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ABSTRACT

The mechanical properties of wood are investigated from a
"quasi-elastic" point of view that makes allowance for variation
in moisture content. The theoretical work is divided into three
parts. The first part shows that wood may be regarded as a fibre-
reinforced composite material and then builds up models of wood
structure in terms of an assemblage of basic fibre-composite
elements. The second part derives the constitutive relations

for a fibre-reinforced composite consisting of an inert fibrous
phase embedded in a water reactive matrix; and the third part is

concerned with the properties of the matrix of wood substance.

The theoretical work is then tested against mechanical data from a set

.of specimens for which individual models have been devised.

From this work, functions describing the behaviour of the matrix with
moisture content are obtained and the structural modelling procedures

and the constitutive relation are shown to be not inconsistent with

the observations.

It was found that in addition to the mean cellulose microfibril angle,
the matrix sorption properties are of great importance in correctly

predicting longitudinal shrinkage behaviour.
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Chapter 1

INTRODUCTION

Interest in cell-wall mecahnics can be said to have originated with
the work of Preston in the 1930's on the influence of plant cell-wall
structure on cell growth patterns. In New Zealand this interest has
been focused on the problem of relating the properties of wood to the
structure of the cell-wall. The first publication from the Wood Group
at the Physics and Engineering Laboratory, Department of Scientific
and Industrial Research, New Zealand, established the role that the
mean cellulose microfibril angle plays in wood shrinkage (Barber and

Meylan, 1964). Many papers have since been published reporting

experimental and theoretical developments in this and related fields.

The candidate's contributions include work on the theory of the
determination of mean microfibril angle in wood from X-ray

diffraction diagrams and theoretical work on the influence of

structure on the elasticity of the plant cell-wall (with applications

to wood) . Dynamic properties of wood have also received some attention,
together with some discussion of the influence of moisture on mechanical

properties.

VICTORIA UNIVERSITY OF WEILLINGTON




Two papers covering some of the work of the initial stages of this
thesis have dlready been published. One concerns basic theoretical
aspects (Cave, 1972a), and the other is a consequent, but simple,

investigation of wood shrinkage, (Cave, 1972b).

The basis of the present work is the derivation of a constitutive
relation for a fibre-composite material in which the matrix swells,
on the uptake of water. This development has allowed a more complete
analytical description of wood behaviour than has formerly been
possible. It provides a connection between the thermodynamics of
swelling gels developed by Barkas (1949), and the theories of
structure-reldated cell-wall mechanics - by means of a formalism that
links the thermodynamic variables of relative humidity, moisture
content, temperature stress and strain, with material properties
given interms of microscopic structure and the properties of its
constituent phases. The new constitutive relation could be

important in the study of not only cell-wall mechanics, but also of
other multiple phase systems such as soil and water, certain polymers

and their solvents and wool and water.

The aim of the present work is to provide, from a "quasi" elastic

point of view, a description of wood behaviour that is as comprehensive
and as concise as possible. To this end tensors and the reduced tensor
matrix notation have been used throughout. A largely self-contained,
but brief discussion of tensors as applied to cell-wall mechanics has

been appended to this thesis (Appendix I).



With the introduction of moisture content as a variable it has been
necessary to find functions describing the moisture-content behaviour
of the water-reactive component of wood. In part this has been
achieved by deducing the "elastic" properties of the matrix from
behaviour under one particular stress-system. As a cross-check the
results have been been applied to a second stress system acting on

the same material. In the first, longitudinal stress has been applied
to give measurements of longitudinal Young's modulus of whole wood at
various moisture contents; and in the second, a change in moisture

content has been allowed to stress the cell-wall.

The sorption properties deduced in this way (in addition to other
information on sorption behaviour) have been applied to the consti-
tutive relations, and then, using models of cell-wall structure,
shrinkage properties are predicted. In the light of the comparison
between predicted and observed shrinkages, some substantial develop-
ment has been required of the model representing matrix sorption

behaviour and the results have proved most satisfactory.

The work is divided into two parts, theoretical and practical

applications.

Part I is divided into three. In the first, the structure of wood is
discussed at both the microscopic and submicroscopic levels. In the
third chapter, the microscopic structure is used as a basis from

which models of wood structure can be built up. The submicroscopic

structure suggests a basic mechanical element to which the constitutive




relation applies. The fourth chapter consists of the development of the
constitutive relation and then the models of cell-wall structure and the
constitutive relation are drawn together in an attempt to form a coherent

theory of wood mechanics.

Part II proper consists of four chapters and they are followed by a
summary and conclusion. Chapter 5 discusses the preparation of the

raw experimental data for a set of specimens that has been gathered
together to test the theory. In Chapter 6 the models of the experi-
mental material are set up. In Chapter 7 the "elastic" properties of
the matrix are derived from the models and the longitudinal Young's
modulus data. Finally, in Chapter 8, the information from the preceding
three chapters is pooled to derive and compare the computed shrinkage

behaviour with that observed.

In discussing the properties of wood, attention has been confined to
the longitudinal components since it is these properties that are most
directly determined by cell-wall behaviour. Earlywood from softwood
species has been used as the experimental material so as to simplify

the considerations of wood structure as far as possible.

Because so many gaps exist in the knowledge of the properties of the
phases, and because some of the experimental data is of poor quality,
it is suggested that the second part be regarded to some extent as
illustrative of a method, rather than as being strictly definitive.

However, in spite of some shortcomings in the data, several important

results are indicated and these encourage further investigation along

the same lines.
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Part T

THEQORY

Chapter 2

WOOD STRUCTURE

2.1 Development of Wood Tissue

Practically all of the cells of which wood is composed are derived from a
thin zone of living cells, known as the vascular cambium, lying between

the bark and the wood. This zone consists of a uniseriate layer of cambial
initial cells together with their recent meristematic derivaties, the xylem
mother cells on the woody side and the phloem mother cells on the bark side
of the initial layer. The phloem mother cells, the initials, and xylem
mother cells are arranged in radial files with each file originating from
an initial cell. Tree growth proceeds in the main by the formation of new
cells by cell division in the tangential plane and by differentiation of
the outermost cambial cells into xylem (wood), and phloem tissue,

(Kozlowski, T.T. 1971 and Wilson, B.F. 1964).

The process of differentiation generally involves change in shape and often
in size; but once the cell has attained full size a much thicker secondary
wall is formed in layers on the inside of the primary cell wall. The final
stage of development of the wood tissue occurs near the end of the growth

phase with the deposition of lignin in the middle lamella and primary wall,

and, to a lesser extent, in the secondary layers.
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A cell cut off from the cambium towards the wood may differentiate into
one of four types of wood element, each serving one or more special
purposes. In hardwoods, cell functions, in general, are more
specialised than in softwoods, and result in the appearance of many
cell types and structures. On the other hand, softwoods usually
consist almost entirely of cells of one type which perform both the
functions of tracheary elements (transport of fluids) and fibres

(mechanical stiffening). They are known as tracheids.

Because of the relative simplicity of the structures in softwood species,

attention in this investigation is confined to wood of this type.

. 2.2 Softwood Structure

The structure of Pinus species is simple and variation is confined to -
(a) annual banding caused by differences in
size, shape and wall thickness between
earlywood and latewood tracheids.
(b) vertical resin canals which consist of
groups of broken down parenchymatous
cells, and
(c) rays which run radially through the
tree from pith to bark and consist of
clusters of parenchyma cells and ray
tracheids.
Between them, the ray structures and resin canals account for no more

than 5% of the wood volume in New Zealand grown Pinus radiata. They




are of little account mechanically, for even the ray tracheids, which
are elongated in the radial direction, have low stiffness along the
cell axis. The parenchymatous tissues are composed of living cells
which usually have only thin primary cell walls. From a mechanical

point of view Pinus radiata may, therefore, be regarded as consisting

of only tracheids and 5% voids, with heterogeneity in structure
arising only from the presence of growth rings. In general in the
present study, attention has been confined to the wide bands of the
earlywood from which homogeneous and thin-walled specimens may be

prepared.

2.3 (Cell Wall Structures

The wood-cell wall consists, in the main, of a complex of three types
of material, namely cellulose, hemicellulose and lignin. Initially,

the middle lamella consists merely of the first formed membrane in

cell division. The primary wall which is laid down upon the inside of
it, is composed of mainly cellulose and pectic substances and the later
secondary wall is composed of cellulose and hemicelluloses (Meier 1964).
In the closing stages of active cell life the lignin appears as an
encrustation in the outer cell-wall layers. The middle lamella and
primary wall as a result become composed mainly of lignin and the

secondary wall acquires a lignin content of up to 30% (Wardrop 1964).

The cellulose is often termed the "structural" or "framework" compon-
ent of the cell-wall. It is crystalline and occurs as extremely long

"microfibrils" of about 3.5 nm cross-section that generally assume
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preferred orientations within the various layers of the cell-wall.

In the axial direction it is very stiff (longitudinal Young's modulus
1.37 x 10% kp/mn®, Sakurada, et al, 1962). On the other hand, the
hemicelluloses and lignin which bind the cellulose microfibrils
together are each regarded as having low stiffness (Mark 1967). They
readily interact with water (though the hemicelluloses do more so than
the lignin, (Christensen and Kelsey, 1958)) and have usually been
regarded as forming an amorphous complex. However, the hemicelluloses
which consist in the main of unbranched polysaccharide chains of
various chemical constitutions, with a degree of polymerisation of the
order of 100-200, may have a preferred direction associated with the
cellulose microfibril alignment. Liang, et al (1960), showed orien-
tation of xylan and glucomannan in the direction of the cellulose by

means of polarizing infra-red spectroscopy.

The lignin is a complex three dimensional polymer of polypropane

resides which is probably isotropic in nature (Goring, 1971) .

The layered structure of the cell-wall is readily observed in the
transmission electron microscope, and, to a lesser degree, in the
polarizing optical microscope, because the various layers are character-
ised by differing patterns of cellulose alignment (Wardrop, 1964).
However, there are distinct differences in chemical composition also
(Meier 1961). The middle lamella and primary wall (usually lumped
together and designated M + P) are predominantly composed of lignin

with cellulose (10%) and pectic type hemicelluloses (arabinan,

galactan and pectic acid) (20%3 as other constituents. In the M + P
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layer the cellulose microfibrils are uniformly oriented in the plane
of the cell-wall and the M + P earlywood thickness is about 10% of the
total wall thickness. The first layer of the secondary wall, the S1
is about as thick as the M + P, Fengel (1969), but the lignin content
has dropped to 30%, with equal proportions of cellulose and xylan type
hemicelluloses. The S1 layer is considered by Dunning (1968) to be
made up of a series of 4 or 5 lamellae in which the outer lamella has
transversely oriented cellulose microfibrils followed by two lamellae
with helices at large angles to the cell axes, one left handed and the
other right handed. A few lamellae follow with a stepwise transition

of microfibril alignment to the steep helix of the 82 layer.

The 82 layer is the thickest component of the cell-wall (70—80% in
earlywood) and with angles between the microfibrillar axes and the
cell axis ranging from 10° - 30° and high cellulose concentration,
comprises the most significant component of wood. Dunning (1968),
considers that the 82 layer is laid down in concentric lamellae,

and that microfibrillar orientation in each is practically unidirec-

tional throughout the layer.

As in the case of the S, layer, the transition from S, to Sz (the

final secondary wall layer), is stepwise with regard to microfibril
alignment, with the innermost layer of the S3 having transverse orien-
tation. The S3 is very thin and comprises less than 2% of the total
wall thickness (Fengel, 1969).

Dunning, thus regards the division of the secondary wall into three




layers as somewhat artificial and considers that rather than a sharp
division between the layers there is a gradual transition from trans-
verse orientation on the inner and outer faces to the predominant steep

helix of the main central portion of the wall.

According to Meier (1961) the chemical composition varies across the
secondary wall. The hemicellulose is different from that of the
primary wall being composed largely of glucomannan and glucuronoxylan,
and the amount of cellulose in the 82 at 65% is higher than in the

inner and outer portions of the secondary wall, (60% and 50% respectively).

