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Abstract

Multiple sclerosis (MS) is a multi-faceted disease, and is believed to be caused by an

autoimmune response to myelin antigens in the central nervous system. Experimental

autoimmune encephalomyelitis (EAE), an animal model for MS, manifests itself in

various forms that parallel many aspects of MS. including the appearance of

symptoms, initiation events, and pathophysiology. The hallmark of any immune

response is the antigen-specific proliferation of immune cells, and during the

initiation events of EAE, prolil'erating CD4* T cells are the primery mediators of

disease. This thesis explores if targeting these proliferating cells with the anti-mitotic

compounds paclitaxel and peloruside A can delay or prevent the onset of EAE. thus

providing a novel therapeutic avenue for MS research.

The anti-cancer compound, paclitaxel, is an anti-mitotic drug that prevents

microtubule depolymerisation. Although paclitaxel has been used in the clinical

setting to treat cancer for over a decade, it has been determined that paclitaxel

stimulates murine toll-like receptor 4 (TLR4) complex, which is the major LPS

receptor. A novel microtubule-stabilising compound, peloruside, is currently subject

to intensive investigations due to its functional similarity to paclitaxel. The results

fiom this project found that peloruside and paclitaxel inhibited the proliferation of

mitogen-stimulilted splenocytes with ICso values of 83 nM and 30 nM, respectively,

but did not affect the viability of non-proliferating cells. In contrast to paclitaxel,

peloruside did not cause the TlR4-mediated production of the inflammatory

mediators. TNF-s, lL-12. and nitric oxide, when cultured with tFN-s stimulated

murine macrophages. Interestingly, when LPS was included with either paclitaxel or
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peloruside A, both drugs decreased theproduc-tion of TNF+ and nitric oxide from

macrophages, suggesting that microtubule-stabilising compounds may have anti-

inflamnntory effects.

To identify any imrnunomodifying effects of gnclitaxel in viva,paclitaxel was

adrninistered to mice that were irnmuni.sed with the ruryelin protein MOG in complete

Freundf s,adjuvant (CFA) to induce EAE. When Taxol wa.s administ€rd to mice for

5 consecutive days immediately fo.llowing CFAA4OG imrnunisation, the onset of

EAE was detayed'by approximately I week. Moreovet, the adrninisnation of

peloruside fol'lowing the sanre treatment regime also resulted in a similar delay of

d-isea;e onsel Taxol treaFnents, howe'vern lead ts significant mortality in irnm,unised,

but not unimmunisod mice. Interestinglh although Taxol is an'anti-mitotic d.rug the

prolif,eration of antigen-.specifis T cells was not inhibited in vivo by the Taxol

treatment. Ttle findings revealed in this thesis present an opportunity to pursue a new

avenue of, rese,arch for the therapeutic treatrnent of MS sufferer,s, and possibly other

inflamrnatory autoimmune disordem.
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Chapter 1: Introduction

1.1 General Introduction

Our knowledge of molecular biology and huntan diseases has expanded

exponentially over the past century with exciting new discoveries announced time

and time again. With the advent of new molecular techniques to identity novel drug

targets, biotechnology is ever increasingly delving into innovative ways to treat

difficult diseases. One such complex set of diseases includes those that fall under the

category of autoimmunity. Because autoimmune disorders. such as systematic lupus

erythematosus. rheumatoid arthritis. and multiple sclerosis, have no single known

cause of disease, there is little that can be done to prevent the initial induction with

the current technology. Treating autoimmunity after the onset of symptoms is

proving just as difficult. Although the cellular mechanisms of disease are being

elucidated, there is still no cure for autoimmunity. This situation, however, is bound

to change. New targets are coming to light, while old targets are being revisited with

novel approaches. The exciting field of biotechnology is in its infancy, and with all

of the technical knowledge of today, we are barely scratching the surface of what we

will see in the yeus to come.

This thesis is a condensed summarisation of a three-year project encompassing

multiple aspects of autoimmunity and the treatment thereof. The findings presented

herein may shed light on novel therapies for autoimmune diseases in general;

however, the primary focus of this research revolves around multiple sclerosis. It is

reasonable to say that, because of the multi-faceted nature of the immune system, a

cure for multiple sclerosis may come at a cost. For those that suffer with
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auroimfflunity, thi$ ooct may tre well wortli the risks. trt is the hope of this researcher

that this thesis can aid in the development of a ttrerapy ,sr cure f,or autOirnrnune

disordErs: that has minimal impact on other syfterns aside from the intended tar,get.

To uDderstand,the therapy, one mu$t understand the disease.
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I.2 Multiple Sclerosis

Multiple sclerosis (MS) is a disease caused by demyelination of nerves in the central

nervous system (CNS), often leaving affected individuals in a debilitated state.

Although the cause is still a mystery, it is believed to be an inflammatory

autoimmune disorder involving the destruction of myelin tissue by autoreactive

immune cells in the CNS. Myelin sheaths surround nerve fibers, protecting and

enhancing electrical impulses as they travel through the CNS. In MS, autoreactive

immune cells are believed to target myelin, causing lesions that can interfere with

nerve signal transduction in the CNS. The resulting inflammatory lesions can cause

irreversible damage to the myelin-producing oligodendrocytes. Despite recent

advances in our understanding of the disease, there are very few treatment options.

To date, there is no cure.

Cause of MS

Over the years, epidemiological and population studies have attempted to tease out a

specific cause of MS. Although there is still no single genetic or environmental

factor responsible lbr this disorder. there are associated genetic and environmental

risks with varying degrees of concordance that control the susceptibility to

developing MS. It is estimated that MS affects 2.5 million people worldwide, women

being 2 to 3 times more likely to develop MS than men. The predominance of MS in

women, as well as the temporary improvement of disease during pregnancy, provides

strong evidence of a hormonal link (Confavreux et at., 1998; Marrie, zO04). Several

studies have identified a sharp rise in the total number of regulatory T cells (T,"*)

during pregnancy (Somerset et a\..2004; Polanczyk et aL.,2005), which are

attributed to recovery from inflammation. The suppression of relapses and increased
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T,"* numbers during pregnancy may be attributed to the effects of high estradiol

and/or low progesterone (Sicotte et u\.,2002').

Hormonal diff'erences alone cannot explain the occurrence of MS since there is also a

clear genetic component. as shown by twin and family studies. If one identical twin

develops MS' the likelihood of the second twin getting MS increases compared to

non-identical twins (McFarland,lggz). tmmediate family members of MS patients

are also at an elevated risk for MS (Broadley et al.,2CfJl}; McFarland, 1992). The

exact genes responsible for the increased risk of MS are still being investigated;

however, a recent study reveals an association of MS incidence with variations in

HLA class I and II alleles, TCRe, crLA4, ICAMI, and SH2D2A, further supporting

underlying genetic involvement (Dyment et ul., Z0O4).

Although genetics has a role in MS, some people with many of the genetic risk.s do

not develop the disease. A large body of evidence exists that points to environmental

factors regulating disease induction. Because MS incidence increases the further one

lives from the equator, it has been postulated that decreased levels of UV light in the

wintertime, and the resulting decrease in vitamin D biosynthesis, is linked to MS

induction (Ponsonby et ul.,2oo2). vitamin D has many immunologicalfunctions

which supports the idea that deficiencies in vitamin D may increase the risk of

developing MS (cantorna, 2006; vanAmeron gen et at.,2004). one srudy found that

women who supplemented their diet with vitamin D had a significantly decreased

chance of developing MS (Mun ger et ul.,2oo4); however, other evidence suggests

that vitamin D has very little effect in MS parients already afflicted with MS
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(Wingerchuk et al',2005). Although vitamin D is frequently studied when pursuing

an environmental cause of MS, it is only one aspect of this complex clisease.

simple changes in protein structures, including amino acid modifications or

glycosylation, may initiate an autoimmune response. As an exampre, post-

translational modifications of myelin proteins have been implicated in MS (Beniac er

ttl.,2ooo: Mamula et al., 1999: Raijmakers et a1.,2005:van Boekel and van

Venrooij, 2003). One of the more popular theories is that there is a viral or bacterial

"trigger" that sets off a cascade of events, due to either molecular mimicry or

bystander activation, that ultimately leads to myelin-reactive immune cells entering

the CNS (Sospedra and Martin, 2005). An example of a post-infection neurological

disorder is Guillan-Barre syndrome - caused by molecular mimicry - whereby an

autoimmune response is initiated towards gangliosides because of their antigenic

similarities to antigens t'rom a primery infection. There is a strong concordance rate

between the development of MS and previous infection with Epstein-B1rr virus,

human herpes-virus 6, chlamidia pneumoniae, or other infectious agent$ (Martyn et

al., 1993: Moore et at.,2OO2; Sriram et at., l99g:respectively). In fact, one study

found that anti-Epstein-Barr virus antibodies were found in t 007o of MS patients (n

= 107) (Wandinger et at-,2Q00). Tarken together. these theories support the norion

that MS is a multi-faceted disease requiring several inpurs from both genetic and

environmental sources in order for the onset to occur.

Svmntoms of MS

The presentation of MS varies fiom case to case, but the most commonry

experienced symptoms include numbness and tingling in the hands and feet. limb

l7



weakness, and optic neuritis. As the disease progresses, the symproms may worsen to

include loss of manual dexterity, deterioration in mobility, impaired thinking, muscle

spasms' difficulty with speech and swallowing, and paralysis of extremities. Because

many of these symptoms are not specific to MS, the diagnosis of MS is difficult and

complex. There is no definitive test to confirm the diagnosis of MS; however, useful

information comes from patient history, MRI scans, spinal taps to determine tgG

levels, and serum antibody tests for myelin component reactivity.

There are four typical subsets of MS that are prevalent among patients: a) relapsing-

remitting, b) primary-progressive, c) secondary-progressive, and d) progressive-

relapsing (Fig' l.l )' The most common form of MS at rhe rime of original diagnosis

is relapsing-remitting (Fig. l. I a), accounting for as many as g5zc of all MS cases at

the time of original diagnosis. It is characterised by distinct periods of cNS

inflammation and worsening symptoms, tollowed by partial or complete recovery.

currently, there is no method to precrict a relapse. patients can be free tiom

exacerbation for months or years, and then suddenly experience a relapse lasting for

days or month.s. Relapsing-remitting MS frequently evolves into one of the other

forms with age.

Patients suffering from secondary-progressive MS (Fig. l.l c) typically show

symptoms similar to those with the relapsing_remitting forml however, the symptoms

of secondary-progressive patients tend to steadily worsen with or without disease

exacerbations. once the disease becomes mor€ progressive, minor recovery may or

may not occur. It is estimated that approximately 5ova of people who ultimately
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devetop relapsing=remittiqg MS develop this form of disease within the first decade

of initial diagnosis.

one of the less common Ms sub. typ.ea, p.rirmary-progressive (Fig. l. I b), is

charaeterised,b'y a steady worsening of symproms wi hemt dEftred pedods of relap*e.

Flateaus and tornporary improv,ements are not uncolnmon, and the r.ate of

de,generation may varyi This form otMS generally affects less than 10% of patients.

Even less cornmon, arsva of MS patients" is thepnogressive"relapsing fom of

disease (Fig' 1- l d). Frem the onset, these patients exhibit progressivg symptorns

with clearly defined inflammatory relapses. Minor recovery may follow these flare-

ups; but, unlike rela.psing-remitting MSi thers is a continuous progres-sion of disease

severify'. A more compretnensive,cgllEetion of MS information can be found on the

website fsrthe NationalMs society (www.nationalmssociety.org) in the usA.

t9
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Etiolow of MS

Interestingly, the etiology of these different MS subtypes does not correlate with a

specific cellular cause. The lesions themselves show a considerable amount of

heterogeneity, with underlying cNS pathology ranging from oligodendropathy and

little inflammarion to highly inflamed lesions dominated by cDg* T cells and

macrophages (Lucchinetti et u\.,2000). Antibody involvement has atso been

attributed to the formation of cNS lesions (walsh et aI., 19g6:Baranzini et al.,

1999), and the highly elevated presence of antibodies in the cerebral spinal fluid is

common in MS patients (Kabat et al.,1950), which contributes to the diagnosis of

MS. Despite the variation of lesion presentation in later stages of disease, MS is still

generally considered a CD4"Th1-mediated disease, especially in the earlier stages

(Hellings et u1.,2002: Sospedra and Marrin, 2005; stinissen e/ al.,1997).This belief

is supported by the fact that CD4* T cells are, at least in part, necessary for the B cell

and CD8+T cell maturation. Moreover, the fbnction of two of the most promising

genetic susceptibility candidates, class ll-restricted HLA-DR and -De, is primnrily

associated with cD4* T cells. But, not all cD4* T cells are the same. It has been

shown that both MS patients and normal, healthy people have cD4* T cells that

respond to myelin proteins (Burns et ul., 1983), so auto-reactive T cells alone cannot

explain why some individuals get MS and others don't. Interestingly, MS patients

generally have a greater abundance of autoreactive T cells with l/104 or more T cells

being myelin-reactive (Muraro et al., z0o3: Hong er al., zffi4) indicating clonat r
cell expansion. Teasing out the overall picture of MS development gets complicated

considering ditficulties of obtaining pathological information from MS patients in a

non-invasive wav.
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Although a common and specific initiation event for MS has not been identified and

there is a variation of the general presentation of disease, as well as the heterogeneity

of lesions, there is enough evidence to piece together the pathophysiological

similarities that lead to the development of MS. As evidenced above, the early stages

of MS are primarily dominated by myelin reactive CD4* T cells of the Thr variety. In

conjunction with antigen presenting cells (Apc) displaying HLA-DR or -De, cD4*

T cells become activated in response to myelin proteins. These cells then expand. but

individuals may have variation in the downstream activation of other immune cell

activity, including mast cells, cD8* T cells, and B cells, which may explain the

phenotypic deviation and the presence of Th2-type cells in what is considered a Thr-

mediated disease. This basic model explains the initial events and inflammatory

relapse.s. but most MS patients present with relapsing and remitting phases.

A naturally suppressive subset of cD4* T cells exists that are also cD25* and

express FoxP3. These regulatory T cells (T,"*) ere involved in the resolution phase of

immune responses. In MS patients, however, overall rr"* numbers are generally

present at lower levels and the T,.g functions are not as suppressive (Viglietta et a/.,

2004)' suggesting that there might be an inability to effectively suppress a fl4re-up,

or an imptrired resolution of inflammation. studies on Tr"u involvement of

autoimmunity are in the early stages, but the evidence presented thus far gives a

strong indication that T,..*" may hold the key to ameliorating inflammation.

Nonetheless, cD4* T cells as a whole present an opportunity to develop drugs that

halt the initiation events of an inflammatory relapse, thus leading to an improvement

of MS symptoms. The CD4* T cell hypothesis is further supported by studies done in

22



the experimental autoimnrune encepharornyelitis (EAE) anirnal nrodel ol,MS

(Sospedra and Marrin. 200-5t.
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1.3 Experimental Autoimmune Encephalomyelitis

There are written accounts and drawings from as far back as the Middle Ages

describing clezrly what we know now to be MS; however, the recognition of MS as a

specific disease - i.e., not "madness" - did not occur until the later decades of the

lgth century. The understanding of this disease grew at a very slow pace during the

first few decades of the 20th century. During this time, MS was believed to be virus-

induced. In 1935, Dr. Thomas Rivers of the Rockefeller Institute in New York City

injected virus-f'ree myelin into laboratory animals, ultimately causing an autoimmune

reaction to myelin (Rivers and Schwentker, 1935). The subsequent disease, now

referred to as EAE, had many of the characteristics of MS. The development of the

EAE animal model marked a tuming point for research into MS. To date, the EAE

animal model has provided valuable insight into MS pathophysiology, and it is still

the gold standard disease prototype. It is well known, however, that MS is not as

simple or straight forward as the EAE model (Sriram and Steiner, 2005: Steinman

and Zamvil, 2005), but the similarities have helped MS researchers around the world

develop an understanding of the human disease, as well as inflammatory

autoimmune diseases in general.

The EAE model has improved rnarkedly since the days of Dr. Rivers' initial

experiments. The model Dr. Rivers employed required 85 injections of rabbit brain

extracts over the course of a year to induce EAE in primates (Rivers and Schwentker,

1935). Today, with the help of complete Freund's adjuvant (CFA), the number of

injections of brain extract to bring about disease has been reduced to one. In addition,

variations in the EAE phenotype can be induced using different animals or different
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myelin peptide fragments. Although each model has its own advantages and

disadvantages, they all have similarities to MS and its various sub-types.

Although the primate EAE model still exists. it is relatively inconvenient to do

studies considering the availability and ease of murine models of disease. In fact, the

murine models of EAE may be more suitable for the application of treatments to

human MS because of the similarities each bears to the various sub-types of MS. For

example, SJL mice with proteolipoprotein-induced EAE phenotypically display

several relapsing-remitting episodes of disease. One proposed mechanism for

relapsing EAE is believed to be epitope spreading (Miller et al.,2OO7), which has

also been postulated as a trigger for tlare-ups in human MS (Sospedra et a|.,2005).

Another example of EAE and MS similarities is the Lewis rat model when

immunised with spinal cord homogenate, which generally results in a single bout of

CNS inflammation followed by a partial or complete remission. Parallels have been

drawn between the Lewis rat model of EAE and primary-progressive MS. Some of

the newer animal models included in the EAE family involve transgenic mice,

including some that express T cells specific to myelin antigens. Specifically , the 2D2

transgenic EAE mouse model expres$es CD4* T cells with a specificity towards

MOGrs-s-s peptide (Bettelli et a|.,2003). Strikingly sirnilar to MS, the resulting CNS

inflammation may be spontaneous and is generally preceded by optic neuritis.

Various other EAE models have been utilised for their MS-like properties (Skundric,

2005), and more models are being developed that better represent the most current

understanding of MS etiology.
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When left non-immunised, most experimental animal strains do not typically develop

EAE. Disease can, however, be actively induced in normal healthy animals. The

EAE animal model is a result of initiating a CD4* T cell response towards a specific

myelin antigen. Myelin antigens commonly used for this purpose are myelin basic

protein (MBP), proteolipoprotein (PLP6c.r s r ), and myelin oligodendrocyte

glycoprotein (MOGls-ss). These antigens, in addition to complete Freund's adjuvant

(CFA), comprise the immunisation that causes actively induced EAE. EAE can also

be passively induced by transferring encephalitogenic T cells isolated from an animal

with EAE into a normal healthy animal of the same haplotype. Passive induction can

also be termed "adoptive transfer" and because this method by-passes the

activation/priming stage when naive T cells are activated, it is used to focus on the

later stages of the disease process involving CNS infiltration and nerve tissue

damage. The experiments described in this thesis will solely use active induction of

EAE in mice.

The EAE animal model used fbr the studies in this thesis is the C57BLi6 mouse. This

strain is commonly used, and, when EAE is induced. it is characterised by typical

disease onset two weeks post-immunisation (p.i.) fbllowed by a partial remission by

4 weeks p.i. There are many advantages to using this model, including high disease

incidence (80a/o-l00%o) and a consistent and progressive pattern of paralysis. Both

early-stage MS and the C57BL/6 model of EAE are considered CD4*Thr-mediated

diseases, thus providing a strong correlation between the work undertaken herein and

the translation of these results into possible outcomes for the treatment of MS.
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1.4 EAE Pathophysiology

Negative selection in the thymus during T cell development is believed to eliminate

the vast majority of irutoreactive T cells; however, there are autoreactive T cell

'nescapeesn'that have the potential to induce autoimmunity (Wekerle and Linington,

2006). The activities of these rogue T cells are generally kept under control during

normal immune function, and it takes the combination of auto-antigen with a strong

inflammatory adjuvant to trctivate the naive autoreactive T cells. Even after

activation of the naive cells, the cells must be able to tjnd their target organ/tissues to

cause disease.

The C57BL/6 model of actively induced EAE is brought about by immunising each

mouse subcutaneously with 50 eg of MOGrs-ss peptide emulsified in complete

Freund's itdjuvant (CFA); CFA contains incomplete Freund's adjuvant (IFA) and

heat-killed Mycobactet'ium tuherculosis (M.th.). Although MOG peptide is

quantitatively a minor component of myelin, it is still able to induce a powerfll

antigenic response in MOG-reactive T cells. In conjunction with the strong toll-like

receptor (TLR) agonist, M.tb., antigen-presenting cells (APCs) presenting MOG-

loaded MHC II molecules will activate the CD4* T cells expressing a MOG-specific

T cell receptor (TCR). Along with myelin peptide, other toll-like receptor agonists

emulsified in IFA. such as peptidoglycan (Vis.ser et al.,2OO5) or CpG

oligonucleotides (Segal et ul.,2OOO), have successfully induced EAE, further

emphasising the necessity of a TLR agonist for disease induction.

