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Abstract

Using volatility es,timation as the underlying commouality- this thesis tr.averses the
statisticei problem of robust eetimatior of scale, through to the financial problem

of valolng calfl options olrcr stoak.

We use a large simul"ation study of robust scale estimatorc to benahmark a tron-
parametric volatility estimation proeedure, which not only uses teohniques which

are pafiicularly suited to obseryed finaacial returns, but dso addresses the probtrem

of bias in any robust volatility estimation procedure.

Exilstirng option pricing models are discussed with caneful study of the assumed

volatility and ela,sticity of volatility with resp.eet to stock price relationships for
each of thcse r,rodels. ^An option pricing formula is derived which eNteqds. uristing
rnethods, and provides a closed forrn solution whictr gan be readily computed. P,re-

llminary anallrsis of reaL priee data suggests this model is able to elrplain observed

[everage phenome.rra.
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Chapter 1

Preliminaries

This thesis was motivated by an analysis of the constant elasticity of variance (CEV)

option pricing model (Randal 1998). Empirical analysis therein focused heavily on

the relationship between the log volatility series for a stock and the log stock price

itself. This analysis highlighted triro features of financial returns: the returns are

heavy-tailed and have evolving volatility', as acknowledged in the volatility estima-

tion literature. Surprisingly, we also found that this evolving volatility is difficult to
estimate robustly, i.e. so that the estimates are unaffected by the underlying distri-
bution of the returns. We also found that the relationships between volatility and
price were not always consistent with basic financial theory. This thesis addresses

those concerns.

Readers of this thesis are assumed to have a reasonable knowledge of statistical
techniques, and also a knowledge of finance, and in particular, the area of option
pricing. We begin wholly in one camp, and end up almost entirely in the other.

1.1 Structure

This thesis was originally meant to be a story of volatility and leverage. The only
contender for a constant theme throughout is volatility: a measure of the variability
of financial returns. We begin with the more general problem of estimating scale

robustly. Following this, we focus directly on obtaining a robust volatility estimator,
and finally we examine the underlying firm structure and posit a model which has

the ability to explain a range of relationships between volatility and price level. The

volatility estimator developed earlier is used to estimate such relationships, and thus

to appraise the usefulness of the proposed model.



CHAPTER 1. PRELIMINARIES

Replication of the Lax (1985) study on robust scale estimation in small samples was

meant to be a very minor part of the work undertaken; however it became clear that

a more extensive description of the work was in order, At the risk of it dominating

this thesis, the majority of that work is given in Chapter 2 and supplementary

material in Appendices B and C. In reading these sections, it may be useful to

bear in mind that the goal throughout that work was to identify estimators which

could usefully be used to estimate the variability of financial returns. Featuring

in the simulations were estimators specifically designed to be used for estimation of

volatility of financial price processes, and these are based on the t-distribution, which

has been found to approximate the estimated distributions observed in practice. We

find that these estimators are not only excellent for the purpose for which they were

designed, but also good more generally.

The volatility estimator described in Chapter 3 appears to be successful. In the

final section of this introductory chapter, we demonstrate both the difficulty in

obtaining a robust time-series scale estimate, and also the importance of successfully

doing so. The estimator we propose is based on the t-distribution with u : 5

degrees of freedom, since this distribution appears to be intermediate among the

distributions observed in practice. The estimator is tested using simulation and a

known evolving volatility process, for a variety of distributions. It performs very

well in these simulations, and is benchmarked against the traditional non-robust

v'olatility estimation procedure (based on a moving standard deviation), and also the

best-performing estimator identified in the simulations of Chapter 2. The estimator

is also applied to real data, and further properties of the volatility estimates are

identified.

Having secured a robust and reliable volatility estimator, we move in Chapter 4 to

analyse the relationship volatility and price have, both in theory and in practice.

Several theoretical models are included in this study, including the fundamental

model of a firm with risky debt, and the stock price models assumed for the Black-

Scholes, CEV, compound and displaced diffusion option pricing models. A new

option pricing model is derived, and this both combines and extends the compound

and displaced diffusion models. Significantly we obtain a closed form solution for

an option price under this model, which can be readily computed. Further, we find

this model has the additional flexibility to model a variety of relationships between

r,'olatility and price. Analysis for Telecom New Zealand data shows the model is

broadly consistent with what is observed.



1.2. US/NG LOESS TO ESTIMATE VARIABILITY

Chapter 5 concludes with a summary of what has been found, and an indication of

future research directions.

The remainder of this Chapter illustrates the difficulty of measuring scale of time

series data robustly, in particular using the non-parametric smoother loess.

t.2 Using loess to estimate variability

The time series smoother loess (Cleveland, Grosse & Shyu 1992) can be used to

provide a robust estimate of the level of a time series through time. It is implemented

in the statistical software R (Ihaka & Gentleman 1996), and its details are discussed

in Appendix A. As demonstrated in the appendix, Ioess can be used to provide a

smooth level estimate that is not unduly affected by the occasional outlying values,

nor by non-Gaussian data. This suggests that a natural way to estimate volatility

using loess would be to smooth the squared returns obtained from financial asset

price series.

It turns out that this is not such a good thing to do. The robust estimate is

obtained from loess by specifying fanily="sJrunetric" in the function call, since

for the robust estimate, Ioess merel,v assumes that the series we are smoothing is

symmetric about the level we hope to estimate, rather than normally distributed

about that level. Asset returns are typically symmetrically distributed, at least

close to the mode of the distribution, and so it follows that the squared returns

will be not at all symmetric. An example of this is shown in Figure 1.1 for a

simulated geometric Brownian motion (GBM) series with pl : io'and o : 1. This

process is consistent with log-normally distributed prices, and normally distributed

returns, and is the process assumed by Black & Scholes (1973) in the derivation of

their famous call option pricing formula. Under this choice of parameters, the daily

returns are independent ,,t/(0, t; variables. The left histogram in Figure 1.1 is the

sample distribution of the returns for the simulated series, and these are fitted very

well by the underlying normal distribution, as we would expect. The right histogram

is of the squared returns. These have a chi-squared distribution with one degree of

freedom, and this is superimposed. We see two dominant effects, all the returns

less than one in absolute value are pushed toward zero, and the squared returns are

highly asymmetric.

The effect of ignoring the requirement of a symmetric series is shown in Figure 1.2

for the simulated GBM series whose return distribution features in Figure 1.1. Even



CHAPTER 1. PRELIMINAR/ES

A

CN
.E ci

@

@

b'6
o

o

o

ct

r€tums squared r€lums

Figure 1.1. Distributions of returns and squa,red returns for a simulated geometric Brownian
motion series 501 observations long, with F : 0 and o : L. The Ieft histogram is for the returns
and the standard normal density function is superimposed. The right histogram is for the squared
returns and the 1l density function is superimposed.

though the underlying distribution of returns is Gaussian, and strictly speaking, ro-

bust estimation is not required, we see that the robust volatility estimate drastically

under-estimates the true volatility function. This bias is caused by the asymmetric

distribution of the squared returns, and the effect this has on the robustness weights

used by loess. As described in Appendix A, the robustness weights are based on

the previous iterate's residuals. These are divided by six times the median absolute

deviation of the residuals from their median, and then inserted into the biweight

function
. (0- ur), lrl <1B(u\: 1\ / lo l'l >t

to obtain the robustness weights. The biweight function has a maximum at u : 0

of 1, and so the robustness weights are less than or equal to one.

The robustness weights for the squared returns on which Figure 1.2 is based, are

plotted in Figure 1.3 against the residuals (,?f - 6?) from the robust fit (the largest

residual 13.34 is omitted from the plot). The points trace out the biweight function,

but the residuals are clearly not symmetrically distributed about zero. In particular,

the residuals in the short left tail of the residual distribution all get relatively high

robustness weight, with the minimum residual getting a robustness weight of 0.905.
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Time

Figure 1-2. Volatility estimates using loess for the GBM series used for Figure 1.1. The solid
estimate is from loess using standard smoothing techniques with no robustness properties. The
dotted line is from loess with robust smoothing. In both cases the squared returns are smoothed
with a window of 125 observations, and all estimates shown are based on a complete smoothing
window. The true parameter is shown by the horizontal line.

In contrast, 25Vo of the observations get a robustness weight less than this, and

all of these have positive residuals. Approximately 20% of the squared returns get

robustness weight less than 0.8, and 6.6% of them get zero weight. Since the weights

are strictly less than one, and the series we are smoothing is not symmetric (and

so the weights do not offset either side of the centre), the volatility estimate is

downwards biased as clearly dernonstrated in Figure 1.2.

We conclude that because in general, squared returns will not be symmetrically

distributed' as in the data analysed in this section, the robust smoother loess will
not produce a robust estimate of volatility simply by smoothing the squared returns
since it is based on a symmetric distribution about the level we are estimating. In
the following two chapters, we examine alternative estimation techniques,
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Chapter 2

A reinvestigation of robust scale
estimation in finite samples

" In analyzi,ng data, we do not want to euen attempt to represent its stochasti'c be-

haai,our accurately; rather we wish to choose techni,ques that spare us thi,s essentially

impossible taslC' Morgenthaler & Ttrkey (1991), page 1.

With both the aim of measuring the variability of financial returns, and the above

quote from Morgenthaler & T\rkey (1991) in mind, we perform a simulation study

of robust estimators of scale.

2.L Introduction

This study examines robust scale estimation, using computer simulations which take

advantage of recent improvements in computing technology. For this simple reason,

simulations undertaken here dwarf those of Lax (1985) (hereafter referred to as Lax,

or the Lax study), who performed a simulation study with identical purposes. The

estimators and techniques considered here are motivated by the Lax study, and also

by published studies using robust scale estimators in more recent times.

A robust estimator is called res'istant, if it is largely unaffected by a small number

of large changes to the data (i.e. by outliers) and by any number of small errors

(e.g. rounding errors). Typicallyr we are more interested in resistance to outliers.

In addition to possessing resistance properties, a robust estimator will be a suit-

able estimator for non-normal data (i.e. have high relative efficiency). The notion
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of efficiency, and in particular for a scale estimator, will be clarified later, how-

ever at this stage it is sufficient to think of an "efficient" estimator having a mean

squared error which is close to the minimum for a variety of situations (describing

possible underlying distributions for data). Robust estimators will be particularly

applicable for financial data, which often features the three situations we are pro-

tecting against: occasional rogue values, many small emors (induced by properties

of financial markets such as discrete price intervals and discontinuous trading) and

underlying non-normality.

The estimators considered are assessed by their minimum relative efficiency over

Tukey's three corners: the standard normal distribution, the one-wild situation (also

known as 1-wider), where n-I af the observations in a sample of size n are standard

normal and the remaining observation has 10 times the standard deviation of the

others, and the slash distribution, an observation from which is obtained by dividing

a standard normal random variable by an independent random variable distributed

uniformly on the interval [0,1]. These three sampling situations were considered by

T\rkey to reflect the three extreme cases of importance to robust statistics. All three

theoretical distributions are symmetric: the normal has rapidly decaying tails; the

one-wild allows the presence of a single outlying, but otherwise well behaved, value

(in the upper or lower tail with equal probability); and the slash, with its infinite

mean and variance, has very slowly decaying tails. In practice, most samples from

the one-wild will be highly asymmetric, with the presence of the single outlier. An

estimator which copes well in all three situations can suitably be used:

o rryhen the data is well behaved:

r in the presence of occasional outliers;

o when the data is very heaw tailed;

. or some combination (see Yatrakos 1991)

and is thus highly useful, particularly when much data is being processed with little

interaction by the analyst.

In the remainder of this introduction we present a discussion of some of the important

considerations when conducting a simulation study of this sort, and a summary of

the current state of the robust scale estimation literature. In the following sections
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we describe the estimators and methodology of this simulation study, and in the

final section of this chapter, the results are presented and discussed. Supplemenrary

material is given in Appendices B and C.

2.1.L Tukey's three corner distributions

Tukey's three corner distributions are irrtended to model extreme behaviour for data.

An estirnator which performs well in simulations for each of these distributions is

likely to perform well for any data met in practice. The properties of the three

distributions are discussed further in the following notes.

The normal distribution

In classical statistics, data are all too often assumed to be drawn from normal distri-
butions. While this may be an appropriate description for some types of data, such

samples are arguably more the exception than the rule. The normal distribution is

described by Morgenthaler & Tukey (1991) as "unrealistically nice', (page 7), and

they prefer to use the descriptor "Gaussian" so as not to infer normality (in the lay
sense) on the situation. Students rote learn the 68-95-99 rule: 68% of normal data
lie within one standard deviation of the mean, 95% within two, and 9g% within
three, and the majority of statistical theory is based on the hope that this is a fair
description of the population from which the data are drawn. This is of course rea-

sonable in the many situations that the central limit theorem applies, for example
when the sample mean is used for inference about the population mean. However,

even in this case, non-normal data can cause problems if the sample standard devi-

ation must be used as an approximation to the population standard deviation. The
normal distribution has two parameters: the mean p and the varian ce 02, and is
often denoted,A/(irz,o2). The standard normal distribution has lt:0 and o2:1.
There is not a great deal of leeway if optimality is based on underlying normality.
Lax describes an experiment by Tukey in which a sample from a contaminated
normal distribution is examined.

Definition 2.t (Contaminated normal random variable) The contami,nated, nor-
m,al random uariable X, with parameters 0 < p < r and k > r and denoted CN(p; k),
'is stand,ard, norrnal with probability 1 - p, and otherwise normally d,i,stri,buted, with

ntean0 and uariance k2.
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With appropriate scaling, the contaminated normal distribution can be used to

generate an observation from the normal distribution with parameters p and o2 with

probability I - p, and an observation from the normal distribution with parameters

p, alnd (k")' with probability p. In this thesis, where used, p and k will generally

be specified, and p and o2 considered unknown. Thus, the contaminated normal

is a mixture of two normal distributions, and a sample from this distribution can

be considered "contaminated" in the sense that any observations drawn from the

second distribution have replaced observations from the "correct" distribution with

the lower variance.

Tukey's experiment showed that when ft : 3 and the mixing parameter p exceeded

0.L87o, the sample standard deviation, optimal for normal data, becomes asymptot-

ically less efficient than using the mean absolute deviation about the mean, which

has an 57.6% asymptotic efficiency for uncontaminated normal data. This level of

contamination represents one observation in approximately 556.

Although normally distributed samples might be rare in practice, the normal dis-

tribution represents a reference case, and hence it is included as one of the three

corners. The remaining corners represent departure from this ideal.

The one-wild sample

The one-wild sample is not well known outside the robust literature, and it is the

subject of the following definition.

Definition 2.2 (One-wild sample) The one-wild sample consi,sts of n - I obser-

uati,ons drawn i,ndependently from the normal d,istributi,on wi,th n1e0,n p, and uariance

o2, and a single observati.on drawn independently from a normal d,i,stri"buti,on wi,th

mean p, and uariance l}0o2. A one-wild sample w'ith p. : 0 and, o2 : L i,s called a

stand,ard one-wi,ld s ample.

Without loss of generality, analysis of one-wild samples in this thesis is almost

exclusively restricted to standard one-wild samples.

A one-wild sample is similar to a sample from the mixture of two normals with mix-

ing parameter p: ! and scale factor k:10, i.e. the probability of any observation

being from the N(p,I00a2) distribution is |, and the probability of any observa-

tion being N(p,o2) is 1 - *. The difference between samples from the two cases
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is that while the one-wild witl have a single "wild" (or contaminated) observation,

the number in the sample from the contaminating distribution is Binomial, with n

trials, and probability p : *. Thus, in a sample of size n : 20 from the mixture, we

would erpect only a single outlier, but the actual number N has the distribution:

where the probabilities are rounded to three decimal places. Use of the one-wild,

rather than the mixture, allows us to focus on the resistance properties of the es-

timators, without the results being influenced by approximately one third of the

samples with no outliers, and another quarter with at least two outliers.

Kafadar (1982) points out that unlike the mixture, a single observation from the

one-wild sample is not drawn from a single distribution, and hence the sample

is not a random sample which comprises independent and identically distributed

observations. Despite this, its use is favoured over that of the mixture, because it

presents a consistent challenge, rather than a stochastic one (see Cohen (1991) for

discussion). This behaviour is confirmed in Figures 2.1 and 2.2.

Figure 2.1 is based on the log sample standard deviation estimates from 20000 in-

dependent samples from the mixture CN(+,10). These statistics have a bimodal

distribution, and this reflects the behaviour of the standard deviation for the sam-

ples with 0, 1, 2 or more "outliers". In particular, the sample distribution of the

standard deviations from the uncontaminated standard normal distribution (rep-

resentirrg 7240 out of the 20000 samples) is superimposed, and we see this has a

nice unimodal shape. The distribution of the standard deviations from this group

and the one-wild samples (representing 7515 out of the 20000 samples) takes on

the bimodal form of the whole group due to the poor performance of the standard

deviation for the second group. This effect is magnified as the remaining samples

are included.

The actual sampling distribution of the log standard deviations from the 7515 one-

wild samples is shown in Figure 2.2, and this has a unimodal distribution. Focus on

the one-wild, rather than the mixture, examines the response of an estimator to a

consistent challenge, rather than the variety of situations embodied in Figure 2.1.

11
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1.0

lo9 standard deviatlons

Figure 2.1. The distribution of log sample standard deviation for 20000 samples from the mixture
CN(#,10). Superimposed are (scaled) estimated densities for the samples with 0 outliers, and for
those samples with 0 or I outliers. The scaling is done so that each curve approximates the
contribution in the histogram of the respective samples.

a
oa

1.0

log slsndad deviations

Figure 2.2. The distribution of log sample standard deviation for 7515 one-wild samples. These
statistics are a subset of those shown in Figure 2.1, which were based on a random number of
"wild" observations in each sample. Superimposed is the estimated density of these statistics.
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The slash distribution

The slash distribution is well known in the robust statistics literature, but is less

familiar generally than other long-tailed distributions such as the contaminated nor-

mal, Student's f-distribution, the double exponential, and the Cauchy, Like the

Cauchy, the slash has no mean or variance due to its slowly decaying tails; however

it is symmetric about its median and has a well defined scale parameter.

Definition 2.3 (Slash random variable) The slash random uari,able X i,s de-

fi,ned as x: F+o#, whereo )0, z i,s a stand,ard,normalrand,omuari,able, and,

U is an independently distributed uni,form random aari,able on the interaal [0,1]. ,4

slash random uariable wi,th p, -- 0 and o2 : 1 fs called a standard slash random

uari,able.

Without loss of generality analysis of the slash distritrution in this thesis is almost

exclusively restricted to the standard slash distribution.

The standard slash random variable has the densitv function

(t-"-i,') r+o\/
f:0

and the distribution function

13

(r
f *("): l*9

\ 2J2r

Fy(r) : f*) r +o
r:0{;,", 

+i(ot") -

where @(r) and O(r) are the standard normal probability density and disrribution
functions respectively. The slash distribution can be compared to other, more fa-

miliar, long-tailed distributions by way of the tail weight index used in Rosenberger

& Gasko (2000), who define the tail weight index r(F) for the distribution F as

(2.1)

This rneasures the ratio of the distances from the ggth and 75th percentiles to the

median of F, rescaled by the same quantity for the normal distribution. Of course

0-1(0.5) :0 however these terms are left in (2.1) to emphasize the symmetry in
the equation. We see r(O) : 1 and distributions with longer tails than the normal's

will have r(F) > 1. Rosenberger & Gasko (2000) provide a table of the tail weight
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Distribution

CHAPTER 2.

,(F)
Uniform 0.568
Triangular 0.850

Gaussian 1

fro 1'145
Cm($;e) 1.204
Logistic 1.213
t5 1.343
Double exponential 1.636
t2 2.473
cN($;io) 3'42e
Slash 7.866
Cauchy (t1)
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Kurtosis

-r.2
-0.6

0

I
0.47r
7'2
6

3

oo

5.490
oo

oo9.226

Table 2.1. Measures of tail length for some standard distributions. t, is the Student's t distribu-
tion with rz degrees of freedom, and CN(p;/c) is the contaminated normal of Definition 2.1,. r(F)
is defined in (2.1), kurtosis in (2.2).

index for some well known distributions. This information is reproduced in Table

2.1 (correct to three, rather than two, decimal places), along with results for various

Student's t-distributions.

Coefficients of kurtosis for these distributions are also given in the table. The coef-

ficient of kurtosis is the fourth central standardised moment of the distribution of

X, translated so that the normal distribution has zero kurtosis, i.e.

rc(x) : E{(x - E(x))'}
-3. (2.2)E{(x - E(x)),},

As is evident from the table, the slash distribution has very heavy tails, as does

the contaminated normal CN(fi;t0). The latter distribution has implications for

a one-wild sample which we would expect to have similar long-tailed behaviour.

The infinite kurtosis shared by the Student's f-distributions with u { 4 and the

slash distribution shows more dramatically than the tail weight index how long the

tails of these distributions are. The contaminated normal maintains long yet well-

behaved tails. We note that there is not a perfect rank-order correlation between

the two measures. Also, while CN(fr;3) and the logistic distributions have similar

tail weight indices, their measures of kurtosis are quite different.

The slash distribution is an important one for the testing of robust estimators, since

it is both easy to simulate, and it represents a worst case scenario for symmetrically

distributed data. The Cauchy distribution provides an alternative, but the simplicity

of the slash random variable makes it a more popular choice. In addition, and
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83-ct

15

0

x

Figure 2.3. Probability density functions for the standard slash, Cauchy and normal random
variables. The slash is given by the solid line, the Cauchy by the dotted line, and the normal
by the dashed line. All density functions have mode at r : 0 with /(0) : LIQJfr). Thus the
Cauchy has scale parameter o = 2r/21r, and the normal has a = 2.

perhaps of greater importance, the slash is more like the normal distribution for

small r, as demonstrated by Rogers & Tukey (1972) and in Figure 2.3. In this plot

we compare the density function of the standard slash, with the density function

of the Cauchy with scale parameter o : ZgFF, and that of the normal with

o :2. These scale parameters are chosen so that /(0) : I|QJ2TT) for all three

distributions. It is evident that the slash and Cauchy densities are very similar,

although the slash is closer to the normal around the mode.

The slash may well be too extreme a situation for most real data, but by tuning

estimators to perform well for this distribution as well as for Gaussian data, and data

featuring the occasional rogue value, we ensure high quality estimates regardless of

the actual distribution of the data. This is the principle behind Thkey's triefficiency,

discussed in the next section.

2.L.2 Tbiefficiency

An estimator's overall quality was assessed by Lax using the triefficiency promoted

bv Thkev.

-10
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Definition 2.4 (Tbiefficiency) An estimator's tri,efficiency i,s the smallest of its

efficienci,es at each of normal, one-wild, and, slash samples of size n.

The triefficiency is simply the minimum efficiency of the estimator over the three

corners, and the "best" (triefficient) estimator will have the maximum triefficiency.

We would expect the triefficiency of this estimator to be less than l00To since no

single estimator will be optimal at all three corners. Should we have some data

whose distribution is unknown, but not as "extreme" as one of the three corners, the

triefficient estimator will give us a "good" estimate of scale for this data, regardless

of the actual distribution.

To further enhance the importance of the triefficiency criterion. Yatrakos (1991)

states that for any linear combination of the three corner distributions, any estima-

tor will have efficiency at this distribution at least as great as its triefficiency. If we

believe that the corners are indeed the extremes, then we can be confident in using

the estimators that perform well in the simulations that are presented in Section

2.5. This is not to say that we would always wish to use the triefficient estimator.

Clearly if we knew the data was Gaussian, we would certainly use the sample stan-

dard deviation over any of the robust estimators considered here, and if slash, we

would definitely use a robust estimator (or indeed the ML estimator for the slash

distribution). Thus, glven knowledge of the actual distribution of the data, it is
likely that we would not use the triefficient estimator, but an estimator particularly

useful in that case. The results gtven in Section 2.5 will not only identify very good

general purpose scale estimators, but also indicate which estimators are appropriate

if prior knowledge of the distribution from which the data is drawn is known.

If efficiency is measured relative to a sub-optimal estimator for a single distribution,

provided this is made clear, the efficiency measure is meaningful. e.g. if we know that

estimator A is 85% efficient with respect to estimator B, this is useful information

even if B is not optimal. This is not so clear if the triefficiency criterion is used, since

if efficiency is relative to a sub-optimal estimator for a particular corner distribution,

the efficiency in this case will be inflated, and the triefficiency may be too large.

Thus, there are a number of further considerations to make when using the trieffi-

ciency criterion. Perhaps the biggest flaw in use of the triefficiency criterion in the

Lax study is its dependence on the estimators considered. Often in Lax's results

(reproduced later in the text, in Table 2.3), an estimator's minimum efficiency is at
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either the slash distribution (for non-robust estimators like the standard deviation)
or at the normal distribution (for robust estimators designed specifically to mitigate
the impact of long tails). The sample standard deviation is efficient for Gaussian

data, and so over a large number of samples, it will have the minimum sample vari-
ance among estimators. Hence, relative efficiencies for Gaussian data based on the
sampling variance of the standard deviation will be independent of the remaining
estimators considered. In contrast, unless the minimum r,ariance estimator for the
slash and one-wild distributions are consiclered in the simulation, efficiencies for
these distributions will be too high, and selection on the basis of triefficiency will be

flawed.

We conduct a small experiment with Lax's results in order to examine the impact
of possibly overstated efficiencies in the one-wild and slash cases. If the minimum
variances used by Lax to compute the efficiencies are correct, 13 of the estimators
have minimum efficiency at the normal distribution, one at the one-wild and the
remaining three at the slash distribution. If the minimum variance estimator used

by Lax for either the one-wild or slash corners is not the true minimum variance

estimator, then it will have efficiency less than I00% relative to the true minimum
variance estimator. We investigate the effect of this possibility on the triefficiency
in Table 2.2. Specifically we count the number of times that each corner yields the
minimum efficiency (the triefficiency) out of the 17 estimators given by Lax, for
various combinations of one-wild and slash inefficiency. In particular, if the one-

wild minimum variance is overstated such that the minimum variance estimator is

only 80% efficient, we see the one-wild dominates the triefficiencies, even if the slash

miuimum variance estimator is itself only 80% efficient.

Use of the EM algorithm (Dempster, Laird & Rubin Ig77), which yields the maxi-
mum likelihood estimates, allows the proper efficiencies to be calculated, and hence

one of the shortcomings of Lax's study is resolved. As shown in the results which
follow in Section 2.5, use of the maximum likelihood estimates yields triefficiencies

different to those previously published, and demonstrates that the one-wild is in fact
the most critical of the three corners.

2.1.3 Scale and its estimation

Scale is a somewhat lague concept, perhaps primarily because its defirition depends

on the distribution in mind.

t7
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Table 2.2. Eftect of understated effrciencies on triefficiency on the results given in Lax (1895).
The figures given in the table are the number of estimators out of 17 that have minimum efficiency
at the stated corner distribution for the specified relative efficiencies of Lax's minimum variance
estimator to the true minimum variance estimator at the one-wild and slash corners.

Definition 2.5 (Location-scale family) The "locat'ion-scale" fami,ly of di,stribu-

tions haue a location paraftteter 0 and a scale po,rarneter o (not necessarily standard

deui,ati,on), and haue density functions whi,ch can be written

.f (x) : !f, (!- r\o \o /
where fa@) depends nei,ther on 0 nor o, and is itself a proper probabilitg density

functi,on.

This provides a definition of scale for random variables belonging to this family. We

immediately notice that if o is a scale parameter, then for any k > 0, ko is also a

scale parameter for the same family. Consider the case of the normal distribution,

we have

/(r) : -+exp (- 
t (" --r')') : 1/o (+)

' ot/hr '\ 2 o2 / o""\ o' /
where /o(r) : h"-"' , and o' : 1/2o is the scale parameter. Indeed, /e(r) is

the density function of an ,{f(0, +) random variable. Furthermore, this choice of

scale parameter satisfies all the conditions required, however it is contrary to our

usual definition of the standard deviation a as the scale parameter for the normal

distribution, an assumption which facilitates .fo(") : {(r), the standard normal

density function.

Many common continuous distributions belong to the location-scale family. A non-

exhaustive list of these includes the Cauchy, slash, Student's f, exponential, double

exponential (Laplace) and logistic distributions. The contaminated normal distri-

bution CN(p;,h), with density function

/x(r) :(1 - at!a(T)+p*6(T) (2.3)
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is also a member of the location-scale family, however this is due to the particular
parameterisation of the mixture distribution used here. In this case we have

fo@) : (t - p)/(.r) +

However for a more general mixture of two normals, in particular with po * l_tr,

/s(r) will depend on pi - p6 and so the distribution will not be a member of the

location-scale family. Since the one-wild "distribution" does not really exist, we

cannot include it in the location-scale family, however, we note that any observation

in this sample is either N(p,oz) lf not wild, or N(p,,100a2) if wild, and that both

these distributions do qualify.

Such a general definition of scale leads to a similarly general definition of a scale

estimator.

Definition 2.6 (Scale estimator) A scale estimator for the rand,om uector X :
(Xt,. ..,Xn) and constants a and,b, is any functi,on S(X) which satisfies

Ir (X)

S(a+bx) : lbls(x) > 0

with equali,ty only when all the elemerr,ts of X are equal.

s(X) : Dl='(X, - X)'
n-I

The most commonly used scaie estimator is the sample standard deviation.

Definition 2.7 (Sample standard deviation) The sample stand,ard, d,eaiati,on for
obseruations X: (Xr,. ..,Xn) is g,iuen by

(2.4)

(2.5)

where X : !
n 7=, Xo is the sample rne&n.

The sample standard deviation is closely related to the sample variance s2(X), and

the latter is the minimum variance unbiased estimator for the variance parameter a2

for Gaussian data. Despite these excellent qualities for well-behaved data, and the

fact that the sample variance will be unbiased for the underlying variance generally

for random samples (where this variance is defined), experience tells us that this
estimator is not robust: it is affected greatlv by single outliers. Iglewicz (2000)

provides an example of data of which n - 7 observations are equal to gr, and the
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remaining observation is y * TLa, where o > 0. The sample standard deviation of

this data is aln, this depends primarily on the size of the outlying value, and is

unbounded as n -+ oo.

The most commonly calculated robust scale estimator is probably the interquartile

range (IQR) which measures the difference between a distribution's upper and lower

quartiles.

Definition 2.8 (Interquartile range) For a continuous random uariable X, wi,th

cumulati,ue distri,bution function Fx@), the interquarti,le range (IQR) is

IQR(x): F;t(0.75) - I;'(0.25)

where u : Fit (a) solues the equation A : Fx (r).

(2.6)

For a collection of observations, we can think of F as being an empirical cumulative

distribution function (cdf), and use the same rule. However, because the empirical

cdf has jumps, there are conflicting methods of finding the IQR for sample data, and

these are discussed in Section 2.3. The conflict arises from an attempt to make the

choice of ,F'-l(0.75) and F-1(0.25) as simple as possible. Calculating the IQR for

Iglewicz's data described above, and assuming n > 4, we find IQR(g, . . .,U,U*na) :
0 which displays the IQR's resistance to the outlying value.

Aside from the IQR, robust scale estimators are not widely used in statistical ap-

plications. The remainder of this section refers to estimators that are not formally

defined until Section 2.3, but their inclusion in the discussion here serves to highlight

the obscurity of these techniques. A survey of commonly used statistical software

identifies very few robust scale estimators. The exceptions to this are S-PLUS (see

for example Venables & Ripley 1999) and R (Ihaka & Gentleman 1996) which not

only have many robust estimation procedures in their libraries, but also provide a

simple framework for programming of additional estimators. Microsoft Excel has a

built in function to compute a trimmed mean, and one to find sample percentiles,

but does not include any robust scale estimation procedure. SPSS (Version 10.0.5)

reports prespecified robust estimates of location for data (M-estimates based on

various weight functions). However, apart from the interquartile range, SPSS does

not appear to provide robust scale estimates. SHAZAM (Version 9) includes the

IQR in a report of descriptive statistics; however it is not part of the default report.

The Statistics Toolbox for MATLAB (Version 6.1) includes the IQR and either the
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mean absolute deviation from the mean, or the MAD. There is some conflict in the

on-line documentation over which estimator is calculated, although evidence seems

to suggest the former non-robust estimator. SAS (Version 7) includes a relatively

healthy list of robust estimators of scale: the interquartile range, Gini's mean differ-

ence, the median absolute deviation, and Rousseeuw & Croux's (1993) ,S,, and Q,r.

While all of the above softwa.re allow users to program their own robust estimators,

with the exception of S-PLUS, R and to a lesser extent SAS, no overt effort is made

to accommodate or promote robust scale estimation.

The most comprehensive analysis of robust estimation of scale appears to be the

study of Lax (1985), which follows in the wake of the Princeton Robustness Study

(Andrews, Bickel, Hampel, Huber, Rogers & T[key L972) of location estimators.

Lax considers a number of scale estimators evaluated for samples of twenty obser-

vations from Tukey's three corners. Lax considers a number of different estimators,

based either on their performance in a pilot study of over 150 estimators, or on their

popularity at the time. His table of efficiencies and triefficiencies is reproduced in

Table 2.3. A number of estimators shown therein are dominated. i.e., at least one

other estimator outperforms that estimator in all three distributions. The best of

the estimators considered is the A-estimator with the biweight /-function and scal-

ing constant c : 9. This estimator has sampling variance 85.8% of that of the best

performing estimator for the one-wild distribution, and does marginally better for

the normal and slash distributions, Not onl_v- does this particular class of estimators

perform well in Lax's study, but it is the scale counterpart of the best performing

estimator in similar studies on robust estimation of location. As we let the scal-

ing constant c -+ m, the A-estimator converges to the sample standard deviation.

However, as this happens, its robustness properties are lost and its performance on

long-tailed data, e.g. from the slash distribution, diminishes. Hence the choice of

scaling constant c : I reflects a compromise between high efficiency in these two

extreme cases.

2.2 Estimation of location and scale using the EM
algorithm

The EM algorithm (Dempster et al. 1977) is a numerical method which can be

used to obtain maximum likelihood (ML) estimates under situations where usual

2L
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Efficiency
Normal One-Wila Sbsh Tbiefficie.nayEstimator

A:Estimators (d-fu nction)
Biweight (e = 6)
Biweight (c:7)
Biweight (e = 8)
Biweight (e = 9)

Sine (c = 2.1)
Modified sine (e - 2.1)

I\dAD
Gaussian skip

90.1 65.2
89.3 V4.8

87.6 81.8
86-1 85.8
84.6, 84.6
96.:8 47.5
88.4 n.5
94.5 82.1

100.0 48.1
83.8 72.3

86.8 55.2
83"1 60.5
75.9 69.g

28.1 28.1
91.8 35.3
90.1 54.7

Biweight'(e - 10) 90.0
lvlodifled biweight (c - 6) +V.5

65.2
74.8
8tr.;8

86.7

v7.5
82.1

48.1

72.3
55.2
60.5
69.8

35.3
54.7

77.1

82.9
85.4
85.8
84.E

56.8
83.'7

89.6

56.,8

83.8
68.1
7L.8
76.1

10.9
100.0
41,5
59.3

M-Estirnators (Iluber r/-function)
b: 1.4 (iterated)
b = !!,7 (iterated)
b: 1.4,(one,step)
b: L.7 (oae-step)
E :2.0 (one-step)

S-anBle standard deviation 100.0
Tlimmed standa,rd deviation 89.9

Table 2,3. Effi-ei.encies for selected estjinators reported in Lax (f985), using Monte Carlo estinates
in sar.',t.ple siues of twenty. Modified biweight, sine, and modified oiue,4-estinators, M'estinators
with the Xluber tf'-firnctiou, and the Gauseian sHp are defined in Lax (1985); other estimatols a,re

defined in Section 2.3. Efficiency is calculated using th€ sample variance of the log estimates, an:d

is the ratiio of the best pertoruiing 6-timat.or's rari;anse to the vaxiaDce of the estinalor of inte'rerit.
tiefficiency is the subject of Deffnrtion 2.4.
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ML optimisation techniques can be problematic. There is much literature devoted

to extensions and applications of the EM algorithm, and this is summarised in

Mclachlan & Krishnan (1997). We present a brief introduction to the EM algorithm,

provide an example of its implementation for the mixture distribution CN(,];ft),

and then derive specific results for application to maximum likelihood estimation of

(location and) scale for one-wild and slash samples.

We assume the observed data X : (Xr,..., Xr,) may depend on some unobserved

dataS: (Sr,...,S,). If Xhasthe jointprobabilitydensityfunction (pdf) /(x;9),
where 0 : (0r,. ..,0o) is a vector of unknown parameters, then the maximum like-

lihood estimator of 0 maximises the likelihood function

L@): L@;x): f (x;0).

Defining Y : (X,S) to be the complete data, we have (for discrete S)

L(0):Dt 
"@)

s

where L"(0): L"(O:X,S) :.fx,s(x,s) is the complete likelihood. It is often the

case that the incomplete likelihood function is difficult to maximise. However, a

suitable choice of S can facilitate a much simpler problem, and it is this property

that governs the choice of S.

The ENI algorithm consists of two steps at each iteration: the first being the Erpec-

tati,on step, in which the expectation

a (e;e') Eo {ln t"(o)lx}

is evaluated, where E6 denotes expectation conditional on the previous estimate of

0, bo.The second step is lhe Mari,mi,sati,onstep, in which we choose 0r to maximise

Q(0:(lo) over 0. This process is then iterated to convergence. At the (k + t)th
iteration, we calculate

a (tt A r) E6 {tn ,"(o)lx}

(the .E-step), and, then choose ()**, such that

Q(0n*,,0*) t a(e;i,-)
for any other possible 0 (the M-step).

The philosophy behind and benefits of the EN4 algorithm are discussed by Mclachlan

& Krishnan (1997), however it is useful to note here some of the advantages of this

method.
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The true (incomplete) likelihood cannot decrease with an additional iteration,

t.e. L(0ya) 2 r@i.

o The EIVI algorithm has reliable global convergence properties.

r In all of the examples considered in this thesis, at each iteration, the M-

step requires no numerical maximisation and is a closed form function of the

observed data X and the previous parameter estimate 01.

Although the EM algorithm can be slow to converge, for the examples consid-

ered in this thesis, each iteration of the algorithm proceeds with low computing

cost offsetting the slow convergence efiect.

Use of the EM algorithm is demonstrated in the following section.

2.2.L General results, and an example

In this section, we consider observations X : (Xr ,. . . , Xn) where X depends on

unobserved data S: (,9r,...,,S,"). The particular construction we adopt will not

only be useful for the three corner distributions considered in the simulation study

that follows, but also for the Student's t distributions, and the contaminated normal

CN(p;k).

Definition 2.9 (Gaussian compound scale model) Obseruations X1, . . . , Xn are

sai,d to follow a Gauss'ian compound scale model wi,th parameters p, and 02 if, gi,uen

S : (Sr,..., Sr), the X; are ind,ependent N(p,o'lS) rand,om uari,ables, where the

Si are non-negatiue with known di,stri,buti,on.

It follows from the above definition that we can write

Xr: tr+"h (,i:r,...,n) (2.7)

where Nhe Z; are independent standard normal random variables. As a consequence,

the compound normal sample is sometimes referred to as the normal/independent

sample, describing the ratio of a normal variable to a general, independently dis-

tributed random variable.

A random sample from the slash distribution clearly falls in this category. The

numerator of the slash is indeed a standard normal, and the denominator is a uniform
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random variable independent of the normal. The Student's l-distribution is also

of this sort, where the denominator is the square root of a Chi-squared random

variable divided by its degrees of freedom. In the one-wild case, the Xt are not

independent, since there is only a single "wild" observation and knowledge of which

obserlation this is, has an impact on the other observations. Nonetheless,, we note

that, conditional on the,9;, the Xi o,re independent due to the independence of the

Zi, and the one-wild sample follows a Gaussian compound scale model.

We wish to find the maximum likelihood estimates of pr and oz based only on the

observations X: (Xr,...,X,") and now use the EM algorithm (Dempster et al.

L977) to construct an iterative formula for estimating these parameters. We note

that X is the incomplete data, and (X, S) is the complete data. Due to the choice

of S in Definition 2.9, we will show that finding the ML estimates of p and o2 is

relatively straightforward for data from a Gaussian compound scale model.

Theorem 2.1, The mad,mum liheti,hood esti,mators of p, and o2 for obseruati,ons

X : (Xr, . . . , X") following a Gaussi,an compound scale model, are found by iterating

the equuti,ons

(2.8)

(2.e)

i=I

where Eo(S,lX) i,s the expectation of S; gi,uenX, eualuated at preui,ous estimates of

p, and o2.

Proof Conditional on Sa, it follows from Definition 2.9 that the X; are indepen-

dent normal random variables with mean pr and variance o2lS;, and thus the joint

distribution of X and S : (Sr,...,,9,,) is given by

f n I
dFx,s(x, s) : ,fxrs(xls)dxdFs(r) : lII a+e-[u!s; 

I arr1";a"
li:. ot/ztr I

where u;: (Xi- dlo is the standardised score, ui its realisation and Fs(s) is the

distribution function of S. Consequently the complete log-likelihood is given by

,. _DT:rEo(S,lX)Xrt'- tl=Jlo(s,tr)
1n

62: lIao(s,lx)(x, _ fr),n-

25

tn L"(1t, 02) :i ( |n o' - lu: t,) * constant
i:l
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where all terms not featuring p or o2 are included in the constant. The theory

behind the EM algorithm leads us to maximise the smoothed likelihood

with respect to both p and a2, where Es denotes expectation over the conditional

distribution using the estimates p6 and do2 in place of the true p and o2. Maximising

(2.10) with respect to p requires solution of the equation

Q0r,r';iro,at): 
", l;I ( ; lnoz -

1f,: -ln o'- #Dno(s,lx)(x.i.- ri2
i=1

-+ir,tulx)(-2)(x, -/,)l - o
no'= lP-fr"oz-62

Xr, - p)2

02

sr(

l'.l

(2.10)

which yields

DL, Eo(S,lx)&
DL, Eo(S,lX)

which is a function of X and 0s : (!0,6fr) alone. Maximising (2.10) with respect to

a2 requires solution of the equation

tt:

which vields

-4*+iEo(s,tx)(xo- ri'l -ono* 
-;=l lP'=P''o2-62

u':Ln}rr,u'*)(xn- ti'

as required.

In the degenerate case where the X1 are

Eo(S,lX) : 1 for all i, and we obtain 1.r

and &2 : 4ls2(X) the familiar maximum

Dempster et al. (1977) note the similarity between the iterations given in Theorem

2.1 and iteratively reweighted least squares. The form for the updated p, and 62

is of a weighted average of the observations and squared deviations respectively,

with the weights dependent on the parameter estimates from the previous iteration

(Dempster et il.1977, Section 4.6).

The following theorem may assist in the evaluation of Eo(^9,|X).

D

normal, and ^91 
: 1 for all i, clearly

: *D!=rXt : X the sample mean,

likelihood estimator of variance.
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Theorem 2.2 Il the obseruations X : (Xr, . . ., X,.) tollow the Gaussian compound

scale model giuen i,n Defi,niti,an 2.9, and i,f i,n additi,on the 56 are ind'ependent of one

another wi,th d,istri,bution functi,on Fs,(s), then Eo(StlX) in Theorem 2.1 i,s gi'uen by

Eo(s,lx) :, (+("'. ")')\zt &s / /
where G(r) : -*t"M(t),

r@
M(t : 

J"=o"-" 
trdFs, (s)

and, irs and 6f; are preui,ous estimates of tt and o2 respecti,uely.

Proof Since the 5, are independent for i : 1, . . . ,n, it follows from Definition 2.9

that the Xa are independent. Hence

Eo(S,lX) : Eo(S,lX,)

and, dropping the subscripts,

cJr,sl;(slr) x fi,.1s(als)drdFs(s) x r,6.,.0 (-+"(":p)') d,fu(s)d,x
\zo-/

since given S* Xt is normal with mean p and variance oz /Si. Consequently

Eo(s, lx) - JlIo'-i'1'1'3 a+' (")

fio"-i'u?r]a4r, (")

where Ui: (X;- ltdleo and where the denominator is the normalising constant.

Define the Laplace transform

fe
M (t) : 

J ,=0"-" 
tLd{s, (s) (t > o)

so that

M'(t): - [* e-'"s3d,Fs,G)
.rf s=0

and now

Eo(s,lx) : -!!, 
,[!i;i) : c(')l 

, ,M lz-i ) tr=i\*toto)'

where G(t) : -#t" M(t). n

In order to give better insight into the implementation and performance of the

EM algorithm, we demonstrate the application of the EM algorithm to a random
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sample from the contaminated normal distribution CN(j;fr) for n : 10 and ft : 10.

