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ABSTRACT

In some nearly magnetic dilute alloys, in which the host and impurity
are transition metals of similar electronic structure, the thermopower is
observed to form a "giant" peak at about the spin fluctuation temperature
Tsf deduced from resistivity measurements. Two explanations for these
peaks have been postulated: the first is that the peaks are a diffusion
thermopower component involving scattering off localized spin fluctuations

(LSF) at the impurity sites; the second is that they are an LSF drag effect.

We examine the thermopower and resistivity of two nearly magnetic alloy

systems: Rh(Fe) and Pt(Ni).

In the first part of this thesis we describe measurements of the low
temperature thermopower and resistivity of several Rh(Fe) alloys to clarify
discrepancies in previous measurements and we show, by using a modified
Nordheim-Gorter analysis, that the observed thermopower peaks are a diffusion

and not a drag effect.

In the second part of the thesis we describe measurements of the low
temperature thermopower and resistivity of Pt (Ni), for which no previous data
had been available. The Pt(Ni) samples are manufactured as thin, evaporated
films on glass substrates. However, due to the difficulty encountered in
controlling the very high residual resistivity of these samples, we are not
able to draw definite conclusions regarding either the thermopower or the

resistivity.
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INTRODUCTION

The first part of this thesis is concerned with the long-standing problem
of the thermopower of dilute Rh(Fe) alloys at low temperatures. The oustanding

problems, which we successfully resolve, are as follows:

1) The temperature at which a "giant", negative peak has been observed
to occur has not been certain.

2) The concentration-dependence of the peak magnitude is apparently
opposite to that observed in the similar LSF alloys Pd(Ni) and Ir(Fe).

3) The mechanism responsible for the peak could either be a diffusion
effect or a spin fluctuation drag effect, the latter proposed by
Kaiser (1976).

In Chapter One we discuss magnetic and nearly magnetic impurities in
metals. A quasi-historical account is given which forms the basis of a
discussion of localized spin fluctuations and their effect upon the

resistivity of alloys containing nearly magnetic impurities.

In Chapter Two we present a discussion of the thermopower of alloys
with transition metal impurities, concluding with an account of spin

fluctuation drag thermopower.

Pertinent experimental details are described in Chapter Three. We
describe the design of cryostats for measuring the thermopower and resistivit-

of wire samples and present an account of the measurement process.

The analysis of experimental data is described in Chapter Four, in
which we modify the traditional Nordheim-Gorter Rule for the addition of
diffusion thermopowers so that it is capable of application in the case of
samples whose host residual resistivity is not constant from sample-to-sample,
the latter condition being necessary for the application of the traditional
Nordheim-Gorter Relation. In fact we deliberately alter the host residual
resistivity as part of our method to distinguish diffusion and drag
mechanisms. We review previously published data on the resistivity and
thermopower of PA(Ni), Ir(Fe) and Rh(Fe) and conclude the first part of
the thesis with an analysis of our Rh(Fe) resistivity and thermopower data,
by which means we resolve the problems mentioned previously, showing that

the observed thermpower peaks are a diffusion and not a drag effect.



In the second part of the thesis we describe the manufacture and the
low temperature measurements of the resistivity and thermopower of thin
film samples of Pt(Ni). We compare these measurements with those of wire
samples of Pt(Ni). As Pt(Ni) should be an alloy of the LSF type its
resistivity and thermopower should have similar characteristics to those
of other LSF alloys. We seek to do three things:

1) Determine TS from the resistivity measurements.

£

2) Look for possible features in the thermopower connected with LSF at
the Ni impurity sites.

3) If visible, determine whether these features are a diffusion or a

spin fluctuation drag effect, as we do in the first part of the thesis.

However, physical characteristics such as the residual resistivity of
the films prove to be difficult to control and we are unable to achieve our
objectives with these samples. Definitive resistivity and thermopower data

on Pt(Ni) films have yet to appear.



Chapter One

THE FORMATION OF LOCAL MAGNETIC MOMENTS

1.1 Freidel's Virtual Bound State

To visualize Freidel's concept, let us add a transition metal
impurity, characterized by an incomplete d-shell, to a metal host whose
electronic states are approximated by the free electron gas model. Let
us suppose that the energy of the impurity d-level lies within approximately
kBT of the Fermi level EF of the host so that it can contribute to the
electronic properties of the alloy. We find that the conduction electrons
mix with the d-electrons to broaden the d-level. If the d-level was
buried well down below the conduction band it would not be able to interact
with the conduction electrons at all and hence would have an infinite life-
time. It would be a bound state characterized by an infinitely narrow
energy width. With the former case a conduction electron can temporarily
occupy the vacant d-state and escape again into the conduction band states
that are near to it in energy. The lifetime of the state is thus limited
and hence it is broadened in energy. It is not a bound state but a

virtually bound state (VBS), after Freidel (1958) who first introduced the

concept.

The energy of the VBS in a particular host is determined by the excess
charge AZ on the impurity since the Fermi level of the host remains
unchanged (charge neutrality condition). The effect of this may be seen as
we consider a succession of 3-d impurities in a simple metal host, for
example, Al. There is room for 2 x (21 + 1) = 10 electrons of both spins
in a d-level. Hence when AZ = 5 we would expect the VBS to occur at E

where half of the d-states are on either side of EF'

E E’F El

F’///?/ _ impurity
/ d-level

ple) ole) ole)

5 holes

i
!

?
\broadened / 5 electr
to width I / o8
Chromium

VBS at EF




— [+__

This situation is met in Al(Cr) with atomic Cr having 5 d-electrons. Now,
since the VBS is at EF' the maximum number of conduction electrons can
interact with (scatter off) the VBS and hence the residual restivity will
be a maximum, with 3-d elements to the left of Cr (AZ<5) and to the right
(Az>5) having a smaller residual resistivity as the VBS is correspondingly

above and below EF'
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Now, in addition to the broadening of the d-levels of the impurity
by s-d mixing, they are also split into spin up and spin down components
separated in energy as follows. Since parallel spin electrons are kept
apart as a consequence of the Pauli Principle it follows that opposite
spin electrons are able to approach more closely and hence experience a
greater Coulomb repulsion U above that felt between parallel spin
electrons. Hence spin up and spin down VBS components differ in energy by

U where U depends upon the number of electrons in the d-level.
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From the diagram it can immediately be seen that there are now more spin
up electrons than spin down ones. Hence there is now a nett magnetic
moment on the impurity. By magnetic moment we mean the susceptibility ¥

now has a Curie-Weiss temperature-dependent component.

If the width ' of the VBS components is greater than U the spin up
and spin down components coalesce into a non-magnetic state where the
average occupation of both states is the same. T depends on the Fermi
energy. In the case of an Al host (EF ~ 12 eV) T is such that the 3-4
impurities are non-magnetic. With a Cu host however with EF ~ 7 eV we
find that Cr, Mn and Fe are magnetic whereas Ni and Co are not since the

number of d-electrons is too small for u>T.

As AZ increases across the 3-d row two VBS will cross the Fermi level.
As a result we may expect a plot of residual resistivity vs. atomic number

to exhibit two maxima. cf. Al(3d) with one broad maximum centred about Al(Cr).
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1.2 Anderson's Model

Anderson (1961) put Freidel's qualitative ideas on a more quantitative
footing. Anderson's approach to the causes of local moment formation was to
assume a local moment exists and to consider the conditions under which it

can survive.

Anderson's model for the electronic states of the alloy system is
appropriate for impurity atoms with an unfilled or partly filled d-shell in
a host whose conduction band states are extended e.g. a sea of s-electrons.
We shall only consider 3d transition-metal impurities i.e. Fe group, in this

discussion.

Since we assume a local moment exists the spin up d-state will be full,
and at an energy E below the Fermi level, and a spin down electron attempting
to occupy it will feel the full Coulomb repulsion U between it and the
electron (up) already on the impurity. It can only occupy a state whose
energy is E + U, which is empty since we assume a local moment exists already,
and hence must lie above EF'

Now, the conduction electrons can mix with the electrons in the local

d-level and cause that state to become broadened. The effective number of

spin up electrons has been reduced since it can "escape" temporarily into
the conduction band. Similarly the broadening of the spin down state allows
it to become partially filled, since the broadened state now overlaps the

Fermi level, and hence increase the number of spin down electrons. This
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has the effect of decreasing the repulsion U. The energy of the spin up
state moves up and that of the spin down state moves down. If the s-d
mixing is sufficiently strong, the states will eventually coalesce, the

occupancy of both states will be equal and the moment cannot be maintained.
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Calculation of the energy shifts of the spin up and down states depends
upon the numbers of up and down electrons which is computed from the
shaded areas of the (what turn out to be) virtual bound states, below EF'
As the number of electrons, in turn, depends upon the energy shifts the
calculation must be performed self-consistently, the solution of which
leads to a transition curve where there appears to be a sharp transition

from magnetic to non-magnetic behaviour,
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The transition curve is given by

Upd(EF) =1
where pd(EF)is the density of impurity d-states for both spins. Now when
mA<U (and (EF-E)/U is about the middle of the curve) the impurity will be
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magnetic. We can see that the condition for magnetism depends more

critically upon A/U than (EF - E)/U.

As in Freidel's picture the Al-3d system is non-magnetic as is Cu-Ni

and Cu-Co.

The magnetic limit of Anderson's model has been shown by Schrieffer and
Wolff (1966) to be equivalent to the exchange Hamiltonian of Kondo (1964) .
Kondo made the first successful effort to understand the cause of the
resistance minimum which appears in many dilute alloys with transition
metal impurities. It was already known that the resistance minimum was
associated with the impurities and not a property of the metal itself.
Kondo's approach was to assume a local spin S on the impurity which
interacted with the conduction electrons of the host, with spin g, via an
exchange interaction J. J was assumed to be -ve i.e. anti-ferromagnetic,

coupling spins of opposite sign. Kondo's Hamiltonian was

Calculations using this Hamiltonian, going beyond first order Born

approximation, gave a logarithmic resistivity term of the form

=]

P =p (1+2INE) In )

=

k

where po is a constant and hﬂEF) is the conduction electron density of
states per spin per host atom at the EF. TK is at present simply a
parameter in the theory. This logarithmic term, when added to the electron-

phonon resistivity, gives the observed resistance minimum.

From the start it was obvious that as T - O the resistivity diverged
to infinity. Experimentally this is not observed in metals or alloys
suggesting that something was happening to the impurity spin below the
characteristic temperature TK. It is generally thought that below TK there
exists a quasi-bound state where the local moment surrounds itself with a
compensating cloud of conduction electrons of opposite spin to itself thus
eventually canceling the moment completely at T = O. This is commonly
referred to as the Nagaoka bound state after Nagaoka (1967) who, among
others, postulated the existence of such a state thus removing the

difficulty posed by Kondo's treatment. The Kondo temperature is defined as
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It has been shown (Anderson 1973; Wilson 1974) that below TK the
exchange "constant" J tends to infinity hence as we reduce T to below 'I‘K
the impurity spin traps a conduction electron of opposite spin and is
locked into a singlet state i.e. S = 0. For an infinite -ve J the impurity
traps a conduction electron of opposite spin and is thereby locked into a
singlet state of zero nett spin. Any attempt to break the singlet by trans-
ferring an electron in or out of the impurity site takes an infinite amount
of energy. That particular impurity is thus out of the way as far as
exchange scattering is concerned. For the conduction electrons it acts as
a non-magnetic, infinitely repulsive impurity and hence we have Nagaoka's
bound state. It turns out that the residual resistivity (i.e. the
resistivity at T = 0) has a maximum value which is uniquely related to AZ.
This maximum value is called the unitarity limit (where the conduction
electron phase shift is m/2) and it is believed that this limit is approached
in all Kondo systems as T — O. Noziéres (1974) calculated the resistivity
below TK and found that it approached T = O as 1 - aT2. Experimentally,
Cu(Fe) is found to have a -ve T2 dependence at low temperatures (Star et al.

1972) .

The Non-magnetic Limit

Rather than the true non-magnetic limit, far from the transition curve,
we shall consider rather the nearly-magnetic case close to the transition

curve.

An alloy , such as Al(Mn), which does not possess an impurity
susceptibility of Curie-Weiss form at low temperatures (although the
susceptibility is enhanced above that in the host due to the presence of a
VBS near the Fermi level), due to the average occupation of the spin up and
down virtual states being the same, has a resistivity reminiscent of magnetic
scattering i.e. resistivity decreasing with increasing temperature from T = O
as in Kondo alloys. Although the impurity possesses no permanent local
moment there can be a nett instantaneous moment which is periodically
destroyed by s - d mixing with the conduction electrons i.e. if the impurity
has an unpaired d-electron an electron of opposite spin can hop onto the
impurity and reduce the spin to zero. Thus the impurity spin fluctuates

between spin up (1/2) and zero. This is termed a localized spin fluctuation.
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Observed for a long enough period of time the VBS appears to have an equal
number of spin up and down electrons so the impurity appears non-magnetic.
When the nett impurity spin fluctuates at a greater rate than it would due
to thermal fluctuations alone the impurity appears non-magnetic. At

higher temperature where many thermal fluctuations occur in the time
occupied by one spin fluctuation, the impurity behaves as well defined local
moment i.e. the conduction electron retains its spin between one impurity
and another and so it "sees" the impurity as magnetic. If the conduction
electron has its spin changed by some other scattering process between
collisions with the impurities it will see the impurity as non-magnetic;

the scattering does not depend on the spin. So a local moment can only be
observed above a certain characteristic temperature i.e. TK' This is the
view taken by Rivier and Zlatic (1972) who assume that the appearance of a
logarithmic term in their localized spin fluctuation resistivity calculations
implies a magnetic moment at the impurity. Anderson (1968) supports this

point of view.

