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FOREWORD
This is by no means a technical or formal paper. Instead of pushing the
frontiers of mathematical �nance, my goal here is to look at what has been
done and display my understanding of material that I believe is most rele-
vant to contemporary mathematical �nance. My aim is not to blindly treat
existing theory as fact but rather, step back with a critical eye and look
at the reasoning that put the current models in place. By maintaining this
outlook I hope to gain and demonstrate good understanding of the �nancial
modeling of today.

In addition I wish to show that the material should not just be left to students
of popular "elite" schools, but in fact with some interest and determination
this content is really beautiful and reachable to all.

I would also like to thank the teachers that have guided me through my
studies and my loved ones for their support.

Konstantin Kvatch
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1 INTRODUCTION

The thesis will have two main parts. First, let us start with an example.

In �nance, the standard version of the Black-Scholes formula is a beautiful
closed form solution used to price European options. This famous formula
is ingenious, but has a �aw that relegates it to something that should be ad-
mired, and perhaps not be used in the real world. It relies on the assumption
that prices of shares evolve according to geometric Brownian motion. This
means that we are willing to accept that extreme shocks to prices are almost
impossible. Is this a realistic assumption? Of course not. The stock mar-
ket crashes of 1929, 1987 are great examples to show that extreme events do
happen. More recently, the 1997 Asian crisis and 2000 crash of the NASDAQ
show that in addition, such events are not so rare. These jumps occur even
more frequently and are larger in magnitude for share prices of individual
companies.

This problem is by no means new, and a plethora of models and pricing tech-
niques have been developed. The standard Black-Scholes formula is just one
example, but this is simply illustration of the matter at hand. The process
that we use to model a �nancial time series is of paramount importance,
whether we do it for forecasting purposes or for pricing �nancial derivatives.
If we choose to use a model that does not capture the key empirical aspects
of the data, then any subsequent inference may be very unfavourably biased.

It is because of this problem that we should investigate the more standard
modeling that assumes continuity and normal or log-normal distribution of
�nancial time series. We will begin from the very basics and we will see that
this is a wonderful piece of theory, deserving of the reputation it has in being
simple, groundbreaking and extremely useful. This work should bring us to
a position where we can evaluate a second goal.
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Stochastic processes with jumps and "heavy-tails" have existed for some
time, but have begun to �lter through to the �nancial industry only recently.
This lag is due to the perceived added conceptual di�culty in the introduc-
tion of such models, although we will see that this should not be the case.
There is plenty of real evidence that �nancial time series exhibit discontin-
uous behaviour and that these series are far from normally or log-normally
distributed. Rather than looking at standard models as correct, and jump
or stochastic volatility models as complicated, we should look upon standard
models as educational but not su�cient for the real world. Stochastic volatil-
ity or jump models should instead be viewed as natural.

The theme of the thesis is the importance of choosing a correct model for
the underlying process. Although we may speak of the implications of some
models to hedging, we will not actually look at speci�c hedging techniques.
The particular aspect of pricing is also not considered in full scope although
we will see the Black-Scholes pricing formula. We will consider that the main
problem is to specify the model correctly where the method of pricing is a
subsequent technicality. In examples we may take pricing tools like Monte-
Carlo simulation as a given.

We will not strive for full generality or formality, but rather take a physical
approach and aim for clarity and understanding. Let us now move on to the
beginning, with the introduction of our primary source of randomness.
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Simple Di�usion Models
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2 BROWNIAN MOTION

The reason that mathematical �nance exists is that there is uncertainty
about the future. We attempt to model what really goes on in the �nancial
world. We need to begin by providing some sort of fundamental engine to
drive the stochasticity in these models. To do this we will use Brownian
motion.

The discovery of this process is usually accredited to Robert Brown who in
1827 observed pollen particles under a microscope. He noticed that the par-
ticles had restless motion that seemed to be completely random. Repeating
this experiment with dust particles he ruled out the movement being due
to some process related to life. The idea is that the dust is continuously
colliding with gas molecules which cause it to drift around unpredictably.

Several notable mathematicians went on to describe the process indepen-
dently, but for our purpose the most notable is Louis Bachelier. He is
regarded as the �rst person to use the concept of Brownian motion with
application in �nance. In his 1900 paper La Théorie de la Spéculation he
used Brownian motion to describe the evolution of stock prices.

The idea is fully justi�able. In this case, the price of the stock is the dust
particle, the traders are the gas molecules, and the acts of buying and selling
are the collisions.

Now we should look at the properties of Brownian motion. In �nancial circles
this process may also be called a Wiener process. Here is a rough de�nition:
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A continuous time process Wt is called a Brownian motion or Wiener process
if it is characterised by the following:

1. W0 = 0

2. Non-overlapping increments Wt2−Wt1 and Wt4−Wt3 are independent.

3. For t2 > t1, the increment Wt2 −Wt1 ∼ N(0, t2 − t1)
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Figure 1. A path of Brownian motion

At �rst glance this graph does indeed look like a �gure displaying a stock
price or exchange rate, but there is an important element that needs to be
noticed. The above process moves below zero, and it is obvious that stock
prices or exchange rates do not do this. Therefore we need to go further
and see how this problem has been addressed. We cannot use this partic-
ular model, but the Wiener process is nevertheless very crucial, as for us
it will be an engine to drive the randomness in the models we see later.
In particular the property of independent increments is of value because it
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agrees with the e�cient market hypothesis seen in �nance. This hypothesis
states that markets are informationally e�cient and prices re�ect all known
information, thus a steady pro�t cannot be made unless by luck. If we had
non-independent increments in our engine for randomness, it would imply
that prices do not re�ect all known information and the market could be out-
performed. This would disagree with the e�cient market hypothesis. Let
us now move on to see how more useful models have been made by using
Brownian motion. We need to investigate Stochastic Calculus.
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3 STOCHASTIC CALCULUS

3.1 INTRODUCTION

At the end of the last section we may have said, why not take the exponen-
tial of the Wiener process? We obtain something that is always positive and
closely resembles share prices. Furthermore we know the distribution of this
transformed variable and it is not di�cult to work with it. We don't need
any di�erential equations or integrals.

This may be enough to model a share price, but this is just one process and
one model. Let us look at some other examples.

Perhaps we want to model an interest rate. A process like this is usually
regarded as stationary so let us begin with a simple stationary model, say
the AR(1) process in discrete-time form. However, since we want to use
this model for �nancial data, where the step sizes are tiny, let us derive the
continuous time version.

Example (Continuous analogy to the AR(1) process) Let us de�ne our
AR(1) process as Xn+1 = a + µXn + Zn+1 where the Zi are standard nor-
mal and |µ| < 1. In addition we know this process has a long-run mean of
a/(1 − µ). To make this model in continuous time we must consider what
happens when we take smaller time steps. Instead of having time steps of
width 1, let us make them of width 1/m and m →∞. To make this step we
need to keep in mind that the process must retain its characteristics. That
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means for example Xn+1 = Xn+ 1
2
+ 1

2
= Xn+ 1

3
+ 1

3
+ 1

3
...

Xn+1 = a + µXn + Zn+1

Xn+ 1
2

=
a

µ1/2 + 1
+ µ1/2Xn + Z ′

n+ 1
2

Xn+ 1
3

=
a

µ2/3 + µ1/3 + 1
+ µ1/3Xn + Z ′′

n+ 1
3

Xn+ 1
m

=
a∑m−1

i=0 (µ1/m)i
+ µ1/mXn + Z ′′′

n+ 1
m

Xn+ 1
m

=
a(1− µ1/m)

1− µ
+ µ1/mXn + Z ′′′

n+ 1
m

Notice that the random component Z changes as well. After all, the process
must retain its characteristics over the time step of width 1. Then for smaller
time steps the random component must also be "smaller" (in the sense that
these smaller components should add up to the original Zn+1). This amounts
to a reduction in variance, and in the continuous case, it turns out that Zn+1

becomes dWt. Back to the construction, let us now consider the increment
of X.

Xn+ 1
m
−Xn =

a(1− µ1/m)
1− µ

+ µ1/mXn −Xn + Z ′′′
n+ 1

m

∆Xn =
a(1− µ1/m)

1− µ
− (1− µ1/m)Xn + Z ′′′

n+ 1
m

∆Xn =
(

a

1− µ
−Xn

)
(1− µ1/m) + Z ′′′

n+ 1
m

We notice that the long-run mean of the AR(1) process appears in the equa-
tion, call this level c. We also notice the expression (1− µ1/m) which tends
to 0 and retains dependence on µ. This determines how fast the process
returns to its mean. We can say (1 − µ1/m) = bdt and since dt goes to 0
arbitrarily, we can specify it as dt = 1/m and m →∞. The normal random
variable changes only in variance as we take smaller time steps, and in fact if
we take increments of a standard Brownian motion, in the continuous time
case we preserve the characteristics of the AR(1) process. Finally we can
write the expression using continuous time notation. This is often called the
Ornstein-Uhlenbeck process.
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dXt = b(c−Xt)dt + dWt in continuous time

with c =
a

1− µ

We still need to �nd the limit of m(1− µ1/m). This requires a couple clever
steps as well. Notice especially, the change of variable 1/m = x.

and b = lim
m→∞m(1− µ1/m)

= lim
x→0

(1− µx)
x

= lim
x→0

d(1− µx)/dx

d(x)/dx
using L′Hôpital′s rule

= lim
x→0

− log µex log µ

= − log µ

We discover that a di�erential equation appears even after the introduction
of such an elementary process. Furthermore, not only is it a di�erential
equation, but it has a random component (dWt). Equations of this type are
called stochastic di�erential equations. We will discover later that to solve
this type of equation, stochastic calculus is paramount.

Example (Stock holdings process) This is a very natural example. Let us
say we have an asset price that evolves according to some random process
{Xt}. We also have another process, the amount of the asset that we hold,
Yt. So, it time t0 we buy Yt0 of the asset. Then, at time t1 the asset price
has moved and we have a change in wealth Yt0Xt1−Yt0Xt0 = Yt0(Xt1−Xt0).
Then at time t1 we want to change our position to Yt1 . After another time
step we again have a change in wealth Yt1Xt2 − Yt1Xt1 = Yt1(Xt2 −Xt1). If
we continue this, our total wealth change at ti+1 is:

Yt0(Xt1−Xt0)+Yt1(Xt2−Xt1)+ ...+Yti(Xti+1−Xti) =
ti∑

k=0

Ytk(Xtk+1
−Xtk)

Once again, we want to take this to continuous time:

lim
∆t→0

ti∑

k=0

Ytk(Xtk+1
−Xtk) =

∫ t

0
YsdXs
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Now we have an integral, and it is extremely important to note that the
integrator is random. This is a stochastic integral.

These two examples should demonstrate that di�erentials and integrals are
unavoidable. We need to have some tools to operate with such equations.
A calculus is necessary and we will see that it is not only necessary but also
very desirable because we open ourselves up to a myriad of representations.
There is a mass of processes that cannot be described explicitly and need
to be written in di�erential or integral form. Now someone might argue
that this is no problem since we have all learnt calculus at school, but there
is an extremely crucial di�erence between ordinary calculus and stochastic
calculus. We should investigate:

3.2 QUADRATIC VARIATION OF BROWNIAN
MOTION

Let us say we want to �nd the in�nitesimal di�erence of a simple, smooth
function, for example f(t) = t3. To do this we can use the Taylor expansion.

∆f(t) =
df(t)
dt

dt +
d2f(t)
2dt2

(dt)2 +
d3f(t)
3!dt3

(dt)3 + ...

∆t3 = 3t2dt + 3t(dt)2 + (dt)3 + ...

∆t3 = 3t2dt

Terms of order (dt)2 and higher are negligible so we can say dt3 = 3t2dt.
To demonstrate, we know that dt is an in�nitesimal increment. If we take
for example dt = 0.01 and decrease it by a factor of 10 to 0.001, (dt)2 will
decrease by a factor of 100 to 0.00001, so in comparison to dt, (dt)2 will
become less and less signi�cant as dt goes to 0. Obviously all terms of higher
order are even less signi�cant. Let us now consider the same function, but
with a di�erent input. Instead of taking a function of time, we will take a
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function of the Wiener process: f(Wt) = W 3
t .

∆f(Wt) =
df(Wt)
dWt

dWt +
d2f(Wt)
2!dW 2

t

(dWt)2 +
d3f(Wt)
3!dW 3

t

(dWt)3 + ...

∆W 3
t = 3W 2

t dWt + 3Wt(dWt)2 + (dWt)3 + ...

∆W 3
t = 3W 2

t dWt (†)

Is this correct? It turns out that we cannot apply the same reasoning as
before since (dWt)2 is not negligible. This may be already obvious since
E[(dWt)2] is the variance of the Wiener process increments and in our de�-
nition of the Wiener process we stated that V ar[dWt] = dt. It can be shown
that while

∫ t
0 dWs = Wt is random,

∫ t
0 (dWs)2 is not.

For a heuristic understanding it is enough to consider that the variance of
Brownian motion is equal to dt, but this is the cornerstone of Stochastic
Calculus and we should examine the proof.

