
Encapsulation Enforcement
with Dynamic Ownership

by

Donald Gordon

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2008

Abstract

Unrestricted aliasing is a problem endemic to object oriented program-
ming. It allows notions of encapsulation fundamental to object oriented
programming to be violated.

This thesis describes ConstrainedJava, an implementation of a language
that provides alias control via a much stronger encapsulation guarantees
than traditional object-oriented programming languages, integrated with
a constraint system. Unlike most existing aliasing control systems, this
encapsulation system integrates well with untyped dynamic languages
such as ConstrainedJava. This stronger form of encapsulation has been
enhanced to make it easier to write practical programs while still providing
useful encapsulation guarantees.

ii

Acknowledgments

Thanks go to my supervisor, James Noble, without whose input this thesis
would never have been written.

I’m grateful for the support I received from members of the ELVIS
research group – the hard questions, useful suggestions and seemingly
endless proofreading were all very helpful.

Thanks are also in order for my family, friends and flatmates, who have
manged to put up with and occasionally give useful advice to me during
the course of my MSc.

iii

iv

Contents

1 Introduction 1

2 Background 3
2.1 Encapsulation . 3

2.1.1 Law of Demeter . 3
2.2 Aliasing Control . 4

2.2.1 Islands . 6
2.2.2 Balloon Types . 6
2.2.3 Flexible Alias Protection 6
2.2.4 Ownership Types . 7
2.2.5 Universes . 7
2.2.6 Alias Burying . 7
2.2.7 Ownership Types for Object Encapsulation 8
2.2.8 Ownership-Generic Java 8

2.3 Alias protection in dynamic languages 8
2.3.1 Dynamic Alias Protection 9
2.3.2 Object Oriented Encapsulation 10

2.4 Constraints . 10
2.4.1 ThingLab . 11
2.4.2 Amulet and Garnet . 11
2.4.3 Forms/3 . 12
2.4.4 Change Propagation and Response Graphs 12
2.4.5 Turtle++ . 12

v

vi CONTENTS

3 Dynamic Ownership Structure 15
3.1 Ownership structure . 16
3.2 Core ConstrainedJava . 18

3.2.1 Classes . 20
3.2.2 Creating objects . 21
3.2.3 Sending messages . 21
3.2.4 Closures . 22

3.3 Ownership in ConstrainedJava 23
3.3.1 Ownership Change . 23
3.3.2 Factory methods . 24

3.4 Copying Objects . 25
3.5 Summary . 27

4 Encapsulation Enforcement 29
4.1 Encapsulation Guarantees . 29
4.2 Message types . 30

4.2.1 Interpreter structure 31
4.2.2 Internal calls . 32
4.2.3 Encapsulation breaking calls 33
4.2.4 External calls . 34

4.3 Method types . 34
4.3.1 Unrestricted methods 34
4.3.2 Externally independent methods 35

Pure methods . 35
Oneway methods . 36

4.4 Message send rules . 36
4.5 Encapsulation Guarantees . 37

4.5.1 Pure methods . 38
4.5.2 One-way and unrestricted methods 39

5 Encapsulation Enforcement Extensions 41
5.1 Interface objects . 41

CONTENTS vii

5.1.1 Encapsulation Guarantees 44
5.2 Lending – The equals problem 45

5.2.1 Dynamically scoped object access 45
5.2.2 Temporary ownership transfer 47
5.2.3 Lending all access rights 51
5.2.4 Restricted access loan 52

5.3 Extensions for lending ownership 53
5.3.1 Permit . 54
5.3.2 Equivalent . 55
5.3.3 Encapsulation Guarantees 56

5.4 Summary . 57

6 Encapsulation Enforcement Evaluation 59
6.1 Object Oriented Patterns in ConstrainedJava 59

6.1.1 Proxy . 59
6.1.2 Iterator . 60
6.1.3 Visitor . 60
6.1.4 Composite . 61
6.1.5 Factory Method . 61
6.1.6 Singleton . 62
6.1.7 Observer . 62

6.2 Language features . 62
6.2.1 Labelling Method Types 63
6.2.2 Closures . 65
6.2.3 Inner Classes . 66
6.2.4 Calling Java . 67

6.3 Implementation . 67
6.4 Performance . 68

7 Constraints 71
7.1 Introduction . 71
7.2 Constraint Lifecyle . 72

viii CONTENTS

7.2.1 Establishing a constraint 73
7.2.2 Gathering dependencies 74
7.2.3 Detecting changes . 74
7.2.4 Scheduling re-evaluation 76
7.2.5 Constraint Evaluation 76
7.2.6 Activation . 77

7.3 Overhead . 77
7.3.1 Monitoring . 78

7.4 Discussion . 79
7.4.1 Ownership-directed simplification 79
7.4.2 Native code . 79
7.4.3 Change detection . 80
7.4.4 Interaction with the ownership system 80
7.4.5 Scheduling performance 81

7.5 Summary . 81

8 Conclusions 83
8.1 Summary . 83
8.2 Contributions . 84
8.3 Comparison with previous work 84
8.4 Future work . 86

A Message send rules 87

B Benchmark Code 91

List of Figures

3.1 Encapsulation: ownership and visibility 17
3.2 Ownership vs References . 19
3.3 Sheep clone of an object . 26

5.1 The interface problem . 42
5.2 Export: the interface solution 42
5.3 The Equals Problem . 46
5.4 The Equals Problem: permit 48
5.5 The Equals Problem: equivalent 50
5.6 The Equals Problem: restricted equivalent and permit 52

7.1 Detecting changes: reducing scheduler calls 75

ix

x LIST OF FIGURES

Chapter 1

Introduction

The problem of unrestricted aliasing is endemic to object-oriented programs.
Aliasing occurs when, in an object-oriented program, multiple references
exist pointing to the same object. If disparate parts of the program hold
references to the same object, they can use those references to perform
operations using that object’s public interface, often including modifying
the object. If the object was not intended to be shared in this way, errors
can result.

Many approaches have been proposed to solve the problem of unre-
stricted aliasing [1, 5, 17, 22, 27, 26, 6]. These typically impose restrictions
on which objects can hold or store references to other objects. Some no-
tion of ownership has often been used with these systems to decide which
objects can hold references to which other objects.

One proposed approach that does not work this way is Dynamic Alias-
ing Protection [25]. This system eschews restrictions on holding references,
instead using an ownership system to restrict the types of messages that
can be sent to the references.

This thesis describes ConstrainedJava, which implements an owner-
ship and alias protection system based on Dynamic Aliasing Protection.
Along with implementing the base system, ConstrainedJava extends Dy-
namic Aliasing Protection with a number of features that make writing real

1

2 CHAPTER 1. INTRODUCTION

programs within the constraints imposed by the alias protection system
easier.

ConstrainedJava also provides a simple one-way constraint system.
This makes it easier to propagate state between different parts of a program,
and again relieves some of the difficulty placed upon a programmer by
having to work within the aliasing protection system.

This thesis is organised as follows:

Chapter 2 describes existing approaches to the problem of unrestricted
aliasing and a number of existing constraint systems

Chapter 3 outlines the ownership structure provided by ConstrainedJava

Chapter 4 details the initial form of ConstrainedJava’s encapsulation en-
forcement system, based upon Dynamic Aliasing Protection [25]

Chapter 5 presents the additions we’ve made to the simple encapsulation
enforcement system to support the writing of practical programs

Chapter 6 discusses the ConstrainedJava implementation, and the practi-
cality of writing programs using it

Chapter 7 introduces the one-way constraint system that is part of Con-
strainedJava

Chapter 8 provides a summary of the contributions of this thesis, and
suggestions for future extensions

Chapter 2

Background

2.1 Encapsulation

One of the most important facilities provided by object oriented program-
ming languages is encapsulation; a way for objects to keep some informa-
tion and interfaces private and inaccessible to other parts of the program.
Typically (in languages such as Java [2], C++ [18] and Smalltalk [14]) this fa-
cility is provided by allowing methods and fields of an object to be marked
private, making them accessible only from that object or others of the same
type.

These simple encapsulation facilities are quite restrictive, however; they
provide a coarse grained approach to access control. Either any object with
a reference to you can call a public method, or any object of the same type
can call any method. Any further control must be implemented by the
programmer manually by making sure that references to the object do not
leak to parts of the program that are not supposed to access it directly.

2.1.1 Law of Demeter

The Law of Demeter [20] supports better encapsulation and modularity
than that supported natively by most object oriented programming lan-

3

4 CHAPTER 2. BACKGROUND

guages. It states:

For all classes C, and for all methods M attached to C, all ob-
jects to which M sends a message must be instances of classes
associated with the following classes:

1. The argument classes of M (including C).

2. The instance variable classes (i.e. fields) of C.

Following the Law of Demeter means an object avoids sending messages
to objects that are not part of it or not passed to it as a method argument.
Messages can only be sent to other objects indirectly. Each call must be
from an object to one of its parts, or a method parameter, which in turn may
call more such wrapper methods until finally the method on the intended
target object is called.

Experimental work [3] has found that a metric (Response For a Class)
that is reduced by following the Law of Demeter has a positive correlation
with faults in software.

2.2 Aliasing Control

Aliasing occurs in object-oriented systems when multiple references –
aliases – exist which point to the same object. Object-oriented languages
typically do not impose access controls on entire objects: therefore, main-
taining a reference to an object allows unrestricted access to that object’s
public interface. The Law of Demeter tries to rectify this problem by avoid-
ing sending messages to references other than object parts or method
arguments.

The ability to send messages to any reference (unrestricted aliasing) can
become a problem when part of a program ends up with a reference to an
object which is part of the internal mutable representation of some other
aggregate object when this object was not intended to be shared.

2.2. ALIASING CONTROL 5

A classic example of the problems with unrestricted aliasing is the code-
signing hole [21] in an early version of the Sun Java Development Kit. In
this version, when an application asks for the list of digital signatures that
apply to it, a reference to the mutable array used by the interpreter to keep
track of the application’s signatures is returned, instead of a copy. The
application can then modify this array to include signatures of other loaded
classes, behaviour not expected by the Java Security Manager’s developer.

Unrestricted aliases to an object are only a problem if those aliases can
be used to access that object’s mutable state. An immutable object’s state
cannot be changed, and thus many references to it may be safely held.

The unrestricted aliasing problem is widespread and pervasive in object-
oriented programs, due to a lack of restrictions on how objects can reference
one another.

Unrestricted aliasing is fundamentally a problem with encapsulation.
Typically, object-oriented languages provide an encapsulation mechanism
consisting of a facility to mark members of an object or class public or
private. This access control is fairly broad. It only allows a very limited
specification of which objects may call certain methods. The other part of
encapsulation – making sure references to the object are not handed out to
inappropriate parts of the program – is usually not directly supported by
the language, and is therefore spread throughout the code on an ad-hoc
basis.

Many systems have been proposed to deal with this problem of unre-
stricted aliasing. Most of these existing systems rely on language facilities
which are often absent in object oriented dynamic languages – explicit typ-
ing, a single compile time, and a rigid notion of class. These same features
are common to most class-based object oriented languages, such as Java [2],
C++ [18] and C] [10].

6 CHAPTER 2. BACKGROUND

2.2.1 Islands

Islands [17] enforce encapsulation in a similar way to balloon types: groups
of objects, known as Islands, are defined. Each Island has a bridge object;
static references to objects within the island other than the bridge from
objects outside the island are disallowed.

2.2.2 Balloon Types

The Balloon Types system [1] allows classes to be declared as being balloons.
Balloon objects cannot have more than one reference to them held at any
one time, and objects not encapsulated by a balloon object may not refer to
the objects that the balloon encapsulates. Therefore, balloon objects can not
be aliased, and the objects encapsulated by a balloon may not be aliased by
objects outside of the balloon. Balloon Types enforces these restriction by a
compile-time full program analysis, unlike most other static systems which
merely enforce simple local rules at compile-time.

2.2.3 Flexible Alias Protection

Flexible Alias Protection (FLAP) [26] is a system for enforcing encapsulation.
FLAP defines a set of modes (rep, arg and free mode) that can be used
to annotate variable definitions and object constructions, which are then
propagated through the program. This set of modes are used to statically
enforce a set of invariants:

• No Representation Exposure: Component objects which make up an
aggregate object’s representation (rep mode) should not be returned
to the rest of the system.

• No Argument Dependence: An expression referring to an object which
is an argument of an aggregate object (arg mode) cannot be used to
access that object’s mutable state.

2.2. ALIASING CONTROL 7

• No Role Confusion: Expressions of a mode other than free cannot be
assigned to a variable of another mode.

These invariants are enforced by ensuring that references held in one
mode may be converted to references held in another mode only in certain
circumstances, and disallowing certain operations with references held in a
certain mode. For instance, references held in arg mode may only be used
to call clean methods, which are not allowed to access mutable state.

2.2.4 Ownership Types

Ownership types [9] is a static type system that provides ownership infor-
mation. Objects own object contexts – types are annotated with context
declarations, to produce ownership types. Then, variables with owner-
ship types referring to different contexts cannot be referring to the same
object. This ownership information is then used to provide a mechanism to
limit the visibility of object references. Later work [8] extends this to allow
support for interface objects, borrowing, and numerous other extensions.