To enhance the encephalogenic response, the addition of intraperitoneally injected

pertussis toxin (PTx) is required on the day of immunisation, as well as 2 days post-
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immunisation (Lee and Olitsky, 1955). It has been suggested that pTx facilitates

permeability of the blood-brain barrier (BBB), thereby allowing access of

encephalogenic T cells to the brain and spinal cord (Kerfo ot et al.,2oM; yong et al.,

1993). Other research shows that PTx augments the APC response in lymphoid tissue

and in the CNS' enhancing T cell activation and clonal expansion (Hofstetter er a/.,

2OOZI Regardless of its mechanism of action, PTx clearly augments the disease-

inducing immunisation, resulting in an increased incidence of disease.

The EAE priming process is meant to activate, differentiate, and expand naive T cells

with a TCR-specificity toward MOGrs-ss peptide into encepharogenic Thr cells. The

mechanism behind this specific T cell activation and Thl differentiation lies in the

priming of APCs' such as dendritic cells (DC) and macrophages (MO), wirh bacterial

products within the CFA (as previously mentioned) that stimulate TLRs. At the site

of immunisation, the primary APC responsible for antigen presentation is the DC.

The immunisation ligates specific TLRs on DCs, causing them to mature. Marure

APCs produce large amounts of inflammatory cytokines and mediators including IL-

l,rL-12, and rNF-e. The mature Apcs then migrate to the draining lymph nodes

(DLN) and presenr MoG antigen on MHC II to cD4* T cells (Teugoni et al.. z0ol).

The inflammatory environmenr introduced by the Apcs induces the cD4* MoG-

reactive T cells to respond in a manner considered to be representative of the Ths, or

inflammatory, variety. Once Th1 CD4+ Tcells are activated, they proliferate rapidly

and secrete lymphotoxin, [FN-e, and rNF-e (Juedes et al.,2oo0). These cytokines

further stimulate APCs, causing a positive f'eedback cycle of inflammation. The

activated MoG-reactive T celts circulate throughout the body, constantly scanning

APCs for MoG peptides presenred on MHC II molecules. The numbers of MoG-
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reactive T cells peak in the periphery shortly before the mice display symptoms of

disease (Tugoni et al.,20ol), which occurs approximately 7-10 days after

immunisation in C57BU6 mice.

Because MoG is only found in the CNS, an immunoprivileged site, the MoG-

reactive T cells must cross the BBB to gain access to the antigen-containing tissue.

As mentioned earlier, PTx may aid in facilitating the movement of these cells across

the BBB; however, aT cell can enter the CNS without PTx, but only when activated,

and entry is independent of its TCR specificity (Hickey,lggg). These activated

MoG-reactive T cells migrate into the cNS between day 7 post-immunisation

(Juedes et a1.,2000) and the day prior ro disease onset (Targoni et a|.,2001). once

across the BBB, the T cells recognise MoG presented by various Apcs, both

exogenous (Mo) and endogenous (microglia tMGl). Interestingly, these cNS-

infiltrating T cells show very littre proliferation, if any, in response to myelin

presented on APC's within the cNS (ohmori et al., 1992). Upon TCR stimulation

within the BBB, the activated MoG-reactive T cells respond by secreting

inflammatory cytokines (as mentioned above) and chemokines such as CCL3 and

ccL4 (chavarria and Alcocer-varela, 2004; Karpus and Ransohofl l99g). In

addition, resident APCs secrete other chemokines, such as ccl-2 and ccl-5, that

serve to further enhance T cell activities (Chavarria and Alcocer-varela, 2004;

Juedes et a1.,2000). The chemotaxic cytokine trails draw M@, mast cells, B cells,

and DCs into the CNS. The constant suppty of inflammatory cytokines delivered

back and forth between T cells and APCs leads to repetitive stimulation and massive

destruction of the myelin and myelin-producing oligodendrocytes (ubog u et al.,
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2005), ultimately causing lesions in the perivascular regions of the brain and spinal

cord (Fig. 1.2).

The inflammation cycle does not proceed unchecked, since C57BU6 mice with EAE

do, in fact, recover from disease, albeit only partially. The cause of recovery is

primnrily associated with CD4* CD25* FoxP3* T,"* cells. When T,"* cells are

depleted from mice during EAE, natural recovery is inhibited (McGeachy et a/.,

2005). Moreover. low numbers of CD4+ CD25* cells isolated from the CNS of

recovering mice confers protection from EAE development when these cells are

passively transferred to immunised mice (McGeachy et al.,2AJ5). On activation,

these cells produce potent anti-inflammatory cytokines, including TGF-e and IL-10,

which are believed to be responsible for downregulating inflammatory interactions

between APCs and autoreactive T cells in the CNS (Mekala et al.,200.5:'Zhang et al.,

2004). T,"* cells are currently a topic of intensive investigation, both in EAE and MS,

and multiple subsets of T,"* cells have been identified with varying roles in different

diseases.

From immunisation of autoantigens to recovery from disease, EAE exhibits a

complex pattern of CNS dernyelination comparable to human MS. Sospedra and

Martin (2005) have recently reviewed the factors involved in demyelination during

MS development, and a summary diagram from their paper is reproduced in Fig. 1.3.

The C57BL/6 EAE model provides a consistent disease phenotype by which many

studies have attempted to tease out the complexities of autoimmune interactions.

Current cellular/pathophysiological theories have been described above, but they are

constantly changing or being improved upon as new studies continue to delineate and
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analy$e additional aqpects of ttre disease. F.ot fursier infurmation aoo-ut the cellular

patho'logies of MS and EIAE'pbase refer to the cornprehensive review a;rticle by EI

Be.hi etal-, 2005, whieh datails the activities of the major imrnune cells in both EAE

andMS. U1-timatoly;, the CD4+ Teell rsspgnse tllatis ftrndarnental in the early stages

oJ EAE andrMS has been described rnany ti,mes bef.ore. It is this fundanrental

charaateristic tllat provides a dbfined hrget for novel treatimcnts that n ay directly

translate into a clinical ttrerapy for MS.
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Flgu,re 1.2 Hematoxylin and,eosin (H&E) stained longitudinal smtlons
of spinal'cords. Above are pictures ol a no:r:mal spinal cord (a) and a spinal

eord ftom a rnouse with EAE (b). The white rnattern which contains the

myelinated nerve fibers, is discernible by the long neuronaltracts. Also

labeled is the grey rnatter, and a doJted line is drawn between them for ease

of identification. A typical lesion is circled in Panel b, and is:characterised by

the accurnulation ol nuclea'ted cellular infiltrates. The arrows point to three

small sectjons of red blbod cells in the vasculature (darker pink appearance)-

Autoimmune cell infiltration across the BBB initiates from within the brain

vasculature. These pictures were tdken with a 100x rnagnification.
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current MS Treatments and Investigational rherapies

The current knowledge of MS is limited by the ability of researchers to perform in-

depth cellul:lr and physiological analyses in patients suffering from the disease.

Although clinical studies on MS have been carried out, many experiments would be

too invasive and unethical to perform in humans. which is why the EAE animal

model is so useful. The EAE animal model has been crucial for the development of

current drugs and for evaluating potential therapies to trear MS (Steinmnn, 1999:

Steinman and Zamvil. 2005). The downside. however, is that not all drugs that are

effective in EAE will have therapeutic effects in MS (Steinman, t999; Steinman and

Zamvil,2005). It is suggested that the rationale behind designing therapies for MS in

the EAE model can be tricky due to the relatively short treatment durations in EAE

and lack of multi-point screening of side-effects in animals (Steinman and Zamvil,

2005). For this reason. drug therapies should target an activity that is presenr in both

MS and EAE.

Glatiramer acetate

All of the current MS treatments have successfully ameliorated EAE by preventing

or blocking a common mechanism found in both diseases. one of the more

successful FDA-approved MS therapies to date is glatiramer acetate which shows a

relapse reduction rate of 307o (Johns on et ol., 1995). Glatiramer acetate consists of

random-length synthetic polypeptides containing fixed molar ratios of four amino

acids found in myelin: tyrosine, grutamate. alanine, and lysine. originally used in an

attempt to initiate EAE, it was found to have the opposite effect. Its mechanism of

action is still unclear, but current studies indicate that glatirarner acetate binds tightly

to MHC II on APCs (Yong, 2(n2).Instead of inducing the typical rh; response

1.5
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found in MS/EAE, the resulting T helper cells take on a Th2 phenotype and secrete

anti-inflammatory cytokines such as IL-4, IL-5. and tL-10. Further evidence suggests

that this tight binding to MCH II by glatiramer acetate causes T cell anergy (Schmied

et ctl..2OO3), probably due to the prevention of antigen presentation to effector T

cells. There are few side-effects associated with glatiramer acetate, and the safety

profile is very clean; however, only 3oo/a of MS patients show any benefit from this

treatment.

Interferon-e

Another FDA-approved treatment that has been used with success rates similar to

those of glatiramer acetate is the cytokine, interferon-e . with only a 30zo relapse

reduction rate, however, it. like glatiramer acetate, is falling well short of an ideal

treatment (Feldmann and Steinman, 2005). Interferon-e works through an entirely

different mechanism compared to glatiramer acetate. The therapeutic action exerted

by interferon-€ prevents upregulation of MHC II on APCs, while downregulating co-

sti m ulatory m olec u les (Yong, 20A4. In additi on, interferon-e has anti-prol iferati ve

effects on T cell clones (yong, 2002).

Natalizumab

One of the strategies employed to treat MS is to target the adhesion molecule e.r-

integrin with monoclonal antibodies. The treatment, called natalizumab, prevents

vLA-4 on autoreactive T cells fiom binding to e4-integrin, ultimately preventing T

cell adhesion and migration across the BBB (von Andrian and Engelhardt, 2003).

Although natalizumab is more successful than the other drugs detailed above, with a

66Vo reduction in annual MS relapse rates, it is closely associated with a rare, but
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potentially fatal disease known as progressive multifocal leukoencephalopathy (pML)

(Bennett, 2006). The saf'ety profile of natatizumab is currently being reviewed by the

FDA in the United States of America. If this drug is approved for all MS patients, it

would have the highest relapse-reduction rate of all clinically available treatments.

one of its disadvantages. however, isi that it must be administered regularly to

maintain a therapeutic effect.

Mitoxantrone and Pixantrone

Another clinically approved treatment for MS is the anti-proliferative compound,

mitoxantrone. Mitoxantrone is a topoisomerase [I inhibitor that decreases overall

numbers of B cells and T cells, as well a.s maintains T cell suppression (Fidle r et al.,

1986; Gbadamosi et a|.,2O03). Mitoxantrone successfully ameliorates EAE and has

had success in MS (Gonsette, 1996; Ridge et at.,l9g5). However, there is an

increasing concem that long-terrn use of mitoxantrone can cause cardiotoxicity

(Avasarala et ul-,2O03). A related altemative drug with no known cardiotoxicity

problems, pixantrone, is proving to be a possible successor to mitoxantrone due to its

greater anti-proliferative effect.s (Cavaletti et al.,2OA4). Until pixantrone is approved

by the FDA, mitoxantrone is the only anti-proliferative drug on the market for

treatment of MS. All of the currently approved treatments fbr MS are summarised in

Table l. l.
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Trade name Generic name Type of drug Mechanism Approx. o/o

ol relapse
reduction

Year of
inroduction
to the market

Copaxone@

Avonex@

Rebi@

Betaseron@

Tysabri@

Novantrone@

glatiramer
acetate

interferon-B 1-a

interferon-B 1-a

interferon-B 1-b

natalizumab

mitoxantrone

Random chain
polymer of
amino acids

Cytokine

Cytokine

Cytokine

Mouse
antibody

Topoisomerase
ll inhibitor

Unknown

Unknown

Unknown

Unknown

Prevents VLA-4
from binding a4-
integrin

Reduces overall
T and B cell
numbers

30-35"/o

30-35"/o

30-35%

30-35%

60-70"/"

30-35%

1996

1 996

2002

1 993

2004

2000

Table 1.1 Current MS therapies.

The reseerch into MS treatments cover various aspects of disease, including simple

remedies such as dietary changes to include more vitamin D or oral tolerance of

myelin antigens, but the treatments extend beyond this to involve the manipulation of

the immune response in general. Other possible therapies might even come from

parasites and associated antigens. Evidence suggests that Scfiistasnmu mansoni

antigens ameliorate EAE through a strong Th2-inducing mechanism via the STAT6

pathway (La Flanrme et al.,2OO3; Sewell et a\.,2O03). There are dozens, if not

hundreds, of treatments that have proven to have some ameliorative effect in EAE

and are currently involved in clinical trials or awaiting approval for clinical trials.

Ideally, the most successful drug will remove autoreactive immune cells and restore
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normal immune system activity. This has never been achievecl, leaving anrple room

tbr further rcsearch into a cure fbr MS.
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1.6 Anti-proliferative Agents and the Treatment of Hyper-

proliferative Diseases

As previously mentioned, mitoxantrone is an anti-proliferative agent that has been

approved by the FDA to treat MS. It works by inhibiting the topoisomerase II

enzyme, eff'ectively preventing cell division in interphase by slowing cells in S phase

of the cell cycle and halting cells in G2 phase (Feofanov et al,, 1999). TopoisomerAse

II is one of many possible targets that are involved in cell-cycle control.

One panticular group of anti-proliferative agents that bind microtubules or soluble

tubulin prevents proliferation during mitosis, or M phase of the cell cycle, generally

by disrupting microtubular action. The primary function of microtubules during

anaphase of mitosis is to segregate duplicated chromosomes (pellman. 2001).

Because of this, microtubute disnrption is a popular method to trear cancer.

Chromosomal segregation, however. is not the only role of microtubules. During

normal cell function, microtubules play a major part in scaffolding, migration, and

intracellulau rransporr (.Schitf and Horwitz, l9g0). Although there is a variety of

known microtubule disrupting agents (Attard et a1.,2006). mosr of these compounds

are difficult to obtain or are very costlv.

Paclitaxel

Paclitaxel is a naturally occurring compound isolated from the pacific yew tree

(Wani et al" l97l). It is widely used in the clinical setting as a chemotherapeutic

drug (Bhalla. 2003), and its relative abundance makes it inexpensive and accessible.

The potent anti-tumor activity exhibited by paclitaxel is primarily due to its ability to
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arrest dividing cells in G2l1M phase by preventing microtubule depolymerisation,

ultimately causing arrested cells to apoptose (Bhalla, 2003; Donaldson er eil., 1994:

Fuchs and Johnson, l978; Manfredi et al., 1982; Rowinsky et aI., lggg). While the

focus ofpaclitaxel research has been to targetcancer, cancercells are not the only

types of cells affected by paclitaxel. For example, the proliferation of stimulated

lymphocytes is inhibited after exposure to paclitaxel in cultures (Brown er al., 1985:

Chuang et ul..1994). Patients treated with paclitaxel experience many side-eff'ects,

including a decrease in the number of lymphocytes, likely due to the anti-mitotic

nature of the drug (Kotsakis et a1.,2000; sako et at.,2}}4:Tsavaris et aI.,20oz).

Given these inhibitory effects on immune cell proliferation, paclitaxel may have the

desired immunontodifying activities needed for treatment of EAE or MS. since CD4+

T lymphocytes must undergo mitosis to clonally expand.

Paclitaxel has previously been used as an immunomodifier in autoimmunity. A

micellar formulation of paclitaxel successfully delayed or prevented the onset of

EAE in Lewis rats (cao et al.,2M0). It was theorised that the impact on EAE was

directly related to the anti-mitotic nature of paclitaxel. The authors, however, did not

investigate the mechanisms behind this delay of onset. Other studies found that

paclitaxel could impact collagen-induced arthritis and prevent the onset of disease

altogether (Brahn et ul., 1994; oriver et al., 1994). yet again, the mechanisms of

prevention were not investigated. Although collagen-induced arthritis is an entirely

different disease from EAE, both diseases are believed to be primarily mediated by

cD4n T cells and can be induced by immunisation with a self antigen in cFA

(Ercolini and Miller, 2006; Sakaguchi and Sakaguchi, 2005).
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Pelorusidc A

The novclcompound, peloruside A (peloruside), was discovered in extrriets of

Mycale kentsheli,4 marine sponge that lives in the coastal regiorrs of New Zealand

(west et al.,Zw). Like paelitaxel, peloruside stabilises rnjcrortubules;and has potent

anti-mitotig activity in cancer eell,lines, causing proliferating cells to apoptose in the

Gifvl phase of thecell cycle (Hosd et ar,.,zffil;Hood er al.,z}}z],Although the

suBply, is limited, peloruside is exclusively available for use in selected projects at

Victoria University of Welliuglon. Ttre paclitaxel-like properties of peloruside make

it an in'teres ing r'rlolecule to 6tud-y tor its therap,eutic potential in cancer and other

hy,perprol iferativc disorders, including autoirnmunity.

peloruside A

Figure l,tl structures, ol the anti-mltotic, microtubute-stabitisi ng

e€mpounds, paolitficl and peloruBide A.
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L.7 Aims

Many studies over the years have attempted to dissect every aspect of MS. Due to

limitations in the models used, many assumptions have been made in regard to the

etiology of MS by reference to findings in the EAE animal model of MS. If one

delves into the mechanisms of the two distinct, but similar, diseases. then differences

will undoubtedly be found in their respective pathophysiologies. This is why many

successful treatmenrs of EAE do not directly translate into MS therapies. The

variations in the cellular immunology of MS can vary between patients, similarly to

the variations of different EAE animal models. There are, however, commonalities

that are often overlooked when searching for the next treatment. It is the fundamental

similarities of the two diseases that should be targeted in order to increase the

likelihood of crossover therapeutic success.

The hallmzrrk of any immune response is the rapid proliferation of cells responding to

a foreign antigen. What separates inflammatory autoimmune responses from other

immune events is the fact that they involve lymphocytes that target "self'antigens.

During the initial phases of both EAE and MS, a large number of proliferating

autoreactive cD4'Thrcells are present. In theory, very few immune cells are

normally prolit'erating at any given time in healthy animals. When disease is initiated

in EAE mice. the vast majority of proliferating immune cells should be responding to

self-peptide or adjuvant; thus, targeting cell division in general may have a weighted

effect on this cell population and open doors to therapeutic intervention in EAE and

MS.
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trt is the'in'tontion of this prOject to targer the proliferating cell p,opulations

responeib.le for EAE - especially cD4" T celis - with anti-mirotic cornpounds,

specificall.y pdclitaxel and peloruside. If succes$fuI, it is expected that these anti-

mitotic cornpourlds will halt proliferation of autoreactive T cells, either Ferfianently

or tremsiently, rclulting in the full preverrtion or a delayed qnset of EAE.

Additisnally, itis theorised that rnost of the celils of the irnnrUne system will rernain

intact thus the drugs w,ill have a minimal ovefall impact on imrnune syst.em fungtion.
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Chapter 2: General Methods

2.1 Animals, Maintenance, and Ethical Guidelines

All animals were housed and maintained in the animal facilities at Victoria

University of Wellington, New Zea\and, under the guidelines specitied by the

Ministry of Agriculture and Forestry (MAF). Mice were raised in filter-top cages in

temperature-regulated facilities, with maintenance and litter changes performed at

regular intervals. Experimental protocols were approved by the Victoria University

of Wellington Animal Ethics Committee (AEC) under the licenses 2002R6 and

2004R I 7.

Originally purchased from the Jackson Laboratory (Bar Harbor, ME, USA),

C57BL/6 mice were bred at Wellington Schoolof Medicine, Wellington, New

Zealand. Transgenic mice, including toll-like receptor-4 knockout (TLR4 -/-), TLR2

-/-, and zDZ (H-2\ TCR mice, were generously donated by Thomas Biickstriim of

the Malaghan Institute of Medical Research, Wellington, New Zealand. TLR4 -/-

mice are deficient in the major LPS receptor, TLR4; TLR2 -/- mice lack TLR2; and

2D2 transgenic mice have a majority proportion of their CD4* T cells with a TCR

specificity for MOG3s-ss (Bettelli et u\..2003). All mice were bred on a C57BU6

background.

2.2 Reagents

Paclitaxel (purified from laxrrs yanruurcnsi.r), cyclosporin A, and LPS (from E. coli)

were purchased from Sigma Chemical Co. (St. Louis, MO). Taxol@ (Taxol; Bristol-
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Myers squibb, New York city, Ny) was purchased from Capital coast chemists

(wellington, New Zealand). Peloruside, mycalamide, and pareamine were

generously provided by Dr. Peter Northcote (Victoria University of Wellington,

school of chemical and Physical sciences). paclitaxel, peloruside, mycalamide,

pateamine, and cyclosporin A were dissolved in ethanol and stored as t mM stocks

( l0 mM stock for paclitaxel) ar -80'C.