Theorem 3.2.1. (Quadratic Variation of Brownian Motion) Consider a
partition 0 < ... < tk < ... < tn < T with n →∞ and tk+1 − tk = ∆tk → 0.
Then:

lim
∆tk→0

E[
∑

k

(Wtk+1
−Wtk)2 − T ]2 = 0 (1)

∑

k

(Wtk+1
−Wtk)2 a.s−→ T (2)

Proof:
Set Vn =

∑

k

(Wtk+1
−Wtk)2 =

∑

k

(∆Wtk)2

Vn − T =
∑

k

[(∆Wtk)2 −∆tk]

Taking the second moment of this quantity

E[Vn − T ]2 = E[
∑

k

∑

j

[(∆Wtk)2 −∆tk][(∆Wtj )
2 −∆tj ]]

For non-overlapping increments (where k 6= j) we have

E[(∆Wtk)2 −∆tk]E[(∆Wtj )
2 −∆tj ] = 0
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This is simply due to the properties of Brownian motion. Non-overlapping
increments are independent so the expectation can be taken inside, and
E[∆Wtk ]2 = ∆tk. Hence

E[Vn − T ]2 = E
∑

k

[(∆Wtk)2 −∆tk]2

=
∑

k

E[∆tk

(
(∆Wtk)2

∆tk
− 1

)
]2

=
∑

k

E[∆tk
(
Z2 − 1

)
]2 where Z ∼ N(0, 1)

=
∑

k

(∆tk)2E[Z2 − 1]2

But E[Z2 − 1]2 is some constant, call it C. Hence

E[Vn − tn]2 = C
∑

k

(∆tk)2

≤ C max
k

(∆tk)
∑

k

∆tk

≤ C max
k

(∆tk)T → 0 if ∆tk → 0

This proves part (1) of the theorem. To prove part (2) we need to specify our
partition a little bit. Instead of saying it is arbitrary, let us say the increments
are now all of equal width and ∆tk = εi/i2 with i → ∞, remembering that
∆tk still goes to 0 (this means that ∆tk → 0 faster than 1/i2 → 0).

P((Vn − T )2 > 2εi) ≤ E[Vn − T ]2

2εi
≤ C maxk(∆tk)T

2εi
≤ CεiT

2εii2
=

C ′

i2

Since
∑

i
C′
i2

< ∞, the sum of probabilities in the above expression is �nite.
Applying the Borel-Cantelli lemma, the probability that (Vn − T )2 > 2εi

for in�nitely many i is zero. Since εi → 0, this means that almost surely
(V − T ) → 0. In other words

∑

k

(Wtk+1
−Wtk)2 a.s.−→ T

¥

15



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Convergence of Quadratic Variation of Brownian Motion

t

Q
ua

dr
at

ic
 V

ar
ia

tio
n

Figure 2. This plot shows 3 approximations of
∫ 1

O
(dWs)

2 for di�erent time grids.
The lightest line has ∆t = 1/50, the darker line has ∆t = 1/200,
and the darkest line has ∆t = 1/6400. Notice that the darkest line is
almost identical to f(t) = t.

Returning to our previous example, the di�erence (†) should be as below:

∆W 3
t = 3W 2

t dWt + 3Wtdt

The fundamental di�erence between ordinary calculus and stochastic calcu-
lus is this second order term. In ordinary calculus it is negligible, whereas
in stochastic calculus it is not. It is also worth noting that it can be shown∫ t
o dWsds = 0. With this knowledge we can move on to a very famous and
useful formula in continuous time �nance.
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3.3 ITÔ'S LEMMA AND THE ITÔ PROCESS

We reasoned earlier that Brownian motion itself will not likely be a su�cient
model for �nancial time series. By taking functions of it, we can however
use it as an engine of randomness. Since it is most convenient to represent
�nancial time series in di�erential form, we need a tool to obtain the di�er-
ential of a given function of Brownian motion. So let us generalise what we
discovered in the last section.

df(Wt) =
df(Wt)
dWt

dWt +
1
2

d2f(Wt)
dW 2

t

(dWt)2

=
df(Wt)
dWt

dWt +
1
2

d2f(Wt)
dW 2

t

dt

At this stage we should also consider that we may not want to begin with
a standard Brownian motion, but perhaps alter the variance and drift. We
introduce the Itô process which is simply a generalised Brownian motion,
where we have time and/or state dependent parameters.

dXt = µ(Xt, t)dt + σ(Xt, t)dWt

We may also write this using shorter notation:

dXt = µXdt + σXdWt

So our standard Brownian motion is an Itô process with µ(Xt, t) = 0 and
σ(Xt, t) = 1. If we have µ(Xt, t) = a where a is a constant, we simply
add drift to our standard Brownian motion. Changing σ(Xt, t) alters the
variance of the process. The next step is to consider what happens when we
take the function of this process. As is often useful in �nance, we can go one
step further and consider a function of the process, and time. Finally here
is the lemma:

Lemma 3.3.1. (Itô's Lemma) For an Itô process dXt = µXdt+σXdWt, and
any twice continuously di�erentiable function f , the process f(Xt, t) = Yt is
also an Itô process satisfying dYt = µY dt + σY dWt.
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We make an informal derivation by once again using the Taylor expansion.

df(Xt, t) =
∂Yt

∂Xt
dXt +

∂Yt

∂t
dt +

1
2

∂2Yt

∂X2
t

(dXt)2

= (µX
∂Yt

∂Xt
+

∂Yt

∂t
+

1
2
σ2

X

∂2Yt

∂X2
t

)dt + σX
∂Yt

∂Xt
dWt

= µY dt + σY dWt

In principle, we can take a function of more variables, and we do not need
to consider a function of Xt and t. We can just as well take a function of
two Itô processes. To adjust, all we need to do is use the Taylor expansion
with the appropriate number of variables and investigate what happens to
the in�nitesimal terms. We will see examples in the next section and later.

3.4 EXAMPLES

Example (Geometric Brownian motion) At the end of the last chapter we
argued, why not simply take the exponential of Brownian motion to get a
process that is always positive. This we thought, might be a good model of
stock price dynamics. With this in mind let us consider a certain Itô process.

dSt = µStdt + σStdWt

As it stands, the St in the drift and volatility terms make it di�cult to
integrate. We use Itô's Lemma to help us solve it. Let us see what happens
if we take Yt = log St.

d log St = dYt =
d log(St)

dSt
dSt +

d2 log(St)
2dS2

t

(dSt)2

=
1
St

(µStdt + σStdWt)− 1
S2

t

σ2S2
t dt

= (µ− σ2

2
)dt + σdWt

= adt + σdWt
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But this is now simply a Brownian motion with drift. Since taking the
logarithm of St gives us a Brownian motion, taking the exponential of a
Brownian motion must give us St. This is exactly what we were considering
for a stock price model. It turns out that this is indeed the �rst and most
prominent model for a stock encountered in mathematical �nance and it is
called geometric Brownian motion. We will use this as the model of choice
to explain stock price dynamics for the remainder of this chapter. Before
continuing let us �nd the solution to this equation.

∫ t

0
d log Su =

∫ t

0
((µ− σ2

2
)du + σdWu)

log St − log S0 = ((µ− σ2

2
)t + σWt)

log St = log S0 + ((µ− σ2

2
)t + σWt)

St = S0e
(µ− 1

2
σ2)t+σWt

Of course it is worth noting that St is a random variable (log-normal to
be exact). We can also consider the logarithm of this, which is normally
distributed. Finding the mean and variance is elementary:

log St ∼ N

(
log S0 + (µ− σ2

2
)t, σ2t

)

Example (Ornstein-Uhlenbeck process solution) In the introduction to this
section we discovered that this is the continuous-time analogy of the AR(1)
process. To �nd the solution to this di�erential equation we must again
use Itô's Lemma. We must �rst eliminate the state variable in the equation
to allow easy integration, so we should try to �nd some transformation that
would address this problem. It turns out that if we set f(Xt, Yt) = f(Xt, t) =
Zt = Xte

bt we get the desired result.

dXt = b(µ−Xt)dt + σdWt

dZt =
∂f(Xt, t)

∂Xt
dXt +

∂f(Xt, t)
∂t

dt + ...

= ebt(b(µ−Xt)dt + σdWt) + bXte
btdt

= ebt(bµdt + σdWt)
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Figure 3. Left is a path of standard Brownian motion with single standard devi-
ation bands. Right is a path of geometric Brownian motion generated
by the process on the left, with µ = 0.05 and σ = 0.2, and the corre-
sponding bands.

∫ t

0
dZs =

∫ t

0
ebs(bµds + σdWs)

∫ t

0
dZs = bµ

∫ t

0
ebsds + σ

∫ t

0
dWs

Zt − Z0 = bµ

(
ebt

b
− 1

b

)
+ σ

∫ t

0
ebsdWs

Xte
bt −X0 = µebt − µ + σ

∫ t

0
ebsdWs

Xt = e−btX0 + µ(1− e−bt) + σ

∫ t

0
eb(s−t)dWs

Given the normality of the driving Brownian motion, this is also a normal
random variable. The mean is simple to �nd. To �nd the variance we
have to remember that non-overlapping increments of Brownian motion are
independent and hence E[σ

∫ t
0 eb(s−t)dWs]2 = σ

∫ t
0 e2b(s−t)E[dWs]2.

Xt ∼ N

(
e−btX0 + µ(1− e−bt), σ2 1− e−2bt

2b

)

We showed that this is a continuous-time analogy of the AR(1) process, so it
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is also stationary. We can take t →∞ to obtain the stationary distribution:

Xt ∼ N

(
µ,

σ2

2b

)
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Figure 4. An Ornstein-Uhlenbeck process generated by the same process as in
�gure 5 with µ = 1, b = 0.4, σ =

√
2b and an initial value of 0. Single

standard deviation bands are also shown

Example (A Numéraire) In French this word means money, or face value,
and it's meaning in mathematics is exactly that. It is a unit of measure
for the value of something. For example the US dollar is used as numéraire
for goods in the USA and the Euro for goods in Europe. Let us assume
that the exchange rate between the two currencies is $1=d0.64. A burger
in the USA costs $2.50. Taking the Euro as numéraire the price becomes
2.40× 0.64 =d1.54. The only condition we require is that the numéraire is
always positive.

We can look at another useful change of numéraire. We will �nd out later
why it is useful, but let us just calculate it for now. Consider a stock price
evolving according to geometric Brownian motion and a risk-less bond.

dSt = µStdt + σStdWt

dβt = rβtdt notice the lack of random component (no risk)

We will use the bond as numéraire, so in e�ect we will be calculating how
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many bonds the stock is worth rather than how many dollars. That is
f(St, βt) = Yt = St/βt, and we are looking for d(St/βt). To �nd it we must
again use Itô's Lemma.

d(Yt) =
∂f(St, βt)

∂St
dSt +

∂f(St, βt)
∂βt

dβt + ...

=
1
βt

dSt − St

β2
t

dβt

=
1
βt

(µStdt + σStdWt)− St

β2
t

rβtdt

=
St

βt
((µ− r)dt + σdWt)

dYt = (µ− r)Ytdt + σYtdWt

This is again a geometric Brownian motion. In fact if we take β0 = 1 this
gives us the stock price dynamics discounted by the risk free rate. The drift
term corresponds to the risk premium of the stock.
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4 RISK, ARBITRAGE, AND PRICING

4.1 IDEAS BEHIND ARBITRAGE PRICING THEORY

This is perhaps the most important sub-section in the �rst part of the the-
sis as it explains the reasoning behind arbitrage-free pricing in very simple
terms. The real theory should be much easier to understand after reading
this section.

Let us �rst recall some simple fundamentals of �nance. The �rst is the time-
value of money. It is better to have $1 now than $1 in the future because $1
now can be invested and a pro�t can be made. A government bond is usually
used as a tool to measure this value (of course not any government bond,
but one issued by some roughly speaking 'developed' and stable government.
Bonds are usually given a rating to signify their reliability). Those with the
best rating are compounded and discounted at the risk-free rate. Basically
we assume that there is no chance of default and we are guaranteed the future
return. So if we consider one time step, simple geometric compounding, and
a risk-free rate of 2.5% then $10 invested now returns $10(1+0.025)=$10.25
at the end of the time period. This is illustrated by the blue line in the �gure
5 below.

Of course there are assets that are not risk-free. Take for example a stock.
Let us say that right now it is worth $10, but in one period's time we are
not sure what it will be worth (hence the risk involved). It will either go
up to $11.50 or down to $9.50 with equal probability. The expected value
is however $10.50 (red dotted line in the �gure 5 ). We notice that the ex-
pected returns from the two assets di�er by N−¥. Since the initial price is
the same, the rates of return are di�erent. The discount factor for the risky
asset is called the risk-adjusted discount rate. For this particular asset it is
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(10.50−10)/10 = 5%. The di�erence between the risk-adjusted discount rate
and the risk-free rate is called the risk premium. This can be interpreted as
the reward for bearing risk.

• (risk-adjusted discount rate) - (risk-free rate) = risk premium

All assets have this risk-adjusted discount rate and we use this rate to dis-
count the expected future return of an asset. This discounted value gives a
fair current price of the asset.

0.0 0.2 0.4 0.6 0.8 1.0

9.
5

10
.0

10
.5

11
.0

11
.5

Risky and Risk−less assets

t

A
ss

et
 P

ric
e

prob=0.5

prob=0.5

Figure 5. Risky and risk-less assets.

So, what does this have to do with derivative pricing?

Let us consider the most simple derivative, a European call option on the
stock in the current example. That is, the option gives us the right to buy
one unit of stock at the end of the time period for some given strike price
(K), let us say K = $10. At the end of the time period one of two things
can happen:

• S1 = $11.50: We exercise the option, and buy one unit of stock for
$10. We can immediately sell it for the market price at $11.50 and
make $1.50.
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• S1 = $9.50: We let the option expire since to buy one unit of stock at
$10 would be useless considering that we could do so for less on the
market.

