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INTRODUCTION

The programme of work for this thesis began with the somewhat
general intention of parallelling in the context of higher order models
the ultraproduct construction and its consequences as developed in the
literature for first order models. Something of this was, of
course, already available in the ultrapower construction of W.A.J.
Luxemburg used in Non Standard Analysis.

It may have been considered that such a general intention was
not likely to yield anything of significance over and above what was
already available from viewing the higher order situation as a "many
sorted' first order one and interpreting the first order theory
accordingly. In the event, however, I believe this has proved not to
be so. In particular the substructure concepts developed in Chapter
11 of this thesis together with the various embedding theorems and
their applications are not immediately available from the first order
theory and seem to be of sufficient worth to warrant developing the
higher order theory in its own terms. This, anyway, is the basic
justification for the approach and content of the thesis.

Chapter I sets out, within a simple type theory, notation and
initial concepts for higher order structures and associated languages.
Because of the concern for application of the model theoretic material
to algebraic situations, n-ary operafions on the individuals of
structures are explicitly nominated within the class of general

relations. Whilst this makes the applications more natural a price is




(ii)

paid of making the notation and detailed development more complex.
Further in Chapter I some attention is given to the two concepts of
normality and fullness associated with higher order models and the
manner in which these concepts find expression in the ultraproduct
construction. Finally model theoretic results paralleling those of a
first order theory and ultraproducts are established.

In the first section of Chapter II a substructure concept for
higher order models is defined and some of its properties established.
In the second section wvarious theorems involving the embedding of a
structure into an ultraproduct of a local family of its substructures
are proved. Brief mention is given to the presence of 'inverse
limits' in this embedding context.

In Chapter III various algebraic applications are given of the

concepts and theorems of Chapter II. In Section 1 Stone's Representation

Theorem for Boolean Algebras is expressed as an example of
A-embedding. In Section 2 the presence of a higher order ultraproduct
construction in the mechanism of Sylow p-subgroups of locally normal
groups 1s exposed and analysed. Perhaps the most significant and
fruitful applications are those in Sections 3 and U concerned with the
theory of local theorems in Universal Algebras.

Two appendices are included. The first discusses modification to
a compactness result for a generalised first order language
established by A. Shafaat. The second develops some consequences to
simple variations in the first order ultraproduct construction.

Theorems, Corollaries and Lemmas are numbered consecutively




(1iii)

within each section. Theorem II : 2.3 denotes Theorem 2.3 in Section
2 of Chapter II. Within each chapter results referred to in that
chapter do not contain the chapter number.

Some of the material in the thesis has already been accepted for
publication. Appendix II is to appear in Volume 13, Number 3,
Pp. 394-398 of the Notre Dame Journal of Formal Logic. It was
submitted in October 1970. Appendix I has been accepted for
publication in the Journal of the London Mathematical Society. It
was submitted in April 1971 and revised in October 1971. A paper
based on the work of Chapter II and the first two sections of Chapter
III has been accepted for publication in the Notre Dame Journal of
Formal Logic. It was submitted in February 1971. Finally, a paper,
based essentially on the work of Sections 3 and 4 of Chapter III, has
been submitted (Janﬁary 1972) to the Editors of the Journal/Proceedings
of the London Mathematical Society. (Accepheu Twly /572 )

It is a pleasure to acknowledge the kindness and help of several |
persons including my formal supervisors Professor G.E. Hughes and
Dr M.J. Cresswell of the V.U.W. Philosophy Department and Professor
C.J. Seelye of the Mathematics Department. Particularly to Dr Max
Cresswell I express my appreciation for the interest he has shown in
the project and for the time he has generously given in consideration
and discussion of various ideas within the thesis.

I record my debt to Dr Leslie Young, who, as an MSc student under
my supervision, introduced me to the study of higher order model

theory and the ultraproduct construction. To Professor B.H, Neumann I
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express my gratitude for the hospitality I have enjayed as an honorary
research fellow in the Department of Mathematics, Institute of Advanced
Studies, ANU, from September 1971 to June 1972. I record my thanks to
Mrs Barbara Geary for the typing of the thesis and especially for the
generous way she accepted the task despite the pressure of many other
responsibilities.

Finally my deep appreciation to Ruth, Hilary, Alison, Judith and
Kirsten for being as they are and in this a continuing reminder that
the most enduring and enriching of relationships lie outside the study

of mathematics.

22 May, 1972




CHAPTER I
HIGHER ORDER MODELS AND ULTRAPRODUCTS

Summary. Higher order (algebraic) structures and associated formal
languages are described in Section 1. In Section 2 the higher order
ultraproduct construction is introduced and the properties of
normality and fullness discussed. In Section 3 the chief model-
theoretic property of higher order ultraproducts is established, being
the extension of Lo¥'s first order result. Extensions are provided to

the class of formulae to which the result is applicable.

1. Terminology and basic concepts
We first set out the notation and some standard properties of the
calculus of finite types. (ef. Kreisel and Krivine (19671, page 95 ff.)
The set T of finite types is defined as follows:
(i) the symbol 0 belongs to T g
(i1) if for any positive integer n the symbols

o] i Un € T then the symbol (Ol, rosg O ) €T

1? n
(iii) T consists of all symbols formed by a finite number of
applications of (i) and (ii).

LEMMA 1.1. For each o € T there exists a positive integer,

called the rank of o and written r(o) s Such that there exists some

sequence 0., ..., - €T with o, =0 and or(o) = 0 and for
L < : = 2 . 3
each 1 <1 < p(o) , o (Gz,l’ A Oﬁ,n') where for some
- F o _ : . ;
Isg s neos Gi,j 0:i1 and further »(c) 1s maximal with respect




to this condition.

Proof. We will proceed by way of an induction argument on the
number of applications of (i) and (ii) in the generating definition of
T to formeach o €T .

For each o € T 1let g be the least positive integer such that
0 is formed in n; applications of (i) and (ii). Condition (iii)
and the induction property of the positive integers ensures that ng

is well defined.

If nc =1 thep 0 =0 and »(o) = 1 .

Now assume that, for m > 1 , »n(0) is defined for all o €T

such that Ny <m ., Take any & € T such that ng =m . Thus

§ = (51, ...,5p) for some § .,aper. As § ...,<sp must

lS VR l!

be constructed in the process of constructing & we have ns = l+n6 5
)

each 1<% =p . Thus, for each % . P(Gi) is defined by
hypothesis and it is immediate that r(8) can be defined such that
r(d) = 1 + max{r(éi) : 1 =4 = p)

Hence r(0) with the required maximal property is defined for

all o €T, //

= 1is a binary relation defined on T by: o, = o, if there

exists a finite sequence Tl’ .y Tn € T such that Ty B 02 3

T =0 <7< o = . B .

, =0, and for each 1547 < p, T, (Tz’l, , Tz,ni) where
Tryg T, . forsome 1<g<n..




. & &
We write Ul 02 for Ol =< 02 and Gl £ 0

2
LEMMA 1.2. = <48 a partial ordering on T ,

Proof. That = is reflexive and transitive is immediate from

the definition of = . Assume that Ol S5 02 and 02 = Gl . Let
Tl, . Tm be a sequence establishing that Ul < 02 and

51, 8y dn a sequence establishing that 9, =0, . Thus

- = 9 = = — . >

1 £ 02 and Tm 61 Ol If m > 1 +then

r[Tl] = 1+r(12), —_— r(rm_l) > 1+r(1m)
Thus P(UQ] > r(ol] - If n>1 then similarly r(cl] > r(02) .

Hence either m =1 or n =1 and le] Ol = 02 . That is = is

anti-symmetric, © //

LEMMA 1.3. If o, o, €T and o, <o, then rfo) < r(oz] .

Proof. Let Ty» «»+» T~ be a sequence establishing that

0, <0, . As 0, #0, then m>1 and so P(Ol) < r[02) . //

The next lemma establishes the basis for the inductive arguments
used in many of the later theorems. Let P be any subset of T such
that if 0 € P and T <0 then T €P .

LEMMA 1.4. If @ 4s q subset of P such that (i) 0 € Q@ and

(i) if o €P, 0o = (ol, boag on) and 0, €4, 1sisn, then

0 €¢, then @ =P .
Proof. Assume there exists ¢ € P and @ £ Q. Hence, by the
induction property of the positive integers, there exists a least

positive integer n and a T € P and T f @ such that »(1) =#n .




n#Fl as 0 € ¢ and so T = (Tl, AP Tp) where Tl, . s Tp Y
For each 1 =4 =p , r(Ti] < r(T) and so Ti € @ . But this would

require T € @ by the condition (iZ) in the statement of the lemma.
Hence there exists no 0 € P such that ¢ k € . That is @ =P . [/

The final lemma on finite types establishes that T is countable.
This ensures that the formal languages associated with the higher
order structures as defined below can be made countable if required.

LEMMA 1.5. T s a countable set.

Proof. A proof proceeds by first establishing that, for each
positive integer # , the members of T of rank n form a countable
set. Hence T 1is a countable union of countable sets and so is
countable, //

Higher order structures. Let « denote a non empty set of types
such that if 0 € k and T <0 then T € K . Let o, B denote two
cardinals.

A k(a, B) algebraic structure, (hereafter called a kK(a, B)

structure) is a collection

M= :0c¢ k}U{€ : 0 ¢ K, 0 # 0} U {fﬁ :m < al v

o
n —
{Hh SR, % = [On 1T e Un,¢(n))

for some on,l’ —— On,¢(n) € K} 5

where the Eo's are mutually disjoint sets; for each 0 € Kk s O #0

and o = (ol, PRpepnpe Un] 5 EG is an n+l-placed relation on




o o)
1 7 a e
E"x ... xXE" XE , for some map © from @ to the non-negative

integers and, for each m < a , f& is an 6(m)-ary operation on

E° 3 for some map ¢ from B to the positive integers, and for

a

each n < B , H%n is a ¢(n)-placed relation on

a

g "t

X 1es x5 00

, wWhere On = (On,l’ v s w5 0n,¢(n)) ’

For each O € Kk the members of &E° are called the objects of

M of type 0 . The members of EO are also called the individuals
of M.

The Eo's » 0 € K are called the membership relations of M .

In general if ¢ = (ol, 2.0 on) then EO will not be a subset of

(o o
g . s
the power set of E L x .. xg" and so € is not the ordinary set

membership relation. However, as explained below (Theorem 1.6), an

isomorphic structure to M can be constructed in which the

5 g g F .
corresponding relations to the ¢ 's are set membership relations.

o. o
If 0 €k , 6= (cl, « i iy On] and a “ €E " s 1212 =m , and

o
(o] o e n . . .
a € E , then (a s seesy & ] is said to belong to a° , written

g o] o g
1 o 2 ; o ;
(a PRRTCR I n)e a0 s 1f and only if, ¢ (a l, s G n’ ao) , that is

Gl On g o]
if, and only if, a ~, ..., @ ', @ are related by € .




0
The fh's are called the operations of M and the Rnn's the

constant relatiomns of M .
If M is a k(a, B) structure and N a «k'(a', B') structure,

(0]

N={F :0¢€x'}V €9 .0 ¢ k', o # 0} UV

T

{gm :m<a'lu {S " .nc< B'} "

n
then M and N avre similar structures if Kk =x' , a=a" , B =8’
and there exist permutations M, § of o, B respectively such that
for each m<a , n<B8, fﬁ and gu(m) have the same arity and

Ts(n)

o
n
and Rn and Sé(n)

= T "
5 §(n) have the same number of arguments

k(o, B) is called the similarity type of M and the similarity class
of M is the class of all structures similar to M .
Hereafter, if M and N are k(o, B) structures we shall use

the €9 symbols to denote the membership relations in N as well as

in M . Context will prevent ambiguity. We also shall always assume
that the operations and constant relations of N have been renamed so
that the permutations W4, § , arising from the similarity correspondence,
can be taken as the identity permutations and thus not require

explicit mention. In general, whenever we take M and N as k(a, B)
structures we shall understand them given in detail as above. If we

take Mi’ Ni as k(a, B) structures, indexed by some < , we shall

understand their detailed description given as for M, N respectively

but carrying the index % . In all cases we shall understand the arity




and argument maps, © and ¢ , to be given without requiring explicit

mention in each situation.
a
Let M and N be k(o, B) structures. For each O € Kk let U

be a bijection from B to P . Let Yy denote the family of such
maps, for all O € K .,

Y is called an Zsomorphism between M and N (and M and ¥

are said to be isomorphic) if

(] a

(1) for each 0 €k , 0 = (Ol, ces cn) , and all a €E ,

0. . ' o g
Z > 2 1 ny 0 0
a € E , each 1 =% =mn , we have (a 5 o0l @ )E a

o, @ o ©
if, and only if, [w l(a l), soen g W n(a n)]eowo(ao) 5

o 0 0 0
(ii) for each m < a , and all a;, ..., g (m) € E , we

O (A GO 18| R U CH PR ST |

g o

nuj 6 E n’!j

(iii) for each n < B , and all a , each

g g 0)
1=g = ¢(n) , we have Rnn(a n,l’ ety n,¢(n)) if, and

(. % ,1 (acn SN

0 g
aly IF, Sn " n,¢(n)(a n,¢(n))] ,

9 e sy

where

= Anls 3 10 a
% (On,l’ E n,¢(n))
We shall frequently omit the superscript ¢ from the map WU
allowing context to provide the proper level of action.

A k(o, B) structure M is called normal if for each 0 € K ,




o = (Gl, © On) , and for all aa, b% € £° , we have q° = b° if,

and only if, 8% = 5° , where
(o) (€] (6] g
A0 1 n 1 ny o Qo
a = {(a § wesy & ) : (a p wsss @ )E a }

2o, p . . e S X g
and b 1s defined likewise. & 1s called the extension of a .

Unless otherwise stated all given structures will be assumed
normal. We shall also assume that for any given k(a, B) structure

o)
M that if for any n < B , O, €K then & " contains an element

o
p P ; < n . :
whose extension coincides with the extension of R% . We identify

(0]
this member with Ehn 2

THEOREM 1.6, For each (normal) k(a, B) structure

o)

o]
M={E :0eku{ :0c¢ K, 0 # 0} U {fﬁ :m < alu {Rnn tn < B}

there exists an igomorphic structure
o o ‘n
B={F :o0exlu{e® i0ex,oc#0}u {gm :m < al v {Sn i n < B}

such that if o €k, o = (ol, TIT. On] then F° 4s a subset of the

o g
power set of F I x v X P and the €9 ie the set membership

relation.
Proof. We shall proceed by induction to define # and the
isomorphism Y between M and &N .

Put FO = EO and define wo : EO i+ FO as the identity map.




Take 0 €K , O = (Ol, v ong on) and assume that for each 1 =7 =<n ,
g,
O"I: O"l: 1L z.,mi
g is defined as a subset of the power set of F °° X ,,, X F 3
Oi G’i 07:
where o. = (0. ., +.., 0, } , and the bijection ¢ ~ : E ~ > F
7 T ol Tym,

is defined. Now define F° and WG as follows. For each a° € E°

o) g g

put wo(ao) = {[Wol[acl], s V@™ (a l, ki aon)ecao}

Define F° = (&) : &% €% .

. o . . . (o} (o]

We check that ¢~ is an injective map from & to F . Let
gr O gr, 0O a (e} O Ol 071 g o
V] (a ) =y (b ) for a , b € E . Hence if (a g sis @ )G a

o, © 6 o
then [w l(a B, o 0@ e (%) and so

Ol Gn 0,0 0l Gn
(a sy cees @ )E b- ,as YU T, ce., Y are bijective by assumption.

o o o o
Similarly if (a Ty vovs @ )% then (@ ¥, ..., a ) Ca° and so,

. a
as M 1is normal, a =5

%, < g .
From the definition of F0 it is immediate that Y is

surjective. Thus it i1s bijective, It is also plain from the definition

g ' o 1 ag
that F  is a subset of the power set of F =~ X ,,, X F

n
We now define the relations and operations of N as follows.

For each 0 €K , 0 = (01, S On] we define €'0 by:

(bcl, ban)e"’b" if [(wcl) 23, ..., (wo”‘)-l(bon) %) %)
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For each m < 0 we define Iy = fﬁ . Finally, for each n < B we
o (o SN o

define Snn by: Shn(b n,l, vees b n,¢(n)] if

a a -1 O g -1 ©

n n,l 7,1 n,¢(n) n,¢(n
R0 B Y, s ()T )]

If ¥ 1is as defined then it is immediate that ¥ is an

isomorphism between ¥ and N . It is also apparent that for each

9 is the ordinary set membership relation. {1l

g€eExk, o0, €
If M is a k(a, B) structure then M is called a full

structure if for each 0 € Kk , O = (Ul, Ty On) and for each

g a
subset 4 of F 4 X ... XF . there exists an a0 € E"I such that

A0
a =4 ,

Thus if M is a full structure then in the associated
isomorphic structure &N , as constructed in Theorem 1.6, each F0 5

g a

o = (Ol, oo g On} , will be the whole power set of F Ly cae X F i

Formal languages associated with «(a, B) structures. We shall
denote by L(k(a, B)) a formal language associated with the similarity
class of type k(a, B) and described as follows.

The symbols of L(k(a, B)) are

(i) for each 0 € K a countable class of variable symbols,
g (8] 0 (0] g
X 1= {x s Y s seey xl, yl, ...} .

(ii) for each 0 €K , O # 0 a symbol f? 5

(1iii) for each m < 0 a symbol iﬁ .
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g
(iv) for each n < B a symbol Bnn and

(v) the symbols for the logical operators, viz., 1, A ,
3 , the identity symbol = , brackets ( ) , and the comma
g .
With (iii) and (iv) we shall associate the maps 6 from o to
the non negative integers, ¢ from B to the positive integers

respectively as defined for M and say ih has arity 6(m) ,

(0]
Enn is ¢(n)-placed.

We put X = U{Xo : 0 € Kk} and note that from Lemma 1.5 we can
deduce X is countable. Thus if the cardinalities of a, B are
finite or denumerable then the collection of symbols for L({k(a, B))

is countable.

The set Z of terms of L(K(a, B)) is U{Z0 : 0 € K} where if
o] g O
0 €K, 0#0 then 2 is X together with the symbols 5% g

n < B , such that o = ¢ , and ZO is defined as follows:

(i) 1° g_ZO , where ® i X together with the symbols

fﬁ » m< & , such that ©O(m) = 0 , that is the arity of

. 0
(ii) For any m < o and tl’ . tB(m) €z ,

0
£,(ts o5 te(m)) €2z

(iii) ZO consists of all strings of symbols got by a finite



2

number of applications of (i) and (ii).

The next lemma provides the basis for inductive arguments over

all members of Z0 «

LEMMA 1.7. If Y <s a subset of 2° such that (i) T° 2 E

(i) if m<a and b5 «ees by €Y then fh(tl’ Co te(m)) €y,

then Y = ZO g

Proof. The rank of each member of ZO can be defined in a

manner similar to the rank of finite types. A proof of the lemma may
then proceed in the manner of the proof of Lemma 1.4, //
The set of atomic formulae of L(k(a, B)) is the set of all

strings of symbols of the following form:

(i) ti = tg , where ti, tg ez°, oex,
On
i1 . < = (o vi'sn 6
(ii) Bn (al, s a¢(n)] , where n < B , Un ( b 1 5 n,¢(n))

g .
and o f €z M , each 1 =7 = ¢n) ,

t]

ag.
(1i1) (o5 oy @)a, o= (0, ..., 0) and o, €27,
R

each 1=j=n,

The set of (well formed) formulae (wff's) of L(K(a, B)) is
defined by:
(i) All atomic formulae are wff's;

0, are wff's then so are [1 al) " (al A 02)

(i) If a s o,

and for any B € ol » 0 €K, [HBul) 5
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(iii) The set of wff's consists of all formulae obtaiﬁed by a
finite number of applications of (i) and (ii).

We shall omit brackets according to the usual conventions. We
shall also introduce the logical symbols Vv , = , < and VY via
the standard procedures.

The following lemma provides a basis for later induction
arguments over the set of wff's.

LEMMA 1.8, If @ <s a subset of wff's such that (i) all

atomie formulae belong to @ , (i1) <if o, 0 €Q and B € X° 5

some O € Kk then 1 o €4q, oy A o, € Q and 36&1 €Q , them @q

18 the set of all wff's.

Proof. A proof proceeds in a manner analogous to that of Lemma
1.4 but with the length of a formula replacing the notionlof rank of a
type symbol. //

Let M be any member of the similarity class of type k(a, B) .
A standard interpretation Vv of L(k(a, B)) with respect to M ,
(hereafter called a M-interpretation), is a map from the non-logical
symbols of L{k(a, B)} , (that is the symbols (i) to (iv) in the
defining list of symbols of L(K(a, B)) ,) to the objects, operations

and constant relations of M such that
(i) for each o € x , v(XO] E_Ec 3

(ii) for each 0 €k , O #0 , v(g?) is the membership

relation eo of M ;

(iii) for each m< a , vLﬁw) is the operation fh of M




1y

g g
(iv) for each n < B , vL@nn] is the relation Rnn of M .

Each standard interpretation VvV as above can be extended to map

all the members of ZO to E'0 by the following procedure: If m < o

and tl’ TR § tS(m) ¢ 7° such that V(ti] is already defined, each

1 =172 =6(m) then put

\)[Im(tl’ tem” ) fm(\)(tl)’ cees V(Eg ()

Lemma 1.7 provides the basis for an inductive definition of Vv

over the whole of ZO

If ¥ is a wff of L(k(a, B)) we define, in the standard
manner, what it is for Y to hold in M with respect to an
M-interpretation V , written AfFK)UJ, as follows.

(i) If Y is an atomic wff of one of the forms,

o

g
1. (o]
a) t, = tg s €k, b) (a7, ..., a n}é?a s Or

= Q

o)
n .
c) R, (al, e a¢(n)) then Ml:b Y if

a) v to] = v{tG] s b) (v(oc By o ans vie M| Ev(®) or

(0]
c) Rhn(v(al)’ R v(a¢(n))} respectively.

(ii) If ¢ is of the fogrm a) I wl s b) wl A w2 or

v

c) HBwl » Wwhere B € x° » O € K , then Mf?v Y if

a) it is not the case that MF'V l!)l q b)) M|==v \IJl, and
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M F% ¢2 or c) there exists an interpretation V' which

agrees with V except pgssibly on B and such that

A!Fw, wl , respectively.

We assume the definition is extended to include the defined
logical operators, disjunction, (material) implication and equivalence,
and universal quantification in the usual manner.

It is a standard consequence of the above definitions for holding

in M that the decision as to whether or not A1F3 Y depends only on

the values V takes on the free terms (that is a term not occurring
in the scope of a quantifier involving the term) of Y . That is if

Y 1is the (finite) set of free terms of Y then M|=b Y if, and only

if, for all M interpretations V' such that 0¥ = v'|y ,
Mb V.
A wEf U is said to hold in M , written ME Y , if for all

M-interpretations V , M}=b Y.

A wEf Y 1is called a sentence of L(k(a, B)) if it contains no
free variables., It is an immediate conpsequence of the holding

definition above that if § is a sentence and Ml‘b Y for one
M-interpretation Vv then M|=b, Y for all M-interpretations V'
Thus either a sentence or its negation, but not both, holds in any

kK(a, B) structure M .

2. Higher order ultraproducts

In this section we first define the notion of a higher order
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ultraproduct associated with a family of higher order structures of
the same similarity type. Frayne, Morel and Scott [1962], page 195,
give a brief history of the development of the ultraproduct (prime
reduced product) construction in the first order context. Luxemburg
[1969], page 23-24, extends the definition to higher order structures
in the context of an ultrapower.

We assume the language and basic properties of filters and
ultrafilters as set out in Bell and Slomson [1969], Chapter I.

Let {Mi : 7 € I} be a family of k(a, B) systems. For each
7 €T,

{2 . O . -
M, = {Eg : 0 €Kl U {Ei : 0 €K, 0 # 0} U {fi,m :m<a} v

%
{Ri,n tn < B} %

If F is an ultrafilter over the index set I (that is F is
an ultrafilter of the subset algebra of the power set of I ) then the

ultraproduct of {Mi : 1 € I} with respect to F , written
. /F = {Z° :0extU(E :0€ex,o0#0}U {7% :m < al U

{Rn :n < B}

is defined as follows.

For each ¢ € Kk let

Pcz{hc:hO:I+U{E3:i€I} and ho(i)EE’g,each iEI}.

A binary relation v is defined on 2 by Wi’ if, and
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only if, {z : n9(3) = k%(4)} € F .

LEMMA 2.1. For each © € k , v as defined above is an
equivalence relation on P .

g =3 y
We now define, for each 0 € K , E  as PO/% , that is the set

of equivalence classes of 7 with respect to Vv .
LEMMA 2.2, Let o €k, 0= (0, «nes0,) « If Bk €F

qg.
and h vk and if hg, K € P I and hivke , each 1=jsmn,

then {i : (hl(i), 14 4u3 hnci)}egh(i)} € F if, and only if

{i sk D)y e, kn(i))egk(i)} €F.

