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Abstract

The theoretical contrast in transmission elecnon microscope images of a superlattice

of helium gas bubbles in copper is computed using the two-beam and many-beam

dynamical theories of electron diffraction with the aim of measuring the density and size of

dislocation loops associated with the bubble aray. A wide range of parameters (foil

thickness, diffracting vector, excitation error, defocus, and depth, radius, and strain-field of

the bubble) is considered to constmct a library of theoretical images and intensity profiles

for a single, isolated bubble. Various criteria are applied to obtain a measurement of the

bubble radius from the simulations but the results are inaccurate because of the sensitive

dependence of the intensity profile on the imaging parameterc. A better measurement is

obtained by comparing simulations to an experimental through-focal series. Intensiry

profiles from a single stack of bubbles are modelled and electron diffraction from

superlanices is simulated. The resuls obtained suggest that the bubble ordering is of limited

extent.

A library is made of the theoretical contrast when imaging a sysrem of dislocation

loops punched out along the <110> directions by the growth of gas bubbles ordered on a

superlattice aligned with the host fcc matrix. These image simulations use the displacement

fields surrounding loops and bubbles predicted by isotropic elasticiry theory. For a variery

of stnrctures involving loops and bubbles, the following imaging parameters were

investigated: beam direction, foil normal, diffracting vector, excitation error, number of
beams, and defocus. These simulations indicate that it should be possible to image the

small dislocations at high density thought to be present in the bubble lattice, provided well-

focussed micrographs taken under strong wo-beam conditions can be obtained. In practice

it proved difficult to tilt specimens containing superlattices to strong two-beam conditions

because of the deterioration in crystallinity resulting from the implantation. However, rhe

method was successfully tested by imaging loops associated with bubbles produced in

lower concentrations by low dose implantations.
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Preface

A brief review is given in chapter I of past work done on the theories of formation

of superlattices of gas bubbles and of the punching of dislocation loops from oveqpressured

bubbles. How thedisplacement f,reld solution of a dislocation with a mixed screw and edge

nature is obtained from elasticity theory is outlined. This gives the background needed for a

discussion later in the chapter of the mechanism by which dislocation loops are punched

from bubbles.

The theory of image formation in a transmission electron microscope is reviewed in

chapter 2. The differential equations of Howie and Whelan provide the starting point for the

discussion. The more complicated many-beam and weak-beam theories are then discussed.

The latter theory is particularly useful because of the potentially higher resolution it offers.

When imaging gas bubble superlattices, or related defects such as voids, defocus is an

important parameter and so the background to this contrast mechanism is summarised.

High resolution image formation based on the multislice theory is discussed briefly.

However, this theory is not used extensively in this thesis because of the limitations of the

technique for studying dislocations. Instead, images of dislocations are more commonly

interpreted with the rapid image simulation technique of Head et al. This technique is based

on a generalised cross-section construction that uses the form of the anisotropic elasticity

solution for the displacements around a long straight dislocation.

The displacement field solutions for bubbles and loops are obtained in chapter 3.

These solutions are used extensively in chapters 5 and 6 to simulate the diffraction from

combinations of gas bubbles and the punched dislocation loops that may exist in implanted

metals containing gas-bubble superlattices.

Before attempting to match experimental images of complex structures in irradiated

metals with simulated images it was decided to learn the techniques that would be needed by

examining first the simpler structures occurring in lightly deformed or quenched copper

specimens. The micrographs of simpler structures which the simulations are used to

inteqpret, together with the equipment and techniques used, are presented in chapter 4.

In chapter 5 the measurement of the radius of a bubble using a through-focal series

is described. The method used is based on investigating how the positions of the maximum
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and minimum in an intensity profile through the Fresnel fringes about a bubble vary with

the degree of defocus, in comparison to the theory. An accurate measurement of the bubble

volume fraction, allows an estimate to be made of the number of host metal atoms displaced

from bubble cavities. Those that do not escape to the surface must be accommodated in the

host matrix, perhaps as dislocations.

In chapter 7 experimental images of implanted specimens containing gas bubbles are

compared to the simulations of chapter 6. The results indicate that, for prethinned

specimens implanted to low dose the density of dislocation loops is lower than would be

expected if bubble growth were to occur solely by dislocation punching.

The main chapters of the thesis are chapters 4 through to 7. Much of the work

described is of a complicated nature so as an aid to the reader abbreviated summaries of

these chapters are included below.

Abbreviated Summaries of the Four Main Chapters

Chapter 4 Experimental Techniques and Equipment

TEM imaging, specimen preparation by quenching and by implantation, image

simulation and processing with experimental results for comparison. Particular emphasis is

given to the new line of work for Victoria University, namely - the production by

quenching, and examination under TEM, of bubbles and dislocations at low density (to

avoid the image overlap that occurs at high defect densities).

. Description of the equipment used. The quenching rig is discussed in

greater detail because this is new to Victoria Univenity.

. Comparison of experimental and simulated images of dislocation loops

punched out from isolated bubbles and of long straight dislocations.

. Comparison of loop spacings on a glide cylinder with Bullough and

Newman theory.

. Evaluation of the potential and the limitations of High Resolution EM for

imaging bubbles.
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Chapter 5. Simulations, Bubble Images and Diffraction

Images are simulated for an isolated bubble and intensity profiles were obtained

for bubbles in a stack. The image appearance is investigated for a range of values for the

important parameters associated with microscope settings and bubble structures.

. A library of simulated images is presented to show the effects of systematic

changes in the imaging parameters

. A comparison is made between actual experimental bubble images and those

obtained in the simulations.

. The main results are (i) the apparent bubble radius varies significantly with

the degree of defocus (ii) bubble images arc not always dark in overfocus

and white in underfocus (iii) stacks of bubbles have imaging characteristics

which are different from those for isolated bubbles.

. The comparison benveen simulation and experiment for the superlattice spots

produced in electron diffraction from the bubble anay suggests that the

bubble ordering in the gas bubble superlanice is of limited extent.

Chapter 6. Simulations: Combinations of Bubbles and Dislocation Loops

A program used to simulate the diffraction of electrons from structures

containing loops near bubbles is described. The geometry of the structures and the

diffraction conditions are specified through starting parameters selected as inputs to the

pro$am. Parameters are chosen to match those typical of the gas bubble superlattice. The

appearance of the images for a range of imaging conditions is investigated.

. It is shown that the imaging behaviour of a structure containing a set of
loops and bubbles is complicated.

. It is suggested that in well focussed micrographs taken under strong two-

beam conditions it should be possible to identify the presence of dislocations

(v)



Chapter 7. Experimental Evidence for Dislocation Loops Near Bubbles

Experimental images taken from implanted specimens containing gas bubbles

are compared with images calculated in the simulations described in the previous chapter.

. In specimens containing superlattices it is found that the Kikuchi lines are

very diffuse (this is attributed to adeterioration in the crystallinity) and it is

diffrcult to tilt such specimens to obtain the rcquired strong two-beam

conditions. Consequently, no firm conclusions have been reached on the

dislocation densities in this case.

. For lower dose implantations into prethinned discs the population of bubbles

and dislocations are at much lower densities. In this case there is sufficient

crystallinity retained to allow the specimens to be tilted to obtain strong two-

beamconditions.

. The density of dislocations found around bubbles in these low dose

implantations is much lower than expected under the assumption that bubble

growth is by dislocation punching.
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CIIAPTER L: INTRODUCTION

1.1 Aim of Thesis

The physical properties of crystalline materials can be strongly influenced by the

presence of dislocations and other defects in the atomic lattice. The ion-implantation of

foreign atoms into a metal at low temperature may result in dislocation and defect densities

that are amongst the highest that can be produced in a material. The aim of the present work

is to develop and evaluate techniques, based on transmission electron microscopy (TEM),

for measuring dislocation densities in the particular case of metals implanted with helium.

Inert gases such as helium are insoluble in metals and precipitate out to form gas

bubbles on a microscopic scale ( I to 2 nm in diameter). At low temperatures - 0.2 Ts1

(where Tp is the melting temperature of the metal), the mobility of vacancies in the metal is

low and the ordering of bubbles to form a gas-bubble superlattice is a common feature. The

superlattice has the same symmetry as the host metal (i.e., fcc superlattice in an fcc metal,

etc.) and has rational alignment with the underlying metal lattice. The lattice constant, al, of

6 - 8 nm, is a factor - 20 times that of the metal. At these low temperatures, bubble growth

is thought to be by an athermal pressure-driven process where metal atoms are forcibly

ejected from bubbles by the high pressure of the gas they contain. If the gas pressure

exceeds the equilibrium pressure the bubble is said to be overpressured. The punching of

interstitial dislocation loops from overpressured bubbles is the process most commonly

proposed [1]. These prismatic loops are expected to have diameters comparable with the

bubble size. Such loops have been observed around large isolated bubbles of approximately

30 nm diameter [2-5] and around precipitates having a coefficient of thermal expansion

which is different from that of the host matrix [6]. Some theories of bubble ordering are

based on the presence of such loops on the common glide cylinders linking nearest-

neighbour bubbles in the array [7].

The assumptions underlying these theories of bubble growth and bubble ordering

have led to the suggestion by Johnson [8] that the density of dislocations associated with the

gas bubble superlattice could be close to, or even exceed, the upper density limit proposed

l-1



by Conerill [9]. Conerill has considered the limiting strain energy that a metal can withstand

and yet retain a crystalline character. For copper the limiting dislocation density has been

estimated to be 1016 to 1017 m-2. Kittel t10l has estimated that electron microscopy can

measure dislocation densities of about 1015 to 1016 m-2. Johnson [8] has pointed our that if
all the metal atoms displaced from bubbles were to be accommodated in dislocation loops

lying on the common glide cylinders berween nearest-neighbour bubbles in the ordered

bubble iuray, the Cotterill limil would be exceeded by several factors of ten.

Stress relief processes will tend to lower the strain energy through a coarsening of

the dislocation structure. At low temperatures, however, thermally driven processes of

stress relief will be somewhat restricted and it could be expected that the dislocation

structure might remain at high density. High levels of damage accompany the ion-

implantation process. Each atom in the metal will be displaced from its site in the lattice

some 10 to 20 times over the course of the implantation as a result of collisions between

incoming helium ions and metal atoms. This collision damage results in two effects which

could be expected to influence the dislocation structure. Firstly, it provides an athermal

mechanism for sness relief by inducing atom movement and secondly, it is a source of

interstitial-vacancy pairs that can contribute to the defect stnrcture. These two effects could

act in opposing senses so it is not clear what the overall effect of collision d.amage on

dislocation density will be. However, if all the metal atoms displaced from bubble cavities

are held locally in dislocations having sizes comparable with the spacing of the bubbles,

then dislocation densities will approach or exceed the conerill limit I9l.

The development of microstnrcture in merals during light ion-bombardment of

metals is similar to other radiation damage processes. The rad.iation damage in nuclear

fission reactors and potential fusion reactors provide a motivation for studying ion-

implantation. In fission reactors a-decay from nuclear fuels and (n, a) reactions cause

helium to build up in the fuel and reactor components. Fusion reactors will use magnetic

containment to confine the reacting hydrogen isotopes in the plasma. Helium produced in

nuclear reactions will escape from the magnetic fields and damage the reactor walls. This

bombardment will result in blistering, flaking and swelling of the walls. The radiation

damage resulting from bombardment of reactor materials by ions having a range of energies

has been simulated using monoenergetic ion beams from charged particle accelerators.
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Ion implantation is also a technique for preparing metals with desired surface

properties lll,l2l. For example nitrogen implantation of metals can lead to longer lasting

hip replacements. The dislocation structure induced in the metal is important for properties

such as wear resistance and corrosion resistance.

A bubble in which the gas pressure is zero or has a low value is tenned a void. The

ordering of voids to form a superlattice was discovered before the ordering of bubbles.

Ordered void lattices have now been observed for the following: the fcc metals Ni [13] and

Al [14, 15], in Ni-Al solid solution alloys [16], in stainless steel [17] as well as for a variety

of bcc metals such as Mo [8] (see references [19-21] for reviews). Ordered anion voids

have been observed in the alkaline earth halides: SrF2, CaF2 and BaFzlZzl. Theories and

experimental work on void ordering influenced the later work on bubble ordering.

Barnes and Mazey [23] first found ordered helium bubbles in metals following

helium ion-implantation. Subsequently Sass and Eyre [24] discovered ordered bubbles in

Mo and Johnson and Mazey !25-281found ordered He bubble arrays in the fcc metals Cu,

Ni, and stainless steel and in the hcp Ti [29]. Ordered hydrogen bubble atrays were also

found in Cu following proton irradiation [30, 3l]. Implantation of other inert gases such as

Ar, Xe and Kr also result in gas bubbles 132-371which in some cases are ordered. Other

metals subjected to helium implantation have been Au and V [38, 39]. A recent discovery is

that a large lattice (a macrolattice) with ordering on a scale 20 times bigger than that of the

superlattices can occur in Au [38]. All of the ordering has the same symmetry as the host

matrix. A feature of superlattices in fcc metals is structural variants which are domains of

ordered bubbles that have the same symmetry as the host metal but the basis vectors of the

domain are rotated away from the basis vectors of the host metal [40-45]. Other work has

concentrated on deducing how far the implanted ions penetrate into the metal. Depth

profiling techniques determine how many of the implanted ions stay in the target and how

these ions are distributed [28, 46-56]. In-situ electron irradiations and heating the helium

irradiated material in the hot-stage of a TEM has also given information on the

concentrations and mobilities of interstitials and vacancies in the microstructure [28].

The Burgers vectors and loop normals of isolated dislocations can be measured by

various methods. For example, for large, resolvable loops (i.e., both sides of the loop can

be resolved) the Maher and Eyre rules [57] can be used. The images of small point defect
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clusters can be interpreted by comparison with simulated images as discussed by Eyre et al.

[58-61], Saldin et al.162-641, Holmes [60, 65] and Wilkens et al. [66]. Hirsch, Howie

and Whelan et al.l67-781 investigated the case of dislocations lying parallel to the foil

surface. Head et al.l79-821interpreted the images for isolated, long straight dislocations

that thread through the foil.

The difficulty in applying the techniques developed for isolated dislocations to ion-

implanted materials is the much higher density and smaller size of the defects. Most of the

above techniques rely on taking electron micrographs of the same defect for a range of

strong two-beam conditions. The two-beam conditions are near simple, low index, beam

directions. With a high density of defects it is difficult to find the same defect at the

required beam directions because the appearance of the complicated structure varies

markedly as the specimen is tilted. Also because of the large population of bubbles it can be

difficult to distinguish between which defects are loops and which are bubbles. This is an

even greater problem when the bubble ordering is poor. At strong two-beam conditions,

the strain fields of any defects will give broad black/white lobe images in bright field

(chapter six). If the density of defects is very high, these strain field images overlap

considerably. A broad black image may be obtained instead of distinct black/white lobes.

Computer simulations of the electron diffraction from isolated bubbles and loops

have been done previously [58-66, 83-88]. To distinguish between bubbles and loops in

this thesis simulations are made of the diffraction from loops inserted between bubbles

ordered on a bubble lattice. The aim is to find conditions where the loop contrast is strong

and the bubble contrast is as weak as possible. This will enable the loops in ion-implanted

materials to be counted and their sizes determined.

The dislocation structure associated with ordered bubble arrays has not been the

subject of detailed investigation in previous work. However, the indications are that the

dislocation images are on a fine scale, comparable with bubble sizes, and are at very high

densiry. Weak beam images tS9-961 have a higher resolution than images taken under

strong two-beam conditions. This improved resolution may be useful in studying these

high defect density materials. A technique based on simulating images for comparison with

weak beam micrographs is used to overcome the increased problems in interpreting the

experimental micrographs.
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1.2 Isotropic Elasticity Theory

The displacement fields of screw and edge dislocations used by Hirsch et al. [67-7gl

and Cockayne et al. [89-96] for image simulation, are solutions in isotropic elasticity

theory. These solutions will be obtained in section 1.2 after the necessary elasticity theory

has been reviewed. The theoretical background to isotropic elasticity in section 1.2 follows

the treatrnent of Hirttr and lothe [97].

1.2.1 Tle BurgersVector

In the so-called FS/RH (Einish StartlBieht Eand) convenrion of Bilby et al. [9g], the

Burgers vector of a dislocation is conventionally defined by a line integral taken around the

dislocation line, as shown in figure 1.1 (on the next page). The Burgers vector (b) is the

vector required o complete the circuit in figrre 1.1O). The same atoms in the closed circuit

(Fs) in figrue 1.1(a) when a dislocation is present are connected up in the perfect crystal of
figure 1.1(b). The circuit is traversed in the direction thu the fingers of the right hand (RFI)

would curl if the thumb pointed out of the page. The thumb points along the positive

dislocation line direaion. The mathematical exprression for this is

b=/F' (1.1)

In equation 1.1 R is the displacement field representing the distortion of the crystal due to

the dislocation.

Parts (c) and (d) of figure 1.1, show how to find the Burgers vector of an edge

dislocation loop. Conventionally the loop normal n is defined as a vector, which is

perpendicular o the inserted plane of atoms, and points upwards in the foil. The dislocation

line (u) defines the boundary of an area over which slip displacement has occurred. For a

dislocation loop the dislocation line bends around in a circle. The positive sense of the
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dislocation line is the clockwise direction when looking from above the foil down upon the

loop. When the thumb of the left hand (LH) points in the direction of n the fingers curl

along the positive direction of the dislocation line. Thereforc the circuits around the top and

bottom of the loop arre in different directions by the RH rule. Thus b is found by a RH nrle,

but n by a LH rule.

I .2.2 Sness and Strain

The stress in a material is represented by a stress tensor. By considering the stress

tensor oil on an infinitesimal cube of material and requiring that the torques on this volume

are zero for equilibnium, it can be shown that

Oii = 6ii. (r.2)

Equation 1.2 uses a three-dimensional coordinate system, so that i and j can take the values

l' 2 ot 3. The stress at a point in space is a three-dimensional vector. oii is the ith

component of this stress on the jth face of the cube as shown in frgure 1.2. The jth cube

face is orientated so that it has an outward drawn normal parallel to the x5 axis.

The strain tensor (e1) is related to the displacements ui of the material from the

positions that the marcrial occupied in the unstressed continuum in a coordinate system xj by

By definition of the strain

(1.3)

(1.4)

(1.5)

Ekr = €tk.

The indices k and I can take the values !,2 or 3. The condition for equilibrium of the

system in the xi direction, when there arc no applied external forces is

d-ot, 
= o.

dxj

Equation l-5 is derived by considering the stress on one face of the cube at xi and the stress

on the opposite face of the cube at x; * dx1. The repeated index means make a summation
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overthisindex. Thatisjiscycledoveritsallowedvalues of L,zand3,independentof the

value of i.

face j4

Figure 1.2: The cube constnrction and coordinate system used to label the sress tensor.
The components of the stress tenstr on the i = 2 face of the cube ale shown.

The elastic constants, cilu, of the material are defined by the rclation between the

stress and strain

xz

Oil = ci3p1t11.

Then the stress can be more dircctly related to the displacemenrs by

(1.6)

(1.7)oi: = cijH* .

Equation L-7 can be written out in matrix form, representing the elastic constants by a 9 by

9 matrix. In the matrix fonn the stress and strain are represented by 9 element column

vectors. The symmetry relations of equations 1.2 and 1.4 between the elements of the

stress and snain tensors and the orrder of differentiation when the strain energy is considered

can h used to derive symmetry relations between these elastic constants:

cijtt = ciiu = cijtt = cliuc = cttii.
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These relations reduce the number of independent elastic constants from 81 to 21. It is

therefore possible to use a contracted notation on the subscripts of the elastic constant

tensor. The contracted notation reduces the number of these subscripts from 4 to 2.

Mapping of the subscripts is done in pairs, i.e. ciin is relabelled as c,-, according ro

1l -+1, 22 ->2,33 +3,23 or32 ->4,31 or 13 -r5 and 12 or2L ->6, (1.9)

where ij or kl are the pair of integels on the left hand side of the arrows. They are relabelled

as m or n according to the integers on the right of the arrows above. For example the

relabelling maps c11z: to c14. For cubic crystals the elastic constants must be invariant with

respect to 90" rotations. This requircment furtherreduces the numberof independent elastic

constants to 3, namelY cll, c12 and c4a. Several altemative elastic constants can be defined

such as Poisson's ratio (v)

u="ft.
I .2.3 Dkplacemcnt Field sohttions for scray and Edge Distocaior*

(1.10)

(1.12)

To find the displacement field solution to the equilibrium equation 1.5 for a screw

dislocation with Burgers vector b, parallel to the x3 direction, the following boundary

conditions are used:

Bl = 0, U2 = 0 and u3 = u3(x1, x2). (l.r l)

These boundary conditions require that the only distortion due to the dislocation is along the

axis of the dislocation line but is independent of the coordinare in this d.irection. The

solution is (as shown in frgure 1.3):

o, =H,*-'fft)=Se.
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Figure 1.3: A right-handed screw dislocation that has a dislocation line along the uris of the
cylinder. In the perfect crystal the cylinder is undeformed. A screw dislocation is formed
by cutting the cylinder along one side in the plane formed. by the x1 and x3 il(es and then
deforming the material below the cut relative to the material above the cut in a direction
parallel to the x3 axis.

Finding the solution to the equilibrium equations for an edge d.islocation requires

different boundary conditions. The boundary conditions for an edge dislocation with b"

parallel to the x1 a:ris and u parallel to the x3 axis are those of plane strain:

Consider the equilibrium equations and express the stresses in terms of the Airy stress

function ty by

U1 = U1(X1, xZ), uZ = u2(xl, x2), u3 = 0, and

5=O ,fori=1,2or3.dxl

aEuott =-
cll(Z

aA,,
Cltc = '

ax?,

. E2ru
and O12=--- .

?x1Ex2

(1.13)
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Using equation 1.5 for the equilibrium between the stresses and equation 1,7 between stress

and strain we obtain

vov = o' ( 1. rs)

By making the substitution

0 = V2\r, (1.16)

equation 1.15 becomes the familiar Laplace's equation that can be solved for Q starting with

Legendre polynomials then using the boundary conditions to truncate the series and so on.

The Airy stress function can be then found. This enables the stress to be obtained from

equation 1.14. The strain is obtained from the stress by inverting equation 1.6. The

displacement field around the edge dislocation follows by integrating the stress using

equation 1.7:

R = # {'{tr3) + b"^u lffi roe(r) . ffi#]}, (1.17)

where the displacement field vector R = (ul, u2, u3) and r has its usual meaning in

cylindrical coordinate systems. In equation 1.17 the " ^ " symbol has been used to denote a

crossproduct of two vectors. Figure 1.4 shows the form of the solution for R in equation

r.t7.

A general dislocation has both a screw and edge like character. The Burgers vector

(b) can be divided into its edge (b") and screw (b*) components

b = be*bs. ( l. l8)

Then the solution for the displacement field is a combination of the solutions for the

displacement fields of the edge and screw dislocations

R = # {o,e 
* r.H3) * 0,""1ffi rog(r) . fr#]) ( 1. re)
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Figure 1.4: An edge dislocation that has a dislocation line along the axis of the cylinder. In

the perfect crystal the cylinder is undeformed. An edge dislocation is formed by cuning the

cylinder along one side in the plane formed by the x1 and x3 iu(es and then deforming the

mabrial above the cut relative to the malerial below the cut.
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1 .3 Dislocation Loop Punching Theory

1.3.I Greenwood, Foreman and Rimmer theory

Greenwood, Foreman and Rimmer (GFR) were the first to estimate the pressure

required for a bubble to create a dislocation loop at the bubble surface [1]. The estimate

assumes the validity of isotropic elasticity theory. The neglect of the elastic anisotropy in

the GFR model may be significant for some metals. It may prevent any obvious

relationship (for example, between the shear modulus and the superlattice spacing) being

demonstrated by the theory.

Let the radius of the dislocation loop be r; and the bubble radius be r as shown in

figure 1.5. Also let the surface tension of the host metal be y and the gas pressure in the

bubble be P.

Dislocation loop

Glide cvlinder

Cu matrix o.t

Figure 1.5: Bubble and dislocation loop parameters.

After being punched out by the bubble the edge dislocation loops can move (i.e.,

glide) along the glide cylinder. The GFR model for dislocation punching compares the

energy of the system before and after a loop is punched out. The assumption is made that

after punching, the loop has glided far enough away from the bubble that loop-bubble

interactions can be neglected. In this way a derivation can be made of a necessary but not

sufficient condition for loop punching. This derivation is outlined below.

/_

2rt
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The energy to form the dislocation loop is approximately equal to the length of the

dislocation line times the strain energy per unit length of the dislocation:

"=ffi{*')'{o-J'
(1.20)

where F, ro ( = b) and b are the shear modulus, dislocation core cut-off parameter and

magnitude of the Burgers vector respectively. The idea of a core cut-off parameter is

necessitated by the solution for the displacement field of a long straight dislocation found in

section I.2.3. The strain energy per unit length of a dislocation is found by integrating over

0.5 x stress x strain per unit volume over an annulus about the dislocation. The integrand is

inversely proportional to the distance from the dislocation line, so the log term that results

from the integration has a singularity in it if one of the limits of the integration is placed at

the centre of the dislocation. Physically the need to use a cut-off parameter is a consequence

of treating a crystal lattice as a continuum. That is, atoms are displaced by finite amounts

near the core of a dislocation and do not have an infinite strain energy at the centre of the

dislocation. To avoid this problem the solutions for the displacement fields are assumed to

be valid from a radius equal to the core cut-offparameter or bigger.

Equation 1.20 is valid for an edge dislocation only. A screw dislocation will have

an energy lower than that of the edge dislocation by a factor of I - v. Equation 1.20 is

derived by integrating over the stress and strain about a long straight edge or screw

dislocation. Strictly the resultant strain energy is only the strain energy contained in the

elastic continuum between the core cut-off parameter and the outer radius of the annulus. If

the outer radius is infinite the strain energy diverges, so in practice it is necesary to impose a

limit on the integrand beyond which the solutions found for the stress and strain fields are

considered to not be good models of what actually occurs in a crystal about a dislocation.

Smallman [99] quotes a typical value for the outer radius of the annulus of 2.5 pm. As

opposite sides of the dislocation loop will have dislocation line directions that lie in opposite

directions the resultant displacement f,reld outside the loop will be less than that due to the

closest side of the dislocation alone. The way that Greenwood et al. tll used the solution

for the strain energy assumes that the outer limit of the annulus is equal to the radius of the
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The energy to form the dislocation loop is approximately equal to the length of the

dislocation line times ttre srain energy per unit length of the dislocation:

"=ffi(f"h*".), (1.20)

where F, ro ( = b) and b are the shear modulus, dislocation core cut-off parameter and

magnitude of the Burgers vector respectively. The idea of a core cut-off parameter is

necessitated by the solution for the displacement field of a long sraight dislocation found in

section 1.2.3. The strain energy per unit length of a dislocation is found by integrating over

0.5 x stress x strain per unit volume over an annulus about the dislocation. The integrand is

inversely proportional to the distance from the dislocation line, so that the log temr that

results from the integration has a singularity in it if one of the limits of the integration is

placed at the centre of the dislocation. Physicatly the need to use a cut-off parameter is a

consequence of treating a crystal lattice as a continuum. That is, atoms are displaced by

finite amounts near the core of a dislocation and do not have an infinite strain energy at the

centre of the dislocation. To avoid this problem the solutions for the displacement fields are

assumed to be valid from a radius equal to the core cut-offparameter or bigger.

Equation 1.20 is valid for an edge dislocation only. A screw dislocation will have

an energy that is lower than that of the edge dislocation by a factor of I - v. Equation 1.20

is derived by integrating over the stress and strain about a long straight edge or scre\4,

dislocation. Strictly the resultant strain energy is only the strain energy contained in the

elastic continuum benveen the core cut-offparameter and the outer radius of the annulus. If
the outer radius is infinite the snain energy diverges, so in practice it is necesary to impose a

limit on the integrand beyond which the solutions found for the stress and strain fields are

considered to not bc good models of what actually occurs in a crystal about a dislocation.

Smallman [99] quotes a typical value for the outer radius of the annulus of 2.5 pm. As

opposite sides of the dislocation loop will have dislocation line directions that lie in opposite

directions the resultant displacement field outside the loop will be less than that due to the

closest side of the dislocation alone. The way that Greenwood et al. [1] used the solution

for the strain energy assumes that the outer limit of the annulus is equal to the radius of the
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dislocation l*p ( = 10 A). This choice of the outer radius of the annulus neglects a large

amount of the strain energy associated with a dislocation loop and means that the GFR

inequality (equation 1.27) signifrcantly underestimates the pressure required for a bubble to

punch out a loop. Kroupa 0001 found a solution for the strain energy of a prismatic

dislocation loop in an infinite and isotropic solid. This solution was used by Wolfer tlgl-
1031 (section 1.3.4) to obtain a more accurate estimate of the pressure required to punch out

a dislocation loop. However, the GFR inequality is still widely used in the literature.

When p = Zy/r the pressure within the bubble balances the surface stress and the

bubble is said to be at equilibrium prcssurc. (The surface stress tries to reduce the surface

area of the bubble cavity to lower the surface free energy). In terms of this simple model

the effects of the metal surrounding the cavity are neglected. and the system is treated as if it
were a gas bubble in air. This is valid only if the bubble can grcw to equilibrium without

straining the surrounding metal. For this to be the case, for example, the metal atoms

displaced by the bubble would have to diffuse away to leave the bubble without a

surrounding displacement or strain field.

The decrease in the free energy of the bubble caused by creating the loop is

approximately

dP = - PresdhdV

=-(r-?#fur- (1.21)

Presultant is the ovelpressure inside the bubble or the amount by which the pressure inside

the bubble exceeds the equilibrium pressure. For the mechanism of punching out a loop to

be energetically allowed using equations 1.20 and 1.21 the fotlowing condition must be

satisfied:

(r.22)

That is the decrease in free energy of the bubble caused by creating a loop must exceed the

energy required to fomr the loop.

(. ?)",?u'^J#")t"H)

1-15



The radially symmetric displacement field about the bubble, ignoring foil surface

effects, is:

(r.23)

This can readily be seen by the analogy between the Green's function theories of elasticity

and of electrostatics. That is, the mathematical techniques required to find the solution (e.g.

those used to solve equation 1.16) are similar in elasticity and electrostatics. The

displacement field in elasticity theory about a bubble is similar mathematically to the

potential in electrostatics about a solid sphere of uniformly distributed charge. The radial

stress is

du,
drI

13

The component of the otal force acting on the loop along the gtide cytinder per unit length at

the bubble surface is

Force/unit length = Zrst t cos(O)oo. (1.25)

By maximising the force per unit length the most likely radius of the loop is found to be

(1.26)

This result was not explicitly stated in the original GFR paper [1], but is readily obtained

from it- Then the Prcssure required for punching of a dislocation loop of this radius is

(t aJ'*r*otffiI (r.27>

Willis and Bullough t10al derived the displacemenr field abour two interacting

bubbles that could be underpressured or overpressured. Their displacement field is
proportional to the amount by which the pressure exceeds the equilibrium pressure. The

GFR model assumes that a bubble is overpressured. Yet the GFR model assumes that this
1-16
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overpressure does not create a significant backstress upon the bubble due to the

displacement of the surrounding metal atoms. Jones [54] estimated that the effect of the

volume backstress is not significant when the elastic constants are unaltered by the

irradiation but, nonetheless also points out that Eernisse and Picraux [05] have measured

the maximum integrated yield stress in 30 keV helium ion irradiated copper and found it to

exceed the bulk yield stress for the unirradiated material. In this particular case the volume

backstress would seem significant and it means the GFR inequality underestimates the

pressure required to punch out a loop. However, without a knowledge of how the elastic

constants are changed on a microscopic scale by the inadiation it is impossible to obtain a

better estimate of the pressure required by the bubble to punch out dislocation loops.

Provided the inequality of equation 1.27 is satisfied the bubble will grow by

displacing the surrounding atom planes. This is shown schematically in figures 1.6 and

I.7 . Typically gas bubbles have internal pressures of - GPa and radii that are close to

satisfying this inequality [06]. There is some dispute about the applicability of the

methods by which bubble pressures should be measured. In specimens containing

superlattices the gas and damage profiles are approximately gaussian. X-ray diffraction

measurements of the pressure [07] in bulk specimens irradiated at a number of different

energies, so as to obtain a macroscopically uniform gas and damage profile, may be

misleading if applied to the superlattice case. X-ray diffraction techniques require that spots

are formed by scattering from the implanted ions in solid bubbles and are therefore not

applicable to bubbles containing gas. Electron energy loss spectroscopy (EELS) based

methods rely upon measuring the broadening and shift in the energy of a transition between

energy levels when it is excited by the electron beam in a TEM tl08l. Methods based on

EELS [109] use the shift in the llSsto 21Pr transition of an electron in a helium atom that

results from the gas being at high prcssure. A brief attempt was made in the present work

to detect helium in a specimen containing a superlattice using an EELS setup at Sydney

University. However, this tailed because of the difficulties in exciting the inert helium.

The pressure measured by other authors using X-ray diffraction or EELS are the average

pressure in the bubbles. The real prcssure in a bubble could be much higher. Evans and

Mazey [36] used the spacing of the diffraction spots from solid Kr contained in bubbles in
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Figure 1.6: A bubble and surrounding atom planes before the dislocation is punched our
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Figure 1.7: A bubble and surrounding atom planes after the dislocation is punched out.

the bubble. Their subsequent comparison of the pressure with the GFR inequality has been

criticised because it failed to include the equilibrium gas pressure (Donnelly, Mitchell and
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van Veen tl l0l). (That is the bubblc pressurc instead of the overpressure was compared to

the right hand side of equation l.n). Wolfer's model (section 1.3.4) gives a pressure for

loop punching that is higher than that rcquired by the GFR model.

In terms of the GFR model, once the bubble has created the loop it relaxes back into

a spherical shape. The whole process of punching a loop will be repeated if the increase in

bubble radius is insufEcient to lower the pressure enough to invalidate the inequaliry. The

centre of mass of the bubble moves in the direction in which the bubble punches out the

loop. Matrix atoms from the side of ttre bubble on which the loop was punched can diffuse

around the surface. The surface diffusion will enhance the movement of the centre of mass

of the bubble along the glide cylinder. The bubble then moves in the direction that the loop

was punched. Thus by emitting a loop the bubble grcws and can move. This propeny may

be important in explaining the alignment of gas bubbles into superlattices.

The dislocation loops may have a habit plane of (110) or (111), the habit plane of a

toop being the plane of the interstitial atoms making up the loop. The lowesr energy

configuration occtur when the Burgers vector has the smallest magnitude lbl corresponding

to the <110> directions in a fcc crystal. After a loop is formed it can glide (i.e., move)

along these directions with very little extra energy by being thermally excited over the

barrier of the atomic potential (the so called Peierls barrier). Alternatively, the loop can be

moved along the glide cylinder by stress.

The GFR model uses continuum elasticity theory to model the loop punching

process. More recently [11U, "molecular dynamic" calculations applied to atoms in a lanice

surrounding a high pressure bubble show that the loops should fonn a few atom layers

from the bubble (before gliding away from the bubble). This is in contrast to the loop

forming right at the bubble surface as envisaged herc.
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L3 .2 The Theory of Bullough and Newman for the Spacings of Loops

Bullough and Newman [12] have predicted the equilibrium spacing for loops

punched by precipitates or similar defects such as gas bubbles. In chapter 4 this theory will

be compared to experimental data obtained from loops punched by argon bubbles quenched

into copper. Bullough and Newman start their development by obtaining the solution for

the shear stress on the cylindrical surface r = a, wherc a is the dislocation loop radius. They

arrive at the solution by making a rylindrical cut in an elastic medium over the surface r = a.

Then factions are applied to the two sides of the cut to create the loop. The cut is then

rewelded. The solution for the stress about the loop is found by requiring continuity of the

stress and displacements across the cut. The resulting shear stress is:

(1.28)

(r.2e)

po(a,z) = ncrFzlo'r 2rf 
1ar1 ;expcdddn

where the z-anis is perpendicular to the plane of the loop and

"=tffi
They state that the integral can be evaluated in terms of tabulated elliptic integrals

(Watson tl131). Watson (p390) does not explicitly evaluate this integral but transfomrs it
into

rtz.sY'ft c

T#J.GffiF-do (1.30)

This can expressed in terrrs of elliptic integrals of the fust and second type by using

equations 3.158.11 and 3.162.15 on pages 2SZl3 and,257/g of Gradshteyn and Ryzhik

u14]. Bullough and Newman define the dimensionless variable

u = 1utQ1)-ngi,
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where Pfft is the critical rcsolved shear stress (i.e., the shear strcss resolved parallel to the

axis of the glide cylinder that must be exerted on a loop for the loop to continue ghding

away from the gas bubble that created it). Using Gradshteyn and Ryztrik [l l4], equation

1.28 becomes

ffi=#tth*Fctr*rttr] (1.32)

where E and F are cornplete elliptic integrals of the sccond and fint kind rcspectively, and

P=ft (1.33)

The elliptic integrals were evaluated by the "NAG" numerical applications package on a

Silicon Crraphics 4Dl340s computer. The rcsulting values of the elliptic integrals were

tested against the tabtrlated values in ttre mathematical companion o the CRC handbook of
physical constants t115J. The values gave good agr€cment, to 4 figrues aft65 &s decimat

place, over the important range of the values tabulard corresponding !o p values that are

physically plausible. The rcsulting plot of the shear surss on a logarithmis scale is shown

in figur€ 1.8. This is similar to frgure 1 of Bullough and Newman.

$l h

ShGar ttara n dirtqrcr frm toop

r.5 2.5
o

o
o

Figure 1.8: Plot of shear stress vs. distance from a loop. Note the logarithmic scale on the
vertical axis. Rho (p) was defined in equation 1.33.
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The equilibrium loop spacings of a row of loops punched out along the same glide

cylinder by a gas bubble can be calculated by first assuming that two loops are created close

together. One loop, the last to be formed, is pinned in position by the backstress of the frst

loop and the stress from the bubble, the backstress being the stress that points back towards

the bubble caused by loops that were punched out earlier. The shear stress on the loop that

was formed first (and thus lies furthest from the bubble), due to the second loop, is

calculated. The first loop is then moved through a distance proportional to the amount by

which the shear stress exceeds the critical shear stress of the material. The constant of

proportionality is chosen so that the calculations are completed in reasonable time and the

final positions of the loops are insensitive to the value of the constant. The stress the bubble

exerts on the loops is ignored, i.e. the bubble is assumed only to create and pin the loops.

The shear stress on the first loop is then recalculated and this loop is again moved. The

process is repeated until the first loop is far enough away from the loop nearest the bubble

that the shear stress on it falls below the critical resolved shear stress. At this point the first

loop stops moving. The second loop is assumed to be pinned in position near the bubble

until the third loop is punched out. This way of moving the loops seems reasonable

because in equal time intervals, the distance through which a loop is moved is proportional

to the shear stress upon it. The computer can be considered to be sampling the position of

the loops in equal successive intervals of time.

At this stage a third loop is created nearest the bubble. The loop that was previously

closest to the bubble is moved away from this new loop far enough to avoid the singularity

in the shear stress at p = 0.0 in equation 1.32. (Values for this initial loop spacing of 0.1 to

0.5, in units of the loop diameter, have been chosen depending on the value used for v).

The resultant shear stress on the first and second loops are then calculated and both are

moved further away from the bubble. The movements continue until they both reach an

equilibrium position at which another loop can be created. This process is repeated until the

desired number of loops have been punched by the bubble. The loops punched later in the

sequence will not glide as far as the earlier loops because of the higher backstress on the

later loops. For this reason the equilibrium loop spacings increase with the distance of the

loop from the bubble. The accuracy ofthe results depends on several factors: the
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frequency with which the loop positions are sampled in time and the initial loop spacing that

is used to avoid the singularity. The major assumptions in the theory of Bullough and

Newman are that the stress of the bubble on the loops can be ignored and that the loops are

of equal diameter.

Theoretical results for the loop spacings for i = 0 to 8 are given in table 1.1 (p; is

proportional (equation 1.33) to the spacing benveen the (i + 1) th the loop and the (i + 2) th

loop punched out). The equilibrium values for differcnt critical shear stresses, were

calculated using equation 1.32. They are compared to the original Bullough-Newman

results. The small disagreement may result from Bullough and Newman evaluating the

eltptic integrals by interpolation from abulated values whereas the present results calculate

the elliptic integrals at all of the required positions.

Table 1.1 loop spacings for a ten loop row.
(a) Bullough-Newman rcsults:

Pi

v 0 I 2 3 4 5 6 7 I
0.5 1.23 0.951 0.791 0.684 0.606 0.546 0.491 0.478 0.3r7
0.2s 1.55 t.25 L.07 0.952 0.862 0.792 0.731 0.703 0.549

0.05 2.47 2.Os r.83 1.68 r.57 1.48 t.4l 1.35 1.25

(b) Prresent results (using equation 1.32):

Pi

v 0 I 2 3 4 5 6 7 8

0.5 r.25 0.984 0.842 0.747 0.683 0.635 0.596 n {/.n 0.350
o.25 r.57 r.27 1.10 0.992 0.909 0.843 0.792 0.73s 0.571
0.05 2.54 2.rl 1.88 1.72 1.61 L.52 L.44 1.36 t.24

Barnes and Mazey [2] measured the spacing of loops which had been punched from

gas bubbles quenched into copper. The results (for loops with diamcters all of about the

s4me size) were compared to the theoretical Bullough and Newman results. Othen [fl have

obtained results similar to those of Barnes and Mazey. This comparison was used to find a

value for the critical shear suess. Barnes and Mazey compared the value for the critical
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shear stress they obtained with the macroscopic measurements of Barrett tl 16l. Barnes and

Mazey state that the value obtained was "higher by an order of magnitude, which is greater

thnn the experimental ercor. This dffirence is not explained but is possibly due to the Inttice

hardening which could be attributable to dislocation locking caused by quenching." When

the integral of equation 1.28, evaluated as above, is compared with the data of Barnes and

Mazey the disagreement remains about the same. The failure of the theory of Bullough and

Newman is probably a result of the loops not all being of the same size. As the bubble

grows the size of the loops punched out also grow but the theory does not take this into

account.

1 . 3 .3 Dubinko Theory for loop spacing and ordering of bubbles

Johnson [ 17] invoked the alignment of dislocation loops punched out by bubbles to

explain how bubble ordering is energetically favourable as shown in figure 1.9. Later

Dubinko [7] combined the dislocation loop punching mechanism of Greenwood, Foreman

and Rimmer [1], and the loop spacing theory of Bullough and Newman [112] into a theory

for bubble ordering. Dubinko applied this approach to the bubbles and loops thought to

exist in the superlattice case. In chapters 6 and 7 it will be seen that the experimental

evidence suggests that there is not a high density of dislocation loops punched by the small

gas bubbles present in specimens containing superlattices. Therefore this section on

Dubinko's theory is somewhat critical. The theory of Dubinko is explained and criticised in

the rest of this section.

Dubinko considered the forces in one dimension along a glide cylinder and ignored

the interactions between loops from different bubbles that may tend to align the loops

(figure 1.9). Initially only two bubbles are included in the model. The second bubble is

positioned along one of the n glide cylinders of the first bubble (for an fcc crystal there are n

= 12 410> glide cylinders per bubble). This second bubble acts as a stopper for the loops

punched by the first bubble along this glide cylinder. The other n-l glide cylinders are

unobstructed. At flust sight this positioning of the bubbles along glide cylinders of other

bubbles is a major assumption. It implies that the initial bubble positions are not
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random. Dubinko points out that a bubble that is not positioned on another bubble's glide

cylinder cannot be repulsed from that bubble by a repulsion between dislocation loops,

because the loops will lie only on a glide cylinder of a bubble. Instead the bubbles will be

attracted to each other by the attractive force between two bubbles postulated by Willis and

Bullough [04]. It is thought that such bubbles would coalesce to minimise surface energy.

In fact Dubinko assumes that any bubbles not positioned on a glide cylinder of a nearest

neighbour bubble will join that bubble to form a new bubble. This process would continue

until all the bubbles are positioned along glide cylinders of their nearest neighbours. The

theory then assumes the initial inter-bubble spacings along these glide cylinders are random.

Dubinko then explains how the bubbles could move along these glide cylinders by punching

out dislocation loops to obtain a regular inter-bubble spacing.

f"' fu

o. O" fu'

O"'
B=[001]

Figure 1.9: In a real crystal the interaction between overpressured bubbles could be

expected to depend strongly on crystallographic direction. For example, dislocation loop

punching from bubble a, in the [110] glide direction towards a', is likely to be helped by the

presence of dislocation loops punched antiparallel to this direction by bubbles at b and c and

inhibited by the loop from the bubble at a. The dislocations are drawn on the figure with

(1, -1, 0) habit planes.