2.3 Primary Cell Preparation and Culture

Dissections/Orean Removal

Animals used for cell preparation were euthanised in a CO: chamber and, after death

was confirmed. immediately transferred to a dissecting table. Animals were wa^shed

with l00o/c ethanol before surgery. Sterility of surgical tools was maintained by

storage in lOovo ethanol during organ removal. The thorax was opened for the

removal of the draining lymph nodes (DLN) and bones. The peritoneal cavity was

opened for the removal of internal organs and tissues such as the spleen (SpL), liver.

kidneys, intestine (INT), mesenteric lymph nodes (mLN), and blood (by cardiac

puncture). Bones, organs, and other tissues were removed by blunt dissociation of

connective tissue' Blood was obtained by cardiac ventricular puncture and extraction

with a 27.5-ga needle and syringe.

The brain and spinal cord were removed following decapitation. The brain was

carefully dissected out of the skull. The spinal cord was removed by pressurised

extraction. Briefly. a pre-filled syringe containing PBS with an attached l9 g needle

was inserted into the lumbar region of the vertebral column. After removal of the

head in the cervical region, positive pressure was exerted on the syringe, forcing the
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spinal cord out of the vertebral column via the cervical opening. The brain, as well as

all other organs except for blood. were transferred to tubes containing either zinc

fixative (see Appendix A) or ice-cold wash media (see Appendix A) for cell

preparation and culture.

Macrophages

Bone marrow-derived macrophages (BMMO) were cultured from C57BL16 mice as

previously described (Celada et a\.,1984). Briefly, long bones were t'lushed with

sterile divalent cation-free Dulbecco's pBS (dpBS) (Invitrogen, Auckland, New

Zealand) with a 23-ga needle. Cells were cultured in complete medium (CTCM; see

Appendix A) in the presence of GM-csF and IL-3 (tiom the supernatanrs of GM-

KLON and WEHI-3 cell lines, respectively). The cells were cultured for 24 hr at

37'C in air with 5Va COz. Non-adherant cells were removed and further cultured for

7-10 days at 37'c in air with 5o/o cot to ailow cells to diff'erentiate into

macrophages. Once a monolayer of cells was established, BMMO were removed by

vigorous pipetting, and 105 cells/ml were resuspended in crCM. cells were then

i,rctivated overnight with 40 U/ml IFN-c in flat-bottom 96-well plates (Falcon,

Franklin Lakes, NJ) ar 37'C in air with SVo CO,.

Solenocvtes and Lymnh Nodes

single cell suspensions of splenocytes and lymph node (LN) cells were enriched by

dissociation of the SPL or LNs through sterile 70-pm cell strainers (Falcon) into 50

ml polypropylene centrifuge tubes (Brunet et al.,1997). For splenocytes, red blood

cells were lysed with red blood cell lysis buffer (Sigma). Cells were resuspended in
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crcM and cul,tured at37',c in airwith svo cotin flat-bottom 96-well plateg

(Falcon) ( lr0F cells/well).

2.4 EAE trmmunisations

To induce EAE, g_12 week old c57BL/6 mioe were ibrmunised with an emulsion of

arntigen in cF'A consisring of 50, eg MoG35-55 peptide (Mimotopes; clayton,. Vic,

Australia), 500 eg heat-inaetivated ttttycobacterium tuberculasis (Difeo Laboratories;

Detroit, MI), 100 el dpBS; and 100 el IFA (Sigma). A ntal of 200 el was injecred

s.c. in ttao hind flanks of each mous€. Ln addition, each mouse was injected i.p. with

200 ag penussis toxin (PTx) (sapphire Bioscience; Redfern, Nsw; Australia) in

specialised PTx buffer (see Apper, dix A) at the time of initial immunisation and

agai'n 48 hr later. The weight of eiuh mouse was recorded daily, as well as

observations made for any signs of clinical disease, from the day of immunisation

u'ntil the day they wene euthanised. The snset of EAE fsllowed a typical pattern in

w,hieh paralysis begau from the tail and graduall;r worked itsiway up theeaudal.

rostral axis. To quantify the level of disease, severity was measured by a typical field

scoring system:

I = Half tail paralysis; loss of rail ronicity

2 = Full tail paralysis

3 = one hind limb paralysis, otr severe weakness in both hind tirnbe

4 = Full hind lirnb paralysis

5 = Hind limb and front limb paralysis,; moribund
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S:eores wE-r@ recorded daily by ther$ame individual in ordel to reduee nu.bjective

variation. For ethiaalreasons, animals were euthanised if found tobe in a,moribund

state.

2.5 trVleasuring Body Temperature, Weight, ruid Appeararrce of

Xlvilic:e.

Body terqperatures, 'when require4 were obtained by genthy ineening a lubric,ated

RET{3 recml probe (ADlnstruments) in-ro the anuse.s of rcsbained rnice.

Ternperntures werg rocorded as t. wcights of tlle mice were rneasuredon aMettler

PB 6000 balance (Mettler Tolodo; eolurnbus, OH). The,activity and appearanec of

the rniee were gauged on a pre-detormined scale to uphold Ethical standards

throughOut ex,perirner,rtation. Mou.s€ activitlr was scored as follows:

0r = normal

I = lsw activ,itylslightly weak

2 = limle movemesfllimp to h4lrdle

3 = moribund

Mqrse appeaffice was scored as follows:

0.= normalr

I = lackof groorning (sltghtly greasy coat)

2 = to,tal track of hygiene (very greasy coat, rougfud up rrce)

iWicewe.reeuttlanisedif they had,al}Voweightloss,andacombinedscsreof e 3for

activnty,irnd appearanca
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2.6 Enzyme-Linked Immunosorbant Assays for Cytokine Analysis

A Pharmingen sandwich ELISA was used to measure cytokines produced by cells in

culture fbllowing the manufacturer's recommendations (BD Pharmingen; Franklin

Lakes, NJ). Briefly, supernatants from cell cultures were removed and stored at -

20'C. Samples were stored at 4'C if they were to be used on the day of the ELISA

measurement. To prepare the ELISA plate (Greiner; Monroe, NC), a cytokine-

specific capture antibody was diluted in capture buffer (see Appendix A) and

transf'erred to 96-well plates. The plates were then incubated at 4'C overnight. Wells

were rinsed with Tween-PBS (TPBS). In order to block non-specific binding, wells

were incubated for 2 hr with PBS containing 5a/o FCS. Afier a TPBS rinse, samples

were added directly to the wells, or diluted with 57o FCS in PBS solution. then added

to the wells. Afier 2 hr, plates were washed in TPBS. Diluted biotinylated detection

antibody was added immediately after the last wash. followed by a I -hr incubation.

Plates were re-washed in TPBS, followed by a 30-min incubation with the

recommended dilution of streptavidin-HRP (SA-HRP). A final wash in TPBS was

performed. Lastly, substrate reagents "A" and 'oB" were added to induce a color

change that directly correlated to cytokine concentration, followed by the addition of

0.18 M sulfuric acid to stop the reaction. Well absorbances were read on a VersaMax

plate reader (Molecular Devices; Sunnyvale, CA, USA) at a wavelength of 450 nm.

2.7 Metabolism and Proliferation Assavs

MTT colorimetric assav
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MTT (3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyrtetrazolium bromide) is n

tetrazolium salt that reduces to purple formazan in the presence of reducing

compounds, such as NADH and NADpH (Berridge et al.,2oa5; Hansen et al., l9g9:

Mosmann, 1983). Dose-response curves were obtained by comparing drug-treated

cells to untreated controls following the addition of MTT to cultures. Sirnilarly,

metabolic activity of non-proliferating cells, based on the relative presence of

reducing compounds, was assayed with MTT in BMMO cultures.

A GyQUANT kit (lnvitrogen; Auckrand, NZ) was used as an alternative assay to

detect cell proliferation when total ceil numbers were limited. This assay was

performed following the manufacturer's recommendations. CyQUANT measures the

total DNA content of a culture. which detects proliferation in cultures with low cells

numbers (<5 X l0s total cells). Briefly, 2 X 105 cells were cultured in a 96-well plate

with CTCM (37'C in air with 5To CO). After 72 hr, the supematants were removed

and the plates containing the cells were stored at -20'C. To perform the assay, the 96-

wellplates were removed from the -20"C freezer, followed by incubation with the

CyQUANT lysis buffer. The detection reagent, a green-fluorescing dye that binds to

cellular DNA. was then added ro each well. The light absorbance of the 96-well

plates were detennined on a spectraMax Gemini fluorescence plate reader

(Molecular Devices; Sunnyvale, CA, USA) with excitation/emission wavelengths of

48Ol 520 nm, respecti vely.
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2.8 General FACS Analysis

Stained cells were examined in a FACScan f'low cytometer (Becton Dickinson,

Franklin Lakes, NJ). In brief, 10,000 cell events were collected for each assay, and

the data were analysed by CellQuest Pro software (Becton Dickinson).

Fluorescently labeled antibodies (BD Pharmingen) were incubated with cells

according to the manufacturer's recommendations. Each sample was stained with

either a fluorcscently labeled antibody or an isotype control to correct for

autofl uorescence and background staining.

2.9 Histology

The tissuesiorgans used for histology were removed from mice and were preserved

in zinc fixative (Appendix A). Paraffin embedding, slide preparation, and

hematoxylin and eosin (H&E) staining were performed by the Pathology Department

at the Wellington School of Medicine and Health Sciences, Wellington, New

Zealand. Lesions in spinal cord tissue from mice were identified, measured, and

counted. [n addition, an zrverage severity score was assigned for each lesion present

in an affected spinal cord (Fig. 2. I ):

Q = normal; no cellular infiltrates

t = mild; < 50 em diameter foci of infiltrating cells in the perivascular region.

2 - moderate; 50 em - 100 em diameter foci in the perivascular region.

J = severe; large foci (> 100 em) in the CNS parenchyma

It was expected that this method of determining the severity of spinal cord

inflammatorv cell infiltration would be subiective. and therefore the individual
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mouse disease score-s were not compared until lesion scoring, was comple.ted for all

samples. It was also recognised that spinal cord lesions were 3-dimensional, thus

rneasu.ring the size o.f the lesion foei in the particular dimension on the slide would

not necessarily represent tt e actual size of the entire lesioq however, using this

metho4 the relative sizes and abundance of lesions can be grrantified and compared

acro$s all sample groups,
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s eouutsffi,flh fo_r,s.&ll-tllllir, nue.leii.,
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2.10 Graphing and S"tatisfical Analy'ses

GraphPad Prism (Version 4.0, Graphpad Software, [nc.; San Diego, CA) w4s used 0o

determine significanee of data. SigmaPlot (SSP'S Scienoe; Chicago, IL) was used for

data manipulations and graphing. All data points are expressed as the mean t

standard error unles-s otherwise noted.
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chapter 3: rmmunomodulatory Effects of the Anti-

Mitotic Compounds, Paclitaxel and peloruside.

3.1 Introduction

Pateamine, mycalamide, and peloruside are cytotoxic compounds isolated from

Mvcale hentsheli (west et u|.,2000). previous studies have suggested that

mycalamide and pateamine exhibit immunosuppressive properties (Galvin et al.,

1993; Romo, 1998; Romo et al.,2Cf'4); however, Hood er at. (2002) showed that

pateamine and mycalamide were not directly immunosuppressive in a mixed

lymphocyte reaction (MLR). while few studies have investigated the

immunomodulatory activities of pelorusicle, Hood et al. (2002) showed that

peloruside non-specifically reduced IL-2 production fiom lymphocytes by inhibiting

proliferation in a MLR. In these studies, there was no mention of the lymphocyte

subsets that were directly affected by peloruside.

Paclitaxel has a long clinical history in the treatment of cancer. paclitaxel is known

to be cytotoxic to proliferating splenocytes and cancer cells at concentrations in the

nM range in vitru (Brown et ut., l9g5: Horwitz et al., 1993). Another property of

paclitaxel is that it mimics bacterial lipopolysaccharide (Lps) in murine

macrophages and DCs by binding to the TLR4 complex (Byrd-Leife r et al., z00l;

Ding er al.,1993:' Joo, 2003). The LpS-mimicry observed with paclitaxel is

detectable in vitro at concentrations above I eM. and suggests that paclitaxel may

play an immunomodulatory role in vivo.
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Aims

Peloruside. as well as the structurally unrelated compounds mycalamide and

pateamine, are cytotoxic agents isolated from a Mycale sp. of marine sponge (West et

al.,Z00,O). Mycalamide and pateamine have been identified as having

immunosuppressant activities (Galvin et at., 1993; Romo, l99g; Romo et u1.,2004).

To confirm whether these 3 compounds exhibit immunosuppressive activities,

peloruside, pateamine, and mycalamide were compared to a known

immunosuppressant. cyclosporine A, to clarify the nature of immunosuppression in

all of these compounds.

Although the mechanism of microtubule-stabilisation has been elucidated for

paclitaxel and peloruside (Bhalla, 2003; Donald.son er at.,1994: Fuchs and Johnson.

1978; Gaitanos et a\.,2004; Gligorov and Lotz,2004; Hood et ttl.,Z}o2;Manfredi er

al., 1982; Rowinsky et ul.. 1988: schiff et al., 1979; schiff and Horwitz, l9g0), there

are very few studies looking at other bioactive roles for peloruside. specifically

whether or not it induces a pro-inflammatory response similar to paclitaxel.

Therefore, in order to understand how petoruside impacts on cells of the immune

system, the following set of experiments was designed to compare the effects of

pacfitaxel to peloruside in murine M@ and splenocytes. This includes identifying

immune cell populations susceptible to the anti-mitotic effects of both compounds, as

well as assaying for immunostimulation.
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3.2 Methods

3.2.1 Anti-CD3 T cell receptor stimulation

Splenocytes from C57BU6 mice were isolated as described in Chapter 2. T cells

were activated by cross-linking of rCRs ro plate-bound anti-cD3e antibody (e-cD3)

(0.5 e g/well) (hamster mAb 145-2Cl I, BD Bioscience, Franklin Lakes, NJ). Cells

were immediately cultured in the presence of peloruside, mycalamide, pateamine, or

cyclosporine A at a range of concentrations for 24hr or 72 hr (in the case of

mycalamide and cyclosporine A). Cultured cells in triplicate wells were pooled for

FACS analvsis.

3.2,2 FACS analysis

FACS analyses were performed as described in chapter 2.g. In brief, CD4+ and

CD8* T cells were identified by fluorescently-labeled anribodies (BD pharmingen).

cells were stained with annexin-v:FITC (Roche; Germany), which binds

phosphatidylserine. and the DNA-binding salt propidium iodide (pl) (sigma) prior ro

FACS analysis. Together, these stains act as apoptotic markers. Cellular debris was

gated out based on a size threshold (see Appendix c). Each test sample was

accompanied by a time-matched control sample (cells not treated with drug).

3.2.3 Stimulation of T cells in splenocyte cultures

Spf enocytes were isolated from the spleens af C57Bl-/6 mice (described in Chapter

2). cells ( l06/well) were culrured in a 96-well plate (Falcon) with 3 eg/ml of the T

cell mitogen, concanavalin A (Con A; sigma), and dilutions of peloruside or

paclitaxel. After a 72-hr incubation period (conditions described in Chapter 2), a

MTT proliferation assay was performed on the cells.
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3.2.4 Assessment of cell viability, metabolism, and proliferation

Viability of e-CD3-stimulated splenocytes was determined by FACS analysis and

expressed as the number of gated annexin-V "'s CD4*/CD8* cells divided by the total

number of cells compared to an untreated. time-matched control (see Appendix C).

Metabolism and proliferation were determined by the MTT assav (describecl in

Chapter 2).

3.2.5 IFN-u, TNF-c, lL-lZ,IL-lO and NO detection

All ELISAs were pertbrmed following the manufacturer's recommendations (see

chapter 2) (BD Phermingen). Anti-mouse antibodies againsr IFN-g, TNF-c , tL-

12p40, and IL-10 (both capture and detection) were raised in rats, and none show any

known cross reactivity to other cytokines. All ELISAs were performed within the

recommended linear detection Iimits of the respective kits. The accumulation of

Nor-, an indicator of No production in the culture medium, was assayed bv the

Greiss reaction (Creen et al.,lgBZ).

3.3 Results

3.3.1 rhe effect of mycale sponge metabolites on T cell receptor signaling.

Metabolites from Myc:ale hentsheri, including peloruside, mycalamide and

pateamine, werc tested for immunosuppressive activities alongside the known

immunosuppressant, cyclosporin A. Splenocytes were stimulated by plate-bound e-

cD3 antibody, which acts as a cD3 agonist, and bypasses rhe need for MHC plus

specific peptide. The MTT cell proliferation assay was used to assess effects of the

compounds on T cell proliferation, and annexin-V/PI binding was used to determine
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the proportion of viable. non-apoptotic cells. Annexin-V binds to phosphatidylserine,

which is normally on the inner layer of the plasma membrane, but during the early

stages of apoptosis, phosphatidylserine translocates to the extemal membrane of the

cell where it is accessible for binding to annexin-V. The use of pI, which binds to

DNA, difl'erentiates the cells with membrane damage from apoptotic cells since pI

will only stain DNA if there is membrane disruption such as occurs during necrosis,

or if the cell is in late apoptosis. IFN-y production was used as a marker of TCR-

sti mulated cytokine production.

Peloruside and pateamine inhibited e -CD3-stimulated T cell proliferarion and IFN-6

production (Fig. 3.1 a-b). but did so by causing apoptosis. Unfortunately, however,

this particular stock of peloruside was discovered to contain a highly cytotoxic

contaminant (see Appendix B for details); therefore, Fig. 3. I a was erroneous data. In

the case of mycalamide and cyclosporin A, however, [FN-e production was

completely inhibited at the higher concentrations tested, with T cell viability never

faf f ing below 30%t af the untreated controls after a 24-hr treatment (Fig. 3. I c-d).

Mycalamide inhibited cell proliferation to a greater extent than cyclosporin A.

Longer exposures of 72 hr completely inhibited cell proliferation (MTT assay);

however, cell viability remained high (367o for mycalamide at l0 nM and Z8o/o for

cyclosporin A at 1000 nM) (Fig. 3. t e-f). This suggests that mycalamide, like

cyclosporin A, has immunosuppressive propertie$, defined by reduced proliferation

and [FN-e production without causing cell death. Although peloruside results were

negated, the other sponge metabolites and cyclosporin A are valid, and are shown

because they alre metabolites from the same sponge and may have a direct effect on T
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cell activation. All further peloruside experiments w€re perforrnerl with a different"

non.contaminated stock of peloruside.

To identify if there was seleetive inhibition of ly.qlphocytes, software-generated

selectivity gates were placed on CD4* and CD8* T c-ells in FACS analyses (see

Appendix C for gating). The respective viabilities of the two T cell subsets were

similar (data not $hown), and the,cells w€re therefore grouped for analysls pu(po$esi
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Figure 3.1 Anti-CD3-stimulated T cell responses to sponge metabolites and

cyclosporin A. lsolated spleen cells were stimulated to divide by cross-linking to

0.5 pg/ml s-CD3 antibody per well of a 96-well plate, immediately followed by

treatment with cytotoxic drugs. T cell proliferation (open triangles) was measured by

the MTT assay atter 24 or 72hr of culture. T cell viability, assessed as the annexin

V-unstained proportion (open squares), was analysed by flow cytometry. IFN-s

(filled diamonds) was determined by ELISA, and the mean and SEM of 3 separate

experiments performed in triplicate are presented. All results are expressed as the

7" of an untreated control. Peloruside data (a) is erroneous due to contamination.
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3.3.2 Peloruside and paclitaxel are cytotoxic to proliferating splenocytes.

using the MTT cell prolif'eration assay, 72-hr IC50 values of peloruside and

paclitaxel were measured in proliferating splenocytes to determine if these

compounds can inhibit T cell proliferation without being cytotoxic to unstimulated

cells. Paclitaxel and peloruside were cytotoxic to Con A-stinrulated splenocytes with

IC50 values of 30 nM and 83 nM, respecrively (Fig. 3.2 a). The ICso values for con

A-stimulated splenocytes were determined by nonlinear regression. The minimum

absorbance values were as low as 4OVo of the control, but never reached 0Zo. This is

likely due to the nature of con A stimulation. T cells comprise about half of

splenocytes and Con A is a T cell mitogen, which leaves many cells in a splenocyte

population unstimulated, thus not susceptible to the anti-mitotic effects of peloruside

and paclitaxel Little to no cytotoxicity wtrs observed in cultures of unstimulated

splenocytes treated with either drug (Fig. 3.2 b).

3.3.3 Peloruside does not induce the release of pro-inflammatory cytokines by

BMMO.

