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Abstract

Using volatility estimation as the underlying commonality, this thesis traverses the
statistical problem of robust estimation of scale, through to the financial problem

of valuing call options over stock.

We use a large simulation study of robust scale estimators to benchmark a non-
parametric volatility estimation procedure, which not only uses techniques which
are particularly suited to observed financial returns, but also addresses the problem

of bias in any robust volatility estimation procedure.

Existing option pricing models are discussed with careful study of the assumed
volatility and elasticity of volatility with respect to stock price relationships for
each of these models. An option pricing formula is derived which extends existing
methods, and provides a closed form solution which can be readily computed. Pre-
liminary analysis of real price data suggests this model is able to explain observed

leverage phenomena.
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Chapter 1

Preliminaries

This thesis was motivated by an analysis of the constant elasticity of variance (CEV)
option pricing model (Randal 1998). Empirical analysis therein focused heavily on
the relationship between the log volatility series for a stock and the log stock price
itself. This analysis highlighted two features of financial returns: the returns are
heavy-tailed and have evolving volatility, as acknowledged in the volatility estima-
tion literature. Surprisingly, we also found that this evolving volatility is difficult to
estimate robustly, i.e. so that the estimates are unaffected by the underlying distri-
bution of the returns. We also found that the relationships between volatility and
price were not always consistent with basic financial theory. This thesis addresses

those concerns.

Readers of this thesis are assumed to have a reasonable knowledge of statistical
techniques, and also a knowledge of finance, and in particular, the area of option

pricing. We begin wholly in one camp, and end up almost entirely in the other.

1.1 Structure

This thesis was originally meant to be a story of volatility and leverage. The only
contender for a constant theme throughout is volatility: a measure of the variability
of financial returns. We begin with the more general problem of estimating scale
robustly. Following this, we focus directly on obtaining a robust volatility estimator,
and finally we examine the underlying firm structure and posit a model which has
the ability to explain a range of relationships between volatility and price level. The
volatility estimator developed earlier is used to estimate such relationships, and thus

to appraise the usefulness of the proposed model.




2 CHAPTER 1. PRELIMINARIES

Replication of the Lax (1985) study on robust scale estimation in small samples was
meant to be a very minor part of the work undertaken; however it became clear that
a more extensive description of the work was in order. At the risk of it dominating
this thesis, the majority of that work is given in Chapter 2 and supplementary
material in Appendices B and C. In reading these sections, it may be useful to
bear in mind that the goal throughout that work was to identify estimators which
could usefully be used to estimate the variability of financial returns. Featuring
in the simulations were estimators specifically designed to be used for estimation of
volatility of financial price processes, and these are based on the ¢-distribution, which
has been found to approximate the estimated distributions observed in practice. We
find that these estimators are not only excellent for the purpose for which they were

designed, but also good more generally.

The volatility estimator described in Chapter 3 appears to be successful. In the
final section of this introductory chapter, we demonstrate both the difficulty in
obtaining a robust time-series scale estimate, and also the importance of successfully
doing so. The estimator we propose is based on the t-distribution with » = 5
degrees of freedom, since this distribution appears to be intermediate among the
distributions observed in practice. The estimator is tested using simulation and a
known evolving volatility process, for a variety of distributions. It performs very
well in these simulations, and is benchmarked against the traditional non-robust
volatility estimation procedure (based on a moving standard deviation), and also the
best-performing estimator identified in the simulations of Chapter 2. The estimator
is also applied to real data, and further properties of the volatility estimates are
identified.

Having secured a robust and reliable volatility estimator, we move in Chapter 4 to
analyse the relationship volatility and price have, both in theory and in practice.
Several theoretical models are included in this study, including the fundamental
model of a firm with risky debt, and the stock price models assumed for the Black-
Scholes, CEV, compound and displaced diffusion option pricing models. A new
option pricing model is derived, and this both combines and extends the compound
and displaced diffusion models. Significantly, we obtain a closed form solution for
an option price under this model, which can be readily computed. Further, we find
this model has the additional flexibility to model a variety of relationships between
volatility and price. Analysis for Telecom New Zealand data shows the model is

broadly consistent with what is observed.
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Chapter 5 concludes with a summary of what has been found, and an indication of

future research directions.

The remainder of this Chapter illustrates the difficulty of measuring scale of time

series data robustly, in particular using the non-parametric smoother loess.

1.2 Using loess to estimate variability

The time series smoother loess (Cleveland, Grosse & Shyu 1992) can be used to
provide a robust estimate of the level of a time series through time. It is implemented
in the statistical software R (Ihaka & Gentleman 1996), and its details are discussed
in Appendix A. As demonstrated in the appendix, loess can be used to provide a
smooth level estimate that is not unduly affected by the occasional outlying values,
nor by non-Gaussian data. This suggests that a natural way to estimate volatility
using loess would be to smooth the squared returns obtained from financial asset

price series.

It turns out that this is not such a good thing to do. The robust estimate is
obtained from loess by specifying family="symmetric" in the function call, since
for the robust estimate, loess merely assumes that the series we are smoothing is
symmetric about the level we hope to estimate, rather than normally distributed
about that level. Asset returns are typically symmetrically distributed, at least
close to the mode of the distribution, and so it follows that the squared returns
will be not at all symmetric. An example of this is shown in Figure 1.1 for a
simulated geometric Brownian motion (GBM) series with x4 = 30* and o = 1. This
process is consistent with log-normally distributed prices, and normally distributed
returns, and is the process assumed by Black & Scholes (1973) in the derivation of
their famous call option pricing formula. Under this choice of parameters, the daily
returns are independent A(0, 1) variables. The left histogram in Figure 1.1 is the
sample distribution of the returns for the simulated series, and these are fitted very
well by the underlying normal distribution, as we would expect. The right histogram
is of the squared returns. These have a chi-squared distribution with one degree of
freedom, and this is superimposed. We see two dominant effects, all the returns
less than one in absolute value are pushed toward zero, and the squared returns are

highly asymmetric.

The effect of ignoring the requirement of a symmetric series is shown in Figure 1.2

for the simulated GBM series whose return distribution features in Figure 1.1. Even
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Figure 1.1. Distributions of returns and squared returns for a simulated geometric Brownian
motion series 501 observations long, with = 0 and ¢ = 1. The left histogram is for the returns
and the standard normal density function is superimposed. The right histogram is for the squared
returns and the x? density function is superimposed.

though the underlying distribution of returns is Gaussian, and strictly speaking, ro-
bust estimation is not required, we see that the robust volatility estimate drastically
under-estimates the true volatility function. This bias is caused by the asymmetric
distribution of the squared returns, and the effect this has on the robustness weights
used by loess. As described in Appendix A, the robustness weights are based on
the previous iterate’s residuals. These are divided by six times the median absolute

deviation of the residuals from their median, and then inserted into the biweight

_Ja—v*? L1
B(“)‘{o ful > 1

function

to obtain the robustness weights. The biweight function has a maximum at u = 0

of 1, and so the robustness weights are less than or equal to one.

The robustness weights for the squared returns on which Figure 1.2 is based, are
plotted in Figure 1.3 against the residuals (R? — 67) from the robust fit (the largest
residual 13.34 is omitted from the plot). The points trace out the biweight function,
but the residuals are clearly not symmetrically distributed about zero. In particular,
the residuals in the short left tail of the residual distribution all get relatively high

robustness weight, with the minimum residual getting a robustness weight of 0.905.
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Figure 1.2. Volatility estimates using loess for the GBM series used for Figure 1.1. The solid
estimate is from loess using standard smoothing techniques with no robustness properties. The
dotted line is from loess with robust smoothing. In both cases the squared returns are smoothed
with a window of 125 observations, and all estimates shown are based on a complete smoothing
window. The true parameter is shown by the horizontal line.

In contrast, 25% of the observations get a robustness weight less than this, and
all of these have positive residuals. Approximately 20% of the squared returns get
robustness weight less than 0.8, and 6.6% of them get zero weight. Since the weights
are strictly less than one, and the series we are smoothing is not symmetric (and
so the weights do not offset either side of the centre), the volatility estimate is

downwards biased as clearly demonstrated in Figure 1.2.

We conclude that because in general, squared returns will not be symmetrically
distributed, as in the data analysed in this section, the robust smoother loess will
not produce a robust estimate of volatility simply by smoothing the squared returns
since it is based on a symmetric distribution about the level we are estimating. In

the following two chapters, we examine alternative estimation techniques.
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Chapter 2

A reinvestigation of robust scale
estimation in finite samples

“In analyzing data, we do not want to even attempt to represent its stochastic be-
haviour accurately; rather we wish to choose techniques that spare us this essentially

impossible task’ Morgenthaler & Tukey (1991), page 1.

With both the aim of measuring the variability of financial returns, and the above
quote from Morgenthaler & Tukey (1991) in mind, we perform a simulation study

of robust estimators of scale.

2.1 Introduction

This study examines robust scale estimation, using computer simulations which take
advantage of recent improvements in computing technology. For this simple reason,
simulations undertaken here dwarf those of Lax (1985) (hereafter referred to as Lax,
or the Lax study), who performed a simulation study with identical purposes. The
estimators and techniques considered here are motivated by the Lax study, and also

by published studies using robust scale estimators in more recent times.

A robust estimator is called resistant, if it is largely unaffected by a small number
of large changes to the data (i.e. by outliers) and by any number of small errors
(e.g. rounding errors). Typically, we are more interested in resistance to outliers.
In addition to possessing resistance properties, a robust estimator will be a suit-

able estimator for non-normal data (i.e. have high relative efficiency). The notion

7



8 CHAPTER 2. ROBUST SCALE ESTIMATION

of efficiency, and in particular for a scale estimator, will be clarified later, how-
ever at this stage it is sufficient to think of an “efficient” estimator having a mean
squared error which is close to the minimum for a variety of situations (describing
possible underlying distributions for data). Robust estimators will be particularly
applicable for financial data, which often features the three situations we are pro-
tecting against: occasional rogue values, many small errors (induced by properties
of financial markets such as discrete price intervals and discontinuous trading) and

underlying non-normality.

The estimators considered are assessed by their minimum relative efficiency over
Tukey’s three corners: the standard normal distribution, the one-wild situation (also
known as 1-wider), where n—1 of the observations in a sample of size n are standard
normal and the remaining observation has 10 times the standard deviation of the
others, and the slash distribution, an observation from which is obtained by dividing
a standard normal random variable by an independent random variable distributed
uniformly on the interval [0, 1]. These three sampling situations were considered by
Tukey to reflect the three extreme cases of importance to robust statistics. All three
theoretical distributions are symmetric: the normal has rapidly decaying tails; the
one-wild allows the presence of a single outlying, but otherwise well behaved, value
(in the upper or lower tail with equal probability); and the slash, with its infinite
mean and variance, has very slowly decaying tails. In practice, most samples from
the one-wild will be highly asymmetric, with the presence of the single outlier. An

estimator which copes well in all three situations can suitably be used:

when the data is well behaved;

in the presence of occasional outliers;

when the data is very heavy tailed;

or some combination (see Yatrakos 1991)

and is thus highly useful, particularly when much data is being processed with little

interaction by the analyst.

In the remainder of this introduction we present a discussion of some of the important
considerations when conducting a simulation study of this sort, and a summary of

the current state of the robust scale estimation literature. In the following sections
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we describe the estimators and methodology of this simulation study, and in the
final section of this chapter, the results are presented and discussed. Supplementary

material is given in Appendices B and C.

2.1.1 Tukey’s three corner distributions

Tukey’s three corner distributions are intended to model extreme behaviour for data.
An estimator which performs well in simulations for each of these distributions is
likely to perform well for any data met in practice. The properties of the three

distributions are discussed further in the following notes.

The normal distribution

In classical statistics, data are all too often assumed to be drawn from normal distri-
butions. While this may be an appropriate description for some types of data, such
samples are arguably more the exception than the rule. The normal distribution is
described by Morgenthaler & Tukey (1991) as “unrealistically nice” (page 7), and
they prefer to use the descriptor “Gaussian” so as not to infer normality (in the lay
sense) on the situation. Students rote learn the 68-95-99 rule: 68% of normal data
lie within one standard deviation of the mean, 95% within two. and 99% within
three, and the majority of statistical theory is based on the hope that this is a fair
description of the population from which the data are drawn. This is of course rea-
sonable in the many situations that the central limit theorem applies, for example
when the sample mean is used for inference about the population mean. However,
even in this case, non-normal data can cause problems if the sample standard devi-
ation must be used as an approximation to the population standard deviation. The
normal distribution has two parameters: the mean y and the variance o2, and is

often denoted N (y,?). The standard normal distribution has y = 0 and o2 = 1.

There is not a great deal of leeway if optimality is based on underlying normality.
Lax describes an experiment by Tukey in which a sample from a contaminated

normal distribution is examined.

Definition 2.1 (Contaminated normal random variable) The contaminated nor-

mal random variable X , with parameters 0 < p < 1 and k > 1 and denoted CN(p; k),
is standard normal with probability 1 — p, and otherwise normally distributed with

mean 0 and variance k2.
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With appropriate scaling, the contaminated normal distribution can be used to
generate an observation from the normal distribution with parameters x4 and o2 with
probability 1 — p, and an observation from the normal distribution with parameters
p and (ko)? with probability p. In this thesis, where used, p and k will generally
be specified, and p and o? considered unknown. Thus, the contaminated normal
is a mixture of two normal distributions, and a sample from this distribution can
be considered “contaminated” in the sense that any observations drawn from the
second distribution have replaced observations from the “correct” distribution with

the lower variance.

Tukey’s experiment showed that when k£ = 3 and the mixing parameter p exceeded
0.18%, the sample standard deviation, optimal for normal data, becomes asymptot-
ically less efficient than using the mean absolute deviation about the mean, which
has an 87.6% asymptotic efficiency for uncontaminated normal data. This level of

contamination represents one observation in approximately 556.

Although normally distributed samples might be rare in practice, the normal dis-
tribution represents a reference case, and hence it is included as one of the three

corners. The remaining corners represent departure from this ideal.

The one-wild sample

The one-wild sample is not well known outside the robust literature, and it is the

subject of the following definition.

Definition 2.2 (One-wild sample) The one-wild sample consists of n — 1 obser-
vations drawn independently from the normal distribution with mean p and variance
o, and a single observation drawn independently from a normal distribution with
mean p and variance 10002. A one-wild sample with p = 0 and 0 = 1 is called a

standard one-wild sample.

Without loss of generality, analysis of one-wild samples in this thesis is almost

exclusively restricted to standard one-wild samples.

A one-wild sample is similar to a sample from the mixture of two normals with mix-
ing parameter p = % and scale factor £ = 10, i.e. the probability of any observation
being from the N'(u,1000?) distribution is £, and the probability of any observa-

tion being N (p,0?) is 1 — % The difference between samples from the two cases
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is that while the one-wild will have a single “wild” (or contaminated) observation,
the number in the sample from the contaminating distribution is Binomial, with n
trials, and probability p = % Thus, in a sample of size n = 20 from the mixture, we

would ezpect only a single outlier, but the actual number N has the distribution:

z | 0 1 2 3 4 5 6 - 20
P(N=g) 0358 0377 0.189 0.060 0.013 0.002 0.000 --- 0.000

where the probabilities are rounded to three decimal places. Use of the one-wild,
rather than the mixture, allows us to focus on the resistance properties of the es-
timators, without the results being influenced by approximately one third of the

samples with no outliers, and another quarter with at least two outliers.

Kafadar (1982) points out that unlike the mixture, a single observation from the
one-wild sample is not drawn from a single distribution, and hence the sample
is not a random sample which comprises independent and identically distributed
observations. Despite this, its use is favoured over that of the mixture, because it
presents a consistent challenge, rather than a stochastic one (see Cohen (1991) for

discussion). This behaviour is confirmed in Figures 2.1 and 2.2.

Figure 2.1 is based on the log sample standard deviation estimates from 20000 in-
dependent samples from the mixture CN( 2—10 10). These statistics have a bimodal
distribution, and this reflects the behaviour of the standard deviation for the sam-
ples with 0, 1, 2 or more “outliers”. In particular, the sample distribution of the
standard deviations from the uncontaminated standard normal distribution (rep-
resenting 7240 out of the 20000 samples) is superimposed, and we see this has a
nice unimodal shape. The distribution of the standard deviations from this group
and the one-wild samples (representing 7515 out of the 20000 samples) takes on
the bimodal form of the whole group due to the poor performance of the standard
deviation for the second group. This effect is magnified as the remaining samples

are included.

The actual sampling distribution of the log standard deviations from the 7515 one-
wild samples is shown in Figure 2.2, and this has a unimodal distribution. Focus on
the one-wild, rather than the mixture, examines the response of an estimator to a

consistent challenge, rather than the variety of situations embodied in Figure 2.1.
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Figure 2.1. The distribution of log sample standard deviation for 20000 samples from the mixture
CN (21—0, 10). Superimposed are (scaled) estimated densities for the samples with 0 outliers, and for
those samples with 0 or 1 outliers. The scaling is done so that each curve approximates the
contribution in the histogram of the respective samples.
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Figure 2.2. The distribution of log sample standard deviation for 7515 one-wild samples. These
statistics are a subset of those shown in Figure 2.1, which were based on a random number of
“wild” observations in each sample. Superimposed is the estimated density of these statistics.
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The slash distribution

The slash distribution is well known in the robust statistics literature, but is less
familiar generally than other long-tailed distributions such as the contaminated nor-
mal, Student’s ¢-distribution, the double exponential, and the Cauchy. Like the
Cauchy, the slash has no mean or variance due to its slowly decaying tails; however

it is symmetric about its median and has a well defined scale parameter.

Definition 2.3 (Slash random variable) The slash random variable X is de-
fined as X = p + 0%, where o > 0, Z is a standard normal random variable, and
U is an independently distributed uniform random variable on the interval [0,1]. A
slash random wvariable with p = 0 and o = 1 is called a standard slash random

variable.

Without loss of generality, analysis of the slash distribution in this thesis is almost

exclusively restricted to the standard slash distribution.

The standard slash random variable has the density function

4= (1 —e_%’”?) & 30

— ) %/2r (

fx(z) = { 1 I
2V 27w v

and the distribution function

Frela) = {@(T) +2 ((,75(1) - #) 40

=0

where ¢(z) and ®(z) are the standard normal probability density and distribution
functions respectively. The slash distribution can be compared to other, more fa-
miliar, long-tailed distributions by way of the tail weight index used in Rosenberger
& Gasko (2000), who define the tail weight index 7(F) for the distribution F as

F1(0.99) — F-1(0.5)  &-1(0.75) — ®-1(0.5)
F1(0.75) — F-1(0.5) « ©-1(0.99) — &1(0.5)

7(F) = (2.1)

This measures the ratio of the distances from the 99th and 75th percentiles to the
median of F, rescaled by the same quantity for the normal distribution. Of course
®71(0.5) = 0 however these terms are left in (2.1) to emphasize the symmetry in
the equation. We see 7(®) = 1 and distributions with longer tails than the normal’s
will have 7(F) > 1. Rosenberger & Gasko (2000) provide a table of the tail weight
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Distribution T(F) Kurtosis
Uniform 0-568 —1-2
Triangular 0-850 —0-6
Gaussian 1 0

t1o 1-145 1
CN(55;3) 1.204  0-471
Logistic 1-213 1-2

ts 1-343 6
Double exponential 1-636 3

£y 2473 oo
CN(%; 10) 3-429 5-490
Slash 7-866 00
Cauchy (¢;) 9-226 00

Table 2.1. Measures of tail length for some standard distributions. ¢, is the Student’s ¢ distribu-
tion with v degrees of freedom, and CN(p; k) is the contaminated normal of Definition 2.1. 7(F)
is defined in (2.1), kurtosis in (2.2).

index for some well known distributions. This information is reproduced in Table
2.1 (correct to three, rather than two, decimal places), along with results for various

Student’s ¢-distributions.

Coeflicients of kurtosis for these distributions are also given in the table. The coef-
ficient of kurtosis is the fourth central standardised moment of the distribution of

X, translated so that the normal distribution has zero kurtosis, i.e.

v E{(X - EX))*}
w(X) = gy —E)nE > (2.2)

As is evident from the table, the slash distribution has very heavy tails, as does

the contaminated normal CN(%; 10). The latter distribution has implications for

a one-wild sample which we would expect to have similar long-tailed behaviour.

The infinite kurtosis shared by the Student’s f-distributions with » < 4 and the

slash distribution shows more dramatically than the tail weight index how long the

tails of these distributions are. The contaminated normal maintains long yet well-

behaved tails. We note that there is not a perfect rank-order correlation between
1

the two measures. Also, while CN(55;3) and the logistic distributions have similar

tail weight indices, their measures of kurtosis are quite different.

The slash distribution is an important one for the testing of robust estimators, since
it is both easy to simulate, and it represents a worst case scenario for symmetrically
distributed data. The Cauchy distribution provides an alternative, but the simplicity

of the slash random variable makes it a more popular choice. In addition, and
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Figure 2.3. Probability density functions for the standard slash, Cauchy and normal random
variables. The slash is given by the solid line, the Cauchy by the dotted line, and the normal
by the dashed line. All density functions have mode at = 0 with f(0) = 1/(2v/27). Thus the
Cauchy has scale parameter o = 24/2/7, and the normal has o = 2.

perhaps of greater importance, the slash is more like the normal distribution for
small z, as demonstrated by Rogers & Tukey (1972) and in Figure 2.3. In this plot
we compare the density function of the standard slash, with the density function
of the Cauchy with scale parameter o = 2,/2/m, and that of the normal with
o = 2. These scale parameters are chosen so that f(0) = 1/(2v/2r) for all three
distributions. It is evident that the slash and Cauchy densities are very similar,

although the slash is closer to the normal around the mode.

The slash may well be too extreme a situation for most real data, but by tuning
estimators to perform well for this distribution as well as for Gaussian data, and data
featuring the occasional rogue value, we ensure high quality estimates regardless of
the actual distribution of the data. This is the principle behind Tukey’s triefficiency,

discussed in the next section.

2.1.2 Triefficiency

An estimator’s overall quality was assessed by Lax using the triefficiency promoted

by Tukey.
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Definition 2.4 (Triefficiency) An estimator’s triefficiency is the smallest of its

efficiencies at each of normal, one-wild and slash samples of size n.

The triefficiency is simply the minimum efficiency of the estimator over the three
corners, and the “best” (triefficient) estimator will have the maximum triefficiency.
We would expect the triefficiency of this estimator to be less than 100% since no
single estimator will be optimal at all three corners. Should we have some data
whose distribution is unknown, but not as “extreme” as one of the three corners, the
triefficient estimator will give us a “good” estimate of scale for this data, regardless

of the actual distribution.

To further enhance the importance of the triefficiency criterion, Yatrakos (1991)
states that for any linear combination of the three corner distributions, any estima-
tor will have efficiency at this distribution at least as great as its triefficiency. If we
believe that the corners are indeed the extremes, then we can be confident in using
the estimators that perform well in the simulations that are presented in Section
2.5. This is not to say that we would always wish to use the triefficient estimator.
Clearly if we knew the data was Gaussian, we would certainly use the sample stan-
dard deviation over any of the robust estimators considered here, and if slash, we
would definitely use a robust estimator (or indeed the ML estimator for the slash
distribution). Thus, given knowledge of the actual distribution of the data, it is
likely that we would not use the triefficient estimator, but an estimator particularly
useful in that case. The results given in Section 2.5 will not only identify very good
general purpose scale estimators, but also indicate which estimators are appropriate

if prior knowledge of the distribution from which the data is drawn is known.

If efficiency is measured relative to a sub-optimal estimator for a single distribution,
provided this is made clear, the efficiency measure is meaningful, e.g. if we know that
estimator A is 85% efficient with respect to estimator B, this is useful information
even if B is not optimal. This is not so clear if the triefficiency criterion is used, since
if efficiency is relative to a sub-optimal estimator for a particular corner distribution,

the efficiency in this case will be inflated, and the triefficiency may be too large.

Thus, there are a number of further considerations to make when using the trieffi-
ciency criterion. Perhaps the biggest flaw in use of the triefficiency criterion in the
Lax study is its dependence on the estimators considered. Often in Lax’s results

(reproduced later in the text, in Table 2.3), an estimator’s minimum efficiency is at
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either the slash distribution (for non-robust estimators like the standard deviation)
or at the normal distribution (for robust estimators designed specifically to mitigate
the impact of long tails). The sample standard deviation is efficient for Gaussian
data, and so over a large number of samples, it will have the minimum sample vari-
ance among estimators. Hence, relative efficiencies for Gaussian data based on the
sampling variance of the standard deviation will be independent of the remaining
estimators considered. In contrast, unless the minimum variance estimator for the
slash and one-wild distributions are considered in the simulation, efficiencies for
these distributions will be too high, and selection on the basis of triefficiency will be

flawed.

We conduct a small experiment with Lax’s results in order to examine the impact
of possibly overstated efficiencies in the one-wild and slash cases. If the minimum
variances used by Lax to compute the efficiencies are correct, 13 of the estimators
have minimum efficiency at the normal distribution, one at the one-wild and the
remaining three at the slash distribution. If the minimum variance estimator used
by Lax for either the one-wild or slash corners is not the true minimum variance
estimator, then it will have efficiency less than 100% relative to the true minimum
variance estimator. We investigate the effect of this possibility on the triefficiency
in Table 2.2. Specifically we count the number of times that each corner yields the
minimum efficiency (the triefficiency) out of the 17 estimators given by Lax, for
various combinations of one-wild and slash inefficiency. In particular, if the one-
wild minimum variance is overstated such that the minimum variance estimator is
only 80% efficient, we see the one-wild dominates the triefficiencies, even if the slash

minimum variance estimator is itself only 80% efficient.

Use of the EM algorithm (Dempster, Laird & Rubin 1977), which vields the maxi-
mum likelihood estimates, allows the proper efficiencies to be calculated, and hence
one of the shortcomings of Lax’s study is resolved. As shown in the results which
follow in Section 2.5, use of the maximum likelihood estimates yields triefficiencies
different to those previously published, and demonstrates that the one-wild is in fact

the most critical of the three corners.

2.1.3 Scale and its estimation

Scale is a somewhat vague concept, perhaps primarily because its definition depends

on the distribution in mind.
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one-wild 100% slash efficiency 90% slash efficiency 80% slash efficiency
efficiency | normal one-wild slash | normal one-wild slash | normal one-wild slash
100% 13 1 3 11 0 6 7 0 10
95 12 3 2 11 0 6 7 0 10
90 7 8 2 7 6 4 6 1 10
85 5 10 2 h) 10 2 5 3 9
80 0 15 2 0 15 2 0 13 5
75 0 15 2 0 15 2 0 15 2

Table 2.2. Effect of understated efficiencies on triefficiency on the results given in Lax (1895).
The figures given in the table are the number of estimators out of 17 that have minimum efficiency
at the stated corner distribution for the specified relative efficiencies of Lax’s minimum variance
estimator to the true minimum variance estimator at the one-wild and slash corners.

Definition 2.5 (Location-scale family) The “location-scale” family of distribu-
tions have a location parameter 6 and a scale parameter o (not necessarily standard

deviation), and have density functions which can be written

1@ =256 (22)

where fo(z) depends neither on 6 nor o, and is itself a proper probability density

function.

This provides a definition of scale for random variables belonging to this family. We
immediately notice that if o is a scale parameter, then for any &k > 0, ko is also a

scale parameter for the same family. Consider the case of the normal distribution,

— )2 —
= o (4652) - (55)

where fo(z) = ﬁe"z, and o' = /20 is the scale parameter. Indeed, fy(z) is

we have

the density function of an A(0, %) random variable. Furthermore, this choice of
scale parameter satisfies all the conditions required, however it is contrary to our
usual definition of the standard deviation o as the scale parameter for the normal
distribution, an assumption which facilitates fo(z) = ¢(z), the standard normal

density function.

Many common continuous distributions belong to the location-scale family. A non-
exhaustive list of these includes the Cauchy, slash, Student’s ¢, exponential, double
exponential (Laplace) and logistic distributions. The contaminated normal distri-

bution CN(p; k), with density function

e = -p)2o (8 +opca (1) 23)

a
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is also a member of the location-scale family, however this is due to the particular

parameterisation of the mixture distribution used here. In this case we have

fo(x) = (1 - p)g(z) + %(ﬁ (g) .

However for a more general mixture of two normals, in particular with ug # puq,
fo(z) will depend on p; — p and so the distribution will not be a member of the
location-scale family. Since the one-wild “distribution” does not really exist, we
cannot include it in the location-scale family, however, we note that any observation
in this sample is either N (y, 02) if not wild, or (i, 1000?) if wild, and that both
these distributions do qualify.

Such a general definition of scale leads to a similarly general definition of a scale

estimator.

Definition 2.6 (Scale estimator) A scale estimator for the random vector X =

(X1,...,Xn) and constants a and b, is any function S(X) which satisfies
S(a+bX) =1 S(X) >0 (2.4)

with equality only when all the elements of X are equal.

The most commonly used scale estimator is the sample standard deviation.

Definition 2.7 (Sample standard deviation) The sample standard deviation for

observations X = (X1,...,X,,) is given by

S(X) = \/Z?=1(‘¥i _ ){)2 (25)

n—1

where X = L 3" X, is the sample mean.

The sample standard deviation is closely related to the sample variance s%(X), and
the latter is the minimum variance unbiased estimator for the variance parameter o2
for Gaussian data. Despite these excellent qualities for well-behaved data, and the
fact that the sample variance will be unbiased for the underlying variance generally
for random samples (where this variance is defined), experience tells us that this
estimator is not robust: it is affected greatly by single outliers. Iglewicz (2000)

provides an example of data of which n — 1 observations are equal to y, and the
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remaining observation is y + na, where a > 0. The sample standard deviation of
this data is a/n, this depends primarily on the size of the outlying value, and is

unbounded as n — oo.

The most commonly calculated robust scale estimator is probably the interquartile
range (IQR) which measures the difference between a distribution’s upper and lower

quartiles.

Definition 2.8 (Interquartile range) For a continuous random variable X , with

cumulative distribution function Fx(x), the interquartile range (IQR) is
IQR(X) = F5'(0.75) — Fx'(0.25) (2.6)
where x = F5'(y) solves the equation y = Fx(z).

For a collection of observations, we can think of F' as being an empirical cumulative
distribution function (edf), and use the same rule. However, because the empirical
cdf has jumps, there are conflicting methods of finding the IQR for sample data, and
these are discussed in Section 2.3. The conflict arises from an attempt to make the
choice of F~1(0.75) and F~1(0.25) as simple as possible. Calculating the IQR for
Iglewicz’s data described above, and assuming n > 4, we find IQR(y, ..., y,y+na) =

0 which displays the IQR’s resistance to the outlying value.

Aside from the IQR, robust scale estimators are not widely used in statistical ap-
plications. The remainder of this section refers to estimators that are not formally
defined until Section 2.3, but their inclusion in the discussion here serves to highlight
the obscurity of these techniques. A survey of commonly used statistical software
identifies very few robust scale estimators. The exceptions to this are S-PLUS (see
for example Venables & Ripley 1999) and R (Thaka & Gentleman 1996) which not
only have many robust estimation procedures in their libraries, but also provide a
simple framework for programming of additional estimators. Microsoft Excel has a
built in function to compute a trimmed mean, and one to find sample percentiles,
but does not include any robust scale estimation procedure. SPSS (Version 10.0.5)
reports prespecified robust estimates of location for data (M-estimates based on
various weight functions). However, apart from the interquartile range, SPSS does
not appear to provide robust scale estimates. SHAZAM (Version 9) includes the
IQR in a report of descriptive statistics; however it is not part of the default report.
The Statistics Toolbox for MATLAB (Version 6.1) includes the IQR and either the
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mean absolute deviation from the mean, or the MAD. There is some conflict in the
on-line documentation over which estimator is calculated, although evidence seems
to suggest the former non-robust estimator. SAS (Version 7) includes a relatively
healthy list of robust estimators of scale: the interquartile range, Gini’s mean differ-
ence, the median absolute deviation, and Rousseeuw & Croux’s (1993) S, and @Q,.
While all of the above software allow users to program their own robust estimators,
with the exception of S-PLUS, R and to a lesser extent SAS, no overt effort is made

to accommodate or promote robust scale estimation.

The most comprehensive analysis of robust estimation of scale appears to be the
study of Lax (1985), which follows in the wake of the Princeton Robustness Study
(Andrews, Bickel, Hampel, Huber, Rogers & Tukey 1972) of location estimators.
Lax considers a number of scale estimators evaluated for samples of twenty obser-
vations from Tukey’s three corners. Lax considers a number of different estimators,
based either on their performance in a pilot study of over 150 estimators, or on their
popularity at the time. His table of efficiencies and triefficiencies is reproduced in
Table 2.3. A number of estimators shown therein are dominated, i.e., at least one
other estimator outperforms that estimator in all three distributions. The best of
the estimators considered is the A-estimator with the biweight -function and scal-
ing constant ¢ = 9. This estimator has sampling variance 85.8% of that of the best
performing estimator for the one-wild distribution, and does marginally better for
the normal and slash distributions. Not only does this particular class of estimators
perform well in Lax’s study, but it is the scale counterpart of the best performing
estimator in similar studies on robust estimation of location. As we let the scal-
ing constant ¢ — oo, the A-estimator converges to the sample standard deviation.
However, as this happens, its robustness properties are lost and its performance on
long-tailed data, e.g. from the slash distribution, diminishes. Hence the choice of
scaling constant ¢ = 9 reflects a compromise between high efficiency in these two

extreme cases.

2.2 Estimation of location and scale using the EM
algorithm

The EM algorithm (Dempster et al. 1977) is a numerical method which can be

used to obtain maximum likelihood (ML) estimates under situations where usual
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Efficiency
Estimator Normal One-Wild Slash Triefficiency
A-Estimators (¢-function)
Biweight (¢ = 6) 65.2 77.1 90.1 65.2
Biweight (¢ = 7) 74.8 82.9 89.3 74.8
Biweight (c = 8) 81.8 854  87.6 81.8
Biweight (¢ = 9) 86.7 85.8  86.1 85.8
Biweight (¢ = 10) 90.0 84.8 84.6 84.6
Modified biweight (¢ = 6) 47.5 56.8 96.8 47.5
Sine (¢ = 2.1) 77.5 83.7 88.4 77.5
Modified sine (¢ = 2.1) 82.1 89.6 94.5 82.1
M-Estimators (Huber v-function)
b = 1.4 (iterated) 48.1 56.8 100.0 48.1
b= 1.7 (iterated) 72.3 83.8 838 72.3
b= 1.4 (one-step) 55.2 68.1 86.8 55.2
b = 1.7 (one-step) 60.5 71.8 83.1 60.5
b = 2.0 (one-step) 69.8 76.1 75.9 69.8
Sample standard deviation 100.0 10.9 - -
Trimmed standard deviation  89.9 100.0 28.1 28.1
MAD 35.3 41.5 91.8 35.3
Gaussian skip 54.7 59.3 90.1 54.7

Table 2.3. Efficiencies for selected estimators reported in Lax (1985), using Monte Carlo estimates
in sample sizes of twenty. Modified biweight, sine, and modified sine A-estimators, M-estimators
with the Huber 1-function, and the Gaussian skip are defined in Lax (1985); other estimators are
defined in Section 2.3. Efficiency is calculated using the sample variance of the log estimates, and
is the ratio of the best performing estimator’s variance to the variance of the estimator of interest.
Triefficiency is the subject of Definition 2.4.
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ML optimisation techniques can be problematic. There is much literature devoted
to extensions and applications of the EM algorithm, and this is summarised in
McLachlan & Krishnan (1997). We present a brief introduction to the EM algorithm,
provide an example of its implementation for the mixture distribution CN(2;k),
and then derive specific results for application to maximum likelihood estimation of

(location and) scale for one-wild and slash samples.

We assume the observed data X = (X,,..., X,,) may depend on some unobserved
data S = (Sy,...,S,). If X has the joint probability density function (pdf) f(x;8),
where 0 = (61, ...,6,) is a vector of unknown parameters, then the maximum like-

lihood estimator of @ maximises the likelihood function
L(6) = L(6; X) = f(x;0).
Defining Y = (X, S) to be the complete data, we have (for discrete S)

L(6) =) L.(6)
S

where L.(0) = L.(0;X,S) = fxs(x,s) is the complete likelihood. It is often the
case that the incomplete likelihood function is difficult to maximise. However, a
suitable choice of S can facilitate a much simpler problem, and it is this property

that governs the choice of S.

The EM algorithm consists of two steps at each iteration: the first being the Ezpec-

tation step, in which the expectation

Q (9; é0) = Eo {In L.(8)|X}

is evaluated, where E; denotes expectation conditional on the previous estimate of
0, 6,. The second step is the Mazimisation step, in which we choose #, to maximise
Q(6: 90) over @. This process is then iterated to convergence. At the (k + 1)th

iteration, we calculate
Q (8:6x) = Ex {In Lo(8) X}

(the E-step), and then choose 8y, such that
Q (ékﬂ: ék) >Q (9; ék)
for any other possible @ (the M-step).

The philosophy behind and benefits of the EM algorithm are discussed by McLachlan
& Krishnan (1997), however it is useful to note here some of the advantages of this

method.
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e The true (incomplete) likelihood cannot decrease with an additional iteration,
ie. L(Bpyy) > L(By).

e The EM algorithm has reliable global convergence properties.

e In all of the examples considered in this thesis, at each iteration, the M-
step requires no numerical maximisation and is a closed form function of the

observed data X and the previous parameter estimate 6y.

e Although the EM algorithm can be slow to converge, for the examples consid-
ered in this thesis, each iteration of the algorithm proceeds with low computing

cost offsetting the slow convergence effect.

Use of the EM algorithm is demonstrated in the following section.

2.2.1 General results, and an example

In this section, we consider observations X = (X,...,X,,) where X depends on
unobserved data S = (S;,...,S,). The particular construction we adopt will not
only be useful for the three corner distributions considered in the simulation study
that follows, but also for the Student’s ¢ distributions, and the contaminated normal
CN(p; k).

Definition 2.9 (Gaussian compound scale model) Observations Xy, ..., X, are
said to follow a Gaussian compound scale model with parameters . and o® if, given
S = (Sy,...,8,), the X; are independent N (u,0?/S;) random variables, where the

S; are non-negative with known distribution.
It follows from the above definition that we can write
X = p+ o2 (i=1 ) (2.7)
= o =l,...,7 .
THRTOUE

where the Z; are independent standard normal random variables. As a consequence,

the compound normal sample is sometimes referred to as the normal/independent
sample, describing the ratio of a normal variable to a general, independently dis-

tributed random variable.

A random sample from the slash distribution clearly falls in this category. The

numerator of the slash is indeed a standard normal, and the denominator is a uniform
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random variable independent of the normal. The Student’s t-distribution is also
of this sort, where the denominator is the square root of a Chi-squared random
variable divided by its degrees of freedom. In the one-wild case, the X; are not
independent, since there is only a single “wild” observation and knowledge of which
observation this is, has an impact on the other observations. Nonetheless, we note
that, conditional on the S;, the X; are independent due to the independence of the

Z;, and the one-wild sample follows a Gaussian compound scale model.

We wish to find the maximum likelihood estimates of yu and ¢ based only on the
observations X = (Xi,...,X,) and now use the EM algorithm (Dempster et al.
1977) to construct an iterative formula for estimating these parameters. We note
that X is the incomplete data, and (X, S) is the complete data. Due to the choice
of S in Definition 2.9, we will show that finding the ML estimates of y and o?

relatively straightforward for data from a Gaussian compound scale model.

Theorem 2.1 The mazimum likelihood estimators of p and o® for observations
X = (Xy,...,X,) following a Gaussian compound scale model, are found by iterating

the equations

. XL Eo(SilX) X
a ‘Z, Bo(S.X) >
6% = — Z By (SiX)(X; — jz)* (2.9)
i=l

where Ey(S;|X) is the expectation of S; given X, evaluated at previous estimates of

i and o?.

Proof Conditional on S;, it follows from Definition 2.9 that the X; are indepen-
dent normal random variables with mean p and variance o?/S;, and thus the joint

distribution of X and S = (S4,...,S,) is given by

dFs (s)dx

dFx s(x,s) = fxs(x|s)dxdFs(s) = [H e— suisi

where U; = (X; — p)/o is the standardised score, u; its realisation and Fg(s) is the

distribution function of S. Consequently the complete log-likelihood is given by

n
In L.(p,0%) = Z (—1 Ino? — —UQS) + constant

=1
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2

where all terms not featuring g or ¢ are included in the constant. The theory

behind the EM algorithm leads us to maximise the smoothed likelihood
2 1 1.8:(X; — p)?
2. (0. 62 = 2 4 %
= {EZ (-gmot - 325 ) [x

=1

1 n
= —lno?— = > " Eo(Si|X)(X; — p)? (2.10)
=1 4

with respect to both u and o?, where E; denotes expectation over the conditional
distribution using the estimates fiy and 63 in place of the true y and 2. Maximising

(2.10) with respect to p requires solution of the equation

=5 > Bo(SiX)(~2) (X — 1) =0

o
no ; w=p,02=62

which yields
A Z?:l EO(SiD()Xi
B= n X
Zi:l EO(Si| )

which is a function of X and 8y = (jio, 62) alone. Maximising (2.10) with respect to

o? requires solution of the equation

e S ESO- Y =0
i=1 p=f,02=6
which yields .
52 = 3 Bo(SiX)(X; - )
i=1
as required. O
In the degenerate case where the X; are normal, and S; = 1 for all i, clearly

Eo(S;|X) = 1 for all i, and we obtain s = +3" X; = X the sample mean,

and 6% = 2=1s*(X) the familiar maximum likelihood estimator of variance.

Dempster et al. (1977) note the similarity between the iterations given in Theorem
2.1 and iteratively reweighted least squares. The form for the updated fi and &2
is of a weighted average of the observations and squared deviations respectively,
with the weights dependent on the parameter estimates from the previous iteration

(Dempster et al. 1977, Section 4.6).

The following theorem may assist in the evaluation of Eg(S;|X).
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Theorem 2.2 If the observations X = (X1,...,X,) follow the Gaussian compound
scale model given in Definition 2.9, and if in addition the S; are independent of one

another with distribution function Fs,(s), then Ey(S;|X) in Theorem 2.1 is given by

LY
Ey(SilX) =G (1 (AI—A@) )
2 ap
where G(t) = —%1n M(t),

M(t) = / e 52 dFg (s)

and fly and 62 are previous estimates of u and o® respectively.

Proof Since the S; are independent for i = 1,...,n, it follows from Definition 2.9

that the X; are independent. Hence
Eo(Si|X) = Eo(S:]X3)

and, dropping the subscripts,

dFsx(s|z) o fx|s(z|s)dzdFs(s) oc /s exp (—éM) dFs(s)dz

2
since given S;, X; is normal with mean p and variance 0?/S;. Consequently

B0 —Lelf 8 AP
Bo(5i/X) = dez® 2 #24F5 ()
i e 2*Ui s2dFg,(s)

where U; = (X; — fig) /60 and where the denominator is the normalising constant.

Define the Laplace transform

M(t) = / e"‘ss%ngi(s) (t>0)
s=0

so that
M'(t) = - /Oo e**sidPy (o)
and now -M' (:UZ)
Eo(Si|X) = W =¢) 1=1 (Xizio)®
2\ 7
where G(t) = =% In M(t). -

In order to give better insight into the implementation and performance of the

EM algorithm, we demonstrate the application of the EM algorithm to a random
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sample from the contaminated normal distribution CN(%; k) for n = 10 and k = 10.
A sample from this distribution may be one-wild, however, as discussed earlier, the
actual number of observations drawn from the “wild” distribution has a Binomial

distribution.

To apply the EM algorithm to a sample from the mixture distribution, we must
first evaluate Eo(S;|X) in this case. The necessary result is given in the following

theorem.

Theorem 2.3 The mazimum likelihood estimators of location and scale for a ran-
dom sample from the contaminated normal distribution CN(%; k) are found by iter-
ating equations (2.8) and (2.9) with

(1— &) exp [%(1 - ®) (A_%&ﬂ

Ey(Si|X) =1~

where fig and 63 are the previous estimates of p and o* respectively, and where k is

assumed known.

