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PREFACE

Research on the temporal model began at the Psychophysics
Laboratory, Victoria University of Wellington in 1974. A preliminary
model was constructed to determine which parameters were the most
important and what type of stimuli should be used. It was found
that therewere inadequate human data available to critically evaluate
the model. The Victoria Laboratory was not then developed enough to
produce an efficient version of the model nor the necessary appropriate
human data.

I was awarded a Netherlands Postgraduate Scholarship which
permitted eleven months research, 1976-1977, at Professor R. Plomp's
Laboratory, at the Institute of Perception, Soesterberg, the Netherlands.
This research was done under the supervision of Dr T. Houtgast with
advice from Professor R. Plomp and Dr G. Smoorenberg. The Mark I
Model and the human frequency discrimination data were completed at
the Soesterberg Laboratory.

I then returned to Victoria University and expanded the Mark T
version of the model to produce the Mark II version. The model's
important parameters were fully investigated. Then some published
human 'pitch' data was simulated by the model. Detailed comparisons
were made between the obtained human frequency discriminated data and
the simulated data.

The thesis was completed November 1978.
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ABSTRACT

The importance of temporal information versus place information
in frequency analysis by the ear is a continuing controversy. This
dissertation developes a temporal model which simulates human frequency
discrimination. The model gives quantitative measures of performance
for the discrimination of sinusoids in white gaussian noise. The model
simulates human frequency discrimination performance as a function of
frequency and signal-to-noise ratio.

The model's predictions are based on the temporal intervals between
the positive axis crossings of the stimulus. The histograms of these
temporal inteivals were used as the underlying distributions from which
indices of discriminability were calculated.

Human frequency discrimination data was obtained for five observers
as a function of frequency and signal-to-noise ratio. The data were
analysed using the method of Group-Operating-Characteristic (GOC) Analysis.
This method of analysis statistically removes unique noise from data.

The unique noise was removed by summing observers' ratings for identical
stimuli. This method of analysis gave human frequency discrimination data
with less unique noise than any existing frequency data. The human data
were used for evaluating the model. The GOC Analysis was also used to
study the improvement in d' as a function of stimulus replications and
signal-to-noise ratio.

The model was a good fit to the human data at 250 Hz, for two signal-
to-noise ratios. The model did not fit the data at 1000 Hz or 5000 Hz.
There was some evidence of a transition occuring at 1000 Hz.

This investigation supported the idea that human frequency
discrimination relies on a temporal mechanism at low frequencies with a

transition to some other mechanism at about 1000 Hz.




CHAPTER I

THEORIES OF HEARING

Classical theories

In this discussion on classical theories of hearing, the two
main types of classical theories will be discussed and then the more
modern theories will be considered. The early theorists, Helmholtz
and Rutherford, attempted to incorporate all the known aspects of
audition into their theories. As more experimental data has been
‘produced,models and theories have tended to become specialized into
restricted areas of hearing. The emphasis in this summary will be on
theories concerned with pitch or frequency analysis.

Theré were two main divisions of classical theories; place
theories which relied on some type of spectral analysis, and tempdral
or frequency theories which relied in some way on the periodicity or
time information in the wave-form.

In 1863; Von Helmholtz presented his place theory of hearing.
He describéd the basilar membrane as consisting of a series of
transﬁerse fibérs, independently tuned and behaving like mechanical
resonators. Low frequéncy tones were thought to resonate the transverse
fibers near the apical end and high tones the fibers near the basal
end. According to Helmholtz's theory, a complex sound wave would
stimulate the several resonators tuned to the frequencies present in
the stimulus. An important part of Helmholtz's theory was his
hypothesized principle of nonlinear distortion in the middle ear. He
suggested that the transduction of sound from the cochlea was a non-
linear processr For pure tone stimuli, the nonlinearities would
generate distortion products at harmonics of the input stimuli. In

complex stimuli, the theory predicted that the pitches heard would




. correspond to the frequency differences between spectral components.

Rutherford proposed his fréquency theory in 1886. He suggested
that the whole sense organ responded to all sounds and that the
frequency, amplitude and waveform were all difectly represented in
the neural pattern of the nerve action potentials. His theory concluded
that the neural representation of the waveform would be analysed by a
central mechanism.

Both the place and frequency - theories have been modified as
new expeiimental evidenée became available. Helmholtz's theory was
modified in response to two main criticisms. The first came from
opponents claiming that the properties that Helmholtz demanded from
his proposed resonators were impossible. -Mecﬂanical filters could not
distinguish both rapid‘successive changes in frequency and fine changes
in frequency. The only way Helmholtz's idea of resonators could deal
with this criticism was to assume that auditory filters have different
properties than those of mechanical resonators. The second criticism
of Helmholtz's.theory was that a pure tone would cause-resonance in a
broad region of the cochlea, not just in a specific resonator or
transverse fiber. Gray (1900) advanced the principle of Maximum
Stimulation, which proposed that the exactly tuned resonator would show
maximum resonance, this mbdified Helmholtz's theory to cope with tﬁe
second criticism.

In 1942 Békésy (see Békésy, 1960) produced physiological evidence
which showed that the shape of the vibrations of the basilar membrane
was not sharp enough to explain frequency discrimination. He observed
»that the stapes moved in a sinusoidal manner with constant amplitude.
Higher frequencies had their point of maximum vibration near the stapes,
and those for lower frequencies were progressively nearer the apex of

the cochlea.



The two méin classical theories of hearing have had a strong
influence on the modern theories which have had many aspects from the

classical theories incorporated intp them.

The modern dual theories

Most of the modern researchers e.g. Wever 1949, Moore 1971, in
human frequency analysis consider tha£ a dual mechanism exists. It is
usually coﬂsidered that there is a frequency or time mechanism at low
frequencies changing to.a place mechanism at‘higher frequencies.

Nordmark (1973) is one of the few advocates of a temporal
mechanism across the whole frequency range. He disagrees with the
usual argument given for the dual system. This argument is the inability
of the physiological system to code high frequency stimuli in the time
domain. In fact, as Nordmark argues, the physiological system can use
timing information when very acute judgements are necessary. There are
sensory pheﬁomena that the nervous system is sensitive to, that could
only be coded in a temporal form. Green (1973) showed, for example,
that the ear can discriminate between two transient signals that have
identical energy spectra but differ in phaée as long as the total duration
of the signals exceeds 2msecs. Also, Nordmark, (1963) compared the
resuits of pitch and lateraliz;tion data to demonstrate the involvement
of similar mechanisms in both processes. He used filtered and unfiltered
pulses of different polarities.\ The just discriminable time difference
for both éitch, when the trains were led to one ear, and for lateralization
when they were led to separate ears, was plotted against the degree of
randomness expressed as the standard deviation for the pulse interval
distribution. The data from the two conditions fitted the same straight
line which led Nordmark to conclude that there was some evidence for both

phenomena using the same type of temporal mechanism.



Even though it is accepted that the binaural system often uses
temporal information, binaural studies often show some evidence of a
change from oﬁe mechanism to another. Wilbanks and Whitmore (1968)
showed that the ears'abiliﬁy to use interaural noise correlations starts
to decrease rapidly at about 500 Hz reaching a minimum at about 3000 Hz.
Changes in interaural correlation are often interpreted as changes in
phase or time and this study suggests a changeoyer from a temporal
mechanism at about 4000 Hz to some other mechanism.

Stevens (1938) reviewed a localization experiment by Stevens and
Newman (1934) which suggested a change, in the‘mechanisms used in
"localization, at about 3000 Hz. They used.tones as stimuli, that were
presented at various positions, 15 degrees apaft, in a ci:cumference
twelve feet from the observers. The localization errors were relatively
constant at low frequencies but increased from about 900 Hz, peaked at
3000 Hz,and then decreased again. Stevens interpreted the results in
terms of the ears ability to use phase and intensity differences. He
explained that'phase differences are most effective in determining the
apparent location of low tones, and that above about 800 Hz its effective-
ness decreases. 'Intensity is a good cue for loca;ization at high
freguencies. Since in the region around 3000 Hz neither relative phase
nor intensity offer very adequate cues, this could explain the high
incidence of errors of localization at this frequency. Stevens concluded
that around 3000 szthe timing mechanism becomes ineffective.

There is also some evidence for a dual mechanism in hearing from
experiments with complex stimuli. Plomp (1967) working on beats of
mistuned consonances concluded that it was the time pattern of the
impulses which was the important factor below 1400 Hz. He found that
two simultaneously occur;?g simple tones of M and N Hz, with M:N slightly

different from m:n (both small integral numbers) gave rise to a beat




sensation of mN-nM beats per second. Moreover he found that the beats

for 200 and 601 Hz were a weak tone sensation with a pitch shifting

periodically ﬁs the phase of one sine wave was changed relative to

the other. This was called the "sweep tone" eff;ct. He concluded

that those beats were related tolperiodic variations in the waveform

of the overlapping vibration patterns along the basilar membrane giving

rise to corresponding variations in the time pattern of the nerve impulses.
The first important dual theory of human frequency analysis was

proposed by Wever (1949) who suggested that timing inforﬁation was

-important up to 5000 Hz. Nordmark (1970) summarizing the research since

1949, describés researchefs who have suggested transition frequencies

from 150 to 5000 Hz. Moore (1973b)who has presented the best "quantitative"

evidence for a transition in mechanisms for frequency discrimination,

sugéests a transition frequency of about 4500 Hz. He suggests that a

place mechanism operates above 4500 Hz.

Models of pitch and frequency analysis

In the 1930s Sdhouten developed the first "temporal" pitch model.
This was a stimulus-oriented approach using the temporal information in
the stimulus waveform. He produced this model after carrying out a series
of experiments which raised questions about Helmholtz's hypotheses.
These experiments and later ones will be described in some detail
because of their historical importance. fFor Schouten's revie& of his
experiments and model see Schouten, 1940). Wightman et al (1974)
summarizes Schouterls work and model.

Schoutens first experiment was based on the assumption that if
the pitch of a complex waveform was the result of nonlinear distorfion,

then the distortion product should behave like a simple tone of that

frequency. He produced a pulse-like stimulus in which the repetition



rate of the pulse was 200 Hz , then a sine wave of 206 Hz was added.

The reasoning was that if a nonlinear distortion product was responsible
for the 200 Hz pitch, the addition of a 206 Hz tone would be expected
to produce beats. There was however, no audible beats and no change in
the pitch of the complex.

Schouten's second experiment used amplitude modulation techniques.
He produced waveforms in which the component sine waves could be shifted
without changing the frequency difference between components. The
distortion hypothesis would conclude that the pitch of the complex
should always correspond to the difference frequency. Schouten showed
that this in fact was not élways the case by demonstrating the "pitch-
shift" effect. This effect is that; when each of the components is
increased by a certain améunt,the pitch shifts even thoﬁgh the component
separation is the same.

Other evidence to refute Helmholtz's hypothesis of nonlinear
distortion was given by Licklider (1954) and Small et al (1962) .
Licklider reasoned that if a difference tone is responsible for
periodicity pitch, then a masking stimulus whose energy is centered in
the spectral region of the difference tone §houldxeffectively mask the
difference tone,and should therefore change the pitch of the stimulus.
He found that the low frequency masker had no effect upon the low
periodicity pitch.

Small et al (1962) used the technique of selective fatigue to
test Helmholtz's hypothesis. They reasoned that if the perception of
periodicity pitch was the result of energy at the pulse repetition rate,
then a change in sensitivity in this frequency region should cause the
energy at the repetition rate to become inaudible, and result in a
change in pitch. The selective fatigue did not change the pitch.