Because paclitaxel, in addition to its microtubule stabilising effects, can mimic LpS

in thioglycolate-elicited peritoneal murine macrophages and cause the release of pro-

inflammatory cytokines (Byrd-Lrifer et al.2001), BMMO were cultured with

paclitaxel or peloruside at a wide range of concentrations to assess whether

peloruside has similar LPS mimetic properties to paclitaxel. [n agreement wirh the

literature, paclitaxel cau.sed the production of tL- l?p40 and No in lFN-e-activated

BMM@ (Fig. 3.3 a and b). surprisingry, no TNF-e was derectable at g hr in the

supematants of BMMO when cultured with a range of paclitaxel concentrations up to

l0 eM (Fig. 3.3 c): however. TNF-e was detected at 2 hr from cultures containins l0
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e M paclitaxel (Fig. 3.3 d). In BMMO cultured with peloruside. there was no lL-

12p40, NO. or TNF-c detected. Additionally, the anti-inflammatory cytokine IL-10

was not detected in supernatants of either peloruside- or paclitaxel-treated cells (data

not shown).
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Figure 3.2 Determining lcso volues of peloruside and paclitaxel in

splenocytes. Peloruside (filled circles) or paclitaxel (open squares) was

cultured for 72 hr with splenocytes that were stimulated with 3 <g/ml Con-A (a)

or unstimulated (b). Both peloruside and paclitaxel inhibited proliferation of

stimulated splenocytes (a) with little to no cytotoxicity in unstimulated

splenocytes (b). Data points are representative of duplicate or triplicate wells

lrom3-4experiments.

LPS stimulates BMMO primarily through tolllike receptor-4 (TLR4), resulting in

the release of pro-inflammatory cytokines. To confirm that paclitaxel was acting

directly on the TLR4 complex in its LPS mimicry, these experiments were repeated

on BMMO from TLR4 -/- and TLR2 -/- mice (Figs. 3.4 and 3.5). Not surprisingly,

the absence of TLR4 on BMM@ cultured with paclitaxel (Fig. 3.4) completely
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ablated cytokine produetion.'There was no dif.ferernee in ttre production o.f

inflarnuratory rnediators by TLR2 -/- and wild-type BIVIN{@ in response to paclitaxel

(Fig, 3.4), and,again, peloruside had no effeot onIL-l?, NO orTNF-e production by

TLR2 -| or TLR4 + BMM@ (Fig. 3.5). To detErrnr'ine whether the absenee of

cyrtokines in.s.upernatantsof'BMM@ culturcd with peloruside was due to general

cyrotoxicity, the viability of drug-s)(posed BMMQ was assayed by MTT reduction,

After a 72-hr ine,ubationr neither peloruside (Fie. 3.5 d) nor paclitaxel (Fig. 3.ut d)

were oytotoris to BMM@. Interertingl!, corcenE&tisns of pactitaxol in the eM range

produced up to.a Z'fold increase in MTT rcduction in wild-type,and TLR2y'- cells"

indicating a large increase in reducingegmpaunds such as NADH and NADPH

w,ithin these BMM'@, thus suggesting enhanced nrretabolic activity. This enhanced

activity was not seen in splenocytes (Fig. 3.3). These resutrts indicate that Atnougtt

paclitaxel and plonrsideshare a similar anti-mitotic mechanisrn o micrstubule

stabilisatiorL peloruside does not share the LPS mimicry of paclitaxel.
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Figure 3.3 Effect of peloruside and paclitaxel on BMMO. IFN-s

activated BMMO (5 X 104 cells/well) were cultured with either peloruside

(s) or paclitaxel (s) at a range of concentrations. The response to LPS

(20 ng/ml) on its own is presented for comparison. Paclitaxel, but not

peloruside, induced the production of lL-12p40 (a), nitrite (b), and TNF-

s (d) from BMMO. No TNF-< was detected from BMMO after I hr

culture with paclitaxel or peloruside (c); however, TNF-s was present in

paclitaxel-treated cultures at 2 hr (d). NO and cytokine levels were

determined as described in Materials and Methods. Results are

representative of duplicate or triplicate wells from 4 - 8 experiments. ***

P <0.001 compared to no drug, as determined by the Student's t-test

with a sequential Bonferroni correction.
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3,3.4 Both peloruside alnd pactitaxel culhrred wiun- BMM@ decrwe levels of

TNF.o and NO productionin theprsencn of LpS.

To detemine if paelitaxel orpeloruside could alter LP$-induced pro-inflammatory

cytokine produc'tion, both compouuds were adde'd to aultures of LPS-stimulated

BMMO. When cultured with either paclitaxel or peloruside under ttrese conditions,

decreased levels of TNF-e and, to a lesser extent, NO were obsefved eompared bo a

control with LFS alone (Fig. 3"6 a.b), The observed effect sf decreased TNF.g ,and

NO production was only seen at [.PS concentialions less than or equal to 20 ng/ml.

Wllen Bl\dld@ were cultured with LPS concentrationshiglur th,irn 20 ng/ml, the anti-

inflamnaabry effccts of the trno (!rugs were no,longer sbserved (data ilot pne$enrcd).

Interestingly, while peloruside and pactitaxel decreased TNF-g and NO production

ftom LPS-stimulatedBMM0, nsither dnrg had any obvious effect on ll--l2p4o

produedon frsm theee sanre celle (Fig, 3.6 e). Finaily,, similar to prevlous

'experiments (Figs. 3..4 d and 3.5 d), BMN4@ rreared with high ooncenrratio.ns of

paolitaxel ehowed an enhanced rn"etabolic activlty above the levels seen with LpS

alone (Fig. 3,6 d).
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Figure 3.6 Effect of peloruside and paclitaxel in Lps-stimutated BMMO.
BMM@ from wild-type mice were curtured with 20 ng/ml Lps and either
peloruside (s) or paclitaxel (<) at a range of concentrations. Both compounds
caused a significant decrease in levels of TNF-S (a) and nitrite (b) at higher
concentrations. lL-12p40 was unaffected by either drug (c). paclitaxel also
enhanced metabolic activity (d). Cytokine levels were determined by ELISA after
8 hr incubation. No (b) was determined by Greiss reaction after 72 hr. The MTT
assay (d) was performed as described in Materials and Methods after ZZ hr. All
vafues are expressed as ao/" of drug-free Lps-stimulated control BMMO.

Results are representative of duplicate or triplicate wells from 3 - S experiments.
* P <0.05, ** P <0.01, *** P <0.001, compared to Lps stimulation on its own, as
determined by the Student's t-test with a sequential Bonferroni correction.
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3.4 Discussion

3.4.f Immunosuppressive properties of sponge metabolites

Peloruside inhibited [FN-e production from e-CD3-stimulated T cells. primarily by

causing apoptosis. Later experiments, however, determined that this peloruside stock

had a potent cytotoxic contaminant (Appendix B), therefore invalidating these results

with peloruside. Interestingly. pateamine was not found to be immunosuppressive as

previously reported (Romo, 1998; Romo et u1.,2004). The relevance of pateamine to

this project is limited, other than its use as a control cytotoxic compound from the

same source as peloruside. Pateamine has been found to be a protein synthesis

inhibitor that blocks the function of the initiation factor, eIF4A (Bordeleau et a/.,

2005). Mycalamide and cyclosporin A, although immunosuppressive in their mode

of action, ue also used a.s controls in the present study, mycalamide as another non-

microtubule stabilizing cytotoxin and cyclosporin A as a true anti-inflammatory

agent. Mycalamide, like pateamine, is a protein synthesis inhibitorbut interacts

directly with the ribosome (Bunes and Clement, 1989).

One previous study looked irt possible immunosuppressive effects of peloruside

using a one-way MLR (Miller et a1.,2004). The MLR is a proliferation assay that

takes advantage of immune responses from allotypic cells. The responding T

lymphocytes will proliferate in response to foreign peptides displayed on the

allotypic MHC molecules located on APCs of the stimulator population. This method

of stimulation is selective, in that the only T lymphocytes that respond are those with

specific TCRs to the foreign peptides or those capable of recognising the allotypic

MHC, a reactive subset that is normally between l-lOVa of the total T cell

population. This experiment provided valuable information on anti-proliferative
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responses of peloruside, but did not identify specific subsets of lymphocytes that

were affected by the compound.

The method employed here used e-CD3 antibody stimulation of splenocytes. This

causes nearly all T cells in the mixed population of splenocytes to proliferate due to

the direct stimulation of the TCR via e -CD3. eliminating the need for APCs and

decreasing the variability often seen in the MLR. [t was hoped that the data generated

from this experiment would determine if there is a specific immunosuppressive eff'ect

in CD4* or CD8n T cells in response to peloruside. Gates for CD4* and CD8'cells

were set and independently observed in the FACS analyses. Because the compounds

used in these experiments were equally cytotoxic to both populations of T cells in a

dose-dependant manner, the populations were combined and treated as a single

population of T cells. No direct immunosuppression was observed from pateamine or

the contaminated peloruside as shown by the concomitant decrease in IFN-e and

viability. Mycalamide, on the other hand, reduced prolit'eration and decreased IFN-e

production without compromi.sing cell viability, similar to the cyclosporin A control,

suggesting that further research into the immunosuppressive activities of mycalamide

are warranted.

3.4.2 Effects of peloruside on Con-A stimulated splenocytes

Since the new stock of peloruside had only been tested for cytotoxicity in a

preliminary experiment (see Appendix B), it was cultured with splenocytes,

alongside paclitaxel, to confirm its cytotoxicity. Peloruside was cytotoxic to

proliferating splenocytes tiom Con-A stimulation with an ICso value of 83 nM.

Paclitaxel was also cytotoxic at an IC56 value of 30 nM. These lCso values are
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comparable to what has been previously reported for peloruside (lCso = I nM - 66

nM; Hood, 2002; Gaitanos, 2005) and paclitaxel (ICso = 2 nM - 53 nM; Gaitanos.

2005) in cancer cell lines in this laboratory. tt is important to point out thar Con A is

a T cell mitogen, and splenocytes are typically comprised of 30vo T cells. 6oa/o B

cef ls, and the remainin g loo/o are other leukocytes. As expected, complete ablation of

MTT reduction did not occur in Con A-stimulated splenocytes treated with drugs at

the higher concentrations (Figs. 3.2 b). Although, paclitaxel has been shown to be

immunosuppressive on the basis of its cytotoxicity to proliferating B cells (Lee et al.,

2000), there is conflicting evidence as to whether or not it is cytotoxic to

prof iferating T cells. In the studies by Lee et at.(.2ooo), pacliraxel-induced

cytotoxicity was not seen in Con A-stimulated splenocytes, contrary to what had

been described previously (Brown et al.,1985). In the present study, the cytotoxicity

of paclitaxel was confirmed in Con A-stimulated splenocytes with an IC-1 value of

30 nm. This value is in line with what others have seen using paclitaxel in cancer cell

line cultures (Gaitanos, 2005; Gaitanos et u\.,2004; Hood, 2002; Jordan et al., 1993).

These studies and those of this thesis support the idea that anti-proliferative

compounds may be of benefit to inflammatory autoimmune disorders by taygeting

the dividing populations of autoreactive T cells that mediate many of these diseases.

3.4.3 Effects of peloruside in BMMO

Peloruside' in contrast to paclitaxel. does not activate murine BMM@ to release the

pro-inflammatory mediators TNF-c , rL-llp4o and NO. The MTT re<lucrion assay

confirms that neither peloruside nor paclitaxel is cytotoxic to BMM@, and moreover,

paclitaxel causes an increase in reductive metabolism in the I to l0 eM

concentration range, possibly due to the induction of the pro-inflammatory
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machinery. when BMMO were cultured with Lps and either drug at low eM

concentrations, there was a decrease in the production of TNF-g and NO, but not tL-

l2p4o. An interesting observation that followed from these results was that greater

than 20 ng/ml LPS completely overshadowed the TNF-c -reducing effects of

paclitaxel and peloruside (data not shown). Taken together, these results indicate that

unlike paclitaxel, peloruside does not induce the production of pro-inflammatory

mediators and like paclitaxel, specifically reduces TNF-g and No production by

BMMO at lower concentrations of the drug.

Both paclitaxel and peloruside are known to be cytotoxic to proliferating cells by

binding to a site on microtubules and preventing tubulin depolymerisation.

Peloruside binds ro a site on tubulin distinct from paclitaxel, although the

microtubule stabilizing effect is similar (Gaitanos et al., 2004; Hood er al.,2oaz:

Jimenez-Barbero et a1.,2006:' Pineda et al.,zoo4). until now, however, there have

been no investigations into the effects of peloruside on non-proliferating cells such as

macrophages. The immunomodulatory effects and cytotoxic nature of paclitaxel. on

the other hand, are well characterised. lts ability to cause apoptosis in dividing cells

by binding to microtubules and preventing depolymerisation has made paclitaxel one

of the most successful treatments for cancer to date (Gligorov and Lotz, zC/|,4).

In addition to its tubulin-binding properties, paclitaxel also stimulates the murine

TLR4 complex in a manner nearly indistinguishabte from LPS (Byrd-Leifer et al.,

2001). This stimulation occurs with concentrations of paclitaxel in the low e M range,

causing murine BMM@ to release inflammatory cytokines and NO. In these

experiments we found TNF-c in BMM@ supematants after 2 hr but not 8 hr exposure
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to paclitaxel. Other studies have reported higher levels of paclitaxel-induced TNF-g

production for more prolonged periods (Bogdan and Ding, 1992;Byrd-Leifer et al.,

2001). These discrepancies may be due to the use of thioglycolate to elicit peritoneal

macrophages in the aforementioned studies (Bogdan and Ding, 1992; Byrd-Leifer er

ul.,2o0l), as thioglycolate is known to induce an inflammatory phenotype (Loke and

Allison, 2003). The enhanced metabolic activity of BMM@ in response to paclitaxel

has never been shown before, although it is not surprising that the energy

requirements of an inflammatory response would increase the production of NADH

and NADPH, thus enhancing MTT dye reduction (Berridge et a1.,2005).

since paclitaxel by itself induces an inflammatory response in BMMO, it was

important to determine if it synergises with LpS to enhance inflammation.

Surprisingly, both paclitaxel and peloruside had no effect on the release of IL- lhp40

from BMMO cultured with LPS, but both drugs reduced the tevels of TNF-e and NO

in these LPS-stimulated BMMO without being cytotoxic. The reduction of No was

significant. but not nearly as marked as the reduction of rNF-e. The mechanism

behind NO reduction may have to do with the reduction of TNF-e, as the production

of inducible nitric-oxide synthase (iNOS) - the enzyme primarily responsible for NO

synthesis in MO - is a downstream effect of rNF-e (vila-Del sot er al., 20o6\.

Although it is difficulr to speculate at this time, one mechanism by which these

compounds may specifically affect TNF-g production is through microtubule-

mediated secretion of TNF-c by BMM@ when stimulated by LPS. previous studies

have shown that the microtubule depolymerising compound, colchicine, inhibits

macrophage production of rNF-e, GM-csF, and IL-6 in response to Lps (Rao et al.,

1997).ln contrast to the results presented here, no change was found in NO levels in
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the study by Roa et al.his likely that the I.PS response has a mierotubule dependent

and independent set of pathvays. Similarly, microtnbule stabilisati,on may be

responsible for the decrease in LPS-induced production of TNF-c in response to

peloruside or paclitaxel. Frevious studies have estabtished that TJ-.{F-e is a rate-

li niting step in the pro-inflammatory process, and neutralisatisn of TNF*e by

monocjonal antibodies cauges a narked nmelioration in several autsimrnurp diseases

(Feldmann, zm3-), as well as decreases paclitaxel-mediated NO p'roduction by

perttoneal macrophages (Mullins et aI.,1991). In addition, neuffiisation of TNF-e

also cau$os a reduction of GM-CSF and IL-6 (Feldmann et ail.,I996) in a similar

manner to what has been observed with microtubule-depolymerising aompounds.

The findings presented herein raise the possibility that selective microtubule-

stabilising cornp-ounds, such as peloruside, but nst paclitaxel, may, in addjtion m

having aati-mitotic effeets on T cell population, -be able to itnpact sn infl'ainmation as

well by preiventing secretion of TIrlF.-e and the cascade of inflammatory mediatom

,that follow.
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Chapter 4: In Vivo Immunomodulatory Effects of

Paclitaxel

4.1 Introduction

Paclitaxel is an extremely hydrophobic molecule. Because of this, it must be

dissolved in solvents such as ethanol or DMSO. The clinically-used formulation of

paclitaxel (Taxol@) is designed to overcome the challenges presented by the

hydrophobicity of the compound. Taxol is comprised of paclitaxel dissolved in

ethanol and Cremophor EL ( l : t ), diluted 5- to 20-fold in saline. Cremophor EL itself

is not without effects. as it is known to cau.se hypersensitivity reactions (price and

Castells, 2002).

The LPS-mimicking inflammatory effects of paclitaxel, as shown in Chapter 3. are

clearly demonstrated in vitro by others (Byrd-Leifer et a\.,2001; Manthey et al.,

1994; Perera et ctl.,l996). Surprisingly, however, there are few studies investigating

paclitaxel-induced LPS-Iike roxicity in vit,o. Mullins et al. (l99gb) found thar

splenocytes fiom Taxol-injected mice showed a decreased proliferative response

when isolated 24 hr after injection. In addition, splenic macrophages isolated from

these same mice showed enhanced NO production compared to untreated animals

(Mulfins et al., 1998a). There was no effect seen in control animals receiving

Cremophor EL or saline. Taken together, these results suggest that Taxol exerts both

anti-proliferative and inflammatory response s in vivo.
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As mentioned previously, one study looked at the use of a cremophor El-free

micellar formulation of paclitaxel to treat Lewis rats immunised to develop EAE

(Cao et a/., 2000). This study fbund that paclitaxel was capable of decreasing the

incidence and delaying rhe onset of EAE. wirh 3 treatmenr doses of l0 mg/kg

bodyweight, only 3 out of l5 rats developed clinical disease, and these presented

with a delayed onset and decreased severity when compared to the control group,

which had looo/a incidence. Interestingly, | | of the I5 treated rats died for

unexplained reasons only days after their final treatments. When they died, however,

there were no EAE symptoms or spinal cord lesions present. There are no other

published studies to date that look at the use of paclitaxel in EAE animal models of

disease.

It should also be mentioned that bacteriat LPS is a potent stimulator of inflammation,

and exposure to LPS in the bloodstream can be fatal. Adverse effects of LPS toxicity

include complement activation, fever. decreased cardiac output, and ..leaky"

vasculature in the lungs causing a fluid build-up. Ultimately, damage to the heart,

lungs, and kidneys ensues, potentially leading to multiple organ failure. Interestingly,

mice that lack a functional TLR4, such as C3H/HeJ mice, are resistant to the toxic

effects of LPS (Sultzer, 1968).

Aims

Because of adverse effects of LPS toxicity, the primary aim of this chapter was to

determine whether the LPS-mimicry of paclitaxel, in combination with an enhanced

inflammatory environment as is found in EAE, was responsible for the toxicity

observed in the aforementioned study by Cao et at, (2000) in Lewis rats. Secondlv.
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this chapter sought to deternrine if'Taxol modified EAE in C57BL/6 mice using the

same dosing reginie established by Cao et ul. (2000) in rats. The dosing regime used

by Cao et ul. (200o) involved three injectiorrs given on days 6. g, and l2 after

immunising lbr the induction of EAE.
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4.2 Methods

4.2.1 Taxol preparation and administration

Taxol, a formulation of paclitaxel dissolved in ethanol and mixed into Cremophor EL

( | : | ), was diluted between S-fold and l0-fold in sterile pBS. Age- and sex-matched

animals received Taxol ( l0 mg&g or 20 mg/kg) in 500 e l injections i.p. on .specified

davs.

4.2.2 FACS staining and analysis

Cells fixed in FACS buffer (Appendix A) were labeled with FITC-conjugared anri-

B220 antibody, PE-conjugared anri-cD8 antibody, and perCp-conjugated anti-cD4

antibody (all from BD Pharmingen) to identify B cells, CD8*T cells, and CD4+ T

cells. respectively. Labeled cells were analysed on a FACScan (Chapter 2), and the

proportions of specific cell subsets were determined with CellQuest Pro software

(BD) (see Appendix C lbr gating).

4.2.3 Re-stimulation of LN cells.

Lymph nodes and spleens were removed from mice atier the treatment regimes. and

the splenocytes and LN cells were isolated as described in Chapter 2. Cells ( 106/well)

were cultured with multiple concentrations of Con A, M.tb., or MOG for 24 hr or 72

hr at 37'C. Supernatants were removed for IFN-e detection by ELISA (see Chapter

3.2.5) and replaced with fresh crcM, followed by the measurement of the

percentage of cell proliferation by the MTT assay.

4.2.4 Immunohistochemistry (IHC)
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Tis'gues, including splnal cord and ihtestine, were rernoved frorn mice and stored in

zinc fixative (Appendil A). Paraffin-embedded sections (6 em thick) were mounts-d

otr slides for IHC staining as described in Chapter z to deter,m,ine if active

proUferation had occurtsd- Sections were iucubated with a l:100 diluti.on of the

rnarker antibody, x113i'prolifer,ating cell nuclear antigen (PCNA) (blorinylated mogse

anti*vertebrate PCNA ftom PCl0 clone; BD pharmingen), and labeled eells

identified by DAB staining. AftercountEr,stainingwith methyl s*G pcisitive

staining re$ons of tissue were identified by the distinctive brorvn DAB coloratlon

under a light microscopa
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4.3 Results

4.3.1 Mice survive the maximum tolerated dose of Taxol in an inftammatorv

environment.

