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ABSTRACT

This thesis is a collection of theoretical investigations into
different aspects of the broad subject of quantum many-body theory.
The results are grouped into three main parts, which in turn are
divided into separate self-contained sections. Some of the work is
presented in the form of published papers and papers that have been

submitted for publication.

The first section of Part A introduces some of the concepts
involved in many-body problems, by developing methods to evaluate
expectation values of the form (‘f(\'.';)> . In the rest of Part A
I consider collective excitations of finite quantum systems. The
calculations are confined to nuclei because the results can'then
be compared with the extensive investigations that have been made
into collective nuclear modes. In Section AII, wavefunctions are
proposed for rotational excitations of even-even nuclei. Both
isoscalar and isovector nuclear modes are discussed. In particular,
the ‘2,Aﬁ> isoscalar states are investigated for both spherical
and deformed even-even nuclei, and the simplest isovector wavefunction
is shown to give a good description of the giant dipole resonance.
In section AIII wavefunctions are proposed for compressional
vibrational states of spherical nuclei. Section AIV discusses sum
rules for nuclear transitions of a given electric multipolarity.

It is found that the 2% and 1~ states investigated in section AII
and all but one of the vibrational states discussed in AIII, each

exhaust a large part of the appropriate sum rule.

In Part B I consider the problem of how to describe flow in

quantum fluids. In particular, we want to be able to identify the
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physical motion represented by any given many-body wavefunction.
Section BI derives a quantum mechanical velocity field for a
many-body system, paying special attention to the need for a quantum
continuity equation. It is found that when the wavefunction has the
usual time dependence efaét , that the quantum velocity formula
averages over all oscillatory motion, so that much of the physical
nature of the flow field is lost. In section BII a particular wave-
function is proposed to represent the guantum excitation corresponding

to any given potential flow field. The results obtained by considering

specific examples are very encouraging.

In Part C I investigate the properties of surfaces. Section CI
presents a theoretical description of the tension, energy and thick-
ness of a classical liquid-vapour interface. In section CII the
classical results are extended to describe the surface of a quantum
system, namely superfluid helium four. Problems occur for the
quantum system if the correlations arising from the zero-point-motion
of the phonon modes are included in the ground state wavefunction.
Finally, in section CIII I discuss generalized virial theorems that
give the change in the free energy of a system undergoing an
infinitesimal deformation. For example, a particular deformation
gives the expression used in CII, for the surface tension of a plane

quantum surface.
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INTRODUCTION

There are two main themes which form the basis of the work reported
in this thesis. Firstly, the importance of density correlation functions
in many-body theory and secondly, the wish to understand the physical
processes described by given many-body wavefunctions. It transpired
(see below) that both of these considerations led me to investigate

properties of classical and quantum liquids.

The mathematical formulations of a large number of problems in many-
particle physics involve the use of density correlation functions. In
particular, if an adequate description of the system can be given by
neglecting three(or more)-particle interactions then it is sufficient to
consider only the single-particle demsity n(1) and the pair correlation
function g(12). Section AI begins with the definitions of these correlation
functions, from which it follows that if the interparticle interactions are
dependent only on the distance between pairs of particles (r), then the
pair correlation function reduces to the simple radial form g(r). So,
the sytems most teadily described by the many-body techniques under invest-
igation are simple liquids, rather than solids or polar liquids, where the

particles have preferred orientation towards one another.

The original impetus for investigating properties described by density
correlation functions arose out of the progress reported in section AI, in
simplifying double integrals over a spherical drop, in which the integrands
involve the pair density. At the same time my supervisor (Dr J Lekner) had
recently proposed a set of many-body wavefunctions suitable for describing
collective excitations of self-bound quantum systems, and it
was found that the results of AL are helpful in evaluating the energies
of these proposed excitations. Sections AII-AIV report the investigation

into the properties of these wavefunctions. The discussion is confined

to excitations of nuclei because the results can be compared with the




large amount of experimental data on excited states of nuclei, in contrast
for example, with the lack of data on collective states of liquid helium
droplets. The work of Part A is dominated by attempts to understand the
physical processes described by the various wavefunctions considered and

the effect of pair correlations is at first argued to be small enough to

be neglected. However, by the time of completion of the thesis it had
become apparent that the behaviour of the nucleon pair correlation functions
(especially that due to Fermi statistics) has a crucial effect on the
calculated energies of the states. In particular, by including the effect
of pair correlations the variation of the energy with nucleon number A

. 33 = 73
changes from A to A.

Part B, which arose out of a need to identify the flow fields corresp~
onding to the many-body excitations discussed in Part A, is a general
discussion on flow in quantum liquids. Although the main emphasis is on
the physics of wavefunctions the importance of density correlation functions
is again highlighted in section BII, when investigating surface excitations
of liquid helium four. Namely, it is found that the long range behaviour
of the pair correlation function determines the long wavelength (low energy)
part of the dispersion relation, in direct analogy with the situation for

bulk excitations.

Part C is concerned with the statistical mechanics of liquid surfaces,
and hence there arises the question of the behaviour of density correlation
functions in inhomogeneous systems. In section CI I discuss the liquid-
vapour interface of a simple classical flaid. The reader is referred to a
paper reprinted in this thesis, in which general expressions are derived
for the surface tension 0~ and the surface energy € . The exact evaluation
of these expressions will require complete knowledge of the density profile
and the pair correlation function of the inhomogeneous system. Since this
is not yet available further analytic results are obtained by choosing

simple physical density profiles, and by making an approximation for the




pair correlation function, which it is argued should be reasonable at
least near the triple point and in the eritical region. From the results
for 0~ and € it is also possible to estimate the surface thickness.

In section CII the methods developed in CI are extended to describe
the simplest corresponding quantum system, namely the surface of superfluid
helium four. In particular the consequences of taking the zeroth order
approximation for the ground state wavefunction are investigated. With
this simple ground state the mathematical techniques used in the classical
system are all that is required. Provided the long range phonon correlations
are neglected, good results are obtained for d~, € and the surface thickness.
The problems that occur when these correlations are included led to a
detailed investigation into the effect of the zero-point motion of phonon
excitations on the ground state wavefunction. The work reported in section
CIII arose from considering generalisations of the derivation of the

expressions for 0 , used in CI and CII.

The work in Parts A and B is concerned mainly with the second theme,
that is, the wish to understand the physical processes described by certain
many-body wavefunctions. The wavefunctions discussed in Part A are used
to investigate collective excitations of nuclei, due to the availability
of experimental data. The properties of a variety of wavefunctions are
ex tensively investigated, in particular the energies and the contributions
to the relevent sum rules are evaluated. It is worth pointing out that the
methods of Part A treat the nucleus as a quantum fluid. That is, the
wavefunctions are thought of as describing fluid flow and any shell structure
effects are neglected. (The concept of treating the nucleus as a liquid
drop when investigating collective excitations has been used previously in
the "classical" liquid-drop model, which gives its best results in the
description of giant resonances.) It was this flow analogy to collective
nuclear excitations that led to the general investigation, reported in

Part B, into the velocity fields corresponding to different types of many-




bbdy wavefunctions., Many examples are considered, including wavefunctions
discussed in Part A. In particular, the results of BII suggest that most
Muclear
of the , wavefunctions correspond to what nuclear physicists call giant
resonances, which in turn supports the conclusions of section AIV where
the excitations are shown to exhaust large parts of the relevent sum rules.
These results forced a revision of the original calculations of the energies,
which were based on neglecting pair correlations. It is found that the
inclusion of nucleon pair correlations crucially effects the calculated
energies, and in particular that they are needed to obtain the correct
variation of energy with nucleon number from the giant dipole wavefunction.

Thus an understanding of the physical nature of the wavefunctions led to

imformation about the importance of pair correlations in nuclei.

To sum up - this thesis can be looked at as a study in properties of
liquids. Particular emphasis is placed on the physical interpretation of
many-body wavefunctions describing fluid flow, and on the properties of
density correlation functions in homogeneous and inhomogeneous liquids.
Future work on problems raised in this thesis will probably rely heavily
on a better understanding of the behaviour of pair correlation functions
and density profiles in finite systems(for Part A) and in inhomogeneous

systems (for Part C).

Finally, the reader will see from the papers reprinted at the end of
the thesis that the work reported here is the result of an extensive
collaboration between myself and my supervisor, Dr John Lekner. In
particular, the published work is in all cases close to a 50-50 contribution
from each of us. The unpublished part of the thesis is my own work and
so represents my own ideas. However, it is inevitable that much of the
motivation and technical progress at least partly arose out of the many
enjoyable and stimulating discussions I have had with John Lekner over

the past few years.
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PART A

FINITE QUANTUM SYSTEMS

ABSTRACT

The first section introduces some of the concepts involved in
many-body problems, by developing methods to evaluate expectation
values of the form (‘f(ﬁz\) . The rest of the sections consider
collective excitations of finite quantum systems. The calculations
are confined to nuclei because the results can then be compared with
the extensive investigations that have been made into collective
nuclear modes. In Section II, wavefunctions are proposed for
rotational excitations of even-even nuclei. Both isoscalar and
isovector nuclear modes are discussed. In particular, the ‘Q,AA>
isoscalar statesare investigated for both spherical and deformed
even-even nuclei, and the simplest isovector wavefunction is shown
to give a good description of the giant dipole resonance. In
section III wavefunctions are proposed for compressional vibrational
states of spherical nuclei. Section IV discusses sum rules for
nuclear transitions of a given electric multipolarity. It is found
that the 2%t and 1~ states investigated in section II and all but one
of the vibrational states discussed in III, each exhaust a large

part of the appropriate sum rule.

CONTENTS
I : Pair correlations in self bound spherical systems
II : Rotational states of quantum systems
III : Compressional vibrational states of spherical nuclei

IV : Sum rules
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I. PAIR CORRELATIONS IN SELF BOUND SPHERICAL SYSTEMS.

In many-body physics it is often necessary to calculate integrals
of the form
§did2 na2)fem) (1)
where fCﬁg) is a function of |3 = lr,-_[;_\ and M02) is the two
particle ground state density correlation function, defined by T\(lS)

for $S=2 where

NG...S) = NI Sd6+d.. . .dng?> 2)
(N=S) Sdi . dn §*

§(l,.._N) is the ground state wavefunction of an N- particle system.

For example, the expectation value of the Hamiltonian of an N- particle

Bose system

N
H = '%L‘;Evf + Q2 U : @

=t 1£{<j&N

when the wavefunction is of the form

¢o..N) = EXP[JZ— Zji—}é(rz,-)] ; (a)

is of the form (1) with, [l] e

ft) =4[-E % pe) + U] )

To evaluate integrals of the type (1) we use an approximation

for M(2) , namely
NG2) = NNR)9E) (6)

where 3(\'{1) is known as the pair correlation function. By noting
that in the ground state, Y\(I)d_r' is the probability of finding a
particle in volume d_T.' at Y& 3 Y\(u)d:ld_\—;_ is the probability
of finding two particles, one in gl_r; at T, and the other in dj;_
at Ta , then N(2) g(r.‘,)d_r; is seen to be the probability in the
ground state, of finding a particle in _(i_q about Y, , if we already

know there is a particle at ¥, . In Appendix AI(l) we discuss the

weak correlation limit of 3(1") P (3(") = constant for all T ).
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If we restrict ourselves to spherical systems so that 'n(\)

becomes T\(T‘) , T the distance to the centre, then we can use

bipolar coordinates. ( L7] page 203.)
2@ dxdy
Let lEl: r)’!;l:s P ‘-.1=:'(' o % 7 ‘ (7)
Then the Jacobian of the transformation %-((—i';—.é—y%
yields
7 =2mwydxdy = [2T) st ds.df (8)
=2 *Y J ( r) L
Hence d_\d_?_. = SW*drro\SS d'é'(' ;
9)
with O&r,s £o0  and  |r=s| &€ £ r=§
Using these coordinates we have
Sdidamaam) = Sdimo) Sdana) gr){G)
o T+
= {T* S:Jrrn(r) fodssn(s) def h¢)
where h({)-__g(.e)f_(_é) sl
- - -t
interchange § with € = BW’SOdrrh(r)Sodfka)‘g_%\lSSY\(S)
L 0> -l'-o-'f‘
interchange YT with € = 8TT"Sdrf‘|'\(r)gd'€fY\(f)\ ('*es‘s nes) (10)
© ) by
Therefore interchanging § with 'é again, we have
co
$did2 nufm) = 8T Soo\r'r*"\(r) plr) (11a)
P r+s
where N(r) = g(r)f(r) and P(r) =-IT—_-So\ssY\(S)go{ffh(f) (11b)
= \r=s|
From (2) and putting f=| in (1la) we have the normalization
)
T ldrrigr)pr) = N(N=I) (12)
b So q(r) per) Y
As a first approximation we could use the cutoff density
NG) =M, , S&€R 5 =X, v-_-%Tra3 (i)

o , S>R
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Then as is shown in Appendix AI(2)

P(F) = “° Sdssgo\ff €< R (14)

\r=s| *
- “’;&Ra[l—l -—) el ] 04T £2R
3 1( (2&) Y (15)
= © pT PR

Therefore in the approximation of a cutoff density, where the self
bound many body system becomes a sphere of radius R,

Sidanef(m) = M §drhir)f - (m)*'\ ()

2 \2R
where h(") = 3("‘){(") 3 Sd_r = l,.T\'S dr’t‘

We can get a conceptual feel for Po(r) by noting that the volume
common to two sharp edged spheres of radius R, whose centres are

separated by distance Y~

A

N
o

R {
is, using (8) 2T Sdss o‘f"('
\D R s

3 3
= LR N1=-3/T\+1l (T =20 P(r i 17
= [ _f(lR) 3(2‘2)] ™ e( ) (See Appendix AI(2) ) (17)

Similarly the common volume of two overlapping fuzzy spheres

(non zero surface width) each described by the general radial

density M(S)
2 P r
n* ‘ )

(18)

In some problems the weak correlation limit g(r) = (N‘%

(see Appendix AI (1) , or use E(r) in the normalization condition (12)
for 9(!‘) = constant) may give good results. This weak correlation
approximation, [3] , is such that the only correlation between

particles is that due to the particles being constrained to move



within the sphere. This hﬂght be a good approximation for

Al.

nuclei as the hard core of the nucleons only occupies about a percent

of the total volume. [}-]. In this case for a cutoff density

2R
didz nuayfem) = nov-3, (drei-3(5) +EFIFO) oo

To find FMT) exactly for a non cutoff radial density, we can

try introducing the Fourier transform of the density function.

Nnes) = d—f)s (dk RS ()

where Y\(B) = SdS h(S) h

Integrating over the angles we get

NnCR) = %‘ So\SS nes) sinks

It is shown in Appendix AI(3) that (20) and (21) give

§di da ne)f(m) = 8T So\rrzktr)P(r) 5 he) =

were  PI) == (ds ns)n(1s+ri)
L (kR T2y <i
Aok godhk N(R) sinkr

For example, take 'n(S) to be the cutoff density (13),

then from (22),

R
n(R) = ﬂ'ﬂogo\sssmks
k o

A ¥ 24
= ik_ NoR ]‘(kR)

where j is the first order spherical Bessel function,
\

(see Appendix AI(4) ). Therefore (23) gives us,

Pir) = m R" S dk j(kk)j (kr)

(20)

(21)

(22)

9()f<r)

(23)

(24)

(25)
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Equating (25) with (15) we see that we have proved

[ a 3

§dxfoofex = 1-3(2)+LEZF]E S oex<a

[~] | o 252 l 2 6

= 0 < >
/
In general (22) and hence (23) are difficult to evaluate for a
1
reasonable “(S) , although the “(E) for some simple W OK are
known from scattering theory where the form factor is of the
=CS™

form (22). [9-] . For example a Gaussian TS) =N € , leads

to a Gaussian PC!") = :ETT e-c':%'
8 ca/z

-

Because the above exact method is too difficult for a reasonable
density function that will describe a system with a non zero surface
width, we will revert to bipolar coordinates and calculate PC\")

for a simple exponential variation of the density, namely

ns) = Y\ASS) + SY\'&S) (27)

where T\a(s) is the cutoff function (13) with R replaced by R‘
]

and S“R(S) is
|

R 54
<SnRLS) M e

e

- (28)
eR./A e $K S >R,

S<R,

- Ne
2
No

2
This simple density variation has a continuous derivative and
describes a surface whose thickness is approximately given by
A
By Tt
| W&

(27) and (28), is because we must be careful in defining the position

= l>\ . The reason why R. and not R appears in

of the surface. The surface (S = R) is chosen so that the total

volume

V= Y‘\— go\_i nes) (29)

stays the same when 1\(8) is changed from Y\R(S) to (27).
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That is,

V= kTR = L Sds [ 1)+ §no ]

«©
= & 2 kT 2
el + 4T { dss*in )

Il

R, oo
_R, R, .
%JFR? -2me /’\Soo\ss‘e‘/* +2Te Ago\ss*e h

%T‘—R? + SR, X (30)

Il

From (30) we find,

R, = R(1= 2047+ o&)")

\

Substituting (27) into (11lb) and using (15), we have

/
P(r) = P(r) + P@) + Pz(i‘) (32)
where, P'(r) is given by (15) with R replaced by R' (33)
oo T+$
T'E(\') =2 goolss SY\R{S) S“q}_{sf: T\R‘(f) (34)
(Fssdn () (dées
ana TR = JdssaNn (s))de€dn (¢) (35)
P ° R sl R
. N | —R/4
n Appendix AI(5) we show, neglecting terms of order €

and assuming that h(l") decays fast enough so that when using PC")
in (lla) we can drop all terms involving e-—\T’—:lR.J/X , that

evaluating (34) and (35) using (28) gives
2 T
TR = 2mi R 2(5) + H(E V€™ +

ANNTE™ — 2 (1-e™) | ocreng,
(36)

= O , TR,

N TSR]

+ N )\“(I—Q"r/)‘) , O4TLIR, .
=0 , T'72R,

A
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Collecting (33), (36) and (37) together and using (31), we get
3 2 =
FRp(r) = R (2087 + RAG[ = -28r ve Alwees ar)|

+ (terms independent of R) + (terms % 0<J/R)) ) O4L Tm4£arR

= 0 , TR (38)

(we have used RWA to put 2R, = 2R )

Then inserting (38) into (l1la) we have
AR
$dl d2 nG2)§ () = (ig—wma Tl §°o\rrzk<r>
aa -
— (LRI N, Koo\rr\ur){r% X[b= €7 (pr "/x)_l} (39)

+ negligible terms (independent of R or £ 0('/R) )

where I‘\L!‘) = 3@"}‘?(“) and we have assumed "\Q’) decays faster
than \"-‘3 . So the integral (lla) splits up into a volume part
and a surface part, plus negligible terms independent of R. It is
interesting that there is no part proportional to R which would have
then been a curvature correction term, i.e. the integral has split
up into a volume term and a surface term as if the spherical system

had a plane surface of area I,-T\'Q".

We can check that the above results are sensible by using (18),

T

™ "

spheres with densities described by (27). Firstly, —ﬁT{- P‘(\") is
°

namely that P(,") is the common volume of two overlapping
the difference between the overlap volume of two sharp edged spheres
(densities described by T\R‘(S) ) and the overlap volume of a sharp
edged sphere and a fuzzy edged sphere (density described by
'Y\R‘LS\ + S“R\(S) ). So, R(J') should be negative and should be
largest when T=0Q . With SY\RCS) given by (28) an obvious
)
estimate for the volume %.\Tg F‘(O) is —1,.77'>\ R? , that is ﬁ(o) = —ln:XR?.

2
which is exactly what (36) gives to order R| as T O . The

overlap volume of two spheres reasoning implies that BU“) should
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have a maximum for T'=O, which is a result that agrees with (37).
Note, that the terms we would also expect to find in F%CT) and

P.QU-) for r#lR. , using the overlapping volume picture, do not
appear in (36) and (37) because we neglected them by assuming y\(r)
decays fast enough. If »\Q’) did not decay faster than 7--3 then
the neglected terms could easily be evaluated as an extension to
Appendix AI(5), however in most applications of (1lla) h(r) does
decay fast enough. For example, if we use (5) with (11) to
calculate the expectation value of the Hamiltonian of a liquid
helium-four droplet, then the slowest decaying part of h(rﬁ comes
from the long range phonon part of the wavefunction; ¢Cr) b5 l"-:L .
that is “\(l‘) N\_-"-. (See section C.II.) Using (39) we can get an
approximation to the integral S‘ é_\_ olg_. T\(JZ)‘E(F,Q) for any general
surface of the type (27), by adjusting the surface width parameter );
in (28), to get the closest approximation to the JW\RSS) by an

exponential form.

Finally, we will compare the result (39) with the expression
for the surface energy of a classical, plane, liquid-vapour
intexrface, derived in [10] In [Z_LO] similar methods to those used
above are applied to a two phase classical system with a plane
liquid-vapour interface. The assumption made, that is analogous

to (6), is (for the surface lying in the xy plane),

NO2) = N(Z)N(Z,y) 9l F) (40)

where Y1 is some average density depending on the temperature, to be
chosen on physical grounds. In the above we considered a quantum
system at T = 0, so there was no vapour phase, while in [10] the

density was given by (for the surface at Z = D),

Nnz) = N, +(Y\_Q-T\V)Y_'§D(Z) + S‘f(z):l (41)
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where ﬁ(’z) = Tlpﬁ_('f_) ; “D(Z) is the cutoff function (13). The
) ©
expression (41l) is directly analogous to (27) except that Y\v#o i

When the exponential density

St = - & &>, z<p
2
(42)
= Y= 25D
ol

was used, the expression for the surface energy became, ( U = Z;Z'u(rz,))
€Ly

L10]) eq. (78)
€ = - T.:l;. (ﬂ,—nv)“fglr 9t M) r{r’+ )\2[4;- e r/'\(b-+-§-).] (43)

(42) is the plane surface analogue of (28), with the surface

definition gdz S{(z):O replacing the spherical system surface
definition (30). From (5) and (39) we can find the corresponding
expression for the surface energy of a classical droplet, in the

approximation T\U.=O/ “R=Y\° , namely

AR

<Uy = -] So\rau-)u(r)r{r‘+)\1[b.-e~r/"(b-+§-ﬂ (44)
TR 2 e

So, comparing (43) with (44) we see that the expression for the

surface energy per unit area is the same for a droplet and a plane

surface. That is, the result (39) for the integral _(d_\d_?.. T\(\l){(\"{;) §

derived for a spherical system, also holds for a system with a

plane surface with l"'TT'RQ‘ and 4_7TR1 replaced by the

%

corresponding volume and surface area.




App AI(1)
APPENDIX AI (1) : The Weak Correlation Limit of g(x).

The obvious first approximation for (6) is to put
g(r) = constant for all r. This is more than just a
noninteracting limit for some quantum systems, (for example,
noninteracting spin zero Bosons, [2] page 431.), and so I call
it the weak correlation limit, [3] From the definition of
MQ...§) , (2), it follows that for a system of particles in the

weak correlation limit
Nu = V=L NN

Hence from (6) we have for the weak correlation limit

|
‘j(ﬁa) = I - N for all ru i (a)

We can also derive (a) from number conservation.

Using (2) and (6) we have

N(N-1) = §dt; $dr m12)
= §drdr; mm@){gcoo)+[<3(m)—-3<°°ﬂ}

So assuming that surface effects don't matter in the change of
variables _d_r,'d_r; to d_‘_-,z , (Feynman and Cohen, [_6.] Appendix B.,

state that surface corrections cancel.), we get

N(N=1) = CJ(OOJN"' + NV Sg_\_\:‘(a(r)—acw)) (b)

where 'Y\(r;) = 'ﬂo(:»v) when \—J is well inside the system.
(b) implies, ‘Y\° gé_r(%(r)—-a(oo)) = —| + N(\"g(W))

which is equivalent to the well known relation
M, (dr (gen-1) = =\ (@

Putting g(r) = constant for all r, in (c), we get the weak correlation

limit, 3(\") = \-—'/N
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It should be noted that the definition (2), and hence the rest
of the section, applies to a system of a fixed number of particles.
That is, a canonical ensemble. For non zero temperature a relation
similar to (c¢) is derived by considering a grand canonical ensemble
within the total system, namely, (de Bohr page 364, [?], with (5]

chapter 6, problem 1l1; and Feynman and Cohen, [6], Appendix B.)

N fdr (gm=1) = =1 +nT X, @

where )(T. is the isothermal compressibility at absolute
temperature T (in units of energy). (c) and (d) fail to agree at
T >0 because (c) applies to the total canonical ensemble which
cannot experience number fluctuations, while (d) applies to a sub-
volume of the total system. In most experimental applications (d)
is the relevant expression because the total system is very rarely

measured as a single entity in an experiment.
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APPENDIX AI(2). a(r),

3
From (14) we have, with t < R , V= —l_g—'lTR

R T+S
N* |
pr) = X — | dss\dtt
°© re =51
Fig. 1.
The two cases
are t=5—-1
< R (Ry)
>R (R)
S
™—Ry
The integration over the shaded areas in figure 1. is zero
because
§-r t—-r
gdéf = Sdss =0
™S €
Therefore the double integral is the same for both cases
giving R R
%
P(r‘) = -‘S—Z-L(o{{-f go\ss , 0£r£2R
° VT deln et
= , 7R

Evaluating the double integral we have for 04£ 1< 2R

PEY = ML L (det (R—(-7)

V3T 2 "R

N (D -k +_2ﬁ*)
V2 24 2 3

Il

Il
=
o P
Wi
~
w
—
|
P fw
&Jr1
2
+
M-
P
Rl
\_/u,
| ——;

L
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aPPENDIX A1(3). P(r) as a function of Nn(R).

Letting \/\Cm)= 3("1)'«‘-\'1) we have using (6)

(1 d2 n0$m) = Sdrne fdgnem) h,)

Putting [ = -, , S = (T=\0-0l=%,5 -\l"’|)

A |

we see that we can write

Sdida noa)er,) = § drh(r §gt_s NSNS +Il)
= gm? S::\rr*\\(r) p(r)

where
P(r) = 3= SdsnisIn(is+x)

Using (20), and noting that we can put '\'\(l,§_+£') = ‘Y\L:"'.S.) P

we have
/ é(E."'B./)-_S_ 0 h r Y
p(r) =y (dsfdnfde e n(RYN(E)
(lT\')"'Sdb‘ T\(h) eb'b: L
where we have used Sds L(h-’-h) S — S(k +\Q’)

(NrP
and also the fact that for spherical symmetry

Y\(B) = ﬂ(h)=7\(~k) , see (22).

Integrating over the angular part of Ak gives

Pr) = e L (e k1ilk) sinkr
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APPENDIX AI(4). Spherical Bessel Functions [8] .

The regular solution to the differential equation

" /
f(r) + 24 + (x’-&:@){cr) =0 (1)
r T2
is the spherical Bessel function of order %, (lfr).
p s un j)
4(x) = SinX (ii)
° X
= I — Cosx - ;
j|(X) = §\_QIX = el Soo\rT'S\V\XT' (iii)

9+ 40 = W00

L+1

Some useful properties of -1 (X) are

d—x'fpbd a3 D[ﬂj(x\ Ul+|)j(x] jﬁ(_):)~(—g(._ﬂi(x) ()

2+ _ 0+ .
ale; (X ,jﬁ(x)) = x& _Q£ |x) (vi)
—,OL(X)) = — X -j_QE_.X) (vii)

Il

Sjl(x) le ™ 'jQCX) (viii)

szjo(x)o\x = ng’(x) (ix)
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APPENDIX AI(5) : R(r) and PZ(T')

We first assume R,’»X and define
x‘=5/)\,x1='6/)\,y-_—"/,\
?\6-(;_) = , Xa & R/

=. 10 , X3 > Qu/)\ ba)
= g X L% > R

Then from (27), (28), (34) and (35) we can write

= W R(r) _ ! oty

'g(Y) W = goo\x,x.e(x.)(&ﬁ;(\l n(xy) (b)
= kP g ik

Tly) = ."%}’;{2 = {dxx,e00) S‘g\(mie(xz) y

Now for "éﬂ‘(\/é R/‘X) the lower limit of Xz in both (b) and

(c) can be replaced by CX,-—-y) . This is valid in (b) provided

we extend N(¥X) by defining T\(X,)=\ for X, <O,

then for y&R‘/)\ the extra term in (b) includes (see figure 1.)