Proof For a random variable distributed as CN(2;k), the /5 are independent
random variables that take on the value 1 with probability 1 — 117 and k—12 with

probability -71; Since §; is a discrete random variable, we define

I — le s=1
dFs(s) =42 §=1ix
0 otherwise

for all ¢. Since the S; are independent, Theorem 2.2 applies, with
22 1 k2
M (t) =/ e ¥s2dFg(s) = (1— L)t + ;%e‘t/ .
s=0
Differentiating with respect to t, we find

M) (A-Det 4 e 1= Dot + Ze P

Multiplying through by nke', we obtain

(1— el w2

G(t)=1- :
E(n — 1) + el
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Figure 2.4. The likelihood function for the sample of size ten from the CN(15,10) distribution
described in Table 2.4. The likelihood function is given in (2.11), and is plotted against a grid in
which -1 <y <1land 0.2<o <2.

and we evaluate this function at ¢t = %(X‘&'() “0)2 as required. O

The density function for the contaminated normal random variable was given in
(2.3) and thus the (incomplete) likelihood for the sample is given by

L(6) = fx(x;0) =[] [nn—01¢ (1:,; ﬂ) + n;gé (xik;u)] (2.11)

=1

where @ = (u,0?) are the unknown parameters, and k is assumed known. In the
case where n = 10 and k& = 10, the maximum likelihood estimates of p and o? are
given by Theorem 2.1, with

P 2
0.99 exp [0.495 (f‘—a—gﬂ—) ]
Eo(Si|X)=1-

. 2
90 + exp [0.495 (k—;‘;&) J
where fig and 6§ are the previous estimates of z and o2 respectively.

The EM algorithm is applied to ten randomly sampled observations from the con-
taminated normal distribution CN(%, 10) with # = 0 and o = 1. The sample itself
is given in Table 2.4 and the likelihood function of this sample is shown in F igure
24 for -1 < pp <1 and 0.2 < ¢ < 2. This likelihood function has a maximum at
p = —0.341 and o = 0.756.

Table 2.4 describes the evolution of the EM estimates for this sample from the

mixture. The sample is ordered in the table, which enables easier comparison of
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Iteration
i T(s) 1 2 3 1 Final | One-wild
1 |-2.184 | 0.978 | 0.975 | 0.969 | 0.910 | 0.827 1.000
2 | -0.975 | 0.987 | 0.987 | 0.987 | 0.986 | 0.985 1.000
3 | -0.561 | 0.988 | 0.988 | 0.989 | 0.989 | 0.989 1.000
4 |-0.445 | 0.989 | 0.989 | 0.989 | 0.989 | 0.989 1.000
5 | -0.355 | 0.989 | 0.989 | 0.989 | 0.989 | 0.989 1.000
6 |-0.023 | 0.989 | 0.989 | 0.989 | 0.988 | 0.988 1.000
7 | 0.090 | 0.989 | 0.989 | 0.989 | 0.988 | 0.987 1.000
8 | 0.100 | 0.989 | 0.989 | 0.989 | 0.988 | 0.987 1.000
9 | 0.970 | 0.988 | 0.988 | 0.986 | 0.968 | 0.954 1.000
10 | 5.429 | 0.763 | 0.437 | 0.053 | 0.010 | 0.010 0.010
i | 0.205 | 0.085 | -0.101 | -0.338 | -0.356 | -0.341 -0.370
o | 2.010 | 1.721 | 1.413 | 0.877 | 0.776 | 0.756 0.799

Table 2.4. Maximum likelihood estimation of p and o for a simulated sample of size ten from
the CN(I%, 10) distribution with z = 0 and ¢ = 1. The main entries of the table are the values
of Eq(S;|X) for the ordered sample at the indicated iteration. The z(; are the ordered sample
observations, and the final column gives the corresponding values of Eq(S;|X) if the sample is
assumed one-wild. The final two rows of the table give the estimates of i and & at the indicated
iteration and for the one-wild fit. The initial values of ji and &, given below the data, are the

sample mean and standard deviation respectively.

2.0

1.5

sigma
1.0

0.5

Figure 2.5. A contour plot of the log-likelihood function corresponding to the likelihood function
shown in Figure 2.4. The log-likelihood is constant along each contour. In addition, the path of
(f1,0) is shown and labeled by the iteration number of the EM algorithm.




2.2. ESTIMATION OF SCALE USING THE EM ALGORITHM 31

the “weights” Eq(S;|X) given to each observation at each iteration. By chance, the
sample also happens to be one-wild: there are nine observations drawn from the
standard normal distribution, and the tenth is from the contaminating distribution
N(0,100). The EM iterations are initialised using the sample mean z and standard
deviation s, and these are given in the table directly below the observations. At the
first iteration, the two most extreme values are identified and given lower weights
than the other observations, however as the recursion proceeds and & decreases,
the outlier (5.429) is clearly identified as a contaminated observation, and given
minimum weight 117'0' The other extreme observation is treated with caution, and
gets a weight smaller than the remaining observations. From the fourth iteration
to the final iteration there is very little change in the weights or the parameter

estimates.

The final weights for the one-wild sample (whose form is given in Theorem 2.5 which
follows) are also given in Table 2.4 for comparison. Unlike for a sample from the
contaminated normal, in this case, it is known that there is only a single “wild”
observation. Thus, the most extreme observation is identified, and because of its
size, it is the only candidate for an outlier. It gets the minimum weight, and the
other observations full weight, and results in treatment for the data that is identical
to what might be performed manually: identify the outlier and downweight it, and
use the sample mean and standard deviation. Unlike the mixture recursions, the one-
wild recursions need only four iterations for convergence, as they have the additional

information that only a single value is “wild”.

The progress of the estimates is shown graphically in Figure 2.5. Fixed contours of
the log-likelihood are shown, as well as the trace of 8 for k = 0,...,15. The initial
values (Z, s) are labeled ‘0’, and the updated estimates from the first iteration of the
EM algorithm labeled ‘1’; etc. After the fourth iteration, convergence has almost
been achieved, and so the remaining eleven estimates are not labeled. This plot
confirms the convergence of the estimates to the maximum likelihood estimates,

and also the monotonicity of the L(ék) sequence.

2.2.2 Maximum likelihood scale estimation for the one-wild
and slash

In Lax’s study, the minimum variance estimators of scale for the one-wild and slash
distributions were both weighted averages which gave zero weight to the most ex-

treme observations. However, no theory was provided to support this result, nor
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does it seem plausible, particularly for the one-wild. In order to secure the results
of this study, it is important to have the minimum variance estimators in all three
situations: normal, one-wild and slash. We use the asymptotically efficient maxi-
mum likelihood estimator in each case and hope that the finite sample properties of
these estimators allow them to be close-to-optimal in the one-wild and slash cases.
In particular, we optimise the likelihood of the sample by choice of both location
and scale estimates. The former is included to be consistent with use of the sam-
ple mean as an auxiliary location estimator for the normal situation, and so the
scale estimates are neither based on the knowledge that the data have theoretical
location zero, nor based on a sub-optimal location estimate like the sample median.
Although the maximum likelihood estimators are asymptotically efficient but not
necessarily efficient for finite samples, there is the possibility that some estimators

may have efficiency greater than 100%.

For normal data, with S; = 1 for each 4, the maximum likelihood location estimate
is the sample mean and the maximum likelihood scale estimate is proportional to

the sample standard deviation, with no iteration required.

The slash is the ratio of an N'(y, 0%) random variable and a uniform random variable
on the interval [0, 1], and has density function

m{—f[ (-4=)] =40

1 —
20V 27w z=0.

The maximum likelihood estimators for the slash parameters are known (see Kafadar

1982) but are confirmed here using the EM technology introduced in Section 2.2.1.

Theorem 2.4 The mazximum likelihood estimators of location and scale for a ran-
dom sample X = (Xy,...,X,) from the slash distribution are found by iterating
equations (2.8) and (2.9) with
262 1(X; — fig)? !
Bil5iX)= ——B— — |awp [ =20} 2.12
0( | ) (xXi _ /1»0)2 |:(‘Xp <2 o_g ( )

where fig and 62 are the previous estimates of p and o® respectively.

Proof For the slash distribution, the v/S; are independent uniform random vari-
ables on the interval [0, 1], and hence the conditions of Theorem 2.1 are met. The
distribution function of S; is
1 §>0
Fs.(5)=Pr(S;<s)=Pr(Ui<v/s)=<{+s 0<s<l1
0 s<0
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where U; is uniform on the interval [0, 1] and the probability density function of S;

le=3 0<s<1
fSi(S) = {

2
0 otherwise.

is

Since the S; are independent, Theorem 2.2 applies, with

00 1
M) = / e s3dFg (s) = / e Pds =1t(1 —e™t).

=0 5=0
Differentiating with respect to ¢, we find

_ M) (l-efttet 1 1
Gl = M)  tll—et) Tt TE=1

i o\ 2 .
()"—"0) as required. O

and we evaluate this function at ¢ = 1( =
Application of Theorems 2.1 and 2.4 for data from the slash distribution yields the
maximum likelihood estimators of x and o2, which we will use to provide the min-
imum variance estimates, and to form the basis of comparison for the performance
of scale estimators for slash data. In this particular case the equations following
from Theorem 2.4 are identical to those given by Kafadar (1982) using traditional
maximum likelihood techniques. Once converged, through maximum likelihood the-
ory, this method provides the asymptotic minimum variance estimator of scale for
the slash distribution. This estimator is not proposed as one which is likely to be
useful in general, and hence we compute it only for the slash distribution. The EM
recursions are favoured over traditional maximum likelihood techniques due to their

desirable computational properties. |

The above analysis is also possible for the one-wild distribution, although in this case |
the S; are not independent and thus Theorem 2.2 does not apply. Kafadar (1982)
states that the one-wild sample is not a sample from any particular distribution, and
that no maximum likelihood method is helpful. However the parameters of the one-
wild do indeed have maximum likelihood estimates, and the EM algorithm yields

these. The relevant weight function Eq(S;|X) is given in the following theorem.

Theorem 2.5 The mazimum likelihood estimators of location and scale for a one-
wild sample are found by iterating equations (2.8) and (2.9) with
N2
0o P [0.495 (Rite) ]

Eo(Si|X)=1-
(%) = 1- 1

2
v [ Xi=p
W, exp [0.490 (—00@) :l

where fiy and 63 are the previous estimates of p and o® respectively.
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Proof Here Theorem 2.1 applies with

o L i=N
' 1 i#N.

where N is a discrete uniform random variable with

For any sample, 1 < N < n is drawn, and this observation is the “wild” observation.
For i # N, S; = 1 and so X; ~ N(u,0?), whereas for i = N, S; = - and so
X; ~ N (i, 1000?) as required.

Now consider the joint stochastic properties of X and S, which is equivalent to

considering the joint stochastic properties of X and N. Conditioning, we see

de’s(X, S) = de,N(X, Z) = fxw(Xli)P(N = z')dx

n )2 .2
_ l H 1 e_%uqaz) ] 1 e_%()fo’ofz) dx
i1 2 100V 27
1 99
X exp (5@(]12)

P(N =i|X) = = (%M) (i=1,...,n)

2100 o2
with the denominator ensuring P(N = i|X) is a proper probability function. Thus

we determine

Bo(SiX) = = P(N = ilX, 86) + P(N # lX, &)

as required. O

Application of Theorems 2.1 and 2.5 for a one-wild sample yields the maximum
likelihood estimators of p and o2, which we will use to provide the minimum vari-
ance estimates, and to form the basis of comparison for the performance of scale
estimators for one-wild data. An example of this was provided in an earlier exam-

ple (see Table 2.4) for comparison to ML estimation for the contaminated normal
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distribution. Note that unlike the contaminated normal and the slash, the weight
function for each observation in the one-wild sample depends on all n observations,

rather than just the observation of interest, due to the dependent nature of the S;.

Thus, the minimum variance estimators are secured for all three corner distribu-
tions, and the results provided in Section 2.5 do not depend on the other estimators
considered. Consequently the results given also provide a benchmark for efficiency
comparison with estimators not considered here, using measures such as Tukey’s

triefficiency.

2.3 Scale estimators

In this section, we describe the estimators included in the simulation study. They
are divided into two classes. The first are described as single-pass scale estimators,
since they do not require an auxiliary estimate of scale. The second class of scale
estimators examined are multi-pass estimators. Here, the focus is on identifying
a general purpose scale estimator, and hence the estimators depend only on two
passes through the data. Exceptions are the maximum likelihood (ML) estimators,
which are iterated until convergence for the one-wild and slash samples, and ML
estimators for the Student’s t-distributions. In each case, this ensures the true

maximum likelihood estimates are calculated and allows comparison on this basis.

Most scale estimators rely on an auxiliary estimate of location, generally the sample
median, which is used unless the definition of the scale estimator dictates otherwise.
An example of this is the sample standard deviation, for which the sample mean is
used. A comparable simulation to what follows is done for three prominent location
estimators, and this is reported in Appendix B. While the results of that simulation
are interesting in their own right, they do not conform to the focus of this thesis and

are hence omitted from the main text with deeper analysis left for further research.

The simulations performed by Lax resulted in eight undominated estimators. An
estimator is considered dominated if its efficiency at every distribution is less than
the efficiency of another estimator for each of those distributions considered, i.e. it is
worse than some other estimator in all instances. Referring to Table 2.3, we see that
the Gaussian skip estimator, for example, is dominated by the A-estimators with

the biweight ¢-function and ¢ = 6, and the modified sine y-function with ¢ = 2.1.
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We omit the dominated estimators of Lax from this study, with the exception of the

MAD due to its popularity.

The iterated M-estimator, with the Huber ¢-function and b = 1.4, was among Lax’s
undominated estimators; however it too will not be considered in this study. The
main reason for this is Lax’s comment “when one intends to use a scale estimator
in an automatic fashion as part of a larger algorithm, the Huber scale estimator
may be an unsuitable choice” (Lax 1985, page 739). Properties of the EM algorithm
ensure that the ML estimates obtained are not subject to the same criticism, and

these are the only iterated estimators included.

2.3.1 Single-pass scale estimators

Various estimators which depend only on a single pass of the data are defined below
for the observations X = (X7,...,X,). While some of these depend on an auxiliary
estimate of location, which could be seen as a pass of the data, the location estimates

are generally of a simple form and not computationally intensive.

The sample standard deviation was defined in Definition 2.7; however it can also be

defined via the equation

1

X)=, [—/—=—= X; — X,)? 2.13

S(X) \/n(n_l) 0%~ X)) 213)
1<]

which shows the sample variance is proportional to the average of the squared in-

terpoint distances X; — X;. Outlying values will result in many interpoint distances

being large, with s(X) inflated as a result.

For any random sample drawn from a distribution with finite variance, the sample
variance will be an unbiased estimator of this. It follows that the sample standard
deviation is a biased estimator of the underlying population standard deviation, but
this bias has an analytic expression when the data are Gaussian. The expected value

of the sample standard deviation in the case of Gaussian data is

B(s(X)) = o [(%) by (%n)] /r (%n _ %) (2.14)

where I'(x) is the gamma function. In the case where n = 20, the sample standard

deviation has expected value 0.9869¢ for a normal sample.
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Definition 2.10 (Gini’s mean difference) Gini’s mean difference for the obser-

vations X = (X,..., X,) is given by

2 . . r

G(X) = Y %‘ 1X; = X;|. (2.15)
Gini’s mean difference is a similar estimator to the sample standard deviation, with
the squared interpoint differences seen in (2.13) being replaced by absolute differ-
ences. For reasons outlined above for the sample standard deviation, this statistic is
also not very robust, since the absolute difference between every pair of observations
is computed. However, use of the absolute value rather than the square reduces the
impact of large differences. This statistic forms the basis of robust estimation of
risk in a strand of the financial literature. Typically return sample variance is used
to quantify risk, however Shalit & Yitzhaki (1984) employ Gini’s mean difference
as an alternative measure. They are motivated mainly by the theoretical results it

facilitates, rather than robustness.

Definition 2.11 (Trimmed sample standard deviation) The trimmed sample

standard deviation for the observations X = (Xy,..., X,,) is given by

Strim(X; 2,7) = 1/ Myp (X — My p(X))?) (2.16)

where My ,(X) is a two-sided 100p% trimmed mean, which takes the arithmetic
average of a reduced data set, where the [pn/2| smallest and the [pn/2] largest obser-
vations are omitted, and where M, ,(X) is a one-sided 100r% mean, which omits the

largest [rn] observations from the arithmetic average. Here [q] denotes the integer

part of q.

Thus, the trimmed sample standard deviation alters the sample standard deviation
in two ways in order to reduce the effects of outliers, and has two parameters p and
r. Firstly, rather than using the sample mean as the auxiliary location estimator,
the most extreme observations from each end of the ordered sample are omitted.
Secondly, the squared deviations about this mean are formed, and the largest of

these are omitted from the second average.

In the Lax study p = r = 0.2 with n = 20, and so in each calculation, four ob-
servations are ignored. This choice of p and r resulted in the highest efficiency for

the one-wild distribution in Lax’s study; however this seems suboptimal. In cases
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where the “wild” observation is very large indeed, the final weights Eq(S;|X) are

unity for the “good” observations, and 1(1)—0 for the “wild” observation as seen for
the example illustrated in Table 2.4. Thus the wild observation is not discarded,
but down-weighted so that the weighted squared deviation behaves much like the

others.

Definition 2.12 (Sample interquartile range) The sample interquartile range

for the observations X = (X,...,X,) is given by
IQR(X) = UQ(X) — LO(X) (2.17)
where LQ(X) is the sample lower quartile, given by
LX) = (1— (¢ = 0) X + (€ — ) X1y

where X;y 1s the ith order statistic of the observations X, ¢* = 1 + %(n — 1) and
¢ = [¢*], and where UQ(X) is the sample upper quartile, given by

UQX) = (1= (u" —u)) Xw) + (" — u) Xy

where u* =1+ 3(n—1) and u = [u*].

The sample interquartile range (IQR), defined for a continuous random variable X
in Definition 2.8 as the difference between the 25th and 75th percentiles of X, can be
calculated for the observations X = (X1,..., X,,) using the empirical cdf; however
this can be ambiguous. Definition 2.12 follows the technique used in R (Ihaka &
Gentleman 1996), and provides one way of resolving this ambiguity. The sample
IQR can then be used in a simple technique of outlier detection, and is chosen
because it is resistant to outliers, since it ignores the most extreme 25% of each tail.
As mentioned earlier, there are a range of methods used to calculate the sample lower
and upper quartiles, most used because of their simplicity. The fourths, described in
Hoaglin, Mosteller & Tukey (2000), are similar to the quartiles and are found using
a simple algorithm. The lower fourth is given by the observation with position

[(n+1)/2]+1

k= 5

in the ordered data, denoted X(4), where [z] is the integer part of z. If & is not a
positive integer, then the lower fourth is the average of the observations X and

X(k+1)- This will be compared to the lower quartile below.
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Figure 2.6. The method used by R to find a sample percentile. X(;) is the ith largest observation
in a collection of data of size n. X* is the pth sample percentile.

Definition 2.12 is based on the method used by R (Ihaka & Gentleman 1996) to
calculate the lower and upper quartiles of a collection of data using interpolation.
In particular, for any sample percentile p we define r = 1 + (n—1)p and set i = [r]

(the integer part of r). Then the sample percentile is given by
percentile = (1 —(r—19))Xu + (r— 2) X (i+1)-

This method amounts to linear interpolation of the ordered observations Xy, -+ r Xim)
against the sequence 0, ;i—l, cee Z—:“f, 1. Any given percentile can be obtained from
this curve as shown graphically in Figure 2.6. In the case where n = 4g+1ordg—1
for ¢ € Z™ the lower quartile will equal the lower fourth; however, when n = 4q or

4q + 2, these will not be equal in general.

Boxplots are commonly drawn with observations 1.5 times the interquartile range
above the upper quartile or below the lower quartile shown as points rather than
included in the whiskers (this practice is observed throughout this thesis). The
points that lie outside this range are considered to be potential outliers, and for a
random sample from the normal distribution with n large, we would expect only 0.7%
of the observations to be labelled in this way. Further discussion of this technique

can be found in Hoaglin et al. (2000).

The IQR is the simplest estimator of scale considered here, is commonly used, and

is certainly the easiest to compute by hand.
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Definition 2.13 (Median absolute deviation) The median absolute deviation
(MAD) for the observations X = (X,...,X,) is given by

MAD(X) = median; | X; — median;(X,)| . (2.18)

Thus, the MAD is the median of the absolute deviations of the observations X about
their median. The MAD is probably the most common robust estimator of scale in
advanced use. If a large random sample is drawn from a normal distribution with
variance o2, we expect E{MAD(X)} = 0.67450. The MAD is often used to give
an auxiliary estimate of scale for other more complicated scale estimators, and for
n large, is commonly scaled so that it is asymptotically unbiased for the standard

deviation o for normal data (regardless of the actual distribution of the data).

Rousseeuw & Croux (1993) present two estimators as alternatives to the MAD,
commonly referred to as S, and @,. These estimators, like the MAD, trimmed
mean, interquartile range, and various others, but unlike A-estimators, provide scale
estimates that do not rely on any auxiliary scale estimates. Rousseeuw & Croux’s

(1993) estimators are proportional to those given in the following definitions.

Definition 2.14 (S,) S, for the observations X = (Xy,...,X,) is given by

Sn = median; {median; | X; — X;|} . (2.19)

Thus, S, is the median of the median interpoint distances for each observation and
is motivated as an analogue to Gini’s mean difference with averages replaced by

medians.

Definition 2.15 (Q,) Q. for the observations X = (X1,...,X,) is given by
Qn = {1Xi — Xj[5i < j}(k) (2.20)

which is the kth largest of the | X; — X;| for i < j, where k = "Cy and h = [n/2]+1.

Thus @, is the kth order statistic of the "C interpoint distances. Since h is approx-
imately half the number of observations, k is approximately 0.25 times the number
of interpoint distances "Cy, and hence @, is approximately the lower quartile of the
interpoint distances. In the case where n = 20, k = 55 with "Cy = 190, and hence

k is the 100(2%) = 28.9th percentile of the ordered interpoint distances.
190
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Typically, leading coefficients (1.1926 for S, and 2.2219 for @,) are included to
achieve asymptotic unbiasedness for the standard deviation of Gaussian data; how-
ever they are omitted here. Rousseeuw & Croux (1993) perform a small simulation
limited to MAD, S, @, and the sample standard deviation and show that both Sy
and @, outperform the MAD for both Gaussian data and Cauchy data. On this

basis, these estimators are included in this study.

Note that we consider the size of k in @, as fixed, although in general this is a
parameter that could be manipulated to optimise the performance of @,,. Rousseeuw
& Croux (1993) give no explicit reason for this particular choice of k. However,
they do state that this choice attains the 50% breakdown point of the MAD. (For
definition and discussion of breakdown points, see Hoaglin et al. (2000) or Rousseeuw
& Croux (1993).)

2.3.2 A-estimators of scale

While the sample standard deviation, Gini’s mean difference, the interquartile range,
the MAD and S,, do not have any associated parameters, the A-estimators of scale
are a class of estimators which, like the trimmed standard deviation and Q.,, do
have associated parameters (note that we choose not to manipulate the parameter
k for @, in this study). In fact there are many different opportunities to tune the
A-estimators through parameter choice, and choice of weighting function. In Lax’s
study, as here, certain parameter values are chosen and consequently the analysis
focuses on the joint hypothesis that the class of estimator with that particular pa-
rameter is the “best” robust scale estimator. Much more analysis would be required

to find the best class/parameter combination.

Before introducing the A-estimator, it is necessary to define and motivate the M-
estimator of location. AM-estimators are commonly used to give robust location
estimates, and empirical studies have shown that these perform extremely well in
a variety of circumstances (see Hoaglin et al. (2000) and the references therein).
We motivate the form of the M-estimators through the following example for the

location parameter of the normal distribution.

Estimation of the location parameter y for a random sample X from the A/ (p,0?%)
distribution using maximum likelihood requires maximisation of the likelihood func-

2 2
L IJ)

L(p; X, 0) =
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where we assume ¢ is known. The log-likelihood can be written

InL(;X,0) = —In(cV2r) — %zn: (Xi - u)z

g

i=1
and thus maximisation of the likelihood is equivalent to maximisation of the log-
likelihood, which in turn is equivalent to minimisation of the function

Qi X,0)= 3 (X" - “)2. (2.21)

g
=1

Differentiating @ (u; X, o) with respect to p, we solve

n

Z(Xi —p)=0

i=1
which of course yields the sample mean X = iZ?ﬂ X;. This process can be
extended to motivate M-estimators of location, for which we replace the quadratic
loss function p(u) = u? in (2.21) by a general function, symmetric about u = 0, and

increasing in |u).

An M-estimator T, is the choice of 7" which minimises the objective function
mn
X;—T
2.22
> op ( 5 ) (2.22)

where S is an auxiliary estimate of scale (typically MAD), ¢ is a positive constant,

and p(u) is an even function. Differentiating with respect to 7', an alternative

specification of the M-estimator is that it is the solution to the equation

“ Xi_Tn o
;w( 5 )_0 (2.23)

where ¥ (u) = - p(u) is an odd function. The most popular choice of v (u) is Tukey’s

biweight t-function, which is

oy Ju(l= u?)? |u| <1
Y(u) = {0 ul > 1. (2.24)

A table of common #-functions and their associated p-functions is given in Hoaglin
et al. (2000). Goodall (2000) provides the general link between a t¢-function and
a target density function. As seen above 1(u) o u is consistent with underlying

Gaussianity, and in general a random sample from a distribution with density

flain) o exp |- / ut ]
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yields the maximum likelihood estimate 7}, where 7T}, is the M-estimator satisfying
(2.23). In the Gaussian case, ¢(z; u) = (z — p)/o and

_L(ai_gp

fla;p) oce™

as required. Goodall (2000) points out that 1)-functions like the biweight (2.24) that
cut off at a finite u, do not have any associated target distribution.
Substituting ¥ (u) = u w(u) in (2.23) we find

\i Xi—T)  (X=T) _,
CSO CSO N

=1

which can be rearranged to give

T = — = . (2.25)

P “’( c50n)
Since 1(u) is an odd function, w(u) is an even function (i.e., symmetric about
u = 0), and (2.25) gives T, as a weighted average of the standardised scores U; =

(Xi — T,)/cSo. The biweight ¢-function has corresponding weight function

(1-u?)? Jul<1

w(u) = 2.26
() {0 lu| > 1 (2.26)

and this is used to downweight the observations in the location estimate (2.25). |

(2.26) is the biweight function used by loess to downweight observations (see Ap-

pendix A), in a process related to the iterated solution of (2.25).

We are now in a position to define the A-estimator of scale, which is the finite
sample equivalent of the asymptotic variance of an M-estimator and depends on the
choice of 1-function, and the underlying distribution of the data. The A-estimator is
derived in Huber (1981) using techniques not discussed here; however an alternative

derivation follows.

It is well known that the sample mean of a random sample has variance o2 /n, and
hence

nvar(X) = o.

In order to estimate o, we might consider estimating the sample variance of realisa-
tions of X. By analogy to this relationship, Lax motivates the use of the asymptotic

variance of an M-estimator to obtain an estimator of scale.
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Theorem 2.6 Let X = (Xi,...,X,) be independent and identically distributed
symmetric random variables from the location-scale family with location parame-
ter po and scale parameter o. Then the M -estimator T, of po has an asymptotic

normal distribution with mean py and variance given via

7}320 var{v/n(T, — po)} = 02% (2.27)

where U ~ U; = (X; — po)/o is the standardised score, 1(u) = Lp(u) is an odd

function as specified in (2.23), and p(u) is a twice-differentiable even function.

Proof We have the observations X = (X1,...,X,) and these are independent and
identically distributed symmetric random variables with location py and scale o.
Define

n

Qn(n) = %Zp (Xi; “)

=1

where p(u) is an even function, p is a parameter and o is assumed known. Differ-

entiating with respect to p, we obtain
Xi—pu
! . 7
@ =z v (FF)

where ¢(u) = “Lp(u) is an odd function. By definition, the M-estimator T;, min-

imises @, (x) and satisfies Q! (7,,) = 0. Taking a Taylor Series expansion of @, (u)
about T,

o 2ot (F) = VL) = ViQU(E) + VAT - i
=0/ R WG
o (559

where i is a random variable such that |7, — | < |T,, — po|. Evaluating at g = po,

and taking the limit as n — oo, we obtain

1 b 1Yi—/1,

where U ~ U; = (X; — uo)/o is the standardised score with zero location and unit

5 VAT, — o) 5BV (U)}

e

scale. T,, converges to to p as n increases (Huber 1981, Corollary 2.2) and it follows

that 71 also converges to po and the right hand side is as stated. Hence, in the limit,

_ bl _ o BuU)
V(T = o) = VRTEEL T T VREW (O]
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Now, define ¢; = 9/(U;). Since the X, are independent and identically distributed,
the €; are too, with mean E(¢;) = E{¢(U;)} = 0, since ¢(u) is an odd function and
Ui is symmetrically distributed, and variance var(e;) = E{%(U;)?}. In addition, for

large n, application of the Central Limit Theorem yields
1 ¢ 2

Thus, as n — oo

oy o2l o 2
Vit =) = gt~ wy” OB

. L E{6(U)?)
# (O’” E{d_ﬂ(U)P)

as required. O

We note that the variance depends not only on the choice of ¥ (u), but also on the
underlying distribution of X. Choice of the biweight -function in (2.24) ensures

that the required moments exist even for long-tailed distributions like the slash.

In the case of Gaussian X;, as shown above, the form of the likelihood function
suggests p(x) o< 2. For this choice of p(u), it follows without loss of generality that

Y(x) = 2 and ¢'(x) = 1. The M-estimator is T, = X and thus

\/5();’ - /—L) ~ N(Os 02) |

as required. |

The A-estimator is defined to be the finite sample equivalent of the asymptotic

variance of the M-estimator as follows. ‘

Definition 2.16 (A-estimator) The A-estimator for the observations X = (X1,..., Xn),

with ¢-function ¥(u) = vw(u) is

1 > w(l)*(X; — M)? %
n-1 XL ¢

where U; = (X;—M)/cSp, M is an auziliary estimator of location, Sy is an auziliary

sy(X;¢,80) = (2.28)

estimator of scale, ¢ is a positive scaling constant, and ' (u) = % (u).

It is clear from Definition 2.16 that the A-estimator is the finite sample equivalent of

(2.27), and is a weighted average of the squared deviations, with weights determined
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by the ratio of w(U;)? and the denominator. For a given collection of data, the

denominator is a positive scale factor; however it will differ across collections.
7

Unlike Lax, in order to limit the number of distinct estimates possible, we consider
only a single ¢)-function: the biweight. Thus ¥(u) and w(u) are defined in (2.24)
and (2.26), and we investigate appropriate combinations of Sy and ¢. As with many
other estimators requiring an auxiliary location estimator, we choose M to be the

sample median.

2.3.3 Maximum likelihood estimator for the ¢-distribution

The robust estimators we have considered so far have been designed to mitigate the
effect of extreme observations by considering order statistics (e.g. MAD, IQR, S,
@) or by taking weighted averages of the “well behaved” observations (e.g. the
trimmed standard deviations and A-estimators). Robustness has been achieved by
tuning the estimators by choice of which order statistic to use or to use weighting
schemes which give weights decreasing in the size of the observations. Evaluation of
our choice is by simulation with the performance criterion being triefficiency. As an
alternative, we propose the family of ¢-distributions as an intermediate distribution
(one that might successfully model the “goodness” of the Gaussian distribution, but
also reflect heavy tailed behaviour) and optimise the scale estimate for this target

distribution.

Definition 2.17 (t, random variable) The t, random variable with location pa-
rameter i, scale parameter o and v degrees of freedom follows the Gaussian com-
pound scale model of Definition 2.9 with S; a chi-squared random variable, with v

degrees of freedom, divided by v.

When v — oo the t, distribution is equivalent to the N(u,0?), and for v = 1,
the t, distribution is the Cauchy, with mean, variance and all higher order moments
infinite. In general, the kth central moment for the ¢, distribution is defined if & < v.
As v increases, statistics measuring the heaviness of the tails such as kurtosis, where
defined, and the tail-weight index (both given in Table 2.1 for selected v) decrease
monotonically in . Thus we might expect the ¢-distribution to be sufficiently flexible
for modelling the compromise distribution. We hope that the ML estimator for the

target t, distribution will also perform well under the triefficiency criterion. As with
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the A-estimator and its tuning constant, we will rely on simulation to identify the

appropriate choice of v.

Since the #, random variable follows a Gaussian compound scale model, we can
apply Theorems 2.1 and 2.2 to obtain the maximum likelihood recursions for the

unknown parameters p and o.

Theorem 2.7 Consider a random sample X = (X1,...,X,) from a t-distribution
with location i, scale o and v degrees of freedom, where p and o are unknown and
v is known. The mazimum likelihood estimators of p and o are found by iterating
equations (2.8) and (2.9) with
1 X; — fig)?\ !
Eo(Si|X) = Vj <1+ M)

52

where iy and 62 are the previous estimates of i and o respectively.

Proof The Student’s t-distribution with v degrees of freedom corresponds to the
case where S; is an independent x2 random variable divided by v, and hence the

conditions of both Theorems 2.1 and 2.2 are met. In particular

s a KD
Eo(S;|X) = G (1 <)&z - Mo) )
2 ap

where G(t) = —dIn M(t)/dt and M(t) is the Laplace transform

M(t) = /oo e "*\/sdFs. (s) (t >0).

0

Since S; has cdf P(S; < s) = P(x2 < sv), its density is given by

fs9) = vfa ) = 5 (;) Twe)tle s (s>0)

for all 7. Thus

Vifs,(s) o stD=le=hvs
which is in turn proportional to a gamma density function with parameters s(v+1)
and v, and it follows that M (t) is the moment generating function of such a gamma
random variable, i.e.

W F(v+1)
M(t) = (H%) (t> -1u).
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Hence

G(t):y+1(1+%)_l

v v

and applying Theorem 2.2,

By (8]X) = L1 (1 + M) h

v Vg

as required. O

Application of Theorems 2.1 and 2.7 for sample data yields the maximum likelihood
estimates of ;1 and o under the assumption that the data is a random sample from
the ¢, distribution. We use Theorem 2.7 to motivate two different scale estimators for
examination in the simulation. The first of these is the fully iterated ML estimator
for selected v as defined in Theorem 2.7. While not optimal for any of the three

corners, a carefully chosen v might allow triefficient estimation of scale.

The second estimator motivated by Theorem 2.7 is obtained by specifying initial
estimates for the EM algorithm, fip = M and 69 = ¢Sy for some positive constant
¢, and performing only a single iteration. Without updating the location estimate,

we obtain an estimator of the following form.

Definition 2.18 (One-step t-estimator) The one-step t-estimator of scale for

the observations X = (X1,...,X,) is given by

n

o fXd B = [% 3 (Tlm> (X; — M)2] (2.29)

i=1
where U; = (X;—M) /¢Sy, M is a an auziliary estimate of location, Sy is an auziliary

estimate of scale, and c is a positive scaling constant.

This estimator is similar in form to an A-estimator; however in this case the weight
function is very simple. If Sy is a consistent estimator of scale for a t-distribution
with v degrees of freedom, then ¢ = /v is required, as is the multiplicative constant
"T“ to make s,(X; e, Sp) a consistent estimator of o. If iterated to convergence for
a random sample from the ¢, distribution (as in Theorem 2.7) we know the optimal
downweighting of the observations is attained using the weight chosen in (2.29);
however this weight function may also be useful for data that doesn’t follow a t-
distribution. Thus, as for the A-estimator, we select Sy and search for the scaling

constant ¢ > 0 which allows the greatest triefficiency.
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2.4 Methodology

In the following section, we discuss the design of the simulation.

2.4.1 Evaluation criteria

Rather than calculating the efficiency of an estimator in the usual way, by taking
the ratio of the minimum attainable variance and that estimator’s variance, the per-
formance of scale estimators is usually assessed using the variance of log estimates.
Thus the efficiency of a scale estimator S;(X) relative to another estimator S,(X)
is

var[ln Sy (X)]
var[ln S; (X)]
If Sy is less efficient than S,, its variance will be higher, and so eff(S;, S5) < 100%.

eff(Sl, SQ) = (230)

The first benefit of using the log transformation is that any constant multipliers in

the scale estimators disappear, since for constant b,
var(ln{bS(X)}] = var[ln S(X)].

Hence, proportional biases in the estimators are not important and we do not need
to select constants for asymptotic (or finite sample) unbiasedness. The second ad-
vantage is that the distributions of the scale estimates themselves are made more
symmetrical by the log transform due to the (generally longer) upper tail being con-
densed relative to the lower one. This symmetrising effect makes use of the sample
variance to estimate the theoretical variances in (2.30) more suitable, particularly

for long-tailed distributions like the slash.

Definition 2.19 (Sample efficiency of a scale estimator) The sample efficiency
of a scale estimator S(X) can be estimated using m independent realisations of the
observations X = (Xy,...,X,) and

eff(S) =

sample variance of Ingy,...,Ind,,
sample variance of In S(X)y,...,InS(X),

where 6; 1s the mazimum likelihood scale estimate for sample i and S(X); is the

(2.31)

scale estimate for sample 1.

This definition follows from (2.30), where Sy(X) is taken to be the ML estimator, and
S1(X) the estimator of interest. The efficiency is estimated by repeatedly sampling,

and estimating the sample variances of the two sets of m scale estimates.




50 CHAPTER 2. ROBUST SCALE ESTIMATION

Lax uses the variance of the log estimates to compute efficiencies, as in Definition

2.19, whereas Rousseeuw & Croux (1993) use the standardised variances

m(sample variance of S(X)y,...,S(X))
(sample mean of S(X),...,S5(X)m)?

where again S(X); is the scale estimate for sample 7. Efficiencies are calculated as the

(2.32)

ratio of the standardised variance for the ML estimator to the standardised variance
of the estimator of interest. The standardised variance is m times the squared
coefficient of variation, and also is invariant to location and scale transformations
of the data, however it does not benefit from the symmetrising effect of the log

transformation.

Both evaluation criteria are considered in this study. However, unless otherwise
stated, any mention of efficiency relates to that in Definition 2.19, and in particular,
all estimators are benchmarked against the sampling variation of the log maximum
likelihood estimates. We note that since 6; is the maximum likelihood estimate of
o, then Ing; is also the ML estimate of Ino and hence use of the ML estimates as

the benchmark is particularly attractive.

2.4.2 To swindle, or not to swindle?

One of the first concerns in reproducing Lax’s simulation results was the “swindle”,
or variance reduction technique, used by Lax to increase the effective simulation
size, while keeping the actual runs to 1000, 640 and 640 for the normal, one-wild
and slash distributions respectively. The swindle is described by Simon (1976) and
outlined in more detail below. In the case of the normal distribution, the swindle
amounts to standardising the observations using the sample mean and standard
deviation, processing the standardised scores, and thus eliminating the variation in
the sample statistics. Each estimator’s sample variability (actually the variance of
the log estimator) is then written as some addition to the known variability of the

sample standard deviation for normal data.

As we have seen, each of the three distributions used in the Lax study follows the
Gaussian compound scale model of Definition 2.9, and in each case, the observations
may be written as
Xi=p+ aé
Y;
where the X; are the observations, the Z; are independent, standard normal random

variables, and the Y; are positive random variables, independent of the Z;, but not
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necessarily independent of one another. In the case of the normal distribution, Y¥; = 1
for all i (clearly a dependent sequence), and for the slash distribution we require Y;
to be independent uniform random variables on the interval [0,1]. It follows from
the proof to Theorem 2.5, that for a one-wild sample of size n, we require a randomly
selected Y; to be equal to 116 and the remaining Y; to be one. This is a non-trivial

example of a dependent sequence.

Given the data X = (X3,..., X,,) and conditioning on Y = (Yy,...,Y,), the Gener-
alised Least Squares (GLS) estimators of y and o? are obtained by minimising the
weighted sum of squared errors

n

20v. )2

i=1 &
with respect to 8 = (u,0?), giving
. =~ YEX,
which is a weighted average of the observations X, and
n 72 z X2
5_2 — Zi:l yi (‘\11 /‘L) (234)
n —

which is a weighted average of the squared deviations of the X; about fi. Since, given
Y, these are GLS estimators, they are the Ordinary Least Squares (OLS) estimators
for a transformed model (Seber 1977), and these latter estimators are independent,
complete and sufficient statistics for y and ¢ (Graybill 1976, Theorem 6.2.1). In

particular, we can conclude that given Y, & is a complete, sufficient statistic for o.

In an operation related to standardisation, we form the configuration vector C =

(Cy,...,C,) with elements

Xi—fi

a

Ci —.

In the case where the X; are normal with Y; = 1 for all i, /i is the sample mean, ¢ is

the sample standard deviation, and the C; are identically the standardised scores.

Interpreting X, Y, Z = (Z),...,%,), and C as column vectors, we can write in

general,
X— il
g

C =

where 1 is the unit column vector of length n, and where

- Zi Z?:l Y;Zz
X"‘“‘“(?f AN )
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by the definitions of X; and fi. This yields

) o, 1YT
(X—;d)za(D I—YTY)Z

where D = diag(Y;), and this is clearly independent of j. Moreover,
2 n 2 T
o o YY
Y2(X; — p)? = 2" (I-—=]%Z
n—1§1( ) n—l{ ( Y'Y

which is also independent of u. Dividing (X — fi1) by &, the ¢ terms cancel, and we

6 =

see that C is a function of Z, which is a vector of independent standard normals,
and the Y;, which we are conditioning on, alone. Thus, given Y, the distribution of
C does not depend on x or o and so C is an ancillary statistic. In addition, since &
is a complete, sufficient statistic for o, Basu’s Theorem (Lehmann & Casella 1998,
Theorem 1.6.21) states that given Y, the random vector C and the scale estimator

¢ are independent. This result is also stated by Simon (1976).

Now we derive the swindle. Due to the principle property of a scale estimator given

in (2.4), and since ¢ > 0, the scale estimator S(X) satisfies
S(X) =aS(C). (2.35)

So the scale estimator of the observations X is simply ¢ times the scale estimator of
the configuration vector C. We wish to calculate the efficiency of the scale estimator
using (2.31) in the special case where g = 0 and 0% = 1, and hence we need
to estimate var{ln S(X)}. The most straight-forward method of doing this is to
simulate many realisations of In S(X), and estimating their (population) variance

using the sample variance of the realised values. Thus, we estimate
var{ In S(X)} = sample variance of In S(X);,...,InS(X), (2.36)

where m samples X are simulated, and var denotes the sample variance. We then
use this quantity in (2.31) to obtain an efficiency estimate. This is described as

straight Monte Carlo sampling in the discussion below.
Noting the relationship (2.35), the variance on the left hand side of (2.36) admits
the following decomposition

var{In S(X)} = var(In¢é) + var{ In S(C)} + 2 ¢ov{ Iné,In S(C)} (2.37)

where var and ¢ov are the sample variance and covariance respectively. The decom-

position (2.37) shows the three sources of variation in the statistic we compute using

(2.36).
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An alternative method of estimating var{In S(X)}, and the basis of the swindle used
by Lax (1985), is obtained by conditioning on Y, which is of course available due to
the generation of X. Conditioning on Y, the variance of interest can be decomposed

as follows:
var{ In S(X)} = var(Iné + In S(C))
=var{E(Iné +1In S(C)|Y)} + E{var(Iné +In S(C)[Y)} (2.38)

since in general var(X) = var{E(X|Y)} + E{var(X|Y)}. Noting that o = 1, given
Y, (n — 1)6* is chi-squared with n — 1 degrees of freedom, E(In5[Y) is a fixed

constant, and hence
var{E(Iné +1n S(C)|Y)} = var{E(In S(C)[Y)}. (2.39)
In addition, given Y, 6 and C are independent, then
E{var(Ing +1nS(C)[Y)} = E{var(In4[Y)} + E{var(ln S(C)[Y)}. (2.40)
Substituting (2.39) and (2.40) in (2.38), and noting
var{E(In §(C)|Y)} + E{var(In S(C)|Y)} = var(In S(C))

we have
var{ In $(X)} = var{In S(C)} + var (ln x2_1/(n— 1)) (2.41)
where x2_; = (n — 1)6? is a chi-squared random variable with n — 1 degrees of

freedom.