To determine if mice can survive treatments of raxol in an inflammatory

environment, wild-type mice or TLR4 -/- mice were immunised subcutaneously (s.c.)

in the rear flanks with cFA (200 e I tFA emursified with 500 e g/mouse M.

tuberculosis), and treated with l0 mg/kg Taxol, or the reported maximum tolerated

dose (MTD) in C57BU6 mice of 20 mg/kg of raxol (Kim er ul.,2o0l). This

immunisation procedure is typically used to induce EAE, except these particular

immunisations lacked the myelin antigen, which is obligatory for development of

EAE. The Taxol trearment regime was the same as reported by cao er a/. (2000) [i.e.

Taxol administration on days 6, 8, and l2 posrimmunisation (p.i.)1. Because

anaphylaxis and LPS toxicity are generally accompanied by laboured breathing and

hyperthermia, respectively, general appearance, body temperatures, and body

weights were monitored daily for the week of the Taxol treatments (see Chapter 2).

Overall, body temperature was minimally affected by Taxol treatments in all of the

treated groups (Fig. a. I a). Moreover, no significant weight-loss occurred in any of

the treatment groups (Fig. 4.lb). Blood serum from each group was tesred for

excessive inflammatory cytokines (IFN-e; TNF-c ), but no differences were observed

between groups (data not shown). Throughout these experiments, animals appeared

healthy, active, and well-groomed. These data suggest that Taxol does not induce

LPS-like toxic shock in wild-type mice fbllowing the treatment regime used by Cao

et al. (2OOOI
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Figure 4.1 Taxol has no effect on body temperature or weight.
wild-type (open) or TLR4 -/- (filled) mice were treated with raxol
(squares) on days 6, 8, and 12, or were left untreated (diamonds).

weight (b) and body temperature (a) were measured dairy for each

treatment group. No significant differences were seen in body

temperature or weight-loss between groups (n = 3 mice/group).

4.3.2 Taxol on days 6, 8, and 12 p.i. does not affect EAE disease development.

In the study by cao et ul. (20Q0) in rats, Taxol delayed rhe onset of EAE with

treatments given on days 6, 8, and 12 p.i. These times correspond to the peak

proliferation of peripheral myelin-reactive T cells, as well as the initial onset of

symptoms (Juedes et ul.,7oo0; Targoni et al.,zool). In the present studies in mice

using doses of l0 mg/kg and the MTD of 20 mg/kg, there was little difference

between the disease incidence, severity, or day of onset between Taxol-treated and

untreated animals (Fig. a.2 a-b). when these data were combined with a previous

experiment (n = 5) using the same treatment regime and l0 mg/kg Taxol (n =
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lO/group combined), there was still very little difference between disease onset and

severity in Taxol treated animals versus controls (Fig.4.2 c-d). Taken together, these

data suggest that Taxol is ineffective at altering EAE symptoms and progression in

C57BU6 mice using this treatment regime.

To identify differences in lesions present within the spinal cord of the animals treated

above, histological analysis was performed using hematoxylin and eosin (H&E) stain

on fixed tissue f'rom animals harvested on day 20 p.i. (Fig. a.3 a. c, & e). In H&E

stained sections, lesions were seen as a dense accumulation of purple-stained

intlammatory cell nuclei. The total number of lesions were determined for each

spinal cord and individually given a score based on the size of the foci. To ensure

that subjective scoring was equally applied to all spinal cords, the disease scores

from each animal were not compared to the slide scores until after the slide scoring

was completed. As typically seen in EAE animals. lesions were closely associated

with disease severity - i.e., spinal cords with the most lesion scores of 2 or 3 came

from the mice with the highest disease scores - regardless of whether or not they

received raxol (Fig.4.3 a&c). Exceptions, however, were inflammatory foci from

animals in remission, which had fewer and milder inflammarory fbci. Although the

scores remained elevated in these remitting mice, it is likely that the damage incurred

during the active disease was perrnanent, and further recovery is limited. Animals

that did not show symptoms of EAE also did not have lesions in their spinal cord

(Fig. 4.3 e)- The total number of inflammatory foci in the Taxol treated group (34.8 +

I I .6) and untreated group (55.4 t 16.0) were not significantly ditferenr from one

another (Student's r-test; n = 5 for both groups).
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Ts see if Broliferati'sn had occured in the cellular infiltratee, IHC was perfornred on

serially cut sections to label proliferati.ng cells in S-phase in or near the lesions in the

spinal cords. In these serially cut sections on which anti-PCNA IHC was performed,

th€fe was no evidence of proliferation within any of the lesions present in the spinal

cordsfrorn Taxol treated and untreat€d animals (Fig. rt.3 b&d, respectively). A

portion of the intestine was used as a positive control for pCNA staining and, as

expected, the ent€rocy-tes showed positive staining in the crypts, thus eonfirming that

the cellular infiltrates were not proliferating within the spinal cord 20 days after

immunisation, regardless of keatrnent status.
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Flgure tl.8 EAE splnal cord lesions.
Lesions are seen as a dense accumulation of H&E stained eells in regions of myelin
darn'age. TWo representative lesion sites are circled, b-ut other. areas of lesions exist
in the photornierographs, The spinal cords of mice with EAE were stained with H&E
(a and e), or anti'PCNA uslng IHC (b and d). A portion of an intestine was used as a
positive controlfor anti-PCNA staining (e); brswn stainirrg lndioates the presence of
PCNA, hence only the crypts, where proliferating enteroctrrtes are expected to occur,
are saining positir,€. No signifieant differences between the total number and
severity of inflamrnatory fociwere seen between Taxol'treated groups (a) and
untreated groups (c) with EAE. ln addition, the spinaleord infiltrates w€re not
proliferating in any group at,the time the tissue was harvested (day 20 p.i.). shown
here are represenhtive pictures taken from l,mouse/per group. Both miee shown
were at peak disease (4.0 +) when tissues were harvested. Photographs were tqken
at xl 00 rnagnification,
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4.3.3 Lymphocyte profiles are unaffected by Taxol treatments.

In order to determine if selective depletion of specific cell populations in the lymph

nodes was occurring tbllowing Taxol treatments, FACS analyses (see Appendix C)

were performed on DLN cells isolated from the animals treated in the above

investigations (Chapter 4.3.1 and 4.3.2) 20 days afier the initial immunisations. In

addition, two groups of mice immunised for EAE were included, a Taxol-treated and

an untreated group. Lymph node cells were isolated and pooled within individual

treatment groups. Because of pooling, the total number of LN cells from each

treatment group was not known. Specific cell populations, including CD4* T cells,

CD8* T cells. and B22O* B cells, were identified as a proportion of the total cells.

Within the total populations of the LN from each pooled group, the proportions of

CD4*T cells, CD8* T cells, and 8220" B cells remained largely unaffected in both

wild+ype and TLR4 -/- mice, regardless of whether or not the mice were immunised

to induce EAE or treated with Taxol (Table 4.l ), thus suggesting that Taxol does not

preferentially alter specific lymphocyte subsets when administered in vivo. Whether

or not Taxol, when administered with the current treatment regime, has an effect on

the total number of LN cells remains unclear since quantitative collection of cells

was not attempted.
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lnjection d. 6. 8. and I2

0D4+ PBS 3remophor EL paclitaxel
(10 mo/ko)

oaclitaxel
[20 mo/ko)

WT PBS
TLR4./- PBS

27 !1
32

27.5 !1.5
31

29 !7
32.5 t 3.5

23

25
WT CFA
TLR4-i. CFA

201 1

24 !0
19.5 r 3.5
23

26 !9
26r6

't6

19
WT EAE 26 27

a

E
E

Table 4.1 Lymphocyte populations after Taxol treatments.
Lymphocytes were isolated from the draining lymph nodes on day 20
p.i' wild-type (wr) or TLR4 -/- mice were immunized with pBS or
CFA. Some WT mice also received CFA+MOG (EAE). On days 6, 8,

and 12, animals received either PBS, Cremophor EL, Taxol (10

mg/kg), or Taxol (20 mg/kg) via i.p. injection. Cell population

percentages were determined by FACS analysis and shown
separately as cD4+ cells, cD8+ cells, and B22o+ cells in descending

order, respectively. Numbers without + error values indicate that the
data were from a single experiment. All other data were from 2
experiments.

CD8+ PBS Cremophor EL paclitaxel
(10 mo/ko)

paclitaxel
(20 mo/ko)

WT PBS
TLR4./- PBS

28.5 r 2.5
l0

28 t5
29

29.5 t 0.5
28.5 !2.5

27
29

yVT CFA
rLR4-i- CFA

18.5 t 2.5
19.5 t 1 .5

17.5 !2.5
20

2't 15
21 t6

16

18
,VT EAE 21 19

B,220+ PBS 0remoohor EL paclitaxel
(10 mo/kq)

paclitaxel
(20 mo/ko)

WT PBS
rLR4./. PBS

32.5 t 't.5

26
36.5 t 4.5
34

32.5 r 6.5
301 1

40
37

WT CFA
TLR4-/. CFA

55.5 r 3.5
50.5 t 1.5

5818
40

48 i 15
46.5 r 11.5

31

34
WT EAE 46 44
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4.3.4 Re-stimulation of lymphocytes ex vivo causes inconsistent inflammation.

Although lymphocyte populations were relarively unaffected by the Taxol

treatments, the proliferative or effector capacity of these lymphocytes may have been

impaired. To test this, LN cell.s from mice that had undergone cFA or pBS

immunisations and the above treatments (Chapter 4.3.1 and 4.3.2) were re-stimulated

with either M.tb. or con A 20 days p.i. Levels of IFN-e and proliferation were

determined for each group and compared. Three experiments were carried out, and

the first and third experiments showed enhanced tFN-e production in cultures of LN

cells fiom Taxol-treated wT animals; whereas. the second experiment showed

decreased IFN-e production in all groups. Initial results showed that the LN cells

from Taxol-treated wT mice produced higher levels of tFN-e in response to M.th.

(Fig. 4.a a) compared to TLR4 -/- mice (Fig. 4.4 b), suggesting rhar Taxol enhances

inflammation by a TlR4-dependent mechanism. A third experiment of a similap.

design, using LN cells f'rom wr animals treated with l0 mg/kg or 20 mg/kg Taxol.

also responded to M.th. re-stimulations with enhanced IFN-e production (data not

shown), lending support to the first experimental results. The second repeat of this

experiment, however, failed to produce the same results. In this second experiment.

the LN cells from Taxol-treated animals (WT and TLR4 -/-) pro<luced lower levels of

IFN-g in response to M.tb. (Fig. 4.4 c-d) compared to the CFA-immunised/untreated

controls. A similar result was obtained when these same LN cells from this second

experiment were stimulated with con A (Fig.4.4 e-0. Moreover, a MTT assay

performed on the cells from this second experiment showed that extensive

proliferation occurred and to a simileu level in all groups in response to Con A (Fig.

4.4 g-h), indicating that the lack of IFN-c production was not due to an inhibition of

proliferation. Taken together. the data obtained from the second experiment suggest
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that Taxol intefferes wi.th [FN-e productionin an unknown, TlR4-independent

manner. Because of the pooled samples and timing of LN removal in all three

experirnents, it is not clear if the observed differences were related to the Taxol

tr€afiien'ts stage o-,f, immune r€s:ponse to the immunisation, or oimply experinlental

variation. To clarify thiS, the experimerrtal design would have to be modified to

elim inate these variables.
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Figure4.4 Lymphocyte re-stimulations.

Draining lymph node cells were isolated from WT (a, c, d, and e) and

TLR4 -/- (b, d, f, and g) mice that had been immunised with CFA
(triangles) or nothing (all other shapes), and were then treated with pBS

(open shapes), or Taxol (filled shapes) on days 6, g, and 12 p.i. Cells
were cultured for 72 hr with M.tb. (a-d) or Con A (e-h). Supernatants were
removed for IFN-s detection (a-f), or assayed for proliferation by MTT (g-

h). Three experiments were performed. Results from Exp 1 are presented
in panels a-b. Exp 2 results are given in paners c-h. Results from Exp 3
(data not presented) were similar to Exp 1. panels e & f show that con A-
stimulated cells respond similarly to the M.tb.-stimulated cells from c & d.

The MTT assay (g-h) shows that the lack of rFN-s production (e-f) was
not due to inhibition ol proliferation.
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4.3.5 A single injection of Taxol has no impact on LN cell, splenocyte, or

intestinal cell proliferation in vivo.

A previous study found that Taxol (l5-30 mg/kg) adminisrered in vito inhibits

proliferation in Con A-stimulated splenocytes and purified CD4* T cells er viun after

24 hr (Mullins et al..1998b). In the present study, to determine the recovery time of

lymphocytes after a single treatment of raxol, splenocytes and LN ceils were

isolated I or 6 days after a single injection of raxol (20 mg/kg), followed by con A

re-stimulation e-tr t,ivo for 24 or 72 hr. The 72-hr culture was performed to ensure that

cells have had the full opportunity to proliferate, since 24 hr might not have been

enough time for sufficient proliferation to occur. In contrast to the previous report

(Muf lins et al., 1998b), there was little to no difference between the prolif'erative

capacity of either splenocytes or LN cells from Taxol-treated animals compared to

untreated animals at any time following the initial injection (Fig. 4.5). The 24-hr

cultures (Fig. 4.5 a-b) are expressed as a percentage of the unstimulated control to

show that cells do, in fact, proliferate in response to Con A within this short time

period, despite the earlier Taxol treatment. Because unstimulated splenocytes and LN

cells do not survive very long in culture, data from cells stimulated for 72 hr (Fig. 4.5

c-d) are shown as raw absorbance values, rather than a percentage of the

unstimulated controls. Although there does appear to be slight differences in the

degree of prolif'eration of lymph node cells after 72 hr (Fig. 4.5 c). this difference is

not signiticant with 3 eglml Con A stimulation, and is thus likely to be an artifact.

Also, this diff'erence is not consistent with the splenocyte data. nor the 24-hr lymph

node cultures. In addition, this experiment was repeated with a lower dose of Taxol

( l0 m8/kg) with similar results (data not shown). These data suggest rhar a transitory

effect of a single Taxol treatment is not present in naive T cells after 24 hr.
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Figure 4.5 A single Taxol treatment has no effect on proliferation.
Taxol (20 mg/kg)was administered to mice either 1 day (open circles) or

6 days (open squares) before removing lymph node celrs or splenocytes.

cells were cultured with three Con A concentrations for 24 hr (a&b) or 72
hr (c&d). Proliferation was determined by the MTT assay. cells from

Taxol-treated mice showed little difference in proriferation when

compared to cells from untreated mice (closed triangles). A student's f-

test showed no significant difference between Taxol-treated cells and the
untreated cells cultured with 3 eg/ml Con A.

ln a similar experiment, animals were treated with l0 mg/kg Taxol, followed by the

removal of a portion of intestine at l, 4. 7, or | 3 days after the Taxol injection. The

intestinal portions were fixed, paraffin-embedded, and mounted on slides. IHC

analysis with an anti-PCNA antibody was performed to determine if a single
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injection of Tax.ol could inhibit proliferation from consmntly dividing cells, such as

those in the intcstinal cr-Jprs. Similar to what was f,ound in LN cells and splenocytes

with a single injection of Taxol, there was no difference in intestinal celtr

proliferation between any o-f the animals tested at all tirne points (Frg. 4.6). This is

evidentby the brown *-taining in the intestinal crypts, where proliferation

constitutively @eur$, in all samples. The negative lHC-staining control sample

shows no background suining sccurred in the intestinal crypts (Fig. 4.6 0. Ttre

potency of the paclitaxel stock solution used in these experiments was oonfinned in

othel experirnents carried out at about the $ame tine, as well as $eparate experirnents

perfornred simultaneously by sthet members of this laboratory in their own studies.

It was eoncluded thereLore that either the dose of Taxsj is insuffieient to inhibit

intestinnl cell proliferEtion, or that a single dose of Taxol is not enough to inhibit

proliferation in vtvo.

95



Figure 4.6 Proliferatlon occurs In intestines after single inlection of

Taxol. A single injection of Taxol (10 mg/kg) was adminlstered to mice, and

the intestines were removed following 1 'day (a), 4 days (b), 7 days (c), or 13

days (d) to identify transitory effects of Taxol. An untreated rnouse intestine

(e) was used as a positive control. The negative control (f) was obtained by

not using the anti-PCNA antibody during IHC staining. Enterocyte

proliferation occurred in all samples, evident by the brown-stained cells in the

intestinal crypts. Pictr,rres were taken under xl00 magnificatisn.
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4.4 Discussion

Taxol induces the production of inflammatory cytokines from murine macrophages

in vitrrs at concentrations above I eM. Based on the total body volume of a mouse,

these concentrations are likely to be surpassed when Taxol is injected i.p. at the

concentrations used in the experiments above; therefbre, previously reported

paclitaxel toxicity could have been an inflammatory-associated event. Although

localised Taxol concentrations in these experiments were not tested in specific

tissues (blood, fat, peritoneal cavity, etc.), human studies that looked at i.p. injections

found that a rapid uptake (within hours) and sustained bioavailability occurs when

paclitaxel is administered i.p. (Gelderbtom et a1.,2002'y. Taxol was injected into mice

that were immunised with an inflammation-causing adjuvant, CFA. In this study,

however, these animals tolerated the dosing regime chosen from a previous study in

rats by cao et al. (2000). Even ar rhe MTD, the animals appeared healthy and were

visibly and physically unaffected. To repeat previous published findings regarding

the impact of Taxol on EAE (Cao er al.,2OO0), the same dosing regime was tested in

mice receiving EAE immunisations. There was no difference in disease onset or

severity between control mice and Taxol-treated mice. Moreover. lymphocyte

profiles were very similar between the two groups one week after Taxol treatments.

There was not a consistent alteration in inf'lammation when these lymphocytes were

restimulated. Furthermore, the proliferative capacity of lymphocytes that were

isolated from Taxol-treated mice was unaffected as little as 24 hr after the Taxol

treatment. Thus, it was concluded that Taxol, with the reported treatment regimes,

does not noticeably enhance inflammation. nor does it affect EAE disease

progression in C57BU6 mice.
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The previous study by cao et al. (2000) tbund paclitaxel, delivered in a micelle

formulation, delayed the onset of EAE in Lewis rats, but the aurhors failed to

comment on the LPS-mimetic properties of paclitaxel. The fact that I l/15 animals

treated with what was determined to be the best disease-delaying concentration of

paclitaxel succumbed to an unidentified toxic effect was unfortunate, especially since

paclitaxel is a very inexpensive and readily available anti-cancer compound. In the

present study, to determine if Taxol displayed inflammatory properties in yiyo, the

drug was administered to WT mice and TLR4 -/- mice and the effects compared to

identify potential toxicities. Because paclitaxel does not induce inflammation in

TLR4 -/- murine macrophages, TLR4 -/- mice were assumed to be good controls

since no TLR4-mediated inflammation should be present. Surprisingly, different

doses of Taxol did not have any visible ef fect on either group, nor was there a

significant difference in weight or body temperature. The lack of a pyrogenic

response to Taxol in wild-type animals was particularly surprising due to the TLR4-

stimulating nature of the drug. Mice that lack TLR4 are resistant to the pyrogenic

efTects of LPS, indicating that TlR4-stimulation is crucial for hyperthermia. It is

unclear why Taxol did not induce a pyrogenic response! since both LpS and

paclitaxel stimulate TLR4 in a comparable manner.

since the MTD of raxol was shown to be.safely tolerated in c57BU6 mice

(discussed above), mice were immunised with MOG/CFA to induce EAE, and were

then treated with Taxol on days 6, 8, and lz p.i. For unknown reasons this Taxol-

dosing regime did not have the same effects in the C57BL!6 mouse model of EAE as

previously reported in a Lewis rat EAE model (cao er al., zoo0), although
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dift'erences in response between mice and rats is not unexpected, since even the

species of mouse may affect EAE induction profiles,

Macrophages in C57BL/6 mice have shown enhanced production of inflammatory

mediators 24 hr ex yivo after treatments with raxol (Mullins et al., 1998a). Here. an

attempt was made to determine if Taxol treatments enhanced the inflammatory

capacity of LN cells isolated tiom immunised, Taxol-treatedC5TBL16 mice. Initial

results suggested that there may have been a TLR4-dependent enhancement of

inflammationin M.tb.-restimulated LN cells from Taxol-treated animats; however,

this was only seen in two out of three experiments. In the second. negative

experiment, LN cells from Taxol-treated animals responded differently to the

controls, in that IFN-c levels were reduced by a TlR4-independent mechanism. This

is interesting, because in all three experiments, the DLN cells isolated from the

Taxol-treated mice were responding differently to the controls, but in dissimilar

ways. It is possible that the timing of the re-stimulations affected the outcome, since

they were performed approximately, but not exactly. one week after the final

treatment of Taxol. In addition, the LN cells tiom each treatment group were pooled,

introducing the possibility that an individual mouse skewed the results of the group.