As a result of the weakness shown in Helmholt'z hypotheses by




these experiments, Schouten produced his temporal theory of pitch
called the "residue theory". Schouten's, and other "fine-structure”
theories which followed assumed that the important information for
frequency discrimination is the cycle-to-cycle timing information in
the stimulus waveform.
Schouten based the first part of his model on Von Békésy's
observation (Békésy, 1960) which was that the frequency resolution on
the basilar membrane was poorer at high, than at 10& frequencies.
Schouten therefore set his model's filter bandwidths proportional to
their center frequencies.
The second part of the residue model was the "transmitting device".
This deviée was assumed to code the temporal information in the waveform
after it had been filtered. The temporal information was transmitted
by way of neural firing patterns to some central center for analysis.
Schouten's theory gave explanations for two problems: that of
the "missing fundamental" and that of the "pitch-shift" effect. His
theory‘could predict the pitch of the fundamental from the reciprocdl of
the time interval of a waveform. Similarly in the pitch-shift experiment,
the pitch of the waveform can be closely agproximated from the reciprocal
of the time interval between peaks in the stimulus fine structure.
Schouten's "residue-theory" was followed by other essentially
similar theories, e.g. Ritsma's (1967) theory, whicﬁ essentially only
differed in that a weighting was put on the "feak picking" mechanism which
resulted in the so calléd dominant region having more influence in
determining the pitch than other frequencies. Ritsma used the weighting
factor because he cohsidered that the pitch of a multicomponent complex
primarily depends on thé behaviour of the 3rd, 4th and 5th components.
Moore (1973a, 1973b) has to date produced the most quantitative

model of pitch based on temporal analysis. Moore's two papers on this




topic will be described in some detail because of their importance
in this area. Moore showed how a temporal mechanism could explain
low frequency human descrimination data and how a place mechanism
would be more appropriate at high frequencies.

The first paper was based on frequency jnds for short duration
tones. He predicted the size of the frequency jnd to be expected
from several models based on spectral analysis. For example Zwicker's

(1970) place model predicted a jnd of

where Af is jnd

d is stimulus duration
.24 is a constant specific to every model (other place models
result in slightly different constant values).

Moore found that the human frequency discrimination jnd at low
frequencies was an order of magnitude smaller than the average
prediction of the place models. From the results of this paper Moore
argued for the existernce of a temporal mechanism at low freguencies.
His two main arguments were as follows: first, he considered that
since low frequency human jnds are smaller than could be predicted
from a place model; and second, since there is more than enough neural
timing data to explain the results, Siebert (1970), it therefore seemed
likely that a temporal mechanism would operate at low frequencies. He
specifically suggested that a temporal mechanism would exist below
000Hz and that a place mechanism would exist at frequencies above
this.

Moore's (1973b) second investigation consisted of a temporal
model which predicted how the frequency jnd would change as a function
of bandwidth. The predictions were compared to those Moore obtained

from place models. The frequency jnd was used as a measure of how




well the observers could judge the center frequency of narrow, band-

limited noise. The model was based on the following assumptions:

1. The mechanism measured time intervals between points of equal
amplitude on the positive slope of the wave form.

2.. The time intervals were measured between nerve impulses.

3. The mechanism is capable of averaging readings over an integration
time of up to 200 m.secs.

Moore describes the two main sources of errors for the model
and.how their effects would vary with noise bandwidth.

First, fluctuating amplitude effects gave errors since an increase
in amplitude causes a fixed threshold mechanism to fire earlier than
-in a constant amplitude situation. For example, Moore describes how
this error would affect a 10 msec duration signal as the bandwidth
increases. A bandwidth of about 2 Hz will tend to have unidirectional
-changes in envelope fluctuations, which will increase the size of the
noise jnd ielative to a pure tone jnd. A bandwidth of about 9 Hz will
tend to have ﬁore than one change in envelope fluctuations and these
will tend to cancél out the effects. With larger bandwidths theverrors
will increase with the increasing amplitude fluctuations as the
bandwidth increases.

The second source.of errors that Moore described5was phase
variations. This type of error increéses ménotonically with bandwidth
and is small compared té the effects of amplitudes especially at small
bandwidths.

The combination of these two sources of errors in a temporal model
led Moore to the following predictions for a temporal mechanism as a
function of noise bandwidth.  He predicted that the frequency jnd, for
narrow bands of noise would decrease slightly after 2 Hz reaching a

minimum around 9 Hz and then increase with increasing bandwidth. Moore
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also concluded that none of the place modelé would predict the decrease
in the frequency jnd around 9 Hz.

Moore compared his model to appropriate human data. The data
matched well at 1000 Hz, moderately at 4000 Hz and there was no
similarity at 5000 Hz. Moore concluded that a temporal mechanism would
predominate up to about 4000 Hz, and then would be replaced by a place
mechanism for all frequencies above this.

Two important energy models will be described. Henning (1967)
developed an energy model of auditory discrimination. The model cohsisted
of an initial band-pass filter, followed by a square-law device and an
integrator. To explain the inability of the observers to obtain infinitely
good gerformance at high signal to noise ratios, Henning suggested that
the center frequency of the filter shifts and behaves as a random
variable over time. His free parameter was bandwidth. He obtained a
good match to .the human data with his model but required small bandwidths,
€.g. 2 Hz and 20 Hz bandwidths at 250 Hz and 4000 Hz respectively.

Zwicker'g (1971) model eésehtiallyvconsisted of an assumption,
which was that, tws stimuli would be discriminable from one another
when their excitation patterns differed from one another by more than
one dB. The model predicted frequency'jnds by assuming that the
jnd is 1/27th of a critical bandwidth. If this proportional rule is
applied to the traditional estimates of the critical bandwidth the

predicted frequency jnds are larger than those of humans.

The pitch approach versus a frequency oriented approach

The controversy over phase sensitivity was briefly mentioned in
the previous section. This controversy is discussed first, because
it is important to evaluate the appropriateness of pitch models and

second, because it shows the problems of using the concept of pitch
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and the advantages of a frequency oriented approach.

There is no doubt that the ear is sensitive to phase changes.
Wightman (1973a)showed that when the relative phase of three components
are changed in a complex stimulus there is a change in the sound of the
stimulus. The controversy is not whether the observers can discriminate
a change, but whether the change is defined as a pitch change. Part of
the controversy seems to have occurred through the problem of defining
pitch to the observers. Usually the given definition is, if a sound
has a pitch of, for example, 200 Hz, this means that its pitch has been
judged equal to that of a 200 Hz signal. Wightman et al (1974) indicate
that this definition has some disadvantages since many experimental
sounds have a quality that is quite different from that of a pure tone,
making it quite difficult for some listeners to match the sounds
accurately. Different experiments which have been involved in this
dispute appear to have given the observers rather different definitions
of the pitch-matching task. This lack of consistency could only be
expected to complicate possible conclusions.

Related to the problem of definition of pitch is the difficulty
of pitch matching under any instructions. Thurlow (1957) found even
with practice only 15% of listeners could hear and match 'time-separation'
pitch. Jenkins (1961) stated that, "he had a number of observers who
could not make any consistent pitch match of any sort even with quite
careful instructions". He concluded that, "either they could not
understand what was meant by a match or, that they could not percéive
a mismatch". Jenkins agreed that his problem emphasized the inadequacy
of 'linguistic usage for eliciting useful information about perception"
(Jenkins, 1961, p 1551-1553).

The experiments to determine the effects of phase on pitch were

inconclusive. Ritsma et al (1964) studied the effects of shifting the
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relative phases of three components of a stimulus and they concluded
that phase changes do affect pitch matches. Wightman (1973a) replicated
the experiments and found that some .of his data agreed with Ritsma's but
other data did not agree. He concluded that'the evideﬁce overall

"~ suggested that pitch is phase insensitive.

The present study tried to avoid the problem of defining the
different aspects of the stimulus that ;he observer had to attend to.
The observers were required to rate the similarity of the comparative
and standard stimulus. Even this simplified task requireg a gréat deal

of practice before stable results are obtained.

Axis crossing analysis

Many of the temporal fine structure theories are essentially
using adapted vérsions of axis-crossing analyses. These techniques
have also begn applied to speech analysis, speech recognition and to
many other signal processing and pattern recognition tasks.

Oﬁe of the earlier speech recognition and processing models w;s by
lLicklider and Pollack (1948) who showed’that clipped speech (clipping
only leaves the temporal information) is highly intelligible when
properly processed.

Niederjbhn (1975) described five zero-crossing analysis techniques,
all of which have been applied to speech recognition models. Four of -
the analyses he describes measure the number of zero-crossings in an
interval of time. One of the analyses uses the duration of the time‘
intervals between Zero-crossings.

Most models of speech recognition have measured temporal intervals
betweén all (i.e. both positive and negative) sloped axes. It is
however, more appropriate, for a model of hearing, to measure between

only the positive, or only the negatively sloped axis crossings. Moore's
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(1971) paper concluded that only the intervals between positively

sloped axis crossings are simportant. - He -quotes Flanagan et al (1964)

as giving some justification for this apprqach. Flanagan et al,

working on the lateralization of cophasic and antiphasic clicks,
concluded that their results could best be explained‘with thevassumption
thaf nerve firings tend to occur in the initial quarter-cycle of the
displacement wave. Galambos ét al (1943) have shown that, for simple
tones below 3,000 - 4,000 Hz, nerve impulses are evoked at a particular
moment of the sinusoidal wave, which suggests that these impulses are
evoked when the basilar membrane passes a critical value. This also
supports the idea of firing occurihg on just one slope of the vibrations

of the basilar membrane, and thus on one slope of the stimulus waveform.

Critical bands

The concept of the critical band is very important for any théory
of hearing. The concept is usually introduced into the models as a
band-pass filteripg system, which attempts to represent the ears
filtering system. The history of the development of the concept shows
that there is no fixed mechanical type of critical band mechanism in
the ear. The mechanism seems to vary with the type of task and stimuli
used.

In 1940 Fletcher presented psychophysical data showing that onl&
noise components in a narrow region around a pure tone are effective in
masking the tone. He called this region the 'critical‘band'. He used
this concépt to explain many of the phenomena of masking.

One of Fletcher's experiments had his observers adjusting a
continuous sinusoid until it was 'just detectable'. in the presence of
masking noise. With a 1000 Hz signal and a wide-band masking noise, the

observer adjusted the signal-to-noise ratio to about 18 dB. As the noise



14.

was filtered the observer adjusted the intensity of the signal until it
could just be heard in the masking noise, and it was not until the
signal was filtered beyond the ‘critical width that there was an
improvement in the ability of the observe; to hear the signal in the
noise. At this critical bandwidth the signal level needed to hear the
tone in the noise decreased, approximately linearly with further
decreases in the bandwidth of the noise. Fletcher concluded from this
experimentvthat the ear acts as a bank of band-pass filters with the
bandwidth equal to the critical band. Only noise within the same,
critical band would be effective in masking the signal. He concluded
that the signal level needed to just detect the signal was some constant
proportion of the effective noise. The signal level needed to just
detect the signal would be independent of bandwidth,if the noise band
is wider than the critical band)and would vary inversely with the
external bandwidth once tﬁe masking noise was less than the critical
band.

