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Abstract 
 

 

Sexual selection and reproductive strategies affect individual fitness and population 

genetic diversity. Long-standing paradigms in sexual selection and mating system 

theory have been overturned with the recent integration of behavioural and genetic 

techniques. Much of this theory is based on avian systems, where a distinction has 

now been made between social and genetic partners. Reptiles provide contrast to 

well-understood avian systems because they are ectothermic, and phylogenetic 

comparisons are not hindered by complicated patterns of parental care. I investigate 

the implications of the mating system and reproductive ecology on individual fitness 

and population genetic diversity of tuatara, the sole extant representative of the 

archaic reptilian order Sphenodontia. Long-term data on individual size of Stephens 

Island tuatara revealed a density-dependent decline in body condition driven by an 

apparently high population growth rate resulting from past habitat modification. 

Spatial, behavioural, and genetic data from Stephens Island tuatara were analysed to 

assess territory structure, the mating system, and variation in male fitness. Large 

male body size was the primary predictor of 1) physical access to females, 2) 

competitive ability, and 3) mating and paternity success. Seasonal monogamy 

predominates, with probable long-term polygyny and polyandry. Annually, male 

reproduction is highly skewed in the wild and in captivity. Over 80% of offspring 

from a captive population on Little Barrier Island were sired by one male and 

multiple paternity was found in approximately 18% of these clutches, although it was 

not detected in any wild clutch. The dominance structure has lead to reduced genetic 

variation in the recovering Little Barrier Island population. Stephens Island tuatara 

show fine-scale population genetic structuring that appears to be driven by past 

habitat modification and a sedentary lifestyle in the absence of sex-biased dispersal 

or migration. These results will improve conservation management of tuatara by 

providing guidelines for maximising genetic diversity of small and captive 

populations and will aid in selecting founders for translocated populations. Because 

of the archaic phylogenetic position of tuatara, this study provides a baseline for 

comparisons of mating system evolution in reptiles. 
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CHAPTER ONE 

 

Reptile Mating Systems and Sexual Selection: A 
Synthesis 
 

 

1.1 Introduction 

 

Sexual selection is unequivocally acknowledged as one of the most powerful 

evolutionary forces affecting populations. A large body of work has developed 

around understanding the evolution of mating systems and sexual selection of birds 

(Orians 1969, Griffith et al. 2002), fish (Avise et al. 2002) and insects (Thornhill and 

Alcock 1983), but reptile systems remain poorly understood. Detailed investigations 

of mating systems combining behavioural and genetic techniques are changing many 

long-standing paradigms. For instance, in recent years, the early assumption that 

monogamy predominates in avian mating systems has been radically overturned 

(Griffith et al. 2002). Most reptiles are assumed to be polygynous, and research was 

mostly male focussed before the regular use of DNA paternity testing. We now know 

that reptiles have the highest rates of multiple paternity of any vertebrates (Uller and 

Olsson 2008), and many studies of reptile mating systems are revealing unexpected 

complexities (Bull et al. 1998, Bull 2000, Olsson et al. 2007). Knowledge of sexual 

selection and the mating system can also be critical for conservation of threatened or 

endangered species where management often requires direct manipulation of the few 

remaining individuals in a population (Hughes 1998, DeWoody 2005). This thesis 

aims to advance current understanding of reptile sexual selection and evolutionary 

ecology by investigating the unknown reproductive ecology and mating system of an 

archaic representative of reptiles, the tuatara. 

 

1.2 Sexual selection and mating system theory 

 

Many scientific advances have been made since Darwin proposed the theory of 

sexual selection in 1871. Darwin (1871) defined sexual selection as “the advantage 

which certain individuals have over other individuals of the same sex and species”, 

and explained that “trivial” extravagant male characteristics that seemed to have no 
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apparent function and often put the male at risk were the result of sexual selection. 

Sexual selection arises from differential reproductive success caused by mate choice 

(intersexual selection) or mate competition (intrasexual selection) (Darwin 1871). 

However, the dichotomy between mate competition and mate choice, as the 

mechanisms driving sexual selection, is not always as clear as Darwin first proposed. 

 

Success in competition and mate choice is crucial for fitness and the ability of an 

individual to transfer its genes to the next generation. Mate competition takes many 

forms, including scrambles, physical contests, endurance, or any other form of 

rivalry (Andersson 1994). Competition is particularly important for polygynous 

mating systems, and usually results in the acquisition of many mates for some males, 

and none for others (Emlen and Oring 1977). Successful males are therefore 

genetically over represented in future generations, leading to selection for characters 

that initially enabled breeding success. Competition for mates often selects for large 

body size, strength, and weapons such as antlers, horns and spurs. These same traits 

may also be selected by female mate choice (Tregenza and Wedell 2000, Kokko et 

al. 2003), thus leading to sexual dimorphism.  

 

Competition and choice do not always end at copulation. Post-copulatory sperm 

competition occurs in some polyandrous systems, where females have multiple 

partners (Birkhead 1998; Ben-Ari 2000, Jennions and Petrie 2000, Tregenza and 

Wedell 2000, Eberhard and Cordero 2003). Sperm competition was first viewed as a 

postcopulatory male-male contest where females were passive participants as sperm 

from multiple males competed to fertilise as many eggs as possible (Ben-Ari 2000). 

More recently, females have been shown to exhibit a more active role in fertilisation. 

Postcopulatory, or cryptic (Thornhill 1983), choice occurs when a female selects 

which male’s sperm fertilises her eggs (Thornhill 1983, Eberhard 1985, Birkhead 

1998, Reyer et al. 1999, Calsbeek and Sinervo 2004). Differentiating between these 

two phenomena is difficult, and they are not always mutually exclusive, which is 

why early studies failed to recognise the existence of cryptic female choice.  

 

Mate choice may be exercised by either sex, but females are often the choosier sex 

because they invest more in gametes (Jennions and Petrie 1997). Female choice may 

be based on direct benefits such as the size and/or quality of a male’s territory (e.g., 
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Wikelski et al. 2001), the ‘nuptial gift’ the male presents to the female, or the quality 

of parental care the male provides (Westneat and Mays 2005). Alternatively, males 

may be chosen based on traits reflecting genes that will confer greater fitness to the 

offspring (i.e., the ‘sexy son’ or ‘good genes’ hypotheses; Penn and Potts 1999, 

Jennions and Petrie 2000, Kokko et al. 2003). Many studies have inferred that female 

choice has evolved from indirect benefits conferred to offspring, but these inferences 

remain controversial (Jennions and Petrie 2000). Recently, studies of female mate 

choice have focused on the concept of genetic compatibility, particularly of the 

major histocompatibility complex (MHC), a cluster of genes primarily involved in 

immune response regulation (Penn and Potts 1999, Roberts and Gosling 2003). With 

genetic compatibility, a male is not chosen based on his universally superior genes, 

but instead on the compatibility of his genotype to that of the female (Zeh and Zeh 

1997, Penn and Potts 1999, Tregenza and Wedell 2000, Westerdahl 2004). The 

specific combination of male and female haplotypes, which are usually 

complementary to increase variation, dictates offspring fitness. For instance, reptile 

clutches from parents with the same MHC haplotypes can have reduced hatching 

success (Wittzell et al., 1999). 

  

Female mate choice has been documented in numerous taxa but has rarely been 

shown conclusively in reptiles (Olsson and Madsen 1995, Tokarz 1995). In the few 

proven cases, females choose large male body size, which is usually correlated with 

dominance (Cooper and Vitt, 1993; Censky, 1997). Body size is also important in 

intrasexual interactions, whereby larger, more dominant males are able to secure 

larger, higher quality territories (Olsson and Madsen, 1998). Territory size often 

correlates with reproductive success, as high quality or large territories attract 

females and can reflect the genetic quality of the resident male (e.g., iguanids, Uta 

palmeri, Hews 1990; ornate dragon lizards, Ctenophorus ornatus, Lebas 2001; side-

blotched lizards, Uta stansburiana, Calsbeek and Sinervo 2002). Choice may also be 

based on phenotypic traits other than size or resources, although conclusive results 

demonstrating this in reptiles are limited. These traits may include display behaviour 

(Crews 1975) and/or parasite and disease resistance (Hamilton and Zuk 1992, Moller 

et al. 1999).  
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Advances in genetic techniques since the early 1980’s have revolutionised our 

understanding of animal mating systems. Recently, important distinctions have been 

made in some species between social and genetic mating systems (Reynolds 1996, 

Hughes 1998). For instance, paternity analyses show that both sexes in many species 

regularly mate with multiple partners regardless of what is apparent based on social 

interactions alone (Pearse and Avise 2001, Avise et al. 2002, Griffith et al. 2002, 

Akcay and Roughgarden 2007, Uller and Olsson 2008).  

  

The mating system determines which genes are represented in future generations and 

thus affects the evolutionary trajectory of a population. Different reproductive 

strategies and mating systems have profound effects on the genetic diversity of a 

population. For instance, high reproductive skew, where only a small proportion of 

males sire all offspring in a population (Emlen and Oring 1977), can severely 

decrease genetic diversity (Anthony and Blumstein 2000), whereas multiple 

paternity can increase it (Sugg and Chesser 1994). Therefore, understanding 

reproductive ecology and the mating system is particularly important for small or 

declining populations and mating systems should be incorporated into management 

and recovery plans for threatened or endangered species (Anthony and Blumstein 

2000). 

 

1.3 Reptile mating systems 

 

Because of their extreme variation in morphology, behaviour, and ecology, reptiles 

exhibit diverse reproductive tactics. In contrast to birds, parental care is lacking or 

minimal in reptiles, and males provide no obvious direct resources to females before, 

during or after mating. Female reproductive intervals vary from days to years 

between species of reptile, and clutch sizes can be large (e.g., over 100 eggs for some 

turtles and crocodilians, Greer 1975). Overall, complex mating systems are rare in 

reptiles. Around 80% of reptile mating systems that have been studied are 

promiscuous (Olsson and Madsen 2001), with both sexes having multiple partners 

with no prolonged pair bond (Stamps 1983, Tokarz 1995, Olsson and Madsen 1998). 

The form of promiscuity varies and is usually dependent upon the spatial 

organisation and dispersion of females, and competitive and guarding ability of 

males. If females are moderately aggregated in space and receptive over a relatively 
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long period of time, a variety of mating systems are possible. All forms of 

promiscuity are present in reptiles, including polyandry where females mate with 

multiple males (e.g., Madsen et al. 2005, Uller and Olsson 2008) and polygyny 

where males mate with multiple females (e.g., Cooper and Vitt 1997, Zamudio and 

Sinervo 2000). Monogamy, or long-term cooperative pairing, is uncommon in 

reptiles (Bull 2000) and has only been shown conclusively in five species in one 

lizard group (including Tiliqua rugosa, Bull 2000; Egernia saxatilis, O'Connor and 

Shine 2003; Egernia cunninghami, Stow and Sunnucks 2004a; Stow and Sunnucks 

2004b; Egerni stokesii, Gardner et al. 2001; and Egerni whittii, Chapple and Keogh 

2005).  

 

Paternity studies have shown that polyandry in reptiles commonly results in clutches 

of offspring with multiple sires represented, or with a sire that was not observed 

mating with the female (Abell 1997, Gullberg et al. 1997, Davis et al. 2001, Gibbs 

and Weatherhead 2001, Lebas 2001, Olsson and Madsen 2001, Pearse and Avise 

2001, Stapley and Keogh 2005). Reptiles have the highest rates of multiple paternity 

of any vertebrate group (Uller and Olsson 2008), which is mostly due to strong 

selection for multiple mating in males, very little precopulatory mate choice by 

females, high mate encounter rates, and low cost to females for multiple mating 

(Uller and Olsson 2008). Combining behavioural data with genetic data is necessary 

to understand all aspects of a mating system including social interactions and 

fertilisation success (Hughes 1998). 

 

1.4 Reproductive ecology and social behaviour of tuatara 

 

Reptiles are excellent models to advance sexual selection and mating system theory, 

as many species are amenable to studies in both the wild and the laboratory, they are 

often conspicuously sexually dimorphic in morphology and behaviour, and broad 

phylogenetic comparisons are not hindered by complex patterns of parental care 

(Andersson and Simmons 2006). Tuatara (Sphenodon punctatus), in particular, are 

conspicuous to a trained observer, and can occur at high enough densities (e.g., on 

Stephens Island) to conduct robust behavioural and molecular studies. Further, 

because tuatara represent a distinct group of reptiles that diverged from their sister 

group (the squamates) approximately 230 mya (Rest et al. 2003), understanding the 
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reproductive ecology of tuatara may help to shed light on possible phylogenetic 

patterns of sexual selection or mating system evolution.  

 

The mating systems of squamates (snake and lizards) are relatively well understood, 

but no reptile group is comparable to tuatara (Sphenodon spp.), because the two 

currently recognized species (S. guntheri and S. punctatus) comprise their own order 

(Sphenodontia). Tuatara are ecologically similar to insectivorous lizards, but they 

also have many morphological and physiological differences. For instance, unlike all 

other reptiles, tuatara lack an intromittent or copulatory organ (Dawbin 1982b, Cree 

and Thompson 1988, Healy and Jamieson 1992). Therefore, predictions about the 

mating system can only be based on evolutionarily distant and ecologically similar 

relatives (i.e., squamate lizards).  

  

Like many lizards (Olsson et al. 2002), tuatara are sexually dimorphic, with larger 

males than females (Dawbin 1982b). Tuatara actively defend territories, and their 

social behaviour resembles that of ecologically similar lizard species in that 

courtship and defence involve intricate, stereotyped display patterns (Gans et al. 

1984, Gillingham et al. 1995). Male tuatara erect large crests and inflate their bodies 

to appear larger during inter- and intrasexual social interactions (Gillingham et al. 

1995). Agonistic interactions between males are common to maintain territory 

boundaries, often resulting in physical damage, including tail loss. Male territories 

can encompass female territories, which probably enables a male to have exclusive 

access to those females for mating. The potential role of female choice remains an 

enigma for tuatara. 

 

Stephens Island holds the largest and most studied population of tuatara (an 

estimated 30 – 50,000 individuals, Newman 1987), and is the focal island for this 

thesis research. Stephens Island is a 150 ha island with a history of human habitation 

and intensive habitat modification (Brown 2000). Due to intensive farming, grazing 

and burning that began with the construction of a lighthouse in the late 1800’s, an 

estimated 80% of the island had been deforested (Dieffenbach 1843, Brown 2000). 

Anecdotal evidence supports a decline in tuatara numbers during the early 1900’s 

from collection pressure and habitat modification (Brown 2000). Further, conversion 

of forest to grazing pastures has altered tuatara behaviour. Pasture tuatara, that lack 
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any cover from natural predators, do not regularly emerge from their burrows during 

the day, whereas forest tuatara are semi-active during the day (J. Moore, pers. obs.; 

Gillingham et al. 1995). Likewise, female tuatara are now able to nest in pastures 

that would have been too cold to support egg development when forested (Thompson 

1990). Population expansion may be causing the tuatara population to exceed its 

carrying capacity (similar to what is occurring on neighbouring North Brother Island, 

Hoare et al. 2006). All livestock have recently been removed from Stephens Island 

and the New Zealand Department of Conservation instigated a revegetation 

programme in 1989. 

  

On Stephens Island, courtship begins around January, correlating with elevated 

testosterone levels in males (Cree et al. 1992, Gillingham et al. 1995). Mating 

follows until March or April. An average of 25% of females are sexually receptive in 

any year (Saint Girons and Newman 1987, Guillette et al. 1990, Cree et al. 1991a, 

Cree et al. 1991b, Cree et al. 1992). Approximately 8 – 10 months after) mating, 

female tuatara migrate to nesting rookeries and lay eggs. Polygyny has been inferred 

for tuatara and is likely because males have no parental investment other than gamete 

contribution. The prediction in a polygynous system is that dispersal is male-biased, 

and that this should spatially segregate closely related individuals, thereby avoiding 

inbreeding (Pusey and Wolf 1996). Furthermore, in territorial, polygynous systems, 

males holding the largest territories typically have the highest mating success, 

especially in the absence of alternative mating tactics (Andersson 1994). Under these 

circumstances, females are not expected to exhibit mate choice because mating with 

the territory-holder ensures a high quality mate due to the male’s previous success in 

intrasexual competition (Cox and Le Boeuf 1977). Only one study has examined 

paternity in tuatara, from eight clutches collected from wild females on Stephens and 

North Brother islands (Hay and Lambert 2008). Hay and Lambert (2008) only 

examined the genetics of these females and clutches, and did not find multiple 

paternity in any clutch.  

 

Much of what we know about mating system theory is the result of laboratory studies 

and therefore provides little information on the fitness consequences of various 

mating strategies for wild populations. One aim of this study is to address the fitness 

consequences of the mating system for small populations of tuatara, and their 
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implications for conservation. Understanding social behaviour and the mating system 

was identified as a research priority in the tuatara recovery plan (Gaze 2001). The 

results of this thesis will not only provide information for managers to improve 

captive breeding and population recovery efforts, but will also enhance the poor 

understanding of reptile mating system evolution and sexual selection. The 

overarching questions addressed in this thesis are as follows: 

 

1) What are the social and genetic mating systems of tuatara, and how do these 

compare to other reptiles?  

2) What factors affect male fitness and reproductive skew and what are the 

implications for small populations? 

3) How do the mating system and reproductive strategies of tuatara affect 

population-wide patterns of genetic diversity and gene flow, and thus the 

evolutionary trajectory of populations? 

 

1.5 Thesis structure 

 

Understanding the mating system first requires knowledge of the underlying 

ecological factors affecting a population. Thus, Chapter Two investigates long-term 

and seasonal trends in morphology of tuatara on Stephens Island. Using long-term 

(spanning 50+ years), and seasonal datasets, I explored the relationship between 

increasing population density and decreasing body condition in tuatara. This chapter 

is published as: 

 

Moore, J.A., J.M Hoare, C.H. Daugherty, and N.J. Nelson. 2007. 

Waiting reveals waning weight: monitoring over 54 years shows a 

decline in body condition of a long-lived reptile (tuatara, Sphenodon 

punctatus). Biological Conservation 135: 181-188. 

 

The spatial structure and organisation of conspecifics has important effects on the 

mating system, especially in simple systems. Thus, Chapter Three investigates the 

territory structure of tuatara on Stephens Island. By combining behavioural 

observations, geographic information system (GIS) mapping, and spatial and genetic 

data, I analyse the male traits that affect access to females and territory size and 

distribution. I also assess population density and sex ratios on Stephens Island (using 
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data originally collected by Nicola Nelson). This chapter is currently in review in 

Journal of Herpetology as: 

 

Moore, J.A., C.H. Daugherty and N.J. Nelson. In review. Large male 

advantage: phenotypic and genetic correlates of territoriality in 

tuatara. Journal of Herpetology.  

 

Chapter Four investigates the social and genetic mating system of tuatara on Stephens 

Island. Specifically, I characterise the mating system and investigate variation in male 

reproductive success. Data on parasite loads were collected by Stephanie Godfrey, 

and co-authors for publication are Stephanie Godfrey, Charles Daugherty and Nicola 

Nelson.  

 

Chapter Five examines the paternity of a captive-bred group of tuatara on Little 

Barrier Island. This chapter provides a strong example of how the mating system and 

reproductive skew can affect genetic diversity for a small, recovering population. 

This chapter has been published as: 

 

Moore, J.A., N.J. Nelson, S.N Keall, and C.H. Daugherty. 2008. 

Implications of social dominance and multiple paternity for the 

genetic diversity of a captive-bred reptile population (tuatara). 

Conservation Genetics 9: 1243-1251. 

 

The last data chapter, Chapter Six, investigates genetic population structure and 

dispersal patterns of Stephens Island tuatara. Fine-scale genetic population structure 

depends on the mating system, dispersal, and demography. Thus, this chapter 

incorporates information from previous data chapters (two through five) to investigate 

population-wide patterns of genetic diversity, dispersal, and relatedness. This 

manuscript has been published in Molecular Ecology as:  

 

Moore, J.A., H. C. Miller, C.H. Daugherty, and N.J. Nelson. In press. 

Fine-scale genetic structure of a long-lived reptile reflects recent 

habitat modification. Molecular Ecology. 

 

Because this thesis is written as a series of standalone manuscripts, there may be 

some unavoidable repetition in the introduction sections. Each chapter includes an 

introduction of specific aims and hypotheses, as well as a discussion, which covers 
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important aspects of the empirical data presented and places the results in the context 

of existing work. Lastly, Chapter Seven provides a synthesis of the main findings of 

the thesis, future directions for research, as well as broad implications for tuatara 

conservation.  



 

CHAPTER TWO 

 

Monitoring Over 54 Years Shows a Decline in Body 
Condition of a Long-lived Reptile (tuatara, 
Sphenodon punctatus) 
 

 

2.1 Abstract 

 

Knowledge gained from monitoring has been the basis for many critical decisions in 

threatened and endangered species and ecosystem management. Long-term 

monitoring has been recognized as a necessity for elucidating population trends and 

community interactions, particularly for long-lived species or ecosystems with slow 

rates of change. We examine seasonal and annual cycles of morphological changes 

in a threatened, long-lived, insular reptile, the tuatara (Sphenodon punctatus), on 

Stephens Island, New Zealand. We used body condition indices as a surrogate 

measure of fitness, and examined seasonal fluctuations, using data from an intensive 

mark-recapture study, and long-term trends using a dataset that spans 54 years. In 

spite of seasonal and annual fluctuations, body condition of tuatara has declined 

significantly between 1949 and 2003; the decline was only evident after >22 years of 

monitoring. We hypothesize that increasing numbers of tuatara have resulted in a 

density-dependent population response driven by past habitat modification on 

Stephens Island. We emphasize the need for long-term monitoring and suggest that 

potentially costly management decisions, particularly for long-lived species or 

ecosystems with slow rates of change, should not be based solely on short-term 

monitoring. 

 

2.2 Introduction 

 

Many researchers have recognized the value of long-term ecosystem monitoring 

(Blossey 1999; Yoccoz et al. 2001), as only long-term data are sufficient to examine 

annual variation in population parameters and the influence of infrequent events or 

cyclic phenomena (Tinkle 1979, Wooller et al. 1992, Garza and Williamson 2001).  

Only long-term monitoring can provide the baseline data necessary to assess whether 
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species declines are real or due to some natural phenomenon (Blaustein et al. 1994).  

Long-term datasets are especially important when the rates of change in a system are 

slow (e.g., long generation time).  In the absence of these datasets, research is limited 

to short-term data that may only resolve fine-scale patterns without any indication of 

the underlying ecological mechanism (climate change, Dunn and Winkler 1999, 

Connell and Green 2000, Walther et al. 2002, Chamaille-Jammes et al. 2006).   

