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Abstract

In this thesis the magnetic response of a layered type-Il superconducting system is
explored across the entire range of fields, temperatures and currents where supercon-
ductivity exists, with the results providing valuable insight into the role of reduced
dimensionality in determining the behaviour of type-Il materials such as the new high
temperature superconductors. The system in question consists of alternating layers
of amorphous Ta or TarGel-, (c * 0.3) with amorphous Ge where the individual
layer thicknesses vary between 1?A and 210A. These multilayers were fabricated by
vapour deposition in a high vacuum chamber which allowed the creation of samples
with uniform layers of high purity. The resistive transport properties have been mea-
sured from T" (= 1-3K) to temperatures as low as 50mK in some ca,ses, and in fields
of up to 15T. The upper critical fields have been determined from the fluctuation
conductivity both with the field parallel and perpendicular to the layer plane of the
samples. The results show clearly the dependence of the dimensionality on the super-
conducting layer thickness and the degree of coupling across the Ge layers. For the
samples with the most two'dimensional properties the zero field resistive transition is
governed by the unbinding of thermally created vortex-antivortex pairs as described
by the Berezinskii-Kosterlitz-Thouless theory. A detailed investigation of the perpen-
dicular field vortex states and dynamics has been performed, including measurement
of the activation energies needed for thermally activated vortex motion. Qualitative
difference are observed between the activation energies in two- and three-dimensional
samples, with the barriers being generally higher in 3D. The non-linear current-voltage
characteristics of the samples provide evidence for the existence of a vortex glass state
which melts into a liquid below I/"2, although the divergence of the activation barriers
in the glass can be restricted by the finite sample thickness. A brief investigation of the
corresponding parallel field regime showed considerably less dissipation, due largely to
the transparent nature of the Ge layers to the magnetic field. At the highest currents
an instability is observed in the vortices which can drive the samples discontinuously
back into the normal state. This instability is shown to be of the type predicted by
Larkin and Ovchinnikov (LO), including quantitative agreement between the measured

and predicted values of the critical vortex velocity. Several features of the instability
are noted which are not specifically predicted by the LO theory, and comparisons are
drawn between these and the prevailing vortex state at lower currents.

llt



Acknowledgements

Firstly I would like to thank my supervisor Professor Joe Trodahl both for his guidance
and continued encouragement on this project and for his tremendous assistance in
helping me along the path to a career in physics. I also owe a huge debt of gratitude
to Professor John Abele from Lewis and Clark College whose inspiration and generous

hospitality provided the spark that set this research alight. Many thanks to Simon
Brownr and Richard Newbury of the University of New South Wales for access to their
dilution refrigerator and for their experimental assistance, along with a most enjoyable
introduction to Sydney.

A big thank you to the technical staf at Victoria University, especially Jono Hewi-
son, Dave Gilmour, Alan Rennie and Bill Leck, and also Steve Attinasi of Lewis and

Clark College for their help with the many practical aspects of experimental physics

research for which I am not qualified. I gratefully acknowledge the eforts of Leigh
Johnson who began the Ta/Ge multilayer studies ahead of me and whose samples I
was able to use, Kieran Newell who also provided one of the samples and C.K. Subra-
maniam (Mani) who taught me much about experimental techniques.

Thanks to all of my fellow students, especially James euilty, Neil Kemp, Stephan
Rupp, Kirk Collins and Jonas T6rnquist who provided not onlv many stimulating
discussions but also much light relief and companionship when it was needed. A further
thank you to James Quilty for the use of his IATEX document class and to Neil Kemp
for the use of pictures from his honours thesis.

A warm thank you to my parents and to all of my friends and family for their
ercouragement and support. Lastly and very importantly I would like to thank Anne

Vekony for her love and understanding. I look keenly forward to sharing the fruits of
this endeavour with her. This research was partially supported by the New Zealand

Foundation for Research Science and Technology.

lPresent address: Department of Physics and Astronomy, Canterbury University, private
Bag 4800, Christchurch, New Zealand.



Contents

Abstract

.A.eJcnswledgemqnts

I Introduction

ul

Sample Flabrlcation
2,1 $ubctrates a;nd Source

2,2 VaeuumSystema .. ..
2.2.I l\dultilay,erDepouitiot r..r
2.2,2 Siugle Layer Alloys
Depositio-a Pa^rameters

Sumurary ...!
2.3

2.4

I

7

I
I

1l
13

t5

18

19

l9
22

23

25

2,6

27

29

29

30

30

32

33

35

36

38

B Sarnple Characterisation
S.1 Multiple B,ea,n Interferometry

3.2 Rutherford Back Scatteriag

3.3 X-Ray tr'luolescence

3.4 TbansrriesiouElectronlVlicroscopy . .,. .. ....
3.5 lonBea,rnThinning .. i . ! .,.. '..
3.6 Snminal'ff i.qi

Ercp erirnental Details
4.1 ResistiveTbansport Measurernent

4.2 $a,nple Selection

4.9 Glase aHe C,ryostat

4.4 Diluti,on Refrigerator

4.4.1 Mea,curements

4.5 MD4 {He Cryostat With Electrornqgnet

4.5.1 Sarnple Holder

4.6.2 Measurements

vll



vlll CONTENTS

4.6 aHe Superconducting Magnet System

4.6.1 Sample Holder

4.6.2 Measurements

4.7 Summary

Theoretical Predictions
5.1 Upper Critical Field

5.1.1 Ginzburg-Landau Theory

5.1.2 Lawrence-Doniach Model

5.1.3 Werthamer-Helfand-Hohenberg Theory

5.1.4 Summary

5.2 Thermal Fluctuations and Vortex Lattice Melting

5.2.1 Fluctuation Conductivity.

5.2.2 Zero Field Berezinskii-Kosterlitz-Thouless

Transition

Vortex Lattice Melting

Berezinski-Kosterlitz-Thouless Melting

Layer Decoupling and Dimensional Crossover

Non-Perpendicular Fields

Experimental Evidence for Melting

Pinning and Vortex Dynamics

Collective Pinning Theory

Thermal Depinning

Thermally Assisted Flux Motion .

Vortex Glass

Plastic Deformations and Flux Motion

Flux Motion in the Vortex Liquid

Parallel Fields

High Current Regimes

Larkin-Ovchinnikov Instabilities,

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.3 Flux

5.3.1

5.3.2

5.3.3

5.3.4
P6lo.J.a

5.3.6

5.3.7

5.3.8

5.3.9

40

42

45

47

49

49

50

DD

56

ot

ot

58

60

62

65

68

7T

73

73

JO

82

83

90

92

98

99

100

101

r025.4 Summary

Results and Discusslon 103

6.1 Fluctuation Conductivity and Critical Fields 103

6.2 Zero Field BKT Transitions 119

6.3 Vortex States and Dynamics 126

6.3.1 Perpendicular Fields . 126

6.3.2 Parallel Fields . 146



CON"ENTS ix

6.4 Larkin-Ovchinnikov Instabilities 150

7 Conclusions 161

A Tetnperature Dependence of the Thermal Activation Energies l6b



List of Figures

1.1 Multilayer Coordinate System

2.1 Multilayer Vacuum Chamber lz
2.2 Multilayer Vacuum Chamber (Top View) . . . 13

2.3 Alloy Vacuum Chamber 14

2.4 Alloy Vacuum Chamber (Top View) . . . lb

3.1 X-Ray Fluorescence Calibration Curve

3.2 Ion Beam Thinned Sample

MD4 aHe Cryostat and Electromagnet

MD4 Cryostat Sample Holder

Janis aHe Cryostat and Superconducting Magnet

Janis Cryostat Sample Holder

Janis Cryostat Sample Mount

Vortex Structure

Parallel Field Vortex Structure

Vortex-Antivortex Loop

Thermally Created Vortex Kink
Thermally Induced Vortex Oscillation Modes

Dislocation-Antidislocation Pair

Field Induced Layer Decoupling

Stepwise Vortices

Single Collectively Pinned Vortex

Collective Pinning Correlation Volume

Effective Pinning Potential at Different Applied Currents

Thermally Activated Vortex Hopping Nucleus

Optimal Hopping Sizes as a Function of Current

Vortex Superbundle

4.r

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

o.D

5.6

o.f

5.8

5.9

5.10

5.11

5.t2

5.r3

5.14

O.I D

23

26

35

37

4T

43

44

51

54

61

63

65

66

70

7T

76

76

84

85

86

88

95Lorcnlz Force Induced Dislocation Motion



Xii LIST OF FIGURES

5.16 Parallel Field Vortex Motion 100

6.1 Zero Field Superconducting Transitions

6.2 6lG2 and,7 IGL Perpendicular Field Resistive Transitions and Fluc-

tuation Conductivity Scaling

6.3 61G2,,7/G1 and 60/3G4 Parallel Field Resistive Transitions and

Fluctuation Conductivity Scaling

6.4 60/3G1 Dimensional Crossover .

6.5 5/G1 and 30/3G4 Zero Field IV Curves

6.6 Zero Field IV Power Law Slopes

6.7 Zero Field BKT Transition Temperatures .

6.8 30/3G4 and 7/G1 Zero Field BKT Resistance

6.9 2lG6 Perpendicular Field Arrhenius Plot .

6.10 2lG6 Perpendicular Field Activation Energy

6.11 6lG2 Perpendicular Field Arrhenius Plot .

6.t2 6lG2 and 30/3G4 Perpendicular Field Activation Energies

6.13 2lG6 Perpendicular Field IV Curves

6.14 Vortex Glass Scaling and Perpendicular Field Phase Diagram for

2lG6 130

6.15 6lG2 Perpendicular Field IV Curves 133

6.16 Vortex Glass Scaling and Perpendicular Field Phase Diagram for

6lG2 134

6.17 30/3G4 Perpendicular Field IV at 77 mK 137

6.18 60/3Gl Perpendicular Field Activation Bnergy 138

6.19 60/3Gl Perpendicular Field IV Curves 139

6.20 Vortex Glass Scaling and Perpendicular Field Phase Diagram for

60/3G1 140

6.21 5/Gl , 5lG2 and 2912G4 Arrhenius Plots I4I
6.22 S|GI and 5/G2 Perpendicular Field Activation Energy 142

6.23 5/G1 and 5/G2 Perpendicular Field IV Curves 143

6.24 SlGl and 5/G2 Non-linear IV Onset I44
6.25 S|GI and 5lG2 Perpendicular Field Phase Diagram 146

6.26 60/3G1 Parallel Field IV Curves 747

6.27 6G2 Parallel Field IV Curves 149

6.28 Reversibility of LO Instability 150

6.29 LO Critica.l Vortex Velocity for 60/3G1 151

6.30 LO Critical Vortex Velocity for Samples 21G6,,51G1., 51G2, 6lG2

and60/3G1 ... 153

104

108

113

114

119

120

r22

r23

126

r27

128

I2g

129



LIST OF FIGURES

6.31 LO Theory IV Curves and Crossover Point

6.32 onset of Broadening in the Lo Instability for 60/BGr, b/G1 and

5lG2

6.33 60/3G1 Parallel Field 1.

xllt

154

IDD

158



List of Tables

2.1 Sa,mple D osition Pa,ra,neters

MBI Rpsults

Layer Thicknesces and Alloy Compositious

6.1 Zero Field ?i V'alues

6.2 Perpenfieular Critical Field. Para,rneters . .

6.3 Parallel Critical Field Parameters

3.1

9.2

T7

22

25-

106

110

118



Chapter 1

Introduction

Ever since its discovery by H. Kamerlingh Onnes in 1911 [1] superconductivity

has continued to present some of the most exciting and challenging problems in
condensed matter physics. Of particular interest is the way in which supercon-

ductors interact with an applied magnetic field. It has long been known that two

types of superconductors exist [2,3]; those known as type-I superconductors that

exhibit the Meissner effect in which a magnetic fieid is completely expelled from

the bulk, and those known as type-Il superconductors that allow penetration of

a magnetic field in the form of quantised vortices of magnetic flux. The existence

of these vortices allows type-Il materials to maintain superconducting order in

much greater fields than type-I materials, giving type-Il superconductors a con-

siderable advantage in terms of their practical applications. These advantages,

however, are not as straightforward as might be hoped because of the complexity

introduced by the vortices themselves. Due to their magnetic nature the vortices

interact with an applied current in such a way that they are compelled to move)

with adverse efiects on the superconductivity.

As a result of much intensive research a consistent theoretical description

of these vortices began to emerge, based mainly on phenomenological models

such as the Ginzburg-Landau theory which describe superconductivity from a

macroscopic point of view [4]. These theories included a description of how and

why vortex motion could affect superconductivity and seemed to provide a clear

and coherent framework for understanding type.'Il materials. However in 1986

J.G. Bednorz and K.A. Miiller [5] discovered an entirely new class of ceramic

type-Il superconductors with 4 higher than any previously known compounds.

These new superconductors, known as the high-['s, displayed many new and

unexplained phenomena particularly with regard to the vortex state, sparking an

enormous resurgence of interest in type-Il superconductivity [6]. It was quickly
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discovered that superconductivity in these high-?: materials is related to the ex-

istence of CuOz planes within the crystal structure which are coupled together
through interleaving charge reservoir layers (the name hish-?: cuprates is com-

monly used). The layered structure gives rise to an anisotropy in the supercon-

ducting properties, and furthermore the degree of anisotropy was found to vary

amongst the different high-ft compounds. This immediately raised questions

about the role of reduced dimensionality in determining how the high-fl super-

conductors behave in a magnetic field. For example when the anisotropy is strong

the vortex lines are not well defined between the superconducting layers, leading

to a qualitatively different picture of the vortex state than in the isotropic case.

As well as the layering the complexity of the high-fl superconductors is also

related to their unusual characteristic length scales [6]. The first microscopic

theory of superconductivity was provided in 1957 by J. Bardeen, L.N. Cooper

and J.R. Schreiffer [7] (the BCS theory). The BCS theory showed that supercon-

ductivity results from the pairing of charge carriers which leads to the formation

of a coherent wave function describing all of the pairs. The BCS theory, along

with the Ginzburg-Landau theory, also implies two basic length scales associated

with the superconductivity known as the coherence length f and the penetration

depth A. The coherence length determines the length scale over which the BCS

wave function can vary whereas the penetration depth is the screening length

which determines the scale of variation of the magnetic field within the super-

conductor. The distinction between type-I and type-Il superconductors lies in
the ratio of these two lengths, with type'I materials having Al€ < ll1f2 and

type-ll materials having Ale > llrt.
All superconductors have a finite critical field H"(f) which marks the ther-

modynamic boundary between the superconducting and normal states. Type'I
superconductors exhibit the Meissner effect right up until 1/., above which the

superconductor reverts back to the normal state. Type-II superconductors on

the other hand, exhibit the Meissner effect only up until a lower critical field

H"t 1.F/", above which the vortex state is entered. This partial penetration of

the field, termed the mixed state, allows superconductivity to persist up until the

upper critical field //.2 t H". As well as the citical fields all superconductors

have a finite critical current j" which represents the maximum dissipationless cur-

rent that can be carried in the superconducting state. An upper limit is placed

on this by the depairing current js which is given by

iDo
Jo:

ZtfSrp,oA2€
(1.1)
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where os is the flux quantum (see Section 5.1.1) and prs is the permeability
of free space. At currents greater than j6 the paired charge carriers tend to
be broken up, thus destroying the superconductivity. In type-Il superconductors
however, j" is usually limited to values well below je by the vortices. As mentioned
above the applied current interacts with the magnetic vortices via the Lorentz
force, compelling them to move in a way that tends to take energ.y from the
supercurrent and therefore gives rise to dissipation. In order to restore true
superconductivity the vortices must be prevented from moving in some fashion,
which can be achieved through the introduction of inhomogeneities to which the
vortices are attracted. Therefore 2 is defined as the minimum current needed to
induce motion of the vortices away from these so-called pinning sites, with the
ratio j"f js providing an estimate of the strength of the pinning.

The combination of the critical fields and the critical current would appear

to give a complete description of the superconducting state, defining sharply the
boundary between superconducting and non-superconducting behaviour. How-

ever the sharpness of the boundary is reduced considerably by thermal fluctua-
tions where the finite temperature of the sample allows for thermally activated
motion of the vortices even at currents below j". The importance of thermally
induced vortex motion can be measured by the so-called Ginzburg number [6]
which is defined by

(1.2)

The Ginzburg number is the ratio of the thermal energy within a volume of
dimension equal to the coherence length to the superconducting condensation

energy in the same volume. When G; is large thermal fluctuations play an im-
portant role in determining the superconducting properties. Equation 1.2 shows

that G; depends strongly on the parametery which provides a numerical measure

of the degree of anisotropy induced by the layering (see Chapter 5).

In high-?" superconductors G; is significantly greater than the values found

for conventional low-[ materials, whereas the ratio j"ljoi" considerably less than

typical low-[ values. This tends to encourage motion of the vortices away from

the pinning sites, and indeed the high-?: superconductors do show significant flux

motion at currents well below j" (known as giant flux creep), although a detailed

understanding of this phenomenon is still lacking. A complete description of
the superconducting state must also cover the opposite regime of currents in

excess of j". In the simplest case high currents would be expected to drive the

vortices over the pinning sites resulting in free flux motion where the pinning
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is irrelevant. Experimental results on the other hand, based on both high- and

low-[ systems, indicate that the details of the crossover to free flux flow depend
mitically on the field and temperature regime [8-14]. At high currents Larkin
and Ovchinnikov [15,16] have also predicted a fundamental instability in the
moving vortex system which occurs when the vortices exceed a critical velocity.

This instability is capable of driving the superconductor discontinuously into the
normal state, although at this stage the details of the transition in the presence

of pinning forces have not been fully explored.

The above discussion has made it clear that in the high-fi superconductors

there are a la.rge number of parameters relating both to the sample morphology
(such as the degree of anisotropy) and to the experimental setup (such as the
strength of the applied current). The combination of this with the many un-

known factors relating to the microscopic origin of the superconductivity makes

an understanding of the high-?i cuprates particularly difficult to achieve. Fur-
thermore there is much fundamental interest in gaining an understanding of low

dimensional systems and the various length scales which characterise them. One

area which shows much hope of providing insight into the relationship between

the many degrees of freedom is the systematic study of a model layered system

where the parameters can be tailored continuously to represent either the two.
or three-dimensional regime. This thesis presents the results of such a study
based on multilayer samples of superconducting amorphous Ta or TarGel-, in-
terleaved with non-superconducting amorphous Ge. This system was chosen

due to the high degree of disorder with which the films grow [17] which causes

these low-[ materials to be strongly type-Il and therefore better able to mimic
high-f" superconductors. Because the individual layer thicknesses are control-

lable the multilayers can be manufactured to represent the entire range from
weakly layered three-dimensional systems through to highly anisotropic (decou-

pled) two-dimensional systems. The fundamental interest in the study of such

a system should also not be overlooked simply because of the diversity of the

physics involved.

Several previous studies have been performed on similar systems, most no-

tably using Nb/Ge [18-22], Mo/Ge [8,9,23-26] or YBCO/PTBCO 127-291based
multilayers and thin films, although numerous other systems have also been in-

vestigated [30-34]. As expected these systems have provided many fascinating

results, but as yet a complete understanding of their temperature/magnetic field

phase diagrams has not been realised, thus warranting the study of a comple-



Figure 1..1: The multilayer coordinate system showing the ab plane, the c direction and a
definition of the angle 0.

mentary system. Furthermore the use of the Ta,Get-,lGel system with its
lower ['s actually has several advantages over the higher I systems mentioned
above, as will be described in the following chapters. In this study the resistive
transport properties (especially the current-voltage (IV) characteristics) of the
Ta'Ge1-'/Ge multilayers have been investigated for a wide range of anisotropies
in order to try and determine the effects of the layering. Measurements have
been made over the whole range of temperatures and fields below //"2(T) and
also using applied currents both well below and well above j". The transport
current is applied parallel to the layer planes, but the angle d between the field
and the layers is varied from parallel to perpendicular. The coordinate system
used to describe these measurements is illustrated in Figure 1.1 where the two
equivalent in-plane axes have been marked o and b and the out-of-plane axis
has been marked c to coincide with the notation used to describe the high-?:
superconductors.

SI units are used in all equations throughout this thesis with Aro : 4r x
10-7 N/A2, however for convenience the symbol /{ will be used in the text and

figures to refer to the applied field in Teslas rather than writing FoH, and similarly
the symbol //"2 will be used for the critical fields in Teslas. Note also that in
type-Il superconductors with large values of the Ginzburg-Landau parameter n
it can be shown that in equilibrium the microscopic field B is approximately
equal to the applied field psIl (referred to here as I/) for nearly all values of
H l2l.

lNote that pure Ta/Ge multilayers are just a special case of TarGel-"/Ge multilayers with
r = l. Single layer samples are also a special case where the number of layers is one.



Chapter 2

Sample Fabrication

As mentioned in Chapter I numerous authors have conducted investigations into
the superconducting properties of amorphous thin films and multilayers. In these

studies a variety of techniques have been employed to manufacture the samples

such as sputtering [8,9,18-26,30,34,35] and molecular beam epitaxy onto cryo-
genically cooled substrates [31]. In the present study of amorphous multilayers
and films of Ta and Ge the samples were prepared by evaporative deposition in
an ultra high vacuum system using a resistive boat for the Ge and an electron
gun for the Ta. This kind of evaporative deposition is relatively simple, and in
the case of Ta and Ge it can be employed to make amorphous samples with a

wide range of layer thicknesses without the need for any substrate cooling. The
evaporations were performed under high vacuum to ensure that the evaporation
pressures were low enough to produce high purity samples.

A selection of samples was needed in order to trace the superconducting prop-
erties from the limit of decoupled two dimensional layers to coupled three dimen-
sional layered systems. To satisfy this requirement three types of samples were

fabricated. The first type of sample consisted of layers of pure Ta multilayered
with pure Ge. This type of sample formed the starting point for this investi-
gation as it has been used previously for a detailed study of the normal state
properties of amorphous multilayers [17,36]. A second type of multilayer was

also employed which consisted of alloyed Ta,Ge1-, layers and pure Ge layers.

These alloyed multilayer samples had a higher I than the samples with pure Ta
layers meaning that a greater portion of the magnetic phase diagram was acces-

sible to experiment. The third type of sample was a single layer Ta,Ge1-, alloy
which was used to help with the interpretation of the multilayer data. Details of
the substrates, vacuum system, the evaporation techniques and a discussion of
the films produced are given in this chapter.
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CHAPTER 2. SAMPLE FABRICATION

Substrates and Sources

All of the samples for transport measurements were prepared on glass substrates

cut from microscope slides to either 13 or 18 mm diameter. The substrates were

cleaned immediately before insertion into the vacuum system in a multi-step

process as described by Johnson [17]. The first step involved an initial clean

using acetone to remove the bulk of any grease on the substrates. This was

followed by a brief immersion in a solution of water, HNO3 and HFr (ratios I27:I)

and several rinses in distilled water to remove any excess acid. The substrates

were then placed in a fresh volume of distilled water and put into an ultrasonic

bath for approximately 30 minutes, with the water being changed at least once

during this stage of the cleaning process. Finally the substrates were dried in

a stream of instrument grade (99.99% pure) nitrogen gas. All substrates were

inspected visually before use to check for streaking or scratches on the glass.

During fabrication of the pure Ta/Ge multilayers additional films were grown on

mylar substrates for later inspection by Transmission Electron Microscopy (see

Chapter 3). Before use these substrates were cleaned with a rinse in acetone

followed by drying in instrument grade nitrogen gas'

Two different Ge sources were employed to fabricate the samples. The first

source, which was used to make the multilayers with pure Ta layers, consisted

of g9.g9g% pure Ge lumps of typical dimension 20 mm supplied by Goodfellow

Cambridge Ltd. The large chunks were broken up before use to improve the

thermal contact with the resistive boat. The second Ge source, which was used

to make the samples with alloyed Ta,Ge1-, layers and also the single layer alloy,

consisted of 99.999% pure Ge granules of typical size 3-5 mm, also supplied by

Goodfellow. The small granules of this source maintained better thermal contact

with the boat leading to a lower incidence of the boat cracking under thermal

stress.

Similarly, two different Ta sources were used for the evaporations. The first

source consisted of high purity (impurities<20PPm), 0.030" diameter Ta wire

supplied by Electronic Space Products International (ESPI)' The wire was wound

into a tight coil and placed in the electron gun to be used with the rotating

substrate assembly to make the pure Ta multilayers. Some difficulties were ex-

perienced in maintaining a steady rate with this source due to the tendency for

sections of the wire to be melted through. A second source consisting of 10 mm

diameter Ta rod (purity 99.95%) was obtained from Princeton Scientific Corpo'

socarehadtobetakennottoexposethesubstratesto
the acid solution for too long.
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ration for use in the evaporation of the alloy multilayers and single layer sample.

With this source excellent Ta evaporation rate stability was achieved.

2.2 Vacuum Systems

Two different configurations of the Varian FC-128 Ultra High Vacuurn System
were used for the preparation of the two different types of multilayer samples.

A third configuration was used in a separate FC-128 vacuum system to prepare
single layer alloy samples, however many of the aspects of the evaporations were

common to each setup. Most importantly, in each case the vacuum chamber was

pumped down to very low pressures in order to evaporate pure samples. The
procedure for pumping down the system used to fabricate the multilayers was

as follows. Firstly the vacuum chamber was cleaned using tissue paper soaked

in isopropyl alcohol. Any excess material was removed from the bottom of the
chamber with a vacuum cleaner. The chamber was then sealed and initially
roughed with either a venturi pump or a diaphragm pump. This was followed by
pumping with a set of two Varian Vacsorb sorption pumps to bring the pressure

down below 5 x 10-5 Torr at which point the poppet valve to the lower cham-
ber was opened allowing the five Varian Vacion pumps and the three filament
titanium sublimation pump to operate. The pressure then dropped rapidly to
around 10-7 Torr allowing the sources to be outgassed by mild heating. The
entire system was wrapped in heating coils and insulation which was used to
bake the system at a temperature of around 100"C for several days. During this
time the Ta source was further outgassed to prevent a significant rise in pressure

during evaporation caused by the outgassing of the components surrounding the
electron gun. After the chamber cooled further pumping with the ion pumps and
the titanium sublimation pump reduced the pressure to the final value of less

than l0-e Torr. The procedure for pumping down the system used for the single
layer alloy samples differed only in that this system lacked a poppet valve to
isolate the ion pumps when the system was opened. This meant that the entire
system had to be roughed out and the ion pumps restarted for each evaporation,
but nevertheless the final pressures obtained were comparable for both systems.

For the evaporation of the multilayers the Ta was evaporated by a 2kW Var-
ian e-Gun at rates of between 43 and 115A'min-l at the substrates, and the Ge
was evaPorated from a resistively heated tungsten boat at rates of between 140

and 1200A'min-1. Comparable rates were used for the evaporation of the single
layer alloy. Earlier evaporations were controlled by two Sloan DDC-1000 Digital
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Depositi,on Controllers, however these deposition controllers were upgraded and

later evaporations were controlled by two Sycon Instruments STC'\A|/SQ Depo-

si,tion Rate Controllers which linked each source in a feedback loop with a quartz

crystal rate monitor. Fluctuations in the evaporation rates of both sources were

typically on very short time scales so that the fluctuations averaged out over the

thickness of a layer. The overall rate stabilities measured at the sensors were

thus very good at about +5-10%.

There are, however, additional sources of uncertainty in the determination

of the actual evaporation rate at the substrates. In the multilayer system the

substrates are positioned below the sensors meaning that the rate at the sensors

is not the same as the rate at the substrates. This is further complicated by the

fact that the substrates are distributed around the vacuum chambers such that

the source to substrate distance is not the same in each case. The effects of this

were partly compensated for by the inclusion of a tooling factor in the deposition

controllers, determined from the approximate equation

,=H=* (2.1)

where r?r,,6 is the actual rate at the substrates, R- is the rate measured at the

sensors, 1116 is the average source to substrate distance and r- is the source to

sensor distance. Characterisation of the samples performed after the evapora-

tions (see Chapter 3) indicated that the calculated tooling factor (=1.7 for both

sources) was close to the actuai value.

The evaporated flux from the electron gun was also somewhat unevenly dis-

tributed around the vacuum chamber where it tended to be concentrated forward

of the gun. The size of the variation in evaporation rate between the most widely

spaced substrates was estimated to be less than 30% based on measurements on

the single layer alloy evaporation system (see Section2.2.2 and also [37]). Fortu-

nately, although this adds to the uncertainty in setting the desired rate it does

not lead to appreciable rate fluctuations. Thus the layers will still be uniform

and the only effect is a slight deviation from the desired layer thickness or alloy

concentration. For example, for a desired alloy concentration of 30 atomic% Ta

the 30% variation in Ta evaporation rate leads to a difference in Ta concentration

of about 10% between the most widely spaced samples'

To help to quantify the uncertainties in the rate determination glass slides

were placed in the vacuum chamber near the substrates in such a way that

they were exposed to one or other of the sources for the entire duration of the

evaporation. Upon completion of the evaporation these slides were removed and
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Multiple Beam Interferometry (MBI) was used to measure the total deposited
thickness of the Ta or Ge on the slides (see Chapter 3). It is important to note
that these slides were exposed to the sources not just during the actual deposition,
but also while the shutter was in the shut position. Thus, to determine the total
thickness deposited on the substrates the thickness measured by MBI had to
be corrected for the time during which the substrates were not exposed to the
source.

2.2.L Multilayer Deposition

The pure Ta/Ge multilayers were made using a rotating substrate assembly de-

signed by Williams [39] using a procedure described extensively by both Williams
and by Johnson [17]. The basic idea is that the substrates are rotated alternately
through the separate streams of evaporated flux, thus producing the layered struc-
ture. The substrates are mounted on one of three geared wheels attached to an

external stepping motor which provides the rotation. Each of the geared wheels

holds two 13 mm diameter glass substrates, two 18 mm diameter glass substrates

and two 18 mm diameter mylar substrates. The layer thicknesses are determined
by the speed of the stepping motor, the rate of evaporation and the gearing of
the wheels holding the substrates. A shutter was used to control the start and
finish time of the evaporations.

It proved difficult to manufacture the Ta"Get,-,1G" multilayers using the ro-
tating substrate assembly so the vacuum chamber was modified to the simpler
configuration shown schematically in Figure 2.1. The top view of the vacuum
chamber is shown in Figure 2.2 illustrating the position of the sensors and sub-

strates relative to the sources. Here the substrates are mounted in a fixed sub-
strate holder and the incident flux is controlled by an externally operated shutter
with three operating positions. In the first position (marked [A] in Figure 2.1)

the shutter is closed and no flux reaches the substrates. This position was used at
the start of the evaporation while the sources are being conditioned and also after
completion of the evaporation. In the second position (marked [B]) the substrates

are exposed only to the Ge source while in the third position (marked [C]) the
substrates are exposed to both the Ge and the Ta sources. The layered structure
was created by repeatedly switching the shutter from position [A] to position [C].
The layer thicknesses were determined by the evaporation rates and the time be-

tween the switching of the shutter, whereas the concentration of the alloy in the
Ta'Ge1-' layers was determined solely by the ratio of the evaporation rates at
the substrates. During all evaporations it was ensured that both the top and

11
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Figure 2.2: Top view of the vacuum chamber setup used to make the Ta"Ger_r/Ge multilayers
(approximately to scale). The diameter of the vacuum chamber is 280 mm. The positions of the
substrates used in this study are marked l-4. The substrates marked with an a are obliquely
deposited multilayers used in a separate study [38].

bottom layers were Ge thus giving the samples some protection against exposure

to the environment. The quartz crystal monitors were exposed to their respective
sources at all times.

2.2.2 Single Layer Alloys

Single layer alloy samples were fabricated in a similar manner to the alloyed mul-
tilayer samples but in a different vacuum chamberz. Identical sources, controllers
and monitors were used in both systems. A schematic view of the vacuum cham-

ber is shown in Figure 2.3 and the top view is shown in Figure 2.4. Once again an

externally operated shutter was employed in the system but in this case the only
function of the shutter was to cover the substrates before the start and after the
end of the evaporation. While the shutter was open the substrates were exposed

to both sources thus forming a single alloy layer, where the composition of the
alloy was determined by the relative rates of evaporation of the two sources. It
can be seen from the top view that a range of samples were prepared in each

evaporation. Due to the spatially inhomogeneous nature of the evaporated Ta
flux each of these samples had a different alloy composition which depended

?The vacuum chamber setup was designed by Keiran Newell who also performed the evap-
oration of these samples.
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2,3, DEPOSITION PARAMETERS

","ff;,T;J'

Figure 2.4: Top view of the vacuum chamber setup used to make the single layer Ta"Gei-"
alloys, showiug the positions of the sensors and substrates relative to the sources (approximately
to scale). The dian-reter of the vacuum chamber is 280mm.

on the position of the substrate in the vacuum chamber. As mentioned above,

characterisation of these samples indicated that the variation in evaporation rate
across the size of the substrate holder was about 30%.

2.3 Deposition Parameters

The details relating to the evaporations of all of the samples used in this investiga-
tion are displayed in Table 2.1. The name of each of the samples is a combination
of the number of the run in which it was made and the position of the sample

in the vacuum chamber (see Figures 2.2 and 2.4 and also Ref. [12]). The column

entitled Setup refers to the three vacuum chamber configurations with which the
samples were made. Samples marked I have pure Ta superconducting layers and

were made with the rotating substrate assembly. The sample marked II is a sin-
gle layer alloy. Samples marked III have Ta,Ge1-, alloy superconducting layers

and were made with the fixed substrate setup. So, for example, sample o0/BG4
is a multilayer with pure Ta layers made with the rotating substrate assembly

during run number 60. The G refers to the fact that the substrate was glass. The
sample was in the fourth position on the third substrate wheel. Similarly sample

5/G1 is a multilayer with alloyed Ta,Ge1-, layers, where the substrate was in

15
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position 1 of the substrate holder during run number 5 of the alloyed multilayer
fabrication process.

The column entitled #Layers gives the number of superconducting layers

in the sample. The column labeled 1L gives the Ta evaporation rate set on

the deposition controllers. This rate includes the tooling factor calculated from
Equation 2.1, so should give a fair approximation to the actual rate at the sub-

strates. In order to maximise the 7i of the alloy samples the evaporation rates

were set such that the alloy composition was approximately 30 atomic% Ta (i.e.

Tao.eGeo.z) [40].

The Maximum Evaporation Pressure (M.E.P.) is critical in determining the
level of impurities captured in the sample during evaporation. Baker [+t] has

given a method for determining the ratio fi of the amival rates of Ta and of
residual gas at the substrate which depends on the partial pressure of residual

gas P and the evaporation rate r via

R:2x fO-sf, (2.2)

where r is in A.min-l and P is in Torr. From this and the sticking coefficient of
the residual gas o, (assumed to be oxygen on Ta, o" : 10-2) Johnson [17] cal-

culates the maximum impurity concentration in the Ta layers (",1R). A similar
calculation is given here, although it should be noted that this is strictly valid

only for pure Ta multilayers and not the alloyed multilayers or single layer. In
the case of the alloyed samples the evaporation rate used is the sum of the Ta

and Ge rates where the Ge rate was 165 A.min-1 for the single layer sample and

255 A.min-r for each of the multilayers. The impurity concentration calculated

for these samples is likely to overestimate the actual value due to the effective-

ness of pure Ta as a getter 1421, and instead provides an upper estimate of the

impurity level. In any case the calculations indicate a range in the purities of

the superconducting layers, although all samples have less than 2.370 calculated

impurity levels due to the use of the ultra high vacuum chambers.