A great.many of Fletcher's estimates have been questioned because
of an underlying assumption which is not always accepted. He assumed
that the observer canljust hear the signal when the signal power is
equal to the total_noise in ‘the critical bandwidth. If this assumption
is made,then‘the critical bandwidth can be estimated'from the ratio of
signal power to noise power density. Given Fletcher's assumptions,the
width of the critical band is the ratio of the intensity of the tone to
the intensity per cycle of noise.

Hawkins et al (1950) did a very complete study of the critical
ratio. They determined the signal-to-noise ratio needed to hear sine
waves in noise. Their results were generally consistent with those of
Fletcher

Later studies have used different methods to obtain measurements
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of critical bandwidths, e.g. Zwicker (1954). Zwicker studied the
masking effect.of two simple tones with frequencies f; + f,, on a
narrow band of noise with a center freqﬁency of %(f; + £5).-
Increasing the difference in frequency (Af) between the two tones
left the masked threshold of the noise unchanged until a critical Af
was reached, then the threshoid fell sharply and continued to fall as
Af increased.

Gassler (1954) estimated critical bandwidths by measuring the
threshold of multitone complexes composed of, from one to forty
‘sinusoids, evenly spaced, ten to twenty Hz apart. As each tone was
added to the complex;, the overall sound pPressure level at threshold
remained constant up to the 'critical band' where the overall sound
pressure level of the threshold increased.

Greenwood (1961) determined the width of critical bands by using
narrow-band masking. He méasured the masked threshold of pulsed tones
as a functioﬁ of frequency. The masking was varied in width, spectrum
levél and freqﬁency location. He found that the threshold of the
maximally masked tone increased at all levels in direct proportiqn to
the increase in the bandwidth, but only up to the critical band:. He
concluded that the masking'curves in this study had the form of
trapezoids with steep slopes to the lower frequencies and flat slopes
to higher frequencies.

The critical band estimates made by the three researchers above
gave critical bandwidth estimates abqut two and a half times larger
than the critical ratio measure of Fletcher's. However adjustment of
Fletcher's controversial assumption can equate the estimates. Recent
studies have also produced critical bandwidth estimates which are
smaller than the traditionally accepted estimates.

Houtgast (1974) developed a new method of measuring critical
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bandwidth which gives small estimates. His method was developed from
a technique that he used in studying the 'Mach-Band' effect. He used
a non-simultaneous masking techhiqqe_by measuring the }detectability'
of short probe-tone bursts presented alternately with bursts of masking
noise. When the tone level is low the tone bursts are heard as a
continuous tone,and when the level of the tone is raised the separate
bursts are heard. The measure of 'detectability"' of the tone is the
level at which the observer finds that the tone sounds 'just continuous'.
The noise masker was called rippled noise,which meant that it had a
sinusoidally shaped spectrum. The probe tone was presented in various
: poéitions relative to the amplitude of the spectrum,e.g. peaks, troughs.
The concept was simply that,when the threéholds for the peaks and troughs
conditions were the same, the limit of the ears acuity had been reached.
For details of the critical-band calculations see Houtgast (1974).
-When.Houtgast,repeated his non-simultaneous masking experiment with a
simultaneous masking technique,he found that the latter results were
equal to the fraditional estimates. The estimates from the non-
simultaneous masking experiment were half those of the traditional ‘
estimates. Houtgast explained this difference in terms of lateral ' ‘
inhibition,which isvnot effective in traditional‘direct—masking effects. |
The effects of lateral suppression do not show up in simultaneous masking,
and therefore there are smaller critical-band estimates for non-
simultaneous masking. Lateral suppression is assumed to increase
frequency selectivity and thus Houtgast describes this as analogous to
a narrower filter.
Other investigators,have found smaller estimates of the critical
bandwidth than the traditional measures. Swets et al (1962) in their
study of critical bands found that at 1000 Hz, under the assumption that

the auditory filter is single tuned, the bandwidth was about 40 Hz.
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Similarly, Margolis et al (1975) also obtained small bandwidth estimates.
French-et al (1947) suggested different size bandwidths Aepending on
whether the task is binaural ér monaural. -

It is becoming clear that the earlier concept of a critical
bandwidth,which remains invariant across experimental tasks,is
inappropriate. There seems no justification to assume that a bandwidth
obtained in one particular task should be applicable to another experimental
task.

Another related question which is unresolved,is the actual mode
of operation of the critical-band mechanism. This controversy is covered
by Green (1966).

Two main modes of operation have been proposed, first; the 'single
bandlmodel, and second the 'multiple band' model. Both of the models
assume that the observer acts like a narrow band-pass receiver with
the center of.the filter tuned to an existing,or in anticipation of a
signal or certain frequency. The multiple-band model differs in that
it also assumeg that several of these filters can be used simultaneously.
The model assumes that the outputs of any number of filters can be
linearly combined with appropriate weights for each channel.

Two types of experimenté were devised by Green (1966) to test
between the critical-band models. The two types of experiments were
the detection of a signal of uncertain frequency,and the detection of
multiple component signals in noise.

The reasoning for the method of detecting signals of uncertain
frequency was; if the signal occupied only a single frequency region,
then only one filter would be used to listen to the signal. However,
when the signal was at either of two frequencies, the multiple-band
model assumed that two filters must be used and this would result in

roughly twice as much masking noise for the same signal strength. This
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led to‘a predicted decrement in detectability of about 10 percent.

The reasoning for the study on detectability of multiple-
component signals was; that if a signal had a broad spectrum with
frequency components in severa; critical-bands, fhen a change in
detectability as a result of the number of components would give support
to the multiple-band model.

Unfortunately, the data from these experiments were far from
conclusive. The only agreement between the experiments was that there
is power summation within the critical band. The uncertain frequency
experiments all showed a far smaller drop in detectability than any of
the models predicted. The other experiment just gave inconclusive results.

It appears that the crticial-band mechanism is a far more complex
and flexible system than that which was originally conceived. Swets
et al (1966) concluded that, "it seems unlikely that all of these
experiments are measuring the critical band, a fixed property of the
auditory system that exists independent of experiments. It seems more
likely that thé parameters of the auditory system are not fixed,
specifically that they may vary from one sensory task to another under

‘intelligent control", page 473.

Physiological evidence

It is an ideal situation if'hearing models and physiological data
are compafible. Often however, a model may anticipate the physiological
research. Wever (1949) implied that the discharge of an auditory
neuron would be time locked to the stimulus, with his volley theory.

At that time there was little evidence to support his proposal.

This section will first briefly cover the historical development

of physiological research related to frequency analysis. The second

part describes an apprbach which predicts the size of jnd using different
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types of information available in the neural firing patterns.
Since 1949 there has been a great deal of physiological evidence
for phase locking of neurons, e.g. Tsaki (1954) and Small et al (1962).

Rose et al (1968) present very thorough evidence and a discussion on

' this subject. Rose et al defined a phase locked response as; one which

discharges preferentially during a restricted segment of the stimulus
cycle, and is thus phase locked to the cycle of the applied frequency.
Rose et al believed that the spikes are initiated only by deflections
in one direction of the cochlea partition. They found that the
discharges spike at intervals which tend to groﬁp around integral
multiples of the stimulus period.

Rose (1968) explained that it is knoﬁn that the physiological
system can discriminate small time intervals, the important question is
whether frequency is coded in a temporal form, and if so up to what
frequency dogs this occur. Rose has evidence for a time code up to
5000 Hz. For frequency discrimination of the required acuity, Rose states
that information must be used from converging neurons with the same phase
locking characteristics. In the discussion following Rose's article
Schwartzkopff, claims to have recorded‘from ten fibers which were all
locked to the ‘same part of the phase of the stimulus. The ten elements,
all of which were close together, were synchronized with about the same
variation in time that a single unit showed. This eyidence could support
the possibility of some type of neural averaging process occuring.

Moore (1973) claims that an averaging process is necessary for a
temporal frequency mechanism to occur. He considers that the averaging
would be necessary to 'minimize the effects of jitter in individual

fibers'. Nordmark (1970), similarly suggests, “"that discrimination

appears to depend on the pattern of activity in a group of neurons

rather than the activity in any individual neuron."
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A very recent approach has been to carry out various analyses
on information provided by the post-stimulus histograms of peripheral
auditory fibers.

Luce and Green (1974), using information from the post-stimulus
 histograms, described two different procedures to estimate the period of
the signal. The first is a counting model, which counts all possible
neural events in an interval as the basis for estimating the signal's
period. The second model, a timing model, acquired samples from across
neurons where time is a random variable.

Siebert (1968) worked with similar physiological data to that of
Luce and Green. He concluded that information in individual fibers
of the auditory nerve is completely specified by the time of occurrence
of the essentially 'all or none' active potentials, firings or spikes.
He assumed that the process on each fiber is Poisson. He also made a
number of assumptions about how the Poisson parameters depended on
intensity (I) and frequency (F{. These assumptions were based on the

physiological data. The prediction equation he obtained was :

Ar 1 (A |, B
?14[*]

wﬁere F = frequency, I = intensity, A = units of threshold intensity.
The Poisson assumption completely ignores the frequency information
available on single channels, and thus disregards any role of temporal
mechanisns.

Siebert's later analysis (1970) attempted to make predictions, given
that a temporal mechanism might be operating. He considered fhat the
time of occurrence of the pulses observed during a listening intervai was
the important periodicity determinant. Then assuming ‘that these processes
are non-homogepeous Poisson processes, he could obtain the probability
density of a criterion number of spikes occuring at unordered times.

Again he made parameter estimates in accord with physiological data, and
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his new prediction equation was:

1 ~ 3x10°T + 1.5 x 10°7%m a
where T = stimulus duration in seconds.

Siebert explained that the first term in the equation corresponded
to the contribution of place information, and the second to periodicity
information. The first term predicts a jnd roughly the same size as
that from human data, the second term predicts a much smaller jnd.

This, given the noisiness of the human decision process and the
inefficiencies of the physiological system, would support the temporal
part of the equation.

Goldstein and Srulorvicz (1977), adapted Siebert's prediction
equation in such a manner that it would also predict frequency discrimina-
tion for the effect of varying duration. Their theoretical jnd showed that
optimum processing of interspike times correctly accounts for psychophysical
precision as a function of frequency and duration. As Goldstein indicates,
the human jnd curve deteriorates faster at high frequencies than the
theoretical jnd. He considers it to be trivial to worry about the human
data falling away more rapidly than the theoretical data.

Therefore it can be concluded that there is no justification for
choosing a place model as opposed to a temporal model on the basis of
physiological evidence. Not only is there enough temporal information
in the auditory neurons, but it only needs to be used inefficiently to

explain the acuity of frequency discrimination.

Stimulus—-oriented approach

The stimulus-oriented approach in audition looks to the statistics
of the signal, and performs operations on the stimulus. The advantage

of this approach is that identical stimuli can be presented to both the
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model and the observer and quantitative data can be compared to
evaluate the model.

Jeffress (1964) formulated this approach. He constructed a
stimulus-briented model of detection. It consisted of a filter system,
then an envelope detector.followed by a criterion device.

The model presented in this paper is stimulus-oriented. The use
of signal detection analysis in this model means that Receiver or Group
Operating Characteristics and psychometric functions can be compared:as

well as the more traditional performance levels used in evaluating models.




23.

CHAPTER 11

THE TEMPORAL MODEL

The model will be described in a general manner in the first part
of the chapter. The choice of stimuli will then be discussed. The Mark
I and Mark II versions of the model are described next (Mark II is,
essentially an extension of the earlier Mark I version). In the fifth
part of the chapter, the indices of discriminability used for the model
are described. The important parameters of the model are then discussed
and their effects on the psychometric functions and Receiver-Operating-
Characteristic (ROC) curves are described. Next some implications of

the model are discussed.

