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ABSTRACT

Jack polynomials are useful in mathematical statistics, but they are awkward to

calculate, and their uses have chiefly been theoretical.

In this thesis a determinantal expansion of Jack polynomials in elementary sym-
metric polynomials is found, complementing a recent result in the literature on
expansions as determinants in monomial symmetric functions. These results of-
fer enhanced possibilities for the calculation of these polynomials, and for finding

workable approximations to them.

The thesis investigates the structure of the determinants concerned, finding which
terms can be expected to dominate, and quantifying the sparsity of the matrices

involved.

Expressions are found for the elementary and monomial symmetric polynomials
when the variates involved assume the form of arithmetic and geometric progressions.
The latter case in particular is expected to facilitate the construction of algorithms

suitable for approximating Jack polynomials.
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Chapter 1

Introduction

1.1 Preliminary

The brief title of this thesis gives little indication of its scope. In the first instance,
much of the thesis, and in particular most of the discussion on the literature, will
treat of zonal polynomials, the special case of Jack polynomials of greatest interest

in statistics.

Zonal polynomials have enjoyed a certain currency in mathematical statistics, but
their uses have chiefly been theoretical, especially as an aid to the evaluation of
integrals arising in multivariate inference. The overall intention of this thesis is to
advance towards the stage of being able to use zonal polynomials in practical sta-
tistical situations. The principal results concern more efficient means of calculating
and approximating zonal polynomials, and those methods apply just as much to

Jack polynomials as to zonal polynomials, whence the title.

The title however falls short in several other and perhaps more significant ways.
There is an attempt to discuss several putative paths that one could follow to at-
tempt to calculate zonal polynomials, and some false steps taken by the author

along this route; we look at how much one really needs to calculate zonal polyno-
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mials since they are so slightly amenable to calculation, and what attempts have
been made to obviate their calculation; we also look at approximations to zonal
polynomials, either asymptotically or by assuming special forms of the variates in-
volved; and we look at their generalisations, such as Jack polynomials, Macdonald
polynomials, and the increasing number of asymmetric polynomials from which the
symmetric polynomials are obtained by symmetrisation. But rather than inserting
this lengthy list into an omnibus title, it was decided that one could live with the

potential inaccuracy of the abbreviated version.

1.2 Background

Zonal polynomials arise essentially from considerations of symmetry of multivariate
statistical data, particularly rotational symmetry, and especially when estimating
covariance matrices under various statistical hypotheses. The constraints implicit
in parametrising these symmetric situations can be imposed in a straightforward
fashion in standard Euclidean space, but at the cost of both complicating enormously
the evaluation of integrals necessary to obtain density functions, and largely losing
the ability to visualise the situation conceptually by obfuscation of the underlying

symmetry.

The alternative is to parametrise in order to reflect the symmetry of the underlying
situation in the parameter space. Intuition is preserved, and otherwise intractable
integrals evaluated. The price to pay is that the Jacobians/differential forms in-

volved are awkward, on which matter see James (1954, p. 41) for a discussion.

The role of James (1954) in alerting statisticians to the advantages in adopting the
latter approach, and gathering the mathematical machinery together in an eminently
readable fashion to enable the statistical community to avail itself of the opportu-
nity, was pivotal. James gave the invariant measures for Stiefel and Grassman
manifolds, and indicated the way in which orthogonal projections lead to factorisa-
tion of measures. Invariance and ancillarity are among several areas in statistical
theory utilising James’ ideas (Hillier & Skeels (1996, p. 161)).
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James’ paper is all the more remarkable in view of his tender age when it was written,
and was an impressive vindication of Cornish’s encouragement of James when a
student in Adelaide to further his knowledge of algebra, particularly invariants and
related topics, when mathematical interest in these areas had dwindled somewhat
after their apogee in the late 19th and early 20th centuries. Publication of the
paper, essentially the first half of a PhD thesis, was encouraged by several well-
known mathematicians and statisticians, including Wilks and Feller. The other half
of the thesis applied the theory of the first half, and was published as James (1955a)
and James (1955b), which were introduced to the Royal Society by Fisher (Hillier
& Skeels (1996, p. 160)).

James had a major influence in subsequent developments, even if he published little
directly in the area of zonal polynomials in later years. Saw (1977) and Muirhead
(1975), for example, were introduced by James; and Anderson (1965) acknowledges
James’ part in both suggesting the problem dealt with in his paper and the means
of tackling it. Muirhead spent some time in Adelaide with James and Constantine,
and Muirhead (1982) remains a hugely influential book on multivariate statistics

and zonal polynomials.

Having adopted the approach to parametrisation indicated by James, and having
available expressions for the Haar invariant measures under transformation groups
appropriate to a given situation, one simultaneously had a natural definition of a
uniform distribution on the one hand, and a notion of a distribution unchanged upon
group transformation on the other. The familiar notions of translation and scaling
in the univariate case had natural generalisations in the multivariate case, and it was
surprising how many of the univariate distributions had natural generalisations in a
multivariate setting; and how easily some of the univariate relationships generalised
happily to a wider framework. Even the fundamental ideas of length and direction

of a vector found matrix analogues in spherical statistics: see §2.3.4 on p. 35.

From a statistical viewpoint, the most obvious application of the parametric ap-
proach advocated by James is to the linear transformation of data matrices, under
which there is invariance of the dispersion matrix under the action of orthogonal

matrices. The transformation group is the general linear group GL(n), acting upon
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real symmetric positive semi-definite matrices with the orthogonal group O(n) as

the isotropy group (at the identity matrix).

Another reason for which the statistician may be more interested in zonal polyno-
mials than in Jack polynomials generally is that there is a large number of integral
identities and similar relationships satisfied by zonal polynomials and their complex
counterparts Schur functions (Jack polynomials with o = 2, 1 respectively), which
have no known analogue for general Jack polynomials. The analogues for general
o may exist; but those researching in this area were in the main statisticians and
econometricians who were not aware of Jack polynomials, and who were in any case

primarily interested in statistical applications.

Nevertheless, placing the study of zonal polynomials within the context of Jack
polynomials is a natural thing to do, especially now when Jack polynomials form
a current topic of research in physics and combinatorial mathematics, but zonal
polynomials are not much studied for their own sake. Stanley (1989, p. 95) has
more to say on the advantages of the additional perspective gained by studying

zonal polynomials within the framework of Jack polynomials.

As noted, when o = 2, Jack polynomials reduce to zonal polynomials. For a =1
the Jack polynomials correspond to the Schur functions, while in the case oo = 1/2
they provide zonal polynomials for the skew-field of the quaternions (Macdonald
(1995, pp. 440, 446)). In the limiting cases @ = 0 and @ — oo, Jack polynomials
reduce to multiples of the elementary and monomial symmetric functions ey and
m., respectively (Stanley (1989, p. 109))!.

A representation of a group is a homomorphic image of the group in a representation
algebra of operators acting upon a carrier vector space, say U. The algebra contain-
ing those operators commuting with every operator in the representation algebra is

called the commutant algebra.

Given a group G acting on points taken as cosets of an isotropic subgroup, the

central items in the representations of G are the zonal spherical functions, which are

IThe final section of this chapter contains definitions and notation.
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chameleonic in character: they constitute one dimensional subspaces of the carrier
space which are invariant under the action of the subgroup, and they also span the

commutant (algebra), in a sense discussed in §2.5.5.1 on p. 56.

As noted, the object of central mathematical interest is the general linear group
acting on real symmetric positive semi-definite matrices, with isotropy subgroup
the orthogonal group. The zonal polynomials are derived from the zonal spherical

functions of this representation, which is spelt out in some detail in Chapter 2.

1.3 Aims of the thesis

While the zonal polynomials introduced in James (1960) were hardly new, being a
special case of a class of functions already known, the name (ostensibly) and their
application to statistics were new. James himself refers to earlier, rather inaccessi-
ble, papers by Hua from the 1950s in which expressions for the zonal polynomials
are given, involving integrals “which seem, at least to the author, to be difficult to
evaluate.” (James (1961, §1); see also Macdonald (1995, pp. 405, 413) for discussion
on the origin of the name zonal polynomial, and for a comment on the unsuitability
thereof). I could obtain neither the earlier papers to which James refers (either in
Chinese or unpublished), nor a paper in Russian dating from 1959 cited in Constan-
tine (1963) and James (1964). Nor have I managed to procure a copy of Bhanu-Murti

(1960), which apparently provides formulae for zonal polynomials.

It is possible that Hua (1963) contains clues as to the content of Hua’s earlier papers,
and some of the later parts of that book treat similar problems to those tackled by
James, viz. invariance under congruence transforms of matrices and projections onto
subspaces, which topics are central to James’ approach discussed in §2.5. Detective
work along these lines is beyond the scope of this thesis, and we take James’ approach

to zonal polynomials as our starting point.

When introducing the zonal polynomials, James (1960) did not give the impression

that he was inventing the name. It may well be that the name was already in use
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in the mathematical sources available to him at Princeton, including Hua’s work.
Nor does James say anything to change that impression in a recent interview, viz.
Hillier & Skeels (1996, pp. 162ff).

In essence, and as already noted, zonal polynomials took advantage of the symmetry
inherent in statistical/experimental situations, and found exceptionally fruitful ap-
plication when the underlying distribution was gaussian. The importance of this fact
to multivariate statistics follows from the central position of the normal distribution
in multivariate statistical theory, in which it occupies an even more pre-eminent

position than it does for univariate theory.

The principal use to which zonal polynomials were put was the expression of den-
sity functions of many multivariate statistics (quantities calculated from statistical
samples) in terms of infinite expansions of zonal polynomials. In fact such densities
were hypergeometric functions of matrix argument, which are most readily defined
as expansions in zonal polynomials. Familiarity with these hypergeometric func-
tions in turn codified known multivariate distributions and facilitated the definition
of new ones: see Takemura (1984, p. 2), Chikuse & Davis (1986), Srivastava (1968),
James (1964, p. 475) and Johnson, Kotz & Balakrishnan (1997), i.a.

The use of zonal polynomials allowed a natural parametrisation of complicated prob-
lems, which were otherwise totally intractable; and just to write down the density
functions of complicated multivariate statistics was an achievement. Those expan-
sions in zonal polynomials represent the density as an analytic function, and so could
be used on the one hand to provide transforms, mainly the characteristic function
and moment generating function?, whence the moments could be obtained; and to
obtain so-called continuity theorems on the other, whereby convergence of gener-
ating functions ensures convergence of corresponding distributions. Moreover the
Laplace Transform of a hypergeometric function produces another hypergeometric

function, so the generating functions are also expansions in zonal polynomials.

2The characteristic function in statistics assumes a meaning different from that in the rest of
mathematics: the characteristic function here is the Fourier Transform. The moment generating
function is effectively the Laplace Transform.
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Nevertheless, despite their intrinsic usefulness for the above theoretical purposes,
zonal polynomials have by no means realised their full potential. The difficulties of
calculating them, or at least applying their calculated values in statistical practice,
are apparently severe; and only a handful of papers make any attempt to evaluate

them.

This state of affairs raises several questions.

1. Would zonal polynomials be useful to calculate? What are the possible pur-

poses for which one would want to calculate them?

These points are discussed in §2.9.1 on p. 73.

2. If it is desirable to be able to calculate zonal polynomials, are those jobs for
which they are potentially useful currently being done by other means? Or

are they not being done?

The main alternative tools are asymptotic limits of distributions, and asymp-
totic expansions of density functions. There is some discussion in §2.3.4.1 on
p. 38.

3. If the jobs which could be done by calculating zonal polynomials are being
done through alternative means, how effective are those means? Is it the case
that those alternative methods are good enough that one does not really need

to bother about zonal polynomials in practice?

We do not have much to say on this question, although it is clear that there
would still be substantial interest in calculating zonal polynomials if there were

reasonable means available for doing so.

4. If the problems with using zonal polynomials are computational in nature,
why have those problems not disappeared with the extraordinary increase in

computing power since they were defined in 19607
In part at least, the answer to this lies in §2.9.3.1 on p. 75.
5. Why should zonal polynomials be so hard to calculate? Is it the case that

calculating a small number of zonal polynomials is not so hard, but that repli-

cating many such calculations in an effective manner for large collections of
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variate values is infeasible? Is the problem not with the zonal polynomials per

se, but with their utilisation in the hypergeometric expansions?
These points are discussed in §2.9.3.1 on p. 75.

Or is the problem that the zonal polynomials simply involve matrices that

quickly grow to gargantuan dimension in practice?

This seems not to be a problem, at least in statistical applications, as discussed
in §2.9.4 on p. 77.

The questions were all the more intriguing in view of the ambivalent nature of
people’s responses to the mention of zonal polynomials. While some but by no
means a majority of statisticians had heard of zonal polynomials, few had tried to
acquire a workable understanding of them, and as we have mentioned almost no one

had used them for any but theoretical purposes.

It appears that while there is interest in calculating zonal polynomials, no-one has
managed to do so in an effective fashion. It is in part a consequence of this that zonal
polynomials have gone “off the boil” somewhat, in that far fewer papers are written
about them now than was the case say twenty years ago. There are still papers
written in the statistics and econometrics literature which give density functions
of diagnostic statistics in terms of zonal polynomials, or other expansions using
extended invariant polynomials (see §2.3.2 on p. 32), but few papers exploring the
nature of the zonal polynomials themselves. The mathematical physics literature
contains many papers investigating the nature of the Jack polynomials and other
relatives of zonal polynomials, but to this author’s knowledge the calculation of

these polynomials is not attempted in that literature.

In the light of the above questions, then, I determined to search for better means of
calculation of, or at least approximation to, the zonal polynomials; there was the
further intention to apply those calculations to statistical problems, in finding tail
probabilities, likelihood contours, power functions or similar. More conceptually,
the aim was to extend the toolkit available to the statistician. So often the attempt
to treat a diagnostic statistic analytically is given up at an early stage in favour of

the blunt instrument of simulation, and in part at least it was the intention of this
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thesis to make available to the practising statistician more powerful analytical tools

to complement the simulation approach.

In the event, reality lagged some way behind the lofty intentions. The thesis repre-
sents my attempts to understand the nature of zonal and Jack polynomials and the
various areas of mathematics underpinning them on the one hand, and to develop
enhanced methods of calculation and approximation on the other. Application of

these methods to real-life statistical problems remains a project for the future.

1.4 What is in the thesis?

The basic tenor of this thesis, firmly rooted in James (1968), is to apply the Laplace-
Beltrami operator to vectors of m, or ey functions and to use the fact that the Jack
polynomial is an eigenfunction of this operator with known eigenvalue to expand the
polynomial in my and e, functions respectively. The same approach could be used for
any other set of basis functions for homogeneous symmetric polynomials, but of the
commonly used such basis functions only these two produce triangular coefficient
matrices. The thesis proves a determinantal expansion for Jack polynomials in
elementary symmetric functions e, (Roberts (2001)), tying in with a similar result
of Lapointe, Lascoux & Morse (2000) for monomial symmetric functions my, and
extending earlier work by the author (Roberts (1998)).

Expansion of Jack polynomials in terms of m, functions vis-a-vis that in the e,
function provides a natural counterbalance, partly because of differing but comple-
mentary characteristics of the expansions; and partly because algorithms applying
to one expansion may have close analogues in the other. Nevertheless there may
be advantages in the expansion in one or the other basis function in different situa-
tions, and this thesis comes down on the side of the ey functions as being perhaps
more useful in general. Further discussion on the relative merits and demerits of

expanding in the two basis functions is in §8.2 on p. 189.

The thesis starts by reviewing the literature of zonal polynomials, and to some extent
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the more recent literature to do with Jack polynomials and related functions. Any
such review has to be associated with a survey of some of the theory underlying zonal
polynomials and their origin, leading to this chapter being labelled as “Theoretical

overview and literature survey”.

It is inevitable that the review is both too broad and too narrow. On the one hand,
zonal polynomials and Jack polynomials enter into the literature of many diverse
fields, extending over many disciplines, principally but by no means exclusively
engineering, physics, pure mathematics and mathematical statistics. In order to
convey an idea of how zonal polynomials and related functions are treated in the
literature, one has to choose between a broad but shallow choice of subject area;
and a narrow spectrum of material covered in greater depth. We have essentially

chosen the latter route.

In §2.3.5 on p. 38 fleeting mention will be made of potential uses of zonal polynomials
in electronics and communications, treating the work of Smith and Gao. There is
a somewhat more extended coverage of the applications of zonal polynomials and
their more recently defined cousins the Jack and Macdonald polynomials, as well as
their asymmetric siblings, in relatively recent physics literature, mainly in quantum
and nuclear physics. Discussion here will centre on work by Forrester and Baker on

the one hand, and Lapointe and Vinet on the other: see §2.3.3 on p. 34.

Nevertheless, the principal focus of this thesis is decidedly in the area of mathe-
matical statistics, in line with the author’s background and interests. While the
same point as to the choice to be made between a wider shallower discussion and a
narrower deeper treatment applies within the field of statistics itself, the coverage
of the mathematical and statistical literature of zonal polynomials is intended to be

more complete than the forays into electronics and physics mentioned above.

The definition of zonal polynomials in James (1960) drew on the zonal spherical
functions of group representation theory, essentially due to E. Cartan in 1929, who
extended the Peter-Weyl result to “spherical functions” transforming a set of points
(Hillier & Skeels (1996, p. 164)). The label “zonal” refers to functions which are

constant on zones, or orbits, of the isotropy group. See also Hannan (1965a, p. 48).
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In another sense, however, and especially in the context of mathematical statistics,
zonal polynomials have their origin in James (1954), in which James established
the differential geometric framework for averaging over the orthogonal group. This
allowed the entry of zonal polynomials onto the stage, informally in James (1955a)
and James (1955b), in which the density function of the non-central Wishart distri-
bution is expressed as symmetric homogeneous functions not yet labelled as zonal
polynomials; and more formally in James (1960), in which the zonal polynomials
are introduced in the context of the density function of the eigenvalues of the sample
dispersion matrix. The genuine mathematical introduction of zonal polynomials to
the statistical world came a little later in James (1961), in which he gave a fairly
comprehensive treatment of them through a group representation approach: this is

discussed in §2.5.

As noted earlier, much of the thesis is rooted in the work of James (1968), in which
a recursive method for generating zonal polynomials through the Laplace-Beltrami
operator was set out. The method seems to have been little used in practice, de-
spite McLaren (1976) writing a computer programme to effect the method. This
thesis is largely an attempt to refine and develop this method of calculating zonal

polynomials, although applied to Jack polynomials.

This is not to say that there have not been developments in the calculation of
zonal polynomials and Jack polynomials since 1968. Denoting the Jack polynomials
by Jﬁa) or sometimes merely by Jy, there are several methods of calculating J ia)
for particular partitions A and parameter values a; and there are many formulae
and integral identities involving zonal polynomials and Schur functions in particular
(see Macdonald (1995) and Stanley (1989), for instance). In addition, Knop & Sahi
(1997) have given a method of calculating Jack polynomials directly from the Ferrers
diagram which obviates the explicit use of e, or my or any other basis functions (for
a discussion see §2.2.2 on p. 29); and almost the same method applies to the
asymmetric Jack polynomials. Their method is similar to one of the methods of
calculating Schur functions in Stanley (1999, §7.10).

Zeilberger has recently written a programme using MAPLE, a symbolic manipula-

tion software package, which finds the algebraic expansion of J f\“) using the creation
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operators of Lapointe and Vinet: see §2.3.3 on p. 34. The creation operators es-
sentially generalise the Rodrigues formula for classical orthogonal polynomials, and

the program is available publicly on his web site.

This thesis restricts itself to further development of the material in James (1968),
then, not because it is the only possible approach to zonal polynomials and Jack
polynomials, which it patently is not (see Chapter 2); but because it seems to offer
a sensible way to attempt to find approximations to Jack polynomials for practical
use. It is by no means clear that the Knop-Sahi method is practical as a means of
calculating Jack polynomials: their paper was initially at least notable for proving
a conjecture of Macdonald and Stanley about the nature of the coefficients of the
expansion of Jack polynomials in terms of m, functions (§2.2.2). And given the
algebraic expression of .J ﬁa) from Zeilberger’s program, the polynomial still needs to

be evaluated.

There may well be contexts in which Jack polynomials need to be evaluated exactly.
But this situation is not so likely in statistical practice, as discussed in §2.9.2 on p.
74. Nor is it likely that the theoretical physicists will see the need to calculate them,
as a general matter anyway: they tend to be more concerned about conceptual and
theoretical properties of Jack polynomials and similar functions, and the operators

of which they are eigenfunctions.

In a statistical context, zonal polynomials arise especially in slowly converging hyper-
geometric expansions for density functions, but applied statisticians would generally
be more interested in (cumulative) distribution functions which give probabilities.
One needs to sum slowly converging hypergeometric expansions for density func-
tions, involving larger and larger weights of partitions indexing the zonal polyno-
mials; one must do this over a grid of variate values; one then needs to integrate
numerically to get the probabilities. And the starting point of all of this is the
calculation of the individual zonal polynomials, which is non-trivial. That said, one
is more interested in workable approximations to and bounds on zonal polynomi-
als, and the repetition of those calculations in an efficient manner, than in precise

calculation. See §2.9.3 on p. 75.
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More complicated related functions of zonal polynomials, called eztended invariant
polynomials by Chikuse & Davis (1986), are defined in the evaluation of integrals
arising when exploring more complicated statistical questions, especially in “non-
central” hypothesis testing (when the random variates are not assumed to have zero
mean); in deriving the densities of econometric system estimators; finding the (cu-
mulative) distribution function of statistics; and obtaining Edgeworth expansions,
i.a. These extended invariant polynomials share some but not all of the properties of
zonal polynomials. Their calculation raises even more problems than that of zonal
polynomials, and we shall mention them only in the literature survey, in §2.3.2 on
p. 32.

The first step along the path to obtaining workable approximations to Jack poly-
nomials from James (1968) is to place the ey functions in a particular order (the
RLO: see §1.5 on p. 15) to give a column vector E; and similarly we let the column
vector M comprise the m, functions. Let £ denote a generalised Laplace-Beltrami

operator, and define “operator” matrices (¢ and 2™ such that
LE =Q°F and LM =Q™"M (1.1)

Following the literature review, most of the remainder of the thesis turns on the
matrices §2. There is a close connection between 2¢ and 2™, in that off the diagonal
they are effectively transpose to each other, and their diagonal elements are closely
related as well. Part of our treatment mirrors that in Roberts (2001), but we give
a slightly longer and more elementary proof of the basic results, and flesh out some
of the details.

In Chapter 3 we derive a determinantal expansion for Jack polynomials in terms of
e, functions to complement that for my functions found by Lapointe et al. (2000),
our treatment again being based on Roberts (2001). There are strong similarities

between these two expansions, arising from the links between Q¢ and (2™.

Approximations to Jack polynomials can basically proceed in three directions:
1. streamlining the determinantal expansions;

2. approximating the e, and mj, functions; or

3. streamlining the algorithm in Knop & Sahi (1997).
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The third question is not tackled in this thesis. Broadly speaking, the first approach
is explored in Chapters 4 and 5, while the second is investigated in Chapters 6 and
7.

In Chapter 4 we investigate the nature of ¢ and Q™ a little more closely, with a
view to making some progress on the first of the above points. That is, we try to
gain some idea of how to expedite the determinantal expansions, without undue
regard to the calculation of ey and m, functions. We also examine how sparse the
Q matrices are; and find relationships between diagonal sums and column sums
of ™, which suffice in principle to obtain bounds on coefficients in the expansion
of Jack polynomials in m, functions, although that task is undertaken to a greater
extent in Roberts (1998) for the specific value @ = 2, and only touched upon in this

thesis.

Consider the expansions for the Jack polynomials J,S“) in terms of the ey and m,

J;(;a) = Z j;,/\ ey = Z ‘};';‘/\ my
A A

In Chapter 5 we find the coefficients j', for partitions p and A assuming a specific

functions:

generic form; and also for one or two specific values of A at the final extremity of
the RLO, for any p. The generic operator matrix involved is indexed by partitions
(w), (w — 1,1),..., and one assumes for the purpose of this thesis that w is large
enough to ensure that the partitions cropping up are listed in the standard non-
increasing manner; there is however some evidence to say that the constraints arising
on the j* coefficients from this matrix are valid whether or not the partitions are
listed in the standard ordering. Analogous results could be expected to obtain for

the j¢ , coefficients, but that is not attempted in this thesis.

As regards the second question, viz. that of approximating the ey and mj functions,
it is natural to consider such approximations when the variates assume particular
forms. The first such examples to spring to mind are the arithmetic and geometric
progressions. In Chapter 6 we investigate the behaviour of the my functions when
variates assume the successive forms of the arithmetic and geometric progression;
while in Chapter 7 we look at the e, functions when the variates stand in geometric

progression. It seems that both ey and m, functions are more easily evaluated
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when variates stand in geometric progression than when they form an arithmetic

progression.

A related question is of course how useful these expansions are, or rather how well
the assumed arithmetic and geometric progression “shapes” of the variates conform
to the sets of variates arising in practice. One simple point that can be made in
this regard is that when random variates are exponentially distributed, the order
statistics have expected values which stand in geometric progression (because the
distribution function is an “inverted” exponential 1 — e #* for constant p > 0).
Since the exponential distribution crops up often in applied statistical work, the
assumption that the variates of Jack polynomials stand in geometric progression

may be reasonable in some practical situations.

1.5 Notation

1.5.1 Ordering of partitions

Let A = (I3, ls,. . .,l,) be a partition of w (see Macdonald (1995, §1.1), Stanley (1989,
p. 77), i.a). Unless stated otherwise, partitions are assumed to be in standard form,
i.e. listed as positive non-increasing integers called elements or parts with no trailing
zeroes. Then A has weight w(\) = 3, l; = w, and we write A - w(A). The length of
A is given by £()\) = r, and the height of X is A(A) = [;. The conjugate partition to
A is denoted by X' = (I{,13,...), and for partitions A, , 7, ..., it is understood that

w = w()) =w(k) = w(r) = ... unless otherwise specified.

The multiplicity of 4 in X is m;()); further define
Hy = H?Tli(/\)! =my'ms!... and zy = (1™2™2, . Ymylms!...

in accord with notation in Stanley (1989, p. 77), Macdonald (1995, pp. 24, 110).

For A = (I3,1y,...,l,) - w, define the partition 2\ = (21;,21,...,21,) I 2w.
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The dominance or majorisation partial ordering is denoted by <: thus K =
(k1,koy...) S A= (l1,l,...) & ki +ka+...+k <L +1l+...+; for all 5, pro-
vided that w(k) = w()\). Macdonald (1995) refers to majorisation as the “natural”
partial ordering, while Stanley (1989, p. 77) prefers the label “dominance ordering”.
The conventional total ordering of partitions, viz. the reverse lexicographic ordering
(RLO), is denoted by 2: hence (4) § (3,1). The majorisation partial ordering is
consistent with the RLO: k> A=k § A

For partitions x and A not necessarily of the same weight, we define kK + A =
(kl,kQ, o ) =+ (ll, ly, .. ) = (kl + Uy, ko + o, .. .); and the parts of kK U A to con-
tain all the parts of x together with those of A\. According to Macdonald (1995, p.

5), these operations are dual in the sense that
(kUN =r"+ X

The m; functions are stacked into a column vector M in RLO, so that the ordering
of the indices of the vector elements from the top is (w), (w — 1,1), (w — 2, 2), (w —
2,1,1),.... There is an analogous stacking of the e, functions into a column vector

E, and of the J ,{a) functions into a column vector Y.

Matrices with rows and columns indexed by partitions have those rows and columns
ordered conformally with M and E, viz. in RLO. Thus the top left element of a
matrix A = (ax,)) IS @(w),w) While the element to its right is a),w-1,1), etc. With
this ordering of partitions, an upper (lower) triangular matrix has zeroes below
(above) the diagonal in the conventional manner. The triangular matrices arising
in this thesis will generally be unitriangular in the sense of Macdonald (1995, §1.6),
who defines A to be upper (lower) unitriangular when a, ) can only be non-zero for
k> A (k<)

Let [k, A] denote the interval {7 : K > 7 > A}. For a matrix A with rows and columns
indexed by partitions in RLO, (A)[K, » Tepresents the submatrix indexed by rows and

columns in the interval shown, with other elements omitted.

Finally, the transpose of a matrix A is denoted by AT, and the number of partitions

of an integer n is denoted by p(n).
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1.5.2 d2 chains and d2-1 chains

d2

We define k > A to mean that

1. k> A; and

2. in possibly non-standard orderings of the partitions (and perhaps with an addi-

tional zero appended to k), £ and A differ in exactly two elements.

12 d2 )
We further define % A to mean that x > ) and the discrepancy in elements
between k and A is unity. The analogy with the raising operator in Macdonald
d2 .
(1979, §1) is immediate; and the ? relation is the covering relation for the partially

ordered set of partitions with majorisation ordering (e.g. Brylawski (1973)).

d d2
Thus (9,8,5,4) > (8,7,7,4) but (9,8,5,4) # (8,7,7,4),
1

while (9,8, 5, 4) '%2 (8,8,5,5).

A d2-chain of partitions from x to A of length r is a chain
K= Kgy By, <o+ Kps1s By = A

in which &; d>2 kiy1 for all 7.
A d2-1 chain is a d2 chain for which x; (%2 kit for all 4.

In Chapter 4 it is convenient to speak of “chains” of partitions generating the above
diagonal entries of 2™, and “paths” of partitions traversing the operator matrices.

But the distinction is a little precious, and the terminology is not necessarily optimal.

1.5.3 Augmented m, functions; e), and p, functions etc.

Let 7 = £()). Let S, denote the symmetric group on n symbols; and S, 3 5:1 — si
for 1 < 7 < n. Following Roberts (1998, §2.1), we define the doubly augmented my
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function

- Iy 2 I, .0 0 0 .
damy = E Tip Tigy -+ Ligy Ty Tigrpny * * Tign 3
SESn

then the augmented m) function
damy
(n—r)!
as in Takemura (1984, §2.2), and which is denoted as m, in Macdonald (1995, p.
110). Finally,

amy =

amy
my = —
(O
is the conventional monomial symmetric polynomial, for which the duplicate mono-

mials in am, have been removed.

The definitions of my, the elementary symmetric polynomial e, the power sum
symmetric polynomial py and the Schur function sy follow Stanley (1989, p. 77) and
Macdonald (1995, §81.2, 1.3).

1.5.4 Bisymmetric matrices, representations

For a matrix X, denote the Kronecker product of X with itself ¢ times by X®!. A
polynomial in the elements of X of degree ¢t may be written uniquely as tr (ATX ®t),
where A is a bisymmetric matrix, for which the rows and columns are indexed by
(11,42,...,%) and (j1,72,-..,7:) respectively; and tr is short for trace. That A is

bisymmetric means that for s € Sy,

(A)(ial 1182 yeesist)y(Fs1 1 T2 0ndst) — (A)(il 1125000188 )5 (51,5254 417)

The algebra of bisymmetric matrices A is denoted by 2. The only case of interest
in this thesis is that for which X is square, for which see Farrell (1985, § 12.1).
A representation of a group is denoted by

BrVad

where B indicates the representation algebra, V' the carrier vector space and €

the commutant algebra. The group G being represented by the matrices in B is
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subsumed in the notation, which roughly follows that in James (1961), and is chosen

to facilitate the discussion on that paper in §2.5 on p. 49. The terminology “carrier

vector space” comes from Littlewood (1950, ch. 1).

1.5.5 Note on product of tensors

Given a vector space V with basis {e;, e, ... €, }, the tensor product 7"V is a vector

space of dimension m", with basis the elements ¢;® ¢; ® .. ..

For a matrix A acting on V, T"A is that matrix transforming basis tensors such

as ¢; ® e; ... without any symmetry requirements imposed on the tensors; S™A

transforms the tensors assuming that e; @ e, ® ... = e, ® e; ®...; and the exterior
power A™A transforms the tensors assuming that e; ® e2 ® ... = —e2 @€ ® ...
and e; ® e; ® ... = 0. The symmetric and exterior powers of A provide irreducible

representations of GL(n). More general arrangements, such as symmetrising over
the first 2 indices when there are 3 factors, lead to reducible representations. To find
the other irreducible representations, symmetrising over the Young’s symmetrisers
is required, see i.a. Akin, Buchsbaum & Weyman (1982, p. 276), Farrell (1985, ch.
12).

Our notation follows that of Macdonald (1995), and seems to be the most common.
Blokhuis & Seidel (1984) give a good review of tensor products, with slightly different

notation.

1.5.6 Other definitions

We generally use the Jack polynomial J,(,“) = J, without undue regard to normali-

sation, although J, is conventionally defined with normalisation given in (5.6) on p.
137. The only part of this thesis in which normalisation of J, assumes any impor-
tance is in §5.1.1.2 on p. 137.
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Operator matrices ™ and ¢, as given in (1.1), are sometimes written as {;} and
Q¢ to emphasise the weight of the partitions used. Their constituent elements may
be written as w], or w™(k, ), and wg , or w*(k, A) respectively. In like manner we
may write the coefficients jg , and ji, introduced in §3.2 as 7¢(k, A) and j™(k, A)

respectively: and the eigenvalue c, first given in §3.1.2 as ¢()\).

For the operator matrix Q2™ we define
= Z Wi -
K>

That is, 7 is the sum of terms above the diagonal in the Ath column. An unrelated
symbol 7; is introduced in Definition 7.5 on p. 170. In similar vein, the symbol ¢ is
used with two meanings, viz. in (5.16) on p. 141 and in Definition 7.13 on p. 175.