A sample from this distribution may be one-wild, however, as discussed earlier, the

actual number of observations drawn from the "wild" distribution has a Binomial

distribution.

To apply the EM algorithm to a sample from the mixture distribution, we must

first evaluate E6(.9;lX) in this case. The necessary result is given in the following

theorem.

Theorem 2.3 The marimum likeli,hood estimators of locati,on and scale for a ran-

dom sample from the contami,nated normal di,stri,bution CN(j; k) are found, by i,ter-

ati,ng equati,ons (2.8) and (2.9) wi,th

(1 - fi)e*n l+,t - #) (1#)'
Eo(S,lX) - 1-

k(n-1) *exp #) (#)'
where 1-ts and" 6f; are the preui,ous estimates of p and o2 respecti,uely, and where k is

assumed known.

Proof For a random variable distributed as CN(];k), the J& are independent

random variables that take on the value 1 with probability t - * and fr with

probability f . Since .9, is a discrete random variable, we define

('-,:. s:1
dF",(") : I * ": #

[ 0 otherwise

for all i. Since the S, are independent, Theorem 2.2 applies, with

M(t): [* "-"riars.(r) 
: (1 - *)"-, t le-t/k".

J s:O

Differentiating with respect to t, we find

^, ,\ -M'(t) (1
Lr\r/- *t.\ - t.

- *)"-'* fie-u*2 #tt - #)"-'ro'
M(t) (1 -1- *)"-' * f;e-tlx2 (I - L)s-t I1e-t/*z'

Multiplying through by nleet, we obtain

(r - s;"tt-;l'

[;,' -

G(t) :1 - k(r-1)4s(t-frlt
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Figure 2.4. fUe hkelihood function for the sample of size ten from the CN($,10) disrribution
described in Table 2.4. The likelihood function is given in (2.11), and is plotted" against a grid in
which -1 I p 1 1 and 0.2 1 o 52.

and we evaluate this function at f : i(*&)2 as required. I
The density function for the contaminated normal random variable was given in
(2.3) and thus the (incomplere) likelihood for the sample is given by

29

(2.11)

where 0 : (lt,o2) are the unknown parameters, and k is assumed known. In the
case where n : 10 and A - 10, the rnaximum likelihood estimates of pr and o2 are

given by Theorem 2.1, with

L(o) :,fx(*; q : ll#r (.=) * #o (T)]

oeeexpfonnt(',,*)']
Eo(S,lX) - 1-

eo + exp 
fo 

nnu ("Ef)']
where p6 and ofr are the previous estimates of pl and, o2 respectively.

The EM algorithm is applied to ten randomly sampled observations from the con-

taminated normal distribution CN(S,10) rvith F:0 and a:1. The sample itself
is given in Table 2.4 and the likelihood function of this sample is shown in Figure
2.4for -1 < p' < | and 0.2 ( o ( 2. This likelihoodfunction has a maximumat
1r: -0.341 and o:0.756.

Table 2'4 describes the evolution of the EIVI estimates for this sample from the

mixture. The sample is ordered in the table, which enables easier comparison of
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Iteration
i TG\ 1 2 3 4 Final One-wild
1

2

3

4

5

6
,7
I

8

9

10

-2.t84
-0.975
-0.561
-0.445
-0.355
-0.023
0.090
0.100
0.970
5.429

0.978

0.987
0.988

0.989
0.989

0.989
0.989
0.989
0.988
0.763

0.975

0.987
0.988

0.989
0.989
0.989
0.989
0.989
0.988
0.437

0.969

0.987
0.989

0.989
0.989

0.989

0.989
0.989
0.986
0.053

0.910
0.986

0.989
0.989
0.989

0.988
0.988
0.988
0.968
0.010

0.827
0.985

0.989
0.989
0.989

0.988
0.987
0.987
0.954
0.010

1.000

1.000

1.000

1.000
1.000

1.000
1.000
1.000
1.000
0.010

l.L

a
0.205

2.010

0.085

1.72I
-0.101

1.413

-0.338
0.877

-0.356
0.776

-0.341
0.756

-0.370
0.799

Table 2.4. Maximum likelihood estimation of p and o for a simulated sample of size ten from
the CN(S,10) distribution with P = 0 and o = L The main entries of the table are the values
of Eo(&lX) for the ordered sample at the indicated iteration. The o1r1 are the ordered sample
observations, and the final column gives the corresponding values of Ee(S;lX) if the sample is
assumed one-wild. The final two rows of the table give the estimates of p and & at the indicated
iteration and for the one-wild fit. The initial values of 1l and &, given below the data, are the
sample mean and standard deviation respectively'.

o
E
'69

0.0

mu

Figure 2.5. A contour plot of the log-likelihood function corresponding to the likelihood function
shown in Figure 2.4. The log-likelihood is constant along each contour. In addition, the path of
(p, &) is shown and labeled by the iteration number of the EM algorithm.
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the "weights" Es(^9ilX) given to each observation at each iteration. By chance, the

sample also happens to be one-wild: there are nine observations drawn from the
standard normal distribution, and the tenth is from the contaminating distribution
,A/(0,100). The EM iterations are initialised using the sample mean f and standard
deviation s, and these are given in the table directly below the observations. At the
first iteration, the two most extreme values are identified and given lower weights

than the other observations, however as the recursion proceeds and d decreases,

the outlier (5.429) is clearly identified as a contaminated observation, and given

minimum weight ff. The other extrerne observation is treated with caution, and

gets a weight smaller than the remaining observations. FYom the fourth iteration
to the final iteration there is very little change in the weights or the parameter

estimates.

The final weights for the one-wild sample (whose form is given in Theorem 2.b which

follows) are also given in Table 2.4 for comparison. Unlike for a sample from the
contaminated normal, in this case, it is known that there is only a single "wild"
observation. Thus, the most extreme observation is identified, and because of its
size, it is the only candidate for an outlier. It gets the minimum weight, and the
other observations full weight, and results in treatment for the data that is identical
to what might be performed manually: identify the outlier and downweight it, and
use the sample mean and standard deviation. Unlike the mixture recursions, the one-

wild recursions need only four iterations for convergence, as they have the additional
information that only a single value is ,,wild',.

The progress of the estimates is shown graphically in Figure 2.5. Fixed contours of
the log-likelihood are shown, as well as the trace of 01, for k :0,. . .,1b. The initial
values (e, s) are labeled '0', and the updated estimates from the first iteration of the
EM algorithm labeled '1', etc. After the fourth iteration, convergence has almost
been achieved, and so the remaining eleven estimates are not labeled. This plot
confirms the convergence of the estimates to the maximum likelihood estimates,

and also the monotonicity of the L(0i sequence.

2.2.2 Maximum likelihood scale estimation for the one-wild
and slash

In Lax's study, the minimum variance estimators of scale for the one-wild and slash

distributions were both weighted averages lvhich gave zero weight to the most ex-

treme obserlations. However, no theory was provided to support this result, nor

31
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does it seem plausible, particularly for the one-wild. In order to secure the results

of this study, it is important to have the minimum variance estimators in all three

situations: normal, one-wild and slash. We use the asymptotically efficient maxi-

mum likelihood estimator in each case and hope that the finite sample properties of

these estimators allow them to be close-to-optimal in the one-wild and slash cases.

In particular, we optimise the likelihood of the sample by choice of both location

and scale estimates. The former is included to be consistent with use of the sam-

ple mean as an auxiliary location estirnator for the normal situation, and so the

scale estimates are neither based on the knowledge that the data have theoretical

location zero, nor based on a sub-optinral location estimate like the sample rnedian.

Although the maximum likelihood estimators are asymptotically efficient but not

necessarily efficient for finite samples, there is the possibility that some estimators

may have efficiency greater than 100%.

For normal data, with S, : 1 for each i, the maximum likelihood location estimate

is the sample mean and the maximum likelihood scale estimate is proportional to

the sample standard deviation, with no iteration required.

The slash is the ratio of an N(p.a2) random variable and a uniform random variable

on the interval [0,1], and has density function

( o 11 _.*o/_te+r)l ,+o
f x@) : | @-d2'/n l- ",-'- \ 2 o2 )

l*h z: o'

The maximum likelihood estimators for the slash parameters are known (see Kafadar

1982) but are confirmed here using the EM technology introduced in Section 2.2.1.

Theorem 2.4 The marimum likeli,hood esti,mators of location and scale for a ran-

dom sampleX: (X,,...,X") from the slash distributi,on are lound by i,terati,ng

equations (2.8) and (2.9) wi,th

Eo(silx) : d%-1.*o(;wdt) -,]-'
where lts and 6fr are the preui,ous estimates of LL and o2 r'espectiaely.

(2.r2)

Proof For the slash distribution, the r/S are independent uniform random vari-

ables on the interval [0,1], and hence t]re conditions of Theorem 2.1 are met. The

distribution function of S, is

s>0
0<s<1
s<0{r

Fr,(") : Pr(S,; ( s) : Pr(U, < .6) :
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where U; is uniform on the interval 10, 1] and the probability clensity function of S;

is

/s,(s):{i'-t o:":t
|.0 otherwise.

Since the S, are independent, Theorem 2.2 applies, with

M(t): [* "-"ridFs,(s) 
: [' e-t,r]s: t(t - "-r)."/ s=0 "/s=0

Differentiating with respect to f, we find

pi+\ - -M'(t) - 
(1 t-') +te-t 

- 
t 1r\t) - -MT --tF _;f-: 7 

+ 
et _ r

and we evaluate this function at t: i(("t;&.)t as required. n
Application of Theorems 2.1 and 2.4 for data from the slash distribution yields the

maximum likelihood estimators of pr and o2, which we will use to provide the min-
imum variance estimates, and to form the basis of comparison for the performance

of scale estimators for slash data. In this particular case the equations following
from Theorem 2.4 are identical to those given by Kafadar (1982) using traditional
maximum likelihood techniques. Once converged, through maximum likelihood the-

ory, this method provides the asymptotic minimum variance estimator of scale for
the slash distribution. This estimator is not proposed as one which is likely to be

useful in general, and hence we compute it only for the slash distribution. The EM
recursions are favoured over traditional maximum likelihood techniques due to their
desirable computational properties.

The above analysis is also possible for the one-wild distribution, although in this case

the S, are not independent and thus Theorern 2.2 does not apply. Kafadar (1982)

states that the one-wild sample is not a sample from any particular distribution, and.

that no maximum likelihood method is helpful. Hower,er the parameters of the one-

wild do indeed have rnaximum likelihood estimates, and the EI\{ algorithm yields

these. The relevant weight function Eo(S,lX) is given in the following theorem.

Theorem 2.5 The madmum tikelihood estimators of locati,on and scale for a one-

wi,Id sample are found by i,terating equations (2.8) and, (Z.g) wi,th
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where 1ts and ofi are the preuious esti,mates of lt and, o2 respectiuely.
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Proof Here Theorem 2.1 applies with

s':l'*t i':N
\r i+N.

where .l{ is a discrete uniform random variable with

p(N : i) :: (,i : 1, . .. ,n).

For any sample, I < N ( n is drawn, and this observation is the "wild" observation.

For i I N, Sd : 1 and so Xi - N(p,o2), whereas for e' : N, S, : # and so

X'i - N(p,100o2) as required.

Now consider the joint stochastic properties of X and S, which is equivalent to

considering the joint stochastic properties of X and lf. Conditioning, we see

dFx,s(x, s) : dF1,p(x, i) : /xtry(xli)P(N: z)dx

1 | + | _1(xr-r,)2'l r _1(x;-p)2 -: ; Lll-no,/2n" 
2 o2 

) ,0t6" ' 'ooo2 dx

/t oo -."1o( exp 
\, 196";,

where U;: (X;- pr)/o is the standardised score. Thus

P(N: ?lX) : ""p(lffi"#) (i,:I,...,n)
rlr exp (;*"=-r)

with the denominator ensuring P(N : elX) is a proper probability function. Thus

we determine

Eo(s,lx) : #",r : ilX,0o) + P(N +ilx, eo)

_ 1 ee ."0 (+r*ts#d)
100,DLrexp (;*"H*)

as required. n

Application of Theorems 2.1 and 2.5 for a one-wild sample yields the maximum

likelihood estimators of p and o2, which we will use to provide the minimum vari-

ance estimates, and to form the basis of comparison for the performance of scale

estimators for one-wild data. An example of this was provided in an earlier exam-

ple (see Table 2.4) for comparison to ML estimation for the contaminated normal
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distribution. Note that unlike the contaminated normal and the slash, the weight

function for each observation in the one-wild sample depends on all n observations,

rather than just the observation of interest, due to the dependent nature of the fi.
Thus, the minimum variance estimators are secured for all three corner distribu-
tions, and the results provided in Section 2.5 do not depend on the other estimators

considered. Consequently the results given also provide a benchmark for efficiency

comparison with estimators not considered here, using measures such as Thkey's

triefficiency.

2.3 Scale estimators

In this section, we describe the estimators included in the simulation study. They
are divided into two classes. The first are described as single-pass scale estimators,

since they do not require an auxiliary estimate of scale. The second class of scale

estimators examined are multi-pass estimators. Here, the focus is on identifying
a general purpose scale estimator, and hence the estimators depend only on two

passes through the data. Exceptions are the maximum likelihood (ML) estimators,

which are iterated until convergence for the one-wild and slash samples, and ML
estimators for the Student's t-distributions. In each case, this ensures the true
maximum likelihood estimates are calculated and allows comparison on this basis.

IVIost scale estimators rely on an auxiliary estimate of location, generally the sample

median, which is used unless the definition of the scale estimator dictates otherwise.

An example of this is the sample standard deviation, for which the sample mean is

used. A comparable simulation to what follorvs is done for three prominent location

estimators, and this is reported in Appendix B. While the results of that simulation

are interesting in their own right, they do not conform to the focus of this thesis and

are hence omitted from the main text with deeper analysis left for further research.

The simulations performed by Lax resulted in eight undominated estimators. An
estimator is considered dominated if its efrciency at every distribution is less than
the efficiency of another estimator for each of those distributions considered, i.e. it is
worse than some other estimator in all instances. Referring to Table 2.3, we see that
the Gaussian skip estimator, for example, is dominated by the A-estimators with
the biweight f-function and c : 6, and the modified sine d-function with c: Z.L.

35
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We omit the dominated estimators of Lax from this study, with the exception of the

MAD due to its popularity.

The iterated M-estimator, with the Huber /-function and b :1.4, was among Lax's

undominated estimatorsl however it too will not be considered in this study. The

main reason for this is Lax's comment "when one intends to use a scale estimator

in an automatic fashion as part of a larger algorithm, the Huber scale estimator

may be an unsuitable choice" (Lax 1985, page 739). Properties of the EM algorithm

ensure that the ML estimates obtained are not subject to the same criticism, and

these are the only iterated estimators included.

2.3.L Single-pass scale estimators

Various estimators which depend only on a single pass of the data are defi.ned below

for the observations X : (Xr, . . . , X,). While some of these depend on an auxiliary

estimate of location, which could be seen as a pass of the data, the location estimates

are generally of a simple form and not computationally intensive.

The sample standard deviation was defined in Definition 2.7; however it can also be

defined via the equation

which shows the sample variance is proportional to the average of the squared in-

terpoint distances Xr - Xi. Outlying values will result in many interpoint distances

being large, with s(X) inflated as a result.

For any random sample drawn from a distribution with finite variance, the sample

variance will be an unbiased estimator of this. It follows that the sample standard

deviation is a biased estimator of the underlying population standard deviation, but

this bias has an analytic expression when the data are Gaussian. The expected value

of the sample standard deviation in the case of Gaussian data is

l7s(X) : \|il#nl(xn-x),v ' 'i<j

E(s(x)) : " l(*) 
" 

(;")) l,(;" - ;)

(2.13)

(2.14)

where f (r) is the gamma function. In the case where n -- 20, the sample standard

deviation has expected value 0.9869o for a normal sample.
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Definition 2.10 (Gini's mean difference) Glnt's mean difference Jor the obser-

uations X : (Xr, . . .,, Xn) i,s gi,uen by

37

(2.15)

Gini's mean difference is a similar estimator to the sample standard deviation, with
the squared interpoint differences seen in (2.13) being replaced by absolute differ-

ences. For reasons outlined above for the sample standard deviation, this statistic is
also not very robust, since the absolute difference between every pair ofobservations

is computed. However, use of the absolute value rather than the square reduces the

impact of large differences. This statistic forms the basis of robust estimation of
risk in a strand of the financial literature. Typically return sample variance is used

to quantify risk, however Shalit & Yitzhaki (1934) employ Gini's mean difference

as an alternative measure. They are motivated mainly by the theoretical results it
facilitates, rather than robustness.

Definition 2.L1 (Tiimmed sample standard deviation) The trimmed sample

standard, d,eui,ation for the obseruations X : (X,, . . . ,, Xn) is giuen by

sbdrn(x; p, r) : {rtr,,((x - Mr,o(X))\ (2.16)

where Mr,o(X) d,s a two-sided L00p% trimmed nl,ean, which talees the ari,thrneti,c

auerl,ge of a reduced data set, where the fuml2) smallest and the [p"lZ] Iargest obser-

uat'ions are omi,tted, and where Mt,r(X) i,s a one-si,ded I00rTo ntel,n, which omi,ts the

Iargest frn) obseruat'ions from the arithmeti.c auerage. Here lq) d,enotes the integer
part of q.

Thus, the trimmed sample standard deviation alters the sample standard deviation

in two ways in order to reduce the effects of outliers, and has two parameters p and

r. Firstly, rather than using the sample mean as the auxiliary location estimator,

the most extreme observations frorn each end of the ordered sample are omitted.

Secondly', the squared deviations about this mean are formed, and the largest of
these are omitted from the second average.

In the Lax study p : r : 0.2 with n - 20, and so in each calculation, four ob-

servations are ignored. This choice of p and r resulted in the highest efficiency for
the one-wild distribution in Lax's study; however this seems suboptimal. In cases
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where the "wild" observation is very large indeed, the final weights Es(SrlX) are

unity for the "good" observations, and fr for the "wild" observation as seen for

the example illustrated in Table 2.4, Thus the wild observation is not discarded,

but down-weighted so that the weiglrted squared deviation behaves much like the

others.

Definition 2.12 (Sample interquartile range) The sample i,nterquartile range

for the obseruations X : (Xr, . . . , Xn) is giaen by

rQR(x): uQ(x) - LQ6)

where LQ6) 'is the sample lower quarti,Ie, giuen bg

(2.r7)

LQcli): (1 - (t. - t))Xs * (t. - QXs+rt

where Xlry is the i.th ord,er statistic of the obseruations X, l* : 1 * l@ - I) and,

( : ll.l, and where UQ6) is the sample upper quartile, g'iuen by

UQ6): (1 - (u. - r))Xr"t + (u. - u)X1u+r)

where tr* : ! + f (n - l) and, u: lu*1.

The sample interquartile range (IQR), defined for a continuous random variable X
in Definition 2.8 as the difference between the 25th and 75th percentiles of X, can be

calculated for the observations X: (Xt,. ..,Xn) using the empirical cdf; however

this can be ambiguous. Definition 2.12 follows the technique used in R (Ihaka &

Gentleman 1996), and provides one way of resolving this ambiguity. The sample

IQR can then be used in a simple technique of outlier detection, and is chosen

because it is resistant to outliers, since it ignores the most extreme 25% of each tail.

As mentioned earlier, there are a range of methods used to calculate the sample lower

and upper quartiles. most used because of their simplicity. The fourths, described in

Hoaglin, Mosteller & Tukey (2000), are similar to the quartiles and are found using

a simple algorithm. The lower fourth is given by the observation with position

k- l(n+r)l2l+L

in the ordered data, denoted X1ry, where fr] is the integer part of r. If k is not a

positive integer, then the lower fourth is the average of the observations X1*y and

Xlrar). This will be compared to the lower quartile below.
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Figure 2.6' The method used by R to find a sample percentile. X14 is the ith largest observation
in a collection of data of size n. X* is the pth sample percentile.

Definition 2.L2 is based on the method used by R (Ihaka & Gentleman 1gg6) to
calculate the lower and upper quartiles of a collection of data using interpolation.
In particular, for any sample percentilepwe define r:r+(n- l)pand set a: [r]
(the integer part of r). Then the sample percentile is given by

percentile : (1 - (r - i.))X6l + (r - f)Xtr+rt.

This method amounts to linear interpolation of the ordered observations X1r;, . . . , X@)

against the sequence 0, fr, ...,#,1. Any given percerrtile can be obtained from
this curve as shown graphically in Figure 2.6. In the case where n : 4q* I or 4q - |
for g € Z+ the lower quartile will equal the lower fourth; however, when n : 4q or

4q * 2, these will not be equal in general.

Boxplots are commonly drawn with observations 1.5 times the interquartile range

above the upper quartile or below the lower quartile shown as points rather than
included in the whiskers (this practice is observed throughout this thesis). The
points that lie outside this range are considered to be potential outliers, and for a
random sample from the normal distribution rvith n large, we would expect only 0.TTo

of the observations to be labelled in this way. F\-rrther discussion of this technique

can be found in Hoaglin et al. (2000).

The IQR is the simplest estimator of scale considered here. is commonlv used. and
is certainly the easiest to compute by hand.

39
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Definition 2.13 (Median absolute deviation) The medi,an absolute deui,ation

(MAD) for the obseruat'ions X : (Xt, . . . , Xn) i,s g'iaen by

MAD(X) - mediarylXo- medi,anl(X)1. (2.18)

Thus, the MAD is the median of the absolute deviations of the observations X about

their median. The MAD is probably the most common robust estimator of scale in

advanced use. If a large random sample is drawn from a normal distribution with

variance 02, we expect E{MAD(X)} :0.6745o. The MAD is often used to give

an auxiliary estimate of scale for other more complicated scale estimators, and for

n large, is commonly scaled so that it is asymptotically unbiased for the standard

deviation a for normal data (regardless of the actual distribution of the data).

Rousseeuw & Croux (1993) present two estimators as alternatives to the MAD,

commonly referred to as S,, and Q,". These estimators, like the MAD, trimmed

mean, interquartile range, and various others, but unlike ,4-estimators, provide scale

estimates that do not rely on any auxiliary scale estimates. Rousseeuw & Croux's

(1993) estimators are proportional to those given in the following definitions.

Definition 2.14 (S.) Sn for the obseraations X: (Xr, ...,Xn) i.s giuen by

Sn: rned,iary{medi,anilXu - Xjll' (2.1e)

Thus, S, is the median of the median interpoint distances for each observation and

is motivated as an analogue to Gini's mean difference with averages replaced by

rnedians.

Definition 2.L5 (Q") Q^ for the obseruations X: (Xr, ...,Xn) is gi,uen by

Q,: {lX, - Xil;t < l}r*l (2.20)

whi,ch i,s the kth largest of the lXn - Xl for i < i, where k : hCz and h - lnl2l+\.

Thus 8,, is the kth order statistic of the "C2 interpoint distances. Since h is approx-

imately half the number of observations, k is approximately 0.25 times the number

of interpoint distances nC2, and hence Q", is approximately the lower quartile of the

interpoint distances. In the case where n : 20, fr : 55 wilh "C2 - 190, and hence

k is the 100(#) : 28.9th percentile of the ordered interpoint distances.
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Typically leading coefficients (1.1926 for ,so, and 2.z2rg for e,,) are included to
achieve asymptotic unbiasedness for the standard deviation of Gaussian data; how-

ever they are omitted here. Rousseeuw & Croux (1993) perform a small simulation
limited to MAD, Sn, Qn and the sample standard deviation and show that both ,S,,

and Qn outperform the MAD for both Gaussian data and Cauchv data. On this
basis, these estimators are included in this study.

Note that we consider the size of ,t in Qn as fixed, although in general this is a
parameter that could be manipulated to optimise the performance of Qr,. Rousseeuw

& Croux (1993) give no explicit reason for this particular choice of &. However,

they do state that this choice attains the 50% breakdown point of the MAD. (For

definition and discussion of breakdown points, see Hoaglin et al. (2000) or Rousseeuw

& Croux (1993).)

2.3.2 A-estimators of scale

While the sample standard deviation, Gini's mean difference, the interquartile range,

the MAD and S" do not have any associated parameters, the A-estimators of scale

are a class of estimators which, like the trimmed standard deviation and Qo, do
have associated parameters (note that we choose not to manipulate the parameter
Ie for Qn in this study). In fact there are manv different opportunities to tune the
A-estimators through parameter choice, and choice of weighting function. In Lax's
study, as here, certain parameter values are chosen and consequently the analysis
focuses on the joint hypothesis that the class of estimator with that particular pa-

rameter is the "best" robust scale estimator. Much more analysis would be required
to find the best class/parameter combination.

Before introducing the A-estimator, it is necessary to define and motivate the M-
estimator of location. iy'-estimators are commonly used to give robust location
estimates, and empirical studies have shown that these perform extremely well in
a variety of circumstances (see Hoaglin et al. (2000) and the references therein).
We motivate the form of the M-estimators through the following example for the
location parameter of the normal distribution.

Estimation of the location parameter p, for a random sample X from the N(p,,oz)
distribution using rnaximum likelihood requires maximisation of the likelihood func-
tion rL 1

L(p;x,o) : IT -+"-+"#ti-j ot/ztr

4I
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where we assume o is known. The log-likelihood can be writterr

1 f, /Xr-u\2
lnL(P,;X,o) :-lnbJ2tr) -:I("' * 

IZun=r\ o /
and thus maximisation of the likelihood is equivalent to maximisation of the log-

Iikelihood, which in turn is equivalent to min'imi,sati,on of the function

(2.21)

Differentiating Q(p;X, o) with respect to p, we solve

m

)-rx -F):o?,
which of course yields the sample mean X - *D7=, Xu. This process can be

extended to motivate M-estimators of location, for which we replace the quadratic

loss function p(u) : u2 in (2.2I) by a general function, symmetric about u : 0, and

increasing in lul.

An M-estimator ft is the choice of T which minimises the objective function

Qi,;Xp):f(T)'

r,(#)

,D-^r(#) 
:'

where 56 is an auxiliary estimate of scale (typically MAD), c is a positive constant,

and p(u) is an even function. Differentiating with respect to T, an alternative

specification of the M-estimator is that it is the solution to the equation

(2.22)

(2.23)

(2.24)

where |,fu) : *,p(") is an odd function. The most popular choice of tlt(u) is T\rkey's

biweight t/-function, which is

tbtu\ : {uQ - u2)2 l"l S rr\' |.o l"l >1'

A table of common d-functions and their associated pfunctions is given in Hoaglin

et al. (2000). Goodall (2000) provides the general link between a r/-function and

a target density function. As seen above ,h@) o u is consistent with underlying

Gaussianity, and in general a random sample from a distribution with density

f @;rio( exp f- [" lt(u;fiau]- L Jp I



as required. Goodall (2000)

cut off at a finite z, do not

Substitutiae rh@) : uw(u)
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yields the maximum likelihood estimate ?lo where ?n is the M-estimator satisfying

(2.23). In the Gaussian case, tls(r; p) : (s - 1t)/o and

l@; P) x e-*(7)'

points out that ry'-functions like the biweight (2.24) that
have any associated target distribution.

in (2.23) we find

(xr-T"\ lx,-rt(-;s-J',(ff):o
which can be rearranged to give

'r--fL 
-

D?=,w(+*) 
", (2.25)

D?=,*(+*)
Since r/(u) is an odd function, tr(u) is an even function (i.e., symmetric about

u : 0), and (2.25) grves Q as a weighted average of the standardised scores [{ :
(& - T") lcso. The biweight r/-function has corresponding weight function

(2.26)

and this is used to downweight the observations in the location estimate (2.25).

(2-26) is the biweight function used by loess to downweight observations (see Ap-
pendix A), in a process related to the iterated solution of (2.2b).

We are now in a position to define the ,A-estimator of scale, which is the finite
sample equivalent of the asymptotic variance of an /ly'-estimator and depends on the
choice of {-function, and the underlying distribution of the data. The A-estimator is

derived in Huber (1981) using techniques not discussed here; however an alternative
derivation follows.

It is well known that the sample mean of a random sample has varian ce o2 f n, and
hence

In order to estimate o, we might consider estimating the sample variance of realisa-

tions of X . gv analogy to this relationship, Lax motivates the use of the asymptotic
variance of. an llf-estimator to obtain an estimator of scale.

nt
r'- 1

nvar(X)
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Theorem 2.6 Let X : (Xr,...,Xn) be ind,ependent and, i,ilenti,cally distri,buted

symmetric random uari,ables trom the location-scale family wi,th locati,on pararne-

ter p,s and scale parameter o. Then the M-estimatorTn of p,s has an asymptoti,c

normal di,stri,bution wi,th nxean p,s and, uariance gi,uen ui,a

(2.27)

where(J - (L: (Xi - ttilo i,s the stand,ard,i,sed score, r!@): *p(") is an odd

functi,on as specified in (2.23), and p(u) is a twice-di,fferenti,able euen function.

Proof We have the observations X : (Xr ,. .., X,") and these are independent and

identically distributed symmetric random variables with location p6 and scale o.

Define 1 ,. / t, \
Q^li::t p(ry\n- \ o /

where p(u) is an even function, p is a parameter and o is assumed known. Differ-

entiating with respect to pl, we obtain

a-oi:-*F-r(+)
where ,h@) : *p(") is an odd function. By definition, the M-estimator Q min-

imises Q"1t) and satisfies Q'"(7"): 0. Taking a Taylor Series expansion of Q'"1t)

about 4,

)r5uar{Ji(r. -po)} : "' ffi

-o- rt(r*-ti+ir'(L-r\,,o"r_o=, \ o /

where p is a random variable such that lT" - -ttl < lT" - pol. Evaluating &t lt: l-to,

and taking the limit as n -+ oo, we obtain

#trr (4=) l,=,, 
--+'fr'(r' - pd*,u{r' rutt

where U - Ue : (& - tti lo is the standardised score with zero location and unit

scale. T,., converges to to Fo as n increases (Huber 1981, CoroIlary 2.2) and it follows

that p also converges to /16 and the right hand side is as stated. Hence, in the limit,

,/-n(r, - rro) : Ji*-:I YIY:I :'--E!9!=.
' 
#n{,1' (u)} - JiB{rh' (u)}'
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Now, definc €6 : ,b(Ut). Since ttre .\, are independent and identically distributed,
the e; are too, with mean E(e;) : E{4,(U)}: 0, since t/(u) is an odd function and

[{ is symmetrically distributed, and variance var(e6) : E{th(U)r}. In addition, for

large n, application of the Central Limit Theorem vields

45

h*er - vv(o' E{'/ (u)'?})'

Thus, as n -+ oo

- r (0."'II19?)-- \-'- E{Iy(U)}'z /
as required. n
We note that the variance depends not only on the choice of $(u), but also on the
underlying distribution of X. Choice of the biweight ,ry'-function in (2.2 ) ensures

that the required moments exist even for long-tailed distributions like the slash.

In the case of Gaussian Xn, as shown above, the form of the likelihood function
suggests p(r) x 12. For this choice of p(u), it follows without loss of generality that
,h@): r and ,!r'(*): 1. The M-estimator is [ : X and thus

'/n6-p,)-N(0,o21
as required.

The A-estimator is defined to be the finite sample equivalent of the asymptotic
variance of the l4-estimator as follows.

Definition 2.LG (A-estimator) TheA-estimatorfortheobseruationsX: (Xr, ...,Xn),
with (;-function tb(u) : uw(u) i,s

(2.28)

where Ui : (xi- M)lcSs, M i,s an auri,liary estimator of locatian, ,96 e's an auri,Iiary
estimator of scale, c is a positiue scali,ng constant, and {,(u) : ftthfu).

It is clear from Definition 2.16 that the A-estimator is the finite sample equivalent of
(2.27), and is a weighted average of the squared deviations, with weights determined

,fr,(r,- po) : ftH,& - d@D^r(0, 
E{,bv)'})

su,(x; c, so) : I t D?=,'(uo)'(x' -=Y)'fi
v \ ' -i -w' 

L" 
_ I l*D?=rrh,@o)1" I
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by the ratio of w(U)' and the denominator. For a given collection of data, the

denominator is a positive scale factor; however it will differ across collections.

Unlike Lax, in order to limit the number of distinct estimates possible, we consider

only a single y';-function: the biweight. Thus r/(u) and u.'(u) are defined in (2.2 )
and (2.26), and we investigate appropriate combinations of ^96 and c. As with many

other estimators requiring an auxiliary location estimator, we choose M to be the

sampie median.

2.3.3 Maximum likelihood estimator for the t-distribution

The robust estimators we have considered so far have been designed to mitigate the

effect of extreme observations by considering order statistics (e.g. MAD, IQR, S,r,

Qr,) or by taking weighted averages of the "well behaved" observations (e.g. the

trimmed standard deviations and A-estimators). Robustness has been achieved by

tuning the estimators by choice of which order statistic to use or to use weighting

schemes which give weights decreasing in the size of the observations. Evaluation of

our choice is by simulation with the performance criterion being triefficiency. As an

alternative, we propose the family of d-distributions as an intermediate distribution

(one that might successfully model the "goodness" of the Gaussian distribution, but

also reflect heavy tailed behaviour) and optimise the scale estimate for this target

distribution.

Definition 2.I7 (t, random variable) The t, random uari,able wi,th location pa-

rameter p, scale parameter o and v degrees of freedom follows the Gaussi,an conl-

pound scale model of Defi,ni,ti,on 2.9 with S; a chi-squared random aari,able, with u

degrees of freedom, diuided by u.

When u -+ e the t, distribution is equivalent to the "Af(p, o2), and for u : l,
the tu distribution is the Cauchy, with mean, variance and all higher order moments

infinite. In general, the kth central moment for the t, distribution is defined if. k < u.

As z increases, statistics measuring the heaviness of the tails such as kurtosis, where

defined, and the tail-weight index (both given in Table 2.1 for selected z) decrease

monotonically in z. Thus we might expect the l-distribution to be suffrciently flexible

for modelling the compromise distribution. We hope that the ML estimator for the

target f, distribution will also perform well under the triefificiency criterion. As with
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the A-estimator and its tuning constant, we will rely on simulation to identify the

appropriate choice of y.

Since the t, random variable follows a Gaussian compound scale model, we can

apply Theorems 2.1 and 2.2 to obtain the maximum likelihood recursions for the

unknown parameters pl and a.

Theorem 2.7 Consi,der a random sa;mple x: (Xr,...,&) frorn at-d,istribution
with locatiofr F, seale o and u degrees of freedom, where p, and o are unknown and,

u is known. The mari,mum likeli,hood esti,mators of 1t and o a,re found by iterati,ng

equati,ons (2.5) and, (2.9) with

Eo(s,lx) : + (t * 6' :=Yl')-'

where 1t's and &fr are the preui,ous estimates of p and, o2 respectiuely.

Proof The Student's f-distribution with z degrees of freedom corresponds to the

case where S; is an independent X2, random variable divided by u, and hence the

conditions of both rheorems 2.1 and 2-2 are met. In particular

Eo(s,lx) : G (! /x'- P'\')"\tY a )1
where G(t; : -dln M(t)ldt and M(t) is the Laplace transform

M(t) : [* "-"triaFr,(") (r > o).
JO

Since S; has cdf P(S, { s) : P(X? < srz), its density is given by

/s,(s) : ufx?es) : iil Hi @r);-r"-!,s (, > o)

for all i. Thus

tG fr,(") * ri?+t)-t 
"-lus

which is in turn proportional to a gamma density function with parameters |(z * 1)

and lu, and it follows that M(t) is the moment generating function of such a gamma

random variable, i.e.

47
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Hence

G(t):u*7(t*4)-'u \ ul
and applying Theorem 2.2,

Eo(srlx) : u -r r (1 * (x' --fo)') -''u\uo'o/

as required. !

Application of Theorems 2.1 and 2.7 for sample data yields the maximum likelihood

estimates of pl and o2 under the assumption that the data is a random sample from

thet, distribution. We use Theorem2.T to motivate two different scale estimators for

examination in the simulation. The first of these is the fully iterated ML estimator

for selected v as defined in Theorem 2.7. While not optimal for any of the three

corners, a carefull;' chosen z might allow triefficient estimation of scale.

The second estimator motivated by Theotem 2.7 is obtained by specifying initial

estimates for the EM algorithm, 1-lq : M and 6o : cSo for some positive constant

c, and performing only a single iteration. Without updating the location estimate,

we obtain an estimator of the following form.

Definition 2.18 (One-step t-estimator) The one-step t-esti,mator of scale for
the obseratations X : (Xr,. . .,X,,) is giuen by

(2.2s)

where U5 : (X;- M) lcSs, M i,s a an auxiliary est'i,mate of locati,on, ,Ss ds an aurili,ary

esti,mate of scale, and c is a positi,ue scaling constant.

This estimator is similar in form to an A-estimator; however in this case the weight

function is very simple. If ,90 is a consistent estimator of scale for a t-distribution

with z degrees of freedom, then c -- Ji is required, as is the multiplicative constant

# to make st(X;c,Ss) a consistent estimator of o. If iterated to convergence for

a random sample from the t, distribution (as in Theorem 2.7) we know the optimal

downweighting of the observations is attained using the weight chosen in (2.29);

however this weight function may also be useful for data that doesn't follow a t-

distribution. Thus, as for the A-estimator, we select ,So and search for the scaling

constant c > 0 which allows the greatest triefficiency.

s,(x;c,so) : l;* (#rP) (& - *rl
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2.4 Methodology

In the following section, we discuss the design of the simulation.

2.4.L Evaluation criteria

Rather than calculating the efficiency of an estirnator in the usual way, by taking

the ratio of the minimum attainable variance and that estimator's variance, the per-

formance of scale estimators is usually assessed using the variance of log estimates.

Thus the efficiency of a scale estimator St(X) relative to another estimator,sz(X)
is

eff(,S1,,S2) : var[ln Sr(X)]
(2.30)

rc}%.

var[ln St(X)]'
If ^91 is less efficient than 52, its variance will be higher, and so eff(S1, Sz) <

The first benefit of using the log transformation is that any constant multipliers in
the scale estimators disappear, since for constant b,

var[ln{bS(x) }] : var[ln S(x)].

Hence, proportional biases in the estimators are not important and we do not need

to select constants for asymptotic (or finite sample) unbiasedness. The second ad-

vantage is that the distributions of the scale estimates themselves are made more

symmetrical by the log transform due to the (generally longer) upper tail being con-

densed relative to the lower one. This symmetrising effect makes use of the sample

variance to estimate the theoretical variances in (2.30) more suitable, particularly
for long-tailed distributions like the slash.

Definition 2.19 (Sample efficiency of a scale estimator) The sample ffic,iency
of a scale estimator S(X) can be estimated using m, i.rtdependent realisations of the

obseruations X : (Xr,. .., Xn) and

"fr\s):
sample uar''iance of Infi,. . .,1n6^

(2.31)
sample uariance o/ ln,S(X)l,. . . : ln,S(X)-

where &6 is the marimum li,kelihood scale estimate for sample i. and S(X), is the

scale esti,mate for sample i.

This definition follows from (2.30), where S:(X) is taken to be the ML estimator, and

St (X) the estimator of interest. The efficiency is estimated by repeatedly sampling,

and estimating the sample variances of the two sets of m scale estimates.
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Lax uses the variance of the log estimates to compute efficiencies, as in Definition

2.19, whereas Rousseeuw & Croux (1993) use the standardised variances

rn(sample variance of S(X)r,. . .,,S(X)-)
(sample mean of ^9(X)1,..., S(X)*),

(2.32)

where again S(X)l is the scale estimate for sample i. Efficiencies are calculated as the

ratio of the standardised variance for the ML estimator to the standardised variance

of the estimator of interest. The standardised variance is rn times the squared

coefficient of variation, and also is invariant to location and scale transformations

of the data, however it does not benefit from the symmetrising effect of the log

transformation.

Both evaluation criteria are considered in this study. However, unless otherwise

stated, any mention of efficiency relates to that in Definition 2.19, and in particular,

all estimators are benchmarked against the sampling variation of the log maximum

likelihood estimates. We note that since or is the maximum likelihood estimate of

o, then ln &t is also the ML estimate of ln o and hence use of the ML estimates as

the benchmark is particularly attractive.

2.4.2 To swindle, or not to swindle?

One of the first concerns in reproducing Lax's simulation results was the "swindle",

or variance reduction technique, used by Lax to increase the effective simulation

size, while keeping the actual runs to 1000, 640 and 640 for the normal, one-wild

and slash distributions respectively. The swindle is described by Simon (1976) and

outlined in more detail below. In the case of the normal distribution, the swindle

amounts to standardising the observations using the sample mean and standard

deviation, processing the standardised scores, and thus eiiminating the variation in

the sample statistics. Each estimator's sample variability (actually the variance of

the log estimator) is then written as some addition to the known variability of the

sample standard deviation for normal data.

As we have seen, each of the three distributions used in the Lax study follows the

Gaussian compound scale model of Definition 2.9, and in each case, the observations

may be written as

Xt: F + "Z;
where the X; are the observations, the Zi areindependent, standard normal random

variables, and the \ are positive random variables, independent of the Zi, blut not
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necessarily independent of one another. In the case of the normal distribution,Y: !
for all i (clearly a dependent sequence), and for the slash distribution we require Yg

to be independent uniform random variabies on the interval [0, f]. It follows from

the proof to Theorem 2.5, that for a one-wild sample of size n) we require a randomly

selected )21 to be equal to $ and the remaining Vr to be one. This is a non-trivial
example of a dependent sequence.

Given thedata X: (Xr,...,Xn) and conditioningon Y: (yt, ...,1'n), the Gener-

alised Least Squares (GLS) estimators of pr and o2 are obtained by minimising the
weighted sum of squared errors

Q@):

with respect to 0 : (p,a2), giving

Yo'(xu - p')2

(2.33)

which is a weighted average of the observations X, and

,, -Dl=rY'(X - ti'
n-l

which is a weighted average of the squared deviations of the X1 about !. Since, given

Y, these are GLS estimators, they are the Ordinary Least Squares (OLS) estimators

for a transformed model (Seber 1977), and these latter estimators are independent,

complete and sufficient statistics for pr and a2 (Graybill 1976, Theorem 6.2.1). In
particular, we can conclude that given Y, & is a complete, sufficient statistic for o.

In an operation related to standardisation, we form the configuration vector C :
(Cr,. . .,Cn) with elements

cr: x' 
^ fu.

o
In the case where the X; are norrnal with Y : L for all i,,, it, is the sample mean, d is
the sample standard deviation, and the Cl are identically the standardised scores.

Interpreting x, Y, z : (2t,.. ., zn), and c as column vectors, we can write in
general,

c:x-11
o

where 1 is the unit column vector of length n, and where

xt-rt:"(3- D+'K)
\ Yt D?=rYo' )
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by the definitions of X; and 1r. This yields

(X-l'1) - -/^-' lYt\
" (o-, - v-.' ),

where D : diag()t), and this is clearly independent of p. Moreover,

ar : o2-f nr(x, - k\2 - o' lz, (l- YYt\ ol
n_IL'r\.1i-t') - n_Ilp \r-1.r1'/"1

which is also independent of p. Dividing (X - /rl) by 6, the a terms cancel, and we

see that C is a function of Z, which is a vector of independent standard normals,

and the {, which we are conditioning on, alone. Thus, given Y, the distribution of

C does not depend on p or a and so C is an ancillary statistic. In addition, since &

is a complete, sufficient statistic for o, Basu's Theorem (Lehmann & Casella 1998,

Theorem 1.6.21) states that given Y, the random vector C and the scale estimator

& are independent. This result is also stated by Simon (1976).

Now we derive the swindle. Due to the principle property of a scale estimator given

in (2.4), and since a > 0, the scale estimator S(X) satisfies

s(X) : as(c). (2.35)

So the scale estimator of the observations X is simply o times the scale estimator of

the configuration vector C. We wish to caleulate the efficiency of the scale estimator

using (2.31) in the special case where p : 0 and 02 : 1, and hence we need

to estimate var{lnS(X)}. The most straight-forward method of doing this is to

simulate many realisations of lnS(X), and estimating their (population) variance

using the sample variance of the realised values. Thus, we estimate

€i{ ln S(x)} : saurple variance of ln .9(X)1, . . . : ln S(X)- (2.36)

where rn samples X are simulated, and Gi denotes the sample variance. We then

use this quantity in (2.31) to obtain an efficiency estimate. This is described as

straight Monte Carlo sampling in the discussion below.