General description

The model is stimulus-oriented, analysing the stimulus waveform
to simulate the ability of the human observers to discriminate one sinusoid
from another in band-limited, white, gaussian noise.

The first part of the model is a band-pass filter which is analogous
to one out of a bank of parallel, simultaneously tuned, critical-band
mechanisms. The second part of the model measures the temporal periods.

It was originally intended to have a slightly positive threshold for

the measurement of the temporal intervals. The physiological evidence

for a positive threshold for neural firing was discussed in Chapter I.

In practice the model's predictions, with the stimuli used, were ;he

same regardless of whether slightly positive or zero level temporal.
measurements were used. The available instrumentation made the zero
voltage threshold more feasible, and all the model's data were so obtained.

The temporal intervals measured by the model were only between

positively-sloped axis crossings. The physiological evidence for only
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measuring between axes of one slope has been surveyed in Chapter I.
The histograms of these intervals were used as the underlying
distributions from which ROC curves were generated. The proportion of
area under the curves, P(A), was calculated. Other measures of
discriminability are described in the fifth section of this chapter.
Some ROC curves were generated by the model using the temporal
intervals between all (i.e. both positive and negative) axis crossings.
The ROC curves from this analysis had a pronounced dip in the center
portion of the curve which made them very unlike human frequency
discrimination curves. ROC curves generated by the model from temporal
periods between only positive axis crossings were found to be a more

appropriate shape.

The choice of stimuli

The stimuli were chosen for two main purposes. First, to enable
a detailed study of the effect of three important parameters of the
model; bandwidth, signal-to-noise ratio, and averaging.

Second, the stimuli were chosen to provide a set of data that
would be compared to the subsequently obtained human frequency
discrimination data in order to evaluate the model. These stimuli were
chosen to try and cover the frequency range most likely to show any
possible transition in the frequency discrimination mechanism of the ear.
The model was expected to be able to predict the changes in human frequency
discrimination as a function of frequency and S/N ratio. Therefére as
well as varying the S/N ratios across frequencies, at one frequency two
S/N ratios were used. This data is compared to the equivalent human
data in Chapter IV and the model accordingly evaluated.

The stimulus conditions chosen were the main standard frequencies

of 250 Hz at 23dB, 250 Hz at 30dB, 1000 Hz at 26dB and 5000 Hz at 32dB.
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For each standard stimulus there was a set comprising of six comparative
stimuli (i.e. six values of Af) associated with it.

A relatively small amount of data was obtained at 1300 Hz to
compare with human pitch-shift data in Chapter II. This consisted of

only the standard frequency at different S/N ratios.

Calculation of the signal-to-noise ratios

It was decided that for a set of stimuli (i.e. the standard and
comparative stimuli) it was necessary to maintain the energy per cycle
of noise (NO) constant. This meant that since constant percentage filters
were being used, that the total power per band of noise varied as a
function of frequency. Duration of the stimulus was omitted from the
calculation, otherwise the S/N ratio would have changed if fewer samples
were taken, which was sometimes the situation at high S/N ratios where
there was little sampling variability.

The ratio used which is shown below was not a unitless ratio. It
has the units, per cycle. S/N in this thesis refers to this type of
ratio unless otherwise specified.

10 log (rms voltage of the sinusoid)?

10 log (rms voltage of noise)? - 10 log bandwidth
where noise refers to the bandlimited noise.
To equate this ratio to an estimate of E/q) for 100 msec. signal, the

S/N ratio must be raised by 10 dB.

Mark I version of the model

This version of the model is shown diagrammatically in Figure 1. ‘
The first part of the model is the stimulus generation section. The noise
generator, a Hewlett-Packard 8057A, produced white, gaussian noise which

was mixed with the sine wave generated by a Hewlett-Packard 4204A Digital
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Oscillator. The levels of noise and sine wave were adjusted by
attenuators. The signal was band-limited by high-pass and low-pass
Khron-Hite 3341 filters. The bandwidths used for the Mark I version
were 1/3rd octave and 10% of the sinusoid's frequency.

- The second part of the model was concerned with the signal analysis.
A ten-bit analogue-to-digital converter was used to obtain a digitised
time record of the wave form which was analysed by a PDP1ll computer. The
positively-sloped axis crossings were obtained by compariﬂg all neighbouring
pairs of voltage samples sequentially. The number of samples between
each pair of positive axis crossings gave the length of the temporal
intervals. Before the experimental measures were taken a test measure
was done in order to maximize the resolution of the time measurements.
A small sample of 100 temporal intervals was taken and the variance
calculated, the time base was adjusted by the .program to give maximum
resolution. The experimental sample size was 6,000 temporal intervals
per stimulus. Pairs of the histograms of temporal intervals were used
to obtain measﬁres of discriminability. Fér each stimulus condition,
there was one standard and six comparative stimuli. Each of the comparative
étimuli was compared to the standard stimulus in its set and in this way
families of ROC curves were generated.

The comparisons were done by Signal Detection Analysis, (S;D.T.) as
described below. A criterion was moved through the pairs of overlapping
histograms giving the Hit Rates (HR's) and False Alarm Rates (FAR's).

The H.R. corresponded to P(xs >xi), i.e., the probability that the
tempéral intervals belonging to the standard histogram were greater than
the temporal interval corresponding to the criterion, xi.- The FAR
corresponded to P(xc >xi) i.e. the probability that the temporal intervals
corresponding to the comparative histogram are greater than that of

criterion xi. The ROC curves were constructed by linear approximation. This
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gave a family of ROC curves for each standard stimulus. The proportion

of area under the ROC curves P(A) was calculated by the trapezoid method.

Mark II version of the model

The mark II version of the model is essentially an extension of
the Mark I version in that two extra parameters were systematically
studied. First, the bandwidth was investigated. The bandwidths used
were; 1/3rd octave, 10%, 3% and 1%; .As discussed in Chapter I, there
is no reason to suppose that the traditionally accepted, approximately
1/3rd octave bandwidths are necessarily appropriate to a frequency
discrimination task.

Second, averaging was introduced as a parameter. The evidence
for some combining of information in a temporal mechanism of hearing
has been discussed in Chapter I. Averaging of 0, 2, 4, 8 and 16
independent temporal intervals was investigated. The Mark II version
of the model is shown diagramatically in Figure 2. The model has
conceptually been divided into three parts.

Part A, the signal generation. The sinusoid was generated by the

Hewlett-Packard function generator 3312A. The noisg generator was made
by the Psychology Department, Victoria University of Wellington. It had
a crest factor of 4 and produced white, gaussian noise over the raﬁge of .
20-20,000 Hz. Figure 3 shows the noise spectrum with the expected slope
of 6dB per octave because of the constant percentage analysis. Figure 4
is a cumulative probability graph on probability paper demonstrating
that the instantaneous voltage is normally distributed.

The noise was band-limited by the constant percentage filters of
the B :& K 2121 Frequency Analyzer. The filters were set at either 1/3rd
octave, 10%, 3% or 1% and centered on the sinusoid's frequency. Figure 5

shows the filters' characteristics. The band-limited noise and sinusoid
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Figure 5. Filter Characteristics for the B & K 2121 Frequency Analyzer.
Figure taken from Briiel and Kjaer equipment specifications.
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were mixed at the required S/N ratio.

Part B, the signal conditioning stage. The signal was passed

through a series of six amplifiers set at maximum gain in order to
achieve infinite clipping. This processing meant that all the amplitude
information was removed leaving only the required temporal information.
The technique of infinite clipping is described by Frolich (1969, p 224-
225). The clipped signal had pulse widths equal to the varying durations
between all the zero axis crossings of the filtered waveform. Figure 6,
is a photograph of the unfiltered waveform, the filtered waveform, and
the resulting clipped waveform. Figure 7 shows more detail of the
filtered signal and its corresponding clipped waveform. The clipped
waveform can be seen to have retained the temporal intervals corresponding
to the axis crossing intervals of the original waveform. The signal

was then passed through a digital signal shaper to remove any remaininé
glitches or noise to eliminate any spurious triggering in subsequent
analysis.

The clipped signal was analyzed by an ORTEC 4620-4621, Time
_Histogram Analyzer which measured the time intervals between the positively
‘'sloped axis crossings. The analyzer was set to give a sequential record
of 127 bins (measures) per sweep. Therefore, each sweep gave a sequential
measure of 127 temporal intervals. Figure 8 (a,b,c, and d) illustrates
the 127 temporal measures for a S/N of 6dB. There is one temporal
interval measure per bin. The height from the base represents time.

The four photos demonstrate the decrease in variability of the tiﬁe
intervals with decreasing bandwidth.

Usually, for each stimulus (for a no-averaging condition) sixty
sweeps or 7,500 sequential measures would be transferred to the HP 9825
computing controller (the first two measures of each sweep were discarded).

For the average of two condition, the above sequence would be repeated. The




Figure 6.

Photograph illustrating how the model analysed its
input. The sequence from top to bottom is; unfiltered
waveform, filtered waveform, corresponding infinitely
clipped waveform. The waveform parameters were signal
frequency of 250 Hz, bandwidth of 1/3rd octave, S/N of
6dB. There were 10 msec/division.







Figure 7.

Waveform with corresponding infinitely clipped
waveform. 250 Hz signal, bandwidth of 3%, S/N
ratio of 6 dB. There were 5 msec/division.

36.






Figure 8.

127 sequential samples (one/bin) of temporal intervals.

The height from the base represents the number of time
units. The four photos demonstrate the decrease in
variability of the temporal intervals with decreasing
bandwidth. Signal frequency of 250 Hz, S/N ratio of
6dB.

Bandwidth.
1/3rd octave
10%

3%

a o o o
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averaging was carried out by a software program in the computing
controller. The averaging was based on the following definition of
an average.

For the average for the ith bin

X1 + X9 & s X

X =
n

where n is the number of measures averaged, xn is the value of the last
measure being averaged, i; is the average for the ith bin after the
averaging.

The above equation can be restated as

xn B xn—l

X =X +
n xn-l
n

Therefore the value for the Present average for the ith bin, i; —

obtained by taking the difference between the present value Xn and the
last average i;—l and dividing it by the sweep number n. This was added

to the averaged value of the previous sweep i;_ Therefore once the

1
7,500 intervals had been measured once (corresponding to an average of
zero) the sequence occured n times to correspond to an average of n.
The average values were stored in sequential arrays until the indices
of discriminability were calculated. The measures which were averaged

together were sampled at different times which implies an assumption of

sequential independence of the samples éveraged.

Indices of discriminability

Indices of discriminability were obtained between the standard
stimulus and the comparative stimuli of the same set. The three main
measures of discriminability obtained were two measures of the proportion

of area under the ROC curves, [P(A); and P(A),] and a measure of the
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proportion of correct responses [P(C)]. The d' values were obtained

for the above th;ee values by hultiplying the Z=scores of the proportions
by V2. The P(A) measures were obtained from analyses of the temporal
histograms. Figure 9 shows an example of a pair of overlapping
histograms. This pair of histograms, one of which is the standard and
one the comparative can generate one ROC curve and the P(A) measure of
discriminibility.