Y=*
x\éz/zx,. = O

Figs sle

X =Xi=Yy

Z— - 3 When RSSA €(Xy) 18 onixé nien V\eg“\g'\b\g

_______ in o small Fa!\‘le about R,/)\ 3

)

Y2= )’-—Xl

When RSN LX) 18 o:\\y non 'necr}\\'j\\)\e
n a <mall range ahout R\/\A . “
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It is valid in (c) because e(X) is non negligible only for

V= Rl/}\ so that the extra term in (c) is (see figure 1.)

Y—X\

S::l x.x,e(x.)golxzxze(s(,) = O for \/I;R‘/x » neglecting terms O(é-&‘/'\)
Y=y

For R,ér' élR, (R'/xéyém/)..) we can still replace the lower

limit of X,_ in (b) and (c) by (X.“Y) . This follows for (b)

provided we first subtract from (b) the contribution from the

shaded area in figure 2. with m replaced by 1. Because e(.XJ

is non negligible only for \/= 9‘R‘/)\ we see from figure 2. that

this shaded area contribution is negligible except for T"-";?-J.R| (Yé 22/'{)

Similarly, because e(X) is negligible except for X :"‘ Q./)\

the replacement of the lower limit of X:). in (c) by (X.-Y)

is valid except for terms non negligible only for \/ = 1Kl/)\

(see figure 2.).

Fig. 2.
Xg

__~ When BDYN elxy) is 0'\\3 non V\ch\igfble

_\_/- === = i o Small range about R./)"
xl

.
when RSN €0x,) 18 oaly non r\eg\;‘ga\ﬂe
n o small range about g\/x.

The calculation of these terms, which are negligible except when

r= 2Q. , is straight forward and for R/)\ f‘-y & 2&{ yields



App AI(5) 3.

terms in (b) and (c) which are all proportional to
. 5 2R, /y :

Also we see from figure 2. that for )’ (b) and (c) will

only be non negligible for \/ = 2&/)‘ . However, we will not

calculate any of these terms, but instead assume that in (1lla) l’\(r\

decays with I” fast enough so that we can neglect all the terms in

P(r) that are non negligible only for r?la/)\ . Thus with this

proviso (b) and (c) become

Xy +y

'§( ) = S dX X, e(x, )gdxzxzmx,) (d)
(oty Ll“./x)

¥|+

T(y) el S AX X‘ Q(X. SngXL Q(Yz) (e)
(Oé\/ £ 2“\/)0

We now evaluate the derivatives of (d) and (e) with respect to y

dd._{_(.” = S:QJX,X,QCX')[(XH'Y) Nx#+y) + (Xl"'Y)T\(xl"y)]
Y

= gjx.xfe(x.)m) +1\(x.-y)] + yS;ix.x. QCx.)[Y\(x\+y) -‘n(x.—y)]

Ry - Y Ri/x Ri/\+Y
..R, _9.. R, =,
= —¢"N .S /x gocbtxnex + e ASRA;;XZQ 8
Ri/A- Y —&/)\ R Ry/n+Y
{ R _(c‘xx e’ +¢€ golxx — W geixx e
A
Neglecting terms of order e_R'/)‘ we find

oo = 48 -n-C[xgy]
From (e)

dTty)
dy

g:;x,)( , QLX\)[(X‘+Y) elx+y) +(x.-¥) e(x,—y)]

- gjy 2 X," €b<|)EQ(X‘+Y) + Q(XF‘\/E] + y g::\xlxl Q(X.)[e (X\"'Y) —e(xl—Yﬂ

M Y “/* _y 2R, _
Y —2R,/\ 0\ 2)( __e dXXz 4+ e Y /)\KAXX X

R/n—Y

= €




L\ R/x+y o
+e7¢ '/Ago\x & éygo\xx‘1 +eye”'/*§fl/>;x*e‘”‘
) +y

R\-y -
+y{ Y lklxg > e* _0 ‘(o\xx +e m/)\go\xxe—lx

R/2
A R/HY 5V ™ Y
=Y <28, s/A =l
y Ag Ax K + € dxx == '(‘é/)i\is’ b
~Ri/\

Neglecting terms of order e we find

v~ [ weeyeye]

From (d) and (e) we have ‘ECO) =T(0)=O, so that

integration of (f) and (g) gives

56,7 28 {8y B

(oeys m‘/x\

T A - [Fr] -]

Therefore we have shown that for R‘>7>\ and assuming }\(F’)
=ly-28/\|
e /7

decays fast enough so that we can neglect terms of order

that the exponential surface (28) leads to

FR(r) =~ nix‘kf[\—z(g (_) ] + 202 Nre /X
—énixt[1-e “'/"] , O4T42R,

= O I >2R, (1)

/
2 —I'/ -—l'/)\ 2
TR = N Riare -n_E Xe [l?(%)h %} - 3(1;_5}

+n2 N [1-e"

TR, (k)

Il
O
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II. ROTATIONAL STATES OF QUANTUM SYSTEMS.

In this section trial wavefunctions for collective rotational
excitations of a guantum many-body system are investigated. The wave-

functions considered are all of the form

\P':'F@ ) (1)

where @ is the exact ground state wavefunction. The expectation
value of the energy of the state (1) is easily calculated, provided
the potential energy V commutes with F (for example V must not contain
velocity dependent interactions). With this restriction it follows

that

(H-E)V = "k §'5 %.(FWF)

Im

et

and H is the Hamiltonian

where H§ = Eo
H = ~k ka* + V (3)
Rk

am

Then by a simple integration by parts we have (cf. egqn 4 of [l] )

Sdr \IJ*(H-E.)\P _ R > IV FID (4a)
(d? | NPT IO

where d't = -\j-(i_rJ and < > is the ground state

expectation value defined by

<BY = S8BT (a5
Sdz 3*

The integrals in (4a) and (4b) can include a summation over spin

variables as well as an integration over space. It is the simplicity

of (4a) that makes trial wavefunctions of the form (1) so attractive.
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This section is divided into two parts : The first part
investigates certain isoscalar, rotational excitations of even-even
nuclei. An isoscalar nuclear motion is one in which the proton and
neutron fluids move in phase. (In fact for part (a), all differences
between protons and neutrons are neglected when evaluating (4).)

Most of the discussion is about a particular 2" state; spherical
nuclei are discussed in a paper supplied with this thesis, [l] i

and I consider a possible extension to deformed even-even nuclei.

Part (b) considers isovector analogues of the nuclear rotational
excitations in part (a). An isovector motion (or polarization mode)
is one in which the proton and neutron fluids move out of phase.

It is noticed that the simplest wavefunction of the type proposed
should give a good description of the resonance state of the 1~
giant dipole oscillation. The resonance energy of the giant dipole
state for spherical nuclei is calculated using this wavefunction in
a paper supplied with this thesis, [2] . The value obtained by
including only those pair correlations due to Fermi statistics is

close to experimental data.

Many of the results of this section apply to finite quantum
systems other than nuclei. For example, the isoscalar excitations
discussed in part (a) should also be rotational states of polyatomic
molecules and droplets of superfluid H:. . For nuclei the energies
of these states are in the region of known experimental results, but
in the case of liquid \i:., it can be seen from the weak correlation
approximation results of part (a), that the energies would be so low
that they would probably be impossible to detect directly. For this
reason I have restricted the quantitative results to nuclei.

{ aside: The problem of translational invariance (see below) is

&
avoided if one considers rotational excitations of liquid ‘4& in a
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container. For a cylinder, the wavefunctions corresponding to the
spherical states (9) and (12) follow by changing \:M(I)qfhr) to

e.‘.'qﬁ ];(hr) . These compressional states will have an energy
that is of the order of N (or perhaps NW&) lower than the

experimentally known vortex excitations, where N is the number

"
of He atoms }

(a) Isoscalar Rotational States of Nuclei :

In reference [3] a set of three-body angular momentum
eigenstates is generalized to obtain a set of many-body rotational
wavefunctions of the form (1), with § assumed to be both trans-
lationally and rotationally invariant

¥ =F % =135 V(m)fwm)d (5)

LM L 2 Ty N Uk
Since YLM(—E) = (‘“)L YLM(I) it follows that LI{.M is
zero for odd L, i.e. L must be even. From this we also see that \IJLM
has the same permutation symmetry (i.e. bose or Fermi) and inversion
symmetry (parity) as § . An important property of these wave-
functions, given particular attention to in [3] , is that they are
translationally invariant. This is necessary because (i) the orbital
angular momentum of a system of particles is independent of the
choice of origin only in the rest frame of the system, (i.e. only if
the wavefunction is translationally invariant), and (ii) the
uncertainty principle insists that the centre of mass becomes
indeterminate when the system is in its rest frame. That is, the
true excitations of a self-bound many-body quantum system are
translationally invariant and wavefunctions constructed on the basis

of the centre of mass being fixed at the origin may describe
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completely unphysical motions. It was shown in [3] that when
L;@ = Q_ that \I}LL is an eigenstate of Q and Lo with
eigenvalues L(L’H) 1"\‘ and L‘F\ respectively, and further, that for
harmonic pair interactions between N identical bose particles,

i.e. (3) with
A A A
vV = ‘U'Z.E(F;) + (onstant , (6)
(<j ‘@

that \-PI.L with £ = 1 is also an energy eigenstate with eigenvalue

E = E, + L .e:s.‘_x_:".\_)"‘ )

= mat
(an erroneous factor of VX in egns 28 & 30 of [3:\ has been removed) .

The particular rotational state \IJ’.M (with f = 1) for spherical
nuclei, is investigated in detail in reference [l] . By restricting
§ to be the ground state of a non deformed even-even nucleus it
follows that L.=0 as well as J =0 in the ground state. It is
assumed that for both - and § , that the spins are paired up
to give zero § so that spin coordinates can be ignored and the total
angular momentum is the orbital angular momentum. So Q is a ot
state and 64 is a 2% state. A consequence of taking § to be
spherically symmetric is that \P:!M is degenerate for all M, (-2,-1,0,1,2),
since the energy cannot depend on the azimuthal gquantum number for a
spherical system. To evaluate the expression for the variational bound
to the rotational energy, AE_-,. (5 E;-Eg) , the weak correlation
approximation is introduced. In the weak correlation limit the
nucleons are correlated only by virtue of the finiteness of the
self-bound system, i.e. the correlations are characterized solely
by a number density n(r) (measured relative to the centre of mass).

Because the nucleon hard cores occupy less than 1% of the total volume,

it is assumed in [l] that the weak correlation approximation does not
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introduce qualitative error. This is justified in section five of
Y_l-) using the particular pair correlation function 3('73) =0 for
fa<a and f](l’.;) =1 for [;Pa - In the weak correlation
approximation the variational energy of the 2% state is calculated

to be

%
AE, £ TE =~ 200 A MeV (A 1= the mmber (8)
mR* of nucleons)

where R is the nuclear radius (which is taken to be \'lﬁw-jm Y
It is noticed in section four of I_l-] that by fixing the centre of
mass at the origin that the L = 2, £ =1, wavefunction of the class

(5) can be written as
] / A

q)zm= EMQ = ?GzYz,}m ) (9)

Because the translationally variant wavefunction (9) originates from
\Q , we can be sure that g)l represents an internal

in am
excitation and not a spurious centre of mass motion. Using the
simpler wavefunction (9) and the weak correlation approximation,
the guadrupole moment and the transition rate to the ground state,
are calculated to be

2

Q (M':,Z) ot "."L Ze R ( 2 the number of protons) (10)
2 A

and
1 2 ek rRY
T (L=2 M=2) = Z eR (11)
E 7S Ak
A comparison of (8) and (11) with experimental data produced only one

208
possible identification, namely the first 2% state of PL at

4.085 MeV .

In the last section of [l] it is concluded that ™ is a

finite system angular momentum projection of Feynman's phonon
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[
excitation proposed for liquid He . This conclusion was arrived at

by considering the generalization of (9) to £f#1

{

q)zo = ?(32;"‘31){'(‘3)§ (12)

In the weak correlation approximation and taking qi to be spherically
symmetric, it was found that the optimum £ is £(r) = r-zjz(hf) ;
where h" = J‘MAFg/f\" . With this f the wavefunction (12) becomes
the L = 2 component of Feynman's wavefunction :’ZQ‘:!'S’} § . From
this interpretation it follows that EEL“~ is a rotational compressional
density wave carrying angular momentum L = 2. However, in note 7) of
BII an argument based on the expected velocity field of wavefunctions
of the form (12), strongly suggests that when £ = 1 that the physical
nature of (12) changes to become an incompressible surface oscillation,
i.e. for £ =1 ¥P2~\ should represent a rotational surface wave
carrying angular momentum L = 2. For spherical nuclei the difference
between the two physical interpretations is a minor one, provided the
dmplitude is small, but for deformed nuclei some of the small amplitude
surface waves can also represent large amplitude rotational and
vibrational modes. I shall make use of the surface wave interpretation
a little later on, by assuming that EEL‘~ can also be applied to the
deformed even-even nuclei. But first I should include a note of
caution about the main assumption in [}] used to obtain the energy
bound (8), namely that the weak correlation approximation does not

introduce serious error.

1) The possibility that the weak correlation approximation introduces
qualitative error:

In the calculation of the variational energy of the 2% state of
spherical nuclei, in reference [}] , the weak correlation approximation

N ; <\F l-’-
implied that the four-particle part of M and the two-
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particle part of < ‘F‘;:‘ lz> were identically zero. However,
both these terms are multiplied by an extra factor of A than the First
non zero term in the energy denominator. So a large error in the
result for AEl could have been introduced, unless the weak
correlation approximation leads to errors of less than the order of ‘/A
in expectation values like <r,:5 . In section 5 of Ll.] it is

shown that the simple pair correlation function

3(‘-\:\.) =)0 Tasa
| Fa >Q

(13)

leads to the result
Py = <\'Tf>°'§ | + (%—)3 * 0(%—)"} (14)

where <W:>° (: %Rz) is the weak correlation limit.
Taking @ to be the experimental nucleon hard core we have
P’/R) = ,/3 A~V . So the correction term in (14) is
<< ‘/A , which supports the use of the weak correlation
approximation in the case of nuclei. However, the particular pair
correlation function (13) is misleading since when @ is the nucleon
hard core it fails to satisfy the number conservation identity (see

eqn AI(2))

§dr (dr, n(r)n(R)q(w) = AG-1) (15)

where the pair density has been approximated by (see egn AI(6))

NEL) = NEINE) 9(T) 1s)

? aside: ML,L) is defined such that h(f:,_f:)dj‘;éfz is
the probability of finding particle one in a volume il_". about I}
together with particle two in a volume _d_l"'z about I, . So when
particle one is fixed at [ the integration over d_fz in (15) gives

(A-1) instead of A. Thus the right hand side of (15) is A(A-1l) and
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not Az. }

In the notation of section five of [l] , we have

Ry =<mnfi-k « Lop) e

where, using (15)

- oS Uk dre
K. = Sco\r. nmn)goo\t;fiT\CG)\S__Q\_‘}&[‘J("J"‘]
= §l1_r’“ (dr Sdmnem) nip)9(r) —[Siﬂ\f\(‘?ﬂz}
oL -)) - A?
- av*{ A(A-1) - A }
) -ﬁ_ (18)
T osm?

So the requirement of number conservation implies
a A
<ﬁz> = <Wz>°{ | -+ ?\\- + & 0(_,!\_4‘73)} (13)

The correct result (19), which replaces (14), suggests that errors of

the order of 100% may have been introduced into the expression (8) for

OE;

There is also a possibility that the result for AE,_ could be
completely incorrect, if the ‘/A terms from expectation values like
(19) were such that their contribution to the four-particle part of

< \EM P> (or the two particle part of < \F‘;A |1> )
happened to cancel with the weak correlation approximation terms in
the energy denominator. If this was the case then AE,_ would be

A3 | 1nopart ) Gi.e. [2]),

proportional to A-V3 instead of
the simplest isovector state R exhibits this type of cancellation.

It is known that g represents the resonance state of the giant
o
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dipole oscillation, which has an experimental energy

AE, = R0A™" MV,
But even for arbitrary proton and neutron radial densities, the weak
correlation approximation leads to AE. =~ 70 A-zh MeV "
The experimental variation of the energy with nucleon number A, is
only obtained by including the pair correlation terms in the energy
denominator, i.e. the terms analogous to the ‘/A contribution in
the expression (19). When this is done the contribution from the
weak correlation approximation is cancelled exactly, leaving higher
order terms that give AE' ~ A" A . In reference t2-l the energy
is calculated by including only those pair correlations due to Fermi
statistics, but provided the non indistinguishability between protons
and neutrons is first taken into account (i.e. W/M is an isovector
state), then the A.y‘ variation also follows from the same type of
number conservation argument that led to (19). That is, the
variation is independent of the nature of the short ranged correlations,
which only determine the proportionality constant. The question is,
could this be a general result for all of the isoscalar and isovector

wavefunctions, kPLM and _p , when applied to spherical nuclei?
M

In particular, consider the 2% state TaM of reference [l] .
What we would like to be able to do is to identify Q&M with a known
excitation of spherical nuclei. For this purpose the extensive work
of reference E4-J is very useful. I concluded above from the results
of BII, that @:M (when £ = 1) should represent a surface wave
carrying angular momentum L = 2. However, this motion can equally be
regarded as quadrupole shape oscillation about a spherical equilibrium.
So perhaps \P:m is the isoscalar giant quadrupole oscillation, in
analogy to g which is the giant dipole oscillation. The discussion
on quadrupole modes starting on page 507 of [4] is in the usual

language of nuclear physics, but it has similarities with the many-body
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approach used in this section. For example, reference [4} introduces
1

the idea of the quadrupole field, which happens to be F.‘ZM (see the

translationally variant wavefunction (9)). The spectrum of independent

!
particle excitations produced by the field F is divided into two

im
groups, one at low energy and the other at high energy (see page 466
of El] ). From this it is concluded that there are two different
quadrupole modes. The strength of the low energy mode vanishes for
closed shell configurations and it is identified with rotational and
vibrational states of deformed nuclei (see below). The high energy mode
is the giant quadrupole oscillation, which is found to have an energy

AEL & 5% A-V: MQV (see \-51] p 509). An important

property of the high energy quadrupole oscillation is that it uses
up a large part of the S; sum rule (sum rules are discussed in
section AIV). 1In Section AIV the contribution to the S;” sum rule
from the five degenerate WM‘ states (note, this degeneracy only
holds for spherical nuclei), is calculated in the same approximation
used to evaluate the energy in [}) , namely, the potential energy is
assumed to commute with F;; , which implies the neglect of charge
exchange and velocity dependent interactions. The result is
(see AIV (17)), that the g}i; state in spherical nuclei exhausts

the factor 5544 of the S;?(class) sum rule, which strongly suggests

that it represents the giant quadrupole resonance state.

From above it follows that the QLQ*‘ state of spherical nuclei
should have an energy proportional to fﬁ'”b , and not /\'2/3 as is
found in the weak correlation approximation (i.e. (8)). If this is
correct, then to get the true energy one must include the short ranged
nucleon correlations. For the !éz state of reference [?] the
procedure is simple since the exact energy is expressed in terms of

two-particle expectation values, but for SEL" we need to evaluate
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]
four-particle contributions. For QIQ we only need to evaluate

M

two-particle terms but because of the broken translational invariance
they are no longer of the form <|"'.;> . Because of these difficulties
T will leave to the future, the problem of extending the work of [}]

to include the contributions from short ranged internucleon correlations.
It is worth pointing out that virtually all the collective states of
spherical nuclei considered in reference [ﬂ] , have an energy varying

as F*-Vi . For example, in the liquid drop model (App. 6A of [4] ).
every isoscalar and isovector compressional mode has an energy that
varies as F\‘Vh . Thus it is possible that the wavefunctions H%J‘

and géﬁ; (see part (b)) represent these states ( 5}?; is known to),
but that the weak correlation approximation leads to an unexpected
qualitative error, namely the weak correlation terms in the energy
denominator may be cancelled by part of the contributions from the

short ranged correlations. This speculation should be kept in mind

when reading section AIII (which was written prior to this section),

where the energies of collective vibrational modes are evaluated in

the weak correlation approximation.

NOTE ADDED IN "PROOF"

Consider the denominator term in the exact expression for the

variational energy of the state QELA‘ , namely (see eqn 31 of [i] )

D = o it =R + £ (3= (@t antl) +oi)

In the weak correlation approximation
_ q " 12 - ¥ =
L = </lbﬁ2 -Tala ) =™

where

-g-(r) i S:oo\r'r"h(r) §(r)
(Cdreanir)
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: —_— =" 3 R?\
In the cutoff density approximation r = Rl .

(see (44) & (45)). So in the weak correlation approximation we have
D~ Q'r , which implies AE% i .ht/mg* ~ A_&/a
However, I will now show that the exact expression for D is such that
H-VS Q‘* , which implies Aea m~ A-.h , as
was conjectured above. To evaluate the second term in the exact

expression for D we need to evaluate expectation values of the form

< h(g,..,5)) = Sdi....dsnu.. WL, .5)

where § € (2,3,4) and (see AI(2))

Nna...s) = A' Si‘éﬂ).é Qz
(A=9"! Tdi.... da g*

In analogy with (16) let us define a generalized S-particle

correlation function g(l...S), by
no...8) = nama). .. ne) 0.

Then we can write

Wiz, 5))> = SmoSdime. . Sds ne h g, 01+(30..5) - 1)|
Sdime)Sd2 n).... (s o) 1 +(01...) =)

The weak correlation result, <h>° , is obtained by putting g = 1.
Now in the case of h = [.‘:‘ , we found that the correction terms
coming from (g-l1) # O in the numerator were at least of order A-
smaller than the correction terms in the denominator (see (14) and
(17)). This is almost certainly true for all the other terms in D,
<rn‘*> ’ <m1m2> and < \T,’\';,‘} . (See [1] for a proof
for the case of <\',';‘ using the special model (13) for g.)
The reason for this lies in the nature of the integrands, which are
largest for maximum interparticle separations, while (g - 1) is
negligible except for small separations. We can find the correction

terms coming from the denominator, since from the definition of




AII. 13.

‘Y‘(l....S) we have
§$di. .. .dsmo...s) = A

e e

A-9!
and
aa-) = A=), A-)A2) = AY(1-YA +olm))
AlA-1)(A-2)(A-3) = A*(1- A + o(Ya2)
so that the requirement of number conservation implies (cf. the

previous result (19))

RS = Lo ek + Lola)]
(Rt = {1+ + & (‘—wﬂ
() = <aiY {1 %+ colam)

Using these results we get

(19b)

D= <, rz r:; rt> * e §3<r2.9> |%<\",_ t}" +‘l<r1:>:}

+o@ ")
-g—[(ﬁ)“- ™+ ofa™)
(I have used equations 32 - 36 of [1] .)
so D~ R¥A™2 i
[ (Fz)’- — 'F?r] = O (19¢)

In the cutoff density approximation, (19c) is almost but not gquite

satisfied, instead I find
-
D <qrz "mr;> +O(A ’)

=V
For nuclei (i.e. A £ 250 ), this result would give AEa’V A"
and not ~ ﬁ-‘/‘ , since the cancellation of the weak
correlation limit terms is almost exact. However, for very large A

the cutoff density approximation would lead to D<O y L@ AE2_< o ,
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which is nonsense since 'LSEiI is positive definite by definition.

The explanation for this must be that the cutoff density approximation

is slightly inconsistent with the presence of short ranged correlations
(e.g. the surface thickness must be as large as the "hard" core diameter).
So it is quite possible that the real nucleon density will lead to (19c¢)

being satisfied exactly.

To sum up - the above argument (which is virtually a proof),

shows that the result derived in [i] , for the excitation energy of

EEL“~ in the weak correlation approximation, is qualitatively
incorrect because of an unexpected error in the weak correlation
approximation. Namely, the inclusion of short ranged internucleon
correlations and the requirement of number conservation leads to the
weak correlation limit terms being cancelled, leaving AE:_
proportional to A‘V'5 . The proportionality constant depends
on the physical nature of the correlations, which makes a calculation
of the true energy difficult, since four particle correlations are

involved.

2) Rotational excitations of deformed even-even nuclei :

I will now consider the question of whether the isoscalar
wavefunctions (5) ( \'PLM = EM § ), can represent rotational
states of deformed nuclei. That is, can we use wavefunctions of the
form F§ when § is no longer spherically symmetric? This
discussion is based on speculation rather than rigor, but the results
obtained will lend substance to the speculation, which in turn will
make us think about the physical nature of rotational excitations

in deformed nuclei.
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Deformed nuclei are found in regions away from closed shell
configurations : (for A>30) /50 £A4188 ana AZ22S .
0dd A nuclei in these regions have large positive quadrupole moments
(i.e. prolate or cigar shaped), and although even-even nuclei always
have a zero ground state quadrupole moment (because the ground states

w +

of all even-even nuclei have the guantum numbers L =0 ), the
experimental results for the low lying states of even-even nuclei in
the deformed regions imply an "intrinsic" deformation of the same
order as for the neighbouring odd A nuclei. In particular, the low
energy spectra of even-even nuclei in the deformed regions often

consist of a sequence of states with fw

= 0oF, 2%, 4, eess (where I
is the total angular momentum and T is the parity) and energies

approximating the formula

B (I) =g (T + 1) (C a constant) (20a)

This formula is the well known expression for the quantized energy
levels of a symmetric top rigid rotator (e.g. a diatomic molecule),
rotating about an axis perpendicular to its symmetry axis. For the
rigid rotator C = ’;‘71 Z_;, , Where ‘7'_‘,’ is the rigid body value of
the moment of inertia. Also, by requiring the symmetric top wave-
functions to have positive parity it follows that the total angular
momentum, relative to the rest frame, must be an even integer. So
the experimental results for the low lying states of even-even nuclei
in certain regions of A, strongly suggest the model of a prolate
spheroid rotating about an axis perpendicular to its symmetry axis.
The standard physical interpretation of a rotating deformed nucleus
assumes that many-body correlations act to create a "slowly" varying
rotation of a fixed shape, but that viewed from the body fixed frame

the "fast" motion of the nucleons appears to be "erratic" and free of

the many-body correlations (see p 385 of [gl ). The collective nature
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of these rotational states is verified by the extra large transition
rates for decay to the ground state. For a spherical system the
wavefunctions (5) apply only for even L and have the same parity as

the ground state § , and I will only be considering an extension to
deformed nuclei in which this continues to hold. Thus I am restricting
the discussion to the deformed even-even nuclei. Experimentally it is

is 2 to 5 times larger than the moments of inertia

k]

calculated by assuming

E(I) = _f__ I(I-—H} (20b)
27

found that j
v

So the deformed even-even nuclei are not rigid rotators, but instead
possess a non zero flow field in the body fixed frame. The opposite
extreme to rigid body flow is irrotational flow, which has a moment

of inertia ( ji".* ) given by equation 66 of section BII. The
irrotational flow field is better than rigid body flow in the sense
that jirrof vanishes for zero deformation, as is found for nuclei,
but 7.‘". ¢ turns out to be about four times smaller than the moment of
inertia of deformed even-even nuclei. That is, the amount of nuclear
matter transported during a single rotation is always found to lie
between the rigid body and irrotational flow values. However, from
the irrotational flow concept comes the interpretation of the rotation
as a large amplitude surface wave. As explained in note 7) of

section BII, a particular classical irrotational surface wave travelling
around the surface of a sphere, is equivalent to the rotation of a
prolate spheroid about an axis perpendicular to its axis of symmetry.
Furthermore, in section BII, arguments are given to show that the
(L,Aﬂ) = (2,2) and @-2) states of the translationally variant wave-
functions (9), will describe such a surface wave travelling around

the 7 axis. It was also argued that the (2,0) state can represent a

large amplitude vibration of a prolate spheroid, that preserves the
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zxial symmetry. The purpose of this section is to use the results of
BII by assuming that the wavefunction q)zn = F_,;“@ can be applied

-8
to deformed even-even nuclei, by taking the probability density §

to be that of a prolate spheroid.