Noting the relationship (2.35), the variance on the left hand side of (2.36) admits

the following decomposition

€ii ln s(x)) : €i'(t" a) + €i{ ln ^9(c)) + z 6{ In a, ln ^9(c)} (z.sz)

where fr and G are the sample variance and covariance respectively. The decom-

position (2.37) shows the three sources of variation in the statistic we compute using

(2.36).
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An alternative method of estimating var{ln S(X)}, and the basis of the swindle used

by Lax (1985), is obtained by conditioning on Y, which is of course available due to

the generation of X. Conditioning on Y, the variance of interest can be decomposed

as follows:

var{ rns(x)t 
I ;:,lHJiitJ:l'.,,",} + E{va,(rno + rns(c)lv)} (2 88)

since in general var(X) : var{E(Xly)} + E{var(XlY)}. Noting thar o : 1, grven

Y , (n - 7)62 is chi-squared with n - | degrees of freedom, E(ln aly) is a fixed

constant, and hence

var{n(tn a + ln s(c) lY)} : var{E(ln ^s(c)ly)}. (2.3e)

In addition, given Y, & and C are independent, then

E{var(lnd + ln^9(C)lY)} : E{var(lnalY)} + E{var(lns(c)ly)}. (2.40)

Substituting (2.39) and (2.a0) in (2.38), and noting

var{n(ln s(C)lY)} + E{var(ln s(c)ly)} : var(ln s(c))

we have

xTt/(" - L) (2.41)

1 degrees ofwhere X?r-r : (n - \A2 is a chi-squared random variable with n -
freedom.

An approximation to the variance of the log of a chi-squared random variable divided

by its degrees of freedom is given in Abramowitz & stegun (1968) as

var{ hS(x)} : rur{ ln S(C)} + .,u. (n

var {rn (xll,)} : h(r - #) * ou,- r)u)

and hence

which yields approximately 0.02774g when

estimate the variance of in erest using

I,64
n:20.

fii { ln s(x)} - 0.02774e + 6i{ ln s(c)}

('-

Thus

1\
3(n - 2)2 )

, using the swindle, we can

(^ 'tr.'*J@ - l)

: 0.027749 f sample variance of ln S(C) Lt . . .t ln S(C)," (2.42)
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where again, rn samples X are simulated, each of this yielding a configuration vector

C.

In the case of Gaussian X, p is equal to the sample mean and 6 the sarnple standard

deviation, and consequently the configuration vector contains standardised scores.

When the scale estimator is the sample standard deviation, S(C) - 1 by definition,

and so ln S(C) : 0 for any observations X. The equality (2.41) above holds, since

the sample standard deviation on the left hand side equals d, and thus has the same

distributional properties.

Comparing (2.36) and (2.37) xo (2.42),, we see that when var{hS(C)} is large,

the swindle will be of little use. Howev'er, when this amount is small relative to

the constant 0.027749 (as in the standard deviation for normal X), the swindle will

have a large impact on the precision of the estimated variance due to successful

elimination of variability of the sample estimates 6i(ln A) + 2 i&{ ln A, h S(C)}.

Whilst undoubtedly the swindle was very important for Lax, it seems that its ben-

efit is lirnited now. Computing power has increased to the extent that it is much

easier to increase precision by increasing the simulation sizes than to allocate the

additional computation required to compute the configuration vector for each sam-

ple. The swindle is employed to yield an efficiency based on (2.42), (2.31) and 1000

independent samples. This is repeated 100 times to yield 100 efficiency estimates,

and these are compared to those obtained through straight Monte Carlo simulation.

We find that for some estimators and the normal distribution, the swindle achieves

the precision of up to 4000 Monte Carlo samples. However, in other instances, and

particularly for the slash distribution, the precision attained is certainly no greater

than for the same number of Monte Carlo samples. These findings are reflected in

the comments above and confirm the remarks of Gross (1976): "the swindle works

better for distributions which are 'close' to the Gaussian than for those not so close,

and additionally better for estimators which are relatively'good' in a situation than

those which are not" (Gross 1976, page 411).

Figure 2.7 examines a few estimators more carefully, and allows us to estimate the

gain of the swindle in these cases. The first block of the plot shows that efficien-

cies calculated for the sample standard deviation, and one-wild samples using the

swindle and 1000 samples, have a distribution similar to those based on almost 4000

Monte Carlo samples. For the slash distribution and the sample standard deviation,

the gains are much smaller, with the efficiencies being almost as variable as those
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First run

Normal One-wild SIash

Sr(X)t

si(x)-

sr(X')t

Si(x')-

si(x")t

Sr(X')""
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var

Mth ru,n

Normal One-wild Slash
si(x),

s;(x),'

si(X')t

S;(X')*

sr (x")t

si(x")*
^ (tl
var; i., ^tzlvari i,, 6if3z

Table 2.5. Schematic representation of the simulation for estimator j. At each run of the M : 100
runs, m : 20000 samples of size n = 20 are generated for each corner: normal X, onewild X' and
slash X". Scale estimator j is evaluated for each of these samples, and the variance of the log

estimates collected for each corner; tnus €'r!/l is obtained for each estimator. run rk = 1. . . .. M
and distribution / : 1,2,3. Using (2.31) add the variance estimates for the"ML estimafor, ihe
efficiencies "{'l *u also obtained for each estimator, run rt = !, . . ., M and distribution / = 1,2,3.

calculated without the swindle. For the MAD, in blocks three and four of the plot,

we see a similar effect: the swindle has considerable benefit in the one-wild situation

but only a small effect for slash data. For the biweight A-estimator with MAD and

c : 9, the distribution obtained for both one-wild and slash using the swindle is

barely different to that obtained without it. These, and results for other estimators

not shown here, demonstrate that the contribution of the swindle is limited in many

cases, and hence it will not be used at all in this study.

2.4.3 This simulation

In this study, all simulations are conducted using the statistical sofbware R (Ihaka

& Gentleman 1996), Version I.2.2, installed on a Pentium-Ill personal computer,

running the Red Hat Linux 6.2 operating system. The aim of the simulation is to

obtain efficiency figures, calculated using (2.31). Rather than restrict ourselves to a

single efficiency estimate for each estimator and distribution combination, as in Lax

(1985), we repeat the simulation a number of times, and consequently can comment

on the precision of the efficiency estimates.

There are several levels of sampling in the simulation. These are described below,

and also represented graphically in Table 2.5.

r The basic unit of the simulation is the sample X : (Xr ,. . ., Xn) (not a random

sample in the one-wild case) on which the scale estimates are based. For each

sample, a number of competing scale estimators are evaluated. Primarily

n:20, however n:10 and n : 40 are also investigated.

en: r)
.M M
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The normal samples are generated randomly and then used as a basis for

the one-wild and slash samples.

The normal sample is copied, and then a randomly selected observation

is multiplied by 10 in order to obtain a one-wild sample.

The normal sample is copied and divided by n independently sampled

uniform observations on the interral [0,1] to obtain a slash sample.

Each sample yields a scale estimate from each of the scale estimators in Table

Table 2.6 considered.

In order to obtain an efficiency estimate ) rn -- 20000 samples from each distri-

bution are simulated. Thus, we obtain a collection of scale estimates indexed

by distribution and estimator, and the sample variance of the log estimates of

each class are calculated, and efficiencies formed according to (2.31).

A run of 20000 independent samples yields a single efficiency for each estimator

at each distribution. (Note that Lax's entire study constitutes rn : 1000

samples of size n :20.)

r In order to ascertain the precision of the efficiency estimates in each situation,

we obtain Il[ : I00 estimates of each efficiency, by repeatedly processing rn

samples of size n, as described above.

The estimators considered are listed in Thble 2.6 along with a reference code and a

point of definition. Those marked with an asterisk are also simulated for samples of
size n: 10 and 40. Most estimators have been defined in Section 2.3: however in

two instances a reference is given to Lax (198b).

2.5 Results

The benefit of modern computing in a study of this nature is immense. The scope

now afforded us due to increased speed and storage capabilities opens opportunities

for analysis not possible for Lax. The primary focus of this section is on the results

for n :20. These are analysed in detail, and compared to the results of Lax and

others where possible. Notable differences between these results and those for the

sample sizes n : 10 and 40 are reported at the end of the section.

OI
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Table 2.6. Estimators considered in the simulation for samples of size n = 20, the tuning
parameters used, and their point of definition. The thirteen estimators marked with an asterisk
are also examined for samples of size n : 10 and 40. Simple codes are provided for easy reference
in Figures 2.9 to 2.18.

2,5.L The maximum likelihood estimates

We present summary statistics for the individual maximum likelihood scale esti-

mates for 20000 independent samples from each distribution. These estimates are

computed using an iterative algorithm (ttre BU algorithm), and iterations are termi-

nated when the absolute change in the scale estimate from one iteration to the next

is less than 10-6, or when the number of iterations reaches 200. This latter condition

is used once in the 20000 samples detailed in this section, and occurs when the es-

timates alternate between two values slightly further apart than 10-6. Since we use

the standard normal distribution as the basis for all three distributions, unbiased

(squared) maximum likelihood scale estimates should have unit expected value. The

realised bias for the sample standard deviation in the normal case is consistent with

theory, and the sample variances for the single run of 20000 have average 1.0000

(adp). The averages for the scale estimates, and scale estimates squared for the en-

tire simulation are given in Table 2.7. The average standard deviation differs from

the theoretical value for the normal distribution, 0.9869 given by (2.14), only in the

fourth decimal place.

The distributions of the natural log of the maximum likelihood scale estimates are

shown in Figure 2.8 for each of the three corners and for 20000 samples of sizes

n : 10, 20 and 40, and 200 samples of sizes n : 160 and 640. All estimates do

Estimator Parameters Code DetinitiOn
sarnple standard deviation
Gini's mean difference
trimmed standard deviation
interquartile range
median absolute deviation
Dn

Qn
modified biweight A-estimator
modified sine A-estimator
biweight ,A-estimator

iterated t-estimator
one'step f-estimator

ML estimator: onewild
ML estimator: slash

(p,r) e {(0.1,0.1)-, (0.2, 0.15), (0.2,0.2)}

k: hCz where h :ln/21 +l'
c:6
c=2.1
So : MAD and c € {9', 10', 11, 12, 13}

So = S' and c € {6.5',7-.7.5}
So = Q' and c € {10.5', 11', r1.5}
u e {L,2,3,416}
So : MAD and c € {4,4.25,...,5.251

So = Sn and c € {2.75,3,3.25}
So = Qr and c € {4,4,25',4.5}

sd (ML for normal)
gini
s10, s15, s20

big, bil0, bi11, bi12,
bil3

bsl, bs2, bs3
bql, bqZ, bq3
tl, t2, t3, t4, t6
tml, tm2, tm3, tm4,

tm5, tm6
tsl, ts2 ts3
tql, tq2 tq3
ML
lvlL

tqr
mad
Sn

Qn
mbi
msi

2.7
2.10
2.tl
2.t2
2.13
2.r4
2.15
Lax (1985)
Lax (1985)
2.16

Theorem 2.7
2.18

Theorem 2.5
Theorem 2.4
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normal one-wild slash

maxlmum
maximum

kelihood scale
kelihood scale squared

0.9870
1.0002

0.9606
0.9487

0.9960
1.0890

Table 2.7. Average rnaximum likelihood estimates of scale and scale squared, over 100 simulations
and 20000 samples of size 20. The estimators are the sample standard deviation in the normal
case, and given by Theorems 2.5 and 2.4 for the one-wild and slash respectively. Population values
of scale and scale squared are unity for all distributions.

appear to have a small downward bias from ln(l) : 0, however this is consistent

with Jensen's inequality

1-1^
E(lna) : 

Ua{m 
a\ <, tnnla'; : o

where the final equality holds if d2 is an unbiased estimator of o2 : 1. As evident in

the plot, the estimates for the normal and one-wild distributions, whose samples are

identical but for a single value, are very similar for each sample size. The one-wild

estimates have slightly greater range than the sample standard deviations in the

normal case. The log transformation has elongated the lower tail relative to the

upper for these two corners, however the slash estimates are very symmetric under

this transformation reflecting the considerable effect the extremely heavy tails of the

slash distribution have on even the optimal scale estimates. Not surprisingly, the

estimates for the slash samples have a much greater variability, but are still located

close to the theoretical value. In each case, we see that the variance of the log

estimates decreases as sample size increases, as we would expect. The plot strongly

suggests consistency for the true parameter o : I for each of the three corners, i.e.,

as n increases, the bias gets smaller, as does the variance of the log estimates.

2.5.2 Simulation results

In this section, we present the results of the entire simulation based on the variances

of the log scale estimates. Where possible, we compare the results from this simu-

lation to previously published results, in particular those of Lax (1985). As there

have been many estimators examined, as described in the introductory section, es-

timators have been divided into single-pass estimators, and "the-rest": the A- and

t-estimators. Results are presented separatelg with comparison made across the

groups where appropriate. Average efiflciencies for all the estimators are given in a

single table in Appendix C.
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r0 20 40 160 640 10 20 40 160 640 10 20 40 160 640

Sarnpla siz€

Figure 2.8. Distribution of log maximum likelihood scale estimates for the three corners for
20000 samples of sizes n = 10, 20 and 40, and for 200 samples of sizes n. : 160 and 640. The
population value of lno is ln(1) = 0 in each case, and this is showu by the horizontal line.

Single-pass estimators

Each simulation run of 20000 samples yields an emciency estimate for each estimator

and each distribution. Efficiencies of the one-pass estimators are compared in Figure

2.9, and average efficiencies are given in Thble 2.8. In Figure 2.9, and subsequent

figures of this type, median efficiencies for a single corne.r are connected by line

segments, so that we can readily identify performance for that corner. Further, for

comparison, all such plots have a y-axis ranging from 0% to 100% efficiency. In

addition to the efficiency on the left vertical axis, a non-linear scale measuring the

ratio of the standard deviation of the log estimates to the standard deviation of the

log ML estimates is provided on the right vertical axis of this plot, and subsequent

figures of this type. This ratio is defined

sample standard deviation of ln S(X)r: . . . ,ln ^9(X),,, (2.43)
sample standard deviation of ln6r ,...,|nd*

where eff(^S) is a percentage. This measure gives us a better understanding of the

implications of a low efficiency. For example, if a scale estimator has efficiency of

80%, the standard deviation of its log estimates is approximately 1.12 times the

standard deviation of the log ML estimates.
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RESULTS

The first notable feature of Figure 2.9 is the very poor performance of both the

sample standard deviation and Gini's mean difference for one-wild and slash data;

Gini's mean difference performing slightly better in each instance. Both are, how-

ever, highly efficient for normal data. The next three estimators are the trimmed

standard deviations. Various parameter estimates are chosen, and an obvious trade-

off between efficiency in the one-wild and slash situations occurs. As we let p and

r decrease to the point that a single observation is trimmed, the estimator becomes

close to optimal for the one-wild distribution, but hopeless for the slash. In terms of

triefficiency Lax's choice of p : r : 0.2 is certainly the best of the three parameter

combinations examined here.

The remaining estimators are aII robust estimators, and as such their performance for

normal data is typically the worst, and their performance for slash data the best. The

four estimators: interquartile range (IQR), rnedian absolute deviation (MAD), S"

and Qn, are all similar in their construction, depending primarily on order statistics.

The relative performance of the IQR and MAD is particularly interesting. While

the MAD is more effrcient for slash data, the IQR is only marginally less efficient

in this case, and overall, more triefficient. Under the criterion of triefficiency, we

conclude that the IQR is more robust than the MAD, and more suitable generally.

This conflicts with the popularity of the MAD in advanced statistical methods (e.9.

loess). The performance of .9" and Q,, supports their use as alternatives to MAD,

and in turn IQR, with particularly high average efficiency in the slash case, of 95.8%

and 94.9% respectively. In fact, both MAD and IQR are dominated by ^9" and Q".

We analyse the irnplications of this for use of MAD as the auxiliary scale estimator

of choice in Section 2.5.3.

Table 2.9 offers comparison to Lax's results for sample standard deviation, the

trimmed standard deviation with p : r :0.2, and I\,[AD. It also offers comparison

to the results of Iglewicz (2000) for the IQR (here comparison is made to results

for the fourth spread, which is a close approximation to the IQR). Finally it offers

comparison to the results of Rousseeuw & Croux (1993) for ,S" and Q,r.

The one-wild efficiency for the sample standard deviation given by Lax appears

within sampling error? however the results for the trimmed standard deviation are

grossly different. We also see evidence of Lax's failure to benchmark the efficiencies

against the minimum variance scale estimators as discussed in Section 2.I.2. Lax

reports optimal (100%) efficiency for the trimmed standard deviation at the one-wild
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sd gini s10 sl5 s20 iqr mad Sn On ML

Estimdor

Figure 2.9. Efficiency distributions for the one-pass estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. The estimators are sd:sample
standard deviation, gini:Gini's mean difference, s10=trimmed staudard deviation with p : r :
0.1, s15=trimmed standard deviation with p = 0.2 and r : 0.15, s2O:trimmed standard deviation
with p : r = 0.2, iqr:interquartile range, mad:median absolute deviation, Sn=.Sr,, Qn=Q, and
Ml=maximum likelihood. Efficiency is computed using (2.31). The ratio of standard deviations
is a non-linear scale given by (2.43).

estimator normal one-wild slash triefficiency
sample standard deviation
Gini's mean difierence
trimmed sd with p: r :0.2
trimmed sd with p:0.2 and r : 0.15
trimmed sd with P: r: 0.1
interquartile range
median absolute deviation
s"
Q"

100.0

98.0

65.0
72.L

80.9
39.4
37.8
54.7
66.9

17.4

26.7

70.8
78.6

88.1
42.4
40.5

55.9
68.4

7.5
TL,4

76.L

63.4
42.1

84.0
87.3
95.8
94.9

7.5
LL.4

65.0
63.4
42.1
39.4
37.8
54.7

66.9

Table 2.8. Average efficiencies for the one-pass estimators, based on 100 realisations of the
effi.ciencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efrciency is computed using (2.31). The triefrciency given is the average over the 100

simulations, rather than the minimum average. The efficiency distributions for these estimators
are shown in Figure 2.9.
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estlmator normal one-wild slash
sample standard deviation
trimmed sd with p: r :0.2
interquartile range
median absolute deviation
Jn

Q"

100.0 (100.0)
65.0 (8e.e)
3e.4 (41)
37.8 (35.3)
56.3 (54.1)
68.3 (68.8)

11.4 (10.e)
70.8 (100.0)
42.4 (47)
40.5 (41.5)

76.r (28.1)
84.0 (e4)

87.3 (e1.8)

Table 2'9. Comparison of one-pass efficiencies with those from published studies, shown in paren-
theses. Results for the trimmed standard deviation and median absolute deviation are compared
with the results given in Lax (1985), the interquartile range with results given in Iglewicz (2000)
for the fourth spread, and the results for ,S,, and Q, to those given in Rousseeuw & Croux (1993).
The latter efficiencies are based on standardised variances, rather than the variance of the log es-
timates. The one-pass efficiencies are averages based on 100 efficiencies, each from 20000 samples
of size 20.

distribution, and very poor perforrnance in the slash case. Theory tells us the first

cannot be true since it is suboptimal to ignore the wild observation completely, and

in fact by choosing p : r : 0.2 we ignore at least three well-behaved observations in

each calculation. Also, the simulation results presented here show that elimination of

a few extreme values in a slash sample results in a reasonable, but not perfect, level of

efficiency. Results for the normal distribution cannot be affected by an understated

numerator, so a likely conclusion is that Lax's trimmed standard deviations were

not computed correctly.

The results for the MAD appear to correspond across all three distributions, and

differences can almost certainly be attributed to sampling eruor and the vast differ-

ences in simulation sizes. Results for the IQR match the essence of those provided

by Iglewicz for the fourth spread. Overstatement of the efficiencies for the IQR

in the one-wild and slash cases could be due to an understated numerator in the

efficiency calculation; however this is inconsistent with the MAD results (although

these are from a different source).

Efficiencies for Sr, and Qrr, based on standardised variances, are compared to those

derived from the standardised variances given in Rousseeuw & Croux (fOOS) witn

only small differences observed. The original efficiencies were based on a single

simulation run of 10000 samples of size 20. Thus, sampling error, and use of the

rounded figures given by Rousseeuw & Croux (1993) could easily account for the

differences.
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Lax found in favour of the .A-estimators using the biweight T/-function. Hower,er,

alternative weight functions produced undominated estirnators, in particular, the

modified biweight and the modified sine functions. Since the Princeton Robustness

Study (Andrews et al. L972), the biweight has had periods of popularity in the

robust Iiterature (Cleveland 1979, Martinez k Iglewicz 1981, Kafadar 1982, Iglewicz

& Martinez 1982, for example). It also features in a variety of currentlS' popular

robust techniques in particular the smoothing algorithm loess of Cleveland et al.

(1992). For these reasons, we focus attention on.A-estimators using the biweight

rffunction. In particular, optimal scaling constants for the modified biweight, and

modified sine have not been sought. They are included here only for comparison

with Lax's results.

Efficiencies of the A-estimators are compared in Figure 2.10, and average efficiencies

are given in Table 2.10. It is immediately clear that the modified biweight lacks

efficiency for the normal and one-wild distributions as was found in the Lax study.

Performance of the modified sine is similar to that of the biweight with c € (9, 10, 11),

in terms of triefficiency and also the range of efficiency across the three corners. The

choices of scaling constant in the biweight estimators clearly demonstrate several

phenomena. In theory, as c -+ oo. the biweight estimate converges to the sample

standard deviation (albeit using the sample median rather than the sample mean),

and hence we would expect to see its efficiency at the normal distribution increase

with c. AIso, as c increases, the point at which absolute deviations get zero weight

increases, and hence we would expect to see the efficiency for both one-wild (for

large c) and slash data decrease. Both these results are reflected in the simulated

efficiencies presented here.

Unlike the one-pass estimators, the one-wild distribution dominates the triefficiencies

for the A-estimators. In almost every case the efficiencies at the one-wild distribution

are the lowest, and hence the triefficiency is simply the efficiency at the one-wild

distribution. The intuition behind this is unclear; however, if we favour the use

of these estimators, one interpretation is that the one-wild is not a suitable corner

distribution when triefficiency is the criterion.

Despite the changes to both the numerator and denominator in the efficiencies, the

biweight with c : 9 almost comes out as the triefficient estimator of this class. Use
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Figure 2.10. Efficiency distributions for the A-estimators using 5o : MAD, based on 100
realisations of the effi.ciencies, each estimated frour 20000 samples of size 20. The estimators
are mbi:modified biweight w'ith c = 6, msi=modified sine with c - 2.1, bi9-bi13:biweight with
constants c = (9, 10, 11, 12, 13) respectively, and Ml:maximum likelihood. Efficiency is computed
using (2.31). The ratio of standard deviarions is a non-linear scale given by (2.42).

of c:10 improves the average one-wild efficiency and hence the average triefficiency

by 0'1%. Should we consider only the normal and slash corners, the "biefficient"

estimator would be the biweight with c between 9 and 10. The intersection of the

lines joining the median efficiencies for the normal and slash distributions in Figure

2.10 suggests a scaling constant of close to 9.5 for maximum biefficiency across these

two corners.

Once again there are conflicts between the results of this study and those of Lax.

Average efficiencies are compared in Table 2.11 for the estimators common to both

studies. In all cases, the figures for the normal data appear to correspond, and the

general behaviour of efficiencies for both one-wild and slash data appear to corre-

spond. However, whilst the order behaviour is generally consistent, point estimates

cannot be recovered by rescaling Lax's efficiency estimates to account for overstated

numerators, and hence again we conclude there are significant differences. In partic-

ular, the triefficiency of the best ,A-estimator is found to be smaller, at 79.2% rather

than 85.8%.



66 CHAPTER 2. ROBUST SCALE ESTIMATION

estimator normal one-wild slash triefficiencv
modified biweight with c: 6

modified sine with c:2.I
birveight with c: 9

biweight with c: 10

biweight with c: 11

biweight with c: 12

biweight with c: 13

50.0
78.1

86.2

89.4

9r.7
93.4
94.7

53.3
75.3

79.1

79.2
78.2

/o.o
74.I

92.5
89.0

88.0
86.8
85.5

84.0
82.4

50.0
i o.J
79.1

79.2

78.2

76.5
74.r

Table 2.10. Average efficiencies for the A-estimators using,so : MAD, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in
Section 2.3, and each efficiency is computed using (2.31). The triefrciency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these
estimators are shown in Figure 2.10.

estlmator normal one-wild slash

modified biweight with c: 6

modified sine with c:2.I
biweight with c: 9
biweight with c: 10

50.0 (47.5)
78.1 (82.1)
86.2 (86.7)
8e.4 (e0.0)

53.3 (56.8)
75.3 (8e.6)
7e.t (85.8)
7e.2 (84.8)

e2.5 (e6.8)
8e.o (e4.5)
88.0 (86.1)
86.8 (84.6)

Table 2.11. Comparison of A-estimator efficiencies with results from Lax (1985), shown in
parentheses. The ,4-estimator efficiencies are averages based on 100 efficiencies, each from 20000
samples of size 20.



2,5. RESUI?S

Estimators based on the f-distribution

An alternative to constructing an all-purpose estimator that achieves high trief-

ficiency, such as an .4-estimator, is to find an underlying compromise distribution

whose corresponding (optimal) scale estimator has high triefficiency. Use of the Stu-

dent's t distribution is one attempt to model this implicit distribution, which must

be close to normal near the centre, exhibit intermediate tail behaviour, and have

the possibility of the occasional "wild" observation. The t-estimators are multi-pass

and as such need an initial scale estimate. If full iteration is performed, the choice

of Se is not crucial and we can use the sample standard deviation. However, if only

a single iteration is performed, we would hope to start with a scale estimate which is

itself robust. teating the one-step estimator as given in (2.29) as a special form of
an A-estimator, we may use So : MAD and optimise by choice of scaling constant

c.

Efficiencies of the fully iterated f-estimators are compared in Figure 2.11, and av-

erage efficiencies are given in Table 2.12. Several surprising features emerge from

these summaries. In particular, we note that the fully iterated t-estimator does par-

ticularly well for the one-wild distribution when u e {2,3,4}, but less well for the

slash distribution. Even when u : L and the f-distribution is the Cauchy (compared

to the slash in Table 2.1 and Figure 2.3) the optimal estimator for this distribu-
tion only averages 76.8% efficiency for the slash. It is also interesting to note how

quickly the normal efficiency increases with z. In particular, even for u :6, which

would definitely be considered long-tailed and highly non-normal, the f-estimator

is nearly 95% efficient for the normal samples. The one-wild performance when

u : 3 is the second best of all estimators considered in the simulation, following

the trimmed standard deviation with p : r :0.1 which has an average efficiency of
88.1%. Normal/one-wild biefficiency is achieved between u:2 and 3, which seems

surprisingly low.

Efficiencies of the one-step t-estimators are compared in Figure 2.I2, and average

efficiencies are given in Table 2.13. We see that like the biweight A-estimator and the

one-pass estimators, this estimator has failed to cope well with the one-wild samples.

As c, and hence the implicit degrees of freedom z, decreases, the t-distribution
behaves much like the slash distribution in the tails, and as expected, the efficiency

increases. Similarly as v increases, efficiency increases for the normal data, which

is of course the distribution obtained as u --+ oo. The best choice of c appears to
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Estimalor

Figure 2.11. Efficiency distributions for the fully iterated f-estimatorso based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators t1-t6 have asso-
ciated degrees of freedom v: (1,2,3,4,6) respectively, and Ml,=murimum likelihood. Efficiency
is computed using (2.31). The ratio of standard deviations is a non-linear scale given by (2.43).

estrmator normal one-wild slash triefficiency
fully iterated t with u : I
fully iterated , with u :2
fully iterated t with u :3
fully iterated t with u : 4
fullv iterated f with u :6

79.8

85.5
89.0
9r.4
94.4

82.6
86.3
87.1
86.0
79.8

76.8

64.3
54.9
47.4

37.4

76.8
64.3
54.9
47.4
37.4

Table 2.12. Lverage efficiencies for the fully iterated t-estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.31). The triefficiency given is the average over the 100
simulations, rather than the minimum average. The efficiency distributions for these estimators
are shown in Figure 2.11.
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Figure 2.12. Efficiency distributions for the one-step t-estimators, based on 100 realisations
of the effciencies, each estimated from 20000 sarnples of size 20. The estimators tm1-tm6 use
So : MAD and have associated scaling pal'ameters c : (4,4.25,4.5,4.7s,s,b.25) respectively,
and Ml=maximum likelihood. The (nonJinear) upper axis shows the corresponding size of z
if .S0 : 1.4826(MAD) is assumed. Efficiency is computed using (2.31). The ratio of standard
deviations is a non-linear scale given by (2.4J).

be c : 4.25 using a triefficiency criterion, or c : 5 if biefficiency for the normal
and slash distributions is sought. These values of c correspond roughly to u : 8

and v : 12 respectively. It is interesting that lower degrees of freedom are needed

when normal/one-wild biefficiency is sought, even though the tail of the one-wild

distribution is better behaved than that of the slash. Also, we note that using the

MAD and c : 4 we obtain an average slash efficiency higher than any of the fully
iterated f-estimators and 3.5% higher than the MAD itself. Overall, the f-estimators

do not appear to be as good as the biweight .4-estimators: their performance at

the one-wild is approximately 10% worse, and their normal/slash biefficiency is

marginally lower. Further, use of the MAD and a single iteration fails to provide

the triefficiency of the fully iterated estimator with u :7.

These results are intriguing in the sense that we see quite different behaviour from

the fully iterated and one-step t-estimators. In particular, the fully iterated estima-

tors do well for the normal and one-wild corners but relatively poorly for the slash

data, despite low values of z. In contrast, for much higher implicit values of z, the

one-step estimators do very well for slash data, and less well for the normal and

one-wild samples. The l-distribution does appear to be able to moderate between
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estimator normal one-wild slash triefficiency
one-steplwithc:4.00
one-step I with c: 4.25
one-step I with c: 4.50

one-step t with c: 4.75
one-steprwithc:5.00
one-step t with c:5.25

78.9

80.8
82.6

84.3
6D. /
87.0

69.1

69.3
69.1

68.8
68.2
67.4

90.8

89.7
88.5

87.3
86.1
84.8

69.1

69.3
69.1

68.8
68.2
67.4

Table 2.13. Average efficiencies for the one-step f-estimators using ,9e = MAD, based on 100
realisations of the efficiencies, each estimated from 20000 samples of size 20. The estimators are
defined in Section 2.3, and each efficiency is computed using (2.31). The triefficiency given is the
average over the 100 simulations, rather than the minimurn average. The efficiency distributions
for these estimators a,re shown in Figure 2.12.

the corners, and perhaps introduction of truncating weights for the fully iterated

case may improve the slash performance, without too much loss in efficiency at the

remaining corners. We leave this a subject for future research.

2.5.3 Use of alternative auxiliary estimates

The results of the Section 2.5.2 clearly show that the estimators of Rousseeuw &

Croux (1993) (i.e. S" and Q,,), are more efficient at each of the three corners than

the median absolute deviation, and indeed Q" has the highest average triefficiency

of any of the single-pass estimators considered in this study. This suggests that use

of either S," or Qn as auxiliary scale estimators in multiple-pass estimators, could

increase the effficiency of those classes of estimators.

In order to use either ,S" or Qn in the biweight A-estimator, the scaling constant

c must also be changed. W-e consider using ,S" with c: (6.5,7,7.5) and Q,, with

6 : (10.5,11,11.5). These choices seem to provide a maximum for the one-wild

efficiency as shown in Figure 2.13 and Table 2.14. Evident is the gain in efficiency

of the A-estimator from using the more efficient auxiliary estimators of scale. In

particular, use of Q' and a scaling constant of 11 increases the one-wild efficiency

of the best A-estimator using MAD by 3%. In contrast, no change is seen for the

normal samples, whereas the slash efficiency declines. We also note that none of

the A-estimators using either MAD, S,, or Qo,, attain the efftciency for slash data

reached bv ,9" or Qn alone.

Average values for MAD, ,S" and Qn over the entire simulation are given in Table

2.15 along with the average values of 10(MAD),75n and 11Q,, which arise as the best
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Figure 2.13. Efficiency distributions for biweight .A-estimators with alternative So, based on 100
realisations of the efficiencies, each estimated from 20000 samples of siae 20. The estimators are
bi9=biweight with MAD and c : 9, bsl-bs3 use ,9, with c : (6.b,7,7.b) respectively, bql-bq3 use
Q" with c - (10.5,11,11.5) respectively, and Ml:maximum likelihood. Efficiency is computed
using (2.31). The ratio of standard deviations is a non-linear scale given by (2.49).

estimator normal one-wild slash triefhciency
biweight with MAD and c: 10
biweight with ,S,, and c: 6.b
biweight with Sn and c:7
biweight with ,S' and c :7.5
biweight with 8r, and c: 10.b
biweight with 8,r and c: 11

biweight with Q" and c - 11.5

89.4
86.8

89.0

90.8
88.0
89.4

90.6

79.2
80.8
81.1
80.8
82.1
82.2

82.1

86.8
86.9

85.8
84.6
83.9
82.9
82.0

79.2
80.8

81.1

80.8
82.1
82.1

81.7

Table 2.14. Average efficiencies for the /'estimators using alternative Se, based on 100 realisa-
tions of the efrciencies, each estimated from 20000 samples of size 20. The estimators are defined
in Section 2'3, and each efficiency is computed using (2.31). The triefficiency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these
estimators are shown in Figure 2.13.
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normal one-wild slash
MAD
vn

Q"

0.6473
0.8582
0.5360

0.6852

0.9266
0.5895

1.5067
2.7878
1.4913

10 MAD
75'"
lr8"

6.4727
6.0073

5.8957

6.8524
6.4860
6.4850

15.0672
L5.3147

16.4045

Table 2.15. Simulation average of the auxiliary scale estimates and the corresponding averages
of those estimates times the best selected scaling constants.

choices of c,Ss in the A-estimators. From this table it is clear wh.v the efficiencies

have decreased for the slash data, since by increasing cS6 we would expect these

empirical responses as fewer data are eliminated by the biweight function. The

scaling constants have essentially been determined by the one-wild performance,

and this improvement is reflected in the decrease of cS6. An interesting effect is

that the normal efficiency does not decline as a result of c^96 decreasing for that

corner as well.

Having noted that use of more efficient auxiliary scale estimators has benefitted

the A-estimators, the same principles also hold true for the one-step estimators

based on the t-distribution. Since they are not fully iterated, choice of a "better"

initial scale estimate may improve the efficiency of the final estimate. Use of z as the

scaling constant would require a "good" initial estimate. Focussing on consistency in

the normal case, and taking scaling constants from Table 2.15, we would typically

use ,56 : MAD/0.6473, So : 5"10.8582 or ,56 : Q"10.5360 depending on our

preference for MAD, S" or Q". Since we have reparameterised the one-step ,-

estimators, this is unnecessary and we simply choose MAD, ,S' or Q' and maximise

the triefficiency by choice of c. We simulate using ^9" with c e {2.75,3,3.25} and

Q, with c e {4,4.25,4.5}. The results of these simulations are summarised in

Table 2.16 and Figure 2.14, along with results for the best fully iterated f-estimator

and one-step using the MAD. The results clearly show an improvement in overall

efficiency.

Use of ,S,, results in triefficiency comparable to the fully-iterated t, with lower per-

formance at the one-wild, but higher efficiency at both the normal and slash distri-

butions. F\rrther improvement is achieved by using Qr,, with a small compromise in

normal-slash efficiencies for an improvement in one-wild efficiency. Once again the

influence of the one-wild results is seen. Maximum efficiency for the one-wild occurs
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Figure 2.14. Efficiency distributions for f-estimators with alternative .50, based on 100 realisa-
tions of the efficiencies, each estimated from 20000 samples of size 20. The estimators are tl:fully
iterated with z = l, tm2=one-step with ,So = MAD and c = 4.25, ts1-ts3 are one-step with 56 : gn
and c : (2.75,3,3.25), tql-tq3 a,re one-step with So = 8,, and c : (4,4.25,4.5) respectively, and
Ml:maximum likelihood. Efflciency is computed using (2.31). The ratio of standard deviations
is a non-linear scale given by (2.43).

at lower c when Q' is used, but despite this, efficiencies for the normal. increase and
those for the slash decrease. We would expect the opposite efiect simply by decreas-

ing the degrees of freedom, but there is an offsetting effect due to the relative sizes

of ,Ss using the MAD, S" and Q' similar to the effect illustrated in Table 2.15 for
the biweight .4-estimators.

The t-estimator results are now very sirnilar across all three distributions to those

for the A-estimator with Q,, and c: 11. We see slightly worse performance for the

one-step t with Qn and c: 4.25 at the normal and one-wild, better performance at

the slash, and a 0.3% decrease in average triefficiency. Thus the one-step t-estimator

with Q,? and c : 4.25 emerges as a serious contender for the biweight A-estimator

with 8" and c: 11.

2.5.4 Other results

Alternative sample sizes

We repeat some of the above analysis for samples of sizes 10 and 40. We would expect

the results for the one-wild to exhibit the greatest changes here, and dominate the
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estlmator normal one-wild slash triefficiencv
fully iterated t with u :1
one-step t with MAD and c :4.25
one-step t with S" and c:2.75
one-step t with S" and c :3
one-step t with ,S' and c:3.25
one-step t with Q" and c: 4

one-step t with Q,, and c: 4.25
one-step t with Qr, and c: 4.5

79.8

80.8
83.1

85.3

87.3
85.7
86.9
88.1

82.6
69.3
76.6
76.6

76.2
81.7

81.8
81.7

76.8

89.7
89.8

87.9

86.0
86.2
85.0
83.7

76.8
69.3
76.6
76.6

76.2
8r.7
81.8
81.7

Table 2.16. Average effciencies for the f-estimators using alternative ,9s, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in
Section 2.3, and each efEciency is computed using (2.31). The triefficiency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these
estimators are shown in Figure 2.L4.

results for the smaller samples particularly. In the case of n : I0, the single "wild"

observation represents a greater proportion of the sample, and we would expect

efficiencies at the one-wild to decrease for most estimators. However, when n: 40,

the wild observation should not be so dominant, and we would expect estimators to

have efficiencies much closer to their Gaussian efficiencies. These effects will have a

direct impact on triefrciencies due to the dominance of the one-wild distribution in

the results for n.:20.

Results are presented for selected estimators in Tables 2.17 to 2.19 for the normal,

one-wild and slash distributions respectively. Consider first the results given for the

normal distribution in Table 2.17. Here, no systematic behaviour is observed across

all estimators. The average efficiencies of the trimmed standard deviation and MAD

decrease as sample size increases, whereas Sn, Qn and the biweight with both MAD

and S" perform better relative to the sample standard deviation. Interestingly, we

see different behaviour for MAD (whose preformance worsens as n increases) and

its proposed alternatives .9r, and Qr, (whose performance increases). F\rrther, the

average efficiencies of the biweight with 8" and scaling constants c : 10.5 and

c : ll are approximately constant whereas the one-step t with Qn and c : 4.25

does slightly worse as sample size increases. These latter three estimators do very

well at all sample sizes with average efficiencies close to 90%.

The results for the one-wild distribution are shown in Thble 2.18. Intuitively we

would expect the efficiencies to increase with sample size for the robust estimators,

and this is exactly what is observed. The sample standard deviation gets worse

as sample size increases, as we would expect for an estimator with no protection
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estimator n: 10 n:20 n:44
sample standard deviation
trimmed sd with p: r: 0.1
median absolute deviation
cuft

Q"
biweight with MAD and c:9
biweight with IVIAD and c: 10

biweight with Sn and c: 6.5
biweight with S" and c:7
biweight with Q,, and c: 10.5
biweight with Q,, and c: 11

one-step t with Q' and c: 4.25

100.0

86.5

39.1

50.2
60.7
72.7
77.6

78.5
81.6
87.8
89.2
88.2

100.0

80.9
37.8

54.7
66.9

86.2

89.4

86.8
89.0
88.0
89.4
86.9

100.0

79.7

37.4
57.9
72.7

90.3
92.6

89.0
90.9
87.0
88.5
86.5

Table 2.17. Average efficiencies for selected estimators for the normal distribution only based
on 100 realisations of the efficiencies, each estimated from 20000 samples of sizes 10, 20 and 40.
The estimators are defined in Section 2.3, and each efficiency is computed using (2.31).

against the single "wild" observation. The trimmed standard deviation has an aber-

rant value for n : 10 because the two-sided trimmed mean is computed for the entire

sample (the trimming in this case removes 5% of the observations from each end of

the ranked sample, and here 0.05n ( 1 so no observations are trimmed). Relative

performance worsens for n :40 because of the parameterisation of the estimator.

Since we remove \00rYo of the observations, as n increases the number of "good"

observations trimmed increases, and consequently efficiency decreases. MAD gets

worse as n increases; however both S" and Q' improve. The A-estimators and the

one-step t-estimator all show a systematic increase in efficiency as sample size in-

creases' as we would expect. Here, the identification and down-weighting of the

single "wild" observation improves as n increases, and the scale estimates are com-

puted with similar efficiency to those for the normal distribution and n: 40. While

these estimators were only able to attain one-wild efficiencies close to 80% for n : 20,

when n : 40, the efficiencies are higher, and much closer to those attained for the

normal distribution.

The results for the slash distribution are shown in Table 2.19. Once again, as we

would expect, the sample standard deviation gets worse as sample size increases.

Unlike its performance for one-wild samples, the trimmed standard deviation ben-

efits in the slash case from losing a larger number of observations, and increases in

efficiency as n increases (once again the figure for n : 10 is deflated). The MAD
and ,Sn become less efficient as n increases, whereas the performance of Q' is fairly
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estimator n: 10 n:20 n: 40
sample standard deviation
trimmed sd with p: r : 0.1
median absolute deviation
Un

Q"
biweight with MAD and c:9
biweight with MAD and c: 10

biweight with ,S,, and c: 6.5
biweight with S" and c: 7

biweight with Q" and c: 10.5

biweight with Q" and c: 11

one-step t with Q,, and c: 4.25
rnaximum likelihood

17.8

50.6
44.4

53.2

63.6
63.5

63.6

66.4
65.8

66.1
64.7
72.7
100.0

7r.4
88.1
40.5

55.9
68.4
79.r
79.2

80.8
81.1

82.1
82.2
81.8
100.0

8.6
83.9
39.0

58.7
73.7

86.9

87.5
86.8

87.7

85.9
86.8
85.4
100.0

Table 2.18. Average efficiencies for selected estimators for the one.wild corner only, based on
100 realisations of the efrciencies, each estinnted from 20000 samples of sizes 10, 20 and 40. The
estimators are defined in Section 2.3, and each efficiency is computed using (2.31).

constant. The A-estimators, and the one-step t, all do worse as n increases and com-

parison with Tables 2.I7 and 2.18 shows that the triefficiencies for these estimators

at n:40 are now their slash efficiencies.

For n - 10, the one-step f with Qn and c: 4.25 is the triefficient estimator, due to

its 72.7% average efficiency at the one-wild distribution (as shown in Figure 2.15).

We also note that this is the biefficient estimator for the normal and slash corners

for this particular sample size. No attempt was made to optimise c for any of the

two-pass estimators, so there may be better choices when n : 70. For n - 40,

the efficiencies are shown in Figure 2.16. In this plot it is clear that, for n : 40,

the trimmed standard deviation, MAD, S' and Qn are not greatly influenced by

the "wild" observation in the one-wild samples. The best estimator is the biweight

with MAD and c : 9, with an average triefficiency of 86.2%. Like the one-step f
when n : 10, this was the best performing estirnator in all 100 trials. The biweight

with MAD and c - 10, with ,5r, and c : 6.5, and the one-step t also had high

triefficiencies, with averages 84.8%, 84.7% and 84.6% respectively. In fact, there is

lery little difference between the two-step estimators considered.