We can also calculate the expected payo� from holding the option since we
know the probabilities with which the stock price will change.

E[C1] = E[max(S1 −K, 0)]

= 0.5(11.50− 10) + 0.5(0)

= $0.75

This is where we hit a wall. After all, what we are after is the current
option price. To calculate it, we need to discount E[C1] at the appropriate
risk-adjusted discount rate, call it ρ.

C0 =
E[C1]
1 + ρ

It is important to note that although the payo� of the option depends com-
pletely on the stock, their risk-adjusted discount rates are very di�erent since
the payo�s and initial prices are di�erent. We also cannot simply use the
risk-free rate. So how do we value this option?

There are two approaches to solving this problem:

1. Absence of arbitrage:
Arbitrage is a free lunch. It's a cash in�ow with no risk involved.

We argue that if we can make some asset that has identical cash �ows
to the option, then the price of the option should be the same as the
price of this new asset. Otherwise we exploit the di�erence in prices
to make a risk-free pro�t i.e. arbitrage. So how can we make this asset
with identical cash �ows? Consider a portfolio that consists of stocks
and bonds:

Portfolio = aS0 + bβ0

= a10.00 + b10.00
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At the end of the period, we set the portfolio value equal to the op-
tion pay-o�. We can do this because the option payo� is completely
dependent on the stock price.

aS1 + bβ1 = C1

a11.50 + b10.25 = 1.50

a9.50 + b10.25 = 0.00

We can solve for the unknowns so a = 0.75 and b = −0.695122. Now
we know the value of the portfolio because we know what the stock and
the bond are worth at the beginning of the time period. But since this
portfolio has the same cash �ows as the option, if there is no arbitrage
the option price must be equal to the portfolio price at the start. The
option price is therefore:

C0 = aS0 + bβ0

C0 = a10.00 + b10.00

= $0.5488

2. The second approach uses risk-neutrality:
Consider a world where all assets have risk premia equal to 0 (a risk
neutral world). That is, all expected returns of assets are discounted at
the risk-free rate. For our particular example, this would mean that
the probabilities with which the stock price evolves change. This is
illustrated in the �gure below. E[Ŝ1] = $10.25
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Figure 6. A risk neutral world.

We can do the same as we did in the arbitrage-free approach, and create
a portfolio to price the option.

a11.50 + b10.25 = 1.50

a9.50 + b10.25 = 0.00

So a = 0.75 and b = −0.695122, as before and C0 = $0.5488 as before.
This has not changed because none of the cash �ows have changed,
only the probabilities with which they occur. The price of the option
is the same.

So is there any bene�t in considering this risk-neutral world? Well, our
�rst attempt to price the option consisted of taking an expectation, but
we could not proceed because we did not know the appropriate discount
factor. But in this example all assets are discounted at the risk-free
rate. Our portfolio consists of two assets that are discounted at the
risk-free rate, so any combination of these two assets is also discounted
at the risk-free rate. Therefore, under risk-neutrality the option payo�
is also discounted at the risk-free rate.

C0 =
E[max(Ŝ1 −K, 0)]

1 + r
=

E[max(S1 −K, 0)]
1 + ρ
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The no arbitrage approach gives the same price regardless of risk-
neutrality but under risk neutrality it is much easier to calculate the
price of the option since we can take the expected value and discount
by the risk-free rate. Notice that the only assumption we make is that
of no arbitrage. We do not assume that the world is risk neutral.
Risk neutrality is a tool that we use to calculate the no-arbitrage price
of an option.

C0 =
E[max(Ŝ1 −K, 0)]

1 + r

=
0.375× 1.50 + 0.625× 0

1 + 0.025
= $0.5488

There is another, slightly more philosophical point. The assumption of
no arbitrage is used to calculate the fair price of a derivative. We do
not actually assume that the world really is arbitrage-free as this would
be far from the truth. Knowing the fair price of a derivative gives us
a benchmark against which we can set market prices and determine
mis-pricings that we can later exploit.

Before we move on to the real pricing we should examine a few more points
using this really simple example.

1. Change of measure and the Girsanov theorem:
We notice that after assuming risk neutrality, the probabilities with
which the share price evolves change. This is to allow for the change in
expected value without altering the cash �ows. In this extremely sim-
ple example it is easy to calculate these probabilities. However, when
we assume that a stock price evolves according to GBM, we will need to
�nd these probabilities. Since under GBM, the stock price at t = 1 is
a continuous random variable (where the probability of any single out-
come is 0) we will need to consider something called change of measure.

The idea is really quite simple. We can measure the height of a man
in metres or in feet. Going from one to the other is called changing
measure. Just in the same way that we can assign a height to a man,
we can assign a probability to an event. In fact we have a change
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of measure in the example above. Under the real-world measure the
probability of the stock price going to $11.50 is 0.5, whereas under the
risk-neutral measure it is 0.375.

The tool that we will use to �nd this risk neutral measure is the Gir-
sanov theorem. Simply put, it states that change of measure is the
same as change of drift. To understand this using our example we can
see that there are actually two ways to make the stock RADR equal
to the risk-free rate. The �rst is changing the probabilities of the out-
comes (as we have done) but the second way is keeping the probabilities
the same, and instead changing the price outcomes.
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Figure 7. Illustration of two ways of changing the expected stock price at t = 1.

2. Equivalent measure:
This example, and in particular the shortcoming of it illustrates an-
other very important point, equivalent measure.

A few pages back we saw that risk-neutrality does not change the price
of the option because the cash �ows do not change, only the proba-
bility with which they occur. Our reason to use risk-neutrality was to
make the expected pay-o� from the stock equal to that of the bond (in
order to obtain a discount rate for the expected option pay-o�).

Now we are saying that we can make the expected values equal by
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changing the price outcomes for the stock instead of the probabilities.
But does this still give us the same option price?

a11.25 + b10.25 = 1.25

a9.25 + b10.25 = 0.00, a = 0.625, b = −0.564024

C0 = 0.6098

The answer is no, and it is obviously because the cash �ows have
changed. So it seems that for this example we cannot say that change
of measure is the same as change of drift. This is exactly where equiv-
alent measure comes in. If all events possible under P are the same
as the events possible under Q (the measures have the same support)
then the two measures P and Q are quivalent.

If P(A) > 0 ⇔ Q(A) > 0 then P and Q are quivalent.

The two graphs in �gure 7 above demonstrate clearly that the two
measures are not equivalent. This is precisely why the option price
changes. So when changing measure, to avoid changing the option
price, we must always go to an equivalent measure. This way the out-
comes of the stock price do not change, only the probabilities. This
in turn does not change the cash �ows, and therefore the option price
remains the same.

This is where the Girsanov theorem and change in drift is so useful. If
at t = 1 the stock price is log-normally distributed as in GBM, then it
can take all positive values. To go to the risk-neutral measure we can
again shift the probability mass. In this case however, we can use the
theorem and instead change the drift since doing so does not change
the possible values of the stock price, thus preserving all cash �ows. In
other words, we can change the drift of a log-normal process instead
of changing the probability mass because all log-normally distributed
variables have equivalent measures (all have (0,∞) as support).
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3. Statement of the Fundamental Theorem of Asset Pricing:
We began this sub-section with the idea that assuming absence of ar-
bitrage allows us to calculate the price of a derivative. Furthermore
we discovered that risk-neutrality can be used as a very e�ective tool
to help us in calculating this price.

There is a theorem tying these two ideas together, and we should �rst
observe how it is stated using our current example. Later on we will
examine it in more detail. There is a type of process that we need to
know before continuing, that is we need to know what is a martingale.
A martingale is a process in which the expectation of the next value
given the current value is equal to the current value. In other words the
process has no drift. For example, Brownian motion is a martingale.

We call a process a martingale if E[|X|] < ∞ and

E[Xt+s|Xt] = Xt

Now let us state the Fundamental Theorem of Asset Pricing and ob-
serve and illustrate what the statement means. Later we will prove it.

Fundamental Theorem of Asset Pricing: Given a market with
assets Yt, and a numéraire Nt, the market is arbitrage free if and only
if there exists an equivalent martingale measure for Yt/Nt.

Remembering that any asset that is always positive can serve as numéraire,
in this example we take the bond. The statement is well illustrated
by graph 8 below. The �rst step is looking at the discounted process
Yt/Nt. If we can �nd a measure that makes this new process a martin-
gale, then no-arbitrage is admitted. Working the other way, if there is
no-arbitrage, then there is this equivalent martingale measure.
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Observe the probabilities given to make the discounted stock process
a martingale. They are the same as in the risk neutral stock process.
In fact, taking the bond as numéraire gives the same probabilities as
those under risk neutrality.
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Figure 8. This is no longer simply the stock price process, but we have taken the
bond as numéraire. In the second plot the measure has been changed
to the equivalent martingale measure.

We will look at this theorem in more depth a little later, but now let us
examine a tool that we will use to �nd equivalent martingale measures.

4.2 GIRSANOV THEOREM

As we discussed previously, the Girsanov theorem will help us greatly in
�nding and specifying new measures. We will look at this theorem for the
special case of Brownian motion, although it can be extended to more gen-
eral processes. The underlying point is that change of measure is the same
as change of drift.

Theorem 4.2.1. (Change of Measure (Girsanov)) Let Wt be a standard
Brownian motion with a corresponding probability measure P. Now consider
a process θt such that

∫ t
0 θsdWs is well de�ned and de�ne a process Mt where:

Mt = e
∫ t
0 θsdWs− 1

2

∫ t
0 θ2

sds

32



A new measure is given by dQ = MdP and the process W̃t = − ∫ t
0 θsds + Wt

is a standard Brownian motion under the new measure Q .

Proof:

We will illustrate why our choice of Mt helps a little later but now we will
prove only that W̃t is indeed a standard Brownian motion under Q. To do
this we simply need to show that W̃t has independent, normally distributed
increments with the right variances, and this is done by showing that the
joint moment generating function of n increments is the same as the moment
generating function of n independent normal random variables.

Recall that the MGF for a standard normal random variable is e(τσ)2/2, so
we want to show:

EQ[e
∑n

1 τi(W̃ti+1−W̃ti )] = EP[
n∏

1

eτ2
i (ti+1−ti)/2]

Let us just consider one such increment:

EQ[eτi(
∫ ti+1

ti
dW̃s)] = EQ[eτi(−

∫ ti+1
ti

θsds+
∫ ti+1

ti
dWs ]

= EP[e
τi(−

∫ ti+1
ti

θsds+
∫ ti+1

ti
dWs)(Mti+1 −Mti)]

= EP[e
τi(−

∫ ti+1
ti

θsds+
∫ ti+1

ti
dWs)e

∫ ti+1
ti

θsdWs− 1
2

∫ ti+1
ti

θ2
sds]

= EP[e
− 1

2

∫ ti+1
ti

(2τiθs+θ2
s)ds+

∫ ti+1
ti

(τi+θs)dWs ]

= eτ2
i (ti+1−ti)/2EP[e

− 1
2

∫ ti+1
ti

(τi+θs)2ds+
∫ ti+1

ti
(τi+θs)dWs ]

= eτ2
i (ti+1−ti)/2 as required

Going to line 5 we simply completed the square, and for the last step we
used the fact that the expectation is equal to 1 (see below).

¥

The proof of the theorem is not so di�cult, what is more interesting is our
choice of Mt. It is called a Radon-Nikodym process, and the idea behind it
is simple. We use this value to change the measure of random variables and
it must be such that EQ[Wt] = EP[MtWt] and EP[Mt] = 1. This ensures
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that Q is still a probability measure. For some events Mt > 1, so more mass
is shifted on those events. Likewise for some outcomes, Mt < 1 so these
become less likely. The total "amount" of probability does not change, only
where it is placed.

We will show that that Mt is a martingale and E[Mt] = 1 (for non-random
θt). This is best done by �nding dMt using Itô's lemma:

dMt =
∂f(Wt, t)

∂Wt
dWt +

∂f(Wt, t)
∂t

dt +
∂2f(Wt, t)

2∂W 2
t

(dWt)2 + ...

= θtMtdWt − 1
2
θ2
t Mtdt +

1
2
θ2
t Mt(dWt)2

= θtMtdWt

E[dMt|Mt] = E[θtMtdWt|Mt]

= θtMtE[dWt|Wt] Mt given implies θt and Wt are given

= 0

This shows that Mt is a martingale. The fact that E[Mt] = 1 is easily de-
duced since M0 = 1. Let us now look at an example and observe how the
theorem works with some numbers.

Example (Change of measure) Let us now consider θt as in the theorem
above, equal to 2. Then by the theorem:

W̃t = −
∫ t

0
θsds + Wt

= −2t + Wt

and W̃t is a standard Brownian motion under Q. Let us have a look at Mt:

Mt = e
∫ t
0 θsdWs− 1

2

∫ t
0 θ2

sds

= e2Wt−2t

for Wt > t, Mt > 1 so more weight is placed on upward trajectories of Wt.
This means that the density is shifted upwards. We can also observe this
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by computing the new density function by φQ = MφP where φ represents
the normal density function under the respective measure. Let us do this for
t = 1:
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Figure 9. The densities under P (blue) and Q (red).