2.4 Variation of Structure Across the Tree

Trends in cell-wall composition and structure are noticeable as one moves
from the pith of the tree to the bark. The microfibril angle in the 82
layer usually decreases steadily, from the pith where the largest angles
occur, to about the 15th annual growth ring where angles of 159 - 20°
occur. From there on, small angles (10° - 20°) occur that do not
correlate closely with annual ring number. In the same way a systematic
change can be seen in overall cellulose concentration, the highest values
occuring near the outside of the tree where 82 layer microfibril angles

are smallest.

Density also varies across the tree, being lowest near the pith

(Nicholls and Dadswell, 1965).
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Chapter 3

MODELS OF WO0OD

%.1 Constitution of the Cell-wall

The concept of the fibre-composite material (that is, the consideration
of rigid particles or rodlets of material embedded in a bonding medium)
has been used as the basis of the analysis of the mechanics of wood
throughout this work. 1In terms of this concept the elemental component
of a cell-wall layer is a "representative volume", as defined by Hill
(1963), consisting of a mixture of straight, parallel, cellulose micro-
fibrils embedded in a matrix of hemicelluloses and lignin "that is
structurally entirely typical of the whole mixture on average and con-
tains a sufficient number of inclusions for the overall apparent moduli
to be independent of surface tractions and displacements ...", Hill
(1963). As such, this elemental volume would correspond to a portion
of a lamella element of a wall layer, Fig. 3.1.1. Lamellae may be
considered to consist of aggregates of identical elemental volumes,
cell wall layers to consist of lamellae of various orientations, and
cell-walls to consist of layers of various chemical compositions and

various orientations.

The cell-wall may thus be described in terms of the behaviour of a
series of lamellae bonded together and subject to various bonding
conditions. The properties of the lamellae are obtained from the

properties of their constituent fibrillar and matrix components by
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reference to suitable theories of the behaviour of fibre composite

materials, e.g. Hill (1965) and Chow and Hermans (1969).

3.2 Model of the Thin Cell-wall

An approximation, appropriate in the consideration of earlywood, results
from the assumption that the cell-wall is thin. When a thin walled
configuration is assumed it is convenient to consider the wall-pair
formed from the cell-walls of adjoining cells. Typically, the cell-walls
are flat and the cross-sections appear square or rectangular. A wall-pair
thus appears as a symmetric sandwich structure, if the individual cells
are identical, with a middle lamella at the centre that is bounded on
each face by a primary wall layer followed by the secondary wall. Each
lamella in one half of the wall-pair has a complementary lamella in the
other half (Fig. 3.2.1). In such wall-pairs the microfibril angle is
equal and opposite in complementary lamellae. By assuming a thin wall

so that the relative position of the layers is immaterial complementary
layers can be lumped together to form balanced laminates. By this means
greater symmetry in the elastic constitution of the basic element of the
cell-wall is introduced and the boundary conditions applying to the whole
cell-wall are simplified. This is at the expense, however, of all

information relating to interlayer stresses.

3.3 Model of Wood (Earlywood)

Some properties of whole wood are determined solely by the properties of

the multilayered cell-wall. This is the case for longitudinal properties
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such as Young's modulus, Cave (1969). For most transverse properties,
however, this is not so, and the geometry of the cells themselves and
their arrangement with respect to one another, have to be considered
before a complete model for wood can be built. The present study is
confined to the properties of the cell-wall and so only the longitudinal
properties are strictly applicable to whole wood. Transverse shrinkage
has been considered; but it is compared only qualitatively with experi-
mental data. (It is too difficult to characterise experimental material

for adequate comparison of transverse properties.)

For the properties to be considered in this sudy, therefore, the wood

model (earlywood) is completed by applying the volume factor 0.95 to the

cell-wall model, to account for the fact that the tracheids occupy
this proportion of the wood volume, and that they are the only elements

of importance to the mechanics of wood.
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Chapter 4

A THEORY OF THE MECHANICS OF WOOD

4.1 Constitutive Relations for a Cell-wall Element — General

It has been established that the basic cell-wall element is to be a
"representative volume" consisting of parallel cellulose microfibrils

embedded in a matrix of hemicelluloses and lignin.

It is now proposed to examine this system from an elastic point of view.
Although some experimental phenomena point to a degree of plastic and
time dependent behaviour in wood, the view taken here is that the
elastic case can usefully take one a long way along the road to under-
standing much of the behaviour of wood. If necessary, both time depen-
dence and plasticity can easily be accommodated within the formalism
used here by the substitution of appropriate material constants. The
work of, Cousins (1972), and Nissan and Sternstein (1962), for example,
indicates that simple rate theory will account in the main for time
dependent phenomena in wood. In considering moisture in wood steady

state conditions are assumed, so that diffusion effects are excluded.

The wood material properties considered, however, are not truly elastic,
in the conventional sense, since an additional dimension is introduced
with which these properties vary. This new dimension is water. Water
reacts very readily with the hemicelluloses, and with lignin and thereby

affects the stiffness of the matrix. Cellulose, from its X-ray diffrac-
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tion properties is known not to interact significantly with water and

is taken to be truly elastic. Wood, therefore, has to be considered

as a three phase system. Two of the phases, the cellulose microfibrils
and the matrix-water complex exist in the solid state, while the third
exists in the gaseous state as water vapour. The behaviour of wood is
dependent, then, not only on stress and strain, but also on the pressure,
temperature and relative humidity of the environs. Consideration will
be given to the behaviour of wood at constant atmospheric temperature

and pressure.

4.2 Symmetry of the Cell-wall Element

Symmetry in the properties of a composite material is dependent upon the
symmetry of its components and the way in which they are arranged with
respect to one another. The basic wall element is taken to consist of
parallel microfibrils embedded in a matrix that has usually been regar-
ded as amorphous and isotropic. In this case the composite system assumes

the symmetry of the microfibril arrangement.

An individual native cellulose microfibril has monoclinic symmetry, but

is very nearly orthotropic since its basal angle is nearly 90° ([9 = 849).
In wood, however, it is assumed that only the "b" crystallographic axis
of the cellulose, that is the microfibril axis, is aligned, since there

is no evidence that there is alignment of the planes parallel to the

"b" axis. The assemblage of cellulose microfibrils is, therefore,

assumed to be transversely isotropic and so the composite is also trans-

versely isotropic.



In the present work it is suggested that there is structure in the

matrix arising from the alignment of the hemicellulose chains along

the microfibril axes. The matrix itself may, therefore, be transversely
isotropic, but, because the axis of isotropy is parallel to the cellulose
axis of isotropy, the symmetry of the composite system remains the same

as before.

4.3 Constitutive Relations of a Swelling Fibre-Composite

4.%3.1 Stiffnesses

With transverse symmetry the basic cell-wall element will have five

independent "elastic" constants and its stiffness in reduced form

(see Appendix I) will be represented by,

Cu 2 13 d ‘ '
Ll L] L

] 13
L . .

33

Ces
C44 :
C66

With ==9&(E"—-cm) , when the 3 axis is the axis of isotropy.

Ces
The coefficients Cij are the reduced matrix form of the tensor

stiffnesses, which in the present case are not constants but functions
of moisture content. They are determined from the geometry and stiff-

nesses of the constituent microfibrils and binding matrix using Hill's

"Self Consistent Theory" of a fibre composite, Hill (1965).
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4.%.2 Effect of moisture

When water is taken up by the composite cell-wall element, the matrix
swells and becomes more compliant. The swelling process induces
internal stress changes, and in the cell-wall situation may also change
the external stress through the interaction of the various cell-wall
layers upon one another. Strain is, therefore, a function of change in

internal and external stress and in matrix compliance.

Internal stress is developed when water is absorbed by the matrix and
the matrix attempts to extend the microfibrils. This stress is
proportional to the restraint imposed on the swelling of the matrix
by the microfibrils. If the unrestrained matrix swelling, relative to
the"stress free" state of the composite, (i.e. the state of strain in
which the forces of reaction of the cellulose against the matrix are
zero), is denoted by £° and if the strain that the matrix achieves in
the presence of the microfibrils and any associated external stress is
denoted by &m then the stress in the matrix is given by,

o"=Cmfe"-¢°), (1)
where C™ is the stiffness tensor of the matrix material; and the
stress developed in the microfibrils is proportional to the imposed
strain,e‘so that,

o ey F T ()
In a representative volume of the composite the average stress taken
over both the microfibrils and the matrix must equal the average
external stress. If we define the average stress by the integral of
stress over a specified region divided by the volume of that region

then the following connection between the average stress in the two




- 30 =

phases and the overall (external) stress applies, Hill (1963),

(3)

£

f

cfaf

+ cm"o"= 0,
where the bar placed above indicates a volume average, and ¢
and ¢™ are the concentrations or volume proportions of the microfibrils
and matrix respectively; and we find that,
FCFeEf + cmem(Em-59)=5. (2)

Rearranging Eq. 4.3.4,

FCTEr + emCmEm= c"C"E° + &, (5)
and noting that there is a unique dependence of the average strain in
the microfibrils and the matrix on the overall strain, that may be
expressed as,

=A%, em"=A"¢, (6)
Hill (1963), we find that Eq. 4.3.5 relates a uniform stress, ¢?CmE°+ o,

to the resultant overall strain, €.

cTCAT + cmCmpm is therefore identical with C , the
overall stiffness tensor of the composite, and Eq. 4.3.5 may be written,
CE=cPCméE° + 7. (7)
Af and A™ are functions dependent on the elastic constants, geometry
and concentrations of the two phases and the way in which the phases

interact.

If an increment of moisture is added to the composite in the swollen
state (relative to the stress free condition) then the resulting
increment in strain is given by the differential of Eq. 4.3.5. That is,

CAE =cmCmAE - emACP (5m - &) + A, (8)

where, the A indicates an increment in the quantity that it precedes
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arising from the moisture increment.

Substituting for &™ , Eq. 4.3.8 becomes,
CAE = c"CmAE® -c™AC™ (A" -£°) + A (9)
BEqg. 4.3.9 constitutes a differential equation in overall strain, &

with respect of moisture content.

Eqs. 4.3.7 and 4.3.9 can be evaluated when matrix stiffness as a function
of moisture content and the moisture content of the stress free state
are known, for,
(i) A" is given by the relation,
c-cf=cmcm-ct)Am.
(i) €  is determined from the elastic constants of the
two phases and their concentrations, from theories of
fibre composite materials.
(iii) &° the unrestrained matrix strain may be related to

moisture content and relative humidity.

4.4 Moisture Relations

To relate mechanical behaviour to moisture directly Eq. 4.3.9 may be
written,

caz = cncn(3E )au-cn (35 )Au(AmE -E%) + A5 (1)
An estimate of Cgé?y is made in Chapter 7, and the other differential

which is dependent on some model of the matrix is discussed in Chapter 8.

The thermodynamic theory of rigid swelling gels developed by Barkas may
be used to find the connection between moisture content of wood and
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relative humidity. There are four isothermal thermodynamic variables
of a rigid gel of which any two taken together are independent. These
are stress or pressure, strain, moisture content and humidity; and,
defining ambient humidity and pressure for an isotropic gel, for

instance, determines the moisture content and the swelling of that gel.

Regarding humidity as one dependent variable,l&ﬁ can be written in
terms of moisture content change, A« , and stress change, Ao .
Thus,

2h=(2) Au+ (22) Ao (2)
The differential G%?o— is the gradient of the familiar sorption
isotherm (yet to be produced in a form other than for hydrostatic
pressure). It is quite strongly stress dependent and only rough
estimates of its general form can be made at present (Chapter 8).
Barkas' theory also provides means for estimating 6§%$L although
the term is not required here, as variation in external stress is not

considered.

Egs. 4.4.1 and 4.4.2 (with Ao =(Q ) express the formal relationship
between mechanical behaviour of a fibre-composite and stress, strain

and humidity.

Setting Au zero in Eq. 4.4.1 gives the simple relation between applied
stress and strain for constant moisture content and means for calculating

longitudinal Young's modulus for instance¥*. Taking gq. 4.4.1 with

*Note : This situation strictly requires a change in humidity Ah to
maintain Au zero under an external stress change Ao, but under

test conditions for longitudinal Young's modulus (instaneous

elastic deflection) diffusion is too slow to allow a significant
change in moisture content.
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external stress zero gives shrinkage in terms of moisture content .
With both Egs. 4.4.1 and 4.4.2 operative it is possible to relate
mechanical behaviour to humidity change as is done in the discussion

of moisture induced deformation in Chapter 8.