  

Long-term monitoring has been recognized as a necessity, but it is often limited by 

feasibility and funding.  Managers frequently need to make critical decisions based 

on the information that is available, and for minimizing cost and effort monitoring 

often needs to encompass the shortest time scale that is still biologically relevant 

(i.e., that accurately reflects the current biological state of the population or 

ecosystem, Chapman et al. 2000).  Long-term trends may not be evident or may be 

misinterpreted if monitoring duration is insufficient (Madsen and Shine 2001, 

Thomas et al. 2002), which could result in inappropriate, costly management 

decisions. Initial monitoring may reveal population trends that are manifested as 

individual morphological changes (Adler and Levins 1994, for short-lived species), 

which would ultimately affect population dynamics.   

  

So how long does a population need to be monitored before trends become evident 

and appropriate management decisions can be made?  We address this question by 

investigating the seasonal and annual cycles of morphological changes in one 

population of a threatened, long-lived, insular reptile, the tuatara (Sphenodon 

punctatus). We use intensive mark-recapture data and a dataset spanning 54 years, to 

interpret body condition responses with respect to climate, reproduction, habitat 

modification, and monitoring duration. 

  

Tuatara are medium-sized reptiles and the sole extant representatives of the Order 

Sphenodontia (Benton 2000).  Endemic to New Zealand, they were once widespread 

throughout the main and outlying islands (Holdaway and Worthy 1997), but by the 

early 19
th
 Century, these long-lived reptiles (maximum recorded longevity is 91 

years, N.J.N., personal communication) were extirpated on the two main islands, 

presumably as a result of habitat modification and introduction of rodents (Rattus 

exulans) by human settlers (~750 ya; Anderson 1996).  Much of the habitat on the 
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approximately 30 offshore islands on which tuatara naturally remain has been 

heavily modified.   

   

Over half of extant tuatara (~30 – 50 000 individuals) inhabit Stephens Island 

(known also by its Māori name, Takapourewa; Marlborough Sounds, 40º40’S, 174º 

00’E), which has been the focus of scientific research since 1949 (Dawbin 1962, 

Dawbin 1982b, Dawbin 1982a) and is the source island for two translocated 

populations (Nelson et al. 2002a; N.J.N. unpublished data).  The 150 ha island 

supports a lighthouse and has a history of intensive habitat modification.  By the 

mid-1920’s, following constant human presence by permanent lighthouse keepers, an 

estimated 80% of the island’s forested habitat had been cleared for farming and 

speculation was raised over the small number of tuatara remaining after intensive 

collection for museum specimens (Brown 2000).  Cleared paddocks had been 

maintained on the island until removal of livestock in 2004, with little natural 

revegetation since the initial deforestation. Although reforestation efforts have been 

ongoing, remnant coastal forest now covers less than 15% of the island (Hare and 

Cree 2005), and in forest remnants, the average density of tuatara is ca. 2015 per 

hectare, which is five times greater than in the artificial paddocks (Carmichael et al. 

1989), and at least 20 times greater than on any other island where tuatara naturally 

occur (Cree and Butler 1993).   

 

In order to reveal demographic patterns and potential impacts to this biologically 

significant source population, we examine seasonal and long-term trends in body 

condition (a measure of mass relative to body size).  Specifically, the following 

questions are addressed: (1) Are long-term trends or cycles in body condition 

evident, and do these vary between the sexes? (2) Does body condition of tuatara 

fluctuate seasonally, or with respect to sex or climate? (3) How many years of 

monitoring may be necessary to reveal significant long-term trends? 

 

2.3 Methods 

 

2.3.1 Long term body condition trends 
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Mark-recapture data were collected from Stephens Island tuatara from 25 separate 

years, spanning the period 1949-2003.  In most sampling years, data were collected 

during multiple sampling trips, and the times of the sampling trips varied by year.  

Tuatara caught between 1949 and 1992 were given permanent individual marks by 

toe-clipping when first captured, and recaptures were recorded.  After 1992 toe-

clipping was no longer used to permanently mark individuals.  During the 2003 trip, 

a unique number was written on the side of each animal with a permanent marker 

pen, which was legible for the duration of the sampling period only.  

  

From 1983-1985, only females were captured, as mark-recapture data are derived 

from a nesting study (Newman et al. 1994).  Therefore we removed these years from 

intersexual analyses but retained them for subsequent female-only analyses.  

Morphological measurements taken from captured tuatara included sex, snout to vent 

length (SVL; mm) and mass (g) (Table 1).  The sex of each adult tuatara (≥ 170 mm 

SVL) was easily determined by examining secondary sexual characteristics, 

including crest development, spine shape, head size/shape, and shape of abdomen 

(Dawbin 1982b, Cree et al. 1991b) 

  

We calculated body condition indices to assess trends in tuatara body condition.  

Body condition, which is often used as a surrogate measure of fitness, reflects an 

animal’s storage and expenditure of energy, which can sometimes reveal the stresses 

or limitations affecting those individuals (Doughty and Shine 1998, Moore et al. 

2000, Schulte-Hostedde et al. 2001). Recent debate has raised cautions about 

generating false relationships between condition and other parameters correlated 

with body size (Green 2001, Schulte-Hostedde et al. 2005).  However, with proper 

testing of assumptions, body condition indices provide a powerful, non-destructive 

technique for examining body mass changes over time, while accounting for 

allometric growth (Bradshaw et al. 2000, Shine et al. 2001).  We defined body 

condition as the residual values from a linear regression of log(mass) versus 

log(SVL), because it was the most appropriate for our dataset and meets the 

assumption of linearity (r
2
 = 0.95).   
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Body condition indices were used to assess long-term intersexual trends in tuatara 

body condition by carrying out a repeated measures analysis of variance (ANOVA) 

with a linear mixed effects model.  The dependent variable was body condition of 

tuatara.  We included sampling period (year) and sex as dependent fixed effects, and 

individual as an independent random effect. We used Akaike’s Information Criterion 

(AIC; Akaike 1973; Burnham and Anderson 1998) for statistical model selection. 

For these analyses, we used data from all years in which both males and females 

were caught. 

  

Upon finding a significant effect of sex and time on tuatara body condition, we 

explored temporal trends in body condition for each sex.  We constructed models for 

adult females and males separately, including data from all sampling years, to assess 

trends using linear mixed effects models which accounted for individual variability.  

Models compared were those in which body condition (1) remained constant over 

time, (2) fluctuated through time, and (3) showed a linear increase or decrease over 

time.   

  

We further explored the long-term dataset (for both males and females) using the 

same analysis as above, in the following ways (1) all data exclusive of 1949 and 

2003 (as these appeared to have a potentially strong influence on the trend), (2) only 

data from years that were sampled in the same month (to test for a seasonal sampling 

effect), and (3) all data in 10 year, 30 year, and multiple-year additive blocks (to 

assess the monitoring duration necessary to reveal consistently significant trends).     

  

We obtained maximum yearly rainfall data for Stephens Island over the last 150 

years (C. Allen, unpublished data). These data were analyzed using an ANOVA with 

a linear mixed effects model to determine whether rainfall has fluctuated 

significantly through time, or whether any linear trends are evident that may help to 

explain any patterns in tuatara body condition. 

 

2.3.2 Seasonal body condition trends 

 

Upon finding significant fluctuations in the long-term dataset we investigated 

potential seasonal cycles in body condition by recording morphological data from 
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Stephens Island tuatara on four trips (Nov 2004, Jan, Mar, May 2005) in three study 

plots in Keepers Bush (an original forest remnant). The centres of the study plots 

were randomly located from an accessible track running through the bush.  All 

tuatara within two circular plots 10 m in radius, and one 14 m radius were captured, 

and their locations in the plot were recorded. Repeated captures of these individuals 

were made in November 2004 (over seven days, seven nights; austral spring), 

January 2005 (four days, four nights; austral summer), March 2005 (four days, four 

nights), and May 2005 (five days, five nights; austral autumn).  We marked each 

individual using a passive integrated transponder (PIT) tag (AVID, Folsom, 

Louisiana, USA).  At each capture, SVL (mm), mass (g), and sex were recorded.  

These data were not included in the long term analysis, as they were collected from a 

different sample of tuatara, and the body condition indices generated from this 

analysis are relative and not directly comparable to those generated from the long 

term analysis. 

 

To assess seasonal trends in tuatara body condition, we carried out a repeated 

measures ANOVA with a linear mixed effects model.  Body condition of tuatara was 

the dependent variable.  Trip, plot, and sex were dependent fixed effects, and 

individual was included as an independent random effect. Because juveniles were 

not sampled in all trips, and were only caught in very low numbers, we did not 

include them in this analysis. Models were screened based on AICs (Akaike 1973; 

Burnham and Anderson 1998), and we then rescaled the values to the lowest AIC, to 

give relative AIC values (∆AIC).  Those models with the lowest AIC values provide 

the best explanation of variance.    

 

We used correlation tests with seasonal data to examine the relationship between 

body condition and (1) maximum monthly rainfall, (2) maximum monthly rainfall 

from one month prior to sampling month (to test whether there was a delayed 

response in condition), and (3) average monthly temperature.  These climatic data 

were obtained for Stephens Island, and included maximum monthly rainfall (mm) 

and average monthly ambient temperature for the period Oct 04 – June 05 (C. Allen, 

unpublished data).   
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All data sets satisfied the assumptions of normality and homogeneity of variances. 

Means are reported as mean ± 1SE, and significance is assumed at p < 0.05.All 

analyses were carried out using the computer program R (R Core Development Team 

2006). 

 

2.4 Results 

 

2.4.1 Long term body condition trends 

 

From 1949 to 2003, there was a 105 g decrease in average female mass, with only a 

2 mm decrease in average SVL. Males showed a 162 g decrease in average mass, 

with only a 6 mm decrease in average SVL (Table 1).  Between 1949 and 2003 a 

total of 2,508 captures were made of 1,888 adult tuatara.  The heaviest tuatara was an 

adult male captured in 1950, weighing 1020 g (SVL = 285 mm).  Three other adult 

males weighing 1000 g were captured during this period (the same individual, in 

1957, and two different individuals in 1954 and 1957; SVL = 270 and 280 mm 

respectively).  By 2003 maximum mass of adult male tuatara had declined to 770 g 

(SVL = 267 mm).  The heaviest female tuatara was captured in 1953 and weighed 

690 g (SVL = 267 mm).  A further 3 captures of females weighing ≥ 550 g have been 

made, all in the period 1950-1956.  By 2003 maximum mass for female tuatara was 

480 g (SVL = 240 mm).   

 

Both sex and year were significant main effects identified by AIC model selection 

(∆AIC = 0.0, compared with a null model of ∆AIC = 501.6; Table 2).  The next best 

model, where year is included as the single main effect, is a significantly poorer 

predictor of tuatara body condition (∆AIC = 32.9).  Adult male tuatara had higher 

body condition than adult females (males, mean = 0.02 ± 0.004; females, mean = -

0.02 ± 0.004; Fig. 1).  The lack of a significant interaction between year and sex 

(∆AIC = 115.9) demonstrates that temporal variation in body condition is not sex-

specific. 

 

Body condition fluctuated significantly through time, compared with a model 

treating body condition as constant with respect to time (males χ
2
13 = 250.1, p < 

0.0001; females χ
2
13 = 490.5, p = 0.0001; Fig. 1). Furthermore, from 1949 – 2003



 

-0
.2
5

-0
.2
0

-0
.1
5

-0
.1
0

-0
.0
5

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5 1
9
4
5

1
9
5
5

1
9
6
5

1
9
7
5

1
9
8
5

1
9
9
5

2
0
0
5

S
am
p
li
n
g 
Y
e
ar

Body Condition Index .

                         F
ig
u
re
 1
. 
L
o
n
g
-t
er
m
 t
re
n
d
 o
f 
b
o
d
y
 c
o
n
d
it
io
n
 d
ec
li
n
e 
fo
r 
m
al
e 
(●
, 
--
 ,
 r
2
 =
 0
.3
7
) 
an
d
 f
em
al
e 
(○
, 
]
 ,
 r
2
 =
 0
.2
2
) 
tu
at
ar
a 
(S
p
h
en
o
d
o
n
 p
u
n
ct
a
tu
s)
 

fr
o
m
 1
9
4
9
 t
o
 2
0
0
3
 o
n
 S
te
p
h
en
s 
Is
la
n
d
, 
N
ew
 Z
ea
la
n
d
. 



Chapter 2 – Tuatara body condition decline   
 

27 

Table 2. Results of linear mixed effects models of body condition 
index of tuatara (Sphenodon punctatus) from Stephens Island, 

including rescaled AIC (∆AIC) and degrees of freedom (DF). The 

model with the lowest ∆AIC best explains the variance in the seasonal 

and long-term dataset. 
 

Seasonal Models ∆AIC DF 

trip 0.00 6 

trip + sex 4.77 7 

trip + plot 14.65 8 

trip + plot + sex 19.13 9 

trip + sex + (trip * sex) 25.43 10 

trip + plot + (trip * plot) 39.62 12 

null 127.83 3 

sex 131.52 4 

plot 142.09 5 

Long-term Models   

sex + year 0.00 25 

year 32.87 24 

sex + year + (sex * year) 115.85 46 

null 501.56 3 

sex 504.83 4 

 

 

body condition of both adult male and adult female tuatara declined significantly.  A 

linear decline in condition fits the data better than a model where condition is 

constant over time in adult tuatara of both sexes (males χ
2
7 = 79.6, p < 0.0001; 

females χ
2
7 = 67.8, p < 0.0001; Fig. 1).  The decline remained significant even when 

the analyzed dataset did not include data from 1949 and 2003 (indicating that these 

years did not disproportionately skew the results), and when the dataset only 

included years that were sampled in the same month (indicating no effect of 

sampling season).  

 

A consistently significant decline in body condition only became evident after 

including > 22 years of data (starting in 1949).  When each decade of data was 

analyzed separately, no clear patterns were evident and results varied from 

significant linear increases (e.g., females 1970 – 1980, t = 5.2, p < 0.001) to periods 
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with constant body condition indices (e.g., females 1950 – 1960, t = -0.6, p = 0.58; 

males 1980 – 1990, t = -0.6, p = 0.7) to significant linear declines (e.g., females 1980 

– 1990, t = -7.4, p < 0.0001; males 1960 – 1970, t = -3.5, p < 0.01).  Regardless of 

the starting date, datasets that included at least 30 years of data all revealed 

significant declines in body condition, with the exception of males from 1970 – 2000  

(Table 3).  Annual rainfall has remained relatively constant over time, and did not 

exhibit any significant linear trends (F1,52 = 1.7, p = 0.2). 

 

2.4.2 Seasonal body condition trends 

 

From the three study plots, we recorded 461 captures, from 201 individual tuatara 

(107 males, 87 females, 7 juveniles), over four trips between Nov 2004 and May 

2005.  Individual recaptures increased with time, and new captures decreased with 

time until they approached zero (Table 4). We found a significant positive 

relationship between body mass and SVL (linear regression, r
2
 = 0.95, P<0.001).  

Snout-vent length averaged 196.6 ± 0.9 mm (female) and 261.7 ± 3.7 mm (male), 

and mass averaged 231.8 ± 1.5 g (female) and 473.8 ± 9.0 g (male). Body condition 

was significantly higher in males (mean = 0.02 ± 0.009) than in females (mean = -

0.03 ± 0.006) or juveniles (mean = -0.08 ± 0.006), although this is not surprising 

considering sexually dimorphic morphologies of males and females.  

 

The univariate model including trip explained the greatest amount of variance in 

body condition (AIC = -929.1, ∆AIC = 0.0), followed by trip + sex (∆AIC = 4.8; 

Table 2).  However, because the trip + sex model is not within two AIC units of the 

best model, we did not consider it to be competitive with the top model (Burnham 

and Anderson 1998).  Body condition was significantly lower in March (mean = -

0.06 ± 0.01; p < 0.001) and higher in May (mean = 0.06 ± 0.006) than at other times 

of the year (Fig. 2). 

 

The warmest months during the sampling period were February 05 (mean temp = 

18.0 ºC), followed by March 05 (mean temp = 16.0 ºC).  There was no significant 

correlation between mean body condition and mean monthly temperature (r = -0.6, 

p= 0.3).  The maximum rainfall was highest in May 05 with 136.1 mm, and lowest in 
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Table 3. Results of linear mixed effects models of body condition of 
male and female tuatara of varying sampling periods using reduced 

datasets collected from Stephens Island over the period 1949 – 2003. 

Direction of t-values (positive or negative) indicates the direction of 

the linear trend over time, and asterisks indicate significance (p < 

0.05). 
 

Time span Females Males 

10-year blocks t value p value t value p value 

1950 - 1960 -0.6 0.6 0.002 1.0 

1960 - 1970 0.1 0.9 -3.5 0.004* 

1970 - 1980 5.2 <0.0001* 3.0 0.02* 

1980 - 1990 -7.4 <0.0001* -0.6 0.7 

1990 - 2000 -4.5 0.0026* -3.0 0.1 

30-year blocks     

1950 - 1980 -8.2 <0.0001* -7.8 <0.0001* 

1960 - 1990 -3.0 0.006* -2.7 0.01* 

1970 -2000 -4.7 <0.0001* 1.0 0.3 

 

 

Table 4. Frequency of new captures and recaptures, and mean body 
condition index  of all tuatara (Sphenodon punctatus) sampled on four 

trips to Stephens Island (M = males, F = females, and J = juveniles). 

 

 New captures  Recaptures 

Trip M F J  M F J 

Mean body 

condition 

index 

November 04 62 38 2  0 0 0 0.009 

January 05 34 39 0  41 34 0 0.002 

March 05 7 7 3  48 48 1 -0.070 

May 05 4 3 2  50 37 1 0.052 
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Figure 2. Mean seasonal body condition (± 1SE) of male (●) and 
female (○) tuatara (Sphenodon punctatus) sampled from four trips to 

Stephens Island.  
 

April 05 with 4.1 mm.  There was also no significant correlation between body 

condition and maximum monthly rainfall (r = 0.4, p = 0.6), or maximum monthly 

rainfall one month prior to the sampling month (r = -0.2, 0.8).  

 

2.5 Discussion 

 

Over the past 54 years, tuatara body condition has decreased significantly over time, 

with adult male tuatara having consistently higher body condition than adult females, 

although both sexes have declined at a similar rate.  Body condition of both sexes of 

tuatara appears to fluctuate seasonally and is lowest in March (austral autumn).  

 

The most obvious cause of a seasonal decline in body condition during the mating 

season (March) is from increased energetic costs of reproductive activity.  Plasma 

levels of oestradiol in female tuatara from Stephens Island are highest in February - 
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March, which is indicative of vitellogenesis (Cree et al. 1992).  Furthermore, Cree et 

al. (1992) found a peak in testosterone of female and male tuatara, and a peak in 

corticosterone in males (Tyrrell and Cree 1998) at this time.  High testosterone levels 

are known to increase mobility and social contact of reptiles during mating (Wada 

1982, Ketterson and Nolan 1992, Denardo and Sinervo 1994). In tuatara, mite 

infestation (Neotrombicula sphenodonti and N. naultini, Acari: Trombiculidae, Goff 

et al. 1987) also peaks during the breeding season, and is evident by obvious orange 

patches on the skin that are absent at other times of the year (S. Godfrey, 

unpublished data; J.A.M., personal observation).  Testosterone, in addition to 

increased physical contact, could therefore have a similar effect of lowered body 

condition and increased ectoparasite intensity of tuatara. Further research is needed 

to confirm this hypothesis and because our seasonal dataset is somewhat limited, our 

conclusions remain speculative. 

 

Despite monthly and annual fluctuations, rainfall levels on Stephens Island have 

remained constant over the past 150 years, with no significant increases or decreases.  

A long-term decline in body condition was also found for neighboring North Brother 

Island tuatara, S. guntheri (an island which is very similar to Stephens in habitat 

modification history and geographic locale). After fully exploring potential climatic 

influences (including long-term cyclic events), Hoare et al. (2006) found no 

significant correlations between climate and body condition. Although there is no 

source of fresh water on Stephens Island, and the animals are highly dependent upon 

rainfall, because rainfall levels have remained steady over time it does not appear 

that climate changes are responsible for the body condition decline.   

 

A more likely hypothesis is that the decline may be a density dependent response to 

resource competition from a steadily increasing number of tuatara.  There is 

anecdotal evidence of intensive collection pressure on Stephens Island tuatara in the 

late 19
th
 to early 20

th
 centuries. This, coupled with the clearing of over 80% of the 

forest for farming (likely their preferred habitat, as evidenced by the much higher 

densities in the forest than in cleared areas; Carmichael et al. 1989) could have 

caused a temporary bottleneck in this population (Brown 2000).  With time, female 

tuatara took advantage of the clearings and moved into these areas to nest (females 

on forested islands nest in open areas such as cliff edges and rocky outcrops with 
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temperatures appropriate to support full egg development; Nelson et al. 2004b).  The 

resultant steady increase in nesting activity would have increased recruitment. With a 

population increasing and the existing adults potentially being displaced to forest 

remnants, where food is more abundant (Carmichael et al. 1989), food resources 

(including threatened invertebrates, e.g., Cook Strait giant weta, Deinacrida rugosa; 

Cook Strait click beetle, Amychus granulatus) may have been limited.    

 

Tuatara, like many reptiles, may have high phenotypic plasticity (Dufty et al. 2002), 

allowing them to survive in conditions that other animals may not. Whereas density-

dependence can cause decreased survivorship and population declines in, for 

instance, some mammals (Brown et al. 2001), long-lived reptiles may respond 

phenotypically (Sumner et al. 1999).  In species of reptile that are long-lived, and 

have slow generation times (like tuatara) these changes may take years to manifest 

themselves in a population.  We speculate that this population rebound is having 

negative morphological impacts on the individuals.  

 

Adding further evidence to this hypothesis are the morphological responses that 

accompany newly translocated tuatara individuals (Nelson et al. 2002a).  Animals 

used for translocations have been sourced from Stephens Island, or neighboring 

North Brother Island.  In all cases where tuatara have been moved to a new island, 

the translocated individuals show massive weight gain even after years of stable 

mass on the source island (averaging 41% mass increase for tuatara translocated 

from North Brother to Titi Island in 1993, Nelson et al. 2002a; N.J.N., unpublished 

data).  This provides strong evidence for competitive release, which, in addition to 

the very high densities, suggests that resources are limited on source islands.  

However, because pre-habitat modification morphological data are lacking, this 

hypothesis remains speculative.  

 

When analyzing our dataset, the significant decline was only apparent after including 

at least 22 years of data.  Ten year datasets revealed conflicting results, and in this 

species, these short-term datasets are most likely only encompassing natural 

fluctuations that may reflect food abundance or reproductive activity (e.g., female 

tuatara only nest on average, once every four years (Cree et al. 1992) and if there is 

any nesting synchrony there may be an associated population increase following a 
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productive year).  Significant body condition increases in earlier decades (e.g., 1970 

– 1980) were apparently not sufficient to reverse the overall declining trend.   The 

reverse may also be true for other populations or species.  If a short term decline is 

severe enough, it may bring a population below the recovery point, thus having a 

major impact on the viability of that population. 