The first problem that arises is that the ground states of all
even-even nuclei are known to be 0% states, so that they must all be
in some sense "spherical". In fact, as noted above, the experimentally
determined quadrupole moment of the ground state of every even-even
nucleus is zero. Some nuclear physicists (see for example [ﬁi}p 233) ;
interpret the "spherical" properties of the deformed even-even nuclei
as due to the uncertainty principle : the nucleus has an intrinsic
quadrupole moment with respect to a symmetry axis but because of the
uncertainty principle (orientation angle is conjugate to the angular
momentum) , the direction of the axis of symmetry is indeterminate, which
means that an experiment to determine the quadrupole moment measures
only the average over all space, i.e. zero. Consider the isoscalar

wavefunctions (5), which are of the form

WLK = FLA § (21)

If we continue to assume, as for the spherical case [}} , that the spins
are paired up so that §_\I)“‘ and ; § are both zero, then the total
angular momentum reduces to the orbital angular momentum and from ‘?]
it follows that‘izm is an eigenstate of angular momentum L provided
\.:@ = O . However, it is not obvious that the uncertainty
principle argument can be applied to a ground state such that L—_i =0
as well as L © =O . This is because the condition L ® =0Q
should imply that the ground state is rotationally invariant in

space, i.e. not deformed. One possibility is that the ground states

of even-even nuclei have ]_:5:0 but L § = - _$_ § #0 .
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To maintain a constant deformation throughout a rotational band we
would need é_ \PLM = i Q and then perhaps the wavefunction (21)
will still be an eigenstate of the total angular momentum as indicated
by the subscripts (L,M). I shall avoid the problem by simply assuming
that for even-even nuclei, E{M is an angular momentum eigenstate

with eigenvalues (L,M), but that for the purposes of evaluating the

energy for a deformed nucleus we can write
. = Fnd @2
LM = LH )

where él describes a prolate spheroid. BAnother way of looking at
this is to consider the question of orthogonality. For @LM to be
a suitable trial wavefunction it must be orthogonal to the ground
state é and this is guaranteed provided WLM has a different
angular momentum eigenvalue than § . For example the Tan state
is assumed to be a 2t state while § is of course a 0F state.

However, the orthogonality condition can be expressed directly by

< F—:M» = O (23)

where < ) is the ground state expectation value defined by (4b).
2
Equation (23) holds provided § is spherically symmetric but when
‘
§ is substituted by the deformed "ground" state § , (23) no

longer holds, i.e.

< Fu >I # 0 (24)

/
where < > is defined by

{8y = Sd...dA83"
(dl. . .daD"
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The expression (24) together with equation (4a) , implies a large drop
in energy when \yl.» is applied to a deformed system in comparison with

spherical systems.

The wavefunction (22) has some interesting similarities with the
unified model of rotational collective motion. (The original theory
is due mainly to Bohr and Mottelson, see [4] , but I prefer to work
from reference (_5'1 p 386=¥.) The unified model is the main theory
of nuclear rotations so far proposed by nuclear physicists, and is

based on a Hamiltonian of the form

H = H., + T_ +H<°“P‘

l'o“’ ’ (26)

where H.“* describes the intrinsic motion, T,.d. describes the
collective rotation and H( F‘ represents the coupling between the
two motions. In the zeroth order approximation, Hu“?\ =0 ,

the wavefunctions are of the form
P = F(s,) ) (27)

where _T_"" are the coordinates with respect to the body fixed frame,
which is defined by the angles Gk . @(E:) is taken to be a
staterdeterminant of single particle wavefunctions in a deformed
potential whose orientation is given by Gu . So the wavefunctions
(22) and (27) both assume a deformed "ground" state §’ and it seems
plausible to suggest that the F;.M of (22), which is a function of
the particle coordinates in the non rotating frame, performs the same
role as the F(Sh) of (27), which is a function of a set of
collective coordinates. This idea is supported by the fact that

F'-(@h) (the eigenfunction of -rrof ) is a symmetric top eigenfunction :

#*
Flo) = /%:.:1?»«_';" Di (&) (28)
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2
F(.@Q is an eigenstate of 4 , XLy and I,, (2’ is the
i
rotating axis of symmetry), with eigenvalues I(I-H)'h : MR
and K'h , respectively. For the lowest states , K= (0 (which will

be the only case that I consider), (28) reduces to

Flo =3 \;__L%n) ,

which gives a direct connection with the wavefunctions (5) and (9),
except that the collective cooxdinates Oh are replaced by a sum
over the nucleon coordinates in the non rotating frame. Furthermore,
the total angular momentum of §(\'_‘") is zero, because a rotation

of the system does not change the numerical value of any of the
internal coordinates. This is the corresponding statement to my
assumption that ; QI =.0 , for the wavefunction (22). Another
interpretation of wavefunctions like (22) and (27) is to regard them
as angular momentum projections of a deformed intrinsic state §’ ’

where FI.M is the projection operator (see El] p 90 and [5] p 461).

I will investigate the particular set of wavefunctions
q) =K @I (29)
im Am

where EM is given by (5) (with =2 '3 '5-=\ ), or its translationally
variant form (9), and él is a deformed "ground" state, assumed to be
a prolate ellipsoid. In [l-J it was noted that for @l spherically
symmetric, all the five states of the set (29) (i.e. M = -2,-1,0,1,2)
are degenerate. However, when §I is deformed this degeneracy is
broken. For example, if @I has axial symmetry (i.e. an ellipsoid

of revolution), the five fold degeneracy splits up into two sets of

two fold degenerate states, (2,2),(272) and (2,1),(2751), plus the (2,0)
state. I have previously noted from an argument in note 7) of

section BII implying the nature of the irrotational flow field

corresponding to wavefunctions of the type (9), that it follows that
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the (2,2) and (2,-2) states represent a rotation of an ellipsoid of
fixed shape, and the (2,0) state should represent a large amplitude
vibration of an ellipsoid, that preserves the axial symmetry, while
the (2,1) and (2,-1) states can only describe small amplitude surface
waves. This broken degeneracy is associated with the fact that shape
deformations of quadrupole symmetry exhibit both rotational and
vibrational degrees of freedom (see {é] p 677 -). On page 682 of [é) 7
it is stated that for an equilibrium shape with axial symmetry, the
five quadrupole degrees of freedom separate into two rotational modes
and three vibrational modes, one of which preserves the axial symmetry
( [3 vibration) while the other two oscillate away from axial symmetry
( ¥ vibrations). This appears to correspond exactly to the physical
interpretation of the wavefunction (29), based on the argument of

section BII.

To evaluate the variational energies of the states (29) I shall
use the weak correlation approximation. This will lead to guantitative
errors, but because of (24) there is no longer the possibility of the
gualitative error that seems to have occurred for spherical nuclei.
This is because the four body terms of <:|E5Jﬁ5, which are multiplied
by an extra factor of A more than the other terms in the energy
denominator, now dominate even in the weak correlation approximation,
whereas for the spherical case they are approximated by zero.

Another point to consider is whether or not the translationally
invariant form of (29) is free of redundant coordinates when g@l

is not spherically symmetric. A translationally invariant wave-
function guarantees that the centre of mass motion is treated correctly
but it is not obvious whether or not there are now redundant variables
due to the broken rotational invariance. For example, in the unified
model the introduction of the collective coordinates E;h , defining

the body fixed frame, produces three redundant coordinates, which

21.
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cannot be completely removed because of the presence of the coupling
term in the Hamiltonian (26), i.e. Coriolis forces. (See [_S-l pp 387-9.)
{aside: From now on I will drop the dashed superscripts on the wave-
functions (9), so that LM will refer either to the translationally
invariant states (5) (with L = 2 L £=1) , or to the translationally
variant states (9). It was shown in Ll] for the spherically symmetric

case, that in the weak correlation approximation, breaking translational

g . , |
invariance leads to an error in AE,. of order /A only.-}

(1) The (2,2) and (2,-2) states

[
Consider the wavefunction T& +2 == th § ’

!
where § is the deformed ground state and

A
. 2
T = Heey

From the results of note 7) of section BII we expect ?;’. and

\Pa-z to represent an ellipsoid of revolution rotating about an
axis (the Z axis) perpendicular to its symmetry axis (M = -2 is just
the opposite rotation to M = 2). Because the rotational energy must
be a constant of motion, I will assume that the energy of \Pn 42
can be calculated at the particular instant when the axis of symmetry
coincides with the X axis. The variational bound to the rotational
energy, AE2 $2 ! is still given by the expression (4a) except
that the expectation value is now over the deformed probability

. 12 /
density § i LB < > as defined by (25). From (30) we have

< l V,F;,,I’>' = 8 < X -+ y“>' (31)

and

QE LY = ALO@yrY + A-)<(x:y2).
(y;-.y;) + Xy, )(,\Ja> (32)
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In the weak correlation approximation (32) becomes

< |\ tz‘ly = A((X.’+y.")">’ + A(A-1) < x"—y,‘}'l (33)

So in the limit of large A or large deformation or both, the last term

of (33) dominates and from (4a), the variational energy is given by

AE,,, & k& {xiy2)
Am  x2- Yt (34)

= 20+) K
2]y 12

where

3 2 y 12
jt = _ﬁm<x.-y.> (35)
242 L. Y
k3 2
<RE+Y2Y
From equations (64) and (66) of BII we see that (35) is 3/4 times
the irrotational moment of inertia of an ellipsoid of revolution
symmetric about the X axis and rotating about the Z axis. Note that
. ; 2
if the angular momentum was taken to be the "classical" value LJR
instead of 6#\1 , then we would have '7 = j . The
232 irrot
value of (35) is about five times smaller (i.e. A&E%,zis about five
times larger) than the experimental results for the first 27 states
of deformed even-even nuclei. It is plausible to suggest that the
poor value of the energy is due to the weak correlation approximation.
The inclusion of internucleon correlations (starting with pair
correlations) will probably lower the energy but it remains to be
proved whether this will explain the entire factor of five. On page
427 of reference [5] it is stated that for nuclei between closed
shells, that the correlations due to statistics are responsible for
the moment of inertia being much larger than the irrotational flow

value. However, a pessimist would suggest that the wavefunction (30)
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describes irrotational flow only. For comparison with (35), the rigid
body moment of inertia is
2 aq 4
j. = A'W\ < X, +yl > P (36)
\'!3
which is two to five times larger than the experimental values for

deformed even-even nuclei.

The simplest way to evaluate the deformed system expectation
values is to use the scaling procedure described in section CIII.
Following the method of equations (L - 5) and (16) of CIII, we deform

!
@ into § by scaling the coordinates
! ' ’
d = $(%...5) (37)

' .

where ¥ varies over the spherical system, so that I now varies
. » . ’

over the deformed system, i.e. in the expression (25) for < >

the integration is over the deformed system. To deform a sphere

into a prolate spheroid symmetric about the X axis, we write

x =Wx , y=ny , 6 z= W'z’ (38)

where ‘Y\ Z | (i.e. a large deformation is 'Y] — o0 ).
From (38) we have dXdy dz = dx‘dy'dz' r SO
that

LRy = <8 (39)

where B’ stands for B written in dashed coordinates and < Y is the
spherical system expectation value (i.e. <X‘> = <y"> = <z‘> '
etc.) .

{ aside: 1In ref. [5] pp 388-91, it is stated that for (x’, Y, 27)

to represent a body fixed frame of reference, we must have

‘Z X; y,-’ = Jiy"zj = JZ Z‘-'X‘:- =0 (40)
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The unified model requires (38) to hold only on the average, i.e.
Iy =<y % = L 'y =0 (a1)
v Y = }ﬂ Z, - 1 Xy -

From equation (39) we see that (41) would hold for any deformation.
Equation (39) also suggests an explanation as to what the orthogonality
condition is for wavefunctions of the type (22). Namely, from (39)

and (23) we have
! I
(FRny = < r‘:u> = 0O : (42)
which should be compared with (24). }

We can now use (38) and (39) to evaluate the expressions (35) and
(36) in terms of the deformation parameter 'V\ . The calculations rely

on the results of reference [l] for the values of expectation values

like <X|"y.‘>l<x."> N <X,">l .. . . ,etc., in terms of

)
L™y = é,, arr2nE) v
[
S, dre2nr)
where Y\(l') is the radial number density of the spherically symmetric

' (43)

system. Also, I will use the cutoff density approximation

M) =3 AN reR V=R
o) moR

(44)

to evaluate the expression (43), i.e. I take

L™ =3 R (45)

Nn+3

\
(Note, a good approximation for most nuclei is R = l'lﬁhfm <)

Then, using (38) and (39) it follows that

7= amCpa ey = Al

\"\a
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and

g o= A e ortyt) o And (n¥=n2)"
EMxEANTYEY S (m*en?)

These results are another derivation of equations (66) and (67) of
section BII. It is also easy to evaluate the intrinsic gquadrupole

sz z<lx‘;_y‘a_z‘z$ = %ZRI(’Y’»—‘T’Z) (48)

where Z is the number of protons. For the purpose of plotting graphs
it is more convenient to define a deformation parameter that varies
from O to 1 instead of from 1 to ©@ , as the deformation increases.
For this reason I introduce

d

-3

| — ’“ (49)

I choose this particular deformation parameter because for small
deformations it is close to the standard parameters J. and /9

(see p 416 of reference [ﬁ] )+ J. is defined as the difference in
length between the single and the double axis of the prolate spheroid,

measured in units of R; i.e.

§ 9 - ,\1-1
d + o(d*)

(50)

/3 is related to 5. by the expression
§ = [ =~ 0-946
o /3 b ﬁ (51)

Using (49 - 51) in the results (46 - 48) gives

_7‘_. = %.Amﬂa'(\ +9‘3-+ O(dz)) = _;-AMQL(H 0.315/3+0(P3))

) (52)
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j. = _%-. ﬁw\on\a( \+old)) = .z_T..rAm Rapl(\ + olB)) (53)

wr

and

Q, = %zR’o\(HO@h) 2 ZRB(1+0p) (5)

JSTT
Evaluating the expressions (31) and (33) by the above method, the
complete expression for AE’._‘“_ in the weak correlation approximation

is

L B (M)
mR? {%(mhzs]‘ﬂn‘*) + ‘-ﬁslﬂ (“1"-‘1“‘)"}

(55)

In terms of the moment of inertia, the result (55) is

jz 2 = 3m R'l { :"_ (3-)"8...11‘1.,.351-") +ﬁ5-_‘)- ('y' t""11_‘1)1‘} (56)
+ 56

(M*+M)

I will now derive the variational energy bound for the
translationally invariant form of \PQ 21 ' i.e
A A . 2
Foes =T 72 (% = 0Y) e
In the weak correlation approximation breaking the translational
invariance (i.e. using (30) instead of (57)) leads to errors in
[&EE;,QI of order »?R only, but it is worth deriving the exact
expression because this is the first step towards including the effect
of the nucleon pair correlations (see the method used in L?] to

include pair correlations in the calculation of the giant dipole

resonance energy). Following the method of section two of reference [}]
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we have

< \V| Fl-tl\:.»’ = -lat- A(A"\) <W12§("]"+ "rz) (58)

CIREY = L Ao (O +ye )

(59)

+ AG=)(A-) (A% ) + b Ya oYy

L ALY DA T R0 TN+ TaYs oy Yas

The expression (59) can be reduced to expectation values involving
only r;' terms, by using equations 14, 16, 17, 20, 21, 23, 28, and

29, of reference [1-] . The final result for the variational energy is

AE,. = Fam ALY (nr+472)
{(nﬂ (3e2y+397%) (A= 1)[% Cak (e pe?) = i‘.’a>,\z]

ED (60)
+H A 2R TP ) + 5 GC)(’*‘\‘%‘*"!"M

In the spherical limit, i.e. ’Y‘:l , the expression (60) reduces to

equation (31) of reference E.-] . It is also easy to show that in the
weak correlation approximation (i.e. <\',: - 2<r.2> /
<Wzy> = 1<r.'9-> e ‘0/3<‘71>1 ’ <r‘f\'.'a‘> & <W*> + 3(‘71): and
<|7.fr;:) = L4RH* , see [1]) and using (45), that
(60) differs from (55) by terms of oxrder yﬁ only, for all values
of "1 . The result (60) is a rigorous expression for the
expectation value of the energy of the state wﬁ.tl , but to
evaluate it exactly would require knowledge of the two-, three=
and four-particle correlation functions. For this reason it may be
simpler to use the translationally variant expression (see (31) and

(32)), which has only two particle correlations, although they are
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no longer of the form <l’]:'> . The hope is, that if the nucleon
correlations are included, then AE;.H. will be lower by a factor
of about five and so reproduce the experimental results. An
important point to note about the above scaling method, is that the
energy of the deformed system is expressed in terms of expectation
values in the spherical system, so that a knowledge of the effect

of correlations in spherical nuclei is all that is required.

{NOTE ADDED IN "PROOF" : The expressions (19b) are too small to
change the value of AE’. 43 Dy more than about 10%, not 500%.
However, it is possible that the scaling method of evaluating

AE;:; for deformed even-even nuclei is not capable of including
the correct correlations in deformed nuclei. That is, the result (60)
will be invalid if deformed nuclei have extra correlations that are

not taken into account by simply scaling the spherical system.}

(ii) The (2,0) state :

) ) ' /
I will now discuss the wavefunction ?20 = F;.o § '

where

E =

20 (az} - %{ ')’s‘) (61)

iM>

From the results of note 7) of section BII, we expect \Pno to
represent a vibration of a non rotating prolate spheroid, that
preserves the axial symmetry about the Z axis. However, it is also
worth investigating the result of applying F;o to the same deformed
"ground" state as we did with F.‘;..t.‘). . That is, I will consider
two possibilities; the first (labelled (Z)) regards 20 as a

vibrating ellipsoid symmetric about the Z axis, while the second

case (labelled (X)) assumes q):lo to be an ellipsoid rotating about the
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7 axis, at the instant at which the symmetry axis is the X axis. The

second alternative is probably wrong but it may be equivalent to the
/

unified model assumptions. For the second case (X), § is defined

by (38), while for the first case we write

Z): x=v'% , y=y'y', z=9'2’ (62)

From (61) it follows that

RN = bzt +x2+y2Y (63

and, in the weak correlation approximation
2

<F;:>, = A (22."-X.“)’-')2>l + A=) 22 %=y (64)

Using (45) together with (62) and (38), we have for the two cases

CERYY = bR (ivear)

(z)
 FB) = %R"(\u‘-ﬁf-.-?«]‘*)-r A(h-')é.*g.ﬂl’(ﬂ"-’r’)‘ (65b)
(ERSY = LR+ o
(x) .
2N = A RY(3m3-2nt+l1Y) + AG-D) RY (a2 (66b)
{5 ARY(3y' -y E(ﬁn)
Defining a "moment of inertia" 510 , by
g = 3% = em { B (67)
2o AE:N A <(V|F1°)‘>'
I find

z): j“ _ 6mk* { Yo (1293-8%* +85%) + E(A-) (1]"'_1]-3)2'}
b (bt 2)

(68a)
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(x): 7 = bm Qa{ |/7(3'\\%_21]"+ “.,]-‘r) "“%‘(ﬁ-l) (,1 ,._‘\1_,_)11
b (q+53)

(68b)

For 'V\—’O and ~]-’°° (68a) and (68b) become identical.

(iii) The (2,1) and (2,-1) states

/
Consider the wavefunctions th‘ = Eil § , where

A
Fi--_;_‘ - i zi(xitéyi) ©)

g=\

/
The two body term of < lﬁﬂlz> is

ACA-) < 202, (X Xa + Y, y,)>' 70

In the weak correlation approximation (70) reduces to

A(F\-—l){ 2%y + <z._y,)“} (71)

From (71) we see that for all deformations of the type (38) and (62),
that in the weak correlation approximation the two body term in the
energy denominator is zero. So the two states \PM and \Y.‘l-l
remain of order A (or perhaps O(A‘%)) higher in energy than the
first 2% states of deformed even-even nuclei. That is, AE.z +1
deviates only slightly from its value for spherical nuclei, as §,
is deformed. This corresponds directly to the conclusion in note 7)
of section BII, that \P.‘Zil could only represent small amplitude
surface waves and not large amplitude modes like qltl and \I)zo .
From the previous discussion on the ?ﬂh state of spherical nuclei,

it seems plausible that the \Ps:“ wavefunctions will represent the

effect of a deformation on the giant quadrupole resonance.
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In Fig. 1 (next page), I have used equations (36), (56), and
(68) to plot 5;"/41*3 for M = -2,0,2. For the small A dependent
terms I took A = 170, which is the mean value of A for the main
deformed region 150 & A £188 . The experimental results for the
deformed even-even nuclei in this region are taken from Bohr and
Mottelson, [7] . There are two important features of Fig. 1. Firstly,
the fact that j‘o is greater than j"‘.ﬁ for very large deformations,
supports the identification of QPJO as a vibrational state and not a
rotational state, since rigid body rotation should have the lowest
energy of all rotational modes. Interpreting g;;o as a vibration
along the Z axis also explains why ju(z) is always larger than j“(X) ,
since the lowest energy vibration of a prolate spheroid should be
along the symmetry axis. I have already discussed the other main
feature of Fig. 1, namely that if we assume that SPQ&& represents
a prolate spheroid rotating about an axis perpendicular to its
symmetry axis, then jizz is about five times lower than that
required to explain the experimental energies of the low lying
states of the deformed even-even nuclei. The next step (which I will
leave for the future) is to include the internucleon correlations
(e.g. the effect of Fermi statistics), which hopefully will reduce
the energy to the experimental values. One other possibility is that
the wavefunctions could be improved by returning to the L = M = 2
state of the form (5) and minimising the energy with respect to a
general f(}?j) (the calculations of this section have taken £ = 1).
However, for the analogous translationally variant form, the arguments
of section BII suggest that £ = 1 is the optimum wavefunction, since

f # 1 should involve incompressible flow.
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Fig. L.
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"Moments of inertia" for even-even nuclei in units of the rigid body
value, plotted as a function of the nuclear deformation. The solid
lines are defined by sz —1 3*1%53,“ . The dashed line
is the irrotational moment of inertia of a rotating spheroid. The
shaded area covers the experimental results in the region I1IS0&A 5'88

(taken from Bohr and Mottelson (1955), [7]).
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Transition Rates :

T will now use the weak correlation approximation to evaluate
the transition rates for decay to the "deformed" ground state §' -
and compare the results with the unified model prediction. Firstly,
I note from equation 16 of section AIV, that the contribution to the
Sf) sum rule from the five \22" states will each remain approximately
lgg/ﬂ of the total sum rule, for deformations applicable to
nuclei, (ignoring velocity dependent and charge exchange interactions) .
Because the contributions to the sum rule are proportional to the
transition rate times the excitation energy and since I have shown
that for large deformations that AEJ” is of the order of A (or
perhaps sz ) larger than AEz.n and AE“ , it follows that for the
deformed even-even nuclei, that almost all of the transition rate
strength will be taken up by the M = 2,0,-2 states. The transition
rate probability, per unit time, for the emission of a photon of
multipolarity (2,M) and energy ‘R\Q=tth , during which the nucleus
decays from the \I)Q,M state to the ground state, is given by

(cf. section four of [1-] )

Tam = ELE [<Slaulo]

where 2 .
B 2
Qu = e 3Z=| n YJ‘SQ) (73)
. | ’ | = > 2 #
IcH = N; §“§ = N« JZ:' T \Sh[‘;) § (74)

(For F.;.M defined by (30) and (61) we have °<t2 = %‘r and

Lo = [T
£y = N, & )
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/
- -\
@ is the deformed "ground" state and N‘- and Nf are normalization

factors defined by

ey = <-§l5> = | (76)

Using (73) - (76) I calculate

K5l Qulid] = @2 a | S anlgf 8

v
2 =22 2 aV
= e%an<\§~\>

zﬁ
The factor 4 comes from the fact that sz is a sum over the protons

i

(77)

only, while the isoscalar wavefunction |L> is a sum over all the

nucleons. From (72) and (77) we have

T(lM) h Zzed <\3M\> (78)

(i) The (2,2) and (2,-2) States :

Comparing (30) with (74) we have 0('3_'2 . E%./Tr . So
T 2 +9 < > (79)
0 = L 22K (IR

In the weak correlation approximation and using (45), the result

(79) becomes (see (55))

a |5 13 2 - - -1\2
TE(.'I,::.Z) = -1-1; _2.;3_ % R {-:-jg(av\‘ +2*1 +3\1 ’) +_(g_s_')_(‘\]‘*-1‘ ) } (80)

'
In the limit "']—" | (i.e. § spherical) , (80) reduces to equation
(55) of [l] . For large deformations we can ignore the first term of

(80), and from the expression (48) for the intrinsic quadrupole moment
Q. I find

2 ) 2
To(2,22) = & R Q (81)

/60 K
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For the experimental results plotted in Fig. 1. the maximum error
involved in using (8l) instead of the full expression (80), is about

10%.

(ii) The (2,0) State :

Comparing (61) with (74) we have A = J—% . So

T =L Ze K (R

.
0 A
From equations (65b) and (66b), the results corresponding to (8l) for

the two deformations previously considered (i.e. (Z) and (X)), are

I

%,
P
2

(z)

N

1e(2,0)

(x) : Te (2,0) | -

The expressions (81), (83) and (84) are very similar to the unified
model result (see [5] p 411, and ‘_8] )
Te) = € kQq:
Q) = £ R Q
E
300 kK
This is a strong indication that the wavefunctions QIA are closely
related to the unified model wavefunctions. It is worth pointing out
that exact agreement is obtained with the unified model result (85),
if we take the average transition rate for all of the five 2
]
states, when Q is assumed to be the rotating ellipsoid defined
by (38), (i.e. case (X)). That is, -T-E(Q,ﬂ) are of order A (or
L Ve :
perhaps A ) smaller and so can be ignored, and
\ | | )
/5( lﬁfo - ﬁo) = “300 . This suggests the
possibility that the unified model result has ignored the broken

degeneracy of the five lI).‘!M states. Since equation (85) is regarded

as the total transition rate to the ground state, from the first

(82)

(83)

(84)

(85)
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rotational level of a deformed even-even nucleus, it is quite possible

that an average over non degenerate M levels has been included.

Remarks in Summary

The isoscalar wavefunctions TM = EM§' , where @l is
assumed to be a deformed "ground" state, are reasonably successful
in describing the low lying 2t states of deformed even-even nuclei.
The broken degeneracy is explained by the results of section BII,

namely \qyzz'and represent the rotation of a nucleus about an

A~
axis perpendicular to its axis of symmetry, SEQO is identified as a
large amplitude vibration that preserves the axial symmetry, while
ELL‘ and gEi_.are small amplitude high energy surface waves.
The results for the transition rates for decay to the ground state
are particularly encouraging, since they are very close to the
prediction of the unified model. In the weak correlation
approximation the rotational excitation energy ZSEEJ'tZ. is
slightly higher than the irrotational flow value for a rotating
ellipsoid, but there is some hope that the inclusion of internucleon

correlations will lower the energy by the factor of five necessary

to explain the experimental results.

A complete description of the low lying states of deformed
even-even nuclei requires the identification of the entire band of
rotational states, since the most important feature of the spectra
of deformed even-even nuclei is the occurrence of sequences of
states with energies approximating the formula (20) s 1.

E(T) ~ I(xz+ l) . At first sight one might be tempted to
suggest that the I = 4,6,8,etc, wavefunctions are all of the form

(5). For example, the 4% state would then be

' B & /
¥¥ir\ = F q; = .l_,j; ?E r&#-\:th) qz

Lo 2

37.

(86a)
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The first problem with this is that it is no longer obvious that the
translationally variant form of (86a), obtained by fixing the centre

of mass at the origin, is

38.

A
> rrY (L) @I (86b)
P

However, if we assume (86b) to be valid, then from section BII we can
identify \§an as a surface wave carrying angular momentum L = 4,
i.e. a surface oscillation of multipolarity four. Thus the states

gELM probably involve deformations of multipolarity L and so can
only describe a rotating ellipsoid when L = 2. For L > 2, these
states will still represent real nuclear excitations (cfs [?] pp 137-41),
but I do not regard them as being members of the ground state rotational

bands of even-even nuclei.

From reference [?] pp 688-92, it appears much more likely that
the correct method for constructing wavefunctions for members of a
given rotational band is to take linear combinations of the wave-
functions of lower energy states in the same band. For example,
instead of \P‘t-b- = F;“§' , the wavefunction for the first 4%
state is probably some linear combination of two g{gz states.
Symbolically, we can write this wavefunction as (F‘u)z §' .
The correct combination would couple the two L = 2 quanta to form
an L = 4 state in such a way that the shape of the rotating nucleus
remained constant, namely a prolate spheroid with fixed quadrupole
moment. It might also be possible to combine classical irrotational
surface waves (see BII), to form analogous rotational modes of a
classical prolate spheroid. By this process of angular momentum
coupling a whole series of rotational and vibrational wavefunctions
would be constructed and it should be possible to use group theory

to identify and catalogue all the possible modes. Group theory
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should also be able to identify for which values of M the general
multipolarity wavefunctions QELJA can represent rotational modes

of fixed shape, or large amplitude symmetry preserving vibrations.
(e.g. From the results of section BII I was able to identify QP;tL
as being rotational modes and S;Qo as a vibrational mode, of a
prolate spheroid.) Then onto each of the QELM states it should be
possible to construct rotational and vibrational bands by the process

of angular momentum coupling.