In the initial two-bubble approximation two different types of one-dimensional

equilibrium equation need to be solved. The first type is for a line through the bubble along

a pair of unobstructed glide cylinders. The second type is for a line through the bubble that

includes one unobstnrcted glide cylinder and a second glide cylinder obstructed by a second

//

//

/

/
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bubble. Included in the one-dimensional equilibrium equations is the force between loops,

between a bubble and a loop and benpeen a loop and the matrix (the so called Peierls force).

Dubinko neglects the bubble-bubble attractions in the equilibrium equations because they are

much smaller than the interactions of bubbles with loops, or between loops. The Peierls

force is similar to the critical shear stress used in the Bullough-Newrnan theory. It causes

the loops furthest from the bubble to come to rest when the force on these loops drops

below the Peierls force. It also means that the bubbles cannor move apan indefinitely under

the repulsion between the loops on a corlmon glide cylinder betrveen the bubbles. Instead.

the first bubble is held at a finite distance from the second bubble by the back-sness from

the dislocation loops on the unobstnrcted glide cylinder. Thcse loops are pinned in position

by the Peierls force. The only interactions between loops that are included in the

equilibrium equations are for loops on the same glide cylinder that are not separated by a

bubble. Approximate expressions for the equilibrium loop and bubble spacings were

obtained by takilg asymptotic expansions of the exact solutions to the two equilibrium

equations.

Dubinko then goes on to treat the superlattice case using the same assumptions as

above. He takes the solution for the glide cylinder between bubbles, applies it to all n glide

cylinders and then sums the result. The parts of the earlier solutions due to the unobstnrcted

glide cylinders are totally ignorcd- To obtain the movement of the bubble along a glide

cylinder in one dimension the number of loops punched out in one direction is subtracted

from the number of loops punched out on the opposite glide cylinder and multiplied by a

factor proportional to the Burgers vector of the loops. This gives the resultant volume

punched out in one direction by the bubble which can be related back to the change in the

position of the centre of mass of the bubble in the dircction in which the loops have been

punched Effects due to the change in loop size with bubble growth are neglected.

Predictions can be made about ttre equilibrium inter-bubble spacing and the radius at

which the bubbles stop growing. These predictions are in brcad agreement with experiment

for a range of materials. The discrepancies can be explained by the failure of some of the

assumptions above, especially the failure of the bubbles to lie along the glide cylinders of

other bubbles. The bubbles can read.ily move along the <110> directions only. So the

short range order eventually evolves into a gas bubble superlattice having the same
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symmetry as the host matrix. However, Evans tl181 has criticised Dubinko's model for

bubble ordering because "it would seem that a loop from one bubble punched out toward, an

imperfectty aligned bubbte will be partially absorbed by tha bubbte and mave it away from

lirnar aligntnent."

The shear modulus (p) is smallest in aluminium and largest in rhenium amongst rhe

materials for which gas bubble formation has been commonly found. The gas bubbles have

radii varying from about 8 to 20 A depending on the implantarion conditions. But this

bubble size or the superlattice constant is not related in an obvious way to p. Therefore it is

impossible to pick a nraterial which would be the mosr likely to fomr dislocation loops if ttre

punching mechanism is valid. Also the effects of elastic anisotropy are not taken into

account in the dislocation loop punching mechanism. So the effects of using anisotropic

materials on the likelihood of obtaining loops is unknown.

1.3.4 Wolfer theory

The GFR theory does not consider how the Helnholtz free energy of the system

varies with the distance benveen the bubble and the loop and also assumes that after the loop

has been punched there is no more interaction between the bubble and the loop, i.e.,

effectively the loop glides off a large distance from the bubble. In the GFR model the

bubble takes on its final volume the moment the loop has been punched. Wolfer [102,103]

extended the GFR theory for loop punching by including the variation in the Helmholtz free

energy that occurs during the process and used a more accurate form for the strain field

surounding a dislocation loop and bubble.

The neglect of the interaction benpeen a loop and a bubble is unrealistic and. Wolfer

and Drugan [101] derived the sEain and displacement field about a loop that has been

punched by a bubble as a function of the distance between the loop and bubble. A solution

for the displacement field due to the loop was sought in a form that can be expressed as the

gradient and sum of nvo harmonic functions (Q and ry). One of the hannonic functions

which is differentiated to calculate the displacement field is shown in equadon 1.34. The

solution takes the form:

t-27



u=V(Q+zV)-4(1 -v)?ry
6| -0'= ) FnRnPn(cos0)

n=0

(1.34)

where R and 0 define the position of a segment of the loop from the centre of the bubble.

Pn is a Legendre polynomial of degree n, and the Fn are the coefficients that are required for

the solution. The stress can be derived by differentiating this displacement field solution in

cylindrical or spherical coordinates. The boundary condition, that the stress is zero on the

surface of the bubble, enables the coefficients to be found. The stress field due to the

bubble can similarly be found.

Integrating the stress due to the bubble, over the area of the loop that does not

intersect the bubble surface, gives the work done by the bubble in forming the loop. The

integration also gives the dependence on separation of the subsequent interaction energy

between the loop and the bubble. Wolfer and Drugan [101] obtain asymptotic expansions

of this infinite sum in three limiting cases, in the first "the loop is far removed from the

cavity." The second solution is for "the loop is close to the cavity surface, and the loop and,

cavity radii are similar in magnitude. " The third solution is for " the loop radius is small in

comparison with the cavity radius but its distance to the surface is larger than its diameter."

They construct an approximate interpolation forrrula, for all bubble and loop separations,

using expressions derived for the above three cases.

In a subsequent paper Wolfer [102] derives the pressure required for the punching

of a dislocation loop from a single isolated bubble by considering the change in Helmholtz

free energy of the system as the loop emerges from the bubble and moves away. Included

among the energy terms is the difference in the Helmholtz fre,e energy of the bubble for the

initial bubble volume and for the volume when the loop is at a certain distance from the

bubble. Also included is the change in strain energy due to the pressure decrease in the

bubble as its volume increases. The final terms included are the loop energy, the energy of

interaction of the loop with its image beyond the surface of the bubble and the energy of

interaction of the loop with the stress field of the bubble.
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u=V(0+"V)-a(l -v)?V
@

I s
0'= ) FnRnpn(cos0)

n=0
(1.34)

where R and 0 define the position of a segment of the loop from the centre of the bubble.

Pn is a Legendre polynomial of degree n, and the F,, are the coefficients that are required for

the solution. The stress can be derived by differentiating this displacement field solution in

cylindrical or spherical coordinates. The boundary condition, that the stress is zero on the

surface of the bubble, enables the coefficients to be found. The stress field due to the

bubble can similarly be found.

Integrating the stress due to the bubble, over the area of the loop that does not

intersect the bubble surface, gives the work done by the bubble in fomring the loop. The

integration also gives the dependence on separation of the subsequent interaction energy

between the loop and the bubble. Wolfer and Drugan [101] obtain asymptotic expansions

of this infinite sum in ft1ge limiting cases, in the frst,,the loop is far removed, from the

cottiry." The second solution is for where "the loop is close to the caviry surface, and the

loop and cavity radii are similar in magnitud,e." The third solution is for where "the loop

radius is small in comparisonwiththe caviry radius but its distance to the surface is larger

than its diatneter." They construct an approximate interpolation fonnula, for all bubble and

loop separations, using expressions derived for the above three cases.

In a subsequent paper Wolfer [102] derives the pressure required for the punching

of a dislocation loop from a single isolated bubble by considering the change in Helmholtz

free energy of the system as the loop emerges from the bubble and moves away. Included

among the encrgy terms is thc diffel€nce in the Helmholtz free energy of the bubble for the

initial bubble volume and for the volume when the loop is at a certain d.istance from the

bubble. Also included is the change in strain energy due to the pressure decrease in the

bubble as its volume increases. The fi.nal tenns included are the loop energy, the energy of

interaction of the loop with its image beyond the surface of the bubble and the energy of

interaction of the toop with the stress field of the bubble.
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The solution for the radial displacement field at the caviry surface can be integrated to

find the volume change of the bubble as the separation of thc loop and bubble changes. The

radius of the bubble calculated from the volume is then used to calculare the area of rhe

bubblc surface and the changc in bubbte surface energy. The equation of state for helium as

a function of temperature then gives the bubble pressure as a function of volume or defecr

separation. The pressur€ thus found for dislocation loop punching is significandy higher

than that derived by GFR. Also the pressure plareaus out ils thc bubble radius increases

instead of being approximately inversely proponional to bubble radius as the GFR

mechanism predicts as shown in figrre 1.10.
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Figr'e 1.10: The prcssurc for toop punching as a fuirction of bubble radius

The higher density of helium predicted lead V/olfer and Drugan to conclude that the

helium stays "ln thc solid stue qt room temperafire for all bubbles regard,less of their size.

Hence, they slonld perlnps be caned helinm precipitates".

The critical pressure for loop punching is about a fifttr of the shear modulus. This

imPlies that "ln orderfor abubbte toform aprismatic dislocaion loop, tle pressure lus to

produce on a suitable glide qlinder a local shear stress eqwl to tle thcoretical sluar strength

of the solid."

Wolfer [103] extends the theory to the punching of d.islocation loops in bubble

arrays; predictions are made about bubble swelling and blistering. The formation of a
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bubble superlattice arises naturally out of this treahent and that of Dubinko [7] and of

Johnson, Malcolm and Mazey t43J. As a bubble punches a loop, the centre of gravity of

the bubble is shifted along the glide cylinder of the loop. Thus the punching mechanism

allows the bubbles to move around on the glide cylinders. The bubble punches our loops

most easily along cylinders which do not have another bubble or loop lying upon them

already. The bubbles then tend to become evenly spaced and to stop growing when it
becomes energetically unfavourable to punch out any more loops.

L3.5 HelicalDislocations

Helical dislocations are often observed in quenched metals (Jones and Mitchell [4],

Thomas and Whelan [3], Smallman and Eikum [6], and Partridge [5]). Some theories of
the mechanism by which dislocation loops are punched by bubbles or by precipitates (Seitz

[119], Weertrnan [120], Jones and Mirchell [4]) claim *rat the helices are a precursor of the

dislocation loops. (Seitz was the frrst to use the tcrm "prismatic dislocation loop" for a

dislocation loop that is not circular but is constructed from straight dislocation segments).

To form a helix a dislocation with two sclew segments separated by a smalt edge segment is

emitted by a bubble along a [110] direction in a fcc metal. This allows the bubble to grow

as shown in figure 1.11.

The screw segments can climb along the [110] direction to relieve the stress due to

the bubble. But the stress will also rotate the dislocation line direction. The resultant mixed

character dislocation can glide only on the [110] glide cylinder defined by the Burgers

vector and dislocation line direction. The dislocation line can wrap itself around the glide

cylinderto fomr a helix.

The helix can have a left or right handed character and when viewed perpend^icular to

the axis of the glide cylinder it looks like a sine wave. When rorated away from this

position the helix develops cusps then loops at what were previously peaks in the sine

wave. The rotation of the pairs of screw segments to the dislocation line can continue

further until edge type loops are formed when the two screw segmenrs meet up. The loops

are connected by a long straight screw dislocation. This long screw dislocation can glide in
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a Plane PerPendicular to b and so is not restricted to the glide cylinder. If the screw

dislocation glides away from the glide cylinder a row of edge dislocarion loops punched out

along a [l 10] glide cylinder remain behind. The number of loops formed depends upon the

number of turns in the helix. The failure of the Bullough-Newman theory to nke into

account the role of helices in the formation of rows of dislocation loops may partially

explain the discrepancy between loop spacing predictions made by their theory and

experiment

Figure 1.11: The prismatic punching sequence. The solid black line indicates the
dislocation line. The parts of the dislocation which have b parallel to this line are pure
screw segments and will have a displacement field about them like that shown in figure 1.3.
The parts of the dislocation which have b perpendicular to this line are edge segments. The
rest of the line has a mixed edge and screw character. The edge components are restricted to
moving along the glide cylinder but the ssrew components are not confined to this cylinder.
As the dislocation is emined by the bubble the screw components denoted by a and c trrist
around the glide cylinder to form a helical dislocation. The edge component that forms on
the left hand side of the figure grows bigger during this process but it cannot twist around.

the rylinder.

1.4 competing Mechanisms of Bubble Superlattice Formation

Besides the dislocation punching mechanism there are two other factors thu could be

important in bubblc ordering. They are elastic interactions between the displacement fields

of the bubbles and the diffusion of vacancies and gas atoms. Bubble superlattices are

similar to void superlattices for which ordering theories based on elastic interactions have

been proposed (Evans et al.[121], Stoneham ft221and Tewary and Bullough t1231).

These theories use Eshebly's solution [124] for the displacement field about a void or

spherical shell to calculate the energy of interaction between two voids. These voids are

thought to nucleate randorrly then order by elastic interactions. The papers then discuss

c
a
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various ways to sum this interaction energy over the entire void lattice using Green's

functions or Fourier transforrn techniques. The interaction energy can be minimised to find

that the equilibrium void spacing agrees approximately with experiment. Recently more

accurate computer simulations that predict void spacings and sizes have cast doubt on these

models.

Bubble lattices are different from void lattices in that they are formed by irradiations

at temperatures - 0.2T. where the therrral mobility of vacancies is low. Voids on the other

hand rely upon the increased mobility of vacancies, that occurs at higher temperatures, for

their formation. An obscuring factor is that the inadiating gas atoms can cause vacancies to

be knocked around by collisions. So a significant vacancy movement by athermal

processes could occur even at room temperature. The growth of the bubbles is linked to

theories of Ostwald ripening that will not be treated in detail here @vans [125] and Dubinko

et al. [126] for an example).

It has been suggested by Evans and others [118] that the diffusion of interstitial

metal atoms could play a role in bubble ordering. The model proposed is based on the

anisotropic diffusion of self-interstitial atoms (SIA) which have been produced as the result

of collision damage. In metals there is some evidence that SIA diffusion may be confined to

two dimensions - i.e., planar diffusion. Evans has shown that the ordering of bubbles in

three dimensions can be explained if SIA diffusion is confined to one set of planes only.

Bubble alignment is attributed to the effect of one bubble shadowing a neighbouring bubble

from the diffusing flux of SIA's. A bubble misaligned with respect to neighbouring

bubbles will collect more diffusing metal atoms on the side projecting out of the shadow

zone and so will be moved towards the shielded region. In this way the bubbles will

become ordered.
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1.5 Summary

In this chapter the aim of the thesis is mentioned and some of the background

necessary to achieve this aim is introduced. The introduction briefly reviews past work

done on the ordering of bubbles and voids to form superlattices. There are several

alternative theories for bubble ordering. Perhaps the most important theory is based on the

punching of dislocation loops from overpressurized bubbles. The aim of the thesis is to

develop and evaluate methods based on TEM for measuring the density and size of the

loops in ion-implanted metals.

To achieve this aim it is necessary to understand how a dislocation loop can be

punched out by a bubble. The mechanisms by which loops are punched are described by

isotropic elasticity theory. It was therefore necessary to revise elasticity theory in this

chapter before discussing the mechanisms by which loops are punched out.

The nature of several different types of dislocations is described to provide the

reader with a good physical model for the structures investigated in this thesis. This is

important especially in the later chapters where experimental micrographs of dislocations

and bubbles are presented. The image formation theory used in transmission electron

microscopy (TEM) is introduced in chapter 2 and elasticity theory is developed further in

chapter 3. It will become apparent in later chapters that the appearance of dislocations in

micrographs is not connected in an obvious way to the dislocation structures themselves.

Some understanding is needed of the process by which images are formed when electrons

are scattered off different types of dislocations so that the structure is deduced correctly

from experimental micrographs.
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Chapter 2: THE THEORY OF IMAGE
FORMATION IN THE TEM

2.1 The Differential Equations of Howie and Whelan

2.1-I Intoduction

The early theory of the diffraction of electrons was influenced by the more mature

theory of X-ray diffraction. In this section the ideas and nomenclature of X-ray diffraction

relevant to electron diffraction are summarised. From this start, in the initial sections of this

chapter the theory of electron diffraction is developed and used to derive the differential

equations of Howie and Whelan. The following sections deal in nrrn with the many-beam

theory, which is necessary to understand the weak beam technique, and the multislice

formalism used to intelpret high resolution electron micrographs. The final sections of this

chapter deal with how the wave function at the exit surface of the foil can be defocussed to

simulate through-focal series, and how the generalised cross-section construction of Head et

aI. [79-82] enables the rapid simulation of images of dislocations. A more detailed coverage

can be found in Hirsch et al. [67] and Cowley |271. An outline only is given in this

chapter.

The analysis of the diffraction of X-rays can be expressed in terms of either Bragg

reflection from atomic planes or Laue equations based on the diffraction from individual

atoms. In the Bragg case, effectively the planes of atoms are treated as partially reflecting

mirrors.

In the Laue case the constructive interference from a row of atoms lying in a plane

parallel to the surface forms cones of allowed direction with axes coinciding with the atom

row. Where these cones intersect a distant screen, hyperbolae are formed upon which the

intensity is large. [n between these hyperbolae the path differences of the waves scattered

by the atoms give destructive interference. The scattering from a two-dimensional grating

of atoms gives an array of intense spots at the intersection points of two sets of hyperbolae.

The observation of strong spots in the scattering from a three-dimensional stack of atoms

requires the satisfaction of the three Laue equations. The Laue equations require the path

differences to be an integral multiple of the wavelength. The reciprocal lattice can be
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consrructed by applying the Laue equations. In this thesis the term diffraction vector will be

used to describe the vector pointing from the origin in reciprocal space to an intense spot at

which constructive interference occurs.

The idea of a reciprocal lattice can be carried over from the theory of X-ray

diffraction to describe electron diffraction. A 100 keV electron has a wavelength of 0.037

A. n typical X-ray will have a wavelength of about l-2 A. The curvature of the hyperbolae

is inversely proportional to the wavelength. The hyperbolae occurring in X-ray diffraction

patterns will have, therefore, much greater curvature than those found in electron diffraction

patterns.

Darwin [128] obtained solutions for the intensity of the diffracted spots in the Bragg

case for X-rays. The intensity of these spots cannot be predicted by the Laue equations.

The Darwin approach was to find reflection and transmission coefficients for each plane of

atoms. The amplitudes of the diffracted beams were then found by summing over the

amplitudes diffracted from each plane. The X-ray diffraction process is modelled using

differential equations and a two-beam approximation. The approach is limited to modelling

the diffraction where the crystal is tilted so that the central beam, which is undeviated, and

only one other have large amplitudes. In this case the crystal is said to be tilted to strong

two-beam conditions.

Howie and Whelan later used a similar approach to model electron diffraction; the

analysis is again based on differential equations and a two-beam approximation. The

equations were developed from the theory for electron diffraction of Bethe. Bethe [129]

used a set of differential equations and an eigenvalue equation to model the electron

diffraction; the formalism uses the Bloch wavefunction solutions to the Schrodinger wave

equation (SWE) to describe the propagation of the electron wave through a perfect crystal.

Kato [30-132] extended the Bethe theory in the Laue case to wedge shaped and polyhedral

crystals and then approximated the results to describe Fraunhofer and Fresnel diffraction.

These papers contain a good description of the dispersion surface and boundary conditions

used at the crystal surface to solve the differential equations. The Bethe formalism is

described in sections 2.1.2,2.L4 and2.2in sufficient detail for a reader to understand the

derivation of the Howie-Whelan differential equations in section 2.1.4.
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2.1.2 TIrc Dispersion Su$ace

For the electron waves scattered from a plane of atoms to interfere constructively the

Blagg condition must be close to being satisfied. The Bragg condition requires the waves

reflected from successive planes of atoms have a path difference equal to an integral multiple

of the electron wavelength. Suppose for a given set of planes in reciprocal space the start of

the reflected wavevector is made coincident with the start of the incident wavevector. The

diffraction vector g is then defined to be the vector that starts at the end of the incident

wavevector K and terminates at the end of the scattered wavevector, K' as shown in hgure

2. l. The planes giving rise to the diffraction are perpendicular to g. The Bragg condition

requires the magnitude of the vector g to be inversely proportional to the spacing between

the diffracting planes. The Brillouin zone boundary for this particular g is the plane that is

perpendicular to g and passes through 0.5g as shown in figure 2.1. All of the closest g's

in the crystal will form the Brillouin zotre surface [0].

gri[orin zone boundary

. ofg

Figure 2.1: The Ewald sphere construction (not to scale). The circle shows the portion

of a two-dimensional slice through the reciprocal lattice that intersects with the Ewald

sphere. The incident wave with wavevector (K) will be strongly scattered into the spot in

the reciprocal lattice with a vector g because this spot lies on the surface of the Ewald

sphere. The scattered wave will have a wavevector of K'.
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An electron wave with a specified wavelength and direction K incident on a crystal

will be most strongly scattered in the direction closest to satisfying the Bragg condition. To

see most easily which plane of atoms (i.e. g) the electrons will be most strongly scattering

tiom, it is useful to introduce the idea of a Ewald sphere in reciprocal space as shown in

figure 2.1. The Ewald sphere has a centre at the start of the electron wavevector and a

radius equal to the magnitude of the electron wavevector. An elastically scattered

wavevector must terminate on the Ewald sphere. The Ewald sphere construction is useful

because constructive interference occurs when the end of a g vector terminates on the Ewald

sphere. The construction is used to show which g's will be strongly excited in the

diffraction pattern.

The dispersion surface is introduced in the Bethe theory. The shape of this surface

corresponds with the allowed wavevectors for a given total energy (kinetic energy plus

potential energy). The term "allowed wavevector" is used to describe a wavevector that

satisfies the boundary conditions at the top surface of the foil. The dispersion surface is

constructed approximately from a set of Ewald spheres centred on the diffraction vectors

(instead of the start of the electron wavevector). The dispersion surface follows the Ewald

spheres except near the Brillouin zone boundaries where the dispersion surface is distorted

due to the Fourier coefficients of the potential. Bloch waves (eigenfunctions of the SWE)

from different branches of the dispersion surface will spend different amounts of time in the

vicinity of the lower potential surrounding the atoms of the crystal. Different Bloch waves

will then experience a different potential and because they have the same total energy their

kinetic energies will not be the same.

The allowed wave vectors of the dispersion surface can be found by solving for the

Bloch wave solutions to the SWE using the Bethe formalism. In practice the only part of

the dispersion surface calculated is the part excited by a given incident electron wave. The

rest of the dispersion surface could be found by varying the direction of the incident

electron. The dispersion surface construction readily allows the excitation of the various

Bloch waves by the incident electron to be represented schematically as in figure 2.2.

Section 2.3, on the weak beam method, deals with a more sophisticated theory of scattering

between the Bloch waves in a deformed crystal.
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, Brillouin zone boundary ofg

Sphere of rodius K
(cr,tre g)

Sphre of mdius K
(centreO l

Ewuld spherc
(centre I )

lig*" 2'2: r-he Snue shows the excitation error and other vectors used in rcciprocal spaceto constmct the dispersion surface and $re Ewald.sptrqrci.._ me eicitad; er ; f"r t#g;r[diffracted bcam is itlc vcnical distanii uctwecn tnJgth diffr."ird 6;ir;i,;-cal lanicespace and the Ewald spherc. The Bloch ryi y"Jt6n t" -dE ffiifip1;^iln surfaci i
9$y ary shown- Thc-wavc vectors as_sgciarcd *th-ddposron surrace I and the otherdispersion surfaccs have becn omitted- piiprnioo tntfo"" f ana Z arc-rhoo,rion the figure
!$r-because these are the two closest io-fit" .nergt-f,i" incident electron bearn- TheBloch waves associued with these n"o aisp."rion ffifd* *ill b" th;.oifGngy excited
3t the top surface gf the crysFl. The Bbth r"an"ion lie second dispenion surface willhave a higher kinetiq engrei, th.g ,hq sloch wave.son ineffi;-Ji$fr]ffiili;.e. K is theelectron wavevectorin the-&ystal and it points inffiximatery-trii di"dd;;ithe electron
wave,1, incident in vacuum on the crystat surface. K has been refracted slightly towards
the surface normal byPe me_an polenti{ in the crystal The vector yis shown for only the
second dispersion surface. Later in this chapter iopr"roips ttut rir otio to identify ttre
dispersion surface to which the Bloch waves and t's bctong.
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Those wave vectors which satisfy the boundary conditions of continuity of the wave

function and its derivative can be readily identified using the following procedure. At the

top surface of the crystal the component of the incident wave vector parallel to the surface

must be the same as that of the excited Bloch waves. The Bloch waves satisfying this

boundary condition are found by drawing the line parallel to the foil normal through the

point A on figure 2.2. The allowed Bloch wave vectors are given by connecting the points

where this line intersects the dispersion surface to the end of the diffracting vectors of the

crystal. The wave vector components parallel to the foil normal do not have to be

conserved. Hirsch et d. [67] prove that as a consequence of the boundary conditions nearly

all of the electron intensity incident upon the top surface of a foil will propagate into the

specimen. Very little of the electron intensity is reflected from the top surface of the foil.

Because the crystal has a finite thickness the Ewald sphere does not have to pass

exactly through g to excite a Bloch wave with wave vector k . The sha{p spot predicted by

the Laue equations is smeared out parallel to the Brillouin zone boundary. The smearing of

the amplitudes has a sin(x)/x variation. Therefore when the crystal is tilted so that ss is

finite, the Ewald sphere will still cut through the region about g in which constructive

interference occurs.

2 . I .3 Description of the Howie-Whelan Dffirenrtal fouations

The Howie-Whelan differential equations are a pair of complex, linear, coupled

equations describing how the beam amplitudes vary through a crystal in which the atoms

may have been displaced from their Bravais lattice positions. Hence they are useful for

interpreting the electron microscope images of defects. They are obtained from the Bethe

formalism in the Laue case by using a two-beam approximation.

The simplest displacement of the atoms in a crystal from their Bravais lattice

positions occurs when a stacking fault is introduced. A stacking fault can be created by

cutting a perfect crystal into two pieces and displacing one piece relative to the other. This

displacement introduces a change of phase in the electron waves passing through the fault.

Whelan and Hirsch [68, 69] obtained analytical solutions using the dynamical theory with
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no absorption (i.e., no inelastic scattering events) for the beam amplitudes diffracted from a

stacking fault. They plotted the solutions as intensity profiles across the exit surface of the

crystal. They verified the theory by comparing these profiles against experimental

micrographs. Hashimoto, Howie and Whelan [70, 7l] extended the theory of diffraction

from deformed crystals to phenomenologically include absorption. Their computed

intensity profiles for bent crystals and stacking faults again agree with experiment.

Howie and Whelan 172,731 derived differential equations to model the diffraction

from crystals continuously deformed by dislocations. Analytical solutions cannot be

obtained for the diffracted intensities due to the complexity of the displacement frelds about

dislocations.

2.1.4 Derivation of the Howie-Welan differential equations

2.1.4.1 Scattering Factors and the Scaneing Geometry

The strength of the elastic scattering of electrons from atoms can be found using the

Born approximation. Quantitatively the strength of the scattering is given by the atomic

electron scattering factor. Kinematical theories include the effects of single scattering only

and are of use in situations where the diffracted beams have a weak amplitude. (In the

kinematical theory, the beam amplitudes oscillate with the foil thickness in a perfect crystal,

giving rise to thickness fringes, even though no scattering from the diffracted beam to the

central beam occurs). Dynamical theories include multiple scattering effects and are useful

when several of the beam amplitudes are strongly excited. Kinematic theories [67] were not

used in this thesis as it was thought that the assumption of kinematical scattering may be

invalid when several defects overlap. However, this was not tested by computing kinematic

images. Considerably more computational time must be expended to produce an image

using the more accurate dynamical scattering theory with a nonzero displacement field so

that sometimes the less accurate kinematic theory is preferred.

The Howie-Whelan differential equations are based on dynamical theory. However,

kinematic theory (i.e., the idea of scattering factors) is still used to construct the periodic
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crystal potential. The first Born approximation is used to treat the change in beam

amplitudes, resulting from an infinitesimally thin slice of crystal. Multiple scattering effects

are included by reapplying the first Born approximation to the new beam amplitudes as they

pass through successive slices of the crystal. This approach is similar to that of Darwin,

The Mon formula connects the electron (f") and X-ray (fx) scattering factors t1331.

The atomic electron scattering factor at a particular angle 0 is calculated from the

corresponding X-ray scattering factor calculated by Doyle and Turner [34] by means of the

following expression

*se)=#l*r, 
l

(2.r)

Symbols used in equation 2.1 and in the following discussion are defined in a list of

symbols in the appendices. The variables e, m" and h have their usual meanings. The units

have been omitted in the list of symbols, but in electron microscopy length for example is

conventionally measured in Angstrom units. With the exception of Angstroms the mks

system is used in this thesis although some authors, e.g. Cowley U271, use cgs units. The

equations quoted by these authors need to be converted from the cgs to mks systems to be

compared with the equations quoted here.

A better understanding of the Mott formula results from a consideration of the

different mechanisms by which X-rays and electrons are scattered from atoms. X-rays

propagate as an electromagnetic field. An X-ray interacts with an atomic electron by

accelerating the electron with an oscillating electric field. The accelerating electron in rurn

radiates an electric field, so that effectively the X-ray has been scattered by the electron.

The X-ray will not interact as strongly with the atomic nucleus because the nucleus has a

larger mass than an electron. Alternatively, the interaction benveen an electron and X-ray

photon can be thought of as being due to the "exchange" of an electron between the two

particles. The elecuon "exchanged" between the photons is allowed to exist for a short time

by the Heisenberg uncertainty principle.

In contrast to X-rays, the electrons scatter off both the atomic electrons and the

nucleus through the Coulomb force, (or equivalently by the exchange of photons between
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the particles). The Z term in equation 2.1 arises because the elecrons interact with the

nuclear charge, whereas the X-rays do not. The Coulomb force has a range greater than the

distance that the exchange electnon can travel in an X-ray scanering process. For this reason

electrons will be more strongly scattered than X-rays if both pass through the same

thickness of material. The electron scauering factor is a factor of ltr-ld larger than the X-

ray scattering factor.

In equation 2.1, angles are measured in terrrs of S, where S, varies with angle

according to equation 2.2. S, is a distance in reciprocal space, i.e., it corresponds to a

direct lattice frequency in real space. S, can be calculated from the angle between the

incident and scattered beam. This is equivalent to applying the Bragg equation to the planes

responsible for the diffraction:

(2.2)

The electron wavelength needed to calculate S, using equation 2.2 is calculated from the

energy of the electrons by ttre relativistic formula

',=*--*.

x=[T('.r#,)].i (2.3)

At Sr = 0 equation 2.1 cannot be used, and the tabulated values for f" of Doyle and Turner

[34] must be used.

Doyle and Turner [134] used relativistic Hartee-Fock wave functions to obtain

thcorctical values for the scanering factors for X-rays and electrons. To calculate the X-ray

scattering factor an integral was laken, over all space, of the total charge density of the

atom. The electron scattering factor can be obtained from an integral over the atomic

potential.

Fujiwara [135, 136] gave a more sophisticated Eeatment of relativistic effects in

electron diffraction by applying the Bethe formalism to the Dirac wave equation rattrer than

the SWE. He found that relativistic effects are adequately included in the theory of Bethe by

using a relativistic wavelength and reladvistic mass in the SWE. The spin of the electron
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has negligible effects on the diffraction from non-magnetic materials. Equation 2.3 and the

relativistic electron mass are all that are required to make the theory in this chapter

relativistic. A 100 keV electron will have a relativistic correction factor T = ld( l-vzlcz)

equal to about 1.19. Relativistic effects are significant in electron microscopy and must be

included in any modelling of the electron diffraction.

2.1.4.2 Construction of the Crystal Potential

The Howie-Whelan differential equations are derived by solving the SWE so it is

necessary to construct the crystal potential for inclusion in this equation. The X-ray

scattering factors in section 2.1.4.1can be predicted by theory (Doyle and Turner [3a]).

The electron scattering factors are then calculated from equation 2.1. The first Born

approximation relates the electron scattering factors to a Fourier transform over the crystal

potential. This allows the Fourier coefficients of the crystal potential to be calculated. This

section shows how to construct the crystal potential from tables of X-ray scattering factors

derived from theory.

In the first Born approximation, the structure factors describe the degree of

interference between the waves scattered from different atoms in the unit cell of the crystal.

The structure factors are calculated from the electron scattering factors by a sum over the

atoms in the unit cell

Fe = I f.,;(Sr)exp(-B;Sr)exp( Znig.ri)
j

(2.4)

A subscript has been added to the electron scattering factor in equation 2.4 to indicate that

the unit cell can contain different types of atoms. The second factoro exp(-BiSg), called the

Debye-Waller factor takes into account the thermal vibration of the atoms, i.e., the diffuse

electron-phonon scattering.

The potential in a perfect crystal containing many unit cells is constructed by a

Fourier series over the Fourier coefficients of the potential
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(2.s)

The new coefficients U-o introduced in equation 2.5 are proportional to V". The use of these

new coefficients will result in a simpler equation being obtained when the potential is

substituted into the SWE because some common factors can be cancelled out. The Fourier

coefficients of the potential are calculated from the structure factors using

Vir; = +- ̂ | U,exp(2niB.r) = | Vrexpl2nig.r).
)fro-s
-rrrcv d o

v- = 
h2F,

" 2nm"eV"

v(r) = #. ? 
Urexp(-2rcie.R(r))exp(2rcig. r).

V(r) = I O*(.)"*p(2ni(X+g+sr),r).
o
6

(2.6)

Consider the situation when the crystal is deformed by a displacement field R(r).

The potential at position r will be displaced by R(r). The new potential at r is the potential

which was at r - R(r). The potential V(r) in a deformed crystal, that follows after

transforming r to r - R(r), is

(2.7)

The Fourier coefficients are thus phase shifted by an amount proportional to the

deformation. The structure of the reciprocal lattice is not significantly affected by the

deformation around one dislocation and therefore it is still valid to calculate the potential

using the reciprocal lattice positions.

2.1.4.3 The Column Approximation and Solving the SWE

A solution for the SWE of the following form can be postulated:

(2.8)

The wave function is a sum of terms involving plane waves, or beams, propagating through

the crystal. In this section equations are derived which describe how the beam amplitudes
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(0g(r)) vary as the electrons pass through the periodic crystal potential consrnrcted in rhe

previous section.

Energy conservation applied to the Ewald sphere constnrction requires that the wave

v€ctor 26 in equation 2.8 satisfies

y,2=qy+g+sg)2=T (2.e)

The SWE is

vtv(.). 
+u9{E+v(r)lry(r) 

= o

where the unit of E and V(r) is volts. Substituting the solution in equation 2.g into the

SWE we obtain

-/<a

? t # v'0s(r) {#2s+g+sr).vOr(.) 
? ur-nfu (r)ex{2ni (h -g).R+2ni(sn-sr).rl}

(2.10)

(2.11)x exp(2ri(29+g+sr).r) = 0.

The assumption is made that each coefficient of the exponential terms outside the

curly b'rackets in equation 2.11 is individually zero. Provided that the beam amplitudes do

not vary rapidly on the scale of the elcctron wavelength, the gradient squared term can be

neglected to give

(1+g+s*).VSg(r) = ni| ur-r,Or,(r)exp[2ni(h-g).R+2ni(s1-sr).r]. (z.rz)

Because the electron wave vector has a large z component and relatively small x and y

components, the panial differential equations in 2.12 can be rcduced to the ordinarv

differential equations

ry = nitfu,? u, -*( r)e:qp[2lri (h - g) . R +2ri (s1-sr). r]
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The €.-n term in equation 2.13 is an extinction distance that will be defined in section

2.1.4.4. The approximations made in obtaining equation 2.13 from equation 2.11 are

collectively known as the "column approximation". The validity of this approximation in

the strong two-beam case was confirmed by Howie and Basinski I75]. Howie and Sworn

[77] validated the column approximation in the weak-beam case.

2.1.4.4 Extinction Distances

The substitution has been made in equation 2.13 that

= t *6(r)expi2ni(h-g).R+2ni(sh-sg).r1.h 5g-h

Ug-tt 
=Ug-t- 1

(1+g+sr),- K -Ee-h

(2.13)

(2.14)

Where the extinction distance is defined by

- Kcos 0,Er= u_ (2.1s)

For fs, 0s should replace 0, in equation 2.15. In electron diffraction the 06 and 0r values

are typically lo to 2o so cos 0 can be taken as unity.

The analytical solutions to the Howie-Whelan differential equations (found later in

section 2.1.5) have the form of damped sinusoidal functions. The extinction distances

appear in the arguments of the sinusoids. The beam amplitudes oscillate with a period set

by the extinction distances. Thus the intensity of a beam will fall to zero (i.e., become

extinct) and then build up back to near its original value (in the absence of absorption) when

the electron wave passes through a thickness of crystal equal to the extinction distance.

Experimentally electron micrographs are taken at temperatures above absolute zero,

so the effects of a non-zero temperature must be included in any modelling. Uu is the only

temperature dependent tenn on the right hand side of equation 2.15 and Uu is proportional

to the structure factor (refer to equations 2.5 and 2.6). The structure factor is calculated
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using equation 2.4. Since the Debye-Waller coefficient in equation 2.4 is temperature

dependent the extinction distance depends on temperature. The dependence has been

checked by Howie and Valdre L76)by measuring the variation in the spacing of thickness

fringes as various materials were heated.

The zeroth extinction distance corresponds to the mean potential of the crystal

refracting the electrons. The wave vector is refracted according to

11r=Xr*fi (2.t6)

(2.17)

K and 1 differ only due to the mean potential in the crystal. Because the mean potential is

about 10 eV, whereas the electron energy is typically 120 keV, K can be substituted for 1to

a good approximation. The wavevectors have a magnitude of approximately 27 A'l

whereas the extinction distances are equal to about 300 A, soKr= yr.

Molidre [137] inuoduced a complex potential to explain the intensity of uansmitted

X-rays at the angle of Bragg reflection. Yoshioka [38] applied Molidre's approach to the

case of electron diffraction and extended it to develop a phenomenological model for the

effects of inelastic scattering. The complex potential he uses is equivalent to the complex

extinction distances of Hashimoto et al. l70,7Il in equation 2.17. Yoshioka uses the same

formalism for the scattering as that used by Kainuma [39] to explain the dependence of the

position of the Kikuchi lines on crystd tilt.

Absorption of the electron beam amplitudes can be included in the differential

equations, phenomenologically, by replacing the real extinction distances by extinction

distances that have both a real and imaginary part

1+
€o

I+r and

6o E;

1+I+l_
Ee €e 1,,

The Howie-Whelan differential equations cannot be used to model Kikuchi lines when the

beam amplitudes are damped by the complex potential, even though physically the intensity

lost from the beams mav be transferred into the Kikuchi lines. The electron diffraction
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theory used in this thesis neglects the contriburions of any inelastically scanered electrons to

the images or diffraction patrerns.

2.1.4.5 Dffirent Forms of tlu Howie-whelan Differentiar Equations

In the rwo-bearn case equation}.l3 above reduces to:

g=ff.#,*p[2ni(srz+g.R)]

-d * = p{g + 9.00e*d-2ni(srz+g.R)1.dz 
6o 

'' 
€,

(2.18)

This is the displacement field fonn of the Howie-Whelan differential equations. These

equations are similar to those obtained by Darwin in the X-ray case and so the beam

amplitudes are often called ttre Danrin amplitudes. The variables can be transformed by

using

o; = oo".e(@l

.tta O, = 0r"*{z"i trr -ff+zriS.n} (2.re)

Dropping the primes and explicitly including the complex part of the extinction distances

equations 2.18 become

g= 
#'.,'(*'iJ*'

* = t iJ"{'s 
+2ri(s,.ur)r,
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These equations are referred to as the derivative of the displacement form of the Howie-

Whelan differential equations. The crystal deformation is included by the terrr

(2.2r)

Whether equations 2.18 or 2.2O are used to model the electron diffraction depends

on the structure of the scanerer. For some structures, although the displacement field may

be found from elasticity theory, the derivatives of the field are complicated. This is the case

for prismatic dislocation loops and so equation 2.18 in the form that includes absorption is

used. In contrast, long straight dislocations are modelled using equations 2.20 and2.2I.

2.1.5 Analytic solutions to the Howie-Whelan differential equartow

The solution to the zero displacement field form of the Howie-Whelan differential

equations can be found as follows. Let T and S represent the transmitted and diffracted

beam amplitudes respectively. For simplicity of the solution, the variable z is transformed

to Z = znlEe. The solution at a depth Z in the crystal, when the initial conditions for T and

S are known at a depth fr, is

T (z) = C I exp( cu (Z-Zo)) +Czexp(uz(Z-Zo))

and s (z) = c 3exp( cr I (z-7-d) +c +exp(az(z-hD. (2.22)

Head et al.179-82l usually just assume that T = I and S = 0 at Z=0. More flexible initial

conditions are necessary when including the change in potential occurring benveen a bubble

and the matrix. For example in section 2.5 the case is considered when the bubble is not

positioned atZ=0.

The C and cr coefficients in equation 2.22 can be derived by substituting these trial

solutions into equation2.20 and assuming that T(74) and S(Z+) are known. The two initial
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These equations are referred to as the derivative of the displacement form of the Howie-

Whelan differential equations. The crystal deformation is included by the term

Fi=*sg (2.2r)

Whether equations 2.18 or 2.21 are used to model the electron diffraction depends

on the structure the electrons are to be scattered from. For some structures, although the

displacement field may be found from elasticity theory, the derivatives of the field are

complicated. This is the case for prismatic dislocation loops and so equation 2.18 in the

form that includes absorption is used. In contrast, long straight dislocations are modelled

using equations 2.20 and2.2t.

2.1.5 Analytic solutions to the Howie-wlelan differential eqrntions

The solution to the zero displacement field forrr of the Howie-Whelan differential

equations can be found as follows. Let T and S represent the transmitted and d.iffracted

bearn amplitudes respectively. For simplicity of the solution, the variable z is transformed

to Z = zfrEs. The solution at a depth Z in the crystal, when the initial conditions for T and

S are known at a depth h,is

T(z) = C I exp (ch (Z-7a))+C2exp(a2(Z-Zg)

and S (z) = C3exp (cr1 ( Z-7a\ +Caexp (a2(Z-Ta\. (2.22)

Headetal. [79-82] usually justassumethatT= I andS =0 atZ=0. Moreflexibleinitiat

conditions arc necessary when including the change in potential occurring between a bubble

and the matrix. For exarnple in section 2.5 the case is considered. when the bubble is not

positioned atZ=0.

The C and cr coefficients in equation2.22 can be derived by substituting these trial

solutions into equation2.20 and assuming that T(h) and S(%) are known. The rwo initial
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conditions and the two differential equarions of equation 2.22 arc enough to derive the six

unknown coefficients. The solutions for the c['s fie

o,L,z = -q + iw 11@-12 - yn, (2.23)

where w = sg€g is the excitation error. The absorption coefficients are defined by

n =+ and

6o

Fn=*.
r
>g

(2.24)

\ is called the normal absorption coefficient and A is called the anomalous absorption

coefficient. A is conventionally set equal to Tl and so A does not nonnally appear in the

solutions for the coefficients. Effectively, the imaginary parts of the potential for the gth

beam and the Oth beam are assumed to be the same. The coefficients of the exponential

terms are:

g, = 
t(i-q)s(zo):!43_+n)T(4)l 

and c2 = TI4) _ crdt'0,z

A (41 +q)C1 
nd Ca _ (crz ln)Cz .r-3=-;l- aJ 

l-n (2.2s)

There are several ways of setting the absorption coefficients commonly found in the

literature. Head et al. found that the absorption coefficients that gave the best match

betrveen itages calculated from theory and images obtained from the the microscope were

somewhat different from the theoretical values derived by earlier authors. The absorption

coefficients of Head et al. [82], obtained from this matching procedure, are used in this

thesis. It is necessary to know the alternative values used in the literatue when comparing

or checking progam oulput against published results.