2.2.5 Universes

Universes [22] controls representation exposure by partitioning a program’s
object into universes – components within the system. Universes are hier-
archical, and are enclosed by a root universe.

2.2.6 Alias Burying

Alias Burying [6] uses static intraprocedural analysis to enforce a number
of invariants on procedure parameters and return values based upon anno-
tations applied to these procedures. Available annotations include unique,
which guarantees that a reference is unaliased, borrow, which guarantees
that the procedure passed the reference will not cause more aliases to be
generated, and variations upon these.

8 CHAPTER 2. BACKGROUND

2.2.7 Ownership Types for Object Encapsulation

Ownership Types for Object Encapsulation [5] is a type system based on
Ownership Types [9] to enforce object encapsulation. In an attempt to make
common patterns such as iterators implementable, it allows privileged
access from inner classes to their outer classes. It still allows reasoning
about classes, as a class and its inner classes are considered to be one unit,
a module. However, this approach does reduce the granularity of the
encapsulation controls provided.

2.2.8 Ownership-Generic Java

Ownership Generic Java[27] provides a static ownership system on top
of the Java language, utilising Java’s existing type checking and generic
parameters to provide a simple extension to the language to support own-
ership. This is achieved by adding an owner type parameter to every class,
and ensuring via subtyping that this owner information is preserved.

2.3 Alias protection in dynamic languages

The problem with these existing approaches to alias protection is they’re
tied to class-based static languages such as C++[18] and Java[2]. They all
impose their restrictions statically at compile-time. This presents a problem
for dynamic languages such as Smalltalk[14] and Ruby[30], which have no
whole-program compile-time at which to perform verification, and in the
case of prototype-based languages such as Self[31] and NewtonScript[29],
no classes. Clearly, therefore, a different approach is needed to solve the
problem of unrestricted aliasing in dynamic languages.

2.3. ALIAS PROTECTION IN DYNAMIC LANGUAGES 9

2.3.1 Dynamic Alias Protection

Dynamic alias protection [25] is an idea for enforcing encapsulation in a
program that has an ownership structure like that described in chapter 3. It
grew out of earlier work on Flexible Alias Protection (section 2.2.3). Despite
the name, Dynamic Alias Protection does not restrict aliasing; rather, it
removes the harmful effects of aliasing by ensuring that the mutable state
of aliased objects cannot be accessed by any object in the system other than
that object’s owner.

The Dynamic alias protection paper proposes enforcing encapsulation
by categorising the objects within an aggregate object into the aggregate’s
representation – the objects within the aggregate that make up its mutable
state, and may not be accessed from outside, and the aggregate’s arguments
– the objects which may be accessed from outside the aggregate, provided
they are treated as immutable.

Encapsulation can then be enforced by imposing three invariants: rep-
resentation encapsulation, argument independence and no role confusion.
These are the same invariants as those used by Flexible Alias Protection
(section 2.2.3), restated in terms of the Dynamic Alias Protection ownership
model.

An aggregate object’s representation encapsulation is violated when the
mutable objects making that aggregate object’s representation are accessed
directly by other objects in the system. This requires bypassing the interface
provided by the aggregate object. For example, accessing mutable node
objects that are part of a linked list by objects other than the linked list of
which those nodes are a part would be a violation of the list’s representation
encapsulation.

Argument dependence occurs when an aggregate object depends on
its arguments’ mutable state. For example, a list depending on the state of
the items contained within it, when said items were not owned by the list,
would be exhibiting argument dependence.

This scheme of allowing access to arguments and parts of an aggregate

10 CHAPTER 2. BACKGROUND

object is similar to the restrictions imposed when following the Law of
Demeter, although flexible alias protection imposes more restrictions on
messages sent to arguments than Demeter does.

Dynamic Alias Protection has not previously been implemented.

2.3.2 Object Oriented Encapsulation

The object-oriented encapsulation system[28] provides an encapsulation
enforcement system more suited to dynamic languages. It allows classes to
restrict how their subclasses can utilise them, and allows the production
of references with associated access policies allowing only certain sets of
methods to be called using them.

2.4 Constraints

Many programs have dependencies between the runtime state of their
parts, which are only described as implicit properties of the program’s
implementation, and must be explicitly managed by the programmer.

A constraint system allows programmers to define explicit relationships
between the state of parts of a program – relationships that would normally
have been coded implicitly, often by explicitly updating one field when one
or more others change.

A typical relationship a constraint system might enforce could be a
relationship between widget locations – widget a’s left hand edge should
be 40 pixels to the right of widget b’s left hand edge:

a.x = b.x + 40

Constraint systems come in several varieties. A one-way constraint
system would interpret the = symbol as assignment: setting the value of
a.x to be equal to b.x + 40, and updated when b.x changes. A two-way
constraint system would consider the equation as an invariant to maintain,

2.4. CONSTRAINTS 11

and would be able to resolve the constraint by modifying either a.x or b.x

if the other was changed. Two-way constraint systems must employ more
complex constraint solvers such as the DeltaBlue [11] algorithm.

A number of constraint systems have been developed. Here we review
related work on imperative object-oriented constraint systems.

2.4.1 ThingLab

ThingLab [4] provides a two-way constraint system on top of Smalltalk-
80. It allows constraints to be defined between objects, and some parts of
structure to be shared between objects.

2.4.2 Amulet and Garnet

Amulet [23] (and its predecessor, Garnet) provides a simple one-way con-
straint system. Each implements a custom object system on top of its base
language. Constraints are expressed by placing a block of code into a field
instead of a simple value; when the field is read, the code is evaluated and
the result returned. The constraint system caches these return values and
monitors the fields read by the code block to detect cache invalidations.

The constraint system in Amulet/Garnet is used extensively in the
user interface toolkit it provides. Garnet’s radio button widget uses 58
constraints internally, and the Lapidary graphical editor contains over
16,700 constraints. The graphics system is connected to the object system,
ensuring that widgets are automatically updated when field values relating
to them change.

The problem of a constraint’s output being sent to a single field is solved
by Amulet through allowing the code that is evaluated to determine the
value of the constraint to modify other fields as a side-effect. Therefore,
a constraint that produced a co-ordinate pair might be placed in a field
containing the x co-ordinate, and update the y co-ordinate as a side-effect.

12 CHAPTER 2. BACKGROUND

Garnet and Amulet allow the use of pointers in constraints [32]. This
makes the re-use of constraints in similar situations very easy. For example,
a feedback object needing to be positioned beside the currently selected
item in a menu could have this done with a constraint of the form:

feedback.position = self.obj-over.position + offset

This relies on the reference self.obj-over to be able to change, something
not possible with constraint systems that do not allow pointer variables in
constraints.

2.4.3 Forms/3

Forms/3 [7] is a visual language utilising a one-way constraint system
based on a spreadsheet paradigm. The spreadsheet paradigm provides
a constraint system familiar to many computer users. Forms/3 allows
programs to be specified as forms, containing within them sets of cells.

Interaction is supported by two concepts: that of time, and that of event
queues. The concept of time allows animation, and the idea that cells can
hold different values at different times.

Forms/3 re-evaluates formulae contained in cells lazily. Graphical
elements can be contained within cells, and parameterised by formulae.

2.4.4 Change Propagation and Response Graphs

Change Propagation and Response Graphs [16] provides a mechanism to
propagate changes between components in a program, based on speci-
fied relationships between them. The system also provides multiple view
consistency, undo-redo, versioning and cooperative work facilities.

2.4.5 Turtle++

Turtle++ [19] is a constraint imperative language based on Turtle [15],
implemented on top of C++ using templates and operator overloading.

2.4. CONSTRAINTS 13

It allows constrained variables to be defined, and multiway constraints
placed upon them with a natural C++ syntax. New constraint solvers can
be plugged in, and user-defined constraints can be easily added.

14 CHAPTER 2. BACKGROUND

Chapter 3

Dynamic Ownership Structure

We have developed a language, Constrained Java, to experiment with Dy-
namic Ownership. Dynamic Ownership is our attempt to solve the problem
of alias protection in a form that is applicable to dynamic languages.

Unlike other alias protection schemes, such as Balloons [1] and Is-
lands [17], Dynamic Ownership places no restrictions on which objects
or classes in the system may hold pointers to other objects or classes in
the system. There are a number of features typical of static languages
that dynamic languages do not possess, and which Dynamic Ownership
therefore cannot rely on. Dynamic languages often have a weak notion
of typing, so class-based restrictions cannot be used. Many dynamic lan-
guages allow code to be added to a running program. This means that we
cannot merely run a checker over the entire program to check for violations
of our ownership rules during a compile step: the code that constitutes the
whole program may be augmented after this occurs. This is especially true
in languages like Self [31], Smalltalk [14], Ruby [30], and even Java [2].

Our model for dynamic ownership provides alias protection and en-
capsulation enforcement by maintaining a notion of object ownership, and
then placing restrictions on messages sent between objects based on this
idea of ownership. The restrictions are based solely on the idea of object
ownership; ordinary references between objects are not restricted in any

15

16 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

way, and do not affect the behaviour of the encapsulation enforcement.
Unrestricted references allow, for instance, container objects such as lists
which hold references to a set of objects but do not own them (see figure 3.2).
As the encapsulation restrictions are based on runtime behaviour rather
than compile-time structure, they are ideally suited to implementation in a
dynamic language.

This chapter describes the ownership structure provided by the Dy-
namic Ownership system. The next chapter describes how the information
provided by this structure is employed to dynamically enforce encapsula-
tion.

3.1 Ownership structure

Dynamic Ownership imbues a notion of object ownership into a program
by giving each object an owner, which refers to some other object in the
system which owns it.

An object a in the ownership tree is said to own an object b when b.owner
= a. For example, in our example of the house (figure 3.1), the Lounge owns
the Television.

An object a in the ownership tree is said to be owned by an object b when
a.owner = b. For example, in our example of the house, the RemoteControl
is owned by the Lounge.

An object a in the ownership tree is said to contain an object b if there is
some path from b to a following owner pointers. In figure 3.1 the House
contains the Television, but does not own it.

An object a is said to be visible to an object b if there exists some object
c such that c owns a and c contains b. This means that both a and b are
encapsulated within c, and b can access a without breaking through en-
capsulation boundaries. In the example figure, the House, Kitchen, Street
and SecondHouse are all visible to the Lounge. This is an incoming vis-
ibility; the Street is visible to the Lounge, but the Lounge is not visible

3.1. OWNERSHIP STRUCTURE 17

Figure 3.1: Encapsulation: ownership and visibility

18 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

to the Street. Lounge would not be breaking through an encapsulation
boundary to access SecondHouse, as it is owned by Street; however, direct
access to the SecondHouse’s Kitchen from Lounge would be bypassing the
encapsulation boundary provided by SecondHouse.

Objects which would otherwise have no owner, such as the first objects
created by a program, are owned by a special node in the ownership tree
called the root owner.

The objects in this scheme can be thought of as a tree of encapsulated
objects, being comprised of the set of the other objects they contain that
make up their representation. Every node in the ownership tree then marks
an encapsulation boundary: an object’s owner is considered the interface
through which other parts of the system should interact with the object.

The tree of ownership pointers need bear no relation to the graph of
other pointers in the system. For example, figure 3.2 shows a system with
a house object containing a number of rooms, including a lounge and a
kitchen. The house owns a list and the rooms within the house, but not
the links in the list. We think of the house as the interface to the list and its
contents, and the list as the interface to the list’s structure (the links), but
not the objects held in the list. As each object’s ownership information is
explicitly stored in the object itself, this information is retained when the
object (such as a room) is placed in a container object (such as the house’s
list of rooms) – the ownership information is not lost or changed.

3.2 Core ConstrainedJava

We have designed and implemented the ConstrainedJava language to
experiment with the Dynamic Ownership system, and the encapsulation
enforcement described in the next chapter.

ConstrainedJava is based on the BeanShell [24] language, with exten-
sions to handle ownership, encapsulation enforcement and constraints.
ConstrainedJava is not statically typed.

3.2. CORE CONSTRAINEDJAVA 19

Figure 3.2: Ownership vs References

20 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

ConstrainedJava gets most of its syntax from BeanShell, which in turn
attempts to be similar to Java. Syntactically, the language appears like a
dynamically typed Java. Classes, methods, fields and the like are declared
in a similar manner to Java, except that types can be omitted entirely
or replaced with the “anything” type var. The following code example
demonstrates this with a simple factorial function:

class MathStuff {

...

factorial(x) {

if (x < 2) return 1;

return x * factorial(x - 1);

}

}

Additions to the ConstrainedJava language beyond the base BeanShell
functionality include Smalltalk-style blocks, and a means of interacting
with the ownership system.