An approximation to the variance of the log of a chi-squared random variable divided

by its degrees of freedom is given in Abramowitz & Stegun (1968) as

var {In (x2/v)} = % (1 - 5(—1:—1)2) +0((v - 1)°)

and hence

. (m \/m> ~ 2(”1_ ) <1 " 3@ - 2)2)

which yields approximately 0.027749 when n = 20. Thus, using the swindle, we can
estimate the variance of interest using
\7a\r{ In S(X)} = 0.027749 + v/a\r{ In S(C)}
= 0.027749 + sample variance of In S(C);,...,InS(C),, (2.42)
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where again, m samples X are simulated, each of this yielding a configuration vector
C.

In the case of Gaussian X, /i is equal to the sample mean and & the sample standard
deviation, and consequently the configuration vector contains standardised scores.
When the scale estimator is the sample standard deviation, S(C) = 1 by definition,
and so In S(C) = 0 for any observations X. The equality (2.41) above holds, since
the sample standard deviation on the left hand side equals &, and thus has the same

distributional properties.

Comparing (2.36) and (2.37) to (2.42), we see that when var{InS(C)} is large,
the swindle will be of little use. However, when this amount is small relative to
the constant 0.027749 (as in the standard deviation for normal X), the swindle will
have a large impact on the precision of the estimated variance due to successful

elimination of variability of the sample estimates Var(Ing) + 2 ¢ov{ Ing,In S(C)}.

Whilst undoubtedly the swindle was very important for Lax, it seems that its ben-
efit is limited now. Computing power has increased to the extent that it is much
easier to increase precision by increasing the simulation sizes than to allocate the
additional computation required to compute the configuration vector for each sam-
ple. The swindle is employed to yield an efficiency based on (2.42), (2.31) and 1000
independent samples. This is repeated 100 times to yield 100 efficiency estimates,
and these are compared to those obtained through straight Monte Carlo simulation.
We find that for some estimators and the normal distribution, the swindle achieves
the precision of up to 4000 Monte Carlo samples. However, in other instances, and
particularly for the slash distribution, the precision attained is certainly no greater
than for the same number of Monte Carlo samples. These findings are reflected in
the comments above and confirm the remarks of Gross (1976): “the swindle works
better for distributions which are ‘close’ to the Gaussian than for those not so close,
and additionally, better for estimators which are relatively ‘good’ in a situation than

those which are not” (Gross 1976, page 411).

Figure 2.7 examines a few estimators more carefully, and allows us to estimate the
gain of the swindle in these cases. The first block of the plot shows that efficien-
cies calculated for the sample standard deviation, and one-wild samples using the
swindle and 1000 samples, have a distribution similar to those based on almost 4000
Monte Carlo samples. For the slash distribution and the sample standard deviation,

the gains are much smaller, with the efficiencies being almost as variable as those
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Figure 2.7. Efficiency distributions for various estimators using the swindle outlined in Section
2.4.2. The sampling situations are s=1000 samples using the swindle, 1k, 2k and 4k are 1000,
2000, and 4000 Monte Carlo samples respectively. The estimators, corresponding to the six blocks
in the plot, are: standard deviation for the one-wild, standard deviation for the slash, MAD for
the one-wild, MAD for the slash, biweight A-estimator with ¢ = 9 for the one-wild and biweight
A-estimator with MAD and ¢ = 9 for the slash. Efficiencies have been translated using the average
efficiency from this study for that situation, and are based on 100 repetitions of the respective
sampling situations, for samples of size n = 20.
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Flirst run Mth run
Normal | One-wild Slash Normal | One-wild Slash
Si(X)1 | Si(X)1 | S5(X) Si(X)1 | S;(X)y | S;(X"),
Sj(x)m Sj(xl)m Sj(X”)m Sj (X)m Sj(x,)m Sj(X”)m
(&0 | & | &) &0, | @l | &
| efffy | e | efff) effin, | efiy | effin

Table 2.5. Schematic representation of the simulation for estimator j. At each run of the M = 100
runs, m = 20000 samples of size n = 20 are generated for each corner: normal X, onewild X’ and

slash X". Scale estimator j is evaluated for each of these samples, and the variance of the log

estimates collected for each corner; thus \Tzﬁ‘(g is obtained for each estimator, run k = 1,..., M

and distribution £ = 1,2,3. Using (2.31) adld the variance estimates for the ML estimator, the
efficiencies eﬁ(f,)C are also obtained for each estimator, run k = 1,..., M and distribution £ =1, 2, 3.

calculated without the swindle. For the MAD, in blocks three and four of the plot,
we see a similar effect: the swindle has considerable benefit in the one-wild situation
but only a small effect for slash data. For the biweight A-estimator with MAD and
¢ = 9, the distribution obtained for both one-wild and slash using the swindle is
barely different to that obtained without it. These, and results for other estimators
not shown here, demonstrate that the contribution of the swindle is limited in many

cases, and hence it will not be used at all in this study.

2.4.3 This simulation

In this study, all simulations are conducted using the statistical software R (Thaka
& Gentleman 1996), Version 1.2.2, installed on a Pentium-III personal computer,
running the Red Hat Linux 6.2 operating system. The aim of the simulation is to
obtain efficiency figures, calculated using (2.31). Rather than restrict ourselves to a
single efficiency estimate for each estimator and distribution combination, as in Lax
(1985), we repeat the simulation a number of times, and consequently can comment

on the precision of the efficiency estimates.

There are several levels of sampling in the simulation. These are described below,

and also represented graphically in Table 2.5.

e The basic unit of the simulation is the sample X = (X7,..., X},) (not a random
sample in the one-wild case) on which the scale estimates are based. For each
sample, a number of competing scale estimators are evaluated. Primarily

n = 20, however n = 10 and n = 40 are also investigated.
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— The normal samples are generated randomly and then used as a basis for

the one-wild and slash samples.

— The normal sample is copied, and then a randomly selected observation

1s multiplied by 10 in order to obtain a one-wild sample.

— The normal sample is copied and divided by n independently sampled

uniform observations on the interval [0, 1] to obtain a slash sample.

Each sample yields a scale estimate from each of the scale estimators in Table

Table 2.6 considered.

e In order to obtain an efficiency estimate, m = 20000 samples from each distri-
bution are simulated. Thus, we obtain a collection of scale estimates indexed
by distribution and estimator, and the sample variance of the log estimates of

each class are calculated, and efficiencies formed according to (2.31).

A run of 20000 independent samples yields a single efficiency for each estimator
at each distribution. (Note that Lax’s entire study constitutes m = 1000

samples of size n = 20.)

e In order to ascertain the precision of the efficiency estimates in each situation,
we obtain M = 100 estimates of each efficiency, by repeatedly processing m

samples of size n, as described above.

The estimators considered are listed in Table 2.6 along with a reference code and a
point of definition. Those marked with an asterisk are also simulated for samples of
size n = 10 and 40. Most estimators have been defined in Section 2.3; however in

two instances a reference is given to Lax (1985).

2.5 Results

The benefit of modern computing in a study of this nature is immense. The scope
now afforded us due to increased speed and storage capabilities opens opportunities
for analysis not possible for Lax. The primary focus of this section is on the results
for n = 20. These are analysed in detail, and compared to the results of Lax and
others where possible. Notable differences between these results and those for the

sample sizes n = 10 and 40 are reported at the end of the section.
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Estimator Parameters Code Definition
sample standard deviation * sd (ML for normal) 2.7
Gini's mean difference gini 2.10
trimmed standard deviation (pyr) € {(0.1,0.1)%,(0.2,0.15), (0.2,0.2)} | s10, s15, 20 2:11
interquartile range iqr 2:12
median absolute deviation * mad 2.13
Sn . Sn 2.14

5 k= "Cy where h = [n/2] + 1* Qn 2.15
modified biweight A-estimator | ¢ =6 mbi Lax (1985)
modified sine A-estimator e=21 msi Lax (1985)
biweight A-estimator Sp = MAD and ¢ € {9%,10%,11,12, 13} bi9, bil0, bill, bil2, | 2.16

bil3
So = Sn and ¢ € {6.5*,7".7.5} bsl, bs2, bs3
So = Qr and ¢ € {10.5%,11*,11.5} bql, bq2, bq3
iterated t-estimator ve{l,2,3,4,6} tl, t2, t3, t4, t6 Theorem 2.7
one-step t-estimator So = MAD and ¢ € {4,4.25,...,5.25} tml, tm2, tm3, tm4, | 2.18
tm5, tm6
So = Sp and ¢ € {2.75,3,3.25} tsl, ts2 ts3
So = Qn and ¢ € {4,4.25%,4.5} tql, tq2 tq3
ML estimator: onewild » ML Theorem 2.5
ML estimator: slash = ML Theorem 2.4

Table 2.6. Estimators considered in the simulation for samples of size n = 20, the tuning
parameters used, and their point of definition. The thirteen estimators marked with an asterisk
are also examined for samples of size n = 10 and 40. Simple codes are provided for easy reference
in Figures 2.9 to 2.18.

2.5.1 The maximum likelihood estimates

We present summary statistics for the individual maximum likelihood scale esti-
mates for 20000 independent samples from each distribution. These estimates are
computed using an iterative algorithm (the EM algorithm), and iterations are termi-
nated when the absolute change in the scale estimate from one iteration to the next
is less than 1078, or when the number of iterations reaches 200. This latter condition
is used once in the 20000 samples detailed in this section, and occurs when the es-
timates alternate between two values slightly further apart than 107%. Since we use
the standard normal distribution as the basis for all three distributions, unbiased
(squared) maximum likelihood scale estimates should have unit expected value. The
realised bias for the sample standard deviation in the normal case is consistent with
theory, and the sample variances for the single run of 20000 have average 1.0000
(4dp). The averages for the scale estimates, and scale estimates squared for the en-
tire simulation are given in Table 2.7. The average standard deviation differs from
the theoretical value for the normal distribution, 0.9869 given by (2.14), only in the

fourth decimal place.

The distributions of the natural log of the maximum likelihood scale estimates are
shown in Figure 2.8 for each of the three corners and for 20000 samples of sizes

n = 10, 20 and 40, and 200 samples of sizes n = 160 and 640. All estimates do
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normal | one-wild | slash
maximum likelihood scale 0.9870 | 0.9606 | 0.9960
maximum likelihood scale squared | 1.0002 | 0.9487 | 1.0890

Table 2.7. Average maximum likelihood estimates of scale and scale squared, over 100 simulations
and 20000 samples of size 20. The estimators are the sample standard deviation in the normal
case, and given by Theorems 2.5 and 2.4 for the one-wild and slash respectively. Population values
of scale and scale squared are unity for all distributions.

appear to have a small downward bias from In(1) = 0, however this is consistent
with Jensen’s inequality

E(né) = lE(ln 6?) <

- InE(62) =0

B | o=

where the final equality holds if 62 is an unbiased estimator of 0 = 1. As evident in
the plot, the estimates for the normal and one-wild distributions, whose samples are
identical but for a single value, are very similar for each sample size. The one-wild
estimates have slightly greater range than the sample standard deviations in the
normal case. The log transformation has elongated the lower tail relative to the
upper for these two corners, however the slash estimates are very symmetric under
this transformation reflecting the considerable effect the extremely heavy tails of the
slash distribution have on even the optimal scale estimates. Not surprisingly, the
estimates for the slash samples have a much greater variability, but are still located
close to the theoretical value. In each case, we see that the variance of the log
estimates decreases as sample size increases, as we would expect. The plot strongly
suggests consistency for the true parameter o = 1 for each of the three corners, i.e.,

as n increases, the bias gets smaller, as does the variance of the log estimates.

2.5.2 Simulation results

In this section, we present the results of the entire simulation based on the variances
of the log scale estimates. Where possible, we compare the results from this simu-
lation to previously published results, in particular those of Lax (1985). As there
have been many estimators examined, as described in the introductory section, es-
timators have been divided into single-pass estimators, and “the-rest”: the A- and
t-estimators. Results are presented separately, with comparison made across the
groups where appropriate. Average efficiencies for all the estimators are given in a

single table in Appendix C.
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Figure 2.8. Distribution of log maximum likelihood scale estimates for the three corners for
20000 samples of sizes n = 10, 20 and 40, and for 200 samples of sizes n = 160 and 640. The
population value of Ino is In(1) = 0 in each case, and this is shown by the horizontal line.

Single-pass estimators

Each simulation run of 20000 samples yields an efficiency estimate for each estimator
and each distribution. Efficiencies of the one-pass estimators are compared in Figure
2.9, and average efficiencies are given in Table 2.8. In Figure 2.9, and subsequent
figures of this type, median efficiencies for a single corner are connected by line
segments, so that we can readily identify performance for that corner. Further, for
comparison, all such plots have a y-axis ranging from 0% to 100% efficiency. In
addition to the efficiency on the left vertical axis, a non-linear scale measuring the
ratio of the standard deviation of the log estimates to the standard deviation of the
log ML estimates is provided on the right vertical axis of this plot, and subsequent

figures of this type. This ratio is defined

1 sample standard deviation of In S(X)i,...,InS(X),,
eff(S) sample standard deviation of Inégy,...,Inag,

(2.43)

where eff(S) is a percentage. This measure gives us a better understanding of the
implications of a low efficiency. For example, if a scale estimator has efficiency of
80%, the standard deviation of its log estimates is approximately 1.12 times the

standard deviation of the log ML estimates.
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The first notable feature of Figure 2.9 is the very poor performance of both the
sample standard deviation and Gini’s mean difference for one-wild and slash data;
Gini’s mean difference performing slightly better in each instance. Both are, how-
ever, highly efficient for normal data. The next three estimators are the trimmed
standard deviations. Various parameter estimates are chosen, and an obvious trade-
off between efficiency in the one-wild and slash situations occurs. As we let p and
r decrease to the point that a single observation is trimmed, the estimator becomes
close to optimal for the one-wild distribution, but hopeless for the slash. In terms of
triefficiency, Lax’s choice of p = r = 0.2 is certainly the best of the three parameter

combinations examined here.

The remaining estimators are all robust estimators, and as such their performance for
normal data is typically the worst, and their performance for slash data the best. The
four estimators: interquartile range (IQR), median absolute deviation (MAD), S,
and Q,,, are all similar in their construction, depending primarily on order statistics.
The relative performance of the IQR and MAD is particularly interesting. While
the MAD is more efficient for slash data, the IQR is only marginally less efficient
in this case, and overall, more triefficient. Under the criterion of triefficiency, we
conclude that the IQR is more robust than the MAD, and more suitable generally.
This conflicts with the popularity of the MAD in advanced statistical methods (e.g.
loess). The performance of S, and @), supports their use as alternatives to MAD,
and in turn IQR, with particularly high average efficiency in the slash case, of 95.8%
and 94.9% respectively. In fact, both MAD and IQR are dominated by S, and Q.
We analyse the implications of this for use of MAD as the auxiliary scale estimator

of choice in Section 2.5.3.

Table 2.9 offers comparison to Lax’s results for sample standard deviation, the
trimmed standard deviation with p = r = 0.2, and MAD. It also offers comparison
to the results of Iglewicz (2000) for the IQR (here comparison is made to results
for the fourth spread, which is a close approximation to the IQR). Finally it offers

comparison to the results of Rousseeuw & Croux (1993) for S, and Q.

The one-wild efficiency for the sample standard deviation given by Lax appears
within sampling error, however the results for the trimmed standard deviation are
grossly different. We also see evidence of Lax’s failure to benchmark the efficiencies
against the minimum variance scale estimators as discussed in Section 2.1.2. Lax

reports optimal (100%) efficiency for the trimmed standard deviation at the one-wild
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Figure 2.9. Efficiency distributions for the one-pass estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. The estimators are sd=sample
standard deviation, gini=Gini’s mean difference, s10=trimmed standard deviation with p = r =
0.1, s15=trimmed standard deviation with p = 0.2 and r = 0.15, s20=trimmed standard deviation
with p = r = 0.2, iqr=interquartile range, mad=median absolute deviation, Sn=S,,, Qn=Q, and
ML=maximum likelihood. Efficiency is computed using (2.31). The ratio of standard deviations
is a non-linear scale given by (2.43).

estimator normal | one-wild | slash | triefficiency
sample standard deviation 100.0 11.4 7.5 7.5
Gini’s mean difference 98.0 26.7 11.4 11.4
trimmed sd with p =r =0.2 65.0 70.8 76.1 65.0
trimmed sd with p=0.2 and r =0.15 | 72.1 78.6 63.4 63.4
trimmed sd with p=7r =0.1 80.9 88.1 42.1 42.1
interquartile range 39.4 42.4 84.0 39.4
median absolute deviation 37.8 40.5 87.3 37.8
S 54.7 55.9 95.8 54.7
(9 66.9 68.4 94.9 66.9

Table 2.8. Average efficiencies for the one-pass estimators, based on 100 realisations of the
efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.31). The triefficiency given is the average over the 100
simulations, rather than the minimum average. The efficiency distributions for these estimators
are shown in Figure 2.9.
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estimator normal one-wild slash
sample standard deviation 100.0 (100.0) [ 11.4 (10.9)
trimmed sd with p=r =02 | 65.0 (89.9) | 70.8 (100.0) | 76.1 (28.1)
interquartile range 39.4  (41) 42.4 (47) 84.0 (94)
median absolute deviation 37.8 (35.3) |40.5 (41.5) | 87.3 (91.8)

S, 56.3 (54.1)
Qn 68.3 (68.8)

Table 2.9. Comparison of one-pass efficiencies with those from published studies, shown in paren-
theses. Results for the trimmed standard deviation and median absolute deviation are compared
with the results given in Lax (1985), the interquartile range with results given in Iglewicz (2000)
for the fourth spread, and the results for S,, and Q,, to those given in Rousseeuw & Croux (1993).
The latter efficiencies are based on standardised variances, rather than the variance of the log es-
timates. The one-pass efficiencies are averages based on 100 efficiencies, each from 20000 samples
of size 20.

distribution, and very poor performance in the slash case. Theory tells us the first
cannot be true since it is suboptimal to ignore the wild observation completely, and
in fact by choosing p = r = 0.2 we ignore at least three well-behaved observations in
each calculation. Also, the simulation results presented here show that elimination of
a few extreme values in a slash sample results in a reasonable, but not perfect, level of
efficiency. Results for the normal distribution cannot be affected by an understated
numerator, so a likely conclusion is that Lax’s trimmed standard deviations were

not computed correctly.

The results for the MAD appear to correspond across all three distributions, and
differences can almost certainly be attributed to sampling error and the vast differ-
ences in simulation sizes. Results for the IQR match the essence of those provided
by Iglewicz for the fourth spread. Overstatement of the efficiencies for the IQR
in the one-wild and slash cases could be due to an understated numerator in the
efficiency calculation; however this is inconsistent with the MAD results (although

these are from a different source).

Efficiencies for S,, and @, based on standardised variances, are compared to those
derived from the standardised variances given in Rousseeuw & Croux (1993) with
only small differences observed. The original efficiencies were based on a single
simulation run of 10000 samples of size 20. Thus, sampling error, and use of the
rounded figures given by Rousseeuw & Croux (1993) could easily account for the

differences.
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The A-estimators

Lax found in favour of the A-estimators using the biweight ¢-function. However,
alternative weight functions produced undominated estimators, in particular, the
modified biweight and the modified sine functions. Since the Princeton Robustness
Study (Andrews et al. 1972), the biweight has had periods of popularity in the
robust literature (Cleveland 1979, Martinez & Iglewicz 1981, Kafadar 1982, Iglewicz
& Martinez 1982, for example). It also features in a variety of currently popular
robust techniques in particular the smoothing algorithm loess of Cleveland et al.
(1992). For these reasons, we focus attention on A-estimators using the biweight
y-function. In particular, optimal scaling constants for the modified biweight, and
modified sine have not been sought. They are included here only for comparison

with Lax’s results.

Efficiencies of the A-estimators are compared in Figure 2.10, and average efficiencies
are given in Table 2.10. It is immediately clear that the modified biweight lacks
efficiency for the normal and one-wild distributions as was found in the Lax study.
Performance of the modified sine is similar to that of the biweight with ¢ € (9, 10, 11),
in terms of triefficiency and also the range of efficiency across the three corners. The
choices of scaling constant in the biweight estimators clearly demonstrate several
phenomena. In theory, as ¢ — oo, the biweight estimate converges to the sample
standard deviation (albeit using the sample median rather than the sample mean),
and hence we would expect to see its efficiency at the normal distribution increase
with ¢. Also, as c¢ increases, the point at which absolute deviations get zero weight
increases, and hence we would expect to see the efficiency for both one-wild (for
large ¢) and slash data decrease. Both these results are reflected in the simulated

efficiencies presented here.

Unlike the one-pass estimators, the one-wild distribution dominates the triefficiencies
for the A-estimators. In almost every case the efficiencies at the one-wild distribution
are the lowest, and hence the triefficiency is simply the efficiency at the one-wild
distribution. The intuition behind this is unclear; however, if we favour the use
of these estimators, one interpretation is that the one-wild is not a suitable corner

distribution when triefficiency is the criterion.

Despite the changes to both the numerator and denominator in the efficiencies, the

biweight with ¢ = 9 almost comes out as the triefficient estimator of this class. Use
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Figure 2.10. Efficiency distributions for the A-estimators using Sp = MAD, based on 100
realisations of the efficiencies, each estimated from 20000 samples of size 20. The estimators
are mbi=modified biweight with ¢ = 6, msi=modified sine with ¢ = 2.1, bi9-bil3=biweight with
constants ¢ = (9,10, 11, 12, 13) respectively, and ML=maximum likelihood. Efficiency is computed
using (2.31). The ratio of standard deviations is a non-linear scale given by (2.43).

of ¢ = 10 improves the average one-wild efficiency and hence the average triefficiency
by 0.1%. Should we consider only the normal and slash corners, the “biefficient”
estimator would be the biweight with ¢ between 9 and 10. The intersection of the
lines joining the median efficiencies for the normal and slash distributions in Figure
2.10 suggests a scaling constant of close to 9.5 for maximum biefficiency across these

two corners.

Once again there are conflicts between the results of this study and those of Lax.
Average efficiencies are compared in Table 2.11 for the estimators common to both
studies. In all cases, the figures for the normal data appear to correspond, and the
general behaviour of efficiencies for both one-wild and slash data appear to corre-
spond. However, whilst the order behaviour is generally consistent, point estimates
cannot be recovered by rescaling Lax’s efficiency estimates to account for overstated
numerators, and hence again we conclude there are significant differences. In partic-
ular, the triefficiency of the best A-estimator is found to be smaller, at 79.2% rather

than 85.8%.
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estimator normal | one-wild | slash | triefficiency
modified biweight with ¢ =6 | 50.0 53.3 92.5 50.0
modified sine with ¢ = 2.1 78.1 75.3 89.0 75.3
biweight with ¢ = 9 86.2 79.1 88.0 79.1
biweight with ¢ = 10 89.4 79.2 86.8 79.2
biweight with ¢ = 11 91.7 78.2 85.5 78.2
biweight with ¢ = 12 93.4 76.5 84.0 76.5
biweight with ¢ = 13 94.7 74.1 82.4 74.1

Table 2.10. Average efficiencies for the A-estimators using Sy = MAD, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in
Section 2.3, and each efficiency is computed using (2.31). The triefficiency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these
estimators are shown in Figure 2.10.

estimator normal one-wild slash

modified biweight with ¢ =6 | 50.0 (47.5) | 53.3 (56.8) | 92.5 (96.8)
modified sine with ¢ = 2.1 78.1 (82.1) | 75.3 (89.6) | 89.0 (94.5)
biweight with ¢ = 9 86.2 (86.7) | 79.1 (85.8) | 88.0 (86.1)
biweight with ¢ = 10 89.4 (90.0) | 79.2 (84.8) | 86.8 (84.6)

Table 2.11. Comparison of A-estimator efficiencies with results from Lax (1985), shown in
parentheses. The A-estimator efficiencies are averages based on 100 efficiencies, each from 20000
samples of size 20.
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Estimators based on the t-distribution

An alternative to constructing an all-purpose estimator that achieves high trief-
ficiency, such as an A-estimator, is to find an underlying compromise distribution
whose corresponding (optimal) scale estimator has high triefficiency. Use of the Stu-
dent’s t distribution is one attempt to model this implicit distribution, which must
be close to normal near the centre, exhibit intermediate tail behaviour, and have
the possibility of the occasional “wild” observation. The t-estimators are multi-pass
and as such need an initial scale estimate. If full iteration is performed, the choice
of Sp is not crucial and we can use the sample standard deviation. However, if only
a single iteration is performed, we would hope to start with a scale estimate which is
itself robust. Treating the one-step estimator as given in (2.29) as a special form of
an A-estimator, we may use S; = MAD and optimise by choice of scaling constant

C.

Efficiencies of the fully iterated t-estimators are compared in Figure 2.11, and av-
erage efficiencies are given in Table 2.12. Several surprising features emerge from
these summaries. In particular, we note that the fully iterated t-estimator does par-
ticularly well for the one-wild distribution when v € {2, 3,4}, but less well for the
slash distribution. Even when v = 1 and the ¢-distribution is the Cauchy (compared
to the slash in Table 2.1 and Figure 2.3) the optimal estimator for this distribu-
tion only averages 76.8% efficiency for the slash. It is also interesting to note how
quickly the normal efficiency increases with v. In particular, even for ¥ = 6, which
would definitely be considered long-tailed and highly non-normal, the t-estimator
is nearly 95% efficient for the normal samples. The one-wild performance when
v = 3 is the second best of all estimators considered in the simulation, following
the trimmed standard deviation with p = r = 0.1 which has an average efficiency of
88.1%. Normal/one-wild biefficiency is achieved between v = 2 and 3, which seems

surprisingly low.

Efficiencies of the one-step t-estimators are compared in Figure 2.12, and average
efficiencies are given in Table 2.13. We see that like the biweight A-estimator and the
one-pass estimators, this estimator has failed to cope well with the one-wild samples.
As ¢, and hence the implicit degrees of freedom v, decreases, the t-distribution
behaves much like the slash distribution in the tails, and as expected, the efficiency
increases. Similarly as v increases, efficiency increases for the normal data, which

is of course the distribution obtained as v — oo. The best choice of ¢ appears to
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Figure 2.11. Efficiency distributions for the fully iterated t-estimators, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators t1-t6 have asso-
ciated degrees of freedom v = (1,2, 3,4, 6) respectively, and ML=maximum likelihood. Efficiency
is computed using (2.31). The ratio of standard deviations is a non-linear scale given by (2.43).

estimator normal | one-wild | slash | triefficiency
fully iterated ¢ with v =1 79.8 82.6 76.8 76.8
fully iterated ¢ with v =2 | 85.5 86.3 64.3 64.3
fully iterated t with v =3 | 89.0 87.1 54.9 54.9
fully iterated ¢ with v =4 | 914 86.0 474 47.4
fully iterated t with v =6 | 94.4 79.8 37.4 37.4

Table 2.12. Average efficiencies for the fully iterated t-estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.31). The triefficiency given is the average over the 100
simulations, rather than the minimum average. The efficiency distributions for these estimators
are shown in Figure 2.11.
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Figure 2.12. Efficiency distributions for the one-step t-estimators, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators tm1l-tm6 use
So = MAD and have associated scaling parameters ¢ = (4,4.25,4.5,4.75,5,5.25) respectively,
and ML=maximum likelihood. The (non-linear) upper axis shows the corresponding size of v
if So = 1.4826(MAD) is assumed. Efficiency is computed using (2.31). The ratio of standard
deviations is a non-linear scale given by (2.43).

be ¢ = 4.25 using a triefficiency criterion, or ¢ = 5 if biefficiency for the normal
and slash distributions is sought. These values of ¢ correspond roughly to v = 8
and v = 12 respectively. It is interesting that lower degrees of freedom are needed
when normal/one-wild biefficiency is sought, even though the tail of the one-wild
distribution is better behaved than that of the slash. Also, we note that using the
MAD and ¢ = 4 we obtain an average slash efficiency higher than any of the fully
iterated Z-estimators and 3.5% higher than the MAD itself. Overall, the t-estimators
do not appear to be as good as the biweight A-estimators: their performance at
the one-wild is approximately 10% worse, and their normal/slash biefficiency is
marginally lower. Further, use of the MAD and a single iteration fails to provide

the triefficiency of the fully iterated estimator with v = 1.

These results are intriguing in the sense that we see quite different behaviour from
the fully iterated and one-step t-estimators. In particular, the fully iterated estima-
tors do well for the normal and one-wild corners but relatively poorly for the slash
data, despite low values of v. In contrast, for much higher implicit values of v, the
one-step estimators do very well for slash data, and less well for the normal and

one-wild samples. The ¢-distribution does appear to be able to moderate between







2.5. RESULTS

Efficiencies
60
i

40

20
1

—— Normal distribution
—— Onewild distribution
—— Slash distribution

Ratio of standard deviations

big bs1 bs2

T
bs3

bqt

Estimator

71

1.12

1.29

1.58

224

Figure 2.13. Efficiency distributions for biweight A-estimators with alternative Sy, based on 100
realisations of the efficiencies, each estimated from 20000 samples of size 20. The estimators are
bi9=biweight with MAD and ¢ = 9, bs1-bs3 use S,, with ¢ = (6.5,7, 7.5) respectively, bql-bq3 use
Qn with ¢ = (10.5,11,11.5) respectively, and ML=maximum likelihood. Efficiency is computed
using (2.31). The ratio of standard deviations is a non-linear scale given by (2.43).

estimator normal | one-wild | slash | triefficiency
biweight with MAD and ¢ =10 | 89.4 79.2 86.8 79.2
biweight with S, and ¢ = 6.5 86.8 80.8 86.9 80.8
biweight with S, and ¢ =7 89.0 81.1 85.8 81.1
biweight with S, and ¢ = 7.5 90.8 80.8 84.6 80.8
biweight with @,, and ¢ = 10.5 88.0 82.1 83.9 82.1
biweight with ), and ¢ = 11 89.4 82.2 82.9 82.1
biweight with @, and ¢ = 11.5 90.6 82.1 82.0 81.7

Table 2.14. Average efficiencies for the A-estimators using alternative Sy, based on 100 realisa-
tions of the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined
in Section 2.3, and each efficiency is computed using (2.31). The triefficiency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these

estimators are shown in Figure 2.13.
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normal | one-wild | slash
MAD 0.6473 | 0.6852 1.5067
S 0.8582 | 0.9266 2.1878

QO 0.5360 | 0.5895 | 1.4913
10 MAD | 6.4727 | 6.8524 | 15.0672
7Sn 6.0073 | 6.4860 | 15.3147

11Q, 5.8957 | 6.4850 | 16.4045

Table 2.15. Simulation average of the auxiliary scale estimates and the corresponding averages
of those estimates times the best selected scaling constants.

choices of ¢Sy in the A-estimators. From this table it is clear why the efficiencies
have decreased for the slash data, since by increasing ¢Sy we would expect these
empirical responses as fewer data are eliminated by the biweight function. The
scaling constants have essentially been determined by the one-wild performance,
and this improvement is reflected in the decrease of ¢Sy. An interesting effect is
that the normal efficiency does not decline as a result of ¢Sy decreasing for that

corner as well.

Having noted that use of more efficient auxiliary scale estimators has benefitted
the A-estimators, the same principles also hold true for the one-step estimators
based on the t-distribution. Since they are not fully iterated, choice of a “better”
initial scale estimate may improve the efficiency of the final estimate. Use of v as the
scaling constant would require a “good” initial estimate. Focussing on consistency in
the normal case, and taking scaling constants from Table 2.15, we would typically
use Sp = MAD/0.6473, Sg = S,/0.8582 or Sy = @,/0.5360 depending on our
preference for MAD, S, or @,. Since we have reparameterised the one-step t-
estimators, this is unnecessary and we simply choose MAD, S, or ,, and maximise
the triefficiency by choice of ¢. We simulate using S, with ¢ € {2.75,3,3.25} and
Q. with ¢ € {4,4.25,4.5}. The results of these simulations are summarised in
Table 2.16 and Figure 2.14, along with results for the best fully iterated ¢-estimator
and one-step using the MAD. The results clearly show an improvement in overall

efficiency.

Use of S,, results in triefficiency comparable to the fully-iterated ¢, with lower per-
formance at the one-wild, but higher efficiency at both the normal and slash distri-
butions. Further improvement is achieved by using @),,, with a small compromise in
normal-slash efficiencies for an improvement in one-wild efficiency. Once again the

influence of the one-wild results is seen. Maximum efficiency for the one-wild occurs
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Figure 2.14. Efficiency distributions for #-estimators with alternative Sy, based on 100 realisa-
tions of the efficiencies, each estimated from 20000 samples of size 20. The estimators are t1=fully
iterated with v = 1, tm2=one-step with Sy = MAD and ¢ = 4.25, ts1-ts3 are one-step with So = S,
and ¢ = (2.75,3,3.25), tql-tq3 are one-step with Sy = @, and ¢ = (4,4.25,4.5) respectively, and
ML=maximum likelihood. Efficiency is computed using (2.31). The ratio of standard deviations
is a non-linear scale given by (2.43).

at lower ¢ when @, is used, but despite this, efficiencies for the normal increase and
those for the slash decrease. We would expect the opposite effect simply by decreas-
ing the degrees of freedom, but there is an offsetting effect due to the relative sizes
of Sy using the MAD, S, and @, similar to the effect illustrated in Table 2.15 for
the biweight A-estimators.

The t-estimator results are now very similar across all three distributions to those
for the A-estimator with @, and ¢ = 11. We see slightly worse performance for the
one-step ¢ with @), and ¢ = 4.25 at the normal and one-wild, better performance at
the slash, and a 0.3% decrease in average triefficiency. Thus the one-step t-estimator
with @, and ¢ = 4.25 emerges as a serious contender for the biweight A-estimator
with @, and ¢ = 11.

2.5.4 Other results
Alternative sample sizes

We repeat some of the above analysis for samples of sizes 10 and 40. We would expect

the results for the one-wild to exhibit the greatest changes here, and dominate the
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estimator normal | one-wild | slash | triefficiency
fully iterated ¢ with v =1 79.8 82.6 76.8 76.8
one-step t with MAD and ¢ =4.25 | 80.8 69.3 89.7 69.3
one-step t with S, and ¢ = 2.75 83.1 76.6 89.8 76.6
one-step ¢t with S,, and ¢ =3 85.3 76.6 87.9 76.6
one-step t with .S,, and ¢ = 3.25 87.3 76.2 86.0 76.2
one-step t with @, and ¢ =4 85.7 81.7 86.2 81.7
one-step t with @, and ¢ = 4.25 86.9 81.8 85.0 81.8
one-step t with @), and ¢ = 4.5 88.1 81.7 83.7 81.7

Table 2.16. Average efficiencies for the t-estimators using alternative Sy, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in
Section 2.3, and each efficiency is computed using (2.31). The triefficiency given is the average
over the 100 simulations, rather than the minimum average. The efficiency distributions for these
estimators are shown in Figure 2.14.

results for the smaller samples particularly. In the case of n = 10, the single “wild”
observation represents a greater proportion of the sample, and we would expect
efficiencies at the one-wild to decrease for most estimators. However, when n = 40,
the wild observation should not be so dominant, and we would expect estimators to
have efficiencies much closer to their Gaussian efficiencies. These effects will have a
direct impact on triefficiencies due to the dominance of the one-wild distribution in

the results for n = 20.

Results are presented for selected estimators in Tables 2.17 to 2.19 for the normal,
one-wild and slash distributions respectively. Consider first the results given for the
normal distribution in Table 2.17. Here, no systematic behaviour is observed across
all estimators. The average efficiencies of the trimmed standard deviation and MAD
decrease as sample size increases, whereas S, @, and the biweight with both MAD
and S, perform better relative to the sample standard deviation. Interestingly, we
see different behaviour for MAD (whose preformance worsens as n increases) and
its proposed alternatives S,, and @, (whose performance increases). Further, the
average efficiencies of the biweight with @, and scaling constants ¢ = 10.5 and
¢ = 11 are approximately constant whereas the one-step ¢ with @, and ¢ = 4.25
does slightly worse as sample size increases. These latter three estimators do very

well at all sample sizes with average efficiencies close to 90%.

The results for the one-wild distribution are shown in Table 2.18. Intuitively we
would expect the efficiencies to increase with sample size for the robust estimators,
and this is exactly what is observed. The sample standard deviation gets worse

as sample size increases, as we would expect for an estimator with no protection
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estimator n=10 | n=20 | n =40
sample standard deviation 100.0 100.0 100.0
trimmed sd with p =7 = 0.1 86.5 80.9 79.7
median absolute deviation 39.1 37.8 37.4
S 50.2 54.7 57.9
Ga 60.7 66.9 72.7

biweight with MAD and ¢ =9 72.7 86.2 90.3
biweight with MAD and ¢ = 10 77.6 89.4 92.6

biweight with S, and ¢ = 6.5 78.5 86.8 89.0
biweight with S,, and ¢ =7 81.6 89.0 90.9
biweight with @, and ¢ = 10.5 87.8 88.0 87.0
biweight with @, and ¢ = 11 89.2 89.4 88.5

one-step ¢ with @), and ¢ = 4.25 | 88.2 86.9 86.5

Table 2.17. Average efficiencies for selected estimators for the normal distribution only, based
on 100 realisations of the efficiencies, each estimated from 20000 samples of sizes 10, 20 and 40.
The estimators are defined in Section 2.3, and each efficiency is computed using (2.31).

against the single “wild” observation. The trimmed standard deviation has an aber-
rant value for n = 10 because the two-sided trimmed mean is computed for the entire
sample (the trimming in this case removes 5% of the observations from each end of
the ranked sample, and here 0.057 < 1 so no observations are trimmed). Relative
performance worsens for n = 40 because of the parameterisation of the estimator.
Since we remove 100r% of the observations, as n increases the number of “good”
observations trimmed increases, and consequently efficiency decreases. MAD gets
worse as n increases; however both S, and (), improve. The A-estimators and the
one-step t-estimator all show a systematic increase in efficiency as sample size in-
creases, as we would expect. Here, the identification and down-weighting of the
single “wild” observation improves as n increases, and the scale estimates are com-
puted with similar efficiency to those for the normal distribution and n = 40. While
these estimators were only able to attain one-wild efficiencies close to 80% for n = 20,
when n = 40, the efficiencies are higher, and much closer to those attained for the

normal distribution.

The results for the slash distribution are shown in Table 2.19. Once again, as we
would expect, the sample standard deviation gets worse as sample size increases.
Unlike its performance for one-wild samples, the trimmed standard deviation ben-
efits in the slash case from losing a larger number of observations, and increases in
efficiency as n increases (once again the figure for n = 10 is deflated). The MAD

and S, become less efficient as n increases, whereas the performance of Q,, is fairly
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estimator n=10 | n=20 | n =40
sample standard deviation 17.8 11.4 8.6
trimmed sd with p=r = 0.1 50.6 88.1 83.9
median absolute deviation 44.4 40.5 39.0
S 53.2 55.9 58.7
G 63.6 68.4 73.7

biweight with MAD and ¢ =9 63.5 79.1 86.9
biweight with MAD and ¢ = 10 63.6 79.2 87.5

biweight with S,, and ¢ = 6.5 66.4 80.8 86.8
biweight with S, and ¢ =7 65.8 81.1 87.7
biweight with @, and ¢ = 10.5 66.1 82.1 85.9
biweight with @,, and ¢ = 11 64.7 82.2 86.8
one-step t with @, and ¢ =4.25 | 72.7 81.8 85.4
maximum likelihood 100.0 | 100.0 | 100.0

Table 2.18. Average efficiencies for selected estimators for the one-wild corner only, based on
100 realisations of the efficiencies, each estimated from 20000 samples of sizes 10, 20 and 40. The
estimators are defined in Section 2.3, and each efficiency is computed using (2.31).

constant. The A-estimators, and the one-step £, all do worse as n increases and com-
parison with Tables 2.17 and 2.18 shows that the triefficiencies for these estimators

at n = 40 are now their slash efficiencies.

For n = 10, the one-step t with @), and ¢ = 4.25 is the triefficient estimator, due to
its 72.7% average efficiency at the one-wild distribution (as shown in Figure 2.15).
We also note that this is the biefficient estimator for the normal and slash corners
for this particular sample size. No attempt was made to optimise ¢ for any of the
two-pass estimators, so there may be better choices when n = 10. For n = 40,
the efficiencies are shown in Figure 2.16. In this plot it is clear that, for n = 40,
the trimmed standard deviation, MAD, S,, and @, are not greatly influenced by
the “wild” observation in the one-wild samples. The best estimator is the biweight
with MAD and ¢ = 9, with an average triefficiency of 86.2%. Like the one-step t
when n = 10, this was the best performing estimator in all 100 trials. The biweight
with MAD and ¢ = 10, with S;, and ¢ = 6.5, and the one-step ¢ also had high
triefficiencies, with averages 84.8%, 84.7% and 84.6% respectively. In fact, there is

very little difference between the two-step estimators considered.

Results using standardised variances

Use of the standardised variance favoured by Rousseeuw & Croux (1993), giving

the efficiency (2.32), rather than log-variance used by Lax, with efficiency given by
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estimator n=10 | m=20 | 7 =40
sample standard deviation 17.4 7.5 3.5
trimmed sd with p=r = 0.1 26.2 42.1 43.3
median absolute deviation 92.3 87.3 85.4
Sy 98.3 95.8 94.5
Qn 96.8 94.9 95.1

biweight with MAD and ¢ =9 90.7 88.0 86.3
biweight with MAD and ¢ = 10 90.4 86.8 84.8

biweight with S,, and ¢ = 6.5 90.7 86.9 84.7
biweight with S, and ¢ =7 90.0 85.8 83.4
biweight with @,, and ¢ = 10.5 86.2 83.9 83.2
biweight with @, and ¢ = 11 85.4 82.9 82.3
one-step t with @, and ¢ = 4.25 | 87.3 85.0 84.7
maximum likelihood 100.0 | 100.0 | 100.0

Table 2.19. Average efficiencies for selected estimators for the slash distribution only, based on
100 realisations of the efficiencies, each estimated from 20000 samples of sizes 10, 20 and 40. The
estimators are defined in Section 2.3, and each efficiency is computed using (2.31).
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Figure 2.15. Efficiency distributions for estimators with n = 10, based on 100 realisations of the
efficiencies, each estimated from 20000 samples. The estimators are sd=sample standard deviation,
sl0=trimmed sd with p = 7 = 0.1, mad=MAD, Sn=S,,, Qn=0Q,, bi9-bq2=biweight with MAD
and ¢ = (9,10), S, and ¢ = (6.5,7) and Q,, with ¢ = (10.5,11) respectively, tq2=one-step ¢ with
@n and ¢ = 4.25 and ML=maximum likelihood. Efficiency is computed using (2.31). The ratio of
standard deviations is a non-linear scale given by (2.43).
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Figure 2.16. Efficiency distributions for estimators with n = 40, based on 100 realisations of the
efficiencies, each estimated from 20000 samples. The estimators are sd=sample standard deviation,
s10=trimmed sd with p = r = 0.1, mad=MAD, Sn=S,,, Qu=@Q,,, bi9-bq2=biweight with MAD
and ¢ = (9,10), S, and ¢ = (6.5,7) and @, with ¢ = (10.5,11) respectively, tq2=one-step ¢ with
@, and ¢ = 4.25 and ML=maximum likelihood. Efficiency is computed using (2.31). The ratio of
standard deviations is a non-linear scale given by (2.43).

(2.31), has an interesting effect on the results for n = 20. The average efficiencies
based on standardised variances are found in Table C.2 and these can be compared
to the complete results based on log variances given in Table C.1. The estimators
in both tables are sorted according to average rank using the triefficiency as the
criterion. In almost every case, average efficiency at the normal distribution is higher
using the standardised variances than it was using the variance of the log estimates.
The exceptions are Gini’s mean difference, and the fully iterated f-estimators with
v =4 and 6, each with an average difference very close to zero. The largest gain is
4.1% for the modified biweight A-estimator, but most estimators gain less than 1%

efficiency.