Hashimoto et al. F0, 7ll set the absorption coefficients at 0.1 to get agreement of

their theoretical plots with experimenl A more sophisticated theory of inelastic scatt€ring

effects due to single electron excitations and plasmon scattering was developed by Howie

[74] from the work of Yoshioka [138]. Humphreys and Hirsch [140] gave theoretical
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values for fhe absorption coefficients as a furle rion of diffracting v€ctor. The inraginary part

o,f the potential was caleulated nrsing Howie.'s theory (whe-re.applicable)" They also u,ged

Hall and Hirschls [78] theory for the scattgrirg frorn phonoas. Alss the influence of the

objeetlve aperture in rerrroving some of the inelastie.ally scauored elccron$ f,rom the final

ilritage w'as considered. The theory of inelastic scattering that results when all the terrns,

mentioned abova are included is perhaps too complicated. For tliis reason,the theory of

inelastic saattering is used here only to broadly justify the phenonrenological approach taken

in *ris thesis of having a cornplex extinctisn distance.
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2.2 Many Beam Matrix Formulation.

2.2.1 BlochWaves

When the crystal is tilted so that more than nvo beams are strongly excited, or all but

the central beam are weakly excited, more than two beams may need to be included in

modelling the electron diffraction. The object of this section is to derive equations linking

these beam amplitudes in a deformed crystal. The scattering marrix formalism outlined in

this section was developed from the Bethe theory (first mentioned in section 2.1) by

Sturkey [141], Niehrs and Wagner [L4Z), and Fujimoto [143].

The linearly independent set of Bloch wave solutions to the SWE have the form:

Ui$,f, r) = I Cirexp(2ni(kis+g).r). (2.26)

The index i indicates the b'ranch of the dispenion surface that the Bloch wave lies on and the

sum is over all the reciprocal lattice vectors g. A set of plane waves associated with each

branch of the dispersion surface is used to construct a Bloch wave of that branch as shown

in figure 2,2. T\e ith column of the C matrix provides the coefficients of the plane waves

included in the summation for the ith Bloch wave. Any solution to the SWE can be

expressed as a linear combination of these Bloch waves,

{= ry'Ui1ki, ry (2.27a)

Qrexp(2ni(1+g+sr).r) (2.27b)

I,
I

_s
LI
s

= I Or"*p(2ni(K+g).r).
s

(2.27c)

Whereas the plane waves in equation 2.nbin general have a non-zero excitation error (sg)

in the phase of the exponential, the plane waves included in the summation for a Bloch

wave in equation (2.26) do not. At strong nryo-beam cond.itions in a perfect crystal with no

2-19



absorption, 0g and Qo vary sinusoidally. In this case the V' are constant, and of the two

important Bloch waves, one will be a cosine wave and the other a sine wave. Equation

2.27c is obtained from equation2.27b by nansforming the Darwin amplirudes by the zero

displacement field form of equation 2.I9. The wave vecror in vacuum (2g) has first been

replaced by the wave vector in the crystal (K) using equation 2.16. In the rest of this

section the transformed Darwin amplitudes are used but the double primes have been

dropped.

The wave function ty in equation2.2Tais substituted into the SWE in the form for

an absorbing potential (equation 2.7). Consider the coefficient of the gth plane wave

contributing to the ith Bloch wave in the resulting equation. All the plane waves are

dependent on the spatial coordinates but the sum over the plane waves when they have

individually been multiplied by their coefficients must equal zero independent of the spatial

coordinates. The only way to satis& this requirement is to set all the coefEcients ro zero:

ff2-1ri+g)r)cl*I' ulc!_1+il ur,Cl_r, = o. (2.28a)

where Un + U5 + iU1, (2.28b)

The nansformation of the porcntial resulting in a non-zero imag*aty component (so as to

include absorption) is given in equation 2.28b. The Fourier transform from which the

periodic potential is constructed has been relabelled from a sum over the set of g diffracting

vectols' to a sum over h. The index h must be introduced to distinguish it from that used in

the sum over the Bloch waves in equadon 2.27u The Cg-h cross terms arise from the nvo

sums over the g and h diffracting vectors. The amplitude of the wave vector in the crystal

(K) is different from that in the vacuum (2p because the wave vector is refracted by the

mean potential of the crystal (Ud. K is related to the parameters X and Us as follows:

rz = !d+€ *Us = X2+Uo.
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The dash above the first sum over h in equation 2.28a indicates that the h = 0 terrr is

excluded. Instead the Oth Fourier coefficient of the potential is included in equation 2.2}an

the K2 term.

with reference to figure 2.3,the following approximations are made:

K2 - (kb + s)2 = K2 -(lq *[y' - rrlro, Orf = 2K(rr - t').o, er. (2.30)

lTl is the distance paratlel to the Brillouin zone boundary between the ith dispenion

surface and the Ewald sphere for the Oth reflection. Figurc 2.2 shows lyl for the case when

i = 2. The y are the eigenvalue solutions to the following eigenvalue equation obtained by

converting equation 2.28ainto matrix form:

ACi-fCi=0. (2.31)

In a crystal with a complex potential the f will have, in general, non-zero imagrnary

parts. The wave vectors of the n Bloch waves will have non-zero imagnary par:ts also and

so the Bloch waves will be attenuated as they pass through the crystal. The n by 1 matrix

Ci is the ith column of the n by n C matrix. The matrix elements of the n by n matrix A

used in equation 2.31 arc:

Aoo - -* a"d Ass = se+ *2Eo zEo

(2.32)

wherc the imaginary extinction distances are defined in a similar way to the real exdnction

distances defined earlier and are related to the imaginary (i.e., absorbing) parts of the

potential by

A"n= I a i
21e-n ZEz-n

Ef = 4** 0s and (, = {+os 0r.
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Figure 2.3: The figure shows the geometry used to justify the approximations in equation

2.30. For simplicity on the top part of the figure the vectors are shown without the detail

shown in the bottom part of the figure. Only two branches of the dispersion surface are

shown in the figure but the approximations are valid for all the branches.
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2.2.2 Darwin Arnplitudcs

The boundary conditions at the top surface of the foil require that the beam

amplitudes Q, outside and inside the crystal and the Bloch wave amplitudes Vi are

continuous, i.e.,

I v'cl = or. (2.34)

Equation 2.34 is tnre only at the top surface of the foil where z= O. There is no restriction

on the x and y coordinates used at the top surface because the wave vector of the incident

wave and the Bloch wave vectors have the same x and y components. Away from the top

surface the exponential terms in equations 2.26 and2.77 are not, in general, equal.

The eigenvectors can be solved from the eigenvalue equation. There are no cross

terms benveen the ith and jth Bloch waves (i t j) in equations2.3l n 2.34. If there is no

inelastic scattering in a crystal, and if there is no deformation introduced by the presence of
dislocations or other defects, there will be no scanering between different Bloch waves.

The incident electron wave is used to find the Bloch wave amplitudes ( Vr ) and to determine

which Bloch waves are excited at the top surface which will then propagate through to the

bottom surface without any scanering benveen waves.

Substinrte the expression for the Bloch wave as a sum over plane waves from

equation 2.26 rnto equation 2.27a. Equation 2.35c can be derived by comparing the rcsult

of the substitution to equadon2.27c and using equation 2.35b. The coefficients of the

Bloch waves and the Darwin amplitudes are linked in equations 2.35a and 2.35c by the

matrix form of equations 2.34 and2.Z7,

V=C-10 atz=0,

ti- r=Y
(2.3sa)

(2.3sb)

(2.35c)

The beam amplitudes leaving a slab of crystal of thickness 6z are then

0 = C(exp(2rifz))pry at z * O.
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$(z+62) = 0' = C(exp(2nit'(z+62)))pV

= C(exp(2rif 621 )pc-rg1zy (2.36)

where the D subscript signifies a diagonal matrix. The derivation of equation 2.36 uses the

fact that the Bloch wave amplitude does not vary in a perfect crystal in which there is no

inelastic scattering.

Expanding the diagonal matrix to the first order in 6z gives for the change in beam

amplitudes due to the slab of crystal

E0 = 0'-0

= znic{t'}oC-rg8z. (2.37)

Using the eigenvalue equation (equation 2.3l),enables this to be reduced to the differential

equation:

The Darwin bearn emplitudes will vary even in

inelastic scattering occurs.

(2.38)

a defonnation free crystal in which no

# = zoi,lt"lO.

2 .2.3 Do-win Amplitudes in an Imperfect Crystal.

For an imperfect crystal define

g = {exp(2rripd}D,

Pg = g.R(z).

(2.3e)

wherc
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In a slab of crystal at depth z which is displaced by R(z), the Fourier coefficients of the

potential in the off-diagonal elements of A, are phase shifted. Forexample

Ago -+ pxnG2nipg).

Then the depth-dependent matrix describing the system is

(2.41)

A(z) = Q-l(z)LQ(z), (2.42)

where A is the perfect crystat matrix. Equation 2.42 canbe checked by multiplying out the

right hand side after substituting for Q from equation2.39, and, substinrting for A from

equation 2.32.

In the nro-bcam case equations 2.42 and 2.38 can be used to derive the Howie-

Whelan differential equations in the form of equations 2.18. However, the Darwin beam

arrplitudes mustbe transformed correctly to obtain equation 2.1g.
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2.3 Weak Beam Theorv

Weak beam conditions occur when ttre crystal is tilted so that all the diffracted beams

are weakly excited but the central beam is still strong. Weak beam images of dislocations

turn out to have a higher resolution than images taken under strong two-beam conditions,

i.e., they are more sensitive to the position of the dislocation core and to the structure of the

dislocation. For example weak beam techniques can allow the separation of images of
panial dislocations which arc close together and would appear as a single broad image under

strong two-beam conditions.

A nvo-beam theory is used in this section to explain how the increased resolution of
a weak bearn image arises. The treament of weak beam theory glven here will follow that

in Cockayne [89] and Hirsch et al. [67]. The electron wave that is incid.ent upon a

dislocation can be approximated by the two Bloch waves corresponding to those bnanches

of the dispersion surface closest to the tail of the wavevector of the incident electron. The

scattering of the electron wave by the dislocation into the weakly excited reflection with

which an image is to be formed requires the inclusion of other Bloch waves in rhe model.

The amplitudes of these additional Bloch waves will be small, so there will be negligible

interaction between them. Instead, the important interactions are between the additional

Bloch waves and one or other of the rwo Bloch waves with which the incident electron

wave is constructed. This approximation (that only the interaction between pairs of Bloch

waves are significanD will be used to model the amplitudes of all of the Bloch waves. In

this thesis the two-beam theory will not be used to simulate any weak beam images as its

use can give rise to inaccuracies but it does show how the increased resolution arises. The

weak beam simulations presented in chapter 6 are calculated using a many beam theory in

which all the interactions benveen the Bloch waves will be included.

2.3.1 Analytical Solution For The BlochWarc Cofficients

The first step in modelling the diffraction process in a weak beam siruation is to

obtain analytical solutions for the Bloch wave coefficients. Elimination of 0, *d
q&
dz
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the llow,ie-Whelan differential equations in the form appropriate for zoro displacernent and

no absorption (.ecruation 2,20) gives a second order differential equation in $s

This has solutions

Trying solutions of the form exp(2riyz) giv.es a oharacteristic equation

# znisff+(ff*,=u.

-l
t*-16 -*= 0.

4ez
-E

f,, =*{r-_t---r.;.

Thel the two independent solutions (ic., one for each C and T pair) for Q6 and 0s arc

Qr=4''".n{"lr-^n

*d 0s=t3''q'"('o'tr11

Substitutingthese sslutions back into equation 2.18 with R =0 grves

$=* 1ffi4 *u 
$=w+lffi.

Defining

w = cotF

the Bloch wave coetEcients of equation 2A1, catbe erpressed as

Q.43)

(2.441

(2"4s)

(2,46)

Q.47)
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(2.4e)

The matrix elements of the C matrix in equation 2.49 cnbe substituted back into equation

2.47 ta check the solution using simple trigonometric relations. Using the boundary

conditions 0o = 1 and 0e = 0 for the beam arnplitudes at rhe foil surface, the coefficients of

the Bloch waves in the nvo-beam approximation using equation 2.35acan be found:

cl= cA ="or9 and C3= -Cl =,in+

rrr=cos* and ua=sinI (2.s0)

2.3.2 BlochWave Amplitudes in a Deforrned Crystat

In section 2.3.1 the Bloch wave amplitudes in an undeformed crystal were obtained.

In this section the effects of a deformadon of the crystal on the Bloch wave amplitudes are

investigated. For a crystal slab deformed by R the Bloch waves, using the column

approximation and replacing r in equation 2.26by r - R, become

! ciO.bl"*p(2ni(ki+g).(r-R)) = exp(-2nikb.nlE c!tti)exp(-2nig.R)exp(2ri(ki+g).r).
8E

(2.51)

The matrix C for the slab becomes, after dropping the constant phase factor outside the

summation,

f "a ql
\cpxp(ia) cftxpl-ia1/'

(2.s2)

where a = 2ng.R. Using equations 2.36,2.52,2.49 and,figure 2.4, the beam amplitudes

after the beams have passed through a thickness t1 of perfect crystal then another slab of
thickness t2 of perfect crystal which is displaced relative to the top layer by R, are:
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/o,co \ -/ 'o,$
\o,ar/-l o' 

\-sin f*pf

t ,o,|
xl

\ ""9

"n$ lexPlznif4 o 
I

-ia) cos $.nr-i"l I 
o exp(Zrif.' J

-sinlxpr*,Y "o,| ,in| 
\

.o,!**n(ir /t -,"9 *,9 /

.^o , 1 
*'+ -,,. | !o*0, 1

"*n1t"'*') { ,t} *,f /ro'<ol/'

(2.s3)

Figr[e 2'4: Waves propagating thrcugh a crystal (a) and a composite crystal O). fn 15) the
bonom layerof crysal (section 2 of thickness ti has becn displacedrelative to the top layer
(section 1 of thickness tf by R.

The Darwin a'nplitudes (00(t), 0s(t), 0o(0) and 0s(0)) are repraced in equation 2.5i xz= t
=tl+t2andz=0by

* ( 
ontt"t"'l

([3) = ffil( 
exP(2riTrz',.n,i*", 

XV])
(2.s4)

By multiplyrng the rnatrices together arelation between the Bloch wave arrrplitudes at the top

M and bonom (r/) of the deformed slab is obtained
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v'r = (*" * + sin2 **oc*lbr+rio $os fir-e*ptia))exp(2niakq)v2

v'2 ={rt'9 + cos2 I *o,,"rly2+sin }* !r-"xp(icr))exp(-2riAkt1)ryr. 1z.ssy

In equation 2.55 t1 appears but t2 and ydo not because of the non-commutativity of some of

the matrices. That is the terms involving t2 and ycan be cancelled out but those involving t1

cannot. The phase factor arises from a change in wave vector due to scattering from

dispersion surface 2 to dispersion surface 1, i.e,

lk = f-Tr. (2.56)

The physical effects of the change in wavevector in equation 2.56 canbe undentood

by returning to the idea of extinction distances. Rearranging equation 2.45 for the

extinction distance as a function of the eigenvalues, we obtain

(2.s7)

The extinction distance is roughly inversely proportional to the change in wave vector in

equation 2.56. As the number of beams used in finding the eigenvalues is inereased, the

eigenvalues and consequently the extinction distances are found more accurately. The

Bloch waves are constmcted from a sum over a set of plane waves. As the set of plane

waves grows bigger the parameters associated with the Bloch wave can be calculated more

accurately. Figure 2.5 shows a calculation by the author of how a typical extinction

distance in copper varies wittr the number of bearns.

After dropping the dashed superscripts, and expanding the exponential in equation

2.55 to first order in 6([ using a Taylor series expansion we obtain equations for the change

in the Bloch wave amplitudes with depth:

6vr = i6a{sinz 
}v,-rio }* }*1zniar.t11ryz}

Ee=#
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(2.58)

the number of beams

4567
The number of beams

Figure 2.5: The variation in the (220) extinction distance with the number of beams

included in the calculation.

Equation 2.58 becomes

o9 465
(u

.9
E

o
oc

= 4sso
I

and 6rp2 = i6a{.orz 
}Vr-rin }* }-n(-zniartl)rpt}.

# = r"tqs#('){rilz 
}ryr-sin }o, }xprzniar,,lvr}

-o g = 2,ri{g8(')){sesz 
}v2-sio }o, }xpt-zniarct,),r'},

450

using

(2.se)

6a = zr{F". (2.60)

Equations 2.59 give the change in Bloch wave amplinrdes as a function of the distortion in

the crystal. Even though the slab of thickness t2 is a perfect crystal it can be made to have

an infinitesmal thiekness of 62. The Bloch wave amplitr.rdes for a deformed crystal have
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been derived by considering it to be constructed from a series of slabs of perfect crystal that

have an infinitesmal thickness and may be displaced relative to one another. These quations

will be used later in section 2.3.4 when it has been worked out which Bloch waves

contribute significantly to a typical weak beam image.

2.3.3 The Relative Size of the BlochWave Coefficients

The relative size of the Bloch wave coefficients determine which Bloch waves will

be important in forming a weak beam image. The eigenvalue equation describing the

scattering between the mth and nth Bloch waves is

The superscripts in equation 2.61 identify the column that the matrix elements lie in, each

column being associated with a different Bloch wave. The subscripts identify the row or

diffracting vector. Rearranging equation 2.61 gives

(t$ ffi Isil st )=(3$ :t )(';^1,)

cH c*, l_ / cn c[1
cln cf,/-l cr cH(f-

(2.6r)

(2.63)

Ah\/
Af,-AH I

Yr-nm o \
,1 

' o f-AS l' Q'62)

Expanding both columns of the first row of the resultant matrix gives

A*'Cl'= CH(f-A$ and AR'CH = CS(f-AS).

Rearranging the last part of equation 2.63 gives

> I , if lfl = lsnl is large. (2.64)

The terms on the left hand side of equation 2.64 ue much larger than 1 because the off-

diagonal A matrix elements are inversely proportional to twice the extinction distances

which are typically of the order of several hundred angstroms, whereas the excitation error

L+l=
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and eigenvalues are approximately 0.02 A-t in weak beam conditions. When the crystal is

tilted away from strong two-beam conditions the parts of the dispersion surfaces that satisfy

the boundary conditions at the surface become closer to the Ewald spheres. Because the

energy of the Bloch waves approach that which occurs when a wavevector lies on the

Ewald sphere, equation 2.30 shows that the excitation error becomes approximately equal to

the eigenvalues as stated in equation 2.64. If the conditions on the right-hand side of

equation 2.64 ate not tme then by dividing one of equations 2.63 into the other we obtain

lcfl =lcgl'lcPJ,ifs*= sn, p *m orn. (2.65)

Equation 2.65 follows from using the fact ttrat C is Hermitian when the coordinate origin is

chosen so that the potential has a centre of symmetry. The last pan of equation 2.65 is a

restatement of the inequality in equation 2.64.

In weak beam conditions, all thc beam amplitudes are weak except the central beam,

i.e., fu = I but 0e = 0 for the other g's. Then the Bloch wave amplitudes are (from equation

2.35a)

Vi = Co. (2.66)

This results from the first column of C-l being the same as the first row of C, when C is

Hermitian. When s is large in equation 2.49, p = t = 0. Using equations 2.49 and, 2.66

when F = 0, we obtain for the relative size of the Bloch wave arnplitudes

vl(o) = I and (2.67)

The first Bloch wave is associated with the first dispersion surface and the others are

labelled with an index increasing as lsnl or llnl increases as shown in figure 2.6. physicaily

the Bloch wave amplitudes are bigger if the part of the dispersion surface associated with

the jth wave is close to one of the Ewald spheres upon which kinetic energy and crystal

momentum are conserved.

\r2(0) = t

I
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If the crystal is tilted to near two-beam condirions for the -gth reflection and a weak

beam image is formed from an objective aperture around the gth beam then the amplitude of
the gth beam at the exit surface of the foil is

Og(t) = T VitrlQexp(2rift)
J

(2.68)

The first part of equation 2.68 is a restatement of the 2nd pan of equation 2.35. The

rest of equation 2.68 follows because the amplitudes of the 2nd, 3rd and 4th Bloch waves

are small and of comparable size (from the two-beam approximation of equadon 2.67).

From equations 2.& and2.65 the relative size of the relevant coefficients of the C matrix
are

lcil = lcd rt lc$, lcfl "r 
s3 = s4 ))s2 . (2.6e)

The excitation errors of the third and fourth beams are appruximately equal and are much

larger than that of the second beam as shown in figure 2.6 when the crystal is tilted to near

two-beam conditions for ttre second beam. Equation 2.69 justifies the neglect of all but the

Bloch wave coefEcients included in the second part of equation 2.6g.

2.3.4 Strength of the Scanering betweenBlochWayes

At the top surface of the foil *re first and second. Bloch waves are significantly
excited only' The important scattering contribution to $, through equation 2.6g is from
Bloch waves I and 2 into waves 3 and 4 only (this is shown in the dispersion surface of
figure 2'6)' Therefore a two-beam approximation can be made benveen one member of
each set of waves at a time. Following the treatment in D. Cockayne [g9], the variables are

transformed according to

v:i = v,"*p(-2nig.Rsin4) , v'i =,y,"*p(-zoic.n.or[r)

= V3(t)C3exp(2rit'0+r/(t)C!exp(2nilt).
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,k)= N,*e.nsin{ , ,k:i= zki+g.R.or{

and Ak = k; - kJ = y'-td. (2.70)

la

J;:
k'r>0

Figure 2.6: Dispenion surface showing the scattering between 4 beams when the crystal is
tilted to near strong two-beem conditions for -g. (Not to scale). The Ewald spheres around
the main diftacting vectors and the branches of the dispersion surface are shown

Then 2nd pan of equation 2.59 describing the scattering between Bloch waves becomes

(where j =3,4 and i = l, 2)

g = -2*S#%+"+*(-2riAkz)yi ;

integrating grves ry'l = ryl101-risinpvt("r) [**" SL* (2niLkz)dz. (2.7r)
tr, uz

The range of integration is transfomrcd by the variables

Ak = ki - 4. utH*'(ror{ 
- ,i"4 and z= z'+4+ f
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yi = yi 1o l - ni sin Brp'i 1,,7" d-zn{r,+bol, J.f 
.*p1-zniAkz,)d2,,

where $} = ,,.

Evaluation of the integral gives

,4t

l-'o,exPG}nit*,a")dz

Assuming that the sl term (defined in equation 2.73) is constant over the range of

integration so that it can be moved outside the integral, equation 2.71 then becomes:

_ 
^-sin(nAkAz)- t)r2- .

nAkAz

(2.73)

(2.74)

For w = I to 11.5, i.e., for moderately large s, p = nl4to 0.087 radians and so the sin(F)

factor outside the integral is non-zero. Then the scattering and the integral are maximised if
Ak = 0, i.e.,

ti-4=ry--ss. (2.7s)

Therefore the maximum scattering between dispersion surfaces occurs between B and D,

followed by B and C in figure 2.6, near the dislocation core, as this is the only place where

the curvature of the diffracting planes is large enough to equal the excitation error. Equation

2.75 is a necessary condition for the amplitude of the Bloch waves to change and for the

intensity in the dark field image to be significantly different from the background intensity.

Equation 2.75 is only close to being satisfied near the core of the dislocation. This is the

reason that weak beam images have a higher resolution than images taken at strong two-

beam conditions.
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2.4 Multislice Theorv

2.4.1 Introdrction

Multislice theory is a physicat optics approach that is mainly applicable to images of
perfect crystals obtained by high resolution electron microscopy. Cowley and Moodie

tl44-1521in a series of papers in the late 1950's and early 1960's gradually built up the

multislice theory for diffraction. They initially considered the images formed in the back-

focal plane of a lens by either light waves or electron waves. Initially the physical optics

approach was applied to the in-focus Fourier image of a point source and then the image off
the back-focal plane of a lens was modelled, i.e., defocussed images were modelled.

Further developments considered the Fourier image of finite sources, such as the Gaussian

source by which a TEM filament is approximated and the extension of the theory to periodic

images or phase gratings which could be considered to be very thin weakly scattering

crystals. The problem of a further extension of the theory to describe electron diffraction

from thicker crystals centred on the question of how to create phase gratings from the

crystal potential and how to incorporate the effects of dynamical scattering.

The approach that Cowley and Moodie use is to divide the three-dimensional crystal

into a sequence of two-dimensional slices perpendicular to the electron beam d.irection. The

dynamical diftaction through the crystal is considered as being due to multiple transmission

through the slices, with propagation by Huygens principle between these slices. The effects

of a finite objective apertue are included by multiplying the Fourier image by a circular step

function which passes the intensity inside the aperture but blocks the intensity outside it.

Fujiwara t1351 used a Green's function method to extend the first order Born

approximation to higher order elastic scattering by iterated integrations, demonstrating the

equivalence of the Born approximation (which is the basis of the Bethe theory using Bloch
waves) to the muldslice method. However, multislice computarion of the diffraction is
quicker than using the Bloch wave formalism for a largc number of beams (Cowley UZTI).
Practical calculations using the theory took longer to develop (Goodman and Moodie

tl53l). The theory was fint applied to experimental micrographs by the Melbourne group
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in the early 1970's (O'Keefe et al. [54-159]) and it has since become the standard method

for interpreting high resolution images.

A briel non-rigorous, outline of the multislice theory is presented in sections 2.4.2

and 2.4.3. Although defects such as bubbles and dislocations can be included by the

method of periodic continuation (Fields and Cowley [60]), the resultant images can be

difficult to interpret except in situations such as looking at a screw dislocation end-on. In

high resolution microscopy, bubble images are not as difficult to interpret as those of

dislocations but still represent a non-standard application of the multislice theory. The

multislice theory is used in chapter 4 to simulate high resolution images of bubbles.

2.4.2 Calculation of the Wave Function at the Exit Surface of the FoiI

The refractive index (n) of a crystal is related to the potential (0(r)) of the scattering

atoms and the relativistic energy of the electrons by (Cowley tllg])

n={,*S{,.p*J.,.H

The phase change of the electron wave due to a slice of thickness & is

(2.76)

f(t-r:*, )- ,]o' 
T=#AzQ(x, 

!,zn)= -ooAz. (2.77)

The first term in equation 2.77 arises because the wavelength is shortened in the crystal by a

factor equal to the refractive index. The potential on the right hand side is the mean potential

in the nth slice. ln equation 237 the quantity o is called the interaction constant. The

transmission function for the nth slice is

gn(x, y, zn) = exp{-ioQ(x, y, zn)Lz- F(x, y, zn)Lzl. (2.78)

This function is multiplied with the incident electron wave function to calculate a phase

change. The second term in the exponential phenomenologically includes the absorption of
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the wave, i.e., it includes the effects of the imaginary part of the potential. In the absence of

absorption the right hand side of equation 2.78 gives the same phase change as equation

2.77 in the limit of small slice thickness. If the phase change of the electron wave due to rhe

entire thickness of the crystal can be calculated by one multiplication of the wave function

by equation 2.78 then the weak phase object approximation (WPOA) is valid.

After passing tluough a slice, the wave is propagated to the next slice by convoluting

the real space wave function with

p(x,v)=*;-{$rt} (2.7e)

This propagation function arises from the Kirchhoff integral scattering formula and is just a

mathematical statement of Fresnel diffraction effects and Huygens principle. In reciprocal

space the wave function can be multiplied by the following factor instead of being

convoluted

P(u, v) = 
#exp 

{rilAz(uz+vz1}. (2.80)

This term is the Fourier transform of the previous real space representation of the

propagation function in equation 2.79.

The wave function at the exit surface of the crystal can be calculated by a series of

multiplications by the transmission function and convolutions with the propagation function

V(x) = qN(x)[...[qz(x)[qr(x)[qo(x)"po(x)]*pr(x)l*pz(x)l*...1*pN(x). (2.81)

In equation 2.81 the subscripts indicate the slice to which the phase grating and propagation

function belong. Alternatively the reciprocal space form of this equation can be used. This

latter form is usually preferred since it requires less computational time.
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2.4.3 The lzns Transfer Function (w(k))

After the wave function at the exit surface of the foil has been calculated by the

methods of section 2.4.2, the effects of lens aberrations can be included by means of the

lens transfer function. Cowley tl27l and Saxton [161] show that the micrograph contrast,

c(k), of a weak-phase object is

c(k) = y(k)w(k)+ry*(-k)w* (k). (2.82)

The effect of the objective lens upon the wave can be included by multiplying the wave

function, vG), in the wPoA, by the contrast transfer function of the lens, w(k),

w(k) = exp[-iffike+k)-fik6)] ]E(ks+k, k6)

where the phase factor is TG) = 0.5nCrl,3ka+rlDk2, and the envelope function is

E( k r, kz) = exp [ -0. 5 n2 tJ 1ft.-t3Sz -zrzpz l 1c 
"1"2(-ayt 

r - ( C,],?- a)t t 
z ]

and the defocus term is D = A+0.5Acos2(g-go). (2.83)

k is the spatial frequency, I its azimuttr and Q the spherical aberration coefficient. A is tfre

defocus (overfocus positive), A the axial astigmatism and rp6 the azimuth at which the

defocus is maximum. ko is the tilt of the illumination relative to the optical a*is, F is the

rms width in section of the angular brightness distribution of the illumination and d the rms

effective focus spread.

For thicker specimens the effect of beam divergence is modelled by adding togerher

the intensities from a distribution of point sources instead of multiplying the wave function

by the envelope function (E) in equation 2.831L62,1631. The effects of energy spread in

the electrons emitted by the filament are included by adding together images at d.ifferent

defocus levels. The intensities in the diffraction pattern are not affected by that part of the
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contrast transfer function that changes the phase of the wave scattered by the specimen, but

the intensities are affected by the beam divergence and chromatic aberrations.

2.5 Defocussing the Wave Function

After the wave function has been calculated by one of the methods outlined in

sections 2.1 to 2.3, it can be defocussed (Riihle and Wilkens [83]). To defocus the wave

function it is necessary to find the phases of the beams at the exit surface of the crystal as

the effect of defocussing is to further phase shift these beams. The method of defocussing

the wave function outlined below is valid for thick specimens and is equivalent to including

only the defocus term in the WPOA approximation.

As shown in the dispersion surfaces in figure 2.2 the effect of the mean potential is

to refract or change the modulus of the electron wave vector. In figure 2.2 the refraction

occurs as an electron is transmitted into the crystal at the top surface of the foil. Similar

effects occur in figure 2.7 as an electron passes from the matrix to a bubble as the mean

potential that an electron is travelling through will change. The component of the real part

of the wave vector (rcs) inside the crystal which is determined by the mean potenrial of the

crystal (where Vo < 0 in the sign convention used by Riihle and Wilkens [83]) is, (a

comparison of equation 2.84 to equation 2.77 shows that they are essentially the same

equation),

Ko = -#t o, (2.84)

where k9 is the modulus of the wavevector of the electrons outside the crystal and E is the

energy of the electrons. The difference in the wave vectors between the bubble and the

crystal regions is

K6,6-Kg =
e(Vs -Vs,6)ko
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where the b subscript denotes variables related to the bubble instead of the crystal. Both the

undeviated and diffracted beams that pass through the bubble should be phase shifted

relative to the the electrons that do nor pass through the bubbte by a factor of

exp[2rit(rc4.u-ro)]. (2.86)

This change in phase will not affect the in-focus images, bur will change the out-of-focus

simulations.

Top ofFoil

Bottom of foil

Figure 2.7: column passing through a bubble embedded in a foil.

The wave function of the nth beam at the exit surface of the foil, ryrr(T, r'),
calculated ftom the theories in sections 2.L o2.3 can be then defocussed using [g3]

vnG+E, t =r*,-f vo tr, "'r"*n[*]on, (2.87)

where ( is the defocus, and r is the foit thickness in the beam direction.

If the structure has rotational symmetry, with no displacement field, then the

expression for the defocussed wave function can be reduced to an integral over the reduced

radius, pr, where

. lr'lp.= 
ro_ ,
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and rs is the radius of the bubble. Equation 2.87 becomes

where Jg is a zero order Bessel function.

rvn(r+(,r) = vn,p 

[r f.r(flI' 
a"rp')Io(2pp'

B= E' 
tckorfr

F and A. are defined by

and a-= % -1.-- 
V"'P

(2.e0)

A" is the difference between the wave function that has passed through the bubble and the

perfect crystal wave function, normalised by the perfect crystal wave function.

Several equations in the original paper of Riihle and \Vilkens [83], from which

equations 2.84 to 2.90 arc derived, arc wrong. The right hand side of their equation 3.6 is

missing a factor of -V(tB) and V' should be replaced by Ar,. fne {(r2) factor in equation

A.1.4 should be multiplying the exponential term only. Using the definition of Fresnel

integrals in Abramowitz and Stegun [164], the Fresnel integrals should be functions of

"/rztnF)l.

2.6 The Generalised Cross-section Construction

Head et al. [79-82] speeded up the simulation of images of long straight dislocations

inclined to the foil surface by making use of the fact that equal displacemenrs occur at points

lying along a line parallel to a dislocation. The Howie-Whelan differential equations are

coupled linear differential equations so that only two linearly independent solutions exist.

All the solutions can be found by taking linear combinations of these two linearly

independent solutions. Geometrically the displacement field or p parameter that enters the

Howie-Whelan differential equations will be the same for all columns that intersect a line

parallel to the dislocation as shown in figure 2.8. Linear combinations of the results of two
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numerical integrations down one column thar passes through the line ds are taken. The

numerical integrations are made on columns of approximately twice the foil thickness The

combinations are used to generate the linearly independent solutions required for the

intensity along a line in the image. If for example an image containing 128 by 128 columns

is required then the generalised cross-section construction of Head et al. will save on the

time needed to produce this picture by a factor of approximately 64, a difference between

getting an image in about 10 seconds compared to the approximately l0 minutes requked if
an integration had to be made down every column in the image.

A.I

Figure 2-8: Side elevation of an untilted foil. The displacemenc atpoints in neighbouring
columns are the same if they lie on a line such as ds which is parallel to the defect line
(projection D'S'). The foil normal is parallel to the beem direction in this figurc. The foil
thickness is t The other parameters in the figure are described in the texr

The (T' S) formalism used in section 2.1 is used to represent the beam amplitudes,

where T is the transmitted beam and S is the diffracted beam. An incident beam will be

used that has T = I and S = 0. The lengh of picture to be simulated is divided into N equal

length segments. An artificially thick cross-section through the foil is sreated.. Numerical

integrations are made through the columns in the plane perpendicular to the page of the

Paper which projects onto AD'. When these integrations reach D'they are continued from

S' until B is reached. The columns are subdivided into segments identified by the index i.

The segments on the parr of the integration from A to D' are denoted by Ai. The segments

on the part of the integration from S'to B are denoted by Bi.

As the numerical integration through AD' proceeds the ai and bi coefficients in

equation 2.91 axe calculated at the top surface of the foil by solving

B,
ttt-"t"'

X -tt'
--"t d'

1:
-o

's

-ttt'

t

-tt-

2-44



T = aiTl,)+biT!2) = 1 and s = aisl)+b;sf,2) = g. (2.9r)

The I and2 superscripts above the T and S denote the first and second linearly independent

solutions to the Howie-Whelan differential equations which the program is integrating. As

the first half of the numerical integration proceeds down the column the a; and b1

coefficients are stored in a matrix. The numerical integration is continued through to B with

the T and S values on each B; being stored in another matrix.

A two-dimensional picture can then be generated from the parameters stored during

the integrations through the artificially thick cross section. Consider a point Pl required for

the picture on the top surface of the foil. This point has a particular value of Fg' due to the

dislocation. The point is projected parallel to the line D'S'onto the line AD'. The projected

point has the same value of pr'due to the dislocation. The original point has a wave with T

= I and S = 0 incident upon it. If this T and S was integrated from Pl to P3 the same Br'

values would occur in this column as occurred in the earlier numerical integration benveen

P2 and Pa. Because the linearly independent solutions for T and S have already been

integrated through the desired Fg'values, there is no need to repeat the integration. Instead

the a; and bi values at P2 can be retrieved from the matrix they were stored in and used to

construct the final solution. The final solutions are calculated bv

rf = a;r!|+u'r!]) and sl = uis!',)*u's[1). (2.e2)

The final solution (denoted by the F superscripts) at the exit surface of the foil is generated

and stored in the matrix r€presenting the image. If the foil is tilted, i.e., the foil normal is

not coincident with the beam direction, then the integration needs to extend further than over

just twice the foil distance (Head et al. [79-82J).

If the Burgers vector b is reversed in direction to -b then the image obtained for -b

will be the same as that for b rotated through 180". This is a consequence of the syrnmetry

of the Fg term appearing in the Howie-Whelan differential equations for the two different

Burgers vectors. This is proved in an appendix of Head et al., and further reduces the
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amount of comPutadon required to generate a series of theoretical images, for a range of b,

to compare against experimental micrographs.

Humble [81] incorponted image dislocations at the foil surfaces to obtain boundary

conditions that are more physically rcasonable for the strain field of the dislocation at the foil

surfaces. In the simulations of long straight dislocations, in chapter 4, image dislocations

are ignored because the updated computer code was unavailable. Instead the original Head

et al. programs that assume that the dislocations are embedded in an infinite medium are

used.

2.7 Summary

In this chapter an outline has been given of the theory required in this thesis to

interpret images obtained with a TEM. The theory desctibes the interaction of electrons

with crystalline materials. The theories outlined in this chapter are briefly summarised

below in order of increasing resolution.

The most commonly used set of equations for modelling the diftaction of electrons

in a crystal containing dislocations are the Howie-Whelan diffcrcntial equations. These

equations are derived in section 2.1 by considering the plane wave solutions to the SWE

and the dispersion surface constmction familiar to solid state physicists. Images of
superlattices of bubbles are typically taken at out-of-focus conditions to obtain good

contrast. The wavefunction calculated by integrating the Howie-Whelan differential

equations can be defocussed using the equations in section2.5. Simulations of images can

be obtained most quickly in some situations by use of the generalised cross-section

constnrction of Head et al. and the Howie-Whelan d.ifferential equations. The method of
Head et al. is discussed in section 2.6.

V/eak beam images show the position of a dislocation core more accurately than the

strong two-beam images which are interpreted using the Howie-Whelan differential

equations. The weak beam technique is then potentially useful for studying the materials

containing the high density of defects considered in this thesis. An understanding of why

the increased resolution occurs is obtained by considering the scattering effects between the
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Bloch wave solutions to the SWE. The weak beam theory in section 2.3 is developed from

the many beam theory of section 2.2. In an undeformed crystal there will be no scattering

between dispersion surfaces. The theory of weak beam diffraction calculates the imaging

conditions that give the maximum scattering between dispersion surfaces in a deformed

crystal. The ma:cimum scattering is associated with the strongly cunred lattice planes near

the dislocation corc.

Structure images of planes of atoms require the use of the multislice theory of

electron diffraction for interpretation. Modetling in the multislice formalism usually

includes a larger number of beams than the calculations performed wittr the other theories in

this chapter. In this formalism the crystal is suMivided into a sequence of nvodimensional

phase gratings that lie parallel to ilre foil surface (section 2.4). "Ihediftaction of an electron

wave is calculated by multiplying the electron wave function by the transmission function of

a phase grating before propagating the function onto the next slice. This procedure is

continued until the electron wave has passed through all the slices spanning the crystal

thickness. Whereas the multislice technique can be readily applied to the imaging of small

bubbles, the images calculated for scattering from dislocations are difEcult jg intcrpg
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CHAPTBR 3: DEFECT DISPLACEMENT FIELDS

3.1 Burgers Equation

In this chapter an outline is given of the derivation of the displacement fields about a

range of defects. The displacement fields are required in later chapters to simulate the

images of these defects. This section derives Burgers equation which is an expression for

the displacement field of a dislocation of arbitrary shape in an isotropic material. The

derivation follows that in Hirth and Lothe [97]. Burgers equation contains a line integral

over the dislocation line so that in practice the displacement field can be only evaluated for

dislocations of simple geometry. Section 3.2 outlines how the displacement field of an

angular dislocation is derived from Burgers equation. This solution will be used in section

3.3 to construct a hexagonal dislocation loop.

In an isotropic material the number of independent elastic constants is further

reduced from the three constants used in an anisotropic material with cubic symmetry to two

elastic constants only. The two independent elastic constants in an isotropic material can be

relabelled as

- crz) and l,= ctz (3.1)

where p is the shear modulus and l, the Lam6 constant. By examination, the elastic

constants in equation 3.1 satisfy

cijrr = p(6is6;r + 616:rJ + 1,6;1611 (3.2)

where 6;i is the Kronecka delta function. Then the vector form of the equilibrium condition,

equation 1.5, becomes

(?u+p)V(V.u) + pV2u + F = 0

IL = cu= Ntl
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where F is a point force vector. By substitution into equation 3.3 the solution to the

equilibrium equation for a continuous distribution of point forces has the fonn

uij(r - r')Fi(r')dV' (3.4)

where uii is called the Green's function for the elastic displacements and dV' is an element

of volume. The Greens function is

",(t) = 
/

.t-
u;i(r) = fr-fai:v'r 

- /I*p \ dtr I
tr . 2tr /a,.p-1j

(3.s)

Effectively the Greens function is the ith component of the displacement that results when a

unit point force {6(r') is applied in the jth direction.

The work (W) done by the mth component of a point force (F,n) at the position r to

create a displacement ur is

W = Fmum(r). (3.6)

The force F,o is assumed to be independent of u,n. The stress oii st r' is caused by the

components F- of a point force F at r. The total stress due to F is then found by a sum

over its m components. That is the repeated index in the equations denotes that a

summation is to be made. The work done to create a closed dislocation loop is, as shown

using figure 3.1,

w-- dAlb;o1i(r'- r). (3.7)

To evaluate the integral in equation 3.7 the displacement must be found because the stress is

a function of the displacement (equation 1.7). The displacement is

l^

3-2



ut(r') =unrk(r'- r)F- using = Fm in equation 3.4.r{ or,nv (3.8)

Figure 3.1: A point force F acting within an elastic continuum containing a closed
dislocation loop. The figure shows the relationship between the force, several position
vectoni and the area used in the integral in equation 3.2.

Substituting for the stress in terms of the displacement using equation 1.7 gives

dF.u,4(r'- r)
(3.e)

E*i

Equating equations 3.6 and 3.9, cancelling out the common F* term and substituting for the

elastic constants from equation 3.2 gives

\{=- 
/*,0*,,o

I
u,n(r) = - rl dAjbj*5 - dAjbry . (3.10)ul^ul d̂Ajbr++--

a

Substinrting the solution for the Green's function

3.5 into equation 3.10 gives
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u-(r)= t-Jr-+* #/ (r'+dAm-t#*)

.#(H)l(''#ffiil:-bi#ffi.") (3 1,)

Equation 3.1 I can be simplified using equations 3.72 to 3.15. Poisson's ratio can

be expressed in terms of the elastic constants by

L+P G.n)?v+21t 2(1 - v)

The solid angle (Q) subtended by the dislocation is

(3.13)

(3. l5)

(Integration of equation 3.13 gives 4n steradians as expected.) Stokes theorem is

I (u+*'-**')='"./ 'u* (3 14)

where the Binstein perrrutation operator is

tijk=el.(e;xes).

Then in a result first derived by Burgers in 1939 the displacement in equation 3.11

simplifies to

u(r)=-Da. +[h+dr+-;J .yf(u*Irt.a. (3.16)' 4n 4nj- R 8n(l - v) J" R
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This is the desired expression for the displacernent field of a dislocation of arbitrary shape in

an isotopic material.

3.2 Angular Dislocation

Yoffe [165] evaluated the line integrals in equation 3.16 for the case of an angular

dislocation that lies along the ( and z axes as shown in figure 3.2.

Figure 3.2: An angular dislocation lying along the z and ( axes. The other il(es are

required to evaluate the integrals in Burgers equation. The q axis is at right angles to the (
and x axes.

The displacements due to the x-component of the Burgers vector b*, at the point P(x, y, z)

or (x, n,6) are

ux=bx#.G#irffi de,)

u"=G#:u) (ITP-;vrl". + #{ +(l -2v)(cos( o)ln(r- €,)-h(r-z)) ) ,
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and *-=GdbHP f --I!- -o-zv)sin(a)rn(r- $) ,(3.r7)
I

where ux, vx and w* are the components of the displacement field in the (x, y, z) coordinate

system and f,l is the solid angle subtended at P by the shaded area

Similar expressions occur for the displacement field components due to the y and z

components of the Burgers vectoc

o, = #hffif #- (r - 2vXcos(c)log(r- E) - roe a- "ll),

vy = b" g. 
==bt- /ycos(a) - 

sin(a)cos(a) y \
"Y +c-G(l-\,)t<r-El r-[ -r$-:4)'

b"x /zcos(a) cos2(a) 
, +\ ,*Y=8,(i-v)tr,r€ - *E' -t

o, = ffi (rr 
- zulros(r - E) - -, ;,

.. _ brxsin( a) lsin( c) y \
"-G1r.9\ '+ (r-q;/ '

and wz=bz#.mffi Ad. (3.re)

Equations 3.17,3.18 and 3.19 can be used to find the displacement field due to an angular

dislocation with any Burgers vector.

glr:T
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3.3 Hexagonal Dislocation Loop

The displacement field of an hexagonal dislocation loop can be constnrcted from six

angular dislocations as shown in figure 3.3. The angular dislocations have the same

Burgers vector. Outside the hexagon the dislocation lines of overlapping angular

dislocation segments are in opposite directions. Therefore the dislocation line only extends

around the hexagon. Alternatively the construction of a hexagonal dislocation can be

viewed as evaluating the line integrals of equation 3.16 over six angular dislocations. The

contributions to the displacement field of those parts of the circuits traversed in opposite

directions cancel each other out. The resultant displacement field due to a hexagonal

dislocation loop is calculated by adding the individual displacement fields of the angular

dislocations together. However, the displacements due to the individual angular

dislocations expressed in the six different coordinate systems of figure 3.3 must first be

rotated into a corlmon coordinate system before the resultant displacement is calculated.