Results using standardised variances

Use of the standardised variance favoured by Rousseeuw & Croux (1993), giving

the efficiency (2.32), rather than log-variance used by Lax, with efficiency given by
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estimator ??:10 n:20 n: 40
sample standard deviation
trimmed sd with p: r: 0.1
median absolute deviation
s"
Q"
biweight with MAD and c: g

biweight with MAD and c: 10
biweight with ,S,, and c: 6.5
biweight with ^9" and c: 7

biweight with Q,, and c: 10.5
biweight with Q" and c: 11

one-step t with Q,, and c: 4.25
maximum likeiihood

17.4
26.2

92.3
98.3

96.8

90.7
90.4
90.7
90.0

86.2
85.4
87.3
100.0

7.5
42.t
87.3
95.8

94.9

88.0
86.8
86.9
85.8
83.9
82.9

85.0
100.0

3.5
43.3

85.4
94.5

95.1

86.3
84.8
84.7
83.4
83.2
82.3
84.7
100.0

Table 2.19. Average efrciencies for selected estimators for the slash distribution only based on
100 realisations of the efrciencies, each estimated from 20000 samples of sizes 10, 20 and 40. The
estimators are defined in Section 2.3, and each efficiency is computed using (2.31).
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Figure 2.15. Efficiency distributions for estimators with n = 10, based on 100 realisations of the
efficiencies, each estimated from 20000 samples. The estimators axe sd:sample standard deviation,
sl0:trimmed sd with p: r - 0.1, mad=MAD, Sn=,S",, Qn:Qr,, big-bq2:biweight with MAD
andc=(9,10),S,randc-(6.5,7)and8,"withc:(10.5,11)respectively,tq2:one-steptwith
Qn and c: 4.25 and Ml:maximum likelihood. Efiiciency is computed using (2.31). The ratio of
standard deviations is a non-liuear scale given by (2.49).
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sd s10 mad Sn Oo big bito b61 bs2 bql bqz tCz ML

Estimator

Figr.lre 2.16. nfficiency distributions for estimators with n : 40, based on 100 realisations of the
efficiencies, each estimated from 20000 samples. The estimators are sd=sample standard deviation,
sl0=trimmed sd with p = r = 0.1, mad:MAD, Sn:S",, Qn=Qr,, bi9-bq2=biweight with MAD
andc=(9,10),S,randg=(6.5,7)andQ"with6:(10.5,11)respectively,tq2=one-steptwith
O, and c: 4.25 and Ml=maximum likelihood. Efficiency is computed using (2.31). The ratio of
standard deviations is a non-linea.r scale given by (2.43).

(2.31), has an interesting effect on the results for n:20. The average efficiencies

based on standardised variances are found in Table C.2 and these can be compared

to the complete results based on log variances given in Table C.1. The estimators

in both tables are sorted according to average rank using the triefficiency as the

criterion. In almost every case, average emciency at the normal distribution is higher

using the standardised variances than it was using the variance of the log estimates.

The exceptions are Gini's mean difference, and the fully iterated t-estimators with

u : 4 and 6, each with an average difference very close to zero. The largest gain is

4.1Yo for the modified biweight A-estimator, but most estimators gain less than 1%

efficiency.

The one-wild results lose some influence on the triefficiencies under the alternative

efficiency estimate, and do not exhibit large systematic changes like the normal

and slash results. Nearly all the efficiencies for the single-pass estimators increase,

whereas the multi-pass estimators generally lose ground. Most average changes for

this class are very small, with only the biweights using MAD and c - 11, 12, and

13 falling more than 1%.
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The efficiencies for the slash distribution show an opposite effect to the normal re-

sults; here most estimators have lower efficiencies using the standardised variances,

and unlike the normal data, the differences in some ca^ses are sizeable. This is

clearly related to the stabilising effect of the log transform. The largest difierences

are observed in the estimators that perform poorly at the slash distribution: sample

standard deviation, Gini's mean difference, the trimmed standard deviations, and

the fully iterated t-estimators. All of these differences (except the standard devia-

tion's) are above 10%, with the trimmed standard deviation with p : r :0.1 falling

almost 25%. All other estimators maintain average slash efficiencies in excess of

75%, as seen in Table C.2. In two instances (the MAD and the modified biweight)

the slash efficiencies increase by approximately 1%, however most changes are de-

creases of between 3 and 6%. Substantial drops for the two-pass estimators using

Q,, as an auxiliary scale (of around 6%) cause the slash efficiency to be the lowest

of the three distributions for these estimators. This affects the biweights using 5,,

and Qn, and the one-step t using Qn in particular, Interestingly, these estimators

are among the best performing estimators under the measure based on log variance.

Under that measure, the best triefficiencies are slightly higher, at around 82%.

Since the one-wild results are fairly stable, so too are the triefficiencies. We do

however select different estimators on account of large decreases in slash efficiency

for some estimators. The best performing estimators are now the biweight with S"

and c : 6.5, c : 7 , and the one-step t with Q' and c : 4. All three estimators have

triefficiencies in excess of.80To, as seen in Table C.2. This effect is shown graphically

in Figure 2.17, where the code for each estimator is plotted against average rank

using log variance (on the horizontal axis) and average rank based on standardised

variance (on the vertical axis). The cluster of estimators in the lower left quadrant

of the plot indicate those which have performed well under both measures, and the

minimum average triefficiency of this group is 75.9% for the biweight with Q, and

c : 11.5 (bq3). In short, use of the standardised variance does not have a very

dramatic effect on the conclusions vi'e draw.

2.6 Conclusions

A large simulation has been performed, and has produced results in conflict with

those of Lax (1985). In particular, the estimator with the largest triefficiency iden-
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Average rank bes€d on lriefiicisncy afid log variance

Figure 2.I7. Comparison of average ranks under the two efficiency measures. The average ranks
based on triefficiency and the lariance of the log estimates is on the horizontal axis, and the
average ranks based on triefficiency and the standardised variance (2.32) on the vertical axis, and
the estimator is indicated by its short code (see Table 2.6). The line representing equality is shown
in grey, and full results are given in Tables C.1 and C.2.

tified by Lax is not the estimator with greatest triefficiency in this study, and the

triefficiency found by Lax of 85.8% has not been reached.

Figure 2.18 compares the efficiencies of the best estimators of each class: the biweight

with MAD and c- 10, the biweight with S" and c:7t the biweight with Q,, and

c : LL, and the f-estimator with Qn and c : 4.25. From this plot it is clear that

these four estimators offer estimates of very similar quality. Even though the gains

in efficiency are likely to be small, use of the biweight with Rousseeuw & Croux's

(1993) ,S, or Qn, or use of the t-estimator with Q,, and a single iteration, will provide

better estimates than use of the biweight with MAD and c : 10 (and therefore also

with MAD and c - 9). Except for the biweight with 8,,, all triefficiencies for

these four estimators are based exclusively on the one-wild distribution, and other

estimators may be preferred if the triefficiency ceases to be the selection criterion,

i.e., if a different distribution to the one-wild is chosen as the third corner.

All efficiency distributions have similar ranges and interquartile ranges and are rea-

sonably symmetric. The efficiencies for any particular estirnator and distribution

combination typically have standard deviations close to 0.5%. Thus the standard
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Figure 2.18. Efficiency distributions for the best performing estimators of each class, based on
100 realisations of the efficiencies, each estimated from 20000 samples of size 20. The estimators are
biL0:biweight A-estimator with MAD and c: 10, bs2:biweight with Srz and c = 7, bq2=biweight
with 8n and c : 11, and tq2:the f-estimator with 8n and c = 4.25. The red lines join the medians
for the normal distribution, the green the medians for the one-wild, and the blue for the slash.
Efficiency is computed using (2.31). The ratio of standard deviations is a non-lineax scale given by
(2.43).

errors of the average efficiencies are approximately 0.05%, and we can assume that

the reported average efficiencies axe very close indeed to the true efficiencies.

Even though the very long tails of the slash distribution would seem to present a

greater challenge, relatively speaking, high efficiency at the one-wild has proven a

more difficult achievement for an estimator which performs well in general. The

sampling variance of the estimates in the slash situation is of course much higher

than that in the one-wild case. However, robust estimators struggle to match the

performance of the maximum likelihood estimates for the one-wild in particular.

The maximum average efficiency for any estimator considered was 98.0% for Gini's

mean difference at the normal distribution, 95.8% for ^9,, at the slash distribution,

but only 88.1% for the trimmed standard deviation with p : r :0.1 at the one-

wild. This does raise the question as to whether or not the three corners used for

the triefficiency are indeed the appropriate corners. A simple modification would

be to lower the standard deviation of the wild observation to perhaps eight or nine

times that of the others, and this would raise the efficiency of many estimators for
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the one-wild samples. An alternative would be to stay with & : 10, but treat this

as an unknown parameter in the maximum likelihood recursions.

By undertaking a study of this magnitude, it is intended that the efficiencies reported

will become the benchmark for robust scale estimators. However, many avenues exist

to extend these results. In particular, no attempt was made to examine alternative

/-functions to the biweight in the A-estimators. Further, the parameter k in Q,, was

treated as fixed. Adjustment of this might lead to greater efficiency both for Qn and

for estimators using it as an auxiliary scale estimator. The f-estimators performed

well despite having non-zero weights for all observations, and with Q" and c :4.25

was both the normal/slash biefficient estimator and the triefficient estimator when

n : 10. Truncation of the weight function of the f-estimator at some suitable point

might improve the performance of these estimators.

Together with the results for three location estimators presented in Appendix B, it
is hoped that this work will prompt further interest in robust scale (and location)

estimation generally, in particular, regarding the performance for small samples.



Chapter 3

Non-parametric volatility
estimation

Evolving volatility is a dominant feature observed in most financial time series and

a key parameter used in option pricing and many other financial risk analyses. Al-

though there is now an extensive literature on the estimation of parametric volatility

models (see Engle (1982), Taylor (1986), Bollerslev, Chou & Kroner (1992), Har-

vey, Ruiz & Shephard (1994), Bollerslev & Mikkelson (1996), Shephard (1996) and

Barndorff-Nielsen & Shephard (2001) for example) less attention has been paid to

simpler non-parametric alternatives. Exceptions include Ait-Sahalia (1996), Ander-

son & Grier (1992), and Andersen, Bollerslev, Diebold & Labys (2001) for example.

More closely related to this paper is the vi'ork of Turner & Weigel (1992) who analyse

the volatility of the daily returns of the S&P 500 and Dow Jones indices using the

sample interquartile range (see Definition 2.8) as well as other measures of volatil-

ity. However, such estimates need to be rescaled in order to provide an unbiased

estimate of the standard deviation of the underlying data since this is the predomi-

nant measure of volatility in financial applications, due to its use in standard option

pricing and portfolio optimisation methodologies.

In this chapter we present preliminary findings on the construction and properties

of non-parametric estimators of time-varying volatility, where volatility is assumed

to be a measure of scale. Our focus is on financial data and, in particular, the daily

returns of market prices such as equities, market indices and exchange rates, where

daily returns are the first differences of the logarithms of the prices. Thus each

daily return measures the continuously compounded rate of return on the asset or

index over the day concerned. It is noted that non-parametric volatility estimators

are particularly appropriate for extracting and understanding historical volatility
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prior to fitting a more sophisticated parametric model. They also provide robust

benchmarks for testing the forecasting and in-sample performance of competing

parametric procedures

Our objective is to construct non-parametric volatility estimators that have sim-

ple structure, are cheap to compute, and are tailored to the typically heavy-tailed

distributions met in practice. In particular we seek procedures that are robust to

distributional assumptions, resistant to outliers, and have a sound statistical basis

with reasonable precision properties. The estimation procedures that we consider

construct local robust scale estimates (not necessarily estimates of standard devi-

ation) based on finite moving-averages of the squared deviations of the time series

from its local level. The moving-average weights are selected with reference to a
target family of heavy-tailed distributions, and the span of the moving-average is

chosen so that the volatility is approximately constant within the local time window

concerned. Finally, a global correction factor is applied to the local scale estimates

to provide estimates of time-varying volatility.

No attempt has been made to build a predictive model, andn as with other window-

based estimators, there are issues to be addressed as to what to do at the ends of

the series.

We choose to model a time series of (daily) returns .R1 as

Rt: Ft*o61 (3.1)

where Et : ln^9r - In,Sl-1, time / is measured in days, and ,91 is the underlying time

series of prices concerned. The e6 are assumed to be independently and identically

distributed with mean zero and unit variance. The condition E(ef) : 1 serves to

identify the volatiliflr ol which is assumed to be a strictly positive, smoothly-varying

function of time, so that Rr has mean p1 and variance af . For daily data, p1 will

typically be very small in relation lo o1es, since it represents the mean return over

just one day. However, we shall assume that R; has been corrected for such an

evolving mean level if appropriate. The Rr will typically be heavy-tailed so that the

common distribution of the e, will be heavy-tailed also.

3.1 Discussion of assumptions

The non-parametric estimator of volatility we propose is intended to provide a mod-

ern method of estimating historical volatility based on a suitably chosen finite mov-
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ing average of the squared mean-corrected daily returns. It is based on a local model,

rather than a global parametric model, and is designed to give robust and resistant

estimates with good efficiency properties that could be used to aid in model selec-

tion, and to benchmark forecasts for global parametric volatility models. In order

to facilitate our estimator we need to make some minimal basic assumptions, and

these are discussed below.

The first key assumption is that the mean p4 and volatility os generelly change

smoothly over time, and in particular, are locally constant over the local time win-

dows within which estimation takes place. This seems a reasonable assumption

for the most part and without it reliable volatility estimation would be dfficult to

achieve.

The smoothness of volatility is embodied in the slow decay or long memory of the

autocorrelation function of absolute stock price returns, as demonstrated by Ding,

Granger & Engle (1993), Granger & Ding (1995), Ryd6n, Terdsvirta & Asbrink

(1998) and others. This slow decay implies that the size of the returns is highly

correlated, and volatility is a measure of the "average" size of those returns. Hence,

persistent autocorrelation in the absolute returns is indicative of a smooth volatility

process. This framework does not account for discontinuous structural breaks in

volatility which may occur in practice (see Lamoureux & Lastrapes (1990), Hamil-

ton & Susmel (1994), McConnell & Perez-Quiros (2000) for example), although

our methodology could no doubt be adapted to better identify such changes. This

remains a topic for future research, and a potential weakness of our proposed tech-

nique.

Many parametric models also support our smoothness assumption. Black & Sc-

holes (1973) assume constant volatility, whereas the constant elasticity of variance

model of Cox & Ross (1976) specifies volatility as a power function of the relatively

smooth stock price process. Stationary generalised autoregressive heteroscedasticity

(GARCH) models assume unconditional volatility is constant, and in certain cases

allow conditional volatility to be a typically smooth process. Bollerslev & Mikkelson

(1996) present a recently developed class of these models, designed to address "the

apparent persistence of the estimated couditional variance processes" (Bollerslev &

Mikkelson 1996, page 152). This long-memory is handled using fractional integra-

tion in which a shock to the conditional volatilitv estimate dies out at a slow rate

in the future estimates.
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The second key assumption is that the e1 of (3.1) are independent, and have hearry-

tailed distributions that are better approximated by a l-distribution (with a small

number of degrees of freedom), than a Gaussian distribution. There are many studies

(Fama (1965) being the first) that support the general heavy-tailed hypothesis, which

would appear to be a ubiquitous feature of financial data. A number of candidate

distributions have been proposed, of which the t-distribution is a common choice.

See, for example, Blattberg & Gonedes (I974), Harvey et al. (1994), Hurst & Platen

(1997), Liesenfeld & Jung (2000) and Barndorff-Nielsen & Shephard (2001) among

many others. Typically the degrees of freedom y of the t-distribution found in such

studies range between 3 and 9. The t, distribution has infinite moments of order k

when lc) u, and so u) 3 ensures finite variance andu ) 5 ensures finite kurtosis.

The commonly observed leptokurtosis in stock returns is not inconsistent with global

parametric models for stock price processes. Volatility is often defined in a contin-

uous time setting via a stochastic differential equation for stock price. The stock

price process is generally adapted to Brownian motion, which has Gaussian incre-

ments. Under time-varying volatility, price returns, which are the increments in the

log price process, can be leptokurtic (see Barndorff-Nielsen & Shephard (2001) for

example). Thus, even if the drivingstochastic process is assumed to have Gaussian

increments, evolving volatility and heavy-tailed returns are theoretically linked.

In order to identify the volatility o7 in (3.1), we require a final assumption that

the e1 have finite variance. Subject to this assumption, a global correction factor is

computed from the sample variance of the original data standardised by the local

scale estimates. This takes into account the fact that different scale estimators

have different expected values for the same target distribution, as demonstrated in

Table C.3. Although the heavy tailed distributions of the returns make the moving

sample variance an unreliable local volatility estimate, particularly if the moving

time window is small, we assume that the sample variance is a reliable estimator

of the variance of the underlying heavy-tailed distribution in large samples of the

order of the length of the data. In essence we trust that the extreme values of the

heavy-tailed distribution will appear representatively in large samples where they

will not distort the sample variance. However, in small samples of the order of the

moving time window, such extreme observations will be over-represented when they

occur and can severely distort the sample variance (as demonstrated in Chapter 2

for one-wild and slash data).
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In conclusion, the minimal assumptions our volatility estimator will be based on ap-

pear reasonable, and have considerable support in both the empirical and theoretical

literature.

3.2 Existing non-parametric methods

The methods we discuss in this section are general purpose techniques for estimating

volatility. We describe them as non-parametric since they can be applied to data

without specific modelling of the underlying stock price process. These methods

tlpically have underpinning assumptions which are consistent with one or more

parametric models; however the techniques are also typically used without direct

reference to these assumptions (and indeed are used when these assumptions are

deemed unreasonable).

3.2.1 Historical volatility estimation

A natural way to measure the slowly changing volatility o1 in (3.1) is to take dis-

cretely sampled stock prices, form the returns, and estimate the standard deviation

of these returns using a time series smoothing technique. Volatility estimates for

real data formed on this (or any) basis will be difficult to appraise since the true

volatility is unobservable; however, (3.1) and the notion of smoothness provide a

useful framework.

A popular estimator of volatilit;' is the historical volatility estimator. It has been

prominent in empirical studies of stock returns at least since Officer (1973), and plays

an important part of Figlewski (1997), where it is used to estimate "historical" and

"realized" volatility as a basis for evaluation of volatility forecasting techniques.

Definition 3.1 (Historical volatility) Historical uolatili,tA Jor a stock pri,ce se-

ries, with (mean-corrected) daily returns Rt is giuen by
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where 2r * | i,s the span of the estimator.

There are two important assumptions underlying

essentially a moving standard deviation. The first

(3.2)

use of this estimator, which is

is that the volatility is roughly

V: Dtr=-, Rl*t

2r
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constant over the length of the window, and this accords with the smoothness as-

sumption we rely on in the derivation of our estimator. The second is that the

sample standard deviation will be a reasonable estimator of scale for the observa-

tions in question. As we have seen in the analysis of Chapter 2, if the returns are

not Gaussian, then the sample standard.deviation may be highly inefficient, and

as a result, (3.2) will provide poor estimates of volatility. We seek to address this

second assumption in Section 3.3.

Figiewski (1997) computes (3.2) for the Standard and Poors 500 Index, with an

annualisation factor. He notes that the volatility estimate is highly variable, and

that it is unduly influenced by the October 1987 stock market crash. As the single

extreme return of 19 October 1987, when the market lost 22.8% of its value, en-

ters the 501 observation window (corresponding to r : 250 and roughly two years'

data), it causes the volatility to instantaneously increase by 45% as shown in Figure

3.1. Exactly 500 trading days later, when the return is dropped from the estimation

window, volatility falls by 23%. This effect can be controlled by using smoothness

weights, so that as an observation moves from the end of the window (conesponding

to terms j : *r in (3.2)) to the central point of the estimation window (correspond-

ing to the term t : 0) its weight increases. In this way, volatility would not change

a great deal from one day to the next, but in the absence of robust fitting, it would

still become very large close to the crash date. Using loess, described in Appendix

A, with its tricube smoothness weights and no robustness properties, the volatility

estimate reaches a maximum of 32.3% due to the disproportionate weight on the

extreme return at the centre of the window.

3.2.2 Alternative non-parametric volatility estimation tech-
niques

The historical volatility is usually calculated using returns based on consecutive

closing prices (price at last trade). However, closing price is not the only variable

relevant to volatility estimation that is available on a daily basis. In addition to

closing price, opening price (price at first trade) and the daily high and low are also

available, and these will contain useful information on the r,ariability of the stock.

These additional rariables have been included in volatility estimators proposed by

Parkinson (1980), Garman & Klass (1980), and Kunitomo (t992). These estimators
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Figure 3.1. Historical volatility of the S&P 500Index computed using (3.2) with r:250. The
figure is a reproduction of Figlewski's (1997) Figure IL2. Dates are indicated at the start of the
respective years and the length of the smoothing window is shown.

were shown to be much more emcient estimators of constant volatility than the his-

torical volatility (3.2) based exclusively on closing prices. However it is unclear how

this efficiency will be affected by long-tailed data. Correction factors are provided

for unbiasedness in the Gaussian situation, and time series estimation is not con-

sidered. For time-series estimates, the correction factor developed in Section 3.3.2

will be relevant. The impact of non-Gaussian errors on the estimators is likely to

be similar to the effect on the sample standard deviation based estimators, and the

gains in effrciency due to utilisation of additional market information may be lost

due to lack of robustness.

In contrast to the symmetric smoothing window of the historical volatility estimator

(3.2), the RiskMetrics software (JPMorgan 1996) uses simple exponential smoothing

of the squared returns to estimate the volatility. The variance at time f is a weighted

average of all past squared returns, with the weights decaying exponentially back

through time. It uses the recursion

o? - \o?_r+ (1 -.\)d
where the smoothing constant ) is chosen to be 0.94. This estimator will not be

robust to extreme returns, however shocks to the estimated volatility will impact on

future volatility estimates at an exponentially decaying rate.
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Ait-Sahalia (1996) describes a non-parametric technique for estimating the volatility

function of stationary interest rate data. He estimates the marginal density func-

tion of the spot interest rate series r1 using kernel density estimation, and derives

an expression for volatility based on this estimated densit5 and an assumed drift

function of the process. This technique is based on continuous-time specification

for the interest rate, and the volatility function is estimated non-parametrically as

a function of the rate rather than of time.

Anderson & Grier (1992) propose a non-parametric and robust definition of volatil-

ity, which is useful only when comparing the volatility of two series. Since it does not

provide a numerical estimate of volatility, the estimate is neither useful for modelling

stock price evolution, nor for valuing options on that stock.

The above non-parametric techniques, including historical volatilitg are suitable

techniques when the distribution of the innovations €1 in (3.1) are approximately

normal. In other situations, they are likely to be adversely affected by extreme

returns, and consequently unsuitable generally. We address these concerns in the

following section, where we utilise modern statistical techniques to provide a robust

volatility estimator.

3.3 Robust volatility estimation

The volatility estimator of Anderson & Grier (1992) described above is robust,

however it is not able to provide a time-series estimate of volatility. In contrast,

Turner & Weigel (1992) robustly estimate volatility for the Standard and Poors 500

Index (S&P 500), and the Dow Jones Index. They use (3.2), and the volatility

estimators of Parkinson (1980) and Garman & Klass (1980) which utilise high and

low daily prices. In addition, volatility is estimated using a robust scale estimator:

the interquartile range (IQR) defined in Definition 2.8. A disappointing aspect of

this study is that the IQR-based estimates are not directly compared to the other

estimators due to the bias effect shown in Table C.3. This method of estimation,

and a correction that will allow direct comparison of any local volatility estimates,

are discussed in Section 3.3.2.

In Chapter 2 the results of a simulation study to identify efficient robust scale esti-

mators were described. The results included analysis of robust estimators examined

by Lax (1985) in a similar study, but were also able to include two new single-pass
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estimators (S" and Q,, of Rousseeuw & Croux (1993)), both as scale estimators

themselves and as auxiliary scale estimators for more complicated estimators. As

well as the biweight A-estimator, which was the best performing estimator in the

Lax study, estimators based on the t-distribution were introduced and these were

shown to perform well for the three corner distributions: the normal, one-wild and

slash.

The best performing estimator in the simulation described in Chapter 2 is the bi-

weight y'-estimator with auxiliary scale estimator Q,, (defined in (2.20)) and scaling

constant c: 11. This estimator has the form

I r D?=, u(un)2(x, - tr't)zfi
s,p(X; c,Qn):L;-ffi| (3.3)

where /VI is the sample median,

" -Xi-IvI"o 
_ 

,e^
is the standardised score, u.'(e) is the biu'eiglrt function

-.,--\ le-r')'lrl <1?rtr/ : { ^
[ 0 otherwise

and ll(r) : rw(n). The average triefficiency of this estimator for n : 20 in the

simulation study was 82.1% with average efficiency for normal data of 89-4%. Thus,

under general conditions, we would expect this estimator to provide a reasonably

efficient estimate of scale. Since volatility is a measure of the scale of daily returns,

we can apply (3.3) in the same way as (3.2) to provide a moving volatility estimate.

Triefficiency was measured as the minimum of the efficiencies obtained in the three

cases where the data follows the Gaussian, one-wild and slash distributions. These

three "corner" distributions have varying degrees of heavy tail behaviour and are

meant to delimit the situations met in practice. In particular, since the slash dis-

tribution has infinite variance and heavier tails than the target family of ,, distri-
butions (" > 3) that we have in mind here, we might expect higher efficiency (than

the triefficiency) on application to financial data.

3.3.1 An alternative volatility estimator

We now develop an alternative estimator to (3.3) which is more closely tailored to

the t-distribution. The results which follorv are closely related to the development

of the f-estimator in Section 2.3.3.
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Let X1,...,Xn denote n. independent and identically distributed scaled t, random

variables. The scaled f, variate follows a Gaussian compound scale model described

in Definition2.9, and can be written

Xt: I 
21t+o 

J-qt

for each f, where Zl is a standard normal random variable and Sr is an independent

chi-squared random variable with v degrees of freedom, divided by v - 2, Under

these conditions, and the additional restriction that u ) 3, the scaled t, variate has

mean pa and variance o2. In order to estimate p and 02, we can apply Theorems 2.1

and 2.2 to obtain the maximum likelihood recursions.

Theorem 3.1 The masi,mum likeli,hood esti,mators of locati.on and scale for a ran-

dom sample from the scaled Stud,ent's t-distri,bution wi,th u ) 3 degrees of freedom

and uari,ance 02, are found by i,terati,ng equati,ons (2.8) and (2.9) wi,th

u ! ( t* (;t' -.t!)=') -'Eo(s,lx) : -, _2 \- , (u _ \afi 1

where lts and,6fr are the preuious est'i,mates ol tr and o2 respectiuely, and where u is

assumed known.

Proof Since 5t has cdf P(S1 ( s) : P(X' < t(, - Z)), its density is given by

/s,(s) :(u-2)fxz(,-z)r) :'=rr? (l)t ((,- 2)s)t-t"-ir,-z), ("> 0)L\r) \z/

for all t. Thus

tfif sG) g( si("+t;-Lu-!{'-z)s

which is in turn proportional to a gamma density function with parameters |(z * 1)

and |(u - 2), and it follows from the proof to Theorem 2.7 that

Eo(s,lx) :',-*'(t * (l - t'[)-'' u-2\^'(u-Da|t
as required. n

Application of Theorems 2.1 and 3.1 for sample data yields the maximum likelihood

estimates of pl and o2 under the assumption that the sample is a random sample

from the scaled f, distribution. For given degrees of freedom u, the EM recursions

will need to be iterated to obtain the maximum likelihood estimat or of o2 . and it is
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the moving-average equivalent of this estimator that we choose to base our volatility

estimation procedure on. Thus, we form moving windows as in (3.2), and estimate

the scale in this window using Theorem 3.1 for each sub-sample of the returns data.

Other possible choices could be considered for the distribution of Sr that involve

censoring to minimize the impact of outliers, mixed distributions with point mass at

zero to account for sticky prices, and mixture distributions among other candidate

distributions chosen to exemplify the target family of distributions under study.

These remain topics for further research.

3.3.2 Local volatility estimation

We now consider the time series of daily returns R, (t :1,. . .,?) defiued by (3.1)

with heavy-tailed €1 &nd where the R; have been corrected for evolving level if
appropriate. Natural time series estimators of the evolving volatility a1 based on

(3.3), Theorem 3.1 or more generally (2.9) are the finite moving averages of span

n:2r*lgivenby
af : L *^iQt+iR?+i
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(3.4)

J=-t

where the smoothness weights tly satisfy D;:_,wj : I and the robustness weights

Q,:() (: rq)')'\z\t'/ 
J

depend on a prior estimate fi of o1. Here the function Q(l) can be suitably defined for

(3.3) or the estimator of Theorem 3.1 (refer to the proof of Theorem 2.7). In practice

the estimates will involve iteration so that initial estimates of os are successively

refined. If (3.4) is based on (3.3) then s1 will be a moving cQ,, estimator, and only

two iterations through the data are required, one to determine ss aud the other to

determine the final estimate of o1. In the case of Theorem 3.1 one could iterate until

approximate convergence, using the moving sample standard deviation (3.2) as the

initial estimate of o1 (a limited simulation study shows that a total of 4 iterations

is usually sufficient), or use one iteration with s6 estimated by (3.3) yielding a total

of 3 passes through the data.

\A/e do not address methods for end-effect correction, and no volatility estimate is

provided when all the n : 2r * 1 observations needed for 61in (3.4) are not available,

i.e. for t:L,,...,r and t--T -r * 1,...,?. In the data analysis that follows, this
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is accounted for by discarding the missing values: for the simulations we begin with

returns series longer than the required volatility series, and for analysis of market

return data we simply lose observations at either end of the series. Thus a series

of length 7 provides a volatility series of length T - 2r. A sirnple alternative to

omitting estimates at the ends, is to appeal to the assumption that the volatility is

constant over the length of the window and use ot:6r+r for t ( r*l and &t:6r-,
forf >T-r.

During the discussion of the robust scale estimation simulation of Chapter 2, it was

noted that for data from any particular distribution, the scale estirnators considered

will estimate different factors of the distribution's scale parameter. This effect is

highlighted in Table C.3. Thus, any attempt to estimate v'olatility robustly will

require a correction to be made. However in general, this correction will depend on

both the estimator in question, and the true distribution of the e1 in (3.1). If a single

historical estimate is provided along the lines of (3.2), the correction factor will need

to be identified by theory or simulation, however, with local volatility estimation, a

correction can be made using the returns R1, and the time series volatility estimate

or. This is formalised in the following definition.

Definition 3.2 (Local volatility estimator) ,4 local uolatili,ty estimator fi for
the returns data {R1l., t : 1,, . . . ,T has the following properties:

1. the local uolati,h,ty esti,mator with span n :2r * L is g,iuen by

h: S(Rt-r,. ..,, Rt+r)

where S(X) is a scale esti,mator'

2. the standardi,sed retums {(Rr- td /dr} t : 1, . . . , T , haue unit sample uariance,

where p4 i,s an estimate of the euoluing rnea,n return Ft, as speci,f,ed i,n (3.1).

If the scale estimator used to provide the local volatility estimates has robustness

properties, then the local volatility estimate will be a robust estimate.

The second condition of Definition 3.2 generally necessitates a correction to the

volatility estimates obtained using a scale estimator. This correction is based on our

assumption that the e1 are zero mean, unit variance random variables. We assume

that although not a robust or reliable estimator in small samples, the sample variance
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can be expected to provide a reliable estimate of the variance for very large samples.

As noted in Section 3.1, the extreme values of the heavy-tailed distribution of e a,t€,

assumed to appear representatively in large samples of the order of the series length

7, but will be over-represented when they occur in small samples of the order of the

span n :2r * 1 of the moving estimation window.

We assume our volatility estimators typically estimate JflF where r is a positive

constant and r I L. To correct for this bias we multiply through (3.a) by f, where

^ 1 i r",a r,), (3.5)':iz-\ a )
where p1 is an estimate of the evolving mean return lf,t, &s specified in (3.1). This

estimator is just the sample variance of the scale adjusted returns, and would have

enabled Turner & Weigel (1992) to compare the volatility estimate based on the

interquartile range (IQR) to their other estimates of historical volatility. In their

study of the S&P 500 and Dow Jones indices, Turner & Weigel calculated the sample

standard deviation and interquartile range of daily returns in each of the calendar

years from 1928 through to 1989. In addition, the volatility estimators of Parkinson

(1980) and Garman & Klass (1980), which utilise high and low daily prices (as

well as closing price in the latter case), were also computed. These two estimators

feature correction factors to ensure unbiasedness for the parameter o under the

assumption that the daily returns are normal and locally have constant variance a2.

For Gaussian X, E(IQR(X)) : 1.3490o, and so the IQR-based volatility estimates

should be on average 1.3490 times those from the other estimators, and hence they

were not directly comparable in the graphs given by Tirrner & Weigel (a larger order

difference arises because the non-robust estimates are annualised, while the IQR-

based estimates are not). Despite this, it is clear from the graphs given by Thrner

& \Areigel that the two have roughly the same character.

Definition 3.3 (Iterated f-volatility estimator) Theiteratedt-uolati,li,ty esti,ma-

tor, with degrees of Jreedom parameter r., : 5, is a local uolati,lity esti,mator sati,stgi,ng

the conditi.ons of Defini,ti,on 3.2, and is giuen by Theorem 3.1 for each window. It-
erat'ion may be to conuergence of the local estimates, or alternatiuely, a specif,ed

number of i.terati,ons rnay be performed.

We selected u : 5 for the iterated t-volatility estimator since the ls distribution

has heaviest tails among the t-distributions with finite variance and kurtosis, and it
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reflects the intermediate case identified in empirical studies of daily returns. Ironi-

cally, this choice of degrees of freedom was not reported in the simulation results of

Chapter 2. Nonetheless, we can see from the results in Table 2.I2 and Figure 2.11

that the fully iterated estimator with u : 5 would have triefficiency of approximately

42Yo for samples of 20 observations (due to a low slash efficiency), but normal and

one-wild efficiencies in excess of 80%.

In the following section, the iterated t-volatility estimator is compared to other local

volatility estimators, for various underlying distributions for the e1 in (3.1).

3.4 Simulations and data analvsis

Using simulated and real data, we now consider the relative performances of the local

volatility estimators based on the standard deviation, MAD, biweight A-estimator

with Q" and c - 11, and iterated t-volatility estimator respectively. In all cases the

iterated l-volatility estimator was initialised by the local sample standard deviation

and iterated a further three times to produce a final estimate.

3.4.I Simulation results

For the simulation study we simulated 270 returns from the scaled t, distribution

with unit variance and with u :3,5,9, and from the standard normal distribution

(i.e., C*), both to represent varying degrees of heavy tailed behaviour and to be

appropriate for financial daily returns data. The series length was chosen to roughly

represent a calendar year of trading days allowing for end effects. Our estimators

were based on moving windows of span n : 2I with uniform weights wj : If2L

The latter were selected since our concern at this stage was with the precision of the

estimators rather than their smoothness. The impact of the smoothness weights tui

on the properties of the estimators, among other issues, remains to be investigated.

The 270 scaled t, returns were then multiplied by the smooth volatility function ag

where

o1 : Ss|sin(zrtll25).

The four estimates of o1 were calculated and scaled using (3.5) so that the standard-

ised returns had unit sample variance. They were assessed by the mean absolute

proportionate error of the squared volatility (MAPE : # t l"? - 6?l lo2r) for each
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Estimator ts tg ts t@

Standard deviation
Median absolute deviation
Biweight .A-estimator with Q,, and c: 11

Iterated t-volatility estimator with y : 5

0.803
0.629
0.554
0.526

0.439
0.509
0.394
0.340

0.346
0.485
0.349
0.297

0.280
0.467
0.306
0.263

Table 3.1. The average mean absolute proportionate error (MAPE) of four local volatility es-
timators estimating a smoothly varylng volatility function over moving windows of span 21. The
average is over 10000 simulated series, each with an individual MAPE. The simulated returns have
scaled f"-distributions with u = 3,5,9 and m, the latter case being a normal distribution.

estimator, computed over the T :250 volatility estimates available. These statistics

were then averaged over 10000 independent realisations of the time series, for each

of the four distributions, to yield the results in Table 3.1.

The results are self evident. The iterated f-volatility estimator performed best,

even in the cases where the underlying distribution was not the t5 distribution. As

expected, the volatility estirnator based on the moving standard deviation performed

reasonably well for u : I and oo, but its performance deteriorated as y decreased.

The biweight A-estimator performed reasonably well in all cases, and consistent

with the results of Chapter 2, use of this more advanced estimator results in better

estimates than the MAD. It might be expected that the A-estimator would have a

comparable or better performance than the iterated t-volatility estimator for heavy

tailed data not well-approximated by a t-distribution. However, aside from what

can be inferred frorn the results of Chapter 2, this has not yet been verified.

The MAPEs themselves are shown in Figure 3.2. We see that not onl)' is the average

MAPE lower for the iterated t-volatility e$timator in each sampling situation, but

also the MAPEs in each case are generally less variable. For both the te and normal

data, the moving standard deviation, A-estimator, and iterated t-volatility estimator

are all of very similar quality, with the distributions for the normal data being slightly

less variable for all estimators.

We also consider the performance of the iterated t-volatility estimator through time.

Figure 3.3 shows the proportionate errors @7 - o?)/"? for t : 10,30,...,250 for

the 10000 simulated series. The function o| is also shown for reference, with scale

given by the right-hand axis. We see that there is generally a negative bias, and that

this bias is largest when of has the greatest curvature. As the iterated t-volatility
estimator smoothes the squared returns, the high degree of non-linearity over the

smoothing window of the volatility function around t : 50 induces this negative
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Figure 3.2. 10000 realisations of the mean average proportionate errors for each estimator, with
sd denoting the moving standard deviation, MAD the moving median absolute deviation, A the
moving A-estimator with 8?, and c = 11, and t the moving t-volatility estimator for series of 250
returns. The four blocks represent simulated returns with scaled t"-distributions with t, :3,5,9, oo
respectively, where the latter case is a normal distribution.

r0 30 50 70 90 ilo 130 150 170 190 210 230 2N

Tlm€

Figure 3.3. Boxplots showing the proportionate bias (Af - oillo? through time, for 10000
sirnulated series of length 250. The simulated returns have a scaled ts-distribution, and the function
af is shown for reference, with magnitude given by the right-hand axis.
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Tirng

FigUre 3.4. Vo.latiLity estiuates, and their propor ionate biases, for simulated ts, retuas. Five
oeries arc s,howr, along with the true underlying vola,tilify process (usilig tle dotted line)r. The
ull-p€r estimate is ttrre iterated f-cstimate of Definition 3,.3. ThB tfyo eetiqtates noving atound the,
votratility function auer usiirg the dashed llne, the volatillty estimate obatioed by truncathg a single
'v,a;lue at t = 75, and usiirg the solid line, the volatility estimate for the or!6inat data, reseled usiug,
the fsetor ll'om tle truncated se.ries. The estimates movi:agaround the horisontal line at zero ar€
the proportiqrate biases, (tX - "tllof eorrespontllng to tho tnvo.loner volatiliff eatimates.

99



r00 CHAPTER 3, NON-PAR AMETRIC VOLATILITY ESTIMA?ION

bias. This implies that the choice of window width for the volatility function used is

too high, and this is particularly pronounced when the volatility function is highly

non-linear.

We also note that in some cases, the proportionate bias is very large. Examination

of an offending series shows that this is related to the finite-sample bias correction

(3.5), and occurs when a particularly extreme observation is realised in the series,

and var(.Rlo) is inflated as a result. In order to analyse the extent of this eflect,

the simulations were repeated for longer series (7: 1000 observations long). Com-

parison with Figure 3.3 shows that generally the bias distributions are very similar;

however, some of the more extreme biases have been eliminated. This is due to the

improved efficiency of the sample variance used in (S.S) for these series.

Figure 3.4 examines further the volatility estimate which has the largest propor-

tionate bias at t : 80 in Figure 3.3 of approximately 5. Three volatility estimates

are shown: the upper-most is the volatility estimate analysed in Figure 3.3, and

this is clearly a poor estimate of the true volatility function. The second and third

estimates difier only around f : 75, where a single very extreme obseryation (a stan-

dardised t5 variate of -27.736,, an observation that is expected to occur only once in

every 880,000 observations) was present in the series. The solid curve is the volatil-

ity estimate obtained from the raw data, but rescaled using the second volatility

estimate's correction factor. As a result, each estimate is 1/1.679 times the original

estimate. The dashed volatility estimate is based on the original series, but with

the value -27.736 replaced by -12 (chosen so that it is still the most extreme value in

the series). Because of the way they have been rescaled, we see that these volatility

estimates are identical when the outlier is not included in the smoothing window,

and both are reasonable estimates of the true volatility function, shown by the dot-

ted line. Also shown in the plot is the proportionate error estim ate (6! - or2) /ol tor

each of the volatility estimates. These series oscillate around the horizontal line at

zero, with the dotted line showing the difference coresponding to the truncation.

These errors range between -0.54 and 0.52, clearly an improvement on the original,

which had a range of 0.69 to 4.93.
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0 500 10@ 1500 2000

Time

Figure 3.5. Volatility estimates for 2000 sirnulated ts returns with evolving volatility grven by
the dashed line. The solid estimates are given by the iterated t-volatility estimator in Defiuition
3.3. The dotted estimates are computed using (3.2), and have no robustness properties.

3.4.2 A simulated return series from the t5 distribution

Further insight into the iterated f-volatility estimator, given by Definition 3.3, is

gained by analysing a single simulated series. In this case, we generate 2040 returns

according to (3.1), with p, :0,

o1: igisin(atllooo)

as before, so that the entire series has a single cycle of this volatility function, and e;

is drawn independently from the t5 distribution. A window length of 41 observations

will be used for the analysis, and so the volatility estimate will be a series 2000 long.

We use this series to check that the procedure is correctly identifying the evolving

volatility d1, so that estimates of the innovations es in (3.1) can safely be used to

examine the underlying distribution of returns.

The estimated volatility using the iterated f-volatility estimator, and the traditional

historical volatility estimator (the moving standard deviation (3.2)), both with a

smoothing window of 41 observations, are shown in Figure 3.5. The estimates are

very similar except in instances where extreme 'ualues are present in the smoothing

window, at which time the non-robust estimate has large departures from the true

volatility function. The estimators shown in Figure 3.5 accord with the general
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co

Standardis€d retums

Figure 3.6. Standardised returns for the simulated ts returns analysed in Figure 3.5, along with
the density function for the scaled t5 distribution. The returns are standardised using the iterated
t-volatility estimate in Figure 3.5.

performance of the iterated t-volatility estimator and the moving standard deviation

in the more extensive study described in Table 3.1. In particular, for t5 distributed

data, the mean absolute proportionate error of the moving standard deviation is

much greater than that of the iterated f-volatility estimator.

The volatility estimate provided by the iterated t-volatility estimator is used to

standardise the returns. A mean of zero is assumed, md the innovations in (3.1)

are estimated by €t: Rtl6t The sample distribution of these standardised returns

is shown in Figure 3.6, and is compared to the density function of the scaled f5

distribution. As we might expect, the two distributions match very well, and we

conclude that fu is a reliable estimate of o1, and that the distribution of €1 is a

reliable estimate of the true underlying distribution of e1.

Finally, we consider the sample autocorrelation function (ACF) of the absolute re-

turns lE1l, and of the absolute standardised returns l€,1 : lRrl lir. Since the e6

are independent, the returns are also independent, and it follows that the absolute

returns are independent. However, because of the evolving volatility o1, the abso-

lute returns exhibit significant autocorrelation for very many lags, as seen in the

upper plot of Figure 3.7. We would hope that a reliable estimate of volatility would

account for this autocorrelation behaviour. Examining the ACF of the standardised
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Figure 3.7. ttre estimated autocorrelation functions for the absolute simulated tb returns anal-
ysed in Figure 3.5, and for the absolute standardised returns. The top plot is for lftrl, and the
lower is for l.R1| ffu where ril is the volatilitv given by the iterated t-volatility estimator, shown
in Figure 3.5. Approximate g5% confidence intervals for the autocorrelation estimates are shown.
The two plots are on the same scale, and only po = | is not shown.

returns, shown in the lower plot in Figure 3.5, we see that with the exception of some

lags less than the smoothing window length of 41 observations, the autocorrelation

has been almost completely removed from the absolute returns. This shows that

the volatility estimation procedure lve are promoting is correctly identifying the o6

component in (3.1).

3.4.3 The S&P 500 data

The S&P 500 Index has been a much studied financial time series. The volatility

of this series for the period 1969-2001 inclusive, calculated using (3.2) with a 501

day smoothing window, was shown in Figure 3.1. The indication there was that

the historical volatility estimator based on a moving standard deviation was not

resistant to the "crash" of October 1987. \Ve examine this series further using the

iterated t-volatility estimator of Definition 3.3.

Volatility is estimated for the S&P 500 using a window of 125 days (approximately

half a trading year) in (3.2), using a moving interquartile range, and using the

iterated t-volatility estimator. All estimates are corrected using (3.5) in order to
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Figure 3.8. Robust volatility estimation for the S&P 500 index. The dashed estimate is computed
using (3.2) and has no robustness properties. The solid line is based on the iterated t-volatility
estimator with v = 5, and the dotted line is based on a moving interquarti-le range. All estimates
have been corrected using (3.5) in order to satisfy Definition 3.2. A smoothing window of 125 days
has been used throughout.

satisfy Definition 3.2, and are shown in Figure 3.8. There are 8652 returns in the

series, and the window length for this plot is chosen to facilitate comparison between

the estimates.

