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ABSTRACT

This thesis is a collection of theoretical investigations into

different aspects of the broad su}ject of quantum many-body tbeory'

The results are grouped into three main parts, which in turn are

divided into separate self-contained sections. Some of the work is

presented in the form of published paPers and papers that have been

submitted for pr:blication.

The first section of Part A introduces some of the concePts

involved in many-body problems, by developing mettrods to evaluate

e:<pecrarion values of t]re form (fttl) . rn the rest of Part A

I consider collective excitations of finite quantr.lrn systems. The

calculations are confined to nuclei because the results can'then

be compared with ttre extensive investigations that have been made

into collective nuclear modes. In Section AII' wavefunctions are

proposed for rotational excitations of even-even nuclei. Bottt

isoscalar and isovector nuclear modes are discussed. In particular,
t\

*re ll,m) isoscalar states are investigated for both spherical

and deformed even-even nuclei, and the simplest isovector wavefunction

is shown to give a good description of ttre giant dipole resonance.

In section AIII wavefunctions are proposed for compressional

vibrational states of spherical nuclei. Section AIV discusses sum

rules for nuclear transitions of a given electric multipolarity.

It is found ttrat the 2* and 1- states investigated in section AII

and all but one of the vilcrational states d'iscussed in AII11 each

e:<haust a large part of the appropriate sum rule.

In Part B I consider the problem of how to describe flow in

quantun fluids. In particular, l{e want to be able to identify the
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physical motion represented by any given many-body wavefirnction.

Section BI derives a guantum mechanical velocity field for a

many-body system, paying special attention to the need for a quantun

continuity equation. It is found that when the wavefunction has the

usual time dependence dt*t , that the quantum velocity formula

averages over all oscillatory motion, so that much of ttre physical

nature of the flow field is rost. rn section Brr a particurar lrave-

function is proposed to represent the quantum excitation corresponding

to any given potential flow field. The results obtained by considering

specific examples are very encouraging.

In Part C I investigate ttre properties of surfaces. Sestion CI

presents a theoretical description of t}te tension, energy and thick-

ness of a classical liquid-vapour interface. In section CII the

classical results are extended to describe the surface of a guantr:rn

system, namely superfluid helium four. Problems occur for the

guanturn system if the correlations arising from the zero-point-motion

of the phonon modes are included in the gror-rnd state wavefunction.

Finally, in section CILI I discuss generalized virial theorems that

give the change in the free energy of a system undergoing an

infinitesimal deformation. For example, a particular deformation

gives the expression used in CII, for the surface tension of a plane

quantum surface.
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INTRODUCTION

There are t$70 main themes which form the basis of the work reported

in this thesis. Firstly, the importance of density correLation functions

in many-body theory and secondlyr Lhe wish to understand the physicaL

processes described by given many-body wavefunctions' It transpired

(see below) that both of these considerations led me to investigate

properties of classieal- and quantun liquids'

Themathematicalformulationsofalargenumberofproblemsinmany.

particlephysicsinvolvetheuseofdensitycorrelationfunctions.In

particular, if an adequate description of the system can be given by

neglecLingthree(ormore)-partic].einteractionsthenitissufficientto

consider only the single-particle density n(1) and the pair correlation

funcrion g02). section A1 begins with the definitions of these correlation

funetions, from which it folLows that if the interparticle interactions are

dependent only on the distance between pairs of particles (r), then the

pair correlation function reduces to the simple radial forn g(r) ' so'

the sytems mosr rtodily described by the many-body techniques under invest-

igation are simple liquids, rather than solids or poLar liquids, where the

particles have preferred orientation towards one another'

The original impetus for investigating properties described by density

correlation functions arose out of the progress reported in section AI' in

sinplifying double integrals over a spherical drop, in which the integrands

involve the pair density. At the sarne time my suPervisor (Dr J Lekner) had

recently proposed a set of many-body wavefunctions suitable for describing

collective excitations of self-bound quantr:m systems ' and it

was found that the results of AI are helpful in evaLuating the energiee

of these proposed excitations. sections AII-AIV rePort the investigation

into the properties of these wavefunctions. The discussion is confined

to excitations of nuclei because the results can be compared with the
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large amount of experimental data on excited states of nucleit in contrast

for example, with Ehe lack of data on colLective states of liquid heliun

droplets. The work of Part A is dominated by attemPts to understand the

physical processes described by the various wavefunctions considered and

theeffectofpaircorrelationsisatfirstarguedtobesma].lenoughto

beneglected.However,bythetimeofcompletionofthethesisichad

become apparent that the behaviour of the nucleon pair correlation functions

(especially Lhat due to Termi statisLics) has a crucial effect on the

cal_culated energies of the states. rn particular, by including the effect

ofpaircorrelationsthevariationoftheenergywithnucleonnumberA

changes from o'i" flt

PartB,whicharoseoutofaneedtoidentifytheflowfieldscorresp-

onding to Ehe many-body excitations discussed in Part A, is a general

discussion on flow in quantum liquids. Although the main emphasis is on

the physics of wavefunctions the importance of density correlation functions

is again highlighted in section BII, when investigating surface excitations

of liquid helium four. Namely, it is found that the long range behaviour

of the pair correlation function determines the long wavetength (low energy)

partofthedispersionrelation,indirectanalogywiththesituationfor

bulk excitations.

part c ig concerned with the statistical mechanics of liquid surfaces'

and hence there arises the question of the behaviour of density correlation

functionsininhomogeneoussystems.InsectionClldiscusstheliquid-

vapourinterfaceofasimpleclassicalfluid.Thereaderisreferredtoa

PaPerreprintedinthisthesis,inwhichgeneral.expressionsarederived

forEhesurfaceEensionrandthesurfaceenergy€.Theexactevaluation

of these expressions will require conplete knowledge of Ehe density profile

and rhe pair correlation function of the inhomogeneous syslem' since this

is not yer available further analytic results are obtained by choosing

simple physical density profiles' and by making an approximation for the
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pair correlation function, which it is argued should be reasonable at

least near the triple point and in the critical region' From the results

fordandeitisalsopossibletoestimateEhesurfacethickness.

InsectionCllthemethodsdevelopedinClareextendedtodescribe

thesimplestcorrespondingquantumsystem'namelythesurfaceofsuperfluid

helir:m four. In particular the consequences of Eaking the zeroth order

approximationforthegroundstatewavefunctionareinvestigated.ltith

thissimplegroundSEatethemathenaticaltechniquesusedintheclassieal

system are all that is required. provided the long range phonon correlations

areneglected,goodresultsareobtainedfotd-,€'andthesurfacethickness.

Theproblemsthatoccurwhenthesecorretationsareincludedledtoa

detailed investigation into the effect of the zero-point motion of phonon

excitations on the ground state wavefunction' The work reported in section

Clllarosefromconsideringgeneralisationsofthederivationofthe

expressions for d' , used in CI and CII '

TheworkinPartsAandBisconcernedmainlywiththesecondtheme'

thatis,thewishtounderstandthephysicalprocessesdescribedbycertain

nany-body wavefunctions. The wavefunctions discussed in Part A are used

toinvestigatecol]-ectiveexcitationsofnuclei,duetotheavailabil.ity

ofexperimentaldata.Thepropertiesofavarietyofwavefunctionsare

ex tensively investigated, in patticular the energies and the contributions

to the relevent sum rules are evaluated. It is worth pointing out that the

methods of Part A treat the nucleus as a quantum fluid' That is' the

wavefunctions are thought of as describing fLuid flow and any shell structure

effects are neglecred. (The coneept of treating the nucleus as a liquid

dropwheninvestigatingcollectiveexcitationshasbeenusedpreviouslyin

the ,'classical,, liquid-drop mode1, which gives its best results in the

description of giant resonances.) It was this flow analogy to cotlective

nuclear excitations that 1ed to the general investigation, reported in

part B, into the vetocity fieLds corresponding to different EyPes of many-
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body wavefunctions. Many examples are considered, including wavefunctions

discussed in Part A. In particular, Ehe results of BII suggest that most

'Yruclcqf
of ttr"']-ia"efunctions correspond to what nuclear physicists cal-1 giant

resonances, which in turn supports the conclusions of section AIV where

the excitations are shown to exhaust large parts of the relevent sum rules'

These results forced a revision of the original caLcuLations of the energiest

which were based on neglecting pair correlations. It is found that the

inclusion of nucleon pair correLations crucially effects the calcul-ated

energies, and in particular that they are needed to obtain the correct

variation of energy with nucleon number from the giant dipole wavefunction'

Thus an understanding of the physical nature of the wavefunctions led to

irnformation about the importance of pair correl'ations in nuclei'

To sum up - this thesis can be looked at as a study in properties of

liquids. Particular emphasis is placed on the physical interpretation of

many-body wavefunctions describing fluid flow, and on the properties of

density correlation functions in homogeneous and inhomogeneous f iquids '

Future \rork on problems raised in this thesis will probably rely heavily

on a better understanding of the behaviour of pair correlation functions

and density profiles in finite systems(for Part A) and in inhomogeneous

systems (for Part C) '

Finally, the reader will see from Che paPers rePrinted at the end of

Ehe thesis that the work reporLed here is Ehe result of an extensive

collaboration between myself and my suPervisor, Dr John Lekner. In

partieular, the published work is in all cases close to a 50-50 contribution

from each of us. The unpublished part of the thesis is uy own work and

so represents my own ideas. However, it is ioevitabl-e that much of the

rnotivation and technical progress at least partly arose out of the many

enjoyable and stimulating diseussions I have had with John Lekner over

the past few years.
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PART A

FINITE OUAIITUM SYSTEMS

ABSTRACT

The first section introduces sone of ttre concepts involved in

many-body problems, by developing methods to evaluate expectation

values of the f"rrt (t(r*} . The rest of the sections consider

collective excitations of finite quantum systems. the calculations

are confined to nuclei because the results can then be compared with

the extensive investigations ttrat have been made into col-lective

nuclear modes. In Section II, wavefunctions are proposed for

rotational excitations of even-even nuclei. Both isoscalar and

isovector nuclear modes are discussed. rn particul-ar, ttre lfrf*)

isoscalar states are investigated for both spherical and deformed

even-even nuclei, and the simplest isovector wavefunction is shown

togiveagooddescriptionoft}regiantdipoleresonalce.In

section III wavefunctions are proPosed for compressional vibrational

states of spherical nuclei. Section IV discusses sum rules for

nuclear transitions of a given electric multipolarity. It is found

that the 2+ and 1- states investigated in section II and all but one

of the vibrational states discussed in III, each exhaust a large

part of ttre aPProPriate sum rule.

CONTENTS

I .: pair correlations in self bor:nd spherical systems

II : Rotational states of quantum systems

III : compressional vibrational states of spherical nuclei

IV : Sum rules
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I. PAIR CORRELATIONS IN SELF' BOUND SPHERTCAL SYSTEMS.

In many-body physics it is often necessary to calculate integrals

of the form
t-
J dld4 n(rr)f(ro) (1)

r- \where f (r*) is a function of f" = lf, --El and n02) is the two

particle ground. state density correlation function, defined by n(1...S)

tor S=2 where

x(r . s) = Nl SdSD. . .d$ O'
(N-s)r il-.d'tor

00....H) is the ground state wavefunction of an N- particle system.

For example, the expectation value of the Hanuiltonian of an N- particle

Bose system

(2)

+ f Z\J-(r?3) , (3)

| 3 d<j3N
H = -t'tv"2tt c

when the wavefixrction is of the

Q(r r'r) = €x

form

P[ilFP,",l (4)

(s)

To evaluate integrals of the type (1) we use an approximation

for T1(2) , namely

1A(rr) = n(r)n(r)9(il (6)

where 3(tt^) is known as the pair correlation function. By noting

that in the ground state, l1(l)df, is the probability of finding a

particle in volume # .t F , 'l4(t2) dI {fi is the probability

of finding t\^to particles, one in dI at .f, and the other i" {fi
at .E , then l\(l') 3(E) {fr is seen to be t}re probability in the

ground state, of finding a particle i" d!i, about !i , if we already

know there is a particle at E . In Appendix Ar (1) we discuss the

weak correlation linit "r Q(r) , (q(r) = constant for all I- ).
J',1

/{r;) + rrtu!

is of the form (1) with, Ltl ,

fr"^) =tt-Sd



If we restrict ourselves to spherical systems so that 1l(l)

becomes }'l(|-) ,I- ttre d,istance to the centre, ttren we can use

bipolar coordinates. t LZJ page 203.)

Let l5l= rr l1.^l= s , F,e = t

Then the Jacobian of ttre transformation

yields

AI. 2.

(1la)

(llb)

(12)

(7)

Hence

wittr

(8)

(e)

have

sdt ntrl Sdrnel Q(r.)f(r*)

8n" $'rdr) firr r,,,l,$ii htt)

Bn' 5i' r rral 5.it xer {i',Jr r', a r

B n' S?r'hc.t [i* nr+{[1ts w' r

f r-sl e + z- F-+S

agarn, we nave

8rra [j.'"htr) p(r)

(10 )

) SsR j to=V ,V=btd (r3)

S >R

{E = 2rry dx dy = ('J'*
dd} = 8Tr'drrdssdtt
oArrs 4€

Using these coordinates we

S dr 12 n(rl)$(ro)

where h(+) = g(t)f(+)

interchange 5 withf =

interchange l- with f =

Therefore interchansins S with t

Sil d3 'r\(Ll)f(r^) =

Tt(s) = 1\o

r*rere h(r) = g(r)f(r) and p(r) = + [T'sws)Jli'tn(t)

Fron (2) and putting f = t in (11a) we have ttre normalization
.Q

LnSdrrrg(r)Pt.) : lvsJ)

As a first approximation we coul-d use the cutoff density

=g



Then as is shown in Appendix AI (2)

^ .R .r+s
P"(r) , tat

-flfrI] , o€r32R

(14)

(ls)
: n:2 R,[r - 3 /I\3 L r\1R/
= o ,r>2R

Therefore in the approximation of a cutoff

bound many body system becomes a sphere of

density, where the self

radius R,

distance l-

is, using (8) s,*'sjf *3lrr

= fl*t['-i6)*t{fif] = ff Brrt (see Appendix Ar(2) ) (17)

Similarly the common volume of two overlapping fuzzy spheres

(non zero surface width) each described by the general rad.ial

density "Yl(S) , is
{ P(r) ,ranl'

rn some problems the weak correlarj-on limit $(f) = Ln-Pn

(see Appendix AI (1) , or use E(a) in the normalization condition (12)

for 9(r) = constant) may give good results. This weak correlation
.,

approximation, ltl , is such that ttre only correlation between

particles is that due to the particles being constrained to move

Sil dr n(rr)f1r;.) = S 5 {r ht't 
[, 
-+f+l -]Gfl

where htrl

We can get a

cofimon to two

separated by

= 3(r) ff .) )
conceptual feel for

sharp edged spheres

F.-lR
J ft. = L1T Sod r.'
P"(a) by noting that the volume

of radius R, whose centres are

AI. 3.

(16)
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within the sphere. This tnijht be a good approximation for

nuclei as the hard core of the nucleons only occupies about a Percent

of ttre total vohmre. ltl . rn this case for a cutoff denslty

(20)

(21)

s4 & nr,2)f(r,l) = N(N-o* G+-+(fi)"|(fi)']f"(r) .e)

To find p(r) """rtly for a non cutoff radial density, lte can

try introducing the Fourier transform of the density function.

ws) = #-1, IdE e'h.r n(h)

where n(b) = 5 dr ntsl Ci h't

Integrating over the angles we get

"6Tt(E) = T tdts 
h(s) sinhs eD

It is shown in Appendix AI(3) that (20) and (21) give

Sdl dr n(rr)f(r,r) -- 8rr"5irr"ht'lPc.t ; hH = g(df(r)

where P(r) = # 5 d: t ttl n( ls +gt)

6

= J--, r ( Tr"n n?$ sinhr e3)
{.T|.r r .'o

For exarple, take n(t) to be ttre cutoff density (13) ,

rRthen rrom (221 ' n(g1 = _L[ Tlo !"ir t sin hs
k

= -l'r noCiCnn) e4l

where J, is the first order spherical Bessel firnction,

(see Appenclix AI(4) ). Therefore (23) gives us,

Bt') = +n: 
n.-"Ir. fir.nt 1.(hr) (25)



Equating (25) with (15) we see that we have proved

$.Jj-,J("*) = [' -i(+)-i(i)'E , oL"'lL
(26)

= O <)Z
,/

In general (22) and hence (23) are difficult to evaluate for a

reasonable A(S) , although ttre nG) for some simple T(s)t are

known from scattering theory where the form factor is of the

r -l --csaform (22). Lnl . For example a Gaussian h(S) =troQ , leads

to a Gaussian p(r) = ni.F e-"Jk' 8ct"

Because the above exact method, is too difficult for a reasonable

density function that wiLl describe a system with a non zero surface

Pcr )

AI. 5.

(24)

width, we will revert to bipolar coordinates and calculate

for a simple exponential variation of the density, namely

Ws) = h"(s) -r- f,n.cs) e7)

where Tl*(S) is the cutoff function (13) with R replaced by R,

and f,n.{s) is

6n*cs)

= Ilo eR'a tt^ , s ) R,
T

This simple density variation has a continuous derivative and

describes a surface whose thickness is approximately given by

l*61 | = e\ . rhe reason why R, and not R appears in

(27) and (28), is because we must be careful in defining the position

of ttre surface. Ttre surface (S = R) is chosen so that the total

volume , r ,! = + \ds n(:) tzgr
'[\o - 

-

stays the same when 'n(5) is changed from n(G) to Q7) -

=-\**4{ / s4R,
1.



llhat is,

V- llrrd

D(r) :
I

t
where, F(r) is

l6

rP(r) =Ir

, t- f.) r-\anq 'Fl\,, -

fn*ttl * f nn,(s)]

+ H f.;rs^f,n*ts)

_lrT do,/^ljss.esl^

+, 8Tr R, t'

-r llre*/^firr.*o

p(r)

AI. 6.

o4r!2Rl
( 36)

hse

*"cl

+TrRl

tr rrRl
3r (30)

From (30) we find,

R, = n(,-r(+)'*o(+)") (31)

Substituting (27) into (lfb) and using (15), we have

I
p"(r) -r p(r) + p"tr)

given by (15) witJ. R replaced by R,,

t 5i.r Sn*cs) S,Ef n.,(t)

Sj,s dn*(s) liii rn4t)

(32)

(33)

( 34)

\.d*[b(I)'* (* )"-'(*)]
(l -Ct/^) t o4r4tRr r:zr

( 3s)

rn Appendix Ar (5) we show, negtecting terms of order €e/l

and assurning that hCf) decays fast enough so that when using

in (tra) we can drop atl terms involving 6:lr-rnrJl, r that

evaluatj-ng 1:a) and (35) using (28) gives

r Rtr) = -2r3 f,n," ['- t(i) -I(f;,f -d'A] +
hlt*rgra - 6nj th(r- e-4) /

= O t r>lR,

rPrF) = $ol,I,rdd -S
+n:I9

=O / T->2R.t
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)l
r42R

Collecting (33), (36) and (37) together and using

rap(r) = R3(+nlrl) * R'Trlt+ -rfr

Sdl dr Yr(r2)f (r*) = ($nc) mn: [F.^hcr)

- ( r,rrcl)rrnl !j' ,-hr.l[r'* \'[L- {/^(f - /t)-]} (3e)

(31), we get

*tt/^(zrlr-r \r\2

( 38)

+ (terms independent of R) + (rerrns * O(fu) , ,, o e

=O , f>2R

(we have usea R))L to put 2.R, e:.R )

T'hen inserting (38) into (1Ia) we have

+ neslisible terms (independent of R or I O(fu) I

where ht"l = q(r){Cr) and we have assumed htf) decays faster.-\/ d-,.t '
than f-3 . So the integral (11a) splits up into a volume part

and a surface part, plus negligible terms independent of R. It is

interesting that there is no part proportional to R which would have

then been a curvature correction term, i.e. the integral has split

up into a volume term and a surface term as if the spherical system

had a plane surface of area +:If R^ .

We can check that the above results are sensible by using (18) 
'

.ITI-
namely that $ pcr) is the conrmon volume of two overlapping

llr

spheres with densities described by (27). Firstly, 
ffi PCt) is

the difference between the overlap volume of two shary edged spheres

(densities described by n *!S) ) and the overlap volume of a sharp

edged sphere and a fuzzy edged sphere (density described by

X*15) + tnR,(S) ). so, Rt") should be nesative and shourd be

largest when f * O . with 5naCS1 given by (28) an obvious

estimate ror the votume $ f (o) is -tpn\ Ri , that is f,(o) = -2n:\RlY1t" '
which is exactly what (36) gives to order R," as t-'+ O . The

overlap volume of two spheres reasoning implies that B(f) should



AI. 8.

have a maximum for I-*O, which is a result that agrees with (37).

NoLe, ttrat ttre terms we would also expect to find in p,tr) and

Prtt) for f +2R, , using the overlapping volume picture, do not

appear in (36) and (37) because we neglected them by assumirrg h(r)

decays fast enough. rf htal did not decay faster than t--? tt.r,

ttre neglected tenns could easily be evaluated as an extension to

Appendix Ar(5), however in most applications of (11a) hL|-l does

decay fast enough. For example, if we use (5) with (I1) to

calculate the expectation value of the Hamiltonian of a liquid

helium-four droplet, then the slowest decaying part of htf) comes

from the long range phonon part of the wavefunction , frCd ^'F-al

ttrat is hC-) ^rI-l'. (see section c.TI.) using (39) we can get an

approximation to the intesrar SfuLl. nO{ftfu) for any eenerar

surface of the type (27) , by adjusting the surface width paraneter \

in (281, to get the cfosest approximation to the fn-Ct) by an
nl

exponential form.

Finally, we will compare the result (39) with the expression

for ttre surface energy of a classical, p1ane, liguid-vapour

interface, derived i" [ro]. rn [o] =i"rirar met]rods to those used

above are applied to a two phase classical system with a pJ-ane

liquid-vapour interface. The assumption made, tlrat is analogous

to (6) , is (for the surface lying in the :<y plane) '

'n(12) = T\(2,) 11(zr) g(r;",fr) (40)

where fr is some average density depending on the temperature, to be

chosen on physical grounds. In the above we considered a quantum

system at r = or so ttrere was no vapour phase, while i" ffo.f the

density was given by (for the surfase aE Z = D) r

Tr(z) = Xr" +(tn*-n.')Lfr(:a) -r t{e)] (41)
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c ' ' l!,=&) ; 1\l(z) is the cutoff function (13) - rhewhere J;(.:4J = t\o
e:rpression (4f) is directly analogous to (27) except that 1\o*O.

When the ercponential density

f L'.,' P-DA e-=/\ z < Ddf(zl = -+ rb t
I

^D/^^-z/^ -\r 
(d2)

= {'g , Z}D
was used, the e:<pression for the surface energy became, t U = Z Eufrarl

froJ "q. (78)

€ = -T ct,-^")"[d".g(r;n)uar'{r- \'F"-d"^(r.ri]} (43)

(42'1 is ttre plane surface anaLogue of (28) ' with the surface

definition sdz 5ft=!0 r.pr"cing the spherical system surface

definition (30). Fron (5) and (39) we can find the corresponding

e:<pression for the surface enerlly of a classical droplet, in the

approximation nrr =O, tC=no , namely

" rll-F rli l"orr ! tr)u(r) r[r'*I'[,'-eu'{t-t)]} .n4)

(43) with (44) we see that ttre expression for t.}te

per unit area is ttre same for a droplet and' a plane

is, rhe resurt (3e) for the intesrat fOagnOfX(f;J,
spherical system, also holds for a system witlt a

S.=
lnrrR"

So, eomparingr

surface energy

surface. That

derived for a

plane surface with $tt*t and !n'R-. replaced by the

corresponding volume and surface area.
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APPENDIX Ar(1) : The Weak Correlation Limit of g(r).

The obvious first approximation for (6) is to put

S (r) = constant for all r. This is more than just a

noninteracting limit for some guantun systems, (for example,

noninteracting spin zero Bosons , lr) page 431.), and so I call

it the weak correlation limit, tal. From the definition of

T\0...S) , Q), it follows that for a system of particres in ttre

weak correlation limit

-hcrr) = \:t) T\(r)n(r)--' N

Hence from (6) we have for the weak correlation linit

J(n)= l-k roran l-,r. (a)

We can also derive (a) from number conservation.

using (2) and (5) we have

N(N-r) = SdS 5{r; n(rr)
: 5{q SilG n6)y\elIg(ao) +[9tr*)-3,-l]

So assuming that surface effects donrt matter in the change of
I I l-

variabres dt;{q to d-Ir , (Felmman and cohen, &l Appendix 8.,

state that surface corrections cancel.), we get

N (tq-r) : 
3 

(oo) Nr + ni v 5 df (9 t"l -9(6t (b)

where ltltq) = flo(=+) when \ is wetl inside ttre systen.

(b) impries, To Il. t?(r)-3C-D - -l + N (r-9(co))

which is equivalent to the well known relation

'Y\.5{r(g(r)-D : -l
Putting g(r) = constant for aI1 r, in (c), we get the weak correlation

limit, 9(r) - l'VX
d

(c)
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It should be noted that ttre definition (2) , and hence the rest

of the section, applies to a system of a fixed nunber of particles.

That isr €l cdnooical ensemble. For non zero ternperature a relation

si-nilar to (c) is derived by considering a grand canonical ensemble

wittrin the total system, nanely, (de Bohr page 364, [al, U*t Sl
chapter 6, problem 11; and Feynman and Cohen, Ea], Appendix B.)

n"S{r(gc't-r) = -l +nJIr
\,,where Ar is the isothe:mal compressibility at absolute

temperature T (in r:nits of energy) . (c) and (d) fail to agree at

T>O because (c) applies to the total canonical ensemble vitrich

cannot e:<perienee number fluctuations, while (d) applies to a sub-

volume of ttre total system. In rnost experimental- appJ.ications (d)

is the relevant e:rpression because the total system is very rarely

measured as a single entity in an experiment.

(d)
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V = $rrei

APPENDTX Ar (2) . P.(r) .

From (14) we have, with t lQ.- ,

P(r) = N:f (:.rt;;i
lo' ' V" f 'o 

--- -Jforf

Fig. 1.

Ttre two cases

are

r< A (Rr)

r>R (R,)

The integration over

because

r5-r
J d{t
r_s

the shaded areas in figure L, is zero

rt-t: \dss -'or-f

integral is the same for both cases

.. rl ra
ta- | f . l

lL- I l A++ \,[ ss o z. I a2e,
v1 F tl-i' J'-r

o t r>lR.
r integral we have for OLf- 429

...?Qg-L+ (a+t(a'-6-+Y)
vl r 2 'r-R

U'/ rt- -Ig' *lRt)
F\1,,- L 3 /

lltrerefore

giving

the double

p.(r) :

R'['-iffi) -*(*ILj

V=

=n
N

Evaluating the doub

Bt') =

-l"rret.3
where Xo =
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APPENDTx Ar (3) . P('a) as a function of Tl(B) .

r,ettins h(n^)= 3(r.x(n) we have usins (6)

fdl {2 n(r2Jf (rr) = Jdr n(q)hq n(r;) hcr;')

putrins J- = Ie-I, , !=-f,; (F=lIr-.fl=l'or5=lf,ll
we see that we can write

where

J dt dl n(r2)ftt;,) = 5 {r h(d f & nal n(lr +tl)

= 8Tr'S:,rr'h (r) p(r)

') -- # 5dq ntsll\(tr*st)

usins (2o') , and noting that we can put n(tS.+gl) = h(-f*S) ,

we have

fl.) = #1, (* lagfobl ue(E+t')'! 
";c'trtk)n(h')

- J ( r, ^ eib,l- tenl * ) db ntb)
where we have used !. J dl gi( h.* (). ! = S (b * H )ttrgs - -
and also the fact ttrat for spherical slmmetry

Yt(g) = Tt(hJ = J\ t-h ) ,, see (zzv .

rntegrating over the angular part "t & gives

ptr) = h'+ 530 r'' fiul sin hr

P(
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The :regular

Spherical Bessel Functions ftl .

solution to the differential equation

App AI(4) 1.

(ii)

(iii)

(iv)

(i)

is ttre spherical Bessel

4txl :qo

'1tx) =-l

{(x)*
'j-t

Sone useful properties

Sinx-F

1 txt
"i+l

"r l,(x)

$1,(x) =#rt-t$ -u.Dlt*l] = J,gl-W lnt*)

: -)alrp

- J-t*)

x^1, [x)

(v)

d f xr"rrril)
dx\ r! I

#(x'[tx))
fr
J {txt dx =

I x"J"tx) Jx =

1vi)

(vii)

(viii)

(ix)

fh t Afi.r * (*'- +p){c') = o

fr:rrction of order I, I Ukl.{t
sin T

x

-il = !J'r sinxr

@t -/ t*;
x n.9

are
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APPE$iDrx Ar,(s) ' P(r) ana rpr(r")

Ise first assune RPI and define

X,= 8/h, Xe=*/Xoy=r/1

@: =t ,xr*g/[
=O , Yt

gtx) = -€lRrrra* , x11,Zl
= ga/l* €*x ', N ) R,4.

lrhen frot (271 , (281 t (sal and (35) we can write

f ty1 = *H = [j*,*,e(x,)fri;,Yx,ilGi

T(y) =

Now for f4gt(VSk) the Lower rlmit of X3 ln bottr (b) arrd

(c) eim be replaced by CX,-y) . rhis is valid tn (b) provlcled

we ex. end tl(l(4) by ctefinins ffi1= 1 for Xe4O ,

ttren .for /gRy'\ the extra terrn in (b) inclucles, (isee f,igiure J.,)

r Y-t
\,dpx*

Fig. )..

X2

e -*J= /

Xa = Xr+y

X4= X'-y

- ') b,fhen,r
/

lna

lr \
rl

t^
xr = )-xt

R,>)tr ecx,) or.lV
d

= f"* x, €(x,) J,e'i;. €(x,)

(a)

(b)

(o)

wngn Kr)>I e(X,) ls thl5 rnon

iq q srnalt ranje qhl>.^f RilX .

R,)!\ €(xe) rs only vron neqliqible
srnoll nrnlq obo..* dr/X - a a

xr

nelligb\e
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It is valid

x + R'/t

(c) because €Cx)

that the extra term

negLigible onlY for

is (see figure 1.)

is non

in (c)

in

SO

l.l ,,\ e(x,)f Jx;€(vr) = e ror y te'/x, nesrectins terms o (d['zl)
e-y

For R.,4r.lR, (Rr/XLyL2R/) \^'e can stitt replace the tower

linir of Xl in (b) and (c) by (X,-y) . rhis folLows for (b)

provided we first sr:btract from (b) the contribution from the

shaded area in figure 2. wit1' 
"t(tJ 

replaced by t. Because eCXt)

is non negligibte only for y 
= 

mt/f we see from figure 2. that

this shaded area contribution is nesligible except for f+lAr tY= 2|J{).

sinr:irarly, uecause €(x) is negligible except for X g Rt/\

ttre replacement of the lower limit og X1 in (c) by (Xt-y)

is valid except for terms non negligible only for r/ 7 LRt/X

(see figrure 2.).

Fig. 2.

Y1 =Xr+)

L-- - - _ 
- - --1- - - -- |

The calculation of these terms, which are negligible except when

Uhen R,>)\ e(xa) il "",lllon negligible
in o. srnall rarrge qbo.rt R,/X .

I

R,>> \ Q ( x, ) is o^ly nb^ ne ql, iii ble
s rvrq I I rq63q 

"^ 
!ro*{ d' /r . 

o c'

F;lR, , is straisht fonrard and tor i1;^Ly L lBf vieLds



only be non negligible for ,/ 
= 

\l/tr. Honever, we will not

{(v)
(o Ay gerl.)

n & rY'+Y

-

-t\J (y) ='
(o4y i rn,fi)

We now evaluate the

calculate any of these terms, but instead assume that in (11a) hcr)

decays wit]. l- fast enough so that we can neglect all the terms in

P(t) rhat are non neslisibte only for f *LR/X. rhus with this

proviso (b) and (c) become

terms in (b) and (c) which

AIso vte see from figure 2.

epp AI(5) 3.

^ v- 2Ry'\
are aII proportional to e I

rhat for Y'24'/X (b) and (c) will

(d)

(e)re r xr+Y

\d*,x, Q(x,) J*llgt" €.(xt)

derivatives of (d) and (e) wittr respect to y/

.8 ?- 

--l

+ )\dx,x, €(xr) 11\ 
(x,+)) -tr( x,-Y)J

rRy'l a r, (R,/\*I
\"d.rr'e 

* + en'/\lR*rx'cx

*rx$f, e* - e*,/x !.ii;t -J

we find

[tt+t *ry - n] (r)

rQ -_ 

-i

= Mx, x,"eCx,) fn-ffiy) + tr tx1- y1

-R./r r*'a-y -= -e"'/IJ;i,.i.. - d*'/t

* y{- do,^J:'i;Y.' * €
"L o

Neglecting terms of order e-R'/t

tvl - r(*) -rY -s)
dy

Sla*, x, ecx,tI t",*y1 frc,G+T + (x,-y)Fr ]

-r (x,

_ €y e 
,0,/^Jll;r.r_

dflg =
dy

rrom (e)

d-4v)
dy

- y) e(x,-rX= f3,.,x,e(x,)[C*,*y)Q(x,*y;

= f: ", 
r,^ eg,;fe(x,+y) + €(x,-vn * y !]-, x, e ($fe U rY) - e(*i-y!

-.'[;11"?/r-Y
_* e 

yd-^l;"- 
^,€r*



+ e ve-rR'/^S,lil-^r -e'#r * eY

-y{ gY.-rc'7^lJl;'.-" -ttlfr * e-Y

_ eyd,.r^$,;d, * ur$i;t _d

App AI(5) 4.

&

eto'a [d" ,'d*
'Q,h*y

do,/^ffi" {z*

Ye*,A (; *.-." ]-e.ll+Y 
J

Neglecting terms of order dR'/x we find

dgr = {Y[ 2f$)" -1y(+)"*+' * y *']
Ty L \\/

Frosr (d) and (e) we have fc"):'[(o)=o, so that

integration of (f) and (9) gives

(s)

1 .r -r/X= n" Rilre
L

(j)

E($'-F)"*3(tXn: Xe /^T
+ I r - e-'lil , Q Lr4rRr

,lly) rel,.i -te) *'"(+)v -)"* c"k$r'l +([e1] (h)

T(y) 
^^ ,: rf$)"ydt -svlf *v"*3{ *{'Lt-.{ (i)

(;#eue,/)^\ \T/r L3 t

Therefore we have shown that for h>\ and assumi"n h(")

decays fast enough so that we can neglect terms of order g-ly- ^o^l ,

that the exponential surface (28) leads to

rp(r) = -.rntf ni[r-r€) -i({,I- UoI *2"'t\o" \3r e 4
- 6n: \* Ll -e-'l^], o4rzlR,

r p.tr)

=or.xR,
'n.^ I+

(k)
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II. ROTATTONAL STATES Ol'QUANTUM SYSTEMS.

In this section trial wavefunctions for collective rotational I

excitations of a guantum rnany-body system are investigated. The wave-

where 0 is the exact ground state wavefunction. The er<pectation

value of the energiy of the state (I) is easily calculated, provided

the potential energy V commutes with F (for example V must not contain

velocity dependent interactions). with this restriction it follows

that

functions considered are all of the form

V = F0 (r)

(H - E.) V = -t O' f g..( 0'!.F)

where HE=EE andHistheHarniltonian

H= f.
lrn z

h
v; +V

Then by a simple integration by parts we have (cf. eqn 4 of [tJ I

S at V*( H-E )P
Sdt lEl'

l' Z<lv'.rl'> (4a)

tnr h etFj5

(3)

(2\

(4b)

where dt = T{t "r,a 
(

e:<pectation value defined bY

(e) = Sdt B !U,"

GrCr
The integrals in (4a) .14 (4b) can include a sumnation over spin

variables as well as an integration over space. It is the sinplicity

of (4a) ttrat makes trial wavefunctions of ttre form (1) so attractive'
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This section is divided into two parts : The first part

investigates certain isoscalar, rotational excitations of even-even

nuclei. An isoscalar nuclear motion is one in which ttre proton and

neutron fluids move in phase. (In fact for part (a), all differences

between protons and neutrons are neglected when evaluating (4).)

Most of ttre discussion is about a particular 2+ state; spherical

nuclei are discussed in a paper supplied with this thesis' [tl '

and I consider a possible extension to deformed even-even nuclei'

Part (b) considers isovector analogues of the nuclear rotational

excitations in part (a). An isovector motion (or polarization mode)

is one in which the proton and neutron fluids move out of phase.

It is noticed that the sirnplest wavefunction of the type proposed

should give a good description of the resonance state of ttre I-

giant dipole oscillation. The resonance energy of t].e giant dipole

state for spherical nuclei is calculated using this wavefunction in

a paper supplied with this thesis, [r] The value obtained by

including only those pair correlations due to Fermi statistics is

close to experimental data.

Many of the results of t]..is section apply to finite quantum

systems other than nuclei. For example, the isoscalar excitations

discussed in part (a) should also be rotational states of polyatomic

,.b
molecules and droplets of superfluid tle . For nuclei the energres

of these states are in the region of known experimental results, but

in the case of liquid Hf , it can be seen from the weak correlation

approximation results of part (a), that ttre energies would be so low

that ttrey would probably be impossible to detect directly. For this

reason I have restricteil ttre quantitative results to nuclei.
(
I aside: The problem of translational invariance (see below) is

trF
avoided if one considers rotational excitations of liquid Fla in a
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container. For a cylinder, trre wavefunctions corresponding to the

sphericar srares (9) and (12) follow by changins Y"(r)trot) to

etl f(hr) . These compressional states will have an energy

that is of the order of N (or perhaps t'tVt) lower than the

experimentally known vortex excitations, where N is the number
r^ 'l

of Het atoms. I

(a) Isoscalar Rotational States of Nuclei :

In reference [t] a set of three-body angular momentum

eigenstates is generalized to obtain a set of many-body rotational-

wavefunctions of the form (1), with 0 assumed to be both trans-

lationally and rotationally invariant :

V.^^ = [,Q : fFFCYIE'1ftr:r) Q

since Y"cr) = [-l)tY.*tr) ir folrows that V"^ is

zero for odd L, i.e. L must be even. From ttris we also see that Vr*

has the same pennutation sylrnetry (i.e. bose or Fermi) and inversion

symmetry (parity) "" 0 . An important property of these wave-

functions, given particular attention to i" [s] , is that they are

translationally invariant. This is necessary because (i) the orbital

angular momentum of a system of particles is independent of the

choice of origin only in the rest frame of the system, (i.e. only if

the wavefunction is translationally invariant), and (ii) the

uncertainty principle insists that the centre of mass becomes

indeterminate when the system is in its rest frame. That is, the

true excitations of a self-bound many-body quantum system are

translationally invariant and wavefunctions constructed on the basis

of the centre of mass being fixed at the origin oay describe

(s)



completelY

t0=
It was shown in

,L
eigenstate of !

lrl that when

and La with

unphysical motions.
  a?lL) rhat V/. is an.LL

eigenvalues 1-(;+l) hl ana Lt respectively, and further, that for

harmonic pair interactions between N identical bose particles,

i.e. (3) with

+ (onsfonf
AA

v = .'u:(Fr (6)

(7)

rhat vL. withf=lisalso

Eo+L

an ener!ry eigenstate

/tt'uA\Y"l-I

\ 1nql /

with eigenvalue

tr=

(an erroneous factor ot {f in eqns 28 & 30 "t [:l has been removed).

V^. (with f = 1) for sPhericalThe particular rotational state

nuclei, is investigated in detail in

0 to be the ground state of a non

follows that L=O as well as TneO

?1
reference Lt J . BY restricting

deformed even-even nucleus it

in the ground state. It is

assumed that for bottr 9"* urd 0 , that the spJ.ns are paired up

to give r.ro S so that spin coordinates can be igmored and the total

angular momentum is the orbital angular momentum. So O is a O+

state and pra is a 2+ state. A consequence of taking 0 to be

spherically symmetric is that Vra t" degenerate for all M, (-2'-L'o'L'2)

since the energ:y cannot depend on tl.e azimuthal quantum number for a

spherical system. To evaluate the expression for ttre variational bor'nd

to the rotationar energry, AE, (= Et-F") , art" weak correration

approximation is introduced. In the weak correlation limit the

nucleons are correlated only by virtue of the finiteness of the

self-bound system, i.e. the correlations are characterized solely

by a number density n(r) (measured relative to the centre of mass) '

Because ttre nucleon hard cores occupy less than 18 of the total volume,

it is assumed i" [fl that the weak correlation approximation does not

AII.4.
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introduce qualitative error. This is justified in section five of

r1
Ll I using the particular pair correlation function t(|il,) = O for

li.ZO ana $(fr) = t for [i.)g. . In the weak correlation

approximation the variational energy of tl.e 2+ state is caLculated

to be

AE L lf,- ! 2-OO A-yl MeV (A is the number (8),.'z - Rt of nucleons)

where R is the nuclear radius (which is talcen to be l'lAh{rn ) '

rt is noticed in section four "f Lrl that by fixing the centre of

mass at the origin ttrat the L = 2, f = Ir wdVefunction of the class

(5) can be written as

| -.t- g
W.'=8.: 0 = )tj'\rtr,t[ (e)
rlle ll4L i '

Because the translationally variant wavefunction (9) originates from

9,. , we can be sure that gaL represents an internal

excitation and not a spurious centre of mass motion. using the

simpler wavefunction (9) and the weak correlation aPproximation,

the quadrupole moment and the transition rate to ttre ground state,

are calculated to be

and

-t\I I L=1. A=2 ) c3
B-

J- a' et kt Rh/zsA t
A comparison of (8) and (I1) wittr experimental data produced only one

^,lolpossible identification, namely the first 2* state of fb at

4.ogs t}leV

rn the last section or [,rl it is concluded that 9r^ is a

finite system angular momentl]In projection of Felmman's phonon

Q(fi=2) = -+FeRt (?thenumberorprotons) (10)

( 11)



excitation proposed for liquid l'{ab . This conclusion $tas arrived at

by considering the generalization of (9) to f I 1 :

V^| = E (r=1- q') f tr:.1 S*lo j

AII. 6.

(L2'.)

rn the weak correration approximation and taking 0 to be spherically

symmetric, it was found that the optimgm f is f (r) = f-rflhf) 'JL

where F = llnAE^/f with this f the wavefunction (12) becomes

the L = 2 component of Felrrman's wavefunction z
.l

eib'$ 0 . From

this interpretation it follows that 9.^^ is a rotational compressional
-lir

density wave carrying angular momentrm L = 2. However, in note 7) of

BII an argurrent based on the expected velocity field of wavefunctions

of the form (12), strongly suggests that when f = I that the physical

nature of (I2) changes to become an incompressible surface oscillation,

i.e.forf=I l,li
shoul-d represent a rotational surface wave

carrying angular momenttun L = 2. For spherical nuclei the difference

between the two physical interpretations is a minor one, provided the

dnplitude is small, but for deformed nuclei some of the small amplitude

surface lrlaves can also rePresent large amplitude rotational and

vibrational modes. I shall make use of the surface wave interpretation

a tittle later on, by assuming that prt can also be applied to ttre

deformed even-even nuclei. But first I should include a note of

caution about ttre main assumptio" i" [rl used to obtain t]te energy

bound (8), namety that the weak correlation approximation does not

introduce serious error.

1) The possibility that the weak correlation approximation introduces
oualitative error:

In the calculation of the variational energry of the 2f state of

spherical nuclei, in reference [tl ' the weak correlation approximation

implied that rhe four-particre part of < I Fr". l") and the tvo-
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parricre part of ( tAj" lt ) were identicatly zero. However,

both these terms are multiplied by an extra factor of A than the first 
I

non zero term in the energry denominator. So a large error in the

result for AE. could have been introduced, unless ttre weak

correlation approximation leads to errors of less than the order of l/h

in expectation varues like ( frt) . rn section 5 of El it is

shown thaL the simple pair correlation fr:nction

q(r,') =f o r'ar (r3)r-'-' Ll Ee)Q

Ieads to the result

( r"') = ( r,'),{, * (S)' + o(+). t (14)

where < |!t). ( = * 
g') is the weak correlation rinit.

Taking (L to be the experimental nucleon hard core we have

Pta\ :t h A'Vt . so *re correction term in (14) is
L 'TTJ

<< l/a , which supports ttre use of the weak correlation

approximation in the case of nuclei. Ho\dever, the particular pair

correl,ation function (I3) is misleading since when (L is the nucleon

hard core it fails to satisfy the number conservation identity (see

eqn AI (2) )

s d5 t {q n(r)n(E) 9 
(r") = A(n-t) ,

where the pair density has been approximated by (see egn AI (6) )

h(f,, f.) = "vttri) n(E) 3 
( t;^)

(

I asiae, t1(f,,f,) i" defined such that n(r,E) ds dr, is

the probability of finding particle one in a volume df, about fi '

together with particle two in a volume {t about !- . So when

particle one is fixed at q the integration over dg.a in (15) gives

(A-I) instead of A. Thus the right hand side of (15) is A(A-1) and

(rs)

(16)
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(17)

nor Ar. ]

In the notation

( r;.") =

.t Ltl , we have

Hj'," + 4 o(k"tJ

of section five

<,r",).[ r _

Sjt r; ntr) lio E "(,:)5'[i 
q. [gcil-r]

where, using (I5)

K.=

(18)

(le)

of

for

= #"1 Sdr S{q,n(r)r"(E)9{n)

h^t A(e-r) - 
^'1

-A8Tr

-[s{'wrl]'}

So the requirement of number conservation impl-ies

(r*') = <il)"[ t * * + 1o(#)]

The correct result (19), which replaces (I4), suggests that errors

the order of 1O0t may have been introduced into the expression (8)

AE"

Ttrere is also a possibility that ttre result for AEr, couLd be

completely incorrect, if *e YA tenrs from expectation values like

(19) were such ttrat ttreir contribution to the four-Barticle part of

( tf-tt) (or ttre two particre part or ( tf;|t) )

happened to cancel wittr ttre weak correlation approximation terms in

the energy denominator. If this was the case ttren AEt would be

proportionat to A'Vr instead of A'2tt . rn part (b) (i-e. k7 l,

ttre simptest isovector stat" lf exhibits this type of cancellation.

rt is known ttrat (V represents the resonance state of the giant
-lo
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dipole oscillation, which has an experimental energy

AE, = goA-rr MrV.
But even for arbitrary proton and neutron radial densities, the weak

correlation approximation leads to AE, X JO A-'lf /Vf CV

The experimental variation of the energy wittr nucleon number A, is

only obtained by including the pair correlation terms in the energy

denominator, i.e. the terms analogous to the Va contribution in

the expression (I9). Wtren this is done the contribution from the

weak correlation approximation is cancelled exactly, leaving higher

order terms that give AE, ^r p-yr . rn referen." fzl the energy

is calculated by including only ttrose pair correlations due to Fersd

statistics, but provided the non indistinguishability between Protons

and neutrons is first taken into account (i.e. q- is an isovector

state), then the Ah rr"riation also folrows from the same type of

number conservation argument that led to (19). That is, ttre

variation is independent of the nature of the short ranged correlations'

which only determine the proportionality constant. The guestion is'

could this be a general result for aII of the isoscalar and isovector

wavefunctions,
L,|A

and , when appliect to sPherical nuclei?w
-/.Jl

In particular, consider the 2+ state Vo* of refere""" frl .

vrhar we woutd rike to be able to do is to identify !P1,. witrt a known

excitation of spherical nuclei. For this purpose the extensive work

of refere""" fal is very useful. I concluded above from the results

of Brr, ttrat pra (when f = 1) should represent a surface wave

carrying angular momentum L = 2. Hovtever, tttis motion can equally be

regarded as quadrupole shape oscillation about a spherical equilibrium'

so perhap" Vr' is the isoscalar giant. guadrupole oscillation, in

analogy to which is the giant dipole oscillation. The discussion

on quadrupole modes starting on page SOZ or f+J is in ttre usual

Ianguage of nuclear physics, but it has sirnilarities with the many-body
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approach used in this section. For example, refer"".. [al introduces

-lthe idea of the quadrupole field, which happens to be tr1" (see the

translationally variant wavefwrction (9) ). The spectnrm of independent
Fl

partiele excitations produced by the field ti* is divided into two

groups, one at low energy and t-l.e other at high energD' (see page 466

rsof L4l ). From this it is concluded ttrat there are two different

quadrupole modes. The strength of the low energy mode vanishes for

closed shell configurations and it is identified with rotational and

vibrational states of deformed nuclei (see below) ' The high energy mode

is the giant guadrupole oscillation, which is found to have an energy

AE" = 58 A-' lAev (see E] p 509). An imPortant

property of the high energy guadrupole oscillation is that it uses

e(t)
up a large part of ttre U' sum rule (sun rules are discussed in

e(t )
section AIV). In Section AIV the contribution to the 5t sum rule

from the five deqenerate LA states (note, this degeneracY onlY

calculated in the same approximation

ttl , namery, the potential energY is

assumed to comrtute with Ft: , which implies the neglect of charge

exchange and velocity dependent interactions. The result is

(see Arv (17) ) , that the Vrl state in spherical nuclei exhausts

ttre factot 7/A of the Sf;t"r.""l sum rule, which strongly suggests

that it represents the giant quadrupole resonance state.

From above it follows that the V* state of spherical nuclei

should have an energ'y proportional to A-ll , and not A-ztl as is

found in the weak correlation approximation (i.e. (8)). If this is

correct, then to get the true energ:f one must include the short ranged

nucreon correrations. For the !4! state of reference kl the

procedure is simple since the exact energy is expressed in terms of

holds for spherical nuclei)

used to evaluate the energY

,is

in

two-particle expectation values, but for Vra t. need to evaluate
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four-particle contributions. For V^', we only need to evaluate

two-particle terms but because of the broken translational invariance

rhey are no longer of the form ( f:f) . Because of ttrese difficulties

r will leave to the future, the problem of extending the wort or frl

to include the contributions from short ranged internucleon correlations'

It is worth pointing out that virtually all ttre collective states of

spherical nuclei considered in reference [nl , have an energ'y varying

as A-rlr . For exampre, in the riquid drop moder (App- 6A of [nJ I '

every isoscalar and isovector compressional mode has an energ:y that

A-yt . Thus it is possibLe ttrat the wavefunctions 9ttsas

q^ (see part (b)) represent these states ( go is known to) I

but that the weak correlation approximation leads to an unexpected

qualitative error, namely ttre weak correlation terms in t'he energry

denorninator may be cancelled by part of the contributions from the

short ranged correlations. This speculation should be kept in mind

when reading section AIII (which was written prior to this section) '

where the energies of collective vibrational modes are evaluated in

the weak correlation approximation.

NOTE ADDED IN "PROOF" !

consider the denominator term in the exact expression for the

varie

and

variational energy of the state \Pr* , namely (see egn 31 of Ll1 )

D = (oz,o ri.F- dr;.') + *(rriJ-(E;'lT,^+1,["'Ei) 
+D{A)

In the weak correlation approximation

D = ( q/,o[-ot - Ct n'). =
lr

ttrl =
where

F



In the cutoff density approximation

(see (44) & (45) ). So in the weak correlation approximation we

rn = *ri R' ,

have

that

r €IS

(ntr;..,8D

D - QF , which implies AE^ A, \7^A, '\, A-L/t

However, I will now show that ttre exact expression for D is such

D ,* R-vt (* , which impries AE" '4 A-7r

was conjectured above. To evaluate the second term in the exact

expression for D we need to evaluate expectation values of the form

where S e (2,3,4) and (see er (2) )

r\(r...s) = Al S&d. . .di 6'
(A-r)! 5d1.. ..di 0^

In analogy with (16) let us define a generalized s-particle

correlation function g(1...s), bY

"Y1tr...S) = h(r)trtr). . . n(s) 9(t... s)

Then we can write

= Sdnr,rS&ne;. . S& h(th(8, .,F

Sdt 
"otSdr 

rrpt ., f il n{sl [r +'(9(r...s) -D
The weak correlation result, <h). , is obtained by putting 9 = I.

Now in the case "f h = # , we found that the correction terms

coming from (g-l ) I o in the numerator were at least of order q-h

smaller than the correction terms in ttre denorninator (see (14) and

(I7) ). This is almost certainly true for all the other terms in D,

i.e. (,F,.F) , (Gtr*')*u ( ti"tr.rt) . (see ttl ror a proor

for rhe case of (frn) using the special model (I3) for g.)

The reason for this lies in the nature of the integrands, which are

largest for maximum interparticle separations, while (s - 1) is

negligible except for small separations. We can find the correction

terms coming from ttre denominator, since from the definition of

AII. 12.



iYl(r...'s) we have

SdJ. dj h(r.. s) = A I
16_r)!

arrd

A(n-r) = 6.(r- )zn) , A(R-r)(n-r) = nt(r- ?/A*otln4)

A(A-rXn-l)(l-l) = n+( r - 6/a + o t7n'))

so that the reguirement of number conservation implies (cf- the

previous result (I9) )

(rJ) : (rJ). I '** -| +ot%"')]

(riro') = (r,in'X I r *t + Lo(P'l

AII. 13.

(leb)

(1;. 1;i) = (u), { r *# + 4o(h,)}
Using these results we get

-r. o6-Yt)

: z [r;a1"-frl + otA-u,5'L\' J

(r have used equations 32 - 36 "r [fl .f

so D ^, **6-t/r ir

Ftr.)t-T+l = O (lec)
Ltr-/ I'J

In ttre cutoff density approximation, (19c) is almost but not quite

satisfied, instead I finil

D = - #<* ri,b -r;'[-o'). + o(A-'A )

For nucrei (i.e . A AZSO ), this resurt wourd give AE"t A^tl

and not .'t f-t/t , since the cancellation of the weak

correlation limit terms is almost exact. However, for very large A

the cutoff density approximatj-on would lead t" D(O , i.e. AEr( O ,

p = <% Fo*- r;i ni). * fi | r(r;"n). - l3<r,'" l-,r'). * t2<tlif ]
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which is nonsense since A E is positive definite by definition'

The explanation for this must be that the cutoff density approximation

is slightly inconsistent wittr the presence of short ranged correlations

(e.g. tl.e surface thickness must be as large as the "hard" core diameter) '

So it is quite possible that the real nucleon density will lead to (19c)

being satisfied exactlY.

To sum

shows Lhat

up - the above argument (which is virtually a proof) '

ttre result derived in [f] , for the excitation energty of

in the weak correlation approximation, is qualitatively

incorrect because of an unexpected error in ttre weak correlation

approximation. Namely, ttre inclusion of short ranged internucleon

correlations and t}le requirement of number conservation leads to the

weak correration limit terms being cancelled, leaving AE.a

proportionar to A-l/t . The proportionality constant depends

on the physical nature of the correlations, which rnakes a calculation

of the true energy difficult, since four particle correlations are

involved.

2) Rotational excitations of deformed even-even nuclei :

I will novs consider the guestion of whether the isoscalar

wavefunctions (5) ( Wr, = f^ Q ) , can represent rotational

states of deformed nuclei. That is, can we use wavefunctions of the

form trF tten ![ is no longer spherically s]mmetric? This

discussion is based on speculation rather than rigor, but the results

obtained will lend substance to ttre speculation, which in turn will

make us think about the physical nature of rotational excitations

in deformed nuclei.



Deformed nuclei are for:nd in regions a$tay from closed shell

confisurations : (for A)fO) /tO * A1 t88 and A lffS

Odd A nuclei in these regions have large positive quadrupole moments

(i.e. protate or cigar shaped), and alltrough even-even nuclei always

have a zero ground state quadrupole moment (because the gror:nd states

of aII even-even nuclei have the guantum numbers I'= O+ L the

experimental results for the low lying states of even-even nuclei in

the deformed regions irnply an "intrinsic" deformation of the same

order as for the neighbouring oild A nuclei. In particular, the low

energy spectra of even-even nuclei in the deformed regions often

consist of a seguence of states with fT = O*, 2*, 41, (where f

is the total angular momentum and Tf is the parity) and energies

approximating ttre formula

E(I)=CT(r+1) (C a constant)

This formula is the well known expression for the quantized energy

Ievels of a synunetric top rigid rotator (e.g' a diatomic molecule) '

rotating about an anris perpendicular to its syrnmetry axis. For t.l.e
*2t

rigid rotator 
" =i-hq . , where f- is the rigid body value of. - tri!

the moment of inertia. Also, by reguiring the symmetric top ltave-

functions to have positive parity it follows that the total angular

momentum, relative to the rest frame, must be an even integer. So

the experimental results for the low lying states of even-even nuclei

in certain regions of A, strongly suggest ttre model of a prolate

spheroid rotating about an axis perpendicular to its syrmrtetry axis'

The standard physical interpretation of a rotating deformed nucleus

assumes that many-body correlations act to create a "Slowlyt' varying

rotation of a fixed shape, but that viewed from tfie body fixed frame

the "fast" motion of the nucleons appears to be "erratic" and free Of

the many-body correlations (see p 385 of [tl l. The collective nature

AII.15.
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of these rotational states is verified by the extra large transition

rates for decay to the ground state. For a spherical system ttre

wavefunctions (5) apply only for even L and have the same parity as

the ground state i[ , and I will only be considering an extension to

deformed nuclei in which this continues to hold. Thus I arn restricting

the discussion to the deformed even-even nuclei. Experimentally it is

for:nd that 1 is 2 to 5 times larger than t|e moments of inertia
-rb

calculated by assuming

et-\ 
- 

Tr' Tl \
E LI) -: R I(I-+t )

tc
^J

So the deformed even€ven nuclei are not rigiil rotators, but instead

possess a non zero flow field in the body fixed frame. The opposite

extreme to rigid body flow is irrotationat f1ow, which has a moment

oof inertia ( {*o+ ) given by equation 66 of section BI1. The

irrotational flow field is better than rigid body flow in tlte sense

AII. 16.

(2ob)

tlat l,*., vanishes for zero deformation, as is found for nuclei,

but ?.rrrr( turns out to be about four tirnes smaller than the moment of

inertia of deformed even-even nuclei. That is, the amolstt of nuclear

matter transported during a single rotation is always for:nd to lie

between the rigid body and irrotational flow values. However' from

the irrotational flow concept comes the interpretation of ttre rotation

as a large amplitude surface wave. As explained in note 7) of

section BII, a particular classical irrotational surface wave travelling

around the surface of a sphere, is equivalent to the rotation of a

prolate sPheroid about an axis perpendicular to its axis of syrrnetry'

Furttrermore, in section BII, arguments are given to show ttrat the

(t-rrn) = e,2) and (1,-2) states of the transtationatry variant wave-

functions (9), will describe such a surface wave Lravelling around

the Z axis. It was also argued that the (2rO) state can represent a

large amplitude vibration of a prolate spheroid, that preserves the
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axial symmetry. The purpose of this section is to use the results of

BII by assuming that the wavefunction V^ - E - O can be applied
'l2rt 2A '

to d.eformed even-even nuclei, by taking the probability density ![a
to be that of a prolate spheroid.

The first problem that arises is that the ground states of aII

even-even nuclei are known to be O+ states, so that they must all be

in some sense "spherical". In fact, as noted above, the experimentalty

determined quadrupole moment of the ground state of every even-even

nucleus is zero. Some nuclear physicists (see for example [Uln 233),

interpret tJ:e "spherical" properties of the deformed even-even nuclei

as due to the uncertainty principle : the nucleus has an intrinsic

quadrupole moment with respect to a symmetry axis but because of the

uncertainty principle (orientation angJ-e is conjugate to ttre angular

momentum), the direction of the axis of symmetry is indeterminate, which

means that an experiment to determine the quadrupole moment measures

only the average over all space, i.e. zero. Consider the isoscalar

wavefunctions (5), which are of the form

= q,"0

If we continue to assume, as for the spherical case [rl , trr"t the spins

are both zero, then the totalare paired up so that S 9.^ ""u 5 i[
angular momentum reduces to ttre orbital angular momentum and from Fl
it follows that 9* t= an eigenstate of angular momentum L provided

tD = O . However, it is not obvious that the uncertainty

principle argrurent can be applied to a ground state such that tE,=O
as well as IE = O . This is because the condition t Q = O

should imply that the ground state is rotationally invariant in

space, i.e. not deformed. One possibility is that tJ:e ground states

(21)

or even-even nucrei have I![.=Q uut L 0 = - S- 0 # O



To maintain a constant deformation throughout a rotational band we

\,routd need ! Va. = ! 0 and then perhaps the wavefunction (21)

wiII still be an eigenstate of the total angular momentum as indicated

by the sr:bscripts (L,M). I shall avoid the problem by sinply assuming

ttrat for even-even nuclei , V* is an angular momentum eigenstate

with eigenvalues (LrM), but that for the purposes of evaluating t.tte

energy for a deformed nucleus we c;ul write

9* = f,,. O'
1-I

where A describes a prolate spheroid. Another way of looking at

this is to consider the question of orthogonality. For $Paa to be

a suitable trial wavefunction it must be orthogonal to the ground

state 0 and this is guaranteed provided pr*, tt"" a different

angular momentum eigenvalue ttran CI . For example ttre Vr^ state

is assumed to be a 2+ state whife ![ is of course a O* state.