0
LEMMA 2.3. If m< o and hj, kj € P, hj N kj s for

l1=g4 =6(m) , then
{Z : fﬁ(hl(i), s he(m)(i)) = fﬁ(kl(i), ey ke(m)(i))} €F.

LEMMA 2.4. If n<a, o = (on’l, vees @ ) and

n,¢(n)

o, + O g, s a, o, -
h ’J, k el ¢ p el s B o g Tl , for 1 =g = ¢(n) , then

5

o On 1 I o(n)

{i : Rinn(h Y(2)y weey B (i))} € F if, and only if
g g (6]

{i : R, (K "legy, vel, k ”’¢(”)(i))} € F .

The proofs of these lemmas follow the pattern for the similar

lemmas in Bell- and Slomson [1969], pages 87 to 83. We illustrate the

pattern with the proof of Lemma 2.3.
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Proof (Lemma 2.3). Let Fj = {7 : hj(i) = kj(i)} , for

< 9 < = i N
1 =4 =6(m . Put FO Fl S Fe(m) and so FO €F as

hj N kj , for 1 =4 =<6(m) . Now
O (Y CS TR SN € ) I M U CO PR Koom (BN} 2 Fy

and so belongs to F . //

We now conclude the definition of ﬂMi/F . Let 0 €k ,

0= (005 »ees0) . € isdefined by: (& L EER s

. By % 0,0 —Oj
{z (h (), vy h (i))eih (i)} € F, where h Y denotes the

ag. g.
equivalence class of h J¢pP? ,each 1sj=n.

If m < a then f% is defined by: ?;(ﬂi, sns [y Fé(m)) =h if

i :f, (hl(i), EEN # he(m)(i)) = h(2)} € F , where %, ..., Hé(m) g

s/ 4

7w .

o

=n Iy - In,1 Iy d(n)
If n<a then K~ is defined by: R m ", B )

¥

(0] Q g _? . _0 o
if {i : Rinn(h gy, sk "’¢(”)(i))} € F, where ' ¢F"

for 1 =5 = ¢(n) .
Lemmas 2.2 to 2.4 ensure that the definitions are well established.

We note that ﬂMi/F as defined is a k(a, B) structure. The

following theorem ensures that the property of a structure being

normal is preserved under the ultraproduct construction.

THEOREM 2.5. If each member of {Mi : 1 € It 1is normal then so
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18 nMi/F '
Proof. Let o €x , o= (o), cees @) . Take P, e .

Put G = {2 : h(2) = k(Z)} and assume Al , that is G € F .
o

)
Now G?J} ? 20w Z'n)zo if and only if H € F , where

g a
H= {i : (w l(i), sieg B n(i))fgho(i)} . But each M, is normal and

O'l O'n g, .
so K2GnH , where K = {i : (R T4y wuiy B (i)]égk (z)} . Hence

8] a g a
K € F and so Gﬁ l, ¥ iy Z’”)E°E° . Similarly (F'l, S E-n)zoﬁo

~ ~

(o] g
if GE l, wiey E‘")E“ZU . Thus if ZO = EO then EO = Eo v

Conversely, assume A° # k° , that is G fF and so CG € F .
As each Mi is normal there exists, for each ¢ € CG ,

9) a
1 n
. s X .. XHE, . - .
[ai’l, s at,n) 3 Ez Ez such that (at,l’ ’ a%,n)

belongs to one, and only one, of hc(i), ko(i) . For each % € CG

g. o .
define *h J(i) =a 4 4 for 1 =<j =<mn . Thus 7Y , 1=J=n , are

3

well defined as CG € F . Let

0l on g
B = {i B 5 TR | (i))égh (i)}
and

Ko

g g
{z‘ N (0 n(i))egkg(i)} :

Now (c6naH) UV (c6NnK) =c6 and (CGNH)N (C6NK) =9 .
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Therefore one, and only one, of the Hj, K, belongs to F . Thus

0] a

—_— — _0 .
h l, 3 vy B n] belongs to one, and only one, of A , Z° . That is
A A J

7R . //

In fact the above theorem is a consequence of Theorem 3.4 below,
as the property of a k(a, B) structure M being normal can be

expressed by the collection, L , of sentences given by

g o) o o lof o]
V:z:OVy0 Va i sew W& n([x l, v g WL n]s?xo L [x l, cnvy B n]g?ydl =

for all 0 €k , O = (cl, e A5 on)

Anticipating the statement of Corollary 3.5 and consequent to it

we are able to assert if Mii= L , (that is each member of I holds
in M, ), each % €I , then ﬂMi/Ff= I . That is if each M, ,

2 € I , is normal (in fact it only requires enough of the Mi's to
make up a set of the filter F +to be normal) then NMi/F is normal.

It must be noted that this deduction requires that the identity relation
on the Mi's transfers by the defining construction to the identity

relation on the ultraproduct, ﬂMi/F , and not just to an equivalence

relation with the substitution property. That this is so can be
immediately checked from the definitions. It should also be noted

that the definition given by Luxemburg, [1969], pages 23-24, for

higher order ultrapowers does not in fact preserve the identity relation

as such nor the property of being normal. Further discussion of these
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matters is contained in Appendix II.

The detail of the proof given above for Theorem 2.5 clearly
illustrates the essential role of the 'ultra' property of the filter
F (that is for any subset of I either it or its complement belongs
to F ) in the preservation of normality in the ultraproduct
construction. The presence in general in a filter over I of a
subset G of I such that neither G nor its complement belong to
the filter enables one to construct counterexamples to the assertion
that the direct product and reduced product constructions preserve
normality.

Finally in this consideration of normality we comment that while
in the case of first order structures it is possible to normalise a
structure via a quotient substructure construction it is not apparent to
the author how this can in general be achieved for higher order
structures.

The final three theorems of this section discuss the fullness of
the ultraproduct of a family of full structures.

For the statement of these three theorems {Mi : 2 €I} is a
family of full «(a, B) structures, F an ultrafilter over I and

ﬂMi/F the resulting ultraproduct.

THEOREM 2.6, If o0 €k , O = (ol, § aul On) , then for each

o o)
subclass K of Flx ... xE" there exists some H° € E° such

A

that K < &° .

Proof. For each < € I , put
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ol a _gl 9,
K = {[h ()5 vuus "(i)} : [h s e R ] € x} . But each M, is
2 s (o a A0
full and so there exists some object a. € Ei such that a; = Ki v

Define 7% ¢ EO by: ho(i) = az , for each 7 € I .

9, e
Take any (k 3 Fimis B n} € K . Hence

Ol g o
{i : [k (£)y vuuy k n(i)]e ho(i)} =I. But I €F and so

That is K C A . /!

(0] (o}
{zl, ...,z"]zozo.

We recall that an ultrafilter F is defined as &-incomplete, ¢
some cardinal if there exists Fj € F, g <¢&8 , such that
ﬂ{Fﬁ : g <8} £F. (c.f- Bell and Slomson [1969], page 111.)
THEOREM 2.7. If o €x, o= (0, ..., 0,) , and if K isa

o o
subset of E T x ... xF " such that |K| = & , (that is the cardinality

of K is § ), then there exists no 7° € B° such that RO =k only
if F is G&-incomplete.

Proof. Let the members of K be indexed by & , that is

o (9]
K = {(531, Cee s 53”] i 4 < 6} . Further, for each 4 < ¢ , let
%1 % 1 Ty
gj 5 wree g gj be arbitrary but fixed representations of gj % BT gj
9 %
respectively. Put Ki = {(gj (£)s saes g; (i)] 1 g < 6} for each

1 €1 .
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Let EG € EO be defined, as in the proof of Theorem 2.6, such that

. A a =0
ho(t) = ag , where ag = Ki ,each 7 €I , Thus KCh .

Assume there exists no 50 € Ec such that 50 = K and so there

o o o

o
exlsts some FE l, PR Z’”} € E.l X ... xE " such that

By nivy B

—pl On =00
( 16 W~ but is not a member of X .

(]
n

5 .
Let F = {i ] (h l(i), isom B KE) Ggho(i)} and so F € F . Put

Gl Un Gl On
Fj = FN {i : (h (L), «vvy B (i)] = (gj (p — g; (i)]} for each

0] (6)
Jg <& . Now Fj EF, <68, as (E-l, Sioce ﬁ'n] £ X . Further,

U{Fj : J <8} =F as, for all 7 €I , Wo(1) = ag , where 32 =K, ,

and the Ki have been defined using only the fixed representations qf

the members of K . Therefore ﬂ{CFj : J <8} NF=0 and thus F

is G6-incomplete. !/

COROLLARY 2.8. If K <s as in the statement of Theorem 2.7 and
§ 1s finite then there exists some P ¢ such that R =K.

Proof. Every ultra filter F is &-complete (that is not
6-incomplete) for ¢ finite. /7

The final theorem of the section is a compromise with the failure
to be able to establish whether or not the incompletepess of the ultra-

filter F will guarantee the non-fullness of the ultraproduct. The

complicated conditions can best be understood by seeing their place in
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the detail of the proof.
THEOREM 2.9. If F s G&-incomplete and if for

o o]
; = =n
g €K, 0= (ol, I cn) , there exists some KC_“._E'l R oseo B 5

(0]

say K = {(5jl

s ...,gjn] :j<Y} where 68 <Y , such that G € F ,

where G = ﬂ{CFmp tmy, p <68, m#pl and

2

. 0l On 0l . Un .
Fﬁ,p = {t ; [gm (L)s awaus 9 (i)] = (gp (), 314§ 8y (%)] , all

m,p<8, m#p, then there exists no 70 €5 such that R =K .

Proof. As F is d&-incomplete let {Hk : k < 8} be a family of
members of F such that ﬂ{Hk : k< 48} = ¢ . Assume there exists

~

—0 .
ho € B such that EO = K , Thus, for each J <Yy ,

Ol )

g s eeesg MER .

' o o .
For each j < § put Gj {i 3 (g.l(i), .5 Wy gjn(i)]égholi)} 5

J

G.NH,. Thus G., H. € F and
J dJ J

t GL=6,NGE and B
put &y = A PRE S 2

U{c'H' : j < 8} = G , where C'H. =GN CH' .
d J )

o _gl e
n] € " as follows. For

Now define (h y eesy A E~x ,.. XE

o o o o
all < € C'Hé put [h l(i), a3 0 n(i)} s (gol(i), e & gon(i)

g a
Assume (h l(i), ceey R n(i)] has been defined for all

7 € U{C'H3 : J <u}l , for some p < & , and define
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.. %, .. % %
h (L), vuuy h (i)J = {g“ (L), swss g, (i)] , for all

o o
1 € ﬂ{Hé : g < ut - HL . By transfinite induction [h l(i), ieny B n(i)

is defined for all % € G , as U{C'H3 i J <8} =G . Hence

—gl =n
(h 5 saneg K J is well defined, as G € F .

—91 _gn —91 ;Gn\
But [g. y LEES gj ] £ Lh o e B J, for any J < ¢ , as
) a g
[h Yy, o ”(i)} NG
= ! . . N l.
ﬂ{Hk : k< g} CHJ 3
(0] (9] a a
and CH3 £ F . Hence [E.l, ey E-n] £ K. But (F'l, opop. E‘”]EOZG
\
ol . 0,0

as {i ; (h (Z2), «vu, R n(i)JEih (i)} D G . This contradicts the
assumption that %° = X and hence establishes the theorem. //

3. Model-theoretic properties of higher order ultraproducts

We prepare the way for the main results of this section with some
lemmas relating interpretations of the ultraproduct with those of its
components.

Let {Mi : 7 € I} be a family of «(a, B) structures and F

any ultrafilter over I .

If for each 7 € F , F € F , v, is a given Mi—interpretation

then VvV is a ﬂMi/F—interpretation defined as follows: For each




o€k and t° €x° » put U(to) = 7° , where h°(Z) = \)i[td) , for

all 7 €F ; for each 0 €k , o#0 , put \7&0):—_@0; for each

m< o , put U&mJ=?m; for each 7n < B put

each 1 =4 = 6(m) .

LEMMA 3.1. If VvV and {v, : © € F} are as defined above and

if t°€2%1® then T(t°) =0, where #0(3) - v (t°) , each i €F.

Proof. A proof may proceed by induction on the basis of Lemma

m = O O
1.7. Take 1;0 = t tl, T tB(m)J and assume the result of the
0 0 - _=[-[,0 —{,0
lemma for tl, cae s te(m) ; \)(to) = fm[\)[tlJ, iy \)[te(m)“ and

hence, by the assumption and the definition of ?m , we have

U(to] = 70 , Wwhere ho(i) = fi,m[\)i(t.?.]’ by vi[tg(m)” , each

. 0 0 _ 0 0
0 C oo N | B P KN |
each 7 € F . That is #°(%) = vi(to] , each % € F . //

LEMMA 3.2. If V <e defined as above from
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s Fp € F} and V' <is defined similarly from

F, € F} “then V|Y =V'|Y if {7 : vilY = vé]Y} €F,

{v. 17 ¢€F
7
{Vi L2 E F2,
for any set of variables Y .
Proof. For any 7 ey , O €K , put G(to) = h

V"(to} =79, where K°(4) = vi(to) , each 7 € F,, and

w9(1)

v%(tc) , each 17 € F, . Hence

and so V(%) =9'(¢°) . That is

; O o ppOps
Len@ =a"WDIaF NF,

DIF = ¥ E . //
Now consider a given ﬂMi/F interpretation ¥ . For each 0 € K

(¢] 3 . .
and x € ° let #’  be an arbitarily chosen representative of

=t B ; : ; <
u[x ) . With respect to this chosen family of representatives and for

each 7 € I define an Mé interpretation “i as follows: For each

€k and z° € x° put ui[x ] = n°(1) and then extend the

definition of My in the standard manner so that it is a well defined
Mi interpretation.

LEMMA 3.3. Let W be a given nMi/F interpretation and
{“i : 1 €I}, {uy : 7 € I} two families of M, interpretations,

i € I, defined via B as above but with respect to different
families of representatives of the E(a:o) , o€k, & ex°. If
Y is a finite set of wariable symbols of L(k(a, B)) then

{7 : uiIY = wur|yr e F.
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o) 9]
Proof. Let Y = {t l, sunty G m} . Foreach 1l =<gj=m, let hj

a .
be the representative of ﬁ{t J] from which the ui's are constructed
(%
and h) the representative of u[t ] from which the ué 's are

%

constructed. Put Fj = 1€ % hj(i) = h&(i)} ,each 1 =gj=m and

B = ﬂ{Fj : 1 <j<=<m}. Hence F ¢ FI and so {7 : “iIY = U%'Y} €eF . //
If for each 7 € G , where GC I , vi is an Mi interpretation,

then V , an ﬂMi/F interpretation, and {vi : 1 € G} are said to be

compatible with respect to Y , a set of variable symbols, if G € F

and for each ¢t € Y , V(t) = h , where h(Z) = vi(t) , each 7 € G .

We next state and prove the fundamental model-theoretic property
for higher order ultraproducts. Kochen, [1961], p. 221, notes that
the theorem for first order ultraproducts is implicit in Lo¥ [1955],
(Bell and Slomson, [1969], page 90, name it Lo¥'s Theorem,) and proves
the theorem by a method he attributes to Scott. We follow the pattern

of this proof.

THEOREM 3.4. For each wff ¥ of L(x(a, B)) , nMi/F‘-G!p if,

and only if, {i : MiF=bi w} € F, where Vv and {Vi : 1 € G} are

any compatible collection of interpretations with respect to the set
of free variables of VY .
Proof. The proof proceeds by induction based on Lemma 1.8.

5 .
a) Let VY be of the form tl = tg , where ti, tg € Z0 5
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g EK .

~{,0] _ =[.0
If nMi/FF=G Y then v[tl] = v(tQ] and so

g o o . -
{z ; vi(tl] = vi[tQ]} € F , that is {z : Mil=vi w} € F . The
converse is proved by reversing the argument.

Ol On (e3¢}
b) Let ¢ be of the form (a s vees O ’]g_a , where 0 € K ,

g, .
o = (Gl, ¥ g Gn) and v ¢zY ,each 1=j=n, and o €2° .
| o % —( % )=0—( 0
If ﬂMi/FF=6 Y then (v[a ], T v[a n]]e v(a ) and hence

o, o .o
{71 : [v.[a ], ...,v.(ai]le.v.(a)}ef-',that is
7 K2 7 T

{i 2 Mil?v W} € F . Again the reversal of the argument proves the
£

converse.

a

nf On,1 % o(n)
c) Let Y be of the form En (a TS wovig, &N ]

, some

n<@. If 'nMi/F|=\-) ¢ then Fz”(V(aon’ll, cees U[ozcn’q’(n)]] and

so {i 3 R?n {vi[acn’l], . vi(aon,¢(n)]]} ¢ F , that is

{i : Mi = w} € F . Again reversing the argument establishes the
7

converse.

d) Let Y be of the form I} wl and assume the theorem is true

for wl .
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We have “Mi/Fr=§ Y if, and only if, it is not the case that

m%i/ F=v.wl » that is, by assumption, if, and only if,
7

{7: M |==vi wl} £ F, that is if, and only if, {2 : M, l-;);p} €F.

e) Let Y be of the form wl A w2 and assume the theorem is
true for wl and w? i
We have mM. /Fl=5 ¥ if, and only if, TrMi/Fl-\-) Y, and

ﬂMi/FF=§ ¢2 , that is if, and only if, {t 3 Mi Fbi wl} € F and

{1 : Mi kbi wg} € F, that is if, and only if, {t : k%'bbi W} €F .

f) Let Y be of the form Ble where Yy € XO , 0 €K , and
the theorem is assumed for wl .
Assume ﬂMi/F F; Ble and so there exists a ﬂMi/F interpretation

V' which agrees with V except possible on Y and such that

WMi/F F%’ wl . Thus, by assumption, {i - AQ F;é wl} € F,

"

where vé(t) vi(t) ,each t €2, t#Y and vé(y) = 19(1) .
where V'(y) = 7° , each 7 €G Hence <71 : M F= Ye € F
" " P M v :

Conversely, assume H = {i : k% F% w} € F . Thus for each
%

L € H there exists an M, interpretation vé which agrees with v,

except possibly on Y and such that Mi Fb' wl . Define V' in
Z

terms of {v% : ¢ € H} and so V' agrees with V except possibly on
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Y . Further, V'

and {Vé : 1 € F} are compatible with respect to
the free terms of Y, , and so, by assumption, we have ﬂﬂ%/F F;, ¥, -
That is NM%/F Ft Y.

The theorem is thus established. 1

The following corollary is a consequence of the theorem.

COROLLARY 3.5. If Y <s a sentence of L(x(a, B)) then
ﬂMi/F|=' v if, and only if, {i : M, EuleF.

Proof. Assume ﬂMé/F Y. Thus if V is any ﬂﬁ%/?
interpretation then WMi/F F; Y . Let {vi : 7 € I} be a family of
Mi interpretations, each % € I , formed from V and so compatible

with it. Hence from Theorem 3.4 we have {i : Mi Fb W} € F and so,
7

as ¥ is a sentence, {7 : Mi'- Y} € F . The converse follows by a

similar argument. //

The completeness and compactness (finiteness principle) results
for higher order model theory were first proved by Henkin [1950] using
his method of construction of models via maximal consistent sets. We
shall concern ourselves only with the compactness result although it
is of interest to note that the method of proof of the completeness
theorem for the first order case given by Rasiowa and Sikorski, [1951],
and expounded in Bell and Slomson, [1969], pages 62 to 64, carries
over to the higher order theory.

Morel, Scott and Tarski [1958], first used the ultraproduct

construction explicitly to establish the first order compactness
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theorem. A. Robinson, [1966], Theorem 2.8.1, page 27, proves the
higher order result by a translation of higher order formulae to
related first order formulae and application of the first order
compactness theorem. Young [1969], page 29, sets out a proof by
direct use of higher order ultraproducts. We follow this method.
THEOREM 3.6. I <is a set of sentences of L{x(a, B)) . If
each finite subset of ¥ has a (normal) model then so has I .

Proof. Let I = {7 : Ai is a finite subset of &} . Put
B = {Eé : 1 € I} , where Fi ={j :J €I and Aj > Ai} , each

2 €I . S has the finite intersection property and thus can serve as
a sub-basis for a filter over I which can then be extended (by
appeal to the Prime Ideal Theorem, e.f. Gratzer, [1968], p. 27) to an
ultrafilter F .

For each 7 € I let Mi be the «k(o, B) structure such that

Mif= Ai . By Theorem 2.5, WMi/F is a normal (o, B) structure.
Further, if Y € I then {7 : MiF= Y} Esz , where Ak = {y} . But
Fk € F and so, by Coreollary 3.5, ﬂM{/F VY . Thus ﬂM;/F is a

K(o, B) model of I . //

Finally in this section, we consider two kinds of extension to
the class of well-formed formulae of L({k(a, B)}) . The first
extension is somewhat unusual in that it is done not in terms of
syntactical conditions but semantical ones and these with respect to a
given family of «k(a, B) structures and an associated ultrafilter

over the index set of the family. In fact the extension was developed
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for the purpose of later application in Chapter III, section 2, to the
work on Sylow p-subgroups. A sentence expressing the fact that a
group is a p-group was thought by the author to be of the kind to be
defined. It proved (after the paper containing it had been accepted
for publication) not to be so and the application lapsed except for a
trivial vestige. The extension therefore seems to lack real purpose
and so may be omitted from the reading if wished.

Let W denote the set of wff's of L(K(a, B)) . Take {Mi : 1 € I}

a family of (o, B) structures and F a given ultrafilter over
I

We first define an extended set of wff's, denoted by Wo(ﬂMi/F) 5

as follows:
(1) we wy(m/F) ;
(ii) 1If {¢t : t <1}, T any non-finite cardinal, is a set
of members of W such that
a) only a finite number of variables occur free in
{¢t : & <« 1} ,
b) for each ﬂMi/F interpretation V there exists a

compatible set (with respect to the free variables in

the ¢.'s ) of component interpretations {vi : 1 € I}

such that, for all k < T , if there exists some J € I

such that N% F%j¢k then {7 : Mé F;i ¢k} € F ,

then the infinite disjunction V{¢t : t < 1} is a member
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of Wy (mt,/F) .
The set, W(nMi/F) , is formed by the rules of formation of
L(K(a, B)) but with the members of Wo(an/F) replacing the atomic

formulae.

We extend Theorem 3.4 to all members of W[ﬂMi/F) .

THEOREM 3.7. For each 1V € W(TTMi/F) > TTMi/FF-‘aG Y if, and only
if, {1 :Mik*v W}EF,where vV and {\)7; : 1 € G} are any
4
compatible collection of interpretations with respect to the free
variables in | .
Proof. 1In view of the inductive procedures of the proof of
Theorem 3.4 it is necessary only to consider the case where § is of

the form V{¢t : t < T} as described above.
Assume that ﬂMi/F F; V{¢t : t < T} . By the semantical rules

for a disjunction there exists some k < T such that WMi/F F% ¢k 5

Hence, by Theorem 3.4, as 9 € W , we have {i : Mi F; ¢k} € F and
7

o {i:MiF\) v{%:tm}}er.
z

Conversely, assume {i M FB Vi, : t < T}} € F. Let

T

t

{vé : 27 € I} be the set of Mi interpretations, 4 € I ,
compatible with V with respect to Y the set of free variables of

the ¢t’S » t < 1T, and having the property (ii), b) above establishing
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vi¢, : £ < 1} a member of WO(ﬂMi/F) . Hence, by Lemma 3.3,

t

s _ LM ) 2 - :
{z : V?:IY \)iIY} € F and so {7, : M?, '=\); V{th : T T}} FeF,
Take some J € F and so there exists some Kk < T such that
h% F%S ¢k . Hence {1 : A% Fzé ¢k} € F, as

vig, : £ < 1} € WO(mMi/F) , and so, by Theorem 3.4, ﬂMi/F‘F; by -

t

That is ™M /F b vi¢, = ¢ <1} . /1
COROLLARY 3.8. If 1 ¢ W(ﬂMi/F) is a sentence then M, /F U
if, and only if, {¢ : M, =yl e Fu

Proof. As for Corollary 3.5. /7

We further extend the class of formulae by introducing infinite
conjunctions in the following manner. (For this extension application
can be found in the context of Mal'cev's Interior Local Theorem as
discussed in section 3 of Chapter III.)

We first form a set of formulae, Wé 5y D%

. ' .
(1) WEWO %

(ii) If {Bt : £ <1}, T any non-finite cardinal, is a set of

members of W such that only a finite number of variables

occur free in {et : t < 1} then the infinite conjunction

A{Gt : t < 1} is a member of Wé .

The set W' is now formed by the rules of formation of

L(K(a, B)) but with the members of Wé replacing the atomic formulae

and with the restriction that the negation rule (that is, if 4 is a
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well formed formula then so is 14 ) may only be applied to members

of W in the formulation of W' from Wé .

We now have the following partial extension of Theorems 3.4 and
BT

THEOREM 3.9. If ¢ € W' then TTM_I:/FI—\—) v if
{72 M h)i W} € F, where V , {vi : 1 € I} are compatible with

respect to the set of free variables of Y .

