows that, in both cases, M(T ) = M(T ′).

Now suppose that v is a vertex of T such that d(v) = 2 and |Ev | = 0. Let u

and w be the neighbours of v in T . The graph T −v has exactly two components,

Tu and Tw containing u and w, respectively. From T , we construct a sequence of

del-con trees as follows. Pick a vertex of Tu that is the maximum distance from

u, and hence has degree one, and, in T , shrink this vertex into its neighbour.

Repeat this process until the only remaining vertex of Tu is u itself. Let T ′
u be

the del-con tree that is obtained at the conclusion of this process. Now consider

Tw. Pick a vertex of it that is the maximum distance from w and, in T ′
u, shrink

this vertex into its neighbour. Repeat this process until the only remaining

vertex of Tw is w itself. We now have a del-con tree T3 with vertices u, v, and w

whose second coordinates match their second coordinates in T and whose first

coordinates are, respectively, E′
u, ∅, and E′

w where E′
y =

⋃

x∈V (Ty) Ex. Finally,

let T2 and T1 be obtained from T3 and T2, respectively, by shrinking u into v

and shrinking w into v. We have now constructed a chain of del-con trees whose

last term is T and whose first three terms are T1, T2, and T3.
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Let E = E′
u ∪ E′

w. Now v is either a del or a con vertex of T . In the

first case, M(T1) has ground set E and is isomorphic to U2,|E|. Moreover, since

M(T3) = ∆E′

u
(∆E′

w
(M(T1))), it follows by Lemma 6.3.1 that M(T3) has ground

set E and is isomorphic to U|E|−2,|E|. A similar argument shows that, if v is a

con vertex of T , then M(T3) has ground set E and is isomorphic to U2,|E|. In

both cases, M(T3) is the dual of M(T1).

The sequence of shrinkings that produced T3 from T induces a corresponding

sequence when applied to T ′ and produces a tree T ′
3 with a single vertex whose

first coordinate is E and whose second coordinate matches that of u in T . Thus

M(T ′
3) = M(T3) and hence M(T ′) = M(T ). �

Our interest in del-con trees is that they give us a convenient way to deal

with members of
⋃

m≥4 Λm. Indeed, every matroid in
⋃

m≥4 Λm can be described

by a del-con tree. To see this, note that if M is in
⋃

m≥4 Λm, then M can be

obtained from U2,m by a sequence of operations each consisting of a ∆–exchange

or a ∇–exchange. This sequence of matroids beginning with U2,m induces a

chain of del-con trees beginning with a single-vertex tree whose vertex is labelled

(E(M),del). The final tree in this chain is a del-con tree corresponding to M .

Now we consider some examples of del-con trees and their associated ma-

troids. Let R7 be the matroid whose geometric representation is shown in Fig-

ure 6.2. Let E(R7) = {1, 2, . . . , 7} and let {1, 2, 3} and {4, 5, 6} be the triangles of

R7. If TR7
is the del-con tree that is a path consisting of three vertices labelled, in

order, ({1, 2, 3},del), ({7}, con), and ({4, 5, 6},del), then R7 = M(TR7
). More-

over, TR7
is a reduced del-con tree. Note that we can also describe R7 with

the del-con tree that is a path consisting of four vertices labelled, in order,

({1, 2}, con), ({3},del), ({7}, con), and ({4, 5, 6},del), but this last del-con tree

is not reduced.

We show next that the del-con tree corresponding to the dual M∗(T ) of

M(T ) can be readily obtained from T . Let T ∗ denote the tree obtained from T

by changing the second coordinate of the vertex labels so that all del vertices in

T become con vertices in T ∗ and all con vertices in T become del vertices in T ∗.

Lemma 6.3.7. Let T be a del-con tree. Then M∗(T ) ∼= M(T ∗).

Proof. We argue by induction on the cardinality of V (T ). Suppose that T

consists of exactly one vertex v. If v is a del vertex, then M(T ) is U2,|Ev| and
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so M∗(T ) is U|Ev|−2,|Ev|. Now v is a con vertex in T ∗, so M(T ∗) is U|Ev|−2,|Ev|.

Hence the lemma holds for |V (T )| = 1. Suppose that T consists of exactly two

vertices u and v. Without loss of generality, we may assume that u is a del

vertex and v is a con vertex. Let E = Eu ∪ Ev. Then M(T ) is the matroid

∆Ev(U2,|E|). By Lemma 6.3.4,

[∆Ev(U2,|E|)]
∗ = [∇Eu(U|E|−2,|E|)]

∗

= [(∆Eu(U2,|E|))
∗]∗

= ∆Eu(U2,|E|).

The last matroid is M(T ∗). Hence the lemma also holds for |V (T )| = 2. Let T

be a del-con tree such that |V (T )| = n, where n ≥ 3. Suppose that the lemma

holds for |V (T )| = n − 1. Let v be a degree-one vertex of T and let u be the

unique neighbour of v in T . Let Tv be the tree obtained from T by shrinking

v into u. Since |V (Tv)| = n − 1, it follows by the induction assumption that

M∗(Tv) = M(T ∗
v ). Assume first that v is a con vertex of T . Then v is a del

vertex of T ∗ and therefore, as u is a con vertex of T ∗,

M(T ∗) = ∇Ev(M(T ∗
v ))

= [∆Ev(M
∗(T ∗

v ))]∗

= [∆Ev(M(Tv))]
∗, by the induction assumption.

But ∆Ev(M(Tv)) = M(T ) and so M∗(T ) = M(T ∗). Since (T ∗)∗ = T , it follows

that the lemma also holds when v is a del vertex of T . This completes the proof

of Lemma 6.3.7. �

We show next that the removal of an element e from a del-con tree T corre-

sponds to the deletion or contraction of e from M(T ) depending on whether e

is in a del or a con class of T .

Lemma 6.3.8. Let v be a vertex of a del-con tree T and let E =
⋃

u∈V (T ) Eu.

Suppose that |E| ≥ 5 and that if v has degree one, then |Ev| ≥ 3. Let e be an

element of Ev and let T\e denote the tree obtained from T by removing e from

Ev.

(i) If e is in a del class of T , then M(T\e) = M(T )\e.
(ii) If e is in a con class of T , then M(T\e) = M(T )/e.

Proof. We first prove (i). Let |V (T )| = n and construct a chain of del-con

trees as follows. Let Tn = T . For each i in {2, 3, . . . , n}, find a vertex in Ti that
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is a maximum distance from v and shrink that vertex into its unique neighbour

to produce Ti−1. Then T1 has v as its unique vertex and this vertex is labelled

(E,del). Moreover, if Ti\e is obtained from Ti by removing e from the del class

corresponding to v, then it is clear that T1\e, T2\e, . . . , Tn\e is a chain of del-con

trees and Tn\e = T\e. Also, for all i, exactly the same ∆– or ∇–exchange that

produced M(Ti) from M(Ti−1) produces M(Ti\e) from M(Ti−1\e). We shall

show, by induction, that M(Tj\e) = M(Tj)\e for all j in {1, 2, . . . , n}. Certainly

M(T1\e) = M(T1)\e since M(T1\e) and M(T1) are rank-2 uniform matroids on

E − e and E, respectively. Assume that M(Tj−1\e) = M(Tj−1)\e. Now either

(a) M(Tj) = ∇A(M(Tj−1)), or (b) M(Tj) = ∆A(M(Tj−1)). Consider the first

case. Clearly M(Tj\e) = ∇A(M(Tj−1\e)). Since this ∇A–exchange is defined,

it follows that A has rank two and is coindependent in M∗(Tj−1\e). Thus, by

the induction assumption, A has rank two and is coindependent in M∗(Tj−1)/e.

But, since ∇A(M(Tj−1)) is also defined, A has rank two and is coindependent

in M∗(Tj−1). Thus e is not in the closure of A in M∗(Tj−1). Hence

M(Tj\e) = ∇A[M(Tj−1\e)]
= ∇A[M(Tj−1)\e], by the induction assumption,

= ∇A[M(Tj−1)]\e, by the dual of Lemma 5.2.16(ii),

= M(Tj)\e

A similar argument establishes that M(Tj)\e = M(Tj\e) in case (b). We con-

clude, by induction, that M(Tn)\e = M(Tn\e).

The proof of (ii) follows by a straightforward combination of (i) and the

preceding lemma. �

The following is an immediate consequence of the last lemma.

Corollary 6.3.9. Let T ′ be a del-con tree that is obtained from a del-con

tree T by a sequence of operations each consisting of removing an element from

a vertex class, or reducing the tree. Then M(T ′) is a minor of M(T ).

Recall that P6 is the matroid that is obtained by freely placing a point on

a line of U3,5. Alternatively, P6 can be obtained from U2,6 by a single ∆ − Y

exchange.
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Lemma 6.3.10. Let e be an edge of a reduced del-con tree T and let V1 and

V2 be the vertex sets of the components of the graph obtained from T by deleting

e. If {x1, y1, z1} ⊆ ⋃

v∈V1
Ev and {x2, y2, z2} ⊆ ⋃

v∈V2
Ev, then either

(i) M(T ) has a P6–minor on {x1, y1, z1, x2, y2, z2} in which {x1, y1, z1} is

a triangle or a triad; or

(ii) M(T ) or its dual has an R7–minor in which {x1, y1, z1} and {x2, y2, z2}
are both triangles.