The P(A); value was obtained in the traditional SDT manner by
passing criteria through the pairs of overlapping histograms and
generating ROC curves from the Hit Rates and False Alarm Rates so
obtained. P(A)), was obtained by the trapezoidal method. This method
of analysis was assumed to simulate a Single-Interval-Rating Scale Task
and the d' value was calculated accordingly.

PiA)z was used because of two limitations of the previous measure.
First, with some stimulus conditions, such as high S/N ratios, the variance
of the histograms was too small to obtain an adequate number of data |
points on the ROC curve resulting in inadequate resolution of the ROC
curves shape. Second, linear approximation of these points some times
led to a serious underestimation of P(A);. |

P(A), was calculated from a cubic natural spline function. The

subroutine for the cubic natural spline was from the Hewlett-Packard

General Utility Routines. It fitted an ROC curve, integrated for area
and differentiated for slope. If the spline is considered as a function
represented by S(X), then the second derivative s" (Xx) approximates ‘
the curvature. The smoothest curve is obtained through the data points

Xn (0] 2 . P %
(X1,y1), (x2,vy2) when le (s (x))“ dx is minimized. The spline
therefore gave a better approximation to the shape of the ROC curve and
a better estimation of the P(A) for the case where there were fewer ROC

data points. The d' values were calculated by the same method as for
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Figure 9. Histogram of temporal intervals to demonstrate an example

of a pair of overlapping distributions that could be used
to generate a Receiver-Operating characteristic curve.
Standard Frequency of 250 Hz, Comparative Frequency of
378 Hz, S/N ratio of 6dB, Bandwidths of 21% , No average
condition.
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that from P(a).

P(C) was used to overcome limitations of the previous two measures.
When the sequential data were converted to histogram form, the limitation
of available memory in the computing controller meant that the resolution
has halved. The P(C) measure was based on the sequential data, therefore
it maintained maximum possible resolution.

P(C) was calculated by taking all the standard samples X;, X2 ....

Xn, and all the comparative samples Y;, Y2 .... Yn then the following logical

operations were carried out on each sequential pair (xn, Yn):

If Xx
n

Yn increase V by 1

If X > Y increase K by 1
n n

If X < Y increase L by 1
n n

The estimate of P(C) is

V/2 + K
V+K+ L

P(C)
When there were many points on the ROC curve, the estimatesAof
performance gave the same value. As the resolution of the ROC curve
became less than optimal P(A)) underestimated the true performance level.
Since the sequential measures had twice the reéolution of the temporal
histograms, P(C) was the most accurate estimator of the model's
performance. The agreement of the three measures of discriminability

under the conditions of good resolution gave a valuable test of

consistency of the model.

Comparison of the Mark I and Mark II versions of the model

The two versions of the model were the same in concept but were
constructed with very different technologies. Where possible the
performance levels and the shapes of the ROC curves were compared for

the two versions of the model. Generally there was very good agreement
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between them an example of which can be seen in Figure 10.

Important parameters of the model

Three important parameters of the model were studied in detail,
they were; signal-to-noise ratio, averaging and bandwidth. Increased
averaging,increased signal-to-noise ratio and decreased bandwidth all
clearly improved the discriminability of the stimuli by the model. It
was not known in which ways these parameters would affect the underlying
distributions, the psychometric functions and the shape of the ROC curves.
The degree to which these parameters could be traded with one another also
needed to be examined.

The three parameters were studied by taking an initial stimulus
condition, and then varying one of the three parameters holding the
other two constant. The initial stimulus condition chosen had a temporal
histogram with a large initial variance,thus allowing a large decrease
in variance (with a changing parameter) before the limit of the model's
resolving power was reached. The initial stimulus set, used to
investigate averaging and bandwidth, had its standard at 250 Hz, a S/N
ratio of 6dB, a bandwidth of 21% and no averaging. The initial stimulus
set for investigating S/N ratio was the same except for a bandwidth of
10%. Usually each comparison was based on 7.500 sampled intervals per
stimulus. Each comparative differed from the standard only in the
frequency of the sinusoid and thus the center of the constant percentage
band-limited noise. (The filter is centered on the sinusoids freéuency).

The measures used to study the effects of the three parameters
were, the mean, variance and kurtosis of the temporal histograms.
(Measures of skewness showed no systematic changes from zero.) Another
measure was the relative slopes of the psychometric functions. The

shapes of the models' ROC curves were also noted. The results for the
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specific parameters are described separately but the common principles

involved in their effects are discussed in the conclusion.

Averaging

The number of averages was increased from the no-averaging
condition to 2, 4, 8 and 16. Figures 11 and 12 compare the temporal
histograms from the no-averaging and average of 16 conditions respectively.
The averaging decreased the index of kurtosis from 7.5 to 3.4 and
decreased the variance from .3005 to .0194 msecs. Therefore averaging
was decreasing both the kurtosis and variance. The kurtosis at 3.4 was
nearing that of a normal curve. Figures 13 and 14 contrast the ROC
curves for the model with conditions of no-averaging and an average of
8 respectively. The gradient of ROC curves changes as a function of
averaging. The gradient of the curve from the no-average condition is
described relative to the gradient of the curve from the average of
8 condition. The no-average ROC curve has first a relatively lower
gradient and then for the major part of the curve it has a steeper
gradient decreasing again relatively at the top of the curve. The shape
for the no-average ROC curve will be called a 'bow-shape'.

Figure 15 shows the psychometric functions for the four averaged
conditions. The functions have been shifted along the frequency axis
to lie on the function for the condition with an average of 16. There
is no systematic divergence until about a log d'of 0.5 where the functions
with the lower averages have progressively shallower slopes than ;he

functions from higher averaging conditions.

Bandwidth
The bandwidth was varied from the 1/3rd octave to 10%, 3% and 1%.

The filters used were those of the B & K 2121 Frequency Analyzer.
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Histogram of temporal intervals to demonstrate the effects
of a wide, 1/3 octave bandwidth. Standard frequency 250 Hz,
S/N ratio 6dB, Bandwidth 21%, No averaging. Mean 3.9455
msecs, variance .3005 msecs, kurtosis 7.501.

The histograms are all represented graphically with different
scales.
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Figure 12. Histogram of temporal intervals to demonstrate the effects

of a Targe average (16). Standard frequency 250 Hz,
S/N ratio 6dB, Bandwidth 21%, Average of 16, Mean 3.9566
msecy, Variance .0194 msecs, Kurtosis 3.403.
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Figure 5 shows the filter characteristics.

Figures 11 and 16 contrast the effects of 21% and 3% bandwidths
respectively on the temporal histograms. The index of kurtosis increased
from 7.5 to 32.0. The variance decreased from .3005 to .0140 msecs.
Therefore the variance is decreasing and the index of kurtosis becoming
less normal-like with decreased bandwidth.

The psychometric functions for the different bandwidths are shown
in Figure 17. The functions have been moved along the frequency axis to
be on the function for the 1% bandwidth condition. The functions begin
to systematically diverge at about a log d' of 0.9 where the functions with
narrower bandwidths have a systematically shallower slopes than those of
wider bandwidths.

The ROC curves for the conditions of 21% and 10% are shown in
Figures 13 and 21 respectively. The curves for the same levels of
performance are more bow-shaped for the 21% condition than the 103

condition.

Signal-to-noise ratio

The signal-to-noise ratios were defined as described previously so
that they remain constant with changes in the constant percentage
bandwidths and with changes in the number of periods sampled. The S/N
ratio was varied from 6 to 23 and 30dB.

The index of kurtosis for the temporal histograms with conditions
6, 23 and 30dB S/N decreased from 30.0 to 4.7 to 3.8 respectively: This
means that the temporal histograms became more normal-like with increasing
S/N ratio. The variance decreased with the increases in S/N ratio from
.090, .0025 to .0003 msecs respectively. The mean of the temporal

histograms shifts systematically with S/N ratio, in contrast to bandwidth

and averaging which did not affect the mean. The shift in mean as a
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Figure 16.  Histogram of temporal intervals to demonstrate the
effects of a narrow 3% bandwidth. Standard frequency
250 Hz, Bandwidth 3%, No averaging. Mean 3.998 msecs,
Variance .0141 msecs, Kurtosis 32.0 S/N ratio 6dB.
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function of S/N ratio is discussed in the last part of this chapter
and compared to human Pitch Shift data.

The psychometric functions for the three S/N ratios are shown in
Figure 19. The functions have been shifted along the frequency axis
to the position of the function for 23dB condition. The functions with
lower S/N ratios diverge to shallower slopes, the function for the 6dB
condition diverging the most.

The families of ROC curves for the 6dB and 23dB condition are
shown in Figures 20 and 21 respectively. The ROC curve for the 6dB
condition is the most bow-shaped. |

Tables 1, 2 and 3 summarize the effects of bandwidth, averaging
and signal-to-noise ratio on the temporal histograms.

The cumulated probability distributions were plotted on double
probability paper. It was found that when the index of kurtosis of the
corresponding histograms was near 3 the plot was linear. When the
corresponding histograms had the same variance the gradient of the line
was l,becoming steeper as the variances of the standard and comparative
stimulus became more unequal. When the index of kurtosis of the
temporal histograms was larger than 4, the plot on double probability

paper became progressively less linear.
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TABLE 1. The effects of bandwidth on the kurtosis and variance of
the temporal histdgrams. The parameters were 250 Hz, S/N
ratio of 6dB and no averaging.

Bandwidth % Index of kurtosis Variance in msec
21 7.501 .3005
10 18.287 .0951
3 32.010 .0141
1 55.194 .0020

TABLE 2. The effects of averaging on the kurtosis and variance of
the temporal histograms. The parameters were 250 Hz, S/N
ratio of 6dB and 21% bandwidth.

Averaging Index of Kurtosis Variance in msec
0 7.501 .3050
2 5.070 «1453
4 4.398 .0771
8 3.901 .0462
16 3.403 .0194
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TABLE 3. The effects of signal-to-noise ratio on the kurtosis
and variance of the temporal histograms. The fixed

parameters were 250 Hz, bandwidth of 10% and no averaging.

S/N ratio Index of kurtosis Variance in msec
6 18.287 .0951
23 5.70 .0025

30 _ 3.80 .0003
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Discussion

The shape of the temporal histograms is dependent on the three
parameters, bandwidth, averaging and signal-to-noise ratio. The index
of kurtosis of ;he histograms moves towards that of the normal cur§
with increased averaging, increased bandwidth and increased S/N ratio.
The variance decreases with increased averaging, increased S/N ratio
and decreased bandwidth. The only noticeable change in the means is as
a function of S/N ratio. Decreasingﬁthe S/N ratio increases the mean in
frequency units (decreases in time units).

The central limit theorem would predict the increasing normal
character of the temporal histograms as the averaging is increased.

With wider bandwidth the increased variability of the temporal interval

distribution makes it more normal-like. Increasing the S/N ratio at 10%
bandwidth, up to 30 dB results in the index of kurtosis approaching that
of the normal curve.

The psychometric functions all have the same factor causing the
divergence in slope at higher d' values. The functions which have less
normal-like temporal histograms show progressively shallower slopes at
high d' values. The functions with the steepest slopes are those with
higher S/N ratios, more averaging and wider bandwidths. This is because
the less normal histograms have long tails whiqh results in a slowing
down of the increase in the higher d' values relative to the more normal
temporal histograms.

The amount of bowness to the model's curves also has a comm;n
cause. The smaller the variance of the temporal histogram the smaller
the Af value required for a given level of performance. The smaller the
Af value the more similar are the variances of the standard and

comparative stimuli. (The constant percentage filters cause wider

bandwidths at higher frequencies.) Unequal variance of the underlying



66.

distributions contributes to the bowness of the resulting ROC curve.