But in neither case are the symbols used in any one chapter with two meanings.
I denotes the identity matrix of an appropriate order. The natural numbers are
denoted by N, and when 0 is omitted by N,; and the greatest integral part of a

non-negative number z is denoted by [z]. The rational, real and complex fields are

denoted by Q, R and C respectively, while the ring of integers is denoted by Z.
The Laplace-Beltrami operator is defined in §3.1.2 on p. 80.

For a subgroup H of a group G, by a left coset we mean gH for ¢ € G. This
notation follows that in Macdonald (1968), for instance, and stands in contrast to
that in Hall (1959) and Hannan (1965a). We set G/H = {gH : g € G}.

1.5.6.1 Acronyms, abbreviations

RLO stands for Reverse Lezicographic Ordering.
We write iff for «f and only if.

In like manner, we write i.a. for inter alia, viz. among others.
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The density function or simply the density is written for the probability density

function.

The distribution function is written for the cumulative distribution function.




Chapter 2

Theoretical overview and

literature survey

2.1 Farrell’s listing of the different approaches to

zonal polynomials

Farrell (1985, p. 282) distinguished four approaches to zonal polynomials:

1. his own “algebraic” approach;
2. through the use of group representations;
3. Saw’s and Takemura’s approach through “quadratic forms”; and

4. treating the zonal polynomials as spherical functions in the sense of Helgason
(1962).

Before extending the list to take cognisance of more recent developments, let us

clarify these items briefly. Items 1, 2 and 4 will be treated more fully later.

22
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2.1.1 Farrell’s approach to zonal polynomials

Farrell’s approach to zonal polynomials is direct and elegant, but the zonal polyno-
mials at which he is principally aiming are what he, James (1964) and Takemura
(1984, Ch. 5) called complex zonal polynomials (Jack polynomials with o = 1, better
known as Schur functions). The term zonal polynomial in current usage is restricted
to Jack polynomials with o = 2, which are the Jack polynomials of principal interest

in mathematical statistics, as already noted.

Farrell’s method of attack, utilising the centre of the algebra of bisymmetric matri-
ces, quickly produces proofs of integral formulae which are the direct analogues of
those holding in the real case. Also produced is a simple formula for Schur func-
tions in terms of group characters. Unfortunately his methodology which works so
elegantly for the complex field C fails to extend to the real field R.

In his work on the real case o = 2, he essentially applies the same techniques as in
James (1961) and Macdonald (1995), and much of Farrell (1985, Ch. 12) is devoted
to giving the readers enough understanding of representation theory and related
areas for them to understand James’ and Constantine’s papers. The basic method
is to consider the symmetric group and the general linear group acting on tensor

powers of a matrix. A more detailed discussion of Farrell’s work is in §2.8 on p. 69.

In a late section of the same long chapter, Farrell (1985, § 12.13) also offers an
explanation of Saw’s and Takemura’s approach to zonal polynomials. We discuss

Takemura’s development of Saw’s ideas below in §2.1.3.

2.1.2 The approach through group representation theory

By this rather “catch all” title Farrell presumably means the approach taken in
James (1961) and to some extent that in James (1964) and Constantine (1963).
The first of these papers is discussed at some length in §2.5 on p. 49.
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Farrell seems to regard this methodology as “combinatorial” in nature. More pre-
cisely, he labels the computational methods in James (1961) and James (1964) as
combinatorial (Farrell (1985, p. 231)), although the combinatorial nature of the sec-
ond of these papers of James is a little obscure. A closely related approach to that
in James (1961), but utilising more high powered algebraic tools, is in Macdonald
(1995, Ch. VII). This is also discussed later, in §2.6 on p. 64. In any case much of
Farrell’s work, especially in Farrell (1985, ch. 12), could be counted as a “represen-
tation theory” approach to zonal polynomials. We comment on Farrell’s work in
§2.8 on p. 69.

2.1.3 Saw’s approach

Farrell (1985) describes this approach to zonal polynomials as the most elementary
available. While this may have been true at the time of his writing, the mantle
now has surely passed to Knop & Sahi (1997). Nevertheless, Takemura’s adaptation
of Saw’s work is relatively simple, especially to those with some acquaintance with
the Wishart distribution, and the link with its motivation in mathematical statistics
remains clear. Knop & Sahi (1997) certainly provide an elementary definition of Jack
polynomials, which is summarised in §2.2.2; but the motivation for their definition

is far from clear.

The original article Saw (1977) is not so easy to understand, and Farrell (1985,
§12.13) and Mathai, Provost & Hayakawa (1995, p. 171) both discuss Takemura’s
elegant adaptation of Saw’s arguments. We present a slightly rough and ready
summary of Takemura’s argument, following Takemura (1984, p. 17) and changing

his notation a little.
The zonal polynomial Cy satisfies the reproductive property

EW [C,; (XTX)] = a,;C’,g(E) (21)

in which the matrix X has the normal distribution, X7 X has the Wishart distri-
bution with covariance matrix X, &y = £ denotes the expectation operator with
respect to this distribution (James (1964, p. 479), Constantine (1963)), and ay is a
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constant. Thus one is transferring the expectation operator “into” the zonal poly-

nomial: it is as if the zonal polynomial and expectation operators were commuting.

Takemura takes (2.1) as the basis of his definition of zonal polynomials: see also
Macdonald (1995, pp. 428, 439). Define E'(A) to be the vector E of e, functions
from (1.1), but taken in inverse order’ and evaluated at the eigenvalues of the k x k

symmetric real matrix A. Define an operator 7, acting on E'(A) by
7,E'(A) = EE'(AW) (2.2)

in which W has the Wishart distribution with covariance matrix the identity and
degrees of freedom v. The p(w) x p(w) matrix 7, is upper triangular, where p(w) is

the number of partitions of w.

The row eigenvectors of 7, do not depend on v. Stack these eigenvectors to form
an upper triangular matrix =. That the eigenvectors can be taken in this triangular
form follows from an inductive proof: one first shows that there is an eigenvector
with but one final non-zero element; then that there is a second eigenvector with
but two final non-zero elements etc., provided that the eigenvalues are distinct. For
large enough number of variables k the eigenvalues will be distinct, as Macdonald
(1995, p. 439) points out.

Takemura lists a lemma effectively stating that
Er, = AE (2.3)
in which A, is a diagonal matrix containing the distinct eigenvalues of 7, along the

diagonal.

Stacking the zonal polynomials into a vector ¥ = (Y(w), s 7 — Y(lw))T, and
still following Takemura, define the zonal polynomial by Y (4) = ZE'(A). The

symbol Y is used rather than the conventional Z or C because of indeterminate

1The ordering is not quite inverse to the RLO, which would be the lexicographic order. Let
A= (W) he = (w—1,1),23 = (w—2,2),..., A\ = (1*) be the conventional RLO. The ordering
in E' from the top is A/, A4, ..., A/ which is not the same as lexicographic order, although they

coincide for w < 5.
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normalisation. Then, letting both sides of (2.3) act upon E'(A), development yields
Er,E'(A) = A,ZEE'(A)

SEE'(AW) = A,ZE'(A)
ESE'(AW) = A,ZE'(A)
EY (AW) = A, Y (A) (2.4)

thereby verifying (2.1)

The zonal polynomial thus defined is an eigenfunction of an expectation operator
with respect to the Wishart distribution. The action of the operator 7, resembles
those in (1.1) on p. 13, with triangular matrices of coefficients, but with the stacking

of the ey functions in the E vector in “inverse” order.

Nor is the advantage of this approach restricted to ensuring the validity of the
reproductive property (2.1) and (2.4). What Farrell calls the splitting property of

zonal polynomials can also be proved directly from Takemura’s definition:
ExVA(AHBHT) = Y;(A)YA(B)/Ya(I) (2.5)

where the expectation is over the invariant distribution over the orthogonal group
(i.e. the integration is over the Haar measure) (Takemura (1984, p. 27)). Contrast
with (2.33) on p. 72.

Davis (1980, p. 293) suggests adapting Takemura’s approach to the more compli-
cated extended invariant polynomials C’;”\ (see §2.3.2), i.e. stacking them and defin-
ing C;”\ as an eigenvector of an appropriate operator. I know of no work developing
this idea.

2.1.4 Laplace-Beltrami approach

When Farrell described his fourth approach as treating zonal polynomials as spher-

ical functions in the spirit of Helgason (1962), what he presumably had in mind
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was the approach using the Laplace-Beltrami operator in James (1968), which drew
on material in Helgason’s book. James utilised the fact that the zonal polyno-
mial is an eigenfunction of the Laplace-Beltrami operator, with known eigenvalue.
This mirrors the fact that the Jack polynomial is an eigenfunction of a generalised
Laplace-Beltrami operator, so that one can adopt the same approach to Jack polyno-
mials as James (1968) did for zonal polynomials. This thesis is largely based on the
outworkings of this idea, for which see Chapter 3. In fact the generalised Laplace-
Beltrami operator is equivalent to the Calogero-Sutherland operator of physics for
symmetric homogeneous polynomials (Roberts (2001)), perhaps explaining why so

much work on Jack polynomials has been done by physicists. See §2.3.3 on p. 34.

2.2 Other approaches to zonal polynomials and

Jack polynomials

Since Farrell drew up his list of ways of defining zonal polynomials (§2.1), several

other means of defining Jack polynomials have sprung up.

The most important of these, and the line favoured by several recent authors, is to
define Jack polynomials by specifying orthogonality conditions to be satisfied. This
method is described in §2.2.1. Implicitly the Jack polynomials are eigenfunctions of
the quasi Laplace-Beltrami operator, and the inner product separates eigenfunctions

with distinct eigenvalues.

Asymmetric Jack polynomials, as well as many other asymmetric polynomials, are
defined as eigenfunctions of more complicated operators, generally comprising both
differential and permutation elements. Their symmetric cousins can be obtained by
similar means using differential operators, or by symmetrisation over the variates of

asymmetric polynomials.

The Rodrigues formulae for classical orthogonal polynomials produce polynomials
iteratively by applying a differential operator. In like manner, Jack polynomials can

also be defined by successive application of creation operators, for which see §2.3.3.
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The parallels between the above means of defining Jack polynomials and the classical
orthogonal polynomials are strong, with an underlying differential equation, the gen-
eration by successive applications of a differential operator (Rodrigues’ formulae),
generating functions, and orthogonal eigenfunctions with distinct eigenvalues: see
for instance the Bateman papers edited by Erdelyi, Magnus, Oberhettinger & Tri-
comi (1953), Szegd (1939) and Vilenkin (1968, Intro.). From the physics direction,
Baker & Forrester (1997) note the close connection between the Calogero-Sutherland
model and the generalised classical polynomials: Jack polynomials have a close con-

nection with the Calogero-Sutherland model, for which see §2.3.3.

2.2.1 Direct definition from orthogonality

By this is meant the definition of symmetric polynomials by directly specifying
orthogonality of functions of differing index or parameter value, with normalisation

conditions imposed.

Following Stanley (1989, p. 77) and Macdonald (1995, pp. 305, 377), define an inner
product by
< PrsPr Za= 51{.,/\2"&&8(&) (26)

where z, is defined in §1.5.1 on p. 15. With this inner product, < J,(f‘), Jf\a) >e=10
when k # A.

Underlying inner products of this form is generally an operator of which the orthog-
onal functions are eigenfunctions, with the eigenvalues dictating the normalisation

requirements.

Macdonald (1995, §VI.1) defines a general class of symmetric polynomials using a
similar definition to that in (2.6), which includes Hall-Littlewood polynomials and
Jack polynomials as special cases. Vilenkin & Klimyk (1995, p. 105) basically follow
Macdonald’s approach.

For the wider class of symmetric polynomials, Macdonald (1995, §VI.2) also shows
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the close relationship between the inner products of the form of (2.6), and relations
of the form
Y i @) aly) = [] (1 - zigs) e (2.7)
A ]
where jy =< Jy, Jx >o. See also Macdonald (1995, §1.4), Stanley (1989, p. 79) and
Takemura (1984, pp. 37, 58).

2.2.2 The combinatorial approach of Knop and Sahi

Farrell’s labelling of the approaches in James (1961) and James (1964) as combina-
torial (Farrell (1985, pp. 231, 282)) is in retrospect a little confusing, in that other

methods more directly combinatorial in nature have since sprung up.

The mantle of most elementary approach to Jack polynomials and zonal polyno-
mials now clearly belongs to Knop & Sahi (1997), who have provided a directly
constructionist definition of Jack polynomials from the Ferrers diagram. Practically
the same definition works for the asymmetric Jack polynomials, also given in the
same paper. Although elementary in nature, this method of generation of Jack poly-
nomials does not necessarily lend itself to computing facility; nor does it easily lead
to the basic reproductive and splitting formulae (2.1) and (2.5), which were readily
obtained from Takemura’s definition. We have already commented on the fact that
Takemura’s definition closely reflects its motivation, whereas the motivation behind

Knop and Sahi’s approach is obscure.

The Knop-Sahi approach is to utilise the conventional Ferrers graph (of the conjugate
partition )\’ for J,) and simply consider all ways of mapping the n variables onto
the nodes of the graph. In such an overtly combinatorial setting, the mapping could
be called a colouring, with colours the integers 1,2,...,n, or rather the variates
T1, T, ..,Ts. Roughly speaking one multiplies the variates for each legal colouring

and sums all the resulting monomials.

There are three rules set up to administer this process. Firstly, while variates can

occur multiply in a single colouring, a variate cannot occur twice in any one column;
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secondly, if the same variate occurs in successive columns, the one in the first column
cannot be above the second (i.e. in a higher row); and thirdly, when the same variate
occurs in successive columns and they are in the same row, the monomial product is
to be multiplied by a hook length like factor depending both on o and the arm and
leg lengths of the pair of elements in question. The multiplicative factor or weight
for each colouring is either 0 for an illegal colouring, 1 if there are no horizontally
adjacent cells containing the same variate; or a polynomial in « derived as a product
of the quasi hook length factors. See Stanley (1989, p. 95) or Macdonald (1995, §1.1)

for discussion of hook lengths etc.

As a byproduct of their definition of Jack polynomials, Knop and Sahi prove that

in the expansion
T (z) =Y i (@)ma(z)
the functions j7 /u, are polynomials in & with non-negative integral coefficients (re-

call from §1.5 that u, = []mi(p)!). The result confirmed a conjecture of Macdonald
and Stanley (Stanley (1989, p. 110)) as to the nature of these coefficients.

Knop and Sahi’s method is reminiscent of results in Stanley (1999, §7.10), in which
several combinatorial definitions of Schur functions are given; and is further remi-
niscent of “arm” and “leg” functions, or more generally hook polynomial and hook
length types of functions, in Macdonald (1995, ch. I §1, ch. VI §10), Stanley (1989,
p. 95) or Aigner (1979, p. 131), i.a.; and in the recent physics literature, Baker &
Forrester (1999). Robinson (1961, p. 44) has earlier references. These latter types
of functions are roughly defined as the product of functions defined on cells of Fer-
rers diagrams, typically involving the number of cells to the right of the point (an
“arm”) and below the point (a “leg”). Sometimes one or other of these arm and leg
functions at a point is multiplied by « before adding them together and taking the

product over the Ferrers diagram.

Although above we described the motivation underlying the Knop-Sahi algorithm
as obscure, it must be admitted that there are elements at least which are somewhat
redolent of previous work on Young Tableaux. The forbidding of the one variate
to appear twice in a column is the direct analogue of Young’s taking the ordinary

permutation group for rows but the permutations corrected for sign in the columns
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in the Young’s symmetrisers; or of the Young Tableaux being only weakly increasing
across rows, but strictly increasing down columns. Moreover the Knop-Sahi process
bears a certain resemblance to the insertion of one entry at a time onto a Tableau
(corresponding to the “lattice permutations”) for the calculation of the characters
of the symmetric group. See i.a. Littlewood (1950, ch. V), Macdonald (1995, §1.9),
Farrell (1985, §12.4).

Analysis which is ostensibly straightforward can arise from complicated underlying
mathematics. Knop and Sahi’s work is a case in point, with seemingly difficult
theory by Opdam (1995) in root systems of semi-simple Lie algebras underlying the
beautifully simple deductions drawn from the theory. See also Vilenkin & Klimyk
(1995, §3.3.1).

2.3 Related literature

In this section we glance at some areas of the literature cognate to zonal and Jack

polynomials.

The choice of topics is selective and the coverage not deep, but the aim is to obtain
at least some idea of these polynomials “in the round” before we embark on a rather

technical overview of Hannan’s and James’ work, i.a..

2.3.1 Differential equations

Muirhead (1970) is an early paper investigating the partial differential equations
satisfied by hypergeometric functions of one matrix argument. Following Constan-
tine (1963) in defining hypergeometric functions as expansions in zonal polynomials,
Muirhead shows that these functions are solutions of a partial differential equation,
with a view to using the properties of the equation to give an asymptotic expansion

of the function.
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There are close links between the hypergeometric functions of matrix argument, the
Laplace transform and Laguerre functions of matrix argument (Herz (1955)). There
are defined matrix analogues of several other of the classical orthogonal polynomials,
generally as hypergeometric functions of matrix arguments with expansions utilising
zonal polynomials and Jack polynomials. The author has not seen the extension of
the hypergeometric functions of matrix argument to the G and H functions of Meijer,
which are defined from the univariate hypergeometric functions. But they would be
of interest, since Meijer’s functions can express the density function of products of
independent beta and gamma random variates (Mathai & Saxena (1973)), which

is not possible in general for the hypergeometric function. See also Farrell (1985,

§1.1).

2.3.2 Hypergeometric functions of more than one matrix

argument

Given sample size n and number of parameters k, James (1955b) found the need
to integrate over O(k) in his derivation of the density function for the Wishart
distribution for general covariance matrix. Then, in his derivation of the density
of the eigenvalues of the covariance matrix, James (1960) wished to evaluate an

integral over O(n), when he produced the formula:
/ Cx\(AHTBH)dH = C5(A)Cx(B)/Cx(I) (2.8)
O(n)

although not in that notation.

Then in Davis (1979) and Davis (1980) it was shown that

C.(AHTXH)CA\(BHTYH)dH = Y Cy*(A, B)Ci (X, Y)/Cy(I)  (2.9)

O(n) dER.A

where the functions Cg’)‘ are called the eztended invariant polynomials. The sum-
mation in (2.9) is over those representations 2¢ which are contained in 2k ® 2A,
the Kronecker product of representations. The underlying representation theory for
the evaluation of the integral in (2.9) is given in Davis (1980), and this is set out

in somewhat greater detail in Mathai et al. (1995, Appendix). The expansion (2.9)
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should be compared with (2.8); and with (2.32) and (2.33) on p. 72: the Z, and

C) are different normalisations of the zonal polynomial.

According to Davis (1980), the original motivation for (2.9) came from an application
of a rather striking twist to the Edgeworth expansion in Davis (1976). For dealing
with a statistic through its Edgeworth expansion, in the latter paper Davis had the
idea of treating a random variate z as z’ + z, where z’ retains the first 2 moments of
z and can be dealt with through the usual Edgeworth expansion; following which
one can take expectations with respect to the pseudo random variate z, which has
zero mean and variance but higher moments which duplicate those of 2. The second
step is usually combinatorial in nature, and combining the two steps is equivalent

to the original outworking of dealing with = through an Edgeworth expansion.

Davis was led to integrals such as that in (2.9) when seeking to apply the methodol-
ogy in Davis (1976) to multivariate analysis of variance. In Davis (1980), the author
is at pains to point out that the extended invariant functions are not zonal polyno-
mials, in the sense that there may not be an extended Laplace-Beltrami operator
for them; and nor may there be suitable differential equations for hypergeometric
functions of 2 matrix arguments as there are for hypergeometric functions of 1 ma-
trix argument. Building on work in Muirhead (1982), Baker & Forrester (1997, p.
214) provide a differential equation satisfied by hypergeometric »F; functions of two
matrix arguments. But it is not clear that this type of differential equation will be

as useful as the simpler analogues for functions of one matrix argument.

The right side of (2.9) is clearly a complicated expansion, even by the standards of
conventional zonal polynomials of one matrix argument which seem in any case to
be so intractable. The complications are even greater than apparent from (2.9) since
the direct product of representations 2x ® 2\ is not multiplicity free: i.e. there are
duplications of some of the 2¢ partitions in 2k ® 2). See Robinson (1961, §3.3) for

calculation of the multiplicities involved.

The expression (2.9) has been extended to the product of more than two zonal
polynomials in the integrand in Davis (1981), who credits Chikuse with prior claim

on the extension, in a cited but unpublished paper of hers.
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Neither Davis’ utilisation of the Edgeworth expansion in Davis (1976), nor the rather
theoretical paper on Cornish-Fisher expansions in Hill & Davis (1968), seem to have
been taken up to any extent by the statistical or econometric communities; but the

identity (2.8) and its generalisations have created wide interest.

2.3.3 Jack polynomials in Physics

The pretentious title to this subsection notwithstanding, we have surveyed only a
small sample of papers in the area, mainly to do with Baker and Forrester on the
one hand, and Lapointe and Vinet on the other. Most of their papers can be found
as preprints on the internet, which usually differ but slightly from the published
versions:

http://mentor.lanl.gov:80/Welcome.html

One should click on math for Jack polynomials or hep-th for the Calogero-Sutherland

model.

Much of the work currently being done on Jack polynomials is by physicists, and
much of that work places those polynomials in the context of broader families of
functions, which are eigenfunctions of operators involving differential and permuta-

tion elements.

As noted in §3.1.1 on p. 79, the Laplace-Beltrami operator is equivalent, for the
homogeneous symmetric functions arising in this thesis at least, to the Calogero-
Sutherland operator. There is clearly more to be made of the link between statistics

and physics, but such work lies beyond the scope of this thesis.

2.3.3.1 Calogero-Sutherland model

The Calogero-Sutherland model in quantum physics refers to many body problems
with inverse square potential, but only in one dimension (e.g. Baker & Forrester

(1997)). The fact that it is one-dimensional is of course limiting, but treatment at
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that level is at the forefront of what the mathematics is capable of at the moment.
The model is of interest partly because it is the simplest solvable system of this type,
and can provide a vehicle for testing ideas on fractional statistics and quantum chaos:
see for instance Forrester (1995) and Lapointe & Vinet (1996); and for an elementary
view of Maxwell-Boltzmann statistics and the like, in the context of occupancy types

of combinatorial /probability models, see Moran (1968, pp. 32, 105).

The possible states of nature, or the wave functions, are given by the eigenfunctions
of the Schrodinger operator, which are closely related to the Jack polynomials. The
non-symmetric Jack polynomials have to do with the same system on a circle with
exchangeability of particles, whence the permutation operators inserted into the
operators to obtain asymmetric polynomials as solutions, viv-a-vis the symmetric
functions being obtained by differential operators. See Baker & Forrester (1998),

1.d.

2.3.3.2 Creation operators

Higher order Jack polynomials are built up from lower order polynomials by using the
creation operators, which generalise the Rodrigues formula for classical orthogonal
polynomials. The simplest treatment to follow is perhaps Lapointe & Vinet (1995);
one could see Lapointe & Vinet (1997a) and Lapointe & Vinet (1997b) for more

comprehensive treatments.
We have already referred in §1.4 on p. 11 to Zeilberger’s use of the creation operators

to generate the Jack polynomials.

2.3.4 Statistics defined on the sphere

Occasionally called orientation statistics, spherical statistics or directional statistics,
or similar labels, this area of statistical theory may at first glance appear an undis-

tinguished candidate for discussion in this thesis. But there are several reasons for
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which the choice is a suitable one.

1. In §1.3 we posed a series of questions concerning the use of zonal polynomials
in statistical theory and practice. Given the central position of orthogonal
matrices in the definition of zonal polynomials (for which see §2.5 on p. 49),
and the importance of rotational invariance to the theory of random variates
defined on spheres, this area could be expected to be fertile ground for seeing

how zonal polynomials are used, or not as the case will largely turn out to be.

2. If the use of zonal polynomials in statistical theory is obviated, natural candi-

dates to be used instead are

(a) asymptotic limits of the hypergeometric functions defining the densities;

and

(b) asymptotic expansions of the hypergeometric functions.

For statistics at least, the asymptotic limit intended is that for letting the

sample size become indefinitely large.

This area of theory illustrates both of these aspects. That said, the hyper-
geometric functions generally enter only as normalising constants (e.g. Khatri
& Mardia (1977)), and need to be inverted to provide Taylor expansions or
asymptotic expansions for densities. Since the hypergeometric functions ap-
pear only as normalising constants, inference within the class of directional

statistics to some extent need not involve zonal polynomials.

3. There is the analogue of length and magnitude for matrices, generalising the
usual definition for vectors. This would seem an important aspect for multi-

variate analysis, especially in seeking for generalisations of univariate theory.

4. Central to this area of statistics is the idea of factorisation of measures on dif-
ferential manifolds. This was the original motivation underlying James (1954).
By factorising the Haar measure over the parameter space into that associated
with the Stiefel or Grassmannian manifold on the one hand and the remainder
on the other, one could integrate out the remainder (the nuisance variables)
and leave the integral over the subspace of interest. Muirhead (1982, lem.
9.5.3) gives a good indication of the general idea. Recent developments in this
direction include Chikuse (1994), which is described below.
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Basic references in spherical statistics include Downs (1972) and Bingham (1974).
The fundamental distributions are the (matrix) Langevin and Bingham distributions,
with densities proportional to etr(F7X) and etr(X7 AX) respectively, in which etr
stands for the exponential of the trace. The former can be usefully thought of as
arising from the term etr{(X — M)7 (X — M)} appearing in the multivariate normal
density, with the constraint imposed that X7X = 1. When the mean matrix M
reduces to a vector u, the Langevin distribution is circularly symmetric about the
vector . The connection between the Bingham density and the multivariate normal
is even more apparent to the casual observer, and has the advantage of antipodal

symmetry, in that X and —X have the same distribution (Bingham (1974)).

An idea as to the flavour of the subject may be gleaned from Chikuse (1994). She
decomposes the sample space into orthogonal subspaces, say A and B, of dimension
p and m — p respectively; and then considers a subspaces of dimension k in A
and B. First factorising the invariant measure for the whole space into those for
these subspaces, she then decomposes the data matrix into orthogonal singular value
decompositions, and applies this methodology to finding the distribution of canon-
ical correlation coeficients. She is generalising the methodology of James (1954),
as noted in her introduction. She is also honing previous work on this problem,

obtaining the results even when k£ < p and k < m — p are not necessarily true.

The polar and elliptic components are defined with respect to a matrix C' in Downs
(1972, p. 666). Putting C' = I gives the conventional breakdown. Polar (also known
as directional or angular or orientational) and elliptical (length) components are also
called by Downs (1972, p. 668) the modal and concentration matrices respectively.
Whatever they are called, the analogues of direction and length for an n x k£ matrix
X are X(XTX)~Y/2? and (XTX)'? respectively, for n > k.

Generalising known univariate results, Chikuse investigates the distribution of the
orientation of a random matrix, which reduces to a relatively simple form when the
matrix is normally distributed: see Chikuse (1990a) and Chikuse (1990b), i.a. In
another direction, Bingham, Chang & Richards (1992) describe a means of spherical

regression due to Chang, and there are many other developments in this whole area.
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The field is an interesting one in that there are in the literature approximations
obviating the use of zonal polynomials. Those approximations are generally either
as limits of a density for large sample size, or as asymptotic expansions of the same,

as noted above.

2.3.4.1 Asymptotic expansions

Farrell (1985, §13.0) mentions the slow convergence of expansions in zonal poly-
nomials, and recommends resorting to asymptotic expansions of hypergeometric

functions.

Muirhead (1982, §9.5) gives an asymptotic limit of the ¢Fy hypergeometric function
as sample size becomes large, tracing the result back to Anderson (1965), who in
turn refers to Girshick. Bingham et al. (1992, p. 321) use this method; and Chikuse
(1991b) provides asymptotic limiting distributions for statistics in this general area

as sample size becomes infinite.

It would seem preferable however to obtain an asymptotic expansion to a density
function, or other function of interest, rather than a limiting form. Such expansions

generally do not converge, but can provide good approximations for large sample
size (e.g. Erdelyi (1956), Whittaker & Watson (1927, ch. VIII)).

Muirhead (1982, §9.5) cites Muirhead (1978) in this regard. Chikuse provides asymp-
totic expansions for several distributions in this area, for some of which see Chikuse
(1990a), Chikuse (1990b), Chikuse (1991a) and Chikuse (1993); see also Kent
(1987). Chikuse (1991a) refers to earlier related results of Watson (1983).

2.3.5 An engineering application

Smith and Gao have done much recent work in the general area of engineering for

mobile radios. More precisely, their work has involved the performance of space
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diversity wireless systems. The rough idea is that the myriad of signals reflected
back from many reflectors to the source of an electromagnetic signal is more or
less normally distributed, being the sum of independent small signals. The overall
signals are analysed in the complex domain because there are magnitude and phase
associated with the electro-magnetic waves. The quadratic forms arise because the
strength of the contributions is the square of the magnitude. Density functions of
the quadratic forms are hypergeometric functions of one or two matrix arguments,

defined in terms of “complex” zonal polynomials.

Two key recent papers are Gao & Smith (2000) and Smith & Gao (2000). The first
of these is concerned with the capacity of the mobile radio systems, roughly the
number of users which the system can support, and in that paper Gao and Smith

give the joint density function of the distinct elements of
XEXE, (2.10)

in a form which is computable, albeit not too straightforwardly. In (2.10), ' is a
positive definite diagonal matrix; X has a complex Gaussian distribution; and the

superscript H indicates the Hermitian transpose.

The second of these papers concerns the bit error rate of these systems, and here
Smith and Gao provide a computable form of the joint density of the distinct ele-
ments of

yH (xrx") 7'y (2.11)
in which Y also has the complex Gaussian distribution, and X and Y are indepen-
dent.

The density functions of (2.10) and (2.11) are given in Khatri (1966) as hypergeo-
metric functions of matrix argument, but Smith and Gao found that they could not
easily apply those expansions in practice. Instead they used the results of Gross &
Richards (1989), in which hypergeometric functions of matrix argument(s) are ex-
pressed as ratios, with a product of Vandermonde determinants in the denominator.
The problem of evaluation did not lie with the denominator but with the numerator,
involving a determinant with individual elements containing conventional hyperge-
ometric functions having a single parameter as argument. The Gross-Richards ex-

pression is valid for distinct values of the eigenvalues, and Smith and Gao adapted
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their results to the case with repeated eigenvalues, which involved rather intricate

limiting processes.

Gao, Smith & Clark (1998) treats the special case of (2.11) when Y reduces to a
vector, and Smith & Gao (1999) contains further technical details of the outworkings
in this case. The latter paper contains a remarkably simple distribution function for

the complex random variate (2.11) when the matrix Y reduces to a vector.

Gao & Smith (1998b) and Gao & Smith (1998a) are generalisations of the work in
Gao et al. (1998).

Smith and Gao’s work involves the complex zonal polynomials or Schur functions,
and Gross and Richards’ results are valid for the complex field. If this approach
were to generalise to values of a # 1, it would be a very promising approach to the

calculation of Jack polynomials.

2.4 Technical overview

It is convenient to start the present section with an approach based on Hannan
(1965a) (also published as a separate monograph Hannan (1965b)). Although his
article is primarily written for an audience interested in probability, and is naturally
coloured by his particular interest in time series, Hannan’s viewpoint is rather wider
than that of other writers, and parts of his article provide a suitable framework in

which one can approach zonal polynomials from a general perspective.

2.4.1 Group G acting transitively on a set Z

To this end, consider a set Z of distinct elements or points z, on which a group
G acts transitively by permuting the elements: thus gz; = 2, means that g € G

moves 2; to z. Picking out a fixed but arbitrary point zp, the isotropy group K is
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that subgroup of G which fixes zy. Changing the reference point produces conjugate
subgroups of G as isotropy groups. Although in principle a change of reference point
will change little of substance, there will often be an obvious choice for zp, or one

for which resulting expressions are simplified in form.

Examples of groups acting as transitive transformation groups in this way include

the following:

1. Z contains the plots in an analysis of variance applied to an agricultural exper-
iment, with G' the symmetric group acting on the plots. This is the example
used in James (1957), which can perhaps lay claim to being the first paper
to apply representation theory to reflect symmetries inherent in experimental
statistics. The point of James (1954), James (1955a) and James (1955b) was
more to facilitate the integration over awkward manifolds, particularly the
orthogonal group; it was later that the central role of zonal polynomials for
this purpose emerged. The invariant relationship matrices in James (1957)
reflect functions in a discrete group which are the equivalent of zonal spherical

functions for continuous groups.

The ideas in James (1957) were refined in James (1982), which in fact rep-
resents an intermediate step in the development of the theory leading to the
introduction of zonal polynomials in James (1960) and James (1961), despite
its late appearance (see Hillier & Skeels (1996, pp. 156, 163)), Farrell (1985,
§12.0)).

2. As a further example in the analysis of variance, Z contains characteristics
of offspring of pairings of brothers and sisters from different families, with G
comprising the symmetric group acting on the families. This example is the

one used in James (1982).