Ho$rever, the orthogonality condition can be expressed directly by

( q") = o

*rere ( ) is the gror:nd state expectation value defined by (4b).

Equation (23) holds provided 0^ is spherically synmetric but when

O is substituted by the deformed "ground" state O' , (23) no

Ionger holds, i.e.

( n,) *o
where

AII. 18.

(22)

(23)

(24)

(e) = sd!..d4Bo'^
tdl. . .& O"

(2s)
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The e>rpression (24) together with equation (4a), implies a large drop

in energy when Vr* t= applied to a deformed system in comparison with

spherical systems.

The wavefunction (22) has some interesting similarities with the

unified model of rotational collective motion' (The original theory

is due mainly to Bohr and Mottelson, =." fal , but I prefer to work

from reference [tl n 386-].) The unified model is ttre main theory

of nuclear rotations so far proposed by nuclear physicists, and is

based on a Hamiltonian of the form

rr lt T' . tl
H = Hi"t + Iro* + Hco.gl , (26)

tr -|-
where Hirt describes the intrinsic motion, lrot describes the

collective rotation and H*tf represents the coupling between the

two motions. rn ttre zeroth order approximation, Ha*, = O '

the wavefunctions are of the form

= F(eh) q(d) (27)

,
where tr are the coordinates with

which is defined by the angles 01 .

staterdeterminant of single particle v"avefunctions in a deformed

potential whose orientation is given by Of . So the wavefunctions

(22) and (27) both assume a deformed "ground" state 0' and it seems

plausible to suggest ttrat the E- of (22) , which is a function of

ttre particle coordinates in the non rotating frame, perfonns the same

role as the F(Of) of (27), which is a function of a set of

collective coordinates. This idea is supported by ttre fact that

F(q) (the ei-genfunction of 'l;t ) is a symmetric top eigenfunction :

g[1..r

respect to the bodY fixed fra:ne,

Q t gi) is taken to be a

F(o.) = rtK
(2s1



F(Oo) is an eisenstate of Et , T. and Iz' ( zt

rotating axis of synmetry), with eigenvalues I(f +l)ta

and Kt , respectively. For the lowest states ,R=O

be the only case that I consider) ' (24) reduces to

F(sr) Yto.tI.lt-I
t,TTT

is the

, fult
(which will
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(2el

which gives a direct connection wittr the wavefunctions (5) and (9),

except that the collective coordinates Oh are replaced by a sum

over ttre nucreon coordinates in the non rotating frame. Furthel:llpre,

the total angular momentr.un of FCl,') is zero, because a rotation

of the system does not change the numerical value of any of the

internal coordinates. This is the corresponding statement to my

assumption ttrat I Q' = O , for the wavefunction (221. Another

interpretation of wavefunctions like (22) *"t6 (27) is to regard them

as angular momentum projections of a deformed intrinsic state 0' I

where f,, i= the projection operator (see El p 90 and [tJ n 461) '

I will set of wavefunctionsinvestigate the Particular

V.. = E- iD'

?
where E^ is given by (5) (with L=l t f =l ), ot its translationally

variant form (9), and 0' is a deformed "ground" state, assumed to be

a prolate ellipsoid. i" [rl it was noted that for 0' spherically

slrrrmetricr all ttre five states of the set Q9) (i'e' M = -2'-I'0 'L'2)

are degenerate. However, when 0' is deformed this degeneracy is

broken. For example, if 0' has axial s'mmetry (i'e' an ellipsoid

of revolution), ttre five fold degeneracy splits up into two sets of

1,oyo fold degenerate states, (2,2),(2f2) and (2 rl-l ,(2tL), plus the (2'Ol

state. I have previously noted from an argunent in note 7) of

section BII inplying the nature of the irrotational flow field

corresponding to wavefunctions of the type (9), that it follows that
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the (2,2) and (2,-2) states represent a rotation of an ellipsoid of

fixed shape, and the (2,O) state should represent a large anplitude

vibration of an elJ-ipsoid, that preserves the axial slrmmetry, while

the (2,L) and (2,-1) states can only describe small amplitude surface

waves. This broken degeneracy is associated with the fact that shape

deformations of quadrupole symmetry extribit both rotational and

vibrational degrees of freedom (see [n] n 677 -). on page 682 "t El ,

it is stated that for an equilibrium shape with axial symmetry, ttre

five quadrupole degrees of freedom separate into trirlo rotational modes

and three vibrational modes, one of which preserves the axial synunetry

( P vibration) while the other two oscillate away from axial slnnmetry

( Y vibrations). This appears to correspond exactly to the physical

interpretation of the wavefunction (29), based on the argument of

section BII.

To evaluate the variational energies of the states (29) I shall

use the weak correlation approximation. This will lead to quantitative

errors, but because of (24) there is no longer ttre possibility of ttre

qualitative error that seems to have occurred for spherical nuclei'

This is because tlre four body terms or ( | F-l), which are multiplied

by an extra factor of A more ttran tlre other terms in the energY

denominator, novt dominate even in the weak correlation apProximation,

whereas for the spherical case they are approximated by zero.

Another point to consider is whettrer or not ttre translationally

invariant form of (2g) is free of redundant coordinates wrren ![t

is not spherically symmetric. A translationally invariant wave-

function guarantees that the centre of mass motion is treated correctly

but it is not obvious whether or not ttrere are now redundant variables

due to the broken rotational invariance. For example, in the unified

model the introduction of ttre collective coordinates 9n , defining

the body fixed frame, produces three redr:ndant coordinates, whi-ch
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cannot be completely removed because of the presence of the coupling

term in the Hardltonian (26), L.e. Coriolis forces. tsee fSl pp 387-9')
(
{aside: Fromnow on I will drop the ilashed superscripts on the wave-

functions (9), so that V", wifl refer either to ttre translationally

invariant states (5) (with L = 2 L f = I), or to the translationally

variant states (9). It was shown i" [f] for the spherically syrmnetric

case, ttrat in the weak correlation apProximation, breaking translational

invariance leads to an error in AE1 of oxaet l/A onry.]

(i ) The (2 ,2) and (2 , -2 ) states :

Consider the wavefirnction
tl

where I is the deformed ground

A

= t(x;riy,j=t

and

f

, ^a l

< lq *l') =

%*, = Errg' '

state

Er.

From the results of note 7) of section BII we expect Var. and

W to represent an ellipsoid of revolution rotating about anr 1-l
axis (the Z axis) perpendicular to its symmetry axis (M = -2 is just

tl.e opposite rotation to M = 2). Because ttre rotational energy must

be a constant of motion, I witl assume that tJle energy of Vr t^
can be calculated at the particular instant when the axis of symmetry

coincides with t]le X axis. The variational bor:vrd to the rotational

Aeenergy, AErrr, , is still given by ttre expression (4a) except

that the expectation value is now over the deformed probability

density 0't , i.". ( y as defined by (25). From (30) we have

(tYq.,l'Y = 8<xi+y,')
anct

A<(x,.*y,rl) + A(n-t)((xFy,').

(301

(3r)

(*r'-yj) + Lx,V xrV") (32)



In the weak corelation approximation (32) becomes

the last term

is given by

q
Jt tt

Am?
tr vI'xi-

(x,t* v,tY

(rf *^l'J = A((x,'*y,'Fy +A(A-l)<x,'-Y,')'

in the limit of large A or large deformation or both'

(33) dominates and fron (4a), the variational energy

So

of

AEr* L Lf (,{}1d-
' '- Arn 1ir'- Y,'y"

= 1(2+l) h'
2j,n,

where

From equations rcq and (66) of BII we see that (35) is 3/4 times

the irrotational moment of inertia of an ellipsoid of revolution

slrmmetric about ttre x axis and rotating about flte z axis. Note that

if the angular momentun was taken to be ttre "classical" value lFt"

insread of 6tt , t:.en we would have J^*, = f,r-n . rhe

value of (35) is about five times smaller (i'e' AErrris about five

times 1arger) than the experimental results for the first 2+ states

of deformed even-even nuclei, It is plausiJrle to suggest that the

poor value of the energy is due to the weak correlation approximation'

The inclusion of internucleon correlations (starting witJl pair

correlations) will probably lower the energy but it remains to be

proved whether this wiII explain the entire factor of five. on page

427 of reterence fS] it is stated that for nuclei between closed

shells, that ttre correlations due to statistics are responsible for

the rnoment of inertia being much larger than the irrotational flow

value.Ho\^tever'aPessimistwouldsuggestt]:atthewavefunction(30)

AII.23.

(3:1

(341

(3s I
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describes irrotational flow only. For comParison wittr (35) ' ttre rigid

body moment of inertia is

1. = A*(x,^*y,"t , tse;

"ti
which is two to five times larger ttran ttre experimental values for

deformed even-even nucLei.

The simplest vray to evaluate tj'e deformed system expectation

vaLues is to use the scaling procedure described in section CIII.

F.ollowing the mettrod of equations (1 - 5) and (16) of CIII, we defo:rn

-F 
-le into e by scaling the coordinates :

(37)Q' = Q(s: ..,#)

where E' varies over ttre spherical system, so ttrat ! now varies

over the deformed system, i.e. in t5e er<pression Qs) rcr ( y

tj.e integration is over the deformed system. To deform a sphere

into a prolate spheroid symrretric about ttre X axis, we write

y = 1t*', y = tl-ty', z =tl-'=' (38)

where 1>l (i.e.alargedeforrrationis 'yl-* )'

rrom (38) we have d x d y dz = Ax'dy' Sa' r so

that

(g'Y = <B> (3e)

where gt stands f,or B written in dashed coordinates and ( ) is the

sphericar system orpectation value (i.e. (xt) = ( yt) = 1z'7 '

etc.).
I
{ asiae: rn rer. fs]l pp 388-91, it is stated t}rat for (X'ry',zt\

to represent a bocly fixed frame of reference, vte must have

E
J

xjyi =FY,'=j =EzlxJ =o (40)
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the unified model requires (38) to hold only on the average' i'e'

( x,'y,')' = ( y, '=i, -: (=,'*i | = O (4r)

From equation (39) we see that (41) would holcl for any deformation'

rquation (39) also suggests an explanation as to what the orthogonality

condition is for wavefunctions of tl1e type (22). NaneLy, from (39)

and (23) we have

( Ef \t // t- \ -rr @z)Vtir/ = \tr1'r,/ =Lj' '

1
which should be compared with (24) - I

We can no\t use (38) and (39) to evaluate the expressions (35) and

(36) in terms of the deformation Paraneter | 
. The calculations rely

on the resuLts of refere""" [fl for the values of expectation values

rike ( *,ty,t> , (xi) , 4 xl), , etc., in terms or

fEt
( r') = 5,r*lrrrn(r) ril , (43)

lo olrrrh(r)
where |\tr) is the radial nr:nber density of the spherically synrnretric

system. Also, I will use the cutoff density approximation

= { AZV r< R / v= }'zr'ttr R1 (44)

t o r>R
to evaluate ttre expression (43), i-e- I take

( r") = 3 R: (4s)

h+3

(Noter a Eood approximation for most nuclei is R = t'tAhf rn .)

Then, using (38) .n4 (39) it follows that

1,,, = nt,. ( 1*",' * T'y,'> = Arn $ h-*T1 (46)



and
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(sl)

Jn'o* = A* ( 1ex," - rl-'VtJ

These results are anottrer derivation of eguations (66) -t6 (67) of

section BII. It is also easy to evaluate the intrinsic quadrupole

moment :

Qo= z<t\r-y,._2,"J = + zR.(1'l-1-')

vftere z is ttre nurnber of protons. For the puryose of plotting graphs

it is more convenient to define a deformation parameter ttrat varies

from O to I instead of from I to € , as ttre deformation increases'

For this reason I introduce

lad = l-'Y1--

I choose ttris particular deformation paralneter because for small

defo::urations it is close to the standard paraneter" f, and F
T

(see p 416 of reference t5l ). t is defined as the difference in

length between ttre single and the double axis of the prolate spheroid'

measured in units of R; i.e.

? nlt - +t-ld = | |

= d + o(dr)

= A-{(tlL1f @71

5 (l* * 1-')

(48)

(4e)

(s0)

P is related

5=

by the expression

(3 = O.?tf6f

!r;e = + AmR'(t i^'A'(r+ 0 3, sf *'ff;i)

( tt *ti * Ylo X')

tot

IE-
rllfir

Using (49 - 51) in the results (46 - 48) gives

*+ + o(d'D =
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1n,*= * ^*e'f,( 
t* otd)) = # A-R'p"(r * otpl) (s3)

eo=$zn'd(r+otd)) =#zR'f(r*of)) (s4)

Evaluating the expressions (3r) and (33) by the above method, the

complete expression for AE, tf in the weak correlation approximation

is

AE, t.

rn terms of the moment of inertia, the result (55) is

(

I trr a' l * trrr8"rl"*f-t) * ,tre\
t I4'

rr(1* * 1-.)

I will now derive ttre variational energy bound for the

translationally invariant form of iPr r, , i.e'

AArl,

f., =*TF(x;,riy;f (s7)

In the weak correlation approximation breaking the translational

invariance (i.e. using (30) instead of (57)) leads to errors in

AE^a" ot oraer l/ft only, but it is worth d.eriving the exact

expression because this is the first step tohtards including the effect

of the nucleon pair correlations (see the method usea in fd to

include pair correlations in the calculation of the giant dipole

resonance energy). Following the method of section two of refere"t" ffl
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( s8)( ni) (l ** t*)A(n-t)-L
3

have

< tg E..rY

and

( tq*.F)

1..1'r,ry,. *rryr)

{q}*+r1'1+}f) 
1n+t[g(ra]X'll*RiT') - (dd)r] 

( eo1

+rttn-dG{K*-rr;'r;i)t1r.,,'f.f )+f (dr;i)hs.r"''-U"D

= i A(n-r) (tttr,i *,t-"Y,i )')

+ n(n- D tn* I ( 1 
**,1-T'y,lXnt*x,: -f*;1l ) + Ll'r,,Y. r"y,) t u''

+ f n t n- r ) [n+XA+) ( (1*^L -'t-' V,l )(t'n; -'1-' y,) *

The expression (59) can be reduced to expectation values involving

onlV Q terms, by using equations L4, L6, L7,20,2L,23t 28' and

29, of reference ltl . The final result for the variational energy is

AEr*, L hi-,, n (ni) tlb*Tt)

In the spherical limit, i.e. l= | , the expression (60) reduces to

equation (3I) of refere"". [.] . rt is also easy to show that in the

weak correration approximation (i.e. (fon) = l([r) t

(nb) = r([") * rorr(r]', (rot6') = (r;e) * g(r;t)' and

(*q;) = rr(tr)' , see [tJ I and using (45), that

(60) differs fron (55) by terms of order Ya only, for all values

of Il . The result (60) is a rigorous expression for the
I

expectation value of the energy of ttre state Vr*^ , but to

evaluate it exactly would require knowledge of tj.e two-, three-

and four-particle correlation functions. For this reason it may be

simpler to use the translationally variant expression (see (31) and

(32)), which has only two particle correlations, alttrough they are



no ronger of ttre form ( f;J) The hope is, that if the nucleon

correlations are included, then AEt*f will be lower by a factor

of about five and so reproduce the experimental results. An

inportant point to note about the above scaling method, is that tie

energy of the deformed system is expressed in terms of expectation

values in the spherical system, so that a knowledge of the effect

of correlations in spherical nuclei is all that is reguired.

r
I UOtn ADDED IN "PROOF" : The expressions (19b) are too small to
t

change ttre value of AErrn by more than about lot, not 5008'

Ho\dever, it is possible that ttre scaling method of evaluating

AEatr for deformed even-even nuclei is not capable of incru*ing

ttre correct correlations in deformed nuclei. That is, the result (50)

will be invalid if deformed nuclei have extra correlations that are
,l

not taken into account by sinply scaling the spherical syst.*. J

(ii) The (2,0) state :

I will now discuss the wavefunction V^, = E. q'
where

(rzi - xi -yr')
A

f"=F,

AII. 29.

(61)

From the results of note 7) of section BII, \'re expect Va. to

represent a vibration of a non rotating prolate spheroid' that

preserves the axial symrnetry about tlre z axis. However' it is also

worth investigating the result of applyins Eo to the same deformed

"ground" state as vte did with E a* . That is, I will consider

two possibilities; the first (labellecl (z)l ttsatas pro as a

vibrating ellipsoid symmetric about the Z axis, while the second

case (Iabelled (x) ) assumes Pro a" be an ellipsoid rotating about ttre
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(63)

Z axis, at the instant at which ttre slmmetry axis is ttre x axis. The

second alternative is probably wrong but it may be equivalent to the

unified model assumptions. For the second case (X), E' is defined

by (38), while for the first case we write

E): X=T'x' , Y=.1-'Y', z=1'z 162)

From (61) it follows that

(tVE F) = 4(+2,'+ x,l * Y,'Y

and, in ttre weak correlation approximation

(64)( q:J = f ((la'-r,'-y,')'y + R(A-r)(r=,'-x,'-v,')"

using (45) togettrer with (62) and (38), we have for the tvto cases

[(,VE.)^)'= $n'(+1t*11*) (65a)

(zx

[( F,:) = A-RF(rr18-81'*8'tt) + A(A-r)*n*(tLT'] (6sb)

f < t",il) = + Rr (t** 5T') (66a)

tx) {
I( E:) = *on(31s-r1'*rt1-F) 

+ A(A-I)C (1r.o1' (6Gb)

Defining a "moment of inerti"" lao , by

? = ih'- = e* ( qiJ rc7).to aEao A (IVE.F),

\ ( ttls-8l" + tT') t $(n-r) (1n-l-')'l"

I find

(z)'
,r. (f1r" J 1*)

(68a)= 6mRo



(x): E. = 6r* R'{ [(r1s-r1"* rrf]) **tt,)(t1.l]]
I' (1** s1-t)

For'\-oand'J-,*(68a)and(68b)becomeidentical.

(iii) The (2,I) and (2,-1) states :

consider the wavefunctions %n, = E*, Q' , where

tr = i zi(xitiyr),l tl - 
,j=,

rhe two body term or < lE*,ln) is

A ( n-r) ( z,z^ ( x, Xr + y, y.))' ' (70)

In the weak correlation approximation (70) reduces to

- ' ( . \rL " 1

A(n-r)l 12,x,)- + (z,y)'[ tzrr

From (71) we see t].at for all deformations of the type (38) and (621,

that in the weak correlation approximation tfie two body term in the

energy denominator is zero. So the two state" Vr, and Vr-,

remain of order a (or perhaps O(Rbt1 ) higher in energy than the

first 2+ states of deformed even-even nuclei. That is, AEatt

deviates only slightly from its value for spherical- nuclei, as o'

is deformed. This corresponds directly to ttre conclusion in note 7)

of section Brr, that Vra, could only represent small anrplitude

surface waves and not large amplitude modes like W- '- and tqJ-^rl tl. r8o

From the previous discussion on the Vra state of spherical nuclei'

it seems plausible that t].e %n, wavefunctions will represent the

effect of a deformation on the giant quadrupole resonance.

A1I. 3I.

(68b) |

(6e)
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In Fig. I (next page) , I have used equations (36), (56) , ancl

(68) ro pror 9r^/g. for M = -2,o,2. For the smart A dependent
"'/ v"il

terms I took A = 170, which is the mean value of A for the main

deformed region l5O LA 4 tgg . The e:<perimental results for the

deformed even€ven nuclei in this region are taken from Bohr and

r-rMottelson, Ltl . There are two important features of Fig. I. First1y,

the fact that 1 is greater than 1-. for very large deformations,JtO - -r,,

supports the identification "t wro as a vibrational state and not a

rotational state, since rigid body rotation should have the lowest

energry of a1l rotational modes. Interpreting Va "" a vibration

arong the z axis atso explains *hy 1J4 is arways larger tn.r, dr(x)
since the lowest energy vibration of a prolate spheroid should be

along the symmetry axis. I have already discussed the other main

feature of Fig, l, namely that if we assume that Yraa represents

a prolate spheroid rotating about an ar<is perpendicular to its

symmetry axis, *"n f^ttr i" about five times lower than that

required to explain the experimental energies of tl.e low lying

states of ttre deformed even-even nuclei. The next step (which I will

Ieave for the future) is to include the internucl-eon correlations

(e.g. the effect of Fermi statistics), which hopefully will reduce

the energy to ttre experimental values. One other possibility is that

ttre wavefunctions could be improved by returning to the L = M =

state of the form (5) and minimising the energy with respect to

general f(fii) (the carculations of this section have taken f = 1).

However, for the analogous translationally variant form, the argunents

of section BlI suggest that f = I is the optimum wavefunction, since

f I L should involve incompressible flow-

2

a
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Fig. I.
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Transition Rates :

I will no\{ use ttre weak correlation approxination to evaluate

the transition rates for decay to the "deformed" ground state p' ,

and compare the results with the unified model prediction. Firstly,

I note frorn eguation 16 of section AIV, that ttre contribution to the

ct)5r*' =n* rule from the five \Lr* states will each remain approximatery

L,1-^ of the total sum rule, for deformations applicable to-) -a
nuclei, (igrroring velocity dependent and charge exchange interactions) -

Because the contributions to the sum rule are proportional to the

transition rate times the excitation energy and since I have shown

that for large deformations that AEra, is of t.l'te order of A (or

perhaps #a I targer an",. AEa*^ ana AE"o , it fottows that for the

deformed even-even nuclei, that almost all of the transition rate

strength will be taken up by the M = 2,Or-2 states. The transition

rate probability, p€f unit time, for the emission of a photon of

multipolarity (2,1"1) and energy h,^f =tCh , during which the nucleus

decays from t1.e V^^ state to trre ground state, is given byrll^

(cf. section four or [rl I

(72)

where

Qr. =

Eez
,f=l

A

= N:t{:' :o a irr
(741

(ror f,
4o= {f,fr

\(r,,\4) = ++ l<{lQ,,.li)l'

q" Yi',l

li) =

defined

l,,-' E"S'

by (30) and

)

N;' u'

q.II,:, Q,

AII. 34.

(73)

lf ) =

(61) we have 4t, = JFrr

( 7s)



Using (73) - (76) I calculate

l<+ r 6,.^t i)l^ = e^g' 
;ir, I sa, aa lE.^l" g'l^

AII.35.

0' is the deformed "ground" state and N,,lt ur,u N; are nonnalization

factors defined by

<dlc) : (*tl; : I tzar I

= ""# ",1 (rnf)
The facto t % comes from the f act that Qr^ ,= a sum over ttre protons

on1y, while ttre isoscalar wavefqnction lC) i" a sum over all the

nucleons. From (72) and (77) we have

f (r,an1 = EF* ts.' *: ( tF*l'> ( 78)

(i) The {2,21 and (2'-2) States :

comparing (30) with (74) we have dXl = J* ' so

f(r'tr1 =*#*(lE*f>
In the weak correlation approximation and using (4S1, the result

(79) becones (see (55) )

l(,,.r) = * # $ o-f$(.rt+r1e+ril.P(r--r'[] (80)

rn ttre limit nl* , (i.e. ![' =pfr"tical) , (80) reduces to equation

(5S1 "f Fl . For large deforrrrations we can igrnore the first term of

(80), arrd from the er<pression (4S) for t]1e intrinsic guadrupole moment

Qo , r find

[(r,*r; st$q] (8r)
' /60f

(77)

(7e)
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For the er<perimental results plotted in Fig. I. the maximum error

involved in using (81) instead of ttre full expression (80), is about

IOts.

(ii) The (2,0) State :

Comparing (61) with (74) we have

T.(t,o) =*#1i<
do= (eo

6.'>

and (65b), the results corresponding to (81) for

previously considered (i.e. (z) and (X)), are

= dEql
6oh

(82)

From equations (65b)

t]:e two deformations

(z) |

(x) :

\(r,o)

\(r,o)

(83)

(84)= e'- b' ql
2tro fi

The expressions (81), (83) and (84) are very similar to the unified

model result tsee ftl p 411, and Ltl I

T/z) = -g- d qJ (85)
'E' - 

3oo t
This is a strong in&ication ttrat the wavefunctions 9a^ are closely

related to ttre unified model wavefunctions. It is worth pointing out

that exact agreement is obtained with the r:nified model result (85) '

if we take the average transition rate for all of the five Vr*

states, r,*hen O' is assumed to be ttre rotating elripsoid defined

by (38), (i.e. case (x))- That is, Tt(fFf) are of order e (or

perhaps olA ) smaller and so can be ignored, and

t/s ( ?* * kr^o) = koo ' rhis sussests the

possibility that the unified model result has ignored the broken

degeneracy of the five 9a, "a"a"r. 
Since equation (85) is regarded

as the total transition rate to the ground state, from the first
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rotational level of a

that an average over

deformed even-even nucleus, it is quite possible

non degenerate M levels has been included'

Remarks in Sununary :

The isoscarar wavefunctions 9r^. = A 0 ' , th"tt 0' is

assumed to be a d.efOrmed "ground" State, are reasonably succeSSful

in describing ttre low lying 2* states of deformed even-even nuclei'

The broken degeneracy is explained by the results of section BII,

V^,

rTr lT)
namely Vr" ana Yr-" represent the rotation of a nucleus about an

axis perpendicular to its axis of syrunetry, Vao is identified as a

Iarge amplitude vibration that preserves ttre axial s1nnnetry, while

rTland Vr-, are small amplitude high energy surface \{aves '

The results for the transition rates for decay to the ground state

are particularly encouraging, since they are very close to the

prediction of the unified model. In the weak correlation

approximation the rotational excitation energy AE, tf is

slight.ly higher than the irrotational flow value for a rotating

ellipsoid, but there is some hope that ttre inclusion of internucleon

correlations will lower the energy by the factor of five necessary

to explain the experimental results.

A complete description of the low lying states of deformed

even-even nuclei requires ttre identification of the entire banil of

rotational states, since the most importarrt feature of the spectra

of deformed even-even nuclei is the occurrence of sequences of

states with energies approximating the formul3 (20), i'e'

E(f) ^, f (f+f) . At first sight one night be tempted to

suggest ttrat the I = 4r6r8retc, wavefunctions are aII of the form

(5). For example, the 4* state would ttren be

V*. = LQ' = *?f n-Y;r'l O (86a)



The first problen with this is that it is no longer obvious ttrat the

translationally variant form of (86a), obtained by fixing the centre

of mass at the origin, is

However, if we

t r \z :tI r;hYtr.'l E'j- , lr -'
J

assume (86b) to be valid, ttren from section BII we can

as a surface wave carrying angular momentun L = 4 tidentify P-}}r
1. e. a surface oscillation of multipolarity four. Thus the states

probably involve deformations of multipolarity r, and so cart
Lr

only describe a rotating ellipsoid when r' = 2' For L ) 2' these

states will still represent real nuclear excitations (cf. [a] ne L37'4L) '

but I do not regard them as being members of the ground state rotational

bands of even-even nuclei.

From reference [n] nn 6gg-92, it appears much more likely t]rat

the correct method for constructing wavefrutctions for members of a

given rotational band is to take linear combinations of the wave-

functions of lower energy states in the same band. For exanple,

instead of V** = f,* Q' , an" wavefunction for ttre first 4+

state is probably some linear combination of two pra states'

symbolically, we can write this wavefunction as (E.)" 0'

The correct conbination would couple the two L = 2 guanta to form

an L = 4 state in such a hray that the shape of the rotating nucleus

remained constant, namely a prolate spheroid with fixed quadrupole

moment. It might also be possible to corbine classical irrotational

surface waves (see BII), to form analogous rotational modes of a

classical prolate spheroid. By this process of angular momentum

coupling a vrhole series of rotational and vibrational- wavefunctions

would be constructed and it should be possible to use grouP theory

to identify ancl catalogTue atl ttre possible modes. GrouP theory
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(86b)



should also be able to identifY for

multipolaritY wavefunctions E ,
of fixed shape, or large arnPlitude

(e.g. From the results of section

as being rotational modes and Vr.

prolate spheroid. ) Then onto each of the 9a. "t^tes it 
should be

possible to construct rotational and vibrational bands by the process

of angular momentr:m couPling.

Finally, I note that in order to extend the methods of this

section to describe rotational states which have a non zero value

of the guantum number K' we would need a generalization of the

wavefunctions (5). From the unified model wavefunctions (271 and

(28) we see that what is reguired is a change from Ya.lt to

^LrD"*" , but the variables have to be the nucleon coordinates

and not collective angular coordinates.

(b) Isovector Rotational States of Nuclei :

consider the generalization of the isoscalar wavefunctions (5)

obtained by explicitly distinguishing between protons and neutrons

and it is straight-

that when t0 = g
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(87)

whicle values of M ttre general

can represent rotational modes

symmetry preserving vibrations.

BII I was able to identieY Vr*r

as a vibrational mode, of a

= no = f*r;i[uf('?") a

These wavefunctions are translationally invariant

forward to extend the calculations "f [3] to show
l-a

is an angular momentum eigenstat. or t and L1 with*at p is an angnrlar momentum eigenstate of l- and L1 with
lLL

"ig.r,.rJi." 
q1-+r)h1 anaLt respectivety, and further, that for a

hypothetical system of two kinds of bosons interacting via the
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harmonic pair potential (6), tl.at v ^ wittr f = I is also an energyLLt-

eigenstate with eigenvalue again given by (7). One difference between

(87) and (5) is that A is defined for ar1 integer L, whereas V**LL
is zero when L is odd. Note ttrat for odd. t p has the opposite parity

lLPr

to 0 . Also, because we need only consider permutations between

indistinguishable particles, the wavefunctions (87) have the same

permutation slmmetty ." ![ . For example, wtren ![ is the ground state

of an even-even nucleus (i.e- a O+ state) then P is a
'Lliil

fot ".".",
assuming as in part (a) that the spins are paired up to give "ero !

between the wavefunctions (87),

, there is an imPortant PhYsical

isovector state (Protons and

neutrons now move in o

L=2isovectorstate

except that ttre Protons and

In particular, consider the

1) of part (a) the isoscalar

phase.

In note

Despite the very close similaritY

{L, and the wavefunctions (5) , V.
difference between them : lY is an.LA
neutrons move in opposite phase) whire Vr-t= an isoscalar state

(protons and neutrons move in phase). It is obvious that V. ^.-LJS
describes isoscalar motion since it treats ttre protons and neutrons

as indistinguishable. Perhaps the best way to see that %d"s"tia"s
isovector motion is to note from (8?) ttrat the probability I grl"

is largest when the proton and neutron fluids are separated

(note, I-LY,.ld - 1X+cy)t ) implying ttrat ttre protons and neutrons

move in opposite phase. For odd L ttris argument is especially clear,

sj-nce by comparing (5) with (87) we see that when tl-e protons and

neutrons are evenly distributed tha,- l/.. for L odd is zero. For
&L/u

example, ttre particular case of W with f = 1, is shown in ref. EltrA

to give a good description of the giant dipole resonance' which is

known to be a simple oscillation of protons against neutrons (see

below). For even L the wavefunctions Q' describe ttre same tlpelLu
of motion as the wavefunctions E* ,

pposite

V1ta4
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lTlitate Va" for spherical nuclei is identified as the high frequency

,i:adrupole mode discussed in ref. Fl ' so it follows that in spherical

nuclei, W should be the isovector analogue of the giant guadrupole- tzn
resonance state. This conclusion ls completely compatible with the

F-tresults of fal , where the quadrupole field is shown to generate both

an isoscalar and an isovector quadrupole rnode. Shell model calculations

read to an enersy AE ti=orr"ctor) = tjs A-tA rlAcV for

the high frequency isovector guadrupole mode, (see [nJ n 513), while

the tiquid drop moder yierds AErti"o,r.ctor) A l1', A-'/1 N\gV ,

tsee fal p 671). This energy is much higher ttran ttre isoscalar

quadrupote mode t AE^ti"oscalar) = 
(O n-'A lVcV ), since t]te

isovector mode involves density variations whereas the isoscalar mode

is an incompressible shape oscillation.

Firn ref . VJ (which is supplied with this thesis), ttre wavefunction

wittr f = l, is investigated in detail. This particular wave-

function has been previously proposed by deShalit and Feshbach t"ee fSl

pp 501-2, 736) as a good approximation to the giant dipole resonance

state. The giant dipole resonance is perhaps the most important and

certainly the most investigated of all nuclear collective motions.

The most striking feature of the giant dipole resonance is that it

exhausts a very large part ( 
=l t) of the total absorption cross

section for E1 transitions, i.e. the Sll, sum rulb (see section AIV).

The results of trl prove that ttre deShalit and Feshbach wavefunction

gives a good description of the giant dipole state. Because we can

positively identify ? with a known nuclear excitation, the- *ra

calculatio"s in fZ] have important inplications for all of the

proposed related states V,- ".ru g^ . That is, we now have a

detailed understanding of the properties of one of a whole series of

ielated wavefi,mctions. Without unduly iluplicating the results of

Vl
-ln



reference lrl , I will now discuss three particular features of the

calculations involving the dipole state P^ , that should be noted

because they could be general features of all of the wavefunctions

(5) and (87).

e0)(1) Contribution to the D; sum rule :

," Esl p 735, it is pointed out that since g^ * Q,. E

where Q,- i" the translationally invariant dipole operator, that g^

has total overlap with the dipore operator and so t.]"e ttrree q^
L,A

states must exhaust tJle entire {' "* rule. (Note, the three states

are degenerate in spherical nuclei.) finus if F. was EIn exact eigen-

state then there would be only one 1- level" in the non deformed

even-even nuclei, since only one EI transition to or from the growtd

state would be possible. In section AIV this is proved e:cplicitLy

in the approxi

commute with

on in which ttre potential energy is assumed to

(i.e. neglecting charge exchange and velocity

states together exhaust the entir. Sf't.lass) sum rule'

Experimentally it is for:nd that ttre giant dipole resonance exhausts

about Sf't"r"""1 of the totar surn rure for medium to large nucrei.

A large part of the rest of contributions come from the high energy

region where charge exchange and velocity dependent forces are more

important. It is because these interactions play a less important

role in the region of the giant dipole state that !. siu"" such a

good description of the dipole resonance.

Arr ttre states lP and P have a sigmificant overrap wittr
-ll..t -lA

the electric rnultipole moment of nultipolarity L, so it is likely

that they will a]l be resonance states of spherical nuclei. For

Ar.T. 42.

mati

E
dependent interactions). That is, it ls shown ttrat the tbree

example, it is shown in section ArV tJlat ttre five Va" states
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."rr"..r"t U/P of the sum rule.

(2) The weak correlation approximation 3

It is found t" El that the weak correlation approximation

gives a completely unsatisfactory result for the giant dipole energiy'

in particurar it leads to AE, - A-L/t instead of ^'A-'n '

However, ttre correct energy variation is achieved once the short

ranged correlations are included. This is proved in a general way,

by imposing tlre requirement of nr:mber conservation on the pair

correlation functionS. Uecause p is an isovector state it is

necessary to first distinguish between protons and neutrons, so tl-at

there are three two particle nurnber densities (i.e. n-n, P-P, p-n) r

instead of the single pair density (16). once this is done, the

requirement for nuriber conservation to hold separately for the protons

and neutrons (i.e. the isovector analogue of (19))' inplies an exact

cancellation of the weak correlatj-on terms in the energy denominator,

teaving AE, ^r A-V" . That is, equation 14 of ref' ['l for

the variational energf is rearly proportional to lg and not '/R^

as it appears to be.

From equation (4a) it follows that the energy of all the states

V ana V witr be proportional to */ln,gt (ln ttre approximation
-&n 'Art

in which the potential energiy commutes with Et *td E^ ) and

since R .1 l.ln% 5- , ir wilr arways appear as if

AE' - A-ry'g , i.e. it takes a cancerration of ttre leading

order terms to produce an extra factor of A'/t . I noted in part (a)

ttrat almost all of the collective states predicted for spherical

nuclei in reference L-] have an energy varyinq as A-'tl , so it is

quite possible that ttre weak correlation approximation will lead to

the same tlpe of error for all of the 9a" and g^ wavefunctions '

F(tl
), (class )



as occurred for tlre q^

(3) Hard core correlations :

The donuinant nucleon-nucleon interaction is the effect of Fermi

statistics, i.e. Pauli repulsion (see fs] p 49). r" kl the result

tor AE, , calculated by using only ttrose pair correlations due to

Fermi statistics, is just 20? higher ttran the experimental energy' So

it seems that the neglect of hard core correlations is a minor

approximation for collective states like V,^.na g^ ' support

for this concrusion comes from comparinq equation 64 of [tl , **

equation (19), which suggests that the contribution to the pair

correlations from the hard cores is of the order of A(%)t smaller

than that from Fermi statistics, where a is the hard core diameter'

For nuctei r,e have PtP) = V3 R- W

Finally I will include for the future, some ideas and problems

on two possible extensions of the work in t"r. fzl '

(i) The giant dipole resonance in deformed nuclei :

without repeating any of the extensive discussions in parE (a),

let us apply the method used to investigate the V", states in

deformed nuclei, to the g'^ states, i.e- consider

g- = E o'
-lwhere Q' i" a deformed. ground state, and assume that (88) describes

the giant dipole resonance in deformed nuclei. First of all' it

follows ttrat the three P^ states are no longer degenerate. From

ttre scaling procedure of part (a) (cf . {re2',11 , it follows that for a

general deformation, (88) will- split into three states, while for a

prolate spheroid symmetric about t)te z axis, g, and Q-, wfn

state in fz]

AII.44.

(88)
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describe two degenerate vibrations pertrlendicular to the symmetry axis'

and g/, represents a rower energy vibration arong the symmetry axis.

Also, from section AIV we see that regardless of the deformation tirat

-01
each g^ state continues to exhaust one ttrird of ttre )f (class)

sum rule. So for nuclei whose ground states can be regarded as Prolate

spheroids, one third of the dipole strength to ttre giant dipole

resonElnce shourd be contained in ttre V mode ' wittr tl.e other two
116

thirds taken up by the degenerate r/,. modes. Both of these
1, tl

qualitative features are known to be true exPerimentally (see P 49O

of ref. lal l. However, there is a problem wit]r the scaling method

of part (a), associated.with the fact that it affects the exact

expression for the energy (eqn 14 of ref. fZ.l ) in the same way as

it affects the weak correlation limit result. That is, (62) describes

the deformation wittr a single parameter ttrat factors out of alL of the

e:<pectation values. This results in a splitting between the (ltO) and

(1,+1) mod.es that is about twice as large as is found experimentally'

The experimental result can be derived by a scaling argument based

on the energv variation Er - A-h "' 
l/C . Namely, if we

(8e )

)zeE

assume tn^t rn" fl^ vibration has an energy AE,. -4^, we have

rl
Errr- Eo = 6, --* = 6

wnere E is the deformation parameter (5O), which is defined as t.l.te

difference between the single and the double axis of ttre prolate

spheroid, neasured in units of R. The origin of the "error" in the

method of part (a) is that it treats the dipote energv as if it were

proportionar to 4" (i.e. the weak correlation limit resurt), so

that instead of (89) it gives

t_ I

-

E 2R.
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This value is always at least twice as large as the experimental data

on page 493 of ref. [nl l. A possibte expranation is that ttre scaling

method of part (a) may be too simple to describe the correct pair

correlations in deformed nuclei, i.e. if the scaling was also contained

within the pair correlation functions then the cancellation of the

wea]< correlation terms will result in a different energy splitting

than in the weak correlation approximation.

ii) Low lvi Ie rticle levels in even-even 4gelei :

In Fig. 2 and Fig. 3 below, I have plotted the known 1- states

of even-even nuclei, together with the weak correlation approximation

result for the energrY of v^ , (i.e. AE,t.r.c.knit) s 7llliral'lcvl .

Note that many of the low lying I- states of even-even nuclei have an

energiy close to 1) A-'h McV . The main exceptions to this are

in the large A deformed regions ( l5o 3 A L- llo and AZX2O) '

where there exist much lower 1- states that usually belong to

vibrational or rotational bands. The guestion to be asked is'

whether the good agreement of ttre weak correlation approximation

result for the energy of the dipole reson€ulce with so much of the

experimental data plotted in Fig. 2 and Fig. 3, is a coincidence

or not? For example, we could speculate that for a particular

f(fp") * t in the wavefunction (B?), ttrat the weak correration

approximation becomes valid, while the energy remains close to

12 A''/" AcV . However, the experimental data for the transition

rates seems to rule t].is out. Namely, for ttre 14 states in Fig' 2

that the transj-tion rates to the gTround state are known (note, I0 of

these are within r5ts of *ll A-16 rt{lv ) , arl have lifetimes four

orders of magnitude larger than the result calculated for Prn rn""

f = 1. So it is very unlikely that ttre transition rate data can be

er<plained without including a radial node in flff") , which would
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increase ttre energy well beyond the low lying states we wish to

explain. In fact, from the transition rate data it follows that

these states cannot be collective, i.e. they are single Particle

states. still, it courd be possibre that p can describe single
-ta

particle excitations under certain con*itions. Another sPeculative

suggestion is that perhaps these single particle excitations involve

charge exchange processes, so that ttre nr:mber conservation argument

of section four "t [r] would no longer hold and the weak correlation

result rnight then be a good approximation. But it remains virtually

impossible to see how W could ever describe levels with very IovJ4ls

transition rates, since it has total overLap wittr the dipole operator.

So the results of Fig. 2 and Fig. 3 may very well be a misleading

coincidence. It is worth pointing out ttrat the low lying O+ states

^-L/\discussed right at the end of section AIII' also follow an n

trend. Thus, for spherical nuclei' it may be a general Property

that ttre energies of single particle states follow A-'n variations,

while the energies of collective states vary as A-|4

Figure captions for Figt. 2 and Fig. 3.

Fig. 2 : The energY of the I- states of even-even nuclei
( 6 L A 4. Ltr ). Full line: rhe enersv of P^ ,

in ur.c. lrir',t: ?24/3AeV . crosses: Definite assignmentt.

Circles: Tentative assignments. Arrows: The known I-
states directly above the base of an arrow have been left
out. The data is from reference ttl .

Fig. 3 : The energy of the I- states of even-even nuclei (A)So).

This Fig. follows on from Fig. 2 (ttre lowest A state comes

from Fig. 2) and is plotted in the same way. The data is
from reference [roll-J
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III. COMPRESSIONAT, VIBRATIONAL STAIIrES OF SPI{ERTCAL NUCLEI.

;6.
^ In ttris section trial wavefunctions for vibrational states of a

quantun many-body system are considered and the energies of the states

evaluated. The many-body system is taken to be composed of A spinless

uncharged identical particles, as for example helium microdroplets' or

to a reasonable approximation even-even nuclei where we carl assume

that the spins are paired up to give zero S along with neglecting

the differences between proton and neutron masses and interactions.

In evaluating the energies we will furttrer assume that the gror:nd

state is spherically symmetric and also we will neglect all correlations

between particles other than ttrose described by the finiteness of the

system (this is the weak correlation approximation discussed previously

in sections Ar and Arr ti.e. ff] )).*The weak correlation approximation

is not as crude an approximation as might be expeeted, because it is

only used to calculate the collective vibrational energiy difference

betvleen the excited state and the ground state, so ttrat no calculations

are made of any part of the ground state energy. For our purpose of

calculating only the collective excitation energy the weak correlation

approximation should be fairly good for nuclei, as the hard core of

the nucleons occupies less than a percent of the total volume (nucleon

radius is approximately six times the hard core radius), but will only

give a rough estimate for helium microdroplets where the hard core

volume is about 20? of the total volume (helium radius is approximately

1.7 times the hard core radius). The spherical ground state and weak

correlation assumptions mean ttrat the calculated vibrational state

energies are quantitatively valid only for the non deformed even-even

nuclei, but ttre results could also be qualitatively extended to all

even-even nuclei and helir:m microdroplets.

The trial wavefunctions considered are all Feynman type wave-

functions tr] of the same form as the rotational excitations

X See the note on Page AIII - 44.



considered in ttl , namely

V = FE (1)

where F is a symmetric function of all tJle particles and ![ i= tft.

ground state wavefunction, or ![- could a]so be an excited state and

then we would be creating a vibration of this excited state. (From

no\,r on ![ will be taken to be the ground state as !{e will not consider

vibrational states built on excited states.) The Haniltonian of the

self-bor:nd A particle system is assumed to be of the type
.a A

H = -H, E,oJ + V(r,...,rJ (2)

where V is completely symmetric with respect to permutations of the

particle coordinates. Because H is a real linear operator the ground

state ![ can be taken to be real. To evaluate the energy of ttre

state (I) we use the identity proved in frl , that for F a symmetric

function of all the particles the expectation value of H-Eo in the

state p can be written as

Sdt d6 V*(n_E")V Ar' < lv rl')
a''. ( lFl">

ground state exPectation value

(3)

where

defined by

sil...dao" (4)

5 d! d4lPl"
HF = E"0 ""a 

( ) i= tt''

(e)

In evaluating expectation values of the type (4) we further assume

. xa.that I is spherically symmetric. That is, we take the ground state

to be described by a purely radial single particle nr:niber density

(see AI (2) )

'Yl(I;) =

AIII. 2.

where Ii is the distance of particle one from the centre of mass.

(s)
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Ttre physical excitations of a self-bound many-body quantum

system must be translationally invariant states. This is because we

need to work in t}1e rest frame of the system' in order that the

angular momentum of the system be independent of the choice of origin.

fhat is, we require PV =O , but the centre of mass I and ttre

total momentum P are conjugate variables so that by the uncertainty
Aprinciple H is indeterminate when we vrork in the rest fra.ne. Thus in

order to be certain of ttre physical reality of any trial vibrational

state we must use a wavefunction ttrat is translationally invariant, so

that it does not depend on the indeterminate variable S . If trans-

lationally variant wavefunctions are used, for example those that are

constructed on ttre assumption that the centre of mass is fixed at the

origin, ttren they may give rise to spurious states that represent

rrnphysical motions of the centre of mass rather than internal motions

r-l
LS, +r 5J. The problemof identifying spurious states has been shown

to have a solution only in the special case of harmonic interactions
F-l
[_:, 5l . Note. ttrat the use of a radial ground state density (5), is

only a means of describing ttre density variation in ttre system and

does not lead to spurious states as a translationally variant wave-

function might. (5) is inconsistent in the sense that the right hand

side is translationally invariant because "f I while ttre left hand

side is a function of only one variable and so could, only be trans-

lationally invariant if it was a constant. However providing (5) is

not used to solve for the surface structure you can temporarily fix

the centre of mass "f ![ at ttre origin and then (5) will describe a

radial density variation of a finite system from its centre of mass

without leading to spurious results.

For the wavefunction V = FS to represent a vibrationar state
Tbuilt on the ground state !p we require

Ltr = O (5)



where t = (L*rLr,L=) is the angular momentum operator. (N.8. we

have already igmored spin coordinates so that angular momentum means

orbital angular mornentum.) With condition (6) V is an angular

momentum eigenstate with the same eigen-valo" ." Q , which is the

definition of what I mean by a vibrational state. It might also be

argued that $ should have the same parity (inversion synunetry) and

permutation slmnetry as 0 which is satisfied provided F has positive

parity and Bose symmetry. (The results will only be quantitatively

applied to non deformed even-even nuclei where the ground state ![ has

zero angular momentum and positive parity; i.e. S is taken to be a

.LT

O- state. ) Now because p has the same angular momenttrm as e
in order for p to be a true excited state it must be made orthogonal

?:Fto A . The condition for V to be orthogonar to Q is

Arrr. 4.

Sn dAg*U =o: S"rr ..dnV0*

Using (1) and (4) we can write

(r> --

Having imposed ttre condition (8) we can then use the variational

principle to prove that (3) is the variational upper bound to the

difference between the true excited state energy E and the ground

state energry Eo . That is,

AE b_FLLo

From the above we conclude that for V = F0 to be a true

vibrational state of e then F must be translationally invariant,

must be an eigenstate of angular momentr:m zer.ot must have positive

parity and Bose permutation slmmetryr and nust satisfy (8). The

simplest form for F satisfying these conditions is

AAF:fffrni)

(7) as

o

(7)

(8)

L 4_f,
,'rn

(r vrtl>
(e)

r<j
(l_0)



where lf,i -lE-q\ *u the orthogonality condition (8) becomes

trhat (10) is translationally invariant is obvious, while the positive

parity and Bose synunetry properties of (L0) follow from the identity

lii : llc . To prove (6) we first calculate from (10)

br _tSl {?'i,rft' f*ntr
where XF) =. I yur, *,rt, ,(.rl : { x, y,

arrd ftrl = dt/Ar . writins Lx,Ly, L,
respectively, then

AIII. 5.

( 11)

=1
AS

(12)

) Yl? = x'l/- x"''
J o, where c( = I, 2, 3

L.F = -,t, 
T (xf*''*,u - ,f*#fd 

(13)

where c(e O means the Oth element to the right of

in the sequence L,2 ,3,L 12 ,3 , . Substituting (12)

finil

Using

L*F : -,tll(*f"" fffn*) - xf41ii'\'*i),,.,

we see immediately fron (I4) that LF =O, that is

L*tr : Q for all o(

(In fact, (16) follows automatically from (10) because any F of the

forrn (10) is rotationally invariant.) If, as for non deformed

even-even nuclei the ground state E is a O+ state, then V=FQ

wittr F given by 1fO) and (11) is a O+ vibrational state. Using

: AF Ao,B., , (B*,=-&o) (1s)

(16)

o( € { t,2,3'l

into (13) we

the identity
rr r-
1L AoBoi
h j*tq



(12) and PQ:O we arso have

lv = -;hoITSL,TS",Tg") =e (,,,

which confirms that we are working in the rest frame, as desired.

If we relax the transtational invariance condition but keep all

of tLre vibrational state requirements then the simplest form for F

would be
A: Efttl

AIII. 6.

(18)

where E = ltil is the distance from the centre of mass which is ncnr

fixed at the origin, and the orttrogonality condition (8) becomes

({cr;t) - 1 re)

(From (13) we see immediately ttrat (18) satisfies (5) and the positive

parity and Bose strmmetry of (18) is obvious.) H : trQ with F given

by (18) and (19) is a valid trial wavefr:nction for real vibrational

states except when the broken translational invariance has lead to

spurious unphysical states in ttre manner described previously.

Unfortunately general methods of recogmising spurious states are not

known for non harmonic forces F, t] , so that (18) can only be used

witfi the knowledge ttrat it may sometimes represent non physical states.

THE PHYSICAI, NATURE OT V ,

ClassicaLly vle rrculd expect the sinplest and lowest energy

compressional vibrational state of a spherical system to be the

breathing mode oscillation, where ttre system periodically expands and

contracts as a whole. Thus an important point to consider j.s whether

the trial wavefunctions g = F 0 with F given by (10) or (18) could

describe a breathing mode state. Firstly let's define the excited



state single particle nunber density as (cf. (5) )

Tl,(E) = A Sil. d! !El"
Sdl .,.dntvl"

= A g},(r,)
v (rrt.)

where

(e),(r,) =vSdl . daBQ"

We have assr:ned that Ft is sphericalLy slrmmetric so that our A

particle system is spherical and n,(f,) becomes Y1,(f;) ; q the

distance of particle one from the centre of mass. Letrs now make the

approximation that the ground state nunber density Tl(fi) siven bv

(5) is the cutoff density (see Ar(1:11,

"[(n) = W ) r;4R
(22\

so that the ground state is a sphere of uniform density and vohmte

V = Ln R3 . Note that from (5) , (2L) and (22) we have- 3--
(t), = | / t;4R

= o , E)R (23)

The question we now consider is how does ttre excited state number

density 'I\rC[) vary wittr I when n(ti) is siven by (22).

we will first discuss the simpler translationally variant

vibrational state, namely Y = FQ with F given by (fS) anil (I9).

rrour (18) ancl (21) we find

(rrt)tr,)
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(20)

(2r)
Sdr .. . .dn q"

: l{(r;)f(r), * (n-r)ftrl({tu)) * (A-r) fc,;Kff'r)>,



-f O- r) < l{c'r1l')

Using (22) and the

functions n(1...S)

a general function

( t,tn))

two and three particle density correlation

defined by Ar(2), it follows that for hCq)

of just Il , that

= Y- I de nt'r) ht 61
A(n-t) Y 

-

r- (A - r) (n-rl ( +Ll fcul) (24)

AIII.8.

(25a)

(n,nlx(r,D =fu, Idt d. n(rzr)htulhto (2sb)

If we now use the weak correlation approximation discussed previously,

then tl(rf) becomes A-l)16 n0)n0) (see app ar(1)) and hence (25a)

becomes

(r.a.l) = *"t)Sen(l)htr.) =(r)(nrnl) 
(2da)

Similarly we can define a partial weak

correlations between (1,3) and (2,3) to

which leads to (25b) becoming

correlation linit by neglecting

sive h(rrr1 = @ntr$nb),A

In the

becomes

( n(r,)h($ : +r-. Idt nc'.lhttil [&ntr)h(ri)r A.(A-D

: <h(il>, (t"t"l)

weak correlation approximation the orthogonality

using (41 and (5)

({t"l) = *tOnuftc) : o

Therefore from (25) , (26) and (271 we

(fft"D, , and (tcttfcr.D are

( ') ( lfrr;lt').

(26b)

condition (19)

see rhat (fCr.l) ,

alr zero and (l$tq) lt)

(27)



Therefore in the weak correlation linit (24) becomes
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(28)( tr l') rr;) - -F(A-r;(rfcr;)D](')[l*t'r|^

(29)rrcr; lIr +

t\
where ( f ) is siven by (23). Evatuatins (tf tt; in a similar

fashion to (24) and using the weak correlation approximation with the

orthogonality condition (27), we find from (20) , (22) , (23) and (28)

that

T,(r;) =
t{rr:r l^ - (t{trJl')

A < l{ cri)1")

where .tl(q ) i" given by (221 . Hence ttre excited state density

density fl(||) 
"na 

this smart variation is a function of [$tntl"
Furthermore if we substitute the cutoff density (22) into ttre

orthogonality condition (27) we find,

n,(fi) varies only to order -L6 n(f:) r.o* the constant ground. state

Sjt q'{tr,) = o

so that requiring V to be orthogonat * 0 implies that the real

and imaginary parts of fCf;) must change sign at least once as tT

varies from zero to R. Restricting the discussio" a" f(q) real, which

will be true for all tJ:e vibrational states of the type (I8) that we

will consider, we see ttrat (29) and (3o) impty that T\,(fi) must have

at l-east one shallow minimun. Before discussing the physical signifi-

cance of this we will- consider the variation of Tl,(|.i) tor ttre

translationally invariant vibrational wavefunction.

In investigating the behaviour of I,(f ,) for the translationally

invariant states (10) with (I1) r"re will discuss only the case of F real,

as all our specific trial wavefunctions will be real and any imaginary

part could have been discussed in a similar way. Fron (10) and (21)

we find

( 30)



(rrrlr';l
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( 33)

( 3a1

- (n - r) ({tr,t), * (n-[f*l (+tq.t) r-(n -0(n-l&;fcr.D

+(A-r)(n-r) ({c,;J{tr*l), + (A- r)(n-r)1({Cq,tf tq"))

+ (A- r)(n-: Xn - {f Cr;{ rti;) * 6- r) (n-r(n*)h *+-K(r;,*ol 

}1,

Letrs now introduce the two, three, four and five particle density

correlation functions n(t...S1 defined by Ar(2). The orthogonality

condition (11) becomes

rf we use the ful1 weak correlation approximation ttren n(...S) splits

into a product of nQlt , but for our purposes it will not always

be necessary to neglect all the hard core interparticle correlations

and so in order to rnake explicit the extent of the approximations

needed we will continue as in deriving (26b), to neglect correlations

only as necessary. Ttre last two terms in (31) ar.e zero if we use the

partiat weak correration approxj.mations, lt(trrps) :[A-tldln0A)nq5)
L Ah-I) J

?-r
and 'f1(tf rL) = | (n-ete-fl lntrf)n(3t) , because then

L A(A-') J

o

o

({F..)$tr*);, : ({(r;'l){+(r;,)) =

and ({cr.")ftr,*)), = <f(F">, (fcr.,)> :
where the last steps

cond.ition (32). The

is enough to give

of (33) and (34) follow from the orthogonality

approximation ?\(rf 3f)=hJnCInA3|) with (22)
A

( { (t,)f (rr")), = ( r), ({tn.rf tt;.1) ) (3s)
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and

while the weak correlation approximation "l'l(rf) = ryn0)n(1)
and Tt(rn) = (A?tA-2) nt)na)n(3) yierds

({t,,^) {t;rl), = ({cnl)"

( {fr,,)),
rhe last remainins term in (31), (1cr*t{ca.D | , is slishtly

morecomp1icatedsinceusingtheapproximationtl[rrr)

(n-=Dtte) ht)yttl)n{3) only sives
A1

(+tr.l-f (r"J), : {'\ * SAna)ftufdntrtfru.) (38)

So fron (33) - (38) we find that ttre weak correlation approximation,

or for some terms less than this, reduces (3I) to

(rrr'\(q) - (A-rl(gtu.l) +(A-Dtn-o[ ({cnJf +

({f r*f (E3>, * +, (ft,;.1) + h- rXn-:f(s) (ft,;.t{co,} 
J,

Evaluating (tf t^; with F given by (10) and (11) in a similar

fashion to (31) and tJlen using the partial weak correlation

approximation n(rrf+) : [O-rltg=-fl n(tl)nt3!,) arons with the
L A(A-t) J

orthogonality condition (321, we find that the four body term of

(tf t") is zero and so

(t r t') = 8.h. r)({i") -r- A(A-r){m1(5cr*)ftrr)) 
(40)

To calculate n,(f ) from (20) , (39) and (40) we can drop the first

terms in (3e) and (40) provided ({Cr*XGr)> >> O(h<fiiJ,
and assuming that A is larger than about 20. Then (2O) , (22), (23),

(39) anil (40) give

( 36)

( 37)



n,(r;)
=n(r)l

AITI. T2.

(41)

>> o(+<rc?r)
tionally invariant vibrational

density of the translationally

varies only to order f lcr)
density nt[) Note from

(42')

t +ft+cr,,f r,;r +<{tril{1.}cr)* <F -r(fu"xrn)
n (fcc)fcr,.))

rhus comparins (41) with (2e) we see thar provided (f CnJ{(f=l)

ttren Tl, ( f; ) ror the transla-

state 1fO) is very similar to ttre

variant state (I8) . Nanely n,Cn )

from the constant ground state

1zO) ' (39) and (40), that if the

orthosonarity condition happened ro sive ({crJ{(ro)) Io(*<tit"D
then ttre variable part of n,(fr) would be of the ord.er of the

average value of 1\,(n ) , "o that these special states will have a

much higher energy than the type of state described by (41). Now

from (21) and (4) we have in the cutoff density approximation

({cr..l) -: Fr
V

("it r;'({cr")),(r)

so usins the orthosonaliry condition (rl) we see thar ({Cf^l), tE)
must change sign at least once as \l varies from zero to R. From

(3s) and (32) we can also expect rhat ($CE"X(lrr)),(I,)wilr

have a rninimum very near the values of f; at which {f(f,")),(t,) -O
Therefore the orthogonality condition implies that nr(f;) (That is,

(41) ) must pass through at least one shallow minimum as tT varies

from zero to R.

So we have established that both the translationally invariant

state (10) and ttre translationally variant state (18) have densities

which pass through at least one shallow minimum. If F is oscillatory

and characterized by a wavenumber h , th.r, the orthogonality condition
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will yield a discrete series of states labelled by increasing h

We would expect the lowest energy state to have the smallest wave-

nusrber (i.e. longest wavelength) and to have an exciteil state density

'nt(fi) with only one shallow mininum. For each wavenumber series

it is likely that the ?|*h excited state will have a density with T\

shallow minima. Tlrese shallow minima divide the excited system into

regions of nild compression and rarefaction, but the physical inter-

pretation of the vibration that produces these regions seems to have

two possibilities. One interpretation is that ttre vibrational motion

is small scale reflecting the shallowness of the density minima' and

the minima divide the system into regions moving out of phase with

one another. That is, the vibrational states are standing spherical

compressional waves with the lowest energry states having a wavelength

of the order of the size of the system. This interpretation therefore

excludes anything resembling the classical breathing mode oscillation

from being described by V:F0 wi*r F of the form (10) or (18).