4.5 Mechanics of the (Cell-wall

4.5.1 Cell-wall reference system

In general, the elements of the cell-wall are aligned with their micro-
fibril axes at differing angles so that strains in terms of a common
reference system will have to be determined. This is taken to be the
rectangular cartesian cell-wall reference system (aﬁ,xﬁ,x;,) in which
the xaxis coincides with the longitudinal axis of the tracheid

and the:x; axis lies in the plane of the cell-wall (Fig. 4.5.1).

In this system the constitutive relation Eq. 4.4.1 becomes, with
rearrangement,

A5 =C'AE - cfer 38 ) pu- (2" AuA”"(e )
where the tensors C’y Cm% &% &% o' and the matrix Am’
are transformed from the principal axes of the composite to the cell-wall
reference system. The values of the new tensor coefficients are deter-
mined uniquely by the principal values and the microfibril angle of the
cell-wall elements. The tensor transformation is described in

Appendix T.

4.5.2 Position of the stress free state

The cell-wall is made up of a large number of lamellae, each of which

is described by a relation of the above type (Eq. 4.5.1) but unless all
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1amellae can be said to have the same stress free state there will be
differing base lines for measuring strain from. Values must, therefore,
be placed on the stress free states before proceeding further. At
present, however, there is no basis for doing this. One could postulate
that all lamellae could have the same stress free state, perhaps by
allowing the assemblage of wall layers to reach equilibrium, after
changes in conditions, through the mechanism of creep. However, it

is quite uncertain that this could happen in reality.

For convenience it is assumed that this postulate is true. On this
basis it is shown in Chapter 8 that the term dependent on the position
of the stress free state is likely to be small compared with the
swelling stress term and so the stress free state is unimportant in a

practical sense.

4.5.%3 Interaction of cell-wall lamellae

To discover the average behaviour of the whole cell-wall from a know-
ledge of its parts it is necessary to specify how the parts interact.
The most obvious and also the simplest procedure for a thin cell=-wall
configuration is to assume that the lamellae are rigidly bonded
together, so that each suffers identical strain in the plane of the
cell-wall. Under these conditions and with identical stress free
states the components of &’ in the plane of the cell-wall will be
common to all lamellae. If each lamella is constrained to suffer
deformations identical with that of its neighbours, when its elastic
constitution by virtue of its different microfibril arrangement, is

different, then it will exert stresses on its neighbours given by
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Eq. 4.5.1, The sums of the forces acting individually on all the
lamellae are the forces acting to produce the deformations in the
cell-wall as a whole. Thus a relation between overall stress and

overall strain can be obtained.

4.5.4 Overall stress

The summation of these forces can be facilitated by letting it be
supposed that the cell-wall is divided into layers (of prescribed
chemical composition) and that these layers are divided into unidir-
ectional elemental layers of identical shape and volume. In addition,
all the elemental layers from a particular cell-wall layer have micro-
fibril densities consistent with the chemical composition of that
layer. The elemental layers just described could be considered to be

subunits of the lamellae.

Under this scheme the overall stress is given by,
n .
— L
O’—Lgl o , (2)
where o ¢ is the stress acting on the (# elemental layer and is

given by Eq. 4.5.1 and there are AN elemental layers in the cell-wall.

Frequently, it is possible to relate the microfibril distribution within
a layer to some continuous function. In this case the relative frequen-
cies of elemental layers with the same microfibril angle, will be the
same as the microfibril distribution and Eq. 4.5.2 lcould be rewritten,
r 14
N 2 N 5
o=2 o"(8)F (e)de/ > F"(e)d e (3)
rei/-I r=1 -g
where o¢7(8) is the elemental layer stress distribution in the rth

cell-wall layer, N is the number of layers in the cell-wall and
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£7(6)de is the number of elemental layers in the r# cell-wall

layer with microfibril angles in the range @ —de to @ +de;
g

n=£/; £ (e)de. | (4)
2

r=I\

Continuous microfibril angular distributions are assigned to the cell-wall
layer, in Part II using the techniques of Cave (1968) who demonstrated
that the integration of lamella stresses for a quasi normal distribution
is easy, and that the assumption of a normal distribution for plant

cell-wall material is reasonable.

4.5.5 (Cell-wall layer-pairs

Tt is convenient at this stage to introduce the concept of the layer-pair
balanced laminate discussed in Chapter 3. Reference to Table A1.7.1 in
the appendix will show that there are no terms in the composite stiffness
tensor C that relate shear stress to tensile strain or conversely
tensile stress to shear strains, in & balanced laminate. Thus for the
present we may conveniently consider only the relation between the

stresses 0 0, cg’ and their dependence on the strains &', &) ,e;.

4.5.6 Overall stress in terms of strain

From the preceding discussion it will be clear that‘the stress normal

to the plane of the cell-wall of , is zero since there are no constraints
placed on the lamellae in that direction. Thus in each elemental layer
an expression for the Q' strain of the elemental layer can be obtained
in terms of the overall €& and & strains. These can then be used

to eliminate &’ from the expressions for the elemental layer stresses
s D
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q; and <§' , and so the relation between the overall stress and

’ ’

and S

the overall strains 82 2

can be obtained by the summation

of forces over the elemental layers.

The overall strain in the ‘I’ direction is obtained from,
n ,
&/=% &/i/n, | (5)
i=i
once the elemental layer strains eﬁ' have been calculated from the
solutions for e; and 6;

4.6 Evaluation of Composite Stiffnesses of Wood Substance

Hill's "Self Consistent Model" of the fibre—composiﬁe has been used to
evaluate the stiffness coefficients of the cellulose-matrix composite
in terms of the stiffness of its components and their relative

proportions.

For a transversely isotropic system of parallel fibres embedded in a
matrix Hill (1963) discovered that only three out of the five elastic

constants are independent. He found quite generally that,

k-k, _ hk-ka _ Z-C,Z.-Cz [z (1)

L-£, — £-L: =~ ~n-c,n,-cyn, ?

where £ is the transverse bulk modulus, b = ‘E(C" + C,z), ,(=C‘3 ’
|

n=c, and ¢, and c, are the volume proportioris of the two phases.

33 2

Absence of a subscript implies a property of the composite, while a

subscript 1 or 2 refers to a property of one of the two phases.

Thus if & is known & and ~ can be determined. Hill (1965)

determined 4 . /a=c“ and /7 =C66='/2(C"—c'2)by means of a



- 98 &=

"self consistent" method in which he imagined a singlé fibre to be
embedded in a homogeneous medium with the same properties as the
composite. The strain developed in this fibre by a uniform load applied
to the unbounded medium was adopted as the average strain over all the
fibres in the actual composite. This lead to a relation amongst the

longitudinal shear moduli, of,
c + Ca = I _
=My A 24

and m was found to be given by,

(2)

c .k, Caka _ofCm Ca m, |
+m kzzq-mz =2 mz-r; * ) (3)

L was obtained from,

C, c€a_)” (4)

k+m = kﬁdﬂ k,+m E ‘

More recently, Chow and Hermans (1969) have published a more accurate
evaluation of £ y 4 and m using a method that takes into account the

interaction of a fibre with its closest neighbour.

4.7 Computation

The complex computations represented by Egs. 4.6.1 ; 4.6.4 (composite
stiffness coefficients) and table A1.7.1 (tensor transformation of
stiffnesses) substituted in Eq. 4.5.1 (elementary layer stresses)
together with the stress summation procedures in sections 4.5.4 - 4.5.6
have been performed on both a basic Hewlett-Packard HP9800-10
programmable desk calculator and a Hewlett-Packard 2100 mini-computer.
The integrations over moisture content required to solve for total
strain have been run only on the mini-computer, but the desk calculator

has been used to check these runs by comparing strain increments from

both programmes.
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Part 11

PRACTICAL APPLICATIONS

Chapter 5

EXPERIMENTAL DATA

5.1 Introduction

The aim of this work has been to explain the behaviodr of wood in terms
of its structure and the properties of its components. However, the
properties of some components are not completely known and in particular
the stiffness constants of the matrix are unknown. ?y making some
assumptions about the nature of the matrix a value of the shear modulus
consistent with these assumptions has been deduced f¥om longitudinal
Young's modulus data; and the system has been cross-checked by comparing
the shrinkage of the same specimens used in the longitudinal Young's
modulus experiment with computations of shrinkage using these values.
To do this, the individual experimental specimens have been modelled

on the basis of chemical composition, density, and mean microfibril

angle.

The data on longitudinal Young's modulus, shrinkage and density have
been obtained from experiments conducted by the Wood Group of the
Biophysics Section at the Physics and Engineering Laboratory,
Department of Scientific and Industrial Research, Gracefield, on a

small set of earlywood Pinus radiata specimens. For convenience

later these specimens are termed the "Modulus serie%“.



Shrinkages were determined according to the methods of Meylan (1972),
and the longitudinal Young's modulus according to the‘procedures of

Cave (1969), except that photographic recording of strain was replaced
by a direct measurement of strain using a strain gauge extensometer.
Chemical analyses of the specimens have been determinéd by Dr. V.D.
Harwood of the Forest Research Institute, New Zealand Forest Service,
Rotorua. The chemical work involved carbohydrate analysis and gravi-
metric lignin determination. Unfortunately lignin determination on

30 mgm specimens is very difficult and so specimens were grouped to make
more conventional sample sizes for lignin analysis. JThis meant that the
ideal situation of individual determinations of lignin, cellulose and
hemicelluloses relative to whole wood was not attaiged and means have
had to be devised to obtain models of best fit for ﬁhe grouped data.

A larger body of earlywood Pinus radiata data is available from the
|

work of the Wood Group that includes longitudinal shrinkage and mean
microfibril angle information only. This set is presented in Fig. 8.2.1

and is used against the "Average tree" model of section 6.4.

D o2 Experimental Data and its Preparation

5.2.1 Need for correction and conversion

Before the raw experimental data on longitudinal Young's modulus, basic
density, and chemical composition, can be used it heeds to be converted
to make it consistent with the theoretical parameters. For instance

experimental Young's modulus has been obtained witP longitudinal stress

equated to load per unit dry cross-sectional area. This needs to be
|
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corrected for a true cross—-sectional area - a variable dependent on
moisture content.  Similarly basic density has to be converted to
give cell-wall thickness which is another variable that depends on

moisture content.

5.2.2 Longitudinal Young's modulus

Longitudinal Young's modulus has been recorded from éxperiments as
1oad/dry cross-sectional area/strain, for a range of moisture contents.
For use in the present context plots of this parameter versus moisture
content have first been smoothed and then multiplied‘by an area-correc-
tion factor to account for the changing area of the cross-section with
moisture content. This procedure results in a longitudinal Young's
modulus for wood substance. |

. 3 ‘
The area correction factor is,

|
(dry cross-sectional area)/(cross-sectional area &t moisture contentd ),
with the denominator calculated from,

cross-sectional area = (volume of wood substance)/(length),

all at moisture content & .

That is, the area correction factor is,

(wd/l 461)/ Wd/' 46 +wy u ﬁ:s)/z(lw or

( +ea)/(u + 146 u o),

where Wy is the dry weight of the specimen, Aﬂ is its length dry
@s 1is the density of sorbed water (Table 5.2.1), &, is the
longitudinal swelling and « , the moisture content, is the ratio of

\
the weight of water sorbed to the dry weight of the wood. In this
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context dry means a state of dryness in equilibrium with P, C% . The

density of dry wood substance is taken to be 1.46 (Stamm, 1938).

Two raw longitudinal Young's modulus curves are shown to demonstrate the

nature and the extremes of quality of the data (Fig. 5.2.1).

5.2.3 Shrinkage

Curves of longitudinal (and transverse) shrinkage versus moisture content
(e.g. Fig. 8.2.6) as obtained from experiment are in a form that can be
directly compared with the output from model computaéions of shrinkage.
Consequently, in distinction to the longitudinal Young's modulus case

there is no need for correction or conversion of shrinkage data.

5.2.4 Microfibril angle

The mean microfibril angle in the 82 layer has been measured by an X-ray

diffraction technique described by Meylan (1967).

In the models it has been assumed that the microfibrils in the S2 layer
have an angular distribution about the mean angle that can be represented
by a gausian or normal function whose standard deviation is one third of
the mean angle. This assumption has been discussed in Cave (1966) and

has subsequently been supported by Okano (1968) .