3. Z contains the points on the surface S? of the sphere in R®. The reference
point zp is usually taken as the north pole, and G as the group of rotations
of the sphere, viz. O(3). The isotropy group K contains rotations around the
axis joining the north and south poles, and the zones are the orbits of the

isotropy group (see §2.4.2.5), viz. the bands of constant latitude.
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4. Z consists of the real symmetric matrices. The group G is the general linear
group GL(n) 3 L, acting by mapping Z 3 Y — LY LT. The reference point zg
is logically chosen as the identity matrix, with isotropy group the orthogonal

group O(n).

This example provides the mathematical foundation of zonal polynomials in
James (1961). See §2.5.

5. Z is the set of “doublets” in James (1961, §3), a doublet being defined to be
a subdivision of the integers {1,2,...,2f} into mutually exclusive pairs. The
group is the symmetric group on 2f elements acting in the conventional manner
on the set of doublets. The isotropy group at the element (1,2)(3,4)...(2f —
1,2f) is the hyperoctahedral group (Macdonald (1995, p. 401)).

This example provides a further central element in the definition of zonal
polynomials, since the hyperoctahedral group imposes symmetries on a gen-
eral tensor to make it correspond to a bisymmetric tensor deriving from a

symmetric matrix (James (1961, §2); see also §2.5.6.4 on p. 60).

2.4.2 Representations of the group G

While it is Z that is of primary interest, to remain at the level of G acting on Z
renders analysis difficult, since in general Z has no particular structure. It is natural
to remove one stage to consider the points z as left cosets of the isotropy group and
analyse the coset space G/K = {gK : g € G}.

In fact we choose to work with representations of the group G. These are operators
permuting vectors in a “carrier” vector space, and are homomorphisms T'(g) = T,

of G: i.e. they mimic the behaviour of the group, in that 7'(g:)T(g2) = T(g192)-

Working with general representations of G can focus more directly on the symme-
tries inherent in the original problem. In addition, representation theory is a well
researched area of mathematics about which much is known, so that one is tapping
into a large “pool” of knowledge. In any case one loses nothing by the additional

generality, since the situation in which G operates directly on G/K is a particular
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example contained within the general theory.

For our purposes, representations will in general take the form of either permutation
matrices, as in examples 1 and 2 above; or will act by translating functions of Z,
i.e. the carrier space is the space of functions on Z of a certain form, as in Example

4 on p. 41 above. Symbolically one has in this latter case

(Ti(9)9)(2) = d(g7'2)

representing the group by left “translating” a function. Similarly another represen-

tation is given by a right translation

(Tx(9)9)(2) = ¢(29) -

Considering the translation of a function is a well trodden path; see i.a. Weyl (1946,
p. 23), Farrell (1976, p. 235), Vilenkin (1968, p. 12), Helgason (1962). Translation in
this sense is sometimes referred to as a shift or shift operation, e.g. Vilenkin (1968,
p. 27).

Note that the multiplication in a group algebra is effectively translation of a function:
for treating an element in the group algebra as a function on the group, and for z,y €
G (so that z(g) = 0 for g # z and 1 for g = z), then (zf)(y) = X_,cc z(9)f(g7'y) =
f(z™'y) (e.g. Macdonald (1995, p. 388)).

Given that we are representing points z as left cosets gk, it is natural to consider
functions f(g) invariant on the right: i.e. f(g) = f(gk). The zonal polynomials will
surface as functions which are invariant from either side, viz. they are bi-invariant,

although this bald assertion gives little idea of their significance.

2.4.2.1 The commutant algebra of a representation

The representation algebra of a representation T is generated by all matrices Ty, g €
G, in the representation. The commutant algebra of T" contains all matrices B which

commute with all matrices in the representation algebra.
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There are several other names for the commutant algebra, including commuting
algebra (Hannan (1965a), Robinson (1961)), commuting ring (Burrow (1965)), cen-
traliser (James (1961), James (1982)), central (Weyl (1931)), and commutator al-
gebra (i.a. Weyl (1946), Farrell (1985)). The use of the last of these names is
reasonably widespread, but it could be confused with the commutator in a group

context, viz. an element of the form z7'y~'zy.

The most common label now seems to be the commutant (algebra) (e.g. Ledermann
(1977)), to which terminology we shall adhere. It should be noted however that our
usage clashes to some extent with older conventions. Turnbull & Aitken (1932, p.

147), for instance, call a matrix X a commutant of A and B when AX = X B.

The commutant is no less important than the representation algebra itself. This is
partly because the commutant is isomorphic to the endomorphism ring of the carrier
space, which provides information about the multiplicity of irreducible component

representations in the representation 7.

More centrally, however, the commutant reflects closely the symmetries inherent in
the situation under investigation. For the representation R1 in (2.13) on p. 50, it will
turn out that the zonal spherical function, properly belonging to the carrier space,
can usefully be regarded also as a member of the commutant: in fact the zonal
spherical functions collectively form an orthogonal basis of the commutant. More
precisely, the commutant is spanned by matrices which are zero outside a single
diagonal block, and that block is a zonal spherical function times a unit matrix.
From the zonal spherical function for R1 is directly derived the zonal polynomial:
see §2.5.5.1.1.

The relationship matrices in James (1957) span the commutant, and are the direct
analogues of zonal spherical functions, for the finite group defined in that simple
analysis of variance setting. That the mathematical introduction of zonal polyno-
mials in James (1961) is perhaps a little hard to follow is partly because the jump
from James (1957) to James (1961) depended on theory which was not published
until James (1982).
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2.4.2.2 The endomorphism ring

The isomorphism between endomorphisms of the carrier vector space and the com-

mutant algebra of the representation can be seen as follows.

Recall that a homomorphism of a left module U into a left module W is a mapping
¢ : U — W such that

¢(au) = ag(u) (2.12)

where @ acts on u € U (resp. w € W) to produce a member of U (resp. W). For
a vector space (or linear space), a special case of a module, u is a vector and a is
a matrix operating on the vector space in the conventional way: in the simplest
case a is simply an element of the coefficient field multiplying the vector. Setting
U = W, the homomorphism is relabelled as an endomorphism. See i.a. Ledermann
(1977, p. 33), who is more careful in his use of language and refers to the above

transforms (2.12) as G-homomorphisms (when a € G).

Suppose now that 7T is a representation of a finite group G with carrier space U and
let a be in the representation algebra, i.e. a = 3 b,T, is a representation of ) byg
in the group algebra; then ¢ in (2.12) is in the commutant algebra. In fact, the

commutant algebra and the endomorphism ring of the carrier space are isomorphic.

More generally, when W is an irreducible representation of G, the dimension of
Hom (U, W), called the intertwining number, represents the number of times that W

appears in U.

2.4.2.3 The commutant as reflecting symmetries

In the context of working with the symmetric group acting on Z (or more strictly
with the representation of the symmetric group induced by the trivial representation
of the isotropy group K, so that the permutations merely shuffle the left cosets of
K around), Hannan (1965a, p. 14) points out the equivalence of working with
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1. the commutant algebra;
2. point pair invariant functions, defined below; and

3. functions having “rotational symmetry” on Z. These are functions f(z) for
which f(kz) = f(z) for all k € K, and are called zonal functions, because they

are constant on the zones K z.

Representing a point z € Z as a left coset of an isotropy subgroup in G, a function
on Z must be a function of G which is invariant on the right: i.e. ¢(gk) = ¢(g) for
all k € K. These functions are called spherical functions. Functions of G having
“rotational symmetry” now are biinvariant, and are called zonal spherical functions:
od(k1gks) = ¢(g) for all ky, k, € K.

The terminology can be traced to the case in which Z contains the points on the
surface of the sphere, and zones are bands of constant latitude (Hillier & Skeels
(1996, p. 164), Hannan (1965a, §5.1), Vilenkin (1968, p. 30).

We show now the connection between these three classes of objects.

2.4.2.4 Point pair invariant functions

Define an equivalence relation on the direct product Z x Z by saying (7, s) ~ (u, v)
if there exists ¢ € G such that u = gr, v = gs. That is, the equivalence classes
are {(gr,gs) : g € G}, where (r,s) is arbitrary but fixed. Such equivalence classes
are called point pair invariants in Hannan (1965a, p. 13), while James (1961, p.
464) gives them no label. Functions defined on Z x Z which are constant on these

equivalence classes are called point pair invariant functions.

Given the equivalence class generated by (r,s) as above, define a matrix I'(r, 3) =
(735) by
1 if (4,7) ~ (1, 5)
Yi; =

0 otherwise
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When T'(g) is a permutation of Z, that the matrices I'(r, s) belong to the commutant

is easily seen as follows:
(F(T’ S)T(g))ZZ,zo = Z (F(T7 S))zg,zl (T(g))zhzo = (F(T’ S))zg,gzo

(T()T(7,8)) 1020 = D (T(9)) gz T28)) 120 = (O1,8))g12, 20 = (T(725)) 1,65

In fact, the matrices I'(r, s) generate the commutant, and correspond directly to the
zonal spherical functions for continuous groups. That they generate the commutant

can be seen informally as follows.

As a finite set being transformed, Z can be considered a vector space of dimension
|Z|. For representations of a continuous group, Z would be considered as a basis of

the carrier space.

The linear transformations of Z are matrices indexed by the elements 2; of Z. If 2}
denotes a basis for the dual space, the matrix with (4, j)th entry z; 2} is the general
linear transformation of Z. Simplifying by indexing this matrix as (z;, z;) and ensur-
ing that (2, z;) and (g2, gz;) always have the same value for all g € G, informally
at least one can see that any operation by a group element and multiplication by

this matrix must commute. See also James (1961, Lemma 5).

The simplest example of the matrices T' is the invariant relationship matrices in
James (1957). He defines B, for instance, in which (B);; = 1 when plots ¢ and j are
in the same block, and 0 otherwise; and similarly for the other matrices (7" for when
plots are subject to the same treatment, G for the grand mean and I the identity).
These matrices generate what James calls the invariant relationship algebra, which
he recognised as spanning the commutant. The carrier “vector space” in his paper

contains linear combinations of the plots.

James (1957) seems not to have found much application in statistical practice. Mann
(1960) is one of the few papers taking up James’ ideas, applying them in the context
of testing nested hypotheses in a linear model which is a generalisation of the analysis
of variance. Even James (1982), a paper essentially bridging the gap between James

(1957) and James (1961), cites no papers deriving from its 1957 parent.
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2.4.2.5 Zones and left invariance of functions

The relation between point pair invariant functions and zonal functions is immediate.
We follow Hannan (1965a, p. 13).

Given the point pair invariant function ~(r,s), set f(z) = 7(2o,2) for some fixed
2o € Z. Then for k € K, the isotropy group for z, one has that f(kz) = (20, k2) =
v(z0,2) = f(2), so that f(.) is a zonal function. Alternatively, given the zonal
function f(2), so that f(kz) = f(z), we set y(z0,2) = f(2) and ~(r,s) = v(gr, 95)

where gr = 2.

2.4.2.6 Projection operators onto the isotropy group

Instead of having the transformation group G act from the left on the left cosets g K,

it is often more convenient to consider the average over the isotropy group within

1
€y = |1{| Zk

kEK

the group algebra of G:

The operator ey, projecting the group algebra into the subalgebra spanned by K, is
generally labelled as a variant of e, and is called e, here simply to avoid confusion

with e and e; which assume specific meanings later.

Thus the action of G on the left cosets G/K:

g 9K = (g19)K = gigK

is mirrored by the action of G within the group algebra:

g1: gezx — (919)62 = 01962 -

James (1961) defines e; as the projection operator for the isotropy group of the
symmetric group acting on the doublets in Example 5, and e as the projection
operator for the orthogonal group in Example 4 on p. 41, this being the isotropy
group for the general linear group in this situation (see (2.22)). This latter operator

e is an integral, being the equivalent operation on a continous group to the average
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over a finite group. In similar vein Macdonald (1995, p. 388) defines a simple average

over the isotropy group K when the underlying group of transformations is finite.

2.5 James’ definition of zonal polynomials

At first glance the approach to zonal polynomials in James (1961) looks convoluted.
The reasoning is intricate, revolving around coincidence of commutants for chains
of group representations. It seems worthwhile to explore this paper in some detail,
partly because the article contains the basic definitional mathematics for the main
topic of interest in this thesis; and partly because James’ treatment can serve as a

vehicle for comment on the other principal approaches to zonal polynomials.

If James (1961) is a little hard to follow, it is partly because the theory supporting
the move from James (1957) to James (1961) only appeared much later, in James
(1982). And admittedly James (1961) is easier to appreciate now that Macdonald
(1995) has given such a scholarly treatment of the essential ideas therein, on which

we comment in §2.6.

As a preliminary guide to nomenclature to come, there is a basic and large diagram
in James (1961, p. 463) which summarises the chain of reasoning of a major part of
his article: this is roughly reproduced below as the central portion of the figure in
(2.13), with some additions to the figure and slight changes in notation. There are 6
distinct representations appearing in the central column, labelled as R1, R2, ..., R6.
The basic situation which James is investigating is on the second line, for instance,

and is listed as R2. Basic notation is given in §1.5 on p. 15, and descriptions follow.
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R7 A> A< — Rl A > Ae < eAe + R1R 2A'p e
R2 28 >V;<1B

R0a AD> Py <148y — R3 AD e Poy <eiSyre

R8 Sy D> Sap < Sy — R4 Syp > Syper < e1Saypen
R5 Sy >DAF

ROb Sy > Poy <A — R6  Syp > ePyy <ele

(2.13)
The three elements within each item denoting a representation are respectively the
representation algebra, the carrier space and the commutant algebra. There is some-
times the implication that the first of these acts from the left and the last from the

right, as in the regular representations R7 and RS.

The representation algebra for most of the representations above the line in (2.13)
is 2, consisting of bisymmetric tensors A of rank 4f, with 2f covariant (lower,
“row”) and 2f contravariant (upper, “column”) indices: see i.a. Spiegel (1959)
for the definitions of covariant and contravariant tensors. These representations are
representations of GL(n), since 2 is the enveloping algebra of L®%/ for L € GL(n).

The exception is R1R, which furnishes a representation of O(n).

Below the line are representations of Syf, the symmetric group on 2f symbols. The
representation algebra is the group algebra of the symmetric group, denoted by the

same symbol in an abuse of notation.

The more general representations underpinning James’ diagram but not appearing
in the original are four in number, and listed on the left side of (2.13). Two of them
are listed as ROa and ROb, since they are identical save for the interchange of their
representation algebras and their commutants: these representations interrelate 2A
on the one hand, and Sy; on the other. The other basic underlying representations
are labelled as R7 and R8: the former of these is the regular representation of 2,
and the latter is the regular representation of Ss;. The arrows from the left-most
column to the middle column indicate that the carrier space has been restricted,
using the projection operators e and e; defined in (2.22) and (2.26) on pp. 56 and
61 respectively. Further details of the overall structure of the diagram (2.13) are in
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§2.5.3.

The carrier space for the regular representation R7 is also shown as 2, but is capable
of a dual and more revealing interpretation. A polynomial in the elements of a matrix
X can be written uniquely as tr (AX®2%/) where A is bisymmetric, so that the carrier
space of R7 may be considered either as 2; or as consisting of polynomials in the

elements of a matrix X. That is,

RT7 A A< 2A “ A > tr (AX®H) < (2.14)

2.5.1 The situation of interest

The basic situation James wishes to analyse is that of Example 4 on p. 41: viz. the
carrier space V' consists of functions of real positive definite symmetric matrices Y/,
and the group action on V' is given by GL(n,R) =G> L: ¢(Y) — ¢ (L"IYL“IT).
This representation, labelled as R2, is of basic interest in statistics for the following

reason.

Consider an n x k data matrix, where k is the number of variates of interest, and n
is the sample size; it will usually be the case that n > k. Denoting the covariance
matrix of X by ¥, that of LTX is LYSL. Disregarding the adjustment required
to allow for the non-zero sample mean, the covariance matrix ¥ is estimated by
XTX/n, which is unchanged by data transformations X — HX, where H is an
orthogonal matrix. The adjustment for the sample mean is standard, see i.a. the

discussion in Mardia, Kent & Bibby (1979, p. 10) on the “centring” matrix.

2.5.2 Overview of James’ reasoning

It will turn out that R1, R2 and R3 are equivalent representations; likewise R4, R5

and R6 are equivalent.

Choosing the second interpretation of the carrier space of R7 in (2.14), the carrier
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space of R1 contains polynomials of the form tr (AeX®2/), in which the projection
operator e is also a bisymmetric matrix. These are polynomials in the elements of
X, but assume the further specific form of being functions of X7X. This shows
the link between R1 and R2, the carrier space for the latter being symmetric real

matrices.

The zonal spherical functions (ZSFs) for R1 span the commutant e2e. The zonal

polynomial (ZP) is defined as
ZSF(X) = ZP(XTX)

in an obvious if unimaginative notation. The zonal polynomials thus span the com-
mutant B of R2. James (1961) identifies the commutants of the first three repre-
sentations with those of the second three, and investigates B by finding §. This is
the intricate part, since R5 involves the doublets mentioned in Example 5 on p. 42,

which caused Farrell to label James’ approach as combinatorial.

2.5.3 Description of the diagram (2.13)

The restriction from R1 to R1R is indeed a “restriction” of a representation in the
conventional terminology: the representation algebra is restricted to that represent-
ing a subgroup of the group previously represented, and is the opposite process of
the third meaning of induction discussed at the end of §2.5.4 on p. 54. 2’ is that
subalgebra of 2 generated by orthogonal matrices, as shown in (2.23). The carrier

space is unchanged.

In the major part of the diagram (2.13), however, we are not defining restrictions of
representations. In projecting the carrier space V onto a subspace of itself, say Vg =
e,V or Ve,, we are in contrast taking a component of the original representation:
i.e. we are stripping away those parts of the matrices in the previous representation
algebra which operate on subspaces orthogonal to Vj, to leave smaller matrices
operating on a carrier space V; of reduced dimension. The commutant becomes
e;V ey, which is commutative in the examples above (for R1, R3, R4 and R6). That

the commutant is commutative means that the representation with carrier space Vg
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is multiplicity free (see Curtis & Reiner (1962, pp. 319, 340) or Ledermann (1977,
p. 27), i.a.).

The projection operators in the diagram (2.13) are defined below: the projection
e onto the orthogonal group is defined in (2.22); and the projection e, onto the
hyperoctahedral group is described in §2.5.6.4.

The representation algebra 2, of R2 is spanned by the matrices A arising in §2.5.4.
The carrier space D in R5 is the set of functions on D, the set of doublets, defined

in Example 5 on p. 42. These are described later.

Although not especially emphasised in James (1961), the symmetry in the action of
GL(n) and Sy is apparent from the diagram (2.13). The dual role of the actions of
these two groups is even more apparent from Macdonald (1995, Ch. VII) and Farrell
(1985, Ch. 12). '

2.5.4 The basic representation of interest R2

A representation of GL(n, R) = G is induced to act on the vector space of polyno-
mials of degree f in the elements of a general symmetric matrix Y, say #(Y), by the

congruence transformation Y — LY L. The representation is given formally as
(R2) ¢ — Lo (2.15)

and is defined by
(Le) (V) = Lo(¥) = ¢ (LY L) (2.16)

The notation L¢ for the result of L € G acting on the polynomial ¢, although con-
ventional, is rather misleading, since the matrix multiplying an appropriate vector
of polynomials is very much larger than the original matrix L. Choosing a basis of
monomials in the elements of ¥, ¢ becomes a vector, say ¢; and similarly denote

the operating matrix by A, so that the representation (2.15) becomes:

(R2) @ = Ap or L— A




Jack Polynomials, Chapter 2. Leigh Roberts, 2001 54

The matrices A, as L varies over GL(n), span the algebra 2, a subalgebra of the
bisymmetric tensors 2. The dimensions of these algebras are compared in (2.17)
and (2.18).

mn=1) | when
m

Recall that the number of ways of choosing m elements from n is (
repeated elements are allowed (e.g. Stanley (1986, p. 15)). Further, let LU be the
jth induced matrix of L. If one considers the transformation X = AY for n-vectors
X and Y and n x n matrix A, then the homogeneous products of j elements of Y are
transformed into the homogeneous products of j elements of X by the ¢ x ¢ matrix
AU, where ¢ = ("*77"). The terminology and notation is that of Littlewood (1950,

p. 178).

The form of A is known to be (L[z])m (James (1961), Macdonald (1995, p. 160)). The
latter of these sources cited gives the relationship in more modern notation: A =
ST(S?(L)) (see i.a. Blokhuis & Seidel (1984), who use ; for S*, for an explanation

of the nature of these matrices). Thus, if Y and L be n x n matrices, and setting

Tz(n;l) and S=<T+;“1>:2’f;! <1+£+...) (2.17)

the vector ¢ is s X 1 and the matrix A is s X s.

It is perhaps worth commenting on the various uses of the word induction here. The
first is the representation of G sending L — A; and the second is the matrix L
inducing the matrix LV for the symmetric tensor representation. Another general
meaning is the representation on a group induced by a representation on a subgroup
(e.g. Ledermann (1977, Ch. 3), Vilenkin (1968, p. 31)). The principal use of the
latter example in this thesis is when the representation on the isotropy subgroup is
trivial, so that the induced representation permutes the left cosets (representing the
points of Z: see §2.4.1 on p. 40).
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2.5.5 The representation R7 leading to R1

Let X be a n x n matrix. The dimension of the matrices in the representation
algebra of R7 is ¢ x , for

t= ("Jr;;— 1) = (’;;f)! <1+ f(an— i) +) (2.18)

It is easy to show that t/s > 2/ x f!/(2f)!, where s is taken from (2.17); in fact

this lower bound is weak unless n >> f.

The typical polynomial in the carrier space of R7 is (using the summation conven-

tion, and restricting ourselves to 2f = 2 indices of each type in order to illustrate)

J1J2 .0 .0
@iy iy Ty Lja (2'19)

in which the tensor a is bisymmetric.

GL(n) 3 L acts on (2.19), from the left say, moving it to the following polynomial
in the carrier space
—1\k —1\k2 _gije iy, 3
(L7); (L7);, abkeiias,

Alternatively, L may act from the right, moving (2.19) to
T , :
@ity 051 %5, (D (D,

Equivalently, one could operate only on the bisymmetric tensors (retaining the rep-
resentation algebra but simplifying the carrier space, so that an equivalent repre-

sentation obtains), representing the polynomial (2.19) as

a1 (2.20)

1112
From the left L moves (2.20) to

(L7 ()5 el

i1

and from the right L moves (2.20) to

afiks (LY (L)B (2.21)

1112
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Whether one chooses to have these representations act from the left or the right,
the commutant naturally acts from the opposite side. Commutants in general need
not be representations of G, because although they act upon the carrier space,
they need not be homomorphisms of G. But regular representations have regular
representations acting from the opposite side as commutants: see for instance Hall
(1959, §6.3).

The tensor e is an operator effecting an average over the orthogonal group from the
right (c.f. (2.21)):

1112 i1 19

afife: o / (H) (H)* dH (2.22)
O(n)

where dH is the normalised Haar measure on the orthogonal group.

2.5.5.1 Zonal spherical functions

Zonal spherical functions arise in the context of representations when there are
massive subgroups of class 1: see §2.7 on p. 68. But we shall place the discussion
in the context of R1 and R1R.

Because the commutant e2le is itself commutative (e.g. Farrell (1985, thm. 12.10.4)),
R1 is multiplicity free: i.e. Rl is the direct sum of mutually inequivalent irreducible
representations. Those irreducible representations are indexed by the even partitions
2) of 2f, from Hannan (1965a, p. 36), James (1961), Macdonald (1995, p. 402), i.a.:
say

Rl = & Rlyy
ARf

where R1,) is the irreducible representation of GL(n) associated with the partition
2\ - 2f.

Each Rl,, however becomes reducible when it is restricted to represent O(n) rather
than GL(n):
(R1R) A' > e

where 2’ is that subalgebra of 2 generated by the orthogonal matrices only: i.e.
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2’ is spanned by tensors of the form

(HY'(H)?..., for He O(n). (2.23)

11 i

Each Rl is restricted in this way to become R1Ry).

The trivial representation occurs exactly once in R1Ryy, from Frobenius reciprocity
(e.g. Burrow (1965)). Thus there is exactly one element of the representation matri-
ces in R1Ry, which is fixed at unity, with the remainder of the row and column in
which it occurs identically zero (for an appropriate basis of the carrier space): see
i.a. James (1968), Mathai et al. (1995, p. 319).

Moving back to the representation matrices in Rlsy, say from T*(h) to T*(g), and
assuming both that a suitable basis of the carrier space has been chosen and that
the left cosets of H represent points of Z, then the first column of functions T} (9)
are functions which are right invariant under H and therefore de facto functions on
Z, called spherical functions or associated spherical functions (Hannan (1965a, p.
16), Vilenkin (1968, p. 30), Hillier & Skeels (1996, p. 164)); and the topmost of
these functions is also left invariant under H, and so is a zonal function: it is called
a zonal spherical function, labelled as ¢*(g), and is invariant under the action of H

from either side.

We mention the following points, highlighting the special nature of the zonal spher-
ical functions ¢*(g) for A+ f.

1. There is a link between the biinvariant functions and the commutant, noted
in §2.4.2.3 on p. 45. For a representation containing the irreducible compo-
nent R1,, once only, the corresponding block in the matrix in the commutant
assumes the form ¢*(g)I. It is in this sense that the zonal spherical functions

#*(g) span the commutant.

Since e2le is a commutative algebra, the identity is the (direct) sum of the
primitive idempotents. These primitive idempotents are the zonal spherical

functions, or more precisely the blocks ¢*(g)I for A f.

This form of the commutant generalises to the situation in which the multi-

plicity exceeds one (Hannan (1965a, p. 16)), but we do not need the extra
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generality here because R1 is multiplicity free.

2. If the carrier space contains functions on Z, i.e. the carrier space contains func-
tions on G which are right invariant under H, the zonal spherical function is
also in the carrier space: the zonal spherical function spans the 1 dimensional

space which is invariant under 7% (k).
3. The zonal spherical functions are a basis of biinvariant functions on G.

4. With the exception of the first element, functions in the first row of 7*(g) are

not constant on left cosets of H, and do not represent functions on the set Z.

5. Rows and columns are reversed in the above comments should right cosets

correspond to points of Z rather than left cosets.

The functions T})(h) in RIR are mutually orthogonal, with respect to integration
over the uniform measure on H, with the product of functions being that in the

group algebra of H.

Choosing one of the basis functions to be ¢*(h), one can integrate the elements
Tl);(h) over the orthogonal group, whereupon all integrals vanish save for that with
(4,5) = (1,1), viz. the zonal spherical function. The zonal spherical function is
identically unity on O(n), and one sees the importance of using the zonal spherical

functions as basis functions for the purpose of integration over the orthogonal group.

More generally, Vilenkin & Klimyk (1995, §3.3.1) show that zonal spherical functions
of a Lie Group G are eigenfunctions of operators having the form of Laplace-Beltrami
operators. These functions are related to different root systems, and need not be

hypergeometric functions.

2.5.5.1.1 Zonal polynomials

Macdonald (1995, p. 419) states that a polynomial function f(z) of the elements of

the matrix = which is invariant under the action from the left of the orthogonal group
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O(n) necessarily assumes the form f*(y), a polynomial function of the elements of

y = zTz. That is
f(z) = f(kz) forall k € O(n) and all z

= f(z) = f*(z"2)
The zonal spherical function ¢*(z) has been expressed as the zonal polynomial

¢ (27z) = ¢¥(1).

2.5.6 From ROa to R3, and from ROb to R6

2.5.6.1 The actions of & and S;; on the carrier space Py

Let Py denote the space of covariant tensors of rank 2f. Then 2 5 a acts on z € Py
as follows, where we illustrate with f = 1:
(am)iliz = a'glli?:mjljz

The action of the symmetric group Sy on Py is as follows:

(8%)iy iy = Tigy sian

2.5.6.2 The actions of Sy; and 2 on P,; commute

The representation of 2 on Pyy, with each a € 2 representing itself upon multiplying

from the left, has commutant Sy;. This can be seen as follows, still using f = 1 for

illustration:
— kiko _ kiks
(asm)‘“zz - ailig (SI)klkz - ailiz mksl,kJQ
(saz), , = (ax)i, i, = a**2 ) 0 = aieketag, | gkika g
1112 islyis2 — YWigy dgnkike = Wigiy kike = Qijiy Lks1ks2

The point is made more succinctly in Farrell (1980, p. 305). The commutativity of

the two actions is also noted in Hannan (1965a, p. 34).
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Note that in the coordinate free definition of a bisymmetric matrix in Farrell (1985,

Defn. 12.1.8) as a matrix A satisfying
P,A=APF,,

where P, are (orthogonal) permutation matrices operating on the indices, recasting
the equation as

A= P AP, = PTAP,
shows that A is simply invariant under the rows and columns being subject to the

same permutation.

2.5.6.3 Representations with P,; as carrier space

It was James’ insight to consider
(ROa) Q[Dsz 452f

and
(ROb) ng > ng g A

and to mimic the basic representation of interest R2 by imposing symmetry require-
ments on Py in the carrier spaces in R0Oa and ROb. Imposing the symmetry arising
from the action of the orthogonal group using e € 2 as defined above in (2.22)
will be used for ROb; and imposing symmetry by permuting the indices with the
symmetric group Saf, leading to the projection e; € Sy, to be defined below, will
be utilised for R0a.

2.5.6.4 The hyperoctahedral group and the projection operator e;

The class of polynomials of degree f in elements of a symmetric matrix ¥ contains
elements of the form

vyl . o]
the enveloping algebra for which class contains tensors of rank 2f, with f covariant
and f contravariant indices

zj1j2j3-~-jf (2.24)

i19283...0¢
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satisfying particular symmetry conditions. These tensors are, firstly, to be bisym-
metric with respect to Sy operating on lower and upper indices simultaneously; and
secondly to be of unchanged value when a given vertical pair of indices are inter-
changed, since Y is symmetric. The subgroup of Sy containing these symmetries
is the hyperoctahedral group, say HG3y, or more simply HG. There are f! ways of
permuting the vertical pairs of indices, to be multiplied by 2/ to allow for the possi-
ble interchange of each such vertical pair. For general f, then, HGyy is a subgroup
of Sys of order 2/ fl. See Macdonald (1995, p. 401).

Although the form of (2.24) is convenient from the point of view of seeing which
symmetries should apply to the indices, in order to consider z as a member of
the carrier space Py; one wants to consider all the indices as covariant in order to

preserve the usual rules of tensor contraction. We rewrite (2.24) in the form

(2.25)

2i1,d1582,923 58 F o0

from which the connection with the doublets in §2.5.8 will become clear.

In order to impose the requisite symmetry on the tensor in (2.25) above, the operator
is a simple average over the elements of the hyperoctahedral group (see the discussion

in §2.4.2.6 on p. 48). Following James (1961) we call this operator e;:

e = -271—);' > s (2.26)

SEHG

The set e; Py thus consists of elements of the form (2.25) such that for any s € Sy,

zil:jlii%jﬁ-“;ifrjf = zi.sl ’jsl§i321js2;vn;iaf,jsf

and for which in addition there is symmetry when interchanging i; and j; for any ¢
in (2.25).

2.5.7 Comparing R4 and R5

The isomorphism between the representations

(R4) S2f > ngel < 6152f61
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and
(R5) Sy DAF

follows because e; is the projection onto the isotropy group at the doublet (12)(34) .. ..
Thus D is the set of functions on the cosets of the isotropy group; and we choose
to work with the average over the isotropy group than with the coset, in line with

the comments in §2.4.2.6.

2.5.8 Comparing R5 and R6

To show the connection between
(R5) Sy > D AF

and
(R6) Sop D> ePyy < ee

is however less straightforward.

Citing the first main invariant theorem in Weyl (1946, ch. 2), James (1961, eqn.
(15)) states that the subspace ePys is generated by tensors assuming the form of
products of Kronecker delta functions. That is, the set ePys has as basis the set of
functions of the form

Oitiu Digdey o2 O

ty(2f—1)sls(2f)
as s varies over a transversal of HG in Sy; (e.g. Macdonald (1968, p. 44)), i.e. one

representative is chosen from each coset.

James’ claim can be illustrated by an example with f = 2:
€ Ginsbinae) = [ (VL DBV Oy gs0nnd
= /(H 111 (H)Z:(HT)E (HT);: 6]'1,]'35]'2»1'4dH

= /(HHT):?(HHT):;CZH = /6i1,i35i2,i4dH= 61'1.7336?32,1'4
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The connection between R5 and R6 is then immediate. For the tensor &;,,0,i,0isig - - -»
for instance, there is a direct correspondence with the doublet (13)(24)(56) .. ..

The point about eP,; being generated in the above fashion is more readily under-
stood from Macdonald (1995, p. 419). Let vy,. .., v, be the columns of an n X n ma-
trix such that a polynomial function f(vy,...,v,) = f(kvy, ..., kv,) forallk € O(n).
Then Macdonald states that f is a polynomial in the inner products (v;, v;). Choos-
ing the pairs of vectors v; and v; corresponds to picking a doublet; and the functions
f correspond to the functions on the doublets, which James (1961) denotes by D,
as do we. Macdonald also refers to Weyl (1946, ch. ITA, §9) for the first main the-
orem on invariants, but the reasoning in his treatment does not depend on Weyl’s

theorem.

In any case James (1961, eqn. (5)) had already assumed this result of Weyl’s earlier
in his paper, when he defined the projection operator e (our equation (2.22)). There
an average over the orthogonal group to define R1 was assumed to be of the form
#(xTz) for suitable matrices z: making this assertion allowed his claim that R1 and

R2 were equivalent.