Hohtever this could be wrong if the excited state density n, (n)

defined by (20) is too much of a quantum mechanical average. That is'

it may be that fl,(q) averages out all oscillatory motion leaving

only the nett transfer of matter in the sErme way that occurred with

the quantum mechanical velocity field discussed

In fact in appendix BI(2) t1,(ti) is calculated

in bulk liquid helium,

in

for

section BI.

a Feynman phonon

E=trq eiE'-tr (43)

and in the sane approximations used to derive (261 it was found that

Tlr(li) : n(Ii ) . Because it is known that as h'-* O (43)

represents large scale periodic density variations we concluded in BI

that expressions of the type (20) are quantum mechanical averages of

all the motion, so that any oscillatory density variations are averaged

) F =X
J
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out. (See rond"" fOl page 317 for a discussion on similar averaging

problems in quantum mechanics.) As another example we note ttrat ttre

quantum mechanical velocity field 8I(16) is zero for any state with a

real wavefunction and all the vibrational states that we consider will

be rea1. Thus the quantum velocity field has averaged out all the

oscillatory motion and the zero result means only that there is no

nett transfer of matter due to the vibrational motion, as \de would

expect for a pure vibration. So it is possible that the results (29)

and (41) for the vibrational state density n,(t;) have smoothed out

aII the vibrational motion and the shallow minima are just a small

difference between the average density distribution of the excited

state and the ground state, occurring because of the necessity that

be orthogonal to $ . If this is the correct interlpretation

or t,(fi)
variation

breathing

ttren the vibrational motion may be a large scale density

with the largest wavelength state closely resembling a

mode oscillation.

Another hint to the physical significance of our vibrational

states is the close relation they have to the Feynman phonon-roton

excitations of liquid helium, (43). I" L4 Feynman describes the

physical nature of the trial wavefunction EfCn I and concludesJ-
t.l:at in ttre long wavelength region it represents a compressional

density wave inside the fluid, (i.e. a sound wave). The only

difference between this wavefr:nction and our finite system broken

transtational invariance state P = F0 with F given by (18), is

that Feynmanrs state is characterized by a vector h and so acts in a

specific direction, while (18) is purely radial. Hence a reasonable

g:uess would be that in the long wavelength region V = F I with F

given by (18) should describe finite system radial analogues of

Feynman's phonons. That is, it should describe radial compressional

density waves. Now from the sinilarity of Q9) and (41) it seems
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tikely that 9 = F 0 with F given by (10) includes many of the

translationally invariant forms of the states with F given by (18).

fhis is closely related to the rotationaL states investigatea in ff]
where tf,. 2+ state was shown to be ttre translationally invariant form

of the L=l component of Feynmanrs wavefunction (43). So we expect

that ttre vibrational states H=F![ with F given by (101 are transla-

tionally invariant relations of the states with F given by (18),

which in turn appear to be finite system radial analogues of Feynmanrs

compressional density wave excitations.

Letrs now sturmarise on what the vibrational states H: F ![

with F of the form (10) or (18) are likely to represent physically.

Firstly they should describe radial, compressional, density oscillations

directly analogous to Feynman's phonon excitations in liquid helium.

The lowest enetgy states should have wavelengths of the order of the

size of the system and there seems to be two possible interpretations

of these large wavelength vibrations. One interpretation is that they

are standing compressional density waves and could not include large

scale inphase motion like a breathing mode oscillation, because the

orthogonality condition insists that there be at least t:wo regions of

out of phase motion. Ttre other interpretation suggested that the

shallow density variations due to the orthogonality condition do not

necessarily indicate out of phase motionr but may only be describing

small density differences separating the excited state from the ground

state after all the breattring mode like motion has been averaged out.

TRANSI,,JATIONAILY INVARTAT{T VIBRATIONAL STATES .

We want to calculate the variational energty of the trial

vibrational wavefunction 9=F0 with F of the form (10) for

spherical, self-bound, many-body quantum system, described by a
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Hamiltonian of the tlpe (2) . Provided the orthogonality condition (1I)

hords, then the variational upper borrnd to the vibrational energy E

is given bv (9). rnserting (ro) into (9) we have (cf. [rl "e. rzl I

AE = E-Eo + (A-r) (tie). $o)

r,^)) * 2 (n -r) (4(ri, X(r$D +G+Aexf(ra6n,l)

where HQ= E"6
/ : *r^ .r,a (' ) t" the sro'nd state 

(n4)

rlLL
m

expectation value defined by (4). In order to evaluate (44) anatytically

it is necessary to make some approximations to the truo, three and four

partj.cle density corretation functions, n(1...S) (see AI(2)) rhat are

need.ed to calculate the expectation values appearing in (441. Firstly

we make the partial weak correlation approximation used to derive (341 t

namely

'n(trgL) = [ffiP] n(rr) n(3r)

Note that (45) amounts to igrnoring all pair correlations between

particles (1,3) (1,4) (2,3) and (2,4) and all higher order corretations

in ttre system, except those due to restricting the particles to move

within ttre finite system. One typederror in this sort of approximation

cones from ignoring the hard core interaction bebrreen particles, but

as we have noted previously, the fact that the nucleon hard cores

occupy less than a percent of ttre total volume, suggests that

these approximations should be good for nucrei when calculatirrs AE
The orthogonality condition (1r) together with (45) immediately gives

for the four body term of (tf t^) ,

: ({ctalt' = e
(46)

(tvFl"> and (rrF)
mild approximation

(4s)

( f rnl{tr..))

We can prove that the three body terms of

are positive definite by nraking the fairly

Xe See the note on page AIII.44.



(47)

where 9(f) is the pair correlation function. (cf. eI (6) ) . (47) amor:nts
,l

to keeping the pair correlations between particles (L,2') and (1,3) but

ignores all other correlations ottrer than those due to the finiteness

of the system. Using (4) , AI (2) and (47) it follows that

(48a)

( fc,;,lf(ft)) : f-'54 T\(r) dc'l ) o (48b)

Tl(trr) = rt(r)n(1)n(3) 9(.")9(cr)

"/ = SAU&ntrrr)

A(') = f& nal 3(r;) L{rr; , At=A.A

Bt,) = Idr na)g(r*){(q,)
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(48c)

(48d)

(48e)

and

where

Therefore with only (45) and (47) we have proved that every term in

(44) is positive definite, which is a result that from (9) seems

Iikely to be completely general.

We now assume ttrat the grognd state is spherically symmetric,

so that for example, ( Xil)
./t/(. x'r X'r )

made to evaluate the ground state expectation values appearing in

(44) wil-l be the weak correlation approximation for 'n(12.) and

^h(tff) and the cutoff density approximation (22) for the

ground state nrlnber density. We have already discussed ttre validity

of the weak correlation approximation for evaluating the excited

state collective energ"y and we concluded ttrat it should be fairly
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good for even-even nuclei. The cutoff density approximation should

describe the ground states of non deformed even-even nuclei reasonably

well when A is greater than about 20. Furttrer discussions can be

r-l
found in $J where the same approximations are used to evaluate the

energy of a related rotational excitation. Because of these

approximations we will restrict ttre quantitative calculations to

non deformed even-even nuclei, alttrough the results could be qualita-

tively applieil to other many-body quantum systems.

l,
Let h(f;r) be a greneral fr"rrction of [i1 , then using spherical

bipolar coordinates (see AI(7) ana [fl eq's (32) and (35)) and the

weak correlation approximation for 1ltl2.) and Tl(ll3) , we have

- t- rco 11
1 L \"dq Eln [r)J

(49a)

(hr,r"lh(r,,))=[.Tr",,"r5.rnn",r^,[.in,r^,6,||-T,:i,tr[ip,-hnr

I- 16. 13 (4eb)

hL \"dt, qlntr;)J

Next, define the variables XrYrf by

X= Ug, y= E/e, ,{=vy'X

(hro) = si't'T ntr,!inn n""'J,lt 
" 

htn''

then using (501 it fol-tows that the cutoff density approximation (22)

reduces (49) to

(s0)

(5Ia)( t^,tr*r) : + (.r"- lirr{lif h(e+)

( h tr*rhtr,J) = ? (r- [5"iry li$i hte+r] " (slb)



The next step is to decide what specific forms for (10) we might

expect to represent low energy states of the wavefunction P = F0

witJl F given by (10). Towards this end let's first discuss the

translationally variant form (18), in the hope of generalising a

specific choice to its translationally invariant form in a similar

way to the rotational states investigatea in ff] . Feynman has

shown that for an infinite system ttre best wavefunction of ttre--

rorm |ftril 0 satisfies the eguationr(fZ] page 255.)

-* q?c,t = o.l fcr,t *5dln*)fqsilg(r^)J
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(s2)

(s3)

(s4)

Using the weak correlation approximation (i.e. 9(l;l) = a constant)

and ttre orthogonality condition (cf. (27)1, (52) becomes

q"ftn) + f arag)frrl -- o\Tr7"'
Now (53) has more than just

f crl = hcrl Y.[q,d'
(r; e, /) = (ri, 9,, l,)

plane wave solution (43). If we write

then in the spherical coordinates

(53) is

vjht.l +(h^-€)htr) =e

f = /2* AE\ and Vj =\Trl '

I !- 1r'I-\ = -f,. *3I
ra Ar\ lr ) 5r" r )r

From appendix AI (4) we see that the regular solution of (54) is the

spherical Besset htr) = /(hf) . Therefore rire have found that for-lL

a spherical system and neglecting surface effects, that the best state

of angular momentum L of the type P=FE with F given by

F = ZY"(sj,dj)h(f)
J

(55a)



is, at least in the weak correlation approximation,

V = EY.[n,,6)JLuq) U.)

i4J

Hence an obvious candidate for a low lying vibrational state of the

form V = F0 is the L= O component of (55), nanely

F=|J"cnrl=F+tt (s5)

Unfortunately the translationally invariant form of (56) is not

apparent, but a wavefunction of ttre fomr (10) that might be closel-y

related to (56) and hence should be investigated to test ttris, is

obviously

AA
F =f f J(irrir) (s7)

a<J do

Another way to create a translationally invariant vibrational state

of the form V = F E is to superpose trrc phonon states (43) with

opposite momenta, to produce an excitation of zero total- momentur.

Following Felmman t [Zl page 268) we expect the wavefunction for

this excitation to be V= F I with

F = f f eih.(r;-$) = 2f fcorb.(ri-E) ruo
i j*i

AIII. 20.

(ssb)

If we choose ttre Z axis to be in the direction ot h , then the non

radial vibration (58) becomes

F = 2 f f coshz;;
t 1J (se)

Ttris suggests that a low lying radial vibration of ttre trce V = Fi[ ,

with F of ttre form (10), is given by

AA: eF coshrii
(60)



So we wiLl now investigate the two translationalLy invariant rrtave-

functions (57) and (60), to see if they incl-ude vibrationaL states

whose energies are close enough to the gror:nd state energy to be

experimentally detected in non deforred even-even nuclei.
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(61)

(62)

(63)

hA
V = T; J"(hra) Q i

lltre orthogonal-ity condition (1I) becomes using (51a)

pl rl rY+Y
\.dr x \"dyy \,ilIf l"c"({) : o

where a(=hR. . sr:bstitutins /J"{) = st'"lf into (62l and

integratirg orr"r df gives

l- 1r . la
L\.d*xsin*xJ : o

From appendlx AI (4) (iii) l*e see tfiat the orthogionality condition

reduces to

1@) = o / -t =hR
"l

lttre first solution to (641 is a4 + lr'trllt* . From (51b) we

have

(J"t h',)l"rhr*)) : F^ f":- [ 
(ary l,d+"*n]'

: l'.l !hxsi,fu-[l.aVVsi',*y]"
oqb

L rl^

= ttft! 5"d* sin?x
.qy

which frorn (64) = O

(64)

(6s)
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Note ttrat if we removed ttre cutoff density approximation (221 and kept

1(f) as a general radial density n(li) , then (65) woulct still hold

because of the orttrogonality condition, which becomes 5$*"'fi(x)Sin*x - O.

From appenitix Ar(4) 1'Claf") = -h 1 
(hf") , so that (441 ,

(46) and (65) give

A r L h" { h"< tlcnr:^l) + (A-r)(U.ord.S/.(rtr.} IHb 
J teol

rn I ( jlrn"D
Now vre have already shown with (48a) ttrat

(L4tnn).S_1.&tiJ) is non nesative, so that *re risht hand side

of (66) is at least

f,E
rY\ ( J."&q)

1'1nrJ)

and is probably of order A larger than this for small k. In appendix
tt2

Arrr(i) it is proved ttrat -l ta): Q iurplies that <'l!hf.)>
/ .a ., 't-

tends to ( 7"(h[") ) rapidly for large o( , and ttrat for the

smarrest varue or a( (o( = b.b%ti (lJlnf) = o'g9l</:(hra)>.

llherefore the variational bound of the vibrational energy is at least

of order

+a La at ,2h R' = T1o(
m iffi" (68)

For sphericar nuclei we put R = q A|4 with

sivins tcr. frl I

t'
rhR

= 28.;1{t/x Me,r.

f; = l'2 fr..,

(671

(6e)

Erom above we see that the lowest energv state of (61), namely

a( + b'+? 3l* , has a variational energy bound that is at least

5l'Z A-2l' 14g,, . Now it is very unlikely that for small o(

<81.6r^),g[tr.> 4 o(*'<lilr:;)) as werr as (65)' so
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ttrat the variational energy is almost certainly of order A higher

ttran (68) for smal1 o( , and because even if ( y,/.tnr;J. VJ"(t<r'.1)

was zero the energy would still be greater than 5t? A-1/1 fu\ev,

it is not worth the large effort to evaluate ttris remaining term.

Note ttrat in the previous rrork on fl,(q) (see discussion after (4I))

we found that if (65) held then there was a much larger difference

between the ground state and excited state densities than usual for

states of the form (10). so the conjecture that the energiy of (61)

is of order A higher than (68), is supported by the previous discussion

of n,(t'i) . Therefore qre wilt end the investigation of (61), which

was necessary because of the apparent relation between (56) and (57),

and instead go on to consider other vibrational states including

some that have energies significantly lower than 5f 'I A-rl3 MeV ,

ttrereby definitely eliminating the wavefunction (61) from being

important.

AA
V = eT coshq, $ , ( 70)

The orthogonality cond,ition for t].e wavefunction (70) is, using

(It), (50), (5Ia) and defining o( = h R ,

rl 7l r><+Y

\.d"" \"dyy\,{1r(,c.osrr : o

Thris can be written as

( 71)

: * s.ld,.,.S:rvyf,[i,^*u

= t fr (* [4" xsiocr" fJ'rtsi^"ry'
(721



From appendix AI(4) (72) becomes

r fJi{) = &qft#*t-rJ,c"lo : fatT) - ,rL so o1{' J (73)

lltrerefore (70) has two distinct series of states, defined by

AT.TI. 24.

(7s)

.E )>tr
;

753/..'

5'3/..

trnhtirr

-l

tii \

coshF"

/,c"tt-o : "(+ +-.rq3r,'1.'tl

?J*) :iJ,,4 : '(. + ,'s2ss/ s.ls

Inserting (70) into (44) with (46), we have

Ar z fh'J(sifrhr.) -+ (A-e)< t'*"' I
-lrn 

[ 
("thr) r-t(n-'lXcoshr;.,

(74a1

(74b)

.Y

In append"ix AIII(2) lre calculate, in the weak correlation and cutoff

density approximations,

(cothr;") : t - (silh r,) = *- * WI!"ul) -W\ o6a)

and

(coshr:"csshs) = t-, J,tdll.dxx+/*x) +'

2r (1"(*r *1, 
(uffJ . r 

Jfo , l - strj p )(l:o it,9 fJ 
^ "lp 

ill t ( 76b )

Let'|s now consider the states tr@) 
: O

J3*)=e { /"(/)= (o!o( ,7"(u):liut, !,tu1=;; {at .,7)

From (76a), (76b) anit (77) we get



,/rr\.'?l .a
and (coshro coshr, ) =, 2t Jitas tod" x"lJtx) (?ea)

rslii..oh fron app-endix I{r'II(2) ((f) ie ttans:for-rned usJ-ng 1 = (Ott+SrAr)

and (77), reduce,e to

(cos'hq- cosh r;i) = T 1!*l

(c"fu; = * * Hlltar

(s,nturi;) = i -+1 1i^)

$,slcle I ';

AIII.25.

(7:8a)

(78b)

(79b1

(80a)

rffre erLares 7"A) - sfr /rH) are much more ca[rx,tiaate4,and so we

wdlL only ealiulate ttre €h€rgl€€ o:f, th-e flrst. two :statee i 1+ r;tlEf,

e(+ 5-g$r3. ![tre vatueE aba!.ogous to (77) are givet tn'ltable r.

@< J"ta) 't,H\ 4ua1 4,Qetl:

o-3361/.52s5 o'6'5485 o'39 76 o.ol9 65

5 8513 -o''07/5 -o,167{-. -o.o 650 - o-o6,il

(76a) doesn,r stupltf-y bur (?6rr) becsmes witlr trb) = *7,H) ,

(ushr.coshriJ = 2'T1fu4(}- xvf,ux) +

fi , 
fJ;xt'/]t"r x) - 5 5)' xr /o(/x)/, **) J



From Table I and appendix AIII(2) we find

o(:/.flFS 1 (fosh[a(oshr,3):o.otr*8, (Bob)

(coihr") : o.2s6, {si,.'ur;") - o'1 + tr

o( = 58513

< coinr,) = o.so2 , (stlhr,r> = e.+gt

The last remaining tem to evaluate in (75) is the three body

numerator te::ul, which is of the form

( htr.;h(r.) tr.E) : (hcn )1.,(r,,;(qFr;'* E.E)> (Br)

AIII. 26.

Ttre right hand side of (81) follows from the slmunetry of particles

2 and 3 and the identity

T;" : Ii^*f;r-2[.f. rczl

using the partial weak correlation approximation (47) we find, in the

same way that (48) was derived,

( hc,;.)t,tnl5.r,) = 1-'5dtn,,l C?rr t o (83a)

where ec,) = Jdl nu) grtLlhc[,)Ji , c': E. E (B3b)

oand J is defined by (48c). For a spherical system we can evaluate

C(f) by rotating Lf" about the f, axis for all values of tie r so

!(r) : _f, Ccr;)

where C([) is some function of [ , yet to be founcl. rf we now

equate !r.$r) rorC(r) given by both (83b) and (84) we have

e tr;l = *" [dg ntr)g tr.lhc,p ( r,. r^) (s5)

(84)



c(r;)

If we now use the weak correlation and cutoff density approximations

then (83a) and (86) give

Frorn (84) C(r).Q(r) = ["e(;) : Cttr) wnere, usine $2)

I dr v' tr) g(r;^) htr") (r;t* r;'- t;" )

A"fui
x"

=l
-2n

AITT. 27.

(87a)

(87b)

(87c)

(87d)

(87e)

(85)

2)R. (l
TE 

VO

where Fcx)

L(v)

kcxl

P(v)

lay)'ldlt h(R{)

Sjavr[d$i'hrn+)

and X, y, t are defined by (50) . Therefore fron (81) anil (87)

the three body numerator term of (75) is

sghn" s-:lhr.(r",,tr\ = 27R.1^,^.{x"k1t + (ss)Ir"'"- 
n;{- -,s;;uj' *. n(x) - k(')l}

where L(x), k(x)r?(X) are siven by (87c,d,e) wittr

h(e+) = s:n:!t : o( '= hRTt- /

the state" J, 
(a) = O (see (77) ) , we see from appendix

that,

o :> Ltx) :o , R(pcx)-tr($) = trx'1,ux)t,ta) (8e)

For

Arlr (2)

/t*) =

= x" Ltx) + K(x) - P(x)

rl. rx+l
= \"dy y JCl$, h (a+)



Therefore from (88), when Jt"<) = O

(ry'j* F"'+: nlutfixx\f,uxl (eo)

which from appendix AIII (2) and (76b) becomes

1rbhE" s-ub-[. G. F.\ : 2t lltet\ Iia. ITs - -/ T Jo

For rhe states Jl"l = hJrt*) (see rable r for the first tr*o

states), we have from appendix AIII(2),

R kx)
o2)

g( P(x)- krx)) - 2*"J,&Q"u")-* l,o.D

Frorn (88) and (92) we have,

(t#. qy" E.+ : r'7 t:o,lll/. xvlic.rxt 
(e3a)

AIII. 24.

(er)

*. $- x'Jo(ax)l,Qx) +h" [J^*7ru]
From Table I and aSrpendix AIII (2) we find for the first two

/.c"tl : i J, cJ) states '

I = ,.51Fs . </sr:E" !*E' Fi.J[\' \ fie [-rr --/

.,l, - 5.85rg : < t'!hE stnh!.. G,F3> := o.oo39\ ra Ia --/
We are now in a position to caLculate the variational bound of the

energy of the vibrational state (70), in the weak corelation and cutoff

density approximations.

(a) For the series of states defined ny J(ot) :6 , we have from

175) , (7e1 , (79) and (91)

(e3b)

(e3c)



li*,tr
rh

AE

so that

t'hr to
arn

relative values of A and c1'

c( F l/.'L93 f" , rrre see that for

-i rtr-Stno{Now Joro(/ - F
(94) varies from

I/- V . fnerefore

depending on the

For the lowest state, namelY

A25o

AIII. 29.

(e4)

, 4= L-'+qt+ (e5a)

L

Ar L tb' = ffl,rn ln Ra

ra
,o'l n

tnRL

For

the

spherical nuclei we use (69) to obtain, fot the lowest state of

series JGI)-OJI

Ae t 2Qo A-2/g Mev , A >so (esb)

As an exanple , for ff = 2o8 (i.g. Pbtt) , rtre exacr expression (94)

gives Ae e 8'5 Mgv . so we see that this vibrational state

is outside the well documented region of experimental nuclear physics,

but is still experimentally accessible. (It has an energy of about half

that of the giant resonance states [tl page 734.)

(b) For rhe excited states siven by Jou) = * J,(.*-t , we wirl

calculate the energies of only the first two states, namely o( + |'S2SS/

and o( + 5.8St3 . From (75), (80) and (93) we have

o( + l-s155 ) Ae a +ih' (e6a)

o( + 5.85 t3 , AE4 f (e6b)

rn I o'SoJ. + 2(A*).o'oo33

lo.'rl'F -F (A-l). O.i2of
8J

1

o.256 +t(a-l). o.01tr

o. lF?8 * (n+).o-oo39

lrn

'.al2hR

From (80), (93) and appendix AIII (2) it is easily seen that for large o( ,



AIII. 30.

(,ot[6. cosh,;l) tends ro (s+5- Er$' !i.tr\' \ Fie Tir '-- = //
and tlrey both become of order (/a\+ . So the variational energ'y

again varies between 
-lfr-* 

and *" depending on the relative

values of A and o{ , except for the lowest state (96a) which is

around 6 tb'
rn

. When A ZSO we cErn drop the first terms in ttre

numerator and d.enominator of (96a), so that for spherical nuclei

(i.e. using (69)) the energy of the lowest state in the series

J,G<l =t 1,u) t",

o(+t.5155 : AE* 's
h"
mRa

+ lF3O 6-r/r /!\ev Qt:

wrren A is in

state, namely

tlte region 1OO to 20O we see from (96b) that ttre next

a'( = 5.85 13 , has a variational energy of around,

Ag '-, 3 t""<t = ls.-7
+ nR2

f,.
ltlR2

/ 4=S.8S,3 (e8)

Therefore we have found, using the weak correlation and cutoff

density approximations, that the vibrational state (7O) has two series

or states derined o" j,(hR)= O and J.tnR) = fo,J,thR) , and

depending on the relative values of A ana hR the energies of both

series vary between Ebt and t bt , except for the rowest2,rn n\
state of the second series which is anomolously higher than this.

Within each series of states the larger h is (i.e. the smaller the

wavelength) the higher the energry, which is what you would expect.

The state with the lowest energy is the first J,tnR)=O state,

hR + tr'lnf a4 and for spherical nuclei its energy was

AE * 19oR-r/3 rtlev ror AlSo,

To conclude the investigation into the state (70) we will now

d^iscuss the excited state density variations given by eguation (41).

Ttrat is, whenever (CoSkf.),tf;) is zero the excited state density

has a shallow minimum. Using the bipolar coordinates introduced in

equation (49), it follows from (421, in ttre weak correlation and



cutoff density approximations, ttrat

AIII.31.

(ee)(t tr;.)),('') = 55no
r(. ,'G+l'1
I"dr, ,1 ),1h,".

X, Yrt defined by (50) and a( = h R r w€

rl rI+Y(x) = 3 \odyy \ dtt tos o(t (looa)

fX 
e rJ-lx_)l

S,[,{T. hcrJ

Using the variables

have

( tos*1)

From appendix AIII(2) equation (d) this becomes

of states, we have from (100), as X varies from

3J,e) jo(or) (101a)

7"a:FJ,u) ) <ro.*{)(x) = }lSt(rtos.{x-dan) 
(rolb)

rn figure r-. rhe function (aos*{), tx) is protted for ttre rirst

two states of each series (i.e. 1,U): O I 4+ +'hetyr 7'7153;
.r

/"t*) : * 7,U): a( 
= 

/.slss/ s.8s,3 . )

We see ttrat the lowest energy (longest wavelength) state of each

series has only one shallow density minimum, while the second lowest

states have two shallow minima. If the density minima are interpreted

as dividing the system into regions of vibrational motion of

alternating phase then the above leads us to conclude that the

wavefunction (70) represents two series of spherical standing

compressional waves, with the llth member of each series containing

n radial nodes.

(cosx{) c*l - 3 (1"c,t -j.J,69 #*-) - 3 

"7F"1 J,q (Ioob)

For the two series

0 to I,

4.ta) : o )Jl
( <osat) tx)



(cos"t{ ) (x) rs

A e{ : lr.f-93,1;

B o( + 7,?2Fa
c e( + ,.T2SE
D '( + 5-85t3

Pl"tf-d for.

ri.S. 1.

Arrr.32.

(I04)

OAI{ER SRASISLALIXO]{ALLY' I-I{\IA&IAD{T ETAttr$ :

It is of iqportar.rce to the interpretation of, the physi.cal nature

o.f ttre vib:stional states to ooneider for eo&BarXsonr the t$rorphonon

non radi.a]. vlbrationai. (59), naimel-y

p = f t.eib'(!i-o'U - ltFcosh.e,-s,) U

Fof tlris wavefunction the weak correlation apgrroxilrtation redugeg

orthogonality condition (8) to

(edb's> = o

o.l,

o-3

s'2

9-l

tsecause the sltstem is spherical we-g?n integrate over the qlrgles alcl

(r03)
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that (103) becomesthen using the cutoff density approximation, we see

fR,odr:t"'J"tng) = O

From appendix

reduces to

Using

see that

Ar (4) and defining o( = hR ,

4ta):oJr -

( 104)

the orthogonality condition

(10s)

correfation

to make the

rW€

(r08)

Now, inserting (102) into (9), and using the partial weak

approximation (45) along with the orthogonality condition

four-body denominator term zero, we have

AE (. h"[<lveib'El] * (A-r)<db'1 !r-€ib'e);l 1 
(106)

V eib.5n = dih.$ !,gibg = ih eib'5.

( Vetb'B. L etn'n, = h'( sdb.a it bE) = h'(eth'g): ?(107)

where the last step in (107) is the orthogonality condition.

Therefore we find, with only the approximation 1a5),

AE { f!'= h^;' , J;A) =Q
rn Rl

(108) verifies Feynman's statement t [Z! page 268), that (102)

represents a superyosition of two phonons with a total energy of

twice that of a single phonon ( E = 4H in the weak correlation

limit) within correction terms of order l/y , that would appear if we

hadn't used the partial weak correlation approximation (45). From

(105) and (I08) we notice the close relation of this known state to

our radial vibrations. Thus we have further evidence that for long

wavelengths the vibrational states V= FE , with F given by (10)

or (18) are finite system radial analogues of Feynman's compressional

phonons.
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To find more candidates for low energy translationally invariant

vibrational states, we will try to find exact eigenstates of the type

9 - ]${(nrl 0 , when q is the srowrd state or an A particle

system with harmonic pair interactions, namely

ffi 6v r -i-A ^'ly==^Pt-p+.iq;J , Paconstant (Ioe)

Except for very small A (I09) is a poor approximation to a real

nuclear ground state, but its simplicity will allow us to find exact

eigienstates of the form EFftUtlq' which shoutd be fairly good
(<J

trial wavefunctions when ![ is left as the exact ground state. with

the Hamittonian H of the form (2) and HE = E.S , we have when

V=FS,

(u-EJv

qF = r E.(r?'iJ - $#) = .T.T(r?n,r*'#) ('1,

and

Z Voq.'. y"F = -),pUIf I e.El{'r'i,l
h (rr2)

=- -)Ap O t fn(s- s). +f t'i, )

where e=(x,1 z) ; x = 7nf.*, etc.

lftren using the identity (15) in (112) we have

T Et.!"F = -t^f U E; rii{t.or) *,,,

Therefore from (110), (111) and (II3) we find

With F of the form (I0)

: *, I{ovfr + 2&q.s.-l ('o)

(f = f |{frri)) , we have rrorn (r2) and (loe)
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[rr-sJv = # *.}[+tn,y 
*{tnr(; -rAF-,)} (1,4,

From (Ll-4) we see that ror i[ siven by (roe)' ty' = EF{CQ)[
is an exact eigenstate (wittr AE = f t/* ), provided

f U, r
{'(n*) + {tn.)(+ - lApF") * g,{tr;,) - Q (11s)

We ean break the translational invariance of $ using the iclentity

( F] eq' (43) )

6A A

f f ni = Afri' A'R" (116)

ilj J

and puttins &= (ororo) men i[ becomes,

fi = €x p[ - nB * n'] (r17)Y '( 'f +" 1

and ror F or the rorm (18) ( p = tfCif ) , (110) leads to

(tt-e")v = &'v provided
fn

f"rr) + {t'lf - LAn, + r2-{tr) : o (118)

The solutions to (Il-5) anil (118) are combinations of Hermite

polynonr:iaIs (cf . fsl n.s" 111) , with the sirnplest one being

{Cfl = f1 - C i a constant. That is, for F of the forrn

1fO) and (18) respectively, exact eigenstates for a harmonic pair

interaction ground state are :

AA.AF= ti(ff-Cr) (Ir.ea), F =I (r;"-c.) (11eb)

C1j - J

Inserting (119) into (115) and (I18) we find,

Ir= L.-= lrAPG?) ) ce = % , c.,' = ?h (120)

lltre orttrogonality conditions (11) and (19) yieLd for (119)

C;=(rf) i Cw=(r;') (121)
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so from (r20) and (121) we have ( fi"t) = Z1n') , which is

a result that was verified in the weak correlation approxj-mation in

Ltl ,.n. 832)), where it was shown that ?CC.)= I led to

( [rt) = 27,. = (q1) with

(Ia rtrn(r){cr)ftrl = co, 't
J. drF-n(r)

A /. -\
Now, using the identity (116) and putting E=(QO,O) we can break

the translational- invariance of (119a) to obtain,

(1'221

(123)

(L24)

(t26)

AA

f Z(nl -c,) =
ccj

4(n*r).c;
2

A

n f r:"
J

A

= A Z (t:'- 9) r- o(r)

So (119a) is the translationally invariant fo:rn of (I19b), which

explains why (120) save 2i = 7u and Ca :2Co

we no\^r revert to leaving e as the exact ground state and

consider the vibrational state

v,=
AA

tt(n,3_<rTi>)q:
c 4i

The wavefunction (L241 is just one orthogonal state. Inserting

(L24) into (44') and using (46) we have

AE € Lh" <ril) r- (A-r) < V. B>
((l;"'- <ff))) + r.(A-1)< ( d{ r"' >xn'- <ni>) ;]

( 125)
m

For a spherical system we

1z^Z,3

to show

use the identity

7,i -+ z,: -zr\

= j (z,z,r) = -3.<zl) =

can

that

E. 2b) @z
(L271



Using the weak correlation approximation we see from (49), that

(ci) = 1F ; (rl) =* tT:i +€(F)'; (riri)= F+3(F)L
(128)

wfrere f(f) is defined by (L2z) . rn the

tr =-3-Rn
n+?

For A 25O we

denominator of

Ar* It" F

can drop the first terms in the nr.ulerator

(125), so that, using (128) and (129)

Arrr. 37.

cutoff density approximation,

(12e)

rh ( r-cFlF)
For spherical nuclei (130) becomes,

:- l"'5 h"..
n\R'

using (69),

(130)

(131)

(132)

The

suggests

V=

rule

wittr
AA

^/ 1_
. a:

AE * 5oo A-v3 &lev

that the smoother the

(119) that we should

(E-<E))0:

wavefunction the lower

try the wavefunction

the energy

The wavefunction (132) is just one orthogonal state and should

have an energy smaller ttran (L24r, despite not being an exact eigenstate

when 0 is the halmonic pair interaction ground state. rnserting (132)

into (44) and using (45') gives

Ar L t.(l-r-(n-r)1n.n\ ')

L

rn [(t 6^-<r*>)]+1(e-rX(6-{r.^))(rr -<r))> J,rr'

For A)5O (133) reduces to



AE * h.{f,*,_tr\r Eit,/
2* K Lr)-<n^f]

rn the weak correlation and cutoff density approximations, (*e)

is siven by the risht hand side of (88) wher" L(X) , [4(X) and

PtX; are siven by (87 c-e) wittr h (nt) = '/gt
That is,

RLrx; = Ilrrfdf * J.d'1vqi' : x -S
r\ rx*Y 1l fx*Y

Rt<rv) = I"ary'Jr{,r *J/yy'l# = + -# (13sb)

R P(x) = fdvr[lii'* liry fdti" = f *S -S (135c,

From (88) and (135) we have

(+*) = * I.r'l+xts-F*'*#'1

= 232- 
--3 

O.lrtft? (136)

5rs

Using (51) we also have

(n^n)

= ? R'J:d"[i' * *- * H' - # -# ]
+ l'o:16 Rt (r-37)

and

AIII.38.

(134)

(135a)

(r") : ct R" ildxx?tx)
a



: +R(la"{f *$-*'l
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(138)
=SR

3s

Therefore from (I34) and (136-8) , we find that for A l 5O ttre

variational energy of the state (132), in the weak correlation and

cutoff density approximations, is

A E L /6'2 t' (r3e)
rh Ra

which for spherical nuclei becomes, using (6S1,

Ae A lrL( A-2/t lvlev (140)

TRANSLATIOIIALLY VAP*TIJ.{T VIBRATIONAI, STATES !

We now consider trial wavefunctions of the type V = f[ ,

where U is a spherlcal- ground state and F is of the form (18),
A

narnely p = E$tq) . raking F to be real and enforcing the

orttrogonafity clnaition (19) r we find fron (9) that the variational

bound for the vibrational energy is

AE = E-E.4 L' f < Siil) 1

2"l t <+'rrJ> + LA-r) <f cr,)f (r;)) I (14r)

where f t,'il = 4{t, and
orI

value (4). To evaluate (141) we will again use the weak correlation

approximation, T\ ( tl) - LA-% lltt) n(1) , so ttrat toeether

with the ortltogonality condition (19) we have

(-ftrilf cnl) = <{cr)f = e (L42)



That is, in the weak correlation approximation

aE 4 f (ttir)
rm ( ftrl )

whcre t , \(*(r';) ) = Q

Before evaluating (1a3) for specific choices of F let's

summarise the many conclusions and approximations that we have

previously discussed. nirstly, ![ is taken to be t]re spherical

ground, state of a self-bound many-body system described by a

Hamiltonian of the type Q). So for nuclei we have neglected spin

and any d.ifferences between the protons and neutrons, when the

vibrational energy is calculated. The weak correlation approximation

is also used in calculating the vibrational energry and tJlis restricts

the quantitative validity of our results to the case of non deformed

= | Sttr) [

Arrr. 40.

(143)

( 144)

even-even nuclei. has the same parity,

permutation symmetry and angular momentum as the ground state 0.
(e.g. For even-even nuclei W and 0 .r. O* states.) In evaluating

e:<pectation values we approximate the ground state density by tJle

cutoff density

'I\(r) = A/u

=O

,, r-4 R (v= tn nt)

, tr)R

Note, that defining X = li/R , and using (144) gives for hCn)

a function of fT

./r , .\ n (l I

(h('j)> = 3\"dxxah(Rx) ttnur

Finally, the fact that F = E{Cq) i" not transtationally

invariant means that unler" 
" 

."l be shown to be closely related to a

translationally invariant state, it is possible that $l = F0

may be a spurious centre of mass motion state, that doesnrt represent

a real internal motion.
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What are some likely low energy trial wavefunctions of tJ:e forur

T$(fj)![ ? Firstly we have already seen from (s2-6) that when

{tti) = /o(h5) , that for smal-r h, F[ shourd represent a

finite system spherical analogue of a Felmman phonon. By analogy with

(70) we wilr also look at I Cos hr, i[ . Also, we have

I is an exact eigen'already found (119b) ttrat T(tl'-

state but the result (1I9b) does suggest that

will be a low Lying vibrational state of the

that is worth considering because it has Less

F)
state of the llamiltonian (2) when i[ is the harnonic pair interaction

ground state. This is a very poor appf,oximation to a nuclear ground

fcrl = (q'- F)
form (18). A wavefr:nction

currrature than the rilave-

function E (fit-F) [ and hence a lower energy, isj
In appendix AIII(3) we evaluate Ag for tJle above trial

FtE -F)l
wavefunctions

and the results are sunmarised and compared with the translationally

invariant wavefunctions in table II (next page).
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TABLE II :

Trial
Wavefunction

Orthogonality
Condition.
(if reqrrired)

o{ =hR

r/ariational
round to vibra-
bional energiy.

i.e AE z

AE ror ttre
Iowest state
of spherical
nuclei.

(*'=2sTflv)

txample, A=1oB

re. Pb'"8
(Energy of ttre
lowest state.)

A

FJJ*rro J,(x) = o
tltzhR
2-

t\"('
.lmRa

2?o A'ltM.v
(4= l.+,caV)

B 21 Mev

R
\-rt
,/- cosR I Q J"@) --_?l,tnl 6fl@,-g)

zmR'[+3fitrx)-194* )

jgo Nt/tMev
(r.-- ).ott()

l, I Mev

A

Zt5.- FiU
J

l4

/1.5 h
*e'

5 oo N'/'/v\.u lf 3 N\ev

A

F,r -r)u
r ,aLoT\T Fc'

3 s f d'ltlru, l0'7 iAev

Translationally Invariant Wavefunctions :

Prh

Z f J"ta,,,l6 J,('t): o

Af \ear* (qnJ
probaUl o{ordv
A Larger)

+L t2
^-; h<

rn R,2

At leas{ (cr"o{ pt-
obabl* o{- orclqr
A l6"i$-') 

.

5;r)A-2/3/r^er,
("< = tv, \_a3Q_)

AAs--\-- I -f

ZZ (os Rril I
a1j

J, t"r; : o
+L ra
l\ e{

l*Ct'
. Az<*/;'

6
)go N'/3 Mev

q1 Au4p
Li o ffr' ltleu

('<= t' s.?.55; A >5.i

8'5 Me"
(€xact cxPttattt^(t

12 i AAe.v1"@):f-J,r".)

AA

?]ct';-<''">o

A?so

l: r .l-aj, f, n
rn e'

-a13
)oo R fi1ev i,f. '3 lv\ev

AA

)X,;
tt--t

-<.d0

A )50
tt r Jeto'l h

MR,

1,-6 < Aut /\t*u lj'3 tu\ev

t+)
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CONCLUDING REMARKS :

(r) we proved in (123) that f > (f.i-<F"'>) 0 is the
t<j

translationally invariant form of I (Et-F) 0 . rhe results
a,

in Table II verify this.

(2') From rable rr we see that tle enersy of E (f -F) U' is
J

sisnificantly lower ttran the enersy of f ; ( q. - <t;r>) E and so
f<j

we cannot be sure that EtE -F)F doesn't represent spurious
.l

motions occurring because it is not translationally invariant.

(3) From rable rr we see that I toSkn 6' has a very different
j.l.r.

orthogonality condition to f-f (oSh[i E and so these wavefunctions
c'<.j

are probably not closely related. Instead, from its energ:y the lowest

state of Z OSh fi E appears to be approximating the same
J

motion as Z(q -FJF , which unfortunately we cannot be
i

certain isn't spurious.

(4) Also from rable rr we see that T;l"Utnll[- cannot be relared to

Zd(hE)6' because it has a much higher energy.
.l'

(5) The lowest states are, the first of ttre TrGt)=O series of

e; (oshr..j 0' and the lowest state of EJ.(hE ) S' . rhese
3<j r

two wavefunctions have the same orttrogonality condition and for

A > 4+/8 the same variational energ'y. so tor tow h

they appear to be closely related.

The conclusion (5) is the most important one, beeause we found

that for smal1 k F/"(kfi) 0 is a radial analogue of a Feyrunan

phonon. The fact that in the weak correlation approximation the energ'y

was found to be *9{^ further strengthens this. But, the real

wavefunction of a self-bound many-body system must be translationally

invariant, so the best wavefi:nction is
AA

V = Ef coshri.;U
c 4 j

VICTORIA UNIVERSITY OF WELLINGTOhI

(70)
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From conch:sj-on (5) we can expect that for low h (70) represents a

standing radial compressional density wave, analogous to Feynmanrs

phonons in liquid helium. llhe lowest energD/ state of (701 is

hR + h'h93t- and, Iike all the states we considered, is

proportionar to A-A" . For p5rot the lowesr stare gave

AE = 8'5 Agv , which places it in aR energy r;rnge in betreeen

the low lying states and ttre giant resonance states.

Finally, as a speculative aside, we should remember that there

could be a relationship between these t*h7ayn phonon states and ttre

breathing mode state. Namely, when investigating the excited state

density we found that the orthogonality condition insisted that there

be at least one shallow minimum in the density. This inmediately led

us to compressional phonon like states, but because of Lhe large

degree of cancellation that is always present in quantr-un mechanical

averages like ttre density expression, it was not possible with the

lowest state to rule out large scale in-phase motion similar to a

breathing mode. This would be important if we could find an th%h

srate such thar h R = Ve (I = {.R) , since t}ren

t-h' as'S A-2/r Aev (usins (oo;y, which is a tineffi=rrr
that passes near to many of the 1ow O+ states of even-even nuclei,

including the new collective states discovered by Maher et.aI. EOI .

However, for a radiat wavefunction of tl:e form f{Cnli1 
g , rhe

orthosonality condirion woutd require hR:T (\42R.)

so that we would need a wavefunction at least as complicated as

et{tnr:s) 0 .

NOTE :

This Section was

time before the rest

written (together

of ttris thesis, as

with sections AI and BI) some

part of a submission to the
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L85l- Sci.enee Begearch SEholarsh:iB Cowdttee. Sirrce ttrte ti;nte I have

learlrt nore about the physical nature of the above, vibrational states

and have cone to doubt ttre vaLidity of the weak eorrelatio!,l a3ilnoximationr

but it dicl not seem sensibl-e to change section AfII from the form J-n

which it, was flrst wrlttsl. Instesd r have 5rreferred. to leave ttre new

resuLts, wtrictr incJ.udes cal,culating the sontributions. to ttre S(EO)cro*

sum rule from each of, the vibrationa]. states, to section AfV. In

partioularr 4 IItQli€: accurate description of, ttie gihy,sisal nature of ttrese

states is gliven ,at the endl of seotion AIV. Also, See note 5) of

secuion EI[,
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APPENDIX AIII (1)

We wj-sh to prove that in ttre cutoff density and weak correlation

approximations the orthogonal-ity condition j,(hR) = O implies

( l,"tLtot) = ( llCrul) . Firstr-y we rewrite (51a)

using the result AI(19) which holds in ttre stated approximations,

to obtain

(nrnt) : 3= [i."f r - +fg\ **1*fl r,t,-r
R3 

v L 2\rR/ 2\lRlJ

From no\^r on \ile make constant use of the identities listed in appendix AI (4) .

Integrating by parts we find

frn r2,t ^ 
(c)

\av (yJ,ryt)1ty) tn"1'7,0,t)!6&tJ -+ J"dy)'Jityt

,M. a. ()* rY - a
J.dy(ylcy>)/, ty) = -8<3/tar)/.0.{) * J"Jyy"/.(y)J,ty) * I.dyytliril

(d)

r^l . ? rbn ,71 -q
\.Jy (ytJ, 

Vr) J, g) - -3t<s 1,o.r) /.tlr) + 3 ["dyy *J.ry)l,ry) *f"dy)t/.?y)
(e)

Definins y=hf t A=hR , wehave

(1'cnr,r) = **.Sir)'[re -,r+"S] fir, (a)

lfirhil) =fr. J.lv"[rc -tLI*$l f],y &)

From (a) - (e) we have

(1iro) =(Jiur,l) *fr,{-*u ffry't())J,(y) * t.ln'iqll,{,,,



Further integration by parts yields

Slrr (y^1.cyr) 
J, 

(y)

,N.ar)a
and 5Jy(y'/.cgXy'/,ty)) = U+f,tut - J./yy'J,cy)y'j.()) (h)

Iherefore trom (g) and (h)

r1*. L rl.t 2,
J.Jyy"J.ty)J,ly) = -lr'f"tut * I"Jyy/"cy) (i)

and Sliyy u 
f.ry) .1, 

ry) = ta+1,"u*)

App AUI(7) 2.

(j)

(f), (i) and (j) yield

(fcn,at

when JrC"() : O (k) becomes (see Q7))

(y,?ual) = {fur;> r--!-.sin?('*f) -k.f"Try irtt

The last term left to calculate is,

SSrv Jityr = S"rr uyt = 5.tr try
,aF

= *-J" at ( t-g'rtl

Now (n) can be expressed in terms of Euler's constant (y+O'S1Z)

arrd the cosine intesral ( C, C*l ) EJ n.n" 23! z

+S"T*qfd = *( t+ lnuoc - (;(r,"0)

Iherefore we have finally, when 
J, 

trt) : O

(tinrl) = (Jicn'"r> *fu sinl('*f') -&-(x*tn9'r -c;,l'l)

(1)

(m)

(n)

(o)



I
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rroqr, [b] we, fi.nd,, fo:c a{ } ff

(*'cnnr) d k
(For c{. = tr*rt+", (#n,r,r1) : sp = O.oSS)

so f:r,m (o) arrtl (B) we eee r]rar JiH)=O {,rufltres.ttrat (1,?lfU)
rFD{ttlrr eodls to (fCfanal for rarge d( . For trtre Losest natue

of E* , naner,y e( + l"Eqgb , we have, fr@, [zJ e"s zqs, Ci&rl)=-ol+
atre tani,ng Y$ o.'sr? , thea (o.) hecones

(fcnn.l) + < 1jtnn,,r) - (f '006 (e)

fltrerefolre f,-rom: (p) end (qI dben a4' e tr.ff l4

{fimtl + o.B?r(fnu}

(p)

(r)
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APPENDIX AIII(2) : Calculations towards the evaluation of (75).

In the following cal-culations we will nake frequent use of the

weal< correlation limit and cutoff density approximation expressions

(51a) and (51b) and the Bessel function properties listed in

appendix AI (4) . Firstly,

(olun.) = * 51a,,!idyy[i*i"'r*

= + -F + (r-*$rr[ii$(osrP4r

: | + *+(5J."f"irrffi^Pr, r=r^

:* ++ h(ry)f \ P t

lrtrenr:sing COSr+Sina - I /
(s'n'hnn) = ! - *a'i,(-.r){ /.o"{)-* J#,1 (b)

From (51b) we have

( torh,r.coshr.) _ + (d- rc1; (c)

Where

f,lx) :- tiar, 5ji1(os.(r

= *(tlryrll-ii"*+)
= A (rx Jo('tx) J, cut)

- lx!.r"r-l !,Lq - xJ,ux)J, (r)] ) ( = t) (d)
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(c) and (d) give

(tosh[a(oshr,i) : J.'7 litatt]A t *+ J]ars -+'

Integrating by parts we find, puttlng y - o<X

7l . r 14
\.d* x+ liu"t = *E J"avvt:iy,

(f)

and

Therefore

Also

|-l , ,.
)odxx"J, brx) =

rr (la)-*g/,*) fd'-'/i'x)-sf !,ary,,)-i1,") fiirr6o Il'4

= - 7"Y!l,q *js $v*,y{+V'1,ty)- +1t"crl-gt{

: -qpg' **(a,.x3/rax)Jc"r*) *$- vvfiu>')

S.d*x3ft"rr1J,t"rr) = j-" ("eyytJ"ty) l,V)
a

= fui - r.J"iry'J,(y)fJ,(y) 
*y(tJy)-?/,r,)]

= -J+. * j- 5]a"-"f*rl - I).x3J.t rx)1r"rx)

fJ. x'1"e')/,(rx) : P *r* 5jd' u'Jiu*t 
(s)

I r4. a

,(t \" dy y " J,tX)

-7"Q)j,ta) * !
ol o{'

Sllyy.g)'/.ry)

(h)- 1"qJ,u) + Sll. *' /ir*r4,
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,e,!rd

i" [la. srnao(x

I!'5ll-(r-tosr"rx)

= +. (r-t.cr.c1)
- 2JtU J

t 
j ar xn ( t- c osr*x)

*#3Ft:rx(osp' ,f=r*

*#. 
#".t"rrl

= #(+- r#!) - {'e4
We now Eo on ro evatqare (s?(el ,(€),(ell wtren hm+J - hlnCe+)

Fron (8r?c), RLtx) := jleyy [i#r*"ttxr.ll

= lx foC"rx) 1,U)

I

tod* x" JJt*x) =

EinaILy

r. I q

Sodxx 9fu*x)

Fron (B7iI),

R ktx; =

(i}

l
.?"{a

I
(o(r

=#"
(j)

(k)

f,ltyv. f,fg]*,"*+

1 x J.H.l (ldy yl srn"{y

: -uxl.C"rx; {^l,ru,

- .lx ji.@x) k;.nt * */.r"r) -$ J,tx{

F'rom (grs)n R P(x) = fiJyyt[i]sstn'{f

= -+Ltx)
deat
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1*J,(,{){ !,t*4 - trx41,a)A:|,tN -F Ktx)R- A,t^ Ad ds(

: xr' J, r4{J"r,rd 
ur /,Hd) * hx"J,ux;16@-3lal) grxt

For ttre first two statrts in tlle J r r\ 5 ul

l.,L-/ - F ItCa) serLes we

s€Idul,at€ from the 'above, us:ing table I,

atl .A

). dx xhJlr*x) =
rl
)o d * rf t Ux) t,6e*) =

fl , L
)o d x x" /rta*) =
rlt

Jo dxx+ IQO =

-l . L
to dx x'/ txxl =

d, '= /'s.lf s "( 
: 5- 8513

o'oo6-t

o.oo35

o-ort6

0, .Oo {p9

o .or3 5

o'ff2(

O .o6F{-S

o' o85

o- otrS(

o . o3(?5
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APPENDIX AIII(3) I TransLationally Vatiant States.

In ttre following calculations we make frequent use of (145) to

evaluate 11-43); the approximations inherent Ln this are sunmarised in

the main text, Also, we define X = ti/p, 
, 4 : hR .

A

(r) Y -- Fl"tonlE :

The orthogonaLity condition is
rl
)"dx xr Jo(*x) : Q (i)

=+ J,tul:Q (ii)

.tAlso, -JJh [) = -h J, 
(hq) and

( fihr)) : r f.'e* x'Jlc'r*)

which after integrating by parts

: J L-!pl x./,r.rx)l:l "slld, x^fu*)

usins(ii) =(llCtnl) (iii)

Ttrerefore from (143)

AeatT =f-Jt , -l.ht)-o (iv)

rn .frtG,t t tt'

For non deformed even-even nuclei (iv) becomes, using (69),

llhe orthogonality cond.ition is

S.a"x1(os.(x = o

:) '*t fJ dxx srn*x : o

AE L, tV.+"|'A-ltAev , 1,(o() =o(i.e.a= V.vutv;. ..) (v)

A

(2) E = Tcoshq 0,J

(vi)
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nrat is, il J,(a) : o , which is /"t*l : 3 7,t*) (vii)

The lowest c( to satisfy (vii) is o( = l'o8t6 (viii)

From (1,43) we have
trll (strenr,)AELhR*lrn (cos'hr; )

(srr,,t hr ,) - I - < tost hri )
rl,

= 3 \odxxl5s6ro{X

= + - + (: d- xl(oslot x

= t -t#l,ul)
= i - }[?,cr*r -1#l (x)

so as a( becomes larse (i.e. h>>7* ) then (Srtthq) =
(c"thf ) = 

l/t . Hence ror larse h ,

Ae L tb" (xi)
1'rn

as for (1). For cl = l'otl6 , Jotl"() + -O'1O{"9 and

l,tl"1 + o'o:el ,sivlns

A e L lj.56!], , = 39OR43A1cv for spherical nuclei' (xii)

(o(: .1.08,6) |lARa

A
(3) V = I(T"-F)E :

J

T'his wavefr:nction is just one orttrogonal state (i.e- (fft) = Fl

From (143)

(ix)

AE L. f,Ara1*a]5;-E : 2t" F -

rn (FT_(FF)

usins(12e), F:-f!(F)t ,hence
ll

(xiii)



AE+ Ub.
). rqF

e
(4) g=Ftri-.F)iD 

3

lt'lrls Wave€:r&ctilon

G..e,4q) = F )

AEL

l?SH
nR*

FooAl4rMev

orthogo:ral. state

App AILI(3) 3.

1;rtv)

for spherioal nusJ-ei. (nr}

is oJso

From

I

rm{11;-pje'> -i:lm(FT-(FJ*)

j,ust one

(ras)

That is,

(!cof )

nuclei (xvil)AE4
H" J '- iElP A-#t/Ulev ror sp'herioal
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IV SUM RULES :

If the sum of all the transition probabilities multiplied by

some povter of each transition energv can be calculated for transitions

from a given level, then it is called a sum rule. Since each term

in ttre sum is positive definiter o suil rule gives an upper bound for

the value of the transition probability times the transition energv

to the particular power, for every transition. Usually, sum rules

are restricted to transitions of a given multipolarity. The most

important class of sum rules are those for which the transition energy

factor in each term is to ttre power of one only. These sum rules are

sometimes called oscillator suns t"." ffl pp 399-404). All the sum

rules considered in this section will be oscillator sums.

In refere"." fzl (pp 709-15), it is shown that the sum of all the

transition probabilities times the transition energy, for the

excitation of a nucleus from a given state I C ) to all higher excited

levels lf > , by the absorytion of photons of multipolarity j ' can

be written as

{t}S:'=?"'(j*,) ,\ICE+-F,)l<{lq_1,)'. tc jftri*r)ltl, (rqrr) ffir^ ' 
r' | -' ' rt'' r | (1)

(i> 
')

From now on the transitions are assumed to be of electric multipolarity

and I will only be using (f) wnen I i) is the ground state of an

even-even nucleus. (Note, j = O is a special case because Eo radiative

transitions are forbidden' The oscitlafrsum for j = 0 is discussed

separately, later on.) ror j12 ttre electric multipole moments

can be approximated by (cf. AIr (73) )

7*o =eir:ifr".r (j>r) e)\{. \ I-.0 l:-.\J-f,l
Jrr Fl ' lr



The exact expressions must be translationally invariant, just as

the true wavefunction for an internal- excitation of a self-bor:nd

nucleus is translationally invariant (see the discussions near the

beginning of sections Arr and Arrr). rn particular, the centre of

mass cannot be fixed at ttre origin because during a transition the

nucleus must recoil with a momentum equar and opposite to that of the

rad.iated photon. However, it can be shown that the recoil corrections

for all multipole moments other than j = 1 (the eleqtric dipole

operator), are or order )/A only (see fzl n zoe, ana [rl l. For the

dipole case we must use the translationally invariant form of ttre

dipole moment : (cf . Fl "n" (1) )

e,, = . F,[,; 
yt ,) - R yl$] (3)

(..2 N 1

= t l* p, rY,1+r - t E,.^YS*,1
(R is the centre of mass coordinate and Ji and .fn "t. proton and

neutron coordinates.)

The sum rules Sjt' are evaluated by using the property of
F-tclosure (see IZJ p 711), i.e.

where H is the Hanriltonian. 9{hen t}re potential energy commutes with
n a(t)Qj", , ttre only contribution to @l and hence 5j - , comes from

the kinetic energy. using equations (1-4) the result for t] e kinetic

energy term can be shown to be (see p 7L3 of [rJ l,

F 
( E -E,) l<+ tQ,"ld)1" = *- F(q Lqi".,[H, o,J] ld)

Arv. 2.

(5a)

(4)

st:'l
crll

s0)
I

= Tr'31 ( i+r)
r.Fj_,JrT

= rTl-d. t'lz
tcA f

tn

f z <d l["'l;) [,

(t*v)
"Yl

(sb)
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In these expressions the contribution from the potential energy has

been written as a correction term V; . It is very difficult to

obtain an accurate estimate for [ , but for the dipole case rough
J

estimates and experimental results suggest thqt V is about unity (see

r''t
L2J ee '7L3-4, 736'). It should also be pointed out that the above sum

rules have treated the nucleons as elementary particles and so they

exclude any contributions from meson production excitations.

I will

of even-even

That is, the

inplies the

actions, as

[rl n 712t.

rule, i.e.

now consider the contributions of particular excitations

nuclei to the kinetic energy part of the Sol sum rule.

potential energy is assuned to conunute with Q;n, , which

neglect of charge exchange and vel-ocity dependent inter-

was done in sections AII and AIII (see also [t] n 403 anil

ld) t" be the ground state we have

< r;rj-r)

(j>r)

nucleus (i.e. la> is

the difference between

(6)

/\
where (

so, when li) is the ground state,

(i tel fr;Eli-')![^ tn

Sf')t.torr1 = .tn';1 F*
consider the contribution to Sf't"r.""t from a single excited state

with angular momentum quantum numbers (j rm) , of the form

tf) = L t,)

Sl"t.ro,,t = rr'Eg1Jj+r^ $ trt-t)

where I c) i= ttre ground state of an even-even

0+ state). From AII (4) we have, (neglecting

( 7a)

(7b)

rn this approximation Sj(t) is said to be a classical sum

5l"t.r"="1 . rakins

<i I f'j*l r) :

(8)



proton and neutron masses)

E, -Eo
ra

=nlm

AIV. 4.

(10)

A

z
h=l

(e)

and (cf. AII

l(+ t

Inserting (9) and (10) into (I),
c(tlto J. (class), the amount
.t

< Inl^)
we see that the state (8) contributes

Af ( rv.A l'>
h:t

(11)

I wilt now d,iscuss two examples of the type (8), for reference in

section AII.

(i) j=I:

c (t)
Ttre particular case of j = I is itnportant because the Or sum

rule happens to be ttre total absorption cross section for dipole

transitions tsee [Z] p 710), which is a direct experimental quantity.

By far the largest contribution to the nuclear Sftl 
"* 

rule comes

from ttre giant dipole resonance, which is known experimentally to

exhaust about S\"L"toti4l" of the totat sum rute (see fz]
p 735). In reference fa] and part (b) of section AII, the giant

dipole resonance state is investigated by using the isovector

wavefunctions

q = E =e-'.(;-Q,-Q' ( Q,-defined by (3)) (lz)

where 0 t" the ground state of an even-even nucleus and d,", is

the normalization factor for Y- (i.e. o(,, = 4t-, = ffi ,
F

d,o 3 ,l-h ). For spherical nuclei fi.e. j[ spherically

TE-gJ)
(77') )

q,ld)1" =

Llrr tj+r) $-' 
iBri+r)ll]a 1nc



synmetric) ttre three states are degenerate, but this degeneracy is
. broken in deformed nuclei (see Arr part (b) ). rnserting (Lz1 into

I

I tff) we see that each m state, (m = -tro,l), contributes to the
I .ttt' \, -J,(class) sum rule, the amount

AIV.5.

(13)

(14)

+"'h *,a tv.e,-l') = 3r^-d Nz f;,sfrcAm
Comparing (f3) with (7b) I note that t]e three giant dipole states

P , together exhaust the entir. S,01"r"""1 sum rute. This proof
'tlir

could be regarded as unnecessary, since from (12) we see that V has' attt

comprete overlap with the dipole operator Q,-, and so it must exhaust

tlre total m component of the Sfl ",r* rrrr. 
(see [rl n 736) .