If b is set parallel to the x axis in Saldin's [62-64] model for a loop, which uses the

FS/RH rule of Bilby et al. to define b (chapter one), then a vacancy loop will be simulated.

If b is set antiparallel to the x axis an interstitial loop is formed. The x axis is antiparallel to

the loop normal defined in section 1.2. The Burgers vectors in the x,y, z system and with

respect to the coordinate system of each angular dislocation are

(bx, by, b") and O*, ho bq) respectively. (3.2o)

The Burgers vector can be rotated from one coordinate system into another by a

rotation matrix:

b*i=b* Vj,j=1to6 , (i;

n, = ( 
cos oi sin oi

' 
\ -sin 0; cos 0i

)= ^'{l:) '

),

3-7



cr=ff ,N=6 and 0l=0-l)cr. (3.2r)

v
t\
I

I

I

I

Ir

Iz-

,/ft

y +tlj, z +Ej+ hsin f , n irlj-r, and 6 +€i-l - hsin f
3-8
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Figure 3.3: The coordinate systems used to construct an hexagonal dislocation loop from

six angular dislocations such as ABC.

To calculate the displacement field about each angular dislocation the coordinates must be

similarly transformed according to

xj=x vj and (',.::'t)=drI (3.22)

Yoffe's equations for the displacement field of an angular dislocation (equations 3.17 to

3.19) use a slightly different notation, and her variables are substituted for the ones below:

919b2 1$

(3.23)



The resultant displacement due to the hexagonal dislocation loop is the sum of the

individual displacements due to the angular dislocation loops. Before adding the

displacements together they must be rotated into the coflrmon x,y,z coordinate system by

N

U=Eui and
j=l

(J)=ioi'(;j,I (3.24)

The equations of Yoffe give a discontinuity in the displacement field outside the

loop. This discontinuity can be transferred to the inside of the loop by subtracting or adding

constants to the displacement field as shown in Saldin [64] and figures 3.4 and 3.5.

Figure 3.6 shows the resultant displacement field calculated using the equations for

the displacement field about an angular dislocation and the rotation matrices above for an

edge type dislocation loop with an [011] Burgers vector. The representation of the

components of the displacement field about a dislocation by grey levels has not been seen

by this author elsewhere in the literature. This technique is invaluable for visualising the

dislocation structure and checking the program geometry. Figure 3.7 shows sections

through the components of the displacement field that lie in this plane.
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Figure 3.4: The figure shows the maximum magninrde and direction of the displacement

field that occurs near the plane of the loop. There is a discontinuity in the displacement field

due to the construction of a hexagonal dislocation loop from six angular dislocations. The

discontinuity lies outside the loop.

Figure 3.5: The discontinuity in the displacement field after it has been transferred to the

inside of the loop. It is permissible to add or subtract different constants from the

displacement field on either side of the loop. This is because the image contrast is a

function of the derivative of the displacement field and not its magnitude. Across the plane

of the loop the derivative has a singularity but for x * 0 the derivative is finite. Image

simulations integrate to near the plane of the loop then step across to the other side of the

loop before continuing the integration. In this way the singularity is avoided.

t'
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(c)

Figure 3.6: Displacement field for an edge type dislocation loop with an [011] Burgers

vector. The plane of the loop is perpendicular to the plane of the figure. The components

of the displacement field in nro directions in the plane of the paper are shown as grey scale

images in (a) and (b), and as a vector is constructed from these in (c). The images show the

magnitude of the components of the displacement field in a region of size 100 A by 200 A

near the loop. Pan (a) shows the magnimde of the component parallel to the OX2 direction,

this direction being indicated by the vector alongside the picture. The white grey level

represents a displacement parallel to the OX2 direction. A black grey level represents a

displacement antiparallel to the OX2 direction. The discontinuity across the plane of the

loop is clearly visible. This discontinuity has been transfened into the centre of the loop by

the process outlined in figures 3.5 and 3.6. Pan (b) shows the magninrde of the component

of the displacement vector parallel to the OX3 direction. This component is smaller than that

in (a) indicating that the displacement vector is predominantly parallel to the loop normal,

and is responsible for the residual contrast of a dislocation loop, i.e., the contf,ast when g.b

=S.
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3.4 Bubble Displacement Field

In this section several ways of calculating the displacement field about a bubble are

outlined. The displacement field for a centre of dilatation or spherical inclusion, ignoring

the effects of the foil surface is (Hirth and Lothe [97] or Timoshenko and Goodier t 165l)

(3.2s)

where 6 is a measure of the shength of dilatation or overpressure in the bubble:

d=(P- (3.26)

Foravoid6<0andforabubble6>0,thatisthesurroundingmaterialispushedoutby

the pressure in the bubble. p is the shear modulus of rigidity of the material, T the surface

tension, "a" the bubble radius and P is the bubble pressure fint introduced in chapter one.

Mindlin and Cheng [67] quoted a solution for the displacement field around a

centre of dilatation in a semi-infinite solid using the techniques in Love [68] for finding

displacements around nuclei of stain. Their solution is

u(r) = 2(r - v)fv'a - V# , (3.27)

where the unit vector k defines the z axis which is antiparallel to the foil normal. The other

variables introduced in equation 3.27 are:

u(r)=$,

4l a3

"ti'

Q(r)= 6llog(nr +z-d)+(1 -4 v)log(R2+z-d)+ ?l ,L Rzl

where Rl=12 +y2+(z-d)2 , R3= r3+yz+(z+d)2, (3.28)

and d is the distance from the centre of the bubble to the foil surface. (Ingram [169]

misquotes the z component. Equation 3.27 is the original solution of Mindlin and Cheng
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and not that quoted by Ingram.) The point on the foil surface directly above the centre of

the bubble is taken as the origin (z = 0).

The analytical expression of equation 3.27 for the displacement field has zero strain

at one of the surfaces of the foil and treats the rest of the foil as a semi-infinite medium. To

obtain an approximate displacement field in a foil it is necessary to include the effects due to

both surfaces of the foil. This is done by taking each surface in turn and then taking the

mean of the displacement fields for the two cases. This is more practical than trying to

merge the two solutions for the displacement field in any other way that would, necessarily,

introduce a stacking fault or other discontinuity in the displacement field.

The component of the displacement field in the z direction does not need to be

calculated if the beam direction is parallel to the foil normal. In this situation any diffracting

vector will be pelpendicular to the z direction and the z-component of the displacement field

will not contribute to the differential equations describing the electron diffraction.

The program described in chapter six, which is used for simulating combinations of

bubbles and loops, can treat the case when the foil normal is tilted acutely to the direction of

the electron beam. To do this a coordinate system was created with one axis parallel to the

foil normal. The other two il(es are the projections of the edges of the picture onto a plane

parallel to the foil surfaces. The picture coordinates and the diffracting vector are rotated

into this coordinate system. The new coordinates can be used to calculate the x and y

components of the displacement field in the s,rme way as when the foil normal was parallel

to the beam direction. The diffracting vectors may have non-zero z components in the

coordinate system based on the foil normal and the z component of the displacement must

then be calculated.

Ingrarn and Mindlin and Cheng do not explicitly quote the result for the displacement

field. Instead they leave it to the reader to evaluate the partial derivatives. More explicitly

the displacement components arc:

ur-- E Q u" - --4-- 
dy}zExdz

and u, =2(r-",{#.#) +(r- rr#
3-16
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The partial derivatives required in equation 3.29 are:

rd2Q-

1 a2e _ -l aRr laRr * r I* I E2Rr 
-

P a-ar - (R,.rd) t a- lar - ','RElaxaz - a dRz /dRz .----^-=-'-=-;
(Rz+z+d)z dx \ dz

+ a dtRt - Z dRz * 4z ERz ERz

(Rz + z + d) dxdz Rl Ex Ra Ex dz

')

2z E2Rz

P 022
-rI

(Rr+z-d )2\

dRr
--+oz

r)*- La'\- a .lqBa*-/ (Rr+z-d ) dzz (Rz+z+d)2 \ dz

_ j_ERz +E[dF.rl'_ z, E2Rz

RA 0z nl\Ezl R? azz

* 4r lq&l' - 2, d2Rt

nl I dx / R2, dx2

Rl dxdz 1

,'l'* u EtRz
^/ ' (Rz+z+d) dzz

anrr rEtQ - -l l$rf- I d2R, _ a fqBaf- aq'\r p a-? -(R,.,.6yt-a./-{n*- a-, 
- 
(R,1,a6y\-il -1n2+z+o;

Ex2

E2R,

(3.30)

The partial derivatives of Q in terms of y are obtained by replacing x with y in the

derivatives of Q in terms of x. Singularities occur in several tenns at x = y =z= 0. This is

not a problem when calculating the x and y displacements because azero occurs in the

partial derivatives by which the tenns with singularities are multiplied. However, the

singularities in the z component are not "cancelled" out like this. Computation of this z

component shows that these singularities give an unrealistically large displacement over a

large enough region of the foil to make image simulation impractical and inaccurate. Instead

when the foil normal was tilted away from the beam direction the simple inverse square

form for the displacement field in equation 3.25 was used to calculate the z component of

the displacement. However, this simpler form for the z component of the displacement

ignores the effects of the foil surface. The x and y components were always calculated

using Mindlin and Cheng's solution for the displacements.

Mindlin and Cheng use the method of images when considering the displacement

field of a bubble. Two image particles are used and, to account for the two surfaces of the

3-r7



foil, two coordinate systems centred at the top and bottom surfaces are required. (The

equations for the x and y components of the displacement field are odd functions of x and y

so it is only necessary to change the z coordinate between calculating the effects of either

image particle.)

Figure 3.8 shows the sections through the displacement field due to an isolated

bubble and due to two bubbles separated by 50 A. The bubbles in these profiles have

overpressures of l0 GPa. The displacement field has a smaller maximum and falls offmore

quickly than the sections through the displacement field of an edge dislocation loop in figure

3.7. The simulations in chapter six show that loops and bubbles have similar contrast; this

occurs because the displacement fields of the defects have a similar strength.

Bubbles are expected to have contrast characteristics similar to spherical inclusions

outside the bubble, but similar to voids inside the bubble. Internally, voids and bubbles

have no displacement field whereas precipitates have a displacement field for which the

magnitude is proportional to the distance from the centre. The boiling point of helium is

approximately 4 K so the helium is in gaseous form, unless the bubbles have a very high

pressure, so there cannot be a non-zero displacement field inside a bubble. Crystalline

precipitates can also have a different orientation from that of the host matrix. The coherency

of the precipitate can cause other diffraction behaviour that is different from that due to a

bubble.

Isotropic elasticity theory is used in this thesis to calculate the displacement field

around a bubble, even though copper is anisotropic. That is, only Poisson's ratio (v) and

the shear modulus (tt) are used in Mindlin and Cheng's theory to construct the displacement

field. This is equivalent to including only two of the three independent elastic constants for

copper in the calculations. Ingram [69] examined the scattering from aluminium, a

material for which the assumption of isotropy is reasonable. The extension of the

simulations to anisotropic copper using isotropic elasticity theory is of unknown validity.

However, the experience that others have gained, in comparing simulations of loops done

with anisotropic elasticity theory to those done with isotropic elasticity theory, is that the

effects of ignoring the anisotropy are not too significant. This is discussed further in

chapter 6.
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The trvo-dimensional simulations presented in chapters five and six are much more

representative of the diffraction from bubbles than Ingram's work. Ingram [169] produced

intensity profiles parallel to the diffracting vector only, with the foil normal parallel to the

beam direction. The only restriction on the foil normal in the present work is that the angle

must be acute.

3.5 Straight Dislocation - Anisotropic Elasticity Solution

The form of the displacement field used by Head et al. [82] is outlined in this

section. Head et al. identify the Burgers vectors of long straight dislocations that are

inclined to the foil by matching the entire contrast of an image. This approach can be used

instead of just using the g.b = 0 and residual contrast techniques of Hirsch et al. [67] to

identify b.

For a line dislocation parallel to the x3 direction in a solid of infinite extent, the

displacement field surrounding the dislocation will be independent of x3 (using the x1, x2o

x3 coordinate system for which the elastic constants are defined in chapter 1). Therefore a

solution to the equilibrium equation 1.5 is sought, of the form

ur=Arf(xr+px2) (3.3 1)

where p is a constant, Ap is a vector and f is an arbitrary function (to be determined below).

After substituting the trial solution for us into equation 1.5 and using equation 1.7, we

obtain

(cirtr + cirrzP * cizpP + cizrzp2)At = 0. (3.32)

To have a non-trivial solution, we require that the determinant of equation3.3Z is zero, i.e.,

det(c1111 * ci1<ZP * cizrrP + ci2y2p2) = Q.
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This sextic equation has six roots for p. No real solutions exist and so the solutions occur

in complex conjugate pairs. The complex conjugate of p is denoted by p' and the subscript

o is used to distinguish the different pairs of solutions for p. The solution shows f to be a

log tunction [82]

where u takes the value 1,2 or 3. The cr subscript has been added to each ,A.1 value to

distinguish the different solutions for A,1 obtained when the different values for po are

substituted into equation3.32. Ds is a scaling constant.

The simulation of images, using the Howie-Whelan differential equations in the pu'

form of equattonZ.Z0, requires the evaluation of the derivative

"* = #? AroDc log (x1 + paxz) #4 AtoDo log (x1 + paxz) G.34)

* E(gru*) 
= tdxz i

Pcxl + Qcrx2 (3.3s)
(x1 +Rsx2)2+(Soxz)2

Ro is the real part of p61 and So is the imaginary part of pa. Pa and Qs are functions of po,

Ara, g , b and the elastic constants. The elastic constants and the other parameters are

transformed into Po, Qo, Ro and Ss so that equation 3.35 may be used in the numerical

integrations required to find the image contrast. The ultimate speed of the program is set by

the subroutine to evaluate the displacement field as it will be called many times during the

computation of an image. Therefore equation 3.35 is expressed in as simplified form as

possible.

In general the dislocation line will not lie along an axis of the coordinate system used

to define the elastic constants. In this situation various transformations of the variables

must be made to use equation 3.35. The details involved in perfonning these are explained

in Head et al. [82].

n' - d(g.R)
t'e - dz
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3.6 Summary

To simulate the image of a defect, either the displacement field or the derivative of

the displacement field about the defect is required. The following defects are considered in

this chapter: an angular dislocation, an hexagonal dislocation loop, an ovelpressured

bubble and a long straight dislocation.

In section 3.2 the analytical solution for the displacement field of an angular

dislocation is determined by solving Burgers equation, an equation which is derived in

section 3.1 and which gives the displacement field in terms of line integrals.

An hexagonal dislocation loop can be constructed from six angular dislocations

positioned so that the dislocation line directions of touching angular dislocations are

antiparallel outside the loop. Thus, the dislocation line only extends around the hexagon

and the displacement field is the sum of the individual displacements of the constituent

angular dislocations. An hexagonal loop will be used in later chapters to represent the

dislocation loop punched out by an overpressured gas bubble.

Later work also requires that the displacement field around an overpressured bubble

be known. A bubble at equilibrium will not distort the material surrounding it. (An

equilibrium bubble contains gas at a pressure that just balances the surface tension of the

metal). When a bubble is overpressured the displacement field in the surrounding matrix is

proportional to the degree of overpressure (i.e., the difference between the gas pressure

inside the bubble and the gas pressure required for equilibrium). In section 3.4 the

displacement field is determined to be roughly inversely proportional to the squ,ue of the

distance from the centre of the bubble. The distortion of the displacement field due to the

foil surfaces can be modelled by including image particles beyond the foil surfaces. These

effects due to the foil surface have not been included when considering the fields about the

other types of defects discussed in this chapter.
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CHAPTER 4: EXPBRIMENTAL TECHNIQUES
AND EQUIPMBNT

4.1 Description of the TEM

The transmission electron microscope (TEM) at Victoria Universiry is a Philips

420ST that has been steadily upgraded from the standard model. An image intensifier has

been attached to the column below the plate camera to aid high resolution work and to make

it easier to focus on superlattices of bubbles. The image intensifier can provide a further

twenty fold magnification and improve the contrast of the final image displayed on a TV

monitor.

A wide-angle camera is positioned above the viewing screen. This camera collects

its image over a wider angle than the image intensifier so it is especially useful in dark field

and weak beam work in which low intensities occur. In these situations it is difficult to

focus accurately using the faint image on the viewing screen or the image produced by the

image intensifier. Images are fainter with the tungsten filaments used than with LaBu

filaments. The camera is normally out of the path of the electrons travelling down the

column but it can be brought in by a mechanism that is driven by compressed air. The

image magnification is greater than that for the normal viewing screen by a factor of eight.

On-line images from both cameras can be fed via co-axial cable into either a computer

system (described in section 4.4) or a video tape recorder.

When tilting a specimen with the super twin lenses in the TEM it was usually

possible to reach one major pole and several minor ones only. To obtain accurate foil

normals, glide cylinder axes and dislocation line directions etc. analysis covering a large

range of beam directions is essential. Therefore the super twin lenses were replaced by a set

of twin pole-pieces. This gave an increase in the available tilt from approximately +l2o to

t50o. This change enabled several major poles to be reached that are widely separated in the

standard stereographic triangle. The super twin lens has a C, of 1.2 mm that gave a

nominal point to point resolution of 3 A, (using as the resolution criterion the position of the

first zero in the contrast transfer function at Scherzer focus). The twin pole pieces have a C.
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of 1.4 mm, which gives a point to point resolution of 3.4 A. The loss in resolution is not

important because high-resolution techniques were not really appropriate to the structures

studied in this thesis (section 4.3).

A low dose unit is also available. It can move the incident electron beam away from

the region being examined to another area or away from the specimen altogether and is

useful in keeping the inadiation dose to a minimum. This is useful when a large series of

photos of a particular region must be taken at different beam directions with various

diffracting vectors . Most of the tilting and focussing can be done on a region near the area

containing the structure of interest if the foil is flat enough to allow both regions to be

simultaneously at strong two-beam conditions.

4.2 Specimen Preparation

4.2. 1 Preparation of the Target

Targets for ion-implantation are prepared from foil of 99.99Vo purity by cutting to a

rectangular shape 35 mm by 10 mm. To remove surface roughness the targets are

mechanically polished using diamond paste. As the polishing progresses, the size of the

diamond paste used is decreased down through the grades (6 pm, 3 pm and finally I pm) to

remove surface roughness on an increasingly fine scale.

A smooth crystalline target with little surface contamination is required if good

bubble superlattices are to be formed during the inadiation. Polycrystalline specimens are

grown using a furnace shown in figure 4.1 (T. Corfiatis t1701). Annealing is done by

holding the foils at a temperature of approximately 900 oC for a few hours. The specimens

are then cooled overnight with a steady temperature gradient back to room temperature.

This causes grains to grow to a size 0.1 to I mm across. Bath electropolishing of the foils

in orthophosphoric acid is then used to produce a clean, highly polished surface finish.
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Figure 4.1: The furnace and vacuum appararus used for annealing metal foils. The foils are

laid on a strip that is chemically inert and has a high melting point. The metal support is

then inserted into a quartz tube that is clamped to the vacuum equipment and protrudes into

the furnace. The tube is first roughed out with a rotary vacuum pump. A diffirsion pump is

then used to improve the vacuum further.

4.2.2 Desciption of the Accelerator and the Target lrradiation

Once the foils have been mechanically polished, annealed and bath electropolished

they are inserted into the accelerator to be implanted with ions. The accelerator is a PN-400

Van de Graaff accelemtor modified so it can provide I MeV ions, but which is normally

used to provide approximately 160 keV helium or deuterium ions. The current hitting the

target is not stable when the accelerator is run below about 100 kV. Photographs of the

accelerator are shown in Figure 4.2. The accelerator and beam transport system were

designed for light ion irradiations, Heavy ion inadiations cannot be performed because of

limitations in the accelerator and beam transpofl components. Light ion irradiations are

done by ionising helium, hydrogen or deuterium gas in the ion source.

The charge sprayed onto a moving belt at the low voltage end of the accelerator

accumulates at the high voltage terminal. To avoid dielectric breakdown occuring the high

voltage terminal of the tank is insulated from its surroundings. To achieve this the tank

contains a mixture of insulating gases at a pressure of 100 psi consisting of sulphur
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(d)

Figure 4'2: (a) Accelerator control console. The currents ro the magnets on the beam line
are controlled from this console. The oscilloscopes show the horizontal and verrical beam
profiles before and after the energy anaiysing magner. The ammeters display the currents:
along the belt, down the beam line. drawn off by the corona, and hitting the sides of the slit
boxes and the target. (b) The tank room. The motor driven corona assembly emerges frorn
the top right of the pressure vessel. (c) analysing magnet and beam line, (d) quadrupole
focussing magnets, steering magnets and target chamber.
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hexaflouride. nitrogen and carbon dioxide. The exact proportions of the gas mixture used

depends on tvhether or not high voltage work is to be done. The energy of the accelerated

ions is primarily set by the amount of belt charge transferred to the high voltage terminal.

The energy of the accelerated ions is partially determined by the adjustable position of the

corona points that remove charge from the high voltage terminal of the accelerator. For

example rnoving the corona points in towards the high voltage terminal of the tank decreases

the amount of charge allowed to build up there. The potential will then drop and the ions

will be accelerated to a lower final energy. The terminal voltage, or equivalently the energy

of the ions leaving the tank, can be estimated by multiplying the effective resistance of the

column resistors by the column current.

It is desirable for the operator to know how much current is going down the beam

line. Besides the column current, the corona cunent and the belt-charge current are also

monitored. The current going down the beam line is then equal to the belt-charge current

minus the corona current minus the column current.

Vacuum valves can be used to isolate the accelerator from the rest of the system.

This causes the initial gas pressure in the ion source to be raised and the ion source to strike,

i.e., to begin to ionise the gas. A vacuum is maintained and monitored in the system with a

set of ion pumps and a rotary backed diffusion pump. Three pneumatically driven vacuum

valves allow the tank, the beam line and the target chamber to be isolated from one another.

There are several controls that adjust the current coming out of the source. The

amount of gas being ionised depends on how much gas is allowed to build up before being

pumped away or accelerated down the beam line. The " gas " control adjusts how much gas

is bled from the small gas bottles inside the accelerator into the radio frequency ion source.

The pressure inside the gas bottles will also affect the current. The "beanr " control adjusts

a small initial potential applied to direct the ions down the beam. The "focus " control

adjusts the focus of an electrostatic lens in the tank.

Isolating the target chamber by using the appropriate vacuum valves enables

specimens to be inserted and removed without losing the vacuum in the rest of the system.

Once the target is inserted. and the target chamber evacuated, the target can be heated to

outgas it betore the irradiation is done, The target heating is done by passing a curent
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through a heating coil in thermal contact with the specimen. The temperarure is monitored

by a thermocouple attached to the target block.

The ions that are accelerated down the beam line are passed through a series of

quadrupole magnets (for beam focussing), steering magnets and an analysing magner (for

selecting the correct ion species) before striking the metal foil target. The currents in these

electromagnets determine the strengths of the respective magnetic fields. As the ions travel

down the beam line they also pass through a sequence of beam profilers, slit boxes, vacuum

valves and Helmholtz coils (for scanning the beam).

The energy and type (i.e., the charge to mass ratio) of the ions that strike the target is

selected by the analysing magnet that steers the beam through 90o. The strength of the

magnetic field in the analysing magnet is measured using a Hall probe. plots of ion-energy

vs. magnetic field can be used to calib'rate the magnetic field in the analysing magnet against

energy.

The ion beam intensity at the target needs to be sufficiently high to complete the ion

irradiations within a reasonable time (i.e., two to five hours). This requires an efficient

beam transpoft system between the ion source and the target (which is some five meres

away). Magnetic lenses are disuibuted along the beam line. Even with these magnets to do

the steering and focussing further mechanical alignment of the magnets and the accelerator is

sometimes required to achieve the maximum beam intensity. The focussing is done before

and after the analysing magnet by rwo pairs of magneric quadrupole lenses (Callaghan

t1711). One magnet in each pair squeezes the beam vertically and the other horizontally. It
is also necessary to steer the ions down the beam line between these magnets and another

two sets of dipole magnets, one before and one after the analysing magnet are for this

purpose. The north poles of each magnet in a pair are rorated by 90" relative to each other

so that one magnet steers the beam vertically, the other horizontally. The focussing and

steering is done by adjusting the current through these lenses.

The position and state of focus of the ion beam is monitored by means of two NEC

beam profiling units, one located before the analysing magnet and one after. These units

sample the beam profile by continually passing a wire through the beam. The axis of

rotation of the wire is perpendicular to the direction the ions are moving in and is at 45o to

the vertical and horizontal directions. The wire has a 45o bend in it, with the end of the wire
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the verlical and horizontal directions. The wire has a 45o bend in it, with the end of the wire

only passing through the beam. This means that once every rotation the wire sweeps out

the beam profile vertically and then horizontally. The ions strike the wire and cause

secondary electrons to be emitted. The secondary electrons are collected by the electronics

of the beam profiling unit. The variation of voltage as a function of time, displayed on an

oscilloscope, provides an indicator of the beam profile (ion beam current as a function of

position).

Slits (acting as collimators) are positioned in the beam line immediately after the

analysing magnet (these slits are called the image slits) and before the target chamber (the

target slits). The current hitting the slits is monitored to allow adjustment of the magner

currents, the tank voltage, and the beam position. The image slits provide an error signal

(difference between the current hitting the left and right slits) which is related to the energy

of the ions passing through the analysing magnet. This error signal is fed back to the

accelerator to stabilise the accelerating voltage [54 nd 172].

The accumulated ion dose to which the target is subjected will determine the

structure obtained. The current hitting the target is fed into an integrator unit to monitor the

total number of ions striking the target during an irradiation. How large a region of the

specimen is irradiated is determined by the separation of the slits and by a pair of Helmholtz

coils. Triangular wave trains can be applied to the Helmholtz coils to scan the beam

vertically and horizontally over the target. The scan system provides an approximately

uniform dose across the specimen surface. The beam is scanned so that the target slit edges

intercept some of the current which would otherwise hit the target. There are four edges to

the target slits, two that are horizontal and two that are vertical. If some curent is hitting all

four edges of the target slits the area of the specimen that is being inadiated is known. [n

practice the uncertainties associated with the beam profile, the scanning process and the

method used to measure the current lead to uncertainties in determining the ion dose

received by the target. Also the area of the target that has been irradiated is uncertain. The

different types of structures that can be obtained are discussed in chapter seven.
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1.1.3 Quettc'ltirt,q

1.2.i. I hilroductiott

Quenching is a technique in which specimens are cooled very quickly from an

atmosphere of gas at elevated temperatures to room temperature by immersion in a coolant

such as distilled water. The advantage of specimens formed from quenching is that the

density of bubbles and dislocations is lower than that characteristic of ion-implanted metals.

Quenched specimens are much easier to examine in the TEM to gain experience in applying

the image matching techniques to dislocation loops before extending the work to ion-

implanted metals. Quenching produces a concentration of gas atoms in the metal at room

temperature that is much higher than the equilibrium concentration. This occurs because the

equilibrium concentration of gas atoms at elevated temperatures is much higher than the

equilibrium concentration at room temperature. During the rapid cooling of the specimen

the gas atoms try to escape from the metal but their mobility is significantly reduced before

they can reach the surface and escape from the foil. Instead the atoms are trapped in the

metal and it is energetically favourable for the trapped atoflrs to clump together to form gas

bubbles. The gas bubbles as they grow displace the surrounding metal atoms into

interstitial dislocation loops. Vacancy dislocation loops can form by the collapse of discs or

platelets of vacancies.

The heating of the metal in particular causes the amount of hydrogen in the matrix to

be increased dramatically over the normal equilibrium concenradons at room temperature

and pressure. The concenrations of hydrogen in copper obey the following equation

(4.1)

where cs is the equilibrium concentration of hydrogen at a temperature T, E, is the free

enthaply of solution. k is Boltzmann's constant, p the gas pressure and c6 is the equilibrium

concentration of hydrogen at the melting point of copper at one atmosphere of pressure (p0).

H=(#),'..'(#)'
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4.2.3.2 The Design of tlrc Quenching Cell

In this section the design and operation of the quenching cell is discussed. The

initial attempts to quench hydrogen gas into copper, involved admitting gas into a cell tumed

from a solid piece of numonic steel, then heating the cell to about 900-950 oC. The cooling

was done by raising a bucket of water that pushed the furnace up leaving the stationary cell

to be immersed in the water. This achieved only limited success probably because the

cooling rate of the copper specimens was too slow. The rate was low because the entire cell

had to be cooled down.

A large amount of cuprous oxide was formed on some copper specimens during the

heating process so a rotary vacuum pump was added to pump the air out of the cell before

the hydrogen gas was admitted. This solved the oxidation problem but not the problem

with the slow rate of cooling.

Another problem was that the extraction of the thin specimens from the cell after

quenching often resulted in the specimens being distorted, Attempts to use thicker

specimens to solve this problem failed because the specimens fractured as they cooled non-

uniformly. When trying to electropolish fractured specimens the acid flows down through

the cracks, widening them until a hole through the specimen is produced. The hole, which

causes the premature shut-off of the electropolishing unit (section 4.2.4), has edges which

are too thick to allow satisfactory examination using TEM.

The limited success of this initial approach, and variations on it, made it necessary to

redesign the system. Figures 4.3 to 4.5 show the new design based on a design of W.

Wampler [73-175]. Most steels are not resistant to hydrogen embrittlement. In fact the

numonic cell used in the initial approach failed several times. Holes could form through the

side of the cell; the top of the cell could shear off at the thread where a cap is screwed down

to seal the cell. Fused quartz is resistant to hydrogen embrittlement and so the high pressure

fittings and vacuum fittings used with the numonic cell were reconnected via stainless steel

components to a quartz tube of 10 mm inside diameter and 16 mm outside diameter. The

stainless steel components are outside the furnace and so are not embrittled to the same

extent as the numonic cell. The stainless steel fittings were araldited to the quartz.
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A quartz tube with wall thickness of 3 mm was used so that the system can hold pressures

of up to about l6 atmospheres.

Figure 4.3: The quenching appararus. The wood section supports the pressure gauge. The

quartz tube is suspended from this gauge and supported underneath by the container of

distilled water. The specimen holder is resting against the bottom of the assembly on a

circle of filter paper. On the left hand side of the photo is the vacuum apparatus, the variac

for the furnace and the temperature controller. During operation the central high pressure

valve is connected to a gas cylinder via steel rubing that can tolerate high pressures. A steel

safety cage is also screwed onto the wood box. The apparatus is described in detail in the

text.

The system can be pressurised with gases other than hydrogen such as nitrogen and

a.rgon. Because of the inflammability of hvdrogen and its proximit-v to a furnace the quartz

tube and furnace section of the system rvas placed in a steel mesh cage. If an explosion
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occurred the case is designed to detorm und so absorb some of the enerty of the explosion.

The cage rvould also prevent shards of glass etc. tiom tlying across the room.

The specimens of 3 mm diameter ue loaded into a nichrome basket at the bottom of

the specimen holder that is uttached r,ia more nichrome rvire to a magnet. The specimens are

separated rvith pieces of nichrome rvire to stop thenr fiom .sticking to,sether when heated.

The wire spacers also allow both sides of the specimens to be exposed to the gas.

The specimens are loaded into the system by turning on the electromagnet and

sliding the specimen holder assembly up into the magnetic field rvith a rod. The rod is

padded out with tissue to fit snugly the inside of the quartz tube. A hole was drilled througlt

the top of the table on which the quenching apparatus sat to allow the long rod to be inserted

into the tube. When the magnet on top of the specimen assembly is held by the magnetic

field of the electromagnet the steel rod is withdrarvn. The length of the specimen holder is

such that when its magnet is held inside the electromagnet the bonom of the specimen holder

will lie in the centre of the fumace.

The electromagnet has approximately 800 turns of copper tvire wound onto a

perspex former. The magnetic field inside this coil rvas enhanced by placing it in snu-e

frtting steel cylinder. The iron in the steel has a higher magnetic permeabiliry than air. This

causes the density of field lines to increase through the same re-eion near the magnet

compared to the field strength when the steel sheath was not there by deceasing the ma-enetic

reluctance of the flux return path.

The specimens must remain held even if the quartz tube is jostled rvhen valves are

turned and specimens loaded. During a run the position of the specimen holder can be

viewed in the qLlartz tube to provide a check that a premature quench has not occurred.

(This would not be possible if a steel cylinder rvas to replace the quartz tube.) To hold the

specimen holder assembly securely in place, a current of approximately 1.8 to 2.0 A (DC) is

passed through the coils of the electromagnet. This causes the ma-enet assembly to heat up.

Also as it is heated the resistance of the copper rvire increases. For this reason the voltage

applied to the electromagnet usually had to be slightly increased during a run to maintain the

current needed to hold the specimens in place. The perspex tbrmer partially melted when

the magnet was first used. even thou-eh the nearby furnace was turned otf. This problem
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wils solved bv cooling the coil and ma-enet by passing water through a coil of copper tubing

soldered to the surroundin_e steel sheath. Although the electromagnet still heats up to about

80 'C during u 30 minute run this is not enough to melt the perspex.

The furnace is a coil of wire wrapped around a former that can be slid over the

quartz tube . lnsulating glass fibre is tied around the furnace to decrease the thermal load on

the turnace. The tying is done with glass fibre "string" that has a wire core. This "string"

was also used to tie a thermocouple in position inside the furnace but outside the quartz

tube. The temperature is monitored by measuring the Emf across the chromel-alumel

thermocouple with a digital multimeter. A table in the Handbook of Chemistry and Physics

was used to convert this voltage into a temperature. A temperature controller can be used to

control the power supplied to the furnace windings.

After the specimen holder has been inserted then the stainless steel cylinder holding

the water (into which the specimens are to be quenched) is raised using a retort stand. The

hei,eht of the retort stand is adjusted so that the cylinder meets the stainless steel joint at the

bottom of the quartz tube. This joint is sealed with a co-seal and kon-flat clamp.

When the system is closed with the co-seal, the quartz tube can become stressed and

may break, To avoid breakages the quartz tube had to be clamped at the top and bottom

steel joints to which it is araldited. The breakages were especially a problem in an earlier

design in which considerable torque had to be exerted on a cajon valve to tighten it. The

initial attempts to seal the system involved a copper gasket and cajon valve. However, the

gas pressure could not be held reliably with this arrangement. With the co-seal design the

wing nut on the clamp is tightened by hand so the quartz rube is not unduly stressed. If a

crack occurs in the part of the quartz tube that is araldited to the stainless steel, it is not

visible. The presence of a crack is suspected if a sufficiently low pressure cannot be

attained. The quartz tube can be replaced by heating the araldite with a Bunsen burner.

After the specimen holder has been inserted and the system sealed by the co-seal the

air is evacuated from the quartz tube via a rotary pump and foreline trap. The distilled water

remains in the container at the bottom of the system even when pumped on by the rotary

pump although water vapour does limit the lowest pressure that can be obtained. A rypical

vacuum is one of about 150t20 pm of Hg. The vacuum is measured with a pirani gauge.
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The turnace is srvitched on when a sufficiently low pressure is reached and the specimens

are lre'ated to t000 oC in about 25 to 30 minutes rvith a variac set to 60 volts. The voltase is

reduced to about 55 volts to maintain this temperature.

A system of valves allorvs the vacuum system components that cannot withstand

high presslrres to be isolated. Other valves bring in a pressure gauge rvhich. if not

measuring ttre pressure the specimens actually experience, at least indicates whether there is

a leak of gas. The system is then pressurised.

The suspended specimens are held under pressure inside the furnace at 1000 "C for

approximately 5 minutes. Small pressure leaks can be tolerated if gas is admitted

occasionally to maintain the system pressure. If the windows are open during the 5 minute

holding time at l0O0 oC when hydrogen is being used and no sparks occur in the laboratory,

the gas diffuses quickly enough to avoid explosions (although an occasional popping sound

may be heard). The specimens are dropped by switching off the electromagnet culrent: the)'

slide through the quartz tube into the distilled water.

The pressure is released from the system by undoin-e some of the high pressure

tubing (steel tubing that has a narrow bore and thick walls) connected to the vacuum

system. This leaves a high pressure valve with one side at atmospheric pressure and the

other side at up to approximately 16 atmospheres. A nearby window is opened to prevent

the gas that is to be released building up in the room. By opening the valve the s1'stem

pressure is released and the gas escapes into the laboratory.

The viton co-seal allows the system to be broken betrveen the top of the stainless

steel container of distilled water and the bottom fitting connected to the quartz tube. This

allorvs the extraction of the specimens from the distilled water.

Initially the specimens were suspended in a nichrome basket. They can remain in

the nichrome basket when it hits the water and can be readily lifted out. However. the;" may

come to rest on the bottom of the steel cylinder. They must then be flushed out rvith the

distilled water. Light specimens are hardest to flush out because they may tloat on the

water. Flushing out the specimens is a time consuming process. To avoid having to do this

the nichrome basket was replaced with a basket constructed from stainless steel mesh of
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appro.ximatel"v" 2

specintcns being

rnm spacing. A lid is latched to the top of the basket to prevent the

knocked out rvhen the basket hits the water.

4.2.3 .3 Quettcling Results

It is possible that hydrogen bubbles in the specimen could result from dissociation of

the water caused by a hot specimen coming into contact with it. However, attempts to

obtain bubbles that have punched out loops by rapid quenches into water from air failed.

The quench from air also gave very badly oxidised specimens that were difficult to

electropolish. Similarly quenches from vacuum with no gas admitted into the system failed.

This seems to cast doubt on the idea that the dissociation of the water is a sienificant factor

in obtaining bubbles.

To find several rows of loops emanating from the same bubble several axes of glide

cylinders need to lie in the foil. tf the axes intersect the foil surface the dislocation loops

punched out by the bubble can easily escape. If the distance along a glide cylinder that

intersects the foil surface, from the bubble to the foil surface, is large then the Ioops come to

rest inside the foil. Experimentally, bubbles punching out a row of loops in just one

direction are found in thinner re-eions of the metal. Bubbles punching out several rows of

bubbles however are more commonly found in thicker regions. In these regions. because

longer exposure times (about l0 - 30 seconds) are needed photography is more demanding.

It is not unusual in taking a series of photos for a range of beam directions with these long

exposure times to find several of the photos are blurred. The blurring makes image

matchin-e impossible. The use of foils with I I I I ] surface normals would be required to

obtain several rows that have [ 10] directions that are perpendicular to I i 1] in thin regions.

In practice it is necessary to produce many polycrystalline specimens with different foil

normals to obtain a grain with a I I I l] tbil normal. An alternative that was not investigated

might have been to use the image processing system to grab images directly off the cameras

or to use a LaB6 filament to obtain shorter exposure times.

Table 4.1 summarises the results of quenching six different metals from an

atmosphere of argon or hydrogen. Four or more specimens of each metal were quenched in
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each gas at a pressure f}om 60 to 135 psi. These metals were selected because it rvas

possible to obtain reasonably large thin regions using the electropolishing system described

in section -1.1.4. I[ u,as hoped to study the variation in loop spacing, the size and density of

the bubbles and loops as the shear modulus varied betrveen the metals. This proved to be

impractical and good results were obtained in quenched copper only and so more than 100

hed.

Table 4.1 Quenching results from atmospheres of argon and hydrogen.

4-2.4 Punching, Jer Electropolishhtg and lon Beam Thimino

Once the foils have been irradiated and removed from the accelerator they are

punched out into 3 mm discs. Specimens are also punched into 3 mm discs before being

inserted into the quenching system . During this project a punch that had been constructed

tILlgItS wcle quen(

Metal AI H,'

AI some dislocation loops lots of dislocation loops but

no rows

Cu crossed rows of loops some rows, lots of isolated

loops, material fractures and

the usual electropolishing

conditions fail

Mo looos but no rows looos but no rows

Ni loops but no rows looos but no rows

Ti very dirty oxidised

specimens, hard to see any

dislocations against this

backsround

can no longer put a hole in

the material, a white oxide

forms on one side of the

specimen durine polishins

V blackened and badly

oxidised, 3 mm discs

disintegrate during the

ouench

blackened and badly

oxidised, 3 mm discs

disintegrate during the

ouench
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in the mechanical workshop was replaced with a commercial Gatan punch that gave flatter

specirnens. Atier punching, the discs must be thinned to electron transparency by jet

electropolishing or ion beam thinning before insertion into the TEM.

Trvo systems were used to perforate specimens using jet electropolishing. The old

system sprayed the acid onto a specimen through a glass spout using compressed air (A.L.

Malcolm t45l). In this old system the specimen was held at the desired voltage by one end

of an electrode that is attached to a pair of tweezers holding the specimen in the acid jet, the

other end of the electrode is connected to a power supply. A problem with the old system

was the difficulty of judging when the perforation had occuned. A strong light is shone

from behind the specimen. Electropolishing was stopped when a hole was detected. The

need to realign the light and binocular each time the specimen is replaced slowed down the

thinning process.

When looking at irradiated surfaces where the damage structure occurs in a thin layer

below the inadiated surface it is necessary to thin the specimen from the back surface only.

A problem with the old system was the need to use vinament and the use of compressed air.

The vinament was painted onto the specimen edges so that the acid did not erode both sides

of the specimen. The vinament was removed by immersing the specimen in acetone.

Acetone can degrade the TEM images obscuring the dislocations and bubbles. If the

acetone did not remove all the vinament it is necessary to peel off the protective vinament

layer. The peeling can bend the specimen. The compressed air valve had a sensitive

adjustment. By undoing it too much, or turning it the wrong way when trying to shut the

jet of acid down, it could result in a hne spray of acid on the users face or lab coat.

Specimen thinning to perforation was done mainly using a new Tenupol system that

thins the discs electrochemically (figure 4.6). The new unit has a LED light source on one

side of the specimen and a photocell on the other side to detect when perforation has

occurred. When the light emitted by the LED in the infrared is detected by the photocell the

unit is automatically switched off. The amount of light that must be detected for this to

occur is specified by a "sensrtivi4, " knob. For copper 50Vo by volume orthophosphoric

acid is used. The acid transmits IR light when the solution is new, i.e., it is transparent in

the visible. However, when the solution has been well used it becomes a light blue colour
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and it does not transmit IR light as efficiently as a new solution. The acid is sprayed onto

the specimen by a pumping system connected to two jets, one for either side of the

specimen. The pumping speed, or "flowrate ", can be easily varied by adjusting the current

to the pump motor.

Figure 4.6: The Tenupol apparatus for electrochemical thinning. The acid is placed in the
bottom of the container in the fume cupboard. The part of the apparatus in the fume cabinet
has a pump on its left hand side that sprays the acid onro the specimen that is inserted ar the
top right of the cell. The electronics for the pump, the electrodes and the LED are outside
the fume cabinet.

ln the Tenupol system thinning from one side only can be done by covering one side

of the specimen with a protective section of overhead projector rransparency (D. Housden

t1761). There is no need to peel or float any protective vinamenr layer off the specimen so

both the mechanical distortion of the disc and the contamination of the specimen surface is

reduced. This still allows the light to be transmitted through the specimen when a hole has

been formed. The mechanism which automatically shuts off the unit then works as usual.

The temperature of the electropolishing solution is controlled by cooling coils

passing through the main bath of electrolyte. This is imponanr when using porenrially
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explosive combinations of chemicals. By passing water through the coils the temperature of

the electrolyte can be kept slightly below room temperature (approximately l6 to 17 oC).