5.2.5 Basic density

Basic density has been measured simply as ,
(dryweight)/(wet volume),

and this figure has been converted to,
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(aryweight)/(dry volume),
to provide a basis for calculating wall thickness of model cells with
a standard diameter of ﬂ&Um.

\

(Dry weight)/(dry volume) is obtained from basic density through the
relation,

basic density = (dry Weight)/(dry volume + dry weight X us/es ¥y
where & is the noisture content of the saturated cell-wall (28.5%)
and ©s is the mean density of water in the saturatéd cell-wall

(1.115, Stamm 1938) .

5.2.6 Chemical analyses

The chemical data has been provided in terms of graYimetric percentages
and these have been converted to volumetric ratios using the densities
quoted by Fengel (1969, 1970) for lignin, nemicellulose and cellulose.

These are lignin 1.34, hemicellulose 1.50 and cellulose 1.55.

5.2.7 Sorption in the matrix

The density of sorbed water at various moisture contents, (S has

been taken from Stamm (1938).

The values used are given in Table 5.2.1. From this table the volumetric

strain of wood substance arising from an increment in moisture content of

amount Aw is, |

Vv Cs

If it is assumed that Stamm's wood contained 50% cellulose then the

AV _ 146 Ay (3)

5 e 3 : y o . \
1inear strain in an isotropic matrix is gilven by,
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o ___ |‘46
Ag® = 5o,

where mmc is the matrix moisture content (= 2 x moisture content

X Ammc

of wood).

This relation has been adopted initially as the matrix sorption property
and values of the sorbed moisture volume as a function of matrix moisture

content are also given in Table 5.2.1.

Table 5.2.1

Density and volume of sorbed water

moisture content % 0 5 10 15 20 25 30

|
sorbed water density(1) 1.300| 1.244 | 1.201 [ 1.169| 1.144 | 1.126 | 1.113
sorbed moisture vol.(z) 0.000| 0.114 | 0.232| 0.355| 0.480| 0.608 | 0.739

(1) From Stamm (1938)
(2) Sorbed water volume expressed as a fraction of dry matrix volume.

Derived from (1) and Eq. 5.2.4.



Table 5.2.2

e e e

Elastic constants of cellulose

Elastic constant stated by MARK (1965)

Derived stiffnesses

Source

longitudinal £ =1.37Tx AOA wv\ssm c = 13,730 ww\ssm SAKURADA et al.
YOUNG'S = = (1962) . Experimentally
modulus N . determined by X-ray
technique
4 2 2
transverse . = 0.157 x 10 W©\EB & = 1572 W@\BB MARK (1965).
YOUNG'S ! Theoretical
modulus computation
2 : .
c, =12 kp/mm Obtained by setting S, = O
POTSSON'S ratio of 3 =0 ¢ =157 kp/m® MARK (1965) .
contraction transverse LE i Theoretical
to longitudinal computation
extension under
longitudinal stress
Shear modulus of Or# = 380 W@\BEN G = 380 W@\BEN MARK (1965) .
rigidity average Theoretical
for 101 and 101 computation

planes
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5.3 Established Data

The elastic constants of cellulose are regarded as established even
though only the axial Young's modulus has been subjected to experimental
determination. Figures first given by Mark (1965) and subsequently used

by Cave (1968, 1969, 1972) are used here and are quoted in Table 5.2.2.



Cave, I.D. 1969.

1966.

1972.

Fengel, D. 1969.

1970.

Mark, R.E. 1965.

Meylan, B.A. 1972.

1967.

Okano, T. 1968.
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Chapter 6

MODELLING

6.1 Structural Data

It was intended at the outset to model the individual specimens from
which data was to be drawn. However, while data on an individual basis
is available for mean microfibril angle and basic density, the chemical
analyses are related to grouped values only. The groupings were made
according to the sugar composition of the carbohydrate, the twelve nor-
mal wood specimens of the sample being divided into two groups, corres-
ponding to specimens that were supposed to have come from inside or
outside the tenth growth ring of the tree. (Ring number information
was not recorded in the P.E.L. experiments.) The models adopted have
accordingly been fitted to give the best grouped fit of the chemical
data and, therefore, regretably, fall short of being models of individ-

uyal specimens.

6.2 Specimen Models

6.2.1 Two layer model

To provide a model of sufficient complexity to describe wood in the
desired detail it has been necessary to assume at least a two layer
model. However, the density and chemical data alone is not sufficient
to determine such a model, and so some assumptions about cell-wall

structure and composition have to be made.



- 50 -

These assumptions have been based on information available on softwood
species elsewhere, and they are generally in line with experience at
the Physics and Engineering Laboratory over the years on locally grown

Pinus radiata.

The observed variation in chemical composition with cell-wall thickness
attributed by Fengel (1969) to the change in the thickness of the 82
layer, suggested a basis for cell-wall models that has proved to be
useful. The model applied consists of two layers one representing the
combined middle lamella, primary and secondary S1 and S3 layers, and

the other representing the 82 layer.

6.2.2 The layers

For a given moisture content the "combined layer" is fixed in size and
composition and is regarded as being a binding layer, while the 82
fixed in chemical composition, but varying in thickmess, is regarded as
being entirely responsible for any change in overall thickness or
chemical composition. The combined layer consists of an M + P layer
and an S1 plus 83 layer, lumped together, each of the same thickmess
but differing in chemical constitution. M + P and S1 + S3 thicknesses
are generally quoted as being about 10% of the total wall thickness,
and in these models, thickness has been set at 10% of the thickness of
the median total cell-wall thicknmess in the sample, i.e. 0.24 Um . To
account for the material in the cell corners, which is largely lignin,
an extra 50% is added to the M + P thickness to make an equivalent

thickness for the M + P of O.3§/ﬂn 3



However, the observations of Fengel (1969) on which this model has been
pased, were made on the variation in cell-wall thickness within an annual
ring and not on the variation in earlywood cell-wall thickness from pith

to bark, and so some degree of circumspection needs to be exercised here.

In a later publication, Fengel & Stoll (1973), give evidence that
supports a model in which the binding layer in earlywood is & constant
proportion of the total cell-wall thickness. Again, however, the
variation is across an annual ring. This possibility is examined in

the later stages of the discussion of shrinkage (Section 8.4).

6.2.3 Lignin in the secondary wall

Fergus, Procter, Scott and Goring (1969) found that for black spruce,
lignin concentration is high in the middle lamella, being nearly 100%
at the cell corners, and is nearly wniform throughout the secondary
wall with a value of 0.22. It can be shown from overall composition

values that New Zealand grown Pinus radiata also has a similar lignin

concentration, if the model presented here applies, and so this value

is accepted as another fixed parameter in the model.

6.2.4 Polysaccharide ratios in the binding layer

The ratios of cellulose to all other polysaccharides given by Meier

(1961) for M + P and S1 in Pinus sylvestris have been adopted as

polysaccharide ratios in the M + P and S,l + 831ayers. They are 0.355

and 0.615 respectively.
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6.2.5 Standard cell diameter

The polysaccharide ratios for the M + P and S1 + 53 layers together
with the adoption of a figure for the standardised cell diameter,
completes the set of fixed parameter required to make the model

determinate from chemical and basic density data. The standardised

cell diameter has been taken to be 34/Auw and represents the mean diam-

eter of a set of New Zealand grown Pinus radiata earlywood specimens

measured at the Physics and Engineering Laboratory some years ago
(unpublished). The figure is consistent also with the average radial

diameter of black spruce earlywood measured by Fergus et al (1969) .

6.2.6 The fitted model

Using, for each specimen, the total wall thicknesses as obtained from
the ratio (dry weight)/ (ary volume) (derived from basic density)
figures for lignin concentration in the M + P layer and cellulose
concentration in the 82 layer have been obtained that give a best fit

to the overall chemical composition of the whole sample.

The value deduced for cellulose concentration in 82 is 0.685 which is
to be compared with the figure of 0.665 given by Meier (1961) for

Pinus sylvestris. The figure deduced for the lignin concentration in

the M + P layer proper (0.69) is greater than that suggested by Fergus
et a1 (1969) (0.50 ...... . .60) for black spruce. This may suggest
(recalling, Sect. 6.2.2, that the model M + P layer thickness includes
an allowance (50%) for the material of the cell corners) that a

greater volume should be attributed to the lignin rich cell cormers.

The model is summarised in Table 6.2.1.



Table 6.2.1

Layer thicknesses and chemical compositions

Thickness Lignin Concentration Cellulose/hemicellulose
M+ P 0.36 um 0.796% 0355
S1 + S3 0.24 um 0.22 0.615
S2 0.22 0.685*

* fitted to whole sample chemical data.

The deviation in the lignin and cellulose concentrations of the model, as
deduced from the analytical figures supplied, range up to 60% and 45%
respectively of the values in the table. These figures reflect the
unsatisfactory nature of both the chemical determinations of the specimens
and the large likely error in cell-wall thickness (25%) derived from basic

density as much as any shortcomings in the model.
Nevertheless, the models derived from the data are sufficiently good to
show the individual differences between the "Modulus series" specimens

(Fig. 8.8.1).

6.2.7 Microfibril angular distribution

The microfibril-angle distribution in the binding layer has been taken to
be that reported by Dunning (1968) for the P, S1 and S3 layers. In the
model it is represented by a normal distribution of mean angle 70° and

standard deviation 12.50.

VICTORIA UNIVEKSITY OF WELLINGTON
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The mean angle of the microfibrils in the S2 layer was measured for each
specimen and a normal distribution about this mean angle with a standard
deviation equal to one third the mean angle has been assumed, (Cave, 1966

and Okano, 1968) .

6.3 Variation of Model Parameters with Moisture Content

Table 6.2.1 refers to the dry state. On the addition of water to wood
the volume of the matrix rises by up to 80% and the proportion of matrix
in the cell-wall rises accordingly. To account for this volume change,
the matrix volume ratio, ¢% as a function of moisture content has been
calculated according to the following formula,
C”=/gy@m +(%1xmmebégzyQ%y@m+A4xmch§+CA&17

Where M and C are the dry masses of matrix and cellulose respec-
tively, em * €c and s are the densities of matrix, cellulose and

water at the matrix moisture content mmc .

The wood moisture content, « , for the model, is obtained from the

matrix moisture content, mmc , through the relation

u=Mx mmc/(M*C)

6.4 General Model for Pith to Bark Tree Sampling - "Average tree"

Tn actual trees, the basic density and with it cellulose volume ratio
increases continuously from the inside to the outside of the tree, while
mean microfibril angle shows a converse tendency, the angle being large,

350 - 400, near the pith dropping steadily to 15%near the 15th annual



growth ring and thereafter being somewhat random in the range 10° - 20°

(this for specimens of about 1mm cross section).

The "Average tree" model in Table 6.4.1 is an attempt to represent these
structural variations from the pith to the bark. In this model cell-wall
thickness varies linearly with the mean microfibril angle. The lower end
of the range of wall thickness corresponds to the lowest values found in
earlywood specimens extracted from the wide growth rings near the pith,

of locally grown Pinus radiata. The upper end intentionally represents

a value somewhat higher than would be found in pure earlywood material
from near the bark. The value in the table corresponds to a basic density
of 0.42 and represents a 20% admixture of latewood (characteristics taken
from one set of data given by Cousins (1972)). A specimen nominally
designated earlywood from near the bark, would contain some latewood as
the growth rings there are too narrow to extract pure earlywood specimens
of 2 x 2 mm cross—-section. Such an admixture of latewood was probably
present in the experimental specimens whose behaviour is summarised later

in Fig. 8.2.1.
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Table 6.4.1.