The one-wild results lose some influence on the triefficiencies under the alternative
efficiency estimate, and do not exhibit large systematic changes like the normal
and slash results. Nearly all the efficiencies for the single-pass estimators increase,
whereas the multi-pass estimators generally lose ground. Most average changes for
this class are very small, with only the biweights using MAD and ¢ = 11, 12, and
13 falling more than 1%.
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The efficiencies for the slash distribution show an opposite effect to the normal re-
sults; here most estimators have lower efficiencies using the standardised variances,
and unlike the normal data, the differences in some cases are sizeable. This is
clearly related to the stabilising effect of the log transform. The largest differences
are observed in the estimators that perform poorly at the slash distribution: sample
standard deviation, Gini’s mean difference, the trimmed standard deviations, and
the fully iterated t-estimators. All of these differences (except the standard devia-
tion’s) are above 10%, with the trimmed standard deviation with p = r = 0.1 falling
almost 25%. All other estimators maintain average slash efficiencies in excess of
75%, as seen in Table C.2. In two instances (the MAD and the modified biweight)
the slash efficiencies increase by approximately 1%, however most changes are de-
creases of between 3 and 6%. Substantial drops for the two-pass estimators using
Q. as an auxiliary scale (of around 6%) cause the slash efficiency to be the lowest
of the three distributions for these estimators. This affects the biweights using S,
and @,, and the one-step ¢ using @, in particular. Interestingly, these estimators
are among the best performing estimators under the measure based on log variance.

Under that measure, the best triefficiencies are slightly higher, at around 82%.

Since the one-wild results are fairly stable, so too are the triefficiencies. We do
however select different estimators on account of large decreases in slash efficiency
for some estimators. The best performing estimators are now the biweight with S,
and ¢ = 6.5, ¢ = 7, and the one-step t with @, and ¢ = 4. All three estimators have
triefficiencies in excess of 80%, as seen in Table C.2. This effect is shown graphically
in Figure 2.17, where the code for each estimator is plotted against average rank
using log variance (on the horizontal axis) and average rank based on standardised
variance (on the vertical axis). The cluster of estimators in the lower left quadrant
of the plot indicate those which have performed well under both measures, and the
minimum average triefficiency of this group is 75.9% for the biweight with @, and
¢ = 11.5 (bg3). In short, use of the standardised variance does not have a very

dramatic effect on the conclusions we draw.

2.6 Conclusions

A large simulation has been performed, and has produced results in conflict with

those of Lax (1985). In particular, the estimator with the largest triefficiency iden-
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Figure 2.17. Comparison of average ranks under the two efficiency measures. The average ranks
based on triefficiency and the variance of the log estimates is on the horizontal axis, and the
average ranks based on triefficiency and the standardised variance (2.32) on the vertical axis, and
the estimator is indicated by its short code (see Table 2.6). The line representing equality is shown
in grey, and full results are given in Tables C.1 and C.2.

tified by Lax is not the estimator with greatest triefficiency in this study, and the

triefficiency found by Lax of 85.8% has not been reached.

Figure 2.18 compares the efficiencies of the best estimators of each class: the biweight
with MAD and ¢ = 10, the biweight with S, and ¢ = 7, the biweight with @,, and
¢ = 11, and the t-estimator with @, and ¢ = 4.25. From this plot it is clear that
these four estimators offer estimates of very similar quality. Even though the gains
in efficiency are likely to be small, use of the biweight with Rousseeuw & Croux’s
(1993) S,, or @y, or use of the t-estimator with @, and a single iteration, will provide
better estimates than use of the biweight with MAD and ¢ = 10 (and therefore also
with MAD and ¢ = 9). Except for the biweight with @,, all triefficiencies for
these four estimators are based exclusively on the one-wild distribution, and other
estimators may be preferred if the triefficiency ceases to be the selection criterion,

i.e., if a different distribution to the one-wild is chosen as the third corner.

All efficiency distributions have similar ranges and interquartile ranges and are rea-
sonably symmetric. The efficiencies for any particular estimator and distribution

combination typically have standard deviations close to 0.5%. Thus the standard
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Figure 2.18. Efficiency distributions for the best performing estimators of each class, based on
100 realisations of the efficiencies, each estimated from 20000 samples of size 20. The estimators are
bilO=biweight A-estimator with MAD and ¢ = 10, bs2=biweight with S,, and ¢ = 7, bq2=biweight
with @, and ¢ = 11, and tq2=the t-estimator with @,, and ¢ = 4.25. The red lines join the medians
for the normal distribution, the green the medians for the one-wild, and the blue for the slash.
Efficiency is computed using (2.31). The ratio of standard deviations is a non-linear scale given by
(2.43).

errors of the average efficiencies are approximately 0.05%, and we can assume that

the reported average efficiencies are very close indeed to the true efficiencies.

Even though the very long tails of the slash distribution would seem to present a
greater challenge, relatively speaking, high efficiency at the one-wild has proven a
more difficult achievement for an estimator which performs well in general. The
sampling variance of the estimates in the slash situation is of course much higher
than that in the one-wild case. However, robust estimators struggle to match the
performance of the maximum likelihood estimates for the one-wild in particular.
The maximum average efficiency for any estimator considered was 98.0% for Gini’s
mean difference at the normal distribution, 95.8% for S, at the slash distribution,
but only 88.1% for the trimmed standard deviation with p = r = 0.1 at the one-
wild. This does raise the question as to whether or not the three corners used for
the triefficiency are indeed the appropriate corners. A simple modification would
be to lower the standard deviation of the wild observation to perhaps eight or nine

times that of the others, and this would raise the efficiency of many estimators for




82 CHAPTER 2. ROBUST SCALE ESTIMATION

the one-wild samples. An alternative would be to stay with & = 10, but treat this

as an unknown parameter in the maximum likelihood recursions.

By undertaking a study of this magnitude, it is intended that the efficiencies reported
will become the benchmark for robust scale estimators. However, many avenues exist
to extend these results. In particular, no attempt was made to examine alternative
1-functions to the biweight in the A-estimators. Further, the parameter & in @,, was
treated as fixed. Adjustment of this might lead to greater efficiency both for @,, and
for estimators using it as an auxiliary scale estimator. The t-estimators performed
well despite having non-zero weights for all observations, and with @), and ¢ = 4.25
was both the normal/slash biefficient estimator and the triefficient estimator when
n = 10. Truncation of the weight function of the t-estimator at some suitable point

might improve the performance of these estimators.

Together with the results for three location estimators presented in Appendix B, it
is hoped that this work will prompt further interest in robust scale (and location)

estimation generally, in particular, regarding the performance for small samples.




Chapter 3

Non-parametric volatility
estimation

Evolving volatility is a dominant feature observed in most financial time series and
a key parameter used in option pricing and many other financial risk analyses. Al-
though there is now an extensive literature on the estimation of parametric volatility
models (see Engle (1982), Taylor (1986), Bollerslev, Chou & Kroner (1992), Har-
vey, Ruiz & Shephard (1994), Bollerslev & Mikkelson (1996), Shephard (1996) and
Barndorff-Nielsen & Shephard (2001) for example) less attention has been paid to
simpler non-parametric alternatives. Exceptions include Ait-Sahalia (1996), Ander-
son & Grier (1992), and Andersen, Bollerslev, Diebold & Labys (2001) for example.
More closely related to this paper is the work of Turner & Weigel (1992) who analyse
the volatility of the daily returns of the S&P 500 and Dow Jones indices using the
sample interquartile range (see Definition 2.8) as well as other measures of volatil-
ity. However, such estimates need to be rescaled in order to provide an unbiased
estimate of the standard deviation of the underlying data since this is the predomi-
nant measure of volatility in financial applications, due to its use in standard option

pricing and portfolio optimisation methodologies.

In this chapter we present preliminary findings on the construction and properties
of non-parametric estimators of time-varying volatility, where volatility is assumed
to be a measure of scale. Our focus is on financial data and, in particular, the daily
returns of market prices such as equities, market indices and exchange rates, where
daily returns are the first differences of the logarithms of the prices. Thus each
daily return measures the continuously compounded rate of return on the asset or
index over the day concerned. It is noted that non-parametric volatility estimators

are particularly appropriate for extracting and understanding historical volatility

83
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prior to fitting a more sophisticated parametric model. They also provide robust
benchmarks for testing the forecasting and in-sample performance of competing

parametric procedures.

Our objective is to construct non-parametric volatility estimators that have sim-
ple structure, are cheap to compute, and are tailored to the typically heavy-tailed
distributions met in practice. In particular we seek procedures that are robust to
distributional assumptions, resistant to outliers, and have a sound statistical basis
with reasonable precision properties. The estimation procedures that we consider
construct local robust scale estimates (not necessarily estimates of standard devi-
ation) based on finite moving-averages of the squared deviations of the time series
from its local level. The moving-average weights are selected with reference to a
target family of heavy-tailed distributions, and the span of the moving-average is
chosen so that the volatility is approximately constant within the local time window
concerned. Finally, a global correction factor is applied to the local scale estimates

to provide estimates of time-varying volatility.

No attempt has been made to build a predictive model, and, as with other window-
based estimators, there are issues to be addressed as to what to do at the ends of

the series.

We choose to model a time series of (daily) returns R, as
Ry = iy + oy (3.1)

where R; = In S; —In S;_4, time ¢ is measured in days, and S; is the underlying time
series of prices concerned. The ¢; are assumed to be independently and identically
distributed with mean zero and unit variance. The condition E(¢?) = 1 serves to
identify the volatility o; which is assumed to be a strictly positive, smoothly-varying
function of time, so that R; has mean u, and variance 0,2. For daily data, p; will
typically be very small in relation to o€, since it represents the mean return over
just one day. However, we shall assume that R; has been corrected for such an
evolving mean level if appropriate. The R, will typically be heavy-tailed so that the

common distribution of the ¢, will be heavy-tailed also.

3.1 Discussion of assumptions

The non-parametric estimator of volatility we propose is intended to provide a mod-

ern method of estimating historical volatility based on a suitably chosen finite mov-
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ing average of the squared mean-corrected daily returns. It is based on a local model,
rather than a global parametric model, and is designed to give robust and resistant
estimates with good efficiency properties that could be used to aid in model selec-
tion, and to benchmark forecasts for global parametric volatility models. In order
to facilitate our estimator we need to make some minimal basic assumptions, and

these are discussed below.

The first key assumption is that the mean p; and volatility o, generally change
smoothly over time, and in particular, are locally constant over the local time win-
dows within which estimation takes place. This seems a reasonable assumption
for the most part and without it reliable volatility estimation would be difficult to

achieve.

The smoothness of volatility is embodied in the slow decay or long memory of the
autocorrelation function of absolute stock price returns, as demonstrated by Ding,
Granger & Engle (1993), Granger & Ding (1995), Rydén, Terisvirta & Asbrink
(1998) and others. This slow decay implies that the size of the returns is highly
correlated, and volatility is a measure of the “average” size of those returns. Hence,
persistent autocorrelation in the absolute returns is indicative of a smooth volatility
process. This framework does not account for discontinuous structural breaks in
volatility which may occur in practice (see Lamoureux & Lastrapes (1990), Hamil-
ton & Susmel (1994), McConnell & Perez-Quiros (2000) for example), although
our methodology could no doubt be adapted to better identify such changes. This
remains a topic for future research, and a potential weakness of our proposed tech-

nique.

Many parametric models also support our smoothness assumption. Black & Sc-
holes (1973) assume constant volatility, whereas the constant elasticity of variance
model of Cox & Ross (1976) specifies volatility as a power function of the relatively
smooth stock price process. Stationary generalised autoregressive heteroscedasticity
(GARCH) models assume unconditional volatility is constant, and in certain cases
allow conditional volatility to be a typically smooth process. Bollerslev & Mikkelson
(1996) present a recently developed class of these models, designed to address “the
apparent persistence of the estimated conditional variance processes” (Bollerslev &
Mikkelson 1996, page 152). This long-memory is handled using fractional integra-
tion in which a shock to the conditional volatility estimate dies out at a slow rate

in the future estimates.
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The second key assumption is that the ¢, of (3.1) are independent, and have heavy-
tailed distributions that are better approximated by a t-distribution (with a small
number of degrees of freedom), than a Gaussian distribution. There are many studies
(Fama (1965) being the first) that support the general heavy-tailed hypothesis, which
would appear to be a ubiquitous feature of financial data. A number of candidate
distributions have been proposed, of which the ¢-distribution is a common choice.
See, for example, Blattberg & Gonedes (1974), Harvey et al. (1994), Hurst & Platen
(1997), Liesenfeld & Jung (2000) and Barndorff-Nielsen & Shephard (2001) among
many others. Typically the degrees of freedom v of the t-distribution found in such
studies range between 3 and 9. The ¢, distribution has infinite moments of order &

when k£ > v, and so v > 3 ensures finite variance and v > 5 ensures finite kurtosis.

The commonly observed leptokurtosis in stock returns is not inconsistent with global
parametric models for stock price processes. Volatility is often defined in a contin-
uous time setting via a stochastic differential equation for stock price. The stock
price process is generally adapted to Brownian motion, which has Gaussian incre-
ments. Under time-varying volatility, price returns, which are the increments in the
log price process, can be leptokurtic (see Barndorff-Nielsen & Shephard (2001) for
example). Thus, even if the driving stochastic process is assumed to have Gaussian

increments, evolving volatility and heavy-tailed returns are theoretically linked.

In order to identify the volatility o, in (3.1), we require a final assumption that
the €; have finite variance. Subject to this assumption, a global correction factor is
computed from the sample variance of the original data standardised by the local
scale estimates. This takes into account the fact that different scale estimators
have different expected values for the same target distribution, as demonstrated in
Table C.3. Although the heavy tailed distributions of the returns make the moving
sample variance an unreliable local volatility estimate, particularly if the moving
time window is small, we assume that the sample variance is a reliable estimator
of the variance of the underlying heavy-tailed distribution in large samples of the
order of the length of the data. In essence we trust that the extreme values of the
heavy-tailed distribution will appear representatively in large samples where they
will not distort the sample variance. However, in small samples of the order of the
moving time window, such extreme observations will be over-represented when they
occur and can severely distort the sample variance (as demonstrated in Chapter 2

for one-wild and slash data).
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In conclusion, the minimal assumptions our volatility estimator will be based on ap-
pear reasonable, and have considerable support in both the empirical and theoretical

literature.

3.2 Existing non-parametric methods

The methods we discuss in this section are general purpose techniques for estimating
volatility. We describe them as non-parametric since they can be applied to data
without specific modelling of the underlying stock price process. These methods
typically have underpinning assumptions which are consistent with one or more
parametric models; however the techniques are also typically used without direct
reference to these assumptions (and indeed are used when these assumptions are

deemed unreasonable).

3.2.1 Historical volatility estimation

A natural way to measure the slowly changing volatility o, in (3.1) is to take dis-
cretely sampled stock prices, form the returns, and estimate the standard deviation
of these returns using a time series smoothing technique. Volatility estimates for
real data formed on this (or any) basis will be difficult to appraise since the true
volatility is unobservable; however, (3.1) and the notion of smoothness provide a

useful framework.

A popular estimator of volatility is the historical volatility estimator. It has been
prominent in empirical studies of stock returns at least since Officer (1973), and plays
an important part of Figlewski (1997), where it is used to estimate “historical” and

“realized” volatility as a basis for evaluation of volatility forecasting techniques.

Definition 3.1 (Historical volatility) Historical volatility for a stock price se-
ries, with (mean-corrected) daily returns R, is given by
Z;:—r R?+J

o 3.2
n ;- (32)

where 2r + 1 is the span of the estimator.

There are two important assumptions underlying use of this estimator, which is

essentially a moving standard deviation. The first is that the volatility is roughly
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constant over the length of the window, and this accords with the smoothness as-
sumption we rely on in the derivation of our estimator. The second is that the
sample standard deviation will be a reasonable estimator of scale for the observa-
tions in question. As we have seen in the analysis of Chapter 2, if the returns are
not Gaussian, then the sample standard-deviation may be highly inefficient, and
as a result, (3.2) will provide poor estimates of volatility. We seek to address this

second assumption in Section 3.3.

Figlewski (1997) computes (3.2) for the Standard and Poors 500 Index, with an
annualisation factor. He notes that the volatility estimate is highly variable, and
that it is unduly influenced by the October 1987 stock market crash. As the single
extreme return of 19 October 1987, when the market lost 22.8% of its value, en-
ters the 501 observation window (corresponding to r = 250 and roughly two years’
data), it causes the volatility to instantaneously increase by 45% as shown in Figure
3.1. Exactly 500 trading days later, when the return is dropped from the estimation
window, volatility falls by 23%. This effect can be controlled by using smoothness
weights, so that as an observation moves from the end of the window (corresponding
to terms j = 7 in (3.2)) to the central point of the estimation window (correspond-
ing to the term j = 0) its weight increases. In this way, volatility would not change
a great deal from one day to the next, but in the absence of robust fitting, it would
still become very large close to the crash date. Using loess, described in Appendix
A, with its tricube smoothness weights and no robustness properties, the volatility
estimate reaches a maximum of 32.3% due to the disproportionate weight on the

extreme return at the centre of the window.

3.2.2 Alternative non-parametric volatility estimation tech-
niques

The historical volatility is usually calculated using returns based on consecutive
closing prices (price at last trade). However, closing price is not the only variable
relevant to volatility estimation that is available on a daily basis. In addition to
closing price, opening price (price at first trade) and the daily high and low are also
available, and these will contain useful information on the variability of the stock.
These additional variables have been included in volatility estimators proposed by
Parkinson (1980), Garman & Klass (1980), and Kunitomo (1992). These estimators
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Figure 3.1. Historical volatility of the S&P 500 Index computed using (3.2) with r = 250. The
figure is a reproduction of Figlewski’s (1997) Figure I1.2. Dates are indicated at the start of the
respective years and the length of the smoothing window is shown.

were shown to be much more efficient estimators of constant volatility than the his-
torical volatility (3.2) based exclusively on closing prices. However it is unclear how
this efficiency will be affected by long-tailed data. Correction factors are provided
for unbiasedness in the Gaussian situation, and time series estimation is not con-
sidered. For time-series estimates, the correction factor developed in Section 3.3.2
will be relevant. The impact of non-Gaussian errors on the estimators is likely to
be similar to the effect on the sample standard deviation based estimators, and the
gains in efficiency due to utilisation of additional market information may be lost

due to lack of robustness.

In contrast to the symmetric smoothing window of the historical volatility estimator
(3.2), the RiskMetrics software (JPMorgan 1996) uses simple exponential smoothing
of the squared returns to estimate the volatility. The variance at time ¢ is a weighted
average of all past squared returns, with the weights decaying exponentially back

through time. It uses the recursion
o= )\af_l +(1=XNR?

where the smoothing constant A is chosen to be 0.94. This estimator will not be
robust to extreme returns, however shocks to the estimated volatility will impact on

future volatility estimates at an exponentially decaying rate.
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Ait-Sahalia (1996) describes a non-parametric technique for estimating the volatility
function of stationary interest rate data. He estimates the marginal density func-
tion of the spot interest rate series r; using kernel density estimation, and derives
an expression for volatility based on this estimated density, and an assumed drift
function of the process. This technique is based on continuous-time specification
for the interest rate, and the volatility function is estimated non-parametrically as

a function of the rate rather than of time.

Anderson & Grier (1992) propose a non-parametric and robust definition of volatil-
ity, which is useful only when comparing the volatility of two series. Since it does not
provide a numerical estimate of volatility, the estimate is neither useful for modelling

stock price evolution, nor for valuing options on that stock.

The above non-parametric techniques, including historical volatility, are suitable
techniques when the distribution of the innovations ¢, in (3.1) are approximately
normal. In other situations, they are likely to be adversely affected by extreme
returns, and consequently unsuitable generally. We address these concerns in the
following section, where we utilise modern statistical techniques to provide a robust

volatility estimator.

3.3 Robust volatility estimation

The volatility estimator of Anderson & Grier (1992) described above is robust,
however it is not able to provide a time-series estimate of volatility. In contrast,
Turner & Weigel (1992) robustly estimate volatility for the Standard and Poors 500
Index (S&P 500), and the Dow Jones Index. They use (3.2), and the volatility
estimators of Parkinson (1980) and Garman & Klass (1980) which utilise high and
low daily prices. In addition, volatility is estimated using a robust scale estimator:
the interquartile range (IQR) defined in Definition 2.8. A disappointing aspect of
this study is that the IQR-based estimates are not directly compared to the other
estimators due to the bias effect shown in Table C.3. This method of estimation,
and a correction that will allow direct comparison of any local volatility estimates,

are discussed in Section 3.3.2.

In Chapter 2 the results of a simulation study to identify efficient robust scale esti-
mators were described. The results included analysis of robust estimators examined

by Lax (1985) in a similar study, but were also able to include two new single-pass
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estimators (S, and @, of Rousseeuw & Croux (1993)), both as scale estimators
themselves and as auxiliary scale estimators for more complicated estimators. As
well as the biweight A-estimator, which was the best performing estimator in the
Lax study, estimators based on the t-distribution were introduced and these were
shown to perform well for the three corner distributions: the normal, one-wild and

slash.

The best performing estimator in the simulation described in Chapter 2 is the bi-
weight A-estimator with auxiliary scale estimator @,, (defined in (2.20)) and scaling

constant ¢ = 11. This estimator has the form
1

o [ T e - 2]
gw(X, C, Qn) = l:n —~1 [71_1‘ Z?:l w'(Ui)]Q

(3.3)

where M is the sample median,
X;— M
cQn

is the standardised score, w(z) is the biweight function

w(x):{(l—x 2 |z| < 1

0 otherwise

U; =

and ¢(z) = zw(z). The average triefficiency of this estimator for n = 20 in the
simulation study was 82.1% with average efficiency for normal data of 89.4%. Thus,
under general conditions, we would expect this estimator to provide a reasonably
efficient estimate of scale. Since volatility is a measure of the scale of daily returns,

we can apply (3.3) in the same way as (3.2) to provide a moving volatility estimate.

Triefficiency was measured as the minimum of the efficiencies obtained in the three
cases where the data follows the Gaussian, one-wild and slash distributions. These
three “corner” distributions have varying degrees of heavy tail behaviour and are
meant to delimit the situations met in practice. In particular, since the slash dis-
tribution has infinite variance and heavier tails than the target family of ¢, distri-
butions (¥ > 3) that we have in mind here, we might expect higher efficiency (than

the triefficiency) on application to financial data.

3.3.1 An alternative volatility estimator

We now develop an alternative estimator to (3.3) which is more closely tailored to
the ¢-distribution. The results which follow are closely related to the development

of the t-estimator in Section 2.3.3.
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Let Xi,..., X, denote n independent and identically distributed scaled ¢, random
variables. The scaled ¢, variate follows a Gaussian compound scale model described
in Definition 2.9, and can be written
Zy
Xi=p+ aﬁ
for each t, where Z, is a standard normal random variable and S; is an independent
chi-squared random variable with v degrees of freedom, divided by v — 2. Under
these conditions, and the additional restriction that v > 3, the scaled t, variate has
mean p and variance o2. In order to estimate p and o2, we can apply Theorems 2.1

and 2.2 to obtain the maximum likelihood recursions.

Theorem 3.1 The mazimum likelihood estimators of location and scale for a ran-
dom sample from the scaled Student’s t-distribution with v > 3 degrees of freedom
and variance o, are found by iterating equations (2.8) and (2.9) with

v X = fi)* B
Ba(S%) = 25 (1 T ((:f— 2?2)3 )

where [y and 63 are the previous estimates of . and o? respectively, and where v is

assumed known.

Proof Since S; has cdf P(S, < s) = P(x? < s(v — 2)), its density is given by

fs(5) = ( = D fya (v = 2)s5) = ’;(;)2 (;) T(w=2s) e (550

for all . Thus
\/Efs(s) oc 53w H)=1,=F(=2)s

which is in turn proportional to a gamma density function with parameters 3 (v +1)

and (v — 2), and it follows from the proof to Theorem 2.7 that

Eo(SiX) = e b (1 4 (X — ﬂo)2>_1

v—2 (v —2)o2

as required. O

Application of Theorems 2.1 and 3.1 for sample data yields the maximum likelihood
estimates of 4 and o? under the assumption that the sample is a random sample
from the scaled t, distribution. For given degrees of freedom v, the EM recursions

will need to be iterated to obtain the maximum likelihood estimator of o2, and it is
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the moving-average equivalent of this estimator that we choose to base our volatility
estimation procedure on. Thus, we form moving windows as in (3.2), and estimate

the scale in this window using Theorem 3.1 for each sub-sample of the returns data.

Other possible choices could be considered for the distribution of S; that involve
censoring to minimize the impact of outliers, mixed distributions with point mass at
zero to account for sticky prices, and mixture distributions among other candidate
distributions chosen to exemplify the target family of distributions under study.

These remain topics for further research.

3.3.2 Local volatility estimation

We now consider the time series of daily returns R; (t = 1,...,7T) defined by (3.1)
with heavy-tailed ¢, and where the R; have been corrected for evolving level if
appropriate. Natural time series estimators of the evolving volatility o; based on
(3.3), Theorem 3.1 or more generally (2.9) are the finite moving averages of span
n = 2r + 1 given by )

5? - Z wjflt+jR;2+j (3.4)

j=—t

.
j=—r

=o(3(2))

depend on a prior estimate s; of 0;. Here the function Q(¢) can be suitably defined for

where the smoothness weights w; satisfy w; = 1 and the robustness weights

(3.3) or the estimator of Theorem 3.1 (refer to the proof of Theorem 2.7). In practice
the estimates will involve iteration so that initial estimates of o; are successively
refined. If (3.4) is based on (3.3) then s; will be a moving ¢Q,, estimator, and only
two iterations through the data are required, one to determine s; and the other to
determine the final estimate of o;. In the case of Theorem 3.1 one could iterate until
approximate convergence, using the moving sample standard deviation (3.2) as the
initial estimate of o; (a limited simulation study shows that a total of 4 iterations
is usually sufficient), or use one iteration with s; estimated by (3.3) yielding a total

of 3 passes through the data.

We do not address methods for end-effect correction, and no volatility estimate is
provided when all the n = 2r+1 observations needed for 6; in (3.4) are not available,

ie.fort=1,...,randt =T —r+1,...,T. In the data analysis that follows, this
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is accounted for by discarding the missing values: for the simulations we begin with
returns series longer than the required volatility series, and for analysis of market
return data we simply lose observations at either end of the series. Thus a series
of length 7" provides a volatility series of length 7' — 2r. A simple alternative to
omitting estimates at the ends, is to appeal to the assumption that the volatility is
constant over the length of the window and use 6; = 6,; fort < r+1 and 6; = 6¢_,

fort>T —r.

During the discussion of the robust scale estimation simulation of Chapter 2, it was
noted that for data from any particular distribution, the scale estimators considered
will estimate different factors of the distribution’s scale parameter. This effect is
highlighted in Table C.3. Thus, any attempt to estimate volatility robustly will
require a correction to be made. However in general, this correction will depend on
both the estimator in question, and the true distribution of the ¢, in (3.1). If a single
historical estimate is provided along the lines of (3.2), the correction factor will need
to be identified by theory or simulation, however, with local volatility estimation, a
correction can be made using the returns R;, and the time series volatility estimate

0y. This is formalised in the following definition.

Definition 3.2 (Local volatility estimator) A local volatility estimator &, for

the returns data {R;}, t = 1,...,T has the following properties:

1. the local volatility estimator with span n = 2r + 1 is given by
6t = S(Rt—ry ..., Retr)
where S(X) is a scale estimator;

2. the standardised returns {(Ry,—i;)/6:} t = 1,..., T, have unit sample variance,

where [i; is an estimate of the evolving mean return y;, as specified in (3.1).

If the scale estimator used to provide the local volatility estimates has robustness

properties, then the local volatility estimate will be a robust estimate.

The second condition of Definition 3.2 generally necessitates a correction to the
volatility estimates obtained using a scale estimator. This correction is based on our
assumption that the €, are zero mean, unit variance random variables. We assume

that although not a robust or reliable estimator in small samples, the sample variance




3.3. ROBUST VOLATILITY ESTIMATION 95

can be expected to provide a reliable estimate of the variance for very large samples.
As noted in Section 3.1, the extreme values of the heavy-tailed distribution of ¢, are
assumed to appear representatively in large samples of the order of the series length
T, but will be over-represented when they occur in small samples of the order of the

span n = 2r + 1 of the moving estimation window.

We assume our volatility estimators typically estimate \/o?/7 where 7 is a positive

constant and 7 # 1. To correct for this bias we multiply through (3.4) by 7, where

T " 2
.1 Ry — fiy
= 3.5
; thzl( B ) (3.5)

where ji; is an estimate of the evolving mean return p, as specified in (3.1). This

estimator is just the sample variance of the scale adjusted returns, and would have
enabled Turner & Weigel (1992) to compare the volatility estimate based on the
interquartile range (IQR) to their other estimates of historical volatility. In their
study of the S&P 500 and Dow Jones indices, Turner & Weigel calculated the sample
standard deviation and interquartile range of daily returns in each of the calendar
years from 1928 through to 1989. In addition, the volatility estimators of Parkinson
(1980) and Garman & Klass (1980), which utilise high and low daily prices (as
well as closing price in the latter case), were also computed. These two estimators
feature correction factors to ensure unbiasedness for the parameter o under the
assumption that the daily returns are normal and locally have constant variance o?.
For Gaussian X', E(IQR(X)) = 1.34900, and so the IQR-based volatility estimates
should be on average 1.3490 times those from the other estimators, and hence they
were not directly comparable in the graphs given by Turner & Weigel (a larger order
difference arises because the non-robust estimates are annualised, while the IQR-
based estimates are not). Despite this, it is clear from the graphs given by Turner

& Weigel that the two have roughly the same character.

Definition 3.3 (Iterated ¢-volatility estimator) The iterated t-volatility estima-
tor, with degrees of freedom parameter v =5, is a local volatility estimator satistying
the conditions of Definition 3.2, and is given by Theorem 3.1 for each window. It-
eration may be to convergence of the local estimates, or alternatively, a specified

number of iterations may be performed.

We selected v = 5 for the iterated ¢-volatility estimator since the 5 distribution

has heaviest tails among the ¢-distributions with finite variance and kurtosis, and it
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reflects the intermediate case identified in empirical studies of daily returns. Ironi-
cally, this choice of degrees of freedom was not reported in the simulation results of
Chapter 2. Nonetheless, we can see from the results in Table 2.12 and Figure 2.11
that the fully iterated estimator with ¥ = 5 would have triefficiency of approximately
42% for samples of 20 observations (due to a low slash efficiency), but normal and

one-wild efficiencies in excess of 80%.

In the following section, the iterated t-volatility estimator is compared to other local

volatility estimators, for various underlying distributions for the ¢, in (3.1).

3.4 Simulations and data analysis

Using simulated and real data, we now consider the relative performances of the local
volatility estimators based on the standard deviation, MAD, biweight A-estimator
with @, and ¢ = 11, and iterated ¢-volatility estimator respectively. In all cases the
iterated t-volatility estimator was initialised by the local sample standard deviation

and iterated a further three times to produce a final estimate.

3.4.1 Simulation results

For the simulation study we simulated 270 returns from the scaled t, distribution
with unit variance and with v = 3,5,9, and from the standard normal distribution
(i.e., 1), both to represent varying degrees of heavy tailed behaviour and to be
appropriate for financial daily returns data. The series length was chosen to roughly
represent a calendar year of trading days allowing for end effects. Our estimators
were based on moving windows of span n = 21 with uniform weights w; = 1/21.
The latter were selected since our concern at this stage was with the precision of the
estimators rather than their smoothness. The impact of the smoothness weights w;
on the properties of the estimators, among other issues, remains to be investigated.
The 270 scaled ¢, returns were then multiplied by the smooth volatility function oy
where

oy = 36% sin(mt/125)

The four estimates of o, were calculated and scaled using (3.5) so that the standard-
ised returns had unit sample variance. They were assessed by the mean absolute

proportionate error of the squared volatility (MAPE = % 3" |07 — 67| /o}) for each
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Estimator ts ts tg Ty
Standard deviation 0.803 | 0.439 | 0.346 | 0.280
Median absolute deviation 0.629 | 0.509 | 0.485 | 0.467

Biweight A-estimator with @, and ¢ = 11 | 0.554 | 0.394 | 0.349 | 0.306
Iterated ¢-volatility estimator with » =5 | 0.526 | 0.340 | 0.297 | 0.263

Table 3.1. The average mean absolute proportionate error (MAPE) of four local volatility es-
timators estimating a smoothly varying volatility function over moving windows of span 21. The
average is over 10000 simulated series, each with an individual MAPE. The simulated returns have
scaled ¢,-distributions with » = 3,5,9 and oo, the latter case being a normal distribution.

estimator, computed over the 7" = 250 volatility estimates available. These statistics
were then averaged over 10000 independent realisations of the time series, for each

of the four distributions, to yield the results in Table 3.1.

The results are self evident. The iterated t-volatility estimator performed best,
even in the cases where the underlying distribution was not the 5 distribution. As
expected, the volatility estimator based on the moving standard deviation performed
reasonably well for » = 9 and oo, but its performance deteriorated as v decreased.
The biweight A-estimator performed reasonably well in all cases, and consistent
with the results of Chapter 2, use of this more advanced estimator results in better
estimates than the MAD. It might be expected that the A-estimator would have a
comparable or better performance than the iterated t-volatility estimator for heavy
tailed data not well-approximated by a t-distribution. However, aside from what

can be inferred from the results of Chapter 2, this has not yet been verified.

The MAPESs themselves are shown in Figure 3.2. We see that not only is the average
MAPE lower for the iterated ¢-volatility estimator in each sampling situation, but
also the MAPESs in each case are generally less variable. For both the ¢4 and normal
data, the moving standard deviation, A-estimator, and iterated ¢-volatility estimator
are all of very similar quality, with the distributions for the normal data being slightly

less variable for all estimators.

We also consider the performance of the iterated ¢-volatility estimator through time.
Figure 3.3 shows the proportionate errors (67 — o})/o} for t = 10,30, ...,250 for
the 10000 simulated series. The function o is also shown for reference, with scale
given by the right-hand axis. We see that there is generally a negative bias, and that
this bias is largest when o7 has the greatest curvature. As the iterated t-volatility
estimator smoothes the squared returns, the high degree of non-linearity over the

smoothing window of the volatility function around ¢ = 50 induces this negative
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Figure 3.3. Boxplots showing the proportionate bias (67 — o7)/o} through time, for 10000
simulated series of length 250. The simulated returns have a scaled t5-distribution, and the function
o? is shown for reference, with magnitude given by the right-hand axis.
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Figure 3.4. Volatility estimates, and their proportionate biases, for simulated 5 returns. Five
series are shown, along with the true underlying volatility process (using the dotted line). The
upper estimate is the iterated t-estimate of Definition 3.3. The two estimates moving around the
volatility function are: using the dashed line, the volatility estimate obatined by truncating a single
value at t = 75, and using the solid line, the volatility estimate for the original data, rescaled using
the factor from the truncated series. The estimates moving around the horizontal line at zero are
the proportionate biases, (67 — 07)/0? corresponding to the two lower volatility estimates.
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bias. This implies that the choice of window width for the volatility function used is
too high, and this is particularly pronounced when the volatility function is highly

non-linear.

We also note that in some cases, the proportionate bias is very large. Examination
of an offending series shows that this is related to the finite-sample bias correction
(3.5), and occurs when a particularly extreme observation is realised in the series,
and var(R;/6;) is inflated as a result. In order to analyse the extent of this effect,
the simulations were repeated for longer series (7' = 1000 observations long). Com-
parison with Figure 3.3 shows that generally the bias distributions are very similar;
however, some of the more extreme biases have been eliminated. This is due to the

improved efficiency of the sample variance used in (3.5) for these series.

Figure 3.4 examines further the volatility estimate which has the largest propor-
tionate bias at ¢ = 80 in Figure 3.3 of approximately 5. Three volatility estimates
are shown: the upper-most is the volatility estimate analysed in Figure 3.3, and
this is clearly a poor estimate of the true volatility function. The second and third
estimates differ only around ¢t = 75, where a single very extreme observation (a stan-
dardised t5 variate of -27.736, an observation that is expected to occur only once in
every 880,000 observations) was present in the series. The solid curve is the volatil-
ity estimate obtained from the raw data, but rescaled using the second volatility
estimate’s correction factor. As a result, each estimate is 1/1.679 times the original
estimate. The dashed volatility estimate is based on the original series, but with
the value -27.736 replaced by -12 (chosen so that it is still the most extreme value in
the series). Because of the way they have been rescaled, we see that these volatility
estimates are identical when the outlier is not included in the smoothing window,
and both are reasonable estimates of the true volatility function, shown by the dot-
ted line. Also shown in the plot is the proportionate error estimate (62 — o?)/o? for
each of the volatility estimates. These series oscillate around the horizontal line at
zero, with the dotted line showing the difference corresponding to the truncation.
These errors range between -0.54 and 0.52, clearly an improvement on the original,

which had a range of 0.69 to 4.93.
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Figure 3.5. Volatility estimates for 2000 simulated t5 returns with evolving volatility given by
the dashed line. The solid estimates are given by the iterated t-volatility estimator in Definition
3.3. The dotted estimates are computed using (3.2), and have no robustness properties.

3.4.2 A simulated return series from the ¢5; distribution

Further insight into the iterated ¢-volatility estimator, given by Definition 3.3, is

gained by analysing a single simulated series. In this case, we generate 2040 returns

according to (3.1), with p; = 0,

oy = 33 Sin(t/1000)

as before, so that the entire series has a single cycle of this volatility function, and ¢;
is drawn independently from the ¢; distribution. A window length of 41 observations
will be used for the analysis, and so the volatility estimate will be a series 2000 long.
We use this series to check that the procedure is correctly identifying the evolving
volatility oy, so that estimates of the innovations ¢ in (3.1) can safely be used to

examine the underlying distribution of returns.

The estimated volatility using the iterated ¢-volatility estimator, and the traditional
historical volatility estimator (the moving standard deviation (3.2)), both with a
smoothing window of 41 observations, are shown in Figure 3.5. The estimates are
very similar except in instances where extreme values are present in the smoothing
window, at which time the non-robust estimate has large departures from the true

volatility function. The estimators shown in Figure 3.5 accord with the general
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Figure 3.6. Standardised returns for the simulated ¢; returns analysed in Figure 3.5, along with
the density function for the scaled ¢5 distribution. The returns are standardised using the iterated
t-volatility estimate in Figure 3.5.

performance of the iterated ¢-volatility estimator and the moving standard deviation
in the more extensive study described in Table 3.1. In particular, for t5 distributed
data, the mean absolute proportionate error of the moving standard deviation is

much greater than that of the iterated t-volatility estimator.

The volatility estimate provided by the iterated t-volatility estimator is used to
standardise the returns. A mean of zero is assumed, and the innovations in (3.1)
are estimated by ¢, = R;/6;. The sample distribution of these standardised returns
is shown in Figure 3.6, and is compared to the density function of the scaled t;
distribution. As we might expect, the two distributions match very well, and we
conclude that &, is a reliable estimate of oy, and that the distribution of ¢, is a

reliable estimate of the true underlying distribution of ¢;.

Finally, we consider the sample autocorrelation function (ACF) of the absolute re-
turns |Ry|, and of the absolute standardised returns |é| = |Ry|/d;. Since the ¢
are independent, the returns are also independent, and it follows that the absolute
returns are independent. However, because of the evolving volatility o, the abso-
lute returns exhibit significant autocorrelation for very many lags, as seen in the
upper plot of Figure 3.7. We would hope that a reliable estimate of volatility would

account for this autocorrelation behaviour. Examining the ACF of the standardised
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Figure 3.7. The estimated autocorrelation functions for the absolute simulated t; returns anal-
ysed in Figure 3.5, and for the absolute standardised returns. The top plot is for |R;|, and the
lower is for |R;| /6; where 6; is the volatility given by the iterated t-volatility estimator, shown
in Figure 3.5. Approximate 95% confidence intervals for the autocorrelation estimates are shown.
The two plots are on the same scale, and only py = 1 is not shown.

returns, shown in the lower plot in Figure 3.5, we see that with the exception of some
lags less than the smoothing window length of 41 observations, the autocorrelation
has been almost completely removed from the absolute returns. This shows that
the volatility estimation procedure we are promoting is correctly identifying the oy

component in (3.1).

3.4.3 The S&P 500 data

The S&P 500 Index has been a much studied financial time series. The volatility
of this series for the period 1969-2001 inclusive, calculated using (3.2) with a 501
day smoothing window, was shown in Figure 3.1. The indication there was that
the historical volatility estimator based on a moving standard deviation was not
resistant to the “crash” of October 1987. We examine this series further using the

iterated ¢-volatility estimator of Definition 3.3.
Volatility is estimated for the S&P 500 using a window of 125 days (approximately
half a trading year) in (3.2), using a moving interquartile range, and using the

iterated ¢-volatility estimator. All estimates are corrected using (3.5) in order to
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Figure 3.8. Robust volatility estimation for the S&P 500 index. The dashed estimate is computed
using (3.2) and has no robustness properties. The solid line is based on the iterated ¢-volatility
estimator with » = 5, and the dotted line is based on a moving interquartile range. All estimates
have been corrected using (3.5) in order to satisfy Definition 3.2. A smoothing window of 125 days
has been used throughout.

satisfy Definition 3.2, and are shown in Figure 3.8. There are 8652 returns in the
series, and the window length for this plot is chosen to facilitate comparison between

the estimates.

The estimates shown have many interesting features. Firstly, we note that the data
used are identical to those used for the replication of Figlewski’s (1997) historical
volatility shown in Figure 3.1; however in this case a smaller smoothing window is
used. We see the influence of the October 1987 stock market crash remains in the
historical volatility estimate; however its overall impact on volatility is lessened due
to the shorter window. Apart from the period centred around October 1987, the
three volatility estimates are largely similar in nature. Consistent with the results
of Chapter 2, the interquartile range, though robust, is not very efficient, and the
volatility estimate it provides is less smooth than either of the other two estimates.
The iterated t-volatility estimator is generally closer to the historical volatility esti-
mate than the IQR-based estimate, except around the 1987 crash. Consistent with
Turner & Weigel (1992), the IQR-based measure finds the 1987 period to be less
volatile than the period from mid-1974 to mid-1975. The t-volatility estimator gen-

erally lies between the two alternatives, and although the three estimates are often
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difficult to distinguish between, the non-robust estimate is clearly too high due to

one-off returns in 1972, 1987, 1989 and 1998.

Standardising the S&P 500 returns using the volatility based on the iterated -
volatility estimator, but with a smaller smoothing window of 41 days, we can ex-
amine the distribution of these returns. The standardised returns are formed with
(3.1) in mind, with /i, given by loess with a smoothing window of approximately
175 days (2% of the observations), and their distribution is shown in Figure 3.9.
Two large negative standardised returns, namely -13.31 on 19/10/1987 and -8.05 on
13/10/1989, are omitted from the histogram. The density functions of the standard
normal and the scaled t5; distribution are superimposed on the histogram. While
neither of these is a very good description of the tails of the distribution, the 5
does a much better job of describing the centre of the distribution, both supporting
the use of the iterated t-volatility estimator for this data, and strongly suggesting
that the traditional historical volatility estimate is inappropriate. The effect of this
non-normality on the historical volatility estimate is clear both from Figure 3.8 and
the results of Chapter 2, and it is also likely to cause problems in estimators using

daily price extremes (Parkinson 1980, Garman & Klass 1980, Kunitomo 1992).

Ding & Granger (1996) analyse the returns of the S&P 500 Index for volatility per-
sistence, which is embodied in the slow decay of the sample autocorrelation function
(ACF) of the absolute (or alternatively, squared) returns. Using the decomposition
(3.1), we would want this feature to be explained by o}, and leave both ¢ and |e|
uncorrelated through time. In order to estimate ¢;, we standardise R; using a slowly
evolving mean fi; provided by loess, and a volatility estimate provided by the it-
erated t-volatility estimator, to obtain the standardised returns shown in Figure
3.9. These standardised returns are referred to as rescaled returns by Taylor (1986),
who shows that they facilitate more precise autocorrelation estimates than the daily

returns, due to their relatively constant scale.

The estimated ACF plots of the absolute returns and the absolute standardised
returns are shown in Figure 3.10. In the top plot, we see that the absolute re-
turns exhibit significant autocorrelation for very many lags, as described by Ding
& Granger (1996). After standardising, we see that the autocorrelation is almost
entirely accounted for by ;. Almost all the significant autocorrelation estimates are
at lags less than the smoothing window length of 21 daily observations. A similar

phenomenon was seen in Figure 3.7 for the simulated data.
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Figure 3.9. Standardised returns for the S&P 500 index along with the density functions for the
standard normal (the solid curve), and the scaled t5 distribution. The returns are standardised
using a location estimate provided by loess and the t-based volatility estimate in Figure 3.8. Two
standardised returns have been omitted from the lower tail: -13.31 on 19/10/1987 and -8.05 on
13/10/1989.