Generalizing this idea it folLows that one way to derive (7) would

be to consider the wavefunction f {)= Q*t;; , which must exhaust

the entire iltl1 component of the S.,t' sum rule, because lf) has

total overlap with the multiple moment Q3'. . The result (13) is a

direct proof of this for the particular case when the potential

energy is assumed. to commute with Q,,

(ii) j=2:

In refere"." fSl and part (a) of section AII, a particular

isoscalar 2+ state of even-even nuclei was proposed :

A

V,* = t0 = "(r1 E q'Ytnl I
where drrr. is the normalization factor for I- (see AIr (74)').

From (2) and (14), and ignoring any differences between protons and

neutrons (the isoscalar wavefunction (14) has already assumed this

since it treats protons and neutrons identically), we have

< lq*Q,-.|) - Pd*F (, Al'> (Is)
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Inserting (14) and (15) into (11) we

(m = -2r-Ir0 rlr2) contributes to the

amount

see that each m state
.(rl
)r(c1ass) sum rule,

t'u; g4E(rvE-l')
t'c A 'Yfl \

(16)

(y,t) = (at) , etc.) ,When U is spherically

(16) reduces to

symmetric (i.e. ( X,t) =

ft' e'
fStc

( r;')

For spherical nuclei all five states are degenerate and from (7a) we

see that together they exhaust the factor 7/A ot ,n" Sj)t"r."=t

sum rule.

rn refere""" F] p 404, the oscillator sum rule governing Eo

transitions to the ground state is defined as

S(eo) = FG, -E.) l< + I . f, ti'lo)|" *B)

zero-zero radiative transitions are forbidden, but EO transitions can

be caused by Coulomb interaction between nuclear protons and atomic

shell electrons penetrating inside the nucleus. The probability of

such a transition from the ground. state is proportional to

l(lt Frilo)1" , (see [u] l. we can use the

e'tiAtn
(17)

translationall-y variant monopole operator because it is known that

recoil corrections for Eo transitions are of order $, onty (see f:l
p 486). It is shown in [t] t 404, that when velocity clependent and

charge exchange interactions are neglected, ttrat the S(Eo) sum rule

is given by

Zeth"
?n

S(Eo).,.., = 2 (ti') (t9a)



This result is easily proved. by evaluating the term in (18) coming

from the hlpothetical wavefunction lf ) = T tit lO) , which
P

has total overlap with the monopole operator and hence must e:d:aust

the entire S(EO) sum rule. In the cutoff density approximation

(see AII (44-5rl , (19a) becomes

Arv. 7.

(leb)

(22')

(R is the radius of the ground state nucleus which is assumed to be

spherical.) Consider the trial wavefunctions for isoscalar

vibrational states of even-even nuclei, discussed in section AIII.

They are all of the form

V = FE

S(Eo) =-c lar(

where i[ t" the ground state

Since the wavefunctions are

between protons and neutrons

S (EO) class sum rule is (cf.

7 eL AE.

6 zen tr' . Rl
5?n

(F is always real) (20)

of a non deformed even-even nucleus,

isoscalar lde cEurr igmore the differences

and so the contribution of E to ttre

(10) )

(21)

F
where AE. is given by Arrr (3), i.e.

AE. = Ah' ( tv, rt)
2m

In appendicesAlV (I) and AIV (2), the weak correlation approximation is

used to calculate the value of (21) for the lowest states of all of

the vibrational wavefunctions summarized in table II of section AfII

(i.e. p AIII. 42.) . The results are given in table I on the next page.

I have also included the values of AEo for A = 2OB from table II of

section AIIf, together with a normalized ratio of (2I) over AEo tot

A = 208, which is proportional to the transition rate.

( r;'Ft

From table f we see that in the weak correlation approximation
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TABLE I : Properties of Vibrational Wavefi:nctions, Calculated in
the Weak Correlation Approximation.

TriaL
Wavefunction

(;=hR, R=l.2Ahf*)

Co1unn two

Contributions to the

S(EO)class sum rule,
In units of S(EO)clas

Colunn three

AEo ror A=208

(MeV)

{cor,-r, *o
divided by

Coh-unn three) x

L4.7r.

F lJh'r) 0
( J,t"t) : o)

lO Z (-- o uqt 7
,r'A 1(u=nnrrr)o

8-3
(4= 4.t %V)

o.s8 z4
( "( = lr.'(r?3 {.)

A

I cos (hr;) 0
(a = l.ogr6)

o.l 65 z
tr ll-l l.o r5 z

A

A

Z (ri"
t

_F)0 7
A

t+-3 l.ol +n

A

rrq_tr)0
J

o.1+l v
A lo.l roo*

Translationally Invariant Wavefunctions :

AArz
i<j J"cnq) Q o Very larSe o

{t*)= o

A n Ar+-
8

). /coshrJ; Q.
r <i -Jg)=flgr

-(= f'5155
A ).50

loz
aaA {=o+tsfr

[ (x=4-trr:9rn2so)

8.3
(d= trlr?3t*, Al5o)

o.882
Ay!'y'!f l?

l-ot Z
A

g. Sr,-5 Z
A

t2.3

AA
Z> (-u'-<t;^')) 6

L < j

( n>so)

v
A

Ir. 3 l.otZ
A

AF
II (q' -<.*) S
a<j

(n z so)

O,1222
A

t3 .3 I.otz
A
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that the nine trial wavefunctions separate into three different

rhe EZ tchri) U is a strange state with very high

and zero transition rate. Of the rest of the wavefunctions two

states.

energy

appear

to describe a different excitation from the rest.

and the 1!A)=O series of ZEcosht|i E

Namely, ZJ.Cnq) Q
are very closely

In fact

related and have a smaller contribution to ttre sum rule than the other

states. The rest of the trial wavefunctions all have an energy within

the range L2-6 ! f.Z MgV for A = 208, and ttre transition rate matrix

elements are remarkably insensitive to ttre differences in the wave-

functions.

However, in section AII I d,iscovered that it is quite likely that

the results for the energry (and the transition rate matrix elements)

are qualitatively incorrect. That is, ttre weak correlation approximation

leads to AE. n' 5Vr , but tfie inclusion of short ranged. correlations

and the requirement of nunrber conservation may cancel the weak

correlation terms, reaving AEo ^r 6-Vr , This surprising

cornplication was discovered after writing section AIIf, in the case

of ttre 2+ and 1- states discussed in section AII. The results for the

contri5utions to the S(EO)class sum rule should not be unduly

influenced by the weak correlation approximation because the

qualitative errors occur only in the (t:tF) ana (F1) t.r*r, 
"o

that the errors will tend to cancel in the expression (21).

for the particular state

F0 = Fcr'- rr )0
there is no error at, all, since the orthogonality condition

(P) =O , impties

(r;'p) = ft (r")
and so from (2I) and (22) r{e see that t}re contribution to the

s(Eo)class suun rule is exactly,
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e. t'- (tvrr)z
R

rj

AmA
I will nol.t sunmarise the available evidence that indi-cates the

physical nature of the vibrational states in table I. (f igrnore the

strange EE1.(ntli) 0 wavefunction.) Firstly, in section Brr it is

argued that the trarrslationally variant wavefunction

Scr:l 0
correspond.s to a classical flow field given by a velocity potential

f (r) (i.e. Il-C") e 9 {tr) ). From this it follows that the

Iowest states of each translationally variant wavefunction should

approximate a simple in and out vibration, i.e. a breathing mode.

rn particular, the E (fit- F) 0, state shourd be a good

approximation. From (23) it appears that E(fr"-F) 0
describes a giant rnonopole resonance, since it extrausts such a large

part of the S(EO) sum rule, in direct analogy with the resonElnce

states Vr^ ura f,^ of section AII. Using this together with ttre

argument of section BII it follows that the giant monopole resonance

and the breathing mode state are one in the same, which seems

perfectly reasonable. rn section Arrr r showed that >E(f;;"-(tf,t>) 0
is the translationarly invariant form of Et,Tt-F) 0 , (where

the centre of mass is fixed at ttre origin), so the above results also

apply to the translationally invariant wavefunction E:(t?rt-<f;))0

From appendix 6A-3 of reference ttl and using the argument from

section BIr, we see that the wavefunction E1rtnf3lI should

descri-be the vibrational modes of a liquid drop. Thus the lowest

state of EJ.(hE)F should arso be the breathing mode. However,

the orthogonality condition Jf*1 =O is different from the liquid

drop model boundary condition for a free surface oscillation,
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namely lotr)= o rt is thus possible that the differences between

the :l$q) 0 ana 2(r,t-F)L wavefuncrions in tabre r are

physically correct. For example, ttre lowest state of :J.thq) 0
may correspond to a vibration with a zero velocity at tJle surface,

whereas the breathing mode has maximum velocity at the surface. This

interpretation could explain the physical difference betrreen the lowest

states of the two separate series belonging to ttre translationally

invariant wavefunction Ef tosktt; 0 : rhe 4jl)=O series

corresponds to rhe E/.tfq1j[ states (note from table I above

and table II of section AIII, that for A : t , that the energies

and the sum rule contributions, in the weak correlation approximation,

are the same) , while the lowesr srate of the tot"1 = ielrrtl series

approximates the giant monopole resonance. I note from refer.r,.. ffl
p 668' that the lowest vibrational state in the liquiil d.rop model has

€ux enerey AEo e (S A-tlt l,leV . so ir f ( qt- F) 0
(and its translationally invariant fo:m) is to represent the giant

monopole resonernce it follows that the weak correlational approxirnation

result AEo = 5oo A-'l3 ItAeV is spurious. This possibility

is strongly supported by the result 19c of section AII, which is very

nearly satisfied in the cutoff density approximation and could easily

be exactly satisfied for the true density profile (note, because of

Arr (19c) A E" n A'lil and not A-?r .l since from equation

(xiii) of appendix AIII (3), we see that if the result AII (19c) is

substituted directly into the weak correlation expression for the

vibrationar enersy of E(Et- F)0 , it sive" AEo = oo

Thus it appears that once again the weak correlation terms in the

energy denominator are cancelled by contributions from the short ranged

s Eux fr" variation.

I hope to be able to prove the above conjecture in the not too distant

future.



APPENDIX AIV(I) : Contributions to the S(EO)cIass Sr:m Rule from
Translationally Variant States.

we need to eval-uate ( f,t F ) , where F is of ttre fornr

AF=:ftqt (i)
J=t

From (i) we have

(r,'F) = ( r,"fc,it) + (A-rt( r;tf(rr))
rn ttre weak eorrelation approximation the last teran becomes

(','frtil) = (r,")(tc'if) 
,

r where I have used ttre orttrogonality condition

(rtl) = o (ii)

Defining X = f;/R , (R the radius of the sphericar ground state),

and using the cutoff density approximation (see AIII (L44)'t, the

result, tor ( q"F) in the weak correlation lfurLit can be written

Ers (cf . AIII (145) )

.)
( rr'p ) = 3 R' I d* **f tnxl (iii)

o

Appt AIV(7) 1.

(iv)
A

ru F = FJ.(hE) ,

In appendix AIIf (3) the orthogonality condition (ii) is shown

to imply

7,t*) = o (i... o( + h.rFe3rF, )
where o( 

= 
hR . using (iii) we have

([tf) = 3 R'S'd"x3sino*x
d,o



= 3 gr dr Sja-coso(x4 d*r

= -3- n'$, J,c*)

= $R'/j")

From AIII (143) and appendix AIII(2) (i) we

correlation approximation,

(r") = A

= 3A

( r;'rf
@

s(Eo)class sum rule is

tr v eth'&t =A Tn o(r

A

(2) f- = Zcoth,q :
J

The orthogonality

$ C,c*) = o
Using (iii) we have

( \"r) =

= iS 
(r-Jll,,r)

= .?t-d
A4v

(vi)

dt"tl =o , r rind

t 't,La) = o

App AIV(I) 2.

(viii)

, -l bt) =o'J1

have, in the weak

(v)

( J]r.rl)

5ll * x'li,rx)

Using (v), (vi) and the results AIII (77) for

Ttren using the result calculated in appendix AIII (3) for AEo , it

follows from (19b) and (2I), that the contribution of (iv) to the

, -Jrtal=o (vii)

condition is (see app AIII (3) )

, i.€. JlO = *J,u) , (a* r'o816, ' ' ')

[P tl S(Eo),,"',

tl

\"dxxh(os*x3R^



otN

i

+ - o.og6d R-

appendix AIII(3) we have, in the weak

(f') = g(cos'h,;)
sl

= 3A I Jx xtcos",lx
o

App AIv(7) 3.

, d= l.o8r6
(ix)

correlation approximation,

, d = 2.ott6

, r= r.otr*,r,

r*"#

3R"{
dab

= 6 Rt tr("{ ( t*- ot") ' fu4lu) 
= o

{ar coso(x

I,t r)

? o. lj"7 A

Using (ix) and (x), for the lowest state, I find

<.';,-C = o'o6?s -B: , 4= I'o8,(
(re) A

Then using the result for AE. calculated in appendix ArII(3) , it

follows from (19b) and (21), that the contribution of ttre lowest state

of (viii) to the S (EO) class sum rule is

o'?r 1+ 
=.eo.t 

R'
A?n

A

(3) p=E(E'-F) :

= ^[* 
++(l.r'*1 - ry)]

= O.7 (6 zF 5(Eo)'(lcrt

since (f)=O , it fotrows exactly that

(r;'r; = k<F')
So from (19a), (21) and (221 we have, without any approximations, that

(x)

(xii)



the contriJcution from (xii) to the

(23) )

s (Eo) class stmt rule is (see aLso

App AIv(7) a.

(xiii)

(xiv)

(xv)

(4) F

z
A

Atz-
{-\ri

S( Eo)".'

_F) :

fn ttre weak correlation approximation we have

(,;'F) =F-(F)F =%
(using the cutoff density resutt F = #a n" )

Fron appendix AIII(3), the weak correlation approximation also gives

(r,) = A<(r;_F),)

= AIF_(F)cJ

= 3 AR'
80

=-d-,5R

Using the result in appendix AIII (3) tor AEo , it follows from (I9b)

anil (21) , ttrat the contribution from (xiv) to ttre S (EO) class srur rule

is

Rn= S(Eo) (lqrr

So

( r;'rJ

E e'f
Rtn&

? tx*l
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APPENDIX AIV(2) : Contributions to the S(EO)class Sum Rule from

Translational-ly Invariant States.

we need to evaluate (f;t F) in ttre weak correlation

approximation, where F is of the form

F = *.frf(ni)
That is, we wish to cal-cuLate expressions of the form

( r;'F) = (A-r) ( q'ftn)) + E tl(A-r) (,,'{(q,))

fn the weak correlation approximation the last term is zero and so,

assrmtS-ng a cutoff density, we obtain (see eguations 49 and 51 of

section AIII)

(r, e) = f tn-rl a" [d**'["dlr [4- f(nt) r*,

AA
,', tr = ElJ,(h[,) : (iii)

From AfII (63), the orthogonality condition for a general radial

density is

(i)

$:"xt6)srr\*x =.o ,o(=hR
For a cutoff density (iv) reduces to

4,t*\: o ,(a=L'wtb,"')
Using (ii) we have

( I' F) = +h-,) R' [i,,' [rrr[-{it5sl

= :JA-r)R' [ (a'x'sincll {+r,i^ny]
o11

=O ,l,te) =Q

(iv)

(v)
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Note from (iv), that (v) would still hold for a general radial

density 'n(Xl . so in the weak correlation approximation the

contribution of (iii) to the S (Eo) class sum rule is zero. In fact

from the general expression for (f,tF) we see that the contribution

would still be zero if short ranged correlations between particles

2 & 3, but not 1& 2 and 1& 3, were included in the term (f:"ftE.))

If all the correlations were includ,ed then the transition matrix

element for excitation to the state (iii) would probably no longer

be zero, but it should be at least an order of magmitude smaller

than for the rest of the states considered in this appendix.

(2) F= (vi)

the weak correlation approximation,

different sets of states, defined

In section AIIf it is shown, in

that this wavefunction describes two

by the orthogonality conditions

), .t

J,UI - O

7.v7 = 7.( 1,tt)
Using (ii) we have

("<= {''rre3jr "')

(a=,.slst...)

aA
:fcoshq, :
.4J

*(*r)f

= ?(A-t) Rtf

(r;'r) =
7t . rt. rx+Y
J J*x3\dvv \ d(t (ob{(-o ovrff-yl

a(3

+2fu
o(a

= + 
(n-) R'f, 

[ $-*[irr{$i'^..rl

= -?(A-,)R'*try$,l,ar]

t'r__ -?t")
4, 4L

+ zJ,(c)Jo(,()
a1,

-roft&J



App AtV(2) 3.

18 {n-r) R' fat , !,bt) = o
s( L

={

d_(n-q t Jiut (?- t.*.)2s=ir

is shown, in the weak correla

(and A> *? f.r J,(ot)=o )

A(n-r)(.n-r) (Cos h r;" Cos

A'{ + tut ,
[-
L o.ott'? t

tion approximation,

, that

k,;.)

J,te) = o

a1 = l.Sf Ss

In section AII it

trrat ror AISO

(P') +

?

(r,'rJ ={ +E ,J,u)=o,^r+"?FT I F;* '

I o-06"5( ,J=r.sasS ,A:soLA
Then using the results tor AEo, sununarised in Table II of section AIfI,

it follows from (19b) and (21), that the contribution of (vi) to the

s (Eo) class sum rule is

( vz ezf e- = [q Zl S(Eo),-,. /,6')=o

,\, ) F- T^ F LF E'J 
-'--'Grctr ' ^tt:

-\
I ': R^ = o.al,.s z Steo)I ,.orqrEe.f R^ = o.a{,.sz S(eo) .-- . "'f'51ss
I A ?n fr..--tutl t^ttt*

, /.q =* l,u)



AA
(3) p- = f_U ( ni - (r,j)) :e1i

In tlre weak correlation approximation we have

(r;'r) = (A-r) ( r"( *.- (r*')))

= h-r) [ (r;"(r'*E'-r I. r,)> - F(r,j)]

=h-r)[a -(Fi)']

App AIv(2) 4.

(viii)

(ix)

where I have used the wealc correlation timit results;

<r"-*) =2F | <t;'(5.r,)) =Q
It is easy to verify (ix) for a cutoff densityr by using (ii). From

equation 130 of section AIII and neglecting terms of order Yp, smaLLer,

we have

(q'r) : *<F')
So from (21) anil (22), it follows that the contribution of (viii) to

the S(EO)"lass sum rule is

J- z e't' (tv,F)") (x)
Z AI TN

From (l-9a) and equation (L271 of section AIII, we see that (x) reduces

to

AA
(4) f =EZ(ti-<r*)) I (*rl

i<j

In the weak correlation approximation we have

(q.F) = (n-r) < q.( r;. - <r,)))

= tA-r) { (r;"r;) Fcr">} (xiii)

tt-'o(*)].s(Eo).,n., ,Atso (xi)



using (ii) I find

(r;'r;) = +A

= ?,
2.

Using tbe result AIII (139)

(21) that the contribution

approximately

l' lo( Z e'f R'
ATh

App Arv(2) S.

, from AIII (135c)

it follorrys from (19b) and

S(EO)class sum rule is

rl f x+Y

,')lry,\{1*'

tIrs- *ls-t- d \\e 3 ao/

t'5.d
o

n !J,
o

R3=(E

R

R3

(xiv)
,o5

Substituting (xiv) into (xiii) and using the cutoff density result

-)\ror F ( r;")

,/ el r\\1, F I =

From section AIII we

1pt) =\r f

o.0613 3:
A

i

(see AIII (l-38) ) , we obtain

gtA-r)R3

have, in the weak correlation approximation,

n'I(r;.E>-<E)"] *o(t)

o, ol 3( Ar Rr

So

for AEo

of (xii) to
,

the

= O.i22 z
A

51Eo)ucr | , Also (,ttv)
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PART B

FLOW IN QUAI\ITUM ITECHANICS

ABSTRACT

r consider the problem of how to describe flow in quantr:m fluids.

In particular, we want to be able to identify the physical motion

representeil by any given many-body wavefrurction. Section I derives

a quantun mechanical velocity field for a many-body system, paying

special attention to the need for a quantrm continuity equation. It

is found that when the wavefunction has the usual time dependence

ajrct , that the quantum verocity formura averages over all
oscillatory motion, so that much of ttre physical nature of tJle flow

fierd is lost. rn section rr a partieular wavefunction is proposed

to represent the quantr:m excitation corresponding to any given

potential frow field. T'he results obtained by considering specific

examples are very encouraging,

CONTENTS

I : Current and velocity fields in non-relativistic nany-body
quantum mechanics.

rr : wavefi:nctions for guantrm states corresponding to classical
flor^r fields.
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I. CURNENT AI{D \IEIOCITY FIELDS IN NON-RELATIVISTIC II'I.AI{Y-BODY

QUANTTJM MECHAT{ICS.

The non-relativistic current density for a single particle quantrrm

system described by a wavefr:nction V([rt) is derived from the

one-particle Schriidinger equation

HV = itry , H=-L.v"+VCr) n)
)t

and the continuity eguation ernbodying the conservation law for tJle flow

of the system

)lv
ar

lt + y.I = O ) I is the current densitv- (2)

Bv notins that lVlt{r is the probability of finding rhe particre in

the volume element df , we see that lV lt is a single particle nuriber

density, so that (2) is directly analogous to ttre classical continuity

equation for a fluid,

)p+)t
-F Y..(1u) : o

We can therefore define a single particle velocity fiej-d by

1f .lra - 4f vl

From (1) and its complex conjugate, (note that H is a real, linear

operator)

U14l* = V*
)r

= *(t.Hv vH"")

= *(v*v'V-vvn,/)
=*9,(v*gv-vsv*)

= -h V. r^(v*gv)
nl

(3)

ry)f
+vry*

)t

(s)



)lv l" +
TT-

fo=iu": rf we

J.,(s$ =
)q?

form (2) with

for 1.. I
!J

defined a current

#v*$v)+ F s,.I,
T= FJ,

number density for particle one as, (compare with

of the

this guess

BI.2.

( r0)

From (2) and (5) the single particle current density

= h t-cvt v)
l-s

and then from (4) the velocity field of the particle is given by

1r.ccr = hr-f gv)fr \T/
I will now extend the above ttreory to a many-body system, paying

special attention to a suitable generalisation of the continuity

equation (2).

(6)

(7)

Then from Schrodj-ngerrs eguation H E =

following the same steps used to derive (5)

(e)

density for particle 
1

, then (9) becomes

- /\ , which is not

. Hence we reject

We define the

Ar (2) )

J,,')

S{ri. d5 lgt'
T\,( t) :

Similar1y and using (6),

one as,

t
rnl

Sdn... dr-tvt"

we define the current density for particle

Consider a non relativistic system of N distinguishable particles,

with wavefunction V ( Er. .. "[rt), and Hamiltonian

H = - h^ i + q" -{- V(L...,S) (B)

I fi'ni '
ih \ytt , and

h I,-h !..r,"( 
v*s'9) = Q

Str;
.{"'lvl"

(11)



BI. 3.

In appendix BI(1) I prove that particle one satisfies the

conservation law

(12 )

Hence by analogy with (3) we find ttrat the veLocity field for particle

one is given by

U(l)=1(D1 . =L 5.{a...dgl^(g'g,vt (13)- /n,( t 1 lnr Tt.* &. l*lr
From now on we will restrict ourselves to a system of N indistinguishable

particles each of mass ?l . Then the number density and probabirity

current density for the entire system are,

Tt(r,t) = Nn,O,t), fA*) = N J,tct)
(14)

and the conservation law for the flow within the system is given by the

continuity equation

(1s)+Fd -r. [.TGr) :o
AT

Therefore the velocity field is the same for each particJ-e, namelyl

1r(r) = h ld-r^... dr'. r^ (v \ V)
rn tilri. . . tn IEII-

After writing thj-s section it subsequentry came to my notice that

Feenberg has previously published the single particle conservation

condition (L21, using it to discuss phonons in riquid hetium

t [fl , Chapter 4). Several authors have previously stated ttre result
(10) ' (11) and (L4) , wittrout derivation or reference to a continuity

equation. (see rondon page uz lz), and Feynman page 292 [tl r. we

should also note that other auttrors have used a slightly different

approach by defining a many-body velocity field in operator language.

(Landau lnl , but note ttrat rondon [5f , believes Landau,s veJ-ocity

operator to be invalid, and Feynm:rn page Zea [S] f.

( 16)
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TrrE PHYSTCAT, NATURE OF t(t) :

the velocity is independent of time and is

or imaginary. Hence it appears that U(f) i"

velocity that averages out all motions that

nett transport of matter. This conclusion

examples considered. below.

function of time), then
r.Fl

zero if }/" is pure real

a quantum mechanical average

do not contribute to the

is verified by the specific

From (16) we see that if p is an energy eigenstate (i.e.

g) = 9o e-i'*t where E is nor a

Let us consider

describe mass motion
r.l

ana [-:l pase 335. ) ,

lrl\l/ =-
where 0
position.

take 6*o

a very simple wavefunction first put fornrard to

of superfluid helium, (see Feynm." [t] page 269,

ex P 
(i scr,I!) 0

N

fl
i=r

(17)

we can always

So,

(18)

(le)

tEt

is the ground state wavefunction and SG) i" some function of

Letting the ground state 0 = 0o a-'*t
to be real because H is a real linear operator,

r* (g.g g/) = Re(Y,scrt.lpl'
Therefore, from (18) and (16) we find that the velocity field for the

state (17) is

u(r) = h R"(yscs))

Equation (19) plays a central role in superfluid physics ( [tl ), but

because it was first obtained only heuristically by Feynman ( [aJ , page 269)

many People did not realise that it could be rigorously derived in the

manner above. We see from (I9) that the wavefunction (17) describes only

irrotationar flow, Y X 1IG) = O . Two well known examptes of ftows

accurately represented by wavefirnctions of ttre type (12) are,

(i) for the entire fluid in bod.ily motion

p = exp(iK.B) 0. B.= (20 )
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tn"t" f
azimuthal

we have,

Firstly we

(23) with

9= T f fr) e x?(ir6t\ q

s(f) = f, dcr)
have lgt" = lqlt :, qj , so from (9), 1fA) and

and from (re) lf(f) = as expected.

(ii) For vortex motion a line singularity

t!
Nm

about

(2L)

where f

is real and the phase S(g) is an integrat muttipte of the

ansle of the j+h particle. (See [al ease ael. using (1e)

as expected, an azimuthal vel-ocity

VO = t'( Q2)mt
is the distance from the line singularity.

An important question that we will now consid.er is whether we can

make up the wavefunction corresponding to any classicar flow field

represenred by a reat vetociry potenriat 6Ctl (rhat is, lfct) = VFCg)l

by writing the wavefunctj-on in the form (17) with

S(I) reat, we find

F tu" v,'dcel + 2 gi dc*). ! U"] = o

Therefore the flow fietd is incompressible ( V,A= O ) if

E V; 6tnl. gl[. = Q . Note, borh (20) and (21) aret '-c ' --"
incompressible flow fields and. satisfy (24) becao=" [o is in the rest

frame, that is 
f Y;0" : Q . Now it was shown i" frr] , rhar

for Hamiltonians of the type (8) with lllj=Yf\ for all j and the

potential V inaup"ndent of momenta, that the expectation varue of the

energy of the state V - F O is given by (when F is symmetric)

!.8 ( rVFll)rm GTry

(23)

(24)

(25a)Ae = E-Eo =
where HS = F"q

(e >
( t l ^ -aId.fi .d-F lJ (Po

5 dr. . .dr- 0j
(2sb)
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Inserting (23) into (17), we have

and

lqrl" = (g,s($)2 =
lFla = I ,assisrear.

S(g /cr,t)"

Therefore using (25, , QA)

AE=Nm
2

\

and (19)

Sasy ccl

Na .-, )=Z
' j=l

rf we wisrr S(frt) to narr" a time dependence like CoSwf , as would often be

the case if we used (23), then S wourd have a time dependence of the

form €xP(cCoSt*t{) , insteadof the usual form Erlurt . Thus

for an S given by (23) to have a suitable time dependence necessary to

describe back and forth flow, the wavefunction (2g) doesnrt have the

reguired time dependence. Ttrere is also a problem with satisfying the

Sdr, . dg ( v, /rsr)'0j
S Lr, 6-t+o

(rl
dE

2u
where JDCtr)=m.Yl0)is ttre mass density, and}f tr," fluid velocity.

Thus we see that the substitution (23) just leads to the quantun

variationar energy becoming the kinetic energy of a classical liquid

undersoins potenrial flow with fruid verocity U(tr) = [ dCf ).
( L9J page 8.) unfortunately this promising result is rnisreading

because the quantum veLocity field (1q) is an average velocity and as

we shall see bel-ow cannot represent a classical fluid veloci.ty unless

the entire fluid is moving as a body. rn fact there are probably only

tl^ro exact quantum states of the type (rz1 , namely tlle ones given by

(20) and (21). t lal page 76.) This is because for a wavefunction to

be an exact excited quantum state it must be orthogonal to the ground

state and must have a suitable time dependence. Nohr letrs look at the

time dependence of a state given by

V= €xp(iS)0" S(r;,t) (28)

(26)

(27)
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orthogonality condition for the state (28). The orthogonality

condition S dI, lt V ![. = O leads ro, for (2s) ,

For the special case

hold by transforrning

of

to

(c"s(pvq} + c sin(|s(q))) = o r ( ) aerined by (2sb)

uniform motion, (2O), we can see that (29) does

the normal coordinates l^ , defined by, flol

!, =ilE (o -iit), (r=|,, .7N-r) ; !,, = * tt, (30)

rhen (e*P(i K. A)> conrains

5fi-exp(i1.y.A\ = SS(K) , (=o tnt #o)
However in generaL (29) seems an almost inpossible condition to satisfy

with S given by (23). So the wavefunction (28) is almost certainly an

energy eigenstate for only two cases : uniform motion (2o1, and vortex

motion (2l-) ' both of which are states where the entire flow is nett flow,

unlike a phonon or any other type of oscillatory motion. An interesting

question is, what would (28) represent if we chose SGtt) so that

L* fu ( lS; describes an oscillarora/ morion? From above we

know that such a wavefunction could not be a single excited state, but

j-t seems plausible that it would represent a large amplitude disturbance

characterised by the velocity potentiar L-S . A large-scale motion

such as this is not an eigenstate of the uaniltonian, but rather consists

of a multitude of excitations with different eigenvalues.

To get more insight into what ttre velocity field (16) represents

physicallyr we will next consider the phonon wavefr:nction,

P=teib'q0
J3l

lr IFor small ltsl (31) represents a longitudinal compressional sor:nd. wave

(2e)

(31)
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partwithin the fluid. (see Feynman, &l t. Now the

of the velocity potential for a sound wave in a

satisfies the wave eguation, ( fel pages 492,61

(v'*h')/,(r) =o , O

ltrus (31) is actually

time independent

classical fluid

= /o dt-f (32)

I

where R = 'd/C is the same wavenumber appearing in (3r1.

The plane wave solution of (32) is
't t 

' E''E -'^lf )Fcrt)= A e't

v=

T(t )

Comparing (35) with (36)

has averaged out all the

the wavefunction
N

T Ccri;t) F. ( 34)

(33)

(3s)

( 36)

I
where P is the classical velocity potential for ttre fluid motion

corresponding to the quantum excitation (3I). From (33) we have for

the time independent part of the classical velocity field,

u(I) : Re Yd"cr) -- -Ahtrrnb.r
which as we expected, represents a longitudinar density oscillation

within the fl-uid. However, in appendix Br(2) we show that our quantum

velocity field applied to (31), gives at least approximately,

=hb
N rvr

lre see that our quantun velocity formula (16)

internal fluiil oscillation described by (35)

and only describes a small nett flow of matter of the order of YV

times the total motion. Thus (fO) is only the velocity field of the

nett flow of matter in the system. Another example is the real

vibrational wavefunction discussed in Arrf. rn this case (16) gives

1f = O , as it does for any real wavefunction, which we now know

only means ttrat the nett flow of rnatter is zero, as we would expect

for a pure vibration.
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The inability of the quantum verocity formula to describe

oscilratory motion is due to the probrem of time dependence. rn

particular, in setting up ttre velocity field we derived a continuity

equation (12) that holds for any given time dependence of the excited

:d H19=dtb%t ),
but from the definirions or Tl,[t) a"a d(f ) (eqns (10 ) and (11) ) we see

that they are both independent of time whenever [p is an energy eigen-

state. This follows because wrren p is a solution of schrod.inger's

equarion HV = ih)94 , we can write g = 9. 
"-tltlt 

, so ttrat

lglt is independent of tine. However, assuming the velocity

formula remains at least approximately correct for non energy eigenstates

we can write down the wavefunction for a large aqrlitude time dependent

disturbance described by a veJ-ocity potential iltf,+; (i.e. lI(Sr{) =
Re(YCtEt, ) ,

9 = lt- eiE 6tc't) 
4u,

.t

( 37)

This is important since the part of (37) ttrat is linear in the

anplitude of fr i-s the sum wavefunction (3+1, which has the time

dependence of 6 { 
,-a-;t,lt1 and is easy to make orthogonal to O.

rn the following section Brr, this idea is investigated with a view

to understanding what the wavefunction is for an excitation corres-

ponding to a given classical flow field.
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APPENDIX BI(1) : The Continuity Equation.

Firstly we have fronr (9) that,

)- S dr. tn tel"
)r

)lvt"TT

(a)

we have,

Sdr" t[,H
Sd.u. df'. lel"

= +it Sfr, . dF V;.r.(vkg) 7 f*,"(e)
'f 'i=t 

u

(wxtrr l= Sfu..&lgl")

frontrr) =- - V,.L,(r) -F ft t{E eri Vi.r,"(g*gv)

uringlo) = -V,..J,tr)

rlrus, latrl {- V,.J,(r) : o
)t -

= s{r, {rr

= * E,t tf., l,;, !,;.rn (8"g, d )

r,

= -h E,t Sdl d!.,tn..fi,[{q y,r-(vk.'l)

=O
because,(using periodic boundary conditions, or taking 9 to be

zero for fj = to) ,

5 dli vi.r,*(v\ v) = o
lltrerefore from (10)

).n'( ') :\/d(
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APPENDIX Br(2) : The puantum Velocity Field of a Phonon.

oefine (

1 n> = v Sd5. d.ri B i[."\--z-1 ffi
For \pl = F(Do , Uo real, we have

I. ( g*v, t1l) = C'r* ( r !', r)
Therefore, (15) becomes for Ql = F0"

\r(t) = h (r^(r*gF)>,rnffi
We wish to apply (a) to (31), namely

F = f ecb'fi , (time is suppressed as ir cancers in (a)) (b)
J=l

Taking the ground state density 1\(l) , (see Ar (2) ) to be the constant

ttt/V , we have, ( t), : I

lrhererore, (tF11> = N -Fl(u-r)(cos[.n.) +h-r)(H+)(osE.E),
(c)

(cos h..!n), = #ffi J&i cosb..Eln(lt) , lltrr)derined by Ar(2).

(a)

Let us use the approximation forl\Cll) (Ar(6)),

'h(rs; = t0)'ntr)3(r:.) = .sg,r,l

rhererore , (c"sbti4> = r*, + 
({t (os h..q. 

J(r';")

=*Oh + S {r cos b. r: g(r)

Let'|s also define, S(h)

rhererore' s(h) = | * t(t*, totb'ri)

= I -r (tr-t) <cos b. F.>

(d)

(e)
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= I -r # (dr {t ros b. E ttrr)

= l*S(af'cosh.Ig(r) ,usins(d) (r)

rhus rrom (e) (cor b. !,' ) = (i=,) ( SCqt-r)

To evaluate the last ter:n of (c) rre use the approximation,

( cos h. E ), = 1us b. E")

= Cr-,) ( scu-r) (h)

( (h) is risorously rrue if we can write n(tz j)= $ g,Or)W ,

(cornpare wittr AI(2), AI(6) ) when evaluating (COS b. E.), rhis

is like defining a weak correlation limit, (see appendix aI(l))

I trl) 9tro1 = \f,) = l- 3- 
)

from (g), (h) and (c) we get,

(tell>, = NSc.h) (i)

Fron (b) we have F *g r = t E E, eiE'si

rhererore, (=*( r*S tr)) = b[<'>, +- [N-r)(cosb.tr >]

= h sth) (j)

Finally from (i), (j) and (a) we obtain

lrtr)
Nrn

we should note ttrat (k) is a surprising result in that it is not a

function of 5 . rn fact the step (h) is equivalent to taking the

excited state number density tI\,(l ) , (lO), to be the consturt bV

Thus for an interacting fluid the approximation (h) may have resulted

(s)
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in snal-I correction terms dependent on E, being left out of (k)

(Any such terms would need to satisfy the continuity equation (12).)

Hovtever, we can see that (k) is the velocity corresponding to the

nett momentum transferred by the excitation (31), by calculating the

monentum eigenvalue, with p = F 0 , we put the ground state 0
in the zero momentum frame, namely, Eq = Q , where

if

P = -ilEv,
Firstly, 1et's calculate P I for a uniform translational motion

9'= T .'h'$ U , (compare with (20) )

P\P' = -itF.EV' : NhhV'.
Ttris is bodily florr wittr velocity N h b : h bffi-ffi
For the phonon vravefunction (31), I : spdb.tri T+- s

Pg= -ihF;geih'srU = thg
Tlrerefore the phonon has a total momentum eigenvalu. O(t ) times ttrat

of a comparable boitily flow. We can see from (1) that the total nett

momentum transported by a phonon excitation (3t;, corresponds to a

velocity }f = hVfi*. That is, a nett mass flow of rhe order

"t h times ttre total motion.

(1)
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II. WAVEFUNCTTONS FOR QUAIITUM STATES CORRESPONDING TO CLASSICAL

FLOW FIELDS.

In Section BI simple product and sirnple sum wavefunctions

(gr (L7) , (28) and (34) ) were d.iscussed, while investigating the

nature of the guantum velocity field !f , BI (,1e 1 . So let us begin

this section by summarising what we have learnt about these \rave-

fr.urctions.

(1)

. Note 9xlf, = O

sance

l-.
-l

(iii) with Slf) rear

the expectation value of the excited energy and Hs
, where E is

= 8"0

(vi) It is

(see BI (29)) .

(vii) It is

uniform motion

"r Tl-exp(; Scrr)) 0 , (o = Q".-t**)
(i) s(r) =htu(!s(r))

(ii) wi*r SCI) real it follows from Br (24) that VrU * O

eiEli9o changes sign rapidly over a microscopic variation of

, while !1 l(tlt will arways be slowly varyins on the

microscopic scale for low energy states.

E-q, = qr(4rnts)u?r)

(iv) rf we fet S([) be complex then (ii) and (iii) no longer hold.

The effect of a complex 5(I) i= to create a peLnanent deformation in

the density, e.g. the factorftrU) in Br (21) produces the hore around

the vortex line.

(v) Because the wavefr:nction (1) has the time dependenc" ,-it'lf

!f i" independent of time and so gives only the nett flow of matter

after averaging out any oscillatory motion.

very hard to make this wavefunction orthogonal to CI

likely that the only exact eigenstates of this tlpe are

and vortex motion, i.e. BI (2O-2L).

From the above we can conclude that this product wavefunction



describes permanent mass

As an aside it is worth

flow and not oscillatory density variations.

showing that ttre particular exampl-e

(2)

yE = ih. E + If eih.q V,q
,,

' = thu

t'rb
,YN

+ Str., . dn r". (0.g O)

Sdr. .dI'. l0l'

(3)

= !!,+g
o,F /ts;,+1{9. :

(i) has ttre time dependence of Q.

(ii) is easy to make orthogonal- to 0. (rn the notation of

Br (2e) we resuire only <g) = O .)

(iii) The wavefunction (4) describes oscil-l-atory density variations'

but the quantun velocity field wiII average it all out to give only

the nett flow.

(iv) By analogy wittr phonons (i.e.

speculate that to a first approximation

field corresponding to the state (4) is

BI (31) ) it is plausible to

the classical (dynamic) flow

!: - Rc(vd)

Note (iv) is important since if it was true in general, (4) woul-d

be the single excitatioR corresponding to the cl-assical- potential flow

(4)

V = T- . 
ih'Ei i[

.l

is the wave-mechanical

to S i tf'= lI3
follows since

lVl' = lQl" ,

and so using BI (16),

nethod of applying

+ tf where

a Galilean transformation

tr =ELZ-.rhis- ./'fil

BII. 2.



rierd or small amptitude, 1l:, (fr{) = Re ( g 6G,+)) , with

$tr,+1 = /.(y) fi'it . rhis idea is stronsly supported by ttre

argument due to Chang and Cohen Ltl , discussed beIow.

c) lf e*p( L stq+)) Q. :

(i) Except ror the speciar case S(5{) = S(I)-td( (i.e. (1)),

(5) is not a solution of Schrodinger's equation and cannot be made

tForthogonal to lpo

(ii) Assuming that BI (f6) is still correct we have

utq+1 =%ne(gs(t/)) . Note gxrt=o
(iii) From BI (25) I calculate E, the e>q>ectation value of the

energy in the state (5), to be

E-Eo = gr Sdrn,(E)tit

BII.3.

HS = EoiD (6)

(s)

-where 1I =
excited state

(iv) From (iii)

plausible that (5)

velocity field !f

(g,S) and nr(E) is the density in ttre
(Compare this with BI (27).)

and by analogy with the wavefunction (1) it seems

represents a large-anplitude disturbance with

&I
(s) .

Cfrang ana conen l-fl assume the conclusion c) (iv), that the wave-
LJ

function (5) represents large-scale hydrodynamic motion with velocity

potential S, and then use this to show that the wavefunction (4) is

the single excitation corresponding to tJle same velocity field (i.e.

conclusion b (iv) ) . Let us write the velocity potential as ca, /

where o( is proportional to the amplitude and absorb the constant

yn into 0( when appropriate, then Chang and Cohen's argtment is

to expand the wavefunction (5) :

ex("tf, d(n,*) O" = [r* t*F d -d'(T d)i it'(F6'f..]I,',
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They identify this expansion as a superposition of the ground state 0.
with the state of a single excitation, plus the state of two excitations,

and so on. So the state of a single excitation with velocity potential

0 is the term linear in o( :

zo(q,t) $,
J

Because a quantum mechanical wavefunction is normalised the amplitude

has dropped out of (4), unlike the wavefunction (7) . So (4) describes

motion in the small amplitude linit. If (4) has momentum eigenvalue

k then (according to Chang and Cohen) the term in (7) proportional to
tro("b"Iorrgs to momentum eigenvatue,Vlf , and represents a state composed

of n excitations. The argument due to Felmman referred to on page AIII.

20. , ttrat the state of two phonon excitatj.ons of mome"tur, t h, is

(T .ih'ti)'U and has momentm eigenvalue S .lth,

agrees with Chang and Cohen's identification. Now, ttre wavefr:nction

(4) is very important since it is a single excitation and in the limit

of small- amplitude (long wavelength) it is likely to be an exact

energy ei-genstate. But before investigating examples of the type (4)

I will first consider the large amplitude wavefr:nction (7) since Chang

and Cohen's argunent is based on the assumption that it represents a

flow fj-eld with velocity potential ol, F

Large-amplitude flow wavefunctions :

The problem to consider is : because the wavefunction 'F eta#6.

is not an exact solution of Schrodinger's equation (except flt ".ntt"
of mass motion and vortex motion), the proof of ttre continuity

eguation BI (I5) and hence the derivation of the velocity field

\r- ^, ne [V /)

(4)

amplitude wavefunction

that it cannot be made

longer follows. That is, can ttre large

approximate this flow field despite the fact

orthogonal to the ground state, nor has the
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correct time dependence,. and is not quantised (i.e. contains arbitraqy

a( ) e Writing the wavefunction (7) in the form

= airq. , 1.=A+i$
we have

r* ( g*g, V) = Re( gi r)lvl' , lvl' = e-'B CI:

Therefore equation BI (9), whictr is the condition that ttre derivation

of tfie continuity eguation Br (r5) and the velocity field Br (16)

holds, is

) l\Pl'T + 
F g.(u, lVl") = o

where lJ, = LR.(!;I) ,r,-{ -y11

The verocity field will be correctly described by (9) provided (g) is

satisfied for the chosen ?( . Equation (g) reduces to

e-"0:{-, * * * Fo,'^} - * FgA. V,(.-"0')

Now since g0. 
"tr.nn"JfJ"nidry over a microscopic variarion of g.i and

EA is slowly varying for row energry (long waverength) states, we have

almost exactly that

EYrA.qiDo = o (r1)
J

From (ll), (10) becomes

-t?8, +LEv,:n -lLEgiA.y;B =o (12))t r\I t . fiT
For wavefunctions of the form (7) we have

X = A+lB = [["tr,{)*tbfq,+l
and (12) reduces to

-l[*I.V'o rLb.Vb =o
vn'.r' X ,-= *.1 b = o, .". (: * ,*.

Vrct' = o

(8)

(10)

('= k) (r3)



with ttris condition we have from (9) that 9.1f = O , so a real

velocity potential can only describe incompressibre flow. From Br (27)

\de see that the extra energy associated wittr the incompressible flow is

AE =tItn
(l

\{rhtr) gq.9a
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( 14)

Taking variations with respect to O gives the condition for a m:lnimr.un in

theenersyas 9.(gA) =O ,rhatis VrO=O . sointhis
case the approximation (11-) is exact.

States of compressible flow will be described by the wavefunction

(7) if we allow X to be cornplerg that is b y' O. However (13) will no

longer be satisfied exactly and so the expression (9) for the velocity

field is at the best approximate. But if we make the sane assumption

that is usualry made for classicar compressibre flows, that ttre

amplitude remains small enough to igmore all tenns not linear in

anplitude, then (13) becomes

t[ +tvro, aO (rs)
'ltl

This condition should be compared with the classical continuity

equation for compressible flow, in the sane approximation ( [r] page 476)

, l,P = f.(t" V))
If the continuity eguation (15) holds then from BI we can identify

\r = fr - VA and rhe waverunction T!exp(iga;+ib;J)$.
'"rn -

will approximate a state of large-scale flow wittr velocity field }t ,

which is the assumption that Chang and Cohen's argument requires.

To investigate the solutions of (15) let us consider two examples,

one of incompressible flovr and. the other compressible flow.

Large amplitude surface wave :

Take the ground state to be a semi-infinite liquid with a free

tj + Y.!f =o



surface in the X! plane, and let the density approach zero as

Z -'i + 6€ . Then ttre velocity potential for a classical capillary

wave propagating in the x-direction can be taken to be ( [4 page 45'1,

F-t
[_3J nase 238) )

"1 # = *et.cos(hx-,*r{)
where r^ra = ..E h3 , A is the surface tension

tlottl
bulk number density. So ttre large emplitude surface wave

should be

Vr* = T .*p ( i" ehz; cos (hx; - r*rt )) E,

since we have taken Q to be real the continuity eguation (1s) is just

-O 
t

V'P = O , which is satisfied by (f6). That is, the flow is

incompressible. From (I4) and taking the ground state number density

to be rn(z) = 1\o Z<O , =O Z)o , it is easy ro show rhat

AE = Ao('I]b I,

and .l.lo the

state
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(17)

(15)

, A ttre surface area.

Ihen a simple classical calculation of the increase in surface area

(AA) a" lowest order in o( yietds the classical dispersion relation
qJe = g h3 , (l-= LE-s-

t\ol|l|-=-7^A.Thatis,because(17)
represents incompressible florrl it leads to the classical ftow energy

(Ia1 , which ensures tir"t pr* is consistent with the assunption that

it represents a large amplitude surface wave. It is obviously a large

amph-tude disturbance since AE ^, "te

Large amplitude sound wave :

Take the ground state to be an infinite liquid of density n..
Now, a classical sound wave travelling in tfre t direction could be

representeil by a velocity potential ( [rl page 49G, fr] page 248)

Afi = c((os(h.f-',r{) ,

or df = a(ei(b'r-'*'t)
(I8a)

(r8b)



From (15) we see that I must be taken to be complex or it could not

represent compressional flow (i.e. (18a) cannot satisfy the quantum

continuity equation (15) ) . So the Large amplitude sound wave state

would have to be

V = Tl-e*p(,*ei(b'r-t.'t)) O,

So the assumption of Chang and Cohen's, ttrat the wavefunction

TIe,*p(;*/qD 0. represents rarse scate motion with velocity

fietd ||- Re (!d) , seens to be approxi:nately correct but ttrere are

sorne problems. For examtrrle, Q must be real to describe incompressible

flow but when using the single excitation wavefunction 1/Cj) !["
.1 'l

we require the complex form F - e-t"' , to get the necessary

BII. 8.

(le)

Inserting (18b) into (f5), (i.e. q+,:b = o16 ), leads to
- r-Ll
?t'^.1 - n?tn = O . so the continuity equation gives

ttre rarge anplitude dispersion relation as \d = !h:- . This is- -lm
different to the small arnplitude classical relation (r)= Ch , G the

constant velocity of sound. Thus (19) is a solution of (15) but does

not give the expected dispersion relation. rrom (5), the flow energy

of the state I is

Ae = .f"r' 54|n,rs) | gdl*

= "(r l"_[ Jdr n,tr)
(20)

rr N "(e [!'Itn
= N*a iw

This large amplitude energy should be compared with the energy of a

single sound wave excitation,

AE = tr*l = heh (zu



time dependence. The compressible flo,r has a complex @ but tJle

energy (6) is no longer the exact clasgical flow energy. In fact it

seerns ttrat only kinetic energy is present, which would be half the

energy of a classical sound lrave. AIso the large amplitude sound wave

had a strange dispersion relation, but this could be expected since

classicalfy W.rh only in the small amplitude limit,

Single excitations :

Chang and Cohen's argument (and BI) led to the conclusion that

the wavefunction

E df r: *) 6
T' \-J't' ro

quantum excitation

BII. 9.

(4)

is a single

flon field

corresponding to a classical potential

. In the remainder of ttris section I

for this important idea with emphasis

rr A, R.(g /)
will consider furttrer evidence

on specific examples.

1) Firstly, the wavefunction (4) has the required properties to be an

energy eigenstate. That is, it has the correct time dependence by

taking / - g-d-t , and is easy to make orthogonal to the gror:nd

state (i.e. (/) = O where ( ) i= defined by Br (2sb)). AIso,

because the classical amplitude has dropped out of (4), it will be best

in the small amplitude limit.

2) It may also be possible to derive the nature of (4) using the

operator approach of collective coordinates. In CII the Haruiltonian

in the continuum approximation, for states which represent smalL

longitudinal deviations from r:niform density, is shown to be

H,l s+T*o{ lt,l'+ .^,ilTrrl'J (22)
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where frl = !2ufrlt , Uh= Ch , and the collective

coordinatellais the Fourier transform of the number density operator.
tl

Now nph is a harmonic oscillator Hamiltonian and so the first excited

state wavefunction is ttre ground state multiplied by l\h . The HamiLtonian
in(22) describes quantised sound !'raves or phonons and.^ttris case

tr 
-I lr

n 5 & dcq,+)h (s)

S&dE,+) FJ(q-E)

.l

(23')

(241

= Z dtg,+)
0

= E e;tb.e-*t)

BI (3I), which is of the form (4). If we generalise the above and

assume that any small anplitude deviation from the ground state will

be described by a Hamiltonian of the form (221, in terms of a

collective coordinatet\1 for the particular flow field, then by anatogy

with the harmonic o""iri.tor we know that a good variational wavefunction

for the lowest excitation wit.ll ttris flolr fielcl may be obtained by

multiplying the ground state by the collective coordinate : (cf, [+]L'J
page 23)

E = tlE"

So the first excited state tf 0, is the Feynman phonon wavefi:nction

1b = r
.l

6Ej,+)

That is, 'f11! is the collective coordinate for the small amplitude

flow field described by velocity potential @, then (24) is a good !{ave-

function for the single excitation corresponding to this flow field.

We see that (24) and (4) are identical if (23) is true in general,

i.e. provided

(dr

This eguation is true
Fq( [-1] eEr (26 ) ) also

for phonons and according to Chang and Cohen

holds for gr:antised surface waves. I have not

(2sl



seen a general statement of (25) but it may be a consequence of the

fact, proved by Kronig and TheII,-n [U] , t]rat'Vl and g are

canonically conjugate variables ( T\ is the generalised momentum

corresponding to the variabLe Q).

3) Phonons (quantised sound waves) :

I have previously noted ( (18b) and BI) that the velocity

potential for a small amplitude classical sound wave is

d'-' Pe(E't-ut) where G)= ck (c rhe verociry of sound). so,r\
assumi-ng (4) is correct, the wavefunction for a single sound wave

excitation (i.e. phonon) is:

g/", = Zeib'ti {-?r j
This wavefunction is also obtained from the normal mode Hamiltonian

which by analogy wittr a harmonic oscilrator led to (24), as described

in 2) above. Felmman fa] first proposed the wavefwrction (261 for

excitations in a bose liquid (Iiquid HJ l, giving extensive physical

argunents to conclude that for small k, 9r* represents a longitudinal

compressional sound wave with energl; h,^l = h c h, . Felmman also

where HS = E 0 and the structure facror S(k) is

S0{ = t<lFufh.ril">
( < ) is the ground state e:rpectation value defined by BI (25b) ) .

Defining ttre pair correlation function 3(n") from the pair density

(see AI (6) )

BII.11.

(26)

proved that 96 was the optimum wavefuncrion of the form F{(s) 0
Applying BI (25a) we have from the variational principle t $f ls

orthosonar to j[ ro' h*o "ir,." (gih't) A, 5(E) ),

AE = E-E. 4 
^{fu

(27',)

(28)



Tt( 5 , !^) = nl g(r,) ,

(28) becomes

BII. 1'2.

(2e)

S(n; = | + t SaE &- r,tr,,E ) eih.(r-r')

= | + t'. [& e-ih'E ( Strl -')
where the orthogonality condition has been used to replace g by (S-1)

in the last line of (29). Inverting (29) we have

Q(r)-t - J Seeih'g(srn;-r)J- (trr)llto J!l! E \.,try-r/ 
(30)

= + (-Jnhsinhr(stH-')
llT'to r do

Now we expect a long wavelength phonon to have the classical energy

AE =f ch , which rrom (27) inpries S(h) -+ ih/eta ,osh*o.
Integrating by parts the right hand side of (30) we see that this

condition holds provided, tJ:e long range part of (S-1) is

(gt'l -r) + -rkk+ (3r,

The above self-consistent results are well accepted properties of the

bulk superfluid phase of a Bose liquid (Iiquid lla* t, but as pointed

out by Ctrang and Cohen ( [t] p 1064) the result (31) has not been

derived from first principles because AE + tC h is rea1ly an

assumption. (Feenberg has a proof of (31) using normal modes and sum

rules, that rnight not have this hidden assumption, [tl , but I arn

not sure.)

rn Appendix Br (D r proved t]:at 3 Pr1' -r t b Vr,
fhat is, a phonon is a momentum eigenstate wittr an eigenvalue

appropriate to the motion of a single particle rather than bodily flow.

This agreed with the calculation of the quantum velocity field;



BII.13.

1Io" = hbfi* (x the nrmber of partictes ) . so the guantum-l' / NTn

excitation includes a small nett transfer of matter of order of
l-
-N times the total motion. This is very interesting since it is

known that the classical sound r^rave also has a second order nett

transfer of matter. Land,au and Lifshitz ( Fl p 252'l calculate the

total momentun of a long wavelength classical sound wave to be

.A 1- t A?
!,C/C, where!!8, is the energy of the sound wave directed along

the line of propagation fi . Substituting the assumed quantum energry

tg = hch, , sives the provea resurt t! . rhis herps ro

confirm the universally accepted assumption, that in the lirnit. h-fo

the wavefunction (26) is an exact energty eigenstate with an energy

h- .ottesponding to the classical dispersion relation ar = ck.

4) Surface excitations :

The velocity potential for a classical capillary wave (restoring

force is 0- , the surface tension), caur be taken to be

A . ,.,h2^i(f.I-ut()(,JU E Er - , where k is parallel to the surface

arrd the liquid occupies the volume Z AO . ltre classical dispersion

relation is Lr)a = (-/n.*) h' where t1o is the bulk nr-:mber

density. Assuning ttrat (4) is ttre correct wavefunction for a single

quantum surface excitation we have

W* = F eh=i.i(b'* --*) O" (sz1

For the large amplitude surface wave (17) it was necessary to use the

real part of p because the flow field is incompressible, but the

complex form of p is required in (32') in order for t/, - to have the
'JU

correct ti-me dependence a-d't'lt . on ttre basis of the previously

described argument that led to (4) , Chang and Cohen G] proposed ttre

wavefunction (32) for the surface excitations of liquid helium four.

In a paper supplied with this thesi= ltl , the wavefunction (:21 is
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used to analytically rederive

rhe purpo"" "f El ana [s]
a single surface mode"

The analytic calculation

the phonon excitation energy,

excitation energy is for:nd to

the numerical

is to calculate

results of Chang and Cohen.

the excitation energry of

rl
"f EJ is analogous to

described in 3) above.

be (cf. Q7))

the

The

derivation of

surface mode

(33)

( 34)

becomes

AE L It'h3
lm S*tnl

where S* ," the surface structure factor (cf. (28) )

sint = rnffi
Defining a generalised pair correlation function by

Y\( f,, E) = tr(2,) xtz.,) I (t",2,,2,\

it is shown

stnl =

l,
I

."?60--

Ld= n(z) e

i"G

rI
(35)

To evaluate (35) it was necessary to make the same approximation that

Chang and Cohen made : ttrat the bulk properties held right up to ttre

surface, i.e. the contribution to t}re grounJl"t 
t;tL 

zero-point motion

of the surface modes is neglected. Now in the phonon case the zero-point

motion of the phonon modes can be shor,rn, with various approximations and

assuming the classical dispersion relation, to lead to equation (3I) for

the long ranged part of [1 - ,] (This calculation is given in section

CII.) But it was this variation of (g-1) that was required to

reproduce the classical dispersion relation in the lirnit h+ O

Hence it is not surprising tirat [l and E] faited to reproduce the

classical ener!ry in the long wavelength lirnit :

( 36)t,.-) *r hJE"* hu" Sx -- h lE p'tz
2 {6-n
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rn fact the approximations *"a. ir, [l *ru ltl gave a result r]rat was

much closer to (+)^,h than t^).rf7r . However the resurts for

intermediate k were good and it was concluded in bottr papers that if

ttre correct ground state was used (i.e. if ttre zero-point motion of

the surface modes was included) , then the classical result t-0- [3/r

would be obtained in ttre limit h -+ O using the wavefunction (32) .

The work required to prove this is sumnarised at the end of reference td .

It is worth pointing out that the wavefunction (SZ1 could also be

used to calculate the energy of a surface excitation of Fermi liquid
t

(liquid Hi I . This is because any wavefwrction of the form F E
where F is a synmetric function of the coordinates has the permutation

symmetrlr of the ground state ![ , and so the wavefwrction Q) can be

applied to either bose or Fermi systems by choosing the appropriate

ground state.

From (36) we see that if the calculatio"s of fal could be

improved so that in the long wavelength liurit the classicat dispersion

relation was obtained, then a value for ttre surface tension

would be found. The results of fel are restricted to temperature

T = O, where the free energy is the total energy and the expectation

values are not complicated thermal averages. So the system of most

importance is superfluid Heh, where the surface tension at T = O is a

well known experimental quantity (see Atkins and Narahara [tl l.
Assuming that ttre dispersion relation derived at T = O continues to

hold at higher temperatures, it is also possible to calculate the

temperature dependence of the surface tension (note, f is the free

energy per unit area of surface). The free energy excited by the

surface modes at temperature T is given by the usual statistical

mechanical expression for non interacting bosons with zero chemical

potential (e.9. photons, phonons, surface modes) :
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( 37)Ar (=r-r") = -TTl"r{
c

and fl =tfq istheenersryatr=o. rr€, isafi,rnction

of a wavenumber k that is parallel to a surface of area A = L'

(..:. €r = fch, ) €t = k @.^ L.* ) , rhen usins

the periodic boundary conditions h, = (2y1|,1r, hJ =Fk)r, ,

we have

f = It - #^ 5io,fT'., = * 5io' (3s)

From (37) and (38) we obtain

rft)-q =*[Tntl.l[l-{eLFtTr) (3e)

(40)

rf we now take €(h) to be of the form

ht^rtu.)

then integrating (39) by parts gives

fitr)
6

= q !g!-ialht'' "-€tYfv 
4FlF ; t-e-ecl')/T

=e - F(*)+ "1 
S?- *rbd"

So if the dispersion relation is tr)- lfb then the temperature

dependence of fi is (O'trt - o;) ^, T l+ Vu . For riquid

helium four and assuming the classical dispersion relation

qJ = J%- hvt , Atkins Et] calculates

f = q - 6. ?r to-3 ,t/t €r5crr-r (rr^k) (41)

t" El ""u [t] t]re approximations resulted in a tinear dispersion

relation for intermediate k. The numerical resufa "f ffl is

L,J .1 $ h .\. 
t ao h s-r (h i^ --,)
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(4zl

Substituting this (40) yields

These values should

Atkins and Narahara

surface tension of I

their data was

Ln

rof= - 3'tr x lo-3 T3 €rg crn-l (r r.k)

be

rJ
EJ

iqu

compared with the experimental result of

, f>r the temperature dependence of ttre

id heliun four near T = O. The best fit to

F = 0'373 8., Xto-3TE/" erg or.-r (rl k) (43)

Ignoring the minor differences in the temperature exponent we see from

(4L) ' @Z'1 and (43) that the classical dispersion relation accounts

for 85t of the experimental temperature variation, while the result of

lf J accor:nts for only 408. If the temperature dependence of (43) was

exact then from (40) we have that the quantnn dispersion relation is

t-r) - 5 l'lr (assuming ttrat it is the same over the entire

temperature range) , instead of tr.) " f}/e . rt is also worttr

pointing out that ttre above calculations have assurned tf,.t|1*perature

dependent. part of the surface free energ:y arises entirely from the

surface excitations. Chang and Cohen t [t] p 1064) state ttrat ttrere

is a small contribution to fr- Q due to the effect of the free

surface on the bulk excitations, and they give a generalisation of

equation (39) to take account of this. There would also be a

contribution from any temperature dependent density variation but

this is nesligible for superftuid He9 , Erl .