Alier pertoration, to stop the electropolishin-e process and clean the thin re-eions, the

specimens are quicklv removed from between the jets and sequentially immersed in two

baths of doubly distilled water at approximately 40 'C. The water removes the

orthophosphoric acid. Methanol is then sprayed onto the specimen from a squeeze bottle to

wash arvay the water and dry the specimen (T. Corfiatis [70]). Attempts to dry and clean

off the acid in one step using methanol alone resulted in heavily contaminated specimens.

The contamination rvas visible with both SEM and TEM. This idea was supported by the

observation that contamination did not occur to the same extent when distilled water was

used prior to drying with methanol. Some contamination can still occur when using the

distilled water. It is important to immerse the specimen holder numerous times in the baths

of distilled water and to wash plenty of methanol across the specimens.

The acid tended to age and after about a dozen good specimens being prepared the

amount of thin material around the holes starts to become too small to be of much use. This

is probably because of the increasing number of copper ions in the solution as the solution

is used. The number of specimens that could be obtained before the solution needed

replacing depends on the thickness of the specimens being thinned. It was also necessary to

start the acid solution off by introducing some copper ions. This was done by adding about

200 ml of an older solution to the new solution. Failure to do this gives specimens rvith

thick edges for the first four or five specimens before large thin regions are obtained. This

is of course a waste of specimens and high purity copper.

The current - voltage characteristic of the electropolishing apparatus did not display

the predicted plateau region tl77l. The optimum electropolishing conditions are meant to

occur at this plateau region. This appears to be valid for bath electropolishing only and not

for the jet electropolishing used in the Tenupol.

Satisfactory results. i.e.. large thin regions, were obtained by using a "sensiliviD' "

setting of 5.0, a"voltage " setting of l5 volts and"flowrate " of 1.0. These conditions gave

a current of about 0.8 A when thinning from both sides of the specimen using an acid

solution prepared as above. Assuming laminar flow occurs in the jets the lowest flowrate
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available on the system should give the largest thin regions. This is because at these

conditions the velocity profiles across the jets are the most uniform. Various other

combinations of these parameters were tested and found to give poorer results, but these

settings are not necessarily the optimum settings. Finding better settings would require

using an even larger amount of blank (unirradiated) copper specimens than the

approximately eighty specimens used to deduce the above settings. When polishing from

one side only it is better to use about 10 volts. This gives a current of about 0.22 to 0.30

amps. However, the current depends on the age of the solution. The electropolishing

conditions used for copper and a range of other metals are shown in table 4.2. Typically

these are different from those listed in standard electropolishing references [177 and 178].

Although the solution may be the same as used by other authors the voltages are almost

always different because of the different experimental equipment used.

Although large thin regions are easily obtained in nickel this material is magnetic and

so the TEM imaging is a bit unusual. For example, this metal has the same TEM

characteristics as copper when untilted, but if the specimen is tilted by more than about l2o

different regions are observed. The eucentric position can be still found. The same object

in the specimen remains approximately fixed in place as tilting occurs but it may no longer

be illuminated by the beam. This makes necessary the constant readjustment of the beam

deflection during tilting.

If upon examination in the TEM, specimens do not show large thin regions an

attempt can be made to thin the specimen further using the ion beam thinning apparatus

shown in figure 4.7. The results of ion beam thinning are variable. Thin regions may be

obtained that are often coated with a hydrocarbon layer that is visible in the TEM. Also the

material loses its crystallinity if high current levels are used and ring patterns characteristic

of amorphous material are obtained instead of crystalline diffraction patterns. If the current

is kept below about 30 pA then thin crystalline regions that are large and clean are

attainable.
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Figure 4.7: lon beam thinning apparatus. The 3 mm disc is clamped into a holder inserted

into the left hand side of the blue cylinder. Gas is bled into the cylinder through the valves

on the right. The gas is ionised by the power supply in the background. The current hitting

the specimen is integrated by the unit under the power supply. The pressure is monitored

with meters located above the power supply and on the front of the table. A light can be

shone onto the specimen from above and below the specimen. The binoculars and the light

below the specimen can be used to detect when the foil is perforated and whether the holes

in the specimen are being widened.

4.3 Miscellaneous TEM Techniques

Kikuchi lines, which are named after their discoverer [79], are important in electron

microscopy because they provide an accurate determination of the direction of the electron

beam relative to the crystal. He explained the lines in terms of how a beam of electrons

passing through a crystal can produce a divergent secondary wave. This secondary wave

originates from the inelastic electron scattering later postulated by Yoshioki [138]. Once

produced, the secondary wave undergoes elastic scattering. Laue [180] attempted to explain

the intensity of the Kikuchi lines using a dynamical theory. However he did not explain
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Meta.l Jet electropolishing

solution

Voltage (Volts) Current (Amps)

AI 87o Perchloric acid

+glycerol +methanol

+distilled water

15.0 0.15-0.18

Cu 50Vo

Orthophosphoric

acid

+50Vo Distilled water

15.0 from both sides

10.0 from back

0.75-0.8

0.22-0.3

Mo 147o Sulphuric acid

+86Vo Methanol

35.0 0.7

Ni 50Vo

Orthophosphoric

acid

+50V0 Distilled water

15.0 o.2-o.25

Ti 147o Sulphuric acid

+86Vo Methanol

25.0 0.45

V 1470 Sulphuric acid

+86Vo Methanol

20.0 0.35

Table 4.2 The jet electropolishing conditions that were used for a range of metals.

the variation in the intensity as the crystal is tilted. Kainuma [139] later corrected this defect

in the theory of Laue.

The waves interfere constructively at the Kikuchi lines according to the usual Bragg

equation with the lines occurring in pairs. (J Gjonnes [181] presents a more rigourous

theory based on perturbation theory). Every diffracting vector g has a Kikuchi line

associated with it. If g is near the electron beam direction, then -g is also, so the lines occur

in pairs. These pairs are slightly different, one is above the background intensity, the other
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below it. The bright line corresponds to the g that is more strongly excited or nearer to

strong two-beam conditions.

When the electron beam is exactly down a crystal zone axis the Kikuchi line for any

g will occur midway between the undeviated beam and g. As the crystal is tilted the

intensiry of the spots in the diffraction pattern in the direction in which the Ewald sphere is

tilted become stronger. Suppose the incident electron beam is exactly down a zone axis and

then the crystal is tilted through the Bragg angle, 0s, corresponding to a particular reflection

g. The gth reflection will now be strongly excited. The associated bright (or excess) line

will pass exactly through the g spot in the diffraction pattern and the dark (or deficient) line

for -g will pass through the origin. This position of the Kikuchi line for a reflection is a

more accurate guide to the position of the electron beam than merely looking at the relative

spot intensities. The sign of the excitation error (defined in figure 2.1) can be obtained from

the position of the Kikuchi line for g. Tilting from one pole to another may be done by

referring to standard Kikuchi maps of the position of the lines about the major axes in the

crystal (Loretto [82]).

Accurate dislocation line directions and foil normals (Head et al. [82]) are required

for the image simulations. This requires the electron beam direction to be known more

accurately than to just the nearest major axis. The TEM camera length on the LED display is

typically out by up to 307o. Instead the ratio of the spacings between lines must be used to

index the g's and B's. The technique in Head et al. is used in this thesis to obtain the beam

directions. To measure foil normals etc. from micrographs the rotation between the image

and the diffraction pattern needs to be known. This was done using long lathes of a MoO3

crystal as described in Head et al. [82]. Attempts were made to use the EMS programs of

Stadelman [183] to index the diffraction patterns and to find the B's but the beam directions

that are obtained seem to be wrong.

Often the Kikuchi lines appear more prominently viewed in convergent beam

diffraction (CBED) conditions. CBED is achieved if the " spotsize " (strength of the

excitation of the first condenser lens) is increased and the beam converged down by using

the control for the current in the second condenser lens. This is preferable to ordinary

selected area diffraction with the beam spread and a small spotsize setting. CBED is also
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useful for measuring the thickness of the crystd foil. Better Kikuchi lines are obtained if

the foil is of moderate thickness. If the foil is too thin then not enough inelastic scattering

occurs and if too thick the intensity is too low to obtain good Kikuchi lines.

Electron micrographs taken with an aperture selecting just the central beam that is

undeviated to form the image are called bright freld (BF) pictures. Micrographs taken with

an aperture selecting a particular diffracted vector are called dark field (DF) pictures.

Pictures of superlattices of gas bubbles are usually taken in overfocussed bright field

conditions to get good contrast. The central undeviated beam interferes with all of the

diffracting vectors and so the resultant BF image contains contributions from the central

beam to these g's due to the scattering off the structure. The deviated beams have a lesser

intensity than the central beam. Therefore an image taken using DF will be influenced

mainly by the interference between the particular g selected and the central beam. This

characteristic of DF is important when attempting to match experimental micrographs

against theoretical simulations. This is because a two-beam theory is needed when the

crystal is tilted to strong two-beam conditions for the particular g selected by the apefure.

Accurate matching of BF pictures may require the use of the many beam dynamical theory

which is computationally more demanding and time consuming.

The effects of lens abenations such as astigmatism and spherical aberration can be

minimised by deflecting the beams to bring the gth reflection into the centre of the pattern.

The beam deflection coils in dark field are used for this purpose. These controls are situated

on the right-hand side of the microscope. Photos taken by this process are called centred

dark field (CDF) photos. The success of this technique in minimising the effects of the

aberrations depends, of course, on how well the central beam is aligned down the optic axis

of the microscope in the first place using the standard alignment procedure described in the

operating manual of the TEM.

Another advantage of using CDF instead of BF is that the rocking curve is

symmetrical in CDF (a rocking curve is a plot of transmitted intensity versus the excitation

error w). The corresponding BF curve is asymmetric and rapidly converges to zero for w <

0. This means that in a slightly bent region the CDF micrograph will give a larger region of

well illuminated material in regions where w < 0 that are not too dark to interpret. The
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disadvantage of using CDF pictures is the extra time required to align the diffracted beam

with the optic axis of the TEM beyond that required to take a BF picture. This time

constraint can become important when a large series of photos is required in the same region

of the specimen because the specimen is accumulating radiation damage throughout the

alignment procedure.

When a crystal is tilted so that the electron beam is down a pole, the excitation error

for all the reflections is large and negative. Rocking curves produced by the Howie-Whelan

differential equations, which are being used in a many beam situation, show that both the

BF and DF intensities are low as demonstrated in figure 4.8. Bloch wave simulations

produced by the EMS programs are shown in figure 4.9, for the intensity of the central

beam and the [200] and [220] beams when at a [001] axis vs. thickness of the crystal.

These situations can be compared with the siruation when the crystal is at strong two-beam

conditions. The [200] reflections have a w of about -6 in the simulations done using Bloch

waves. Physically many diffracting vectors become strongly excited when on-axis and the

central beam loses its intensify and BF images are dark. Because there are many reflections

gaining electrons from the central beam, no DF picture will have much intensity either. This

shows that the blacking out of an image when on zone in itself is not evidence for the

existence of dislocations. In the case of metals containing a bubble lattice when excited

close to zone the broad dark image has a granular appearance on a very fine scale. This

granularity has been attributed by Johnson and Mazey to the presence of dislocation loops,

or some other small centres of strain, at high concentration. On tilting the specimen to be

precisely on zone axis, the granularity seems to merge to form a totally black continuous

image. Since this black continuous image occurs not only in crystals that have been ion-

implanted but also in perfect crystals (Head et al. [82]), it does not itself indicate high

dislocation densities.

Weak beam (WB) techniques rely upon weakly exciting all the g's and using CDF

for one of these g's. By imaging with a larger w the resolution is increased but difficulties

in interpreting the result can be increased also. A nvo-beam theory with large w can be used

but there ile many evenly excited g's in the image. The neglect of these other g's may
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Figure 4.9: Nine beam Bloch wave simulation of the on-axis intensity and phase vs. rhe

crystal thickness. The solid line is the intensity and the dotted line is the phase of the
beams. (a) t0001 beam, O) t2001 beam and (c) Wq beam. The vertical scale is labelled
for the intensity values. The phase ranges from +n radians (corresponding to 1 on the
vertical axis) to -n radians (0 on the vertical a:ris).
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result in inaccuracies and many-beam theory may have to be used. The crystal tilting

technique to obtain WB conditions is described in Eddington [78].

The highest resolution technique for imaging perfect crystals is to put a large

aperture around the central, undeviated beam and the inner g's. The crystal must be

accurately lined up on an axis and the TEM well stigmated and focussed. A crossed lattice

fringe image of the atom planes may be attainable. However, this technique is limited by

the resolution of the microscope. It is difficult to image metals because of their small lattice

constant. Interpretation of the images is usually done by the multislice formulation of

electron diffraction.

It is difficult to interpret HREM images of dislocations unless the dislocations are

viewed end-on. The number of missing lattice fringes cannot be counted to obtain the

Burgers vector or the number of dislocations in any simple way. However knowledge of

the positions of the atoms in the dislocation corc are not required in this work. Even finding

missing lattice fringes, indicative of dislocations, against a strong background of perfect

crystal lattice is difficult by comparison with BF or DF images of dislocations taken at

strong two-beam conditions. At strong two-beam conditions the background perfect crystal

gives a fairly uniform intensity and the dislocation images stand out strongly for

dislocations from the size of a point defect or larger.

If the undeviated beam is tilted off the optic axis by using the same deflection coils

mentioned above then a higher resolution image may be obtained. The multislice programs

cannot interpret this situation because a simple geometry is required. Also the images are

more strongly affected by aberrations so that the images are even more difficult to interpret

than the orthodox HREM images.

Several ways of visualising directions and structures rue useful. Stereographic

projections are introduced in several books @ddington [78] and Moon t1841). Another

useful construction is the Thompson tetrahedron mentioned in, for example, Hirth and

Lothe [97]. The tetrahedron displays the I l0] and [111] directions that Burgers vectors

and glide cylinder axes lie on in an fcc material. The EMS software also can be used to

generate three-dimensional "ball model" diagrams of atoms, bubble ilTays and loop

structures.
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To identify Burgers vectors using the invisibility criterion for a dislocation, i.e. g.b

= 0, it is best to use the diffracting vectors [1 1l], [200] and [220] in turn. (The g.b = 0

criterion comes out of the Howie-Whelan differential equations using the approximation that

the elasticity is isotropic.) This is because g= [1ll] gives the greatest number (three) of

occurrences of g.b = 0 for the case where b = 0.5[ l0] (the preferred form for b in an fcc

crystal). The [200] and [220] reflections give at least two extinctions and one extinction

respectively. In exciting the desired reflections the electron beam should be directed down a

simple pole (i.e., one having low indices). [111] reflections occur for both [ 10] and [112]

poles; l220lreflections for [00], [11] and [112] poles; and [200] reflections foreither

[100] or [110] poles. The poles used in any image matching exercise should be selected

from these options.

4.4 The Image Simulation and Processing System

The computer simulation and image processing systems have been described in

detail elsewhere [85] and so will be only briefly summarised here. Micrographs could be

digitised by a CCD camera or images captured directly off the TEM from the Gatan image

intensifier or wide-angle camera. The cameras were connected to a Matrox board mounted

in a Dasher 286 Data General computer. The image could be transferred to a Data General

MV 4000 for processing by Semper 5 software.

Since the article mentioned above was published the system has been upgraded: the

Semper 5 software has been replaced with Semper 6.4 and the Data General MV 4000 has

been superseded by a Sun sparcstation 1. A videopix board mounted in the sparcstation

allows images to be both digitised and processed on the sarne computer which speeds up the

process. Before purchase of the videopix board the images were still digitised by the

Matrox boards and transferred to the sparcstation by network NFS software.

In addition to obtaining a photographic output from a polaroid freeze frame recorder

it is possible to convert images into postscript files. These files can then be sent to one of

several laser printers. This printed output is not as realistic as the photographic output but

the results are more reproducible. The output from a Mitsubishi thermal printer is more
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realistic looking than that from a laser printer although the cost is greater. Both are much

cheaper than photographic output. Images can be sent to the thermal printer via a video

connection from a camera or from the Sun computer via a 386 computer. The 386 computer

has a VGA / EGA board that can display the image on the computer screen (using a

software package written by Foster-Findlay) after the image is routed through the RGB

connection of the printer. That is a thermal print can be made of whatever is on the screen.

The thermal printer has adjustable black and white levels, and contrast controls. This gives

greater ease in matching the simulations to experimental micrographs because the image

does not have to be recalculated or the grey levels rescaled (using a new look up table (lut))

every time the contrast and brightness are adjusted.

The outputs from the EMS software are in the form of postscript files that can be

sent to the laser printer. Alternatively, a postscript previewer that is available in the

openwindows operating system can be used to display the images on the computer screen.

4.5 Large Resolvable Loops - Maher and Eyre Rules

The Maher and Eyre nrles allow the interstitial or vacancy character of large

resolvable loops to be determined. The theoretical basis for the method comes from the

variation of the position of the dislocation image in a kinematical theory with the curvature

of the local lattice planes (equation 2.75). The method uses the FS/RH convention of Bilby

et al. to define the Burgers vector, so that the lanice curvature will depend on the interstitial

or vacancy character of the loop as shown in figure 4.10. A diffracting vector g and its

opposite diffracting vector -g at the same sign of excitation error are used. Alternatively

images with the same g but different sign of the excitation error can be used. In both

approaches the idea is to vary the sign of (g.b)sr.

It is observed how the image of the loop changes in size in a pair of images taken

with the same geometry but using either a tg pair (with s, of the same sign) or a given g

with two values of su having opposite sign (figure 4.10). The variation in the image can be

then compared with figure 4.10 to find whether the loop has a vacancy or interstitial

character. Maher et al. [57-59] used image simulations based on dynamical theory to
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identify "safe " orientations of the loop normal and Burgers vector where this method of

analysis works. The orientations where the analysis does not work because of dynamical

effects are referred to as "unsafe". Edge dislocation loops are always in " safe "

orientations. This is because the loop normal has to be rotated away from b to be at an

"unsafe " orientation. The interstitial or vacancy character of some loops is determined in

section 4.6.2.

4.6 Experimental Micrographs and Simulations.

4.6.1 ExperimentalMicrographs and Simulations of Long Straight Dislocations

In this section the image matching techniques are applied to images of long straight

dislocations. The experimental techniques used to obtain micrographs are the same for

loops and long straight dislocations. They are detailed in Head et al. [82] and are briefly

summarised here. Many micrographs are needed of the same region. They should be taken

under strong two-beaur conditions for at least three different beam directions (relative to the

specimen) and with various diffracting vectors. The diffraction patterns (and hence the

beam directions) are indexed using the techniques in section 4.3. The beam directions

should be as widely apart as possible to obtain good determinations of the foil normal and

dislocation line direction using stereographic projections. To obtain the foil normal it is

necessary to mark the directions connecting three recognisable features (these vectors need

to be determined), that are non-colinear, lying in the midplane of the foil. The angles are

measured between the projections of a vector and the g's used to obtain the three images.

By simple stereographic techniques the vector can be then determined. The foil normal is

measured by taking by eye the average of a set of three vectors formed by the cross product

of different combinations of the three vectors connecting the three recognisable features.

The foil thickness can be estimated from the beam directions and the foil normal

using the techniques outlined in the previous paragraph. The thickness can be adjusted a bit
to obtain a good match because of the uncertainty in the extinction distances. The excitation

error also can be varied slightly from exact two-beam conditions because the foils are

usually a bit bent. However, the excitation error may not
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correspond exactly to the region from which the CBED was taken. The CBED pattern is

used to determine the approximate excitation error only. In performing simulations the

different images are taken for different g's and therefore (r's. Thus although the foil

thickness for the different images is a constant number of angstroms thick, it is a different

number of extinction distarces thick.

Because copper is anisotropic there is some residual contrast when g.b = 0.

However, the intensity of defects with g.b = 0 is usually much fainter than other defects in

the same photo and this criterion can be still used to narrow down the possible choice of b.

For the images of figure 4.1 1 this procedure was used to narrow the possible Burgers

vectors down to the following possibilities: 0.5[110], 0.5[-1, -1, 0], 0.5[0, l, -l], 0.5[0, -

I, ll. Opposite b's give tbe same image rotated by l80o so it is necessary to make a choice

between two b's only. The pair of Burgers vectors arc then simulated using the Head et al.

onedis program with the results shown in figure 4.1l. The experimental images are shown

on pages 4.38,4.44 and 4.45; calculated images for comparison appear on 4.37 through to

4.46. The validity of the g.b = 0 analysis of course can be checked by simulation also.

The effects of varying the foil thickness are shown in figure 4.1l(a). The best match for the

foil thickness of 4.6 Es, suitably scaled by the different extinction distances required as g

changes, was used as the foil thickness in parts O) and (c). The simulations show that the

Burgers vector is 0.5[0, -1, U. In figure 4.ll a range of values for w is used; the middle

value gives the best match with experiment. In figure 4.11(a) a larger range of w was used

than in the other parts of this figure. This was done because the number of extinction

distances that the foil thickness is equal to will vary as w changes (because a change in w

will alter the effective extinction distance).

Better matches probably would be attainable if a larger set of experimental

micrographs were taken. In practice it would have been easier to take more experimental

images at different g to identify b using the g.b = 0 invisibility criterion. This was not

done as the motivation for examining straight dislocations was to gain experience of image

matching before applying the same techniques to dislocation loops.
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Figure 4.11 (a), (i) t = 4.45 EE
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Figure 4.11 (a), (ii) t = +.6 €e
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Figure 4.11 (a), (iii) t = 4.75 Es
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Figure 4.11 (a), (iv) t = 5.05 €s
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Figure 4.11 (a), (iv) t = 5.05 €s
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Figure 4.11 (a), (vi) t = 5.65 qs
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Figuro 4.11 (b)
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Figure 4.11 (c)
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(c)

Figure 4.11: Comparison of experimental micrographs and simulations for b = 0.5[-1, -1,
0l and 0.5[0,- 1, U in copper (a simulation is for b = 0.5[01 1, 1] unless otherwise marked
on the figure). The common simulation parameters are a foil normal (F) = f3, L,71, a
dislocation line direction (u) = [-4, -6, 5], and the elastic constants 11r€i c11 = l.6g4xl0-10
dyn cm-2, cLz = 1.214x10-10 dytr cm-2 and c44 = 0.755x10-10 dy1 cm-2. The other
pammeters are:

(a) B = 16,7,13j,9 = [-1, -1, 1] and the anomalous absorption coefricient is 0.07.
combinations are made of a foil thickness (t) of (i) 4.4s Es, (ii) 4.6 Er, {iii; 4.7s Es,
(iv) 5.05 Eg, (v) 5.35 qE, (vi) 5.65 Eg, and w = 0 to 0.7. The simulations for 4.6

€g are the best match to the experimental micrographs and so ttris foil thickness

(scaled dth g) is used in parts (b) and (c).
(b) B = [l., 0, 16], g = [0, -2,0], the foil thickness is 4.1 Eg, w = 0.3, 0.4 and 0.5, and the

anomalous absorption coefficient is 0.0g.

(c) B = [14, 15, 15], g = f0,2, -21, the foil thickness is z.g4 EE, w = 0.3, 0.4 and 0.5, and

the anomalous absorption coefficientis 0.1.
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4.62 Isolated Loops

In this section experimental micrographs of isolated loops are compared to

theoretical images. The experimental micrographs are used to find the parameters for the

simulations. The same experimental techniques that are used to find the parameters required

to simulate long straight dislocations in secrion 4.6.L are used to match dislocation loops.

The experimental techniques were summarised in sections 4.3 and 4.6.1. The term

"isolated loops" is used to indicate that the contrast of a loop can be considered as due to

that loop alone. It is assumed that nearby loops do not significantly influence the conrasr of

this loop. Therefore the experimental images of the loops in figure 4.I2 arcmatched against

simulations of isolated loops.

The foil thickness is estimated using a straight dislocation thar threads through the

foil. The foil normal is found using directions connecting the midpoints of straighr

dislocations that thread through the foil. The midpoints of loops cannot be used as they do

not necessarily lie in the centre of the foil.

It is not possible to find the habit planes of isolated loops directly from experimental

micrographs because the direction through the black / white lobes is approximately parallel

to g. The direction of the line of no contrast between the lobes is not necessarily parallcl to

the habit plane.

Hirth and Lothe [97] state thac "the glide plane of a straight dislocation is that

plane which contains both the dislocation line and tle Burgers vector ". Thus the glide

plane of a straight dislocation is set by the edge component of rhe Burgers vector. A

straight dislocation that is of pure screw type has no restrictions on where it can glide. The

restrictions on dislocations with an edge character arise because if the dislocation attempted

to move perpendicular to its glide plane then matter would have to be moved. This would

require work to be done by an external force. In the absence of external forces dislocations

are restricted to moving on their glide planes.

The glide cylinder of a loop is set by the edge componenr of the Burgers vector and

the loop normal. Equivalently the dislocation line of a loop curves around in a circle so that

a loop with a non-zero edge component to the Burgers vector is restricted to moving in one

direction instead of a plane. Consider the situation when the Burgers vector is parallel (or
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Figure 4.L2, expeimental images.
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Figure 4.12, experimental images.
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Figure 4.L2: Comparison of experimental micrographs and simulations for an edge
dislocation loop with b = 0.5[1, -1, 0] in copper. The experimental image labelled as (a)

should be marched against the simulations labelled as (a) and similarly for parts (b), (c) and
(d). The foil normal (ID = [6,7,11] for all the simulations. The other parameters are:
(a) B = f2,2,3f,9=f2, -2,0f, a foil thickness of 5.5 6e, w = 0.0 and an anomalous

absorption ratio of 0.1. The depth of the loop "d" is varied in steps of 100 A.
(b) B = [4, 5, 4], E = f2, 0, -Zl,afoil thickness of 5.5 Ee, w = 0.0 and an anomalous

absorption ratio of 0.1.
(c)B=ll"l',2,91,g=[1,-1,-1],afoilthicknessofg.6Ee,w>0.0andananomalous

absorption ratio of 0.07.
(d) B = f15,2, l3l, g = [-1, 1, 1], a foil thickness of 9.6 €e, w > 0.0 and an anomalous

absorption ratio of 0.07.

The foil thickness in terms of (, has been scaled with g as was done in section 4.6.1.
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antiparallel) to the loop normal. The axis of the glide cylinder wil be parallel ro the Burgers

vector. If the loop normal n is rotated away from b the axis of the glide cylinder will follow

n. Locally this rotation of n can be thought of as movement of the small segments of the

prismatic dislocation loop along the surface of the glide cylinder. Some of the segments

move in different senses along the glide cylinder. Other segments rotate around and grow

longer.

The axis of the glide cylinder can be measured by using stereographic projections.

In figure 4.l2the glide cylinder axis found experimentally is [1, -1,0]. Therefore the loops

must have had loop nomrals and Burgers vectors of [], -1, 0J or [-1, 1, 0] when they were

still mobile as none of these loops have moved out of the row. There are some loops near

the row which could have been squeezed out of the row after their n was rotated before the

entire row rcached equilibrium.

In figurc 4-12 images of an edge type loop is simulated with a b and n equal to [],
-1' 01. The g's used are shown in the figure caption of figure 4.12. The simulations of
figure a'2@') and O) confirrr that b = 0.5[1, -1, 0]. Varying w gives a more convincing

fit for figure a.0@\

The loops in figure 4.12 arcabout 330 A in d.iameter which means that the loop

extends over several layers. The layer structue constmction, referred to in chapter six as a

means of minimising the amount of comFutation required to simulate small dislocation

loops' is therefore not valid. The simulations of large loops shown in figure 4.I1(a)shows

there is some periodicity in the images as the depth of the loop is varied. The simulations

represented in the other parts of figure 4.12 assume the loop is positioned approximately in
the middle of the foil. This can be compared to the experimental micrographs, where the

glide plane is inclined acutely to the foil surface, so the loops are at different depths. The

depth of the loops increases as the distance from the bubbte is increased. The simulations

for increasing depth, d, can be marched against the loops that are increasingly further away

from the bubble.

To differentiate between whether a loop is of vacancy or interstitial rype requires

micrographs taken with opposite g or (g.b)se as shown in Maher and Eyre [57]. Images (c)

and (d) are a * g pair with w > 0. Simulations of interstitial and vacancy loops for the

imaging parameters of figure 4.12 (c) and (d) are presented in figure 4.13 to verify the
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interstitial nature of the punched out loops. The Maher and Eyre nrles rcquire thar the loop

norrral is at an acute angle to the beam direcdons of figure 4.12 (c) and (d). (The beam

direction is taken as antiparallel to the direction of motion of the incident electrons.) The

Burgers vector is parallel to the loop normal for an intentitial loop. Therefore b = 0.5[1,

-1, 0l was used in the simulations and not b = 0.5[-1, l, 0]. The w = 0 simulations of

figure 4.13 (a) and (b) will be identical for +b. Simulation of a vacancy loop in -g and w =

0.5 conditions gave approximately the seme image as obtained from an intentitial loop in +g

and w = 0.5 conditions as expected frrom the Maher and Eyre rules.

4.6.3 Spacing of Punched laops

Measurement of the spacings benleen loops and the loop diameters in figure 4.12

shows that the p parameter of the Bullough and Newman theory [112] acrually decreases

for the loops furthest from the bubble as shown in figure 4.14. The Bullough-Newrnan

theory predicts that p should increase because of the backstress of the loops that were

punched out earlier. Thus the assumptions of the Bullough-Newrnan theory do not apply in

the present case. It should be noted that the theory does not allow for loops of different

diameters and does not take into account the role of helices in forming rows of loops. The

approximately regular spacing of the eight loops berween loops 4 and 12 is interesting and

may indicate some blocking of dislocation movement on the glide cylinder owing to the

prcsence of defects in the matrix.
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Figure 4.13: Simulations with imaging parameters as for figure a.D @) and (d) with
variable (g.b)se for both vacancy (b = 0.5[-1, 1, 0l) and interstitial loops (b = 0.5[1, -1,
0l).
(a) g = [-1, 1, 1], b = 0.5[1, -1, 0], BF and w = 0.5 ("inside contrast").
(b) g = [-1, l, 1], [ = 0.5[1, -1, 0], BF and w = -0.5 ("outside contrast").
(c) g = [1, -1, -u, b = 0.5u, -1, 0], DF and w = 0.5 ("outside contrast").
(d) g = n, -1, -11, b = 0.5[1, -1, 0], BF and w = _0.5 ("inside contrast").
(e) g = [-1, 1, l], b = 0.5[-1, 1, 0], BF and w = 0.5 ("outside contrast").

4-56



II
t**rrr**lrrt*tl
IIIII{ltlltl,
rrrrrrrrrt..I,

I

x spacing (A)

A diameter (A)

The I and diameter data
1800

1600

1400

1200

1000

800

600

400

200

o 4 q""n n*"J2 16 20

Figure 4.14: The loop spacing and diameter data taken from figure 4.L2 (a). The left hand
vertical axis is for the spacing and diameter data in A and the right hand venical axis is for p
(= loop spacing/loop diameter).

4.6.4 Helices

Figure 4.15 shows a helix, probably emined from a bubble, that has not collapsed to

form a row of loops via the prismatic punching sequence of Seiu tl191. No simulations of

this image were done as the displacement field is unknown.

Figure 4.15: Helix punched by a bubble in quenched copper.

E rho
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4.7 HREM' Lattice Fringe Pictures and Multislice Simulations

The EMS programs of Stadelman can be used to generate high resolution images of

bubbles. Supercells are created by a separate Fortran prognm that EMS then uses to

generate the phase gating of the slices the electron wave is to pass through, and to do the

multislice propagation. The number of iterations with any one supercell phase grating can

be specified. Therefore the diffraction from complex stnrctues can be simulated by varying

the supercell. M. Flueli [186] has used EMS to simulate HREM i-ages of particles such as

gold islands on a thin film of amorphous carbon. Simulation of cavities or precipitates is

similar from Babinet's principle as the Fourier ffansforms of the phase gratings will be

similar.

M. Flueli [186] panially gives the code for generating the atom positions required in

various facetted particles. Figure 4.16 shows perspective drawings of the different particles

generated by these programs. Similarly the atom positions in a supercell used to simulate a

facetted cavity can be found by looping over the perfect crystal atom positions in the

supercell and removing those positions which match up with the atom positions in the

facened particle. A HREM simulation of a cavity at Scherzer focus is shown in figlre 4.1?

(a) that was generated using the atom positions shown in the supercells in figure 4.17 (b).

For comparison with the HREM simulation of figure 4.17, figure 4.18 shows some lanice

fringes in coppet that are bpical of those obtained wittr the TEM at Victoria University.
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Super-cell: superx | | 9' 9, 4l

Figure 4.16

Super-cell : superx/[ 9, 9, 4l
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Super-cell : superr I | 9, 3, 4l

Figure 4'16: Facetted particles whose aom positions were used to generate facetted voids.
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Figure 4.17

(a)
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Figure 4.17: HREM simulation at Scherzcr focus of an octatrcdral shaped cavity, with
hexagonally facetted [111] tlpe planes, in copper. The supercells used. ale shown in part
(b) and the simulation is shown in part (a). The imaging parameters are: B = [001], C, =
l-l mm, the electron energy is 300 keV, bearn divergence = 0.6 rnrad, defocus spread = 6
nm and an aPerture radius of 12 nm-l. The Scherzer focus for these parameters is 57 nm.
The dominantperiodicities in the image is due to the t2001diffracted bearn The cavity has
been embedded in a foil a few slices of perfect crystal larger than the cavity.
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Figure 4'18: Crossed lattice fringes in a helium irradiated copper specimen. Lower
magnification BF images of the same region showed up the bubbles more clearly than the
larice fringe picture.
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4.8 Summary

This chapter reviews the experimental techniques and equipment used to obtain the

results on the TEM imaging of bubbles and dislocations in metals presented in this thesis.

Two alternative methods were used to produce the defects in the specimens. One method

was to expose the metal to one of several gases at high temperature and pressure and then

quench to a low temperature to trap the gas in the metal. Quenching is a technique to create

in a specimen a low density of bubbles and dislocations. The quenched specimens are

much easier to examine in the TEM to gain experience in applying the image matching

techniques to dislocation loops without the problems resulting from the overlapping of

images as shown in section 4.6.2. A comparison of the spacings of the loops in quenched

specimens with the Bullough and Newman theory showed the assumptions on which the

theory is based did not apply in the case studied. The second method used was the ion-

implantation of helium into the metal using a charged particle accelerator. In this case gas

bubbles and dislocations are formed at high concentrations and the gas bubbles may order to

form a gas-bubble superlattice.

The specimens are prepared for examination in the TEM by a variety of methods.

Foils are mechanically polished, heat treated in vacuo and then bath electropolished to a high

surface finish. The heat treatment consists of annealing in a furnace at temperatures

sufficient to give both vacancies and self interstitials a significant mobility. This treatment

reduces the density of dislocations and grows the grains in the polycrystalline specimens to

about O.l to I mm across. The prepared foils are then loaded with gas either by quenching

or irradiation.

Following gas loading the foils are punched to produce specimens that are discs with

a diameter of 3 mm. The discs are backthinned, usually by jet electropolishing in a

Tenupol, to produce electron transparent specimens. Ion beam thinning with argon ions can

be used to clean up the specimens or extend the thinned areas around a hole formed by the

electropolishing. Some long straight dislocations occurring in lightly deformed blank

specimens have been examined in section 4.6.1 to learn the experimental techniques for

imaging dislocations in the TEM. Micrographs of specimens that have been subjected to

ion-implantation will be discussed in chapter seven.
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CHAPTER 5: SIMULATIONS; BUBBLE IMAGES
AND DIFFRACTION

5.1 Introduction

5.1.I Introduction

In this chapter the diffraction from bubble structures in metals is considered in order

to understand befter experimental diffraction pattems and images. The simulated appearance

of a bubble or stack of bubbles is used to identify the effects of changes in a range of

parameters. The sample parameters considered include the thickness of the foil, the depth

of the defects below the foil surface and the bubble pressure. The imaging parameters

considered include the defocus, the diffracting vector and the excitation error. Experimental

micrographs are compared to the simulations to obtain the real radius of both a bubble and a

facetted cavity. In addition to simulating images of bubbles, the superlattice spots obtained

in selected area diffraction patterns are simulated in an attempt to deduce information about

the ordering of bubbles into domains.

Whilst most of the work presented in this chapter is similar to that of other authors

in that it uses the same theoretical techniques, it is original work because the specific bubble

structures considered have not been treated in this way elsewhere. The section on electron

diffraction from bubble iurays leading to superlattice spots is unique both in this sense and

in using a different theoretical formalism from that of other authors. Where possible, the

published simulations of other authors were frst reproduced to check the accuracy of the

programs developed here. A problem in doing this is that sometimes not all of the

parameters necessary to perform the simulations are explicitly stated in their publications.

However, where comparisons could be made, good agreement was obtained between the

results of programs written for this thesis and published results.

The more accurate the measurement of the bubble radius the better the experimental

data for testing the theories of bubble growth and ordering. Measurements of the bubble

radii, for example, allow an estimate to be made of how much of the total implanted helium

is contained in the visible bubbles. The helium not contained in bubbles is thought to reside
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in the copper matrix or in small gas bubbles lying below the resolution limit of the

microscope. (A variety of experiments based on nuclear reaction depth profiling have

shown that essentially all the implanted helium is retained in the implanted layer). The

pressure is an important parameter in some proposed mechanisms of superlattice formation

such as those based on dislocation punching from bubbles t7l. It can be deduced from an

accurate measurement of the bubble radius under the assumption that the bubble is at

equilibrium pressure. Most of the theories of superlattice formation allow predictions to be

made of the ratio of bubble spacing to bubble radius. The average spacing of bubbles can

be found experimentally from measurements of the separation of the superlattice spots in a

selected-area electron diffraction pattern (SADP) [45]. In addition to its simplicity, another

advantage of using diffraction patterns rather than direct images is that it is possible to

remove the effects of defocus.

Table 5.1 shows the differences between the types of defects discussed in this

chapter. The columns indicate whether or not the defects have a surrounding displacement

field and contain gas. If a defect contains gas the mean potential inside the defect is

different from that in vacuum. Some authors use the term "cavity" interchangeably with the

term "void". However, these two types of defects are distinguished in table 5.1 in the way

they are used in this thesis.

Table 5.1: The distinguishing characteristics of the different types of defects considered

in this chapter. (*In some simulations the displacement field is neglected to simplify the

analysis).

Investigations of how the bubble structure varies with depth, dose and irradiation

conditions is facilitated if the TEM imaging parameters are deconvoluted from the

experimental micrographs. Defocus is the important imaging parameter when looking at

Defect Type Contains eas? Displacement Field?

Caviw No No*

Void No Yes (radiallv inward)

Equilibrium bubble Yes No

Overpressured bubble Yes Yes (radiallv outward)

5-2



images of bubbles. The defocus dependence of the appearance of isolated cavities that are

strain-free was studied by Riihle and Wilkens [83]. Broadly speaking, isolated cavities

appear as black (i.e., below the background intensity) when over-focussed and white (i.e.,

above the background intensity) when under-focussed. Riihle and Wilkens [83] deduced

the cavity radii from the positions of the Fresnel fringes in direct TEM micrographs. They

suggest that when the cavities are less than or about 10 A in radius, measurements of cavity

radii could be more than lU%o in enor.

Previous work on the TEM contrast from defects similar to gas bubbles has been

reported in the literature [83, 84, 88, 169, 187, 188]. The defects examined are voids

[169], cavities [84 and 88], spherical inclusions and coherent spherical precipitates [187 and

1881. This previous work on the electron scattering from such defects took a different

approach from the present work. Riihle and Wilkens [83] used an analytical approach at

strong two-beam conditions to obtain their defocussed image profiles of isolated cavities.

Foreman et al. [88] assumed kinematic scattering conditions to study the diffraction of

electrons from isolated, strain-free, facetted cavities. In simulations they obtained

defocussed images as well as one-dimensional intensity profiles across the cavities. Both

groups found that the diffraction was independent of the depth of the cavity because the

effects of a non-zero excitation error were ignored. Ashby and Brown [87 and 188]

considered the in-focus contrast and contour plots of the intensity of the image formed by

the electrons scattered from spherical inclusions. Their inclusions were large, isolated from

one another and had a surrounding strain field. They also considered the dependence of the

results on the depth of the defect, the excitation error and the strcngth of the strain field (but

the displacement field was always radially outward). E Johnson et al. [84] were the first to

make a stack of cavities the subject of simulations of defocussed images and profiles. They

took the cavities to be strain-free and used numerical integration to calculate the beam

amplitudes.

In this chapter many of the parameters considered by the above authors in isolation

are combined together to characterise the appearance of stacks of small gas-bubbles. The

bubbles can have a strain-field associated with them and the results will in some situations

depend on the depth of the defect. Images of these defects exhibit contrast resulting from

strain, thickness and structure factor effects. The images are strongly dependent on the
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amount of detbcus. Calculations based on the theory of electron scattering at two-beam

conditions are used to find the dependence of the apparent bubble radius on the above

imaging conditions. The approach used here is more appropriate to helium bubble

superlattices than those used by previous authors who concentrated on defects of larger

radius with smaller changes in mean potential between the cavity and the matrix.

Two different formulations of the theory of electron diffraction are used in this

chapter. In the first the effects of strain are neglecred. This allows the wave function at the

exit surface of the foil to be generated analytically from the Howie-Whelan differential

equations of section 2.1. The wavefunction is then defocussed using the theory of Ri.ihle

and Wilkens [83]. In the second approach the effects of a non-zero displacement field (R)

are included. This requires the differential equations to be numerically integrated. The first

method was used initially because it is simpler, faster, and perfectly adequate for an

equilibrium bubble.

The extinction distances are important as they set the relative scale of the bubble

radius in the Howie-Whelan differential equations. If experimental micrographs are to be

interpreted with these equations then the bubble radius must be converted into a fraction of

an extinction distance. This is because the form of the factor in the scattering matrix of the

bubble that phase shifts the diffracted S beam requires the radius to be specified in terms of

(* if w is non-zero (references 83 and 84, equations 2.32 and 2.38, and the comment at the

end of section 2.2.3). Authors such as E Johnson et al. [84] do not specify particular

extinction distances in their theoretical intensity profiles. They assume that all distances

have already been converted into fractions of the extinction distance. However the phase

changes caused by the change in mean potential from the matrix to the equilibrium bubble is

incorporated by multiplying the wavefunctions passing through the bubble by a phase factor

of the form exp[-i x (the change in the wavevector) x radius]. The change in the wavevector

is a function of the mean potentials and the radius must be specified in A for it to be

substituted into this equation. If the radius is specified as a fraction of an extinction distance

but the extinction distance is not given, then this phase factor cannot be calculated.

Therefore the work of E Johnson et al. t84l is of limited use for making detailed

comparisons between experiment and theory for particular metals, bubble radii and gas

pressures.
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The extinction distances used throughout this chapter are shown in table 5.2. (The

temperature dependence of the extinction distances results from the Debye-Waller factor in

equation 2.4).

ott (n (at 0 K) (n(at 293 K) Enrt'

t-l l lt 291.0 297.6 0.07

t2001 324.5 334.3 0.08

t2201 439.3 466.4 0.1

Table 5.2: Extinction distances, in A, and anomalous absorption ratios for Cu and 100 keV
electrons. The anomalous absorption ratios are taken from the literature, as discussed in
chapter 2.

An image of a bubble is strongly affected by many parameters. In this chapter the

in-focus contrast at the centre of an equilibrium bubble embedded in a copper matrix is first

characterised. Starting with section 5.1, the parameters varied, in the order in which they

are presented, are foil thickness, excitation error and depth of the bubble below the surface

of the foil. In section 5.2 contrast profiles through the centre of a bubble are investigated.

The parameters varied ate, in order, defocus, bubble radius, strain (i.e. bubble pressure)

and diffracting vector. ln section 5.3 contrast profiles through the centre of a stack of

equilibrium bubbles are investigated. The parameters varied are foil thickness, number of

bubbles in the stack, excitation error and defocus. In section 5.4 the theoretical results in

earlier sections, for a helium bubble, and the conclusions drawn from them are tested in a

wider range of metals. Experimental through-focal series are compared to theoretical

profiles in section 5.5 to determine the radius of a bubble. Facetted cavities are treated in

section 5.6 with experimental images and profiles being compared to simulations in order to

determine the geometry and size of a cavity. In section 5.7 superlattice spots are simulated

to probe the number of bubbles in a domain (a patch of bubbles which are locally ordered).

The appearance of a stack of bubbles is even more complicated but has crudely been used to

probe the three-dimensional nature of the ordering between bubbles.
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5.1.2 In-Jbcus Contrast at the Centre of an Equilibriurn Bubble

It is easiest to first consider how the contrast at the centre of the image of an

equilibrium bubble depends on the thickness of the foil. This section calculates this

behaviour and the later sections will consider how the contrast of the entire image of the

bubble varies with this and other parameters.