Let t, = 6iy1is30iygiss - - - € €Poy for the doublet v = (i511s2) (is3is4) ... € D, where
s € Syp; and d, € D a function assuming the value 1 at v, 0 otherwise. Then the
matrices in the commutants contain elements of the form a(p.v)d,d; or its image
a(p.v)t,t) under the isomorphism between the commutants of R5 and R6, where
the asterisk denotes the corresponding member of the dual space, and a(u.v) is a
point pair invariant function (see §2.4.2.4 on p. 46). James calculates a(p, v) as the
number of cycles in his diagram “intertwining” the doublets p and v: this number
turns out to be the length of A when 2\ defines the equivalence class in question
(James (1961, p. 464)).

Reverting to f = 3, and for the doublets p = (13)(24)(56), v = (14)(23)(56), for

instance, the (u,v)th element of a matrix say I' in the commutant of R6 is

" 9 S R
tl-ttu = 5i1i36i2i4 62’51:56]1]4 512]3 5‘75]6
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Taking the trace of this matrix leads to
tr T = 8000 5i5i65i1i46i2i35i5ie — 5i1i35i3i25i2i45i4i1 % disiediais -

in accord with James’ claim that this number is n®®*): for these values of y and
v, A= (2,1) F 3 and a(p,v) = £(N) = 2.

2.6 Macdonald’s definition of zonal polynomials

The treatment of basically the same material as James’ in Macdonald (1995, Ch.
I, App. A; Ch. VII) is terse, and has the demerit of demanding rather a strong
background in algebra, including the rudiments of category theory. On the other
hand, Macdonald’s treatment is more or less self contained, in contrast to James’

treatment, resting as the latter partially does on rather obscure initial references.

It is not our intention to dissect Macdonald’s treatment as closely as we did James’.
Rather we shall emphasise the overall approach that Macdonald is taking, plac-
ing it in broad terms within the framework of James (1961), and relating specific

developments in Macdonald’s book to the ubiquitous diagram (2.13) of James.

2.6.1 The initial setup

We first show that Macdonald and James (1961) are basically taking a similar ap-
proach to the same problem.

Following Macdonald (1995, p. 388) we write G for a finite group, A as its group
algebra, and K for a subgroup. Setting e = (1/|K|) )_,cx k, Macdonald claims that

End4(Ae) and eAe are anti-isomorphic. This can be seen as follows.

The elements of End 4 (Ae) are ¢y, say, where ¢, (e) = he. One chooses the elements
h from a right transversal, i.e. one representative h is chosen from each right coset
(again see Macdonald (1968, p. 44)).
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Then ¢(ge) = g¢(e) from the definition of an endomorphism of a module. Using the

fact that e is an idempotent leads to
on(e) = ¢n(ee) = epn(e) = ehe

én(ge) = gonle) = gehe
bn, 1, (ge) = gehsehie

This is nothing more than the representations R1 and R4 in (2.13) on p. 50, upon
substituting 2 and Syy respectively for G in the above.

The result is analogous with that in Macdonald (1995, (3.6), p. 416) stating that
the endomorphism ring of the right cosets of K is isomorphic to the biinvariant
functions, in the context of polynomial functions on elements of matrices in GL(n),

and where K is the orthogonal group. The operator ey in that case is analogous to
that in (2.22) on p. 56.

2.6.2 Development of Macdonald’s ideas

As with James (1961) and Farrell (1985, ch. 12), the basic element on which Mac-
donald operates is the tensor power of a matrix. From Macdonald (1995, p. 156) we

have
T"(V)=T*"V = & M,® F\(V) (2.27)

A2m
where M, is the irreducible representation of S, indexed by A and Fy (V) is the ir-

reducible (symmetrised tensor) representation of GL(n) indexed by A. The notation
in (2.27) perhaps needs some clarification. The direct sum is firstly a breakdown of
the vector space T?™V into a direct sum of subspaces, as indicated. The compo-
nents are however not just vector subspaces, but also act as carrier spaces to matrix
operators which represent the indicated groups. And T*™V is to be thought of not
just as a vector space, but as the representation of 7?™ A with carrier space T*™V.
More precisely, T' = T?™V is a Sy, x G-module (Macdonald (1995, p. 421)).

The expansion (2.27) requires only that the coefficient field for V' has characteristic
0, and hence is valid for both R and C.
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The tensor power T' = T?™V defined in Macdonald (1995, p. 417) is the direct
analogue of P; in James (1961). Denoting the hyperoctahedral group by HG and

the orthogonal group by K, we have the direct correspondences
THEG = e1 Py and TH = ePy; (2.28)

where we write equals for isomorphisms. The superscript in 7€ denotes an averag-
ing over the application of HG or equivalently the subset invariant under the action
of HG; and similarly for K. Thus we are essentially working with R3 and R6, to

use the notation in (2.13).

We have noted elsewhere that the complex case is much easier than the real case,
and nowhere is this clearer than in Farrell’s work. In Macdonald’s work this fact
is manifested in (2.28), where the complicated action of the wreath product HG
is replaced in the complex case by a simple diagonalisation operator, utilising the

complex conjugate of a complex number: see Macdonald (1995, §VILS5).

The Gelfand pairs (So,, HG) and (G, K) provide the representations R4 and R1

respectively, as already noted.

Macdonald (1995, p. 414) takes the basic action defining R7 in (2.13) as

p(z) — gp(z) = p(zg)

Thus a point corresponds to a right coset of the isotropic subgroup, not the left
coset as in Hannan (1965a). There is a consequential distinction between (2.16) and

the action on symmetric real matrices underlying R2 in (2.13):

p(o) = gp(o) = p(g7ayg),

from Macdonald (1995, p. 417), in which 2,0 € GL(n) and in addition ¢ is sym-

metric.

Macdonald (1995, p. 402) shows that 7% = @M,, from consideration of the induced
representation 1%;. The character of the induced representation turns out to be the
plethysm hy,[hy] = 37, s2», from Read (1968, §7.2) or Littlewood (1950, p. 206),
since HG is the semi-direct (wreath) product of S and S,,. See Cohn (1981, p.




Jack Polynomials, Chapter 2. Leigh Roberts, 2001 67

278) for an explanation of the wreath product, and Read (1968) for the connection

between wreath product and plethysms.

Macdonald’s proof that THG = @F,, is longer, and utilises the fact that regular
representations have irreducible components repeated the same number of times as

their dimensionality.

He makes the connection between R1 and R3 by showing that also exP(G) =
@®F;,. Finally, like James, he moves from R1 to R2 by inserting Y = XXT, or the
equivalent: the mapping p(z7z) — p(z) in Macdonald (1995, p. 418).

Apart from its innate elegance, Macdonald’s approach offers the advantage of as-
suming at the start that the representations of interest are going to be multiplicity
free, i.e. that (G, K) is a Gelfand pair: this simplifies matters considerably. In other
words Macdonald restricts his attention to double cosets of K, or rather the space
of functions on G which are constant on double cosets, which is to be spanned by
the zonal spherical functions. He establishes a simple lemma stating that the pair
is Gelfand when KzK = Kz 'K for all # € G. He then applies the lemma to the
situations of interest to show that in fact he need only be concerned with the case

in which (G, K) is a Gelfand pair.

This could be contrasted with Vilenkin (1968, p. 29), who defines zonal spherical
functions when a representation T'(g) of G is of class 1 relative to a massive subgroup
H. His approach is adumbrated in §2.7, and the basic equations there are similar
to those in Hannan (1965a, pp. 15, 16).

Vilenkin’s methodology is well suited to obtaining parallels with classical systems
of orthogonal polynomials, and extending into new families of special functions.
Also his approach lends itself readily to more complicated scenarios, such as repre-
sentation theory over non-compact, infinite dimensional Lie groups, etc. Vilenkin
& Klimyk (1992, p. 321), for instance, deal with Gelfand pairs for non-compact
isotropy groups, for which generalised functions, or “distributions” in the sense of

say Antosik, Mikusinski & Sikorski (1973), are required.
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But however elegant Vilenkin’s outworking, he seems to fail to mention just how of-
ten his assumptions are going to be valid, and what sufficient conditions there might
be to guarantee the validity of his theoretical outworking. The beauty of Macdon-
ald’s approach lies in his applying a simple criterion to show that his simplifying

assumptions are valid for the situation of interest.

2.7 Vilenkin and Klimyk’s work

The work of Vilenkin and Klimyk in the area of Jack polynomials is part of an
encyclopaedic publication exploring the interrelationship between special functions
and representations of Lie groups. Their collaborative effort appears first as a three-
volume set Vilenkin & Klimyk (1991) Vilenkin & Klimyk (1993) and Vilenkin &
Klimyk (1992); and a separate volume appeared soon afterwards: Vilenkin &
Klimyk (1995). Publication was some years in the pipeline, and in fact Vilenkin

died at about the same time that the first volume appeared.

The four volumes bear the strong imprint of Vilenkin (1968), which made its orig-
inal appearance in Russian in 1965. Vilenkin’s and Klimyk’s approach facilitates
the ordering of a vast array of seemingly disparate results on the various types of
classical orthogonal polynomials; and allows extension into new families of invariant
polynomials and other special functions (Vilenkin & Klimyk (1991, Intro.), Vilenkin
(1968, Preface)).

Their approach to spherical functions is to consider a transformation group G with
isotropy group H as above, and to define H to be a massive subgroup of class 1 when
there is essentially only one vector a such that ha = a for all h € H. Setting a = e,
and ey, €3, ... as remaining members of an orthonormal basis of the carrier space,

Vilenkin (1968, p. 30) defines the zonal spherical function as

ti(g) = (T'(g)er, e1) (2-29)

The inner product may be considered the canonical one, viz. (e;, €;) = d;;.
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The spherical functions, or the associated spherical functions, are defined as

t1i(9) = (T'(g)es, e1) (2.30)

which are constant on right cosets of H in G.

Vilenkin & Klimyk (1991, p. 101 ff) give essentially the same approach; while
Hannan (1965a, pp. 15, 16) gives formulae analogous to (2.30), although in other

respects his treatment is quite different.

One gets the impression that the work of Vilenkin and the other Russian writers
(Gelfand, Naimark etc.) in the area of group representation theory and its applica-
tions to special functions was not widely known in the West, at least until the late
1980s or 1990s: and in particular the work was not known amongst the statistical

community.

2.8 Farrell’s work on zonal polynomials and sum-
mary of James’, Macdonald’s and Farrell’s ap-

proaches

Farrell distinguished between James’ and his approaches to zonal polynomials in that
they were classified separately in §2.1. His approach to “complex” zonal polynomials
is elegant, and distinct from James’ approach to real zonal polynomials in James

(1961), but his method does not generalise to the real case.

James (1964) is an extraordinary farrago of results which were known to James and
Constantine at that time. As Farrell (1985, §12.0) notes, the paper is apparently
without error, but contains a large number of striking assertions concerning zonal
polynomials of both the real and complex kinds, the provenance of which was un-
clear. In the remainder of that same chapter Farrell sets out to justify the general
tenor of results in James (1964), with an approach which is basically the same as that
adopted in James (1961) and Macdonald (1995), although offering greater intuition.
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2.8.1 Farrell’s approach to complex zonal polynomials

Farrell (1980) works with polynomials in the elements of a matrix X € GL(n) of

the form
e(X) =tr (B X®™) .

The matrix Ej is bisymmetric, and the symbol e does not have the implication of a

projection operator: we simply follow Farrell’s notation.

Again denote by 2 the algebra of bisymmetric matrices, and its centre by C(2).
Working in the complex field, Farrell (1980, p. 303) shows the equivalence of

e(UXU*) = e(X) for U unitary and X € GL(n);

e(XY) =e(YX) for X,YeGL(n); and
E,eC().

Whereas James’ basic approach was to project the bisymmetric matrices onto a
subspace invariant under the orthogonal group, Farrell’s is to consider C(2). A
key lemma in Farrell (1985, §12.6), due to Wedderburn, isolates the nature of the
centre of the algebra when subalgebras are mutually commutant. The lemma finds
an elegant application to the interrelationship between the symmetric group and
the general linear group in ROa and ROb, showing that the centre is spanned by the

zonal spherical functions.

2.8.1.1 Product of group characters

The irreducible components of R7 in (2.13) on p. 50 are repeated as many times
as their number of rows, since R7 is a regular representation. One block of this
representation, corresponding to the partition A say, contains f, multiples of an
irreducible representation F), say. Then the submatrix corresponding to Fj in C(%)
will contain A® I, provided we are working within C; where I, denotes the identity

matrix of appropriate dimension (eg, see Hannan (1965a, p. 12)); and A is f) X f.
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R1 is multiplicity free, and the irreducible element of the centre of eZle is P, in
Farrell’s notation, which corresponds to aly, treated as one diagonal block in an
otherwise zero n™ x n™ matrix. The a is a character of GL(n); and each individual
diagonal element of the I matrix gives an equivalent representation to another in
which the position of the non-vanishing diagonal element is permuted. Permuting
those diagonal elements multiplies the character of GL(n) by the number of rows of

the irreducible representation, viz. x(1).

We thus have the following simple formulation of Schur functions (or “complex”

zonal polynomials, or Jack polynomials with a = 1) in terms of group characters:
CA(X) = xa(1)xa(X) (2.31)

The simplicity of (2.31) is not replicated when working in the real field R, because

the commutant assumes a more complicated form.

2.8.1.2 Derivation of key formulae for complex case

One advantage of Farrell’s approach is a quick derivation of several of the key integral
identities which characterise the zonal polynomials, but derived for the complex
zonal polynomials. Setting U(n) to be the unitary group, chief among these identities

are the “splitting identity”:

Cr(X)CA(Y)

- 2.32
Ca(1) (232

/ CA(UXU*Y)dU =
U(n)
and the reproducing property of the zonal polynomial:
(3 * C~& = axa\
where the convolution * denotes the product in the group algebra

Cy % Cu(X) = CA(XUY)C,(U)dU,
U(n)

and a, is a constant. There are several other integral identities of this type, eg
Farrell (1985, p. 264); and Farrell (1980, p. 304).
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There are often equivalent formulae for “real” zonal polynomials. The equivalent to
(2.32), for instance, from James (1961, p. 467) or Macdonald (1995, §VIL4), is

Zx(A)Z)(B)

70 (2.33)

/ Z\(AHBH')dH =
o(n)

Nevertheless it is clear in general that working in the complex field is often far
simpler than working in the real field. The most obvious example from this thesis is
that the Schur functions are far more tractable than zonal polynomials, a fact noted
by several authors, including Takemura (1984) and Farrell (1985, §12.0). Moreover,
Bingham et al. (1992, p. 316) comment that the complex case is easier than the
real for their work in statistics on the sphere (see §2.3.4). Smith and Gao make
similar comments, noting in particular that the random variates defined by (2.10)

and (2.11) are quite intractable in the real case: see §2.3.5 on p. 38.

2.8.2 Mini summary of James’, Macdonald’s and Farrell’s

arguments

The nub of the argument in each of James (1961), Farrell (1985, Ch. 12) and Mac-
donald (1995) is, in the notation of §2.6.2 on p. 65,

TngK _ (T21§)HG _ (TgG)K

which gives a one dimensional space in centre of T, invariant under both HG and

K, spanned by the zonal spherical function corresponding to 2.
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2.9 The place of zonal polynomials in statistical

theory

2.9.1 The central place of zonal polynomials in multivariate

statistical theory

The central position of zonal polynomials in multivariate statistical theory is vicar-
ious, in that it is the density function which is central; and the density function of
statistics and random variates arising in multivariate theory tend to be hypergeomet-
ric functions of matrix argument(s), which are most readily defined as expansions in
zonal polynomials. Statistical theory often proceeds via generating functions, par-
ticularly the Laplace transform and the Fourier transform; and when the density
functions have hypergeometric function expansions in zonal polynomials, so do these

generating functions.

The two arms of statistical inference are estimation of parameters, and hypothesis
testing. Looking first to the estimation, to obtain maximum likelihood estimators
one needs to integrate the density over the parameter space for fixed values of
the variate. For method of moments estimators, one needs the moments of the
distribution: given the generating function, the moments are obtained from setting
the variates to unity in the zonal polynomials; alternatively one evaluates an integral
involving the hypergeometric expansion for the density over the entire variate space
to obtain the moments. As for hypothesis testing, the basic aim is to calculate
probabilities, for which one has to integrate the density over a subspace of the

variate space.

While the main use of zonal polynomials in statistical theory is as a constituent
of hypergeometric functions as described above, that is not their only use. Their
role in directional statistics is rather indirect, as discussed in §2.3.4 on p. 35; but
their position in generalising and improving Stein’s variance estimators in higher
dimensions was pivotal. Utilising methods which depended on the properties of

zonal polynomials, Shorrock & Zidek (1976) for instance found optimal estimators
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of the generalised variance (the determinant of the covariance matrix) for the linear

model. See also Zidek (1978) and references therein.

2.9.2 Little need for exact calculation

Even if the zonal polynomials are so central to the theory of mathematical statis-
tics, it may not be overly restrictive to seek merely a workable approximation to
zonal polynomials rather than precise evaluation. After all, the practitioner is not
primarily interested in calculation of a zonal polynomial as a one-off exercise. One
is interested in having workable approximations to whole families of them (for all
partitions of a given weight, say), and efficient algorithms for repeating those calcu-
lations for growing partitions of the one lot of variates on the one hand; and for a
grid search for numerical integration over many collections of variate values on the

other.

The challenge for the first of these is to use the previously evaluated zonal polyno-
mials for their calculation for partitions of higher weight, in an efficient recursive
algorithm. The challenge in the second is to find some way of summarising the prop-
erties of a collection of variates, so that one does not have to recalculate completely
from scratch upon a change of variates. One possible way of doing this is to fit a
geometric progression to a set of variates, easily done by obtaining a straight line
regression of the logarithms of (positive) sample variates, when the Jack polynomial
can relatively easily be approximated by either the ey or m, function expansion:
we make a preliminary excursion along this path in Chapters 6 and 7. See also the

comments in §8.3 on p. 190.

There is clearly scope for accumulating rounding errors, at any of the stages of
calculation. But on the other hand it may not be crucial to obtain very precise
results. For estimating tail probabilities of a statistic, for instance, an answer of say
1073 for a probability may well be sufficient for one’s purpose: an error by a factor
of 10, say, still means that a test of a hypothesis can be rejected at the 1% level.
An approximation to the value of the density function, or better an exponentially

falling upper bound on its value, will facilitate greatly the numerical calculation of
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3. Calculation of each zonal polynomial is difficult. This thesis for instance is
concerned with their calculation, or rather their calculation via determinants
involving ey or my functions. And the calculation of these basis functions may

be non-trivial, let alone forming them into determinants.

4. For the one set of variates, one needs efficient ways to reproduce calculations
for different partitions of the one weight; and then efficient algorithms to
perform calculations for partitions of increasing weight, recursively from the
partitions of lower weight. Again, this task is complicated by the highly non-

linear nature of partitions.

5. One needs then to repeat the procedure for different sets of variates. Ideally

one would like to expedite this by utilising previous calculations.

What is remarkable is that not only are the zonal polynomials hardly ever calculated,
there is virtually no literature on their approximations, or on algorithms that can
be applied quickly, if approximately, to their estimation. Nor does there seem to be
any work done on approximating ey and m,) functions in the literature, or at least

in the statistical and combinatorial literatures.

The fact that so little attempt to calculate zonal polynomials is made, even with the
extraordinary increase in computing power since their definition in 1960, indicates
that the problem lies above all in obtaining sensible algorithms for their calculation.
Part of the problem may be the intrinsic and complicated non-linearity of partitions

of integers.

2.9.3.2 Interpretation of successive terms

The principal reason for which so little work is done on evaluating zonal polynomials
may not even be the numerical awkwardness as adumbrated above, so much as the
fact that the successive terms in the hypergeometric expansions have no logical
interpretation per se. In the Edgeworth expansion, for instance, the first terms
have an interpretation. The first term corrects for the non-zero third cumulant, the

following for the non-zero fourth cumulant; and these cumulants have standard
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interpretations in terms of the characteristics of the distributions involved. In some
sense one is compensating for increasing levels of non-normality, even if one usually

takes the Edgeworth expansion no further, since it does not in general converge.

One would prefer an asymptotic expansion from which, despite the frequent failure
to converge, one can often get good approximations to the function in question,
and often a bound on the error from the first omitted term in the series. Working
with asymptotic expansions in more than one dimension may admittedly be a lit-
tle more daunting; and there would still be the problem of meaningful statistical

interpretation of successive terms.

2.9.4 Size of matrices

Given the few attempts to calculate zonal polynomials numerically, naively one
might have thought the problem to be that the order of the matrix argument in the
zonal polynomial increased with sample size. Given the rapid increase in p(n) as
n — o0, even a very modest sample size would then have made the calculation of
zonal polynomials prohibitive. But this seems not to be the problem, in statistical

applications at least.

The order of the matrices seems not to go up with sample size, at least while one
deals with sums of squares/products types of matrices. An example is afforded
by the analysis of variance, in which both the “Between” sum of squares and the
“Within” sum of squares involve sums of squares and products: both quantities
estimate a variance matrix under different scenarios, and the variance matrix has
dimension the number of parameters estimated. It is a similar story for the archety-
pal inference problems producing density functions which are expanded in series of
zonal polynomials, since most of them involve estimates of one covariance matrix or

another.

To be sure, the number & of parameters can be large, especially for estimators in
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econometric systems of equations: p(k) is then quite large, behaving as

1 ex m %
a3 P\ TV 3

for large k (e.g., Andrews (1998, p. 70)).

On the other hand, n x n determinants can be calculated in O (n*%°) time, according
to Grotschel & Lovasz (1995, §10), and the determinants arising in Chapter 3 are
almost diagonal; they are moreover extremely sparse, according to results in §4.2
on p. 101. The size of the matrices arising in practice should not prove too great a

barrier to the application of the determinantal methods discussed in this thesis.




Chapter 3

Determinantal expansions of J, in
terms of ¢y and m), functions, and

their interrelationship

3.1 Preliminary

3.1.1 Introduction

In this chapter we find the matrices Q™ and Q¢ in (1.1) on p. 13, and exhibit their
interrelationship. In chapters 4 and 5 we shall explore the structure of these matrices

in greater detail.

Given that the m), and e, functions span the homogeneous symmetric polynomials,
one can find the entries in Q™ and Qf “from first principles” by expanding Lm,
in terms of the m, functions, and Le, in terms of the ey functions. This was the
approach taken in Roberts (1998). There the single value @ = 2 was used, but in

fact the outworking is almost identical for general a.

79
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Lapointe et al. (2000) have provided the analogue of the Q™ operator matrix for the
Calogero-Sutherland operator in mathematical physics, say §2%g; they have also
expressed J, as a determinantal expansion based on Q%s. Roberts (2001) shows
that for homogeneous symmetric polynomials (but not for general functions), the
Calogero-Sutherland and the Laplace-Beltrami operators differ by a constant, i.e.
that

as = Q"+ EI. (3.1)

With Q™ available from Lapointe et al. (2000), Roberts (1998, ch. 2) and (effectively)
in Macdonald (1995, p. 327, Ex. 3(c)); and the interrelationship between Q™ and
§2¢ derived in Roberts (2001) and provided in §3.3 below, one could infer ¢ from
Q™. Aiming at a self contained exposition we reverse the process, deriving €2¢ and
thereby deducing ™.

In the first part of the chapter, we give the basic form of the determinantal expansion
of Jy, following Roberts (2001). This sets the framework for the whole thesis.

We then show the interrelationship between Q™ and ¢, again following Roberts
(2001); and we find the Q¢ matrix from first principles, simplifying the proof in
Roberts (1998). Finally, we show consistency of the resulting matrix Q™ deduced
from §2° in this way, with the Q™ matrix as given in Lapointe et al. (2000) and
Roberts (1998, ch. 2).

3.1.2 Overview

Following Stanley (1989, p. 84), and letting D; = d/0z;, we define the operator:

n n 2
@_r_2 2 2 z; .
c —E—QZ:EZ-Di-i-Z D; (3.2)

- T; — Ty

i=1 i,j=1

i#

which we shall call the quasi Laplace-Beltrami operator. The operator will usually

be denoted by £, except in §3.3 where the more precise notation £(® is called for.
Jy is an eigenfunction of L:

L Jy=cy Jx, (3.3)
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with eigenvalue
c,\=(n——) Z]l—i-zle (3.4)

We shall occasionally write ¢ for c.

The relation LM = Q™M breaks down into:

L my = cy m,\—f-z (S87) s M -
A>K

It will turn out that 7 is upper triangular with zero diagonal, as anticipated in the
range given for the summation, and in addition does not depend on «. In similar
vein LE = Q°FE decomposes into:

L ey=cy 6)\+Z (Qf))‘n €x

KE>A

The connection between ¢ and (0™ is given by
BT =—ar,

thereby justifying the suffix [, since € is lower triangular.

Roberts (2001) shows that similar equations hold for the Calogero-Sutherland oper-
ator, with the eigenvalue adjusted by the constant £ in (3.1). That is, the expansion
of J in terms of ey, and m, functions can be obtained from either the Laplace-
Beltrami or the Calogero-Sutherland operator: one merely adjusts the eigenvalue

by the constant & in all the formulae occurring in this chapter.

3.2 Determinantal forms of J, in e, and m, func-

tions

3.2.1 Preliminary technical results

Lemma 3.1
Let

Z ]pn Ty = Z J;n € - (35)
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Then Jow = 0 unless p > £ ; and Jpox = 0 unless k > p'. Moreover Jpp 7 0 and
Jppr # 0.

Proof 3.1
The statements for the m, functions are well-known (e.g. Macdonald (1995, pp. 326,
379), Stanley (1989, p. 77)). Given that A > & iff 5’ > X', the conclusions for the e,
functions then follow directly by noting (from Takemura (1984, p. 43) or Macdonald
(1995, p. 20), i.a.) that, for suitable constants v,.,:

M = €x+ Y Uno €5 . |

o>k!

Lemma 3.2
. : d2  d2 d2
If kK > ), then there is a chain k = Ky ? K1 ? Ko... ? Kr = A.

That s, for each q, there are i and j such that

Rq = (kl,...,k,‘,...,kj,...) and Kg+1 = (k],...,ki— 1,...,kj+1,...)
where the entries other than the ith and jth are unaltered.
Proof 3.2

Let i be the minimum index such that k; > [; and k; > kir1. Once 7 has been

fixed, set j to be the minimum index such that k; > k; + 1. Then, setting k* =

(Biy ooy kicy ki = 1, ki, oo ki, Ky + 1,kj4+1,...), one possible choice for k; is K*.
It is straightforward to show that either x > k* > )\ or k > k* = \. In the former
case the process can be continued. |
Theorem 3.3

d2  d2 d2

Given the d2-1 chain k = kg ? K1 ? Kg... ? Kr = A of length r, then

ce—cy>r(a+1)

Proof 3.3
For any £ and A, from (3.4) one has that

ox=en =30l = k) + 5 Do (ks = L)k +1y) (36)
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d2
When & > A, the first summation in the right side of (3.6) is > 1 and the second is
= 2

Corollary 3.3

K>A=c>cy. |

The converse to Corollary 3.3 is invalid, as shown in the next example.

Example 3.4
When k # A, then ¢, > ¢\, cx = cy and ¢, < ¢, are all possible.

R
The instances of k and A below are such that x > )\ and k ¥ ); and the “eigenvalues”

shown are in fact ¢, = ¢, — (n -~ %) w:

'{=(5v5a171)a)‘=(4,4’4> = En=‘22+%52>5)‘=—24+%48

s=(411), A=(33) = &=-9+3 18=& =9+ 18

k=(4,1,1,1), A=(3,3,1) = &K=—13+%19<5A=—12+%19

3.2.2 J, as a determinantal form in e, functions

Let J, = ), Jow € = Jp T E in an obvious notation. Setting j = j; in this

subsection, one has
LJ,=LiTE=jTLE= jTQ°E.

But from (3.3) one has
£ L= g, Jy=u,i* E

so that
iT(Q°—c, NE=0.
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The ey, functions are linearly independent, so that
iT (Qf=¢c, I)=0. (3.7)

Now, from Lemma 3.1, j; . = 0 unless k > p’. In the matrix Q¢ —c, I, we therefore

omit all rows and columns indexed by partitions ¢ such that
R R
p' >0 or o>p' and o ¥p'.

The matrix resulting from these deletions is §27 ;. It is lower triangular, with zero
in the last diagonal element, but no further zeroes along the diagonal, by virtue of
Corollary 3.3. The vector of coefficients j = js is likewise reduced, albeit without
change of notation; consistent with this, the vector E is truncated, also without

changing notation.

In fact the last column of §27 ; is zero. One can utilise the final diagonal element to
normalise Jy, or one can insert E into that vacuous final column. Setting z to be a

column vector of zeroes save for unity in the final position, we have respectively:
3T Qs =37 (%, +(0]2)) =(0,0,0,...,0,N) =N 2T
where j; , = N and the 0 in (0|z) is a zero matrix of the appropriate order; and

i § 4 = 4% (QZ‘O + (0|E)) = J, 27

o

With a non-zero final diagonal element, the matrices Q27 ; and €25 , are non-singular

from Corollary 3.3, and

jT=N2T ( ;,2)—1=Jp zr ( 2,1)-1'

The two inverse matrices have proportional final rows, since the cofactors are iden-
tical. Therefore

J,=——— det (9°.) .
" det ( ) et (%)

3.2.3 J, as a determinantal form in m, functions

Now letting j = j;*, a similar argument to that in §3.2.2 leads to the analogue of
(3.7):
iT Q™ —=c,I)=0. (3.8)




Jack Polynomials, Chapter 3. Leigh Roberts, 2001 85

From Lemma 3.1 again, Jpw = 0 unless p > . In the matrix Qim —c, I, we therefore

omit all rows and columns indexed by partitions ¢ such that
R R
o>p; or p>0c and ppo.

The matrix resulting from these deletions is Q7. It is upper triangular, with zero
in the first diagonal element, but no further zeroes along the diagonal, by Corollary
3.3. Again the vector of coefficients j7* is abbreviated without change of notation,
as is M.

Setting y to be a column vector of zeroes save for unity in the first position, we have
respectively:
jT sz = jT (Q;T:b * (y|0)) =N yT
where j;°) = N; and
jT Q5 =47 (QZ}O+ (M]0)) = J, yT .
With non-zero diagonals, the matrices 27", and 2, are non-singular, and

iT=Ny" ()" =T, 4" ( Zfl)_l-

The two inverse matrices have proportional first rows, since the cofactors are iden-

tical. We may thus write

Jp - m det (Qp,l) 3

Altogether we have established the following theorem.

Theorem 3.5
Using the above notation we have
j;e),p’

Jy= 20 det (e ) = — o2
¥ det ( 212) Pl

— e et (om) . 3.9
det () et (%) B

3.2.4 Shape of determinantal expansions

Obtaining the expansion of J, from determinants as in the first equation of (3.9) is

illustrated schematically by the diagrams in Figure 3.1.
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d €(5) d . €(5)

T d e(4,1) z d €(4,1)

Tz d . ez &z d €(3,2)
Jagy=|z =z z d €312 - - Joy=|z z z d €(3,12)
T T T T egp 5 P .2 d €(22,1)
1 Tz z x T d ep

1 T T T T T T eqs

Figure 3.1: det (Qfs,zm) and det (Qfs),:t)

The dots in the diagrams indicate zeroes. For higher w(p), the triangular matrices
containing the elements = are sparse, as discussed in §4.2. For Qf ,, the columns of

e functions are replaced by zeroes, save for a normalising constant on the diagonal.

Similarly the expansion in determinantal form of J, in terms of m, functions is

illustrated by Figure 3.2.

1 s : S ms T T T T T T

1 : e mys d T T T T T

maE2 T T T T maa - d T T T T

Jegy=|. . mgr d z z z Jis) = | myaa2) d £ & %
mzyy - d T x my2,1) d z

m(2,1%) d z mM(2,19) d z

m(15) d m(15) d

Figure 3.2: det (Q?ﬁ,z),l) and det (Q?&),l)
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3.3 Symmetry between the operator matrices 2™

and ()°

3.3.1 Preliminary technical material

We take as given the inner product (.,.), used to define the Jack polynomials, with
respect to which they are mutually orthogonal (see Stanley (1989, p. 77), Macdonald
(1995, Ch. VI, §§1, 10)): this inner product is given explicitly in (2.6) on p. 28.
The notation and treatment here follow that in Macdonald (1995, p. 378).

With respect to (., .)q, the set of functions { g;(f')} is defined as those which are dual

to the m, functions. That is,

(gff‘), my >a = Opx +
The operator w, is defined as
Wa g =y, (3.10)
and satisfies the following identity:
WaeWi/a =1.

3.3.2 The principal theorem

The following result is a direct analogue of Roberts (1998, thm. 3.6).

Theorem 3.6

Define operator matrices ) as follows:
L@ M =Q™(a) M L E=0"%0) E (3.11)
and break them up into diagonal and off-diagonal portions

Q"™(a) = D™(a) + Q7' (a) Q'(a) = D"(a) + 9f(a),
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where D matrices are diagonal; and Qf(c) and Q7' (a) have zero diagonals.

Then Q™ (a) is upper triangular, and does not depend on c.. Writing Q™ () as Qi

we have moreover that
Q) =-aQrT.