Experimental variation cannot be ruled out either, since the immunisations in each

experiment ntay have minor differences that affect the immunopathology, including

the timing of inflammatory resotution in each experiment. while these results

suggest that paclitaxel has the ability to enhance inflammation in vivrl, care musr be

taken in interpreting these results due to the variability between mice and their in

yivo inflammatory responses to drugs.
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The increased production of IFN-e in DLN cultures from Taxol-treated WT mice. but

not TLR4 -/- mice, suggests that Taxol has affected the immune response through

LPS mimicry. This would also indicate that the eft'ects of Taxol lasted more than one

weeh since the LN cells were not harvested until one week after the last Taxol

treatment. To see if this effect of Taxol on enhanced IFN-c production was genuine,

a new experimental design would be needed, such as harvesting DLN cells 24 hr

after the last Taxol treatment, to reduce the variables mentioned above.

Re-stimulations of purified T cells with Con A have shown that Taxol exerts anti-

proliferative effects ex vivct 24 hr after injecting the mice from which the T cells were

obtained (Mullins et al.,1998b). These findings, however, are in contrast to the data

presented in Fig. 4.5. Not only was a single dose of Taxol ineffective at inhibiting

LN cellproliferation24hr later. but splenocytes were also unaffected, despite using

two different ex vivo culturing times (24 hr and 72hr).In addition, intestines were

removed from the Taxol-treated animals to see if the enterocyte prolif'eration in the

crypts was affected. Intestinal crypts are constitutively proliferating: therefore, they

are likely to be sensitive to an anti-mitotic agent like Taxol. The intestinal crypts

showed proliferation was still occurring at all time-points tested in both the control

and Taxol-treated animals. The potency of the Taxol used in these experiments was

demonstrated in Chapter 3, ruling out the possibility that the Taxol stock solution had

lost its potency. Taken together, this evidence is highly suggestive that a singte dose

of Taxol is unable to affect T cell proliferation, or proliferation of other non-immune

cells in vivo-
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One possible problem with treatments spaced over 24 hr apart, such as the treatments

performed in this study (6, 8, and l2 days), is that a prolonged time period may allow

nalve T cells to respond to the immunising antigen. The MOG/CFA emulsion creates

a subcutaneous cyst with persistent antigen exposure, providing the DLN cells with a

constant source of MOG. As shown in Fig. 4.5, naive lymphocytes were unaffected

by the anti-proliferative effects of Taxol after at least 24 hr following treatment. The

cytotoxicity of Taxol has been shown to be a function of the time to drug exposure

over a certain threshold concentration (Helson et ul., 1993). This threshold

concentration may be breached using a widely-spaced treatment regime, allowing

naive MOG-reactive T cells to become activated and proliferate during the treatment

windows between days 6 and 8, or days 8 and 12. Since clonal expansion occurs very

quickly, it is possible that in the days between Taxol reatments these expanded T

cells stop expanding, avoiding the cytotoxic effects of Taxol, and migrate into the

periphery where they can eventually become encephalogenic. It may be necessary to

close these "windows" of proliferation in order to see an effect in EAE by giving

more closely spaced injections of Taxol.

Overall, these experiments suggest that Taxol does not induce a toxic inflammatory

response in mice, which could have explained the high lethality observed by Cao at

a/. (2000) in rats. Also, the results suggest that the Taxol dosing regime performed

here, as used in the rat model by Cao et al. (2000), may not be suitable for impacting

on EAE progression in mice. Interestingly. paclitaxel is a substrate for the P-gp

efflux pump, which is known to be active in many drug-resistant cancer cells, as well

as organ-specific tissue types (Maher et a\.,2005; Richaud-Patin et a\.,2004). The P-

gp eftlux pump acts by removing selective drugs of broad substrate characteristics,
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including paclitaxel, from the cell cytoplasm causing the cell to be resistant to what

is typically a lethal dose of the drug in the absence of overexpression of the pump.

Intestinal and r cells are known 0o express high levels of p-gp, on their membraoe

surfaces @liotte/ al.,Zffi4iMaher et aL, 2m5), and this multi-dmg resistance effect

might in part explain why a single dose is ineffectlve. In Chapter 3, pacliraxel was

found to be oytotoxic to proliferating splenocytes, but rhis is likely due to the

dlfferent effects of P:gp in vitro. and in vivo (Fig. 4.7). one way to circumverrt the

effeets of the Pgp pump woutrd be to inhibit the purnp with an inhibiror such as

verapamil. Another way may be to overridc the acti'on of the efrlux pump by

maintaining a higher blood concentration and a more prolonged exposure to

paelitaxel y treating mice daily for a fixed nurnber of days shortly after

imrnunisation. It is likely that TaxoN rnay- still modfy EAE disease progression in

csTBIJf mice, but thar the Taxol dosing r,egime ma.y need ts be rnodified to

optimise its effects in viva. clupter 5 confi.rms that this is indeed the case by

demonstrating a clear: effect of Taxol on EAE disease progression using a modified

treatrnent regime.
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Figure 4.7 Schematic diagram depicting the effect of P-gp efflux pump

expression on the paclitaxel concentrations surrounding cells over time in

vitro (a) and rn vivo (bl. Ambient paclitaxel concentrations remain constant

in vitroiwhereas, paclitaxel is excreted, compartmenlalised, or metabolised

in vivo, which may explain how T cells escape apoptosis in vivo after Taxol

treatments.
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Chapter 5: Effects of Anti-Mitotic Drugs on EAE

5.1 Introduction

Taxol is widely used in murine models of cancer, and while it has inflammatory

properties in vitro, there is very little evidence of these inflammatory aspects

affecting Taxol treatments in murine cancer studies. As discussed in the previous

chapter, the clear inflammatory effects of Taxol in ttitro may not be easily detectable

in live animals. The investigative approach to identify inflammation in the previous

chapter could have been modified by adjusting the time of the assays to take place

more closely to the time immediately following Taxol administrations. There is also

the possibility that there were no inflammatory effects to detect due to regulatory or

compensatory mechanisms. such as secretion of anti-inflammatory cytokines, which

could dampen down the inflammatory effects. For these reasons, Taxol still holds

promise as a treatment for EAE due to the anti-mitotic nature of the drug and limited

known side-ef'fects in viyo.

Because previous efforts to treat EAE with paclitaxel relied on markedly spaced

treatments, a tighter dosing regime may be needed to circumvent the proliferative

"windows" of the T cells. This tighter regime may also partially overcome the

possible P-gp clearance of Taxol from the T cells by mainurining a higher average

plasma concentration of the drug. When injected intravenously, Taxol has a half-life

of only 20 min in the semm of mice (Kim et ul.,zool). Evidence in humans suggests

that this half-life can be prolonged with i.p. administration of Taxol (i.v. 17.0 + I | .3

h versus i.p.28J + 8.72 h; Gelderblom et al.,2ooz), but if this is true in mice then

the relative half-life of i.p. Taxol treatments would be measured by hours, not days.
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Because Taxol is cleared quickly in mice, windows of T cell proliferation could

easily occur between treatment doses if the doses are given greater than 24 hr apart.

Therefore, by treating animals daily for 5 days, serum paclitaxel concentrations will

remain elevated for longer, allowing effective concentrations of paclitaxel to persist

in and around the proliferating T cell targets.

Peloruside, like paclitaxel, is a microtubule-stabilising compound that has similar

anti-mitotic activity to paclitaxel, but it also has a distinct, non-raxoid binding site on

tubulin (Gaitanos er al.,2oo4: Jimenez-Barbero er al., z0f],6; pineda et a1.,2004). ln

Chapter 3, it wa.s shown that peloruside did not mimic LPS in the same fashion as

Taxol and, moreover, it is reported to be less of a substrate for the p-gp efflux pump

(Gaitanos et a1.,2o04). This means that peloruside, in contrast to Taxol, may kill

proliferating cells without causing TlR4-mediated inflammarion. ln addition,

because it is less of a substrate for the P-gp pump, concentrations of peloruside may

remain elevated within cells that express P-gp mediated multi-drug resistance, such

as T cells (Richaud-Patin et a\.,2004).

Aims

The aim of the studies in this Chapter were to test whether a more intensive Taxol

treatment regime, as used in murine cancer models. can modify EAE disease

progression. Furthermore, the efficacy of peloruside. an anti-mitotic drug that lacks

the LPS mimicry of paclitaxel, would also be tested as an altemative to paclitaxel for

the treatment of EAE. Because the supply of peloruside was very limited, especially

for in vivo testing, it was expected from the outset that only a few critical in vit o
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investigations with peloruside could be attempted, and that the bulk of the

experiments in this chapter would be carried out with Taxol.

5.2 Methods

5.2.1 Drug preparations

A pre-formulation of Taxol (Bristol-Myers Squib; 100 mg/16.7 ml of

ethanol/cremophor EL) was diluted 5- l0 fold in sterile pBS before being

administered i.p. to mice at a dose of l0 mg/kg or 20 mg/kg. Purified peloruside was

dissolved in lo07o ethanol and then diluted lO-fold in pBS prior to i.p.

administration at a dose of l0 rng/kg. This dose of peloruside was chosen because

previous studies determined that l0 mg/kg was eft'ective at treating cancer in mice

(Peter Northcote; personal communication).

5.2.2 FACS analysis of DLN cells

Cells were isolated from the DLNs of C57BL/6 wild-type mice as described in

Chapter 2. These cells were then incubated with anti-CD4-PerCP, anti-CD8-PE. and

anti-CD2s-FITC antibodies to determine the percentage of these specific cell types

that were present within the DLNs. Cell events were counted using a FACS analyser,

and data were analysed using CellQuest software.

5.2.3 Assessment of in vl'uo proliferation

LN celfs and splenocytes were isolated from2D2 mice with aC57BLJ6 background,

which are transgenically modified such that the majority of CD4* T cells express a

TCR specific fbr the MOGrs-.ss peptide (Bettelli et ul.,2OO3). The isolated cells were
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stainpd with the eytoplasmic dye 5, Gcafrqxyfluoresoein diacetate succinimidy-l ester

(CFSE; Siema) by incubating the cells in 63 ne/ml CFSE in FBS fon I m n, fojlowed

by addition of'FCS to stop the reaction, After washng the aells in FBS, 2 X I07 sells

were han-sferred to each normal C57BU,6 rnou$e I day prior to imrnunisatisn with

MOG/CFA. Aftef 4-5 days, LN cells fromTnxol.trcated of untreated,ullce,ulere

isolated and analysed by flow cytornetry:
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5.3 Results

5.3.1 Taxol treatments of l0 mg/kg are insufficient to significantly alter EAE

progression.

Concenrations of Taxol used to treat cancer in mice vary, but l0-20 mg/kg of

bodyweight is a commonly administered dose range (Kim et al.,2OOl; Zhang and

Russell. 2006). A previous study injected l0 mg/kg Taxol i.p. daily for l0 days

without any obvious toxicity in mice (Yuan et a1.,2000), providing the basis for a

new dosing strategy in the present study. The dose of Taxol (10 mg/kg) was chosen

because of previous results in Chapter 4 that showed that l0 mg/kg of Taxol gave a

similar, if not slightly more eft'ective response than 20 mg/kg of modifying

int-lammation irt v,ivo. Taxol ( l0 mg/kg) was administered daily for 5 days to mice

pre-immunised with MOG/CFA. The 5 daily treatments were administered over one

of three time periods from days a) I -5, b) 5-9, or c) l0- l4 p.i. These time periods

were chosen because they encompass key cellular events that lead to the

development of EAE.

Disease incidence was uncharacteristically low in this particular set of animals (407o

in thecontrol group.50olo overall). Usually, S0-1007o of animals immunised develop

some form of the disease. The median day of initial onset for mice that developed

EAE from allgroups was also unusually late (day l9). Symptoms typically appear

iuound day | 2. Disease severity of the sick animals was similar among all three

groups given Taxol, as well as the untreated group. Upon close analysis of the sick

animals in each group, however, a slight difference in the timing of disease onset was

apparent (Fig. 5.l ), suggesting that. in fact, 5 daily doses of Taxol may have

impacted on EAE, delaying the development but not altering the severity of the
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disease. A more imporuant obsettvation was the fact that none of the ardmals died

frorn any sf the three treatrnent regimes, indicating ttrat toxicity is not an iswe with 5

daily injeetions of Taxol given at a dose of l0 mg/kg. Unfortunately, significant

df,fferences of onset could not be determined due to low numbers of sick corntrol

animals (u = 2),

8 10 12 14 16 1,8

Days p.i.

Figure 5.1 Effect of Taxol on mice wlth EAE.

Taxol (10 mg/kg) was administered to,mice for 5 conseeutive days

starting 'l day (red squaresi r = 3), 5 days (blue triangles; n = 4), or 10

days (green upside-down trianglee,; n = 1) following EAE immunisations,

Co rtrol animals were lmmunised, but did not reoeive Taxol (black ch'cles;

n = 2). A two-day delay of onset occurred in the sick rnice tr€ated with

Taxol. Shown, are the results from sick mice only. The original study

slarted with 5 mlce/group.

---r- Gohtrol (no tre.atment)
---r- Taxoldays 1-5
---+- Taxoldays 5-9
---+- taxoldays 10-14
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5.3.2 Taxol at its MTD delays the onset of EAE when given in multiple daily

doses.

As shown above,low doses of raxol (10 mg/kg) given daily produced a hint of a

delay of disease onset for all three regimes. To maximise the disease-delaying

potential of Taxol, the treatment doses were increased two-fold to the MTD. It was

decided that the optimal period to treat mice with the MTD of Taxol was from days

0-4 p.i. in order to fbcus primarily on the initial proliferative events that kickstart the

disease process. Treating mice with the MTD of Taxol (20 mg/kg) daily from days 0-

4 p.i. resulted in a clear delay of disease onset (Fig. 5.2). Five immunised controls

received Cremophor EL, the vehicle for paclitaxel, and showed no differences when

compared to the untreated immunised controls (data not shown).

b.

i u"*",Jimmunized 
i

L- raxol-rrsated (20 mg/k91Oa_0 Xj 
lrom 

OaV !; I

4 6 8 10 l2 14 16 1820 222426283032

Days p.i.

g
8s
v,
o
Ezo
.9o.

0

0 2 4 6 8 1012141618202224262E3032

Days p.i.

Figure 5.2 Taxol at 20 mg/kg delays the onset of EAE.

Mice immunised for EAE were left untreated (red; n = ZZ\ or treated with

Taxol (20 mg/kg) for 5 consecutive days (bluel r = 12) immediately

following immunisation. Shown are the average incidence (a) and

disease score (b) in the days following immunisation. Error bars on (b)

are SEM values.
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In immunized but non-Taxol treated animals, a slight weight loss is common in the

days that follow immunisation (up to Sc/o of body weight). Taxol-treated immunised

animals, however, exhibited a greater degree and duration of weight loss compared

to immunised control mice (Fig. 5.3). Unexpectedly, 5 out of l7 MoG-immunised,

Taxol-treated mice (29o/c) died for no apparent reason between days 7 and I I before

any symptoms of EAE were evident. Non-immunised animals receiving Taxol (20

mS/kg) daily for 5 days were alive and healthy, with negligible weight-loss, for up ro

l4 days after the initial treatment (n = 7', data not shown). These results suggest that,

firstly, paclitaxel is effective at modifying EAE disease progression; secondly. that

paclitaxel is welltolerated inC5TBL/6 mice when administered to non-immunised

animals, but an unknown toxicity occurs in mice that are both treated with paclitaxel

and immunised for EAE.

r Tlxol 120 mg/kq) darly X 5
Untieatod @nfd

tl

ra
I

2 4 6 I t0 t2 14

Days p.i.

Figure 5.3 Weight-loss from

Taxol-treatment.

Shown is the percentage of total

weight-loss from 20 mglkg Taxol-

treated (blue squares; n = 12) and

untreated (red trianglesl n = 22)

immunised mice. The greater weight-

loss in the treated group was highly

significant.
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5.3.3 Peloruside delays the onset of EAE.

Since 20 mg/kg of Taxol successfully delayed the onset of EAE, it was hypothesised

that peloruside might also have a similar effect due to its comparable microtubule-

stabilising properties. The higher solubility of peloruside in aqueous solutions allows
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Cremophor EL to be replaced by ethanol as the vehiele for delivery. An effective

oaRcer-treating dose of peloruside, deterrnined to be l0 mdkg (Peter Northcote;

porsonal corrmrunication), was di:ssolved in ethanoJ and adnninistercd ina lWo

solution i.p. to mice inrmunised f:or EAE. Treatments were given daily on days 0-4

p.i. similar to the Taxol treatmentr€girne given in Fig, 5.[. Peloruside delayed the

onset of E-AE and cornpletely prrevented disease in 20% of the animals reated (Fig.

5.4). Weight-loss from peloruside treatrnenls was grcater'and more prolonged

co,rnpared to the controls, but wao slightly less than the weight loss seen with Taxol

treament at 20 mg/kg. In contrastto the Taxol treatments, no deaths resulted from

peloruside in lr{O.G-immunized mice, suggesting that peloruside may be a betten

choice than Taxol for treating EAE.
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Figure 5.4 Peloruslde at 10

mg/kg delays the onset of EAE.

a-b) Peloruside (10 mg/kg; green)

delayed the onset of EAE

compared to controls (red).

Weight-loss from peloruside

,treatments are presented in (c).

Each graph is compr'ised of 2-4

experiments (n = 22 for control

groLlp;,h = 5 for peloruside treated

group). The weight loss following

peloruside treatment was highly

significant.
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53.4 Taxol treatments after diseqse onset rssult in a high incidenee of

mortality.

Treating mice with 20 ffigkgTexol daity for 5 days irnmediately after irnmunisation

resulted in a delay of disease onset (Fig. 5.3), although there was also a29Vo

mortality observed in these experiments. To see if Taxol could be used to treat

established diseasg 20 mg/kg was administered to 8 rnice daily for 5 days

inirrnediately following the first signs of diseasg wlfch normallY ocour at about l2

days p:L SurBrisingly, Taxol administered after disease onset had no signifieant

dfect on disease severity or duration (Table 5.2). Moreover, Taxol given af'ter

disease onset proved to be eventnore lethal to mice with EAE since 4 out of the 8

anirnals (SAVQ died during, or shortly,after, the first Taxol injeetion (Fig. 5.5).

Because this dosing regtme had linle irnpact on disease and resulted in a high death

rate, this pilot experimgnt was not repeated.
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Taxol (20 mg/kg) after disease onset

- 
Untreated control

0 2 4 6 I 10121416182022242628303234363840

Days p.i.

Figure 5.5 Effects of 20 mg/kg Taxol administered after disease onset.
Mice developing EAE were treated daily with 20 mg/kg Taxol for 5

consecutive days immediately after the first symptoms began to appear (blue

lines; n = 8). Untreated, immunised control mice from this experiment are

shown for comparison (red lines; n = 7). Each line represents the disease

score over time for each individual mouse in this experiment. In the Taxol-

treated group, 4 out of 8 (50%) of mice died either during, or shortly after the

Taxol treatments (thicker blue lines). Deaths in each group are represented

by a star (.).
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53,5 Compatieons between Taxol and peloruslde treatmffits

.,An'irnals treated with Taxol (FiS. 5.2) and peloruside ffig.5.4) for5,consec'uti,ve

days followi4 immunization with MOG/CFA showed similar trends in delaying the

onset and severity of disease and in causing weight-loss (Fig. 5.6), thus suggesting

that the modes of aqtion were related to a common mechanism of the two drugs'

aetiorl eithor microtubule stabilisation or their anti-mitotie actions. The delay of

onset from both drug treatments was highly s-ignificirnf cornpared to the u,ntreated

control group (Table 5.1).

There was a major differenee, however, between Trnxol and peloruside reated

animals. i{n unknown toxicity was associated with Taxol treatments, but not

peloruside treatments, adrninistersdrbefore or during EAE, as mentioqed above.

Incidentally, the deaths that oceurred frorn Taxol treatments initiated irnmediately

following immunizations (experiments of Fig. 5.2) corresponded with the initial

onset of disease in the untreated control group (Fig. 5.7). It is possible that there is a

link betw,een the known inflamrnatory effects,of Taxol in vitro (Chapter 3) and the

inflanmation associated with the onset sf EAE.
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Flgure 5.6 Overlay of Taxol, peloruslde,

and conlrol treatment results.

For comparison purposes, the results

obtained from Taxoltreatrnents (blue; Ftg.