The in-focus intensity at the centre of the bubble image is not affected by the

displacement field so the intensity in the centre will be the same for images of bubbles and

voids of the same size. Ingram's calculations [169] for this case show the behaviour typical

of this intensity, Voids of large radius (= 80 A) are considered in that paper whereas the

interest in this thesis is centred on small bubbles of = l0 ,4, radius.

The in-focus contrast" at the centre of an equilibrium bubble image, for an excitation

enor (w) that is zero (i.e. the crystal is tilted to exactly satisfy the Bragg condition), is

determined by the thickness contrast alone. The variation in the intensity of the undiffracted

transmitted beam as a function of depth, z, below the foil surface is shown in the uPPer

curve of figure 5.1. (Altematively the curve gives the thickness dependence of the intensiry

of the [000] transmitted beam on the exit side of a foil). An electron passing through the

centre of a bubble of diameter, d, will have a path length in the metal of.z - d, where z is the

foil thickness. Away from the bubble image an electron will have a path z. This allows the

difference between the intensity at the centre of the bubble image (U and the background

intensity at points outside the bubble image (Iu) to be found for foils of different thickness.

The lower curve in figure 5.1 shows this difference in intensity (L - Iu) as a function of foil

thickness z for the particular case of a 20 A diameter bubble with (, = 3343 A'

(corresponding to strong two-beam conditions with g = [200]). (Figure 5.1 would be at

least approximately true for g = 1220J and a bubble diameter scaled, by the ratio of the

extinction distances, to 27.9 A. fne only differences will be due to the different anomalous

absorption ratios for the two g values as shown in table 5.2).
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Intensity vs Thickness

Figure 5.1: The top curve shows the in-focus, w = 0.0, bright-field, intensity of the
undiffracted [000] transmitted beam as a function of foil thickness. The thickness is in units
of the extinction distance and the intensity is assumed to have unit magnitude at the top
surface of the foil. Note that the intensity is oscillatory with minima at thicknesses

corresponding to odd-integer multiples of half the extinction distance. The lower curve is
the in-focus, bright field, contrast at the centre of the image of a 20 A diaureter equilibrium
bubble versus the thickness of the foil. In this case the intensity is expressed as the
difference t - h where I" is the intensity at the centre of the bubble image *C,Iu is the
intensity outside the (isolated) bubble image. This curve shows that the intensity at the
centre of a bubble is strongly dependent on the thickness of the foil.
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Ashby and Brown [87 and 188] described qualitatively the contrast at the centre of

the image of a cavity. However, for equilibrium bubbles containing helium gas and having

sizes typical of those found in the present case the results of figure 5.1 are more useful both

because they are quantitative and because they are based on parameters that are more

appropriate to this case. The lower curve in figure 5.1 peaks in places where the original

intensity versus z curve is varying the most rapidly. It shows that the conhast in an image

of a bubble can oscillate from white (central image intensity above background) to black

(central image intensity below background) as the thickness of the foil increases. Note that

for w = 0.0 the intensity does not depend on the depth of the bubble below the foil surface.

The upper curve in figure 5.1 would have a periodicity of 6e if the beams were not

attenuated by inelastic scattering. Because of attenuation the upper curye peaks at 331.5 A,

slightly before one extinction distance is reached.

5.1.3 The Dependence of the Contrast at the Centre of an Equilibrium Bubble on the

Excitation Enor and the Depth

If the specimen is tilted so that w * 0 the diffraction becomes dependent on the depth

of the bubble because the scattering matrix for the bubble is no longer the identity matrix.

Consequently, the diffracted intensity depends on the wave function at the top surface of the

bubble. The dependence on the depth of the bubble is strong for large bubbles as shown in

figure 10.19 of Hirsch et al. [67]. The results for a 20 A diameter equilibrium bubble are

shown in figure 5.2 for g = [200], three states of focus (in-focus, 2500 A overfocus and

5000 A overfocus) and six values of w. As can be seen in the figure the intensity is

strongly dependent on the depth of the bubble below the foil surface. In some combinations

of defocus and tilt (i.e. w) the intensity is altered enough by the depth to cause the image of

a bubble to oscillate from black to white. As w is increased the period of the oscillations in

the transmitted intensity decreases while the amplitude initially increases before decreasing

until, at w = 15.0, the curves have very little dependence on depth.

Figure 5.3 shows the rocking curve of the diffraction from an isolated equilibrium

bubble (a rocking curve is a plot of the transmitted intensiry of any beam versus angle

(measured by w = ss6s) as the crystal is tilted away from strong two-beam conditions). To
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Figure 5.2: The intensity at the centre of the image of a 20 A d.iameter equilibrium bubble as

a function of the depth of the bubble below the foil surface for w = -1.0, 0.3, 1.0, 2.0, 3.0

and 15.0 and g = [200]. The electron energy is 100 keV and the foil thickness is equal to

1.75 18. The three figures axe for: (a) in focus, (b) 2500 A, overfocus and (c) 5000 A

overfocus. Note the suppressed zero on the vertical scale. The curves show that under

some conditions a bubble can change from black to white and back again as the depth of the

bubble changes. The same symbol has been used in the curves for w = -1.0 and w = 15.0

but the curves are readily distinguished because the curve for w = 15.0 is more rapidly

oscillating.
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tind the etTect of a bubble on the intensity, two electron paths are compared. The first path,

in sequence, is down through a 30 A column of crystal, a20 A,equilibrium bubble and a

further 30 A of crystal. The second path is down through a column of crystal of height 60

A. Rs expected, nt w = 0, the intensity at the bottom of the bubble column is the same as

that at the bottom of the perfect crystal column. Away from w = 0 the dashed line,

representing the bubble column, exhibits strong dips in the intensity. These dips are a

manifestation of an effect that is more pronounced when the electron beam passes through

more than one bubble. The discussion of the origin of these dips is deferred therefore until

section 5.3 where the case of several bubbles in a stack is considered. Note that the dashed

curve is roughly symmetric about the origin and converges to the usual background

intensity of the solid curve at large values of w.

When w = 0 the scanering matrix of the bubble (equation 2.32) isjust the identity

matrix as can be seen by inspecting the Howie-Whelan differential equations derived in

chapter two. The intensities are then the same for the two different columns. However, if

w is non-zero the curves are different because ofthe phase change ofthe diffracted beam

relative to the transmitted beam in the column that passes tbrough the bubble.

5,2 Isolated Bubbles - Dependence of the Contrast on Defocus,

Strain and Diffracting Vector.

5.2.1 Defocus and Bubble Radius

The puqpose of this section is to investigate the accuracy of measuring bubble radii

from images using different methods, including the following: (i) the radial distance to the

first minimum or maximum in the Fresnel pattern (the circular fringe pattern which is

superimposed on the bubble image in defocussed intensity profiles); (ii) the radial distance

to where the contrast varies most rapidly; (iii) the radial distance to where the contrast is

rapidly varying and is significantly different from background. How the measured radius

varies when using these different criteria is investigated for a single bubble containing

helium gas at equilibrium pressure, using the faster method of simulation. Note that the
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different criteria for measuring the radius are used on the same intensity profiles, i.e., the

method of simulating the intensity profiles is not in any way affected by the choice of

criteria for measuring the radius of the bubble. The contrast depends upon several different

variables - defocus, strain and diffracting vector - and is calculated for strong two-beam

conditions. Since it is the defocus that affects the intensity profiles most significantly, the

emphasis in this section is on calculating defocussed intensity profiles.

In order to calculate defocussed intensity profiles it is necessary to know the phase

of the wavefunction at the exit surface of the crystal. The T and S beams of the analytical

solution of chapter 2 can be found as a function of the reduced radius p. (T is the amplitude

of the undeviated beam and S is that of the diffracted beam with vector g). Head et al. [82]

transform the T and the S variables in the Howie-Whelan differential equations into a

simpler form by multiplying them by different phase factors. Consider the phases of the T

and S beams that pass through a column that intersects the bubble and the T and S beams

that pass through a column of pure crystal only. It can be shown that the effect of this

transformation on these beams is to reproduce the phase factor of Riihle and Wilkens

(equations 2.84 to 2.86). The phase of the wavefunction is correct as the effects of the

transformations used to derive the Howie-Whelan differential equations have been included.

To calculate the defocussed profiles the wavefunction is substituted into the integral

of equation 2.89. Note that the derivation of this equation requires that the wavefunction

diffracted from a bubble is cylindrically symmetric which means that this formalism can

only be used when the displacement field is zero. The zero-order Bessel function that is a

factor in the integrand of equation 2.89 is calculated using a NAG library routine on a

Silicon Graphics computer. The integral is evaluated numerically by a Runge-Kutta process

and the speed of the programs is such that interpolation of the results is not needed even

where large images or profiles are involved. Riihle and Wilkens [83] assumed a particular

form for the wavefunction to derive analytical results for the defocussed profiles and, as a

result, they did not have to resort to using numerical integration. Gruschel [85-87],

however, adopted the more general numerical integration approach used here.

The phase change in the wavefunction that occurs as a result of the change in

refractive index between matrix and bubble (equivalent to a change in mean potential as

shown in equation 2.76) must be known in order to calculate a defocussed intensity profile.
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The mean potential for copper was calculated as 22.64 volts using the 0 keV electron

scattering factors of Doyle and Turner [134]. Since the mean potential for helium is

calculated to be 1.76 volts, the difference in mean potentials is 20.88 volts. This value is

more than twice the value that E Johnson [84] used in his simulations and so a greater phase

change will occur if the electrons pass through bubbles of the same radius. In practice

significantly smaller bubbles than E Johnson used are considered in this thesis so the phase

change is less. Note that the convention in the present work is that mean potentials are

taken with a positive sign whereas in the work of Riihle and Wilkens the mean potentials are

taken as negative.

Part of the motivation for calculating intensity profiles is to enable accurate bubble

radii to be measured from through-focal series. The criteria mentioned above for measuring

the bubble radius are used in sequence in the next three sections with some comparison of

the relative merits of the different methods being made as the discussion progresses, but

with the main conclusions being drawn in the fourth section. In copper, gas bubbles

containing helium introduced by ion-implantation typically have a radius of 10 A.

Defocussed intensity profiles for bubbles with radii in the range 5 A to 15 A have been

simulated and the results shown in figure 5.4(a) as a function of reduced radius. In this

figure the contrast is weak for small bubbles of radius less than about 10 A. Hence for

these bubbles it is more difficult to measure the bubble radius experimentally than it is for

larger bubbles using any of the criteria mentioned above. However, images that have a

weak contrast can have their contrast increased by image processing on the computer or by

the choice of exposure times and grade of photographic paper in the darkroom. Increasing

the contrast in this way makes it easier for the eye to see the structures but the process will

not affect the position of the first minimum or maximum in the intensity profile. At the

overfocus levels chosen the image of a bubble may be white or black at the centreo

depending on the degree of defocus.
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5.2.I .l Measurement of the Bubble Radius using the Position of the First

Minimum or Maximum in the Intensity Profile

Figure 5.4(b) shows the bubble radii that would be measured using the radial

distance to either the fust maximum or minimum in the Fresnel fringes as the criterion for

the radius of the bubble. Note that two criteria for measuring the bubble radius are

compared in the same figure. Rtihle and Wilkens [83] used the same criteria to measure the

bubble radius of larger equilibrium bubbles with similar results being obtained. The

experimental results using this method would be accurate if the positions of the first

minimum or maximum in the intensity profiles occurred at p = 1. For a defocus of 4000 A

and a bubble radius of 10 A the radial distance to the first minimum is about P = 0.48 and to

the first maximum about p = l.l. For the same defocus but a bubble of radius 15 A the

first global maximum occurs at p = 1.4 but the program that detects the maxima will detect

the first maximum at p - 1.2. The maximum at p = 1.2 is a local maximum and not a

global maximum. The earlier bumps in the curve for a 15 A buUble are only inflexions and

not local maxima or minima.

Several conclusions can be drawn from figure 5.4. In the plot for an overfocus of

4000 A, the first minimum occurs at a position that is less than the actual bubble radius for

bubbles with radius larger than about 8 ,{. For example, a bubble of radius 10 A has the

first minimum at about 5 A whereas a bubble of radius 6 A nas the first minimum at about

10 A. Images of small bubbles have minima that give values for the radii that can be in

error by 2O0Vo. Using the position of the maximum at an overfocus of 4000 A gives even

more inaccurate results for small bubbles but better values for larger bubbles. If a large

overfocus is used the first minimum lies closer to the centre of the bubble than the first

maximum over most of the range of bubble sizes. The profiles suggest that the

conventional wisdom that bubbles are dark in overfocus only applies for bubbles with a

radius larger than about I2.5 L.

The intensity profiles assume that a coherent plane wave is incident on a bubble. In

practice, beam divergence, finite filament size, and ripples of the current and voltage in the

high voltage supply (causing a spread in the energies of the electrons) will cause a loss in

coherence. This will damp out the Fresnel fringes (i.e., the size of the oscillations will be
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reduced and they will not extend as far from the bubble). Fresnel peaks further out than the

first maximum and minimum in the intensity profiles have not been studied here as these

peaks are not observed experimentally.

To find out whether the inaccuracy in determining the bubble radius is large just for

the particular degrees of defocus included in figure 5.4 or whether it is a general

characteristic, further plots were obtained for a bubble with a radius of l0 A over a wider

range of defocus values. Figure 5.5 shows a selection of these plots. For underfocus

values from -9000 A to -2000 A, and overfocus values from 2500 A to 9000 A, the image

of the bubble appears white at the centre. For smaller values of defocus the intensity at the

centre of the image of the bubble oscillates from black to white.

The variation in the positions (p) of the frst minimum and maximum in the intensity

profiles as the defocus changes is shown in figure 5.6. The central region from -1000 A to

1000 ^4. has been omitted because in this region the contrast rapidly oscillates. The

oscillations occur for a defocus (i.e., p) near zero because of the rapidly oscillating nature

of the Bessel function in the integrand of equation 2.89 in this region. The discontinuities,

such as that in the minimum at a defocus of -1800 A, occur when peaks in the intensity

profiles disappear or reappear. The peaks are usually about 30Vo to l00%o different from the

ideal value of p = l. For example, at a defocus of -8000 A. tfre maximum occurs at a p of

O.7 (i.e., the position of the peak is 30Vo out). The most accurate results from a single

micrograph would be obtained by using the position of the first maximum in the intensity

profiles for large underfocus values.

The plots of the positions of the first maximum and minimum versus bubble radius

show that the values deduced from BF micrographs using the above criteria can be

significantly different from the actual value for bubbles of radius 5 A to 15 A. Equation

2.89 for the intensity profiles depends on p (a parameter proportional to defocus and

inversely proportional to the square of the bubble radius) and on the wavefunction in

equation 2.90. To anain a given value of B, a larger value of defocus is required for a larger

bubble than for a smaller bubble. This explains why the curves tend to move to the right

(i.e., towards larger radius) as defocus increases in figure 5.4. The detail of the curves

does change because the wavefunction which appears in the integral in equation 2.89 is not
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a function of p. Hence the inaccuracies of bubble radii measurement found for a l0 A

radius bubble across a large range of defocus will occur for all the bubble radii considered.

In assessing the significance and generality of these results it should be pointed out

that the defocussed intensity profiles are altered if the depth of the bubble is changed

because a defocussed profile depends on the phase of the wavefunction at the exit surface of

the crystal. This is not so when simulating in-focus profiles as in section 5.1.

5.2.1.2 Measurement of the Bubble Radius using the Position of the First

Maximum in the Modulus of the Slope in the Intensity Profile

The third criterion investigated for determining bubble radius is based on the ability

of the eye to detect rapid changes in intensity with position in the image. The radius is taken

as the radial distance from the centre of the image to the position where the modulus of the

slope of the intensity, ldUdrl, has the maximum value. This criterion, suggested by Johnson

[189J, is similar to that used by Rtih]e and Wilkens [83] but differs from it in ignoring the

contrast. The results for a defocus of 4000 A are shown in figure 5.7. A comparison of

these results with those of figure 5.4 (b) shows the values of the radius found with this

criterion are generally less than those found using either of the two criteria based on the

Fresnel fringe pattern. Notice also that there is only the one discontinuity in figure 5.7 (at r

= 10.6 A; compared with three in figure 5.4 O).

5.2.1.3 Measurement of the Bubble Radius using the Position of the First

Maximum in the Visibiliry of the Intensity Profile

In considering the measurement of the radius of a spherical inclusion, Ashby and

Brown took as the radius the distance from the centre of the image to a point, in a direction

parallel to the operative diffraction vector, where the intensity differed from that of the

background by a certain amount (not necessarily the maximum or minimum amount).

Riihle and Wilkens [83] extended this approach by including also the slope of the intensity

profile. They took the visibility V to have the particular form:
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(5.1)

where I is the intensity, Is the background intensity and r the distance from the centre of the

defect. The radius is taken as the distance from the centre of the image to the point in the

profile where V has the largest value. The criterion of Rtihle and Wilkens in using the

maximum in V as a measure of the bubble radius was investigated here and the results are

presented in figure 5.8. The results show that the positions of the maxima are not

significantly closer to p = 1.0 and that three discontinuities occur.

5.2.1.4 Conclusions

The results obtained in this thesis show that using the position of either the first

minimum (or maximum) of the Fresnel fringe pattern gives rise to a bubble radius that is

often out by more than 1007a. The position, and hence radius, varies discontinuously with

defocus. Taking the radius as the radial distance to the point in the profile, closest to the

centre of the bubble, where the maximum in the magninrde of the slope of the intensity

curve occurs also gives discontinuities. Although the peaks in V give a value for p which is

closer to the ideal value of I for a bubble that has a radius of 5 A or 15 A, a bubble of

intermediate radius has a p that is still significantly different from 1. The slope criterion in

figure 5.7 gave the smoothest variation of the effective bubble radius with defocus. The

criteria used in figures 5.7 and 5.8 give a value for p closer to I than the Fresnel fringe

position criterion does over more of the defocus values tested. Cavity volume fractions

calculated from bubble radii based on any of the criteria could be in error by factors of eight.

The criteria used above to measure the bubble radius rely on measuring the position

of the first maximum or minimum in some function of the intensity profile. Any criteria

other than those investigated explicitly here will also have to be functions of the intensity

and the derivatives of the intensity. Because intensity profiles through experimental images

are noisy, it is difficult to use methods that rely on higher order derivatives of the intensity

profiles. Hence the methods investigated above are thought to be among the best available.
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5.2.2 Non-zero Displacement Field

So far the discussion has centred on cavities or bubbles that are strain-free (R = 0).

lt is interesting to investigate at this point the image of a bubble having a strain field which

is non-zero (R * 0). The images formed by overpressured bubbles surrounded by a non-

zero displacement field will not have the cylindrical symmetry of the simulations considered

in the previous sections of this chapter. The out-of-focus intensity at the centre of an image

of a bubble is determined by a convolution over all real space (section 2.5). The non-zero

displacement field for bubbles that are not at equilibrium will affect this calculation and so

the results obtained in this thesis will be different from those of previous authors.

The image of a single bubble having a non-zero displacement field and no nearby

dislocation loops can be simulated numerically using the program described in chapter six.

(The program is designed for simulating images from combinations of bubbles and loops

with non-zero displacement fields and can be run with the number of loops set to zero).

The gas overpressure in the bubble has been set to 10 GPa, which is approximately that

required for the punching of dislocation loops. The simulated in-focus image for a

diffracting vector g = [200] is shown in figure 5.9. The non-zero displacement field around

the bubble (resulting from the overpressure) gives rise to asymmetrical black and white

lobes in the simulated image. Whereas the thickness contrast dominates the intensity inside

the bubble image, the non-zero displacement field dominates the intensity outside.

Simulated images for varying degrees of defocus have also been calculated for the

case of a non-zero displacement field. The defocussing of the wave function at the exit

surface of the foil can be approximated using a Fourier series as explained in the section in

chapter two on the multislice method. This approach is used here in preference to the

analytical expressions of Rtihle and Wilkens [83] or the numerical integration of Gruschel

[86]. The Fourier series approach allows images to be simulated for structures with suain

fields that are non-zero whereas the other two techniques arc restricted to the calculations of

the contrast of cavities that are strain-free and cylindrically symmetric. However, the

disadvantage of using Fourier analysis is that instead of using interpolation to magnify the

picture, larger arrays must be calculated if errors are to be avoided. Fourier series have

been used previously [88], but only for structures with a zero displacement field.

5 -28



-

404

Figure 5.9: In-focus image of bubble with non-zero displacement field, with diffracting
conditions as for figure 5.4. The bubble overpressure, the amount by which the pressure

inside the bubble exceeds equilibrium pressure, is 10 GPa. The overpressure creates a non-

zero displacement field around the bubble which is imaged up by the TEM as a pair of black

and white lobes. The thickness contrast dominates the intensity inside the bubble image,

whereas the non-zero displacement field dominates the intensity outside. The visibiliry can

be measured along a line at any angle to g in the image and is largest along a line parallel ro

g as g.R is largest for this direction.
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Figure 5.10 shows some defocussed images of bubbles. In athrough-focal series taken

over a larger range of defocus the size of the lobes will increase with defocus. For non-zero

values of w the black/white lobes will be reduced to a single black or white image.

5.2.3 Dffiacting Vector

The above profiles were all for the same g = [200] diffracting vector. To find out

whether using a different g (and therefore Eg) would affect the conclusions, intensity

profiles were calculated also for g - 10, 2, -21and are shown in figure 5.11. The plots

obtained are not significantly different from those of figures 5.5 and 5.6 so the conclusions

reached above for g - [200] should also hold for other diffracting vectors. Since the simple

black / white behaviour of the contrast expected for a change from overfocus to underfocus

does not stand up to scrutiny for B = [0] 1] (which is orthogonal to both of the diffracting

vectors considered), it is unlikely to do so for other beam directions.

5.3 Contrast From Bubble Stacks.

For the image of a single strain-free bubble, the difference in the intensity at the

centre of the image from the background intensity outside was calculated in section 5.1 and

figure 5.1. For ordered bubble structures the bubble lattice has a rational orientation with

respect to the host matrix. If the electron beam in the microscope is directed down a zone

axis in the metal foil it will also be directed down columns of bubbles. If the alignment of

the bubbles were perfect, a given stack of bubbles would project to form a single image.

For example, in the gas bubble superlattice in copper, a typical bubble radius is = l0 A and

the spacing between nearest-neighbour bubbles is = 50 A latong <011>). In this case, for

perfect bubble ordering, a single stack of bubbles along any zone axis would project into a

single image of radius 10 A.

In this section the in-focus intensity contrast at the centre of the projected bubble

image for a stack of strain-free bubbles is calculated using the same approach as was

adopted in section 5.1 for a single bubble. There the intensities of the electrons passing
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(a)

+oA

(b)

Figure 5.10: Defocussed images for the bubble of figure 5.9. The size of the lobes and the

structure of the Fresnel fringes vary with defocus: (a) defocus =339.4 nm and (b) defocus

= -339.4 nm (underfocus).
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rhrough two columns of metals were considered. The first column passed down through

the bubble and the second through perfect crystal at the side of the bubble. The results

obtained for a stack of strain-free bubbles in copper are shown in frgure 5.12. The bubble

radius and spacing are 10 A and 50 A, respectively.

In figure 5.12 the maximum contrast (i.e., at the intensity peaks) is found to

increase initially and then decrease as the number of bubbles in the stack is increased. The

maximum contrast stops increasing when the bubble column includes bubbles for more than

9.5 Es of its length. This occurs if more than eight bubbles are included in the stack for

[1 I 1] or [200] reflections or twelve bubbles for g - 10,2, -21.

Two ways of choosing the horizontal axis have been used. In plot (a) the peaks all

lie approximately one above the other. In this plot the "thickness" is the length of perfect

crystal that the bubble column includes. (The comparison column passing outside the

bubbles has the same length of perfect crystal). The axis of plot (b) and later plots have

"thickness" as the length of crystal plus the total "length" of bubble included in the bubble

column.

There is little point in simulating a stack of more than six bubbles as obseryation has

shown that stacks containing more than six bubbles are not likely to be found in practice.

Appreciable ordering of helium gas bubbles in copper seldom extends over a domain of

length greater than about five to six interbubble spacings. The three-dimensional ordering is

thought to be similarly limited in extent with each individual domain containing one of

several different possible variant bubble structures [45].

In frgure 5.13 rocking curves (curves of the variation in intensity with specimen tilt)

are presented to show how the intensity at the centre of the image of a stack of bubbles

varies for different numbers of bubbles in the stack. Again the bubbles are strain-free and

are regularly spaced so that the foil thickness increases in proportion to the number of

bubbles included. The rocking curve for a single bubble was given in figure 5.3. Large

dips in the intensity of a magnitude roughly proportional to the number of bubbles are found

in the curves. E Johnson explained the origin of these dips as due to transmitted electrons

which are multiply diffracted, being out of phase and so cancelling with the electrons that

are directly transmitted [84]. This occurs when the superlattice constant is approximately

equal to an integral number of effective extinction distances (the effective
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Tronsmitted Intensit.T vs w

Figure 5.13: Bright-field rocking curves for stacks of (a) two, (b) three, (c) four, (d) five
and (e) six equilibrium bubbles. The dashed lines are the rocking curves for a column
passing through the bubble stack. The sotid lines are the rocking curves for a column
passing through a thickness of crystal equal to that in the bubble stack. For example if the
stack contained three bubbles with a diameter of 20 A, the centes of which are separated by
50 A and the centres of the top and bottom bubbles in the stack are 40 A from the nearest

surface, then the foil is taken to have a thickness of 120 A lequal to four times 30 A).
Compared with the intensity in the column that passes through the perfect crystal, large
deviations can occur in the bubble column.

5 -37



exrinction distance is reduced from the usual extinction distance by a factor of {( l+w2) as

proved by the analytical solution to the differential equations of Howie and Whelan in

section 2. I ).

Gas bubbles are usually identified by their characteristic white appearance when in

underfocus and black appeafirnce when in overfocus. Plots of the contrast at the centre of

the image of a stack of bubbles for varying degrees of defocus show that this simple

interpretation breaks down (and, in fact for one bubble, holds over a restricted range of

defocus only), In figure 5.14 the break-down occurs as the number of bubbles in the stack

is increased. The curves all converge to the background intensity for large values of the

defocus as expected, although some converge to background from above and some from

below which means that the appearance of the stack of bubbles can be either white or black

depending on the number of bubbles. Stacks of more than five or six bubbles in them

appear as black when in underfocus and white when in overfocus except when a small

defocus is used (the reverse of the expected behaviour). In these plots the bubbles are

constantly spaced so again the foil thickness increases as the number of bubbles is

increased.

The same sort of plots are repeated in figure 5.15 with the crystal tilted away from

strong two-beam conditions. The conditions are a better model for micrographs of

superlattices because the crystal is always tilted away from two-beam conditions to remove

or minimise the contrast from any dislocations or strains that are present and thereby

enhance both the bubble images and the superlattice reflections in diffraction (section 5.4).

A choice of tilt giving w = 15.0 moves the plots away from the region where dips occur in

the rocking curves of figure 5.13. With this larger excitation error stacks of four, five and

six bubbles obey the simple criterion over a significant range of the defocus values (for

example compare the position of a minimum (at an overfocus around 2200 A) with that of a

maximum (at an underfocus of -2000 A)). Consider an operator that restricts observations

of the superlattice to defocus values from -3000 A to 3OOO A in a TEM in which the rapid

oscillations in intensity for small values of defocus are damped out by the effects listed in

section 5.2.L1. This operator will observe a change in the appearance of the bubble stack

from white to black as defocus is increased. The maximum transmitted intensity will be
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Transmined Intensity / Background Intensity vs Defocus
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greater than the background intensity by a factor of approximately 1.5 the number of

bubbles in the stack.

All the curves in figures 5.14 and 5.15 converge to the background intensity for

defocus values of large magnitude. Significant contrast occurs at moderate defocus values

and a TEM operator probably will take a photo in this region where the intensity vs. defocus

curves have a minimum in overfocus or maximum in underfocus. The peaks in intensity at

underfocus are much stronger than the peaks in intensity at overfocus. More detail can be

then seen in the overfocus pictures and the choice of exposure times is less critical than in

underfocus pictures. Most experimental micrographs are then taken in overfocus. Yet if an

operator is trying to determine the bubble density it is better to use underfocus conditions

since the contrast will be stronger. Intensity profiles for w = 0.0 and 15.0 are shown in

figures 5.16 and 5.17 respectively. In figure 5.17, for one bubble, as the defocus increases

the small black part in the centre of the image disappears to be replaced by a white part (a

maximum) that extends out to the bubble radius. Still considering one bubble, large

intensity variations (greater than about I0Vo) ftom the background do not occur outside

about p = 1.5. This behaviour is very plausible when compared with experiment. The

profile through a six bubble stack has many oscillations. The oscillations are larger and

extend over more of the profile than those from stacks containing fewer bubbles. Of course

beam divergence and coherence effects may damp out these oscillations to some degree.

The profiles for more than about three bubbles in a stack begin to approach the appearance

of the profiles for six bubbles in a stack (these profiles do not have the correct experimental

behaviour in that they display extreme variations in intensity along the profile and have a

strong dependence on defocus). Therefore the profiles suggest that the superlattice structure

does not extend into the foil for more than about three bubbles.

In figure 5.18 where the foil thickness has been set to 1.675 Eg, the image

intensities and contrast are then larger than the curyes for other foil thicknesses. This

behaviour is expected from figures 5.1 and 5.12. The shape of the curye for one bubble is

unaffected by the thickness change but all the other profiles are changed significantly. For

example a stack of t'wo bubbles has a large white peak in the centre of the projected position

of the bubbles in figure 5.18 at a defocus of 4000 A. Ho*errer, it has a central dark
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Figure 5.16: Intensity profiles (normalised to the background intensity) for stacks of
bubbles containing from one to six equilibrium bubbles, when imaged with w = 0.0 and g

= [200]. (The cunre for one bubble has smaller deviations from the background intensity
than the curye for six bubbles). The range of defocus is restricted. to 2000 A, 4000 A,6000
A and 8000 A. The foil thickness is varied according to the numberof bubbles in the stack.

The contrast predicted can be compared to the often quoted characteristic of a bubble that it
appears as white in underfocus and dark in overfocus.
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Figure 5.18: BF intensity profiles (normalised to the background intensity) for stacks of
bubbles containing from one to six equilibrium bubbles when imaged with a g = [200] and
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of bubbles is changed significantly by embedding these bubbles in a different foil thickness.
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minimum in in figure 5.16 at a defocus of 4000 A. tt is only for one bubble that the rule

"black when in overfocus and white when in underfocus" is obeyed.

5.4 Helium in a Range of Metals, and Other Gas-metal

Combinations.

The defocussed profrles from a helium gas bubble at equilibrium in a range of metals

were simulated to test the validity for different metals of the conclusions reached in sections

5.1 to 5.3. Table 5.3 shows some of the data required for the simulations. The electron

scattering factors are from Doyle and Turner [34].

Meal ar (A) f"(0=0)(A) Un(volts) Vn(volts) €zoo (A) anOrnn

AI 4.0s 5.889 0.0136 16.98 693.0 0.07

Cu 3.61 5.600 0.1920 22.64 334.3 0.08

Ni 3.52 6.s69 o.2t36 28.85 303.9 0.08

Au 4.08 10.573 o.2372 29.82 203.1 0.1I

Fe 2.87 7.165 0.2308 29.04 410.4 0.03

He (sas) 3.57 0.418 0.0140 r.76

V 3.02 8.305 o.2296 28.89 478.0 0.10

Cr 2.88 6.969 o.2220 27.93 42r.8 0.10

Mo 3.15 10.260 0.2500 3r.45 333.2 0.10

Table 5.3: Table of lattice constants, 0 keV electron scattering factors, 0 keV zeroth

Fourier coefficients of the potential, 0 keV mean potentials, 100 keV extinction distances at

room temperature and anomalous absorption ratios (anozoo) for g = [200] in a range of
metals.

The Al, Cu and Ni values for the anomalous absorption coefficient are the experimental

values of Head et al. [82]. The others are from the theoretical values of Humphreys and

Hirsch [40]. Any other metals in table 5.3 not mentioned in the above sources are

assumed to have an anomalous absorption ratio of 0.10 except helium for which the

extinction distances and anomalous absorption ratio are irrelevant. The combination of He
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and Cu results in a relative phase change of the beams passing through the bubble to those

outside the bubble of about l2o. Other helium and metal combinations give similar phase

changes.

Figure 5.19 shows intensity profiles for the same set of imaging parameters in a

range of metals. The profiles are insensitive to the metal type. Therefore the conclusions

reached above for helium in copper are probably valid for other metals. Hydrogen does not

have a mean potential sufficiently different from helium to warrant further simulations

either.

5.5 Comparison to Experimental Through-focal Series

In this section the position of the maxima and minima in the Frsenel fringes in an

experimental through-focal series of a small bubble that is assumed to be at equilibrium is

compared to theoretical simulations to deduce the radius of the bubble. Experimental

through-focal series can be recorded in two ways in the electron microscope facility at

Victoria University. One is to take a sequence of photos by allowing the TEM to vary the

defocus automatically between photos. This has the disadvantage when comparing the

results to theoretical profiles that the response of the photographic emulsion to the number

of incident electrons is non-linear. To match profiles it might be necessary to adjust the

theoretical profiles to account for the contrast and exposure of the micrographs. A second

way to record a through-focal series is to store the images on a computer disk. The images

can be digitised by a Gatan image intensifier or wide angle camera. This second method has

the advantage of having a more linear response to the image intensity. Image profiles can be

matched without having to adjust the theoretical profiles to account for extraneous imaging

parameters. This leaves defocus as the major experimental variable. On-line acquisition of

images has the disadvantage that they can be noisier than an electron micrograph taken in the

same time and have a limited resolution. This is more of a problem in high resolution

microscopy than in the lower magnification techniques used in this thesis. At high

magnifications the length of time required to acquire an image with a high signal to noise

ratio may be too long. The image probably will drift significantly during this time.
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The experimental motivation for producing theoretical plots is to attempt to find

accurately the actual bubble radius from an experimental through-focal series. Experimental

profiles ar any angle across a selected bubble can be obtained from a digitised image using

the " extact " command of semper. By matching these experimental profiles or images

against theoretical ones covering a range of radii, the actual bubble radius may be

determined. In figure 5.20 the behaviour of the effective bubble radius across the range of

defocus values is matched to determine that the actual radius of the bubble is approximately

12.5 t0.5 A. The comparison or matching has been done by eye but could have been done

more quantitatively by cross correlating theoretical and experimental profiles or images

using the semper "t,f " (cross-correlation) command t1901.

5.6 Facetted Cavities.

Images of facetted cavities have different characteristics from images of spherical

cavities [88]. For example, Foreman et al. [88] found that the positions of the maximum

and minimum in the intensity profiles are less sensitive to the defocus. Instead the positions

are more likely to become centred on the edge of a facet.

Large facetted cavities occur in thin copper and aluminium foils under certain

irradiation conditions. Figure 5.21 shows large, facetted cavities that have been found in

helium-irradiated aluminium. Notice how the Fresnel fringes change with defocus from

having a white boundary inside a black boundary to black inside white. The cavities in

copper can be created during irradiations at about 300 oC and those in aluminium at room

temperature. At these temperatues both vacancies and interstitials are mobile. The cavities

have sufficient perfect crystal material between them that the experimental images can be

matched to simulations without having to consider how the cavities might overlap or

interact.

A set of plane normals (ni) and distances (hJ to these planes from the cavity centre

can be used to define the facets of a cavity. A point on the foil surface has a position vector

14 = (x, y, - the depth of the cavity) in a coordinate system where the origin of the

coordinate system is at the centre of the cavity. A point on the exit surface of the foil has a
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Fresnel fringe positions around a bubble

-r.0 104 -5.0 r03 0.0 r00 5.0 103 1.0 104 1.5 104

defocus (A)

Figure 5.20: Positions of the Fresnel fringes (in Angstroms) versus defocus for

experimental micrographs (squares) and simulations (crosses). The specimen is a result of

a low-dose helium implantion (see chapter seven for more details). Experimental profiles

have been taken through a bubble in a through-focal series. The positions of the Fresnel

fringe peaks have been matched to theoretical positions obtained from simulations on a

range of bubble sizes at various values of the defocus. To minimise the noise, each

experimental profile from which.the data were taken is the result of an average over twenty

parallel line scans through the bubble. However the profiles are still noisy enough to create

discontinuities in the profiles and foil any attempts to measure the bubble radius using the

criterion involving the slope of the intensity profile. The nominal magnification printed on

the micrographs by the TEM was used to convert the positions of the maximum and

minimum in the profiles into distances. The images were taken with g = [200] and B =

tOl ll. The other parameters needed for the theoretical profiles are difficult to determine

experimentally. The theoretical fit to the experimental data was done for a foil thickness of

1.675 Eg, a bubble depth of 1.675t21g, a25 A diameter equilibrium bubble, an electron

energy of 120 keV and w = 0.0. The experimental position of zero defocus was assumed to

have an uncertainity of t 2000 A.
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-

40 nm

-)

g

(c) Overfocus

Figure 5.21: Part (a) shows an experimental five member through-focal series of cubo-

octahedral cavities in aluminium showing t l l l ) and { 100} facets. Parts (b) and (c) show

one member (at overfocus conditions) of similar through-focal series taken at other beam

directions. The beam directions and diffracting vectors are: (a) B = [0, -1, 7] and g =

[200], (b) B - [5, I, t2land g = [1, -3, -l], (c) B = [-6, -5, 13] and g = [3, -1, 1]. The

photos are taken at two-beam conditions near simple poles. The g's of the simple poles

have been marked on the photos. The defocus increments by 400 nm between members of

the same through-focal series.
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position vector of rs = (x, y, the foil thickness minus the depth of the cavity). Any facet

normal, ni= (D^, ny, rz), defines a plane a minimum distance hi from the cavity centreo

which allows any z coordinates on the plane to be calculated from the standard expression

for the equation of a plane:

-_[h' -(n**+nvy)]
nz

(s.4)

The dot products of the n; with 14 and rs sre calculated separately. The maximum dot

products correspond to the planes with n most closely aligned with ra and rs respectively.

In calculating the wave function the z coordinates where a column can intersect with some

of the top and bottom planes of the cavity is required. Initially the program assumes that the

relevant planes (given r4 and rs) for a column (extending from r4 to rB) are the ones for

which the dot products are maximum. This can be incorrect, so more dot products, ni.r;, r

= (x, y, z\, are calculated where z is found from equation 5.4 above. If any dot product has

rr;.r ) h; (s.5)

r then lies outside one of the other facets of the cavity. This plane with its corresponding z

replaces the initial plane and the loop over n1 is continued until the correct z coordinates are

found.

The facetting of the cavities was deduced by producing a supercell for a cubo-

octahedral particle using the program of Flueli U86]. In figure 5.22the cell is projected in

the required beam directions using EMS (a software package described in chapter four). A

cubo-octahedron is the same shape as the Brillouin zone of a bcc crystal.

Simulations of facetted cavities with no surrounding displacement are shown in

figure 5.23. The simulations use the analytical solutions to the Howie-Whelan differential

equations of chapter two. Strong two-bam conditions are used to image and simulate the

cavities, in contrast to the kinematical conditions on which Foreman et d. [88] based their

conclusions. A comparison of figure 5.23 (a) and figure 5.21 shows that a TEM image of a

facetted cavity does not faithfully reproduce the facetting or size of the actual cavity

structure. In particular the facets on the top of the cavity stand out strongly in the image but

are positioned away from the real position of these edges (the real positions are nearer to the
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centre of the cavity image). Some of the parameters used in the simulation of figure 5.23

were chosen by rial and error, with simulations that were an unconvincing fit to the

experimental micrographs being discarded. The thickness of the foil is difficult to determine

experimentally because of the absence of a feature such as a long straight dislocation that

threads through the foil in all the experimental micrographs.

Because of the high density of cavities it was found to be impossible to find the

same cavity in all three through-focal series taken at different beam directions. To deduce

the h; of a cavity only the one through-focal series can be matched against simulations at a

time. In figures 5.24 and5.25 an experimental through-focal series is matched against

simulated intensity profiles. The simulated intensity profiles have large minima and maxima

that result from the thickness contrast (they are therefore independent of the defocus), and

superimposed upon these minima and maxima are the Fresnel fringes. The separation of the

minima and maxima which result from thickness contrast and those that result from the

effects of defocus is not so easy on the experimental intensity profiles. The final size of the

cavities deduced from the simulations is less accurate than the parameters (obtained by trial

and error) used to obtain the theoretical image profiles.

5.7 Superlattice Spots

In this section a simulation is made of the superlanice spots obtained in diffraction

patterns taken when the diffraction aperture selects out a structure containing ordered

equilibrium bubbles.

A selected area diffraction pattern (SADP) is the power spectrum of the

wavefunction, and includes all the beams diffracted by the specimen. This Fraunhofer

diffraction case is treated in many texts on physical optics [9U. The power spectrum of a

micrograph is different from the SADP as the image loses the phase information contained

in the wavefunction. Some attempts have been made by others to retrieve this phase

information by image processing a though-focal series using the weak phase object

approximation WPOA [161]. However, the WPOA is not applicable to imagesofgas
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Figure 5.22 (b) (caption on following pa-ee)
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(c)

Figure 5.22: Projections of a cubo-octahedral particle: (a) B = [0, -1,7], (b) B - [15, I,

121 and (c) B = [-6, -5. l3]. The appearances of the particle at different beam directions

show reasonable similarity to the facetted appearance of some of the particles in the

experimental micrographs of figure 5.21.

5-60



(ii)

(iv)

(v) (vi)

Figure 5.23 (a) (caption on following page)
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(b) 

-) 

g

(c) +9
Figure 5.23: Simulations of cubo-octahedral particles in aluminium: (a) B = [0, -1, 7], w =
2.1 and g - [200], (b) B - [l5, I, lzf,w = 0.0 and g = [1, -3, -1], (c) B = [-6, -5, 13], w

= 0.0 and g = [3, -1, l]. The foil normal is approximately [001] as the tilts on the specimen

holder were approximately zero when at B = t00ll. In part (a) the foil thickness is equal to

2.7 Eeand the cavity depth is equal to 1000 A lfor consistency amongst the simulations the

lengths used in part (a) have been transformed using the beam directions and foil normals

for parts (b) and (c) before these latter simulations are calculated). The common simulation

parameters are an electron energy of 120 keV, and an hi of 164.5 A for the { 1l 1} planes

and an fu of 190 A for the { 100} planes. In part (a) the defocus is (i) -600 nm, (ii) -200

nm, (iii) 0 nm (iv) 200 nm, (v) 600 nm and (vi) 1000 nm; in parts (b) and (c) the

simulations are in focus. Because the [200] reflection extinction distance in aluminium is

much larger than it is in copper, the images corespond to nvo-beam conditions even though

w has a large value. The appearance of the simulations at different beam directions show

reasonable similarity to some of the images of particles in the experimental micrographs of
figure 5.24.
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Figure 5.24 (a) (caption on page 5 - 66)
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Intensity scon, defc6us= 1000 nm

o)
Figurc 3.24: (a)Expedtnental and O) simulabd intensitypnofiles, parallel to g tbrough the

oenee of the cavity anow€d in figure 5.23(a). The simulations have the samo parametexs ae

those used in figurs 5.23. In the expcrimental intensity pn-ofiles, from the nominal TEM

magnification, l@ units on the hoiizontal axis is equal to 5.5 nm. The experirnental

inte,nsity has been scaled to lie in therange 0 to 255.

seon oxis (nrn)
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Positions (in nm) of the maxima and minima in the Fresnel fringes

A 2W (hfac=19.0 nm)

+ 28 (hfac=|9.0 nm)

I O IW (hfac=Ie.O nm)

' O lB (hfac=19.0 nm)
'4....-.---.+--'---"*--"+ X 28 (nm)

x E

tr 2W (nm)

O O lW (nm)

I lB (nm)

o
--*'l

0 500 1000
defocus (nm)

Figure 5.25: Comparison of the positions of the experimental maximum and minimum in
the profiles of figure 5.24 to theoretical profiles (labelled for a specified value of Mac where

hfac is the minimum distance from the centre of the cavity to a facet.). The "W'indicates
that the data is for a maximum in the intensity profile (i.e. a point that is above the

background intensity (white)). Similarly the "B" indicates that the data is for a minimum in

the intensity profile (i.e. a point that is below the surrounding intensity (black)). The "l" or

"2" in front of the "W" or "B" indicates that the data is for the fust or second maximum or

minimum in the intensity profile respectively. The small oscillations in the simulated

profiles in figure 5.24 (b) have been ignored because the experimental profiles are too noisy

for these oscillations to be detected. The large variation in the peak positions with defocus

shows the utility of the simulated profiles as an aid to deducing the cavity radius.

bubbles so deconvoluting the real structure from a through-focal series is impracticable.