The estimates shown have many interesting features. Firstly, we note that the data

used are identical to those used for the replication of Figlewski's (1997) historical

volatility shown in Figure 3.1; however in this case a smaller smoothing window is

used. We see the influence of the October 1987 stock market crash remains in the

historical volatility estimate; however its overall impact on r-olatility is lessened due

to the shorter window. Apart from the period centred around October 1987, the

three volatility estimates are largely similar in nature. Consistent with the results

of Chapter 2, the interquartile range, though robust, is not very efficient, and the

volatility estimate it provides is less smooth than either of the other two estimates.

The iterated t-volatility estimator is generally closer to the historical volatility esti-

mate than the IQR-based estimate, except around the 1987 crash. Consistent with

Turner & Weigel (1992), the IQR-based measure finds the 1987 period to be less

volatile than the period from mid-1974 to mid-1975. The t-volatility estimator gen-

erally lies between the two alternatives, and although the three estimates are often
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difficult to distinguish between, the non-robust estimate is clearly too high due to

one-off returns in 1972,1987, 1989 and 1998.

Standardising the S&P 500 returns using the volatility based on the iterated f-

volatility estimator, but with a smaller smoothing window of 41 days, we can ex-

amine the distribution of these returns. The standardised returns are formed with

(3.1) in mind. with pr given by loess with a smoothing window of approximately

175 days (2% of the observations), and their distribution is shown in Figure 3.9.

Two large negative standardised returns, namely -13.31 on l9ll0ll987 and -8.05 on

I3lL0lI989, are omitted from the histogram. The density functions of the standard

normal and the scaled ts distribution are superimposed on the histogram. While

neither of these is a very good description of the tails of the distribution, the t5

does a much better job of describing the centre of the distribution, both supporting

the use of the iterated t-volatility estimator for this data, and strongly suggesting

that the traditional historical volatility estimate is inappropriate. The effect of this

non-normality on the historical volatility estimate is clear both from Figure 3.8 and

the results of Chapter 2, and it is also likely to cause problems in estimators using

daily price extremes (Parkinson 1980, Garman & Klass 1980, Kunitomo 1992).

Ding & Granger (1996) analyse the returns of the S&P 500 Index for volatility per-

sistence, which is embodied in the slow deca,-v of the sample autocorrelation function

(ACF) of the absolute (or alternatively squared) returns. Using the decomposition

(3.1), we would want this feature to be explained by ot, and leave both e; and lesl

uncorrelated through time. In order to estimat€ €1, w€ standardise .Rs using a slowly

evolving mean p6 provided by loess, and a volatility estimate provided by the it-

erated t-volatility estimator, to obtain the standardised returns shown in Figure

3.9. These standardised returns are referred to as rescaledreturns by Taylor (1986),

who shows that they facilitate more precise autocorrelation estimates than the daily

returns, due to their relatively constant scale.

The estimated ACF plots of the absolute returns and the absolute standardised

returns are shown in Figure 3.10. In the top plot, we see that the absolute re-

turns exhibit significant autocorrelation for very many lags, as described by Ding

& Granger (1996). After standardising, we see that the autocorrelation is almost

entirely accounted for by d1. Almost all the significant autocorrelation estimates are

at lags less than the smoothing window length of 21 daily observations. A similar

phenomenon was seen in Figure 3.7 for the simulated data.
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Figure 3.9. Standardised returns for the S&P 500 index along with the density functions for the
standard normal (the solid curve), and the scaled fr distribution. The returns are standardised
using a location estimate provided by loess and the t-based volatility estimate in Figure 3.8. Two
standardised returns have been omitted from the lower tail: -13.31 on 19/10/1987 and -8.05 on
13/10/1e8e.

The combined evidence of Figures 3.9 and 3.10, and the poor performance of the

historical volatility in Figure 3.8, reassure us that the iterated t-volatility estimator

is a definite improvement on existing methods, and the resulting volatility estimates

are excellent estimates of the underlying volatility process 01.

3.4.4 Individual Australian stocks

In this section, we provide a brief analysis of the volatility of two individual stocks.

Coca-Cola Amatil Ltd (CCL) and The Broken Hill Proprietary Company Ltd (BHP)

are among the largest and most actively traded companies listed on the Australian

Stock Exchange. Daily closing price data for these stocks, for the 500 trading days

preceding 1 September 2000, were analysed. A time series plot of the daily returns

for each stock features periods of low volatility and periods of high volatility, and

a small number of extreme returns. This latter phenomenon is more evident in the

CCL returns.

Calculation of evolving volatility for CCL using the moving standard deviation (3.2)

produces volatility estimates which are badly affected not only by the large returns,
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Figure 3.10. The estimated autocorrelation functions for the absolute S&P 500 returns analysed
in Figure 3.8, and for the absolute standardised returns. The top plot is for l.Bsl, and the lower is
for l.R1 - tttllAt where p1 is estimated using loess, and dr is the volatility given by the iterated
t-volatility estimator. ApproximategSYo confidence intervals for the autocorrelation estimates are
slrown. The two plots are on the same scale, and onJy go : 7 is not shown.

but also by the many small returns. The resulting fluctuations in the volatility

estimates gives a distribution of standardised returns that is not well approximated

by the Gaussian distribution since it has a sharp peak and values outside four

standard deviations from the mean. Estimating scale using the iterated t-volatility

estimator also results in standardised returns that are not well approximated by

the normal distribution. However the distribution of these standardised returns

has a smoother peak (the generally lower volatility estimates do not bring so many

returns close to zero), and a distribution that is reasonably well approximated by a

t, distribution with u :5. On this basis, parametric volatility estimation based on

the t5 distribution should improve the quality of the volatility estimates.

A plot against time of the three estimates of evolving volatility based on the standard

deviation, A-estimator and iterated t-volatility estimator for a smoothing window of

n: 4I days is given in Figure 3.11 and shows that the iterated t-volatility estimator

is the most stable. It is clear that the iterated t-volatility estimator typically adopts

a compromise position between the standard deviation and the A-estimator, but

closer to the A-estimator. The impact of ertreme returns is clearly evident on

the standard deviation and the A-estimator of[en appears to discount such returns
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Figure 3.11. Absolute (annualised) returns and volatility estimates for CCL for the 500 trading
days preceding 1 September 2000. The volatility estimates are: moving standard deviation shown
by the dotted line, moving A-estimator with 8n and c : 11 shown in dark grey, and moving f5
estimator shown by the solid line. The largest 5% of the absolute returns (exceeding 5.5% in one
day) are not shown in the plot area.

too heavily. The superior performance of the iterated t-volatility estimator is to

be expected given the results of the simulation study reported in Table 3.1 and

the fact that the distribution of standardised returns was well-approximated by a

t-distribution.

In contrast, the distribution of the standardised returns for BHP 'ds well approxi-

mated by a normal distribution. The tails of the sample distribution decay quickly

and all observations are within 3 standard deviations of the mean. While the use of

the moving standard deviation is appropriate for this data, the other two volatility

estimators give almost identical volatility estimates as shown in Figure 3.12. Thus

the iterated f-volatility estimator and A-estimator retain high efficiency in this sit-

uation also. Indeed, by using the iterated t-volatility estimator generally, it seems

that we benefit in the case of long-tailed returns, and maintain high efficiency with

well-behaved data.

The distributions of standardised returns for the CCL and BHP data are shown in

Figure 3.13. In each case, the returns have been mean-corrected using loess, and

standardised using the iterated t-volatility estimator with u : 5. Figures 3.11 and

3.12 showed quite different character in the robust and non-robust volatility esti-
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Figure 3.12. Absolute (annualised) returns and volatility estimates for BIIP for the 500 trading
days preceding I September 2000. The volatility estimates are: moving standard deviation shown
by the dotted line, moving -A-estimator with Q' and c : 11 shown in dark grey, and moving t5
estimator shown by the solid line. The largest 5% of the absolute returns (exceeding 3.8% in one
day) are not shown in the plot area, and the plot is not in the same scale as that in Figure 3.11.

mates and these features are confirmed in the histograms. In particular, we see that

the CCL returns are better described by the scaled t5 distribution than the normal,

both at the mode, and in the tails. Use of the iterated t-volatility estimator is thus

justified, and the obvious differences between the volatility estimates confirms the

unsuitability of the traditional estimator. For the BHP data, the three volatility

estimates were very similar, and we find the standardised returns are well approx-

imated by the normal distribution. While we note that this lends support to the

traditional estimator of historical volatility for this series, we must also point out

that the iterated t-volatility estimator provided a very similar series of estimates.

The estimated ACF plots of the absolute returns and the absolute standardised

returns for both CCL and BHP are given in Figure 3.14. Unlike the equivalent plots

for the simulated series and for the S&P 500 data, the absolute returns for these two

series show very little autocorrelation. This is particularly true for BHP, and while

this may be affected by the relatively small number of observations (500 compared

to 2000 and 8652 for the simulated series and the S&P 500 respectively), we see in

Figure 3.12 relatively constant volatility. Some colour has been removed from the

ACF of the absolute CCL returns, however we see the same phenomenon as earlier,
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where significant negative autocorrelation has been induced at low lags. There has

been very little change in the correlogram of the BHP returns due to standardisation.

The unimpressive changes due to standardisation for these two series do not affect

our conclusions about the quality of the volatility estimates,

3.5 Conclusions

In this chapter, we have addressed non-parametric estimation of evolving volatility

in the context of heavy-tailed distributions of returns. A new robust time series es-

timation procedure based on finite moving averages and the t-distribution has also

been introduced. Motivated by the results of Chapter 2, the biweight A-estimator

with auxiliary scale estimator Qo and scaling constant c : lI has been used to obtain

robust volatility estimates that will be highly efficient for a range of distributions.

In particular, simulation of daily returns, with a continuous volatility function, in-

dicates that local volatility estimation based on this biweight A-estimator provides

reliable estimates for the range of distributions encountered in empirical studies

on financial returns: the t-distributions with z close to 5, and also for normally

distributed returns. By optimising volatility estimation for this target distribution

(t5), and benchmarking it against the all-purpose A-estimator, we have obtained an

estimator which performed best in the many cases where the distribution of returns

is well-approximated by a t-distribution.

Application of this iterated t-volatility estimator to real data provides sensible

volatilitl'estimates that are not unduly affected by occasional outlying returns. In

cases where the returns have heavy tails, these estimates are shown to be consistent

with the underlying distribution of the standardised returns. When the standard-

ised returns are approximately normal, the volatility estimates do not differ greatly

from traditional historical v-olatility estimates.

We conclude that the iterated t-volatility estimator, with u : 5, is a reliable estima-

tor of volatility for daily financial price data. We feel confident that it wili not only

prevent extreme returns from having an undue influence on the volatility estimates,

but also provide reliable estimates when the data is well behaved. Having secured a

volatility estimation procedure, in the following chapter, we examine the empirical

relationships between volatility and price level, commonly referred to as leverage

effects.



Chapter 4

Leverage effects and a model for
stock price

In this chapter, we investigate parametric option pricing models, and in particular

the volatility functions they assume. We view the analysis undertaken at the end

of this chapter as exploratory; if the relationships we (non-parametrically) identify

are consistent with the stock price process assumed by a particular option pricing

model, then that option pricing model may be more appropriate for options on

that particular stock than competing models. It is for this reason that we restrict

attention to stock price processes with known, closed form option pricing formulae.

All option pricing models assume a continuous time stock price process with volatil-

ity defined as follows.

Definition 4.1 (Stock price volatility) W, a,ssume that stock price process 51 ds

a continuous t'ime process wi,th stochastic differenti,al equation

dSt ta
t: 

: pr(S6t)dt + o(g1,t)dwt

where p(&,t) i,s the cont'inuously compounding mean return, W1 is a Brownian n1,o-

tion process, and o(51,,t) is defined to be the uolatility of the stock at t.

When a firm has debt, the presence of this debt is likely to influence the volatility

of the stock price; a phenomenon known as a leverage effect.

Leverage effects were first documented by Black (1976) with the empirical observa-

tion that as share price increases, volatility tends to decrease, and when share price

decreases, volatility tends to increase. Black offers two explanations for this be-

haviour. The first is of "financial leverage" , i.e., when debt obligations are constant

113 VICTORIA l,ftrlrtrEst'* 0F WELLTNGTON
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regardless of variation in equity value. When the value of the firm falls, unlevered

cash flows tend to fall. Interest payments are fixed, so, a given dollar fluctuation

in unlevered cash flow exerts a greater percentage effect on cash flow net of inter-

est payments, and hence a gteater effect on equity value. Thus, equity volatility is

greater. With constant interest payments, the reduction in equity value induces an

increase in the leverage ratio, defined below.

Definition 4.2 (Leverage Ratio) The leaerage rati,o of a firm is

LRt: B-:! 
(4.1)-Sr

where Bs is the ualue of the debt of the firm at t and fi the ualue of the equity of

the fi,rm at t.

The opposite effect occurs when equity value rises, i.e, leverage rises and volatility

falls. Thus, financial leverage results in an inverse relationship between stock price

and stock price volatility.

Christie (1982) offers a formalisation of Black's (1976) leverage effect. Assuming the

simple decomposition for firm value

V:StlBt,

the instantaneous rate of return on the firm's (homogeneous) assets is

du &d& . &dBt
u vst vtBt (4.2)

where $ and ff are the instantaneous rates of return on the firm's equity and

(risk-free) debt respectively.

Theorem 4.t Consi,der a firm wi,th risk-free debt, earni,ng a determini,stic, conti,nu-

ously compounding rate of return,, wi,th aalue 81 at t, and, homogeneous assets whose

value has constant uolatility o. The stock pri,ce uolatility for thi,s firm is gi,aen by

o(S6t):o(I+LR)

where LR1 i,s the leaerage ratio for the firm, defi,ned, i,n (/p.1).

(4.3)
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Proof From (4.2), we see that

ds, (, , ,B,\ dt, &dBt
E: \'- s,/ T - s, B,

since I/t : ,9, + Br. Conditioning on time t values, noting the definition of LRt and

taking the standard deviation of both sides, we find

o(S6t):o(L+LR)

since o is the constant volatility of the value of the firm, and the rate of return on

risk-free debt is not stochastic. !

Since the leverage ratio is non-negative, and we assume that debt is risk-free and

fixed (so that Vr ) Bt), as 51 --) m and the leverage ratio becomes very small,

stock price volatility converges to a finite lower bound a. However as Sr -+ 0 and

the leverage ratio becomes infinite, stock price volatility becomes infinite. Further,

we note that volatility is a monotonic increasing function of financial leverage .L.81

which in turn is inversely proportional to stock price, and so there is a negative

relationship between stock price and stock price volatility.

This negative relationship can be characterised by the elasticity of the stock price

volatility with respect to the stock price level.

Definition 4.3 (Elasticity of volatility) The elastici,ty of stock price uolati,Iity,

understood to be with respect to stock pri,ce leuel, i,s

e':i^-J999l)
0ln &

where the partial deri,uati,ue i,s taleen with respect to lnSl, holding fi,xed, all other

arguments and, parameters of the stoclc pri,ce uolatili,ty o(S6t).

The elasticity of volatility for the simple leverage model is

Since 0 I Bt < % and 81 is assumed fixed, it follows that -1 1 0s 10, and that as

Sr -+ oo, 0s -+ 0 and as Ss -+ 0, d5 --r -1. The elasticity describes approximately

the percentage change in stock price volatility for a 1% change in stock price level.

To see this, we apply the chain rule of differentiation, and write

^ -LRt Bt
"t-l+LRt- V'

(4.4)

0lno(St, t) _ \o(St,t) St _ )o(St,t) f ASt

al" s, : os, 4srj 
: 

oltrO I A
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and interpret the numerator and denominator as percentage changes in volatility

and price respectively.

Returning to (4.4), we see that when stock price level is high, a 1% change in this

level results in a very small percentage change in stock price volatility, however when

,Sr is small, in the presence of risk-free debt, there is a larger impact on volatility.

The elasticity, and hence the size of the effect, is monotonic in 51 (and V1), however

the relationship is non-linear.

Black's (1976) second explanation for the leverage effect is "operating leverage",

where the fixed costs of the firm have a similar effect to debt in the financial leverage

story.

Throughout this chapter, we will refer to any relationship between stock price volatil-

ity and price level as a leverage effect, whether or not it is modeled using debt. When

the effect is directly consistent with the effects described by Black (1976), Christie

(1982) and others. it will be referred to as the classical leverage effect.

4.L Parametric modelling of the leverage effect

In this section we describe various attempts to (implicitly or explicitly) model lever-

age effects, and we discuss their consistency with the classical leverage efect.

4.L,L The constant elasticity of variance option pricing model

The first attempt to incorporate leverage effects into an option pricing model came

from the constant elasticity of variance (CEV) model (Cox & Ross 1976), in which

a mathematical relationship is proposed for volatility in terms of stock price. Cox

(1996) describes the motiration for the model being a request from Black (1976) to

model the empirical relationships he observed in stock price data. The CEV solution

can be regarded as a statistical model for the underlying stock price process, rather

than a financial one. It uses a mathematical specification which reflects the classical

leverage behaviour, without actually acknowledging debt.

The underlying CEV stock price process (hereafter referred to as the CEV process)

is specified by the SDE
dSt

)̂1

lt-2: p,d,t +d,S,, dW, (4.5)
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(4.6)

and it gets its name from the fact that the elasticity of stock price variance (volatility

squared) with respect to stock price level is constant. To see this, we first note that

R-t

o(S6t) - 65,'

is the volatility of the CEV process, and calculate the elasticity of volatility

Alno(Sr,4 _ 1ro_o,
os = aln s, 

: 
,\it - z).

The elasticity of variance is just two times the elasticity of volatility, and this is

a constant. The CEV process was originally specified for 0 ( P < 2, consistent

with the notion of financial leverage in (a.3). The upper limiting case of 0 : 2

(corresponding to the Black-Scholes model) was excluded from the model due to the

different mathematical behaviour of the solution in this case.

The CEV volatility function is shown for B :0, 1 and the limiting case of B - 2 in

Figure 4.1. These three cases cover the range of p whose elasticities are consistent

with the classical leverage effect, and include the null case of constant volatility

(GBM, with B - 2). The explosive nature of volatility as ,96 nears 0 for the two

processes with d < 2 is evident, as well as the inverse relationship between stock

price and volatility. The cases all have the same volatility at ,9r - 1, and for fixed

51, volatility is monotonically increasing in B for S, < 1 and decreasing for Sr > 1.

Despite its motivation, the CEV model makes no explicit allowance for debt in the

model. The model (4.5) facilitates a known transitional density for future price 
^S1..,.'

given S1, and a closed form solution for call option price. The former is a mixed

distribution consisting of a positive probability that bankruptcy has occurred by

t * r, and a continuous distribution for ,S1a, > 0. Although the continuous part of

the density is not of a standard distribution, Schroder (1989) utilises the distribution

function of the non-central chi-squared random variable. He writes the call option

price, found by evaluation of

Ct: e-"EP {max(Sr*, - K,0)}

where Cr is the price of the option, K is the exercise price of the option, r is

the continuously compounding risk-free rate, and 51 follows the CEV model (4.5) in

the risk-neutral probability measure Q (see Harrison & Pliska (1981) for discussion)

with pr, : r, in terms of non-central chi-squared probabilities. This reduces an option

pricing formula featuring infinite sums to something akin to the Black-Scholes (1973)
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Figure 4.1. The constant ela,sticity of variance stock price volatility function, defined in (a.6).
The solid line is the function for the absolute CEV process (f = 0), the dashed line for the square
root CEV process (8 : l) and the dotted line for GBM (B = 2). All processes have d : 0.3.

formula. In addition, the mathematical solution for call price for the cases P < 0

and P > 2 are well defined (see Emanuel & MacBeth (1982) for the latter case or

Randal (1998) for discussion).

The benefits of the CEV model are largely mathematical: GBM and the Black-

Scholes formula are contained as a special case, and the extra parameter allows a

leverage effect between volatility and stock price that includes the classical situation

but is otherwise well defined for any B e lR" While it has this flexibility, unlike

the compound option pricing model discussed in the following section, even for

0 S P < 2, the CEV model does not obey the elementary limiting behaviour of

(4.3), since as ,Sr -+ oo, o(S6t) -+ 0 rather than to a positive constant.

4.I.2 The compound option pricing model

The stock price volatility for the stock price process implied by the compound option

pricing model (Geske 1979) is consistent with the limiting properties of volatility for

the risk-free debt model that the CEV model fails in regard to. Geske assumes that

firm value follows GBM, with

du
V - pd.t I odWg
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and hence has constant volatility. In the case where the firm has zero debt, Sr:4
and so, like the CEV model, the Black-Scholes formula is a special case of the option

pricing formula.

This compound model formally acknowledges risky debt, in the form of a single

fixed payment M made at time ta ) t. At time fa, the creditors are paid using the

realised value of the firm, however limited liability implies that the actual payment

is min(Vx' M). Consequently, at, t4, the equity of the firm is worth

/
c _ )\id - IvI Vlo > IvI
""-lo vo1M.

This model recognises that the creditors may not get all their money back, and is

thus a more realistic model than the risk-free debt model.

Geske outlines an argument which shows that the value of the stock at time t is

given by the Black-Scholes formula. This follows the derivation of the Black-Scholes

equation using It6's Lemma, the construction of a hedge portfolio, and the boundary

condition above. In particular, the stock price at any time t 1 t6 is given by the

Black-Scholes formula with firm value H as the underlying asset, and M as the

exercise price:

st : s(V,t) : vib (g,) - I\r[e-'"dQ (g, - oJri (4-7)

where

rd: td. - f is the time-to-maturity of the debt, o is the constant volatility of the

firm's assets and tD(r) is the standard normal cumulative distribution function.

Since the firm's assets follow GBN,I, dVi: p,Vrdt+oVldWl and applying lt6's Lemma

to the function S(H,r) given in (4.7), we obtain

d,s, : 
ffiavi + fr at + |sv: ffi at.

In particular, the volatility of the stock is given by the coefftcient of SsdWl in the

partial differential equation above, and is

o(s1,t) = os(v,u :,x# : "#A- (w) (4.e)

where we use the familiar Black-Scholes hedge ratio

_ ln l/1 - ln tuI + (r * lo2)ra
Yt- )o{ra

#,:*r,,

(4.8)

(4.10)
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and acknowledge that the underlying variable in this case is V1 not 51.

Unlike for the CEV model, o(Sr, t) is a function of time through the time-to-maturity

of the debt. As explained by Geske,

p : Me-rra l"6b'- "'n))ra l, zr/n * ril(s1- "u'-d], o (4.11)

and so as time-to-maturity of the debt decreases, given no change in V,, so too does

St. This decrease in ^9t will serve to increase financial leverage and thereby increase

volatility. Because time is monotonic, this effect will always operate, regardless of

the general movement in firm value. A decrease in Vs will amplify the increase in

volatility; however, when firm value increases, the resulting decrease in volatility

may be offset.

Although the form of (a.9) is not directly consistent with (a.3) due to the probability

O(gr), its limiting behaviour is, as described in the following theorem.

Theorem 4.2 The stock pri,ce uolati,lity under the compound opti,on pri,ci,ng model,

os(V,t), defi,ned in (1.9), has the followi,ng propert'ies:

1. os(V,t) > o;

2. As V -+ a, os(Vi,,t) -+ o;

3. As V2 + 0, os(V,t) -+ oo.

Theorem 4.2 shows that stock price volatility in the compound option pricing model

is consistent with the basic behaviour implied for a firm with leveraged equity and

risk-free debt, and its proof can be found in Appendix D.1. We also note that

under both the compound model (with risky debt) and the risk-free debt model, the

stock is more volatile than the firm, indicating that the presence of debt transfers

risk from debtholders to the stockholders, whether the debt is risk-free or not, i.e.

stockholders bear a greater proportion (than debtholders) of the risk associated with

the firm's assets. Since ffi i. a probability, we note that for the compound model

olos(V,t)<o(I+LR)

where (l + LR ) : $. this contrasts with (4.3), and we conclude that some of the

risk due to debt is borne by the holders of the risky-debt.
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Figure 4.2. The volatility function for the compound option pricitrg model, defined in (4.9),
plottedagainst,Sr, definedin(4.7), with M:25,ra. = 10, r:0.05auda = 0.3. Alsoshown
using the dotted line is the volatility when debt is risk-free, defined in (4.3), where 81: [ifs-rra.

An example of the volatility function for a firm with M : 25 due in ra - 10, and

with r : 0.05 and o : 0.3, is shown in Figure 4.2 and compared to that under the

risk-free debt model. The lower bound o is shown, and the explosive nature of the

volatility when ,5t nears zero under both debt models is clear.

As before, we also consider the elasticity of volatility (with respect to stock price)

for this model. Care must be taken, since the underlying variable in this case is firm

value Vr. Since the stock price is a 1-1 function of firm value

7lnos(Vi,t) )os(V,,t) S(V;,r) l1os /AStl S(V,,t)
ar,s(%t) : as(vl;fr;n: lav / au);fr;d

and following from (4.9),

This equation is not directly consistent with the function for S given by Geske,

who ignores the functional relationship between Sr and %. In particular, if we take

(4.9) and allow ^91 to vary while fi*ing I/1, then differentiate with respect to ,9s, we

obtain

oos fras, V(os,\'Vorsrf
ou 

: " lt,uv- g \aV) * e,W)'

\os V ASt

e,f,r: -"4 au
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as given by Geske (Geske 1979, page 73). This corresponds to the second term

in (4.12), which when multiplied by the remaining terms to give the elasticity, is

consistent with a CEV process.

Following from (4.12), the correct elasticity of volatility with respect to stock price

for the compound model is

r
ts(v,r) =l*l*] s("Ej'l :s(I:t) +s(u.nffi -r.Lav I M,)GV;d 

: w+ s(!"' affi - r (4'13)

where os(V,t) is substituted from (4.9). Evaluating partial derivatives, substituting

in (4.13) and simplifying, we find

os(v,rr:W-mffi (4.r4)

where ,Ss is given in (4.7), 91 is defined in (4.8), and @(r) is the standard normal

probability density function. The following theorem describes some of the properties

of this elasticity.

Theorem 4.3 The elasticity of stock pri,ce aolati,li,ty under the compound opti,on

pri,cing model,?s(V,t), g'iuen in (/.11), has the following properties:

1. |s(V,t) > max[-1,-(Me-"o)lV];

2. As Vr -+ oo, |s(V,t) -+ 0;

3. As V -+ 0, ?s(V,t) -+ 0.

A proof to this theorem is given in Appendix D.1. A further result, for which we

cannot provide a proof, is given in the following conjecture.

Conjectute 4.4 The elastici,ty of stock price aolati,lity under the compound opti,on

pri,cing model,?s(V,t), defined in (1.11), is always negati,ue.

Theorem 4.3 and Conjecture 4.4 summarise the properties of the elasticit;r of stock

price volatility under the compound option pricing model. Comparison with the

results for the simple risk-free debt model shows similar behaviour as firm value (and

stock value) increases; however, as firm price approaches zero (or indeed Me-'rd)

elasticity declines in absolute value, with a limit of zero. This behaviour reflects the
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transfer of risk from the stockholders (who bear almost all risk when firm value is

high) to the debtholders. Conjecture 4.4 implies that the compound option model

is always consistent with the classical leverage effect.

The behaviour described in Theorem 4.3 and Conjecture 4.4is evident in Figure 4.3

for three different levels of debt. In particular, for the chosen parameters, the limit
as yr -+ 0 is clear, and for the smaller values of. M, the limit as V1 -+ m is also

apparent. When M : 50, the lower bound is shown, and this becomes a very good

approximation to the elasticity when V1 is much larger than M. In addition to the

stated properties, we also note that as I increases from zero, the elasticity function

is concave down, i.e., it decreases at an increasing rate. This reflects an increasingly

large decrease in volatility for a fixed percentage change in V. At a point near or

atV: Me-"o, the second derivative of elasticity changes sign, and the function

becomes concave upward for large values of U. This indicates the rate of change

of elasticity is slowing, which means the change in volatility for a fixed percentage

change in V1 is still growing, but at a decreasing rate. As Vi grows beyond M,
this rate of change reaches a minimum, and then starts to converge to zero. The

behaviour of the first and second derivatives of elasticity reflect the transfer of risk

between debt-holders and stock-holders, and we see that when V1 is large enough,

all risk is borne by the stock-holders, as in the risk-free debt model.

Since 0s(I4,t) is also a function of r4, we can also examine its properties as a function

of t. An intuitively appealing result is given in the following theorem.

Theorem 4.5 The elasticity of stock price uolatility under the compound, option

pri,ci,ng mod,el, ?s(V,t), defined i" (1,.11), has the followi,ng li,mit

tim os(v,i) : {o ^., ':t Yr4-+o - l._# V> M.

The proof to Theorem 4.5 can be found in Appendix D.1. The appeal of this result

comes through comparison with the case of risk-free debt. As 14 ) 0, if Vi > M the

debt is, for all practical purposes, risk-free, and the elasticity given in the theorem

matches (4.4). When V < M, and r4 -+ 0, stock holders have zero claim on the

firm, and their holdings have zero volatility. Thus the elasticity is also zero as given

in Theorem 4.5. This behaviour is demonstrated graphically in Figure 4.4. As

16 ) 0, we see the elasticity function converging to the correct limits. The elasticity
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Figure 4.3. The elasticity of stock price volatility for the compound option pricing model as a
function of H and for three different choices of M, with Td : l, r = 0.05 and o : 0.3. The solid
line is for M = 50, the dashed for IUI = 25 and the dotted line for M : 70. The limits of 0 and

-1 are shown by the dotted lines, and the lower bound for M : 50 only, is shown in grey. The
vertical lines are a,t Me-fta for the three curves.

is plotted again in Figure 4.5, however this time against ,9r. The left hand part of

the function in Figure 4.4 is condensed, since Sr = 0 for all values of % < M. As a

function of ,Sr, elasticity converges to ( .a) as required.

Thus, in conclusion, the volatility process for the compound option pricing model

exhibits behaviour broadly consistent with the risk-free debt model, and Black's

(1976) empirical observations. The elasticity of this volatility with respect to stock

price is negative, but not a constant function of Sr as it was in the CEV model. The

actual shape of the elasticity function reflects risk transfer between the stockholders

and debtholders of the firm.

4.L.3 The displaced diffusion model

The displaced diffusion option pricing model (Rubinstein 1983) is described as a

leverage model (see for example Bates 2000) because it models the stock in the

presence of debt; however the behaviour of volatility in this model is not consistent

u'ith the classical leverage effect documented by Black (1976). Rather, as stock price

increases, volatility also increases.
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Figure 4.4. The elasticity of stock price volatility for the compound option pricing model as a
function of V1 and 14. In all cases, M : 50, r = 0.05 and a = 0.3, with the function plotted for
each 14 in {1,0.5,0.25,0.05,,0.01,0,001} as described in the legend. The limits of 0 and -1 are
shown by the dotted lines, as is the lower bound for V > M. The vertical dotted line is drawn at
M.
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Figure 4.5. The elasticity of stock price volatility for the compound option pricing model as a
function of 

^91 and 16. In all cases, M : 50, r : 0.05 and o : 0.3, with the function plotted for
each14 in {1,0.5,0.25,0.05,,0.01,0.001} as described in the legend, and these are used to calculate
both d5(V6,t) and S(yr,t) for a range of [. The limits of 0 and -1 are shown by the dotted lines,
as is the lower bound for 51 > 0.
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The displaced diffusion option pricing model extends the firm (from the Black-

Scholes assumptions) to allow two sorts of assets: risky assets whose value follows

GBM, and non-risky assets which compound at the risk-free rate. We assume that

at time f : 0, the initial value of the firm Vs is invested with proportion a6 into risky

assets whose value evolves according to GBM, and the remaining proportion into

assets with no associated risk. The risk-free assets compound continuously at the

risk-free rate r, and hence their value at time t is Rt: Rle't where .R6 : (1 - aiVo
is the initial investment in the risk-free assets.

Let At be the value at time t of the risky portion of the firm. This is assumed

to follow GBM, and is given by the standard solution, i.e., under the risk-neutral

measure Q, risky asset value at t is

At: Aoexp{(r - *o")t * oW}

for all f , where Ao : Vn - R0 : osy' is the initial investment in the risky assets, r
is the continuously compounding risk-free rate, o is the (constant) volatility of the

risky assets, and Wl is a Brownian motion process under Q. At time t, the firm has

value

V:At*Rt (4.15)

and since Ax is a GBM process, At > 0 for all t, and hence U > Rr.

We define o, = # to be the proportion of the value of the firm invested in the risky

assets at time f, and note that this is a stochastic process with

dt:I-
1 + fh exp{-!o2t * oW}

where Wl is a Brownian motion process. Although stochastic, due to the nature of

Rt, at satisfies

(I - a2)V1: (1 - as)V6e't (4.16)

for all f. As noted by Rubinstein, given the path of V, this property allows us to

determine 01 only once in the firm's history in order to obtain the path of a; for all
+

In addition to the assumption of heterogeneous assets, risk-free debt worth B1 at t is

allowed. In order to ensure the debt is risk-free, a restriction is imposed on the level

of debt relative to the risk-free assets of the firm. The assumption is that Bt I Rt,

and this ensures bankruptcy is impossible. Since the debt is risk-free, the value of
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this debt at time t is given by Br : Ble't for all t. The firm's equity value at time

t is given by

51:Vt - 81

where V1 is defined in (4.15).

Given the simple decomposition of firm ralue into stock and risk-free debt, we might

expect stock price volatility to be exactly consistent with the classical leverage effect.

The actual behaviour depends on our underlying variable, and is due to the presenee

ofrisk-free assets. If we consider total firm value (risky * non-risky assets) to be the

underlying variable, and vary V1 while keepirrg os fixed, we force change in .Rs, and

the behaviour of volatility is consistent with (4.3). However, this situation is not

sensible due to the non-risky assets. Rather, we must fix .R1, and vary V1 through

41 alone. As a consequence or varies, and we see quite different behaviour in the

volatility.

Since ,41 is a GBM process under the risk-neutral measure Q, we know

dAt - r,4tdt * oA1dwl

where l4lr is a Brownian motion process under Q. Firm value I{ is given by (4.15),

and so we have

dvi - d4 + rRldt - rudt + o(v - R)dwt

since ,41 - U - Rr- By the identity ,Sr : \'t - Bt,

dSl: dU - rBfit : rStdt * o(Vt - R)dWt

and by the definition of stock price volatility, we note

,f f .\ vi-R,os\vt,t) : o 
S,

os(\7,t):o(t-"fu)

(4.17)

where V- &: At follows a GBNf process, and 51 -V- ,B1. Treating ftr and 81

as fixed. we write

(4.18)

where Lt : Rt- Bt: (r% - Bo)"" denotes the value of the risk-free assets in excess

of the debt, with Ar 2 0 due to the assumption that debt is risk-free. We note that

this function is i,ncreas'ing in ,Sr, and in particular, if Sr -+ x, os(V,t) -+ o from

below.
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Figure 4.6. The volatility function for the displaced diffusion model, defined in (4.18), plotted
(using the solid line) against ^91, with Bt : 25, ftt = 30, r = 0.05 and a : 0.3. Also shown using
the dashed line is the horizontal asymptote at o: 0.3 of this function. The vertical dotted line
ma.rks At : ftr - 86. The grey solid line is (4.17) for or : 0.5, and the grey dotted tine is (4.17)
for <r1 - 0.25. These functions have upper bound given by the curved dotted line, representing
(4.3) and at : 1. The asymptote for the curve with c1 : 0.25 is shown by the grey dotted line.

Stock price volatility for the displaced diffusion model and selected parameters is

shown in Figure 4.6. This figure shows the volatility function (4.18) for the applicable

range St ) At, and this is given by the solid line. Since the displaced diffusion model

is a risk-free debt model, the function (4.17) is also shown for fixed a, € {1,0.5,0.25}.
Although it is useful to reconcile the volatility for this risk-free debt model with that

grven in Theorem 4.1 for the general risk-free debt model, (4.17) implicitly ignores

the presence of the risk-free assets. In particular, since ,91 is a deterministic function

of A1: alVl for fixed t, we cannot simultaneously fix os a,nd vary S, in this model.

At ^9r - A,, V : Rt and both At -- 0 and ds(yr, t) : 0. As ,Sr increases (through

increase in ,4,1), both volatility and c1 increase, and we see the volatility curve

intersecting first the function (4.17) for o1 :0.25 and then for o1 :0,5.

The behaviour shown in (4.18) and Figure 4.6, implies a positive elasticity of volatil-

ity for this model. Since A1 is fixed, from (4.18), we can derive the elasticity of

volatility
n _ Ahos(V1,t) oL,1 51 A,

" : alos(v*,A 
: 

sf A: s, - &
(4.1e)

where ,Sr ) Ar, and clearly ds > 0. As ^9r i At, the elasticity becomes infinite,

reflecting the fact that close to ,9, : At, a small percentage change in ,S1 (from Ar to
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Ar + €) results in a very large percentage increase in risk, i.e. frorn zero risk to some

risk. For large 51, the effect of the risk-free assets is negligible, and the change in

volatility for a unit percentage change in St is close to zero, reflecting approximately

constant volatility as 
^91 

-i m.

4.1.4 Leverage models and the volatility smile

A popular method of estimating volatility is to imply it from stock and call option

prices using the Black & Scholes (1973) option pricing model. This technique and

the relevant literature are discussed in detail by N{ayhew (1995). In its common

usage "implied volatility" is the term used to describe the value for o which can

be used to equate the Black-Scholes formula to the observed market price. The

Black-Scholes formula is

r29

C, : SrO( h) - Ke-" Q(h, - "t/7)

,- lo,Sr - ln K + (r + lo2)r
,vt 

- 

-

- o1/i

(4.20)

with

and where ^91 is the stock price at time t, K is the exercise price of the option with

time to maturity r, r is the continuously compounding risk-free rate and o is the

constant volatility of the stock. The assumption of constant volatility can be relaxed

to allow a deterministic function of time 01, with o in (4.20) replaced by

o:
l+ r' ""o,fu

which is the square root of the average variance over the remaining life of the option.

The Black-Scholes equation (4.20) has five arguments; however, with the exception

of o, these are readily observable quantities. Given that market call option prices are

also observable, and (4.20) is a monotonic function of cr, the Black-Scholes equation

can be used to "imply" the parameter o that would be used to produce the market

price. The implied volatility has been described as "essentially a normalised option

price" (Gourieroux & Jasiak 2001, page 323), whereby the strike price and time

to maturity of the option are eliminated and a single summary statistic produced.

Time series data of both Sr and G will yield a time series estimate of o1 in the

obvious way'.
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The primary theoretical assumption underpinning use of this statistic is that the

stock price has constant (or deterministic) volatility. Provided this assumption is

correct, the implied v'olatility reflects the option market's forecast of the average

variance over the remaining life of the option, and impounds any information cur-

rently available in both the stock market and the option market. However, in order

to benefit from information contained in the observed call price, we must be sure

that market participants are indeed pricing options using the Black-Scholes formula,

and that at any instant, observed prices differ from those given by (a.20) only be-

cause of differences in market participants' abilities to estimate all appropriate value

of. o.

Issues raised in Mayhew's (1995) review of the literature on implied volatility should

be enough to rule out use of the Black-Scholes implied volatility. In particular,

implied volatility estimates themselves cast doubt on the most fundamental of the

assumptions made by Black & Scholes: that the stock price follows GBM. Should the

underlying asset price follow GBM, then any options with the same maturity on that

underlying asset should provide the same implied volatility estimates. In practice

this is not the case, and systematic patterns are obtained between implied volatility

and both time to maturity, and strike price. In essence, empirical irregularities in

the implied volatilities suggest the Black-Scholes model does not correctly price call

options, which in turn implies that the underlying asset price does not have constant

volatility. Despite the contradictions inherent in Black-Scholes implied volatilities,

this method remains a compelling volatility estimation procedure. In order to make

it operational, we should seek an option pricing model which gives estimates that

are consistent with the underlying assumptions of that model.

One significant reason that the CEV, compound option, and displaced diffusion

models have been described above is that all three facilitate closed form option

pricing models, all similar in form to the Black-Scholes equation, and requiring

numerical methods only to calculate probabilities as in Black-Scholes' O(fu) and

A(h, - or/i). The probability functions required in the case of CEV and compound

option models are certainly less common that the standard normall however many

modern statistical packages contain efficient algorithms for their approximation fiust
as the standard normal probabilities are numerically approximated in a much larger

number of packages).

All option pricing models depend on the fundamental characteristics of the option:

strike price K and time-to-maturity r. In addition, because they are all based on
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risk-neutral pricing, all depend on the continuously compounding risk-free rate r.

Additional parameters depend on the underlying structural assumptions about the

firm and stock price evolution. The Black-Scholes formula (4.20) has additional

parameters ,56 and o(51,t) :6.

The constant elasticity of variance option pricing formula (Cox & Ross 1976, Emanuel

& MacBeth 1982, Schroder 1989) has additional parameters ,91, B anld d, as specified

in the stochastic differential equation for this process (4.5), and gives

Ct : StPt(St, K, r,r, 5, P) - K"-'" Pz(Sr, K, r,r, 5, p) (4.21)

where

[Aea;z + fi,zr)
{ o(n,)

lQQr; h,zv)

[t-g1zr,&,2il 0<2
Pz(Sr, K,r,r,6,0) : { O(n, - ort) p -- 2

It-QQ|;Z+fi,2x) P>2

4 (Sr, K,r,r,5, 0) :
p <2
0:2
p>2

and

where Q(s; r,,\) is the survivor function at r for a non-central chi-squared random

variable with v degrees of freedom and non-centrality parameter \, A : kK2-P,

, : kS?-P 
"r(2-0)" 

, and

k-
62(2- B)@r(z-fi)r -I)

(Randal 1998). The Black-Scholes formula is given as the special limiting case of

the CEV solutions for B <2 and 0 > zas we let B -+ 2.

The compound option pricing formula (Geske 1979) introduces the debt payment M,

with time to maturity ra ) T, i.e., greater than that of the option. In addition, stock

price is a function of firm value V and the volatility of the firm's (homogeneous)

assets o. The option pricing formula is given by

ct: viez (nr,n t G)-Me-"ae, (n, - o\ft,h2 - o1/n, ,li)-Ke-'"Q(h-ort)
(4.22)

where Qz(*,A; d is the cumulative distribution function for the standard bivariate

normal distribution at r and g with correlation p, hz : 91, defined in (4.8) and

,. lnVi-lnlt+(r+!o2)r
,bL 

- 0\/r
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where I{ is the value of V1 which solves S(Vi,t) - K and where S(U,t) is the

function in (4.7).

The displaced diffusion option pricing formula (Rubinstein 1983) is relatively simple

as a result of its assumptions. The call price is a function of firm value Vt, the value

of the firm's non-risky assets Rt: Roe", and the volatility of the risky assets o, as

well as the value at t of the risk-free debt 81. The option price is

Ct: BS(Vi- Rt,,K - Lp",r,r,o) (4.23)

where Lt: Rt - Bt, and BS(.) is the Black-Scholes equation defined in (4.20). In

this case, the surplus risk-free assets are used to reduce the exercise payment of the

call, and the GBM process is 1,1 - Vt - Rt rather than the more familiar 51 or l|.
(Note also that K ) Lp" is assumed.)

The option pricing models (4.21), (4.22) and (4.23) can, given parameter inputs,

be used to give call option prices in the same way as the Black-Scholes equation

(4.20). They could equally be used to imply unknown parameters, such as p and

d in the CEV case, or Rs and o in the displaced diffusion model. If we artificially

generate option prices using one of these alternative models, and then compute

Black-Scholes implied volatilities, a volatility "smirk", monotonically increasing or

decreasing in strike price, will result simply because the Black-Scholes model cannot

adequately describe these prices. If we were to use the correct model to imply

missing parameters, these will of course be constant.

The link between the volatility smirk (the monotonic relationship between implied

volatility and strike price) and leverage, is rather tenuous. The volatility smirk is a

function of the strike price of options held on the firm's stock; however the leverage

effect concerns the behaviour of stock price volatility as a function of stock price.

Nonetheless, it is common to think of a high strike price being consistent with a

low stock price. This follows if we think about the payoff of a call option: when the

strike price is high, the call option will be exercised if we see a large increase in the

stock price, and we can consider the current stock price to be low.

The classical leverage effect is that, for high stock price, there is low stock price

volatility, and for low stock price, high stock price volatility. If 51 is high, and

volatility is indeed low, Black-Scholes prices the option using this low volatility. As

a consequence, Black-Scholes prices are too low. Inferring o using the Black-Scholes
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formula (i.e. computing implied volatilities) based on the correct (higher) market

call prices, we obtain a higher implied volatility than the correct value. High stock

price is loosely equivalent to low strike price, and thus \4/e see high implied volatilities

for small K.

If Sr is low, and volatility is high, the opposite occurs. Black-Scholes prices according

to this high volatility, and so Black-Scholes prices are too high. Implied volatility

based on the lower market price is thus too low, and we see low implied volatilities

for large K.