3.2.1 Classes

ConstrainedJava supports classes and single inheritance. Interfaces are
not supported, as dynamic typing means they’re not needed. Classes are
defined with the class keyword, followed by a classname, and optionally
the extends keyword along with the name of the class to inherit from. Fields
can be declared inside them, with the keyword var or the name of a type,
followed by the name of the field. Methods are declared by specifying an
optional return type, followed by the method name, the arguments, and
the method body.

The class’s constructor is merely a method with the same name as the
class and no return type.

For example, the following class implements a simple rectangle that can
draw itself:

3.2. CORE CONSTRAINEDJAVA 21

class Rectangle extends Drawable {

var topLeft;

var bottomRight;

Rectangle(_topLeft, _bottomRight) {

topLeft = _topLeft; bottomRight = _bottomRight;

}

draw(g) {

g.drawRect(topLeft.getX(), topLeft.getY(),

bottomRight.getX(), bottomRight.getY());

}

}

The class defines two fields, topLeft and bottomRight. It also defines a
constructor taking default values for those fields, and a method to draw
the rectangle when passed a java.awt.Graphics object.

3.2.2 Creating objects

An object is constructed in the same way it would be in ordinary Java:
using the new keyword. A new object’s owner is initially the object that
called its constructor. In the following example, the RemoteControl object’s
owner would be the TelevisionSet object that created it:

class TelevisionSet {

var myRemote = new RemoteControl(this); ...

3.2.3 Sending messages

Message sending is also syntactically similar to Java. Message sends are
dynamically checked to ensure they don’t violate the rules of the encapsu-
lation enforcement part of Constrained Java (chapter 4).

22 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

The following code demonstrates the syntax for sending messages:

someObject.callMethod();

class Thing {

callMethod() {

...

} }

3.2.4 Closures

ConstrainedJava provides the ability to define closures. A closure, when
created, acts like an object with a single method, value(). The code executes
in the scope of the method in which it was defined, and is able to access the
local variables defined in that method. The value method returns the result
of the last expression, unless a return statement is executed, in which case
the method declaring the closure returns the value provided to the return
statement in the closure.

For example, a method that returns the first item in a list greater than
some specified value could use a closure as follows:

class MathStuff {

...

firstAbove(list, a) {

list.forEach(block(b) {

if (b.above(a)) return a;

});

return null; // if no match

}

}

In this code, the forEach method on the list is passed a block. The
block is defined to take one parameter, and return a value depending on

3.3. OWNERSHIP IN CONSTRAINEDJAVA 23

a condition. When the block executes the statement “return a”, the stack
will be unwound, the forEach loop will be terminated, and the caller of the
firstAbove method will have the value of the variable a returned to it. If no
match is found, the method returns null.

3.3 Ownership in ConstrainedJava

ConstrainedJava implements the Dynamic Ownership structure described
in section 3.1.

An owner pointer is present in every object, which can be read by calling
the owner() method. Operations are provided to make use of and change
these owner pointers.

For example, the code below informs an object’s owner that one of its
children has changed, when that child’s setChanged() method is called.

...

setChanged() {

owner().setChildChanged(this);

}

...

Note that an object does not have control over which object owns it;
therefore, if the owner() method is used in this way, care must be taken to
ensure that the owner is of an appropriate type.

3.3.1 Ownership Change

Dynamic Ownership allows object ownership to be changed at runtime.
Ownership change causes an object to move to a new location in the owner-
ship tree. We check that this does not create a cycle in the ownership graph
by ensuring that the object whose ownership is being changed does not
contain its new owner; this ensures the ownership graph remains a tree.

24 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

Operations which affect the ownership of an object may only be performed
by the object’s current owner.

Changes of ownership may be initiated with the gift method, which
when sent to an object by its owner causes that object’s owner to be changed
to the object specified as the method’s only parameter:

class thingy {

...

line = new Line(p1, p2);

// this owns line

line.gift(drawing);

// now, drawing owns line

drawing.add(line);

}

Changing an object’s ownership moves it within the ownership tree,
changing the object it is encapsulated by. This change occurs completely
independently of any references held by any objects, including the previous
owner, the new owner or the object whose ownership is being changed
may hold. Dynamic Ownership does not require or enforce the tree of
ownership pointers to have any relationship with any other references in
the program.

3.3.2 Factory methods

A common case of ownership change is a factory method – one which
returns an object for use by another part of the system. Factory methods
are commonly used to create a new object (or retrieve one from a pool),
perform some extra initialisation on it, and then return the new object for
use by the factory method’s caller.

ConstrainedJava’s ownership system supports factory methods through
the factory method modifier, which transfers the ownership of the returned

3.4. COPYING OBJECTS 25

object to the factory method’s caller. If the object containing the factory
method does not own the object returned by that method, an OwnershipEr-
ror exception will be generated.

The example method below creates a new Widget object, adds it to a list
of widgets, and then returns the new object. As the method is marked as
being a factory method, the object that called the newWidget method will
gain ownership of the new Widget object returned by the method.

class WidgetFactory {

...

factory newWidget(a) {

w = new Widget(a);

widgetList.add(w);

return w;

}

}

This facility for factory methods could be emulated with the gift method
described in the previous section – it does not add any capabilities to the
ownership system. However, the requirement to transfer ownership of an
object to a method’s caller is present sufficiently often that it is nonetheless
a useful feature to have.

3.4 Copying Objects

Having ownership information available allows the implementation of an
ownership-directed clone, or sheep clone [25].

The sheep clone is somewhere between a shallow clone, copying only
the target object, and a deep clone, recursively copying the target and all
objects it refers to. It acts as a “do what I mean” clone for aggregate objects,
only copying objects which are contained by the object of which copying is
initially requested.

26 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

Figure 3.3: Sheep clone of an object

Like a deep clone, it recursively follows references from the cloned
object to find other objects as candidates for cloning. But unlike a deep
clone, not all of these objects are cloned. The ownership tree is consulted;
only references to objects contained by the object which is the subject of the
clone are followed. References to objects in other parts of the ownership
tree are retained in the cloned object graph.

For example, in figure 3.3, a sheep clone of the List object is requested.
The sheep clone operation follows the link from the list to the first node,
and the first node to the second node, and each time, successfully checks
that the new object found is contained within the list. When the sheep
copy operation follows the references from the nodes to the Lounge and
Kitchen, it checks if they’re contained within the list by following owner
pointers. As this check fails, the Lounge and Kitchen objects are not marked
for copying.

Then the objects identified for copying by the last step are copied. The

3.5. SUMMARY 27

ownership structure of the original object tree is replicated, as is the set of
references between the copied objects. References to objects outside the set
of copied objects are retained, so the copied nodes still have pointers to the
same lounge and kitchen objects as the original nodes.

3.5 Summary

ConstrainedJava adds an ownership system to a Java-like dynamic lan-
guage, BeanShell. Each object in the system has an owner pointer pointing
at some other object; the owner pointers are constrained to form a tree. The
ownership structure is exposed to user programs, and may be manipulated
and queried.

The next chapter shows how we employ the ownership system to en-
force encapsulation, by imposing limitations on message sends between
objects based on those objects’ relative positions in the ownership tree.

28 CHAPTER 3. DYNAMIC OWNERSHIP STRUCTURE

Chapter 4

Encapsulation Enforcement

In this chapter, ConstrainedJava’s system for enforcing encapsulation is de-
scribed. The encapsulation enforcement is based on the dynamic ownership
structure described in chapter 3.

4.1 Encapsulation Guarantees

ConstrainedJava combines the ownership structure provided by Dynamic
Ownership with a set of invariants to provide object encapsulation. The
invariants are enforced by restricting the types of messages that can be sent
between objects depending on their ownership relationships.

The base invariants (taken from Dynamic Alias Protection [25]) that
ConstrainedJava enforces are representation encapsulation and external
independence.

Representation encapsulation requires that an object may only be accessed
by messages passing though its interface: to access the state of objects
that an object encapsulates (the encapsulating object’s representation),
the call sequence must go through the encapsulating object, as it owns
the objects that make up its representation.

29

30 CHAPTER 4. ENCAPSULATION ENFORCEMENT

External independence means that an object must not be dependent on
the mutable state of objects that are external to it. We consider an ob-
ject which is able to gain any information at all derived from another
object’s mutable state as being dependent on that object’s mutable
state. Objects external to an encapsulating object are defined as any
object in the system that the object holds or can obtain a reference
to, but does not own or encapsulate. This includes references passed
as parameters, stored in fields, and returned by method calls. We
sometimes refer to these external objects as an object’s arguments.

These invariants together effectively enforce encapsulation by ensuring
that the mutable state of objects p1...pn that form part of an object o can
only be accessed by o sending messages to them. The ownership system is
employed to determine that an object p is part of an object o because o owns p,
and a set of rules on message sends are used to realise the invariants.

The invariants impose similar restrictions to those of the Law of Demeter
(see section 2.1.1). The major differences are due to ConstrainedJava having
a more explicit idea of the relationship between an object and its parts, and
therefore being able to be more permissive with calls that do not return
information about mutable state.

No restrictions are required by the invariants above, or imposed by the
rules described later that realise them, about objects being disallowed from
holding certain references.

This lack of restrictions on references is a major difference from most
systems designed to provide aliasing protection. ConstrainedJava places
no restrictions on passing or storing references; only the types of method
called on those references are restricted.

4.2 Message types

In order to achieve representation encapsulation and external indepen-
dence, ConstrainedJava classifies message sends into three categories based

4.2. MESSAGE TYPES 31

on the relative positions of the message sender and receiver in the owner-
ship tree. The categories are: internal calls, encapsulation breaking calls,
and external calls; these categories are each described below.

4.2.1 Interpreter structure

The code in the next sections is intended as pseudocode for an interpreter
of the message send rules, to unambiguously express their semantics. This
technique of providing an interpreter to describe a dynamic language
is quite common, being used to define Smalltalk [14]. We only concern
ourselves with message dispatch: other parts of the interpreter are standard
– inheritance, running code bodies, control flow, variables – so we do not
consider them. In section 4.5 we provide a case analysis that demonstrates
that these rules enforce the invariants identified in section 4.1.

We consider all the message checks performed below to be indicative of
the structure of a function in an interpreter called to determine if a message
send is allowed, from code similar to the following. The sendMessage
function sends a message to a method named target from an object sender
to another object receiver, with arguments args. The isPure parameter is
an auxiliary parameter which tracks where the message is able to return
information about mutable state – it’s set when the message is being sent
from a method marked pure (pure methods are described in section 4.3.2).

sendMessage(sender, receiver, target, isPure, args) {

// call from sender to method target on receiver

// ...

if (checkMessageSend(sender, receiver, target, isPure)) // ok

dispatchMessage(sender, receiver, target, args);

else

throw new OwnershipException(sender, receiver, target);

// ...

}

32 CHAPTER 4. ENCAPSULATION ENFORCEMENT

checkMessageSend(sender, receiver, target, isPure) {

messageType = getMessageType(sender, receiver);

methodType = target.getMethodType();

if (isPure && methodType != EXTERNALLY_INDEPENDENT)

return false;

allowed = getAllowedMethodTypes(messageType);

if (allowed == ALLOW_NONE) return false;

if (allowed == ALLOW_ALL) return true;

if (methodType == EXTERNALLY_INDEPENDENT &&

allowed == ALLOW_EXTERNALLY_INDEPENDENT)

return true;

return false;

}

The full set of rules, including chapter 5’s extensions, are reproduced in
appendix A.

The code samples categorising message types in the following three
sections would be placed in the getMessageType() method referenced in
the sample interpreter code above.

4.2.2 Internal calls

Internal calls are those from an object to itself (a self call), or to an object
owned by the calling object (an owner call). By definition, an internal call
cannot cause the principles of representation encapsulation or external
dependence to be violated; an internal call is one from an object to itself or
some part of its representation.

getMessageType(sender, receiver) {

if (sender.is(receiver) ||

sender.owns(receiver)) return INTERNAL_CALL;

4.2. MESSAGE TYPES 33

// ... other cases

}

is(other) {

return this == other;

}

owns(other) {

return other.owner == this;

}

4.2.3 Encapsulation breaking calls

Encapsulation breaking calls are those from an object to another object
which is not visible to the calling object. An object a is said to be visible to
an object b if there exists some object c such that c owns b and c contains a.

Encapsulation breaking calls violate both of the encapsulation invari-
ants: they are calls to objects a which bypass the owner b of those objects,
thus bypassing the encapsulation provided by object b, and thus violating
the representation encapsulation invariant.

getMessageType(sender, receiver) {

if (!receiver.visibleTo(sender))

return ENCAPSULATION_BREAKING;

// ... other cases

}

visibleTo(other) { // is this visible to other?

return this.owner.contains(other);

}

contains(other) {

if (other.is(this)) return true;

34 CHAPTER 4. ENCAPSULATION ENFORCEMENT

if (other == null) return false;

return this.contains(other.owner);

}

4.2.4 External calls

External calls are those that do not fit into the above categories: they are
calls from an object to another object that is visible to it, but not owned by
it. They’re calls to objects which aren’t part of the representation of the
sending object, and are therefore external to the sending object – they are
the sending object’s arguments.

getMessageType(sender, receiver) {

if (receiver.visibleTo(sender) &&

!sender.is(receiver) &&

!sender.owns(receiver)) return EXTERNAL_CALL;

// ... other cases

}

4.3 Method types

Dynamic Ownership’s encapsulation enforcement system works by apply-
ing a set of rules to message sends. In order to specify this set of rules,
methods must be classified into two groups: unrestricted, and externally
independent. Externally independent methods are further subdivided into
two types: oneway and pure methods.