As a further comment it should be noted that in these amorphous supercon-

ductors impurities may actually enhance the flux pinning characteristics of the

films [6,43,44]. Thus, although impurities make exact characterisation of the

films more difficult. such films are still of interest in this studv.
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ss/LG{t

36/2Glt

60/3G1t
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5/G1

6lG2

6lG2

7/Gts
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I

I
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15

5

r4

t7

T2

25

25

1

L2

L2

I

13

56

115

43

108

65

115

1L5

61

102

102

LAa

112

I x 10-8

4 x lO-e

2 x 10-6

I x 10-B

2 x la-7

I x 10-z

1 x l0-7

I x 10-7

5 x 10-6

5 x 10-6

2 x 10-6

I x 10-7

0,009

0.002

2.8

0.416

0.r5

0.043

o043

0.18

0.7

0.7

0.28

0.014

Table 2.1: fre :main parameters ris*rciated witb the fabrication of each ea.qple uEed in thig
ntudy. samplee ura,rked with a t were grow4 by H.t. .Iohnson, thqse with 

" 
tl*"r" grown by

C.K. Subrainania'm and B,J. Ru&, Ghooe with ;a tt were grcwn, by K, Newcll and thee with
a $ were grorrn by O. Pantoja a,rd ii.J. Ttodahl. Atl others **!to*o by B.J. R;uck and S.
Rupp.
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Chapter 3

Sample Characterisation

In order to interpret the experimental data in a meaningful way it is neccessary to
have an accurate knowledge of the morphology of the samples. The parameters

of interest include the layer thicknesses, the diffuseness of the layer boundaries
and the composition and structure of the individual layers. In Chapter 2 it was

shown that the growth of the multilayers can be tailored through careful control
of the deposition parameters, however it is clearly desirable to perform inde-
pendent measurements to investigate the samples a,fter the fabrication process.

This chapter presents the results obtained from a variety of techniques aimed

at sample characterisation. The techniques used were Multiple Beam Interfer-
ometry, Rutherford Back Scattering, X-Ray Fluorescence, Transmission Electron
Microscopy and Ion Beam Thinning. A summary of the most accurate results
from the characterisation is given near the end of the chapter.

3.1 Multiple Beam Interferometry

Multiple Beam Interferometry (MBI) is a simple technique which may be used

to measure the thickness of a thin film. It is used here to measure the total
thickness of Ta or Ge deposited onto glass slides placed in the multilayer vacuum
chamber ia such a way that the slides were exposed to one or the other evaporant

throughout the entire evaporation. No MBI measurements were undertaken in
the vacuum chamber ueed to make single layer alloys. The slides were placed as

closely as possible to the substrates so that the evaporation rate at the slides and
at the substrates was similar. Thus, a measure of the thickness of the films on the
slides enables a calibration of the evaporation rate at the substrates which in turn
enables the layer thicknesses and also the compositions of the alloy multilayers
to be determined.

19
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MBI relies on the interference fringes produced when monochromatic light is

shone onto two nonparallel surfaces which have been brought together to produce

a wedge of air. If there is a change in height of one of the surfaces due to

the existence of a thin film covering part of the surface then there will be a

discontinuity in the interference fringes of a size proportional to the thickness of

the film.

To produce the step needed to perform MBI measurements it was neccessary

to partially mask the slides during the evaporation. To observe clear fringes

it is also helpful to have a highly reflecting surface so a layer of aluminium of

approximate thickness 1000 A was deposited over the entire surface. This left

the height of the step at the edge of the film unchanged, although it did tend

to broaden the width of the step somewhat. In practice a slight broadening of

the step is desirable as it smoothes the discontinuity in the interference fringes

making them easier to follow. A Varian A.-tcop" interferometer was used to

measure the thickness of the films deposited on the slides.

For the pure multilayer samples a total of four slides were distributed above

the Ta source and a further two slides were placed above the Ge source. The

thickness of the film on each slide was measured and the amount deposited onto

each of the samples was determined from the average thickness on the two closest

slides. This helped to account for the nonuniformity of the Ta rate in the vacuum

chamber as discussed in Chapter 2. The method used for calculating the thickness

of the layers from the film thickness on the slide has been given by Johnson [17].

For the alloyed multilayers two slides were placed above the Ta source and

one was placed above the Ge source. The Ta evaporation rate at the substrates

was then estimated from the average thickness on the two slides above the Ta

source. The calculation of the layer thickness and alloy composition of these

samples from the MBI measurements was as follows. Firstly the actual Ge and

Ta evaporation rates were calculated using

D"(l - c)
t--'r- T

(3.1)

where r, is the evaporation rate of source r, D, is the total evaporated thickness

from source r determined by the MBI measurement and ? is the total evaporation

time. The thickness D, is adjusted down by a factor (1 - ") 
to account for the

amount deposited on the slide during the conditioning of the source. The amount

c is estimated from the ratio of the thickness measured by the quartz crystal rate

monitors at the start and at the end of the evaporation, and was typically much

less than one. From the Ta and Ge evaporation rates the thickness of the layers
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can be calculated according to

21

dc": ?'6uXt6.

dT."G"r-" : (t"" + rTu) x lTr,G"'-,

(3.2)

(3.3)

where /' is the evaporation time for the individual layer z. The atomic percentage

of Ta in the alloy layer is calculated in a similar fashion according to

ToTa:
rTaPra

(3.4)
rcuPce * rT^PTu

where p" is the atomic density of the evaporant. The MBI results are summarised
in Table 3.1, where the uncertainties result from a combination of the variation
between the different films and the resolution of the A-""ope itself. The columns
entitled dT., dT."cu,-" and d6. give the calculated thicknesses of the individual Ta,
Ta"Ge1-, or Ge layers respectively. The column entitled %Ta gives the caJculated

Ta concentration in the alloyed layer of the alloyed multilayer samples.

It is also important to note that several approximations have to be made when
calculating the sample characteristics from the MBI measurements. Firstly the
rate at the substrates is assumed to be the same as the rate at the slides. The use

of more than one slide for the MBI measurements partly compensates for this,
but differences in height from the sources between the slides and the substrates

adds an uncertainty of up to 2To to the determination of the layer thicknesses

of the pure Ta multilayers, and up to 10% uncertainty to the alloy multilayer
layer thicknesses. Halder to quantify is the uncertainty involved in assuming

that the density of the material in the multilayers is the same as the density of
the much thicker MBI films. This is likely to be most severe in the case of the
alloyed layers where it has been assumed that the layer thickness is simply the
sum of the individual evaporation rates multiplied by the time of evaporation.

In reality the density of the amorphous layers is likely to be somewhat less than
the density of the bulk MBI films. Nevertheless MBI provides a good method
for approximating some of the sample characteristics, and serves as a consistency

check for further characterisation methods.
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Sample ar" (A) dt".cu,-, (A) ac" (A) %Ta (x)

2912G4

3o/3G4

32lzGL

33lrG4

36lzcr

60/3G1

6o/3G4

2lG6

5/G1

5lG2

6lG2

T lGt

17+2

100+10

18+3

26t6

53+6

15+2

15t2

56+3

56+3

190t20

151*5

131r2

82+2

53+2

50+1

23+t

23+r

170+9

170+9

180+10

30+5

30t5

37+6

Table 3.1: Individual layer thicknesses and alloy layer composition for each of the samples as

determined from MBI measurements (where available).

3.2 Rutherford Back Scattering

Rutherford Back Scattering (RBS) is a more accurate technique than MBI for

determining the total amount of each evaporant deposited onto the substrate

during the evaporation. In RBS experiments a monoenergetic beam of charged

particles (usually He+) is scattered from the charged nucleii of the atoms in the

sample. The distribution of energies of the scattered particles allows a determi-

nation of the absolute concentration of each atomic species in the sample. The

results appear as a two-dimensional atomic densities i.e. in units of atoms per

unit area.

RBS has been performed on the pure Ta multilayers by Johnson [17] who gives

a complete description of both the theory and experimental details of the process.
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Figure 3.1: X-Ray Fluorescence calibration curve. The horizontal axis shows the ratio of
known atomic percentages, while the vertical axis shows the ratio of counts in the Ta and Ge
peaks.

For the purposes of this study only the results are quoted here (at the end of Sec-

tion 3.3). The layer thicknesses have been calculated from the twe.dimensional
atomic densities using the bulk atomic density of Ta (0.46x10-23 atoms.cm-3)
and of Ge (0.43x10-23 atoms.cm-'). Ar discussed in Section 3.1 this is likely to
overestimate the density slightly and thus underestimate the layer thicknesses.

3.3 X-Ray Fluorescence

The atomic concentrations in the alloyed multilayers and the single layer alloy
were determined by X-Ray Fluorescence (XRF). XRF is a non-destructive tech-
nique in which samples are illuminated by an X-Ray source causing them to re-
emit X-Rays which are characteristic of the sample composition. The intensities
ofthe various energy peaks in the spectrum are proportional to the concentration

of the corresponding elements. [n this case the measurements were performed on
a Phillips PW1404/10 wavelength dispersive X-ray Fluorescence spectrometer.
Because the penetration depth of the X-Rays into Ta or Ge is much greater than
the thickness of the films the results from the XRF analysis can be taken to
represent the entire sample rather than just the surface.

Data for each sample consisted of the integrated number of counts under the
peaks corresponding to Ta and Ge. To convert this information into the atomic
ratios of Ta and Ge required a comparison with data taken from reference sam-
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ples of known composition. The reference samples were selected from the best of
the pure Ta multilayers for which the atomic density had been accurately deter-

mined using RBS (see Section 3.2 above). Once XRF data had been obtained for
several reference samples the ratio of integrated count rates was plotted against

the known ratio of atomic densities to provide the calibration curve shown in
Figure 3.1. It can be seen that the points for all samples lie on a reasonably

straight line, demonstrating the consistency of the XRF and RBS methods. The
scatter about the curve gives an estimate of the uncertainties involved. Using

this curve the ratio of integrated counts in the Ta and Ge peaks of the unknown
samples could be converted into the relative atomic concentration. It must be

stressed that this provides only the ratio of the atomic densities, not a direct
measurement of the atomic density itself.

To calculate the composition in the superconducting alloyed layers allowance

must be made for the fact that the measured composition includes the pure Ge

insulating layers as well. The composition is determined by multiplying the ratio
of atomic concentrations by the ratio of the total Ge and Ta evaporation times

according to

Nto Tc" x
(3.5)Nc"Tr. 1-x

where Nr./Nc. is the ratio of atomic densities in the sample determined from the

XRF results, T6" and T1" are the evaporation times of Ge and Ta respectively and

x is the atomic fraction of Ta in the superconducting layer. The Ge evaporation

time represents the entire evaporation including the deposition of the protective

top and bottom Ge layers, whereas the Ta evaporation time includes only the

time during which the samples were exposed to both sources (see Chapter 2).

An estimation may be made of the superconducting layer thicknesses if the

Ge thickness is taken from either the MBI measurements or the deposition pa-

rameters. Where available the RBS measurement of the Ge thickness generally

agrees very well with both the MBI results and the intended thickness, so deter-

mining the Ge thickness from either of the latter two methods is probably quite

accurate. The superconducting layer thickness is then given by

dru,G.,_n- r".fr3 
lt 

- ffi (*)] (3.6)

where the Ta concentration x has been determined above.

The best estimates for the layer thicknesses and the alloy concentrations are

summarised in Table 3.2 along with an indication of the source of the estimate.
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For the single Iayer alloy the thickness was estimated from the evaporation rates

measured by the qrafiz crystal rate monitors during the evaporation.

Sample dr" (A) dr""c",-" (A) ac" (A) %Ta (x)

2el2G4

30/3G4

3212G1

33/1G4

36l2cr

60/3G1

60/3G4

2lG6

slGr

5lG2

6l G2

T lGt

17t1t

103+6t

19+1t

25+21

53+2t

25+2r

25+2t

670*70$

60+10+

60+10t

210+40t

40t10t

i61+9t

138*9t

83+5t

46+2t

5L+21

24+21

24+21

170+gtl

170+9{

180+10n

30+5$

100

100

100

100

100

100

100

27+2+

38+3+

38*3t

45*3t

25+2t

Table 3.2: Best estimates for the individual layer thicknesses and alloy layer composition for
each of the samples. A I denotes the data is from RBS, a t denotes XRF data, a !l denotes
MBI data and a 5 indicates the data is taken from the evaporation parameters.

3.4 Ttansmission Electron Microscopy

When fabricating the pure Ta multilayers additional samples were deposited onto
mylar substrates to be investigated by Transmission Electron Microscopy (TEM).
After deposition the mylar substrates were sliced as thinly as possibly with a

razor blade and embedded into resin so that they could be microtomed to a
suitable thickness for study in the TEM. The resulting sections of the multilayers
displayed well defined layering indicating ihat the deposited films maintain their

25
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Figure 3.2: An SEM photograph of an ion beam thinned multilayersample. The individual Ta
and Ge layers are clearly visible. The dark rings represent Ge and the lighter rings represent Ta.
The large dark region is an area where the film has been completely thinned away. Photograph
courtesy of Neil Kemp.

structure. The difierent layers tended to give different image intensities which
made a measurement of the individual layer thicknesses difficult, but the overall
thickness of several layer pairs agreed well with the results quoted above.

Electron difiraction patterns showed no evidence of any crystallinity, indi-
cating that both the supercoaducting and insulating layers are amorphous in
nature. This is in agreement with the Raman spectroscopy results of Kumar
and Trodahl [45] who saw only broad phonon peaks in several multilayer samples

characteristic of an amorphous structure. In Chapter 6 it will be shown that the
resistivities of all of the samples used in this study are of the order of several

hundred p0-cm, once again implying a very high degree of disorder. Further dis-

cussion of TEM results as well as TEM images corresponding to samples 30/3G4
and 3212G1 have been given by Johnson [17,36].

3.5 Ion Beam Thinning

Another method which was successfully used to verify the layered structure of
the multilayer samples was ion bearn thinning. In this technique the samples

were placed in an ion beam thinner which bombarded the centre of the film with
Ar ions for a period of several hours. This caused a large pit (= 5mm radius)

to be etched away from the surface extending downwards throughout most or all

of the film and thus exposing the layered structure. Because the edges ofthe pit
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were at such a shallow angle the individual layers could be imaged using either
optical or electron microscopy. Figure 3.2 shows a typical image from a pure Ta
multilayer sample taken with a Scanning Electron Microscope (SEM). For this
sample the Ta layer thickness was 77A and the Ge layer thickness was SSA (the
transport properties of this sample were not investigated in this study). The
individual layers are quite sharply defined despite the fi.nite penetration depth
of the electrons, indicating that there is little mixing at the interface. This is
in agreement with the results of a previous investigation of the superconducting
proximity effect in pure Ta/Ge multilayers in which the interface mixing was

estimated to cover a distance of less than 104 [40]. The layers also appear to
be highly uniform, but unfortunately it was not possible to measure the actual
layer thicknesses with this method because the exact shape of the pit was un-
known. The thinning rate of the two materials is likely to be quite different so

the actual profile of the pit will not be smooth but instead will be steepest in the
preferentially thinned layer, thus distorting the apparent thickness.

3.6 Summary

A range of techniques have been used to characterise the samples r.rsed in this
study. These have enabled an accurate determination of the individual layer
thicknesses as well as confirming the stability of the layered structure. TBM
results along with Raman spectroscopy show no signs of crystallinity in either of
the lavers.
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Chapter 4

Experimental Details

The superconducting properties of the multilayers and alloys have been investi-
gated by measuring their resistive transport properties in an applied magnetic
field. For all samples 7. was less than 3 K necessitating measurement below liq-
uid helium temperatures. H"2(T : 0) varied from less than 3 Tesla with the field
perpendicular to the thinnest superconducting layers to greater than 15 Tesla
when the field was oriented parallel to the thickest Ge layers. In order to achieve

these experimental conditions four diflerent cryogenic systems have been used.

Details of the four different systems and the experimental techniques are given

below.

4.L Resistive Transport Measurement

Each of the samples investigated was deposited on a glass substrate of 13 or
18mm diameter and patterned into the four-point geometry using a scriber, as

described in Ref. [17]. The current paths thus created were large (typically l mm
wide by 5 mm long) compared to the relevant superconducting lengths thereby
avoiding effects due to the sample edges. Contact was made to the samples by
way of pressed indium pads which were attached on top of scratches in the films
ensuring contact to each of the individual layers. The contact resistance of these

connections was estimated to be of the order of 1 O. Even at the highest cunents
used there was no evidence of the effects of heating of the contacts.

Depending on the system in use either AC or DC technigues were employed

to perform the measurements. While lock-in techniques on AC signals generally

give lower noise levels, it is shown in Sections 4.5 and 4.6 below that very low

noise level measurements can also be made using conventional DC techniques if
careful attention is paid to the design of the measurement apparatus. In either
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case the measurement results should be equivalent due to the low AC frequenctes

used.

4.2 Sample Selection

In order to draw reasonable conclusions about the role of the layers in determining

the superconducting properties it is necessary to use only the best samples. For

the investigation it was desired that both the superconducting and the insulating

layer thicknesses be va.ried. Thus several different samples were needed, each of

which had to be uniform within the layer plane and have no variation between

the different superconducting or insulating layers.

Initial sample selection was based upon the evaporation parameters which

determined the layer thicknesses. When more than one sample was available

in the desired thickness range preference was given to the sample with the best

evaporation conditions e.g. the lowest evaporation pressure, the most layers etc.

For details on the evaporation procedure see Chapter 2. In a similar manner

the sample characterisation was also taken into account when selecting samples

i.e. samples were chosen where the available characterisation indicated that the

desired layer thicknesses had been achieved, and no problems had occurred during

the film growth. Details of the sample characterisation are given in Chapter 3.

In addition to this the resistive transitions of the samples with 7i above 1.3 K

were measured in zero field as described in Section 4.3, and the best samples

selected for further measurement. In this case the best samples were taken to be

those that showed smooth, stepless transitions indicating minimal variation in

the layer thickness and composition across the sample. However measurements

were also made on samples with ?i below the lowest temperature achievable in

the glass cryostat. In some of these cases the superconducting transition had

been measured in zero field using a 3He refrigerator [17,40] and where available

these data were used to select samples for further measurement in the same way

that the transitions measured in the glass cryostat were used to select the samples

with higher ?}.

4.3 Glass aHe Cryostat

As a first step towards obtaining a complete set of experimental data the resistive

transitions of the samples with 4 above 1.3K were measured in a glass cryostat

in the absence of any applied magnetic field. This system had the advantage



4,3. GIASS 4HE CRYOSTAT

of being able to accommodate three samples at once so that the quality of the
superconducting transition could be examined for a larger number of samples and
the best ones selected for further measurement. This system has been described
extensively elsewhere [17] so only the main features are reproduced here.

The apparatus consisted of a double walled glass cryostat with an outer liquid
nitrogen jacket (77 K) and an inner liquid helium jacket surrounding the stainless

steel sample space. The liquid helium jacket was attached to a helium recovery
system as well as a single stage Edwards rotary pump which was used to lower
the temperature of the helium bath below 4.2K. Up to three samples could be

placed inside the vacuum tight stainless steel sample space which was coupled

to the helium bath via helium exchange gas. To promote temperature stability
the samples were secured to a large copper block and shielded by a copper can.

The basic operating procedure was to pre-cool the system to near liquid nitrogen
temperatures and then transfer the liquid helium to bring the samples to 4.2 K.
The liquid helium was then pumped and data was taken both as the samples
cooled to approximately 1.3K and also as the samples warmed up again. The
cooling rate was adjusted by varying the pumping speed through a valve and

was maintained at a rate that gave a dense data set around the superconducting
transition. Typical cooling rates below 4.2K were 20 mK/min. This ra,te also

ensured that the samples and thermometer all remained in thermal equilibrium.
The temperature was measured using a 20 O rhodium-0.5% iron thermometer

calibrated by Cryogenic Calibrations Ltd. The overall temperature measurement
was accurate to within *3mK for temperatures between 1.3 and 4I{. Complete
details of the temperature measurement process including the calibration are

contained in [tZ].
The resistance was determined by passing a current through each of the sam-

ples in series and measuring the corresponding voltages. The current was mea-
sured by passing it through a standard 1000O resistor and was typically 100pA.
In some cases this was in the non-linear current regiou of the samples meaning
that the low temperature end of the resistive transition was affected by the finite
current (see Chapter 6), but nevertheless it provided a reasonable determina-
tion of the quality of the transitions. The voltages were measured with either
a Keithley 181 digital nanovoltmeter, a Keithley 1954 digital multimeter or a
Keithley 196 System DMM. The overall precision of the resistance measuremenr

was better than 1 part in 105, and the absolute accuracy better than 75 parts in
106 [17]. All data were recorded automatically by computer.

This system was adequate for initial measurements on the samples and for
investigating their normal state properties. However as the glass cryostat was
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not equipped with a magnet it was neccessary to use difierent systems to study

the vortex state of the samples. The three systems used to do this are detailed

in Sections 4.4.4.5 and 4.6 below.

4.4 Dilution Refrigerator

A dilution refrigerator was used to measure the superconducting properties of the
samples with ?" below 1.3 K, and also to measure the low temperature part of
the magnetic phase diagram for some of the samples with ?i above 1.3 K. The di-
lution refrigerator was made by Oxford Instruments and owned by the National

Pulsed Magnet Laboratory at the University of New South Wales in Sydney,

Australia. This type of dilution refrigerator is capable of reaching temperatures

below 20 mK, but for these experiments it was not used below 50 mK. The system

also included an 18 Tbsla superconducting solenoid powered by a Cryomagnetics

Inc. power supply providing a high uniformity over the sample volume. The op-

eration of the dilution refrigerator relies on the heat absorbed during the transfer

of 3He from a bath of pure 3He into a mixture of SHe/aHe where the ratio of
the two species in the mixture remains a constant at equilibrium. The transfer

is forced by pumping 3He away from the mixture thereby tending to upset the

constant ratio. To begin the experiments the refrigerator unit was inserted into
the cryostat containing the magnet and left to cool to 4.2K before the 3He/aHe

mixture was allowed to circulate. With the mixture circulating inside the refrig-

eration unit cooling rapidly took place to temperatures below 1K. Thereafter

the temperature could be varied by controlling the amount of heat applied to the

mixing chamber where the 3He/aHe mixture resides.

The samples were mounted at the end of a cold finger attached to the refrig-

eration unit which sat in the centre of the magnet bore. The attachment was

made using blocks of non-magnetic plastic in such a way that two samples could

be mounted with the layers parallel to the field or one sample mounted with the

layers perpendicular to the field. The Lakeshore RuO2 thermometer was also

mounted on the cold finger close to the sample(s) to ensure an accurate mea-

surement of the temperature at the sa.mple(s). A set of shielded measurement

leads ran from the sample(s) and the thermometer to a junction box outside the

refrigeration unit, and BNC cables were used to connect this to the measurement

equipment.
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4.4.L Measurements

Three types of measurement were performed in the dilution refrigerator. These
were:

1' Temperature sweeps at constant field and current with AC measurement.

2. Field sweeps at constant temperature and current with AC measurement.

3. DC current sweeps (IV) at constant field and temperature.

Data was acquired using an IBM-PC computer equipped with an IEED4Sg in-
terface. This recorded the voltage across either the two samples or across one

sample and the thermometer as a function of time.
Temperature sweeps were performed by setting the field and recording the

temperature and resistance of the sample(s) at regular intervals as the temper-
ature was varied. Data were recorded with the temperature being swept both
upwards and downwards. The temperature was swept downwards simply by
increasing the circulation rate of the 3He/4He mixture in the refrigerator to in-
crease the cooling power. Upward temperature sweeps were generally performed

by gradually increasing the amount of power supplied to a heater on the mixing
chamber, but at high temperatures it was sometimes neccessary to turn off the
circulation of the mixture to reach the desired temperatures. Care was taken to
avoid excessively large heating or cooling rates as these could lead to thermal lag
between the sample and the thermometer. If two samples were being measured,

the resistance of the thermometer had to be recorded manually due to limited
computer automation.

Field sweeps were performed in a similar manner to the temperature sweeps in
that the field and resistance of the sample(s) were measured at regular intervals.
Because the power supply to the magnet could be swept at a uniform preset rate
the field could be determined accurately from the computer measurement of the
time as long as the start of the sweep and the start of the data acquisition were

synchronised. This meant a separate measurement of the field was not required.
The temperature was held constant during field sweeps by fixing the amount of
heating on the mixing chamber and then waiting for the entire system to reach

thermal equilibrium. Typically the temperature varied by less than 20 mK during
the course of each field sweep.

For both temperature and field sweeps the sample voltage(s) and the ther-
mometer voltage were measured using one of two Stanford Research Instruments
SR 830 lock-in amplifiers (with IEEB capability) or a Princeton Applied Re-

search 5210 lock-in amplifier (with no IEEE capability). The sample(s) were
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biased with a constant AC current of approximately lprA and the thermometer

was biased with an AC current of approximately 10nA provided by one of two

purpose built sources. The currents were determined accurately using a standard

resistor and the lock-in amplifiers. This was done at the start of each day and at

the end of each day and the drift was found to be negligible. Very low frequencies

were used (typically either 13, 23 or 31 Hz), selected to avoid any pickup from

the 50 Hz mains supply. The resulting uncertainty in the determination of the

sample resistance was about +0.03 O in typical resistances up to 400 0.

The thermometer manufacturer provided a detailed set of measurements of

the thermometer resistance versus temperature calibrated against a known stan-

dard. This calibration curve was fitted with a cubic spline which was then used

to determine the temperature from the thermometer resistances recorded in the

data files. The resulting temperature measurement was accurate to within about

5 mK as long as the whole system was in thermal equilibrium.

A slightly different experimental setup was used to perform the IV sweeps.

The IV measurements were performed on the samples individually by setting the

field and temperature to constant values as described above, and then measur-

ing the sample voltage as the current was swept. The temperature stability was

similar to that in the field sweeps. The current was supplied by a Hioki 7051

prograrnmable current amplifier which was driven through a constant high resis-

tance load (typically about 10 kf,}) and then through the sample. The voltage

across the constant resistance was measured with a Fluke 8842A voltmeter to

give the total sample current, and the sample voltage was measured with a sepa-

rate Fluke 8842A voltmeter with an amplifier set to 5000 x gain connected across

the front inputs. The amplifier also acted to fiiter some of the AC noise from the

signal. The resulting noise level on the voltage measurement was about 500 nV

as determined from the point where the IV curves emerge from the background.

It was noted that there was some heating of the sample space when iarge cur-

rents were applied to the samples, a feature which should be kept in mind when

examining the experimental data.

The dilution refrigerator proved to be an excellent system for making mea-

surements at extremely high fields and low temperatures using small applied

currents. This allowed mapping of the entire magnetic phase diagram of the

samples. Some difficulties arose when applying large currents to the samples due

to heating effects, and also when trying to maintain long term temperature sta-

bility. To overcome these problems two other systems were employed operating

at temperatures above 1K as described below.
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4.5 MD4 aHe Cryostat With Electromagnet

Figure 4.1: Schematic views of the Oxford Instruments MD4 cryostat with the tail inserted
into the electromagnet. (a) The magnetic field directed along the rails of the magnet track.
(b) The magnetic field rotated through g00.

To make precise measurements of the resistive characteristics of the samples
at temperatures above 1.3K and in fields of up to 1 Tesla an Oxford Instru-
ments MD4 cryostat was fitted with a 40 cm long tail suitable for mounting into
an external electromagnet (see Figure 4.1). The tail had an inner diameter of
approximately 18mm which allowed the insertion of a sample holder capable of
accommodating one 13mm sample. This tail was suspended in an ANAC Model
3473 6 inch water cooled electromagnet with tapered pole caps of 150 mm maxi-
mum diameter and 100 mm minimum diameter. The separation of the pole faces

with the cryostat tail inserted was about 40 mm which allowed a maximum field
of approximately 1.1 Tesla and a stability of the order of a few Gauss over a

period of half an hour. The field was controlled by a 2kW, b0 A Redfern power

supply in a feedback loop with a Group III Technology hall effect teslameter
which was mounted between the pole faces. The magnet was mounted on a ro-

tating base with 360o capability allowing the magnetic field to be aligned parallel
or perpendicula^r to the layers with a resolution in field angle of less than 0.5o.

The MD4 Cryostat has a common vacuum jacket for both the liquid nitrogen

and liquid helium which was pumped out to about 2 x I0-2 torr prior to use.

Liquid helium was added to the system using a similar method to that described

in Section 4.3 above. The liquid helium was pumped through three different
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sized valves in parallel, with each valve providing a difierent level of control over

the pumping speed. The base temperature was about about 1.3K. The liquid

helium capacity of the cryostat was 2.8 litres which lasted for about 18 hours

under experimental conditions.

4.5.L Sample Holder

A sample holder was designed specifically for use in the MD4 Cryostat with the

tail. Several characteristics were desired of the insert, namely low noise on the

voltage measurements of the sample and thermometer, good thermal stability and

high thermal conductivity between the sample and the heat sink for temperatures

below 4.2K.
A schematic view of the sample holder is shown in Figure 4.2. Of note is

the lack of a vacuum can around the sample. This means that the sample was

immersed directly in the liquid helium bath which has several advantages for mea-

surement below 4.2K. Direct immersion significantly increases the heat transport

away from the sample, a factor which is important at high measurement currents.

The soldered contacts connecting the sample leads to the voltage leads on the

sample holder were also immersed in liquid helium, thereby minimising any ther-

mal noise in the measured voltage. In a further a,ttempt to minimise the voitage

noise in the system the twisted pairs of copper voltage leads from the sample and

thermometer were made continuous from the soldered contact in the liquid he-

lium to the front of the measurement instruments. This was achieved by passing

each of the leads out of the cryostat through a sealed thermocouple feed-through.

Contacts were made to the input of the voltmeters using copper clips attached

to a small piece of copper foil folded around the ends of the wires. Thus all of

the connections outside of the liquid helium were mechanical connections from

copper to copper, eliminating the large thermal voltages which may occur at

soldered contacts.

To improve the temperature stability the sample was attached to a copper

block, although the helium bath provided the main thermal reservoir to absorb

variations in the sample temperature. Two radiation baffies were added and the

stem was made of thin walled stainless steel tube to reduce heat leakage into

the helium space. A Lakeshore carbon-glass thermometer (CGR-1-1000, serial

number C16322) was inserted into the copper block directly behind the sample,

and secured with Ge 7031 varnish to provide good thermal coupling between the

sample and the thermometer. This type was chosen as carbon-glass thermometers

have very little magnetoresistance making them ideal for use in a magnetic field.
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I
20 cm

4O cm

.|04 cm

Top Vlew:

Figure 4.2: The sample holder ueed with the MD4 cryostat. [1] Rubber stopper; [2] a pin
continuous feed-through for voltage leads; [3] Twisied pairs of copper wires; [4] Copper plate;
[5] Polystyrene; [6] Level sensore; [?] Solder contacr pads; [8] Copper block; t-s] sampte; [ro]
Baffies; [11]Stainless steel stem; [12]Brass top; [13]O-ring seals; [14a] 10 pin feed-through-foi
sample and thermometer currents; [lab] 10 pin feed-through for level sensors; [15] Helium fill
port,.
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The pressure above the liquid helium was also monitored during the experiments

to provide an auxilliary temperature estimate.

The sample holder was also equipped with level sensors to measure the level

of the liquid helium during filling and throughout the duration of the experiment.

These consisted of three 680 O carbon resistors attached at regular intervals down

the stem. The resistance of these sensors was monitored and was found to rise

to around 20 kQ at 4.2 K and remained stable as long as the sensor was below

the liquid level. The resistance decreased rapidly as the sensor came out of the

liquid enabling the approximate level of the helium to be gauged.

4.5.2 Measurements

Three basic types of DC resistance measurements were performed using this

experimental setup:

1. Temperature sweeps at constant field and current.

2. Field sweeps at constant temperature and current.

3. Current sweeps (IV) at constant field and temperature.

Software was written in Borland Turbo Pascal@ to provide computer control

over each of these types of measurements. The software covered the setup of the

various meters including integration times and signal averaging, the reading of the

meters, calibration of the temperature data, conversion of the sample voltages to

resistance and storing of the data for future analysis. In all cases measurements

were made with the sample current in both the forward and reverse direction and

the average taken to remove any thermal voltages in the system.

Temperature sweeps were performed by simply ramping the temperature up or

down and recording the temperature and resistance of the sample at constant time

intervals. By controlling the pumping speed through the valves the temperature

was ramped at a rate that ensured a dense data set was obtained with the system

in good thermal equilibrium throughout. Before beginning the sweep it was

necessary to set the sample measurement current, the field and the delay time

between readings (usually zero so that as much data as possible was collected). A

measurement of the field was also made after every ten resistance measurements.

Due to the low noise levels in the voltage signal it was possible to obtain data

using a DC current of only l pA which is well below the nonlinear IV region of

these samples.
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Field sweeps were performed using a purpose built sweep unit to sweep the
magnetic field up or down while measurements of the field and sample resistance
were made. The field sweep rate and the start and finish field values were set on
the sweep unit. During the sweep the temperature was measured after every ten
resistance measurements and had to be adjusted with the valves if it began to
drift. Once again the sample current and delay time between readings were set
prior to beginning the sweep.

Performing a current sweep required setting and maintaining the temperature
and field while the current was ramped either up or down and the sample voltage
measured. The temperature and field were measured after every ten current
steps and if necessary the sweep could be paused while the temperature was

stabilised. The current was increased geometrically (giving constant spacing
between measurements on a logarithmic plot of current) at a predefined rate.
The current sweep direction could be reversed during the sweep if desired and a
user defined delay between steps could also be used.

The carbon glass thermometer had a resistance of 826 Q at 4.2K, and a re-

sistance of about 600k0 at 1.3K. To avoid self heating at low temperatures the
measurement had to be performed at low current which was achieved by placing
the thermometer in parallel with a smaller shunt resistance. The thermome-
ter current (delivered by a constant current supply) was then measured using a
Keithley 195A Digital Multimeter, and the thermometer voltage measured using
a Hewiett Packard 3478A Multimeter to give the thermometer resistance. To
check for self heating the thermometer was placed in liquid helium and then suc-

cessively lower currents (determined by the shunt resistance) were used until the
measured resistance reached an asymptotic value indicating that no heating was

taking place. Thus an upper limit was placed on the power level to be used in the
temperature measurement. An advantage of using the shunt resistance was that
the thermometer automatically drew more current at higher temperatures which
helped to maintain the voltage signal size at measurable levels. The measurement

was performed with the current in the forward and reverse directions and an av-

erage taken to remove any thermal voltages. The calibration was supplied with
the thermometer by Lakeshore in the form of four polynomials covering the range

from room temperature to below 1.3 K. Overall the temperature was measured

with an accuracy of better than *10 mK, although changes in the temperature
of less than 0.5 mK were readily detectable.

The sample current was provided by a Keithley 224 Programmable Current
Source which could supply currents from 10 nA to 100 mA with a resolution of
5 nA. The cument steps during the sweeps were programmed over the IEEE in-
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terface. The sample voltage was measured with a Keithley 182 Digital Voltmeter

which is capable of measuring with nanovolt resolution. The front input was

wrapped in insulation to prevent temperature fluctuations which give rise to
thermal noise.

The ultimate temperature stability and voltage noise levels were determined

during the experiments. It was discovered that at temperatures below 2.17 K (the

lambda point of liquid helium) the temperature could be held constant to better

than *lmK over the course of multiplefield or current sweeps. Above 2.I7K
the stability was not as good but the temperature was still stable to better than

*3 mK. The voltage noise level was determined during current sweeps. When the

sample voltage is plotted versus current the smooth IV curve emerges from the

thermal noise at about 50 nV. This high sensitivity using DC techniques is a result

of the careful design of the cryostat insert and allows a complete investigation of
the samples in the low current regime.

The magnetic field was measured by reading the Hall efiect teslameter over

the RS-232 port on the IBM PC computer. The Hall probe attached to the meter

was placed as near to the centre of the pole faces as the cryostat would permit.

The magnet pole faces have small holes drilled down their axes for the purpose of
optical measurements and these holes tend to limit the homogeneity of the field

to slightly less than the value of I part in 103 over the sample volume given for

the cylindrical pole faces without holes. It was estimated that the field at the

sample could be measured with an overall accuracy of around 5% '46]',, but the

sensitivity was much better at about tl Gauss. The method used to orient the

sample with respect to the field is described in Section 6.1.

4.6 aHe Superconducting Magnet System

The system detailed in Section 4.5 was used very successfully to obtain precise

data at low fields and high temperatures from the samples with thin insulating

layers and 4 above 1.3 K. However for some of the samples with thick insulating

layers the upper critical fields parallel to the layers were much higher than the

1.1 Tesla that the electromagnet could provide, even for temperatures above

1.3K. To perform a similar investigation of these samples it was neccessary to

use a superconducting magnet system. The system used was a Janis Research

Company 14CNDT Superuaritemp cryoslat fitted with a fixed Cryomagnetics Inc.