Proof. In view of the proof procedure of Theorem 3.4 the
following lemma provides the necessary addition for a proof of
Theorem 3.9. //

LEMMA 3.10. If A{Gt 1t < T} € W then “Mi/F F; A{Gt i t < 1}
i {i:Mi%\) /\{et:t<‘t}}€F.
7

Proof. 1If {i : Mi kb A{Bt t < T}} € F then for each ¢t < 1
7

we have {‘L : Mi I=\)7; et} € F and so, by Theorem 3.4, ﬂMi/Fh\_) et .
Hence the result. //

COROLLARY 3.11. If ¢ € W' and Y ts8 a sentence then
'rrMi/Fl==1p if {7 Mil=1p} € F.
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CHAPTER II
SUBSTRUCTURES AND EMBEDDING THEOREMS

In section 1 we define a notion of substructure for higher

order structures and develop a variety of consequential properties.

In section 2 we use the concept of a local family of substructures of

a given structure M to set up a number of theorems related to the

embedding of M into a particular ultraproduct of the local family of

substructures.

At the conclusion of section 2 we briefly introduce

the notion of an 'inverse limit' of the local family.

1.

Substructures of higher order structures

We shall first set out a formal definition of the notion of

substructure and then illustrate the definition in a simple example

and comment on possible alternative definitions, one available in

the

N

N

literature - e.f. Kreisel and Krivine [1967], page 100.

Let M, N be (normal) x(a, B) structures given by

g
{7 : 0 extu{e® 0 K, 0 #0}UA{f :m<a}V {R " in< B} ,

{F°

o
:0extu{e® s o0ex,0#0}U {g, : m<alv {S "< B} :

is termed a substructure of M if

F

(i) F°

0

0 - . =
C E and for each m < a , g, 1is f& restricted to

» (which requires that P is closed under the

operations of M );

(i1) p°

; . 0 < .
is a partial map from £ ento FO , with domain FO
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and such that p0|FO is the identity map on 7 :
: 53 0.0
(Note: We shall use the convention that writing p (a )
0 0 . . 0o £
for any a € F implies that a  is already given as a

member of FO 2

(iii) for each 0 € k , © = (Gl, ir [ cn) , there exists a map

p0 from E° onto o such that

T Tk o T
QA 5., G " a

0.(0 o, (0
a) for each)\[p l[a l], wwah B n[a n]] ¢ pO(ac) , I#f

ag (0]
1 n
there exists some (b g1 5 rgterg 1D ] 60 a0 such that

. T ar O T.r Qs
for each 1 =g =<n, p J(b J] =p J(a J] &

b) for each n < B , g, = (On gy »25E B ¢(n)) ’

o (0O fo o o
S n[p n’l(a n,l], i vy P n,¢(n)[a n,¢(n)]] if{ there

n
(0] (0]

exists some [b n,l, o i g 2 n,¢(n)] such that

g a a

E%n(b n,l, iww g B n,¢(n)] and

9.3 On,i Oy 3. % 7
p {a ’J] =p ’J(b ’ ] s L27=9¢n) .

We shall denote the family of projection maps {pc : 0 € K} by
p and the notation p : M+ IV will expresé the fact that N 1is a

substructure of M where p 1is the family of projections. We shall

s 3 (9]
often omit the superscripts o from each p and allow context to
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(0]
’ ; n
provide the appropriate type. We shall also normally denote Sn by

We now illustrate the definition with the following example where
a=8=0, k=(0, ) =1, ((0)) =2) and the €'s, o €k,

are the set membership relations. Take

E- ={ab e d} F- = {a b}
Bt = {a' = (@b} b' = {aed} o' = {ae}} F' = (&' = (@b} n' = {a}}
Fela’e @320 et 263 P =1 s @dFa® = ).

A family of projection maps establishing p : M > N is as

follows: po(a) =a, po(b) =D ; pl[al) = qt . pl(bl) = pl[el] = nt 3

The definition of a substructure given above is a reversal of the
usual first order concept. In the first order a substructure is
embedded into its parent system but in the above definition the parent
system M is projected downwards onto the subsystem N , except of
course at the level of type 0 where the injection is retained
through the partigl map pO

The definition differs from that given by Kreisel and Krivine
[1967], page 100, who carry over the injection procedure into the
higher order context. Their definition can be described as follows,
If M and N are two k(o, B) structures (where for technical
convenience we put @ = 0 ) and M', ¥' are related to M, N

respectively in the manner given by Theorem I, 1.6 then N is
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termed a substructure of M if for each 0 € k , F9 E_E'O (where

(6)

£l

£'°, F'° are the sets of objects of type ¢ of M', N' respectively)

g
and for each #n < B8 +the constant relation Sé " of N' is the

g
_ . n
restriction of the constant relatiocn Ré of M' to

o

0]
Fl nal X X F' n,(b(n)

,» Where On = (On,l’ S 0n,¢(n)) .

This definition differs from the one we have taken in several
important respects. For instance if M and N are as given in the
illustration above then N will not be a substructure of M in terms
of the Kreisel and Krivine definition. Simple illustrations (see
below) are available of the reverse situation. If M and N are
both full however the two definitions will coincide.

Further, and this has important consequences for the possibilities

of later applications, if we take any non-empty subset Fg of the

individuals of a k(u, B) structure M (again for technical simplicity
we assume & = 0 ) in terms of our definition there is a unique

(within isomorphism) substructure N of M with its set of

individuals equal to FO » (e.f. Theorems 1.2 and 1.4). This is not

so for the Kreisel and Krivine definition. For example if M is the
. 5 ‘ z 0
structure given in the illustraticn above and Fo = {a b e} then Nl

{ab}} , F} = {a® = {a'}} ana W,

may be formed by taking Fi {a*

Lt {ali} o~ = {ac}} ,

may be formed by taking Fé
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Fg = {62 = {cl}} .  Both Nl and N2 are substructures of M in accord
with Kreisel and Krivine's definition and have in common the set of
individuals Fg = {a b e} . As it happens neither is a substructure

of the given M in terms of our definition. The unique substructure

(in terms of our definition) based on Fg = {a b e} 1is given by

Fé = {a* = {@} &' = {ac}} " Fg = {a® = {a*} ¢® = {c'}} where

11 1 101 1,1 20 2 2 2 2 202
pra) =a . pteY) = et =ptet) , PAE®) = a®, PP0Y) = o = pP(e)
is the family of projection maps.

We anticipate Theorem 1.2 to explain how this latter substructure

was arrived at. It can be observed that Fé = {Fg w3 € El} and
pl is defined by pl(m) = Fg N x . Then Fg = {{pl(x) x €yl iy € %}
2 . 5 2 1
and p° 1is defined by p“(y) = {p (x) : = € y} .
This suggests a variation to the definition of substructure as we

3 N : : : —_ 2
have given it, in particular in the above example defining FO not as

there done but as Féz = {ﬁ; My +y € EQ} thus following the pattern
for the construction of Fé . Thus we would have

FéQ = {a2 = {a*} ng = ¢ Cl&@ﬂlf M was a full structure the variation

in definition would make no final difference but when M is not full
as in our illustration the definitions do not agree.

Our reason for preferring the definition we have given over the
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latter possibility can be seen in the example. In the application of

our definition b° € E° induces o2 € Fg (that is p2(b2) = o ) but

in the variation b2 induces the empty relation as the projected
member of FéQ . This does not seem to be what one would natyrally

require in algebraic situations for instance as illustrated in the
context of chains of subalgebras as discussed in section 4 of Chapter
ITI. Further, in the example of the variation in definition we have

that bT € b° but p(bl] ¢ p(b2) = ng » Whereas p[bl) € p(bz) = o2,

The failure of the projection maps to preserve the membership relation
would inhibit some of the later dewvelopments.

We now proceed to state and prove a number of the basic properties
of substructures as defined.

THEQREM 1.1. If M and N are «(a, B) structures such that

Py M N and p, + M0 then P, =P,
Proof. If o0 = 0 then pi = pg » as both are the identity map

on F

o, o;
[ol, ceap On} and P, =P, for

il

Assume O €K , O

5 g
1 =172 =mn . We shall now deduce that pi = pg . Take any a0 EE .

Ol Ol 0n On 0O _0¢¢C
Consider [pl [a ], cees Py [a ]] € pl(a } . Therefore there exists

% %) o o % 9% _ 9%(.%
some (b by DR D ] € a  such that Py (a ] =Py [b ] >
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e e g (0
1<% <n. Thus (le(b l], o a0 iy pzn(b n]] ¢ pg[ao) and so

911 9 %[ %n g 0(0 % %
[p (a ], v oy pl (a ]] € p2(a ) »as p, = p, all Lo g 5.

Ol (6] Un g g o
Similarly if (p2 (a ], vees Py (a n]] € pQ(a) then

%1 %1 %l % g _o 6A\o 5”\0
[pz (a ], cres P [a ]1 € pl(a) . Thus pl(a ¥ = pz[a } and so,

as N is normal, we have pg(ac) = pg(ao) . An induction argument

completes the proof. //

Let M be a «k(a, B) structure and FO a given subset of its
individuals closed under the operations of M . We build, by induction,
a k(a, B) structure N with individuals FO and such that ~N is

a substructure of M .

(1) Fo comprises the individuals of W .
i
(ii) Take o €k , 0 = (Ol, Bk & Un} and assume F is
defined for all 1 =4 =n , together with projection maps

g. [0 g ag.
T z T

p B ~>F 5 ci # 0 and po - EO + F° the partial identity map

with domain F0 ,» such that for all 1 =171 =#n with 9; #0 ,

oi( “i] {( Ui,l( °i,1} oi,m( oi,m}]
p la =1lp a s wesis P a
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We now define

P = oY oo o "(a7]) : (a"l, ra”] € )

(0]
for each a° € E° . We put F° = {p° (@) : a7 ¢ £’} and thus F

(0]
and p :B° » ¥ are defined.

(iii) For each ¢ € Kk , O # 0 we define €€ for N as the

ordinary set membership relation. That is

0] g (0] g

Lf "L ni_n o 0¢ 0 s

(p [a ],...,p (a ]]e p(a) if
0.0 o (0O

1f "1 n{ ny . _0r0
o e P P e

(iv) For each m < o the operation g, on FO is defined as

fh restricted to .

g (6]
(v) For each n < B the constant relation Snn(= p(R n]] of N

3 =9

g a ra s o (0] .
is defined by sn”(p ”’l(a ”’l] p "’q’(”)(a ”’4’(’”” if there

a ag g (0] o
exists (b n,l, W T 1 n,¢(n)l such that Rnn(b n,l’ iny & n,¢(n)]

O, s 0, s o, (9,
and p ’J(a ’J] =p ’J(b "J] ,all 1 =g = ¢(n)

THEOREM 1.2. N as constructed above 18 a substructure of M
with p as the associated family of projection maps.

Proof. We first check that N 1is a normal structure. Let

g €K, 0= [Ol, P g On) and take pc(ac), po(bo) ¢ ¥ such that

p(ao) = p(bo] . That is (p(a l], TR p(a n]] g p(ac) if, and only
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g o
if, (p(a ll s aens p(a "]] @ p(@®) . But € is defined as the
. « . () (]
ordinary set membership relation and thus p@a ) = p(b ) . Hence W

is normal.
It can also be checked that each p0 , 0 = (Ol, ev¥ s On) has

the required projection properties. Hence p : M » N . !/

We shall term N as constructed above the canonical substructure

of M Dbased on FO "

We next state and prove a lemma as a preliminary to two further
theorems.

LEMMA 1.3. If M, Ny, N, are k(a, B) gtructures such that

0

] E_Fg then for all © € k and all

By M~ Nl s Byt M -+ N2 and F

o o . o} g g g
0% e B, if p,y(a°) = p,0%) then pla’) =p, (") .
Proof. If o = 0 then the result is immediate, as whenever

0 0 0 0 0 0 0
a , b € Fl we have pl(a }=a = pQ(a ) and Pl(b ) =b" # PQ(b J

Take O € K o} QJ , «vv, 0 ) and assume the result is true
’ 1 n

1A
S

for each o, , 1= Z Assume, further, that pQ(ac] = pQ(bGJ .
0] e
Let {pl(a l], oviy pl(a n]] GO pl(ac) and so there exists some

91 %) o o % 9 .
[b o DET.S 1 ] € a such that pl(a l = pl(b l s l=1=n.

g )
Thus (pQ(? l], o 5. 55 pg(b nl] ' pz[ao] = pg(bc) and so there exists
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1A
o
IA
=

% v g,0 i %
some (c g ooy B n] € b~ , where p2(c ] = pQ[b ] s A
O‘,L 0'1:
By the induction hypothesis, for each 1 =1 =n , pl(c l = pl[b ]
ag g
Hence (pl(a l] g s pl(a nn ¢’ pl(bo) . Similarly if

0l On (0]
[pl[a ], cees pl(a ]] € pi(b ) then
Ol o ' AN /\0
&pl(a ], R pl(a n]] € pl(ao) . Therefore plﬁaq) = pl(b ) , and

SO pl(ao) = pl(bc) . £F

are «k(a, B) structures such that

THEOREM 1.4. If M, W, I,

Py M > Nl s Byt M >, and Fg = Fg then Nl and IV2 are
isomorphic.

Proof. Define ¥ : N, >N, Dby wtpl[ac)l = pz(ac) , for each
0 € K , and all a0 € E° . Lemma 1.3 ensures that Y is well

defined. We now establish that it is an isomorphism.

First we show that for each 0 € x , VY : Fi - Fg is bijective.
0 o . . ) 0 _ .0
If 0 =0 then V¥ : Fl > F2 is the identity map on Fl - F2 and
hence is bijective. Let O¢ €K , 0O = (Ol, - on) and assume that
Gl
{7 FlL * FQL is bijective, each 1 =% <n . For any

2 (@), £y 6% €17, 15 y[p,(@)] = ¥[p,6%)] tmen p, ) =, 6°)
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and so pl(ao) = pl(bo} by Lemma 1.3. That is, VY : Fi > F2 s
injective.

If pQ(aO] € Fg then a € ° and so pl(ac) € Fi and

w(pl(ao)l = pQ(ac) . That is ¥ : Fi > Fg is surjective. The

usual inductive argument establishes that Y : Fi - Fg is bijective

for all O € K .

We next show that Y preserves the operations and relations of

Nl with respect to those of N2 . Take 0 €K , O = (Ol, o5 On}

o) §)
and consider any [pl(a ll, o v ey pl(a n]l ¢’ pl[ao) .  Therefore there
! o o o % %
exists some (b 5 sk B n] € a such that pl(a ] = pl(b ] 5
o o
1<% =n. Thus (pQ(b l], - pQ(b n]] ¢J pQ(ao) . But for each
oy o
l12d =5, pl(a ] = pl(b ] and so by Lemma 1.3,
9 ( 91 % o ¢ 01 |
pz(b ] . That is, (w(pl(a l, gt 1y W(pl(a l]] € w(plba ;j
- 0. (6]
Conversely, if (w(pl(a lll, T w(pl(a nl]] & w(pl(ao)]

then (pl(agll, ceas pl(acn]] 60 pl[ao)

By a similar argument it can be shown that for any n < B,

9y o1 %
pl(Rn ](pl(a ], 5 pl(a ]] if, and only if,

e
S

N

Q
Q
.

N

"
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e )

Finally, as ¥ is the identity map on Fi = 70

5 Y preserves

the operations of Nl with respect to the operations of N2 .

Hence Y : Nl * IV2 is an isomorphism between Nl and N2 . //

COROLLARY 1.5. If M 1is a x(o, B) structure then every
substructure of M 1is isomorphic to a canonical substructure of M .

Proof. Let I, be any substructure of M . Let 7, be the
canonical substructure of M based on Fi , the set of individuals of

Nl . Hence from Theorem 1.4, N. is isomorphic to ¥ !/

1 2

COROLLARY 1.6, If M, N ave (o, B) structures such that

each is a substructure of the other then M and N are i8omorphic.

Proof. As each is a substructure of the other then FO = EO and

so N is isomorphic to the canonical substructure of M based on

EO which by the proof of Theorem I : 1.6 is isomorphic to M . //

THEOREM 1.7. M, Nl’ N2 are (&, B) structures such that

0

If #y

. X 0 .
p, My and p, + MU, . CF, then N, 18 a

substructure of N, and Py ¢ N, > v, defined by:

2
pstpgﬂao]l = pl[ao) for all & e & , O €k, 18 the family of

projection maps from N, to U, .

Proof. It is immediate from Lemma 1.3 that 28 is well defined.
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If 0 =0 then p3 : Fg - Fg is the partial identity map on

(O . 5
F. . Further for each 0 € K , P, : F; ¥ Fl is surjective.

Consider 0 € K , O = (Gl, —p. On) and
°om % o o .
Pyle,la J,..., ps(pz(a l] : ps(pz(a J| . That is
o] o] o
[pl(a l] 51 T ds pl(a n]] 60 pl[ac) . Hence there exists [b l, i 5 bOn @ o
0 o,
(2 1 . .
such that plLQ 1 ¥ pl[b 1 , for each 1 =171 =n . Thus

o %)) o _ (o
(pg(b ], ...,pQ(b nn € p2[a} and for each 1<% =n ,

o) ) ) ) v

Finally, take »n < B and consider

e 1) ol

% %,1 %, 0(n)
pl{Rn ](pl(a 2 ], ey pl(a ? U and so there exists

o
n,l bon,d:(n) (bcn,l bcn,(b(n) and

n
such that Rn § T s

g .. g .
pl(1 n,J] 5 pl(a n,J] , for each 1 =j < ¢(n) . Thus

"

g 4 o, . o, o,
Pa[pQ(b ’J” & pl(b "7] = pl(a ’J] = p3(p2{a "7]] as required.

Hence P is the family of projections such that 2 N2 -+ Nl S

g o} o} )
pQLR nl{pz(b n,ll’ «dil ¥ pz(b n,¢(n)]] , where for each 1 = J = ¢(n) ,
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COROLLARY 1.8, wm, Nl are «k(o, B) structures such that

By :M> N . Forall ¢ €k, c:(ol,...,o) if

o} o
(pl(a l], veisy pl(a n]] #O pl(ag) then for any substructure v, of

7 ‘ 2w 0
M, p, : M~ N2 y TF N2 contains vy (that is if Fg EgFl ) then

g (0]
(pQ(a l], - pz(a n]] kc pz(ac) . Stmilarly, for any n < B , if

g

o g
pl(l?nn] (pl(a n,l] i s pl[a n’¢(n)]] does not hold in Nl then

Gn Un 1 On ¢(n)
pz(Rn Hp2(a ! ], . pQ(a ) ” does not hold in v, , where
N2 18 as above.
Proof. Let Py N2 > Nl be as in Theorem 1.7. If

O y3
2 B pz(a | ¢ p2(a0) then

1) %)) o o .
pltz 5 euny pl(a € pl[a ] > @85 Ppop, = py - Thus if

a to Py (ao) then

(o] (SRR :
(pQ(a . s B4 pQ(a & ko pQ(aO) - The second part follows likewise. //

J 7

THEQREM 1.9. pm, N, are k(a, B) structures such that

py ¢ M > Nl s I N2 ts any substructure of Nl s Byt Nl > N2

then N2 18 a substructure of M with p, ¢ M~ N2 defined by

oy _ (0] o o
PQ(G}—pS[pl(a]] all a €E , 0 €x.
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Proof. If o0 = 0 we agree that p, : EO o Fg is given by the

definition as the partial identity map on Fg .

Take 0 €K , O = (Ol, Sy On) and
OJ On o] o]
LPQ(a’l, YTy pz(a ] € p,la } . That is

|
Lp3@p1LQOl]]’ yiv a0y ps(pl(aon}]] GG ps(pl(ac]l and so there exists

e
-
o
Q
i
——’
-
s
=
o
Q
B
S
et
m
a
s
i
—
Q
p———
73]
)
¢]
fo
t
=
ot}
ot

o, 9 5 o , o, 0.
(c 3 By B ] € a such that pl(c J] = pl(b J] ,each 1=J=mn.

g. 0.
Thus for each 1 =j =n we have pz(c J] = p2(a Jl as required.

A similar argument establishes the corresponding property for the

constant relations. Thus N2 is a subsystem of M with

By ¢ M - N2 v 4

We observe that Theorems 1.7 and 1.9 provide a unique (within

isomorphism) natural definition of the intersection of two substructures,

Nl and N2 , of a k(o, B) structure M . For if FO = Fi N Fg then

N = Nl n N2 can be defined as the substructure of M , or Nl s, Or N2

on FO .
THEOREM 1.10. 4ny substructure, N , of a full x(o, B)

structure is itself full.
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Proof, Take 0 €Kk , 0O = (Ul, B 5.4 Gn} and K any subset of

It is required to find some p(aa) € ad , where

AO’
p : M~> DN , such that p(a)zK.

R (A S IO 6 T A | P B

N

full and so there is some aQ € E’0 such that a0 = Kl . We now show
N\
(o}
K=pla)

o o] o} o ;
and so {a l, sy an] ¢ &°. Thus (p[a l], .‘.,p(a n” 60 p{ao) .
/\G
That is Kg_p(a)

o o
Now take (p (a l} § e p(a n]] ¢ p(ac) . Therefore there exists
%1 % o o %% 9%
some [b o AnEm] 2 16 a , where p(b ]=p(a ] each 1l=tsn.

Ol On g
Hence (b s vesg D }EK as a =K and so

1 L
- g o} o
(ptb l], ...,p(b n” € K . That is (p(a l], ...,p{a n]} €K .
/\c
Thus p[a]_C_K . '

We now introduce the notion of a (strong) homemorphism from one

k(a, B) structure to another. Let M, M, De two k(a, B)
Structures, ¥ 1is termed a homomoyphism from Ml to M2 , written
5 B

_l_l)_:Ml**M2



(i) for each 0 €k , Y 1is a map from Ei to Eg s

(ii) for each 0 €k , © = [Ol, R On] ,

e} g
(¢(a l], v in w[a n]l & w(ao) , if, and only if, there

% %) o o 9 9
exists (b s wauy B l € a , where w(b ] = w(a ] "
)

each 172 =n,

Q 0

(iii) for each m < o , frln(al, YRS ae(m)

] = aO only if

m m

fz(lf!(aﬂ, S w(ag(m)]] = w[ao) where f;, f‘2 are

corresponding operations in Ml’ M2 respectively,

(o} g (o)
(iv) for each n<B , R " (W(a n,ll, cee s W(a n,¢(n)]] if,

7,2

%n,1 % o(n)
and only 1if, Ennl(b s sang B TP 1 , where
L

(0] F a .
w(b ”’Jl 5 l’}(a ”"Jl , each 1<j<¢n).

We comment that Gratzer [1968], pages 80, 81, defines several
homomorphism concepts in the context of partial algebras. Similar
variations are available here. We have chosen the strongest form.
We also note that the projection maps defined in the substructure
context are homomorphisms as defined above.

If a homomorphism Y from Ml to M2 is bijective then it is
an isomorphism, as defined previcusly, between Ml and M2 . An

injective homomorphism is termed an embedding.
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Ml and M2 are K(o, B) structures and Y Ml - M2 is a

homomorphism. The image of Y , written Iw

, is the «k(o, B)

structure

IQ_= {w(Egl t 0 € K} Ul t o ek, 0#0}U {¢( ml :m < a} U

(o) » <)

where (i) for each o0 € Kk , W(Eﬁl is the image of V¥ : Eﬁ i Eg 5

(ii) for each 0 €k , 0 = (01, e cn) 2

0l cn o} (o]
(w(a ], — w(a }] € w[a ) if, and only if, there exists

% %) o o 9 9%
(b o F sy B ] € a , where w(a 1 = wtb ] s 12220

(iii) for each m< a , w(jij is fi restricted to W[Eg} M

o g
3 12 g n »
<
(iv) for each n < B , w(ﬁn,l] is Rn,2 restricted to

(0] o
myl| o n,¢(n)
xp(El ] cer X U)[El
We note that if Y is an embedding of Mi into Mé then Ml

and I are isomorphic.

¥

In general I‘p as defined need not be a normal structure. The

following theorem ensures that it will be normal if ¥ is an embedding.

i8 an embedding, where M., M

2

are two (normal) (o, B) structures then I, 18 a normal structure.

¥




O

proof. Take (), WY W[E L cex, o= (o)

%1 %)) o . 0
such that [w(a ], o sy W(a ”]] € w@z ) if, and only if,
o 0.
s s o) € o
o o)
Consider (b l, a1 n} ¢’ a® . Thus

o g
(w(b l], e w(b nl] EO w[bo) from above and hence there exists

t

i

ag (o] g. o.
(c l, veay C n] & o , where w(c 1] WLb @] s l=2=n. But y

o, o,
. , £ . ¥
1s an embedding, thus ¢ =D » 1l =1 =wn . That is

(6] (0] a g
(b l, T n] 7 B9, Conversely, if (b l, ciry D n] & aG then
Ol 07’2 g a a a g
@) s eeey b ] € a . Thus a =b and so a =b  and therefore
g (6]
vla’) = ve7) . //
We further note that if ¥ 1is an embedding of M1 into M2 with

the additional property that for each 0 € K , 0 = (Gl, Voo g On) and

g

G.
each a° ¢ Ei ¢ IF (a l, avey O ﬂ] Eo,w(ac) then for each 1 =72 sn ,

o.

g, 0. g.
there exists b © ¢ Elt such that w(b 11 =a” , then IW is a

substructure of M2 in the sense of Kreisel and Krivine [1967], page

100.