 

Many studies are conducted within the span of a normal research grant (3-5 years), 

but this may only represent a minor blip on the evolutionary radar of a long-lived 

species (Likens 1989, Madsen and Shine 2001).  Although in some cases short-term 

datasets are appropriate (e.g., to detect annual or seasonal fluctuations, or when 

declines are abrupt), it may be inappropriate to make drastic population level 

management decisions for long-lived species based on a five, 10 or even 15 year 

dataset.  At least thirty years of sampling seems sufficient to reveal consistent trends 

in our dataset, and the results become more consistent with increasing monitoring.  

One anomaly, however, is the non-significant linear decline for male tuatara from 

1970 – 2000.  This could indicate that the decline in body condition of males in this 

population is stabilizing, and with current reforestation of Stephens Island, it is 

possible that this trend is beginning to reverse itself.   

 

Numerous ecological studies revealing significant population trends have been based 

on 20 – 30 year datasets (Likens 1989). This monitoring time span seems especially 

effective at detecting changes in (1) long-lived species with slow rates of change 

(generation times and/or recruitment events; Wooller et al. 1992, Connell and Green 

2000, Walther et al. 2002), (2) ecosystems subject to long-term or infrequent climatic 

events (Elliott et al. 1997, Visser et al. 1998, Dunn and Winkler 1999, Hughes and 

Connell 1999, Walther et al. 2002, Connell et al. 2004), (3) species or ecosystems 

that are slow to respond to disturbance (Westemeier et al. 1998, Chapman et al. 

2000), and (4) newly created or restored ecosystems (Mitsch and Wilson 1996).   

 

In addition to detecting declines, a 25 year monitoring period has been sufficient to 

reveal population rebounds, even in long-lived species where it had been suggested 

that such rebounds would not be evident for 100+ years (Chaloupka 2002).  Balazs 

and Chaloupka (2004), Troeng and Rankin (2005), and most recently Antworth et al. 

(2006) have all been able to conclude with relative certainty that sea turtle nesting 
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activity is increasing significantly, and that these once depleted populations are 

responding positively to conservation efforts that began in the 1970’s.  Likewise, 

Iverson et al. (2006) have detected a rapid recovery, from near extirpation, of Allen 

Cays Rock Iguana (Cyclura cychlura inornata) populations over the past 25 years, 

further concluding that these long-lived, insular lizards may now be nearing their 

carrying capacity.  

 

In conclusion, our results, which reveal a long-term decline in morphological 

characteristics in spite of seasonal and annual fluctuations for the largest extant 

tuatara population, further emphasize the need for long-term monitoring (30+ years) 

when considering threatened and endangered species management of species with 

slow life histories.  This decline may be a density dependent response to increases in 

tuatara numbers due to past habitat modification for this long-lived, insular species.  

At present, this biologically significant population is undoubtedly stable in numbers, 

albeit representing over half of the world’s remaining tuatara. With ongoing 

reforestation of Stephens Island, we expect that with continued monitoring, a 

reversal of this decline will become evident in the future. We suggest that 

conservation management decisions, for this and other long-lived reptiles, should be 

based on the longest datasets possible, and caution should be used when prescribing 

conservation solutions based on short-term datasets (<15 years) alone. 

 



 

CHAPTER THREE 

 

Large Male Advantage: Phenotypic and Genetic 
Correlates of Territoriality and Female Access in an 
Ancient Reptile (tuatara, Sphenodon punctatus) 
 

 

3.1 Abstract 

 

In reptiles, phenotypic measures such as body size usually predict a male’s success 

in territorial interactions. Recent evidence from fish, birds and mammals has shown 

that genetic heterozygosity can have a strong influence on competitive ability and 

territory quality as well. Here we provide a comprehensive assessment of the social 

structure and factors affecting male territory quality and aggressive behaviour in a 

dense population of tuatara, a long-lived reptile that maintains long-term territories, 

on Stephens Island, New Zealand. Male body size and individual heterozygosity 

significantly predicted the number of females to which a male had access, but there 

was no relationship between male body size and heterozygosity and only a weak 

relationship between male competitive ability and heterozygosity. Body size, body 

condition and heterozygosity did not predict core home range size. Large, more 

heterozygous males were more effective at 1) monopolizing areas where females 

were most dense and 2) guarding females by consistently winning aggressive 

encounters with other males. In this system, we found no spatial or social evidence 

for alternative male reproductive strategies. A stronger association between 

aggression and heterozygosity may be evident in a more inbred population. Further 

research is needed to understand territory establishment and assess whether female 

access equates to increased reproductive success in this species.  

 

3.2 Introduction 

 

Knowing the factors that affect individual success in territorial interactions is a 

critical first step in understanding the evolution of mating systems and reproductive 

strategies. Territoriality is common many reptiles (particularly lizards, reviewed in 

Stamps 1983), but most studies cite the distribution of ecological attributes, such as 
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habitat characteristics and food quantity, as the driving force behind the observed 

spatial structure (Maher and Lott 2000). Food resources in many territorial reptile 

systems are evenly distributed, many females nest outside of breeding territories, and 

paternal care is absent. Territory structure and quality may depend more on the 

distribution of mates and competitors than on other ecological attributes (Stamps 

1983). However, few studies consider the distribution of potential mates as the 

driving force because conspecific interactions are often difficult to observe and 

quantify in cryptic species (but see Mcloskey et al. 1987, Wikelski et al. 1996).  

 

For many vertebrates, including reptiles, male phenotypic measures, such as body 

size or condition, predict territory size and access to females (Shine et al. 2000, 

Candolin and Voigt 2001, Morrison et al. 2002, Calsbeek and Sinervo 2004, 

Whiteman and Parker 2004, Välimäki et al. 2007). These characteristics 

consequently bias reproduction toward large males (Abell 1997, Lewis et al. 2000, 

Lebas 2001). Further, many male reptiles guard the females within their territories, 

or defend an exclusive area around their mate that may differ by season (Stamps 

1983, Olsson et al. 1996). Where dominance hierarchies are formed, it is the smaller 

males that assume subordinate roles or adopt alternative reproductive strategies (e.g., 

‘satellites’ or ‘floaters’, Andersson 1994, Maher and Lott 1995). 

 

Male phenotypic measures are not the only predictors of territory quality. Genetic 

heterozygosity, a measure of inbreeding, affects standard fitness measures such as 

survival, hatching success, and disease resistance (Madsen et al. 1996, Hansson and 

Westerberg 2002, Keller and Waller 2002, Reed and Frankham 2003, Hansson 2004, 

Calleri et al. 2006). Growing evidence shows that genetic heterozygosity can also be 

reflected in competitive behaviour and territoriality (Höglund et al. 2002, Tiira et al. 

2003, Hoffman et al. 2004, Lieutenant-Gosselin and Bernatchez 2006). Seddon et al. 

(2004) found that heterozygosity was the best predictor of territory quality in a group 

living bird (Monias benschi). Likewise, individual competitive ability is affected 

more by heterozygosity than body size or learning in common shrews (Sorex 

araneus; Välimäki et al. 2007). In many fish, birds, and mammals, acquisition of 

seasonal breeding territories is critical for individual survival and fitness. These 

examples provide strength for the argument that aggressiveness and territoriality are 

reliable fitness correlates, and should be honest signals of individual genetic quality. 
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So, what influences individual differences in competitiveness, territoriality, and 

female access in reptiles that maintain long-term territories? In this study, we 

investigate the social structure and individual male territoriality in relation to 

conspecific distribution of a long-lived (>85 years) reptile (tuatara, Sphenodon 

punctatus). Tuatara maintain stable home ranges throughout the year that vary in size 

depending on population density and habitat type (Gillingham et al. 1995). Although 

mating occurs in defended areas within male home ranges (=territories), female 

tuatara migrate outside home ranges to nest as temperatures in the forest are too low 

to support egg development (Thompson 1990). Females do not ovulate every year, 

and only reproduce every two to four years (Cree et al. 1992). Anecdotal evidence 

indicates that large male tuatara have long term territory fidelity (i.e., males that 

were toe-clipped 40-50 years ago have been recaptured near their original capture 

locations, N. Nelson, pers. obs., Dawbin 1949, Dawbin 1962). Previous chance 

observations of tuatara mating suggest that reproduction is dominated by large males 

(Gillingham and Miller 1991, Cree et al. 1992), although small males have the 

physiological capacity to mate (Cree et al. 1992). Here we aim to 1) understand the 

role of conspecific (inter- and intrasexual) interactions in overall territoriality and 

social structure, and 2) investigate the phenotypic and genetic traits that affect male 

aggressiveness and physical access to females.  

 

Because the social structure and the extent of territoriality may depend on population 

density and the local adult sex ratio (Emlen and Oring 1977), we first quantify these 

population parameters. Our study site, Stephens Island, New Zealand, holds over half 

of extant tuatara (the largest and most dense population by orders of magnitude, 

Gaze 2001). Theory predicts that at extremely high population densities, the 

energetic costs of site defence outweigh the reproductive benefits associated with 

territoriality (Brown 1969, Emlen and Oring 1977). Thus, alternative mating 

strategies should evolve to maximize reproductive success of small or subordinate 

males (Maher and Lott 2000), and if present, alternative strategies should be evident 

in the spatial patterns of males.  

 

3.3 Methods 
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3.3.1 Study animals and study site 

 

Tuatara represent an ancient order of reptiles, the Sphenodontia (Benton 2000). 

Endemic to the main and outlying islands of New Zealand, they are now restricted to 

approximately 30 small, offshore islands due to predation by introduced mammals 

(Gaze 2001). The mating season of tuatara peaks in March (austral summer) and 

nesting occurs approximately 8 – 10 months later (Cree et al. 1992). On average, 

females reproduce once every four years (Cree et al. 1992), while adult males are 

capable of reproducing every year. Tuatara occupy burrows that can be shared with 

other individuals and/or nesting seabirds, and underground burrow systems are 

dynamic and can be extensive (Newman 1987).    

 

Stephens Island (known also by its Māori name, Takapourewa; Marlborough 

Sounds, 40º40’S, 174º 00’E) has a total area of 150 ha, supports a lighthouse, and 

has a history of intensive habitat modification. Although coastal forest would have 

covered most of the island before the arrival of humans, currently two habitat types 

dominate; regenerating coastal forest and grassland pastures (which were originally 

cleared for farming and livestock grazing in the early 1900s; Brown 2000). We 

estimate population densities for both habitat types, but focus the behavioural and 

genetic components of this study on the forest tuatara as this represents a more 

natural state.  

 

3.3.2 Density and sex ratio estimation 

 

From 8 – 16 March 2003, two survey areas in the pastures (3470 and 4005 m
2
) and 

four accessible survey strips (tracks with 3 m borders on either side, from 107 – 443 

m
2
) in a section of remnant forest (Keeper’s Bush) were surveyed using capture-

mark-recapture methods (Table 1). Areas were systematically surveyed each night 

and all tuatara were captured by hand. Individual capture locations were recorded, 

the capture site marked, and all individuals returned to the capture location. Sex of 

adults was determined by sexually dimorphic characters (e.g., larger head and spines 

of males vs. smaller spines and pear shaped abdomen of females; Cree et al. 1991a). 
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Each animal was marked with a unique number written on their sides (with a non-

toxic marker) that was legible throughout the duration of the trip. 

 

Capture data for adults were analyzed using closed population models in the program 

MARK (v3.0 (Win32) Sep 2002; White and Burnham 1999). Juveniles were 

excluded from analyses as only 10 individuals were captured in the pastures and 

none were recaptured. Data were grouped according to the following parameters: 

habitat (forest, pasture), plot (four forest and two pasture), sex (male, female), and 

combinations of sex and habitat, and sex and plot, over eight capture occasions (a 

time model), with allowance for variation in population number. Other models 

available in MARK, for example open population models, or those allowing for 

behaviour (when previous capture affects subsequent capture probability) and 

heterogeneity (individual variation in capture probabilities), may have provided a 

better fit but could not provide estimates of population number due to small sample 

sizes (e.g., Nelson et al. 2002b). The small sample version of Akaike’s Information 

Criterion (AICc; Burnham and Anderson 1998) was used to assess the fit of models. 

Estimates of population size, including 95% confidence intervals, are presented 

using the model with the best fit for our data that allowed for capture probabilities to 

vary with capture occasion and habitat, and by sex within the pasture habitat (AICc 

four points greater than the next model; K = 36). Sex ratios were estimated for each 

plot using population estimates from the MARK analysis, and are reported with 

upper and lower 95% confidence intervals. 

 

3.3.3 Spatial structure 

 

3.3.3.1 Field data collection 

 

In November 2004, three circular study plots (from 314 – 615 m
2
) were randomly 

located from an accessible track running through Keeper’s Bush. Plot centres were 

marked with a GPS and post-processed to increase accuracy. All tuatara in the study 

plots were captured by hand, and location, snout-vent length (SVL, mm), mass (g), 

and sex were recorded. A blood sample (0.5 – 1.0 ml) was drawn from the caudal 

vein/artery and stored in 95% ethanol. A passive integrated transponder (PIT) tag 

(11mm length x 2mm width, AVID Identification Systems, Inc., Norco, CA, USA) 
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was inserted subcutaneously just anterior to the left rear leg for individual 

identification. A subset (n=100) of these animals were marked using a unique colour 

bead tag inserted through the nuchal crests (Fisher and Muth 1989) to enable 

individual recognition from a distance. Predation on tuatara in the forest on Stephens 

Island is extremely low. Thus, there was little potential for increased predation of 

bead tagged animals. There were no apparent long-term effects of bleeding, PIT 

tagging, or bead tagging and animals were inspected during recaptures to ensure 

proper healing. Tuatara that were not bead tagged were recaptured prior to the 

mating season and marked by writing a unique number on their sides with a non-

toxic marker, or were recognized by individual idiosyncrasies in tail, head or spine 

morphology.  

 

Spatial and behavioural data were collected during two mating seasons (28 Feb – 28 

March 2006, and 27 Feb – 27 March 2007) and one nesting season (16 – 28 

November, 2005). Study plots were surveyed twice daily and locations of all visible 

animals were recorded (as a distance and azimuth from plot centres). Mating partners 

of individuals in the study plots were also known from a concurrent study of the 

mating system. All aggressive interactions between marked males were recorded. 

‘Losers’ were defined as males that were chased, bitten, or interrupted in the middle 

of courtship, and fled >1 m from the ‘winner’, subsequently adopting a submissive 

posture or running down a burrow. All animals were re-weighed and measured 

following each monitoring period. We did not perform focal animal observations 

because tuatara spend the majority of the day sitting motionless (Saint Girons et al. 

1980), so infrequent activity would have gone undetected using this method. 

 

3.3.3.2 Core home range estimation 

 

Tuatara locations were entered into a geographic information system (GIS). Because 

agonistic encounters between males only occur infrequently (J. Moore, per. obs.), 

specific territory boundaries were not always clearly definable. Thus, in this study, 

we use the term ‘core home range’ which we defined as 95% minimum convex 

polygons (MCPs). These areas include defended areas (when male-male agonistic 

encounters were observed) and exclude foraging excursions (that occur at night) and 

nesting migrations (Burt 1943, Brown and Orians 1970). MCPs were estimated using 
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Home Range Tools (Rogers et al. 2005) and Hawth’s tools (Beyer 2004) in ArcGIS 

9.1 (ESRI, Redlands, California). We chose not to implement commonly used kernel 

density estimators because they are known to be problematic for herpetofauna (Row 

and Blouin-Demers 2006). Core home ranges were estimated for each individual, 

using 1) all locations (2005 – 2007 inclusive), 2) only locations from 2006, and 3) 

only locations from 2007, with the latter two representing consecutive mating 

seasons (i.e., seasonal ranges). An asymptote analysis (ABODE extension, Laver 

2005) found that at least 20 relocations were necessary to accurately estimate core 

range size, thus we only included animals with ≥ 20 relocations in analyses.  

 

We calculated the percent male-male core home range overlap, and for each male, 

we summed the percent core home range overlap of all other males to determine 

cumulative percent overlap (as some males overlapped multiple males). We also 

calculated the percent core home range overlap for male-female pairs, and summed 

the number of females that each male’s core home range overlapped (= female 

access).  

 

3.3.3.3 Activity centres 

 

Using point data, activity centres (highest use areas within territories, as defined by 

Hayne 1949) were determined for all individuals using the mean centre tool in 

ArcGIS 9.1. Using activity centres, we calculated average nearest neighbour 

statistics for males and females to assess the extent of territoriality. Nearest 

neighbour indices show whether significant clustering or dispersion exists by 

comparing the observed spatial distribution to a random expected distribution. 

Activity centres should be significantly dispersed in highly territorial systems 

(Brown and Orians 1970).  

 

3.3.4 Genetic analyses 

 

DNA extraction and PCR amplification of polymorphic microsatellites for all 

marked tuatara followed Moore et al. (2008b) and Hay and Lambert (2008). Eight 

tuatara-specific loci (C2F, C11P, E11N, H5H, B8P, A12N, C12F, H4H, Aitken et al. 

2001, Hay and Lambert 2008) were amplified. Common measures used to determine 
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individual heterozygosity include 1) mean d
2
, a measure reflecting the evolutionary 

similarity of alleles (Coulson et al. 1998), 2) standardized heterozygosity (SH), that 

allows for incomplete genotyping (Coltman et al. 1998), and 3) internal relatedness 

(IR), that weights allele sharing by the frequencies of the alleles involved (Amos et 

al. 2001). We calculated IR for each individual using an Excel macro (available at 

http://www.zoo.cam.ac.uk/zoostaff/amos/#ComputerPrograms, Amos et al. 2001).  

 

3.3.5 Statistical analyses  

 

Intersexual differences in mean core home range sizes were compared with analyses 

of variance (ANOVAs). To test whether large males are more effective at 

maintaining exclusive core home ranges, we compared the cumulative percent core 

home range overlap to male SVL using a Pearson’s correlation. If mate guarding 

occurs via spatial proximity, within a season, we expect that a male will overlap a 

greater proportion of his mate’s core home range than the average female. Thus, we 

compared the mean percent overlap of mates to non-mated male-female pairs using 

an ANOVA.  

 

We used a general linear model (glm) to test the effects of male SVL, body condition 

(defined as the residual values from a linear regression of log mass over log SVL), 

IR, and core home range size on female access (response variable). A glm was also 

used to model the effects of SVL, body condition, and IR on core home range size 

(response variable).  We also explored the relationship between IR and SVL using a 

correlation test. Lastly, we used a multinomial logistic regression to test the effects 

of SVL, body condition, and IR on percent wins (number of wins in male-male 

encounters/total number of encounters). Models were evaluated based on their AIC 

values, were rescaled to the lowest model (∆AIC) and Akaike weights (wi) were 

calculated to assess the proportion of variance explained by each model in the set 

(Burnham and Anderson 2004). ANOVAs were used to assess the significance of 

each variable in the top models.  

 

Statistical analyses that were not performed in ArcGIS 9.1 or MARK (as described 

above) were carried out in R (R Core Development Team 2006). Means are reported 

as ±1 standard error (SE) and statistical significance is inferred at p < 0.05. All 
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statistical tests were two-tailed and datasets satisfied the assumptions of normality 

and homogeneity of variances or were appropriately transformed.  

 

3.4 Results 

 

3.4.1 Density and sex ratio 

 

In total, 352 adult tuatara was captured in the mark-recapture survey, including 138 

females and 214 males (Table 1). Almost twice as many tuatara were captured in the 

forest (N = 225) than in the pastures (N = 127). Density estimates were significantly 

higher for the forest (mean = 2732 tuatara / ha) than the pastures (mean = 208 tuatara 

/ ha) (Table 1). Sex ratio estimates were approximately 1M : 1F in the forest, 

whereas in the pastures they were approximately 2M : 1F (Table 1).  

 

3.4.2 Social structure and female access 

 

From November 2005 to March 2007 we recorded 1,711 locations from 89 marked 

tuatara (40 females, 49 males) in the three study plots on Stephens Island. The 

average number of relocations was 22.7 (range = 1 – 67) per male, and 16.1 (range = 

1 – 56) per female. Male core home ranges (95% MCP area = 30.6 ± 3.9 m
2
) were 

significantly larger than female core home ranges (95% MCP area = 13.9 ± 2.8 m
2
; 

F1,33 = 9.9, p < 0.01). On average, male core home ranges overlapped 3.9 ± 0.6 

females (range = 0 – 7), while female core home ranges overlapped 1.8 ± 0.2 males 

(range = 0 – 6). 

 

Of male-female pairs that overlapped, male core home ranges overlapped 44.0 ± 3.8 

% of the female’s core home range (range = 1.2 – 100%). Within a season, mated 

males overlapped a significantly greater proportion of their mate’s core home ranges 

than the average unmated pair (mated pairs = 76.5 ± 7.1 % female overlap vs. 

unmated pairs = 38.3 ± 3.9 % female overlap; F1,73 = 14.7, p < 0.001). In 2006, 

29.6% of males maintained core home ranges completely exclusive of other males, 

and in 2007, 8.0% of males had exclusive core home ranges. On average, male core 

home ranges overlapped by 24.9 ± 4.2 % (n = 38) (Fig 1). Controlling for home 

range size, there was a significant inverse relationship between male SVL and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Core home ranges of all male tuatara (categorized by snout-vent length, 
SVL) in one study plot from one mating season (March 2006) on Stephens Island. 

Female symbols represent activity centres of females.  
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cumulative percent overlap by other males (r = -0.36, p = 0.017), indicating that 

body size increases a male’s ability to maintain an exclusive core home range.  

 

The top model predicting female access included male SVL, IR and core home range 

size (Table 2), with the second best model including only SVL and IR. Only SVL (F 

= 8.51, p = 0.02) and IR (F = 6.73, p = 0.03) were significant in the top model. Thus, 

larger, more heterozygous males with slightly larger core home ranges had greater 

access to females (Figure 2). There was no relationship between core home range 

size and any of our explanatory variables as the top models were not different from 

the null model (with no explanatory variables). We found no significant correlation 

between male SVL and IR (n = 20, R = 0.32, p = 0.16).  

 

3.4.3 Activity centres / spatial proximity 

 

Spatial distribution was significantly structured for males, but not females. We were 

only able to calculate nearest neighbour statistics for plots one and three because we 

were lacking sufficient data for some animals in plot two. Male activity centres were 

significantly structured in both plots in both years, with the exception of plot three in 

2007 (Table 3). Conversely, female activity centres were not significantly dispersed 

or clustered (Table 3).   