With some alloys previously thought to be non-magnetic, such as Al (Mn)
and Cu(Ni), it has been shown that at higher temperatures a split VBS appears
implying the existence of a local moment (Gruner 1972; Kaiser and Gilberd
1976) . Cooper and Miljak (1976), while not actually observing a Curie-Weiss
law in X(T) in Al(Mn), conclude that there is evidence for such a behaviour
although experimentally the law is masked by changes in the X(T) of Al upon
alloying and the changes in thermal expansion of Al, which causes T. to

K
change, reducing the temperature - dependence of X-

1.3 Wolff Model Wolff (1961)

Wolff's approach to the problem of local moment formation was to
consider the alloy's electronic states as a one-band model which was
equivalent to assuming that the wave function on the impurity is similar to
those of the host conduction electrons. The impurity is represented by a
potential V which was allowed to be spin-dependent. If V for spin up
electrons is different from V for spin down electrons then a local moment
exists on the impurity. Although the impurity d-state wave function is
similar to those of the conduction electrons there obviously must be
sufficient difference for an impurity potential to exist. The structure
of Wolff's model is in fact rather similar to Anderson's, the essential
criterion for local moment formation being the existence of a relatively

sharp virtual level near the Fermi level.
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Both the models of Anderson and Wolff where devised to explain the
occurrence of local moments in 4-d hosts containing Fe as the impurity.
Anderson's model is more applicable at the beginning of the 4-d series;
Wolff's model at the end where the host and impurity are more or less

isoelectronic.

p/p

12+
8t

4
Electron Concentration

0

4 56 7 8 910 1

Y Zr Nb Mo Re RuRh Pd Ag

Figure (1.1)

Magnetic moment of Fe dissolved in various 4-d (and 5-d in the case of Re)

transition metals as a function of electron concentration.

Varying the electron concentration of the host varies the width of the
virtual level and the position of the Fermi level. A local moment occurs
when the virtual level is close to the Fermi level and the virtual level
is sufficiently narrow (after Clogston et al. (1962), and Matthias et al.
(1960)) .

The striking feature of Figure (1.1l) is the "giant" moment at Pd.
This comes about because Pd is, what is termed, a "nearly-magnetic" metal
with a susceptibility about 10 times greater than that given by the Pauli
susceptibility calculated from the band structure density of states. 3
Bohr magneton's worth of the effective moment comes from unpaired spins in
the outer shells of Pd; the other 9 or so is made up of ferromagnetically
aligned moments (each of about 0.05Ug ) that are induced on about 200 Pd

ions within the Fe's vicinity (Low and Holden 1966).

The enhanced susceptibility is a manifestation of spin fluctuations

occurring in the d-band of Pd. We shall discuss these in the next section.

1.4 Spin Fluctuations

It is found that in the transition metals Pd and Pt the magnetic
susceptibility X is higher than the value given from the Pauli susceptibility

calculated from the band structure density of states.




where p(EF) is the density of states at the Fermi level and Mg
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Xo = Hg p(EF)

is the

Bohr magneton i.e. the magnetic moment on one electron.

This susceptibility enhancement may be understood as follows.

Since

parallel spin electrons are kept apart as a consequence of the Pauli

exclusion principle there is a greater Coulomb repulsion U between opposite

spin electrons since there is no such restriction keeping them apart.

Hence

the spin band splitting upon the application of a magnetic field H is

greater than 2uBH the ordinary Zeeman splitting of the spins.

Hence there

are more spin up electrons aligned with the field than in the Pauli case;

thus the susceptibility is enhanced.
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In terms of the mean field approximation, where each electron experiences

a field proportional to the magnetization, we can qualitatively derive an

expression for the enhanced susceptibility. (see Stoner 1938;

and Kubo 1963).

Izuyama, Kim

Starting with the assumption that the exchange field HE is

linearly proportional to the magnetization of the electrons M via the mean

field constant where

where A is equivalent to U (see Magnetism Vol. 4, p. 280L we get

X:

X

O

1l -

UXO

Equation (1.1)
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I .
The factor ¢ = ———— 1is called the Stoner enhancement factor.

I = UX,
When UXo = 1 the electron system becomes ferromagnetic i.e. a
permanent magnetic moment on an atom can exist even in zero applied magnetic
field. 1In the case of Pd X/XO = 10 so evidently UXO ~ 0.9 (Lederer and Mills
1968) .

Although we have only talked about the static susceptibility enhancement
equation (1.1) also holds in the low frequency case for the frequency-
dependent susceptibility x(g,w) where g,w are the wave vector and frequency
of the applied magnetic field. When UXO = 1 we get spontaneous magnetic
moments in the electron system even in the absence of any external
disturbance such as a magnetic field. When UXO < 1 there can be no such
permanent alignment of parallel spins in the absence of any external
disturbance since it is energetically unfavourable. However an external
disturbance is always present in the form of thermal energy (except at T = 0)
and this excites temporary alignments over small regions of the electron
system. Since it is energetically unfavourable for spins to remain
permanently aligned for UXO < 1 as a result we find the average occupation
of both spin bands and the same i.e. the electron system is non-magnetic in
the sense that the susceptibility is less than infinite and is temperature

dependent i.e. no Curie contribution.

These temporary spin alignments are called spin fluctuations or
paramagnons by analogy with the name magnons given to spin waves in a
ferromagnetic system. Spin fluctuations can be looked upon as critically

damped spin waves.

Now at T = O there can be no spin fluctuations since there is no
thermal energy. Hence we would expect spin fluctuations to obey Bose-
Einstein statistics (since they are thermal excitations) and this fact is

reflected in the resistivity of spin fluctuation alloys.

The spectral distribution of the spin fluctuations would be expected
to be related to the frequency response of the susceptibility x(a,m) since
spin fluctuations manifest themselves in an enhanced susceptibility. Just
as the energy absorbed from an electrical disturbance is given by the
imaginary part of the dielectric constant (essentially the electrical
susceptibility) the absorptive part of the magnetic susceptibility is like-
wise the imaginary part and thus the spectral density of the spin
fluctuations (the distribution of energy absorbed from the magnetic field)

is given by the imaginary part of the suceptibility.
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A(q,w) = 2Imy(q,w) Kubo (1957)

In a transition metal, one may consider a simple two-band model for
the electrons in which the d-band is assumed to give rise to the magnetic
propoerties and the s-band is assumed to be responsible for the transport
properties, although in Rh recent de Haas-Van Alphen measurements show that
80% of the conduction is carried by d-like electrons (Cheng and Higgins 1979).
However it is not expected that this will change the character of the
calculation of the electron scattering by spin fluctuations significantly.
Mills and Lederer (1966) calculated the resistivity of Pd assuming that the
experimentally observed resistivity was due to scattering off d-band spin
fluctuations. They found the resistivity due to spin fluctuation scattering
varied as T2 at low temperatures in agreement with observation. Regular
electron-electron (Baber scattering) scattering is thought to be insufficient

to account for the resistivity of Pd at low temperatures.

1.5 Localized Spin Fluctuations

Metals such as Pd and Pt, as discussed in the previous section, are
termed nearly magnetic. Consider now the addition of a more nearly magnetic
impurtity e.g. Ni into P4, that is to say an impurity in which the opposite
spin d-electron Coulomb repulsion U is larger than the corresponding value

in the host.

At impurity sites we find enhanced spin fluctuations occurring in the
impurity d-levels. The effect of these localized spin fluctuations, as they
are called, upon the susceptibility can be calculated in the following

manner.

Consider an impurity replacing a host ion as per the diagram.

7 Zi = impurity

T crystal lattice

= - +
Then Xalloy Xhost(l cl CXi

where ¢ is the impurity concentration and i refers to the impurity.

I T
Xy T 1= duxh

Now

%o

by analogy with yx = T ooy
o
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where the intra-atomic exchange (U) at the impurity is S§U greater than
in the host. (8U is the excess Coulomb repulsion in the impurity over that

in the host)

Xy
Xalloy ~ Xpt =€) + ¢ 71— SUX,,
x§ 1 ‘quh
=Xh+°{l' Uxh"xhl-auxh
Suy, 2
. X h
alloy = X * e R T
h (1 GUxh)

where = (1 - SUXh) . is the local enhancement factor.

The frequency and wave-vector dependent alloy susceptibility was
calculated by Lederer and Mills (1968) who starting from the Wolff Model

obtained the following expression

x(a,w) x(&',w)
1 - SUR(w)

X(a'. &.w) = x(&,w) 6&,5' + céu

where X(a,w) has been generalized to X(;',a,w) since the impurities have
destroyed the translational invariance of the system. x(a,w) is the
enhanced host susceptibility and i(w) is the average of X(;,w) over wave
vector. The local enhancement factor o = (1 - c‘iU;((o))_l provides a measure
of how much greater the response to a magnetic disturbance is in the

impurity cell when compared to the host response. ‘

The spectral density for the LSF is given by the imaginary part of the
impurity susceptibility.
X2 (g,w)
ALSE(q'w) = 2céUIm 1 - éui(w)
Using these expressions Lederer and Mills calculated the resistivity due to

conduction electrons scattering off enhanced LSF and found a concentration

dependent T2 term which accounted for the then recent resistivity measurements
of Schindler and Rice (1967) on PA(Ni). Schindler and Rice sought to explain
the enhanced T2 term by postulating that the average Coulomb interaction
increased as Ni impurities were added to Pd enhancing the d-electron spin
fluctuations as a whole. However an average enhancement does not provide an
adequate description of a dilute alloy, especially when the wavelength of

the spin density fluctuations is short compared to the mean impurity-impurity
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separation. The neutron diffraction studies of Low and Holden (1966)
show that the extent of the LSF is about 108 around the impurity. Schindler
and Rice's uniform enhancement model incorrectly predicts the variation of

g R 2 : . . ;
the coefficient of the T® term with impurity concentration.

Lederer and Mills' LSF model is only valid at low concentrations where
interactions between impurities are negligible. However interactions become
important as the Ni concentration approaches 2%, above which Pd(Ni) is
ferromagnetic, leading to a variation of the coefficient of the T2 term
faster than linear. Whether this occurs and at which concentrations
depends upon the degree of exchange enhancement in the host. For instance,
although Pd(Ni) is ferromagnetic above 2%, Pt(Ni) does not appear to
exhibit inter-impurity interactions even up to Ni concentrations of 10%
(Mackliet et al. (1970)) e.g. p/c is independent of c¢. The Stoner factor
for Pd is about 10 whereas for Pt it is only about 5/3.

Kaiser and Doniach (1970) extended the work of Lederer and Mills to
higher temperatures. They obtained the LSF spectral density averaged over

wavevector

ALSF(w) = a

where a is characteristic of the alloy and independent of W, and W is
linear in @ and may be written in terms of a characteristic LSF Temperature

Tsf

e

B sf
where TSf is inversely proportional to the local enhancement o..

Thus we see that the LSF spectral density is linear in W at low

energies, peaks at kBTSf and falls off as w_l at higher energies. Kaiser

and Doniach extended the calculation of LSF resistivity to higher
temperatures than those considered by Lederer and Mills the general result
they obtained being

Pz DOB WA op (w) dw

(eBw - 1)1 - e‘Bw) egn. (1.2)

o)
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where w is the energy change on scattering and B = (kér)_l.

Equation (1.2) is the general form of the resistivity due to scattering
off Bose-like excitations. For instance if we substitute the Debye energy
spectrum for phonons in place of ELSF(w) we get the familiar Bloch-Gruneisen

5 § ool
T law for electron-phonon resistivity.

Inserting iLSF(w) into equation (1.2) Kaiser and Doniach obtained a
universal curve for LSF resistivity as seen in Figure (1.2). At low
temperatures we get back the T2 form as calculated by Lederer and Mills.

o 2 2
p(T > 0) ="7 (;T—>

SF

where p is linear in p. At high temperatures we get the linear law which
is the general form expected for resistivity due to scattering off Bosons
with a temperature-independent energy spectrum since the number of bosons

thermally excited is proportional to T at high temperatures.

~

P
p (T > ») = .

-
sF 2

e

By fitting experimental resistivity values to the universal curve we get
directly the value of Tsf for that particular alloy. The shape of the
experimental resistivity curve as a function of T should be the same as the

universal curve providing Ts is independent of temperature. In fact we

f
find that the host susceptibility decreases slightly with temperature and
this has the effect of causing the local enhancement factor o to decrease,
for large a, which in turn affects Tsf' The effect is greater at higher

temperatures and higher o and, in general, we may say that the LSF gpectral

density decreases in magnitude at higher temperatures i.e. ALSF(q,w) is
"blurred out". This causes the resistivity to decrease below the linear

law at higher temperatures.