We prepare the way for the proof of the next theorem with a
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preliminary lemma.

LEMMA T1.72. ¥ : M, M, 18 an embedding, M, M, being

k(a, B) structures, and n 18 a substructure of Ml > By M. >N

1 L °

If , 18 a substructyre of Iw with W(Fil i1ts set of individuals,

p, ILp > N2 s then for all ¢ €k , © = [Ol, € & g on) s and

a , p° € Eg s Lf pl[ag) = pl[bc) then pz(W(aO)} = p2(¢(b°)} .

Proof. If o =0 and aO, bo € Fi , then pl[ao} = ao and

0

p, 0% =5° . soif p (@®) =p, (") then a® =p" and

p,(0a%) = p,WEY)) -

Take 0 €k , 0= 95

result is true for all Gi , and a z’ b € El , 1= t=mn.

Assume, further,.that pl(ag) = pl[bo)

Take LpZ(w(aOl], 3P pg(w(aon]]] ' pQ(w(ao)] . (Note: There

is ambiguity in the use of the symbol w[ao) . 1t denotes an cobject

of M2 and is also used here to denote an object of I¢ . The

extension of w[ao) with respect to M2 will in general, differ from

. a ‘ E
the extension of W[a ) with respect to Iw . We believe the context

in which the symbol is used will remove ambiguity.) Thus there exists
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some (w(bcl], w(bonn % (&%) , where pz(l,b(aoi]] = pQ(W[boi]] ,

g a
o 0] .
l1=72<n . Hence (b l, xi by O nl € aO , as y_ is an embedding and

(0] 0]
1 a g o (0]
so (pl(b ], T pl(b n]l € pl(b ) as pl(a } = pl[b ) .
Gl On o ,0
Therefore there exists some (e i ek C ] € b, where
Oi Oi

pl(c ] = pl(b } , 1= =mn, and so

0l on (o] o]
(pQ(w(c ]], BBy pz(w(c ]]] € pz(w(b )] . But from the induction

0' O‘
assumption pQ(w(c z] = pQ(W(a tl] , 1L =171 =mn . Hence

(pQ (lb(aol]] . e pz(d)(acn]n g (pz (lp(bc)]] . The converse follows
PN

by a similar argument and so pQ(w(ao)] = pz(w(bc}] . That is

pQ(W(aU)J = pz(w(bo)] 5 @8 IE. is normal. //

THEOREM 1.13. If vy, Ml’ M2, N, and N2 are as in the statement

1

of Lemma 1.12 then Nl 18 isomorphic to N2 B
Proof. For each 0 € k , define V' : Fl + F

W'[pl(ao)l = pé(wﬂao)l 5 all & € Ei . By Lemma 1.12 we have that

Y' is well defined.

If 0 =0 then it is immediate that V' : Fg > Fg is bijective.
ag. a.
Let © = [0 Ve g 'O ) 0 €K , and assume Y' : F Yor' is
l, ¢ " 3 3 l 2
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bijective each 1 =<7 =#n . Assume pz(w(ao)] = pQ(w(bc)] and take

o g
pl(a l], veoy pl(a n] ¢l pl[ao) . Thus there exists
9, O & @ o o,
(b 5 gy B } € a , pl(b l - pl(a ]. each 1 =7 =n , and so

(PQ(W(bcl]] , pQ(w( ]11 ¢ pQ(W(bUJ] . Hence there exists some

MC%] s s w(acn] %) , ukere pQ(llJ(cOiN = pg(w(bci]] , each

0l qn g ,o
l=i=<n, and so (c v g, 1 l € b" as VY 1is an embedding.

. g. g,
From the induction hypothesis pl(c l] = pl(b t] = pl(a z] each

cl 0n a a
l1<%2=mn. Thus (pl(a ], R pl(a }] € plﬂb } . The converse

follows by a similar argument and hence pl[ao) = pl(bo) as Nl is

normal. We have therefore that y' : Fi > Fg is injective and it is
immediate that it is also surjective. That is Y’ : Nl - N2 is

bijective.
The remainder of the morphism properties for gf follow from the

fact that Py 2y and y_ are homomorphisms. This establishes that
y' is an isomorphism between Nl and ¥, . //

Whereas the above theorem establishes that substructures are
preserved under embeddings the final theorem of this section establishes
that substructures are preserved under the ultraproduct construction

in the following manner.
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THEOREM 1.14. Let {M, : i € I} be a family of (o, B)
structures and, for each 1 € I , Ni ts a substructure of Mi 5
E; DM W If F is any ultrafilter over I then ﬂNi/F 18 a

substructure of ﬂMé/F .

Proof. We define p : ﬁMi/F > ﬂﬁi/F as follows. For O € K

and 7° € B put p(ﬁo) p(ho) , where p(hc) s I ¥ U{Fi 11 € I}

is defined by: p(r°)(8) = p,(W7()} , each €I,

If 0 = 0 we will agree the definition provides that p : EO - FO
is the partial identity map with FO as its domain, We note that for
a e}

all 0 €Kk ,and h°, k] € P such that A hcl’ then

p (%) ~ p(hil , as if h° VK] then {; AR hi(i)} ¢ F and
so {i § pi[ho(i)} = pi[hi(i)]} ¢ F. Thus p : B > F  is well
defined.

We first check that ?0 is closed under the operations of

-0 50 =0
" . F < 3 5
ﬂMz/F For any m < o and hl, N hS(m) € F~ we have

?%(Hg, B 4 Eg(m)] = K where for some F € F ,

¥

. 0,. 0 ¥ opresl o
{z :'fk m(hl(z), P he(m)(z)} = k(z)} = F . But

=5

I Hﬁ € 7 and so {1 : k(i) € FQ ¢ F. That is k € 70 .
8(m) i

Hence 7O is closed under the operations of ﬂMi/F .
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We next take 0 €K , 0O = (Gl, cons Un) and consider
o 9]
tptﬁ l], x5 p(ﬁ'”]] o p(ﬁG} . Thus if

) % a (0]
F o= {i g Qpith (i)ls . pi(h (i)ll € pi[h (i)}} then F € F .

Ol On o ,0
Hence, for each % € F , there exists some (ai s wees Gy l €; h () ,
0. a.
where Pi(ajal = Pi[h J(i)l , for each 1<j =n . For each 1= FER 4

a.

g. g . O
defipe k 7 :I—*U{E’i'] . 4 EI} by: k 4(2)

aiJ , each ¢ € F , and

1

. 0.
k Y(i) an arbitary member of EiJ for each ¢ fF , 1 €I . We

O. g .
observe that, for each 1 =Jj =n , pltﬁig} = plEE'Jl and

o g
(El, E”] T .

Finally we take »n < B and consider

(9] 0] 0. 3
p(ﬁn”‘] (p[z”’l], p[z '“‘W‘)]l . Thus if

6] g (Je]
. pl . ] °
G = {z 1 pi[ﬁi?n](pi(h " (L)], . pi[h £t ¢(n)(1)l]} then G € F .

Hence, for each < € G , there exists, for each 1 = J = e(n) ,

e a . g g . q
b ¢ g™ guch that r.” (b.n’a, 2 s b.n’¢(n)l and
d T T, T 7

3

o . g
pi(bin’J] = pi[h n’J(i)] . As in the paragraph immediately above we

g .
7 Mad

can define, for each 1= J < ¢(n) , k such that
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(&) . o 5 g g g
o) < p[F ) ana BRESL, L, B

Hence ﬂNi/F is a substructure of "Mi/F with the projection

maps p : nMi/F > ﬂﬁi/F . //

2. Embedding theorems

M is a given k(o, B) structure. [ = {Mi : 17 € I} is termed

a local family of M if

s

(i) each M, is a substructure of M , p; MM,

———

(ii) each finite subset of individuals of M is contained in a
member of L .
For example the family of finitely generated substructures of M

is a local family of M , (Mi is a finitely generated substructure

of M if the individuals of Mé are generated by the operations of

M from a finite subset of the individuals of ¥ .)

The above definition 1s in accord with that of Mal'cev [1%69],
page 36, McLain [1959], page 177 and D.J.S. Robinson [1968], page
126. But Kurosh [1960], page 166, and Cohn [1965], page 100, in effect
add a third condition to the (i) and (ii) given above, viz, that for
each <, j € I there exists k € I such that Eg E_Ez and

0 . R :
Ei E.Ez . In faet the example given above satisfies this latter
L

condition as well although in general this latter condition would
appear to be independent of the two conditions given. Cohn's [1965],

Proposition 7.4, page 101, ssems dependent on the extra condition and
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our own remarks at the end of this section on 'inverse limits' will
also require it.

Given M and a local family, L = {Mé : 1 €I}, of M we form

an associated ultrafilter over I . The set {F g ° aO € EO} , where

a

0
a

_ s 0 0 0 0 e ] 7
F - {z i 4 € Ei} , each g € £, has the finite intersection
property, as L is a local family, and hence (e.f. Gratzer [1968],
Theorem 6.7 and Corollary, page 26), can serve as a sub-basis for an

ultrafilter F over I . We shall call such an F an L-associated

ultrafilter.

a
: 17 . .
A constant relation Rn , n<B ,of M is said to be

a g
ok : ar a n n,l
L-finttary if whenever it is not the case that Rn (a P W T

g a o a
then {i : not pi(Rnnl(pi(a n,ll, e b pi(a n,¢(n)]]} € F , where

p; M~ Mi , each 7 € I .

aon,d)(n)]

M is said to be L-finttary if

(i) each constant relation of M is L-finitary,
ag
. - , _ z 4 Orz *c a
(ii) for each 0 €k , T = (Ol, e On) 5 Gf a T wwe g & a

then {i : (pi(zol . &5 pi[aon]] &2 pi(ag)} € F.

Por the rest of this section we shall always assume that M is

given with a local family L = {M, : © ¢ I} and an L-associated

ultratilter F .
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M 1is termed a second order structure if the members of K are of
rank = 2 . That is if ¢ € K then either 0 = 0 or if

0 = (Gl, i On) , some 7 , then Gj =0, 1=j=n.
THEQREM 2.1. If M ie a second order structure with L-finitary

constant relations then M is L-finitary.

g

o
Proof. Take 0 ¢k , O = (cl, cees on) and (a l, cees @ n] £ 8.

Now M 1is second order and so Gj =0, each 1= =<mn . Hence, for

. %1 n)) o . (.0
each 7 € F 0, Nn...NF o, * [pi(a ], hEXS pi(a ]] ki pi@a Yoo
a a

By the same reasoning we are able to observe that if any constant

relation of M takes only individuals in its arguments then it will

necessarily be L-finitary.

We note that in general higher order structures are not L-finitary
with respect to any arbitarily chosen local family. A simple counter

example is the following situstion. Let M be a k(a, B) structure

where a=8=0, « = {0 (0) = 1 ((0)) = 2) , EO is the counting

1 E° 2 &t
numbers, E = 2 and E° = 2 . Let L be the local Tamily of M

given by the family of all finite substructures (that is substructures

with a finite number of individuals) of L

N .
Consider that member g~ of E2 such that

1 .
q = {al H al € El and «  is finite} . Let bl be scme non-finite

subset of E° . Hence b<T §2 & . Hei take any M. €L ,




oL

. Bl 2 2z x 1 0 1
t M Mi . We have that pi(b ) € pi(a ) sas if e = Fi M b

then cl is finite, as F? is finite. That is cl 62 a2 and

pi(bl) = pi(cl) . Thus no member Mi of L can be found such that

p,(07) ¥ p, % .

The L-finitary condition seems necessary to the various embedding
theorems developed below. We have already established that second
order structures with L-finitary constant relations are L-finitary
with respect to any local family L . In section 4 of Chapter III we
shall introduce a significant class of third order structures which are
L-finitavry.

For the development of the first embedding result (Theorem 2.2)
and for technical and notaticnal convenience we shall take M as a
k(a, B) structure where G = 0 . We shall simply call it a Kk(B)
structure,

Let M be a «(B) structure and Ml a Kl(Bl] structure where

and B =B, . A 1is an injective map from K to Ky such

K C K
o 1

that for each 0 €k , 0 = (Ol, ""Gn) .

Aw):[kbﬂ,.“,k®g}

We shall say that M is A-similar to M, if M, M and A

(¢
. ; n
are as above and if, for each constant relation Rn y 7 < B, of

M , the constant relation Rlnn of Ml has the same number of arguments
3




o]
n -
as R if = g *¥5
s R and if O Lcn,i’ % Un’¢(n)) then

r, {X[on’l), ”"n,qa(m’}

M 1is said to be A-embedded into M, by a A-embedding family

A=similan,

—
jun
~7
=
e}
=
(8%
I
o
e
(D

(ii) for each 0 € K , wA is an injective map from o

E)\(O)

1 such that

Q
a) for each 0 €k , 0 = (ol, T Un) s (a l, via g n] '

( g 6]
if and only if, (WA(a l], . wl(a n]} GA(U) wk(aG] &

o

(0] a
b) for each n < B , Rnn(a n,l’ o sy, 2 n,¢(n)] if, and

E 1 g r O

A A 7 W

only if, g (w (d (’l}, o wlta ﬂs¢(n)]]
1ymy

If A is such that A(0) = ¢ (that is A 1is the natural

injection of Kk intc Ky ) M will be said to be embsdded into Ml .

Theorem 2.2 below, or mere correctly Corollary 2.3, is a
generalisation c¢f a fivrst crder embedding theorem due to Abraham
Robinson [1965], Theorem 2.4.1, page 34.

THEOREM 2.2. M <a a I-finitary «(B) structure and

B

K A are as above. If for each 1 € I , M, can be MA-embedded

1* "°
into a KI(BI) structure W, then M can be M-embedded into ﬂNi/F N

Le



(G1e}

A-embedding

SRR

whzre F is the [L-associated ultrafilter.
s A
Proof. For each % € I let VY, : M. > N. be the
a 7 1
. - A
of Mi into WN. . We define ¥ : ¥ = vNi/F as follows.
A — .
(1) 1f &° ¢ 5° put ¥ [ao} = A o » Where h O(z)
a a
for ali 2 € F g Thus ﬁ'( iz well defined az F o €
a a a
I o I} i Ar O
(ii) If a €E , 0 €k, O#0 ,put Y (a ) z

A
Z

where h O(i) = i
a

We now show that

nNi/F . We note that

Take 0 €k , ©

J be the subset

Let

W, ©O; =0 o Put F

F =T . Thus F ¢ F .

=Y 18 SR

o ,
= ) . 4 7t tO a s
Conversely, assume (@ , v« 5 @ a . M 1

Q}

- '
&pi[a )l for all 1€ I .

R
Q
-

as defined is a A-embedding of M into

M iz A-similar to ﬂNi/F .

- ?n)

ey At

- a
and fa
\

such that J € J

o
J} and note that

=

a

i B4eg B

LI

nl &9
if, and only

Jd = ¢ then

L-finitary aud
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so there exists Fl € F , where

s @ {7' : (Pi[acl], s pi[adn” t‘; pi(ao)} . For each i €F ,
e oo Mesle™))] 89 Apy) o o0

"y O o
A 1 A A
[w {a J,---,lb[an]] -E-A(O)w(ao)
By a similar argument it can be shown that for each #n < B ,

0o o
nla ok s a n,¢(n)] if, and only if,

[ B IR TR

A £ o 0 0
We finally show that ¥  is injective. Take ao, b € E° such

A
that wk(ao) E Wx(bo] . For each 71 € F . npg 0 * wg(ao) = Wi[bo)
a b

A , . A ‘
and so a° = ° , as Wi is injective. That is P EO > FA(O) is
injective.

a
Take any 0 €K , O = (Ol, .. 0} and ao, ° ¢ B° . 1f

n

(o] (6]
g 0] p 1 n g o
a # b then there exists some (a y BeRg & € a and

3

91 %) ,0 .0
(a cis g 8 ] f" b , or vice-versa. Assume the former. M is

L-finitary and so G € F , where

o ()
G = {i : [pi[a l}, np—— pita n]} kg pi(bo)} . But for each 7 € G we

S B O
have p"', a s e« pi a

] €g pi[ao) . Hence, for each ¢ € G ,
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T

o g
(w%[pi[a l]], " 3y w%[pi(a n]]] belongs to wé(pi(ao)] but does not
g g
belong to wg(pi[bo)] . That is (wx[a l], .d b} wk[a nl] belongs to

wk(ao) but does not belong to wk[bc) . That is wk(ao} # wl(bo)
Therefore wk . B9 » FA(O) is injective. //
COROLLARY 2.3. If M, ST Bl, A are as above and if each M,

i €I, can be Membedded into a model of L , where L +<s a class

of sentences of L(Kl[Bl)) , then M can be Membedded into a model

of L.
Proof. For each % € I let Ni be a model of ¥ such that Mi

is A-embedded into N, . By Theorem 2.2, M is A-embedded into

ﬂNi/F which by Corollary I: 3.5, is a model of I . /1

We observe that by Corollary I: 3.11, Corollary 2,3 would still

hold if I were a class of sentences of Wi where Wl is the class

of formulae of L(Kl(Bl)} g

COROLLARY 2.4. If M is a L-finitary «(o, B) structure then

M ecan be embedded into “Mi/F .

Proof. In Theorem 2.2 take Ky =K , Bl = B8, X such that

A(0) = 0 , and for each % € I take Ni M{ . Hence the result. //

Strictly the statement of the above corollary, in terms of Theorem
2.2 requires o = 0 . However if o # 0 it can be checked that the

embedding Y : M > ﬂMi/F preserves the operations of M with respect
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to those of ﬂM%/F . In the sequel the embedding of M into ﬂMi/F
will always be denoted by Uy : M = nMi/F , defined as in thevproof of
Theorem 2.2 but with the necessary modification that the ¢i's are
the identity maps of M% to k% , each 7 € I ,

COROLLARY 2.5. If M <s a L-finitary «(o, B) structure and

a class of sentences of a) L(k(a, B)) or, b) W(nMi/F) or
e) W' such that each Mi », © €I 1is amodel of L then M can be
embedded in a model of L , viz. ﬂMi/F .

Proof. By Corollary 2.4 and a) Corollary I: 3.5 or b) Corollary
I: 3.8, or ¢) Corollary I: 3.1l, respectively. !/

Consider the embedding VY : M ~ ﬂMi/F of Corollary 2.4. - If M

is a first order structure the image of M under Y is of course a

substructure of WMi/F s but in the higher order case this in general

will not be so. The next theorem provides particular circumstances in
which an isomorphic relationship can be established between M and a.

substructure of ﬂMi/F . It will prove to be the means, together with

Corollary 2.5 above, of obtaining local theorems as discussed in
section 3 of Chapter III. We first require a lemma and some
definitions.

LEMMA 2.6. If; YoM ﬂMi/F as above then w(Eo} i8 closed

with respect to the operations of M /F .

Proaf. For m < o and ao d € E° we have

l, Y ae(m)
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[ag, “iog ag(m)]] = ?;(w[agl, caes W(ag(m)]] and hence the result. //

ol
We denote by

g
Ny = {F$ : 0 € K} U {7; :m< o} U {p(ﬁ%n] tm < B} the substructure

of ﬂMi/F based on the subset of individuals of m%i/F given by

w(EO) , Where p : ﬁMi/F + N, is the family of substrug¢ture projection

Y

maps .

g
A constant relation of M, Rnn , n<B ,is said to be [L-stable

o acn,e(n)]

if whenever it is not the case that Rn then

L

n( 9,1
g ¥y

o g o
it is not the case that p[ﬁ;ﬂ](p(W(a n,l]}, b p(W[a n’¢(n)]]}'

)
LEMMA 2.7. If R%n , n<B, 18 an L-stable constant relation

of M then it is L-finitavy.

g . g .
Proof. Take a % ¢ g "% , 1=<j=d¢n) , such that it is not
o @ o
the case that an(a n,l’ vy @ n,@(n)] Hence it is not the case
(2
g o @, o
that p(Rnn][p[w(a n,l}] £ 15 p[W(a n,¢(n)]]1 and so it is not the

5 9,1 % ¢(n)
case that Rn (W(a & ], ey w[a ’ ]] . Hence by Theorem I: 3.4,

o} g o]
{i 3 pi[R n](pi(a n,l]’ AR pi[a n,¢(n)]] does not hold} € F . That

is R is L-finitary. !/
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THEOREM 2.8. If the «(a, B) structure M is second order,
full and with each of its constant relationg L-stable then M and

NW are igomorphic structures with py a related family of isomorphisms.
. : % : 0
Proof. We first cbserve that py is a bijective map from &
to E$ which preserves the operations of M with respect to those of
)
Now take 0 €k , 0 #0 , and so 0 = (0, ..., 0) , as M is

second order. Take any p(ﬁq) € FE « Let

o (G I RTINS SR ¥

a.

n
each 1 =<j =n . M is full and so there exists some a0 € E’OJ such

0 0 a o . : 0 0
that (al, R an] € a if, and only if, (al, . an] € X . It can
o =0 g : ; ;
now be checked that py(a ) = p[h } . That is pY 1is a surjective

map from EO onto E@ :
Next we observe that if [ag, ST% as] EO aG then

(pw(ag], 5 g g pw[aZ)] BE pW(aG) . Conversely, take
. (ag, gy ag] ko ac and so [U)(ai}, ars e l[)(a;]] 30 w(a()') ms W Ew
an embedding. Thus (pw(ai], 2TT pw(ag}] ?0 pw(ao) , as

e o) 8

From the above we can now establish that py 1is injective from

# to E% » @=1(0, vo.s 0) . For if pW[ao) - pw(bgj then
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' o . . :
(ao X% ao] € aU if, and only if, (ag, cees @

We finally note that each constant relation of M is L-stable
and hence the result is established. //
OQur use of the result of Theorem 2.8 in Chapter III, section 3,

will be to assert that if a formula 4 of L(K(u, B)) holds in NW

then it also holds in M , where M and N, are as above. The

Y

isomorphism between M and NW guarantees this. For further

application (to the results of Mal'cev and Kogalovskil) we shall want
to assert this same property for certain formulae even though we may
not be able to establish a complete isomorphic relationship between M
and Nw . The next theorem is concerned with this.

Let Kk contain only types of rank <2 . Let M be a k(a, B)
structure that is full and with each constant relation L-stable, For
some cardinal R' = B we adjoin to M the constant relations

(6]
n

Rn s B=En<gh, anyone of which need not be L-stable with respect

to M .

Let A € L(k(a, B')} be in prenex normal form with its quantifier

g
. a 3 . . : n .
free portion AO in disjunctive normal form and such that if Rn is

not L-stable then it can only cccur {(if at all) in the negation of an

atomic component of AO

THEOREM 2.9. If M and A are as above then AIF; A4 if

(i“-l =20
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if NIP Fp\—) A , for any M-interpretation Vv .

Proof. A proof can proceed by an induction argument that

establishes the result for AO and then shows that the result is

preserved with the addition of each quantifier leading to the final

formula A . The result for AO is established from the fact that if

(0]
a constant relation Rhn is L-stable then any atomic formula

involving it holds in NW if, and only if, it holds in M , (with

. : . n .
respect to any pair of related assignments), but if Rh is not

L-stable then all that can be asserted is that if the negation of amn
o
atomic formulae involving Rnn holds in Nlp then it holds in M . //

A result which extends Theorem 2,8 into a third order context is
given by Theorem 4.7 of Chapter III. It could well have been included
in this present section.

Finally in this section we indicate how inverse limits occur
naturally in the context of a (directed) local family of substructures
of a k(a, B) system M . It is of interest to note that Neumann [1954],
page 145 and Kurosh [1960], pages 169-170, both use an inverse limit
construction on a family of subsets in proof of local theorems associated
with group structures. The theorem below may indicate the common base
to their methods and the method via ultraproducts set out in Chapter
LI,

For the rest of this section (only) we shall assume that the local
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family L of M 1is such that I can be directed by means of the

rartial ordering, % =< J 1if, and only if, Eg E-?? and that the

L-associated ultrafilter F is constructed from {Fi : 7 €I} as

sub-basis, where F, = {§d -2 =4} , each € €I .

o . . .
For each 0 €k , 0 # 0 , {Ei 8T € I} forms an inverse tamily

with respect to the projection maps p; 3 : Eg > Eg , where 7 = J and
L

Ei,j 2 My > Mi . It can be checked that if < = j then pi,j is the

identity map on E? and Theorem 1.7 ensures that if 7 = j =k then

(0]
Dy o P s 5 g E note t iny imi f the inverse
Pk,d i pk,l Let E_ denote the ipverse limit o e
family. That is

B = {hc A W{Eg : 1€ I} and for all %, j € I, if 2 =g

fre]
then p. .f(J) = (i)} |
p; ) =1
o ..\ . . :
In the case o = 0 , e 8T € 1J forms a direct family ¢f sets

. . 0 S
vilth respect to the p maps, or more correctly, their inverses., Let

QO

E_, denote the direct limit of this family. In fact Eg can be

identified with the subclass of wEg/F given by the imags of the

zmbedding ¢ : EO - HES/F of Corollary 2.4 above, (e.f. Grdtzer [1968],

Exercise 33, page 156).
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With a slight distortion of language we shall call

o
Mi={Eg:GEK}U{ég:GEK,0¢O}U{?m:m<a}U{Rnnw:n<8}

the inverse limit of L = {Mi : 7 € I} , where for each O € k s
a (0]
o = [01, ey on} 5 (k l, B 5 B n] e n° if, and only if,

ag a
{i i (h l(72), beny n(i)} Eg hc(i)} € F , the constant relations

g
n ; . ; =
Rn w » " <B , are likewise defined and the fh , m< o , are the
>
operations as defined for ﬂMi/F . (Of course in the above definition

if one of the Oj = 0 then the definition must be shown independent
of the particular representation of the associated member of Eg . This
can be done.)