 

3.4.4 Male-male agonistic interactions 

 

We recorded 28 agonistic interactions involving 22 marked males. The number of 

contests per male ranged from 0 – 9, and 100% of contests (that were not ‘draws’, n 

= 1) were won by the larger of the two males (Figure 3). Approximately 18% of 

contests were the result of larger males interrupting courtships. The top model 

predicting percent wins in male-male agonistic interactions included SVL (AIC = 

31.0, wi = 0.59) and the second best model included SVL and IR (AIC = 32.1, wi = 

0.34) (Table 2). 
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Table 2. Results from general linear models of male tuatara variables 
including female access, core home range size, and percent wins in 

male-male agonistic encounters. The best models have ∆AIC = 0.00. 

Explanatory variables include snout-vent length (svl), internal 

relatedness (ir), core home range size (CHR) and body condition (bc). K 

is the number of parameters in the models, ∆AIC is the re-scaled AIC 

values, and wi is the Akaike weights, or the proportion of variance in the 

response that is explained by each model in the set. 

 

 

Response variable = female overlap, n = 22 

Models k ∆AIC wi 

svl + ir + CHR 4 0.00 0.41 

svl + ir 3 0.55 0.31 

svl+ bc + ir + CHR 5 1.13 0.23 

svl 2 4.78 0.04 

Response variable = male CHR size, n = 22 

Models k ∆AIC wi 

ir 2 0.00 0.27 

svl 2 0.10 0.26 

null 1 0.27 0.24 

svl + ir 3 0.99 0.16 

Response variable = percent wins, n = 21 

Models k ∆AIC wi 

svl 2 0.00 0.59 

svl + ir 3 1.11 0.34 

svl + bc + ir 4 4.44 0.06 
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Figure 2. Body size of male tuatara predicts access to females, as 
represented by the significant linear regression of male body size (snout-

vent length, SVL) over the number of females each male’s core home 

range overlaps. 

 
Table 3. Results of the nearest neighbour test for complete spatial 
randomness of tuatara activity centres on Stephens Island by sex, 

including year and study plot. Z scores are measures of standard 

deviations from a randomly distributed spatial pattern. Significant 

structuring of male tuatara activity centres, and not female activity centres, 

indicate that males are significantly more territorial than females. Mean 

nearest neighbour distance (NND) is the mean observed distance (in 

metres) between activity centres. A nearest neighbour ratio (NNR) above 

one indicates dispersion, while a NNR below one indicates clumping. 
*
 

significant dispersion at p<0.01. 
 

Sex Year (study plot) Mean NND NNR Z 

Males     

 2006 (1) 2.03 1.53 3.83 * 

 2006 (3) 2.27 1.45 3.40 * 

 2007 (1) 3.50 1.44 3.39 * 

 2007 (3) 1.66 1.15 1.04 

Females     

 2006 (1) 2.16 1.24 1.91 

 2006 (3) 1.94 1.25 1.85 

 2007 (1) 3.62 1.06 0.35 

 2007 (3) 2.41 1.23 1.78 
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Figure 3. Mean mass of male tuatara (±1 SE) and the percent of wins 
in male-male contests (as a function of total male-male contests per 

male) indicate that larger males are more likely to win agonistic 

encounters. 

 

3.5 Discussion 

 

To our knowledge, our results provide the first comprehensive assessment of genetic 

and morphological traits affecting individual social structure and competitiveness in 

a wild reptile population. In this very dense population (<2,700 tuatara / ha), tuatara 

home ranges are small and inter- and intrasexual overlap is common. Large, more 

heterozygous males have greater access to females, and are more successful in 

intrasexual interactions, although there was no relationship between body size and 

heterozygosity. Male core home range sizes, although highly variable, are not 

dependent on body size, and large home range size does not increase access to 

females. However, large body size does confer definite advantages in terms of 

exclusive access to potential mates. Large males are able to monopolize areas where 

females are most dense, which is facilitated by the uneven dispersion of females. 

Large males are not only able to secure territories with a greater number of females 

overlapping, but they are also better able to maintain those territories and guard 
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mates by consistently outcompeting smaller males. The phenomenon of large male 

advantage is common among many taxa, so this result is not surprising.  

 

More surprising is the weak relationship between female access and male 

heterozygosity. Although body size explains the majority of variation in female 

access, internal relatedness was included in the top three models. Based on this 

result, we would have also expected to find a relationship between male 

heterozygosity and a phenotypic measure like body size or competitive ability. While 

we did not find a relationship between internal relatedness and male body size, the 

second best model predicting the results of male-male aggressive interactions did 

include internal relatedness. Thus, increased heterozygosity may slightly improve a 

male’s competitive ability, and with larger sample sizes (Coltman and Slate 2003), 

this relationship may have been stronger. Aggressive encounters are energetically 

costly for tuatara, and reptiles in general. Thus, a male may be more prone to engage 

in male-male combat if he is more heterozygous and thus more fit and vigorous (e.g., 

for salmon, Salmo salar, Tiira et al. 2003). Also, we currently know very little about 

territory establishment and the potential role of female choice. Females may be 

establishing themselves near heterozygous males, and assessing them based on a 

fitness-related trait that we did not measure (e.g., head size, Lappin and Husak 2005; 

parasite resistance, Folstad and Karter 1992). The ability to detect heterozygosity-

fitness correlations depends strongly on the underlying genetic background of the 

population (Slate et al. 2004). Stephens Island has a very high level of genetic 

diversity (MacAvoy et al. 2007), so genetic effects may be more evident in inbred 

populations (Tiira et al. 2006). 

 

Population density on Stephens Island (~2,700 individuals / ha) is extreme for tuatara 

populations, and is high for insular populations of reptiles in general (which average 

1920 ± 574 individuals / ha, Buckley and Jetz 2007), especially considering the 

moderate size of tuatara. The social structure of tuatara may be radically different on 

less dense islands. Gillingham et al. (1995) found that home range sizes in the 

considerably less dense pastures (~200 individuals / ha) on Stephens Island are 3 – 4 

times larger than in the forests. Therefore, spatial patterns on less dense islands could 

follow a similar pattern, with male home ranges overlapping little. Although 
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logistically challenging, comparable research on less dense islands would help to 

elucidate these patterns. 

 

Although Stephens Island represents a highly dense population, our spatial data 

provide little concrete evidence for alternative reproductive strategies (e.g., ‘floaters’ 

or ‘satellites’, roving males with inflated, non-defended home ranges that overlap 

multiple territories, Brown 1969, Maher and Lott 1995). However, it appears that 

dominance hierarchies may form where male core home ranges overlap extensively 

(e.g., lower left corner of Fig. 1). Dominant males are always considerably larger 

than subordinates, which are restricted from mating by aggressive encounters with 

larger males. It may prove advantageous for a smaller, subordinate male to associate 

with a larger, dominant male (similar to the “hotshot” phenomenon of lekking 

marine iguanas, Amblyrhynchus cristatus; Wikelski et al. 1996, Partecke et al. 2002), 

as he could potentially sneak matings while the larger male is otherwise occupied, or 

overtake the territory once he reaches an appropriate size.  

 

Home range size generally increases with body size among species from many taxa, 

including lizards (Perry and Garland 2002). When comparing tuatara home ranges to 

ecologically similar lizard species (representing four families) with similar body 

sizes (drawn from Perry and Garland 2002, who reviewed home ranges of 222 lizard 

species), tuatara core home ranges fall well below the regression lines for lizards and 

are at least an order of magnitude smaller than the lizard home ranges (see Fig. 4). 

Why do tuatara have such small home ranges compared to other similar sized 

reptiles? While home range sizes can reflect phylogenetic differences, it is more 

likely that the small core home ranges of tuatara reflect their energetics, resource 

availability and population density. Tuatara are cold-adapted and have very low 

activity levels and energetic requirements (Saint Girons et al. 1980). Furthermore, 

nutrient input from extremely high seabird densities on Stephens Island increases 

primary productivity and has flow-through effects to invertebrate herbivores (i.e., 

tuatara prey; Mulder and Keall 2001). Population density can also affect home range 

or territory size within a species (e.g., Kwiatkowski and Sullivan 2002). On Stephens 

Island, tuatara appear to be able to acquire all necessary metabolic and reproductive  



Chapter 3 – Spatial structure and territoriality   
 

 

52 

 

Figure 4. Home range area as a function of snout-vent length (SVL) 
for lizard species (n = 7, males = closed circles, females = open 

circles) with body sizes similar to tuatara (Sphenodon punctatus). Male 

and female tuatara fall well below the regression lines for male (r
2
 = 

0.37) and female (r
2
 = 0.21) lizard home range area versus SVL. Note 

log scale for home range area. Lizard home range and body size data 

drawn from appendix A in Perry and Garland 2002. Lizard species and 

original data sources include; Anolis cuvieri, A. frenatus, Schoener and 

Schoener 1982; Chlamydosaurus kingii, Griffiths 1999; Cyclura 

carinata, Iverson 1979; Iguana iguana, Rand et al. 1989; Lacerta 

lepida, Castilla 1989; Sauromalus obesus, Johnson 1965. 
 

resources in an unpredictably small space; a size that is contrary to patterns seen in 

lizards, yet consistent with a highly dense population of a cold-adapted reptile with 

low energetic requirements and/or high nutrient availability. 

 

By investigating the social structure of these ancient reptiles, our findings shed new 

light on patterns of territoriality and aggression in vertebrates. Body size had the 

strongest effect on female access and competitive ability, although there was a weak 

effect of individual heterozygosity. We suspect that future research may reveal 

similar patterns in genetically diverse, large, outbred populations of other territorial 
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taxa. Genetic effects may also be more apparent in short-lived species (that only 

experience one or two breeding seasons in a lifetime), where the variance in male 

body size is small and traits affecting competitive ability are tightly linked to 

individual heterozygosity. In this dense, territorial system, intrasexual competition 

and female access are highly skewed toward large, heterozygous males. Future 

research should address whether heterozygosity and female access actually equates 

to realised increases in reproductive success, and whether female choice plays a role 

in territory establishment. 

 



  

 

CHAPTER FOUR 

 

High Reproductive Skew, Size-Assortative Mating, 
and Seasonal Monogamy in a Territorial Reptile 
(tuatara) 

 

 

4.1 Abstract 

 

Variation in traits that affect success in competition and mate choice often equates to 

high variance in reproductive success. Reproductive skew (the extent to which 

breeding is monopolized by dominant individuals) can be high in reptiles, often 

resulting in polygynous systems dominated by large males. Here, we use behavioral 

data and genetic paternity analyses to characterize the poorly known mating system 

of a long-lived, archaic reptile (tuatara, Sphenodon punctatus) at high and low 

densities (on Stephens Island, New Zealand). We further investigate the phenotypic 

traits (including body size, body condition, tail length, and ectoparasite load) that 

affect male reproductive success. Our behavioral data reflect a seasonally 

monogamous system with low levels of polyandry and polygyny that are consistent 

with a male mate guarding hypothesis. Male reproduction is highly skewed (only 25-

30% of males are successful), and body size was the primary predictor of male 

reproductive success. We found weak positive size-assortative mating at high 

densities, but not at low densities where small males were more likely to be 

successful. This is indicative of a male preference for large females that breaks down 

when intrasexual competition is reduced. Although our sample sizes were small, we 

did not find multiple paternity in any clutch, including that of a polyandrous female. 

This warrants further investigation into the mechanisms underlying tuatara 

fertilization and the frequency of genetic polyandry in the wild.      

 

4.2 Introduction 

 

Sexual selection (Darwin 1871) is still unequivocally acknowledged as one of the 

most powerful evolutionary forces shaping populations and species. A complex 

reciprocal relationship exists between sexually selected traits and mating system 
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evolution, so understanding one should shed light on the other (Andersson 1994). 

Considerable variation in traits that improve success in intrasexual contests and/or 

mate attraction equates to high variance in male mating success and high 

reproductive skew in a population (i.e., only a small proportion of males dominate 

mating, Keller and Reeve 1994, Johnstone 2000). In species where fights over mates 

are frequent, selection often favors strength, which can be attained with large body 

size or weaponry (Clutton-Brock et al. 1979, Hews 1990). Few reptiles have 

exaggerated weaponry or ornaments, so body size is often cited as the sole predictor 

of male mating success (reviewed in Olsson and Madsen 1998) because it not only 

improves competitive ability, but should be an honest signal of a male’s quality 

(Cooper and Vitt 1993, Abell 1997, Shine et al. 2000, Calsbeek and Sinervo 2004). 

 

Two major routes exist for males to increase their fitness under strong sexual 

selection. First, a male can increase the number of mates he secures, which depends 

on mate handling time and his investment in each reproductive event (Moller 1998). 

Male investment is small in reptiles, as male parental care is virtually non-existent 

(Shine 1988), thus many reptile mating systems are characterized as polygynous with 

high reproductive skew. The second way that a male can increase his fitness is by 

increasing fecundity per mate. Fecundity is generally correlated with body size in 

female reptiles, which can result in a male preference for larger females (Cooper and 

Vitt 1997, Cuadrado 1998). Taken together, increased competitive ability of large 

males and a preference for larger females can result in positive size-assortative 

mating. This form of non-random mating depends on a number of factors, including 

population density and the operational sex ratio, and can be highly variable among 

populations of a species (e.g., Otronen 1993).  

 

In territorial tuatara (Sphenodon punctatus), there is opportunity for strong sexual 

selection by choice and competition. Tuatara are sexually dimorphic; adult males are 

considerably larger than females. Male-male contests are common, including sexual 

interference in the form of courtship interruptions. In reptiles, fights often result in 

physical damage including tail loss (via autotomy) that can be extremely costly both 

energetically and socially (Dial and Fitzpatrick 1981, Martin and Salvador 1993, 

Martin 1996, Chapple and Swain 2002). Adult male size in tuatara is highly variable, 

and female fecundity increases with body size (Newman et al. 1994). Female tuatara 
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often reject courtship attempts by males (J. Moore, pers. obs.), although it is 

unknown whether this is due to receptivity or female choice. Polyandry and multiple 

paternity have been confirmed in a captive population (Moore et al. 2008b, Chapter 

Five) but have yet to be found in wild tuatara (Hay and Lambert 2008). 

 

Here we characterize the mating system and reproductive skew in a natural 

population of tuatara, and investigate the phenotypic factors affecting male mating 

success. Stephens Island is a 150 ha island composed of two distinct habitat types 

with markedly different densities of tuatara: remnant native coastal forest (~2500 

tuatara / ha) and grassland pasture (~200 tuatara / ha, Moore et al. in review, Chapter 

Three) that was cleared in the early 1900’s for grazing livestock. Population density 

affects many aspects of mating systems (Kokko and Rankin 2006). Additionally, the 

operational sex ratio may be highly skewed toward males because female tuatara 

average reproduction every four years (Cree et al. 1992), while males are capable of 

annual reproduction. Thus, this system presents an excellent opportunity to evaluate 

the effects of density and intense competition on the natural mating patterns of these 

long-lived reptiles. Furthermore, because of the high population density and visually 

unobstructed habitat, Stephens Island is ideal for conducting behavioral studies. 

Specifically, we (1) document the extent of polyandry, polygyny and reproductive 

skew, (2) determine what phenotypic traits (body size, tail length, body condition 

and ectoparasite load) affect male mating success, and (3) assess whether size-

assortative mating occurs and if it is density-dependent. We also provide preliminary 

data on genetic paternity to determine how reliable mating observations are as a 

proxy for realized reproductive success and whether multiple paternity exists in the 

wild.  

 

We predict a high variance in male reproductive success that is biased toward males 

with traits that are indicative of high quality (e.g., large body size or long/complete 

tails). The spatial structure of tuatara on Stephens Island reflects a seasonally 

monogamous system, as male home ranges only overlap an average of four females, 

not all of which are receptive in a season (Moore et al. in review, Chapter Three). If 

males can only economically monopolize one mate per season, size-assortative 

mating could result because larger males succeed in mating with larger (i.e., more 

fecund) females. Furthermore, according to the armament-ornament model, females 
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benefit from choosing mates based on the same traits that are selected for via male-

male competition (Mateos and Carranza 1999) which could further this effect. 

Testing for female choice in tuatara requires challenging behavioral experiments and 

an underlying knowledge of the mating system and sexual selection in this species. 

Thus, in this study we focus on the male perspective and lay the groundwork for 

future studies which could differentiate between male-male competition and female 

choice.  

 

4.3 Methods 

 

Tuatara are medium-sized, long-lived (80+ years, N. Nelson, pers. comm.) reptiles 

that are the sole representatives of the ancient reptilian order Sphenodontia. The 

tuatara mating season peaks in March (austral summer) and nesting occurs 8 – 10 

months later (Cree et al. 1992). Mating is a long process (taking anywhere from 60 – 

90 mins, J. Moore, unpubl. data) that involves a lengthy, conspicuous courtship 

followed by copulation (via cloacal apposition, as tuatara lack an intromittent organ), 

with males remaining mounted on top of females, shuddering periodically, for up to 

an hour until the female moves away (Gillingham et al. 1995). Tuatara occupy home 

ranges/territories year-round, except when females migrate to nesting rookeries. 

Territory size is not related to male body size or the number of females a male has 

access to (Moore et al. in review, Chapter Three). Large males dominate areas where 

females are most dense, and the spatial structure provides no evidence for alternative 

reproductive strategies (Moore et al. in review, Chapter Three). 

 

4.3.1 Focal animal marking 

 

In November 2004, three circular study plots (from 314 – 615 m
2
) were located from 

an accessible track running through a section of remnant forest on Stephens Island. 

All tuatara in the study plots were captured by hand for marking and measuring, and 

capture location, snout-vent length (SVL), tail length (VT), regenerated tail length 

(R), mass, and sex were recorded. Blood samples (0.1 – 1.0 ml) were taken from the 

caudal vein/artery of all captured tuatara and stored at -80°C. Tuatara have two types 

of ectoparasite (mites, Neotrombicula spp., Acari:Trombiculidae, Goff et al. 1987; 

and ticks, Amblyomma sphenodonti; Barker and Murrell 2004). We counted mites 
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and ticks for each individual because parasites may be indicators of poor health 

(mites are bright orange and heavy infestations are visually conspicuous) or reflect 

immunocompetence from high testosterone levels (Folstad and Karter 1992, 

Salvador et al. 1996). When more than 100 mites were present, we counted the 

number of mites within a defined area, and estimated mite loads based on the total 

infected area of the animal. A passive integrated transponder (PIT) tag (AVID 

Identification Systems, Inc., Norco, CA, USA) was inserted subcutaneously anterior 

to the left rear leg for future identification of individuals. A subset (n=100) of these 

animals were marked using a unique colored bead tag inserted through the nuchal 

crests (Fisher and Muth 1989) to allow for individual distance recognition without 

disturbing behavior.  

 

4.3.2 Field data collection 

 

Mating activity was monitored during the peak of three mating seasons (5 – 30 

March 2005, 28 Feb – 28 March 2006, and 27 Feb – 27 March 2007). Daily, all 

tuatara visible along accessible tracks in the forest were monitored continuously 

from 13:00 h until dark (approximately 21:00 h), by slowly walking along tracks and 

visually surveying for courtship or mating activity. All courtships were observed 

until there was an outcome (i.e., mating occurred or they were interrupted by the 

female or a rival male). Unmarked pairs of tuatara that were opportunistically 

observed mating were captured by hand, PIT-tagged, measured, weighed, and blood 

samples and ectoparasite counts were taken after mating concluded. In 2005 and 

2006, mated pairs were marked with bead tags to aid in future identification and 

recapture to obtain eggs from females for paternity analyses. Pairs were returned 

immediately after processing to their capture locations. Handling and processing did 

not appear to affect behavioral interactions as some pairs were observed re-mating 

less than 30 minutes after release. In order to compare patterns of mating at high 

density (forest) and low density (pastures), in 2007, an approximately 500 m long 

road running through the pasture was surveyed each night after dark until 

approximately 00:00 h. Activity of pasture and forest tuatara differs. Pasture tuatara 

do not emerge from their burrows during daylight hours (due to increased predation 

risk). Forest tuatara are active during the day and night, but activity in the forest 
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shifts to foraging after dark. Thus, forest and pasture surveys were conducted during 

peak mating activity for each habitat type.  

 

4.3.3 Data analysis 

 

To examine the effects of individual phenotypic differences on male mating success, 

we performed a binary logistic regression analysis in R (R Core Development Team, 

2006) with mating success as the dependent variable. Males were categorized as 

successful if they were ever observed mating. For males that were observed mating 

more than once, only the first record was used in the analysis. Males were 

categorized as unsuccessful if they were monitored for ≥2 mating seasons, in our 

focal study plots, and they were never observed mating. Predictor variables included 

SVL, body condition (defined as the residuals from a regression of log-transformed 

mass / log-transformed SVL), tail length ratio (defined as VT / VT+SVL), mite load, 

and tick load. To control for body size, mite load was defined as the residuals from a 

linear regression of mite number / (SVL + VT). A comparable statistic was 

calculated for tick load. Mite load and tick load were not related to SVL and mass. 

We did not include mass in this analysis because it is highly correlated with SVL (r = 

0.94, p < 0.001). Models were built in a backward stepwise manner, starting with the 

full model, with variables removed in an iterative process based on their relative 

Akaike’s Information Criterion (AIC) values. The best model was selected based on 

having the lowest AIC, and terms were analyzed for significance within the models 

using analyses of variance (ANOVAs).  

 

To assess whether mating was assortative with respect to body size, we regressed the 

log-transformed SVL of successful males on the log-transformed SVL of their mates. 

Individuals were included more than once in this analysis if they had multiple 

partners. We performed separate analyses for pasture (low density) pairs, and forest 

(high density) pairs, and data were pooled across years.    

 

To examine whether successful males differed with respect to density, we compared 

mean log-transformed SVL and mass, body condition, tail length ratio, and mite and 

tick loads, of successful males in the pastures to successful males in the forest using 

an ANOVA. We also compared log-transformed SVL and mass of mated females in 
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the forest versus the pasture (using an ANOVA) to determine whether successful 

females differed by habitat type. Although the mean size of forest males is slightly 

smaller than pasture males (N. Nelson, unpublished data), this is driven primarily by 

the larger range of sizes at the lower end of forest males (because of their higher 

density). Data were pooled across years. Means are reported as ± 1SE and all data 

were checked for normality and homogeneity of variances, or were appropriately 

transformed. Significance is inferred at p < 0.05.  

 

4.3.4 Paternity analysis  

 

To examine whether behavioral observations reflect realized fertilization success, 

eggs were collected from females that had been observed mating. In November 2005 

(nesting season), 10 gravid females with known mating histories were fitted with 

backpack radio transmitters and tracked to their nests. Females were allowed to lay 

eggs naturally and nests were then excavated to collect eggs. Many nest sites proved 

inaccessible and complex, and locating eggs was difficult, therefore we were only 

able to collect partial clutches from three females in 2005. One of these clutches 

failed, probably because they had been disturbed by another female prior to 

collection. In October 2006, we were able to locate four more females in their home 

ranges, prior to their nesting migrations, and induced oviposition by injecting 

oxytocin (concentration 10 IU/ml, 10 IU/kg body mass) intraperitoneally. We held 

females overnight in cardboard boxes and collected eggs as they were laid 

throughout the night. Females were then returned to their capture locations. All eggs 

were incubated at Victoria University of Wellington (VUW), and toe-clips were 

collected from all hatchlings the following year and stored at -80°C until processing.  