Proof 3.6

From Theorem 3.9, the operator matrix Q¢(a) is lower triangular, and the off-
diagonal terms contain a factor of a. The proof is then immediate from Lemma
3.8, noting that the term involving the identity matrix in (3.13) naturally has no

impact off the diagonal. |

Lemma 3.7
—a LY =y L0y — (1+ )k (3.12)

where ky = w(n —1).
Proof 3.7

Macdonald (1995, p. 320) defines an operator 0% which he calls the Laplace-

Beltrami operator, as
0*=LO —wn-1) =L — k.
From Macdonald (1995, p 330, Ex. 3) one has
Wy 0% 4+ @ OYe w, =0,

or equivalently

—a OY¢ = w, 0% wy/qa-
Now the left side of (3.12) becomes
—o L) = —q (OY* + k1) = wa O% wy/a — k10 = w, L wy — k(1 +0a),
agreeing with the right side. u

Lemma 3.8
Q) = —aQ™(1/a) T + k(1 + )] (3.13)
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Proof 3.8

From (3.11) we may write
= ¥ (Q™(@)),, M- (3.14)
p

The fact that the £(®) operator is self-adjoint with respect to the inner product
(., -)a (see e.g. Vilenkin & Klimyk (1995, p. 112), or Stanley (1989, p. 84)) allows

us to write

(L g3 me)a = (67, L@ me)a = (A™()),., (3.15)
from which the following is immediate:
LO gl = > (™), 99 (3.16)

K

The relation (3.10) and Lemma 3.7 imply
—a LU ey = wo L% wyjaey — k(1 + a)es = wa L9 g™ — ky(1 + a)er. (3.17)
From (3.16) and (3.10), we have

—a L) ey =, Z (le(oz))m\ @ — k(14 a)ey

= Z (le(a))n)‘ € — kl(l -+ O!)e)\ . (318)

Interchanging o and 1/, this expression is equivalent to

L ey =—q Z (le(l/a))m\ ex + k(1 +a)ey = Z (Q’e(a))M Ci 5

K

whence (3.13) follows. (]

3.4 The action of £ on the e, functions

Theorem 3.9
Let A = (ly,la,...,1;), withr = £()\). Then

lj

7
C(a) €y =Cy €y — Z Z (lk = lj + 2'[)) €kt ennli—0,.2) (319)
j,k:l v=1
>k
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in which the partition in the final subscript differs from X\ only in the kth and jth

positions, and may not be in the standard weakly decreasing order.

Proof 3.9

From Theorem 3.12, one has that

r T n T T
ae[‘ aez
L €y = Z H €, L e, +« Z Z H €y; .'13'72.” &z_] a—zk— (320)
i=1 |\ j=1 m=1 jk=1 \ i=1 L Wi
J#i i>k  \iFLE

while from Theorem 3.17, and for any s,
L e, =cpy es =¢((s)) es-
Equation (3.20) may now be written as

r

Ley= (Z c((li)')) exta Y [ I] e | D] #hey1(@n) en-1 (@)

i=1 k=1 \ i=1 m=1
i>k 1#],k

i=1 Jk=1 i=1 u=0
i>k 175,k

r r r l;j—1
= (Z C((lz')')> exta Y | [] e (lj eets) — D (e + 1 — 2u) €(lk+lj—u.u)>

in which for the last equation we have applied Theorem 3.16. An application of

Lemma 3.11 and the substitution of v = I; — u complete the proof. u

3.4.1 Technical support for the calculation of Ley

Lemmas 3.10 and 3.11 have to do with values of the eigenvalues c) and cy/, and are
used in the proofs of Theorems 3.9 and 3.17. Theorems 3.12, 3.16 and 3.17 are input
to Theorem 3.9.

Lemma 3.10
Let A = (ll,lz, sy l,-) Then

1 1 T 2 T )
c,\,=<n—a—§)w——2-j2=;lj+a23lj. (3.21)

i=1
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Proof 3.10
From (3.4) we have

cx:(n——) Z]l—l— Zl)

Noting that the multiplicity of j in X’ is [; — lj41, it is tedious but straightforward
to verify that

T 1 T
> ili=3 <Z l]-2+w>
j=1 = \j=1

and

S HF=2)_ ih~w
j=1

whence the result follows. | |

Lemma 3.11
e(( +az (j—=1)¢;=cx. (3.22)

j=1 j=1
Proof 3.11
From Lemma 3.10 one may write
t
ey = ey = ((t)) = nt — 5(75 +1)
which immediately implies (3.22). [ |
Theorem 3.12

Let f =TT, fi be the product of functions f; of the indeterminate variates Ty, ..., Tn.
Further let F be a differential operator of the form

F = Zaz + Zz

in which the functions a; of the variates z; do not involve differential operators.
Then

: , 0f; Of
Z Hfj ff,+az Z I1#)|et5 5 - G2

1= I=1 jk=1\ 1=l
_7;\‘:1. >k 17 ],k
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Proof 3.12

The first order terms combine in the conventional fashion using the product rule for
differentiation, as does the second order operator when both differentiations apply
to the one element of the product. This leads to the first term of the right side of
(3.23). The second order operators however also lead to cross products, as detailed
in the final term in (3.23). [ |

Lemma 3.13
For integral t > 0

v=—1
The proof by induction on ¢ is straightforward. At each stage the value of s is

increased by 2 to use at the next stage. |
In order to motivate the next lemma, we first consider an example.

Example 3.14

The monomial y2y2 ... Y2 Yas1Yara - - - Yors does not appear in €gipr1€4—1; it appears

once = (g) times in eqveq; it appears b = (3) times in espo—1€041; etc. The
monomial in question has type 2°1°, following the terminology of Stanley (1999, p.
309). The binomial coefficient (°) is interpreted as zero if ¢ < 0. [ |
Lemma 3.15

Suppose that 2a +b =1 +s. Then a given monomial of type 2°1° appears (i’) times

in eps) = €r €, wheret=a+b—r=5—a. |

Theorem 3.16
Let 5 > k. Then

n k-1
Z z? ej_1(F:) ex-1(%:) =k e e, — Z(] +k —2u) €j1k—u €y (3.24)
i=l u=0 '

in which the circumfler indicates omission of the variate.

Proof 3.16

We consider a given monomial of type 2¥~*17=%+2 and count the number of times
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it appears on the left and right sides of (3.24).

From Lemma 3.15, the number of appearances on the right side of (3.24) is
k42t j—k+2t
k( ) g%]+k mi(u_k+t>
[0 TN S j—k+ 2t
=k< ) Z (j+k — 2u) (u—k+t)

u=k—t

while the number on the left side of (3.24) is

(k—ﬂ(j—ﬁ+%).

The equality of the number of appearances on either side is a direct consequence of

Lemma 3.13, setting v =u — k and s = j — k. |

Theorem 3.17

L er = c(ry €.

Proof 3.17
Only the final term in (3.2) need be considered. First restricting ourselves to the

variates z; and zy, it is easily shown that

z2 z2 — W
( . D1 = % Dg) €p = T1T9 €r_2 (iBl,.’IIg) +(.’E1 +.’132) €r—1 (.’El,xz) (325)
Ty — T2 T2 — 21

where the extended circumflex again indicates missing variables.

Summing over all possible choices of pairs of variates plainly gives a multiple of e,.

Counting the number of monomials in the right side of (3.25) yields

(2602 6)

Dividing this quantity by (), the number of monomials in e;, yields

An appeal to Lemma 3.10 completes the proof. |
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3.5 Consistency of ()¢ and (2" derived by different

means

We now show the consistency of §2¢ as provided in Theorem 3.9; and (2™ as given
in Lapointe et al. (2000), Roberts (1998, thm. 2.4), and as a closely related exercise,
in Macdonald (1995, p. 327, Ex. 3(c)). We first state the form of Q™.

Theorem 3.18
Let A F w, £(\) = r, and write A in the conventional non-increasing order with a
trailing zero: A = (Iy,l,...,1;,0). Then
(Ar;/2]
L my=cymy+ Z AVARY Z Kg,2;)i M(t—i,8;+i)Uh (3.26)

lg,lj =1
lk>lj20

where

(8)(2) when & —i> 4+ o

(;) when Ek—i=€j+i

The first summation in (3.26) is over all distinct subpartitions A\; = (¢, ¢;), € >
¢; > 0, such that A = Ay U Xy; Ay, = & — £5; t1 is the multiplicity of £, — i in
(€ — i, £+ 1) U Ay, while t; is the multiplicity of £; + i in (¢ — 7, £; + 1) U Ag; unless

£y — i = {; + 1, in which case ¢ is the multiplicity of ¢y — i.

Proof 3.18
The proof in Lapointe et al. (2000) draws on their earlier papers. A self contained
proof is in Roberts (1998, p. 19). [ |

Theorem 3.19
As regards off-diagonal terms, the ezpansions of Ley in Theorem 8.9, and that of

Lmy in Theorem 3.18, are consistent with Theorem 3.6.

Proof 3.19

Choose A = (lx,l;,...) and & = (I + v,l; — v,...) where A and « differ in exactly
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2 elements, and the listings given are not necessarily in standard weakly decreasing

order.

Consider (Q°), ,, for which A is the source partition, and within the Ath row one
moves left from the Ath column to the xth column in (Q2¢). Disregarding the factor
of a,

()=l +v—_(;—v)

according to Theorem 3.9.

Now consider (2™),,. The “source” partition is to be considered k, not A, in
Theorem 3.18; and one moves within the xth row right from the xth column to
the Ath column in Q™. Should the multiplicities of lx and [; in A be unity, and still

disregarding «,
(Qm)n,/\ = Aptoti—v = +v—(©— v)=l—1li+2v= (QE)A,K

The factor K allows for multiple occurrences of Iy — 7 and [; + @ in A, since these
are counted singly in the first summation of (3.26) and multiply in Theorem 3.9.
Should these values be equal, the multiple is the number of times the pair of values

can be chosen. |
The argument in the next theorem is analogous to that in Roberts (2001, Thm. 8).

Theorem 3.20
Given that Lm, = 3 5. GpxMx, then a,, = c,, where c, is the eigenvalue of L
given in (8.4).

Proof 3.20
We use the notation from Lemma 3.1:
Jo =D dpu M
pZK

whence
LF= N 1% fin

p2E

- ]pn a’K,T My

P>k KT
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= Jpp Gpp Mp + terms of lower order in the RLO (3.28)

But also from (3.3) one has

Lly=c,dy=0p ) Im M

pPZK

=c, jm m,+ terms of lower order in the RLO (3.29)

Also from Lemma 3.1 one knows that j77 # 0, whence the result from a comparison
of (3.28) and (3.29). |

3.6 Extended example

Before discussing methods for generating the Q™ matrix in Chapter 4, we illustrate

the above material with an extended example.

For partitions of weight 4:

( C(4) 4 4 \
car) 2 6
am = C(2,2)

C(2,1’1) 12

\ C(1,1,1,1) /
[0 4 4 )

C(3,1) — C(4) 2 6
a0 = €(2,2) ~ €(9)
C(2,1,1) — C(4) 12
\ C&mm—WM)
mM(4) 4 4
my —1—3a 2 6
Joy=| mpey -2 —4da 2
m2,1,1) -3 - 5a 12
m(1,1,1,1) —6 — 6




Jack Polynomials, Chapter 3. Leigh Roberts, 2001 97

The above example conforms with the example given in Lapointe et al. (2000).

0 2
Q520 = C(2,1,1) — C(2.2) 12
C(1,1,1,1) — €(2,2)
mM(2,2) 2
Jog)=| megiy -l1—-a 12
m(1,1,1,1) —4 — 2
Turning to the ey basis functions,
/ C(1,1,1,1)
—da ¢,
0 = —4da  —2a cpep)
—6a  —2a c¢a3))
\ —120 e
—6 — 6 €(4)
—4a -3 — b €(3,1)
Jgy = —4a —2a -2 — 4« €(2,2)
—b6ar —2a —-1-3a eqg1,)
-12a e@,1,1)
C(1,1,1,1) — €(3,1)
- —da Cl2,1,1) ~ €(3,1)
(310 = —4do —2a C(2,2) — €(3,1)
—ba —20
-5 —3a €(4)
—4a -2-2a €(3,1)
Ja1) =
—4a -2 —l1—a ep
—6a —2a  e@11)




Chapter 4

The composition of the operator

matrices )¢ and ()™

The Q™ and 2¢ matrices can be used directly to obtain the Jack polynomials from
the determinants derived in Chapter 3. Alternatively one may prefer to work with

the relations
=Y jmmy=)_ i ex, (4.1)
A A

reproduced from (3.5) in Lemma 3.1.

Mathematically there is of course no distinction between these two approaches, but
highlighting the j coefficients in (4.1) throws those coefficients into relief, and pushes
the calculation of ey, and m) functions into the background. This is convenient
because it may turn out that only a few of the terms in this expansion dominate; or
because when weights of partitions increase, there are relationships connecting the

coefficients j calculated for the different weights, as we shall see in §4.6.

We work chiefly with Q™, since the off-diagonal elements do not contain . We
first define the chains by which the off-diagonal elements of Q™ are defined; and
then the paths through the elements of Q™ which give the coefficients of the e, and
m functions in the determinantal expansions. The distinction between paths and

chains is convenient, but terminology here is awkward: both paths and chains as

98
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used here are chains in the sense of partially ordered sets.

Consideration of all possible chains enables one to count the number of off-diagonal
elements in O™, thereby showing that Q™ is highly sparse when partition weights

increase.

We then define d2 paths, showing that the number of such paths from p to A, and
the lengths of those paths, are important clues in deciding when one should omit
part of the calculations of j, coefficients without losing much accuracy. This sort

of decision can be placed in the context of powers of incidence matrices.

4.1 Derivation of )™ through core chains

A convenient way in which to derive the above-diagonal elements of Q™ is to draw
up a chart or matrix of “chains”, commencing from all distinct elements [ of the
partitions A, and generating the chain ({), (I - 1,1),({ = 2,2),....

Definition 4.1
A “core chain” or “chain” is a sequence of length r = [%] of partitions, say Ko, K1, - - - , Ky,
such that ko = () UX, kK1 = (1 —1,1) UM ke = (I —2,2)UM,.... Symbolically, the

chain is generated as

(%, %) UA when [ is even
kKe=UA=(I-1,1)UX—...—
(HTI, ’"Tl) U A when [ is odd
It is convenient to allow the degenerate case in which | = 1. |

Consider the chain matrix CMs in Figure 4.1, which lists the d2-1 chains used to
obtain the operating matrix when w = 5. The numbers constituting the first and
third elements in each entry above the diagonal arise from Theorem 3.18 on p. 94.
The first element is the difference I; — [;; the letter in between the two numbers

identifies the chain by which that entry is generated; while the third element is X as
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() 6)@1)]63,2) 3,19)]@1) @19 09)
(5) | a | bal | 5al

(4,1)| |a,b,c| 3al  4b2 | 4b1

(3,2) de 2el | 3d2

CM;s =
(3,12) b, f,g| 2b1 3f3
N h,i 2h3
(2,13) i,k (2510

\ (@) L)

Figure 4.1: The chain matrix C Mj

given in (3.27) on p. 94. The numbers in the entry 3d2 in position ((3,2), (2,2,1)),
for instance, arise from 3 =3 — 0 and 2 = (%) (;).
The core chain a, viz. (5,0) — (4,1) — (3,2), contains the partitions occurring in
the expansion of £ ms); it also contains incidentally the sequence (4,1) — (3,2)
occurring in £ my4,1). In the operator matrix Q7 there correspond three elements
above the diagonal, viz. Wiz, 4,1) and Wis) (3.2) in the first row and Wig1),(3,2) 10 the sec-
ond, as indicated in Figure 4.1. Similarly chain b consists of (4,1), (3,1,1), (2,2,1),
generated as (4)U (1) = (3,1)U(1) — (2,2)U(1), and gives rise to 3 elements above

the diagonal in the operator matrix.

Chains producing just one entry (paths ¢, g,1, k,[ in this case) spring from the sub-
partition (1,0), and produce no off-diagonal terms in Q™. Those chains shown with
just two elements, such as d and e, each give rise to just one element in the CMjs
matrix above the diagonal. In the general case chains with length r give rise to
r(r 4+ 1)/2 elements above the diagonal in CM,,. Any particular element above the
diagonal arises from just one chain, and it is easy to see that this is always the case,

for any weight w of the partitions considered.

Lemma 4.2
The number of chains in the CM,, matriz is S ¢~ p(j), where p(0) = 1. If we omit
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chains containing but one element (those chains for which the source subpartition is
(1,0)), the number of chains reduces to SUp(s) = 3y plw — j).

Proof 4.2

The number of chains is the total number of (non-zero) elements in the entire set of
partitions of w, counting only distinct elements within each partition. The number
of partitions of w containing an element 1 is p(w — 1), since these partitions are
just a partition of w — 1 with a 1 adjoined. Similarly the number of partitions of w

containing an element 2 is p(w — 2), etc. [ |

Theorem 4.3

The number of non-zero elements above the diagonal in CM,, 1s

Zp(w 3/2] [3/2]+1 i ) /2 G/ +1)

2
j=2

Proof 4.3

For an element j in ), from Definition 4.1 one has that the number of partitions in
the corresponding chain in CM,, is r + 1 = [j/2] + 1 = ¢, say. The number of pairs
of elements able to be chosen from these is (g) and for each such pair the first can
represent the source partition on the diagonal, and the second the target partition
above the diagonal in CM,,. As noted in Proof 4.2, p(w — j) is the number of chains
of length j. |

Multiplying the numbers above the diagonal in C'M; in Figure 4.1, and inserting
the Laplace-Beltrami eigenvalues c, in the diagonal (A, A)th position, leads to the

operator matrix QF*, shown in Figure 4.2.

4.2 Sparsity of (),

The matrix Q™ is highly sparse, in that the proportion of non-zero elements above

the diagonal tends quickly to zero as w — o0.
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( olenle2 6unlezy euuylenLyy)
5) lew| 5 | 8 0 0 0 0
4,1)|0 |can| 3 8 4 0 0
apo | @2]0] 0 |con 2 | 6 0 0
310] 0| 0 coun| 2 9 0
@1lo] 0|0 0 |coay 6 0
2,1)0] 0] 0 0 0 couiy | 20

\(15) 0| 0 | O 0 0 0 caaiLy) |/

Figure 4.2: The operator matrix (27"

Lemma 4.4
Let 0 < A < B, and let t;y = t(t—1)...(t —j+1) denote the falling factorial, with
two) =1. Then
/B eEVEdy = Zi_L (B(t—y)/z KVB _ 4(t-1)/2 K\/_)
A K

J+1
J=

in whicht =2s+ 1, and K > 0 is a constant.

Proof 4.4
The proof consists of substituting y = /= and integrating by parts. The series
terminates, since ¢ is a non-negative integer in applications of the lemma in this

paper. |

Lemma 4.5
As w — 00, and for wg > K~2+1,

g(w ~ 4) (—5—'7 + 1) f/;j efve (;3 N O(ﬁ)) A
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Proof 4.5
For z > K~2 and r > 0, the function

Ir—1/261(\/5

is non-decreasing in z. For wyp — 1 > K —2_ then,

w—2 w—2
/ g™ V2K Vil < ) §LEHAT « / a2k Ve (4.3)
‘wo—l

J=wo wo

Set H, = E}‘:ﬁoj"weKﬁ. Then, as w — oo, from (4.3) and Lemma 4.4 we have
that

= (2w® 8wd? 24w
H2=6K\/—< K - K2 g K3 +O(\/E))

One can rewrite the left hand side of (4.2) as
2 1
<w7 +w) Hy— (w+ 1)H; + 3 H,,

which simplifies to the right hand side. ||

Theorem 4.6
Set K = m1/2/3. As w — oo, the fraction f, of the elements above the diagonal of

the Q,, matriz which are non-zero satisfies

Proof 4.6

From Theorem 4.3, the fraction of non-zero elements in the top half of €2, is

p(w — )

2 [3/21([5/2] + 1
Z[J/ ]([12/ ]+1)

p(w)(p(w) — 1)
2
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g%(%ﬂ) p(w = j)

R
pw)pw)—1)  plw)plw)-1)’

say. Concentrating on the numerator R of the last expression,

R= sz (——+1)p(3 (%:1 g)—(——JH)p(J)

7=0 J=wo

for any wg intermediate between 0 and w — 2. Choose wy such that for j > wy,
p(j) < eXVi/\/j. This is possible, since as w — 00, p(w) ~ eXV® /(4w\/3) (e.g.
Apostol (1976, p. 316 ff)). Applying Lemma 4.5 yields

R<WOZ1 <—+1) +Z (—+1>6\K/\;

8w
KV (K3 +O(\/E))
Returning to (4.4), one sees that, as w — oo,
KV | 173 4r®
fu=0 Bwe* V¥ | K -0 (38 ZU e“K‘/‘E) (4.5)
{eXVE/ (4wV3)} &

Corollary 4.7
The fraction f, of non-zero elements in the upper half of the Q, matriz satisfies
fw— 0 asw — oo. |

4.3 From the operator matrix () to the coefficient

matrix C

One can rewrite the relationships in (4.1) or (3.5) more succinctly as:
Y=C"M=C"F

in which C™ = (j7,) and C® = (jg ;) will be referred to as the (Jack polynomial)

coefficient matrices with respect to the my and ey functions respectively; and ¥ =
(Jew)s Jw-1),..)-
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From (3.8) one has
T @™ —c, I)=0. (4.6)

The constraint in (4.6) arising from the Ath entry in the row vector is

Z Tow Wi = cx) Jpp (4.7)

p2n>A

The system of equations given in (4.6) and (4.7) provides a means of evaluating the
Tpix coefficients by back substitution. The outworking is similar for the ey function,
for which (4.7) becomes

S o wha = (cp— ) o (48)

A>r2p!

One benefit from setting out the calculations as in (4.7) and (4.8) is that finding
bounds on the j coefficients is facilitated. Should, for instance, one have an upper
bound on the 57 coefficients for £ > A, and an upper bound on the elements wy*y
in the Ath column, one can get an upper bound for the coefficient ;7 from (4.7).
Roberts (1998, §5.3) has attempted some analysis in this direction, since the column
sums above the diagonal in Q™ are easy to calculate: see §4.5. Also the results in

Chapter 5 concerning the j™ coefficients as w — oo are based on (4.7).

4.4 The composition of the j coefficients

The matrices §),; arising in Chapter 3, by whose determinants one can calculate
Jack polynomials, are almost diagonal: there is a single diagonal either immediately
above or below the principal diagonal, coupled to a triangular matrix which becomes
quite sparse as w — oo. The terms arising in those expansions assume a specific

form, illustrated schematically below.
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4.4.1 The composition of the 5’ coefficients

For the expansion of J, in m, functions, according to Theorem 3.5 on p. 85 we first
delete the redundant initial rows and columns in Q. One then finds all possible
paths from the top left corner to the bottom right corner, where the first part of
the path is a d2 path, and the second part moves straight down the main diagonal.
The process is illustrated in the diagram for the calculation of Jis). Labelling the
elements of the matrix by w, with the first row and column indexed by (4) and
the last by (1*), the d2 path proceeds from wa),4) t0 W2,1,1),(2,1,1) where w(4),(4) 0
fact contains the element my); while the diagonal part of the path proceeds from

W(2,1,1),(2,1,1) 1O W), (14).

m(4) — [
{
m(3,1) - — [
4
m(2,2) : ©
i !
My(2,12)
N
m(14) s . . ©

Figure 4.3: QH),x

The above-diagonal terms corresponding to this path are marked by the squares, and
the only other off-diagonal representative is the function ms,12). With the remaining

terms denoted by circles, the corresponding term in the expansion is

N RN BV CRRILICEMLED)
where d, = ¢, — c(q)-
The coefficient of my,12) is found by summing over all possible such paths: a d2

path from the top left element to the diagonal element w(z1,1),(2,1,1), followed by a
path down the remainder of the diagonal to the bottom right element.




Jack Polynomials, Chapter 4. Leigh Roberts, 2001 107

For weights exceeding 5 there will be in general further redundant rows and columns,
indexed by x such that p g k but p # k. The d2 paths simply bypass those elements,
such that the diagonal elements w, , = ¢, — ¢, enter into the determinant, but then
cancel, as shown in Theorem 3.5. The problem with this is that the diagonal element
will vanish if ¢, = c,, which happens occasionally: see Example 3.4 on p. 83. So
one should jettison redundant rows and columns before starting calculations, and

not just for purposes of expediting the calculation.

Moving the first column of m, functions to the right of the matrix in Figure 4.3 yields
a matrix of the same shape as that used in Lapointe et al. (2000). Our approach
through d2 paths of  is equivalent to their calculation of Jack polynomials as

determinants of “Hessenberg” matrices.

4.4.2 The composition of the j7 , coefficients

®© ; . . €e4)
N
© . . €(3,1)
N

+
O] €(2,12)

4
L« . « €(14)

Figure 4.4: 0f)

The story is analogous for the ey functions. After deleting redundant final rows and
columns in Qa),u the d2 path proceeds from the bottom right corner upwards below
the diagonal to the preassigned diagonal element, and along the diagonal element
thereafter. For the example shown in Figure 4.4, the term in the expansion of Jiy)
is

W14y, (2,2)€22)4(4)8(3.1)(2,1,1)
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where d! = ¢, — c(y. Again, the coefficient of ez 7) is given as the sum of the terms

arising from such combinations of d2 and diagonal paths.

Letting the d2 path have length s, the contribution to the coefficient of e, contains
a factor of (—a)*, since the diagonal terms are positive. For the expansion in my
functions, on the other hand, the diagonal terms are negative: given the sign
changes implicit in the definition of the determinant, all contributions to the Jack

polynomial are of the one sign for these latter expansions.

4.4.3 Dominant terms in the determinantal expansions

The more important terms in the determinantal expansions can be expected to arise

as follows.

Consider the expansion in terms of the m, functions. Assuming the m, functions
are relatively insensitive to change in the index partition A (and we shall see in Chs.
6 and 7 that this is not always the case), the dominant terms can be expected to
be those with the d2 chains (starting at the top left corner) terminating about the
middle of the matrix. This enables all the lower terms (towards the bottom right
corner) on the diagonal to enter into the expression, and those diagonal terms are
large. Within the d2 chain itself, the chain should keep close to the diagonal at the
upper left corner of the matrix, in order to minimise the number of upper diagonal
terms used, since those diagonal terms have small magnitude. Lower down the d2
chain, one should move away more from the diagonal, since those diagonal terms

are somewhat larger.

Likewise, restricting ourselves to the coefficient of my in J,, the dominant terms are
expected to be those with d2 chains (over [p, A]) which hug the diagonal at the top

end, and move away from it at the bottom end (towards the (A, A)th element).

The coefficients j7', contain relatively few terms for p and \ close in the RLO; but
they contain large numbers of terms for p high and A low in the RLO, because the

interval [p, A] then supports many d2 chains. Otherwise expressed, the j7y coefficient



Jack Polynomials, Chapter 4. Leigh Roberts, 2001 109

in the latter case arises towards the end of the recursive backward substitution in

(4.7), also rendering the coefficient subject to substantial rounding errors.

Analogous comments apply to the expansion of Jack polynomials in ey functions,
save that the diagonal elements of greatest magnitude are now at the top of the
operator matrix rather than the bottom. The situation concerning dominant terms
is less transparent, since the sign changes in the elements make it harder to gauge

the importance of individual terms in the overall picture.

The diagonal terms can be expected to be much larger in magnitude than the off-
diagonal terms, at least for the bottom end of the diagonal for the m, functions and
the top end for the ey functions. This can be seen informally from the results in §4.5,
in which most of the results suggest that column sums 7, of Q™ are of comparable

magnitude to the diagonal elements ¢) — c,: see in particular Corollary 4.16.

Our discussion has centred on the m, functions, since in (4.7) it is the columns
of Q™ which are involved with the back substitution. Similarly from (4.8) it is
the columns of Q¢ which are involved, i.e. the rows of Q™. The row sums of Q™
are less tractable than the column sums, and the off-diagonal elements are greater
towards the bottom right corner of Q™ than at the top left, because the value of
K in Theorem 3.18 is large (the multiplicities of the elements are large for A low in
the RLO). But overall one again expects column sums and diagonal elements for Q°
to be broadly comparable in magnitude, so that individual off-diagonal terms will

generally be less than diagonal elements.

4.4.4 Path descriptors in terms of core chains

Following on from Figure 4.1, Figures 4.5 and 4.6 illustrate two particular d2 paths
from (5) to (1°).

Descriptors such as abbhj and aefj for those examples need not identify uniquely the
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(3,1,1) |. . . . = O
(2,2,1) |. . . . .

(2L, 1,1} | - . . : . . o= O

(1°)

Figure 4.5: d2 path abbhj from (5) to (1°)

G) |. - .- O
(4,1)
32 |. . G

3,1,1) |. . | . e .
(2,2,1)

(2,1,1,1) | . . . . . .o 0

(1°)

Figure 4.6: d2 path aefj from (5) to (1°)
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underlying d2 path. For partition weight 6, for instance, consider the core chain
(6) = (5,1) — (4,2) = (3,3)

which is labelled as, say, a. Then chains from p = (6) to A < (3,3) may contain
the subchains (6) — (5,1) — (3,3) — ... and (6) — (4,2) — (3,3) — ..., both of

which are indexed by aa. . ..

Apart from this ambiguity from multiple passes through the one chain, the labelling
of d2 paths by the core chains through which successive off-diagonal elements pass

identifies the path uniquely.

4.4.5 Incidence matrices

A simple means of investigating the structure of paths passing from partitions & to
) in Q™ is to define an incidence matrix @ say, with unity inserted in the place of
every non-zero element above the diagonal in Q). Then the number of paths from
& to ) of length s is the (k, A)th entry in Q°. See Stanley (1986, p. 113) for further
details, although note that the d>2 ordering is not a partial ordering, since it is not

transitive.

For counting the number of d2-1 paths from & to A along the lines of Lemma 3.2, one

could similarly define an incidence matrix with unit (k, A)th entry when & > A. Note

that > is not a partial ordering either, although it provides the covering relation for
the maJonsatlon partial ordering > (e.g. Brylawski (1973)). The maximum length
of a path from & to X is given in Greene & Kleitman (1986).

4.5 Relative magnitudes of diagonal and

off-diagonal terms in Q™
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Lemma 4.8

The sum of the elements in Q7 (strictly) above the (A, \)th diagonal position is given
by

UA—ZWKA—lek+ZJ—1 (4.9)
rc>z\

jk=1
1<k
—Zz]u}:jl,-—szlk (4.10)
J=1 =1 j,k=1
i<k
ETPEPE L o I oI 411
—5(“’— )_§Zj+;.7j (4.11)
:— w—1) ——Z] mj—i—ij,mk—}— Z]m (4.12)
jkl
i<k

Proof 4.8

Consider the first two entries Iy, Iy of A. This pair gives rise to elements w,, with
row indices the partitions & = (I; + ¢,lp —¢,...), for ¢ = 1,...,ls, the difference
in each row pair being l; — lp + 2¢. Summing these latter terms gives lo(ly — lp) +
252 ¢ = lp(l, +1). Repeating this for all pairs (I1,/;) for ¢ > 1 yields the sum
Sisilillh +1) = (w = L)(lh + 1); and further repeating the process for all pairs

yields the sum for the column above the diagonal of

(w-ll)(ll+1)+(w—l1—lg)(lg+1)+(’w—ll—lz—"l3)(ls+1)+---

=iw(lj+1)_§:lj(lj+1)— ilj(lﬁ-l)

Jj=1 Jik=1
<k
oo o0
=w(w+r)—2lj2—w— E”‘“_Zlﬂ (r—17)
J=1 7,k=1
i<k

where 7 = £()\). This expression easily reduces to (4.10).

The equivalence of (4.9), (4.10), (4.11) and (4.12) is straightforward to show. The
infinite upper limit to the summations is of course notional: the upper limit to j is

£()\) when [; is involved, and h()\) when m; is involved. |
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Theorem 4.9

I == Mt = ’LU(’LU e 1) (413)

Proof 4.9
The multiplicities for the conjugate partition A’ are given by m; = l; — lj41. Sub-

stitution of m for m; in (4.12), noting that

ijmk_Z]m Lty (4.14)
g,k=1
i<k

and some simplification yield the result.

Corollary 4.9

’U)2 1 oo o0 .
F=1 3=l
o0 o0
j=1 j=1
These are immediate from (4.11) and (4.13). Alternatively (4.15) is easily proved
directly from (4.12) and (4.14). |

Lemma 4.10
If A\ = (w—1t) Uk, withw(k) =t and h(k) < w —t, then

77,\—77n=t(w—t+1)

o o
ey —Cx = (n—E) (w—t)—w+§(w
The equation (4.17) will be applied in §5.1. m

—t)? (4.17)

Lemma 4.11
For any partitions k and A such that w(k) = w(A),

=Zj(zj—kj)+%Z(k;'—l§) from (3.4)
% — s ——&Zj (I; — kj ——Z(k-—lz) from (3.21)

VICTORIA UNIVERSITY OF WELLINGTON
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@ — @ = _g ( ci/e) _ c(;/"))
, 1
Me—ma=—»_jlj—k)— 3 Y (k2= 13) =~ (ne —nar) from (4.11), (4.13)
e =l = Y = (e - )

Proof 4.11

The provenance of the first, second and fourth equations is as indicated. The re-
maining equations are consequences of the other three. |
Lemma 4.12

Let k > X. Then
Cx > Cy and e < M

Proof 4.12
Corollary 3.3 on p. 83 gives the first result for any o > 0, while the second follows

from the final equation of Lemma 4.11. |

Lemma 4.13

Cx — Cyx/ w
arl 3 W=D -=-m=—o (w=1)+n
Proof 4.13
From (3.4) and Lemma 3.10 one has
_ 1 i il : % 4.18
c,\—c,\r—(oz+) —2‘—2]]‘4‘52]' (4. )
The result follows from equation (4.11) and Theorem 4.9. |

Theorem 4.14

If b} # e, then
Cx—Cx Q-+ 1

Mar — N 2
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Proof 4.14

The proof is immediate from (4.16) and (4.18). The result is also a corollary of
Theorem 4.15.