Proof. Suppose, to the contrary, that M(T ) has no such minor. Moreover,

assume that |E(M(T ))| is minimal. We break the proof into two cases. In the

first case, suppose that T has at least three degree-one vertices. Then, without

loss of generality, T [V1], the subgraph of T induced by V1, contains at least two

degree-one vertices of T . Choose one of these vertices of T [V1], say v, so that Ev

contains an element w where w 6∈ {x1, y1, z1}. By condition (iii) in the definition

of a del-con tree, such an element exists. Let T ′ be the tree obtained from T

by first removing w and then, if possible, reducing the resulting tree. In T ′, the

edge e still separates {x1, y1, z1} and {x2, y2, z2}. Therefore, by the last corollary,

M(T ′) has a minor of the required type. Since |E(M(T ′))| < |E(M(T ))|, the

choice of M(T ) is contradicted. Hence T does not have at least three degree-one

vertices.

For the second case, suppose that T has exactly two degree-one vertices.

Then T is a path. If one of the degree-one vertices of T , say v, has the property

that Ev contains an element w such that w 6∈ {x1, y1, z1, x2, y2, z2}, then w can

be removed from T and, as in the first case, the choice of M(T ) is contradicted.

Thus the subsets of E(M(T )) associated with the degree-one vertices of T are

{x1, y1, z1} and {x2, y2, z2}. Suppose first that T has an even number of vertices.

Then one degree-one vertex of T is a del vertex and the other is a con vertex. If

T has no degree-two vertices, then M(T ) is isomorphic to P6; a contradiction. If

T has a degree-two vertex, then by removing an element from the corresponding

vertex class and reducing the resulting tree, we again obtain a contradiction to

the choice of M(T ). We conclude that T has an odd number of vertices. But

a similar argument to that just given now shows that M(T ) has an R7– or R∗
7–

minor depending on whether the degree-one vertices of T are del or con vertices,

respectively. This contradiction completes the proof of the lemma. �
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As noted in [9], it is immediate from the definition of clones that elements

x and x′ are clones in M if and only if they are clones in M∗. Also recall from

Section 5.2 of Chapter 5 that if x and x′ are clones of a matroid M , and N is

a minor of M containing {x, x′}, then x and x′ are clones in N . We shall use

both these facts in the next result, the first of two corollaries of the last lemma.

Corollary 6.3.11. Let T be a reduced del-con tree. Then elements x and

x′ of M(T ) are in the same vertex class of T if and only if x and x′ are clones

in M(T ).

Proof. Suppose first that x and x′ are in different vertex classes of T .

Clearly T has at least two vertices and so T has at least two degree-one vertices.

Let e be an edge of T such that x and x′ are in different components of the graph

obtained from T by deleting e. Now T is a reduced del-con tree. Therefore, by

Lemma 6.3.10, either M(T ) has a P6–minor in which y1 is in a triad, y2 is in a

triangle and {y1, y2} = {x, x′}, or M(T ) or its dual has an R7–minor in which

x and x′ are in different triangles. In each case, x and x′ are not clones in the

distinguished minor. Hence x and x′ are not clones in M(T ).

To prove the converse, suppose that x and x′ are in the same vertex class of

T . We argue by induction on the cardinality of V (T ) that x and x′ are clones

in M(T ). This is clearly true if T has exactly one vertex. Assume it true for

|V (T )| < n and let |V (T )| = n ≥ 2. Let u be a degree-one vertex of T such

that {x, x′} ∩ Eu is empty. By duality, we may assume that u is a del vertex of

T . Let w be the unique neighbour of u in T and let T ′ be the reduced del-con

tree obtained from T by shrinking u into w. By the induction assumption, x

and x′ are clones in M(T ′). Therefore, as {x, x′} ∩ Eu is empty, it follows by

Lemma 5.2.20 that x and x′ are clones in ∆EuM(T ′). But this last matroid

is M(T ) and so x and x′ are clones in M(T ). This completes the proof of

Corollary 6.3.11. �

Without the requirement that T is reduced, Corollary 6.3.11 may fail. For

example, let T be a del-con tree consisting of three vertices u, v, and w, where

|Ev| = 0 and u and w are degree-one con vertices such that |Eu| = |Ew| = 3.

Then M(T ) is isomorphic to U4,6. But, if x ∈ Eu and x′ ∈ Ew, then x and x′

are clones in M(T ) belonging to different vertex classes of T .
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Corollary 6.3.12. Let T be a reduced del-con tree. If x, y, and z are three

elements of E(M(T )) such that no vertex class of T contains all three, then

{x, y, z} is neither a triangle nor a triad of M(T ).

Proof. Clearly, we may assume, without loss of generality, that there is an

edge e of T such that x and y are in a different component from z in the graph

obtained from T by deleting e. Then, by Lemma 6.3.10, {x, y, z} is contained

in a minor of M(T ) that is isomorphic to one of P6, R7, or R∗
7 but has {x, y, z}

as neither a triangle nor triad. Since none of these three minors has a circuit or

cocircuit of size less than three, it follows that {x, y, z} is neither a triangle nor

a triad of M(T ). �

Next we describe the 3–separations of the members of
⋃

m≥4 Λm. Since

every matroid in this set is 3–connected, all such 3–separations are exact. But,

as Λ4 = {U2,4} and Λ5 = {U2,5, U3,5}, every matroid in Λ4 ∪ Λ5 has infinite

connectivity and so has no 3–separations. Thus we shall confine attention to the

members of
⋃

m≥6 Λm.

Lemma 6.3.13. Let M be a member of Λm where m ≥ 6, and let TM be a

reduced del-con tree for which M = M(TM ). Let v be a vertex of TM and let

{X,Y } be a partition of E(M) into subsets each of size at least three such that,

for every component T ′ of TM − v, the set
⋃

z∈V (T ′) Ez is contained in either X

or Y . Then {X,Y } is a 3–separation of M .

Proof. By Lemma 6.3.7, it suffices to show that the result holds when v

is a del vertex of TM . We argue by induction on |V (TM )| noting first that if

|V (TM )| = 1, then the result is clear. Now let |V (TM )| = n where n ≥ 2, and

assume that the lemma holds for all matroids that correspond to reduced del-con

trees having fewer vertices. If v is a degree-one vertex of TM , then the result

certainly holds. Therefore we may assume that v is not a degree-one vertex.

Let u be a degree-one vertex of TM and let w be its unique neighbour in TM .

Let Tu be the tree obtained from TM by shrinking u into w. Then M is either

∆EuM(Tu) or ∇EuM(Tu) depending on whether u is a con or a del vertex of

TM . Now, by the induction assumption, if {X,Y } is a partition of E(M) into

subsets each of size at least three such that, for every component T ′′ of Tu − v,

the set
⋃

z∈V (T ′′) Ez is contained in either X or Y , then {X,Y } is a 3–separation

of M(Tu). Therefore, as u and w are in the same component of TM − v, the

lemma is proved provided we can show that {X,Y } is also a 3–separation of M .
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But, by the definitions of segment-cosegment and cosegment-segment exchange,

it is easy to deduce that this is indeed the case. �

The next lemma shows that the only 3–separations of a member of Λm are

those described in the last lemma.

Lemma 6.3.14. Let M be a member of Λm where m ≥ 6, and let TM be a

reduced del-con tree for which M = M(TM ). If {X,Y } is a 3–separation of M ,

then there is a vertex v of TM such that, for every component T ′ of TM − v, the

set
⋃

z∈V (T ′) Ez is contained in either X or Y .

Proof. Assume that M has a 3–separation {X,Y } that is not of the type

described. Colour the elements of X red and the elements of Y green. Let v be

a vertex of TM . If Ev is empty, we call v colourless. If Ev is non-empty and all

of its elements are the same colour, we assign that colour to v itself. A subgraph

of TM is monochromatic if it does not contain both red and green vertices.

We begin by showing the following.

6.3.14.1. TM has no edge e such that neither component of TM−e is monochro-

matic.

Proof. Assume, to the contrary, that TM has such an edge e. Let V1 and V2

be the vertex sets of the components of TM −e. For each i in {1, 2}, let ri and gi,

respectively, be a red and a green element of
⋃

u∈Vi
Eu. The last set has at least

three elements as do both X and Y . Thus, by relabelling if necessary, we may

assume that
⋃

u∈V1
Eu contains a red element r′1 such that r′1 6= r1 and

⋃

u∈V2
Eu

contains a green element g′2 such that g′2 6= g2. Therefore, by Lemma 6.3.10,

either

(i) M has a P6–minor on {r1, g1, r
′
1, r2, g2, g

′
2} in which {r1, g1, r

′
1} is a

triangle or a triad; or

(ii) M or M∗ has an R7–minor in which {r1, g1, r
′
1} and {r2, g2, g

′
2} are both

triangles.