The temporal histograms form a very complex family of distributions.
They are in some cases quite normal-like with a kurtosis of around 3
and mean and v;riance apparently independent of one another. With narrow

bandwidths and low S/N ratios and low averaging the histograms become

very peaked with long tails with an index of kurtosis of around 60.

Some implications of the model

The main comparison of the model and human masking data occurs
in Chapter IV. This section is to show how the model explains two
quite different experimental findings. The first was by Henning (1967b)
on the effects of S/N on freguency discrimination, and the second by
Schubert (1950) and Walliser (1969) on the effects of masking noise on
pitch adjustments.
Henning carried out two frequency discrimination experiments which
were identical except that in one the noise level was 20dB less, but
the signal-to-noise ratios were the same in both conditions. Henning
was testing a hypothesis called the 'amplitude-limitation hypothesis'
which implies performance decreases with increased absolute stimulus
levels. Henning found the same performance levels for the two conditions.
The performance levels were unaffected by the absolute stimulus levels.
The temporal model predicts the same levels of performance for
the same signal-to-noise ratios regardless of the absolute levels.
Schubert (1950) and Walliser (1969) showed that when a pure tone
and a masking noise were presented to the same ear simultaneously, ‘the
pitch of the masked tone is raised over that of the pure tone. Schubert
had his observers carry out loudness matches between the tone and the
stimulus to be matched, in order to remove any loudness cues before the

pitch matches were obtained. He found that the pitch-shift effect is
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larger at low S/N values and at higher frequencies. He considered that
the effect disappears when the tone is increased approximately 40dB
above the noise.

Walliser's data is presented in Figure 22. It shows the signal
level to noise power density ratio as a function of the percentage pitch
shift. The shift in frequency increases with decreasing S/N ratio. The
percent shift is calculated as ﬁhe difference in Hertz of the pitch
match and the actual frequency of the sinusoid divided by the actual
frequency of the sinusoid. Walliser's data shows a pitch shift of 1%
at 40dB which is contrary to Schubert's conclusion that the effect has
disappeared at this frequency. The author has found that very experienced
observers can make very accurate pitch matches of 40dB. A small systematic
bias in Schubert's data could explain the discrepancies between the data.

The model gave comparable data for pitch matching when the inverse
of the mean of the temporal model histogram was assumed to be the pitch
match for that stimulus. The model's data are plotted with Walliser's
in Figure 22. The model's data, although a similar slope to that of
Walliser's, agrees more with Schubert's estimation of the upper limit of
the effect. A small criterion bias in the human data might explain these
differences.

The model provides an explanation for why the effect is greater at
lower S/N ratios and at higher frequencies. The model assumes that the
ear's filter mechanism is tuned to the test tone's frequency, which is
reasonable in a pitch matching experiment. The test tone's frequéncy
is therefore the geometric mean of the filter. At low S/N ratios the
mean of the temporal distribution is determined by the arithmetic mean
(which is the mean of the noise distribution). The arithmetic mean is
higher in frequency units than the geometric mean., As the test tone

increases in energy the geometric mean will gradually dominate the
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CHAPTER III

HUMAN FREQUENCY DISCRIMINATION DATA

Introduction

The first part of this chapter discusses the availability of
human frequency discrimination data, and as a result shows why it was
necessary to obtain extensive amounts of data to evaluate the model.
The second part of the chapter describes the Group-Operating-Characteristic
(GOC) analysis which was the main method of analysis used on the human
data. The stimuli used are described in the third section followed by
a section an the stimulus generation. The fifth section covers the
experimental design. The analysis of the human data is then described

and the results and conclusions comprise the last section.

Availability of suitable human frequency discrimination data

The first extensive study of frequency discrimination was by Shower
and Biddulph (1931). They measured frequency jnds for a wide range of
frequencies. Their stimuli were modulated tones which have very different
spectra to those of pulsed sinusoids.

Harris (1952), Moore (1973a & b), Nordmark (1963) and Wier (1977)
provided frequency discrimination data for pulsed sinusoids, but most
of these studies were concerned with finding the size of the jnd as a
function of frequency. This research therefore did not give many
performance levels for different frequency separations (Afs) at ahfixed
S/N ratio.

Henning (1967a) did obtain extensive data for different Af values
(at many S/N ratios) as a function of the frequency of the standard

stimuli. However, when Henning's datawere rearranged into performance

level versus Af values for a fixed S/N ratio, there were too few data
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points for evaluation of the model. The large size of Henning's study
also meant that he only used 200 trials per stimulus. The small number
of trials led to variability in the data to the extent that the functions
for different Af values sometimes crossed each other. This made the

data unsuitable for evaluation of the model.

Very stable human frequency discrimination data, concentrated at
specific S/N ratios was therefore not available for the evaluation of the
model. As discussed in Chapter I, frequency discrimination is a difficult
task and tends to give unstable data. The difficulty of the task and the
need for very stable data suggested the use of the Group-Operating-

Characteristic Analysis.

Group-Operating-Characteristic Analysis

The Group-Operating-Characteristic (GOC) analysis was originated
by Watson (1963). Its potential was further examined by Boven (1976).
This description of the technique is mostly derived from Boven's study.

Data from psychophysical experiments contain the effect of noise
which is unique to each observer. This unique noise can seriously
affect the shapes of psychometric functions and other measures of
performance, as shown by Green (1960).

One approach for coping with the unique noise is to try and measure
it so that its effects may be quantified. Soderduist and Lindsay (1972)
found that the d' value for three observers on a signal detection task
varied according to which stage of the heart beat cycle the signal
coincided with. The mean d' value for their observers varied from less
than 0.5 at one part of the cycle up to more than 1.5 at another part.
Earlier Dierks and Jeffress (1962) concluded that unique noise has

three components, one unique component for each ear and a smaller common

component, this results in the internal noise between the two ears having
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a small positive correlation.

These and other attempts to specify unigue noise have not led to
enough quantification to satisfy Green's homilies. Green (1960)
asserted that if the concept of internal noise was to be useful it had
to be specific. Green wished to avoid the situation where an unquantified
notion such as unique noise could be used to explain away any observed
discrepancy between the theoretical performance and the performance of
human observers.

The GOC analysis approach bypasses the need for specifying unique
noise by removing it statistically instead. It is necessary here to
define the differences in meaning between unigue noise and common noise.
Unique noise is a statistical concept which refers to the idiosyncratic
component of the total variance of an observer. The complement of unique
noise is common noise which refers to all the noise sources which are
common to all observers e.g. stimulus fluctuations. Since it is the
common noise which is of interest to the experimenter, he will be interested
in removing the effect of unique noise from his data.

The unique noise arises in the following way. The noise on
which the observer bases his decision can be considered to be the
sum of two independent noise sources. The first noise source is the
noise which is added to the experiment prior to the presentation of the
signal to the observers. The second noise source is within the observer
and arises in the signal transmission and processing system of the
observer. The first noise is common noise and the second noise u;ique
noise.

The ratio of unigue noise to common noise is called K. The limit
condition of K is zero which is when all the noise is common and the
observers are completely dependent. When K is equal to zero, no

improvement is predicted. The other limit condition is when K is infinite
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i.e. when all the noise is unique and the observers are completely
independent. In principle, for a K of infinity there is no asymptote
to the level of performance. Usually, in experiments, observers have
a partial dependency.

The aim of the GOC analysis is to reduce the amount of unique noise.
The GOC curve describes the performance of multiple observers, or multiple
observations by one observer, with the two situations being essentially
the same.

The GOC curve is based on the sum of the ratings for each identical
stimulus (identical stimuli are defined as stimuli with identical fine
structure). Ideally simultaneous observations by observers, or digitally
coded stimuli are used to enable the observers to rate identical stimuli.

The analysis is analogous to traditional ROC type analysis, with the
random variable in this case obtained by summing the ratings for each
identical stimulus, across observers or observations. The sum of the
ratings is proportional to the average rating for each identical stimulus.
The summed ratings are used to construct an event by rating matrix. The
matrix is then cumulated and the Hit Rates and False Alarm Rates obtained.

Boven (1976) has shown that the GOC curve approaches the curve which
would be obtained if there was no unique noise present. This makes the
method useful for evaluating the feasibility of models and for obtaining

less attenuated measures of sensitivity.

Stimuli

The stimuli were chosen to cover a wide frequency range. The wide
range was chosen so as to show any potential transition from one frequency
analysis mechanism to another. Each stimulus consisted of a sinusoid
in band-limited, white, gaussian noise. The low pass filter was set at

twice the sinusoids frequency, and the high pass filter at half the sinusoids
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frequency. The bandwidth was chosen to exceed any known estimates of
the human critical bandwidth.

There were four main frequency discrimination experiments. For each
experiment there was a set of stimuli consisting of one standard and four
comparative stimuli.

The signal-to-noise (S/N) ratio was calculated in the same manner
as in Chapter II.

10 log (rms voltage of the sinusoid) ?

10 log (rms voltage of noise)? - 10 log bandwidth

where noise refers to the bandlimited noise. Thus the ratio as described

before has the units, per cycle. Unless otherwise mentioned this is the

ratio referred to by S/N.

The parameters for each experiment are given below.

1. Experiment 1 had a standard stimulus of 5000 Hz and comparative
stimuli of 5000, 5050, 5100 and 5150. The stimuli had a S/N ratio
of 32dB.

2. Experiment 2 had a standard stimulus of 1000 Hz and comparative
stimuli of 1000, 1007, 1014 and 1021 Hz. The stimuli had a S/N
ratio of 26dB.

s Experiment 3 had a standard stimulus of 250 Hz and comparative
stimuli of 250, 251, 252 and 253 Hz. The stimuli had a S/N ratio
of 30dB.

4. Experiment 4 had a standard stimulus of 250 Hz and comparat}ve
stimuli of 250, 252, 254 and 256 Hz. The stimuli had a S/N ratio

of 23dB.

Stimulus generation

The experiments were run at the Institute for Perception, Soessterberg,

the Netherlands. The stimulus generation is shown in Figure 23. The noise
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was generated digitally by a Hewlett-Packard 8057A Precision Noise
Generator. The location of each repeatable noise segment was specified
in the pseudo-random sequence by means of an external high speed counter
and trigger. A Rockland System 816 Filter band limited the noise so
that its low-pass was at twice the sinusoids frequency, and the high-pass
was at half the sinusoidg frequency.

The sinusoid was produced by a 10 bit, digital-to-analogue converter
and low-pass filtered by a Khron-hite 3341 filter to smooth the waveform.
The sinusoid and band-limited noise were mixed and then gated with an
inverted cosine rise-fall transient of 20 msecs. An attenuator was used
to adjust the overall level. This method of signal generation means that
identical stimuli could be presented at different times. Beyer DT48 head
phones were used and the stimuli were‘presented in the sound attenuated
room of the Institute.

The experimental sequence was a 600 msec rest, a standard stimulus
of 150 msecs, 500 msec interstimulus interval, a comparative stimulus of
150 msecs and a response interval. The beginning of a new sequence was
triggered by the observer's response.

The stimuli were chosen randomly by computer control such that a
standard stimulus occurred in the first interval and one of the four

comparative stimuli (with equiprobability) occurred in the second interval.