The combined evidence of Figures 3.9 and 3.10, and the poor performance of the
historical volatility in Figure 3.8, reassure us that the iterated t-volatility estimator
is a definite improvement on existing methods, and the resulting volatility estimates

are excellent estimates of the underlying volatility process o;.

3.4.4 Individual Australian stocks

In this section, we provide a brief analysis of the volatility of two individual stocks.
Coca-Cola Amatil Ltd (CCL) and The Broken Hill Proprietafy Company Ltd (BHP)
are among the largest and most actively traded companies listed on the Australian
Stock Exchange. Daily closing price data for these stocks, for the 500 trading days
preceding 1 September 2000, were analysed. A time series plot of the daily returns
for each stock features periods of low volatility and periods of high volatility, and
a small number of extreme returns. This latter phenomenon is more evident in the

CCL returns.

Calculation of evolving volatility for CCL using the moving standard deviation (3.2)

produces volatility estimates which are badly affected not only by the large returns,
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Figure 3.10. The estimated autocorrelation functions for the absolute S&P 500 returns analysed
in Figure 3.8, and for the absolute standardised returns. The top plot is for |R;|, and the lower is
for |R¢ — | /6+ where fi; is estimated using loess, and 6, is the volatility given by the iterated
t-volatility estimator. Approximate 95% confidence intervals for the autocorrelation estimates are
shown. The two plots are on the same scale, and only py = 1 is not shown.

but also by the many small returns. The resulting fluctuations in the volatility
estimates gives a distribution of standardised returns that is not well approximated
by the Gaussian distribution since it has a sharp peak and values outside four
standard deviations from the mean. Estimating scale using the iterated t-volatility
estimator also results in standardised returns that are not well approximated by
the normal distribution. However the distribution of these standardised returns
has a smoother peak (the generally lower volatility estimates do not bring so many
returns close to zero), and a distribution that is reasonably well approximated by a
t, distribution with » = 5. On this basis, parametric volatility estimation based on

the ¢5 distribution should improve the quality of the volatility estimates.

A plot against time of the three estimates of evolving volatility based on the standard
deviation, A-estimator and iterated ¢-volatility estimator for a smoothing window of
n = 41 days is given in Figure 3.11 and shows that the iterated ¢-volatility estimator
is the most stable. It is clear that the iterated t-volatility estimator typically adopts
a compromise position between the standard deviation and the A-estimator, but
closer to the A-estimator. The impact of extreme returns is clearly evident on

the standard deviation and the A-estimator often appears to discount such returns
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Figure 3.11. Absolute (annualised) returns and volatility estimates for CCL for the 500 trading
days preceding 1 September 2000. The volatility estimates are: moving standard deviation shown
by the dotted line, moving A-estimator with ¢),, and ¢ = 11 shown in dark grey, and moving t5
estimator shown by the solid line. The largest 5% of the absolute returns (exceeding 5.5% in one
day) are not shown in the plot area.

too heavily. The superior performance of the iterated t-volatility estimator is to
be expected given the results of the simulation study reported in Table 3.1 and
the fact that the distribution of standardised returns was well-approximated by a

t-distribution.

In contrast, the distribution of the standardised returns for BHP is well approxi-
mated by a normal distribution. The tails of the sample distribution decay quickly
and all observations are within 3 standard deviations of the mean. While the use of
the moving standard deviation is appropriate for this data, the other two volatility
estimators give almost identical volatility estimates as shown in Figure 3.12. Thus
the iterated t-volatility estimator and A-estimator retain high efficiency in this sit-
uation also. Indeed, by using the iterated t-volatility estimator generally, it seems
that we benefit in the case of long-tailed returns, and maintain high efficiency with

well-behaved data.

The distributions of standardised returns for the CCL and BHP data are shown in
Figure 3.13. In each case, the returns have been mean-corrected using loess, and
standardised using the iterated ¢-volatility estimator with » = 5. Figures 3.11 and

3.12 showed quite different character in the robust and non-robust volatility esti-
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Figure 3.12. Absolute (annualised) returns and volatility estimates for BHP for the 500 trading
days preceding 1 September 2000. The volatility estimates are: moving standard deviation shown
by the dotted line, moving A-estimator with @, and ¢ = 11 shown in dark grey, and moving t5
estimator shown by the solid line. The largest 5% of the absolute returns (exceeding 3.8% in one
day) are not shown in the plot area, and the plot is not in the same scale as that in Figure 3.11.

mates and these features are confirmed in the histograms. In particular, we see that
the CCL returns are better described by the scaled t5 distribution than the normal,
both at the mode, and in the tails. Use of the iterated t-volatility estimator is thus
justified, and the obvious differences between the volatility estimates confirms the
unsuitability of the traditional estimator. For the BHP data, the three volatility
estimates were very similar, and we find the standardised returns are well approx-
imated by the normal distribution. While we note that this lends support to the
traditional estimator of historical volatility for this series, we must also point out

that the iterated ¢-volatility estimator provided a very similar series of estimates.

The estimated ACF plots of the absolute returns and the absolute standardised
returns for both CCL and BHP are given in Figure 3.14. Unlike the equivalent plots
for the simulated series and for the S&P 500 data, the absolute returns for these two
series show very little autocorrelation. This is particularly true for BHP, and while
this may be affected by the relatively small number of observations (500 compared
to 2000 and 8652 for the simulated series and the S&P 500 respectively), we see in
Figure 3.12 relatively constant volatility. Some colour has been removed from the

ACF of the absolute CCL returns, however we see the same phenomenon as earlier,
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Figure 3.13. The distributions of the standardised returns for CCL and BHP. The daily returns
are standardised using a mean from loess, and volatility provided by the A-estimator with Q,
and ¢ = 11, as shown in Figures 3.11 and 3.12 respectively. The two plots have identical scales,
and feature the standardised returns distribution for CCL on the left, and BHP on the right. Both
distributions have density functions superimposed for the scaled t; (dotted) and the standard
normal (solid).
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Figure 3.14. The estimated autocorrelation functions of absolute returns, and absolute stan-
dardised returns, for CCL on the left, and BHP on the right. The top plots are for |R;|, and the
lower for |Ry — ji;| /o1 where ji; is given by loess, and 6 is the volatility given by the iterated
t-volatility estimator. Approximate 95% confidence intervals for the autocorrelation estimates are
shown. The four plots each have the same scale, and only py = 1 is not shown.
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where significant negative autocorrelation has been induced at low lags. There has
been very little change in the correlogram of the BHP returns due to standardisation.
The unimpressive changes due to standardisation for these two series do not affect

our conclusions about the quality of the volatility estimates.

3.5 Conclusions

In this chapter, we have addressed non-parametric estimation of evolving volatility
in the context of heavy-tailed distributions of returns. A new robust time series es-
timation procedure based on finite moving averages and the ¢-distribution has also
been introduced. Motivated by the results of Chapter 2, the biweight A-estimator
with auxiliary scale estimator @, and scaling constant ¢ = 11 has been used to obtain
robust volatility estimates that will be highly efficient for a range of distributions.
In particular, simulation of daily returns, with a continuous volatility function, in-
dicates that local volatility estimation based on this biweight A-estimator provides
reliable estimates for the range of distributions encountered in empirical studies
on financial returns: the t-distributions with v close to 5, and also for normally
distributed returns. By optimising volatility estimation for this target distribution
(t5), and benchmarking it against the all-purpose A-estimator, we have obtained an
estimator which performed best in the many cases where the distribution of returns

is well-approximated by a t-distribution.

Application of this iterated t-volatility estimator to real data provides sensible
volatility estimates that are not unduly affected by occasional outlying returns. In
cases where the returns have heavy tails, these estimates are shown to be consistent
with the underlying distribution of the standardised returns. When the standard-
ised returns are approximately normal, the volatility estimates do not differ greatly

from traditional historical volatility estimates.

We conclude that the iterated ¢-volatility estimator, with v = 5, is a reliable estima-
tor of volatility for daily financial price data. We feel confident that it will not only
prevent extreme returns from having an undue influence on the volatility estimates,
but also provide reliable estimates when the data is well behaved. Having secured a
volatility estimation procedure, in the following chapter, we examine the empirical
relationships between volatility and price level, commonly referred to as leverage

effects.




Chapter 4

Leverage effects and a model for
stock price

In this chapter, we investigate parametric option pricing models, and in particular
the volatility functions they assume. We view the analysis undertaken at the end
of this chapter as exploratory; if the relationships we (non-parametrically) identify
are consistent with the stock price process assumed by a particular option pricing
model, then that option pricing model may be more appropriate for options on
that particular stock than competing models. It is for this reason that we restrict

attention to stock price processes with known, closed form option pricing formulae.

All option pricing models assume a continuous time stock price process with volatil-

ity defined as follows.

Definition 4.1 (Stock price volatility) We assume that stock price process Sy is

a continuous time process with stochastic differential equation

flsi = (S, t)dt + o(S;, t)dW;
t

where (1(Sy, t) is the continuously compounding mean return, W is a Brownian mo-

tion process, and o(Sy,t) is defined to be the volatility of the stock at t.

When a firm has debt, the presence of this debt is likely to influence the volatility

of the stock price; a phenomenon known as a leverage effect.

Leverage effects were first documented by Black (1976) with the empirical observa-
tion that as share price increases, volatility tends to decrease, and when share price
decreases, volatility tends to increase. Black offers two explanations for this be-

haviour. The first is of “financial leverage” , i.e., when debt obligations are constant
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regardless of variation in equity value. When the value of the firm falls, unlevered
cash flows tend to fall. Interest payments are fixed, so, a given dollar fluctuation
in unlevered cash flow exerts a greater percentage effect on cash flow net of inter-
est payments, and hence a greater effect on equity value. Thus, equity volatility is
greater. With constant interest payments, the reduction in equity value induces an

increase in the leverage ratio, defined below.

Definition 4.2 (Leverage Ratio) The leverage ratio of a firm is

By

LRy =—
R, S,

(4.1)

where By is the value of the debt of the firm at t and S; the value of the equity of
the firm at t.

The opposite effect occurs when equity value rises, i.e, leverage rises and volatility
falls. Thus, financial leverage results in an inverse relationship between stock price

and stock price volatility.

Christie (1982) offers a formalisation of Black’s (1976) leverage effect. Assuming the

simple decomposition for firm value
Vi =St + By,

the instantaneous rate of return on the firm’s (homogeneous) assets is

dVi _ S,dS, | BydB,

= 4.2
AR AR ) )

where % and ‘%‘:ﬁ are the instantaneous rates of return on the firm’s equity and

(risk-free) debt respectively.

Theorem 4.1 Consider a firm with risk-free debt, earning a deterministic, continu-
ously compounding rate of return, with value B, at t, and homogeneous assets whose

value has constant volatility o. The stock price volatility for this firm is given by
O'(St, t) = U(l + LRt) (43)

where LR, is the leverage ratio for the firm, defined in (4.1).
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Proof From (4.2), we see that

dS, _ (y, B\ Vi Bidb,
S; B S Vi Sy By

since V; = S; + B;. Conditioning on time ¢ values, noting the definition of LR; and

taking the standard deviation of both sides, we find
0(S;,t) =o(1 + LRy)

since o is the constant volatility of the value of the firm, and the rate of return on

risk-free debt is not stochastic. O

Since the leverage ratio is non-negative, and we assume that debt is risk-free and
fixed (so that V; > B;), as S; — oo and the leverage ratio becomes very small,
stock price volatility converges to a finite lower bound o. However as S; — 0 and
the leverage ratio becomes infinite, stock price volatility becomes infinite. Further,
we note that volatility is a monotonic increasing function of financial leverage LR;
which in turn is inversely proportional to stock price, and so there is a negative

relationship between stock price and stock price volatility.

This negative relationship can be characterised by the elasticity of the stock price

volatility with respect to the stock price level.

Definition 4.3 (Elasticity of volatility) The elasticity of stock price volatility,

understood to be with respect to stock price level, is

- 5lna(St,t)
o dln S;

where the partial derivative is taken with respect to In Sy, holding fized all other

arguments and parameters of the stock price volatility o(Sy,t).

The elasticity of volatility for the simple leverage model is

_ —LR _ B
N ES 7

Since 0 < B, <V, and B, is assumed fixed, it follows that —1 < g < 0, and that as
Sy — 00, fs — 0 and as S; — 0, s — —1. The elasticity describes approximately

Os (4.4)

the percentage change in stock price volatility for a 1% change in stock price level.
To see this, we apply the chain rule of differentiation, and write

0ln O'(St,t) o aO’(St,t) .St o 50(St,t)/85t
alnSt N 05} U(St,t) N O'(St,t) St
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and interpret the numerator and denominator as percentage changes in volatility

and price respectively.

Returning to (4.4), we see that when stock price level is high, a 1% change in this
level results in a very small percentage change in stock price volatility, however when
S; is small, in the presence of risk-free debt, there is a larger impact on volatility.
The elasticity, and hence the size of the effect, is monotonic in S; (and V;), however

the relationship is non-linear.

Black’s (1976) second explanation for the leverage effect is “operating leverage”,
where the fixed costs of the firm have a similar effect to debt in the financial leverage

story.

Throughout this chapter, we will refer to any relationship between stock price volatil-
ity and price level as a leverage effect, whether or not it is modeled using debt. When
the effect is directly consistent with the effects described by Black (1976), Christie

(1982) and others, it will be referred to as the classical leverage effect.

4.1 Parametric modelling of the leverage effect

In this section we describe various attempts to (implicitly or explicitly) model lever-

age effects, and we discuss their consistency with the classical leverage effect.

4.1.1 The constant elasticity of variance option pricing model

The first attempt to incorporate leverage effects into an option pricing model came
from the constant elasticity of variance (CEV) model (Cox & Ross 1976), in which
a mathematical relationship is proposed for volatility in terms of stock price. Cox
(1996) describes the motivation for the model being a request from Black (1976) to
model the empirical relationships he observed in stock price data. The CEV solution
can be regarded as a statistical model for the underlying stock price process, rather
than a financial one. It uses a mathematical specification which reflects the classical

leverage behaviour, without actually acknowledging debt.

The underlying CEV stock price process (hereafter referred to as the CEV process)

is specified by the SDE
s g2
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and it gets its name from the fact that the elasticity of stock price variance (volatility

squared) with respect to stock price level is constant. To see this, we first note that
B2
U(St. t) == OSt 2 (4.6)

is the volatility of the CEV process, and calculate the elasticity of volatility

bs = ——mgﬁg‘t’ D _ -2,

The elasticity of variance is just two times the elasticity of volatility, and this is
a constant. The CEV process was originally specified for 0 < 3 < 2, consistent
with the notion of financial leverage in (4.3). The upper limiting case of § = 2
(corresponding to the Black-Scholes model) was excluded from the model due to the

different mathematical behaviour of the solution in this case.

The CEV volatility function is shown for 4 = 0, 1 and the limiting case of f = 2 in
Figure 4.1. These three cases cover the range of  whose elasticities are consistent
with the classical leverage effect, and include the null case of constant volatility
(GBM, with 8 = 2). The explosive nature of volatility as S; nears 0 for the two
processes with 3 < 2 is evident, as well as the inverse relationship between stock
price and volatility. The cases all have the same volatility at S; = 1, and for fixed

Sy, volatility is monotonically increasing in 3 for S; < 1 and decreasing for S; > 1.

Despite its motivation, the CEV model makes no explicit allowance for debt in the
model. The model (4.5) facilitates a known transitional density for future price S,
given Sy, and a closed form solution for call option price. The former is a mixed
distribution consisting of a positive probability that bankruptey has occurred by
t + 7, and a continuous distribution for S;,, > 0. Although the continuous part of
the density is not of a standard distribution, Schroder (1989) utilises the distribution
function of the non-central chi-squared random variable. He writes the call option

price, found by evaluation of
C; = e ""E2 {max (S, — K,0)}

where C) is the price of the option, K is the exercise price of the option, r is
the continuously compounding risk-free rate, and S; follows the CEV model (4.5) in
the risk-neutral probability measure Q (see Harrison & Pliska (1981) for discussion)
with g = r, in terms of non-central chi-squared probabilities. This reduces an option

pricing formula featuring infinite sums to something akin to the Black-Scholes (1973)
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Figure 4.1. The constant elasticity of variance stock price volatility function, defined in (4.6).
The solid line is the function for the absolute CEV process (8 = 0), the dashed line for the square
root CEV process (8 = 1) and the dotted line for GBM (3 = 2). All processes have § = 0.3.

formula. In addition, the mathematical solution for call price for the cases f < 0
and 3 > 2 are well defined (see Emanuel & MacBeth (1982) for the latter case or
Randal (1998) for discussion).

The benefits of the CEV model are largely mathematical: GBM and the Black-
Scholes formula are contained as a special case, and the extra parameter allows a
leverage effect between volatility and stock price that includes the classical situation
but is otherwise well defined for any # € R. While it has this flexibility, unlike
the compound option pricing model discussed in the following section, even for
0 < B < 2, the CEV model does not obey the elementary limiting behaviour of

(4.3), since as S; — 00, (S, t) — 0 rather than to a positive constant.

4.1.2 The compound option pricing model

The stock price volatility for the stock price process implied by the compound option
pricing model (Geske 1979) is consistent with the limiting properties of volatility for
the risk-free debt model that the CEV model fails in regard to. Geske assumes that
firm value follows GBM, with

dv,
7: = pdt + odW,
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and hence has constant volatility. In the case where the firm has zero debt, S; = V;
and so, like the CEV model, the Black-Scholes formula is a special case of the option

pricing formula.

This compound model formally acknowledges risky debt, in the form of a single
fixed payment M made at time t; > t. At time g4, the creditors are paid using the
realised value of the firm, however limited liability implies that the actual payment
is min(V;,, M). Consequently, at t4, the equity of the firm is worth

¢ _fVu-M Vi,>M
“ o Vi, < M.

This model recognises that the creditors may not get all their money back, and is

thus a more realistic model than the risk-free debt model.

Geske outlines an argument which shows that the value of the stock at time ¢ is
given by the Black-Scholes formula. This follows the derivation of the Black-Scholes
equation using It6’s Lemma, the construction of a hedge portfolio, and the boundary
condition above. In particular, the stock price at any time t < t4 is given by the
Black-Scholes formula with firm value V; as the underlying asset, and M as the

exercise price:

St = S( E,t) = ‘2@ (Qt) ]‘r./[e_ercD — O/ Td) (47)
where T ( . _2)
nV,—InM+ (r+ 077,
o= N (43)
O\/Td

T4 = tq — t is the time-to-maturity of the debt, o is the constant volatility of the

firm’s assets and ®(xz) is the standard normal cumulative distribution function.

Since the firm'’s assets follow GBM, dV; = pV;dt+oV;dW; and applying 1t6’s Lemma
to the function S(V;,t) given in (4.7), we obtain

65: 85} 1 2 28 St
dsS; = t+ —o°V,
;= ahdh_'_ T =i} —l— e

In particular, the volatility of the stock is given by the coefficient of S;dW; in the

—= k.

partial differential equation above, and is

Vi 05, Vi IV, —In M + (r + 1o)m -
) .

(S, t) = 05(Vi,t) = US; v, - S(K'},t o\/Ta

where we use the familiar Black-Scholes hedge ratio

a5¢

o = 29 (4.10)
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and acknowledge that the underlying variable in this case is V; not S;.

Unlike for the CEV model, o(S;, ) is a function of time through the time-to-maturity
of the debt. As explained by Geske,

Sy .o _r, [00(gt — 0\/Ta)
T Me W +7r®(g —oy/14)| >0 (4.11)

and so as time-to-maturity of the debt decreases, given no change in V}, so too does
S;. This decrease in S; will serve to increase financial leverage and thereby increase
volatility. Because time is monotonic, this effect will always operate, regardless of
the general movement in firm value. A decrease in V; will amplify the increase in
volatility; however, when firm value increases, the resulting decrease in volatility

may be offset.

Although the form of (4.9) is not directly consistent with (4.3) due to the probability

®d(g;), its limiting behaviour is, as described in the following theorem.

Theorem 4.2 The stock price volatility under the compound option pricing model,

os(Vi, t), defined in (4.9), has the following properties:

1. 0g(Vi,t) > 0;
2. As V; = o0, 05(Vi, t) = oy

3. AsV; — 0, o5(V, t) — oc.

Theorem 4.2 shows that stock price volatility in the compound option pricing model
is consistent with the basic behaviour implied for a firm with leveraged equity and
risk-free debt, and its proof can be found in Appendix D.1. We also note that
under both the compound model (with risky debt) and the risk-free debt model, the
stock is more volatile than the firm, indicating that the presence of debt transfers
risk from debtholders to the stockholders, whether the debt is risk-free or not, i.e.
stockholders bear a greater proportion (than debtholders) of the risk associated with

the firm’s assets. Since g—f‘;f is a probability, we note that for the compound model
o <os(Vy,t) <o(l+ LRy)

where (1 + LR;) = ‘gff This contrasts with (4.3), and we conclude that some of the

risk due to debt is borne by the holders of the risky-debt.
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Figure 4.2. The volatility function for the compound option pricing model, defined in (4.9),
plotted against S;, defined in (4.7), with M = 25, 7; = 10, » = 0.05 and ¢ = 0.3. Also shown
using the dotted line is the volatility when debt is risk-free, defined in (4.3), where B; = Me™ "™,

An example of the volatility function for a firm with M = 25 due in 7, = 10, and
with 7 = 0.05 and o = 0.3, is shown in Figure 4.2 and compared to that under the
risk-free debt model. The lower bound o is shown, and the explosive nature of the

volatility when S; nears zero under both debt models is clear.

As before, we also consider the elasticity of volatility (with respect to stock price)
for this model. Care must be taken, since the underlying variable in this case is firm
value V;. Since the stock price is a 1-1 function of firm value

Olnos(Vi,t)  dos(Vi,t) S(V,t) [805/852] S(V;, 1)

v,/ V| as(Vi,1)

I S(Vi,t) 05V, t) os(Vi,t)

and following from (4.9),

. (4.12)

dos _ (108, V. (98" Vio*S,
av, " |sav, 5z \av, S; OV?

This equation is not directly consistent with the function for %ﬂ given by Geske,
who ignores the functional relationship between S; and V;. In particular, if we take
(4.9) and allow S; to vary while fixing V;, then differentiate with respect to S;, we

obtain

dos _ __Vi05
8s, ' S?oV,
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as given by Geske (Geske 1979, page 73). This corresponds to the second term
in (4.12), which when multiplied by the remaining terms to give the elasticity, is

consistent with a CEV process.

Following from (4.12), the correct elasticity of volatility with respect to stock price

for the compound model is

9o /ast] S(Vut) _ S(Vit) St
05V, 1) = : - BV B 1, 4.13
0= 5 /] iy vas 50, (413)

where og(V;, t) is substituted from (4.9). Evaluating partial derivatives, substituting

in (4.13) and simplifying, we find

Me "4d(g, — 0/Tq) & Sié(g:)
Vi®(g:) VtU\/qu)(gt)T

where S; is given in (4.7), g; is defined in (4.8), and ¢(z) is the standard normal

Os(Vi, t) = — (4.14)

probability density function. The following theorem describes some of the properties

of this elasticity.

Theorem 4.3 The elasticity of stock price volatility under the compound option

pricing model, 05(Vy,t), given in (4.14), has the following properties:

1. 05(Vi,t) > max[—1, —(Me ") /V}];
2. As V; = o0, 05(Vi,t) = 0;

3. As W — O, Hs(Vt,t) — 0.

A proof to this theorem is given in Appendix D.1. A further result, for which we

cannot provide a proof, is given in the following conjecture.

Conjecture 4.4 The elasticity of stock price volatility under the compound option

pricing model, 05(V;,t), defined in (4.14), is always negative.

Theorem 4.3 and Conjecture 4.4 summarise the properties of the elasticity of stock
price volatility under the compound option pricing model. Comparison with the
results for the simple risk-free debt model shows similar behaviour as firm value (and
stock value) increases; however, as firm price approaches zero (or indeed Me™"™)

elasticity declines in absolute value, with a limit of zero. This behaviour reflects the
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transfer of risk from the stockholders (who bear almost all risk when firm value is
high) to the debtholders. Conjecture 4.4 implies that the compound option model

is always consistent with the classical leverage effect.

The behaviour described in Theorem 4.3 and Conjecture 4.4 is evident in Figure 4.3
for three different levels of debt. In particular, for the chosen parameters, the limit
as V; — 0 is clear, and for the smaller values of M, the limit as V; — oo is also
apparent. When M = 50, the lower bound is shown, and this becomes a very good
approximation to the elasticity when V; is much larger than M. In addition to the
stated properties, we also note that as V, increases from zero, the elasticity function
is concave down, i.e., it decreases at an increasing rate. This reflects an increasingly
large decrease in volatility for a fixed percentage change in V;. At a point near or
at V; = Me "™, the second derivative of elasticity changes sign, and the function
becomes concave upward for large values of V;. This indicates the rate of change
of elasticity is slowing, which means the change in volatility for a fixed percentage
change in V} is still growing, but at a decreasing rate. As V; grows beyond M,
this rate of change reaches a minimum, and then starts to converge to zero. The
behaviour of the first and second derivatives of elasticity reflect the transfer of risk
between debt-holders and stock-holders, and we see that when V; is large enough,

all risk is borne by the stock-holders, as in the risk-free debt model.

Since 05(V}, t) is also a function of 74, we can also examine its properties as a function

of £. An intuitively appealing result is given in the following theorem.

Theorem 4.5 The elasticity of stock price volatility under the compound option
pricing model, 0s(V,,t), defined in (4.14), has the following limit

e, elVie ) = {iy ko
The proof to Theorem 4.5 can be found in Appendix D.1. The appeal of this result
comes through comparison with the case of risk-free debt. As 7; — 0, if V; > M the
debt is, for all practical purposes, risk-free, and the elasticity given in the theorem
matches (4.4). When V; < M, and 7, — 0, stock holders have zero claim on the
firm, and their holdings have zero volatility. Thus the elasticity is also zero as given
in Theorem 4.5. This behaviour is demonstrated graphically in Figure 4.4. As

74 — 0, we see the elasticity function converging to the correct limits. The elasticity
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elasticity
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Figure 4.3. The elasticity of stock price volatility for the compound option pricing model as a
function of V; and for three different choices of M, with 7, = 1, » = 0.05 and ¢ = 0.3. The solid
line is for M = 50, the dashed for M = 25 and the dotted line for M = 10. The limits of 0 and
—1 are shown by the dotted lines, and the lower bound for M = 50 only, is shown in grey. The
vertical lines are at Me~ "7 for the three curves.

is plotted again in Figure 4.5, however this time against S;. The left hand part of
the function in Figure 4.4 is condensed, since S; = 0 for all values of V; < M. As a

function of S;, elasticity converges to (4.4) as required.

Thus, in conclusion, the volatility process for the compound option pricing model
exhibits behaviour broadly consistent with the risk-free debt model, and Black’s
(1976) empirical observations. The elasticity of this volatility with respect to stock
price is negative, but not a constant function of S; as it was in the CEV model. The
actual shape of the elasticity function reflects risk transfer between the stockholders
and debtholders of the firm.

4.1.3 The displaced diffusion model

The displaced diffusion option pricing model (Rubinstein 1983) is described as a
leverage model (see for example Bates 2000) because it models the stock in the
presence of debt; however the behaviour of volatility in this model is not consistent
with the classical leverage effect documented by Black (1976). Rather, as stock price

increases, volatility also increases.
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Figure 4.4. The elasticity of stock price volatility for the compound option pricing model as a
function of V; and 74. In all cases, M = 50, r = 0.05 and ¢ = 0.3, with the function plotted for
each 74 in {1,0.5,0.25,0.05,,0.01,0.001} as described in the legend. The limits of 0 and —1 are
shown by the dotted lines, as is the lower bound for V; > M. The vertical dotted line is drawn at
M.
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Figure 4.5. The elasticity of stock price volatility for the compound option pricing model as a
function of S; and 74. In all cases, M = 50, r = 0.05 and ¢ = 0.3, with the function plotted for
each 74 in {1,0.5,0.25,0.05,,0.01,0.001} as described in the legend, and these are used to calculate
both fs(V4,t) and S(V;,t) for a range of V;. The limits of 0 and —1 are shown by the dotted lines,
as is the lower bound for S; > 0.
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The displaced diffusion option pricing model extends the firm (from the Black-
Scholes assumptions) to allow two sorts of assets: risky assets whose value follows
GBM, and non-risky assets which compound at the risk-free rate. We assume that
at time ¢ = 0, the initial value of the firm Vj is invested with proportion aq into risky
assets whose value evolves according to GBM, and the remaining proportion into
assets with no associated risk. The risk-free assets compound continuously at the
risk-free rate 7, and hence their value at time ¢ is R, = Rpe™ where Ry = (1 —ag)Vj

is the initial investment in the risk-free assets.

Let A; be the value at time t of the risky portion of the firm. This is assumed
to follow GBM, and is given by the standard solution, i.e., under the risk-neutral

measure Q, risky asset value at ¢ is
Ay = Agexp{(r — 30%)t + oW,}

for all ¢, where Ay = Vj — Ry = apV} is the initial investment in the risky assets, r
is the continuously compounding risk-free rate, o is the (constant) volatility of the
risky assets, and W; is a Brownian motion process under Q. At time ¢, the firm has

value

and since A; is a GBM process, A; > 0 for all ¢, and hence V; > R;.

We define a; = % to be the proportion of the value of the firm invested in the risky
assets at time ¢, and note that this is a stochastic process with

1
=i —
1+ 122 exp{—10°t + cW;}

(e}

where W; is a Brownian motion process. Although stochastic, due to the nature of
Ry, a, satisfies
(1— )V = (1 — o) Vpe™ (4.16)

for all . As noted by Rubinstein, given the path of V;, this property allows us to
determine a; only once in the firm’s history in order to obtain the path of a4 for all

t.

In addition to the assumption of heterogeneous assets, risk-free debt worth B, at ¢ is
allowed. In order to ensure the debt is risk-free, a restriction is imposed on the level
of debt relative to the risk-free assets of the firm. The assumption is that B; < Ry,

and this ensures bankruptcy is impossible. Since the debt is risk-free, the value of
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this debt at time ¢ is given by B; = Bye™ for all ¢. The firm’s equity value at time
t is given by

Sy =Vi — By
where V; is defined in (4.15).

Given the simple decomposition of firm value into stock and risk-free debt, we might
expect stock price volatility to be exactly consistent with the classical leverage effect.
The actual behaviour depends on our underlying variable, and is due to the presence
of risk-free assets. If we consider total firm value (risky + non-risky assets) to be the
underlying variable, and vary V; while keeping «; fixed, we force change in R;, and
the behaviour of volatility is consistent with (4.3). However, this situation is not
sensible due to the non-risky assets. Rather, we must fix R;, and vary V; through
A; alone. As a consequence «; varies, and we see quite different behaviour in the

volatility.

Since A; is a GBM process under the risk-neutral measure @, we know
dA; = rAydt + o Ay dW,

where W, is a Brownian motion process under Q. Firm value V; is given by (4.15),

and so we have

dV; = dA; + rRydt = rVidt + o(V; — Ry)dW,
since A; = V; — R,. By the identity S; = V; — B;,

dS; = dV;, — rBydt = rSydt + o(V; — Ry)dW,

and by the definition of stock price volatility, we note

Vi— Ry
S

where V, — R, = A, follows a GBM process, and S; = V; — B;. Treating R; and B,

as fixed, we write

T

os(Vi,t) = o (4.17)

a5, 1 = (1 - S(A,: t)> (4.18)

where A; = R, — B; = (Ry — By)e™ denotes the value of the risk-free assets in excess
of the debt, with A; > 0 due to the assumption that debt is risk-free. We note that
this function is increasing in S;, and in particular, if S; — oo, os(V;,t) — o from

below.
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Figure 4.6. The volatility function for the displaced diffusion model, defined in (4.18), plotted
(using the solid line) against S;, with B; = 25, Ry = 30, r = 0.05 and ¢ = 0.3. Also shown using
the dashed line is the horizontal asymptote at ¢ = 0.3 of this function. The vertical dotted line
marks A; = Ry — B;. The grey solid line is (4.17) for a; = 0.5, and the grey dotted line is (4.17)
for ay = 0.25. These functions have upper bound given by the curved dotted line, representing
(4.3) and a; = 1. The asymptote for the curve with a; = 0.25 is shown by the grey dotted line.

Stock price volatility for the displaced diffusion model and selected parameters is
shown in Figure 4.6. This figure shows the volatility function (4.18) for the applicable
range S; > Ay, and this is given by the solid line. Since the displaced diffusion model
is a risk-free debt model, the function (4.17) is also shown for fixed oy, € {1,0.5,0.25}.
Although it is useful to reconcile the volatility for this risk-free debt model with that
given in Theorem 4.1 for the general risk-free debt model, (4.17) implicitly ignores
the presence of the risk-free assets. In particular, since S; is a deterministic function
of A; = o4V} for fixed ¢, we cannot simultaneously fix a; and vary S; in this model.
At S; = Ay, Vi, = R; and both A; = 0 and 05(V;,t) = 0. As S; increases (through
increase in A;), both volatility and «; increase, and we see the volatility curve

intersecting first the function (4.17) for oy = 0.25 and then for oy = 0.5.

The behaviour shown in (4.18) and Figure 4.6, implies a positive elasticity of volatil-
ity for this model. Since A, is fixed, from (4.18), we can derive the elasticity of

volatility
dlnos(Vit) oA S, A (4.19)
OlnS(Vi,t)  S? os  Si— A .

where S; > Ay, and clearly, 85 > 0. As S; — A, the elasticity becomes infinite,

Os

reflecting the fact that close to S; = A, a small percentage change in S; (from A, to
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A, +€) results in a very large percentage increase in risk, i.e. from zero risk to some
risk. For large S;, the effect of the risk-free assets is negligible, and the change in
volatility for a unit percentage change in S; is close to zero, reflecting approximately

constant volatility as S; — oc.

4.1.4 Leverage models and the volatility smile

A popular method of estimating volatility is to imply it from stock and call option
prices using the Black & Scholes (1973) option pricing model. This technique and
the relevant literature are discussed in detail by Mayhew (1995). In its common
usage “implied volatility” is the term used to describe the value for o which can
be used to equate the Black-Scholes formula to the observed market price. The

Black-Scholes formula is
Cy = S, ®(hy) — Ke 7" ®(hy — 0+/T) (4.20)

with
_InS;—-InK + (r+ 30°)T

hy -

and where S, is the stock price at time ¢, K is the exercise price of the option with

time to maturity 7, r is the continuously compounding risk-free rate and o is the
constant volatility of the stock. The assumption of constant volatility can be relaxed

to allow a deterministic function of time o;, with o in (4.20) replaced by

1 t+T 2
= [—/ aftdu]
T Jy

which is the square root of the average variance over the remaining life of the option.

The Black-Scholes equation (4.20) has five arguments; however, with the exception
of o, these are readily observable quantities. Given that market call option prices are
also observable, and (4.20) is a monotonic function of o, the Black-Scholes equation
can be used to “imply” the parameter ¢ that would be used to produce the market
price. The implied volatility has been described as “essentially a normalised option
price” (Gourieroux & Jasiak 2001, page 323), whereby the strike price and time
to maturity of the option are eliminated and a single summary statistic produced.
Time series data of both S; and C; will yield a time series estimate of o; in the

obvious way.
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The primary theoretical assumption underpinning use of this statistic is that the
stock price has constant (or deterministic) volatility. Provided this assumption is
correct, the implied volatility reflects the option market’s forecast of the average
variance over the remaining life of the option, and impounds any information cur-
rently available in both the stock market and the option market. However, in order
to benefit from information contained in the observed call price, we must be sure
that market participants are indeed pricing options using the Black-Scholes formula,
and that at any instant, observed prices differ from those given by (4.20) only be-
cause of differences in market participants’ abilities to estimate an appropriate value

of .

Issues raised in Mayhew’s (1995) review of the literature on implied volatility should
be enough to rule out use of the Black-Scholes implied volatility. In particular,
implied volatility estimates themselves cast doubt on the most fundamental of the
assumptions made by Black & Scholes: that the stock price follows GBM. Should the
underlying asset price follow GBM, then any options with the same maturity on that
underlying asset should provide the same implied volatility estimates. In practice
this is not the case, and systematic patterns are obtained between implied volatility
and both time to maturity, and strike price. In essence, empirical irregularities in
the implied volatilities suggest the Black-Scholes model does not correctly price call
options, which in turn implies that the underlying asset price does not have constant
volatility. Despite the contradictions inherent in Black-Scholes implied volatilities,
this method remains a compelling volatility estimation procedure. In order to make
it operational, we should seek an option pricing model which gives estimates that

are consistent with the underlying assumptions of that model.

One significant reason that the CEV, compound option, and displaced diffusion
models have been described above is that all three facilitate closed form option
pricing models, all similar in form to the Black-Scholes equation, and requiring
numerical methods only to calculate probabilities as in Black-Scholes” ®(h;) and
®(hy —o+/7). The probability functions required in the case of CEV and compound
option models are certainly less common that the standard normal; however many
modern statistical packages contain efficient algorithms for their approximation (just
as the standard normal probabilities are numerically approximated in a much larger

number of packages).

All option pricing models depend on the fundamental characteristics of the option:

strike price K and time-to-maturity 7. In addition, because they are all based on
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risk-neutral pricing, all depend on the continuously compounding risk-free rate r.
Additional parameters depend on the underlying structural assumptions about the
firm and stock price evolution. The Black-Scholes formula (4.20) has additional

parameters S; and o(S;,t) = 0.

The constant elasticity of variance option pricing formula (Cox & Ross 1976, Emanuel
& MacBeth 1982, Schroder 1989) has additional parameters S;, # and 4, as specified

in the stochastic differential equation for this process (4.5), and gives

Ct = St-Pl (Sta K7 T, T, 53 /3) - I(e_rTPZ(Stv Ka T, T, 67 ﬂ) (421)
where
QQRy; 2+ 32%5,21) <2
Pl(StaK7Ta'r157ﬁ): (D(ht) ,322
Q(2z; 525, 2y) B>2
and

1- Q2 25,2y) <2
PQ(StaKaTsra(sv»B): (I’(h't_o'\/;) ﬂ:Q
1-QQy;2+ 5%5,22) £>2
where Q(z; v, \) is the survivor function at = for a non-central chi-squared random

variable with v degrees of freedom and non-centrality parameter A\, y = kK P,

z = kS? Per@-A7 and
2r
52(2 - B) (@A — 1)
(Randal 1998). The Black-Scholes formula is given as the special limiting case of

the CEV solutions for § < 2 and 3 > 2 as we let § — 2.

k=

The compound option pricing formula (Geske 1979) introduces the debt payment M,
with time to maturity 74 > 7, i.e., greater than that of the option. In addition, stock
price is a function of firm value V; and the volatility of the firm’s (homogeneous)

assets 0. The option pricing formula is given by

C; = Vi®, (h1 hy: f) —Me T, (hl — o7, hy — o/Ta; \/>) Ke " ®(hy—o+/7)
(4.22)

where ®,(z,y; p) is the cumulative distribution function for the standard bivariate

normal distribution at z and y with correlation p, hy = g, defined in (4.8) and

InV; —InVi + (r + 30°)7

oV

h1=
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where V; is the value of V; which solves S(V;,t) = K and where S(V;,t) is the

function in (4.7).

The displaced diffusion option pricing formula (Rubinstein 1983) is relatively simple
as a result of its assumptions. The call price is a function of firm value V;, the value
of the firm’s non-risky assets R; = Rge™, and the volatility of the risky assets o, as

well as the value at ¢ of the risk-free debt B;. The option price is
Cy=BS(V; — Ry, K — A", 7,7,0) (4.23)

where A, = R, — By, and BS(+) is the Black-Scholes equation defined in (4.20). In
this case, the surplus risk-free assets are used to reduce the exercise payment of the
call, and the GBM process is A; = V; — R; rather than the more familiar S; or V;.

(Note also that K > A" is assumed.)

The option pricing models (4.21), (4.22) and (4.23) can, given parameter inputs,
be used to give call option prices in the same way as the Black-Scholes equation
(4.20). They could equally be used to imply unknown parameters, such as 3 and
0 in the CEV case, or Ry and o in the displaced diffusion model. If we artificially
generate option prices using one of these alternative models, and then compute
Black-Scholes implied volatilities, a volatility “smirk”, monotonically increasing or
decreasing in strike price, will result simply because the Black-Scholes model cannot
adequately describe these prices. If we were to use the correct model to imply

missing parameters, these will of course be constant.

The link between the volatility smirk (the monotonic relationship between implied
volatility and strike price) and leverage, is rather tenuous. The volatility smirk is a
function of the strike price of options held on the firm’s stock; however the leverage
effect concerns the behaviour of stock price volatility as a function of stock price.
Nonetheless, it is common to think of a high strike price being consistent with a
low stock price. This follows if we think about the payoff of a call option: when the
strike price is high, the call option will be exercised if we see a large increase in the

stock price, and we can consider the current stock price to be low.

The classical leverage effect is that, for high stock price, there is low stock price
volatility, and for low stock price, high stock price volatility. If S; is high, and
volatility is indeed low, Black-Scholes prices the option using this low volatility. As

a consequence, Black-Scholes prices are too low. Inferring o using the Black-Scholes
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formula (i.e. computing implied volatilities) based on the correct (higher) market
call prices, we obtain a higher implied volatility than the correct value. High stock
price is loosely equivalent to low strike price, and thus we see high implied volatilities
for small K.

If S, is low, and volatility is high, the opposite occurs. Black-Scholes prices according
to this high volatility, and so Black-Scholes prices are too high. Implied volatility
based on the lower market price is thus too low, and we see low implied volatilities

for large K.

The underlying link between the volatility smirk and leverage effects is a complicated
one, arising from the shape of the probability distribution for the stock price at
exercise, which is of course related to current stock price volatility. More careful
analysis of the cause of the volatility smirk is given in Appendix E for the displaced

diffusion model.

As an illustration, the volatility smirk given by Hull (1997) for options on the S&P
500 Index on May 5, 1993 has a large negative gradient, with a range of approxi-
mately 85% to 160% of the at-the-money implied volatility (with K = S;). These
implied volatilities have been approximately transcribed from Hull’s Figure 19.4
and reproduced in Figure 4.7. Using extreme parameter choices in the CEV model
(4.21): B = —20 and § = 0.11S* /2 with S, = 100, 7 = 0.25 and r = 0.06,
we obtain call prices using (4.21), and the implied volatilities from (4.20) are then
plotted in Figure 4.7 (this particular choice of § implies index price volatility at ¢
is 0.11). Although the parameters for the synthetic option prices have been chosen
to obtain a range of values similar to those reported by Hull, rather than being
motivated by time series properties of the index price, the similarities between the
real implied volatilities (taken approximately from Hull’s plot) and the synthetic
smile in Figure 4.7 are striking. In particular, both smiles show an approximately
linearly decreasing relationship between strike price and volatility, however the syn-
thetic data does not lead to the same curvature for high K. Put another way, had
Hull used market call prices on the index and the CEV model to imply parameters
for the index price process, he would have obtained 3 and ¢ estimates very close to
B =-20and § = 0.11552_‘3 2z ? and these would have been approximately constant

across all options.

It does not appear to be possible to reproduce the smile shown in Figure 4.7 using the

compound option model. Although compound option prices will imply volatilities
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Figure 4.7. Black-Scholes implied volatilities for CEV option prices, given using the solid line,
and an approximation to the smile given in Hull (1997) for the S&P 500 Index on May 5, 1993,
given by the dotted line. The CEV option prices were computed using (4.21) with S; = 100,

7=0.25,»=0.06, 3=—-20and § = o.ust‘?‘”’/“’ for the range of K shown, and the Black-Scholes
implied volatilities numerically obtained via (4.20). The implied volatilities for the S&P 500 were
read to a close approximation from Hull’s Figure 19.4.

which are decreasing in K, the leverage effect is nowhere near strong enough to
give such a steep smile. Since the CEV model is well defined mathematically for
B < 0, we were able to choose f = —20 and obtain a very close match, however
restricting 5 > 0 would have had similar implications to the use of the compound
option model. The displaced diffusion model will produce a positive relationship
between implied volatility and K, as would CEV with 3 > 2 and so neither of these

models are consistent with the smile in Figure 4.7.