Finally, I note that in order to extend the methods of this
section to describe rotational states which have a non zero value
of the quantum number K, we would need a generalization of the

wavefunctions (5). From the unified model wavefunctions (27) and

/
(28) we see that what is required is a change from \1-5 to
L¥
[x““4s , but the variables have to be the nucleon coordinates

and not collective angular coordinates.

(b) Isovector Rotational States of Nuclei

Consider the generalization of the isoscalar wavefunctions (5),

obtained by explicitly distinguishing between protons and neutrons

L
= = § = §% el (E AR TIN § (87)
Lm Pr L
im P M
These wavefunctions are translationally invariant and it is straight-
forward to extend the calculations of E] to show that when EQ = 9_
. : .
that P is an angular momentum eigenstate of |= and Ll with
L

2
eigenvalues Lih*Dt\ and\JR respectively, and further, that for a

hypothetical system of two kinds of bosons interacting via the
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harmonic pair potential (6), that -?Lt- with £ = 1 is also an energy

eigenstate with eigenvalue again given by (7). One difference between

(87) and (5) is that is defined for all integer L, whereas T
LL LM
is zero when L is odd. Note that for odd L has the opposite parity
im
to § . Also, because we need only consider permutations between

indistinguishable particles, the wavefunctions (87) have the same

permutation symmetry as § . For example, when § is the ground state
.)L

of an even-even nucleus (i.e. a 0% state) then is a t state,

LM
assuming as in part (a) that the spins are paired up to give zero _S_ .

Despite the very close similarity between the wavefunctions (87),

P , and the wavefunctions (5), \IJ , there is an important physical
4M LM
difference between them : P is an isovector state (protons and
M
neutrons move in opposite phase) while Tmis an isoscalar state
(protons and neutrons move in phase). It is obvious that g'}LM
describes isoscalar motion since it treats the protons and neutrons
as indistinguishable. Perhaps the best way to see that _‘g“ describes
. i ) o 2
isovector motion is to note from (87) that the probability \_s_e“
is largest when the proton and neutron fluids are separated
LY o ol . :
(note, ¥ L‘E!'.) e Q(-H.y) ) implying that the protons and neutrons
move in opposite phase. For odd L this argument is especially clear,
since by comparing (5) with (87) we see that when the protons and
neutrons are evenly distributed that _‘,D for L odd is zero. For
LM
example, the particular case of _‘g“ with £ = 1, is shown in ref. LZ]
to give a good description of the giant dipole resonance, which is
known to be a simple oscillation of protons against neutrons (see
below). For even L the wavefunctions }D describe the same type
L

of motion as the wavefunctions wm , except that the protons and
neutrons now move in opposite phase. In particular, consider the

L = 2 isovector state "'eM . In note 1) of part (a) the isoscalar
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state LPAM for spherical nuclei is identified as the high frequency
cuadrupole mode discussed in ref. (§1 , so it follows that in spherical
nuclei, sézu should be the isovector analogue of the giant quadrupole
resonance state. This conclusion is completely compatible with the
results of [?] , where the gquadrupole field is shown to generate both
an isoscalar and an isovector quadrupole mode. Shell model calculations
lead to an energy AEz(isovector) = 135 A_.A MeV for
the high frequency isovector quadrupole mode, (see [?1 p 513), while
the liquid drop model yields AEz(isovector) & 1270 A-W MeV ,
(see [4] p 671). This energy is much higher than the isoscalar
quadrupole mode ( AE)_(isoscalar) o ‘O A-'h Me\/ ), since the
isovector mode involves density variations whereas the isoscalar mode

is an incompressible shape oscillation.

In ref. [?] (which is supplied with this thesis), the wavefunction

5;z” with £ = 1, is investigated in detail. This particular wave-
function has been previously proposed by deshalit and Feshbach (see [5}
pp 501-2, 736) as a good approximation to the giant dipole resonance
state. The giant dipole resonance is perhaps the most important and
certainly the most investigated of all nuclear collective motions.
The most striking feature of the giant dipole resonance is that it
exhausts a very large part (= %) of the total absorption cross
section for El transitions, i.e. the S:v sum rulé (see section AIV).
The results of [?] prove that the deShalit and Feshbach wavefunction
gives a good description of the giant dipole state. Because we can
positively identify Séi with a known nuclear excitation, the
calculations in [2] have important implications for all of the
proposed related states \;z*‘and jéin . That is, we now have a
detailed understanding‘of the properties of one of a whole series of

related wavefunctions. Without unduly duplicating the results of
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reference [23 , I will now discuss three particular features of the
calculations involving the dipole state % , that should be noted
because they could be general features of all of the wavefunctions

(5) and (87).

w
(1) Contribution to the S. sum rule

In ES] p 736, it is pointed out that since % G QM\§ ’
where Q‘M is the translationally invariant dipole operator, that %
has total overlap with the dipole operator and so the three ﬂ‘
states must exhaust the entire S?) sum rule. (Note, the three states
are degenerate in spherical nuclei.) Thus if R was an exact eigen-
state then there would be only one 1~ level in the non deformed
even-even nuclei, since only one El transition to or from the ground
state would be possible. In section AIV this is proved explicitly
in the approximation in which the potential energy is assumed to
commute with /ﬁ; (i.e. neglecting charge exchange and velocity
dependent interactions). That is, it is shown that the three
states together exhaust the entire S‘:‘,(class) sum rule.
Experimentally it is found that the giant dipole resonance exhausts
about S?)(class) of the total sum rule for medium to large nuclei.

A large part of the rest of contributions come from the high energy
region where charge exchange and velocity dependent forces are more
important. It is because these interactions play a less important

role in the region of the giant dipole state that 'gu gives such a

good description of the dipole resonance.

All the states and have a significant overlap with
B = 1, o °

the electric multipole moment of multipolarity L, so it is likely

that they will all be resonance states of spherical nuclei. For

example, it is shown in section AIV that the five \I/m states
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v
exhaust -Z/A of the S;(class) sum rule.

(2) The weak correlation approximation

It is found in Y_Z] that the weak correlation approximation
gives a completely unsatisfactory result for the giant dipole energy,
in particular it leads to AE, o~ A-z/a instead of ~ A-'h.
However, the correct energy variation is achieved once the short
ranged correlations are included. This is proved in a general way,
by imposing the requirement of number conservation on the pair
correlation functions. Because % is an isovector state it is
necessary to first distinguish between protons and neutrons, so that
there are three two particle number densities (i.e. n-n, p-p, p-n),
instead of the single pair density (16). Once this is done, the
requirement for number conservation to hold separately for the protons
and neutrons (i.e. the isovector analogue of (19)), implies an exact
cancellation of the weak correlation terms in the energy denominator,
leaving AE‘ ~ H-V: . That is, equation 14 of ref. [2—1 for
the variational energy is really proportional to ‘/ﬂ and not VRQ

as it appears to be.

From equation (4a) it follows that the energy of all the states
2
. . . s ;
\I) and P will be proportional to 1:‘/‘W‘Z (in the approximation
Lm LM
in which the potential energy commutes with E“ and /‘:; ) and
U4
since R = |2A 3‘§‘m , it will always appear as if
A-?'/S . g . ;
AEL_ N , i.e. it takes a cancellation of the leading
\
order terms to produce an extra factor of A/:l . I noted in part (a)
that almost all of the collective states predicted for spherical
. . -l mn o
nuclei in reference [4] have an energy varylng as A /3 , So it is

quite possible that the weak correlation approximation will lead to

the same type of error for all of the ‘PL,, and Zu wavefunctions,

43.
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as occurred for the _lem state in [2] .

(3) Hard core correlations

The dominant nucleon-nucleon interaction is the effect of Fermi
statistics, i.e. Pauli repulsion (see [5] p 49). 1In L2] the result
for AE‘ , calculated by using only those pair correlations due to
Fermi statistics, is just 20% higher than the experimental energy. So
it seems that the neglect of hard core correlations is a minor
approximation for collective states like q)u and % . Support
for this conclusion comes from comparing equation 64 of [l] , with
equation (19), which suggests that the contribution to the pair
correlations from the hard cores is of the order of ﬁ(q/é)a smaller

than that from Fermi statistics, where a is the hard core diameter.

.
For nuclei we have ("/R) al '/3 A /3 .

Finally I will include for the future, some ideas and problems

on two possible extensions of the work in ref. [2) 3

(i) The giant dipole resonance in deformed nuclei

Without repeating any of the extensive discussions in part (a),
let us apply the method used to investigate the ‘JZ,M states in

deformed nuclei, to the % states, i.e. consider

Z=£3

/m /M

where Q, is a deformed ground state, and assume that (88) describes
the giant dipole resonance in deformed nuclei. First of all, it
follows that the three % states are no longer degenerate. From
the scaling procedure of part (a) (cf. (62)), it follows that for a
general deformation, (88) will split into three states, while for a

prolate spheroid symmetric about the Z axis, _@” and _@,_/ will
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describe two degenerate vibrations perpendicular to the symmetry axis,
and Sei represents a lower energy vibration along the symmetry axis.
Also, from section AIV we see that regardless of the deformation that
each jéz‘ state continues to exhaust one third of the S?%class)
sum rule. So for nuclei whose ground states can be regarded as prolate
spheroids, one third of the dipole strength to the giant dipole
resonance should be contained in the SE: mode, with the other two
thirds taken up by the degenerate ‘QZ/ modes. Both of these

127
qualitative features are known to be true experimentally (see p 490
of ref. E?] ). However, there is a problem with the scaling method
of part (a), associated with the fact that it affects the exact
expression for the energy (egn 14 of ref. [}J ) in the same way as
it affects the weak correlation limit result. That is, (62) describes
the deformation with a single parameter that factors out of all of the
expectation values. This results in a splitting between the (1,0) and
(1,+1) modes that is about twice as large as is found experimentally.
The experimental result can be derived by a scaling argument based
on the energy variation E, ~ f\-V& ™ ‘/71 . Namely, if we

|
assume that the % vibration has an energy AE‘MN/R“‘ , we have

) |
E\i\ - E, - {gl - fo ~ 8 (89)
E R

where 8' is the deformation parameter (50), which is defined as the

difference between the single and the double axis of the prolate

spheroid, measured in units of R. The origin of the "error" in the

method of part (a) is that it treats the dipole energy as if it were
. Lza . . _

proportional to R* (i.e. the weak correlation limit result), so

that instead of (89) it gives

Evss —Es = Jﬁr ~ R ~ 2§ (90)

E —a
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This value is always at least twice as large as the experimental data
on page 493 of ref. {é] ). A possible explanation is that the scaling
method of part (a) may be too simple to describe the correct pair
correlations in deformed nuclei, i.e. if the scaling was also contained
within the pair correlation functions then the cancellation of the

weak correlation terms will result in a different energy splitting

than in the weak correlation approximation.

(ii) Low lying 1~ single particle levels in even-even nuclei

In Fig. 2 and Fig. 3 below, I have plotted the known 1~ states
of even-even nuclei, together with the weak correlation approximation
result for the energy of -pm , (i.e. AE‘L\J.CJM?\') = 71)‘\-MM¢V) .
Note that many of the low lying 1~ states of even-even nuclei have an
energy close to 12 A_"h MeV . The main exceptions to this are
in the large A deformed regions ( 150 £ A £ |90 and AZ2220),
where there exist much lower 1- states that usually belong to
vibrational or rotational bands. The question to be asked is,
whether the good agreement of the weak correlation approximation
result for the energy of the dipole resonance with so much of the
experimental data plotted in Fig. 2 and Fig. 3, is a coincidence
or not? For example, we could speculate that for a particular

'f(rp,;) +1 in the wavefunction (87), that the weak correlation
approximation becomes valid, while the energy remains close to

72 AJ/1 MeV . However, the experimental data for the transition
rates seems to rule this out. Namely, for the 14 states in Fig. 2
that the transition rates to the ground state are known (note, 10 of
these are within 15% of 12 A-u’ MeV ), all have lifetimes four
orders of magnitude larger than the result calculated for e when

£ =1. So it is very unlikely that the transition rate data can be

explained without including a radial node in 'f(l",.) , which would
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increase the energy well beyond the low lying states we wish to
explain. In fact, from the transition rate data it follows that
these states cannot be collective, i.e. they are single particle
states. Still, it could be possible that Séi can describe single
particle excitations under certain conditions. Another speculative
suggestion is that perhaps these single particle excitations involve
charge exchange processes, so that the number conservation argument
of section four of [?3 would no longer hold and the weak correlation
result might then be a good approximation. But it remains virtually
impossible to see how jéz could ever describe levels with very low

transition rates, since it has total overlap with the dipole operator.

So the results of Fig. 2 and Fig. 3 may very well be a misleading
coincidence. It is worth pointing out that the low lying Ot states
. . . A"-/'S
discussed right at the end of section AIII, also follow an
trend. Thus, for spherical nuclei, it may be a general property

~1/3
that the energies of single particle states follow A variations,

while the energies of collective states vary as f\ 3 "

Figure captions for Fig. 2 and Fig. 3.

Fig. 2 : The energy of the 1- states of even-even nuclei
(6 £ A £ k4 ). Full line: The energy of ZZ“ ;
n we. hwmd: 72PIV3A¢V. Crosses: Definite assignments.
Circles: Tentative assignments. Arrows: The known 17
states directly above the base of an arrow have been left

out. The data is from reference [?] .

Fig. 3 : The energy of the 1~ states of even-even nuclei (A >SO> .
This Fig. follows on from Fig. 2 (the lowest A state comes
from Fig. 2) and is plotted in the same way. The data is
from reference [}d] .
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III. COMPRESSIONAL VIBRATIONAL STATES OF SPHERICAL NUCLEI.

*

In this section trial wavefunctions for vibrational states of a
quantum many-body system are considered and the energies of the states
evaluated. The many-body system is taken to be composed of A spinless
uncharged identical particles, as for example helium microdroplets, or
to a reasonable approximation even-even nuclei where we can assume

that the spins are paired up to give zert)éi along with neglecting

the differences between proton and neutron masses and interactions.

In evaluating the energies we will further assume that the ground

state is spherically symmetric and also we will neglect all correlations
between particles other than those described by the finiteness of the
system (this is the weak correlation approximation discussed previously
in sections AI and AII (i.e. [i] )).nghe weak correlation approximation
is not as crude an approximation as might be expected, because it is
only used to calculate the collective vibrational energy difference
between the excited state and the ground state, so that no calculations
are made of any part of the ground state energy. For our purpose of
calculating only the collective excitation energy the weak correlation
approximation should be fairly good for nuclei, as the hard core of

the nucleons occupies less than a percent of the total volume (nucleon
radius is approximately six times the hard core radius), but will only
give a rough estimate for helium microdroplets where the hard core
volume is about 20% of the total volume (helium radius is approximately
1.7 times the hard core radius). The spherical ground state and weak
correlation assumptions mean that the calculated vibrational state
energies are quantitatively valid only for the non deformed even-even
nuclei, but the results could also be qualitatively extended to all

even-even nuclei and helium microdroplets.

The trial wavefunctions considered are all Feynman type wave-

functions [?] of the same form as the rotational excitations

¥ See the note on page AIII. 44. ]
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considered in [l] , namely

Y=F¢ (1)
where F is a symmetric function of all the particles and § is the
ground state wavefunction, or § could also be an excited state and
then we would be creating a vibration of this excited state. (From
now on § will be taken to be the ground state as we will not consider
vibrational states built on excited states.) The Hamiltonian of the

self-bound A particle system is assumed to be of the type

a A
H = —%nz VW + V(r,..m) (2)

k=1

where V is completely symmetric with respect to permutations of the
particle coordinates. Because H is a real linear operator the ground
state § can be taken to be real. To evaluate the energy of the
state (1) we use the identity proved in [l] , that for F a symmetric
function of all the particles the expectation value of H_Eo in the

state lI) can be written as

Sdi daw'm-e)y  _ AR<IVFID
Sdi....dalg) am < |FI1*D -

where H =E and < > is the ground state expectation value
o

defined by

Sdi....dad" (a)

In evaluating expectation values of the type (4) we further assume
that @1 is spherically symmetric. That is, we take the ground state
to be described by a purely radial single particle number density

(see AI(2))

T\(\T) = A S,Qiﬁ §z
Sdl . dA B

where Y, is the distance of particle one from the centre of mass.

(5)

2
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The physical excitations of a self-bound many-body quantum
system must be translationally invariant states. This is because we
need to work in the rest frame of the system, in order that the
angular momentum of the system be independent of the choice of origin.
That is, we require EY =0 , but the centre of mass _R_ and the
total momentum _P are conjugate variables so that by the uncertainty
principle B is indeterminate when we work in the rest frame. Thus in
order to be certain of the physical reality of any trial vibrational
state we must use a wavefunction that is translationally invariant, so
that it does not depend on the indeterminate variable B . If trans-
lationally variant wavefunctions are used, for example those that are
constructed on the assumption that the centre of mass is fixed at the
origin, then they may give rise to spurious states that represent
unphysical motions of the centre of mass rather than internal motions
[3, 4, 5-]. The problem of identifying spurious states has been shown
to have a solution only in the special case of harmonic interactions

[3, 5] . Note, that the use of a radial ground state density (5), is
only a means of describing the density variation in the system and
does not lead to spurious states as a translationally variant wave-
function might. (5) is inconsistent in the sense that the right hand
side is translationally invariant because of § while the left hand
side is a function of only one variable and so could only be trans-
lationally invariant if it was a constant. However providing (5) is
not used to solve for the surface structure you can temporarily fix
the centre of mass of § at the origin and then (5) will describe a

radial density variation of a finite system from its centre of mass

without leading to spurious results.

For the wavefunction \z= F§ to represent a vibrational state

built on the ground state § we require

LF =0 (6)

3.
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where L. = (Lx, LY,LZ) is the angular momentum operator, (N.B. we
have already ignored spin coordinates so that angular momentum means
orbital angular momentum.) With condition (6) \y is an angular
momentum eigenstate with the same eigen _yvalue as @ , which is the
definition of what I mean by a vibrational state. It might also be
argued that \Y should have the same parity (inversion symmetry) and
permutation symmetry as @ which is satisfied provided F has positive
parity and Bose symmetry. (The results will only be gquantitatively
applied to non deformed even-even nuclei where the ground state ai has
zero angular momentum and positive parity; i.e. § is taken to be a
O+ state.) Now because \I' has the same angular momentum as §
in order for E) to be a true excited state it must be made orthogonal

to @ . The condition for g to be orthogonal to § is

b
Cdi . daw*s =0 = (d.. .dayd o
Using (1) and (4) we can write (7) as

<;:> = 0 (8)

Having imposed the condition (8) we can then use the variational
principle to prove that (3) is the variational upper bound to the
difference between the true excited state energy E and the ground

state enerxgy E° . That is,

AE = E-E, £ A¥ R
am <\ \FIRY .

From the above we conclude that for @ = Fﬁ to be a true
vibrational state of § then F must be translationally invariant,
must be an eigenstate of angular momentum zero, must have positive
parity and Bose permutation symmetry, and must satisfy (8). The
simplest form for F satisfying these conditions is

A A

= Z z -f(rii) (10)

(L)




AIII.

where T

8 =LL‘EJ\ and the orthogonality condition (8) becomes

<'§'(‘sz)> = 0O (11)

That (10) is translationally invariant is obvious, while the positive

parity and Bose symmetry properties of (10) follow from the identity

‘:j = ‘_.}-i To prove (6) we first calculate from (10)
oL} /
oF = E &j £ (w)
axu.-‘) = (12)
1%k TR

(at) Ls ca) ®) — g W (=)
where X { )( , X ] —{X,y,zl 4 X“J X ;
and f (r) = d{'/dr' Writing Lx, Ly, Lz as Ld where & =1, 2, 3

respectively, then

L.F = -tk }:(xi‘e"AF — XEOF

" é SLeEe) R éxlﬂ‘ﬁi) (13)

where A® O means the Oth element to the right of K& {l, 2 3}

in the sequence 1,2,3,1,2,3, -+- . Substituting (12) into (13) we
find
_ (otel) (4&2) / (am) (.«9.)
L°‘ o _Ltgz ( {(‘;ﬁ —Xh ‘g(‘;_‘) (14)
k J#’h ";J ‘—;3

Using the identity
2 Z A th = ZE—A 8 ) (Bh',:—B.ih\ (15)
kR j#k k<)

we see immediately from (14) that \-_-:F =0, that is

L_F =0 for all oX (16)

(In fact, (16) follows automatically from (10) because any F of the
form (10) is rotationally invariant.) If, as for non deformed
even—-even nuclei the ground state § is a O+ state, then \2'= F§

with F given by (10) and (11) is a O+ vibrational state. Using
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(12) and E@=O we also have

F
Py = —ck@( gxk, £ 3V s ;zh) O an

which confirms that we are working in the rest frame, as desired.

If we relax the translational invariance condition but keep all
of the vibrational state requirements then the simplest form for F

would be
A
Z g(‘f,) (18)
1=\

where TI =*[h\ is the distance from the centre of mass which is now

fixed at the origin, and the orthogonality condition (8) becomes

Sy =0 (19)

(From (13) we see immediately that (18) satisfies (%) and the positive
parity and Bose symmetry of (18) is obvious.) gﬁ = Fféﬁ with F given
by (18) and (19) is a valid trial wavefunction for real vibrational
states except when the broken translational invariance has lead to
spurious unphysical states in the manner described previously.
Unfortunately general methods of recognising spurious states are not
known for non harmonic forces [;, é] , so that (18) can only be used

with the knowledge that it may sometimes represent non physical states.

THE PHYSICAL NATURE OF W :

Classically we would expect the simplest and lowest energy
compressional vibrational state of a spherical system to be the
breathing mode oscillation, where the system periodically expands and
contracts as a whole. Thus an important point to consider is whether
the trial wavefunctions ‘f:F@ with F given by (10) or (18) could

describe a breathing mode state. Firstly let's define the excited
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state single particle number density as (cf. (5))

N = ASda . dale
Sdl. .. dalgl?

— a <IFR(r)
N IR @

were < is defined by (4) and < », is defined by

B = Vv Sd2 .. .daBd”

(21)
2
Sdl.. .. dA T
&
We have assumed that @ is spherically symmetric so that our A
particle system is spherical and 1\.(‘_\\) becomes Y\,(r.) ; T, the

distance of particle one from the centre of mass. Let's now make the
approximation that the ground state number density 'Y\(f',) given by

(5) is the cutoff density (see AI(13)),

NWr)y = B¢ , T4R

(22)
= O , O>R
so that the ground state is a sphere of uniform density and volume
3
\/= —I,‘-g—’-]T R . Note that from (5), (21) and (22) we have
15 = 1, T4R

= o , 1R -

The question we now consider is how does the excited state numbexr

density ’n\(\"') vary with r" when ﬁ(ﬁ) is given by (22).

We will first discuss the simpler translationally variant
vibrational state, namely \f = F§ with F given by (18) and (19).

From (18) and (21) we find
<IEMm = & 32{?r;)§(§)>‘
= 1)Ly, + @) f?ﬁ)(ﬂﬁ)} + (A=) §(r.)<§fxz)>‘
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+ E-D< D, +0-n-)<Sf@), e

Using (22) and the two and three particle density correlation
functions 'n(IS) defined by AI(2), it follows that for "\(\';)

a general function of just \_J , that

<him))y = So\z n02)hes) 5e

<hu—)\n(t;)> A(A e J)So_\_z_g\;m(\zs)\-x(rz)\n(ﬁ) (25b)

If we now use the weak correlation approximation discussed previously,
then 'f\(\l) becomes (A"O/é n(l)n(Z) (see App AI(1l)) and hence (25a)

becomes

<h(r;)>| = %i n@)ggl_z_mz)k(q) = <|>'<k(r.)>

(26a)

Similarly we can define a partial weak correlation limit by neglecting
correlations between (1,3) and (2,3) to give 7\(\13) =(A;2)T\02)“(5),

which leads to (25b) becoming

<h(r,)¥\(r‘)>l = F\‘(A— go\av\(mh(r)go\mtz)h(r)

= <htY, <hE)> e

In the weak correlation approximation the orthogonality condition (19)

becomes using (4) and (5)

Gy = L ldnyfe) = o

(27)

Therefore from (25), (26) and (27) we see that <£'(J;)>| G

<frr2)>l » and <'§(*GY§(G)>‘ are all zero and <‘{(r;) 123 —
<o < HEND.

8.
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Therefore in the weak correlation limit (24) becomes

IFPY(R) = <|$,{ 1 R LR £ Y S

where <l>, is given by (23). Evaluating <|F|"> in a similar
fashion to (24) and using the weak correlation approximation with the
orthogonality condition (27), we find from (20), (22), (23) and (28)

that
em* — @1
AL 1£mID (29)

Ng) = Nir)|

where Y\(\—:) is given by (22). Hence the excited state density
'Y\‘(r.) varies only to order ,/ﬁ Y\(T’.) from the constant ground state
density ﬂ(ﬁ) and this small variation is a function of H(r,)]" 3
Furthermore if we substitute the cutoff density (22) into the

orthogonality condition (27) we find,

R
godl'. ‘—\1‘;(‘7) = 0 (30)

so that requiring \I’ to be orthogonal to § implies that the real
and imaginary parts of 'g(\".) must change sign at least once as Ty
varies from zero to R. Restricting the discussion to -g(r.) real, which
will be true for all the vibrational states of the type (18) that we
will consider, we see that (29) and (30) imply that T\,(I‘,) must have
at least one shallow minimum. Before discussing the physical signifi-
cance of this we will consider the variation of Yh(ﬁ) for the

translationally invariant vibrational wavefunction.

In investigating the behaviour of ﬂ|(ﬁ) for the translationally
invariant states (10) with (11) we will discuss only the case of F real,
as all our specific trial wavefunctions will be real and any imaginary
part could have been discussed in a similar way. From (10) and (21)

we find

9.
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GRIDERGDIPWMIIIR)

= (A-1) < {Zr;z )>| + @:_'D)f_A_EZ_). <{2§1)> (A ~l)(A-.2)<‘§(I‘Q){(I,‘3)>|
+(A-)(A-2) Stm) f 0y, + (A=a-2)}E @I,
+(A- Ya-2)A- I E I, + @ (“"2“‘33“"‘%(‘5”(‘@)

(31)

Let's now introduce the two, three, four and five particle density
correlation functions T\(lS) defined by AI(2). The orthogonality
condition (11l) becomes

_ -y =
Gy = di dddnoyfw) =0

If we use the full weak correlation approximation then Y](J. S) splits
. 1 , . .

into a product of “(J)S , but for our purposes it will not always
be necessary to neglect all the hard core interparticle correlations
and so in order to make explicit the extent of the approximations
needed we will continue as in deriving (26b), to neglect correlations

only as necessary. The last two terms in (31) are zero if we use the

partial weak correlation approximations, NOIUS) = (5'3)(A—2;)]N|23)‘1‘\(45)

AlAa-1)
and 'Y\(\?.'Sl,.) == (A-D.!(A"'g) 7\(\1)7\(34..) , because then
A(A-1)

R ), = faH <SRy = 0 (33
and <'§U‘.a)'§'(ﬁv)>. = <{'(Fz)>| <'§'(\—3>)§ =0 (34)

where the last steps of (33) and (34) follow from the orthogonality
condition (32). The approximation 'Y\(\l3§.)={ﬁ"3)nﬂ)ﬂ(13lr) with (22)
A

is enough to give

D, = N LMy, o
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while the weak correlation approximation 'Y\(‘l) &) ’Y\le(l)

ana NU2Y) = &A)éﬁﬁ)mmum(z) yields

S ) ), = <§(r.1)>.2 (36)
and <-§1(rn)>, = <l>, <'§G.\z)> (37)

The last remaining term in (31), <‘£‘ (r‘;){'(rg;)>' , is slightly

o

more complicated since using the approximation h(l23) =

@:_(__%Lﬁ_}) o )'ﬂ(ﬂ)'ﬂ( 3) only gives

<§(m)§(m)§, =<y o S ol_zﬂa)ﬂr.,) folzmz)f(cg (38)

So from (33) - (38) we find that the weak correlation approximation,

or for some terms less than this, reduces (31) to

JEIHGE) = 00§ +(Auo(a-a){<§cnz)>f +
GGy, + <’3 {§(r)Y +6B-10=2) (\><3‘(r,){(m)>]

(39)

Evaluating <|F'_la'> with F given by (10) and (11) in a similar
fashion to (31) and then using the partial weak correlation

approximation 7\(\23'-'-) [ (A=2) (A=) 7\(11)Y\L39-) along with the
ACA=)

orthogonality condition (32), we find that the four body term of

<‘F|1> is zero and so

AFRY = A_(Dai_—_\K{fruD + AR-)A-)LEmR)$R) >

(40)

To calculate T\l(rl'\ from (20), (39) and (40) we can drop the first
=

terms in (39) and (40) provided <-E(K1)‘§(E3)> >> O(Jﬁ <ﬁru.)>)

and assuming that A is larger than about 20. Then (20), (22), (23),

(39) and (40) give
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n,(R) =0() I+[<‘§(r.;)>l‘tn) +<ﬂm)+u;,>>.cr)+<if’>—2<§m,>§aa§‘
ALEm)fam) )

(41)

Thus comparing (41) with (29) we see that provided <€((‘,1)—§(ﬁ3)§

>> O<JA- <‘§GT)_)) ; then Y\Jf‘,") for the transla-

tionally invariant vibrational state (10) is very similar to the

density of the translationally variant state (18). Namely Y\.U‘,)

varies only to order '}:‘i‘ﬂ(ﬁ) from the constant ground state

density 'Y\U',) . Note from (20), (39) and (40), that if the
orthogonality condition happened to give <‘E (“z)'g(ru)> £O<%<{?Wg)>)
then the variable part of 'n‘(_r‘) would be of the order of the
average value of ’Y\‘U‘.) , so that these special states will have a
much higher energy than the type of state described by (41). Now

from (21) and (4) we have in the cutoff density approximation

R
<)y = iv‘l" (oon 12 £ ()

(42)

So using the orthogonality condition (11l) we see that <‘§(l’.—1)>. U‘.)
must change sign at least once as ‘_I- varies from zero to R. From

(38) and (32) we can also expect that <*§(\-,,_)'§(Gx)>‘(‘-;)will

have a minimum very near the values of [ at which {{-(n,_)},(l'.) =0
Therefore the orthogonality condition implies that '“‘(TT) (That is,
(41)) must pass through at least one shallow minimum as ‘T varies

from zero to R.