Mi as defined above is a «k(a, B) structure. But even though

M and hence each Mi » 1T €I , are ncrmal structures it does not

seem that in general Mi is a normal structure. However none the

less we do have the following result.

THEOREM 2.10. If M <s L-finitary then there exist embeddings

UM,y

. - s Fe T = 3
5 Mﬁ WMi/F and such that vy Y as defined

$

for Corollary 2.4.

Proof. We define ¥, by: if a’ ¢ 2° put Wl(ao) =71-0 s
if o ¢8° s O #0 , put Wl(ac} = h a
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We define ¢, by: Y. : E_ = EO is the natural injection and if

-2

N
8

W o€ EZ » 0O €K , 0#0 , put w2(h0) =

We check that 2& and EQ are injective. For O = 0 this is

immediate. Take O €k , O # 0 and Wl(ao) =y (bo) . Thus, for

I
each 72 €I , pi(ao) = pi(bg) and so a° = b° , as M 1is L-finitary.

. . al _ o
That is wl is injective. Now consider w2(hl] = w2(h2] , where

hi, hg € Eg . Hence F = {i : hi(i) = hg(i)} € F . Take any k € I .

M 1 M
Fk € F and so F N Fk #0 . Take J € F Fk . Thus

= g, . _ g, . Tray _ 597
h (k) = pk,j(hl(J)] and hy(k) = pk’j(hz(a)] . But KJ(F) = ()
and so AJ(k) = hy(K) . Hence k] =h) and Y, is injective.

The rest of the embedding properties required for Ei and w2

can be checked. Finally, it is immediate from the definitions of 21

and ¥, that Yo, =¥ . 1/



CHAPTER III
SOME ALGEBRAIC APPLICATIONS

Summary. The content of this chapter deals in various ways with local
properties of algebraig¢ structures. Each of the situations taken is
an already established one in its own algebraic context What Is new
and of interest is the application of the model-theoretic results of
the previous chapters to these situatiomns.

In section 1 the Stone [1936] Representation Theorem is established
in terms of a second order ultraproduct. In section 2 the presence of
the ultraproduct construction is made explicit in the properties of
Sylow (maximal) p-subgroups of locally normal groups. Section 3 develops
an alternative approach to those already available in the literature
to the metatheory of local theorems in universal algebras and in
particular incorporates in the approach local theorems of J.P.

Cleave [1969], and A.I. Mal'cev [1959]. Section 4 continues the theme
of section 3 in the context of chain conditions in universal algebras

with particular reference to the local theorem of D.H. McLain [1959].

I. Stone's Representation Theorem for (non-finite) Boolean algebras
THEOREM 1.1. Any infinite boolean algebra is isomorphic to a
subset subalgebra of a second order ultraproduct.

Proof. Let M be a boolean algebra regarded as a Kk(a, B)

structure where k = {0} , a=0, B=3. EO is the individuals
0
of the algebra. RO » Oy = (0, 0) , will be the two-placed relation
o o

arising from the complement operator; Rl and R2 s where
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Ol =y (0, 0, 0) , will be the three-placed relations arising from

the meet and join operators respectively of the boolean algebra.

L= {Mi : 7 € I} 1is the local family of substpuctures of M

arising from the finitely generated (and hence finite) subalgebras of
the boolean algebra. F 1is the UL-associated ultrafilter over I .

Take k., = {0 (0) =1}, o =0, B, =3 . The relation

4 1 1
%o
RO , where Ty = (1, 1) , we shall denote by (€ ; the relations
1T
Rl 5 R2 , where T, = T2 = (1, 1, 1) , we shall denote by N and

U respectively.

Let A be a map from K to Ky given by A(0Q) = 1 . Hence y
is A-similar to any Kl(ul, Bl} structure.

I is the set of sentences of L(Kl(al, Bl)) given as follows

and where g;l = yl stands for g(xl, yl) and likewise for

1 1 1

& Vy = zl and xl Q'yl =z
(1) Velvyt(cx' =yt = va® (@ ef 2t = 20 E ) .

(2) valvylvat (@t vyt =

1
M
!
<C
8

1 0
(3) Ve Vylel[xl Q_yl = zl == i [xo g} zl = [x € x Az € yY)
We observe that the sentences of I have been chosen so that in
any full model of I , Cs N and U will represent the set complement,

set intersection and set union operations respectively.

Now for each % € I and by a standard result for finite boolean
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algebras AQ is isomorphic to a full subset algebra. That is each
M. can be A-embedded in N, &q model of X . Thus by Theorem II: 2.2,

M can be A-embedded in WNi/F also a model of X . We note that if
A . y
VoM~ ﬂNi/F is the A-embedding then the form of the sentences of

A . .
L ensures that ¥ [EO} is closed with respect to C, N and VY ,

That is M 1is isomorphic to a subset algebra of ﬂNi/F . Of course,
although .each Ni » 1T €I , is a full subset algebra the ultraproduct

will in general not be full. /7

We comment finally that Theorem I: 1.6 enables the formal
membership relations of ﬂNi/F to be translated into actual set
membership relations thus establishing Stone's Representation Theorem
in its set context.

The above discussion could of course be restricted by the
elimination of the complement operator and sentence (1) of L to
establish that every distributive lattice is isomorphiec to a ring

of subsets of a second order ultraproduct.

2. Sylow p-groups of locally normal groups
The following three properties from the theory of finite groups
are assumed. (e.f. Kurosh [1960].)
I. For any two Sylow p-subgroups P and § , of a finite
group G there exists an inner automorphism of G which when restricted

to P 1is an isomorphism from P to & .
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II. If H is a normal subgroup of a finite group G , P a
Sylow p-subgroup of G , then P M H 1is a Sylow p-subgroup of #H .

III. If P is a p-subgroup of a finite group G , N a normal
subgroup of G such that # 2P and ¢ a Sylow p-subgroup of W
containing P , then there exists a Sylow p-subgroup @' , of G
which contains P and such that @' NN = @ .

We recall that a locally normal group is one such that each
finite subset of elements of the group is contained in a finite normal
subgroup.

Take a locally normal group M and regard it as a (o, B)
structure where k = {0 (0) =1 (0,0) =68}, a=3, B=0,

0 the set of individuals of the group, El = QE . E’(S = EO X EO "

&
I

-1

, the unary inverse cperator

foy = € » the group identity, =

and f2 = * , the group binary operation. We shall use the ordinary

group notation.

Let L= {Mi : 7 € I} be the family of all finite, normal

subgroups of M . Hence L 1is a lgcal family of M as M is a local
normal group. F is a L-associated ultrafilter over I .

We describe a collection of sentences and formulae of L(K(a, B)) .

We shall also use the symbols e, =% and * to denote the operation
symbols.,

K denotes the conjunction of sentences characterising group
structure.

Gs(xl) denotes the formula
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v2lv® (et £ 0 A (2 &ty &gt gl _e_l )

expressing that et is a subgroup.

Sl(yo) denotes the formula

Sn(yo) » (n any positive integer > 1) denotes the formula
0ym 0
B =0 a8 o %

expressing that yo is of order n .

xl = yl[wa} denotes the conjunction of the following formulae.

. X 1
(i) Gs(ac)/\(}x(y) ’
(ii) Vzo(zo g} zt = (Eluo(uo E} yl A (zo, uo) EF wS])) 5

(iii) VxOVyOVzO(xO € a ANy € ot a 20 e Yo A

(iv) Vzo(zo E} yl = Exo(xo E} at A {xo, zo) E? wb})
(v) VxOVyOVuOVvO(mO f} xl A yo 5} xl A uo E} yl A uo el yl A
(.‘BO, uO) i(5 w(S A (yO’ UO) 55 w(ﬁ = (xO_yO, uO.vO) iﬁ lJG) ,
3 § . . . 1 1
expressing that w 1s an 1isomorphism between subgroups & and y~ .

Let Y : M~ ﬂMi/F be the natural embedding of M into ﬂMi/F .

~
If al € gt we let W(al) denote {W(ao) . a® Gl al} ’

THEOREM 2.1. If M 1is as above then (%) WMi/F 18 a group,

(i) for each at € g+ 5 at is a subgroup of M <f, and only if,
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w(al) 18 a subgroup of TTMi/F , (Zii) for each at e gt 3 al i8

AN
a p-subgroup of M <if, and only if, w[al) is a p-subgroup of

m™./F .
3
Proof. (i) ﬂMi/F Ex , as {7 : M, =K} =I¢F , and so

ﬂMi/F is a group.

(ii) Take ot ¢ B' and let v be any M interpretation such

1L y . .
that v(x ) = al . For each 7 € I let V. be a Mé interpretation

such that v.(xl] - p.(al) » where p. : M+ M., is the family of
T 7 2
substructure projections. Let V be the induced ﬂMi/F inter-

pretation such that G(xl) = Z'l , where h l('i) = pi(al) each
a a

T €I .
Now for any 1 € I , al is a subgroup of M if, and only if,

pi(al) is a subgroup of Mi . Thus if al is a subgroup of M then

( \
b 1 1
kl - Mi F%i Gs(x )} ¢ F and so by Theorem I: 3.4, ﬂMi/ F=G Gs(x }

That is w(al) is a subgroup of WMi/F . Conversely, if w(al) is a
subgroup of ﬂMﬁ/F then ﬂMi/FF=5 Gs[xl} and so again by Theorem I:

3.4, {i J M% F; Gs(xl}} € F . That is there exists some ¢ € I
A

such that pi[al} is a subgroup of Mi and hence al is a subgroup

of M .

(iii) A proof is established by application of Theorem II: 1.13.

//
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The final two theorems are results first proved by Baer [1940].
Kurosh [1960] uses the methods of projection sets, (inverse limits) to
prove them. We provide alternative proofs via the ultraproduct

construction.

THEOREM 2.2. If M <s a locally normal group as above and at

a given Sylow-p-subgroup of M then for each 1 € I , p; (al} 18 a

Sylow p-subgroup of M, , where p; M~ Mi .

Proof. Assume that pi(al) is not a Sylow p-subgroup of Mi .

for some ¢ € I . Put F = {j : k% EZAQ} and so F € F as Mi is

finite. Let pi[bl) be a Sylow p-subgroup of Mi such that

1

p, (6% > p, (Y

Now from property II of finite groups listed above we have, for
each j € F , that pj(al} is not a Sylow p-subgroup of Mb . Hence

for each j € F , and by property III above, there exists a Sylow

p-subgroup, pj[c;] s OF ME such that pj(al) c pj(c;} and

(1 ) 1
Pj(cj] N Mi £ Pi(b )
J

Take Ei € ﬂMi/F , where hl(j) = p.(c;l , each J € F and so

h™ 1is a subgroup of ﬂMi/F and, further, N w(&) is a p-subgroup

of w(&) , where w(@) = {w(ao) . ao € EO} . Also for each j € F ,

we have pj(al] c pj(c;] and so W(al] c 7' and hence
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N
w(al) E_Ei n w(@) . But ¥ is an embedding, thus w(al) is a
Sylow p-subgroup of w(@) , 28 al is a Sylow p-subgroup of M .
Al =] o
Therefore w[a ) = h™ 0O YM) .
But pi(al} < pi(bl} and so there exists some a° ¢ pi(bl) but

ao t pi[al) . Further, for each J € F , we have pj(c;l n Mi - pi(bl)

and so ao € pj(c;] » Whereas ao t pj(al) . Therefore, if w(ao) = ﬁlo
a

then E-O e 7t n w(@) but E‘O £ w(al) contradicting the conclusion
a a

at the end of the paragraph above.

From the contradiction it is established that pi(al] is a
Sylow p-subgroup of Mi , each 7 €I . //
THEOREM 2.3. If M is a locally nmormal group as above then any

two Sylow p-subgroups of M are isomorphic and locally conjugate.

Proof. Let al, bt ¢ EY be two given Sylow p-subgroups of M .

By Theorem 2.2, for each % € I , we have pi[al), pi(bl) are Sylow
p-subgroups of Mi . Hence, by property I of finite groups listed

above, for each 7 € I there exists cg € E6 such that pi(cgl is

an inner automorphism of Mi taking pi(al) to pi(bl) ¢

For each ¢ € I , let vy be a Mi interpretation such that

vi(xé) = pi(cﬁl g vi[xl) = pi(al) and Vi(yl) = pi(bl} . Let

7
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Eé € mM,/F , where ha(i) =p B each 7 €1
z° ? iy z) ° ’
. 1. 1.8 B
Now {2 : M% Fb T =y = ) = I and so, by Theorem I: 3.4,
1

we have ﬂMi/FF=G «t = yl(xa] . That is Ed is an isomorphism between

v ama wBY .

We first show that EG restricted to w(al) is an isomorphism

between w(al) and w(Bl) . For this it is sufficient to show that
15 ﬁé(ﬁg] = Eg 5 (as (ﬁg, ﬁg] 6656 will be now written for

notational convenience), and Eg € W(&l) then Zg € w(gl) ;

Take a® € a* and so y(a°) = R« Put HG(E'O] = %° and we
a

a
shall establish that #° ¢ w[bl) . Let G = {i ; pi(cg}(ao) = ho(i)}
0

and so G € F . Take some k € I such that ao € Ek = {ai, W ¢ ag} .

Put F = ﬂ{F g+ 12 J = m} and so F € F . Now for each Z € FNG ,
Q-
J

. - ) . .
M, is a normal subgroup of Mi and pi(ci] is an inner automorphism

k

S| (.0
of M% and thus pi(ci][a ) € Mk . Let

. . 8 0
. B : N el = aLr . .
Eb {z :2 € FNG and pz(cz] aJ} Thus F} s LEJ =M,
partition F N G and so one, and only one, of Fj , 1l=jg=m,e€F.
. " 155 0
Let it be Ft . Thus, for each 7 € Ft s n () = a, . Hence



A and E-O € W(Sl} .
t %

We finally show that Hé restricted to an isomorphism between

w(&*T and w(bl} is locally an inner autormophism. Take any
0
Qis wevs ap € al . Let bo, - bO € bl be such that
n 1 b

ﬁa(ﬁ'ol =h _,each 1< j<wn. Itis reguired to find some

0
a bj
0 0 — -1 — - p
a € E  such that #& *h _*h _=h s, each 1 =g =mn.
0 0 0 0
a a a b
. . 0 . . 0
Let G. = {z +h (2) = a.} y H. = {Z : h _(2) = b.} , each
4 a° J J »° J
J J
. . 81{.0) o0 . e
l=£g =n . Put Dj E {z : pi(ci](aj] z bj} s L =7 = . Thus

G € F , where G = ﬂ{qj N Hj N Dj :1<j=2n} ., Take some k €G

and put D = {i : Eg > Eg} . Thus D € F .

Now pk(cgl is an inner automorphism of Mk and so there exists

. 0. .0 _ §]{o] . 0y-1, 0o, 0 _,0
some a € B such that pk(ckltaj] = (a”) a; *a = bj

L]

i=j=n. But forall Z €DNG , pi(cg}(ag} ¥ bg » each

l=j=n. Thus for each 1 =<gj =n, {i : pi(cg](?g] % Lao]-l,aj.ao} €F
<
TR 5 . 5 [—
- (h 0] (h- 0] B g = & (h 0]
a a. a a.
J J

Hence the theorem is established. /7

(&N

an
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3. The meta-theory of some local theorems in universal algebras

Various results are known in the meta-theory of local theorems for
universal algebras. Amongst these is the Interior Local Theorem of
A.I. Mal'cev [1959], in which is stated syntactical conditions
sufficient to ensure that a set of sentences ('"quasi-universal sentences")
of a second order language expresses a local property.

S.R. Kogalovskil, [1965/1970], gave a generalisation of Mal'cev's
result in which some of Mal'cev's syntactical conditions are replaced
by a more general semantical condition. J.P. Cleave [1963], published
a theorem stating that second order sentences of a particular
syntactical form ("boolean universal sentences') define local
properties. While Cleave mentions the results of Mal'cev he leaves as dn
open question the relationship between his boolean universal sentences
and the quasi-universal sentences of Mal'cev. We indicate in this
section some aspects of this relationship.

In [1969] Mal'cev wrote, "Most of the interesting specific local
theorems (e.g. those of group theory) concern properties expressible
directly in the second crder rather than in the first order predicate
calculus. It is therefore important to describe the broadest class of
second order formulae which express predicates having the local
preperty". It is an aim of this section to contribute to this
description. We use the ultraproduct construction to cobtain semantica.
conditions sufficient to ensure that sentences in a second order
language satisfying these conditions will define local properties. We

then establish some syntactical conditions sufficient to provide these
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semantical criteria and in particular derive the results (with
extensions) of Cleave, Mal'cev and Kogalovskil. In the following
section we continue the discussion into third order structures,
particularly discussing the local theorem of D.H. McLain [1959].

Let P denote a class of «(o, B) structures such that with
each member M of P there is associated a local family

L = {Mé : 4 € I} and an L-associated ultrafilter, F , over I .

If A is a formula of ‘L(K(a, B)) then A4 is called:

(1) L-hereditary (with respect to P ) if whenever Mf?v A,

for M € P, Vv a M-interpretation, then
{1 P M F%iv A} ¢ F , where p; M~ Mi , each 7 €I

(ii) IL-local (with respect to P ) if whenever M € P , Vv an

M-interpretation and {i - Mi Fb Y A} ¢ F then M}=V 4
i

(iii) Loeal (with respect to P ) if whenever M € P , VvV an

M-interpretation and for each 7 € I , M% Fb a 4 then
7

M}=\)A;
(iv) Hereditary if whenever M' is a «k(a, B) structure (not

necessarily a member of P ), Vv an M'-interpretation,

N a substructure of M' , p : M =+ N , such that whenever

2° is a free variable of 4 then v(xo] is an individual

of N ,and M'|=, A then zvl=va.

Some elementary relationships between the various definitions are
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immediately apparent. The property of being hereditary entails that
of being L-hereditary and the property of being L-local entails that
of being local. (Unless ambiguity requires otherwise we shall often
omit explicit reference to P ).

THEOREM 3.1. ILet A be any formula of L{x(o, B)) . A is
L-local if, and only if, VA <is L-hereditary.

Proof. Take M ¢ P and assume that A4 is L-local and

Ml=v'l,4. If {7, :Mi’:p.v_"‘l}“: then {7, : My p_VA}eF.
T z

But 4 1is [L-local and so if {i i Mé F% » A} ¢ F then Ml_b A .
7

Hence {i M F% g | A} € F and 14 is L-hereditary. The converse
T
follows by a similar argument. //

THEOREM 3.2. Let A be a formula of L(k(a, B)) . If 4 1is

g a

L-local then VYx o v Y2 4 ds L-local, for any Tis eees Un €K,

Proof. Take M € P and assume that 4 1s [L-local and
" o] o o o
{i : M. = v 7 Lo v nA} af . If Ml#b Y S Yo "4 then for
L .

some M interpretation V' such that v, V' agree except possibl
b g Pt P N

o o
on l, ceey , M’Fb, 7 4. Thus, from Theorem 3.1, we have
Jl M, #} ! } ¢ F . But this requires that
f, Ol Gn : s
1& : Mél#b y Ve T Y "At € F which is not so. Hence
T
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Ol g
M Yz R //

Theorem 3.1 allows us toc state the dual result to Theorem 3.2, viz:
THEOREM 3.3. Let A be a formula of L(x(a, B)) . If 4 is

g of
L-hereditary then 3z Lo k™ s L-hereditary, for all

a 5% 3
12 > n

The next result requires that the class P be restricted to
full second order systems such that for each member M of the class
the constant relations are L-stable. For the rest of this section

Pl will denote such a class with similarity type Kl(a, B) where Kl

is such that 0 € kK, and for all 0 €K, if o0 = (Gl, cres cn] then

szo,each lsj=mn.

THEOREM 3.5. If A4 , a formula of L(Kl(a, B)) , is hereditary
then A is L-local with respect to Pl .

Proof. Take M ¢ Pl s, V an M interpretation and assume

(. .
11 : k% #%iv A} € F . Thus WMi/FP=G A , where for each 7 € I ,

Vi = p;V . Let Nw be the subsystem of ™M./F , p : M. /F > NUJ , as

defined for Theorem II: 2.8. If xo is a free individual variable of

A then G{xo) =h is an individual of Nw . Hence N¢)Fb5 a4,

as A 1s hereditary, and so by Theorem II: 2.8, we have AIP:’A and

the result is established, //
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In fact we can obtain a wider result than Theorem 3.5 by extending
our context in a similar manner to that leading from Theorem II: 2.8 to

o .
Theorem II: 2.9. Let constant relations {Rnn : B=n< Bl} be

adjoined to each member M of Pl , and such relations need not be
L-stable with respect to each member of Pl . Again for the rest of

this section Pi will denote the class Pl but where each member has

adjoined to it the extra relations.
Take A € L(Kl(a, Bl)) in prenex normal form with its quantifier

(0]
n

free portion AO in disjunctive normal form and such that if Rn 5
n < Bl , is not [L-stable with respect to each member of Pi then

it can only occur (if at all) in the negation of an atomic component

of AO .

THEOREM 3.6. If P) and A ¢ L(Kl[a, el)) are as above and if

A 18 hereditary then A 1is L-local with respect to Pi .

A proof of this result follows the pattern of the proof given for
Theorem 3.5 but appealing to Theorem II: 2.9, rather than to Theorem
Ty 2585

Extending the terminology of Cleave [1969], page 122/3, we denote

a formula A4 of L(Kl(a, Bl]) as *erypto-universal 1if it is a member

of the following class H :

(1) Every quantifier free formula of L(Kl(a, 81)) that contains

(0]
n
no constan elati l R wher o = \o sirvy O
constant relation symbo . ere " ( n,1° 5 n,¢(n))
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and some ey 3 # 0 , is a member of H ;
>

(ii) if 4 € H then so do a) VwOA , b) v A and

c) %4 , O € Ky and 0 # 0 3

(i1i) 4if Al’ AQ € H then so do Al v A2 and Al A A2 3

(iv) if A € H then so do a) VxGQEFO)(xG) = 4) and

b) ch(gfc)[md) A A) , where o0 = (0, ..., 0) and 5?0) is a constant

relation symbol of (Kl(a, Bl)) 5

(v) H consists of all formulae gained by a finite number of
application of steps (i) to (iv).

If A 1is a *crypto-universal formula gained without application
of step (iv) then 4 is a crypto-universal formula (or more correctly
the prenex normal form of 4 1is such) as defined by Cleave [1969].

As we shall observe below, step (iv) a, above eéables *crypto-
universal formulae to have a close relationship to the guasi-universal
systems of Mal'cev [1969], and the gqneralised quasi-universal systems
of formulae of Kogalovskil [1970].

Cleave [1969], page 123, appeals to results of Tarski [1554/55]
to establish that crypto-universal seniences are hereditary.
Kogalovskil [19%0], page 116, sketches a proof for an almost similar
result. We shall obtain the result in a different manner and for the
wider class of *crypto-universal formulae by means of the following

lemmas -

LEMMA 3.7. If A € L(Kl(a, Bl)) denotes an atomic formula of

-
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the form Lag, TP ug] € o or Ro(ao 8 g do ag] s or their negations,
where 0 = (0, ..., 0) and the a's are terms, then A ie
hereditary.

‘he proof of the lemma is immediate.

LEMMA 3.8. If A4, B ¢ L(Kl(a, Bl)} are hereditary then so are

AVB and A ANB.
Again the proof is immediate.

LEMMA 3.9. If A4 ¢ L[Kl(a, Bl))« is hereditary then so are

(i) Wz'h, (i4) WA, (i) %4, (iv) vP (&) = 4) ,

(9)

(v) Bxc[gfo)(xp} A A) , where o = (0, ..., 0) and R 9 is q constant

relation symbol.

Proof. Assume A contains mi, 4 5

xg as free variables of
type 0 . (If A does not contain any free variable of type 0 then
(1) is immediately established.) Let M be a structure of type

Kl(a, Sl) and N a given substructure, p : M+ N .