5) Vibrational wavefunctions !

In AIII, translationally

Z>{f C.) 6' and reratedT.f '* v1r -
rorm T{ttt U , are

invariant wavefunctions of the type

transl-ationally variant wavefunctions

proposed as compressional vibrationalof the

states of spherical nuclei. rfr"Eftdl[. wavefunction is of ttre form (4)



and so should describe a vibration with a velocity potential
.t f, r
tf) -J(f/ , where r is the distance from the centre of mass.

So the "c1assical" velocity field is purely radial, which agrees

with the result proved in Arrr that E{tf:) 0 has zero angrular
J

momentum. The quantum velocity field BI (16) is zero because the

wavefunctions chosen were all real, but this means only that there

is no nett transfer of matter.

An important vibrational state of the forrn (4) was found to

be (see AIII and AIV)

I l"tnn) 0 / 7,(hR) = Q
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(44)

This wavefunction had the lowest energy in the weak correlation linit

and was closely related to a translationally invariant state, proving

that it is not a spurious state. ft was concluded by analogy with

ttre wavefunction Qe) that (44) is a spherical compressional wave,

i.e. a radial phonon. (Note, @a1 is the zero emgular momentum

projection of (26,,) rhe orthogonality condition 1 (nR) = O
Jl

suggested ttrar the lowest stare (UR= +,rllt") was not the breathing

mode oscillation, but instead had two regions of motion out of phase

with one another. on page AIII. 44. we speculated that if a wave-

firnctj-on existed wittr a similar energy to the state (44) but had a

waverengrh such that hR = t/l instead of 4.5, then it woutd

be the breathing mode state.

If we accept ttre arguments of this section then the "classical"

velocity field of the lowest state is

tr(ft) = \t(r) .-i''rt / \t(r) ^, /.thr) = - hJ, (v,Vq*VR) rnl



Fig.1.

1,(+'+ttP51

r/tp.

r/P.

From Fig. I. we see that (45)'s interpretation of the wavefunction (44)

is that there is no out of phase motion in the system, but it is stirl

not the breathing mode oscilLation since in this state the surface

should have the largest velocity. From Larnb ( P] p 505) we noLe that

the velocity field (45) is that of the longest waverength sound

vibration enclosed in a spherical envel-ope with a fixed rigid boundary.

In AIV we found that apart from one odd state of very high energy,

that all the other wavefunctions proposed in AIII formed a group of

related states, higher in energy than (44) and its translationally

invariant relative. From the lifetimes it appeared that this group

arr represented the same physical motion. one of these states was

T(q^- F) Q
which is rhe s.rme as Ef (ffi-<a,f)S ,(tr.r=o). rr we interprer rhe

velocity potential as 4tf)eFr-F then the flow field of (46) is

V(r) - lf (rhe dorted line in Fis. t. is r/lR .) so tlis

state wourd be a good candidate for ttre breathing mode state if the

argument about the nature of (4) was correct. This conclusion pours

cold water on the speeulation at the end of section AIII where I guessed

that some of the low lying O* states of even-even nuclei could be ttre

breathing mode state.

6) Dipole rotational wavefunctions :

rn Arr r discussed the 1- giant dipole nuclear wavefunction

BII. 19.

(46)
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(48)

( Z is the nr:rnber of protons, N the nr-unber of neutrons)

Now, V t" a sum of two wavefunctions of the form (4), so it shourd{to
describe a flow field with a proton velocity potential 6r*NZ,
and a neutron vetocity potentiar /^* -Z=^ . rhis interpretation

implies that A represents dipole motion in which the protons and- tlo

neutrons oscillate out of phase and parallel to the z axis. This is
the same conclusion about the physical nature of g/, that was

arrived at by other means in AII.

7) 2+ rotational wavefr:nctions :

In section AII u"a [ff] a particular type of many-body rotati-onalt-J

excitation hras proposed for nuclei :

p., = t; ri \!r,r) {rr,,) 0
where A is the number of nucleons. witft f = 1 it was noticed that byfirirnl

thc cgntrgof rnnrsct+he origin that (48) reduces to the wavefwrction
.t A

S{ = fq'Y.,.tr,) U @s)

which is of the form (4) with vetociry potenriar fi - f t YIE)
t" Ftl the wavefuncrion 9^' was generatised. to*lo

E (tz; - ri')f (ri) 0 (so)
j

and it sras proved that in the weak correlation approximation and
.F

assuming I a" be sphericatly synunetrj.c, that the optimum wavefunction

of the form (50) is siven by f rnrl = Jr(hrr;t!-t, i.".

Z Y"(r,) J'(hr:) 0 (sr)
i{ct2

On the basis that (51) is the L = 2 component of Feynmanrs phonon

wavefunction (26) , we concruded in Er] that both (5r) and (49) hrere



finite system compressional phonon excitations carrying angular

momentun L = 2. This conclusion is supported by analogy with (4)

for the wavefunction (51), since the velocity potential for a classical

sor:rrd wave satisfies the equation ( [rl p 496)

(V'*V')fi =o t
which has the non singular spherical solutions

P '\' 1r(ur) Y,-^tr1

LA

However, for the wavefunction (49) (i.e. f=1), the analogy wittr (4)

reads to a different physical interpretation, since the velocity
,potential f t Ya[f) satisfies the incompressible wave equation

Y^f = O and. represents surface oscillations instead of sound riraves.
(
faside: It is not the purpose of the rest of this section to discuss

the properties of Vr. *u qj , which are extensivery described
riin Arr and LI1I ' but rather to investigate the finite system classical

flow field wittr verocity potential ^, flYr!0 . The results of this

section are used in AII to help understand the physical nature of the

nuclear wavefunctions (4S) ana taO) . J

In the small anplitude region the oscillation of a spherical drop

of incompressible ftuid under the action of gravitational or capillary

forces, is known to be described by trre velocity potential- t"e" p]

pp 450, 474 and f:l n z:sl

,\, tt YJt) e-,*rf

The oscillations descrjJced by (54) cause the surface to be deformed

from its spherical equilibrium state, with a surface radius vector

given by

R + IY CI)L LA--' (55)

where R is the radius of the undisturbed sphere ."d 1 is the amplitude.
v

Brr. 21.

(s2)

(53)

(s4)
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The classical velocity fietd 1I,r^ = Re Uir^ can represent standing

oscillations or travelling surface waves, depending on the varues of

L and M. Now these small amplitude otcillctfoht are in the nature of

vibrational modes but for certain values of L and ,, 6 also-rL*l
represents rotational modes with a non spherical shape and large

arplitude vibrations about non spherical equiribriun. Ttrat is, some

of the small anrpritude vibrationar degrees of freedom given by (s4)

are really rotational degrees of freed.om arrd large amplitude

vibrational degrees of freedom. Using group theory it should be

possible to identify all these different degrees of freedom but I wiII
restrict my discussion to the case L = 2, which has relerrance to the

rotational excitations of the deformed even-even nuclei (see AfI).

We wish to investigate solutions for irrotational incompressjSle

motion of a liquid contained in an erlipsoidar envelope (or the

irrotational rotation of a sel,f-bound eJ-lipsoid). Let the ell-ipsoidal

boundary be given by

4t*-U'+ t = |qr '? 'F -' (s6)

where (X'ryiZ'l are body fixed coordinates, and consider a rotation

about the z axis. The vel"ocity potential is that solution of
-s 

t
Y' P = Q for which the rotating ellipsoid, remains a fixed

shape, i.e. the boundary has a velocity whose normal component

tf'!. is equal to the normal component of the flow at the boundary

96.!, . rn the follovring calculation the coordinate system is the

rotating frame and so the coordinates are time dependent. rf the

system is rotating about the z axis with constant angrular velocity Ol,

then in the body fixed frame the boundary condition is constant :

lf. !, = y6,I
where :{ = !g x J' = (-,*ry', t)x', O) . From coordinate

geometry we know that if ! is a point on a surface defined by

( s7)



{(r,!,-) = | , t},.r, gf($ is normal ro every surve

surface passing through ! . So from (56) we have

!- (*o,,W,+,) ,

and hence the boundary condition (57) is

-h)y'x'+ L)U' = E+ *V.{ *V4
]4f lb? )x, qe )y, b' lZ, Cz

The solution to (58) (which is also a solution of Vt/ = O )

o = ,,f*g)''y'
\ or+ b/

on the
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(se)

(60)

(s8)

Ls

When the body fixed frame is at an angle O to the lab frane we have

X, = xcose + ySin€

y' = -XSinO + yCoso

zt = z
So transforming (59) into lab coordinates we have

f = ,-rf+-*)[si^ro.(y.- xr) + (osro. 
"y ]' \on*b'/t 

- 
J

We can identify this as the real part of b* given by (54)

(note, f'Ya. cry (x* ty)r )

R" d.. - (os o{,(xt-yt) + sinurt. r*y
,t22.

provided we have

t^lt = lo +E
:

For rigid body rotation q) = e instead of rO = edf as given by

(0a1. This difference is because after the bor:ndary has rotated 18Oo

the surface wave containing the motion has undergone one complete

cyele. The real part of 6r-, also reduces to (61), provided

(note , ft Yr-.-(x-dy)t l

t,lt = -le - +
which is just " ro...il ," *"1*osite *"nn"t .o f ,, . so the

(61)

162',)

(63)



(2,2) and the (2,-2) small amplitude oscillations of a sphere (54),

describe rotational motion of an ellipsoid. In lab coordinates this

motion can be regarded equally as either a finite amplitude

traverling hrave on the surface of a sphere, or the rotation of an

ellipsoid of fixed shape.

To calculate the rotational energy, consider the case of an

ellipsoid of revolution symmetric about the x axis (eqn (56) with

b=c) and rotating about the z axis. writing tt(t') for the number

density in the body fixed frame ( mSdf'nG,) of.f6r/tArttre total

fluid mass), we can show by changing to ryrindricar coordinates,

of inertia is

(o'* b') M
5

can also be evaluated :

BII. 24.

(6A',)

be evaluated

is easily

(os1

(66)

(621

t S ds'",[s') x'' = + , ksdr'r(s) Y'' -- +
The rotational energy is a constant of motion and. so it can

when the body fixed frame coincides with the lab frame (this

checked by using (60) ) :

E = g1 5ilr'n(r,) (gOct,tf

= H."t*"S.)" S Ot'r(.r1 (r''*v'')

1 (^>1
= -2' eirrot

where Ji.*t is the moment of inertia for irrotational flow :

I = I(q'-b')'A'\dirrot 5 01+ ba

comparison with (66), the rigid body moment

J_,_ = rn [dr'rr(E/l ( x''.r y,t) =" a,J rJr 

-
angular momentum of the rotating ellipsoid

For

(68)

L = r^ I ar,n(.E,) [-,*, - r,*,]



= rn .^l 

€rr-t 
Sdr,n(r,) ( x,.- y,.)

= 7..(^>u irrot

Fron (64) and (68) it

This is satisfied, for example, by

c = co€-l*litrt'r{ / o = ooaotstn*t , b= bogJci^s1
So tj1e (2 ro) small anplitude oscillation of a sphere can also describe

BII. 25.

( 7r)

(727

; that

|1"-*
These results are the same for rigid body rotation except that,

g
Jirrot is replaced by the rigid body value (671 . So ttre irrotational

rotational- energy is smaller than the rigid body rotational energy by

Lamb ( [r] p LA7) also gives ttre solution for a vibrating,

stationary, elLipsoidal mass whose clranging form is always eJ-Iipsoida1.

If in (56) the lengths of ttre axes are ctranging at the rates ArLrA ,

Lamb finds the velocity potential

P = -i(t*^+*t^"Eo)
where Vrfl =O inpties 6/o + [/U *?, =Q.
Now, the real part of the velocity potential for the (LlM)

surface oscillation of the type (54) is (note, f,Yao ^' 2Z

R" frro N (lz^- xl-yn) corurt

which can be identified as (71) provided
t^ - = -2L = - lL-4.?oo

follows
taE=L=

4Qa/i"t
G)r (6e)

the factor

IJrr*
g ri!

- ( a'-bt \'- \;FF/
( 70)

-- (1,, o)

'-xt-y' )

,^-, COStot ,



large emplitude vibrational motion of an ellipsoid.

The remaining members of frr^ , #1, and #r-, , appear

to represent only small amplitude travelling lraves on the surface of a

spherical- system. From ttYr, 'r, Z(x+iy) we have

Q.Ar - (osot.zx -{- sinqrt.zy

BII.26.

( 73)

It is probable that certain members of 6u^ for L>l also represent

rotationar motion of a deformed shape, or large amplitude vibrations

of deformed shapes. These deformed shapes will have a surface described

.Vby Ia.^ (see (55) ) and so will be more complicated than the L = 2

elripsoid shapes, but their identification may be possible using group

theory. (Gustafso" Gr] , has considered approximate deviations from

an ellipsoidal equilibrium and find.s that for fixed voLune rotations,
F r^ . l4-/Qo remains vj-rtua1ly constant, where (4o is the quadrupole moment.)

To sum up - vJe have found ttrat of the five small amplitude surface

oscillations of a sphere, described by velocity potential fir"
(tq= -2,-lro, tr l) two of them fir, , 6r-, , represent the rotation

of an ellipsoid of fixed shape (which is also a finite amplitude

travelling wave on a sphere), and another one, il , can represent

the vibration of an ellipsoid (which is a standinq wave). The question

of whether the nuclear wavefunctions (491 describe suctr motions is

investigated in AII, with some success.

The discussions nunbered I) to 7) above have all been, at least

in part, evidence supporting the idea that tl:e quantum wavefunction

of the f"*, ;{(IJ) E represents a single excitation corresponding
J
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to the classical potential flow field with velocity potential

fitS) ^, $tf) . For the future r nore thar anorher excired

mode, with experimental results for liquid heliurn four, that may

also be described by this type of wavefunction, is a small amplitude

oscillation of a vortex line t""" [:] p 2o4) .
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PART C

PEYSICS OF' SURFACES

ABSTRASF

I investigate properties of surfaees. Section I presents a

theoretical d,escription of ttre tension, energy and thickness of a

classicar liquid-vapour interface. rn section rr t}te classical

results are extended to describe the surface of a quantum system,

namely superfluid heliun four. Problems occur for the quantrm

system if ttre correlations arising from the zero-point-nrotion

of the phonon modes are included in the ground state wavefunstion.

Finally, in section III I discuss generalized virial theorems

that give ttre ctrange in the free energy of a system undergoing

an infinitesj:nal deformation. For example, a particular

deformation gives the expression used in II, for ttre surface

tension of a plane quantum surface.

CONTENTS

I : Liquid-vapour interface of a classical fluid

II : The surface of a quantun fluid

III : Generalized viriaL theorems
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I. rrQUrD-vAPOUR INTERFACE OF A CLASSTCAL FLUrD :

A liquid-vapour transition zone has different properties to the

bulk phases arising from the variation of density through the zone.

In particular it is possible to associate with the transition zone a

surface enexgy and a surface tension. The presence of a positive

surface energy is easy to see by comparing an atom in ttre bulk liquid

with one at ttre surface of the liquid, since there must be a positive

addition to the energv of a surface atom due to the absence of the

negative potential energy of its missing neighbours. The presence of

a surface tension is not so simply understood, but it is easy to

detect experimentally, for example if one pulls a wire hoop from out

of a liquid surface an obvious tension (pu11) will be experienced.

From NewLon's law it can be shown t [f] p 291) , for a liquid-

vapour system in hydrostatic equilibrium, that the pressure normal to

the surface, Pr , is constant and the only pressure variation allowed

is that of the pressure tangential to ttre surface, P, . In fact P,

decreases enormously in the .interface region changing into a tension.

This is shown schematically in Fig. 1., where the magnitude of the

drop in pressure at the surfacer -P, , is of the order of lOe.P.

for an average example, like water away from its critical point. ( [tl l.

Fig. I.

(The variation of tangential pressure ttrrough the interface, from ffl
p 293)



So if we take any line in

force O' with which the

other side. This is one

is defined and is called

il'tat d has the units of

per unit area ( €r1 crn-l

cr.2.

the surface of unit length, there acts a

liquid on one side pulls ttre liquiil on the

of two ways in wtrich surface tension, T ,

the mechanical definition of d . Note

force per unit length ( dytf crn-r ) or energy

).

Let us now consid,er a flat liquid-vapour interface situated in

tlre xy plane, with the liquid occupying the volume ZAO . It should

be noted, that physically, in order to get a plane surfacer a

gravitational field is required, however it is known experimentally

that the earth's gravitational pressure gradients can be neglected

apart from temperatures extremely close to ttre critical point t [Zl

p 42L). So it can be assumed ttrat the only effect of gravity is to

cause the surface to be plane. For this geometry the mechanical

definition of surface tension, as t};e stress across a strip of unit

width normal to the interface, can be written as

r = f(o--?r(zDdz
-6

(1)

The integrand of the

interface (see Fig.

critical point has a

right hand side of (1) is non zero only in the

1.), which apart from temperatures near ttre

widttr of t]le order of A

For a curved surface in hydrostatic equilibrium there is always

an excess pressure on the concave side, given by Laplace's equation
F-l(see L:J p 23L1,

Ap (= q-p,) : u-(-h -t)
where R, and Rr are the principle radii of curwature at the

(2)

gr-ven

For apoint on the surface t \ is positive if drawn into medium 1).

sphere of radius R we see that ttre pressure inside is greater by

2q4 (3)
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The above can be summarised as -surface tension causes any interface

to appear stretched so that it always wishes to contract. From this

it follows that in the absence of a gravitational field the shape of

a self-botutd liquid. mass would be spherical , since tlris shape has ttre

Ieast surface area.

energy during the formation (at constant vohme) of a r:nit area of

surface (i.e. d is ttre free energy per urrit surface area). To see

the equivaLence of t.l.e two definitions for f consider a defornration

of a surface such that ttre ctrange in volume Ls zero, AY=0, whiLe

the area increases from A to A + dA. 'Then from ttre mechanical

definition of Cl- , ttre work done during the deforsration is
Idw = aeA v)

lihe second

definition z d

WritS,ng the

the entropy

dr

So fron (5)

definition of surface tension is the ttrermodynanric

is tbe isothe:crnal change in ttre Helmholtz free

total thermodlmarnic energy as E, the free energy as F, and

as S, we knor.l from t}ernpdlmamics that,

= d(E-rs)
= de -rds - Sdr

= -sdr +dw (s)

= -sdT + d-AA
we have the ttrermodynanuic definition

d = (rk)""
From (6) we can write

F = F"V + o-A

so that O- can be regarded. as a surface free energ:y. We can also

define a surface entropy

(6)

(7)
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tr!E\dr
dc
eT'

SrA =

(8)

)

A

Therefore, introducing € as the surface part of tJle total energy E

per unit surface area, we have using E = F + TS,

€ = r-Tdq (e)
dr

Ttrat is, the total surface energy per unit area € , and the surface free

energy per unit area fr , are related via the thermodynamic relation (9).

At this point it should be noted that when we define surface variables

Iike Sr, e u"d E , we are also defining the position of the surface.

To see tltis consider a plane interface and write t}te number density

profile n (z) as

?

n(z) = I tr * (n, -no) [ft=t z< D ro)

t h,, * ( n, -t") 5!tz1 z > D

With (10) we have located, ttre surface at z = D, but in doing so we have

placed a constraint on 6fta). This is because a plane surface quantity

V, per unit area, is defined as the d.ifference between the total

value of Q for the system defined by (10) and Qo* Q.n divided by the

surface area, where Q, ana Qo.re the bulk values of e when taking

tJI.e system to be two distinct bulk phases. So there must be the same

number of particles in the system defined by (10) as in the system

which, from (I0), can be written as

e
( a= 6{c=t = o,J

-oo

The surface location defined by (I0) and (11) is called the Gibb's

dividing surface of vanishing superficial density of matter, or

derinedby T-l =['n, z<D , fl., =tDJ rhisirnplies

^D- .oO

td-(nrz)-n) r \d=(rcz)-n.,) :e
-ao d

( 11)
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sonetimes just the eguimolecular dividing surface. For a plane

interface it is only for this particular definition of the surface

(v'fiictr is also the obvious one) , that surface quantities are uniquely

defined,, so that for example f can be identified. as the surface free

energ"y. If (11) is not satisfied then instead of (9) we have for a

plane interface, € = fr+'TSs *1,/ r w}:eref is the chemical

which is non zeropotential ana la is the surface excess matter,

unless (1I) holds (see reference 20 or [a] l.

In the rest of this section I discuss the results of a paper

supplied with this thesis [*l , which presents a theoretical

description of ttre tension, energy, and thickness of the surface of

a simple classical fluid. The phrase, simple classical fluid, means

a single component nonl>olar fluiil that is accurately described by

central p?irwise forces (e.9. the rarejas liquids, At, Kr, Xe, Ne,

as treI1 as liquid oxygen and nitrogen, but not water). That is, the

potential energy is assumed to be of the form

lr SsU = 2., 1 r.r,(G3) , qj : ltr -gil (12)
3<j

F'tReference [_4 J considers a two phase classica]- system of N atoms

inside a box, with a flat J-iquid-vapour interface parallel to the

xy plane. The system r+as kept finite to ensure mathematical rigor

and so contributions from the discontinuities at the walls had to be

identified and discard.ed. Now, an exact treatment of ttre properties

of the interface would require t\ro steps : (1) calculate the unigue

density profile determ:lned by the experimentally derived potential
rl
U , and (2) with this density profile calculate A and €

flfn [-AJ only the second step is carried out and specific results

are obtained from general expressions by choosing particular forms

for the density profiles. So t}re surface structure is approximated

by sinple physical density profiles and not explicitly calculated.
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This procedure does not cause serious difficulties for crassical

systems, but it should be noted for reference in section CII, where

the surface properties of a quantum fluid are investigated by

extending the classical theory. An important property of classicar

fluids is that the kinetic energy is isotropic. For an N particle

system the kinetic energy is tNT , i.e.tT n.r particle

irrespective of whether ttre particle is in the burk or at ttre

surface. Hence ttre surface properties of a classical fruid are

determined by the potential energlf alone.

The surface ener!ry ttreory "t kl is new, while microscopic

formulations of surface tension theory go back at reast forty years.

The first general treatment was due to Kirkwood and Buff ( [rl
reference l.) who used the mechanical definition of surface tension

to obtain eu1 expression for d in terms of the pair correration

function. Ttre same expression was later obtained from the thermo-

dynamic definition by Buff t [al reference 2) and Macletlan t lnl
reference 3). For the sake of completeness t-] includes a simple

derivation of Kirkwood and Buff's formura, before going on to evaluate

C and € for a sinple exponential density profile and for a

general density in ttre limit of large surface ttrickness. These

results are then used to obtain the surface thickness and to discuss

relations between exponents of critical povrer laws. There is another

tieory for f which leads to a general expression in terms of the

direct correlation function. In tJ.e final section "t kl this

expression is evaruated in the same way as was done for the Kirkwood

and Buff formula. The two theories should be equivalent, at least
ll

when lJ is of ttre form (LZ1 , and this is proved for ttre special case

of the low density limit. A full sutnmary of these results is given

at the beginning "t Fl . For the rest of ttris section the discussion

is in the manner of appendices to reference &l and is restricted to



ne$t or extended results.

1) Isothermal Deformations :

AS=

In sectio" Z "f ftl a general expression is derived for the

change (to lowest order) in tJle total thermodynamic energry of a

classical system undergoing a small isothermal deformation :

AE = (au) ++{<uX^u) -(uau)}
rrr"r. ( ) is the cl-assical expectation value,

(n) = !d...dN Adu/r
sd . d! {un

There are no kinetic energy terms in (I3) because total classical

kinetic energy i-Xf, is constant in isottrermal deformations.--r.
Hence AE = A< U> . rt was also shown * lrl
that the change in the free energy is, to lowest order in ttre

deformation, given by the first term on the right hand side of (13) :

AP = (lu>
So from (13), (f5)

cr. 7.

( 13)

(14)

(Is)

(15)

and the thermodynamic relation E = F + TS, we have

+ {(u)<Au)
The expression (I5) is an example of the generalised virial theorems

discussed in CIII. -" Gl a particular constant volrsne deformation

was used, together with (121 and (15), to derive the Kirkwood and

Buff expression for F from the ttrermodynamic definition of surface

tension. Now, with U of the form (12), the expression (16) for the

change in entropy involves four particle correlations through the

term (U AU) . For this reason the surface energy was not

calculated from (13), but instead was for:nd by extracting tlrat part

"r (U) (which involves only two particle correlations when U
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is given by (fZ) I that is proportional to the surface area.

r will nor^r show that (13) , (15) and (16) are the classical limit
of a generar statisticar mechanical resurt. The total energy of a

statistical mechanical system at temperature T is of the form

tr = Ze^P ? = {e'fr (17)T-- ' .r 
=;EFr-

rf we now differentiate E with respect to some paxameter L , Ert

constant temperature (i.e. perform an infinitesimal isothermal

deformation), we have

($F[=]G*]?, +F,,(*+)_

= Ft t**t t . *[qts(rr*F) -'ffiFl ]

By differentiating the statistical mechanical expression for

the free energy,

F = -T loo(Zd6zt)J\? - / '

=[(*FI] .+{ 
=(($FI} -(GI) ls

"rr"r" ( ) denotes the statisticar mechanical average and r have

introduced a special notation for the last term in (1g),

t.re*I?* = (EffiJ,) , to hishlisht rhe

connection wirh irs ctassicat varue <U(**)). we see that (r8)

is the generalised result corresponding to (13).

it follows that

/dr\ = tf r ct ll
ter /, [ \ eT' ),))

Ttris is the generarised form of the crassicar resurt (15).

(re )

(2o)



By comparing

can find a general

with (15) ) !

-t/ ds\' \?rL

(18) and (20) with

expression for the

therelationE=F+TSrwe

change in entropy (compare

ting the

cr. 9.

(2L)

(22)

(23)

This expression can also be proved directly by

r'lresult (see [-5J p 118)

S = -??rlqP,
and using the condition F?" = t

2) Fermi fr:nction density profiles z

rn section 4 of t-] the general e:rpressions for f and € ,

in the plane surface approximation ill = l\tZ,)n(.zr) 9(n./fr') t

were evaluated for a sinple exponential variation of the density. It

is the purpose of ttris note to point out that in a paper (supplied with

this thesis) on the tension and energy of the surface of superfluid

helium four ( fO] and CII), ttre expressions for f and € are also

given for the Fermi function density profile (surface is at z = o) :

'n(z) =hv+6r\u\d*,

15t=y

Note that since Jftat is odd about z = o the surface condition (11)

is satisfied for a].l 5 . The classical result for € wittr this density

profile, is just equation (271 
"r [el with 'llea replaced uv (nl-Io)'

and putting Q = O (i.e. ttre kinetic energy term is zero for the

classical case). The corresponding classical result for F is

equation (441 
"f &l , puttins b = o and replacing nf Uy (f1-nrr)a

(24)

=G):)
differentia
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For temperatures at which the density is slowly varying on the

microscopic scale, it was for:nd in E] from a Taylor expansion of the

density, that f and € acquire the limiting forms

q = A(nt-T\"\71,

€*= B(n-no)"I ,

where A and B are independent of l, ( I is a measure of the surface

width). Substituting ttre Fermi fr:nction density (24) into the

expressions for A and B given t" [nl , we find (cf. tal eqns 29 a 47)

A
T' = tE S?'r.'l(q n) 

*st',

( El eqn 84) (2s)

( El eqn e0) (26)

(27)

(28)

3) The physical significance of €* t

rt was noted t" &l that 9l *a €- are good approximations for

temperatures all the way from the eritical point to perhaps even the

triple point. To be precise, the exponential density expressions

for fr, and €oa1 r"r" very good at ).= d (d the hard core diameter,

I defined by eqn (71) of [a] ), ild the triple point value or \

was in the region ). = O.6 d t" [a] a simple physical

interpretation of €- was found, which I will now outline.

It is shown in section : of frl that for both the exponential

density profile and the Fermi function density profile, that the

limiting surface energy A€- can be written as

A€- = -*AN(k) Qe)

rfr"t" AN is the number of atoms in the interface ^na%1 is the bulk

BI = -lrrt $r-" 3(r fr),.tr)

energ'y density (for the classical case E is the energy of a bulk phase
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at density fr ). From (29) the physical meaning of €- i" obvious :

the positive surface energy €_ , is due to the loss of approximately

one half of the binding energ:y per atom for every atom in the surface

layer. Bor a quantum surface this explanation cannot be complete

because of ttre contributions to € fron the kinetic energy and from

the zero-point motion of the surface modes, but for a classicar

riquid the ross of binding enexg'y from atoms at the surface is the

entire physical reason for the presence of a surface energy. so it
is not surprising that €- is a good approximation for a crassicar

interface even near the triple point.

4) The surface thickness of simple classical fluids :

rn section 8 of El the exponentiar density expression for €oo

together with experimental data on triple point bulk energies, was

used to calculate the surface thickness of the rare-gas liquids Ar,

Kr and xe, at the tripre point. Because €-was a good approximation

for the total e:rpression € , it was sinply assurned that the triple

point energy was €+ = €- . Ho!,/ever for the corresponding quantum

calcuration given in fo] , the relatively worse approxi:nation of
F,ts'oo to E resulted in the development of a more accurate mettrod.

tl:e classicar calculations of section e or fal could be improved,L.l

the following manner.

t-] , that at the triple point,

So

in

Iet us assume, as in

3(rn) = J(gnj)
Then from equation 108 of

I. = -g"+3 (?l
where !!), is the

VJ

ana hosO so that ltta-flrr)t ^r ft'

[n] we have

| .€*
(<Btr)-

potential energy per unit volume of the bulk

( 30)



surface width parameter.

rdere calculated from (30)

result was Va = 0.6l

Then to get the accurate

ratio "t (%/e) 
+

using experirnental- data . The intercept

of the straighr line found from (30) wirh the curve Lg*/e)* is the

required varue of \ (see Fis. 4 of El l. since E-/r)* is stishtly

less than unity it is most likely from the result= "e fal that the

corrected value of tra for the rare-gas liquids would tie in the range

o.s 4, (\ta\ * o.6 The calculation outlined above wiIl be

the near future.carried out and published In

Another aspect of the quantum calculati"" i" El that is worth

using in ttre classical case, is the introduction of a precise

definition of surface width. t" E] the surface width was just

taken ro be about I Cnr- Tl") / tt'to) I which is ll, for the

exponential density profile. t" [9] it was found that the best

(most consistent) definition of surface width is the 10 - 90 thickness
t
t , which is distance j-n which lt(Z)-llo rises from 10* of

\Iiquid and A4 is the triple point value of the exponential density
r-lfn lal the surface widths of Ar, Kr and Xe

lt u \ .
by settins V/e)*= | . fhe average

with a ma:<imum deviation of less than 4 per

\value of A+ one would plot the calculated

, together with its value found from (30)

for 7<u\,$)*

cent (note, the rare-gas liquids can all be described by the same tlpe

of pair potential differing only in the strength and the core dianeter

d, and since the strengths scale with the triple point temperatures,

the surface widths should scale with d). From Fig. 4 of t-l we see
(r '\that the ratio E-/e)t is less than r:nity so that a more accurate

calculation will slightly lower the value ot trt . To estimate this

correction we could use the lor density pair correlation function

9 =f*fr , ro calculate the value" ortfu)t ana €* r"t 0/ol)
from zero to about I (see Fig. I of fel l. Despite the approximate g

it could be expected that the rario Le-/G)4 would be quite accurate.

cr. L2.



hr,-rry) to 908 of (tr-n.,') . this gives for the exponentiaj-

and Fermi function profiles respectively,

(. = S.lL I / t" -- {.'39 t (31)

lrtrese widths are the same when )l/T = /.3 6 5 , which compares

well with result obtained by equating the expressions for €- for

the two profiles, namery \/t = 4/S . so rakins tr s O.6J rrom

tal , we have that ttre Lo - 90 surface width for the rare-gas liquicls

at the triple point is

t !{ l.?d .,z)'t
i.e. The surface width is about two core diameters.

In section 7 of El we concluded that the critical power laws

should hold over the same temperature range as the limiting forms

q" and C* were good approximations, which seemed to be aII the

way from the critical point to the triple point. In particular the

power J-aw

| = tr*?t I-TT-I

cr. 13.

(33)

should hotd from ?= O to ? = I . rn reference 8 of ttl the

expression (33) was found to hoLd far from the critical region

with ! = 0.65, while in reference 20 "t Fl the experimental results

for the critical region yielileil { = 0.64 ! .03. So the calculation

(32) together with (33), gives (at least approximately) values for

the surface ttrickness of ttre rare-gas liquids at any temperature

between the triple and critical points.

5) f and,€ tor curved surfaces :

The calculations of ['al refer to a plane interface, or to aEJ

curved surface in the limit of large radius of curvature. A question



ttrat is important for the study of small droplets is, does a curved

interface have different er<pressions for di ana € a In section AI

I found, that there was no curvature correction term for the surface

energy (at least for an e:<ponential density profile) when the

equimolecular dividing surface (i.e. the spherical equivalent of (1I))

is chosen to be the location of the interface. That is, for this

definition of the surface the expression for € was the same for bottr

a droplet and a plane interface.

Ho$rever, the surface tension of small d,roplets has not been

defined with respect to ttre equimolecular dividing surface, but instead

a dividing surface called the "surface of tension" is introduced (see

reference 2o of Bl ""a [z] l. r'or spherical surfaces this surface

location is smaller than ttre equimolecular surface radius and is

introduced so that the work of formation of a spherical droplet is

given by W =[I1 gLtr where R is the radius of t]re "surface of

tension". tsee [Z] page 349) . This should be compared with (4)

and the plane surface d.iscussion following equation (9). Denoting

rV? as the surface tension of a plane interface it is found that the

surface tension of a droplet with respect to the "surface of tension",

is of the form (see reference 20 of [*] l,

f= q + (k)r(c,*cr) + "'|

where C1+ C1 is the mean curvarure -rd (C/S)p is

thermodynanic parameter related to the asymmetry of

about the "surface of tension" radius. To a first
r'lis, 17 Il-J

% s t-?
where Zo is the difference between the two dividing surfaces. It is

important to note that the density profile should be "centred" on the

equimolecular dividing surface, or the number of particles in the

an additional

the density profile

approximation (34)

cr. L4.

( 34)

(3s)



cr. 15.

in the system will change as the surface width parameter is varied

(see AI) .
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II. THE SURFACE OF A QUANTUM FLUID.

For a classical system with a surface the presence of a positive

surface energy is due entirely to the fact, that because at atom at

the surface has missing neighbours it e:rperiences less negative

potential energy. However, for a quantum system there are two other

factors that influence the surface energy, Gl : (i) a surface atom

is in a region of lower density than a bulk atom, which means a

smoother variation of the wavefunction and so the kinetic energly is

reduced, i.e. there is a negative kinetic energy contribution to the

surface energiy of a quantum fluid. (ii) There is a positive addition

to the surface energy arising from the quantum surface excitations

(see also the discussion following equation BII (37) ) .

ar3
The two best known examples of a quantum liquid are, Iiquid FIC

(which is a E'ermi liquid for temperatures above g tdffl and super-
b

fluid liluiJ tli (which is a bose liquid). Liquid helium is remarkable

in that it remains a liquid for all temperatures down to absolute zeto,

provided the pressure is less tJ:an about 25 atmospheres. Below ttre
\ - ..||A point ( l.f? K ) fiquid HC transforms into the spectacular

superfruid phase, while riquia H3 undergoes a sirnilar transition at

very J.ow temperatures in the region of ,dr K . Most of this section
,tbapplies specifically to the bose quantum liquid, superfluid Fle

A guantum fluid at absolute zero has some simplifying properties that

a classical liquid cannot have. For exanrple it is a single phase

(i.e. TIO= O ), and the surface tension ( C ) and ttre surface

per unit area (€,), are i-dentical (see CI (9)). AIso a system

, ,/bo is in its ground. state, which rnakes Fl€ tJle sinplest quantum

to understand theoretically. Note that even though a liquid

O is in its ground state there is still a contrjbution to the

energy arising from surface excitations, nanely the zero-point

energy

^!m-4L I -

liquid

atT=

surface
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energy of the surface modes, Dl . For temperatures slightly greater
tl9ttran absolute zero it is found in ttre case of superfluid HC , that

the majority of the temperature variation ot A comes from the

surface modes (see discussion following BII (37)).

In a paper ttrat is reprinted at the end of this tftesis fZl , the

classical calcurations of cr (i.e. La] , are extended to describe the

tension enexgl!' and thickness of the surface of fiquia Hf. The results
t2 -lof IZJ are based on the concept ttrat ttre wavefunction

il

I ftt:') (r)

rrlt
describes the ground state of a droplet of tiquid He . Argunents

supporting ttris idea are given in section one "f [r] . This wavefunction

is known to give a good description of the ground state of bulk liquid
(i.e. an infinite system) and variational forms for f(r) have been

calculated by minimising the total energy. The expressions for A

and € are evaluated by choosing particular f(r) determined from the

infinite system. so the carcurationr or fzl are an attempt to find

f and € directly from the gror:nd state of a droplet and are not

variational calculations, since f is deterrn'j.ned by rnininising the total

energy' which is dominated by the bulk energy for macroscopic droplets.

Another way of stating this concept is - a finite number or riquia Hth

atoms at r = o will form a dropret with a surface energy tllat is just

a consequence of the finiteness of the system, and hence € is

determined by the ground state alone. fn previous calculations of the
.r?

surface energiy of liquid Flt ttre gror.nd state has been approximated by

lf, ft',l\[ strrr

instead of (1), wher. SG) is treated as a variational parameter. Thus

the results of L2] are a zeroth order approach, but are important for

this fact alone, since the simplest problem highlights the important

(2)
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physics. A subtle point tJ:at is worth mentioning for reference later on,

is that a self-bound droplet is translationally invariant and while the

simplest wavefunction (1) is translationally invariant, ttre variational

wavefunction (2) is not. However, by introducing a particular singlet

density rntf) , the calculatiorrr or fzl have effectively broken the

translational invariance. An exact calculation of the surface energlt

of a droplet would first require the determination of the unigue density

profile from ttre exact gror:nd state (note that ttris density profile

must be translationally invariant). I,Iost of the expressions for C

and € that are derived in El , apply to a flat surface in direct
?-t

analog'y to ISJ . The assumption is made that ttre wavefunction (1) also

describes a droplet in the linit of its radius tending to infinity.

rf we write the assumed ground state wavefunction (f) in the form

0 = texp hgrq;) : .*p{+ Af pc"r,r} , (3)

tJlen the probability densit, Ot is seen to have a direct analogi"y wittr

t}.e classical probability density for N atoms interacting via pain^rise

central forces, namely

expl-+#ucrei)l
,,|}

Also, the potential energy of liquid Fle is well described by a

classical- two body potential

= TF ucrTj)

Because of this analogy the quantum e:q)ressions for A and €- of
fireference l3J , follow from the classical results of section CI, i.e.

r\
L3J . In order to obtain analytic results it was necessary to make

an approximation for the pair density, analogous to equation 34 "t lrl
namely

r\(5)?\(r,): (8")"Y1(E,rfe) = (4)
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The assumption that the pair correlation firnction g is a firnction of

only [-,1 , is not true at the surface. However without ttris approximation

analytic results would be virtually impossible. The derivation of the

expression for e (the surface part of the expectation value of the

Hamiltoni"",(H) ), is also given in section AI. The surface tension

f is evaluated from an e)<pression derived in section CIII, which

was first given by Toda (1955) and Brout arrd Nauenberg (1958), (see

r-1references in L2J ). Ihe difference between the quantr:n and classical

er<pressions for f and € is the addition of an extra kinetic energJy

term. The results of f3l can be used because the kinetic energiy

term is of the same form as Lhe potential energy term, with integrands

involving I (r) instead. of U (r) . The two main effects of the kinetic

energy term are , (i) it is a negative contribution to C ana e

(ii) it makes the slowly varying density limiting forms , qo *d €p ,

less accurate than the classical results. Because of (ii) the surface

thickness was calculated by a more accurate extension of the mettrod

FA
used in L3J, as described in note 4 of section CI.

To illustrate the nature of general formulae derived t" L4 , the

expressions for f and € at T = O were evaluated by choosing

particular forms for the wavefunction i.e. Q (F), ttre density profile

Tt(Z) , and by using the simplest pair correlation firnction,

s(r) = eq)p(r). As in [tl , the exponential density profile was used

for numerical results, although e><pressions were also given for the

Fenni function profile. Numerical results are very sensitive to the

choice of pair correlation fi:nction, as explained in section Z of ll
The choice 9=e/ , which is exact in the low density limit but poor

.,

for liquid HgF, happened to give good results because of cancelling

errors. The fi:nction Q was chosen from variational calculations for

the infinite system (i.e. without a surface), wittr the possibility of
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including a non variational factor arising out of the ZGlro-point-motion

of the bulk phonon modes.

(a) Excluding the phonon factor : The optimum @ among the class

-q(k)", tried by McMiltan (te6s), (referenced in [zl l, i"

fiLrl = -2 (+)
where d is the hard core diameter of the Lennard-fones potential.

Note that @ (r) decays rapidly at large !{ith t}ris choice for the

wavefunction very good results were obtained : The expressions for

T and € were calculated as a func:'l.:on ot^/d , for the exponential

density profile. Itre surface thickness was found by the method outlined

in note 4 of section CI, yietding a 10 - 90 thickness of 3'?A

This method is more accurate than the values for f and € since

the only variable that has to be calculated is the ratio ea/G ,

which should. be relatively insensitive to the approximate nature of

the pair correlation function. From equation 9 of section CI we know

tfrat f= € at r = o. From the curves of F ana € versus \ta

this yielded a lo - 90 thickness "f 3'04 , in good agreement witlr

the accurate method.

(b) Including the phonon factor : In section 5 of El the

consequences of including the zero-point-motion of ttre phonon modes

is discussed. Reatto and Chest.r El , show that these modes imply

an additional term to (5) , (i.e. an extra factor in the wavefunction),

that for large l'tends to

-E
r1Fr= , b = (96*)*

(s)

(6)

soatlarse r(rlroA) , $+ 0, ,

slowly with l- . However, the inclusion of

term in the energry of a droplet of radius R,

= 1.64 {or lilr.id l'lcF

which unlike (5) decays

fr, red to a - Rtloy R

inplying a logarithnuic
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divergence of A and € . Reatto and Chester vrere also able to extend

the result (6) to non zero temperatures,

/ ---\ J , t1
l7\ {r TF*2,') dr(rlr) =-+ ffi (7)

At T ) O {.au"ea by 1og T divergence of (f and € . rn borhtP

cases, for large enough R or small enough T, the surface energy becomes

negative, which is spurious since a droplet or a flat surface would

disintegrate if the surface energv was negative. hrt even worse than

tltis, the phonon t.r S led to strange results for the bulk part of

the liquid. Firstly at T = O, the long range part of the phonon

factor raised the burk energ'y which means that from a variational

viewtrroint it should be left out (note that a short ranged contribution

could change this). AIT>O the phonon factor implied the existence

of a completely unstable temperature region, during part of which €

was positive, where the totar specific heat would be negative.

i.e. Ttre phonon factor led to a negative bulk specific heat.

The above problems imptied two alternative conclusions :

(i) the phonon facrcr fr, is spurious, or (ii) the wavefunction

[l,tt 
is too simple to describe a droplet. These two

possibirities are investigated in section 5 of [4 , but it was

not possible to decide which one is correct. The rest of this section

is devoted to filling in the detail about these two alternatives that

is not given in the paper.

1) The zero-point-motion of the phonon modes :

Since the phonon factor caused so many problems, not only with

the surface properties, but also in the bulk region, it is worttr

investigating whether or not it really exists. To begin w"ith r wilr
give a ful} derivation of the results that lead to equation (G),
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nr fir. The derivation holds for any system r*hose Hamiltonian

be written in the form

H = H'*l-1.r! "ch '
tl

where l-lrh is the harmonic contribution from the long wavelength phonon

modes (phonons, i.e. quantised soundwaves, are discussed in note 3 of

section BII). So the basic assumption is that the long wavelength

phonon modes propogate independently of one another and any other

modes. This assumption is supported by strong evj-dence in the case

U-+ r'lof liquid f-l€ at low temperatures (see lal p 90), but it may also be

valid for many other systems both bose and Fermi. Frorn (8) it follows

that the ground state wavefunction is of the form

(8)

A = Q'0*
+,

where 0' *u 0r* ur" the ground states of H' "rra Hph respectivety.

The approximate wavefunction that gave the good results in reference [rl ,

i... !D siven by (3) and (5), assumed 06= | , (i.e. Flgl= O ).
llTo derive Flgf we note that because it is ttre contribution from long

wavelength modes \ire can ignore the structure on ttre atomic leveL.

That is, we can apply a continuum approximation to the fluid. (See

r-l
L5J p 56, and reference 5 of BII.) fn the continuum approximation

we have

Hr,, = Sal lYfv' + €cp)] (Io)

where 
f ," the local mass density, lf the local velocity, and e(F)

the potential energy density. For longitudinal density oscillations

(i.e. sound waves) the potential energy is a fr":nction of p alone.I
Assuming that ttre external pressure of the system is zero we have

/\r \

YTf )"= O, where the subscript zero refers to the mean value.

Then in the smal1 amplitude limit, i.e. considering only those states

with a slight deviation from the mean density P , we can approximatels
(10) by

(e)
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( 11)

ol

Hp* = i s&tn "' 
+ (r-nf(F,ll

From the expression for ttre speed of sound e, Cr = ( *)
where p is the toral pressure -G)' , ;. ;"rr"'=, "";'il? Af).=
that (see also &l t 250 and note that the derivatives are at constan

entropy, since a sound wave is adiabatic)

C, A/y€\
= ['o t Tal"

Therefore hre can write equation (U) as

H$s S5dt[r"u2+e(n-n.l'] ,

where 
f, = f1.m , m the atomic mass. The e>rpression (L2) is a

classical Hamiltonian describing smalt amplitude, Iong wavelength

sound waves. So we need to quantise the Hamiltonian, i.e. to go from

crassical sor:nd waves to phonon modes. consider a system of N atoms

in a volume V, then to quantise the motion one introd.uces the

collective (no:rrraf) coordinate ll;, defined as the Fourier component

of the number density Tl(E) ,

(L2)

trq = Sat e'h'rn6) , h(r) =h.5& e'r'"n, (r3)

From the quantun mechanical density er<pression, n(t) = f f(f-q) ,

the left hand side of (f3) becomes
rl ..

'Ylh = E g'E'!; , (L4l

and using n"trlut" *ll"u"o conditions to change the integral over !
to a surn over the discrete levels, the right hand, side of (I3) is

'yl(r) =l:ddb'tTl-v t 
: llb (1s)

Vlriting h -fhf , we have frorn (14) and (f5) that

'Ylo = + t{.nrr)

t n.=o



where the second tine follows because for discrete h ,

*ld'.;h.r =l ={' h=o
V r_ t,o 

[o hieo

Therefore we see that

S&(n-ro)' = # Sdt E t d'(h'+h-''t nrr',,,
(hla) (W)d (r7)

= .l- E nrn-h
V t.tor = -s

To evaluate the first ter:n of (L2) , we note ttrat the classical sor:nd

wave has a verocity potentiat (U=!d) , p ^, gtb'f , (see Brr)

and so $re can introduce the collective coorainate /6 , in ttre same

manner as llg , i.e.

/tr) = +tn;b'r4, 0\.= S&eib'rprr) (18)

Thus

U(I) = V 6F)

= + ? d'b'(-ib/r)
and,, using (16)

crr. 9.

(re)

(16)

=L:k'd d,- V E '|\ rh )n-h (20)

I
To get Pp i" terms of -f\5 , we use the continuity equation for small

amp ri tude 
-di" 

aorb urr."",
. 

^ t t \, \

1A *Tlov'/ =e ,('='4+) ,ru

i - --"b.trBy integrating both sides of (21) over (lF e , we can rewrite

the continuity equation as



(22)
a

1n
'h

rl tkx"Fr = O

crr. 10.

(24)

From (20) and (22) it follows that

l 

- 

"j- > &t!& (23)

v u*' lf nl

H, - m
Ph IV + #. 

nn\rlrt
rt"r t

=f,il-tt''nl

U"
h'"ni

1

+ "tnrn! l ,

where I have put ilh = V{An , and used the assumed classical

dispersion relation Wn= C h, .
(
f aside: A subtle point that has been suppressed is the question of

the time dependence of Yltr . If we use the second line of (24) we
.4

can take the complex form th - e-d*rt and then Hpl t" independ.ent

of time. In the classical case it is necessary to take

# ,- Re e d(E'r -..t) . since in = - itl..ilg
we see that the two terms of (24') are equal, which corresponds to the

well known classical result that the potential enexgy density and the

kinetic energy density of a sound wave are idential, ( &l p 250). ]

large

taken

The Hamiltonian (241 is a set of harmonic oscillators, so

immediately write dovrn ttre ground state wavefunction of Htt ,

Q,* = exPf"A,H nrrf, Gt\h.)]

where Gthrh.) is introduced to cutoff ttre sum over h for

values of k, at some wavevector h. {at. limit h.* oo can be

\de can

AS

S{t *t' =

So the normal mode Hamiltonian for phonons has been shown to be,

frorn (12) , (L7l and (23)

1zS)



Iater). { asia", The one-dimensional harmonic oscill-ator Hamil-tonian,

H = 
'- 

S* *" <{u!,.fxa , (i.e. /e*fo" + r^r'xt]l ) ,

has the ground state lP = g-**t, where al. = ms/tt 
,

i.e.Htp =(J^*t^)y =+V ]
From (25) and (14) we obtain

O, = exp[-*+; f qs,G/k,r..) edb'sJ
J Q6l-?hrL-it(h>o)

Reatto and Chest.r [*] , make the approximation that by letting the

volume tend to infinity, the discrete sr:m over k can be written as

an integral from zero to infinity. trtren taking G(h,h.) = dl^t"r.u

writingr

crr. 11.

(28)

S , = lI a*pl dr(r,,) , (271*Ph ki ' '
they calculate

dntr) = -+T*.,rhe'h/h. edb's

P -(tr.),rS'5u #'eih'E
-0Et'

= _ rnc I 
S en df,A. Sinhr

lTtnok r o

= -?nc I

Tr='r"t m
For large r we have

fi, -, - t , {u=Cefo)" 
.: i;l"ll:"' (zs,

So we have derived eqtntion (6), for the contribution to the ground

state wavefunction of liquid HC,* fro* the correlations due to the



zero-point*otion of ttre long wavelength phonon modes. provided

equation (8) holds (and hence (9)), any system which has long wave-

length phonon excitations should have a factor in ttre gror:nd state

of the form (27) and (29) . Furthermore, it atrrpears that the above

results are Part of a general quantum principle : ttrat the ground state

of a system is composed (at least partry) of ttre zero-point-motion

contributions of all its excited states (see also note 4 of BII).

In note 3 of section BII, I introduced the structure factol S(k)

and the pair correlation function g(r) for phonon excitations, in the

infinitesystematT=O:

S(h) = | r- r. S ds u:;h't I l(.) -;]

$(r)-t = + fTohsi,.hr Lttol-il (3r)ItTalor 'o-

CII. L2.

(30 )

(32 )

(33)

The expectation value of the energy of a single phonon was,

and so the assumption that €(h) + tc h in the rinir of sna[ k

(i.e. assuming the classical dispersion relation to hold in ttre long

wavelengith linit), implied

rntegrating the right hand side of (31) by parts and using (33), gives

an expression for the long range part of g (r) r

[1c.]-,1 -+ -r--"* h i
That is, the presence of phonon modes impries that ttre long range part

of the ground. state pair correlation furction is given by (34). when

hk_
Jmc

5(h) -+

(34)



the sround, state wavefunction is of the form [, "" 7 Yt lLfi) rhere

are approximate formulae qiving 0(r) as a firnctional in g(r) and S(k).

To the lowest order of density it follows from the definition of g that,
. F1(cf. eqn 33 of L3 I )

Q (r) € ex p /r.)J

If we write the exact expression for

loq Q(r) =, dt.) +JJ

tfren U is given

Percus-Yevick (PY)

y(r)

, i.e. 1"3: : 6

uniform liquiil Hf ""
Ycr)

imately by the hlpernetted chain (HNC) and

lae (see eqns 69, 70 of frl l,

crr. 13.

( 37)

(3e)

( 3s)

(35)

P(rt ( H r.rc1

log [r + ?tr)] ( py)

approx

formu

t
=1

L
where

( 38)

Inserting

P tr)

From (36),

yield the

(33) into (38) and integrating by parts yields

2firt1o ?nc I-h

Since the proof of (34) relies only on the obvious assumption that the

energy of a phonon tends to fiek, in the limit of small k, it is much

less likely to be incorrect than the proof of (29) for the long rangre

part of p. Thus unless the HNC or PY approximations are incorrect,

the zero-point*rotion correl.ations of the phonon modes almost certainly

imply tnat lT€X?+h{tt)is a factor of the sround state of the infinite
r<j

=mcl-T-^n.h Pr

(37) and (39) r^re see that both the HNC and PY approximations

result (34) for the long range part of g(r), provided

Pt.) + -/*=. .\ I rJ..- tio'"r)F = e? ize)

system.
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ch, then (28)

f cr)

It is worttr speculating on the possibility ttrat ttre HNC and PY

approximations are incorrect, at least in as much as the first term

of (39) may be spurious. Both formulae are derived from an incomplete

summation of diagrams in a perturbation analysis. Thus it is possible

that the partial surunations may be invalid and that if the series t{as

summed completely, ttrat the first term of (39) would disappear. Iltris

could be analogous to suggesting that either the approxi-mation (8) or
ll(l1) for Fljh is invalid and that if the anharmonic terms, or the

harmonic terms of higher order in the density variation were introduced

ttren a d.ifferent result to eguation (291 would be for:nd. Note that if

in equati-on (24) ror Hgh we repraced LJ5 by f WS($ instead ot

wourd become (for 6(h,h.) = I ) ,

l^*= - r+\, [anh[sinne4,)
This is very similar to the IINC and PY result (38) tor P(f) . In a

paper by Bogoliubov and Zubarev [t] , the ground state of a system of

interacting bosons is calculated as a series of terms of increasing

order in accuracy. The zeroth approximation yields a ground state

that includes the factor 09f si.r.n by equation (26) with G(qn.1=1
(see eqns 3.12 anil 4.6 of Fl ""u sr:bstitute E(h) = h.h ,

tn= Nht*a , t h= ch ). This is another derivation of the

result (2g) , nr f, to the zeroth order of accuracy. !trrat is

required is a proof ttrat the sum of ttre contributions from all the

higher order terms does not cancel the zeroth order term (251.

The above derivation of fi, was restricted to T = O, i.e. (6).

the T )O result (7), was derived by Reatto and Chester from an

evaluation of the density matrix ( L*l p 9I). The diagonal part of

the phonon factor in the density matrix was shown to have the forn

of a product waverunction Tl. e*gk #trf) wirh drtr;f) eiven

by (7). TLre non diagonal part represents phonon-phonon interactions



which are assumed to be negligible, i.e. the temperature must be low

enough so that the phonons can be regarded as non-interacting. I will

now give another proof of Reatto and Chester's result, using the

HNC/PY formulae (36) - (38) and the finite temperature structure

factor. In the small k region the structure factor for liquid Ha+ ,

rorT)O, is, t lrl pt2o3)

S(n,r) = !L co*h /I+) (40)
lmc \1T /

since Coth Z -+ l/= as z { o we have

r.S(o,r) = k, = TJ
.\,,

vrtrere,,\, is the adiabatic compressibility. It can be shown that as

T+ O , X, .+ I, , the isothermal compressibility, so tJlat

(41) reduces to the result of eguation (d) of appendix AI (1). Also,

since COthZ.+las 2,+6 , we recover (33) in t]le limit T = o :

S(h,o) = I'!= (33)' lrnc
Because 6{Vl) is exponentially damped for f Z h1Arf

(= S.ZgA of fK ,forriquid Hi ),seeequation (71 ,

we cannot use the same method to evaluate PCtf) that led to (39) .

This is because integrating by parts wiII only lead to terms decaying

slower than [--oo , i.e. if we insert (40) into (38) and integrate

by parts we will find every term to be zero. So we need to integrate

(38) explicitly with s (k) replaced by S(h;f) . Now in ttre small k

limit

crr. 15.

(4r)

h [s(h,r) - il'
To get the asymptotic form of fttf) (i.e. large r) , we can use

(42) in (38), since for large r the presence or Sinhf in the integrand

means that only the smalf k part will contribute. Inserting (421

into (38) r,ue have



-- 
09

e-ft f {ry
t\Eo

long range part or P(t; r)
fic

vt.
e =.IT (43)

crl. 16.

(441

(4s)

(44)

p(qr)-*(ffi)
We can evaluate the integral

To calculate ,J we integrate over

whictr has simple poles

at cocl.Yh =O , i.e.

Vh = (n+/a)n;, n= 9r,1,...

The residue at $ + trr)Tl. d is

Tri
Y

lTi
U

From (43) - (45), we have for the

?(qr) -* (-t'tc. . \ !
\Tr'noh / r^

Equations (36), (37) and (461 , give the result (7) for /r(tff) .

rn section s "r 
pl , rhe inclusion "e /r(r;f) red to a nesative

bulk specific heat for a droplet with the ground state wavefunction

l[ e r? b/tn;) . For ttre uniform (inrinite) system the

Fig. 1.

| --ftf -TtTl'f-ye =ze ?

sinh("%.)

+ fi-sinhrto^hYh
as follows :

the contour of

Fig. 1.

f = lirsrnhr tqn h Yh

= *r*{Ij,eii"+"^r.,n l

= Lr-lr]

Therefore



above results have shown that unless the HNC or PY equations are

incorrect, the factor I!. gXP lf #r(q) is almost certainly a
d(j '

real part of the ground state of Iiquid Fl"+ .

one possible solution to the problems of section 5 of F] , could

be that for a finite dronfet /, changes enough to remove ttre spurious

results. I wiIl investigate this possibility for a finite system at

T = o, where the inclusion of the infinite system h led to

negative divergences in f and g . one thing that is immediate

is that dCfl will no longer be infinite ranged since the system is

finite. AIso, because a finite system has a discrete set of states
?r

by )dl in the derivation of

f. eqn (28) ) . From (26) we have,

(k values), the replacement of F
Fp is at best €u.l approximation (c

(puttins G(h,h.)=l I

crr. 17.

(47)

where

00, -- [ t x?+ firt'al

dr.l = -fg\E e'bj,P \NT/ E K
, h=lbl (48)

(h>o)

For a finite system k has discrete values and so the exact solution

requires an explicit evaluation of the sum. Another important point

is that the derivation of (48) has assumed cr:bic symmetry and not

spherical slrmmetry. This is because the normal coordinate 11 1 was
H .r

taken to be i gib'St , which appries to cubic symnetry.

Taking ttre system to be a cube of length L and using periodic boundary

cond.itions, the discrete values of E = (h,.rhr, ht) are given by

k,,hr,h. a[{} / 1\=o,rt,tz, ] ,nn,
I

So for a finite cube we need to evaluate

dtr) = -/rylt Z t e'+-n. e'+.t €'{-n'
\Nh /ry_-lr- t:

t. ::, r,:i - " = ; (+ ) tr " "-i *q-
.fly-ty-?1.=o) \ h7V - 

(50)



crr.18.