5.2 and 5.3), peloruside treatments (green;

Fig. 5.4), and u:ntreated controls (red; Fig.

5.2,5.3, and 5.4) are combined. A similar

trend in the percentage of disease

incidence, delay of onset, and weight-loss

in drug-treated animals is evident. For

weight loss: *p<0.05, **p<O.01, and

'**p<0.001 using two-way ANOVA with a

Bonfenonf posttest comparing drug treated

animale to controls. TheFe was no

significance differenoe of weight loss

between the two drug treated Eroups.
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Incidence

2U22 (10Oo/")

9t12 (75o/")

Average day

of onset (p.i.)

Difference of means

from the control

N/A

5.0 I 1.3 daysaxol

14.4 !0.7

19.4t1.0***

19.3 t 0.9 **4t5 4.8 ! 1.7

Table 5.1 Treatments of 20 mg/kg Taxol and 10 mg/kg peloruside

significantly delay the onset of EAE.

single comparisons of the drug-treated and untreated control means were

performed in each case using student's f-test. The average day of disease

onset was calculated by averaging the first day of clinical signs for each

mouse in the group. Data are presented as the mean t SEM (** p <0.01, *** p

<0.001 compared to untreated controlgroup).
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Untreated
Taxol (20 mg/kg) daily X 5

- 
Peloruside (10 mg/kg) daily X 5
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Figure 5.7 Toxicity of Taxol corresponds to initial onset of
EAE symptoms. Taxol was toxic to 5 out of '17 mice when

administered for 5 consecutive days immediately following

immunisation for EAE. The time of toxicity corresponded to the

time when the control mice (red) began to show symptoms of

disease (dark red box) from days 7 to 12. Animals treated with

Taxol (blue) and peloruside (green) are shown for reference

(data from Fig. 5.2 and 5.4).
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Several correlations were made when the data of the peloruside treatment group, the

Taxol treatment group, and the control group were compared further (Table 5.2). The

cumulative disease score was significantly lower in Taxol and peloruside treated

groups compared to the controls. The cumulative disease score can give an indication

of disease persistence; however, the significant differences resulting from the Taxol

and peloruside treatments were primnrily due to the delay of onset. There was no

ditTerence between the treated and control groups when comparing the peak disease

scores, although Taxol-treated animals did spend significantly less time at peak

disease compared to the control group, suggesting that Taxol administered

prophylacticly may shorten the duration of disease. The average number of days

spent at peak disease for peloruside-treated etroups was not significant compared to

the control groupi however, the low sample number (n = 4) combined with the fact

that one of the mice was at peak disease score for 8 days suggests that peloruside

may actually shorten the duration of disease similar to Taxol, but this wcluld have to

be further clarified by additional experiments. Unfortunately, because of the limited

stocks of peloruside available for these experiments, it was not possible to repeat

these tests.

When Taxol was administered at the MTD for 5 consecutive days beginning at the

start of disease onset, 5OVa of the mice died. In addition, there was no significant

benefit with this therapeutic treatment regime when several disease parameters were

compared to the control group, including the level of disease severity and the

duration of disease symptoms (Table 5.2), suggesting that this treatment regime is

substantially toxic, and is not beneficial to mice displaying symptoms of EAE'
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freatments Controls Taxol Peloruside Taxol (upon

Jiseese omell

3umulative disease scorer
at dav 24 o.i.

26.013.0 3.3 t 3.0*' 8.5 + 3.0*', 18.1 r 2.9

Peak disease score 3.810.2 3.2 r 0.5 2.8 r 0.8 3.510.2

Days at peak diseaserr 4.9 !0.4 2.9 t 0.7... 5.0 r 1.1 3.810.9

detined here as the sum of daily disease scores
n defined here as peak score , 0.5

Table 5.2 Comparisons between different drug treatments.

Taxol (20 mg/kg) and peloruside (10 mg/kg) were given for 5 consecutive

days immediately following immunisation, except where indicated. The

cumulative disease score for each group was calculated by averaging the

sums of daily scores for each mouse following immunisation. Values are

presented as the t SEM (*. P < 0.01, *** P s 0.001; Student's t-test).

5.3.6 Spinal cord lesions correlate to disease score in Taxol- and peloruside-

treated mice.

The course of the disease in mice with ensuing EAE was significantly altered by

treating mice with Taxol or peloruside immediately after MOG-immunisation (Table

5.l ). Although no difference in pezrk disease score was fbund (Table 5.2). differences

in the number of lesions or sizes of lesions may have been present in the spinal cords

of treated mice. To test for this possibility. the spinal cord was removed at day 30 p.i.

from two representative mice from each group - one at the time of peak disease score

(i.e., 4 or greater), and one that showed no symptoms or mild symptoms of disease.

For comparison, spinal cords from a MoG-immunised, untreated mouse (disease

score of 4.5; harvested day 20 p.i.) and a normal mouse (no EAE) were also

removed. Tissues were stained with H&E to more easily identifv lesions and cellular
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i,nfrltrates (Fig. 5.8). tnflamrnatory foci were counted and given a score for eaclr

slide. As typically seen in EAEmiae, the high degree of disease $ev€rif,y ensured ffrat

there would be a nunrber of lesions of all sizers. Anirnals that did n,ot ggt sick, or were

,writrdly- siek folloruing ttre Taxol or peloruside reahrcnt regin e had rto/,few

(respectively) noticeabile lesions in their spjnal coids (not shown)' Anirnals wittr a

ssvere score (i.e:, 4 or gneater) had opinal cords with multiple, but sirnilar

inflamm*tory fsei of vuying sizes (based on score) in 0re white matt€r parenchyrn4

regtudless of whether the animal was Untreared or'treated with Taxol or pelornrside.

The total nurnb,ers sf le-sions in the representative slides from each gfoup weie

eomparable, wifr the Taxol-trea-tsd animal having a-total of 67 lesions, peloruside-

treated ahimal having 60lesions, and the uutreilted aninr.al having 6l lesions. ThEse

results suggest that, onee inflamrnatory eells have e-rrtered the cNS, dlsease

progre$ses :Bs nolrflal regardless of the treauneRl
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Figure 5.8 Spinal cords from drug-treated mice with active EAE.

Spinal cords were removed from MOG-immunised mice at peak disease

score. Mice had been treated with Taxol at 20 mg/kg (a) or peloruside at 10

mg/kg (b) for 5 consecutive days immediately following immunisation with

MOG/CFA. An immunised, non-drug treated mouse spinalcord (c), and a

normal spinal cord (d) are shown for comparison. All samples were stained

with H&E. Some typical severe lesions (i.e., score of 3) are circled for ease of

identification.

5.3.7 Re-stimulation of LN cells from Taxol and peloruside treated mice.

To see if the delay of disease onset seen following Taxol and peloruside treatrnents

was an effect of specific T cell reduction, DLN population distributions were

determined by FACS analysis from drug-treated and vehicle-treated animals 30 days

after MOG-immunisations (Fig. 5.9). Different types of T cells were considered for

comparison. The CD4" cells are considered to be the primary source of effector T
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eells (see review reference (El Behi et a,1.,2ffi5)). The cD8*cells have also been

shown to have a role in EAE, but generally at a later time point after tbe initial onset

of disease. The CD25* population of cellscontains T,*, sellc, which are primarily

associat€d with the recov€r)/ from EAE. Although the drug-treated percentagesof all

three LN cell populations w€re slightly lower than tho vehicle-feated controls, the

differcnces were nol significant. This suggests thatneither Taxol nor pelorriside has a

significant effeet or LN cell proliferation! or that if LN cell populations wer€

decr,eased they have recovered by day 30 p.i. when the measurements w€re taken.
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Figure 5.9 Populations of r cells from LN isolated from drug-treated

mice with EAE.

Cells were isolated from the DLNs of EAE-immunised individual mice 30

days p.i. and stained for CD4, CDB, or CDZS expression. The % of the

specific T cell subtypes in the total population of LN cells was determined by

FAcs. No significant differences were observed between the drug{reated

and vehicle-treated groups using the student's f-test. The number of

individual LN preparations for each treatment group were: peloruside (n = 5),

ethanol (n = 8), Taxol (n = 3), Cremophor (n = 5), and the control (n = 7).

The prolif'erative capacity of MOc-reactive T cells, as well as the degree of

activation, were also assessed to determine the extent, if any, of cell-specific

cytotoxicity of Taxol and peloruside. DLN cells were culturecl in media containing

Con A to induce general proliferation. or MOG to induce MOG-specific

proliferation, for 72 hr. IFN-e levels were measured in the supernatants from each
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group by ELISA, and proliferation was derected using rhe CyQUANT assay. The

results fiom the CyQUANT assay show that there was no proliferation in any group

in response to MOG peptide (Fig. 5.10 a). Although a memory response would

typically be present 30 days after an initial immunisation, the results presented here

are common in re-stimulation assays (30 days p.i.) with cells from EAE mice

according to Dr. Thomas Backstrom and Dr. Andrea McNeill (Malaghan Institute of

Medical Research, wellington, NZ), and Dr. Anne La Flamrne (Victoria University

of Wellington, NZ) (personal communications), possibly due to anergy. Con A,

however, did induce proliferation in each group, albeit low levels in LN cells from

untreated and peloruside treated animals, indicating that the LN cells were capable of

proliferation (Fig. 5.10 b). These results may not be reliable, however, since the

CyQUANT assay requires a low cell seeding number to maintain a linear detection

range. For Con A-stimulated or MOG-stimulated T cell proliferation to occur, the

cells must be within close proximity to APCs in the culture. which is less likely to

occur with a low seeding density. This situation was unavoidable, since the total

number of LN cells isolated from each mouse was limited, thus preventing the use of

the much preferred MTT proliferation assay.

when LN cells from each group were culrured with MoG peptide, IFN-e was

produced, but levels of this cytokine were not significantly different between groups

(Fig. 5.10 c). The con A control shows that the LN cells do produce IFN-e when

stimulated, and that the overall number of lFN-e-producing cells is not different

between groups (Fig. 5.l0 d). Although no differences were observed berween rhe

drug-treated eToups and the untreated control group, it is possible that there would
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have been a difference prior to day 30 in proliferative responses and antigen-specific

re-stimulation responses, but these may have been obscured at this later time point.
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Figure 5.10 Re-stimulation of LN ceils that were isolated 30 days p.i.

EAE-immunised mice were treated with Taxol (blue squaresi rt = 3),

peforuside (green circles; n = 4), or left untreated (red trianglesl r = Z) tor

5 consecutive days immediately after immunisation. DLN cells from each

mouse were isolated and cultured individually tor 72 hr in the presence of

MOG (a, c) or Con A (b, d). Proliferation was determined by the

CyQUANT assay (a-b), and IFN-< was determined by ELISA (c-d). panel

(a) shows that no proliferation occurred in response to specific-antigen

stimulation, but the cells were capable of proliferation, as shown in panel

(b). Similarly, panel (c) shows that IFN-s is produced in response to MOG;

however, the differences were not significant (based on student's t-test).
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5.3.8 Taxol does not affect CD4* T cell proliferation.

The administration of Taxol during the 5 days following MOG-immunisation delays

the onset of EAE. but does not significantly alter the lymphocyte populations or their

cytokine responses by the time disease recovery is underway. To specifically

determine if the effects of Taxol are anti-proliferative as hypothesised at the start of

this study, the effect of Taxol on in vivo proliferation was investigated. To assess

proliferation in vivo. CFSEIabeled cells were tremsfened from 2D2 mice, which are

transgenic for a majority proportion of T cells expressing a MOG-specific TCR. into

WT C57BL/6 mice. Because CFSE is a fluorescent cytoplasmic dye that is equally

divided amongst daughter cells during mitosis, the in vivo proliferation of these

MOG-specific cells could be determined by flow cytometry as a dilution of the

fluorescent label with time. One day following the transfer, mice were immunised

with MOG/CFA and immediately treated with Taxol (20 mg/kg) for 5 consecutive

days. The DLN cells were isolated one day after the final Taxol treatment and

an:rlysed for proliferation by FACS. Surprisingly, Taxol did not have any effect on

the in,tivo proliferation of the CFSE-labeled T cells (Fig. 5.1 I ), suggesting that the

detay of EAE onset in response to Taxol treatments is not due to the inhibition of

proliferation of MOG-specific T cells.
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Figure 5.11 Taxol does not affect MoG-specific T cell proliferation.

LN cells tram 2D2 mice were stained with OFSE and transferred to wild-

type mice, which were then immunised for EAE (n = 20) and treated with

20 mg/kg Taxol (n = 10), or were left untreated (n = 10). control mice (n =
6) received CFSE-labeled cells, but were not immunised for EAE and were

left untreated (data not shown). For the treated group, Taxol (20 mg/kg)

was administered daily for 5 days immediately following immunisation.

DLN cells were isolated from each mouse within these groups and

anafysed by FACS individually to detect in vivo proliferation of the cells.

The percent of total CFSE+ cells that had undergone at least one cell

division are shown (n = 10 from two separate experiments). A further

explanation of how this graph was created can be found in Appendix C.
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5.4 Discussion

During the course of EAE, a specific sequence of cellular events must occur for

clinical disease to develop. For example: fbllowing the initial immunisation, DCs

take up antigen and become activated, then they migrate into the DLN where they

induce MOG-reactive T cells to undergo clonal expansion. This all occurs during the

first 5 days p.i. Days 5-9 p.i. encompass what is considered to be peak prolif'eration

in the periphery (Targoni et a1.,2001). Throughout days l0-14 p.i., activated T cells

begin to migrate across the BBB where ensuing damage to the brain and spinal cord

occur (Juedes et a1.,2000; Targoni et a\.,2001), subsequently causing animals to

show symptoms of disease. Since Taxol, when adrninistered on days 6, 8. and l2 had

no effect on EAE development (Chapter 4), it was thought that by targeting these

specific 5-day periods, Taxol would then have an effect on the EAE disease course.

Although the disease incidence was low in the particular set of experiments used to

test these treatment regimes, treatments of Taxol (10 mg/kg) with all three proposed

dosing regimes caused what appeared to be a small delay in disease onset of about 2

days, suggesting that Taxol can affect EAE disease progression if the dosing regime

is optimised.

When the treatment regime was altered to 5 consecutive daily treatments with Taxol

at i$ Mm of 20 mg/kg given immediately after immunisation. there was a clear and

significant delay of disease onset, but also a29o/o mortality rate. Neither monality,

nor a significant delay of onset, was seen in animals treated with l0 mg/kg with the

same regime, but an unexpected low disease incidence may have obscured the

outcome of this experiment. Most interestingly, peloruside delayed the onset of EAE

in a manner similar to high-dose Taxol, but without causing any deaths. The
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mechanism that causes the delay of onset appeared to be related to microtubule-

stabilisation, or at least the anti-mitotic mechanism of the two drugs, since both drugs

had nearly identical disease modifying effects when administered at the active doses.

The subsequent weight loss, disease scores. and delay of onset of EAE in mice

treated with both Taxol and peloruside were nearly indistinguishable (Fig. 5.6).

Other disease parameters were also similar between the two treated groups, including

the cumulative disease scores and the peak disease scores (Table 5.2). n major

difference between the Taxol-treated and peloruside-treated groups is that 29o/c af the

Taxol-treated animals died between days 7-12 p.i.; whereas, peloruside was not

lethal to any of the animals. Control animals that did not receive the initial

immunisation, but did receive Taxol treatments, were largely unaffected based on

appearance and weight, and none of these control animals died. This is a strong

indication that Taxol itself is not toxic with this dosing regime, but for reasons

unknown at this time, the combination of Taxol in MOG-immunised mice proved to

be fatal in about one-third of the animals. Thus, there is some adverse interaction

between the Taxol effect and the MOG-immunisation effect in some of the animals.

Interestingly, the Taxol-induced deaths occurred between days 7 and l2 p.i., which

coincides with the normal onset of EAE in untreated, but immunised control mice

(Fig. 5.7). Additionally, mice treated with Taxol at the time of disease onset also

showed high lethality with 4 out of 8 animals dying either during or shortly after the

5-day treatment regime. Combined with the lethality observed by cao et at (2ooo)

after Taxol treatments in rats with EAE, these data suggest that there is an

inflammatory cross-reaction when Taxol is given to animals in the induction and

effector phases of EAE. especially since this toxicity is not observed in animals
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treated with peloruside, which lacks the inflammatory stimulation effects. One

cannot rule out the possibility that Taxol-treatments caused the deaths in mice with

the most aggressive disease. This scenirio could potentially cause the data to be

skewed making it appear that a delay of onset had occurred. A much more extensive

investigation would be needed, however. to positively link Taxol administration with

enhanced mortality in mice and rats.

The common action of peloruside and paclitaxel is the ability to prevent microtubule

depolymerisation. The delay of EAE in response to altered microtubule function is

further supported by experiments with colchicine, a microtubule-depolymerising

drug, which similarly altered the development of EAE (Lyons et ul.,1986). As

shown previously in chapter 3. however, paclitaxel differs tiom peloruside by

causing inflammatory events to occur due to TlR4-complex stimulation. Because a

similar delay of onset was observed in mice with EAE that were treated with either

Taxol or peloruside, it can be tentatively concluded that the delay of onset is due to

microtubule stabilisation and/or its downstream effects (mitotic arrest and apoptosis),

and not because of the LPS-mimicking characteristics of Taxol.

While these results clearly indicate that microtubule-stabilising drugs delay the onset

of EAE, the mechanism responsible for this delay is not known. The most notable

and practical function of microtubule-stabilising drugs is their use in cancer

treatment. Simply put, these drugs kill rapidly dividing cancer cells. Therefore, T

cells that become activated during the initial 5 days after MOG-immunisation may

succumb to the anti-mitotic effects of both drugs, which would ultimately delay the

onset of disease until the Taxol is cleared. Once Taxol is no longer affecting T cell
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proliferation (24hr after the last treatment), the MOG-reactive T cells may begin to

successfully proliferate. eventually leading to the development of EAE, albeit later

than normal. This theory was supported by the fact that re-stimulation assays showed

that there were no differences between the treated and untreated groups regarding

both MoG-specific proliferation and IFN-e production (Fig. 5.1 l). This finding.

however, may be due to the timing of the assays (day 30 p.i.), as it is not unusual to

see a limited MOG-re-stimulated T cell response after 30 days have passed since the

initial immunisation. Assessment of responses at a time when Taxol directly exerts

its effect is required and would form the basis of future studies in this laboratory.

To more accurately determine whether Taxol was inhibiting proliferation of MOG-

reactive T cells during the induction phase of disease, transgenic T cells specific fbr

MoG peptide were stained with GFSE and transferred to mice a day prior to MoG

immunisation and the subsequent Taxol treatments for 5 consecutive days. It was

clear that during the time of the Taxol treatments, proliferation was occurring in

these CFSE-labeled cells, thus proving that Taxol did not inhibit in vit,o proliferation

of these autoreactive T cells during the induction phase of disease. This was very

surprising because low nM concentrations of paclitaxel are cytotoxic to proliferating

splenocytes in vitro (Chapter 3). It is possible that the reason cyrotoxicity did nor

occur in vivo was due to the P-gp efflux pump, which is responsible for multi-drug

resistance in multiple cancer cell lines. Although the P-gp pump is active in vitro

(Gaitanos et a1.,2004), the celts are persistently exposed to the drug when it is added

to a culture. Taxol concentrations in uil'o, on the other hand, are initially high, but

rapidly decrease over the course of hours (Kim er ul.,2ool). The p-gp pumps only

need to keep clearing Taxol from the cells for hours before the blood-Taxol
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aoncenrations are reduoed to survivable levels. This may explain why Taxol d,id not

kill the CFSE.labeled T eells in vivo: however, this abscncc of an effect on T eell

proliferation leaves the question of how Taxol and peloruside delay: &4E

unan$wered-

It was shown previously in Chapter 3 that both paclitaxel and peloruside decrease

TNF-e production in MO exposed to inflammation.inducinglPS. Blooking the

effects of TNF-e has been shown to pr€vent,an entire cascade of inflammatory

cy-tokines (Feldmann, 2002; Feldmann et al.,1995), gtving supBort to the po-ssible

imrtrunornodifyrng effects of Taxol in EAE, It has also been shown that functional

microtubules are nesessary f'or antigen processing and presentation b,y DCs and M@s

(Peachmarfl e t al.,2AA4),In thio particular study, the authors specifically identified

paelitaxel as a drarnatic reducer of antigen processing/pr,esentation in DCs due to

microtubule stabilisaticm. Beeause of the diverse roles of microtubules in cellular

functi,ons, there are many other plausible explanations for the disease-delaying

effects of Taxol; however, it is clear, based on the studies with CFSE-labeled MOG-

speeific T sells, 'that the most likely scenafio - prbventing proliferation of T cells -

does not occur with Taxol heatnrents.
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6.1

Chapter 6: General Discussion

Summarv

In the present study, it has been shown that the microtubule-stabilising drugs,

paclitaxel and peloruside, are capable of modifying the progression of EAE. Hence,

paclitaxel and peloruside have the potential to impact MS, but further research is

needed to optimise the disease modifying effects.