Corollary 4.14

Clw) —Cav) _ a+1

L]
’f](lw) 2
Theorem 4.15
If e # my, then
=0 Cyt — !
B S el
™ — TNk Nt — Ny
Proof 4.15
The proof is immediate from Lemma 4.11. |

Theorem 4.16
Let kK > A. Then

1<CK_C'\<a when a > 1;
T — Tk
Ck — C
a < Y21 when a <1; and
I — Nk
CK—C}‘——-I when a=1.
T — Tk

Proof 4.16

Recalling that x > A & A’ > k', the theorem follows immediately from Lemmas
4.11 and 4.12.

Corollary 4.16
With p > )\, set

_ Cw) —
= Cp = B
Then
L Y when a > 1; (4.19)
(87 Cp — Cx
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7 < e = when a < 1; and
Gy =0y
L =g when o= 1. L]
CP—C)‘

The significance of Corollary 4.16 is as follows. From (4.7) on p. 105, and letting L

be an upper bound on ji, for £ > A, one has that

L E - (4.20)

CP—C)‘

This type of result can form the basis for obtaining bounds on jg* coefficients as A
moves down the RLO. The basic result (4.20) can be refined, in that the upper bound
on the j7, coefficients need only apply to those partitions x such that w", > 0. Work
along these lines is in Roberts (1998, §5.3).

One caveat needs to be borne in mind as regards the Corollary 4.16. One does not

in fact want 7, because that column sum includes elements in the redundant first
R

rows of the operator matrix (the rows indexed by £ > p when calculating J,). The

constraint in (4.20) is therefore weaker than one would wish.

4.6 Slicing and reflection results on j,, coefficients

Evaluating j coefficients through d2 paths in the fashion of §4.4 provides elementary
proofs of “slicing” and “reflection” results, extending results of Takemura (1984, p.
59) to general a > 0. The terminology is non-standard. Our development broadly
follows that of Roberts (1998, §4.3), who refers to reflecting results as “dual” results;
but this seems poor terminology, partly because the word dual assumes so many
meanings in mathematics, and partly because its usage there is inconsistent with
the use of the word dual in Stanley (1989, §3), and in Macdonald (1995). Diagonal

elements of the coefficient matrix C' in §4.3 are normalised to unity.

For expansions in the m, functions, the “slicing” theorems essentially allow us to
slice off either the common first row or common first column from the standard

Ferrers diagrams for the root and target partitions p and A, and leave the j7




Jack Polynomials, Chapter 4. Leigh Roberts, 2001 117

coefficient unchanged. For the ey functions, the procedure is to slice off the first row
for the root partition p and the first column of the target partition A; or to slice off
the first column of p and the first row of ), in both cases leaving the j , coefficient

unchanged.

The reflection result has to do with reflecting the partition A, or rather its Ferrers
diagram, in a rectangular p x ¢ grid of cells. Denoting the reflecting partition of A
by A,

(@®)=A+A
where )\ is in non-decreasing order, and contains initial zeroes if h()\) = ¢; clearly

w()) +w(X) = pg. Let w(\) = w as previously, and w(}) = w.

While the slicing and reflection results certainly assist in the calculation of J,, they
are not necessarily of much help in calculating the “difficult” j coefficients. The hard
i coefficients to calculate are those with p high and A low in the RLO, since [p, A]
then supports many d2 paths; and the Ferrers diagrams do not have a common

initial row or column.

The situation is not fundamentally different for e, functions. Coefficients j; , are
hard to calculate when p and X are high in the RLO, which is when the slicing
results do not apply. As for the reflection results, the j,  coefficients which are hard
to calculate tend to have reflecting partitions 7 and X of far greater weight than p
and A.

4.6.1 The basic supporting result for the slicing and reflec-

tion theorems

The following lemma underpins all of the slicing and reflection results. Throughout
this section we normalise so that j; ,, = j;, = 1. Also recall the definitions of 2 ,
and Q7 from §§3.2.2 and 3.2.3 on pp. 83 and 84 respectively.
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Lemma 4.17

(Q;JTI,O)[,,1 L% b (Qz,o)[pz,,\z] = Jor e = T

(951,0)[,\1,,;1'] = (Qf’Zso)[)\z,pZ’] = Soets = Jra

Proof 4.17
The coefficients j}* are formed from d2 paths over [p, A], according to the develop-

ment in §4.4.

The further terms arising in j7'y are the diagonal terms ( :,”'0) for which A > k.
L] ’ KK

None of those terms is zero, from Corollary 3.3, since all indices in Q7, are majorised

by p. And all those terms cancel, as they appear in both numerator and denominator

in Theorem 3.5.

The proof of the second result is analogous. |

4.6.2 Slicing theorems

We divide this section into technical lemmas underpinning the slicing theorems and
the theorems themselves. The supporting results are conveniently subdivided into

results to do with off-diagonal and diagonal elements, and eigenvalues.

4.6.2.1 Supporting technical results

4.6.2.1.1 Off-diagonal elements

Lemma 4.18
Let K > A, with p > £()). Then

%) = (Q$+P)K+(1P),)\+(1P) (4.21)
(qu))\,n = (Q;+P)A+(1P),n+(1p) (4'22)
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Still with k > A, let ¢ > h(k). Then

(8 = (Q$+q),cu(q),,\u(q) (4.23)
(Qew))\,n, = (qu+q) AU(q),xU(gq) (424)

Proof 4.18

kSN iff n+(1”)d>2)\+(1”)
and
d2 d2
k> iff kU(g)>AU(g)

so that (4.21) and (4.23) are a consequence of Theorem 3.18 on p. 94. The other
equations (4.22) and (4.24) follow from Theorem 3.6 on p. 87. |

4.6.2.1.2 Diagonal elements

Lemma 4.19
If p > £()\), then

( ZTO),\,A = (Q;’n+(lp),0)A+(1p),,\+(1p) (4.25)
(2%50) AN (ﬂiu(p),o)A (1) A4(17) (4.26)
If ¢ > h()), then
(Q:Zo) A (QZb(q),o) AU(@) M) (4.27)
(Qz,o),\,,\ = (Q;+(1q),o)AU(q),AU(q) (4.28)

Proof 4.19

p2 X iff p+(17) 2 A+ (1),

while the (A, A)th element of Q7" is ¢y — ¢,, so that the proof of (4.25) is immediate
from Lemma 4.20. Given Lemma 4.21, the proof of (4.27) is similarly evident from

p=2 X iff pU(g) 2AU(q).
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For (4.26) one has that
A2pl iff A+ (17) 2 p" +(17)

while the diagonal elements are ¢y — ¢, and ¢ () — Cou(p), Whence the result follows

from Lemma 4.20. Similarly
A2 p' iff AU(g) = p'U(q),

with diagonal elements cy' — ¢, and cy/4(19) — Cpi(14), and (4.28) is immediate from
Lemma 4.21. |

4.6.2.1.3 Eigenvalues

The point of the next two lemmas is that the difference in eigenvalues depends on

A only through its weight w. Recall the definition of ¢y in (3.4) on p. 81.

Lemma 4.20
Let p > ¢()). Then
+1
Ca4(1p) — Cx = TP — p(pz ) + aw |
Lemma 4.21
Let ¢ > h(A). Then
-1
C/\U(q)“C,\=ﬂfI+aﬂqQ—l—(f1+w) L

4.6.2.2 The slicing theorems

There are four basic theorems to be stated here. For completeness we mention a
known fifth result, Theorem 4.26, which is a direct corollary of both Theorems 4.22
and 4.25.

Theorem 4.22
Let p > X, and let p > £()\). Then

Jo = Jptap) a+(17) (4.29)
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Proof 4.22
Noting that p > k& > ) iff p+ (17) > K+ (17) > A+ (17), we consider (Q:,’fo)[p N and

ey .
( pHIPN0 ) ot (19) A+ (17)]

These matrices are identical off the diagonal, from (4.21), while all the diagonal
terms coincide from (4.25). The result (4.29) then follows from Lemma 4.17. |

Theorem 4.23
Let A > p'; and let p > £()) and p > h(p). Then

Jor = Joup)a+(17) (4.30)

Proof 4.23
Seeing that
A>k>p i A+(1P)>k+(17) > p'+(17),

5 . . _—
one contrasts. (Qﬂro)[A,p’] and (QPU(P)’O)[,\+(1p),p:+(1p)]' Equation (4.22) again yields
that the off-diagonal terms are equal.

The diagonal terms of the matrices are ¢+ — ¢, and cxru(p) — Cou(p)> which are equal
by Lemma 4.21. The result follows from Lemma 4.17. |

Theorem 4.24
Let p> )\, and let ¢ > h()). Then

o= jgb(q),hu(q) (4.31)

Proof 4.24
Noting that p > £ > A iff pU (g) > & U (g) > AU (g), we consider (QZfo)[p 5 2nd

Ia) -
( PUa)0 ] [ u(g) 2U(g)]

These matrices are identical off the diagonal, from (4.23). All the diagonal terms
assume the form ¢, —c, and ceu(g) —Cpu(g) respectively, and are identical from Lemma
4.21. The result follows from Lemma 4.17. =
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Theorem 4.25
Let A > p'; and let ¢ > h(\) and ¢ > £(p). Then

Jon = Jprn)ula) (4.32)

Proof 4.25

A>k>p iff AU(g)>kU(g)>p'U(g)

One contrasts (QZ,O)[,\,,;'] and (Q; +(1q),0) — Applying (4.24) yields that the
off-diagonal terms of these matrices are equal.

The diagonal terms are c¢,' — ¢, and Ce/4(19) — Cpt+(19), which are equal by Lemma
4.20. The result follows from Lemma 4.17. |

The following theorem is well known: see i.a. Stanley (1989, p. 90), James (1964,
p. 493).

Theorem 4.26
When there are ezactly p variates, and when (p) = p,

Jpt(1p) = T1T2 . - ZpJp = €pdyp

Proof 4.26

Jp-f-(lP) = Zj;r-ly(w),)&(w) Ma+(1r) = T1T2 .- - Tp Zj:,?)\ my
p=A p=A

where we have used theorem 4.22 on the one hand, and the fact that

Mx+(1r) = T1Tg ..« TpTTi)

on the other. |

Theorem 4.26 could also be proved by expanding in ey functions and applying The-

orem 4.25. There seems no obvious analogous expression for Jyu(g) in terms of Jp.
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4.6.3 Reflection results

This section is divided into technical lemmas underpinning the reflection theorems,
the theorems themselves, and an example. The preliminary supporting results are
again subdivided into results to do with off-diagonal and diagonal elements, and

eigenvalues.

4.6.3.1 Supporting technical results

4.6.3.1.1 Off-diagonal elements

Lemma 4.27
Define the reflecting partitions & and ), and the reflecting weight W, as in §4.6.

Let k> X, p > £()\) and g > h(k). Then

Proof 4.27
d2 d2 —
kSN iff B> A
Visualising the px ¢ grid in which the Ferrers diagrams are being reflected shows that
in the calculations specified in Theorem 3.18, the difference in partition elements is
mirrored whether looking from the left of the diagram or the right, so that the A
in that formula is the same for both cases; likewise the multiplicities in K in that

formula are identical.

Corollary 4.27

From Theorem 3.6 one has
(Qleu),\,n

(%),

=
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4.6.3.1.2 Diagonal elements

Lemma 4.28
( Zfo),\,,\ = (ngo)x,x

Proof 4.28

Diagonal elements are ¢ — ¢, and ¢x — ¢;. These are equal, from Theorem 4.32. 1
The following result is needed for Lemma 4.30.

Lemma 4.29
Let p=q. Then X =X . |

Lemma 4.30
When p = q,

(%0)s = (Wo)5x

Proof 4.30
Diagonal elements are cy: — ¢, and ¢;' — ¢z But ¢ = cx7 from Lemma 4.29, and

one can appeal to Theorem 4.32 to see that ¢y — ¢, = ¢z — ¢5. |

4.6.3.1.3 Eigenvalues
Lemma 4.31

d2 d2 —
Suppose that K ? A. Then & ? A; and

Cx — CA = Cg — Cx

Proof 4.31

For any partitions k and A of the same weight, recall from (3.6) that

ce—cx= il —k)+ %Z(kj = 13)(kj +15)
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d2 .
Now suppose that & ? ); and further suppose that £ and X differ in just the j;th

and joth elements. Then

. 3 «
Ce—Cr=—H+2+ 5 (kjl +lj1 - ka —l.‘iz)

F . v
=—(p+1—Jz)+(p+1—31)+§[q—ka+q—ljz—(q—kjl)—(q-ljl)]

:CE_CX

Theorem 4.32
Suppose that k>X. Then E>\; and

Cx — €A = Cg — Cx

Proof 4.32
Apply Lemma 3.2 on p. 82 and Lemma 4.31.

4.6.3.2 The reflection theorems

Theorem 4.33

Proof 4.33

From Lemmas 4.27 and 4.28 one has

( Z,Lo)[,,‘)‘] -~ (Qgﬂ)['p,'):]

The result now follows from Lemma 4.17.

Theorem 4.34
If p=q, then

.
Jor = Jpx

I o
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Proof 4.34
From Corollary 4.27 and Lemma 4.30, one has

(Bo) o = Ho)mzm = (%0) 1

where we have in addition used Lemma 4.29. The result now follows from Theorem
4.17. |

4.6.3.3 Example

Example 4.35

Let p = (3,2) = (3,2,0) and A = (2,2,1). Set h =4, r =3, whereby p =
(4-3,4—-24-0) = (4,2,1), and X = (4 -2,4-2,4-1) = (3,2,2). Thus
3(32)(221)—-7(421)(322) ‘mdj(az)(zm) (421)(322) u

4.7 Relative parsimony of expansions in e, and m,)

functions

It is clear intuitively that expansion in m, functions may be more parsimonious in
general than expansion in ey functions, because the m, expansion tends to employ
the bottom right corner of the Q™ matrix and delete the top left corner, while the
reverse applies for the e, expansion. But the top left corner contains more matrix
elements and provides the springboard for more d2 paths than does the bottom right

corner.

We are unable to prove generally that expansions in m, functions are more parsi-
monious than those utilising e, functions, i.e. that their expansions contain fewer
terms. But the circumstantial evidence is reasonably convincing. We shall illustrate
with Q™, so that for expansion in e, functions one moves in a d2 path above the

diagonal from the bottom right corner.
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Firstly we note that the first row of 2 contains [%] elements, disregarding the
diagonal element; while the final column contains but one element above the diago-
nal. The expansion of J,_1,1) 1n € functions certainly contains more terms than the
expansion in terms of m, functions, since removing the final column does nothing to

reduce the number of d2 paths, while deleting the first row removes several paths.

Reasoning further along this same track, the number of elements to the right of the
diagonal for rows indexed by partitions of length not exceeding 2 is easily shown to
be 3w?/8+0O(w); but the number of elements above the diagonal for their conjugate
partitions, viz. (2,2,2,...),..., (1"), or equivalently those partitions with height not
exceeding 2, is just 2w + O(1). See Lemma 4.36.

Lemma 4.36
Let nrow, denote the number of terms in the Ath row of 7}, excluding the diagonal
element; and let ncol, denote the number of terms in the Ath column of ™,

excluding the diagonal element. Then

-2
w_(?’T_US__) when w 18 even
Z nrow, =
£ i =1
(<2 (w 1)2310 ) when w is odd

2w —3 when w is even
Z ncoly = .
h(N<2 2w —4 when w is odd

Proof 4.36
First considering nrow,, and applying reasoning similar to that in Thm 4.3 on p.
101, the number of terms wy with £(k) < 2 and £(A) < 2 is
(3] (3] +1)
2
To this must be added the number of terms with £(x) = 2 and £(\) = 3, which can
arise from the pairings & = (w — t,0) and (¢,0). The number of these terms arising

is respectively [27] and [£]. So
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in which the final term of the summation is to be divided by 2 when w is even.

This may be rewritten more simply as

For even w,

The formulae for ncoly follow more simply.

A partition A of the form (2°1%), for @ > 1,b > 1, has four elements above it in the
Q matrix: two from the (2,2) pairing, to give (3,1) and (4,0); one from (2,1) to
give (3,0); and one from (1,1) to give (2,0). The partition (1*) has but one element

above its diagonal position, while (2, 1%=2) has two elements above it.

When w is even, (2¢/2) has 2 elements above it, giving a total of
w
4(-2-—2) +1+2+2=2w—3

elements above the diagonal elements ) such that h()) < 2.

When w is odd and w > 1, the partition (2®~1/2,1) has 3 elements above the

diagonal, giving a total of
w—1
4(—2———2) +14+24+3=2w-4

elements above the diagonal elements ) such that h(}) < 2. o




Chapter 5

The operator and coefficient
matrices Q™ and C" for

indeterminate weight w

The purpose of this chapter is to place the treatment of the operator and coefficient
matrices in the last two chapters in a context valid for general weight w, however

large.

We find the j7, coefficients for partitions p and X of a specific simple form, and also
for a handful of values of A low in the RLO for any p. To prove these results it is
not necessary that w — oo, merely that w be sufficiently large that the partitions
considered are listed in the standard non-increasing manner. There is circumstantial

evidence that the results are in fact valid for any positive values of w.

The operator matrices Q™ and Q¢ will be labelled as g™ and ¢gQ¢ in this chapter
in part as a reminder that we are dealing with a generalised situation in which w
is indefinite. In like manner the coefficient matrices C™ and C¢ will be denoted by
gC™ and gC¢. The generalised matrices gQ™, ¢§2°, gC™ and gC® have infinitely

many rows and columns, whereas Q™, Q°, C™ and C¢ are p(w) X p(w).

129
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5.1 The generalised operator matrix g{2™
The rows and columns in Table 5.1 are indexed by the partitions (w), (w—1,1), (w-

2,2), (w—2,1,1), ..., with entries calculated from Theorem 3.18 on the assumption

that w is arbitrarily large.

( w)liw — 1, Dl(w — 2,2) (w - 2,13)(w — 3,3) (w - 3,2,1) (w — 3,19
(w) cw)| 1Xw | 1Xw 0 1xw 0 0
(w=1,1) |0 | cporyy |Lw=2) 2(w—1)|L(w-2) Lw- 1) 0
(w—2,2) |0 0 Cw-22) 1x2 |[L(w-4) L(w-2) 0
(w—2,1,1{0| 0 0 cwezizy | O Lw—3) 3(w-—2)
('U) - 3, 3) 0 0 0 0 C(w—3,3) 1x3 0
(w-1321)|0] 0 0 0 0 cwszy 3%2

\(w—=3,1%) | 0 0 0 0 0 0 Cw-31%) )

Table 5.1: The generalised operator matrix gQ™ up to the 3rd block

At first sight, for a given value of w the generalised operator matrix gU™ is only
a valid construct as far as the [w/2]th block: up to that block the gQd™ matrix
mimics the standard Q" matrix, while beyond that block some partitions are in
non-standard form, with the leading element not necessarily the largest. But it
is likely that every column of the generalised operator matrix g provides a valid
constraint on the j7% coefficients, provided that the eigenvalues cy are calculated as
if the first element were in fact the largest: Roberts (1998, Ch. 7) illustrates this

for the case of & = 2 through an extended example.

Were this conjecture indeed to be true, i.e. if every column of gQ™ gave rise to a
valid constraint on the j™ coefficients along the lines of (4.7) on p. 105, one could
consider taking linear combinations of columns in g™ to produce new constraints
on the j™ coefficients. The resulting inequalities and bounds on the coefficients

would be valid for any value of w.
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Example 5.1
For w = 6, for instance, up to the 3rd block, viz. the block headed by partitions with
leading element w — 3, the partitions are in standard form, and the top left corner

of the g™ matriz reproduces the top left corner of the standard QUF* matriz.

For w = 4, on the other hand, and setting p = (4), the column in (4.7) on p. 105
indezed by (w — 3,2,1) = (1,2,1) produces the constraint

35 1) + 20ma2) + Jpgzan + 30 = (4150502 (5.1)

which corresponds to the (w — 3,2,1)th column of Table 5.1.

This constraint is valid, provided that one identifies partitions (3,1 ) and (1,3) on
the one hand, and (2,1,1) and (1,2,1) on the other. For the constraint arising from
the (w — 2,1,1)th column in Table 5.1 1s

65ps1) + 2pe) = (3 +5@)T5e,11)

which is identical to (5.1). [ |

The sth diagonal block in gQ™ contains the matrix ", fors =1,2,...,save that the
diagonal elements are displaced by a constant, from (4.17) on p. 113. The constancy

of the off-diagonal elements is a consequence of Theorem 3.18 on p. 94.

5.1.1 The generalised coefficient matrix gC™

Rows and columns in Table 5.2 are still indexed by the partitions (w), (w—1, 1), (w—
2,2), (w—2,1,1), ..., but the notation is compacted. Thus partition 11 in the 4th
group is (w — 4,2,1,1), with (2,1,1) being the 4th partition of 4 in the RLO; and
partition 17 in the 5th group is (w — 5,2,2,1), since (2,2,1) is the 5th partition of 5
in the RLO. This matrix will be called the generalised Jack polynomial coefficient

matrix, and denoted by gC™. The diagonal elements are set to unity.

Our main result, Theorem 5.9, gives the entries marked X in gC™. Within each

block (bordered by lines), elements to the left of the X elements are zero: for those
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15 16 17 18 19\

(pn 11213 4|5 6 7|8 9 10 11 12|13 14
blocklo|1]2 2|3 3 3|4 4 4 4 4|5 5 5 5 5 5 5
1 0 |1|lx|x |[xWwW |X X

5 1 10X |X X X

3 2 1 |X X X

4 2 1| X X X w

5 3 1 X ¥

6 3 1 |0 X 0 X

7 3 110 0 0 X 00 0 X

8 4 1 X

9 4 1 X

10 4 1 X

11 4 1 X

12 4 1 X
13 5 1

14 5 1

15 5 1

16 5 1

17 5 1
18 5 1

k195 1)

Table 5.2: The generalised coefficient matrix gC™ up to the 5th block
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elements the partition indexing the row does not majorise the partition indexing the
column. Those zeroes are inserted explicitly in the (3,4)th and (3,5)th blocks, using

an obvious notation, in order to illustrate.

We commence with the definition of the row and column partitions which define the

elements X.

Definition 5.2
A (w, s,b,v)—standard partition, denoted by Aspp, has the form Asp, = (W — 8,5 —
b)Uv, where0 < b<s, w(v)=b, h(r) < s—b, and s < w/2. |

For fixed b, and setting A, ;, to represent the row partition and A;p, the column
partition, the (A4, Atpy)th elements in the gC™ matrix are precisely those marked
with an X in Fig. 5.2, for t > r. As v varies, one moves from one X symbol to
another within the (r,¢)th block. The particular form of v is immaterial for the

principal theorem in the next section.

The pattern of Xs within a block stabilises as we move to the right along the same
row block: the pattern arising from the rth row block is stable by the 2(r — 1)th
column block. That is, with root partition (w — r,...), the pattern is stable by the

column block containing elements of the form (w — 2(r — 1),...).

Example 5.3
Setting T = 4 we have the following table

b=0: (w—4,4,00 — (w—550  — (w—6,60  —

. (w—4,3,1) = w-541) = (w-651) -
b=2: (w—4,2,2) — (w—25,3,2) — (w—6,4,2) —
b=2: (w—4,21,1) — (w-531,1) — (w-64,11) —
b=3: (w—-4,1,1,1,1) = (w—5,2,1,1,1) = (w—6,3,1,1,1) =

The corresponding X elements in the 5th column block are underscored in T able 5.2.
|
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5.1.1.1 The Principal Theorem

The proof of Theorem 5.9 depends on the following simple lemmas, the proofs of
which are omitted. The hypergeometric expansion (1 — x)‘l/“ provides several

relationships for Jack polynomials, for an example of which see (2.7) on p. 29.

Lemma 5.4
Letting 1Fo(1/azy) = (1 —y) Vo = Zjio By’ , we have

Ji )
1 , Bi aj+1—-a
= I | — —i—k)/ ! and I = - [ |
:HJ (a J ,Bj—l aj

k=0

Lemma 5.5

Suppose that Arpy > K > Ay Then £ = Aspu, for some s such that r < s <t. |

Lemma 5.6
Provided that s < t,
W™ (As b Atpy) =w+b—2s

Proof 5.6
Proof is from Theorem 3.18 on p. 94. |

Lemma 5.7

For w > 2t,
C(Ar,b,u) == C(’\t,b,u) = (t — T) [1 + a {,w +b— (t + T)}]
Proof 5.7
Proof is from (3.4) on p. 81. n

Lemma 5.8

C()‘r,b,u) = C()\t—l,b,u) + wm()\t—l,b,m )‘t,b,u)
C(/\r,b.u) - c()\t,b,u)
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(@—1)2t—w—b—1)

=l o+ awsb) —alt+ 1)

Theorem 5.9
Let (1L =y Ye = D im0 By, define Ay, as in Definition 5.2, letr <t<w/2, and
set x = w — 2r +b. Then, forr <t,

jm(/\r,b,m )\t,b,u) = ,Bt—r (52)

while for r =1,
jm()\r,b,u, /\'r,b,u) = ﬁO =1

Note that the particular form of v is immaterial for this result.

Proof 5.9
In order to simplify notation, set j™(Arpw, Asbw) = Jrss W™ (A b Atpy) = Wst and

e{Xs i) = s

As in (4.7) on p. 105, the constraint on the 77’ coefficients from the column in gQ2™
indexed by A,; becomes

s—r—1

z jr,r+j Wrijs = (Cr = Cs) Jrs (53)
j=0

For s = r + 1, an application of Lemmas 5.6 and 5.7 to (5.3) shows that
w—2r+b 1 z

i = = W ——
feril a(w+b)—al2r+1)+1 o« z—1+2

thereby establishing (5.2) when t = r + 1, since f = 5.

For the general inductive proof, suppose that

[z —i+1)
[[iz—i+3)

j'r.s = /33—1-

fors=r+1,...,t—1, inclusive.

Setting s =t — 1 and s = ¢ in (5.3) leads respectively to
t—r—

2
Jroti Wrpjt—1 = (Cr - Ct—l)jr,t—l (5-4)
=0
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and
t—r=—1

2 Irir+i Wragit = (cr = t) Jrt (5.5)
j=0

Noting from Lemma 5.6 that w, does not depend on u, we can substitute (5.4) into
(5.5) to obtain
(& = Com1) Jrp=1 + Jrp—1 Wem1p = (Cr =€) Jre 5

from which, after simplification using Lemmas 5.8 and 5.4,

Jrt G — Ci—1 T W1y _ Bir z—(t—T— 1)
Jr-1 G =G Bioyr z—(t—T7—2) "

thereby establishing the result. |

To this more general framework one can apply the slicing theorems given in §4.6.2.2.

The following theorems are immediate corollaries of Theorems 4.22 and 4.24:

Theorem 5.10
Let p= (w—r)Ug, A= (w—r)Ur, where w(o) = w(r) =7 and w — 1 2>
max(h(c), h(1)). Then

™o N) = (0, 7) 5

Theorem 5.11
Letp=(w—r)U0, A= (w—t)UT, witht =w(r) 27 = w(o) > max(h(a), h(T));
and suppose that £(c) = £(t) =p. Set py =(n—r—1)U[o — (1)), 2= (p—&—
1)U [r — (17)]. Then
3™ (0, A) = ™ (p1, A1)

Example 5.11
In order to illustrate the theorem, let p = (w—2,1,1), A= (w—5,3,2), w' =w-—3.
Then, for w > 5,

i™ (psA) = §™ ((w'), (w' = 3,2,1))

Setting w' to w, the elements indicated by W in Table 5.2 are equal. |
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5.1.1.2 Consistency of Theorem 5.9 with the Knop-Sahi result

One consequence of Theorem 1.1 in Knop & Sahi (1997) is that in the expansion
Iy = 35 0p5 ), the coefficients j,, are polynomials in o with positive integral

coefficients. We exhibit consistency between this result and Theorem 5.9.

In this thesis we have generally used J, to denote the Jack polynomial with in-
determinate normalisation. In the literature, however, the symbol J, is generally

understood to incorporate the normalisation given in Stanley (1989, p. 97) as

= I [l —i+1+ealli-7)] (5.6)
(i.d)ep

where the product is taken over the points (7, j) of the Ferrers diagram for p.

For this section only, denote by J the Jack polynomial with conventional normal-
isation, and by J the Jack polynomial with the normalisation used in this thesis.
Then set

"ZJ = Z}Tp,nmn and jp = Z;p,nmn

so that 3,\,,\ is given by (5.6), and ’f)‘,)\ = 1. Moreover jp,n = }Tp,p X ffpyn. We verify

that ;p,p X Ep,,; is a polynomial in a for p = A, and £ = Agpp.

For the partition (w—r,7—b)Uv, restrict the product in (5.6) to the final w—2r+b =
+ elements in the first row of the Ferrers diagram, which is the part of the first row
jutting out from the lower parts of the diagram. Then

T

E(Ar,b,m )\r,b,u) =L, H [1 + O‘(m = k)] (57)

k=1

where L; is a polynomial in «, containing the remaining elements of the product in
(5.6). From (5.2), on the other hand,

= ﬂ —r
7 (Ar,b,ua )‘t,b,t/) — L2 X i—r :

where L, is a polynomial in a.
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From the hypergeometric expansion given in Lemma 5.4

(- i (G+5) Il (1+ag)

Moe—i+i) I[IhkE-i+d) ILhlee-5)+1]

one has
Ls

T + 1 .

.’;(/\r,b,m )‘t,b,u) =

where Lj is a polynomial in a.

The maximum value of # for which the partition )\;;, remains in standard listing, ie.

in non-increasing order of elements of the partition, is [ﬂ’;—b], so that the maximum
value of t—r is [£]. From (5.7) and (5.8) one sees that 7 (Arpus Arpw) X7 Arbws M)

is a polynomial in a.

5.2 The j, coefficients for A low in the RLO

Our approach to the operator matrix Q™ started from the top left hand corner,
and proceeded downwards by back substitution as in (4.7) on p. 105. For leading
coefficient unity, the 77 coefficients for low ) in the RLO are ratios of complicated

polynomials in w.

In this section we shall commence from the bottom right extremity of Q™, consid-
ering how some of the j7", coefficients behave for very low A without first working
through the coefficients for higher A. We shall see in Chapter 6 that the m) func-
tions tend to be of higher order for low A than for high A, highlighting the problem
that the terms for low A in (1.1) may well dominate for large partition weights: but

our simple approach here can only deal with a handful of coefficients.

We utilise the fact that the Jack polynomials are known when all the variables
assume the value unity, and equate coefficients of the highest powers of n. Combining
these results with constraints available from the final columns of the operator matrix
allows one to identify three of the extreme rightmost coefficients, using the final

coefficient as numeraire.
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Let my(I) denote the value of m, when all variables assume the value unity.

Definition 5.12
Let ej(a,d,n) denote the e; function evaluated for when the n variables form an
arithmetic progression, with first member a and common difference d: thus the n

variables are a + jd, with 7 =0,1,...,n—1. [ |
Lemma 5.13

—a+=(n—1) (5.9)

)+ L (n-2)@n-1) (5.10)

Proof 5.13
The proof requires the following relations (Abramowitz & Stegun (1964, eqns. 23.1.4
and 7, p. 804)):

Zj:r(rg-l); Z r+1(2r+1); Zjaz(2]> . (5.11)
j=1 §=1

First note that
er(a,dyn) =a+ (a+d)+(a+2d)+...+ (a+{n—1}d)

which easily reduces to (5.9) upon the application of the first of the relations (5.11)
As for the second relation,

o]

n—1

es(a,d,n) = » (a+ jd) Z (a+ kd)

k=j+1

n—

<.
Il
=}

n—2
=Y (a+jd)er(a+[j + 1d,d,n—j—1)

3=0
which simplifies to (5.10) upon applying (5.9) and (5.11). [ |

Let )\11 = ( ) )\21 (2 1w 2) )\22 = (2, 2, 1w—4); and )\31 = (3, 1w—3); and further

abbreviate my,; (I) to mi;(1), jpn; to jij and cx,; to cij.




Jack Polynomials, Chapter 5. Leigh Roberts, 2001 140

Lemma 5.14
mll(I) = Z—il;—' |:,nw — Ql)(__q%__—_n le_l 'LU(’I.U - 1)(’11)2’; 2)(3'(1) — 1) nw—2 + 19, (nw_g)]
(5.12)
ma (I) = (TiT)‘ [n""l = = 1)2(11) —2) n*%+0 (n‘“’3)} (5.13)
nw—2 5
maa(I) = m + O (n"" )
maa(1) = o + 0 (*)
Proof 5.14
We have

s () = (Z) _ (w,nn_ w) _ n(n—l)..q.u(!n—w-i—l),

w! my(I) =n® —e1(0,1,w) n* " +e(0,1,w) n*"2+0 (n*7%),

so that

which simplifies to (5.12) upon applying Lemma (5.13). In similar vein,

_ n _n(n—l)...(n—w+2)
ma(l) = (1,w—2,n—w+1) B (w — 2)!