Furthermore, since this minor has at least three red and at least three green

elements, the minor has a 3–separation induced by its sets of red and green

elements. But the only 3–separation of P6 has the triangle on one side and the

triad on the other. Moreover, the only 3–separations of R7 contain a triangle on
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each side. By (i) and (ii), neither {r1, r
′
1, r2} nor {g1, g2, g

′
2} is a triangle or a triad

in the relevant minor. This contradiction completes the proof of (6.3.14.1). �

By (6.3.14.1), for each edge e in TM , at least one component of TM − e is

monochromatic. This implies that TM has at most one vertex v for which Ev

contains both red and green elements. If there is such a vertex v, then every

component of TM −v must be monochromatic and so {X,Y } is a 3–separation of

the type described in the lemma. This contradiction implies that no such vertex

exists in TM . Next we show the following.

6.3.14.2. If v is a vertex of TM , then exactly one of the components of TM −v

is not monochromatic. Moreover, the monochromatic components of TM − v

all have the same colour as each other and, unless v is colourless, this colour

matches that of v.

Proof. Suppose first that TM − v has two components, T1 and T2, that are

not monochromatic. Let e be the edge connecting T1 to v in TM . Then neither

component of TM − e is monochromatic and (6.3.14.1) is contradicted. Thus

there is at most one component of TM −v that is not monochromatic. If there is

no such component, then {X,Y } is a 3–separation of the type described in the

lemma. This contradiction completes the proof of the first part.

To establish the second part, consider the component of TM − v that is

not monochromatic, and let w be the neighbour of v in this component. Since

there are both red and green elements in one component of TM − vw, the other

component must be monochromatic, and the second part of (6.3.14.2) follows.

�

We now use (6.3.14.2) to complete the proof of the lemma. The choice

of {X,Y } ensures that TM must have at least one red and at least one green

vertex. Let v0v1 . . . vn be a minimum-length path in TM that begins at a red

vertex and ends at a green vertex. Then all of v1, v2, . . . , vn−1 are colourless.

A straightforward induction argument shows that, for all i in {0, 1, . . . , n − 1},
all the components of TM − vi are red except for the one containing vn, and

the latter is non-monochromatic. By symmetry, for all i in {n, n − 1, . . . , 1},
all the components of TM − vi are green except for the one containing v0, and

the latter is non-monochromatic. In particular, if n > 1, then TM − v1 has two

non-monochromatic components, one containing v0 and the other containing vn.
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This contradiction to (6.3.14.2) implies that n = 1. Now consider TM − v0v1.

By (6.3.14.1), it certainly has a monochromatic component, and we may assume

that it is the one containing v0. But deleting the green vertex v1 from TM

produces a red component, namely the one containing v0. This contradiction to

(6.3.14.2) completes the proof of Lemma 6.3.14. �

We shall say that the 3–separation {X,Y } in the last lemma is based on

a del or con class depending on whether the distinguished vertex v is a del or

con vertex of TM . The next lemma determines when a certain 3-separation of a

member M of
⋃

m≥6 Λm induces a 3-separation of a 3–connected single-element

extension of M .

Lemma 6.3.15. Let M ′ be a 3–connected matroid such that M ′\e is a member

M of
⋃

m≥6 Λm. Let {X,Y } be a 3–separation of M based on a del class Ev of

a reduced del-con tree TM for which M(TM ) = M . Then either

(i) {X ∪ e, Y } or {X,Y ∪ e} is a 3–separation of M ′; or

(ii) M ′ has a minor isomorphic to a single-element extension of R∗
7 in which

neither triad of R∗
7 is preserved.

Proof. Let M ′ be a counterexample to the lemma for which |E(M ′)| is a

minimum. As (i) fails, rM ′(X ∪ e) = rM (X) + 1 and rM ′(Y ∪ e) = rM (Y ) + 1.

Thus r(M ′) > 2, so TM has more than one vertex.

Suppose that v has degree one. By Lemma 6.3.14, we may assume that X

contains Eu for all u in V (TM ) − v. Then rM (X) = r(M), so

r(M ′) ≥ rM ′(X ∪ e) = rM (X) + 1 > r(M);

a contradiction. Therefore the degree of v exceeds one, and hence TM has at

least three vertices. Assume that TM has a non-empty del class Eu other than

Ev. Let x be an element of Eu and assume, without loss of generality, that Eu

is contained in X. By Lemma 6.3.8, M\x = M(TM\x), so M\x is a member

of
⋃

m≥5 Λm. Hence, by Lemma 6.3.3, M\x is 3–connected. In particular, X is

not a triad. As r(X) + r(Y ) − r(M) = 2 and Y is non-spanning, it follows that

|X| ≥ 4. Thus {X−x, Y } is a 3–separation of M\x. Moreover, this 3–separation

is based on the del class Ev of the reduced del-con tree obtained from TM\x. As

M ′\x is 3–connected, the choice of M ′ implies that M ′\x obeys the lemma. But

(ii) does not hold for M ′, so M ′\x cannot have a minor of the specified type.
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Moreover, rM ′((X − x) ∪ e) = rM (X − x) + 1 and rM ′(Y ∪ e) = rM (Y ) + 1, so

neither {(X − x) ∪ e, Y } nor {X − x, Y ∪ e} is a 3–separation of M ′\x. This

contradiction implies that TM has no non-empty del classes other than, possibly,

Ev. Therefore every degree-one vertex of TM is a con vertex for which, since TM

is reduced, the associated con class has size at least three.

Now suppose that X contains two distinct triads X1 and X2 of M each of

which is contained in a con class of TM corresponding to a degree-one vertex.

Then rM (Y ) ≤ r(M\(X1 ∪X2)) ≤ r(M)−2. Thus X1 ∪X2 contains an element

c that is not in clM ′(Y ∪ e). Now, in M/c, we have

rM/c(X − c) + rM/c(Y ) − r(M/c) = rM (X) − 1 + r(Y ∪ c) − 1 − (r(M) − 1)

= rM (X) + rM (Y ) − r(M)

= 2.

Thus {X − c, Y } is a 3–separation of M/c. Moreover, this 3–separation is based

on a del class of the reduced del-con tree obtained from TM\c. Since M(TM\c) =

M/c, Lemma 6.3.8 implies that M/c is 3–connected. We shall show next that

M ′/c is 3–connected and hence that M ′/c obeys the lemma. If M ′/c is not

3–connected, then, as M ′ and M ′\e/c are both 3–connected, {e, c} is contained

in a triangle of M ′. As rM ′(X ∪ e) = rM (X) + 1, the third element of this

triangle is not in X; nor is it in Y since c 6∈ clM ′(Y ∪ e). Thus M ′/c is indeed

3–connected. But, as is easily checked, neither {(X−c)∪e, Y } nor {X−c, Y ∪e}
is a 3–separation of M ′/c. Since M ′/c certainly cannot have a minor of the type

specified in (ii), we have a contradiction to the choice of M ′. We conclude that X

does not contain two distinct triads with the specified properties. By symmetry,

nor does Y . Thus each con class corresponding to a degree-one vertex of TM

has size three. Moreover, TM has exactly two such con classes, one in X and the

other in Y . Also, since TM is reduced and has more than one vertex but has at

most one non-empty del class, it follows that TM has exactly three vertices and

|Ev| ≥ 1.

Let x and y be the neighbours of v in TM where Ex ⊆ X and Ey ⊆ Y . Then

|Ex| = |Ey| = 3. Since |E(M)| ≥ 7, one side of the 3–separation of M , say

X, has at least four elements. Thus there is an element f in X ∩ Ev. Clearly

{X−f, Y } is a 3–separation of M\f . Moreover, rM ′\f ((X−f)∪e) = rM\f (X)+1

and rM ′\f (Y ∪ e) = rM\f (Y )+ 1, so neither {(X − f)∪ e, Y } nor {X − f, Y ∪ e}
is a 3–separation of M ′\f . If |Ev| > 1, then Ev − f is non-empty and therefore

M ′\f contradicts the choice of M ′. Thus we may assume that |Ev| = 1.
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We now know that M is R∗
7 and M has a 3–separation {X,Y } such that

neither {X ∪e, Y } nor {X,Y ∪e} is a 3–separation of M ′. Let T ∗
1 and T ∗

2 denote

the two triads of R∗
7, and let z denote the unique element of E(R∗

7)− (T ∗
1 ∪ T ∗

2 ).

By symmetry, we may assume that (X,Y ) = (T ∗
1 , T ∗

2 ∪ z). Then

rM ′(T ∗
1 ∪ e) = rM (T ∗

1 ) + 1 = 4

and

rM ′((T ∗
2 ∪ z) ∪ e) = rM (T ∗

2 ∪ z) + 1 = 4.

Hence neither T ∗
1 nor T ∗

2 is a triad of M ′. We conclude that M ′ is a 3–connected

single-element extension of R∗
7 with no triads. This last contradiction completes

the proof of the lemma. �

The next result shows that, for every member of
⋃

m≥4 Λm except U2,4, there

is a unique associated reduced del-con tree.

Lemma 6.3.16. Let T and T ′ be reduced del-con trees. If M(T ) = M(T ′),

then either M(T ) ∼= U2,4 and |V (T )| = |V (T ′)| = 1, or there is a bijection

φ : V (T ) → V (T ′) such that, for all u and v in V (T ),

(i) u and v are neighbours in T if and only if φ(u) and φ(v) are neighbours

in T ′; and

(ii) the vertex labels of v and φ(v) are equal.