And the next �gure perhaps best illustrates the theorem in action:
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Figure 10. The two plots illustrate change of measure. The brightness of the
colour represents the density associated with the particular path. The
plot on the right has identical paths to the plot on the left, but di�erent
measure. The densities under P and Q have been over-laid to clarify
the relationship between change of measure and change of drift.

Let us now move on to a very important section that will �nally provide us
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with the tools to price �nancial derivatives. The Girsanov theorem will be
crucial in the development of this section.

4.3 FUNDAMENTAL THEOREM OF ASSET PRICING

The �rst theorem in this sub-section is the �rst fundamental theorem of asset
pricing. We have almost all the terminology we need. To continue we only
need to have a quick look over the self-�nancing portfolio strategy.

The example used throughout 4.1 contained a portfolio strategy (pt) in a
stock and a bond (Yt). The portfolio value would then be denoted Vt.

Vt = ptY
′
t = [at, bt][St, βt]′ = atSt + btβt

A self-�nancing portfolio strategy is a strategy such that there are no funds
added or withdrawn and V0 = 0. This means that dVt = ptdYt should hold.

We can make such a strategy using the same example:

[at, bt, ct][St, βt, Ct]′ = atSt + btβt + ctCt

[−0.75, 0.6951, 1][St, βt, Ct]′ = −0.75St + 0.6951βt + Ct

Such a portfolio has V0 = 0 at t = 0, and there are no funds added. This type
of portfolio should give us insight about the relationship between arbitrage
and portfolios. Considering the example in 4.1, if the price of the option is
fair then V0 = 0 and V1 = 0. But what happens if the option is mis-priced?
Let us say that it is undervalued and costs $0.50 instead of the no-arbitrage
price of $0.5488. We can create a portfolio to exploit this mis-pricing and
earn a risk-free pro�t, in other words we can exploit this arbitrage opportu-
nity.

The easiest way to do this, is to buy the under-priced option, and sell the
replicating portfolio. Basically we have the same asset, since the future cash
�ows are the same. So we buy the option for $0.50 and then sell essentially
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the same thing (the replicating portfolio) for $0.5488, making an instanta-
neous pro�t of $0.0488. We have no risk of losing money at t = 1 since
the cash �ows of the assets we hold are the same and will cancel each other
out. However, for the proof of the fundamental theorem of asset pricing we
need to ful�ll the condition that our portfolio has V0 = 0 but for our current
construction V0 = 0.0488.

We can exploit this opportunity in a slightly di�erent way, by receiving a
guaranteed future cash �ow. Consider a portfolio strategy pt = [−0.75, 0.7, 1]
(never mind for now how we selected these particular numbers). Then at
t = 0:

V0 = [−0.75, 0.7, 1][10, 10, 0.5]′ = 0

And let us have a look at what happens at t = 1. Remembering that there
are two possible outcomes:

V1 = [−0.75, 0.7, 1][11.5, 10.25, 1.5]′ = 0.5

or V1 = [−0.75, 0.7, 1][9.5, 10.25, 0]′ = 0.5

Either way, we are sure to make a pro�t of $0.50 without having injected any
of our own money at the start. This is also a way of exploiting this arbitrage
opportunity. Notice that these two approaches in fact give the same payo�.
When we discount the arbitrage payo� using the risk-free rate, we obtain
the same value as when using the �rst approach (0.05/1.025 = 0.0488).

Now that we have a feeling for these ideas we can see how no-arbitrage and
equivalent martingale measure are tied together in the theorem itself:

Theorem 4.3.1. (Fundamental Theorem of Asset Pricing (I)) Given a mar-
ket with assets Yt, and a numéraire Nt, the market is arbitrage free if and
only if there exists an equivalent martingale measure for Yt/Nt

Proof:
We will prove only the su�ciency of this theorem, it will be enough for us
to continue.
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Consider a self �nancing portfolio pt in the assets Yt. The portfolio value is
then Vt = ptYt and V0 = 0. Let us assume that there is an arbitrage resulting
from holding this portfolio. That is P(Vt ≤ 0) = 0.

P(Vt ≤ 0) = 0, P(Vt > 0) > 0 this is an arbitrage (†)
P(Vt/Nt ≤ 0) = 0, P(Vt/Nt > 0) > 0 since Nt is always positive

But we have an equivalent martingale measure, so this means that:

EQ(Vt/Nt) = V0/N0 + EQ

∫ t

0
d(Vs/Ns)

EQ(Vt/Nt) = V0/N0 + EQ

∫ t

0
psd(Ys/Ns)

= 0 since Ys/Ns is a martingale under Q

But because the expectation is 0, it must be that Q(Vt/Nt ≤ 0) > 0 and
therefore Q(Vt ≤ 0) > 0. Since Q and P are equivalent, it must be that
P(Vt ≤ 0) > 0. This is a contradiction to (†). It is in fact possible for Vt ≤ 0
and therefore this is not arbitrage.

¥

The next theorem follows on very naturally from above and also uses the
Girsanov theorem. It tells us how the drift and volatility coe�cients of a
discounted asset price should be related to allow no-arbitrage. It will be
crucial in the development of the Black-Scholes equation.

Theorem 4.3.2. Let there be a market with assets Yt and a numéraire Nt.
Let us say the process Yt/Nt has the form:

dYt/Nt = µY/Ndt + σY/NdWt

No-arbitrage is admitted if and only if there exists a function λN (the N

subscript denotes that the function depends on choice of numéraire) such
that :

µY/N = σY/NλN
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Proof:
We saw from the theorem above that to have absence of arbitrage we need
an equivalent martingale measure for the discounted process Yt/Nt. But by
the Girsanov theorem, change of measure is the same as change of drift. So
if there exists an equivalent martingale measure then there exists a λN such
that:

dW̃t = λNdt + dWt

and

d(Yt/Nt) = σY/NdW̃t (the discounted process is a martingale)

Substituting dWt = dW̃t − λNdt into dYt/Nt = µY/Ndt + σY/NdWt we see
that:

dYt/Nt = µY/Ndt + σY/N (dW̃t − λNdt)

= (µY/N − σY/NλN )dt + σY/NdW̃t

The drift term vanishes (the process is a martingale) only if µY/N = σY/NλN ,
as stated in the theorem. Note that λN has the form − ∫ t

0 θsds in the Gir-
sanov theorem sub-section (4.2).

¥

4.4 BLACK-SCHOLES EQUATION

In this sub-section we will use what we have learned so far to arrive at the
famous Black-Scholes1 equation. This will be a very general form, and may
seem slightly abstract at �rst. We will however review it using a couple of
nice examples in the examples sub-section.

Theorem 4.4.1. (Black-Scholes equation) Let there be a market with assets
Yt and a numéraire Nt. Let us say the discounted process Yt/Nt has the form:

dYt/Nt = µY/Ndt + σY/NdWt

1Fischer Black (1938-1995), Myron Scholes, Nobel Laureate 1997
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No-arbitrage is admitted if and only if there exist functions Λ and R such
that the equation (Black-Scholes) below is satis�ed:

µY −RYt = σY Λ

Proof:
We will need to actually compute d(Yt/Nt) and use theorem 4.3.2 in order
to arrive at the equation. We will use Itô's lemma to do this, remembering
of course that dYt = µY dt+ σY dWt and dNt = µNdt + σNdWt (both are Itô
processes).

d
Yt

Nt
=

1
Nt

dYt − Yt

N2
t

dNt +
1
2

(
0− 1

N2
t

(dYt)(dNt)− 1
N2

t

(dNt)(dYt) +
2Y

N3
t

(dNt)2
)

=
1
Nt

dYt − Yt

N2
t

dNt − 1
N2

t

(dNt)(dYt) +
Y

N3
t

(dNt)2

=
1
Nt

(µY dt + σY dWt)− Yt

N2
t

(µNdt + σNdWt)− 1
N2

t

σNσY dt +
Y

N3
t

σ2
Ndt

From above we then obtain:

σY/N =
1

N2
t

(σY Nt − YtσN )

and
µY/N =

1
N2

t

(µY Nt − YtµN )− σY/N
σN

Nt

In the previous theorem (4.3.2) we saw how σY/N and µY/N are related if
there is no-arbitrage. The theorem stated that µY/N = σY/Nλ in such a case.
Using this, we obtain:

(µY Nt − YtµN ) = (σY Nt − YtσN )(λ +
σN

Nt
)

= (σY Nt − YtσN )Λ

We can now re-arrange this to:

µY − µN − σNΛ
Nt

Yt = σY Λ

This is exactly the expression µY − RYt = σY Λ as stated in the theorem
with:

R =
µN − σNΛ

Nt
and Λ = λ +

σN

Nt
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Clearly, if there is no-arbitrage, then the Black-Scholes equation is satis�ed.
Conversely, if µY − RYt = σY Λ is given �rst, then µN − RNt = σNΛ must
also hold. Rearranging this we obtain the same expression for R as above.
Consequently there is no arbitrage.

¥

It is very interesting to examine this equation. R in the Black-Scholes equa-
tion can be interpreted as the risk-free rate on a risk-free asset Y (an asset
with σY = 0). This R does not have to be constant and can depend on time.
The expression σY Λ is then viewed as the excess return on Yt if it is not
risk-free. If we rearrange the equation to obtain Λ = (µY −RYt)/σY , we see
that it is the excess return per unit of volatility. A common name for this is
the market price of risk (also commonly called the Sharpe ratio).

4.5 BLACK-SCHOLES FORMULA

The example in 4.1 showed us that the price of a European call option can
be evaluated in two ways. The �rst way was to solve simultaneous equations
and in fact this is parallel to the Black-Scholes equation when we introduce
a continuous-time framework. We will see in the examples sub-section that
the same arguments are used and we will arrive at a partial di�erential equa-
tion, the solution to which gives the option price. However, we also saw that
we can use risk-neutral pricing as a tool, and it is widely regarded that this
is an easier method. By simply taking the expectation of the payo� under
risk-neutrality then discounting this expected value by the risk-free rate we
arrive at the same price.

So let us consider the model with the stock dynamics explained by geometric
Brownian motion, a European call option on the stock (with strike price K)
and a risk-free bond (note that we can use the technique in the sub-section
to price any option with a payo� at a non-random time. It does not have to
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be a European call).

dSt = µStdt + σStdWt

dβt = rβtdt

In a risk-neutral world all assets are expected to grow at the risk free rate,
so the drift term for the stock price should be rS̃tdt instead of µStdt. Let
us just con�rm this fact by using the theory that we have learned so far.
We know that arbitrage is ruled out if we can �nd an equivalent martingale
measure. The �rst step is to choose a numéraire and we know that taking
the bond results in �nding the risk-neutral measure. As we have done before,
we use Itô's lemma to �nd how the discounted price evolves.

d
St

βt
= (µ− r)

St

βt
dt + σ

St

βt
dWt

Now we need to �nd a measure that will make this process a martingale, but
by the Girsanov theorem, change of measure is the same as change of drift.
So, all we need to do is �nd a λ in dW̃t = λdt + dWt such that the above
process is a martingale (drift is 0).

d
St

βt
= (µ− r)

St

βt
dt + σ

St

βt
(dW̃t − λdt)

= ((µ− r)− σλ)
St

βt
dt + σ

St

βt
dW̃t

So λ = (µ− r)/σ. Using this change of measure in our model for the stock
price gives the same outcome:

dS̃t = µS̃tdt + σS̃t(dW̃t − λdt)

= µS̃tdt + σS̃t(dW̃t − µ− r

σ
dt)

= rS̃tdt + σS̃tdW̃t

The payo� of the option is max(St −K, 0). The value of the option is then:

C0 = e−ρtE[max(St −K, 0)]

However the di�culty in estimating ρ means that we use risk-neutrality as
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a tool. Risk-neutrality changes the drift of the underlying process, but it
will give us the correct price only if we remember that the initial values
of the actual and the risk-neutral processes must be the same. Under risk
neutrality the price is given by:

C0 = e−rtE[max(S̃t −K, 0)|S̃0 = S0]

Where S̃t is as above. All that remains for us is to �nd E[max(S̃t−K, 0)|S̃0 =
S0]. We know the distribution of S̃t so we can proceed.

X = log S̃t ∼ N(ν, ϕ2)

ν = log S̃0 + (r − σ2/2)t

ϕ2 = σ2t

To �nd E[max(eX −K, 0)] we can consider the moment generating function
of the normal random variable evaluated at s = 1. φ and Φ represent the
normal density and distribution function respectively.