"Average tree" model

Relative 82 layer thickness

Microfibril Angle Moisture Content %

By LoyeEr 0 5 10 15 20 25 30
10° | 800 | 795 | .790 |.785 |.781 |.777 |.T73
15° 758 | .752 | 746 | .71 | 2736 | LT3 |T2T
20° 6 | 700 | 705 |.697 |.691 |.687 |.682
25° 674 | .667 | .660 |.653 |.648 |.642 |.638
30° 632 | .624 | .617 |.610 |.602 |.599 |.59
35° 590 | .582 | .575 |.568 |.561 |.5%6 |-551

olume | So 1aver | 466 | .492 518 | .52 |.565 |.585 |.604

Ratio

Binding

layer . 766 .785 | .802 817 851 .843 |.853

"Average tree" relative wall layer thickness, and cellulose volume
ratio in the wall layers as functions of mean microfibril angle and

moisture content.
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Chapter 7

SHEAR MODULUS OF THE MATRIX

7.1 Model for the Matrix

Values for the shear modulus of the matrix have been deduced by adjusting
the shear modulus used in predicting the longitudinal Young's modulus until
the predicted and experimental longitudinal Young's moduli of the specimens
have agreed. The "Modulus series" of specimens were used for this purpose.
The computation of longitudinal Young's modulus has been carried out using
the methods and equations developed in Chapter 4. Moisture content remains
approximately constant during a Young's modulus test so that Au in the
equation for layer stress (Eq. 4.5.1) is zero. An external longitudinal
tensile force (represented by setting o'=o0/=0 in the layer
force summation, section 4.5.6) is applied to deform the specimen. The
longitudinal Young's modulus is then predicted by the ratio of the applied
stress, o; , to the consequent longitudinal strain, &7
The shear modulus of the matrix, S , appears in the equations for
composite stiffnesses (Bq. 4.6.1 - 4.6.4) as m, and indirectly through
the other non-independent matrix constants R, L,y Ny fly -

(Matrix elasticity is discussed below.)

The structural data for each specimen enters the equations in the form of,
(1) cellulose concentration, which is applied to the
computation of composite stiffnesses (Eq. 4.6.1 -

4.6.4) and the computation of layer stresses

(Eq. 4.5.1);




(ii) layer thicknesses, which are required to convert
the layer stresses for forces for the force

equilibrium summation over the layers (Section 4.5.6).

The shear modulus of the matrix has peen deduced from the longitudinal
Young's moduli determined for a range of moisture content values to
derive a relation between the shear modulus of the matrix and its

moisture content for each separate specimen.

To obtain a one to one relationship between the shear modulus of the matrix
and the longitudinal Young's modulus of the specimen, it is necessary, even
given all the relevant parameters other than the elastic constants of the

matrix, to make some assumptions about the nature of the matrix.

Even if one assumes that the matrix is elastically isotropic one needs to
assume some value for the bulk modulus in order to determine the shear
modulus. However, the bulk modulus does not vary greatly between
materials of similar type, for instance the bulk modulus of water is

2
220 kp/mm”*, ice IV 800 kp/mm2 and polystyrene 300 kp/mm2.

In fact it may be reasonable to assume that the bulk modulus of the matrix

* Note on units : Kiloponds (or kilograms—weight) per square millimeter
(kp/mm2) have been used throughout as the units of stress and stiffness.
Tt is a unit widely used in the field of wood mechanics and is of conven-
jent magnitude. It is equivalent to 9.81 x 10° pascals in the S I system.



does not vary with moisture content.

Barkas (1949) provides the only estimates known to the author of the bulk
modulus of wood substance. He estimated it to be approximately 1000 kp/mm2
across the whole moisture content range. The slight variation that he did
observe ran contrary to expectation, the wood being more compressible in

the dry state than in the wet and he concluded that this result was false.

If one assumes that the cellulose is relatively incompressible compared
with the matrix then Barkas' value for entire wood—substance would suggest
a bulk modulus for the matrix of approximately 500 kp/mma. This is
compatible with the values quoted for water and ice and it is probably
reasonable to compare the matrix with them since the interchain bonding of
the matrix is similar to that of the inter-molecular bonding in water and

ice.

Accordingly, the bulk modulus of the matrix is taken to be 500 kp/mm2

across the whole moisture content range.
A lower limit, set by the experimental data is discussed in Section T.3.

7.2 Derivation of the Shear Modulus Function of the Matrix

Using the model of the matrix just discussed six out of the twelve "Modulus
series" model specimens gave plausible values for matrix shear modulus over

the whole moisture content range (rig. 7.2.1). The models showed an
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approximately linear relationship between shear modulus and moisture
content and thereafter a rate of fall of shear modulus decreasing with
increasing moisture content. The unsatis factory specimens gave either
very low values (less than 40 kp/mmZ) or very high values (greater than
1500 kp/mmz) in the dry state and have been re jected as unrealistic. The
large variance in shear modulus arises from the sensitivity of this
property to the longitudinal Young's modulus of the wood substance, basic
density and chemical composition, all of which have substantial uncertain-
ties. Typical or expected errors in these values are shown in table T2t

together with the associated errors in matrix shear modulus.

Table 7.2.1

Error estimates for shear modulus of the matrix,S.

Typical expected error Consequent error inS
kp/mn?
Young's modulus +1 0% +900
Basic density -10% +1900
Cellulose concentration +10% -520

Calculated error in the shear modulus of the matrix, S for a typical
specimen in the dry state, arising from typical or expected errors in

longitudinal Young's modulus, basic density and cellulose composition ratio.

Three of the specimens in the sample gave nearly identical results and a

function for matrix shear modulus versus moisture content close to these
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has been chosen (Fig. 7.2.1 - dashed line).

Barkas' (1949) figures for wood-substance shear modulus suggest values of
: . 2
matrix shear modulus of approximately 560 and 80 kp/mm” at 10% and 90%
relative humidity respectively, on the assumption that the cellulose is
rigid and comprises 50% of the wood volume. The corresponding values for
2
the model matrix (the dashed line in Fig. 7.2.1) are 550 and 110 kp/mm s

which makes a satisfactory comparison.
The sensitivity of shear modulus to variation in bulk modulus is small.
The relationship for one typical specimen of the experimental set is shown

in Fig. 7.2.2.

7.3 Bounds to the Bulk and Shear Moduli of the Matrix

Love (1944) has stated that there is no isotropic substance possessing a
negative Poisson's ratio, v , even though theoretical limits allow
negative values ( -l<v<0§ ). Perusal of the Landolt-Bornstein tables
also, indicates no negative value in any other symmetry system. If one
accepts that the Poisson's ratio of the matrix is always positive, then
the experimental data places limits on both the bulk modulus, k , and
the shear modulus, S , of the matrix. If Poisson's ratio,

v = ‘sn/s.. =cu_/(c“ +c,),
is to be positive then ¢, must be positive. Tt can be seen for the

specimen depicted in Fig. 7.2.2 that,
c, = k-25/3,
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can be positive only if R is greater than about 430 kp/mm2 and S is

less than about 640 kp/mm2.

The upper limit to the bulk modulus set by the condition that,
y<o05, (8>0),
is so large, about 4,000 kp/mmz, that it would appear to be of little

significance.
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Chapter 8

MODEL SHRINKAGE

8.1 Introduction

So far, we have set up models for wood structure and for matrix behaviour
and have chosen values for material constants. We are now in a position
to test the models against independent data, (the shrinkage data). It
will quickly become apparent that the models proposed so far are inadequate
and that further development of the matrix model in particular will be

necessary.

8.2 Model of Sorption in the Matrix

8.2.1 Isotropic sorption

Data collected over the years at Physics and Engineering Laboratory is
illustrated in Fig. 8.2.1 where the total longitudinal shrinkage is

plotted against its mean microfibril angle. The model structure proposed

in table 6.4.1 and designated "Average tree" is intended for comparison
with this data. The theoretical longitudinal shrinkages have been computed
in much the same way as that described in Section 7.1 for the longitudinal
Young's modulus. In this case Au is not zero, and there are no

externally applied forces. The differential longitudinal shrinkage is given
by €; when the procedures of Sections 4.5.1-4.5.6 and Section 4.6 have

been followed and the relevant equations have been solved under these



conditions. Total shrinkage is obtained by integrating the strains
e;,e;over moisture content starting from the moisture content of the
stress free state, and integrating towards both ends of the moisture

content scale (e.g. see Fig. 8.6.1).

Using the "Average tree" structure and the provisional isotropic matrix
sorption model (given in table 5.2.1) and assuming the stress free stte
to be at zero moisture content we obtain the relationship between longi-
tudinal shrinkage and mean microfibril angle that is shown in Fig. 8.2:2.
Comparison of Figs 8.2.1 and 8.2.2 shows clearly that the shrinkages
predicted are overestimated by about a factor of seven. Setting the
'stress free state' to some value higher than zero moisture content makes

the situation worse. (Compare Figs. 8.6.1 and 8.6.3)

Cave (1972) has shown that only small ad justments of magnitude can be
achieved by menipulating values of matrix stiffness, binding layer
thickness and cellulose composition ratio within reasonable limits and S0

it is necessary to look to other factors to explain the discrepancy.

8.2.2 Anisotropic sorption

The most obvious idea that comes to mind that might reduce longitudinal
shrinkage is that moisture up-take in the cell-wall is anisotropic. If

the matrix is structured with its polysaccharide chain direction associated
with the cellulose microfibril direction, then it could be expected that
more swelling would take place in the transverse direction than in the

chain direction. This would result in lower longitudinal swelling stress
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and consequent lower longitudinal strain.

To accommodate this idea the swelling matrix, g° , could be written,

B Y |

n
|
=[','] Zavl - Y ° (1) |
where the scalar AV/V is taken from Table 5.2.1 and n 1is the |

anisotropic swelling factor. It turns out, however, that the swelling
stress is not greatly influenced by swelling represented in this form
because the non-diagonal matrix stiffnesses, c';_" , are of considerable |

magnitude and so 1ittle difference between the axial and transverse

components of the swelling stress, c¢™CMAEgE®, can be generated.

For example, the matrix stiffnesses in the dry state have been taken to
be,

2 2
C" =1326.7 kp/un”~ and cm=86.7 kp/mm

which for an anisotropy factor of 5 leads to a ratio between the longitud-
inal and transverse components of the swelling stress, c"CmAE*, of 1:3
and, towards the wet state the values of c";' and c':" approach each

other so that the stress ratio tends to unity at saturation. Even an
anisotropy factor of 50 is not sufficient to explain the difference between

computed and observed longitudinal strains.

Tt is apparent that transverse swelling leads to considerable longitudinal
stress under this scheme, and it is necessary to find some way of

decoupling these quantities.
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8.2.% Interlamella water

The lamella structure of the cell-wall suggests a means whereby this

decoupling could be achieved.

Suppose that the water is sorbed on two different types of sites, as is
commonly taken to be the case (Smith, 1947; Hailwood and Horobin, 1946),
and suppose further that each type occurs in definite regions of the cell-
wall. Sorption within the matrix has already been considered, and, it
might reasonably be argued that the interlamella regions could provide an
alternative site for water sorption. Very little reaction against the
lamellae would result from interlamella sorption since water could be
accommodated merely by the radial displacement of the inert lamellae
relative to one another as the cell-wall swelled. With the interlamella
bonding being relatively week (Stamm, 1964) it could be expected that the
interlamella waterbonding energy is lower than that in the matrix so that
sorption on to matrix sites would take preference over sorption onto
interlamella sites, at the lower moisture contents. This would be in
accord with differential heat-of-sorption patterns, (e.g. Fig. 8.2.3),

and would lead one to expect that mechanical effects dependent on swelling
within the plane of the cell-wall would take place at lower moisture
contents (e.g. moisture induced deformation, Armstrong and Kingston, 1962,
longitudinal shrinkage, Meylan, 1972, see Fig. 8.10.1), while the bulk of
the swelling in wall thickness would take place towards the higher moisture

contents.

Because the water absorbed in the interlamella regions is virtually

mechanically inert its presence can be ignored in computations of
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longitudinal shrinkage. It was found that one sixth of the water taken
up by the wood as a whole was required to be present in the matrix to
produce the observed total longitudinal shrinkage. The result for the

"pAverage tree" is shown in Fig. 8.2.4.