Proof. Let E =
⋃

v∈V (T ) Ev. We prove the lemma by induction on |V (T )|.
Suppose that |V (T )| = 1. Then M(T ) is isomorphic to a uniform matroid of

rank 2 or corank 2. Since all reduced del-con trees associated with such matroids

consist of a single vertex, it follows that if T ′ is a reduced del-con tree such that

M(T ) = M(T ′), then either M(T ) ∼= U2,4 and |V (T ′)| = 1, or there is a bijection

from V (T ) into V (T ′) with properties (i) and (ii). Thus the lemma holds for

|V (T )| = 1. Now let |V (T )| = n ≥ 2 and assume the lemma holds for all reduced

del-con trees with fewer vertices. In particular, it follows that |E| ≥ 6.

Let v be a degree-one vertex of T . By duality, we may assume that v is a

del vertex of T . We first show that T ′ has a degree-one vertex with the same

labelling as v in T . Since M(T ) = M(T ′), it follows by Corollary 6.3.11 that

the non-empty vertex classes of T and T ′ coincide. Therefore, by Lemma 6.3.5,

there is a vertex v′ in T ′ with the same labelling as v in T . It remains to show

that v′ has degree one. Assume not and let T ′
1 be a component of T ′ − v′ and
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X ′ be a proper non-empty subset of Ev. Let X ′′ = X ′ ∪ (
⋃

u∈V (T ′

1
) Eu). Then,

by applying Lemma 6.3.13, we deduce that {X ′′, E − X ′′} is a 3–separation of

M(T ′) and hence of M(T ). Since Ev meets both X ′′ and E−X ′′, Lemma 6.3.14

implies that {X ′′, E − X ′′} must be a 3–separation of M(T ) based on v. But v

has degree one in T so every 3–separation of M(T ) based on v must have one

part that is a subset of Ev. Since neither X ′′ nor E − X ′′ is a subset of Ev, we

have a contradiction. We conclude that v′ does indeed have degree one in T ′.

Let Tv denote the tree that is obtained from T by shrinking v into its unique

neighbour u. Then M(Tv) = ∆EvM(T ). Let T ′
v′ denote the tree that is obtained

from T ′ by shrinking v′ into its unique neighbour u′. Then M(T ′
v′) = ∆EvM(T ′)

and so M(T ′
v′) = M(Tv). Now |V (Tv)| = n − 1. Therefore, by the induction

assumption and the fact that both u and u′ are con vertices, it follows that there

is a bijection φ1 : V (Tv) → V (T ′
v′) with properties (i) and (ii). Consider the

function φ : V (T ) → V (T ′) defined by φ(u) = u′, φ(v) = v′, and φ(w) = φ1(w)

for all w ∈ V (T )− {u, v}. As this function is clearly a bijection from V (T ) into

V (T ′) with properties (i) and (ii), Lemma 6.3.16 now follows. �

Evidently, the converse of Lemma 6.3.16 also holds. We end this section by

determining, for all prime powers q, an exponential lower bound on the number

of excluded minors for GF (q)–representability.

Theorem 6.3.17. For all prime powers q, the cardinality of the set of ex-

cluded minors for GF (q)–representability is at least 2q−4.

Proof. Since U2,q+2 is an excluded minor for GF (q)–representability, it

follows by Theorem 5.3.1 that every member of Λq+2 is an excluded minor for

GF (q)–representability. We shall prove the theorem by bounding below the

number of members of Λq+2 for which the associated del-con tree is a path. To

construct these paths, we first arrange the elements 1, 2, . . . , q + 2 consecutively

in a line. There are q−3 gaps between consecutive elements i and i+1 such that

i ∈ {3, 4, . . . , q − 1}. In each of these gaps, we choose whether or not to insert

a bar. Thus there are 2q−3 such sequences consisting of elements and inserted

bars. With each of these sequences, we associate a reduced del-con tree, which is

a path, defined as follows: for some k ≥ 1, the bars partition {1, 2, . . . , q+2} into

k non-empty subsets Ev1
, Ev2

, . . . , Evk
ordered in the natural way with 1 ∈ Ev1

.

Let Ev1
, Ev2

, . . . , Evk
be the first coordinates of the vertex labels of consecutive

vertices in a k–vertex path, where the second coordinates alternate between
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“del” and “con” beginning with “del”. Clearly the number of such paths is 2q−3

and each is a reduced del-con tree. Dividing by 2 to account for a potential

symmetry that arises by beginning the path at the right-hand instead of the

left-hand end, we deduce, by Lemma 6.3.16, that there are at least 2q−4 non-

isomorphic members of Λq+2 for which the associated reduced del-con tree is a

path. The theorem follows immediately. �

It is clear that the bound in the last theorem can be improved. The point of

the theorem is not to provide a sharp bound but rather to show that the number

of excluded minors for GF (q)–representability is at least exponential in q.

6.4. Proofs of Theorems 6.1.1 and 6.1.2

Most of the work in proving Theorems 6.1.1 and 6.1.2 goes into the following

two things: for all k ≥ 1, (i) establishing that every member of Λk+3 is a

universal stabilizer for the class of k–regular matroids; and (ii) determining the

minor-minimal 3–connected ω–regular matroids that are not stabilized over Rω

by some member of Λk+3. These two tasks are completed in Lemmas 6.4.16

and 6.4.20, respectively. The ground work for these lemmas was laid in the last

section. However, we still need to establish some results particular to ω–regular

matroids before we are in a position to prove them. In particular, as we use

Theorems 6.2.1 and 6.2.4 in their proofs, we need to determine all 3–connected

ω–regular matroids that are single-element extensions of members of Λk+3.

We begin, however, by first considering the k–regularity of rank–3 uniform

matroids and their duals. The first result is a straightforward consequence of

Lemma 4.2.6.

Lemma 6.4.1. For k ≥ 3, the unique 3–connected ω-regular single-element

extension of U3,k+3 is U3,k+4.

The proof of Lemma 6.4.2 will make repeated use of Lemma 3.2.1.

Lemma 6.4.2. For all k ≥ 2, all ω–unimodular representations of U3,k+3 are

equivalent.
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Proof. Since U3,5 is the dual of U2,5, it follows by Corollary 4.2.3 that the

lemma holds for k = 2. Therefore assume that k ≥ 3. The result for k ≥ 4 will

follow once the lemma has been proved for k = 3.

Using the fact that U2,5 is uniquely representable over Rω and the results of

Chapter 2, we may assume that







1 0 0 1 1 1

0 1 0 1 α1 α2

0 0 1 1 x1 x2







is an ω–unimodular representation for U3,6, where x1 and x2 are non-zero ele-

ments of Rω such that both x1 − 1 and x2 − 1 are in Rω. Therefore each of the

subdeterminants x1−α1, x2−α2, and x2−x1 must be a non-zero member of Rω.

Via a routine case analysis of the possibilities for x1 and x2 using Lemma 3.2.1,

we deduce that, for some j ≥ 3, we have x1 =
α1(1−αj)

α1−αj
and x2 =

α2(1−αj)
α2−αj

. Thus

all ω–unimodular representations of U3,6 are equivalent.

To obtain the result for all k ≥ 4, consider extending an ω–unimodular

representation of U3,6 to an ω–unimodular representation for U3,k+3. As all ω–

unimodular representations of U3,6 are equivalent, it follows from above that,

up to a permutation of {α1, α2, . . .}, this can be done in exactly one way. The

lemma now follows. �

By Lemma 6.4.2, all ω–regular representations of U3,7 are equivalent. By

trying to extend such a representation to one for U4,8, it is routine to deduce the

following corollary using Lemma 3.2.1.

Corollary 6.4.3. The matroid U4,8 is not ω–regular.

Lemma 6.4.4. Let n ≥ 6 and let M be a 3–connected single-element coexten-

sion of U3,n. If M is representable over a partial field P, then M has a minor

isomorphic to a 3–connected single-element coextension of U3,6.

Proof. Since M is a single-element coextension of U3,n, we can assume from

Proposition 2.1.4 that [I4|D] is a P–representation for M where D is
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









1 1 1 · · · 1

1 x1 x2 · · · xn−4

1 y1 y2 · · · yn−4

a0 a1 a2 · · · an−4











,

the entries x1, x2, . . . , xn−4, y1, y2, . . . , yn−4 are distinct elements of P − {0, 1},
and a0, a1, . . . , an−4 are elements of P. Furthermore, the matrix obtained by

deleting the fourth row and column of [I4|D] represents U3,n. As M is 3–

connected, at least two of the elements a0, a1, . . . , an−4 are non-zero. By scaling

and interchanging columns if necessary, we may assume that a0 = 1 and a1 6= 0.

For all i ≥ 3, let Di denote the matrix consisting of columns 1, 2, and i of

D. Then M [I4|Di] is a 3–connected coextension of U3,6 provided no two rows

of Di are scalar multiples of each other, that is, provided no two rows of Di

are equal. Therefore if a1 6∈ {1, x1, y1}, then M [I4|Di] is a 3–connected single-

element coextension of U3,6 for all i ≥ 3 and so M has a minor of the desired

type. Hence we may assume that a1 ∈ {1, x1, y1}. Now no two rows of D are

equal. Hence, for some j in {3, 4, . . . , n − 4}, the rows of [I4|Dj ] are distinct.