(1) 1If Nf#bv ngA » where V 1s an M interpretation such

d 3\
. 0y
“hat vV (xl’l

0 3 s
5 e v(xn] € N , then for some M interpretation V' such

that v and V' agree except possibly on xi we have N Hbv, A .
Hence Mh*v, A as A 1is hereditary and so Mb‘v V:r:(iA . Thus

VIgA is hereditary.

(ii) follows by an argument similar to that used in (i).




gk

Proofs of (iii) and (v) are immediate.
To establish (iv) assume that AIH}v ch(gfc)(xo) = A) and so

7 g
for some V' such that Vv, V' agree except possibly on. X  we have

"

N Fbv. (ﬁfo)(xg} A1 4) . Thus for some V" such that v', V' agree
except possibly on #° and such that pv'(xg] & pV"(xO) we have
M I=vn @(0) (xc) A1 4) . Hence M '7‘\) o« @(0) (mo) = A) and (iv) is

established. //

Lemmas 3.7, 3.8 and 3.9 provide a basis for an inductive proof of
- the following theorem.

THEOREM 3.10. If A € L(Kl(u, Bl)) is *crypto-universal then A
i8 hereditary.

In fact the definition of *crypto-universal formulae could have
been extended a little and the hereditary property retained. In (i)

of the definition formulae containing constant relation symbols

R , O = (ol, g on) and some O, # 0 , could have been included

as long as they did not occur in the negation of an atomic formula of
a disjunctive normal form of +he formula concerned. Lemma 3.7 could
be immediately extended to include this case. However the extension
can not be maintained for later results, c.f. Theorem 3.11, and so has
not been included.

Further, step (iv) could be extended by allowing relation symbols

5? , where 0 = le, 209 on} with some of the o, #0 . (iv) a would
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then read

g. o. o o
Y e sue N t’k[RU(x l, cves & n] = A] .

where O. cees O is the complete list of all O, , 1220,

such that 0O, # 0 . Step (iv) b would read

3 >

g. 0. g (0]
dx Tyt ves Jx z’k(Ro(x . . wioy [0 nl A A] . While this extension can

be maintained for Theorem 3.11 it is not required for the particular
applications discussed and so again has not been included.

As a direct consequence of Theorems 3.6 and 3.10 we can state
the following theorem.

THEOREM 3.11. If 4 € L(Kl(a, Bl)) is *erypto-universal then

A 1is L-local with respect to Pi X

Again following the example of Cleave [1969], page 123, we term

a formula 4 € L(Kl(a, Bl]) as *boclzan-w:lversal if

o} o
1 Y
4d =Yz~ ... Y& "p , where B is formed from *crypto-universal

formulae by sentential connectives alone.

THEOREM 3.12. If A ¢ L(Kl(a, Bl)) is *boolean-universal then

A 1is L-loeal with respect to Pi g

Proof. If 4,4, ¢ L(Kl(a, Bl)) are L-local then so are

2

A v A, and Al AN A

1 5 . Further, if A. 1is heredifary then it is

2 1

L-hereditary and so, by Theorem 3.1, 1 Al is [L-local. Hence by an

inductive argument and using Theorems 3.1l and 3.2 we have that A 1is
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L-local. //

We observe that the class of boolean-universal sentences as
defined by Cleave [1969], page 123, forms a sub-class (in form at
least a proper sub-class) of the *boolean-universal formulae and so
Cleave's result that boolean-universal sentences define local
properties is a special case of Theorem 3.12.

We now turn to the results of Mal'cev and in particular to his
Interior Local Theorem [1959]. In [1959] Mal'cev describes his local

theorem as follows. He considers a set of formulae

(1) A r.oi = on ¥ 0 41 2 ol RTl RTS- L each
i[?i R xni |71 "7 ni’ 1 ? *"'? g ? Y; 2
1=i1=<k,
and the formula
a g
k., 0 0 1,0 o [0 0
(2) Q.y, Ve, ... Vx ver @y Yz o V8T BiZls eees &%
K7k UL . 171 Tm,tl mlLl my
"1 Ts 01 0k
Rl’. sRSEyls 'ayk 5
where T; = (0, «-0s 0) , 1=J=8, 057 (05 sing @) o LETSER 3

9y = 3 or ¥V, 1A=k A% , each 1=171 =k , are quantifier

free formulae consisting of the variables and constant relation
symbols appearing in the parenthesis; B 1s a formula without
quantifiers.

A system of formulae given by (1) and (2) Mal'cev denotes as
quasi-universal. Such a quasi-universal set 1s fulfilled on a system

M if the formula (2) holds 1in M under the conditions that its
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(s
. ' 7 . .
gquantifiers associated with the yi sy 13845k 5 are interpreted

as bounded quantifiers over the collections of all the objects of M

which satisfy the corresponding axioms (1) - that is the set of all

. o
. 2 4 v
objects V(yi ] such that AfFX)Ai{Qié] , for all M interpretations

v . If conditions (1) are tautologous or lacking then the associated
quantifiers are interpreted as ordinary second order quantifiers.

The Interior Local Theorem states that all properties expressible
by means of quasi-universal sets of formulae have the local property.

Mal'cev further notes that in general fulfillment on some system
M of the quasi-universal set (1) and (2) is equivalent to the truth
in M of a second order sentence, having existence quantifiers over
individuals in its prenex normal form. We shall denote by € (and
call it the associated Mal'cev formula of the quasi-universal set (1)
and (2)) the last member of the following sequence of k formulae.

The first member CO of the sequence is the formula B of (2)

We assume that t-th member of the sequence, Ct , is defined. We

denots by alternative

g, (0]
* t] 0 0
a) C = Yy A[y = Y css VI C]
t+l % L t|7t | m, 1 m, 't
and by alternative
g, (9
t t| 0 0
b) C = 3 A [ A Y . Nz T ]
t+1 ~ Yt [rf’t__l oyt m,t}

‘ is the t-th member of (1).
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It 1s apparent that C as defined is equivalent to the quasi-
universal set of formulae (1) and (2). We shall now proceed to show
how € can be associated with a *crypto-universal formula and via this
formula be shown to express a local property.

We take a class Pl as above and assume the constant relations

T T
denoted in (1) by Rll, bl 1y RSS are included in the constant

(ofF
relations of the members of pi . With each Ai[?if] of (1) that is

o.
. : ’ =5 7 . s
associated with a universal guantifier, Vyi , in (2) we define, for

r
\07;) o0
each M ¢ Pl , a constant relation Ri by: VY, | satisfies
)
o) 9% ,
Ri if, and only 1f, A!FX’Ail?i | ° for each M interpretation

v . As we shall see below (Theorem 3.15) it 1is possible to establish

(o]
that each such & - 1= L-finitary and L-stable. The derivation

of Mal'cev's results do mot however require such a property. Let

P' be the resultring class of systems M with the new relations

adjoined.
The formula C* 1s formed by the same sejuence of steps as

formed C except that 1if Ct and Ct* have been defined and Ct+l

is got from (, by alternarive (a) then
g =

(

O,.r (O] ¢ 9,1
t t L 0 0
cr . =V R = Yz .- Yx  C *]
t+l Ys l t yy* ! My m, "t ’
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otherwise

g, o \
*  a t{ TV 0 0 . .|
Ct+l Byt kA E | f,met+l+l i 0¥ metCt

£

It is immediate that C* as defined is *crypto-universal and so

hereditary and L-local with respect To Pi

It should be noted that C and (* are not eguivalent formulae.

(o i‘)
R.

is ‘
7

This arises from the fact that although for M € Pi R

foglt
defined by the formula Ai{éii} being satisfied in M yet if Mﬁ is

-

a substructure of M , ed v M+ Mﬁ , then while we can assert that if |

7 \ [ O.\\ 0.-]
i % i ;
plei !tpdv[yi !' then kg.%%ju Ai{?i K V an M interpretation,

-9
419 |

while M Fa ¢ if, and only 1if, ﬁ4Fﬁ) C* +this need not be the case if

(because is hereditary) we cannot assert the converse. Thus

M is replaced by one of 1ts subsystems. We do however have the

following result.

THEQOREM 3.13  If M ¢ Pi and N is a substructure of M,
p: M>1N, such that Nh) ¢ then W I=U c*, v an N interpretation.

Proof. The proof proceeds by induction on the steps of formation

sf C and C* . Assume that 1f U Fb c, then N Fn Ct* . For

t = 0 the assumption 1s true Let

g 4
o, )¢ O

t L Ty 0 0 *

B, Y ! v g e Ve c, ]

o
oy

szl =y
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and assume N'?b C;*l . Thus for some V' which agrees with WV
o}
. t 0 0
except possibly on Yp x s ccsgp &L we have
m, .t1 m
il t
( (Ot){ % ¢
* 3
Ni=\)r lﬁt \yt l AT Ct l and so IV‘=\), [At[yt] A Ct] . Hence
, o 4 &
N, Cein That 1is 1if ZV\=\) Coas then W §'=\) thl .
I Ct*l comes from Ct by alternative (b) then it is immediate
; i . .
that if N Fx Cii1 then ¥ Cieq ~ The result is thus established. //

We ave now able to derive (a special form of) the Interior Local

Theorem of Mal'cev.

THEOREM 3.14. ALl properties of models (in a class Pl )

capressible by means of a quasi-universal system of formulae have the
loeal property.
Proof. Take the quasi-universal system (1) and (2) and C the

associated Mal'cev formula. Take M € Pl such that
£ » M;l= ¢} ¢ F . By Theorem 3.13 we have that {4 3 Mi‘= c*} e F

and hence, by Theorem 3.11, MFE(C* and so MEC . //
For ease of exposition we have taken the simplified version of
Mal'cev's quasi-universal set of formulae. More generally (1) can

consist of a possibly infinite set of formulae in which each

g
Ail ii] may be replaced by a possibly infinite conjunction of formulae

Oij

of the form Ai[?i [ Further, (2) may contain an infinite collection
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of formulae each interpreted with bounded quantifiers in relation to
(1).

All of these modifications can be incorporated into the above
seugence of results by appropriate changes to the detail of the arguments.
In particular the infinite conjunctions included in (1) can be
incorporated as well formed formulae of the associated languages and
the necessary ultraproduct results extended to include them, as set
out at the end of section 3 in Chapter I.

Indeed, and apart from Kogalouskil's [1970] extension which we

shall discuss below, further generalisations can be made to the form

0.
Mal'cev's Theorem by allowing the Ai[?i?] of (1) to be *crypto-

universal, as all that is required of them is that they be hereditary.
This leads us to the nature of Kogalovskil's generalisation of
Mal'cev's result. In terms of a quasi-universal system (1) and (2) Kogalovskil

o.
. Z
allows a universal quantifier, say Vyi , of (2) to be bound not

(0)
4 . . . 7
necessarily by satisfaction of an approprilate formula Ai[?.‘] , but

by some semantical condition not necessarily statable in a formula of
the language, but which transfers from a structure to its
substructures. Specifically, and in terms of this section, for

(0.

) (0.) o
} .
M € pl , a constant relation Ri *"  is defined by: Ri v (V(yiz]]

[ 9y
if,and only if, M together with Vtyiz‘ as an adjoined constant

relation satisfies a condition T which is such that if N is a
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( 0.3
substructure of M , p : M > U , and VW, V(yit!] satisfies T then

o.
% : . . .
{N, pv(yi 1] also satisfies T , V being any M interpretation.
. )

This latter condition allows us to associate with a generalised
gquasi-universal system of formulae as defined by Kogalovskil a
*crypto-universal formula which plays the corresponding role to the
generalised quasi-universal system as the previously defined c*
played to the guasi-universal system and hence establishes the local
property

Although it plays no part in the above results it is of interest

(0.

3

)

. 1 . ”

that the constant relation Ri defined for the construction of C*
in the context of the Mal'cev quasi-universal system of formulae has
properties that cannot be asserted for the corresponding relation
defined by means of Kogalovskii's semantical condition. This is

exhibited in the following theorem.

THEOREM 3.15. If M belongs to some Pi and
(2] € L[Kl[a, Bl:} , is *erypto-universal, where O = (0, +.., 0)
md & is the only free variable in AEfﬁ , then the relation

R(O) defined by R(GJ(V(xOI\ if, and only if, A1F¥ A[}P] , VvV any

M interpretation, is L-finitary and L-stable.

(O} (o) M

Proof. Let v(x } not satisfy R for some interpretation

\‘\ -
v . If {i : pi(R(O))[piv{xO) ? ¢ F then {1 2 My Fbiv A[@g]} € F
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and so M‘Eb A[#O] s as A[@?] is *crypto-universal. That 1s
(O) v ( 0\\ But this contradicts that vaj) does not satisfy
(o) - o y (0)
R . Hence {7 : piv(x } does not satisfy pi[R )} ¢ F . That
is R(O) is L-finitary.

By Theorem II: 2.9, we have Nw h“p\—) A[xoj , where Vv is got from
. ; i 3 (o) g
the p,V;'8 » i ¢ I , as it 1s not the case that R (v@r )} and so

MK, AE:co-l - p[ﬁ(c)} Pv”)) . @ i, /F > N‘b) , then for some

TTM,L/F interpretation ¥ which agrees with V except possibly on

«° and such that pU(xO) = pl—i'(xc) we have ﬁ{o)(ﬁ_(mo)} . Let

—

¢ O y o § s
\,‘ =h and for each % ¢ I define an Mi interpretation W,

ulzx

which agrees with p,V except possibly on xo and such that

e . , Y=

M@ ) = ho(z) . From I_?(G){u(xcu we have

( hY

L : P (O) |U10\;]>EF . But for any % € I , if

]

o) [ 1.0y
(R( );lui & }l then for some M interpretatlion u'  such that

J
¢ Oy o Oy 3
piu' &) < ui(xo\, we have R( )(u' (e }5 and so M|==u, A[xo___l . But
: o
A‘:xgj iz *cpypto-universal and so hereditary. Hence Mi l"=u A[x_l

7

\
\5 ¢ F then
iy
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i : i, A[xc]\‘ ¢ F and so T /Fb- 4[] . Thus N b o A["]
Uy f % TR Y’ pv

which 1s not so. Thus pG(xG) does not satisfy p(R(O)) and the
result is established. //

The next theorem enables a relationship to be established
between *crypto-universal formulae and certain kinds of quasi-
universal systems of formulae.

THEOREM 3.16. If 4 € L{x (s, B,)) s *erypto-universal and

containe no quantifiers associated with individual variables then 14
is *erypto-wniversal.

Proof. A can be gained by a finite number of applications of
steps (1) to (iv), but excluding (ii), a), as set out for the
definition of *crypto-universal formulae. Any formulae established as
*crypto-universal by step (i) 1is immediately such that 1its negation is
*crypto-universal again by step (1). It can now be checked that if
any of the steps (ii) to (iv), but excluding (ii), a), are applied to
formulae such that each one and 1ts negation are *crypto-universal then
the newly gained formula and its negation will be “*crypto-universal.
An inductive argument establishes the theorem. /i

We can now observe thar if we take a guasi-universal system as

[ O]

given in (1) and (2) above but 1n which the Ai[?i J formulae in (1)

are *crypto-universal and those that are associated with universal
gquantifiers in the formula of (2) contain no quantifiers associated
with individual variables then the assoclated Mal'cev formula C is

*cryptc-universal, The converse pesult that any *crypto-universal
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formula 1s eguivalent tc a quasi-universal system 1s immediate by
ncting that (1) can be taken as vacuous and (2) the given formula
1tself,

The author has sought unsuccessfully for analogous relationships
between *boolean-universal formulae and (generalised) quasi-universal

systems of formulae.

4 Chain conditions n third order algebraic structures

The initiative for the work of this sectlon comes from the paper
of D.H. McLain [1959], and particularly his Theorem 1 stated on
p. 178 of that paper. While it 1s true, as asserted by Mal'cev
[1969], page 39, that this theorem can be translated into a form that

enables it to be derived within the scope of the Interior Local

Theorem of Mal'cev yet in 1ts natural setting it involves guantification

over third order objects and so can be rhe means of 1llustrating some
interesting extensions of the results of the previous section and
application of the notions of the first two chapters in third order
struotures

Let Q denote a class of «(a, B) algebraic structures, where

throughout this sectlon K = {0 (0) = 1 ((0)? = 2} . Further if
M € Q then the members of El are the sets of individuals of all
the sub-algebras of M and E2 consists of all chains of elements of

1 g : ;
E complete with respect To union, U , and intergecticn, N . The

membership relations of M are those of ordinary set membership. We
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shall use € in place of EO, El and 62 )

W;th each M € @ 1is associated a local family
L = {Mi . i ¢ I} and [L-associated ultra filter F over I . The
constant relations of each M € @ are assdhed to be L-stable, where

UM »"TrMi/F aud B

v with P : ﬁMi/F - NW are defined as

previously-

We let C[@%] stand for the formula

1.1.1 2 1, 2 1 1 L
Yz vy (2 €x ANy €x TX Y VY ZX) o

where xl E_yl stands for the formula VxO{xO g_xl = xo g_yl] o0 IE

is apparent that C[?%] is hereditary and expresses the property of

being a chain.

THEOREM 4.1. If M € Q then for each i € I the members of

Eg are chains cf members of E% and complete with respect to U and

Proof. That the members of EE are chains of members of E%

4 2 i &
follows from the observation that the sentence V& Cbp,j is

hereditary.
[ 2y 2
Ler Vi be a non-empty subset of members of p;\a € Ei and
\
put V = 1al : al € a2 A pi\al] € V£5 . Now a2 is complete with
J
. 1 1
respect to U and N and so Uy, NV (being Ua : a €V} and
1 1 2
Nfa" : a- ¢ V} rvespectively) belong to a . It can now be checked

.{a2) is complete

that pi(UV) = UVi and pi(ﬂV) = v, and hence p,

with respect to U and N . /7
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THEOREM 4.2. If M ¢ Q then the menbers of TE/F = 7 and

=25 g
plE®" are chains.

Proof. From Theorem 4.1, {i M F=Vm20Ex%]} = I and so

"Mi/F = Vx20[x2] ., Further, as VxQC'E_x}]_ is hereditary, we have
" P :
Nw E Vx Ctp_] . The result is thus established. /1

It is not possible in general to establish that the chains in

WMizF or NW are complete with respect to U and N . However we

do have the following result which provides a significant property of

these chains.
THEOREM 4.3. If M € Q then each chain R° of M /F has
3 emla e 50 =0
the property, denote it by §|h |, that for each individual h  of

1TM’j./F if there exists at least wmz member of 7 that contains i

R =2 ; " 2
then there exists a lLeast member of h  that contains it and 1f there

. =2 . . =0
cuiste at least ome member of h° that does mot eontain h°  then
5 2 o
there cxiste a greatest member of h° that does not contain Tt
= 2 -
Proof. Let blEr i x?] be the formula

N - (
1
Y Jy vallet € 2% A0 & r =
& £ £

: ‘ 2 1 1
\yl € x2 A xo g_yl A \zl € X A xo g_zl =Yy £z })]

0-1
l

Let S2Ex2, x be the formula
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[ylemz/\xotyl/\(zli QAxO_t_zl:le_:_ylﬂl .

Finally, let S[x%] stand for
0( h!
Va Plhg,x% A52@2,xﬁj
S 2 2
We observe that for each © €I , M?: = v S[xﬁ , as each chain

of Mt is complete with respect 1o U and N . Hence
E 2 }] . :
TrM,L-/ = vz S[x | and the theorem 1s established.

COROLLARY 4.4. If M € Q then for each R e/ p (7°)
has the property S , where p : ﬂMi/F >y -

=
Proof. It can be seen by examination that the formula SEp_] is

hereditary and hence the corollary is established. //

THEOREM 4.5. If M € Q then for each o2 ¢ B2, and each

(

at ¢ B, if ot b a’ then ii : pfial} ¢ pi{a2§} ¢ F and

pulat) k pwia’)

1 2
Proof. We first consider the case when al =@ and a k a

il

Let b be the smallest member of a2 and so bl # @ . For each

. 3 1
1 €7 , pi(bl; is the smallest member of pi(a2) . Take »° ¢b

. { 1y 2
and so for all 7 €F , p.\bL, # 0 . Thus p.(al} =9 ¢ p.(a)
b 1 1 ;
\
£ pi{a21> ¢ F . Further, A is the smallest

t is 1% 3 .{a”)
That 1 \ pP;\@ ) bl
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_
member of E-l and p(h ll is the smallest member of p(ﬁ'Q] and
a b’ a

[

dﬁl#@ as h €pﬁ], Thus 47}=¢§p@ ].
bt »° l bt a a?

L
Now assume al # @ and al £ a2 . Let a2 = {ai ¢4 < O} s P

some ordinal, and let Hl = {a% : 7 <p and ai E_al} . Now

UHl € a2 and is the greatest member of Hl . UHl :_al but al ¢ a2

1

and so UHl Za Take some ao ¢ UHl but ao € al « If Hl =0

0
then a can be taken as any member of a
(

1 = 0 1 0
= . < . " =
Let H, ‘ai : 72 <p and a ¢ az} If &, ¢ then a

lies outside all members of a2 and so for all 7 € F 0

a
3
pi{al} £ pi(a21 . That is {i ‘ pi{al} : pi(az)} ¢ F . Further,
ﬁhl £ %-2 and E.O € E.l . But Z.O does not belong to any
a a a a a

[
members of & and so does not belong to any member of p(z-Ql .

2
a a

() ( ]
That is plh ll £ pLE'Z .
\ gt )

Consider the case when H2 0 . ﬂH2 is the smallest member of

H2 and is not a member of Hl Thus take some bO € ﬂH2 and

»° £ a Let F=F OF and so F ¢ F . For any ai € a?

a bo

such that a% ¢ H, we have bo € aé and for any ai € a2 , such that
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1 0 1 s, x il 2
a; ¢ H, we have a £ a; . Hence iz : pi[a )k pi(a ]} eF .

= ] (—
Finally, 1f we assume p[h ll € plh 2] then there exists some
L
a a

3
2 R, such that p(A) = p(ﬁ'l} . Let F, = {i . mh(i) € pi(aQ)}
a a

= N = n
and F2 F Fl . Now F2 F3 Fu where

]
-
o

0 1.1
F : ¢ €F_ and b € h ()¢ and

3 L 2

{ 3
F =41 : 1 € F, and aO k hl(i)> . Thus F. €F or F, €F.
L 2 ) 8 L

.
But if F_, € F then h _ € B ana B €p|h which is not so.
3 0 0 1
b b a
(
Also if F € F then R € %t oand % g - sz‘ 1] which again is
a a a
{ hl r )
t so. Henc n n . /
not so ence p[ all f p[ a2! /

COROLLARY 4.6. If M € Q then Y : M= WMi/F is an embedding.

Proof. Theorem 4.5 establishes that M is IL-finitary and so the
result follows by Corollary II: 2.4 /1

We now come to what is perhaps the chief result of this section.
For M € @ it is concerned with the relationship between p¥(M) and
and is a generalisation of Theorem I1s 2.8

THEOREM 4.7. If M ¢ Q and N& ie the «x(a, B) structure
formed from Nw by deleting those chains of Nw that are not complete

with respect to U and N then M is isomorphic to Ni with pyY

a family of related isomorphisms.
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Proof. FO, F' and F° denote the sets of objects of appropriate

types of Nw and FO, Fl and F'2 denote the corresponding sets of

objects of N& . Thus F'Q E_FQ

That py is bijective from EO to FO and El to Fl follows

from the argument in the proof of Theorem II: 2.8.

f
Take any a2 € £°  then p[h 2] is complete with respect to U
J
a

(
and N . For let V? be a non-empty subset of members of plﬁ-zl
a

and put V = {al : al € a2 and pw{al) € V?} . Thus UV and NV

belong to a2 and so pY(UV) ¢ pw(aQ) and pyY(N¥) € pw(aQ)

Further, it can be checked that UVP = pY(UV) and ﬂVb = pY(NV)
(0 5

Hence plh 21 is complete. That is pY is a map from E° Iinto

a

pr?

Take any a2, b2 € E2 such thar pw(az) - pw(bg) . From Theorem

4.5 we have al € a2 1f, and only 1f, pw(al} € pw(ag) - Hence

2 A
al € a 1f, and only 1if, al € b2 That 1is a2 B b2 and
2 2 e s

pb : B *F is injective.

(72) 12 2y .
Take any p(h°) € F'° . p(h"; 1is complete with respect to U

. LA (1 723 . ,

and N . Let X = {a :pVla) €¢ph“;} . It can be immediately

checked that K 1is a chain. Let V be a non-empty subset of K and

put V_ = {pwgal) : al

5 € V} , Thus V? is a subset of members of
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p[ﬁg} and so UV? and ﬂVp belong to p(ﬁa) . But p (UV) = UV?

and pW(NV) = ﬂVb and so UV and NV belong to K . Thus there
’ 2 2 2 2 . F
exists some a € E such that a° = K and for which 1t can be

checked that pw(a2) = p(%a) . That is pV¥ : g2 > F'? is surjective.
Finally we note that pl preserves the operations of M

with respect to those of Nb and recall that all the constant

relatisns are L-stable by assumption. Hence the theorem is

established. ‘/

We are now in a position to describe and derive the local theorem

of MeLain [1959]. We let J[pl, yl, z?l be the formula

xl£z2AylEZQAxliyl ‘/\le(\wléz’zl\xl:wl/\wliyla

That 1s the formula expresses the property of two elements of a chain

forming a jump in the chain. Further, we let ZEx%] stand for the

formula
V’r(i . ngv;z;]l' er];-ql\Jir_:xi’ x;, x2:ll A oo A J[_xép-l’ x;p, .7:2]
x:lzpﬂ— “ /\xi?ixz:’T‘l:x?, ’x’g !
x} = x; V osee V xép-l = xép s

where T 1is a quantifier free first order formula containing the
variables as shown.