AJ Standard I Comparativel

600 msecs Stimulus 500 msecs Stimulus Response

Observers and the observer's task

Four researchers from the Institute for Perception, who were very
experienced in pitch matching and other similar tasks, and the author
were the observers. The observers were instructed to press one of eight

buttons on a small metal box depending on their certainty of how similar
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the standard and comparative stimuli were. If they were sure that the
standard and comparative were the same they were to press button one, if
they were sure the stimuli were different they were to press button eight
and to use the buttons in between for the varying degrees of certainty.

They were asked to use all the ratings equally.

Experimental design

A result of the digital codinj of the stimuli was that identical
stimuli could be presented many times. The observers could therefore be
run separately yet all given, when required,identical stimuli. To prevent
sequential dependencies there was always a different random presentation
of trials for each observer.

The four experiments broke down into two basic designs.

Experiments 1 and 2. The four comparative stimuli were each presented to

each observer 1000 times. The 1000 trials per stimulus were randomly
selected from 500 unique samples in such a way that each unique stimulus
was presented twice.

Experiments 3 and 4. The four comparative stimuli were each presented

1000 times to each observer. The 1000 stimuli per comparative consisted
of 50 unique stimuli each presented in a randomly determined sequence
twenty times.

Since the sampling size in experiments 3 and 4~is quite small, two
observers replicated their tasks in these experiments, except with five
hundred unique stimuli per comparafive instead of éhe previous sa;ple size
of fifty. These two conditions were inter-leaved amongst each other.

The two observers had 800 trials per comparative selected randomly from
the five hundred unique stimuli.

After each block of 200 trials, the computer controlled experiment

was stopped. Then a program was run to find the P(A) values for each
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stimulus, and a histogram of the rating responses was displayed. The
observer saw the described results and was then given a five minute rest

before another sequence of trials was run. Usually each observer was

- given 500 trials per day.

Before the experimental datawere obtained for each experimental
condition the observers were given 3000 or more practice trials until there

was no increase in their P(A) values over the last four blocks of 200 trials.

The analyses of the human data

Experiments 1 and 2.

For each observer in each experiment 500 unigue trials per stimulus
were repeated once giving 1000 trials per stimulus. Each of these 1000
trials was treated as a 1 x 1000 matrix. The ratings were ordered into a
histogram with 8 bins, representing the eight possible ratings. A
histogram for the standard was compared with the histograms for the
appropriate comparatives, one at a time, and the Hit Rates and False Alarm
Rates determined from the cumulative histograms. The ROC curves were
obtained by linear approximation and the P(A) values calculated by
triangulation.

A GOC for the group in each experiment was also obtained. The
five observers' data for each stimulus were combined into a 5 by 1000
matrix, with the stimuli ordered so that ratings for identical stimuli
were aligned across the matrix. The GOC analysis was done as previbusly
explained, with the summed ratings‘now varying froi 5 to 40, inst;ad of
from 1 to 8 as in the individual ROCs. The Hit Rates and False Alarm
Rates were determined from the cumulative histograms, They were joined by
linear approximation and the P(A) values calculated by triangulation.
Psychometric functions were also obtained for the Group data.

The Group data for experiment 2 was divided into three groups for a
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comparison of the data. Group 1 was the three best observers; Group 2
the two worst observers and Group 3 was the total group. This meant that
the 1lst group had a 3 x 1000 matrix, the 2nd group had a 2 x 1000 matrix
and the 3rd group a 5 x 1000 matrix. The slopes of the psychometric
functions were compared and a GOC curve, for the same performance level,
compared from the three groups.

Experiments 3 and 4.

Most of the data from these experiments differed fromthose of the
previous two in that the sets of one thousand trials per stimulus now
consisted of 50 unique stimuli each repeated 20 times in a computer
determined random sequence. The data from each observer were treated as
a 1 x 1000 matrix and individual P(A) values obtained.

In order to check that the smaller sample size in these two
experiments was not affecting the data, the data were compared for the
500 and 50 unique stimuli conditions. The P(A) values of observers one
and two were compared for experiment 3 and 4 across the two stimulus
sampling size conditions. Their ROC curves for a Af of 2, from experiment
4 were compared also across the two stimulus sampling size conditions.

The data were also analysed to show the effect of replication on d'.
The enormous number of trials required to achieve a large enough sample
for each d' value and yet enough replications, led to a compromise in
both areas.

The data were analyzed as group data. Five combined observers' data
with 50 trials per stimulus were defined as one replication. Different
trials were used in each P(A) calculation to prevent any dependency
effects. The calculation was carried out for the three comparatives in
experiment 3 and 4 respectively. Log d' was plotted against log

replications.
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Figure 25.

ROC curves for experiment 4 with a Af of 2 Hz.
The two conditions are for a unique stimulus
sample of 50 and 500 respectively. S/N ratio
of 23dB.

A. Observer 1
B. Observer 2

8l.
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Results and discussion

The variability among the observers' performance levels can be seen
in Table 4. As previously mentioned,the observers had had many years of
experience in similar tasks to this experiment. The most experienced
observers were not necessarily the highest performers. Observer 2 was
a very high performer,often performing slightly better than the group
performance level. Even when observer 2 had a higher P(A) than the
group, his ROC curves were more irreguiar in shape than the GOC which had
the higher resolution. The individual variability in performance questions
the usefulness of the value of the 3jnd type statistic unless there is a
very large sample and some indication of the distribution of jnds.

Figure 24 shows that the shape of the GOC curve is invariant for
different numbers of observers and replications. Three GOC curves were
compared, all for the same level of performance for experiment 2. The
groups were: group 1, the two worst observers; group 2, the three best
observers; and group 3, the total group of five. Group 2 had a larger
Af value than the other two groups to achieve the same performance level.
The gradients for these three groups' psychometric functions were calculated
and they were all 1.36 onlog d' versus log Af, for the three groups.

The slope of the psychometric functions and shape of the GOC curves
are invariant for groups with quite large differences in frequency
discrimination ability. These measures are therefore very useful in
evaluating a model. If the slopes of the psychometric functions and
shape of the GOC are matched, reasonable differences between the éroups
will not affect the fit to the model. Similarly even if all the unique
noise ﬁas not been removed from the human data, the slope of the psycho-
metric functions and the shape of the GOC curves, for a given level of
performance will be unaffected by subsequent replications.

The smaller sample size of unique samples for each stimulus in




for experiment 1.
a S/N of 32 dB.

TABLE 4A.
Observer
1
2
3
4
5
Group
TABLE 4B.
of 26dB.
Observer
i
2
3
4
5

50
»619
.626
.570
.518
.629
.668

.696
.685
.794
+592
.623
.807

Hz
100
. 766
.838
.679
.566
+752
.869

Standard

14
.801
.859
.965
. 709
. 780
.970

150

.862
.958
.784
.678
.849
+972

P(A) values for individual observers
in experiment 2.

frequency

21
.962
.950
.996
.825
.881
.998

P(A) values for individual observers and the Group,
Standard frequency of 5000 Hz at

and the Group,
1000 Hz at a S/N
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TABLE MC P(a) values for individual observers and the group

— for experiment 3. Observer 1 and 2 have two sets of
data, the first sets are for the experiment with 500
unique samples, the second sets are as for the rest
of the observers for data with 50 unique samples. The
standard's frequency is 250 Hz at a S/N of 304B.

Observer AF in Hz
1 2 3
1 .650 .760 .880
2 +595 .734 .834
1 .645 wd L .867
2 .609 .728 .826
3 .588 .676 .736
4 < 132 .919 .983
5 .579 .669 .754
Group .745 .918 .980

TABLE HD P(A) values for individual observers and the group

— for experiment 4. The table arrangement is the same
as for Table 6. The standard's frequency is 250 Hz
at a S/N of 23dB.

Observer ' AF in Hz

2 4 6
1 .626 <75l .843
2 .615 <ALX .810
1 . 645 .762 .849
2 .605 .714 .804
3 .538 -.595 .615
4 .709 .879 .954
5 «579 .672 .761

Group .705 .865 .943
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experiments 3 and 4 has not noticably affected the data. The P(A)
values for observers 1 and 2 are very close for the two sample size
conditions, Tables 4(C and D). The ROC curves for observer 1 and 2 for
the two conditions show excellent agreement as can be seen in Figures
25 (A and B).

The GOC curves for experiments 1, 2, 3 and 4 are presented in
Figures 26, 27, 28 and 29 respectively. The curves are very smooth for
frequency discrimination data. When replotted on double probability
paper each GOC curve gives a linear plot. A linear plot on double
probability paper indicates that the underlying distributions could be
normal. The slope for the curves is unity for the curves with small Af
values which implies equal variance of the underlying distributions. As
the Af values become larger there is a tendency for the slopes of the
curves to become steeper. Given normal underlying distribution a
progressively steeper slope on the double probability paper indicates a
larger variance of the comparative distribution as compared to the standard
distribution.

The values of log d' for the group as a function of log replications
in Figure 30 (A and.B) show the functions for the sets of stimuli with a
standard frequency of 250 Hz at an S/N ratio of 23dB and 30 4B respectively.
The data show that even with up to ten replications of the group data,
which is essentially the same as fifty individual replications, an
asymptotic level of performance has not been reached. This shows that the
amount of unique noise in frequency discrimination tasks is very large.

If it is necessary to remove all the unique noise from human frequency
discrimination data, many replications would be needed, or else a

1
mathematical method of predicting the asymptotic level must be developed.

Dr J.K. Whitmore, Psychophysics Laboratory, V.U.W. is working on
such a technique.
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The three performance levels for the Af conditions plotted in each
of the Figures 30 (A and B) remain parallel to one another for all the
replications. It is clear that removing the unique noise does not change
the relationships between the performance levels for the different Af
conditions. Therefore the slopes of the psychometric functions do not
change with replications.

The slope of the functions for log d' versus log n changes for
different S/N ratios. The slope for the 30dB condition is steeper
than the 23dB condition. It appears that the rate of improvement of 4'
is more rapid at higher S/N values. The functions in both figures must
be moving towards an asymptote as n increases. This is what would be
expected as the unique noise is being statistically removed.

The large amount of unique noise in auditory tasks has also been
demonstrated by Swets (1959) using masking studies. He used replications
on a single observer, and found that after five replications performance
was still improving. There is no published data on frequency discrimination

with this method of analysis.

Conclusion

The linearity of the cumulative probabilities on double probabili;y
paper indicates that the human frequency data could be modelled by normal
underlying distributions. The increased slope at large Af conditions
suggests that there is a situation of unequal variance for the underlying
distributions, with the underlying variance for the comparative b‘eing
larger than for that of the standard. The comparative stimulus for a large
Af condition has a higher index of kurtosis which could also affect the
slope of the cumulative probabilities plotted on double probability paper.

The analysis of d' as a function of replications showed the large

amount of unique noise in human frequency discrimination data. The GOC
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(Tog n) for three Af conditions. Standard frequency of
250 Hz and a S/N ratio of 30dB.
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analysis is valuable for the manner in which it removes unigque noise
and provides a less attenuated measure of discrimination. The method
also provides GOC curves with good resolution. Therefore the method
is suitable in obtaining data to evaluate a model.

The stability of the shape of the GOC curves and the gradients
(shapes) of the psychometric functions across observers for the same
experimental conditions, suggests the same underlying frequency

discrimination mechanisms for all of the observers.
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CHAPTER IV

COMPARISON OF THE HUMAN AND THE MODELS FREQUENCY

DISCRIMINATION DATA.