 

Genomic DNA was extracted from toe-clips of hatchlings (one per individual) and 

blood from parents (5 – 10 µl) using a proteinase K phenol-chloroform protocol 

(Sambrook et al. 1989).  DNA was quantified using a Nanodrop ND-1000 

spectrophotometer, and all samples contained sufficient DNA for PCR amplification. 

Seven highly polymorphic microsatellite loci were amplified using PCR (C2F, 

C11P, E11N, H5H, A12N, C12F, H4H; Aitken et al. 2001, Hay and Lambert 2008) 

in 15 µl reactions. Reactions and PCR conditions followed Moore et al. (2008b; 

Chapter Five) and Hay and Lambert (2008). Amplified products were combined for 
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genotyping and were run on an ABI 3730 Genetic Analyzer (Applied Biosystems, 

Inc., Foster City, CA, USA). Alleles were visualized using Genemapper software 

(Applied Biosystems, Inc., Foster City, CA, USA) and sizes were manually scored 

by the same observer (JAM). 

 

We checked offspring genotypes manually to confirm maternity. Paternity was 

assigned for all offspring based on seven locus genotypes, with males that were 

observed mating with each female considered as the candidate fathers, using the 

computer program Cervus 3.0 (Marshall et al. 1998, Kalinowski et al. 2007). 

Clutches were determined to have multiple paternity if more than one offspring per 

clutch was assigned to a different father with >95% confidence, and that this 

assignment was based on two or more loci.  

 

4.3 Results 

 

From three consecutive mating seasons, we recorded a total of 97 mating events 

from 75 pairs (n = 62 males, 69 females) in the forest (n = 54 pairs) and pasture (n = 

21 pairs) on Stephens Island. Using data from the forest only, where animals were 

intensively monitored, the average frequency of within-season polyandry and 

polygyny was low (7% of mated females were polyandrous and 9% of mated males 

were polygynous; Table 1).  

 

No individuals (male or female) had more than two mates per season. On average, 

24% of pairs re-mated at least once and up to five times throughout the season. Only 

one female was observed mating in multiple seasons (in 2005 and again in 2007, in a 

similar location but with a different partner). Six successful males (14%) mated in 

two of the three seasons, with different partners. We did not observe any males 

mating in all three seasons. All mating within focal study plots was dominated by a 

small number of males (29%), leaving the majority of males unsuccessful in all three 

seasons.  

 

The best logistic regression model of successful (n = 62) versus unsuccessful (n = 

52) males included SVL and tail length ratio (AIC = 66.77). The next best model 

included SVL, tail length ratio, and body condition (AIC = 67.70). The only  
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Table 1. Mating patterns of tuatara (Sphenodon punctatus) in focal 
study plots in remnant forest (Keepers Bush), on Stephens Island from 

2005 – 2007. Percent polyandry/polygyny is the percent of successful 

females/males that had more than one mate per season (total number 

of successful males/females in parentheses). Re-mating is the percent 

of mated pairs that were observed re-mating more than once (total 

number of mated pairs in parentheses). Male reproductive skew is the 

percent of males that were successful (number of successful males in 

parentheses). Overall reproductive skew indicates the total number of 

males that mated in any season over the total number of successful and 

unsuccessful focal males (not the sum of skew per season as some 

males mated in multiple seasons). Means are ± 1 SE.  
 

Season 
Percent 

polyandry  

Percent 

polygyny  
Re-mating 

Male reproductive 

skew 

2005 11.1 (18) 4.8 (21) 14.0 (22) 
 

10.9 (6) 

2006 0.0 (8) 14.3 (7) 40.0 (10) 
 

11.9 (5) 

2007 9.1 (22) 9.1 (22) 19.0 (43) 
 

9.1 (5) 

Average 6.7 ± 3.4 9.4 ± 2.8 0.24 ± 0.08 Overall 29.1 (14) 

 

 

predictor that was significant in the model was SVL (β = 0.10, z = 4.4, p < 0.0001). 

Mean SVL for successful males was 258.0 ± 2.7 mm (range = 213 – 292 

mm) and 221.0 ± 3.5 mm (range = 165 – 263 mm) for unsuccessful males. 

Successful males had significantly shorter tails relative to their body length than 

unsuccessful males (mean tail length ratio, successful males = 0.45 ± 0.008, 

unsuccessful males = 0.48 ± 0.006; F1,112 = 4.7, p = 0.03). Only 14% of males (n = 

10 unsuccessful, 6 successful) had complete tails (i.e., had never autotomized a 

portion of their tail). 

 

The regression analysis testing for size assortative mating found a weak but 

significant positive relationship between male SVL and female SVL of mated pairs 

in the high density forest (r
2
 = 0.08, p = 0.038), but not in the low density pasture (r

2
 

= 0.001, p = 0.87) (Fig 1). There were no significant differences in SVL (F1,60 = 3.6, 

p = 0.06), body condition (F1,60 = 0.6, p = 0.4), mite load (F1,41 = 1.9, p = 0.2), or tick 

load (F1,41 = 0.9, p = 0.3) between successful males in the forest and the pasture. On
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average, successful males in the forest were significantly heavier (mean mass, 

pasture males = 559.6 ± 25.2, forest males = 628.3 ± 14.2, F1,60 = 6.8, p = 0.01) and 

had longer tails (mean tail length ratio, pasture males = 0.42 ± 0.02, forest males = 

0.47 ± 0.009, F1,60 = 5.9, p < 0.02) than successful males in the pasture (Table 2). 

There was no difference in SVL (F1,72 = 0.3, p = 0.6) or mass (F1,72 = 0.04, p = 0.8) 

of mated females in the forest versus the pasture.  

 

Seven-locus genotypes were successfully assigned to 12 adults (six known mothers, 

and six candidate fathers) and their 39 offspring (comprising 6 clutches, 4 complete 

and 2 incomplete). Paternity was assigned to candidate sires for 35 offspring (5 

clutches) with > 95% confidence, and alleles were checked manually to confirm 

assignment. The likelihood (LOD) scores (the sum of the log-likelihood ratios of 

each locus) from these 35 offspring were all positive and ranged from 0.9 to 7.1. One 

clutch (n = 4 offspring) had negative LOD scores (range = -2.5 to -15.0) and the 

genotype of the candidate father from behavioral observations did not match the 

offspring at 2 – 4 loci per individual. This clutch was from a female that we 

opportunistically observed mating once in 2006 (outside of our focal and 

 

Table 2. Successful male tuatara (Sphenodon punctatus) in the low 
density pasture habitat are smaller and have shorter tails relative to 

their body length, than in the high density forest habitat on Stephens 

Island  
 

 Pasture (n = 18) Forest (n = 44) 

 mean SE range mean SE range 

Mass (g) ** 552.8 49.2 300 – 707 635.4 16.6 470 – 830 

Snout-vent 

length (mm) 
251.5 7.3 213 – 273 259.5 2.9 229 – 292 

Body 

condition 
-0.5 0.2 -1.4 – 0.4    0.05 0.2 -2.1 – 1.5 

Tick load 0.06 0.01 0.002 – 0.1 0.04 0.01 0.004 – 0.3  

Mite load 0.6 0.3 0 – 2.6  1.3 0.2 0 – 4.5 

Tail length 

ratio ** 
0.4 0.03 0.3 – 0.5 0.5 0.01 0.2 – 0.5  

** indicates significant differences between forest and pasture males (p < 0.05). 
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regularly monitored areas) and she was not seen again during that season. We did not 

observe or sample her other partner. Thus the candidate fathers, from behavioural 

observations, matched the assignment from the genetic data for 83.3% of clutches 

(95% CI = 42.1 to 96.3%). Multiple paternity was not detected in any clutch.  

 

4.4 Discussion 

 

Results from this study support three main findings. First, seasonal monogamy is the 

predominant mating system for tuatara on Stephens Island, although there is a low 

frequency of within-season polyandry and polygyny. Second, all mating activity is 

dominated by a small proportion of males (25 – 30%), and mating success depends 

largely upon body size. Lastly, positive size-assortative mating is evident at high 

densities, but appears to break down at lower densities. Although the number of 

clutches we sampled is small, our paternity assignments largely match our mating 

observations, which indicates that mating success often equates to realized 

fertilization success in this population. 

 

4.4.1 Mating system 

 

Very few reptiles show within-season monogamy, and even fewer have long-term 

pair fidelity (reviewed in Bull 2000). Most species are polygynous, and there is 

strong genetic evidence to support high rates of polyandry as well (Blouin-Demers et 

al. 2005, Oppliger et al. 2007, Zbinden et al. 2007). Monogamy in vertebrates is 

usually assumed to be maintained through parental care (Emlen and Oring 1977), 

mate guarding (Stamps 1983), or because unattended females are somehow 

disadvantaged. Tuatara parental care is negligible, aside from the occasional short 

period of nest guarding by females (Refsnider et al. in review). Also, unattended 

females do not appear to be disadvantaged in any way (J. Moore, pers. obs.). Stamps 

(1983) suggested that monogamy in lizards should be more common in larger 

species, because they have larger home ranges and it is more economical for a large 

male to defend a single female from rivals, rather than the entire area encompassing 

multiple females. Thus, social monogamy for male lizards and tuatara may be 

facultative because they are unable to defend multiple females (Bull et al. 1998, Bull 

2000). For tuatara, facultative monogamy is further strengthened by the 
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asynchronous breeding of females, and the long intervals (2-5 years, Cree et al. 

1992) between successive female breeding events. This means that highly successful 

males (whose home ranges overlap multiple females) vary in the number of partners 

they have per year, and may have years where they do not mate at all simply because 

none of the females with which they have regular access are receptive.  

 

Although most tuatara exhibit within-season monogamy, we currently have no 

reason to suspect long-term pair fidelity. Pairs live in close spatial proximity 

throughout the year. However, when females leave the forest to lay eggs they do not 

always return to the same home burrow (Moore et al. in review, Chapter Three), 

meaning they could end up in a new male’s territory. The female we recorded mating 

in two seasons had different partners, even though successive mating locations were 

in close proximity. Females returning from nesting migrations might have the 

opportunity to assess many different males at once and be choosy about the males 

they end up near, especially because male spatial structure is relatively static in this 

system (Moore et al. in review, Chapter Three). 

 

4.4.2 Variance in male reproductive success 

 

Reproduction is highly skewed toward a small proportion of large male tuatara, so 

the majority of adult males provide no genetic contribution at any given point in 

time. This can have negative implications for the effective population size (Sugg and 

Chesser 1994). However, successful individuals and their genetic contributions will 

likely change with time even though reproductive skew may still remain high. The 

timescale for turnover of successful males may be very long for tuatara due to their 

extreme longevity and slow growth rates. In a paternity study of a group of captive 

tuatara, one adult male (of four) dominated reproduction for the length of time they 

were in captivity (~12 years, Moore et al. 2008b, Chapter Five).  

 

The adult census sex ratio in the forest on Stephens Island is 1M:1F (Moore et al. in 

review, Chapter Three). However, because female tuatara only reproduce, on 

average, every four years (Cree et al. 1992), the operational sex ratio could be as 

high as 4M:1F. The low percent of females that are fertile (~25% per year) coupled 

with the high skew in male reproductive success (~30% of males) renders the 
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breeding sex ratio back to approximately 1M:1F. This functional sex ratio should be 

evolutionarily stable and probably either indirectly causes, or is a result of, the high 

proportion of seasonal monogamy in this system.  

 

It is not surprising that large body size is a major determinant of reproductive 

success for male tuatara, as this is the case in many taxa, particularly reptiles 

(Cooper and Vitt 1993, Shine et al. 2000, Lebas 2001, Salvador et al. 2008). A more 

intriguing finding is that successful males had shorter tails, relative to their body 

size, than unsuccessful males. This is contrary to previous findings of tail autotomy 

having negative consequences for reptile energy stores (Dial and Fitzpatrick 1981, 

Doughty and Shine 1998), survival (Fox and McCoy 2000), locomotor performance 

(Chapple and Swain 2002), social status (Martin and Salvador 1993), and 

reproductive success (Martin and Salvador 1993, Hofmann and Henle 2006, 

Salvador et al. 2008). The consequences of tail loss are poorly understood for 

tuatara. If the costs of tail autotomy are outweighed by the benefits of large body 

size, losing a tail may have a negligible effect on social status and reproductive 

success. Furthermore, greater tail losses in successful males could simply be a 

byproduct of age (i.e., the longer a male competes in this system, the greater the 

likelihood of losing a significant proportion of his tail). Successful males may also 

be more aggressive and/or more prone to fighting (e.g., for fallow deer, Dama dama; 

McElligott and Hayden 2000) which would probably increase the frequency of tail 

loss.   

 

4.4.3 Size-assortative mating 

 

Weak positive size-assortative mating in forest tuatara is indicative of a male 

preference for larger females. A facultatively monogamous male tuatara should 

increase his fitness by competing more intensely for a large, more fecund (i.e.,g 

higher quality) female (Clutton-Brock and Parker 1992). Size-assortative mating of 

tuatara appears to be density dependent, a phenomenon which is supported 

theoretically and empirically in other taxa (Crespi 1989, Otronen 1993, Kissner et al. 

2005). Smaller male tuatara are more successful at lower densities, even though there 

is no difference in the average size of mated females. This indicates that size-

assortative mating is more a result of males competing for larger females, than large 
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females resisting smaller males. At lower densities, smaller males may fare better 

because competition is reduced, and courtship interference by rival males is probably 

lessened. Forest is probably the preferred habitat on Stephens Island as resources 

may be more abundant, and predation risk is lower (raptors methodically search the 

pastures during the daytime, limiting tuatara activity to the night-time, J. Moore, 

pers. obs.). However, smaller, unsuccessful forest males may move into the pastures 

to increase their chances of mating success, especially if they are continually 

outcompeted in the forest. The current adult sex ratios on Stephens Island (1M : 1F 

in the forest, 2M : 1F in the pastures; Moore et al. in review, Chapter Three) support 

this speculation. Further research is needed to determine whether this tactic may 

function as a successful alternative reproductive strategy for smaller, subordinate 

males.  

 

4.4.4 Fertilization success 

 

Our observations of mating success equate to realised fertilization success for most 

male tuatara we sampled. In one clutch, our observed mate did not match the 

paternity assignment. This female was from outside our heavily monitored study 

plots. Although she was polyandrous, her entire clutch was fertilized by one male. 

Unfortunately, we have no information on the order of mating or the second male she 

mated with, therefore we cannot speculate on patterns of fertilization success in 

polyandrous females. This supports the potential for sperm competition, cryptic 

female choice, or first/last-male precedence, but further experimental data are needed 

to fully understand postcopulatory phenomena in tuatara.  

 

Our study is the second to find only single-paternity clutches in wild populations of 

tuatara (Hay and Lambert 2008), even though multiple paternity has been confirmed 

in a captive population (Moore et al. 2008b, Chapter Five). Single paternity clutches 

reflect the high level of seasonal monogamy, but we cannot confidently rule out 

multiple paternity with our limited sample sizes and two incomplete clutches. The 

long interval between mating and oviposition presents challenges for sampling 

hatchlings from wild females, as evidenced by the small number of clutches sampled 

in our study, in spite of a considerable amount of effort. The polyandrous female that 

we sampled had a clutch that was sired entirely by one male. Some of the hypotheses 
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regarding why polyandry should be adaptive for females include transfer of nutrients 

in seminal fluid, genetic benefits to offspring quality (via multiple paternity, 

enhanced sperm competition, or increased opportunity for cryptic female choice; 

reviewed in Jennions and Petrie 2000), or fertilization insurance (Uller and Olsson 

2005). Polyandry is probably limited to a small proportion of female tuatara because 

they are strongly guarded by their mates, opportunities for multiple mating are 

limited, and it might not benefit a female to abandon her home range to solicit 

additional pairing. Once a male has a receptive female in his territory, he re-mates 

with her throughout the season, which may function as a paternity assurance 

mechanism. For a female, re-mating with the same partner may be just as effective at 

ensuring fertilization as mating with multiple males (Hunter et al. 1993, Bull et al. 

1998). Furthermore, the odds of a female mating repeatedly with an infertile male are 

probably very low, as natural rates of infertility are very low among male reptiles 

(Olsson and Shine 1997).  

 

In conclusion, seasonal monogamy in tuatara is consistent with the mate guarding 

hypothesis and there is no evidence for long-term pair bonding. Male tuatara exhibit 

highly skewed reproduction dominated by large males, which is indicative of male 

quality and competitive ability. The apparent density-dependent size-assortative 

mating of tuatara reflects a male preference for large females that breaks down when 

male-male competition is reduced. Our finding of single paternity clutches, even 

from a socially polyandrous female, warrants further investigation into the 

mechanism behind tuatara fertilization. Although tuatara are phylogenetically 

distinct from lizards, our results are consistent with theoretical predictions for mating 

systems of large lizards. 

 

4.4.5 Conservation and management implications 

 

A solid knowledge of the mating system of a threatened species can significantly aid 

recovery and restoration efforts, particularly in terms of genetic diversity and 

population demography (Berger 1996, Legendre et al. 1999). Translocating animals 

is a key recovery tool for tuatara conservation (Gaze 2001) and Stephens Island is 

the primary source for translocations because it is the largest, most accessible 

population. The results of our study not only provide insight into the dynamics of the 
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main source population, but can aid managers in founder selection for future 

translocations. Because population density appears to affect the mating system of 

tuatara, new populations should be established at high enough densities to avoid 

Allee effects (Stephens and Sutherland 1999), but low enough densities to minimize 

intrasexual competition and reproductive skew. This may help to equalize founder 

representation, which should maximize genetic diversity in the new population.  

 

Other potential ways of decreasing competition and equalizing founder 

representation for tuatara include: 1) only translocating males of similar body size 

(i.e., minimizing the size variance among male founders), 2) biasing the sex ratio of 

the founders toward females (possibly as much as 4F:1M), which could also increase 

the population growth rate, 3) releasing founders in the same spatial organization as 

they existed on the source island, which could also help to reduce settling time. 

Future translocations could thus be used as experiments to test whether these 

techniques improve the immediate and long-term success of the newly established 

populations.  

 

 



 

CHAPTER FIVE 

 

Implications of Social Dominance and Multiple 
Paternity for the Genetic Diversity of a Captive-Bred 
Reptile Population (tuatara) 

 

 

5.1 Abstract 

 

Captive breeding is an integral part of many species recovery plans.  Knowledge of 

the genetic mating system is essential for effective management of captive stocks 

and release groups, and can help to predict patterns of genetic diversity in 

reintroduced populations.  Here we investigate the poorly understood mating system 

of a threatened, ancient reptile (tuatara) on Little Barrier Island, New Zealand and 

discuss the impact on its genetic diversity. This biologically significant population 

was thought to be extinct, due to introduced predators, until 8 adults (4 males, 4 

females) were rediscovered in 1991/92. We genotyped these adults and their 121 

captively-bred offspring, hatched between 1994 to 2005, at five microsatellite loci. 

Multiple paternity was found in 18.8% of clutches. Male variance in reproductive 

success was high with one male dominating mating (77.5% of offspring sired) and 

one male completely restricted from mating. Little Barrier Island tuatara, although 

clearly having undergone a demographic bottleneck, are retaining relatively high 

levels of remnant genetic diversity which may be complemented by the presence of 

multiple paternity.  High variance in reproductive success has decreased the effective 

size of this population to approximately 4 individuals. Manipulation to equalize 

founder representation was not successful, and the mating system has thus had a 

large impact on the genetic diversity of this recovering population. Although 

population growth has been successful, in the absence of migrants this population is 

likely at risk of future inbreeding and genetic bottleneck.         

 

5.2 Introduction 

 

Captive breeding is an essential tool for conservation of many threatened and 

endangered species, but establishing a successful program is often challenging 
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(Snyder et al. 1996).  Apart from simply increasing numbers of individuals, a 

primary goal in captive breeding for species recovery is to maintain the genetic 

diversity of a population (Ralls and Ballou 1986) to ultimately create a self-

sustaining wild population (Ebenhard 1995). Captive breeding programs that are 

aimed at restoring severely declining populations are often limited to only a small 

number of founders (Ralls and Ballou 1986), thus furthering the loss of genetic 

diversity and imposing imminent and/or long-term consequences for fitness and 

adaptability of the new population (Allendorf and Luikart 2007).  Isolated, insular 

populations may be particularly at risk of losing genetic diversity.  Ideally, genetic 

change in a captive population should be minimized by equalizing founder 

representation. However, in instances where founders 1) do not breed readily in 

captivity, or 2) do not accept manipulation (e.g., artificial insemination, isolating 

mating pairs), retaining remnant diversity in the captive population is challenging 

(Snyder et al. 1996).  

 

The mating system plays an important role in determining levels of genetic diversity 

in captive and wild populations (Anthony and Blumstein 2000). For instance, 

disassortative mate choice can result in balancing selection on functional genes 

(Penn and Potts 1999, Roberts and Gosling 2003), and multiple paternity increases 

the effective population size (Ne; Sugg and Chesser 1994). Alternatively, social 

dominance may limit all reproduction to a few successful males, thereby heavily 

biasing paternity and greatly decreasing genetic diversity and Ne (Hoelzel et al. 

1999).  

 

Among reptiles, mating systems are poorly understood.  Most reptiles are believed to 

be polygynous (e.g., Zamudio and Sinervo 2000), but cases of monogamy in lizards 

do exist (in the genus Egernia, Bull 2000, Chapple and Keogh 2005).  Because 

parental care is limited or non-existent, reptile mating systems are usually 

characterized by social dominance and/or spatial structure.  Recent discoveries of 

genetic polyandry in many reptiles is broadening the understanding of the female’s 

role in the mating system (e.g., Lee and Hays 2004). Furthermore, because females 

of many long-lived reptiles are capable of storing sperm, multiple paternity has been 

found at high frequencies in some species (Pearse and Avise 2001).  In order to 

begin to understand the mating system of an ancient reptile species and its impact on 
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the genetic diversity of a small population, we investigate patterns of paternity in a 

captively bred, insular population (on Little Barrier Island, New Zealand) where 

manipulation to equalize founder representation was not successful.  

 

Little Barrier Island (LBI; known also by its Māori name, Hauturu) is a 3083 ha 

volcanic Nature Reserve located in the Hauraki Gulf off the east coast of North 

Island, New Zealand (36º 12’S, 175º 07’E). Despite a history of habitat modification, 

human presence, and introduced predators, the island is currently largely forested 

(Girardet et al. 2001), providing suitable habitat for a number of native species which 

have been extirpated from the mainland. One such species is the tuatara, a medium-

sized, long-lived reptile that is endemic to New Zealand. Tuatara are the sole extant 

representatives of the ancient reptilian order Sphenodontia (Benton 2000). Although 

once widespread throughout the mainland, natural populations are now restricted to 

small offshore islands, primarily due to predation from introduced mammalian 

predators.  