The underlying link between the volatility smirk and leverage effects is a complicated

one, arising from the shape of the probability distribution for the stock price at

exercise, which is of course related to current stock price volatility. More careful

analysis of the cause of the volatility smirk is given in Appendix E for the displaced

diffusion model.

As an illustration, the volatility smirk given by Hull (1997) for options on the S&P

500 Index on May 5, 1993 has a large negative gradient, with a range of approxi-

mately 85% to 760% of the at-the-money irnplied volatility (with K: S).These

implied volatilities have been approximately transcribed from Hull's Figure 19.4

and reproduced in Figure 4.7. Using extreme parameter choices in the CEV model

@.21): g : -20 and d : 0'1LS[2-Bltz, with St - 100, r :0'25 and r - 0.06,

we obtain call prices using (4.2L), and the implied volatilities from (4.20) are then

plotted in Figure 4.7 (this particular choice of d implies index price volatility at t

is 0.11). Although the parameters for the synthetic option prices have been chosen

to obtain a range of values similar to those reported by Hull, rather than being

motivated by time series properties clf the index price, the similarities between the

real implied volatilities (taken approximately from Hull's plot) and the synthetic

smile in Figure 4.7 are striking. In particular, both smiles show an approximately

linearly decreasing relationship between strike price and volatility, however the syn-

thetic data does not lead to the same curvature for high K. Put another wag had

Hull used market call prices on the index and the CEV model to imply parameters

for the index price process, he would have obtained p and d estimates very close to

0: -20 and d:0.11,Sj2-9)/2, and these would have been approximately constant

across all options.

It does not appear to be possible to reproduce the smile shown in Figure 4.7 using the

compound option model. Although compound option prices will imply volatilities

133
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Figure 4.7. glack-Scholes implied volatilities for CEV option prices, given using the solid line,
and an approximation to the smile given in Hull (1997) for the S&P 500 Index on May 5, 1993,
given by the dotted line. The CEV option prices were computed using (4.21) with ,Sr - 100,

r :0.25,r : 0.06, 0 : -20 and d: 0.nsf-aln for the range of K shown, and the Black-Scholes
implied volatilities numerically obtained via (4.20). The implied volatilities for the S&P 500 were
read to a close approximation from Hull's Figure 19.4.

which are decreasing in K, the leverage effect is nowhere near strong enough to

give such a steep smile. Since the CEV model is well defined mathematically for

P < 0, we were able to choose 0 : -20 and obtain a very close match, however

restricting P > 0 would have had similar implications to the use of the compound

option model. The displaced diffusion model will produce a positive relationship

between implied volatility and K, as would CEV with P > 2 and so neither of these

models are consistent with the smile in Figure 4.7.

In conclusion, implied volatility is a poor forecast of future "realised" volatility

because the incorrect option pricing formula is used to back out the volatility es-

timate. Acknowledgment that share prices do not typically follow GBM, and that

as a consequence of this the Black-Scholes implied volatility is inappropriate, is

important. If we can find an appropriate model for option prices, consistent with

time-series properties of stock price for example, then volatility estimates implied

from observed prices using this particular model will be highly desirable estimates

for reasons discussed by Mayhew (1995).



4.2. THE EXTENDED CONTPOUND OPT/ON PRICII{G MODEL

4.2 The extended compound option pricing model

At this point we depart slightly from our focus on the underlying stock price pro-

cesses assumed by existing option pricing models, to derive a new option pricing

model. As we will see, this new model will afford us flexibility similar to that of the

CEV model, in that we can model both an increasing or decreasing leverage effect

within the one rnodel.

In a recent textbook on option pricing, Hull (2000) considers analytical extensions

to the Black-Scholes model, and makes mention of Geske's compound option model,

and Rubinstein's displaced diffusion model, as well as the CEV model. Extensions

to Geske (1979) and Rubinstein (1983) exist, but none address the union of the two

approaches as we do here. Frey & Sommer (1998) discuss the extension of Geske

(1979) to allow for both deterministic and stochastic interest rates. Chen & Ryan

(1996) relax Rubinstein's (1983) assumptions to allow two classes of risky assets,

rather than one risky and one non-risky; however like Rubinstein, they treat the

fixed debt as risk-free. Toft & Prucyk (1997) obtain a call pricing formula in the

presence of debt, but assume a different structure to either Rubinstein or Geske. In

particular, using the model of Leland (1994), equity value is a deterministic function

of debt characteristics, and only homogeneous assets are considered.

Here, using the results of Geske (L977), we combine the models of Geske (1SZS) and

Rubinstein (1983), both of which recognise corporate debt, to produce an analytic

formula for a call option over stock in a firm that has both debt and heterogeneous

assets, without imposing any restriction to rule out bankruptcy. Unlike Geske, we

allow the firm's assets to be heterogeneous. In particular, as in Rubinstein, some

assets evolve according to GBI\{ and the remaining assets are risk-free. Unlike

Rubinstein, we allow for bankruptcy by interpreting the stock as a (compound)

option over the ralue of the firm, as in Geske (1977,1979). As a further extension

to Geske's (1979) result, we allow the firm to have multiple debt repayments.

4.2.L Call value with coupon bonds when Vt follows GBM

In order to generalise Geske's (1SZO) option pricing formula, we first obtain the

formula for a compound option when the firrn ha^s an outstanding coupon bond, and

firm value follows GBM.
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tr/r : the value of the firm at time t;

,St : the value of the firm's stock at time t; and

Bt : the value of the firm's coupon bond at time t

and note that the coupon bond pays coupons Xt,.. ., Xn-t at times tt 1 .. . ( tn-r,

where t1) t,, and a redemption payment M at time tn ) tn-y. For ease of exposition,

lel Xn - M, and thus we can consider a general stream of coupons. The problem

of finding .B1 is addressed by Geske (1977), who gives the price of the coupon bond

as a function of firm value. He makes the unnecessary assumption that the debt

is repaid at constant intervals, with tt. - t: i for each repayment. We provide an

alternate proof of the result for arbitrary repayment dates in Appendix D.2. Using

the relationship

$1:V1- 81

and the formula f.or Bl given by Geske adapted to allow general payment dates, the

value of the stock at time t is given by

G,(V,X,T,r,o) : VQ,(hr; {paiD- i X*e-r'*Q*(hr - otfr; {pniD $.24)
m:l

where X: (Xr,...,Xr,), ,: (rt,...,Tn), r is the continuously compounding risk-

free rate, o is the (constant) volatility of firm value, O"(fu; {p,i}) is the cumulative

distribution function of a standard n-variate normal random variable evaluated at

upper limits hr, . . . ,hn and with correlation matrix given by {p,iI for 1 ( i, j 1 n.

Also, ra - ti - t is the length of time until payment i, and

. _lrl/t-lnV+Q+lo2)r1,u|, 
- ot/rt

u-

Ptj:

(V):Xt 1<i<n-I
i:n{tr'u

Ix"r;l'2
Ur

value of F which solves ,56o

i<j

and pit - pti.

Derivation of this formula follows the suggestion of Black & Scholes (1973), who

describe the common stock of a firm with a coupon bond as "an option on an

option on . . . an option on the firm". To see this, note that at any coupon time
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Call
Exercise price Exercise choiceTime

Stock
Exercise price Exercise choice

t1

t2

X1
X2

x)_,
xn

K
Xz

x)_,
xn

max(S1, - Xt,0)
max(Sr, - Xz' 0)

max(,91, - K,0)
max(,S1, - Xz,0)

max(.9r,-l - X"-r,0)
max(Yr^ - X",0)

+t"zt"-7

tn
max(Sr*-r - ,Y"-r,0)
max(Yr. - X",0)

Table 4.1. Comparison of exercise prices and decisions faced by stockholders in Geske (1977)'

and a call option holder over a stock for a fi.rru which has an outstanding coupon bond paying
coupons X2,...,Xn.

t1 the stockholder can purchase a further option by paying the coupon &. Each

option is ultimately an option over the assets of the firm. The formula (4.2a) is

derived by noting that, at the final debt payment, the value of the stock is St" :
max(V1" - Xn,O), while at each earlier coupon payment, the stockholder chooses

between default, and payment of the coupon, t.". Srl - max(^9rr - Xt,0), where tf
denotes the instant after time f;. Using lt6's Lemma and a continuously rebalanced

hedge portfolio, the partial differential equation for stock value does not feature

investor preferences. Consequently risk-neutral pricing techniques are warranted,

and a series of nested integrals may be evaluated using the multivariate normal

probability functions featuring in (4.24).

In order to price a European call option on the stock, we redefine the coupon bond to

pay coupons X2,...,Xr-r at times tz 1"'1tn-t and maturity payment Xn: M
at tn > tr,-1. The call option over the stock has exercise price K, and if rational,

this is made at time fi 1 t2. Comparison of the exercise payments and decisions

faced by the call-holder is made to those of the stockholder of Geske (L977), and this

appears in Table 4.I. If we set Xr : K, since the underlying stochastic process V1

is identical in each case, we must have Ct: Su where the latteris given by (4.2a).

Thus, in order to value the call, we note that the call in this case matches the stock

whose price is given in (4.24), with Xr : K. Defining X1 : K, the value of the call

at time t is given by

Ct: G,(V,X,T,r,o). (4.25)

This is equivalent to redefining the coupon dates of the firm, and pricing the call

option with the first "coupon" equal to the exercise price of the call. This formula

nests the Black-Scholes model, where no debt exists and hence /, : .91, with

Ct : G{St, K,r,r, o) : Sro(fu) - Ke-'"Q(ht - ofr)
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where

" _ln,S1 -lnK+(r+|oz)rtq:7.

r : rlt and univariate normal probabilities are used. The formula (4.25) also

includes the compound option pricing model of Geske (1979), where n : 2, as a

special case. For this single debt payment, call price is

Ct : Gz(V, (K, M), (r1, 12), r, o)

where the debt M is repaid at time tz, with time-to-maturity 12.

4.2.2 Call value with coupon bonds when V; follows the dis-
placed diffusion model

The displaced diffusion model was described in Section 4.1.3. In particular firm

value at time t is defined via the equations

V:At*Rt
At: Aoexp{(r - *o')t * oW1}

Rt: Rne'"

(4.26)

(4.27)

for all f ) 0, where Ao : aoVo is the initial investment in the risky assets, -R6 : (1 -
oo)% is the initial investment in risk-free assets, r is the continuously compounding

risk-free rate, o is the volatility of the risky assets, and Wt is a Brownian motion

process under the risk-neutral measure Q. Recall that o1 : # ir the proportion of

firm value in the risky assets at time f , and by the properties of. R1, this satisfies

(L - ar)V: (1 - as)Vsert (4.28)

for all t.

On the other side of the balance sheet, we have (as in the previous section) the

firm's stock with value ,S1, and debt, consisting of promised payments Xz, . . ., Xn at

times tz I . . . 1tr. We aim to value a call option on the stock, with exercise price

K, and maturity at ty

Before presenting and proving the general result, it is useful to first work through

the special case when n : 2, and the firm's debt is in the form of a discount bond

maturing at time t2 ) t1, where t1 is the exercise date of the option.
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Theorem 4.6 The price at time t ol a European call opti,on oaer a stock wi,th et-

ercise price K payable at ty, for a firm whose ualue euolues accordi'ng to (1.26) and,

U.27) and which has outstandi,ng a single d,i,scount bond with redemption payment

M due at time t2 ) t1 i,s giuen by

(Cr(Or,(K, M - Rte"'),(r1,,12),r,o) R1,.- Me.-rrz

Cr: iGr(Ar,K +(Me-'", - Rt)e'r,T1,r,o) lvIe-rrz < &< Ke-rrt *Me-rrz

[y, - Ke-rrt - Me-rrz R2) Ke-,n + Me-rr2
(4.2s)

where rt : tt - t for i : 1,2, A1 : \4 - Rt'is the ualue of the firm's risky assets at

time t, and R1 is the ualue of the fi,rm's ri,sk-free assets at time t-

Proof Following discussion in both Geske (1979) and Rubinstein (1983), risk-neutral

pricing is a valid way to price contingent claims for this firm. In particular, the stock

price at time t1 is given by

St, : 
"-r(tz-tr)gfl {max(I21, - M, 0)} (4.30)

where eH ir the expectation under the risk-neutral measure taken conditional on

information available at time t1. In calculating,Sl,, there are two cases to consider.

Case 1: If Rr > Me-rn the debt is risk-free. So,

Sr, : V, - Mu r(tz-lr) - Atr - (Me-'", - Rr)"'",

since !t, - At,. * R1e'rt.

Case 2: If Rr < Me-rtz there is a positive probability that the total value of the firm

will not exceed M att2, ard so we must evaluate the expectation (4.30). Pollowing

Rubinstein. we write

Sr, : 
"-r(tz-tt)Efi {max(Ar, - (M - R1e"2),0)}

where we have written V, : At, * Rlerrz. Rather than evaluating this integral

directlS we note that A1, is a GBM process, and hence the solution is given by the

Black-Scholes equation with exercise price M - Rp"z, i.e.

St, : G{AtrrM - R4e"'rt2-fi,r',o)'

Thus, at time t1, the stock is worth
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(4.31)c _ I 
"t(Ar.,, 

M - R1errz,t2 - fi,r,o) R, < M"-"'utr 
\+, - (Me-'", - R1)e'"r R1) I\t[e.-rrz
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where Ah : V, - Rt, is the value of the risky assets at 11.

We now consider pricing an option over the stock, maturing at time t1, with exercise

price K. Risk-neutral pricing applies and we must evaluate

Cs: s-rrtEP{max(.9r, - K,0)} (4.32)

where St, is given by (a.31). In the case of non-risky debt, there are two possibilities.

Case A(i): The first of these is where the size of the non-risky assets ensures that

St, ) K.If. R1) Ke-"'+ Me-'"2 both "options" will be exercised, and

Ct:V- Ke-rrt - Me-"'.

Case A(ii): If the non-risky assets meet the debt payment (and ensure U, > M),

but are not large enough to also guarantee Sr, > K, we have

C1: s-trtEp{max(A t, - lK * (Ms-"" - ,R1)e'"'],0)}

and as before, we recognise that since 46, is a GBM process, the solution is given

by the Black-Scholes equation with exercise price K * (Ms-rrz - R1)e"r, i.e.

Ct: Gt(Ar, K * (Ms-'"' - R)""' ,ry,r,o).

Case B: When the debt is risky, i.e., & < Me-"",, we must evaluate the integral

C1: s-rnF,p{max[G1 (Ar* M - Rt€"',tz - tt,r,o) - K,0]].

Again, rather than using brute-force, we note that Geske (1979) was faced with a

similar integral

e-'"'EF{max(G1(7x,, M,tz - tt,r,o) - K, 0)}

where Vr, wffi a GBM process. His solution was given by

Gz(V, (K, M), (r1, 12), r, o)

in our notation, and hence the solution to the integral under the alternative condi-

tions examined here is

Ct: Gz(At,(K, M - R e'"'), (tr, 12),r,o).



!

Thus, combining the results for the risky and

pricing formula

( ,r(^r, (K , M - Rse,',) , (r1, 12) , r, o)

C,: lGJAr,K +(Me-"" - Rt)e'rt,r1,r,o)

[ trr, - K e-rrr - Il[ e-rrz

where At : V- & as required.
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non-risky debt, we obtain the call

Rt 1 Me-r"z
Me-rrz 1 Rt I Ke-rn * Me-rrz

R1 ) Ke-'rt + Me-ra2

Note that the middle case of non-risky debt, but risky call exercise, was exactly

that examined by Rubinstein (1983). Noting thal Me-'"2 in the second case is the

present value of the outstanding debt, we see that the two formulae are certainly

consistent. Rubinstein does not consider the unlikely third case where exercise of

the call option is guaranteed, nor does he provide a formula when the debt is risky.

We now present the general result for a film with an outstanding stream of n - I
debt payments.

Theorem a.7 (The extended compound option pricing model) The price at

t ol a call opti,on oaer a stoclc with enercise pri,ce X1 payable at t1 1 t2, for a frrm

whose ualue euolues accordi,ng to (4.26) and (1.27) and which has outstand,i,ng debt

wi,th a stream of promised payments X2,. . . , Xn d,ue at times tz I "' 1 tn i's giaen

ba

n _ I Go(A,, fI*, T1s,r,o) k > 0

"t - Iv,-Di-_,xie-rr; ft: o
(4.33)

(4.34)

where At : V - & is the ualue of the risl*y assets of the fi,rm at time t, ri -- t,i - t,
r*: (rr,...,r*), Gp i,s g,iuen bA U.25) for k > 0,

flr :

where Rt is the ualue of the non-ri,slcy assets of the firm at ti,me t, and where le i,s

chosen so that t6 is the earliest ti,me at which the non-risky assets of the firm meet

all subsequent d.ebt payments i,f such a time erists, and n otherwise, i.e., Ie is the

smallest non-negati,ue integer that satisfies

R,) | Xn"-"'
i=/c+ I

i,f such a number ed,sts and n otherwise.
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Firm A

Non-risky Assets

Debt

Risky Assets Equily
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Firm B

I Risky Debl

j

Risky Assets I Equity

Figure 4.8. fire balance sheets of two firms. Firm A has risk-free assets which offset some of
the debt on the right hand side of the balance sheet. Firm B has only risky assets and a reduced
amount of debt. For the purposes of valuing the firms' stock and European call options on the
stock, the two firms are identical.

Before embarking on the proof to this theorem, it is useful to consider the intuition

behind the result. In order to value the call, we compare the value of the non-risky

assets to the present value of all outstanding exercise payments. We choose & so

that all exercise payments (coupons) after X6 are met by the non-risky assets. The

value of the surplus non-risky assets at time C6 is

n

o<Rs,,k _rL xus-r(ti-te) <760

and thus the exercise payment at Xk is reduced by this amount. This remainder,

and all earlier exercise payments, are made subject to available resources and limited

liability. Having eliminated the non-risky assets, the call is then priced using the

formula of Geske (1977), with first argument A1 (the process that follows GBM, and

the residual assets of the firm) with exercise payments Xt, . . . , Xn-r and the reduced

payment at f6. At t6 all the subsequent payments are met by a fund consisting of

only the risk-free assets, and any leftover risk-free assets are used to reduce X6.

Thus some of the debt on one side of the balance sheet is offset by the non-risky

assets on the other side of the balance sheet. In this wag the non-risky assets are

eliminated from the call pricing problem and we consider a matching firm, with a

reduced quantity of debt, and risky assets following GBM. This situation is shown

in Figure 4.8.

Having seen the intuition behind the theorem, we now consider its proof.

Proof First, we confirm the case where n:2. This is proved in Theorem 4.6, so

we need only confirm that (4.33) is identical to (4.29) when n :2. We note that
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Xr : K and Xz : M and that these payments are made at f1 and tz. If the value

of the risk-free assets is sufficiently large that

n, > t x;e-rri
i=l

then ft : 0, ensuring that both the call will be exercised and the debt will be paid

off, and hence the call value is given in (a.33) by the net present value

Ct:V- Ke-rrr - Me-rrz

which corresponds to the third case of (4.29) as required. If & ) X2e-rrz is true,

but ,Rs ) X1e-rrt * X2e-rrz is not, then k: 1 and (4.33) specifies

flr : (K"-"' I X[e'"z - R)""t

and r : rr, corresponding to the second case of (4.29) as required. FinallS if

Rt 1 Xze-ttz, no value of & satisfies (4.3a) and so k : 2. In this case, (4.33)

specifies

n^:( K \
tlz: (1lre-rrz Rt)e,""):(K'M - R5e"')

and 12 : (Tr, r2), and this corresponds to the first case of ( .29) as required. Thus

Theorem 4.7 is confirmed for the c&se n:2.

For general n, we note that if

n, > t xie-rri
i=l

then k : 0 and all "options" will be exercised, since stock price (or firm value for

the last payment) will be greater than the exercise amount at every exercise date.

Thus. when & :0
rL

fa. -I/. _ f y.o-rr;
vt 

- 
vt // ./\Nv (4.35)

as required.

At time f1, either that exercise and all subsequent ones are risk-free, in which case

the call value at t is given by (4.35), or the exercise is risky, and we value the call

bv

C1: s-rnEfl{max(S1, - Xr, o)}.



where At:V- Rt,

/n \ ln
flr : K + ( lxr-* - ntl errL : lDxr"-"'\r=z / \l=1

since k : 1, and where Xt : K as required.
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If /i; : 1, then all subsequent payments are guaranteed by the non-risky assets of

the firm, and

ln \
St, : V, - Br, - Atr- t I Xie-rti - Rtl e",

\;; /
where .B1, is the value of the outstanding (risk-free) debt, and as in the proof to

Theorem 4.6, we see that

Ct: Gt(A,, flt, \,r,o)

- n,) u,",

In the case where & ) 1, we use the method of induction to complete the proof.

Assuming Theorem 4.7 is true for n - | payments, at time t' : tt, the stock of

the firm is a compound option over the assets of a firm with risky assets worth Ay

and n - 1 outstanding debt payments Xj : Xr+r to be made at times tln : t;+t

(i:1,...,n - 1) as shown in Figure 4.9. Since & > l for the call option, the time

at which the non-risky assets meet all remaining payments is tl_, : tr and so we

define Q: k - 1 > 0. Thus, the theorem states

St, : G s(A7,,fl'q, r'0, r, o) (4.36)

where At, is a GBM process, 4 : ti - t', T'q: (4,,. . .,4),

/yi \
frt: t I'l XL-rl

\rrLJ xle-i''; - Rv)e'"l f
and where q is chosen so that t'n : tn is the earliest time at which the non-risky

assets of the firm meet all subsequent debt payments if such a time exists, and n - I
otherwise.

Guided by the two alternative definitions of the coupon schedule shown in Figure

4.9, we make appropriate replacements in (4.36) and find the value of the stock at

time t, is

(4.37)St, : G*-r(At', n[t]r, tftlr, 
", 

o)
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Figure 4.9. Two alternative representations of the coupon payments and payment dates relevant

to the valuation of 51, = 5r,.

where ,,{1, is a GBM process, the superscript (1) denotes pricing from time tr,

since from (4.28), R1: R2r€,-r(t'-t), and where r[1]l - (t, - tr,...,t* - tr).

In order to value a compound option with rn outstanding exercise payments when

V1 follows GBM, following (4.25), an application of the result of Geske (L977) shows

that its value at t is

145

xn

trl'r': 
('t=- .';'- 

"''""-)

(4.38)

(4.3e)

Ct : G^(V,X^, Trn,r, o) :.-t"Efi {max(^91, - Xt, 0)}

where the stock price at t1 is given by

fi' : Gn,-'r(Y,',XIjL,,tlll, ,r,o),

and where %, is the value of the GBM price process at 11, X*)-1 : (X2,...,X^)
atrd r$f, : (tz -tr,...,t^ - tr).

Wesee (4.39) and (4.37) areof identicalform,but rn, V,,, Xll)-r anat$1, in ( '39)

are replaced by,b, 4,, tr[t], a.rd r[tl, respectively in (4.37). Thus, in order to find

the price of the call over stock whose value at exercise is given by (a.37) we replace

ffi, V, X. and r* in (4.38) by k, At : \i - Rt,116 and 7p respectively, where

flr : (Xl,n[1]1). Applying these changes to (4.38), in the presence of non-risky

assets, the value of the call option is

Ct: G*(At, f-I,b, TP,r,o)

and this corresponds to (4.33) for /c > 0. Thus, if k > 1, the theorem is true for n

payments if it is true for n - \ payments, and since the theorem is true for n : 2,

by the process of induction, we conclude the theorem is true for all n. The cases

k : 0 and & : 1 were previously shown true for general n, so Theorem 4.7 is true

for all n and all values of ft.
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4.2.3 Using the extended compound model to rralue coupon
bonds

There are various special cases of the call pricing formula (4.33): the Black-Scholes

equation, and Rubinstein's (1983) displaced diffusion option pricing model have

already been mentioned, and correspond to the cases n : I with Xl : -I{ and

Rt:0 for all t, for Black-Scholes, and Xt : K, n:2 with Xz: Me'"2 with

an assumption that k + 2 so that the debt is risk-free for Rubinstein. In addition,

Geske's (1979) compound option pricing model is a special case with Xr : K, n :2,
X2 - M and Rt : 0 for all t. In addition to these option pricing models, we can

address the aims of Geske (1977), and use the model to price the stock of a firm with

an outstanding coupon bond, and whose underlying firm value follows the displaced

diffusion characterised by (4.27) and (4.26). Assuming k * 0, the value at t of the

stock of such a firm, with outstanding coupon payments X to be made at times

t * r, is given by

St: G*(Ar, [/c, T1r,r,o)

where At : V - Rt, k, iln and z; are as specified in Theorem 4.7. Using the

relationship Bt : V - St, the value of the outstanding coupons is given by

k

Bt : V(t - asOp( hi; {poi}) + I fI^e-"^ Q*(hi - o r/i; {pei])

where ,-t: #,IIe is the jth element ;;-, and the hli aredefined by amending

their earlier definition in the obvious way. Once again, we note that Geske's (fOZZ)

assumption of regular debt repayments was unnecessary, as proved in Appendix D.2.

4.2.4 Some numerical results

Here we analyse call prices computed using (4.33). The multivariate normal prob-

abilities are evaluated using the algorithm of Genz (1992) implemented in the sta-

tistical software R (Ihaka & Gentleman 1996). Genz's algorithm \Mas compared to

other algorithms by Genz (1993) and found to be the most efficient method of those

considered.

Rather than comparing the call prices themselves (as in Rubinstein 1983), we use

Black-Scholes implied volatilities to standardise the calls for changing exercise price.

The ratios of those implied volatilities to the at-the-money implied volatility (where
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K : S) for that firm are given in Table 4.2 in a format similar to that of Toft &

Prucyk (1997). Each "firm", consisting of a leverage ratio and at : # combination,

has ,9, : 10 and o(51,t): 0.4 as described below, and we price the options at time

t. By specifying the firm characteristics via the stock price rather than firm value,

we focus attention on readily available data, and ensure fairer comparison between

the cases; however this does necessitate different values of % and o for each firm.

The firm value is determined by the leverage ratio, and o and the promised debt

payment(s) are chosen to ensure that Sr : S(%,1) : 10 and o(^91, t) : os(V, t) :
0.4. Although both ^91 and o(57,t) evolve stochastically from time f into the future,

we would expect similar behaviour over a short period of time, and hence similar

implied volatilities.

In order to compare option prices via implied volatilities, we need the underlying

firm parameters to be appropriate, in the sense that parameters for the stock price

process Ss need to be sensible across all firms. In particular, we wish to choose

o(\'t,,t) so that for all combinations of outstanding debt and asset mix at time t, the

volatility of the stock for each firm at time f is identical.

As in Section 4.1.3 we have

dV: rYidt * o(v1- R)dwt

and so define o(U,t) : o(I - *^) The value of the stock at time I is a function of

V1 and time, i.e. ^9r 
: S(%, i). Ito's Lemma applies, and we find

ds, : 1,"#,. T + f;o' 
p', - R)'#]0, * o(v', - Hffiaw,

and defining the volatility of ,S1 through the equation

dS, - it6' t) Sdt + a(&,t) SdWt

we obtain the relationship

o(St,t)--/t?"
where At : V - R1. This is a combination of the forms for the compound model

glven in (4.9) and the displaced diffusion model given in (4.17).

We use the above expression for i(^91, t) to find the value of o so that 6(St, t) : fi :
0.4 for every "firm" considered, where St: S(\7,t). We consider at : # and the

leverage ratio LRl at time t, for the firm to be fixed, and choose the promised debt
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payment(s) and o to satisfy the time t constraints we impose. Thus, at time f, o is

given by

o:6(St,r)&

a(Sr,t)
u--

Q4

o:d(S1,rY
where At:V- nt.

When ft > 0, stock price is grven by

(4.40)

This mirrors the approach used by MacBeth & Merville (1980) in their analysis

of the constant elasticity of variance model. Although the stock price processes

will have the same volatility at t, the volatility at maturity of the option (t + r1),,

or average volatility over the remaining life of the option will not necessarily be

equal. Alternative approaches have been used to align processes: Rubinstein (1983)

matches var6{ln(S7 lS)} for all processes considered, and Beckers (1983) matches

wa4(S7f S1), where T : t * rr is the exercise date of the options used to find

implied volatilities. In this situation, either of these alternative approaches would

be difficult to implement, and so we settle for matching the instantaneous volatilities

of the processes at the beginning of the period of interest.

In order to determine o: we need to evaluate ffi and substitute into (4.40). When

the firm has no debt, 51 - Vs and so

where o, = #: $ in the case of no debt.

In the case where the firm has outstanding debt payments X due at times r, ,9s is

the price of a compound option and is given by (a.33), where in particular, this and

ffi depend on the number of outstanding risky payments k. When & : 0, no debt

payments are risky, and the stock price is given by

st:V- i x4e-rr;
i:l

with ffi : 1. Substituting into (4.40), we find

(4.41)

(4.42)

St: Gn(Ar, [,b, T4,rro)
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in the notation of Theorem 4.7. Generally, rve obtain ffi from this and substitute

into (4.40). For the case ft : 1, the stock price is given by the Black-Scholes formula

with first argument ,4s. In this case, # i. the well known hedge ratio and is

y:* (lnAt - InIIr + (r + io2)rt) 
=.i,(A,,[, ,r1,r,o).}At -\ ofi /

Substituting into (4.40), and noting from (4.26) that for fixed t, #,: #, we find

- | d,\ Gt(ArrlI1,T1,r,o)
o:orJt,it-

A,O1(.4r, fIr, 7r ,r,o)

where At : V - Rt. When k : 2, the stock price is given using the call pricing

formula of Geske (1979). He gives the derivative ffi for the compound option with

two outstanding (risky) debt payments (Geske 1979, equation 10) as

#:t, (n,, *, tl?): d,(A,,rr2,r2,r,o)

(4.43)

where

ln .41 - tn 7 + (r -f !o2)r1

and 7 satisfies Sr,(f/) : Gt(V,fIz,rz- rr,rta) : flr. Substituting into (4.40), and

again noting 3+: ffi, we find

- t a,\ Gr(Ar,fl2,T2,T,o)d:o(Dr,t)m

9r:
h.At- lnIIz* @+f,oz)r2, 92: 

"fro\/i

(4.44)

where At:V-Rt.

Equations (4.41) to @.a$ alow us to determine o for call option valuation for up

to two risky debt payments, with the additional risky exercise of the option. When

lq > 2, equivalent equations follow in the same manner, with the general form of ffi
derived in Appendix D.2. For one or more risky debt payments, numerical solution

of (a.aO) will be necessary, since o features on the right hand side through both Sr

and the normal probabilities.

In order to make this alignment procedure clearer, we provide an example for the

case where at :0.75 and .LR1 : 0.5, and we have only a single debt payment. Since

LR, - 0.5 and,Sr : 10, we find V : 20,and consequently At : 0.75(20) - 15' We

now have two unknowns, the promised debt payment X1 and the volatility of the
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firm's risky assets a. If the debt were risk-free, we would set X1 : I}e", however

this is not the case, and we must solve

10 : BS(15, Xz - 5e"' ,r2, r, o)

0.4 : (i*a)61 (1s,,y, - 5e,",,.'2, r, o)

(4.45)

(4.46)

where (4.45) is the stock price requirement, (4.46) is the volatility requirement,

r : 0.05, Tz : 2, and X2 and a are unknown. These non-linear simulataneous

equations are solved numerically to yield

Xz:11.05358 and o :0.266926.

Substituting these values back into (4.45) and (4.46), we confirm the solution. Note

that since X2s-rrz t Bx:10, the debt is not risk-free.

Having provided a method for aligning "firms", $e can now analyse call prices

computed from (4.33). Three debt schedules are considered. The first of the three

column blocks in Table 4.2 gives implied volatility ratios for a firm with no debt.

The first sub-column of this block, with o1 : 1, corresponds to the Black-Scholes

situation, and hence has constant implied volatility and unit ratios. The second

block is for firms with a single outstanding debt payment. The size of this payment

is determined by the leverage ratio, and is found to satisfy St : 10. The time-to-

maturity of this payment is 12 - 2. The first column of this block, with as - 1,

corresponds to Geske's (1979) compound option prices. The final block in the table

is for firms with two outstanding debt payments. These are of equal size, again

determined to satisfy the leverage ratio and .91 - 10, and have times-to-maturity

Tz : L and 13 : 1.5. In every case, the continuously compounding risk-free rate is

r : 0.05.

Several interesting features are evident in Table 4.2. We note that in each block

(corresponding to a leverage ratio, and a debt schedule) there is a column of ones.

This indicates a situation where the Black-Scholes formula is the appropriate pricing

model. To the left of the column of ones, there is evidence of the classical leverage

effect, where the Black-Scholes formula overprices out-of-the-money calls (i.e. the

true call price has a low implied volatility), and underprices in-the-money calls (the

true call price has a high implied volatility); an effect discussed in Section 4.1.4.

At the column of ones, the debt is met exactly by the non-risky assets, and the

calls are priced by the Black-Scholes formula giving constant implied volatilities.
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I
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1.000
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0.934

Table 4.2. The ratio of Black-Scholes implied volatilities to the at-the-money implied volatilitg
for call options with time to maturity r : 0.5. All firms have 51 : 10 and o(52,t): 0.40. The
single debt payrnent is at 12 = 2, and the two debt payments are of identical size and made at
Tz : I and 13 : 1.5. The leverage figure determines I/r, and this and Sr : 10 are used to find the
required debt payment(s). The risk-free rate is r = 0.05 throughout.

This is an artifact of the choices of leverage ratio and or, e.8., when the leverage

ratio is 75%, U: 40 and Br - 30, since 56 : 10. Thus, when ar : 0.25, the

non-risky assets, with value Rr : 30, exactly offset the debt, and Black-Scholes is

the appropriate call valuation formula.

To the right of the column of ones, there is evidence of an opposite effect resulting

from the non-risky assets of the firm. In t,he first block, in the absence of debt, as

the proportion of risky assets in the firm falls below one, we see empirically atypical

behaviour, namely implied volatilities increasing with strike price. This phenomenon

is consistent with the call prices given in Rubinstein (1983), and is a complicated

combination of two effects: the presence of risk-free assets requiring an increase in

the volatility of the risky assets (to maintain a fixed volatility for stock price), and

the risk-free assets offsetting the strike price of the option at maturity. This effect

is further investigated in Appendix E.

We note that, when the leverage ratio is low, iucreasing the number of debt payments

from one to two has resulted in identical Black-Scholes implied volatility ratios to

the accuracy provided. This reflects the way the stock price processes have been

aligned in each case.

For both the single debt payment, and two debt payments, each leverage effect mag-

nifies as leverage increases. Further, for a given leverage ratio, each effect magnifies
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as we increase the number of debt payments. Extending this behaviour, we conclude

that a steeply decreasing relationship between Black-Scholes implied volatility and

call option strike price (as seen in Hull (1997), page 504, for the S&P 500 Index)

is consistent with a firm that is highly levered and whose debt repayment schedule

consists of many individual payments. Of course, this is a natural description of

firms in practice.

4.2.5 Properties of volatility and elasticity

Having derived a new option pricing model, we now turn to the properties of the

underlying stock price process; in particular, its volatility and elasticity of volatility

with respect to stock price.

We investigate the behaviour of volatility and the elasticity of this volatility, when

firm value follows the displaced diffusion model, and debt is not assumed risk-free.

As a result, the value of the stock of this firrn is a compound option. and in particular,

,S1 is given by Theorem 4.7. The case where ft :0 is a risk-free debt model, and

hence the behaviour of volatility and its elasticity are consistent with the displaced

diffusion model given described in Section 4.1.3. If ft:1 and dt:L, the model for

stock price is the same as for the compound option pricing model, and is described

in Section 4.I.2. Thus, we focus on the simplest remaining cases: where & : 1 and

a1 I I, consistent with a firm with heterogeneous assets, and a single risky debt

payment; and where k : 2 and a1 : 1, consistent with a firm with hornogeneous

(risky) assets, and two risky debt payments.

When k: I, and a single debt payment M is made at t2, the stock price is given by

,St : Gr(Ar,M - (1 - a1)V1e'""tT2tr,a) where G1(.) is the Black-Scholes equation,

and 12 : tz - t. As with the displaced diffusion model, we fix the value of the

risk-free assets R1 and allow A1 only to var.v with %. With reference to (4.43), the

volatility of 51 is given by

os(V,t): o
(vi - &)o(r') (4.47)

(Yr - Ar)O(il -fI1e-rrrO(zr - "Jn)
where A1 is replaced by V - Rt,l\ : I4 - R1e"2, and

l"(Y, - Rt) -lnflr f (r + lo2)r2
It- or/i

We note that this volatility has an identical functional form to the volatility for the

compound model given in (4.9), but with At : \'t - .Et as the leading argument,
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Figure 4.10. Stock price volatility for the extended compound model. The solid function is the
volatilityforafirmwithRt=25, IIr=25duein12=1,r=0.05anda=0.3,andisgrvenby
(4.47). This function has the vertical asymptote at U :.Rs and horizontal asymptote at a, and
these are shown by the dashed line. The remaining function is for a firm with no risk-free assets

with Xr = 25 due at 1 - l, and is given by (a.9).

rather than 7t. Thus, the properties of the volatility for the extended compound

model with /c : 1 are identical to those of the compound model, as are the properties

of the elasticity except that the lower bound for V is now at ,Bt rather than zero.

An example of the volatility function (4.47) for a firm with & - 25, flr : 25

due in TL : I, r : 0.05 and o : 0.3 is shown in Figure 4.10, along with the

volatility for a comparable compound option process. It is clear from the plot that

the extended compound volatility is just a translation of the compound function

analysed in Section 4.I.2. In particular, the asymptote as firm value gets small is

now at V : Rt, the value of the risk-free assets, rather than at V : 0. We also note

that the compound option volatility is bounded between the extended compound

volatility and the (constant) volatility of the risky assets for Vt ) Rt.

The second case we consider is when a firm has two risky debt payments, and

homogeneous assets (i.e. a1 : 1). In this case, stock price volatility is given by
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o s(V,r) :, har(V,x, r, r, o) (4.48)

where St(Vt,t):Gz(V,X,r,r,o),X: (Xr,X2) are the debt payments, and r:
("r,rr) the times-to-maturity of those debt payments.
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Figure 4.11. Stock price volatility for the extended compound model with no risk-free assets
and two risky debt payments. The solid function is the volatility for a firm with X = (12.5,12.5),
T : (0.5,1.5) and o = 0.3, and is given by (4.48). This function has the vertical asymptote at
V = 0 and horizontal asymptote at a, and the latter is shown by the dashed line. The function
shown by the dashed line is for a firm with no risk-free assets and a single debt payment Xt :25
due at Tt : \, and is grven by (a.9). The third function, shown by the dotted line, is for a flrm
with risk-free debt, and X1 : 25 due at 11 - 1. The vertical asymptote for this function is at
V = 25 and is not shown.

An example of the volatility function (4.48) for a finn with Xl - Xz: 12.5 with

times-to-maturity fi : 0.5 and 12 : 1.5 respectively, and o : 0.3 is shown in Figure

4.11, plotted against firm value I{. Also shown for comparison are the volatility for

a firm with a single debt payment X1 : 25 with time-to-maturity 11 : 1, both under

the risky compound model (4.9) and the risk-free model (4.3). In order to eliminate

time-value issues, we set r : 0 so that the risk-free value of all debt schedules is

Bt : 25. It is clear from the plot that the compound volatility with lt :2 (shown

using the solid line) is very similar in behaviour to the volatility with lc : I and the

same amount of outstanding debt (shown using the dashed line). When firm value is

high, and default unlikely, the volatility functions are indistinguishable; however, as

firm value decreases, while both volatility functions become explosive, the volatility

for k : 2 increases more rapidly than when k : I.

From Figures 4.10 and 4.11, it appears that we can make the following generali-

sations. As firm value decreases, when we increase the number of debt payments,

it appears that share value becomes increasingly volatile, reflecting transfer of risk
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from debtholders to stockholders. The volatility under the assumption of risk-free

debt is an upper bound for the volatility function as we increase ft, with the limit

representing the case where no risk is borne by the debtholders. It also appears

that the elasticity of stock price l'olatility with respect to stock price when k > 7

is bounded by the elasticity functions for the Geske (1979) model (with k : I)

shown in Figure 4.3 and the risk-free debt model. Thus the relationship between

the volatility functions observed in Figure 4.11 is consistent with the expected rela-

tionship. Introduction of risk-free assets to the firm serves only to provide a positive

lower bound for firm value and shift the vertical asymptote of stock price volatility

accordingly, as seen in Figure 4.10.

4.3 Data analysis

Using the iterated f-volatility estimator of Definition 3.3 to estimate volatility, we

briefly analyse a single New Zealand stock, with a view to identifying plausible

models from those outlined earlier in this Chapter. We focus on the CEV elasticity

relationship, i.€., the relationship between log stock price (ln 
^91) and log volatility

(lnd1). The gradient of the relationship betrveen these variables is the elasticity, and

for the CEV model, this gradient should be constant for all S1 (implying a linear

relationship). Although we do not specifically match the non-linear compound and

displaced diffusion relationships to what is observed, we do focus on the sign of

the elasticity. This is facilitated by a non-parametric estimate of the relationship

between the two variables obtained using loess (discussed in Appendix A). This

non-parametric estimate is also a basis of comparison for the estimated linear re-

lationship, and can be used to appraise whether the CEV model is appropriate for

the data.

4.3.L Analysis for Telecom NZ

We choose to analyse daily closing price data for Telecom Corporation of New

Zealand Ltd. (Telecom) over the ten year period 20 March 1992 to22 March 2002.

Telecom is one of New Zealand's largest companies, and as a telecommunications

company, is a prime candidate for the extended compound model. In particular, the

assets of telecommunications companies: the relatively risk-free assets dedicated to

fixedline telephone services provision; and the high risk assets that characterise the

r55
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Figure 4.12. Telecom Corporation of New Zealand share price, volatility, and elasticity relation-
ship. The top plot shows the share price series for the trading days in the period 20 March 1992
to 22 IVIarch 2002, where the labels mark the beginning of the year. The second plot gives the
volatility estimates obtained using the iterated t-volatility estimator (using the solid line) and the
moving standard deviation (using the dashed line) with a window width of 41 observations. The
third plot shows the log of iterated t-volatility estimates plotted against log share price.
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industry (including cellular phone networks. internet service provision, electronic-

business applications and more), can be closely approximated by the heterogeneous

asset decomposition of Rubinstein (1983).

The price series for Telecom for the entire period is shown in Figure 4.12. In addi-

tion, the volatility for this series is calculated using both the non-robust historical

volatility estimator defined in (3.2) and the preferred estimator of Chapter 3 based

on the t-distribution, with u : 5 degrees of freedom, as defined in Defi.nition 3.3.

As with the plots in Chapter 3, we see periods where the traditional, non-robust

volatility estimate is unduly affected by long tails in the data.

Also shown in Figure 4.12, is a plot of log volatility (estimated using the iterated

t-volatility estimator) against log stock price. If the CEV model prevails, we would

expect the relationship between these two series to be linear. In order to satisfy the

basic leverage arguments, the slope coefficient should be between -1 and 0 although

this is not essential for use of the CEV model. Generally a negative relationship

wil be consistent with risky debt models, or CEV with 0 < 2, whereas a positive

relationship will be consistent with the displaced diffusion model (with heterogeeous

assets and non-risky debt), or CEV rvith B > 2. If GBM is appropriate, we would

expect log volatility to be a constant linear function of log stock price, i.e. the

relationship is a linear one, with zero slope. Acknowledging debt in the firm, we

choose not to estimate the relationship between log volatility and log stock price

in Figure 4.12, due to the high likelihood that the firm will have undergone capital

structure changes over that ten year period, with the implication that no single

relationship would apply for the whole period. In fact, the scatterplot in Figure

4.12 shows no discernible pattern, which is rrot surprising given ten years' data are

shown.

The extended compound model presented in the previous section has several benefits

over existing models for stock price: multiple debt repayments are allowed, and these

are not assumed to be risk-free; and heterogeneous assets are acknowledged, and

modelled in the form of risky assets whose value follows GBM, and risk-free assets

whose value compounds at the risk-free rate. By modelling the firm in this way, we

ultimately construct an option pricing formula which contains many arguments, but

unlike the CEV model (for exarnple), many of these arguments should be estimated

from firm properties, rather than inferred, or estimated directly, using stock or option

price data. In contrast, the CEV model features two unknown parameters which
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must be estimated from time series stock price data, or implied using stock and

option price data, but which do not have any direct meaning in terms of the firm's

capital structure. It is difficult to motivate regular changes in these parameters;

however, it is much less difficult to motivate changes in future debt schedules, and

asset mix for the firm, since analysis of financial statements and general knowledge

of capital structure reveals that these variables change as a matter of course,

We analyse the data for Telecom over periods of a single year for leverage effects,

using the volatility estimate shown in Figure 4.12 estimated using the entire price

series. Use of the estimate from Figure 4.12, rather than directly estimating volatil-

ity for each annual period, minimises both the problem of rescaling the volatility

estimate using the sample variance, and end-effects. The first of these problems was

discussed in Chapter 3, and we saw there that the sample variance for as many as

250 standardised returns can still be grossly inflated by a small number of extreme

returns. Use of the v'olatility estimate based on all the data lessens this effect, since

the series is ten times as long, and also means we lose observations only at the ends

of the complete ten-year series, rather than at the ends of each year long sub-series.