Spin fluctuations also affect the specific heat by contributing to the
density of excited states in the d-band. Physically the spin fluctuations
are an extra excitation which can absorb thermal energy thereby adding
extra heat capacity. Alternatively one may say that the effective d-electron
mass has been increased enhancing the coefficient of the linear T-term in the
electronic specific heat Y. The specific heat enhancement is well known in
Pd where the coefficient y (when spin fluctuations are taken into account)

is about twice that in the free electron case (Lederer and Mills 1968a).
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Addition of nearly magnetic impurities to the host produces a linear

dependence of Y upon impurity concentration c for dilute alloys.

Extending the calculation of the thermal resistivity due to LSF by
Schriempf et al. (1969), Kaiser (1971) found that as T = O WLSF varies

: ; =2
linearly with T and as T + WL tends to a constant plus a T term

SF
although the actual temperature dependence is rather more complex due to
the decrease of the local enhancement factor o at high temperatures cf.

resistivity.

Kaiser and Doniach applied their extension of the Lederer-Mills LSF
model to calculate the resistivities of dilute alloys other than Pd(Ni).
Of particular interest is the resistivity of Rh(Fe), the thermopower of
which is the topic of this part of the thesis. Now the Kaiser-Doniach
model is only valid for those alloys in which the host and impurity are
more or less isoelectronic i.e. it is assumed there is little potential
scattering of the conduction electrons by the impurity. The neglect of
potential scattering has serious consequences for the thermopower of these

alloys later on.
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Chapter Two

THERMOPOWER OF ALLOYS CONTAINING TRANSITION METAL IMPURITIES

2.1 Electron Diffusion and Phonon Drag Thermopower

In a conductor under the influence of an electric field, E and a
temperature gradient, VT the relationship between these and the electric
and thermal current densities, j and u, generated as a result, may be

written in the following empirical manner.

Li1E + LizVT

=iR IS
Il

Lz31E + LyoVT

The coefficients Lij are, for our purposes, just coefficients of
proportionality. To be strictly correct the coefficients should be written
in the form given by, for instance, Ziman (1964), but as we are merely using
our Lij's as an aid to showing the relationship between various quantities
the exact nature of the coefficients is of no importance for the following

discussion.

By imposing various conditions upon the conductor the coefficients, or
rather combinations of the coefficients, assume well known identities.
Putting VT = O indicates that L;; is the electrical conductivity, ¢. The
thermal conductivity, k is -Lj,, although this is for conditions of zero
electric field rather than zero electric current; however, for kT << EF
the difference is negligible. With the thermopower, S is -L;,/L;;, or -L;,/0.
The physical origin of the thermopower can be illustrated in the following
manner: in an electrically isolated conductor (5 = 0) under the influence
of a temperature gradient, VT the electrons at the "hot" end have, on the
average, a highep energy than those at the "cold" end, with the result that
the average velocity of the electrons is greater at the hot than the cold
end causing a nett diffusion of electrons down to the cold end and creating
a surplus of electrons at this end. The electric field, E that is a
consequence of this charge imbalance adjusts itself so that the cold
electrons are given an energy equivalent to that carried by the hot

electrons, and the nett current flow is stopped. The proportionality factor

between E and VT is the thermopower, S.

Of the many analytical forms of the thermopower the one most commonly

encountered is the Mott formula (Mott and Jones 1936) .
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eqn. (2.1)

where k is the Boltzmann constant, e the electronic charge, T the absolute
temperature and o(e) is the electrical conductivity as a function of a
hypothetical Fermi level, €. The logarithmic derivative is evaluated at the
actual Fermi level of the metal, eF. The Mott formula is only valid in the
temperature region where there is a common relaxation time for both thermal
and electrical processes, i.e. for T > GD and T << 6D, electrons being
scattered elastically in both regions. (BD is the Debye temperature of the
metal). Two other assumptions made in the derivation of the Mott formula

are that kT is very much smaller than the Fermi energy and that o(ge) does

not vary too rapidly in the neighbourhood of the Fermi energy.

There is a further quantity which will be of interest to us. This is
the Thermoelectric ratio, G. Experimentally this is the ratio between
electric and thermal currents when E = 0. Compare this with the thermopower,
which latter is the ratio between E and VT for conditions of zero electric

current. In terms of the coefficients Lij we can write

G

G, _ 4

Li2/Las
So/k

Now, Kk = LOT where L is the Lorenz number for the metal, including
contributions from inelastic scattering where appropriate (we shall make
use of this fact in Chapter Four). 1In general, L is smaller than LO' the
classical value for the Lorenz number, if there is a substantial amount of

small angle inelastic scattering. Substituting for K we get

(3]
Il

So/LoT
or S = LGT

In a formal sense the difference between G and S is that whereas S is the
ratio between L;, and the electrical conductivity, G is the ratio between

Li2 and the thermal conductivity. This, strictly speaking, includes the
thermal conductivity due to the lattice, but in general electronic

conduction of heat is much greater than lattice conduction at low temperature

i.e. below about 4 K.
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We shall now consider the ramifications of the Mott formula. If we

write 0(g) in the following form

ote) = L | 233 122
am?d k
2
e
T 12T Aa

for spherical Fermi surface with isotropic relaxation time T where the mean

free path A =UT and U is the electron velocity, we can then write

91lno(e) _ 31nu®(e) , 3lnT(e)  3lnn(e)

o€ J€ o€ J€
_ 90lnA 31lnA
=5t 5 eqn. (2.2)

where n(g)~ ca is the density of states integrated over the Fermi
IVkE

surface, A.

The first term in equation (2.2) is generally positive since the more
energetic an electron is the less likely it is to be scattered (this is
true in general for impurity scattering, but there are exceptions for

electron-phonon scattering) and the longer is its mean free path.

The second term depends upon the geometry of the Fermi surface.

Brillouin  zone E;jg/ \Q:///f A increasing

boundary
.
‘\\\\ /ﬁ;j”'— A decreasing
N ¢

Fig. (2.1) Fermi surfaces and their change in area with increasing ‘
energy.

Consider a Fermi surface expanding into a Brillouin zone as in Fig. (2.1).

P . d1nA S
Until it reaches the zone boundary its area increases making —55—-p051t1ve. l

Thereafter it decreases making BégA negative. If it is sufficiently

5 . : A 1
negative it may outweigh the first term 3e and cause the thermopower to

change sign e.g. the noble metals.
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Low temperature expressions for S_ at very low temperatures for pure

metals have been calculated but these 3ary depending on the structure of
the theoretical model chosen to represent the behaviour of the electrons
in the metal. The Mott formula cannot be used here because the relaxation
times for electrical and thermal processes are different. This is clearly
demonstrated in the way the Lorenz number varies from a constant figure LO

as temperature is lowered (see Ziman 1963).

Now for free electrons n(g) =~ e%,'uz ~ £ hence

_ T?k*T |31n n(e) . 31mv®(e) aln‘r(e)]

83 % T3 G o€ 9 JEF
Fedgi
_ T°k°T 3/ $ € dlnT (€)
3eeF L 2 F o€

For the case of impurity scattering being the dominant relaxation mechanism
(T << GD in general) one can assume the mfp is independent of the electron

energy since electron scattering off "hard sphere" impurities is elastic.

Then the relaxation is given by T = A/UF - E-%.
2y 2
v mTk*T
. = <<
S4 et (T eD)

At high temperatures elastic electron-phonon scattering occurs and

we can write for the relaxation time (Barnard 1972, Wilson 1936)
3
T ~¢e72

This leads to a commonly quoted result for the diffusion thermopower

2.2
g =L XL (T > 6)
d eeF D

In the foregoing discussion we have assumed the lattice to be in
thermal equilibrium. This is not the case since at the "hot" end there
will be a higher density of phonons than at the "cold" end giving rise to
a flux of phonons. It is this flux of phonons that is responsible for the
thermal conductivity of insulators. The interaction of the disturbed
phonon system with the electrons gives rise to an additional effect in the

thermopower called phonon drag.



= Y

To simplify our initial discussion of phonon drag let us assume that
the phonons only scatter off the electrons. This is true at low temperatures
to a large extent where phonon-phonon scattering is small compared to phonon-
electron scattering. In each such scattering event a phonon is absorbed by
the electron and the electron gains the corresponding energy and crystal

momentum.

In a metal under the influence of a temperature gradient we have a
phonon current flowing from the "hot" end to the "cold" end. An electron
will be made likely to absorb a phonon travelling from the hot end than
from the cold end since there are more of the hot phonons available.
Consequently the electrons absorb the phonon momentum and are "dragged"

along with the phonons to the cold end.

Electrons pile up at the cold end in addition to those there due to
electron diffusion. As in the case of diffusion thermopower an electric
field is set up due to the charge surplus which adjusts itself so that the
system reaches a steady state. To evaluate this effect we shall use the

following argument which is due to MacDonald (1962).

Consider the phonons inside the metal with energy density U(T). The

pressure exerted on the electrons by the phonons is

1
P = §-U(T)

The temperature gradient also gives rise to a pressure gradient or nett

directed force per unit volume

dap
o™ &
_lavu ar
T 34T ° ax
= -NeE
2
with N electrons per unit volume.
Since E = SVT
we get S = L9 egn. (2.3)
g 3Ne

where Cg = %% is the lattice specific heat.

We have assumed that all the phonon momentum is transferred to the

electrons. We would expect this to be true at very low temperatures but

in general not all the phonon momentum is transferred to the electrons.



The momentum transfer must be "shared" with other "particles" such as
other phonons, impurities etc. So to a first approximation we may modify

egn. (2.3) by a "momentum transfer factor"

P
b.,e
2y + .P
P:x P:e
where P and P are the probabilities of an interaction between a phonon
’ r
and an electron,and a phonon and some other "particle". If relaxation times

are appropriate for these probabilities we may write

C iE
L. ) [ - . S

Ne | T T
g p,x + p,e

T
P.x

where is a suitable average over the phonon spectrum considering

P + Tp,e
that Tp,x ,Tp,e are usually functions of the phonon frequency.
At sufficiently low temperatures we expect Sg to vary as T3, remembering
that the lattice specific heat varies as T3 at low temperatures and that
> P in general since most of the phonon momentum is absorbed in

P
p.,€ P,
phonon-electron collisions.

At high temperatures phonon-phonon collisions become important since
the number of phonons excited is proportional to T so the probability of a

phonon interacting with another is proportional to T and hence

Also at high temperatures kT > kGD phonons can only interact with
electrons in a band of width keD at the Fermi surface. The number of
electrons in this band at these temperatures is independent of the
temperature and hence T a is constant. We also have T x-*T and we can

’ 4 r
write

since C 1is constant and T << T r T ~ T
g PP p,e PP
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. , 3
So in general phonon drag thermopower increases as T at low temperatures,

and falls off as T_l at high temperatures, exhibiting a peak at about BD/S.

In our treatment of phonon drag we have neglected Umklapp processes in
the scattering of the phonons. The effect of U-processes is generally to
contribute a thermopower component of opposite sign to that caused by normal
(N) processes. If U-processes dominate the scattering phonon drag thermo-

powers of opposite sign can be observed.

Calculations on the diffusion thermopower involving second-order
scattering processes by Nielsen and Taylor (1974) have predicted the
existence of a hump in the diffusion thermopower at about BD/S. These
second-order contributions allow us to interpret some experimental results
as diffusion effects whereas previously they may have been attributed to

phonon drag.

In general the diffusion thermopower and the phonon drag thermopower
may simply be added together since it is assumed that the additional
momentum given to the electrons from the phonons is independent of that
already given to them by the phonons to produce electron diffusion.

Napoli and Sherrington (1971) have suggested that an interference term
between S. and Sg exists in the case of alloys, although definitive evidence

d
is yet to appear.

2.2 Enhanced Diffusion Thermopower

a) Pure Metals

The transition metals Pd, Pt and Ni have an order of magnitude increase
in thermpower (including Sg) over simple metals due to a high density of
states N(EF), giving rise also to a high specific heat and electrical
resistivity; in particular a high rate of change of N(EF) with E i.e.
ON(€)/9E is large at EF’ where the conduction electrons have the greatest

effect upon the electronic properties of the metal.

Now, if we take the Mott Formula for Sd

S =

T2k 2T | 31no (€)
d 3e

9e E

and we put 0 = net/m we get
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_ m%k*T | 31nt(€)
d 3e 9€ E

Assuming that the relaxation rate 1/T is proportional to the density

of final states N(g) we get

_ _ mk’T [‘alnN(e)]
a 3e de |
Ep

Thus we have a ready explanation for the large thermopowers of Pd, Pt and Ni.

Lt

9k
_['_-
Phonon drag peaks Pd
i (larger in Pd due fo larger
-8F density of stafes)
-10% S}uV/K)

Figure (2.2). Thermopower of Transition Metal with thermopower of
Noble Metal for comparison.