NbTi superconducting magnet, belonging to Lewis & Clark College in Portland,

Oregon. The main features of the cryostat are shown schematically in Figure 4.3.
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Figure 4.3: A schematic view of the Janis cryostat. [1] Sample rotation cable. [2] O-ring
seale. [3] Helium reservoir fill port. [4] tiquid nitrogen fill port. [5] Liquid nitrogen jacket.
[6] Radiation shields. [7] Rotating sample holder. [8] Optical windows. These were covered
during the experiments. [9] Common v:rcuum space. [10] Needle valve. [11] Superconducting
magnet coils. [12] Sample space. [13] Heliurn reeervoir. [14] Pumping port. [15] Needle valve
control. [16] Sample space helium pumping line. [17] Sample rotation axle.
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The cryostat had a sample space diameter of 44.45mm into which the sample

holder was lowered, with a maximum achievable field at the centre of the bore

equal to 9.3 Tesla and a uniformity of better than 20 ppm over the size of the

sample. The field was controlled by a Cryomagnetics Inc. IPS-100 power supply

which set the current in the magnet coils. If a constant field was required for a
long duration the magnet could be set into a persistent mode where the current

continually circulates in the superconducting coils.

To operate the system the vacuum jacket was pumped out to about 4 x
10-2 torr and the sample space and needle valve were flushed with helium gas.

After this the magnet space and the nitrogen jacket were filled with liquid ni-

trogen to precool the system. Once the system had cooled to near 77 K the
liquid nitrogen was blown out of the magnet space and liquid helium was added.

At this point the sample space containing the sample holder was flushed again

with helium gas and then the sample space was filled with liquid helium by fully
opening the needle valve between the sample space and the magnet reservoir (see

Figure 4.3). Once the sample space was full of liquid helium the needle valve was

shut and the temperature was lowered by pumping on the helium through a set

of three different sized valves in parallel. Each valve provided a different level of
control over the pumping speed and thus over the temperature. A particularly

large single stage Kinney rotary pump was used which enabled the system to
reach a base temperature of about 1.2K. The sample space holds about 1 litre
of liquid helium which lasted for about 4 hours under experimental conditions,

at which point refilling was achieved simply by opening the needle valve again.

4.6.1 Sample Holder

A new sample holder was designed specifically for these measurements, taking

into account the same principles applied successfully to the design of the insert for

the MD4 Cryostat. Once again the requirements were low noise on the voltage

measurements of the sample and thermometer, good thermal stability of the

sample and minimal sample heating for temperatures below 4.2K. As it was not

possible to rotate the superconducting magnet it was also required that it be

possible to rotate the sample in the magnetic field, thus saving the difficulty of

remounting the sample to investigate different field orientations.

Photographs of the sample holder are shown in Figures 4.4 and 4.5. The

overall length of the holder is about 1230mm. The stem of the sample holder

was made of thin walled stainless steel tubing and the sample mount and top

assembly were machined from brass. The very top of the sample holder was
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removable and contained a helium filling port which could be used to fill the
sample space should the needle valve to the helium reservoir become blocked.
The level of the liquid helium could be gauged by monitoring four carbon resis-

tor level sensors which were evenly spaced down the stem. These sensors worked
in an identical fashion to those described in Section 4.5 above. Once again the
sample was immersed directly in the liquid helium leading to reduced thermal
noise and better thermal stability. To further minimise voltage noise the twisted
pairs of copper voltage leads from the sample were continuous from the soldered

connection near the sample mount all the way to the input to the measure-

ment instrument. The wires were passed out of the sample space through sealed

thermocouple feed-throughs. The connections to the voltmeter were made with
copper clips attached to copper foil folded around the wire and were surrounded
with insulation to prevent temperature fluctuations. Thus, as above, the only
soldered connections were thermally stabilised by immersion in the liquid helium
and all other connections were copper to copper, minimising the overall thermal
noise in the system.

Figure 4.4: The sample holder for the Janis cryostat. At the right hand end is the sample
mount while the left hand eud holds the rotation assembly and the feed-throughs for the wiring.
The total length is about 1230mm.

The low temperature end of the insert was isolated from the room tempera-
ture top end by the low thermal conductivity of the stainless steel stem. Small
holes were drilled at regular intervals down the length of the stem to prevent
thermal vibrations from being set up in the gas inside the tube. These vibrations
must be avoided as they provide an efficient means of energy transfer from the
outeide into the liquid helium. Further isolation was achieved by wrapping the
thin measurement wires around the stem numerous times to increase the thermal
path and thermally anchoring them with Ge 7031 varnish. Two heat baffies were

attached to the stem to coincide with the levels of the top of the helium and

nitrogen spaces in the cryostat. This reduced heat leakage into the helium bath,
increasing the lifetime of the liquid helium and promoting thermal stability. The
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Figure 4.5: A close up view of the bottom end of the insert used with the Janis cryostat. A
sample can be seen on the rotating mount.

sample temperature in the helium bath was further stabilised through the use of a

large brass block as the sample mount. The Lakeshore carbon-glass thermometer

(CGR-250 serial number 11057) was mounted in the back of the block directly
behind the sample ensuring thermal equilibrium between the sample and ther-
mometer. This thermometer was specifically chosen for its low resistance (250 O

at 4.2K and 56kO at 1.2K) which lessened the self heating of the thermometer

at low temperatures, and for its low magnetoresistance which made it suitable for

use in a large magnetic field. As a further means of monitoring the temperature

in the cryostat the pressure above the liquid helium was measured during the

experiments.

The main difference between this sample holder and the one used with the

MD4 cryostat was that for the superconducting magnet system it had to be

possible to rotate the sample. The sample rotator can be seen at the left of

Figure 4.4. It consists of a cable connecting a pulley wheel on the sample mount

(see Figure 4.5) to a pulley wheel attached to an axle which goes through the top

of the sample holder. The pulley cable was made of strained stainless steel wire

chosen for its low thermal conductivity to reduce heat leakage into the helium
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bath. The top axle was rotated with a goniometer which allowed the sample
orientation to be adjusted in increments as small as 0.1o. The leads from the
sample and the thermometer had to be taken from the rotating sample mount
to the main body of the sample holder. Because of the need to avoid stressing
or breaking these wires it was only possible to rotate the sample through about
270o, but this proved to be more than adequate for all applications.

4.6.2 Measurements

The software for controlling the measurements was written using LabVIEW@
Version IV. Most of the different possible experimental configurations could be
selected from within the software, making data acquisition almost fully auto-
matic. Once again the three basic types of experiment were current, tempera-
ture and field sweeps. For each of these the sample voltage, field and temperature
measurements and the field alignment were the same and will be described first.
Other elements, such as setting the current, varied depending on the experiment
being performed and will be described separately for each of the three types of
experiment.

For each of the experiments the sample voltage was measured using a Keithley
181 Nanovoltmeter. The integration times and signal averaging of the Nanovolt-
meter were set by software. The cunent was supplied by a Keithley 220 pro-

gramrnable Current Supply which provided currents between 1 nA and 100 mA
with a resolution of 0.5 nA. To remove thermal offsets the sample voltage was

measured with the current in both the forward and reverse directions and the
average taken. The overall noise level was about 430 nV, slightly lower than the
corresponding value for the MD4 cryostat, a result of the attention paid to the
design of the sample holder. When the magnet was in the non-persistent mode
the field could be read remotely by measuring the voltage across two terminals
on the back of the power supply which produce a voltage directly proportional
to the power supply output cunent. This voltage was measured with a Keithley
I95A Digital Multimefer and calibrated by software to give the applied field. The
same method was used to orient the sample with respect to the field as in the
MD4 cryostat (see Section 6.1 for details).

The temperature was controlled by setting the pumping speed over the liquid
helium using three valves in parallel, while the thermometer was read with a
DRC 91C Lakeshore Temperature Controller. The temperature controller sup-

plied an AC current to the thermometer and measured the resulting AC voltage

using a lock-in amplifier to give the thermometer resistance to a high degree of
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accuracy. This resistance was then converted to the temperature using a set of
pre-programmed calibration curves (supplied by Lakeshore) stored in the mem-

ory of the temperature controller. The low resistance of the CGR-250 and the
low AC current ensured that there was no self heating of the thermometer. When

performing current or field sweeps the temperature had to be maintained con-

stant over long periods of time. It was found that while the liquid helium bath
was kept below the lambda point (2.17 K) the temperature could be held constant

to better than *1mK over the course of several sweeps. Above the lambda point

the temperature was less stable but the temperature could still be held constant

to better than *3 mK.

During current sweeps the current was increased in a geometric fashion at

a predetermined rate. Both the field and temperature were measured after a

set number of current steps. If the temperature drifted the sweep was paused

and the temperature monitored both numerically and graphically by the software

until the drift had been corrected. This option was typically used at the start
of each sweep to determine when the temperature was stable and data collection

could begin. The current and voltage were displayed numerically throughout the
experiment and the entire data set was displayed graphically on completion of
the sweep. A maximum power limit was also set in the software to ensure that
the current was turned off if the sample was driven normal to prevent excess

heating of the helium bath.

The procedures for doing field and temperature sweeps were very similar. In
both cases a constant sample current was set which typically varied between 1pA,
which was in the linear resistance region of the samples, and around 10 mA which
placed the samples in the strongly non-linear resistance region (see Chapter 6).

The data acquisition could be paused at any stage while the field or tempera-

ture were adjusted to the desired value. During field sweeps the temperature

was measured after a set number of resistance measurements; similarly during

temperature sweeps the field was measured after a set number of resistance mea-

surements to check for any drift. The measured resistance of the sample was

displayed on the screen throughout the sweep as well as the most recent temper-

ature and field measurements. On completion of the sweep the entire data set

was plotted on the screen.

When performing a temperature sweep the temperature was varied simply by

adjusting the pumping speed in order to maintain a relatively constant cooling or

heating rate. The cooling rate was generally about 20 mK/min near the super-

conducting transition which enabled a dense data set to be taken. Using these

rates no thermal lag was observed between the downward and upward sweeps
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indieatiug that the saao-p,le aad thermomet.€,r w€r€ in good thermal equilibrium.
Duriag fie.ld owtreps the sw.eep rate was determined tbroqgh the controls on the
Cryogenies Bower zupply' The sweqp rate wac also,set at,a value that ensured a
denge data set''was ottained af,ound the super.co.ndueting transition. Field sw€ep

rates wer,e ty.picatly 0;2--0.5 Tlmin.

4.7 Summary

These four cryogenic s5;stens allon'ed tle supereouducting behaviour of the saril-
ples to be trriped over a wide region of the Field-Temp,erature-Current phase

diagra,nr. targe data sets w,ere obtained for each of the sa,mples which are anal-
ysed in the fullowing chapterc.

4T



Chapter 5

Theoretical Predictions

Perhaps the most striking thing about the study of superconductivity in layered

materiais such as high-?i superconductors and multilayers is the large range of
variable parameters. There are several variable sample characteristics such as

the critical temperature, coherence length, penetration depth, anisotropy and
pinning strength, and several different experimental regimes such as high and
low magnetic field, high and low temperature and high and low current. The
behaviour is also critically dependent on the orientation of the field with respecr
to the layers. This leads to a highly complex superconducting phase diagram
and a very large associated body of theoretical predictions regarding the nature
of the vortex state [6]. This section gives a review of the relevant theoretical
models starting with the most simple predictions relating to the form of the
upper critical field in layered superconductors and the derivation of some of
the characteristic superconducting lengths. From there the melting transition is

considered in clean samples in both two and three dimensions. A discussion is

given of the transport properties expected both above and below the melting line
and finally the expected properties of the vortex state driven by a large applied
current are examined.

5.L Upper Critical Fietd

Early studies of the properties of thin film and layered superconductors con-

centrated on the role of the reduced dimensionality in determining ?i [az]. At
low temperature there is a competition between the tendency for conduction
electrons to form extended pairs in the superconducting state [2] and the ten-
dency for electrons to become localised [47,48]. In bulk superconductors the
pairing mechanism generally dominates and superconductivity is achieved, how-
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ever when the dimensionality is reduced the effects of disorder become stronger

favouring localisation. This leads to a reduced ?" followed by a crossover from

superconducting to insulating behaviour as the film or layer thickness of the su-

perconductor is reduced [47]. However in layered samples with small spacing

between the superconducting layers the effect on the dimensionality of reducing

the layer thickness is lessened due to the interlayer coupling. This prevents the

depression of ?i and the sample is then best described as being either quasi-2D

or quasi-3D depending on the exact level of coupling.

An extensive investigation of the dependence of ?" on the layer thicknesses

in pure Ta/Ge multilayers has been performed previously [40]. In multilayers

with decoupled superconducting layers 4 decreased approximately linearly with

the sheet resistance, going to zero when the resistivity approached the quantum

resistance Re: hlQe)z x 6.45kQla. For multilayers with thinner insulating

Iayers the interlayer coupling tended to enhance ?i above the value expected for

the same superconducting layer thickness in isolation. The exact value of 4 in

this system is influenced by an alloyed region of higher ?" which forms at the

layer interfaces.

The natural progression of this work on the determination of I in layered

superconductors is the determination of the upper critical field I/"2(?). H"r(T)

defi.nes the boundary between the superconducting and normal state on the mag-

netic phase diagram and thus sets the scale of field and temperature to be con-

sidered. The approaches to the determination of //cz considered here are the

anisotropic Ginzburg-Landau theory [ ] and the Lawrence-Doniach model [49]

and also the model of Werthamer, Helfand and Hohenberg [50] which relates the

critical field to the microscopic properties of the sample.

5.1.1 Ginzburg-Landau TheorY

The Ginzburg-Landau (GL) theory was first developed as a phenomenological

model although it was iater shown that the GL formulation is in fact a limiting

case of the BCS theory [51]. The theory has been employed to explain many as-

pects of superconductivity, but this section will concentrate on the determination

of the upper critical field. In the GL theory the free energy of the superconduc-

tor is expanded in terms of a two component order parameter (the magnitude

of which can be shown to be proportional to the density of the superconducting

condensate) including terms relating to applied fields and to gradients in the or-

der parameter. The expansion is valid only near ?", so application of the results

of the GL theory should be restricted to this range. Minimisation of the free
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f

Figure 5.1: Cross section of a single vortex in an isotropic three-dimensional superconductor.
There is a core of radius { in which the superconductivity is supressed, while the magnetic flux
extends out to a radius equal to the penetration depth ,tr. The vertical axis represents both the
magnetic field and the magnitude of the order parameter lrll.

energy with respect to the order parameter leads to a set of differential equations
which in turn imply a characteristic minimum length scale { over which the order
parameter can vary. For clean superconductors this Ginzburg-Landau coherence
length is given by
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where t : T lT", H.(T) is the thermodynamic critical field, Qo :2.07 x l0-rs wb
is the magnetic flux quantum and .\r,(?) is the London penetration depth which
determines the screening length for the magnetic field in the clean limit. In dirty
superconductors at temperatures close to ?i the effective coherence length (u6 it
given approximately by 0.855(e0l)t 12 l(l-t)U 2 where / is the electronic mean free
path and {o is the Pippard coherence lengthr [2]. In amorphous superconductors,

where / is of the order of the atomic spacing, the efiective coherence length may be

considerably less than the value in the corresponding clean material. Similarly,
close to I the effective penetration depth )u6 is given by,U(?)[fslt.J\{1t/2,
which can be considerably greater than the clean limit value. Hereafter refer-

ences to the penetration depth .\ and the coherence length ( refer to the dirty
limit values )o and (.6. The ratio of the magnetic screening length to the su-

I Originally the Pippard coherence length was introduced to describe the size of the smallest
electron pair wave functions, but at ? = 0 the Pippard coherence lengih is approximately equal
to the clean limit GL coherence length f(0) (Equation 5.1).
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perconducting coherence length rc : ,\/{ is referred to as the Ginzburg-Landau
parameter.

For type-Il superconductors where rc is greater than I lt/, the GL equations

can be used to derive .I1"2, the highest field at which superconductivity can nu-

cleate2. For a bulk isotropic superconductor the expression is

H"z(r):#)x1-t. (5.2)

(5.3)

Below H"2 lhe field penetrates the sample in the form of quantised vorticess each

camying a unit of magnetic flux equal to Os. Each vortex consists of a core

of radius { where the superconductivity is supressed, while the field penetrates

out to a distance ) from the centre of the vortex (see Figure 5.1). This vortex
phase, referred to as the mixed or Schubnikov state, persists down to the lower

critical field //"r below which the field is completely screened from the interior
of the superconductor. The existence of the mixed state in type-Il superconduc-

tors is the result of the negative domain wall energy between the normal and

superconducting states in the presence of a magnetic field. This makes it ener-

getically advantageous for the field to penetrate the sample in minimum units,

thereby maximising the boundary area between the field carrying vortices and

the surrounding superconducting region.

By enforcing a periodicity in the known solutions to the GL equations at .F/"2

Abrikosov [52] showed that in the mixed state it is energetically favourable for

the vortices to arrange themselves into a regular array known as the Abrikosov

lattice. This is essentially the result of the repulsive interaction between the

vortices, where the interaction energy has a logarithmic dependence on the in-

tervortex spacing at small distances and crosses over into an exponentially de.

creasing dependence at large distance [2]. The lowest energy state turns out to
be a triangular lattice with the spacing between adjacent vortices given by

,.: (x)"'(3)"'
It is worth noting that the upper critical field can be interpreted as the point at

which the spacing between the vortices is so small that the normal cores of the

zFor the case where the field is directed parallel to a thin film superconductor there is
a solution to the GL equations which yields a higher critical field I/"s [2]. This solution is
valid only for sharp interfaces and is likely to be destroyed by the difusion ofsuperconducting
electrons into the Ge layers in the Ta,Geprf Ge multilayer system.

3The quantisation of the field in the vortices is a result of the requirement that the order
parameter be single valued. The phase of the order parameter must therefore change by an
integral multiple of 2er after a complete circulation of the vortex which leads to the quantisation.
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vortices overlap, meaning that there is no longer a continuous superconducting
path through the sample.

The anisotropic Ginzburg-Landau model [2,48] extends the isotropic GL
model to include an effective mass tensor in the free energy formulation. In
superconductor/insulator multilayers and in naturally layered superconductors
such as the high-?" cuprates the effective mass tensor captures the anisotropy
in the electronic efiective mass caused by the non-superconducting layers. This
model describes only samples with strongly coupled superconducting layers where
the description in terms of a continuous medium with an anisotropic effective
mass is valid, but much progress can still be made within this limitation. [n this
model the coherence length is proportional to I I \F where rn; is the effective
mass in the ith direction, leading to

H"zll =
Ztr €"u("

(5.4)

and
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where the subscripts ll and I refer to the cases where the field is directed parallel
or perpendicular to the layers and the subscripts ab and c have been borrowed
from the high-?: notation to represent directions in the layer plane or perpendic-
ular to the layer plane respectively (see Figure 1.1). Typically the out-of-plane
coherence length {. decreases considerably below the in-plane value (o6 as the
anisotropy increases. The effective mass anisotropy also introduces anisotropy
into the penetration depth. A magnetic field directed perpendicular to the layers

is screened by currents flowing in the layer plane, whereas to screen a field di-
rected parallel to the layers the currents must cross the planes in the c direction.
The large effective mass in the c direction means that .\" ) )oa. Vortices di-
rected parallel to the planes will be elliptical in shape with the core radius in the
c direction (given bV €") smaller than the core radius in the ab direction (given

by {"a) as shown in Figure 5.2. It can be seen that I/"2;; must be larger than H"21,

as the condition that the normal cores overlap will be satisfied at higher fields in

the parallel case than in the perpendicular case.

Blatter, Geshkenbein and Larkin [53] have developed a simple method for
transforming results from the isotropic GL theory to the anisotropic case which

includes the generalisation to arbitrary angles d between the field and the su-

perconducting planes (see Figure 1.1). This saves the efiort of solving each
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Figure 5.2: A schematic view of a vortex directed parallel to the layers of an anisotropic
layered superconductor. See the text for an explanation of the symbols.

anisotropic case separately if the isotropic result is already known. The method

is valid when the anisotropic GL theory is v"alid i.e. when the anisotropy is not

too great, with the further requirement that the vortices overlap i.e. B D H"t.
The isotropic parameters ff,?,f,),7 and "f *. transformed according to the
prescription

QQ, H,?, €, ), t, "f) : sqQksH,,1T, e,),,y,f) (5.6)

where Q represents any function of the above variables for which the isotropic

result Q i* koo*n. The variable / is a measure of the pinning strength (which

will be discussed below in Section 5.3.1), ,'o -- l-'cosz0 *sin2d and Ee: llee
for the magnetic field and se : L l^f for all other variables. The values of ( and ,\

appearing in the isotropic results can be replaced by the in-plane values fa6 and

)o6 in the anisotropic case. The parametery determines the degree of anisotropy

and is defined by

^l: (x|'' )"
)oa

(5.7)

(Equation 5.2)

an anisotropic

(5.8)

(5.e)

€a - 
H"zll

(" Hczt

Application of this method to the isotropic result for H"2

using { : foa yields the angle-dependent upper critical field for

superconductor

lOo
,tm

Hc2ll

H"r(o) _

(cos20 ! fsia,z61t1z
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where /1"2;1 is given by Equation 5.4.

The anisotropic GL theory works well only for the case where the anisotropy
is not too large. Tinkham [2] has calculated the parallel upper critical field within
the ordinary GL framework for the opposite case where the anisotropy is so large
that the superconducting layers can be considered as isolated thin films. If the
thickness of the isolated superconducting layers d, K €oa then the GL equations
can be solved to give

DD

rt lFnoo rH"21:ffix(I-t7r/2.

H"rn(T)=ffi

(5.10)

The proportionality to (1 -t)t/'ir qualitatively different to the (l - t) behaviour
found for the perpendicular field case above, demonstrating the importance of the
reduced dimensionality. A more complete description of the parallel critical field
of strongly layered superconductors can be obtained from the Lawrence-Doniach
model described below.

5.t.2 Lawrence-Doniach Model

In strongly layered systems the temperature dependent coherence length may
become less than the interplanar distance so that the anisotropic GL theory is no

longer valid. [n this case the system is better described by the Lawrence-Doniach
(LD) model [49]. The formulation of the LD model is similar to the GL theory
in that the free energy is expanded in terms of an order parameter, however the
individual two-dimensional layers are now treated as discrete entities coupled by
Josephson tunnelinga. Near 4 the LD model returns the same results as the
anisotropic GL model in the limit of strong interlayer coupling, but a particular
advantage of this model is that its formulation is valid for all temperatures below

7".

In a similar manner to the GL approach the free energy is minimised to give
the Lawrence'Doniach equation which may be solved for a fi.eld applied parallel
to the layers to give

(5.11)

where d; is the spacing between the superconducting layers. This equation for
/1"21; diverges at €": d;1fr meaning that the sample is then completely trans-

alosephson coupling reeults from the tunneling ofsuperconducting pairs between the layers
in response to differencee in the phase of the order parameter. The lowest energy state in this
case is where the phase is the same in each layer.
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parent to the parallel field, although this divergence would in reality be cut off

by Pauli paramagnetism. Furthermore Deutcher and Entin-Wohlman [S+] have

shown that when the finite thickness of the real layers is taken into account the

divergence is removed and the parallel critical field is given in the low field limit

(T + ?") bv

H."n(T) -- 2tr("6{(d,; + d,)ld,
o<(1-t) (5.12)

where once again d" is the superconducting layer thickness and d; is the insulat-

ing layer thickness. In the strong field limit Equation 5.10 for an isolated thin

superconducting slab is recovered. Comparison of Equations 5.10 and 5.12 shows

that as the temperature is increased a 2D-3D dimensional crossover should oc-

cur signified by a change in the temperature dependence of //"21; from (1 - t) to
0 - t)rlz. This crossover is expected to occur when the temperature dependent

coherence length (" becomes greater than the interlayer spacing d;, leading to

coupling between the superconducting layers. A similar dimensional crossover,

but this time from 3D-2D, can occur when {" becomes greater than the total

thickness of the sample.

These dimensional crossovers have been investigated in the Nb/Ge multilayer

system by Ruggierc et al. [18,19] who studied the behaviour of f/.21g .t a function

of the Ge layer thickness. They observed a change from anisotropic 3D (I/"21; x
(1-t)) to 2D (fl"r1p o (t-t;tiz; behaviour as the Ge layer thickness was increased,

with a crossover region at intermediate layer thickness where the behaviour was

3D-like close to T" and changed to 2D-like at lower temperatures. Similar results

showing dimensional cossovers have been obtained on Al/Ge [32] and Nb/Si [33]

multilayer systems, demonstrating the validity of the models described above.

5.1.3 Werthamer-F{elfand-Hohenberg Theory

A far more detailed approach to the determination of H"z fot an isotropic su-

perconductor has been undertaken by Werthamer, Helfand and Hohenberg [50].

They calculate H"2 from a much more microscopic point of view and include

the effects of material dependent parameters like the finite electron mean free

path, Pauli spin paramagnetism and spin-orbit impurity scattering. Their results,

which extend the work of several previous authors (most notably Gor'kov [51'55])'

are valid at all temperatures and include the Ginzburg-Landau results as a lim-

iting case. At temperatures well below ?" they demonstrate a deviation from

the behaviour of f/"2 predicted by GL theory in an isotropic superconductor,

Os
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and instead find that 11"2 lies below the extrapolated linear behaviour observed

near [. At zero temperature the actual critical field is predicted to lie below
the extrapolated high temperature value by a factor of 0.69. The real value of
this model lies in the incorporation of the microscopic properties of the material,
and the subsequent ability of the model to correctly predict the low temperature
behaviour of H.2.

5.L.4 Summary

The preceeding section has considered the determination of H"2 for several dif-
ferent regimes. Most notably a dimensional crossover from 2D to 3D behaviour
is expected in layered samples when the perpendicular coherence length becomes

greater than the interlayer spacing. A similar crossover from 3D to 2D behaviour
may occur close to I in thin samples when the perpendicular coherence length
becomes greater than the total thickness of the sample.

5.2 Thermal Fluctuations and Vortex Lattice
Melting

All of the theoretical models of the upper critical field discussed above predict an

exact position of the thermodynamic phase transition which occurs at, H"2. Based

on these models there should be a well defined boundary between the normal
state and the superconducting mixed state at the transition point, however for
any system at finite temperature thermal fluctuations allow the system to sample

configurations away from the lowest energy state. Fluctuations in the electronic
degrees of freedom (or equivalently fluctuations in the magnitude of the GL
order parameter) lead to some superconducting pair formation at temperaturess
above T"r(H) and some pair breaking below T"r(H). Below T"r(H) where type-Il
superconductors enter the mixed state the vortices themselves (or equivalently the
phase of the order parameter) are the thermodynamic objects subject to thermal
fluctuations. In either case the minimum fluctuation energy is determined by the
coherence length (which sets the minimum size of the fluctuation volume) which

means that fluctuation effects are more noticeable in strongly type-Il materials
like high-?i superconductors and amorphous multilayers where the coherence

length is small. In layered materials the twe-dimensional nature serves to enhance

,T"z(H) is used here to represent the superconducting transition temperature in an applied
field 11.
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the importance of fluctuations even further. The efiects of these fluctuations are

discussed in the following sections.

5,2.t Fluctuation Conductivity

One of the first treatments of the effects of thermal fluctuations on the zero

field conductivity above 7} was performed by Aslamasov and Larkin [56] who

calculated the enhancement of the conductivity above the normal state value

caused by fluctuations of the system into the superconducting state. Their re-

sults, which can be derived within the Ginzburg-Landau framework by assuming

non-interacting Gaussian type fluctuations of the order parameter, depend on

the dimensionality of the sample and are given in the isotropic case by

-,e27v - rlhd"r +

re'(T\tl'o : 
s2h€(o) \r -rl)

(2D)

(3D)

(5.13)

(5.14)

where the fluctuation conductivity o'is equal to the difference between the exper-

imentally measured conductivity o and the normal state conductivity a,,. The

dimensionality here is again defined by the relative sizes of the perpendicular

coherence length {" and the superconducting layer thickness dr. Several correc-

tions to these forms for the fluctuation conductivity have been discovered [57],

although these terms are generally of importance only in very clean materials

and can be neglected in the amorphous limit.

Recently the theory of the fluctuation conductivity has been extended by Ul-

lah and Dorsey [58,59] to include the effects of a finite applied magnetic field.

They include non-Gaussian fluctuations in their theory and also the possibility

of interactions amongst the fluctuations by including in the free energy expres-

sion higher order terms in the order parameter. At high fields, where only the

lowest Landau levels are occupied, they obtain a scaling relation between the fluc-

tuation conductivity and the applied field and temperature. The scaling forms,

which depend on the dimensionality, are given in terms of unknown but universal

functions of the field and temperature as
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(2D) (5.15)

(5.16)(3D)

where a and 6 are constants characterising the materials and F2p and F3p are

the universalfunctions. These forms show that if o'(HlT)1/2 is plotted against

lT - f"@\lg nttt for a two-dimensional sample the data should collapse onto
a single curve which represents F2p. Similarly, a plot of o,(HfTt)t/t t"rr.r,
IT -f"@)]lg n)zta for a three-dimensional sample should collapse the data onto
a single curve representing Feo. Within the Ginzburg-Landau theory the upper
critical field perpendicular to the layers is linear in the temperature, and can thus
be specified in terms of its intercept ?"(0) and the slope S : -dH"zldTlr=r. on

the magnetic phase diagram. Using .9 as a free parameter the scaling behaviour
can be optimised to determine the upper critical field I/.2(?) from the fluctu-
ation conductivity. This provides a more accurate determination of the upper
critical field from resistance measurements than ordinary criteria such as using
the midpoint of the transition.

The scaling method has been used to determine H"2 f.ot a wide range of
samples including YBazCusOT-5 crystals [60] and films [61] which display a three-
dimensional scaling, Tl2Ba2CaCu2O* films [0t] which display two.dimensional
scaling behaviour and also thin films of o-NbgGe and a-MoGe [62] where the
dimensionality depends on the thickness of the films.

It should be noted that fluctuations are not the only possible cause of a

rounding off of the superconducting transition. Inhomogeneities can lead to a
spatially dependent ?i which will also tend to broaden the transition as some

parts of the sample go superconducting at higher temperatures than other parts.

However it can been shown [63j that if the variations in T" arc small (- 5%) then
the effects of the disorder on the fluctuation conductivity will only be noticeable

very close to T".
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5.2.2 Zero Field Berezinskii-Kosterlitz-Thouless
Ttansition

The above discussion concentrated on the role of fluctuations in the density of
superconducting pairs in rounding off the resistive transition at 7"2(H). For very

thin superconductors in the two-dimensional limit or for highly decoupled multi-
layers with thin superconducting layers there is another type of fluctuation in zero

applied magnetic field that actually changes the point at which the transition to
zero resistance takes place. The fluctuation in question is the thermal excitation

of a vortex-antivortex pair6 which creates a loop of magnetic flux threading the

superconducting layer as shown in Figure 5.3. Because they are opposite in sign

these vortex-antivortex pairs experience an attractive interaction with the previ-

ously noted logarithmic dependence on the separation for small loop radius. In
two dimensions the logarithmic interaction between vortices has been shown [64]
to extend out to a distance trr : A?uld" which is considerably larger than the

usual screening length ,\ which gives the range of the interaction in three dimen-

sions. Due to the logarithmic interaction the vortex-antivortex pairs are bound

together at low temperature in a so called Berezinskii phase [65,66], but Koster-

litz and Thouless [67,68] have shown that at a critical temperature determined

implicitly by

Taxr -
o3

(5.17)
8zrksps)1(Taxr)

the vortex pairs with the greatest separation overcome the attractive interaction

and unbind, Ieaving pairs of free vortices. As the temperature is raised further

vortex pairs with smaller and smaller separation unbind and the density of free

vortices rises exponentially.

The response of the superconductor to an applied current depends on whether

the vortex-antivortex pairs are bound or unbound. The Lorentz force is directed

oppositely on the two vortices, and if they are unbound then they are free to

move in opposite directions even when driven by an arbitrarily small current.

It will be shown below in Section 5.3 that when vortices move freely under the

influence of an applied current a linear resistivity results and superconductivity is

destroyed. For ? l Tnxr the vortices are bound so the net Lorentz force is zero,

but the combination of the Lorentz force and the thermal energy can overcome

bhe binding forces between the vortex pairs, thus leaving a finite density of free

oThese pairs occur as a vortex and an antivortex of the opposite sign thus leaving the
magnetisation unchanged. The creation of a single vortex requires much greater energy and is
thus insignificant here.
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Flux p6l6tration

Figure 5.3: A thermally created vortex-antivortex pair bound togeiher to form a vortex loop
of radius r threading through the superconducting layer.

vortices. The rate at which this occurs is proportional to exp(-ttlfu?), where

the activation energy [/ decreases with the separation between the vortex pairs
and also decreases as the current is increased. This leads to a power law form
for the current-voltage (IV) characteristic

VxI" (5.18)

where the value of o is equal to 3 at Texr. For ? Z Tnxr there is a small but
finite density of unbound vortex-antivortex pairs. At low currents the motion of
these free vortices leads to a linear resistance (o = 1 in Equation b.18), which
crosses over into a power law form again at high curents where the current
assisted thermally activated unbinding process becomes the main contributor to
the density of free vortices. As the temperature is raised further above Taxr
the density of unbound vortices rises and the linear IV characteristic dominates
to higher currents. The BKT transition occurs at a temperature which can be

well below the mean field transition temperature ?i, so even in zero field a two-
dimensional superconductor will show a linear low current resistance below f}.

In the purely 2D case considered above screening of the logarithmic potential
at long length scales changes the interaction between the vortex-antivortex pairs

into a much weaker form, leading to the unbinding of the most widely separated

vortex-antivortex pairs at all temperatures [6]. This results in a linear resis-

tance at the lowest currents even for temperatures below Texr.The situation is
modified somewhat in layered superconductors with a finite degree of coupling.

When the magnetic coupling between the layers is added the interlayer interaction
prevents the screening and causes the attraction between the vortices to remain
logarithmic at all length scales, so a true BKT transition is restored [6,69]. When
the efiect of Josephson coupling between the layers is also added the picture is
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more complicated. The Josephson coupling further modifies the interaction be-

tween the vortices and instead of the BKT transition there is a three.dimensional

bulk transition into a true superconducting state at a temperature intermediate

between I and Taxr [6,69].

Several experimental studies of the zero field BKT transition have been per-

formed on both thin film and layered superconductors. BKT transitions have

been observed in Hg-Xe alloy films by Kadin et al, [70], and also in In/In-
O films by Fiory et al. l7ll. More recently Norton and Lowndes [28] have

measured the resistive transition and IV characteristics of very thin layers of
YBazCusOT-6 and also multilayer structures of YBazCusOT-6 with insulating

Pro.sCao.sBazCuaOz-c. For the single layers they find good agreement with the

BKT transition theory. For the multilayers they observe a deviation from the

BKT theory at a temperature above the expected. TsaT for a single layer of
the same thickness. The temperature where the deviation sets in depends on

the insulating layer thickness, demonstrating the importance of the interlayer

coupling. Studies of a similar system have been performed by Vadlamannati el

al. l29l who also find evidence for the existence of the BKT transition in decou-

pled multilayers. They find that the parameter ([ -Taxr)lT" takes on values as

high as 0.17 in the most two'dimensional samples, Finally, evidence for a BKT
transition in a bulk single crystal of the highly anisotropic high-Q supercon-

ductor Bi2Sr2CaCuzOe has been observed by Martin et al. l72l where the BKT
transition occurs in each individual superconducting CuOz plane. These results

demonstrate the applicability of the BKT theory to layered superconductors.

5.2.3 Vortex Lattice Melting

The importance of the zero field fluctuation efiects discussed above on the super-

conducting transition have been appreciated for a considerable length of time.

More recently, especially with the discovery of the high-?i superconductors, the

effects of thermal fluctuations well below H"2 have also been considered where

the fluctuations involve the vortices moving about their equilibrium lattice po-

sitions. As mentioned above, if the fluctuations in position of the vortices are

large enough then the vortex lattice may actually melt into a vortex liquid with

no translational order. In this section the vortex lattice melting transition is
examined in the absence of disorder induced pinning forces. To begin with the

field will be assumed to lie along the c-axis perpendicular to the layers while the

parallel field case will be considered later.