I have been unable to calculate the triple sum involved in (50), but

it is possible to give a plausible guess as to what form it should take.

Firstly, at T = O the phonon correlations will extend over the entire

system, by analogy with the infinite ranged correlations present in

ttre infinite system. Also, the result of (50) fot fi, cannot be

completely spherically syrunetric because of the walls. However, it is

most likely that deep inside the system the expression (50) wiII tend

to the infinite system result (29).

As an aside it is worth pointing out that for the one dimensional

(1-p) system 6r"*t be found exactly, al.though of course it is

completely different to the three dimensional result. In l-D you

cannot evaluate (4e1 5t taking the infinite system limit because of
r-lthe R singularity, so the sum over k must be evaluated. explicitly.

If L is the length of the l-D system, we have from (4a1, using

periodic boundary conditions,

(r) ei{ttt
Irl

d, s\.
'/

nc
NJ

lt,
\T

(i

Jrr( \

-l.r

.Nr/ :

/2mc '
\Tffi

+ao

r:.
{la -oO
(ito;

s€

Ico
{l=l

L
lrr

r/ .

cos (r{: n)

, (see [tl I (s1)

This result is given by Reatto and Chester ( F] p 96). They note

that lf attt 6r(qr) where /, i" siven by (sl), is rrre

exact ground state of a r-D system of point impenetrabre bosons. For

this particular system @r/nnrt ) = l.

We have already seen tJrat the J.ong range part of il^G) is.Q

dete::mined by the small k values. So ttre major difference between a

finite system fi, and the infinite system f, should be accounted

= (#k) 
'.:['sing]



crr. 19.

by repJ-acinS *re f by Sdh , but integraring up from rhe rnininum

k value instead of-".to. For comparison with section 5 "t [rl ] will

consider a droplet of radius R, writing the minimum value of k as

h*;. (by analogy with (49) we could guess hnin = n/p. ) . Then

instead of (28) we now have

€O

0^ty = -ftc,\.t- Jroe-ha.sinhr- ?'. ' \u^nfi) r hr,i^

= -("+fu)t J*[ 
I.1-.h(tr-^''J

= (ffi),9*fco,h*r*+t]
taking h. -+ oo and choosing = Ltt/g , we see that the long

range part of 6p is

/ cr) -) - E. (os(+r) , B = (;q;-*) (s3)

This result should be compared with (2g). For f/g << I (S:l

reduces to the infinite system value (29). The conclusion is that

the only difference between a finite system and an infinite system, for

(s2)

the contribution to the grorrnd state wavefr:nction from the zero-point-

motion of the phonon modes, occurs for interparticle separations of

the order of the size of the system. To get the corresponding result

to equation 55 "t kJ , for the direct contribution to the energv

arising out of the zero-point-motion correlations, we reguire

AE = 
+.o.n") 

R'5$[ -*m . iL'.),]#t"*e-r)

since h.;,,. i= *"o. fr , it rorrows ror R)>O (c roA) , that

(s4)



Cosh*.,^l-

r

where c is a constant of order r:nity depending on the varue of ha,^

From (55) we see that the "surface energy" at r = o still contains the

divergent term, since

AE ,Y r (hcvr.)*"{ 
* - + c.{t)}

energry" diverges nus infinity as

(+)

1A

3 [a"NJ
-lq

crr. 20.

(ss)

( s6)

(s7)

{{i
surface

hcn.
{"Tf

l":

rc'frr,
atT=O.

So

of

€ = - hc1\o
blr

R-l oo the ,,

coghr;F
r +1

3
.]

to miand as

before, namely

e-t
the more accurate result (53)

the diverqence of 6" ana €

does not solve ttre problem

To sum up - the problems caused by ttre inclusion of the infinite
I

system Pp when carculating ttre surface properties of a droplet, wirl

almost certainry not disappear if the exact finite "v"t.^ /, was used.

lrhe d,erivation of fiQ (egns (6) and (7)), did not seem to contain any

hidden errors or l^rrong assumptions. However, if ttre HNC or PY formulae

were incorrect then this might change. For example, if the calculation

was done to all orders it might just be that the zeroth terrrrr, /O , is
cancelled by part of the sum of all the higher order terms. The most

serious problem caused by the inclusion of ttre long range phonon factor,

in section 5 of [r] , is that it gives a negative contribution to the

bulk specifj-c heat that wourd dominate at lor"r temperatures ( TA f dr k
for a droplet of milrimetre size). This problem must arso be present

for the infinite system when the wavefunction is taken to be of the

rorm f, "*p !6 /crq; From section 5 "t [4 we see that the
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inclusion of the term (7) in the ground state wavefunction implies a
--3negative I dependence of the specific heat that doninates the normal

positive T3 a.t* due to thermal excitation of phonons, for T: t K

This result must be spurious, since a region of negative specific heat

is unstable and could never be obtained in nature. It should be pointed

out however, that the proof of this negative specific heat relies on an

approximation ttrat may be invalid. Namely, the contribution to the bulk

energy per atom from the long range correlations of the phonon modes

at T>o , is assumed to be

tr,/YN (s8)H# 5T.. ^v'dp , (q ^' roA)

(7). That is, the T>O expression for fr?

is inserted into the T = O e:<trrectation value of the energy. To be

completely correct the statistical mechanical expectation value should

be used (see BII (17) ) . Ho\dever there is a good physical reason for

believing ttrat this approximation is not important for calculating the

contribution from the zero-point-motion of the phonons, as distinct

from the normal statistical term due to ttre thermal excitation of

phonons. The argument is given in section 5 of E] and is as follows :

wner. f, is given by

rhe rerm htrt = -LnJ'6' tends to t?- i. at

T = o and hence can be regarded as an effective repulsive l--h irrt"t-

action. From (7) we see that at T >O h(r) is exponentially danped,

i.e. it is a repulsive l-ts ina.raction which is screened tfiermally.

Because the higher the temperature the greater ttre screening, the

energy due to the long range phonon correlations decreases with

temperature, i.e. the specific heat is negaLive. This argument also

suggests a possible flaw in the reasoning of section 5 of tl . Namely,

a short ranged cont::ibution to d^ttf f) would include an effective'r
attractive interaction (eg. (28) for f I '/h, ). Thus it is

possible that the temperature variation due to the short range part



"t 6, might cancel the negative specific heat coming from the long

range part. Ho\,eever, it is very difficult to see how the short ranged

correlations could remove the divergencies in f and € (in this

connection it night pay to be beware of ttre approxi:nation (4) for the

pair density).

rf the phonon factor T[eXP7fdetq.) i" a true part of ttre
dti. .t

exact gror:nd state of liquid Hd (or perhaps any system) r then it

would imply ttrat the wavefunction 
I fCCr) is too simple to describe

the ground state of a droplet. This may also apply to the infinite

system at T)O , as discussed above. Ttris brings us to the

question of whether a better ground state wavefr:nction will remove

the problems associated with the phonon factor.

2) Variational Wavefr:nctions :

in which case the density profile is optimised. The inclusion of arr

extra variational paramet.r ((f) , will lorrer the total energy and so

will probabl-y give a better description of the surface, but it is hard

to see how it could remove divergences in A and € . Chang and

F-l
Cohen L10J , who first suggested the method based on (59) and (60) r

It was shown in section 5 of Fl that by using tJle variational

wavefunction

V = J| exp+ 6tt,)1fr xp\ttrr)
that the problems associated with ttre phonon factor are either removed,

or are shifted to a term involving only the density profile. The

t.firnction t(S) can either be optimised variationally, or it can be

eliminated by means of the /uon equation

! rr(r,) = rr(E) y,t(r,) + 5A: n(r,s) V, /rr")

crr. 22.

(se)

, (601



state that a long range behaviour of g(r) (e,g. 6^ft) ) necessitates'f

a long range variation "f 
(G) into the butk, to avoid unphysical

behaviour of ttre density. The expectation value of the Hamiltonian

( € is the surface part of (H) ) for the wavefr:nction (59), is

<H\ = + Str &^n(r,E)[r,,rr^l - S^Y'ot'^tl
+1n
8n Sdr rtr) vA{cs)

crr.23.

(5r)

It is worth investigating two other attempts to cal-culate € ,

based on wavefunctions of the form (59), that were not as successful

as Chang and Cohenrs, to see where they went wrong :

?t(I) Bowley LIIJ , used the wavefunction (59) but did not use (60). He

assumed. rhat 'Yt(f) = 11o expt(S) , which is plausible

considering the definition of tlle number density,

.n(E) = NSd$ &"lVf
sdr. tr tvl.

This assumption reduces the last term in (61) to

#, S&nF) (vlo3n(sl)' , (63)

which turns out to be a small virtually irrelevant term, for physical

density profiles of riquid Ha+. so Bowley's assumption results in the

sErme ansvrer as obtained t" Lrl ror rhe ll. a^l tta$tfil wave-
r.0.

function, apart from the small positive definite term (63). Hence the

inclusion of 6o leads to a divergence of € , as before. Ttret1
parametrisation 11(5) = nVloeXgt(f) is bad because ir is

equivalent to igrnoring tJle second term of (60), and it is shown in
. |..l \,section 5 of l_2J that if the exact /rlon equation is used then not

only is (63) obtained, but also another term arises which cancels the

divergent part of the first term of (U) . rn fact, if the HNC and

PY equations are used, all the terms involving frg "*""I in the

(62l,



elq)ression for €
F'l(2) Lekner LtrJ , attempted to calculate € for a flat surface in the

xy plane, by using the wavefunction

= Jl-sc=r) 0 ,

.F
where p was taken to be the exact ground state of the

instead of approximarins it by f, "*p 
yrfiL\i)

assr:med that the surface energy was given by AE =

H g = F" 0 and E is the e:cpectation varue
r?rin the state V/ . He calculates

AE = H 5t h(z) l*=/or.,l"
substituting S = eVaf and integrating (65) by parts we see that AE

crr. 24.

(64)

infinite system,

as in (59). Lekner

?eE -Bo r wnere

of the Hamiltonian

(6s)

is just the last term in (61). The attempt to treat Se) as a variational

parameter failed because AE is minimised by taking S(Z)-+ | , since (55)

is positive definite. By comparing (61) anil (65) we see that the

problem with Lekner's method is that the surface energy is contained

within the two body part of ttre wavefunction, i.e. Tf. eX? la /tnil ,

which has been left out of (65), (i.e. it is part of Fa). We cannot

use the result (65) to prove ttrat the optimum wavefunction of the form

(59) is given uv €!6 = | , since by taking 0 to be the exact ground

state (which means that !o must be the minimum energy), ![ will still

be berter described by (se) rhan by 
[ 

,tt bdCUi)

From equation (68) of fzl we see ttrat the wavefunction (59) will

also remove the tr'6, term in the infinite system expression for (ff)

That is, we can use (60) ro etiminate f(g) in favour of n(t) and

then put Ytlt) i no so that the surface contri-bution (63)

becomes zero. From (60) ttris inplies that for the infinite system

Vt(q) = -l-Tr\o [ioq^ g dl,L) , (66)
o

which has ttre solution
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t(q) - r,T1\. + <orrrt.

Since the right hand side of (67) is translationally invariant the only

physical solution would b" f([,) = constant, however by putting

dtt:") = A - t/tir' , we see that the risht hand side of (67) isF\''., , f
?divergent. Laside: rnfinity is a constant but I do not regard this

as satisfactory.] This ttrrorrs doubt on the method of Chang and Cohen

because if (60) does not hold for their chosen density profile when 0

includes PIl, then their argunent breaks down, and is only transforming

the spurious results of pp from a divergence in C, to an inability to

satisfy the Yrron equation.-J

This brings 'us to the c-onclusio" "f [Zl , that until t]re conse-

quences of Qp on 'bhe density profile are explicitly calculated we

carrnot be sure wh,:ther the wavefunction T. e*pk 6te) is too
a{r

simple, or whether it is the pp factor that is incorrect. The density

profile resulting from a given wavefunction is usually calculated from

\rF-l
the /won equation (60) , (see for example LI3J ) , so we can put it

another way and conclude that we must first prove that the )vOn
equation makes sense Lf P varLes as yt . This difficul-t problem

will be attempted in the future, but I will make some short co[unents

about it, that are also applicable to the classical surface structure

problem, fi <->-Y . Firstlyr \{€ note that a self borxrd droplet

is translationally invariant and so we require n(E) where f is

relative to the centre of mass. However, the definition (62) for

t(f,) , from which the /rron equation is deriveil by differentiation,

is not satisfactory in this regard. rn fact, if we take f Vl" to be

translationally irrvariant then the right hand side of (62) is

translationally irrvariant and hence the only solution to (62) will be

n(E) a constant. So what is required is a translationally invariant

[ino' f".,t (67)
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density definition, capable of describing a dropret. Arso, in order

to calculate the exact density profile, the zero-point-motion

correl-ations of the surface modes would have to be incrud.ed in the

ground state (see below). We note that Chang and Cohen's wavefunction

(59) is not translationally invariant, but this may be necessarry once

the translationally variant density t(f ) is introduced, via the

approximation

Tt(f,, ga,) = h(q)T\(r^) t(q,)

Bowrey, whose method of calculating € is virtually equivalent to
F'a
L2J , had a different explanation of why the phonon factor caused a

divergence in € , H€ suggested that the correrations arising out of

the zero-point-motion of the surface modes cancelled the phonon mode

correlations deep inside the riquid, and so removed the divergent pp

term. rn note 4 of section Blr r pointed out that the presence of

surface modes impties a factor lf .ry ,rz /,(n,r,) in the ground

state, in direct analog'y with the phonon modes leading to the factor

(4)

n.*t tlr 
4t,:,) . Bowley's argument was that because the

surface mode energry €r+hvt was rower ttran the phonon enerlly

€r-th for small k, that the long range part of p, rf,as even more

srowly varying ttran lp. Because of this he suggrested that the phonon

factor was cancelted. However, this idea is almost certainly incorrect

for tr,tro reasons : (1) The surface wave term dG;rf;) will contain the

slmmetry of the surface and will vary the slowest paral-lel to the

surface, while /r(ttr) is a bulk function. Hence even if @,

cancelled fip at the surface it courd not do so deep inside the fluid.
(2) Since p" is even more slowly varying than Qp LE should give arr

even worse divergence of € , using the methoas or pl and Bowrey.

It is worth consid.ering just how

neglect the surface rnode factor in the

bad an approximation it is to

ground state when calculating € ,
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either by the methods of sections one to four "t El , or by the

variational method of Chang and Cohen. At the very beginning of this

section I noted that there were three physical contributions to the

surface energv of a guantum fluid : (i) a positive potential energy

term, (ii) a negative contribution from the kinetic energy and (iii) a

positive addition arising out of the zero-point-motion of tl:e surface
ramodes. Atkins LlJ, calculates that the total zero point energy of

the surface rnodes is of the order of tJ:e total- surface ener!ff, so the

question is, why did Dl and Chang and Cohen get good results by

neglecting the zero-point motion factor in the ground state? The

answer must be that the main physical effect of the presence of

surface modes is on the density profile. So, by choosing specific

forms for the density profile and varying the surface widttr parameter,
r-las in l-2J and Chang and Cohen, most of ttre effects of the surface

modes are taken into accor:nt. However, it would be necessary to

include the surface mode factor if ttre gror:nd state wavefunction was

used to calculate the density profile, as would be necessary for an

exact d.eterrn-ination of € ,

To conclude - the guestion of whether the phonon term 6, is

incorrect, or whether the wavefirnction 11. $(f:J is too simpte,

will probably have to wait until the density profiles that are implied

by the wavefunctions (3) and (59) can be calculated.. tt 0? is incorrect

then the only possibility that I have been able to suggest, is ttrat the

HNC and PY formulae may be wrong and that a complete summation of all

terms will result in a cancellation of the zeroth order ternr, pp.

Finally, the fact tJ:at a seLf-bound droplet is translationalJ-y invariant

needs to be kept in mind, especially if ttre translationally invariant

wavefirncti"" lf{tfi;) turns out to be too simple to describe a droplet
(q

or riquid Ht
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III. GENERALIZED VIRIAI, THEOREMS.

Ln this section I discuss generalized virial theorems that give

the change in the free energy of a system during an infinitesimal

isothermal deformation. A deformation will affect the kinetic energy

and the potential energiy separately so that these virial theorems

relate expressions involving the momentum of the particles to

expressions involving the interactlons between the particles. f have

already discussed an example of a generalized virial theorem in

section CI, (i.e. [tl ,, where a particular isot]rermal deformation of

a classical system was considered, in order to derive a formula for

the surface tension of a classical liquid-vapour interface. rn this

section r will investigate the general virial theorem for any first

order d.eformation and consider a particular example of a second order

deformation.

Consider first, generalized virial theorems for quantum systems.

To deform a quantum system we scale the wavefunction to fit the new

shape. One of the first persons to derive a generalized quantum virial

theorem by scaling was Toda (1955), [r] , who even introduced ttre idea

of a quantum mechanical stress tensor. Another extensive discussion

on the scaling problern and the virial ttreorem is given by Lbwdin

rl(1959) , | 3 | . Much of the results of ttris section appear to haveLJ

been derived by Toda (although he restricted his discussion to pair

interactions), but I prefer to work from a recent paper by McLeIJ-an

r "'l(1974) , V J , v*ro derives a general expression for ttre change in

energy during any first order infinitesimal deformation. I will now

prove Mclellants result by a slightly ilifferent procedure that I

found easier to understand, before going on to investigate its many

uses.



Consid,er an N particle quantum system of volume V and assume

it to be an eigenstate of a Harniltonian H = K + U, i.e. we are

discussing a single excited state or an entire system at temperature

T = o. The wavefunction p and the energ.y E are given by

(Ia)

(lb)

(lc)

V

h
l-

= | , dt=[Lq

(2)

r =(i) =(i,'ri,,i*)(!) = A '' (3)

HE = E \P

lar E*E

To d.eform the system from V to V' we scale the wavefrrnction by a change

of variables :

V(rr...^5) --+ g(qi ..,,5') = V'
where f 'varies over the same lirnits.= .f used to, i.e. .f,' varies

over v and f, now varies over vl . A general infinitesj-mal deformation

can be written as a matrix, A = (! * l) , where ! i" ,r,"

identity 
"rra I is an infinitelnal matrix. rn the notation of (21

we have

Note that when Ir. ) O ttre deformation is stretching with respect to
\this particular element of A . From (Ic) and (2) the energy of ttre

deformed system is

E, = 5 at v*'H q/'
vr-

with the normalization constraint
(r''\drE.q' = |
f,r

(i.e. the total nurnber of particles is a constant.)

Letting H' stand for H written with dashed coordinates, we can rewrite

CIII.2.

(4a)

$a. V.H V

(4b)
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(4) as

E' = $,rr Ef[H'*(u-u')]V'
f,t= E + \dtE*(u_H,)Wv'

where the second line follows exactly from the first, since

H'v' = E q,'

That is, a change of coordinates does not alter the energy eigenvalue.

I r{itl now introduce a more convenient notation :

X =(*,,Xr,Xr) =(x,y,z) ,

and
uVl - r-n =Ll

The surnnation convention for Greek indices will apply whenever a sum

is not written explicitly. We wish to calculate ttre partial derivative

of E with respect to an efement \5 "f I . r choose to ilo ttris by

considerins the particular deformation I;.i 7O ,(iri) * (orb) , i.e.

V 
- 

\tlnd - {i ta*o (8)

xq = xl + hX',
the change in ttre potential energy is found by expanding U in a Taylor

series about U' :

(7',r,

(s)

(6)

(e)

(10)

U(r'i ...,x'') = U(Xi' No') *i(g,' -rd'").(Vn'u)' + .. .

'/'e'

= u'* \,F,rr'(*u") + o(ri)

The total kinetic energry is given by

K=-*;Efu =hF?F'.



ro write k*l
chain rule

):-
)X*

and use (8),

in terms of the dashed coordinates apply the

/ra q

, o(=o,

CIII.4.

(12a)

(12b)

EI

={F* ,

Ir, -fi)fr
b

+

f rTt: =1Tt
rtu

-(*).h 
(11,

*|'4\ )_
\ )x"/r,,rri bxj

0) o =b:

B)q*b:

In both

3t
d3f

, d*

-2\tfu, li*

t'_)t

, c=b
cases

)'E

we have

3

=:
.a= I

f5r- r\u )"
)xi )x[

+ o(r:b)
( 13)

Therefore (10) and (13) SivC

N

K = K' *;, f"f" * e(ri) (r4)

Using the sununation convention, we aee from (9) and (14) that

H - H' = \,{ -* f"f'' + ry'(#*) } *o(t*) (1s,

Inserting (15) into (5) and using

5 at gl A'V' = 51. v*A V = (n) (16)

vtv
(aside: (16) is only exacr if dT = d?" bur it will aLways be

correct to the first order in I.b ) , we find

E'- E = r.,t-h<H'tr) *(xfl H,l *ohi),,,



(18)
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(le)

(20)

So we have proved Mcl,ellan's result :

(HJ*-1n*o= -k<r'f) + (*'+h")
Equation (18) appties to a single energy eigenstate' but we can

obtain the corresponding result for a system "t T )O by taking a

stati.stical mechanical average. The total energy E is given by

(cf . CI eqns (17) - (20))

E = fe^P ?= s'%/>--
.":, | 't - 

-T;en/r= LiEJ 2

*fr.t. ( ) inaicates ttre statistical mechanical average. The total

free energy is

F = -T loq f e- Q'/r
dj

Fron (20) we have

(2r)=[t*;(fr) = F (*; eq/r

f e-eolr

so the quantun mechanical virial theorem for T )O is

/br\ t _',[<H,H)) * K#y*)) (22
\4tfl,,^r.,-ro= -F

At T = Or Q2') reduces to (f8). For an infinite or self-bound system

the free energy will be a minimum, so ttrat in these cases the left

hand side of (22) is zero. Hovrever, this will not be true for finite

systems "t T ) O , since they must be contained within bor:ndary

walls, and the energy of the system inside the walls is not in general

a nr-inimum with respect to a deformation of ttre walls. If the system

is finite a typical deformation will usually change both the volume (V)

an,il the surface area (A) . Now in CT we saw ttrat the free energy of a

finite system can be divided into a volume free energy and a surface



free enersiy, F(VA) = E + F; . rhere is even asurface

free energ:y (i.e. surface tension) for an interacting system enclosed

by rigid walls, i.e. the Fowler term (see ff] and references 3 and

r't
15 of FJ l, which is equivalent to assuming a completely sharp surface

for a self-bound system. So using ttre chain rule, the left hand side

of (22) becomes, (see also [dl "n" 
(10) )
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(23)

(25)

tbr\ /)F\ )v_
tEf,u/'. = tW/Ar X-o

By differentiating the formula F

dr = -sdT+Pdv
where P t= tl.e pressure and C

(24) we see that the generalized

system can be written as

- TS, (S the entropy), one obtains

rdA

* (*F)"" bn
TI,

=f,

(24)

the surface tension. Using (23) and

ouantum virial theorem for a finite

-P(tJ,inr+o t(tJ,in|..1o = -t[<r'#))

Examples of the use of (25) :

From (25) we can find the change in the free energy during

given isotltermal infinitesimal deformation, provided the change

energy is first order in the deformation.

any

in

A) Isotropic Deformations.

Consider a simple isotropic

1,,=S , trii=o Lfi
expansion of a finite sYstem

, i.e.



n =lws o o\
- [o lti o )\o o r+tl

we can write V-f *ra A-f , where L is some characteristic

lensth. lrhen applying the deformation (26) we have V'-f y(f+f,)3

and A '+ A(r+511 , so rhat

/ )v\ = 3v /Ie-\ = tA\5FJ,,*f-.,o s' '\l?),,-f*'o
Therefore, applyinS (251 three times and using (27), we find

- 3pv + ro-A = -rK<K)) + (<a))
where C = Ird y'U = ,f, 

{$,
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(26)

(27)

(28a)

(2eb)

(2e',

(30)

1) A quantum dropLet, at T = O :

Consider a self*ound quantum droplet of radius R at T = Or

,,$e.g. liquid FIC . Because the tenperature is at absolute zero the

pressure outside ttre drop is zero (i.e. there is no vapour), hence

from Laplacers equation (see eqns 2 and 3 of section CI) we have

P= / is. 3Pv = lfrA

Fron (28) and (29) we must have

-1<K) +(c)=o
for a self-bound guantr:m system at T = O. Eguation (3O) means that

('&),*5-o=o o , which is just a conseguence of the fact

that a quantum droplet at T = O is in its ground state and so its

energy is a minimum with respect to any deformation. Note that for

this case the surface term lfA fr"" the same value as ttre volume term

3?V and cannot be neglected as one night at first o<pect.

2CE



2) Finite systems atT)O ,

at T ) O there arises an irunediate complication due to the

fact that for a finite system to be in equilibrium it must be confined

in a container. This is because a self-bor:nd liquid would now be

surrounded by a vapour and to maintain a finite system in equilibrium

one requires fixed bor:ndaries. To avoid the extra problems associatdd

with two phases (i.e. one must identify the separate contributions to

P ana g ), we can consider either a ftuid above its critical point

or a gas, inside a container. Equation (30) will no longer hold since

the walls of the container exert an external pressure on the system.

That is, the walls are an external influence and the system is not in

an energy minimum with respect to changes in position of the walls.

For an interacting system of particles the surface term lfA is still

present, since the surface tension due to a walI is equivalent to the

surface tension of a completely sharp surface. From equation 40 of
r-treference LU , the surface tension of a classical (i.e. coming from

u only) fluid of density fr , with pair interactions, due to the

presence of a wall, is given by Fowler's formula

tssdDlve = IE fr'5 d. r'rq(r;m) 4.\49F g E ,t dr
where !l = -E;Utr,rl and the pair density has been approximated by' d(J
^-l r r\Tr jrqn)

The classical form of the generalized virial theorem can also be

derived by a deformation method, but I qrilt first give Mclellan's

proof since a problem arises with his method in trying to identify

tne l,frA term. For a classical system we have

* ftpr.) = x:' Ht (. = 
olZat)

,rn la tb '-q tb

CIII.8.

(3r)

= *(d'ff') - *'t'
(32 )



Now the classical lime average of a euantitV ff is

= {t* + [)'
= 

llllr I I I r,, .\-, r-is_t-rtffEl
So provided the systen is finite (i.e. contained) *rd f(t) is non

divergent, we find
T_d{/at = o

Fron (32) and (34) we obtain

&
dr

-eT-

ET
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(33)

(34)

(37)

rf;'ff'

v*rere 1f is the total potential energry, including the waII potential.

For a/b the left hand side of (35) is zero since the kineti.c energy is

isotropic in classical fluids. By assuming ttre ergothic hypothesis

(i.e. ensernble averages and time averages are equivalent), we can

replace the time average by the usual statistical average

[fn) = sdr"l ...ar'uAe,lTh (36)

Sdr.l ...Jx..t €-ulr
Considering the isotropic virial theoren, i.e. a = br w€ have proved

= -r(r.) + (xf'#r,)
Note, for a classical system in ttrree dimensions

(*) = **t
Comparing (37) with ttre quantum virial theorem (28) it appears at

first sight that the terms -3?V a"a ldA are missing in (37) .

However, proper consideration of tl:e walI potential should yield

(38)
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these terms. It is easy to show ttrat the volume term contributed by

the walls i" -3?V , since the pressor. P is exerted on ttre system

by the walls, and rre can write

)$

frfrl{-l] : -?Sds.f, ,(&*ov{r,-"ll **{or.)
$ ^4 )&*))*v*,,

= -? JdI V.x , (h 6'o*rst {l*o.'.*)

= -3?V

Unfortunately I cannot see how the surface term 2CA , which must be

present for an interacting classical system (i.e. Fowlerrs formula)r

can be obtained from the above proof. However, it does appear in

another method, of proving the classical virial theorem, by deforming

the system in a manner sinr-ilar to the quantum derivation. To show

tlris I will consider only ttre isotropic deformation (26). Then

following exactly the same process as eguations 3 - 8 of reference ttl
which is based on the classical expression for €Flr , one obtains

-.) -\Ar'= -3NrS + [LAUll-- .)

rlrtrere AU is defined by

U(fh-l),...,x'il"d)

Ttre first term of (40) occurs because the Jacobian of ttre change of

variables is not r:nity. For the deformation (26) we have

( 3e)

(40)

(41)

Au = S /x,tr) Ul .\" \-" ffi,2
From (38), (40) and (42) it follows

AF = s{ -t(rc) +
Now the left hand side of (43) incl

term in the same way as (23) , i.e.

+ o (J')

+ o(Ji/

Iume term and a surface

chain rule

(421

that
tt\\1

u,c} l
udes a vo

from the

(43)



ro-n)j + o(t)
that

= -r[x] + (c)

Ar = fAt\Av
\AV/A

= (-rtv *
Therefore we have shown

-3?V + 7AA

+ /AF\nn
\I1/"

From a comparison of (28) and (44) we see' as should be expected,

that the only difference between the classieal and quantun virial

theorems is the different averages.

Another reason why the surface term on ttre left hand side of

(44) should not be left out is that for an interacting classical

system, (a) will have a surface term as well as a volume term, in

the sane manner as r^ras carculated for [U) in referer,"" frl . To

see if the surface terms on both sides of (44) could cancel, consider

a classical fluid of densit, fr =VV , confined to a subic box

of length L, with the particles interacting via central paimise

forces, i.e 
M N

[,,\ = ZZ \rcr;i)
c<j

Then from equation 15 of r"r.r.r"" [1 and switching to tne .f3

notation, we have

(.) = (r,#,) =*N(N-D ("*')
= :r tt fq il E,r^) rt" F.1"

where the pair density is defined by

r\[f,,,r,) = N(N-r)s{q heu/t
s dr {'i .-ulr
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(44)

(46)

(4s)

(47',)



Define a generalized pair correlation function 3(f,,f^) by

"t1(1,, F') = n( 5) x (rJ 
3 

(r, rJ

= fr ^ : 
(f, fJ , (inside the cr:be)

Then if we use the same approximation for the pair correlation

function as in [t] , narnely

I(s,,$) = :(n.,?\') ,

which is incorrect near the walls but enables us to obtain analytic

results, we have from section three "t Fl

(c) =[.),+(.)^
(. )^ = - AT n-. F.'r g,, r) A#.n

(. )" = V. rr lF [i' r'l (D r) +p
The last equation is derived from (461 , (48) and (49), by ignoring the

walls and chansing SdI Lt -+ V [{fr. . rhe upper timits in
(5ob) and (5oc) can be extended to infinity because of the short-ranged.

nature of du/dr. Unfortunately ttre result (50b) is rather strange,
t---t) | 

-since from (3r) we see that LLCJ^ = lrq A and not

70;A . rhar tr,(a)) definitety contains a surface rerm bur

it does not appear to cancel with fG A rrom ffl I note that

l,dF A would follow from a slightly different expression tJlan

(46), namely

+ S{qtE n(8,r.)(ro':32,1) F-,
From the results of section CII we see that ttris lack of cancellation

is also present for the potential energy contributions to the quantum

rt l'virial theorem for tJle case of liquid H€ in a tank. For an

crrr. 12.

(48)

(4el

(50a)

(5ob)

(50c)

( sl)
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interacting quantum system there will also be a surface term from
/- rS
tI.1 U ) ll
$: n Z2 , just as there is a kinetic energy contribution to the

surface tension of a quantum fluid. By ignoring alr the surface terms

one obtains from (44) and (50c), the usual formula

? = fr T t. "' I?rr3!(r-) srr, $2,

3) A finite system of non-interacting particles :

For non interacting particles we have C = O, so that (52) becomes

?v (sso)= +E

?V = gE = L(e+tr-\
B ?a 

t" 'F Fr ; (s3b)

where tr = K<Kt + d-A . For non-interactins quantum

systems it may be that f i" always zero, but there is a possibility

that the presence of Fermi statistics could result in an anistropic

kinetic energy near the walls, and thus produce a surface free energy.

where E is the total average energ'y. From equation (28) we see that

(53) also holds for a non-interacting guantum system. For the classical

case the surface tension term is zero since A is due entirely to

interactions, hovlever it is not necessary to assume that A is zero

for the quantun case. Tlris is because we can identify tA as a surface

-?free energ"y t , so that (53) for the quantum system could be

written as

4) Deformations with respect to other parameters :

The generalized virial theorem (18) or (22) can be applied to

deformations of any paraneter. For a discussion on the first

derivative of the energry with respect to an arbitrary parameter see

r1reference LtJ . r will- include an exanple (also in [t] I to illustrate

the idea. Consider a diatomic molecule with an internuclear
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distance R. Take the potential energ'y to be the electrostatic

potentiat \f (G) ^, Vq, , i.€. F" J+-r = - q(Fr)

If we now apply the isotropic deformation (26), then the parameter R

changes from R t,o g(t+f) and the virial theorem (I8) becomes

lldEl = -:<K)-(U)-l? |
O 0 lti. t-ao

The left hand side is easily evaluated since

Fron (54) and (55) we obtain

f<K>+(u)+R,
If the diatomic molecule is in its equilibrium position (i.e. uncon-

strained),or if R is infinity, rtren dg/dl, = Q , so that we

recover the usual virial theorem for self-bound or infinite electro-

static systems, namely 2<K> +' 4U) = O

However if the nuclei are fixed away from their equilibrirm positions

then the correct virial theorem is (56).

B) Anisotropic Deformations.

From (25) we see that by considering a deformation in which the

change in vol-ume is zero we can calculate the surface tension f

I) The surface tension of a plane quantum surface :

(s4)

*F = $t*t
(ss1

(s6)

dr
m=R

de
EE

=O

following

siven by A,,

That is,

the method, of roda b) ,Iet us apply

l+f , Ar. ol , Ar.=(t*5)-'",d

the

A;t

deformation

= o, ;*i

(';'i: )\; o tr+r' /
surface in the xy plane then the

A

If we take a flat deformation (57)

(s7)
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stretches the x direction and compresses the z direction :

\/ V(t+t)(t*f)-t =!v f v \r'g/\t'r. - t 
,u8)

A -) A(r+5)

The volume of both the liquid and tlre vapour remain constant so that

all volume terms are zero. The change in the liquid surface area is

6n . Note that the surface area of some of the walls will change so

that to evaluate the expression for A one needs to identify and discard

surface terms arising from the change in density at ttre walls tse" ffl l.

From (58) we have

S = *F* = rA (se)

and from (57) it follows that

S = *,,+ +fi.*"
= )E lF + o(J)l--ru, )r$

So from the generalized virial theorem (22) we find

(60)

r=*t-r[(r,-K"D r [<#H, - "'9.)J (61,

This is the Toda (see also Brout and Nauenberg,referenced f" [Ul I

e>rpression for the surface tension of a plane quantum surfacet

extended to a general potential U. The potential term on the right

hand side of (6I) is the classical result, which was proved f" Fl by

applying the same deformation to a classical system. For pair inter-

actions, i.e. U = TFU([3) , we have from (61), (usins eqn 15

of Fl and changing the notation from Xta) to 12 )

This forrnula was used, for the case of liquid l'let tt r = or in Crr

(i.e. section four of [.] ,.
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2) The surface energy of a quantum droplet at T = O :

Consider a self-bor:nd droplet of a quantum liquid at absolute
,.F

zero (e.g. f-iquid ll3 ). The gror:nd state wiLl be spherical since

tlris rninimises the surface area which in turn rninimises the surface

energy. At T = O the free energy and the total energy are the same

so that the surface tension (f is equal to the surface energv per

unit area. We can deform the sphere into a prolate ellipsoid, symmetric

about the Z axis, by applying the deformation l,;; =O if3 ,

1,, = l.^ = (dv*-,) , ).. = (e5- r) L.e.

= (il;'"il
In the (xry,z) notation of (3) this is

x = ,ru-'/e , V = J'iil" , z=z'et $4)

( rrlaside: In reference [J e aSZ, it is stated ttrat the lines of motion
L

for a second order surface oscillation of a liquid globe (i.e. sphere

into erlipsoid) are given by Z EEr = constant, where f,F i" ttt"

distance from the axis of syrunetry, the z axis. Taking the point

( {, yt, Z'l in the rrtdeformed sphere and applying the scale change

(2) with (64) we see ttrat Z (xt*yt) = Z'(X''*y'')

This is a proof of my statement tJlat (63) changes a spherg into an

ellipsoid of revolution about the t "*i". ] To calculate the change
J

in ttre surface area during the deformation r^re need the surface area

of an ellipsoid of revolution whose bor:ndary is defined by

A
(53)

rr'
a1

+

O=

)L' +
q1

R e-v^

=lz'
Tr

(65a)

(6sb), b= Ref



where R is the radius of the initiat

V=E?rqab = trrro35 ' T"-
in tJre volume is identically zero.

about the z axis, we can calculate

(somewhat laboriously)

sphere. Note that

, so that the change

By rotating the ellipse of Fig. I.
t

Fig. 1-.

crlr. t7.

(66)

(67)

(68)

, A{=dxl+dzt

= {'.TI q
b

>o

= lTTq1 + lTIob siri'e

= 2Tro'

From (65b) vle have

€" = i6-Ir'*o6t) , €h=?f,'*o(f')
and hence (66) is (-.J

A= 1,TTo1 + lrrob\t+*-lE'+olft)f'l I l,o -\- 'l

= lrrRt I t" *5'* o(fr)lr.)l
So to the lowest order in d , tlle ctrange in the surface area during

deformation is

AA = A'-3-5^ , Ao = +irr Rl

we see that the change in area is second order in the defor:rration

parameter, unlike the plane surface deformation in part B 1) above.

I shalL now show that the change in energy is also second order in

z=br
A = 2 \dslrrlxl

zEo

= r_s5:.o

e-

(
+ l,'trob I r + €r + iI?-{," €h + l

(6e)
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the first order generalized virial theorem (18),

(63) , then

= O (70)

The last line follows, because the e:<pectation value is in the gror:nd

state which is spherically symmetric. This result is the same as was

found in part A l) for isotropic deformations of a self-bor:nd system,

and is a consequence of the fact that an isolated system in

equilibrium occupies an energ'y minimum with respect to any

deformation.

So the first order generalized virial theorem does not enable us

to find the surface energy of a self-borxrd droplet since d- is deter-

mined by second, ord^er terms. That is, instead of (23) we have (note

that the change in volume is identically zero)

/ )"E\
\ 5r-Z = IE fTF/. ' (71)

where the subscript zero refers to the non deformed lirnit, i.e.

l;"n t '+ O . From (69) and (21) we find

use

by

_ /le 15 + bE & .| )E Il,,\- \ )\,, D5 )\r, )f ))r1 )5 /1i.

= (-+"1*, -HJ + .t *,,),o,*,
)u

5-+ o

o

_zlrl

r = 5' /IE\
aaA \ bf'/"

(72)

Another way of obtaining this result is to e>rpand the energy of ttre

deformed system in a Taylor series about the ground state energTy Eo :

E=Eo+s/€) + IJ'fS\\ )[/o 
.r F- \F2 -] (73)
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we have arready seen that ( 'fo)"= O , r:nlike for a flat surface, so

that the change in the energv ilivided by the change in area yields

equation (72). Inserting (59) into (72) gives

F= 5 =/fE\ (741

/6Tr Rr \ )5%
Note that since Eo is a minimun with respect to the deformation we

musr have ( ltEdftt

fnstead of calculating the general second order virial theorem

for ( )tpd:, 
) , r witt just consider the particurar case of

the deformation (64) and calculate the change in energy directly frorn

equation (5) :

Ae (= E-E.) = S at p'itH-H')V , (5)
v'

where from (64) we see that Jt'= df so that eguation (16) holds

exactly :

5,a. ViR' E' = Jrr g*n V = < A> (16)
v'

(<
Using (64) rc can write the kinetic energy operator as

^N
k = -$' Y/-f- * +, + I-\,frF\)xi )y,' '4t

= -fi" f{etfL r )' \ + e-r5J_ }fr" f l= \E;_ "5y-/ bz!' J (7s)

Therefore from (5), (f6) and (75) we have

5a.V.(r-r')g = (*,*k Xef-,) + <r=)(e-il')
yr

= J(r,* ky-rq) * [(F "* *lK) * o(f )

= J'< r> + o([') (76)
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where the last line follows from the

state, i.e. < Kr)
the potential U (", ,.- . ,Zr\

So

I"v'(u-ultP

syrunetry of the ground

. By expanding

U(x,', .. .,zi)

spherical

< K.>
about

we obtain

U=\l

=[J

+

+

'*Itr,-rj).(yul **
J:l

'*t{,u'.t-t(*,J

i(or,{':'(#)'* v,

Gtrt)(urdt.,(,.+J-

1(fu;
Nt3
zrlcu-{)($,-s
je,t dsl p:t

*x'(H'] .,,Ji(H)

(#'l *(etr=;^(#J pz)

y,:; (#,,)] . (ds fon'ffij 
]

= r,r[ret,)(,H . n H) * tc,)G,#)

. gp(r# * r,'#) + (eL )k:#)
+ (dt,)(.'-,)(, 

=, S + y4 #) * (et,)(,y, #r)]

= *i'("'* *tl* - x*#y,) + o(r) (78,

The last line in (78) follows from the spherical syrnmetry of the ground

state. From (5), (76), (78) and (74) we have

F=,#{.*) + i:+* *'i#f -Xiy; ffi)} (?e,
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This result is rather strange since the right hand side of (79) contains

vorume terms (i.e. proportional to R3/R" ), while f shoutd be

independent of ttre radius R. So for the expression (79) to make sense

the volume terms must cancel, which leads to a condition for the

infinite system :

where 4 ),^f is the expectation value over the infinite system

(i.e. pure bulk terms). BV using the first order virial theorem

f1f)., _ ?/_x,.!L\ . (8r)-.:."/i^f = "\f4Erf^f ,

we can write the condition (8) purely in terms of ttre potential,

namely

(r*,* + x,r# -*,y, #v), = o (82,

Itris condition on U must hold in order for the expression (79) for

F rc be ind,ependent of the size of the droplet.

For the case of liquid Ht at T = o, it is usual to assume a

pair potential, i.e.
rrNifU = EE \rtrii).1J

For this potential it would be more useful to rewrite the er<pression

for f in terms of the translationallv invariant coordinates

? l- plIij = lIi - Ii I . To do ttris r for:nd it necessary to

expand \{(fo1 about U(f,r/) , instead of using (77) . Applying

the deformation (64) I calculate

r,, = ti{,* +(# -, .$(r*rrz;- -#)+o(t')},,,,
and hence

(4s)

u(r) = utr"') +(rir-r-n',(*H") + +(r,-*f(H)' *.. ,



= u(r,/) - *('#- ) 
rJ (#)' * I 

{(,-*#. - 
r#,).

r.'l'Cg4' * ( t - ct * t!i) x'{d}grr)' J\dro7 \ F C"/ \dri^'I J

+ o[ [1) (84)

From the spherical slrouretry of ttre ground state it follows that

(q.'&il) = t(rift'*l), (=,lf(r*l) : *(tJ{tr;,)) (Bs)

Then using (16), (84) and (85), I find

[1. 
pi(*ul-utnr) V' = #(+ t*#u + $*^*+ +drJt,e,

Therefore the corresponding expression to (79) is

+.,i#*,)] 1az)

The infinite system first order virial theorem for the potential (45)

is, (see eqn (46))

(x)* = +EI<-#;,X
Therefore in order tor A to be independent of ttre radius R, it must

follow Lhat

(rrp#'+ ti{#,,), = o

Consider ttre Lennard.r.fones potential used in [Ul t

tJtrr.; ^, /J-\'" - /1\6
t'T"J -\T./

An attempt to satisfy (89) with (90) fails since the left hand side of

crlr.. 22.

(8e)

(88)

(e0)
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(89) becotnes ProPortional to

('GJ* * (*)')n ,

wtrich is greater than 7fJro. It may be ttrat the pair potential is too

simple to accurately describe a droplet. Remember ttrat (90) mr:st first

satisfy (88) before it can be used in (89). the pair potential- also

gave a strange result for the surface part of KC) ' i'e' equation

(sob) .

To srar up - A second order generalized virial ttreorem is required

to find the surface tension of a self-bound droplet. lltre resulting

expression implies an extra condition on tf.e pot'ential in the infinite

system, ot f" would be proportionaL to the size of the droplet'

However, the cond;ition ls not readily satisfied, so ttrat the val'iclity

of ttris theory tor (f remains in dloubt'
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A Collective Rotational State
of Spherical Nuclei

J. R. Henderson and J. Lekner

Department of Physics, Victoria University of Wellington, Wellington, New Zealand.

Abstract

We consider a particular many-body rotational excitation !z of a spherical self-bound system of
particles, of the form studied by Lekner (1974). This angular momentum eigenstate is transtationalty
invariant and thus is not a spurious state. The energy of lz is found from first prin6iples to be
substantially larger than thal ofthe first 2+ excited states ofeven-cven nuclei, with the exception of
2oBPb. The quadrupole momenf is negative, theg-factor is approximately ZIA and the lifetime is
shorter than the single-particle (Weisskopf) value by a factor of the order of AIZ,. It is suggested
that these stales are the finite system rotational analogues of Feynman's phonons and rotons.

l. Introduction

I'et iD(rt,..., rr) be a translationally and rotationally invariant ground or vibrational
state of a self-bound system of I particles, with HQ : Eo@. It has been shown
(Lekner 1974; hereinafter referred to as Paper t) that V : F@, where

(x,,+iyi)L f(ri) (t even)

is an eigenstate of Lz and Lz with eigenvalues z(Z+ l)hz and Lh. The wavefunctions
P have the same permutation and inversion symmetry as @, and they are trans-
lationally invariant. These properties hold irrespective of the masses or permutation
symmetries of the constituent particles, but it is clear that, since equation (l) treats
each pair of particles in the same way, Y is best suited to describe rotational states of
systems composed of particles with nearly identical masses and pair interactions, e.g.
nuclei and helium microdroplets. We note in passing rhat Karl and Obryk (1968) and
Castilho Alcar6s and Leal Ferreira (1971) have found only one symmetic L :2
eigenstate for the three-body system, namely the state Y withf : l. The translational
invariance of the V considered here guarantees that it is not a spurious state (Elliott
and Skyrme 1955; Lipkin 1958; Aviles 1968), i.e. we can be sure rhat !r describes a
genuine internal motion of the self-bound system.

In Paper I it was further shown that for harmonic pairwise interactions between
I identical Bose particles, that is,

H : -@212,r),4 Vi *V(rr,...,r)

V(r1,...,rn): II u(l +r?jla2),
i<j

(1)
4.4F:}I It=r j=l

(2a)

(2b)

with
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the state P with/: I is an exact energy eigenstate, with

Et : Eol-L(2hzuAlma2)* (3)

(this equation corrects an error of a factor of ,,/2 in Paper t (eqn 30), arising from the

same erroneous factor in I(28)). The purpose of the present paper is to carry the
analysis of Paper I further, by evaluating the expectation values of the energy,
quadrupole moment, magnetic dipole moment and lifetime of the state with .L : 2

and.f : l These are then compared with experimental values for nuclei with spherical
ground states.

2. Expectation Value of Energy

We witl assume here and in the remainder of this paper that @2 has complete
pernrutation symmetry, e.g. we neglect the differences between proton and neutron
rnasses and interactions. We also assume that the spins are paired up to give zero S,

because L : 0 as well as ,I : 0 in the ground state @. Thus we are discussing

the nondeformed even--even nuclei. These assumptions also imply that, for example,
(x?r) : (.v1) : (zf r) where the expectation value is defined in equation (5) below.

Since V is an eigenstate of angular momentum with l : 2, it is orthogonal to O
and thus the expectation value of the Hamiltonian in the state P : F@ gives a
variational bound

f lr
E-Eo 

" Jo' 
...dAv*(H-Edv I Jo,...dAlYl2

: # io'...or tvrr lz@'? I lot..d/ l Fl'o'J.tnJ I J

Ahz<lvtF12>

-r

2nt (lF l')
where

denotes a ground-state expectation value. The second step in obtaining the expression

(4) cornes from Paper I(25), and is valid for any Hamiltonian of the form (2a) with
an interaction V(ry...,rr) which is completely symmetric and independent of spins

and momenta.
We take/: I in the wavefunction (l), since this gives exact energy eigenstates for

harmonic interactions, and also because this is mathematically the simplest and most
tractable. A further reason for taking./: I is given in Section 6. We find

( Vr F lzS : 4A(A- lX;r?,+.v?r) : &AU- l)(r'i:) (6)

and

(l r lr> : 1A(A - lX(x?z *-t'iz)2)

+ A(A- tXl - 2)((xi ,- y?r)(x1."- y?) +4x't'rz xrs.l'rr)

+ -LA(A - 1)(A -2)(A-3XCriz - l,lr)(x'tn- y'r) + 4x rt yrr,rs+-/ra) Q)

(this equation corrects two crrunting errors in Paper l(39), namely a factor 2 in the

three-body term and a factor ] in the four-body term),

(B) : Jo' dA Boz I Ir, 
...dA ez

(4)

(s)
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In the remainder of this section, the expression for (l F l'z) and hence also that for
Ez- Eo is reduced to expectation values involving only r,, terms, We first note that
the energy cannot depend on the azimuthal quantum number. Thus

Vzz: +II (xq+i1,,,)ziD, Yro: *Il{1"!r-r!,1Oi J . j
(8,9)

must have the same value of (l V, f l')/(l F l2). For V26 we find

and 
( v, F 12) : 4A(A-t)(r?r) (10)

( | r' l'> : * a(A - L)((32!, - rl r),> + e(e - \@ - 2)((321, - rl,11tzl r- r?.))

++A(A-r)(A-2)(a-3)((32!"-rl)(32!a-rla\). (11)

Thus equations (6), (7), (10) and (l l) give the equality

((32!r- rlr)2 +z1t -z)(3zl r- rlrlltzfr- rlr)+ +(A-2)(A -3)(3zl r- r! r)(32!a- r!))
: sr((xl t + tL t)' + z1a - 2) {(*1, - y't )(x? t - y? r) + 4 x r r./r : xr s }r s }

+ +(A - 2)(A- 3) {(xi: - .v? )i'r|a - ylo; + 4xr, ! t z x tt-yra }) . (12)

we will now prove the equality of the two- and three-body terms in equation (12),
and thus show the equality of the four-body ternx.

ln the two-body terms, use of the facts that

(z? z r? r) : ] ((xf , +.v!, + z! r'1r! rS : * (rtr)

365

(l 3)

(14)(tlr) : * (r1r)

(obtained by angular integration) demonstrates equality. The value of rhe two-body
term is

to show that

Thus

((3z2t r- r!r)') : *(.1r) .

In the three-body term, we use in addition the identity

2zr2zrr: z?z+z?t-ztrt

(z?rz?z): #(rfr).
((321, - rl r)(321:" - rl.)) : * (tlr) - (rlz rl) .

In the same way the three-body expectation value on the right-hand side of equation
(12) is given by (omitting the factor 2(A-2))

|(2xl2xfu *3x1, yl.z -4x12 yzrs) . (le)

The first term we know from equation (17). The second term we find from (4) :
((x?r+y?t+"?r\2) and equation (14) to be

(15)

(16)

(r7)

(l 8)

(r?z_r,1u): #('tr). (20)
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The last term we obtain by expanding(rirrlt):

(xl, vl') : tQl"r?r) -*('fz)' (21)

These identities reduce the expression (19) to the right-hand side ofequation (18), so

that we have demonstrated the equality of the three-body terms. We may thus put

((32!r-rlrl?z1o-r!)) : j((xf2-.r,1)G!o-yl,o) +4x' J,rzxr+.rr+). (22)

By use of the identity

2x, 2 x3a : x? +* xl,t - x? t - xln,

the right-hand side of equation (22) reduces to

3(xlrxla + xl2 7,!n+2x?o i?n -4x1n y?r) . (,.24)

The last two terms of this expression we know from equations (20) and (21). We can

find a relationship between the first two by expanding rlrrla:

(r?, r! *) : q7x! 2 + ll, + zl r)(x! n + s,| o + z3 )) : (3xl 2 x! n + 6x?, y3 ) . (25)

Now the left-hand side of equation (22) is equal to

(9zlrzlo -62!rr!o +rlrr!) : (9zl2z!a -izri/) . Q6)

We thus have, equating (26) to the expression (24),

(9x12 x23a - ftrtr) : 3(xlzx!+ + x?z f3o +It? -1r?zrl3>' Q7)

We can now evaluate the x and .t' terms using equations (25) and (27):

(r?rxli) : ]sQrlz -4rl2rl3 *3rlrfioS,

(xi, .r3r) : |s(-rtz +2r!rrl, + r2rrr\o) .

The four-body term in equation (12) is thus

((32?r- r?r)(32!,o- r!)) : l(3rtz -6112rl +2rltr!n) ,

and the variational bound for the excitation energy of the state I is

h2 2A(rl2)
i'

(31)

No approximations have been made to this stage; the result (31) is a rigorous
expectation value of the energy in the state V. To evaluate this exactly, however,

we would need to know the two-, three- and four-particle correlation functions of the

system. In the next section we evaluate (3 l) in the simplest physically meaningful
approximation, namely that in which the particles are correlated simply by coexisting

in a finite system.

(23)

(28)

(2e)

(30)
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3. Weak Correlation Approximation

As a first approximation we assume that the I particles are correlated by virtue of
the finiteness of the self-bound system, i.e. we assume the system to be characterized
solely by a number density n(r) (measured relative to the centre of mass of the system).
The use of this 'weak correlation'approximation is supported to some extent by the
fact that in nuclei the hard core of the nucleons occupies only about | ft of the total
volume (lrvine 1972; de Shalit and Feshbach 1974) so that pair correlations due to
nucleon-nucleon interactions can be expected not to be dominant in the evaluation
of the expectation values in the result (31). lt turns out that the weak correlation
approximation is sulficient to make the three-body term

((32?, - rl rlltz! r- 4 r))

nonzero (and in fact positive-definite in this approximation), whereas in a completely
uncorrelated (infinite) system it would be zero.

when the system is characterized solely by a single-particle density n(r), depending
only on the radial distance from the centre of mass, the expectation values needed for
the evaluation of the energy bound (31) can be found by working in spherical bipolar
coordinates (Hill 1956). We have

: 2[r2], (32)

where

Similarly

[/(r)] dr 12 n(r).

('fr) : 2[ra] +g [r2]2.

The three-particle correlations are a little more complicated: (rf, rfr) is given

J- 
or, 11 n(r,) dr, dr12 rfz

dr, r, n(rt) dr* r,,

J' m
tr

dr 
' r!,

(,'?') :
+ t!

-f2

dr. r. n(r3)
o

r, n(r2)

d,r12rr2l. or, r3n(rr) 
J::_::

L"
f2

,rrr(r) 
f ,"rtr,

1,",,

,,r,rl;
J,

n(rr )
o

dr',

dr, rl n(r r) dr2 r| n(r2) dr3 rl n(r.) (r?+ rb?l + r3)

r:
dt',

= [- a, ,'r(r) fe) f I:

ff;.",,n(r))

trJ
dr,. rl3

dr. rrj

(33)

(34)

by

s
dlt

T

I

rt

fl

o

: [ro] +3[12]2 . (3s)
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Thus the three-body term (18) is positive-definite:

(#rf, -rlrrlt): f [ral. (36)

In the weak correlation approximation, the four-particle term (rfrr.2n) factorizes as

(r?,rr1) : Ql)' : 4[r2n2 . (37)

It follows that the totalfour-body term in the expectation value of the energy is zero:

<3t2 -6112r!, +2r!rr3u) :6[/4]+ l0[12]2-6[ro]- 18[12]2+8[1212 : 6. (3s)

These results are true for arbitrary radial variation of the density.
In the weak correlation approximation, the energy of the L : 2 state thus reduces to

LEz : Er-Eo" tI,- -=-,[!t],,,=,=." ,n *[r'], +(A- l)*[ro]'
When I ) 20, we can write

(3e)

(40)

up to a sharp cutoff at

(41)

(42)

simply by

LEz S (5fi'zl/??)[r']/[r4] .

lf we further assume that the system has a uniform density
radius R, we have

[r2] :;n2, [ra] : ]Ra,
so that

LE, S 7li2f mRz .

In the next section we see how these results may be obtained much more
breaking the translational itrvariance of the wavefunction.

4. Wavefunctions with Broken Translational Invariance

In Paper I it was pointed out that (i) the orbital angular momentum of a system of
particles is independent of the choice of origin if and only if the system has zero total
rnornentum (i.e. its wavefunction is translationally invariant) and (ii) because of
the uncertainty principle it is impossible in quantum mechanics to fix the centre of
mass of a system (at the origin, for example) when the system has zero total momentum.
Thus the only rigorous way to treat the problem of rotational excitations of a self-

bound system which is not fixed in space by external forces is to deal exclusively with
translationally invariant wavefunctions. We have done so here (up to this point) thus

ensuring that the wavefunction considered does correspond to an actual internal
excitation, and not to a spurious state.

Having set up the excitation in a translationally invariant way, however, we are

free to break the translational invariance of that wavefunction without risk of spurious
states; that is, we afe sure from its origins that the translationally uariant wavefunction

represents an interrlal excitation. We find, in a simple calculation, that breaking the
translational invariance leads to an error in the energy of order ,4-1. We are also

able to readily obtairr the quadrupole monent and the lifetime.
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Consider Y' given by equation (8). Since

AAA
+I L,i:AL*?-A2x2i=l j=r i=l

and
AAA
I I rir.J'i;:2/-L x,y,-2A2XY,
i=l l=1 i=l

where
A

X:A-tI", etc.,
i=l

we have

Similarly

(43)

(44)

R : (X,Y,Z),

+ I I Qzlt-rf;l : AZ(3{- rj) - A2Oz2 -R'). (46)

Thus when we break the translational invariance by fixing the centre of mass at the
origin of the coordinate system X:0, Y:0, Z:0, the wavefunctions Y, and V ro
(equations 8,9) become

Yiz : | (x;+iyr)2o : Fzze, y'ro :lezj -rj|o : Frre (47,49)

(we have dropped the factor I for simplicity). These states are angular momentum
eigenstates as before, with energy AE, given bV (a) above. For the g'ro state
we have

Il!(xrr+i.I';;)2 : Al(xt+iy,)z -Az(X+iy)z. (45)

(4e)

(50)

(5 1)

(52)

ln the weak correlation approximation (and for sphenical @) the second term is zero,
so we have

((V, F)t) : 8(ri)
and

(F. ') : A((3zi - 11127 + e(e - rx(32? - r!11tzl - r1)> .

(F') : A+<4>.

Thus the weak correlation approximation gives

At, < (sh'1 l n)(rl)l(r!) .

Since these expectation values are taken with the centre of mass fixed at the origin,
we have (4 : [/] as defined by equation (33), so that the result (52) is the same as
(2CI), and differs from (39) by terms of order l-1. We have thus shown that, in the
weak correlation approximation, breaking translational invariance leads to an error
of order l-r only, as could be expected.

It is also easy to calculate the quadrupole moment Q in the same approximation.
We have

F z lf
e : e I ar ...a,a I O'i -rj)lv;,1' I I at ,.dA lvizl2J i=t I J

: ze((3zl - rl(x1 + yil\ | A((x1+ y? )')

: -t zeA- '(rt)/(rt), (53)
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so that the excited state is oblate (pancake-shaped), with a small negative deformation
parameter, proportional to l-t. For uniform density up to a cutoff radius R,
equation (53) becomes

g : -$ZeA-t R2 . (54)

We can also estimate the magnetic dipole moment on the assumption that the
spin contribution (for even-+ven nuclei) is negligible. The orbital contribution is,
irrespective of translational invariance,

z
p: (el2mc) I (rr) x (el2mc)ZA-\<L>,

i=l

p:(ehlmc)ZA-', Q:ZA-l
in the Yrr state.

The lifetime of the state is readily obtained from the transition rate (Blatt and
Weisskopf 1952, p. 595)

raL'Nt) : , 
'l:i111,),,, fft( t tQ,uti)tz.L\(zL+t)ttI'

We have
z

ezo : Igin)re L,{tz? - r?),

with

l i) : Ni'Ltt'1 - rj\o, l /) = Nit@,

where N, and N, are normaliz"tion f"atorr. In the weak correlation approximation
we find

TE(2,0\ : (4 Z2e2k51th) (r!) .

From equations (55) and (41), the linewidth /- of the 2+ state is

f x t'2(ZzlA)f*, (56)

where f* is the Weisskopf width (de Shalit and Feshbach 1974, p. 702)' Thus the

width is large relative to the single-particle value, as befits a collective state.