Thus M [I4|Dj ] is a minor of M of the desired type. �

Lemma 6.4.5. Let M be a 3–connected single-element extension of U4,7 that

is ω–regular. Then M is uniform.

Proof. Let E(M) − E(U4,7) = {e} and assume, to the contrary, that M is

not uniform. Then M has a circuit C containing e such that |C| is 3 or 4. Now

choose an element x of M so that, if |C| = 3, then x ∈ E(M)−C, and, if |C| = 4,

then x ∈ C − e. In each case, M/x is a 3–connected single-element ω–regular

extension of U3,6 with a 3–circuit; a contradiction to Lemma 6.4.1. �

We now combine three earlier results to prove the following lemma.

Lemma 6.4.6. Let k ≥ 4. Then U3,k+3 has no 3–connected ω–regular single-

element coextensions.

Proof. Assume, to the contrary, that M is such a coextension of U3,k+3.

Then, by Lemma 6.4.4, M has an ω–regular minor M ′ that is isomorphic to a 3–

connected single-element coextension of U3,6. Since U3,6 is self-dual, it follows by

Lemma 6.4.1 that M ′ is U4,7. Thus M has a proper U4,7–restriction. Therefore,
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(a) (b) (c) (d)

Figure 6.1. Four 7–element rank–3 matroids.

U7R7

Figure 6.2. The matroids R7 and U7.

by Lemma 6.4.5, M is uniform. But then M has a U4,8–minor and Lemma 6.4.3

is contradicted. �

Corollary 6.4.7. Let k ≥ 3. Then the matroids U3,k+3 and Uk,k+3 are

splitters for the class of k–regular matroids.

Proof. By duality, it suffices to show that U3,k+3 is a splitter for the class

of k–regular matroids. By Lemmas 4.2.6 and 6.4.1, there are no 3–connected

k–regular single-element extensions of U3,k+3. Therefore, as U3,6 is self-dual, the

result holds for k = 3. Moreover, by Lemma 6.4.6, the result also holds for all

k ≥ 4. �

For k ≥ 1, let {X,Y } be a 3–separation of a matroid N in Λk+3. If M is

a 3–connected single-element extension of N , then, by Lemma 6.3.15, either (i)

{X∪e, Y } or {X,Y ∪e} is a 3–separation of M , or (ii) M has a minor isomorphic

to a single-element extension of R∗
7 in which neither triad of R∗

7 is preserved. The

next two results show that if M is ω–regular, then (i) must hold.

Lemma 6.4.8. Let M be a single-element extension of R∗
7 having no triads.

Then M has a minor isomorphic to one of the matroids in Figure 6.1.



Unique representability of k–regular matroids 98

Proof. Suppose, to the contrary, that M has no minor isomorphic to any

of the matroids in Figure 6.1. Let E(M)−E(R∗
7) = {e}, and, for each i in {1, 2},

let {xi, yi, zi} be a triad T ∗
i of R∗

7. Also let U7 denote the second matroid shown

in Figure 6.2. We first observe that, as M has no triads, e is not in the closure

of either T ∗
1 or T ∗

2 . The proof is based on the following observation.

6.4.8.1. If u ∈ T ∗
1 ∪ T ∗

2 and {e, u} is in no triangles of M , then M/u is

isomorphic to either R7 or U7.

To see this, we first observe that R∗
7/u is isomorphic to P6. Thus M/u is

a 3–connected single-element extension of P6. But M/u has no 4–point line

restriction since e is in the closure of neither T ∗
1 nor T ∗

2 . Moreover, M/u is not

isomorphic to any of the matroids in Figure 6.1. Hence M/u is isomorphic to

either R7 or U7.

If e is in neither a 3– nor a 4–circuit of M , then M/x1 is isomorphic to the

matroid in Figure 6.1(a). Thus there is either a 3– or 4–circuit of M containing

e. Suppose that e is in a 3–circuit C of M . Without loss of generality, we

may assume that C = {x1, e, x2}. Moreover, C is the only 3–circuit of M

since circuit elimination using two 3–circuits containing e produces an immediate

contradiction. Consider M/y1. If y1 is in no 4–circuit of M that contains e, then

M/y1 is isomorphic to the matroid in Figure 6.1(b); a contradiction. Therefore,

by (6.4.8.1), M/y1 must be isomorphic to U7 and so {y1, e, y2, z2} is a circuit of

M . But then it is not possible for M/z2 to be isomorphic to either R7 or U7

contradicting (6.4.8.1). Thus M has no 3–circuits.

Now suppose that e is in a 4–circuit C ′ of M . Let w be the unique element of

E(R∗
7) that is not contained in a triad. There are two cases to consider: w ∈ C ′

and w 6∈ C ′. First assume that w ∈ C ′. Then, without loss of generality, we

may assume that C ′ = {w, x1, x2, e}. Consider M/x1. If {x1, e} is contained

in no 4–circuit of M other than C ′, then M/x1 is isomorphic to the matroid in

Figure 6.1(b); a contradiction. Therefore, by (6.4.8.1), M/x1 is isomorphic to

U7 and {x1, e, y2, z2} is a 4–circuit C ′′ of M . By considering M/x2 and applying

the last argument to x2 instead of x1, we get that {x2, e, y1, z1} is a 4–circuit of

M . Now, since M/y1 must be isomorphic to U7, it follows that {y1, e, y2, z2} is a

4–circuit C ′′′ of M . Therefore, by the circuit elimination axiom, (C ′′ ∪ C ′′′) − e

contains a circuit of M ; a contradiction. We conclude that w 6∈ C ′. Then, we

may assume, without loss of generality, that C ′ = {x1, x2, y1, e}. Now arguing

as above, we deduce, since M/x1 and M/y1 must both be isomorphic to U7, that
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{e, x1, y2, z2} and {e, y1, y2, z2} are both circuits of M . Then circuit elimination

again gives a contradiction. �

By Lemma 4.2.5, none of the matroids in Figure 6.1 is ω–regular. Using this,

the next corollary follows immediately from the last lemma.

Corollary 6.4.9. If M is a single-element extension of R∗
7 having no triads,

then M is not ω–regular.

We remark here that we implicitly use Lemma 5.2.10 in the proof of the next

lemma.

Lemma 6.4.10. Let m ≥ 4 and let M be a 3–connected single-element exten-

sion of a matroid N in Λm such that M\e = N . Suppose none of the matroids

in Figure 6.1 is a minor of M . Then there is a sequence M0,M1, . . . ,Mn of ma-

troids with M0 = M and Mn\e ∼= Um−2,m such that, for all i in {0, 1, . . . , n−1},

(i) there is a set Ai that avoids e and has size at least three so that Mi+1

is either ∆Ai
(Mi) or ∇Ai

(Mi);

(ii) Mi+1 is 3–connected and Mi+1\e ∈ Λm; and

(iii) the exchange that produced Mi+1 from Mi can be applied to Mi\e and,

when this is done, it produces Mi+1\e.

Proof. Let TN be a reduced del-con tree for which N = M(TN ). We prove

all parts of the lemma simultaneously by induction on |V (TN )|. Suppose that

|V (TN )| = 1. If TN consists of a single con vertex, then the lemma certainly

holds. Furthermore, if TN consists of a single del vertex, then it is easily seen

that the lemma also holds. Now let |V (TN )| = n ≥ 2 and assume that the

lemma holds for every 3–connected single-element extension of a matroid in Λm

for which there is an associated del-con tree with fewer vertices.

First suppose that TN has a degree-one del vertex u. Since N is 3–connected,

Eu is coindependent in N and hence in M . Therefore ∆Eu(M) is well-defined

since N |Eu, and hence M |Eu, is uniform of rank 2. If Tu is the tree that

is obtained by shrinking u in TN , then N = M(TN ) = ∇Eu(M(Tu)) and so

M(Tu) = ∆Eu(N). Now, by Lemma 5.2.16(i), ∆Eu(M)\e = ∆Eu(M\e) =

∆Eu(N). The last matroid is certainly 3–connected. Suppose that ∆Eu(M)

is not 3–connected. Then ∆Eu(M) has a 2–circuit. But this cannot occur

since ∆Eu(M) is a restriction of a generalized parallel connection of two simple
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matroids. We conclude that ∆Eu(M) is a 3–connected single-element extension

of ∆Eu(N). Since the last matroid is equal to M(Tu) and Tu has fewer vertices

than TN , the induction assumption implies that the lemma holds for M(Tu) and

hence for M .

We may now assume that all degree-one vertices of TN are con vertices.