In conclusion, implied volatility is a poor forecast of future “realised” volatility
because the incorrect option pricing formula is used to back out the volatility es-
timate. Acknowledgment that share prices do not typically follow GBM, and that
as a consequence of this the Black-Scholes implied volatility is inappropriate, is
important. If we can find an appropriate model for option prices, consistent with
time-series properties of stock price for example, then volatility estimates implied
from observed prices using this particular model will be highly desirable estimates

for reasons discussed by Mayhew (1995).
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4.2 The extended compound option pricing model

At this point we depart slightly from our focus on the underlying stock price pro-
cesses assumed by existing option pricing models, to derive a new option pricing
model. As we will see, this new model will afford us flexibility similar to that of the
CEV model, in that we can model both an increasing or decreasing leverage effect

within the one model.

In a recent textbook on option pricing, Hull (2000) considers analytical extensions
to the Black-Scholes model, and makes mention of Geske’s compound option model,
and Rubinstein’s displaced diffusion model, as well as the CEV model. Extensions
to Geske (1979) and Rubinstein (1983) exist, but none address the union of the two
approaches as we do here. Frey & Sommer (1998) discuss the extension of Geske
(1979) to allow for both deterministic and stochastic interest rates. Chen & Ryan
(1996) relax Rubinstein’s (1983) assumptions to allow two classes of risky assets,
rather than one risky and one non-risky; however like Rubinstein, they treat the
fixed debt as risk-free. Toft & Prucyk (1997) obtain a call pricing formula in the
presence of debt, but assume a different structure to either Rubinstein or Geske. In
particular, using the model of Leland (1994), equity value is a deterministic function

of debt characteristics, and only homogeneous assets are considered.

Here, using the results of Geske (1977), we combine the models of Geske (1979) and
Rubinstein (1983), both of which recognise corporate debt, to produce an analytic
formula for a call option over stock in a firm that has both debt and heterogeneous
assets, without imposing any restriction to rule out bankruptcy. Unlike Geske, we
allow the firm’s assets to be heterogeneous. In particular, as in Rubinstein, some
assets evolve according to GBM and the remaining assets are risk-free. Unlike
Rubinstein, we allow for bankruptcy by interpreting the stock as a (compound)
option over the value of the firm, as in Geske (1977, 1979). As a further extension

to Geske’s (1979) result, we allow the firm to have multiple debt repayments.

4.2.1 Call value with coupon bonds when V; follows GBM

In order to generalise Geske’s (1979) option pricing formula, we first obtain the
formula for a compound option when the firm has an outstanding coupon bond, and
firm value follows GBM.
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Define
Vi = the value of the firm at time t;
S; = the value of the firm’s stock at time ¢; and
B; = the value of the firm’s coupon bond at time ¢
and note that the coupon bond pays coupons Xy,..., X, at times t; < -+- < t,_1,

where ¢; > ¢, and a redemption payment M at time ¢,, > t,,_;. For ease of exposition,
let X;, = M, and thus we can consider a general stream of coupons. The problem
of finding B, is addressed by Geske (1977), who gives the price of the coupon bond
as a function of firm value. He makes the unnecessary assumption that the debt
is repaid at constant intervals, with #; — ¢ = i for each repayment. We provide an
alternate proof of the result for arbitrary repayment dates in Appendix D.2. Using

the relationship
St, — ‘/g - Bt

and the formula for B, given by Geske adapted to allow general payment dates, the
value of the stock at time ¢ is given by

n

Gn(Vi, X, 7,7,0) = Vi (i {pij}) = D Xme "™ ®pn(hi — o/T {pis})  (4.24)

m=1
where X = (Xy,...,X,), 7 = (71,...,7a), 7 is the continuously compounding risk-
free rate, o is the (constant) volatility of firm value, ®,(h;; {p;;}) is the cumulative
distribution function of a standard n-variate normal random variable evaluated at
upper limits Ay, ..., h, and with correlation matrix given by {p;;} for 1 <i,j < n.

Also, 7; = t; — t is the length of time until payment ¢, and

IV, =InV;+ (r+ 30°)7

h; o
7= {the value of V' which solves S;,(V)=X; 1<i<n-1
‘ X i=mn
Ti : y
Pij = ;J 1<)
and pji = pij.

Derivation of this formula follows the suggestion of Black & Scholes (1973), who
describe the common stock of a firm with a coupon bond as “an option on an

option on ...an option on the firm”. To see this, note that at any coupon time
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Stock Call
Time | Exercise price Exercise choice Exercise price Exercise choice
t X; max(S;, — X1,0) K max(S;, — K, 0)
to X5 max(S;, — X5, 0) Xs max(S;, — X»,0)
tn-1 Xno1 max(Sy, , — Xn-1,0) X1 max(S;,_, — Xpn-1,0)
- Xan max(V;, — X,,,0) Xn max(V;, — X,,0)

Table 4.1. Comparison of exercise prices and decisions faced by stockholders in Geske (1977),
and a call option holder over a stock for a firm which has an outstanding coupon bond paying
coupons Xo, ..., X,.

t; the stockholder can purchase a further option by paying the coupon Xj. Each
option is ultimately an option over the assets of the firm. The formula (4.24) is
derived by noting that, at the final debt payment, the value of the stock is S;, =
max(V;, — X,,,0), while at each earlier coupon payment, the stockholder chooses
between default, and payment of the coupon, i.e. Sp+ = max(S;, — X;,0), where ¢t
denotes the instant after time ¢;. Using [t6’s Lemma and a continuously rebalanced
hedge portfolio, the partial differential equation for stock value does not feature
investor preferences. Consequently risk-neutral pricing techniques are warranted,
and a series of nested integrals may be evaluated using the multivariate normal
probability functions featuring in (4.24).

In order to price a European call option on the stock, we redefine the coupon bond to
pay coupons Xo, ..., X,_; at times t, < -+- < t,_; and maturity payment X, = M
at t, > t,—1. The call option over the stock has exercise price K, and if rational,
this is made at time ¢, < t,. Comparison of the exercise payments and decisions
faced by the call-holder is made to those of the stockholder of Geske (1977), and this
appears in Table 4.1. If we set X; = K, since the underlying stochastic process V;

is identical in each case, we must have C, = S;, where the latter is given by (4.24).

Thus, in order to value the call, we note that the call in this case matches the stock
whose price is given in (4.24), with X; = K. Defining X; = K, the value of the call
at time ¢ is given by

Ci=G,(Vs, X,T,1,0). (4.25)
This is equivalent to redefining the coupon dates of the firm, and pricing the call
option with the first “coupon” equal to the exercise price of the call. This formula

nests the Black-Scholes model, where no debt exists and hence V; = S;, with

C,=G1(S, K,7,r,0) = S;®(hs) — Ke 7" ®(hy — 0/T)
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where
_InS; —InK + (r+ 30°)7

o\T ’

7 = 71, and univariate normal probabilities are used. The formula (4.25) also

he

includes the compound option pricing model of Geske (1979), where n = 2, as a

special case. For this single debt payment, call price is
Ct = G?(‘/tv (R’v M)1 (7'1, TQ): T, 0)

where the debt M is repaid at time 5, with time-to-maturity 7.

4.2.2 Call value with coupon bonds when V, follows the dis-
placed diffusion model

The displaced diffusion model was described in Section 4.1.3. In particular firm

value at time ¢ is defined via the equations

Ay = Agexp{(r — %02)t + oW} (4.27)
Rt == RQCTT

for all ¢t > 0, where Ay = aV} is the initial investment in the risky assets, Ry = (1 —
ag)Vp is the initial investment in risk-free assets, r is the continuously compounding
risk-free rate, o is the volatility of the risky assets, and W; is a Brownian motion
process under the risk-neutral measure Q. Recall that a; = %{‘ is the proportion of

firm value in the risky assets at time ¢, and by the properties of Ry, this satisfies
(1-a)Vi = (1 - ap)Vpe' (4.28)

for all ¢.

On the other side of the balance sheet, we have (as in the previous section) the
firm’s stock with value S;, and debt, consisting of promised payments X5, ..., X, at
times to < ... < t,. We aim to value a call option on the stock, with exercise price

K, and maturity at ¢;.

Before presenting and proving the general result, it is useful to first work through
the special case when n = 2, and the firm’s debt is in the form of a discount bond

maturing at time t, > t;, where ¢; is the exercise date of the option.
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Theorem 4.6 The price at time t of a European call option over a stock with ez-
ercise price K payable at t,, for a firm whose value evolves according to (4.26) and
(4.27) and which has outstanding a single discount bond with redemption payment
M due at time ty > ty is given by
Ga(As, (K, M — Ree™), (11, 72),1,0) Ry < Me™™™
Cy =< Gi(A, K+ (Me™™ — R)e™",1y,r,0) Me ™ < Ry < Ke™™ + Me™™™

V,— Ke™ — Me™"™ R, > Ke™™ + Me™™
(4.29)

where 1, = t; —t fori = 1,2, A, = V; — Ry is the value of the firm’s risky assets at

time t, and Ry is the value of the firm’s risk-free assets at time t.

Proof Following discussion in both Geske (1979) and Rubinstein (1983), risk-neutral
pricing is a valid way to price contingent claims for this firm. In particular, the stock

price at time ¢, is given by
Sy, = e "t"WEZ fmax(V;, — M, 0)} (4.30)

where Eg is the expectation under the risk-neutral measure taken conditional on

information available at time ¢,. In calculating S;,, there are two cases to consider.

Case 1: If R; > Me™ "™ the debt is risk-free. So,
Sy, =V;, — Me™270) = A, — (Me™™ — Ry)e™

since V;, = Ay, + Rie™.

Case 2: If R, < Me™"™ there is a positive probability that the total value of the firm
will not exceed M at t,, and so we must evaluate the expectation (4.30). Following

Rubinstein, we write
B == e_r("*’_“)E?l’{nlax(:‘lf_2 — (M — Rie™™),0)}

where we have written V;, = A;, + R;e"™. Rather than evaluating this integral
directly, we note that A4;, is a GBM process, and hence the solution is given by the

Black-Scholes equation with exercise price M — R;e"™, i.e.
St1 = Gl(‘4t1a M — RterTz,tg - tl, Ty O').

Thus, at time £, the stock is worth

Stl - {Gl(Ag],M = R,e’”,tg — tl,T,O') Rt < Me ™ (431)

Ay — (Me™™ — Ry)e™ Ry > Me™™™
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where A;, =V}, — Ry, is the value of the risky assets at ¢,.

We now consider pricing an option over the stock, maturing at time ¢,, with exercise

price K. Risk-neutral pricing applies and we must evaluate
Cy = eME&{max(S,, — K,0)} (4.32)

where Sy, is given by (4.31). In the case of non-risky debt, there are two possibilities.

Case A(i): The first of these is where the size of the non-risky assets ensures that

Sy, > K. If R, > Ke ™™ + Me " both “options” will be exercised, and
Ci=V,—Ke ™ — Me™™™,

Case A(it): If the non-risky assets meet the debt payment (and ensure V;, > M),

but are not large enough to also guarantee S;, > K, we have
C; = e EZ{max(A;, — [K + (Me ™™ — R,)e™™],0)}

and as before, we recognise that since 4; is a GBM process, the solution is given

by the Black-Scholes equation with exercise price K + (Me "™ — R;)e™™, i.e.
Ciy =G (A, K+ (Me™ ™ — Ry)e™, 1,71,0).
Case B: When the debt is risky, i.e., R, < Me "™, we must evaluate the integral
C; = e "M E max[G;(Ay,, M — Re’™,t, — ty,71,0) — K, 0]}.

Again, rather than using brute-force, we note that Geske (1979) was faced with a

similar integral
e "M EX{max(G,(V;,, M, ty — t1,7,0) — K,0)}
where V;, was a GBM process. His solution was given by
G2(Vi, (K, M), (11, 72),7,0)

in our notation, and hence the solution to the integral under the alternative condi-

tions examined here is

Cy= Go(Ay, (K, M — Rie™), (11, 72),1,0).
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Thus, combining the results for the risky and non-risky debt, we obtain the call
pricing formula
Go(Ay, (K, M — Rie™), (11, 72),7,0) R, < Me™™™

Ci=S Gi(A, K+ (Me™ ™ — Ry)e"™™,1,r,0) Me ™ < R, < Ke ™™ + Me™™™
Vi— Ke ™ — Me™™ R, > Ke ™ + Me™™™

where A; = V; — R; as required. d

Note that the middle case of non-risky debt, but risky call exercise, was exactly
that examined by Rubinstein (1983). Noting that Me "™ in the second case is the
present value of the outstanding debt, we see that the two formulae are certainly
consistent. Rubinstein does not consider the unlikely third case where exercise of

the call option is guaranteed, nor does he provide a formula when the debt is risky.

We now present the general result for a firm with an outstanding stream of n — 1

debt payments.

Theorem 4.7 (The extended compound option pricing model) The price at
t of a call option over a stock with exercise price X payable at t; < ta, for a firm
whose value evolves according to (4.26) and (4.27) and which has outstanding debt
with a stream of promised payments X, ..., X, due at times ty < -+ < t, 18 given
by

= {Gk(m,nk,rk,r,o) k>0 (4.33)

Vi-Y o, Xie™ k=0
where Ay = V; — Ry is the value of the risky assets of the firm at time t, 7, = t; — t,
T = (11,...,7k), Gk is given by (4.25) for k > 0,
X,
I, = :
Xk-1
(S0 Xie ™ — Ry) e
where Ry is the value of the non-risky assets of the firm at time t, and where k is
chosen so that t; is the earliest time at which the non-risky assets of the firm meet
all subsequent debt payments if such a time ezxists, and n otherwise, i.e., k is the

smallest non-negative integer that satisfies

R> ) X (4.34)

i=k—+1

iof such a number exists and n otherwise.
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Firm A Firm B

Non-risky Assets

Risky Debt

Risky Assets Equity Risky Assets Equity

Figure 4.8. The balance sheets of two firms. Firm A has risk-free assets which offset some of
the debt on the right hand side of the balance sheet. Firm B has only risky assets and a reduced
amount of debt. For the purposes of valuing the firms’ stock and European call options on the
stock, the two firms are identical.

Before embarking on the proof to this theorem, it is useful to consider the intuition
behind the result. In order to value the call, we compare the value of the non-risky
assets to the present value of all outstanding exercise payments. We choose k so
that all exercise payments (coupons) after X are met by the non-risky assets. The

value of the surplus non-risky assets at time #; is

n
0 < Rie™™ — E Xie i) < X
i=k+1

and thus the exercise payment at X is reduced by this amount. This remainder,
and all earlier exercise payments, are made subject to available resources and limited
liability. Having eliminated the non-risky assets, the call is then priced using the
formula of Geske (1977), with first argument A; (the process that follows GBM, and
the residual assets of the firm) with exercise payments X7, ..., X)_; and the reduced
payment at tx. At #j all the subsequent payments are met by a fund consisting of
only the risk-free assets, and any leftover risk-free assets are used to reduce Xj.
Thus some of the debt on one side of the balance sheet is offset by the non-risky
assets on the other side of the balance sheet. In this way, the non-risky assets are
eliminated from the call pricing problem and we consider a matching firm, with a
reduced quantity of debt, and risky assets following GBM. This situation is shown
in Figure 4.8.

Having seen the intuition behind the theorem, we now consider its proof.

Proof First, we confirm the case where n = 2. This is proved in Theorem 4.6, so

we need only confirm that (4.33) is identical to (4.29) when n = 2. We note that
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X, = K and X, = M and that these payments are made at ¢; and t,. If the value

of the risk-free assets is sufficiently large that

n
B> Y X
=1

then k£ = 0, ensuring that both the call will be exercised and the debt will be paid

off, and hence the call value is given in (4.33) by the net present value
Ci=Vi— Ke ™ — Me™™

which corresponds to the third case of (4.29) as required. If R, > X,e "™ is true,

but R; > X, + Xye™ "™ is not, then k£ = 1 and (4.33) specifies
II, = (I(E_Tﬁ + Me T — Rt)e"‘

and 7 = 7, corresponding to the second case of (4.29) as required. Finally, if
R, < X.e7 ™™, no value of k satisfies (4.34) and so & = 2. In this case, (4.33)

specifies

- K B v
I, = ((]\Ie‘”2 - Rt)e”?) = 5 M — ™)

and 79 = (71, T2), and this corresponds to the first case of (4.29) as required. Thus

Theorem 4.7 is confirmed for the case n = 2.

For general n, we note that if

n
R>) Xie™
=1

then k = 0 and all “options” will be exercised, since stock price (or firm value for
the last payment) will be greater than the exercise amount at every exercise date.
Thus, when k£ =0

mn

Co=V,— ) Xie™ (4.35)

g=]
as required.
At time t;, either that exercise and all subsequent ones are risk-free, in which case
the call value at t is given by (4.35), or the exercise is risky, and we value the call
by
Ci=e™ Eg {max(S;, — X1,0)}.
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If & = 1, then all subsequent payments are guaranteed by the non-risky assets of

the firm, and

Stx = VYM - Bt1 = Atl - (Z Xie—TTi - Rt) e
=2

where By, is the value of the outstanding (risk-free) debt, and as in the proof to

Theorem 4.6, we see that
Ct = Gl(At7 Hlv T1, T, U)

where A; =V, — R;,

Hl =K + (Z Xie‘"" — Rt) ern = (Z Xie—rTi = Rt) e"l
i=k

1=2
since k = 1, and where X; = K as required.

In the case where £ > 1, we use the method of induction to complete the proof.
Assuming Theorem 4.7 is true for n — 1 payments, at time t' = ¢, the stock of
the firm is a compound option over the assets of a firm with risky assets worth Ay
and n — 1 outstanding debt payments X! = X,,; to be made at times t, = ;44
(1=1,...,n—1) as shown in Figure 4.9. Since k > 1 for the call option, the time
at which the non-risky assets meet all remaining payments is ¢, _, = ¢, and so we

define ¢ = k — 1 > 0. Thus, the theorem states

Sy = G4(Ap, I, T4, 1, 0) (4.36)
where Ay is a GBM process, 7} =t; —t', 7y, = (7q,...,7.),
l—II = :
4 JY(;_I

(S Xie™™ — Ry)er

and where g is chosen so that #; = f; is the earliest time at which the non-risky
assets of the firm meet all subsequent debt payments if such a time exists, and n—1

otherwise.

Guided by the two alternative definitions of the coupon schedule shown in Figure
4.9, we make appropriate replacements in (4.36) and find the value of the stock at
time £; is

Su = Gra (A, T |, 7,7, 0) (4.37)
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S,

C, X] = X—g XI,,..] Xn

t t o fii t',,
S X! Xis  Xpo
t t) P

Figure 4.9. Two alternative representations of the coupon payments and payment dates relevant
to the valuation of Sy, = Sy.

where A;, is a GBM process, the superseript (1) denotes pricing from time ¢,
4Y2
H(l_) =
= Xk-1
(Zz A‘X e TTi Rt)eer
since from (4.28), R, = Rye "~ and where T( ) = (tg —t1,..., tk — t1).

In order to value a compound option with m outstanding exercise payments when
V; follows GBM, following (4.25), an application of the result of Geske (1977) shows

that its value at t is

Cy = G (Vi Xim, T, 7, 0) = €7 Eg} {max(S}, — X1,0)} (4.38)
where the stock price at ¢, is given by
S, = Guo1(Vi, X0 70 r ), (4.39)

and where V}, is the value of the GBM price process at t,, Xi,ll 1 = [ Xy s Xy
and T'En)l_(tz_tl""' _tl)

We see (4.39) and (4.37) are of identical form, but m, V;,, X( , and Tm , in (4.39)
are replaced by k, Ay, H;cl_)l and 7'5:_)1 respectively in (4.37). Thus, in order to find
the price of the call over stock whose value at exercise is given by (4.37) we replace
m, Vi, X,n and 7, in (4.38) by k, A4, = V; — Ry, II; and 7 respectively, where
I, = (X, chl_)l). Applying these changes to (4.38), in the presence of non-risky

assets, the value of the call option is
Ct — Gk(At, Hks Tk, T, U)

and this corresponds to (4.33) for k > 0. Thus, if k¥ > 1, the theorem is true for n
payments if it is true for n — 1 payments, and since the theorem is true for n = 2,
by the process of induction, we conclude the theorem is true for all n. The cases
k =0 and k = 1 were previously shown true for general n, so Theorem 4.7 is true

for all n and all values of k. O
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4.2.3 Using the extended compound model to value coupon
bonds

There are various special cases of the call pricing formula (4.33): the Black-Scholes
equation, and Rubinstein’s (1983) displaced diffusion option pricing model have
already been mentioned, and correspond to the cases n = 1 with X; = K and
R; = 0 for all ¢, for Black-Scholes, and X; = K, n = 2 with Xy = Me™ with
an assumption that k& # 2 so that the debt is risk-free for Rubinstein. In addition,
Geske’s (1979) compound option pricing model is a special case with X; = K, n = 2,
Xy = M and R, = 0 for all £. In addition to these option pricing models, we can
address the aims of Geske (1977), and use the model to price the stock of a firm with
an outstanding coupon bond, and whose underlying firm value follows the displaced
diffusion characterised by (4.27) and (4.26). Assuming k # 0, the value at t of the
stock of such a firm, with outstanding coupon payments X to be made at times
t+ T, is given by
St = Gr(Ay, g, T, 7, 0)

where A, = V, — Ry, k, II; and 7y are as specified in Theorem 4.7. Using the

relationship B; = V; — S}, the value of the outstanding coupons is given by

k
B, = Vi (1 — 04®@x(hii {pi}) + Y Mone "™ @ (b — 0/T5; { pis}})

m=1

where a; = “i,f, I1; is the jth element of II;, and the h; are defined by amending
their earlier definition in the obvious way. Once again, we note that Geske’s (1977)

assumption of regular debt repayments was unnecessary, as proved in Appendix D.2.

4.2.4 Some numerical results

Here we analyse call prices computed using (4.33). The multivariate normal prob-
abilities are evaluated using the algorithm of Genz (1992) implemented in the sta-
tistical software R (Thaka & Gentleman 1996). Genz’s algorithm was compared to
other algorithms by Genz (1993) and found to be the most efficient method of those

considered.

Rather than comparing the call prices themselves (as in Rubinstein 1983), we use
Black-Scholes implied volatilities to standardise the calls for changing exercise price.

The ratios of those implied volatilities to the at-the-money implied volatility (where
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payment(s) and o to satisfy the time ¢ constraints we impose. Thus, at time ¢, o is

given by
St

a5, -
4'4.t 8V¢

o =5(S,1) (4.40)

This mirrors the approach used by MacBeth & Merville (1980) in their analysis
of the constant elasticity of variance model. Although the stock price processes
will have the same volatility at ¢, the volatility at maturity of the option (¢ 4+ 77),
or average volatility over the remaining life of the option will not necessarily be
equal. Alternative approaches have been used to align processes: Rubinstein (1983)
matches var,{In(Sy/S;)} for all processes considered, and Beckers (1983) matches
var,(St/S;), where T = t + 7 is the exercise date of the options used to find
implied volatilities. In this situation, either of these alternative approaches would
be difficult to implement, and so we settle for matching the instantaneous volatilities

of the processes at the beginning of the period of interest.

In order to determine o, we need to evaluate % and substitute into (4.40). When

the firm has no debt, S; = V; and so

(4.41)

where oy = %f = %tﬁ in the case of no debt.

In the case where the firm has outstanding debt payments X due at times 7, S; is
the price of a compound option and is given by (4.33), where in particular, this and
%‘S!; depend on the number of outstanding risky payments k. When k& = 0, no debt
payments are risky, and the stock price is given by

St =V, — iXie—m
i=1

with g—f}: = 1. Substituting into (4.40), we find

Vi— i Xie™'T
A,

o =6(S,,1) (4.42)

where At = ",t = Rt.

When k£ > 0, stock price is given by

St = Gk(Ata Hka Tk, T, 0)
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in the notation of Theorem 4.7. Generally, we obtain %{% from this and substitute
into (4.40). For the case k = 1, the stock price is given by the Black-Scholes formula

with first argument A;. In this case, g—if is the well known hedge ratio and is

5‘51(‘4t,H1,7’1,7"s0)-

as, - In Ay — InIl; + (r + 30°)7
94, e
_ 8s;

Substituting into (4.40), and noting from (4.26) that for fixed ¢, 25 av = g3, we find

Gl(Ah Hh T, T, G)

1 (4.43)
‘Atq)l (‘41, Hl’ T1,T, U)

025( !7t)

where 4, = V; — R;. When k = 2, the stock price is given using the call pricing
formula of Geske (1979). He gives the derivative @ for the compound option with

two outstanding (risky) debt payments (Geske 1979, equation 10) as

aS. pe -
=L =& (g1, 05 (/= | = Ba(As, IIn, 79,7, 0)
3At T2
where
InA—InV+(r+ 3077 In A; — InIls + (r + 307)7

gi=

a\/ﬁ ) g2 = 0\/772

and V satisfies Stl( G,(V, Iy, 75 — 7, 7,0) = I1,. Substituting into (4.40), and

V)=
again noting 53¢ = 25, we find

Go( Ay, Iz, T2,1,0)

- (4.44)
At(I)'Z(Ata Iy, 7o, 1, U)

(St) t)

Qt

where A; = V; — R;.

Equations (4.41) to (4.44) allow us to determine ¢ for call option valuation for up
to two risky debt payments, with the additional risky exercise of the option. When
k > 2, equivalent equations follow in the same manner, with the general form of @
derived in Appendix D.2. For one or more risky debt payments, numerical solutlon
of (4.40) will be necessary, since o features on the right hand side through both S;

and the normal probabilities.

In order to make this alignment procedure clearer, we provide an example for the
case where o, = 0.75 and LR, = 0.5, and we have only a single debt payment. Since
LR, = 0.5 and S; = 10, we find V; = 20, and consequently 4; = 0.75(20) = 15. We

now have two unknowns, the promised debt payment X; and the volatility of the
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firm’s risky assets o. If the debt were risk-free, we would set X; = 10e”", however

this is not the case, and we must solve

10 = BS5(15, X5 — 5e"™, 7,1, 0) (4.45)
0.4 = ({—80)@1(15, )&’2 - 5€rT2, T2, T, O') (446)

where (4.45) is the stock price requirement, (4.46) is the volatility requirement,
r = 0.05, » = 2, and X, and o are unknown. These non-linear simulataneous

equations are solved numerically to yield
X5 =11.05358 and o = 0.266926.

Substituting these values back into (4.45) and (4.46), we confirm the solution. Note
that since Xoe™ "™ > B, = 10, the debt is not risk-free.

Having provided a method for aligning “firms”, we can now analyse call prices
computed from (4.33). Three debt schedules are considered. The first of the three
column blocks in Table 4.2 gives implied volatility ratios for a firm with no debt.
The first sub-column of this block, with «; = 1, corresponds to the Black-Scholes
situation, and hence has constant implied volatility and unit ratios. The second
block is for firms with a single outstanding debt payment. The size of this payment
is determined by the leverage ratio, and is found to satisfy S; = 10. The time-to-
maturity of this payment is 75 = 2. The first column of this block, with oy = 1,
corresponds to Geske’s (1979) compound option prices. The final block in the table
is for firms with two outstanding debt payments. These are of equal size, again
determined to satisfy the leverage ratio and S; = 10, and have times-to-maturity
T = 1 and 73 = 1.5. In every case, the continuously compounding risk-free rate is

r = 0.05.

Several interesting features are evident in Table 4.2. We note that in each block
(corresponding to a leverage ratio, and a debt schedule) there is a column of ones.
This indicates a situation where the Black-Scholes formula is the appropriate pricing
model. To the left of the column of ones, there is evidence of the classical leverage
effect, where the Black-Scholes formula overprices out-of-the-money calls (i.e. the
true call price has a low implied volatility), and underprices in-the-money calls (the

true call price has a high implied volatility); an effect discussed in Section 4.1.4.

At the column of ones, the debt is met exactly by the non-risky assets, and the

calls are priced by the Black-Scholes formula giving constant implied volatilities.
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No debt payment Single debt payment Two debt payments
it 1 0.75 0.5 0.25 1 0.75 0.5 0.25 1 0.75 0.5 0.25
Strike Leverage = 25%

8 1.000 0.958 0.868 0.489 | 1.030 1.000 0.936 0.709 1.030 1.000 0.936 0.709
9 1.000 0.981 0.942 0.807 1.014 1.000 0.971 0.878 1.014 1.000 0.971 0.878
10 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
11 1.000 1.016 1.048 1.145 | 0.988 1.000 1.024 1.096 | 0.988 1.000 1.024 1.096
12 1.000 1.029 1.087 1.261 | 0.978 1.000 1.044 1.174 | 0.978 1.000 1.044 1.174
Leverage = 50%

8 1.056 1.039 1.000 0.868 | 1.060 1.040 1.000 0.868
9 1.026 1.018 1.000 0.942 1.027 1.018 1.000 0.942
10 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
11 0.977 0.984 1.000 1.048 | 0.976 0.984 1.000 1.048
12 0.957 0.971 1.000 1.087 | 0.956 0.971 1.000 1.087
Leverage = 75%
8 1.077 1.071 1.056 1.000 | 1.087 1.078 1.060 1.000
9 1.036 1.033 1.026 1.000 1.040 1.036 1.027 1.000
10 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
0l 0.968 0.971 0.977 1.000 | 0.965 0.969 0.976 1.000
12 0.939 0.945 0.957 1.000 | 0.934 0.941 0.956 1.000

Table 4.2. The ratio of Black-Scholes implied volatilities to the at-the-money implied volatility,
for call options with time to maturity 7 = 0.5. All firms have S; = 10 and o(S;,t) = 0.40. The
single debt payment is at 75 = 2, and the two debt payments are of identical size and made at
75 = 1 and 73 = 1.5. The leverage figure determines V;, and this and S; = 10 are used to find the
required debt payment(s). The risk-free rate is r = 0.05 throughout.

This is an artifact of the choices of leverage ratio and «y, e.g., when the leverage
ratio is 75%, V;, = 40 and B, = 30, since S; = 10. Thus, when a; = 0.25, the
non-risky assets, with value R; = 30, exactly offset the debt, and Black-Scholes is

the appropriate call valuation formula.

To the right of the column of ones, there is evidence of an opposite effect resulting
from the non-risky assets of the firm. In the first block, in the absence of debt, as
the proportion of risky assets in the firm falls below one, we see empirically atypical
behaviour, namely implied volatilities increasing with strike price. This phenomenon
is consistent with the call prices given in Rubinstein (1983), and is a complicated
combination of two effects: the presence of risk-free assets requiring an increase in
the volatility of the risky assets (to maintain a fixed volatility for stock price), and
the risk-free assets offsetting the strike price of the option at maturity. This effect

is further investigated in Appendix E.

We note that, when the leverage ratio is low, increasing the number of debt payments
from one to two has resulted in identical Black-Scholes implied volatility ratios to
the accuracy provided. This reflects the way the stock price processes have been

aligned in each case.

For both the single debt payment, and two debt payments, each leverage effect mag-

nifies as leverage increases. Further, for a given leverage ratio, each effect magnifies
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as we increase the number of debt payments. Extending this behaviour, we conclude
that a steeply decreasing relationship between Black-Scholes implied volatility and
call option strike price (as seen in Hull (1997), page 504, for the S&P 500 Index)
is consistent with a firm that is highly levered and whose debt repayment schedule
consists of many individual payments. Of course, this is a natural description of

firms in practice.

4.2.5 Properties of volatility and elasticity

Having derived a new option pricing model, we now turn to the properties of the
underlying stock price process; in particular, its volatility and elasticity of volatility

with respect to stock price.

We investigate the behaviour of volatility and the elasticity of this volatility, when
firm value follows the displaced diffusion model, and debt is not assumed risk-free.
As a result, the value of the stock of this firm is a compound option, and in particular,
Sy is given by Theorem 4.7. The case where &k = 0 is a risk-free debt model, and
hence the behaviour of volatility and its elasticity are consistent with the displaced
diffusion model given described in Section 4.1.3. If £k = 1 and «a; = 1, the model for
stock price is the same as for the compound option pricing model, and is described
in Section 4.1.2. Thus, we focus on the simplest remaining cases: where k£ = 1 and
oy < 1, consistent with a firm with heterogeneous assets, and a single risky debt
payment; and where k = 2 and oy = 1, consistent with a firm with homogeneous

(risky) assets, and two risky debt payments.

When £ = 1, and a single debt payment M is made at t5, the stock price is given by
S = Gi(Ay, M — (1 — o) V€™, 75, 7,0) where G4(+) is the Black-Scholes equation,
and 75 = ty — t. As with the displaced diffusion model, we fix the value of the
risk-free assets R; and allow A; only to vary with V;. With reference to (4.43), the
volatility of S; is given by
= o2 (Vi = R)® ()
(Vi = Ry)®(y1) — e ™ ®(y, — 04/T2)
where A; is replaced by V; — Ry, Il = M — R;e"™, and
_ In(V; = Ry) —InTl, + (r + 202)72
= pu \/7'_2 .

We note that this volatility has an identical functional form to the volatility for the

os(Vist) (4.47)

compound model given in (4.9), but with A; = V; — R; as the leading argument,
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Stock price volatility

Firm value

Figure 4.10. Stock price volatility for the extended compound model. The solid function is the
volatility for a firm with R; = 25, IT} = 25 due in 75 = 1, r = 0.05 and o = 0.3, and is given by
(4.47). This function has the vertical asymptote at V; = R, and horizontal asymptote at o, and
these are shown by the dashed line. The remaining function is for a firm with no risk-free assets
with X; = 25 due at ;3 = 1, and is given by (4.9).

rather than V,. Thus, the properties of the volatility for the extended compound
model with & = 1 are identical to those of the compound model, as are the properties

of the elasticity, except that the lower bound for V; is now at R; rather than zero.

An example of the volatility function (4.47) for a firm with R, = 25, II; = 25
due in 7, = 1, r = 0.05 and o0 = 0.3 is shown in Figure 4.10, along with the
volatility for a comparable compound option process. It is clear from the plot that
the extended compound volatility is just a translation of the compound function
analysed in Section 4.1.2. In particular, the asymptote as firm value gets small is
now at V; = R;, the value of the risk-free assets, rather than at V; = 0. We also note
that the compound option volatility is bounded between the extended compound

volatility and the (constant) volatility of the risky assets for V; > R;.

The second case we consider is when a firm has two risky debt payments, and

homogeneous assets (i.e. ay = 1). In this case, stock price volatility is given by

Vi =
os(Vi,t) =0———P9(Vy, X, 7,1,0 4.48
sWit) = 0 sba(l ) (1.48)

where S;(V;,t) = Go(V;, X, T,7r,0), X = (X}, X;) are the debt payments, and 7 =

(11, 72) the times-to-maturity of those debt payments.
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3
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Stock price volatility
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Figure 4.11. Stock price volatility for the extended compound model with no risk-free assets
and two risky debt payments. The solid function is the volatility for a firm with X = (12.5,12.5),
7 = (0.5,1.5) and ¢ = 0.3, and is given by (4.48). This function has the vertical asymptote at
Vi = 0 and horizontal asymptote at o, and the latter is shown by the dashed line. The function
shown by the dashed line is for a firm with no risk-free assets and a single debt payment X; = 25
due at 7 = 1, and is given by (4.9). The third function, shown by the dotted line, is for a firm
with risk-free debt, and X; = 25 due at ;3 = 1. The vertical asymptote for this function is at
Vi = 25 and is not shown.

An example of the volatility function (4.48) for a firm with X, = X, = 12.5 with
times-to-maturity 7, = 0.5 and 7, = 1.5 respectively, and ¢ = 0.3 is shown in Figure
4.11, plotted against firm value V;. Also shown for comparison are the volatility for
a firm with a single debt payment X; = 25 with time-to-maturity 7, = 1, both under
the risky compound model (4.9) and the risk-free model (4.3). In order to eliminate
time-value issues, we set r = 0 so that the risk-free value of all debt schedules is
B, = 25. It is clear from the plot that the compound volatility with £ = 2 (shown
using the solid line) is very similar in behaviour to the volatility with £ = 1 and the
same amount of outstanding debt (shown using the dashed line). When firm value is
high, and default unlikely, the volatility functions are indistinguishable; however, as
firm value decreases, while both volatility functions become explosive, the volatility

for k = 2 increases more rapidly than when £ = 1.

From Figures 4.10 and 4.11, it appears that we can make the following generali-
sations. As firm value decreases, when we increase the number of debt payments,

it appears that share value becomes increasingly volatile, reflecting transfer of risk
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from debtholders to stockholders. The volatility under the assumption of risk-free
debt is an upper bound for the volatility function as we increase k, with the limit
representing the case where no risk is borne by the debtholders. It also appears
that the elasticity of stock price volatility with respect to stock price when k& > 1
is bounded by the elasticity functions for the Geske (1979) model (with k£ = 1)
shown in Figure 4.3 and the risk-free debt model. Thus the relationship between
the volatility functions observed in Figure 4.11 is consistent with the expected rela-
tionship. Introduction of risk-free assets to the firm serves only to provide a positive
lower bound for firm value and shift the vertical asymptote of stock price volatility

accordingly, as seen in Figure 4.10.

4.3 Data analysis

Using the iterated t-volatility estimator of Definition 3.3 to estimate volatility, we
briefly analyse a single New Zealand stock, with a view to identifying plausible
models from those outlined earlier in this Chapter. We focus on the CEV elasticity
relationship, i.e., the relationship between log stock price (InS;) and log volatility
(In6;). The gradient of the relationship between these variables is the elasticity, and
for the CEV model, this gradient should be constant for all S; (implying a linear
relationship). Although we do not specifically match the non-linear compound and
displaced diffusion relationships to what is observed, we do focus on the sign of
the elasticity. This is facilitated by a non-parametric estimate of the relationship
between the two variables obtained using loess (discussed in Appendix A). This
non-parametric estimate is also a basis of comparison for the estimated linear re-
lationship, and can be used to appraise whether the CEV model is appropriate for

the data.

4.3.1 Analysis for Telecom NZ

We choose to analyse daily closing price data for Telecom Corporation of New
Zealand Ltd. (Telecom) over the ten year period 20 March 1992 to 22 March 2002.
Telecom is one of New Zealand’s largest companies, and as a telecommunications
company, is a prime candidate for the extended compound model. In particular, the
assets of telecommunications companies: the relatively risk-free assets dedicated to

fixed-line telephone services provision; and the high risk assets that characterise the
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Figure 4.12. Telecom Corporation of New Zealand share price, volatility, and elasticity relation-
ship. The top plot shows the share price series for the trading days in the period 20 March 1992
to 22 March 2002, where the labels mark the beginning of the year. The second plot gives the
volatility estimates obtained using the iterated t-volatility estimator (using the solid line) and the
moving standard deviation (using the dashed line) with a window width of 41 observations. The
third plot shows the log of iterated ¢-volatility estimates plotted against log share price.
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industry (including cellular phone networks, internet service provision, electronic-
business applications and more), can be closely approximated by the heterogeneous

asset decomposition of Rubinstein (1983).

The price series for Telecom for the entire period is shown in Figure 4.12. In addi-
tion, the volatility for this series is calculated using both the non-robust historical
volatility estimator defined in (3.2) and the preferred estimator of Chapter 3 based
on the t-distribution, with ¥ = 5 degrees of freedom, as defined in Definition 3.3.
As with the plots in Chapter 3, we see periods where the traditional, non-robust

volatility estimate is unduly affected by long tails in the data.

Also shown in Figure 4.12, is a plot of log volatility (estimated using the iterated
t-volatility estimator) against log stock price. If the CEV model prevails, we would
expect the relationship between these two series to be linear. In order to satisfy the
basic leverage arguments, the slope coefficient should be between —1 and 0 although
this is not essential for use of the CEV model. Generally, a negative relationship
wil be consistent with risky debt models, or CEV with § < 2, whereas a positive
relationship will be consistent with the displaced diffusion model (with heterogeeous
assets and non-risky debt), or CEV with 7 > 2. If GBM is appropriate, we would
expect log volatility to be a constant linear function of log stock price, i.e. the
relationship is a linear one, with zero slope. Acknowledging debt in the firm, we
choose not to estimate the relationship between log volatility and log stock price
in Figure 4.12, due to the high likelihood that the firm will have undergone capital
structure changes over that ten year period, with the implication that no single
relationship would apply for the whole period. In fact, the scatterplot in Figure
4.12 shows no discernible pattern, which is not surprising given ten years’ data are

shown.

The extended compound model presented in the previous section has several benefits
over existing models for stock price: multiple debt repayments are allowed, and these
are not assumed to be risk-free; and heterogeneous assets are acknowledged, and
modelled in the form of risky assets whose value follows GBM, and risk-free assets
whose value compounds at the risk-free rate. By modelling the firm in this way, we
ultimately construct an option pricing formula which contains many arguments, but
unlike the CEV model (for example), many of these arguments should be estimated
from firm properties, rather than inferred, or estimated directly, using stock or option

price data. In contrast, the CEV model features two unknown parameters which
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must be estimated from time series stock price data, or implied using stock and
option price data, but which do not have any direct meaning in terms of the firm’s
capital structure. It is difficult to motivate regular changes in these parameters;
however, it is much less difficult to motivate changes in future debt schedules, and
asset mix for the firm, since analysis of financial statements and general knowledge

of capital structure reveals that these variables change as a matter of course.

We analyse the data for Telecom over periods of a single year for leverage effects,
using the volatility estimate shown in Figure 4.12 estimated using the entire price
series. Use of the estimate from Figure 4.12, rather than directly estimating volatil-
ity for each annual period, minimises both the problem of rescaling the volatility
estimate using the sample variance, and end-effects. The first of these problems was
discussed in Chapter 3, and we saw there that the sample variance for as many as
250 standardised returns can still be grossly inflated by a small number of extreme
returns. Use of the volatility estimate based on all the data lessens this effect, since
the series is ten times as long, and also means we lose observations only at the ends

of the complete ten-year series, rather than at the ends of each year long sub-series.

We assume that over a single calendar year, the debt and asset mix parameters
remain fixed, and that any plot of Ing; against In S; is both resistant to actual
changes in these values, and also to any dependence of o; on time (e.g. through a
compound model). In particular, we hope that these effects are secondary to the

dominant leverage effect.

Figure 4.13 features the plot of log volatility against log share price for Telecom
for the nine calendar years 1993 to 2001. Added to each plot are the ordinary
least squares regression line, and the robust non-paramtric relationship estimated
using loess with a smoothing window of % Except for those in years 1994, 1995,
and 1999, all slope coefficients in Figure 4.13 are significantly different from zero at
the 1% level, however the 1999 slope is significant at the 5% level. This provides
evidence that the Telecom share price does not follow GBM (with a slope of zero),
and also clear evidence that the slopes are not all equal, since significant negative,

and positive slopes arise.

A linear relationship does seem plausible for many of the individual years: R? fig-
ures range from 0.2% in 1995 to 49.2% in 1997, corresponding to (absolute) linear
correlation coefficients between 0.046 and 0.701. In many cases, the non-parametric

relationship provided by loess does not depart greatly from the regression line for
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Figure 4.13. Leverage plots for Telecom New Zealand for 1993 to 2001. Volatility is estimated
using Theorem 3.1 with » = 5 for the entire period, and log volatility is plotted against log price
for each year-long period. Superimposed are the relationships estimated using linear regression,
and the robust, non-parametric smoother loess.

that year. This supports the use of the CEV model for each of these periods; however
the fact that the slope coefficients are not stable implies a time-varying elasticity
parameter 3. This is not ideal, and we would conclude that the CEV model is not
suitable for long-term modelling of the stock price. Nonetheless, given the flexibility
of the CEV to model both the classical leverage effect with § < 2 and an increasing
relationship between log volatility and log stock price with § > 2, and the appar-
ently linear relationship between log volatility and log price over the period of each

year, pricing of short maturity options using the CEV model could be appropriate.