On general theoretical grounds the melting transition is expected to occur
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,ffm
Figure 5.4: A thermally created kink in a vortex line. Both the length of the kinked section
Ltn and the amplitude of the displacemeut ft11, depend on the elastic energy of the vortex.

due to the difference in entropy between the highly disordered vortex liquid state
and the ordered Abrikosov lattice. The Helmholtz free energy of the vortex
configuration is given by H - U - 7,S where U is the internal energy and S is
the entropy of the vortices. At some temperature the liquid state should thus
have a lower free energy than the vortex solid and the melting transition will
occur. The approach then should be to determine the form of the free energy
in both the vortex liquid and solid phases (for example using the Ginzburg-
Landau formulation) and then to determine the position of the phase transition,
but at this stage a detailed calculation of this type has not been performed. In
practice a Lindemann criterion is used to predict the position of the melting line
on the magnetic phase diagram by setting the average thermal displacement of
the vortices from their equilibrium lattice positions equal to some fraction of the
vortex lattice spacing. When the average displacement exceeds this fraction the
vortices are assumed to escape from the potential minima at the lattice sites and

the vortex solid melts into a liquid.

The average displacement of any given vortex segment from its lattice site is
determined by the interplay between the elastic energy and the thermal energy

of the vortex. The elastic euergy is actually dependent on the configuration of
the entire vortex system, a point which will be returned to later in this section,

but to begin with it is instructive to use a simple model of vortex thermal motion
to estimate the position of the melting transition [2]. Figure 5.4 shows a single

vortex containing a thermally induced kink existing in a lattice of unperturbed
vortices. In this case there are two contributions to the elastic energy. The first
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contribution comes from the line tension of the vortex and tends to favour longer

deformations. The tension is equivalent to the free energy per unit length of
an isolated vortex and includes contributions from the field, supercurrent and

core energies. The second contribution comes from the interaction between the

displaced vortex segment and all of the other vortices in the Abrikosov lattice.
The intervortex interaction between parallel vortices of the same sign is repulsive

and thus tends to favour shorter deformations, By minimising the sum of these

two energies the optimal length L6 of. the kink in the vortex line can be deter-

mined, and by then equating the total elastic energy of the kink to the thermal
energy kaT the amplitude Rtn of. the thermally created vortex deformatiotr can

be deduced. According to the Lindemann criterion when this amplitude reaches a

fraction cr of the vortex lattice spacing melting takes place. This simple estimate
yields for the melting line [2]

Br" - "1,03 (5.re)
4n3p,s(fuT)')t

Below the melting line the vortex solid can be described in terms of three elastic

moduli, the bulk modulus c11, the tilt modulus c44, and the shear modulus c66,

which determine the stiffness of the vortex lattice under compression, tilting and

shear forces respectively.

The simple model used above considered displacement of only a single section

of a single vortex line against the background of a stationary lattice, however in
general the modes of vortex motion are similar to phonons in a solid, involving

many vortices and multiple fluctuations in each vortex. Each mode of oscillation

can be assigned a wavelength, or equivalently a wave vectorT k. Typical modes of
vortex oscillation are shown Figure 5.5. As the difierent elastic moduli are wave-

length dependent, the stiffness of the vortex lattice in response to displacements

of the vortices depends on the wavelength of the displacements. It has been

shown by Brandt [73] that for superconductors with a large Ginzburg-Landau

parameter (rc t 200) a precise treatment of these so called non-local efiects leads

to a much lower value of coo than that given by the static lattice model used

above, or, equivalently,leads to a much softer lattice. The softer lattice enhances

the thermally induced displacements of the vortices at all fields which, according

to the Lindemann criteria, lowers the melting temperature.

Houghton, Pelcovits and Sudbo [74] have developed these ideas of Brandt to

include the anisotropy present in the high-?: superconductors and in artificial

7& is actually split into t;1 and /cr to describe the tilt modes along the vortex direction and
the compressional modes perpendicular to the vortices.
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Figure 5.5: An example of thermally induced vortex oscillation modes involving the entire
vortex lattice. There is a mode parallel and a mode perpendicular to the field. Figure from
Brandt [73].

multilayers. They arrive at a melting line given by

It I 0 - qt / 2)lb 
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where t: TIT", ? is the anisotropy parameter described above, G; is the
Ginzburg parameter (Equation 1.2) and b: BlBr2 x Hf H"2 with the sub-
script m referring to the value of b at the melting transition. In deriving this
result it was assumed that H"2(T) : /1"r(0)(1 - ,) which is equivalent to the
Ginzburg-Landau result for an anisotropic superconductor near [. Close to 7"
where b^ K 1 the melting line may be approximated by

B^(r) x s.aftn"r(oXl - t)r. (5.21)

At higher fields the temperature dependence weakens and the melting line is
approximately parallel to the upper critical field line. As the anisotropic GL result
is only valid for moderate (or zero) anisotropy Equation 5.20 for the melting line
does not apply to very strongly layered systems, but nevertheless this form for
the melting line is a considerable improvement on the simple derivation involving
a single kink.

5.2.4 Berezinski-Kosterlitz-Thouless Melting

So far the discussion of the vortex lattice melting transition has focussed on the
three-dimensional regime where the vortices behave as elastic line objects for
which thermal fluctuations allow bending of the vortex over a part of the total
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Figure 5.6: A dislocation-antidislocation pair of separation r4 in a two-dimensional vorrex
lattice. The dislocation-antidislocation pairs consist of two dislocations with oppositely directed
Burgers vectors [76]. The dashed linm connect displaced vortices, while the coloured vortices
represent the extra flux added to the lattice by the dislocation-antidislocation pair.

length. The model of Houghton ef c/. includes the efiects of anisotropy, but is not
applicable when the anisotropy is very strong. In the case where the anisotropy

is so strong that the individual superconducting layers can be considered as

isolated 2D superconductors the melting transition can be better described in
terms of a Berezinskii-Kosterlitz-Thouless transition involving the unbinding of
thermally created dislocation-antidislocation pairs in the two-dimensional vortex

lattice [65-68, 75].

Thermal fluctuations in a two-dimensional vortex lattice can lead to the for-
mation of dislocation-antidislocation pairs8 as shown in Figure 5.6. In a layer

of thickness d3 the interaction energy between these pairs of defects is attractive
with a logarithmic dependence on the separation r given by [69]

The interaction comes from the elastic energy due to the deformation of the lattice
by the dislocations. The term c66d, can be identified as the two-dimensional form

of the three-dimensional shear modulus c66. For low fields where oo ) A the

isotropic three-dimensional shear stiffness is given by

e6(r) : +$n(r/as).

ooBe-n,6:W

(5.22)

(5.23)

8In a ihree-dimensional sample such dislocation-antidislocation pairs are forbidden unless
they are also bound to another dislocation-antidislocation pair which contains flux of the same
magnitude but opposite sign. These "quartets" do not contribute to flux motion and resistivity
(see Section 5.3.5).



5.2. THERMAL FLUCTUATIONS AND

This has been generalised by Brandt [72]
interactions at higher fields leading toe
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to include the effects of intervortex

(5.24)

(5.25)

where once again t:TlT.,b: BlB"zx Hf H"z and r is the Ginzburg-Landau
parameter.

At this point the similarity between this and the zero field BKT model is

obvious, with the only difference being that the logarithmically interacting par-
ticles are now thermally induced pairs of defects in the lattice rather than ther-
mally created vortex pairs. In the same manner as the zero field BKT transition
the logarithmic interaction leads to an unbinding of the most widely separated
dislocation-antidislocation pairs at a critical temperat ure TflD , thus forming free

dislocations in the lattice. As the temperature is increased above ?p dislocation-
antidislocation pairs with smaller and smaller separation unbind and the density
of free dislocations rises exponentially. The presence of these free dislocations
drives the shear modulus to zero, resulting in the melting of the two-dimensional
vortex lattice into a vortex liquidlo. The temperature at which the dislocation
mediated melting takes place is given by

OoB ,< f t'lcea: ffio-b)'11 -;,1 (1 -o'58b+o'2eb2)

: BSrU)b(l -b)rf,_ 1.l,,
Fo 8,;' lt - ,Al (1 - 0'586 + o'2eb2)

.nZD - Ac66ald"
, rrt - 4rrk"

where the constant A renormalises the shear modulus ceo (Equation 5.24) to the
new value 4c66. The renormalisation accounts for the softening of the lattice
before melting due to both non-linear lattice vibrations and the existence of the
bound defect pairs. It is expected that 0.4 < A < 0.75 [28], and good agreement

has been found between Equation 5.25 and exerimental results in low-Q films
and multilayers [20,22,261using values of A within this range. The interaction
between the dislocation-antidislocation pairs (Equation 5.22) is approximately
an order of magnitude smaller than the corresponding interaction between a pair

eThe ehear modulus c56 is dispersionless so there is no dependence on the wave vector of
the lattice displacements, although this is not true of the other two elastic moduli, c11(&1) and
rnn(frtt).

roThe long range posiiional correlation betweeu the vortices is destroyed at TfD , but in
fact the resulting liquid retains orientationol order amongst the bond angles between nearest
neighbour vortices until a temperature above TID. This intermediate phase is known as the
hexatic liquid.
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of oppositely charged twedimensional vortices. This means that the dislocation
mediated melting temperature is significantly lower than the zero field BKT
transition temperaturc 76s7. Using Equations 5.17 and 5.25 the two can be

related approximately by

T2D- A ( Tnxr \L'L -i&V-r";;lr") (5.26)

where the term in parenthesis accounts for the difierent temperatures at which

the penetration depth enters Equations 5.17 and 5.25.

The resistive properties of the two-dimensional superconducting layers in a
magnetic field are also similar to the zero field case with a power law form for

the IV characteristic at temperatures below TID and, a linear IV characterstic

at low currents above TlD, The finite resistivity is the result of the motion of
unbound dislocations which experience a Lorentz force in a similar manner to
ordinary vortices. This particular form for the IV characteristic assumes that
the underlying vortex lattice is pinned by impurities (see Section 5.3) otherwise

the entire lattice would move under the influence of the Lorentz force giving a

linear resistance at all temperatures. Furthermore the possibility of dissipative

motion of the bound dislocation pairs has been ignored at this stage, but will be

dealt with in Section 5.3.3 below.

Just as in the zero field case finite interlayer coupling can modify the nature of
the BKT transition in the two-dimensional vortex lattice. The next section deals

with the criteria under which the system may be considered two-dimensional,

and discusses the effects of finite coupling and the transition to three-dimensional

melting.

5.2.5 Layer Decoupling and Dimensional Crossover

In weakly anisotropic superconductors the structure of the vortices is basically

the same as in the isotropic case. As the anisotropy increases, however, the

vortices can be better described in terms of pancake vortices which exist within

the superconducting layers coupled together into a string by their magnetic and

Josephson interactions [79]. The magnetic coupling comes from the interaction

between the fields of the pancake vortices iu different layers, while the Josephson

coupling is due to the phase difierences across the layers that result when vortex

segments in neighbouring layers are misaligned. It can be shown that the Joseph-

son term dominates the magnetic coupling for all but the most weakly coupled

layered samples [6]. Depending on the strength of the coupling relative to the
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intraplane interactions the vortices may behave as either three-dimensional line
objects or as independent two.dimensional pancake vortices.

In terms of the melting transition the requirement for 2D behaviour is that the
Josephson coupling energy be much less than the energy needed to melt the 2D
lattice, thus ensuring that the interaction between the dislocation-antidislocation
pairs has the required logarithmic form. Equating the Josephson term to the the
2D melting temperature yields the crossover field [69] separating 2D and BD

behaviour

where 7 is the anisotropy defined in Equation 5.7. A similar method for calcu-

lating the 3D-2D crossover field is to compare the energy of the most signiflcant
tilt modes to the energy of the most significant shear modes. The most signifi-
cant modes are defined as the thermal fluctuations which give rise to the largest
displacements of the vortices from their equilibrium positions. Below the 3D-2D
crossover field the tilt energy is greater than the shear energy and the vortices in
neighbouring layers are strongly coupled, whereas above the crossover field the
tilt energy is much lower and is in fact dominated by tilt modes with wavelength
less than the interlayer spacing. This method leads to the expression for the
crossover field [6]

nro: ffi

BzD:ffih(#)

(5.27)

(5.28)

The vortex structure above and below the decoupling field is illustrated in Fig-
ure 5.7.

The field B2p marks the crossover in the behaviour of the melting transition.
For fields above B2p an associated decoupling type transition can be induced by
the finite thermal energy of the vortices. Above B2p the thermal motion of the
vortices causes a large average difierence between the positions of the pancake

vortices in one layer and the positions of the corresponding pancake vortices in
the neighbouring layers. This tends to randomise the difierence in the phase of
the order parameter between the layers, and therefore the interlayer Josephson

coupling is reduced [6]. In addition thermal fluctuations can excite defects in
the vortex lattice in the form of dislocation-antidislocation pairs. Individual
dislocation-antidislocation pairs introduce net flux into the layer in which they
exist (see Figure 5.6), however in the presence of interlayer coupling this extra
flux has an infinite Josephson coupling energy to the other layers [Gg]. The
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Figure 5.7: (a) A three-dimensional (B < Bzo) vortex configuration in a layered supercon-
ductor. The pancake vortex positions are correlated over several layers. (b) A two-dimensional
(B > Bzn) vortex configuration in a layered superconductor. The tilt modes have wavelength
less than the interlayer spacing. The vortices are shown as continuous lines for clarity, but in
reality they are not correlated across the layers.

dislocation pairs must therefore be bound to other pairs which introduce the

opposite flux into the layer (forming "quartets" ) so that the net added flux is zero.

However entropy considerations mean that above a certain temperature ?4" the
quartets can unbind leading to a proliferation of free dislocation pairs which tend

to destroy the vortex correlations between layers. Overall the thermal motion of
the vortices and the proliferation of defects upset the Josephson coupling between

the layers and lead to a decoupling transition.

The behaviour can be summarised as follows. For fields above Bzn lhe transi-

tion to the 2D melted liquid occurs in two steps, the first a decoupling transition

driven by the unbinding of the quartets into free dislocation pairs, followed by

the BKT melting transition where the dislocation pairs themselves unbind. At
fields below B2p the layer decoupling transition occurs above the 3D melting line,

so the melting transition is three-dimensional in nature. The phase above the

decoupling transition is known as an entangled vortex state due to the wandering

nature of the vortex lines threading through the layers [80]. Just above B2p the

finite interlayer coupling alters the logarithmic form of the interaction between

the dislocation-antidislocation pairs leading to an increase in the melting tem-

perature above TlD, and, thus the 2D melting line merges smoothly with the 3D

melting line as the field is lowered to B2p.

Finally, in samples with both a small anisotropy and a small total thickness

there is also the possibility of a further crossover from 3D to 2D behaviour as

the field is reduced well below B2p. At very low fields the energy of the most
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Josephson vortices

Figure 5.8: A lattice of stepwise vortices threading a strongly layered superconductor at an
angle d to the layer plane. The vortices consist of pancake vortices in the layer planes connected
by Josephson vortices lying between the layer planes.

favourable tilt deformation may become greater than the two-dimensional melting
temperature for the whole sample. In this case the tilt modes cannot be excited
in such a thin sample and the vortices are straight over the total sample thickness,
so the melting is again of the BKT type.

5.2.6 Non-Perpendicular Fields

So far the applied field has been assumed to lie along the c-axis of the layered

superconductor, in which case the role of the layers is to enhance the tilt modes

of the vortex lattice and ultimately to lead to a crossover in the dimensionality
of the melting transition. It is of course interesting to ask whether the vortex
state and the melting transitiou are different in nature when the field is instead
applied along the ab direction, or at any arbitrary angle in between.

If the anisotropy is weak then the melting transition in a parallel field will be

similar in nature to the perpendicular field case, although with the field applied
parallel to the layers the tilt modes will not be enhanced by the layering as they
were in the perpendicular situation. The 3D melting line (Equation 5.20) can

be generalised to arbitrary angles between the field and the layers by using the
prescription of Blatter, Geshkenbein and Larkin described in Section 5.1. This
yields an angle dependent melting line given by

B^(7,0): B^(T,r 12) (5.2e)
(.1-, co"z 0 + sinz 6|/z

where B^(T,r 12) ie the melting line with the field applied perpendicular to the
layers (0 -rl2).

Pancake
vortic€s

, --
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For the case where the anisotropy is strong so that the anisotropic GL theory
does not apply the actual structure of the vortices is altered. Solution of the
Lawrence-Doniach equations for a parallel field shows that instead of the usual

Abrikosov vortex structure discussed in Section 5.1 the field penetrates in the

form of so called Josephson vortices [6,81]. The Josephson vortices are centred

between the superconducting layers and differ from Abrikosov vortices in that
there is no longer complete suppression of the superconducting order parameter

in the layers immediatley adjacent to the vortex core. The core now has dimen-
sions 7d; and d; along the ab or c directions respectively, in contrast to the core

dimensions $5 and $ of an Abrikosov vortex. On the other hand the screening

currents and magnetic field patterns are still somewhat similar to those in the
Abrikosov vortices where the field extends a distance 7) along the ob direction
and a distance ) along the c direction. If the field is tilted away from the parallel
orientation then the field penetrates as a series of stepwise vortices [81,82] con-

sisting of pancake vortices in the superconducting layers connected by Josephson

vortices lying between the layers as shown in Figure 5.8. The existence of these

stepwise vortices has been elegantly demonstrated using numerical simulations
by Machida and Kaburaki [83] who observed relatively straight vortex lines in
simulations involving weakly layered samples and stepwise vortices in strongly

layered samples.

When the free energy of the vortex lines is calculated as a function of the angle

d between the applied field and the layer planes the structure of the stepwise

vortices leads to a term linear in 0. This linear term causes a lock-in transition
where the flux lines align themselves perfectly with the layers for angles close

to d : 0o, thereby minimising the disturbance of the superconducting order

parameter in the superconducting layers. Within this angular regime the overall

energy of the lattice structure is minimised when the lattice constant is such that
all of the vortex cores lie between the superconducting layers, which can lead to

interesting commensurability effects as the field (and hence the lattice constant)

is changed [84].

Finally, it has been suggested that at sufficiently high parallel fields there

may be a field driven decoupling transition, which can be accompanied by vortex

lattice melting [6]. Whether or not this transition actually exists in real layered

superconductors in a parallel field currently remains unknown.
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5.2.7 Experimental Evidence for Melting

To conclude the discussion on vortex lattice melting it is appropriate to give a
brief review of the current experimental evidence for the existence of the melting
transition in clean systems. A hysteretic jump in both the resistance [85.86] and

the magnetisation [87,88] has been observed to occur at the same temperature
in very clean bulk single crystals of YBa2CuaOz-t, which provides evidence for
the existence of the melting transition (the drop in resistance is due to the rise in
the effectiveness of pinning in the vortex solid as described in Section 5.3 below).
The position of the transition on the magnetic phase diagram is well described
by the model of Houghton et al. described above (Equation 5.20). However the
best evidence for the melting transition has been discovered more recently by
Schilling et o/. [89] who have measured the latent heat (- 0.5kBT per vortex per
layer) at the melting transition of very pure YBa2CugOz-c samples. The latent
heat has been observed with the field applied both parallel and perpendicular to
the superconducting layers [90,91] and the melting line thus determined scales

according to Equation 5.6 as would be expected for YBazCurOz-r where the
anisotropy is not too strong. These experiments along with muon spin rotation
and neutron diffraction work (see references in [89]) provide clear evidence for the
existence of a first order melting transition in the vortex lattice in clean three-
dimensional systems. The first order nature of the melting transition is also in
agreement with theoretical predictions [92].

Hysteretic steps in the resistance [93,94] and magnetisation [g5, 96] of the
much more highly anisotropic BizSrzCaCu2Oga6 have also been observed, provid-
ing evidence for a first order melting transition similar to that in YBa2CueOz-6,
but so far no calorimetric measurements are available to support this. These tran-
sitions are only observed in low fields which is consistent with the field induced
decoupling picture presented in Section 5.2.5 above.

When disorder is added to the system the three-dimensional first order melting
transition is smoothed into a continuous second order transition [6,97]. In this
case the freezing is into a vortex glass rather than a vortex lattice as will be

described below.

5.3 Flux Pinning and Vortex Dynamics

In the above discussion it was stated that a linear resistance results from the
free motion of vortices under the influence of an applied current. This is a

surprising result as it would appear that the current should avoid the normal

73
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cores of the vortices and propagate solely through the superconducting region

outside the cores, thus giving rise to no dissipation at all. This is indeed what

happens if the vortices are prevented from moving by some pinning force, however

Maxwell's equations imply that a moving maguetic vortex has an associated

electric field. Inside the vortex core this electric field turns out to be directed

perpendicular to the vortex motion but parallel to the applied current which

causes the current to flow continuously through the normal cores, thus leading to

(5.30)

the linear dissipation [2]. According to Bardeen and Stephen [98] the resulting

flux flow resistivity is given by

B
PtJ : P" tt.,

where p,, is the normal state resistivity. This form for the resistivity was deter-

mined by equating the Lorentz force with the viscous drag force on the vortex. In

the absence of any pinning the viscous drag results from the finite rate at which

the material can be converted from the superconducting to the normal state at

the leading edge of the moving vortex and from the normal to superconducting

state at the trailing edge.

This discussion of the flux flow resistivity makes it clear that in order to ex-

ploit the benefits of dissipation free current propogation in superconductors the

magnetic vortices must be prevented from moving. This can be achieved through

the introduction of pinning centres - inhomogeneities in the sample - which at-

tractively interact with the vortex cores. Almost all superconductors contain

inhomogeneities on a microscopic scale, whether they be due to crystalline de-

fects or the inclusion of impurities. These inhomogeneities locally decrease the

condensation energy of the superconducting state, and as such they have an at-

tractive interaction with the normal core of the vortices where superconductivity

is already suppressed. It is this attraction to the defects in the underlying su-

perconductor which pins the vortices and opposes the Lorentz force due to an

applied current.

In the following sections the inhomogeneities will be assumed to represent

point pinning sites, where the pinning centres are much smaller than the vor-

tices themselves. The range of the interaction between the pinning sites and the

vortices is thus determined by the coherence length ( which sets the minimum

scale which the vortex core can resolve. The strength of the pinning is critically

dependent on the sample characteristics such as the dimensionality and the den-

sity of pinning sites and also on the temperature and the strength of the applied

field. This section gives a discussion of the efiects of pinning forces on the vortex
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structure and then, more importantly, explores the different dynamic regimes

which result under difierent strengths of the applied current.

5.3.L Collective Pinning Theory

One of the most successful approaches to understanding the efiect of disorder on

the vortex lattice is the collective pinning theory of Larkin and Ovchinnikov [g9]
who considered the combined action of a random distribution of point pins. To
begin the discussion of the collective pinning theory the vortices will be assumed

to exist in an isotropic three-dimensional superconductor, although the isotropic
results can be generalised to the more complicated anisotropic case through the
use of the scaling rule presented in Equation 5.6. Later in the present section the
collective pinning results for a decoupled two-dimensional layered system will be
presented.

The main ideas of the collective pinning theory can be illustrated by first
considering an isolated vortex interacting with the pinning sites. Because of the
random placement of the point pins with respect to the vortex core the pinning
forces on a rigid flux line of length tr will add up only as in a random walk, leading
to a net pinning force which grows as Lrl2. On the other hand the Lorentz force

due to an applied current grows linearly with the length of the flux line, so the
current density at which the Lorentzforce equals the pinningforce must scale as

L-rlz, and vanish as the sample size increases.

This conclusion does not hold for an elastic flux line however, because, as

shown in Figure 5.9, an elastic flux line can alter its shape in order to accommo-

date itself in the most favourable fashion to the random distribution of pinning
sites. By so doing the vortex miuimises the loss of condensation energy in the
core, but this is at the expense of the extra elastic energy of the vortex line.
The deformed vortex can be considered to be broken up into individual segments

of characteristic length tr", where .L" is the minimum vertical scale over which

the transverse deformation of the vortex line becomes larger than the range { of
the pinning forces. Beyond this length the vortex deforms to match the pinning
potential so that the pinning centres no longer combine as in a random walk,

thereby cutting off the sublinear growth in the net pinning force. Each of the
individually pinned segments feels a pinning force proportional to L!/2, and at
small values of ^L" this pinning force can compete favourably with the Lorentz

force on the segment. The net pinning force is thus enhanced by the elasticity of
the vortex line in such a way that a finite critical current is required before free

flux motion occurs.

to
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Figure 5.9: A single vortex line which is pinned by the collective action of a random distri-
bution of point pinning centres.

+Fb+

Figure 5.10: A schematic representation of the correlation volume %. The periodicity in the
flux lattice is upset by the pinning forces only over the Iengths ft" and tr. which define the
correlation volume. The dashed lines show the positions of the vortices in the unperturbed
lattice.
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Larkin and Ovchinnikov not only considered isolated vortices but also devel-

oped these ideas of collective pinning to cover the entire vortex lattice, where
the distortion in the vortices is now taken up over a so called correlation volume
V. of length -L" and transverse dimension .R". Within the correlation volume the
periodicity of the vortex lattice is relatively undisturbed, but at lengths longer
than .R" or L" the lattice structure is upset by either shear or tilt deformations
respectively. This is illustrated in Figure 5.10, where it can be seen that the
whole correlation volume distorts to take advantage of the pinning sites. The
expression for the free energy f[u] of a flux line lattice in which the vortices are
deformed by a distance u from their equilibrium sites is defined through the shear

and tilt moduli considered previously in the discussion of the melting transition.
Because crr ) c66N c44 the lattice accommodates itself to the pinning potential
through shear and tilt deformations only, so that

r[u] : I a', [T,o, " 1z *"u3ti(d"u), + Eo;"(r,u)] (5.3i )

where Ep;n isthe pinning energy (x n'/" due to the random walk process, where n
is the density of pinning siteslr), Vr.u is the fractional distortion in the direction
perpendicular to the applied field (shea.r), 0"u is the fractional distortion of the
Iattice in the direction parallel to the field (tilt) and the dispersion in the tilt
modulus 

"nn(ktt) 
has been included. As the lengths fi" and L" are defined to

be the distances in the lattice over which the flux lines are distorted from their
equilibrium positions by a distance equal to the range ( of the point pinning
forces the fractional distortions can be approximated by

II

(5.32)

Larkin and Ovchinnikov used the expression for the free energy (Equation 5.31)

to find the collective pinning lengths. Several different collective pinning regimes

emerge from the analysis, depending on the size of the collective pinning lengths
relative to .\, the interaction length of the vortices. At the lowest fields the inter-
action between the vortices is unimportant and the sample is in the single vortex

regime. Here, where the vortices behave independently of each other, the length
R" has no relevance so the collective pinning may be characterised by the single

length l" which is determined directly by minimising the free energy per unit

lla is the local density of pinning sites per unit volume in the region where the deformed
vortex is situated. Fluctuations away from the average pinning site density are required in order
to pin the vortices efiectively because if the density of pinning sites was entirely homogeneous
the vortices would not be able to lower their energy by finding the optimal position.

vt.,, = f, o"u* !.
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length with respect to the length ^L of the vortex segments.

At higher fi,elds, where the intervortex interactions cannot be ignored, both

of the lengths -R" and L" are needed to characterise the collective pinning of the

lattice. A slightly different approach than that used in the single vortex case

is needed. Firstly the free energy is used to determine the so called positional

correlator given by (u2(r))r/2 = (["(") - ,r(0)]')t/' *h"t" the angular brackets

represent the average over all of the disorder in the sample. This correlator gives

a measure of the relative distortion from their equilibrium sites of two vortices

separated by a distance r. The lengths r?" and L" are then defined in terms of the

positional correlator by (uz(R")) = {' and (uz(L")) = {'. The calculation of the
positional correlator identifies two difierent regimes of vortex bundle collective
pinning. At fields slightly above the single vortex limit the small bundle pinning

regime is entered, characterised by a conelation length E" which extends over a

few vortices only. In this regime the positional conelator is strongly affected by

the dispersion in caa due to the small length scales of the tilt deformations. At
higher fields the large bundle regime is entered where the distortions are over long

length scales and the dispersion is no longer important. The collective pinning

lengths may be summarised as

Si,ngle uorter

Small bundles

Large bund,les

Pinned, volurne

256T4A4nf2

\ l/3

) , Lf," 1ooLi"
o3
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(5.33)

where / is a parameter which measures the strength of the pinning force due to

each of the pinning sitesl2, 6 is a constant of order unity and Li" is the collective

pinning correlation length along the field in the single vortex pinning regime.

12The size of / is determined by the degree of suppression of the condensation energy at the
pinning site.
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Note that due to the lack of interaction R" is not defined for single vortices, in
which case the collective pinning volume is instead equal to {2 Lr.

The total energy associated with the pinning of a single vortex segment can

be defined in terms of the pinning strength /. The random walk argument
showed that the net pinning force is given by f Nr/z where N is the total number
of randomly positioned pinning sites which interact with the vortex over the
correlation length. The pinning force extends to a distance { only, so the pinning
energy is approximately equal to lNt/26. In terms of the pinning site density
n the total number of pinning sites can be written as N : nV : nL"€2 which
yields the collective pinning energy

U"=f(n(oL")'/' (5.34)

For a vortex bundle the collective pinning energy can be cast into a simple
form by noting that the vortices will continue to relax into the pinning sites until
the energy gain from doing so is balanced by the cost in elastic energy of further
deformation. Thus, at equilibrium, the elastic and pinning energies are equal, so

for vortex bundles the collective pinning energy can be written in terms of the
shear distortions as

/ r\2
U" = eaa tn,) V". (5.35)

This can be evaluated further by insertion of the correlation lengths given in
Equations 5.33.

One of the most important applications of the collective pinning theory is the
calculation of the critical current density j" neccessary to overcome the pinning
forces and induce motion in the vortices. Below j. the pinning dominates and

the vortices are prevented from moving, whereas above j" the vortices are driven
over the pinning barriers and a finite resistivity results from the vortex motion.
According to the collective pinning model the pinning force on the correlation
volume as a whole competes with the Lorentz force. The Lorentz energy needed

to move the correlation volume a distance equal to the range f of the pinning
potential is equal to j BV"{, and equating this with the collective pinning energy

yields the critical current density as
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. IU"
J"= EV"e

Equation 5.36 implies that the critical current depends on the size of the
correlation volume. The correlation volume decreases either as the pinning forces

(5.36 )
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become stronger, or as the lattice softens (smaller e;o or caa) and is more able to
accommodate itself to the pinning potential. Thus, as would be expected, either
increased pinning or a more easily deformed lattice results in an increase in the
critical current density.

A further result of the collective pinning theory regards the loss of long range

order in the vortex lattice. At distances greater than a characteristic length
R" (> ft") the disorder induced displacements of the vortices away from their
equilibrium positions (given by the positional correlator (u2(r))r/z; become larger

than the lattice constant de, so the periodicity of the vortex lattice is no longer

maintained. At these lengths the above description in terms of the small elastic

distortions is no longer valid for describing the pinningls. In fact it has been

argued [  ] that at these length scales the optimal distortions are caused by

the appearance of either dislocation loopsla in three dimensions or dislocation-
antidislocation pairs in two dimensions, rather than the elastic distortions con-

sidered above. The dislocation loops or pairs are similar to the defects discussed

in terms of the melting transition, but in this case the defects are a feature of the
quenched disorder in the underlying superconductor rather than being thermally
induced.

Another important question which arises from the analysis of the collective
pinning theory relates to the effect of the disorder in the vortex lattice on the
elastic properties themselves. At distances greater than .Ro the long range order of
the vortex lattice is lost, so it could be expected that the lattice is actually driven

into a disordered liquid phase by the pinning, However it turns out that although

the disorder can significantly lessen the shear modulus it is never sufficient to
drive it all the way to zero [6]. Thus the disorder does not destroy the elastic

properties of the vortex lattice, and the discussion of the collective pinning theory

in terms of elastic distortions is self consistent.

These results can be generalised to the weakly anisotropic case through use

of the scaling Equation 5.6. It should be noted however that in the uniaxially

anisotropic case relevant for layered superconductors the presence of the layers

leads to the splitting of the tilt and shear modes into two orthogonal components.

This is most easily seen by considering the case of a field applied parallel to the

layers. Clearly shear and tilt modes involving deformations out of the layer

lsNattermann 
[100] has shown that at this scale the pinning is like that of charge density

waves.
t4The dislocation loops are similar to the dislocation-antidislocation pairs which can ex-

ist in two-dimensional superconductors, but unlike a dislocation-antidislocation pair a three-
dimensional dislocation loop does not add any net flux to the vortex lattice. Por a picture of
a dislocation loop see [101].
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plane require a greater energy than modes involving deformations in the layer
planes. For a field applied perpendicular to the layer planes the tilt modes are

enhanced relative to the isotropic case, with a corresponding decrease in the
length tr.. Apart from these differences the overall results are much the same

as the isotropic case in terms of the concepts involved. A complete description
of the anisotropic generalisation of the collective pinning theory can be found in
Ref. [6].

In the strongly anisotropic limit where the layers are effectively decoupled the
collective pinning theory has been analysed by Vinokur, Kes and Koshelev [102].
For a field applied perpendicular to the layers the crossover to two.dimensional
collective pinning occurs if the correlation length .L" becomes limited by the
interlayer spacing d;. Clearly this becomes more likely as the interlayer coupling
is reduced so that the disorder induced tilt deformations can occur over shorter
distances. If the field is small enough that the intervortex interactions within the
layers can be ignored then the correlation length .L" appearing in the single vortex
collective pinning energy (Equation 5.34) can be replaced with the layer spacing

d; to give the two'dimensional collective pinning energy of a single pancake vortex
U! = (nf2€nd;)t/'. The corresponding oitical current j! is given by

.n ( +tr[\' U9Ji:Jo\rr/ i (5.37)

where ie is the depairing critical current defined in Equation 1.1. If the field is

increased then the intervortex interactions within the plane become important.
In this case the collective pinning radius can be obtained by balancing the pinning
energy in the area Rl against the elastic interaction energy within the same area.

This leads to
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and the corresponding critical current is

;2D - ;o ao
Jc - tc p2D.

(5.38)

(5.3e)

Note that in Equations 5.37 and 5.39 the superscripts refer to the fact that the
conelation volumes are effectively zero. and two-dimensional respectively.

As discussed above the pinning forces result from the attraction of the vortex.
cores to the region surrounding the pinning sites where the order parameter is
suppressed. In layered superconductors the order parameter is also suppressed

in the region between the superconducting layers, giving rise to the possibility of
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intrinsic pinning of vortices when the field is applied parallel to the layer planes.

This problem has been analysed using the Lawrence-Doniach formulation in the
weak field limit by Barone, Larkin and Ovchinnikov [103] and in the strong field
limit by Ivlev and Kopnin [104,105]. The results for the intrinsic critical current

density jj' needed to induce vortex motion between the layers (i.e. perpendicular

to the planes) can be summarised as follows

Low f.eld I ji -
"_s.ozr€,/td, 

.yd < €
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5.3,2 Thermal Depinning

Before considering the interaction between the Lorentz and pinning forces it is

first worth noting the effects of finite temperature on the size of the pinning force.

As discussed in Section 5.2.3 at any finite temperature the vortices will undergo

thermal motion about their equilibrium sites, where the equilibrium sites in the
presence of pinning forces are those determined by the collective pinning theory.

As the range of the point pinning forces is only equal to the coherence length {
the thermal motion will tend to average out the pinning force by sampling the

area around the pinning site. This in efiect increases the range of the pinning

potential from { to a new value ro given by [106]

,3g) ryf2(1 +("')rl€')
where (u'), is the amplitude of the thermal fluctuations of the vortex lines. The

pinning force (proportional to the gradient of the pinning potential) is thus re-

duced leading to correspondingly longer values for the correlation lengths ft" and

tr", and smaller values for j" in the va,rious regimes. At a high enough tempera-

ture T4o the vortices are effectively free of the pinning forces altogether [106] at

which point the collective pinning theory breaks down and the critical current is

(5.41)
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zeto.

5.3.3 Thermally Assisted Flux Motion

The theory of flux motion in type-Il superconductors is made considerably com-
plex due to the large number of ways in which the motion can occur. The
discussion of flux motion will proceed as follows. Firstly the theory of elastic flux
creep will be introduced for single vortices, including the important distinction
between creep at low driving currents and creep at currents close to the critical
current. Following this the collective pinning results will be used to generalise the
single vortex case to include the interactions between the vortices in the vortex
solid. This leads naturally to the vortex glass model which describes the melting
of the vortex solid into the vortex liquid in the presence of disorder. The section

will be concluded with a discussion of plastic vortex motion in both the vortex
solid and the vortex liquid.