4.3.1 Unrestricted methods

Normal, or unrestricted methods, are those which are able to read and write
mutable state, and to return some value or exception. A normal method
can perform any operation on the object it is part of.

4.3. METHOD TYPES 35

Access to normal methods must be restricted, as they allow any action
to be undertaken. If any part of the program could call any unrestricted
method, then encapsulation boundaries would be bypassed, thus violating
the principles of representation encapsulation and external independence.

4.3.2 Externally independent methods

Externally independent methods are defined as not returning any infor-
mation to the caller about any object’s mutable state. An equals() method
that compares the mutable state of an object with another is not externally
independent, as it returns information derived from mutable state.

A method returning a hash of an immutable String object would be
externally independent, as it does not return information about or derived
from mutable state. Likewise, an addElement method on a list would be
externally independent, as while it accesses mutable state, it returns no
information about or derived from it.

Dynamic Ownership Enforcement achieves this by further classifying
them into two types: pure and one-way methods.

Pure methods

Pure methods are defined as being unable to return information about
mutable state. This means that they are unable to access non-final fields,
or send messages that would cause information about non-final fields to
be returned to the pure method (i.e. messages to externally dependant
methods). When a pure method sends a message, the isPure parameter
in the pseudocode sendMessage() function in section 4.2.1 would be set,
ensuring this.

Uses for pure messages include retrieving information about immutable
objects, such as a character from an immutable string object or a co-ordinate
from an immutable point object.

36 CHAPTER 4. ENCAPSULATION ENFORCEMENT

Oneway methods

Oneway methods are defined as being able to perform any action, like a
normal method, including calling normal methods, apart from returning a
value or exception.

As oneway methods are allowed to access mutable state just as normal
messages may, they are useful for gathering output such as updates to
window display, sending test results in a test harness, implementing an
assert facility, or providing additions to an HTML document to be sent to
a web browser. For example, the method to add items to a list could be
marked oneway, as it does not need to return any information.

Unlike pure methods, messages sent from oneway methods would not
set the isPure flag in calls to sendMessage (section 4.2.1), as this does not
affect the oneway method’s external dependence – it will still be unable to
return information derived from mutable state.

4.4 Message send rules

ConstrainedJava enforces ownership restrictions by only allowing certain
message send operations. To do this, we categorise message sends, and the
methods they are sent to, and then apply a set of rules to see if the message
is allowed.

The code samples illustrating the message send rules in the following
sections would be placed in the getAllowedMethodTypes() method called
by the sample interpreter code in section 4.2.1.

If the message is an internal call, then it is allowed regardless of the
message type. As internal calls are made by an object to itself or its repre-
sentation, they do not violate the principles of representation encapsulation
or external dependence.

if (messageType == INTERNAL_CALL)

return ALLOW_ALL;

4.5. ENCAPSULATION GUARANTEES 37

These are the only unrestricted messages that may be sent. Other mes-
sages cross encapsulation boundaries, and thus must be subject to addi-
tional restrictions.

Obviously, if a message is classed as encapsulation breaking, then it cannot
be allowed to be sent, regardless of the method type of the callee; such calls
violate both of the flexible aliasing principles.

if (messageType == ENCAPSULATION_BREAKING)

return ALLOW_NONE;

The other possible message classification is that of an external call. As an
external call is by definition not made to the calling object’s representation,
it must be made to some object that is external to the calling object.

The principle of external independence states that an object must not
depend on the mutable state of objects that are external to it – objects not
contained within its representation. As external calls are only made to
objects not part of the sender’s representation, they must not cause the
calling object to learn of the callee’s mutable state.

if (messageType == EXTERNAL_CALL)

return ALLOW_EXTERNALLY_INDEPENDENT;

4.5 Encapsulation Guarantees

In this section, we show how the rules in sections 4.2 to 4.4 satisfy the
encapsulation guarantees stated in section 4.1.

We recapitulate these guarantees here:

Representation encapsulation requires that an object’s mutable state may
only be retrieved by messages passing though its interface: to access
the mutable state of objects that make up an encapsulating object
(the encapsulating object’s representation), the call sequence must go

38 CHAPTER 4. ENCAPSULATION ENFORCEMENT

through the encapsulating object, as it owns the objects that make up
its representation.

External independence means that an object must not be dependent on
the mutable state of objects that are external to it. We consider an ob-
ject which is able to gain any information at all derived from another
object’s mutable state as being dependent on that object’s mutable
state. Objects external to an encapsulating object are defined as any
object in the system that the object holds or can obtain a reference
to, but does not own or encapsulate. This includes references passed
as parameters, stored in fields, and returned by method calls. We
sometimes refer to these external objects as an object’s arguments.

Our argument proceeds as follows: we perform a case analysis of all
possible message sends. First we consider messages sent from pure meth-
ods, which have special restrictions placed on them, and then we consider
messages sent from all other method types. We classify messages by the
type of the sending and receiving methods, and the ownership relations
between the sending and receiving objects.

4.5.1 Pure methods

Pure methods are a special case, as they are unable to send messages to
unrestricted methods.

When a message is sent from a pure method in an object to any object
that is not visible or owned by the object containing this method, this
message is disallowed. If they were allowed, such messages would violate
the representation encapsulation of the owner of the receiving object.

When a message is sent from a pure method in an object to an unre-
stricted method in any object, this message is disallowed. Unrestricted
methods can return information about mutable state, which pure methods
are not allowed to access.

4.5. ENCAPSULATION GUARANTEES 39

All other messages from pure methods must be sent to externally in-
dependent methods in objects either owned by or visible to the sending
objects. These messages do not break the representation encapsulation of
the receiving object, as they do not allow information about its mutable
state to be returned. They don’t break the external independence of the
sending object, as they return no information about mutable state to it.

4.5.2 One-way and unrestricted methods

Non-pure methods may send messages of any type – unrestricted, or exter-
nally independent – within the bounds of the message send rules.

When a message is sent from an object to itself, the message is allowed.
As this method is from an object to itself, it does not cross any encapsulation
boundaries, and therefore does not break the representation encapsulation
rule. Also, as it is not to an external object, it does not cause the sender to
become externally dependent.

When a message is sent from an object to an object it owns, the mes-
sage is allowed. This does not break the representation encapsulation
of the receiving object or its owner, as the receiving object is part of the
sender’s representation. It does not cause the sender to become externally
dependent, as the receiving object is not external to the sender.

When a message is sent from an object to an unrestricted method on an
object it does not own, the message is disallowed. Allowing it would violate
the representation encapsulation of the owner of the receiving object, as
that owner object would be bypassed. Additionally, if the receiving object
was not contained by the sending object, then the sender would become
externally dependent on the mutable state of the receiving object.

When a message is sent from an object to an externally independent
method on an object visible to the sending object, the message is allowed.
This does not break representation encapsulation, as the definition of visible
(see section 3.1) ensures that the receiving object is within the representation

40 CHAPTER 4. ENCAPSULATION ENFORCEMENT

of an object that contains the sending object. And external independence is
maintained, as when the method returns it is unable to return any informa-
tion derived from mutable state, which would cause the sending object to
become dependent on the receiver.

When a message is sent from an object to an externally independent
method on an object not visible to or owned by the sending object, the
message is disallowed. Allowing such messages would violate the repre-
sentation encapsulation of the owner of the receiving object, by bypassing
it. Such messages, if allowed, would not violate external independence, as
the call is made to an externally independent method which cannot return
information derived from mutable state.

Thus, no case of message sends violates the invariants.

Chapter 5

Encapsulation Enforcement
Extensions

ConstrainedJava introduces a number of extensions to the base encapsula-
tion enforcement system described in chapter 4. While trying to use this sys-
tem, we discovered a number of problems that made writing real programs
difficult. These extensions resolve many of these problems, making it easier
to write real programs within the constraints of the ownership system. They
provide support for interface objects such as iterators, and make it possible
to access method parameters in certain well-defined circumstances allow-
ing Java-style equals() methods to be implemented. Section 5.3 then defines
the final form of the parameter access extensions and their interaction with
invariants provided by the encapsulation enforcement system.

5.1 Interface objects

Interface objects, such as iterators present a problem with the message send
rules. The interface objects will be created by objects such as lists, but the
object owning the list can’t send unrestricted messages to them unless it
owns them, and if ownership of the interface object is transferred to the
list’s owner, then the iterator can’t access the list’s mutable state (figure 5.1).

41

42 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Figure 5.1: The interface problem

Figure 5.2: Export: the interface solution

5.1. INTERFACE OBJECTS 43

Dealing with interface objects such as iterators requires some sort of
export operation: a way for the iterator object to send unrestricted messages
to the list, and be sent unrestricted messages by at minimum the list’s
owner.

We have augmented the Dynamic Ownership model to provide such
an export operation. When an object (such as a list) exports another object
(such as an iterator), the exported object no longer has a separate ownership
identity. The exported object occupies the same location in the ownership
tree as its former owner; any objects it owned are now effectively also
owned by the object which exported it; the ownership system treats it as
the same object as all the other objects sharing that location in the ownership
tree.

Adding an export operation means that objects no longer have a simple
owner field; instead they are given an ownership context field. This field
contains a pointer to an ownership context object, that in turn contains a
pointer to some other ownership context. So the object nodes in the own-
ership graph of a running program are replaced with ownership context
nodes, each of which may have one or more objects associated with it.

When one object exports another, the exported object ends up sharing
the exporting object’s ownership context. The ownership structure and the
corresponding rules for deciding upon a message type in section 4.2 require
some changes to handle these ownership contexts. The helper methods
on objects used in that section are changed to support these new context
objects:

is(other) { // notion of identity changes

return this.context == other.context;

}

owns(other) {

return other.context.owner == this.context;

}

44 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

contains(other) {

if (other.is(this)) return true;

if (other == null) return false;

return this.contains(other.context.owner);

}

In the eyes of the ownership system, the exported and exporting objects
are now the same, as they share the same ownership context.

An object cannot be un-exported; once it has been exported, it is inextri-
cably linked to the object that exported it. Exporting is a transitive relation.
If some object a owns object b, and object b has already exported object
c, then when a exports b, all three objects will share the same ownership
context. Therefore, they will occupy the same place in the ownership tree
where object a originally was.

This neatly solves the interface problem. An exported object will have
the same rights to access its exporter and the objects it contains as the
exporter itself has. Other objects in the system will have the same rights to
access it as they have to access its exporter. For example, in figure 5.2, the
aggregate object is able to send unrestricted messages to the iterator, and
the iterator is able to send unrestricted messages to both the list and the
items in the list. In effect, the iterator becomes part of the interface of the
list object – the list’s owner can mutate the list through either the list or the
iterator.

5.1.1 Encapsulation Guarantees

Exporting doesn’t break the guarantees made by the ownership system.
While it changes how an object can be owned, it still maintains the tree
structure, associated rules and guarantees as described in section 4.5. The
effect of the change is to allow several objects to form the encapsulation
boundary to a set of objects they jointly own, rather than a single object

5.2. LENDING – THE EQUALS PROBLEM 45

forming this encapsulation boundary. Calls between these boundary objects
and from one of them to any of the objects they jointly own are classified as
internal calls.

However, exporting should be used sparingly, as it creates a set of
related objects between which all messages are classed as internal calls. If
every object in a program was exported, then every object would occupy
the same position in the ownership tree, all messages sent between them
would be classed as internal calls, and no encapsulation guarantees would
be provided at all.

5.2 Lending – The equals problem

To compare two objects in Java for equality, the program send an equals
message to one of them, passing a reference to the other object as a parame-
ter. Usually, both of these objects will be owned by another object sending
the equals message. This means that neither of the objects being compared
owns the other, and therefore they can only send non-argument dependent
messages to each other. This means that neither of the objects can access the
other’s mutable state, and therefore cannot compare any of that mutable
state with their own. Figure 5.3 demonstrates the problem.

Several attempts were made at solving this problem. These are dis-
cussed below, then section 5.3 presents the final design we chose for Con-
strainedJava in detail, and argues that it does not affect the invariants.

5.2.1 Dynamically scoped object access

The first solution we tried was to add one extra rule to the message send
rules. If an unrestricted method tries to call another unrestricted method,
and the message send rules would normally disallow it, then the call stack
is checked to see if the call would have been allowed if the sender was one
of the objects on the call stack. If so, then the message send is allowed.