Instead an image simulation and matching approach is necessary.

The use of the column approximation was discussed in section 2.1, and is valid for

images where the beam coherence and resolution are limited. It is assumed that the

wavefunction at the exit surface of the crystal after it has undergone scattering from bubbles

is accurately calculated by using the column approximation and two beams (as discussed in

sections 5.2 and 5.3). The superlattice spots can be then modelled by calculating the power

spectrum of this wavefunction. The central spot and the superlattice spots surrounding it

o
T
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are determined under bright field conditions whereas any spots around g can be calculated in

the same way using a dark field wavefunction. The region between the Oth and gth beam

will not be accurately modelled unless the Fourier transforms of the BF and DF

wavefunctions are added with the appropriate phase factors. Any spots modelled in this

way do not contain information about electron waves multiply scattered by bubbles in

different columns lying close together laterally. However, because the Bragg angle is equal

to about 1o, the diffracted wave does not pass into another column within the small foil

thickness, provided the column width is greater than about 0.01 6s [75] (about 4 A in

copper). Therefore an electron wave cannot be scattered off nvo bubbles separated laterally

by a superlattice constant which is typically, about 65 A.

The superlattice spots occur because the diffraction aperture is placed around many

bubbles with some ordering and the wavefunction at the foil exit surface has some low

frequency periodicities. Ignoring the dependence of the diffraction from a bubble upon the

depth of the bubble below the top surface of the foil, the wavefunction at the exit surface of

the foil is crudely proportional to a projection of the three-dimensional positions of the

bubbles upon the foil surface. The superlattice spots are evidence for ordering in three

dimensions only if they change as expected for a crystal when the specimen is tilted.

Previous attempts to model the superlanice spots (Stoneham [192] and Cook et al.

I l93l) calculated the structure factor of posnrlated bubble structures. This is equivalent to

taking a two-dimensional Fourier transform because the change in electron wavevector

caused by scattering is approximately perpendicular to the incident electron wavevector.

The calculation of the structure factor is approximately independent of the vertical position,

parallel to the beam direction, of the bubbles. The z+omponent of the wavevector does not

affect the power spectrum at strong two-beam conditions. This is because every part of the

wavefunction at the exit surface of the foil has the same z-comllonent of the wavevector and

the same distance to travel to the screen. The structure factor approach is a kinematical

theory so it is not as accurate as taking the power spectrum of the wavefunction calculated

from a dynamical theory.

Stoneham [192] used the fact that the structure factor of an arrangement of identical

bubbles is equal to the structure factor of a single bubble times the structure factor of the

positions of the bubbles. Similarly, in the dynamical approach used here it is not necessary
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to calculate the wavefunction scattered by every bubble in the structure. Instead a sum is

taken over the different types of bubble wavefunctions in the image. Each sum adds terms

containing the Fourier transform of the wavefunction due to a bubble of a certain size and

depth. The wavefunctions can be multiplied by the Fourier transform of the positions of

bubbles that give this same wavefunction to give the contribution of all the bubbles of a

similar rype to the superlattice spots.

A Fourier transform of a wavefunction that is rotationally symmetric is

V(k) = L"ll *f O f 2rikpcos(o)pdpdo. (5.2)

The Fourier transform will have rotational symmetry too so that only one angle needs to be

included in the integration. Equarion 5.2 simplifies to

(5.3)

Equation 5.3 can be integrated numerically as were the earlier, similar expressions of Riihle

and Wilkens [83] (reproduced in chapter 2).

Stoneham }921found that the structure factor of a bubble decreases quickly in

reciprocal space as k moves away from the origin. This explains why only first order

superlattice spots are found even in well ordered specimens. Figure 5.26 shows the power

spectrum of a dynamical wavefunction, calculated using two beams and for various values

of the crystal tilt. It is similar in shape to that of Stoneham ll92l. Tilting can be used to

maximise the height of any superlattice spots relative to the central maximum. Stoneham

[192] found that the power spectrum converges to zero at a wavevector roughly inversely

proportional to the bubble radius. This roughly corrcsponds to the position of the zero in

the Bessel function in equation 5.3 as a function of the bubble radius. To get second order

superlattice spots small, widely spaced, bubbles are required. For example, in figure 5.26,

second order spots would only be observed for values of k significantly less than 0.04 A-t,

corresponding to the superlattice constant being much greater than 50 A.

A SAD aperture with a radius of 30 pm will select a region of I pm radius on the

specimen, containing about 100,000 bubbles if the bubbles are spaced 50 A apart. This

vG) = #[ *,o rp'Js(2rkRop')dp'.
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corresponds to a square of about 300 by 300 bubbles. Since there is no long range order in

the bubble positions, it is reasonable to assume that the bubbles lie in locally ordered

domains with the positions of the domain centres being random. A Fourier transform or

structure factor of the random domain positions is a delta function at the centre of reciprocal

space. The intensity of the superlattice spots is determined by the structure factor of just

one domain if all of the domains have the same underlying symmetry. Any variations in the

bubble positions from the ideal lanice sites within a domain are probably random and could

affect the intensity and width of a superlattice spot. One-dimensional profiles through the

SADP of an fcc crystal containing bubbles can be generated without knowing the position

of the bubbles pelpendicular to the direction of the profile. Assuming that the bubbles are

spaced about 50 A apart on a square lattice and that the domain is n by n bubbles in lateral

extent, the profiles in figure 5.27 result. Damping of the power spectrum causes the peaks

to occur slightly before 1(50 A) so that estimates of bubble lanice constants from

superlattice spots will be overestimates by about 5Vo for the worst case (n=2) in figure 5.27.

As n increases the superlattice peak becomes sharper and small subsidiary

oscillations appear. This can be understood by analogy with the well known situation of

diffraction by n-slits. Based on the width of the superlattice spots, the simulated curve for

n = 2 is the most similar to experimental micrographs. Two effects other than domain size

that could contribute to the width of superlattice spots in a practical case are: (i) random

displacements of bubbles from ideal lanice sites within individual domains, (ii) timited

coherence of the electron beam. The beam coherence is such that the phase of the electons

scattering from different bubbles is probably not the same. A filament in a TEM is of frnite

size so that regions on the top surface of the specimen separated by a distance of more than

the coherence width are scattering electron waves that are not in phase. The coherence

width is of the order of tens of Angstroms and varies with the beam current density, type of

ftlament used etc. 1162l. In calculating the power spectrum of the wavefunction scattered

from a set of bubbles the diffraction intensity from separate patches of bubbles ought to be

added. In practice the effects of incoherence have to be neglected and, instead, the Fourier

transforms are added in phase, as was done in modelling defocussed intensity profiles in

sections 5.1 to 5.3. Figure 5.28 shows some simulated two-dimensional SAD patterns.

The occurrence of subsidiary oscillations as n increases cannot be seen but the increased
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(c)

Figure 5.28: Theoretical SAD patterns for (a) n=2, (b) n =3 and (c) n =4 and azero strain

field helium bubble in copper. The foil thickness is equal to 1.75 Ee,g= [200] and w =
0.3. These images are two-dimensional versions of figare 5.27 .
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two-dimensional SAD patterns. The occrurence of subsidiary oscillations as n increases

cannot be seen but the increased peak sharpness is noticeable. A comparison of the

simulated and experimental SAD panerns to experimental photos again shows that the case

of n = 2 gives the best match.

5.8 Summary/Conclusion

An image of a bubble is strongly affected by many parameters - foil thickness, depth

of the bubble, bubble radius, diffracting vector, excitation error, bubble pressure and

defocus level. Furthermore, the image changes according to whether it is a single bubble

which is being considered, or a stack of bubbles. Previous work has looked at some of
these factors only, whereas all of them have been considered in this work, as indicated in

the table.

Author Thickness Depth Radius diffracting

vector

excitatiol

error

Pressure Defocus Stacks

Ruhle and

Wilkens

t'83r

o o o o

Foreman el

aI f88'l

o o o

Ashby and

Brown

n87. l88r

o o o o o o

E. Johnson

et el tR4l

o o o o

Stevens o o o o o o o o
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A library of simulated images of an isolated bubble is presented to show the effects

of systematic changes in these parameters. It is difficult to summarise the changes when the

parameters are varied. It is clear, however, that the bubble images are not always dark in

overfocus and white in underfocus, as would have been expected from the "conventional

wisdom". The image of a stack of bubbles is even more complicated but has crudely been

used to probe the three-dimensional nature of the ordering between bubbles. The results of

comparing the simulations with experimental micrographs indicate that vertical stacks of

more than three bubbles probably do not occur in practice.

Four criteria were used to determine bubble size. Using these criteria, the ratio of

the apparent bubble size to actual size is often significantly different from l, sometimes by

more than 100 per cent. When plotted as a function of reduced radius, the ratio shows

dependence on bubble radius and defocus, and is discontinuous. Comparisons between a

through-focal series of bright-field micrographs and simulated intensiry profiles provide the

best means of estimating the radius of a single bubble. This is a laborious process and even

then the radius obtained may be subject to large uncertainties. The bubble could be

embedded in any one of a range of metals but the same techniques are still applicable. This

image matching approach has also been applied to a facetted cavity.

The presence of superlanice diffraction spots is an indication of the ordering

of the gas bubbles in a specimen into a superlattice. These diffraction patterns have been

simulated using a dynamical theory rather than the kinematical approach favoured by past

authors [193]. The simulations give a more quantitative measure of the degree of local

ordering into domains and suggest that the bubble ordering in the gas bubble superlaftice is

of limited extent. However, it has been found that the effects of beam incoherence may be a

limiting factor on extracting more information on the ordering of bubbles from SADP's

when the bubbles are of the spacing typically encountered.
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CHAPTER 6. SIMULATIONS: COMBINATIONS
OF BT]BBLES AND LOOPS

6.1 The Simulation Program

6.1.1 Introduction

This section (6.1) describes a program used to simulate the diffraction of electrons

from structures containing loops near bubbles while section 6.2 presents the results

obtained by running the program. Figure 6.1 shows the main features of the program in a

flowchart; these features are briefly introduced in this paragraph and more detail is given in

the rest of the section. Inputs are used to specify the geometry of the structure and the

diffraction conditions, and are used initially to calculate the Fourier coefficients of the

crystal potential and the other parameters shown in the second block of figure 6.1. In

brackets next to the pararneters are the equations used to calculate these parameters. Several

coordinate systems are required in the calculations - for the picture, the foil, the individual

bubbles and loops, and the angular dislocations making up the loops - and any particular

vector will need to be referred to more than one coordinate system. Transformation

matrices are calculated from direction cosines and translation vectors (third block of figure

6.1). After this the numerical integration proper is donc. Alternatively the geometry of the

structure that is used in the program can be checked by calculating the displacement field

due to any combination of loops and bubbles on a column in the sample, on a plane, or

within a certain volume. A simulated image is typically calculated as a 41x41 array and is

then read into a Semper picture. The picture is then displayed and magnified four times by a

Semper interpolation routine to a picture 164 columns by 164 rows in size before a

hardcopy is produced. Details on the simulation system are presented in section 4.4.
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Calculations from inputs:
relativistic wavelength (2.3)
g.b and the scattering matrix
modulus of the electron

wavevector in the crystal (2.10)
relativistic correction factor
incident beam direction to give

the required excitation error
electron scattering factors using

the Mott-Bethe formula (2.1)
structure factors (2.4)
Fourier coefficients of the

potential (2.5,2.7)
extinction distanqes (2.14)

Data:
number of atoms in the unit cell
atom type
atom positions in the unit cell
accelerating voltage
approximate beam direction
foil normal
diffracting vectors
foil thickness
accuracy paftlmeter
mean potential in the bubble
beam on which the aperture is centred
X-ray atomic scattering factor

fitting parameters
Debye-Waller factors
imaginary part of Us
Burgers vector,loop normal and

vector through a vertex of
each of the loops

depth of the bubble
Poisson's ratio of the matrix
excitation error for a beam
length of the picture
radius of the bubble
strength of the strain around a bubble
number of sides to the dislocation loops
distance from the centroid of the loop

to any of its vertices
vector parallel to one side of the picture
whether or not to calculate another picture

- for batch processing

Set up the coordinate systems for each
loop, the bubbles, the foil and the picture:

Construct the picture system using B and
norm - i.e. calculate the direction cosines
so that the program can rotate the crystal
axes into the picture system

Calculate the direction cosine arrays to
convert from the picture coordinates into
the OXYZ system of each loop and from
OXYZ into the coordinates of each

angular dislocation used to construct a
loop and to convert the displacements
found back into the OXYZ system (3.26-
3.32\

Rotate vectors such as b into the various
coordinate svstems

Figure 6.1: A flowchart of the program used for simulating images. The inputs are read in from a
file when the program is executed, then some calculations are made which include the setting up of
the coordinate systems. A loop is then made over the rows and columns of an array in which the
picture is to be stored. During this looping procedure a numerical integration is made down each
column of the picture. 
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l,oop over the picture,
integrating down the columns
using a Runge-Kutta process
(2.18)

Calculate R, on a column or a slice
through the foil or in a
three-dimensional image, due to
any one combination of the loops
and bubbles

1 ",lttI column, a slice or a I
I three-dimensional arrav I

\
\

\
\-

I View the results urJ
I SEMPER - 

|

Oqtnuq the_rcsults to laser printer,
polaroid, 35 mm filn or tiermal
print€r

6-3



6.1.2 Culculation of the Scattering Matrices

It was easiest to convert the flowchart into code that could be compiled and executed

by extracting blocks of code from existing programs written by other authors to simulate

images of structures different from that considered in this thesis. The "TCBED " program,

written in Fortran by Zou and Spence of the Physics Department at Arizona University and

obtained by electronic mail from Nestor Zaluzec at Argonne National Labs, was heavily

modified to do the simulations. Calculations of the matrix A are made using the equations

of Self et al. [59] (these are the same as those outlined in chapter two) and were tailored to

bubbles in copper by using the scattering factors for X-rays in fcc copper. This technique

was used instead of the renormalisation technique [194] of the original "TCBED " program.

Some of the code in the original program was deleted because there was no need to compute

the eigenvalues and eigenvectors of A or to output Convergent Beam Electron Diffraction

(CBED) images as is done in the original program.

6.1.3 The Numerical Integration

After the scattering matrices have been calculated the differential equations are

numerically integrated using a fourth order Runge-Kutta process with adaptive step width

control to satisfy a specified accuracy criterion. Code for the procedure that perforrrs the

numerical integration was adapted from the "rlon" and"deriv " subroutines in the "onedis

" and "twodis " programs of Head et al. [82]. The "deriv " subroutine first requires the

evaluation of the right hand side of equation 2.38 with a subroutine being called to evaluate

the resultant displacement field due to atl of the defects. This new program is much slower

in producing images than their "onedis " and "twodis " programs, partly because of the

complicated nature of the displacement field and the need for repeated multiplication of

matrices. The main reason for the slowing of the program is because the generalised cross-

section construction of Head et al. is inapplicable and so it is necessary to integrate the

differential equations down every column of the picture. Simulations of isolated loops

produced by the program were checked against published results 162-641with good

agreement always being obtained.

6-4



6.1.4 The Displacement Field

In the model of Seiu [119] for dislocation loop punching the loops are prismatic but

in the model of Greenwood, Foreman and Rimmer [] the loops are assumed to be circular.

The displacement field due to an hexagonal loop is described in Saldin et al.162-641, Yoffe

[65] and in chapter three. Angular dislocations are connected up to form an hexagonal

loop and the resultant displacement field of the loop is found by addition of the displacement

fields due to the individual angular dislocations. Saldin et al.162-641 also constructed

approximately circular loops by including a large number of angular dislocations in a

polygonal loop but showed that the differences betrpeen simulations using the displacement

field of an hexagonal loop and the displacement field of a circular loop are small. On the

basis of this work, hexagonal loops are used in this thesis.

To calculate the displacement field it is necessary to know how many loops are

likely to be in the structure. A typical superlanice structure in copper has bubbles with a

radius of about 10 A and with a spacing between nearcst neighbour bubbles of about 50 A.

Considering the volume of the bubble and therefore the number of copper atoms displaced

by the bubble as it grows, it is estimated that approximately twelve dislocation loops with a

radius of 10d2 A and a Burgers vector of the 0.5<110> type will be punched out along the

nearest neighbour <110> directions. However, in practice there probably are more loops

of a smaller radius. Section 7.1 should be consulted for other complications on this simple

estimate of the number of loops that will be punched out by a bubble of this size.

To give the displacement fields for structures that could occur in specimens

containing a superlattice of gas bubbles, in this thesis the displacement fields due to the

individual loops and bubbles have been added- All the loops are assumed to be pinned in

position around a bubble by the Peierls banier and by the strain due to the other bubbles and

loops. The displacement field that pins the loops in position is assumed not to affect the

contrast significantly.
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6.15 The Program Geometry

Each loop has associated with it a coordinate system described by Saldin t6Z-641.

To perform a simulation it is necessary to calculate nrelve matrices that convert coord.inates

from the coordinate system of the foil into coordinate systems with an X axis antiparallel or

parallel to each of the twelve loop normals (n). It is also necessary to translate the picture

coordinates (i.e. the coordinate system in which the axes are parallel to the edges of the

picture) into a system with a local origin at the centroid of each loop before the contribution

of this loop to the displacement field is calculated-

The program geometry was checked by generating rwo-dimensional projections of

the structure (as shown for example in figure 6.2). Every element in a three-d.imensional

flTay reprcsenting the coordinates near the stnrcture was tcsted to see whether it was within

the radius of the bubble or if it was close to any of the segments of the dislocation loops. If
an element was close to a segment then its value was set to zero (correspond.ing to a black

point in the pictue) - otherwise it remained at255. The array was then displayed on the

screen of the computer using the "solid " command of Semper. A frame around. the edges

of the figure (and the cube in figure 6.2c) represents the top and bottom surfaces of the foil
and the limits of what is simulated in the picturc. A foil ttrat is anificially ttrin has been used

so that the structure is easier to see.

The orientation and magnification of a simulation can be specified by the inputs to

the program. The length of side of a pictrue is always 160.A, unless otherwise stated. To

specify the orientation of the images the program uses a vector called norm that is aligned

with the horizontal edges of the picture, and points from left to right. This vector is chosen

so that a simulation is correctly aligned with the stereognm for whatever beam direction (B)

is being used. Stereograms for some simple B's are shown in figure 6.3. Thompson

tetrahedra are also useful for understanding the geomeury of the structure (Hirrh and Lothe

l97l). For an fcc material, Thompson tetrahedra represent the, <l l0> d.irections (i.e. the

directions of the gtide planes) by their edges and the 4ll> directions by lines from the

centre of their faces (the (11 1) planes) to their vertices. The <211> d.irections are useful

because a dislocation with a Burgers v@tor of [110] can dissociate into two partial
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Figure 6.2: Two-dimensional projections of a stnrcturE containing a bubble and twelve
dislocation loops which are directed along <110> directions. hojections have been made in
several directions of the three-dimensional stnrcture. That is, a threedimensional array has
been mapped into several nvo-dimensional mays.
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dislocations with Burgers vectors of the 4lL> type. Some retrahedra are drawn on figure

6.3 in the correct alignment with the stercograms.

6.2 Simulations

6.2.1 Introduction

No work has been done previously to simulate images of dislocation loops nexr ro

bubbles with the parameters relevant to superlanices of gas bubbles containing helium. In

this section this novel structure is simulated, the applicability of the rules for interpreting an

isolated defect are tested and whether the contrast of the simulated strucnrre (i.e. a collection

of defects) can be separated into its component defects is also tested. In addition the

structure is simulated under weak beam conditions [89 and 901 as the higher resolution

grven by weak beam imaging may be useful when studying defects at the densities thought

to be present in materials that have been ion-implanted. A complication is the increased

difficulty of interpreting these higher resolution pictures.

Simulations are done over a range ef impoftant parameters for imaging superlattices

of gas bubbles near dislocation loops. The simulations are compared to simulations when

no loops are Present. In ttris way the imagrng conditions that give the maximum difference

between the two different stnrctures (loops present or not present) is found- This difference

is significant and a method for experimentally checking the presence or absence of
dislocation loops is proposed in section 6.3.

Authors of the papers cited in the introduction of section l.l obtained several

general rules for interpreting the appearance of large isolated defects which imply that it is
not always necessary to resort to time-consuming computations of images. Experimental

micrographs can be sometimes used to determine the vacancy or interstitial nanre of a loop

(section 4.5). Also the loop's normal (n) and Burgers vector (b) can be found.. These

pifameters have been obtained for dislocation loops that are large and. resolvable in section

4.6.
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However, these techniques are not applicable to small dislocation loops, especially

when the small loops are near other defects. The most obvious contrast effect characteristic

of a small loop that does not have opposite sides that can be distinguished (as for example

the sides of the loops in figure 4.12 could be distinguished) is the pair of lobes sunound.ing

the defect. One lobe is black and the other is white. A vector I from the centne of the black

lobe to the centre of the white lobe is usually defined. The simulations of other authors [5g-

661 show how this vector varies with respect to the projection of b upon the image plane,

with the diffracting vector g, with n and with the foil normal F etc. For edge dislocation

loops I is parallel to b.

For edge loops the small effects that result from using isonopic instead of
anisotropic elasticity theory are thought to make the neglect of anisotropy in this work a

reasonable approximation. Eyre et al. [58-61] matched experimental pictures of dislocations

in anisotropic copper with theoretical simulations using isotropic elasticiry theory. Ohr

[195] has computed images of dislocation loops in anisotropic copper using both

anisotropic and isotropic elasticity theory. That paper showed that the effects of anisotropy

are a skewing of the black/white lobes and a rotarion of l.

6.22 Simulations of Individwl Defects

It is useful to see what part of the contrast in the simulation of a bubble and its

twelve dislocation loops is due to the individual defects (i.e. due to single loops or to rhe

bubble alone). To see this, it is possible to limit the program to calculating the diffraction

from some of the defects only. In figure 6.4 each d.islocation loop has been individually

simulated in isolation (figurc 6.4a) and alongside an overpressuredbubble (figure 6.4b),

for g - [200] and B = [00U. Tables 6.1 to 6.3 summarise the dependence of the image of a

defect on the geometry of the stnrcture. By using the g - [200] column in table 6.1 and the

B = [001] column in table 6.2 the image of a d.islocation loop in figure 6.4 can be compared.

in table 6.3 to the rules for the image t1rye of Eyre et al. [58], as discussed above. It can be

seen that the contrast due to the loops in figure 6.4 varies with g.b. Considering now a

bubble at equilibrium pressure, it has no srurounding displacement field so thar a TEM

image of the bubble is determined by thickness contrasl The author has found that if a loop
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Figrrre 6.a (a)
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Figure 6.4 (a)
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(b)

Figrre 6.4: Simulations in BF of each t1101 tlpe loop in isolation (a) and next to a bubble

that has an ov€,qtressure of 10 GPa (b). The imaging parameters are: B = F = [001]' a

bubble depth of 1.875 €g, a foil thickness of 2\r,w = 0.0, an electron energy of 120 keV

and g = [200] = norul The simulations should be compared to the nrles for interpreting the

images of loops reproduced in table 6.3; loops (i) to (viii) exhibit type 3 contrast and the

remaining loops exhibit typ€ 1 contrast. The parametcrs of the loops arq (i) b = 0.5[1, -1,

0landg.b=1;(ii)b=0.5[-1,-1,0]andg.b=-1;(iii)b=0.5[-1, 1'0]andg.b=-1;(iv)b

= 05[1, 1,0] and g.b = 1; (v) b = 0.5[1, 0, -U and g.b = 1; (vi) b = 0.5[-1, 0' -U and g.b

=-1;(vii)b=0.5[-1,0, 1]andg.b=-1;(viii)b=0.5[1,0, 1]andg.b=1;(ix)b=0.5[0,

l, -U, g.b = 0 and the angle between n and B is 45"; (x) b = 0.5[0' -1, -U, g.b = 0 and the

anglebetweennandBis45";(xi)b=0.5[0,-1, l],g.b=0andtheanglebenpeennandB

is 45o; (xii) b = 0.5[0, 1, 1], g.b = 0 and the angle between n and B is 45o.

6- 14
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with a non-zero g.b is simulated alongside a bubble which is at equilibrium pressure then

rhe conrrast in the resultant image is dominated by the contrast due to the loop. This does

not agree with the experimental observations, in which large populations of bubbles have

been found but the presence of dislocation loops is difficult to confirm, so in this chapter

most of the simulations are of more realistic structures in which the bubbles are

overpressured.

+g

+2b [200] tozot wol pnl u 111 [111] [2201 lzc,rt

iTror -l I -2 I I 0 0 -l
r l0l I I 0 I 0 I 2 I

iTort -1 0 -1 -l 0 -l I -2

I l01t I 0 I -1 0 0 I 0

toJr t 0 I 1 -2 I -l -1 -1

t0l 1l 0 I -l 0 0 0 I -1

Table 6.1. g.b values for the six edge on dislocation loops punched on the [110]
glide planes.

+B

+n t-l l lt t00l I0l lt
[110] 900 900 600

[1 l0] 35.30 g0' 600

ll0rl 900 45' 600

ll0l l 35.30 45', 600

101 1l 90" 45' 900

[011] 35.3" 450 0"

Table 6.2. Angles between n and B for the six edge dislocation loops punched on the
[l 10] glide planes.

Table 6.3. Image classifications for edge dislocation loops in an fcc or bcc crystal.
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Image type Diffractin s conditions Predicted imase

I g.b = 0 and angle between n and

B=0to45o
Invisible or weak

black/white lobes

2 g.b = 0 and angle benveen n and B = 90" 'Butterfly' contrast

J lg.bl*0but<1 Simple black/white lobes

4 lg.bl> I Black/white lobes with

interface struchrre



6.2.3 Simulations of Punched-out Dislocation Loops

Figure 6.5 shows how the twelve loops punched by an overpressured bubble will

appear when imaged with the parameters listed in the figure caption. The loops have

different g.b, as shown in table 6.1, and are imaged with different B = F values. Table 6.2

shows how the angle between the beam direction and loop normal varies. The changes in g

and the other parameters just mentioned will alter the image characteristics according to the

rules in table 6.3. The simulations are aligned with the stereographic projections in figure

6.3, i.e. the vector pointing from the left-hand bottom corner to the right-hand bottom

corner of any simulation is parallel to the vector on the extreme right of the stereogram (for

the appropriate value of B). The direction of the Burgers vectors of the dislocation loops

can be located on figure 6.3 and matched up with the black/white Iobes in figure 6.5. The

defects in figure 6.5 have been placed in the middle of the last so-called "layer" in the

crystal, as discussed in the next section.

6.2.3.1 The Inyer Structure

The image simulations of other authors revealed the dependence of I on the depth of

the defect [187, 188 and 196]. The vector I reverses its direction (i.e. the lobes reverse

contrast) as the depth of the defect increases, leading to the concept of a layer structure.

Saldin [63] among others explained the origin of this using a kinematical theory. The layer

structure or Ashby-Brown rules [l87 and 188] are shown in figure 6.6 for an isolated

defect for the cases of bright field and dark field imaging. The analysis of other authors

[58-6U also revealed the transition zones betrveen these layers and the range of validity of

these rules, for both edge and non+dge dislocations. If a defect lies more than about 1.25

extinction distances from either foil surface in a foil with a thickness of more than about

three extinction distances, then the lobe stnrcture will not appear, and instead a dislocation

will be imaged up in BF as a black dot with a fairly uniform intensity. The variation of

g.l with distance of the defect from either foil surface is the same for bubbles and for

interstitial dislocation loops. This is because the different types of defects both have an

antisymmetric (with respect to opposite sides of the defect) derivative of g.R with respect to
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Figure 6.5 (a)
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(b)

Figure 6.5: Simulations of a bubble and all npelve loops for various combinations of B, F
and g in (a) BF and O) DF. The common imaging parameters are: a foil rtrickness of 2 fr,
B = F, an electron energy of 120 keV and a bubble depth of 1.875 Ee. Ttre B and g pairs

ars: (i) 3 = [001] and g =f2, -2,01; (ii) B = [00u and g = [200]; (iii) B = [011] and g =
[200]; (iv) B = [011] and g = [0, Z, -Z);(v) B = [111] and E = fZ,_2, 0l; (vi) B = [011]
and g = [-1, 1, -U. The geometry can be understood by comparing the images to the
stereograms and tetrahedra in figure 6.3.
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Figure 6.6: The layer structure for interstitial dislocation loops and bubbles. The defect

must lie in a layer that is within about 1.25 extinction distances of the surface for the lobe

structure to appear. The direction of I varies as the depth of the defect is moved bet'ween the

layers. The detail in this figure is a function of the foil thickness. Transition layers occur in

the interface areas near the edges of the layers indicated in the figure; in the transition layers

an I cannot be defined. In a thick foil, e.g. a foil that is 5 (, thick, only the first three or

four layers near either surface will occur, i.e., a defect near the centre of the foil will not be

imaged as a pair of lobes.

the depth z through the crystal. Vacancy loops have a symmetric g.dR/dz and therefore an I

at any one depth that is opposite to that in figure 6.6. However, tle image of a bubble is

affected significantly by the thickness contrast and not just by the strain or displacement

field contrast. A problem associated with assigning an I to a bubble is the effect of having
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an excitation error that is non-zero. Yet another factor is the change in mean potential

between the matrix and the gas bubble. A value of w that is non-zero will affect the in-

focus contrast due to the bubble, but the change in mean potential will change the out-of-

focus contrast only and not the layer structure of the in-focus images. As a consequence in

some cases an I cannot be assigned to the bubble.

Figure 6.7 shows that the dependence of the image on the depth of the defects for a

structure comprising twelve loops and a bubble is more complicated than the layer structure

of an isolated defect. The individual defects have displacement fields of similar magnitude

and these fields overlap considerably, so it is sometimes difficult to define an I for each.

Nor is it possible to always define an I for the structure as a whole. Consider the contrast in

a region of the simulation in which a defect is projected onto the plane of the image. The

contrast in this region can be significantly different than if the defect were imaged in

isolation. If an I for the entire structure is assigned, the layer structure is similar to that

expected for a bubble. This is because the combined g.dR/dz is approximately

antisymmetric, the result of the displacement fields of a loop and the bubble being in

opposite directions in the region benpeen them but in the same direction elsewhere. The size

of the resultant black and white lobes does vary between layers but the appearance of the

images when the structure is at the same distance from the top and bottom surfaces

respectively is very similar. For example, figures 6.7 (a) and (0 are similar (although

reversed) as are figures 6.7 (b) and (e). However, when the entire structure is within the

third and fourth layers (figures 6.7 (c) and (d)) the idea of a layer structure for the entire

structure is not really valid. Although the images show the expected reversal, they cannot

be said to show distinct black and white lobes.

Figure 6.8 shows the more complicated appearance of the structure in the interface

or transition zone between layers. It should be noted, too, that increasing the thickness of

the foil whilst keeping the structure in the last layer does not affect the resultant image

much, The layer structure and the geometrical symmetry of the defect structure significantly

reduces the required amount of computation. The defect structure is symmetrical so often

two g's with the same lgl, excitation erroro B, and F, but different orientation will give the

same picture, except the pictures are rotated relative to one another. Individual loops will

have their appearance changed significantly but the structure as a whole will look the same.
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Figure 6.7: The layer stmcture in the images of a system of one bubble and nrrelve loops.
TheimagingparametersinBFarc:B=F=[00U,g=[200]=norillranelectronenergyof
120 keV and a foil thickness of 2 €g. The depth at which the bubbles lies is (a) 0.125 (r,
(b) 0.5 €e' (c) 0.875 Ee, (d) L.125 €e, (e) t.5 €e and (0 1.825 Ee. The existence of a tayer
stnrcture for imeges of the complicated nature considered here reduces the amount of
computation necessary to simulate an irnage when the structure occurs at many depths in ttre
foil.
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Figure 6.8: Simulations of trrelve loops and a bubble as the origin ar the bubble in the
structure passes through the transition layerregion. The imagrng pafiuneters in BF are: B =
[011]=Fandg=[200],w=0.0,anelectronenergyofl20keV,afoilthicknessof2(,
and a bubble depth of (a) 1.65 q,s, (b) 1.7 €e, (c) r.7zs 6g, (d) 1.25 (e) r.77s Eg and 19
t.8 Eg. As the loops enter the transition region between layers they lose their characteristic
black/white lobe appearance, instead appearing as black d.ots. This behaviour is similar to
that which occurs as w increases.
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The picture syrnmetry also does not vary much between layers as I will be rotated by 180'

between some layers and the picture simply rotates with l.

6.2.3.2 Simulations as the Bubble Pressure changes

Figure 6.9 shows the effects on the image as the bubble overpressure is increased

from zero through to 30 GPa. The actual pressure required for dislocation loop punching

has been estimated by Jones [54] using the model of Greenwood, Foreman and Rimmer

(GFR) tll. In this model, a bubble of radius l0 A wiil be at equilibrium if it has a pressure

of 3 GPa and requires an internal pressure of approximately 10 GPa if it is to punch out

dislocation loops. The more sophisticated model of Wolfer [02] requires that the bubble

has a higher overpressure than that predicted by the GFR mechanism []. Therefore, in the

simulations presented in this chapter the overpressure has been set to 10 Gpa instead of the

7 GPa predicted by Jones.

6.2.3.3 The appearance of a Superlattice

Simulations of two bubbles, with twelve dislocation loops around each bubble, are

shown in figure 6.10. Some loops punched by different bubbles are as close to each other

as either loop is to the surface of it's bubble. This proximity of the loops causes the

formation of a larger region of black/white lobes than usual. Consider the region where the

displacement fields of two dislocation loops on the same glide cylinder overlap

significantly. The Burgers vectors of the loops are equal in magnitude and opposite in

direction. Hence the displacement fields tend to cancel each other out and the intensity

between these loops is close to that of the background. In regions close to the core of either

dislocation loop the displacement field of this close loop dominates that due to the other loop

and the intensity is significantly different from background. This explains why in the

interface region between two bubbles the intensity is close to the background intensity.

However, then the intensity rapidly increases to give lobes of the usual contrast for a

dislocation loop.
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Figure 6.9: The effect of pressure on the image of a 10 A radius bubble. The overpressure

is: (a) o GPa, (b) 5 GPa, (c) 10 GPa, (d) 20 GPa and (e) 30 Gpa. As the bubble pressure

is reduced the black and white lobes surrounding the bubble are reduced in size and contrast

until the bubble at equilibrium pressure does not have any strain field surrounding it and is
imaged up only by thickness contrast. The imagrng parameters in BF are: w = 0.0 and an

elecfron energy of 120 keV with the bubble being positioned at the centre of the last layer in
the crystal.
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Figure 6.10: Simulations of trro bubbles, with hryelve dislocation loops around each
bubble, as the spacing benpeen ttre bubbles is varied. The imaging paramete* in DF are: B
= Flll = F, g = 12, -2, 0], a foil thickness of 2 [u, a bubble depth of 1.g75 Eg and an

electron energy of 120 keV. The lanice constant akes the values of (a) 40 A,, O) 45 A, (r)
50 A, (d) 55 A, (") 60 A and (0 65 A. when the lanice constant is equal to 65 A the nro
bubbles will be spaced about 45 A apart (= 65l.lZ,4.) on a <ll0> glide cylinder.
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The entire superlattice of bubbles and dislocation loops can be generated by

translating the structure simulated in figure 6.10 through the basis vectors of the bubble

superlattice. Hence the appearance of many bubbles and loops is shown by the

superposition of the simulations above. The appearance of the resultant in-focus image is

affected significantly if the projected positions of bubbles overlap with one another. When

the projected positions of loops overlap the contrast will be increased or decreased if g.In

is increased or decreased respectively. When the loops are close, the contrast will be

increased or decreased if g.IR is increased or decreased. How many loops overlap is

shown by ball models of the structure of bubbles and loops. This is discussed in more

detail in section 6.3.

Figure 6.11 shows the effects of increasing the spacing between the loops and the

bubble. The contrast due to individual loops is more readily distinguished as the spacing

increases. Figure 6.12 shows the effects of tilting the foil normal (F) away from B. As the

tilting occurs the contrast of the defects changes as they move into the transition layers and

the black/white lobes become assymetrical.

6.2.3.4 Simulations as the excitation etror changes

A more important parameter in the simulations is the excitation enor (w). This is a

measure of how close the crystal is to strong two-beam (w = 0.0) conditions. Figures 6.13

and 6.14 show the effects of changing w. The contrast of the loops in DF (figrre 6.13)

changes to white dots from the black/white lobe appearance of w = 0.0. This shows that it

is important to be at, or very near to, strong two-beam conditions if the loops are to be

imaged via the black/white lobes that they cause. In the images taken under weak beam

conditions (figure 6.14), six-beam simulations are used, requiring a different extinction

distance to that used in the two-beam calculations, as explained in section 2.4. \\eloops

are resolvable but the images are difficult to interpret.

6.2.3.5 O ut - of{o c us S imulation s

Figure 6.i5 shows simulated micrographs of one loop next to a bubble that are

defocussed by the approximate Fourier series method of section 5.2. These simulations are
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Figure 6.11: Simulations of nrelve loops and a bubble as the qpacing betrreen the loops
and the bubble is increased. The imagrns parameters in DF are: B = F = [llt], E=12, -2,
01, a foil thickness of 2lr, a bubble depth of 1.875 Eg and an elecnon energy of 120 keV.
The qpacing betrrecn the loops and the bubble takes the values of (a) ZS A,G) 30 A, (c) lS
A, (o) 40 A. and (e) 45 A. rne contrast due to the individual defects becomes more readily
distinguishable as the spacing benreen the loops and the bubbte incteases.6-n
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Figure 6.12: Simulations of nvelve loops and. a bubble as F is tilted away from B. The
imagrngpammetersinDFare:B=[01U,g=[200],afoilthicknessof269,abubbledepttr

of 1.5 Eg, m electron energy of 120 keV and norm = [0, 2, -2]. The other parameters are
(a) F = 10127, O) [013], (c) [0141, (d) [015], (e) t0t6l and (O t00U. As the tilt becomes
progressively greater (i.e. in going from (a) to (0) the black and white lobes become
assymerical.

6-28



Figure 6.13
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Figure 6.13: Simulations of twelve loops and a bubble as w is varied. The imaging
parametersinDFare:B=F=[0lU,g=[200]=rorlr,afoilthicknessof2Ee,abubble
depth of 1.875 €g ana an electron energy of 120 keV. s, takes the values of (a) -0.012 A-1,

(b) -0.010 A-r, (c) -0.008 A-1, (d) -0.006 A-t, (e) -0.004 A-r, (0 -0.002 A-t, (g) 0.002

A-r, (h) 0.004 A-r, (i) 0.006 A-r, 0) 0.008 A-r, (k) 0.010 A-1 and 0) 0.012 A-r. As w
incr€ases the black and white lobes characteristic of images of the defects taken under stnong

two-beam conditions begin to disappear until they are imaged only as uniformly dark or
brights'ots' 
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Figure 6.14: The figure shows simulations made under weak beam conditions. The
imagrngparametersinDFare:B=F=[0]U,g=[200]=noFrr,afoilthickness of Zlr,a
bubble depth of 1.875 €e, m electron enerry of 120 keV and sg = -0.0247 A-r. Si* beams
in a systematic row are included, wittr the imaging done with g = [200]. pan (a) shows one
loop next o a bubble, and part (b) shows six loops next ro a bubble. The images simulated
at weak beam conditions have a higher resolution than images taken at strong two.beam
conditions but are difficult to interpret because of their complicated nature and the similarity
of the images with the defocussed simulations taken at strong two-beam conditions that are
shown in figure 6.15.
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Figure 6.15: The figure shows defocussed simulations of a loop next to a bubble. The
imagingparametersinBFare:B=F=[0ll],g=[200]=Dorm,afoilthicknessofZEe,a
bubble depth of 1.875 €g, an electron energy of 120 keV and w = 0.0. The defocus values

are: (a) 1500 A, G) 750 A, (c) 0 ^A,, (d) -750 A, (r) -1500 A. The picrures are g00 .A
square (to avoid elrors in the approximate Fourier series method which has been used to
defocus the images) instead of the 160 A sqgare used in the other pictures.
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Figure 6.16: View of a system of loops (represented by small spheres) on <110> glide
cylinders and bubbles (large spheres), Iooking down B = [110]. This perspective can be

compared to the stereograms and tetrah*t"-t$*re 6.3.



of the structure imaged with a higher magnification in figure 6.4 (b) (i). The black/white

lobe of the loop extends up towards the top left hand corner of the images as shown in

figure 6.4 (a) (i). The simulations in figure 6.15 show that the contrast due to the bubble is

still comparable to that due to the dislocation loop. The loop also loses its characteristic

black/white lobe appearance when it is out of focus and the black/white lobes are blurred by

the Fresnel fringes. However the Fresnel fringes around the bubble are stronger and more

symmetrical than the fringes around the loop. The simulation in figure 6.15 probably

explains why experimental evidence for the presence or absence of dislocation loops has

been slow to appear. In a typical electron micrograph of a superlanice of gas bubbles that is

taken under out-of-focus conditions it is hard to separate the contrast due to the loops from

that due to the bubbles.

6.3 Summary: Best Conditions for Imaging Loops and

Prospects for Finding Loops.

kr this chapter simulations were performed of the images that would be obtained in a

TEM for a set of dislocations near a bubble. Section 6.1 describes the program used to

perform the simulations. The results obtained by running the program are presented in

section 6.2. \\e simulations show that the images from a stnrcture containing a set of loops

and bubbles is complicated. However, in some circumstances (as will be shown in chapter

7) comparison of the simulations with experimental micrographs can still be used to obtain

an estimate of the density of dislocation loops.

To observe dislocation loops it is desirable that as much intensity as possible is

associated with them and, furthennore, that their projection on the image does not overlap

with that of the bubble. The maximum spacing between loop and bubble is achieved when

the beam direction B is perpendicular to the loop normal n. The diffracting vector is then

chosen to give a large value for g.b. Tables 6.1 to 6.3 are useful for this pulpose.

Consider, for example, a loop with n parallel to [0, -1, U. A beam direction at right angles

to this is B = [011]. Choosing a diffracting vector g = [0, 2, -2] gives an image showing a

distinct loop of strong contrast.
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Another consideration is how many loops are projected onto one another for a

certain B. Choosing B, such that loops with middle of the range values for g.b all project

approximately into one image, may give stronger contrast than the image of (mainly) a

single loop having a large value of g.b. Ball models and computer-drawn projections of the

unit cell of the bubble superlattice and dislocation loops can be used to see how many loops

project into one image. Projections were done with the EMS programs of Stadelman [183].

Assumed positions of the dislocation loops and bubbles were used to generate an EMS

supercell file. Typical results are shown in figure 6.16. The bubbles and the loops are both

represented by spheres, the ratio of the radii being that given by the theory of dislocation

loop punching which was outlined in chapter one. A complication is that the position of the

image of a dislocation loop depends on the local curvature of the lattice planes and the

excitation error w. The ball models are a crude guide only in deciding how many images of

dislocation loops will project with a significant degree of overlap.

The simulations of section 6.2.3.5 show that strong black/white lobes characteristic

of dislocation loops can (rccur in in-focus experimental micmgraphs. Strong two-beart

conditions are required as shown in section 6.2.3.4. Thus, provided well-focussed images

and strong two-beam conditions are obtained, experimental micrographs can be used to

establish the presence of dislocation loops in a superlanice of gas bubbles. However, it

should be noted that either poor ordering or the presence of many loops could easily result

in the black/white lobes being smeared out in the image to form a continuous dark band that

can not be interpreted.
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7,1

CHAPTER 7: EXPERIMENTAL EVIDENCE FOR
DISLOCATION LOOPS NEAR BUBBLES

Variations in the Structure with Changes in the Dose, the

Depth and the Irradiation Conditions

7.1.1 The Densiry of Dislocation I'oops

7.t.1.1 Introduction

This section contains the results of experimental efforts to image dislocation loops in

ion-implanted metals. The section starts with a discussion of the experimental problems that

occur when imaging defects at high density. After this discussion an alternative approach is

introduced, that of preparing ion-implanted metals containing a lower density of defects in

which the dislocations can be easily seen. In section 7.l.2the experimental evidence for the

punching of dislocation loops is reviewed in the light of the results presented in this thesis.