Then, in particular, |V (TN )| ≥ 3, so TN certainly has a del vertex v. Let {X,Y }
be a 3–separation of N that is based on v and chosen so that X and Y contain

con classes Ex and Ey, respectively, each of which corresponds to a degree-

one vertex of TN . Since M has no minor isomorphic to one of the matroids

in Figure 6.1, it follows by Lemmas 6.3.15 and 6.4.8 that either {X ∪ e, Y } or

{X,Y ∪e} is a 3–separation of M . Without loss of generality, we may assume the

former. As e ∈ clM (E(M)−e−Ey), it follows that e 6∈ clM∗(Ey). Thus, as every

3–element subset of Ey is a triangle of N∗, and N∗ = M∗/e, every 3-element

subset of Ey is a triangle of M∗, that is, a triad of M . Since Ey is independent

in N and hence in M , we deduce that ∇Ey(M) is well-defined. Moreover, by

the dual of Lemma 5.2.16, ∇Ey(M)\e = ∇Ey(M\e) = ∇Ey(N). Thus ∇Ey(M)

is a single-element extension of ∇Ey(N). But the last matroid equals M(Ty)

where Ty is the del-con tree obtained from TN by shrinking y. Hence ∇Ey(N)

is 3–connected. If ∇Ey(M) is also 3–connected, then, since it is a single-element

extension of ∇Ey(N), it follows by the induction assumption that the lemma

holds for ∇Ey(M) and hence for M .

It remains to consider when ∇Ey(M) is not 3–connected. Then ∇Ey(M) has

a 2–circuit, {e, f} say, containing e. But, since M , which equals ∆Ey [∇Ey(M)],

has no 2–circuits, {e, f} meets Ey. Hence f ∈ Ey. We show next that e must lie

in the meet of cl(X) and cl(Y ) in M . Since M is obtained from ∇Ey(M) by per-

forming a ∆Ey–exchange, the closure of Ey in M must contain e. Therefore, as

{X ∪e, Y } is a 3–separation of the 3–connected matroid M , and Ey is contained

in Y , we get that e ∈ cl(X) ∩ cl(Y ). Therefore {X,Y ∪ e} is a 3–separation

of M . We may now apply the argument that began in the previous paragraph,

interchanging X with Y and y with x, to deduce that the lemma holds for M

unless ∇Ex(M) has a 2–circuit {e, g} containing e where g ∈ Ex. Assume the ex-

ceptional case occurs and consider ∇Ex(∇Ey(M)) which is certainly defined and

equals ∇Ey(∇Ex(M)). Since e is parallel to f in ∇Ey(M) and to g in ∇Ex(M),

it is not difficult to see that f is parallel to g in ∇Ey(∇Ex(M))\e, and that this

matroid equals ∇Ey(∇Ex(N)). This is a contradiction since the last matroid is

in Λm. �
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Figure 6.3. The matroids Pn1,n2
and Qm1,m2

.

Let M be a 3–connected single-element ω–regular extension of a member of

Λk+3, where k ≥ 1. By the dual of Lemma 6.4.10, M∗ is ∆−∇–equivalent to a

3–connected single-element coextension of U2,k+3 that is ω–regular. Figure 6.3

gives geometric representations for the matroids Pn1,n2
and Qm1,m2

, which are

defined for all integers n1, n2, m1, and m2 exceeding one.

Lemma 6.4.11. Let k ≥ 1. For a matroid M , the following two statements

are equivalent:

(i) M is a 3–connected ω–regular matroid such that M/x ∼= U2,k+3.

(ii) (a) M is k–regular and, for some m1 and m2 with m1 + m2 = k + 2,

there is an isomorphism between M and Qm1,m2
under which x

maps to the element of Qm1,m2
that is on no non-trivial line; or

(b) M is strictly (k + 1)–regular and M is isomorphic to U3,k+4 or to

a member of {Pn1,n2
: n1 + n2 = k + 3}.

Moreover, every matroid that is ∆ − ∇–equivalent to a member of {Pn1,n2
:

n1 + n2 = k + 3} is a member of Λk+4.

Proof. Using Lemma 4.2.6, it is routine to deduce that a matroid is a

3–connected single-element ω–regular coextension of U2,k+3 if and only if it is

isomorphic to a member of

{U3,k+4} ∪ {Pn1,n2
: n1 + n2 = k + 3} ∪ {Qm1,m2

: m1 + m2 = k + 2}.
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Furthermore, by the same lemma, every member of {Qm1,m2
: m1 +m2 = k +2}

is k–regular and every member of {Pn1,n2
: n1 + n2 = k + 3} is strictly (k + 1)–

regular.

To prove the second part of the lemma, we need to show that every member

of {Pn1,n2
: n1 + n2 = k + 3} is in Λk+4. This is certainly true if either n1 or n2

is equal to two. Therefore assume that both n1 and n2 exceed two. Let X be

the set of points of one of the non-trivial lines of Pn1,n2
, and let x be the unique

element of E(Pn1,n2
) that is on no non-trivial lines. Using Lemma 5.2.9, it is

straightforward to check that the bases of ∇X∪x[∆X(Pn1,n2
)] coincide with the

bases of U2,k+4. Therefore Pn1,n2
is indeed a member of Λk+4. �

In the proof of Lemma 6.4.12, we use the fact that X is a flat of a matroid

M if and only if E(M) − X is the union of a (possibly empty) set of cocircuits

of M .

Lemma 6.4.12. For k ≥ 1, let M be a 3–connected matroid such that M\x ∈
Λk+3. Suppose that x is not fixed in M . If x 6∈ A, then

(i) x is not fixed in ∆A(M); and

(ii) x is not fixed in ∇A(M).

Proof. Let M ′ be a matroid obtained from M by independently cloning x

with x′. Consider part (i). Since ∆A(M) is well-defined, it follows that ∆A(M ′)

is also well-defined. By Lemma 5.2.20, the elements x and x′ are independent

clones in ∆A(M ′). Therefore, by definition, x is not fixed in ∆A(M) and part

(i) is proved.

Now consider part (ii) of the lemma. As every 3–element subset of A is a

triad of M , the set E(M) − A is a flat F of M . First assume that x is in a

circuit C of M |F . Then (C − x) ∪ x′ is a circuit of M ′|(F ∪ x′) and so F ∪ x′ is

a flat of M ′ such that rM (F ) = rM ′(F ∪ x′). Therefore every 3–element subset

of A is a triad of M ′ and so, as A is independent in M ′, the operation ∇A(M ′)

is well-defined. By Corollary 5.2.21, it follows that x is not fixed in ∇A(M).

Now assume that x is not in a circuit of M |F . Then x is a coloop of M |F
and so F −x is a flat of M . Therefore A∪x is the union of a set of cocircuits of

M . Let C∗ be a cocircuit of M that contains x and is contained in A∪ x. Since

every 3–element subset of A is a triad of M and M is 3–connected, it follows
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that there are exactly 2 elements of A in C∗. Thus every 3–element subset of

A ∪ x is a triad of M . Therefore every 2–element subset of A is a cocircuit of

M\x, so M\x is not 3–connected, contradicting the fact that M\x is a member

of Λk+3. This completes the proof of Lemma 6.4.12. �

We remark here that, in general, a ∇–exchange on a matroid M does not

necessarily preserve the property of an element of E(M) being not fixed. For

example, suppose that M is isomorphic to M(K2,3) and let A denote the set of

elements of one triad of M . Now every element of M is not fixed. However,

every element of ∇A(M), which is isomorphic to M(K4), is fixed.

By Lemma 5.2.11 and its dual, the following corollary is an immediate con-

sequence of Lemma 6.4.12.

Corollary 6.4.13. For k ≥ 1, let M be a 3–connected matroid such that

M\x ∈ Λk+3. Suppose that x is fixed in M . If x 6∈ A, then

(i) x is fixed in ∆A(M); and

(ii) x is fixed in ∇A(M).

Lemma 6.4.14. For k ≥ 1, let M be a 3–connected k–regular matroid such

that M\x = N and N ∈ Λk+3. Then

(i) x is fixed in M ; and

(ii) N has an element x′ such that either M\x′ or M/x′ is a member of

Λk+3 depending upon whether x′ is a del or a con element, respectively,

of a reduced del-con tree TN for which N = M(TN ).

Proof. Since M is k–regular, it has none of the matroids in Figure 6.1

as a minor. Thus we may apply Lemma 6.4.10 to M . Let M0,M1, . . . ,Mn

be the sequence of matroids whose existence is established in that lemma. As

Mn\x ∼= Uk+1,k+3 and Mn is k–regular, it follows, by Lemma 6.4.11, that there

is an isomorphism between Mn and Q∗
m1,m2

under which x maps to the element

of Qm1,m2
that is on no non-trivial lines. For convenience, we shall assume that

this isomorphism is the identity. Let F1 and F2 be the complements of the two

non-trivial lines of Qm1,m2
. Then it is not difficult to check that {F1, F2} is a

modular pair of flats in Mn meeting in {x}, so x is fixed in Mn. Hence, by

Corollary 6.4.13, x is fixed in M .
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Next we show, by induction on n, that the element x′ of Mn that lies on

both non-trivial lines of M∗
n has the property asserted in (ii) of the lemma. If

n = 0, then M ∼= Q∗
m1,m2

and N ∼= Uk+1,k+3. Moreover, it is straightforward to

deduce that M/x′ is a member of Λk+3. The reduced del-con tree TN associated

with N has a single vertex, which is labelled “con”, so (ii) holds for n = 0.