E[eXs]|s=1 = E[eX ]

E[eXs] =
∫ ∞

−∞
exsφ(ν,ϕ2)dx

E[max(eXs −K, 0)] =
∫ ∞

log K
(exs −K)φ(ν,ϕ2)dx

=
1√

2πϕ2

∫ ∞

log K
exse

− (x−ν)2

2ϕ2 dx−K

∫ ∞

log K
φ(ν,ϕ2)dx

= a− b
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a =
1√

2πϕ2
eνs

∫ ∞

log K−ν
ezse

− z2

2ϕ2 dz b = K(1− Φ(ν,ϕ2)[log K])

a =
1√

2πϕ2
eνs

∫ ∞

log K−ν
e
(− z2

2ϕ2 +zs− s2ϕ2

2
+ s2ϕ2

2
)
dz b = KΦ(0,1)[(ν − log K)/ϕ]

a =
1√

2πϕ2
eνs

∫ ∞

log K−ν
e
(
−(z−sϕ2)2

2ϕ2 + s2ϕ2

2
)
dz

a =
1√

2πϕ2
e(νs+ s2ϕ2

2
)

∫ ∞

log K−ν−sϕ2

e
−y2

2ϕ2 dy

a =
1√

2πϕ2
e(νs+ s2ϕ2

2
)

∫ ∞

log K−ν−sϕ2

√
2πϕ2φ(0,ϕ2)dy

a = e(νs+ s2ϕ2

2
)(1− Φ(0,ϕ2)[log K − ν − sϕ2])

a = e(νs+ s2ϕ2

2
)Φ(0,1)[(ν − log K)/ϕ + sϕ]

E[max(eX −K, 0)] = e(ν+ϕ2

2
)Φ(0,1)[

ν − log K

ϕ
+ ϕ]−KΦ(0,1)[(ν − log K)/ϕ]

Remembering that X = log S̃t we can �nally write down the formula:

C0 =e−rt

(
e(log S̃0+(r−σ2/2)t+σ2t

2
)Φ(0,1)[m1]−KΦ(0,1)[m2]

)

m1 =
log(S̃0/K) + (r + σ2/2)t

σ
√

t

m2 =
log(S̃0/K) + (r − σ2/2)t

σ
√

t

C0 = S̃0Φ(0,1)[m1]− e−rtKΦ(0,1)[m2]

There remains only one thing for us to remember. As it stands, the formula
contains S̃, the risk neutral stock price. This di�ers only in drift from S and
at t = 0 these two have to be equal for us to obtain the correct price.

Changing this gives us the famous Black-Scholes option pricing formula:
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C0 = S0Φ(0,1)[m1]− e−rtKΦ(0,1)[m2]

m1 =
log(S0/K) + (r + σ2/2)t

σ
√

t
m2 =

log(S0/K) + (r − σ2/2)t
σ
√

t
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Figure 11. Black-Scholes formula option prices for parameters σ = 0.2, r = 0.05

and S0 = 10. The blue lines correspond to di�erent maturity times.
The solid line is for τ = 1/24, dashed line for τ = 2/24, and dotted
line for τ = 3/24.

4.6 EXAMPLES

In this sub-section we look at two assets, a European option, and a bond.
We compare the di�erential equations given by general Black-Scholes and
the di�erential equations given by simple derivation using portfolios. We
will �nd that the equations we obtain are identical.
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Example (Black-Scholes equation for a European option) We can use the
Black-Scholes equation as it was derived in theorem 4.4.1, but as stated be-
fore this may seem slightly abstract. We can actually arrive at the same
equation by using a very simple approach. The bene�t in using 4.4.1 is that
it is very general, while the derivation is speci�c to this example.

1. Using the general Black-Scholes equation directly:

µY −RYt = σY Λ

where
R =

µN − σNΛ
Nt

and Λ = λ +
σN

Nt

The asset we want to price is a European call option, so Yt is the price
of the option. The payo� of this option is max(St −K, 0) where K is
the strike price for some given expiry date. Yt must then depend on
the current stock price St and time t. Therefore Yt = f(St, t). If the
stock price follows geometric Brownian motion:

dSt =µStdt + σStdWt

dβt =rβtdt

dYt =
∂f(St, t)

∂St
dSt +

∂f(St, t)
∂t

dt +
1
2

∂2f(St, t)
∂S2

t

(dSt)2

=
(

µSt
∂f(St, t)

∂St
+

∂f(St, t)
∂t

+
1
2
σ2S2

t

∂2f(St, t)
∂S2

t

)
dt

+ σSt
∂f(St, t)

∂St
dWt

Taking the bond as numéraire, R = r and Λ = λ. λ is the price of risk
associated with the driving Brownian motion. If we apply the Black-
Scholes formula to the underlying stock price, we obtain λ = (r−µ)/σ.
The same Brownian motion drives the option price, so the λ associated
with it must be the same. Note that this is identical to λ, as calculated
in the previous sub-section.

µSt
∂Yt

∂St
+

∂Yt

∂t
+

1
2
σ2S2

t

∂2Yt

∂S2
t

− rYt = σSt
∂Yt

∂St
λ
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(µ− σλ)St
∂Yt

∂St
+

∂Yt

∂t
+

1
2
σ2S2

t

∂2Yt

∂S2
t

− rYt = 0

rSt
∂Yt
∂St

+ ∂Yt
∂t + 1

2σ2S2
t

∂2Yt

∂S2
t
− rYt = 0

The option price Yt must satisfy the above partial di�erential equation.

2. By creating a risk-less portfolio:

Let us consider now this slightly di�erent approach, creating a portfolio
comprising of one option, the amount a in stocks and an investment in
the money market (risk-less bond).

Vt = aSt + Yt + βt and dVt = adSt + dYt + rβtdt

Writing out the full expression for dVt:

dVt =
(

aµSt+
(

µSt
∂Yt

∂St
+

∂Yt

∂t
+

1
2
σ2S2

t

∂2Yt

∂S2
t

)
+rβ

)
dt+

(
aσSt+σSt

∂Yt

∂St

)
dWt

To make the portfolio riskless, we must eliminate σV = aσSt +σSt
∂Yt
∂St

.
This is done when a = −∂Yt/∂dSt (remembering that a is the amount
of shares we buy).

dVt =
(
− ∂Yt

∂St
µSt +

(
µSt

∂Yt

∂St
+

∂Yt

∂t
+

1
2
σ2S2

t

∂2Yt

∂S2
t

)
+ rβ

)
dt

If the portfolio is risk-less, it must grow at the same rate as a risk-less
money market account. Therefore dVt = rVtdt

(
∂Yt

∂t
+

1
2
σ2S2

t

∂2Yt

∂S2
t

+ rβ

)
dt = r

(
∂Yt

∂St
St + Yt + βt

)
dt

Simplifying this expression we obtain the partial di�erential equation
that the option price must satisfy.

rSt
∂Yt
∂St

+ ∂Yt
∂t + 1

2σ2S2
t

∂2Yt

∂S2
t
− rYt = 0

This is identical to the result given by the general Black-Scholes equa-
tion.
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Example (Black-Scholes equation for a bond in the Vasicek model) Here we
consider the valuation of a bond. In this case however, the interest rate
is not constant, or even deterministic. The rate evolves according to an
Ornstein-Uhlenbeck process.

drt = b(µ− rt)dt + σdWt

= µrdt + σdWt

The bond pays us $1 some pre-determined time in the future, so the bond
price is a function of the interest rate and time.

βt = f(rt, t)

Our goal is to �nd the bond's current price (or at least the di�erential equa-
tion that is satis�ed by this price).

1. Using the general Black-Scholes equation directly (note that rt and R

are quite di�erent here. rt is the random short rate, whereas R is some
risk-free rate):

µβ −Rβt = σβΛ

So we must �nd how the bond price evolves, and as usual we use Itô's
lemma:

dβt =
(

µr
∂βt

∂rt
+

∂βt

∂t
+

1
2
σ2 ∂2βt

∂r2
t

)
dt + σ

∂βt

∂rt
dWt

= µβdt + σβdWt

Using this, we can write the equation to be satis�ed by the bond price:

µβ −Rβt = σβΛ

(µ− σΛ)
∂βt

∂rt
+

∂βt

∂t
+

1
2
σ2 ∂2βt

∂r2
t

−Rβt = 0

2. We can also price this bond using a similar approach to the previous
example. When pricing the option however, we had a perfectly cor-
related asset (the stock), which we could use to completely remove
the risk. But what do we hedge the bond against? The trick here is
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to consider arbitrage occurring over di�erent time frames. The idea
is that the yield from buying two single period bonds consecutively
should be the same as form holding a two period bond over the same
time period. Otherwise there would be an arbitrage opportunity. The
trick is to consider two bonds of di�erent maturities.

βt = f(rt, t) and αt = g(rt, t)

dβt =
(

µr
∂βt

∂rt
+

∂βt

∂t
+

1
2
σ2 ∂2βt

∂r2
t

)
dt + σ

∂βt

∂rt
dWt

dαt =
(

µr
∂αt

∂rt
+

∂αt

∂t
+

1
2
σ2 ∂2αt

∂r2
t

)
dt + σ

∂αt

∂rt
dWt

dβt = µβdt + σβdWt

dαt = µαdt + σαdWt

Let us consider a portfolio Vt = βt + cαt where dVt = dβt + cdαt. Then
to remove the risk in this portfolio much in the same way as we did for
the previous example, we must make (σβ + cσα)dWt equal to 0. That
is, c = −σβ

σα
. Then since the portfolio has no more risk, it must grow

at some riskless rate.

dVt = RVtdt

µβdt− σβ

σα
µαdt = RVtdt

σαµβ − σβµα = R(σαβt − σβαt)

Rearranging, we obtain:

µβ −Rβt

σβ
=

µα −Rαt

σα
= Λ

But this is "excess return per volatility" and our other name for this
is the price of risk. And since this is the same for both bonds, it must
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not depend on the maturity time. Let us say we want to price the �rst
bond, we can write:

µβ −Rβt

σβ
= Λ

Rearranging, and making substitutions for µβ and σβ we obtain:

µβ −Rβt = σβΛ

(µ− σΛ)
∂βt

∂rt
+

∂βt

∂t
+

1
2
σ2 ∂2βt

∂r2
t

−Rβt = 0

Again, this is the same as given by the general Black-Scholes equation.
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5 SIMPLE DIFFUSION MODELS:
CONCLUSION

This brings us to the end of the �rst part. Not wishing to derive solutions, the
point of interest here is the reasoning behind our pricing constructions. There
are many methods to solve di�erential equations analytically, numerically
and by simulation however, the most important part is the construction. One
can always �nd a solution thereafter even if not an analytical one. While we
did obtain the Black-Scholes formula which gives us the price of a European
option, more importantly we have the Black-Scholes equation. Having this
means that we can always price an asset that pays a payo� at some �xed
time. What we must move on to now is our investigation of the underlying
processes that govern the state variables, for we will discover that incorrect
choice of such models can make pricing misleading.

51



Beyond Simple Di�usion
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6 SO THAT'S IT?

We have arrived at the second part of the paper. We have discovered that
using Brownian motion as the engine of stochasticity provides us with a self
contained theoretical framework that allows modeling underlying processes
and pricing of �nancial instruments. The elegance and ease of working in
such a framework undoubtedly makes Brownian motion the star of mathe-
matical �nance.

Graphs like the �gure below are usually used to motivate the use of geometric
Brownian motion as the appropriate process to model a stock price. The two
processes do indeed look indistinguishable. However, this graph conceals
several crucial components that we must investigate.
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Figure 12. The graph shows the Dow Jones2 index and a simulated path of ge-
ometric Brownian motion with the same daily return and volatility.
But which is which?

2The Dow Jones Industrial Average is a weighted average of stocks from 30 of the
largest companies in the United States.
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7 SHORTCOMINGS OF GEOMETRIC
BROWNIAN MOTION

7.1 NON-CONSTANT VOLATILITY

The �rst thing we can do to investigate is look at the returns of this process
(dXt/Xt) which should be normally distributed if the process really is geo-
metric Brownian motion. The returns are illustrated in the �gure below. At
one glance it is immediately evident that the geometric Brownian motion �t
to the index and the actual index have very di�erent structures. The index
returns (blue) exhibit volatility clustering. The returns for 1992-1997 and
2004-2007 look to have relatively lower variance than for 1997-2004. The sim-
ulated returns (red) on the other hand show constant variance throughout.
It seems then, that the characteristic of constant volatility is not exhibited
by the Dow Jones index. This is the �rst clue suggesting that geometric
Brownian motion is not a suitable model.
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Figure 13. Daily returns of the Dow Jones and a simulated geometric Brownian
motion with the same mean and volatility.
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We have looked at the Dow Jones index, a composite of several stock prices.
If we look at individual stocks, we will arrive at the same conclusion. Fig-
ure 14 displays actual and simulated returns of the Microsoft Corporation
stock. Once again it is evident that the actual returns exhibit non-constant
volatility. Although we will not be overly pedantic by checking the returns
for all existing stocks, it has been shown the vast majority of stocks display
this behaviour.

Microsoft Corp. daily returns

Date

R
et

ur
n

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Simulated Microsoft Corp. daily returns

Date

R
et

ur
n

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Figure 14. Daily returns of the Microsoft Corporation stock and a simulated ge-
ometric Brownian motion with the same mean and volatility.

There have been several suggestions to deal with the problem of non-constant
volatility, which we will have a look at later. Next we must investigate a far
more serious drawback of geometric Brownian motion.

7.2 EVIDENCE OF JUMPS

A very important property of geometric Brownian motion is continuity and
scale invariance. Continuity means that all paths are continuous and ex-
hibit no jumps at all, on any scale. Scale invariance means that no matter
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how much we "zoom in", the process shows the same behaviour. Looking
at a �gure such as �gure 12 (which is usually used to motivate the choice of
geometric Brownian motion) we may agree that both actual and simulated
paths are continuous.

Recall that Robert Brown observed pollen particles and reasoned that mole-
cules would collide with, and cause the pollen to move at random. We rea-
soned that a market place should act the same. A large number of traders
would buy and sell a stock at random, causing the price to move around
unpredictably. This is true, but it is not the picture in its entirety. For the
case of the pollen on the petri dish, with the assumption that there is no
outside in�uence the model is su�cient. However, this model is far more
simple than a market. We rule out outside in�uence. But what if we have
someone bump into the table? That is, the table that our microscope and
our petri dish is on. This would surely cause all the particles on the dish to
make an uncharacteristically large movement in some direction.