8.2.4 Matrix water

Looking at the differential longitudinal shrinkages (shrinkage increments
corresponding to 5% increment in moisture content, calculated in the
manner related in Section 8.2.1) for the "Average tree" with one sixth of
the total water residing in the matrix (Fig. 8.2.5) and comparing them
with figures published by Meylan (1972), (reproduced in Fig. 8.2.6), it
is apparent that the theoretical, low angle differential shrinkages at
low moisture-contents are too small while at high moisture-contents they
tend to be too large. If the moisture-content increments (Table 5.2.1)
are adjusted so that the differential shrinkages at a microfibril angle
of 15° correspond to Meylan's adsorption figures then the "Average tree"
model gives the results shown in Fig. 8.2.8. The required moisture
content increments are shown in Fig. 8.2.7 (dotted line) with the total
moisture increment for whole wood for comparison. It can be seen that
negative increments in the matrix are required at high moisture contents

which does not seem very credible,
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Table 8.2.1

Sorption by the matrix

Moisture Content % | O 5 10 15 20 25 30

Sorbed Moisture
Vol. (1)

0o | 0.095 | 0.143 | 0.166 0.175 | 0.182 | 0.187

(1) Sorbed water volume in matrix expressed as a fraction of dry

matrix volume.

and so the full line shown in the figure has been arbitrarily adopted as
the matrix sorption property (Table 8.2.1). This line conforms with the
differential heat-of-sorption data of Weichert (1963), Fig. 8.2.3. The
new line strictly requires adjustment in overall magnitude to make the
total amount of water (given by the area contained beneath the line) equal
to that of the original curve. The error has the effect of raising the
total shrinkage ata microfibril angle of 15° above the "Average tree"
value to which the original sorption curve was fitted (see Fig. 8.2.10)
and is the reason for the correction factor shown in Fig. 8.8.1. Consid-
ering more important refinements required in other matters such as in the
deduction of the shear modulus of the matrix from the longitudinal Young's
modulus data it was not felt worthwhile to make corrections for this

error at this stage. Work to refine the models of the shear modulus and
the sorption properties of the matrix is continuing and these points will

be dealt with in due course.
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According to the model, at the dry state most of the moisture is taken up
into the matrix (84%5 while in the saturated condition very little of the
moisture increment (< 5%) goes into the matrix, as was anticipated earlier.
At saturation, 25% of the total wood moisture is to be found in the matrix.
The shape of the moisture-increment plot for the matrix component of cell-
wall water and the total amount sorbed in the matrix at saturation

(7.0 - 7.5% mc.) corresponds closely with that quoted widely for "Langmuir

adsorption" in wood (Smith, 1947; Skaar, 1972) .

Returning now to the consideration of the differential shrinkage plots,
the adoption of this new matrix sorption relation in the "Average tree"
model, (using the prescriptions in Sections 7.1 and 8.2.1), Fig. 8.2.9,
leads to only aslight improvement in the gross negative deviation of the
high angle, high moisture content differential shrinkages, from the
observed values. This negative-going is caused by the increasingly large
contributions made by the compliance change component, c’"AC’"ﬂ’"E—E"),
of the internal stress as moisture content and strain increase, while the
swelling stress component steadily decreases. Since total shrinkage at
high angle is falling behind observation it seems likely that the compli-
ance change component is contributing too much to the internal stress.
Without the compliance change term, total shrinkage follows the dashed
curve in Fig. 8.2.10 and the high angle cshrinkage is in good agreement
with practice. (The mismatch at 150 microfibril angle between the
"Average tree" data and the theoretical shrinkages is due to the introduc-
tion of the positive matrix moisture-content increments at high moisture

contents as noted above.)
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8.3 Stiffness of the Matrix

The magnitude of the compliance change term is dependent on the size of

the decrement (for adsorption) in matrix stiffness as well as total

strain, and, if the matrix shear modulus were to tail off rather more !
slowly than it does in Fig. 7.2.1, then the compliance change term would
be reduwced at high moisture contents. The effect is illustrated in

Fig. 8.3.1, for a model in which the shear modulus of the matrix follows
the regular course (dashed line in Fig. 7.2.1) until reaching a steady
value of 275 kp/mm2 at 15% moisture content and above. The general
pattern of differential shrinkage now agrees with that observed except

that it would not be possible to produce the small negative shrinkages

observed by Meylan for adsorption between 10% and 300 by manipulating

moisture increments or matrix shear modulus. The figure as it stands

corresponds quite well with Meylan's desorption curves.

The larger proportion of the wood moisture content that has been assigned
to the interlamella regions (Section 8.2.4) of the cell-wall is virtually
discounted from a mechanical point of view and this has important impli-
cations for the matrix shear modulus function. To be compatible it should
now be recalculated making appropriate allowance for the new matrix model
in the area correction factors. If this is done, the cross-section changes
produced by moisture content increase will be reduced and the shear modulus
function will fall less steeply, in line with the requirements just

discussed.
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8.4 (Cell-wall Structure

The differential shrinkage curve shapes can be influenced quite strongly
by the size of the binding layer. By increasing the binding layer of the
"Average tree" model from 20% to 30% of the total wall thickness at a
microfibril angle of 10° and leaving the binding layer substantially
unchanged (30%) at a microfibril angle of 25° calculations made from the
prescription of Section 8.2.1 agree better with the experimental adsorp-
tion curve, (Fig. 8.4.1). It is likely, therefore, that the variation of
model wood structure with basic density that was postulated in Section
6.2 is not suitable and that the actual size of the binding layer varies
with total wall thickness rather than remaining constant. This is in
accord with more recent observations on the cross—sections of fresh
material (Fengel and Stoll, 1973) in which the components of the binding
layer are shown to be nearly a constant proportion (~45%) of the total
cell-wall thickness as total cell-wall thickness varies across an annual

ring.

8.5 Multiple Factor Influences

From the preceding sections in this chapter it seems likely that no single
factor in the model set up at the start of this investigation is entirely
responsible for the deviation between model shrinkage and observation.
Tt is certain that the matrix sorption must fall in & somewhat exponential
manner as shown in Fig. 8.2.6 and it then seems likely that the matrix
shear modulus must fall more slowly at high moisture contents than the

function deduced from Young's modulus data, in order to avoid large
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negative high-angle, high moisture-content differential shrinkages.

There appears to be no factor other than binding layer thickness that
could produce the slight negative going low angle, high moisture content
adsorption differential shrinkages and yet be consistent with other
considerations, such as positive stiffness and moisture increments.
While setting the binding layer at a wiform 30% of the cell-wall thick-
ness reduces the high angle negative differential shrinkages, a modified
high moisture content shear mosulus is still required to produce positive
shrinkages in this region; and so it must be concluded that all the vari-

ations suggested must apply simultaneously in some degree or other.

8.6 Stress Free State

It was mentioned in passing in Section 8.2.1 that the agreement between
theoretical and experimental shrinkages is made worse by assuming that
the stress free state occurs at moisture contents greater than zero.

The cumulative-shrinkage (i.e. shrinkage between the initial moisture
content state and the state in question) versus moisture-content curves
illustrated in Figs. 8.6.1,2,3, show that at low angles the total shrinkage
increases by 70% between the stress-free states at zero and %0% moisture
content (Fig. 8.6.1) and at high angles the total shrinkage magnitude is
affected to a much smaller extent (Fig. 8.6.%). (The abrupt change in
slope in each curve is caused by terminating the fall of the matrix shear
modulus function at 15% moisture content with a value of 275 kp/mmz, as

was done for the computations of Section 8.3 and Fig. 8.3.1.)

Theoretically there is no reason why the stress free state could not lie
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outside the range of real moisture content values. It would be expected
that if it lay in the negative region (i.e. the matrix is always under
longitudinal compressive stress), that the initial discrepancy between
theoretical and experimental magnitudes remarked on in Section 8.2.1
would be reduced. However, difficulties would then arise in assigning
the state of internal stress existing at some real moisture content

value and it is not proposed to tackle this problem here.

8.7 Compliance Change Component of Swelling Stress

The compliance change term, e AC? (A"’E —é") , by which the stress
free state is introduced into the internal stress of the constitutive
relation is new to theories of wood shrinkage. In Table 8.7.1 the
magnitude of the axial component of this term is compared with that of
the swelling stress, c¢"C"A&® , for the 32 layer of the "Average tree"

15° specimen, with a stress free state at zero moisture content.

Table 8.7.1

Comparison of the components of internal stress

Moisture Content % 0 5 10 15 20 25

cMCMAE® kp/mm2 7.82 5.02 2.96 0.13 0.03 -0.08
o )

emACT (Amg~E3) kp/mm 0.00 | 0.81 | 1.23 | 1.42 | 1.23 | 0.53

Overall the term is not of great importance, the maximum value, at 15%

moisture content, being less than one £ifth the maximum value of the
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swelling stress, and if, as was suggested in Section 8.2.5, the matrix
modulus tails off less sharply than indicated in the initial model, then
the values at 15% moisture content and higher will be smaller. Thus, the
new term does not significantly change the total shrinkage picture from
that painted first by Barber and Meylan in 1964. It can, however have a

significant effect on some differential shrinkages.

8.8 Model Shrinkage for "Modulus series"

Thus far in this chapter, the "Average tree" model has been used against
the extensive block of shrinkage data because the data lacks details on
which individual models of cell-wall structure could be built. From this
data the initial model of the matrix has been improved. The new matrix
model when applied to the individual models of the "Modulus series"

Fig. 7.2.1 through the procedures of Section 8.2.1 gives the results for
total longitudinal shrinkage shown in Fig. 8.8.1. There is a consistent
discrepancy between the theoretical and experimental values that is of no
account as it merely represents the mismatch introduced by adopting the
full line rather than the dotted matrix water curve (Fig. 8.2.6) which

is the one that was fitted to the magnitudes of the 15° experimental
adsorption differential shrinkages. A1l strains should be reduced by
about .00085 to compensate for this. The good relative correspondence
between pairs of theoretical and experimental points indicates that the
basis adopted for modelling the structure of the individual "Modulus

series" specimens is generally valid.
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8.9 Transverse Shrinkage

Tt has been pointed out earlier that prediction of transverse shrinkage
in whole wood is dependent in large degree upon the geometry and
structure of the wood tissue, a matter which has not been considered
here. Tangential and radial changes in the dimensions of the cell-wall
are the basic cause of transverse shrinkage in wood of course, but the
detailed role that each plays in this is not known. The predicted values
of total tangential cell-wall shrinkages for the various models in the
"Modulus series" range from 0.017 to 0.022 whereas actual values could
be expected to be widely scattered in the range 0.04 to 0.08. Thus the
predicted changes in cell-wall perimeter fall far short of explaining
observed transverse shrinkages; significant contributions must come from
other sources. This thesis will not attempt to locate these other

sources of transverse shrinkage.

8.10 Miscellaneous Effects

8.10.1 Two outstanding problems

This section briefly draws attention to two other phenomena that lack
theoretical interpretation. These are hysteresis in shrinkage and the

so—called "moisture induced deformation".

8.10.2 Shrinkage hysteresis

Tt will have been noted from the comparison of the adsorption and

desorption curves in Fig. 8.2.6 that there may be a pronounced hysteresis



~£78 ~

3

Longitudinal shrinkoge

~

s ]

07 5 0 15 Fi 5 Y% B0
Moisture content

Longitudinal shrinkage as a funetion of

moisture content for one complete moisture

content cyele, for samples of different microfibril angles (0)

Fra., 8. 10. 1

[ After Mey’:‘\.h(!‘i?ﬁ!) ]




— {78 ~

_
1
|
T
<
-9 | e
—
o
rt
-,m..m-
X ¢
—£5-
s &
p .
, K
| 3 .
h
-
w
3.
3

‘02

mmms.o YR SWaPA)Y m

(
20

Mo iStU re conf.e nt Z




effect in longitudinal shrinkage during moisture cycling. The effect is
shown clearly when cumulative shrinkage is plotted against moisture

content (Fig. 8.10.1).

T+ has been reported by Smith (1947) that the amount of "bound" water in
wood is greater in desorption than in adsorption at any overall moisture
content. The "bound" water has been identified with the matrix water
introduced here (Fig. 8.2.7) and means that the fraction of water in the
matrix is greater during desorption than during adsorption. This argument
would lead to the conclusion that the shrinkage increment at zero moisture
content should be greater in the desorption case because the desorption
increment is greater than the adsorption increment (see Fig. 8.10.2).

The argument, however, ignores the effect that at any given moisture
content the stiffness of wood in desorption is lower than that in
adsorption (Goulet, 1968), presumably due to variation in the stiffness

of the matrix and this would tend to reverse the first effect. There

may also be a tendency for the position of the stress free state to
migrate in such a way as to minimise internal stress and cause hysteresis

in shrinkage.