5. Effect of Interactions on Correlations

We saw in Section 3 that the four-particle term given by equation (30) is zero in
the weak correlation approxirnation, i.e. when the parlicles are correlated solely

because of the finiteness of the self-bound system. The validity of this 'zeroth'

approximation needs to be examined in more detail, since the four-particle term in
the exact expression (31) for the energy is multiplied by the factor |(l - 3) relative to
the three-particle term.

Let the pair interactions be characterized by a range a. If one particle is placed

randomly in the system (of radius R) the probability of placing a second particle in
the range of interaction with the first is of order (al R)t. This leads us to expect that,
for example,

so that

(5s)

Ui) -Q''irlo - (rlz)o (o/R)" (s7)
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where (r'jr)o is the expectation valuc calculatcd in the wcak correlation approxima-
tion. A precise fornrulation in terrns of the pair correlation function g(r) gives (c.f'.
equation 32)

371

(ri') :

(4)o is the same expression withg: l. Thus we see that, writing g : l+k-l)
and using equation (32),

(ri') :

(58)

(5e)
z [* arrrln(rr) I, o', rln(r)(rl+rl1 +x,

", = J. dr r rr(r) f or s n(s) G,(r, s) ,

/ fa \2,(J, o'12n(r)) *Ko
where

with

(60)

(61)Gn(r, .s) = l:_: 
dr r{s(r) - r } /,.

We can evaluate G, explicitly for a simple model where g : 0 for r < a and g : I
for r > a (a correlation hole arising out of hard core repulsions):

Gn(r, s) : g, lr-sl > a; (62a)

: -(n*2)- t{(r+s)n+2-lt-"1"*t}, lr-sl < a, r*s < a; (62b)

: -(n+2)- 
t {4'*' - | t-" In*t} , lr-sf < a, r+s > a. (62c)

If we further assume that the density n(r) is a constant rro up to r : R and zero for
r>R.wefind

K,: n3{-1(r+3)-1R3d*r+}(n+4)-tR2d'+4+o(rf+6)i. (63)

Substitution into equation (59) gives

(r1): *Rt{r +(alR)3 +Ho(alR)\, white (r1r)o: €Rt, (64)

where Ho(a/R) indicates terms of higher order in a/R. Thus we have justified the
approximation (57) in detail for a specific case.

We now see that, for this simple model, the total four-body term appearing in the
result (31) is of the order of the three-body term multiplied by A(alR)3. For nuclei
and helium droplets we have R : ro l+, where ro is approximately independent of l.
It is thus plausible that the neglected four-body term is smaller than the three-body
term by the factor (alr)t. For nuclei the core size is of order 0.4fin, wjth
ro r l'2fm ny 3a, while for liquid helium a:2.564, and ro ar 0.85a. Thus we
expect the above approximations to give reasonable results for nuclei but only a
rough estimate for helium microdroplets.
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6. Comparison with Experiment

The weak correlation approxinration gives the formula (39) for the energy LE, of
the 2+ state. For large A, and on the assumption of a fairly sharp surface, this result
simplifies to AE, { 7h2lmR2 (equation 42). If we put R : /ol* with ro : l'2fm
(lrvine 1972), we have for nuclei

LEz S 2001-i MeV. (6s)

This is a large excitation energy for nuclei. For A :208 we have AE 5 5'7 MeV,
while the first 2+ state of 208Pb is at 4'085 MeV. For all other even-€ven nuclei, the

first 2+ state is considerably below the bound (65), although the z{-+ trend is roughly
followed by spherical nuclei.

There are (at least) three possible explanations of the above discrepancy:

(i) correlations may make the four-body term significant,

(ii) the trial wavefunction we have used needs to be improved, or

(iii) the first 2+ excited states of most spherical even-€ven nuclei (except perhaps
20EPb) are not collective rotations ofthe type described by our wavefunction.

Since four-particle correlations are difficult to discuss rigorously, we have given a

heuristic discussion of (i) in the previous section. We can test the explanation (ii) as

follows. Consider, instead of \l'rs, the wavefunction

f (3"j -r1) f (r j)@ .

J

5(r2|z) +2(r3 S1'Y + 11147'25

(66)

This wavefunction is also an eigenstate of angular momerltum with L = 2. We can

calculate the expectation value of the energy in this state in the weak correlation

approximation, as we did before with/: l. We find

tI
AEz ( tn (rn[t)

(67)

where/' denotes dfldr and the expectation values are calculated in the spherical state

@ as before, with r the distance from the centre of mass. We now optimize with
respect tol A short variational calculation gives the following differential equation

to be satisfied by the best./:

f" +(6r- | +n'n-t)f' *(qz +2r-tn'n-t)f -- 0 . (68)

Here n is again the number density, and frzq2 f2m - AEz. For R constant, the regular

solution is/: .-zirlqr) and so./ : const' is a good approximation while qr is small,

i.e. rlR small from the result (42). Thus our trial wavefunction with "f 
: I is good

inside the nucleus.
We can turn the problem around and ask: what density n(r) has./: I as the

optimum solution? From equation (68) we find

t -l r )nn ' : -trQ-,
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so that
n(r) : n(0)exp(-{q'r') * z(0)exp( -7r212R27. (6e)

This describes a typical nuclear density variation fairly well, and gives (rt) : 3R217,
whereas a sharp boundary has (r2) :3R215. We thus see that, on both counts,
./: I gives a suitable trial wavefunction, and it is unlikely that the considerable extra
mathematical complexity of a general /(r) is warranted.

We conclude then that the collective rotational states studied here are unlikely to
be the lowest 2+ excitations of even-even spherical nuclei (except perhaps for 2o8pb,

where the enerry is of the right order; from equation (56), the width comes to about
38/-rn whereas experiment gives approximately 8f* (Lewis r97r, p.266)). This con-
clusion has been reached from first principles.

7. Physical Signfficance of Proposed States

It was conjectured in Paper I that these new states represented surface oscillations,
on the basis of the similarity between the effective moment of inertia,

12 >- |Am((xlr-y?r)(x3o-yrt+))l(x?z+y?r), (70)

and the irrotational moment of inertia of an ellipsoid of constant densiry deformed
along the x axis, rotating about the z axis (Gustafson 1955; Katz 1962), namely

Iz : Am(xz - yz72 l(xz + y2) (71)

(in equation (71) the expectation values are to be taken in the rotating state). However,
the similarity of equation (70) to (71) is misleading, for two reasons: firstly because
(70) is zero in the weak correlation approximation, and secondly because the con-
siderations of the next paragraph point to a different physical interpretation.

We have seen that on breaking translational invariance of the Yro state we get the
wavefunction

Y'ro

This wavefunction has the same form that Feynman (lgs4,lgTz) proposed for excita-
tions in liquid helium, namely v : Fa with.F : Zlfe). The analogy is closer than
this similar form however. Feynman showed that, in the butk, the optimum / is a
plane wave exp(i/c.r). Now the plane wave can be expanded in angular momentunl
eigenfunctions as

: \ (321 - r1)o .

J

a
\-
iIJ

L:O
exp(ikrcos0) : (2L + I )irjr(kr) Pr(cos 0)

and we thus see that the L : 2 component of Feynman's wavefunction is

ljr(kr)pz(cos0)o, e2)

which we showed to be the optimum wavefunction of the type (66). For small k,
the form (72) is just our v!o. Thus the proposed states are finite-system, angular
momentum projections of Feynman's excitations.
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TITE GIAI{A DIPOI,E RESODTANCE

ABStrRAqlr

A:uiarosco5ric caLcuXation sf ttre €nerg'y' of the gia4t di.pole

reson u!-ce is cerrieil orat using the wavefunction proposed by deShalit

and Feshbach. f,he result for the variationaL bound of the exaitation

e,nergy (ob'taincd without any adjusttrble pararreters) is

E-Eo 4 lgO A- Yt MeV r which comBares well

wittr the erpetirnentaL tange A lialt of about 80 A''y! /!feV .

Ttre exBectation val-ue of the €o€!g! is shovrn to be detenrined by

ttre di.fferense€ in ttre meatr square distances between neutfon-neitJtroD.,

ploton-proton aad neutron-proton pairs. The nucleon paLr correlatj.ons

are apFr.oximated by the id,eal Feruri gas eorrelation firnctions;

Couloiqb and other csntributione to the pair eor:relatign fuRctions

have been neglected. rt is shonn, howevarn t*rat tlie quaLitative

varl.ation of the energlr ( E - Ec ^r A-tA ) iE indepe.nde:rt of

the nature of ttre short r,anged correlationg.



2.

I. Introduction.

DeShalit and Feshb""n') have written down an approximate wave-

function V n = q, U for the giant dipote resonance
Lly'

state. Here p is the translationally invariant dipole operator

r\ - o F/. -O \l) = e f tfr-K.*/

= g[NE+ Z>nl
A L P--' tr -"J (1)

= e tTr-a?t*c*
and QC,...A) is the many-body sround state.

The deShalit anil Feshbach wavefunction has some points in common

with the wavefunctions we introduceu 
t't) 

to describe corlective

isoscalar rotational modes, narnely

,{ ={ #t;,'Y!,o,)f(,r,)J Q

These wavefunctions are translationally invariant and have the same

permutation symmetry and parity as the ground state ![ . rn t.r. r)

it is shown that if ![ has L = S = O then 9r. t= an angular momentrm

l. \eigenstat. I LrA) , and further, that when l[ is the ground state

of a system of bose partici-es interating via harmonic pairwise

interactions :

V(r...n) = u:Zf+)t +constant , (3)- 7'i \e/
then (2) with f = 1 is also an exact energy eigenstate, with

eigenvalue

EL = Eo + L(1h''n)l,'
(an erroneous factor of {T in rer. r) has been removed) .

Since (2) makes no distinction between protons and neutron", Qla^

v,. (L even) (2')

describes isoscalar excitations.

(4)
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The isovector analogues of the wavefunctions (21 are obtained

by simply distinguishing between protons and neutrons :

g^ = { Ff i:Y[!0")f,.,..t]$ (s)

For ttrese wavefunctions L can be any integer unlike for the isoscaLar

wavefunctions V.n. , which are zero when L is odd. Note that tJ:e

odd L states have opposite parity to the even L states. It is

straightfonuard to show that if 0 has L = s = o then p/r^ tt an

angular momentum eigenstate I UrH) , and further, that for a

hypottretical mixture of two kinds of bosons interacting via the

harmonic pair potential (3), that g^ with f = I is an energ'y

eigenstate with eigenvalue again given by (4).

In this paper we shall investigate only the simplest of the

isovector wavefunctions, namely the deShalit and Feshbach state'

P.-_ with f = I. In order to guarantee that V^ is a rotational
-ttf

eigenstat" I tr|n) as indicated by the sr:bscripts, we assume that

0 is spherically s'mmetric and ttrat it has (at least approximately)

L=O andS =O as weII as J =O. Sowe are restricting S tobe

the ground state of a non deformed even-even nucleus. Since for

spherical systems the energy cannot depend on the azimuthal quantum

number, the three yl^ states are degenerate. we shall evaluate

particularstateM=O:

zr" $

the energ-y by consid.ering the I

7Ng"=TT
(
{ aside: For deformed nuclei the
C

and the dipole resonance is split into two or three components

depending on whether the nucleus has axial symmetry or not. The

splitting between the modes is, to leading order, proportional to

the deformation, which means a change of less than 308 for most

r - 9\ 'l 1nuclei E"f . ') p.aeoJ . I

g"

(6)

states are no longer degenerate

It is easy to see that has the properties of a nuclear
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because v. has total overlap with the dipole operator it must

dipole vibration. rn particurar, the probability \ V^l' is rargest

when the neutron and proton centres-of-mass are separated, which

implies that f,}re neutron and proton fluids oscillate out of phase'

as was originalJ.y proposed by Goldhaber and reper s) 
' AIso'

exhaust the entire El sum rure, ft"r.t) p'i361 ' This properLy

implies that W is an approximate nuclear wavefunction (it would- -ro
be almost exact if there were no velocity dependent or charge exchange

nucl-ear forces), since the giant dipole resonance in medium to large

nuclei is kncwn experimentally to exhaust about one half of the EL

sun rule and is even less for the light nuclei. However, since we

neglect charge exchange and velocity dependent interactions in order

to evaluate the energy, the wavefunction (6) is the appropriate

wavefunction to use. Another approximation pointed out by deshalit

and Feshbach is that the real dipole resonance is particl-e unstable

whereas g" is a bound state.
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2. A General expression for the energy.

Consider 9=F0 ,where O istheexactgroundstate

of ttre nucleus, i.€.

H0 = E"q

ZN
F =ZZzr. (B)

Plr I

Then assuming ttrat the potential energry commutes with f (i.e. neglecting

charge exchange and velocity dependent interactions), the excitation

energy is given by L.t. t.t".t'")l

AE=F-E L h'i<SEP'> (e)'- bo Iil F (r')
The angUlar brackets denote an expectation value taken in the

ground state :

{S) = Sdr....drB0' 
,\- ' Sdr....dA0'

(10)

where the integral sign includes a sum over spin variables. The

expression (9) ignores the difference between tJre proton and neutron

masses, but not the differences in the interactions'

In the nunerator of (9) we have

(Vtf)t= 
{ N" when jdenotesaproton
| -"1
I t' when j denotes a neutron
L

so ttrat

(rr)

In ttre denoninator of (9) , we have

(rt) = Nz(=il +(u-r)zs^z*", +lz-t)zonze,n

(71

Using the identities

+ (N-r)(z-r) zsnz.,^,)
(12 )
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2.z6zpn, = zl^ + Zln, - z:^,

Izrnzr,n = z;r*7i,^

2 Z?rzynt = Zi^, * Zi,^

we find

2.

o??t

-4r'-z:^,

1rr)( r') = fu = I = 
( 2"i.,) 

: Xj?:I", +zpr-rzi") )
By restricting 0 to be ttre ground state of a non deformed

even-even nucleUs we can assume ttrat the ground state neutrOn and

proton dlistrijcutions are separately spherically syrnnetric, so ttrat

each (=.i) can be replaced by Vl(r.?) . rhe expression (9)

ttren gives

AE (14)

F (*,) * f(ni,) -t(*1, +['1 -rq:>
! 3tfi
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3. A4 arrproximation that must be avoided'

The evaluation of the expression (14) would be very simple if'

having first obtained the correct permutation symmetry with the

wavefunction (6), we could use the approximation in which the protons

and neutrons are regarded as indistinguishable. In particular, the

last term in the denominator would be zero :

< rfi, * Eel -1il) --l(r',.L, *f,'Fe,

=O
where the last line follows when the correlations between each of the

three types of pairs of particles are assumed to be identical. For

example, using the weak correlation apProximation introduced in

t.r. r) , where all the correlations in the nucleus are neglected

apart from those arising out of the finiteness of ttre system, we have

;*j

assuming the gror:nd state centre of masses to be at the origin

(i.e. Zq = g ), so that in thj.s case the result (15) holds for

-f Ir.r") (rs)

( E"!.; )o = ( r,X
:o

any radial densities T\"(r) and rn0(r) of ttre neutron and proton

fluids. However, in the approximation (15), the energy would be

AeL3LAE = Iffrr) = ifr.
(taking a step function density with ttre same radius R for both the

neutrons and protons). with Q= l'1 A% {t (16) gives

Ag * Jl A-t/" lteV , which is rower than the

experimentar giant dipore energry t 8o A- 
rn 

lae V ) by a

factor of about A'n . Thus the approximation (I5) leads to a

completely unsatisfactory resuLt. The physical reason for this will

(16)



8.

be shown to be, that requiring number conservation to hold for the

neutrons and protons separately, implies a significant difference

between the expectation value { f}"^) and the expectation

- /-r\ ---r ./t-a\values \ tlr,n, / anq \ t0P, /
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Effect of distinguishing between neutrons and protons'

physicalry we expect ( t".i * E,t -f [i > to be

greaterttranzerobecauseof(i)thecorrelationholebetweenlike

fermions, and (ii) ttre coulomb repulsion between protons' To obtain

a reasonable approximation for the value of AE ' we shall include

tlre effect of (i) by using the spin average of the pair correlation
r

functions 9. *d 9- for like fermions l-chapter 2' eqns 5'10 and
.+

5.13 of ref . ') I :

I =tg- *i3*
which gives

g(r.)

where i ," the sphericaL Bessel function of order on"' and h6
9l

is the Fermi wavenurnber. The functions t. have been derived for

burk systems, wher" d = 3T1t"u*uer density) ' we shall not attempt

here to calculate tf.e exact Fermi correlations irr nuclei' Further'

weshallassumeauniformdensityofboththeneutronandproton

fluids up to a common cutoff radius R (the generalization to

seParatecutoffradiiissimplebutanycorrectionsinvolvedare

smaller than the effect of assuming a step function density in the

first place). So

(17)

(L8)( n, e)' =l $nt

ry

for neutrons

for protons

Denoting the mean square separation of like fermions

r- - -3\l
we use (15) to obtain L cf. egn' 58 of tet' 

J J

(Ie)

= r-+t JHil]'

sla',; sin,; \::ii r grr)

(r> =

by ( r."')
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where R is defined by (18). Since we are onLy including Fermi pair

correlations rhe value of (ti) is given by (19) with I = 1, i'e'

./ r-r \ ,/ rt \ = -6- Rt (20)
<.16/ = \t?n/o F"

The triple integrals in (L9) can be reduced to a sinqle one

? 6\'l
f- see eqns. 9, 1I, and 13 of ref ' J J '

r2R
( fr') = 5"i1. r * gcrl Y(Zfo) 1zI)

Tii"'gcr) V('/rR\

where Vtx) =l-+*"t*t
on substituting from (17) and defining o{=2kiR ' we have

-r '-#5jdrv^tiurtYtrl] 
(22)(r'i) = goti 

*$[ayj:,,r,ycy) I

no^ro( is a large parameter (e.g. Crn = L7'8 for N = 100)' and so when

calculating the energy it is sufficient to include terms to order C-$

only. This is strai-ghtfon'rard but lengthy, so we will give just two

key integrars and ttre final resurt. The integrur= "t)

are 
Si-:ir, = %

and

[?"-:g) = + dtrr

w. ""r"or..]

Thus ttre neutron-neutron and proton-proton mean square seParations

are given bY, using (18)

(r;j) = f n'f , * rBT o(-3 -f'oE + srfifl 4-' * oet-')]

(q".,) =So'{ t** -o.s.?N-vs +o(N-"',} 
1zr)

(qi) = $*"{ | ** -o'5-r 7-''/r *o(t-lJ
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- o's-7(N-rz'" *-'u))A
NZ

From (20) 
"t 

6 (23) we have

(6* *rpi-2fi) =*o"t

terms in the denominator

are left with

of the energ:l/ (eqn. (I411
and so the leading

cancel exactlY. We

AEL (2s)

= IOO n y" 
tv\eV.

where we have usecl R = l'2Avtfh. This result is roughly 2Oz

higher than the experimental value for ttre medium to large nuclei'

of about 8o A Yt frtrv 
o) 

.

Atfirstsightitmightseemremarkabtethatsuchagoodresult

(especially when compared with (16) ) is obtained by including only

those pair correlations due to Fermi statistics, and even ttren we

used the infinite system pair correlation function. In particular,

the expression (24't is crucial, since it is because the term +O^g

cancels the dominant part ", * lZlEi> * nf (f;i'l

in the denominator of (14), that tlle variation of AE with nucleon

number changes from A''tt to A''lt . This cancellation follows

from the resuks (20) and (23) ror (l?rrt) , (U.1,) and (ari,)

we will now show that regardless of the nature of the short ranged

correlations, that the requirement of number conservation will lead

to expressions of the form (20) and (23) and hence the result

AE - A-t/l . First of a'l, what is the requirement of

nuniber conservation for two-particle expectation values tike (19) ?

By insisting that the neutrons and protons be separately conserved'

(i.e. neglecting charge exchange processes), we have three different

pair densities

(241

t. (F^,[],) , nr( I;,$,) , 1\"($,R) 126)
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where "y\r(r,, r") dS dJ:

finding particle one in a

particle two in a volume

is defined as the ProbabilitY

vofume ft] about fi together with

ilq about E rhat is,

of

Ifq^4r, n"{E^,f,,) = N(N-t)

= VG1\

= NzI{'r&.\(q,q)

Defining generalized pair correlation functions by

Trr(5,I,) = htr,)n(ri) 9tl,r^)

5 & d[, \(ro,[,)

(27a)

(27b1

(27cl

(28)

wtrere'Yl(r) is the sinslet density (i.e. Sdf"fftf;) = N , S{rat1(G)-- Z ),

we can write the exact expression for (f^t) as (cf . (I9))

(r,i) :. S dr rrt,:l !dr,rt';tL" (gtc,E)-l)] E'

Sdr rurl 5&n(ri)tr "(g(f,,il-l)-l
-aBecause ff is maximum for largest seParations, where (S-1) tends

to zero, the correction terms coming from (g-I) in the numerator are

of higher order than tlre terms coming from (S-1) in the denominator'

This was proved above for the particular pair correlation function

(17), where the difference between the correction terms is of order

A-,rr t see arso ,"t. 3) , where rhe simple model 9 = o for

l-<O and g = I for f>C, Ied to a difference between the two

correction terms of order A-t/t .l So tf:e first two terms of an

expansion of (29) t arising from the exact short ranged correlations,

are given by

5 dr,t trtIdLl'tn) [gtr,E)-il

(29l-

.]( rl)" I(r^:) = l-
S{q ttt;t 5 {qntn)

(30)
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Uelng the r,equ{tregrent of nu$Eer consierwitl,'on, elq}Eessed blt (2?} and

(38), rte hav€

(*.,) = {t,} [, * # * otN-'4]1

(31)

otA:'*4

$o (20) witle (?3) is a partieul'ar exarrple of ttre'general result

(31), wh.j,eh dbeE not depend on ttre nat'ure of, ttre short tdl'rg€d

correlatio4,€, bllt netber is a aanifestetion 'of numher egi15ery,ation'

[bat ie, the expressilon (X4 fer the v,arlational erret'gf is rlgorouSllr

proportionat * l/R and a,ot ftt as .tt appe4rs to be from looking

at i't.

(ti;,) =(q;l)[ l*! "o(z{
('ri) =('*\tr +
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5. Sunmary and conclusions.

We have shown ttrat the deShalit and Feshbach wavefunction qives

a good value for the giant dipole resonElnce energY. This calculation

was carried out from first principles, i.e. with no adjustable

parameters, but we have neglected velocity dependent and charge

exchange forces. By including only those pair correlations due to

Fermi staristics we obtained AE { I OO 6'Vt lv\eV , which

is in good agreement with experiment. Justification for assuming

that ttre correlations due to Fermi statistics play a dominant role

in the microscopic description of isovector modes, like ttre giant

dipole state, comes from the liquid drop (or hydrodynamic) model

f="" t.r.9) p.670, and t.f . ') I In ttris very successful

phenomenological description of the giant dipol-e oscillation, the

potential energy is taken to be the restoring force between t]le

neutron and proton fluids, which is determined by tj:e symmetry energy

in tJ.e Weizs'icker mass formula. on page 128 of rer. ) it is shown

ttrat Fermi statistics, i.e. the Pauli Principle' accounts for about

one half of the observed. symmetry energv. llowever, it is possible

ttrat the good agreement with experiment of our calculation based on

ttre approximate pair correlation function (L7), is partly due to the

correct normalization involved in (I9). That is' (17) does not

satisfy exactly tfie nurnlcer conservation reguirement for a finite

nucleus, but by defining the expectation values as in (19) we have

imposed the condition ( r)= | , which may remove a sigmificant

anount of the erxor involved in (17) .
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Theory of surface excitations of liquid helium four

J.R. Henderson and J. Lekner

Physics Department' Victoria UniversitY, Wellington,
New Zealand.

Short Title: Sr:rfae er<citations of heliun four.
Classification nrs: 7.720t 7.820

ABSTRACT

The wavefunction proposed by Chang and Cohen

for surface excitations of a quantum fluid is used

to calculate the excitation energy €(h) . A general

relation € (h) 4 +iVt^ S*Cn) is obtained, where
af
5'(ttr. surface structure factor) is determined in

terms of the density profile and the pair correlation

function. If one assumes that the liquid has

bulk properties right up to the surface, the theory

leads risorously to €(h) = Tt-ficAAVgth) *conslar.t]

in the long wavelength Limit. This expression is in

qualitative agreement (for intermediate values of k)

with the semiclassical theory of Edwards, Eckardt and

Gasparini, and with the numerical work of Chang and

Cohen. We discuss the proposal that the inclusion

in the ground state of correlations due to the zeto

point motion of the surface modes would lead to the

classical dispersion reration e- t/?
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1. INTRODUCTION

'Chang and Cohen

wavefunction for the
a19tle , namely

V = Ee

(1975) have ProPosed a manY-bodY

surface excitations of liquid

; h.rr 
f(2,) il, (1)

.l.

where a is the ground state wavefunction of the liquid

with a free surface in the Xy p1a'ne, and h is

paralteltothesurface.ChangandCohendeducetheform
of f in the smal1 h lirnit by the following argument:

Feynman (1954 , :-g72) showed that large-scale motion of

aquantumfluidisdescribedbythewavefunction

exp[;f s(ri)] 0 (2',)

where the velocitY of the motion is

u(tr)=*ReVs(il (3)

Thus (t/n,) S is rhe velocity potential of the motion. The

classical velocity potential for a surface wave is

lurf(t!.g*hz) , where I is proportional to the

amplitude. Thus a finite amplitude surface wave

would be described by the wavefunction

The wavefunction of a single surface excitation is

identified by chang and cohen as the term in (4)

linear i" tl, , namelY

exp [;'l T exp(ch q *ut,)] Q (4)

V = I e*t(;h'q +hz;) Q (s)
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which has rhe form (1) with ft=) = gh= E is

orthogonal t" Q because it has a different eigenvalue

of momentum parallel to the surfacer so (from the

variational principle) the energy of a surface excitation

is given by

c I v\ L 5ar. . . du t?*(u-E,)_V
ELf<t 

- (6)

Just as Feynmants wavefunction for phonons is expected

to give exactly the energy hck in the long wavelength

Iimitr so we may expect the small h limit of (5) to

be h\r[h) , where the f requency is given by the classical

dispersion relation for capillary waves'

w(h) = (#)"h* , (7)

where O- i-s the surface tension, t\ the number density
ofc

and'm the massnhelium atom.

Chang and Cohen use the wavefunction (1) with

{t4=g", and also with fiz) determined by an integro-

differential equation derived from the variation principle,

the two methods being in numerical agreement. They find

that the optinum value of | (treated as a variational

parameter) differs somewhat from k , though for k*O'g"n''

the effect on the excitation energy of replacing 7. by

h is negligible.

we shatl obtain a general reduction of the excitation

energy ro the form *ih'/lmSt6 for the wavefunction

(l), where the surface structure factor St i" determined

as a three-fold integral dependent on the pair correlation

function and the density. we then'specialize to the
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wavefunction (5), and derive an exPression for €(k)

on the assumption that the J-iquid has bulk properties

right up to the surface. This leads (without any numerical

vrork) to a dispersion relation which is approximately

linear, except at very small h where e d h/log h't .

chang and cohen expecL the cLassical dlispersion relation

e ,., h./" to hol_d when the correlations due to the

zero-point rnotion of the surface excitations are included

in the ground state 0 . This proposition is discussed in

the Last section'
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2. AN EXACT EXPRESSION FOR THE EXCITATTON ENERGY

we shall evaluate the expectation vaLue of the exci-

tation energy in the state p given by (1) I later

specializing to (5). It is convenient to write 9=trQ

with. N

F = ZeiEEft=,)
tr=r Y - (8)

From (6) we have, using H 0 = E, q
ri-

€[n) L fi: N
Itn

the expectation

N ( tqE t')
( t rtl)
values are taken in the groundwhere

state:
5 ar..,dN A 0'
SJr.. .dt.r 0"

To keep the analogy with bulk phonons

and.

€tn) L

where S(h) is the

(9) in the form

(10)

for which fi=5gi!'r'
.i

(r1)

bulk structure factorr w€ write

(e)

(12)r-tvt L htht=
E TR/

S*.un be called the surface structure factor'

(8) we find

N <lv,Fl') = 5d, nr'l[r*"fi,r -(Varll (r3)

where

h(r) = N Sdr...Jnr 0'
Sat. . .dtr 0^

(14)
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is the number densitY' and

('n ) = $arruill,r + Jdrdr n(r,r) exdb.l)tt )tt S (rs)

where

1re )h (r,r) = ! (T-r) S dr. . du d'ffi
is the pair density. Thus the surface structure factor

is given by

nt. = hr<tFlr>s(h) =iiffi
= Sdr"r,trt $lr,t * 5 drdr ntr,rl eib'5'fgftzr) (r.,\\r'

For a fluid with a surface in the x) planer vte can

write (except near the waLls of the container)

T1tt,r) = "I1(2,)h(zr) I (1,7,2,r7a) (18)

where q is a generalized pair correlation function.

we take the side walls of the container to be at x=0

and L and y=g and L, and the liquid surface to be at or

near z=0, ror p to represent a surface wave, f C=)

must go to zero d.eep inside the liquid, so we can extend

the Z integrations to -oo . Because of the number density

factors, the Z integrations can also be extended to -|.c'o

provided that wfren {[a,1 is taken to grow exponentially

as ek= , then h must be less than

h. = 3 rTFzr)Y' ,\' l'oe A-' (re)

since the density goes to zeto asymptotically as
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exp[-]hcz I (Saam' ]971) ' Thus we have using (I8),

5*m) = 5 ler, n tz,) f tz, ) * $',ne,) { odF^,J fe;ft=,,',1
(ro)

r I:,, !: r, Fr.$ y, .tn' !" g(ro,',,,",) ( 21)

(221

1zr )

f (4=,) = rr[i-t,-if[it (r- *)c".,h,n[g(t',=,=';! t"r

where .f'= Y'*Yt - ri-zf, .

zero faster than \it." I-o-+oo ,

in the upper limits and omit

Further, since 3 and Cos[g

Provided t-l goes to

we can rePlace L bY a

the x/t- and Y/t- terms.

are even in x and Y ,

where

f(=r=") =

since h is ln the xy Plane, and

5;-,5itsi',hx,"h(lx,'l) = o t
oo

we can reprace exp(;L.I- ) by "o"b'E" in 1zt)'

Further, the orthogonality of the excited state p

to the ground state I implies(f)=Q and thus

51", [ir, et b'q - o
(which is satisfied for example by Periodic boundary con-

ditions for which hr rh, = t l17L ,!Wr-r"' )' This

arlows us to t.pli;; 3 bv 3-l in 1zr)' A further

reduction follows4t'he result (Lekner 1971)

rL (L ., 'L
[i*, \,i*.h 1,,,,t) = l. tdt(r- i)hc"t QAl

Incorporating these three steps in (2I) l-eads to
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we can write

T(=,,=,)= 5l-[i, .o,h* [g 
(r,2,,2,)-rl

.@ -(fr
= S"+ltf (e4,2.,)-[[a6 tot[n;c"s(d-41 Q6)

= ln S*yU,glqtr z,z,)-l

= rn t?'.f, thJfi)l$Lv=,,=J-i]
lZnl

Wehavethus_"r,o'''thattheexcitationenergyisgiven
by €(h) 4 fftt/tm 5"&) ,

=) e'

yis
the

fdz tc
he energ

inate of
case t

coord

(rt1

manifestlY indePendent of

surface.

where

;i;; = S'nos{L, * rn SL n.'u{rz,)W,^1a1{e)iEryq[o'rr!

@"ot*br +w^(dtla=Y1

Theexcitationenergyisthereforerealandindependent

of the surface area (or indeed of all macroscopic dimensions

of the system). The above expression is an improvement

of that obtained by Chang and Cohen (eqn' 9) in two

ways:afour-foldintegralhasbeenreducedtoathree-
fold integral, and 3 has been replaced Uy 3-l

In the remainder of this paper we shall take

f =go.r which (as discussed in the introduction).has

direct theoretical connection with classieal" surface waves'

For this f , the excitation energy is given by (12) with

X*= l+o( , where

r*, hz, f1 r@

o(k) : trr gz,n.-ss JJrzrner) r""\dlfl;(bP)[9(t:z,,rr)-tl

In this
the Z
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3. AN APPROXIMATE REDUCTION

Toproceedfurtherweshallapproximatethedensity
and pair correlation function as followsl

f T\o :z<o
r1(z) = { (zel

I o z'>o

g(E z,rze) = 9"( t) ) (3 0)

where T\o and 9" are the density and the pa'd'r correlation

function in the bulk Iiquid. These approximations together

amounttoignoringthestructureoftheliquid-vacuum
interface, or (equivalently) to assuming that knowledge

ofthebulkpropertiesissufficienttodeterminethe
dispersion relation for surface excitatiollS. we shall

showrigorouslythatunsatisfactoryresultscomefrom
these assumPtions.

Using the resul-t
f e L_ foo L_ 0 .

)o d=, do=' )" t=, e-*=' fi( lz'.1) (31)

= F' S?= e- 
h- 

h t=y
o

- prr" $= u* Ji' rI(nm-*ltgS.l-il (321

= L-Trn, (Tr.t$'l-l [i= dh= I (hJiEF)

In the aPPendix we show that

[], e-' qtry*) : y l' - Ita* Y-' T(.)] , (33)

and the approximations (29't and (30) ' we find

"([h) = rflrl\e[T=uo= Wd(V)t9"(r)-[
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wtri.eh €nables us to rer*rite '(32! a's

. f* F -r .h'r I
'{(h) = /,.rr'tlo \dr r,l91')-Ult - } 

al r-' d(x) j

= -\ - utn, [I'r'ftJ')-il$-"' I(x) , 

ttn'

Where we hav,e ttg€d the result that the bulk struCtur'e

f,aetor 1ao r -r sinhr:
SCh) = I + rrrrho )odrr" [-9"[r)-t I -5;

goes tO zpro as h-+ O* . The excitation ene.rgy

has thrrs been reducedl to i

ttutL t-ht/ rP -, rlcr
h,rn) = #/*n,[i",r.[-g5't]!ii- ,T,0] 1rs)
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4. THE LONG WAVELENGTH LIIVIIT

Theaslrmptoticformofthebulkpaircorrelation

function is known to be (see for example Feenberg

1970r p. 589)

3"- l- *ffir-'r (35)

Let us assume that this is attained for t->Or t where

o would typically be several atomic, diameters (say

o =loA ). Then we can rewrite the ilouble integral

in (35) as the sum of a short-range and a long-range

contribution:

for small

and the

becomes

€(h) !

(37)

f'rk)

7ea e - rhr
J. a" * 

[,r - gJil] \d' *r f, (x)

= S:dr r, [r- !.trl [i'- --' T t") ,@ r hr
* \/tn^\?nc \^drft 5"4,

The last double integral is egual to
r rh4 r@t \.d* x-'q(x) + h Ioi x x-a f c*) t

of which the second term varies as -hllho

hq. usins d=X(Il-I'), we find

long wavelength form of the excitation energy

(from (35) ).

tchrl - \ -F"41 rof (fr) *l -y) * 4*r'e Ia",[- tLd]

-Y

[1-"'Tr,) * y [,;'x-:d(x) = $h-q$) -!q(y) * -]L (pt*'{E)
The precise form of the logarithmic variation

is given by (Abramowitz and Stegun 1964, p. 48I)
r€
Jrd'x"I(^) = IrtS -V *(t-ry-'T(Y))

where Y=.5'l-7,..is Eulerrs constant. Thus the limiting

form of (37) is

$o* [ t,g (ft)-] -rJ *!h(":'.'[-1"('r] + 0(ha)",
lrlr''I\ovnr I

(38)
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our assumptions (29) and. (30) thus lead to the

dispersion relation tt(h) = Tc.VVg(fr\ at very small

hO. However, for moderate h, (38) predicts an aLmost

linear, phonon-like, dispersion relation. To estimate

the relative size of the terms in (38) ' one can take

qFd (ttre hard core diameter) and $-o fot r<d.

Then the denominator becomes

I (.
r'-t ,n (fr) * 3/t -YJ + 5 e+te d'-

with d=I6Aana h measured in A -t, these terms have the

numerical magnitude

+t logh-' + o'e 6J -F l'3 6

and thus the logarithmic term becomes dominant only

when h f ld} A-t. rf we ignore the long-range contributions

altogether, the excitation energy becomes E cJ hch/2'4 
'

which is in qrralitative agreement with Chang and Cohenr

whose numerical- results for O.1ff3lq,z-tA-t4t" cJ-osely

approxirnated by ltck/Z.0, and with the semiclassical

results of Edwards, Eckardt and Gasparini (L974) in

the resicn o .5 At € h g ,'s A-' .
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5. DISCUSSION

Wehaveseenthatifthebulkpropertiesofliquid
helium are assumed to hold right up to the surface,

the wavefunction (5) gives an excitation energy which

is not

in the long-wavelength limit, but lies cl-oser to a

phonon-like dispersion relation. chang and cohen

assert that the correct l-imiting behaviour (39) will

be obtained when one includes in the ground state

the correlations due to the zero-point motion of the

surface excitations. Their assertion is made on the

basis of the analogy with bulk excitations, where the

long-range behaviour or 3Do-t is determined by the

existence of phonon excitations and the Feynman rel-ation

(1t1 , vrhich implies that 5(h)-- \W^, as h'* o ' rn

the surface case, (39) and (12) similarJ-y imply

6tul = h(fl*)u"h*

S.th) -- *(h)vzorrz

(3e)

(4 o)

One can obtain this result by using our approximations

(29) and (30) and postulating the asymptotic behaviour

of the pair correlation function to be

Qtr) r-+f+)'r-a/t (4r1J' ' 8 f(yi) \frno?n /

instead of (36). We are not suggesting that (41) is

correct, but it gives a ilue as to what the exponent

in the asymptotic value of I 
(a, zvZt) - I might be
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when the effect of surface excitations is included

in the ground state. In fact (4f) must be too simple'

since we know thaL near the surface I is a function

of z, and za as well as of ||^ . Also, the expression

for the zero-point motion correlations in the wavefunction

written down by Chang and Cohen (their eqns (261 and

(2211 is a function of the variabres fin =Jffi
and Z i+7)

In the case of bulk excitations it was possible to

go directly from Sh)-- hh/fr. to the aslzmptotic form

of 9-l . The surface case is more complicated: (40)

cannot be inverted to obtain the asymptotic form of

9(t;z,zr)-l without knowledge of the densitv profile'

since (28) involvesfr[z) as weII "" 3 . The complete

analysis would thus have to run as follows (i) obtain

the contribution of the zero-point motion of the surface

excitations to the ground state wavefunction.

(ii) evaluate h(z) and !(5zrzr1 for this wavefunction.

(iii) evaluate S"tU) from (28) and check that it has

the correct limiting form (40). This prograrnme has

been started by Chang and Cohen (step (i) ) , but will
require a lot of anal-ytical work to complete. fn
particular, the statistical mechanics involved in

step (ii) is formidable.
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APPENDIX

We first obtained the result (33) (which apPears

to be new) in the forn

Cv, -X -r /r-\ - \ roo

Jo dx e T. (p-""1 = y \d, x-' f cx; (Ar)
v

thc rnteq.q'.dot {la lcf t
by expanaing^afid ;*r,id the double series. In the shorter

proof which folLows we take the Laplace transform

ofbothsidesrfollowingthesuggestionofDrGraeme
Wake. The right side becomes

SIav e 'YrI}- x-'f f)

= - jf F-'!i-r' (r- dh-)To)

where we have used the resuLt (Watson 1944' p' 386)

-o0
Sd-x-'e-P*f[t) : tfFT -P
o

(A2)

we use the Bessel- formulaOn the left side of (A1)

(Watson, P. 2I)

U(fiy*) = jrr

to obtain

+ \i,l .iYsin/
Jn 11

Ilp-r
^Xtos 

/ +Lysi"(

v(l_ -sg)f -e 
r-

cos f
isThe Laplace

J- (*a /
Jr1- -Y1-

transform of

I

l-
1a:)

(A3)

( p- i srnl) 1p - isinl -r- I - tosP)

(A4)



On

to

changing to

the contoqr

O,f the three Xroles, two

and one inside for p ) O

we fin (.45) reduces to

2

the variable Z=?Q this transfor,:ns

integral (around the unlt sl'rele)

(A5l

Lie outsid,e the'unlt cirele

. Evaluating the residue

(A2l .
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SURFACE TENSION AND ENERGY OF A CLASSICAL LIQUID-VAPOUR

INTERFACE

by J. LEKNER and J.R. HENDERSON

physics Department, Victoria University, Wellington,

New Zealand.

ABSTRACT

Rigorous general expressions for the surface tension f

and the surface energy per unit area € are derived in

the form of three-fold integrals. In the approximation

t*(f ,t) = n(2,)h(er;3(r*F) '" obtain the

following resulLs: (i) Both O- and € are proportional to

(1t -T\o;^. (ii) The expressions for T and € are formally

reduced to a single integral, with integrands determined

in terms of the density profiJ-e ntz) . (iii) Explicit

expressions are given for an exponential density variation.

(iv) In the limit of a density variation which is slow on

the scale of the molecular diameterr w€ derive the

senerat expressions F = A(r\r-nof/X , € = $(nr-n,r)tl
from the microscopic theory ( I i" a measure of the surface

thickness). The sane forms for f and € follow from

(iii), with explicit expressions for A and B. These forms

for t' and € are shown to be very good approximations

even well away from the critical point. It is argued

that the critical power laws have the sane range of validity.

(V) ffre critical exponents of A and B are determinedt that

for A agreeing with the result of Fisk & Widom. (vi) The

surface thickness is determined for Ar', f(r and Xg

near their triple point,srusing our theory for d and



(it)

experimental data on the bulk energy of the liquids.

The results are in excellent agreement with other

estimates.

Similar results are obtained with the direct correlation

function expression for the surface tension: the general

expression is reduced to a three-fold integral, and

resul-ts analogous to (i) through (iv) are obt'ained in the

approximation C(t,E) = C(Errf,) . The equivarence of

ttre C(f,,S) and !(frf,) formulations fot f is proved

in the low density limit.
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I. SUMMARY OF RESULTS

By using the thermodynamic definition

of surface tension, and by extracting that

energy which is proportional Lo the surface

for a liquid-vapour interface lying in the

assuming the total potential energy has the

tl- :- (a%Ar,t
part of the total

arear w€ obtain,

xy plane, and
I I *tll-

form Wf,.n)=??rrftJ ,C'J '

and

(The reason for the guotation rnarks

In the approximation

we derive from

f= F
and

'tr' = T- [.]=,[lr[l,r^(r,z,,a) # (.'- j""".)

'€ 
. - Tr fi=,[=, F; n (t 4,*)rtr(r)

(25)

(2e)

is explained in the text).

and q, are determined in terms

exponential densitY variation

l), these formulae give (with r

-4rh (77)

h.( rrzrrzr) : nF.)n(er)3(qE)

(25) and (29) the exPressions

1e
n,,^("Ll(r n) *? Ltr] + Pdq * P,.,1

(rt.rt!*r$"$]]Rn-^J5" *{i"-I.[s-2S

q- (s0)

(5e)

of the

du
= O=-"clr

e =Jr-(rre-nJ$rgtr;n)r w.r[-]rr + 
!rtr) 

* 1{')l
where the functions Pi

density n(z) . For an

(characteristic length

and h = rgu)

0r=
and

€ = {(n -o,f[i.r*'r[t^*r[a - cvYr-til] (78)



e ! -TOr-nof ,l J3" 
16"'1 '

A comparison of integrands shows that (80) and (81) are good

approximations to (77',) and (78) even when tr equals the core

diameter. An alternative treatment for slow1y varying density'

based on a Taylor expansion of the density' gives

6= A(tr^-n"Y/X (84)

and e = B(v'r-n-f A (e0)

those of (80) and (81)
where the coefficients A and B reduce to

for an exponential density variation'

Inthelinittr-rOtheexpressionsforoandeare
to be thermodynamically consistent (i.e. to satisfy

e = o -*$fl for a dilute gas - wall interface' The

dynamic relation between o and e I'eads to an equation

their critical exponent" /Orf'; namely

fit = A-l//
This result is also derived by an extension of an argument

due to widom. The critical exponents *lrPtri at^4V

2..

(80)

( 81)

thermo-

for

(e7l

(ro4)

xe is found from

the molecular

agreement with

When tr is

o{ ArBrf,ta'*4 ^{;

x'= f, -zf

simplify to

F("t rt

are shown to satisfY

(103) ; Ft= f,-l

J,arge these formulae

= S(n,-r,f * [i€

The surface thickness (= 2l) of Arr Kr and
(8I) and,

-<-experamencar data to be slightly larger than

diameter near the triple point, in excellent

the Egelstaff and Widom estimate.
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Finally,simi}arresultsareobtainedusingthedirect
correlation function theory for the surface tension' The

general expression corresponding to (251 is

a. =$r $i=, ffrlf" #P l[:,'c(r; 2.1z.1) (r'-zo') (110)

when the direct correlation function is approximated by c(rrlrfi)

Qr : Er[i".-ccqn')!ia,H) 5*l:g" (r.-z.i) r,,,r

For an exponential density variationt

n *gr r";ir;.,tt4';;;' ; r{'^(L* rri -S[ (rls)

which becomes . rso
q, = gT0U-n,)"* Ij"rbc(r; fr'l (116)
-3 g

in the targe tr limit. corresponding to (84) we show

that, for slowly varying density, d; 't A.[t -n')[ '

The pair correlation and the direct correlation theories

areprovedtobeequivalenttothelowestorderin
density, but the question of their equivalence in general"

is left oPen.
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2. GENERAT, EXPRESSIONS FOR SURFACE TENSION AND SURFACE ENERGY'

Basically, there are two definitions of surface tension'

one is the mechanical definition of o as the stress transmitted

across a strip of unit width normal to the interface, and the

other is the thermodynamic definition as the isothermal change

in the Helmholtz free energy during the formation (at constant

volume) of a unit area of surface. The Kirkwood and Buff tl ]

general treatment used the mechanical definition, and their

result wasshown to be obtainable from the thermodynamic definit-

ion by Buff tl] and Maclellan t3]. These treatments arrive

at a general expression for o as a four-fold integral' We wilt

give a simple derivation using the thermodynamic definition of o

and based on the deformation method of Harasima t{r] and Toda t5].

This method is mathematically equivalent to that used by Buff and

Maclellan, but is physically more transparent. we reduce the

general expression for o to a three-fold integral, and' i-n add'ition

obtain a qeneral three-fold integral expression for the surface

energy e. (For some interesting alternative formulations of

surface tension theory' see [ 6rz1 8 ]l

trtg. l.
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From now on we consider a two phase classical system of

N atoms inside the box of figure I. In the cabulation of o

and e $re assume that the only effect of gravity is to create

a flat liquid-vaPour interface.

(Qr"vitational pressure gradients can be

temperatures such that ln -fy4" is greater

than about 10-5i see Kadanoff et al t?] ) 1.4^)

To change the area of the liquid-vapour interface without

changing the total volume or the volume of either phaser w€

expand the box from L, to Lr (1+E) in the x-d'irection, and' contract

it from L, to Lr(1+E1-t in the z-direction, leaving L, unchanged'

The deformation is performed isothermalty. The increase in the

interface area is

Aa : L,Lr(r*g)-L,L^ (1)

From the thermodynamic definition of surface tensiont o is

contained within

'tro
AA+o

AF
AA

(21

where AF is the increase in the Helmholtz free energy. The

reason for the Lrverted commas around O is that AF also contains

terms due to the change in the liquid-wal} and vapour-wall

interfacial areas, and thus gives more than just the surface free

energy of the liquid-vapour interface, we will continue to use

this notation throughout the paper, finally doing away with the

inverted conmas when we have identified and discarded all the

parts of AF which are not true interface terms. This procedure

is required by the mathematical rigour which this subject demands

(specifically by the need to keep the system under considerat'ion

4;Periw.u^t.rlfu

neglectedlfor all



finite so that interchange of order of integrat,ion can be

done rrigorously) .

5..

(s)

(7)

The free energy of the original system is given

uy ( ro f , %.a, ptobtc+ 3:)

€xp &\= #(*^)%fJ; !;:" e*Pt

where U is total potential energy, and the temperature T is

given the dimension of energy. The free energy of the deformed

system is given bY

*,. pt+) = fr (H-.)*ti:'" l"a=IF69=),n,
If we introduce the scaled coordinates

Xt: ft , J'-J , Z':z(r*J)

=t)
U(x,...

(3)

into (4), then integrations in the new coordinates have the same

limits as in (3). The Jacobian of this change of variables is

unityr so

e*F(+) =

If we now set

t /sr\t*
N! \rrrt'/

F'=F*Al

(q
),a-i . f3le.{-grfi

F

['i*,.. . S.:;=" au erhbk) : (au) 
(B)

Slax, ... .[jh=* exF L Vr)
(The last equality defines expectation value brackets).

Note that the change in the free energy produced by this

isothermal, constant volume deformation has the aPPearance of

a change in the total energy of the system (the kinetic energy

U (x,(r+i).-. . z.(r+11') : Uh,"'e") r Au ,
then to lowest

Ar=.
order
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is isotropic in classical fluids, and, is constant in

isothermal deformationsi. This is deceptive, however: the

total thermodynamic energy E is (for monatomic systems) '

T + {lt*,.. LT="U**F(-'lt)
e (e)

= 3*t + (u)
By the above arguments we find, for the same isothermal

deformation,

AE : (au; * +[("X1") -(uou)] (10)
I

so that

Ae : A(u) +<Au) 1rr)

The second term in (10) gives the entropy change caused by

the deformation, since

E= F+TS r AE -- AF+TAS (isothermal chanse) (12)

Returning to the expression (8) for AF, we see from (7)

that

(au) : ru\(*,H -=,$) + O(\') (14)

x,*>: [N-r)(x,HP> 
*s)

Au : T f,(-,H -zi$,) + O(r^) (13)

so that

Wenowspecializetocentralpairwiseforces'thatis
| | *zd/ ll\l : Z|tr(r.;) , F.i=lS-I;I

a<j
Then

=rN-r<*#')
: jr-,)(* **)
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where the last line follows from the equality of <t, *, >
.ra (rH) . we thus have

(lu; = Jfnr(u-t<# H,) + o(r)
(16)

which we can write as

(lu) : I+n(ru-')(I$4 *r> {- o(1') (17)

because of the physical equivalence of the x and y directions.

In terms of the pair density na defined by

Ntu-D t{E 5{i e"FFU-')

Uq.,. - .S{n ex p (-ulr) (18)

the surface tension becomes

ttd\ - J;^ (au)
I+o ru
, ( - r 'E Jrrtr.)

(This is easily transformed into ttre general expression of

Kirkwood and Buff tl ]). we can simplify this result by

making use of the symmeLry of the system, which implies that

everywhere except near the walls of the box nf is function

of only three variables f,o, Z, and ZL :

l\.(frE) = h^Ct;r.,z,rz') (20)

Then making use of the identity I tt ]

["ir, [jr,f (rx"9 : tL ["4' t' -*) {t t t (zL)

hte can perform two integrations immediately I

r\tr I - *\tl-t l. t.l :-.f \_tt_41 .t

o6n = [l'=, f;;, [il*(r - *)[j1,(r-[)n r.,,.A* ffu,,,,
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The terms Xtl, and Y'/^ in the integrand can be

identified as contributing only to the free enerl1r of the

f.iquid-and vapour-side waII interfaces. To see this,

consider a fluid above its critical temperature: the pair

density becomes nr= ne3tr) where 11 is the density of

the single phase filling the box. The change in free energy

caused by the deformation of this single-phase system is

(c.f . (22))

AF =rf \L,r,z,!i1,,(,-bilj;,1r-f)f[0-*) eo r#r *t

where we have dropped the suffix L2 on r . The term

in Yt%., is thus proportional to \LrL, ( there are also

Tl^rILg and I terms which we can neglect) and therefore

corresponds to a change in the yz-wall area. Thus we can

discard the Xr^/t, and ),e[, terms, and (22') reduces to

'tr'=, [i=,fl='G"ff"t,.\(t z,'ze)*g +* ) .,Al

where we have dropped the suffix : on L3 , and extended the

range of the X,^ and Y. integrations to infinity. The latter

is varid on the assumption that the force factor dur/dr limits

contributions to the integral to microscopic values of r (and

therefore of X,r and l,e ) .
We can now perform one more integration by changing from X,^,

J,t to the cylindrical coordinates f and fr 3

X,1 : Jcos6 ) V,, :fsin/ t /x,edv,^: jAtA/
Then (24) becomes

'(' = F ft=,Igt"[grn^(r;E,,ze) r+"t 
*+

(231

= I: fl =, 
f"1=^ j,ft n,(r 4,,2,)(FL3z;) *.

(25)
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and we have the surface tension reduced to a three-fold

integral. The reason for keeping the quotation marks around

O is that (251 still contains "floor" and "ceiling" terms.

These will be identified and discarded in section 3.

we now consider the surface energy, i.e. the surface

part of the total thernodynamic energy E defined in eq' (9) '

For pairwise central interactions, (9) reduces to the well-

known expression

E - 3*r r I Sar s{t T^(r, E)u{r') (26)

For a classical system, the kinetic energy density is constant,

i.e, there is no kinetic conLribution to the surface energy

(this is not so for a quantum system). Thus the surface

energy per unit area € is (L1L2)-l times the surface part

of the potential energy

<u> : * fat flt ru(r,,t)wG.) (27',)

Instead of deforming the box to extract the surface part (i'e'

evaluating (10) explicitly), we prefer instead to extract the

term proportional to LrL, directly from (27). When the

liquid-vapour interface lies in the xy plane nt: ''ft1(\rrz rZ)
and

<u > =- 21, r.,[i,.,,(,-*,)f6.0-H)F:Iitn,(qa.*)ugrza,

As noted for the free energy, the X'yt, and U4 terms do

not lead to liquid-vapour interface energies, so

t'
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I

= lr [i.,fj-. G;la 
(F, u,,tJ ruF)

The quotac-ion marks are agair rreceSsaly because (291 ineLude's

floor and ceiling surface terms (as for 'F' ) and a!so,

unrilEe th'e eNpressi-on f'on 'Vt , vo'I'u$e t'erns for the two

phases,

I

I

'l
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3 . RESULT5 BASED oN THE APPR9XTMATT9N Te : T\eJ n(z') 9 
(n"rx)

The probability of simultaneously finding a particle

centred in volume element d5, about f, and another centred

in {q abour Ii is n2(!,ril & {t I ds can be seen directly

from the definition of Tlr , equation (18). The probabilit'y

of finding a particle centred in d\ about !i is Wf,)dI,

where T\(f.) is the single density. Thus the joint

probability n (f,rE)&{E must be proportional to the

product of nG,){q and n(f) dfi and a generalized pair

correlation function 3 brf.) :

n^(r, r.) = tt(F,)T\(L)9(E,!') (30)

However SkrfJ is not known for a system with density gradients.

Some writers I 1L18 ] make the approximation

Q(r r\  , q (F.) (31)
J \:r7 !-el .r,

where !" is the pair correlation function deep inside the liquid
!x

phase. We wilL make the slightly less restrictive approximation

3 
(r, r") ' ' ! ( u.rn) t gzl

where h- is some average density to be chosen on physical grounds.

For example, near the critical point an obvious choice is fr'-

t(nr*nJ , while near the triple point n ten& to n4 , since

correlations in the very dilute gas phase are then unimportant.

Some justification for this type of approximation has been given by

means of functional differentiation [13], and it is also clear

that (32') is correct to the lowest order in density, since

(cf Kubo[ lo ] , &.5,,prcbrr,* xa)

!( f.rE;) - QxP(-ry) . {l+terms of hisher order in density}, (33)

irrespective of inhomogeneities in the system' The choice of n'

can be avoided in numerical work such as the Mont,e Carlo approach

Of Freeman and McDonald t rh], who use expressions derived
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on the assumption 3 
(f, tr) : 5 St , but do not dear with

g(r) directly. Rather, they generate configurat'ions (with

probability exp (-V/f) ) consistent with a given densit'y profile'

Of course, approximations like (32) can be avoided altogether

if the numerical work is based on the exact expressions (25)

and (29, .

we now proceed to evaluate /f\ ""d '€ 
t using

il^ ( Ii.7 2,, z1) : rt[3,) n(zr) 
3 
(tirrn) ( ra 1

From QSI and ( 34 ) we have

'6', : F 
(!=,",E*,)f.l="n1=rrffifu;(r"-3=,i) (35)

where

Ftrl =. 3(., n) * ( 36)

is (apart from'tesign) the average force between two particles in

the fluid separated by distance r. we now write

he) = h' r, L{rr-*') ft=) (37)

: F"t$- [f"I.[:Ftr /-tzi,)

where fe) tends to unity deep in the liquid and to zero far j'n

the gas.

Then
,tr,

+ T n., (nr-nJlj*[i'',1{e,l.f,=J[[,*(rr3ai) ( 3s)

* 
Ftu-n,t'{i" {e;[j=^ft=r[[,(s-,r (r ^rzi)

Using (21) we see that the first term equals

ri-nit (i=('-=)(F rat (r1-3 z')

= f "ilirrFrs)

(3e)
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We note for comparison the Fowler formula t 15 ] which was

derived using the approximations hv = Oz $(frr Ii) = 9f') |

namely

q = +d F'f,t'rr* (40)

Thus (39) represents the surface free energy of the interfaces

between a vapour phase and the top and bottom of the box.

we therefore discard the first term in (38) ' since it does not

arise from the presence of a liquid-vapour interface.

Turing to

proportional to

the second term in (38), we note that it is

!i =, f,=,lfja =,f ,L - o ^-3 2,1 )

= Ji*f,=; f i'FL') z,(rrzi)

(We have used the fact that

distance, plus the Presence

Za to infinity in carrying

F, the contributions to (4I)

near the bottom of the tank.

in (38), and are left with

We have kept the quotation marks around o

one spurious term to be discarded. This

we write

( 41)

F(r) goes to zero in a microscoPic

^-of f(E,) , to extend the range of

out the integration). Because of

come only from small Z, , i-e. from

Thus we discard the second term

because there is still

can be seen as follows:

to'\ : 5 tn-1-n")" (: =,{e,tlj ziLz,) Ii:,*n(rrsai) (42)

ft=t (43)
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(44',,

where f,gl is

f,t=t

a step

: I r

lo

functiont

z 4D

z>D

and the range "r Jfet is the surface thickness. The eontribution I

ro gzl from the term f, (2,)frtZ") is of the same form as the

first term in (38), with t replaced by D, and thus equals

^ roo
I tU-n')'l"olt Ftg t *
h

As with 1SS) this {ascembrnr4 lwo qy".I- iertrnr 1 onc- from the

Iiquid-vapour interface ( Z,= Dc:.a ) and the other from the

bottom of the tank ( *, and Ze both near zero) ' Al-I other con-

tributions to (4zl are true interface terms since they invoLve tf3 -

Thus we have, finally without quotation marks

C = flnr-nr't]rFlrJrb

+ T(ni-il,)" ["i* ffla [;=^ I,[,oo(rlg zi) ( 45)

* 
T 

(hr -n")' [i * ff,.dj 
" 

Jft*4 IE:,q.; (r* =,i )



when Y\n, is negligible the first term red.uces to the

Fowler expression (40) .

For the second term we find
r D (F
\ dz, \ d. R.)(r'-r 7i.)_cr ^ - lZrel

15. .

(45)

(47 )

(48)

(4e )

-€
I a. Fr') (2,-b) Lt "- tn, -D)t]tl?.-Dr'

It is now convenient to change to a height coordinate which has

the surface at the origin: we Put

3: z- D o^d f{t=l = fr,tl
Using (46), (47') and the fact that' D and L - D are macroscopic

lengthsr w€ obtain for the second' term in (45)

-rr (n"-nJ'![ #ttsr[fr ny)0-1- Y,

- -x-(r!-n,)'fJ. t"/[dY ffc;l J Gt\'1)

In the last term of (45) we have

![r,S atflt,ri( r" I t,*ft [r'- 3 Y,l )

-cPr\.fc€f}.*r
= J]r, Srqr [t'ru [{.]l frsl ( r"-3 ti)

Combining these results gives

f=Ttnr-n")"J:.rt'2[+rs+ p.cr *h,ajl (s0)

F,tl = -, [il.FtrD Lr'L-y)
where

ht') = .[il,iiq.tf]i*,) (r'-3t)
1 sr)
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Note that we have proved, in the approximation na(12, E..) =

n(e,1n(EJ3([.rfr), that the surface tension is proportional to

( nr-n" ) 2. This result shows a desired symmetry between the

).iquid and vapour phases. Maclellan t3 ] has previously

suggested a similar extension to the Fowler formula, namely

which gives

6-=

t(fno): gt5n.,)= ?tIn).