For ferromagnetic metals below the Curie temperature Tc' i.e. Co, Ni
and Fe, the situation is complicated by the existence of a split density of
states due to the spin up and spin down electrons being displaced above
and below the Fermi level by mechanisms similar to those responsible for the
splitting of virtual bound states in local moment alloys as outlined in

Chapter One.

However it is not enough for the density of states merely to be split
to give rise to an enhanced thermopower. If the density of states was
symmetric about EF no enhanced thermopower would result since 9N(g)/3€ would

be zero. Now, if the relaxation rate for spin up electrons was different



— 28 —

from that for spin down electrons we could have circumstances favourable
for enhanced thermopowers. In general some source of elastic scattering
is required to produce this state of affairs, since elastic scattering is
usually energy-dependent. For example, for free electrons the relaxation
time for scattering off "hard spheres" goes as E_% and thus, since the
spin up and spin down electrons are separated by the exchange energy, the
relaxation time (and hence the relaxation rate) is different for both.
Essentially this means that more electrons are scattered one way across the
Fermi level than the other. This, combined with the symmetric, but large,
split density of states, gives rise to an enhanced thermopower, since, as
we have shown just previously, the relaxation rate is also proportional to

the density of final states.

b) Dilute Alloys with Transition Metal Impurities

The behaviour of transition metal impurities in simple and transition
metal hosts has already been outlined in Chapter one. The effect of VBS's
and LSF's upon the resistivities of such alloys has been discussed; the

effects upon the thermopower will now follow.

1) Simple metal hosts

As an example let us consider the Al(3d) system. We have seen how the
residual resistivity reaches a maximum when the VBS due to the 3d impurities
is located at the Fermi level (see Figure (2.3)). The residual resistivity
is governed by N(g); the thermopower by ON(gE)/9€. Hence we would expect to
find a minimum thermopower when the VBS was at the Fermi level. This,
broadly, is the observed behaviour. From the following diagram we can see
that the thermopower does indeed appear to be the energy derivative of the
resistivity plot. This is, of course, an oversimplification; in fact LSF
effects narrow the VBS and produce an even more enhanced thermopower above
that expected from a simple application of the Friedel-Anderson model.
Zlatic and Rivier (1974) calculated the effects of the interaction of LSF's
with VBS. They came to the general conclusion that elastic as well as
inelastic scattering is necessary to produce an enhanced diffusion thermopower
of the "giant" type. The results of their calculations are plotted as

crosses in Figure (2.3).
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ii) Transition-Metal Hosts

a) Kondo Alloys

A Kondo alloy is, strictly speaking, any dilute alloy in which exist
impurity spins of fixed magnitude. Traditionally they have been associated
with magnetic (e.g. Fe) impurities in transition-metal hosts e.g. Cu(Fe),
Au(Fe) etc. Here the host and impurity are not isoelectronic so there exists
a substantial amount of potential scattering due to the impurities. The
"giant" thermopowers observed in these alloys were first explained by Kondo
(1965) following the success of his model in explaining the resistance
minimum. In addition to the exchange interaction coupling host and impurity
electron spins there must be added to the scattering some spin-independent
interaction in the form of potential scattering. The model fails to account

for the observed thermopowers if this potential scattering is neglected.

Suhl and Wong (1967), using a more complete treatment than did Kondo,
predicted that the thermopower should show a peak at the Kondo temperature
TK' Kondo's original treatment, due to the neglect of some important
higher-order terms, was not really adequate in explaining the observed
thermopowers although it did provide some understanding of the giant thermo-

powers.

Guenault and MacDonald (1961) discussed the probable causes of the giant
thermopowers in Kondo alloys and came to the conclusion that simultaneous
elastic potential scattering of the conduction electrons was required in
addition to the inelastic exchange scattering already present. The

situation is somewhat similar to that in ferromagnetic metals and alloys.

b) LSF Alloys (Coles alloys)

A "Coles" alloy is one in which the host and impurity are more or less

isoelectronic e.g. Pd(Ni), Rh(Fe) etc.

Fischer (1974), deciding that mixing between conduction electrons and
impurity d-electrons was too difficult to include into a calculation of
thermopower, simplified matters by assuming that a single band of electrons
could describe the conduction and magnetic properties in these alloys. Then,
limiting his treatment to hosts with no exchange enhancement, thus excluding
Pd and Pt, he included the effect of potential scattering in his LSF model

and predicted that the thermopower should show a peak, the nature of which
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in part depended upon the amount of potential scattering. For Rh(Fe) a

large negative peak at about 4K is predicted.

The two band LSF model of Lederer and Mills, and Kaiser and Doniach,
specifically excludes potential scattering thus rendering itself unable to

explain the giant thermopowers.
In general, we can say that in order to be able to account for giant
diffusion thermopowers potential scattering as well as inelastic exchange

scattering must be included in any theory.

2.3 Spin Fluctation Drag Thermopower

It is possible that a further effect in the thermopower of nearly

magnetic alloys could occur (Kaiser 1976).

In the treatment of diffusion thermopower due to LSF the LSF's were
considered to be in thermal equilibrium. This is not the case. Just as
for the case of phonons the presence of a thermal gradient will produce
disequilibrium in the LSF distribution since more LSF are excited at higher
temperatures. Consequently there will be a bias of spin fluctuation wave
vectors in the direction of the thermal gradient. This bias will tend to
be transferred to the conduction electrons when they scatter off the spin
fluctuations giving rise to a drag component in the thermopower. Any dis-
equilibrium of excitations would be expected to produce a drag effect in the
thermopower. Phonon and magnon drag thermopower are already well known

(Blatt et al. 1967).

Adopting a model similar to that used to determine a gualitative

expression for phonon drag thermopower we shall do likewise here.

In the presence of a thermal gradient there will also be a gradient
in the spin fluctuation energy density U(T). This energy density gradient
will lead to a spin fluctuation drag thermopower component. At very low
temperatures, where we suppose that only spin fluctuation-electron

collisions are dominant, the spin fluctuation drag thermopower is given by

S T s egn. (2.4)

. du
where N is the conduction electron density, e the electronic charge and T

the constant volume specific heat Csf of the spin fluctuations.
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The expected characteristics of spin fluctuation drag thermopower are as
follows:

1) sz ,in the low temperature limit, varies as CSf and is therefore

linear in temperature (see Chapter One). This linear T dependence is

3/2

analogous to the T3 dependence for phonon drag and the T dependence for
magnon drag (Blatt et al.).
2) The magnitude of §

like Cs ,in the very low concentration limit

sf ! £
should be proportional to the number of spin fluctuations i.e. proportional
to the impurity concentration c, and relatively independent of the presence
of other scattering.

3) The sign of SS is negative since e is negative and normal electron

£
scattering by spin fluctuations "drags" electrons down the temperature
gradient as for phonon drag. Umklapp processes can, however, drag electrons
up the gradient giving rise to a positive contribution. If U-processes
dominate the scattering a positive sz would result.

Equation (2.4) is essentially a free electron gas model and assumes
that all the spin fluctuation momentum is shared equally among the
conduction electrons. For a metal with a complex band structure this may
not necessarily be the case.

4) At temperatures above Ts the thermopower will be greatly reduced

f
since the spin fluctuation spectrum becomes blurred out and the effect of

spin fluctuations on the physical properties is reduced. The decrease of
resistivity below the linear T law is an example. In addition, if spin
fluctuation interactions other than collisions with conduction electrons
become important, not all the spin fluctuation momentum will be transferred

to the conduction electrons.

In general Ss is expected to exhibit a peak at about Ts somewhat

E £

analogous to the phonon drag peak at about %?} where 6D is the Debye

temperature.
5) Since independent sources of thermopower are additive we may simply

add SS onto the already present diffusion and phonon drag components to

£
give a total thermopower

S=5_+4+458 + 8
g s

d f

For dilute alloys we may assume that Sd and Sg are the same as in the host.

Hence the thermopower due to LSF is the difference between the alloy and
host thermopowers. This is not true if the impurities added dominate the
scattering. Then the host thermopower Sq is washed out as we shall show in
Chapter Four. If Sy is small this is of little consequence if sz is large.
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Chapter Three

EXPERIMENTAL DETAILS

3.1 Resistivity of Wire Samples

Most of the Rh(Fe) samples used in this study were prepared by Engelhard
Industries Ltd. and kindly supplied to us by R. Rusby (National Physical
Laboratory, U.K.). One additional sample (number 6 in Table 4.1) was
prepared by Johnson-Matthey Ltd. and supplied by G.K. White (CSIRO,

Australia).

The resistivities of these Rh(Fe) wire samples were measured in a
cryostat designed by Dr H.J. Trodahl of Victoria University. As this
cryostat is not specific to this study its functioning will be only briefly

outlined.

Two samples were measured simultaneously by winding several cms of each
wire around a copper rod with a layer of cigarette paper soaked in GE7031
varnish for adhesion. The purpose of the cigarette paper is, of course, to
provide electrical insulation while at the same time providing reasonable
thermal contact between the wires and copper by dint of its thinness.

Reference to Figure (3.1) should clarify constructional details.

Standard four-terminal resistance measurements were made on the samples
with the sample current being common to both. Thin, enamelled copper wires
were used to provide contact with the samples. The wires were attached with
non-superconducting Bi-Cd solder. The current was supplied by a voltage
source in series with a large resistance (about 10,000 ohms) and the samples.
The current was monitored with a voltmeter measuring the potential drop
across a standard resistance in series with the current circuit. The
potential drops across the samples were each measured with a Keithley model
148 nanovoltmeter with its output fed into a Hewlett-Packard model 7100B
chart recorder. The large voltage proportional to the residual resistivity
of the samples was nulled out within the NVM so that the temperature-

dependent component of the resistivity could be more accurately measured.

The 1/A ratios of the samples were determined by an indirect method.
Rather than measuring the diameters of the wires directly and converting to
cross-sectional area in the usual manner, it was decided, for better accuracy,

to determine 1/A by weighing a measured length. Measuring the diameters
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directly introduces an uncertainty of greater than 10% into 1/A on account
of the thin diameters involved (nominally 0.13 and 0.05 mm). Briefly, the
method involves determining the length of the sample between the potential
probes, cutting the wire at these points and subsequently weighing the
resulting piece. The cross-sectional area of the wire is calculated from
the volume and length assuming that the mass—-density of the sample is the
same as that of pure Rh. With the small concentrations of Fe involved (less
than 1 at .%) this seemed a reasonable assumption. The diameters of all of
the wires were checked for uniformity as the method could give erroneous
results if the diameters varied widely. All diameters were found to be
uniform over the lengths of interest within the uncertainty limits of the
travelling microscope employed for the purpose, about 10% for these diameters.
Changes in cross-section of a random nature of up to 10% were calculated to
cause an error of about 1% in 1/A. The overall accuracy due to this method

is about 1% in 1/A.

Uncertainties due to non-linearities in both the NVM and the chart
recorder should each be about 1% of full scale deflection, if the
manufacturers are to be believed. If it were possible to keep to the same
part of the scale throughout the measurement the resulting accuracy would,
theoretically, be considerably less. However the overall accuracy 1is
limited by the accuracy to which the chart record can be read. We estimate
the overall uncertainty in the magnitude of the resistivity to be less than

3%.

With the sample currents employed, up to 50 ma, Joule-heating effects
were found to be negligible. The effect of stray thermal voltages (due to
the temperature difference between the measurement leads at the top and
bottom of the cryostat) was determined by performing the measurement with

the sample current reversed. No measurable difference was discerned.

Sample temperature was determined by means of agermanium resistance
thermometer attached to the cryostat base. Providing that any heat flows
into or from the sample do not measurably raise or lower the sample
temperature above or below that of the cryostat base the assumption that
the sample and thermometer are at the same temperature is probably justified.
This state of affairs is facilitated by thermally attaching all leads going
to the sample (and thermometer) to the cryostat base and by keeping the gas
pressure within the cryostat as low as practicable to minimise heat flows
through the gas. A "conduction shield" connected to the cryostat base was

employed to enclose the inner workings of the cryostat so that the sample
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"sees" a large surface at the same temperature as itself rather than a
large surface (the outer can) at a constant liquid helium bath temperature.
We estimate that the sample temperature is reliably known to better than

0.05K over the low temperature range of interest.
The sample temperature was maintained above the bath temperature by
means of a nichrome wire resistance heater wound around a copper bobbin

attached to the cryostat base.

3.2 Sample Treatment

In order to observe the effect of changing dislocation scattering on
the resistivity and thermopower two wire samples were rolled flat between
hard-nickel rollers to increase the residual resistivity, and one was
annealed in a high vacuum for 15 minutes at 450 C to reduce its initially
large residual resistivity. Another sample was stretched in an attempt to

increase its residual resistivity although its thermopower was not measured.

Since calculation of 1/A for the rolled samples by direct measurement
of the cross-sectional area was precluded because of the irregular shape
it was determined in the same fashion as for the wires. However the
uncertainty in 1/A is not important for the method of analysis outlined in

Chapter Four.

The consequences of these treatments will be discussed in Chapter Four.