So we have established that both the translationally invariant
state (10) and the translationally variant state (18) have densities
which pass through at least one shallow minimum. If F is oscillatory

and characterized by a wavenumber R , then the orthogonality condition
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will yield a discrete series of states labelled by increasing h s
We would expect the lowest energy state to have the smallest wave-
number (i.e. longest wavelength) and to have an excited state density
1\&}:) with only one shallow minimum. For each wavenumber series
it is likely that the Mty  excited state will have a density with M
shallow minima. These shallow minima divide the excited system into
regions of mild compression and rarefaction, but the physical inter-
pretation of the vibration that produces these regions seems to have
two possibilities. One interpretation is that the vibrational motion
is small scale reflecting the shallowness of the density minima, and
the minima divide the system into regions moving out of phase with
one another. That is, the vibrational states are standing spherical
compressional waves with the lowest energy states having a wavelength
of the order of the size of the system. This interpretation therefore
excludes anything resembling the classical breathing mode oscillation
from being described by \ﬂ: F§ with F of the form (10) or (18).
However this could be wrong if the excited state density ‘7\.(r})
defined by (20) is too much of a guantum mechanical average. That is,
it may be that q\‘(ﬁ) averages out all oscillatory motion leaving
only the nett transfer of matter in the same way that occurred with
the quantum mechanical velocity field discussed in section BI.
In fact in appendix BI(2) M(T) is calculated for a Feynman phonon

in bulk liquid helium,

o
PY=F3¢ ) F=2>e™R (43)

and in the same approximations used to derive (26) it was found that
'Y\\(r:) = N(%) . Because it is known that as h‘—>o (43)

represents large scale periodic density variations we concluded in BI

that expressions of the type (20) are quantum mechanical averages of

all the motion, so that any oscillatory density variations are averaged

13,
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out. (See London [6] page 317 for a discussion on similar averaging
problems in quantum mechanics.) As another example we note that the
quantum mechanical velocity field BI(16) is zero for any state with a
real wavefunction and all the vibrational states that we consider will
be real. Thus the quantum velocity field has averaged out all the
oscillatory motion and the zero result means only that there is no
nett transfer of matter due to the vibrational motion, as we would
expect for a pure vibration. So it is possible that the results (29)
and (41) for the vibrational state density 'T\l(lﬂ have smoothed out
all the vibrational motion and the shallow minima are just a small
difference between the average density distribution of the excited
state and the ground state, occurring because of the necessity that
‘P be orthogonal to § . If this is the correct interpretation
of 'n‘(\".) then the vibrational motion may be a large scale density
variation with the largest wavelength state closely resembling a

breathing mode oscillation.

Another hint to the physical significance of our vibrational
states is the close relation they have to the Feynman phonon-roton
excitations of ligquid helium, (43). 1In ]-_2] Feynman describes the
physical nature of the trial wavefunction %fcg)i and concludes
that in the long wavelength region it represents a compressional
density wave inside the fluid, (i.e. a sound wave). The only
difference between this wavefunction and our finite system broken
translational invariance state Y = Fé with F given by (18), is
that Feynman's state is characterized by a vector B_ and so acts in a
specific direction, while (18) is purely radial. Hence a reasonable
guess would be that in the long wavelength region \Y =F§ with F
given by (18) should describe finite system radial analogues of
Feynman's phonons. That is, it should describe radial compressional

density waves. Now from the similarity of (29) and (41) it seems

14.
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likely that ¢ =F @ with F given by (10) includes many of the
translationally invariant forms of the states with F given by (18).
This is closely related to the rotational states investigated in [}]
where the 2ﬁ.state was shown to be the translationally invariant form
of the LF=2 component of Feynman's wavefunction (43). So we expect
that the vibrational states ‘f=F§ with F given by (10) are transla-
tionally invariant relations of the states with F given by (18),

which in turn appear to be finite system radial analogues of Feynman's

compressional density wave excitations.

Let's now summarise on what the vibrational states \I’-—— F§
with F of the form (10) or (18) are likely to represent physically.
Firstly they should describe radial, compressional, density oscillations
directly analogous to Feynman's phonon excitations in liquid helium.
The lowest energy states should have wavelengths of the order of the
size of the system and there seems to be two possible interpretations
of these large wavelength vibrations. One interpretation is that they
are standing compressional density waves and could not include large
scale inphase motion like a breathing mode oscillation, because the
orthogonality condition insists that there be at least two regions of
out of phase motion. The other interpretation suggested that the
shallow density variations due to the orthogonality condition do not
necessarily indicate out of phase motion, but may only be describing
small density differences separating the excited state from the ground

state after all the breathing mode like motion has been averaged out.

TRANSLATIONALLY INVARIANT VIBRATIONAL STATES.

We want to calculate the variational energy of the trial
vibrational wavefunction E/= F§ with F of the form (10) for a

spherical, self-bound, many-body quantum system, described by a
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Hamiltonian of the type (2). Provided the orthogonality condition (11)
holds, then the variational upper bound to the vibrational energy E

is given by (9). 1Inserting (10) into (9) we have (cf. [1] eq. (7))

AE =E-E, « 1< f(n)) + (A-2) { V). ¥ Vi V. §(w)>
m £l +2(A-2) <$@ERY) +(A-2g(ﬂ__—®(f(ﬁ)f(l’iﬂ>

(44)

where H§= E°§ ; d = d/a&i and < > is the ground state

expectation value defined by (4). 1In order to evaluate (44) analytically
it is necessary to make some approximations to the two, three and four
particle density correlation functions, MN{l...S) (see AI(2)) that are
needed to calculate the expectation values appearing in (44). Firstly
we make the partial weak correlation approximation used to derive (34),

namely

NQ23L) = [(A‘(l)(A) 3)] NG2)NGE)
A(A=I

(45)

Note that (45) amounts to ignoring all pair correlations between
particles (1,3) (1,4) (2,3) and (2,4) and all higher order correlations
in the system, except those due to restricting the particles to move
within the finite system. Ome typederror in this sort of approximation
comes from ignoring the hard core interaction between particles, but

as we have noted previously, the fact that the nucleon hard cores

occupy less than a percent of the total volume, suggests that
these approximations should be good for nuclei when calculating AE
The orthogonality condition (11) together with (45) immediately gives
for the four body term of <|Flz>
2
fm)fmy)) = <§e)) -

We can prove that the three body terms of <'V.F'a> and <‘F|&>

are positive definite by making the fairly mild approximation

% See the note on page AIII.44.
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Nn(23) = m\mum(s)a(m)q(n,) (47)

where g(") is the pair correlation function. (cf. AI(6)). (47) amounts
to keeping the pair correlations between particles (1,2) and (1,3) but
ignores all other correlations other than those due to the finiteness

of the system. Using (4), AI(2) and (47) it follows that

<Y__71£(ITD . Ef(r.g)> = j-| _(gl_l nu) Fi’"(\) 20 (48a)

and < ‘?(ﬁa)'f‘(ﬁa)§ = j~‘55h no) Bl(\) 20 (48b)

where j = S_Gi'_ d_?-. _d_?_, 1\(‘23) (48c)

fi

AW Sél- N(2) ‘3( 0a) YJ_'HV.;) , A*=A.A (484)

B = {d2 nuqer)f ) (ase)

Therefore with only (45) and (47) we have proved that every term in
(44) is positive definite, which is a result that from (9) seems

likely to be completely general.

We now assume that the ground state is spherically symmetric,
so that for example, <X$_> = <y.;,> = <z.§> /
<X|2 X|3> = <y,a yu» ; etc. The two major approximations
made to evaluate the ground state expectation values appearing in
(44) will be the weak correlation approximation for MN(IX) and

T\(\l}) and the cutoff density approximation (22) for the

ground state number density. We have already discussed the validity
of the weak correlation approximation for evaluating the excited

state collective energy and we concluded that it should be fairly
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good for even-even nuclei. The cutoff density approximation should
describe the ground states of non deformed even-even nuclei reasonably
well when A is greater than about 20. Further discussions can be
found in [i] where the same approximations are used to evaluate the
energy of a related rotational excitation. Because of these
approximations we will restrict the quantitative calculations to

non deformed even-even nuclei, although the results could be qualita-

tively applied to other many-body quantum systems.

Let '\(ﬁa) be a general function of fj3 , then using spherical
bipolar coordinates (see AI(7) and [1] eq's (32) and (35)) and the

weak correlation approximation for 'Y\Ul) and h(|23) , we have

) N+

< h (r.z)B = S::l\'. T nr) g,o\ G NG) Sg\y‘;i Vs NS

2 [ S r:‘\r\(r.)]z o
< h(n.)‘n(rg)> o\r ‘n(r)Sch" rmu;)gdr B NG) ‘gr:;a\\(r,)‘gg: 2h(5s)
Lr{ (Car r.‘n(r.)]S o
Next, define the variables X,V ,T by
X = 2% , Y = a/a /{=r‘“/& (50)

then using (50) it follows that the cutoff density approximation (22)

reduces (49) to

| \ Ky
<h(ﬁg)> L g— goo\xx goo\yygo\%f h(R€) (51a)

Ix=yl

X4y -

|
Chimdhtm)y = %:— goa\x [S,‘g"yyjlff; h(R®) (51b)

18.
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The next step is to decide what specific forms for (10) we might
expect to represent low energy states of the wavefunction y: F§
with F given by (10). Towards thié end let's first discuss the
translationally variant form (18), in the hope of generalising a
specific choice to its translationally invariant form in a similar
way to the rotational states investigated in [l] . Feynman has
shown that for an infinite system the best wavefunction of the”

form Zf(l_-ﬁ § satisfies the equation ,( [2] page 265.)
J

—l}m Vi) = AE{FC:.)+S<_i_2mz)f<rz)3(m} (52)

Using the weak correlation approximation (i.e. 3(\‘.3) = a constant)

and the orthogonality condition (cf. (27)), (52) becomes
2
\V/ ‘f([.) + [2mAE () = O (53)
ta

Now (53) has more than just the plane wave solution (43). If we write
‘f(_‘:‘) = h(\") \/L&Q./ﬁ) then in the spherical coordinates
(ve,8) = ("./9,/ 2,) e k53) s

Vohe + (R -4E2)he =0 s

wiore K :(EM_TAE) i v‘=_|_i<r=_é_>=5_ ay .

= r r2or\ or/ or* ror

From appendix AI(4) we see that the regular solution of (54) is the
spherical Bessel h(l‘) = jl_(hr) . Therefore we have found that for
a spherical system and neglecting surface effects, that the best state

of angular momentum L. of the type @=F§ with F given by

F = ZYI.M(GJ’¢J)h(G) (55a)
J
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is, at least in the weak correlation approximation,

Y = .,z \/L£~G"/¢")1L(hq)'§ (55b)

Hence an obvious candidate for a low lying vibrational state of the

form \IJ = FQ is the L: (@) component of (55), namely

Sinki (56)
RT]

F = Fyue = 3

Unfortunately the translationally invariant form of (56) is not
apparent, but a wavefunction of the form (10) that might be closely

related to (56) and hence should be investigated to test this, is

obviously
A A
F = Z Z 1 (ki) (57)
c<J ©

Another way to create a translationally invariant vibrational state
of the form \? = F§ is to superpose two phonon states (43) with
opposite momenta, to produce an excitation of zero total momentum.
Following Feynman ( [2] page 268) we expect the wavefunction for

this excitation to be \}?= ] § with

— c:h N Y
F = ZS e ko(ri-E) = 22 (os\g_.(.\'.'a-‘_';) (58)
¢ J#EC (&)
I1f we choose the Z. axis to be in the direction of __k_ , then the non
radial vibration (58) becomes
F=2 E ZCOS\QZ‘U
e (59)
This suggests that a low lying radial vibration of the type y = F@ "
with F of the form (10), is given by

F = iﬂz_ CQSkW)

(<] (60)



AITI. 21.

So we will now investigate the two translationally invariant wave-
functions (57) and (60), to see if they include vibrational states
whose energies are close enough to the ground state energy to be

experimentally detected in non deformed even-even nuclei.

S_ﬂ = % Eﬁ: jo(hr[j) @ . (61)

(4

The orthogonality condition (11l) becomes using (5la)
X+y

S:dxxg:dyyg‘f}fy{;‘fo@é) =0 (62)

where xX=hR . Substituting j(ol'{) = S*{%-d_{:% into (62) and
e

integrating over df' gives
( :
OC{XXSW\J-X = 0 (63)

From appendix AI(4) (iii) we see that the orthogonality condition

reduces to

j.(d) = © ;= =RR (64)

The first solution to (64) is (=4 = 4_-4.?3!,.. . From (51b) we

have

\ X+Y 2
<j°( k¥a) L(hﬁa)\} B %:75 LO\X [ Qo‘yy E\g\:{‘yslmdf]

= _i% ansm*.zx [ g:c*\_/y Sinogzr

2 g‘d o
1.7j(o() J X Sin A%
ol ¥

I

which from (64) - O (65)
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Note that if we removed the cutoff density approximation (22) and kept

M (1) as a general radial density N(T) , then (65) would still hold
because of the orthogonality condition, which becomes S:;xx NX)Sintx = O,
From appendix AI (4) j‘:(k\'\_z) = -k j. (IQT.',,) , so that (44),

(46) and (65) give

Ag < R{RY Lthrn) Y + (a2) < T dem), U 1,k
m <'j:(,hﬁz)> (66)

Now we have already shown with (48a) that

<Y\__J°(,h\'.'z). YL'1°GQ.R3)> is non negative, so that the right hand side

of (66) is at least

Wk <Ay
m <43ke)y (7

and is probably of order A larger than this for small k. In appendix

a

AIII(i) it is proved that j(o() =0 implies that < *j.(hﬁ;)>
% 1
tends to < Yo(k\'\'a)> rapidly for large & , and that for the
2 . 2

smallest value of X (X = k4934) <'1'(hru)> = 0'89\<j°(hrfz)>.
Therefore the variational bound of the vibrational energy is at least
of order

2,2 a 2

Fh = R

m mR? (68)

I/
For spherical nuclei we put R= A 3 with Tg = -2 f‘m.,

giving (cE£. [_l—) )

=z -
R o= 28774 Mev
ng_ (69)

From above we see that the lowest energy state of (61), namely
= = l]—"l-? 31,«. , has a variational energy bound that is at least

S17 A"Qh Me v . Now it is very unlikely that for small X

(O, > £ O(FL L) o vt o ) o0
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that the variational energy is almost certainly of order A higher

than (68) for small & , and because even if <2. fo(hn‘)' Y,jc(kﬁz)>
was zero the energy would still be greater than 517 A-zh Mev /

it is not worth the large effort to evaluate this remaining term.

Note that in the previous work on 1\.(ﬁ) (see discussion after (41))

we found that if (65) held then there was a much larger difference
between the ground state and excited state densities than usual for
states of the form (10). So the conjecture that the energy of (61)

is of order A higher than (68), is supported by the previous discussion
of 1\|(ﬁ) . Therefore we will end the investigation of (61), which
was necessary because of the apparent relation between (56) and (57),
and instead go on to consider other vibrational states including

some that have energies significantly lower than SI7 A-Q/Z MCV )
thereby definitely eliminating the wavefunction (61) from being

important.

A A
¥ = ZECOS\“T:& @ : (70)
Ty

<

The orthogonality condition for the wavefunction (70) is, using

(11), (50), (5la) and defining X =R R,

| \ X4y
god"x va&éﬁfl Coseit = 0 (71)
This can be written as
| | XY
O = ad; gedxxgcalyy[\g\fﬁmoc{‘
| l
= l_d__ 1 Soo{x XSir\elxgoo\yysiv\d))
dot \X (72)
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From appendix AI(4) (72) becomes

0= dd(ﬂeu) - jg(___l:)ju) &s;j,w]

(73)

Therefore (70) has two distinct series of states, defined by

j,(‘*) =0 | &L= k934 ,77253 - (74a)

jo(’q =§-;-j,(o4) . o T 5§55, S-¥843, - (74b)
Inserting (70) into (44) with (46), we have

S|r\h!“ 3 br'
Ae £ ¥k <Sm\0.r'1> -+ (A—l)< 2 2 }(‘Ta..__‘)>
m <(os Rt Y +2(A—.2)<(os R, coskr.',> (75)

In appendix AIII(2) we calculate, in the weak correlation and cutoff

density approximations,

ioshe,) = | —<sinhm,y =

E;T L9 Ziz.z){ 4,3) — 54 i'(w} e

and
' a
(oshr, toshta Y = 27 j,@Soaxx“j, (Lx) +
aft L a |
27(3,)-24 &) fg‘xx Jo6x) “S#j,u)(joa)-dij,uﬁgéxx?o&yj,é@ (760)
Let's now consider the states Jﬁ(c() =0

J@=0 = )=, {) = ey 1, (@t) = “icez) (77)

From (76a), (76b) and (77) we get
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From Table I and appendix AIII(2) we find

X = [5255 1 {(oskr,(ockty) = 0:0243 ; (80b)

oSk, = 0256 , LSikkn, ) = O T4l

o =58513 ° < (oskra (eskiy Y = 0-0033 ) (80c)

teshG,> = 0.502 ; <S'\7\bm> = 0498

The last remaining term to evaluate in (75) is the three body

numerator term, which is of the form

NEIME) Tl ) = (r) (A 5.5

The right hand side of (8l) follows from the symmetry of particles

2 and 3 and the identity

2

e = Nr+R*-an.n (82)

Using the partial weak correlation approximation (47) we find, in the

same way that (48) was derived,

b GGy =97 (dnocy 20 @
wmere  CO) = fdana)gohtr)n , ¢*=C.C (s

and 7 is defined by (48c). For a spherical system we can evaluate

C(l) by rotating ifg_ about the .‘_-_" axis for all values of Wg , 8O
~
Ch)y = L, Cwp) (84)

~
where C(‘T) is some function of ‘T , yet to be found. If we now

equate E.,C_(l) for C(\) given by both (83b) and (84) we have

E(ﬁ) = T\_:,,_ S_d_z. 7\(1)3(‘71)“\(‘71)(.‘:“[:1) (85)
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r2Cn) = Co
1 rn) - C(rn) where, using (82)

1l

From (84) Q(\).Q(')

c(r) = {da na) q(m)\n(m) (- ) (86)

Al
A%

If we now use the weak correlation and cutoff density approximations

then (83a) and (86) give

|
b GG = 278§ dy Fo (678
/6 x*
.where ‘:(X) =% L(X) e K(X) . F)(X) (87b)

L(¥) = g:‘)yy g;{*fy h(R+) (87¢)

IX=y1

K60 = Sy aeneee e

Ix=y!

X4y
PO = Sdyyfgeehaa

and X,Y, €  are defined by (50). Therefore from (81) and (87)

the three body numerator term of (75) is

! a
<S\r\bﬁa S\nhﬁa(&.5)> = 21(11&0\5({)(’-1_()() -+ (88)

2 3 16
L (POY—KON[AXLEX) + PO —k(x)]}

where L(X) K(x 'P(X are given by (87c¢c,d,e) with
/ /

/

hige) = Sinxt - ot =hR .
R-€

For the states -jl (,,L) =0 (see (77)), we see from appendix

AIII(2) that,

=0 = L6 =0 , RIPOI-KK) = $-X*fe0) =) (=
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Therefore from (88), when j‘ (#) =0

\
SinkM SinkG T 2 2 s
< b 2 s 3., \"> 271°(ol)idxx j,(o(X) (90)

which from appendix AIII(2) and (76b) becomes

<S\l\hr1 S\nk‘rs ra r3> = 27 ‘dlfzd) (91)
Ta LIS 7 B
For the states 'jo(o() = ;;—p‘ 11(9() (see Table I for the first two

states), we have from appendix AIII(2),

RL6) = 2% 4624, !)

(92)
R(PO-K00) = 251, (4,609 =2z 4 )
From (88) and (92) we have,
Swnk e S\nhr; A —
< = L. r~> = 27, w{ falxx j(dx) .

-2 S:olxx3»jo(o¢x)j‘ («x) + t{z gglxxl‘—/f(azx)}

From Table I and appendix AIII(2) we find for the first two

7 (A) = 3 ‘:L (cl) states,

(93b)

< = ]-92%% <S\v\hﬂz Sia s ra.r;> = 0O-3204
rla. r:

(93c¢)

o = 5.8513 <Smh‘\'z Sinkla r.;,_r:,_> = 00039
(EPY ™

We are now in a position to calculate the variational bound of the
energy of the vibrational state (70), in the weak correlation and cutoff
density approximations.

(a) For the series of states defined by j‘(o() = (O , we have from

(75), (78), (79) and (91)
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‘.’-
AE £ BR{(E-Z4w) + (d-0F 4
bl - ’
(L) + 220 ol

(94)

b- |
Now j°(cz) = 5—2%2‘- so that '10(0() 23 P . Therefore
22 22
(94) varies from E k to t\ h depending on the
M m
relative values of H and & . For the lowest state, namely

A= L4934, we see that for ARZ SO

AE ,.é JF.‘{E = E}_{f = 0| K ) K= L4931 (95a)
2m AmR* mR*

For spherical nuclei we use (69) to obtain, for the lowest state of

the series -rj.(o() =0

AE £ 290 P‘-i/s Mev AZSO (95b)

/
— i P 20% )

As an example, for AR =203 (\.e. b , the exact expression (94)

gives AE é 85 N\QV . So we see that this vibrational state

is outside the well documented region of experimental nuclear physics,

but is still experimentally accessible. (It has an energy of about half

that of the giant resonance states [8-] page 734.)

(b) For the excited states given by 'j(o() = 5 'j,(O() , we will
o P =4

calculate the energies of only the first two states, namely =< "7."/’515-5_,

and oA =5.8513 . From (75), (80) and (93) we have

£ =1-5255 ;

AE £ Wh')oay <+ (A-2) 0-3204 o
m |o-256 +2(A-2).0-0248

[

A=58513, OAE

k' (o498 + (R=2).0-0039 (96b)
m | o504+ 2(a2).0-0033

From (80), (93) and appendix AIII(2) it is easily seen that for large (-4 4
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'Sk SinkT:
<(0Shr.1 COS\Q\‘.3§ tends to <'-‘:‘Tz" —F‘—‘ EE>

and they both become of order U/O(Y" . So the variational energy
] . -h?-h'«‘ h&h‘z

again varies between ——-X. and <% depending on the relative

aAm m
values of A and & , except for the lowest state (96a) which is
212
around 6115 . When AZSO we can drop the first terms in the
numerator and denominator of (96a), so that for spherical nuclei

(i.e. using (69)) the energy of the lowest state in the series
Y ;
160 =25 4, () s,
: : L ISHT = a3 7
= 1-5255 1 AE L Bh_ = L30A™ Mev (97)
mR2
When A is in the region 100 to 200 we see from (96b) that the next

state, namely &4 = §.8513 , has a variational energy of around,

2
AE ~3Fx* = 257k, x=5853 (o9
b me? mR>

Therefore we have found, using the weak correlation and cutoff
density approximations, that the vibrational state (70) has two series
. - o 5
of states defined by {].(hR)-— O and jO(bR) = m"‘(hk) , and
depending on the relative values of A ana hps the energies of both
. Zkz zkz
series vary between tk._ and , except for the lowest
™M ™wm
state of the second series which is anomolously higher than this.
Within each series of states the larger R is (i.e. the smaller the
wavelength) the higher the energy, which is what you would expect.
The state with the lowest energy is the first j‘(_hR)=O state,
kR = l;."-rq'&lf. and for spherical nuclei its energy was

AE £ 290 A3 Mev  for A2SO.

To conclude the investigation into the state (70) we will now
discuss the excited state density variations given by equation (41).
That is, whenever <(OS hKQB'U‘,) is zero the excited state density

has a shallow minimum. Using the bipolar coordinates introduced in

equation (49), it follows from (42), in the weak correlation and

30.
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cutoff density approximations, that

R Tty W
SN (R) = Sedar ST hm) -
Sﬂo\ n+
h P 1Y
° 2‘15\'.0&?\ *

Using the variables X, y,f’ defined by (50) and X = RR , we

have

\ )0¥y
<L°3°‘{'> (x) = i goolyygo\fécosdf (100a)
: 2X Ix=y)

From appendix AIII(2) equation (d) this becomes

Loty (x) = 3(10@ -2 j,(dD { o) — 3%JX) f)  (100m)

For the two series of states, we have from (100), as X varies from

0 to 1,

4@ =0 ; <@satB0) = 3{d) o9 (101a)

jow):j%ﬂ.(*) ) <(0-\°<(> (x) = %{c(ol)(l(oselx—--{o(dx)) (101b)

In figure 1. the function <(03°‘~'€>. (X) is plotted for the first
two states of each series (i.e. 'j'@() =0 : K= 9-"*939-/ 7-725’3/'
-5

1.0 =34

35 ) - K= 15255, 5.8513 )

We see that the lowest energy (longest wavelength) state of each
series has only one shallow density minimum, while the second lowest
states have two shallow minima. If the density minima are interpreted
as dividing the system into regions of vibrational motion of
alternating phase then the above leads us to conclude that the
wavefunction (70) represents two series of spherical standing
compressional waves, with the Mtk member of each series containing

"M\ radial nodes.
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(st D (%) Fig. 1.
O'll“
03 A
0-2 4
O | A
. . X
—_‘__"/O‘l
-0} 4
~02+
C
=03
-O.[r..
<COSO<{ >I(X) 1S P\OH_QO! ‘gor‘:
- 0% 4
s A A 493y
B oA = 77252
_— C & = 5255
D & = §.85)3

OTHER TRANSLATIONALLY INVARIANT STATES:

It is of importance to the interpretation of the physical nature
of the vibrational states to consider for comparison, the two-phonon

non radial vibrational (58), namely

A A R A A
¥ = z Z g R-5) @ = lz ZCOSE-Q';-E;) § (102)
¢y

T j#l

For this wavefunction the weak correlation approximation reduces the

orthogonality condition (8) to

<eés':‘> = 0 (103)

Because the system is spherical we can integrate over the angles and
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then using the cutoff density approximation, we see that (103) becomes
S-R
1’ —
AR T e (kE) = O sk

From appendix AI(4) and defining X -‘-‘-kR , the orthogonality condition

reduces to

’J.(ol) =0 (105)

Now, inserting (102) into (9), and using the partial weak correlation
approximation (45) along with the orthogonality condition to make the
four-body denominator term zero, we have

AE &« R* <\V.€.‘h'r*‘|z>+(ﬁx—2)<5_71_§ih&. Y_._ééh'r‘5> (106)

—

m [ 1eBEY + 3(a-2) @i B g CB B2

Using Yle‘.h-.‘:\z - Q-ZE.EE eih.-_[? =t ‘-.‘3 eih.l‘.; .

see that

<Y‘-eu&5. y—‘eih-5> 2 h3-< e‘:ﬁ-Em e-é h-ﬁs>= h"<e‘£§’>= o

(107)
where the last step in (107) is the orthogonality condition.