We assume that over a single calendar year, the debt and asset mix parameters

remain fixed, and that any plot of ln dt against ln 51 is both resistant to actual

changes in these values, and also to any dependence of ol on time (e.g. through a

compound model). In particular, we hope that these effects are secondary to the

dominant leverage effect.

Figure 4.13 features the plot of log volatility against log share price for Telecom

for the nine calendar years 1993 to 2001. Added to each plot are the ordinary

least squares regression line, and the robust non-paramtric relationship estimated

using loess with a smoothing window of f . Except for those in years 1994, 1995,

and 1999, all slope coefficients in Figure 4.13 are significantly different from zero at

the 1% level, however the 1999 slope is significant at the 5% level. This provides

evidence that the Telecom share price does not follow GBM (with a slope of zero),

and also clear evidence that the slopes are not all equal, since significant negative,

and positive slopes arise.

A linear relationship does seem plausible for many of the individual years: R' fig-

ures range from 0.2% in 1995 to 49.2% in 1997, corresponding to (absolute) linear

correlation coefficients between 0.046 and 0.701. In many cases, the non-parametric

relationship provided by loess does not depart greatly from the regression line for
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Figure 4.13. Leverage plots for Telecom New Zealand for 1993 to 2001. Volatility is estimated
using Theorem 3.1 with z : 5 for the entire period, and log volatiliby is plotted against Iog price

for each yeax-long period. Superimposed are the relationships estimated using linear regression,

and the robust, non-parametric smoother loess.

that year. This supports the use of the CEV model for each of these periods; however

the fact that the slope coefficients are not stable implies a time-varying elasticity

parameter p. This is not ideal, and we would conclude that the CEV model is not

suitable for long-term modelling of the stock price. Nonetheless, given the flexibility

of the CEV to model both the classical leverage effect with 6 ( 2 and an increasing

relationship between log volatility and log stock price with P > 2, and the appar-

ently linear relationship between log volatility and log price over the period of each

year, pricing of short maturity options using the CEV model could be appropriate.

4.3.2 Reconciliation with stock price models

One implication of Figure 4.13 is that the compound or displaced diffusion models

alone cannot be used to model Telecom's stock price. While able to model the

relationships shown, the CEV model would need a time-varyi\g P, so this model is

also not appropriate. The extended compound model combines the compound and

displaced diffusion models' assumptions, and through changes to the firm's debt

structure and its asset mix, is able to motivate a changing leverage effect through
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Year 81 sr LRt Elasticity
6542.73 0.204
9655.85 0.162
11507.66 0.128
11775.52 0.111
12395.77 0.146
15713.07 0.130
15978.45 0.141
15161.73 0.285
11294.35 0.485

Table 4.3. Debt and leverage ratios for Telecom New Zealand. The level of debt .B1, measured
in millions of NZ$, is obtained from Datastream (2002) records and is "Total debt" under their
classification scheme. It combines short-term and long-term debt. The value of equity 51, also
measured in millions of NZ$, is obtained from Datastream records and is "Market value". It is
found using the number of outstanding shares times the share price on the balance sheet date.
The leverage ratio is defined in (4.1). Balance sheet dates are typically at 31 March of the stated
year, except for 2000 and 2001, taken at 30 June. The elasticity is based on the estimated slopes
in Figure 4.13, and are positive (f ), negative (-) or insignificant (0).

time. With reference to Telecom's financial statements, and the relationships seen

in Figure 4.13 we explore the suitability of this model.

Leverage ratios are estimated for Telecom for each of the calendar years in the

1993-2001 period. This is done fairly crudely, and the results are summarised in

Table 4.3. The debt figures .B1 are the Total debtas defined by Datastream (2002),

and these are collected from Telecom's balance sheet statements in the respective

annual reports. Total debt figures for 1993-99 are from the 31 March annual reports,

and for 2000-01 are from annual reports to 30 June. The equity figures S1 are also

provided by Datastream and are calculated on the date of the financial statement

by multiplying the number of outstanding shares by the market share price. The

leverage ratio is calculated using (4.1), and we find the estimated leverage ratios

decrease monotonically from 1993 to 1996, and then increase over the remaining

years. A high ratio in 1997 prevents the increase being monotonic; however the

trend is nonetheless very clear.

Spearman's rank order correlation coefficient suggests a very weak relationship be-

tween the estimated leverage ratios LRs in Table 4.3 and the sign of the lever-

age relationships estimated in Figure 4.13 using the volatility estimate; however

the agreement between these two quantities is loosely consistent with the extended

compound model. Under this model, a high leverage ratio would suggest that the

risk-free assets of the firm were insufficient to cover all debt, and hence a negative

1993 1336.4

1994 1563.3

1995 1470.4
1996 1297.1
1997 1809.6

1998 2038.4
1999 225r.0
2000 4323.0
2001 5481.0

+
0

0

+
+

0

+
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relationship between log volatility and log share price. Conversely, a low leverage

ratio would increase the chance of risk-free debt and hence an increasing relationship

in Figure 4.L2. Of course, the leverage figures given in Table 4.3 are just snapshots

of the firm at a specific date, and so do not reflect the structure of the firm over the

whole calendar year. Nonetheless, we see that where significant elasticity occurs,

50% of the time, Ihe LRl estimates are as we would expect: in 1996 and 1997, lever-

age is low and s/e see a positive elasticity and in 2000, leverage is high and we see

a negative elasticity. In 1993, the firm has a small absolute debt level, but also ,Sr

is small inducing a large leverage ratio, inconsistent with the positive elasticity. In

1998, the debt level increases and the ieverage relationship implies this debt is risky.

However, a sharp increase in equity value causes the leverage ratio to decrease. The

very large leverage ratio in 2001 is induced by low equity value, but also a large level

of debt. This particular year is least consistent with the model we are proposing.

We briefly focus on the years 1997 and 2000. The share price data, volatility and

leverage plot are shown for the 1997 period in Figure 4.L4. Superimposed on the

leverage plot are the regression line, and the robust non-parametric relationship

estimated by loess. Both of these procedures suggest an increasing relationship

between volatility and price, and the general agreement between the two supports

use of a CEV model with 0 > 2 for this period. From Table 4.3 we see that in

1997, Telecom had a relatively low leverage ratio, and this helps explain the positive

relationship between volatility and stock price, suggesting excess risk-free assets,

and suitability of the displaced diffusion model (nested in the extended compound

model, with ft :0).

ln contrast to 1997, 2000 was a period in which Telecom had a much higher leverage

ratio, both due to much higher debt levels, and also to lower equity value. The price

series, volatility and leverage plots for 2000 are shown in Figure 4.15, and a clearly

negative relationship between volatility and stock price is apparent. Once again, the

relationship is approximately linear; however this time the CEV parameter would

be consistent with the classical leverage effect. The slope of the regression line in

the leverage plot of Figure 4.15 is -0.51, yielding an estimate of B : 2 x slope *2 :

0.98. Also consistent with the volatility-price relationship is the extended compound

model with k ) 0 which models a firm with risky debt and heterogeneous assets.
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4.4

CHAPTER 4. NIODELLING LEVERAGE EFFECTS

Conclusions

We have successfully amalgamated the structural assumptions of Geske (1979) and

Rubinstein (1983) with extension to allow multiple debt payments. The resulting

cornpound option pricing formula enables us not only to price call options for firms

with heterogeneous assets and risky debt, but also allows us to price the outstanding

debt. On the basis of the results in Table 1.2, we see that the extended compound

option pricing model has flexibility to address the leverage effect identified in stock

price volatilities and embodied in the volatility smile. In order to achieve this

flexibilitS the model has a greater number of parameters than other closed-form

option pricing models; however debt structure may be relatively straightforward

to approximate using the firm's financial statements. As discussed by Rubinstein,

o1 &nd o may be best inferred from price data. He suggests time series data of

,9r; however an alternative is to imply the parameters using market stock and call

prices. As pointed out by Rubinstein, once a1 is estimated, its path through time

follows directly from the stock price path.

Rubinstein (1983) commented on the implausibility of decomposing the assets of a

firm into a single class of homogeneous risky assets and non-risky assets; however

we feel that while unrealistic, this particular decomposition more closely reflects

realit;' than competing models. Attempts to relax this assumption to allow two

correlated classes of risky assets (low risk and high risk perhaps) fail to produce a

simple formula for call price.

Analysis of historical data for Telecom Corporation of New Zealand Ltd shows some

empirical support for the model. Both positive and negative elasticity relation-

ships are found in subsamples of the data, and these shifts are qualitatively partly

explained by crude estimates of the leverage ratio over these periods. Given the

inability of any other option pricing model to successfully explain such a changing

relationship through time (the CEV model shows promise for short-term modelling

of the stock price; however, the elasticity parameter p is time-varying), we feel that

the extended compound model makes a significant contribution, but it needs to

be subjected to a more rigorous empirical treatment. In particular, we need to see

whether the model can resolve the volatility smile, and other systematic biases found

in the Black-Scholes option prices.



Chapter 5

Summary

Bearing in mind the original motivation of this thesis, which was estimation of the

leverage effect based on a robust volatility estimator, we have accomplished more

than we set out to. The highlights of this thesis for the author are the iterated

t-volatility estimator of Chapter 3, and Theorem 4.7, in which a new closed form

European call-option pricing model is derived.

The thesis begins by briefly demonstrating the difficulties associated with using

the robust smoother loess to estimate time-varving volatility of a price series.

Many favoured robust techniques use robustness weights to downweight extreme

observations. As shown, this works well when estimating location on the basis of a

symmetric distribution; however this method of downweighting is not appropriate

when the distribution in question is highly skewed, e.g. when estimating E(n?),

where & is the daily return. This example leads us to consider specialized techniques

for robustly estimating the variability, or scale, of data.

Using the limited computing power available in the early 1980s, Lax (1985) un-

dertook a simulation study to estimate the finite sample efficiency of robust scale

estimators. His results showed that the biweight A-estimator of scale, which uses

the median absolute deviation (MAD) as an auxiliary robust scale estimator, is

highly efficient for samples from three "extreme" situations: the normal, one-wild

and slash. More significant to Lax's results than the relatively poor computing avail-

able at the time, was the evaluation criterion used: Tukey's trieffi.ciency. Because

triefficiency is based on the minimum efficiency over the three corner distributions,

it is critical that the individual efficiencies are computed relative to the minimum

variance estimator. In the case of the normal distribution, this minimum variance

estimator is just the sample standard deviation; however, in the one-wild and slash

situations, the minimum variance estimators were not used by Lax.
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In Chapter 2, we derive recursions for the maximum likelihood (ML) scale estimator

for a one-wild sample, and confirm known results for the slash distribution. These

recursions are implemented using the EM algorithm and applied to simulated data.

The remaining estimators are then benchrnarked against the sampling variability of

these NIL estimators for each of the three corners, allowing the triefficiencies to be

correctly calculated.

In addition to the ML estimates for the normal, one-wild and slash situations, we

derive the ML scale estimator for the family of t-distributions. We investigate use

of this estimator with a prespecified degrees of freedom parameter /, as a general

purpose scale estimator. Two forms of this estimator are considered: a fully iterated

(N{L) estimator, and a one-step estimator based on an auxiliary robust scale esti-

mator, and one iteration of the EM algorithm. These estimators will be particularly

suitable if the true distribution of the data is close to the specified t, distribution;

however we hope that this distribution will be a reasonable compromise distribution

for the three corners, and the estimators based on it useful more generally.

A large scale simulation study is conducted and reported in Chapter 2, in which

samples are randomly generated from each of the corner distributions, various scale

estimates computed for each of these samples, and then the sampling variability of

these estimates compared. Tbiefficiencies are computed for each of the estimators

considered, and these are used to evaluate the quality of each of the estimators. We

find that, using the ML estimates as the benchmark, triefficiencies are generally lower

than those reported by Lax (1985), due largely to poor performance of the estimators

for one-wild samples. The conclusions of Rousseeuw & Croux (1993) are confirmed,

and the statistics ,S' and Qn are found to be more efficient estimators of scale than

the MAD. These estimators are useful in their own right, and also as auxiliary

estimators in more complicated estimators. Overall, the best performing estimators

were: the biweight ,A-estimator using Q,, and a scaling constant of c : 11, the

one-step f-estimator using Qn and a scaling constant of c : 4.25, and the biweight

A-estimator using ^9" and a scaling constant of c : 7. Each of these estimators had

an average triefficiency in excess of 80%.

In addition to the results for the scale estimators, results for three commonly used

location estimators are reported in Appendix B. These results are also influenced by

the choice of minimum variance estimator, and together with the results of Chapter

2, suggest that further analysis of robust location and scale estimators be under-

taken.
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In Chapter 3, we move from a statistical focus to a financial focus; in particular,

we investigate robust estimation of time-varying volatility. Volatility measures the

standard deviation of financial returns, and thus a volatility estimator is a scale

estimator. We speciflr a simple model for price returns, in which the returns have

a smooth, time-varying volatility, an assumption which is generally consistent with

the stylised facts of many financial time series.

Based on empirical regularities in returns data, we choose the t-distribution with

five degrees of freedom as a candidate for the data generation process for returns,

and estimate a slowly changing volatility on this basis. We form a volatility es-

timator based on the maximum likelihood estimator for a sample from the scaled

t5 distribution. A correction factor is developed so that the estimated innovations

for the data have unit variance, allowing identification of the unobserved volatility

component. This correction is based on the sample variance, and it is assumed

that while inefficient over the smoothing windolv, the variance will be efficient for a

sample the size of the entire series.

The results of Chapter 2 allow us to benchmark the iterated t-volatility estimator

against a high quality robust scale estimator, in the biweight A-estimator using Q'
and a scaling constant of c : 11. We simulate returns with a smooth volatility

function, with innovations sampled from the t-distributions with z € {3,5,9} and

the normal distribution. Our estimator is found to perform very well in all situations,

and provides estimates which indeed provide a close description of the underlying

volatility for series where this function is known. We notice that the weights used to

achieve robustness also act as smoothing weights, and that this improves the quality

of the resulting volatility estimates.

We also apply the iterated /-volatility estimator to real price series, and note that this

provides estimates similar to the historical volatility estimator (based on the moving

sample standard deviation) when the returns are approximately normal. When the

returns are highly leptokurtic, the iterated t-volatility estimates are less affected by

the small returns often observed, and also by occasional extreme returns. While

long-memory is present in the absolute return series, this is successfully accounted

for by the volatility estimates, so that absolute standardised returns appear random.

Based on our simulation results, and the appearance of volatility estimates for real

data, we advocate the use of the iterated t-volatility estimator with u : 5 degrees

of freedom generally. We feel that the properties of this estimator are such that
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quality estimates will result even if the underlying distribution of returns is not the

t5 distribution.

Chapter 4 provides analysis of four well known option pricing models: the Black-

Scholes model (Black & Scholes 1973), the CEV model (Cox & Ross 1976). the

compound option pricing model (Geske 1979) and the displaced diffusion model

(Rubinstein 1983), the latter three models all incorporating Black-Scholes as a spe-

cial case. The form and properties of the volatility functions for each of the models

are discussed.

The CEV model is a "non-parametric" attempt to model leverage effects observed

in financial returns, in the sense that no specification of debt is included in the

model. In contrast, the compound and displaced diffusion models explicitly model

debt. In particular, the compound model allows a single risky debt payment, and

this results in a negative theoretical relationship between volatility and stock price.

Addressing the other side of the balance sheet of the firm, the displaced diffusion

model decomposes the firm's assets into risky and risk-free assets. The presence of

risk-free assets allows the introduction of risk-free debt, and a positive relationship

between volatility and stock price results.

We are able to combine the heterogeneous asset decomposition of the displaced

diffusion model, and the risky debt assumption of the compound model to derive

the extended compound option pricing model. This has applications to European

call option pricing, as well as the pricing of debt and equity securities. We show

that the rnodel has the ability to explain both positive and negative relationships

between stock price volatility and stock price level.

We provide a brief analysis of a single stock. Volatility is computed for this stock

over a nine year period, and the observed relationship between log volatility and log

price estimated for each calendar year. We see increasing, decreasing and constant

relationships which seem approximately linear in many cases, lending support to the

CEV model for short-term modelling of the stock price. However, the CEV model

is deemed inappropriate for long-term modelling since the elasticity parameter p is

strongly time-varying. The extended compound rnodel remains a candidate model:

it has the ability to model a decreasing relationship through the risky debt features

of the model, a constant relationship through the Black-Scholes special case, and

an increasing relationship through the displaced diffusion special case. Unlike the

parameters of the CEV model, it is plausible that debt and asset mix parameters
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change through time, justifying a changing leverage relationship. Certainly, the

extended compound model will need to be subjected to more rigorous empirical

testing.

The author hopes that this thesis will make a useful start to an academic career,

and also make a useful contribution to existing statistical and financial literature.



170 CHAPTER 5. SUNII\IARY



Appendix A

The smoothing algorithm loess

The most general application of the smoothing algorithm loess is to provide a

robust non-parametric estimate of the relationship between a dependent variable

and p independent variables. In the following sections, we outline the technical

details of the algorithm, and demonstrate its application to simulated time series

data.

A.1 Analysis of the algorithm

The algorithm is implemented in the statistical software S-PLUS (see for example

Venables & Ripley 1999) and in n (Ihaka & Gentleman 1996). For a single predictor

variable, it is a robust scatter-plot smoother. It has been developed in stages, the

first of which was Cleveland's (1979) lowess, which is an acronym for local weighted

regression. Further development resulted in loess, documented in Cleveland et al.

(1992). loess will be used in this thesis in two contexts: firstly in the general

context of smoothing points (*n,At), i :1, . . . ,fl, and secondly smoothing time series

observations for which the e ordinates are equally spaced. Hence this discussion will

outline the use of loess in the two dirnensional case.

In particular, we wish to use the observations (r;, A), i:1,...,n to estimate the

function 9(r) in the relationship

Ai: g(ri) + ei (A.1)

where f; a,rp the model innovations, assumed to be independent symmetrically dis-

tributed random variables with zero mean and constant variance 42. We do not

parametrically specify the relationship g(r), however it is assumed to be locally

linear or locally quadratic in the neighbourhood of each observation r;.

t77
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A.1.L Non-robust smoothing

Assuming g(r) is locally linear, for a fixed 13 the locally linear relationship is chosen

to minimise the weighted sum of squares

Dr,@)(ao-ai- oiro)'

wi@):*(+)

(A.2)

where wi(rr)is the t.i*hb";;ood weight (possibly zero) given to the observation

yi when the locally linear function g(r) is being estimated at ri. This is repeated

for each j to provide an estimate of g(r) at each of the observations, and the fitted

values

gi: g@) : ai * P1ri.

Under the assumption that the e; are Gaussian, the local estimate at each point will

be a weighted mean closely related to the sample mean, and hence close to optimal.

The neighbourhood weights are designed to ensure that g(r) will be smooth.

Suppose we are estimating the function g(r) at the point ri. We define the distance

of each observatiotr 16, i - 1,...,n from ri as

di@):lr,i-ril

and this will be used to quantify the proximity of points in the (r, y) plane to the

point of interest. The neighbourhood weights wi@t) for i : 1,. .. , n, will be obtained

from a function W, chosen so that the weights are non-negative, symmetric, and

decrease as the distance di@) increases. The neighbourhood weight function used

in loess is the triweight function

(A 3)

and if di@) is used as the argument, this function satisfies the three criteria above.

In fact, the weights used in (A.2) are given by

w(z\: I (t - l"l')' l'l < 1

[0 lzl>I

(A 4)

where ei is the [tn]th largest of the di@) and f is chosen to ensure smoothness, but

so that the relationship g(z) is approximately linear over each sub-sample containing

100f% of the ordered data.
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Figure A.1. The triweigirt function (A.3) used ,n *""" to provide neighbourhood weights. Also
plotted in the dashed line, is the triangular weight function 1- l"l for lzl < 1.

The triweight function is shown in Figure A.1 along with the more well-known

triangular function with weight 1- lel for lel ( 1, and zero otherwise. This function

is also a candidat e for W (z), and satisfies the list of conditions above. However, use

of the triweight is favoured because the resulting moving average estimate of g(x)

is smoother than that produced using the triangular weight function.

If no robustness

mated by (A.2),

moving average,

s(x): (A.5)

where the weights r j(ri) depend only on the ri, 'i : L,. . . )n and c3. This is repeated

for each 13 and the relationship made continuous using linear interpolation.

One drawback of loess is its use of a complete smoothing window at the extremes

of the data. These end-effects are discussed in the time-series context by Gray &

Thomson (1990), who advocate a more traditional approach to estimation at the

ends of the series, namely, reducing the length of the window, and altering weights.

In contrast, at the ends of the series loess maintains the same "width" window,

even though the observations are no longer evenly dispersed about the observation ur'

at the "centre" of that window. In order to avoid issues of end-effects, where loess

properties are required in the estimate, the function g(c) is esti-

(A. ) and weighted least squares. The estimate is then a simple
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is used in the main body of the thesis, estimates at the extremes of the independent

variable (usually time) are omitted. This is particularly straightforward for time

series data, where the first and last g estimates can be ignored.

An example of the application of loess is given in Figure A.2. For the purposes

of this example, a random sample of 250 observations Xi - .A/(0,4) distribution is

generated, and Yn obtained from these using

V: Q(X,) * et (A.6)

where O(r) is the standard normal cumulative distribution function (cdf), and e6 are

independent normal random variables with zero mean and variancec.2:0.25. The

observations are plotted in Figure A.2, along with the true relationship g(r) : O(r),

and an estimate of this given by loess, with non-robust smoothing. In this case,

f is chosen to be 0.2, so for each estimate, [f"] - L : 49 observations have non-

zero neighbourhood weight ([tn] observations are less than or equal to qj, and the

observation with di@o): q7 also gets zero weight). Also plotted, in red, is a robust

estimate also given by loess. A smoothing window is chosen so that 20Vo af the

sample is used for each estimate of g(r), and we assume that O(r) is locally linear

over this window. From the plot, we see that the estimate provided by loess is very

close to the true function, and also that the robust and non-robust estimates are

very similar. There is some evidence of end-effects, particularly for large r;, and in

general, estimates not based on a symmetric smoothing window will not be shown

when loess is used in this thesis.

4.L.2 Robust fitting

An alternative specification for the innovations e; is that they are identically dis-

tributed symmetric random variables, and that their distribution has heavier tails

than the normal distribution. Robust estimation of g(r) is sensible in this case, and

is an iterative procedure that is initialised using the residuals from the standard,

non-robust smooth

ej:uj-0@i)

where g(r3) is given in (A.5). These residuals are then used to obtain robustness

weights for each observation Uj, j : L,...,Tt. Unlike the neighbourhood weights,

which were functions of the distances di@), the robustness weight for each 7 depends

only on the residual ey and consequently is related to Aj.
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Figure A.2. Scatterplot smoothing with C"u.*iun'ionovations, where the data are generated by
(A.6) with g(s) : iD(r), the standard normal cdf, and where et - i/(0,0.25). g(r) is shown by the

dashed line, and non-robust and robust estimates from loess are given by the solid black and red

lines respectively. The smoothing window is 20To of the data for each estimate.

In loess, the robustness weights are calculated using the biweight function

(A.7)

and in particular, the robustness weight di for a point yy is found using

6i: B (h) (A.8)

where rn : medi&n2-1,...,2 lrr.l. A graph of the biweight function is shown in Figure

A.3 and is compared to the triangular and triweight functions. We see that the

down-weighting given by the biweight is intermediate.

Thus, we initialise by computing (A.5) for each j, and this is used to calculate the

robustness weights dy. For each j, the estimate fi(x) is then updated by minimising

the sum of squares

\dru/x)(y;-ai-Bir)2 (A.e)
i=l

by choice of ay and 0;. This estimation procedure is related to M-estimation, which

is discussed in Chapter 2 and Appendix B. Note that the robustness weights are

independent of the point of interest u7. and hence the neighbourhood weights. A

B(z\: [0 - ")' 
l'l < 1

-\-/ [o l"l >1
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Standardls€d rGidual

Figure A.3. fne biweight function used in loess to provide robustness weights. Also plotted
using the dashed lines, are the triangular and triweight functions.

new estimate of g(ir1) results from the minimisation, and thus a new residual from

which a new robustness weight will be determined.

By default. loess iterates this process four times. Using these robustness weights,

we see that observations with large residuals have reduced influence on the sum of

squares above, and hence are not as influential on the estimate fi(r). This is very

different to non-robust methods in which outlying observations which would other-

wise desene large residuals, end up having the greatest influence on the estimated

model.

We continue the earlier example for symmetrically distributed heavy-tailed e;. We

use the s&ffi€ u1 as shown in Figure A.2, and again use g(z) : O(r) where A(r) is

the standard normal cdf. In this case, we contaminate the normal innovations ea, by

multiplying randomly selected innovations by 10. The probability of selection is fr,
and so the e6 are drawn from the contaminated normal distribution CN(fr; 10). This

distribution is discussed in Chapter 2, with an observation from it being normal with

zero mean and variance a2 with probability ]f; and normal with zero mean and vari-

ance 100o2 with probability #. t" this example, 15 observations are contaminated,

and six of the 250 realisations of e; lie outside t4o.

The data are once again shown in Figure A.4; however this plot is on the same scale

as Figure A.2, and as a result nine of the points cannot be seen. The function O(r)
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Figure A.4. Scatterplot smoothing with .ootrrnirlrt*d normal innovations, where the data are
generated by (A.6) with 9(r) : O(r), the standard normal cdf, and where e; - CN(#;10), and are

,\f(O, 0.25) with probability ffi , or ,A/(0, 25) with probability #. g(") is shown by the dashed line,

and the non-robust estimate from loess is given by the solid black line. The robust estimate is

given in the solid red line, and the robust estimate from Figure A.2 is given by the dashed red line.
The vertical blue lines indicate the positions of the contaminated observations. The smoothing
window is 20% of the data for each estimate. Nine observations are omitted from the plot, and
these extend the range to (-1.93,5.07).

is shown in the dotted line, as well as the non-robust estimate provided by loess

in the solid black line. The vertical blue lines show the position of the outliers, and

these are clearly having a large effect on the non-robust estimate. Shown in red is

the robust estimate of g(r) given by loess, and in the dotted red line, the robust

relationship for the uncontaminated data. Both robust estimates are very similar,

indicating the contamination has had little effect on the estimated relationship. As

before, the robust estimate is a good approximation to the true function.

A.1.3 Robust smoothing for Gaussian data

It is useful to get a better feel for the robustness weights dj. If the data are in

fact Gaussian, and we fit $(z) robustly, how different is g(c) from a non-robust fit?

For Gaussian data, E(6rn) x 4o, and so observations greater than four standard

deviations from the mean are given zero weight. Such observations occur roughly

0.006% of the time by chance, and so are very infrequently observed. In the following
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theorem, we derive the probability function of a robustness weight computed using

(A.8).

Theorem A.L The cdf of a robustness weight 6i cornputed usi.ng (A.S) where ei :
oZ and Z is a symmetri,c random uariable w'ith zero mean, and, probabili,tg functi,on

F, i,s

Pr(d1 < z) :

-.

t/I - t/z)

where [t, is the populati,on median of lozl.

Proof First, we note that since 6j : B(#), it follows from (A.7) that 0 < ,ii S 1.

Hence Pr(d3 < 0) : Pr(di > 1) :0 as required.

For01zll

Pr(d; < z):Pr{(t - (#)')' . r}
: Pr { l"il > att

-P'{lzl>Y
lT-eI
lL-ej

:2F(-Trf -A
as required. I
Figure A.5 shows the cdf for the robustness weights computed using (A.8), and

where Z is standard normal, and from the Student's t-distribution with y : {3,2, 1}

degrees of freedom. From the graph it is clear that in the case of normal data,

the majority of observations are given high weights, and in particular, only 10%

of the observations are given a robustness weight less than 0.7. As z decreases,

the robustness weights become progressively smaller, and in particular, for the t-

distributions, the 10th percentiles for the weights are approximately 0.55, 0.4, and 0

for v : {3,2, 1} respectively. Median weights for all distributions are approximately

0.95.

As demonstrated in Figures A.2 and A.4, there is not much difference between non-

robust and robust estimates when the rnodel innovations are Gaussian; however

the differences can be quite large when the innovations are heavy-tailed. It seems

that a reasonable approach would be to use the robust fitting procedure to obtain

residuals which can then be examined for normality. If confidence intervals for g(r)

0

2F?e:
1

z <0
0(.2<l
z)_L.

(A.10)
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Figure A.5. The cumulative probability function of loess robustness weights for normal and
t-distributed data. The solid line represents the cdf for standard normal residuals, the others
represent t1,t2a\d ts distributedresiduals,fromtoptobottomontheleftof theplot.

are sought, a decision can be made at this point whether to use the non-robust

or robust forms. As far as the estimates themselves go, provided the residuals are

indeed symmetricalty distributed, Gaussian or not, the robust estimate of g(r) will

be reasonable.

L.2 Use of loess for time series data

In the case of time series data, loess performs well as a smoother, with the time

series being a special case of the more general bivariate relationship. Unlike the

general estimation of g(a), in this case, we assume

l\: s(t) * e1

where t : I,...,T is the time index, and we wish to non-parametrically estimate

the level of the time series g(t). Since the t; o,te the equally spaced sequence t :
!,2, . .. , 7, the differences u - r j on which the smoothing weights are based are the

integers 0,=b1, ...,*:q,+(q + 1), . . ., where ej : Q : [tf] for all j. To obtain the

smoothing weights, we divide lU - nil by qr., and use this quotient in the triweight

function (A.4). The differences 0, tl, . . . , +(q-1) will thus obtain a non-zero weight,
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Figure 4.6. Location estimates for a sequence of independent and identically distributed standard
normal random variables. Two estimates are given, both computed using loess with a smoothing
window of 21 days. The solid estimate does not have any robustness properties.

and hence the estimate of g(r) is a 2q - I point moving average of the time series

observations Ut.

We appl;' loess to a simulated Gaussian white noise series, with zero mean and

constant variance o2 : I. The series itself is shown in Figure 4'.6, along with two

estimates of its level. Both the non-robust and robust estimates are very similar, and

both 19-point moving averages oscillate around the true level of zero. The down-

weighting of extreme observations is clearly evident in the plot, and this accounts

for the differences between the two estimates. The robustness weights for the robust

estimate range between 0.092 and 1.000, so none of the observations are completely

omitted from the moving averages, as we would expect for Gaussian data.

We induce heavy tails in the data shown in Figure 4'.6 by contaminating the data.

As in the earlier example, shown in Figure A.4, we multiply randomly selected

observations from the Gaussian white noise process by ten. We obtain the series

shown in Figure A.7, and this is a white noise process drawn from the contaminated

normal distribution CN(fi; 10), where there is a probability ffi of an observation

being unchanged, and the probability # of an observation being If(O,100). This

new series is shown in Figure A.7, along with various estimates of its level. Since the

majority of the series in Figures A.6 and A.7 are the same, it is useful to compare
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l'ims

Figure 4,.7. Location estimates for a sequence of independent and identically distributed con-
taminated normal random variables, with mixing parameter p = +o and multiplier ft : 10. Three
estimates are given, both computed using loess with a smoothing window of 21 days. The non-
robust estimate from loess is given by the solid black line. The robust estimate is given in the
solid red line, and the robust estimate from Figure A.6 is given by the dashed red line.

the estimates obtained before and after contamination. In Figure A.7, the original

estimates are shown by the dotted lines (in black and red for the non-robust and

robust estimates respectively). In particular, we see that the non-robust estimate

has been greatly affected by the outlying points. Where outlying points are present

in the series, there is significant departure from the original non-robust estimate,

and from the true level at zero. The two robust estimates are very similar indeed,

indicating that the outlying points have not had an influence on the estimates. The

new estimate is a very good approximation to the true level.

A.3 Conclusrons

Wb conclude that loess provides reasonable estimates of the non-parametric rela-

tionship between two-variables, which in the special case of a time-series, is the level

of the series. If the data are Gaussian, the non-robust estimate provided is a good

approximation to the true underlying relationship, and in all cases, the robust esti

mates are a good approximation to the true underlying relationship. Thus, loess
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should be useful for identifying a non-linear relationship in the presence of Gaussian,

or heavy-tailed. symmetrically distributed errors.



Appendix B

Robust estimation of location

Chapter 2 in the main body of the thesis, motivates, describes and reports on a

large simulation study of robust estimators of scale. In order to benchmark each es-

timator's performance in that study, we derived the form of the maximum likelihood

location and scale estimators for each of the distributions considered: the normal,

slash, and one-wild. The first two of these are known; however the maximum like-

lihood estimators of location and scale for a one-wild sample have not previously

been derived.

In this appendix, we present the results of a simulation study focusing solely on

location estimates. Since differences were obtained between current and previously

reported results for scale estimators, this study is a simple way of checking the

results for prominent location estirnators as reported in Goodall (2000). All but one

of the estimators considered here were used as auxiliary location estimators in the

simulation study investigating scale estimators (see Chapter 2).

El.1 Location estimators

Many of the scale estimators defined in Section 2.3 feature an auxiliary estimator

of location, €.8., the sample standard deviation relies on an auxiliary estimate of

the sample mean; the median absolute deviation uses the sample median, and the

A-estimator of scale, also dependent on the sample median, was motivated through

the asymptotic variance of an /1.f-estimator of scale. While M-estimates were not

calculated during the investigation of scale estimators, the sample mean, median,

and maximum likelihood estimates were calculated for each of the eighteen million

samples simulated.

183
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Of the location estimators we consider in this simulation, the sample mean X and

the sample median M are standard. The M-estimator is formally defined as foliows.

Definition B.l (M-estimator of location) The M-estimator of locati,onTn cor-

re.sponding to the {-functionlh(u), for the obseruations X : (X-,,,...,X") i,s the

solution to the equation

*r(#) :' (8.1)

where (;fu) i,s an od,d function, Ss is an auriliary esti,mate of scale, and c i,s a posi,ti,ue

constant.

The sample mean and median are easy to compute for any given sample; however

the M-estimate typically requires a numerical procedure to determine its value for a.

particular sample. As a result, it is common to consider an alternative, but related

estimator, the W-estimator.

To find the W-estimator coresponding to an ,Df-estimator, we substitute {(u) :
uut(u) in (B.1). Since {(u) is an odd function, tu(u) is an even function, i.e. sym-

metric about u:0. Thus. we find

v (ft: n\ /x' - 4\
3\-;s,-/'( "s, ):o

which can be reananged to give

T-rrl 
-

D?:,,(+*) "'

The tr{i'-estimator is then found by iteration of

7(k+r1 -
DT:,,* ("*g) *
Di=,r(#)

to convergence, subject to some initial values for ?dol and a given 4t- or u.r-function.

Note that, unlike the EM recursions, there is no guarantee that the l,[-estimator

will converge. Assuming convergence, the tr/-estimate is the limit of Z{tl as ft -> m.

Definition 8.2 (Biweight tu-estimator) Thebiweightw-estimatorof locationfor

the obseruat'ions X : (Xr, . . ., Xn) i,s a one-step W -esti,mator with the biweight w-

function, and is giuen bg

DT=rw(U)
r(t) -rn
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where

185

w(u): - r')' l"l < 1

otherwi,se

i,s the bi,weight function,

Il': xo 
=McSo

i,s the standardised score, M i,s the sample median, Ss i,s an auxili,ary estimator of

scale, and c i,s a posi,tiue constant.

For the purposes of this simulation, we set So to be the median absolute deviation,

and set c : 6. This estimator is a simple, yet effective, location estimator. This

estimator performed well in the Princeton Robustness Study (Andrews et al. 1972)

and was one of the two best performing estimators identified by Goodall (2000). It is

also the basis for the robust non-parametric smoother loess, discussed in Appendix

A. This is the third location estimator considered in this simulation.

8.2 Methodology

Samples are drawn from Thkey's three corner distributions: the normal, one-wild

and slash. As in the scale estimation simulations, each run of this simulation consists

of 20000 independent samples of size n:20 from each distribution, and this run is

repeated 100 times. As before, the one-wild and slash samples are not sampled inde-

pendently from the normal samples, based on 20 independent realisations from the

standard norrnal distribution. The one-wild sample of 20 is formed by multiplying

a randomly selected observation from the normal sample by 10 (appropriate since

the normal random variables are unordered, and have zero mean). The slash sample

is formed by dividing each of the normal observations by an independent observa-

tion from the uniform distribution on the interval [0,1]. Hence samples from the

three distributions are not independent, and in particular, the normal and one-wild

samples differ by only a single observation.

For each sample, the sample mean, median and the biweight u.r-estimate are com-

puted, as well as the maximum likelihood location estimate for that particular sit-

uation, using a fully iterated EM algorithm and the methods described in Section

2.2.2. Efficiency is computed as

sample variance of 7i, ...,T;

{l'

eff(T) :
sample variance of n, ... ,T*

(B.2)
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where 4. is the maximum likelihood estimator of location for sample i from the

distribution of interest, and the 4 are the rn estimates obtained from the estimator

of interest.

Goodall (2000) reports estimated efficiencies for these location estimators, based on

earlier simulation studies. His efficiencies are computed relative to the sample mean

for the normal, the u.r-estimator with MAD and c : 8.8 for the one-wild, and the

Pitman estimator for the slash. The Pitman estimator of location for a sample of

n independent and identically distributed observations with location p, unit scale,

and likelihood function 
rL

L(p,;x): ll f @; p)
i=1.

is

p(x) :

This has the minimum variance within the class of location invariant estimators of

p (Mood, Graybill & Boes 1974). Evaluation of the Pitman estimates for the slash

samples has not been pursued.

B.3 Results

In the following tables, we report various summary statistics for the estimators: the

sample rnean, the sample median, the biweight tu-estimator with So : MAD and

c: 6, and the maximum likelihood estimator for the distribution in question.

Table B.1 features the average location estimates for the 12 estimator/distribution

combinations. All averages are very close to zero, except for the sample mean's for

the slash distribution. The observed bias in this case is several orders of magnitude

greater than that for the other estimators for the one-wild and slash distributions.

Curiously, all averages are negative; however this is just an artifact of the samples

obtained.

Of greater interest is the precision of the estimates. Table B.2 gives the sample

variance of the location estimates multiplied by the sample size, n:20. In theory,

the sample mean should have variance If n: 0.05 in the normal case, and hence we

would expect to observe nvar(.f,) : 1. As we see from the table, this corresponds

closely to what is observed. We see the variances increasing as the tails become

heavier for all estimators, but this is most pronounced in the case of the sample
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estrmator normal one-wild slash

sample mean
sample median
biweight u-estimator with MAD and c: 6

maximum likelihood

-0.00029
-0.00042
-0.00044
-0.00029

-0.00072
-0.00045
-0.00043
-0.00029

-2.81703
-0.00065
-0.00062
-0.00046

Table B.1. Average location estimates, over 100 simulations and 20000 samples of size 20.

mean where the slash variance is over one million times greater than the next-largest

variance. Also shown in the table are results from simulation studies collected

by Goodall (2000) (hereafter referred to as Goodall). The results for the sample

mean, median, and the Pitman estimator for the slash distribution are attributed

to Andrews et al. (L972) and the biweight results are attributed to Thkey. These

are based on a small scale simulation study.

Goodall's figures show near-perfect agreement for the normal samples and all three

estimators as seen in Table B.2, with the greatest difference approximately -1.78%

of the figure obtained for the u.r-estirnator.

The differences for the one-wild samples are larger, and are approximately 8.9%,

-4.2%, -5.0% and 2.9Yo for the sample mean, median, u.r-estimator and maximum

likelihood estimator respectively, again, as a proportion of the new figures. In par-

ticular, we note that the smallest variance attained in the Goodall study is larger

than the average variance of the maximum likelihood estimates. In the one-wild

situation, Goodall's figure is from the biweight to-estimator with MAD and c: 8.8,

and this is clearly not optimal for the one-wild distribution.

The discrepancies for the slash distribution are I.6% for the median and 2.2Yo for

the minimum variance estimator, but l5.I% for the tu-estimator. It is unclear how

such a large difference has arisen in this latter case, but it seems unlikely that it is

due to sampling error considering the truncating weights used. Once again, we note

that the smallest attained variance in the Goodall study, obtained from the Pitman

estimator, is larger than the average variance of the maximum likelihood estimates,

again suggestirrg an overstated numerator in the efficiency calculations which follow,

an effect which will tend to inflate efficiency.

Efficiencies are computed by dividing the smallest available variance by the variance

for the alternative estimator. The al'erage efficiencies can be calculated directly from

Table B.2 using the figures given in the maximum likelihood row for the numerator
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Table B.2. Average variance of Iocation estimates over 100 simulations times n = 20. Each
variance is the sample variance of the estimates from 20000 samples of size 20, and these are
averaged over the 100 trials to give the figures in the table. The figures in parentheses are from
Goodall (2000). In the case of the maximum likelihood row, Goodall's figures are based on the
sample mean, the biweight u-estimator with MAD and c = 8.8, and the Pitman estimator, for the
normal, one-wild and slash distributions respectively, i.e., they are not maximum likelihood.

of (8.2) for each distribution. The efficiencies in the Goodall study are computed

relative to the biweight ?r-estimator with MAD and c : 8.8, and the Pitman es-

timator for the one-wild and slash respectively. In the normal case, the maximum

likelihood estimator is used by Goodall. Average efficiencies from this simulation

are given in Table 8.3, and are compared to Goodall's results shown in parentheses.

In addition the efficiency distributions from the simulation are shown in Figure B.1.

The results in Table 8.3 seem to suggest that under the triefficiency criterion, c: 6

is not the optimal constant for the biweight M-estimator. This is due to the large

differences between the normal and the slash efficiencies. As with the biweight A-

estimators, increasing the scaling constant c improves the efficiency for the normal

distribution, but decreases it for the slash. Thus, a larger scaling constant than

c : 6 is likely to increase the triefficiency of the M-estimator, since the normal

efficiency will increase, although the maximum triefficiency will likely depend on

the behaviour for the one-wild as c increases. (Note that similar comments apply

to the figures stated by Goodall; however his results imply c < 6 should be used.)

This warrants further investigation.

The differences between the variance figures in Table 8.2 have fed into the efficien-

cies, and in some instances, opposite errors in the numerator and denominator have

induced larger differences in the efficiencies. In particular, the efficiencies for the

median and tr.r-estimator in the one-wild situation have diverged between studies.

8.4 Conclusions

In summary these new, more extensive simulation results have not shown a great

deal of change from previous triefficiency results, reported in Goodall (2000). De-

estrmator normal one-wild slash
sample mean
sample median
biweight using MAD and c: 6

maximum likelihood

0.eee (1.000)
1.480 (1.4e8)
r.179 (1.158)

0.eee (1.000)

5.e55 (6.485)
r.623 (1.555)
r.23e (1.177)
1.0e3 (1.125)

6.4e1 (6.600)
5.8e7 (6.7e0)
5.432 (5.552)

oo oo )
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Table B.3. Average efficiencies for the selected location estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. Each efficiency is computed using
(B.2). The triefficiency given is the average over the 100 simulations, rather than the minimum
average. The efficiency distributions for these estimators are shown in Figure B.1. The figures in
paxentheses are taken from Goodall (2000).
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Figure B.1. Efficiency distributions for selected location estimators, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are the sample
mean, sample median, biweight ru-estimator using MAD and c : 6, and maximum likelihood.
Efficiency is computed using (B.2). The ratio of standard deviations is a non-linear scale giving
IIJ&, where eff is the effficiency.

spite this, efficiencies for the biweight ?r-estimator for the one-\{rild and slash distri-

butions are quite different. This suggests c : 6 is not the best scaling constant to

use, and a larger choice of c should result in greater triefficiency for this estimator.