The primary hypothesis of this project was that microtubule-stabilising anti-mitotic

compounds would inhibit proliferation in the autoreactive CD4* T cells that mediate

EAE and MS. Paclitaxel, being inexpensive and readily attainable, was chosen as the

ideal microtubule-stabilising drug candidate. A novel microtubule-stabilising

compound, peloruside, was also tested as an altemative to paclitaxel to identify

immunomoditying activities, and to act as a microtubule-st:rbilising control. It was a

natural approach to initiate the present studies by showing that T cells are susceptible

to the anti-mitotic activities of both paclitaxel and peloruside in vitro. Because

peloruside is one of several cytotoxic compounds to be isolated trom the same

sponge species, including mycalamide and pateamine, these three compounds were

assessed for their direct effects on T cell proliferation and activation. Pateamine has

been found to be a protein synthesis inhibitor that blocks the function of the initiation

factor, elF4A (Bordeleau et u1.,2005). Mycalamide, like pateamine, is a protein

synthesis inhibitor but interacts directly with the ribosome (Burres and Clement,

1989). Although out of the scope of the presenr srudy, mycalamide exhibited

immunosuppressive activities that warrant further investigations. More relevant to

the present study, peloruside and paclitaxel were both cytotoxic to Con A-stimulated

135



splenocytes, giving the first indication that proliferating T cells succumb to these

anti-mitotic drugs.

The initial experiments identified the effects of paclitaxel and peloruside on T cells,

but EAE lesions, although mediated by CD4* T cells, iue liugely caused by the

phagocytic activities of M@. Interestingly, paclitaxel is known to stimulate the TLR-

4 complex in murine M@ similarly to LPS, inducing the production of inflammatory

mediators. These LPS-mimicking activities of paclitaxel could have presented a

major problem in animal studies, especially since the initiating events of EAE are

largely enhanced by the TlR-stimulating effects from the CFA adjuvant. Peloruside,

on the other hand, is known to bind to a different region of tubulin from paclitaxel

(Gaitanos et a|.,2004;Jimenez-Barbero ar a1,,2006: Pineda et a\.,2004). Since both

peloruside and paclitaxel have a similar mode of action, these drugs were assessed

for inflammatory-inducing activities in BMMO. Unlike paclitaxel, peloruside did not

induce BMMO production of inflammatory cytokines. This finding was not

surprising because of the distinct microtubule-binding characteristics. Other studies

have found that the TlR4-stimulating effects of paclitaxel are unique to this drug

(Kirikae et al.,1996: Ojima et al.,2OO3), and that other microtubule-stabilising

compounds without LPS-mimicking effects could also potentially serve as alternative

microtubule-stabilising compounds ro paclitaxel (Muhlradt and Sasse, lggT). Many

of these other compounds. however, are expensive and not easy to source, especially

in the quantities needed for in vivo studies.

The inflammation-causing properties of paclitaxel were an ongoing concern. Because

EAE immunisations produce an inflammatory environment, it was important to
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identify any synergistic inflammatory effects from a combination of paclitaxel and

LPS. Both paclitaxel and peloruside were cultured with BMMO in the presence of

LPS, and surprisingly. both compounds decreased the production of a key

inflammatory mediator TNF-e, as well as NO. It is not known why paclitaxel

displays these paradoxical et'fects of causing the release of inflammatory cytokines.

yet preventing their production in BMM@ in the presence of LPS. Although the

mechanism behind these anti-inflammatory responses is yet to be resolved, these

results showed that peloruside and paclitaxel may actually reduce inflammation, as

well as exhibiting anti-mitotic functions. The significance of this finding is highly

valuable in the context of treating an inflammatory autoimmune disease, such as

EAE.

A previous study by Cao et zll. (2000) found that Taxol delayed the onset of EAE in

actively immunised Lewis rats. The authors observed that the most effective Taxol

treatment regime for delaying onset unfortunately also caused the deaths of I I out of

l5 rats. Afterfurtherreview of this study, the observations made by these authors

lead me to speculate that the TlR4-complex-stimulating function of Taxol may have

contributed to the lethality in these rats by enhancing the production of inflammatory

cytokines in an environment where severe inflammation already exists. Attempts

were made to repeat these experiments in C57BU6 mice, and to identify any

inflammatory eff'ects of Taxol in vivo. The treatment regime borrowed from Cao er

a/. (2000) involved i.p. injections of Taxol at concentrations as high as the MTD on

days 6. 8, and | 2 following MOG-immunisation. Although the mice tolerate these

doses well, these treatments did not modify EAE disease progression. There may be

many reasons why there was no disease-altering effect, including such possibilities
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as higlt P-gp efflux pump expression on T cells, differences in EAE progression and

Taxol clearance rates in rats versus mice, or autoimmune cell proliferative

"windows" occurring in the 2 and 4 day periods between Taxol treatments in mice.

The activity of the P-gp efflux pump was not specifically tested, but methods could

be employed to identify this activity such as the use of rhodamine 123 in

colourimetric assays. Despite attempts to rule out the use of Taxol as a potential

therapeutic for EAE, these studies did not provide sufficient evidence to suggest that

this drug has adverse efTects in mice due to its LPS-mimicking activity. At this point

in the project it was decided that Taxol would continue to be the drug of choice to

optimise in order to modify EAE, since the evidence tiom Chapter 4 suggests that

TLR4-stimulating activity would not be a major factor.

Based on the evidence from Chapter 4, it was determined that disease-modifying

effects of paclitaxel as seen in Lewis rats (Cao et a\.,2000) did not occur with the

same treatment regime when administered to mice. As mentioned earlier, there are

several possibilities that may explain why no effect on disease was seen. To

overcome these possibilities, a new treatment regime was proposed, which involved

daily administrations of Taxol during the time periods encompassing key cellular

events in the initiation of EAE. Initial attempts to modify the onset of EAE with a

new Taxol regime were hampered by low EAE incidence in the groups. Other factors

also could have contributed to the limited response, including the quantity of Taxol

administered to each mouse. To exclude this possibility from affecting further

experiments, Taxol doses were lifted to the MTD. In addition, administrations of

Taxol were focused on the initial days immediately after MOG-immunisation, with

the thought that it could directly target the initial proliferation of MOG-reactive T
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cells. When these experiments were performed, a significamt delay of onset occurred,

altltough there was concomitant cytotoxicity. This experiment confirmed what Cao et

a/. (2000) found in rats with paclitaxel. and now raises a few questions: can all

microtubule stabilising compounds affect EAE development? [f so, what is the

mechanism?

Peloruside, our alternative microtubule-stabilising drug to paclitaxel, also

successfully delayed the onset of EAE in mice when administered with the same

regime as the disease-delaying doses of paclitaxel. Moreover. the Taxol-related

toxicity did not occur with peloruside treatments. This peloruside-induced delay of

onset is highly important, as it suggests that the disease-modifying effects of both

Taxol and peloruside are related to their primary mode of action - the disruption of

normal microtubular function. The primary hypothesis of this project was that

microtubule-stabilisation causes proliferating cells to apoptose, thus inducing cell

death in the effector cD4+ T cells that mediate EAE. This, however, was not rhe

case, since autoreactive CD4" T cells continued to proliferate in vivo after the

administration of disease-modifying Taxol treatments. Limitations of peloruside

supply prevented further experimentation in vivrr, so it remains to be seen if

peloruside also has no effect on T cell proliferation in vivo. Although the exact

mechanism of disease modification remains unanswered, the known microtubule-

stabilising functions of both compounds are likely to be the root cause.

It is important to mention that a micellar formulation of paclitaxel was used in phase

II clinical trials to treat MS (Angiotech_Pharmaceuticals, 2002). The results of these

trials showed no significant effects between 174 paclitaxel-treated and placebo-
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treated subjects. In these studies. patients with secondary-progressive MS were

treated with paclitaxel once every 4 weeks for 6 months. This is a confusing

approach, since the cytotoxic effects of paclitaxelare a result of exposure time to the

drug over a threshold concentration (Helson et ul.,1993). When these trials began,

the research by Cao er al. (2000) was the only published animal study identifying

possible immunomodifying effects in a MS-like disease. As I have shown here,

Taxol should not be dismissed as a failed MS therapy. This example simply

highlights the fact that further EAE animal studies are critical to determine the

mechanism behind the modification of disease in order to devise a better treatment

strategy for MS patients.

6.2 Future Directions

While peloruside served as a control throughout this project, it is important to

consider that peloruside is in limited supply and was only administered to 5 mice in

total. The amount of peloruside used in these experiments was l/10'h of the world's

known supply of peloruside at the time these experiments were performed. When

peloruside supplies are not as precions. further studies c:rn be undertaken to develop

this drug as a potential treatment for MS.

There are many roles for microtubules during normal cell function, and different

cells utilise microtubules for various reasons. In DC. for example, the microtubule-

stabilising drug docetaxel has been shown to alter chemotactic motility (Nakashima

et a1.,2005), which would have major implications during the initial T cell priming

events of EAE. Another study has shown that normal microtubule functions are

required for antigen presentation and processing in DC and M@, and paclitaxel was
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shown to alter antigen presentation in these cells (Peachman et c/., 2004). The

current project focused on T cells. but it is clear that other immune cells may have

had impaired functions from Taxol and peloruside treatments. Introducing confocal

microscopic detection methods, including total internal reflection fluorescence

(TIRF), could help determine other immune cell responses to Taxol and peloruside,

such as an impaired secretory pathway or altered migratory capacity.

The dosing regime of Taxol and peloruside that delayed the onset of EAE, although

successful, was not fully optimised. As mentioned in Chapter 5, there were several

different time periods that could be targeted in order to maxinri.se the disease-

modifying effects. In addition, the dose of Taxol used in the disease modifying

experiments was pushed to its limits in order to reduce the possibility that the

quantities of drug given to mice were too low to see an etfect. [n fact. less Taxol may

still modify disease, and it might also reduce toxicity. In addition, there is no reason

why daily drug administrations cannot be extended for periods longer than 5

consecutive days, so long as weight-loss and toxicity do not become an issue. Taken

together, the treatment regime can be modified fbr optimal disease-modifying results

without the adverse side-effec[s.

The EAE model used throughout this project was the C57BU6 model of disease.

This particula' model of EAE is useful to establish an early intervention during the

initial phases of disease; however, most MS patients do not know they will get the

disease until they have had it for some time. At that point, it is too late tbr early

intervention. Different EAE animal models. such as the relapsing-remitting SJL

mouse model. may be more appropriate for testing a potential therapy for the most
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common MS phenotype, relapsing-remitting disease. There are many more animal

models of EAE that have characteristics more closely related to certain MS sub-

types. Exploring the effects of microtubule-stabilising drugs in other EAE animal

models may be a more effective way to establish a crossover link to a MS therapy.

An interesting, and unexpected effect from the Taxol treatments was the toxicity that

accompanied the onset of EAE. This detrimental interaction may have a broader

importance regarding the treatment of patients with Taxol when presenting with

general inflammation. Although the TLR4-stimulating activities of paclitaxel are

limited to murine animals, paclitaxel and other taxane derivatives have been linked to

the production of another inflammatory mediator, COX-2, in human monocytes

(Cassidy et u|.,2002). Repeating the Taxol treatment regime in MOG-immunised

TLR4 -/- mice may elucidate the mechanism by which the toxicity occurs, thus

ruling out contraindications for Taxol treatments in humans.

Taxol is a widely used drug with the potential to rreat MS. and peloruside, also

having potential as a MS treatment, is being isolated in increasing quantities each

year. Taxol, as shown here, has its drawbacks. But it is only a matter of time before

peloruside will become widely available, which would allow further studies to take

place in the EAE animal model of disease. Hopefully, the project presented here

gives insight into using anti-mitotic drugs as treatments for CD4+ T celt-mediated

autoimmune disorders, which may lead to another treatment option for MS patients

around the world.
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Appendix A: Buffers and Reagents

ee[ Wash

Dulbeccs' s Modified Eagle lvledium containing:

- lolo pen sarep (100 U penicillin/ml and l00eg streptomycin/ml)

- 30 rnM HEPES

CTCM

Dulbescoi s Mbdified Eagle Mediurn eontainin g:

- lQTo Foetal Calf Serum (FCS)

- l% pen-strep (I00 U penicillin/ml and l00eg streptornycirflml)

- 1 mM L.glutamine

- l0 mM IilEPES

= 5.5 pM e:=niercaptoethanol

ELISA Capturo Buffer (I['Nq IInl?, and IL-10)

- 0.1M NazHPO+

- ddHzO

pH to9.0

ELISA Capture Buffer (TI{['-a)

- 0.1 M NazHPO+

- ddHeO

pH to6.0
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ELISA Derreloprnent.$toppiqg Reagent

- CI.18 M HzSO+

- ddHzo

FACS Buffer

- A.lEo sodiurn azide

- 2% t@tal ealf,$erum

- P,BS

MTT Solution

- sterile l0rnlvtdPBs

- 5 mg/nnl MTT (Sigma)

MTT Soluhlliser (500 ml)

- rcqo (50 $ sodium dodeeyl sulfate (SDS)

- 45.s/o (225 mI) dimethylforrnamide (DMD

pH 4.5 witb acetic acid

Diluted to 500 ml withddHao

PBS

Stedle ddHzg eontainin :

. NaTHPO+ 8.7 mM

- NaH2Pn- 1..3 mM

- NaC,l 145 mM
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pH 7.4

Pertuesis Toxin Buffer

Sterile ddHzO containing:

- Tris-Cl

- NaCl

- Tris Base

- lN HCL

15 rnM

0.5 M

12.1 g

I1.5 nrl

- Triton X-100 0.0l7Vo

TPBS

- PBS containing 0.,A5Vo Tween-20

Tris Buffer (0.1 M; l Litre)

- Distilled woter 900 ml

pH ro 7.4

Zinc Fixative(l Lttre)

- Calciunr Acetate 0.5 g

- Znc Asetate 5 g

- Zinc Chloride, 5 g

- 0.1 M Tris Bu,ffer t L
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Appendix B: Determining peloruside purity

Peloruside is a novel compound with a very limited supply. The purity of peloruside

was questioned when it was observed in our lab that non-proliferating MO died when

cultured with peloruside, which is known to be cytotoxic to proliferating cells only.

Because of this. there are potential issues regarding the purity of the peloruside used

in the present experiment. Using nuclear magnetic resonance (NMR), the purity of

peloruside was determined by the Natural Products Group t'rom the School of

Chemical and Physical Sciences, Victoria University of Wellington. There were two

stocks of peloruside that were used throughout this thesis - an older batch with

uncertain purity, and a newer, purer batch as determined by NMR spectra. These two

batches were tested side-by-side in BMM@ and Con-A stimulated splenocytes to

investigate possible cytotoxic contaminants. The newer batch of peloruside had little

effect on non-proliferating BMMO as determined by the MTT assay after t72hr

culture (Panel a). The older batch of peloruside completely abolished metabolic

activity at concentrations as low as 3l nM under the same culture conditions. With

concentrations at or above 3l nM, blebbing and shriveling of BMM@, induced by the

older batch of peloruside, was evident within hours, and clearly visible under a light

microscope (no pictures available). Both Con-A stimulated (Panel b) and

unstimulated splenocytes (Panel c) were susceptible to the cytotoxicity of the older

peloruside at similar concentrations; whereas, the newer peloruside was only

cytotoxic to proliferating splenocytes (Panel b), albeit only partially in this

experiment. This set of experiments was performed once to quickly verify the quality

of the peloruside. Unless it is specifically stated, all work with peloruside was

performed using the newer batch.
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Testing the r€lative purity of a newer batch vs. an older

batch of peloruside. The older batch of peloruside (open circles)

strongly inhibfted BMMO metabolism (a} and was cytotoxic to

stimulated splenocytes (b) and unstimulated splenocytes (c). The

newer peloruside (fitled circles) had little or no effect in BMM@ (a)

and unstimulated splenocytes (c). Mild cytotoxicity was observed

in stimulated splenocytes (b). Tests were performed once in

tripficate. Results are expressed as ao/o of an untreated control.
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Appendix C: FACS Gating

Annexin/Pl staining

a.
o4-o2-12029

stz9

o4.t2,12026

ro0 rdl d2 t63 r6a
COlqt0

Determining T cell apoptosis by FAGS
Splenocytes were cultured with anti-CD3 and cytotoxic agents (Chapter
3.3.1) tor 24 or 72hr. Cells were stained with markers for CD4+ or CD8+ T
cells, and Annexin V/Pl. The sample represented above (Panels a-d) is from
a24-hr culture containing pateamine at concentrations slightly above the lCso

value. and is stained with Annexin V/Pl and a CD4+ marker. The emission
spectrum of Pl encompasses the FL-2 and FL-3 fluorescent channels,
causing Pl-stained events to appear in the same detection channel as the
CD4+ and CD8+ labels (FL-3), which are easily discernable based on the
levelof fluorescence (Panelb). Back-gating in Panel (b) determined where to
set the gates lor R2 in Panel (a), which excludes non-cellular events and
debris. Panels (b) & (c) show events that occur within R2 from Panel (a). The
% of CD4+ or CD8+ non-apoptotic cells was determined by placing a gate
(R1) around the Annexin V/Pl negative cells and CD4+ or CD8+ cells (Panel
c). The number of events in R1 in the representative sample above is 9.81
(Panel d; under the "% Gated" in R1). This number was determined for all
samples, including a control sample from the drug-free culture. To determine
the comparative percentages of non-apoptotic cells, the "7o Gated" value_for
R1 in each sample was divided by the "7" Gated" R1 value from the drug-
free control.
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Percentage of LN cell sub-populations

dara.012

0 200 400 600 800 1000
granularity

data.012
Gate: G1

Gated Events: 9579

Total Events: 10000

X Parameter: CD4 Pe€P (Log)

Y Parameter: CDB PE (Log)

Quad Location: 94. 21

Quad Events % Gated % Total

uL 21 11 22.04 21.11

uR 37 0.39 0.37
LL 4860 50.74 48.60
LR 2571 26.84 25.71

ldentifying percentages of lymphocyte sub-populations from LN cells.

Cells lsolated from LN were labeled with marker antibodies and analysed

by FACS. Shown above is a representative sample of the LN cell

population identification process. Panel (a) shows the gate (black line

around the accumulation of events) placed around the region in which the

vast majority of lymphocytes are detected. Panels (b & c) show the events

that occur after the gating in Panel (a). Quadrants settings were

determined in a sample stained with fluorescently-labeled control lgG

antibodies to compensate for autofluorescence (b). Panel (c) shows the

distinct lymphocyte sub-populations within the previously set quadrant from

(a). The statistics obtained from this sample are shown in Panel (d), where

the lymphocyte sub-populations were calculated based on the ""/o G;ted';

for the specific cell sub-type in each quadrant. Lymphocyte populations

from each sample were averaged, and were represented in each

experiment as + SEM.
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Identifying proliferation in CD4* T cells from CFSE-labeled 2D2 cells

200 400 600
gmnulanty

b.

G

ON

o

d.
I

&s
Oo

ao

Sng

05,07{6.012

..il

File 0547-O6 J l0
Gate: Gl
Total Evenls 50000

R€{bn "/o Oaled

Bt ro0 00
R2 070
B3 041

10" 1 or 1o1 tor t 04
CFSE

Determining the extent of rn vivo proliferation of CFSE-labeled cells from
2D2 mice.

Splenocyte and LN cells from 2D2 mice, which are transgenic to have over 80%

of CD4+ T cells expressing MOG-specific TCR, were transferred to wild-type

C57BL/6 mice. These animals were MOG-immunised and either treated with

Taxol, or left untreated. The above sample (Panels a & b) represents a typical

FACS plot from this set of experiments. Two other control groups were included:

1) a non-immunised/untreated group that received CFSE labeled cells (Panel c),

and 2) a non-immunised/untreated group that did not receive CFSE-labeled cells

(Panel d). After 4-5 days p.i., the DLN cells were removed from each group and

labeled with a CD4+ fluorescent marker. The gate in Panel (a) (R1) surrounds a

dense region of events that contained the majority of CD4 and CFSE double-

positive events, as determined by back-gating. To determine the % of proliferating

CD4+CFSE+ cells, the R2 gate was placed around ALL of the CD4+CFSE+ cells,

and the R3 gate was placed around only the CD4+CFSE+ cells that have

undergone one cell division, as determined by the shift in fluorescence (Panel b).

The R3 value was divided by the R2 value (Panel e) in order to calculate % of
proliferating MOG-specific CD4+ cells. Panel (c) shows the position of non-

proliferating CD4+CFSE+ cells from non-immunised mice that received CFSE-

labeled cells, and Panel (d) shows the position of cells from a normal control

mouse.
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