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ABSTRACT

Jack polynomials are useful in mathematical statistics, but they are awkward to

calculate, and their uses have chiefly been theoretical.

In this thesis a determinantal expansion of Jack polynomials in elementary sym-

metric polynomials is found, complementing a recent result in the literature on

expansions as determinants in monomial symmetric functions. These results of-

fer enhanced possibilities for the calculation of these polynomials, and for finding

workable approximations to them.

The thesis investigates the structure of the determinants concerned, finding which

terms can be expected to dominate, and quantifying the sparsity of the matrices

involved.

Expressions are found for the elementary and monomial symmetric polynomials

when the variates involved assume the form of arithmetic and geometric progressions.

The latter case in particular is expected to facilitate the construction of algorithms

suitable for approximating Jack polynomials.
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Chapter 1

Introduction

1-.1 Preliminary

The brief title of this thesis gives little indication of its scope. In the first instance,

much of the thesis, and in particular most of the discussion on the literature, will
treat of zonal polynomials, the special case of Jack polynomials of greatest interest

in statistics.

Zonal polynomials have enjoyed a certain currency in mathematical statistics, but

their uses have chiefly been theoretical, especially as an aid to the evaluation of

integrals arising in multivariate inference. The overall intention of this thesis is to

advance towards the stage of being able to use zonal polynomials in practical sta-

tistical situations. The principal results corcern more efficient means of calculating

and approximating zonal polynomials, and those methods apply just as much to

Jack polynomials as to zonal polynomials, whence the title.

The title however falls short in several other and perhaps more significant ways.

There is an attempt to discuss several putative paths that one could follow to at-

tempt to calculate zonal polynomials, and some false steps taken by the author

along this route; we look at how much one really needs to calculate zonal polyno-
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mials since they are so slightly amenable to calculation, and what attempts have

been made to obviate their calculation; we also look at approximations to zonal

polynomials, either asymptotically or by assuming special forms of the variates in-

volved; and we look at their generalisations, such as Jack polynomials, Macdonald

polynomials, and the increasing number of asymmetric polynomials from which the

symmetric polynomials are obtained by symmetrisation. But rather than inserting

this lengthy list into an omnibus title, it was decided that one could live with the

potential inaccuracy of the abbreviated version.

L.2 Background

Zonal polynomials arise essentially from considerations of symmetry of multivariate

statistical data, particularly rotational symmetry, and especially when estimating

covariance matrices under various statistical hypotheses. The constraints implicit

in parametrising these symmetric situations can be imposed in a straightforward

fashion in standard Euclidean space, but at the cost of both complicating enormously

the evaluation of integrals necessary to obtain density functions, and largely losing

the ability to visualise the situation conceptually by obfuscation of the underlying

symmetry.

The alternative is to parametrise in order to reflect the symmetry of the underlying

situation in the parameter space. Intuition is preserved, and otherwise intractable

integrals evaiuated. The price to pay is that the Jacobians/differential forms in-

volved are awkward, on which matter see James (1954, p. 41) for a discussion.

The roie of James (1954) in alerting statisticians to the advantages in adopting the

latter approach, and gathering the mathematical machinery together in an eminently

readable fashion to enable the statistical community to avail itself of the opportu-

nity, was pivotal. James gave the invariant measures for Stiefel and Grassman

manifolds, and indicated the way in which orthogonal projections lead to factorisa-

tion of measures. Invariance and ancillarity are among several areas in statistical

theory utilising James' ideas (Hillier & Skeels (1996, p. 161)).
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James'paper is all the more remarkable in view of his tender age when it was written,

and was an impressive vindication of Cornish's encouragement of James when a

student in Adelaide to further his knowledge of algebra, particularly invariants and

related topics, when mathematical interest in these areas had dwindled somewhat

after their apogee in the late 19th and early 20th centuries. Publication of the

paper, essentially the first half of a PhD thesis, was encouraged by several well-

lcnown mathematicians and statisticians, including Wilks and Feller. The other half

of the thesis appiied the theory of the first half, and was published as James (1955a)

and James (1955b), which were introduced to the Royal Society by Fisher (Hillier

& Skeels (i996, p. 160)).

James had a major influence in subsequent developments, even if he published little

directly in the area of zonal polynomials in later years. Saw (1977) and Muirhead

(1975), for example, were introduced by James; and Anderson (1965) acknowledges

James' part in both suggesting the problem dealt with in his paper and the means

of tackling it. Muirhead spent some time in Adelaide with James and Constantine,

and Muirhead (1982) remains a hugely influential book on multivariate statistics

and zonal polynomials.

Having adopted the approach to parametrisation indicated by James, and having

available expressions for the Haar invariant measures under transformation groups

appropriate to a given situation, one simultaneously had a natural definition of a

uniform distribution on the one hand, and a notion of a distribution unchanged upon

group transformation on the other. The familiar notions of translation and scaling

in the univariate case had natural generalisations in the multivariate case, and it was

surprising how many of the univariate distributions had natural generalisations in a

multivariate setting; and how easily some of the univariate relationships generalised

happily to a wider framework. Even the fundamental ideas of length and direction

of a vector found matrix analogues in spherical statistics: see $2.3.4 on p. 35.