In the first part of this chapter the method of matching the human
and model's data is described. The model is then evaluated and a

discussion follows.

The method of evaluating the temporal model

There were two potentially free parameters available for matching
the two sets of data; first bandwidth and, second, averaging. In fact,
only averaging provided the sometimes necessary changes to fit the models
data to the human data (assuming a 10% critical bandwidth).

There were two main aims for the matching procedure. The first aim
was to match the performance level and the gradient of the psychometric
functions. The second aim was to compare the shape of the available
model's ROC curves, with the parameters fixed by the matching of the
psychometric functions, to the human GOC curves. The bandwidth was
adjustable in discrete steps of 3rd octave, 10%, 3% and 1%, and the
averaging was only possible at integer values.

One problem, as previously discussed, was that all the unique noise
had not been removed from the human data. The GOC data does have a much
smaller ratio of unique to common noise than traditional human data.
However, the human performance level would still increase if more replica-
tions occurred. It will be shown that the model would not be made
inappropriate by a moderate increase in the human performance level.

Human psychometric functions based on GOC analysis increase in
performance level with increased replications, but maintain the same

gradient. The model's psychometric functions have been shown to remain
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parallel with changes in averaging and bandwidth, except at high 4a'
values, Figure 15 and 17. The change in slope at high d' values
corresponds to high indices of kurtosis for the underlying temporal
histograms. Therefore,as long as the index of kurtosis is kept low by
improving the model's performance levels with averaging, the psychometric
functions will remain parallel. If the models psychometric function is a
good fit to the human data, increased replications in the GOC analysis
will only result in the model requiring an increase in averaging to
re—-establish the fit to the data. If, however, the model's psychometric
functions do not initially have the same gradient as the human data
(unless it is only a slight divergence at high d' values) no manipulating
of the parameters can provide a fit.

The moderg parameters for the comparison of its ROC curves to the
human GOC curves were fixed by the matching of the psychometric functions.
The matching of the functions is illustrated by describing the matching
of the human and model's data for experiment 4.

The model's psychometric function with a bandwidth of 10% and with
no averaging was low in performance level compared to the human data.

The model's cumulative probabilities plotted on double probability paper
were not linear (the index of kurtosis of the histograms was too high at
5.7) while the human plots were linear. Therefore, to match the model to
the human data,averaging was increased to 2 which raised the performance
level of the model and decreased the index of kurtosis to 4.00. Narrowing
the bandwidth would have improved the performance level but would have
further increased the index of kurtosis.

The parameters of . the quel for each comparison were fixed after
comparing the temporal histograms, then the corresponding model's ROC

curve and the humans GOC curve were compared.
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Evaluation of model

Experiment 1l: Standard of 5000 Hz at 32dB S/N ratio.

An average of 4 and a bandwidth of 10% roughly matched the
performance levels of the model's and human data. Figure 31 demonstrates
that the gradients of the compared psychometric functions are very
different. The human function has a steeper slope than that of the
model, the ratio of the gradients is 1.9. As previously described:
manipulating the parameters will only change the slope of the psychometric
function at high 4' values. Therefore,the functions could not be matched.
Figure 32 compares the model's ROC curves with the corresponding GOC curves.
The human and model's curves are very different. The model's ROC curve is
bow shaped essentially,because of the large separation in frequency of the
standard and comparative resulting in differences in the two distributions
e.g. variance and kurtosis differences. Increased averaging or a narrower
bandwidth could reduce the bow shape of the ROC curve but this would
seriously mismatch the performance levels of the human and model's data.

Experiment 2: Standard of 1000 Hz at 26dB S/N ratio.

The levels of performance were roughly matched with an average of
16 and a bandwidth of 10%. The slopes of the compared functions were
again very different with the slope of the human function being steeper
than that of the model, Figure 33. The ratio of the two gradients is 1.5,
which is less of a mismatch than that for experiment 1.

It was not possible to obtain any ROC curves for the model to match
the human GOC. The average of 16 reduced the variance of the teﬁporal
histogram to the extent that the limits of resolution of the system were
reached. However,the human GOC curve, if obtained, would not be very
bow shaped. The large amount of averaging for matching the model resulted

in an index of kurtosis around 3.5. This would probably have given an

almost linear plot on double probability paper which would have provided
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Model's parameters are an average of 4 and a bandwidth of 10%.
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a reasonable match to the human data.

Experiment 3: Standard of 250 Hz at 30dB S/N ratio.

No averaging was required at a bandwidth of 10% in order to obtain
an excellent match of performance levels and gradient, Figure 34.

The model's ROC curve also provided a good fit to the human GOC,

_Figure 35. The higher S/N ratio at this condition gave an index of

kurtosis 3.8 without any averaging.

Experiment 4: Standard of 250 Hz at 23dB S/N ratio.

An average of 2 provided the best fit to the performance level with
the 10% bandwidth. The average of, two although a little high,was a
closer match than the no averaging condition. The fit to the gradient
was excellent, Figure 36.

The model's ROC curve was a good approximation to the shape of the
human GOC curve. The model's performance was a little too high, as was

expected because of the fit to the psychometric functions, Figure 37.

Discussion

The results demonstrate that while the model is a good fit to the
human data at 250 Hz, it is clearly inappropriate at 5000 Hz. There is
some evidence of a transition at 1000 Hz. The psychometric functions
are less of a mismatch at 1000 Hz as compared to 5000 Hz, and there is
some justification for assuming that the model's ROC curve would be a
reasonable fit to the human GOC at 1000 Hz.

The model's data, after having been fitted to the human dat;, has
temporal histograms with normal or near normal indices of kurtosis. At
lower S/N ratios, the unfitted temporal histograms of the model have
successively higher indices of kurtosis and lower levels of performance

relative to the human data. The model therefore requires slightly more

averaging at lower S/N ratios to reduce the kurtosis and to improve the
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performance in order to provide a match to the human data.

The model required different amounts of averaging to match the
human performance for the different experiments. The relative amounts
of averaging for the different experiments are discussed below. Since
the signal-to-noise ratios were different for the four experiments,only
large differences in the relative amounts of averaging can be considered to be
due to frequency changes, (since small differences in averaging are
required for the different S/N ratios).

The large amount of averaging at 1000 Hz (an average of 16) is much
larger than could be due to S/N changes. This large ampunt of averaging
appears to mirror the relative jnd (jnd/F} ratio as a function of
frequencysas shown by Moore (1973a). He showed that the relative jnd
is much lower at 1000 Hz than at 250 and 5000 Hz. This increased frequency
activity could be explained, in a speculative manner, as an increase in an
averaging process in the neural system.

The amount of averaging can be approximately converted to averaging
time by multiplying the period of the sinusoid by the number of averages
required for the model in a particular experiment. This gives the short
averaging times of 8 and 4 msecs for 250 Hz,at 23dB and at 30dB respectively.
If, as discussed in Chapter I, the averaging occurred across neurons, the
different amounts of averaging would take about the same amount of time.

Henning (1969) showed that frequency discrimination at 250Hz begins
to deteriorate once the signal duration is shortened to about 50 msecs.
This finding may be interpreted as representing a critical bandwidth of
8% for frequency discrimination. Henning also shows that the duration
at which amplitude discrimination begins to deteriorate is approximately
three times that at which frequency discrimination deteriorates. This
result would give a critical band for amplitude detection of around 24%,

which is in agreement with traditional estimates of critical bandwidth.

F is representing the frequency at which the jnd is measured.
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This finding is consistent with the idea of the 10% bandwidth used

for the model.
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CHAPTER V

SUMMARY AND CONCLUSION

Summagz

An electronic analogue of frequency discrimination was constructed.
It consisted of a 10 percent bandpass filter, tuned to the sinusoidal
signal. The temporal intervals between the positive axis crossings were
measured at the output. The temporal intervals were averaged, when
necessary, to obtain a fit to appropriate human data. The temporal
intervals were then used in histogram form to generate ROC curves.
Measures of discriminability were obtained from both the sequential
measurements and the ROC curves.

When the model's data had been fitted to the human data, by increasing
the amount of averaging when necessary, the underlying temporal histograms
had indices of kurtosis near that of a normal curve and the adjusted data
from the model gave linear plots on double probability paper. Also, as
expected the model's data had a steeper slope on the double probability
paper for high Af values.

Human frequency discrimination data were obtained for the purpose
of evaluating the model. The stimuli were sinusoids in white gaussian
noise. Unique noise was found to be a serious attentuator of human
frequency discrimination. The GOC method of analysis was found to be an
effective techniQue for reducing the influence of unique noise. The rate
of reduction of unique noise, with replications of identical stimuli, was
found to be faster at higher S/N ratios. Increased replications raised
the level of the human psychometric functions, obtained with GOC analysis
but did not change their shapes.

Human GOC curves for frequency discrimination were found to ‘give

linear plots on double probability paper, which suggests that they could
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be modelled by normal underlying distributions. The plots for small

Af values have slopes of 1 which suggests equal variance of an underlying
normal model. The plots for large Af values had steeper slopes which
suggests that the comparative stimuli had larger underlying variances
than those of the standard stimuli. This gives support to the concept
of a constant percentage critical band mechanism.

The model at 250 Hz and two signal-to-noise ratios gave a good fit
to the human data. The model was less appropriate at 1000 Hz and clearly
inappropriate at 5000 Hz. The inferred point of transition between a
temporal and some other mechanism, around 1000 Hz, is lower than that
usually suggested e.g. Moore (1973a), Plomp (1967), Wever (1949). The
bandwidth of 10 percent was found to be appropriate for the temporal

model.

Conclusion

The temporal model presented in this thesis gives evidence for a
temporal frequency discrimination mechanism at low frequencies which

changes to some other mechanism around 1000 Hz.
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FUTURE RESEARCH

Three areas where more research is urgently needed are discussed.

First, it would be of interest to obtain more human freguency
discrimination data and equivalent model's data either side of 1000 Hz.
Comparisons between the human and model's data around 1000 Hz would
give more information about the apparent transition in mechanisms near
this frequency. Obtaining data at these frequencies would require very
high resolution equipment.

Second, the problem of removing unique noise from human data needs
to be investigated in more detail. The most promising approach appears
to be the prediction of the asymptotic limit of performance.

Third, it would be very instructive if the physical aspects of the
stimuli to which the observers are responding could be isolated and
measured. A preliminary study was begun at the Institute for Perception
with Dr T. Houtgast. The multiple ratings of identical stimuli were
correlated with certain physical measures of the same identical stimulus.
Measures such as; the mean of the temporal interval distribution, and
slight amplitude fluctuations were correlated with the observers' ratings.
It is emphasized that this was only a preliminary study and no firm
conclusions can be drawn from this data. There was some evidence, however,
of correlations with the mean of the temporal intervals at low frequencies;
this correlation had disappeared by 5000 Hz. There was also suggestion
of these correlations improving with, reduced S/N ratios, narrower
bandwidths and decreased duration of the stimulus. J

The described approach would appear to have promise for evaluating
models, also the aspect of the stimulus to which the observer is attending
in the stimulus can be ascertained and measured.

The approach would also allow better evaluation of observers'
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performance. For example, one observer who was very poor at frequency
discrimination was found to have ratings with a high correlation to the
small amplitude fluctuations of the stimuli. The small implitude
fluctuations were an irrevelant aspect of the stimulus. This observer
could be seen, with this technique, however to be giving a very different
type of performance from that of an observer who was both poor at frequency
discrimination and whose ratings had a low correlation with the physical

measures of the stimuli.
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