8.10.3 Moisture induced deformation

When a beam is subject to moisture content cycling, while under continuous
loading it exhibits a consequent cyclic pattern of deformation. Contrary
to expectation perhaps, the beam deflects when moisture content is
decreased and recovers when the moisture content is increased. Recovery

is less than deflection and strains up to 8-9 times greater than the

= e e
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initial elastic deflection can ultimately be achieved. Armstrong and
Kingston (1962) found that the extent of deformation was dependent on
the size of the moisture content change, while the rate of moisture
content change affected only the rate of deformation. Later, Armstrong
(1972) disposed of several attempts to explain this behaviour solely in
terms of the making and breaking of bonds between water and wood
substance while under stress bias occasioned by external load. He
demonstrated that volume change and not merely water movement is
essential to the process of enhancing deformation by moisture change.

He did not, however, attempt any further explanation of the phenomenon.

Tt appears that volume change can in large degree account qualitatively
for moisture-induced deformation. However, the present theory being
elastic is reversible and cannot explain the much greater deformation
observed in compression. It might be expected that the theory would be
better able to account for the observations in tension as the compression
observations could be subject to buckling modes of deformation in both

the cellulose and the tracheids.

Tt has been shown that the compliance change component of internal stress
is likely to be small and so the behaviour of a specimen in either
longitudinal tension or compression could be expected to be approximately
given by the expression,

CAE = c"C"AE® (1)
where AE® 1is the independent variable indicating moisture change and
is now strongly dependent on external stress. Longitudinal tensile

breaking stresses of wood substance are typically of the order 15 - 45
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kp/mmz, (Pinus radiata earlywood, Cave (1968)) and so on the basis of

Table 8.5.1, deflections equivalent to elastic deformation may be

expected for reasonably large moisture changes.

The deformations for longitudinal tension and compression as observed by
Armstrong and Kingston (1962) and Armstrong (1972) are illustrated in
FPig. 8.10.3. These involve large changes in moisture content and it is
readily seen that they are compatible, as far as sign is concerned with,

BEq. 8.10.1.

The theory fails to account for the observations reported by Armstrong
and Kingston (1962) that unloaded deflections exceed loaded deflections
for the same relative humidity change. An example, for longitudinal
tension, is shown in Fig. 8.10.4. Corrected values refer to the observed
deflection under tensile load less the deflection for a specimen under no
load. It is apparent from the figure that deflection under no load (i.e.
shrinkage or swelling in the usual sense) exceeds that with load. This
is a surprising result since it is expected that the moisture content in

the loaded specimen will be greater.

According to theory, deformation under temsile load is given approximately

b oF
s — ~Mm/m
and deformation under no load by,

¢, Az =cnCp(BE) An, (3)

Cb and C; are composite stiffnesses, and will, therefore, be nearly



identical while Cg’ and C?? will differ mainly because of the differ-
ence in moisture content between the loaded and unloaded states. As
noted earlier (%?f;)r is highly stress dependent, and according to
calculations based on Barkas' (1949) p, V, m,h, curves, there could be

2-3 times as much water in the loaded specimen as in the unloaded.

As a first approximation, if we consider the matrix to have both
isotropic elastic and swelling behaviour then the products C;?é%%)TZXh ’

cy %%%5%[3h differ only by the amount of water adsorbed in each

case and thus,

;@—f—r =25, - ()
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Chapter 9

SUMMARY AND CONCLUSIONS

The aim of the present study has been to find a representation of the
mechanical properties of wood with respect to moisture content.
Previous theories relating mechanical properties to the microstructure

of wood have regarded moisture content as constant.

The theory consists of three parts, a constitutive relation which makes
provision for variation in moisture content, a model of the properties of
the water-reactive matrix, and a model of the structure of the cell-wall.
To keep attention directed at the properties of the cell-wall and to
avoid complications arising from the structure of the wood tissue as &
whole, attention has been confined to the longitudinal properties of
wood which are more directly determined by the cell-wall than are the

transverse properties.

Two stress situations have been used in determining wood properties. In
the first, longitudinal stress has been applied to find longitudinal
Young's modulus, and the results have been compared with a set of
experimental values in order to infer the properties of the matrix. In
the second, stress has been generated by the adsorption of water.
Experimental data for longitudinal shrinkage have been used to test the
constitutive relation and the model of wood structure and the matrix

sorption.
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To take account of a varying moisture-content, the constitutive relation
includes a new term involving compliance change and the concept of a
"stress free state", which is the state of strain at which the forces of
reaction of the reinforcing cellulose microfibrils against the water
swollen matrix are zero. The likely magnitude of the term has been
determined and it seems that as far as total shrinkage (i.e. shrinkage
from the saturated to the dry state) is concerned it is not of great
significance. However, it could have significance for mid-range moisture
content differential shrinkages. The stress free state has been assigned
to the zero moisture content condition on the basis of its contribution
to shrinkage magnitudes. Barber (1969), using curve shape criteria
thoughtit more likely that the stress free state appeared at the wet end
of the moisture content scale. However, it appears that his estimations
assigned too great a value to this term and it has been shown here that
the appropriate curve shapes can be obtained with the stress free state
at zero moisture content. A stress free state at the saturated condition
is not intuitively satisfying from the point of view of a fibre composite
material as it implies that in dry wood the cellulose is in compression,
a rather unlikely role for the reinforcing elements to have to play. It
is possible that the stress free state is in the region of virtual
negative moisture content where the microfibrils are always in a state

of tensional stress.

In a living tree, of course, the situation is different and it may well
be that in green wood the stress free state is near the saturated

moisture condition. The well known non-repeatable shrinkage patterns

exhibited by wood in drying from the green state and then being rewetted
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could be due to the stress free state shifting its position from the

green condition to the dry by a process of yield in the matrix.

A two-layer model has been used to represent cell-wall structure. One
layer represents the predominant 82 cell-wall and it was supposed that
while its chemical constitution was fixed, its thickness varied accor-
ding to the basic density of the whole wood. Mean microfibril angle
could also vary. The rest of the cell-wall was lumped together into a
single layer, and was designated the "binding" layer because its micro-
fibrils in general are transverse to the cell axis. An invariant
binding layer was tried at first, but it appears that a binding layer
that varies in proportion to cell-wall thickness as suggested in the
most recent literature on the subject gives predictions that suit the

experimental facts better.

The very good correspondence obtained between individual experimental and
predicted values for total longitudinal shrinkage indicated the general
validity of the procedure used to model individual specimens. This
correspondence was obtained by making measurements of basic density, mean

microfibril angle and chemical composition, on each specimen individually.

There was little information available prior to this study on the mechanical
properties of the matrix and so once the models of structure of the cell-
wall had been set up the first task was to derive a shear modulus versus
moisture-content function using the experimental Young's modulus data.

While there was a disappointingly wide scatter in the results for the

matrix shear modulus, three out of twelve specimens gave almost identical
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results and the mean of these gave entirely satisfactory values when
compared with the relevant information in the literature. The wide
scatter obtained was explicable in terms of the method used and the

uncertainties in the input data.

At first, the matrix was assumed to be isotropic, but this idea proved
untenable and needed substantial modification in light of the fit
obtained with the shrinkage data. It was concluded that most of the
water taken up into the cell-wall must be mechanically inert, only

part entering the matrix and causing changes in length. On deducing from
the model, how great this part was, the estimates were found to corres-—
pond with the "bound water" or "Langmuir adsorption isotherm" in the

literature.

The various theories of sorption of water in wood are agreed that
"Langmuir adsorption” (Langmuir, 1918) is a component of the sorption
process in wood, even if the detailed interpretation of the remaining
sorbed water is open to some doubt, (Skaar, 1972). "Langmuir adsorption
takes place when water interacts with dry wood and forms monomolecular
layers on the internal surfaces. The energy of interaction is generally
higher than the interaction energy of the secondary water molecules
taken up by more moist material. It is generally agreed that secondary
low energy adsorption may take place on completed monolayers and some
authors (e.g. Smith, 1947) suggest that there may also be low energy
sites in the wood substance where secondary water may be directly

attached.
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From the present considerations it is suggested that -

(i) monomolecular sorption only takes place in the matrix -
since the matrix sorption pattern needed to explain
longitudinal shrinkage corresponds SO closely with the
Langmuir adsorption isotherm for wood, and

(ii) as a consequence of (i) all low energy sorption takes

place between the lamellae of the cell-wall.

With the introduction of these jdeas it will now be necessary to back-track
through the procedures used to derive the matrix shear modulus function in
order to make compensation for the inert water (see the feed-back loop of
Fig. 5.1.1). The effect will be to make the shear modulus function fall
with a steadily decreasing rate instead of being virtually linear with
moisture content, and this is consistent with the requirements of the

differential shrinkage data.

Tn conclusion, it is apparent that the parameters representing matrix
sorption, matrix shear modulus, mean microfibril angle, and the relative
size of the 82 and binding layers are all important to predictions of
shrinkage behaviour. It has been possible to obtain very good agreement
between the models and the experimental data using justifiable values of

these quantities.

At this point the most likely values of the model parameters, not deter—
mined directly by measurement would be as listed below (Tables 9.1 - 9.4).
Some, such as the matrix sorption property can be accepted with a good

deal of confidence, while others such as the matrix shear modulus-moisture



content function should be regarded as informed guesses until such time

as they are confirmed by recomputing with updatsd data.

Table 9.1

Final model values for matrix sorption and matrix shear modulus

Moisture content [ 0 5 10 15 20 25 30

Matrix sorption (1) 0.000 | 0.095 [ 0.143| 0.166 | 0.175 | 0.182 | 0.187

Matrix shear modulus,kp/mm2 620 505 410 335 290 275 275

(1) Volume of sorbed moisture per unit volume of dry matrix.

Table 9.2

Chemical composition of the cell-wall layers

Lignin Concentration Cellulose/hemicellulose ratio

M+ P a 0.355(2)
5, + 53 0.22(1) 0.615(2)
8, 0.22(1) b

a, b values to be fitted from overall chemical data for lignin, cellulose
and hemicellulose.

(1) from Fergus, Proctor, Scott & Goring (1969)
(2) from Meier (1961)



Relative layer thicknesses

Binding layer thickness a constant proportion of total cell-wall thickness.

(Value for "Average tree" data - 30%)

Table 9.4

Flastic constants of cellulose

As for Table 5.2.2 but see also Mark 1972
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Appendix T

TENSORS AND THEIR REPRESENTATION BY MATRICES

A.T.1 Introduction

Tensors or tensors in their reduced matrix form have been used throughout
this work to represent physical quantities. A brief self-contained
discussion of tensors and their application to the elasticity of plant
cell-walls is given here. However, a full and admirable account of the
representation of physical quantities in general by tensors is given by

Nye (1967).

Tensors may be defined by their transformation property and this provides

an elegant approach to the cell-wall problem.

A.I.2 Definition of a Tensor

The transformation property of a second rank tensor, described in terms

of rectangular cartesian co-ordinates is,

7/
7"—J=“L‘/<‘f/1 7/;(J ’:’\/‘7‘é7’£=/’27‘3' (1)

where summation over repeated suffixes is understood.

[7:.] is an array of 9 coefficients representing the tensor and the

coefficients ai/ are the direction cosines between the i axis of the

new (primed) axes and the j axis of the old (unprimed) system.




Any array of 9 coefficients such as [7/:[] that transforms according to

Eq. A.I.2.1 is defined by this property as being a tensor (of rank tWo) .
The polar vector transforms according to the law,
/ —
P =%, P (2)
and is therefore said to be a tensor of rank one.

The rank of a tensor is given by the number of subscripts.

A.T.3 Linear Combination of two Tensors is a Tensor

Any array of nine coefficients, /](.j. by | = ly,2,3,

that linearly connects the components of two vectors Pi s 9/-
(rank one tensors) in the following manner, ig itself a tensor (of rank
two),

P=Aug * Aaga * A 9s

P =A29 *An92 * A 93 (1)

P =Au 9 * Angs * A3 93

This statement is proved by noting that,

/O‘. = Qik pk.’
with ,ok related to 9[ through,
Pe= e %
9,(’ in terms of the new axes is given by,
=qQ. K
%= %e 7
so that combining these expressions we have,
rp=a, Au angj .



Thus,

Aj = 2k 2y

and[/%.] is by definition a tensor of rank two.

Ak(,)

This last theorem is used to show that stress and strain are tensors of
rank two and from these results it follows that elasticity which connects

stress and strain linearly is a tensor of rank four.