We now turn to the energy per unit area of the interface,

or briefly, the surface energy. From the general expression

tor'€t , equation (2g1, and using the approximation

'l\a = ntz.) nCzJ I (ro,n) , we have

t' =c 
" J.i z, r,ltz.) ("i 

=^r,,=^l [f.; hal (s2)

where

hlr) = !(r, fr') r u(r) (53)

Like f(r), h(r) goes to zero rapidly over a microscopic range.

We write, as before

Tt(z)

=. '€l * €r + Gr (s4)

er and €1 come respectively from the ?\(2,) Tl(72)

-/tF 
t,1t \"4' fr rt[n, jrrli - rlygJ#]" ,

the first term of (50) on the assumption that

Then
/€\

ln\
where eo )
terms

h, +(CI.r -nr) {rt ri] )- r,,) frtu,il[il.,+ (n,

h-n,)lln,*(n -n;f;2,)]ryt=; + Jdz,)[n" r-(hr-nv)f'n il ,
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and (Ttr-t")"f,fc=,; [{tzr)

:.:" 
- T lrr"fi =, [lr" +trr,no fi,, !j=, r x] fi',[r-]{l,t

Consider the first term of kot . It is equal to (using (2I)

asain) 
T rg ru[12('- *) ;ir".al

c\-o

r@ fa-
= D. rnn] l"/rh6; r lrtj I"J'h1';r'

The first part of 1sz) is not a surface energy of any kind'

but rather the bulk energy of the liquid phase divided by LtLt'

The second part is twice the amount obtained in Fowlerrs

approximatj-on (Kirkwood and Buf f t | ], egt!. (3f ) )

€ F = -T t r' $.hL') r'
because it contains two contributions one from the change in

density at the bottom of the box, and an equal contribution

coming from the liquid-vapour interface. (This is in exact

correspondence to the discussion of the similar surface tension

contributions). Thus the first and last terms of (56) give a

contribution to €o adding to

-* (nf*rri) s;'hrr) r" (58 )

Themiddle."'*or(56)isentirelyatrueliquid-vaPourinterface
term, and equals

Il-trn.., f"3rhc,) rr (se)

Thus the liquid-vapour interface part of bot is

1s6 )

(s7)

-S [no-n";^[j.hL-) r " (60)
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Turning to e, and ea r w€ note that the presence of the ftt
in the second and third part of (55) quarantees that only

Iiquid-vapour interface terms are present. We have

G, -= lrtn -n,)[n,("i=, *r,,f]=,]liulrt=,ffirc1 (61)

= trr[n -nrtnrf + n, l..']
The integrals fj and d, can be reduced as follows. We first

change the order of the Zr and Z^ integrations, then introduce

the J-coordinates defined in (47) , then interchange the ord.er of

the T, and E integrations, carry out the J, J-ntegration,

and finally interchange the order of the r and I" integrations.

We find

u: [ir,or[-!1rfi,])] +'[tlt Gtrl -rlf G,tt] (G2)

and

r - $.hr;r[.!i, &tttt *'[ tit #sr2fi#rrtrJ "''

So far we have not specified the location of the surface,

Ono and Kondo t 16 ] pp139-I42 (see also the discussion following

eq. (1) in Fisk and Widom [f-l])point out that when the surface(z=D )

is chosen to be the Gibbs' dividing surface of vanishing super-

ficial density (sometimes called the equimolecular dividing surface),

then the surface tension becomes the superficial density of the

Helmholtz free energy and there is a thermodynamic relation between

o and e analogous to that between F and E. The location of the

equimolecular dividing surface is determined by

[i= Ln*l -rrl * Sra= fne) -r.,1 = o ( 64a)
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or equivalentlY
a- r\
\ dl tf (5) - o (64b)
_0€,

This choice for D leads to considerable simplification in e.

For, using (64b) we find

{*:L : o (6s)

and Er simplifies to

€, : 11r(rre-.J$",htrrl-!i, rtett-'[!; frallr*{..,
We come finally to E2, given bY

G. = 1r t'q-no)" fi"r, ficl, f ![1.frr l, ){{',rt'r
rctl

By the same steps as used in the reduction of the last term of

1aS), this can be written as

'(* u(i:,fitr, fiIggl (68)€r = .rr(nn-n.,)*J.d.h _so__ _r,_.

Thus, provided 1ea) holds,

where

?,t') = -t!ilSs)5 -t'U[:et) -Gfitr,]

€ :rr-(nr-n.,)'!3rr.,,rrt-+.^ * Zlr) " ?rti 1eo)

(70)

we note that the choice 104) for the dividing surface has made e

proportional to (hg-hy)2, in parallel to the dependence of o'

This vrill prove to be important in the discussion of critical

exponents in Section 7.
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4. EXPONENTIAL DENSITY VARIATION

In the previous section we derived, in the approximation

lllr : l\(2,)n(zr) $( r, n') , Expressions for o and e

that are valid for any variation of the density. We now give

analytic results for the surface tension and the surface energy

for a simple exponential variation of the density, namely

nr - !-(n -ilo) {/^ ,t )<o
n(3) f

t h,,. * *.(o"- n,) d 
14' ] >o

where A i" a measure of the surface width. The density and its

derivative are continuous at ]= O , where

h[o)

The function f,f corresponding to this choice of density is

Sgl -- istnj exP( -BVx)

and, being odd, satisfies (64) automatically.

That this choice is correct at farge lll (at least near

the critical point) has been shown by Fisk and Widom trZl from

a generalized van der Waals theory. The exponential density

variation has also been used by Berry, Durrans and Evans [l{,

and Freeman and McDonald UFI,

The evaluation of p1 and Q1 from (51) and (70) is

straightfon+ard. We find

(7r)

(721

(73)
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F,t't

7,tt)

Xt [r-r(i)'- e v^6r+rr* - l*i )]

-rt'(r-e-'/r)

Both pl and qr dE€ ze|o at r=o, and are othenvise negative and

monotonically decreasing. The evaluation og Pe and qa is made

easier by noting that
r f1'3 rl,- \. ilt*. -J& = )ayuc5) L$tt-'l*fr(r-'I
7F

(7 4)

1zs )

P^0 =

rF) =

rtgrLrJ - trrr)

jjt Gtrtl/= ='fi(J*z; '
Fl d!..

ar

({o' fi ",U;

Thus

$imitarty

where

so that dr
AF

(76)

Both p2 and q2 are zero at r=o and are otherwise positive' While pz

is monotonically increasing, 9z has a maximum at r=.1. The sums

pr * p, and qr * qz are both monotonically decreasing'

using these results we find, fot this one-parameter density,

rt-- -$- {n-r. lt 
t - f '\, - ' 

r-s .w., I"d.futt*t, * f[rS-l* - {V\ (tf *rt;.'r S -S!l
1tt I

and

thus 
Prff = \*[(-e-/^(6+(f +3S**[

€ = +(,h-nJ' [ir..nl[r"* X[l- {d'(+-Fil} (78)
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The result for e is ne!,t; the expression for o differs from that

obtained by Berry, Durrans and Evans ttel only in the replacement

of nf by (nf-n")" {ttti= difference, of course' Proves to be very

important near the critical point) '
Weconsiderthetwolimitingformsofoand's.Thelimit

"|
A+O (step function density) has Jf=o r so from either (50)

and (69) or from '(77) and (78) we have

6 :F *r-n,f$ FrDr'" ) €o = -E('u-U $'U.l .' (7e)

Neither of these expressions could be expected to be accurate'

even near the triple point, since the thickness of the interface

(approximarery given by Im/XtOl-2tr1i" unriketv to be much

smaller than molecular size. Surprisingly, Freeman and McDonald

lr+J found numerical values of oo quite close to the triple point

experimental values for Argon and Neon (see also Berry et aI ttel ) '

The reason for this is accidental, as can be seen from llig' 3'

There we have plotte.d as the fu1l and dotted lines the integrand

of the expression (771 for o ' taking
' rrd-t'"-/d-\cl q^J e: {n/t. rhe curvesU(r) =, {,-tl Ltrl -t=/ J .,

are for I = d (d is the core diameter, which is plausibly

about half the interface thickness n\ near the triple point),

and for tr = o. we see that there is a large degree of cqncellation

between positive and negative parts of the integrand in both

cases, and that (ro, a more accurate n)oo happens to give a good

value only because of this cancellationrsince the integrand' is

quite different numerically from that with tr=d'

Fs3
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On the other hand , €o gives poor values for the surface energy t'F '

The reason for this can be seen in Fig. 4, where we have plotted

the integrand of the expression (78) for e for I = d and I = o'

In this case there is almost no cancellation between the positive

and negative parts of the integrand, so that eo is far from the

experimental value' even at the triple point'

trgt

we can further see from Figs. 3 and 4 that oo > o and tot €t

found by Freeman and McDonald lr$l .

We now look at the limit where ). is large compared to the

molecular size. This limit is of course attained as the critical

point is approached, but expressions for large I prove to be

surprisingly useful even well away from the critical point. since

F and h rapidly become negligible as r,/d becomes 1ar9e, the

values of r of importance in the integrand are then small compared

with I. Thus we can expand the integrands in o and a as a

series in r/\. The leading terms for large )' are

f --S (oo-*)'*|T'F61rr

and €. = -T(r\s-nv)r l SSrU'r t
Thus the surface tension and surface energy are proportional to

I-t and l, for large I. We will obtain these results in another

way i" fF. nert secfioyt,

(80 )

( 81)
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It is inu-erestingr to comtr)atre the integrands of the expressions

fon c and e in the large I limitwith those for tr,+ o and the

full expressions given by (771 and (?8). The large I limit,

evaluated,at l, = d, is shown as the d,ashed curve in F'igs 3 and 4'

The agreement between the large I linlts and the fuL,l expressions

is surprisingly good. In sectLon I we will use this

to extriact the ilurf,ace ttrickness

frorn experimentaL data near the triple point'
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5. SLOWLY VARYING DENSITY.

It is possible to obtain general expressions for o and e

when the density variation is slow on the scale of the molecular

diameter. The results given below are generalizations of the

large I limit of the exponential density variation' Consider

the surface tension first, start'ing from (35):

= F 
( lz,r,tal 5 ii'tn(a) + z n'(2,) *| z"n'bJ* ..J ft* (.=t/)l

rto roo
J-{= * \,*[Ftrt (rl3z) : o
-l

Thus we are left with

G If; F1r;trr- 322) = [f.fu!*=(rLrz'z) 
: o z

the zeroth term in the Taylor expansion contributes only if zL

is near 0 or L, ancl thus is not a liquid-vapour inter{o"" *e"-'

The second term similarly contains no interface contribution'

since

We discard contributions from the 0 and L boundaries in the

zt integral, and perform the z integral to obtain

'tr' : T I.i* n(zJn't.JF =' If,'F1'; (r'-rz')

: 
Hf,f'Ftrr.'UT[n'trt]^

to' \ : * 5.i=,nt4\i zatlczr)ffi F61(rr-3ai)

= S f!=,h(4,)!i,] no,*rJ[l

Taking the z integrals in turnr w€ see that because

ftt (tL 3z^) ( 82)

(83)



Thus we see

r=
that

q'

the microscopj-c

a@^
(at In't]rl'
*oo-

theory leads to

= A (v'!r-n,)"

^
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(84)

(8s)

in the limit of slow density variation. This has the same

form as that obtained from the van der Waals theory by Cahn and

Hilliard tt$] and Fisk and Widom [tZ], and also from a fluct-

uation theory by Triezenberg and Zwanzlg t -7 ]. adcording to

r,ovett, D€ Haven, Vieceli and Buff t I ], the same form was

obtained long ago by ornstein and Zernike tr?] with the

coefficient a given by

'r* f@
a = 4 r I at c(r) f b,

5J
o

where c(r) is the direct correlation function. This result is

readily seen to be identical to (83) in the low-d.ensity (.i",';t

3 
: e-*/t c : d*/-- |

We now turn to the surface energy, which to our knowledge

has only been considered for a step-function density variation

t t ]. Starting with (52) and proceedinq as for o,

hre find

tr\ 7L- l'\-r^,-,[I,e = TI J.dz,ncz,;\;tz,ntzlJ,$1ttd (85)

5'J !fruo

Liquid-vapour interface contributions come only from Zrd D s Er

and since D and L-D are macroscopic distances, the integral over

z may be taken from - - to * - when extracting the interface

contributions. The first derivative gives a zero contribution,



as before. The second derivative contributes to e by the

amount

-T tj.hr)r'6r[^'c)l"
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(87)

(88)

whLch like o is proportional to (fU-YU 2/f . The dominant

contribution for large I is however not (87) but the liquid-

vapour interface part of the first term in (8e1, i.e.

* [:z,ritz,,f.;'*g-
PL. 2

To extract the interface part of JodZ fit=,) r w€ write the

density as

T\(z; : "Y\olz) + tvr*-n,,) f{zl

T\o(z)

nstant par

xed term

amount

where

The co

the mi

by the

f rr , ?<D
=1

It- t z]D
ts 141 and f\.,, of n(e) give bulk terms, whi

rTrtq-n;J,irr-) r{-r[il0tl) +15 lffttil'] (8e)

1e

)i 2r!=Inr\)Jft*) conrributes ( +" Sjd= frt=l

l(rr,-n')ln, {irfrtrt rr.,fJt #trr 
}

On using the convention (64) for the location of the dividing

surface' this becomes

"@ ^.

- r(nr-n')' J"otj Jf (T)

rhe rasr rerm in j"td= ft.zl is

(nr-h,)" !d, lsrlrl' ,-oo

so that the total interface contribution to (88) is
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$lhen the surface is characterized by a single Length l, both

of the 3 integrals are proportional to tr; thus the dominant

part of e for a sl-owly varying density is

€ = B(n-n")"tr (eo)

This form is in agreement with the large I linit obtained for

the exponential density variation, equation (81) I and the

coefficient

B = -T[:'hatr ( e1)

af (81) can be verified from. the more general expression

(89) with the substitution of (?3) fot S
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(i. THERMODYNAMIC CONS I STENCY

The thermodynamics of surfaces is discussed in general

terms by Ono and Kondo[ 16 ] . They shovir that when the dividing

surface is chosen according to (64) (the equimolecular dividing

surface), the surface tension o, surface energy e and surface

entropy s are related bY

6-- e -Ts

in direct analogY to the re

F = E-TS ,
The two relations (921 imPl

e = or-T dg

) s =-# )

lations in the bulk,

s = -(t)"
v

namely

(ez1

(e3)

In principle this equat,ion together with the expressions for

o and e puts a constraint on the density variation. For

example, it could be used to obtain the thermodynamically

consistent I by comparison of (771 and (74;. Freeman and

McDonald tr{r] were aware of this possibility, but did not have

an extrression for e available. Anal-ytically this prografiIme is

too complicated except in limiting cases, which we will now

examine.

Consider the | -r 0 (step function) limit first. As

explained in Section 4, this limit does not give a satisfactory

surface energy for the liquid-vapour interface. However, We

can apply our theory to the interface between an infinitely

steep wall and a dilute gds, for which we can use the low-

density approximation (85) for g. The theory gives (cf(79))



q : Fr,1 !j"'e*/'#
8

€o = {"3 J;"r.e o/L

The expression for oo givesr oll integration by parts,

+ = $ *5;.,.(e"/Lr)
so rhat the reLation -T2#(+) = €o is exactlv

satisfied for a ternperature change at constant volume

(and thus constant d.ensitY) .

The consequence of thermodynamic consistency in the

large tr limit will be discussed in the next section.

30-. .

(e4)
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7. CRITICAL EXPONENTS

As the criticaL point is approached, many physical

guantities diverge or go to zeto as T"-T to some exponent.

If we write T"-T
t=

c

then, in the notation of Widom tlO]

F* tl , I ^'f -", fir-n, - tP,, Cu - t-: 1r'- f* (es)

We will also define exponents for € and the coefficients A

and B in the relations (84) and (90):

.-t t4t . rPt (96)erwt/, A,-, , B,-,f,

The exponent y' can be evaluated immediately from the

thermodynamic relation (93) :

U' = U I (97)

This relation may also be obtained by a simple extension of

the physical argument of wid.om ([fo], P.80), which shows

that o/1, is the singular part of the free energy density, and

thus u + v is linked to the specific heat exponent c by

(hd,eq 3)

U*v=z cr (98)

The same reasoning shows that e/), is that part of the bulk energy

density which carries the specific heat singularity, so that

u'+v=l-ct (99)

Combining (98) and (99) we regain (971,

!



Turning to the exPonents 4l and lt' ,

we see from (84) and (90) that these are given by

,fr : et't + 2f +-t
and

we have

/U' = P'+2P -1,
Now if we assume the truth of the relations (3) 

' 
(5) and (7)

in Widomts review [fd, we have (in three-dimensions) the

equalities

.l*\ = 2-a.-:3V : Y+lf
Using these in (100) we find for the exponent of A

4'= Y-t-v
which is the result obtained by Fisk and Widom [n]'

ror 3' we have, from (g7) , (101) and (102)
I

P'= Y-l
with the approximate numerical values [eo]

) ry f .eS / -y '\' 0.6+

4.t= -o.oiz f '= o'Jr

In our microscopic theory, the coefficients A and B are

proportional to

.[i"g(to)# and 53..^g(tn)u(-r)

and it is hard to see how these could be sj-ngular when u(r)

is a short-ranged interaction potential. Howevert Rice and

Chang tfl] have pointed. out that, a similar difficulty exists

with the bulk potential energy, which (above T") has the form

of our B, and yet is singular, varying as tl-c. This leads

to the question: why is $- not equal to 1-s? A possible

answer is that B is proportional to the potential energy of

an unstable phase (for 1r ( Tc, il ls in the unphysical region of
the n, T Plane) -

32.

(100)

( 101)

(r02)

( 103)

(ro4)
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Another possibility is that our microscopic expressions for

the A and B coefficients are not complete, and that something

slipped through the net when we made the approximation

1.(!,rf.) : tr (e') n(?') S(v1,, fr ) .

gl We conclude this section with some observations concerning the

sawrange of validity of the power laws (95). In Section 4 we

that the targe A limit integrands for 6- and € gave good

agreement with the exact integrands for the expontential surface,

even down to I = a. This comparison was with I = e-!/T'

which is not adequate near the triple point; however, the

qualitative features of the integrands and the accuracy of the
Ilarge i expressions are not expected to be different when a

more accurate pair correlation function is used. Note that this

increases the range of validity of the van der Waals theories (e.9. -'

Fisk and Widom [fZ] ) set up to operate in the critical region ,

which give the same form for d as our large tr "*pt."sion'
It is known experimentally that C^,t (see for example Zollweg et al'

tB
fzz7, smith et at. [z{ I and (nt-vt,. )^, tts (stansfield lza}l, hold

over a large temperature range and a recent theory of surface

tension by Lovett et ar.[el has predicted that ) ^,t''55 .1=o
We exTecL

holds f ar from the critical point. \,/ the power laws to hold

over the same temperature range in which the large ) "*pt.ssions
cr: A 0^- n,1'/ X ) €:. B(n,-n")"4 (sD,@o)

are a good approximation, which appears to be atl the way to the

triple point.

In terms of

this would imply that the relations
A A-, r _ -9ff=ofT', (=€*tt r,,-J, tr=tr+T-

(r0s)

(r06)
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were valid all the way from E = O to T -- I. We will show in

Section B that the results of the large ) timit ao indeed give

satisfactory values tor ) near the triple point'

8. THE SURFACE THICKNESS

q We have shown that the large '\ f:.*it" are a good approximation ulfien

) i= of order of the core diameter, and that the coefficient B

in the targe tr expression for € is proportional to the bulk

potential energy of a fluid at density fr. These facts enable

us to determine the surface thickness at the triple point. We

proceed as follows i 6t Tl-il,r and the potential energy per

molecule in the liquid

# : 
^1rnntff. "" 7(", 

n, )u tr)

are all known from experiment, and € can be deduced from the

temperature variation of 6-. From (U) t" can obtain the value

of our coefficient B (given by (9I) ) at the triple pointr oD

the assumption that i-= 1r:

3 (u)
4N

Thus, from (901,

Yl. B (107)

(r08)

i.e. ,\ can be found directly from experimental data.

Table I gives the relevant p.arameters for Af, (r a"ld Xe.

L : *,e =+

TngLe | .
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we find an average value "t^/d= 
0.63, with a maximum deviation of

Iess than 1!3e
@hi9h1ysatisfactorywhenwerememberthatthe
surface thickness is approximately 2.\ , i.e. the surface

thickness near the triple point comes out' to be a bit larger

than the core diameter d. rt is also in accord with

Egelstaff and Widom [ZS] , who point out that the fundamental

l-ength flro- is approximately egual to o.07,\ at the triple point'

Then using a relation Proposed by Mayer from the theory of the

hard sphere fluid [zo] and approximating the hard core

diameter by d , they find that \,o 0'05d- Thus EgeZstaff and

widom have A/ae 0.7 near the triple point, in excellent

agreement with our results above. FinaIIy, Lovett, DeHaven, Vieceli

and Buff Igl find similar values for surface thickness near

the triple point by comparing their direct correlaLion function

theory with experimental data for Argon, although the value

they extract from Toxvaerd [O] in their table I looks the best

agreement v./ittt our results.

9. T}TE DIRECT CORREI,ATION FI,NCTION THEORY FOR fr

Alternative statistical mechanical expressions for the

surface tension have been given by Yvon 1297, Buff and Lovett

ISOJ, Triezenberg and Zwanzig [Z: and most recently by Lovett,

De Haven, Vieceli and Buff C8l. In these formulations the

interatomic force does not appear explicitly, and correlations

appear through the direct correlation function c(!irt') rather

than through the pair correlation function gQ,rf.). we shall

use the techniques developed in this paper to reduce the

direct correlation function expression, and to obtain resul-ts

which parallel those we obLained with the pair correlation

function expression. Finallyr w€ show that the two theories



are equivalent in the

Our starting Point
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lowest order in densitY.

will be equation (L1) of Lovett et al-

IBJ '

4.: +, ff=, *-] ff=,d#,'f;r,.6,, c(r,,,e,,a,fii,*-*)
"-oo J* J+ J-a

which gives the surface tension of a plane liguid-vaPour

interface in the neighbourhood of ?=0. This expression may

be reduced, to a three-fo1d integral by the use of cylindrical

polars (cf e1n. (25) ) :
^oO I aoo n&

q= r,T f7=, dner (t, ry ( qgg 
"({Far,*,,t)9'J-e ' d?r J_- an;- J o

, (tot)

Q,u)

(ttt 1

drn6t

06

f?" &, fan n c6t \,+,)0"-a'")
);' d'}r Jt..,

Equation (110) may be apptied immediately to a step function

density at7=g (e.g. ?t the boundary of a single phase of

density n., and an ideaL wall). We find

q = {r n: J}'"' cQ,o,o)

the dilute gas limit, this reduces to the result obtained

Section 6.

We now giverwith abbreviated discussion, results obtained

with the approximation analogous to (32), namely

c(r,. ,4r7, ) 2 e(rr" ,a)
Interchanging the order of integration as in (491 t we have

from (110) roo (f, E'fi:#")&"'+')q =TrrJ!, r.(,^)):: EJT,"_,

For the exponential density variation (7t1,

b lrit = ;Aa-n-) arp(t=/l)
and we find (c. f. Section 4)

E= 5tJ},

In

in

Arr)

Qrs)

(lt,f)

e = *r@,-n, )"fi,^ r gtr) { ra -.44" + t ;V^ (+* +i - S)} (ttr)
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The Aro rimit checks with e{n. (111). rf we put g=s-ty'F

in l77l and j-ntegrate by parts, we get (115) with "=ivLl.
rn the large ) limit we find 

^aq = f r(n -n')" * IJ" r't c(r'fi') tu6)

which is in agreement with (80) to the lowest order in density.

The integrands in the full expression (115) for Q, and in the

limiting expressions for )+O and )* "l9 are compared in
I

Fig.5 for .=duft-t at ) =4. We see that the large I

expression for q is a very good approximation even at ,\ =d,

while % i" much larger than d[ . This is in agreement with

Fig.3 and the remark following e?n. (115).

tr|q.5

Next we apPly the

Integrating eqn . (113)
'/$

q:oTJodre
The J.ast integral maY

1l\.
J-"dt r n(2,+t)

= IIOt \ f n&,t+ ynfu) + !"r" h"@) +*.\

= O + €rtnt(*,)+O+.,.
so that

q.2
This result was stated by Lovett et aI. (eg,r, (12) and (13))

credited to Ornstein and Eernike, and is the counterpart of

e,ln. (831 . The equival-ence of (116) and (118) for the

gradient method of Section 5.

by parts we obtain
7.* 7a1tt

c(r,n ) J*, "' H ) !:,,*,, n@,)

be written as

?-n3 t l; "4 c(,, t)G [,'t=t]'

Qn)

Qrt)
and



38. .

particular case of the exponentj-al d.ensity variation is

easily verified.
We turn finally to the question of the equivalence or

non-equivalence of the g(rrrrr) and c(5'r,921 theories.

Lovett et al. refer to the two theories as "complementary",

and do not discuss their equivalence. But both theories

are claimed to be general (except that the pair correlation

function theory is usually restricted to pairwise inter-

actions) . Thus they are either rigorously equivalent t ox

at least one is approximate. Consider the general

expression 1110) r transcribed to the geometry of Fig.l.

Integrate by parts twice, neglecting the contributions which

do not come from the liquid-vapour interface. This gives
/rrLTLAze'q' = $r (!r,r(rr(^7*, "r9 fo;+,Jj" " c(r,z,,r,Flz;) (11e)

JO JO
Comparison with

,q'= g t"u(*) ff^r.v,(*)ffi e(r,r,,D#,('-ta:) (25a)

shows that the two theories are equivalent for central

pairwise interactions if

T 
"%..{?i' 

c(,r,,*,)fu'-*l ) : ffl ?6q'*' )#'("- Er) (120)

A general proof of equivalence is thus seen to require

knowledge of relationships between c, g and u for inhomogeneous

systems. It is possible to show, however, that q and q

are identical to the lowest order in density. Using the identit'y
?1 On,,1) : -r&a.) ftu,U - ['(^D (r21)

?!!2'.r1-t'
$re find that the left side of (120) reduces to

f ^€ , tt -f ?2T-l {. li" c0,;') =,}.[e.trfr)fL Jt+," 
I

when c(g1rg2) is approximated as in (L12).

The right sid.e of (f2O) is easily shown to be equal to this

expression when we take g = e-\/T and c = .-u/T-I.
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FIG.1.

FIG. 2 .

FIG.3.

FIG.4.

FIG.5.

FIGURE CAPTIONS

The liquid-vapour system

rhe function f (z), where n(z) - nu-*('f\r-nu)f tz)

Integrands of the exponential density expressions

ror f when )"= d with tt(r) = t{l(yr)''-(4)t] ,

-ulr
9 = d*'t . The value of t+\ was taken to be

5.69, which is the average of the rare gas tttptn P"t'nt

values [rtl . Full curve: general expression (77't

Dashed curve: large tr expression (80). Dotted

curve, tr= O limit (?9). The area under a curve

times $ trfr-n")"dto gives the surf ace tension.

Integrands of the exponential density expressions

for € , when \=d with tr, I andu/T as in Fig.3.

FulL curve: gener., .*nt"'=sion (78) . Dashed

curve: large L "*pt"ssion 
(81). Dotted curve:

\--o ri*it (zsl

Fhrn'fd*,r
. The area under a curve times

gives the surface energy.

Integrands of the exponential density expressions

for q, whenl=d, with c=dttl ; u andT as

in Figs. 3 and 4. FulI curve: general

expression (115) , Dashed curve: large tr expression

(116). Dotted curve: \=O limit. The area under

a curve times lf trfo-n.,)^Jnt gives the surface
7 ' 

-vt --

tension.
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THE SURFACE OF L1QUID HEA, BASED ON THE IDEA THAT

Jft(r r. ) DESCRIBES A DRoPLET
i.) -"

by

J. LEKNER and J.R. HENDERSON

Physics Department, victoria university, wellington, New zealand

ShoTI Titlc: SURFACE OF LIQUID HES

Classificationt 7.720 , 7,E4o

ABSTRACT

We argue that the wavefunction TTt tt ij ) describes

the ground state of a droplet of liquid helium four' With

this wavefunction expressions for the surface energy e and

the surface tension o of liquid Hea at T=0 are derived' Choosing

particular f(r) and density profile, and the simptest pair

correlation function, W€ plot the variation of e and o with

surface thickness t. Fot slow variation of density at the

surfacere becomes proportional to t, The surface thickness

is found to be about 41,.

The inclusion of phonon zero-point motion cor-

relations in the wavefunction leads (at T=0) to a -R2Iog R

term in the energy of a droplet of radius R, implying a log-

arithmic divergence in both s and o. At T>0 the phonon cor-

relations give a log T dependence of e and o and a negative

bulk specific heat. Suggestions as to the reason for these

problems are explored, but no definite conclusions are reached.



1.

1. INTRODUCTION

The ground state of a drop of liquid helium is

usually approximated by a Bijl-.Jastrow product over pairs

times a Hartree factor, namelY

NN
flr(t ii) TT=(ra)\<i .L

<=.-=- The function s (r2) is used to control the density

variation at the surface, and is determined variationally'

(Bowley 1970; Slrih and woo Lg73; Chang and cohen 1973; Liu'

Kalos and Chester 1975).

In this paper we put forward the view that
N

v (I. . .N) =TTf (t i.i )
i<j J-J

the function

(1)

already describes a droplet, and thus necessarily has a surface'

t There are three arEuments to support this: First

we note that v is both translationally and rotationally invariant,

so that j-t could describe only spherically symmetric self-bound

systems. second, we can argue by analo(;y with a classical fluid

consisting of N atomginteracting with pairwise central forces'

This has a probability d'ensity proportional to

1exp{ * rr u(r .,*)}- ti.j LJ

and thus has the same form asV2, the quantum probability density'

For temperatures and pressures lying between the triple and

the critical points, this probability density will describe

a drop in equilibrium with its vapour. (We note in passing

that this classical analogy implies that the function f(r)



2.

should not be monotonically increasing (as is usually assumed)

if it. is to describe a serf-bound system, since a crassicar

systemdoesnothavecondensationunlessthepairpotential

u(r)containsanattractivepart.Asimilarviewhasbeen

expressed recently by De Michelis and Reatto (1974) ) ' The

third argument in favour of our assertion thatl-[f trtr) describes

a dropJ-et is provided cumulatively by the results of this papert

where we calculate the surface energy and the surface tension

of the Bijl-Jastrow product (r). The results, both analytically

and numerically, are entirely satisfactory provided.we leave
(q67)

out the r-2 correlations, which Reatto and Chesteraassert must

exist in the bulk pair function f for all BoS.- systems that

have phonon excitations'

Our calculation of the surface energy and tension

with the wavefunction v of equation (1) can be regarded as the

zeroth order approach to the problem. It is not a varLational

calculation because the pair function f is determined by mini-

mizing the total energy, which is dominated by the bulk energy

when the radius of the drop is macroscopic. That is, we take

whatever function minimizes the bulk energy, and calculate the

conseguent surface energy and tension. There is no doubt that

the inclusion of a variational factor such as s (r) will lower

the total energy and hence probabty give a better description

of the surface. we believe, however, that our zeroth order

calculation is simPler

and numericallY not very far

In Section 2 we

and Yet both analYticallY

from realitY.

calculate the surface energY of
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a spherical drop at T=0 directly from the expectation

value of the Hamiltonian in the state V. By letting the

radius of the drop tend to infinity we discuss the

simpler case of a plane surface with gravity and wall
forces absent. Extensive use is made of results previously
derived for monatomic classical liquids (Lekner and

Henderson (L9771 | referred to below as LH).

In Section 3 our results for e (surface energy per

unit area) together with experimental values for e and

the binding energy per atom in the bulk are used to calculate
the surface thickness of liquid He4. We find a 10-90

thickness of about 3.9;,, in good agreement with recent

estimates.

In Section 4 we use the Toda (1955) and Brout and

Nauenberg (1958) expression for the surface tension o of
a quantum fluid to obtain o for the wavefunction V. curves

of o and e versus r (a rength characterizing the density
variation at the surface) are computed, using the simplest
approximation for the pair correlation f_unction g (r) .

since o=e at absolute zero, the curves shourd intercept
at the value of tr which correspond.s to the actual density
profile. Despite the crude g(r) ttris method yields a surface
thickness in good agreement with section 3 (about 3.4i).

Finally in Section 5 we find that the inclusion of
Reatto and chesterrs phonon factor reads to unphysical

results, namely divergences in e and o and a negative

buLk specific heat. we conclude that one of the folrowing
is incorrect: the phonon factorr or our assumption that the
wavefunction V is enough to describe a surface.
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2. SURFACE ENERGY OF IIf (TiJ)

The expectation value of the Hamiltonian

rl 
N ' Dl N

H= F*Evr'+ EZu,ttil)rm irr a<j

when the wavefunction is of the form (I) may be written

as (see for example Lekner (Lg72))

<H) = + Surq

where the two-particle density corre-l.ation function

is defined by

Tt(E,tn) = t't(u-t)

ntr,,rr\[u,(nr) - 
"S.t 

Q'cqr\*f Otal)]

uSe, {r;.

(3)

(21

(4)

(6)

L

and where we have written

f(O = explt/t.">] (s)

5&....&..v"

To extract the surface part of (3) r we make the approximation

1,1(rrE) - rn(r;) n(rr) g(r;r)

where n(rr) is the single-particle density measured relative

to the centre-of-mass, and g(rrr) is the pair correlation

function. Equation (5) really has two approximations in it:

the first is that we have broken the translational invariance

of the system described by Y of equatj-on (1) ' and have by

some means localized the centre-of-mass of the droplet at

the origin. The second approximation is that we have assumed

that the pair correlation function is a function of r* onlyt

which can only be true inside the liquid. This second

approximation has been discussed by LIt( 53 ) in the classical

context; for our purposes the disadvantage of its numerical

inaccuracy is outweighed by the simplicity of the analytic
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(71

results which it makes possible.

with the approximation (6) then, the expectation value

of the energy becomes

( H) :, ! S{,; dr n(rT) htn)htro1

where

(8)

In bipolar coordinates (Hilf 1956, p203), equatj-on (7) reads

< H ) = (rn)" [ir rrnrr)lrrr,.rrr)f,X.!. u,, (e)

By successive interchonge of the order of integration, the

energy may be written as

(u) = tTr !;.r"htr)Qt.) (10)

hrr) = 3rr)[ucr) $^tdb- ? 0t.tr1

(11)

two

s are

ically

(r2)

the

distance

where

Ar-\ 1[t:, rt:t;
q tr) = . )"4,; q x([)],dSrt ntr,)

The function Q i= proportional to the volume overlaP of

identical spherical density distributions, whose center

separated by distance r. Qttl may be evaluated analyt

for simple density variations. The simplest of these

is the step-function

'yl(r;) : {'ho r;4(
L o [)R

For the step-function density, Q becomes tot times

volume common to two spheres of radius R, separated by

r. This function is well known (Hill 1956, p210) i



Qotr) =

We have thus shown that the expectation value of the energy

of a droplet with a step-function density (radius R) is

E(R) = (btt e')rnni [Fr.hcr) (vorume rerm)

(r.4 )

(constant term)

lVhen h(r) is short-ranged. the upper limit may be replaced

by infinity in each case, and we regain the usual volume

energy

(ls)

plus a step-function contribution to the energy per unit area

of the surface,

(15 )

When h (r) Vafies crs

r-b due to the zero point vibration of the phononsrthe

Separaibn info volume, surface and constant terms is lost.
We shall return to this problem irt, Section 5.

6.

f 
*" n'r,l[r - ](t) .*6)l,".,%.,

I o (r>re)

- (t rRt)SnJ (il.t hrt (surrace term)

+ T'n.' fli..'htr1

E/r.r

€o -- -Tnl $"r3h(r)
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Having shown how we can extract a surface energy

from Y for spherical slmmetryr w€ turn to the simpler case

of a plane geometry which is the R -+ - Iimit of the

spherical case. For the prane geometry we can use orlr

work on the surface energy of a classical riquid-vapour
interface (LH 53 ), since there is mathematically a one-to-
one corresPondence between a classical system with probability
distribution

From (3) r with the plane surface approximation

V' = ex pf it dcn.,r]

ex p{-+ ii u(ri,)}- | [ | r4j - -'-J

and our quant,um system with probabiJ.ity distribution given

by

?,r.) = IjaO,ot=U rfk,\

fl(E, rt = 'n(2,)h(zr) g(ra)

e9rs
we have for the surface energry per unit area, (cf,tl(Gg)r(70))

€ =rr?\iSj.rhcr)f+f*?^(r)+?rcdl (rB)

with

?ld - -2!i..Jfk) -r'[f.i. tf"r Jj=rf{

(17)

(1e)
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The function 6f is defined by

@ ={et .f"t=)*t{@) (20)
1\o

where fo is a step-function (see Fig.l).

Fi ? l

The location of the surface is not arbitrary, since the

derivation of (18) and (19) depends on the property

5".d= 5fc=1 = o (21)

(221

(231

which defines the (cibbs) dividing surface. In the above

formulae the dividing surface is at z = 0.

The first term of (1e1 has already been derived

(e1n. (16) ); the spherical counterparts of the other terms
al (re)

can also be derived and can be shown to be the same^in the

limit, of large Rr as expected.

For an exponentj-al density variation

7\(z) = { 
no(t-!uo^) ='o

I iz/xt *ilo€ z)o
?rr ror dt rz) = | sgn z ex p(- tz7,r)

the surface energy becomes (rn 54 )

€ = -T t,i !?, rhrr) [ r. + ,I"[t - e '/'( t" 7])] ] e4)
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For a Fermi function density variation,

'n(z) : tlo (2s)
€,7d.t t

or
Ktlz\ = sgt(z)vJ\-, 

e,*t+l
(26',)

it is straightforward to show (compare with Bowleyrs (1970)

result) i

€ : -Tn3 (i.'htr){ 
'-' 

* [ 6".r"/t x 1

t o "'L Joo*I-, I Qll

As the surface thickness (Proportional to I and 6 in the

two chosen densities) goes to zero, w€ regain the step-function

result, eg. (16) from both (24) and (271. As the surface thick-

ness becomes large compared to the range of h(r) we have the

Iimiting forms

G ---r €oo = -Tf,o"tr$"."\.,1r) (28 )

and

e -..-+ eF = -1nT\3 6 ljt rr hlr) (29',)

The fact that in the Limit of large surface thickness the

surface energy becomes proportional to the thickness of the

liquid-vacuum interface can be shown more generally by a

Taylor expansion method (r,H $S ). one finds

that, negJ-ecting second order and higher derivatives of the

density, the surface energy is given by

€ A' 2rrnl 5;.r"h(tl $.[rn'rl'-.1[f=sftrl] (30)



10.

tffren the denEity variatLon is Characteris,ed by a silagle

tenEth (s,uch tr or l both of the intergraLe in the

curly bracketc are proportional to this lengt'h; in

partieulaq on inserting (2.3) or (26) in'to (30) Ire€ rlts{1rtin

(28) or (29) .

In F,ig. 2 we, have plott'ed the infeErands of the

expressj_ons (16), {24') and (28) for the s:UrfaCe energty.

The f6ltr expressioir (2{} and the slowJ"y varf ing density

limi.t (28) are bot'h plotted ,for I=d, w-here tl is the

hard eore diame.ter of the &ennard-Jones potential

p(r) = 4rr[( ]t'- t]ltt

<:--_ trhe function $ wag taken to be -Z(d/xl s (this is

close to t-he optfununn 4modE fo-nms of the type -a (b,/r)n

tried by Mclfii.llan, L965). lBhe pai-n eorrel,a.t,lon frrnction

was apiprox.i,nated by e4.

F$ 'g
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InFig.3theva].uesofthesurfaceenergyobtained

for the exponential density variation are shown as a

function of tr/d.\
(-We see that e is greater than t-, and increases

monotonically with I. The fact that e does not show

even a local minimum at some physical value of lrld need

not surprise us, since we are not doing a variational

calculaticn. Iloweverr w€ ShOUld issue a word of caution

that the choice of g has a large effect on the curves in

Fig. 3. From Fig. 2 it can be seen that the magnit'ude of

g in the region r < d ' affects the

negative part of the integrandrwhile the first maximum,

which is present in a realistic I t affects the positive

part. Lt so happens that the crude approximation

-a1d/r\sI = e-4

contains cancelling errors Lhat lead to a very reaSorrab0e

result. If a more realistie pair correlation function

is used in order to include the effect of a maximum,

then equal care must be exercised in the r 1 d region'

Ftg,3



3. THE SURFACE THICKNESS

The problem of assigning one length as the thickness

of the surface has no unique solution when ons iS comparing

different density profiles. The length we have found

most useful for numerical comparisons is the 10-90 thickness,

which is the distance in which the density rises from

10? of its bulk value to 908 of its bulk value. If we

call this thickness t, then for the exponential and

Fermi function profiles we have

f = 2l1og5 = 3.22)\

and

t - 261o99 = 4.39d

In terms of this definition we see that the exponential

and Fermi profiles give the same thickness when

^/6 
= Log9/Log5 =. 1.355

Consider the slowly varying density limiting

expressions (2A1 and (29) for the surface energy. From

(14) we note that these can be written as

L2.

(31)E* = - 3IE/V

and

E*=-6E/V (32)

where E/V is the bulk energy per unit volume. [Note that

these expressions are the same when l= (4/3) 6, which compares

well with the 10-90 equivalence condition tr=l.3656 l. We

are now in a position to evaluate the surface thickness

from our s (I) curve and experimental data: rewrite (31) as



l

i3.

[=-$r# (33)

For the guantities in the aurly brackets tre, can s-ubstitute

the expetiurental v'atrues 6=0.373c;vg/qrz (Atkins and Narahara

19 65) and n/N=-. 99xI0- I t erg/atom, N/V=n o =2,.2x10 2 satotns/

c*ti thi.s gives Ls2.3 (e*/e)A, wj.tti d=2,ei we then find

e@ - 141 (34)E- = r' 
cr

In FiE. 4 we ptrot thi.s line, togathe-r with the ratio
e-/e obtained from results of Fi-g. 3.

Ftg , +,

e
1@

e
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The line (34) and the curve e*/e intercept at

)./d, = 0.46, which gives a t0-90 thickness

! = 3.ei,

This estimate has the advantage that nature evaluates

two very difficult integrals for us (e and E/N), and

all we have had to find is the ratio e*/e, which we expect

to be insensitive to the errors in our choice of the

pair correlation function .g and the pair function f.

The agreement with recent estimates, based on a comparatively

enormous amount of numerical work, is good: Chang and

Cohen (1973) obtained l=1.44 and 6=1.0i, giving t=4.5E
0and 4.44 respectively, while t"itt, Kalos and Chester (19?5)

calculate t=S^&.

We conclucie this section by pointing out the

physical meaning of the slowly varying density Iimits,

eqns. (lf) and (32). Consider eqn. (31) first and let A

be the area of the surface. Then according to (3f1 the

surface energy is

aE = Ae = - 1mE4'-v
Tl'e 10-90

the volume

The number

so that

AE:

The same approximate relation

function limiting form (f21.

(31) and (SZ1 is thus clear:

thickness of the surface is 3.22 l, so that

AV of the interface is approximately 3.22 lA.

of atoms in the interface is AN = k no AV,

*ub, - k ^to*fi !

follows from the Fermi

The physical meaning of

the positive surface
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energy corresponds

the binding energY

Iayer.

to the loss of approximately one half

per atom for every atom in the surface
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4. SURFACE TENSION OF IIf (tij )

Toda (1955) and Brout and Norrenberg (1958) have

derived general expressions for the surface tension of a

quantum liquid. Their result is the sum ofnpotential

energy contribution on and a kinetic energy contribution

ot!

F = fv*6i (3s)

whereratT=0

6 = +66 Sas'l{qntn,r") d+4 #.-,: (36)

and

q.=#,tH) <*,-*.>

= 
"Erz 

, E = T; Ar,:;) ,

(*r) = Saq dr Htv

( 37)

The above formulae have been written for a plane interface

in the x-y pJ.ane, of area tr Ly. The potential energy

contribution is the classical expression evaluated in

LB ,and the kinetic energy term may be put into the

same form as the potential energy term when the wavefunction

is a product of pair functions. We haver with

= stq dt, H'[+(9,)"*+r#.]



l'1 .

RttS "& 
fh"

rntegratirrg t;;\6s-"quarity by parts we also have

Therefore

(g) = tsar {...v'H

= F f{r &*td#'" +'t",,*.[t#{}yrtsar

Thus

q = **f$)-N.)(ar {h4#*.[+#"]v"

=Lrt#) tf"!A';ncs,5) 
3z'r-r'" 

#[hd#ll 
(3e)

IrLrL

For a plane surface we can write

(40)

and then the surface tension reduces to (cf. LH , Section Zl

.& -A /oo
6r = T lj=,rnt=,)\4=,",4j,. l(r, a1,)[rru{F *fi (g)'] (4r)

rf g(gz,rz^) is approximated by g(r) r w€ get

(cf . eqn. (50) of LH)

F = To,'(.:,gcr)[u'*H(4l[t" + ptr)*B('t (421
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where

R 
tr) = -t lit f{c=) z (r'- z')

Bc') = [[r, [frz,) H fftz.1 (r'- gzi )

For the exponential density profile 1Zl) we have from

LH, eqn. (77)

(4 3)

ils"$)l]o'(tr .Tn3 
[i' enr;" "fl (T' ] Ig * r* [r e -lt' -E,\l

which has the large I limit (cf - LH, eqn. (80)

The large 6 limit is

F+ %= *".'*fj'g)[u'*fr(g)'] " 1as)

+18

(++)

For

met.

We

r

the

ods

ind

ttn

thod

fin

Fermi function density profile (26, we use the

of LH (section a)t" evaluate pr and pr'

,u S.ltro[,'* * (+)']t # +rf, 
-$ff 

(, "fif, 
-.,

F

(-+ q.: Fni+[i'St[u'*S,(4)'] t' u'zl

Note that the exponential and Fermi profiles give the

same d* if tr = i 6, whereas the surface energies were

equal in this tirnit when I = t d.

The limit,ing results obtained above are special- cases



19.

density (c.f.of

LH

the general formula for slowIy varying

eqn. (arl)

o = # fo* u'^ 'r [,r/ +

(D 
/ an\zaz \ily' ,xw'J

"({l)r4
oo =E"iI

'0

,'r (4e1

which is obtained by a Taylor expansion of the density,

neglecting fourth order and higher derivatives of the

density. As in the case of surface energy the odd deriva-

tive terms in the expansion give zero contribution so that
correction terms are two orders higher in the gradient.

In Fig. 5. we have plotted, in the manner of Fig, 2.,
the integrand of the step function limit for the surface

tension

]'n,', [*' + ( il

along with integrands of the exponential density expres-

sion (44) and its large l, limit (45), at L = fl.

nsr
The values of surface tension as a function of

,'
ryd, obtained with the zeroth approximation pair correlation
function, 9=e0, are shown in Fig. 3. The curves for e

and o intersect at tr=.41d and since e=o at absolute

zero, provided the location of the surface is defined

by (21) (see Section 3 of LH), we have another estimate
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of the Surfac.e thj.ckness: ! = 3.22^ !, 3.4i, This value

is f.ikely to be less accurate than orr previouS estimate

of, Section 3, since it is based on a first prlncip,l.es

c.atrculation with a crude g and no dlrect, experimental

input. Nevertheless, the Lntercept €hr.t'99 0.43 erg/cntg

is remarikabllr close to the experimental vahle of 0.3? exg/emz ,

imBtying that the severe approximat5-orts the-t we mad'e to

obtain the curves of Fig. 3 contai,n canc.elling errors

(see djlscus.sion at Lhe end of Section 2') .

Sections ? to 4 support o-ur ini.tiaL assertion that

Tl- t (r.,* ) descrd.bes a dropJ-et, but we should remenber
.lt 1 4J.t< ltlrlt these results are based on the assuntpt,Lon that 0 (tl)

decays rapidly at large r.
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5. rRoBLEMS WITHTTTIT ii) wnen zERo PoINT MOTIoN OF

PHONONS IS INCLUDED

In the previous sections we found that the wavefunction

T "r'Q(rtr)i<j
(so)

ofgave good results for the surface

J-iquid helium provided. 0 (r) tends

r+@. In particular the McMillan

0(r) - -2(*)s

is of the form (50), with

0(r)*0p = -*

where

energy and thickness

to zero rapidly as

form

(sr)

(s2)

(s3)

led to reasonable results.

HoweverrReatto and Chester (1967) have shown that

the existence of phonon excitations in liquid helium

implies that a factor of the ground state wavefunction

a logarithmic divergence (to minus

surface energy and surface tension

(42). This divergence has appeared

ns for the surface energy of liquid

empts have been made at understanding

and Chang and Cohen (1973) t both of

low). Note also that the divergence

tions of the large surface width

To see clearly the

, lLu = 1l mc | =

'\ 4E- /
The term 6 leads to'p
infinity) of both our

expressions, (18) and

in previous formulatio

helium and varyi-ng att

it (see Bowley (1970)

which are discussed be

invalidates the deriva

expressions e- and o-.

0

2.6A
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consequences of the phonon factor let us return to the droplet

&ction 2 and consider contributions to the total- energy coming

particle separations greater than 2a, where a i" (""V) Si; then

can take / = 6g , g = I, and tl= o to obtain the asymptotic

value
, .l-2 La Ihtr)-+1o:'.2m P tr

of

from

we

which can be regarded as an effective repulsive 7t-*int.raction.
tlirerl

Inserting (54) into (14) we find that the^contribution of the

infinite-range correlations arising out of the zero point motion

of ttre phonon modes is

aE = +(tcxo) R'JT. r-'(r - i(t ) * *(f^)')

similarly leadsto a

SoatT=Oth*elong

= ?(h.n")R'l* - *r"r(*) -+ -+*i1
For a flat surface of area La (54)

positive volume term and u - L2 t"3(%) term.

range part of the phonon correlations raise the bulk energy (i.e.

from a variational point of view they should be left out to lower

the total energy), and produce a negativ. Rllag(%) term, as wel1

as a negative R2 term. The bulk energy is raised Uv \%o

(:J O'58K when a = 5i ) per atom, which is small in comparison

wittr the experimental bulk energy, - 7.16 K per atom. On the other

hand, the "surfac"n "r,"rey is lowered by S#'(t.S* 
* +) ,

which is approximately 0.63 eFgCti2when R= .5 mm and a = S t

Thus for R large enough we have that at T = O the "surfu"d'"tt"t9ry

would be negative, which seems impossible to accept.

(s4)

(ss)
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It is known that at finite temperatures the long-

range correlations due to the zexo point motion are expo-

entially dampedr so one might hope Lhat the aboVe problems

in the ground state would d.isappear at finite temperature'

However we find that this is not so. Reatto and chester

(Lg67) have shown that the diagonal part of the density

matrix has the form of a product wavefunction, with the

Iong-rangepartduetophononzeropointmotion.The
d: nsit'1

probabitity^is thus of the same form as before, with

0

5.8A at IK. Inserting (56)

contributions from Particle
2a, we find that the finite

motion contribution to the

rTr/hc
tse)sinh (rTr/hc)

into (14) and considering

separations greater than

t-emperature Phonon zero-Point

bulk energy is (when 2rTR/ii,c>>L)

and so the kinetic energy term

1412 /4n) v2O p

in the total energy again has the form of a repulsive

interaction. The screening length hc/nI is approximately

where r(x) =

AEv = ${hcn )F F 12nTa\^ \-trc /

. xcoshx
sinhx

,X
sinhx (1

(s7)

(s8)
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The low temperature expansion gives a negative contribution

to the specific heat proportional to T3, Since

F(x) = I - xb + o(x6) (r?)

In fact the slope of F is always negative, so the screened

zero point motion contributes a negative specific heat,

with a maximum magnitude at T = .45 17c/a. This result

is in accord with our statement above that the correlations

due to the zero point motion of the phonon modes are

equivalent to an effective repulsive d+ interaction

which is screened thermally, because the higher the

temperature the better the screening and so the energy

due to the zeto point motion of the phonons decreases

with T. For a of order of the atomic djameter or {rerttst,

this negative T3 specific heat is an order of magnitude

Iarger than the normal T3 term due to thermal excitation

of phonons, so the total bulk specific heat is negative

up to T - hc/a-LK. This indicates an instabilit'y in the

system, since if the energy decreases with temperature

in any region, a spontaneous positive temperature fluc-

tuation will decrease the total energy and thus release

heat, further increasing the temperature, which will

in turn decrease the energy, and so on. similarly, a neg-

atively temperature fluctuatj-on will induce a Cor1-firru,t{g

decrease in temPerature.

The surface energy contribution of the zexo point

motion of the phonon modes is read5-ly obtained from (5e1

-J
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and (14). We find
frcno ( - IAe=- Bn i;;ft; +2F(x) 2 rostann|f (60)

where x = 2nTa/'hc. The derivation of this expression is

valid only when the total surface energy is greater than

zero, since a spherical shape is assumed in (14).

The low temperature (2rT << )hcla) expansion is
tf.n^ I \

ae = -Tl'"n(k). * . "(#)"1 (6r)

The above expressions are again limited to the region

ZnT R /flc
bution to the specific heat is positive, varies as T-1,

and. will become- larger than the previously noted negative

T3 bulk contribution when T S 19 tl I l. This temperature- n 3a 'R'
is of the order of 10-2X for a droplet of rnillimetre size.

The consequences of Lhe long-range correlations
arising out of the zero point motion of the phonons thus

appear to be

(i) a negative bulk specific heat

(ii) a term in the energy varying as

R2log (Rrla) at T=0

(iii) a logarithmic temperature dependence of the

surface energy at low temperatures, with measurable temp-

erature variation at about 10-tK and zero e at about

ro- 3K.
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Bowley (1970), who first. met one of the difficulties

associated with the long-range phonon correlations (he

found a divergence to minus infinity in the surface energy

at T=0 when these correlations were included) has postu-

lated that the inclusion of the zeto point motion of the

surface modes would remove this problem. The correlations

due to surface mode zero point motion have yet to be

evaluated explicitly, though chang and cohen (1975) have

written down an expression for their contribution to the

ground state wavefunction. w€ feel that it is unlikely

that the surface wave zeTo point motion can remove a

problem which arises from the existence of bulk modes,

since we expect the correlations due to the surface modes

to be of a different kind, and additional to the phonon

modes, rather than cancelling them in a substantial part

of the interior.

Another approach to these difficul-Lies is that of

chang and cohen (1973), who use the wavefunction

v = fT. exP LO (rt, )
i<j

lT exn
k

tr (Fl ) (621

where the function t(g) is optimized variationallyr ds in

Bowley's work. However, instead of parametrizing t, as

Bowley did, they eliminate t in favour of the density rt,

and parametnzg 21, . We note in passing that Bowley I s

assumption that n=rL^ et leads to the same expression for
o

e as our work based orrTGLo. pl,r= a small term
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- ( t ' /a^l Iu: n (r) v2t(r) .

We will generalize Chang and Cohenrs result

and give a similar treatment for the surface

The expectation value of the Hamiltonian (2)

the trial function (62) is readily shown to

f f 1rz F<ID = Lldr dr TL (r ,r :-r _r _z ._t._ztlu.tr,r)-Ovlott

for the ener

tension.

taken with

be (c.f . (3) )

') 112 r
,2T- ffiJu=,

9v

n(r )v2t(r )-r r -l
( 63)

The Yvon equation
f

V"trr) = t1(fr)vrt(rr)+Jar. ru(Er'5r) vr0(rrr) (54)

obtained by differentiating the defining relation for the

density, (/r
tt(Er) = *Jd!r..,d_\ v'/Ja\ ...alnf

can now be used to rewrite the last term in (0f1

of the density ru and the pair function Q. Then

n (E, ,Er) = tt(r-r ) n(9, ) g (t ,,!")
and

9 (!,,9.) = €xpt0 (rr r)*t (E,,Er) ) ) (671

the expectation value of the total energy becomes

<t> = {at-,dr, ,r. jE ,,t-rL{u(r,r) - * [(vro(trrll'+vr0(r,r),
vry(! ,',r-rl 1) + ffiF=,*(rr)' (vrrogn(f ri)' (os)

fn a uniform fluid, the HNC and PY eqrrations for the pair

correlation function may be used to evaluate y (see for
example Feenberg 1970, page 695)

( 5s)

in terms

d.ef ining

(16)
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( P(r ) (HNc)
V(r t?t ) = { tt

-r--2 ( tog [1+p(.r r) ] (pv) (69)

where

P(r) = #r" r"f uL"-ttfforf
tfe= z"h- Jat' u sinkr # )

0o)

and

s (k) = ,*rduf u {'! ts (r) -r l Crr)

is the structure factor. The large r variation of p(r)(and
hence of y) is determined by the smarl k variation of s (k) .

rf we accept the correctness of the usual form, s (k) -> hk/Zmc
(Feynman (1954), Feenberg (1970) ), then integrating trre rcal.t Aa^d,

sr'de of (70) by parts and substituting fgr S(k), gives for
the aslzmptotic form of p(r),

P(r)+ -"- I - I 1-L*...
n2hno 12 zrt2nomc r$ ez1

Thus we have that
y(r) + p(r) = { * 0(r-'+) = - 0^(r) + O(r-r)

12 ' P' (73)

i'e' using the HNC or PY equations the contributions of the zero-
point phonon correlations cancerl in the first term of
(641, at least deep inside the liguid. (*" should however note
that the equivalent classical fluid (ur- = -TO) corresponding to the
product wavefunction (f) when S -r - b2yaz has energy per particle
and pressure both proportional to the size of the system, and thus
the val-idity of the HNC and PY equations needs to be re-examined
for this very singurar case .) rn fact provided. y goes to zero no
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slower than fl, (68) wilr not diverge.

A similar result follows for the surface tension. We find'
for the wavefunction {52), that the surface tension is given by

(421 , the expression derived for the wavefunction (1) ' plus

the term

Ao = -+ F#)"fq rtt tzrlt*t y
(in this case we find it simpler to

When we again elirninate t by using

Ao = *lu",,t"r (L%ne))'
i43 I xsurfacepartqE

,Utlr,rr) )

ru(z )
I

work with a plane

the Yvon equation,

(7 A',)

surface) .

we find

otfar a
" -l

frrru (r, , E, )tviO (r, , )

(7s)

The singular part of the second term in (75) has the form

*(ottrrrD' * vr0 (r,r).v

TT

16

(c.f.(3)c(18))
lt *otfit '@-T - Jut r3s(r)

m-O
while the singular part of

w'{ *30'J (7 6l

(7t y
\ 

tfit

.Ji: ,, g (r)

(421 is

(+)'
and when $- varies as r'', these cancell.'p

Thus it appears that by using the wavefunction (62)

instead of (1) the divergence in the surface tension and

the surface energy has either been removed r ox has been

shifted to the density gradient term
/ - r-\
JuSn(:) (vroeru(r))2 (15)

Chang and Cohen (1973) argue that when a physicall_y reasonable

density is chosen, this term will not be divergent, ffgwever,



30.

it is not clear whetherfie long-range correlation

6^ in the ground state gives such a physically reasonabletr
density.

To sum up - we have shown that good results for the

energy, tension and thickness of the surface of liquid
hel-ium are obtained with the wavefunction ]t f1t)
provided r-2 correlations due to phonon zero-point motion

are Left out. When the phonon correl-ations are included

serious problems arise that may only be overcome by using

the method of chans and cohen and the wavefunctionTKt;)TTS{O)'

The guestion of whether it is the wavefunction Tf{6.;) or the

phonon correlation factor that is at fault remains unanssered

however, since the exact density profiles that follow

from the suggested wavefunctions are not yet known.

We are grateful to Professor Alan Portis for several

stimulating d,iscussions on the probJ.ems arising out of

the zero-point motion of the phonons.



FIGURE CAPTIONS

Fig 1. The functionsf anCt f,f defining the density
profile.

Fig 2. rntegrands of the exponential density expressions

fox € and €* at I: d, together with the integrand

for the lfuniting expression €o. We took d=2,6j,

and v=10.3K. The areas under the curves times

zrrn|da- (= l.+31 K/ A^ ot I,ltSe,t/",,-)
give the surface energies.

rig 3. surface energy and surface tension for the

exponential density profile. (€ and 6os from

eqnE. (24) and (2gl , Cr and q from egns.

(44') and (45) ) '
Fig 4. Determination of the surface thickness from

eqn. (34) and the results of Fig. 3.

Fig 5. The surface tension integrands, protted in the
same ru" "Snergy integrands of rig 2. The

areas under the curves times Znvfrf v
give the surface tensions.
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