In each case estimators are benchmarked against maximum likelihood estimators,

allowing for consistent comparison in future.

estimator normal one-wild slash triefficiency
sample mean
sample median
biweisht usine MAD and c: 6

100.0 (100.0)
67.5 (66.8)
84.8 (86.4)

18.4 (17.3)
67.3 (72.3)
88.3 (95.6)

0.0 (0.0)
83.7 (84.1)
ez.r (81.8)

0.0
67.3
84.8

(0.0)
(66.8)
(81.8)
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Appendix C

Scale estimation: ov€rall results

Th,bles C.l, C.2 and C.3 feat,ure the average.efficieneiies based on the log:vari,ances,

the average eltciencien based on the stand.a.rdised rariances; asd the average esti-

mates r.espectinely, fbr all estimators and all d,istributions. The tables of effic-iencies

are,sorted by the erreragc rauk of the respective triefficiencies over the 100 simula-

tions, where rank is decreasing in triefrciency" Table G"l presents the informatiou

ftorn Tables 2.8, 2,.L0, 2.L2,2.L3, 2.14 and 2.16 in the main body of the thesis.
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estimator normal onewild slash tri rank
maximum likelihood
biweight with Q" and c: 11

biweight with Q" and c: 10.5

one-step t with Q* and c: 4.25
one-step t with Q,, and c: 4

biweight with Q" and c: 11.5

one-step f with Qn and c: 4.5
biweight with S" and c: 7

biweight with ,9" and c: 6.5
biweight with ,S" and c : 7.5
biweight with MAD and c: 10

biweight with MAD and c: 9

biweight with MAD and c: 11

one-step t with ,S' and c:3
fully iterated t with u : t
one-step t with S" and c:2.75
biweight with MAD and c: 12

one-step t with ^S" and c:3.25
modified sine with c:2.I
biweight with MAD and c: 13

one-step t with MAD and c :4.25
one-step t with MAD and c :4.5
one-step t with MAD and c:4
one-step t with MAD and c :4.75
one-step t with MAD and c: 5

one-step t with MAD and c :5.25
Q"
trimmed sd with p: r :0.2
fully iterated t with u :2
trimmed sd with p:0.2 and r : 0.15
fully iterated I with u -- 3
sn
modified biweight with c: 6

fully iterated t with u : 4

trimmed sd with p: r : 0.1

interquartile range
median absolute deviation
fully iterated t with u :6
Gini's mean difference
sample standard deviation

100.0

89.4

88.0

86.9
85.7

90.6
88.1
89.0
86.8

90.8
89.4

86,2

9r.7
85.3
79.8

83.1

93.4
87.3
78.1

94.7
80.8

82.6
78.9
84.3

85.7
87.0
66.9
65.0
85.5
72.1.

89.0
54.7

50.0
91.4
80.9
39.4
37.8
94.4
98.0
100.0

100.0

82.2

82,1

81.8
81,7
82.r
81.7
81.1

80.8
80.8
79.2

79.t
78.2

76.6
82.6
76.6

76.5
76.2
75.3
74.1

69.3
69.1

69.1
68.8
68.2
67.4
68.4
70.8
86.3
78.6

87.1
55.9

53.3
86.0
88.1

42.4
40.5

79.8
26.7
11.4

100.0

82.9

83.9
85.0

86.2

82.0
83.7
85.8
86.9
84.6
86.8

88.0
85.5

87.9
76.8

89.8
84.0
86.0

89.0
82.4
89.7
88.5
90.8
87.3

86.1
84.8

94.9
76.7

64.3

63.4
54.9
95.8

92.5
47.4
42.t
84.0
87.3
37.4
11.4
7.5

100.0

82.1
82.1

81.8
81.7

8r.7
81.7
81.1
80.8
80.8
79.2

79.L

78.2
76.6
76.8
76.6

/o.D
76.2
75.3
74.r
69.3

69.1
69.1
68.8
68.2
67.4

66.9
65.0
64.3
63.4

54.9
54.7

50.0
47.4
42.r
39.4
37.8
37.4
11.4

7.5

1.00

3.12

3.62
4.2L

5.19
5.58

6.r2
/.DD

9.19
9.44
11.15

11.84

13.07
15.20
15.47
15.76

16.11

17.47
18.91
19.99
2t.02
22.4r
22.57
24.00

25.02
26.16
26.84
28.26
28.75

29.97

31.45
31.55

33.01
33.99
35.01
36.00
37.27
37.72
39.00
40.00
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Table C.1. Average efficiencies and ranks for all estimators, based on 100 realisations of the
efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.31). The triefficiency given is the average over the 100
simulations, rather than the minimum average. The rank is the average rank of the 40 estimators
considered, and a small rank indicates good performance.
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estimator normal onewild slash triefficiency rank
maximum likelihood
one-step t with Qn and c: 4

biweight with S" and c: 6.5

biweight with Sn and c: 7

one-step t with Q" and c:4.25
biweight with S" and c: 7.5

biweight with MAD and c:9
biweight with MAD and c: 10

one-step t with Qn and c:4.5
biweight with Q" and c: 10.5

biweight with MAD and c: 1L

modified sine with c:2.1
one-step I with S' and c:2.75
biweight with 8n and c: 11

one-step t with ,5r, and c : 3

biweight with Q" and c: 11..5

one-step i with Sr, and c:3.25
biweight with MAD and c: 12

biweight with MAD and c: 13

one-step t with MAD and c: 4

one-step t with MAD and c :4.25
one-step t with MAD and c:4.5
one-step t with MAD and c :4.75
Q"
one-step t with MAD and c: 5

one-step I with MAD arrd c: 5.25
fully iterated t with v : 1

trimmedsdwithp:r:0.2
sn
modified biweight with c: 6

firlly iterated t with u :2
trimmed sd with p:0.2 and r : 0.15
interquartile range
median absolute deviation
fully iterated t with u :3
fully iterated t with u :4
fully iterated t with v :6
trimmed sd with p: r :0.I
Gini's mean difierence
sample standard deviation

100.0

86.2

88.1

90.1

87.4

91.6
87.9
90.5

88.5
88.8

92.5

81.2
83.8
90.1

85.9

9r.2
87.7

94.0
95.1

79.9

81.8
83.5
85.0

68.3
86.3
87.6

80.1

65.6
56.3

54.0

85.6
72.6

40.6
39.2

89.1

91.4
94.3

81.2

97.9
100.0

100.0

82.0
80.7
80.6
82.0
79.9

79.2

78.6
81.8
81.7
77.r
77.0
76.7
81.6

76.6

81.2
76.1

74.8

72.1,

69.4

69.3
69.0
68.5

69.5

67.8
66.9
82.7

71.2

56.9
D /.I
86.3
78.9
43.5
41.9
87.2

86.1

80.4
88.2
24.0

9.4

100.0

80.9

82.2

80.8

79.6

79.5

84.2
82.6

78.4

77.9

81.0
86.3

85.8

76.9

83.9

75.9

82.0
79.3

77.7
87.4

86.2
85.0
83.7
91.9
82.5

81.3
65.3
59.6
95.6
93.6

50.1

44.r
79.0
88.6
38.9
29.6

18.9

t7.4
0.0
0.0

100.0

80.9
80.7
80.4

79.6
79.3

79.2

78.6

78.4
77.9

77.r
77.0
76.7
76.9

76.6

75.9

76.r
74.8

72.t
69.4
69.3
69.0
68.5

68.3

67.8
66.9
65.3
59.6

56.3

54.0

50.1

44.r
40.6
39.2

38.9
29.6

18.9

77.4

0.0
0.0

1.00

2.62
2.76

3.98

5.49
6.41

6.49
8.35
8.80
9.87
12.30
12.57
13.15

13.15

14.18
15.95

16.07
17.86

19.00
20.30
24.75
22.08
23.38
23.73
24.80
26.08
26.86
28.15
28.91

29.95

30.99
32.09
33.08
34.4r
34.47

36.00
37.27
37.73

39.42

39.58

Table C.2. Average efficiencies and ranhs for all estimators, based on 100 realisations of the
efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.32) and is based on the standardised variance. The
triefficiency given is the average over the 100 simulations, rather than the minimum average.
The ranl< is the average rank of the 40 estimators considered, and a small rank indicates good
performance.
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estimator normal onewild slash
sample standard deviation
Gini's mean difference
trimmed sd with p: r: 0.1

trimmed sd with p:0.2 and r : 0.15
trimmed sd with p: r :0.2
interquartile range
median absolute deviation
sn

Q"
modified biweight with c: 6

modified sine with c:2.1
biweight with MAD and c:9
biweight with MAD and c: 10

biweight with MAD and c: 11

biweight with MAD and c: 12

biweight with MAD and c: 13

biweight with S," and c: 6.5
biweight with ,Sn and c: 7

biweight with ^9" and c :7.5
biweight with 8" and c: 10.5

biweight with Q" and c: 11

biweight with Q" and c: 11.5
fully iterated t with u :1
fully iterated t with u :2
fully iterated t with u :3
fully iterated t with u :4
fully iterated t with u :6
one-step t with MAD and c: 4

one-step t with MAD and c :4.25
one-step t with MAD and c :4.5
one-step t with MAD and c :4.75
one-step t with MAD and c: 5

one-step t with MAD and c: 5.25
one-step t with ,9r, and c:2.75
one-step t with ^9" and c:3
one-step t with ^9" and c:3.25
one-step t with Q, and c: 4
one-step t with Q' and c: 4.25

one-step t with Q' and c: 4.5
maximum likelihood

0.9870
1.1286

0.7761
0.7083
0.6512
1.2590
0.6473
0.8582
0.5360
0.7843
0.9987
0.9997
0.9978
0.9970

0.9966
0.9965
1.0030
1.0010

0.9998
1.0058

1.0044
1.0032
1.3263

1.1364

1.0703
1.0379
1.0071
0.824t
0.8358
0.8463
0.8557
0.8642
0.8718
0.8100
0.8281
0.8434
0.7910
0.8048
0.8772
0.9870

2.r4r2
1.8183

0.8434
0.7615

0.6960
r.3304
0.6852
0.9266
0.5895

0.8223
1.0387
1.0510
1.0568

1.0646

1.0739
1.0846
1.0521

1.0551
1.0593
1.0557

1.0576
1.0599

1.4891

1.3029
r.2527
t.240r
r.2544
0.9638
0.9871
1.0093
1.0306
1.0510
1.0706
0.9408
0.9739
1.0048
0.9145
0.9374
0.9591

0.9606

60.6327
30.4786
2.9922
2.1994
1.8361
2.9667
1.5067
2.t878
1.4913

1.8105
2.4730
2.6327
2.7I6L
2.7987
2.8800
2.9597
2.6902
2.750r
2.8098
2.7872
2.8279
2.8684
4.2509
4.0207
4.1338
4.3444
4.8534
2.5304
2.6t67
2.700r
2.7807
2.8588
2.9345
2.5474
2.6729
2.7922
2.5507
2.6382

2.7227
0.9960

Table C.3. Average scale estimates, based on two million realisations of each, for samples of size
20. The estimators are defined in Section 2.3.



Appendix D

Leverage model proofs

D.l Properties of volatility and elasticity under
the compound option pricing model

In this appendix, we prove Theorems 4.2, 4.3 and 4.5. In order to facilitate these

proofs, we introduce and prove additional Lemmas.

Theorem 4.2 The stock price uolatili,ty under the compound option prici,ng model,

os(V,t), defi,ned in (/1.9), has the following properti,es:

1. os(V,t) > o;

2. As Vr -+ m, os(V,t) -+ o; '

3. As V -+ 0, os(V,t) -+ m.

Proof To prove the first property, we substitute for Sr and ffi i" (4.9) using (4.7)

and (4.10) respectively, to give

os(V,t): o , o

since Me-'"d > 0 and Q(91 - oJn) > 0.

To prove the second property, we note that as li -+ oo, so too does 51, and in

particular both probabilities O(g1) and Q(g, - "rfr) 
-+ 1. Thus

tim os(vr,t) : ,ly*our_ft"_*r: r.

For the final propertg L'H6pital's Rule applies since both the numerator and de-

nominator of os(V1,t) go to zero as V; -) 0, and the limit is given by

J.f1 
o" 1t',') :,llr, "X#,:,llr, ""W *

195
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-Evaluating the second pa,rtial derivative, we have

#'sn d(e')
M:Wffi

where d(s) ie the standard normal probability deuoity firnction. Nov sinee V.##
*d ajffi boti tend to 0 as W -+ 0, we ap-ply L'H6pital'o Rule again, to find

In particular,

#:;ffi1'.hl ornr

and heuce

W_tffi:_(, +r)+z
Slnce gr -l -* aS V' -+ 0,

$ueos(Vr,t) - oo

as required. D

Before seeking, to prwe Theorem-4.3,,'nrc prove Lein-mas D.1 aod D"2.

Lemma D.l
-1

where 91 i;s gi,aen in (j.S), and 6@) ts the- standard nornEl prabohilifu d,ensity fune-

tian.

Proaf Flom the definition of the sta,ndard normal denglty function

where IVo: Me-r.d, and note that 96 -t* y and gt-etfr- fi- y. Hence

lns - lnM'
orfr and o - *offi grving Zsu - hVt - lnM

tr

Me-*ofl(gt- o\fr
v,,tl

6@ + u) : Lffiu-*\*+dz -- h"=*(nzt:u')e-'s
and so

o\" -'1, : e2'e.
d@+il

Uring the def;nition of p1 grven iu (4.8), we choose

as required.

t lft

- ?"t^vr-tnM : 1
Vt
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Lemma D.,2 The followdng lim;its ap.pty:

(,r),ligl ffi : o ui),li% ffi- -r ('iii) Ji$o4,,*frr(n,- -1

where Q@) and, O(r) oru the standard nonnal pd,f anil cdl rwpectiuely, Ss'i,s giaen

i,n (1.!), and g1 is gia.en in (,(,,5).

Proo! To prove the first case, we note that L'H6pital's Rule applies, since both

numerator a.nd denominator converge to zero, and hence

o(r) 6tu\ a_o
,+1L ffi:,g%:ffi:,ilr* -"

ras required.

Rewriting the functisn of interest in the second case,, and applying L?Il6pital's Rule

gives

rim 6=(:), : h- tdjl) : rm -#6@) +.i?x)6@) - hm -b: - -l
'il- o@(a) - zlloo O(s) 'J'l- 6@) c-+-oo I

as required.

The fiaal limit is aga{n obtained using L'H6pital's Rule

,. gtSt r. ^9g+S'@d:#S@
- lirn o(gt) 

.- n$b "r-rrgbr)Lr, #d,br)fi -vr",fru,ffi
r. I:----------:=-
i'i:lo qrtA 1 d(gt) - 1-

Qt ' gro(gr) ct
L

-b;|-(J)_{---1
by the second result of thia Lernmao aad since when 14 -r 0, gt -t -*- tr

fheorem 4.3 The elasti,cdtg of staak priee ualati,tritg uniler tke compoun:d, option

prici,ng model, |s(V,t), defined, in (1.11), has the following prvperties:

L As(Vt,t) > *axf-L,-(Me-'"')/Vl;

2. As % -r oo, |s(V,t) + 0;

3, As V -+ 0, 9s(Vt,f) -+ 0,
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Proof Since all terms in (4.13) are positive, it is clear that |s(V,,t) > -1. In

addition, from (4.14)

where M' : Me-rra, and since all terms in the second term of (4.14) are positive,

and O(96) > O(g, - "rfr). The maximum of these two lower bounds applies for all

V, as required.

For the second case. we note that

"l*"T4:t
since as firm value grows without bound, the present value of debt becomes a neg-

ligible proportion. In addition, as V -+ m, fs -* oc and

as' ' t 1 ^-r ci/r'l +\ o's' - s(v1'*t
ffi: O(g,) -+ 1 and S(V,t) o:-Urr: , fk,) - 1 x 0:0

and thus from (4.13)

Jy*,, : nl* lW + s(v,,rffi)- 1 - i . # - I : o

as required.

For the third case, we note that as V -+ 0, the numerator and denominator of both

terms in (a.14) go to zero, and so L'H6pital's Rule applies with

0s:

-M'6(g, - oJn)
lim gs : lim -u'2@:: !'/d * lim *-qdkt)
t;jb -" t;;b vabr) 6;7 Vlor/r6

-M'#-^Qbt- or/ri , ri*-:-----:- + llm

-M'Q(gt-o\/rd _ Srdbr)
Va@) VoJUQ(il2

_ -M,O(gt - ot/n) , M,- vro(g)

ab)'
a k ) d ( g r) + s I -Lv, 

".6) d k r): Iim
V-+o o(g,) + vffid@) t;;b o rfra\)z + v,o r52ab)#-*u,ri6b,)

L - --t*-,----: lim -, , -t ,, , * lim 
' vilt/Go(gt)

v,j'n o(g') * VQbt) ' iilb ^ y;Q(gt) -qM'6(ot-o./ii| IVI'6(ot-o./7i Y'tt6(o,\ | 'MrQfu1-o,/rfi ' M'Qfu1-odVj) 6(st)

-1 1-(-1) nI

0+1 0+2 -

where the final result follows from Lemmas D.l and D.2. n

Before seeking to prove Theorem 4.5, we prove the following Lemma.

Lemma D.3 When V < M, the following limits apply:

-1

,. o(9r) o
rtur -;-;----i----:

"a-+o S(g)r/n lnV - ln M
(i,i,) Ixffi:,

where S@) and Q(r) are the standard normal pdf and cdf respectiuely, 51 i,s giuen

i" (4.7), and g1 is giuen in (4.5).
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Proof For the first case, we note that since Vi < M, as 14 --) 0, 9t ) -oo, O(91) + 0,

and /(gs) -+ 0. From the definition of 91, it follows that

1 ln 11 - ln hI - (r + Lo')ro (D.1)
2ra "rn

and this diverges DS 14 ) 0. Applying L'Hopital's Rule to the limit of interest

og, -ora

li* ,,o!e') :
ra-+o Q\91)ylra

,. Stfbr)
):Y,uffiw:1,'s

ob)#
a}-u,-,odb)-J-ngtb(ilH

:o-ry-:--lnvr-1n*

by the definition of 96, and the observation from (D.1) that Jn* -) -oo as 74 -4 0.

For the second case, since V < M, in addition to the limits given in the proof for

the first part of this Lemma, 56 _> 0. Thus applying L'H6pital's Rule, and taking

ffi from (4.11), we have

ture-rra luffi * re(e1- ",/d]dkr) - s,gr|(g,)*

-v, 

rn a b t)" + v o J n2 o ( g ) d G r) #,.

):+,m(Ds)

rakt-o JG)zJrd - 
Stst*zJn

ofbt-oJri oVtQk
,/ve
t) (D.2)

o(gr)2 -. arao,(gt)h
Vbkt)z ' Qkt)

where we divide by the first term in the numerator and selectively apply the identity

in Lemma D.1. Since, from Lemm a D.2, ffi -+ 0 as r -+ -oo, both the second

term in the numerator and the first in the denominator decrease to zero at a faster

rate. The third term in the numerator has the limit

1+: lim
f4-+0

lnV -lnM

from the definition of g and standard properties of limits. From (D.1) we note that

as 
"4 

-+ 0, H -+ -oo and consequently,

lim
2St

tVtoil(s) lt t ,Q(gr-",/ii2r/rd f' ,rn L' ' oM"-"a6@2-oy'Vf,) l
ii-:o oy,q1s)(rltu*") ;;:o ou l- n,o{n,) + okt) *{r t Yr1

1 , r$fu;or/a)2y'a
L -T ;M--doet-"J-n

i. zsr#
llfil -;--;-;--= -
ra-+o oVtQ\gt)

: lim
ra__+o 

,6, -e,* &(uH)l
16-+0 _hVJn M _ ,nto"" 

,O + p!a)



where

p?a):fr!(t/fu\'ooro \- / an)
is a polynomial of order r4 with limit as r7 -+ 0 of zero (from the definition of ffi
given in (D.1)). Thus

,. zSt# o
|:+';Veil: -rnv, - 1,'r'

and it follows from (D.3) that

i. 2Srgr#\/n
::ry'-;V4s)-- - -1'

We now turn to the final term in (D.2), and write

):v,W: ["]* 
4,,.,nH] .1* #%

: lim l-rlnV - lnM 
- 

(r + io2)ra] -o
16-+0l o o llnV-InM

- -zltnv-rnMl . --1 =L o .l lnyt-lnM:2 (D'5)

from (D.1) and the first result of this Lemma.

We now substitute the limits given in (D. ) and (D.5) into (D.2), and find

,. Srdk) 1+0-(-1)_:r):+,u;rnaffi: o + 2

as required. fl
Theorem 4.5 The elasticity of stock pri,ce uolati,li,ty under the cornpound option

pri,ci,ng model, ?s(V,t), defi,ned, i,n (1.1Q, has the followi,ng limit

lim gs(vr,t) - {o ^" ':t Yr4-+o *' -' t 
l.-# V> M.

Proof First, consider the case when U > M. As r7 ) 0, gt -+ oo, where 91 is

defined in (4.8). In addition O(g,) -+ 1, and 6k) -+ 0. Thus

ri+^ as(v,,') : 
"l'T, lW . mfrl : -V.* ["]* m]

and since $* i. the pdf of a normal random variable with zero mean and varianceo \/Td

o2r4evahated at ln[-InM *(r +lo2)16, the limit d,s 
"4 

--) 0 of this function is

0, and 
n,[

lim 0s(V1,t) : -'#ad-+U Vt

APPENDIX D. LEVERAGE MODEL PROOFS

(D.4)
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as required.

Second, we consider the limit when U < IVL In this instance, &s T4 --| 0, g1 -+ -oo,
O(gr) -+ 0, and db) -+ 0. In addition, S1 -+ 0. Thus

tim d.s('n, f) : lim l-Me-',"d0(gt - 
o\/n) * , s'4-!') ,^l to.ul#lib-ot'" za--+o I WG) - Vr";rr61ny1

features zero numerator and denominator in both terms, which we now consider

separately. The first term is

,. ,, -M"-'"a0(gt - or/-n)
ltul 

-

;;:o Vo(gr)
rMe-"au1g, - o\fr) - hI"-"o\b, - "tfr) (* - *

201

vob)ffi
rAGt-oJn) 1 , o

,,*^;-6W*-r-r-,Jvi$o
- 

ttlll
16-+0 1

where the denominator follows from Lemrna D.1. As noted in the proof to Lemma

D.3, as ra ) 0, both ffi and J"* diverge, and from LemmaD.2;8 -+ 0 as

tr -+ -oo. So the first term decreases at a faster rate, and hence

lim -Me-"aO(g, - "r/n) 1 (D.7)
r4-+O

The second term of (D.6) has limit

Vakt)

: lim
74--+0

):nffi6:'
from Lemma D.3. Thus, substituting (D.7) and (D.8) in (D.6), we obtain

"lig5d"1t't't) 
: -1 * I : o

confirming the second case and completing the proof.

(D.8)

!

D.2 The compound option pricing model

In this appendix, we provide an alternative proof for Geske's (1SZZ) compound

option pricing model with generalisation to arbitrary debt repayment dates. In

addition, we derive the general form of ffi for this model. This latter result has

application to stock price volatility estimation under this model.
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Theorem D.4 The stock prici,ng model of Geske (1977) can be generali,sed to al-

low general d,ebt repayment dates, satisfyi,ng the i,ncreasing sequence fi 1 ... 1 tn.

Equity ualue at time t <-t1 i,s giuen by

St : G^(V, X, r, r, o) : VQ,(hr; {p;iD - i Xpe-rrxQo@6 - o1/ri; {niD (D.g)
rh=1

where firm ualue V i,s a GBM process wi,th uolati,lity o, X : (Xr, ..., X) are fi,red

debt repayments wi,th r : (ri, .. .,rn) where rt : t,r - t i,s the length of time until

repayment 'i, r is the continuously compounding ri,sk-free rate, Q"(hr,; {pni}) is the

cumulatiae di,stribution function of a standard n-aariate normal random uari,able

with correlati,onmatrix gi,uenby {pni} forl <,i, j <n, eualuated, ath1,...,hn. Also

" _ loV-lnlZ;+Q+loz)ri,,,_T
rr I the ratre of V which solaes 51,(V) : yo 1 < i < n - Lvt: ( --" |.X" L:n

tr
Pni: rl) i<i

u ,j

and Py: Pi.j.

Proof We will use an induction proof for this result. We begin by considering the

case where n:2, and noting that for any time t in the interval ltr,tr), the stock

price can be written

51 - s-r(tz-')Ep{oru* (V, - &, 0) }

where I{ is a GBM process under the risk-neutral measure Q. It is well known that

the solution to this integral equation is given by the Black-Scholes formula

St: Gt(V, Xz,r2,r,o) : UO(hi - X2e-razQ(hz - orfr) (D.10)

, _ loV2-lnX2+Q+|o2)r2*2:T.
Geske (1979) shows that the stock is a compound option, with value at t 1t1

31: s-trrPp{max(S1, - Xr,0)}
r: e-rrt 

Jr,,r*,(s,, 
(") - x)sQ)dz (D.11)



D.2. THE COMPOUAID OPTIOI{ PR/C/.^.IG MODEL 203

where,Sr, is a function of V, (specifically (D.10) with t:1r) which is in turn given

by

V, : % exp{ (r - f,oz)r1 + o1/nlz)} (D.12)

where Z is a standard normal random variable. Here we choose to use -Z for

algebraic convenience later in the proof.

Firstly, we note that ,S1, > Xy implies [, > S-l(Xr) : fi where S(%) is given by

(D.10), and ,S*1 is the inverse function. Noting from (D.12) that %, is a function

of Z,we solve for the critical value of. Z, and, find that at t ( tt,Vr;' fr, implies

In% - lnh + ft - lo2)r1z<-ff-h1-o\n.
We now write the explicit form for .51, using (D.10)

St, : Vr@(h!r) - X2e-r(rz-'na@!z - otfi - rt\

where

Lt ln %, - ln X2 + Q + lo2)(r" - ,t),"'2- oJrz_n

- 
ln:% + ? - Lro2)n + ot/n(-z) - ln xz + U + io2)(rz - rr)

o1/r2 - 11

nr- rQ(z+o\F)

and also note that e-"tV,(Z)dV) : VdQ * oJn), and

h!2 - o{r, - ,t :
h2-orfu- r[+,

Unlike hl, which measure time from h, hz measures time from the current time

tltt.

(D.11) consists of three terms, two arising from 51, as given in (D.10) and the third

relating to X1. Utilising the above algebra, the first term of (D.11) can be written

1-11
T2

1_1
T2

:r, In'd(")o(ffi)r,
: Vez (nr,or,, ,ftJi)



The final equality followe from the p.roperties of the bivariate normal cdf (Curnow

& Dunnett !.962, equatiion ?.4), which states in gener6l, that

o,,(tu;{poi}) - [o' d(a)d - (k'*' - oo" \- l-*. )iDn-r16 ;{eu'})dz (D'13)

where
P+i - PttPir

r.J-.

/(1 -d,t1_4,)
is the psrtial correlation coeffiaient.

The secondand third terms of (D.11) become

fht-o,,El (h2-o1ft- li'\ II lxr"-,.@1#) *x,r-'",lOk)a,r_o L \ {r_7 I r
: Xze-r'.f', (an - or,Frr,hz- s\fT.z, rH * X1e-?rr([(h, - otFt).

Thuo, if there are only two outstanding debt p-aynentn, (D.11) can be writtern

,s1 - FsiD2 (ur,r*, l#) - x2e-tas2(0, - oJdnh2 - o1fr2, rf*)

APPENDIX D, LEVERAGE MODEL PNOOTS

-'X1l-rtt@(lar - otffi (D.14)

and (D.9) is thus trr,re forn :2.

We now a,ssume that theform of ,S1 grven by (D.9) rs comect for n-l d.eb,t payments,

and show it true for ra paymenls, In pa,rtieular, (D.g) yields the price of the stock

at time f1 ( fs as

9t' = v't,&*-r(Ni+r; tpir)) - i x6e-'/*Q6-, (ni*, - ,6; {4}) (D.15J
E2

where 4+t-h+t- t1 for i,=Lt...rn-L,Vt";i,s giveo by (D.12),

ht",. _lnVr, -h7;+r +(r+*d)y',*,.-r+r 
"1ffi

17 - l*"valueof VwhichsoJves grrnr(V):X;+1 1<0< n-Zrl+t : 1 rr[X" 'i,:n-L

and dia = pL.

r<i<j
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The ralue of the stoek at tirne t < tt is given by

205

,Sl: e-""tE8{max(,9r, - Xt,0)}

and substituting the forur of ,S1, given bv (D.15), we must ernluate tbe integral

equation

(D.16)

As for the case where n = 2,5r, ) X1 impliee Z 1 kr-ofr and agein e='nV5r(Z)i@) :
V.6(Z + orfr).We note that with some algebra, n'e can write

h|.+r -
ln I,|r - lo 7r+r * (r * io')4*, tu+t - ,l#rtt + orfr)

S1: s-'n [ (st,(u) - xt)4@)d,2.
J.gr" >xl

1-#
for i : 1,.. ., n - L and also tbat pt, is of the forrr

for 1 < i 1 i,where hi - rE t", i < i, The ual-ue sf the sto'ck at time f1 consists

,of n terms (as, stown ia (D.lli)), a,nd an (rz + l)th term for S; is obtaiued in (D.16)

througt Xr. IVlnting the appmpriafe substitutions in (D.16), the ffrst term is grven

b'Y

f
u-'", l_ - %,(e)iDu_r(hl+,; {d"iU6b)az

J93')x1

#(" +"Jn)
,U,t)a,

(L-

,) *

= YrQ"(fu;tpu}) (D.17)

by (D.13). As for the case when n:2, the final terrn is

,-,,, I Xft@)dz: s-rr1 [^'-"^ *xS@)tlz= xre-trriD(h, - or/n).
Js'rtx' J -q

-l - rrJ rtL.rJL
Ftj:Pii.r:-

,,1(1 -dr)(l -4r)

: Vro"(fo;{ai})
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The remelning terms are gtven'by

rh1-or181 - n

e-'n l"L 
-Y '-Ix*r-,,i,6(,r)oo-, 

(IoL*-, -"{ri* ;{/r/)az,f-* H
tu,*, - "tm - tl-#J ;tdit\ a,J4, /

: f Xr" -rr4 en(ki - o tfr;{pri})
h=2

by the rcsult (D.13),, as before. Thus, coarbining terms we find

St : lliiD,n( k,r;{pttl)- i*or-"'iiDr(h - olfrs;{eti!)
&=[

as required, and^ the induetion proof is cornplete, tr

Theorem D,5 ff stock price is g:iuen bg (D.9), the partial d,erfuatiue with res, ect,

to firm aalue at time t ts gdven bg

# =iD,(fu; {prt}) (D.18)
d'Vt

where atl, terwrc and notati,an are itr;efi,ned, in th,,e sta,temerrt. of Tkearem D.l.

Preol Once again rre use an induction proof. The base,ca,se is prwided by the

familiar Black-Seholes hedge ratio, Hh - A(hr). Wb now aseume the theorem true

for n - 1 outstanding debt payments, and:seek to prove it true for n payrneuts;

Florn Thwrern D.4, stoek price at tine t < tr is grrren by

Sr : Hto*- ( ht {pu}) - t x 1,e-rrr' iD o(ha - o vfta;{pv})
&=1

: e-nt I--"^ ,sq(') - x)Q@)d,z

wh.ere $, is girren by (D.15). Differmtiating,Sr with respect to I{, we have

"Y*: 
u:,"n L'n 

as,'#) 
d.k\dz.#,[s,,(h, - sin-x,]d(r,, - o,Fr)

- e-irl I::'^ ek-+ar)aa,,rrredQ's':&) g@)d,z
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since ^9a(z) 
: Xt when z = h1- o{6., and.VL, - Vrs(t-l,,fbr+E'F?21. doouming

the theorem is true for n-1 palments, we a,ssulne W = iDo-r(hj*r; {4i}) follor
ing the notation of the proof to Theorem D,4. Noting that. e-*"'nto*FlFa)Q@) :'
6k + 6fi), and re'writing ht*r, we find

Finally, rve note this iutegral vns solved in (D.tZ), grving

g: o*(h; {pti|)au

as requir'ed. If tnre for n - I payments, the theorem is true for n Bayments, ild
since the theorem is tnte for one payment, by induction, the thgo-ren is true fur all

(z+ a5t1
JI
r;+t

tl
ti+r

1- ;ur,r)a,

n.
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Appendix E

Explaining the inverse leverage
effect

The inverse leverage effect was seen in Table 4.2 in the situations where the firm

has risk-free assets which completely offset the debt of the firm, and augment the

exercise price of the call option. This situation was first described by Rubinstein

(1983), with his option pricing formula a special case of (4.33). In this section, we

give an intuitir,'e explanation of how the inverse leverage effect (i.e. Black-Scholes

overpricing in-the-money calls, and underpricing out-of-the-money calls) arises.

We consider the call prices on which the implied volatility ratios in Table 4.2 are

based, and these are shown in Table E.1. In particular, we are interested in the

behaviour of the call prices when risk-free assets are introduced to the firm's asset

portfolio, without any change made to the instantaneous volatility of the risky assets.

This effect is most simply examined when there is no debt, and therefore St : V
(an alternative would be when the firm has risk-free debt, and the efiective exercise

price of the option is increased). This corresponds to the upper left block of Tables

4.2 and E.1.

By ensuring all "firms" have ,Sr : 10 and o(^91, t) : 0.4, the true call price is a

special case of (4.33), and is based on the Black-Scholes formula. Narve pricing

of the option (i.e. ignoring the possiblility of debt or heterogeneous assets) would

use the Black-Scholes directly, with St : 10 and o : 0.4, giving the option prices

obtained when dt : I for the case of no debt. In general, these will not be equal

to the true call prices, given by (4.33), unless of course the firm has homogeneous

a^ssets.

Because of the volatility matching process, the true call price is a complicated func-

tion of ft1 and thus a1 = 
y3# : *#, which features in three arguments of the

209



0.75 0.5 0.75 0.5 0.25

r.776 1.752 1.702 1.539
r.fig r-231 1.214 1.145
0.837 0.847 0.864 0.891
0.551 0.574 0.617 0.7L4

2.481 2.457 2

1.794 r.776 L.740 7.622
r.244 L.239 r.227 l.l82
0.829 0.837 0.851 0.882
0.533 0.551 0.585 0.671

2.489 2.457 2.362
1.810 1.799 t.776 r.702
r.249 t.245 1.239 t.2r4
0.822 0-827 0.837 0.864
0.s17 0.527 0.551 0.617

2.522 2.516 2.503
1.826 1.82t 1.811 r.776
1.256 r.254 1-249 L.239
0.818 0.819 0.822 0.837
0.504 0.508 0.517 0.551
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Two debt payments
1 0.75 0.5 0.25

I
10
l1
t2

2.481 2.457
1.794 r.776
I.244 1.239
0.829 0.837
0.533 0.551

2.409 2.273
t.740 t.622
r.227 1.182
0.851 0.882
0.585 0.671

R

I
10
11

t2

I
r0
11

t2

1.811 1.799
1.248 r.245
0.820 0.826
0.514 0.527

2.457
r.776
1.239
0.837
0.551

2.362
t.702
T.2L4
0.864
0.6u

2.i'21 2.505 2.457
1.828 r.822 1.811 r.776
1.253 r.252 i.248 1.239
0.812 0.815 0.820 0.837
0.496 0.502 0.514 0.551

Thble 8.1. Call prices for options with time to maturity r : 0.5. All firms have 51 : 10 and
o(51,t) = 0.40. The single debt payment is at 12 : 2, and the two debt payments are of identical
size and made at rz = l and z3 = 1.5. The leverage figure determines V1, and this and St : 10 are
used to find the required debt payment(s). The risk-free rate is r : 0.05 throughout.

Black-Scholes formula: the first (usually the price of the underlying asset), the sec-

ond (usually the exercise price of the call) and the last (usually the constant volatility

of the underlying asset). In the presence of risk-free assets, for firms aligned so that

the stock has the same volatility regardless of at -- 0t'=!t, these three arguments

are: ,S1 - Rt:a151,, K -&e" - K - (1 -ar)S1et'and oESt-,_R, - a respectively,

and the call price is given by

ct: atStD(r,) - lK"-" - (1 - cr)sr] Q(r, - *rt)
where \Me are assuming the special case of no debt (giving 12, : Sr), with

lnatSt -In(K - (L - at)S*") + (r + L#)r
olV'

\Aften we increase the proportion of firm value held in risky assets, a1 (through a

decrease in R6), the first argument increases, which ceteri.s paribus increases the call

price; the second argument also increases, however this decreases the call price; and

the last argument decreases, also decreasing call price. What we see in practice

depends on the size of K.

As seen in Table E.1, when K is small, so that the call is in-the-money, call price

increases with c1 and Black-Scholes overvalues the call. However, when K is large,

(E.1)

wt-



2TT

K= 10

K= l1

K=12

alpha

Figure E.1. Oisptaced diffusion call prices for options with time to maturity r : 0.5. All fums
have 51 : 10 and o(51,t) = 0.40, but a variable o1. Each contour is for a fixed exercise price, and
is a plot of the call price C1 against o1, &nd are plotted for K at intervals of 0.25, with the integer
values indicated. The risk-free rate is r:0.05.

so that the call is out-of-the-money', as or increases, cail price decreases, and the

Black-Scholes price is too low. Calculation of

AC, ^l-, - -.1 '/=
ffi:s, lo1r,1 -o(r, -tJnl-tlK"-" -(1 -o')s'l 6@t-*Ji)

reveals that the sign of this derivative depends on a complicated function of the

parameters. Nonetheless, it can easily be plotted for any choice of parameters.

Generally the call price function (E.1) is monotonic, as shown in Figure E.1; however

it is not necessarily so. The call price contour for exercise price K : 10.5 is one

such case, and this is shown in Figure E.2. As seen, the range of call prices is very

small; however the non-monotonicity is clear.

Regardless of the relationship with cvs, the relationship between implied volatility

and strike price for any fixed a1 I I is consistent: an increasing relationship, and

this is shown in Figure E.3. Since this relationship is non-standard (compared to

the traditional leverage effect discussed in Section 4.7.4) we refer to it as the inverse

leverage effect.

How the inverse leverage effect arises becomes clear when we examine the probability

density functions for share price at exercise, ,f",*,(s), for the aligned processes (with

oo-t .^drt
do

1.0
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g€
E-0

H
i

0;6

6,phe

FiS,Ue 8.2. UieptaoeU diftsiron call prices fioi sptioris nrith exe,relse pnce K:10.5 and time to
maturify r = 0"5. AU finns hArc gr = 10 aad o(,$i,t) :'104, but a..vaniable or and vre plot the
catrl Brioo q against q*. Ti-re r-i$k ftee ra.te is rr = 0,05.

a$Ed
o

E

Fa
Oe
@

0.8r

glg.h!

Figpre E.3. Displaced diffirsion Btrick-€&oles iniplied rro]atilitie for optiono with time to matu-
rity r = 0.5. AII firms have 9r = 10 and a(S*,t) = 0,40, but a reriable a1. Eaeh contour is for a
fixed,exercise price, and is a plot of tbe Bfl implied volatility agaiust a6. These are plotted for K
at interrrals of 0.25,, with the integer values indicated. The risk-free rate is r = 0.05.



2L3

and without non-risky assets), and also the function max(s - K,0)fsr*"(s) which is

integrated to yield the call price.

Theorem E.l (Displaced diffusion density function) The density function for

a di"splaced diffusion process, defined by Sr*, : V+, and with V1 specifi,ed i,n (4.27)

and (1.26), giuen 56 is giuen by

.fs,*,(s) :{':'.'(t-(r - a1)spr") "t (1 -a1)^91e"\-' 
[o s<(1 -o,1)Sp"

where A1a, i,s a lognorrnal rand,om uari,able wi,th parameterslna2Sl1- Q - lS)r and,

o2rf a!.

Proof From (4.26) we note that

St+': Ar+,*(7-a2)SP'"

and since .41 is a GBM process with volatility param eter o f a6 given A1, Ap* is a

lognormal random variable with parameters lnarSr* ? - i$)" a"a o2rf o2r. Thus,

fors> (7-a)Sp"

Fs,*"(t) : P(,sr+" ( s) : P(Ar*,< s - (1 - a1)$e'") : FA,*,(" - (t - a)sp")

where FAr*,(r) is the cdf of A4, given 46, and for s ( (1 - o6)S1e", Fsr*,(s) - O.

Differentiating the cdf with respect to s, we obtain

( " r /.

.fs,*.(") :I':'*'(t- 
(t -a1)sfir") "t (1 -a1)'.s6e""\-/ 

[0 s<(1 -a1)Sp'"

where f ar*,(x) is the pdf of All" given ,4s, &s required. !
The density function for a geometric Brownian motion process ,91a", given Sr : 10,

o : 0.4 and r : 0.5, is shown by the solid line, in Figure E.4. Under the GBM

assumption, corresponding to o1 : 1 in the case of no debt, the share price at

exercise ,St+" is a lognormal random variable, with parameters ln Sl + (r - tro'),
and o2r. Also shown are the density functions for two displaced diffusion processes,

both with Sr : 10 and o(,91, t) : 0.4, and with at : 0.75 and ax : 0.5 (shown

by the dashed and dotted lines respectively). The form of the density function

for ,51a" in the displaced diffusion case is related to the lognormal, and is given in

Theorem E.1. While the GBM process has a small probability of falling close to zero,
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the displaced diffusion processes are always at least the size of the risk-free assets

(7 - a) Sp". In addition, the mode of the density moves to the left as 06 increases,

and the right tail becomes heavier. In particular, the GBM density overestimates

the probability of a sharp decrease in stock price, underestimates the probability

of a small decrease or small increase, overestimates the probability of a moderate

increase, and underestimates the probability of a large increase.

In order to see how the inverse leverage effect results, it is useful to examine the

plot of max(0,s - K)/s,*"(s). The call option prices are obtained by integrating

this function over positive values of s and discounting, i.e.

(E.2)

The integrand of (E.2) is plotted in Figure E.5 for or € {1,0.75,0.5} and for K e
{8, 12}. In the left-hand plot of Figure E.4, eorresponding to the exercise price of

K :8, for small values of s > K, the function is greatest in the GBM case; however

at the tail. the function is greater when a1 11. The overall effect is demonstrated

through the integrals evaluated in Table E. 1 , where we see the call prices are 2.457 ,

2.425 and 2.362 for a1 : 1, 0.75 and 0.5 respectively. Returning to Figure E.4, we

conclude the additional area for the GBM case at the maxirnum of the integrand

outweighs the area lost at the tail. Thus, when the call is in-the-money and the

stock price is a displaced diffusion process with a6 ( 1, the Black-Scholes formula

overprices the call option, due to the fact that it overestimates the probability of a

moderate positive movement in stock price.

In the right-hand plot of Figure E.4, corresponding to the exercise price of K : 12,

we see a different effect. In this case, again the heavier tail of the density functions

for a1 < 1 is amplified, however the effect at the mode of the probability densities

is not as great, since K is too large. Once again, the overall effect is found in Table

E.1, where we see the call prices are 0.551, 0.574, and 0.617 for a1: 1, 0.75 and

0.5 respectively. Returning to Figure E.4, we conclude the additional area for the

GBM case for small s is outweighed by the area lost at the tail. Thus, when the call

is out-of-the-money and the stock price follows a displaced diffusion process with

01 I I, the Black-Scholes formula underprices the call option, due to the fact that
it underestimates the probability of a gross upward movement in stock price, an

effect which in this case is more pronounced than the overestimated probability of

a moderate increase. This probability has arisen, because the risky assets have an

inflated volatilityin order to achieve o(Sr,t) :0.4, i.e., they have volatility of a1.

fe
Ct - e-" 

./"=o 
-u*(0, " - K),fs,*, (s)ds.
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Igo

Figure 8.4. Displaod diftrsion density funetions for Sr+r' with ,St = 10' a = 0,4, r - 0.6,aud
r - 0.05. The solid lfuio ia for tbe GB-M procecs with or - 1; tbe dashcd line ior ,tho process with
cl : 0.76 asd the dotted line for the lroeess with er - 0.5. The vertical lines plotted in greyo

eorrespond to ei(ercise pricesr K - 8,a,nd 12.
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Pigure 8,5. Displaced diftrsisn call pricer are obtaine-d by inte$atiqg the firnctions ghouro:

maN(O, s - trf)/--s,*, (s) fro^ s : 0 to oo, corr€spo[ding to the denei$ frurctions .fsr*,1o1, sho-wn iE
Figure E.4. The solid line is for the GBM process with dt = ti the daahed line for the proceus

with q = 0.?5 curd the dotted line for the proeess with ar = 0.5. Stock price is $s : 101 o = 0.4,
* :0.5 and r .- 0-05- Th6 plot qo th€ lbft has K = I nnd the call ie in-the-monry- The plot on
the right has f( = 12 arrd the call is olt-of-th*moaey.
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These effects flow through to the Black-Scholes implied volatilities on which the

ratios seen in Table 4.2 arc based, resulting in a positive relationship between exercise

price and implied vnlatility, which is the inverse of the traditional leverage effect.
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