3.3 Thermopower of Wire Samples

In Chapter Two the absolute thermopower S of a material was defined by
E = SVT where E is the electric field created in the material by the action
of electrons under a temperature gradient VT. If we consider a length of
conductor with a small temperature difference across the ends we find there
will exist a potential difference across the ends. Experimentally, then,

—Z-evaluated at the average sample temperature

the thermopower is S(T) = 2T

AT
P =2TE + .
2
In order to evaluate S(T) we must measure AV, AT and T. Now, since we
have no practical means of measuring a potential difference without drawing
some current from the circuit we cannot directly measure AV due to the sample.
The reason for this is as follows: suppose we have two wires connected in a

close circuit under the influence of a temperature difference as in the

following diagram:



unless A and B are different materials (or different states of the same
material e.g. one under strain) the two currents iA and iB are equal and
no nett current will flow around the circuit. Hence to observe a thermo-
electric current A must be different from B, or as it turns out, the

absolute thermopower of A and B must be different.

In practice we use the following thermocouple circuit to measure the

thermopower of a sample, A.

///// T, + AT

~,[ \s

Sample wire, A

A AV

Measuring leads, B

7 -




= H

: AV . :
= 2L b
The thermopower of the thermocouple is Stotal m with AV, AT being

defined as in the diagram.

Integrating the experimental formula we may write

o + AT
= ’I aT
Av To Stotal

Now AV is due to contributions from both A and B. To determine Stot in

terms of SA and SB we sum the contributions to AV around the circuit.

o o +aAT Ti
Av=f gt +f 5,dT + / s,dT

1 To To + AT
o + AT
= (S, - sBldﬂ'
To
H = - i te thermopowers.
ence Stotal SA SB' the difference between the absolute js]
Now we can measure stot' Provided we know SB we can evaluate the sample

thermopower SA. This brings us to the problem of how to evaluate SB' the
reference thermopower. If we can only measure the difference between thermo-
powers how do we initially determine an absolute reference thermopower?
Luckily, as it turns out, there is another thermoelectric property of
conductors known as the Thomson heat which is related to the absolute thermo-
power in the following manner. In a conductor under the influence of a
temperature difference through which an electric current also flows we find
that, in addition to the Joule heating, there is an evolution or absorption
of heat throughout the conductor depending upon the relative directions of
the current I and the temperature difference AT, which is directly proportional
to the product IAT and dependent in magnitude upon the absolute temperature

of the conductor.
The rate of heat production in the conductor may be written
é = I?R - WUIAT
where R is the resistance of the conductor and U is the proportionality

factor called the Thomson heat of the conductor. The relation between L

and S is

=

Il
QTQJ
H| 0



first derived by William Thomson in the 19th century from thermodynamic

principles. Integrating,

T 1
S(T) - s(0) = f %GT'
(o]

It can be argued from an application of the 3rd Law of Thermodynamics that

the thermopower must be zero at T = OK. Hence,

T '
s(T) = /“'(—g,—) ar’

o

Thomson heat measurements have been made on lead (Pb) by Christian et
al. (1958) and, more recently, by Roberts (1977). The thermopower calculated
from these Thomson heat data are presented on the following graph for
temperatures up to 20K. The outstanding feature on this graph is that below

7.2K the thermopower is identically zero.

S (uv/k)

-10r Absolute  Thermopaower

of Lead (Pb)

L 1

oL . b et 1 T
0 2 & 6 8 10 12 % 16 18

A simple argument involving another thermoelectric coefficient, known as
the Peltier heat, and the 2nd Law of Thermodynamics tells us that below
its transition temperature a superconductor will have zero thermopower,

under normal conditons, Pb being a well-khown superconductor.

Up to about 300K Pb has been chosen as an absolute reference standard
for thermopower since pure Pb wires can be easily made and annealed thus
keeping variations in thermopower from sample-to-sample to a minimum. There

is the added bonus that the thermopower of Pb is zero below 7.2K so that the



reference thermopower is known exactly below this temperature.

3.4 Thermopower Cryostat for the Measurement of Low Temperature Thermopower
of Wire and Thin Film Samples.

There are two basic techniques for measuring thermopower: the integral

method and the differential method.

In the integral method one junction of the thermocouple is held at a
constant, known temperature while the other junction is raised in temperature
and the total emf across the thermocouple is measured over the temperature
range of interest. To obtain the thermopower from the data the emf vs.

temperature curve is differentiated.

In the differential method the thermopower is obtained directly by
raising both junctions to the required temperature T and then further
raising one junction by a small temperature AT, and measuring the small
emf AV created. The thermopower at the average sample temperature T + %;

is then simply %%;

The differential method has all the advantages of measuring a small
voltage difference AV directly whereas the integral method inherently
measures AV as the difference between two relatively large voltages. Zero
drifts in voltage (that is, the spurious voltages that almost always exist
in the absence of an applied AT) are not easily accounted for in the integral
method whereas in the differential method the time interval when measuring AV
is generally so small that drifts in voltage have relatively little effect

upon the accuracy in determining AV.

Liquid helium is universally used as the refrigerant at these low
temperatures. We can cover the temperature range from 4.2K down to about
1.35K by controlling the vapour pressure of the liquid helium. Liquid
helium has a boiling point of 4.2K at atmospheric pressure; reducing the
vapour pressure by pumping on the vapour reduces the boiling point to a
practical minimum of around 1K. (See White (1959) for tables of vapour

pressure vs. temperature) .

From 4.2K upwards we use an electrical heater thermally attached to
the sample to raise it to a suitable temperature above the bath temperature
of 4.2K. The temperature difference AT is maintained across the sample by
means of another heater attached to the end of the sample distant from the
main heater used to maintain the temperature of the sample above the bath

temperature.
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i) General Construction

The interior layout of the low-temperature end of the cryostat should
be evident from the ensuing diagrams; the following brief description

should clarify any further important details.

The cryostat was designed with a view to making thermopower measurements
upon evaporated metal thin-film samples deposited on glass substrates. The
manufacture of these thin-film samples will be described, together with the
measurements, in the second part of this thesis. The heart of the cryostat
consists of a frame constructed from copper within which is accommodated the
sample together with all the ancillaries, such as the sample heater and the

differential heater etc.

Connecting the frame to the stainless-steel flange, which is at the
helium bath temperature, is a length of stainless-steel rod which serves
as a heat leak to the bath. The main sample heater is connected to the
frame at the top of this rod, the application of electrical current to
which serves to maintain the entire frame assembly at a certain temperature
above the bath temperature. The heater consists of several turns of 44g
enamelled manganin wire wound around a copper bobbin and attached between
the rod and the frame. This manganin wire has a resistance of on the
order of an ohm per cm. The differential heater at the far end of the sample

was a similar affair.

Completely surrounding the frame assembly, although not air-tightly,
is an inner can constructed from copper foil. The purpose of this is to act
as a "radiation shield", or more correctly a "conduction shield". The
presence of exchange gas in the cryostat provides the means by which heat
may flow from various parts of the frame assembly to other parts, and also
to the outer can which is at bath temperature. This means that, when the
sample has been heated several degrees above bath temperature, heat flows
could be sufficient to create considerable temperature differences of an
undesirable nature. An example will serve to illustrate the point. Suppose
the thermometers attached to the sample were not in very good thermal
contact with the samples. Heat flowing from the sample, at temperature T,
say, across the imperfect connection between the thermometer and the sample,
thence through the thermometer and finally to the outer can via the exchange
gas, will create a temperature difference between the sample and the thermo-
meter. This is of vital importance since we wish to know the temperature of

the sample at the point of contact between the thermometer and sample. The
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inner can is thermally connected to the frame assembly by soldering to a
flange with Wood's Metal, a low melting-point solder. Thus the sample
should "see" a large surface at the same temperature as itself rather than
a surface at the bath temperature. The only temperature differences then
should be those created by the differential heater; at least they should

be considerably smaller than they would be without the inner can.

The outer can is made of brass and is bolted to the flange at the end
of the stainless steel tube, through which wires pass and gas is pumped
into or out of the cryostat. Six 6BA steel bolts and an O-ring made from
Pb wire plus a smear of Apiezon-N grease serve to provide a vacuum-tight

seal.
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Ii) Measurement of the Sample Temperature Difference, AT.

The temperature difference across the sample was measured with carbon
resistance thermometers attached to the same points as were the manganin
reference leads used in the measurement of the potential difference, AV.

A well-known property of carbon is that, at low temperatures, the electrical
resistance is a very strong function of temperature, going as R ~ exp %y
similar to germanium, which is used, suitably doped, in commercial thermo-
meters. The one major disadvantage of using carbon as a thermometer material
lies with changes in the resistance upon thermal cycling between room and
liquid helium temperatures, the resistance usually increasing slightly after
each "run". 1In practice we found that the resistance increased by several
ohms at 4.2K after one thermal cycle and that it would remain constant for
several subsequent runs, after which it would increase markedly once more,
usually rendering the thermometer useless unless calibrated again. The one
big advantage of carbon resistance thermometers is that they can easily and
cheaply be made to suit the purpose at hand. Our thermometers were made
from 33 ohm "Ohmite Little Devil" resistors ground flat on one side and
attached to "T"-shaped plates of copper with cigarette paper and GE7031

varnish.

Bi-Cd solder

Cigarette paper

Reference Wire ST —— Sample Wire

The thermometers thus constructed were placed in a "calibration cryostat"
and their resistance vs. temperature characteristic determined up to 100K,
the limit of calibration for the standard commercial germanium thermometer

used as a "primary" standard.
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After calibration the thermometers were installed in the experimental
cryostat. Manganin wires were used to make electrical connection to each
thermometer as these possess a high electrical resistance, and hence a high
thermal resistance, per unit length, thus impeding any heat flows into or
out of the thermometers via the leads. We wish the thermal resistance
between thermometer and sample to be as small as possible and between thermo-
meter and the rest of the universe as large as possible so that the thermo-
meters are thermally "anchored" to the sample. The resistances of the two
thermometers were determined by a standard 4-terminal technique, the same
current flowing through each resistor. The potential drop across each
resistor was sampled alternately, without and with a temperature difference
applied. The temperature difference was essentially then just the difference
in absolute temperatures at each thermometer, albeit determined in a more
sophisticated fashion than by merely subtracting absolute temperatures,
which latter was found to give rather large uncertainties unless temperature
differences on the order of degrees were employed, since the temperature
difference is the small difference between two large quantities. Although
the absolute temperatures may be found to, say 0.05 K, if a temperature
difference of 0.2K is needed for resolution (e.g. in the thermopower of Pb)

this results in an uncertainty of 50% in AT!

To take advantage of the sensitivity of carbon resistance thermometers
a means of measuring the voltage across the resistors down to 10 UV was
required. This was achieved by feeding the voltage into the same nanovolt-
meter (Keithley 148) used to measure the voltage across the sample. The
output of the nanovoltmeter was then fed into a digital voltmeter so that
the voltage could be accurately read to 10 UWV. A system of peg switches
and rotary switch was employed to switch the single nanovoltmeter between

the sample and the two thermometers.

Now, determining AT as the direct difference between the absolute
temperatures at each thermometer leads to the absolute uncertainty in AT
being the sum of the absolute uncertainties in the two temperatures, an
undesirable aspect of determining AT directly. While errors in plotting
the R vs. T data for the resistance thermometers do not unduly affect the
determination of T to any great extent (at least not for our purposes where
an uncertainty in T of 0.05K has very little effect upon the final thermo-
power data points as plotted up on a graph), such an uncertainty has an
enormous effect upon AT, as mentioned previously. Clearly, some means of
reducing the effect of uncertainties in the R vs. T thermometer data was

required. As the resistance of the thermometers was of necessity only
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- determined at intervals of about 0.25 to 0.5K uncertainty in interpolation
between these calibration points leads to an uncertainty in finding the
absolute temperature between these points. If the data could be made to fit
a straight line characteristic interpolation would then become more accurate.
This was achieved by first taking the natural logarithm of the raw R vs. T
data and plotting a graph of 1nR vs. %u The slope of the tangent to this .
curve at various points along the curve was next plotted as a function of -
The resultant characteristic is more or less a straight line over substantial
portions of temperature range. The theory behind this method is as follows:
since R ~ exp(%ﬂ, at least over small ranges of temperature, we then have
InR ~ %} and furthermore, d(lnR)/d(%ﬁ ~ a, where a is a constant, or at least
a slowly varying function of T. Thus it can be seen that at each operation

we reduce the temperature-dependence of the curve i.e. we "flatten" it out.

A graph of d(lnR)/d(%& VS. %—was drawn for each thermometer and the
temperature change for each thermometer upon the application of a temperature

difference to the sample is given as follows:

ST = AlnR o
o average
average
where g is the average value of d(lnR)/d(lo between the initial and
average T

final temperatures, for each thermometer. AT is then just the difference in
the temperature changes 8T at each end. It can easily be shown that the %
uncertainty in AT is proportional to the % uncertainty in T, whereas in the
determination of AT by the direct difference method the absolute uncertainty
in AT was proportional to the absolute uncertainty in T. The uncertainty has

thus been reduced considerably.