Therefore we find, with only the approximation (45),

AE £ 11__‘?2 e Ea_'g(_" , ] =0 (108)

m mR* '

(108) verifies Feynman's statement ( [i] page 268), that (102)
represents a superposition of two phonons with a total energy of
twice that of a single phonon ( E= .t-‘;—r-h-’: in the weak correlation
limit) within correction terms of order }</ , that would appear if we
hadn't used the partial weak correlation approximation (45). From
(105) and (108) we notice the close relation of this known state to
our radial vibrations. Thus we have further evidence that for long
wavelengths the vibrational states \1}'—'- F§ , with F given by (10)
or (18) are finite system radial analogues of Feynman's compressional

phonons.
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To find more candidates for low energy translationally invariant
vibrational states, we will try to find exact eigenstates of the type
Y = E‘Z'E(\'i,) § , when § is the ground state of an A particle

t&)

system with harmonic pair interactions, namely

§ = X P{—IB ‘4J } 2 I@ a constant (109)

Except for very small A (109) is a poor approximation to a real

nuclear ground state, but its simplicity will allow us to find exact

eigenstates of the form ?Zf{ﬁ'\,)@ which should be fairly good
<)

trial wavefunctions when i is left as the exact ground state. With

the Hamiltonian H of the form (2) and H § = E°§ , we have when

=FE,
e = K S{ane - amand o

With F of the form (10) ( F = Ec‘?_{(ﬁ;)) , we have from (12) and (109)

‘ZZ (-S:(r;‘ ) + 2{0: ) = ZZZ(f (fi,)+lf‘___s)> (111)

and
V., V.F = =2 Wl o (e (r
% ""@ V—“ ’8§Z?;h§;¢k _7','::_ h) (112)
= - (r\:a“' (ri
2AP§Z?;‘ - bl
where .B_'_' (X/Y’ Z) / x = '/A ':Z ¥ sto.

Then using the identity (15) in (112) we have

Eh: YE-@-V_‘LF = —2AF§ zh:‘z V;S{/(\"hj) (113)

Therefore from (110), (111) and (113) we find

34.
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(H-E.)®

=-K& ii{ '(5;) + (5 (r— -1APT?.,>} (114)

M k<)

From (114) we see that for § given by (109), L‘lj = EE‘GLE,)@:

2
is an exact eigenstate (with AE = 'k Z/m ) , provided

_gll(“'z) + {’(r.,)(_%__ -2A/3 \‘;1> -+ Z‘.)CUT:) =0 (119

We can break the translational invariance of \g using the identity

( [2] ea-(a3))

A A A

z z = A Z - A*R (116)
< J

R

and putting = (O O 0) .  Then § becomes ,

g - exif-a5 )

A
and for F of the form (18) (F'—'—' z-g(n')) , (110) leads to
3

(H_.. EJ ‘g o ﬁiv EE provided
m

]c//(r) + _E'(r)(_:-: - l,.A/lr) + lzv{(r) =0 (118)

The solutions to (115) and (118) are combinations of Hermite
polynomials (cf. [9._] page 111), with the simplest one being
'f(l') = rl -C ; a constant. That is, for F of the form
(10) and (18) respectively, exact eigenstates for a harmonic pair

interaction ground state are :
A A A
F = ;‘z({;f—cé) (119a); F = ;(I:"'—Cv) (119b)
J
Inserting (119) into (115) and (118) we find,
_ - - - . =6 = 3/ (120

7,=9,=kApE9) ; =% ,Cv=7 )

The orthogonality conditions (11) and (19) yield for (119)

<t 5 Cy =< n*) (121)
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— 2
So from (120) and (121) we have <ﬁq_"§ = 2<£ T > , which is
a result that was verified in the weak correlation approximation in

[l] (eq.(32)), where it was shown that 3( ﬂ,_) = 1ed to

LAY =27 =<TY i

—— oo
f(r) = SQO‘F\JT\(\'){(J‘) (122)
§ArTAnr)
Now, using the identity (116) and putting B_=(O,O,O) we can break
the translational invariance of (119a) to obtain,

A A A
TR -q) = AT - 4de
J

<

I

(123)

A
AL(R*-4) + oW

So (l19a) is the translationally invariant form of (119b), which

explains why (120) gave Zi ) 7\7 and Cé = 2Cy

We now revert to leaving § as the exact ground state and

consider the vibrational state

P = f:i (il = Lu) P - e

C <y

The wavefunction (124) is just one orthogonal state. Inserting
(124) into (44) and using (46) we have
AE £ LR (<D + ()< T @)
m L= <md) + 20 2) (RAED) (- <TdD) )

(125)

For a spherical system we can use the identity
e 2 2 2
22,23 = Zip + 2Zina —Zn (126)

to show that

(. Iy =3<{z2) =37 = 4_"_? a2
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Using the weak correlation approximation we see from (49), that
— = —\2 | 2 = 2.
Lufy =2 5 L =27 + R(F)"; Ripdd =+ +3(®)
(128)

where ‘E(\") is defined by (122). In the cutoff density approximation,

™ =3 K" (129)
n+3

Forx AZEO we can drop the first terms in the numerator and

denominator of (125), so that, using (128) and (129)

AE £ 2_1'5_" i - \'7-5_31 (130)
m ( T—(F3)) mR*

For spherical nuclei (130) becomes, using (69),

AE £ 500 A2 Mev (131)

The rule that the smoother the wavefunction the lower the energy

suggests with (119) that we should try the wavefunction

g = i}f(m%m) ¢ - 3

<)

The wavefunction (132) is just one orthogonal state and should
have an energy smaller than (124), despite not being an exact eigenstate
when § is the harmonic pair interaction ground state. Inserting (132)
into (44) and using (46) gives

AE £ 1] 1 + (p-2) ___Qf->

a s

N (G, <) D+ 2(A2K (T -<ma) (e =<Fad) D

(133)

For P\2§0 (133) reduces to
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'\7\ fa. F;> (134)

faBs

2m [T = < ¥

e ‘_11
In the weak correlation and cutoff density approximations, < r:.r'3>

is given by the right hand side of (88) where L(X) . k()() and
P(X) are given by (87 c-e) with h(R¢) = \/at
That is, "
X +y 1 X+Yy
RLX¥ = Sodyygi's . Sxo\yy f)g‘_é = X — 2‘; (135a)
X+y \ X+y
RK(x) = § alyy fo\f‘ + ‘(o\yyzj);d_f; = % ——7%5 (135b)
% Xf\’ \
RPw) = SQalny)glﬁ{* + S—nyy fd-é{" = 2 % §3 —%S: (135¢)

From (88) and (35) we have

!
LGN = 2 §°o\xi/_ex‘*—1&><‘ +L<~_><*}

Tl Tg 9 LS 225
= 23 = D-hi{l? (136)
515

Using (51) we also have

! 2
<ru. |_|3> = % R“- SQOlX P(X)

|
Y leolx{iz+2<_l'+7_><(‘—_><_s +><’°}
= e L 3 90 4S5  9oo

-ovi6 R (137)

<y = 90 Cdxxix)
L

38.
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38 (138)

Therefore from (134) and (136-8), we find that for AZSO the
variational energy of the state (132), in the weak correlation and

cutoff density approximations, is

AE £ 162 R N (139)
MR

which for spherical nuclei becomes, using (69),

AE & L& A3 Mev (140)

TRANSLATIONALLY VARTANT VIBRATIONAL STATES :

We now consider trial wavefunctions of the type \'E = F"§ '
where § is a spherical ground state and F is of the form (18),
A
namely F = Z‘E(E) . Taking F to be real and enforcing the
J
orthogonality condition (19), we find from (9) that the variational

bound for the vibrational energy is

AE = E-E, &R (L5060
am L <£r)> +(_F\-l)<‘f(r.)'§(5)> (141)

/
where § (r;) = %“-_s_.(n) and < > is the ground state expectation
'

value (4). To evaluate (141l) we will again use the weak correlation
approximation, nha) = (P\"'\)/A Nne)NL) , so that together

with the orthogonality condition (19) we have

<'§U‘.)‘,§(B)> &= <'§Uﬂ>z =0 (142)
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That is, in the weak correlation approximation

AE & :f\: g_fgg_} (143)
Sy D
e KdmY =0

Before evaluating (143) for specific choices of F let's
summarise the many conclusions and approximations that we have
previously discussed. Firstly, § is taken to be the spherical
ground state of a self-bound many-body system described by a
Hamiltonian of the type (2). So for nuclei we have neglected spin
and any differences between the protons and neutrons, when the
vibrational energy is calculated. The weak correlation approximation
is also used in calculating the vibrational energy and this restricts
the quantitative validity of our results to the case of non deformed
even-even nuclei. Ej = %-&-(rj) § has the same parity,
permutation symmetry and angular momentum as the ground state § :
(e.g. For even-even nuclei \Y and § are O+ states.) In evaluating
expectation values we approximate the ground state density by the

cutoff density

Nr) = B4 | rer (v=%TRY)

@] , r>R

(144)

Note, that defining X = r'/R , and using (144) gives for h(l‘.)

a function of 7
<\r\(r.)> = 3§:dxx‘k(Rx) (145)

Finally, the fact that = = ? -f(‘:,) is not translationally
invariant means that unless F can be shown to be closely related to a
translationally invariant state, it is possible that \Y = F'-Q.

may be a spurious centre of mass motion state, that doesn't represent

a real internal motion.
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What are some likely low energy trial wavefunctions of the form
;S—(l’;)@ ? Firstly we have already seen from (52-6) that when
-g(!:\ = jo(hlﬂ , that for small h, F§ should represent a
finite system spherical analogue of a Feynman phonon. By analogy with

(70) we will also look at ; Cos hﬂ § . Also, we have
already found (119b) that ;(rjz_ —‘-‘—3)§ is an exact eigen-
state of the Hamiltonian (2) when § is the harmonic pair interaction
ground state. This is a very poor approximation to a nuclear ground
state but the result (119b) does suggest that ‘ECTJ) = (\’:’— f'-z)

will be a low lying vibrational state of the form (18). A wavefunction
that is worth considering because it has less curvature than the wave-
function ? (Gl—F") § and hence a lower energy, is ?U: ~F)§
In appendix AIII(3) we evaluate AE for the above trial wavefunctions
and the results are summarised and compared with the translationally

invariant wavefunctions in table II (next page).

41.



TABLE IT :

Trial

Wavefunction

Orthogonality
Condition.

(if required)

Variational

tional energy.

bound to vibra-

AE for the

lowest state
of spherical
nuclei.

AIITI. 42.

A=208
e PB*?

Example:

(Energy of the

.F\'L
< =kR ie, AE £ <_—Rl —2&72,\5, ) lowest state.)
A & i )
" RR _ he? 290 A *Mev 8-27 Mev
JZ jo(h’—l)@ j.@() - 2m 2AmR* (KX =4-4930)
& () EQQAAAMQ' )1
—2 3 ) ) vio 1 Mey
H
Z(\Tz_ ) 4§ 17-5£ S0 M| 13 Mev
J mR?
5 + —2/3
Z(r}—F)§ Lo & 33LA 7 Mev 10-7 Mev
J 3 mR?
Translationally Invariant Wavefunctions :
At leact (and |[AT TQS'}’ (C\f\ﬁi‘-
thqU\j b‘fordsu Obo\:g of- o
ZZj UQ é /J‘(o() =0 A larger) A larger )
(e . 202 51y 9“2/3;\/\@\,
mR? (4 =6-493¢)
_— -ﬂ ) = O W /}RZg§+ 290 A" NEV 85 Mev
S D toshyd [T [ AT DB ek Ax) Gt opression )
o 44&) =5 4K L30 AV Mev 123 Mev
il (A =1-5255; A 25)
| Az5o
A 7 2}
22 (24N 175 K 500 A Mev| I3 Mev
e mR2
A 250
£.8 -2/2
2 26~ E /6:2 % LLCA Mol 133 Mev
b M2
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CONCLUDING REMARKS :

2
(1) We proved in (123) that 2 2 (i —<Wm®») @ is the
(<«
translationally invariant form of z (\:2'— F-") @ . The results
v

in Table II verify this.

(2) From Table II we see that the energy of Z (.\': ‘—F)§ is
J
significantly lower than the energy of ZZ(\'{J~—<\"‘1§)§ and so
€<}
we cannot be sure that Z‘(,\'; —l__)§ doesn't represent spurious
i

motions occurring because it is not translationally invariant.

(3) From Table II we see that 2., (OShI’j § has a very different
orthogonality condition to z‘?‘z (OS\Q rfj § and so these wavefunctions
J
are probably not closely related. Instead, from its energy the lowest
state of Z(_osh{“ § appears to be approximating the same
motion as J Z(l‘; —F)§ , which unfortunately we cannot be
Jd

certain isn't spurious.

(4) Also from Table II we see that ZZ] (hrt)QT cannot be related to
¢ej 4oy

Zjo(hlj)§ because it has a much higher energy.
3

(5) The lowest states are, the first of the j|(p() =0 series of

Z‘-‘Z(oskl}j § and the lowest state of 2;'1.(“:)§ . These
3
two wavefunctions have the same orthogonality condition and for

A ?- ’49'/8 the same variational energy. So for low \Q

they appear to be closely related.

The conclusion (5) is the most important one, because we found

that for small R Z“]Q(krj) § is a radial analogue of a Feynman
3

phonon. The fact that in the weak correlation approximation the energy
2|2

was found to be Am further strengthens this. But, the real

wavefunction of a self-bound many-body system must be translationally

invariant, so the best wavefunction is
A A
Y = 2 2 Coshyy ) (70)
c <J
VICTORIA UNIVERSITY OF WELLINGTON

43.
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From conclusion (5) we can expect that for low h (70) represents a
standing radial compressional density wave, analogous to Feynman's
phonons in liquid helium. The lowest energy state of (70) is

hR =- Lf- Lf-q?:l,— and, like all the states we considered, is
proportional to Pt—z/z « [For PbiQe the lowest state gave

AE = %5 Mev , which places it in an energy range in between

the low lying states and the giant resonance states.

Finally, as a speculative aside, we should remember that there
. . .hzhl/
could be a relationship between these 2 phonon states and the
breathing mode state. Namely, when investigating the excited state
density we found that the orthogonality condition insisted that there
be at least one shallow minimum in the density. This immediately led
us to compressional phonon like states, but because of the large
degree of cancellation that is always present in quantum mechanical
averages like the density expression, it was not possible with the
lowest state to rule out large scale in-phase motion similar to a
R RE
breathing mode. This would be important if we could find an /fm
state such that RR =-“71 (X:LR) , since then
2.2 )

BR* _ 25.5 A~ Mev (using (69)), which is a line

Am
that passes near to many of the low O+ states of even-even nuclei,
including the new collective states discovered by Maher et.al. [10] ¢
However, for a radial wavefunction of the form Z-f(hl]) @ , the

dJd

orthogonality condition would require hR ..>.. -\T ()\ ﬁ lR)

so that we would need a wavefunction at least as complicated as

Z‘Z{(h ) @ .

This Section was written (together with sections AI and BI) some

time before the rest of this thesis, as part of a submission to the

44,



AIII. 45,

1851 Science Research Scholarship Committee. Since this time I have
learnt more about the physical nature of the above vibrational states

and have come to doubt the validity of the weak correlation approximation,
but it did not seem sensible to change section AIII from the form in
which it was first written. Instead I have preferred to leave the new
results, which includes calculating the contributions to the S(EOQ) .,
sum rule from each of the vibrational states, to section AIV. 1In
particular, a more accurate description of the physical nature of these
states is given at the end of section AIV. Also, see note 5) of

section BII.
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APPENDIX AIII(1) : (jf(hr:,)> and <"]:(hn,,)>,

We wish to prove that in the cutoff density and weak correlation

approximations the orthogonality condition ﬁ‘ (k R) =0 implies

< j,l(hﬁ'a)> = </]:(k\'.;)> . Firstly we rewrite (51a)

using the result AI(19) which holds in the stated approximations,

to obtain

<him)) = So\rr [\— 3 >+L(3£)]hcr)

Defining y = hr' J < =RkRR J we have

o Y Iy (a)
<ltary = 3. § dyy [/6-'23’7 +%] 9,4y)

Joex 3

<f:(ht‘.;)> ,‘,@ S Ay Y [" - u.Z. +3 ] 'f y) (b)

From now on we make constant use of the identities listed in appendix AI(4).

Integrating by parts we find

(c)

2 A a
ggdv(v’j.(y))j.(y) = — ot )1, (¢) + Soo\_yyljo(y)

20 ax 2 a
S.dy(y' 30, ) = =8 1016+ [y + (dyy 1y

(d)

A X Al a
Syly gl diy) = -3¢0 100+ 3dyy i ) +{dyy ity
(e)

From (a) - (e) we have

ity =<1, (hr,)>+ { '1§ o|y V) +3 golyyj(y)j(y)}
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Further integration by parts yields

20¢ 2 Aot &
(L dyly 1ty = bt 4ia0 +{dy 1 [2yly) =Y 4]

(9)
2ol 2 A

ma Sody(y )y i) = Ket¥F@0 = § dyy 0y 4y) (0

Therefore from (g) and (h)

2 " W .
S‘,a\yyijb(y)j,(y) = =21 () + ijy{.,(y) (1)

and S::yy ¥ f°(y) j‘ (y) 8o< (*j,z(.?ol) (3)

(£), (1) and (3j) yield

2 aw 2
{flamy =< ftm)) + %if(u)a«j‘(u)] - L. (dyyfuy

(k)

when &) =0 (k) becomes (see (77))
C: b 2 3% 2
<j.“ﬂ74)5 = <{{2ur) ) ""2%63‘“"‘(‘ "'%) —{:#godyyﬁ(y) .

The last term left to calculate is,

R ol ™
Soo\}}yjo(y) = S.,Jy S\_vrfy - S‘,o\y( 2(}Iso.z)

et
= fHo dt | l-i_osf) )

Now (m) can be expressed in terms of Euler's constant (¥= 0"57‘1)

and the cosine integral ( Cg(x) ) " [?] page 231 :
X
- (o { _ s (n)
Lideloey o F( ¥+ lnket — Cil10)

Therefore we have finally, when jl(al_) = Q0

i = {4 9 sink N9 ~C¢
ke = Hoterwd + L Sinke14oL") @(xmw Celie) .
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From (b) we find, for o 2 W

oty = Fza ®

(For oX = 493y <j:(kﬁz)> = 8;(13 = 0-05F5)

2
So from (o) and (p) we see that j' {)=0O implies that <‘j,(hi7;)>
Y
rapidly tends to <*]°(hﬁ',_)> for large oK . For the lowest value
of ® , namely o = 9.-[,.931* , we have from [7] page 243, (; (,lp()::OLl,.

and taking Y: 0577 , then (o) becomes

<'j?(hn1)§ = < j:(hﬁd» — 0-006¢ (q)

Therefore from (p) and (q) when o = {93/,

{ftm)y = 0891 < {lthnyd "

3.
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APPENDIX AIII(2) : Calculations towards the evaluation of (75).

In the following calculations we will make frequent use of the
weak correlation limit and cutoff density approximation expressions
(51la) and (51b) and the Bessel function properties listed in

appendix AI(4). Firstly,

" X-hy
<(os\°.\':;> = %_ S:olxxgo‘o{jy g‘:\_{;fl os't

XYy

|
+ SL; S:dxxgoAyyglﬂfﬁCOSM'f‘

(!

1 | X+
T‘Z- ¥ %%(Soo‘xxgodyy(dfs\np-() , =2

I

=+ 1.%( J,(u){ A, (20) —% iiﬂ"‘.)}

Then using  COS? + Sin% = | 2

2 e o T 18 -5 ,(.u}
Csmke) =4 = 4 >§ o) = 54,20

From (51b) we have

|
<Los\¢\ﬁ,_tos\ar.3§ = %:_ gbolx ]"le)

Where
X-f-y

Jix) = S:dyy it cosect

Ix-y1

I

( go‘ d VY §‘ ;\g?ir\oc{-)

d
ES
= 4
A
X

3 (1xj°(ozx)‘j‘(«’<))
= [1°<o<x)j,é=z)—><j.t=<¥>j.(4)] i (=%)

i W

(a)

(b)

(c)

(d)
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(c) and (d) give

\
(oskr, (eshr, = 171@)&00{“‘7?&” -+

2 X !
29 (1&0 -al_j.(ot)) ( Qxxlfoux) -5l ){jo(d)-o%j.(d» L«lefouzf),édx)

Integrating by parts we find, putting y = A X
| » X
Sodx x‘rjf(a(x) = £<_5 Xod\j)’%j,(‘)’)
= = g(O() N d f 3 h( D)
B036) + 3 (g [y {21

= B0l 2 (a6 + S dxxtfitat)
o A B ) o

()

and

Sedx ) = 2 Sedyy y) 1y)
= 10 - % Sayy 1[40+ Y (n-319)]
=1 L Sl = S g )

|
Therefore goaly Xajeb"‘)f:(‘*x) = :1£S'L) -+ _T)l;(_ g:d X Yzj‘z(o(x) (9)

Also

| 2 L 2
gaolxxlj. x) = :‘@' fgalyyij, (y)
_ ol =
s = ii,w +i—3godyj°(y)‘y1:/°(y)

| 2
= =1 SQJx x* (%) (n)
<
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|
g;dx x* 1:(otx) ;l?-_ So dx sinZat ¥

|
= .—2‘;, SQAX (1— (0S8 2d%)

= j\:{; (\— jc@“)) (1)
Finally
: 2 | |
Sodxx‘*jo(dx) = s goolxx*(\—coszdx)
NN :
T L 30(20\ 2 X(OSIBX //3 = 2

= elo@ +.u1 g!lf* 1o ()

i.(_( + 1 Qe uoo — (2.,1)) (3)

We now go on to evaluate (87(c),(d),(e)) when "\(R'é) = h*!b(a(f‘)

From (87c)/ RL(X) S Ayy golf S\I‘\d‘é

1X—y\

= AX jo(o(X) 1‘ () (k)

From (87d) i

X+Yy
Rkx) = Sodyy*{ desinat
= AX 4 (%) §lo\\,yasmdy

= —2x fue) d_ )
de?

= X {y(4x) [7. ) + Z 1) “;é!'z j‘w] (1

From (87e), R P(X) = g:dy‘\/ §3;¥625\ﬂo{6

IX=Yy1

—d" L(x)

—— —

det*
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— _ij,(c()d j@,(x) — bxAd40dL&)  + KO)R

ddt df

= szj,(d)(jo(o(x) -1 1gx)>+l,x‘1ux)(j ()- 21,(&))+RKO<)

For the first two states in the -1°(_o() = 5; ‘1, (d) series we
calculate from the above, using table I,
oK =1[5355% A=5-R513
! 2
(. dx X" 6lx) = O H2¢ 00057
(o dx 534 (et = Y 0-003
odx X, (otx) f, bix) = O 06445 5
| 2
Sodx x? Tlt) = O - 2085 0-0I5§
\ 2
fodxxt j‘(ozx) = 0- 025¢ 0-00 49
( " 2.
SoJxX j.(o(x) = o - 03495 ©-0135
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APPENDIX AIII(3) : Translationally Variant States.

In the following calculations we make frequent use of (145) to
evaluate (143); the approximations inherent in this are summarised in

the main text. Also, we define X = 'l—/R p =< = kR |

v ¥ = ?jghrg)@

The orthogonality condition is

S‘:Jxx"-jo(o(x) =0 (i)
= H() =0 -
meo, Akt = ~RJkE)  ana
<Atkn)) =3 S:Jxx"j?(otx)

which after integrating by parts

i | i
] &2 Sodxx‘jo(atX)

- —Jo %) 2
= 3[ 2‘_*__ X2 9,%)

using (ii)

<.j:(kr,)> (iii)

Therefore from (143)

212 2 )2 iv
be £EE = R4, 1w =0 -

For non deformed even-even nuclei (iv) becomes, using (69),

AE £ lplat® A ey , 4 =olie* byazy, ) (0

A
2 @ = 2 (oskry ¢ -

The orthogonality condition is

\
Sdexzcode = (vi)

O
=% %QJXXS\M«X = 0O



App
) _ = A
That is, a—;kvj,(ol) = 0O , which is ja(d) T j,(d)
The lowest & to satisfy (vii) is ok = L0316

From (143) we have
Ag & R {on*hnd
am <k

and

oty = 1 — {stknd

|
3 ggo{x x=Sin?ed X

Il

I

|
Lo - % (o dx x2 @S5 2 x

I

3
il S LY

k-3 [0 4]

So as &X becomes large (i.e. RSY /&) then <Slr%hr;> =
<(.O§hr;'> = '/3_ . Hence for large h,

AE £ Rk

am

Il

as for (1). For o = 2-0%/6
'j, () = 0-0v62 ,giving

AE £ 13568

(A= 2-0816) MmR*

A
D¢ = TP

)

AITI(3) 2.

(wii)

(viii)

(ix)

(x)

(xi)

, TJol2s) = —0-2049  ana

= 3qOA-1/3M¢V for spherical nuclei. (xii)

This wavefunction is just one orthogonal state (i.e. <IT3) = FE)

From (143)

AE 2 B ™ _ AR _ T
WG DY m (TP )

—

2
Using (129), (_'* - 25. (F") , hence
21

(xiii)
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AeE £« 2 ¥ =75k (xiv)
2 MT2 mR*

~2/3
S00A "Mev for spherical nuclei  (xv)

I

4 P = Ji(rj—'\:)§

This wavefunction is also just one orthogonal state

(i.e.<ﬁ> =T ) . From (143)
AE £ K ) = K (i)
am (=T am( FT—(F)?)
That is,

AE < 5‘-_9 K ) = 384‘- A-Z/SMQV for spherical nuclei (xvii)
3 mRp?
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AIV. 1.

IV SUM RULES

If the sum of all the transition probabilities multiplied by
some power of each transition energy can be calculated for transitions
from a given level, then it is called a sum rule. Since each term
in the sum is positive definite, a sum rule gives an upper bound for
the value of the transition probability times the transition enexrgy
to the particular power, for every transition. Usually, sum rules
are restricted to transitions of a given multipolarity. The most
important class of sum rules are those for which the transition energy
factor in each term is to the power of one only. These sum rules are
sometimes called oscillator sums (see [i] pp 399-404). All the sum

rules considered in this section will be oscillator sums.

In reference [?] (pp 709-15), it is shown that the sum of all the
transition probabilities times the transition energy, for the
excitation of a nucleus from a given state |f>' to all higher excited
levels ‘§> ;, by the absorption of photons of multipolarity j, can

be written as
5, =8rUs) 1Y (g-6)<lq |

. . 2 Jym
(i2) Re J[Qi+)1]? @T+) M Em (1)

From now on the transitions are assumed to be of electric multipolarity

and I will only be using (1) when |i> is the ground state of an
even-even nucleus. (Note, j = 0 is a special case because EO radiative
transitions are forbidden. The oscillalersum for j = 0 is discussed
separately, later on.) For jz_l the electric multipole moments

can be approximated by (cf. AII (73))

Z %
Q =e2 iy Y.(‘:p) (j22) (2)
p=t i

Im
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The exact expressions must be translationally invariant, just as

the true wavefunction for an internal excitation of a self-bound
nucleus is translationally invariant (see the discussions near the
beginning of sections AII and AIII). In particular, the centre of
mass cannot be fixed at the origin because during a transition the
nucleus must recoil with a momentum equal and opposite to that of the
radiated photon. However, it can be shown that the recoil corrections
for all multipole moments other than j = 1 (the electric dipole
operator), are of order'}1a only (see [?] p 709, and [?] ). For the
dipole case we must use the translationally invariant form of the

dipole moment : (cf. [?] egqn (1))

e i[l} Yire — RY'gnR.)] (3
= e{ A fa Y(fﬂ ""—Z 5

(R is the centre of mass coordinate and I; and I;‘ are proton and

Q,,

neutron coordinates.)

D)

The sum rules S are evaluated by using the property of

closure (see [?] p 711), i.e.