We proceed to the theorem by way of several lemmas.

LEMMA 4.8. If M€ q and %’ is a chain of vMi/F then there
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(

cxiste an a’ € E° such that p(7?) _:_'sz_ 2] and for any &, B B,
a

pw(al} . pw(bl} form a jump in pw(aQ) if, and only if, they form a
Jump in p(R%) .
Proof. As in the proof of Theorem 4.7 let

K 2 {al : pW{al} € p(ﬁQ}} . K is a chain but may not be complete

with respect to U and [l as p(ﬁQ} need not be so. Let K' be

formed of the members of K together with the union and intersection

of all non empty subsets of K . Thus XK' forms a chain complete with
respect to U and N and so there exists some a2 € E2 whose

members are those of K' . It can now be established that this a2
fulfills the requirements of the lemma. /!

LEMMA 4.9. The formula JE:cl, yl, zz:l 18 hereditary.

Proof. By direct examination of the syntactical form of the
formula- //

LEMMA 4.10 Let M be as any member of Q except that the
chains of M mneed not be complete but omly satisfy the property S
of Theorem w.3. If N is a substructure of M , p : M>N, and V

any M interpretation such that U f=p\) Jl:acl, yl, 22:] then for some
M-interpretation V' such that v' agrees with Vv except possibly
on @,y  , but pv' (&) = p‘a{xl} and pV' (1) - p\)(yl} we have
ME, J[xl, yl, 32:]_

Proof. Put v(ml} = al , viyg7) =D
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assume Nk eIErl, yl, z?} , that is p(al) % p(bl) form a jump in
p(cz) . IE p(al} = p(bl) then take any ¢t € ¢° such that

(1 = 1 ' oo S AR GO & W
p\e ) = p(a ) and take V' such that V (x ) =V (y ) = ¢ . Hence

M'=\)' J[ml’ yla 32]

But if p[al) :,p(bl) then there exists some ao € EO such that

a® ¢ p(al\ but @ € p(bI]  Take o> as the largest member of o*

/

not containing ao and dl as the smallest member of 02 containing

0 1

a . (Both cl and dl are available by property § .) ¢ and dl
form a jump in o? and p(cl} - p[al} and p[dl) = p[bl) . Thus

take V' such that V'(ml) - o' and v'[yl) g //

LEMMA 4.11. If M and U are as in Lemma 4.10 then

n Fbv ZE@QJ if ME, Z[@%l , Vv any M interpretation.

24 2
Proof. Assume MK z[x°] but Nhﬁp\) z[z“] . Hence for some

M interpretation V' =uch that v(xz\ z V'(xQ} we have
fi 1 2] 1 1 2 1 y)
N F}v' J[_l’ Ly x J A oo A J_f?p-l’ x2p, x A m2p+l €x" A ...
L, .2 ( 0 1 .11 1 1
/\asmiac A ‘T[xl, ,vaxl xzv Vm2p—l xQP}

Hence, by Lemma 4.10 and the fact that

Mo 1] 11 1 1. .
TL?l’ s mml A " Ty 1 hereditary we have
wh 2[c%] . Thus if M, Z[x] then Wi 2[%?%] /!
\) o M2 " L A \) e .l p\) I -

LEMMA 4.12. If M € Q and % q chain of ﬂMi/F such that
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) 2 . , .
NU) '=p\) Zl:xQ] then Nlb ,=p\)' Z(:x] , where V 18 a TrMi/F interpretation

72

such that \)[xQ} =7 and V' agrees with VvV except that

2 T . ;
v (%) = % 5 3 where a° 1is as constructed in Lemma 4.8.
a

Proof. Assume there exists some N@ interpretation W such

that u(xz} = \)’[x2} and such that
! 1 1 2 1 2
wa=u Jl_xl’ s x-l Aaes AT EX
' 0 1 11 1 .|
but Nwhﬁu T[xl, eldidrs xn;l VI EE, Vo, Vpr-l = ac2p . By Lemma
(1) {1 2 ;
4.8, u\xjj, ut@ﬁfl} form a jump in pv[x ) , each 1 =g =< 2p-1.

Recalling from Lemma 4.8 that p(ﬁg} - p(ﬁ'Q] assume that for some
- J
a

3

) 3
kK, p<k=m, U(xil € p(ﬁ-Ql but u(xij ¢ p(ﬁg) . Hence for
d a

1
some t , 1=t =<n ,we have Nw #h xg € xi or NW‘*ﬁ xg : Ly

0 1 0 1 : . .
where L, £ rk or z, f is a component 1in the conjunctive normal

t k

form of T{;g, 55 aﬁﬂ respectively. But utxi] € p(ﬁ'2l and so
L ph a

will be the union or intersection of a non empty set of members of

p{ﬁal . Thus it is possible to select a member of this union or

[ -
inTtersection (say pkail € p(hQ} ) such that if u(xgl £ u[xi] then

u'\xg]‘ tp[ai] or if u{wgl ¢ u(xi! then u(xgl ep[ail .

Therefore it is possible to select a Nw interpretation u'
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which agrees with W except that u'(mz} = p(ﬁQ) ; u'(xi] = ai , as
(

given above, and u'txgl , each 2p < j =m , but Jj # k , are chosen

arbitary members of p(ﬁg} , and such that

1 1 2 1 2
N\U'Eu Jl_xl’ %o s x:‘ Ao AT EX but
] #,Trxo xl‘lvxl=xlv,.,vxl - 2 . Hence
vu T T Tm) 1 2 ' 2p-1 ~ “2p

NID l'i‘p\) Z[le . That 1s if Nw '=p\) zl:xQ:l then Nl’]) ‘Ep\)' Z[x2] 5 //
We now state McLain's Local Theorem [1959], (Theorem 1, page
178), although worded in accord with the context developed here. We

let A stand for the sentence

Vx23y2(x2 E_yz A ZEy?j) X

THEOREM 4.13. If M € Q and {2 :Mi‘=}\} ¢ F then MEX.
Proof. Assume that M € Q@ and {Z : M, = A} ¢ F . Hence

"Mi/F E A and so by Lemma 4.1l and direct examination of @ E_yz we
have 1\71‘b = A . From Lemma 4.12 we conclude N&JF=X and hence the
result by Theorem 4.7.

Finally, we comment on the pelationship between Mal'cev's use of
+he compactness theorem from formal logic to establish his local
theorem and McLain's appeal to Steenrod's theorem on inverse limits of
compact spaces. The result that underlies and supports each of these
alternative procedures 1s the Prime Ideal Theorem (e.f. Gratzer
[1968], Theorem 6.7 and Corollary, page 26/27). By means of this

result and via a suitably chosen ultrafilter and associated ultraproduct
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the compactness theorem of first (and higher) order logic can be
established, (e.f. Morel, Scott and Tarski [1958] and Theorem I: 3.4).

Again by means of this same result and via another suitably
chosen ultrafilter the result used by McLain - viz. that the inverse
1imit of a family of finite (non-empty) sets is non-empty, can also
be established (e.f. Gratzer [1968], Theorem 21.1, page 132).

Indeed the use of the inverse limit result in McLain's proof of
his local theorem can be avoided by noting that the result of the
basic lemma (e.f. McLain [1959]1, page 179) which he establishes by
means of it is an immediate consequence of the properties of the
[-associated ultrafilter F as constructed in this paper-

As an aside we mention in this connection that the results of the
two basic lemmas set out by Derek Robinson (D. Robinson [1968], Lemmas
5.12 and 5.13, pages 128 and 131), in support of his exposition of a
method for obtaining local theorems are also an immediate conseguence
of the properties of this same ultrafilter.

The above remarks together with the detailed exposition of this
section and section 3 suggest that the concepts of ultrafilters and
associated ultraproducts provide the natural and most effective means
for the derivation of the full spread of Jocal theorems in algebraic

structures.
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APPENDIX I
ON A COMPACTNESS THEOREM OF A. SHAFAAT

Summary. In a paper published in 1967 A. Shafaat [1967] established a
compactness property (principle of localization) for certain languages
of a general relational calculus. His proof was based on a
topological theorem of Steenrod. Shafaat gave the details of proof
only for a special case of his result, but claimed these details could
be mecdified to obtain the general result.

In fact, however, 1t would seem that this general result cannot
be established without an additional restriction on the class of
sentences involved, viz, that only a finite number of existential
wpantifiers are associafted with any sentence involved in the compactness
result.

Section 1 summarises Shafaat's description of his general calculus
with its special notation and then gives counter-examples establishing
the necessity of the modification to Shafaat's results.

Section 2 develops an ultraproduct construction and associated
"LoZ' thecrem for the kind of languages set out in Shafaat's paper and
¢o gives an alternative proof of his compactness and embedding theorems,
modified as above. The basic idea and procedure of using ultraproducts
t5 establish compaciness results 1s due to Morel, Scott and Tarski
[1958]. The interest in this appendix is that the same ideas and
method produce the compactness result for Shafaat's more abstract
language formulation and dependent only on his structural principles

Al, A2 and A3 as set out below.
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1. Counter-examples
Shafaat [1967], page 630, describes a language L of the general
pelational calculus as an ordered 6-tuple (4, X, R, P, ®, 5) , where
(i) A is a set of symbols called 'individuals';
(i1) X 1s the set of symbols x5 Loy vee called 'variables';
(1ii) R is a set of symbols written as Py wuny =5 oos)
and called 'rvelative symbols', where the sequence of dashes (-) may
be infinite. The order of a relative symbol is the ordinal number of
the sequence of dashes occurring in it.
(iv) From A, X, R are formed 'atomic formulae' in the usual
manner.
(v) P is a set of symbols containing the set @ of all atomic
formulae.
(vi) & is a mapping from P into the power set of § such
that 1f p is an atomic formula then &(p) = p
(vii) From P, & are formed the ordered pairs (p, @(p)) g

p € P, called formulae. Given W : A~-M, Vv :X~> Ml > Py is
9

written for the pair (p, ®(pJ 1, where &(p) is the set of
P P p p
VPRV U,V

symbols obtained from the atomic formulae in @(p) by replacing
individuals and variables by thelr images under U, V respectively.
(viii) S is the set of formulae not involving any variables

together with all symbols of the form & = ([ql le) veo [qn xjn) ..w)p 5

where p , called the matrix of 8 , 1s a formula involving

, s.:s X 5 «s: o and every g 18 either the universal quantifier

.
Jn

J1

V¥ or the existential quantifier 3 .
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An R-velational system, (M, f) , is an ordered pair where M

is any set of symbols and f is a mapping from U{Rn x M* i n < a}

to {04 1y ssso N} , the set of truth values, where o is some given
ordinal number.

Shafaat characterises a language L of a general relational
calculus as meaningful if given any R-relational system M, )
there exists a uniquely determined mapping

t(f) : {pu g iPE P,v:X>M,u:4>M, uIAp injective}
2
> {0, 1, «..s N},
where Ap is the set of individual symbols in p , and such that the

two following statements hold.

A.l, If f, fi coincide on (@(p))u , ‘then

( -
A.2. If (M, f) is an R-relational system, let € : M* > M Dbe

bijective. Then there is an obvious bijective mapping

f B
& [ UiRn x M o < dx > U{Rn x M m < u? where (M*, ef) 1s an
J J

R-relational system. It is postulated that t(f)(pu v) = t(ef)(peu EV) >
5 2

for all p, u, v, € and T
Shaffaat adds a third definition. He calls a'formula Pp
finitary if
A.3. <1>(p)u v s finite whenever |V(z)| is finite.
2
Finally we describe the semantics Shafaat provides for his

language L . Let Nl be any fixed integer satisfying 0 = Nl <N .
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p € P holds in (M, f) if, and only if, t(f)(pu v) > Nl "
-
Let & = ((ql le) v (qn xjn) ...)p ., If p:A~>M is such

that ulAp is injective and if s only involves a finite number of
quantifiers then & holds in (M, f) under the normal definitions.
When s involves infinitely many variables the following example

explains the method of interpretation. Put

s = hx. “.Vx.]Gx. vh. 3z .”)hx .. Vo ..}...p,
1y T, gl Jan Zl Zn
which is written as § = VX/LEIXJ-VXZ ... p , where

X, = {xil, ‘v g xin, ...} s Xj = {xﬁl’ vy veet... are

disjoint. Then s holds in (M, f) under W if, and only if,

for all Vi H Xi + M there exists vj s Xj + M such that for all

vy X, > M, > Pyy holds in (M, f) , where

Ax), v U v, U ini i
Vt\XzJ’ vJ(Xj}, ... and vi(Xi) VJ(Xj} ... are finite and V 1s
such that its restriction to Xi’ Xj’ aride: LS vi’ vj’ ... respectively.

Shafaat's claimed main result now states:

If I 4is a set of finitary sentences in a meaningful language L
of the general relational calculus and if every finite subset of I
possesses a model then L possesses a model.

We now set out two counter-examples to the full generality of
this result.

Let L = (4, X, R, P, &, S) Dbe a particular language of the

general relational calculus given as follows:




122

A=¢g . X-= {xn :m <w}U {yn : m <w} , w being the first
non-finite ordinal. R = {r(-), e(-, =), u(-, ...)} , where
u(-, ...) is of order w . FP 1is the set of symbols made up from the

atomic formulae, & , together with the symbols of negation,
disjunction, conjunction and implication, viz, 1 ,v, A ,and T , Dby

the standard formation rules.

& : P> 2% is defined by &(p) = {p} , if p €@,

a(p) = a(p) , @vip; : 7 ¢ IN) = U{é(pi) : 4 €I},
a(Mp; + 1 €1}) = Ve(p,) : ¢ €I} and &(p = q) = 2(p) V 8(q) ,

for all formulae p and index set I .
If (M, f) is an R-relational system, where f takes values 0

or 1, then t(f) is defined by: ¢(f)(e(z, y)) =1 if,
v(z) = v(y) , otherwise t(f)(e(x, y)v) =03 t(f) (r'(x)\)) = flrv@))
8 ey, o)) = Fble)s o)) s t(A(Mpy + 2 €I} =1
if, for each % € I , t(f)(p; } = 1, otherwise
\)
() (Mpy 21 € Th) =05 B (vipy 14 € I}) = 1 if, for some
€I, t(fHlp; ) =1 otherwise t(f) (vip; ¢ % € I3) =0
Vv
tpHOp) =1-tNOk) s tNOP=q) =0 if P (p,) =1 and
t(f)(q,) = 0 , otherwise t(Hp=q) =13 forall v:X>H,
Counter-example 1. Let X =1{T :n< w} be a class of

sentences of L[ defined as follows:

Tl = H(XM)V[Yw}pl P
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where H(Xw} stands for 3x13x2 sk s Exn e B V(Yw) stands for
Vyl‘v'y2 Vym ... , and
p, = (Mr(z;) : 2 < al) A (Mrlyy) 2 <wl=
mMviely, acj} s d<wl i <w}) .
For each n>1, T = B[Xw}pn , where
p, = [/\{r(aci} : 2 <w}) A (A0 e(xi, xj) s lsdi,d=mn,1#dY) .

It is evident, from inspection, that for each k<w, I@[pk}vl

is finite, for each v : X > M such that |v(x)| is finite. Thus
Shafaat's A.3 condition is satisfied, as also are his Al and A2 .

Let KO be any finite subset of X . Now KO has a model. For
let m be the largest member of w such that Tm € KO . Take
M = {ai . i <w} and define f : {r} xM > {0 1} by:
f(r(aiXE =1 if 1<% <m, otherwise f(r(ai)} = 0 . Also put
f(e[ai, aj3} =1 if, and only if, % =g . It can be immediately
checked that (M, f) is a model of K; -

But K itself has no model. For, assume some (M, f) 1is a
model of X . Thus (M, f) is a model of Tl . Let v :X>M Dbe
such that (M, f) FK)V(Yw)pl , where |v(X)| is finite and
{v{xt) : 1 < w} = {al, § g ak} , for some Gy, +ev5 Gy € M , k some

positive integer. But (M, f) 1is also a model of Tk+l . Let

v' : X > M be such that (M, ) Fb’ Prsey ® where |v'(X)| is finite
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and contains v'(xl}, 15 ol v'(xk+l} as distinct members. Now take

V' :X > M such that V"[xi) = V[xi) ,all T <w , v"[yi) = V'(xi) 3

all 7 <w . By inspection (M, f) #3" p, » contrary to the

requirement that (¥, f) is a model of Tl . Hence K has no model.
Counter-example 2. Let X = {Tn : n <w} be a class of

sentences of L[ defined as follows:
T, = H{Xw}u(ml, Lo T

Tn . V(Xw)(u(xl, Tos '°') = A{j e(mi, xj) 1<, =n,1¢# j}) s

for each n > 1 .

All of Shafaat's conditions are satisfied, but, by an analpgous
argument to that used 1n the fipst counter-example, it can be shown
that while every finite subset of K has a model, K itself has no

model.
2. Ammended compactness result

Let {(Mi’ f%) . 74 € I} be a family of R-relational systems.
Let F be an ultrafilter over I . (ﬂMi/F, f) , called the ultra-

product of the family with respect To F , is an R-relational system

defined as follows: WMi/F is the quotient set of the cartesian

product W{Mi : © € I} under the relation, m, v m, if, and only if,

{2 : ml(z) 2 m2(z)} € F , where m , m, € ﬂ{Mi : 4 € I} . The

necessary lemmas to justify these assertions are assumed. If

m € W{Mi . 4 ¢ I} then m will denote thée equivalence class of m .
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f U{Rn X (WMi/F)n :n < u} + {0, ..., N} is defined by

f{rﬁﬁi, vo2s }J) = k , where F € F and

Fk = - ¢ ff(P(ml(i)’ .,.})}: k . The following lemma justifies this

definition of f .

LEMMA 2.1. Let F, = {i : £ (e lm (2, ..)) = 4}, for all

0<j<DN. Then for one, and only one, jef{o, «.co N}, FjEF.

Proof. The collection FO, L FN partitions I . F 1is an
ultrafilter over I and hence one, and only one, of FO’ RE5 3 FN

belongs to F . //

The next lemma establishes that when rﬁgl, .,.) involves only a
finite number of distinct members of ﬂMi/F then f(rﬁﬁi, ...)} is

independent of the representation chosen for those members.

LEMMA 2.2. Let my, «»:y Et be the finite number of distinct

members of TTMi/F involved in I’W 5 } and let mj Qv nj , each

IA

j<t. Then flrlm, cead) = f[p[ﬁl, sxid)

Proof. Put Hj

1]

{£ 2 mj(i) S nj(i)} , and so Hj € F , each

"

1=g=+t . Let F;

; {i:@@wﬁu,”ﬁ):ﬂ,

Gj = {2 2 fé(r(nl(i), ...)) =4} ,each 1=gj =N . For each such

J» F;

U

o 15 n ... N : 5 M A s 0D .
G‘7 Hl Ht and GJ EFJ Hl Ht Hence

Fj ¢ F if, and only if, Gj eF, 1=4<=n. That is

flem,, ...}y = f[r[nl, D /1
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The ambiguity in definition of f(r(ﬁi, ...)) when .rﬁﬁi, —_—
involves a non-finite number of distinct members of ﬂMé/F will cause

no later embarassment as, in such cases, a fixed representation for

those members will be given. (e.f. the M and ui's representation

as later defined.)

If AO is a subset of A , the constant symbols of L , and if

for some F € F and for each % € F , u, AO - Mi , then

W AO & ﬁMi/F is defined by u(a) = m , where m(i) = ui(a) , for

all 7 € F , all a ¢ Ao ;

LEMMA 2.3. u , as above, is well defined and if, for each
i €F , e is injective then W 18 injective.
Proof. Immediate from the definition. //

EF Wb K= ﬂMi/F then, for each © € I , v o X - Mi can be

defined by vi(x) = m(Z) , where V(x) = m , for all z € X .

Conversely, if for some K € F and, for each 7 € F ,

Voo X = Mi , then v : X ~» ﬁMf/F is defined by, V(x) m , where
m(£) = v.(x) , all 1 €F ,all xz €X .
LEMMA 2.4. Let Vv and {“i c 1 €F, Fl € F} , Vv' and

{u% : 1€ F2, F2 ¢ F} be two collections of associated maps as

deseribed above. Then (i) |v(X)| ds finite if, and only if, for

some positive integer n , {% : Ivi(X)I <n} e F. (Similarly for

v' and the vi's .) Also (i1), if |vx)| and |V'(X)| are
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finite then v = V' 1if, and only if, {2 v, = v%} € F. \

Proof. Assume |v(X)| is finite. Hence there is some positive ‘
integer t such that |v(X)| =t , Put Vv(X) = {ﬁi, & e ﬁ%} where ‘
for each 1 € Fl , and all x € X , Vi(x) = mk(i) , where V(x) = Ek . ‘

|
|
Hence for each 7 € Fl P vi(X) = {ml(i), %57 § mt(i)} . That is
i lvi(X)] < t} EzFl and so belongs to F .
Conversely, assume F € F , where F = L A |vi(X)l < n} , some

positive integer ” . Hence |v(X)| <n . For if not let ﬁi, g mn+l

be 7 + 1 distinct members of V(X) and such that if Vv(x) = E% .

1"

1 <t <ntl then, for all 7 €F, , vi(x) mt(i) . Put

IA

F,o. =1z : mk(i) a mj(i)} for 1<k, J=<mn+tl and k #gJ . Thus

K o

each such Fk,j € F as Myy vees My, arve distinct. Hence

{z : I\)i(X)l Zn+l}_:>_ﬂ{ij 1<k, sntl, k#j}NF andso

belongs to F , which cannot be, as F ¢ F . Thus Iv(X)I is finite.
(2) Assume V(¥X) and V'(X) are both finite. Take VvV = V'

and |v(X)| =t , t some positive integer. Let V(X) = {Ei, 5 4% 3 E;}
where for each ¢ € F, 1if v(x) = Eé then V. (x) = mk(i) , and let
v'(X) = {Zi, e & Z%} where for each 17 € F, if v'(x) = 5% then

v%(x) = nk(i)  As w(X) = v'(X) , then for all z € X , V(x) = v'(x) ,

and so m, =7 1l<k<t . Let Gk = {£ 2 mk(t) = nk(z)} ;

hence Gk ¢ F,each 1=<k=t . Thus
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{i + v, = vé} 2F N x, o G O s NG, and so belongs to F.
Conversely, if {2 : v, = vé} ¢ F then Vv = V' ., For take any

x € ¥ and let V(x) =m , Vix) = n , where for each 17 € Fl "

vi(w) =m(i) , and each © € F, , V%(i) = n(Z) . Thus for each
iEFlﬁFzﬂ{i:\)i:\);:},m(i)zn(i). That is m =7 . /1

LEMMA 2.5. Let p be a finitary formula of a meaningful

language L . Let W, : A=>U, such that “iIAp i8 injective, for
each 1 € I . Let Vv : X~ ﬂMi/F such that |v(X)| 1ie finite.

Then t(f) (pu,v) =k , where E, €F and E = e : t(f;) (pui’vi) =k} ,

and W , {ui : 2 €I} and Vv, {vi . 1 € I} are assoctated
families of maps as set out above in Lemmas 2.3 and 2.4 respectively.

Proof. Put Ejz{i:t[fi}(_pu \)) =4} ,each 0=j=U.
iV

Hence one, and only one, of EO’ org & EN belongs to F . Let it be
Ek .
1 \

Let P * {rl[al’l, O o5 we) nes Pt(at,l’ ...)} , t some
positive integer, and each o stands for some W(a) , a € Ap 5 OF
viz) , Z € Xp . Foreach 14 =t ,let flr ( 1 i)} = kj %

= V-
and so F, € F , where Fj = 2 £ (r J[ g 1(8)s ...)) = k.} , where
J J
l(t) = Ui(a) g "IEE Gb’ = wa) , or uj,l(ﬂ) = Vi(x) 5 iF
. = 3 J U= N Nn...nN
aﬁ,l () Hence E' € F , where E' =B Fy Fk

1 t
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For any % € E' , it is desired to set up an embedding of WMi/F
into Ml or vice-versa. However, E' may be too large for this and

so is restricted in the following way. Let

no_ [ . s
E" = {¢ : if vz, # Yz, then v, () # v, (@) a1l =z, z, € X} .
E" ¢ F as |v(X)| is finite. Let E =E" NE' .
Now take any < € E . Either |ﬂMi/F| = lMiI or vice-versa.