Graphs of R vs. T, 1nR vs. %rand d(lnR)/d(%& may be seen on the following

pages.

iﬁ)Measurement of the Sample Potential Difference, AV.

The emf produced by the sample under the influence of a temperature
difference AT was measured by placing the sample in one arm of a thermocouple
circuit. As the reference arm of the thermocouple manganin alloy wires were
chosen. Although the use of a material such as Pb would have been preferable
from the point of view of its thermopower being accurately known, and also
that it has zero thermopower below 7.2K, for practical reasons it was not
done so; Pb wires tend to be fairly fragile and the relatively high thermal

conductance compared with the manganin which was available to us were factors
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which helped decide against Pb in favour of manganin. As no low temperature
thermopower data for manganin were available at the time of performing the
measurements we determined the thermopower by calibrating against a Pb wire
connected in place of the sample proper. Manganin was found to have a small,
positive and linear thermopower, up to 11K. That the thermopower was small
was a boon to us since uncertainties in the reference (manganin) thermopower
thus have only a slight effect upon the total measured thermopower. This
comes about because most of the uncertainty in determining thermopower by our
method creeps in via the AT measurement, and so the uncertainty in thermopower
tends to be a constant percentage of the thermopower rather than a constant

absolute value. Thus the smaller thermopower look "more accurate".

Inhomogeneities in the thermopower of manganin along its entire length

were checked by rubbing a piece of dry ice (solid CO_;T = 200K) along the

2
wire and measuring the emf's produced across the ends. The maximum emf's
produced were * 2 |V, indicating a maximum local change in the thermopower

of about * 0.02 pv/K.

The manganin reference leads were thermally anchored to the frame by
winding the leads around the frame members and securing in place with GE7031
varnish. It should be pointed out that the manganin leads had been enamel-

coated to provide electrical insulation.

The reference leads were soldered to the sample using Bi-Cd solder,
which is superconducting only below the temperature range of access to us,
A non-superconducting solder is necessary to prevent shorting out of the
sample below the solder's transition temperature. The procedure for attaching
both the reference leads and the thermometers onto thin film samples will be

outlined in Part Two of this thesis.

The manganin reference leads were brought up the cryostat tube through
polythene tubing, direct contact between the walls and wires being avoided
this way. The reference leads were then connected to a peg switch made from
brass. A switch was necessary since our only nanovoltmeter (Keithley model
148) had to do duty measuring both AV and the voltage from the AT thermometers
(see the wiring diagram for details). Because, at the peg switch, we have a
junction between two dissimilar metals viz. manganin and copper, it was
necessary to ensure that an isothermal environment was created here to
prevent spurious thermo-emf's occurring. This was achieved quite satisfactorily
by covering the switch area with wads of cotton wool, In spite of this

precaution it was found that long term spurious voltages were present together
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with the AV signal. These were relatively constant in time and could be
followed on the chart recorder connected to the output of the nanovoltmeter
(Hewlett-Packard model 7100B). These voltages are probably a result of the
temperature difference between the top of the cryostat and the bottom
(temperature difference of about 300K) acting upon inhomogeneities in the
manganin leads. While the maximum local change in manganin thermopower was
only about 0.02 pv/K these local changes could, for instance, all occur in
only one of the reference leads, giving possibly a substantial difference
between the thermopower of one reference lead and the other. The spurious

voltages were on the order of microvolts.

It should be mentioned that extreme care needs to be taken with earthing
of the AV circuit. 1In an early experimental set-up the sample was connected
directly to the copper frame, which was in turn connected to the rest of the
cryostat, and earthed at the top. Measurement of the thermopower of Pb this
way led to the transition step being an order of magnitude larger than it
actually is! The conclusion reached as a result of this state of affairs was
that unfavourable earth loops had been formed somewhere in the AV circuit.
Having the entire AV circuit above ground eliminated this effect. The only
earth connection was between the nanovoltmeter input leads and the cryostat
case to electrically shield the manganin reference leads from stray

electrical disturbances.

iV)Operating Procedure and Test Checks

Ther thermopower was measured with a bath temperature of 4.2K and also
with a bath temperature of about 1.4K. The sample was heated to various
temperatures above the bath temperature and the thermopower measured. Overlap
of the thermopower data points in each temperature range was evidence that the
system was at least not malfunctioning. The dependence, or rather lack of it,
of thermopower upon AT was likewise deemed a favourable sign. One factor
which does affect the magnitude of the thermopower is the pressure of helium
gas inside the cryostat. Too much or too little exchange gas could, under
certain circumstances, lead to the thermopower being incorrectly measured.

In practice it was found that the presence of too much exchange gas was the

main problem. At the start of each run the thermopower at 4.2K was measured

as a function of gas pressure. A graph of S vs. -p was then plotted and the ‘
plateau region (see below) was taken to be the correct operating point. That
the thermopower of Pb when measured in this pressure region agrees with

published data is good evidence that the procedure was valid,
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Of course the gas pressure as measured at the room temperature end of
the cryostat is not necessarily related to the pressure at the low temperature
end in an obvious manner, so some quantity proportional to the pressure at
the bottom was needed. The quantity chosen was the effective thermal
resistance between the two thermometers., This is more or less the ratio
between the measured AT and the heat input to the AT heater, IZR, where I and
R are the heater current and resistance respectively., Of course this is not
the thermal resistance of the gas in parallel with the sample since, for large
gas pressures (around 0.1 atmosphere and above) the thermometers appear to
become "detached", in a thermal sense, from the sample. As the gas pressure
decreases the thermometers become more thermally "attached" to the sample and
the measured thermopower reaches its correct value. The curve of S vs. W,
where W is the effective thermal resistance between the thermometers, has the

following shape:

S at 42K
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Chapter Four

ANALYSTIS OF DATA - GENERALIZED NORDHEIM-GORTER RELATTION

4.1 The Nordheim-Gorter Rule

In a conductor in which the scattering mechanisms are independent of
each other and the charge carriers are a single, homogeneous group e.g.
s-electrons etc. the Nordheim-Gorter Rule is used to predict how the thermo-
power changes from the value Si characteristic of the added impurities e.g.
Fe in Au (Fe), to the value Sh characteristic of the host (due to dislocations
etc.). If the above conditions are satisfied we can replace the sample with
two scattering mechanisms by two hypothetical samples each with only one

mechanism operating.

< Av, AT —»
= Avi, ATl N ass Avh, ATh —>
W., si Wh’ sh

Wi and Wh are the thermal resistances due to the added impurity and host
respectively, and W is the total thermal resistance. Throughout this
discussion "impurities" will refer to the added magnetic atoms e.g. Ni, Fe
etc. while "host" will refer to all other sources of electron scattering.
When applying the Nordheim-Gorter Rule all the relevant quantities are
evaluated at the same temperature. The temperature gradient across the
sample is divided up according to the values of wi and Wh. The total thermo-
power is combined of the individual thermopowers due to each source as

follows:

2 av
total AT

.= Aﬁ-{— A_\lh
ATi ATH

Wi Wh
1 45 %
Si.w SWM

If the scattering is elastic, the thermal resistances may be replaced by the
corresponding electrical resistances (resistivities for convenience since

the form factor 1/A is common to both impurity and host)



s 4P, g

©n .
Stotal ip h o Equation (4.1)

where‘beis the electrical resistivity due to the impurity, Qh is that due to

the host and ¢ is the total electrical resistivity,
O = AP+ Ph

Strictly speaking we should use the Lorenz ratios appropriate for each type
of scattering e.g. phonon, LSF etc. when converting from thermal to
electrical resistivities, but providing the scattering is predominantly
elastic, our sweeping assumption of the one, common Lorenz ratio should not
introduce an appreciable discrepancy. In practice this means that the
residual resistivity must dominate the scattering, a condition usually met

in experiment.

Re-writing Equation (4.1), we obtain the Nordheim-Gorter Relation;

s =s_——(0—ph)+sgﬂ
total i e h P

]

S, + (s -‘S.)Q—h

s h i p
The total thermopower is now seen to be dependent, providing the host
characteristics do not alter as impurities are added to the alloy, only

total '°° 10

which should be a straight line, we can determine the characteristic thermo-

upon the total resistivity. Thus by plotting a graph of S

power of the impurity in that particular host i.e. what the thermopower would
be if the impurities dominated the scattering. The impurities need not

dominate the scattering in order for us to be able to determine what it is.

The major drawback (from our point of view) of the Nordheim-Gorter Rule
as it stands is that the host resistivity must remain absolutely constant
upon the addition of impurities, a condition not always met in practice. To
enable us to cope with an experimental situation in which the host has a
varying resistivity from sample to sample, the Nordheim-Gorter Rule must

undergo a slight modification.
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4.2 Generalized Nordheim-Gorter Relation

The primary concern of this study is to elucidate the behaviour of the
thermopower of two LSF alloy systems; Rh(Fe) and Pt(Ni). In particular we
wish to determine whether the observed "giant" thermopower peak seen in Rh(Fe)
at low temperatures is due to electron diffusion or LSF drag. Our results
and a discussion on previously published Rh(Fe) data will follow in sections

(4.4) and (4.3).

If the host resistivity was constant we could apply the Nordheim-Gorter
Rule as it stands and decide between the two effects; however, in our samples,
it is not and, besides, we deliberately alter the residual resistivity of
some samples by rolling and annealing the wires to change the scattering to
see the effect upon the thermopower. If the observed peak is a diffusion
effect the change in the balance of scattering between host and impurity
should affect its magnitude and position; if it is a drag effect the change

in scattering should have little or no effect.

The following treatment is a slight modification of the method of
Kaiser et al. (1980) who developed a modified form of the Nordheim-Gorter
Relation to distinguish between diffusion and drag effects in Pd(Ni). Where
Kaiser et al. used thermal resistivities in their method we shall use
electrical resistivities. For the temperatures of interest to us, and since
the residual resistivities dominate for both impurity and host scattering

in all our alloys, the method should give perfectly valid results.

Assuming that drag thermopower (including LSF drag) are negligible, or
at least the same in the host and alloys, we can re-arrange the Nordheim-

Gorter Relation and write,

The total impurity resistivity APis usually difficult to estimate, since the
impurity residual resistivity is not easy to separate out from the host
residual resistivity, but its temperature-dependent component A@é can be
estimated since the host resistivity is essentially constant (at least for

Rh) up to the peak temperature, 3K for Rh(Fe). We therefore take

b, = 0-p,
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where Qr is the residual resistivity of the alloy, in our case actually the
resistivity at the lowest temperature of measurements, 1.3K, although the

difference is not important for our purpose.

Now, the temperature-dependent part of the impurity resistivity should,
at least in the dilute limit, be proportional to the residual resistivity of
the same. This is fairly reasonable since both the temperature-dependent
part AF% and the temperature-independent part (the residual impurity
resistivity)‘séé should both be proportional to the impurity concentration,

and therefore proportional to each other. We can write
AP, = as,
where a is constant at some particular temperature. AQ then becomes

AP0=(1+ a)AQS

and the Nordheim-Gorter Relation becomes
= - +
S=s8, + (5, -~8)1+auf, /0

If the peak is due to a diffusion mechanism a plot of S VS.ALPS /F
should be a straight line (provided inter-impurity interactions are
neglected - or that inter-impurity interactions do not affect Si' at higher
concentrations of impurity). The constant a need not be evaluated unless
Si is required to be evaluated, in which case a can be estimated from a

perusal of the residual resistivities of all the alloys.

The method is also independent of the geometrical parameters used to
determine the resistivities, unlike the traditional Nordheéim-Gorter Relation
where the resistivities must be used (or at best the resistance ratio
between room temperature and low temperature). In practice we can get away
with using resistances, thus eliminating one source of uncertainty - that

due to determining 1/A.

4.3 Review of Some Published Data on the Resistivity and Thermopower of Pd(Ni),

Ir (Fe) and Rh(Fe).

a) Resistivity

In order to separate out the effects of LSF upon the resistivity of

these alloy systems we shall assume that Matthiessen's Rule (independent
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scattering probabilities for different scattering mechanisms) is valid and
state
T) Equation (4.2)

AQ(T) - Palloy(T)-Phost(

where AP(T) can be separated into two components

AP(T) = AP, (T) + AQ._.

AG% (T) is the resistivity due to LSF and Apr is the residual resistivity
due to non-magnetic scattering off the added impurities (potential
scattering). For sufficiently dilute alloys we assume that the addition

of impurities does not significantly change the electron-phonon resistivity

and thus we may apply equation (4.2).

For alloys with LSF at impurity sites (such as these are taken to be)
2 3 g an
we expect to see both the T and the linear T law in the impurity resistivity.
Fitting the experimental data to the universal LSF resistivity curve should

give us directly the value of TS for that particular alloy.

£

For Pd(Ni) alloys Purwins et al. (1972) deduced a value of Tsf’v 23K by
extrapolating to zero Rh concentration the resistivity of Pd(RhNi) alloys.

By fitting the data of Sarachik (1968) on Ir(Fe) to the universal
curve Kaiser and Doniach (1970) obtained Tsffu 28K.