The collective pinning theory showed that the elastic properties of the vortices
allow them to take advantage of pinning forces so that a non-zero critical current
is needed to prompt motion of the vortices away from the optimal pinning sites.

This immediately identifies two different regimes in the presence of an applied
current. For currents above j" the Lorentz force is strong enough to overcome

the pinning forces and dissipative flux motion results. For currents below j" the
pinning forces dominate the Lorentz force, but there is still the possibility of vor-
tex motion due to a process known as thermally activated flux flow (or thermally
activated flux creep), where the vortices gain the energy to jump from one pin-
ning site to another from the thermal energy in the superconductor. The current
exerts a Lorentz force on the vortices so that jumps in one particular direction
are favoured, resulting in a non-zero net vortex velocity due to the thermally
activated processes. This net vortex velocity is typically much lower than that
experienced in the absence of pinning forces, but nevertheless any flux motion
still leads to a finite resistance and the destruction of true superconductivity.

The original theory of flux creep was developed by Anderson and Kim [l0Z]
who took the following approach. In the absence of an applied current the vortices

take advantage of the pinning forces and arrange themselves into the lowest

energy state. If a current is then applied the Lorentz force adds a term to
the free energy which increases linearly with the displacement of the vortices.

This leads to the existence of new low lying states to which the vortices can

move? where the energy gain from the Lorentz force outweighs the deformation

and pinning energies which must be overcome. Therefore, in the presence of
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Figure 5,11: A schematic representation of the free energy of a vortex as a function of the

distance from the zero current equilibrium pinning site. The three curves represent three

different values of the applied current, where the potential barrier U between the metastable

states goes to zero when j = j". The minimum size of the activated hop neccessary io overcome

the barrier is labelled u.

an applied current, the original vortex configuration is only metastable in that

other lower energy states exist which are separated from the present state by

finite energy barriers provided by the pinning and elastic forces. The activation

energy U needed to excite the vortices into a new metastable state is equal to the

maximum height of the potential barrier between the pinning sites. The form

of the potential thus experienced by each of the vortices is shown schematically

as a function of position in Figure 5.11 for three difierent values of the applied

current. It can be seen that both the sizeofthe activation energy and the distance

between neighbouring metastable states decrease as the current increases, with

the activation energy going to zero when i : i".
To be more specific the actual thermally activated motion proceeds via a

nucleation process where a segment of a single vortex or several vortices distorts

in such a way that the segment moves over the potential barrier and into a

new metastable state. This process is illustrated in Figure 5.12' The size of

the activated bundle, the distance over which it is translated and the activation

energy required are determined by the forces acting on the vortices in a similar

manner to the collective pinning theory, except now there is an extra term due

to the Lorcntz force as well as the pinning and elastic forces. It is worth noting

that the distortion in the vortices which nucleates the hopping process can be

thought of as the addition of a loop of flux bound to each vortex line as shown

by the dashed lines in Figure 5.12.
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Old Dosiuon

Figure 5.1-2: A thermally activated kink in a vortex bundle which provides the nucleus for
activated flux motion. The kink can be thought of as the addition of a flux loop to each vortex
line, as shown by the dashed curves.

Anderson and Kim noted that the flux motion is most likely to proceed via the
hopping of vortex bundles rather than via the hopping of a single vortex, because

the gain in energy from the Lorentz force depends on the bundle volume, whereas,

to a good approximation, the cost in elastic energy depends only on the surface

area of the displaced vortex bundle. They also noted that the thermally activated
jumps occur at a rate proportional to exp (-UlkBT) where LI : LI(8,?, j) is the
activation energy [108]. The total creep rate is the sum of the creep rate in the
direction ofthe Lorentz force and in the direction opposite to the Lorentz force. lf
the hopping processes are assumed to consist of a flux bundle of volume V being
translated a constant distance u then the Anderson-Kim flux creep resistivity is

given by
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where ze is the creep velocity which would exist if there were no barriers. The
above formula assumes an activation energy for flux motion in the direction of
the Lorentz force with a simple dependence on the current given by tJ(8,T,, j) :
U(8,,T)(I- j lj"), and a corresponding activation energy for flux motion opposite

to the Lorentz force given by U(8,7, j): U(8,,7)(I + j lj").This form sarisfies

the requirement that the activation barrier for forward flux motion must go to



86 CHAPTER 5. THEORETICAL PREDIC"IONS

zero at the critical curent j". For small applied currents the sinh term can be

expanded to first order in j resulting in a linear resistivity independent of the

current.

t
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Figure 5.13: A three dimensional representation of the pinning potential yeg experienced
by an isolated vortex. The dashed line shows the slope of the efrective potential caused by
the Lorentz force. (a) The most probable hopping process between neighbouring metastable
states in the presence of a large applied current. The hopping unit consiste of an elementary
deformation. (b) The most probable hopping process in the presence of a small applied current.
A much larger hopping unit is required to find a new metastable state.

The Anderson-Kim theory introduces the basic ideas of thermally assisted flux
flow, but does not provide a detailed determination of the size of the activation
barriers, and nor is there any rigorousjustification for the use ofthe linear current
dependence of U(j). A better understanding of the flux creep process can be

gained by first considering in detail the activated motion of a single flux line. As

discussed above the vortex hops from one metastable state to another in such a

manner that the gain in energy from the Lorentz force is enough to compensate

both the loss of pinning energy and the extra elastic energy of the vortex. If the
applied current is large (f 

^, 
j") then the Lorentz term in the free energy will

dominate the elastic term and only a minimal sized jump will be neccessary for
the vortex to find a new metastable state. This minimal length scale is equal to
the range ( of the pinning forces, and the length of the vortex segment which

undergoes the hopping process will also be of the minimal size tr" determined

by the collective pinning theory. Figure 5.13(a) illustrates a thermally activated
process of this nature. The thermal activation energy which must be supplied to

facilitate such a jump is equivalent to the single vortex collective pinning energy

U" (Equation 5.35) modified due to the assistance of the current. This can be

written in a general form as

u(j):u"0-ilj) (5.43)

where c describes the behaviour of the activation energy near j : j". This

\\
(a) i'h
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high current hopping picture is equivalent to the Anderson-Kim theory for a flux
bundle containing a single vortex if o: I and the identifications U(B.T): Lt",

u: € are made in Equation 5.42.

In the other case where the current is small (f < j.) the distance between the
metastable states will be much larger, as a larger hop will be required to achieve

a big enough gain from the Lorentz energy to balance the cost in terms of pinning
and elastic energyls. Thus, unlike the high current case considered above, the
hopping distance will be larger than ( and the length tr of the activated segment

will be longer than the minimum length .L", as shown in Figure b.l3(b). It has

been shown [6] that for L > .t" the distance u between metastable states (see

Figure 5.13) scales with the length of the activated segment according to
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and the corresponding energy barrier which must be overcome is

/ r \zC-tu(L)-u"(;l
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(5.44)

(5.45)

where ( x 315 [109] is a wandering exponentrG characterising the behaviour of
the vortex in the presence of random pinning and thermal disorder. Combining
these expressions into the free energy formulation (including the elastic, pinning
and Lorentz terms) and minimising the size of the barrier yields the optimal
length of the activated portion

(5.46)

(5.47)

Finally, the current dependence of the activation energy can be obtained by
inserting this value for Lool back into the expression for the size of the barriers
(Equation 5.45) leading to

u(i)=r"(+)', ,:zft=',7.
Equation 5.47 displays the surprising result that in this single vortex regime

l5The Lorentz energy grows linea^rly with the distance whereas the elastic energy tends to
grow sublinearly with u and the pinning energy is approximately iudependent of u, so for a
Iarge enough hop the Lorentz term must always dominate.

l6The fact that the value of ( is greater than that expected in a random walk demonstrates
the importance of pinning. If only thermal disorder was present the random walk value C = l12
would result and the activation energy (Equation 5,45) would reduce to U" as in the Anderson-
Kim theory at low current.
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consideration of the different sizes possible for the hopping nucleus has led to
an activation energy which tends to infinity as the current tends to zero. This
is in contrast to the Anderson-Kim expression for the activation energy which
tends to the constant value U" as the current tends to zero. The divergence in the

activation energy is the hallmark of the vortex glass statel7, and is mainly a result
of the elastic nature of the vortex in the random pinning potential rather than
the random nature of the pinning forces themselves. The vortex glass state is of
particular interest because the diverging activation energy provides the possibility
of a truly superconducting state with zero linear resistance existing in the mixed

state of type-Il superconductors.

FL

-+ f bn"

'.u=Rt

R1n f"
Figure 5.14: A superbundle consisting of several collectively pinned vortex bundles. The
direction of the Lorentz force is shown bv the a,rrow.

The above results apply for the case of a single vortex, where the elastic energy

comes only from the vortex line energy. At large fields where the intervortex
spacing is small, or at very small currents where the optimal hopping lengths

become comparable to the intervortex spacing, the intervortex interactions must

also be considered. As noted by Anderson and Kim the vortices will thus tend to

hop in bundles rather than individually thereby minimising the size of the elastic

energy of the distortion in relation to the Lorentz energy. Unlike the collective

pinning theory where the deformations were due to shear and tilt only, when

the vortices hop to new pinning sites the compressional energy is also important,

so all of the elastic energies must be considered when determining the optimal

hopping sizes.

At high currents (j = j") the minimum possible hopping unit is again deter-

mined by the collective pinning theory (including intervortex interactions) as a

17The name "vortex glass" actually comes from the resemblance of the model to spin glasses

rather than from the disordered nature of the vortex solid.
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bundle of size .R" and length tr". This represents the minimum size over which the
vortex lattice can deform in response to pinning forces, and within this volume
all of the vortices are pinned in a single metastable state. The compressional

energy, however, makes it favourable for several such bundles to hop at once so

that the overall bundle size is elongated along the direction of the jump (i.e.

transverse to the applied current) into a so called superbundle (see Figure 5.14).
To understand this it should be noted that the compressional energy comes only
from the vortices at the ends of the hopping region, whereas the energy gain due
to the hopping process is experienced by all of the bundles. The exact dimen-
sions of the superbundle have been determined by Koshelev [6] who equated the
shear, tilt and compressional energies created by the hopping process, including
the effects of the dispersive nature of the elastic moduli. The results show that
the dimensions of the superbundle depend on the magnitude of the field vja the
collective pinning lengths, and are given by

Rtt N trt ftr(,R;g :16<)
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&r ru 7t N+, ) < ftr 1R11- trt

where Rr a: .R" is the dimension of the superbundle in the direction perpendicu-

lar to the hop, r?11 is the dimension in the direction of the hop and trb (> .[") is the
dimension parallel to the field. The different regimes specified by the inequal-
ities mark the crossovers between small, intermediate and large superbundles

respectively, determined by the relative sizes of the vortex superbundle and the
screening length ). Within the small superbundle regime where the distortions
are over short length scales the dispersive nature of the elastic moduli is impor-
tant, whereas in the large superbundle regime all of the length scales are greater

than .l and the dispersive nature of the elastic moduli no longer matters.

The vortex glass behaviour derived above in the single vortex case was ob-

served to occur only in the low current region, but at the same time it was

shown that at low enough currents the intervortex interactions become impor-
tant. Therefore the intervortex interactions must be considered before it can be

concluded that the low current regime truly is a vortex glass. The interactions
can be included by combining the relationships between the length scales of the

superbundles (Equations 5.48) with the scaling arguments used above to derive

Err = 1u ry (?)"', Br<)<R', -.Lb
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the glassy behaviour in the single vortex limit. It turns out that the results are

similar to the single vortex case in that the activation energy diverges as the cur-

rent is reduced towards zero [6] i.e. the phase is indeed a vortex glass. The most

important difference is that the relationships between the bundle dimensions alter
the value of the glassy exponent pr in Equation 5.47 leading to

+, single vortex

;, small bundles

1, intermediate bundles

E, large bundles

(5.4e)

where the single vortex result has been included for comparison. These results

are applicable when the hopping length is less than the flux line lattice constant

as. When the current is very low the optimal hopping length can grow to be

greater than a6 which results in a value p : Il2 [100]. Other results have been

obtained for pl in the various regimes using slightly difierent approaches, but in
every case p is greater than zero so it can be concluded that the elastic vortex

lattice in the presence of disorder is always in a glassy state.

So far all of the results in this section describing the activated vortex motion
have been for the isotropic three'dimensional case. Once again these results can

be carried over into the weakly anisotropic regime by transforming the elastic and

pinning energies according to the scaling laws of Blatter et a/. (Bquation 5.6). As

in the collective pinning theory it should be remembered that the uniaxial nature

of the anisotropy separates the shear and tilt modes into components parallel

and perpendicular to the layers, but overall the results are not qualitatively

different to the isotropic case. On the other hand the strongly anisotropic case

where the layers are effectively two-dimensional turns out to be considerably

more complicated, and will be treated separately in Section 5.3.5.

5.3.4 Vortex Glass

The vortex glass behaviour discussed above applies only to the case of a vortex

solid with well defined elastic properties. In Section 5.3.1 it was stated that the

elastic properties of the vortex solid are preserved in the presence of disorder

even if the long range order is destroyed, a result which is clearly crucial to the

existence of the vortex glass state. On the other hand it has also been shown
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that the vortex solid can melt into a vortex liquid over a substantial portion
of its phase diagram, and in this case the elastic properties of the lattice are

destroyed. A description of the way in which the vortex liquid freezes into the
vortex glass was first provided by Fisher [a3j and subsequently by Fisher, Fisher
and Huse [aa]. The vortex glass freezing transition is described in terms of two
exponents, v and z. The exponent z describes the divergence of the vortex glass

correlation length €rs as the freezing temperature ?, is approached according to

6,s x lT -Tnl-' (5.50)

At lengths greater than {,0 thermal fluctuations upset the scaling behaviour in
the activation energy which gives rise to the glassy behaviour. Therefore, at
temperatures above Q where this length remains finite, the activation energy

does not diverge at small currents where large distances are probed. The second

exponent z characterises the dynamic response of the system according to

r,c 6 €1s (5.51)

where z,n is the relaxation time of the vortex system which describes the time
scale needed for the vortices to search out new metastable states. Combining
these two equations with a simple dimensional argument ,,2,441shows that the
electric field E should depend on the current according to

E x {nQ+t)"*(r€3;t ) (5.52)

where D is the dimensionality of the system and ea${!n-l) and e_(j(,1-t) are

two universal scaling functions relevant for temperatures above Tn and below Q
respectively. At low currents the transition temperature Q marks the crossover

between linear resistivity in the vortex liquid given bV p(f) c (" - To)v(z*z-Dl ,

and non-linear resistivity in the vortex glass given bV p(?) c< exp-c(j" /il' (c :
constant)lE. As the cunent is increased the length scale probed (i.e. the distance
between the metastable pinning states) becomes smaller than the vortex glass

coherence length, and then the electric field has a power law dependence on the

applied current. Above ?, the crossover current density separating the linear

and the power law behaviour is given bV fJ o( (7 - T)'@-r), whereas below ?,
the crossover cument separating the glassy and power law behaviour is given by
j; o (Tn - T)u@-r1. Exactly at T : Q the current-voltage characteristic shows

l8Note that the divergence in the activation energy at vanishing current is the same as that
derived earlier in the collective creep model (see Equation 5.47).
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a power law behaviour at all currents given by E oc j@+L')/(D-r).

This approach describes a continuous vortex glass freezing transition in the
presence of disorder which is in contrast to the first order melting transition
observed in the clean limit. In both cases the melting transition is driven by the
thermal fluctuations of the vortices, but in the vortex glass the sharp transition
is efiectively smoothed by the disorder into a second order transition [2]. A
further issue to consider is the relationship between the positions of the clean

limit melting line and the vortex glass transition line. As long as the disorder
is not too strong, as is generally the case when the pinning is due to random
point defects, then the efiect on the vibrational modes of the vortex lattice will
not be too greatln [6J. I" this case the vortex glass transition temperature will
correspond fairly closely with the clean limit melting line. At temperatures close

to I the vortex glass melting line is predicted to behave as Fle o. (?: -Tn(nyz",
withzs =ll++1.

The first experimental evidence for the existence of the vortex glass state came

from Koch et aI. ll70l who measured the current-voltage characteristic of thin
film YBa2Cu3O7-5 samples at several different fields and temperatures. Each

data set at constant field was plotted as a function of the coordinates

j : Jll- (Tlro1;"{t-ot

E : (E I J)lI - g lrsly@-z-zl (5.53)

to reflect the predicted scaling behaviour of the current and voltage (Bqua-

tion 5.52). As predicted by the vortex glass theory the scaled curves collapsed

neatly onto two functions ea and e- when the values v : I.7 and z : 4.8 were

inserted. Since then similar scaling of the current-voltage curves has been ob-

served in a number of samples including single crystals of YBa2CugOz-o [1111

and Bi2Sr2CaCu2Os+, [112], BizSrzCaCuzOa+o tapes [113], and also a-MqSi
films [114], but there is some spread in the values of y and z used to obtain

the scaling [115].

5.3.5 Plastic Deformations and Flux Motion

The above description of thermally assisted flux flow was based entirely on the

consideration of elastic deformations of the vortex lattice. It is also possible for

leln the opposite case of strong pinning (".g. by extended defects) the melting line may
actually be shifted in position by a considerable amount. For a discussion of this situation see

Ref. [6].
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flux motion to occur via plastic2o deformations where some parts of the vortex
matter move with greater velocity than other parts so that the vortices actually
change sites within the lattice. Several different types of plastic flux flow can

be identified, such as "ice-like" and "river-like" motion. Ice-like flux flow oc-

curs when the motion involves large flux bundles moving plastically through the
relatively stationary vortex lattice, in a similar manner to which closely packed

floating ice moves. River-like or filamentary flux flow is somewhat similar to
ice-like flux flow, but it occurs when preferred paths for flux motion exist in the
sample. This kind of flow may be caused by the existence of extended defects

which channel some of the vortices along river-like paths through the surrounding
stationary flux lattice.

These types of flux motion have been observed in several different systems

such as two-dimensional o-MoGe3 films [8,9], three-dimensional single crystals
of the weakly layered superconductor NbSez [11,12,112], and also yBa2Cusoz_r

crystals with twin boundaries [14]. At low currents the flux creep in these systems

is elastic in nature, but at currents close to the critical current j"theshear stresses

induced by the Lorentz force can be great enough to cause weakly pinned regions

to tear away from more strongly pinned regions of the flux line lattice. This
type of motion is most likely to occur at fields or temperatures close to the
melting line where the lattice softens considerably due to a decrease in the shear

modulus2l (see Equation 5.24). The crossover from activated motion to free flux
flow which occurs around 7" is therefore not smooth, but instead takes place in
an inhomogeneous fashion across the sample leading to steps in the resistance

measured as a function of field, temperature or current. The resulting ice-like or
river-like flux motion persists until suitably high currents are reached that the
entire flux lattice is depinned (see Section 5.3.8 below). At fields or temperatures
well below the melting line the flux lattice is much harder, so tearing of the lattice
is inhibited and the flux motion remains elastic in nature.

Another more complex type of plastic flux motion may take place through the
movement of dislocations in the vortex lattice. A dislocation in the flux lattice
can be compelled to move by an applied current in a similar manner to which

a dislocation in an atomic crystal can be compelled to move by a strain applied
to the crystal [116] (see Figure 5.15). As will be discussed below the activation
barriers for this kind of flux motion are relatively small, so thermally activated

20A plastic deformation is defined as one where the restoring elastic forces are overcome and
a permanent and irreversible change in the lattice positions results [116].2lThis can also allow the vortices to better accommodate themselvls to the pinning potential
which leads to an enhancement in the critical current, the secalled "peak eflect" [11,12].
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creep of dislocations can compete with the modes of elastic vortex motion even at

low driving currents. The dislocations themselves may exist in the vortex solid

either due to thermal fluctuations of the vortex lines or due to the distortion
of the lattice by pinning forces. In both cases the dislocation structures which

can exist depend strongly on the dimensionality of the sample, and this in turn
affects the resistivity which results from their motion.

In the discussion of the decoupling transition in Section 5.2.5 it was noted

that thermally created free dislocation pairs are not thermodynamic objects in
strongly coupled layered superconductors i.e. their energy of creation is infinite
in a bulk sample. Instead they must be bound in quartets which introduce no

net flux into the system, so their motion is not expected to give rise to any dis-

sipation. In a 3D sample the collective pinning theory predicted that disorder

leads to the appearance of dislocation loops on length scales greater than R" [44]
(see Marchetti and Nelson [101] for a picture of a dislocation loop), where Ro

is the length over which the disorder induced deformation of the vortices be-

comes greater than the intervortex spacing as. However such dislocation loops

carry no net flux either, so like the quartets their motion cannot give rise to
dissipation. On the other hand recent double sided decoration experiments [118]

do provide evidence for the existence of free dislocations in 3D samples, which

could presumably move and cause dissipation. It is thought, though, that these

dislocations are only metastable remnants of the disordered liquid state which

have been frozen in upon cooling below the melting line. An applied current may

allow them to move to the edges of the sample, efiectively annealing the vortex

solid and removing the defects. Of more interest are the recent experiments of
Abulafia et al. lIlgl in which magnetisation measurements on three-dimensional

YBa2Cu3O7-5 single crystals showed evidence for a crossover from elastic vortex

motion at low fields and temperatures to plastic vortex motion involving dislo-

cations at higher fields and temperatures. Interestingly both the elastic and the

plastic activation barriers showed a glass-like current dependence.

The situation in two dimensions is somewhat different, because in two dimen-

sions net flux can be introduced into the system by thermally created dislocation-

antidislocation pairs (see Figure 5.6). In Section 5.2.4 it was shown that these

pairs unbind above a critical temperatureTlD causing the vortex solid to melt

into a vortex liquid. Below f]! it is also possible for the bound dislocation pairs

to move through the vortex lattice under the influence of an applied current lead-

ing to net flux transport and therefore dissipation. The activation barrier which

must be overcome to create a dislocation-antidislocation pair can be written as



5.3. FLUX PINNING AND VORTEX DYNAMICS

t
ffi

tm

Figure 5.15: A depiction of the motion of a two-dimensional dislocation under the influence
of a Lorentz force. In a three-dimensional sample such dislocations appear only as dislocation
loops of finite size which carry no net flux.

Up=2ea(r)+zt, (5.54)

where Zea(r) is the interaction energy of the two dislocations separated by a
distance r (see Equation 5.22) and 2t. = ald,ls{3r'poAZu is the core energy [6,
69, 102]. The interaction energy increases with the size of the dislocation pairs so

the defect density is dominated by small pairs of approximate size as. Feigel'man
et al. 169] have calculated the thermal concentration of such dislocation pairs and

thereby determined the resistivity which results from their motion as
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p(\ = "pfi#e-2EclkBr (5.55)

where pfi is the flux flow resistivity (Equation 5.30) and a is a numerical factor
of the order of 10. The dislocation pairs may also experience a barrier against

their motion from the Peierls relief [69] which results from the fact that the

dislocation pairs propogate through the lattice in a hopping fashion rather than
at a constant velocity (see Figure 5.15). This can be accounted for by adding a
factor to the core energy such that t" 4€"* €p"i"rto, although this correction is
relatively small and can reasonably be neglected.

In the presence of pinning forces the dislocation pairs wili experience a further
barrier against their motion on top of the creation and Peierls energies. The pin-

ning barrier for a dislocation of size a6 is of the order22 of 6U = U!(asl$ r/2 
[Og],

?zThis estimate is arrived at by considering the collective pinning energy of all of the vortices
which must be displaced for the dislocation to move a characteristic distance as.
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where U"0 is the collective pinning energy of a single pancake vortex (Equa-
tion 5.34), but generally this pinning barrier is much less than the formation
energy 2€" and can also be neglected. A more important correction to Bqua-

tion 5.55 comes from the fact that dislocation-antidislocation pairs are also cre-

ated in finite numbers by the quenched disorder in the sample [120]. Balatskii
and Vinokur [121] (see also [102]) have taken an average over the disorder in the
vortex solid to determine the resistivity which results from the motion of disorder

induced dislocation-antidislocation pairs, leading to

P air(T) = P il "-"€'/ 
o2 -o I kBT (5.56)

where o - U!(a6lilt/' is the variance of the random pinning potential experi-
enced by the dislocation pair. At low enough temperatures the density of disorder

induced defects will become equivalent to the thermally created density, at which
point Equation 5.56 for the resistivity will take over from Equation 5.5b.

Finally, in the presence of disorder there is also the possibility of the creation
of unbound dislocations even below the BKT melting line [69]. A dislocation
displaces the vortices around it by an amount which decreases with the distance
from the dislocation. Beyond a distance l% - alll the displacement of the
vortices becomes less than the scale ( of the pinning potential, so that the vortex
positions are dominated by the quenched disorder rather than the thermally
created dislocations. Thus, collectively pinned bundles at distances greater than
Ro from the dislocation are not affected by the dislocation, effectively cutting
off the logarithmic interaction between dislocation pairs at a distance Fd + R?o

where RID is the two.dimensional collective pinning length. The cutoff means

that the energy needed to create a free dislocation is now finite and given by

(5.57)

Dislocations separated by less than Ro + R?o will still interact in the usual

manner and remain bound below ?flD, but when the disorder is strong so that

Rlo = ds most of the dislocations will be unbound. In this case the substitution
(R?o loo + aol) * ool€ x 1ffi can be made and the activation energy for

the creation of a free dislocation is

rra;,=ffir'(#) (5.58)

where Ho = f/"2 is a characteristic field at which U4;5 goes to zero. An activa-

tion energy of this form has been observed in a variety of a-MoGe films with a
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high degree of disorder in the vortex lattice 123,251, and also in very anisotropic
multilayers of YBarCu3OT/PrBazCusOz [22].

The most important thing about plastic flux creep is the fact that it destroys

the vortex glass behaviour in two dimensions [69,102]. While the barriers against

elastic flux motion diverge at low currents in both two and three dimensions23, the
plastic barriers associated with dislocation mediated flux creep remain finite in
two dimensions, leading to a non-zero linear restivity even at the lowest currents.
These ideas have been developed into a two-dimensional vortex glass model [44]
in which the vortex glass phase transition occurs only at T : 0. The two.
dimensional vortex glass correlation length diverges as ? : 0 is approached

according t" €?,? x rfTvzo with the predicted value for the exponent u2p eetal
b 2 [ A]. Plastic vortex motion gives rise to a linear restivity at low currents until
the length scale probed by the current becomes smaller than {jnD, or equivalently
until the (current dependent) elastic activation energy becomes less than the
plastic activation energy. The current density above which non-linear resistivity
sets in is given by

Jnt N knTlOo€?,? o7t*uzo (5.5e)

This differs from the corresponding prediction in the Anderson-Kim flux creep

model where the non-linearity sets in when the argument of the sinh function in
Equation 5.42 becomes of the order of unity, yielding Jnt x T. Below Jnt the
resistivity associated with the motion of dislocation pairs varies with temperature
according to

.R x exp l-Qolr)ol (5.60)

with 7o a characteristic temperature and p a constant of the order of unity. In
the two-dimensional vortex glass model the BKT melting transition still takes

place (see Section 5.2.4), but unlike the transition in three dimensions the rwo-

dimensional melting transition does not mark the boundary between the liquid
and the glass. Instead the BKT melting line marks only a transition from the
vortex liquid to a stronger pinning state in the vortex solid where the resistivity
is due mainly to the motion of dislocation-antidislocation pairs. A crossover from
three-dimensional to two-dimensional vortex glass behaviour has been observed

by Dekker et al. [123] as the thickness of a series of YBa2Cuaor-a films was

23The two-dimensional glassy exponents p actually differ from the corresponding three-
dimensional values (Equation 5.49) [122], but as the glassy behaviour is cut off by plastic
vortex motion in two dimensions the exact values of the exponents are not experimentally
accessible.
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decreased from 3000 A to tO A. lh" scaling form

(5.61)

was used to collapse the data from the thinnest sample onto a single universal

curve, thus demonstrating the growth of the two-dimensional vortex glass coher-

ence as the temperature decreases towards zero. More recently Wen el al. [2 ]

have observed similar behaviour at high fields in Tl2Ba2CaCu2Os thin films.

5.3.6 Flux Motion in the Vortex Liquid

It was assumed above that in the vortex liquid the activation barriers go to

zero and the resistivity is given simply by Equation 5.30 for free flux flow. The

motivation for this assumption is the fact that in the liquid the thermal disorder

of the vortices is expected to completely average out the pinning forces, however

just above the melting line this assumption does not neccessarily hold. To see why

this should be it is neccessary to consider in more detail the difference between

the vortex liquid and the vortex solid.

The vortex solid has an inhomogeneous structure which interacts with the

pinning forces to yield a non-zero critical current. In the vortex liquid, on the

other hand, the shear modulus goes to zero so there is no long range order in

the vortex structure. The thermal disorder in the liquid means that the vortices

average out the pinning forces and the critical current for vortex motion is zero.

Just above the melting line, however, where the thermal energy is only slightly

greater than the elastic energy, the vortex liquid is very viscous in nature so

thab it preserves its structure on short time scales. As long as the time scale

over which order persists is longer than the characteristic time scale over which

the vortices interact with the pinning potential then the vortex liquid will not

completely average out the pinning2a. The effectiveness of pinning in the vortex

liquid just above the melting line leads to a thermally activated resistivity rather

than free flux flow [125].

A possible origin of the high viscosity lies in the barriers against plastic defor-

mation which stem from the entangled nature of the 3D vortex liquid [80]. In the

entangled vortex liquid the flux lines are efiectively braided together such that in

order to move a flux line must cut through other vortices. This leads to a finite

shear viscosity which (at low frequencies) behaves in a similar marrner to the

shear modulus of the vortex solid [6,126]. The plastic motion can be considered

zaNote the similarity between this line of argument and the consideration of the divergence

of the relaxation time (Equation 5.51) in the vortex glass model.

'r"*of(+)'f :a(#r)
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to occur through the addition of vortex loops to the flux lines of approximate
size equal to the lattice constant as (see Figure 5.L2),, thereby transferring the
vortex segment to a new lattice site. The relevant plastic activation barrier Upr

has been calculated lL25,L27l to be
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(5.62)

An alternate explanation for the plastic activation energy has been suggested by

Tinkham [128] where the barrier is related to the energy required to slide a row

of flux lines past au adjacent stationary row. The minimum number of flux lines
which must be moved scales as afr leading to an activation energy of the form

,,- oSoo ^-7"-Tupt'= r"Mx 11rn.

(Ipt=ryW (5.63)

where B is a parameter of order unity. Note that the plastic activation barrier
itself is not enough to ensure a thermally activated resistivity, but pinning must
be involved to prevent the entire viscous liquid from moving at the flux flow
velocity.

As the temperature increases the vortex liquid becomes less viscous so that
the time scale over which the vortex structure persists is no longer greater than
the characteristic pinning time. The thermal disorder then averages out the
pinning forces and the usual flux flow resistivity results. In the two.dimensional

case where the melting transition is mediated by the unbinding of dislocation
pairs the activated motion in the vortex liquid corresponds to the plastic motion
of the unbound dislocations.

5.3.7 Parallel Fields

It has already been shown in Section 5.3.1 that the critical currents can be

strongly enhanced by the intrinsic pinning of the layered structure. In this sec-

tion a brief discussion will be given of the manner in which the vortices move

under the influence of an applied current when the field is directed parallel to
the ab plane. Attention will be restricted to the case where the current also lies

in the ab plane so that the Lorentz force on the vortices is along the c direction.

Ivlev and Kopnin [129,130] have examined the parallel field creep of vortices

in the case of relatively weak anisotropy and have obtained the relevant activation
barriers. At low current densities they find a glassy response (i.e. U x (j"lj)r)
with the exponent p equal to 1. At high currents the activation barrier is of the

Anderson-Kim form described above with a linear current dependence.
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Figure 5.16: The parallel field thermally activated hopping process in a strongly layered su-
perconductor. (a) A double kink structure which provides the hopping nucleus. The dark circles
represent pancake vortices cutting through the superconducting layer. (b) The current forces
the pancake vortices in the double kink apart causing the entire vortex line to be transferred
to the next layer.

In the opposite case of strong anisotropy Chakravarty et al. [131,132] have

shown that rather than a vortex loop the optimal hopping unit is better de-

scribed in terms of a double kink structure as shown in Figure 5.16(a). This
can be thought of as a pair of oppositely charged pancake vortices connected by

Josephson strings, somewhat similar to the vortex-antivortex pairs described in
connection with the zero field BKT transition in Section 5.2.2. The addition of
the double kink transfers part of a vortex or vortices into the next layer. Because

motion of the vortices is easiest within the planes the current then acts on the
portion of the vortex loop directed perpendicular to the layers, causing the loop

to grow along the field direction until the entire flux line has been transferred to
the next layer (see Figure 5.16(b)). Once again the current dependence is found

to be glassy with an exponent F :2.

5.3.8 High Current Regimes

The above sections have provided an extensive review of current driven vortex

motion for all currents up to the critical current j.. As the current approaches j"
the vortices approach the flux flow regime, although the pinning forces still give

rise to some disorder in the moving vortex lattice. Koshelev and Vinokur [133]

investigated the behaviour of these defects in two dimensions as the vortex ve-

locity increases in response to higher and higher currents. They noted that, in
a similar manner to the thermal depinning discussed above (Section 5.3.2), as

the vortices move faster they tend to average out the pinning forces. The vor-

tex velocity therefore acts like a finite "shaking temperature", and at a certain

velocity the pinning forces are averaged out completely and the defects in the

vortex lattice heal. Koshelev and Vinokur referred to this as a "crystallisation
transition". Evidence for an inceased ordering of the vortex lattice at high driv-
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ing currents has been observed in thin films of Mo3Ge [8,9] and also in single

oystals of NbSez [13,117].

5.3.9 Larkin-Ovchinnikov Instabilities

A much more dramatic transition in the rapidly moving vortex system has been

predicted in both two and three dimensions by Larkin and Ovchinnikov (LO) [1b,
161. LO investigated the eflects of the electric field produced by the moving
vortices in the flux flow regime, where the vortex velocity is determined by the
balance between the driving Lorentz force and the vortex viscosity2s. They found
that the electric field shifts the nonequilibrium distribution of quasiparticles in
the vortex core to higher energies, causing some of the quasiparticles to escape

into the surrounding superconductor. This in turn causes the vortex core to
shrink and the viscuous drag coefficient 4 is reduced according to the formula
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?(0)q(u) :
| * (ulu.)2 (5.64)

where u is the vortex velocity, 7(0) is the damping coefficient at u : 0 and u" is

the critical vortex velocity at which the maximum damping force 4u* occurs. Aoy
increase in velocity past the critical value causes a reduction in the damping force,

further perpetuating the velocity increase and thus the vortex system becomes

unstable at the critical velocity. The critical velocity is determined by the formula

* 2 D[l4C(3)]1lr(t TlT")t/2
(5.65)

tt ttn

where p : (u1(.)/3 is the quasiparticle diffusion coefficient with uy the Fermi
velocity and / the electron mean free path, 4,, is the inelastic-scattering time of
the quasiparticles and ((3) = I.202 is the Riemann ( function of 3. It should

be noted that this critical vortex velocity and the current .I* where it occurs

are expected to be independent of the applied field 11. The voltage when the
instability occurs is related to the critical vortex velocity by

V* : F,su*HL (5.66)

where ,L is the length between the voltage probes.

The original LO instability theory predicted a field and current independent

criticai vortex velocity u*, however finite heating effects in the vortex core at the

high vortex velocities required to observe the instability have been predicted to

25The origin of the finite viscosity was discussed briefly at the start of Section 5,3.
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cause a decrease in the observed value of u* as the field is increased [134]. The

degree to which the measured u* is affected depends critically on the rate at

which heat can be removed from the cores. A similar field dependence of u* has

also been predicted by Doettinger et al. [135], but in this case the prediction is
related to the lack of spatial homogeneity in the quasiparticle distribution due to
the discreteness of the vortex cores. At low fields // the field dependence of the

critical vortex velocity is predicted to behave as H-r/2. As the field increases the

intervortex spacing o6 becomes smaller than the distance travelled by the vortices

over a time equal to the electron inelastic scattering time, so the quasipa.rticle

distribution is effectively homogeneous and the critical vortex velocity is no longer

field dependent.