From a statistical viewpoint, the most obvious application of the parametric ap-

proach advocated by James is to the linear transformation of data matrices, under

which there is invariance of the dispersion matrix under the action of orthogonal

matrices. The transformation group is the general iinear group GL(n), acting upon
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real symmetric positive semi-definite matrices with the orthogonal group O(n) as

the isotropy group (at the identity matrix).

Another reason for which the statistician may be more interested in zonal polyno-

mials than in Jack polynomials generally is that there is a large number of integral

identities and similar relationships satisfied by zonal polynomials and their complex

counterparts Schur functions (Jack polynomials with d : 2,1 respectively), which

have no known analogue for general Jack polynomials. The analogues for general

a may exist; but those researching in this area were in the main statisticians and

econometricians who were not aware of Jack polynomials, and who were in any case

primarily interested in statistical applications.

Nevertheless, placing the study of zonal polynomials within the context of Jack

polynomials is a natural thing to do, especially now when Jack polynomials form

a current topic of research in physics and combinatorial mathematics, but zonal

polynomials are not much studied for their own sake. Stanley (1989, p. 95) has

more to say on the advantages of the additional perspective gained by studying

zonal polynomials within the frameworlc of Jack polynomials'

As noted, when e, : 2, Jack polynomials reduce to zonal poiynomials. For a : I
the Jack polynomials correspond to the Schur functions, while in the ca.se a : Ll2

they provide zonal polynomials for the skew-field of the quaternions (Macdonald

(1995, pp. 440, 446)). In the limiting cases o : 0 and a -+ oo, Jack polynomials

reduce to multiples of the elementary and monomial symmetric functions e1, and

rn;, r€sp€ctively (Stanley (1989, p. 109))1.

A representation of a group is a homomorphic image of the group in a representation

algebra of operators acting upon a carrier vector space, say [/. The algebra contaiu-

ing those operators commuting with every operator in the representation algebra is

called the commutant algebra.

Given a group G acting on points taken as cosets of an isotropic subgroup, the

central items in the representations of G are the zonal spherical functions, which are

lThe final section of this chaoter contails definitions and notation.
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chameleonic in character: they constitute one dimensional subspaces of the carrier

space which are invariant under the action of the subgroup, and they also span the

commutant (algebra), in a sense discussed in $2.5.5.1 on p. 56.

As noted, the object of central mathematical interest is the general linear group

acting on real symmetric positive semi-definite matrices, with isotropy subgroup

the orthogonal group. The zonal polynomials are derived from the zonal spherical

functions of this representation, which is spelt out in some detail in Chapter 2.

1.3 Aims of the thesis

While the zonal polynomials introduced in James (1960) were hardly new, being a

special case of a class of functions already known, the name (ostensibly) and their

application to statistics were new. James himself refers to earlier, rather inaccessi-

ble, papers by Hua from the 1950s in which expressions for the zonal polynomials

are given, involving integrals "which seem, at least to the author, to be difficult to

evaluate." (James (1961, $1); see also Macdonald (1995, pp. 405, 413) for discussion

on the origin of the name zonal polynomial, and for a comment on the unsuitability

thereof). I could obtain neither the earlier papers to which James refers (either in

Chinese or unpublished), nor a paper in Russian dating from 1959 cited in Constan-

tine (1963) and James (1964). Nor have I managed to procure a copy of Bhanu-Murti

(1960), which apparently provides formulae for zonal polynomials.

It is possible that Hua (1963) contains clues as to the content of Hua's earlier papers,

and some of the later parts of that book treat similar problems to those tackled by

James, viz. invariance under congruence transforms of matrices and projections onto

subspaces, which topics are central to James' approach discussed in $2.5. Detective

work along these lines is beyond the scope of this thesis, and we take James' approach

to zonal polynomials as our starting point.

When introducing the zonal polynomials, James (1960) did not give the impression

that he was inventing the name. It may well be that the narne was already in use
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in the mathematical sources available to him at Princeton, including Hua's work.

Nor does James say anything to change that impression in a recent interview, viz.

Hillier & Skeels (1996, pp, 162tr).

In essence, and as already noted, zonal polynomials took advantage of the symmetry

inherent in statistical/experimental situations, and found exceptionally fruitful ap

plication when the underlying distribution was gaussian. The importance of this fact

to multivariate statistics follows from the central position of the normal distribution

in multivariate statistical theory, in which it occupies an even more pre-eminent

position than it does for univariate theory.