46 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Figure 5.3: The Equals Problem

5.2. LENDING – THE EQUALS PROBLEM 47

This solution has the disadvantage that it effectively circumvents the
rules about argument-dependant method calls. Calls between objects in a
ConstrainedJava program typically start some distance up the ownership
tree and then make their way down one level at a time. Therefore, if
this solution was implemented, full mutable access to all those objects
(and therefore, their immediate children in the ownership tree) would
be allowed, effectively allowing unrestricted internal calls to be made to
many objects that would otherwise only be able to be sent external calls.
All message sends would be in effect carrying with them a grant of all
the access permissions of the caller to the message recipient. This would
greatly reduce the guarantees provided by the encapsulation enforcement
system.

5.2.2 Temporary ownership transfer

Our second attempt at solving this problem (see figure 5.4) was to add
a modifier to method parameters, permit, which would make the object
passed in the marked parameter temporarily owned by the object that
method was a member of. This ownership transfer has very limited scope;
it’s only allowed if the message sender owns the permit parameter, and
is only visible within the thread in which the method call occurs, for the
duration of the execution of that method.

boolean equals(permit o) { ... }

In order to avoid surprises for programmers, arguments in the method
call must also be marked with the permit keyword.

if (o1.equals(permit o2)) { ... }

While an argument is marked as permit, all code executed in the thread
until the method with the permit argument returns will treat the permit

48 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Figure 5.4: The Equals Problem: permit

5.2. LENDING – THE EQUALS PROBLEM 49

object’s owner as being the permitting object. This change is not visible to
other threads, and normal ownership rules still apply to them.

The restricted scope of temporary ownership transfer solves the problem
of gaining unintended access to higher parts of the ownership tree, but only
works for relatively simple comparisons. In particular, it does not allow
sufficient access for comparisons of larger aggregate objects.

In the following equals method, an aggregate object compares items in
a list with items in an equivalent list in the comparee.

boolean equals(permit o) {

i0 = list.iterator();

i1 = o.list.iterator();

while(i0.hasNext()) {

if (!i1.hasNext()) return false;

if (!i0.next().equals(i1.next)) return false;

}

if (i1.hasNext()) return false;

return true;

}

...

// in an object owning both a and b

a.equals(permit b);

Since the owner of a also owns b, the temporary ownership change
is allowed. This only allows a to access the external interface of b. For
instance, the call to o.list.iterator() would not be allowed, as according to the
ownership rules, iterator() causes changes to mutable state, and list.owner
!= a. So permit does not give sufficient access to allow the comparison of
these aggregate objects.

50 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Figure 5.5: The Equals Problem: equivalent

5.2. LENDING – THE EQUALS PROBLEM 51

5.2.3 Lending all access rights

Our third attempt to solve this problem provides a better solution.

This approach involves granting access to parameter objects equivalent
to that acquired when an object is exported (see figure 5.5). Method pa-
rameters marked equivalent are added to an access control list associated
with the object and method call to which this access is granted (which we
call the accessing method). Then, when a message is sent from the method
called with the equivalent parameter, to the object in that parameter, if the
send would have been unsuccessful under the normal ownership rules it
is checked again, this time treating the object marked equivalent as the
sender.

Granting equivalence with an object a is only allowed in certain circum-
stances: if the granting object is a, if it owns a, or if it has been granted
equivalence with a. The access granted is only usable by the object it was
granted to; objects sent messages by the object to which access is granted
do not automatically receive the same equivalence rights.

For example, to call equals() on an object granting it equivalence with
the object which the comparison is taking place with:

boolean equals(equivalent x) {

...

}

...

a.equals(equivalent b);

Unfortunately, equivalence as stated allows an object o, which owns
objects a and b, to grant an access equivalent to that which b has – access
to parts of b which o did not have access to. This breaks the encapsulation
invariants: it violates the representation encapsulation of object b.

52 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Figure 5.6: The Equals Problem: restricted equivalent and permit

5.2.4 Restricted access loan

The final solution to the equals problem implemented by ConstrainedJava
combines the permit and equivalent solutions to offer the best of both
worlds: full support for comparing complex aggregate objects, and only
carefully constrained local bypassing of the encapsulation invariants (see
figure 5.6).

This solution does not use the original form of the equivalent keyword
defined in section 5.2.3. It uses a modified version with tighter restrictions
on which objects may pass an object as equivalent. An object a calling a

5.3. EXTENSIONS FOR LENDING OWNERSHIP 53

method on an object b, and passing in a parameter p marked as equivalent
may only do so if a == p. In other words, the only object able to permit
other objects access to its representation is itself. This corresponds to the
final definition of permit and equivalent in section 5.3.

The equals method must become more complicated to support this
restricted access loan. Now two calls are involved, one to a first equals
method granting permit access to the single parameter, and then another
call to a method on that parameter object to actually perform the compari-
son, granting full equivalent access to the first object.

boolean equals(permit x) {

... // optional check that x is

// an object we don’t mind

// accessing our internals

return x.equalsImpl(equivalent this);

}

boolean equalsImpl(equivalent x) {

...

}

...

a.equals(permit b);

5.3 Extensions for lending ownership

We now define the language extensions that enable message parameters to
be accessed, by lending object ownership.

ConstrainedJava provides two ways of lending ownership: one for
when object a wishes to provide access permission identical to that gained
by owning object b (permit), and one for when object a wishes to provide
access equivalent to being inside object a (equivalent).

54 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

5.3.1 Permit

The permit keyword, applied to a method parameter, indicates that the
object on which the method is called should have access to the object
passed as a permit parameter equivalent to the calling object. This access is
limited in scope; it is only valid between the method call and its return, and
only usable within the thread that made the call. Furthermore, it may only
be granted by the object owning the parameter marked permit. The permit
keyword must be specified both in the call and the parameter prototype in
the method the call is to:

class a {

var b;

// ...

c = new HashGenerator();

c.makeHash(permit b);

// ...

}

class HashGenerator {

makeHash(permit o) {

return md5String(o.toString());

}

//...

}

Support for permit is added to the message send rules by keeping track
of extra objects that have temporary ownership for the ownership contexts
passed as permit parameters, and changing the owns() method used by the
message send rules:

owns(other) {

if (other.context.owner == this.context)

5.3. EXTENSIONS FOR LENDING OWNERSHIP 55

return true;

return other.context.permitted.contains(this.context);

}

The facility provided by permit is similar to the ability to borrow an
object provided by Alias Burying [6], which uses intraprocedural static
analysis to determine that a borrowed parameter to a procedure is no more
aliased when the procedure returns than when it was called. By comparison,
permit causes the object marked permit to be temporarily accessible by the
method to which it is passed, and revokes this access when the method call
has completed.

5.3.2 Equivalent

The equivalent keyword is used in a similar manner to the permit facility.
The difference is in the access that it provides. Equivalent allows the called
object access to the parameter object equivalent to being that object; thus, its
internals and owned objects can be freely manipulated. An ownership error
is generated if the parameter object is not the same as the object sending the
message; this ensures that the sending object is not able to grant access that
it does not already possess. Like permit, equivalent status only applies for
the duration of the method call, in the thread in which the call was made.

class Course {

// ...

c = new MarkAuditor();

c.auditMarks(equivalent this);

// ...

}

class MarkAuditor {

// ...

56 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

auditMarks(equivalent course) {

course.getStudents().forEach(

block(s) { checkMark(s, course.getMark(s)) });

}

checkMark(student, mark) {

// still has equivalent access

}

//...

}

To add the necessary checks, ownership contexts must contain a list of
objects they are equivalent to in the current thread, and the is() method
used by the message send rules needs changing:

is(other) { // notion of identity changes

if (this.context == other.context)

return true;

for(ctx : this.equivalentTo)

if (ctx.is(other)) return true;

return false;

}

5.3.3 Encapsulation Guarantees

The permit and equivalent facilities provided by ConstrainedJava both
allow limited bypassing of the encapsulation invariants. However, this
bypassing is explicitly extremely limited in scope. The accessing method is
only granted that access for a short period of time – while it is running. So
the accessing method is effectively only allowed to see a snapshot of the
external object’s mutable state. This is information that could be extracted
by the accessing method’s caller, stored in an immutable object, and passed
to the accessing method; the equivalent and permit features merely provide
a convenient way to bypass this costly step.

5.4. SUMMARY 57

5.4 Summary

To recap, Dynamic Ownership enforces encapsulation by providing two
guarantees: representation encapsulation and external independence.

Representation encapsulation disallows direct access to an object’s repre-
sentation – the objects that comprise an object’s mutable state can only be
accessed by the object owning them; other parts of the system must use
that owner object’s interface to indirectly access them.

Dynamic Ownership considers an object’s representation to be the ob-
jects it owns. Objects which are part of a container but are not owned by
it do not count as part of the representation of the container: only of the
object that owns them.

Dynamic Ownership classifies methods that can access and return in-
formation about mutable state as unrestricted. It classifies calls from an
aggregate to itself, or to its representation as internal calls. Internal calls
to unrestricted methods are allowed: they are from an object’s interface
or itself to itself; they’re not to an external object, and are bypassing the
object’s interface. Therefore they are allowed, and non-internal calls to
unrestricted methods are not allowed. In addition, calls to externally inde-
pendent methods are only allowed if the receiver is visible to the sender – so
the representation encapsulation of the receiver’s owner is not violated, as
the call does not bypass the receiver’s owner. As this covers all the possible
method types, these restrictions are sufficient to maintain representation
encapsulation.

External independence requires that an object is unable to send mes-
sages that return information about mutable state to objects it has a refer-
ence to but does not own. This is the other side of representation encapsula-
tion; a message sent to an object not owned by the message sender must be
bypassing that object’s interface, and is therefore breaking representation
encapsulation. Therefore, as we preserve representation encapsulation we
must also be preserving external independence.

58 CHAPTER 5. ENCAPSULATION ENFORCEMENT EXTENSIONS

Exporting does not change this in any significant sense, as an exported
object effectively merges with the object that exported it in the eyes of
the ownership system; calls between it and the object that exported it are
classed as internal calls, and its children and the exporting object’s children
are merged into one set.

Lending ownership does cause external dependence and allows the by-
passing of representation encapsulation, but it does so within a very limited
scope, in a small, localised part of the object graph. Furthermore, this only
occurs when calls have gone through the interfaces of both objects involved,
and they have both consented to this dependence and representation access
– and it finishes when the first of those calls returns.

Chapter 6

Encapsulation Enforcement
Evaluation

In this chapter, we discuss issues relating to writing programs within the
restrictions imposed by the encapsulation enforcement, including Con-
strainedJava’s approach to several common Java patterns, and more gen-
eral design patterns for object oriented code. Also discussed is the imple-
mentation of dynamic ownership and encapsulation enforcement within
ConstrainedJava.

6.1 Object Oriented Patterns in ConstrainedJava

We describe how a number of common design patterns [12] interact with
the object ownership and encapsulation enforcement provided by Con-
strainedJava.

6.1.1 Proxy

Proxy objects act as stand-ins for some other object, providing access to
its facilities while imposing extra requirements, like not instantiating the

59

60 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

proxied object until it is required, or disallowing access to some of its
methods.

A proxy object must own or export the object it is providing access to, if
it needs to call unrestricted methods within the object. If the proxy object
does own the proxied object, without exporting it, objects not contained
by the proxy will be unable to send any messages to the object the proxy is
encapsulating.

6.1.2 Iterator

An iterator is similar to a proxy in that it provides access to some other
object, usually a collection. But unlike a proxy, it must do this without
usurping ownership of that object. Collections may have several iterators in
use at once, and only one of them would be allowed to own the collection.

The solution to this problem provided by our ownership system is the
export facility, which allows the iterator to become part of the collection’s
public interface, able to send and receive messages as if it were the collection
object itself.

6.1.3 Visitor

A Visitor is an object that performs some operation when passed an object.
Visitors are themselves typically passed to some aggregate object. This
aggregate causes some method on the visitor to be called for each of some
set of other objects; maybe by those objects themselves – for example, the
nodes in a graph.

The problem here concerns the nature of the calls back to the visitor
object. As the visitor is likely to be owned by the owner of the aggregate
objects whose elements are being visited, calls to externally independent
methods could be made to the visitor object. In this case, however, the
visitor would have no ability to make calls to the elements at all, and only
externally independent calls to the aggregate that owns the elements.

6.1. OBJECT ORIENTED PATTERNS IN CONSTRAINEDJAVA 61

If the visitor called back, by another oneway method, the object that
owns it and the aggregate being visited, that would allow this owning object
to send messages to the aggregate, manipulating the element. Additionally,
if the visitor object was merely a closure that was part of the object owning
the aggregate, then a call from the visitor back to the aggregate would not
be necessary. Calling the aggregate to manipulate the objects it contains
is very similar to the style of programming used when conforming to the
Law of Demeter.

6.1.4 Composite

Composite has no special problems with the encapsulation system – the
digraph of references from composites to leaves and other composites
would be nicely mirrored by the owner pointers going in the opposite
direction. However, if it is used with the visitor pattern, the restrictions
mentioned in section 6.1.3 would apply.

6.1.5 Factory Method

A factory method instantiates an object on behalf of some calling object,
often using runtime information to make decisions about the type of object
to create.