Now let n ≥ 1 and suppose that (ii) holds for all smaller values of n. Let

N1 = M1\x. Then M1 is 3–connected and k–regular, and N1 ∈ Λk+3. Let TN1

be the reduced del-con tree corresponding to N1. By the induction assumption,

either M1\x′ or M1/x
′ is a member of Λk+3 depending upon whether x′ is a del

or a con element, respectively, of TN1
. There are four cases to consider depending

on whether M is ∆A(M1) or ∇A(M1) and whether x′ is or is not in A.

Case (1). M = ∆A(M1) and x′ ∈ A.

Since |A| ≥ 3, it follows that M1/x
′ 6∈ Λk+3. Hence M1\x′ ∈ Λk+3 and x′

is a del element of TN1
. By Corollary 5.2.17, N = ∆A(N1). Thus x′ is a con

element of TN . Now M/x′ = ∆A(M1)/x
′ = ∆A−x′(M1\x′) by Lemma 5.2.13.

As M1\x′ ∈ Λk+3, we conclude that M/x′ ∈ Λk+3.

Case (2). M = ∆A(M1) and x′ 6∈ A.

In this case there are two possibilities. Suppose first that x′ is a del element

of TN1
. Then x′ is a del element of TN . Moreover, by the induction assumption,

M1\x′ is in Λk+3 and so is 3–connected. Thus, by Corollary 5.2.17,

M\x′ = ∆A(M1)\x′ = ∆A(M1\x′).

We conclude that M\x′ is a member of Λk+3.

Now suppose that x′ is a con element of TN1
. Then x′ is a con element of TN .

Moreover, by the induction assumption, M1/x
′ is in Λk+3 and so is 3–connected.

Thus, by Corollary 5.2.17,

M/x′ = ∆A(M1)/x
′ = ∆A(M1/x

′).

We conclude that M/x′ is a member of Λk+3, thereby completing case (2).

In the two cases that remain, M = ∇A(M1). In these cases, by applying the

arguments just given with M∗ replacing M , we obtain the desired conclusion.

It follows, by induction, that (ii) holds. �
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The next lemma is somewhat technical. It plays a crucial role in the proofs

of Lemmas 6.4.16 and 6.4.20, the two main tools used to prove Theorems 6.1.1

and 6.1.2.

Lemma 6.4.15. Suppose k ≥ 1 and let M be a 3–connected ω–regular matroid

such that M\x/y ∈ Λk+3 for some elements x and y. Assume that every proper

minor of M having a minor in Λk+3 is k–regular. Then

(i) x is fixed in M/y; and

(ii) if M\x is 3–connected, then x is fixed in M .

Proof. Part (i) is certainly true if {x, y} is contained in a triangle of M .

But if not, then M/y is a 3–connected extension by x of a member of Λk+3 and

it follows by Lemma 6.4.14(i) that (i) holds.

We prove (ii) by contradiction. Thus suppose that M\x is 3–connected,

but x is not fixed in M . Since (M∗/x)\y ∈ Λk+3, the matroid M∗/x is a 3–

connected k–regular single-element extension of a member of Λk+3. Therefore,

by Lemma 6.4.14(ii), either (M∗/x)\y′ or (M∗/x)/y′ is a member of Λk+3 for

some y′ 6= y. This implies that either M\x/y′ or M\x\y′ is a member of Λk+3.

Suppose that M\x\y′ ∈ Λk+3. Since M\y′ is certainly 3–connected and k–

regular, x is fixed in M\y′ by Lemma 6.4.14(i). Thus, by Proposition 6.2.3(i),

x is fixed in M ; a contradiction.

Now suppose that M\x/y′ ∈ Λk+3. Then, by (i), x is fixed in M/y′. Since

x is also fixed in M/y but x is not fixed in M , it follows by Proposition 6.2.3(ii)

that {x, y, y′} is a triangle of M .

Next we show that y is cofixed in M . Clearly, M/y\x ∼= M/y\y′ so M/y\y′ ∈
Λk+3. Hence M∗/y′\y ∈ Λk+3. Therefore, by (i), y is fixed in M∗/y′, that is, y is

cofixed in M\y′. Similarly, y is also cofixed in M\x. But {x, y, y′} is a triangle

of M and M 6∼= U2,4, so {x, y, y′} is not a triad of M . Therefore, by the dual of

Proposition 6.2.3(ii), y is cofixed in M .

Since x is fixed in M/y, but not in M , it follows by Proposition 6.2.6(i) that

x is freer than y in M . Thus either {x, y} are clones in M , or x is strictly freer

than y in M . If x and y are clones in M , then, as M is 3–connected, x and y

are coindependent clones in M and so y is not cofixed in M ; a contradiction. If
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x is strictly freer than y, then, by Proposition 6.2.6(ii), y is not cofixed in M ; a

contradiction. �

Lemma 6.4.16. Let k ≥ 1. Then every member of Λk+3 is a universal stabi-

lizer for the class of k–regular matroids.

Proof. Let N be a member of Λk+3 and M be a 3–connected k–regular

matroid. We shall use Theorem 6.2.4. If M\x = N , then, by Lemma 6.4.14(i),

x is fixed in M . Dually, if M/y = N , then y is cofixed in M . Finally, if

M\x/y = N and M\x is 3–connected, then, by Lemma 6.4.15, x is fixed in M .

We now conclude using Theorem 6.2.4 that the lemma holds. �

The next corollary follows immediately from combining Lemma 6.4.16 with

Theorem 6.2.5.

Corollary 6.4.17. Let k ≥ 1. Then every member of Λk+3 is an Rω–

stabilizer for the class of k–regular matroids.

Lemma 6.4.20, one of the two primary tools in the proofs of the main theo-

rems of this chapter, will use two more preliminary results. The first of these is

easily seen to be implicit in the first paragraph of the proof of Theorem 5.1 of

[9].

Lemma 6.4.18. Let P be a partial field. If M and N are 3–connected P–

representable matroids such that M\x = N and x is fixed in M , then N stabilizes

M over P.

Lemma 6.4.19. An ω–regular matroid M that is not k–regular cannot be

stabilized over Rω by a k–regular matroid.

Proof. This follows immediately from the fact that an ω–unimodular rep-

resentation of a matroid that is not k–regular requires at least k+1 algebraically

independent transcendentals over Q. �

Lemma 6.4.20. Let k ≥ 1. Suppose that M is a 3–connected ω–regular

matroid that has as a minor a member of Λk+3 that does not stabilize M over

Rω. Then M has a minor isomorphic to a member of {U3,k+4, Uk+1,k+4}∪Λk+4.

Proof. It suffices to consider the case when M is a minor-minimal 3–

connected ω–regular matroid having a minor in Λk+3 that does not stabilize
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M over Rω. By Corollary 6.4.17, M is not k–regular. Moreover, by Theo-

rem 6.2.1, for some member N of Λk+3 that does not stabilize M over Rω, there

are elements x and y of M such that (i) M\x = N , or (ii) M/y = N , or (iii)

M\x/y = N and both M\x and M/y are 3–connected.

First let M\x = N . By Lemma 6.4.11 and the remarks preceding it, either

M is isomorphic to Uk+1,k+4, or M is ∆−∇–equivalent to a member of {P ∗
n1,n2

:

n1 + n2 = k + 3}. In the second case, by Lemma 6.4.11, M is a member of

Λk+4. Thus, in both cases, M is isomorphic to a member of {U3,k+4, Uk+1,k+4}∪
Λk+4. By duality, if M/y = N , then, again, M is isomorphic to a member of

{U3,k+4, Uk+1,k+4} ∪ Λk+4.

Now assume that M\x/y = N and both M\x and M/y are 3–connected.

Then Lemma 6.4.19 and the minimality of M imply that both M\x and M/y

are k–regular. Therefore, by Lemma 6.4.16, y is cofixed in M\x and x is fixed in

M/y. Furthermore, as M\x is k–regular but M is not k–regular, Lemma 6.4.19

implies that M\x does not stabilize M over Rω. Thus, by Lemma 6.4.18, x is

not fixed in M . Therefore, by Lemma 6.4.15(ii), M has a proper minor M ′ that

is not k–regular and has a minor in Λk+3. Since |E(M)| = k + 5, it follows that

M ′ has an element z such that M ′\z or M ′/z ∈ Λk+3. Since M ′ is not k–regular,

we conclude that M ′ is 3–connected and that no member of Λk+3 stabilizes M ′.

Thus M ′ contradicts the choice of M . �

At last we are in a position to prove Theorems 6.1.1 and 6.1.2. Indeed,

most of the work in proving these theorems has already gone into proving Lem-

mas 6.4.16 and 6.4.20.

The proof of Theorem 6.1.1 is by induction on k and relies on Theorem 6.2.1.

Due to certain properties of the class of ω–regular matroids, it turns out that, for

k ≥ 1, the ω–regular excluded minors for the class of k–regular matroids can be

determined from the ω–regular excluded minors for the class of (k − 1)–regular

matroids by simply performing the stabilizer check of Theorem 6.2.1 on each of

the latter matroids. Before proving Theorem 6.1.1, we restate it for convenience.