(w—2)! myu (I) =n*"" — (0,1, w — 1) n*"2+ 0 (n¥7%),

which likewise simplifies to (5.13). For the remainder of the proof, simply note that
n _n(n—l)...(n—w+3)
2w—4,n—w+2) 2(w — 4)!

n )_n(n—l)...(n—w+3)
lLw—3n-—w+2) (w—3)!

mMag(I) = (

ma(D) = (

Now, as n — o0,

J(I) = jimu(I) + jgmar (I) + jzzmas(I) + jsymai(I) + O (n*=?) (5.14)

When the n variates are unity, Stanley (1989, p. 93) states that J, has value

L= [ h-G-D+al-Dl=n"+ gn® L+ gon¥2 4+ 0 (n¥"%) (5.15)
(@d)€r
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where the first equation is taken from Stanley (1989, p. 93), with the product taken
over the Ferrers diagram for p. The highest order coefficients g; are found in Theorem
5.20, and in fact g; is given in Stanley (1989, p. 106). One notes some resemblance
between (5.6) and (5.15).

We shall use the coefficient 5% as numeraire, and define

Jiy
Ji1

Equating coefficients between (5.14) and (5.15) will give us relations (5.17), (5.18)
and (5.19) concerning the four j,x coefficients singled out above. Further relations
(5.22) and (5.23) are obtained from the constraints implicit in the final 2 columns
of Qp,l-

5.2.0.1 Equating coefficients

Equating coefficients between (5.14) and (5.15), and utilising Lemma 5.14, one ob-

tains the following equations:

Jun
- 1 (5.17)
j11 J21
— = !
2(w — 2)! T (w —2)! a .
. _ 1 - == ] )
_711(3'U) ) _ J21 (w 1) J22 J31 = o (519)

24(w—3)!  2(w—3)! " 2(w — 4)! T+ (w—3)!
Simplification of (5.18) and (5.19) leads respectively to the following equations.

3 AL (5.20)

1
(n =3 o

3w —1 2
— Cu(w—1) + Co(w — 3) +2Cn = 2 (5.21)
12 wW(3)
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5.2.0.2 Constraints implicit in the two final columns of Q7

Lemma 5.15

w(w + 1)

5 and cn=cntwt+a-—1

Ci1 = wn —

Proof 5.15
Proof is from (3.4) on p. 81. 3

The constraints implicit in the Ay th and A;;th columns of Q7 are
3(w — 2)ja1 + (w — 2)(w — 3)Jjzz = Jar(c, — €21) (5.22)

w(w — 1)j21 = ju(e, — c11) (5.23)
Applying (5.29) and Lemma 5.15, the equation (5.23) reproduces (5.20), while (5.22)

becomes

3G + (w — 3)C2 = C;n (gul) :(; + = ; 1) (5.24)

5.2.0.3 Reassembling the jigsaw

Solving (5.21) and (5.24) leads to the following theorem.

Theorem 5.16
The coefficients (o1, Cop and (31 are given by (5.20),

1 w-3 g g—a  3p-0(n—0
“(w—3 = ——f = = 5.25
QW= =t T 3w T T wy {25
where wy is the falling factorial; and
1 0 g—a 20-gla-o9
S = 5.26
=57 2w T 2(w=2) w3 (5.26)

The solutions in Theorem 5.16 become rather more tractable for partitions p of
length less than 3.
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Theorem 5.17

When £(p) < 2,
(s = Ly = _a + 2
a+1 a4 6
or equivalently, from (5.16),
) . . a+1)(a+2) .
J31 — QJ21 = J21 — ( )6( ) Ju1

Proof 5.17
Subtracting (5.21) from (5.24) yields

3w—1
12

Ca —

gl—a+w—1)_ 292

=1} &=
+ Ca(w—1) =Ca ( - 5 -

From Lemmas 5.18 and 5.21 one may write

dJw-—1
o — 2
41
= [a(w—l—l)—(w—l)]—i——ﬁ—[—aw(2)+¢+a+1—w]
4 we)
2 1, 1 1
_w_(s)_ [-2—401 w(g)(3w = 1) = -Q-OZ'LU(Q)QS 242 a‘d)((f? oy —a== 1):|

Simplifying, one gets

31 B
a+1
_otl i) w1+ et 1-uw] - 2 (aw—a-1)
& w(s) w(s)
1
_ ot 1) - (- 1= (e 1) (5.27)
W(2)
From (5.20) and (5.38) one has
atl

i = —— —Ca,
’w(g) 2

substitution of which in (5.27) completes the proof. n

Lemma 5.18
When £(p) < 2,

c p-a w-1
A\w—2 2
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+1
&= [a(w+1) - (w—l)]+-wi [—aw() +o+a+1l—w] (5.28)
(3)
Proof 5.18
The proof employs (5.20) and (5.38). The result may be verified using the code in
§5.2.2. [ |
Theorem 5.19
When £(p) < 2,
1 ¢*  dla+l) w—2
=—(a+1)*+ - —2)% - +1
a2 4 (a4 1) w(4) w(4) ( ) a+1
Proof 5.19
Summing (5.25) and (5.26), simplification yields the result.
Corollary 5.19
When p = (w),
1
(oo = Z(a+1)2. [ |

Theorems 5.16, 5.17 and 5.19 extend results in Roberts (1998, §6.5) to general values

of a.

5.2.1 Finding the values of g;

We shall give two ways of finding the g, and g, coefficients, the second of which is
to be applied when £(p) = 2.
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5.2.1.1 General approach

Theorem 5.20
For p = (r1,T2,...), define

A:Zsrs 5 B:er : CZZS2TS : D=Zsrf ; E=er
s=1 s=1 s=1 =l s=1
For p' = (rl,7,...), define similarly A" =3 sr, etc.
Then, in the expansion (5.15),
g=c,-m-Nw=wl-a)+ad' - A (5.29)
g =g — (C+a®C") +a(D+A)+ (a—1)201 + (a — 1)u] (5.30)
Also we note that
, o1, 1.1
2A =B+'UJ C :§E+—2'B+6'U) (531)

Proof 5.20
From (5.15)

g= ¥ [=li—1]4aff-1)]

(4,9)EA
where the summation is over the cells of the Ferrers diagram. The final equation of
(5.29) follows from the relations

> i=A and ) j=A4
(1.5)€X (1.7)€A

For (5.30), note the following relations

> ), i=Aw-1) and S i=Aw-1) (532

(1,9)EX (k,)EX (i,9)€X (k,L)EX
distinct pairs of cells distinct pairs of cells
. 2 3 ! 1
E E ik=A*-C  and E _S_ zleA—a(A—l—D).
(1,5)€X (K HEX (4.5)EX (k,L)EA
distinct pairs of cells distinct pairs of cells

(5.33)
Now (5.30) and (5.31) follow from (5.32), (5.33) and (5.11). O
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5.2.1.2 Approach suitable for short p

We define ( 1) ( )
ri(ry — To(ry —
911:061——1—; 912:—7‘2+C¥2—2——; (5.34)
2 2
-1
13 = —27r3 + & ———TS(T32 ) , etc.
and set
r—2 r—1
Gz, a,r) = (z+ ja) (z + ka)
j=0 k=j+1
which can be evaluated from Lemma 5.13 as
G(z,a,r) 1 1,.1 g
i S e 87 = e - = s -2 - 5.35
1) 2am(r 1) + 5%+ 57 (r—2)(3r—1) (5.35)
One has in general
gp=gunt+gi2tgs+... (5.36)
and
g2 =G(0,a,m1) + G(—1,0,72) + G(—2,a,13) + ...
+011012 + 911913 + 912013 + - - - (5.37)
But with r3 =0,
« «@
g1 =gu+g12= §'w(w —1)=ry(l4+ar)= SWE) ) (5.38)
where
¢=ro(1—ary). (5.39)
The basic result for g, is the following.
Lemma 5.21
When £(p) < 2,
1 4 1 1
gy = ﬁa W(g)(?)w = 1) — 5(1'&)(2)(}5 + §¢(¢ +ow — o — 1) (540)

Proof 5.21
The proof is a straightforward but tedious manipulation employing (5.35). Maple

code enabling verification of the result is included in §5.2.2. |
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In Chapter 6 some evidence is presented to show that m, functions may be of higher
order when \ is low in the RLO, so that the ji%, coefficients may assume greater
importance when ) is low. The simple methodology in §5.2 would however be hard

pushed to provide more coefficients ;7% for A at the lower extremity of the RLO.

5.2.2 Supporting Maple code

Some obvious abbreviations are made, e.g. « is written as a in the code.

5.2.2.1 Maple code for Lemma 5.21

The code utilises successively (5.35), (5.34), (5.38), (5.39) and (5.37). The variable z
is defined from (5.40). The final two lines in each case indicate the result of inputting

the preceding code into Maple.

G:=(x,a,r)—>(a*x*(r—i)/2+x”2/2+a“2*(r—2)*(3*r—1)/24)*r*(r—1);
gll:=axrix(ri-1)/2;

gl2:=-r2+axr2*(r2-1)/2;

gl:=gll+gl2;

phi:=r2+a*xrl*r2;

w:=rl+r2;

g2:=G(0,a,r1)+G(-1,a,r2)+gli*gl2;

z:=24%g2-a"~ 2%wx (w-1) * (w=-2) * (3*w-1) +12%a*w* (w-1) *phi
-12xphix (phi+axw-a-1) ;

simplify(z);

> simplify(z);
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5.2.2.2 Maple code for Lemma 5.18

The code utilises successively (5.34), (5.38) and (5.39). The variables lhs and rhs are

an obvious notation from (5.28), save that they have been multiplied by a constant.

gll:=a*rix(r1-1)/2;

gl2:=-r2+a*xr2*(r2-1)/2;

gl:=gll+gl2;

phi:=r2+a*ri*r2;

wi=rl+r2;

lefths :=w* (w-1)* (w-2)* (1/2+g1/w/ (w-1) ) * ((gl-a) / (w-2)-(w-1)/2) ;
righths:=(1+a)*w* (w-1) * (w-2) /4 (a* (w+1) - (w-1))

+phi* (-a*wx (w-1) +phi+a+1-w) ;

simplify(lefths-righths) ;

> simplify(lefths-righths);



Chapter 6

Evaluation of the m) functions

6.1 Summary

Most of the work in this chapter is effected by an expansion of amy functions in px
functions, proved as Theorem 6.1. This facilitates the calculation of m, functions
when the variates assume a geometric progression, for the p, functions are then
quickly found. But it also enables us to investigate the m, functions when the
variates stand in arithmetic progression, at least as far as evaluating the higher

order behaviour is concerned.

From Corollary 6.9, for variates in arithmetic progression, the asymptotic behaviour
of m,, functions is given by my = O (n‘™) as n — co. For variates in geometric
progression, and letting n — oo for a fixed ratio between successive terms, the vector
M of m, functions behaves independently of £(A) at the highest order; but then
letting the ratio of one term to the next — 1 means that the dominant my functions
are those for long A (low in the RLO), according to Theorem 6.15. For more general
variate behaviour one has no particular results. A little tentatively, one can perhaps
say that there is some evidence that my functions are of higher order when A is low
in the RLO.

149
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6.2 Preliminary

According to standard results on transformations from one set of basis functions
for the symmetric homogeneous polynomials to another basis, the expression of my
functions in terms of py functions can be accomplished in two steps: for instance,
the transformation from m, functions to s, functions involves the Kostka numbers,
and the transformation from s, functions to py functions involves the character table
of the symmetric group (e.g., Macdonald (1995, §1.6), Stanley (1999, Ch. 7)).

Macdonald (1995, §1.6, Ex. 10) mentions the transition matrix from the py basis to
the am,, essentially derived as a variant on a matrix of Kostka numbers, but our

Theorem 6.1 seems simple enough to derive directly.

Our first result Theorem 6.1 utilises a simple application of the inclusion exclusion
principle to prove an expansion of the am, functions in terms of the p, functions.The
expansion has the additional virtue of being relatively parsimonious, at least in
comparison with the standard determinantal expansion of e, functions in terms of
the py functions (e.g., Macdonald (1995, §1.2), Aigner (1979, p. 163)). The latter
expansion contains terms indexed by partitions of A, whereas our result contains
terms indexed by partitions of £()). The main theorem is proved for indeterminate
variates taken to indeterminate powers, although in the applications in later sections

of this chapter we shall restrict those powers to be integers.

It is an easy application of Theorem 6.1 to find the my functions when the variates
stand in geometric progression, since the p, functions are then readily calculated;
and it is an easy extension to let the number of variates become infinite. Before
then, in a less obvious application, Theorem 6.1 will also be used to evaluate mj)
functions when variates assume an arithmetic progression, restricting ourselves to

finding higher order terms only.

Let a, a+d, a+2d, ..., a+(n—1)d be the n variates in arithmetic progression. The
first situation investigated held d fixed as n — o0, so that the range of the n variates

also becomes infinite; while in the second case considered nd was kept fixed, so that
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the range of the variates remained constant while their number became infinite. In

the former case my = O (n”) and in the latter case my = O (n™t*), where r = £(}).

In either case, then, one can expect that for large n the most important of the 77’y
coefficients will be those for long partitions A. That is unfortunate, in that the most
difficult coefficients j7 to calculate are those with short p (high in the RLO) and
long A (low in the RLO), since these are the end product of a long sequence of back

substitutions; otherwise expressed, [p, ] supports many d2 chains.

Before starting the subject matter of this chapter, it is perhaps worth noting that
while variates are anticipated to be non-negative in most statistical applications
of Jack polynomials, calculation of both the m, functions and the e, functions
simplifies greatly when variates are symmetrically placed about 0: Theorem 7.1 on

p. 166 refers.

6.3 The expansion of am, in p, functions

In this section it is convenient to extend the definition of p; = 37, L 7 to quantities

1=

j which are not necessarily non-negative integers. For a vector v = (i,5,k,...), we
write interchangeably p, = P(ijk,.) = P (i,4:k,...) = p(@A)p(i)p(k) ... = PiPiPk - -
Further, let S, denote the symmetric group on 7 symbols, say the integers 152 s conifs
so that the action of s € S, on i is given by si = s(i). Finally, when A is a partition
of length r, the definition of am, 4,,..1,) In (6.2) is consistent with that of am given
in §1.5 on p. 15.

Theorem 6.1 is valid for z; and I; being indeterminants such that the usual rules of

0 =1 etec.

exponents are followed. That is, []; xi’l is well defined, []; zh = zXib, o
Formally one can proceed to define a Z-module X containing finite linear combi-
nations (with integral coefficients) of elements of the form gzl ...z, in which
ji € J; and where J is an additive abelian semi-group with identity, viz. zero. Thus
i,j,k € Jimplies that i+j =j+i € J, (i+j) +k = i+(j+k)andi+0=0+1=1.
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A product in X is defined by

gigh ..z x ol 2l = gt BYE | et (6.1)

When j; =0 for i € I C {1,2,...,n}, we abbreviate by writing
[ - T
=1 i=1
i€l

Thus X is the commutative ring with identity generated by the elements xj for
i=1,...,nand j € J. The identity is [[i_, 29, and we adopt the convention that
Oj——-Oforall] e J.

We work with X ®z Q, thereby allowing the coefficients to be rational numbers
(see Atiyah & Macdonald (1969, pp. 1, 24); and Curtis & Reiner (1962) and Cohn
(1989), say, for fuller treatments of the tensor product). In fact the only elements
of X arising in this section are those with at most r indices non-zero. Should r > n,

one can augment the set of indeterminants by r — n zeroes.

Theorem 6.1

Let X be a commutative ring with identity generated by elements of the form :L‘: for
i=1,...,n and j € J, where J is an additive abelian semi-group with identity. The
product in X is defined as in (6.1).

Define “augmented monomial symmetric functions” as follows:

\

= Iy .02 l
MYl l3ly) = E Loy Togy <+ - Loy, (6.2)

71,72 =1
d

where the “d” underneath the summation sign indicates that only distinct values of

the indices vy; are to be used.

For k = (ki,ko,...) b 7, where k is listed in non-increasing order, set o(i) =
Z;=1 ki for i < €(k), with 0,(0) =0. Then

Z(rz

amy ly,...lr) = Z Z H:D s(on(G=1)+1) T ls(on(-1)42) T -+ - T Ls(ow(i))
kT s€ESy j=1
(6.3)
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in which p(j) = p; = >y zl; terms in the right side of (6.2) and (6.3) are to be

interpreted as elements of X ®z Q; and where 2, is defined in §1.5 on p. 15, and

is in any case given below in (6.4). |

The am, 4,,..1,) function reduces to the falling factorial when all variate values are

unity: see Example 6.4. In particular, am, y,,...,) vanishes when r > n.

It is convenient to decompose z, as follows.

__ (1m1 oma2 - My | — H(z')m1m‘l| _yﬁ
g 1™ ,12 ,‘..)=>zK—Hz mz!_H((i—l)!)m"_Bn (6.4)

in which the multiplicity m; = m;(x), as in §1.5.1 on p. 15. The constant z is
expressed as a ratio of 6, and y, because in the conventional setting out as a sum

of brackets of similar terms of “type” & I r, the brackets contain r!/y, terms, while

6, is retained outside the xth bracket as a weighting factor.

Some definitions and examples are given before commencing the proof.

6.3.1 Definitions
6.3.1.1 The concave map associated with a partition x
For k = (ki, ks, ..., k) 7, where « is listed in standard non-increasing order with

¢(k) = t, define a map

o :{0,1,2,...,t} = {0,1,2,...,7}

by '
ani:on(i)=2kj for 1<i<t; and 0,0=0
j=1
In particular ot = r. Associated with such a map and a vector (l1,12,...,1;) one

defines the function

Jo. =P (ll g T la,.—,l) P (la,‘1+1 s O la’.‘Z) . (lan(t—l)-{-l a1 5 lr)
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£(k)
=[IrZxs) (6.5)
j=1
in which, for 1 < j < {(k),

Ln,j = lam(j'—].)'i'l + . a + la’,;j .

For s € S,, and writing soi for s (oi), one further defines
Lss,i = bataetj=1y41) + <. F Lsaici

Gso, = P (lsl s m =l lsanl) p (ls(crnl-i-l) T ot lsa,(2) e p (ls(am(t—1)+1) + et ls'r)
(k)

= Hp (Lsn,j)

6.3.1.2 The xth bracket B,

The sth bracket is defined as:

Z s - (6.6)

Y SESy

The number of monomial terms in By is r!/y., which is the number of ways of
choosing subsets of sizes ki, ks, ... from w(x) = r objects. There are accordingly no
duplicates of monomials in By, unless different sums of distinct terms of the vector

(I1,1a, .. .,1,) happen to coincide, as illustrated in Examples 6.4 and 6.5.

Further definitions are given at the beginning of §6.4.

6.3.1.3 Rephrasing Theorem 6.1

The equation (6.3) can now be rewritten more compactly as

e(")’*"' Z(lc)+r
TN (1y,loynle) = Z Z Hp sk _7 Z Z Gso
KT SES, j=1 kFr SESr
. Z (—1)4=)* 6, By (6.7)

Kbkr
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6.3.2 Examples

Before proceeding to a proof of Theorem 6.1, we illustrate with examples.

Example 6.2

n

n
am(s,1) = My6,1) = Z zi3; = Z zi%; = Z T} = pepr — P1 =

#j=1 i,j=1 =1
i#]

Example 6.3
M2 = D YUY = Souiytue -y Wiyl +utvl +uiyd) +2) o,
i

1,5,k i,k i,j
d

which becomes

m3,2,1) = P(3,2,1) — (P(s,1) + P2 + P(a,a)) + 2ps u

Example 6.4

amyi jkl)y = PiPjPkPl
— (Pi+iPrPL + DiskDiP1 + DiiPjPk + Pj+kPiDl + Pj+iPiPk + Pr+1DiDj)
+ (DitjPrtt + DiskDj+t + DitiDj+k)

+2 (Pitj+kPt + Pitj+iPk + PithtiPj + Dj+k+1Di) — 6Pkt (6.8)

The bracketed expressions, together with the first and last terms, are indezed by
k= (1%, (2,1,1), (2,2), (3,1), (4)

respectively. Recalling the definition of the xth bracket in (6.6), equation (6.8) is
recast as
am(iky = By = Beay + Bee) +2Ba) — 6B (6.9)

In the given (lezicographic) order of terms in (6.9), the values of y,. are 4!, 4,8, 6, 4!
and those of 8, are 1,1,1,2,6 respectively. The number of terms within each bracket

is 4!/yx, and the constants outside are 0.
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The term piyj+kpi in the (8,1)th bracket, for instance, is correcting for the terms
above it of the form piyiPkpi, Pi+kDiP1 and PjikPiPr W0 the (2,1,1)th bracket as well
as pip;pkp1 in the (1,1,1,1)th bracket.

Note that the coefficients in (6.8) and (6.9) are consistent with the falling factorial
eTpansion
n@ =n(n—1)(n—2)(n—3) =n*—6n’ + 11n? — 6n. (6.10)

The ezpansion (6.8) reduces to (6.10) when all variate values are unity, and naturally

vanishes when n < 4. In (6.9) there are 6 entries in B(a, 1), 11 entries in Bia2) +

23(3,1), etc. : |
Example 6.5
Set A = (4,2,2,1) in Ezample 6.4. Then

amy = 2M(422,1) = Z VYUY = P22,

1,7,k
d

— (2p,2,1) + P(5.22) T Paan) + 2(32) + (2P + Pe.a))

+2 (p(B,l) + 2p(7,2) + p(5,4)) — 6pg ]

6.3.3 Proof of Theorem 6.1

Returning to the proof of the principal theorem, the logic of the proof is that of
the inclusion exclusion principle. The left side of (6.8), viz. amgj k), for instance,
contains monomial elements ziz) . . . in which no z., variate repeats, so that there are
nuy =n(n —1)...(n — 3) monomial elements. The first term on the right side has
elements of the same kind, but the variates can repeat, so that that term contains
n* monomial elements upon expansion. The succeeding terms on the right side serve
to subtract those elements which appear in the first term on the right but not in

the left side, and then to compensate for the over-correction etc.

The proof proceeds as if the vector (I, [z, ..., I,) had distinct components [;. But

the equation (6.3) is an identity involving 1, [, ... etc., and is valid whether those
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components are distinct or not. The expression (6.8), for instance, is valid for general

i, j, k and [ regardless of whether they happen to coincide or not.

Proof 6.1
From (6.7), let

Mty gty = ), (1) e B, (6.11)

kbr

so that the aim is to show that 1, = 6. The starting point is that ¥, = 6, when
w(k) < 4, as is evident from Examples 6.2, 6.3 and 6.4. Suppose now that ¥, = 6y

for w(k) <.

For 1 < u < r write

MLy g olrs1) = G dyeb) X 0T lugt bugsensbrr) T K (6.12)
All terms in X, have exponents combining at least one element of {l1,lz,.-. Ju}
with at least one element of {lys1,lut2,--- b1}

First set w = r. The equation (6.12) becomes
a7n(£1,£21“‘7l1'+1) = am(l],l2,...,l,) x pl,.+1 + XT . (6.13)

Regarding I, and [, as distinct for unequal v and w, as discussed in the preamble

to this proof, one can state that p;,, is not a factor of X,.

The equation (6.13) becomes

Z (_1)£(m)+r+1 VP, Br, = (Z(_l)é(n)+r 'd)nB:c) X Dl + Xr (6.14)

kikFr+1 kbr

Equating coefficients of g5, X pi,, in (6.14), for k - 7 one has
Yreu) = Vs -
But 1, = 6, by the inductive hypothesis; and O.u(1) = bx, so that
"/)nu(l) = enu(l) .
The argument generalises immediately. Write (6.12) as

MUy lgedess) = MUl lzyelu) X [(r —u)! p(lugr +lug2 + .-+ ley1) + Y] + Xu
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where p (ly+1 + luya + - .. + lr41) is not a factor of Y.

For k F u, we equate coefficients of gs, X p (lut1 + lut2 + .- + l,+1) to see that

wnu(r—u+1) = (T - u)'d)n

But v, = 0, by the inductive hypothesis; and Ocu(r—u+1) = (r — u)! 6y, so that

wnu(r—u+1) = 0&U(r——u+1)

forallu, 1<u<r. [ |

6.4 Behaviour of the am, functions when the un-
derlying variables form an arithmetic progres-

sion

For the remainder of this chapter we assume that A = (ly,la,...,l;) F w, so that
l; € N; for each j. In other words, the set J in the last section becomes the set of

non-negative integers.

Definitions 6.6

The limiting processes for the arithmetic progressions in §6.4 involve n — oo with a
and d constant on the one hand; and a and dn constant on the other. In the former
case, the parameters arising are Gy, ; and Cy, ;, which simplify substantially, as shown
for instance in Theorem 6.11. The second case sees the analogous emergence of Dy,

and Dy j, for which there is no obvious simplification.

For j € N;, and with k b1 and t = £(k),
C.__Cij_ d C.=d'a--=
“i=iy1 W i = )

J .
I\ icigopni L 1 : .
Do, ; = ; (z) a’*(nd) 1 and Dy ;= 5 [(a+nd)’ — o]
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t
=> [lCos,., and =Y. 201 Lyn,i H Co,Low,;

s€Sy j=1 s€S, =1 =

J#z
t
= Z HDO’L-"‘J and Z ZDIL.M:HDOL.:NJ
s€S, j=1 sES, i=1 =
J#z
[ |
Lemma 6.7
For j € N,
n—1 ; :
K= - — -1 6.15
k=0
The proof is immediate from Abramowitz & Stegun (1964, eqns. 23.1.4 and 7, p.
804). When j =1, the final term in (6.15) is redundant. [ |

Lemma 6.8
We consider two limiting processes: for the first a and d are fized, and n — 00;

while for the second a and nd are fized, so that d — 0 and n — 00.

Lemma 6.8(a)
Let a and d be fized, and j € N.. Then, as n — 00,
; d’ di~1 d Cyj
P; = - |: —5} +O(T‘L-— ) CO]‘JF +O(n—2) .

nitl 41 n

Lemma 6.8(b)
Let a and dn be fized, and j € Ny. Then, as n — 00,

B Z (e 2 - 5 Z (7)o tnar + 0 (n)
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Proof 6.8

Za+kd3—22(>a3 ik

k=0 i=0
in which 0° = 1. Reversing the order of summation, an application of Lemma 6.7

yields
Jj
Py Z(Z)aﬂ i’ Zk’
=0
=na’ + =ja’ tdn(n — 1) + XJ: <J> a'd [niH - i +0 (ni“l)]
Lt 8 i+1 2
J Jj—1 : J —i i n 1 =]
=na’ + -ja dn(n—l)—l—Z @@ (nd)" |- 1—§+O(n ) |
il 1+
Theorem 6.9

Let A+ w, £(\) =r. For a and d fized, and n — o0,

am 1 1/1
2 == Goan + - (;7 Giam) —

et ol

1 —_—
2A(r —2)! Go,(2,1r—2)> +0(n7?)  (6.16)

For a and dn fized, and n — oo,

I

_')"_—_QF HO,(2,1"_2)> + O (n—2) (617)

anm ) 1 1 1
= & Hog + 1 (77 Huon = 3

nT‘

Proof 6.9
First, for d constant and with ¢ = £(k), one has from (6.5) and Lemma 6.8(a) that

Go. P (Le1)P(Li2) - -P (L)

t
—H{COL“ ClLM"_ }

3=

t

=H 0L~J+ ZCIL"‘HCOL"J—i—O( —2)

=1 1=l =1

J#z
From (6.6), one may write
Y Be _ Asox
nwtt nwtt

SES,
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t

4 t
= Z HCO,LSN.,j + % Z Z ClyLsn,i H COyLsN.j +0 (n—z)

$€5, j=1 s€S; i=1 =1
J#i

= Go,n + Tll. Gl,n + 0 (TL_Z)

Finally, from (6.11) one has

amy =Y (=1)*" 0B,

kbtr

K xBr
amy Z (_1)£(n)+r b % Yy

nw+r - o nr—t nw+t
0 7 1 1 6 r=—2 =
= U (Go,(v) = Gl.(v)) — = ) Gy p1r-2) + O (n7°) (6.18)
Yar) n n Y2,17-2)

1 1 1
_ vt o — L Gopirny 4+ O (0
. (Go,u )+ - b )) n(r — 2)! 0,(2,17-2) T (n )

which simplifies to (6.16). The proof of (6.17) is analogous, utilising Lemma 6.8(b).

Corollary 6.9
Let A\ w. For a and d fized, and as n — oo,

my = 9] (nw+£(A)) )
For a and nd fized, and as n — oo, this becomes
my = 0] (TLZ(A)) 5

Thus in either case the longer partitions A have my functions which are of higher

order than shorter partitions as n — oQ. |

Lemma 6.10
Define

1 s 4
Te = — Z H [1+ lsoni-1)41) + s(on(-142) -+ lson(i)]
Y SES, j=1

s fI (14 Low) " (6.19)

Yr sESy j=1
Then

Gox = dwynTn

L]
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and a " P
e = g +d () (a, - 5) (6.20)
0,k
Proof 6.10
First note from Definitions 6.6 that
t
dLaK‘j dv
CO»Lan p = =
J-I;[l ¥ 31;[1 Low,j+1 [y (Las,i+1)
and ‘
Oy _J+l(,_ é)
Co;  d 2
Then t
=Y TICorw, =2 = & yuTe
seSy j=1 : SESy HJ 1 Lsx 'J i+ 1)
and
=), ZCMW HCOL,H
s€S, 1i=1 =
J#z
Cir
= 8K, i C
sezs:z:: Co,Loni I_I o
_Zzt: L\m,i‘i'l(a_g) av
5€S; =1 d 2 H;=1 (Lm,j *+ 1)
w—1 d
=d" (w+t)|a— 5 ) UxT
which reduces to (6.20). |

Theorem 6.11

For a and d fized, and as n — o0,

ANy g, lr) w+r d 1 2
———dwlnw+, = T(1r) [1 +— (a - 5)] -~ T2+ 0 (n7?) (6.21)

Proof 6.11
The proof follows from (6.18) and Lemma 6.10. |
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Example 6.12
For the vector (I, 1, ls),
1
T L F D GG+ 1)
T(2.1) = 1 T ! o .
Y= G+ D) (l+1) (Wt+b+1D)(+1) (+ik+1)(G+1)
1

= U+ h+l+1)

As in the definition of By in (6.6), the factor of y.' ensures that there are no
duplicates in 7, unless different sums of distinct terms of the vector (ly,l, ..., 1)
happen to coincide. Terms arising here naturally mirror those arising in Ezample
6.5. |

6.5 Behaviour of the am, functions when the un-
derlying variables form a geometric progres-

sion

It is easy to apply Theorem 6.1 when the underlying variates form a geometric

progression, since the values of p; are readily found for this case.

Let the variables be z; = z7~! for j = 1,2,...,n. Using the standard formula for

summing a geometric progression, from (6.3) one has

g(,c (k)
AUy loyesle) = Z Z Hp sk, _7
KT seSy j=1
f( . L.sx,
=y B Vel H 11 _“: - J’ (6.22)
kb7 s€S, j=1

Example 6.13
Let the n variables be {27 : j =0,...,n—1}. Then, from Ezample 6.2

1— 2% ] -—a" 1—g™
m,1) = PeP1 — P71 = \ 7_ ;6 1—z] \1=g° u
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Theorem 6.14
Let A= (I, ly, . .., ;) be written in standard non-increasing order, so that in partic-
ular £(\) = r. Let the variates be {z? : j =0,...,n—1}, and setu = i1 =1l
Then, as © — 0,

amy =% + O (a:’”’l)

Proof 6.14
From (6.2) the lowest power arising in the summation will arise when z; = 1 is

associated with l;, zo = & with Iy, etc., giving rise to the power w. |

6.5.1 Infinite number of variates

It is convenient simply to let the number of underlying variates become infinite, for
which the numerators of the expressions in (6.22) corresponding to p (Lss, ;) reduce

to unity. We simply note the following.

Theorem 6.15
Let A = (ly,ly,...,l;) b w. Suppose that the variates form an infinite geometric
progression z*, for 1 =0,1,2,..., with0 <z < 1. Then

(1-z)Mamy - =— as z /1.

1
Hi L;

Proof 6.15

Noting that
I 1 1

N ==

11—z jl-z

as %1,

one sees that the dominant bracket in (6.7) on p. 154 is that for the longest partition
% = (17), which contains the single term py, pi,pi, - - - Then

1 1 1
pllphpl(i"'— 1_1:[1 1_ml2 l—zl.'i..'

111 p

asz /L. [ |




Chapter 7

Evaluation of the e, functions
when variates form a geometric

progression

All of the e, functions remain of the same order as n. — 0o, at least when the variates
are positive, and bounded above and below away from zero: for then e, = O (n")
as n — oo, and ey = O (n®). The vector E of e, functions behaves in the highest
order as a constant vector times n*. For the m, functions, in contrast, there is
circumstantial evidence to say that my functions are of higher order for A lower in
the RLO: see §6.1.