This is of course unlikely under experimental conditions and indeed; one
would hope that Mr. Brown was careful while undertaking his famous ob-
servations. But as we said, the marketplace is a predominantly more complex
object than a petri dish. There are governments, natural disasters, and large
competing �rms just to name a few of the highly in�uential items a�ecting
traders' behaviour. Indeed if a hurricane sinks an Exxon Mobil oil tanker,
traders will not naively keep trading at random, causing Mobil's share price
to move around unpredictably. These traders have brains, and undoubtedly
they will recognise the importance and consequences of such an event. They
would surely sell their Exxon Mobil stocks in anticipation of the problems
arising for the company. In such an event the price of the stock would surely
fall, and not by a negligible distance but possibly by an amount that the
Geometric Brownian motion model would classify as nearly impossible. An
event like this would be our jump. For a recent example we may take the
sub-prime mortgage crisis in the USA. Numerous �nancial institutions have
seen tremendous drops in their share price in a matter of minutes.

For one particular case we can look at the stock price of National City
Corporation, one of the largest commercial banks in the United States.
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Figure 15. NCC stock price and a simulated geometric Brownian motion, 1998-
2008.
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Figure 15 displays the NCC stock price since 1998 and a path of simulated
geometric Brownian motion with the same daily return and volatility. It
is di�cult to distinguish between the two. Figure 16 displays the same
paths, but for a much smaller time scale, beginning at 2007. Although it
is not immediately obvious which path is simulated and which is the actual
process, a more experienced individual will notice the very large deviation in
the blue path, towards the end. This is a revealing sign that the blue path
is the actual process, since we know that such high deviations are extremely
unlikely under geometric Brownian motion. Let us zoom in even further and
look at this deviation:

NCC Stock Price Mar 13 − Mar 19, 2008
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Figure 17. NCC stock price and a simulated geometric Brownian motion, March
13 - March 19, 2008.

Figure 17 shows the NCC stock price for March 13 to March 19, 2008 with
the stock price recorded at 5 minute intervals. This plot should remove all
doubt as to which process is the real stock price and which is the simulated
Brownian motion. It is the ideal instance exemplifying the lack of scale
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invariance and continuity in �nancial time series. As we can see, the red
path still behaves in a similar fashion as the previous two plots. It wanders
around unpredictably, but always in small steps. The blue path exhibits very
di�erent behaviour. Firstly, we can say that at this scale, the path moves
very di�erently to the blue path in the two previous �gures. Although the
majority of steps are indeed small, the total variation is dominated by several
huge jumps. Secondly, the process is obviously not continuous. We see that
the price actually moves by jumps. The purist may begin a discussion about
our inability to ever record a truly continuous process because we can only
observe values at given instances, but without going into such arguments it
is still evident that geometric Brownian motion does not have the �exibility
to account for such movement. Even if we disregard the fact that the price
took jumps in excess of 30% of it's entire value over time steps of only 5
minutes and consider daily data, we will still arrive at the same conclusion.
At the end of March 17, the NCC stock closed at $7.49 compared to the
previous trading day's close of $13.15. This is a loss of 43.0% when the
standard deviation of daily returns for the NCC stock is only 2.1%. If the
price really did evolve according to geometric Brownian motion, an event like
this would occur every 3.6×1088 years! We can rule out this jump happening
by chance because other stocks such as Citigroup Inc. and the Bear Stearns
Comp. have also recently displayed sudden movements of similar magnitude.
In general, �nancial time series of other types also exhibit discontinuity.
Although share prices are most active in this light, interest rates, exchange
rates and commodities also show evidence of jumps.

7.3 HEAVY TAILS

The two previous sub-sections can be summarised here. Both processes with
non-constant volatility and jumps have distributions which display heavier
tails. The term refers to the behaviour of the distribution function for large
values of the random variable (by large we mean limit to in�nity). We say
that a random variable has a heavy right tail of the distribution if the tail
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is not exponentially bounded, that is:

lim
x→∞ eκxP(X > x) = ∞ for all κ > 0

The following �gure illustrates heavy tailed behaviour observed in the mar-
ket.

−0.04 −0.02 0.00 0.02 0.04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of Dow Jones daily returns

Return %

D
is

tr
ib

ut
io

n

Figure 18. Distribution of daily returns of the Dow Jones and a �tted normal
distribution.

In �gure 18 both returns have the same mean and the same variance, so if
they are both normally distributed, the two distribution curves should be
the same. It seems however, that Dow Jones index returns are not normally
distributed. Instead we see this heavy tail phenomenon. This means that
while the two distributions have the same variance, the heavy tailed ver-
sion gets more of its variability from more extreme events. This coincides
with both concepts of jumps and non-constant volatility. In �gure 19 are
several graphs depicting empirical and normal distributions with the same
daily mean and volatility for several NYSE stocks.
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Figure 19. Distribution of daily returns for several NYSE companies. Blue repre-
sents the empirical distribution and red, a �tted normal distribution..

7.4 MARKET PRICES AGAINST THE
BLACK-SCHOLES FORMULA

Another piece of evidence against the use of geometric Brownian motion is
the di�erence in market option prices and the prices given by the standard
Black-Scholes formula. Initially we may say that this is not a problem, or
even a good thing since we are very con�dent in our model, and this di�er-
ence in prices means that we can even exploit it for a pro�t. In our derivation
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of the Black-Scholes equation and formula we argued that the assumption of
no-arbitrage should give us the fair price of the option. If the market price
does not coincide with this, then it is the market price that is wrong, not the
model. Before we get caught up in over-con�dence we should look at �gure
20 which shows some interesting data.

The data is for European call option prices of three Dow Jones, NYSE listed
companies. All three graphs show that the Black-Scholes formula overprices
options quite considerably. While we have shown three graphs, the case is
very similar for the vast majority of options. This must place a seed of doubt
in our con�dence regarding the Black-Scholes formula. Now it must be said
that in this case we have used a model that does not take into account div-
idends or transaction costs which both contribute in reducing the option
price. We will speak about this later but now let us consider error from
parameter estimation. The current underlying stock price is observable, the
time to expiry is observable, and we de�nitely know the strike prices.

The two variables that cause us di�culty are the interest rate and the volatil-
ity of the underlying stock. Although volatility is not observable, if we as-
sume the stock price evolves according to geometric Brownian motion, then
the volatility coe�cient is just a constant (σ) and it does not pose di�culty
in estimation. We can simply take the standard deviation of historical re-
turns (dSt/St = µdt + σdWt). For a large data set we can get very accurate
estimates so under geometric Brownian motion this should not be a problem.
Our other problem is the interest rate. It is observable in the market, but
the obstacle here is that it is not constant as assumed in the Black-Scholes
formula. Although there are pricing equations that consider non-constant
interest rates, our purpose here is to investigate the performance of geomet-
ric Brownian motion. For the plots in �gure 18 an approximate rate was
used, taken from US T-Bill3 yield rates. We haven't accounted for dividends
or transaction costs but since under geometric Brownian motion we can get
very a accurate estimate for σ, we might say that the mis-pricing is due to a
poor choice of the interest rate. We would be saying; since the option price
and the interest rate have a positive relationship (∂C/∂r > 0), overpricing

3US Treasury Bills, a risk-free short term (less than a year, usually at 4 weeks, 13
weeks, 26 weeks) debt obligation backed by the US government.
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would be due to an overestimated interest rate. However, taking values of
the interest rate up to �ve times smaller than the observed market rate still
leads to overpricing and more importantly a poor �t of the pricing curve.
This is again evidence that the problem must lie in the choice of underlying
process.
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Figure 20. Graphs comparing European call op-
tion market prices and prices given by
the Black-Scholes formula. The black
points show April 24 (2008) closing
prices for options expiring on May 16
(2008). The blue line is the Black-
Scholes price and the red line is the pay-
o� function of the options. The dotted
blue line gives the Black-Scholes option
price using an interest rate value three
times smaller than the market estimate.

In light of these �gures we may choose to acknowledge that the standard
Black-Scholes formula is not a reliable tool to determine option prices. In-
deed, the truth is that in the real world the formula is not used to price
derivatives, but instead it is used to determine something called implied
volatility.

The idea here is that we agree that the formula gives erroneous answers.
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For vanilla4 options, markets are very large, providing high liquidity. We
therefore assume that market forces determine the fair price better than our
formula. Since σ is the only unobservable variable in the formula, perhaps
our estimate of σ is incorrect. So instead of treating the parameter as input
and obtaining the price, we use the price to obtain the parameter thus �nd-
ing the underlying stock volatility implied by the option. This technique is
used to say something about the underlying process. Of course, this reason-
ing automatically admits the rigidity of the standard Black-Scholes model.
As stated in [13], this is the "wrong number which, plugged into the wrong
formula, gives the right answer."

Figure 21 displays implied volatility surfaces for European call options on
the same three company stocks as in �gure 20. These surfaces are some-
times called volatility smiles or volatility skews. None of the plots show a �at
pro�le for the surface as would be expected if the underlying stock process
really was geometric Brownian motion. The most disturbing and perhaps
obvious aspect of all is the multiple values of σ for one price! We must stress
that the input parameters for the plots are strike price and time, where each
plot is for a single given price of the underlying asset. Di�erent values of σ

for one value of St? Is this not completely overwhelming evidence that the
assumptions about the underlying asset price are �awed?

We stated earlier that we have not accounted for dividends or transaction
costs. Both these inputs can be approximated by incorporating constants
into the drift term of the underlying asset when treating the option price
as an expected value under risk neutrality. In our current model, using an
underestimated interest rate actually amounts to the same thing. As we saw
in �gure 20 this explains the over-pricing to an extent but, although we have
used a very vulgar approximation by simply taking a smaller value for the
rate, we still cannot obtain the correct shape of the pricing curve. Even
models that accurately take into account other parameters like dividends
and transaction costs simply cannot attain the correct curve. This wrong
curvature results in the smile phenomenon and thus implies misplaced as-

4A vanilla option is any "common", simple option without any special features. There
is no de�nitive distinction between these and exotic options. The latter tends to be
specialised. European, American, Bermudan are all examples of vanilla options.
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sumptions about the underlying asset process.

We will take steps and investigate the attempts at solving the problems that
have been highlighted in this section.
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Figure 21. Graphs showing European call option

implied volatility surfaces using closing
prices from April 24 - May 16 (2008)
for options expiring on May 16 (2008).
The z-axis displays the volatility (σ
for daily returns), the x-axis display-
ing strike price, and y-axis displaying
trading days elapsed from April 24 (at
15, we are 0 trading days from ex-
piry). Note that the empty values in-
the-money are due to the Black-Scholes
overpricing and our exclusion of divi-
dends and transaction costs. Infrequent
trading of in-the-money options is also
a cause. It is common that even for the
smallest values of σ, the pricing function
cannot attain observed market prices.
When this is not the case, we obtain a
"smile".
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8 ADDRESSING THE PROBLEM:
STOCHASTIC VOLATILITY

8.1 INTRODUCTION

The �rst option we will explore is modeling with stochastic volatility. Our
set up here is almost identical to that of the standard Black-Scholes, but the
volatility coe�cient itself is now a random process (σ = σt).

dSt = µStdt + σtStdWt

As seen above, we do not change the underlying asset process and each
increment remains log-normally distributed conditional on σt, but we need
to agree on our choice of process for the volatility. It is reasonable to assume
that the volatility will not attain unrealistically high values and with the
evidence from �gures of asset returns, we can safely say that volatility varies
with time, but around some level. We can then say σt evolves according
to some mean-reverting process. In addition, it is obvious that volatility
cannot be negative, so we must add the positivity restraint. In general then,
σt should be a mean reverting, positive Itô process.

dσt = µσdt + σσdBt

Another important point to make here is the relationship between Bt and
Wt. We may assume that these two are independent however, market data
shows that this is not always the case. It is commonly observed that when
prices take downward movements, they also become more volatile. When
prices grow on the other hand, they tend to exhibit more calm behaviour.
This is also summarised well from another perspective, as seen in asymme-
try of returns. Losses are usually accounted for by few large movements as
opposed to gains, where large gains are not as common. We will see this in
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the example at the end of this sub-section. These observations are a good in-
dicator that Bt and Wt should be correlated. We will say E[dWtdBt] = ρdt,
where ρ < 0. The construction of dWt and dBt is such that:

[dWt, dBt]′ = M [dŴt, dB̂t]′

Where M is a 2×2 matrix and dŴt and dB̂t have no correlation. MM ′ = Σ
is a Cholesky decomposition and Σ is the covariance matrix of dWt and dBt.

Before we move on, here are some examples of popular processes used in
volatility modeling:

Square root process: dσt = a(b− σt)dt + c
√

σtdBt

Log-Ornstein-Uhlenbeck: d log σt = a(b− log σt)dt + cdBt

Heston model (here we do change dσt = a(b− σt)dt + c
√

σtdBt

the underlying asset process): dSt = µStdt +
√

σtStdWt

The choice of model is a question of the modeler's beliefs about the under-
lying processes. We can forgo this debate and move on to pricing. In the
next sub-section we will use the Black-Scholes equation to derive a general
pricing equation.