Z (€€, 51,10 =3 =<al, H,a.1] 1)

where H is the Hamiltonian. When the potential energy commutes with
CQh“ , the only contribution to (4) and hence slo , comes from
the kinetic energy. Using equations (1-4) the result for the kinetic
energy term can be shown to be (see p 713 of [?] Y
S;" =g G R Z <i) F‘“ el >[l + V] (52)
(i22) Ke i~ ) m

§ =ame? NZ

_A_ (|+V,) (5b)
C

2P
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In these expressions the contribution from the potential energy has
been written as a correction term V‘- . It is very difficult to
obtain an accurate estimate for \/J , but for the dipole case rough
estimates and experimental results suggest that \/, is about unity (see
[2] pp 713-4, 736). It should also be pointed out that the above sum
rules have treated the nucleons as elementary particles and so they

exclude any contributions from meson production excitations.

I will now consider the contributions of particular excitations
)

of even-even nuclei to the kinetic energy part of the S‘- sum rule.
That is, the potential energy is assumed to commute with Q)m , which

implies the neglect of charge exchange and velocity dependent inter-
actions, as was done in sections AII and AIII (see also [1] p 403 and

. . 0 . ;

[2] p 712). In this approximation SJ. is said to be a classical sum

W)
rule, i.e. S; (class) . Taking |(> to be the ground state we have

15 = R
<l LUy = <K% (6)
where < > is the ground state expectation value defined by AIII (4).
So, when I(.> is the ground state,

St.n(clqss) = MrZer () K ;;’«"-1> (7a)
(22) fe [as-)i]* m

L) 2 A2 2 (7b)
S, (dass) = 2m* €2 NZ §
CA M
U]
Consider the contribution to Sj (class) from a single excited state

with angular momentum quantum numbers (j,m), of the form

£y = F;-“|L'§ (j21) (8)

where Io) is the ground state of an even-even nucleus (i.e. |¢> is a

0* state). From AII (4) we have, (neglecting the difference between
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proton and neutron masses)

N A a
E.~E, =51.iv_n Z <‘Vu",-'_.\\> (9)
IR

and (cf. AII (77))

1510, 100 = IR
IR

Inserting (9) and (10) into (1), we see that the state (8) contributes
1)

(§
to Sj(class) , the amount

2 A
L“z (j'i'l) 7 -h X < ' F“,;\ Q;“\> ) z < | vhf‘:" l2> (113
i[@i+nNN)* M < E-”\z.y. k=1

I will now discuss two examples of the type (8), for reference in

section AII.

(i) =1 :

The particular case of j = 1 is important because the S‘m sum
rule happens to be the total absorption cross section for dipole
transitions (see [2] p 710), which is a direct experimental quantity.
By far the largest contribution to the nuclear S:‘) sum rule comes
from the giant dipole resonance, which is known experimentally to
exhaust about Stn(.das:%.‘" of the total sum rule (see [2]
p 736) . In reference [4] and part (b) of section AII, the giant

dipole resonance state is investigated by using the isovector

wavefunctions
-1 )
‘('/Dm = /f;_’: = € ’<m\ Qm‘ § ( deeflned by (3)) (12)

where § is the ground state of an even-even nucleus and O‘m‘ is
the normalization factor for \,I'm (i.e. 0(.. = °<‘... = n‘ﬁ 7

a(.° - ‘/%“ ) . For spherical nuclei (i.e. § spherically
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symmetric) the three states are degenerate, but this degeneracy is
broken in deformed nuclei (see AII part (b)). Inserting (12) into
(11) we see that each m state, (m = -1,0,1), contributes to the

W)
S(class) sum rule, the amount

T'h > <K1Y = 27r%e* NZ |
'"‘C h=‘< th\I > 3 ..R-E __A_ % (13)

Comparing (13) with (7b) I note that the three giant dipole states
v
P , together exhaust the entire S (class) sum rule. This proof
Im
could be regarded as unnecessary, since from (12) we see that E‘ has

complete overlap with the dipole operator Q and so it must exhaust

m 7
w
the total m component of the S‘ sum rule (see [2] p 736).
Generalizing this idea it follows that one way to derive (7) would
be to consider the wavefunction l'f> = let> , which must exhaust
4)

the entire Mtk component of the SJ) sum rule, because |'§) has
total overlap with the multiple moment Q:.M . The result (13) is a

direct proof of this for the particular case when the potential

energy is assumed to commute with QIM 3

(ii) =2 :

In reference [5-] and part (a) of section AII, a particular

isoscalar 2% state of even-even nuclei was proposed

A
\sz = F § = o(;:‘ Z \'fa'\(ifa) i- (14)

2

where d:m is the normalization factor for \(.un (see AII (74)).
From (2) and (14), and ignoring any differences between protons and
neutrons (the isoscalar wavefunction (14) has already assumed this

since it treats protons and neutrons identically), we have

R = e"‘m%—<lar>



AIV. 6.

Inserting (14) and (15) into (1ll1) we see that each m state
Q)
(m = -2,-1,0,1,2) contributes to the Sa(class) sum rule, the
amount
3 P 2 2 2 a
lEo{:w_E_._Z__<|v|Em‘> (1e)
75 Fe A M
When § is spherically symmetric (i.e. <x‘z> = <)’.z> = <Z,3> » ekos);
(16) reduces to
2 2 P S
I e Z' R <r) )
IS k¢ A M
For spherical nuclei all five states are degenerate and from (7a) we
)
see that together they exhaust the factor Z/A of the Sz (class)

sum rule.

In reference [f] p 404, the oscillator sum rule governing EO

transitions to the ground state is defined as
zZ 2
S(EO) = {Z(Ef‘EJK*leE“e‘l@I . (18)

Zero-zero radiative transitions are forbidden, but EO transitions can
be caused by Coulomb interaction between nuclear protons and atomic
shell electrons penetrating inside the nucleus. The probability of
such a transition from the ground state is proportional to
2
o))

\<§';—f; |O> , (see [6]). We can use the
translationally variant monopole operator because it is known that

. . g o 28 Lle
recoil corrections for EO transitions are of order <A only (see [3]
p 486). It is shown in [i] p 404, that when velocity dependent and
charge exchange interactions are neglected, that the S(EO) sum rule

is given by

5(E9), = 2Z¢€ %\t 4 (192)
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This result is easily proved by evaluating the term in (18) coming
from the hypothetical wavefunction l‘f> = ;r‘," IO> , which
has total overlap with the monopole operator and hence must exhaust
the entire S(EO) sum rule. In the cutoff density approximation

(see AII (44-5)), (1l9a) becomes

S(E0) = § Ze* KRZ (19b)
Clase 3 ™

(R is the radius of the ground state nucleus which is assumed to be
spherical.) Consider the trial wavefunctions for isoscalar
vibrational states of even-even nuclei, discussed in section AIII.

They are all of the form

\P = F § (F is always real) (20)

where EE is the ground state of a non deformed even-even nucleus.
Since the wavefunctions are isoscalar we can ignore the differences
between protons and neutrons and so the contribution of SE to the

S (EO) sum rule is (cf. (10))

2
ZetAE, {F*F) (21)
<F*
where AE, is given by AIII (3), i.e.

AE, = AR <(V,F)a> (22)
o CFED

class

In appendices AIV (1) and AIV (2), the weak correlation approximation is
used to calculate the value of (21) for the lowest states of all of
the vibrational wavefunctions summarized in table II of section AIII
(i.e. p ATII. 42.). The results are given in table I on the next page.
I have also included the values of Z\Eo for A = 208 from table II of
section AIII, together with a normalized ratio of (21) over ZSE; for

A = 208, which is proportional to the transition rate.

From table I we see that in the weak correlation approximation




TABLE I :

the Weak Correlation Approximation.

Trial

Wavefunction

(£=hR , R=12A"%fm)

Column two

Contributions to the
S(EO) c1asg sum rule,

In units of S(EO).qyag

Column three

AE, for a=208
(MeV)

AIV. 8.

Properties of Vibrational Wavefunctions, Calculated in

{Column two
divided by

Column three}x
14-71,

(A250)

> ikr) § 10 %{’”"‘"5% 33 0-98 Z4
(4) = 0) * etk (=L 4734) (oh=b-4934)
A
Zcos(hrj)ﬁ 0766 Z - [-O15 Z.
i A A
(A = 208I6)
A
2_ = Z L3 |03 Z
JZ(U -™) ¢ = L z
S O- 741 £ Z
;(H-—r)@ A l0-9 \-OOK
Translationally Invariant Wavefunctions :
A A
zf Jaler) @ O very large O
d.(o()=o LQ_Z—{zo.L’_qg% 83 OQQZ.
Az 2 A A
2 B (%=1 493, A250)| (k= 4493} , A2S0)| (ot = 44931, AL SO)
ZZCoshrg‘-‘i e e e e e e i ] W B e B
- BB Gas 2 12+3 ol 2
A= -5255 A
A 250
A A
22 03-aH) ¢ z [L-3 |03 &
L4y R
(A2S0)
A A Z
22 (=< & 0922 Z 133 |-01Z
c4j A
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that the nine trial wavefunctions separate into three different states.
The Z Z' jg(h ‘L) § is a strange state with very high energy
and zero transition rate. Of the rest of the wavefunctions two appear
to describe a different excitation from the rest. Namely, Zj‘,(h‘:)g
and the ’j.(pl)=0 series of 2 2 cosk rl..j § are very closely
related and have a smaller contribution to the sum rule than the other
states. The rest of the trial wavefunctions all have an energy within
the range 12:6 + 1-7 MeV for A = 208, and the transition rate matrix
elements are remarkably insensitive to the differences in the wave-

functions.

However, in section AII I discovered that it is quite likely that
the results for the energy (and the transition rate matrix elements)
are qualitatively incorrect. That is, the weak correlation approximation
leads to AE° o A_ZA , but the inclusion of short ranged correlations
and the requirement of number conservation may cancel the weak
correlation terms, leaving [&Eio “‘f\-v% . This surprising
complication was discovered after writing section AIII, in the case
of the 2% and 1~ states discussed in section AII. The results for the
contributions to the S(EO)o1agg sum rule should not be unduly
influenced by the weak correlation approximation because the
qualitative errors occur only in the <|',=F> and <Fz> terms, so
that the errors will tend to cancel in the expression (21). In fact

for the particular state
F& = Z(;*-F) ¢
J
there is no error at all, since the orthogonality condition
<: F:\) =0 , implies
|
{R*F) = z<KF?

and so from (21) and (22) we see that the contribution to the

S(EO) c1ass Sum rule is exactly,
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(23)

Z_e‘ﬁ. PR = 2Z2e* R S = Z
H m <(V‘ ) > l; € %<Y‘— > "A’ S(Eo)(\au

I will now summarise the available evidence that indicates the
physical nature of the vibrational states in table I. (I ignore the
strange Eij(uq‘)ﬁ wavefunction.) Firstly, in section BII it is

°

argued that the translationally variant wavefunction

Z5m ¢

corresponds to a classical flow field given by a velocity potential
f(r) (i.e. E—(f’) ~ 2 {'U‘) ). From this it follows that the
lowest states of each translationally variant wavefunction should
approximate a simple in and out vibration, i.e. a breathing mode.
In particular, the Z(T;&—F;) § state should be a good
approximation. From (23) it appears that 2._(\7,"— Fi) §
describes a giant monopole resonance, since it exhausts such a large
part of the S(EO) sum rule, in direct analogy with the resonance
states WJ.M and . of section AII. Using this together with the
argument of section BII it follows that the giant monopole resonance
and the breathing mode state are one in the same, which seems
perfectly reasonable. 1In section AIII I showed that ZY(E;"<‘T:>) §
is the translationally invariant form of z(r:i_."a) § , (where
the centre of mass is fixed at the origin), so the above results also
apply to the translationally invariant wavefunction Zi(\'"f—-(\',;})@ s
From appendix 6A-3 of reference [l-] and using the argument from
section BII, we see that the wavefunction t'jo(h\j)§ should
describe the vibrational modes of a liquid drop. Thus the lowest
state of X :L(_hl'i)§ should also be the breathing mode. However,
the orthogonality condition j‘(ak)=0 is different from the liquid

drop model boundary condition for a free surface oscillation,
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namely jb(d)= O . It is thus possible that the differences between
the EﬂoLhn)@ and 2(\'."--\'1)1 wavefunctions in table I are
physically correct. For example, the lowest state of Zj.lh";)§
may correspond to a vibration with a zero velocity at the surface,
whereas the breathing mode has maximum velocity at the surface. This
interpretation could explain the physical difference between the lowest
states of the two separate series belonging to the translationally
invariant wavefunction ZE(O“ZEJ § :  the xj‘(d)=0 series
corresponds to the ijo(\lr;) § states (note from table I above
oL ¥
and table II of section AIII, that for A Z /g‘ , that the energies
and the sum rule contributions, in the weak correlation approximation,
are the same), while the lowest state of the j(o() = 3%( j'(d) .series
(4]

approximates the giant monopole resonance. I note from reference [l-]
p 668, that the lowest vibrational state in the liquid drop model has
an energy AE° o~ ¢S A-'h MeV . so if ZLT:Z-F’)Q
(and its translationally invariant form) is to represent the giant
monopole resonance it follows that the weak correlational approximation
result AE° ~ 500 A~1/3 MeV is spurious. This possibility
is strongly supported by the result 19c¢ of section AII, which is very
nearly satisfied in the cutoff density approximation and could easily
be exactly satisfied for the true density profile (note, because of
AII (19c) AE& ~ A'V: and not A™¥3 ) since from equation
(xiii) of appendix AIII (3), we see that if the result AII (19c¢) is
substituted directly into the weak correlation expression for the
vibrational energy of Z(\Tz— l‘:—i)i , it gives AE° =0
Thus it appears that once again the weak correlation terms in the
energy denominator are cancelled by contributions from the short ranged

~1/3 ~Y3 o
correlations, so that the f\ variation becomes an variation.
I hope to be able to prove the above conjecture in the not too distant

future.
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APPENDIX AIV(1l) : Contributions to the S(Eo)class Sum Rule from

Translationally Variant States.

We need to evaluate (\'.‘ F > , where F is of the form

'y
F=3% f) (1)

4=

From (i) we have

<‘_‘a‘:> = <r'3.§(r‘)> + (A-\)< ".'23(“3»

In the weak correlation approximation the last term becomes

(rifm)) = e $m)d)

where I have used the orthogonality condition
<f’( r)> =0 (i1)

Defining X = ‘T/R » (R the radius of the spherical ground state),
and using the cutoff density approximation (see AIII (144)), the
result for <(','2F> in the weak correlation limit can be written

as (cf. AIII (145))

<\".’F> = 3R gcdxx"'f(ﬂx) (iii)

A
m F = 2 4(Rg) : (iv)
In appendix AIII (3) the orthogonality condition (ii) is shown
to imply
J)=0 (ie. o« = 4ot934, - )
where A = kR . Using (iii) we have

|
{PF)y =3¢ godxxas'mocx

=S
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= 3 §* d__ S dx cose X
A du?
= % %_ j(d)

"
Slp|o~
L
.

=

j' (¢) =0 (v)

From AIII (143) and appendix AIII(2) (i) we have, in the weak

correlation approximation,

{F* A <Aler))

3A Sadxx* flex)

3A (|-
2 (1=, 2)

(vi)
Using (v), (vi) and the results AIII (77) for 'j(a() =Q , I find
)
2
2 L
<T.' F> = .‘_2&3_ ) 4(0():0
<FD A ¥ '
Then using the result calculated in appendix AIII(3) for AE° L
follows from (19b) and (21), that the contribution of (iv) to the
S (EO) class Ssum rule is
T A2
2Ze*h R = |10 Z | YEO J)=0 i
A m ;‘,_ =<2 A ¢\ass S
A
2 F = ?CQsht}' i (viii)

The orthogonality condition is (see app AIII(3))

%:t i(d) 0 e ifo(“) =$‘j‘u) T (o<1= 2-0816,---)

Using (iii) we have

{TAEY = 3R? S:o\xx‘*(os&x
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= 3R"f£ S:cGCOSo(x

3R"§% ] )

CR* ) (f—ot®) , g4 =0

~ 0-09¢6 R* A= 20316

From appendix AIII(3) we have, in the weak correlation approximation,

{FA A< (osthm D

Il

3A fQJx X2 €S/ %

AlE +3 (4o - 109)]

= 0-1377A , &= 208/¢

Using (ix) and (x), for the lowest state, I find

2
<HF) = 00678 R ; A= deoFiL
<F2D A

Then using the result for ZLEEQ calculated in appendix AIII(3), it

follows from (19b) and (21), that the contribution of the lowest state

of (viii) to the S(EO) sum rule is

class

0-919 Ze*h R* = 0.7¢6 7 SCEO) A= 2-081¢
7:-\- ¢lasg 4

A m

A
3 F=2(r*=F) ¢

Since <F>= O , it follows exactly that

<R FY = 5 <FYH

So from (19a), (21) and (22) we have, without any approximations, that

Br

(ix)

(x)

(x1i)

(xii)
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the contribution from (xii) to the S (EOQ) sum rule is (see also

class

(23))

Z S(E0)
fa

Class (xiii)

A
(4) F = Z(‘T—‘:) . (xiv)
<

In the weak correlation approximation we have

(iFYy = T -(@)F = R

(using the cutoff density result T ™ ="%;"3 R" )

From appendix AIII(3), the weak correlation approximation also gives

FDY = AL -8
Al &= -(F)]

|

3 AR?
| g0

So

{VAEY = RY

=S IsA
Using the result in appendix AIII(3) for AE, , it follows from (19b)
and (21), that the contribution from (xiv) to the S(EO) class Sum rule
is
8 Ze*RR* = [1_0_2_ S(E0)
9 A m 237 A Class (xv)
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APPENDIX AIV(2) : Contributions to the S(EO)class Sum Rule from

Translationally Invariant States.

2
We need to evaluate <ﬁ F> in the weak correlation

approximation, where F is of the form

ZZ £t ()

i<

That is, we wish to calculate expressions of the form
(RAFY = A-0KRHm)) + Bl r2m))

In the weak correlation approximation the last term is zero and so,
assuming a cutoff density, we obtain (see equations 49 and 51 of
section AIII)

| | ¥4y
<V;3F> = %(R-l) R* g,dxﬂgoo\y.ygd{’c {(R%) (ii)

Ix=yl

) o= zi ’j (1) - (iii)

L4

From AIII (63), the orthogonality condition for a general radial

density is

§° dxxnX)sInex = O , ot= kR (iv)
For a cutoff density (iv) reduces to
ﬁ‘(d) = 0 NCERRT I

Using (ii) we have

X+y
’F> = q(ﬁ-l)R Solxx=50\yyg‘y\ s_:ﬂ)

(AR [ § dxtsinex ]| § lyysinoty]

I
-0

%

I
o

) e =0 -
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Note from (iv), that (v) would still hold for a general radial
density MN(X) . So in the weak correlation approximation the

contribution of (iii) to the S (EO) sum rule is zero. In fact

class
from the general expression for <\'.3F> we see that the contribution
would still be zero if short ranged correlations between particles

; ; < a )
2 & 3, but not 1 & 2 and 1 & 3, were included in the term n (‘3; F
If all the correlations were included then the transition matrix
element for excitation to the state (iii) would probably no longer

be zero, but it should be at least an order of magnitude smaller

than for the rest of the states considered in this appendix.

A A
F=22cos Ry (vi)

i<)

In section AIII it is shown, in the weak correlation approximation,
that this wavefunction describes two different sets of states, defined

by the orthogonality conditions

J@) =0 (A Boiilipg * * <)
7.() =35§ 1.() (= 15255, - - )

Using (ii) we have

LRAFY

i(ﬁ-— )R Solx x‘gdyy gd?:e coselt

Ix=y1
2 ! x*y
= 3 (a-)R i\; SJxx"Sol_nyud{;'sm-cf
= - 9(A-NR" o| (ec)o\ 4, @)
det?
- 9(a- orz*{ mw - 77 ..zojij
o<+ -z‘ oc

+ 27 ) f) 4 2 j’t_,‘_)
o ,(l
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18 (A=) R* £ ) , {0 =0

e =

o)

2
18 (A=) R 1,60 (9= 4t?) ) =3 {(«)
25 _-Z:l_;_ ( / /b dei

In section AIT it is shown, in the weak correlation approximation,

that for AZSO (and AZO"%‘ {'or 1(&):0 ), that

L %% A(A-YA-2) {CoskT, Coskr D

= a) a4 -
= A <L jo(o() , ) =0
0-0243 , &K =19525§

So

2
<\".‘F>§ - %d: ,{w)=0 , A2kt
<F |

o-0¢76 R*

< = 1'5S25§ , A2S0
A

7
Then using the results for AE° , summarised in Table II of section AIII,

it follows from (19b) and (21), that the contribution of (vi) to the

S (EQ) class Sum rule is

nZeR R - [ 2] S0 s =S

5 Fme TR he
‘ 5 2 a _ . d:l'SQSS
] ou'_%g b_“ R =0 84.572\_ S(EO)M“ J A2So

(vii)
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A A
» F = Z‘? (- ) (viii)

In the weak correlation approximation we have

(PFY = (AN r(n*= <))

=@-) i <rr a2 n L) - F’<‘T=’>}
- (A—\)[ ™ —(F_-l)’] (ix)

where I have used the weak correlation limit results;

2 e Ta 2 —
() =2 (R¥LL)) =0
It is easy to verify (ix) for a cutoff density by using (ii). From

equation 130 of section AIII and neglecting terms of order }7& smaller,

we have

{REY = —A; < F2D

So from (21) and (22), it follows that the contribution of (viii) to

the S (EO) sum rule is

class
1z etk (PP o
2 AT M

From (19a) and equation (127) of section AIII, we see that (x) reduces

to

. -l- |
[ % + O(A>] S(EO)(\q“ J AZSO (x1i)

A A
@ F = 22(‘:, - <\T,>) . (xii)

i<

In the weak correlation approximation we have

(PPFY = (A=) <R, = <m))D
= -0 { <) - Fny)

(xiii)
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Using (ii) I find

\

| X+y
() = LR e lyy (dee

(<}

° Ix=y\
! 3 by
=1R3So\xx3(.¥_ +.’.<_—.>i.) , from ATII (135c)
2 ° 2 3 30
3 .
= £L§_‘2 (xiv)
105

Substituting (xiv) into (xiii) and using the cutoff density result

for Fi <Wg>

(see AIII (138)), we obtain

{r*F) = Al)Q3

From section AIII we have, in the weak correlation approximation,

CFD

Hemnd -<nyl ol

A

0-013¢ A*R?

{W’FV = 0-.0633R"
<FH 7 A

Using the result AIII (139) for AE

So

, it follows from (19b) and

(21) that the contribution of (xii) to the S(EO)Class sum rule is

approximately

- 10¢ _?_e‘ﬁ Ra = 0-922 £ S(EO) A250 (xv)
A ™M A

Class 4
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PART B

FLOW IN OQUANTUM MECHANICS

ABSTRACT

I consider the problem of how to describe flow in quantum fluids.

In particular, we want to be able to identify the physical motion
represented by any given many-body wavefunction. Section I derives
a quantum mechanical velocity field for a many-body system, paying
special attention to the need for a quantum continuity equation. It
is found that when the wavefunction has the usual time dependence

e‘“”f » that the gquantum velocity formula averages over all
oscillatory motion, so that much of the physical nature of the flow
field is lost. In section II a particular wavefunction is proposed
to represent the quantum excitation corresponding to any given

potential flow field. The results obtained by considering specific

examples are very encouraging.

CONTENTS
I : Current and velocity fields in non-relativistic many-body
quantum mechanics.
IT : Wavefunctions for guantum states corresponding to classical

flow fields.




BI. 1.

I. CURRENT AND VELOCITY FIELDS IN NON-RELATIVISTIC MANY-BODY
QUANTUM MECHANICS.

The non-relativistic current density for a single particle gquantum
system described by a wavefunction \]/(S:/‘f') is derived from the

one-particle Schrodinger equation

_ | _ i gr
Y = Ry , H=-Ev e v W

and the continuity equation embodying the conservation law for the flow

of the system

2
B‘Wl -+ _V_.T = 0D P J  is the current density. (2)
ot
a
By noting that \NVI é!' is the probability of finding the particle in

the volume element dT', we see that lqﬂlz is a single particle number

density, so that (2) is directly analogous to the classical continuity
equation for a fluid,

_b_é e Z.(j’u‘) =0 (3)
d

We can therefore define a single particle velocity field by

- J
}J: = ::Ttp]z (4)
From (1) and its complex conjugate, (note that H is a real, linear
operator)
- »*
AVIT = YR Iy 4w

——— e ——

€ 3t 0
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I
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From (2) and (5) the single particle current density is

J = %IMCW*SZ.L‘)) (6)

and then from (4) the velocity field of the particle is given by

Vi) = }'re_\Im (%_LE_) (7)

I will now extend the above theory to a many-body system, paying
special attention to a suitable generalisation of the continuity

equation (2).

Consider a non relativistic system of N distinguishable particles,
with wavefunction ‘{J ( E,. . .,E.,'ﬂ, and Hamiltonian

H = —gi%z* + V(E,...5) (8)

=1 9
Then from Schrodinger's equation H \z = (,k 3;{6 , and

following the same steps used to derive (5)

Nel* 4+ % TL L. Tu(*;@) =0 ©
3t 3= ™

[Aside: If we defined a current density for particle J by

jJ.(B,‘(’): %I"(Y*YJ\P) , then (9) becomes
— b'@: :._ ?‘ Y-')'j_.' =0 , which is not of the

form (2) with J = ;J . Hence we reject this guess
. 8]

for . T& ]
iy

We define the number density for particle one as, (compare with

AI(2))

T\\( Y = ig ';Q‘\YP (10)
(dr.. . dmlg|*

Similarly and using (6), we define the current density for particle

one as,

e

fdr. . .dm @]

J.(l) =-R— Sd—‘-’---é@rﬂ\(‘{)*y.\?) (11)
m,




In appendix BI(1l) I prove that particle one satisfies the

conservation law

3NI) \v/ | = (12)

Hence by analogy with (3) we find that the velocity field for particle

one is given by

\J; | = ‘( \ — 'ii_ SQLF;. .. Aln ]:WN<:gE'*SZ\gP
(1) 1)4.“) m, sg...%..\w 3 B

From now on we will restrict ourselves to a system of N indistinguishable

particles each of mass M\ . Then the number density and probability

current density for the entire system are,
Net) = NN, Teo = N](t,t) (14)
|

and the conservation law for the flow within the system is given by the

continuity equation

MNED 4+ V. T ¢ =0 (15)
2t
Therefore the velocity field is the same for each particle, namely,
Wiy ) = "i ,S_é_ra..ui‘_-ﬂ IM(\Y!.YJ,E) (16)
m fdn. .. dnlgl®

After writing this section it subsequently came to my notice that

Feenberg has previously published the single particle conservation
condition (12), using it to discuss phonons in liguid helium

( Ef], Chapter 4). Several authors have previously stated the result
(10), (11) and (14), without derivation or reference to a continuity
equation. (See London page 147 [b] , and Feynman page 292 [3] ). We
should also note that other authors have used a slightly different
approach by defining a many-body velocity field in operator language.
(Landau [ﬂ] ; but note that London Ef],rbelieves Landau's velocity

operator to be invalid, and Feynman page 294 [5] )
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THE PHYSICAL NATURE oF Y1) :

From (16) we see that if \P is an energy eigenstate (i.e.
\P = Wo Q-Lw‘(‘ where \P° is not a function of time), then
the velocity is independent of time and is zero if QO is pure real
or imaginary. Hence it appears that u'(l) is a quantum mechanical average
velocity that averages out all motions that do not contribute to the
nett transport of matter. This conclusion is verified by the specific

examples considered below.

Let us consider a very simple wavefunction first put forward to
describe mass motion of superfluid helium, (see Feynman [6] page 269,

and [3] page 335.), )
P = l‘: exp (¢ sy & (17)

where @ is the ground state wavefunction and S(r) is some function of
i . -l t
position. Letting the ground state = " e we can always

take §° to be real because H is a real linear operator, So,

Im (\P*SZ. (P) = QQ(Y. S(-\T.)).“Pl2 (18)

Therefore, from (18) and (16) we find that the velocity field for the

state (17) is
U(r) = %QQ(YS(:)) oy

Equation (19) plays a central role in superfluid physics ( [7] ), but
because it was first obtained only heuristically by Feynman ( [6] , page 269)
many people did not realise that it could be rigorously derived in the
manner above. We see from (19) that the wavefunction (17) describes only
irrotational flow, y_ X '\_J_'(I) =0 . Two well known examples of flows
accurately represented by wavefunctions of the type (17) are,

(i) For the entire fluid in bodily motion

lIJ = QXP(L_\S_.B_)§ , & -_---LTim5 (20)




and from (19) \I(f) = ‘k E_ as expected.