Theorem 6.1.1. Let M be an ω–regular matroid and let k ≥ 1. Then

(i) M is regular if and only if it has no minor isomorphic to U2,4; and

(ii) M is k–regular if and only if it has no minor isomorphic to a member

of {U3,k+4, Uk+1,k+4} ∪ Λk+4.
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Proof. Part (i) is an immediate consequence of Tutte’s excluded-minor

result for the class of regular matroids [28].

Consider part (ii). First we note that, by Corollary 4.2.2 and Lemma 4.2.4,

all of U2,k+4, U3,k+4, and Uk+1,k+4 are ω–regular excluded minors for the class

of k–regular matroids. Hence, by Theorem 5.3.1, every member of Λk+4 is also

an ω–regular excluded minor for this class. Now, for all k ≥ 1, let Sk be the set

of ω–regular excluded minors for the class of (k− 1)–regular matroids. We shall

prove the following by induction on k:

(a) every member of Sk is k–regular; and

(b) every 3–connected ω–regular matroid that is not stabilized over Rω by

some member of Sk has a minor isomorphic to a member of

{U3,k+4, Uk+1,k+4} ∪ Λk+4.

We observe that if these both hold, then

(c) Sk+1 = {U3,k+4, Uk+1,k+4} ∪ Λk+4.

To see this, note that, from above, Sk+1 ⊇ {U3,k+4, Uk+1,k+4}∪Λk+4. Suppose

that M ∈ Sk+1 − [{U3,k+4, Uk+1,k+4} ∪ Λk+4]. As M is ω–regular but not k–

regular, by (a) and Lemma 6.4.19, M is not stabilized over Rω by any member

of Sk. Thus, by (b), M has a minor in {U3,k+4, Uk+1,k+4} ∪ Λk+4 contradicting

the choice of M . Thus (a) and (b) do indeed imply (c).

Now let k = 1. By part (i), U2,4 is the unique ω–regular excluded minor

for the class of regular matroids. Moreover, by combining Corollary 4.2.2 and

Lemma 6.4.20, we immediately obtain that, for k = 1, both (a) and (b) hold.

Suppose that k = 2. It follows, since (a) and (b) hold for k = 1, that (c)

also holds for k = 1. Hence, as Λ5 = {U2,5, U3,5}, the ω–regular excluded minors

for the class of 1–regular matroids are U2,5 and U3,5. Moreover, we deduce by

Corollary 4.2.2 and Lemma 6.4.20 that both (a) and (b) hold for k = 2.

Now let k ≥ 3 and assume that (a) and (b) hold for Sk−1. Then, by (c), Sk =

{U3,k+3, Uk,k+3} ∪ Λk+3. By Corollary 4.2.2 and Lemma 4.2.6, every member of

Sk is k–regular. Furthermore, by Lemma 6.4.20, every 3–connected ω–regular

matroid that is not stabilized over Rω by some member of Λk+3 has a minor

isomorphic to a member of {U3,k+4, Uk+1,k+4} ∪ Λk+4.
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It remains to consider the 3–connected ω–regular matroids that are not sta-

bilized over Rω by some member of {U3,k+3, Uk,k+3}. As k ≥ 3, Corollary 6.4.1

implies that U3,k+4 and Uk+1,k+4 are the only ω–regular matroids that are either

3–connected single-element extensions or 3–connected single-element coexten-

sions of U3,k+3 or Uk,k+3. Therefore every 3–connected ω–regular matroid that

is not stabilized over Rω by one of U3,k+3 and Uk,k+3 has a minor isomorphic to

a member of {U3,k+4, Uk+1,k+4}. We conclude that (a) and (b) hold for Sk and

part (ii) follows by induction. �

A consequence of Theorem 6.1.1 is that, given a partial field P, we can bound

the number of inequivalent P–representations of certain k–regular matroids.

Corollary 6.4.21. Let k ≥ 1. Let M be a 3–connected strictly k–regular

matroid such that if k ≥ 3, then M is isomorphic to neither U3,k+3 nor Uk,k+3.

Suppose that M is representable over a partial field P and let n be the number

of inequivalent P–representations of U2,k+3. Then M has at most n inequivalent

P–representations.

Proof. If k ≥ 3, then U3,k+3 and Uk,k+3 are both splitters for the class of

k–regular matroids. Therefore, by Theorem 6.1.1, M has a minor N isomorphic

to a member of Λk+3. By Lemma 6.4.16, N is a universal stabilizer for the

class of k–regular matroids, and so, by Theorem 6.2.5, N stabilizes M over P.

Thus, by Proposition 6.2.2, the number of inequivalent P–representations of M

is no more than the number of inequivalent P–representations of N . Moreover,

it is straightforward to deduce from Corollary 5.3.4 that there are exactly n

inequivalent P–representations of N . The corollary follows immediately. �

Next we prove Theorem 6.1.2.

Theorem 6.1.2. Let k ≥ 0 and let M be a 3–connected k–regular matroid.

Then all ω–unimodular representations of M are equivalent.

Proof. Since binary matroids are uniquely representable over every partial

field [25], the theorem holds if k = 0. Assume that k = 1. By Corollary 6.4.17,

U2,4 is a stabilizer for the class of near-regular matroids over Rω. Furthermore,

by Theorem 6.1.1, every strictly near-regular matroid has a minor isomorphic

to U2,4. Therefore, as all ω–unimodular representations of U2,4 are equivalent,
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we deduce by Proposition 6.2.2 that all ω–unimodular representations of a 3–

connected strictly near-regular matroid are equivalent.

Now assume that k ≥ 2 and suppose that M is strictly k–regular. Then, by

Theorem 6.1.1, M has a minor isomorphic to a member of {U3,k+3, Uk,k+3} ∪
Λk+3. Since Λ5 = {U3,5, U2,5}, we deduce that either (i) M has a minor isomor-

phic to a member N of Λk+3, or (ii) k ≥ 3 and M has a minor isomorphic to

U3,k+3 or Uk,k+3. Assume that (ii) holds. Since, by Corollary 6.4.7, U3,k+3 and

Uk,k+3 are splitters for the class of k–regular matroids, either M ∼= U3,k+3 or

M ∼= Uk,k+3 and so, by Lemma 6.4.2, all ω–unimodular representations of M

are equivalent. We may now assume that (i) holds. Then, by Corollary 6.4.17,

M is stabilized by N over Rω. But, by Corollaries 4.2.3 and 5.3.4, N is uniquely

representable over Rω. Hence, by Proposition 6.2.2, all ω–unimodular represen-

tations of M are equivalent. The theorem now follows readily. �

Let k be a positive integer and suppose that M is a 3–connected strictly

k–regular matroid such that, for k ≥ 3, the matroid M is isomorphic to nei-

ther U3,k+3 nor Uk,k+3. If M is representable over a partial field P, then, by

Corollary 6.4.21, the number of inequivalent P–representations of M is no more

than the number of inequivalent P–representations of U2,k+3. The next corollary

shows that a member of each equivalence class of P–representations of M can

be obtained via a k–unimodular representation of M .

Corollary 6.4.22. Let k be a positive integer and P be a partial field with

the property that there are k distinct elements a1, a2, . . . ak in P − {0, 1} such

that, for all distinct i and j in {1, 2, . . . , k}, both ai − 1 and ai − aj are in P.

Let M be a 3–connected matroid that is strictly k–regular and has a minor N

isomorphic to a member of Λk+3. Then the matrix obtained from a k–unimodular

representation of M by replacing αi with ai for all i is a P–representation of M .

Moreover, up to equivalence, all P–representations of M can be obtained in this

way.

Proof. As stated in the remarks following Proposition 3.1.1, the matrix

obtained from a k–unimodular representation of M by replacing αi with ai for

all i is a P–representation for M . We now show that all P–representations of

M , up to equivalence, can be obtained in this way.
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Consider a P–representation of U2,k+3. Since all k–unimodular representa-

tions of U2,k+3 are equivalent, it is clear that all P–representations of U2,k+3

can be obtained from the following k–unimodular representation of U2,k+3 by

replacing αi with ai for all i in {1, 2, . . . , k}.

[

1 0 1 1 1 · · · 1

0 1 1 α1 α2 · · · αk

]

Since N ∈ Λk+3, it follows by Corollary 5.3.4 that, up to equivalence, every

P–representation of N can be obtained from a k–unimodular representation of

N by replacing αi with ai for all i.

Let X be a k–unimodular representation of N and Y be the P–representation

of N obtained by replacing αi with ai for all i. By combining Lemma 6.4.16

and Theorem 6.2.5, we deduce that N stabilizes M over P. Therefore if Y can

be extended to a P–representation of M , then all such representations of M are

strongly equivalent. Moreover, by Theorem 6.1.2, X is guaranteed to extend to

some k–unimodular representation X ′ of M , so one of these representations can

be obtained from X ′ by substituting ai for αi for all i. Corollary 6.4.22 is now

proved. �

An immediate consequence of Corollary 6.4.22 is that if M is a non-binary

3–connected near-regular matroid representable over a partial field P, then all

P–representations of M can be obtained in the way described in its statement.

This result is [35, (2.12)] and has an important role to play in the theorems of

[34, 35].
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