LO instabilities have been observed in a variety of systems including highly
disordered thin films of Al, In, and Sn [136,137], YBa2CusOz-o films [13b,138,
139], Bi2Sr2CaCu2Os15 films [140] and a-Mo3Si films [35]. Qualitative agreement

with the predictions of Equation 5.65 have been observed in one of the Ta/Ge

multilayer samples studied here where the inelastic scattering time z;,, was de-

termined independently from the normal state resistivity [141]. This sample is

discussed in Section 6.4. In all cases the samples which exhibit LO instabilities
have a high degree of electronic disorder and a short inelastic scattering time so

that the critical vortex velocity is experimentally accessible.

5.4 Summary

This extensive discussion of the theoretical predictions relating to the behaviour

of type-Il superconductors in a magnetic field has highlighted the complexity of

the vortex phases. In the next chapter these theoretical models will be applied

to the data from the Ta,Ge1-,lGe multilayers in order to try to understand the

relationships between the vortices and the various parameters characterising the

multilayers.



Chapter 6

Results and Discussion

As mentioned in Chapter I amorphous Ta"Ge1-rlG. multilayers represent a,n

ideal system in which to study the magnetic phase diagram of layered supercon-

ductors with variable anisotropy. In particular such a study gives considerable

insight into the role of the layered structure in determining the superconduct-

ing properties of the high-?i cuprates. This chapter presents the main results

obtained from the investigation of the Ta,Ge;,lGe multilayer system, starting
with the determination of the upper critical fields of the samples and the rele-
vant superconducting lengths. Following this the vortex states are investigated
for samples with a wide range of layer thicknesses, and finally special attention
is paid to the behaviour of the vortices in the presence of high driving currents.

6.1 Fluctuation conductivity and critical Fields

In this section a detailed analysis of the fluctuation conductivity is used to de-

termine Hc2Lt and from this the in-plane coherence length {"6 and the in-plane
penetration depth Ao6 of each of the samples are obtained based on the theoretical
models presented in Section 5.1. The out-of-plane values $ and )" are similarly
obtained from ff"211, and the ratio of the in-plane and out-of-plane coherence

lengths is used to define the anisotropy .),.

Figure 6.1 shows plots of the zero field resistive transitions of some of the most
carefully studied samples. The approximate fractional width of the transitionr
LT"f T. varies between 0.013 and 0.17, with the broadest transitions tending to
correspond to the samples with the thinnest superconducting layers. This shows

that an accurate determination of I cannot be made by inspection only, as the

lA?i is measured between l0% and 90% of the normal state resistance, and an initial
estimate of T" is taken from the midpoint of the transition.

103



CHAPTER 6. RE9UI,TS AND DISCU.SSION

r0q

T(K)

253
Trc

104

o5

250

200

. :150

e
!E loo

50

o

E&l

e00

s50

?00

€ rso
E

t00

50

0

7,Gl

&
200

l50t

eE too

50

o

1Q

m

tr
cl
E/|o

n

o

e
E

aoo

350

900

I
€ aoo
* 

r5o.

{-m

50

0

3m

ffi

@o

€m
tg

100

60

o

ro

T (K)

E

r(n

L5
T(lg

o
G

r,515r

zF.
T(KI

8&5
T(R

Figure 6.1: The resjstivs traueidon o-f .a selectioa of the samples in zero applied magnetic
field. The solid lin€s are flts to the two-dimeiuional zero field fluctuation condnctivity.

2e,cc1

2,Wl

5lB2

6rB2



6.1, FLUCTUA?/ON CONDUCTIVITY AND CRITICAL FIELDS 105

results depend on the criteria used; for example the zero resistance point can differ
from the top of the transition by more than I7%. To gain a better understanding
of the transition the fluctuation conductivity of each of the experimental data sets

has been fitted to the theoretical forms given in Equations 5.13 and 5.14, as shown

by the solid curves in Figure 6.1. To obtain the normal state resistivity in the
fluctuation regime the resistivity at higher temperatures has been extrapolated
back towards zero. The temperature coefficient of the resistivity is very small
for these highly disordered samples (between -0.1 and -l.salK) [12], so the
normal state resistivity actually changes very little around the transition region.

Both the 2D and 3D forms for the fluctuation conductivity were fitted to
each curve, with I and the coefficient of the temperature dependence the free
parameters (see Equations 5.13 and 5.14). At high temperatures there is little
difference between the two fits, but in almost every case the 2D form fitted better
at temperatures close to I so only the 2D fits have been included in Figure 6.1.

This can be understood by noting that at zero temperature the length scale of the
fluctuations {16 is about the same size as the thickest superconducting layers (see

below), and diverges as 7" is approached, so the samples are not three-dimensional
with respect to the individual layers at these temperatures.

Figure 6.1 also shows that in most cases the measured resistivity deviates

from the fitted curve as the resistivity approaches zero, with the measured value

going to zero much more slowly than the fitted value. This behaviour is ex-
pected due to the Berezinskii-Kosterlitz-Thouless transition which occurs in two-
dimensional samples (see Section 6.2 below). One notable exception to this rule
is sample T lGI in which the 2D fluctuation conductivity form fits extremely well
at temperatures above about 2 K, but the measured resistance actually goes to
zero faster than the fitted curve. Sample 7/G1 has moderately coupled super-

conducting layers, so it is likely that the observed behaviour is due to a 2D to 3D
crossover occurring as the perpendicular coherence length {"(T) increases beyond

the interlayer spacing as the temperature approaches ?". The 3D form for the

fluctuation conductivity does indeed fit this sample well close to 7", and although
the data range is very small so that the fitted coefficient of the temperature de-

pendence is highly uncertain, the 3D fit probably gives a better estimate of I
than the 2D fit. The samples 60/3G1 and 60/3G4 which also have fairly strongly
coupled superconducting layers do not show this behaviour, possibly because of
their thinner superconducting layers, or perhaps due to the presence of a higher

degree of inhomogeneity in these samples which broadens the transition slightly.
The single layer alloy sample 2lG6 has a thickness of approximately 600 A which

is considerably greater than ("a(0), however it does not fit the 3D form close to
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Sq,mple 7: (K) Fitted Slope
(xlo-s Q-t1

29/2G4

30l3G4

3212G1

33/1G4

36/2Gl

60l3G1

60/3G4

2lG6

5/G1

5lG?

6laa

7 /G-!,

0.882

1.021

1.162

r.440

1.661

x.825

2.8A2

2,267

2.280

2.662

1.85{ (1,886)

0-.8

0.3

1.8

0.6

9.6

2,.0

3.3

3.0

1.1

s.0

6,3

Table 6.1: Pararneters derived frorn the fitting of bhe zero field fluctuation eonductivity to the

'theorctieal formo given in Equetions ,5.1S end 5.["4. Tbe t] va-luee a,re' fiorn the flt to tbe ?D
form of the ffuctuation conductivifir except for sanp,lb fiGl where the $D value hae also be6n
included in pa,rentheeie. The fitted elopea, which a,re also all from the 2D fite, are all reasonably
closc to tbe theoretically predicted value of L5 x l0-'s.
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I either. This is because close to 4 the coherence length grows rapidly so that
it exceeds the total layer thickness, and the sample is only three-dimensional well
above 7. where either form for the fluctuation conductivity fits fairly well.

The results from the fitting are displayed in Table 6.1. No values are recorded

for sample 32l2GL because it showed a clear double transition indicating a very
strong degree of inhomogeneity in the sample. Only the I values from the fits
to the 2D fluctuation conductivity are shown, except for sample 7/G1 where

the value from the 3D fit is also shown in parenthesis. The fitted coefficient of
the temperature dependence of the 2D fluctuation conductivity (the "slope" ) is
also included, which can be compared with the value e2lt\h: l.b x 10-5o-1
predicted2 by Equation 5.13. Note that the fitted value of the slope has been

modifi.ed to take account of the number of layers and the area of the conduction
path. Considering the fact that the quality of the fit is not especially sensitive
to the value of the slope the agreement is quite reasonable, with all of the fitted
values falling within an order of magnitude of the expected result. Overall the
fitting of the zero field fluctuation conductivity gives a consistent determination
of tlie T" of each of the samples, and shows that the simple Aslamasov-Larkin
form for the fluctuation conductivity describes these highly disordered samples

quite well.

Now that the 7l values of each of the samples have been determined from the
zero field fluctuation conductivity the scaling forms presented in Equations 5.15

and 5.16 can be applied to the in-field data to determine the upper critical fields
of the samples. In two-dimensional samples H"zr is predicted to be iinear in
temperature only for a field perpendicular to the layers (see Section 5.1), so

the perpendicular upper critical field of each of the samples will be considered

first followed by a separate treatment of the parallel upper critical fields. FiS-

ures 6.2(a) and 6.2(b) show the resistive transitions as a function of temperature
for samples 6/G2 and 7/Gl respectively, with each curve corresponding to a dif-
ferent perpendicular applied field. The transitions for each of the other samples

are qualitatively similar to the two shown, with the most striking feature being

the field induced broadening of the resistive transition which results from vortex
motion below Hczr The maximum amount of broadening tends to correspond

to the samples with the thinnest and least strongly coupled superconducting lay-

ers. This broadening makes a determination of the upper critical field from the

resistive transition even more difficult than in the zero field case, necessitating

2The expected value does not include the superconducting layer thickness d, because in a
thin film of finite thickness the experimentally measured quantity is otd, rather than the actual
2D conductivity a' [2].
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Figure 6.2: (a) Resistive transitions in a perpendicular applied field for sample 6/G2. Flom

right to left the curves correspond to fields of 0,0.1,0.3,0.7, 1.0, 1.4 and 1.8T. (b) Resistive

transitions in a perpendicular applied field for sample 7/G1. From right to left the curves

correspond to fields of 0, 0.003, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 0.9T. (c) The data from sample

6/G2 transformed according to the 2D fluctuation conductivity scaling laws. (d) The data

from sample 7/Gl transformed according to the 3D fluctuation conductivity scaling laws. The

arrows on (a) and (b) indicate the position of H"zt determined from the scaling parameters.

the fitting of the fluctuation conductivity to obtain meaningful results.

In a similar manner to the analysis of the zero field data both the 2D and 3D

scaling forms for the in-field fluctuation conductivity (Equations 5.15 and 5.16)

have been applied to resistance data obtained both by sweeping the field at

constant temperature and by sweeping the temperature at constant field. The

normal state resistivity was determined from the data at higher temperatures in

the same manner as described above. Since 4 has already been determined the

only free parameter in both the 2D and 3D scaling is ,9r, the slope of the upper

critical fi.eld at T :7". The 2D form of the scaled fluctuation conductivity of

sample 6lG2 is displayed in Figure 6.2(c), and the 3D form of the scaled fluctu-

ation conductivity of sample 7/Gl is displayed in Figure 6.2(d). In both cases

the collapse of the data onto a single curve is quite convincing except at values

below zero on the x-axis where the resistivity is affected more by vortex motion

than by fluctuation effects. As was the case with the zero field results sample

I
I

I
t,

(c) (d)
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7/G1 showed better agreement with the 3D scaling form than the 2D form. Sam-

ples 60/3G1 and 60/3G4 showed similar scaling behaviour under either scaling

form with the same value for ,91, although in either case there was considerable

spread in the scaled data. All of the other samples were better describecl as

two-dimensional.

While the scaling theory seems to describe the fluctuation conductivity in a

perpendicular field quite well some further comments are required regarding the
validity of the analysis and the relationship between H621 and the resistive tran-
sition. The theory is strictly valid only in the lowest Landau level approximation
which holds only at high fields, however, as noted by Ullah and Dorsey, inclusion
of the higher Landau levels will not greatly alter the scaling forms [58,bg]. The
experimental results here show that the scaling is not significantly changed by
exclusion of the data from the lowest fields, so the relaxation of the lowest Lan-
dau level requirement does not seem to afiect the quality of the determination of
H"2L.

To determine the relationship between the resistive transitions and fI"zr the
position of the upper critical field has been marked as an arrow on each curve in
Figures 6.2(a) and 6.2(b). At higher fields H"21is seen to lie at a point close to
the top of the transition where the resistance starts to turn downwards rapidly,
a trend which is repeated in all of the samples. This shows that the in-field
resistive transition is determined by motion of the magnetic vortices over most
of its width. As the field approaches zero vortex motion no longer affects the
shape of the transition, so the position o{ H"21tends to correspond to a much
lower resistance. In the samples with the highest [, and in the samples which
were investigated in the dilution refrigerator so that temperatures well below ?i
could be achieved, the scaling of the perpendicular field fluctuation conductivity
is less convincing at the lowest temperatures. This is in agreement with the
Werthammer, Helfand and Hohenberg theory (see Section 5.1.3) which showed

that the upper critical field at low temperatures lies below the extrapolated high
temperature behaviour, so the linear approximation to H.21 should not be used.

The degree to which the data collapse onto a single curve under the appro-
priate scaling law depends on the sample, with some samples showing a larger

degree of scatter about the scaled curve than others. This is most likely due

to the difiering degrees of inhomogeneity, however in all cases it was possible to
unambiguously determine the optimal scaling parameters to within a reasonable

uncertainty. The results of the scaling fits to the perpendicular field fluctuation
conductivity are summarised in Table 6.2, where the uncertainty in ,S1 represents

the range over which it could be varied without significantly upsetting the scal-
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Sa,urple ,51 - -Wlr=n ("0(o) (A) .\"0(o) (A) E

NI%G 

3ol3G4

32/aGr

es/tGA

36/2G1

60/3G1

60/3G4

2lG6

5/G1

5/G2

6lG:2

7lG1

2.1t0.2

1.9+0.1

1.9+0.1

1.8+0.1

2.1+0.3

2.1+0,3

2.2+X.L

1.8+0.1.

1"9+0.1

133+6

i30*3

102+3

100+8

75f5

83+6

E1+2

83+2

96+3

17000+3000

16000+3000

20,000*3000

19000*3000

12000 2000

11000*2000

11000*2000

11000*2000

11000+2000

11000+200,0

14000*2000

80+20

70+10

70+10

70+10

90+20

80+20

90+r.0

80+10

90+20

Table 6"2; Pa'r,amcters dedv,ed ftora the oesllttg of the perpdigula,r field fluctuatioq conduc.
tivity.
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ing behaviour. The values determined for .91 can be compared to the theoretical
prediction [142]

where D is the electron diffusion coefficient which has been determined for pure
Ta/Ge multilayers to be about 10-4mzs-t [17]. Insertion of the values yields

Sr n: IT lK, in reasonable agreement with the measured values considering the
large uncertainty in D. ,5r has also been used to determine the in-plane coherence

length f"u(0) by extrapolating H"21back to Z = 0 according to

fi'o(o):

Finally the in-plane penetration depth

tionship [i42]

a 8ks
,)r - 

-

2neD

)"0(o) = r.o5 x 1o-3 (ff)'''

(6.1)

ZrT"SI (6.2)

Ao6 has been determined from the rela-

Os

(6.3)

where ps is the normal state resistivity extrapolated back to ? : 0. The
values of ("6(0) and ).6(0) are included in Table 6.2, along with the value of
the Ginzburg-Landau parameter at temperatures close to ?" determined3 from
rc : )"0(0)/1.63€"b(0) ll42l.

The determination of H"211 from the fluctuation conductivity is somewhat

more complicated. For samples with strongly coupled superconducting layers

H"211 is still expected to be linear in temperature close to I and the scaling

analysis can therefore be applied. For more anisotropic samples H"211is not linear
but instead shows a square root dependence on the temperature (Equation 5.10),

which at least necessitates a modification to the way in which the upper critical
field is inserted into the scaling laws. Furthermore the scaling laws have been

developed in such a way that the dimensionality is determined by the thickness of
the superconducting layers in the direction of the applied field. In a parallel field,

however, the superconducting layers may be extremely thin but still be extensive

in the field direction, so the dimensionality of the fluctuations is not so simply
related to the layer thickness. Finally, the presence of thick insulating layers tends

to allow the magnetic field to be screened completely from the superconducting

layers, so that the multilayer is effectively transparent to a parallel field. These

facts mean that the fluctuation conductivity scaling laws should be applied to

3The factor 1.63 arises due to the fact that the zero temperature values for Ao6 and {o6 have
been used to get the value of r close to [.



IT2 CHAPTER 6, RESULTS AND DISCUSS/ON

parallel field data with some caution, as the validity of the theory is questionable

in the case of strongly decoupled layers.

Before analysing the parallel field data it is also important to consider the
possible efiects of any misalignment of the field. For the samples measured in the
dilution refrigerator the field was directed along the axis of the fridge unit, and

careful mounting of the samples meant that the misalignment was less than 1o.

To align the field with the layers in the other systems a finite field was applied

to induce some resistance in the sample which was then rotated in order to find
the position of minimum resistance. This position was assumed to correspond

to the parallel field orientation, and could be determined with a.n accuracy of
better than 0.2o (note that this allows an equally accurate determination of the
perpendicular direction). The perpendicular component is therefore less than 2%

of the parallel applied field in the dilution refrigerator and less than 0.4% of the
parallel applied field in the other systems.

Figures 6.3(a) and 6.3(b) show the resistive transitions as a function of tem-
perature in a parallel applied magnetic field for samples 6lG2 and 7/G1 respec-

tively. Figure 6.3(c) shows the resistive transitions as a function of the parallel
applied field at fixed temperature for sample 60/3G4. It can be seen that the
critical fields are considerably higher than they were for the same samples in the
perpendicular field orientation. An attempt has been made to scale the paral-

lel field fluctuation conductivity for all of the samples where data was available,

however only for sample 7/G1 could a convincing collapse of the data be obtained

using a linear form for I/"21p. Once again the 3D form for the scaling laws pro-

vided better scaling than the 2D form for this sample. The fact that the parallel

field transitions of sample 7/G1 can be scaled shows that I/.211 fits the anisotropic

Ginzburg-Landau model, as expected for a sample with thin insulating layers.

Both 1/"211 and. H"21for this sample are shown in Figure 6.3(e). The value 11t1
obtained for 

^S11 
can be used to define the anisotropy according to Equation 5.7

which yields ? : 5,8 + 0.8.

The other samples with strongly coupled superconducting layers are 60/3G1

and 60/3G4, and possibly 33/1G4 and 36/2G1 although there was no perpen-

dicular field data for the latter two. Application of the 3D scaling laws to the

data from 60/3Gl and 60/3G4 showed some signs of a scaling collapse with
Sll : 3.0 * 0.2, but there was a considerable amount of spread in the scaled

data, particularly at low temperatures. It was noted, however, that the parallel

field transition curves of sample 60/3G4 show much less broadening than in the
perpendicular case, so the critical field can be extracted directly from the data

by defining H.211to be the steepest point on the transition. Although this defini-
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sample 60/3G1. There is a crossover from linear 3D behavior at low temperatures to 2D square
root behaviour at high temperatures, caused by the coherence length becoming larger than the
total sample thickness.

tion of the critical field has less theoretical motivation than the scaling approach

the narrowness of the parallel transitions ensures a reasonable degree of accu-

racy. The parallel critical field of sample 60/3G4 derived in this way is shown in
Figure 6.3(f), along with .[/"zr derived from the scaling laws. The uncertainties
in H"211are taken from the width of the transition. It can be seen that I/"211 is

approximately linear near 7: with slope Sll = 3.1 + 0.1, but there is a deviation
below the linear curve at lower temperatures. Once again this is in agreement

with the predictions of the Werthamer, Helfand and Hohenberg theory which
states that the upper critical field is only linear near 7}. The measured value

of f/"211(0) lies below the extrapolated linear intercept by a factor of 0.76*0.2,
which is close to the predicted value of 0.69, as noted in Section 5.1.3. For a
similar reason the linear I/"21 derived from the scaling laws has only been shown

for temperatures above 0.5 K; at lower temperatures the scaling deteriorates due

to the downturn in H"21. Thus the poor performance of this sample under the

scaling laws is probably related both to a rather large degree of disorder and, at
low temperatures, to the failure of the GL linear approximation to the critical
fields.

Sample 60/3G1 was analysed closely at temperatures above 1.3K in order

to complement the low temperature data of the similar sample 60/3G4. Fig-

ure 6.4(a) shows the parallel field resistive transitions as a function of temper-

ature for sample 60/3G1. As stated above there were signs of a parallel field

scaling collapse for this sample, especially at higher fields. At the higher fields

the value of H"2ll determined from the scaling always corresponds to a point near
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the sudden downturn in the resistance at the top of the transition curve, which
is in agreement with the results displayed previously for sample 7/Gl (see Fig-
ures 6.2(b) and 6.3(b)). To extract the low field //"211 from the curves which did
not scale well the position of the critical field on the transition was assumed to
follow a similar trend to the critical field of the other samples i.e. as the temper-
ature approachesT" H"2ll corresponds to a lower and lower resistance. Note that
the f{ : 0 value is equal to 7". The arrows on the curves in Figure 6.a(a) indicate
the position ol H"2ll extracted in this way. The resulting phase diagram is shown

in Figure 6.4(b) where the parallel field data points are from both field and tem-
perature sweeps. I/"211 is clearly linear at lower temperatures with Sll : 2.8t0.1,
but shows a marked change near I to a behaviour resembling a square root
dependence on temperature. Although the method used to determine f1"211 is

somewhat uncertain other definitions, for example using a constant resistance of
100 O, also yielded a similar crossover in behaviour.

Such a change in the temperature dependence of H"21 can be interpreted as

a dimensional crossover from linear 3D anisotropic GL behaviour at low tem-
peratures to 2D square root behaviour as predicted by Equation b.10. The
crossover occurs as 7: is approached when €"(f) exceeds the total thickness of
the sample. The temperature where this should occur can be estimated by set-

ting g(r) : E"(0)(1 -TlT")-t/2 equal to the total samplethickness and using
(.(0) : €"t(0)h where I : Slll S: - 1.5 +0.1. This gives the expected crossover

temperature as 1.656 * 0.002K, which corresponds fairly closely to the observed

crossover point. Furthermore the points above the crossover have been fitted to
the thin film expression for I1"211 (Equation 5.10), where the only fitting parameter

is the coefficient of the temperature dependence of the critical field (which is equal

to F/"211(0)). The fitting gives 11"211(0) : 2.t + 0.3, in reasonable agreement with
the theoretical value of t/nOoll2trdag6(0)] = 1.0 * 0,1 where dt - 1200 + 100A

is the total film thickness. These results strongly support the interpretation of
the change in the critical field behaviour as being a dimensional crossover.

When the scaling laws were applied to the parallel field data of samples

33/1G4 and 36/2G1 only 36120r showed signs of a scaling collapse with 5;; :
19 t 1, although, as for samples 60/3G1 and 60/3G4, there was considerable

spread. Determination of 11"211 using the method desoibed for sample 60/3G4
above also yielded a linear curve with slope 19 + 1. Since there was no perpen-

dicular field data available for this sample ,S1 can not be determined, but by

assuming it lies within the range of the other samples the anisotropy can be de.

termined as 'y = 10 t 2. Surprisingly, the parallel critical field of sample 30/3Gl
determined in the same fashion also showed linear behaviour with .911 : 14 * 1,
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implying an anisotropy of 7.4 + 0.9. This could indicate that sample 30/3G1

has flnite interlayer coupling despite the relatively thick Ge layers, although this

seems unlikely. No parallel field transition data were available for the single layer

sample 2lG6 which would be expected to show isotropic Ginzburg-Landau be-

haviour at low temperatures and may also have shown a dimensional crossover

near 7".

It was not possible to achieve good parallel field scaling behaviour for any of
the other samples with relatively thick Ge layers. There was, however, consid-

erably less broadening of the resistive transitions in this orientation as demon-

strated by the data for sample 6lcz shown in Figure 6.3(a). Therefore, as was

the case for sample 60/3G4, H"211can be determined from the steepest point on

the transition without introducing too much uncertainty. Figure 6.3(c) shows a

plot of both f/"zr and I1"21g for sample 6lG2 where I/"211 has been determined

from the steepest point of the transitions in both field and temperature sweeps.

The uncertainties determined from the width of the transition are too small to
be visible. The solid line througy H.zll is a fit to Equation 5.10, where once again

the only fitting parameter is the coefficient of the temperature dependence of
the critical field which is equal to I/"211(0). The fitted value 6.9 is in excellent

agreement with the predicted value tfr,OollZ"d"("a(0)l :7 L 1 based on the
values previously determined for $6(0) and d", indicating that the alloy layers in
this sample behave as individual 2D superconductors.

The parallel critical fields of samples 5/G1 and 2912G4 were determined in

a similar fashion to sample 61G2, and both of these showed the same square

root dependence on temperature characteristic of 2D behaviour. Similarly sam-

ple 33/1G4, which did not obey the scaling laws despite the relatively thin Ge

layers, was found to show a square root temperature dependence of I{*211. The

fitted values for f1"211(0) for samples 5/G1 and 2912G4 were equal to 17.5 and

16.5 respectively, and for sample 33/lG4 I/"211(0) : 17.0. For sample 5/Gl the

theoretical value based on Equation 5.10 is 23 * 5 which is reasonably close to

the fitted result, but for samples 2912G4 and 33/lG4 the theoretical valuesa are

50 + 5 and 35 * 6, which are considerably higher than the fitted results. It was

also noted that while the transitions as a function of field for sample 2912G4

were sharp at low temperatures there was considerable broadening at tempera-

tures close to ?,, a feature which may be related to the discrepancy between the

fitted and expected values of I1"21g(0).

The results of the investigation of the parallel critical fields are displayed in

4To compare the value of H"211(0) for sample 3311G4 with theory it was assumed that {o6
was within the range of the other samples.
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Table 6.3, The dirneneionality refers to the obeerv.ed behaviour of Ifal o not the re-

sults sf the fluctuation conductivity scaliug. The measured aad theoretical rralues

of I{21(0) a,re shovvtr ody for the sa,nrpleo which displayed two-dinreneional be-

haviour. From the results it ca,!, be concluded that thre,e-dir,nensional behaviour
is enhanced by thiuner Ge layers, Comparison between samples 36/2G1 and
33/1G4, which have comparable Ge layer thicknesses, showa that the efiective
interlay,er coupling is also enhanced by increasing the thicknesg o{ the suDer-

couducting layers. The overall picture is as follo$rs: increasing the insulatitg
layer thickuess: ncrease€ the anisotropy and thua ra,ises If"21 until the 2D limit is

reached. In the 2D limit increasiag the zupeieonducting layer thickness causes a
decrease in l/.rg1o as predicted by Equation 5.10, Similarly, in coupled. multilayers
increasing the superconducting layer thickness auses a decrease io trI"zll due to
the decrease in the anisotropy-



118 AflAPTEN 6, NESUTTS AND DISCUSSION

Sa,mple ?=* If"r11(0) (Tesla)
(Fitted)

ff"rtt(0) (Tesla)
(Theoy)

Dim.

2el2G4

30/3G4

32lz,Gr

33/1G4

36/2Gr

6o/3G1

60lsG4

2[G6

5/G1

5/G2

6/G2

v IGL

7.4+0.9

10+2

1.5t0.1

1.7t0"1

5.8+0.8

16.5

L7

17.8

6.9

50t5

35+6

23+5

7*1

2D

3D

2D

3D

3D

3D

2D

2D

3D

Tahle 6.3: Fararneters derived fro.rn the analyais of the pa,rallel critical ffelde. The column
macked Dina' ie the dimemioaalitydetennined from the temperature dependelrce of the paraltel
upper critieal ficld.
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6.2 Zero Field BKT Tlansitions

It has already been noted that in some of the samples the zero resistance point
lies well below the 'y:alue of I determined from the fluctuation conductivity,
especially in those with thinner superconducting layers. This is in agreement with
the predictions of the Berezinskii-Kosterlitz-Thouless (BKT) theory discussed in
Section 5.2.2 in which thermally created free vortices exist in 2D superconductors

at temperatures close to ?". The appropriate definition of two-dimensionality to
be used here depends both on the Josephson coupling between the layers and

the superconducting layer thickness. The presence of strong Josephson coupling

modifies the logarithmic interaction between the vortices and inhibits the vortex
unbinding, leading instead to a 3D phase with no free vortices [6]. The efect of
increasing the layer thickness is illustrated by Equation 5.17 which shows that
Tnxr increases with d, until it approaches [, reflecting the greater interaction
between vortex pairs in a thicker film. It can thus be concluded that the most
likely samples to show a clear BKT signature well below ?" are those with the
thinnest, most decoupled superconducting layers.
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Figure 6.5: IV curves measured in zero applied magnetic field. (a) Sample 30/3G4. From
right to left the curves correspond to temperatures of 0.57, 0.64,0.72,0.88,0.9,0.g2 and 1.0K.
(b) Sample 5/G1. From right to left the curves correspond to temperatures of I.2I7,1.222,
I.324, 1.4, 1.475, 1.625, 1.7, 1.9, 1.9, 2.0, 2.r, 2.192, 2.255 and. 2.297 K,

Figures 6.5(a) and 6.5(b) show sets of IV curves taken from samples 30/3G4
and 5/G1 at zero applied field, where each curve corresponds to a different tem-
perature. For sample 30/3Ga the curves are clearly linear on the log-log plot
indicating power law behaviour as predicted by the BKT theory. For sample

5/G1 the curves are also approximately linear until at high currents an instabil-
ity sets in causing the sample to switch to the normal state resistances. A similar
instability also exists in 30/3G4, however this sample was studied in a dilution

t02
t(A)

sThis instability is discussed in detail in Section 6.4.



120

(a)

a

- - - - - - - - -t-t- - - - t- - - -t
I

o.7 0.8
T (K)

(c)

taara

1 .2 1.4 1.6 1 .8 2.0 2.2
T(R

CHAPTER 6. RESULTS AND DISCUSSION

(b)

tt a o o o

r}-a<>-

t
1.6 1.8

r (lq

a

o

0.5 0.0

T (K)
0.7

3

F
;2

1.41.2t.t1.0

F

20

40

10

(t

F
E4

0L
o.22.8?.4

Figure 6.6: The exponent a of the power law fitted to the zero field IV data. (a) Sample
30/3G4. (b) Sample 5/G1. (c) Sample 61G2. (d) Sample 2912G4. The arrows mark rhe
position of?" and the dotted lines show a = 1.

refrigerator where it was harder to maintain good temperature stability at high

currents, so the instability is not shown in this case. For each sample where data
was available a power law has been fitted to the region of the curves below the

instability, with the resulting exponent a plotted as a function of temperature in

Figures 6.6(a) - (d) for several samples with thick Ge layers. The position of 7"

is marked by an arrow. In all cas€s c is initially 1 close to ?", indicating linear

resistivity, but then shows a steady increase at lower temperatures.

Such behaviour points to the presence of a BKT transition in these samples,

with the position at which o = 3 corresponding to the vortex pair unbinding

temperaturcTesT. It is interesting to note, however, that rather than showing a

sudden jump from 1 to 3 as expected, the variation in o is rather smooth when it
passes through 3. Furthermore samples 5/G1 and 6/G2 do in fact show a jump

in a below [, however the jump is from I to a value around 2 or 2.6 respectively

rather than to o : 3. Nevertheless it will be argued below that the jump in
o does indeed correspond to the BKT transition in these samples, and that the

absence of a jump in the other samples can be understood upon considering the
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vortex pair unbinding in more detail.

As discussed in Section 5.2.2 the linea^r resistivity which results from the
presence of free vortices above Taxr occurs only at low cunents, whereas at
high currents the current induced vortex unbinding process dominates and the
IV curves obey a power law with 1 < a < 3. As the temperature is decreased

towards TBxr and the density of free vortices falls the linear region is pushed

to lower and lower current densities, with the size of the crossover current from
linear to power law behaviour inversely related to the size of the largest vortex-
antivortex pairs remaining bound. This indicates that in the samples which
show a smooth rise in a around the BKT transition the measurements are being
performed in the high current region so that there is no sharp jurnp near a : 3,

although the point where a : 3 can still be associated with Tsxr. Only at higher
temperatures where the density of free vortices is large does the linear region of
the IV curves extend to high enough currents to be observed.

The above conclusion that the measurement currents are too high to easily

observe the linear region of the IV curves in several of the samples does not
explain why the exponent does not jump directly to 3 in samples GlG2 and
5lGI. Careful inspection of Figure 6.5(b) shows that at temperatures close to
Taxr ihe IV curves do not obey a perfect power law but instead tend to flatten off
at high currents. This could be due to the fact that the current is becoming large
enough to unbind all of the vortex pairs so that the resistivity saturates, thereby
causing the fitted value of a to be somewhat below the expected value of 3 or
more. In contrast to this the the flattening of the IV curves is not so apparent at
the lowest temperatures where instead there is a slight hint of upward curvature
at low currents. Such upward curvature is most likely caused by a very small
remnant field (e.g. the Earth's magnetic field) which creates a small density of
free vortices even below Taxr. Figure 6.6(c) also shows that the low temperature
values of a for sample 6lG2 are considerably higher than for the other samples,

until at the very lowest tempertures the rise in a levels off somewhat. It is

possible that at these low temperatures the observed IV characteristics do not
represent true BKT behaviour in this sample, and may instead be afiected by

pinning.

In order to compare the measured values of TB7T with the theoretical pre-

dictions Equation 5.17 has been rearranged to give

12r

T6yyAl6(71 '' o3d"tKr): Brr;,"^ (6'4)

where the substitution )r = Aluld" has been made. Figure 6.7 shows a plot
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Figure 6.7: A comparison between the values of Texr determined from the analysis of the
IV curves and the theoretical prediction. The straight line represents the expected behaviour
based on Equation 5.17.

of TBlsy\2"u(Texr) versus Q2od"l8trk1tr^rs for several samples with thick Ge layers,

where Texr is determined either from the jump in a or from the condition c : 3

when there is no jump. The penetration depth \"t(Tsxr) is determined from
,\"a(0) (see Table 6.2) using the GL expression for the temperature dependence,

as is appropriate for dirty superconductors close to T"l2l. For three of the samples

(33/1G4, S|GI and 6/G2) the agreement between theory and experiment is very

good with the points falling within the uncertainties of the line with unit slope6.

For the other two samples (2912G4 and 30/3G4) the measured BKT transition
temperature is considerably lower than the theory predicts. This may be due

to screening of the interaction between large vortex-antivortex pairs by smaller

pairs, an efiect which can be represented by the inclusion of a vortex dielectric

constant in the denominator of Equation 5.17 [29,143]. If this is the case then the

measured BKT transition temperatures imply a value of the dielectric constant

of around 7 in sample29l2G4 and around 10 in sample 30/3G4, similar to the

values observed in thin films of YBa2Cu3Oz-6 [143]. The screening is likely to be

most noticeable in the thinnest superconducting layers [143] which may explain

why sampIe29l2G4 has a high dielectric value, although it is harder to explain

why the screening should be so high in sample 30/3G4 when it is not noticeable

6The uncertainties are associated mostly with determining the temperature dependence of
.\o6, especially in the samples where ?s67 is very close to [.
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in the other samples. An alternative explanation is that the roughness of the
boundaries between the superconducting and normal layers (r 8A [17]) lessens

the effective layer thickness i.e. the supercurrents may essentially be confined to
the centre of the layer rather than flowing uniformly throughout the thickness.

Such an effect could considerably reduce the BKT transition temperature in the
very thin sample 2912G4, however it would be unlikely to be significant in sample

3o/3G4.

te

1e
j

(b)

r.80

123

r0F

1e

10t

cE t0

101

(r10

r.85 1.90 1.05 2.00

T (K)

0.4 0.8 1.2 1.6

T (K)

lot 101

t(F

Rs)=Roexp l-(tffi)"]

to,

Figure 6.8: The low resistance portion of the zero field resistive trausitions of (a) a decoupled
sarnple (29/2G4) and (b) a strongly coupled sample (7/Gl).