4.3.2 Reconciliation with stock price models

One implication of Figure 4.13 is that the compound or displaced diffusion models
alone cannot be used to model Telecom’s stock price. While able to model the
relationships shown, the CEV model would need a time-varying /3, so this model is
also not appropriate. The extended compound model combines the compound and
displaced diffusion models’ assumptions, and through changes to the firm’s debt

structure and its asset mix, is able to motivate a changing leverage effect through
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Year B; S, LR, Elasticity
1993 1336.4 6542.73 0.204
1994 1563.3 9655.85 0.162
1995 1470.4 11507.66 0.128
1996 1297.1 11715.52 0.111
1997 1809.6 12395.77 0.146
1998 2038.4 15713.07 0.130
1999 2251.0 15978.45 0.141 0
2000 4323.0 15161.73 0.285 —
2001 5481.0 11294.35 0.485 +

++oo+

|

Table 4.3. Debt and leverage ratios for Telecom New Zealand. The level of debt B,, measured
in millions of NZ$, is obtained from Datastream (2002) records and is “Total debt” under their
classification scheme. It combines short-term and long-term debt. The value of equity Sy, also
measured in millions of NZ$, is obtained from Datastream records and is “Market value”. It is
found using the number of outstanding shares times the share price on the balance sheet date.
The leverage ratio is defined in (4.1). Balance sheet dates are typically at 31 March of the stated
year, except for 2000 and 2001, taken at 30 June. The elasticity is based on the estimated slopes
in Figure 4.13, and are positive (+), negative (—) or insignificant (0).

time. With reference to Telecom’s financial statements, and the relationships seen

in Figure 4.13 we explore the suitability of this model.

Leverage ratios are estimated for Telecom for each of the calendar years in the
1993-2001 period. This is done fairly crudely, and the results are summarised in
Table 4.3. The debt figures B; are the Total debt as defined by Datastream (2002),
and these are collected from Telecom’s balance sheet statements in the respective
annual reports. Total debt figures for 1993-99 are from the 31 March annual reports,
and for 2000-01 are from annual reports to 30 June. The equity figures S; are also
provided by Datastream and are calculated on the date of the financial statement
by multiplying the number of outstanding shares by the market share price. The
leverage ratio is calculated using (4.1), and we find the estimated leverage ratios
decrease monotonically from 1993 to 1996, and then increase over the remaining
years. A high ratio in 1997 prevents the increase being monotonic; however the

trend is nonetheless very clear.

Spearman’s rank order correlation coefficient suggests a very weak relationship be-
tween the estimated leverage ratios LR, in Table 4.3 and the sign of the lever-
age relationships estimated in Figure 4.13 using the volatility estimate; however
the agreement between these two quantities is loosely consistent with the extended
compound model. Under this model, a high leverage ratio would suggest that the

risk-free assets of the firm were insufficient to cover all debt, and hence a negative
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relationship between log volatility and log share price. Conversely, a low leverage
ratio would increase the chance of risk-free debt and hence an increasing relationship
in Figure 4.12. Of course, the leverage figures given in Table 4.3 are just snapshots
of the firm at a specific date, and so do not reflect the structure of the firm over the
whole calendar year. Nonetheless, we see that where significant elasticity occurs,
50% of the time, the LR, estimates are as we would expect: in 1996 and 1997, lever-
age is low and we see a positive elasticity, and in 2000, leverage is high and we see
a negative elasticity. In 1993, the firm has a small absolute debt level, but also S;
is small inducing a large leverage ratio, inconsistent with the positive elasticity. In
1998, the debt level increases and the leverage relationship implies this debt is risky.
However, a sharp increase in equity value causes the leverage ratio to decrease. The
very large leverage ratio in 2001 is induced by low equity value, but also a large level

of debt. This particular year is least consistent with the model we are proposing.

We briefly focus on the years 1997 and 2000. The share price data, volatility and
leverage plot are shown for the 1997 period in Figure 4.14. Superimposed on the
leverage plot are the regression line, and the robust non-parametric relationship
estimated by loess. Both of these procedures suggest an increasing relationship
between volatility and price, and the general agreement between the two supports
use of a CEV model with 4 > 2 for this period. From Table 4.3 we see that in
1997, Telecom had a relatively low leverage ratio, and this helps explain the positive
relationship between volatility and stock price, suggesting excess risk-free assets,
and suitability of the displaced diffusion model (nested in the extended compound

model, with & = 0).

In contrast to 1997, 2000 was a period in which Telecom had a much higher leverage
ratio, both due to much higher debt levels, and also to lower equity value. The price
series, volatility and levefage plots for 2000 are shown in Figure 4.15, and a clearly
negative relationship between volatility and stock price is apparent. Once again, the
relationship is approximately linear; however this time the CEV parameter would
be consistent with the classical leverage effect. The slope of the regression line in
the leverage plot of Figure 4.15 is —0.51, yielding an estimate of 3 = 2 x slope+2 =
0.98. Also consistent with the volatility-price relationship is the extended compound

model with k£ > 0 which models a firm with risky debt and heterogeneous assets.
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Figure 4.14. Telecom Corporation of New Zealand share price, volatility, and elasticity rela-
tionship for the year 1997. The top plot shows the share price series. The second plot gives the
volatility estimates obtained using the iterated t-volatility estimator (using the solid line) and for
the moving standard deviation (using the dashed line) for a window width of 41 observations.
The third plot shows the log of iterated ¢ volatility estimate against log share price, the estimated
linear relationship between them, and the non-parametric relationship estimated using loess with
a smoothing window of .
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Figure 4.15. Telecom Corporation of New Zealand share price, volatility, and elasticity rela-
tionship for the year 2000. The top plot shows the share price series. The second plot gives the
volatility estimates obtained using the iterated t-volatility estimator (using the solid line) and for
the moving standard deviation (using the dashed line) for a window width of 41 observations.
The third plot shows the log of iterated ¢ volatility estimate against log share price, the estimated
linear relationship between them, and the non-parametric relationship estimated using loess with
a smoothing window of .
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4.4 Conclusions

We have successfully amalgamated the structural assumptions of Geske (1979) and
Rubinstein (1983) with extension to allow multiple debt payments. The resulting
compound option pricing formula enables us not only to price call options for firms
with heterogeneous assets and risky debt, but also allows us to price the outstanding
debt. On the basis of the results in Table 4.2, we see that the extended compound
option pricing model has flexibility to address the leverage effect identified in stock
price volatilities and embodied in the volatility smile. In order to achieve this
flexibility, the model has a greater number of parameters than other closed-form
option pricing models; however debt structure may be relatively straightforward
to approximate using the firm’s financial statements. As discussed by Rubinstein,
oy and o may be best inferred from price data. He suggests time series data of
Sy; however an alternative is to imply the parameters using market stock and call
prices. As pointed out by Rubinstein, once o is estimated, its path through time

follows directly from the stock price path.

Rubinstein (1983) commented on the implausibility of decomposing the assets of a
firm into a single class of homogeneous risky assets and non-risky assets; however
we feel that while unrealistic, this particular decomposition more closely reflects
reality than competing models. Attempts to relax this assumption to allow two
correlated classes of risky assets (low risk and high risk perhaps) fail to produce a

simple formula for call price.

Analysis of historical data for Telecom Corporation of New Zealand Ltd shows some
empirical support for the model. Both positive and negative elasticity relation-
ships are found in subsamples of the data, and these shifts are qualitatively partly
explained by crude estimates of the leverage ratio over these periods. Given the
inability of any other option pricing model to successfully explain such a changing
relationship through time (the CEV model shows promise for short-term modelling
of the stock price; however, the elasticity parameter 3 is time-varying), we feel that
the extended compound model makes a significant contribution, but it needs to
be subjected to a more rigorous empirical treatment. In particular, we need to see
whether the model can resolve the volatility smile, and other systematic biases found

in the Black-Scholes option prices.




Chapter 5

Summary

Bearing in mind the original motivation of this thesis, which was estimation of the
leverage effect based on a robust volatility estimator, we have accomplished more
than we set out to. The highlights of this thesis for the author are the iterated
t-volatility estimator of Chapter 3, and Theorem 4.7, in which a new closed form

European call-option pricing model is derived.

The thesis begins by briefly demonstrating the difficulties associated with using
the robust smoother loess to estimate time-varying volatility of a price series.
Many favoured robust techniques use robustness weights to downweight extreme
observations. As shown, this works well when estimating location on the basis of a
symmetric distribution; however this method of downweighting is not appropriate
when the distribution in question is highly skewed, e.g. when estimating E(R?),
where R; is the daily return. This example leads us to consider specialized techniques

for robustly estimating the variability, or scale, of data.

Using the limited computing power available in the early 1980s, Lax (1985) un-
dertook a simulation study to estimate the finite sample efficiency of robust scale
estimators. His results showed that the biweight A-estimator of scale, which uses
the median absolute deviation (MAD) as an auxiliary robust scale estimator, is
highly efficient for samples from three “extreme” situations: the normal, one-wild
and slash. More significant to Lax’s results than the relatively poor computing avail-
able at the time, was the evaluation criterion used: Tukey’s triefficiency. Because
triefficiency is based on the minimum efficiency over the three corner distributions,
it is critical that the individual efficiencies are computed relative to the minimum
variance estimator. In the case of the normal distribution, this minimum variance
estimator is just the sample standard deviation; however, in the one-wild and slash

situations, the minimum variance estimators were not used by Lax.
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In Chapter 2, we derive recursions for the maximum likelihood (ML) scale estimator
for a one-wild sample, and confirm known results for the slash distribution. These
recursions are implemented using the EM algorithm and applied to simulated data.
The remaining estimators are then benchmarked against the sampling variability of
these ML estimators for each of the three corners, allowing the triefficiencies to be

correctly calculated.

In addition to the ML estimates for the normal, one-wild and slash situations, we
derive the ML scale estimator for the family of ¢-distributions. We investigate use
of this estimator with a prespecified degrees of freedom parameter v, as a general
purpose scale estimator. Two forms of this estimator are considered: a fully iterated
(ML) estimator, and a one-step estimator based on an auxiliary robust scale esti-
mator, and one iteration of the EM algorithm. These estimators will be particularly
suitable if the true distribution of the data is close to the specified ¢, distribution;
however we hope that this distribution will be a reasonable compromise distribution

for the three corners, and the estimators based on it useful more generally.

A large scale simulation study is conducted and reported in Chapter 2, in which
samples are randomly generated from each of the corner distributions, various scale
estimates computed for each of these samples, and then the sampling variability of
these estimates compared. Triefficiencies are computed for each of the estimators
considered, and these are used to evaluate the quality of each of the estimators. We
find that, using the ML estimates as the benchmark, triefficiencies are generally lower
than those reported by Lax (1985), due largely to poor performance of the estimators
for one-wild samples. The conclusions of Rousseeuw & Croux (1993) are confirmed,
and the statistics S,, and @, are found to be more efficient estimators of scale than
the MAD. These estimators are useful in their own right, and also as auxiliary
estimators in more complicated estimators. Overall, the best performing estimators
were: the biweight A-estimator using ), and a scaling constant of ¢ = 11, the
one-step t-estimator using (), and a scaling constant of ¢ = 4.25, and the biweight
A-estimator using S,, and a scaling constant of ¢ = 7. Each of these estimators had

an average triefficiency in excess of 80%.

In addition to the results for the scale estimators, results for three commonly used
location estimators are reported in Appendix B. These results are also influenced by
the choice of minimum variance estimator, and together with the results of Chapter
2, suggest that further analysis of robust location and scale estimators be under-

taken.
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In Chapter 3, we move from a statistical focus to a financial focus; in particular,
we investigate robust estimation of time-varying volatility. Volatility measures the
standard deviation of financial returns, and thus a volatility estimator is a scale
estimator. We specify a simple model for price returns, in which the returns have
a smooth, time-varying volatility, an assumption which is generally consistent with

the stylised facts of many financial time series.

Based on empirical regularities in returns data, we choose the t-distribution with
five degrees of freedom as a candidate for the data generation process for returns,
and estimate a slowly changing volatility on this basis. We form a volatility es-
timator based on the maximum likelihood estimator for a sample from the scaled
ts distribution. A correction factor is developed so that the estimated innovations
for the data have unit variance, allowing identification of the unobserved volatility
component. This correction is based on the sample variance, and it is assumed
that while inefficient over the smoothing window, the variance will be efficient for a

sample the size of the entire series.

The results of Chapter 2 allow us to benchmark the iterated ¢-volatility estimator
against a high quality robust scale estimator, in the biweight A-estimator using @y,
and a scaling constant of ¢ = 11. We simulate returns with a smooth volatility
function, with innovations sampled from the ¢-distributions with » € {3,5,9} and
the normal distribution. Our estimator is found to perform very well in all situations,
and provides estimates which indeed provide a close description of the underlying
volatility for series where this function is known. We notice that the weights used to
achieve robustness also act as smoothing weights, and that this improves the quality

of the resulting volatility estimates.

We also apply the iterated t-volatility estimator to real price series, and note that this
provides estimates similar to the historical volatility estimator (based on the moving
sample standard deviation) when the returns are approximately normal. When the
returns are highly leptokurtic, the iterated t-volatility estimates are less affected by
the small returns often observed, and also by occasional extreme returns. While
long-memory is present in the absolute return series, this is successfully accounted

for by the volatility estimates, so that absolute standardised returns appear random.

Based on our simulation results, and the appearance of volatility estimates for real
data, we advocate the use of the iterated ¢-volatility estimator with v = 5 degrees

of freedom generally. We feel that the properties of this estimator are such that
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quality estimates will result even if the underlying distribution of returns is not the

ts distribution.

Chapter 4 provides analysis of four well known option pricing models: the Black-
Scholes model (Black & Scholes 1973), the CEV model (Cox & Ross 1976), the
compound option pricing model (Geske 1979) and the displaced diffusion model
(Rubinstein 1983), the latter three models all incorporating Black-Scholes as a spe-
cial case. The form and properties of the volatility functions for each of the models

are discussed.

The CEV model is a “non-parametric” attempt to model leverage effects observed
in financial returns, in the sense that no specification of debt is included in the
model. In contrast, the compound and displaced diffusion models explicitly model
debt. In particular, the compound model allows a single risky debt payment, and
this results in a negative theoretical relationship between volatility and stock price.
Addressing the other side of the balance sheet of the firm, the displaced diffusion
model decomposes the firm’s assets into risky and risk-free assets. The presence of
risk-free assets allows the introduction of risk-free debt, and a positive relationship

between volatility and stock price results.

We are able to combine the heterogeneous asset decomposition of the displaced
diffusion model, and the risky debt assumption of the compound model to derive
the extended compound option pricing model. This has applications to European
call option pricing, as well as the pricing of debt and equity securities. We show
that the model has the ability to explain both positive and negative relationships

between stock price volatility and stock price level.

We provide a brief analysis of a single stock. Volatility is computed for this stock
over a nine year period, and the observed relationship between log volatility and log
price estimated for each calendar year. We see increasing, decreasing and constant
relationships which seem approximately linear in many cases, lending support to the
CEV model for short-term modelling of the stock price. However, the CEV model
is deemed inappropriate for long-term modelling since the elasticity parameter 3 is
strongly time-varying. The extended compound model remains a candidate model:
it has the ability to model a decreasing relationship through the risky debt features
of the model, a constant relationship through the Black-Scholes special case, and
an increasing relationship through the displaced diffusion special case. Unlike the

parameters of the CEV model, it is plausible that debt and asset mix parameters
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change through time, justifying a changing leverage relationship. Certainly, the
extended compound model will need to be subjected to more rigorous empirical

testing.

The author hopes that this thesis will make a useful start to an academic career,

and also make a useful contribution to existing statistical and financial literature.
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Appendix A

The smoothing algorithm loess

The most general application of the smoothing algorithm loess is to provide a
robust non-parametric estimate of the relationship between a dependent variable
and p independent variables. In the following sections, we outline the technical
details of the algorithm, and demonstrate its application to simulated time series

data.

A.1 Analysis of the algorithm

The algorithm is implemented in the statistical software S-PLUS (see for example
Venables & Ripley 1999) and in R (Ihaka & Gentleman 1996). For a single predictor
variable, it is a robust scatter-plot smoother. It has been developed in stages, the
first of which was Cleveland’s (1979) lowess, which is an acronym for local weighted
regression. Further development resulted in loess, documented in Cleveland et al.
(1992). loess will be used in this thesis in two contexts: firstly in the general
context of smoothing points (z;,¥;), i = 1,...,n, and secondly smoothing time series
observations for which the z ordinates are equally spaced. Hence this discussion will

outline the use of loess in the two dimensional case.

In particular, we wish to use the observations (z;,¥;), ¢ = 1,...,n to estimate the

function g(z) in the relationship
yi = g(zi) + & (A1)

where ¢; are the model innovations, assumed to be independent symmetrically dis-
tributed random variables with zero mean and constant variance o?. We do not
parametrically specify the relationship g(z), however it is assumed to be locally

linear or locally quadratic in the neighbourhood of each observation z;.
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A.1.1 Non-robust smoothing

Assuming g(z) is locally linear, for a fixed z; the locally linear relationship is chosen

to minimise the weighted sum of squares
Z wi{z)y; = a; — Bi%:)? (A.2)
t=1

where w;(z;) is the neighbourhood weight (possibly zero) given to the observation
y; when the locally linear function g(z) is being estimated at z;. This is repeated
for each j to provide an estimate of g(z) at each of the observations, and the fitted

values

~

9; = 9(x;) = &; + Bjz;.
Under the assumption that the ¢; are Gaussian, the local estimate at each point will

be a weighted mean closely related to the sample mean, and hence close to optimal.

The neighbourhood weights are designed to ensure that g(z) will be smooth.

Suppose we are estimating the function g(x) at the point z;. We define the distance

of each observation z;, i = 1,...,n from z; as
dj(z;) = |zi — 7]

and this will be used to quantify the proximity of points in the (z,y) plane to the
point of interest. The neighbourhood weights w;(z;) fori = 1, ..., n, will be obtained
from a function W, chosen so that the weights are non-negative, symmetric, and
decrease as the distance d;(z;) increases. The neighbourhood weight function used

in loess is the triweight function

_Ja=1z2P)? fel <1
W(z) = {0 2] > 1 (A.3)

and if d;(z;) is used as the argument, this function satisfies the three criteria above.
In fact, the weights used in (A.2) are given by
dy(z;
wy(a) = w (422 (A.4)
j
where g; is the [£n]th largest of the d;(z;) and £ is chosen to ensure smoothness, but

so that the relationship g(z) is approximately linear over each sub-sample containing
100£% of the ordered data.
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Figure A.1. The triweight function (A.3) used in loess to provide neighbourhood weights. Also
plotted in the dashed line, is the triangular weight function 1 — |z| for |z| < 1.

The triweight function is shown in Figure A.1 along with the more well-known
triangular function with weight 1 — |z| for |z| < 1, and zero otherwise. This function
is also a candidate for W (z), and satisfies the list of conditions above. However, use
of the triweight is favoured because the resulting moving average estimate of g(z)

is smoother than that produced using the triangular weight function.

If no robustness properties are required in the estimate, the function g(z) is esti-
mated by (A.2), (A.4) and weighted least squares. The estimate is then a simple

moving average,

~ Zn—l Tj(-ri)yi
i) =5 —7~ (A.5)
@) = S e
where the weights 7;(z;) depend only on the z;, i = 1,...,n and x;. This is repeated

for each z; and the relationship made continuous using linear interpolation.

One drawback of loess is its use of a complete smoothing window at the extremes
of the data. These end-effects are discussed in the time-series context by Gray &
Thomson (1990), who advocate a more traditional approach to estimation at the
ends of the series, namely, reducing the length of the window, and altering weights.
In contrast, at the ends of the series loess maintains the same “width” window,
even though the observations are no longer evenly dispersed about the observation z;

at the “centre” of that window. In order to avoid issues of end-effects, where loess
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is used in the main body of the thesis, estimates at the extremes of the independent
variable (usually time) are omitted. This is particularly straightforward for time

series data, where the first and last ¢ estimates can be ignored.

An example of the application of loess is given in Figure A.2. For the purposes
of this example, a random sample of 250 observations X; ~ AN (0,4) distribution is

generated, and Y; obtained from these using

where ®(z) is the standard normal cumulative distribution function (cdf), and ¢; are
independent normal random variables with zero mean and variance o? = 0.25. The
observations are plotted in Figure A.2, along with the true relationship g(z) = ®(z),
and an estimate of this given by loess, with non-robust smoothing. In this case,
f is chosen to be 0.2, so for each estimate, [fn] — 1 = 49 observations have non-
zero neighbourhood weight ([£n] observations are less than or equal to ¢;, and the
observation with d;(z;) = ¢; also gets zero weight). Also plotted, in red, is a robust
estimate also given by loess. A smoothing window is chosen so that 20% of the
sample is used for each estimate of g(z), and we assume that ®(z) is locally linear
over this window. From the plot, we see that the estimate provided by loess is very
close to the true function, and also that the robust and non-robust estimates are
very similar. There is some evidence of end-effects, particularly for large z;, and in
general, estimates not based on a symmetric smoothing window will not be shown

when loess is used in this thesis.

A.1.2 Robust fitting

An alternative specification for the innovations ¢; is that they are identically dis-
tributed symmetric random variables, and that their distribution has heavier tails
than the normal distribution. Robust estimation of g(x) is sensible in this case, and
is an iterative procedure that is initialised using the residuals from the standard,
non-robust smooth
e =y; — §(z;)

where g(z;) is given in (A.5). These residuals are then used to obtain robustness
weights for each observation y;, j = 1,...,n. Unlike the neighbourhood weights,

which were functions of the distances d;(z;), the robustness weight for each j depends

only on the residual e; and consequently is related to y;.
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Figure A.2. Scatterplot smoothing with Gaussian innovations, where the data are generated by
(A.6) with g(z) = ®(z), the standard normal cdf, and where €; ~ N'(0,0.25). g(z) is shown by the
dashed line, and non-robust and robust estimates from loess are given by the solid black and red
lines respectively. The smoothing window is 20% of the data for each estimate.

In loess, the robustness weights are calculated using the biweight function

(1-2%)? |4 <1
Blz)= A7
() {0 e (A7)
and in particular, the robustness weight 4, for a point y; is found using
6 .
5, =B (—J) A8
! 6m s

where m = median;—; __, |e;|. A graph of the biweight function is shown in Figure
A.3 and is compared to the triangular and triweight functions. We see that the

down-weighting given by the biweight is intermediate.

Thus, we initialise by computing (A.5) for each j, and this is used to calculate the
robustness weights §;. For each j, the estimate g(x;) is then updated by minimising

the sum of squares
n
Z diw; (i) (yi — aj — 53'56:')2 (A.9)
i=1

by choice of «; and §;. This estimation procedure is related to M-estimation, which
is discussed in Chapter 2 and Appendix B. Note that the robustness weights are

independent of the point of interest z; and hence the neighbourhood weights. A
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Figure A.3. The biweight function used in loess to provide robustness weights. Also plotted
using the dashed lines, are the triangular and triweight functions.

new estimate of g(x;) results from the minimisation, and thus a new residual from

which a new robustness weight will be determined.

By default, loess iterates this process four times. Using these robustness weights,
we see that observations with large residuals have reduced influence on the sum of
squares above, and hence are not as influential on the estimate g(z;). This is very
different to non-robust methods in which outlying observations which would other-
wise deserve large residuals, end up having the greatest influence on the estimated

model.

We continue the earlier example for symmetrically distributed heavy-tailed ¢;. We
use the same z; as shown in Figure A.2, and again use g(z) = ®(z) where ®(z) is

the standard normal cdf. In this case, we contaminate the normal innovations ¢;, by

L
207

and so the ¢; are drawn from the contaminated normal distribution CN(55; 10). This

multiplying randomly selected innovations by 10. The probability of selection is

distribution is discussed in Chapter 2, with an observation from it being normal with
zero mean and variance o with probability % and normal with zero mean and vari-
ance 10002 with probability %. In this example, 15 observations are contaminated,

and six of the 250 realisations of ¢; lie outside +40.

The data are once again shown in Figure A.4; however this plot is on the same scale

as Figure A.2, and as a result nine of the points cannot be seen. The function ®(xz)
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Figure A.4. Scatterplot smoothing with contaminated normal innovations, where the data are
generated by (A.6) with g(z) = ®(z), the standard normal cdf, and where €; ~ CN(55;10), and are
N(0,0.25) with probability %, or N'(0,25) with probability 55. g(z) is shown by the dashed line,
and the non-robust estimate from loess is given by the solid black line. The robust estimate is
given in the solid red line, and the robust estimate from Figure A.2 is given by the dashed red line.
The vertical blue lines indicate the positions of the contaminated observations. The smoothing
window is 20% of the data for each estimate. Nine observations are omitted from the plot, and
these extend the range to (—1.93,5.07).

is shown in the dotted line, as well as the non-robust estimate provided by loess
in the solid black line. The vertical blue lines show the position of the outliers, and
these are clearly having a large effect on the non-robust estimate. Shown in red is
the robust estimate of g(z) given by loess, and in the dotted red line, the robust
relationship for the uncontaminated data. Both robust estimates are very similar,
indicating the contamination has had little effect on the estimated relationship. As

before, the robust estimate is a good approximation to the true function.

A.1.3 Robust smoothing for Gaussian data

It is useful to get a better feel for the robustness weights ¢;. If the data are in
fact Gaussian, and we fit §(z) robustly, how different is g(z) from a non-robust fit?
For Gaussian data, E(6m) =~ 40, and so observations greater than four standard
deviations from the mean are given zero weight. Such observations occur roughly

0.006% of the time by chance, and so are very infrequently observed. In the following
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theorem, we derive the probability function of a robustness weight computed using

(A.8).

Theorem A.1 The cdf of a robustness weight §; computed using (A.8) where e; =
oZ and Z is a symmetric random variable with zero mean, and probability function
F, is

0 z2<0
Pr(d; < z) =< 2F(-%2\/1-/z) 0<z2<1 (A.10)
1 z> 1.

where [i is the population median of |0 Z|.

Proof First, we note that since §; = B(ge}:), it follows from (A.7) that 0 < ¢§; < 1.

Hence Pr(d; < 0) = Pr(d; > 1) = 0 as required.

For0<z<1
Pr(d; < z) =Pr{(1- %)2)2 <z}
=Pr{e;| > 61/1 — /z}
=Pr{|Z| > %£\/1 -z}
=2F (=1~ /)
as required. O

Figure A.5 shows the cdf for the robustness weights computed using (A.8), and
where Z is standard normal, and from the Student’s ¢-distribution with v = {3,2,1}
degrees of freedom. From the graph it is clear that in the case of normal data,
the majority of observations are given high weights, and in particular, only 10%
of the observations are given a robustness weight less than 0.7. As v decreases,
the robustness weights become progressively smaller, and in particular, for the #-
distributions, the 10th percentiles for the weights are approximately 0.55, 0.4, and 0
for v = {3, 2, 1} respectively. Median weights for all distributions are approximately
0.95.

As demonstrated in Figures A.2 and A.4, there is not much difference between non-
robust and robust estimates when the model innovations are Gaussian; however
the differences can be quite large when the innovations are heavy-tailed. It seems
that a reasonable approach would be to use the robust fitting procedure to obtain

residuals which can then be examined for normality. If confidence intervals for g(z)
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Figure A.5. The cumulative probability function of loess robustness weights for normal and
t-distributed data. The solid line represents the cdf for standard normal residuals, the others
represent t1, to and ¢ distributed residuals, from top to bottom on the left of the plot.

are sought, a decision can be made at this point whether to use the non-robust
or robust forms. As far as the estimates themselves go, provided the residuals are
indeed symmetrically distributed, Gaussian or not, the robust estimate of g(z) will

be reasonable.

A.2 Use of loess for time series data

In the case of time series data, loess performs well as a smoother, with the time
series being a special case of the more general bivariate relationship. Unlike the

general estimation of g(z), in this case, we assume
Yi=g() +e

where t = 1,...,T is the time index, and we wish to non-parametrically estimate
the level of the time series g(¢). Since the z; are the equally spaced sequence ¢ =
1,2,...,T, the differences z; — x; on which the smoothing weights are based are the
integers 0,+1,...,+q,+(g + 1),..., where ¢; = ¢ = [fT] for all j. To obtain the
smoothing weights, we divide |z; — z;| by ¢;, and use this quotient in the triweight

function (A.4). The differences 0, %1, ..., +(¢—1) will thus obtain a non-zero weight,
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Figure A.6. Location estimates for a sequence of independent and identically distributed standard
normal random variables. Two estimates are given, both computed using loess with a smoothing
window of 21 days. The solid estimate does not have any robustness properties.

and hence the estimate of g(z) is a 2¢ — 1 point moving average of the time series

observations y;.

We apply loess to a simulated Gaussian white noise series, with zero mean and
constant variance o? = 1. The series itself is shown in Figure A.6, along with two
estimates of its level. Both the non-robust and robust estimates are very similar, and
both 19-point moving averages oscillate around the true level of zero. The down-
weighting of extreme observations is clearly evident in the plot, and this accounts
for the differences between the two estimates. The robustness weights for the robust
estimate range between 0.092 and 1.000, so none of the observations are completely

omitted from the moving averages, as we would expect for Gaussian data.

We induce heavy tails in the data shown in Figure A.6 by contaminating the data.
As in the earlier example, shown in Figure A.4, we multiply randomly selected
observations from the Gaussian white noise process by ten. We obtain the series

shown in Figure A.7, and this is a white noise process drawn from the contaminated

normal distribution CN(%; 10), where there is a probability %% of an observation
being unchanged, and the probability 5 of an observation being N(0,100). This
new series is shown in Figure A.7, along with various estimates of its level. Since the

majority of the series in Figures A.6 and A.7 are the same, it is useful to compare
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Figure A.7. Location estimates for a sequence of independent and identically distributed con-
taminated normal random variables, with mixing parameter p = % and multiplier & = 10. Three
estimates are given, both computed using loess with a smoothing window of 21 days. The non-
robust estimate from loess is given by the solid black line. The robust estimate is given in the
solid red line, and the robust estimate from Figure A.6 is given by the dashed red line.

the estimates obtained before and after contamination. In Figure A.7, the original
estimates are shown by the dotted lines (in black and red for the non-robust and
robust estimates respectively). In particular, we see that the non-robust estimate
has been greatly affected by the outlying points. Where outlying points are present
in the series, there is significant departure from the original non-robust estimate,
and from the true level at zero. The two robust estimates are very similar indeed,
indicating that the outlying points have not had an influence on the estimates. The

new estimate is a very good approximation to the true level.

A.3 Conclusions

We conclude that loess provides reasonable estimates of the non-parametric rela-
tionship between two-variables, which in the special case of a time-series, is the level
of the series. If the data are Gaussian, the non-robust estimate provided is a good
approximation to the true underlying relationship, and in all cases, the robust esti-

mates are a good approximation to the true underlying relationship. Thus, loess
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should be useful for identifying a non-linear relationship in the presence of Gaussian,

or heavy-tailed, symmetrically distributed errors.




Appendix B

Robust estimation of location

Chapter 2 in the main body of the thesis, motivates, describes and reports on a
large simulation study of robust estimators of scale. In order to benchmark each es-
timator’s performance in that study, we derived the form of the maximum likelihood
location and scale estimators for each of the distributions considered: the normal,
slash, and one-wild. The first two of these are known; however the maximum like-
lihood estimators of location and scale for a one-wild sample have not previously

been derived.

In this appendix, we present the results of a simulation study focusing solely on
location estimates. Since differences were obtained between current and previously
reported results for scale estimators, this study is a simple way of checking the
results for prominent location estimators as reported in Goodall (2000). All but one
of the estimators considered here were used as auxiliary location estimators in the

simulation study investigating scale estimators (see Chapter 2).

B.1 Location estimators

Many of the scale estimators defined in Section 2.3 feature an auxiliary estimator
of location, e.g., the sample standard deviation relies on an auxiliary estimate of
the sample mean; the median absolute deviation uses the sample median, and the
A-estimator of scale, also dependent on the sample median, was motivated through
the asymptotic variance of an M-estimator of scale. While M-estimates were not
calculated during the investigation of scale estimators, the sample mean, median,
and maximum likelihood estimates were calculated for each of the eighteen million

samples simulated.

183
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Of the location estimators we consider in this simulation, the sample mean X and

the sample median M are standard. The M-estimator is formally defined as follows.

Definition B.1 (M-estimator of location) The M -estimator of location T,, cor-

responding to the -function ¥(u), for the observations X = (Xy,...,X,) is the

Zw (B5=) =0 (B.1)

where 1(u) is an odd function, Sy is an auziliary estimate of scale, and c is a positive

solution to the equation

constant.

The sample mean and median are easy to compute for any given sample; however
the M-estimate typically requires a numerical procedure to determine its value for a
particular sample. As a result, it is common to consider an alternative, but related

estimator, the W-estimator.

To find the W-estimator corresponding to an M-estimator, we substitute ¥(u) =
ww(u) in (B.1). Since ¢(u) is an odd function, w(u) is an even function, i.e. sym-

metric about u = 0. Thus, we find

z": Xi—T\ (X=T\ _,
CS() CS() n

=1

which can be rearranged to give
Xi-Tn ) v
Z?:l w ( ¢So ) )&i
n o (X-Tp)
Zi=lw( cSo )
The W-estimator is then found by iteration of
X7
Z?=1 w ( CSO ) IXVZ.
X (k)
S w (X2
)

=

Trgk+1) —

to convergence, subject to some initial values for T7\” and a given - or w-function.
Note that, unlike the EM recursions, there is no guarantee that the WW-estimator

will converge. Assuming convergence, the W-estimate is the limit of T as k — oo.

Definition B.2 (Biweight w-estimator) The biweight w-estimator of location for
the observations X = (X1,...,X,,) is a one-step W -estimator with the biweight w-

function, and is given by . .
T(l) — Zi:l ?.U(Ui))(i
i Z?:l w(UZ)
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where

s = {(1 —u?)? fu <1

0 otherwise

is the biweight function,
Xi—M
CS()
is the standardised score, M is the sample median, Sy is an auziliary estimator of

U; =

scale, and ¢ is a positive constant.

For the purposes of this simulation, we set Sy to be the median absolute deviation,
and set ¢ = 6. This estimator is a simple, yet effective, location estimator. This
estimator performed well in the Princeton Robustness Study (Andrews et al. 1972)
and was one of the two best performing estimators identified by Goodall (2000). It is
also the basis for the robust non-parametric smoother loess, discussed in Appendix

A. This is the third location estimator considered in this simulation.

B.2 Methodology

Samples are drawn from Tukey’s three corner distributions: the normal, one-wild
and slash. As in the scale estimation simulations, each run of this simulation consists
of 20000 independent samples of size n = 20 from each distribution, and this run is
repeated 100 times. As before, the one-wild and slash samples are not sampled inde-
pendently from the normal samples, based on 20 independent realisations from the
standard normal distribution. The one-wild sample of 20 is formed by multiplying
a randomly selected observation from the normal sample by 10 (appropriate since
the normal random variables are unordered, and have zero mean). The slash sample
is formed by dividing each of the normal observations by an independent observa-
tion from the uniform distribution on the interval [0,1]. Hence samples from the
three distributions are not independent, and in particular, the normal and one-wild

samples differ by only a single observation.

For each sample, the sample mean, median and the biweight w-estimate are com-
puted, as well as the maximum likelihood location estimate for that particular sit-
uation, using a fully iterated EM algorithm and the methods described in Section
2.2.2. Efficiency is computed as

_sample variance of T7,..., T}
sample variance of T3,..., T

eff(T) (B.2)
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where 77 is the maximum likelihood estimator of location for sample i from the
distribution of interest, and the T} are the m estimates obtained from the estimator

of interest.

Goodall (2000) reports estimated efficiencies for these location estimators, based on
earlier simulation studies. His efficiencies are computed relative to the sample mean
for the normal, the w-estimator with MAD and ¢ = 8.8 for the one-wild, and the
Pitman estimator for the slash. The Pitman estimator of location for a sample of
n independent and identically distributed observations with location u, unit scale,

and likelihood function

n

Lu;x) = [ ] £ (@i )

i=1
oo
L -
30) f"ii‘"’“ (1 X)du.
[ o L x)dp
This has the minimum variance within the class of location invariant estimators of

i (Mood, Graybill & Boes 1974). Evaluation of the Pitman estimates for the slash

18

samples has not been pursued.

B.3 Results

In the following tables, we report various summary statistics for the estimators: the
sample mean, the sample median, the biweight w-estimator with Sy, = MAD and

¢ = 6, and the maximum likelihood estimator for the distribution in question.

Table B.1 features the average location estimates for the 12 estimator/distribution
combinations. All averages are very close to zero, except for the sample mean’s for
the slash distribution. The observed bias in this case is several orders of magnitude
greater than that for the other estimators for the one-wild and slash distributions.
Curiously, all averages are negative; however this is just an artifact of the samples

obtained.

Of greater interest is the precision of the estimates. Table B.2 gives the sample
variance of the location estimates multiplied by the sample size, n = 20. In theory,
the sample mean should have variance 1/n = 0.05 in the normal case, and hence we
would expect to observe nvar(X) = 1. As we see from the table, this corresponds
closely to what is observed. We see the variances increasing as the tails become

heavier for all estimators, but this is most pronounced in the case of the sample
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estimator normal one-wild slash

sample mean —0.00029 | —0.00072 | —2.81703
sample median —0.00042 | —0.00045 | —0.00065
biweight w-estimator with MAD and ¢ = 6 | —0.00044 | —0.00043 | —0.00062
maximum likelihood —0.00029 | —0.00029 | —0.00046

Table B.1. Average location estimates, over 100 simulations and 20000 samples of size 20.

mean where the slash variance is over one million times greater than the next-largest
variance. Also shown in the table are results from simulation studies collected
by Goodall (2000) (hereafter referred to as Goodall). The results for the sample
mean, median, and the Pitman estimator for the slash distribution are attributed
to Andrews et al. (1972) and the biweight results are attributed to Tukey. These

are based on a small scale simulation study.

Goodall’s figures show near-perfect agreement for the normal samples and all three
estimators as seen in Table B.2, with the greatest difference approximately —1.78%

of the figure obtained for the w-estimator.

The differences for the one-wild samples are larger, and are approximately 8.9%,
—4.2%, —5.0% and 2.9% for the sample mean, median, w-estimator and maximum
likelihood estimator respectively, again, as a proportion of the new figures. In par-
ticular, we note that the smallest variance attained in the Goodall study is larger
than the average variance of the maximum likelihood estimates. In the one-wild
situation, Goodall’s figure is from the biweight w-estimator with MAD and ¢ = 8.8,

and this is clearly not optimal for the one-wild distribution.

The discrepancies for the slash distribution are 1.6% for the median and 2.2% for
the minimum variance estimator, but 15.1% for the w-estimator. It is unclear how
such a large difference has arisen in this latter case, but it seems unlikely that it is
due to sampling error considering the truncating weights used. Once again, we note
that the smallest attained variance in the Goodall study, obtained from the Pitman
estimator, is larger than the average variance of the maximum likelihood estimates,
again suggesting an overstated numerator in the efficiency calculations which follow,

an effect which will tend to inflate efficiency.

Efficiencies are computed by dividing the smallest available variance by the variance
for the alternative estimator. The average efficiencies can be calculated directly from

Table B.2 using the figures given in the maximum likelihood row for the numerator
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estimator normal one-wild slash

sample mean 0.999 (1.000) | 5.955 (6.485) | oo ( oo )
sample median 1.480 (1.498) | 1.623 (1.555) | 6.491 (6.600)
biweight using MAD and ¢ =6 | 1.179 (1.158) | 1.239 (1.177) | 5.897 (6.790)
maximum likelihood 0.999 (1.000) | 1.093 (1.125) | 5.432 (5.552)

Table B.2. Average variance of location estimates over 100 simulations times n = 20. Each
variance is the sample variance of the estimates from 20000 samples of size 20, and these are
averaged over the 100 trials to give the figures in the table. The figures in parentheses are from
Goodall (2000). In the case of the maximum likelihood row, Goodall’s figures are based on the
sample mean, the biweight w-estimator with MAD and ¢ = 8.8, and the Pitman estimator, for the
normal, one-wild and slash distributions respectively, i.e., they are not maximum likelihood.

of (B.2) for each distribution. The efficiencies in the Goodall study are computed
relative to the biweight w-estimator with MAD and ¢ = 8.8, and the Pitman es-
timator for the one-wild and slash respectively. In the normal case, the maximum
likelihood estimator is used by Goodall. Average efficiencies from this simulation
are given in Table B.3, and are compared to Goodall’s results shown in parentheses.

In addition the efficiency distributions from the simulation are shown in Figure B.1.

The results in Table B.3 seem to suggest that under the triefficiency criterion, ¢ = 6
is not the optimal constant for the biweight M-estimator. This is due to the large
differences between the normal and the slash efficiencies. As with the biweight A-
estimators, increasing the scaling constant ¢ improves the efficiency for the normal
distribution, but decreases it for the slash. Thus, a larger scaling constant than
¢ = 6 is likely to increase the triefficiency of the M-estimator, since the normal
efficiency will increase, although the maximum triefficiency will likely depend on
the behaviour for the one-wild as ¢ increases. (Note that similar comments apply
to the figures stated by Goodall; however his results imply ¢ < 6 should be used.)

This warrants further investigation.

The differences between the variance figures in Table B.2 have fed into the efficien-
cies, and in some instances, opposite errors in the numerator and denominator have
induced larger differences in the efficiencies. In particular, the efficiencies for the

median and w-estimator in the one-wild situation have diverged between studies.