The e, functions are relatively easy to calculate once the variates are assumed to
follow a geometric progression. Less complete results are available otherwise, except
for the artificial case in which variates are symmetric about the origin, when the e
and m, functions simplify. This situation is quickly disposed of in the first section,
which is the only part of this chapter in which variates are not assumed to stand in
geometric progression. The evaluation of ey functions when variates are assumed to

follow an arithmetic progression does not seem particularly tractable.

165
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7.1 A tangent: when the variates are symmetric

about the origin

As a prelude we consider briefly the perhaps artifical case for which the variates are
+z; for i = 1,...,m; where m = n/2, with n even, and n is as usual the number
of variates. In this section the variates are not assumed to stand in geometric

progression.

The e, functions simplify substantially, and to a lesser extent so do the m functions,

as noted in the following result.

Theorem 7.1
Let z; > 0 for j = 1,2,...,m = n/2, with n an even integer; and with k =
(ki, kg, ...), let 2k = (2k1,2ks,...). Then

eor (21, £23, . .., £Tpm) = x(—22, =23, .. ., —T)

For partitions X not of the form 2k for some &, i.e. for which not all constituent
elements are even,
6,\(:‘1:231, :t.’L‘Q, v oy iﬂfm) =[)

my(£z1, £22,...,£2Zm) =0

Proof 7.1

For the variates which are symmetric about zero, any monomial ¥ Y, where Y is a
monomial in the variates zo, ..., and k is an odd integer, is offset by (—z1)* Y.
The occurrence of z; must be balanced by an occurrence of —z; to contribute to

the ey function. [ |

7.2 Calculating e,: one can assume that r < n/2

For variates standing in geometric progression, Theorem 7.3 allows us to assume

that » < n/2 without loss of generality. That theorem is in turn a direct corollary
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of Theorem 7.2, and is illustrated in Example 7.4.

In this section we consider the variates to be z* for ¢ € I; where the index set L=l
is a multiset (that is, multiple values are allowed): I = {41,192, ..., in}, where i; € R
and where without loss of generality we assume that i; < 4 when j < k. We set
I+a={j +a,iy+a,..., i, +a} fora € R; and similarly for I — a, a=+ I etc., on

the understanding that the order of elements in a — I is to reversed.

Theorem 7.2
For variates z* forz > 0 and i € I = {i1,1,...,in}, where i; € R and i; < ik when

j <k, let I satisfy the symmetry condition

Further deﬁne N = ’1;1 < 1:2 G P 'in,’ NO'r = i1 + '1:2 + ...+ 7:7‘ and NIT = in—r+1 -+
in—r+2 + .ty Then

enr =z"e,

where k = N — Ng, — Ny,

Proof 7.2
Define the elementary symmetric functions for the variates in the statement of the

theorem: "

er=ell) = E gig g™ = E &

?1,112,...,72,-:} i€ly
11<12<...<y

where the minimum number in I, is Ny, and the maximum Nj,.

In view of the equality

{ijxa 7:j27 7 e ijr} - NOr = Nlr - {7:11+1—j1a in+1—j2a = ¥ ,in+1—jr}
the index set I, satisfies the symmetry condition

Ir—NOr:Nlr_Ir

For variates inverse to the above, viz. % for i € I, define the corresponding
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elementary symmetric function

Y
Now
. r
e =gV e =gV E T (7.1)
iely
= =Nz Zle,—i — NN Z P (T Z gF = xN—NOr"Nlre"(}) [
i€l 1€EN1,— Iy 1€l —Nor
Theorem 7.3
For variates z* forz >0 andi € I ={1,2,...,n}, one has

En—r = z* Er

where
k=(n+1) (ﬁ-r)
- 2
Proof 7.3
Apply Theorem 7.2, with
1 1

N = ”(L;—) . Ny = ’"(T; ) and  Ny=r(n+1)—=Nyy W
Example 7.4
For n =5 one has

egl) =g'2?22% + ... + *2%2° = 2P (z_4z_5 B enie m_lx—z) = xlsegz)

which corresponds to (7.1); and then

6(31) — 715 ($—4x—5 +..+ m"lx"z) — 73 (x6—4$6—5 +..+ x6—1z6—2)
=2* (2% + ... + 2°z*) =2° el

The multisets in this case are

I, =1{3,4,5,5,6,6,7,7,8,9} and I,=1{6,7,8,8,9,9,10,10, 11,12}
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7.3 The basic recursion for e,

In Theorem 7.8 we obtain a recursion for the e; functions when the variates stand
in geometric progression. This recursion can be solved to provide an expression for
the e; functions, given as Theorem 7.12, which turns out to be quite suitable for
finding approximations and upper and lower bounds for e;. These results provide
expressions, approximations and bounds for the ey functions, and in turn for the

Jack polynomials Jy.

Denote the variates by z* for i =1,2,...,n, with z > 0 and z # 1; and for j € N,

set )
w]
o 7.3

so that p; = a; (29" — 1). There are in fact standard determinantal expansions for
p; in terms of e; and vice-versa: see e.g. Macdonald (1995, p. 28). While the p;
functions are easy to calculate when the variates stand in geometric progression, the

method we propose is more parsimonious and facilitates finding approximations.

In order to set the scene, we calculate a few of the e; functions for small j.

n
€1 =Z T =a1(3:"— ].)
i=1
n . n-1 n n
ey = Z o'yl = Z Z ' =a; Z 7' (z" — 2') = ar13"e; — araz(z®" — 1)

8,5=1 i=1 gj=i41 i=1
1<J

The next example will be treated in some detail, since it illustrates the general

approach.

i,5,k=1 i=1 j=i+1 k=j+1
i<j<k
n—2 n—1
=ZZ zimjal(z"—xj =ZZ J:a:’al —x’)
i=1 j=i+l i=1 j=i+1

= a;z"ey — a1 E E z'z¥ = a1z"ey — ay E z'a, ( " — %)

i=1 j=i+l
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n n
= a2y — ay E Ttay (:n2” - 2:21) = a1z"es — 410227 ey + a1ay E 3
=1

i=1

= a1z"ey — @102 ey + ayazaz(z®” — 1)

In similar vein one can prove the following:
e n 2n 3n 4n
e4 = a1T"e3 — A1a2T° "€y + a102a37°" € — ayaza3a4(z"" — 1)

and Theorem 7.8 states that this generalises. We proceed as follows.

Definition 7.5
Forl1<r<nandl<t, let

n—r+1 n—r+2 n—1 n

Mt = Z zH Z .. Z i1 Z ztr (7.3)

11=1 12=11+1 ip—1=ir—2+1 tp=lp—1+1

Note that
pe =1 =a (g™ - 1) and Tl = €p (7.4)

Lemma 7.6

Tt tn tn
E =T Mr—11 — Mr=1t+1 = T €r—1 — Tlr—1t+1

Proof 7.6
The final summation in (7.3) evaluates as
a (xm _ Iti,_;)

whence the result follows upon increasing the ranges of the remaining summations

by 1, as in the example for ez above Definition 7.5. |

Lemma 7.7

Fori,j € Ny andt < j,
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Theorem 7.8
Let A; = T4, ax, with Ay = 1. Then

r—1
e =Y (-1 Az me, s+ (-1) T4 (@ - 1) (7.5)

s=1

Proof 7.8

The proof consists of (r — 1) applications of Lemma 7.6, as well as noting (7.4):

= _ n _ n 2n —
€, =Ty = 13" €r_1 — Q1Ty_12 = Q1T €;1 — 01028 "€r 3 + Q102723 = ... W

Lemma 7.9

For0<t<r,
Art yr— Ary A—t:l ar = Ar-t-1 —éfT Qr (7.6)
z(2) 2('7)
where
Y = At/x(é) .
Proof 7.9

Left side of (7.6) = A,—: (ﬁf— - ét%l a,) = A ¢ At—fl (a; — ayr)
() z() z(3)

A wa, § :
= A,_y —— ——— = right side of (7.6
‘ _'1;(2) xtar—t g ( )
where we have used Lemma 7.7. |

When z > 1, it is tempting to replace the bracket (z™ — 1) in (7.5) by ™", partly
because the omitted term should be small, at least when =z is not too close to 1; and
partly because e; ~ 2" as n — oo, whereupon all terms in (7.5) are rendered of the

same order by the change.

To this end we pursue the following series of recursions. First set b, = (—1)*"1A4;;
cs = bsz™; fo=1; and since e; = a; (z" — 1), also let f; = a;2". Then, for r > 1,
let

T

r—1
fr = Z bsmsnfr—s + brxrn = Z Csfr—s . (77)
s=1

s=1
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The intention is to have f, pick up the highest order terms of e, in (7.5).

The symbols f; and f, in this section should not be confused with the “forgotten

symmetric functions” fy in Macdonald (1995, p. 22).

Theorem 7.10
The solution to (7.7) is given by

fr=A ™™™ where u= (;)

Proof 7.10

Setting z; = f;/2", one may rewrite (7.7) as
2, = Z bszr—_s + by with 2z =a;

We need to prove that

for r > 1.

Now the use of Lemma 7.7 establishes the result for r = 2. Assume then that
Zy = At/x(;)

for t < r. Repeated use of Lemma 7.9 establishes the truth of (7.8) fort=7. W

Our approach to the principal theorem, Theorem 7.12, is a trifle indirect. For e,
we consider (r + 1) levels of functions, each picking up higher order terms than the

next. We illustrate for es.

Example 7.11
We rewrite (7.5) as

e = C1€r_1 + Co€p_o + ...+ Cr_1€1 + Cr€g — by (7.9)
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and taking our cue from (7.7) one may write

fa = afotcfiteafo g = agten  h = ahy i3 = —bs
fa = afi+eclfo g2 = g hy = —by

fi = afo g = —b

fo =1

Then given the last of the following relations, the remainder follow easily.

€3 = Cilea+coe;+cseg—bs = fa+gs+ha+is = o3+ d13+ P23 + P33

es = cre1+Coep — by = fot+g+hy = ¢o2 + P12 + P22

e1 = cieg—by = fitn = ¢o1 + o1

ep = 1 = fo = oo
in which f, = dor, gr = ¢1r etc.; and ¢jr = O (m("‘j)") as n — oo. The functions
¢;r are defined formally in the proof of Theorem 7.12. |

Following the same procedure with a greater “depth” of functions, we have the

following result.

Theorem 7.12
Forr <n,

T
er = fr —a1fro1 @102 fr2 — masasfrs + ... = Z(_l)tAtfr—t (7.10)
t=0

in which, when j > 0,

fi = Az where u= (‘;) .

Proof 7.12
Define functions ¢;, by ¢;, =0if j > 7; ¢go =1; and for j=0,...,7 =1,

r—j
Gjr = C1Pjr—1+ C2Pjr2+ ...+ Crj@jj = Z CkPjr—k
k=1

¢ij=—bj forj=1,...,r

Then ¢;, and ¢g,—; satisfy the same recursion, whence

Gjr = kjdor—;
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Comparing the ¢;; values, one sees that k; = —b;.
For the induction needed to complete the proof, assume
t
€= o+t +du=) b (7.11)
J=0

for t < r. In fact (7.11) is valid for ¢t < 3 from Example 7.11.

¢0r+¢1r+---+¢rr

r r—1 2 1
= crbosoi+ D Ckbro—k+ ...+ > ckbroapk + > ckbro1pk + rr
k=1 k=1 k=1 k=1

=6 (¢0,r—1 + ¢1,r—1 + ...t ¢r—1,1‘—1)
+cy (or—2+ P12+ ...+ Pr_2r-2) +... + o0 + Grr
= C1€,_1 + Co€p_g+ ...+ Cr_161 + Creg — by

so verifying (7.11) for t = r, in view of (7.9).

We then have

er = Qo+ Prr+ ... = Gor —bidor—1— ... = dor — Ar1dor-1 + A200r—2 — - -

in which

do; = A" ™"

from Theorem 7.10, where u = (}); ¢oo = 1 and ¢or = 0 whenever k& > 0. Finally
we identify ¢o; and f;. [ |

7.4 Magnitude of successive terms in the expan-

sion of e,

It is clearly of some interest to investigate the magnitude of successive terms in
(7.10).
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Definition 7.13
Setting (; to be the ratio of the magnitude of the (t + 1)th term to that of the tth
term in (7.10), one has

A _ a _,L.T-—t wr—}-l . .'Et $r+1—t 1— x—r—l+t
A afer  Grppa® 2MV(gt-1) g™ l-gp~
for0<t<r. [

In particular, since terms in (7.10) alternate in sign and ¢; is non-increasing in ¢
from Lemma 7.14(a), finer and finer bounds are found for e, by truncating further

and further after ¢; falls below unity.

Lemma 7.14(a)

For z,n,r constant, (; is strictly monotonically decreasing in t. Symbolically,

t/ =GN

Lemma 7.14(b)

For z,n,t constant,

r/S =6 =

Setting v = r + 1 — 2t, it is readily shown from Definition 7.13 that

1_%@_1y_%c47—r—m@—1f+vxOﬂw—Dﬂ]

This expression leads immediately to Lemmas 7.15(a) and 7.16.

Lemma 7.15(a)

r+1 gri-t
= — —(2n—r+1)/2 _
t=—— == s
Lemma 7.15(b)
When z > 1,
r+1 gt r4+1-t grtl—t

t < £ = .’L‘"'H t Ct > :L‘"'H
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r+1 gt 41—t grti-t
t> 2 .’IZ”+1 t Ct < :L‘"'H

Proof 7.15(b)
From (7.12) and Lemma 7.19.

Lemma 7.16

1—1t
N 1= — ﬁ—t—
Lemma 7.17
When x > 2, then (; < 1.
Proof 7.17
| R T
G T 1 T <<

:x“(x—1)<x"(x—1)_ -

in which for the last step we have used r < n.

Corollary 7.17
Ifz>2 and r < n/2, then { < z7™2.

Lemma 7.18

0
x>1:>5;g<0.

Proof 7.18

xr+1 _ .’Et U
= AT o’
ghtl(zt—-1) w
say. Some simplification yields
vt d
pntt E

whence the result follows from Lemma 7.19, with a =r 4+ 1 and b =t.

176

Ct = __(n _ 7‘) (.’Et _ 1) (:I:T'H—t _ 1) —t ($r+1 _ 1) & (T‘ + 1) (.’L‘t _ 1)
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Lemma 7.19
Let (z) = a(2* —1) — b(z* — 1), with a > b and z > 0. Then ¥(z) < 0; and
P(z)=0ifz =1.

Proof 7.19
d < (OQwhenz>1 and
— o(z) = abz® ™ (1 —2*° [ |
dx (z) ( ) >0whenz <1
Lemma 7.20
Let a,b € N, with a > b; and set m = [%] and ¢ = a — mb. Then
a c _
x 1=1+a:"+x2"+...+a:(m‘1)”+?—1x”‘" L]
zb—1 b -1
Lemma 7.21

Let m = ['—‘*;—"] and ¢ =+ 1 —t —mt. Then from Definition 7.18 on p. 175 and
Lemma 7.20 one has

IEt

Ct = xn+l

-1
(1 +zt+ 4. ™I ::lz;:t : :1:"“) (7.13)

From (7.13) an obvious way in which to obtain approximations to (; is to develop
the final term in the bracket. Approximations may for instance be found by using
the following inequalities:

=1 _z¢-1

Tt ot —1

:EC
<_Z<
T

10

There are other possibilities. For z > 1, the basic coefficients a; defined in (7.2) enjoy
the property that a; > as > ag > ..., with a; — 1 as j — oo. This may provide

further opportunities for approximations, but the point is not pursued further.
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7.5 Approximate evaluation of e,

The first of the approximations in Proposition 7.22 leads to a convenient means
of obtaining good approximations to e,, by summing an infinite series which is
related to that used to define the 6 functions (e.g. Whittaker & Watson (1927)).
Partial sums of these series are conveniently found by defining recursive functions,
so that the same simple computer code can be iterated in a “do” loop to evaluate

e, functions.

The result achieving this end is Theorem 7.28 on p. 183, based on approximating e,
by the infinite series (7.28), which ultimately behaves as a series of the form (7.15).

Proposition 7.22

Suppose that t is not too close to 0 or r, and that x is not too close to 1. Then

xr—H—t
If t 1s close to r, and x is not too close to 1, then
xr-{—l—t =0
™ ——=m— -

Although (7.28) is based on two approximations, viz. the application of (7.14) and
then extending the series obtained to infinity, the bracketed term in (7.28) can
be evaluated very efficiently to high accuracy. The principal result to this end is
Corollary 7.27, but preliminary work is needed before then. The starting point is
to simplify notation, transforming the bracket in (7.28) into the function g(a,b) in
(7.15).

7.5.1 Definitions

Set
g(a,b) = 1 — ab + a®b® — a®b® + a*p*® — %1% + . .. (7.15)
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for a,b € C; and where |a| < 1, |b| < 1 and |ab| < 1, so that g(a,b) converges
absolutely. We shall in fact be dealing with the case in which a, b € (0,1), for which
l9(a,b)] < 1.

The function g(a,b) can be given in explicit form when a = —1 (Jansen (1975, pp.
81, 89, 492, 494)). While this special case is of little interest here, we shall see that
the general expansion (7.15) can be calculated very efficiently in a recursive manner.
To this end, define the individual terms in (7.15) by

w9 (a,b) = (—1) a?p?UFI/2 (7.16)
and the following variants:
) (a, b) = w9 (b, b) (7.17)
as well as partial sums
J J
0(a,b) =Y uP(at',b) =Y u(a,b) (7.18)
k=0 k=0

for 0 < i < 00, 0 < j < 0o. We have already implicitly used the abbreviation

95 (a,b) = g(a,b)
and further simplify notation by setting
a®(a,b) = gi(a,b) and  g§(a,b) = g¥(a,b)
We note that

(9:); (a,b) = gi (ab),b0) =g (ab’™**,b) = gi4j(a,b) (7.19)

It is further convenient to define

W (a,b,) = g¥"V(a,b) + uf (e, b)u 720}

so that
h(a,5,1) = g (a, )
For g§j)(a, b), u¥(a,b) and b (a,b,v) we occasionally write g9, u¥) and h (v)

respectively; and we further sometimes set
rY) (h9 (v)) = hPRw

with obvious extensions of this notation to higher levels of recursion.
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7.5.2 Preliminary work
Lemma 7.23

ug.l)(a, b)u (a,b) = ul*(a,b)
Proof 7.23

1

j-1 j-1
14 (a,b) = [Tu®(at, b) = [J(~1)at**! = (=1)7ab=
k=0 k=0

<,
|

k=0
Now - A
= j T
B _Ji+1)
(k+1)=) k===
k=0 k=1

so that from (7.16)

j-1

Huil)(a’ b) = (_l)jajbj(jﬂ)/? = uY(a, b)

k=0
from which one finally has

. j-l j .
) (a,b)u?(a,b) = u{’(a,0) [T u(a,0) = [[ " (@,0) = ulD(a,0) W
k=0 k=0
Lemma 7.24
9i = 9§j_1) + “gj) Gi+j = hgj) (9i+5) (7.21)
where 1 > 0 and j 18 any positive integer.
Proof 7.24
From (7.15) and (7.16) one has
g(a,b) = Z u(a,b) = Z(_l)jajbi(jﬂ)/z

—0

<
I
(=}

L)

(o]
=14 (-1)apu+DP
J=1




Jack Polynomials, Chapter 7. Leigh Roberts, 2001 181

o0
- Z(_1)k+1ak+1b(k+1)(k+2)/2

=1= abz k (ab)kb¥l (k+1)/2
=1— ab g(ab,b) (7.22)
= ¢©(a,b) +u®(a,b) g1(a,b) (7.23)

As a corollary of (7.23), and bearing (7.19) in mind,
9i(a, ) = 61 (a,0) + 1, (a,b) g14:(a,0) (7.:24)
Induction on (7.23) proceeds as follows. Consider the equation
g=g%" +u® g, (7.25)
which we know from (7.23) to be satisfied for k = 1. Assume that (7.25) is true for

k<j.

Then, from Lemma 7.23 and (7.24)

g=gu™ 4 u0g; = g 4 u® [l 4 g4
- g(j_l) An ’U.(J) + 'u(j)uﬁl) gi+1 = g(]) + u(j+1)gj+1
Thus (7.25) is satisfied for k = j + 1, and for all k£ > 0. Finally, from (7.19)

9i = 91(]) =+ u1(;]+1)gi+j+l

from which the first result in (7.21) follows. The second result then follows from
(7.20). |

Lemma 7.25

hgj)(v +w) = hgj)(v) F ugj)w

Proof 7.25

Proof is immediate from (7.20).
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Corollary 7.25

REVRED . O (v 4 aw) = REVRED Ry 4w | u

Ly 11 22 iy

where i, Jxk € Ny for 1 <k <w. |

Lemma 7.26
For each k, let ji. be any positive integer, and set iy = jr+ix for 1 <k <wv. Then

u(]l) u(]Z) u(]u) = (_1)A aA bB

i 19 sa

where
A= Z]k and B= ('Ll + = ) Z ][c][ = = Z]k (726)
k=1 k,l=1
k<l
Proof 7.26

From (7.16) and (7.17) we have

(1) , (42) () _ (—l)A AC

(T T Th g a
where , ,
A=) Gk C=>jk[2ik+ik+1]/2
k=1 k=1

Now impose the conditions that ix41 = jx + i) 1.€. G = 13 + Zf=1 ji- We find
that C = B. |

7.5.3 Principal results

Theorem 7.27
With notation defined in §7.5.1,

gy'= B . hP Yy,

where for each k, ji is any positive integer, and g4 = jr + i for L< k<v —1.
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Corollary 7.27

With the same notation as in the theorem,

j j v— v—1
o = hgx)hgz) h(J 1) J ) + (_1)A aA ngiu""jv

ly~1

where 7j, is any positive integer; A and B are gien in (7.26); and 0 < gi,+j, <1
when0<a<1and0<b<1.

Proof 7.27
The theorem follows from repeated application of Lemma 7.24. For the corollary,

write from Lemma 7.24:
'V—l 'V
9i, = Qz(f )+ UEi )!Ji.,+j.,

so that the theorem implies

g = KRG 97 (gD 1 Bg, )
We now apply Corollary 7.25 to write

gi, = hgl)hg.?) o hs:.zu_-;l)g(]l/_l) + uE,;Il)u1(.Z2) . (Jv— ) (.7u)

Ty 1,,,_1 1., i+ +Jv

and finally apply Lemma 7.26 to obtain

gi, = ROV | p0e0) g0 4 (—1)A 0 6B g, 4, i

ly—1

Theorem 7.28
LetY = (=1)0"YAy 1 fr_to41 and Z = (, < 1. Assuming the approzimation (7.14)
on p. 178 to be applicable for t > tq, then

to—2
erm Y (1) Aifre+Y
t=0
vz [ (2 (... (e (1)) o)) + (-0 24 7]
for arbitrary positive integers v, and ji for k=1,...,v — 1; where ig4+1 = Jk + ik,

with iy = 0; and where 0 < £ < 1. The functions g,(j) and hgj) are defined in (7.18)
and (7.20) respectively; and A and B are defined in (7.26).

Note 7.28

In practice the integers j; would be set to a low common value, and the resulting
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small amount of computer coding would be applied recursively to obtain any desired

level of accuracy.

Proof 7.28
From (7.10) one has

to—2

er = Z(_l)tAtfr—t + (—l)to-lAto—lfr—tOH 4.+ (_1)rAr

t=0

|
N}

to
~ Y (-1D)'Aifre+Y -YZ4+YZ? 1 ypl +YZ* LR
T T3 il

t

I
=)

+(_l)r_to+1YZ,-_t0+1$—(r—to+1)(T—t0)/2 (727)

where we have applied (7.14). Further approximating by taking the series in (7.27)

to infinity, we write

to—2 2 3
) z 7 z
er N tzgo (—l)tAtf,._t +Y =VZ (1 - '—m + ;,‘3 - _(1,‘6 =+ ) (728)

to—2 1
= Z(_l)tAtfr—t +Y=Y3g <Z, ;)
=0

to—2
=) (-1)'Afeu+Y
t=0

=7 [ (A8 (.. (B0 (6970)) o)) + (-1 240 B g
from Corollary 7.27. Noting that |g(a,0)] < 1 when 0 < a < land 0 < b <1
completes the proof. |

The first approximate term in (7.27) is that containing Z2. Although Proposition
7.22 does not apply when ¢ is close to its upper limit of r, the inaccuracy in the
approximation in the final terms of (7.27) is unlikely to be material in the overall

result.
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7.6 Calculating e): the main theorem

Theorem 7.29
Let A= (r,s,t,...) and A; = HLI ay, with Ay = 1. Then

(o) m
€x = Z(_l)m Z AiAjAk cee f(r—i,s—j,t—k,...)
m=0 1,91k 5.:=0

i+j+k+...=m

in which fx = fofsfi...; and, when q > 0,

fo =A™ where u= <g) :

fo=1; and f; =0 when q < 0.

Proof 7.29
€\ = €r€5€64 ... = (Z(—l)iAifr—i) (Z(—l)jAjfr_j) (Z(_l)kAkfr—k) .
=0 7=0 k=0
from Theorem 7.12. |

Example 7.30

We illustrate Theorem 7.29 when £()\) = 3, say A = (r,s,t). Then since ey =
erese; (because of which property Macdonald (1995, p. 306) calls the ey functions a
multiplicative family of polynomials), it is natural to define f\ = f, fsfz.

€\ = €(r,s,t) = Er€sy

= (fr—arfoci +aafra—...) (fs — a1 fsc1 + maafs—a — .. )
X (fy —a1fi-1 + @102 fr2 — ...) (7.29)

= fr = a1 (frrfofs + feforfo + fofsfion)

+a} (frtfoorfo+ froifofeo + frfocrfirr)
taray (frafsfe+ frfomafo+ frfofeoa) + ... (7.30)
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7.7 Approximations to e

One can truncate at the level of each individual e, function, i.e. using (7.29), or at

the composite level e, using (7.30) or Theorem 7.29.

When ¢; < 1, Lemma 7.14 on p. 175 shows that terms succeeding the ¢th in (7.14)
change sign and decrease in magnitude, so that bounds are easily obtained for e, by

truncating after the tth term. Obtaining bounds for the e, functions seems more
difficult.

Since the ey functions are a multiplicative family of polynomials, one should pre-
sumably operate approximations at the level of the individual e, functions. Upon
multiplying the e, functions to get the e, functions, one could attempt to balance
the numbers of positive and negative errors; one would watch for accumulating
errors; and one would seek to balance the accuracy required in approximating an
e function with its importance in the overall determinantal expansion of the Jack

polynomial.



Chapter 8

Conclusion

In some respects this thesis has been a little disappointing for the author. It is
frustrating to set something up and not get it past the drawing board, in the sense
that no calculations of Jack polynomials have yet been effected by the methods
advocated. Not even that: there have been no experiments carried out to evaluate
how well the arithmetic and geometric progression approximations to the variates
translate into the variates which arise in practice; nor have the methods suggested
for calculation of e) and m, functions when variates assume a geometric progression
been tried out. We have been rather vague in stating how easy it will be to shorten
the process of using the determinantal expansions, although it is clear that there
will be shortcuts available. The thesis title may have been misleading, as stressed
at the beginning of the thesis; but in its main premise it is accurate, in that one is
only groping towards the calculation of Jack polynomials. That step is only a means
to an end, viz. the applications of Jack polynomials to practical problems, whether

in statistics or elsewhere.

Nevertheless, the disappointments are only skin deep. With the determinantal ex-
pansions in Chapter 3 one is close now to calculating Jack polynomials, or at least
to obtaining workable approximations to them for practical purposes. The dictates
of time meant that I could not carry out the later stages of the programme; but

those developments are tantalisingly close.

187
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More importantly, however, I have enjoyed working in this area. My enthusiasm for
the general areas of invariant polynomials, group representation theory, Lie groups
and algebras and other mathematical areas on the one hand; and the applications
of factorisation of measures and differential geometry to statistical theory on the

other, is undimmed.

8.1 A wishlist

At the end of any enterprise comes the inevitable wishlist of what might have been.

1. I should like to have drawn more heavily on combinatorial mathematics. The
algorithm for calculating Jack polynomials in Knop & Sahi (1997) seems at
first glance to be a prime candidate for the application of Polya’s theory of
counting, as outlined in say de Bruijn (1963) (see de Bruijn (1964) or Riordan
(1964) for more elementary accounts); but the problem at hand seemed not
quite to fit into that framework. On the other hand, the principle of inclusion
exclusion played a vital part in Chapter 6, and there is hardly any more basic

theory in combinatorics.

If one could apply combinatorial methodology to the Knop-Sahi algorithm, it
would be likely to apply equally well to the asymmetric Jack polynomials as

to the symmetric Jack polynomials.

2. James (1968) drew some of his inspiration from Helgason (1962), and it might
have been desirable to have placed the thesis more firmly in the framework of
Lie groups and algebras, and symmetric spaces. Hannan (1965a, p. 50) also

summarises the nub of Helgason’s material on symmetric spaces.

3. As far as practical, it would seem worthwhile treating the asymmetric polyno-

mials and the symmetric polynomials simultaneously.

At the conceptual end of things, the asymmetric polynomials are hardly any
more difficult to define than the symmetric polynomials, and they can give rise
to more general models. The problem of calculation for applications may or

may not be more severe than for the symmetric polynomials: that is untested.
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According to a recent private communication from Peter Forrester, future
research by physicists in this area may well emphasise the asymmetric polyno-
mials, deriving the symmetric polynomials by symmetrisation as needed. This
emphasis is certainly reflected in recent papers of Forrester, most saliently
perhaps in Baker & Forrester (1999).

8.2 Relative merits of expanding Jack polynomi-

als in the ey and m, functions

Expansion of Jack polynomials in terms of m, functions vis-a-vis that in the e, func-
tion provides a natural counterbalance. There is firstly the verification of theorems
and calculations from consistency of results using two distinct but related method-
ologies; in fact the methodologies are sufficiently similar that many algorithms could

apply to expansion in either ey or m, functions.

But the complementarity of these two approaches lies more deeply than duplication
of calculations. The expansion of Jack polynomials in e, functions produces coeffi-
cients of both sign, potentially allowing cancelling so that fewer terms need be used;
while expansion in m, functions produces coefficients of the one sign, potentially
facilitating finding lower or upper bounds if one can find dominant terms in the
expansion. One or the other basis function may be more convenient to calculate
under different scenarios: in particular, when the variates are eigenvalues of a ma-
trix, Takemura (1984, §4.5) stresses that the e, functions are more readily computed

than the m) functions, because they are calculated from the principal minors.

Both ey, and m, functions may be convenient to work out when the variates form a

geometric progression, to judge from the results in Chapters 6 and 7.

An advantage of the e, functions is that they belong to what Macdonald (1995, p.
306) calls the multiplicative family of polynomials, in that one can multiply together
the e(;) = e; components to provide the composite function: ey = e, €, ... when

A = (I3, 1, ...). No similar advantage accrues to the m, functions. There would seem
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to be real advantages in this property, in that one can first calculate the component
functions e; to any level of approximation desirable, then multiply the components
together in many different ways to obtain the e, functions: there are after all many

more partitions A than there are distinct component e; functions.

On the other hand, theoretical developments of Jack polynomials have generally
utilised the power symmetric functions p,, Schur functions s, or the m, functions,
and it is the last named which has been used recently in definitions of Jack poly-
nomials (Macdonald (1995, ), Stanley (1989, p. 77) etc.); and from the evidence in
Chapter 4, expansion of Jack polynomials as determinants in m, functions involves

fewer terms than the analogous expansion in e, functions.

Decisions as to the preference of one expansion over the other have to await numer-
ical evidence, and will in any case depend on the circumstances of the particular

modelling situation.

8.3 On the assumptions that variates form arith-

metic or geometric progressions

It is clearly convenient to make the assumption that the variates form a geometric
progression, since both ey and m, functions are then easily calculated, according to
results in Chapters 6 and 7. If one assumes that the variates are approximately a
geometric progression, then fitting a regression line to the logarithms will produce
a good fit (assuming the variates to be positive, as they often will be in statistical

applications).

The distortion induced by making global assumptions that variates form an arith-
metic progression or geometric progression is untested. In statistical hypothesis
testing, moreover, one may be particularly interested in outliers, for which the as-
sumption that the variates assume the form of an arithmetic progression or geometric

progression may be highly questionable.
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Insofar as the geometric progression approximation to the variates is globally suit-
able, the calculation of J) effectively becomes one dimensional, apart from a scaling
factor. Estimation of Jack polynomials can then be effected by interpolation over

that one parameter.

8.4 A beginning, not the end

Even if zonal polynomials have “gone off the boil” as claimed in Chapter 1, and even
if statisticians have circumvented the calculation of zonal polynomials through the
use of asymptotic expansions of hypergeometric functions, there is still interest in
calculating zonal and Jack polynomials by statisticians, combinatorialists, electronic
engineers and physicists, among others. If this thesis prompts a reawakening of the

latent interest of mathematicians in these polynomials, I shall be well pleased.

Whatever the global impact of this thesis, however, the distribution of which must
have an atom at zero with large probability, I am glad to have finished it. One
reason for this is that I am now free to continue research in this area. I have learnt
much, and it is again time to balance reading the literature with developing and

applying ideas which have occurred to me but have not yet been developed.

The other reasons for which I am glad to finish are perhaps more obvious.
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