Factory methods typically change mutable state and return an object;
therefore, they count as normal methods and can only be called from
the object they are part of, or that object’s owner. Dynamic Ownership
provides the factory method modifier (see section 3.3.2) which transfers
the ownership of the object returned by the factory method to the calling
object.

62 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

6.1.6 Singleton

The singleton pattern ensures that a program only ever creates one instance
of a particular class.

While this is not in itself a problem for the ownership system, it does
influence what a singleton class can do. If the singleton is to be accessed
directly by several objects which do not contain each other, then many ob-
jects in the system will only be able to call externally independent methods
on the singleton object, as they do not contain the singleton.

In some cases this is not a problem. Operations such as sending mes-
sages to be logged, or other output, can be performed with oneway meth-
ods, which are externally independent. But maintaining a cache accessible
by the whole program requires unrestricted methods to be called. Con-
strainedJava does not currently provide a mechanism to support this.

6.1.7 Observer

The observer pattern does not pose any particular problems to our owner-
ship system. While the observer is visible to the observed object, oneway
“I’ve changed” messages can be sent back to the observer. The message that
subscribed the observer to updates would have to be sent by the observed
object’s owner, but this can be passed down the ownership tree, law-of-
demeter style. An alternative to the observer pattern is to use the constraint
system described in chapter 7.

6.2 Language features

A number of language features need special consideration in how they
interact with the ownership and encapsulation enforcement systems.

6.2. LANGUAGE FEATURES 63

6.2.1 Labelling Method Types

ConstrainedJava requires externally independent methods to be labelled
with a pure or oneway method modifier. For example, the add method in a
list might be marked oneway:

class List { // ...

public oneway add(o) {

//...

}

}

Checks are performed at runtime to ensure a pure or oneway method
conforms to the constraints implied by that label; if a pure method accesses
mutable state, an OwnershipException is thrown, and anything returned by
a oneway method is eaten by the interpreter and not passed through to that
method’s caller. Therefore, it would be possible to partially or completely
forego the labelling requirement altogether and rely on the runtime checks
to ensure that the method either does not access mutable state or does not
return any result. Defaulting to assuming pure mode if the message send
rules require a method to be externally independent would be one way of
doing this.

Not requiring such labelling turns out to be a bad idea, however. It
makes these methods pure or oneway polymorphic – in some situation
they are restricted, and in others they are not. Experience with using
ConstrainedJava to write programs shows that it is very easy to write
methods marked pure that access mutable state by mistake. When they’re
not labelled as pure, ownership errors in an unlabelled method are less
obviously the cause of a problem: it is not forced to run in pure mode
unless the message send rules require it to. As most messages are classified
as internal calls (see section 6.4), problems with code in such methods will
only show up intermittently, when they are called by some other object.

64 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

Oneway mode will not cause ownership errors to be thrown – returned
values or exceptions are eaten by the interpreter when the method returns,
and an error message is printed to warn the programmer that a oneway
message attempted to return a value or throw an exception. Methods
declared as pure, however, will cause ownership errors to be thrown when
non-final fields are accessed, or non-externally independent methods are
called. For example, in the following class there are two pure methods,
one which accesses a non-final field, which is disallowed, and one which
delegates this to an externally independent oneway method, which is
allowed:

class Foo {

final f;

var m;

public pure doStuffBad() {

m++; // disallowed

i = f + 4; // ok

return i; // ok

}

public pure doStuffGood() {

incM(); // ok

i = f + 4; // ok

return i; // ok

}

private oneway incM() {

m++;

}

}

6.2. LANGUAGE FEATURES 65

6.2.2 Closures

ConstrainedJava’s blocks (section 3.2.4) provide the same facilities as that
provided by Smalltalk’s blocks. They allow an object to be created with
a single value() method, which runs in the scope in which the block was
defined.

a(b) {

b.visitNodes(block oneway (x) {

if (x.equals("")) { return false; }

});

return true;

}

ConstrainedJava uses exporting (section 5.1) to deal with closures. A
closure never has a separate ownership identity – it inherits the ownership
context of the object that created it, effectively being exported by its creator.
Thus, closures maintain access to the object that created them, and messages
sent to them have the same restrictions imposed on them that messages
sent to their creator object have.

Some common uses of blocks are allowed by the message send rules;
some others, in particular, many Smalltalk-style control structures do not.

Using closures with a forEach method on a collection to iterate through
that collection requires the closure to be marked oneway. The collection’s
call back to the closure counts as an external call, and is thus allowed. For
example, in the following code snippet (where block() {..} declares a closure
in ConstrainedJava):

var sumlist(list) {

sum = 0;

list.forEach(block oneway (x) { sum += x });

return sum;

}

66 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

In this example, when the object representing the closure block oneway
(x) {...} is created, ConstrainedJava automatically causes it to exported by
its owner – effectively, for ownership purposes, it becomes a part of the
object it was declared in.

Emulating more Smalltalk-style control structures is harder. Implement-
ing a Smalltalk-style if using blocks and ifTrue and ifFalse methods on
singleton True and False objects does not, however, work. While an ifFalse
message can be sent to the singleton boolean object, if that object is True,
then it cannot send a message back to the closure passed to it, as the closure
would not be visible to the shared singleton True object, which would be
owned by the root object.

6.2.3 Inner Classes

Inner classes present a problem with our system as currently specified, as
they act as a special object with unrestricted access to their source objects.
Exporting them would give them this access, but then they wouldn’t have
a separate ownership identity.

Exporting does make sense when an inner class is being used in a
manner analogous to a closure, a common use for anonymous inner classes
in Java. Exporting is in fact the way that ConstrainedJava deals with
closures. But exporting conflates the concepts of allowing other parts of the
system to access an object with giving the exported object privileged access
to the internals of its outer object.

Ownership Types for Object Encapsulation [5] (see section 2.2.4) deals
with this problem by allowing objects, when instantiated, to be passed
extra ownership information. This then enables the instantiation of inner
classes that are owned by some other object, but have an extra ownership
parameter allowing them access to the internals of the outer object that
created them. Constraints can be set forcing the owner of the inner class to
be the owner of the outer object, or some object owned by that owner.

6.3. IMPLEMENTATION 67

The current implementation of ConstrainedJava does not support inner
classes.

6.2.4 Calling Java

ConstrainedJava inherits from BeanShell the ability to call native Java code.
Java objects can be instantiated in the same way as ConstrainedJava objects.

As ConstrainedJava calls native Java methods using reflection, it has no
control over the behaviour of native Java code. Native Java objects created
by ConstrainedJava code are wrapped to give them owner pointers, but
these wrappers can be lost when Java code deals with native objects. It is
therefore recommended to avoid using Java native objects if possible, or
compartmentalise their use to a small part of your program.

ConstrainedJava also provides the ability to cast objects to a native Java
interface type, to allow native Java code to call ConstrainedJava code back.

import java.awt.*;

...

var x = new Window();

x.addActionListener((java.awt.event.ActionListener)this);

6.3 Implementation

The ConstrainedJava language is a modified version of the BeanShell Java
source interpreter, with extensions to support our Dynamic Ownership
system.

To add Dynamic Ownership to the language, a number of changes have
been made.

ConstrainedJava tracks the ownership of each object, by adding an
owner pointer. Ownership tracking is complicated by the need to allow
for the export operation, which causes two or more objects to share the
same location in the ownership tree. This precludes the use of a simple

68 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

owner field. ConstrainedJava implements ownership tracking by giving
each object or set of exported objects an Ownership Context, which stores
the objects’ owner pointer. This scheme is described in more detail in
section 5.1.

ConstrainedJava provides two mechanisms for specifying ownership
change: as a message or as a method modifier. A gift message can be
sent to an object, with the object’s new owner as a parameter. Alterna-
tively, a method can be marked with the modifier factory, which causes the
ownership of any object returned to be transferred to the calling object.

Oneway and pure methods are marked as such by being declared with
the oneway and pure modifiers, for the reasons discussed in section 6.2.1.

Checks have been added to facilitate message restrictions. Every method
call is checked to ensure that the message send restrictions are not violated,
traversing the ownership tree as necessary.

In addition, methods which have been marked pure must not be allowed
to access mutable state. This is implemented by setting a pure-mode flag
for the current thread, and checking field accesses when it’s on to ensure
that only final fields are accessed.

Oneway methods are accommodated by forcing them to return void,
and ignoring any exceptions they throw.

Permit and equivalent are implemented by adding lists of ownership
contexts whose objects have permit or equivalent access to the ownership
context the lists are associated with.

6.4 Performance

ConstrainedJava was instrumented to record information about the perfor-
mance of the ownership system while running a number of demonstration
and benchmark programs.

The major overhead added by the ConstrainedJava system is that every
field access and message send requires the ownership system to check what

6.4. PERFORMANCE 69

restrictions may apply to it.

Most (77%) of messages (this includes field accesses) are sent to an
object directly owned by the message sender. Only 22% are flagged as
being restricted to being pure or oneway; the remaining 1.2% are calls within
an object.

These statistics were gathered running a number of GUI demos, several
constraint-based, totalling 1700 lines of code.

Checking if a message sender a directly owns the receiver b is a relatively
cheap operation; it requires checking that b.owner == a – that the receiver’s
owner pointer points to the sender. This operation becomes more expensive
if the sender, a, is marked equivalent to some object, as the list of objects
which a may gain access to the children of must also be checked through.

The test to see if an object’s owner is equal to some object b (a.owner ==
b) is normally quite cheap. However, if object b has been marked equivalent
to some other object c, then object b acquires a per-thread equivalence set
that must be checked when the a.owner == b test is made and fails. This
involves cycling through the members of the equivalence set and making
comparisons like a.owner == c.

Instrumentation of the owns check shows, however, that of the calls
made to it, only 2.4% of them require iterating through the equivalence
set, and only 0.14% of them end up iterating through the equivalence set
without finding a match. So the overhead added by the equivalent check
does not appear to be great, and this is in a program that uses constraints –
and thus, calls to equals() with a parameter marked equivalent – heavily.

A simple 70 line program (listed in appendix B) to perform inserts into
a sorted list was benchmarked on a 2.8GHz Pentium 4 running NetBSD
and Sun’s Java 1.5.0 HotSpot JVM, with both the original Beanshell 1.3.0 on
which the ConstrainedJava prototype implementation was based, the new
Beanshell 2.0b4 from which some changes were taken, and the Constrained-
Java prototype implementation, both with encapsulation enforcement on
and turned off. Averages are over the last 40 of a loop of 47 runs, with an

70 CHAPTER 6. ENCAPSULATION ENFORCEMENT EVALUATION

inner loop that performs 4000 inserts.

Interpreter Minimum time/run (ms) Average time/run (ms)

BeanShell 1.3.0 259 267.35

BeanShell 2.0b4 3566 3616.975

ConstrainedJava (no EE) 367 379.925

ConstrainedJava (EE) 389 403.575

Table 6.1: Performance

The data (table 6.1) shows that maintaining the ownership information,
which is still done even with encapsulation enforcement turned off, causes
the program to run 41% slower. However, adding message send checks
only reduces performance by a further 6%.

The reason for the much slower BeanShell 2.0b4 result is the new struc-
ture for handling BeanShell-generated objects. This is not a change carried
over to ConstrainedJava, due to the extreme performance penalty it exacts.

Chapter 7

Constraints

In this chapter, ConstrainedJava’s one-way constraint system is described.

7.1 Introduction

Enforcing encapsulation can make programming harder. Common tech-
niques, like using the observer pattern (section 6.1.7) become more complex.
Propagating changes in state from one part of the program to another re-
quires some object which contains both objects between which state is being
transferred, along with explicit support in that object for shepherding those
state changes between different parts of the system.

A constraint system allows programmers to make explicit relationships
between the state of parts of a program that would have otherwise been
coded implicitly, updating one field when another changed.

Constraint systems are relevant to our ownership system, as the owner-
ship restrictions attempt to ensure that objects do not become dependent
on the state of internal parts of other objects which are external to them.
Constraint systems can allow different parts of the program to depend on
each other in a more controlled and explicit fashion.

ConstrainedJava provides a one-way constraint system. One-way con-
straint systems are only able to propagate updates in one direction, and are

71

72 CHAPTER 7. CONSTRAINTS

thus much simpler to implement than multi-way constraint systems. For
example, the constraint

a.x = b.x + 40

would cause a.x to be updated when b.x’s value changed, but not the
other way around. The constraint has a direction, an identifiable source
and sink.

Most one-way constraint systems specify the sink as a field in an object.
The field is updated when the value of the source expression changes. Some
mechanism may be provided to notify the object that its field value has
changed, allowing for instance a GUI element to be redrawn when the
fields describing its state are changed.

Using fields directly as constraint sinks can be undesirable from an
encapsulation standpoint, however. If a constraint sink must be specified
as a field in an object, then only values exposable as a single field can be
used as the target for a constraint. The field must be considered part of the
public interface of the object if other objects are able to set up a constraint
targetting it. Some mechanism must be provided to allow some action, e.g.
redrawing part of the UI, when fields are changed in this manner.