All of the samples considered above have thick Ge layers so that the indi-
vidual superconducting layers can be considered two-dimensional with respect

to the BKT transition. These samples can be compared with the samples with
greater interlayer coupling by considering the resistive transitions in zero field.
Figures 6.8(a) and 6.8(b) show plots of the resistive transitions on a logarithmic
scale for samples 2912G4 and 7/G1 respectively. For 2912G4 the resistance de-

creases rapidly around I and then undergoes a more gradual decline at lower

temperatures, whereas for 7/Gl the rapid decrease continues to the lowest mea-

sureable values. As ? approaches Tnxr in the BKT theory the density of free

vortices decreases, and in the limit of small currents the resistance is expected

to go to zero according to

(6.5)

where b is a material dependent parameter [6]. The solid line in Figure 6.8(a)

shows a fit to this equation using the value Tnxr: 0.35 K determined from the

IV curve analysis. The fit is almost indistinguishable from the measured data

despite the fact that the only free parameter is b for which the fitted value of
5.1 is within the typical range of values measured on other systems [6]. Fits of

(a)
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Equation 6.5 to the transitions of the other samples described above generally
produce similar results, with values of b in the range 7-13. The most noteworthy
exception is sample 30/3G4 in which the measured resistance is greater than
the fitted value for temperatures below about 0.9 K. As noted above even the low

measurement current used (t pA) is enough to induce some vortex pair unbinding
in this sample, and it is these current induced free vortices which cause the
breakdown of the fit at low temperatures. This conclusion is further corroborated

by the fact that the point at which the deviation from the fitted curve occurs

corresponds closely to the point at which the IV exponent starts to increase

smoothly above 1.

Fitting of Equation 6.5 to the data for sample 7/Gl yields less convincing

results, mainly because 7/G1 does not demonstrate the change in slope on the

logarithmic plot that the more two-dimensional samples show. Note also that the

temperature range over which the resistance decreases below the measureable

level is much smaller for sample 7/G1 than it is for 2gl2c,4. This is to be

expected due to the strength of the interlayer coupling in T lGl which means

that the sample undergoes a 3D transition well before the BKT transition can

be observed [6]. The samples 2lG6 and 60/3G1 also display rapidly decreasing

resistance below ?" with no clear sign of a BKT transition. The analysis of
the fluctuation conductivity in Section 6.1 showed that sample 60/3G1 is only
two'dimensional very close to T. where the coherence length becomes greater

than the total thickness, so it is not surprising that this sample does not show

an observable BKT transition. The fluctuation conductivity for sample 2lG6
on the other hand was well described by a 2D model, however the single layer

in 2lG6 is considerably thicker than the superconducting layers in all of the

samples described above which show clear BKT signatures, so the expected BKT
transition temperature is very close to I in this sample. The IV curves for 2/GG

do indeed change from linear to non-linear very close to [, but the voltage

exhibits a much stronger dependence on the current than a power law. This may

relate to the effects of pinning forces in this sample.

From this analysis it can be concluded that the samples with highly decou-

pled superconducting layers can be described by the zero field BKT theory. No

evidence of the effect of pinning forces was observed due to the fact that the BKT
transition generally occurs close to 7. where thermal disorder tends to average

the pinning to zero. For two of the samples the observed BKT transition tem-

peratures were considerably lower than the theoretical prediction. For the thin
layered sample 2912G4 this may relate to screening of the vortex-antivortex in-

teraction or to interface effects at the layer boundary. The samples with stronger
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interlayer coupling, as indicated by the fluctuation conductivity nesults. do nst
ehorrv signe' of a BKT trainsition due ts the fact that they are not twedimensional
with resBect to vortex fluctuatlons. The siuglb,layer a,lloy ffJrn alco dees not show

an obserrm,ble ncr,a field BKT traneition due to its large thiekness"
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6.3

CHAPTER 6. RESULTS AND DISCUSSION

Vortex States and Dynamics

6.3.1 Perpendicular Fields

In Chapter 5 it was shown that the resistivity of type-Il superconductors is gov-

erned by the motion of magnetic vortices, the dynamics of which depend sensi-

tively on the vortex state. In order to understand the transport properties of the
TarGep'fGe multilayers it is therefore important to determine their magnetic
phase diagrams as a function of field, temperature and current. Section 6.1 has

already achieved this for the fluctuation region of the phase diagram where the
resistance is close to the normal state value. In the present section the analysis is
extended to examine the way in which the resistivity goes to zero, starting first
with the simplest sample, the unlayered alloy 21G6.

10-1

10-2

10'3

0.3s 0.55 0.6

Figure 6.9: Perpendicular field Arrhenius plot for sample 2/G6. From left to right the curves
correspond to fields of 0.0046,0.01, 0.03,0.07, 0.1, 0.2, 0.4 and 0.8T. The solid lines represent
fits to the low temperature thermally activated region, with the slope equal to the activation
energy U(H).

Figure 6.9 shows an Arrhenius plot of the resistance of sample 2lC6 where

the difierent curves correspond to different perpendicular fields, each measured

using a low applied current of 1pA. A linear portion is clearly evident at low

temperatures indicating a thermally activated resistance .R o( exp (-UlkBf). H
the activation energy is assumed to be of the form U(H,T) : U(H)(l -TlT")
then the slope of the linear region on the log plot gives a measure of the activation

energy U(H) (see Appendix A). The measured slopes are shown as a function of
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Figure 6.10: The activation energy (in Kelvins) for sample 2/G6 as measured from the
Arrhenius plot of Figure 6.9. The straight line is a power law fit which showe that U x IlHrlz.

field in Figure 6.10 where the solid line is a fit to a power law of the form U(H) :
LfoH-p. The resulting exponent p is equal to 0.5, so the activation barrier can

be rewritten as U(E) - U6asf \M where a6 is the intervortex spacing given by

Equation 5.3. This form of activation energy is predicted by Equation 5.62 and is

characteristic of plastic vortex motion where the main barrier relates to the energy

required for the vortices to hop over a distance os. However the fitted value of
the prefactor [b is 93, whereas Equation 5.62 predicts a value Uo -- 1400+ 400 K
based on the value of )o6 at T :0 (see Appendix A). The disagreement indicates

that a slightly different process to that described in Section 5.3.6 may determine

the barriers against flux flow, but nevertheless it appears that the activation
energy in this sample scales with the intervortex spacing indicating some form of
plastic flux motion via large vortex hops.

Figure 6.11 shows an Arrhenius plot of the low current resistance of sample

6lG2 in various perpendicular fields, where once again thermally activated be-

haviour is evident at low temperatures. The corresponding activation energies

are shown as a function of field in Figure 6.12(a) including a best fit line of the

form U(I/) : 30 x ln (6.3/f/) with f/ in Tesla. A logarithmic form for the acti-

vation energy is predicted by Equation 5.58 for the thermal creation of unbound,

mobile dislocations of approximate size azof $5. For this sample the predicted

value of the prefactor is 14 t 4 K which is in reasonably good agreement with

101100

o
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0.5 0.6
1tT

Figure 6.11,: Perpendicular field Arrhenius plot for sample 6/G2. From left to right the curves
correspond to fields of 0,0,1,0.3,0.7, 1.0, 1.4 and 1.8T. The solid lines represent fits to the
low temperature thermally activated region.

the measured value of 30 K, especially considering the approximations associated

with the theory. The same analysis has been performed for sample 30/3G4 yield-
ing a similar activation energy as shown in Figure 6.12(b) where the best fit line
is given by U(H) : 5.2 x In(L.7lH). For this sample the expected prefactor is

3 + 1K, once again reasonably close to the measured value and indicating also

that the activation energy increases with the superconducting layer thickness d"

as predicted by the theory. The characteristic field at which the activation bar-

rier vanishes is also larger in sample 6lGZ (Ilo = 6.3T) than in sample 30/3G4
(I1o : 1.7T) which is a reflection of the smaller critical fields in 30/3G4 (due

to the lower 7i). The similarity between the structures of samples 6/G2 and

30/3G4 provides evidence that this kind of activation energy is characteristic of
multilayers where both the superconducting and insulating layers are relatively
thick.

Further information can be gained about the vortex phases in these samples

by studying their IV characteristics. Figures 6.13(a) and (b) show log-log plots

of sets of IV curves for sample 2lGO measured in perpendicular fields of 0.2 and

0.8 T respectively, where each curve corresponds to a different temperature. The

persistence of superconductivity is limited at high currents by the existence of a
Larkin-Ovchinnikov instability which will be discussed in Section 6.4. Below the

instability the shape of the IV curves is strongly influenced by the temperature,
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in Kelvins) for (a) sample 6lG2 as measured
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Figure 6.12: The activation energy (measured
from the Arrhenius plot of Figure 6.11 and (b)
Equation 5.58.

with the curves at high temperatures displaying linear behaviour at low currents

followed by a nonJinear rise at higher currents, whereas at low temperatures there

is no sign of the linear region. Instead the voltage rises very rapidly as the current
is increased until it begins to level off somewhat at high currents. Interestingly
the low temperature curves are considerably less steep at 0.8 T than they are at
0.2 T, and the degree of rounding off at high currents is also less in the higher

field. IV curves of this type are predicted within the vortex glass model where

the upward curvature at low currents corresponds to plastic flux motion with
finite activation energies in the flux liquid, as is observed in the Arrhenius plot
for this sample. The downward sloping curves at low temperatures correspond

to the diverging activation barriers in the vortex glass phase.
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Figure 6.13: IV curves for sample 2lG6in a perpendicular applied field of (a) 0.2T. From right
to left the curves correspond to temperatures of 1.36, 1.46, 1.56, 1.66, 1.76, 1.86, 1.96, 2.I,2.1,67,
2.234,2.267,2.335,2.43,2.5,2.54,2.59,2.63 and 2.72K. Note the sharp downward curvature
at low temperatures. (b) 0.8T. Flom right to left the curves correspond to temperatures of
1.36, 1.46, 1.56, 1.66, 1.76, 1.66, 1.96, 2.03, 2.1,2.167 and 2.335K. The downward curvature
at low temperatures is much lees severe than it is at 0.2T.
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An attempt has been made to scale the IV curves according to the prescription
of the vortex glass model (Equations 5.53) by varying the scaling exponents and
the field dependent melting temperature. The scaling fit from the 0.2 T data
set is shown in Figure 6.14(a) where the optimised values z : 1.08, z : 9.0

and 7n :2.20 K have been used. Similar scaling was observed at six other fields
between 0.01 T and 0.8 T with essentially the same fitted values of v = 1.08t0.04
and z : 9 * l. A collapse of the data onto two curves is clearly evident at low
currents, however below ?n the curves deviate from the universal function at high
currents. Such a breakdown in the scaling is expected when the Lorentz force

on the vortices becomes large enough that the motion is no longer thermally
activated, in which case a description in terms of flux flow is more appropriate.
The IV curves closest to the melting temperature always follow a power law
down to the lowest currents with a field independent exponent of around 6. This
value is in fairly good agreement with the vortex glass theory which predicts an

exponent equal to (z* l)l@ - 1) = 5.040.5 assuming the dimensionality D : 3.
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Figure 6.14: (a) IV curves for sample 2lG6 ar 0.2T transformed according to the vortex glass
scaling laws. The parameters are z = 9, u = 1.08 and Tg = 2.20K. (b) Perpendicular field
phase diagram for sample 2/G6. The circles represent the vortex glass melting transition while
the diamonds represent the bouudary between the pinned liquid and the non-viscous liquid.
The upper solid line is H.2, the lower solid line through the circles represents a power law fit
to the melting line and the dashed line through the diamonds is a guide to the eye.

The observation of vortex glass scaling in sample 2lG6 implies that the sample

is three-dimensional with respect to the vortex properties despite its relatively
small thickness. At least four length scales are important for determining the
dimensionality within the vortex glass model: (i) the sample thickness d", (ii) the

intervortex spacing as, (iii) the collective pinning length .L" and (iv) the vortex

glass coherence length {rg. The collective pinning length, which depends on the

degree of disorder in the sample (see Equations 5.33), can be rewritten in the

single vortex regime as L" = €(jolj)tl'[6] where 7s is the depairing critical

(a) (b)
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current defined in Equation 1.1. Taking j" n: 200 x 106 A/m2 based on the point
where the IV curves in Figure 6.13(a) begin to flattenT off, and substituting the
calculated value of 7s at T = 0 yields an upper estimate for tr" of about b004.

This is less than or of the order of the intervortex spacing as at all of the fields

used here, justifying the use of the single vortex expression. Because .L" is also less

than the sample thickness the vortices are able to optimise their pinning energy

as they traverse the sample, and the pinning is therefore three'dimensional. On

the other hand the vortex glass model described in Section 5.3.4 is strictly valid
only when the vortex glass coherence length is less than the sample thickness

but greater than the intervortex spacing (at least well below 4) [ll0], conditions
which the above discussion has shown cannot both be satisfied.

The conclusion therefore is that the sample is in the single vortex 3D pinning

regime where the elastic creep barriers are expected to become infinite as the

current goes to zero (see Equation 5.47), but the divergence of the vortex glass

correlation length may be cut off by the finite dimensions of the sample as the
temperature approaches the 3D transition temperature ?r. This means that a

description in terms of a true glass transition is not strictly valid, but nevertheless

it appears that in this sample the thickness is large enough relative to the other
parameters that the signature of the vortex glass can be observed i.e. a scaling

coliapse. Similarly the melting line determined from the scaling analysis is prob-

ably best interpreted as a plastic/elastic boundary rather than a true vortex glass

transition line. Above the melting line where the glass correlations are relatively
small the dissipation is dominated by plastic motion, whereas below the melting
line where the glass correlations are relatively large the plastic barriers grow so

that only elastic hopping processes on scales less than {,n are observable.

An attempt was made to fit the IV curves in the vortex solid phase to an equa-

tion of the form p(T) x exp-"(i./ir' (see Section 5.3.4) using the value F : ! 17 as

appropriate for the single vortex regime, however the large number of parameters

required means that the results were strongly dependent on the amount of the

curve used for the fit. Furthermore the value of p is expected to change rather

rapidly ftom tf 7 to 512 as the field increases towards the small bundle pinning

regime which adds further uncertainty to the fitting process, so overall the fitting
of the IV curves did not provide any meaningful information about the vortex

state. The parameter z determined from the scaling is somewhat higher than

values measured on other systems which are typically in the range 4-7, however

it has been noted that in a wide range of samples the slope of the power law
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at T, is not universal but depends on the degree of disorder [144]. It is possible

that this slope, which is related to z, also shows a similar dependence on the

dimensionality. It should also be noted that the value of a is quite sensitive to
the value of Tn e.g. increasing Tn by 0.05 K at 0.07T combined with a new value

f.or z of around 7.5 causes very little deterioration of the scaling collapse.

For sample 2lG6 the activation energies were measured at low currents where

dissipation is only observable in the vortex liquid phase. The measured activation

energies of this sample agrce in form with the expression for plastic motion given

in Equation 5,62, indicating that the vortex liquid is highly viscous in nature

as may be expected due to the existence of finite vortex glass correlations. The

thermally activated behaviour shown in Figure 6.9 does not continue in the vortex

liquid phase right up to H"2(T), but changes to a more gradual increase as the

resistance approaches Rr,. In this region the thermal energy is high enough

that the liquid is no longer viscous so pinning becomes ineffective [125] (see

also Section 5.3.2), although similarly to results on YBazCusOz-t [145] the free

flux flow limit given by Equation 5.30 is never quite reached. The change in

behaviour occurs at a resistance about one tenth of the normal state value so

it can be concluded that the majority of the resistive transition takes place in

the relatively unpinned vortex liquid phase, whereas the activated region which

extends well below I/a2 covers only the area close to zero resistance.

These ideas are collected together in a single phase diagram for sample 2lG6
shown in Figure 6.14(b) which includes the melting points determined from the

scaling analysis and also the points where the Arrhenius plot shows a deviation

from thermally activated behaviour. A simple power law has been fitted to the

vortex glass melting points to give a melting line I/, : 0.56(?: -TY't which is of

the form predicted within the vortex glass model [4+] although the exponent 1.7

is somewhat higher than the predicted value of 1.33. The prediction is expected

to hold only close to 7", whereas the measurements extend well below 7" which

may explain the discrepancy.

A set of IV curves taken from sample 6lGZ in a perpendicular field of 0.7 T is
shown in Figure 6.15(a). While the data appear similar to the IV curves of sample

21G6, including rather clear power law behaviour at intermediate currents, a

close inspection reveals that all of the IV curves show an upward curvature at

low currents. In Figure 6.15(b) several of the low temperature [V curves at 0.7 T

are compared to similar IV curves measured in a field of 0.3 T. Both sets show

approximate power law behaviour at high currents, but unlike the 0.7 T curves

the 0.3 T curves do show clear downward curvature at low currents indicating

glass-like behaviour. There are two possible explanations for this observation.
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Figure 6.15: (a) IV curves for sample 6lG2in a perpendicular applied field of 0.?T. From
right to left the curves correspond to temperatures of 1.21, 1.3, 1.35, 1.4, 1.4b, l.b, 1.6, 1.2, l.B,
1.9, 2.0 and 2.1K. (b) A comparison between the low temperature IV curves of sample 6/G2 in
different perpendicular fields. The solid curves are measiured in a field of 0.3 T at temperatures
of. l.2l,l.3 and 1.35K, while the dashed curves are measured at the same temperatures but in
a field of 0.7T. Both sets of curves show power law behaviour at high currents, but the 0.37
curves bend downwards at lowcurrents whereas the 0.7T curves bend upwards.

Firstly it may be that at the field of 0.7 T the available temperature range meant
that all of the measured curves were above the melting temperature. An attempt
was made to scale the curves using a melting temperature below 1.21K, however

it was not possible to collapse them all onto the upper universal funct,ion unless a

very high value (* 13) was used for z, and even then the scaling was rather poor.

This is a reflection of the fact that even the IV curves with very large slopes

show upward curvature at low currents. An alternative explanation is that the

individual layers in this sample are two.dimensional at high fields so that the
divergence of the vortex glass coherence length is cut off well before the meiting
line. This is similar to the proposed situation in sample 21G6, but there the
sample was sufficiently thick that the glass correlations became large enough to
ensure plastic flux motion was unobservable below ?r. Figure 6.16(a) shows an

attempt to scale the 0.7T IV curves using the 3D vortex glass model with Q :
1.48K, z -6.9 a,nd, u = 1.1. The high current portions of the curves do indeed

collapse rather nicely onto two functions but at low cuments the linear region of
the IV curves below Q deviates from the lower scaling function. Very similar
behaviour has been observed in a 1004 thick film of YBazCueoz-a [123] in which

the deviation below 4 ** due to plastic flux motion on scales greater than the

vortex glass coherence length cutting off the diverging elastic activation energy (in

even thinner films a 2D vortex glass was observed). At higher currents the length

scale of the activated hopping process becomes less than (,n (see Figure 5.13),

so plastic motion is inhibited and the sample displays three-dimensional power

law IV curves. The inset to the scaling plot shows the current .I, at which non-
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Figure 6.16: (a) IV curves for sample 6lG2 at 0,7T traneformed according to the vortex glass
scaling laws. The parameters are z = 6.9, u - 1.1 and Ts = 1,48K. The inset shows a plot
of the current above which the 0.7T IV curves become non-linear. The solid line is a fit to
the predictions of the vortex glass theory. (b) Perpendicular field phase diagram for sample
6/G2. The upper solid curve is Hs2 and, the circles mark the boundary between activated and
non-activated resistivity. The lower solid curve shows the dislocation mediated melting line
predicted by Equation 5.2.4. Finally the shaded area marks a possible 3D vortex glass phase.
Sample 30/3G4 has a similar phase diagram.

linearity first becomes apparent in the IV curves. Clearly 1, does not follow a
linear temperature dependence as predicted by the simple Anderson-Kim flux
creep model. The solid curve shows a fit to an equation of the form .I" o( (? -
Tn)v(o-r1 as predicted by the vortex glass theory where the fitted parameters

4 - 1.6 arLd u: 1.5 are in reasonable agreement with the results of the scaling

analysis. This provides further confirmation that the observed vortex dynamics

relate to the growth of vortex glass coherence.

The fact that sample6lG2 shows downward sloping IV curves at 0.3T implies
that it is at least quasi-three-dimensional at low fields, however it seems even

more unlikely that the individual layers of this sample are thick enough to be

three-dimensional on their own. Alternatively there may be a finite degree of
coupling between the superconducting layers at low fields, with a dimensional

crossover to a decoupled phase occuring somewhere between 0.3 and 0.7 T at

low temperature. This is in contrast to the behaviour of the critical field which

was well described by a two-dimensional model, a^nd also to the observation of
a zero field BKT transition close to ?., although in both of these cases the

relevant measurements were performed at high temperatures or field densities.

Furthermore, consideration of the electron tunneling length in amorphous Ge of
about 8 A [20,24] shows that there is unlikely to be any significant Josephson

coupling between the layers at any fields in this sample. Finally, insertion of
the field 0.3 T into Equations 5.27 and 5.28 yields values for the anisotropy 7 of

7 12 and 11 + 3 respectively which are surely too low for this strongly decoupled

10?

I

(a)
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sample (although these values are similar to the somewhat anomalous value for
the anisotropy observed in sample 30/3G4). Any coupling must therefore be

magnetic in nature, although it is unclear whether magnetic coupling is able to
increase the efiective dimensionality of the flux creep and cause a transition into
a glassy phase. Interestingly however, a similar crossover from a vortex glass

phase at low fields to a two.dimensional phase at high fields has been observed in
Tl2Ba2CaCu2Os [146], where the crossover field was also found to be considerably

higher than that predicted by Equations 5.27 or 5.288. Abulafia et, al [11g] found

a rather large region below the melting line on the phase diagram of YBa2CusOz-a

over which flux motion was dominated by dislocation motion. Interestingly the
exponent pr describing the current dependence of the activation barriers for the
dislocation motion was greater than zero implying glass-like dynamics. In light
of this it could be speculated that the glass-like behaviour observed in sample

6lG2 may actually relate to the onset of pinning of the mobile dislocations.

Unlike sample 2lG6 both 30/3G4 and 6lG2 exhibit activation energies which
vary logarithmically with field implying that the resistance in these samples is
governed by the motion of thermally created dislocations of a size - oBl€"a.

The relevant dislocations are created individually due to the disorder in the sur-

rounding lattice, rather than in pairs as is required below Tf;D in the absence of
disorder. This description implies that the vortices are in a two-dimensional srate

subject to strong thermal fluctuations, crossing over to a possible 3D vortex glass

phase at low temperatures and fields where both the plastic and elastic activa-

tion barriers become extremely large. In the measured regime there is no clear
signature relating to the motion of dislocations created solely by the quenched

disorder (see Equation 5.56 and the associated discussion). In samples such as

these a two-dimensional BKT melting transition is also expected to occur at high

fields, mediated by the unbinding of thermally created dislocation-antidislocation
pairs [26,78,147]. In analogy to the zero field BKT transition it might be expected

that the unbinding would lead to a distinct change in the resistivity at TlD. The
resistivity does indeed show a change from thermally activated behaviour to a
slower temperature dependence close to H.2 which could be associated with the

melting transition. It must be remembered, however, that at TID only the ac-

tivation energy for unbinding the largest dislocation pairs ranishes, whereas the

resistivity in the activated region shows that disorder cuts off the interaction

between dislocations so that only pairs of size S o\l€"t are bound at low temper-

8It may be that the decoupling transition in highly anisotropic systems is mediated by
the unbinding of bound pairs of dislocations, or quartets (see Section 5.2.5), in which case
Equations 5.27 and 5.28 are not relevant.

135



136 CHAPTER 6, RESULTS AND DISCUSSION

atures. Furthermore at temperatures just above TID the vortex liquid behaves

like a solid at short length scales. The crossover to a non-activated resistivity is

therefore most likely to signify the point at which the small dislocations unbind
causing lattice order to be lost on short length scales, rather than signifying the
melting transition itself.

The perpendicular field phase diagram of sample 6lG2 is shown in Fig-
ure 6.16(b). The upper solid line represents I/"2 while the circles show the bound-

ary between the activated and non-activated resistivities. This boundary, which
occurs at a resistance around one tenth of the normal state value, is similar to
the boundary between the viscous and non-viscous liquids in sample 2/G6 and

covers about the same fraction of the phase diagram (note the different scales

in Figures 6.14(b) and 6.16(b)). It was argued above that the boundary occurs

above T]! where the smallest dislocation pairs unbind, however the correlation
length which describes the dislocation pair unbinding decreases rapidly above

T:^D 1781, so the point where the resistance changes is probably fairly closely

associated with the clean limii 2D melting temperature. To test this idea the
predicted melting line has been calculated from Equation 5.2.4 using a value of
0.64 for the renormalisation constante A. The predicted melting line, shown as

the lower solid curve on the phase diagram, does lie a small distance below the
dotted line indicating that the crossover into a non-activated resistivity is indeed

caused by the unbinding of small sized dislocation pairsro. The shaded region at
low fields and temperatures marks approximately the area where the IV curves

indicate a 3D vortex glass phase may exist. Just above this region the IV curve

analysis also displays some evidence for glass-like behavioul, however the finite
sample size limits the growth of the vortex glass correlations. These correlations

decrease at higher fields and temperatures so that the dissipation is dominated
by small scale dislocations. Note that in sample 2/G6 the activation energy was

considerably higher in the vortex liquid phase than the activation energy in sam-

ple 6lG2 in the 2D vortex solid, whereas it might be expected that the barriers

should be larger in the solid phase. To account for this it must be remembered

that in the 3D liquid finite vortex glass correlations exist which limit the modes

of plastic flux creep, whereas in two dimensions plastic deformations are allowed

even below the melting line. The available measurements indicate that sample

3013G4 has a similar phase diagram to that of the similarly structured sample

6lGZ shown in Figure 6.16(b).

eThis is the value found in thin films of Nb"Ge1-, [20], although fflD is only weakly
dependent on A in any case.

loYazdani et al.[26] refer to this as local meltingof the dieordered 2D vortex lattice.
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Figure 6.17: Perpendicular field IV curves for sample 30/3G4 measured at77 mK. From right
to left the curves range from 0.1 - 1.3T in 0.1T steps. The curves are almost vertical due to
the lack of thermal energy at this low temperature.

Measurements have also been made on sample 30/3G4 in the extreme low

temperature limit. Figure 6.17 shows a set of perpendicular field IV curves

taken from sample 30/3G  at 77 mK, where the lowest curve corresponds to
HlH", n:0.05 and the highest to Hf H"2 E 0.7. Fits to a power law give expo-

nents between 20 and 70, indicating the extreme steepness of the curves due to
the lack of thermal energy to assist the vortex hopping. At low currents vortex
motion is not possible in this regime, however iLs soon as the current is sufficient

to overcome the pinning barriers the vortices move freely leading to the observed

rapid rise in the resistance. This type of current dependence of the resistivity
is similar to the predictions of the vortex glass model in which the resistance

also decreases rapidly with current. The main difference is that the vortex glass

requires a diverging activation energy to prevent vortex motion at finite temper-

atures, whereas in this case the resistance increases due to the lack of thermal

energy to propel the vortices over pinning barriers of any sizerr. An interesting
possibility is that quantum tunneling [6] may influence the vortex dynamics at

these low temperatures, although a detailed investigation is beyond the scope of
this work.

llNote that this does not exclude the possibility of diverging activation barriers at low tem-
perature in this sample. The point is that any barrier height will prevent vortex motion below
j" if there is no thermal energy,
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Figure 6.18: The activation energy (in Kelvins) for sample 60/3G1. The power law fit shows
that U c os with a very similar prefactor to sample 2/G6, implying that both behave three-
dimensionally. The inset shows the activation energy of sample 7/G1 which also shows a similar
sized activation energy but with a slightly weaker field dependence.

Further understanding of the role of dimensionality in determining the vortex
properties can be gained from an investigation of more strongly coupled multi-
layer samples such as 60/3G1, 60/3G4 and 7/G1. Figure G.18 shows a plot of
the perpendicular field activation energies of sample 60/3G1 determined from the
Arrhenius plots in the manner described above. The solid line is a power law fit
of the form U(fI) : 64 x H-o'45. The exponent is close to 1/2 which indicates

that like sample 2lG6 the activation energy of this sample can be written in the
form U(I/) x Ugasl\M. Furthermore if account is taken of the anisotropy ratio
of sample 60/3G1 then the values of Uo for the two samples are almost identi-
cal. Several conclusions can be drawn from this similarity. Firstly, although the
activation energies are not of the correct size, both the field dependence and the
dependence on anisotropy agree with the predictions of Equation 5.62. Secondly,

since the activation energy does not depend on the thickness of the sample the
vortex dynamics in 2/G6 and 60/3G1 must surely be three-dimensional. This
agrees with the observation of vortex-glass behaviour in sample 21G6, and is also

consistent with the description of the activation energies in terms of the 3D vis-

cous liquid model. The inset to Pigure 6.18 shows the activation energy of sample

7/G1 which also shows a power law field dependence of the activation energy but
with an exponent of 0.4. The fields used for 7 f GI are higher than those used

1000-2
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for samples2lG6 and 60/3G1, so it may be that
with increasing field.
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the exponent decreases slightly

1

I

t 0'?

lor
106 tot

l(A)

Figure 6.19: (a) IV curves measured at 1.373K for sample 60/3G1. From right to left the
curves correspond to fields of 0.0035, 0.015, 0.025, 0.035, 0.055, 0.085, 0.11, 0.1.4, 0.12, 0.2, 0.2b,
0.3, 0.35, 0.4 and 0.45T. (b) IV curves from the same sample measured at 1.570K. From right
to left the curves correspond to fields of 0.015,0.025,0.035,0.055,0.08b,0.11,0.14,0.12,0.2,
0.25 and 0.3T. Note the absence of downwards sloping IV curves at the higher temperature.

The anisotropy caused by the layering in sample 60/3Gl means that the
typical length scales for vortex fluctuations and pinning along the field axis are

reduced relative to the isotropic case. The thickness of this sample is about twice

that of sample 2lG6 which displayed strong signs of 3D vortex glass behaviour,
so it can be concluded that 60/3G1 is even more likely to display a true phase

transition at the vortex glass melting temperature. Figure 6.19(a) shows a set of
IV curves for this sample taken in various perpendicular fields at 1.373K, while
Figure 6.19(b) shows a similar set taken at 1.570K. The low temperature IV
curves are indeed of the form predicted by the vortex glass model, with upward

curvature as the current is decreased at high fields and downward curvature in the
low field glass phase. The vortex glass scaling laws have been applied to these and

other similar sets of IV curves covering a range of fields and temperatures and in
each case a reasonable scaling collapse is observed using the values z : 6.0 + 0.5

and z = L.2 + 0.1, both well within the typical range seen in other systems.

A melting line of the form Hs : 1.6(?i - T)"'' has been determined and this
coupled with the universality of the scaling parameters allows the vortex glass

scaling to be performed at constant temperature rather than constant field. The

results of the scaling of a set of curves taken at 1.456 K is shown in Figure 6.20(a).

Overall the scaling collapse is excellent although the same deviation can be seen

at high currents as was observed in sample 21G6.

The IV data in Figure 6.19(b) look somewhat different to the low temperature

set in Figure 6.19(a) in that none of the curves show a downward slope. This
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Figure 6.20: (a) Scaling collapse of a set of IV curves taken from sample 60/3Gl at 1.456K.
The scaling parameters are z = 6.0, v = 1.2 and the melting temperature has beeu determined
at each field from the invereion of the melting line equation given in the text. (b) Perpendicular
field phase diagram for sample 60/3G1. The upper solid line is ff"z, the diamonds show the
crossover from activated to non-activated behaviour and the circles show,EIn. The lower solid
curve is a power law fit to the melting line.

provides evidence that a vortex glass phase may not exist at all in this sample at
temperatures close to 7". As the temperature was increased the parallel critical
field of this sample was shown to undergo a crossover to a two-dimensional phase

where no vortex glass would be expected, although the crossover occured at a

temperature well above 1.570 K. Nevertheless the change in the nature of the
IV curves may indicate that the vortices are entering a state where the relevant

bending lengths are greater than the total sample thickness so that no 3D vortex
glass phase can exist. Note that the vortex glass melting field also approached

zero well below I in sample 21G6.

The perpendicular field phase diagram of sample 60/BGl is shown in Fig-

ure 6.20(b). As expected the phase diagram is very similar to that of sample

2lG6 although the melting line of sample 60/3Gl actually lies closer to the crit-
ical field than that of 2lG6 at similar values of TIT,. This may be related to
the finite size effects which are important in the thinner sample. The crossover

line between thermally activated and non-activated behaviour is also shown in
Figure 6.20(b) and has a similar form to the corresponding line in the other

samples.

Thus far all of the samples have displayed evidence of three-dimensional be-

haviour in at least some regions of the phase diagram, due either to large super-

conducting layer thicknesses or to strong interlayer coupling. To conclude this

section on the perpendicular field vortex states and dynamics the thicker samples

are compared to samples 5/G1, 5lG2 and 2912G4 which have very thin, decou-

pled superconducting layers and are thus expected to be fully twedimensional. A
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Figure 6.21: Arrhenius plots for three decoupled multilayers with thin superconducting layers.
(a) Samples 5/G1 aud 5/G2 combined. Flom left to right the curves correspond to perpendic-
ular fields of 0.005,0.03,0.05,0.1,0.2,0.3,0.5, 1.0 and 1.2T. Note the change in the activation
energy at I which occurs in the low field curves. The solid lines correspond to fits to the two
diferent activated regions at 0.2T, with the point where the lines cross defining ?". (b) Sample
2912G4. From left to right the curves correspond to perpendicular fields of 0,0.075,0.25,0.?,
0.95 and 1.05T. This sample also shows a change in the Arrhenius plot slope at [.

perpendicular field Arrhenius plot for the two similar samples 5/G1 and 5/G2 is

displayed in Figure 6.21(a) where the data have been combined together and nor-
malised to R,., while Figure 6.21(b) shows an Arrhenius plot for sample 2912G4.

A thermally activated resistivity is evident at low fields and temperatures on

both plots, but more strikingly there is a sudden change in the slope of the
curves at a field dependent temperature TE. As the field is increased I moves

closer and closer to the non-activated region until the change in slope is no longer

observable. A change from one slope to another on the Arrhenius plot implies a
change in the dominant dissipation mechanism with a corresponding change in
the activation energy. Similar kinks have been observed in the Arrhenius plots

of several difierent layered systems in which the change in activation energy has

been attributed either to a dimensional crossover [24] or to 2D vortex lattice
melting [20,30]. It will be shown below that neither of these scenarios is appli-
cable here and instead the crossover at 7} is due to a change in the dominant
contribution to the resistivity from two competing modes of vortex motion,

The activation energies of samples 5/G1 and 5lG2 measured at tempera-

tures below and above T" (U{H) and, U2(H) respectively) are shown as a func-

tion of field in Figure 6.22. The values of [/r(I/) and Uz(H) converge at a

field of about 0.5T above which the activation energy corresponds fairly closely

to the extrapolation of Ur@). The lower solid line shows a fit of the form

Ur(H) : 8.4 x ln(2.51H ). This is similar to the field dependence of the activa-

tion energy observed in samples 6lG2 and 30/3G4 in which the activation barriers

were interpreted as the energy required to create small dislocations within the

0.90.8
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Figure 6.22: The activation energies (in Kelvins) for samples 5/G1 and 5/G2. The diamonds
represent the activation energy at temperatures below f, (Ur@)) while the circles represent
the activation energy at temperaturee above + (Uz(H)). The high field data represented by
the triangles fit fairly closely onto the extrapolation of t/r(I1).

2D vortex solid. In those samples the fitted coefficient of the logarithmic field de-

pendence was proportional to d,"l)f;6 and substitution of the relevant parameters

shows that the coefficient of U{H) scales in the same way. The dissipation mech-

anism in samples 5/G1 and 5/G2 at temperatures below Q must therefore be

the same as that in the thicker samples i.e. motion of dislocations of size - o'ol€"u

for which the energy of creation is finite due to the disorder in the vortex lattice.

The activation energy at temperatures above I is also best fitted by a loga-

rithmic equation of the form U2(I/) : 16.2 xln(L.2lH) where it should be noted

that the coefficient is almost exactly twice that of Ut(H). So far the motion of
disorder induced free dislocations is the only mode of flux creep which has been

shown to have a logarithmic field dependence of the activation energy. The model

which led to the logarithmic field dependence implied that in the limit of strong

disorder only the smallest dislocations remain bound in pairs. The activation
energy for creating the bound pairs can be approximated from Equation 5.54 by

making the substitution r : a\l€"0, leading to [14S]

!c

I
f

101100101

(6.6)rrpair?ffit"(#)
with f/o ! H"z. Equation 6.6 is preferred over the similar Equation 5.55 which
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is based on the thermal average over dislocation pairs of all sizes. Because this
mode involves two dislocations the activation energy is exactly twice that of the
free dislocations which are responsible for Ur(H) (Equation b.bS), so U2(Ii) may
be identified with the barrier required to create small dislocation pairs.