 

The tuatara on LBI were initially described as morphologically unique (Reischek 

1886), and this island population was subsequently elevated to subspecific status in 

1943 making it the rarest of the tuatara populations. Allozyme and mitochondrial 

DNA analyses have since revealed that LBI tuatara are not genetically distinct from 

other northern island populations of tuatara (Daugherty et al. 1990, Whitaker and 

Daugherty 1991, Hay et al. 2003). However, as the largest island (by at least an order 

of magnitude) supporting one of the 32 natural island populations of this threatened 

reptile, the importance of conserving the LBI population of tuatara is not diminished. 

Little Barrier is also the only island where tuatara occur in a habitat that may be 

similar to what they once inhabited on mainland New Zealand. 

 

By the late 1900’s, tuatara were thought to be extinct on LBI (due primarily to 

predation by introduced cats and rats or kiore, Rattus exulans) until systematic 

surveys rediscovered eight adults (4 males, 4 females) in 1991 – 1992 (Whitaker and 

Daugherty 1991, Whitaker 1993).  These adults were brought into captivity on the 

island and housed under semi-natural conditions behind a predator proof fence, with 

the goal of establishing a captive breeding colony to repopulate LBI.  Tuatara and 

rats rarely coexist because the rats limit recruitment (Cree et al. 1995), so the 
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recovered adults likely represented relicts of a population that was headed for 

extinction (Whitaker and Daugherty 1991). Although extinction threats are often 

difficult to determine and quantify (Sarrazin and Barbault 1996), in this case there 

was strong evidence to suggest that rats posed the primary threat to the persistence of 

tuatara on LBI. As such, the New Zealand Department of Conservation undertook an 

eradication program in 2004 and in 2006 LBI was declared rat free.  

 

Since their rediscovery in 1991/92, the eight LBI tuatara have bred in captivity and 

have successfully produced over 120 offspring. Eggs were laid in naturally 

constructed nests in the tuatara enclosure, recovered by the island caretakers, and 

artificially incubated at Victoria University of Wellington (VUW), after which the 

hatchlings were returned to LBI and held in captivity until rats were eradicated and 

they reached an appropriate size (120 mm snout-vent length, SVL) for release onto 

the island. Because tuatara exhibit temperature dependent sex determination (TSD; 

Nelson et al. 2004a), clutches were split and incubated at two different temperatures 

to give the offspring group a slightly female biased sex ratio.  In an effort to equalize 

founder representation, the eight adults were initially housed separately as male-

female pairs, but after two years of no reproductive activity, they were released into 

the enclosure as a group. Within this group enclosure, the suspected mothers of each 

clutch were identified (although not confirmed genetically). However, the fathers (of 

which there are four candidate males) of each clutch were not identified because 

mating, which occurs ~8 months earlier, was not observed. Because captive breeding 

on LBI could not be manipulated, this new population could hypothetically have 

been fathered by one individual. 

 

Currently, little is known about the mating system of tuatara. Although presumed to 

be polygynous due to their highly territorial social system (Gillingham et al. 1995), 

genetic paternity and the female’s contribution to the mating system are unknown. 

To better understand the genetic mating system of tuatara and its potential impacts 

on genetic diversity of reintroduced populations, we assign paternity to captively 

bred offspring and their potential parents, and discuss the implications for the future 

of this highly valued population of a biologically significant reptile.   

 

5.3 Methods 
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5.3.1 Sample collection and genotyping 

 

Tissue samples were collected from all LBI tuatara from the period 1991 – 2005. 

These included ~0.5 – 1.0 mL whole blood taken from the caudal vein/artery of 

adults, and toe-clips taken from hatchlings that had been incubated at VUW. All 

samples were stored at -80ºC. DNA was extracted from 10 µl of blood, and/or toe-

clips (one per individual) using a proteinase K phenol-chloroform protocol 

(Sambrook et al. 1989).  DNA was quantified using a Nanodrop ND-1000 

spectrophotometer, and all samples contained sufficient DNA for PCR amplification. 

 

Seven microsatellite loci were amplified using PCR (Table 1; Aitken et al. 2001; 

Hay and Lambert 2008) in 15µl reactions. Reactions included approximately 10 – 50 

ng of template DNA, and followed the general thermal cycle of 94°C for 1 min, 

(94°C for 30 s, 58-63°C for 20 s, 72°C for 30 s) for 35-40 cycles, 72°C for 30 min 

(see Table 1 for locus-specific details).  These loci were previously recognized as the 

most variable for tuatara on LBI and Stephens Island (Hay and Lambert 2008). 

Amplified products were multiplexed for genotyping and were run on an ABI 3730 

Genetic Analyzer (Applied Biosystems, Inc.).  Alleles were visualized using 

Genemapper software (Applied Biosystems, Inc.) and sizes were manually scored by 

the same observer. 

 

5.3.2 Data analysis 

 

Offspring maternity was assumed based on nesting behavior and gravidity of females 

at the time of egg collection. We checked offspring genotypes manually to confirm 

maternity.  Paternity was assigned for all offspring based on 5 locus genotypes, with 

all four males considered as candidate parents using the computer program Cervus 

2.0 (Marshall et al. 1998). Prior to paternity analysis, we checked loci for null alleles 

(in Cervus 2.0), and found that one locus (C2F) had a high frequency of null alleles 

(null allele frequency = 0.73).  Null alleles (i.e., true alleles that fail to amplify) can 

cause false exclusion of potential parents by incorrectly typing true heterozygotes as 

homozygotes (Dakin and Avise 2004).  As this locus was not highly variable and had 

a high probability of null alleles, it was removed from the analysis.  Another  
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Table 1. Tuatara (Sphenodon) microsatellite primer sequences (F = 
forward, R = fluorescently labeled reverse), optimal annealing 

temperatures (TA), number of cycles, and optimal MgCl2 

concentrations used for PCR reactions in this study. 
 

a  sequences from Aitken et al. 2001 

b  
sequences from Hay and Lambert 2008 

 

locus (E11N) proved difficult to score (due to non-specific amplification), and was 

likewise removed from further analysis.  Clutches were determined to have multiple 

paternity if more than one offspring per clutch was assigned to a different father with 

>95% confidence, and that this assignment was based on two or more loci.  

 

To determine relative genetic diversity in the LBI adults, we compared their number 

of alleles and observed heterozygosity to the average of three random samples of 

eight individuals each, from the largest extant population of tuatara (Stephens Island, 

30 – 50,000 individuals). We collected blood samples from 300 tuatara on Stephens 

Island (for a concurrent genetic study), and genotyped them at the same five loci as 

the LBI samples. From the Stephens Island samples, three groups of eight samples 

were randomly selected for comparison to LBI adults. We then determined the mean 

Locus Primer sequence (5’ – 3’) TA (°C) No. 

cycles 

MgCl2 

(mM) 

C1H a F: gtttctttgtctcattgctttcccag 

R: cctcttctccgccttacact 

60 35 2.5 

C2F a F: tcactgtcagcaggctcttc 

R: gaatgcggggaatgtgagg 

60 35 2.5 

A12N a F: gtttgttggagaagggaggagaataatc 

R: atcactgctcatttcagcc 

60 38 2.5 

B8P b F: gtttcttagatggatgattgggggagt 

R: agaatgggccaacaagacag 

58 38 2.5 

C11P b F: gtttcttaagtgaaatgggaagctgga 

R: gcaataagttccacccgtca 

60 40 2.0 

E11N b F: gtttctttttgtgtgaagaacgcatcc 

R: cactcccccattactggaca 

63 40 2.5 

H5H b F: gtttcttactaaacccccactttggag 

R: gtgtcacctgcttcccagtt 

60 40 2.5 
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coefficient of relatedness (r; Queller and Goodnight 1989) of the LBI adults and the 

three random samples of Stephens individuals, and compared them for significant 

differences using the computer program GenAlEx (Peakall and Smouse 2006). We 

compared the parental and offspring generations for significant differences in allele 

frequencies using the computer program Genepop (Raymond and Rousset 1995), and 

calculated observed and expected heterozygosities in GenAlEx (Peakall and Smouse 

2006).  

 

We also used the program ENDOG v4.0 (Gutierrez and Goyache 2005) to calculate 

the average relatedness coefficient (AR) of each of the founders based on pedigree 

data. Average relatedness values (Gutierrez et al. 2003) can be used to indicate the 

relative genetic contribution of the founders to the population and have been used 

directly in genetic management of small populations (e.g., Goyache et al. 2003).  

 

We calculated the effective population size (Ne), as a surrogate for the effective 

number of breeders (Neb; e.g., Fiumera et al. 2002) based on the variance in male and 

female reproductive success. First, the effective number of males (Nem; Kimura and 

Crow 1963) was calculated using the formula 

m

km
m

mm
em

k

V
k

kN
N

+−

−
=

1

1

  

where Nm is the census number of breeding males, mk is the mean number of 

offspring produced per male, and Vkm is the variance in male reproductive success. A 

similar formula was used to calculate the effective number of females (Nef). Ne was 

then determined based on the formula  
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Heterozygote excess can also be used to calculate the effective number of breeders, 

based on the theory that when the number of breeders is small, allele frequencies in 

males and females will be different due to binomial sampling error resulting in 

heterozygote excess in the offspring (Pudovkin et al. 1996). Likewise, the temporal 

change in allele frequencies between generations can also be used to calculate Ne 
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(Waples 1989). These methods do have limitations (Luikart and Cornuet 1999), and 

because (1) heterozygote excess was not consistent across all loci in the offspring 

(we found it in four of five loci), and (2) we can assign maternity and paternity with 

great confidence in this small population, we relied on variance in reproductive 

success for directly determining Ne as it is the most accurate estimator in this case.   

 

5.4 Results 

 

Five locus genotypes were successfully assigned to all adults (n = 8) and 16 clutches 

(121 offspring) hatched from 1994 to 2005. All loci were polymorphic, and the 

number of alleles per locus averaged 7.2 for the parents (n = 8) and 7.0 for the 

offspring (n = 121).  All four founding mothers successfully reproduced, and clutch 

sizes varied per year and by female (mean size = 9.3 ± 3.8, range = 2 – 12 eggs). 

Hatching success averaged 76.4% and was not significantly different between 

mothers (F(3,13) = 1.5, p = 0.2) or fathers (F(3,13) = 1.2, p = 0.4). Because the number 

of clutches differed between females, the maternal contribution was unequal among 

release offspring (total number of eggs, proportion; Mrs O = 23, 14.6%; Kowhai = 

39, 24.7%; Greta = 40, 25.3%; Whero = 56, 35.4%). From the pedigree data, the 

genetic contribution of the founding females to the population was as follows; Mrs O 

= 6.6%, Kowhai = 11.3%, Greta = 11.72%, Whero = 20.31%. On average, LBI 

females reproduced every two years, which is more frequent than the four year 

average seen in the wild (Cree et al. 1991a, Cree et al. 1992).  However, two females 

produced clutches in consecutive years, indicating that female tuatara are capable of 

producing clutches every year when in good condition. One of these clutches failed 

to hatch, and only 2 of the 3 hatchlings survived from the other. 

 

Paternity was assigned to all offspring with > 95% confidence, and alleles were 

manually checked to confirm assignment. All offspring likelihood (LOD) scores (the 

sum of the log-likelihood ratios of each locus) were positive and ranged from 1.05 to 

8.99.  Multiple paternity was found in 18.8% of clutches (n = 3; Fig 1). No more 

than two sires were represented in any clutch, and in multiply sired clutches, the 

percentage of paternity by the second sire ranged from 33 – 50 % (Fig 1).  Paternity 

was not equal among all males, with one male (Punga) siring 77.5% of offspring (n =  

93). Spike sired 16.7%, Arnie sired 5.8%, and one male (Rudolph) sired no 
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Figure 1. Relative reproductive success of the four founding male 
tuatara. Bars represent total number of offspring per clutch (by female 

W=Whero, M=Mrs O, G=Greta, K=Kowhai, and year) as a proportion 

of each of the four sires.   

 

offspring. Punga sired offspring in all but two of the clutches. From the pedigree 

data, the genetic contribution of each of the founding males to the population was as 

follows; Punga = 37.11%, Spike = 8.59%, Arnie = 3.52% and Rudolph = 0.78%. 

Body mass of the founding males generally increased between 1991 and 2006, with 

Punga eventually outweighing the other males (Fig 2). Mean observed 

heterozygosity decreased by 14% from the parent to the offspring generation, which 

is consistent with a loss of genetic diversity due to unequal male contribution (Table 

2). One allele was lost from the parent to the offspring generation, yet allele 

frequencies were not significantly different χ
2
 (10, 129) = 16.15, p = 0.095.  

 

The average number of alleles per locus and the mean observed heterozygosity for 

the LBI adults did not differ significantly from Stephens Island tuatara (F(3,16) = 0.16, 

p > 0.9), when sample sizes were equal. Compared to a large sample of tuatara 
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Figure 2. Body mass of founding male tuatara over time. Punga is the 
heaviest male and sired 78.8% of the offspring (closed squares = 

Punga, closed circles = Spike, open squares = Arnie, open circles = 

Rudolph). Snout-vent length follows a similar pattern of growth. 
 

from Stephens Island that we genotyped at the same five loci (n = 50), private alleles 

were found in LBI tuatara at 2 of 5 loci (C11P and B8P). The mean relatedness of 

LBI adults (r = 0.065) did not differ significantly from Stephens  

Island tuatara (mean r = 0.033), indicating that the LBI adults are no more inbred 

than those of a large, highly dense population (2000 tuatara / ha; Carmichael et al. 

1989). Furthermore, the effective number of LBI breeders was lower than the census 

number of breeders (N = 8). Based on the variance in reproductive success, Ne = 3.77 

(Nem = 1.32 and Nef = 3.30). 

 

5.5 Discussion 

 

This is the first study to document the occurrence of within-season multiple paternity 

in tuatara.  Multiple paternity is common in many taxa including mammals (Eberle 

and Kappeler 2004), birds, (Gibbs et al. 1990, Jamieson et al. 1994), insects 

(Bretman and Tregenza 2005), fish (Avise et al. 2002), amphibians (Gopurenko et al. 

2006), and in other reptiles (e.g., Zamudio and Sinervo 2000, Davis et al. 2001,  
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Table 2.  Number of alleles (Na) and observed heterozygosity (Ho) of 
offspring and adult Little Barrier Island tuatara by locus. 

 

Locus 

Na 

parents 

Na 

offspring 

Ho 

parents 

Ho 

offspring 

A12N 7 7 0.63 0.42 

C1H 4 4 0.63 0.53 

C11P 10 9 0.88 0.89 

B8P 10 10 0.88 0.91 

H5H 5 5 0.88 0.60 

Average 7.2 7.0 0.78 0.67 

 

Morrison et al. 2002, Lee and Hays 2004, Xu et al. 2005). Our results thus confirm 

the presence of multiple paternity, and also genetic polygyny in tuatara.  

 

Numerous hypotheses have been presented to explain the benefits conferred to 

females that exhibit polyandry (see Reynolds 1996, Jennions and Petrie 2000 for 

review). These include, but are not limited to, 1) improved genetic quality of 

offspring (via enhanced offspring diversity, genetic compatibility, increased sperm 

competition, cryptic female choice; Madsen et al. 1992, Calsbeek and Sinervo 2004),  

2) transfer of nutrients in seminal fluid, and 3) insurance against male infertility 

(Levitan and Petersen 1995). In populations or species where the odds of 

encountering a mate are low, females are expected to exhibit high levels of multiple 

paternity as a consequence of sperm storage. Although there is no evidence of long-

term sperm storage in tuatara (Saint Girons 1983), ovulation occurs ~1 – 2 months 

after mating (Cree et al. 1992) thus providing a window for sperm competition or 

cryptic female choice to occur. The mechanism underlying fertilization success in 

tuatara remains unknown, but cryptic female choice and/or sperm competition could 

play a role in paternity determination.  

 

Polyandry, polygyny and social dominance are clearly reflected in paternity of the 

LBI tuatara population. Social dominance may be based on large body size, as the 

smallest male was completely restricted from mating.  Male-male competition 

appears to be an important determinant of male reproductive success.  Females may 

also exhibit a preference for larger, more dominant males, a phenomenon which has 
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been shown in other taxa (e.g., Ambystoma tigrinum tigrinum, Howard et al. 1997; 

Psammodromus algirus, Salvador and Veiga 2001; Uta stansburiana, Calsbeek and 

Sinervo 2004). Although it is possible that Rudolph, who sired no offspring, was 

simply infertile, it is unlikely as the rates of infertility in reptile populations are 

generally very low (Olsson and Shine 1997).   

 

At the population level, social dominance of mating by one or a few males decreases 

genetic diversity (e.g., Hoelzel et al. 1999). The loss of heterozygosity from the 

parent to the offspring generation (14%) in the LBI tuatara population is not 

surprising considering the unequal representation of the founding males. Although 

there are eight potential breeders in the LBI captive breeding program, based on the 

variance in male and female reproductive success, the effective size of this 

population is approximately 4. This small Ne is cause for concern as this growing 

population is likely to lose diversity at a rapid rate. The presence of multiply sired 

clutches may help to offset the potential loss of diversity from social dominance by 

increasing the diversity of offspring within individual clutches and ultimately 

increasing Ne (Sugg and Chesser 1994).  

 

Because we have included every known individual in the LBI population in our 

analyses, it is impossible to under- or overestimate current levels of genetic diversity. 

However, our data span the first 12 years of this breeding program (only a portion of 

the reproductive lifespan of a tuatara), and it is possible that as male size and 

condition changes with time, and management options are explored (see below) the 

dominance structure will be altered significantly. Aside from obvious correlates like 

body size (i.e., competitive ability), it is currently unknown why some males are 

consistently more successful than others. Reproductive dominance by these 

individuals could be beneficial if, for instance, they have greater variation at 

functional genes, such as the major histocompatibility complex (MHC) (Miller et al. 

2007). If this were the case, allowing the natural mating system to play a role, rather 

than manipulating captive breeding, could actually enhance offspring fitness.  

 

While the small number of remnant LBI tuatara indicates a recent demographic 

bottleneck, the remaining tuatara still retain relatively high levels of genetic 

diversity. In a survey of genetic diversity of tuatara populations, MacAvoy et al. 
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(2007) found similar results.  Based on a different set of microsatellite markers than 

we used in our study, MacAvoy et al. (2007) found an intermediate level of genetic 

diversity in the LBI tuatara (n = 7) when compared to 13 other tuatara populations. 

Tuatara populations exhibit strong genetic structuring across their range, which 

further emphasizes the need to conserve every remnant population via threat removal 

and/or successful captive breeding (Aitken et al. 2001, MacAvoy et al. 2007). 

MacAvoy et al. (2007) concluded that a loss of rare alleles, resulting in a mode shift 

in allele frequency classes, was indicative of a genetic bottleneck that puts LBI 

tuatara at risk.  

 

5.5.1 Conservation / management implications 

 

Conservation breeding programs are common in New Zealand species recovery 

plans. In some instances, human intervention and manipulation of founder 

representation are possible (Clout and Craig 1995). However, in cases such as the 

LBI tuatara, the best managers can do to retain the genetic diversity of a particular 

population is to repopulate the island with the genetic stock that remains, and any 

breeding in captivity by these individuals is thus considered a success. Although 

conservation efforts for tuatara have been extremely successful (Nelson et al. 2002a), 

from a genetic standpoint it would be useful for managers to consider the genetic 

effects of potentially highly polygynous captive colonies.  Many captive-bred 

populations scheduled for reintroduction are already suffering from genetic 

bottlenecks, and unequal founder representation would only further this, thus putting 

these populations at even greater risk. In a captive setting, rotating resident males 

with a group of females may help to alleviate the effects of dominance and equalize 

male representation. However, managing on a very fine scale (e.g., isolating specific 

breeding pairs) has not proven successful in the past, so it is unknown whether 

breeding would even occur under highly managed circumstances.  

 

Although the remaining LBI tuatara appear to be retaining some remnant diversity, 

the release group that will repopulate this island is composed of all half and full 

siblings, which may hinder the future success of this population by reduced 

reproduction, survival and hatching success resulting from inbreeding depression.  

Releasing the offspring at geographically distinct sites may help to slow the rate of 
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inbreeding by decreasing the probability of full-sibling mating.  Furthermore, 

removing Punga from the captive colony may help to even out the distribution of 

founder alleles, although this does not guarantee that all males will be represented in 

the future. Since rats have been removed from LBI, one new wild tuatara has been 

sighted on the island. The admixture of new genetic stock, from remnant tuatara still 

living on LBI outside of captivity, could improve the genetic health of this new 

population. 

 

In future captive breeding efforts, manipulation of hatchling sex ratios could be 

beneficial for population growth.  Because tuatara exhibit TSD, manipulating sex 

ratios of release groups (via artificial incubation temperatures) is easily 

accomplished.  Theoretically, an equal sex ratio should maximize Ne (Allendorf and 

Luikart 2007). However, the adult sex ratio also has an impact on the degree and 

frequency of polyandry and/or polygyny (e.g., Anthony and Blumstein 2000, Fitze et 

al. 2005). In small populations where females are the reproductively limiting sex, a 

female-biased sex ratio can amplify population growth. Lenz et al. (2007) found that 

female-biased sex ratios (of as much as 0.3 males : 1 female) in captive bred Lesser 

Kestrels, could not only increase Ne, but lead to recovery of the wild population. 

Because reproductive success is so variable in male tuatara and females have an 

infrequent, low reproductive output (Cree 1994), a female biased sex ratio (of 

possibly as much as 0.25 males : 1 female) may help to offset the variance in male 

reproductive success by decreasing intrasexual competition, while maximizing 

population growth and maintaining genetic diversity.  

 

The concept of translocating individuals or eggs from one population to another (i.e., 

introducing migrants) has been suggested as a potential means to increase genetic 

diversity and population demography of some tuatara populations (Allendorf 2001). 

This could be a way of increasing Ne for the LBI population. Because tuatara exhibit 

strong phylogenetic structuring across their range, source islands should be the most 

genetically similar populations that would not be harmed by removal of a small 

portion of their population. However, it is currently unknown whether this could 

have negative impacts (e.g., outbreeding depression), so future research and 

management should aim to explore this direction. 