ConstrainedJava’s one-way constraint system requires both the source
and sink of a constraint to be specified as a block (see section 3.2.4) of code,
so any action can be performed to retrieve or set a value – a simple field
access, a method call, or something more complex.

7.2 Constraint Lifecyle

One-way constraints have three parts: a source, a sink and a control object.
ConstrainedJava provides a mechanism to specify the source and sink as
blocks, and associate them with each other, to form a constraint, generating
a control object in the process.

7.2. CONSTRAINT LIFECYLE 73

When the constraint is established, ConstrainedJava gathers the set of
fields which the constraint’s source depends on, by executing the source.

When writes are detected to these fields, the source block is re-evaluated.
If the source block’s return value has changed, then the sink block is called.
A scheduling mechanism is used to attempt to reduce the number of un-
necessary evaluations.

7.2.1 Establishing a constraint

A constraint in ConstrainedJava is comprised of a pair of blocks, repre-
senting the source and sink of the constraint, and a control object. Con-
strainedJava expects the source block to take no parameters and return
some value. This value is what is passed onto the sink block. There are
no extra restrictions, other than encapsulation enforcement, applied to a
constraint source block.

While there is no restriction on the source block having side-effects,
these are not recommended.

As an example, a source block to monitor the position of a slider could
be as follows:

...

source = block () {

slider.getValue();

};

...

ConstrainedJava expects the sink of a constraint, like the source, to be
specified as a block. The block must take one parameter, and its return
value is ignored.

Using a block as the sink of a constraint instead of a reference to a field
has the advantage that more complex data types produced by the sink can
be dealt with by the sink. Also, as methods can be called from a block, the

74 CHAPTER 7. CONSTRAINTS

object being changed as a result of the constraint has the chance to detect
that it has been changed. This means that an extra mechanism to deal
with detecting changes in order to propagate them through the system, for
instance by redrawing GUI widgets, is not required.

The source block is, until the constraint is created, just an ordinary block.
To form a constraint, a sink block must be attached to it.

...

sink = block (x) {

VolumeControl.setVolume(x);

};

constraint = source.listen(sink);

...

7.2.2 Gathering dependencies

When a constraint is created or updated, the source block is executed, and
field accesses are monitored in order to ascertain which fields it reads, and
thus what parts of the system its output depends on.

The list of fields read is then passed to the part of the system that detects
changes that might require constraint re-evaluation.

Not every field read is part of this list. Final fields are ignored, as
their value cannot change. Field access monitoring is suspended when an
external call (either one-way or pure) is made, as neither can provide the
source block with any information about the program’s mutable state.

7.2.3 Detecting changes

During normal code execution, when a field is written to, a check is made
to see if the field is one that a constraint depends upon. This monitoring
of field writes is not required when a pure method is executing, as such
methods are unable to write to fields.

7.2. CONSTRAINT LIFECYLE 75

Figure 7.1: Detecting changes: reducing scheduler calls

If a constraint depends on a field that is written to by the program,
and the value written is different to that field’s previous value, then the
constraint must be marked for re-evaluation.

ConstrainedJava attempts to batch multiple updates together, so that a
constraint is not re-evaluated part of the way through an update of the data
it depends on. This improves performance, but assumes that a method that
modified a monitored object will finish execution relatively quickly. This
tends to be true for code executed in the UI thread of a Java AWT or Swing
based application, but when it is not true, constraint semantics would be
affected. So far we have found this tradeoff to be acceptable.

Batching the updates together is achieved by storing a setting in the
callstack when a particular constraint’s dependent field is modified. When
a method returns, it checks if there are any such flags set for the current
callstack level. For each candidate constraint it finds, it checks if this
constraint has been invalidated by a method call in the callstack that has
not yet completed. If no method in the current callstack has invalidated the

76 CHAPTER 7. CONSTRAINTS

constraint, then it is scheduled for re-evaluation.
This means that once a method invalidates a constraint, it is only sched-

uled for re-evaluation when that method returns. If that method calls other
methods that would also invalidate the constraint, it is still only scheduled
for re-evaluation when the first method to invalidate the constraint returns.

For example, in figure 7.1, constraint ca depends on the fields o3.b,
o3.c and o2.d. When o3.b and o3.c are modified, no other method has
yet modified a field depended on by ca, so the constraint is scheduled for
re-evaluation when the method that modified them returns.

However, as the first method on o1 modifies o1.a before calling the
method that modifies o2.f, constraint cb (which depends on both fields) is
only scheduled when the first method to invalidate it returns.

7.2.4 Scheduling re-evaluation

As ConstrainedJava evaluates constraints eagerly, some effort must be
made to reduce unnecessary re-evaluations. ConstrainedJava uses two
methods to achieve this: only marking constraints for re-evaluation during
a method return (as described in the previous section), and the way it
schedules constraint evaluation.

When a constraint is scheduled for evaluation, it is added to a queue.
An AWT event is used to process constraints from the queue. When one or
more constraints are available to be evaluated, an AWT event is scheduled.
This executes in the AWT thread used by the Java AWT and Swing user in-
terface frameworks, between user interface events. It evaluates all pending
constraints, including any which are scheduled for re-evaluation while the
event is executing.

7.2.5 Constraint Evaluation

Constraints are evaluated by executing the source block, gathering de-
pendencies while doing so, and then comparing its return value to that

7.3. OVERHEAD 77

returned by the previous run of the source block. If the value returned has
changed, then the sink block is called with the return value of the constraint
source block passed in as a parameter.

Detection of a change in the return value of the monitored block is
accomplished by comparing it to the previously returned value via an
object identity comparison (Java ==) and then calling the new object’s
equals() method. Therefore, the monitored code must return a different
object if a change in its return value is to be noticed.

7.2.6 Activation

A constraint is activated when it is created, but it can be rescinded and
reinstated if desired.

This is accomplished by calling the rescind() and reinstate() methods
on the constraint object returned by the listen() method used to establish
the constraint.

For instance, when the mouse cursor entered a region, a constraint
causing some widget in that area to be updated could be reinstated, and
rescinded again when the mouse left the region:

...

if (region.contains(mousePos))

widgetMouseConstr.reinstate();

else

widgetMouseConstr.rescind();

...

7.3 Overhead

The constraint system imposes two types of overhead: storage and process-
ing time.

78 CHAPTER 7. CONSTRAINTS

When constraints are not in use, the only noticeable overhead is more
storage use, as all the Variable objects store a list of constraints that depend
on them. This overhead is not great compared to the existing overhead
imposed by BeanShell; a Variable object (used by BeanShell to represent a
variable or field) already has ten nonstatic fields, and the constraint system
only adds one more.

When constraints are in use, overhead is introduced at several points.

7.3.1 Monitoring

When code is executed to evaluate a constraint, all field accesses are moni-
tored, and accessed fields are added to a list associated with the constraint.
Variables which represent fields which are or have been depended on by a
constraint also store a list of constraints that depend on them, to facilitate
notification when the fields change.

Unfortunately this scheme can create large lists of fields to be monitored.
An example of this being particularly problematic is monitoring changes to
a value in a linked list. Since n mutable fields in the form of next pointers
must be read in order to read the nth element of the list, monitoring a
single item in a large list can cause a large number of next pointers to be
monitored. If several items in the list are monitored, this number grows
very quickly.

Pruning this list of fields to monitor would appear to be desirable, due
to the storage costs and possibilities of excessive constraint evaluation.
Several strategies have been tried, but the costs of each have proved too
great.

In fact, the scheduling improvements detailed in section 7.2.4 have
reduced overhead to a level where the existing problem of too much con-
straint re-evaluation has essentially gone away.

7.4. DISCUSSION 79

7.4 Discussion

7.4.1 Ownership-directed simplification

It had been hoped that the ownership tree would provide useful extra
information with which to optimise the constraint system, but so far this
approach has proved fruitless.

One approach to monitor list pruning we tried was to monitor entire
objects, instead of fields, and forward changes up the ownership tree. This
meant that entire aggregate objects could be monitored rather than the set
of sub-objects that were part of them. When an object change notification is
signalled, that object’s owner also signals a change, and this continues up
the ownership tree.

This approach had much greater storage efficiency, as the set of objects
read is much smaller than the set of fields read. However, this approach
had very poor performance; field writes caused changed messages to be
propagated up the ownership tree. Due to the low granularity of monitored
areas, many more constraints were re-evaluated than was necessary.

The ability to describe regions in objects, and which of these regions
different operations affect, like the system used in FX [13] would improve
this situation. Forwarding change notifications up the ownership tree does
not fit well with the concept of object regions. As object ownership is
an orthogonal property to the fields in which references to an object is
held, there is no obvious way to retain region information when a change
notification is forwarded up the ownership tree.

In the end, simpler means to reduce overhead have been more success-
ful, in particular the scheduling described in sections 7.2.3 and 7.2.4.

7.4.2 Native code

As the code for native Java objects is executed by the host JVM, not the
ConstrainedJava interpreter, field access cannot be monitored. Thus, con-

80 CHAPTER 7. CONSTRAINTS

straints depending on the state of native Java objects will not be evaluated
unless this state is manually propagated into ConstrainedJava objects, for
example in response to Java AWT events. Helper classes to perform this
copying for selected AWT controls have been implemented.

7.4.3 Change detection

Constraint source must return a different object to the one originally re-
turned if the information in it changes. The object returned is compared
with the previous object returned using the standard Java equals() method.
If the reference returned is to the same object as that returned by the previ-
ous call to the constraint source, then comparing them with equals() would
be comparing that object with itself, which should always return true.

7.4.4 Interaction with the ownership system

The constraint system must interact with the ownership system as it sends
messages to objects in the system: to execute code whose return value
is being monitored, equals messages to compare that return value with
the previous one, and to call the block(s) that propagate the value to its
destination.

ConstrainedJava sends the messages from the ownership context of the
object which created the monitored block in the first place. As Constrained-
Java has the ability to share a monitored block between several constraints,
this does make some sense. However, it means that whichever object calls
the listen method is able to cause code to run in a different ownership con-
text. Our solution is to treat the listen method as an unrestricted method in
the same ownership context as the block, which calls the value methods of
the source and sink blocks.

7.5. SUMMARY 81

7.4.5 Scheduling performance

Evaluating the constraints as a batch between GUI events has the advantage
that GUI changes caused by events, such as repaints of parts of the UI, all
happen at once. There are no partial updates where some constraints are
satisfied but others are not. The GUI feels subjectively smoother than it
does when constraints are evaluated in parallel with the user interface
thread.

7.5 Summary

Constraints help programming with our encapsulation enforcement system,
as they allow objects to depend on the state of another object without vio-
lating the external dependence rule: an object owning both the depending
and dependant object can initiate the constraint that ties them together.

ConstrainedJava implements a simple one-way constraint system, which
allows parts of the running program to be notified when the mutable state
of other parts changes, subject to ownership restrictions. This is integrated
with the language using closures, and utilises a number of optimisations to
improve performance.

82 CHAPTER 7. CONSTRAINTS

Chapter 8

Conclusions

8.1 Summary

In this thesis we have presented ConstrainedJava, an implementation of
the Dynamic Alias Protection [25] alias protection system. ConstrainedJava
provides much more effective encapsulation facilities than traditional object
oriented languages such as Java.

Firstly, the ownership structure utilised by ConstrainedJava was pre-
sented. This provides the structural basis on which the encapsulation
enforcement system is based.

Then the encapsulation enforcement system, which restricts message
sends based on information taken from the ownership structure, was pre-
sented. The encapsulation invariants were described. The different method
and message classifications were described along with the rules that utilise
them. An argument was made that these rules preserved the encapsulation
invariants.

The restrictions imposed by Dynamic Alias Protection made writing
practical programs hard. Extensions to the DAP model we devised were
described that made writing real programs much easier.

We then demonstrated this benefit by describing how several com-
mon object-oriented design patterns would be implemented within a Con-

83

84 CHAPTER 8. CONCLUSIONS

strainedJava program. Interaction with other language features, implemen-
tation details and performance information was presented.

The constraint system built for ConstrainedJava was also presented.
We described the interface it provides, the implementation optimisations
that make it usable for GUI programming, and its interaction with the
ownership and encapsulation system.

8.2 Contributions

We have implemented an ownership and encapsulation enforcement sys-
tem based on the Dynamic Alias Protection proposal [25] inside a Java-like
dynamic object-oriented language, BeanShell [24].

The simple encapsulation enforcement and ownership structure of Dy-
namic Alias Protection was then extended to make it possible to write
real programs. Our extensions included support for interface objects and
closures (export), the ability to lend other objects the rights conferred by
object ownership (permit and equivalent), and the ability to permanently
change the owner of an object. These extensions, while easing the job of
the programmer, do not violate the encapsulation invariants taken from
Dynamic Alias Protection.

We have also implemented a simple one-way constraint system on
top of the same language, to simplify the propagation of mutable state
between parts of an object-oriented program. This constraint system is
integrated with the ownership and encapsulation system provided by the
ConstrainedJava language.