8.2 BLACK-SCHOLES EQUATION

Using our general Black-Scholes equation, the derivation here is surprisingly
simple. To move on we must nonetheless agree on what has changed from
the standard Black-Scholes setup.
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Standard Stochastic volatility

dSt = µStdt + σStdWt dSt = µStdt + σtStdWt

σt = σ dσt = µσdt + σσdBt

E[dWtdBt] = ρdt

dβt = rβtdt dβt = rβtdt

Yt = f(St, t) Yt = f(St, σt, t)

We have already discussed the nature of the volatility process, what remains
to be noticed is the change of the derivative pricing function. It would have
been a mistake on our part to continue without realising that Yt has changed.
Since we have introduced a second random component, the pricing function
now has dependence on this new variable. This may seem obvious but we
can consider the standard setup for another interpretation. We know that
a derivative is more expensive if the underlying asset has higher volatility.
If volatility is now allowed to vary over time, obviously the derivative will
have lower prices over periods when σt is low, and higher prices over periods
when σt is high. Hence the dependence on σt in the pricing function and the
modi�cation of Yt.

Recall that the general Black-Scholes equation is as given below:

µY −RYt = σY Λ

To continue we must have expressions for µY and σY so we must use Itô's
lemma to compute dYt.

dYt =
∂f(St, σt, t)

∂St
dSt +

∂f(St, σt, t)
∂t

dt +
∂f(St, σt, t)

∂σt
dσt

+
1
2

(
∂2f(St, σt, t)

∂S2
t

(dSt)2 +
∂2f(St, σt, t)

∂σ2
t

(dσt)2 + 2
∂2f(St, σt, t)

∂St∂σt
(dσt)(dSt)

)

=
(

µSt
∂Yt

∂St
+

∂Yt

∂t
+ µσ

∂Yt

∂σt
+

1
2
σ2S2

t

∂2Yt

∂S2
t

+
1
2
σσ

∂2Yt

∂σ2
t

+ ρσtStσσ
∂2Yt

∂St∂σt

)
dt

+ [σSt
∂Yt

∂St
, σσ

∂Yt

∂σt
][dWt, dBt]′

The price of the derivative must then satisfy the following di�erential equa-
tion:
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µSt
∂Yt

∂St
+

∂Yt

∂t
+ µσ

∂Yt

∂σt
+

1
2
σ2S2

t

∂2Yt

∂S2
t

+
1
2
σσ

∂2Yt

∂σ2
t

+ ρσtStσσ
∂2Yt

∂St∂σt
−RYt =

= [σSt
∂Yt

∂St
, σσ

∂Yt

∂σt
][ΛW , ΛB]′

It is very interesting to observe the nature of Λ, the price of risk. In the
standard Black-Scholes setup there is only one source of uncertainty, the
Brownian motion driving the underlying asset price. Here on the other hand,
we have two Brownian motions, two sources of uncertainty, and therefore a
price of risk associated with each. Under our current model assumptions,
this equation can be simpli�ed a little further. Considering that investment
in the money market grows at a constant risk-free rate, taking the bond as
numéraire means that R is actually the speci�ed risk-free rate r. We can also
say something about ΛW . This is the price of risk associated with the Brown-
ian motion driving the underlying asset price. From using the Black-Scholes
formula for the underlying asset we notice that the price of risk is (µ−r)/σt.
This of course is the price of risk associated with Wt. Hence ΛW = (µ−r)/σt.

Finally, the derivative price must satisfy the following di�erential equation:

rSt
∂Yt
∂St

+ ∂Yt
∂t + (µσ − σσΛB)∂Yt

∂σt
+ 1

2σ2S2
t

∂2Yt

∂S2
t

+ 1
2σσ

∂2Yt

∂σ2
t

+ ρσtStσσ
∂2Yt

∂St∂σt
− rYt = 0

This is a very general pricing equation, and in fact we can see that if σt

is constant, all quotients with dependence on σt obviously become 0. The
equation then reduces to that which is obtained under a constant volatility
model. Although we have made an assumption about the underlying asset
process, that the increments are still geometric Brownian motion conditional
on σt, it would not be di�cult to generalise this to other processes well.

As we have seen, the derivation of this equation is not di�cult with our
current tools in hand. Even �nding solutions to this is not such a di�cult
problem. Without even delving into �nding explicit solutions we may use a
numerical approach like the �nite di�erences method. As we will see in the
section below, we may also use risk-neutral pricing with the Monte-Carlo
method as a tool. What causes more problems for us is the parameter esti-
mation, in particular with respect to ΛB. Assuming only absence of arbitrage
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it is not generally possible to specify ΛB. This can be done by developing
a full general equilibrium model of asset prices. There have also been re-
cent developments in nonparametric estimation techniques using observed
derivative prices [6]. We will leave this topic and move onto to the next
sub-section, where we will compare prices given by the standard setup and
the setup allowing for stochastic volatility.

8.3 RISK NEUTRAL PRICING

We can also use risk-neutrality as a tool to price derivatives when volatility is
stochastic. As with the previous sub-section, to work through we simply need
to keep in mind that the volatility is now random and adjust accordingly.
Recall that the price of a derivative paying some amount at time time has
the current price as follows:

C0 = e−δtE[f(St, σt, t)|S0, σ0]

However, di�culties in estimating the risk-adjusted discount rate δ means
that we must assume no-arbitrage and use risk-neutrality as a tool.

C0 = e−rtE[f(S̃t, σ̃t, t)|S̃0 = S0, σ̃0 = σ0]

Finding explicit expressions of this expectation may be di�cult but we can al-
ways use Monte-Carlo simulation. We can use the following example to com-
pare stochastic volatility modeling and the standard Black-Scholes model.

Example (Modeling volatility by the log-Ornstein-Uhlenbeck process) In this
example we will price a European call option. We will compare the prices
given by the standard Black-Scholes formula with prices given assuming
stochastic volatility. To calculate the latter, we will use Monte-Carlo simu-
lation. Our model is as follows:
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dSt = µStdt + σtStdWt

d log σt = a(b− log σt)dt + cdBt

dβt = rβtdt

E[dWtdBt] = ρdt

µ = 0.15, a = 1, b = −1.6, c = 0.8, r = 0.05, ρ = −0.75

We will be looking at several strike prices and exercise times.
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Figure 22. This �gure illustrates the relationship between the underlying volatility
and the asset price process. The left plot shows the volatility with the
stationary average (eb+c2/4a). Notice the increase in variability of the
asset price process towards the end, corresponding with the increase
of the volatility coe�cient. Notice also the sharp rise in volatility over
t ≈ (0.7, 0.9). This is also the time when the asset price shows a
slight downward trend. This illustrates the correlation between the
two driving Brownian motions.

Figures 22 and 23 illustrate some properties of our model. Notice the resem-
blance of the empirical distribution in �gure 22 to that of the distributions
seen in sub-section 7.3.

In comparing the outcomes, the �rst thing we want to do is obtain prices
using the standard Black-Scholes formula. To do this we assume that we
do not know that the process has stochastic volatility and simply treat it as
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Figure 23. Here we see the empirical distribution and density functions of daily
returns in blue, made by generating 200000 paths. The red curves are
for a �tted normal distribution.

geometric Brownian motion.

dSt = νStdt + θStdWt

This means that the volatility coe�cient is constant. We can look at returns
of this process to obtain an estimate for θ. Having all other parameters, we
then use the formula to obtain our prices.

Our next step is to look at what happens if we now know that the process has
random volatility. We will use risk neutral pricing to obtain the answer and
to do this we must �rst �nd out how the process evolves under risk neutrality.
This is the same as �nding an equivalent martingale measure with the bond
taken as numéraire. As done before, we use Itô's lemma to �nd how the
discounted price evolves. We must then �nd λ in dW̃t = λtdt + dWt such
that the following process is a martingale:

d
St

βt
= (µ− r)

St

βt
dt + σt

St

βt
dWt

This yields λt = (µ − r)/σt. Notice that the only di�erence here to the
derivation in sub-section 4.5 is that σ is random, otherwise the structure is
the same. With this knowledge we can state that the underlying asset price
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evolves according to:
dŜt = rS̃tdt + σtS̃tdW̃t

This is not the �nal step in �nding the risk-neutral process. As we saw in
the previous section, there is also a price of risk and hence a risk premium
associated with the Brownian motion driving the volatility. We need to �nd
Λ2 in the expression below. However, considering the di�culties associated
with estimating Λ2, we will assume that this risk premium is zero in this
example.

d log σ̃t = a(b− log σ̃t)dt + c(−Λ2dt + dB̃t)

In other words we assume that dσt = dσ̃t. With this we have our risk neutral
process:

dŜt = rS̃tdt + σ̃tS̃tdW̃t

Below is an illustration showing comparison in valuation of a European call
option with one month to expiry using our two di�erent setups. The initial
stock price is $10. The initial σt value was speci�ed as having the stationary
distribution of the volatility process. This results in obtaining an "average"
price over all possible initial σt values. As we can see, there is a signi�cant
di�erence in these curves. The stochastic volatility price of the option has a
higher degree of curvature at the money, which agrees with prices seen in the
market. Another characteristic seen here is the slightly higher value given by
the stochastic volatility approach well in and out of the money. Both these
phenomena can be explained by the heavier tailed distribution of the asset
returns under stochastic volatility.
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Figure 24. Comparing option prices given by models with and without stochastic
volatility. The blue line gives the risk-neutral price obtained by using
Monte-Carlo simulation, assuming stochastic volatility. The dotted
line gives the Black-Scholes price assuming that the underlying process
is a geometric Brownian motion. 100000 draws were used.
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Figure 25. Implied volatility surface obtained by using the standard Black-Scholes
formula on the prices given by the stochastic volatility model. At 30
days, we are 0 days from option expiry.

The above plot also shows how stochastic volatility can help in explaining the
smile phenomenon. This is also a result of the heavier tails of the distribution
of asset returns.
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8.4 CONSEQUENCES OF USING STOCHASTIC
VOLATILITY

The example in the previous sub-section helps to show the magnitude of
improvement seen in introducing stochastic volatility. However there is also
added di�culty in implication. For example we have not spoken about pa-
rameter estimation in stochastic volatility models. The fact that the volatil-
ity coe�cient cannot be observed is an obvious barrier to tractability. There
is also the question of the risk premium associated with the underlying
volatility. We have stated that estimation of this parameter is also trou-
blesome. Nevertheless, there are developments in these �elds and there are
certain models where parameters can be estimated with a degree of accu-
racy. Overall, the introduction of a stochastic volatility framework is a vast
improvement on the standard Black-Scholes model.

There is the obvious bene�t in more accurate �tting of the underlying asset
returns. In addition to producing heavier tails, we can also account for the
asymmetry of returns. We can even account for the correlation of returns.
There is the great step in explaining the volatility smile, although it has been
shown that this model does not fare so well over time horizons. They cannot
yield a realistic term structure [13]. We can also produce perfect hedging
strategies due to the retained continuity of the underlying asset price.

Retained continuity is also the point that is a sizable drawback for this
model. After all, discontinuity of returns is something it cannot explain.
Reproducing the jumps seen in the market is possible only at the expense of
ridiculously high and sudden values of volatility of volatility. Jump models
however manage to capture this phenomenon as a generic property. Jump
models also manage to produce a variety of volatility smiles and perform
much better over maturities [1].

Finally in the next section we introduce jumps.
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9 ADDRESSING THE PROBLEM:
INTRODUCING JUMPS

9.1 THE COMPOUND POISSON PROCESS

To begin we need to introduce something to drive the jumps in our model.
This is done by taking a rather elementary tool.

As we reasoned before, these jumps that we see are a result of arrivals of im-
portant pieces of information (about the underlying asset). We may assume
that these arrivals are independent. We can describe the probability of an
event occurring over the time interval (t, t + dt) in the following way:

P(Jump does not occur in the time interval (t, t + dt)) = 1− λdt + o(dt)

P(Jump occurs once in the time interval (t, t + dt)) = λdt + o(dt)

P(Jump occurs more than once in the time interval (t, t + dt)) = o(dt)

Where o(dt) is negligible with respect to dt.

If the jump sizes are all of the same magnitude, this construction results in
the very well know Poisson process where P(∆Nt = k) = e−λ∆t(λ∆t)k/k!.
The next step is to consider what happens when one of these important
pieces of information arrives. Information of di�erent kinds has di�erent
bearings on the asset price. In other words the e�ect of each arriving piece
of information is random, i.e. the magnitude of the jump is random. This
added feature generates a compound Poisson process.

A compound Poisson process with intensity λ>0 and jump size distribution
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f is a stochastic process Xt de�ned as:

Xt =
Nt∑

i=1

Yi

Where the Yi are independently, identically distributed and Nt is a Poisson
process with intensity λ, independent from Yi.
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Figure 26. On the left we see a Poisson process with intensity λ = 5 and jumps of
size 1. On the right is a compound Poisson process generated by the
process on the left, with standard normal distribution of jump sizes.

Using conditional expectation and the law of total variance we can also
write down the expressions for expected value and variance of the compound
Poisson process:

E[Xt] = E[E[Xt|Nt]] = E[NtE[Y ]] = λtE[Y ]

V ar[Xt] = E[V ar[Xt|Nt]] + V ar[E[Xt|Nt]]

= E[NtV ar[Y ]] + V ar[NtE[Y ]]

= λtV ar[Y ] + E[Y ]2V ar[Nt]

= λt(V ar[Y ] + E[Y ]2)

= λt(E[Y 2]−E[Y ]2 + E[Y ]2)

= λtE[Y 2]
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In the next sub-section we will incorporate this process into our underlying
asset price evolution.

9.2 JUMP DIFFUSION

As we saw with stochastic volatility, the introduction of the idea was not
di�cult at all. It is the same here. All we do is take our ordinary di�usion
process and add a compound Poisson process.

dSt = µSStdt + σSStdWt + StdXt

Where Xt =
∑Nt

i=1 Yi as in the previous sub-section.