 

CHAPTER SIX 

 

Fine-scale Genetic Structure of a Long-lived Reptile 
Reflects Recent Habitat Modification 

 

 

6.1 Abstract 

 

Anthropogenic habitat fragmentation – ubiquitous in modern ecosystems – has 

strong impacts on gene flow and genetic population structure. Reptiles may be 

particularly susceptible to the effects of fragmentation because of their extreme 

sensitivity to environmental conditions and limited dispersal. We investigate fine-

scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a 

large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently 

fragmented island. We genotyped individuals from remnant forest, regenerating 

forest, and grassland pasture sites at seven microsatellite loci and found significant 

genetic structuring (RST = 0.012) across small distances (<500 m). Isolation by 

distance was not evident, but rather, genetic distance was weakly correlated with 

habitat similarity. Only individuals in forest fragments were correctly assignable to 

their site of origin, and individual pairwise relatedness in one fragment was 

significantly higher than expected. We did not detect sex-biased dispersal, but 

natural dispersal patterns may be confounded by fragmentation. Assignment tests 

showed that reforestation appears to have provided refuges for tuatara from disturbed 

areas. Our results suggest that fine-scale genetic structuring is driven by recent 

habitat modification and compounded by the sedentary lifestyle of these long-lived 

reptiles. Extreme longevity, large population size, simple social structure and random 

dispersal are not strong enough to counteract the genetic structure caused by a 

sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur 

in any sedentary species with limited dispersal, making them more susceptible to the 

effects of fragmentation. 

 

6.2 Introduction 
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Habitat fragmentation is ubiquitous in modern ecosystems (Saunders et al. 1991). In 

addition to natural forces like dispersal, demography, and the mating system (Wright 

1931, Crow and Kimura 1970, Wright 1978, Bohonak 1999), anthropogenic habitat 

fragmentation and disturbance have strong effects on gene flow and genetic 

population structure (Manel et al. 2003, Lawton-Rauh 2008, Walker et al. 2008). 

Animals living in fragmented habitats often show decreased dispersal because of 

unwillingness or inability to move between fragments (Saunders et al. 1991, 

Debinski and Holt 2000, Couvet 2002). Fragmentation increases the likelihood of 

inbreeding by causing an accumulation of related individuals within fragments, and 

increases the rate of population differentiation due to genetic drift (Saunders et al. 

1991, Couvet 2002, Allendorf and Luikart 2007). Thus, genetic studies of dispersal, 

relatedness and population structure can inform conservation management by 

elucidating the potential impact of habitat fragmentation and disturbance. Because 

the two primary effects of habitat fragmentation are isolation and alteration of the 

microclimate (Saunders et al. 1991), reptiles, with their naturally limited dispersal 

(Gibbons et al. 2000) and extreme sensitivity to environmental conditions (Janzen 

1994a, Janzen 1994b, Gibbons et al. 2000), may be more susceptible to the effects of 

fragmentation than other taxa.  

 

Genetic analyses based on individual genotypes have enabled detection of fine-scale 

genetic structuring, individual migration, and cryptic behavior (Knutsen et al. 2003, 

Vignieri 2007, Clark et al. 2008). For instance, assignment tests can recognize 

probable migrants by identifying the population to which an individual’s genotype 

has the highest likelihood of belonging. Likewise, patterns of dispersal and mating 

between relatives can be inferred by examining pairwise coefficients of relatedness 

among subpopulations or sexes. Molecular methods can be applied to systems where 

behavioral and dispersal patterns are difficult to observe or too low to detect by 

traditional ecological methods (e.g., radio-telemetry, capture-mark-recapture), and 

often enhance or provide results contrary to those obtained using traditional methods 

(Hughes 1998 and references therein). 

 

Many fine-scale genetic techniques now incorporate detailed spatial information that 

goes beyond simple linear distances between populations. Incorporating advanced 

spatial analyses has enabled quantification of the effects of habitat and/or geographic 
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barriers to explain genetic patterns (Manel et al. 2003, Spear et al. 2005, Storfer et al. 

2007, Telles et al. 2007). For example, interpolation, a procedure that is commonly 

used in spatial analyses to calculate new data points to fit the range of known data 

points, is now being used to present novel graphical representations of spatial genetic 

structure (Miller 2005, Vignieri 2007). Interpolation enables population geneticists to 

model continuous genetic distances across a patchily sampled landscape without a 

priori grouping samples into subpopulations. When applied in the context of 

landscape-scale processes like habitat fragmentation, novel molecular methods are a 

powerful way of revealing genetic impacts to populations.  

 

In this study, we use a large island population of tuatara (Sphenodon punctatus) to 

investigate the potential effects of recent habitat fragmentation on spatial genetic 

structure, dispersal, and relatedness. Endemic to New Zealand, tuatara are medium-

sized (approximately 200 mm snout-vent length), territorial reptiles that are 

extremely long-lived (80+ years, Dawbin 1982b), and have a long generation time 

(40 - 50 years, Allendorf and Luikart 2007). Although once distributed throughout 

the main and outlying islands of New Zealand, tuatara are now restricted to 

approximately 35 small offshore islands. Over half of extant tuatara (estimated at 30 

- 50,000 individuals, Newman 1987) inhabit Stephens Island, a 150 ha island in the 

Marlborough Sounds (40º40’S, 174º 00’E).  

 

Coastal forest covered Stephens Island until the early 1900’s when over 80% had 

been cleared or severely degraded for livestock grazing (Dieffenbach 1843, Brown 

2000; see Figure 1A). Tuatara appear to have altered their behavior and movement 

patterns significantly in only two or three generations since fragmentation. In both 

habitats, tuatara exhibit high territory fidelity and the adult spatial structure is 

relatively static over time (Moore et al. in review). Tuatara are nocturnal in the 

pastures, but they are active throughout the day and night in the forest (Gillingham et 

al. 1995). Further, population density is currently ten times higher in the forest than 

the pastures (~2700 tuatara/ha in the forest vs. ~250 tuatara/ha in the pasture; Moore 

et al. in review). Pastures do not appear to pose significant barriers to tuatara 

movement (e.g., many females traverse this habitat for nesting), and because tuatara 

are so long-lived, this population was assumed to be panmictic. However, although 
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habitat fragmentation has affected the demography and behavior of Stephens Island 

tuatara, any unrecognized genetic effects have yet to be revealed.  

 

Genetic structuring and gene flow are well understood for long-lived plants (see 

Vekemans and Hardy 2004 for a review), but few studies have investigated fine-

scale genetic structuring and dispersal of long-lived animals. Further, most studies of 

fine-scale genetic structuring and individual dispersal and relatedness patterns are 

conducted in taxa with well-developed social systems (e.g., insects – Ross 2001, 

Schrey et al. 2008; mammals – Coltman et al. 2003, Nussey et al. 2005, Frantz et al. 

2008). Few reptiles have complex social systems (but see Bull and Cooper 1999, 

Stow et al. 2001, Chapple and Keogh 2005), and because of ecological and thermal 

constraints, many reptiles have extremely limited dispersal capabilities.  Specifically, 

we ask:  

1) Can dispersal or migration be sex-biased in a species with a simple territorial 

social structure? 

2) Could fine-scale spatial genetic structuring (i.e., between subpopulations < 

750 m apart) occur in a long-lived reptile, and what is the effect of recent 

habitat fragmentation?  

 

6.3 Materials and Methods 

 

6.3.1 Sample collection 

 

We collected blood samples from 272 tuatara from eight sampling sites distributed 

around Stephens Island (Figure 1). In a remnant forest patch on Stephens Island 

(Keeper’s Bush, F1 from now) three study plots (F1a, F1b, and F1c) were 

established and all individuals within the study plots (n = 142) were captured by 

hand on six separate sampling trips between November 2004 and March 2007. Four 

other sites (one regenerating forest, R1; three pasture, P1, P2 and P3) were sampled 

around the island and were chosen based on accessibility and permission from the 

New Zealand Department of Conservation (as researcher access is restricted to 

certain parts of the island). Individuals were located by opportunistic encounters, at 

night, between 28 Feb and 16 Mar 2006. Thirty tuatara were sampled in Mar 2003 

from a forest remnant (the Frog Bank, F2) that is normally inaccessible to tuatara  
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 A) 

 

 B) 

 

 

Figure 1. Aerial view of Stephens Island with eight tuatara sampling locations 
(black dots are individual locations) by habitat type in A) 1943 and B) 1994. Data 

were grouped for some analyses into four subpopulations (indicated by dashed lines 

and bold lettering). Significant topography exists, with the island rising to near 300m 

above sea level at the summit (near R1). Landcover layers were digitized based on 

high resolution aerial photographs and ground-truthed for accuracy. 
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researchers. Aside from the F1 site which was repeatedly sampled, no samples were 

collected during nesting season (Nov – Dec) when females would have been away 

from their home burrows. All individual capture locations were marked with a 

handheld GPS (Trimble GeoXT) and locations were post-processed to increase 

accuracy using Pathfinder Office software (Trimble Navigation Ltd.) and base files 

from Wellington, NZ. Data were then entered as a point coverage in a geographic 

information system (GIS).  

 

Upon capture, all tuatara were weighed, measured, sexed, and 0.2 – 1.0 mL of blood 

was drawn from the caudal vein/artery. Sex of adults was determined by sexually 

dimorphic characters (e.g., larger head and spines of males vs. smaller spines and 

pear shaped abdomen of females; Cree et al. 1991a) and individuals that were too 

young to be sexed were classified as juveniles. Blood samples were stored in 

cryotubes in either 70% ethanol at room temperature or snap frozen in liquid 

nitrogen until they could be placed in long-term storage at -80°C. Individuals in the 

F1 plots were marked with a subcutaneous passive integrated transponder (PIT) tag 

(AVID© Identification Systems, Inc.), and all others were marked by writing a 

unique number code on the side of the animal with a non-toxic marker that was 

visible throughout the duration of the sampling trip, to ensure individuals were not 

resampled. 

 

6.3.2 Genotyping and genetic analyses 

 

Genomic DNA was extracted from 5 - 10 µl of whole blood using a proteinase K 

phenol-chloroform protocol (Sambrook et al. 1989) or with a DNeasy tissue kit 

(QIAGEN) following the manufacturer’s protocol. We genotyped all individuals 

using seven reliable and polymorphic loci (C2F, C11P, E11N, H5H, A12N, C12F 

and H4H) in 15 µl reaction volumes, following PCR conditions outlined in Hay and 

Lambert (2008). Amplified products were multiplexed for genotyping and were run 

on an ABI 3730 Genetic Analyzer (Applied Biosystems) with the internal size 

standard GeneScan 500 LIZ (Applied Biosystems).  Fragments were analyzed and 

visualized using Genemapper software (version 3.0, Applied Biosystems) and sizes 

were manually scored by the same observer. 



Chapter 6 – Fine-scale population structure   
 

 

91 

 

We calculated observed and expected heterozygosities and number of alleles per 

locus in GENALEX 6 (Peakall and Smouse 2006), and tested for significant 

deviations from Hardy-Weinberg equilibrium (HWE) and for linkage disequilibrium 

at each locus for each sampling locality in GENEPOP 4.0 (Raymond and Rousset 

1995). We used a Monte Carlo chain method (1000 dememorizations, 100 batches, 

1000 iterations) following the algorithm of Guo and Thompson (1992) and applied a 

Bonferroni correction for a tablewide significance level of 0.05 (adjusted p-value = 

0.0008). We calculated allelic richness per locus for each sampling site using FSTAT 

2.9 (Goudet 1995), and used MICRO-CHECKER 2.0 (Van Oosterhout et al. 2004) to 

estimate the frequency of null alleles.  

 

6.3.3 Population patterns of genetic diversity 

 

We first examined subpopulation structuring in the Stephens Island tuatara using an 

analysis of molecular variance (AMOVA) framework in GENALEX 6 following 

methods of Excoffier et al. (1992). AMOVA provides estimates of traditional F-

statistics (Weir and Cockerham 1984), as well as their analogues (RST and ΦPT). We 

also calculated pairwise FST and RST. A limitation to the AMOVA framework is that 

it requires a priori clustering of samples into subpopulations. Thus, we first explored 

pairwise FST and RST values of our sites as they were sampled (with eight separate 

subpopulations), and based on genetic similarities and differences, we grouped them 

according to spatial proximity (within 200m of one another) and habitat and 

disturbance history. We then ran a second AMOVA with data grouped as four 

subpopulations: F1 (a random subsample of 50 individuals from the combined data 

from the three F1 plots), R1/P3 (all R1 samples combined with the P3 samples), 

P1/P2 (all samples combined from P1 and P2) and F2 (all of the F2 samples) (see 

Figure 1). Because we only sampled a low number of juveniles in three of the eight 

sampling sites, we removed juveniles from these analyses. Significance testing was 

achieved by 9999 random permutations. Because FST has many limitations, we also 

used an assignment-based method that may be a more powerful alternative (Pearse 

and Crandall 2004, Clark et al. 2008). We calculated DLR, the genotype likelihood 

ratio distance (Paetkau et al. 1995), using DOH (Brzustowski 2002) with data 
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grouped by sampling location. DLR is the likelihood that a given genotype originated 

in the population where it was sampled relative to other populations. This measure 

appears to perform well at fine scales where populations show little differentiation 

(Paetkau et al. 1997). Significance of assignments was determined by creating 

random genotypes from pooled populations (in DOH) and recalculating population 

assignments for 1000 randomized datasets. The randomized datasets are then 

compared to the actual datasets to determine whether the level of self assignment in 

actual subpopulations is greater than in randomly constructed populations.  

 

We tested whether there was an overall pattern of isolation by distance across 

subpopulations. We grouped data as six subpopulations F1, F2, R1, P1, P2, and P3 

because this analysis is reliant upon geographic distances. We calculated the 

geometric centers of individual geographic locations for each of the six 

subpopulations using the ‘mean center’ tool in ArcGIS 9.1 (ESRI). Pairwise 

distances between subpopulation centers were determined by performing a surface 

length analysis in ArcGIS 9.1 based on a 25m digital elevation model (DEM) for 

Stephens Island. Surface length distances are 3-dimensional lengths that take into 

account the topography of a landscape, thus providing more accurate estimates of 

distance when significant topographical features exist. Surface lengths between 

subpopulation centers were 1 – 32 m longer than planimetric (i.e., flat) distances. We 

performed a Mantel test for matrix correspondence in GENALEX 6 comparing 

pairwise RST values to pairwise surface length distances for the six subpopulations. 

We used RST because it is more appropriate for markers with high levels of variation, 

and FST can be biased downwards when variation within subpopulations is high 

(Allendorf and Luikart 2007). To examine whether dispersal and movement may be 

limited to within a habitat type, we used a Mantel test to compare pairwise habitat 

difference/similarity to genetic distance (pairwise RST) in GENALEX6. We 

generated a pairwise habitat matrix for the six sites by designating like pairs (i.e., 

forest-forest) with a value of 1 and unlike pairs (i.e., forest-pasture) with a value of 2. 

Significance of matrix correspondence was tested by 9999 random permutations. 

 

Because of the fragmented nature of our study site, we tested the hypothesis that 

individuals within historic forest fragments (F1 and F2) are more related than 

individuals in pasture sites (P1/P2 and R1/P3). We calculated mean pairwise 
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relatedness (R) using the formula of Queller and Goodnight (1989) in GENALEX 6 

(Peakall and Smouse 2006) for each of the four subpopulations. We tested for 

significant differences in subpopulation means by performing 999 random 

permutations of our data and 95% confidence intervals around each mean R were 

estimated by 999 bootstraps. 

  

Detailed patterns of spatial genetic structure across Stephens Island were visualized 

using the ‘genetic landscape shape’ (GLS) interpolation procedure in Alleles in 

Space (AIS, Miller 2005). This method is designed to facilitate visualization of 

patterns of diversity across a landscape by creating a 3-dimensional surface plot 

where X- and Y-axes correspond to geographic coordinates and the Z-axis 

corresponds to genetic distance. The procedure thus creates peaks in areas where 

genetic distances between individuals are high, and valleys or troughs where genetic 

distances between individuals are low, and is particularly effective at identifying 

geographic barriers. This method has recently been used to investigate spatial genetic 

structure at very fine scales (e.g., Vignieri 2007) and is a powerful approach for 

estimating genetic structure across sampled and unsampled individuals. In AIS, we 

first created a pairwise location-based connectivity network for all individual 

locations. Pairwise genetic distances were then calculated following equation three in 

Miller (2005). Residual genetic distances (derived from the linear regression of all 

pairwise genetic distances on geographical distance) were then assigned to the 

midpoints of each connection in the network. Genetic structure across the landscape 

was inferred from measured genetic distances using an inverse distance weighted 

interpolation across a uniform grid laid over the entire sampling area. A grid size of 

50 x 50 was selected (we also tested a 100 x 100, and 25 x 25 grid) with a distance 

weighting parameter (a) of 0.5 (we also tested a = 0.6 – 1.5). 

 

6.3.4 Individual dispersal and migration 

 

In addition to testing for population-wide patterns of diversity, we investigated 

whether there were differences at the individual level in the form of sex-biased 

dispersal or migration. Although male-biased dispersal is predicted in polygynous 

systems (Mossman and Waser 1999, Prugnolle and de Meeus 2002), nesting by 

forest tuatara occurs outside of home ranges and no direct evidence for natal 
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philopatry exists. Thus, we hypothesized sex-biased dispersal would not be evident 

in pasture or forest tuatara. We conducted four separate indirect tests for sex-biased 

dispersal and migration of males and females across sites: 1) mean pairwise 

relatedness, 2) mean corrected assignment index (mAIc), 3) variance of assignment 

index (vAIc), and 4) spatial autocorrelation. Assignment indices are following the 

methodology of Favre et al. (1997) and Mossman and Waser (1999). We included all 

data from the F1 plots and analyzed each as separate sites (F1a, F1b, and F1c), in 

addition to the F2, R1/P3 and P1/P2 subpopulations. If sex-biased dispersal exists, 

the dispersing sex is expected to have a lower average relatedness than the non-

dispersing sex (Prugnolle and de Meeus 2002). Likewise, mAIc should be lower for 

the dispersing sex because immigrants have lower AIc values than residents, and 

vAIc should be higher for the dispersing sex because members of the dispersing sex 

will include both immigrants (low AIc) and residents (high AIc) (Mossman and 

Waser 1999). We calculated mean relatedness between male-male and female-

female pairs, mAIc, and vAIc in FSTAT 2.9. Significance testing was achieved by 

comparing actual values to randomized values for 10 000 permutations. Multi-locus 

spatial autocorrelation analyses, following the methods of Smouse and Peakall 

(1999), were performed in GENALEX 6. This technique calculates an 

autocorrelation coefficient (r) for predefined distance classes. Under a model of 

restricted dispersal, the expectation is that genetic and geographic distance will be 

positively autocorrelated at short distances. Significance tests are performed using 

1000 random permutations and 95% confidence intervals for estimates of r are 

determined by 1000 bootstraps.  

 

6.4 Results 

 

6.4.1 Genetic analyses 

 

Expected heterozygosity ranged from 0.73 – 0.78 and was highest for the F1b and P3 

sites (HE = 0.78) and lowest for the F2 site (HE = 0.73) (Table 1). Allelic richness 

ranged from 8.1 – 9.5 alleles per locus. Individuals in the R1 subpopulation showed 

the highest allelic richness (9.5 alleles) while the F2 individuals showed the lowest 

allelic richness (8.1 alleles) (Table 1). Following the Bonferroni correction, only one  
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Table 1. Sample sizes (N), habitat type, mean number of alleles, 
expected (He) heterozygosity by locus, and allelic richness (number of 

alleles corrected for sample size) for each tuatara sampling locality on 

Stephens Island. 
 

 N Habitat type 
No. 

alleles 
HE 

Allelic 

richness 

F1a 42 Remnant forest 11.29 0.76 8.9 

F1b 47 Remnant forest 11.71 0.78 9.2 

F1c 53 Remnant forest 11.57 0.77 9.0 

F2 30 Remnant forest 8.86 0.73 8.1 

R1 20 Regenerating forest 9.71 0.77 9.5 

P1 20 Pasture 8.86 0.75 8.7 

P2 20 Pasture 9.00 0.76 8.9 

P3 40 Pasture 11.14 0.78 9.0 

 

locus (H5V) in one subpopulation (P3) showed a significant deviation from HWE. 

We did not find any overall linkage disequilibrium between any of the loci. Although  

null alleles were detected at low frequencies in one locus for three subpopulations, 

and two loci for one subpopulation, null alleles were not detected at the same loci 

across subpopulations. Therefore, we retained all seven loci for analyses. 

 

6.4.2 Population patterns of genetic diversity 

 

The AMOVA with data grouped as four subpopulations based on discreet sampling 

locations showed generally low but significant levels of differentiation (overall RST = 

0.012, p = 0.025), with only 1.2% of total genetic variation due to differences among 

subpopulations. Pairwise estimates of RST between the F2 and P1/P2 and R1/P3 sites 

were low, but significant (Table 2). We found no evidence for an isolation by 

distance pattern. The F2 and R1/P3 sites (located ~400 m from one another) were 

significantly genetically differentiated, while sites (F1 and F2) that were a greater 

distance apart (~750 m) were not. Pairwise DLR values ranged from 0.0 – 1.46, 

indicating a low to moderate average likelihood of observing individual genotypes in 

the subpopulation from where they were sampled to that of other subpopulations 

(Clark et al. 2008). Furthermore, 29% of individuals were correctly assigned to the  
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Table 2. Pairwise population RST (above diagonal) and, for 
comparison, FST (below diagonal) estimates for tuatara from four 

subpopulations from two habitat types (forest = F2 and F1, pasture = 

P1/P2 and R1/P3) on Stephens Island. Asterisks indicate significant 

differences from zero (p<0.05). 
 

 

 
F2 F1 P1/P2 R1/P3 

F2 – 0.009 0.053 * 0.030 * 

F1 0.003 – 0.004 0.000 

P1/P2 0.007 * 0.000 – 0.004 

R1/P3 0.011 * 0.000 0.001 – 

 

subpopulation from which they were sampled and the randomization procedure 

showed significant self-assignment in the two forest remnant sites (F1 and F2), but 

not in the other sites (Table 3). No individuals from the R1 site assigned to the R1 

site, but rather they assigned evenly across all other sites. The Mantel test comparing 

pairwise surface lengths to pairwise genetic distance showed no significant patterns 

of isolation by distance (R = 0.47, p = 0.078). However, the Mantel test comparing 

pairwise habitat difference/similarity to genetic distance was weakly significant (R = 

0.47, p = 0.048). Mean pairwise relatedness was generally low (values ranging from 

-0.14 – 0.062). Only the individuals within the F2 subpopulation were significantly  

 

Table 3. Proportion of sampled tuatara assigned from column site to 
row site from six sampling sites around Stephens Island (based on 

genotype likelihood ratio distances). Only individuals from the two 

remnant forest sites (F1 and F2) showed significant self-assignment to 

their subpopulation of origin, as indicated by the asterisks (p<0.05). 
 