3

(ii) For vortex motion about a line singularity

? = T{ip)explidg;) § (21)

where 'f is real and the phase ch) is an integral multiple of the
azimuthal angle of the ‘j{'h particle. (See [8] page 86). Using (19)

we have, as expected, an azimuthal velocity

V¢ = B_a}s (22)
m

wheref is the distance from the line singularity.

An important question that we will now consider is whether we can
make up the wavefunction corresponding to any classical flow field
represented by a real velocity potential ¢(_|:) (That is, \_J_-C_I':) =l¢(,_[))
by writing the wavefunction in the form (17) with

Sep) = Pr) (23)

Firstly we have \\f\ﬁ- = lil" = §: , so from (9), (18) and

(23) with S(I) real, we find

2 { $, Vi@ +2 V; pLr), Y §°} = 0 (24)

J
Therefore the flow field is incompressible ( V2@ =0 ) if
? _V__J¢(I;). _V__,‘§° = O . Note, both (20) and (21) are
incompressible flow fields and satisfy (24) because §° is in the rest
frame, that is gg‘ §° = QO . Now it was shown in [ll] , that
for Hamiltonians of the type (8) with m3=m for all j and the
potential \% independent of momenta, that the expectation value of the

energy of the state \"2 = F§ is given by (when F is symmetric)

AE. = E~Es = Mf <|V|F'z> (25a)
2m 2 |F 12 >
where H§ = E°§ and

{8y = ¥di...
fdn

v v v

2k

&
rx)

I

L
25b
33, =
b B
(=]



Inserting (23) into (17), we have

I9F|* = (gsa)? = .Q)F\_:‘(Z.gbcr.))"

and \Fln' = , as S is real.

Therefore using (25), (26) and (19)

AE = Nm Sdr,. . dn (9 ¢s)) 8.
e dn &F

= L {dr py v
L ldrpen)y

where f(£)=m‘ﬂ(f) is the mass density, and \J the fluid velocity.
Thus we see that the substitution (23) just leads to the quantum
variational energy becoming the kinetic energy of a classical liquid
undergoing potential flow with fluid velocity (L) = ¥ dcr).

( [?] page 8.) Unfortunately this promising result is misleading
because the quantum velocity field (19) is an average velocity and as
we shall see below cannot represent a classical fluid velocity unless
the entire fluid is moving as a body. In fact there are probably only
two exact quantum states of the type (17), namely the ones given by
(20) and (21). ( [8] page 76.) This is because for a wavefunction to
be an exact excited quantum state it must be orthogonal to the ground
state and must have a suitable time dependence. Now let's look at the

time dependence of a state given by

W= exped)d , S= i‘s(r;,ﬂ

(26)

(27)

(28)

If we wish Sﬂ;f) to have a time dependence like COSWT, as would often be

the case if we used (23), then ¥ would have a time dependence of the
. -iwt

form eX?(L(OSw{') » instead of the wusual form & . Thus

for an S given by (23) to have a suitable time dependence necessary to

describe back and forth flow, the wavefunction (28) doesn't have the

required time dependence. There is also a problem with satisfying the
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orthogonality condition for the state (28). The orthogonality

condition Sd:. 5 % &." \P §° = 0 leads to, for (28),
<(os(?? W) + ¢ S\n()ZS(E))» =0, < ) defined by (25b) (29)

For the special case of uniform motion, (20), we can see that (29) does

hold by transforming to the normal coordinates 1; , defined by, [10]

P )
s =J§(.‘§' _")T?:“:i); (A=12,,N=1) En = '\)-L;Zr; (30)

- =t

Then <Q"P(.€Ko ﬁ)> contains
§d5, (iK%, ) = B 5(K) , (=0 1ki#o)

However in general (29) seems an almost impossible condition to satisfy
with S given by (23). So the wavefunction (28) is almost certainly an
energy eigenstate for only two cases : uniform motion (20), and vortex
motion (21), both of which are states where the entire flow is nett flow,
unlike a phonon or any other type of oscillatory motion. An interesting
question is, what would (28) represent if we chose S(I,{) so that
Eﬁ RQ( .Y,S) describes an oscillatory motion? From above we

know that such a wavefunction could not be a single excited state, but
it seems plausible that it would represent a large amplitude disturbance
characterised by the velocity potential JF},-MS . A large-scale motion
such as this is not an eigenstate of the Hamiltonian, but rather consists

of a multitude of excitations with different eigenvalues.

To get more insight into what the velocity field (16) represents

physically, we will next consider the phonon wavefunction,

D = i et BF ¢ (31)

350

For small IB_I (31) represents a longitudinal compressional sound wave
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within the fluid. (See Feynman, [§] ). Now the time independent part
of the velocity potential for a sound wave in a classical fluid

satisfies the wave equation, ( [§] pages 492,6)
2 s ~cwt
@*+k*) g(c) =0 | @ =4ge€

where k ='“%/C is the same wavenumber appearing in (31).

The plane wave solution of (32) is

Thus (31) is actually the wavefunction
N
Y = ¢(Es.f)§
J [>]

where ¢ is the classical velocity potential for the fluid motion
corresponding to the quantum excitation (31). From (33) we have for

the time independent part of the classical velocity field,
V(L) = Re YA (r) = ~ARSimk.T

which as we expected, represents a longitudinal density oscillation
within the fluid. However, in appendix BI(2) we show that our quantum

velocity field applied to (31), gives at least approximately,
V) = Kk
Nm

Comparing (35) with (36) we see that our quantum velocity formula (16)
has averaged out all the internal fluid oscillation described by (35)
and only describes a small nett flow of matter of the order of lﬂo
times the total motion. Thus (16) is only the velocity field of the
nett flow of matter in the system. Another example is the real
vibrational wavefunction discussed in AIII. 1In this case (16) gives
'_\_J_- = 0O , as it does for any real wavefunction, which we now know
only means that the nett flow of matter is zero, as we would expect

for a pure vibration.

(32)

(33)

(34)

(35)

(36)




The inability of the quantum velocity formula to describe
oscillatory motion is due to the problem of time dependence. In
particular, in setting up the velocity field we derived a continuity
equation (12) that holds for any given time dependence of the excited
state number density and current density (provided Hw = ‘.h Bw/)f )
but from the definitions of 'n'(\) and :LU) (egns (10) and (11)) we see
that they are both independent of time whenever \I) is an energy eigen-
state. This follows because when \I} is a solution of Schrodinger's
equation H\P = "k b% , We can write Q:g{e“"’t , so that

l\yl" is independent of time. However, assuming the velocity
formula remains at least approximately correct for non energy eigenstates
we can write down the wavefunction for a large amplitude time dependent

disturbance described by a velocity potential ¢(r,'(') (i.e. ‘\I(E,‘()=

Re(¥hLt)) .
\P = 'U-ei% PLEY) @o (37)

This is important since the part of (37) that is linear in the
amplitude of @ is the sum wavefunction (34), which has the time
dependence of ¢ (N e—iu‘f) and is easy to make orthogonal to §° 5
In the following section BII, this idea is investigated with a view

to understanding what the wavefunction is for an excitation corres-

ponding to a given classical flow field.
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APPENDIX BI(l) : The Continuity Equation.

Firstly we have from (9) that,

3 Sdn . doier = S4r. . d dlel
ot - ot

= —-t%:lw_\;. gd_r‘ ..d_ru Y-J.IM(Y*YJ \2)

I

|
>t
Mz
3
o
5
&y
i
|S—
=1
po -
z 1
L i )
19—
'4

W Tn (2 \v)
= O

because,(using periodic boundary conditions, or taking ¥ to be

zero for [ = '_“.oc)

Sd_rs Ys.Im(\I)*Yj \?) = O (a)
Therefore from (10) we have,
oNn, (1) _ Sdl" B\Q\L
ot 2t
Sd_ﬁ . -dl.h @ 1*

2

Il

%Z?‘rj (dr,. . d5 7, T (2*%'®) |, from @

(whzre j = gé_l'. .d,r.,l\ﬂ\l)
N
From () = —y_l,l‘(l) —"5 X'r':;‘ §cl_r; . di _J.Im(\y v\]?)

Using (a) = -V,‘L(\)

Thus, B_L_(l) -+ Y'.j‘(l) = G
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APPENDIX BI(2) : The Quantum Velocity Field of a Phonon.

Define < > by (250) and < 5, by

<B>, - VSd.EdBBi:
Sdr,. .. 4% B2
For @ = F§° 3 §° real, we have

In(2*v®) = B'Im(F'wF)
Therefore, (16) becomes for Lf — F§°

V(1) = 5 {Tm(FYTFD,

(a)
m %
< WFIrD,
We wish to apply (a) to (31), namely
N ‘
CRr.L:

F = Z e B L , (time is suppressed as it cancels in (a)) (b)

J=1

Taking the ground state density 1\(\) ;, (see AI(2)) to be the constant

N/V , we have, <\>‘ = |

Therefore, <‘Fl2>\ =N +1(N“)<(OSE.51>‘ +m'|)(N".2)<COSB_.El>,
(c)

<cog b.53§‘ = '\/'"‘N(N...)Sclﬁ_ CosR.TaM(12) ,  Mi2)defined by AI(2).

Let us use the approximation for 1\“1) (AT (6)) ,

nG2) = NN §R) = N qen) (@

Therefore, <(Ost&"':3 >\ = _N__ _L gd_‘: oS \3_. Ga j(ru,)
(N-)) Vv
= N_ | SolrcOsh.: 3(r) (e)
(N-) V
Let's also define, S(h) =~ < \F‘2> , F given by (b)
N

Therefore, S ( h )

Il

| + ‘K<€’;§ coib.ﬁ;>

|+ (N=1) {osh, D

I




App BI(2) 2.

= | + LN‘go\ ar, tos Rk, Ga NL12)

_ e P

ll

+ §d reosR. T 3(\') , using (d) (£)

Thus from (e) <COSB_ > g(h)-—l) (9)

(N )
To evaluate the last term of (c) we use the approximation,

LosRTy, = <Gsk. T

N3 (N
( (h) is rigorously true if we can write TN(I2 ‘.n = —V—i 3(‘-23) N ’
(compare with AI(2), AI(6) ) when evaluating <(os R. D), - This

is like defining a weak correlation limit, (see appendix AI(1))

= (IN-2) -
glr)gem) = Nl = -2

~

From (g), (h) and (c) we get,

CIFIPD, = NSG) -
~  (R.T
From (b) we have F*Y'F' = h Z e_"—'-“

Il
oy

Therefore, <IMC F*z\ F)\>| n {<‘>| + LN_l) <(°S E' E">l}

Il

R S(k) (3)

Finally from (i), (j) and (a) we obtain

vil) = Rk x)

Nm

We should note that (k) is a surprising result in that it is not a
function of EI . In fact the step (h) is equivalent to taking the
|
excited state number density 'T\‘(I ) , (10), to be the constant /\/'

Thus for an interacting fluid the approximation (h) may have resulted
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in small correction terms dependent on E. being left out of (k) .

(Any such terms would need to satisfy the continuity equation (12).)

However, we can see that (k) is the velocity corresponding to the
nett momentum transferred by the excitation (31), by calculating the
momentum eigenvalue. With \f = F § , we put the ground state §
in the zero momentum frame, namely, E@ =0 , where

P=-ik 29

——

Firstly, let's calculate E E) for a uniform translational motion

] 3 .
Y = .‘;‘- e."'h' =4 § , (compare with (20))

P’ =-k3ikhY = Nrk @',

This is bodily flow with velocity N = ""\ B

.

Nm m
For the phonon wavefunction (31), @ = z' e"h’ti é
3

. . Ck.T (1)
Po=-h2che™™d = FhY
2
. (—\-— .
Therefore the phonon has a total momentum eigenvalue OUN times that
of a comparable bodily flow. We can see from (1) that the total nett
momentum transported by a phonon excitation (31), corresponds to a
velocity Vo= hh/ﬂm . That is, a nett mass flow of the order

of ‘/N times the total motion.
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II. WAVEFUNCTIONS FOR QUANTUM STATES CORRESPONDING TO CLASSICAL
FLOW FIELDS.

In Section BI simple product and simple sum wavefunctions
(BT (17), (28) and (34)) were discussed, while investigating the
nature of the quantum velocity field M~ , BI (16). So let us begin
this section by summarising what we have learnt about these wave-

functions.

a) ITexP(i S(I;)) § : (§ = §°e""”’€) (1)
1 W(r) = %R{(g S(S;)) . Note UYxW =0 .

(ii) With S(I) real it follows from BI (24) that Vaf -;- @)
since Y3§° changes sign rapidly over a microscopic variation of
_f_-s , while Ys ¢(I3) will always be slowly varying on the
microscopic scale for low energy states.

(iii) With St) real E-E° = %gi&" (L) 'Ia(f) , where E is

the expectation value of the excited energy and H§ = E-°§ .

(iv) If we let S(r) be complex then (ii) and (iii) no longer hold.
The effect of a complex S(I) is to create a permanent deformation in
the density, e.g. the factorfSP‘-) in BI (21) produces the hole around
the vortex line.

-t T
(v) Because the wavefunction (1) has the time dependence e »

'Q_‘ is independent of time and so gives only the nett flow of matter

after averaging out any oscillatory motion.

(vi) It is very hard to make this wavefunction orthogonal to §

(see BI (29)).

(vii) It is likely that the only exact eigenstates of this type are

uniform motion and vortex motion, i.e. BI (20-21).

From the above we can conclude that this product wavefunction




describes permanent mass flow and not oscillatory density variations.

As an aside it is worth showing that the particular example
ch.r
P = Te B.; ¢ (2)
3

is the wave-mechanical method of applying a Galilean transformation

/

to§! VvV = \J + 1 where&:h%.'l‘his

follows since

PF=18° , 9P =ck® +TeRRYD

and so using BI (16),

v' =k Mn. . dn Te(2%99)
™moodr. L dn )t

Rk 4+ Sdn. . dnTn (T2 D) -
L Sdr;. . dn (@)
= U+

b) JZ B(E,4) 0P, - (4)

(i) has the time dependence of @.

(ii) is easy to make orthogonal to §° . (In the notation of

BI (29) we require only <¢> =0 o)
(iii) The wavefunction (4) describes oscillatory density variations,

but the quantum velocity field will average it all out to give only

the nett flow.

(iv) By analogy with phonons (i.e. BI (31)) it is plausible to
speculate that to a first approximation the classical (dynamic) flow

field corresponding to the state (4) is y‘ ~ QQ(Y¢) .

Note (iv) is important since if it was true in general, (4) would

be the single excitation corresponding to the classical potential flow
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field of small amplitude, Y‘ ('_',-G) = QQ( Y_¢(L<—)) , with
¢(\'_'I-(—) = ¢°(£) e-un'( . This idea is strongly supported by the

argument due to Chang and Cohen [l._\ , discussed below.

) :liTexp(LS(r,é)) @ol (5)

(i) Except for the special case S(I,‘e) = 5(:)"“0( (i.e. (1)),
(5) is not a solution of Schrodinger's equation and cannot be made

orthogonal to § g
°

(ii) Assuming that BI (16) is still correct we have

T(L4) = B'Y'h Re (YS(I,{-)) . Note UXV =0

(iii) From BI (25) I calculate E, the expectation value of the

energy in the state (5), to be
E-E = l;\. {dr m () T4 T , H¥ =E,3 (6)

where

I

= BTY\(ZS) and Y\‘(r) is the density in the

excited state (5). (Compare this with BI (27).)

(iv) From (iii) and by analogy with the wavefunction (1) it seems
plausible that (5) represents a large-amplitude disturbance with

velocity field N .

Chang and Cohen [l] assume the conclusion c¢) (iv), that the wave-
function (5) represents large-scale hydrodynamic motion with velocity
potential S, and then use this to show that the wavefunction (4) is
the single excitation corresponding to the same velocity field (i.e.
conclusion b(iv)). Let us write the velocity potential as &£ ﬁ
where OX 1is proportional to the amplitude and absorb the constant
-Eﬁ‘.n into & when appropriate, then Chang and Cohen's argument is

to expand the wavefunction (5)

exp(ix T #@A) B, =[1+ T -G8 -i{(THe [
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They identify this expansion as a superposition of the ground state §°
with the state of a single excitation, plus the state of two excitations,
and so on. So the state of a single excitation with velocity potential

@ is the term linear in & :
o) &, @
J

Because a quantum mechanical wavefunction is normalised the amplitude
has dropped out of (4), unlike the wavefunction (7). So (4) describes
motion in the small amplitude limit. If (4) has momentum eigenvalue
k then (according to Chang and Cohen) the term in (7) proportional to
d“ belongs to momentum eigenvalue ‘Y\E , and represents a state composed
of n excitations. The argument due to Feynman referred to on page AIII.
20., that the state of two phonon excitations of momentum ‘kh_ is

(Z e“&'ri )2 § and has momentum eigenvalue = JRR ,

9

agrees with Chang and Cohen's identification. Now, the wavefunction
(4) is very important since it is a single excitation and in the limit
of small amplitude (long wavelength) it is likely to be an exact
energy eigenstate. But before investigating examples of the type (4)
I will first consider the large amplitude wavefunction (7) since Chang
and Cohen's argument is based on the assumption that it represents a

flow field with velocity potential a(¢ :

Large—amplitude flow wavefunctions

The problem to consider is : because the wavefunction '!'TCL“’&@,
is not an exact solution of Schrodinger's equation (except for centre
of mass motion and vortex motion), the proof of the continuity
equation BI (15) and hence the derivation of the velocity field

'\._[ ~ RQ (Y¢) no longer follows. That is, can the large
amplitude wavefunction approximate this flow field despite the fact

that it cannot be made orthogonal to the ground state, nor has the
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correct time dependence, and is not quantised (i.e. contains arbitrary

e ) ? Writing the wavefunction (7) in the form
¢ X _ .
\P = g @, Y X = A+<B
we have

Im (07, @) = R (L0, (PI* = e**F

Therefore equation BI (9), which is the condition that the derivation

a

-

of the continuity equation BI (15) and the velocity field BI (16)

holds, is

é‘%ff + 7. (59 =o

where v, 2 b Re(Y X) ©)
m

-J

The velocity field will be correctly described by (9) provided (8) is
satisfied for the chosen I . Equation (8) reduces to
~-2AB 2 )B a —2R 2
e’ {-238 +E T} + R TyA. G(eF)
m J m d )

° (10)

Sigm
Now since y;éo changes, rapidly over a microscopic variation of f and

ZA is slowly varying for low energy (long wavelength) states, we have

almost exactly that

2 Y%A 59, =0 (11)

From (11), (10) becomes

-228 LA TVA -28 T VAV
€ Tmr A AT LA TR

]
O

(12)

For wavefunctions of the form (7) we have
X = A+eB = Z[alm® +i big9)
J
and (12) reduces to

-2b+E Ve -2R w.¥b =0 (=2g) v

When x is real b = 0, and (13) is just
2
vV'a =0
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With this condition we have from (9) that y.u' =0 , SO a real
velocity potential can only describe incompressible flow. From BI (27)

we see that the extra energy associated with the incompressible flow is

AE = K Sgl_rhcr) Va.Va (14)
2m

Taking variationswith respect to Qb gives the condition for a minimum in
<
the energy as Y. (YQ) =0 , that is Via =0 . 5o in this

case the approximation (11l) is exact.

States of compressible flow will be described by the wavefunction
(7) if we allow X to be ccrmplex, that is b # 0. However (13) will no
longer be satisfied exactly and so the expression (9) for the velocity
field is at the best approximate. But if we make the same assumption
that is usually made for classical compressible flows, fhat the
amplitude remains small enough to ignore all terms not linear in

amplitude, then (13) becomes

-2b + Ev%a =~o0 (15)
m

This condition should be compared with the classical continuity
equation for compressible flow, in the same approximation ( [2] page 476)
400 =0, (Lep0+5)
If the continuity equation (15) holds then from BI we can identify
Y = %Y_a and the wavefunction -‘;‘-CXP((.[%*‘.b;])§°
will approximate a state of large-scale flow with velocity field E ’

which is the assumption that Chang and Cohen's argument requires.

To investigate the solutions of (15) let us consider two examples,

one of incompressible flow and the other compressible flow.

Large amplitude surface wave

Take the ground state to be a semi-infinite liquid with a free




surface in the Xy plane, and let the density approach zero as
Z. = + 00 . Then the velocity potential for a classical capillary

wave propagating in the x-direction can be taken to be ( [2-] page 457,

CB] page 238))

kz
LP = e coslhx—wt) (16)
3
where w?* = ﬁ h ; 0 is the surface tension and 7\, the
®

bulk number density. So the large emplitude surface wave state

should be

V., = T\-exp(éoc e®%i Cos(lx; — wt)) & (a7)

Since we have taken @ to be real the continuity equation (15) is just
Vig = o e . :
=0 , which is satisfied by (16). That is, the flow is
incompressible. From (14) and taking the ground state number density

to be 'Y\(Z) = N, 2<0 ,=0 Z%0, it is easy to show that
a
AE = A"QM '“9 , A the surface area.
km

Then a simple classical calculation of the increase in surface area
(AA) to lowest order in & yields the classical dispersion relation

3

w?* = I k ) T°= AE/AA . That is, because (17)
NeMm

represents incompressible flow it leads to the classical flow energy

(14) , which ensures that ‘P‘w is consistent with the assumption that

it represents a large amplitude surface wave. It is obviously a large

amplitude disturbance since AE ~ «? |

Large amplitude sound wave :

Take the ground state to be an infinite liquid of density T\. i
A
Now, a classical sound wave travelling in the kR direction could be

—

represented by a velocity potential ( [2] page 496, [3] page 248)
< (os(E.E-w{) . (18a)

o
or P = X o (b= %) (18b)
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From (15) we see that @ must be taken to be complex or it could not
represent compressional flow (i.e. (18a) cannot satisfy the quantum
continuity equation (15)). So the large amplitude sound wave state

would have to be

\y = WEXP((&QL(Q‘I—N{)) §° (19)

Inserting (18b) into (15), (i.e. Q+Cb'—'°‘¢ ), leads to
2
w - Rk =

. So the continuity equation gives

w = kil

Q.‘W\ . This is

the large amplitude dispersion relation as
different to the small amplitude classical relation W= cR , € the
constant velocity of sound. Thus (19) is a solution of (15) but does

not give the expected dispersion relation. From (6), the flow energy

of the state \P is

AE

o2 fdrner) zglt
am

= O( .kﬂ- Sd “\LI)

(20)
= N«“#_\’_ha
am
= N«2? ’Rw

This large amplitude energy should be compared with the energy of a

single sound wave excitation,

AE = fw = kKek (21)

So the assumption of Chang and Cohen's, that the wavefunction
TI-CXP(LO(}!Q)) § represents large scale motion with velocity
" Q
field ’!'v RQ(Z¢) , seems to be approximately correct but there are
some problems. For example, @ must be real to describe incompressible
flow but when using the single excitation wavefunction Z ﬂS(J) §

_uw'('

we require the complex form ¢ ~ e , to get the necessary




BIL. "9

time dependence. The compressible flow has a complex @ but the
energy (6) is no longer the exact classical flow energy. In fact it
seems that only kinetic energy is present, which would be half the
energy of a classical sound wave. Also the large amplitude sound wave
had a strange dispersion relation, but this could be expected since

classically we~R only in the small amplitude limit.

Single excitations

Chang and Cohen's argument (and BI) led to the conclusion that

the wavefunction

Jz ¢(.‘:j,,+) @o (4)

is a single quantum excitation corresponding to a classical potential
flow field '!' ~ RQ(Y ¢\ . In the remainder of this section I
will consider further evidence for this important idea with emphasis

on specific examples.

1) Firstly, the wavefunction (4) has the required properties to be an
energy eigenstate. That is, it has the correct time dependence by

. =it .
taking ¢ ~ € , and is easy to make orthogonal to the ground
state (i.e. <¢> = O where < > is defined by BI (25b)). Also,
because the classical amplitude has dropped out of (4), it will be best

in the small amplitude limit.

2) It may also be possible to derive the nature of (4) using the
operator approach of collective coordinates. In CII the Hamiltonian
in the continuum approximation, for states which represent small
longitudinal deviations from uniform density, is shown to be

H?k 2%‘? mh{ \'ﬁhr + U;\T\!Iz] (22)
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where ‘Yﬂh = M/ﬁ hl . \/Jh= ¢R , and the collective
coordinate‘n‘is the Fourier transform of the number density operator.

Now }+fk is a harmonic oscillator Hamiltonian and so the first excited
state wavefunction is the ground state multiplied by T\h . The Hamiltonian

m
(22) describes quantised sound waves or phonons and,this case

L

Sdr der4)n(r)

Cdr ¢z, ¢) ZS(E-:)
Z L5 )
= 3 o c(R.5 =)

il

(23)

So the first excited state '“‘.!Eo is the Feynman phonon wavefunction

BI (31), which is of the form (4). If we generalise the above and

assume that any small amplitude deviation from the ground state will

be described by a Hamiltonian of the form (22), in terms of a

collective coordinate1\b for the particular flow field, then by analogy
with the harmonic oscillator we know that a good variational wavefunction
for the lowest excitation with this flow field may be obtained by
multiplying the ground state by the collective coordinate : (cf. [?]

page 23)
\P = 7\‘350 (24)

That is, if 1\! is the collective coordinate for the small amplitude
flow field described by velocity potential @, then (24) is a good wave-
function for the single excitation corresponding to this flow field.

We see that (24) and (4) are identical if (23) is true in general,

i.e. provided
n, = {dr drom = T4, ¢ (25)
J

This equation is true for phonons and according to Chang and Cohen

( Eﬁ} egqn (26)) also holds for quantised surface waves. I have not
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seen a general statement of (25) but it may be a consequence of the
fact, proved by Kronig and Thellung [51 , that M and @ are
canonically conjugate variables (WM is the generalised momentum

corresponding to the variable @).

3) Phonons (quantised sound waves)

I have previously noted ( (18b) and BI) that the velocity
potential for a small amplitude classical sound wave is

(RI-wt

¢~e (BL-0 ) where W= ck (c the velocity of sound). So,

assuming (4) is correct, the wavefunction for a single sound wave

excitation (i.e. phonon) is:
P, = Zern §
J

This wavefunction is also obtained from the normal mode Hamiltonian
which by analogy with a harmonic oscillator led to (24), as described

in 2) above. Feynman [6] first proposed the wavefunction (26) for
excitations in a bose liquid (liquid He.r ) » giving extensive physical
arguments to conclude that for small k, @pk represents a longitudinal
compressional sound wave with energy hw = ‘hCh . Feynman also
proved that th was the optimum wavefunction of the form ?-g(}_",)@ .
Applying BI (25a) we have from the variational principle ( \I/'k is

orthogonal to § for h#o since <eih':> N S(E) ) 5
E-E, & Bb

AE am S(R) ’

where H§ = Eeé and the structure factor S(k) is

Sk) = —Iﬁ <|3§€ih'rﬁ\a> (28)

(27)

( < ) is the ground state expectation value defined by BI (25b)).
Defining the pair correlation function 3(“.1) from the pair density

(see AI (6))
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WQ(I:‘,[;) - 7\: 93(“1\ ’

(28) becomes

(29)
-CR.
= |+, (dre “(3(‘-)—0
where the orthogonality condition has been used to replace g by (g-1)
in the last line of (29). Inverting (29) we have
- - ck.c
qr)-1 = (m), L (dr e“BT(s(R)~1)
(30)
- -1
T S thmnbr(S(b )
Now we expect a long wavelength phonon to have the classical energy
AE '-'-T\Ch , which from (27) implies S(h) - H‘/ﬂ.’mc , Qs ko .

Integrating by parts the right hand side of (30) we see that this

condition holds provided the long range part of (g-1) is

(ﬂ(\")*l) > _2;"7\0 5\(_ }-—u (31)

The above self-consistent results are well accepted properties of the

bulk superfluid phase of a Bose liquid (liquid H: ), but as pointed
out by Chang and Cohen ( [1] p 1064) the result (31) has not been
derived from first principles because AE - t(,k is really an
assumption. (Feenberg has a proof of (31) using normal modes and sum
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>