Figure 6.22 shows that U2(H) is actually greater than [/r (Il) at all fields

below 0.5 T despite the fact that the resistivity is larger above I than below.

This implies that above % the higher barriers are offset by a much larger value of
fio in the equation for the activated resistivity R : Rnexp (Lr lfu ?), where ,R6 is

determined by the density of activated units (e.g. dislocation pairs), the amount of
flux in the activated unit and the size of the hopping process. The crossover at I
occurs when the resistance due to the dissipation process governed by actilation
energy U2 becomes larger than that governed by Ur. The crossover need not
be associated with any phase transition such as layer decoupling or 2D melting,
but only requires two competing modes of flux motion in which the relevant
activation energies and the values of F.o are of the right size. Evidently the value

of fto is greater for the small dislocation pairs than for the free dislocations, thus
enabling the crossover at I to be observed.
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Figure 6.23: (a) IV curves measured at 1.71K for sample 5/G1. From right to left the curves
correspond to fields of 0.004, 0.01,0.02, 0.05, 0.07,0.1, 0.2, 0.3,0.4 and 0.bT. (b) IV curves
measured at 1.245K for sample 5/G2. From right to left the curv€s correspond to fields of
0,0.011,0.0198,0.0493,0.05,0.1,0.2,0.5,0.7, 1.0, 1.2 and 1.4T. The dotted lines mark the
points where the IV curves deviate from the low current linear behaviour.

The previous samples have shown that when the thickness of the supercon-

ducting layers is reduced the three.dimensional vortex glass correlations are re-

stricted, making it natural to ask whether samples 5/Gl and 5lG2 exhibit the

properties of a two-dimensional vortex glass. This question can be answered by

comparing the IV curves of these samples to the predictions of the 2D vortex
glass model, but it is also important to determine whether the observed form

of the activated low current resistivity is consistent with the existence of finite
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vortex glass correlations.

A set of perpendicula,r field IV curves taken from sample b/Gl at 1.71K is
shown in Figure 6.23(a) and a set taken from sample 5lG2 at r.245K is shown
in Figure 6.23(b). Despite the fact that some of the curves are measured at
temperatures and fields well below //"2 there is no sign of the sharp downward
curvature that was evident in each of the other samples. At most the zero field
curves in Figure 6.23(b) show a power law dependence on the current due to
the zero'field BKT transition, while all other curves display a linear low current
resistivity followed by a non-linear region at higher currents. The absence of
downward sloping IV curves indicates that the vortex lattice in these 2D samples
is unstable against plastic flux motion over all of the observable phase diagram,
and therefore there is no vortex glass transition at finite temperature. Any tran-
sition into a vortex glass state must therefore occur only at ? : 0 as predicted
in the 2D model.
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Figure 6.24: (a) The crossover current Jnr separating the linear and non-linear regions on the
IV curves as a function of temperature for samples 5/Gl and 5/G2. From top to bottom the
data sets correspond to fields of 0.5, 0.2 and 0.1T. The solid lines show power law fits. (b) J"r
as afunction of field. From top to bottom the datasets correspond to temperatures of 1.?1,
1.55 and I.245K and once again the solid lines are fits to a power law.

A crossover from Iinear resistivity at low currents to non-linear resistivity at

high currents is predicted to occur in the 2D vortex glass model when the length
scale probed by the current becomes less than the 2D vortex glass correlation
length $!. fhe crossover current density J4 where the IV curves first deviate

from the extrapolated linear region at low currents has been extracted from the
IV curves and is shown a.s a function of temperature in Figure 6.2a@) for several

different fields. Clearly the temperature dependence is not consistent with the

Anderson-Kim model which predicts Jnr x ?, but instead fits more closely to a
power law Ja o( ?6'0+0'5. The 2D vortex glass model does in fact predict a power

law for the temperature dependence of Ja (Equation 5.59), although the expo-

1(li
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nent is expected to be equal to 3 rather than 6. It has been suggested that higher
powers are possible [44], so theobserved behaviour is not altogether inconsistent

with the existence of 2D vortex glass correlations in these samples. The field
dependence of ft is shown in Figure 6.24(b) for several different temperatures,

where once again the measured points fit very well to a power law, this time with
an exponent of i.5 * 0.1. This implies that Jnt 6l/af whereas the predicted

behaviour is a 1/as dependence on the intervortex spacing U24,I4gl.
The low current resistivity has been shown to correspond to the motion of

dislocations of approximate size af;f {,6, where the activation barrier relates to the

energy needed to create the dislocations rather than to overcome pinning forces.

A thermally activated resistance is consistent with Equation 5.60 as long as the

exponent p is equal to 1, which is indeed the value suggested by Fisher et al.lI49l,,
however in the 2D vortex glass model the activation barriers at low current

correspond to the energy needed to move vortex segments of characteristic size

6inD. This contrast between the source of the experimentally measured activation
energy and the 2D vortex glass prediction would seem to imply that these samples

do not show 2D vortex glass correlations. However it must be remembered that
the creation of the free dislocations requires the displacement of the surrounding

vortices, and it may be that this process does show features related to glass-

like elastic vortex correlations. This might help to explain why the temperature
dependence of J4 shows glass-like non-linearity whereas the activation energy is
not of the usual 2D vortex glass type. The overall conclusion at least is that
the crossover to non-linear resistivity in the IV curves is more complex than the

simple predictions of the Anderson-Kim flux creep model.

At the highest currents in Figures 6.23(a) and (b) there are clear signs of a re-

turn to linear behaviour, especially at the higher temperature where the thermal
disorder of the vortices tends to average out the pinning forces. The resistivity
just below the LO instability has been measured from the IV curves and found

to be about half of the flux flow value given by Bquation 5.30, although it does

show the predicted linear field dependence. The corresponding low current re-

sistivity ranges from 1% of the high current value at a field of 0.02 T to g5%

of the high current value at 0.5 T. From this it can be concluded that a current

induced crossover occurs from a pinned state where the resistance is dominated

by motion of dislocations to a largely unpinned state with a freely moving flux
lattice. At high fields the pinning is weak enough that the two states are practi-

cally indistinguishable i.e. the vortices are depinned without assistance from the

current.

The phase diagram for samples 5/G1 and 5/G2 is shown in Figure 6.25 includ-
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Figure 6.25: Perpendicular field phase diagram for samples b/Gl and b/G2. The upper
solid line is Hs2, the triangles represent the boundary between the activated and non-activated
resistivity and the circles represent Tr. The solid line to the left of the plot is the calculated
position of the 2D melting line, which clearly falls well below 4.

iog /{"rr and the temperatures 4 at which the kinks in the Arrhenius plot occur.
The solid line at the lower left of the figure is the predicted 2D melting line due

to dislocation pair unbinding calculated from Equation 5.25 with A : 0.64 and

using the full expression for the shear modulus c66. Clearly the predicted melting
line does not correspond to any of the features observed in these samples. The
crossover line between the activated and non-activated resistivity is also shown

on the phase diagram. For this sample the crossover line corresponds to a rather
high resistance of the order of 0.2-0.3 ,R,, indicating that the activated behaviour

extends over a much larger fraction of the transition than in the thicker samples.

6.3.2 Parallel Fields

The intrinsic pinning in layered superconductors is expected to lead to a con-

siderable reduction in the parallel field resistivity relative to the isotropic case.

For this reason much of the theoretical and experimental work performed to date

has concentrated on the perpendicular field orientation, as it is the perpendicular

field component which tends to limit the superconductivity. Of course this also

means that parallel fields offer the greatest possibility of enhancing variables such

as the critical current or fi.eld for use in applications, so a study of this orientation
is clearly of interest. A complete study of the parallel field behaviour along the
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Figure 6.26: Parallel field IV curves for sample 60/3G1. (a) 1.590K, current parallel to field.
The curves range from 0.005 (far right) to 0.35T (far left). (b) 1.590K, current perpendicular
to field. The curves range from 0.005 to 0.40 T. (c) 1.a60 K, current parallel to field. The curves
range from 0.005 to 0.70T. (d) 1.460K, current perpendicular to field. The curves range from
0.005 to 0.70T.

same lines as the perpendicular field is beyond the scope of this work, but a few

points will be made here to highlight the differences between the two different

orientations.

Figure 6.26(a) shows a set of IV curves taken from sample 60/3Gl at 1.590 K
in different parallel fields where the current is applied in the same direction as

the field. Figure 6.26(b) shows a similar set of IV curves from sample 60/3Gl
with the only difference being that the curent is now directed perpendicular to
the field. Both sets of curves a.re remarkably similar despite the different current

orientations. Figures 6.26(c) and (d) show similar sets of IV curves to the above,

but this time taken at a lower temperature of 1.460K where two qualitatively
difierent regimes are clearly evident. If only the high field data are considered

then the behaviour is quite similar to that observed at 1.590K i.e. the curves are

all linear at low currents followed by a non-linear rise and an eventual convergence

to the normal state resistance at a field independent current. At low fields the

IV curves display downward curvature at low currents indicative of vortex glass
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like behaviour. At higher currents an LO instability is present which resembles

that seen in the perpendicular field data, however in this orientation the voltage
jump actually corresponds to a much larger change in resistance. The crossover

between the low and high field regimes is rather sudden indicating that they may
be separated by a phase transition in the magnetic state.

Before drawing any conclusions from this data it should first be noted that
the total thickness of the sample is considerably less than the c-axis penetration
depth, so it is not possible to form well defined vortices parallel to the layers.

Nevertheless the IV characteristic is strongly field dependent at constant temper-
ature indicating that the field does penetrate throughout the sampler2, possibly

in a form closely resembling the usual Abrikosov vortices but with a cutoff in
the extent of the screening currents. This makes it difficult to fully interpret the
parallel field data, but the following observations can be made.

Firstly the difierence between the 1.590K and the 1.460K data sets resem-

bles the differences between the corresponding perpendicular field measurements

which it was suggested could be related to a crossover from two- to three.
dimensional vortex dynamics. The relevant object in the parallel field case may
be the perpendicular component of the kink structures which nucleate vortex
motion across the layers (see Section 5.3.7). At high temperatures such a kink
structure may in fact extend across the whole sample. The similarity between the
data in the two different current orientations also supports the notion that the
dissipation is dominated by the thermal excitation of vortex segments perpen-

dicular to the layers (and therefore perpendicular to the current). The glass-like

current dependence observed at low fields and temperatures is also in agreement

with the behaviour predicted in Section 5.3.7. Finally the parallel field activa-

tion energies have been determined for this sample and were found to be equal

to a field independent value of about 1400 K for parallel fields between 0.015 and

0.4 T, decreasing to around 700 K at 0.7 T. These are considerably higher than

the perpendicular field barriers demonstrating the natural reduction in dissipa-

tion in the parallel orientation. Overall this speculative picture clearly calls for
a more detailed study of the parallel field response of a thin multilayer system,

including a determination of the vortex structure and also an investigation of the

possible vortex states.

Figure 6.27 shows a set of IV curves taken from the strongly layered sample

6lGZ at a temperature of 1.3K. The IV curves difier markedly from the per-

pendicular case in that significant dissipation is only apparent very close to H"2

lzNote that the measured anisotropy of this sample is far too low for the dissipation to be
related simply to a small perpendicular field component caused by misalignment.
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Figure 6.27: Parallel field IV curves for sample 6G2 measured at 1.3K. From right to left
the curves correspond to fields of 0,0.5, 1.0, 1.5,2.0,2.5,3.0,3.b,4.0,4.b,4.2b,4.89,4.9T.
Almost no dissipation is observable below the instability point until very close to I/"2.

(H"zll= 4.9 T at 1.3 K) indicating that the field is effectively trapped between the

superconducting layers. The temperature 1.3K is well below the zero field BKT
transition of this sample, so there is little energy to create vortex-antivortex pairs

within the superconducting layers. These pairs provide the nucleus for flux mo.
tion in the parallel field orientation (see Section 5.3.7) so their absence explains
the very low dissipation levels. As the field is lowered the observable dissipation
region becomes smaller and smaller until the IV curves actually jomp to the nor-

mal state at the instability point without any intermediate resistive phase. At
the very lowest fields a small dissipation region again becomes apparent prior to
the instability, although the cause of this is unknown.

t49
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Larkin- Ovchinnikov Instab ilit ies

A complete description of the vortex state must include the response of the vor-
tices to very high applied currents up to and exceeding the depinning critical
current. The aim of this section is to examine the high current regime in each of
the multilayer samples and to compare the results with the Larkin-Ovchinnikov
(LO) theory introduced in Section 5.3.9. The LO theory predicts a fundamental
instability in the rapidly moving vortex system which sets an absolute upper
limit on the current which can be applied while still maintaining signs of super-

conductivity. The IV curves displayed in the previous sections do indeed display
an upturn at high currents which has previously been shown to agree with the
LO theory [141], although the justification for this statement is repeated here for
completeness.

101

10-1

Z 1o-3

10's

10-7

0.01 0.02
t(A)

Figure 6.28: A closeup of the parallel field instability point in sample 60/3Gl in two different
fields at a temperature of 1.424K. There is very little hysteresis despite the huge difference
between the power levels on the upwards and downwards current sweeps.

To demonstrate that the instability is of the LO type it is first necessary to
eliminate any other possible sources of a sudden jump in the IV characteristic.

Figure 6.28 shows an enlarged view of the instability point for two different

parallel field IV curves taken from sample 60/3Gl at a temperature of 1.424K.

The instability is observed on both the upward and the downwa.rd sweeps with
only a small difference between the current at which it occurs in either case despite

the fact that the power levels on either side of the transition differ by more than 5
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orders of magnitude. The other samples also show similar results with little or no

hysteresis. This rules out Joule heating as the source of the instability, which is
a result of the fact that the measurements have been performed with the samples

immersed directly in liquid helium to maximise cooling. The depairing currents

have been calculated for some of the samples using Equation 1.1 and in every

case were found to be too large to be related to the abrupt voltage changes. The

Josephson behaviour used to explain the sudden jumps in resistance observed

in some highly anisotropic high-?i samples [150] is not appropriate here either
as the voltage upturns have been observed in the unlayered alloy sample 2lG6
as well as the multilayer samples. Depinning, accompanied by vortex lattice
crystallisation, has also been shown to result in jumps in the resistance [8,10].
For samples 5/G1 and 5/G2 a crossover to a free flux flow state was observed

at high currents well before the instability, so depinning can not be the cause

of the voltage jumps observed here. Furthermore the transition always involves

a jump to a resistance close to the normal state value whereas in a depinning

transition the jump would be expected to be to the flux flow resistance. Thus

it is concluded that the LO theory is the most promising to pursue in analysing

the high current instability in these samples.
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Figure 6.29: The measured critical vortex velocity for sample 60/3G1 in a perpendicular field.
The diamonds correspond to a temperature of 1.373K, the circles to 1.456K and the triangles
to 1.520K. The vortex glass melting field is marked by an arrow on each curve. The inset
shows the 1.456K data plotted versun II-rl2 which is linear at flelds below ffn.
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of the critical vortex velocity u* on the electron inelastic scattering time q,, (see

Equation 5.65). The values of u* have been determined from the IV curves of
sample 60/3Gl using Equation 5.66 where at low fields V* is defined as the
voltage just before the resistance jump, while at high fields V. is defined as the
voltage just before the point where the IV curve shows a rapid change in slope.

Figure 6.29 shows a plot of u* as a function of the perpendicular applied field for
sample 60/3G1 where the different curves correspond to difierent temperatures.

Each of the curves displays similar behavior, decreasing with field at first before

levelling off to an almost temperature independent value of about b0-60 ms-r.
For the pure Ta multilayers the value of r;n has been determined previously

from a study of the temperature dependence of the normal state conductivity [17,
36], thus allowing a comparison between the measured and theoretical values of
1r* ' At low temperatures the inelastic scattering processes are dominated by
electron-electron scattering events for which the 3D value of 4,, is given at 1K
as 1.25 x 10-8 s. The sarne source gives the value of the diffusion constant D as

i '2 x 10-a m2s-1. Combining these values into Equation 5.65 yields predictions for
u* of 72,66 and 60ms-r at temperatures of 1.373, 1.456 and 1.520 K respectively
which are in remarkably good agreement with the experimental results, especially
considering the large uncertainty associated with both D and 4,,. The observed

lack of a clear temperature dependence of u* does not agree with the predictions of
the LO theory, however it should be remembered that 4,, is a decreasing function
of temperature which offsets the behaviour given explicitly in Equation 5.65.

Overall the measured results provide very compelling evidence that the instability
is indeed of the LO type.

The values of the critical vortex velocity have also been extracted from the IV
data for the other samples and, similarly to sample 60/3G1, a region is observed in
each where u* is approximately independent of field. The values of u* determined
in this region are shown as a function of temperature in Figure 6.30 for samples

21G6, 61G2, 60/3G1 and 5/G1 and 5/G2 combined. The overall magnitude
of the critical velocity provides an estimate of the ratio (Df r;n)'/' fo, each of
the samples, however there is no clear trend in the values which would allow a

determination of the dependence of (Dlr;")t/2 on the layer thicknesses. This is

not entirely surprising as the inelastic scattering time depends on the sample

composition and the level of impurities as well as the dimensionality, and the

former are not held constant between the samples. However one trend which

is evident is a slight increase in u* with increasing temperature which indicates

that the temperature dependence of 4,, is dominating the term (I - TlT")t12 in
Equation 5.65.
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Figure 6.30: A comparison between the measured perpendicular field LO critical vortex
velocities for several samples. The diamonds are from sample 6/G2 in a field of 0.7T, the
squares are from sample 60/3G1 at 0.055T, the circles are a combination of samples 5/Gl and
5/G2 at 0.2T and the triangles are from sample 2/G6 at 0.8T,

A detailed inspection of any of the sets of IV data presented in the previous

section (e.g. Figure 6.19(a)) reveals several features characteristic ofthe IV curves

at the instability point. At low fields the jump in resistance is extremely abrupt
having no measureable width irrespective of the size of the current steps, and

the transition is always to a resistance which closely approaches the normal state
value rather than the flux flow resistivity. As the field is increased the abrupt
transitions gradually begin to broaden until at the highest fields they become

almost imperceptible, although once again the resistance above the transition
point closely approaches the normal state value. Similar behaviour can also be

observed if the IV curves are plotted at a single field and a range of tempera-

tures, ieading to the conclusion that the broadening occurs N H.z is approached.

Finally, both the voltage l/* and the current density J* at which the instability
takes place depend on the applied field and temperature. Some of these features

are predicted by the LO theory, such as the variation in V. with field, however

other features are not directly predicted and require further investigation.

A useful place to begin is the consideration of the expected behaviour below

the instability point where the LO theory makes specific predictions regarding the

form of the IV curves which should be observed. In the absence of any pinning

forces the IV curves are described by the equation [15,16,35]
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Figure 6.31: (a) IV curves calculated according to Equation 6.7, showing the characteristic
backbending shape at low field. The curve on the left has o = 5, while the curve on the right
has a = 10. Both curves have R, = 1?0O and I/* = 0.01 l/. The dashed line represents
the normal state resistance. (b) The boundary on the magnetic phase diagram separating the
regions where a ) 8, which are expected to display sharp transitions at the LO instability, and
a ( 8 where the transitions are broadened.
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where R,, is the normal state resistivity and o is given by

4.04H"2
H KH"zH(r - Tf T,y1z'

I:#
l" (6.7)

(6.8)

with D the electron diffusion coemcient, Rfr : R^B f H"z the usual flux flow

resistivity which occurs when ? : r?(0), and ((3) = I.202. Differentiation of this
equation with respect to V shows that the IV curve has two critical points given

bv

a : ,,,fi6t (^#), HSH."

1r2 - 1r*2 ((CI 
- 2) +-v6t:s")

(6.e)

When a > 8 (i.e. at low fields) the solutions to Equation 6.9 are real and the IV
curve bends backwards as shown by the right hand curve in Figure 6.31(a). The

lower critical point corresponds to the LO instability where the voltage makes

an abrupt j,t*p to the upper branch of the IV curve on which the resistance

approaches the limiting value .8,. (shown by the dashed line). At higher fields

where o < 8 the back-bending is no longer evident, and instead a rapid but

continuous rise in the IV characteristic is observed as shown bv the left hand
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curve in Figure 6.31(a). The values chosen for,B, (170O) and V* (0.01 I/) are

typical of the Ta,Ge1-,/Ge multilayer systems studied here.

It should be noted that two difierent expressions for the IV curves were pre-

sented in the original LO paper, the first of which has been discussed above

(Equation 43 in Ref. [15], Equation 1 in Ref. [35]). The second expression (Equa-

tion 53 in Ref. [15]), which has subsequently been used by several other au-

thors [137,138], is equivalent to
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,:#1,
+ (vlv")2 *"(,-;)'''7 (6.10)

where c is a constant of order unity. An analysis of this equation shows that

there are no critical points so it does not describe a back-bending IV curve, and

furthermore the limiting value of the resistivity at large V is Rg I c(l - T 17"7t tz,

whereas the experimental data clearly show that the resistivity tends to R,, at

large vortex velocities.

Equation 6.8 can be used to predict the crossover between sharp and broad-

ened transitions in the IV curves. Figure 6.31(b) shows the line on the magnetic

phase diagram where <r : 8 which divides the points where the transition at the

LO instability is expected to be sharp and the points where it is expected to

be broad. This is based only on the low field expression for o. Inclusion of the

high field expression would have led to an additional region close to the phase

boundary where e ( 8 at all temperatures.
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Figure 6.32: (a) The measured position of the onset of broadening in the LO instability for
sample 60/3G1. The upper solid line is Ilcz and the lower solid curve is the vortex glass melting
line. (b) The position of the onset of broadening in the LO instability for samples 5/Gl and

5/G2. The solid line is If"z.

The measured bounda"ries between the sharp and broad instabilities are shown

for sample 60/3Gl in Figure 6.32(a) and for samples 5/G1 and 5lG2 in Fig-

ure 6.32(b) where I/"2 has been included also. Clearly the measured boundaries

1.35
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do not correspond to the predicted behaviour shown in Figure 6.31(b) indicating
that further processes are involved. Also shown in Figure 6.82(a) is the vortex
glass melting line determined from the scaling analysis in Section 6.8.1, which
shows remarkable similarity to the broadening line. This correspondence can
in fact be seen in the IV data for this sample in which the downward sloping
curves always correspond to sharp transitions while the upward sloping curves
correspond to the broad transitions. For samples 5/G1 and 5/G2 the broadening
line does not correspond to any observed transition, however there is a fairly
close correlation between the broad transitions and the existence of pronounced
non-linearity in the IV curves at intermediate currents. These observations make
it clear that a complete description of the instabilities in these samples must
include the effects of pinning forces as well as the vortex viscosity term. This is
made even more clear by an inspection of the 0.7T IV curves for sample 6/Gz
presented in Figure 6.15(a) which show that just below the instability the IV
curves follow a power law dependence characteristic of vortex glass behaviour
rather than the linear IV characteristic that would be expected if there were no
pinning forces. The fact that pinning forces are able to influence the instability
is a reflection of the low values of the critical vortex velocity. These velocities
can be reached while pinning is still appreciable.

To date few attempts have been made to include the effects of pinning on the
shape of the LO IV curve, with most attempts being restricted to the subtraction
of a critical current /" from the left hand side of Equation 6.7. This is equivalent to
treating the pinning as a constant drag force independent of the vortex velocity.
An accurate treatment of pinning on the other hand, must take into account
the relationship between the pinning force and the size of the vortex core. The
collective pinning theory (Section 5.3.1) provides a means of relating the pinning
force on the vortex lines to the coherence length. Equation 5.34 shows that the
single vortex collective pinning energy is an increasing function of the coherence
length, so as the vortex velocity increases and the vortex cores begin to shrink
there will not only be a decrease in the viscous drag but also in the size of the
pinning force. Therefore the inclusion of pinning forces adds a velocity dependent
term to the vortex equation of motion which could significantly modify the shape

ofthe IV curves. The overall strength ofthe pinning forces depends on the vortex
regime, for example a significant reduction in pinning occurs upon melting of the
vortex glass, which may explain the correlation between the onset of broadening
in the Lo instabilities and the vortex glass melting transitiont3 [l4t].

13The agreement between the measured and theoretical values of the critical velocity dis-
cussed above was based on data at fields well above the melting line where pinning is not
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A further efiect which is worthy of consideration is the distribution of vortex

velocities which exist in the vortex liquid state. It has been shown in the previous

sections that as the field or temperature are increased towards H.z the vortex

lattice can become unstable to plastic vortex motion, due either to melting of

the vortex glass in 3D or to the formation of dislocations in 2D. The rather

jumpy transitions observed in the instability just at the onset of broadening are

in fact quite suggestive of some form of plastic flux motion where some parts of

the vortex lattice undergo the instability ahead of other parts. While the above

arguments fall far short of providing a rigorous theoretical analysis of the effects of

pinning and thermal disorder on the high current properties of the vortices they

do at least highlight some of the important features which a complete theory

must include.

It was noted above that the measured critical vortex velocity shows a fairly

strong field dependence at low fields (see Figure 6.29), whereas no such effect is

predicted by the LO theory. As discussed in Section 5.3.9 such a fi.eld dependence

has been predicted by Bezuglyj and Shklovskij [13a] and also by Doettinger el

a/. [138]. In thefirst instance the field dependence is caused by heating effects in

the vortex cores whereas the second theory is based on a spatially inhomogeneous

quasiparticle distribution due to the localisation of excitations within the vortex

cores. To help determine which of these effects is relevant (if any) the data at

1.456K have been replotted versus H-rlz in the inset to Figure 6.29 where a

linear dependence can be seen at low fields. The data at the other temperatures

show similar behaviour although with slightly more scatter. This linear depen-

dence on H-tl2 agrees with the predictions of Doettinger el o/., however it is

also shown on the plot that the point at which the curves flatten off corresponds

closely to the vortex glass melting field whereas the theory predicts that the flat-

tening off occurs when the intervortex spacing becomes small enough that the

inhomogeneous quasiparticle distribution is averaged out by the flowing vortices.

A natural explanation for this coincidence is that the averaging of the quasipar-

ticle distribution is in fact performed by the thermal motion of the vortices in

the liquid state which allows the vortex core to sample a much larger fraction of

the surrounding superconductor. These results indicate that the observed field

dependence of the critical vortex velocity is best interpreted in terms of the the-

ory of Doettinger et al,. It is interesting to note however that the values of u* in

sample 2lG6 actually show a sudden decrease as the temperature is raised above

the lambda point of liquid helium. This is most easily attributable to a change in

expected to be significant.
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the cooling power of the liquid helium leading to a decrease in u" as predicted by
Bezuglyj and Shklovskij. Therefore both theories seem to be of some relevance
to this system.

H (T)

Figure 6.33: The parallel field critical current at the LO instability for sample 60/BGl. From
top to bottom the curves correspond to temperatures of 1.3?3, 1.410, 1.460 and t.SS0X. Note
the non-monotonic behaviour at low temperatures and fields.

To finish this section on Larkin-Ovchinnikov instabilities a brief considera-
tion is given of the parallel field orientation. Parallel field IV curves for the
decoupled sample 6lG2 have already been presented in Figure 6.15 where it was
shown that the voltage jumps from an unmeasureably low value to the normal
state as the instability is reached, corresponding to a remarkably low value for
u*' It therefore seems even clearer in the parallel field case than in the perpen-
dicular case discussed above that additional efiects are important in determining
the behaviour of the instability. Further investigation of this field orientation,
especially in strongly anisotropic samples, is clearly warranted.

Several sets of parallel field IV curves taken from sample 60/3G1 were also
presented in Section 6.3.2. At low fields and temperatures these curves displayed
an instability similar to the one observed in perpendicular fields, however the
j,t-p in resistance was over a larger scale in the parallel field case. Furthermore
an inspection of the high current region in Figure 6.26(c) shows that the current
1* is in fact non-monotonic in the applied field. /* is plotted as a function of
the applied field in Figure 6.33 where the different curves correspond to different
temperatures. Clearly the non-monotonic region is confined to low fields and

E
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tempenatures indicating a posoibile change in the vo'rtex s'tate, This behavisur is

oboerved most strongly when the field and eurreot are pa,rallel eo that there io no

Lorentz force, wher,ea;s Figure 6.96(d) ehows that w.hen the cutrent is perpendicu-

la,r to the field there is only a hint of non-moaotonic behaviour ia /*. Ouce again

thie suggests that a description of the inetability solely in terms of the viscooity

f,srceis not adoquate in the pa,rallel ca6e, and iuetead the eomplicated a,ctirnation

barriers and pinnrng force ariaing ia this orientation rnust aleo be eonsidered.



Chapter 7

Conclusrons

The main aim of this thesis was to study the superconducting properties of a

highly disordered low-[ multilayer system in order to examine the effects of

layering and reduced dimensionality on superconductivity in type-Il materials.

The multilayer system studied consisted of layers of amorphous Ta or Ta"Ge1-"

(c = 0.3) interleaved with amorphous Ge where the individual layers ranged in

thickness from 17 to 210A. A further single layer Ta"G€1-s sample of thickness

6704 was also investigated for comparison with the layered samples. By altering

the layer thicknesses the dimensionality was varied from the 3D limit down to

the 2D limit with consequences for both the low current and the high current

dissipation regimes. The main results, which are summarised below, are expected

to have relevance for all layered or low dimensional type-Il superconductors.

In order to study the role of dimensionality in determining the supercon-

ducting properties it is necessary to know the I values and the characteristic

length scales associated with each of the samples. The zero field fluctuation con-

ductivity was extracted from the resistive transitions and fitted to the simple

Aslamasov-Larkin predictions yielding ?" values in the raoge 0.882 to 2.802 K,

with the lower values corresponding samples with pure Ta layers. Apart from

one of the sa,mples with relatively thin Ge layers the 2D form of the theory gave

a better description of the measured data than the 3D form. Following this the

perpendicula.r upper critical fields of the samples were determined from the in-

field fluctuation conductivity using the scaling theory of Ullah and Dorsey. Once

again the 2D form generally provided a better scaling fit except for the sample

mentioned above for which the data collapsed very convincingly under the 3D

scaling laws. For some of the other strongly coupled samples the dimensionality

was hard to judge from the scaling analysis, possibly due to the eflects of dis-

order on the width of the tansitions. The upper critical fields were used to find

161
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the in-plane coherence length ("6 which ranged in rralue from Zb to l3BA, with
the pure Ta multilayers tending to have slightly larger values than the alloyed
multilayers. The in-plane penetration depth lo6 was also determined from I and
the zero temperature resistivity and was found to lie between 11000 and 20000A,
with the larger values once again corresponding to the pure Ta multilayers. The
ratio rc : \obl€ou was between 70 and 90 for all of the samples. Thesevalues are
comparable to those found in other highly disordered low-[ systems, and also
lie much closer to the values observed in the high-Z" superconductors than do
conventional low-?" materials.

An attempt was made to treat the parallel field fluctuation conductivity in
the same manner as above, but only for the samples with strongly coupled super-
conducting layers could a reasonable scaling collapse be obtained. For these the
scaling was used to deduce I1"z1g which in turn was used to define the anisorropy
parametery. The anisotropy values ranged between 1,5 and 10 and increased
with increasing Ge layer thickness or with decreasing Ta or TarGel-, thickness.
For the less strongly coupled samples it was noted that the resistive transitions
were considerably less broad in the parallel field orientation, enabling an accurate
determination of f/"21; using a simple resistance criteria. The temperature depen-
dence of H.211for the strongly decoupled samples was generally consistent with
the square root form expected in 2D, and for the TarGel_' multilayer samples
the magnitude also agreed with the theoretical predictions.

The zero field IV curves of each of the 2D samples were examined as a
function of temperature and found to be consistent with the form predicted
by the Berezinskii-Kosterlitz-Thouless theory in which the resistive transition is
governed by the unbinding of thermally created vortex-antivortex pairs. The
Ta'Ge1-' samples showed the predicted jump in the exponent of the power law
describing the IV curves at a temperature which agreed with the theoretically
predicted BKT transition. For two of the pure Ta multilayers the transition
temperature was somewhat lower than expected. For one of these samples the
disagreement between theory and experiment may relate either to screening ef-
fects or to mixing at the layer boundaries, however the disagreement is harder to
explain for the other sample. Overall the results provide a nice validation of the
zero field BKT theory for 2D superconductors.

The above results define the range of fields and temperatures over which
the samples are in the superconducting state, however finite dissipation is still
possible within this range due to thermally assisted flux creep. Tremendous efiort
has been put into gaining an understanding of this phenomena in layered type-Il
materials like the high-Q superconductors because it places severe restrictions
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on the conditions under which the benefits of dissipationless current flow can be

utilised. The activation barriers relating to the thermally activated motion were

measured for a wide range of multilayer samples and three qualitatively different

regimes were found. In the strongly coupled samples or in the (relatively thick)

single layer alloy the activation energy was proportional to the intervortex spacing

and independent of the sample thickness or the individual layer thicknesses. This

barrier was identified as a plastic barrier corresponding to a 3D viscous vortex

liquid phase. In the decoupled samples with thick superconducting layers the

activation energies were much smaller and showed a logarithmic dependence on

the applied field. This indicated that the dominant mode of flux motion was

the creep of dislocations in the 2D vortex lattice for which the activation energy

is finite due to the disorder in the lattice. For the decoupled multilayers with

the thinnest superconducting layers an interesting crossover is observed in the

activation energy at a field dependent temperture 4. The activation energy has

a logarithmic field dependence both above and below [, although with different

coefficients in each case. Below 4 the dissipation was shown to be the same

as that in the thicker samples i.e. motion of dislocations, while above 4. the

resistivity was dominated by the motion of small scale paired dislocations. This

is in contrast to the explanations proposed to explain similar crossovers seen in

other systems which involved phase transitions in the vortex state.

At lower fields and temperatures the samples which showed 3D type behaviour

also exhibited signs of a transition into a vortex glass state in which the activation

barriers diverge with decreasing current. Reasonable agreement was found with

the predicted scaling behaviour in the vortex glass model, especially in the sample

with the largest total thickness. Some evidence for vortex glass like correlations

were also observed in one of the decoupled samples with thick superconducting

layers, however the correlations were cut off by the finite layer thickness so that

no true glass phase resulted. In the decoupled samples with thin superconducting

layers there was no evidence for a vortex glass transition at finite temperature,

although the IV curves did show some evidence for the existence of 2D glass-like

correlations. These results clearly demonstrate the absence of a vortex glass state

in two dimensions and also highlight the decreased effectiveness of the pinning

forces at preventing vortex motion in thin superconducting layers.

One of the most unique aspects of this study was the ability to trace the

superconducting behaviour over the whole range of currents from the low cur-

rent regime described above to the high current regime in which an instability

exists in the vortex solid that provides an absolute limit to the sustainable su-

percurrent. This instability was shown to be of a type predicted by Larkin and
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Ovchinnikorr, inclucling quantitative agrre,ment between the ueasured ao,cl the.
oretically expeeted rnaftres of the oritical vortex velocity. The iacta,bility a.lso

shg$ied a characteristie hroadening at fields and temperatures close to .fl"z whic,h
was shown to be afiected both by the strerrgth of the pinning forees aod by the
state of the vorticw prior to the instabi!,ity point.



Appendix A

Temperature Dependence of the
Thermal Activation Energies

Because they depend on the characteristic length scales of the samples the ac-

tivation energies are generally a function of temperature as well as magnetic

field. Close to ?i the temperature dependence can be separated from the field

dependence so that the activation energy can be written [151]

U(H,T): U(H)(1 -TlT")c (A.1)

where q is expected to lie between 0.5 and 2. For example, the plastic activation

barriers discussed in Section 5.3.5 all depend on 1/.\16 x (l-TlT") so that Q: 1.

The activated resistance takes the form R : Raexp(-U(H,T) lkBT) so for e : I

an Arrhenius plot has the slope

#:-u(H) (A.2)

independent of ?. The measured Arrhenius plot slopes therefore give a measure

of the zero temperature field dependence of the activation energy, while the tem-

perature dependence is reflected in the prefactor ,Ro. This is valid as Iong as

the temperature range over which the slope is measured is small so that the plot

remains linear, a condition which is met in most cases due to the steepness of

the Arrhenius plots. For other values of g the measurement of U(H) is not so

simple, however the results of Section 6.3 showed that the Ta,Ge1-,f Ge systems

studied here can be well described by assuming q : 1.
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