The resistivity of Rh(Fe) was first measured at low temperatures by
Coles (1964) who found that it decreased with decreasing temperature, in
contrast to the opposite behaviour for Kondo alloys. The resistivity was
linear in temperature down to very low temperatures indicating that if LSF

are responsible for the temperature-dependence the TS for Rh(Fe) is very

£
low.

By fitting their resistivity measurements upon Rh(Fe) to the universal
curve Graebner et al. (1975) deduced a Tsfzv 2K for low concentrations of Fe.
Since Tsf is inversely proportional to the local enhancement factor for the

alloy the low value of TS indicates a very large local enhancement for Rh(Fe),

f
provided that LSF are responsible for the resistivity. Hence at higher
temperatures, where the LSF spectral density becomes blurred out, this effect
being significant for large o, we should see the resistivity decrease below
the linear law. A decrease is experimentally observed in the resistivity

results of Coles, and Graebner et al.
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It is interesting to note that Graebner et al. attribute the observation
that the total resistivity does not appear to be linear in Fe concentration
to the possible presence of inter-impurity interactions. They also
attribute the dependence of the value of TSf upon Fe concentration to these
interactions. We shall show later on in this chapter that the dependence of
@/c upon c is due primarily to the residual resistivity not being proportional
to the nominal Fe concentration rather than being completely due to inter-
impurity interactions. Their nominal values of Fe concentration also do not
represent the actual Fe concentration and so @/c has no meaning under these
circumstances. Our analysis of the thermpower of Rh(Fe) seems to indicate
that inter-impurity interactions do not affect the thermopower, at least not
in such a fashion as to cause deviations from the kind of behaviour to be
expected if interactions were not present at all. To put it another way ;
there is no evidence of inter-impurity interactions in the thermopower data.
This is a rather odd turn of events since Rusby (1974) concluded that the
"interaction-free" limit for the resistivity of Rh(Fe) lies below 0.1% Fe,
evidence for inter-impurity interactions being found in the observation that
P/c was not independent of c. It might reasonably be expected that, since
thermopower is essentially a second-order scattering process, any interactions
affecting the resistivity (a first-order process) would manifest themselves

in quite definite deviations from interaction-free behaviour.

Rusby fitted his Rh(Fe) resistivity data to the alternative LSF model
of Rivier and Zlatic (1972). Rivier and Zlatic term Rh(Fe) a "Coles" alloy,
after Coles (1964) who first discovered the resistivity behaviour of Rh(Fe).
Rivier and Zlatic proposed a single-band LSF model in which a single,
homogeneous band of electrons is assumed to be responsible for both
conduction and magnetic properties. They say that a single band is probably
a good representation of the electronic states in Rh (Kasuya 1956; also
Cheng and Higgins 1979). The value of TSf from this model is about 15K for
Rh(Fe). That it is different from that obtained from the Kaiser-Doniach
model is not too surprising since TS from the latter is that temperature
where the resistivity changes from T~ to linear in temperature whereas in
the former Tsf occurs between the linear and the logarithmic region.

Rivier and Zlatic explain the decrease in resistivity below the linear law
as a transition to scattering by a well-defined local moment hence the
appearance of a logarithmic term which they say is indicative of a target

with an internal structure. The decrease below the linear law in the Kaiser-

Doniach approach is attributed to the blurring out of the LSF spectrum.
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Fischer (1974) also calculated the resistivity of LSF alloys using a
single-band model with variable potential scattering. Fischer's approach
is a generalization of Rivier and Zlatic's model and the spin fluctuation

temperature TSf is more or less the same as in the Rivier and Zlatic

approach.
b) Thermopower

"Giant" thermopowers have been observed at low temperatures in Pd(Ni),
Ir(Fe) and Rh(Fe) alloys. The variation of thermopower peak magnitude with
impurity concentration was taken to be evidence of an effect other than due
to electron diffusion by Kaiser (1976) especially since, at the concentrations
involved, the impurities could reasonably have been expected to dominate the
scattering and the thermopower thus be independent of impurity concentration,
barring interaction effects. To explain the peaks Kaiser proposed the LSF

drag theory already outlined in a previous chapter.

In PA(Ni) alloys the pure Pd used to make the alloys had a very low
residual resistivity (= 0.01 pQ.cm) so if it were assumed that this was also
the resistivity due to all extraneous scattering other than Ni in the alloys,
i.e. the host resistivity, then the Nordheim-Gorter Rule predicts that the
thermopower should be concentration-independent at the concentrations
employed in the alloys (up to 1.67%). The large increase in the thermopower
peaks could then be explained in terms of an effect other than due to
electron diffusion i.e. LSF drag (Foiles and Schindler 1968, Schindler and
Coles 1968).

The situation with Ir(Fe) alloys is similar: at Fe concentrations of
1.0 at.% the Fe might be expected to dominate the scattering (Touger and

Sarachik 1975).

Further evidence for the existence of LSF drag in PA(Ni) and Ir (Fe) was

found in the observation that the impurity thermopower (after subtracting
off the host thermopower) was linear in temperature at low temperatures, the

peaks occurred at about Ts and the increase in peak magnitude with impurity

i
concentration was roughly in accordance with LSF drag predictions, non-
linearity with concentration being ascribed to inter-impurity interactions

at higher concentrations.
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Figure (L.2) Thermopower of Ir(Fe) alloys




Recourse to Figure (4.3) and Figure (4.4) will show that the residual
resistivities for PA(Ni) and Ir(Fe) used in these measurements suggest a
large amount of extraneous scattering. The residual resistivities of the
Pd(Ni) samples of Schindler and Coles (1968) extrapolate at zero Ni
concentration to about 0.23/un.cm, and not to the very low value of their

pure Pd samples.

Converting the measured resistivities of the Pd(Ni) samples used in
the thermopower measurements into thermal resistivities, since Lorenz ratio
data was available from other work on Pd(Ni) (Schriempf et al. 1969, Kaiser
1971), Kaiser et al. (1980) used their modified Nordheim-Gorter Relation
(using thermal rather than the less-appropriate electrical resistivities)
to attempt to distinguish between diffusion and drag explanations for the
observed thermopower peaks. However, due to the uncertainty in estimating
the value of the coefficients of the temperature-dependent part of the
resistivity, the data did not, by themselves, clearly distinguish between

diffusion and drag explanations.

The most conclusive proof of the diffusion origin of the peaks in Pd(Ni)
was provided by Kaiser et al. when they considered how the peaks in Pd(NiPt)
decreased in magnitude upon the addition of increasing amounts of Pt (Caldwell
and Greig 1978). Converting the resistivity data of Greig and Rowlands (1974)
(on the same samples as used in the thermopower measurements) into thermal
resistivities, and plotting up the data according to their modified Nordheim-
Gorter Relation, Kaiser et al. found excellent agreement with the diffusion
prediction for the peaks. That the reduction of the peaks upon addition of
Pt was not due to a change of the LSF spectrum (causing a decrease in Drag
thermopower) was evident from the observation by Greig and Rowlands that the
coefficient of the spin fluctuation resistivity remained unchanged,

indicating that the LSF spectrum was unaffected by the added Pt.

Although the available thermopower and resistivity data on Ir(Fe) gave
good agreement with a diffusion explanation for the thermopower peaks, the
possibility of inter-impurity interactions reducing a drag component in the
thermopower at higher Fe concentrations could not be discounted and thus,
for the present data, the mechanism responsible for the thermopower of Ir(Fe)
is still undecided. To clarify this state of affairs unequivocably a method
similar to that employed in the case of Pd(NiPt) must be used. Essentially
a sample of constant impurity concentration (to eliminate changes in thermo-
power due to changes in possible inter-impurity interactions) must be
operated upon in some fashion as to change the balance of scattering from

impurity to some other scattering mechanism i.e. introduce extra scattering.
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Figure (4.3)
Residual resistivities of Pd(Ni) alloys (Schindler

and Coles 1968) vs. AA, the increase in the co-
-efficient of the T2 electrical resistivity comp-
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Figure (4.54)

Residual resistivities of Ir(Fe) =2lloys (Sarachik

1968). (Also after Kaiser et al.)
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The thermopower of Rh(Fe) alloys has, up until the present, been a
source of some confusion, both in the interpretation of the mechanism
responsible for the observed "giant" thermopower at low temperatures, in
the actual thermopower measurements themselves, i.e. the location of the

peak, and in the concentration-dependence of the peak magnitudes.

Coles (1964) measured the thermopower of a 0.5 at.% Fe Rh(Fe) alloy
and found the magnitude to increase as temperature was lowered. His data
suggest a giant negative peak below 1.5K. The later thermopower measurements
of Nagasawa (1968) on a 0.72 at.% Fe Rh(Fe) alloy suggest similar behaviour.
There is some doubt as to the reliability of Nagasawa's results: the
sudden increase in thermopower as temperature is lowered just below about
7K suggests some contamination due to Pb (Tc of 7.2K) somewhere in the
measurement system at low temperature. Sharp features in the thermopower

would not be expected if the thermopower was due to LSF.

The thermopower data on ostensibly pure Rh (actually containing traces
of Fe) by Huntley (1971) showed a broad, negative peak at about 3K, presumably
attributable to the Fe (Figure (4.5)).

Graebner et al. (1975) measured the pseudothermopower LOGT of various
Rh(Fe) samples, which measurements indicate a negative peak at about 3K
whose magnitude decreased with increasing impurity concentration (Figure (4.6)).
Graebner et al. ascribe this decrease to inter-impurity interactions, since
these manifest themselves in the resistivity data, on the same samples, in
the form of a dependence of Ap/c upon c. Now, we have already stated that a
significant portion of the dependence of P/c upon c is due to errors in the
values of ¢, but taking account of this there remains a true dependence of
@/c upon c, especially in the temperature dependent part of the resistivity
Ap. We shall show shortly that the decrease of peak magnitude with increasing
impurity concentration can largely be explained by the modified Nordheim-
Gorter Relation as a diffusion mechanism weighted by extraneous scattering,

although inter-impurity interactions may well have some effect.

An interesting feature of the thermoelectric data of Graebner et al. is
that the one comparison between S and LOGT indicates that S is about double
LOGT. Neglecting lattice conduction of heat, which at these temperatures
should be much less than that carried by the electrons, the thermopower S
is equal to LGT, as outlined earlier. Now, including contributions from
inelastic scattering, one finds that the Lorenz number for the alloy is
less than the classical value LO. (See, for example, Kaiser (1971) where

the Lorenz number for spin fluctuation scattering in Pd(Ni) alloys was found
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to be about 0.45 LO). It is thus rather surprising to find S actually
larger than LOGT - the discrepancy should be in the opposite direction.

If the lattice actually conducted as much heat as the electrons in this
particular alloy then we would have a situation where S would be about
twice LOGT. However this would require lattice conduction to be about
two orders of magnitude higher than in dilute Pd alloys (Fletcher and
Greig 1967, Schroeder and Uher 1977). Even in a 5% Pd-Ru alloy with a
residual resistivity more than twenty times larger than the alloy of
Graebner et al., Schroeder and Uher found S to be only about 14% larger
than LOGT. We can assume that this is not the reason for the discrepancy.
Anticipating our results, we shall assume that Graebner et alss LOGT data
is more nearly equal to S than their actual measurement of S, and shall

speculate no further as to the possible reasons for the discrepancy.

4.4 Results on Rh(Fe) Wire Samples

We measured the thermopower (and resistivity) of several Rh(Fe) wire
samples in order to clear up the previously mentioned problems concerning

the thermopower of Rh(Fe):

1) The temperature of the peak has not been certain.

2) The concentration-dependence of the magnitude of the peaks is
apparently opposite to that observed in similar alloys.

3) The mechanism responsible for the peaks could be either a

diffusion effect or a spin fluctuation drag effect.

Our measurements on alloys of different concentration and purity should
clarify 1) and 2), while measurements on alloys before and after annealing,
and rolling of the wires between hard-nickel rollers to alter the residual

resistivity, should clarify 3) unequivocably.

Most of the samples used in this study were prepared by Engelhard
Industries Ltd. and kindly supplied to us by R. Rusby (National Physical
Laboratory, U.K.). One additional sample (number 6 in Table 4.1) was
prepared by Johnson-Matthey Ltd. and supplied by G.K. White (C.S.I.R.O.,

Australia) .

Our measurements on the resistivity of our samples may be seen on
Figure (4.7). Although most of these wires had already had their resistivity
measured by Rusby (1974) it was decided to measure the resistivities as a
check. It can be seen that our measurements do not extend to low enough

2 "
temperatures to be able to see the change to a T dependence predicted (and



Sample no. ghfgun-cm) ¢ (ate %) |c deduced by Rusby | Treatment

1 0.066 0.004 0.004

1! 0.093 0.004% Stretched

2 0.104 0.07 0.06

28 0.720 0.18 Rolled

> 0.215 0.33 0.35

4 0.223 0.41

L 0.798 0.50 Rolled

5 0.400 0.56 0.58

6 14392 0.52

6! 0.844 0.68 Annealed
Stendard 0.322 0.50 0.50 (Rusby's

standard also)
Table 4.1 .