 F2 F1 P3 P2 P1 R1 

F2 0.40 * 0.23 0.10 0.13 0.00 0.13 

F1 0.18 0.36 * 0.18 0.10 0.09 0.09 

P3 0.05 0.30 0.20 0.08 0.15 0.23 

P2 0.15 0.15 0.20 0.20 0.15 0.15 

P1 0.05 0.20 0.25 0.20 0.15 0.15 

R1 0.15 0.25 0.30 0.20 0.10 0.00 
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Figure 2. Mean pairwise estimates of tuatara relatedness (bound by 
95% confidence intervals) for forest (F1 and F2) and pasture 

subpopulations (P1/P2 and R1/P3). Individuals in the F2 

subpopulation are significantly more related than expected (p = 0.002). 

Gray bars are upper and lower 95% confidence limits across 

subpopulations. 

 

more related than the other three subpopulations (mean = 0.062, p = 0.002; Figure 2) 

as determined by permutation testing.  

 

The genetic landscape shape suggests increased genetic distance between individuals 

in the middle of the island, with lower genetic distance between individuals around 

the edges, and extremely low distances (represented as a trough) in the region of the 

F2 site (Figure 3). The peaks appear to approximately correspond to regions that 

would have historically been most disturbed (pastures), while troughs correspond to 

least disturbed areas (forest fragments). The interpolation is bounded by the outside 

of the sampling area, and thus does not include anything beyond the outermost edges 

of the sampling areas (e.g., cliffs). 

 

6.4.3 Individual dispersal and migration 

 

We did not detect an overall pattern of sex-biased dispersal or migration. Mean 

pairwise relatedness between males (R = 0.008) and females (R = 0.01) was not  
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A) 

 

B) 

 

Figure 3. Genetic landscape shape showing patterns of spatial genetic distance for 
tuatara across Stephens Island. X- and y-axes correspond to geographic coordinates 

and the z-axis (height) corresponds to genetic distance between individuals. Peaks 

are indicative of areas with high pairwise genetic distance and valleys or lighter 

colours are indicative of areas of low pairwise genetic distance. Approximate centres 

of sampling sites are indicated for clarity. 
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significantly different (p = 0.27). Although the mean corrected assignment index was 

lower on average for males (mAIc = -0.16) than females (mAIc = 0.30), the 

difference was not significant (p = 0.11). Likewise, variance of assignment index 

was higher for males (vAIc = 8.01) than females (vAIc = 7.63), but the difference was 

not significant (p = 0.35). We found no obvious patterns from the spatial 

autocorrelation analyses. Neither sex showed a significant decline in genetic distance 

with geographic distance (Figure 4) suggesting that neither sex is philopatric.  

 

A)  
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Figure 4. No significant pattern of spatial autocorrelation exists for 
male (A) or female (B) tuatara on Stephens Island as indicated by the 

correlograms of correlation coefficients (r) of geographic and genetic 

distance at variable distance classes. Upper and lower error bars are 

bound by 95% confidence intervals around each r, and dashed lines 

indicate 95% confidence limits around the null hypothesis of a random 

spatial distribution of genotypes. 

 

6.5 Discussion 

 

We show that large populations of long-lived animals with high genetic variation can 

exhibit genetic structuring on a very small scale (<500 m), even in the absence of 
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sex-biased dispersal or complex social systems. Although the level of genetic 

differentiation in Stephens Island tuatara was low, the fact that any significant 

genetic structuring exists at this scale in such a long-lived species is surprising. We 

found no evidence for sex-biased dispersal, and assignment tests reflect individual 

movement patterns consistent with recent habitat modification.  

 

The low but significant genetic structuring of Stephens Island tuatara is primarily 

driven by the differentiation of the southern forest remnant (F2) individuals. The 

most parsimonious explanation for this result is that the F2 site has simply diverged 

over time because it has been the least disturbed through the history of the island 

(Brown 2000), and it may be naturally more isolated due to the topography of the 

island. However, this does not explain why the two forest remnants were not 

genetically differentiated, even though they were geographically more distant than 

sites that were. We envisage two possible explanations for this pattern. First, the 

scrubby cliffs along the western edge of the island may have functioned as a corridor 

between the two forest remnants during and after fragmentation. Although 

inaccessible to people and livestock, these cliffs pose no barrier to tuatara movement 

and probably provide greater cover than the pastures. Radiotelemetry has shown that 

some female tuatara from the northern forest remnant (F1) nest on the western cliffs, 

subsequently returning to their home ranges (J. Moore, unpublished data). Juveniles 

dispersing from western cliff nests to either of the forest remnants, avoiding the 

disturbed areas in between, may have homogenized these two sites.  

 

Secondly, allele frequencies in the forest remnants may represent what was present 

across the island prior to habitat modification, and increased admixture in the pasture 

and regenerated sites has caused these sites to exhibit different genetic profiles from 

the F2 site. Deforestation of pasture sites and constant disturbance from livestock 

grazing has altered behavior and movement patterns of adult tuatara (Gillingham et 

al. 1995, Moore et al. 2007) and may have caused increased mortality. Further, 

conversion of forest to pasture has altered the thermal regime enabling nesting in 

pastures that were too cold to support egg development when forested (Thompson 

1990). Therefore, genetic signatures of F1 individuals are regularly introduced to the 

pasture sites by F1 females that now nest in these sites (N. Nelson, unpublished 

data). The high genetic distances (calculated in AIS) between individuals in the 
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pastures (see GLS in Figure 3), the even assignment of pasture individuals across all 

other sites, and the lack of differentiation between the F1 and pasture sites support 

this supposition. In this respect, the forest fragments may have acted as refugia for 

established resident tuatara that were able to maintain their natural spatial structure 

and behavioral patterns throughout the period of disturbance, as well as nearby 

juveniles that may have immigrated during heavy disturbance. The significant self-

assignment of only individuals from forest sites and findings from our habitat Mantel 

test provide evidence for this.  

 

Our assignment tests show that individuals in the reforested R1 site are recent 

immigrants. The R1 site, and the entire region between the two forest remnants 

(Figure 1), was once completely denuded by livestock and naval activity (Brown 

2000). This area was replanted in 1989 by the New Zealand Department of 

Conservation to provide a corridor between the remaining forest patches, which now 

resembles original closed canopy forest remnants. Reforestation appears to have 

established a refuge for pasture animals by providing increased cover from avian 

predators, greater food resources (Walls 1981), and little competition from already 

established resident tuatara. Kanowski et al. (2006) advocate revegetating corridors 

between remnant habitat fragments for successful re-establishment of reptile 

populations. Our data suggest that corridor reforestation has been a successful 

approach for tuatara, and most likely for other lizard species as well (Stephens 2004).  

 

We found no strong pattern of sex-biased dispersal or migration in tuatara. Although 

values from the individual tests point to males being the more mobile sex and 

females the more philopatric sex, no test was significant. Sex-biased dispersal may 

evolve as a mechanism to avoid inbreeding (Perrin and Mazalov 2000, Prugnolle and 

de Meeus 2002), but because female tuatara in the forest do not nest in their home 

ranges, the risk of inbreeding in large forest remnants is low. Sex-biased dispersal 

may be more prevalent in reptiles that live in family groups or have more complex 

social systems (e.g., some lizards in the Egernia genus, Bull and Cooper 1999, Stow 

et al. 2001). Our ability to detect natural dispersal patterns is probably confounded 

by the disturbance and habitat fragmentation in this population (e.g., Stow et al. 

2001, Sumner 2005). A more appropriate test may be to examine only patterns of 
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juvenile dispersal, or patterns of dispersal on a warmer northern island where local 

climatic conditions could allow females to nest in their home ranges. 

 

Spatial genetic structuring has now been detected at fine scales (100 m – 2 km) in a 

number of mobile animal species (e.g., Gibbs et al. 1997, Spruell et al. 1999, Brouat 

et al. 2003, Coltman et al. 2003, Peakall et al. 2003, Double et al. 2005, Clark et al. 

2008). However, many of these species have a more complex social system, and 

shorter lifespan, than tuatara. For instance, fine-scale genetic structuring can be 

reinforced by a strong tendency for female philopatry, a pattern that is common in 

many mammals (e.g., red deer, Cervus elaphus, Nussey et al. 2005, Frantz et al. 

2008). The relatively simple territorial spatial structure of tuatara is highly stable 

over years (Moore et al. in review), and possibly decades. The risk that juveniles will 

coincidentally disperse to the same forest fragment as their parents increases when 

preferred forest habitat is limited, thereby increasing relatedness within small 

fragments (e.g., for Cunningham’s skink, Egernia cunninghami, Stow et al. 2001). 

Thus, the sedentary lifestyle and limited dispersal of adult tuatara, and many reptiles 

(Gibbs et al. 1997, Prosser et al. 1999), may be strong enough to result in fine-scale 

genetic structuring even in the absence of a more complex social system.  

 

We found no overall pattern of isolation by distance for Stephens Island tuatara. At 

mutation-migration-drift equilibrium, and for species with limited dispersal, genetic 

differentiation should increase with geographic distance (Slatkin 1993). Habitat 

fragmentation and disturbance may have caused Stephens Island tuatara to diverge 

from this theoretical expectation. Driscoll and Hardy (2005) found that populations 

of agamid lizards (Amphibolurus nobbi) in uncleared forested habitat showed 

significant isolation by distance, whereas populations in linear farmed habitat did 

not. Further, small A. nobbi populations in farmed habitat had similar levels of 

genetic variation to large populations in nature reserves, which the authors attributed 

to a burst of movement during land clearing resulting in migrations of lizards from 

many sources finding refuge in remnant forest populations (Driscoll and Hardy 

2005). Stephens Island tuatara appear to reflect a similar pattern, although it is 

perhaps equally plausible that the isolation by distance expectation would not hold 

true at this fine scale. The apparent alteration of genetic structuring and dispersal 

across the island has occurred on a very short timescale for long-lived tuatara (only 
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2-3 generations), so the current patterns are more indicative of increased migration of 

long-lived individuals, rather than genetic drift.  

 

Anthropogenic habitat modification and disturbance have had a profound effect on 

gene flow for many reptiles, because of their naturally low dispersal and extreme 

sensitivity to changes in the thermal environment (Cunningham and Moritz 1998, 

Stow et al. 2001, Sumner et al. 2004, Driscoll and Hardy 2005, Sumner 2005, 

Gardner et al. 2007). If weak fine-scale genetic structuring due to limited dispersal 

and a sedentary lifestyle is not counteracted by extreme longevity, large population 

size, or a simple social structure or random dispersal pattern (e.g., for tuatara), we 

suspect that any species with limited dispersal or mobility could exhibit very fine-

scale spatial genetic structuring. These species may thus be more susceptible to 

behavioral alteration from anthropogenic habitat fragmentation or disturbance, which 

would ultimately affect patterns of gene flow and genetic differentiation and 

potentially increase extinction risk.  



 

CHAPTER SEVEN 

 

Thesis Summary and Applications 

 

7.1 Introduction 

 

This thesis examined the mating system and reproductive ecology of tuatara 

(Sphenodon punctatus) and their effects of individual fitness and population genetic 

diversity. Combining spatial, behavioural, and genetic analyses has provided the 

most complete picture of the reproductive ecology of tuatara to date. I have provided 

information on the demographic and ecological factors affecting the largest 

population of tuatara (on Stephens Island) as well as characterised the spatial 

structure and the mating system. I have also examined how variations in fitness can 

affect overall genetic variation and structure of populations. I addressed fundamental 

questions that are relevant to tuatara conservation, and have laid the groundwork for 

future research on sexual selection and postcopulatory phenomena in tuatara. This 

thesis sheds new light on the reproductive biology of these iconic reptiles, and 

advances the current knowledge of reptile evolutionary ecology by providing a 

baseline for phylogenetic comparisons of mating system evolution. 

 

7.2 Summary of major findings 

 

The major findings from the previous five data chapters are briefly summarised as 

follows: 

 

1) Chapter Two –  Monitoring Over 54 Years Shows a Decline in Body 

Condition of a Long-lived Reptile (tuatara, Sphenodon punctatus) 

Body condition of tuatara on Stephens Island has significantly declined over 

the past 54 years, and because of large natural fluctuations the trend was not 

evident until monitoring for at least 22 years. The population is showing a 

density-dependent response driven by past habitat modification on the island. 

Declining body condition may affect female reproductive output, and has 

implications for population growth rates. Reforestation of Stephens Island 
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may reverse decline in body condition by limiting available nesting sites and 

potentially slowing the current population growth rate. 

 

2) Chapter Three – Large Male Advantage: Phenotypic and Genetic 

Correlates of Territoriality and Female Access in an Ancient Reptile 

(tuatara, Sphenodon punctatus) 

Male tuatara are significantly more structured in space than females, and the 

social structure of tuatara is stable over years and potentially decades. Male 

body size – not individual genetic heterozygosity, core home range size, or 

body condition – predicts access to females. Large, more heterozygous males 

are more effective at monopolising areas where females are most dense and 

guarding females by winning intrasexual aggressive encounters. The spatial 

structure provided no evidence for alternative male reproductive strategies, 

although further research is needed to definitively rule out the potential for 

alternative strategies. The ability to detect potential correlations between 

heterozygosity and fitness probably depends on the genetic background of the 

population. Individual heterozygosity may have a stronger effect in a 

population with lower genetic variation (e.g., a bottlenecked or inbred 

population). 

  

3) Chapter Four – High Reproductive Skew, Size-Assortative Mating, and 

Seasonal Monogamy in a Territorial Reptile (tuatara)  

The mating system of tuatara is primarily seasonally monogamous and 

polygynous between seasons, which is consistent with a male mate guarding 

hypothesis. Reproduction is highly skewed toward large males. 

Approximately 25 - 30% of males dominate reproduction in the population. 

Monogamy is probably facultative in that mate acquisition for males is 

limited by the spatial dispersion of females. Multiple paternity was not 

detected in the sampled clutches. 

 

4) Chapter Five – Implications of Social Dominance and Multiple Paternity 

for the Genetic Diversity of a Captive-Bred Reptile Population (tuatara) 

Social dominance in captive adult tuatara on Little Barrier Island has resulted 

in highly skewed paternity in the offspring. Multiple paternity was found in 
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18.8% of clutches. High reproductive skew caused a loss of genetic variation 

in this bottlenecked population and decreased the effective population size. 

These results will facilitate equalising founder representation in future 

captive breeding efforts.    

 

5) Chapter Six – Fine-scale Genetic Structure of a Long-lived Reptile 

Reflects Recent Habitat Modification 

Stephens Island tuatara exhibit genetic population structuring on a very fine 

scale. Isolation by distance is not evident. Rather, fine-scale genetic 

structuring appears to be compounded by habitat disturbance and 

modification and the sedentary lifestyle of tuatara. No consistent pattern of 

sex-biased dispersal or migration exists. Reforestation of grazed habitat 

appears to have provided refuges for tuatara migrating in from disturbed 

areas.  

 

7.3 Conservation implications 

 

The behavioural and genetic results of this thesis can be applied toward conservation 

management of tuatara in many ways (e.g., Moore et al. 2008a, Appendix One). 

Knowing that large male body size affects reproductive success (Chapters Three and 

Four) should enable managers to be more selective about male founders chosen for 

translocations. Depending on the dynamics of the source population, which should 

ideally be assessed prior to manipulation, this result could be applied in different 

ways. If the source population is large and dense, it may be advantageous to 

translocate small males that do not regularly breed as they may have a better chance 

of success on a less dense island. However, removing small, as-yet unsuccessful 

males from small source populations could increase the rate of genetic drift by 

removing genetic variation from the population. In small source populations, 

removing large, successful males may lessen competition and give smaller males a 

better chance of being reproductively successful on the source island. Likewise, only 

translocating males of similar body size may help to reduce the high reproductive 

skew due to variability in male body size.  
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Manipulating the founder sex ratio (strongly toward females) could be used to reduce 

competition for females. Male genetic contributions may be equalised, while 

possibly increasing immediate population growth (e.g., for lesser kestrels, Lenz et al. 

2007). However, the dynamics of the source population also need to be considered in 

this instance. While removal of a large number of females may not affect a large, 

dense source population, it could have a detrimental effect on a small source 

population. Likewise, if the source population is male-biased (e.g., North Brother 

Island, Nelson et al. 2002b), removal of a large number of females could have an 

extremely detrimental effect, particularly in the face of global climate change that 

may shift populations toward a male-biased sex ratio. Although population density 

and sex ratio data are essential for assessing the impacts of translocations to source 

populations, the detailed mark-recapture studies needed to accurately estimate these 

parameters can be difficult to carry out. Male tuatara are much more active than 

females, so even though some populations may appear male-biased because males 

are seen more often, a detailed mark-recapture study that takes into account sex 

differences in behaviour and activity (Chapter Three) is necessary to accurately 

estimate sex ratio and population density. 

 

The Little Barrier Island tuatara provide a good example of the impact that the male 

dominance structure can have on genetic diversity of small or captive populations 

(Chapter Five). Tuatara are able to establish a natural spatial structure at very high 

densities, and do not require large spaces to maintain territories (Chapter Three). 

Thus, if captive tuatara are held in relatively large enclosures, they may be able to 

establish a semi-natural spatial structure. However, if captive populations do 

maintain a semi-natural territory structure, reproduction will probably be dominated 

by one or a few large males, especially if there is a large discrepancy in body size of 

the captive males. This may also be true of small wild populations, where the 

population census size may be quite different from the effective population size 

because reproduction is highly skewed.  

 

If large, highly dense populations of tuatara can be genetically structured (Chapter 

Six), small, fragmented populations may be even more strongly structured. Thus, the 

potential for strong, fine-scale genetic structuring should be considered when 

sourcing animals from small populations. Taking all founders from one particular 
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patch of forest may not be a good genetic representation of the source population. 

For large source populations (i.e., Stephens Island) sourcing founders from a large 

patch of forest like Keeper’s Bush may provide a good genetic representation of the 

source because the genetic diversity in the forest remnant is high. However, on 

smaller islands, sourcing founders from many geographic locations within an island 

may capture greater genetic diversity than focusing on one location only.  

 

We found evidence to suggest phenotypic and genetic effects of past habitat 

modification and disturbance on Stephens Island (Chapters Two and Six). Habitat 

modification is not unique to Stephens Island. Rather, many tuatara islands that have 

had a strong human presence have had land cleared and/or been farmed to some 

degree (Gaze 2001). Reforestation of cleared island habitat should be a priority for 

restoring populations of tuatara to their natural states. It is still unknown whether 

undisturbed, unfragmented populations of tuatara exhibit some genetic structuring. 

For instance, it may be that undisturbed populations show a pattern of isolation by 

distance, but this is disturbed when habitat is modified and animals are forced to 

relocate. In any case, reforestation should return populations back to their natural 

state by reconnecting isolated forest fragments and promoting increased potential for 

gene flow. While this may decrease the amount of tuatara nesting habitat currently 

available, and potentially decrease population growth rates, it is likely to have a 

positive effect on individual fitness by bringing populations such as Stephens Island 

back to carrying capacity. In addition to having positive fitness effects for tuatara, 

decreasing the population growth rate should reduce the pressure on their prey 

species, many of which are threatened or endangered themselves. 

 

7.4 Directions for future research 

 

This thesis has answered many questions regarding the reproductive ecology and 

genetics of tuatara, but throughout the course of this research, many new questions 

have arisen. The groundwork has now been laid for more complex, advanced 

questions of sexual selection and evolutionary ecology of tuatara that may expand on 

the work presented in this thesis. 

 

7.4.1 Does multiple paternity exist in wild populations of tuatara? 



Chapter 7 – Thesis applications   
 

 

109 

 

No evidence currently exists for multiple paternity in wild tuatara. In addition to the 

six clutches examined in this study (Chapter Five), Hay and Lambert (2008) 

genotyped an additional five clutches from Stephens Island tuatara, and three 

clutches from Brother’s Island tuatara (S. guntheri) and did not find multiple 

paternity in any clutch. In total, 14 wild clutches (99 hatchlings) have been analysed. 

Although this is a relatively small sample size, the lack of multiple paternity is 

surprising in light of the approximately 20% of clutches (n=16) from captive animals 

that were found to have multiple paternity (Chapter Five). Multiple paternity is not 

expected to be limited to captivity. However, rates of polyandry and multiple 

paternity are influenced by density, which affects mate-encounter rates (Uller and 

Olsson 2008). Even though multiple mating may have positive effects on population 

genetic diversity (Sugg and Chesser 1994), very little evidence suggests that multiple 

mating has positive consequences for individual fitness in reptiles (reviewed in Uller 

and Olsson 2008). A better understanding of the factors affecting multiple paternity 

in tuatara populations would enable predictions based on population dynamics (size, 

density, etc.,) that could have applications for genetic diversity of small, captive, or 

translocated populations. 

 

7.4.2 Do postcopulatory reproductive phenomena exist is tuatara? 

 

Female tuatara can mate repeatedly throughout the season, whether it is with the 

same or different males (Chapter Four). Although tuatara are not believed to be 

capable of long-term sperm storage (i.e., female tuatara lack specific sperm storage 

tubules, Gabe and Saint Girons 1964), delayed fertilisation (Cree et al. 1991a, Cree 

et al. 1992) potentially provides a window for short term sperm storage, sperm 

competition and/or cryptic female choice. Likewise, rarity of multiple paternity in 

wild populations may provide evidence for sperm competition (e.g., for green turtles, 

Chelonia mydas, Fitzsimmons 1998). Developing a method to reliably collect sperm 

from male tuatara would enable an assessment of sperm motility and competition. 

Although challenging, mate choice experiments with female tuatara could clarify 

whether cryptic choice occurs and if it is based on indirect (i.e., genetic) benefits. 

Further, developing these new techniques may make artificial insemination possible 
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which would enhance management of small or captive populations by enabling direct 

manipulation of reproduction (Ebenhard 1995). 

 

Additionally, the function of post-copulatory male ‘shuddering’ behaviour remains 

unknown. Gillingham et al. (1995) assumed that this behaviour was related to 

prolonged ejaculation. However, during the course of this study, sperm transfer in 

mating tuatara was observed, and it occurs prior to male shuddering. This behaviour 

may stimulate sperm uptake in the female, or be an immediate mate guarding tactic. 

Quantifying the duration of this behaviour for each reproductive event, and in 

relation to paternity success, may help to elucidate the function of this currently 

cryptic behaviour.  

 

7.4.3 How does density affect the mating system of tuatara on different islands? 

 

This thesis provides many new insights into the mating system of tuatara, but 

investigations were primarily restricted to Stephens Island, where tuatara are easily 

observed. As mating systems are known to be density-dependent (Kokko and Rankin 

2006), it would be useful to compare the mating system on island populations that 

are ecologically similar, but vary in tuatara density. This would enable greater 

generalisation and application of results. If generalisations can be made broadly 

across populations, the effects of translocations on source populations can be 

predicted from population dynamics. Likewise, the optimal density for new 

populations could be identified prior to a translocation.  
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