These matters are briefly discussed below. Brief mention of a few relevant
properties of stress, strain and elastic tensors is made as each is

encountered.

A.T.4 Stress

It can be shown that stress, Ohi , is given by the relation,
P[=‘7[jjj () =1253, (1)
where /% is the force and ,{; is the outward unit vector normal to a

surface element on the body on which the force is acting. 2 and A{/

are both vectors and so stress is a second rank temsor.

0,90, 033 are the normal components of stress and 0,, 0,
g etc. are the shear components. Force equilibrium considerations

23

require that stress by a symmetrical tensor, so that,

%G %L
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A.I.5 Strain

The deformation, Au( , of a general line element, Ax: ; (P Q in
figure A.I.5.1) at x; and displaced by «; during the deformation

process is given by,

QUi

where (AL) =& .- is the strain.
oxc; 1y
Because [AU.LI and [ij] are both vectors it follows that

[eL-J-] is a tensor of rank two.

[ef_j] is not necessarily symmetric. However, as any tensor may be split

into symmetric and anti-symmetric parts strain may be written,

[eg]= [‘eu] : [“"éj]

= % .. = /4 e ™ s 4
where ez'j 4(eij + € ) and w‘j 2(e(j ejt)
It can be demonstrated that the anti-symmetric part, w‘:j , represents

a rigid body rotation, and that the symmetric part, eij , termed the
strain tensor, represents deformation. The diagonal components [84"]
are the extensions per umit length parallel to the reference axes, and

the off-diagonal components such as & measure tensor shear strain.

Any symmetric tensor can be transformed so that its of f-diagonal elements

are zero.

€, €, €4 & ) o
&, &, &3 | —™ o e ©
& & & (o] [0} &



The physical meaning of the principal strains & , €,,¢,.
is seen by considering a unit cube constructed with its edges parallel to
the principal axes. Under deformation it retains its rectangular geometry
with its edge lengths extended to I+e , I1+&, , | +&, . The

dilation of the cube is then,
A=(I ve )(1+8,)(1 + e,) -

and since the é} are small,

A=¢" + &, e,

A.T.6 BElasticity

The generalised Hooke's law takes the form,

6{/.= Siju o.k,ﬂ y

where the q&kl are the compliance coefficients. In the inverse form,

Hooke's law is written,

.= §..
G~ Sijke Cee
where the %”k[ are called stiffness coefficients.
/
By a similar argument to that used for second rank tensors it can be shown
that | s. . and c.. are fourth rank tensors, since stress and
l_j/cl ijl

strain are tensors¥.

There are 81 stiffness and compliance constants. However, since [eéf]

*Note : The familiar "technical elastic constants, Young's modulus,
Poisson's ratio and shear modulus do not constitute components
of a tensor since they do not relate tensor stress and tensor

strain in a linear manner.
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and O are symmetric it follows that ¢ efc ., so

- =C..
i gkl Jkl
that only 36 of the 81 constants are independent.

A.T.7 Matrix Notation

For computation it is convenient and uysual to eliminate the non-independent
coefficients by converting from the tensor form to a reduced matrix form.
However, it is necessary to remember that it is only in the full tensor
form that the physical quantity is completely specified. In particular,
when dealing with transformation of axes, one must'use the full tensor

form. It is quite common, therefore, when dealing with fibre composites
with dispersed fibre directions to convert back and forth from the matrix

to the tensor forms of compliance and stiffness.

To write the stiffness tensor out in full would require nine, 3 x 3 arrays
of the coefficients. If we regard the third and fourth suffixes of
as the row and column indices of the two dimensional arrays, the tensor

has the form

— -~ T e
S Cmn. Cms T Cl?.ll clzlz Cu:ns c|3u C|312 ‘:1313,1
Cha S22z Suas €221 S22 Gaa2s Ci3ar Ca22 Ci3a3
Lclﬂl cll32 Cll33 J Lclﬁl Cl137. c1233 ) C\33l c|332 C!333 )

\

i 1 ] ]

[ ) | I |

- - . 1
Csm Csn'z Csus 1 csall Cssuz c3313
c3l2l C3|22 C3|13 C3321 c3322 C3323

LCMSl €332 csm‘ L ) Lc3331 C3332 3333

7
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Bearing in mind the symmetry property that Cijk,e Cij[k and
using the following scheme to condense the tensor suffix notation pair-wise.
tensor notation 11 22 33 23,32 i [ 12,21
matrix notation 1 2 3 4 5 6
the above array may be written,
¢ S Cis Co So s Ci Cso  Css
Cle Ca C'# S Ce2 C64 Cﬂ, Csz C$4 (2)
Cns’ Cm cls Cés‘ Ceq. C63 CS’S C$4 Csa
We may reduce the stress tensor in the same way,
" ) % 2, % %:
0 Om G| T |0 G G (3)
9 Oy 033 O o Oy

so that in the inverse

°;|= Cnueu sz‘sw. C’mz‘s\s
® Cullcﬂ Cn22622 CN:B 523
CII31631 Cnazesz t ana‘gss )
on reduction becomes,
0= ¢, Ce€ia Cs€is 9,
M C:aeuz Cia €2 C:4 823
+
Crsesl chsz clsess 1

Hooke's law, stress written in the tensor form,

0= SGan€n ¥ Casna * 233
+Coz0€y ¥ €222 * C2323%3  (4)
+Coz3fa * C2332%32 * Q23saass

Culn * Cap€a * Cus €ia

*Coly * 4222 ¥ €44 €23

+ Cuely * Cuabsn * %35 ) (5)

Now, if the strain tensor is condensed in the following way,

[ ]
6" en. & 13
—B
€y € S
L 6‘3‘ € 633

& Jae, A
he & K,
he he & | (6)
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the inverse Hooke's law may be represented by the two dimensional array,

= +
0': <€, % Cn. ‘92 c;s €3 ¥ cl4€4 L4 Cls 65 * Cibeb

. (7)

=c + +
O, =Cu€ * S * 43" %aa %sSs T e
which in the index notation is,

crL-=cL_jaj by =132y« 6n (8)

This is known as the matrix form as it consists of a single two dimensional

6 x 6 array.

In order that an inverse relation between stress and strain may be written
in the same form, with the same definition for the stress and strain
matrices it is necessary that the compliance coefficients be reduced by

observing the following rules,

becomes §, . when m and n are 1, 2, or 95

Sijkt

2sijk.£ becomes S, when sither m or n are 4, 5, or 6,
and 4Sijk£ becomes S§,, When both m and n are 4, 5, or 6.
Thus €, and Es become,

= ) —_
&= S0 7 ’V“s»eo'b * /"Stsas S = 4 Sué * )4'546 T v }4345‘05

+)45,0, + 5,0, * /45,0, +4s, 0, + 48,0, * Y4S,, 0
+ 48,0, + %5,0, v S50 +his,, + s, 0 * %8,.0, 5 (9)

or &=8 0. =

SRV =% (10)
or - oA 10
6‘- SL.jO'j ‘.’j_/,z,---éu
The definitions of e.. and s(j given above conforn with established
<

practice. (Nye (1967) ) «
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An additional symmetry property of elasticity arising from consideration

of strain energy results in the equalities,
C., = C.. 9 Bvs. = S 9
¥ e y Jt
and brings abcut a further reduction of the number of independent elastic

constants from 36 to 21.

A.I.8 Transformation of Elastic Tensors

The evaluation of the elastic coefficients of cell-wall material in terms
of the cell-wall reference system is basic to cell-wall mechanics. The
execution of the transformation required for this is easily accomplished

by the use of the transformation law.

The elemental volume of cell-wall mat erial has transverse isotropy

(Section 4.2) and so the stiffness matrix is of the form,

Cu clz c 13 : : :
C" C|3 - - -
c 33 - . - (
1
c . - )
44
Caa

€6 Sue < (Cu' Ca)o

when the axis of isotropy is parallel to the X, axis of a cartesian set

(x. s X, x3> .
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For a fourth rank tensor the tpansformation law is,

7. ,=¢a )
kL Tim %n %o Up Tanop
and it is required that we rotate the tensor about the 1" axis by an

angle @ equal to the microfibril angle of the cell-wall element.

The construction of an array of direction cosines aids the transformation

rocess, and so we have \ )
P ’ L] v 0 l d
x, OC,Z x3
x: | 0 (@]
“new” x, o cos © sin ©
> Ay o -sin © cosQ r

Proceeding with the transformetion for C,, for example, we have with
simultaneous reference to both the full tensor array A.T.7.1 and the
matrix array of the stiffness coefficients A.I.8.1 in order to pick out

equalities and zeros in the coefficients,

= € = from matrix Il of array AL7l
+o w " l2 " "
+0 " W [3 " “w “
+ O n " 2' a " "
2 H \ i " " "
+ cos*Oc, @2222) +c0s’@ sin"O ¢, (Cnas) 22
2 12 " " " " "
+2cos?0sin?O cyy (czsza)’(czaaz) 23
+ 0 " " 3‘ " " "
+2cos?@sin*Bcyy (%223)’(("3231) " O v R "

2 .. 2 7 v “ " !
+cos 2O sin0c 4 (Caa:n ) +sin4Qcy, (°3333) 3




where the contents of the brackets indi cates only the tensor coefficients

from which the preceding matrix coefficient is derived.

j.e. C,=c,cos4@*+cy sin40+ 2(<:I3 * 2c44)ooszes;nze
As a second example consider the transformation of c24 . Dropping the
explanatory notes, we can write by inspection,

! — . - 3 =1
Cag Ca223 (for example; other possible terms are € .. €339, Cszn)

= —cos?OsinOc, + cosdOsinBey
30 s/, _ .3
+c0s830sin Qc;44 cos @ sin ec“
3 > = . 3
+cos3@sin Gc‘,4 cos 6 sin*0cy,

~-cos O sin"@::,.s + cos© sirﬁ'ec-,33

ie. ¢ = <C33 sin?@ -c,cos?0+ (c.s +2 c44) (cos’G ~sin? 9)) cos @ sin@

The full table of coefficients for this transformation is given below.



Teble A.T.7.1

Transformation for the matrix coefficients of atiffness when a tr

ansversely

isotropic body is rotated by an angle, © , about the "1' axis

= 4 néd 2 n 2

c, C0s*0 + ¢, sin*Q + 2(c.3+ 2c44) cos?@ sin 26
' = s 4 4 2 -

C, = €, 8in*0 + gy c0s40 + 2((:'31- 2c44) cos?0sin?60
¢/, = c,c0s?0+c sin?0

,8in%0 + ¢ 40870

2 feig* 25 )) c0s2@ sin? @ T Cy

O
- N -
w
Il
r—\/\n

L=
C;'s':: Cia cos?0 + c sin’Q
°és= c“sin’Q ¥ cos?@
c.= (ca—c , )cos© sin ©

c, = ( 13820 - ¢, cos’9+( +2c )(cosze s:n’O))COSGSInG
(c”cos’G -¢c,sin?8 - (c +2c“)(cos’9 s:nze))cosesme

C$b= ((:44 - cee)cos O sin®

With all other cé- =0 L',j =/,2,3,4,5,6.
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A,T.9 Relations between Stiffness and Compliance Coefficients

To conclude, the relationship between compliance and stiffness is briefly
considered. The problem is mos?t readily approached through the matrix

form of the elastic relations by the process of matrix inversion.

From g = C.. & and its inverse &, = 813 B it is
¢ Gy J L g o
evident that, _ 3
Sij- C"j )
and so, [I__‘]
[s‘.] = .__—!L——
where l;:' is the cofactor of the element Cj('. in the determinant

’ i.,j :1’213'

dat [C- ] formed from the array, c..
lj Lj

The process 1is illustrated by deriving Young's modulus for an isotropic

material in terms of the atiffnesses.

Young's modulus E = g'T ”
_ et [cy]

Cy (Cﬁ - c;z?.) -2¢ <C|2Cu - CI%.)

2 2
Cu Cl?.

(Cu + 2 cl?-) (cll - CIZ)

Cn + cl?.

jle. =



- 10% -

T+ is readily shown that,

e, * 2¢, =3k

"

where& is the bulk modulus, and

Cn _c12=2/1'

where AL is the shear modulus, so that more familarly,

Qb u

E= 3k + AL
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