Rh(Fe) samples used in this study, with their

resistivities P @ 1.3 K and effective conc-

-entrations ¢ (deduced from the magnitude of

their temperature-dependent resistivities).

Primed szmple numbers indicate the original

sample has undergone the treatment specified.

The deduced effective concentrations of kusby

are also given where zppropriate.
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seen by Graebner et al. and Rusby). So we are unable to deduce the Tsf from
our measurements and we will rely upon that deduced by Graebner et al. i.e.

about 2K.

While the modified N-G relation does not require the absolute impurity
concentration it was decided to deduce the concentrations, or rather the
relative concentrations, as a further "handle". Rusby found that the Fe
concentrations differed from their nominal values, determined from the
actual amounts of Fe used in making the alloys. It appears that not all the
Fe is dissolved in some instances. Following Rusby's method of comparing
the temperature-dependence of the resistivity with that of a standard sample
whose concentration is assumed to be known, we deduced the concentrations
relative to a standard Rh(Fe) alloy whose "absolute" concentration was
assumed to be its nominal value of 0.5 at.%Fe. The results of this method
can be seen in Table (4.1) together with Rusby's concentrations for the same
samples where applicable, and the residual resistivities. Note that even
though the Fe concentrations are proportional to Aps , the impurity
temperature-dependent resistivity between 1.3K (our lowest measurement
temperature) and 3K (the temperature of the thermopower peaks), the quantity
Aps /b used in the modified N-G relation is independent of 1/A while using
c¢/p introduces a further uncertainty in the form of 1/A which is necessary
to deduce the concentration c¢. However, it was thought that knowledge of
the actual Fe concentrations would be useful if it became necessary to
comment upon any possible inter-impurity interactions if they were found to

be manifest in the thermopower.

Rusby's method involved plotting the resistivity of the unknown sample
at a particular temperature vs. the resistivity of the standard sample at the
concentrations of the unknown and standard samples. Our plots for typical

samples can be seen in Figure (4.8).

The most interesting case is sample 2, whose deduced concentration is
considerably less than the nominal concentration of 0.5%. Electron microprobe
analysis of this sample showed concentrated pockets of undissolved Fe, so
results for this sample should be treated with some caution. Most of the Fe
was contained in "holes" in the Rh host of about 0.51 in diameter while the
remaining Fe was evenly distributed elsewhere throughout the host. Obviously
the effect of rolling this sample is to partially re-melt the metal and re-
distribute it in some measure thereby changing conditions, in particular the
concentration which shows that more Fe has gone into solution (sample 2').

This effect can also be seen in the other treated samples.
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Resistivity plots for two Rh(Fe) samples (nos. 3 and
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Another not less interesting phenomenon is the anomaly observed in the
resistivity of one of the lowest concentration samples, sample 1'. Why
stretching should have such an effect is at present still a mystery (Figure

(4.9)).

The deduced concentrations of our "Rusby" samples agree with those
deduced by Rusby to within a few percent, and with the nominal concentration

of the Johnson-Matthey one.

Turning now to measurements upon the thermopower of our Rh(Fe) alloy
wires, our results are plotted up in Figures (4.10) and (4.11). It is
clear from our data that the negative thermopower peak occurs at about 3K
i.e. approximately Tsf' in agreement with Huntley (1971) and the pseudothermo-
power data of Graebner et agl. (1975). It is also clear that the peak
magnitudes are not unique functions of Fe concentrations but depend strongly
upon the amount of other scattering present in the alloy. This argues

against the drag explanation for the thermopower.

Figure (4.12) shows our thermopower and resistivity data plotted up
according to the modified Nordheim-Gorter Relation of Section (4.2). The
thermopower used is that at the peak i.e. at about 3K. Figure (4.12) shows
that our data are in good agreement with the modified Nordheim-Gorter
Relation, except for sample 2 in which, it will be recalled, there is a
substantial amount of Fe which does not appear to have been dissolved.
Especially, and in fact more importantly, the thermopower changes upon
rolling and annealing are in accordance with the predictions of the modified
Nordheim-Gorter Relation. It would have been more convincing had the
effective Fe concentrations not altered upon rolling and annealing, as then
any changes in thermopower due to changes in any inter-impurity interactions
could have been absolutely ruled out. However, the relative changes, except
for sample 2, are small and so it is reasonable to assume that such inter-
actions would not be expected to produce changes on the order of those seen.
In any event, interactions would be unlikely to produce thermopower changes
which, by chance, just happen to agree with the predictions of the diffusion

explanation.

The pseudothermopower data of Graebner et al. are also in reasonable
agreement with the modified Nordheim-Gorter Relation. It is fairly clear
that the decrease of LOGT with concentration found by Graebner et al. is a
result of increasing extraneous scattering in their more concentrated alloys,

evidence for this assertion being found in the excessive increase of residual
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resistivity in these alloys (Figure (4.13) rather than inter-impurity
interactions, although these may account for the deviation from the rest

of the data points of their most concentrated alloy, nominally 1 at.%Fe
Figure (4.12) shows that essentially all the Rh(Fe) peak sizes are consistent
with a large diffusion thermopower Si which is reduced in any alloy according

to the balance of Fe impurity and other scattering.

Now, in addition to reducing the peak size, an increase in host
resistivity would be expected to alter its shape. From the following figure
it can be seen that whereas the impurity resistivity increases with
temperature, the host resistivity is essentially constant up to about 10K.

Hence at higher temperature becomes a greater proportion of and so, as
g9 p

«__ lofal Resistivity

( = Impurity + Host)

Host Resistivity

v
=

Ty Ty

a consequence, the thermopower is reduced less. This means that in alloys
where the host resistivity is large compared with the impurity resistivity
i.e. for the smaller thermopower peaks, these smaller peaks would be
broadened and shifted to a slightly higher temperature. That this effect
is visible in the data of Figures (4.10) and (4.11) provides additional

support for the diffusion model.
Having thus established that the peaks are a diffusion effect, we can

use the modified Nordheim-Gorter Relation to estimate the characteristic

thermopower Si of Fe in Rh. Whereas in the conventional Nordheim-Gorter



Relation the characteristic thermopower is just the intercept on the
thermopower axis, with the modified form the characteristic thermopower

is determined from the slope of S vs. Aps/p. Hence the "constant",a,must
be determined at each temperature i.e. Pr must be divided up into an
impurity component Apr and a host component prh' The broken line in

Figure (4.13) shows one plausible division, but clearly there is some
uncertainty involved. If we assume Sh to be small (as indicated by the
intercept in Figure (4.12), we can then calculate Si from the measured data.
The resulting Si is plotted as a broken curve in Figure (4.10), this being
the mean result using the thermopowers of samples 2, 3, 4 and 5 with the
largest thermopowers for the greatest accuracy. Now while the peak
magnitude is uncertain due to the uncertainty in the estimation of the
constant a from Figure (4.13), the shape and location of the peak are much
less dependent upon the value of a. We estimate the characteristic thermo-
power of Fe impurities in Rh to have a peak magnitude of between -9 and -15

HV/K with a mean of -11 WV/K at a peak temperature of (2.7 + 0.3) K.
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PART II

THERMOPOWER AND RESISTIVITY OF Pt (Ni)

Introduction

Dilute Pt(Ni) should be an alloy of the LSF type. Pt has similar
electronic properties to Pd, being immediately below it in the periodic
table. Therefore it is not unreasonable to expect similar behaviour in
both Pt(Ni) and Pd(Ni) the only difference being in a scaling of effects
in temperature and magnitude. The resistivity, thermopower and magnetic
susceptibility of Pd(Ni) have already been well studied (see Part I of
this thesis).

In this part of the thesis we will attempt to measure the resistivity
and thermopower of Pt(Ni), just as we have done in Part I with Rh(Fe) for
the same reasons viz. to elucidate thermopower effects and try to

distinguish between diffusion and drag effects if present.

The resistivity of Pt(Ni) alloys has been measured up to 4K (Mackliet
2 .
et al. 1970). They found the impurity resistivity to vary as T 1linearly
with impurity concentration, as would be expected if Pt(Ni) was an LSF

alloy. No deviation from T2 was found indicating that Ts was higher than

£

4K. We will estimate TS for Pt(Ni) using measured values of host enhance-

£
ment and impurity susceptibility and then measure the resistivities of wire

and thin film samples to determine ‘I‘s experimentally.

£

is Spin Fluctuation Temperature of Pt (Ni)

Recourse to Appendix I will show that the localized spin fluctuation

temperature, T ,0f dilute Pt(Ni) is on the order of 1000K. This is much

higher than th:i of PA(Ni) alloys and as a result any effects due to the
localized spin fluctuations, LSF, would be expected to extend to higher
temperatures viz. thermopower peaks and the T2 part of the impurity
resistivity. Whether we actually do see these depends upon other factors
such as possible inter-impurity interactions, the "blurring out" of the LSF
spectrum, etc. It may not be easy to separate out the impurity behaviour

from other effects.
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-1 : 1 dy 1 dx
£ proportional to both X dc and ao where Y dc

is a measure of local enhancement and ao is a measure of host enhancement,

Now, since we have TS

we can see that the greater the host is to magnetic instability, the less

£ the greater is

the host to magnetic instability. Hence, Ni is not as magnetic in Pt as it

effect the impurity needs to have i.e. the smaller the Ts

is in Pd and so any effects in the resistivity and thermopower are expected

to be of a smaller magnitude with a higher Tsf' which latter we have already

shown. Furthermore, whereas Pd(Ni) becomes ferromagnetic at about 2 at .% Ni
concentration, Pt(Ni) would be expected to tolerate a much higher concentration
of Ni. This does indeed appear to be the case as Pt(Ni) with concentrations

of up to 9.4 at .% Ni do not display any of the usual signs of inter-impurity
P
c
about to go ferromagnetic.

interactions e.qg. dependent upon c, as would be the case if the alloy were

2. Resistivity of Pt(Ni) Wire Samples

Pure Pt, Pt(Ni) 2 at.% and Pt(Ni) 5 at .% wires of 0.45 mm diameter
were supplied by Professor Peter Schroeder of Michigan State University.
The resistivity of these wires was measured at liquid helium temperatures
in a cryostat designed by Dr Joe Trodahl of V.U.W.; the same cryostat used
in the measurement of the resistivity of Rh(Fe) wires in Part I. The only
difference in the measurement of the Pt(Ni) wires was in the mounting of the
wires. Because only short lengths were available, rather than winding

several cms around a bobbin, the wires were mounted as shown in the following

diagram:




The pure Pt wire was annealed in O2 at 1200C for 6 hours to oxidize
any Fe impurities that might have been present. The 2% and 5% wires had
already been annealed at MSU in a high vacuum for 2 and 6 hours respectively

and allowed to slow cool.

From the results which may be seen on Graph (2.1) it is clear that both
samples contained some impurity in addition to Ni. Subsequent analysis by
atomic absorption and XRF indicated that there was 0.23 at.% Fe in the 2%
sample and 0.44 at.% Fe in the 5% one. No trace of Mn was found in either.

Co was not looked for. The magnitude of the "knee" in the 5% sample is about
what could be expected for that amount of Fe contamination (Loram et al. 1972).
The magnitude of the knee in the 2% sample is most puzzling. The residual
resistivity is also several times what could be expected of 2% Ni and 0.23%

Fe. No satisfactory explanation has so far been forthcoming to explain this
unprecedented behaviour, for it is entirely absent in the 5% sample. The
residual resistivity here is consistent with that expected for 5% Ni (Mackliet

et al. 1970).
P . 2 5
The resistivity of pure Pt can be fitted to an AT + BT law at low
temperatures below 15K. Above 15K the resistivity tends towards the linear

phonon contribution.

Bie Thin Film Samples of Pt(Ni) - Resistivity and Thermopower

In order to study Pt(Ni) samples which were free of Fe contamination
and also to have some control over characteristics such as residual
resistivity (for the purpose of applying the Nordheim-Gorter rule) it was
decided to manufacture samples of Pt (Ni) by thermal evaporation of Pt and

Ni onto glass substrates.

To measure the resistivity and thermopower of these evaporated thin
films it was necessary to construct cryostats to accommodate glass substrates.
The construction of the thermopower cryostat has already been described in a
previous chapter so it will not be repeated here. The only practical
difference between measuring the thermopower of wires and that of films is in
the mounting of the carbon resistance thermometers onto the sample. The
copper plates, upon which are glued the thermometers, are placed directly on
the film, as shown below, and held in place by phosphur-bronze spring clips.
No grease or varnish was used between filmiand plate. This latter observation
is critical as the AV leads were soldered directly to the plates (rather than

attached to the film itself). As the electrical and thermal resistance of the
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Temperature-dependent resistivity of Pt

(low temperzture detail)

Below 15 K our data can be fitted to
o relztion of the form
2 5
O (T) =T + pT
-5 D
where & = 1.6 x 10 “pa-cm K and

-8 -5
p — ].L}XTO ‘ﬂ‘--ch .

These values agree with those of

Loram et =21.(1972) for Pt samples,
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copper plates is very much less than that of that portion of the film it
short circuits attaching the leads thus int