B.4 Conclusions

In summary, these new, more extensive simulation results have not shown a great

deal of change from previous triefficiency results, reported in Goodall (2000). De-
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estimator normal one-wild slash triefficiency
sample mean 100.0 (100.0) | 184 (17.3) | 0.0  (0.0) | 0.0  (0.0)
sample median 67.5 (66.8) | 67.3 (72.3) | 83.7 (84.1) | 67.3 (66.8)
biweight using MAD and ¢ =6 | 84.8 (86.4) | 88.3 (95.6) | 92.1 (81.8) | 84.8 (81.8)

Table B.3. Average efficiencies for the selected location estimators, based on 100 realisations of
the efficiencies, each estimated from 20000 samples of size 20. Each efficiency is computed using
(B.2). The triefficiency given is the average over the 100 simulations, rather than the minimum
average. The efficiency distributions for these estimators are shown in Figure B.1. The figures in
parentheses are taken from Goodall (2000).
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Figure B.1. Efficiency distributions for selected location estimators, based on 100 realisations
of the efficiencies, each estimated from 20000 samples of size 20. The estimators are the sample
mean, sample median, biweight w-estimator using MAD and ¢ = 6, and maximum likelihood.
Efficiency is computed using (B.2). The ratio of standard deviations is a non-linear scale giving
1/+/eff, where eff is the efficiency.

spite this, efficiencies for the biweight w-estimator for the one-wild and slash distri-
butions are quite different. This suggests ¢ = 6 is not the best scaling constant to
use, and a larger choice of ¢ should result in greater triefficiency for this estimator.
In each case estimators are benchmarked against maximum likelihood estimators,

allowing for consistent comparison in future.
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Appendix C

Scale estimation: overall results

Tables C.1, C.2 and C.3 feature the average efficiencies based on the log-variances,
the average efficiencies based on the standardised variances, and the average esti-
mates respectively, for all estimators and all distributions. The tables of efficiencies
are sorted by the average rank of the respective triefficiencies over the 100 simula-
tions, where rank is decreasing in triefficiency. Table C.1 presents the information

from Tables 2.8, 2.10, 2.12, 2.13, 2.14 and 2.16 in the main body of the thesis.
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estimator normal | onewild | slash | tri | rank
maximum likelihood 100.0 100.0 | 100.0 | 100.0 | 1.00
biweight with @, and ¢ =11 89.4 82.2 82.9 | 821 | 3.12
biweight with @, and ¢ = 10.5 88.0 82.1 83.9 | 82.1 | 3.62
one-step t with @,, and ¢ = 4.25 86.9 81.8 85.0 | 81.8 | 4.21
one-step t with @, and ¢ =4 85.7 81.7 86.2 | 81.7 | 5.19
biweight with @, and ¢ = 11.5 90.6 82.1 82.0 | 81.7 | 5.58
one-step t with @, and ¢ = 4.5 88.1 81.7 83.7 | 81.7 | 6.12
biweight with S,, and ¢ =7 89.0 81.1 85.8 | 81.1 | 7.55
biweight with S,, and ¢ = 6.5 86.8 80.8 86.9 | 80.8 | 9.19
biweight with S, and ¢ = 7.5 90.8 80.8 84.6 | 80.8 | 9.44
biweight with MAD and ¢ = 10 89.4 79.2 86.8 | 79.2 | 11.15
biweight with MAD and ¢ =9 86.2 79.1 88.0 | 79.1 | 11.84
biweight with MAD and ¢ = 11 91.7 78.2 85.5 | 78.2 | 13.07
one-step t with S,, and ¢ = 3 85.3 76.6 87.9 | 76.6 | 15.20
fully iterated ¢ with v =1 79.8 82.6 76.8 | 76.8 | 15.47
one-step ¢t with S, and ¢ = 2.75 83.1 76.6 89.8 | 76.6 | 15.76
biweight with MAD and ¢ = 12 93.4 76.5 84.0 | 76.5 | 16.11
one-step ¢t with S,, and ¢ = 3.25 87.3 76.2 86.0 | 76.2 | 17.47
modified sine with ¢ = 2.1 78.1 75.3 89.0 | 75.3 | 18.91
biweight with MAD and ¢ = 13 94.7 74.1 82.4 | 74.1 | 19.99
one-step ¢t with MAD and ¢ = 4.25 80.8 69.3 89.7 | 69.3 | 21.02
one-step ¢ with MAD and ¢ = 4.5 82.6 69.1 88.5 | 69.1 | 2241
one-step t with MAD and ¢ =4 78.9 69.1 90.8 | 69.1 | 22.57
one-step ¢t with MAD and ¢ = 4.75 84.3 68.8 87.3 | 68.8 | 24.00
one-step ¢ with MAD and ¢ =5 85.7 68.2 86.1 | 68.2 | 25.02
one-step ¢ with MAD and ¢ = 5.25 87.0 67.4 84.8 | 674 | 26.16
s 66.9 68.4 949 | 66.9 | 26.84
trimmed sd with p=7r = 0.2 65.0 70.8 76.1 | 65.0 | 28.26
fully iterated ¢ with v = 2 85.5 86.3 64.3 | 64.3 | 28.75
trimmed sd with p=0.2 and r =0.15 | 72.1 78.6 63.4 | 63.4 | 29.97
fully iterated ¢ with v = 3 89.0 87.1 54.9 | 549 | 31.45
Sn 54.7 55.9 95.8 | 54.7 | 31.55
modified biweight with ¢ = 6 50.0 53.3 92.5 | 50.0 | 33.01
fully iterated ¢ with v =4 914 86.0 474 | 474 | 33.99
trimmed sd with p =7 =0.1 80.9 88.1 42.1 | 42.1 | 35.01
interquartile range 39.4 42.4 84.0 | 394 | 36.00
median absolute deviation 37.8 40.5 87.3 | 37.8 | 37.27
fully iterated ¢ with v = 6 94.4 79.8 374 | 374 | 37.72
Gini’s mean difference 98.0 26.7 11.4 | 11.4 | 39.00
sample standard deviation 100.0 114 7.5 7.5 | 40.00

Table C.1. Average efficiencies and ranks for all estimators, based on 100 realisations of the
efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.31). The triefficiency given is the average over the 100
simulations, rather than the minimum average. The rank is the average rank of the 40 estimators
considered, and a small rank indicates good performance.
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estimator normal | onewild | slash | triefficiency | rank
maximum likelihood 100.0 100.0 | 100.0 100.0 1.00
one-step t with @),, and ¢ =4 86.2 82.0 80.9 80.9 2.62
biweight with S,, and ¢ = 6.5 88.1 80.7 82.2 80.7 2.76
biweight with S, and ¢ =7 90.1 80.6 80.8 80.4 3.98
one-step t with @, and ¢ = 4.25 87.4 82.0 79.6 79.6 5.49
biweight with S, and ¢ = 7.5 91.6 79.9 79.5 79.3 6.41
biweight with MAD and ¢ =9 87.9 79.2 84.2 79.2 6.49
biweight with MAD and ¢ = 10 90.5 78.6 82.6 78.6 8.35
one-step £ with ), and ¢ = 4.5 88.5 81.8 78.4 78.4 8.80
biweight with @, and ¢ = 10.5 88.8 81.7 77.9 77.9 9.87
biweight with MAD and ¢ = 11 92.5 77.1 81.0 77.1 12.30
modified sine with ¢ = 2.1 81.2 77.0 86.3 77.0 12.57
one-step t with S, and ¢ = 2.75 83.8 76.7 85.8 76.7 13.15
biweight with @, and ¢ = 11 90.1 81.6 76.9 76.9 13.15
one-step t with S, and ¢ = 3 85.9 76.6 83.9 76.6 14.18
biweight with @, and ¢ = 11.5 91.2 81.2 75.9 75.9 15.95
one-step ¢ with S, and ¢ = 3.25 87.7 76.1 82.0 76.1 16.07
biweight with MAD and ¢ = 12 94.0 74.8 79.3 74.8 17.86
biweight with MAD and ¢ = 13 95.1 72.1 T 72.1 19.00
one-step t with MAD and ¢ =4 79.9 69.4 87.4 69.4 20.30
one-step t with MAD and ¢ = 4.25 81.8 69.3 86.2 69.3 20.75
one-step t with MAD and ¢ = 4.5 83.5 69.0 85.0 69.0 22.08
one-step t with MAD and ¢ = 4.75 85.0 68.5 83.7 68.5 23.38
@n 68.3 69.5 | 91.9 68.3 23.73
one-step t with MAD and ¢ =5 86.3 67.8 82.5 67.8 24.80
one-step t with MAD and ¢ = 5.25 87.6 66.9 81.3 66.9 26.08
fully iterated ¢t with v =1 80.1 82.7 65.3 65.3 26.86
trimmed sd with p=r = 0.2 65.6 71.2 59.6 59.6 28.15
Sn 56.3 56.9 | 95.6 56.3 28.91
modified biweight with ¢ = 6 54.0 57.1 93.6 54.0 29.95
fully iterated ¢ with v = 2 85.6 86.3 50.1 50.1 30.99
trimmed sd with p =02 and r =0.15 | 72.6 78.9 44.1 44.1 32.09
interquartile range 40.6 43.5 79.0 40.6 33.08
median absolute deviation 39.2 41.9 88.6 39.2 34.41
fully iterated ¢ with v =3 89.1 87.2 38.9 38.9 34.41
fully iterated ¢ with v = 4 91.4 86.1 29.6 29.6 36.00
fully iterated t with v = 6 94.3 80.4 18.9 18.9 37.27
trimmed sd with p =7 = 0.1 81.2 88.2 17.4 174 37.73
Gini’s mean difference 97.9 24.0 0.0 0.0 39.42
sample standard deviation 100.0 9.4 0.0 0.0 39.58

Table C.2. Average efficiencies and ranks for all estimators, based on 100 realisations of the
efficiencies, each estimated from 20000 samples of size 20. The estimators are defined in Section
2.3, and each efficiency is computed using (2.32) and is based on the standardised variance. The
triefficiency given is the average over the 100 simulations, rather than the minimum average.
The rank is the average rank of the 40 estimators considered, and a small rank indicates good
performance.
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estimator normal | onewild | slash

sample standard deviation 0.9870 | 2.1412 | 60.6327
Gini’s mean difference 1.1286 | 1.8183 | 30.4786
trimmed sd with p =r = 0.1 0.7761 | 0.8434 | 2.9922
trimmed sd with p=0.2 and » = 0.15 | 0.7083 | 0.7615 | 2.1994
trimmed sd with p=1r = 0.2 0.6512 | 0.6960 | 1.8361
interquartile range 1.2590 | 1.3304 | 2.9667
median absolute deviation 0.6473 | 0.6852 | 1.5067
S 0.8582 | 0.9266 | 2.1878
Qn 0.5360 | 0.5895 | 1.4913
modified biweight with ¢ = 6 0.7843 | 0.8223 | 1.8105
modified sine with ¢ = 2.1 0.9987 | 1.0387 | 2.4730
biweight with MAD and ¢ =9 0.9997 | 1.0510 | 2.6327
biweight with MAD and ¢ = 10 0.9978 | 1.0568 | 2.7161
biweight with MAD and ¢ = 11 0.9970 | 1.0646 | 2.7987
biweight with MAD and ¢ = 12 0.9966 | 1.0739 | 2.8800
biweight with MAD and ¢ = 13 0.9965 | 1.0846 | 2.9597
biweight with S,, and ¢ = 6.5 1.0030 | 1.0521 | 2.6902
biweight with S,, and ¢ =7 1.0010 | 1.0551 | 2.7501
biweight with S,, and ¢ = 7.5 0.9998 | 1.0593 | 2.8098
biweight with @, and ¢ = 10.5 1.0058 | 1.0557 | 2.7872
biweight with @, and ¢ = 11 1.0044 | 1.0576 | 2.8279
biweight with @, and ¢ = 11.5 1.0032 | 1.0599 | 2.8684
fully iterated ¢ with v =1 1.3263 | 1.4891 | 4.2509
fully iterated ¢t with v = 2 1.1364 | 1.3029 | 4.0207
fully iterated ¢t with v =3 1.0703 | 1.2527 | 4.1338
fully iterated ¢ with v =4 1.0379 | 1.2401 | 4.3444
fully iterated ¢ with v =6 1.0071 | 1.2544 | 4.8534
one-step ¢t with MAD and ¢ =4 0.8241 | 0.9638 | 2.5304
one-step ¢ with MAD and ¢ = 4.25 0.8358 | 0.9871 | 2.6167
one-step ¢t with MAD and ¢ = 4.5 0.8463 | 1.0093 | 2.7001
one-step t with MAD and ¢ = 4.75 0.8557 | 1.0306 | 2.7807
one-step ¢ with MAD and ¢ =5 0.8642 | 1.0510 | 2.8588
one-step ¢t with MAD and ¢ = 5.25 0.8718 | 1.0706 | 2.9345
one-step t with S,, and ¢ = 2.75 0.8100 | 0.9408 | 2.5474
one-step ¢t with S,, and ¢ = 3 0.8281 | 0.9739 | 2.6729
one-step ¢ with S, and ¢ = 3.25 0.8434 | 1.0048 | 2.7922
one-step t with @, and ¢ = 4 0.7910 | 0.9145 | 2.5507
one-step ¢t with @), and ¢ = 4.25 0.8048 | 0.9374 | 2.6382
one-step ¢ with @, and ¢ = 4.5 0.8172 | 0.9591 | 2.7227
maximum likelihood 0.9870 | 0.9606 | 0.9960

Table C.3. Average scale estimates, based on two million realisations of each, for samples of size
20. The estimators are defined in Section 2.3.




Appendix D

Leverage model proofs

D.1 Properties of volatility and elasticity under
the compound option pricing model

In this appendix, we prove Theorems 4.2, 4.3 and 4.5. In order to facilitate these

proofs, we introduce and prove additional Lemmas.
Theorem 4.2 The stock price volatility under the compound option pricing model,
os(Vi,t), defined in (4.9), has the following properties:

1. 05(Vi, t) > o;

2. As V; = o, 05(Vi, t) — oy

3. AsV; =0, o0g5(V;, t) = o0.

Proof To prove the first property, we substitute for S; and g—f} in (4.9) using (4.7)

and (4.10) respectively, to give

i Vi®(g:)
Vi®(g;) — Me " ®(g, — 04/Ta)

since Me "™ > 0 and ®(g; — 0/74) > 0.

>0

To prove the second property, we note that as V; — oo, so too does S;, and in
particular both probabilities ®(g;) and ®(g; — 01/74) — 1. Thus
Vi

sl t) = e oy M~ °

For the final property, L’Hopital’s Rule applies since both the numerator and de-

nominator of o5(V;,t) go to zero as V; — 0, and the limit is given by

v, Vigt + 5

lim og(V},t) = hm oc——t = lim et L,
Vi—0 vi»0 S,V V-0 F
{
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Evaluating the second partial derivative, we have

325t: o(g1)
Vi Vo1

where ¢(z) is the standard normal probability density function. Now since Vtg%fg

and gTS,f both tend to 0 as V; — 0, we apply L’Hépital’s Rule again, to find

928 B8, 9%, %8,
. - Vigut tav _ . Vigwd + 25y
lim 0g(V;,t) = lim o———"* = lim o——t5—"
Vi—0 Vi—0 95; Vi—0 925,
oV 6\/!2
In particular, 5
Sy —1 gt
- Sz 1+ ¢(ge)
oV, Vifo/Ta o+/T4

and hence .

338, d*S
w__(l+ 9t )+2

925

avs? IvTa

Since g — —oo as V; — 0,
‘1/33) GS("/tv t) =00
as required. O

Before seeking to prove Theorem 4.3, we prove Lemmas D.1 and D.2.

Lemma D.1
Me ™ ¢(g; — 0+/Tq)

Vio(g:)
where g is given in (4.8), and ¢(x) is the standard normal probability density func-

=1

tion.

Proof From the definition of the standard normal density function

1 1 2 1 12,2
= —3(z+y)? —3(z*+y®) ,—azy
T+y)=-—€ 2 = ez e
ebe = Vo

and so
¢($ — y) _ J2zy
= = *W,
¢(z+y)

Using the definition of g; given in (4.8), we choose

InV; —In M’ 1
B e, and Y= =0Ty giving 2zy =InV; — In M’

o\/Td 2

where M" = Me~"™, and note that ¢, = z + y and ¢, — 0\/7; = = — y. Hence

M'¢(g: — 0+/Ta) _ A_'fleln Vi-lnM' _
Vio(gt) Vi
as required. [

1
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Lemma D.2 The following limits apply:

. B(x) . olz) L 9:St o
(2) mE‘Pw o(z) 0 (&) zEr_noo r®(z) L &}% Vioyma®(g:) !

where ¢(z) and ®(zx) are the standard normal pdf and cdf respectively, Sy is given
in (4.7), and g; is given in (4.8).

Proof To prove the first case, we note that L'Hopital’s Rule applies, since both

numerator and denominator converge to zero, and hence

B 6@ 1

as required.

Rewriting the function of interest in the second case, and applying L'Hopital’s Rule

gives
1 1 1 1
L —Lo(z) + L(—x)p(z T
L6 . M@ k@ +M-ae@) | o —E-1_
T——00 .’L'@(.T) Z——00 (I)(J;) T——00 ¢(:1:) T——00
as required.
The final limit is again obtained using L’Hopital’s Rule
lim — 95t _ i %
Vi=0 Vio/Tg®(g1) Vim0 VtU\/’T—d‘I’(gt)i
= Titn (g¢)
- 7 T q>
Vim0 0 fra®(ge) L + VioTar= 8(90) & — VioyTavgr=
1
= lim
Vim0 OVTd  d(g) 1
7 gt T a®(g:) o7
WP S
0+(-1)—0
by the second result of this Lemma, and since when V; — 0, g, — —o0. O

Theorem 4.3 The elasticity of stock price volatility under the compound option

pricing model, 05(V;,t), defined in (4.14), has the following properties:
1. 0s(Vi,t) > max[—1,—(Me ") /V}];
2. As V; = 0, 05(V;, 1) — 0;

3. AsV; =0, 05(V;,t) = 0.
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Proof Since all terms in (4.13) are positive, it is clear that Ag(V;,t) > —1. In
addition, from (4.14)

bs = —M'®(g, — 0/7a) L Slg) Mg —oyT) . M
Vi®(gt) Vioy/1a®(g:)? Vi®(g:) Vi

where M’ = Me "™, and since all terms in the second term of (4.14) are positive,
and ®(g;) > ®(g; — 0y/7a). The maximum of these two lower bounds applies for all

Vi, as required.

For the second case, we note that
S ‘/’ t

=1
Vi—oo ‘/t
since as firm value grows without bound, the present value of debt becomes a neg-

ligible proportion. In addition, as V; — oo, g; — oo and

2 3
GSL _ @(gt) — 1 and (Vt,t)a S _ S(Vt,t)

6(9) > 1x0=0

3V¢ Vi
and thus from (4.13)
2
t e 1
111'1195—11 S(V )+S(Vt,)g;t2 —1:—-{-%—1:0
Vi—oo Vt—wo tc’in (6_\/f) 1 1

as required.

For the third case, we note that as V; — 0, the numerator and denominator of both

terms in (4.14) go to zero, and so L'Hopital’s Rule applies with

. . —M'®(g—o/Ta) | .. Sid(g:)
_ lim ——————
x%l{»no Os ‘}}l—r?o Vi®(g:) A Vims0 Vio/7a®(g:)?

M Vta\/_(ﬁ( o\Ta) P(g:)p(ge) + Si(v55=)0(g:)

lim + lim
o0 B(g) +Vigomd(g) V0 oy/Ta®(90)? + Vio/7a2®(ge) v #(9:)

1 9t St
= lim -, i ——ha‘/—q)(gt

+ lim
Vi—0 D(gt) Vid(g:t) Vis0 P(gt)
T Wa—ovi) T Wala—oyr | OV Tdgle) T2

o1 =D
C0+1 0+2
where the final result follows from Lemmas D.1 and D.2. O

Before seeking to prove Theorem 4.5, we prove the following Lemma.

Lemma D.3 When V; < M, the following limits apply:

: ®(g:) _ g . Sio(g:) _
W e hR - W Vio /@GR

where ¢(z) and ®(z) are the standard normal pdf and cdf respectively, S; is given
in (4.7), and g; is given in (4.8).
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Proof For the first case, we note that since V; < M, as 7y — 0, gr — —00, ®(g,) — 0,

and ¢(g;) — 0. From the definition of g,, it follows that

g 1 ImVi—InM—(r+ 30214 (D.1)
67,1 a QTd 0'\/7'_d '

and this diverges as 7, — 0. Applying L'Hopital’s Rule to the limit of interest

. d(g;) ¢(g:)§%j . 1
T —glal— Il S W—— -
d 9t d 2\/ﬁ¢(gt) \/7ngt¢’(gt)a¢d ¢ ﬁg_g \/—dgt
- 1 B o
T B¥%hM T nY, - InM

by the definition of g;, and the observation from (D.1) that \/ﬁg% — —ooas 1y — 0.

For the second case, since V; < M, in addition to the limits given in the proof for
the first part of this Lemma, S; — 0. Thus applying L'Hopital’s Rule, and taking

gTSd from (4.11), we have

Me=rms [2820V 1 109, — o /)| 6l91) — Segndl9) 3%

I Sip(g1) Y
im —————= lim — - Bg:
1a=0 Vio\/Ta®(g)*  ma—0 ‘/tg\/q-—d¢(gt)2 + Vio/Ta29(g:)$(9e) 52

a
LN N St9t 57-2/7d

_ Tlim op(9t—0+\/Td) ;iz/tdi(gt) (DQ)
4—0 ®(gq)? 4Td‘b(yt)a,-d

Vid(g)? T T aler)

where we divide by the first term in the numerator and selectively apply the identity
in Lemma D.1. Since, from Lemma D.2, Zl(f)l — 0 as r — —oo, both the second
term in the numerator and the first in the denominator decrease to zero at a faster

rate. The third term in the numerator has the limit

2519152 \/7q 2552 IV -InM 25, g%
T, — |1 li Td li Td D.3
a0 oVip(gr) [Ti—% V”g‘] a0 Vi gr) T e

from the definition of g, and standard properties of limits. From (D.1) we note that

as 74 — 0, gﬁj — —oo and consequently,

Vio(g:) r(gi—0 /)2y
o288 o, 2t 14 e
rlinom N Th—II»lo v, 1790 — 7’11510 8 (1,0
a 10(g:) =0 0Vip(g)(1/5%) 04V, [—gt¢(gt)+¢(g,)ﬁ(1/5fj)]
1+ (gt —0\/Ta)2\/Td 1+ r®(g9:—0/Td)2\/Td
= Tim oMe "Td (gt —0o\/Td) =} oMe~TTd¢(gr—0a+/Tq)

m T 5
40— | __ d gt 7a—0 _InV;—InM _ T+350°
Td [ g + a1y (1 BTd)] a s d + p(Td)
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p(1a) = TdaTd (1/6Td>

is a polynomial of order 7, with limit as 7; — 0 of zero (from the definition of g—%
given in (D.1)). Thus

where

gt
2St oty o

Ve R—ToM
and it follows from (D.3) that

<)
2Stgt5.,% Td

=1 L
a0 aVid(gr) (D.4)
We now turn to the final term in (D.2), and write
i 72057 _ i 7] iy 20
74—0 Q‘;(gt) T4—0 4 da'rd T4—0 (b(gt)\/ﬁ
= B _21th—1nM B (r+ 30%)m4 -
140 o o InV, —InM
InV, —1InM —0
[ o ] InV; —In M (R

from (D.1) and the first result of this Lemma.

We now substitute the limits given in (D.4) and (D.5) into (D.2), and find

=0 Vo /T4®(g:)? 0+2
as required. O

Theorem 4.5 The elasticity of stock price volatility under the compound option
pricing model, 0s(Vi, t), defined in (4.14), has the following limit

{o V,< M

lim ¢(V}. 1) =
s(Vir?) A

T4—0

Proof First, consider the case when V; > M. As 7, — 0, g — oo, where g, is
defined in (4.8). In addition ®(g;) — 1, and ¢(g;) — 0. Thus

. ] —Me " ®(g; — 01/Tq) Si0(g¢) M S [.. o&(g)
/ —_ = ——+— _
Tl,;Lno Os(V2,t) Tldl—>mo Vid®(g;) Vio/Ta®(g:)? Vi V, Tldl—>mo o\/Ta

and since ;ﬂj—% is the pdf of a normal random variable with zero mean and variance
0°74 evaluated at InV; — In M + (r + 10?)74, the limit as 7, — 0 of this function is
0, and

};Lno Os(Vi,t) = ——

|
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as required.

Second, we consider the limit when V; < M. In this instance, as 74 = 0, g = —09,

®(g,) — 0, and ¢(g;) — 0. In addition, S; — 0. Thus

. [-Me™®(g, — 04/Ta) S (ge) ]
hrn 0s(Vi,t) = lim . D.6
20 s(Vi,t) = Py} V,®(g:) Vioo/7a®(g:)2 {5)

features zero numerator and denominator in both terms, which we now consider

separately. The first term is

—Me‘"d@(gt — 0\/T4)

lim

TT, T 9gt
Mg — oy/m) - Me 00— 0y (2 - 5%)
(il ‘/t¢(gt) 8Td
r®(gi—oy/Ta) 14 o
P(9t— af—)a,d 2\/"'_45%
= lim
T4—0 1

where the denominator follows from Lemma D.1. As noted in the proof to Lemma

D.3, as 74 — 0, both Ti and \/T— diverge, and from Lemma D.2 ’; — 0 as

T — —oo. So the first term decreases at a faster rate, and hence

~Me "D (g, — 0/7a)

= —1. D.
2, V,(g1) L (D7)
The second term of (D.6) has limit
11 St¢(gt) — 1 (D.S)

7a—0 Vio/Ta®(g1)?
from Lemma D.3. Thus, substituting (D.7) and (D.8) in (D.6), we obtain
lim Bs(V;,t) = —1+1=0
‘Td—-)o

confirming the second case and completing the proof. O

D.2 The compound option pricing model

In this appendix, we provide an alternative proof for Geske’s (1977) compound
option pricing model with generalisation to arbitrary debt repayment dates. In
addition, we derive the general form of "—gt for this model. This latter result has

application to stock price volatility estlmatlon under this model.
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Theorem D.4 The stock pricing model of Geske (1977) can be generalised to al-
low general debt repayment dates, satisfying the increasing sequence t; < ... < t,.

Equity value at time t < t; is given by
n
St = Gu(Vi, X, 7,7,0) = Vi®n(hi; {pi}) — Y Xue " @y (hi — 0/7i; {pi}) (D.9)
k=1

where firm value V; is a GBM process with volatility o, X = (X1,...,X,) are fized
debt repayments with T = (71,...,7,) where 7, = t; — t is the length of time until
repayment i, r is the continuously compounding risk-free rate, ®,(h;; {pi;}) is the
cumulative distribution function of a standard n-variate normal random variable

with correlation matriz given by {p;;} for 1 <i,j < n, evaluated at hy, ..., h,. Also

IV, —InV; 4+ (r+ to?)7
= —~
7 {the value of V' which solves S;,(V)=X; 1<i<n-1

hi

i =

T; .
Pij = | — 1<
T
and pji = pij.

Proof We will use an induction proof for this result. We begin by considering the
case where n = 2, and noting that for any time ¢ in the interval [¢,¢,), the stock

price can be written
Sy = e " VEQU max(V,, — Xo, 0)}

where V; is a GBM process under the risk-neutral measure Q. It is well known that

the solution to this integral equation is given by the Black-Scholes formula
St = Gl(‘/h Xz, T2y T, U) = Vi@(hz) = Xze_rT2(I’(h2 — U\/T_g) (DIO)

where
~ InV, —In X5+ (r + 102)7

ho =
2 0T

Geske (1979) shows that the stock is a compound option, with value at t < ¢,

S, = e "M EX{max(S,, — X1,0)}
— e / (St (2) — X1)(2)dz (D.11)
S¢I>X1
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where Sy, is a function of V;, (specifically (D.10) with ¢ = ¢;) which is in turn given
by

Vi, = Viexp{(r — 10*)m + o\/71i(—2)} (D.12)
where Z is a standard normal random variable. Here we choose to use —Z for

algebraic convenience later in the proof.

Firstly, we note that S,, > X, implies V;, > S~'(X;) = V; where S(V;) is given by
(D.10), and S—! is the inverse function. Noting from (D.12) that V;, is a function
of Z, we solve for the critical value of Z, and find that at t < ¢;, V}, > Vi implies

InV,—InVi + (r — 50%)m
<
o1

We now write the explicit form for S;, using (D.10)

Sy, = Vi, ®(hh) — Xoe "™ ™@(hly — o/Ty — 71)
1 1 2

VA

= hy — o/11.

where
, InV;, —In X5 + (r + %02)(72 — 1)
: Y
Vo4 (r—30)n+oyn(-Z) —In Xy + (r + 10%) (12 — 1)

ovm—n

o ﬁ(Zwﬁ)

12
T2

and also note that eV, (Z2)¢(Z) = Vid(Z + 0/71), and

hy —o/T — B2

1—o
T2

My — oV =T =

Unlike A}, which measure time from ¢;, h, measures time from the current time

¢

(D.11) consists of three terms, two arising from S;, as given in (D.10) and the third

relating to X;. Utilising the above algebra, the first term of (D.11) can be written

hy —o /71 hy — %(z—i—a\/T_)
o / V,, ®(h,)é(2)dz = Vi / 6(z + 0/T)® ( V3 : ) iz
5L1>X1

/1-1
T2

—00
hi hQ L \/gz
v | é0| —YX2 |4
—00 ] =1L
T2

= Vi (b, s /71 /72)
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The final equality follows from the properties of the bivariate normal cdf (Curnow

& Dunnett 1962, equation 2.4), which states in general, that

hy ) z
@, (hi; {Pij}) = B ?(2)®p_1 (% {Pz] 1}) dz (D.13)

where
Pij — Pi1Pj1

Pij1 =
VA=) — )

is the partial correlation coefficient.

The second and third terms of (D.11) become

- hy — 0\/T3 — \/%z
/ Xoe " + X7 | ¢(2)dz

“X2
—00 /1_11
T2

= Xge—TTZ@Q (hl = O’\/T_l, hg - O'ﬁ; \/%) + Xle—T’qu>(h1 — 0'\/77'?)

Thus, if there are only two outstanding debt payments, (D.11) can be written

S, = V@, (hl,hg,\/: ) Xpe "B, (hl — on/T, by — 0/Ta; \ﬁ )

— X1e7"®(hy — o\/T1) (D.14)

and (D.9) is thus true for n = 2.

We now assume that the form of S; given by (D.9) is correct for n—1 debt payments,
and show it true for n payments. In particular, (D.9) yields the price of the stock

at time t; < ty as

Sy = Vo ®p-1{Bless {p” ZA e kD, 4 (h;-rl — o) Tl ;{p;j}) (D.15)

where 7{,, =341 — ty fori =1,. — 1, V;, is given by (D.12),

InV}, —ln‘_’;'-l—l'i‘(r"‘ 30°)7] Tit1

/

._‘!‘_1 —
z O\ Tit
7 the value of V' which solves S;,, (V) =Xy 1<i<n-—2
W= t=n—1
=T
1<i<
=14, =t i< j

and gl = gl
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The value of the stock at time t < ¢, is given by
S, = e "MEX{max(S;, — X1,0)}

and substituting the form of S;, given by (D.15), we must evaluate the integral

equation

Sy =e "™ / (S¢, (2) — Xq)¢(2)dz=. (D.16)
Se, > X

As for the case where n = 2, S;, > X implies Z < hy—o,/71 and againe "™V, (Z)¢(Z) =
Vio(Z + oy/71). We note that with some algebra, we can write

b Vi -V + 4ot T yRn @ ovn)
i+l = o ,_Ti+1 1__TL

Ti+1

fori=1,...,n —1 and also that pj; is of the form

;o . Pij — Pi1Pj1
Pij = Pij1 = ~
\/(1 - pi)(1 = le)

for 1 <i < j, where p;; =, /% for i < j. The value of the stock at time #; consists
of n terms (as shown in (D.15)), and an (n + 1)th term for S; is obtained in (D.16)
through X;. Making the appropriate substitutions in (D.16), the first term is given
by

6—7‘7’1/ ‘/tl(z)q) ( ’L+17{pl] dZ
5(»]>X1

hi—oy/T1 hiy, — —7%4]:(2 Jﬁ) ’

=% [ s ovme = A} | dz

= 1 Tx+l

hy z+1 - TxT+\ Z
=Vi [ ¢(2)®n i{pi;} | d=

e 1 _ o

Tx+l

= Vi®n(hi; {pi;}) (D.17)

by (D.13). As for the case when n = 2, the final term is

h}‘—U\/—
e / X19(2)dz =™ / X10(2)dz = X7 ®(hy — oy/T1).
St > X1 =

oc
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The remaining terms are given by

n

h1—o/T1 ,
e-m/ D Xie Tk G(2) B 1( o\/Tix 3 {pii} )dz
== k=2
hi—oy/m1 hig1 — O\/Ti+1 — ,/f_ﬁz
= ZXke—"" / 0(2)Pp_
o0 /1 — T—’h

= Z Xpe "Ry (h; — o/Ti; {pis})
k=2

by the result (D.13), as before. Thus, combining terms we find
St = Vi®y (hi; {pij}) — Z‘Yke—m@k(hi — ov/Ti; {pij})
k=1

as required, and the induction proof is complete. O

Theorem D.5 If stock price is given by (D.9), the partial derivative with respect

to firm value at time t is given by

a5,

oy, = Enlhi {pi}) (D.18)

where all terms and notation are defined in the statement of Theorem D./.

Proof Once again we use an induction proof. The base case is provided by the
familiar Black-Scholes hedge ratio, a_vL = ®(h;). We now assume the theorem true

for n — 1 outstanding debt payments, and seek to prove it true for n payments.

From Theorem D.4, stock price at time ¢ < ¢; is given by
Sy = Vi®a(his {pis}) = D Xee "™ @x(hi — ov/Ti; {pis})
B=1

hi—oyT1
—=e ™ / (Sy,(2) — X1)o(2)d=

—00

where Sy, is given by (D.15). Differentiating S; with respect to V;, we have

hl—(f\/7'_1
BSt o e—TTI/ 3St1 (Z) ¢(Z)d 6 1

a—v,t = 8‘/; a‘/ [Stl(h U\/T_l) - le,(]b(hl = & Tl)

h1—oy/T1
_ e—rn/ ' \/—e(r—%az)n-l—a\/ﬁ(—z)astl(z) 6(2)dz
& oV,
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since Sy, (z) = X; when z = hy —o/7, and V;, = V,er—30")n+ovmi(=2)  Assuming
the theorem is true for n — 1 payments, we assume a—g“% = ®,_1(hi,;{p};}) follow-
ing the notation of the proof to Theorem D.4. Noting that e‘é"z””‘/’_‘(_z)cb(z) =
¢(z + o/71), and rewriting A/, we find

aSt /hl—a\/ﬁ h11+1 == 1/;’3‘1—(2-}-0\/7'—1) )

= O(z + oy/11)Pr1 {0y
. N

av,
Finally, we note this integral was solved in (D.17), giving

oSy .
W; = (I)n(hza {pu})

} ] d=.

as required. If true for n — 1 payments, the theorem is true for n payments, and

since the theorem is true for one payment, by induction, the theorem is true for all
n. O
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Appendix E

Explaining the inverse leverage
effect

The inverse leverage effect was seen in Table 4.2 in the situations where the firm
has risk-free assets which completely offset the debt of the firm, and augment the
exercise price of the call option. This situation was first described by Rubinstein
(1983), with his option pricing formula a special case of (4.33). In this section, we
give an intuitive explanation of how the inverse leverage effect (i.e. Black-Scholes

overpricing in-the-money calls, and underpricing out-of-the-money calls) arises.

We consider the call prices on which the implied volatility ratios in Table 4.2 are
based, and these are shown in Table E.1. In particular, we are interested in the
behaviour of the call prices when risk-free assets are introduced to the firm’s asset
portfolio, without any change made to the instantaneous volatility of the risky assets.
This effect is most simply examined when there is no debt, and therefore S; = V;
(an alternative would be when the firm has risk-free debt, and the effective exercise
price of the option is increased). This corresponds to the upper left block of Tables
4.2 and E.1.

By ensuring all “firms” have S; = 10 and o(S;,t) = 0.4, the true call price is a
special case of (4.33), and is based on the Black-Scholes formula. Naive pricing
of the option (i.e. ignoring the possiblility of debt or heterogeneous assets) would
use the Black-Scholes directly, with S; = 10 and ¢ = 0.4, giving the option prices
obtained when a; = 1 for the case of no debt. In general, these will not be equal
to the true call prices, given by (4.33), unless of course the firm has homogeneous

assets.
Because of the volatility matching process, the true call price is a complicated func-
tion of R, and thus oy = Y3 = Szl which features in three arguments of the

209
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No debt payment Single debt payment Two debt payments
ot 1 0.75 0.5 0.25 1 0.75 0.5 0.25 1 0.75 0.5 0.25
Strike Leverage = 25%

8 2457 2425 2362 2.208 | 2481 2.457 2409 2.273 | 2.481 2.457 2.409 2.273
9 1.776  1.752 1.702 1.539 | 1.794 1.776 1.740 1.622 | 1.794 1.776 1.740 1.622
10 1.239 1.231 1.214 1.145 | 1.244 1.239 1.227 1.182 1.244 1.239 1.227 1.182
11 0.837 0.847 0.864 0.891 | 0.829 0.837 0.851 0.882 | 0.829 0.837 0.851 0.882
12 0.551 0.574 0.617 0.714 | 0.533 0.551 0.585 0.671 | 0.533 0.551 0.585 0.671
Leverage = 50%

8 2,503 2.489 2.457 2.362 | 2.505 2.489 2.457 2.362
9 1.810 1.799 1.776 1.702 | 1.811 1.799 1.776 1.702
10 1.249 1.245 1.239 1.214 | 1.248 1.245 1.239 1.214
il | 0.822 0.827 0.837 0.864 | 0.820 0.826 0.837 0.864
12 0.517 0.527 0.551 0.617 | 0.514 0.527 0.551 0.617
Leverage = 75%
8 2,522 2.516 2.503 2.457 | 2.528 2.521 2.505 2.457
9 1.826  1.821 1.811 1.776 1.828 1.822 1.811 1.776
10 1.256 1.254 1.249 1.239 1.253 1.252 1.248 1.239
11 0.818 0.819 0.822 0.837 | 0.812 0.815 0.820 0.837
12 0.504 0.508 0.517 0.551 0.496 0.502 0.514 0.551

Table E.1. Call prices for options with time to maturity 7 = 0.5. All firms have S, = 10 and
o(St,t) = 0.40. The single debt payment is at 75 = 2, and the two debt payments are of identical
size and made at 7 = 1 and 73 = 1.5. The leverage figure determines V;, and this and S; = 10 are
used to find the required debt payment(s). The risk-free rate is r = 0.05 throughout.

Black-Scholes formula: the first (usually the price of the underlying asset), the sec-
ond (usually the exercise price of the call) and the last (usually the constant volatility

of the underlying asset). In the presence of risk-free assets, for firms aligned so that

the stock has the same volatility regardless of a, = S, these three arguments
are: S; — Ry = oS, K — Rie’” = K — (1 — a4)S;e™™ and aﬁ = a% respectively,
and the call price is given by

Ct = atStfb(wt) = [KG_TT — (1 = Oft)St] @(wt == ‘g: T) (El)

where we are assuming the special case of no debt (giving V; = S;), with

In OttSt =T ln(K — (1 _— at)Ster'r) + (7‘ + %%)T

28
at

wy =

=
When we increase the proportion of firm value held in risky assets, a; (through a
decrease in R;), the first argument increases, which ceteris paribus increases the call
price; the second argument also increases, however this decreases the call price; and
the last argument decreases, also decreasing call price. What we see in practice

depends on the size of K.

As seen in Table E.1, when K is small, so that the call is in-the-money, call price

increases with oy and Black-Scholes overvalues the call. However, when K is large,
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Figure E.1. Displaced diffusion call prices for options with time to maturity 7 = 0.5. All firms
have S; = 10 and o (S;,t) = 0.40, but a variable «;. Each contour is for a fixed exercise price, and
is a plot of the call price C; against a;, and are plotted for K at intervals of 0.25, with the integer
values indicated. The risk-free rate is » = 0.05.

so that the call is out-of-the-money, as o increases, call price decreases, and the

Black-Scholes price is too low. Calculation of

aC,
e = St [B(w) — 2w~ 2V -

Ug [Ke™™ — (1 — a;)S:] dlwe — a%\/;)

reveals that the sign of this derivative depends on a complicated function of the
parameters. Nonetheless, it can easily be plotted for any choice of parameters.
Generally the call price function (E.1) is monotonic, as shown in Figure E.1; however
it is not necessarily so. The call price contour for exercise price K = 10.5 is one
such case, and this is shown in Figure E.2. As seen, the range of call prices is very

small; however the non-monotonicity is clear.

Regardless of the relationship with «;, the relationship between implied volatility
and strike price for any fixed a; < 1 is consistent: an increasing relationship, and
this is shown in Figure E.3. Since this relationship is non-standard (compared to
the traditional leverage effect discussed in Section 4.1.4) we refer to it as the inverse

leverage effect.

How the inverse leverage effect arises becomes clear when we examine the probability

density functions for share price at exercise, fs,,_(s), for the aligned processes (with




212 APPENDIX E. EXPLAINING THE INVERSE LEVERAGE EFFECT
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Figure E.2. Displaced diffusion call prices for options with exercise price K = 10.5 and time to
maturity 7 = 0.5. All firms have S; = 10 and o(S;,t) = 0.40, but a variable a; and we plot the
call price Cy against a;. The risk-free rate is r = 0.05.
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Figure E.3. Displaced diffusion Black-Scholes implied volatilities for options with time to matu-
rity 7 = 0.5. All firms have S; = 10 and ¢(S;,t) = 0.40, but a variable ;. Each contour is for a
fixed exercise price, and is a plot of the BS implied volatility against a;. These are plotted for K
at intervals of 0.25, with the integer values indicated. The risk-free rate is r = 0.05.
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and without non-risky assets), and also the function max(s — K, 0) fs,, . (s) which is

integrated to yield the call price.

Theorem E.1 (Displaced diffusion density function) The density function for
a displaced diffusion process, defined by Sy, = Vipr and with V; specified in (4.27)
and (4.26), given Sy, is given by

i 2 [T -G =asen) s> -ase
i 0 5% (1 = e )8

2

where Ayr, is a lognormal random variable with parameters In o, Sy + (1 — %g?)'r and

o’t/al.
Proof From (4.26) we note that

St+7 == ‘41,4.1 Gt (1 = at)S'te"

and since A; is a GBM process with volatility parameter o/ay, given Ay, Aiyr is a
lognormal random variable with parameters In ;S; + (r — %%;—)T and o?7/a?. Thus,
t

for s > (1 — ay)Sie™
FSH—r(S) = P(St+T & S) = P(AH_T < . §= (1 = at)Ste") = FAt+r (S = (1 — at)Ste”>

where Fj,, (z) is the cdf of A, given A;, and for s < (1 — o) Sie™™, Fs,,.(s) = 0.

Differentiating the cdf with respect to s, we obtain

- fAt-i-'r (S — (]. — at)Ste") s > (1 - at)Ste"
f51+r(s) =4 o
0 5 < (1—ay)Sie
where fa,. (z) is the pdf of A;., given A;, as required. O

The density function for a geometric Brownian motion process S;.,, given S; = 10,
o = 0.4 and 7 = 0.5, is shown by the solid line, in Figure E.4. Under the GBM
assumption, corresponding to oy = 1 in the case of no debt, the share price at
exercise Sy, is a lognormal random variable, with parameters InS; + (r — %02)7
and o27. Also shown are the density functions for two displaced diffusion processes,
both with S, = 10 and o(S;,t) = 0.4, and with a; = 0.75 and a; = 0.5 (shown
by the dashed and dotted lines respectively). The form of the density function
for S;,, in the displaced diffusion case is related to the lognormal, and is given in

Theorem E.1. While the GBM process has a small probability of falling close to zero,
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the displaced diffusion processes are always at least the size of the risk-free assets
(1 —ay)Sie’™. In addition, the mode of the density moves to the left as a; increases,
and the right tail becomes heavier. In particular, the GBM density overestimates
the probability of a sharp decrease in stock price, underestimates the probability
of a small decrease or small increase, overestimates the probability of a moderate

increase, and underestimates the probability of a large increase.

In order to see how the inverse leverage effect results, it is useful to examine the
plot of max(0,s — K)fs,, (s). The call option prices are obtained by integrating

this function over positive values of s and discounting, i.e.
o0
Cy= e_"/ max(0,s — K) fs,,.(s)ds. (E.2)
s=0

The integrand of (E.2) is plotted in Figure E.5 for oy € {1,0.75,0.5} and for K €
{8,12}. In the left-hand plot of Figure E.4, corresponding to the exercise price of
K = 8, for small values of s > K, the function is greatest in the GBM case; however
at the tail, the function is greater when a; < 1. The overall effect is demonstrated
through the integrals evaluated in Table E.1, where we see the call prices are 2.457,
2.425 and 2.362 for a; = 1, 0.75 and 0.5 respectively. Returning to Figure E.4, we
conclude the additional area for the GBM case at the maximum of the integrand
outweighs the area lost at the tail. Thus, when the call is in-the-money and the
stock price is a displaced diffusion process with «; < 1, the Black-Scholes formula
overprices the call option, due to the fact that it overestimates the probability of a

moderate positive movement in stock price.

In the right-hand plot of Figure E.4, corresponding to the exercise price of K = 12,
we see a different effect. In this case, again the heavier tail of the density functions
for oy < 1 is amplified, however the effect at the mode of the probability densities
is not as great, since K is too large. Once again, the overall effect is found in Table
E.1, where we see the call prices are 0.551, 0.574, and 0.617 for a; = 1, 0.75 and
0.5 respectively. Returning to Figure E.4, we conclude the additional area for the
GBM case for small s is outweighed by the area lost at the tail. Thus, when the call
is out-of-the-money and the stock price follows a displaced diffusion process with
a, < 1, the Black-Scholes formula underprices the call option, due to the fact that
it underestimates the probability of a gross upward movement in stock price, an
effect which in this case is more pronounced than the overestimated probability of
a moderate increase. This probability has arisen, because the risky assets have an

inflated volatility in order to achieve o(S;,t) = 0.4, i.e., they have volatility o/ay.
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Figure E.4. Displaced diffusion density functions for Sy, with S; = 10, ¢ = 0.4, 7 = 0.5 and
r = 0.05. The solid line is for the GBM process with a; = 1; the dashed line for the process with
a; = 0.75 and the dotted line for the process with oy = 0.5. The vertical lines plotted in grey,
correspond to exercise prices K = 8 and 12.
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Figure E.5. Displaced diffusion call prices are obtained by integrating the functions shown:
max(0,s — K)fs,..(s) from s = 0 to oo, corresponding to the density functions fs,, (s) shown in
Figure E.4. The solid line is for the GBM process with a; = 1; the dashed line for the process
with a; = 0.75 and the dotted line for the process with a; = 0.5. Stock price is S; = 10, 0 = 0.4,
7 = 0.5 and 7 = 0.05. The plot on the left has K = 8 and the call is in-the-money. The plot on
the right has K = 12 and the call is out-of-the-money.
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These effects flow through to the Black-Scholes implied volatilities on which the
ratios seen in Table 4.2 are based, resulting in a positive relationship between exercise

price and implied volatility, which is the inverse of the traditional leverage effect.
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