8.3 Comparison with previous work

The structure of the ownership and base encapsulation enforcement sys-
tem detailed in chapters 3 and 4 is based on the concepts of ownership

8.3. COMPARISON WITH PREVIOUS WORK 85

and the alias protection rules described in the Dynamic Alias Protection
proposal [25], which was not previously implemented.

A number of solutions to the problem of iterator objects in existing
static alias protection or ownership systems have been proposed. Con-
strainedJava’s export operation (see section 5.1) bears some similarity with
these systems. Boyapati et al [5] provide a scheme wherein an object and
instances of inner classes associated with it share the same ownership
properties, in the same way we allow a collection and iterator to share
an ownership context; however, they provide no way to instantiate inner
classes with their own ownership contexts.

Dave Clarke’s extensions [8] to Ownership Types [9] does allow arbi-
trary objects to share representation contexts, which provides a facility
much more similar to ConstrainedJava’s export facility.

The ability to lend ownership of an object by marking a method param-
eter as permit (see section 5.3.1) is comparable to borrowing as defined in
Alias Burying [6]. Borrowing guarantees that when the method passed
an object marked borrow returns, the borrowed object will not be more
aliased than it was when the method was called. In ConstrainedJava, when
a method passed a permit mode parameter returns, it loses any privileged
access granted by the permit mode that it did not already have.

The constraint system provided by ConstrainedJava has some similarity
to that provided by Amulet [23]. Like Amulet’s system, ConstrainedJava
treats the source part of a constraint as an arbitrary block of code whose
execution is monitored to determine which slots in the system it depends
on. Unlike Amulet’s approach, however, ConstrainedJava treats the target
of a constraint as another block of code, whereas Amulet requires that
constraints are placed in object slots. This has the advantage that any
update can be performed by the target code, however it also means that
fields updated by that code cannot be guaranteed to be up-to-date when
the constraint’s dependencies change, a guarantee Amulet provides.

86 CHAPTER 8. CONCLUSIONS

8.4 Future work

A number of directions are available for future work.
We would like to produce a formalism for the ownership and enforce-

ment system provided by ConstrainedJava, to formally prove that the
encapsulation invariants from Chapter 4 are maintained.

Another area of work to be explored is finding a natural way to incor-
porate support for inner classes into the ownership system.

We’d also like to implement the ConstrainedJava ownership and encap-
sulation enforcement system on top of a more mainstream language than
BeanShell.

Appendix A

Message send rules

The full set of message send rules, incorporating the original Dynamic
Aliasing Protection rules from chapter 4 and our extensions to them from
chapter 5. These are intended to be invoked from interpreter code similar
to that provided in the sendMessage() method below, a replica of the code
from section 4.2.1.

sendMessage(sender, receiver, target, isPure, args) {

// call from sender object to method target on receiver

// sender, receiver are OwnershipContexts

// target is some sort of Method object

// ...

if (checkMessageSend(sender, receiver, target, isPure))

dispatchMessage(sender, receiver, target, args); // ok

else

throw new OwnershipException(sender, receiver, target);

// ...

}

checkMessageSend(sender, receiver, target, isPure) {

messageType = getMessageType(sender, receiver);

methodType = target.getMethodType();

87

88 APPENDIX A. MESSAGE SEND RULES

if (isPure && methodType != EXTERNALLY_INDEPENDENT)

return false;

allowed = getAllowedMethodTypes(messageType);

if (allowed == ALLOW_NONE) return false;

if (allowed == ALLOW_ALL) return true;

if (methodType == EXTERNALLY_INDEPENDENT &&

allowed == ALLOW_EXTERNALLY_INDEPENDENT)

return true;

return false;

}

getMessageType(sender, receiver) {

if (sender.is(receiver) ||

sender.owns(receiver)) return INTERNAL_CALL;

if (receiver.visibleTo(sender))

return EXTERNAL_CALL;

// else

return ENCAPSULATION_BREAKING;

}

getAllowedMethodTypes(messageType) {

if (messageType == INTERNAL_CALL)

return ALLOW_ALL;

if (messageType == ENCAPSULATION_BREAKING)

return ALLOW_NONE;

if (messageType == EXTERNAL_CALL)

return ALLOW_EXTERNALLY_INDEPENDENT;

89

}

class OwnershipContext {

var owner; // points to another context

var objects; // list of object(s) this is context for

// list of objects permitted to access this one

var permitted;

// list of objects this object can impersonate

var equivalentTo;

//...

is(other) {

if (this == other)

return true;

for(ctx : equivalentTo)

if (ctx == other) return true;

return false;

}

visibleTo(other) { // is this visible to other?

return owner.contains(other);

}

contains(other) {

if (other.is(this)) return true;

if (other == null) return false;

return this.contains(other.owner);

}

owns(other) {

if (this.is(other.owner))

90 APPENDIX A. MESSAGE SEND RULES

return true;

return other.permitted.contains(this);

}

//...

}

Appendix B

Benchmark Code

This is the benchmark code timed to produce table 6.1, demonstrating the
performance impact of ConstrainedJava’s encapsulation enforcement and
ownership system on a simple program.

class Node {

var next = null;

var value = null;

}

class SortList {

var head = null;

add(x) {

var ptr = head;

var prev = null;

var node = new Node();

node.value = x;

while (ptr != null && ptr.value < x) {

prev = ptr; ptr = ptr.next;

}

91

92 APPENDIX B. BENCHMARK CODE

if (prev == null) {

node.next = head;

head = node;

} else {

node.next = prev.next;

prev.next = node;

}

}

av() {

var sum = 0;

var num = 0;

var ptr = head;

while(ptr != null) {

sum += ptr.value;

ptr = ptr.next;

num++;

}

return sum/(1.0*num);

}

dev() {

var av = av();

var sum = 0;

var num = 0;

var ptr = head;

while(ptr != null) {

sum += Math.pow(ptr.value-av,2);

ptr = ptr.next; num++;

}

return Math.sqrt(sum/(1.0*num));

93

}

min() {

return head.value;

}

}

min = 99999999;

times = new SortList();

for(int i = 0; i < 47; i++) {

System.gc();

now = System.currentTimeMillis();

l = new SortList();

for (int j = 4000; j > 0; j--) {

l.add(j);

}

then = System.currentTimeMillis();

time = then - now;

if (i>6)times.add(time);

System.err.print(" "+time);

}

System.err.println("");

System.err.println(" min "+times.min()+" av "+

times.av()+" dev "+times.dev());

94 APPENDIX B. BENCHMARK CODE

Bibliography

[1] ALMEIDA, P. S. Balloon types: Controlling sharing of state in data
types. In ECOOP Proceedings (June 1997), pp. 32–59.

[2] ARNOLD, K., GOSLING, J., AND HOLMES, D. The Java Programming
Language Third Edition. Addison-Wesley, Reading, MA, 2000.

[3] BASILI, V. R., BRIAND, L. C., AND MELO, W. L. A validation of
object-oriented design metrics as quality indicators. IEEE Trans. Softw.
Eng. 22, 10 (1996), 751–761.

[4] BORNING, A., AND DUISBERG, R. Constraint-based tools for building
user interfaces. ACM Trans. Graph. 5, 4 (1986), 345–374.

[5] BOYAPATI, C., LISKOV, B., AND SHRIRA, L. Ownership types for object
encapsulation. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (New York,
NY, USA, 2003), ACM Press, pp. 213–223.

[6] BOYLAND, J. Alias burying: unique variables without destructive
reads. Softw. Pract. Exper. 31, 6 (2001), 533–553.

[7] BURNETT, M. M., AND AMBLER, A. L. Interactive visual data abstrac-
tion in a declarative visual programming language. Journal of Visual
Languages and Computing 5, 1 (1994), 29–60.

[8] CLARKE, D. Object Ownership & Containment. PhD thesis, University
of New South Wales, 2001.

95

96 BIBLIOGRAPHY

[9] CLARKE, D. G., POTTER, J. M., AND NOBLE, J. Ownership types for
flexible alias protection. In OOPSLA ’98: Proceedings of the 13th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (New York, NY, USA, 1998), ACM Press, pp. 48–64.

[10] ECMA. ECMA-334: C] Language Specification, second ed. ECMA (Euro-
pean Association for Standardizing Information and Communication
Systems), Geneva, Switzerland, Dec. 2002.

[11] FREEMAN-BENSON, B. N., MALONEY, J., AND BORNING, A. An
incremental constraint solver. Commun. ACM 33, 1 (1990), 54–63.

[12] GAMMA, E., HELM, R., JOHNSON, R. E., AND VLISSIDES, J. Design
Patterns. Addison-Wesley, 1995.

[13] GIFFORD, D. K., JOUVELOT, P., LUCASSEN, J. M., AND SHELDON,
M. A. FX-87 Reference Manual. Tech. Rep. TR-407, MIT Lab. for
Computer Science, September 1987.

[14] GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and
its Implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[15] GRABMÜLLER, M., AND HOFSTEDT, P. Turtle: A Constraint Impera-
tive Programming Language. In Twenty-third SGAI International Con-
ference on Innovative Techniques and Applications of Artificial Intelligence
(Cambridge, UK, December 2003), F. Coenen, A. Preece, and A. Macin-
tosh, Eds., Research and Development in Intelligent Systems, British
Computer Society, Springer-Verlag.

[16] GRUNDY, J. C., HOSKING, J. G., AND MUGRIDGE, W. B. Support-
ing flexible consistency management via discrete change description
propagation. Softw. Pract. Exper. 26, 9 (1996), 1053–1083.

BIBLIOGRAPHY 97

[17] HOGG, J. Islands: aliasing protection in object-oriented languages.
In OOPSLA ’91: Conference proceedings on Object-oriented programming
systems, languages, and applications (New York, NY, USA, 1991), ACM
Press, pp. 271–285.

[18] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC
14882:2003: Programming languages — C++. International Organization
for Standardization, Geneva, Switzerland, 2003.

[19] KRZIKALLA, O. Constraint imperative programming with C++. In
MultiCPL’03 Proceedings (September 2003), pp. 55–66.

[20] LIEBERHERR, K., HOLLAND, I., AND RIEL, A. Object-oriented pro-
gramming: an objective sense of style. SIGPLAN Not. 23, 11 (1988),
323–334.

[21] MCGRAW, G., AND FELTEN, E. W. Securing Java: Getting Down to
Business with Mobile Code. John Wiley & Sons, 1999.

[22] MÜLLER, P., AND POETZSCH-HEFFTER, A. Universes: A type system
for controlling representation exposure. In Programming Languages and
Fundamentals of Programming (1999), A. Poetzsch-Heffter and J. Meyer,
Eds., vol. 263 of Technical Report, Fernuniversität Hagen.

[23] MYERS, B. A., MCDANIEL, R., MILLER, R., ZANDEN, B. V., GIUSE,
D., KOSBIE, D., AND MICKISH, A. The Prototype-Instance Object Sys-
tems in Amulet and Garnet. In Prototype-Based Programming, J. Noble,
A. Taivalsaari, and I. Moore, Eds. Springer-Verlag, 1999, pp. 141–176.

[24] NIEMEYER, P. BeanShell. http://www.beanshell.org/.

[25] NOBLE, J., CLARKE, D., AND POTTER, J. Object ownership for dy-
namic alias protection. In TOOLS ’99: Proceedings of the 32nd Interna-
tional Conference on Technology of Object-Oriented Languages (Washing-
ton, DC, USA, 1999), IEEE Computer Society, p. 176.

98 BIBLIOGRAPHY

[26] NOBLE, J., VITEK, J., AND POTTER, J. Flexible Alias Protection. In EC-
COP ’98: Proceedings of the 12th European Conference on Object-Oriented
Programming (London, UK, 1998), Springer-Verlag, pp. 158–185.

[27] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Default-
ing Generic Java to Ownership. In Proceedings of the Workshop on
Formal Techniques for Java-like Programs in European Conference on Object-
Oriented Programming (Oslo, Norway, June 2004), Springer-Verlag.

[28] SCHÄRLI, N., BLACK, A. P., AND DUCASSE, S. Object-oriented encap-
sulation for dynamically typed languages. In OOPSLA ’04: Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (New York, NY, USA, 2004),
ACM Press, pp. 130–149.

[29] SMITH, W. R. NewtonScript: Prototypes on the Palm. In Prototype-
Based Programming, J. Noble, A. Taivalsaari, and I. Moore, Eds.
Springer-Verlag, 1999, pp. 109–140.

[30] THOMAS, D., AND HUNT, A. Programming Ruby, 2nd ed. Addison
Wesley, 2005.

[31] UNGAR, D., AND SMITH, R. B. Self: The power of simplicity. In
OOPSLA ’87: Conference proceedings on Object-oriented programming
systems, languages and applications (New York, NY, USA, 1987), ACM
Press, pp. 227–242.

[32] ZANDEN, B. V., MYERS, B. A., GIUSE, D., AND SZEKELY, P. The
importance of pointer variables in constraint models. In UIST ’91:
Proceedings of the 4th annual ACM symposium on User interface software
and technology (New York, NY, USA, 1991), ACM Press, pp. 155–164.