The theoretical framework is also reviewed and a suggestion made as to what causes the

formation of a lower density of defects in specimens implanted to a lower dose. Building

on these observations of specimens implanted to a lower dose, a discussion is presented in

section 7'1'3 on the implications for specimens containilg a superlattice of gas bubbles'

The experimental observations in low dose irradiations suggest that diffusion related

processes are more important in the growth and ordering of bubbles than the punching of

dislocation loops.

7.1.1.2 Experimental Problems in imaging a High Density of Defects

Attempts to find dislocation loops in copper specimens containing superlattices of

gas bubbles by tilting to strong two-beam conditions were complicated by the diffrrseness of

the Kikuchi lines. A related Eoblem is that the diffracted beams are strong for a larger

range of specimen tilt than is typical for a pristine crystalline specimen. Figure 7.1 contrasts

the diffraction patterns in a copper specimen which is unirradiated and a copper specimen
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(ii)

Figure 7.1: CBED patterns in (i) inadiated and (ii) pristine copper. The Kikuchi lines in
the irradiated specimen are much more diffuse than those in the unirradiated specimen and

there are a larger number of reflections excited. This characteristic of irradiated specimens

makes controlled tilting of the specimen difficult.
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that contains a superlattice. In the irradiated specimen the Kikuchi lines are much fainter

and broader than those in the uninadiated specimen. The irradiated material contains such a

high density of bubbles and other defects that the crystallinity of the material has

deteriorated signifi cantly.

A superlattice of gas bubbles could be inserted into a crystal by cutting out spheres

of material and filling them with gas. In this model the material between the bubbles is still

crystalline and undistorted. If the bubbles were overpressured the matrix would be

strained. Consider the experimental situation when the TEM is in diffraction mode and the

electron beam is converged down to make the Kikuchi lines stand out more strongly than

occurs in SAD. The pattern of the Kikuchi lines varies markedly as the specimen is tilted.

It becomes difficult to tilt the specimen in a controlled fashion to follow the Kikuchi lines

from pole to pole in the crystal and to two-beam conditions. Figure 7.1 has been used in

this thesis to suppoft a claim that the crystallinity of the material has deteriorated

significantly due to the ion-implantation process. The material betrpeen bubbles may locally

have the strucrure of a distorted crystal, but on a larger scale the patches of crystal are

rotated relative to one another.

A similar transfer of intensity from the low order diffraction spots into the higher

order spots and the loss of intensity in the low order Kikuchi lines has been observed by

Wilkens and Rapps [97] in a crystal that had been heavily deformed by electron irradiation.

This transfer of intensity into what were weak reflections as a result of the electrons being

scattered by the deformation in the metal can be understood using the weak beam theory

developed by Cockayne [89 and 90]. Wilkens and Rapps tl97l and Humble et al. [198]

proposed this observation as a method of measuring high dislocation densities. Wilkens

and Rapps used a statistical theory of electron diffraction to consider the scattering off a

high density of the same type of defect. This approach has not been followed in this thesis

because it was anticipated that different mixtures of bubbles and loops would give the same

transfer of intensity into the higher order spots. That is, it would be impossible to uniquely

identify the density of bubbles and loops. The Wilkens' theory cannot treat the broadening

of the diffraction spots so the existence of superlattice spots is not likely to be useful in

determining the population of the bubbles and loops. Even if the diffraction patterns could

be used to determine the density of loops and bubbles it would give no
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information as to whether the loops were punched out by neighbouring-bubbles along glide

cylinders. The diffraction patterns could also not give information about whether the loops

were formed by radiation damage independent of any bubble orrdering or growth process.

Experimental images and simulations of the stnrcture are required to check on the theory of

Dubinko et al. [7] of how bubbles order by punching out dislocation loops.

Figure 7.2 illustrates the difficulties in interpreting experimental micrographs of bulk

specimens irradiated to the dose at which superlattices form. In the BF and DF pictures

black and white lobes characteristic of loops and bubbles are visible with a range of

directions for l, not just I parallel to g. Some loops are present but not at the densities to be

expected if every bubble were to punch out approximately twelve loops. The weak beam

simulations of figure 6.14 showed that a bubble has a ring around it similar to Fresnel

fringes when imaged under these conditions, whereas the loop rctains its black/white lobe

stnrcture more. However the differences in image characteristics are not strong enough to

readily distinguish loops from bubbles in the photos taken at weak beam conditions.

7.1 .r .3 Experime ntal Res ults from law D ose I nadiatio ns

The size of the bubbles and their degree of ordering varies with depth. Dislocation

tangles occur near the surface, then small bubbles, larger bubbles and then smaller bubbles

again as the depth below the surface increases. The scale of the depth dependence is

determined by the angle of the irradiation and the mean projected range of the helium ions.

The variation in the structure with depth can be used to obtain larger bubbles without a

dislocation tangle by ion beam thinning the front and the back of a specimen after jet

electropolishing has been used to perforate it.

By using lower doses, in irradiations of copper discs that have been prethinned, gas

bubbles that have more material benveen them are attainable. The bubbles in the specimen

are not ordered. To attain these specimens, doses are used that are equal to about a tenth of

the dose used to form blisters on a specimen. The specimens have Kikuchi lines that are

more diffuse than the unirradiated specimens but the lines are still sharp enough to readily

tilt the specimen between axes and to two-beam conditions. If the dose is lowered below
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(ii)
Figure 7.2: (i) BF (overfocussed) and (ii) weak beam images of the same region of
superlattice, imaged under the same diffraction conditions. The high density of bubbles

makes it diffrcult to distinguish any dislocation loops that might be present.
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about a sixteenth of that required for blistering, dislocation tangles but no bubbles are

obtained.

The technique required to obtain a low density of bubbles in a material with

reasonable crystallinity is to first irradiate a 3 mm diameter copper disc that has been

prethinned to perforation. During irradiation the effect of the hole in the specimen is that in

the thin regions which are elecnon transparent most of the helium ions do not come to rest

either so no bubbles will occur there. Also the hole allows the relief of the lateral stress

found in specimens irradiated in the orthodox manner. The hole also provides a sink for

any mobile interstitials or helium ions close to the peak in the damage profile. Normally in

the iradiation of bulk specimens the peak in the damage profile occurs about a micron

below the foil surface. (The position of this peak can be worked out by simulations which

use Monto-Carlo methods t45l).

Ion beam thinning of the specimen from the back is the second step. Figure 7.3

shows the satisfactory structures that may be attained after nvo hours of thinning with a 30

pA current of 4keV Ar ions. This amount of ion tream thinning is roughly equivalent to the

removal of a thickness of material equal to l1 prm from the back of the specimen. There are

several assumptions in calculating the amount of material removed by the ion beam thinning

process. The main assumption are (i) the ion current (which is integrated to give the

number of ions) strikes only the 3 mm disc and nor the specimen holder, (ii) secondary

emission from the disc can be neglected and (iii) the ion currenr is unifomrly distributed

over the specimen. The 11 p- figure could easily be out by a factor of five. Assuming a

wedge angle of 30" for the prethinned foil then the hole radius is increased by abour 9 pm

by the ion beam thinning.

In figure 7.3 the black/white lobes that have I parallel to g (e.g. the defects in the

square boxes in figurc 7.3 (b) (ii)) as expected have a central region of near background

intensity. The existence of these lobes with a surround.ing strain field means the defects

contain gas that is overpressured and therefore the defects are bubbles and are not voids.

Some of the lobes have I rotated away frrom g (e.g. the defects in the circles in figure ?.3 (b)

(ii)), and nor are they separated by a region which has an intensity near that of the

background. These lobes are dislocation loops of similar size to the gas bubbles. There are

both black and white bubbles in the in-focus micrograph. This confirms the plots of
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(d), (iii)
Figure 7.3: Three sets of through-focal series of a low density of bubbles obtained with
two-beam conditions in a low dose irradiation of a prethinned copper disc. The beam

directions and diffracting vectors used are: (a) B = [101], two-beam condirions, g = [111],
(i) underfocus, (ii) in-focus and (iii) overfocus; (b) B = [112], two-beam condirions, g =
1220), (i) underfocus, (ii) in-focus and (iii) overfocus; (c) B = [001], rwo-beam cond.itions,
g = [200], (i) underfocus, (ii) in-focus and (iii) overfocus and (d) g = [101], g = [111], (i)
BF, underfocus, (ii) BF, overfocus and (iii) weak-beam condition. Defects with I parallel
to g may be either loops or bubbles, whereas defects with I rotated away from g are

dislocation loops. The low observed density of dislocation loops supports a model for
bubble gowth based on diffusion related processes.
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contrast at the centre of the bubble versus depth in chapter five. Also there are more

bubbles visible with strong contrast in underfocus conditions than there are in the overfocus

or in the in-focus micrographs. This confirms other plots of chapter five. It also means

estimates of bubble volume fractions and bubble densities made from overfocus

micrographs are likely to be significant underestimates of the true bubble volume fracrion.

From chapter six, any loops that lie approximately outside or between the first three layers

of either surface of the foil will appear as black dots. This contrast occurs instead of the

usual black/white lobes. Thus just counting black/white lobes that are not separared by a

region of near background intensity can cause an underestimation to be made of the

dislocation loop density.

7.LL.4 The Theoretical Densiry of Dislocation Loops in the l-aw Dose

Irradiations

An estimate of the numberof loops punched by a bubble is obtained by equating the

final volume of the bubble to the volume occupied by the intentitial planes that form the

loops (that is equal to the area of the loop times the magnitude of the Burgers vector). In a

crude estimate the radius of all the loops is set equal to the final radius of the bubble divided

by the square root of trvo (as required by the Greenwood Foreman and Rimmer mechanism

discussed in chapter 1). Using this crude estimate a helium bubble in copper that has a final

radius of 10 A will have punched. out sixteen dislocation loops with a [l lOJ type Burgers

vector. Similarly a helium bubble in copper that has a final radius of 20 A will have

punched out thirty nto dislocation loops. In practice a larger number of loops will be

punched out by the bubble, but many of them will havc smaller radii than the last loop

punched out. An added complication in estimating the density of dislocation loops is that

the nucleation centre must grow by diffusion related processes to be larger than just a few

atom sites before it becomes valid to describe the further growth as being due to the

punching of dislocation loops. Hence not all of the final volume of the bubble should be

equated to the volume of the dislocation loops. In the simulations in chapter six it was

estimated that twelve dislocation loops with a radius equal to7.O7 ^A are punched out by a

gas bubble with a radius of 10 A. This number of loops was used instead of sixteen
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because of the considerations above and as it corresponds to the symmetrical situation of

one on every glide cylinder. This symmetry allows the simulations to be applied to a large

number of geometries with the minimum amount of time-consuming computation.

The bubbles in figure 7.3, having a diameter of approximately 40 A, are bigger than

those typically observed in superlattices of helium gas bubbles in copper. Therefore the

bubbles in figure 7.3 are slightly more likely to punch out loops if they have the same

pressure as the bubbles in the superlattice case (i.e. the bubbles have a higher overpressure

because the equilibrium pressure is lower). However, the density of loops in the figure is

lower than the approximately fifty or more loops expected to be punched out by a bubble

with a diameter of 40 A. The figure of fifty loops to be punched by a bubble with a radius

of 20 A corresponds to about four loops on every glide cylinder. Any loops that are visible

cannot be readily associated with the glide cylinders of nearby bubbles.

It is possible that punched out loops have glided to the foil surface where the glide

cylinders are not blocked by another bubble. On a fine scale, the effects on the material

close to a segment of a dislocation loop are identical to those of the same length of a long

straight dislocation. Therefore a differentiation of equation 1.20 followed by a division by

the circumference of the loop can be used to calculate the force per unit length on the loop

which uies to expel it from the foil. It can be shown, using the result of the differentiation,

that the force per unit length on a small loop is larger than that on a large loop. In addition

the larger dislocation loops are more likely than smaller loops to have their paths to the

surface obstructed by another defect. For these reasons it is less likely that a high density of

larger dislocation loops could be expected to disappear. The gas bubbles shown in the

figure probably grew by diffusion related processes during the irradiation. However the

possibility that the dislocation loops may have been lost from the prethinned discs can not

be ignored.

While dislocation punching won'[ occur until the nucleation centre has grown by

diffusion related processes, there is also a point at which loop punching is taken over by

displacement events. Predictions have been made about this by Evans [25]. Evans

described a theory for the mechanism by which blisters forrr in metals that have been

inadiated with helium. This mechanism models the growth of a bubble as being initially

due to the punching of dislocation loops then being by displacement events and includes the
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effects of varying the dose. A Gaussian profile for the range at which the helium comes to

rest is assumed. This appears reasonable from Monto-Carlo simulations. A more

significant assumption is that the density of sites on which bubbles nucleate is uniform

throughout the foil. The number of loops punched out by a bubble with a diarneter of 40 A

therefore may be a lot less than fifty if the bubble stops growing by punching out

dislocation loops after it grows to a diameter of l0 A for example. Practical computation of

this bubble radius requires the mean range and standard deviation of the distribution of the

implanted helium to be estimated frrom Monto-Carlo simulations. An estimate of the bubble

density to compare the theory of Evans t1251 against experimental micrographs would

require a knowledge of the thickness of the foil. Any small inaccuracies in this thickness

result in a large uncertainty in the calculation of the radius of the bubble at which the

punching of loops stops. This occurs because the equations of Evans for the bubble

pressure depend exponentially on the density of the bubbles. Accurate estimates of the

number of loops to be expected to be punched in specimens of the dose in figure 7.3 arc

then impraaical.

7.12 Experimental Evidence for tlrc Punching of Distocation Loops by Smatl Bubbles

In the following sections the experimental evidence, for the punching of dislocation

loops by bubbles of the size of those found in superlattices is reviewed in the light of the

results presented in this thesis.

7.1.2.1 Qttcnched Metals

Small loops of radius 10 to 20 A are not found in quenched metals t2-61. However,

these papers are invoked by many authors as providing experimental evidence for the

relevance of the punching of dislocation loops to the growth of small bubbles. It is
interesting that in the quenched copper in chapter four, rows of loops from about 300 A in

diameter and upwards were observed. Smaller loops were not found which suggests, that,

in that case, a bubble grows by diffusion related processes until its diameter is about 300 A.
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The bubble pressure and radius are then enough to satisry the GFR inequality of chapter one

and loops begin to be punched.

Many displacements per atom are predicted to be caused by the incoming helium

ions in the Evan's theory for blistering [125]. In quenched metals the gas is diffused in

thermally and so the gas does not possess anything like the energy of helium ions in an

inadiation. In quenched metals, therefore, the growth mechanism by displacement damage

cannot be used to stop the growth by loop punching. Continued punching of loops in

quenched metals will then cause long rows of loops to be formed like those in chapter four

that will not be found in inadiated metals. In quenched copper diffusion processes seem

responsible for early bubble growth with dislocation punching becoming important for

bubble sizes near 300 A.

For quenched metals the comparison of loop spacings found from experiment with

the theory of Bullough and Newman I 12] gives a value of the critical shear stress that is

much lower than that for irradiated metals [99]. This suggests that for bubble growth in

irradiated metals diffusion related processes will be even more favoured than the punching

of dislocations.

7.1.2.2 Tritimt Charging

Metal foils charged with tritium by thermal diffusion and then aged contain bubbles

of helium - 3. The 3He produced by the p- decay of the tritium, has a recoil energy in the

decay which is insufficient to cause displacement damage. Bubble growth at least in part is

by dislocation punchingi the loops are about 30 A or bigger, much closer in size to the 10 A

to 20 A expected in specimens containing superlattices. However because there is no

displacement damage these observations provide linle insight into the behaviour expected in

irradiated metals.

7.1.2.3 I-ow Energy Implantations

Other papers most commonly

relevance of loop punching are those

cited as providing experimental evidence of the

of Evans et al. [200 and 201]. The Evans paper
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describes how 3 keV helium ions were used to create helium-vacancy complexes in the near

surface region of a molybdenum foil. (This sort of treatment could be done in an ion beam

thinner that accelerates helium ions instead of argon ions. It is impossible with the Van de

Graaff accelerator at Victoria University which has an accelerating voltage that is unstable

below about 100 kV.) Thermal helium desorption spectroscopy has shown that the

implanted helium ions have an energetic preference to come to rest in a vacancy or hole in

the host matrix. These helium-vacancy complexes (HeV) can act as nucleation sites for

bubbles.

A 150 eV helium irradiation of the surface of the specimen after it has been "seeded"

with HeV sites by the 3 keV inadiation will result in most of this low energy helium being

lost to the surface. Yet some helium will nucleate bubbles or platelets at the HeV complexes

by diffusing into the bulk of the material. The bubbles were observed by Evans to grow by

trapping the helium and punching out dislocation loops.

However this situation in which the dislocation loops are formed is different from

the irradiation conditions that cause the formation of superlanices of bubbles. The major

difference is that because of the low energy of the helium irradiation there is a much lower

displacement damage in the region where the bubbles form. In the Evans et al. experiment

the displacement damage does not terminate the process of punching loops, nor does it

control the bubble growth.

7.1.2.4 Low Dose lrradiations of a Prethinned Copper Disc

The discussion in section 7.1.2.3 is however relevant to the mechanism by which

the bubbles in figure 7.3 grew in the irradiation of the prethinned copper disc. In this

specimen the nearby foil surfaces and hole are a sink for the interstitials created in the early

stages of the irradiation and for the helium atoms. This is because the concentration of

interstitials and helium atoms is zero at the foil surfaces, so that these defects will diffuse to

the surfaces down the concentration gradient. In contrast the vacancies are relatively

immobile at room temperature. The density of HeV complexes, which act as nucleation

sites for bubbles, will then be lower than in an irradiation of abulk specimen because of the
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loss of helium to the surfaces. Vacancy clusters can collapse to form vacancy loops but the

nucleation sites cannot do this because they contain helium.

As the irradiation continues the nucleation sites begin to compete with the surfaces

for many of the incoming helium atoms because these sites are closer to where the damage

is created and the helium comes to rest than the surfaces. The same number of vacancies

will be created by the irradiation of the prethinned specimen as are created in the same

thickness of a bulk specimen in an implantation at the same energy and dose etc. However,

there are fewer nucleation sites available, so that per bubble, there will be more vacancies

and helium atoms to grow with than norrnal. The result is the formation of a lower densitv

of larger bubbles.

The diffirsion coefficients of the defects obev

D = Do"-{- 
**E*r)

(7.1)

where Ds is a constant that is different for interstitials, vacancies, helium vacancy

complexes and helium atoms. IL is the activation energy for a defect to jump from site to

site in the lanice. Self interstitial atoms (copper atoms that are usually referred o as SIAs in

the literature) have jump frequencies that are of the order of hundreds of GHz. The jump

frequencies of vacancies are of the order of Hz at room temperature in copper. HeV

complexes are more mobile than the vacancies but less mobile than the interstirials.

Interstitial helium atoms, like interstitial copper atoms, are also more mobile than the

vacancies but less mobile than the SIAs (Glyde and Mayne t2031).

For comparison the ideal gas laws can be used to calculate the average kinetic energy

and hence the rms velocity of a helium gas atom at room temperature. This nrns out to be

1300 m/s, so a helium atom will be hitting the walls of a bubble with a frequency of the

order of hundreds of GHz to maintain the bubble pressure and keep the SIAs out. If the

bubble pressure is high enough the bubbles can emit SIAs instead. of just keeping out the

SIAs. However, the pressure required to do this is even larger than the pressure required

for the punching of dislocation loops.

An SIA will collide with a bubble an order of magnitude less frequently than the

jump frequency between lattice sites because the superlattice constant is approximately
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twenty times larger than the lanice constanl In figure 7.3 the densiry of bubbles is probably
too low for the mechanism by which the sIA flux can order the bubbles ro operate because

the bubbles do not lie in the shadows of the other bubbles (secrion 1.4). The vacancies are
not very mobile at room temperature but, because of the exponential depend.ence of the
diffusion coefficient' are very mobile at 700 oc, for example. The vacancies could however
be stimulated by the radiation to migrate to a bubble. In the early stages of bubble
development, bubble growth probably @curs by the coalescence of the Hev complexes not
lost to the surfaces.

The paramercrs of a bubble superlattice are insensitive to the irradiation remperanre
over a large range of temperature despite the significant effect of temperature on vacancy
mobility' This has often been invoked as a reason for a pressure driven model for bubble
formation [45]' However, in the prethinned case rhe vacancy mobility is significant because
the proximity of the foil surfaces to the nucleation sites for the bubbles influences the
density of interstitials and helium available for the bubbles. That is, the densiry of the
interstitials and helium is reduced significantly, but the density of the vacancies is not.

consider the bubble pressure in the stnrcture in frgure 7.3 ncomparison to the
bubbles in an orthodox irradiation. Because there is a lower density of bubbles and the
surface is competing for helium, the rado of helium to vacancies in a bubble will be lower
than normal if the vacancies have enough radiation-stimulated mobility to reach the bubbles.
However for many of the vacancies the bubbles are more distant on average than in an
orthodox irradiation' If all ttre vacancies created in the irradiation can reach bubbles then the
bubbles in the prethinned specimen will have a lower pressure than those created in a bulk
irradiation' The bubbles will then be less likely to punch out loops when they are at the
same radius as the bubbles in an orthodox irradiarion. In the prethinned irradiadon
vacancies that are within a certain volume of a bubble, as in an orthodox irrad.iation, will
still reach the bubble' The final bubble is larger so therefore more vacancies are required to
form the bubble and on average these vacancies will have to Eavel further. If the vacancy
mobility is not sufficiently radiation-stimulated to allow the vacancies to travel the extra
distance to a bubble then the bubbles will have a higherpressure than those created in a bulk
irradiation and are more likely to punch out loops. of the two alternatives considered in
which the vacancies can or cannot reach the growing bubbles it is more likely that the
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vacancy mobility is not radiation-enhanced by the factor of 109 rcquired to bring it up to the

same level as that of the interstitials. Instead. the vacancies probably recombine with the

very mobile SIAs before getting near a bubble. The bubbles are therefore more likely to
have a higher pressure than nomral.

It is possible that the bubbles found in low dose irradiations of a prethinned copper
disc after ion beam thinning are not helium bubbles but are argon bubbles. To check this
out it would be possible to do experiments based on EELS or thermal desorption
spectroscopy' Even if the bubbles contain helium or argon or a mixture of both gases the
low density of dislocation loops that has been observed around bubbles of the radii found in
figure 7-3 still tends to support diffusion related growth of gas bubbles.

7.125 Electron Inadiations

Shiraishi et al. tzoz) prepared specimens of an aluminium-lithium alloy that
contained helium gas bubbles by using the (n, cr) reaction of 6Li with a thermal neuron.
The specimens were then irradiated in separare TEMs with either 200 kev or 1 Mev
electrons' During the electron irradiation the gas bubbles punched out loops. The
mechanism proposed was that the elechns knock interstitials into the gas bubbles which
decrease the bubble volume and increase the pressure so that the GFR inequality is satisfied.
This mechanism of forming dislocation loops by using electrons is not relevant to herium
irradiations for which the superlanice has been fonned prior to examination in the TEM.

Evans et al' [200 and 201] also observed electron beam induced punching of loops
by helium bubbles formed in molybdenum by the low energy technique outlined in section
7 'l'2'3' Evans proposed different possible explanations to that of Shiraishi et al. l2ozl.
He claimed that the loops were punched by the bubbles after the excitation of the helium
atoms in the bubbles caused the pressure of the helium in the cavity to rise. Alternatively
the electrons could be tansferring enough energy to the molyMenum atoms to overcome an
activation barrier for loop nucleation
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7.1.3 Impltcations for Imptantations to a Higher Dose

In this section a discussion is presented of what the implications of the observation

of specimens implanted to a lower dose are for specimens containing a superlattice of gas

bubbles' In the theory of Dubinko for bubble ordering [7] the bubbles first grow by
diffusion rclated processes. Thc bubbles attract each other and coalesce until the remaining
bubbles are spaced along the glide cylinders of nearest neighbour bubbles only. Thereafter

the bubbles repel each other by punching out loops. Figure 7.3 shows bubbles that are not
ordered and so are probably not lying on the glide cylinders of other bubbles. Dubinko
requires a set of initial conditions to explain the ordering of gas bubbles via the punching of
dislocation loops' The stability of the bubble stnrcture in figure 7.3 suggests that the
attraction between the bubbles is not strong enough for the structure to reach these initial
conditions and the net force on a bubble due to the surrounding bubbles is smaller than that
required to overcome the peierls barrier.

The bubbles in the low dose irradiation have a radius that is approximately nvice that
of the specimens containing superlattices. Hence the strucnrre found in the low dose
irradiation is not a precursor of a superlattice in the same region of the specimen. For the
reasons outlined in section 7.L.2.4 the bubbles in figurc 7.3 arethought to have a higher
pressure than those in an onhodox irradiation at the same stage in their growth. That the
bigger bubbles have grown without punching loops and have displaced. a larger amount of
matrix material than the smnllsl bubbles in a superlafice supports diffusion related ordering
and growth of the gas bubbles.

It is worth considering if the occrur€nce of a higher bubble density in a specimen
would make the specimen morc likely to rcach the initial conditions that Dubinko rcquires in
his model in which bubbles order by punching out dislocation loops. consider bubble
structures with bubble radii half those found in frgure 7.3 but which contain the same total
amount of helium and vacancies in the bubbles. The equilibirium bubble pressure will be
doubledif this new structure can be created. The structure will have four times the number
of bubbles at the new equ'ibrium pressure at approximatery 0.63 ( = Q.zsLR) times the
interbubble spacing. If the number of helium atoms and vacancies could be increased by a
factor of ten with this extra helium going to more Hev complexes to form ten times the
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number of bubbles of the same volume and equilibrium pressure, then the interbubble

spacing will be reduced by a factor of o.467. The postulated stnrcture will have the same

order of bubble radii and bubble spacings as found in superlattices -that is forty times the

bubble densiry of figure 7.3.

The Willis-Bullough expression [104] for the attractive force between two bubbles

is

F" cr(PR-2rP(V (7.21

where I is the interbubble qpacing, R the bubble rad.ius and p the bubble pressure. The pR

factor is approximately unaltered as R varies in the more sophisticated theory of wolfer
[101-103]' Therefore, ignoring the prefactor, the attractive force between two bubbles

would be about forty one times grcater if the stnrcture in figure 7.3 is changed as above.

This would make the initial conditions of Dubinko more likely.

Consider the effects if two bubbles of the same radius were to coalesce as a result of
the attractive force in equation 7.2 asrequired by the initial conditions of Dubirko. {ssrme
the new bubble is constrained by the matrix to the same total volume as the trro originat
bubbles- The resultant bubble will have a rad.ius that is equal to r.26rimes the originar
radius of either initial bubble but the density of helium atoms in ttre resultant bubble and the
pressure will be unchanged. (Even in the high pressure regime where the ideal gas law
breaks down, pressure is still a function of gas density.) However, the equilibrium
pressure has decreased and the new bubble is overpressured. If enough bubbles can
coalesce the resultant bubble could punch out dislocation loops. If eight bubbles with a
radius of 5 A coalesce as described above one bubble wirh a radius of 10 A will result. If
the initiat bubbles are slightly abovc the equilibrium pressure of about 6 Gpa at this 5 A
radius [54] (so that they can attract each other) the resurtant bubble requires a pressure of
only 2'6 GPa to be in equilibrium. The final bubble would require a pressure for loop
punching of about 0.221t = 16.6 GPa (figure 1.9). If the final bubble maintains the bubble

pressure of the original bubbles it will then be overpressured by 3.4Gpa but is still short of
the pressure required to punch out loops by about 10.6 Gpa. Instead it is more likely that
the bubbles order according to the SIA diffusion mod.el.
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7,2 Summarv

In this chapter the results of attempts to image any dislocation loops thar are present

in ion-implanted metals are presented. Specimens containing superlattices of gas bubbles

are not as crystalline as unirradiated specimens. This deterioration in crystallinity makes it

more difficult to orientate the specimens to diffracting conditions where the loop contrast

would be strong. To overcome this problem lower dose implantations on a copper disc that

was prethinned by jet electropolishing were performed to create specimens that contained a

lower density of small gas bubbles. In this case there is sufficient crystallinity retained to

allow the specimens to be tilted to obtain strong two-beam conditions. Some dislocation

loops are observable in these specimens but they are at a low density. This may suggest

that the bubbles are formed primarily by diffusion related processes rather than by the

punching of dislocation loops. Alternatively, the dislocations may have been lost from the

prethinned discs.

The implications of this observation for the density of loops in specimens irradiated

to a higher dose are interesting. Bubbles in specimens irradiated to different doses have a

different size and probably a different pressure. Experimental micrographs of the

specimens ssnraining superlattices taken at approximate strong two-beam and weak beam

conditions do exhibit the presence of some dislocation loops. However, it is difficult to

find a bubble that has punched out the fuIl complement of twelve loops along the glide

cylinders towards the nearest-neighbour bubbles. (This sort of structure would form

images like those calculated in the simulations of chapter six.)

A review is given in this chapter of the experimental evidence that has lead many

authors to suggest that the punching of dislocation loops is the most important mechanism

for bubble growth and bubble ordering. It is pointed out that most experimental

observations of loops around bubbles have been for bubbles (usually formed by quenching)

that are much larger than those found in superlattices. Larger bubbles have a lower

equilibrium pressure and thus ,ue more likely to have reached the degree of overpressure

required to punch out loops. Consequently, the results for large bubbles may not be a good

guide to the superlattice case. A further difference is the high level of displacement damage
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that occurs during implantation. This could have the effect of annealing the metal so the

dislocation densiry in the implanted layer is lower than might otherwise be expected.

The suggestion is also made that in high dose irradiations diffusion related processes

may be more important for bubble growth and ordering than is the punching of dislocation

loops. It is important to note, however, that these diffusion processes could be strongly

influenced by the stress fields around individual bubbles - stress fields that reflect the

tendency of overpressured bubbles to punch out dislocation loops. The stress fields

resulting from this tendency (rather than the presence of actual d.islocation loops on common

glide cylinders linking nearest-neighbour bubbles) have also been invoked by Johnson et aI

(see for example ref. 8) to explain the origin of the spatial variants [42] they found in fcc

bubble superlattices.
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CHAPTER 8: CONCLUSIONS

This chapter is a review of the main conclusions reached in the preceding

seven chapters. More details on the conclusions can be found in the summaries at the end

of each chapter. The aim of the thesis is to develop and evaluate methods based on

transmission electron microscopy (TEM) for measuring the density of dislocations in

some selected metals that have been ion-implanted. Towards this end the initial chapters

introduced some necessary background information and theory. Chapter one contains an

introduction to the mechanism by which dislocations are punched out by overpressured

gas bubbles. The discussion of this mechanism required a digression into isotropic

elasticity theory. In the first chapter a brief review is made of the previous work done on

structures containing gas bubbles, especially how they order and grow.

The microstructure of an ion-implanted metal is investigated by TEM. An

understanding of the mechanism by which electrons are scattered by possible strucrures is

required if images obtained using TEM are to be correctly interpreted. Chapter two

summarises the theory of image formation in TEM. In particular the Howie-Whelan

differential equations are derived. These equations are the most coillmonly used set of

equations for modelling the images of dislocations or gas bubbles. More complicated

theories of how weak beam and high resolution images are modelled are summarised in

the remainder of the chapter.

The modelling of the electron diffraction from defects requires that the

displacement fields can be calculated. Chapter three gives equations for the d^isplacement

field around a gas bubble, a long straight dislocation and an angular dislocation. A

polygonal dislocation loop can be constructed from a set of angular dislocations with the

same Burgers vector, arranged so that the dislocation lines of adjacent dislocations lie in

opposite directions outside the dislocation loop. Each angular dislocation has a

coordinate system associated with it. To obtain the displacement field at a point near a

dislocation loop, the coordinates of this point need to be transferred into the axes of each

angular dislocation. The displacement field due to each dislocation is then calculated.
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The results are then transferred back into the original coordinate system and are summed

to give the resultant displacement field.

Chapter four departs from the previous chapters in emphasising the

experimental techniques required to prepare the specimens before micrographs can be

obtained in the TEM. The specimens are cleaned by mechanical polishing, bath

electropolishing and annealing in vacuum. They are then ion-implanted in a particle

accelerator or are quenched to attain a lower density of defects. Jet electropolishing is

used to perforate the specimens, then any further thinning is done by an ion beam. The

computer system used to implement the theory discussed in chapters one to three is

discussed in detail. The micrographs and simulations presented in chapter four enable the

Burgers vectors of some dislocation loops and straight d.islocations to be obtained. The

results gave the author experience in the image matching of structures simpler than those

typically encountered in ion-implanted metals.

Gas bubbles are the most obvious defects in ion-implanted metals. They are

important enough for chapter five to be devoted entirely to the imaging of gas bubbles

without worrying about the presence of any dislocations. Initially the image of a single

isolated bubble was considered before extending the work to imaging stacks of bubbles.

A comparison of the experimental micrographs with theoretical profiles of the intensity

diffracted from a stack of bubbles indicates that in the vertical direction the ordering of
gas bubbles seldom extends over more than three bubbles. Simulations of superlattice

spots suggested that the lateral ordering of the gas bubbles is limite4 although the effects

of beam coherence make this conclusion somewhat tentative. Intensity profiles through

defocussed images of an isolated single bubble showed that measurements of the bubble

radius could easily be about 2o0vo out from the real value. A more irccurate measurement

of the radius is obtained by simulating the positions of the Fresnel fringes in an

experimental through-focal series. The dependence on defocus of the image of a large

array of ordered bubbles of similar radius has not been studied in this thesis.

Dislocation loops are present in several models of how gas bubble

superlattices evolve. In chapter six, the simulations give an indication of the contrast to
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be expected from a system of dislocation loops punched by a growing gas bubble. The

calculations have assumed that it is permissible to use isotropic elasticity theory.

Limitations put upon any conclusions drawn from this work are outlined in Eyre et al.

[58-61].

The main conclusions resulting from the simulations are:

(i) Several parameters that have successfully been used to characterise the diffraction
from isolated dislocation loops can be carried over to the more complicated stnrcfures
considered in this thesis. For example, the parameters are the I vector and the black/white
lobe structure and its dependence upon the loop normal, the diffracting vector, the
Burgers vector, the beam direction and the foil normal.

(ii) Any interpretation of experimental micrographs needs to consider how many loops
are projected onto one another, the depth of the loops and what g.Ib is. Ball model
diagrams are essential for interpretation.

(iii) When loops are close together the resultant contrasr is determined by g.IR. This
results in rapidly varying black or white lobes appearing in the images, separated by a
region of near background intensity.

(iv) The images with a significantly non-zero excitation error give black or white dots in
BF and DF respectively instead of blacUwhite lobes. The two beam approximation can
lead to significant elrors as the excitation error increases to the weak beam condition, but
six beam simulations show that the dislocation loops become resolvable. However, the
image becomes difficult to interpret with the density of defects included here. This limits
the applicability of weak beam imaging techniques to this stnrcture.

(v) The contrast due to any dislocation loops present is comparable to that due to the
thickness and strain contrast of the gas bubbles at strong two-beam and in-focus
conditions. This is also tme with micrographs obtained with out-of-focus conditions. To
detect the presence or absence of dislocation loops in gas bubble superlattices, the crystal
should be tilted to strong two-beam conditions for a range of g's around simple B's, and
the micrographs should be well focussed to attempt to obtain the black and white lobes
characteristic of dislocation loops. In practice it may be necessary to take experimental
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through focal series to find the in-focus condition. Black/white lobe images with I rotated
away from g will be loops whereas those with I parallet to g could be loops or bubbles.

The dislocation loops have been assumed to be edge in character with a

Burgers vector of the [1 10] type in an fcc crystal. Because edge dislocation loops have a

higher energy per unit length than screw dislocations the loop normal may try ro rotate

away from the Burgers vector. However, as n rotates the total length of dislocation line

in the loop will increase so that the strain energy of the loop may actually increase. Any

screw character that results from external stresses will alter the detailed appearance of the

micrographs, and may need to be considered to obtain good matches between

experimental and theoretical micrographs. If the present work was extended to bcc

materials, perfect loops with b = al3<ll l> should be considered. Defects with this

Burgers vector can occur in fcc materials but, because the so-called Frank dislocation

loop that results incorporates a stacking fault, the defect cannot glide and consequently is

not responsible for the growth and ordering of gas bubbles. Other Burgers vectors

would need to be considered in hcp materials.

In practice, experimental micrographs taken at strong two-beam conditions

are difficult to obtain in ion-implanted metals because the irradiation process has reduced

the crystallinity of the material. In chapter seven the best micrographs obtained in ion-

implanted metals are presented. Implantations to a lower dose give specimens that are

crystalline enough to discover that the density of dislocation loops is significantly below

that to be expected if the bubbles found had grown by the punching of dislocation loops

alone' The suggestion is made that the bubbles probably grew by diffusion related

processes' The implications of this observation in specimens irradiated to a lower dose

are that specimens containing superlattices of gas bubbles also grow by diffusion related

processes. A review of the experimental evidence that has lead other authors to suggesr

that the punching of dislocation loops is the most important mechanism by which small

gas bubbles grow was reviewed in chapter seven and found to be unconvincing. The

8-4



simplest conclusion is that, on average, small gas bubbles do not acquire a high enough

pressure to punch out dislocation loops.

A possible direction for future work is to use an electron energy loss

spectroscopy (EELS) apparatus to measure the gas pressure inside bubbles. pressure

measurements on the prethinned specimens of chapter seven would be especially

interesting to do, and also comparison measurements on the gas pressure in material

irradiated in the bulk. This has obvious implications for the mechanism by which

dislocation loops are punched.

Higher resolution micrographs of the prethinned specimen may also be

useful. Bubbles occur at a low density out toward the hole in the specimen, so the

material should be thin enough to obtain structure images. The multislice simulations of
chapter four are more appropriate to the structure images of copper attainable with a

higher resolution TEM than that available at Victoria University. The TEM at Victoria

University can only really produce lattice fringe pictures, and not structure images of
copper. Of course, in very thin material any dislocations are morc likely to have escaped

from the foil, so any results that do not show dislocations may be inconclusive.

However, if HREM images of bubbles were obtained, they could be used to measure the

displacement field around a bubble and hence the bubble overpresswe by measuring the

distortion of the lattice fringes. If no distortion is present then it may be possible to make

a measurement of the equilibrium pressure of the bubble.

Throughout this thesis the displacement field, around a structure containing

twelve loops next to a bubble, that is required to perfonn image simulations has been

calculated by adding together the analytical displacement fields due to the individual

defects. The neglect of the interactions between the defects and the effects that this has

upon the resultant displacement field have been assumed to be negligible.

It would be interesting to use a technique such as finite element analysis to

calculate the displacement field around the structures. Techniques based on finite element

analysis require the minimisation of the energy of the displacement field, as calculated on

a triangular mesh of points about the stucture, using an iterative steepest descent method.
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The displacement field is considered to have been calculated by this technique when the

energy of the field calculated in succesive iterations is the same to within a specified level.

In addition to applications in elasticity theory, finite element analysis is commonly used to

solve problems involving heat transfer and electromagnetism in situations with a complex

geometry.

If the displacement field could be calculated using finite element analysis in a

reasonable time on the more powerful computers now becoming available, then it might

be possible to perform realistic image simulations on more complicated structures than

those considered in this thesis. As a superlattice of gas bubbles grows and evolves there

is expected to be some coarsening of the dislocation structure. This coarse structure

might be more readily modelled using finite element analysis instead of superimposing the

analytical solutions for the displacement fields about defects. (The analytical solutions in

elasticity theory only really apply when specific boundary conditions are valid).
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Appendix A:

List of Symbols

il the dislocation loop radius or bubble radius

A: a maaix describing the electron scattering or a rotation matrix

A the anomalous absorption coeffrcient, the a:rial astigmatism or an iuea

Ar: the components of a vector

?l! lanice constant

ano: anomalous absorption ratio

b: Burgers vector

b: magninrde of the Burgers vector

B: electronbeamdircction

Bj: Debye-Wallercoefficient(dependsontemperanre)

b": edge component of the Burgers vector

b.l screw component of the Burgers vector

bx: the x component of the Burgers vector

bi(ke, r): ith Bloch wave

c: velocity of light

C: matrix of coeffrcients for the Bloch waves

c(k): the micrograph contrast

ciin (or cmn ): the elastic constants of the material

Crl the spherical aberration coefficient

d: the rms effective focus spread or the distance from the cenrre of a bubble to the foil
surfacc

de: spacing of the pranes corresponding to the grh reflection

Dai a scaling constant

Do: a diffusion constant that is different for intentitials, vacancies and helium aroms

e: electron charge

E: energy to form a dislocation loop or the voltage the electrons are accelerated through

E(k): complete elliptic integrals of the second type
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E(k1, k2): envelope function used to include the effecs of beam divergence and

defocus spread in the contrast transfer function of a rens

E-: the activation energy for a defect jump to occur

F: free energy

F: foil normal or point force vector

F(k): complete eltiptic integrals of the first type

f: an arbitrary function

f"t atomic electron scattering factor

F"r the atractive force between two bubbles

fx: atomic X-ray scatt€ring factor

Fo: coefficients in apolynomial

Fg: stnrchre factor for the gth reciprocal lardce vector

gi diffraaing vecror

h: Planck consmnr

hi: distances to a set of planes

I: the intensity

Io: the background intensity

I indexthat can ake thevalue I,2 or3
j: index that can take the value L,2 or 3

Jo: zero order Bessel function

Jr: first order Bessel function

k index that can take the value 1,2 or 3; or the magnitude of the wavevector or

Boltzmann's constant

k: wavev@tor

K: wave vectorin the crystal

t index that can take *re varue 1, 2 or 3;or the spacing benveen bubbles

l: black/white lobe vector

nu index that can take the value l,Z or3

me: the mass of the electron

n: Ioop normal

n: index that can take the value I,2 or 3; or the refractive index
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ni: plane normals

norm: a vector that points from the bonom left corner of a simulation to the top

right corner

p: propagation function or a constant

P: the gas pressure in the bubble

Pc: constants

Pn: a Legendre polynomial of degree n

pn: shear stress

A variable used to find the displacement field around a bubble

Qa: constants

gn: the transmission function for the nth slice

r: position vector

n the bubble radius or magnitude of the position vector

R(r): displacement vector describing deformation of the perfect crystal

Rrr: constants

rdr the dislocation core cut-offparameter

q: position of the jth atom in the unit cell

r, : the radius of the dislocation loop

ror the radius of the bubble

S: Amplinde of the diffracted beam

So: constants

Sg: Reciprocal space distance or direct lattice spatial frequency

sgi excitation error for the gth reflection

c foil thickness

T: Amplitude of the central beam, a temperature or the foil thickness

Tm: the melting temperahrre of the metal

u: Dislocation line direction or displacement vector

u: a displacement field component

uj: the displacement components of the material

ue: gth Fourier coefficient of the potential (proportional to vg)

u,j: the Green's function for the elastic displacements
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v: a displacement field component

V volume or visibility

V(r): potential that the electron is moving through

V.: volume of the unit cell

Ve: gth Fouriercoefficient of the potential

w: excitation error or a displacement field component

W: work done

w(k): the contrast transfer function of the lens

xj: spatialcoordinates

x: spatial coordinate

yi spatial coordinate

z; spatial coordinate

Z atomic number

Greek symbols:

C[: parameters

p: defocus parameter or the rrns width in section of the angular brightness distribution

of the illumination

RPc: parameter related to the derivative of the displacement field

T the surface tension of the host metal or the relativistic correction factor

n gammafunction

t'il: the distance parallel to the Brillouin zone boundary between the ith dispersion

surface and the Ewald sphere for the fth reflection

6: a measure of the strength of d.ilatation or ove{pressure in the bubble

6,j' the Kronecka delta function

A: the defocus (overfocus positive)

Aol the difference between the wave function that has passed through the bubble and the

perfect crystal wave function, normalised by the perfect crystal wave function

ttt: the strain tensor

sijr<: the Einstein pennutation operator

(: the defocus or a coordinate
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€er real part of the extinction distance of the gth beam

Ee: imaginary part of the extinction distance of the gth bearn

0e: Bragg angle for the gth reflection

Ko: the real part of the wave vector inside the crystal that is determined by the mean

potential of the crystal

tr : electron wavelength or the Laure constant

p: shear modulus

v: Poisson's ratio

T[: the normal absorption coefficient or a coordinate

pi loop spacing or bubble radius parameter

c the interaction constant

o,j: the stress tensor

0e: Darwin arnplinrde of tbe gth beam

Xt wave vector in vacuum

v: the Airy stress function, the wavefunction or some other function

$i): Bloch wave amplinades

CI the solid angle subtended by the dislocation
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