Assume |WM€/F| = |Mi| and define a bijective map € : ﬂMi/F > M; .

where Mg is a subset of Mi , such that if m € U(Ap] then

[l
I

e(m) ”i(a) , where W(a) =m , and if m € v(X) - uLAp} then

m . For each a €4, , e(M(@) = u;(a)

e(m) vi(x) , where Vv(x)
and for each x € Xp , @) = vi(x) . It should be noted that
this latter statement requires that 1if m € u(Ap) N V(Xp) , that is,
if for some a € Ap , T € Xp , ula) = v(x) =m , then the
representation of m is so chosen that m(Z) = ui(a) , each 7 €I,

and vi(x) is defined, for each % € I , in relation to this

representative m . Lemma 2.4 ensures that V is unaffected by this

choice of Vv, , 1 eI .
Now from condition A2 we have that (Mg, f}e} is an R-relational
system and moreover () (p ) = t(fe)p } . But €U = M., when
U,V T VWeu,ev 7

restricted to Ap and €V = vi when restricted to Xp . Hence

t(f){pLl v) = t(f'e)(pu " } . But 7 € Fk Nn...nN Fk and so
- Aol 1 t
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fe, fi coincide on <1>(p)u . Thus from condition Al, we have

7Y%
ey, v) - t(fe)lp, ) . That is 1 ley, ) = t(r) ey v )
7 1 K 1 s 7
If |Mi| < ITrMi/Fl then M, is embedded in nMi/F and by a

similar argument t(f)(pu,v) = t(fi}[pui,vi) . Hence for all 7 € E ,
t(f')[pu’v) = t(fi) [pui’vi} . But E, DEF and so t(f)[pu’v) =k . //

Let s stand for a formula of the form ¢ (x } o s 1 (x )p ¥

k kYk 1*L
where each ¢, stands either for the universal quantifier or the
existential quantifier and p 1is a formula involving Lys vnes x, as

some, but not necessarily all, of its variable symbols. For some

given assignment VvV : X * M , |v(x)| finite, V(xl}p holds in
(M, f, W) , that is (M, f, W) Fb ¥(x)p , if, and only if, for all

v' : XM, |v'(X)| finite, such that v(x) = v'(x) , for all

EE X -~ {xl} " t(f)(pu,v’) >0y (Nl some chosen member of
{fo, ..., N} ). Similarly, B(xl)p holds in (M, f, u) 1if, and only

if, for some V' : X > M , |v'(X)| £inite, such that v(z) = v'(z) ,

for all x € X - {xl} 5 t(f)(pu,v’} >Ny - M, £y W) Fa 8y, is then

defined by the natural induction.
THEOREM 2.6. If p <8 a finitary formula of a meaningful

language L then (WMi/F, £ W B, 8% if, and only if,

{i : (M, £y M) F;i sk} ¢ F, where v : X > m/F, v |

finite, is associated with Vi s i ¢ I, as set out above in Lemma
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2.4 and VU and the ui's as above in Lemma 2.3.

Proof. We proceed by induction on the number of quantifiers in

sy - Assume (ﬂMi/F, £,y F; qj(xj} e ql(xl}p if, and only if,

{i 3 (Mi’ fi, ui),=5i q.(z.) ... ql[xl)p} €F ,for 04 <k.

J o d

(Put 8, = P 1

be V(= Assume that F € F , where

First let ¢ j+l}

j+l(xj+1)
{ b

s o M 3 R

7= iv, PR A “i) F=\)i V(xjﬂ)sj} . Take any V' : X > m/F,

such that v(z) = v'(x) , for all = € X - {z;

J+l} . Let v% , 1 €I

(
. ; f 0 .6 3
be associated with V' , and so G = {z : \Mi’ fé, ui) FB% sj} ¢ F as

G=>F . Hence (ﬂMi/F, fsu) FKV g5 by the induction hypothesis.

/ 3 ( )
Thus ("M, /F, f, W) |==\) V\xj+l,sj .

\ \
Conversely, assume that (ﬂMi/F, s Hj FV V[xj+l)sj . Let
(. 1 .
F & {Lz g, £ ui} f=\)i v (2 l,s If FEF then CF , the

complement of F , belongs to F . Assume CF € F . Thus, for each

1 € CF , there exists Vé c XM, vi(x) = v%(x) , for all

x € X - {xj+l} , such that @Wi, f%, ui) #%, S that is

f [ A - ]
\“Mi/F, £, hx V\xﬁ+l)sj , contrary to the initial assumption.

Hence F € F .

Secondly, if q } = 3£xj+l) then a similar type of

J+l(j+l

argument establishes that (ﬂM /Fy £y ou) F= 3(x g+l} 4 if, and only if,
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(
( \
i\Mi, Ty “i) Fwi H(xj+ljsj} ¢ F . Hence the result of the theorem

for all finite k . //
We introduce the following nmotation. If B is some ordinal

number then V(XB) stands for the sequence
V(xl)V(xQ) “ua V(xn) cer e Similarly for the symbol E(XB)

We recall the special semantical interpretation that Shafaat
gives to quantification involving a non-finite string of variables.

For instance if B is non-finite then the formula V(XB}p , where p

contains the variables XB = {xi : 4 < B} , holds in a model

(M, f, W) if, and only if, for all V : XB +~ M such that Iv(XB)l
is finite, pu o holds in (M, f) . A similar finitary restriction
3
applies to formulae such as B(XB)p and to those involving combinations

of both universal and existential quantifiers.
THEOREM 2.7. If p 1is a finitary formula of a meaningful

language L containing variables {xi . 1 < B}, B some non-finite

crdinal then
a) (m/F, Fyow) by VXlp f
( \
{2 g, £y w) |=le v(Xglp} € F s
b) (me/F, £, 0) b, 3gp only if
fo s b m) Ry 3(tgle} ¢ F

where Vv : X > 'nMi/F such that |v(X)| 1is finite and the V. 's are
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associated with Vv .

Proof. a) Assume that (ﬂMi/F, fs W ¥, V(Xﬁ)p . Thus there

exists some V' : X ~* ﬂMi/F , |v'(X)| finite, and such that

ve = V' , for all x € X - {xj . j < B} , such that {ﬂMi/F, £, u #%. P

(

Thus, from Theorem 2.6 with k=0, {i : Uwi, f%, ui} #%, p} ¢ F,
A

where the vi's are associated with v!' . Hence,

{i : (M

L %2 V

Fiou) by V(XB}p} ¢ F . That is, if
7
3
{00 70w Ry, Wlde) € F when (mi/F, £ 0 K, VUgle -

b) Assume that (ﬂMi/F, fs u) FV H{XB}p . Hence, there exists
some V' X > ﬂMi/F , |v'(x)| finite, and vx = v'x , for all

x € X - {mj : § < B} , such that [vMi/F, s u) Fb' p . Thus, again

from Theorem 2.6, with k =0 , {i : Qwi, fi’ ui} F%, p} ¢ F , where
z

the vi's are associated with V' . Hence,
( ¢ \
\L { (Mi, fi, ui} F%i HKXB}pJ € F . //
3
We observe that the sentence VLXw)Hy(y # Ly A ees ANY # x, ...}i<w

interpreted with respect to Shafaat's special conditions, holds in any
infinite model and does not hold in any finite model. Hence it cannot
be expected that either a) or b) in Theorem 2.7 above hold with 'if

and only if' in place of 'if' or 'only if'. It is this consideration
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+hat underlies the counter-examples of section one.
THEOREM 2.8. Let s = Gp , where p 1is a finitary formula of a
meaningful language L and @ is a quantifier prefex:
a) if Q contains only a finite number of existential quantifiers
then

[TTMi/F, fouw ks if {Z: (Mi’ £ ui) s}t eF;

b) if @ contains only a finite number of universal quantifiers
then
(me, /F, £, Wis only if {i: (M, £, w) Fel €F.
Proof. a) If @ contains only a finite number of quantifiers

then the result follows immediately from Theorem 2.6. Let

Q = ql(xl}qz(xz) ... and assume ¢ contains an infinite string of

quantifiers. As & contains only a finite number of existential

quantifiers there exists some positive integer k such that q, is a

universal quantifier for all n 2 ¥ . The result now follows by using

Theorem 2.7 and an induction argument similar to that used in a proof

of Theorem 2.6.
b) The proof follows by a similar argument to part al. [/
The compactness and embedding results of Shafaat, modified by the
restriction as explained in the summary, now follow by standard '
procedures from Theorem 2.8. We indicate the proofs in outline.
THEOREM 2.9. I 1is a class of finitary sentences of a

meaningful language L , such that each member of L contains only a

finite number of existential quantifiers. If every finite subset of
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Y has a model then so has L .
Proof. Let I be an index set for all finite subsets of L .

For each subset I, of I, €f; let (M fg, ui) be a model of

i:

Zi . For each & € L let Fs = {1 1 8 € Zi} . Let F Dbe the
ultrafilter on the sub-base {FS : 8 €L} . Then (ﬁMi/F, T u)  is

a model of I . //

It was Shafaat's intention, as stated in his paper, to develop as
general a situatlon as possible for the statement of a compactness
result. Comparison with other relevant results in the literature
suggests that the extent of generalisation beyond the classical
fiprst-order compactness theorem (e.f. Frayne, Morel and Scott, [19621),
is limited. Hatcher, [1968], has already noted, in a review of
Shafaat's paper, that Chang and Keisler, [1966] have obtained a
compactness theorem in a theory of models with truth values in a
(possibly infinite) compact Hausdorff space. Fuhrken, Keisler and
Slomson (e.f. Bell and Slomson [1969], pages 260ff), have developed
compactness results for languages involving special quantifiers that
1ie outside the range of Shafaat's general relational calculus.
Further, Bell and Slomson [1969], pages 286ff, discuss a number of
results in which the notion of compactness itself is extended in the

context of infinitary languages La B * whose rules allow
b

quantification over strings of variables < B , and conjunctions and
disjunctions of length < O , where a, B are non-finite cardinals.

Again these results lie outside the range of Shafaat's considerations.
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THEOREM 2.10. I s a class of finitary sentences of a
meaningful language L , such that cach member of L contains only a
finite number of existential quantifiers. Then an R-relational
system, (M, f) , is embeddable in a model of L , if every finite
sub-relational system of (M, f) 1is so embeddable.

Proof. Let I be the index set for all finite sub-relational
systems, (Mi’ fé) , of (M, f) . For each 1 € I , let
(Ni’ g; ui} be a model of I such that @wi, fé) is embeddable in
(Ni’ gi) , by an embedding map ¢i . For each m € M , let
B = { :meM?} and let F be the ultrafilter on the sub-base
{Fm . m ¢ M} . It can now be checked that the mapping ¢ : M > ﬂNi/F s
given by: &(m) = n , where n(Z) = ¢i(m) , © €I , 1is an embedding

of (M, f) into {WNi/F, g) . Moreover, by Theorem 2.8, part al,

{ﬂNi/F, g, M) is a model of I . //
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APPENDIX II
VARIATION IN DEFINITION OF FIRST ORDER ULTRAPRODUCTS

Summary. Two variations are made in the standard definitioms (e.f.
Bell and Slomson [1969], pages 87 to 89) of an ultraproduct of a
family of first order relational structures with respect to a chosen
ultrafilter F over the index set I . The Fipst variation, following
the method used by Luxemburg [1969] in the construction of higher
order ultrapowers, relaxes the requirement of similarity on the
members of the family. The second variation used subfilters of F to
define the individuals and relations of the ultraproduct.

In §1 the construction of the ultraproduct with these variations
is set out and some consequences developed, particularly those
relating to the identity relation. In §2 a family of similar
structures is taken and a necessary and sufficient condition is
established under which the first variation produces more relations,

from an extensional view-point, than the standard definition.

1. Variations in ultraproduct construction

Let {Mi . 2 € I} be a collection of first order relational

\
structures. For each 7 € I let M. = {RQ; R%, R?, ...} where RO
z £? 22 % 7
is the class (non empty) of individuals in the ith structure and for

each positive integer k , R? is the class of k-placed relations of

k ;
the structure. Each Ri contains at least the empty relation and

-
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each Rg contains the identity relation denoted by e; - It is

further assumed that the distinct members of each Rg are distinct

from a set theoretic and extensional point of view.

Let F be an ultrafilter defined over I . For each k =0 ,
K & : ; k . .
F* is a subfilter of F ; that is F~ is a subclass of F and is

a filter. For each k = 0 , let R? be the class

( )

ifk : fk : I+ U{R? i 1 € IJ and for all < € I, fk(i) € Rﬁ} . Let
X . k fk k .

Nk denote the relation defined on RI’ by: %k g if

i+ 983 = g € FF .
LEMMA 1.1. For each integer k 20 , "y 1is an equivalence

relation.

For each integer k = 0 , let R denote the quotient class of

k
Fk

R? with respect to %k . IF fk € R? then ?k denotes its
equivalence class. The next lemma prepares the way for the definition
of the individuals and relations of the ultraproduct.
[ N F Ty i,

LEMMA 1.2. For each k = 0 , ﬁz ; fk(z)[fl(z), . fk(z) €F
. " [, k.. [ 0. -
i1f, and only if, <z g G gl(z), s v gk(z)t € F , where

v k

it gss 15dsk, and g

Proof. Put F; = {i : f?(i) = gg(i)} each 1= =k . Put

K 0 0
N N
N Fl «os NE Fl E.Fg and

=1 F4) = 4. Now F 4
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0
(Y yrg.a N N =
1 Fk F2 __Fl where

kS

=)

"
[=)

: fk(i)tf‘g(i), fg(v;)]} and

|
*—l
1
—~
.

.

7, = {
of F . Hence F, € F if, and only if, F, € F . //

2

The ultraproduct, denoted by ﬂMi/(F; FO, ...) can now be

defined. The class of individuals is RO . For each integer

£0

k > 0 , and for each ?k € Rkk , a k-placed relation of the
F

ultraproduct, denoted by the same symbol 7k , is defined by:
=0 > s . .
}J‘[f s ‘fg} if {z ; fk(v,)(fg(z), fz(i)l} ¢ F. The sybol

Rk
F

is also used to denote the class of k-placed relations of the

k

ultraproduct .

Lemma 1.2, which justifies the definitions as given, has not
required the 'ultra' property of F . If this requirement is dropped
the definition provides a variation to the standard construction of
reduced products. Further it is noted that Log's theorem as stated
for an ultraproduct in relation to a suitable first order language
<till holds for an ultraproduct defined as above.

The theorem below establishes that from a set theoretic and

extensional view point the use of subfilters Fk , for k > 0 , adds

no extra relations to those gained by taking Fk o

: gk(i)[gi(i), IR gg(i)]} . But F° and Fk are subfilters
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THEOREM 1.3. For cach k > 0 , if £, g° € RS such that

fk # gk but {7 : fk(i) = gk(i)} € F then for all

?O, - ?2 € Rio " ?k(fo, P fﬁl i1f, and only 1f,

#® 7

Proof. fk(fo, . fk] if, and only if,

( (
1i : fk(i)lfg(i), cie s fi(i)]} ¢ F , that is if, and only if,
} €F ,as {i: 7)) = g"} € F 3

{i , gk(i)(fﬁ(i), coos 20D

\
that is if, and only 1if, §k(??, sees }21 . /7

From now on and for all %k > 0 we put Fk = F . The next
theorem establishes that for all k > 0 , the distinct members of

R§ provide distinct k-placed relations on an extensional basis.
THEOREM 1.4, For cach k >0 and f¥, g% ¢ RS, F 29" if,

and only if, there exist Tg, 0 ?2 € ROO satisfying one, and only
F

one, of the relations ?k, §k :

Proof. Assume ?k # §k and let G = {7 : fk(i) # gk(i)} g

; . % 7 0 .
Hence G € F . For each © € G , there exists a;, «-+» & € Ri which

satisfy one, and only one, of the relations fk(i), gk(i) , as

: k, . e o f 4 1
fk(z) # g (1) . Let GO = {z : 17 € G and fk(z)(al, T ak]} and




G “{L 1 GG and g (Z’) a’L L] a .
] ]3 2 7:1

Now G = GO U Gl and GO n Gl = ¢ , so one, and only one, of

belongs to F . Define, for each 1 = Jg =k, TQ as

G., G 3

0 1

follows: for all % € G , put f?(i) = a} . for < § G choose
0 v . 0 =0 . . .
fﬁ(t) some arbitrary member of Ri . Hence f3 is uniquely defined

as G € F . Further }g satisfies one, and only one, of 7k, ak s

as one, and only one, of GO, Gl belongs to F.

0

FO’ 1<j=k,

Conversely, if ?k = ak then for all f? € R

{
=0 ‘ : —*
?k T ?2] if, and only if, g (?ﬁ, ey ?2] . //

The next results are concerned with the manner in which the

identity relations in the component structures transfer to the

ultraproduct. For technical reasons a short lemma is set out.

LEMMA 1.5. et G = {1, ; ||R3.l 1}2 Rzo # R if, and only
if, there is an F € F such that F 2G and F £ 2

Proof. Assume that ROO # Rg and so there exist fo, go € Rg
F

such that f'0 v go but fD % go . Let F={i: fp(i) = go(i)} and

so FO6 . FeF but FEF,
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equal to some arbitrary member of Rg ; for all % ¢ F take

f(2) # g(Z) but otherwise arbitrary. Thus fD N go but fD %0 gO

and so ROO # Rg . //

F

FO 4ill be called a distimet subfilter of F if ROO # RY 2
¥

otherwise it will be called indistinct.
2 . 2 a
THEOREM 1.6. If f2 € R} s defined by () = e; , for all

=2

1 €I , then f° 1is the identity relation of ﬂMi/(F; FO} i1f, and

only if, FO is an indistinct subfilter of F .
Proof. Assume - is an indistinct subfilter of F . For all

7, 7 € Rgo ) ?‘2(7‘0 7%} if, and only if,

i (
ii : eikfo(i), go(i)l> ¢ F ; that is if, and only if, f'O QY go 5

that 1s i1f, and only if, TQ - 50 , as ROO = Rg . Hence 79 is the
F
identity relation.
Conversely, assume FO is a distinct subfilter of F . Hence,

-0
as in lemma 1.5, there exists ?O, §0 € ROO such that f@ #g but
F

f'O " go . Thus {7 : fo(i) = go(i)} ¢ F and so ?QCfO, EO} . Hence
fﬁ 15 not the identity relation. I/

We note that TQ as defined in the above theorem is always an
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equivalence relation and moreover one with the general substitution
property. Thus the theorem has given that a distinct subfilter gives
rise to a non-normal structure. The next theorem sets out the usual

relationship between such a non-normal structure and the normal

ultraproduct got by putting Fo equal to F .,

THEOREM 1.7. TTMi/(F; F) 4s isomorphic to a quotient structure

0
of ﬂMi/(F; F) .

0

Proof. Define a map B : R 0
F

i by: for each ?O ¢ R° 5
F £0
put BC?O} = Efoj , where Iiij is the equivalence class of f’O with

prespect to ~ . B is well defined and surjective. Further, for all

k 0 0 =0 0] .
fk € RF , and for all fl, e § fg € RFO 5 fk(fl, s § fkl if, and

(AN
only if, Tk(ﬁ(fg], B 5 B(?gll . Let NB be the binary relation

defined on RO by: ?O v 50 if B[fﬂ} - 8(50} . Now ", as

£ B B

defined is a congruence of WMi/LF; FO) and hence the quotient

structure with respect to this congruence is isomorphic to

., /(F; F) . //
1

2 Relations of ultraproducts of similar structures

Let {M, : T € I} now be a family of similar structures. For

\
each k > 0 let {RE F t J < ak} be the set of k-placed relations
9

of Mi , 1 €I , where Oy, is a given ordinal, the same for all



1i4y

1 €1,

In Robinson [1963] page 241 and [1966] page 10 the individuals
of the ultraproduct are defined as in 81 but with FO - {7} . 1In Bell
and Slomson [1969], page 87, the individuals are defined by taking

£0

- F . It is this we call the standard definition.

Further, the Kk-placed relations of the ultraproduct in this

standard definition, viz. R? ,all g < O, , are defined by:

(=0 =0 .. S k {.0,. 0,..)
R.(fl, o fkl if {d Ri’jtfl(z), o fk(z)J» €F .
Now in terms of §1 this definition has selected from R? the

\
subclass Sk 2 Jhk : h? v I+ U{R? 1 € I} such that for all

=1 \J

N

S h?(i) = Rz 4 0 g < ak} and associated with each member of

5
this subclass a Kk-placed relation of the ultraproduct. The next
theorem establishes a necessary and sufficient condition under which

the construction of §1 applied to this family of similar structures

reproduces only the standard relations. Of course at least the

standard relatiocns will always be produced for if h; # hi then
AR
m n

ey &N pon gl & B0y e GEkde o T BL S

that for all WS, G <o, TO#F if, andonty ifs F oio
ak-incomplete.

Proof. Assume that F 1is uk—incomplete and so let Bk be the
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first cardinal, Bk s oy such that F is Bk—incomplete. Thus there

exists, for each J < Bk a Fj ¢ F such that ﬂ{Fj ¢ g = Bk} =0 .
Construct fk inductively as follows: for all R : F, put
fk(i) = Ri’o . for all 7 € Fl—F2 , put fk(i) = Rﬁ,l . assume that
fk(i) has been defined for all 7 € U{CFt . t < 8§} for some ordinal

§ < B, and define fk(i) = RIL?,G for all < € N{F, : ¢ < 8} - Fg -

By induction fk is well defined and domain fk =1, as

n{Fj P < Bk} =0 .
Now {i i fk(i) = RE,O} = (F, and so fk # Zﬁ as F, € F . For
\
0 <g <By» {1 : fp(t) = Rﬁ,j} = ﬂ{Ft 1t < gt - Fj and so

}k # ﬂj , as Fj € F . Finally if Bk =J <oy then

. . —*
{t : f () = o .} = 9§ and so * By
\ fk Tsd ?k J
g d k
Conversely, assume there 1s an f]( € RI such that for all

k k —* ; z
hj S SI 3 }k # hj . For each g < o define

]

Gj = {i 3 fk(i) Rﬁ,j} . Now U{Gj g d % ak} = J and so

ﬂ{CGj g o < ak} @ . But for all J < 0y » CGj € F and so F is
ak-incomplete. !/

While the above theorem establishes the distinctness of }k in
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terms of an equivalence class of maps theorem 1.4 ensures that the
distinctness is carried over to the relations of the ultraproduct on

an extensional basis.

COROLLARY 2.2. For each k > 0 , if oy 18 finite then for

each fk € R? , there exists some hk € S? such that fk =& =

Proof. If o, is finite then F is o, -complete. //

k
COROLLARY 2.3. If F <is a principal ultrafilter then for all

integers k > 0 , and for all fk € Rk » there exists some hk € S?

such that }k = Ek .

Proof. A principal ultrafilter is ak—complete for all oy . /1l

The final theorem concerns the relationship between two
ultraproducts, each formed by the standard definition from the same
family of similar structures with respect to the same ultrafilter, but
where in the case of the second ultraproduct the similarity
correspondence may, for each k > 0 , link different k-placed relations
from each structure from those linked in the first case.

Let ﬂMi/F be the standard ultraproduct formed as noted at the
beginning of §2. Let ﬂ'M%/F be a second ultraproduct formed by the

standard definition but following possible rearrangements of the
relations connected under the similarity correspondence; that is, for

each 7 € I , and for each k > 0 , if 95 is a permutation of the

set {j : 4 < ak} then the k-placed relations of W'M&/F are given
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;k . ;k —'O —0 . .

by Rj y g % 0 where [fi, - fk] if, and only if,
)

[ . & y (fi(i), (z)J} g .

’ i,6, ()

THEOREM 2.4. There exists such a ﬂ'Mi/F as above distinet from
ﬂMi/F if, and only if, there exists some k > 0 such that F is
ak-incomplete.

Proof. Assume that for each k >0 , F is ak-complete.
. ‘ Rk . ; =K
Associate each standard relation® E J <oy of ﬂMi/F with hj R

where for all 7 € I , h@(i) = R@ . . Associate Rﬁk , g <a, ,in
J 7 5J g k

>

ﬂ'Mi/F with Zik , where for all < €I , hﬂk(i) = Rk % . From
¢ : d FCHED

theorem 2.1 it follows that {E? i g < ak} = {E}k i g % ak} . Hence
[]
ﬂMi/F is the same structure as ﬂ'Mi/F .

Conversely, assume that for some k >0 , F is ak—incomplete.

Hence from theorem 2.1 there exists fk € R§ such that fk is distinct

from each of the standard k-placed relations of nMi/F . For each
; 4 . k .
< , = 3 =R, .t » . <
J <oy, let GJ {7, fk(z) R%J} Thus {GJ J ak}
partitions I and for each g < Q. Gj f F. For each %7 € I , and

each m# k , m>0 , take 8? as the identity permutation of o

For each < € I , take eﬁ as one of the permutations of oy, such
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that 6?(0) = j , where J 1is such that 1 € Gj . Hence the relation

Rék of W’Mi/F is associated with Tk and so is distinct from all
the k-placed relations of ﬂMi/F . Thus W'Mi/F is distinct from
TrMi/F . //

In the above theorem even when ﬁ'Mi/F is distinct from ﬂMi/F
it is not established if it is also non-isomorphic to ﬁMi/F :

Whether this is so or not does not seem to have an immediate answer.
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