The change in the asset price is presented as a composition of two types
of changes. The standard "vibrations" in price due to short-term changes
in supply and demand, changes in traders' outlooks and other marginal ef-
fects. This part is modeled as before, by using a Brownian motion to drive
the stochasticity. The second component consists of shocks to the system
pointed out earlier. These are due to the arrival of important new informa-
tion with speci�c relevance to the asset in question. This is the kind of "rare"
information that we model by events at discrete points in time. These points
in time are exactly when jumps occur, re�ecting the non-marginal e�ect of
the information. This second type of change is modeled by a compound
Poisson process.

What is left to us is the speci�cation of the drift term and Y . Ideally the
drift term should be speci�ed in such a way that µS = µ − η where η com-
pensates the compound Poisson process. This is not a strict requirement,
but makes things much easier when tempering with the drift of the process
since it would be determined only by µ.

We are also free in our speci�cation of Y . This depends on our beliefs about
the jumps in the underlying process. The choice is important since it de-
termines to a large extent the tails of the distribution of returns. There are
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two popular models; the original jump model proposed by Merton [12] and
a double exponential jump model proposed by Kou [8].

Merton Kou

Y ∼ N(ν, θ2) P(positive jump) = p

P(negative jump) = 1− p

1
pY+ ∼ exp(λ1)+
1

1−pY− ∼ exp(λ2)−

Both models are an improvement but it has been shown that the Kou model
is a better �t to market data [8]. The use of the exponential distribution
means that the tails of returns decay exponentially (much slower) than the
tails of Merton model returns. This is a better re�ection of market data
and the better �t subsequently results in more accurate pricing and implied
volatility modeling. Due it's simplicity however, we will investigate the Mer-
ton model in an example.

9.3 PRICING

In stochastic volatility modeling we can still use risk-neutral pricing without
alteration to our fundamental assumptions. Although �nding this measure
may prove more di�cult due to the obvious increased complexity of the
model, there is still just one risk-neutral measure.

Pricing in jump models introduces a problem called incompleteness. Two
sources of randomness driving the evolution of the price means that we have
many choices for measure change. To obtain a process that is expected to
grow at the risk-free rate we may change the measure of the di�usion, of
the jump, or of both components. To make this choice we usually need to
make additional assumptions about the market. In the next example, we
will see that it is assumed that jumps can be "diversi�ed" away, by holding
many assets. This means that only the drift of the di�usion is changed,
attaching no risk premium to the jump component. We have an additional
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assumption that the losses and gains incurred as a result of jumps will even
themselves out over many assets and time. This may not be the best choice
of measure change, because it is only useful if jumps across assets and time
are completely independent. However, markets show that when these jumps
occur, they are not independent (during a market crash many stocks may
exhibit downward jumps at the same time). Attaching no risk premium to
the jumps is just one possible choice and an illustration of the matter at
hand. This problem actually adds realism to our model. If there were no
jumps in reality, all market participants could perfectly price and hedge away
risk. This is not the case in and better or worse choices can be made. Ulti-
mately, it is up to the user to make assumptions depending on their beliefs
about the market. Once we have a choice of measure change, we can take
the expectation of the option payo� and then discount to obtain the current
option price. The following example shows how we can price a European call
option via a jump model.

Example (Option pricing via the Merton model) Let us investigate the
setup:

dSt =(µ− λκ)Stdt + σStdWt + StdXt

Xt =
Nt∑

i=1

Yi

Y i.i.d. N(ν, θ2) and Nt is a Poisson process with intensity λ

κ =E[eY − 1]

dβt =rβtdt

µ = 0.10, σ = 0.20, λ = 10, ν = 0, θ = 0.10, r = 0.05

The �rst thing that stands out is the choice of drift term. Why this λκ? As
stated above, from the onset it would be preferable to specify just one param-
eter that determines the growth rate. We must consider that the inclusion of
the compound process can have a contribution towards the growth if the Yi

have non-zero mean. Let us look at what happens if we have one jump, Y .
Ignoring the Brownian motion, it's contribution to the stock price is a change
St+dt = Ste

Y . The percentage change contribution is then (eY − e0)/e0. We
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Figure 27. A �gure showing one path of underlying asset price under Merton
model dynamics. The parameters are µ = 0.10, σ = 0.20, λ = 10,
ν = 0, θ = 0.10. The plot on the right shows how we would observe
the process without knowledge of the jump times.

can specify the overall drift component in such a way that µ is the parame-
ter determining growth. To do this we should o�set any contribution by the
compound Poisson process. The key in recognising that we need to subtract
the percentage change contribution of the process per unit of time. This is
done by subtracting E[N1(eY − e0)/e0] = λE[eY − 1]. The next �gure gives
an example of the process.

Figure 27 illustrates a problem resulting from introduction of jumps. If we
do not know when the jumps occur it is very di�cult for us to decompose
the process and hence there are di�culties in parameter estimation, though
we will not go into this here.

In valuing a European call option on this underlying asset we can use risk-
neutral pricing.

The notion of incompleteness, a result of two sources of randomness con-
tributing to the drift means that we have many choices for risk-neutral mea-
sure. Merton proposed changing only the drift of the Brownian motion (as
we have done previously). The choice was justi�ed by arguing that "jump
risk" is diversi�able and there is therefore no risk premium attached to it
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Figure 28. Comparison of empirical distribution and density functions of daily
returns for the Merton model and a model assuming normal returns.

(though there is evidence that this is far from the truth). We will take this
approach for this example. Assuming there is no risk premium associated
with the jumps, we �nd the risk neutral measure of the Brownian motion in
the same way as we have done many times before. This yields the following
risk neutral process.

dS̃t = (r − λκ)S̃tdt + σS̃tdW̃t + S̃tdXt

We can also write down the solution (the steps taken to �nd it are almost
identical to �nding the solution of geometric Brownian motion).

S̃t = S̃0e
(r−σ2/2−λκ)t+σW̃t+Xt

The European call option price is then given by:

C0 = e−rtE[max(S̃0e
(r−σ2/2−λκ)t+σW̃t+Xt −K, 0)|S̃0 = S0]

Xt =
∑Nt

i=1 Yi with Xt distributed as N(nν, nθ2) when Nt = n is given. By
conditioning on the number of jumps, we can express the price as a weighted
sum of Black-Scholes prices:

C0 = e−rt
∞∑

i=1

e−λt(λt)i

i!
E[max(S̃0e

(r−σ2/2−λκ)t+σW̃t+iY −K, 0)|S̃0 = S0]
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We can make a clever step here. As it stands, we take expectation over two
normal random variables iY and W̃t. However, if we can "eliminate" iY ,
we can take the expected value over just W̃t. We make this elimination by
adding/subtracting a transformation of W̃t that has the same variance as
iY . Consider ±iν ± θ

√
i
tW̃t. We are not saying that iY = iν + θ

√
i
tW̃t, we

are saying that taking the expected value under this substitution will not
change the answer.

C0 =e−rt
∞∑

i=1

e−λt(λt)i

i!
E[max(S̃0e

(r−σ2/2−λκ)t+σW̃t+iY±iν±θ
√

i
t
W̃t −K, 0)|S̃0 = S0]

C0 =e−rt
∞∑

i=1

e−λt(λt)i

i!
E[max(S̃0e

(r−σ2/2−λκ)t+σW̃t+iν−θ
√

i
t
W̃t −K, 0)|S̃0 = S0]

Notice that we have taken −θ
√

i
tW̃t and not +θ

√
i
tW̃t. Once again, we may

do this because the expectation will be the same. Our choice depends on the
form we desire in our answer. We also take ±iθ2/2.

C0 =e−rt
∞∑

i=1

e−λt(λt)i

i!
E[max(S̃0e

iν−λκte(r−σ2/2)t+

√
σ2+ θ2i

t
W̃t±iθ2/2 −K, 0)|S̃0 = S0]

C0 =e−rt
∞∑

i=1

e−λt(λt)i

i!
E[max(S̃0e

iν+iθ2/2−λκte(r−(σ2+θ2/t)/2)t+

√
σ2+ θ2i

t
W̃t −K, 0)|S̃0 = S0]

C0 = e−rt
∑∞

i=1
e−λt(λt)i

i! E[max(S̃ie
(r−σ2

i /2)t+σiW̃t −K, 0)|S̃0 = S0]

where S̃i = S̃0e
iν+iθ2/2−λκt and σ2

i = σ2 +
θ2i

t

As we can see, the expectation in the framed expression is simply the Black-
Scholes price of a European call option but with new given values for volatil-
ity and initial underlying asset price. The Merton model price is a weighted
sum of standard Black-Scholes prices.
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Figure 29. Comparing option prices given by the standard Black-Scholes and Mer-
ton models. The blue line gives the Merton model price. The dotted
blue line gives the Black Scholes price assuming that the underlying
process is a geometric Brownian motion.

Figure 29 shows the comparison in prices given by the standard Black-Scholes
and the Merton model for a European option with expiry in one month. The
initial underlying asset price is $10. Notice that the Merton price has a higher
degree of convexity at the money, as seen in market data. This again goes
towards explaining the volatility smile phenomenon. Note that to obtain
the standard Black-Scholes price we assume that the underlying process is
geometric Brownian motion and by using the variance of asset returns obtain
σ2

GBM = σ2 + λθ2.

Figure 30 illustrates the implied volatility surface generated by using the
Merton model. The introduction of jumps and resulting heavier tails of the
distribution of asset returns results in the observed pattern.
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Figure 30. Implied volatility surface obtained by using the standard Black-Scholes
formula on the prices given by the Merton model. At 30 days, we are
0 days from option expiry.

9.4 CONSEQUENCES OF USING JUMP MODELS

Introducing jumps attains two important goals in the aim of correctly mod-
eling observed �nancial phenomena. This �rst is capturing the underlying
asset price dynamics. As we have discussed, jumps are commonly seen due to
the arrivals of important, non-negligible information at discrete times. This
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is especially evident in illiquid markets, where such models are of particular
importance. With the introduction of jumps, we simultaneously explain the
volatility smile phenomenon, and it has been shown that pricing with jumps
provides a better �t than stochastic volatility models for the surface.

A further important outcome of using jumps is the loss of perfect hedg-
ing strategies. Perfect hedging is something that both geometric Brownian
motion and stochastic volatility models admit. This means that under the
assumptions of these continuous models, options are made redundant since
they can be perfectly replicated by existing assets. In the �nancial world, it is
indeed impossible to attain a perfect hedging strategy, and there are actually
multiple techniques available depending on the preference of the user. They
are determined according to which risks a user most wants to avoid. Some
of these techniques are superhedging, utility maximization, and quadratic
hedging, where all include some kind of optimization. Jump models on the
other hand help in explaining the existence of option markets. Options allow
better allocation of risk among market participants, which was the original
reason behind their invention.

Although using jump models gives a great degree of �exibility in modeling
the tail behaviour of returns, there is a drawback. They do not help in
explaining the correlation of returns. As speci�ed in our model, the jumps
have independent times and ignoring the jumps, we still have a geometric
Brownian motion with independent returns. This does not help in explaining
the commonly observed e�ect of volatility clustering.

There is the added di�culty in parameter estimation due to our inability to
distinguish jumps and the "normal" di�usion movements, but this is an in-
evitable consequence of introducing a more complicated model. Overall, like
stochastic volatility models, jump di�usion models are a vast improvement
above the standard Black-Scholes model as they help explain several market
phenomena and provide a better �t to market prices.
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10 CONCLUSION

Mathematical �nance has beginnings from very simple constructions, with
great properties. The entire theory is built with only one assumption - that
there is no arbitrage. This is extremely useful because the assumption is
not about how the market actually behaves, but an assumption made to
determine fair prices. Crucially, we have not assumed anything about the
market participants' beliefs or preferences. It has been pointed out that this
is a very sharp and nimble piece of theory and it deserves the full scope of
credit that it receives.

It has also been pointed out that while the theory is beautiful, and the
assumption of no-arbitrage is good, the choices we make in modeling the
underlying market processes have a signi�cant in�uence on creating realis-
tic physical descriptions. The world beyond standard Black-Scholes should
not be concealed at any cost. Ideally the theory should be introduced along
with the evidence that it is a simpli�cation and the path to overcoming the
di�culties should always be shown ahead.

It was a goal to illustrate that it is not at all di�cult to show this path. As
intended, the second part of the thesis is presented in relatively simple terms,
even more simple then the �rst. This should show that the aura surrounding
modeling beyond geometric Brownian motion is very arti�cial. Introducing
stochastic volatility or jumps is extremely natural and should not be looked
upon with fear.

The second part is indeed only an introduction to modeling beyond geomet-
ric Brownian motion. To include the full scope of current models we would
have needed more than several volumes. Stochastic volatility or jump models
on their own are not the best available to capture �nancial process dynamics.
There are subordination models where the time steps taken are themselves
random, so the data is viewed in "�nancial time". There are in�nite activity
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models where the process moves only by jumps. The class of so called Lévy
process provides an extremely rich framework for �nancial modeling. We
can even go beyond Lévy processes to additive models without stationary
increments. There are models such as the Bates, where we assume both
jumps and stochastic volatility. They are an even better �t to market data.

The above topics are left for the future, but I hope that I have attained
my goal - to show my understanding of the topics and issues covered and
illustrate that they are not as complicated as is sometimes perceived.
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