The principal use to which zonal polynomials were put was the expression of den-

sity functions of many muitivariate statistics (quantities calculated from statistical

samples) in terms of infinite expansions of zonal polynomials. In fact such densities

were hypergeometric functions of matrix argument, which are most readily defined

as expansions in zonal polynomials. Familiarity with these hypergeometric func-

tions in turn codified known multivariate distributions and facilitated the definition

of new ones: see Takemura (1984, p. 2), Chikuse & Davis (1986), Srivastava (1968),

James (1964, p. a75) and Johnson, Kotz & Balakrishnan (1997), i.o.

The use of zonal polynomials allowed a natural parametrisation of complicated prob'

lems, which were otherwise totally intractable; and just to write down the density

functions of complicated multivariate statistics was an achievement. Those expan-

sions in zonal polynomials represent the density as an analytic function, and so could

be used on the one hand to provide transforms, mainly the characteristic function

and moment generating function2, whence the moments could be obtained; and to

obtain so-called continuity theorems on the other, whereby convergence of gener-

ating functions ensures convergence of corresponding distributions. Moreover the

Laplace Tbansform of a hypergeometric function produces another hypergeometric

function, so the generating functions are also expansions in zonai polynomials.

zThe characteristic function in statistics assumes a meaning different from that in the rest of

mathematics: the characteristic function here is the Fourier Transform. The moment generating

function is effectively the Lapiace tansform.
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Nevertheless, despite their intrinsic usefulness for the above theoretical purposes,

zonal polynomials have by no means realised their full potential. The difficulties of

calculating them, or at least applying their calculated values in statistical practice,

are apparently severe; and only a handful of papers make any attempt to evaluate

them.

This state of affairs raises several questions.

1. Would zonal polynomials be useful to calculate? What are the possible pur-

poses for which one would want to calculate them?

These points are discussed in $2.9.1 on p. 73.

2. If it is desirable to be able to calculate zonal polynomials, are those jobs for

which they are potentially useful currently being done by other means? Or

are they not being done?

The main alternative tools are asymptotic limits of distributions, and asymp

totic expansions of density functions. There is some discussion in $2.3'4.1 on

p. 38.

3. If the jobs which could be done by calculating zonal polynomials are being

done through alternative means, how effective are those means? Is it the case

that those alternative methods are good enough that one does not really need

to bother about zonal polynomials in practice?

We do not have much to say on this question, although it is clear that there

would still be substantial interest in calculating zonal polynomials if there were

reasonable means available for doing so.

4. If the problems with using zonal polynomials are computational in nature,

why have those problems not disappeared with the extraordinary increase in

computing power since they were defined in 1960?

In part at ieast, the answer to this lies in $2.9.3.1 on p. 75.

5. Why should zonal polynomials be so hard to calculate? Is it the case that

calculating a small number of zonal polynomials is not so hard, but that repli-

cating many such caiculations in an effective manner for la"rge collections of
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variate values is infeasible? Is the problem not with the zonal polynomials per

se, but with their utilisation in the hypergeometric expansions?

These points are discussed in $2.9.3.1 on p.75.

Or is the problem that the zonal polynomials simply involve matrices that

quickly grow to gargantuan dimension in practice?

This seems not to be a problem, at least in statistical applications, as discussed

in $2.9,4 on p. 77.

The questions were all the more intriguing in view of the ambivalent nature of

people's responses to the mention of zonal polynomials. While some but by no

means a majority of statisticians had heard of zonal polynomials, few had tried to

acquire a workable understanding of them, and as we have mentioned almost no one

had used them for any but theoretical purposes.

It appears that while there is interest in calculating zonal polynomials, no-one has

managed to do so in an effective fashion. It is in part a consequence of this that zonal

polynomials have gone "off the boil" somewhat, in that far fewer papers are written

about them now than was the case say twenty years ago. There are still papers

written in the statistics and econometrics literature which give density functions

of diagnostic statistics in terms of zonal polynomials, or other expansions using

extended invariant polynomials (see 92.3-2 on p.32), but few papers exploring the

nature of the zonal polynomials themselves. The mathematical physics literature

contains many papers investigating the nature of the Jack polynomials and other

relatives of zonal polynomials, but to this author's knowledge the calculation of

these polynomials is not attempted in that literature.

In the light of the above questions, then, I determined to search for better means of

calculation of, or at ieast approximation to, the zonal polynomials; there was the

further intention to apply those calculations to statistical problems, in finding tail

probabilities, Iikelihood contours, po'ffer functions or similar. More conceptually,

the aim was to extend the toolkit available to the statistician. So often the attempt

to treat a diagnostic statistic analytically is given up at an early stage in favour of

the blunt instrument of simulation, and in part at least it was the intention of this
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thesis to make available to the practising statistician more powerful analytical tools

to complement the simulation approach.

In the event, reality lagged some way behind the lofty intentions. The thesis repre-

sents my attempts to understand the nature of zonal and Jack polynomials and the

various areas of mathematics underpinning them on the one hand, and to develop

enhanced methods of calculation and approximation on the other. Application of

these methods to real-life statistical problems remains a project for the future.

L.4 What is in the thesis?

The basic tenor of this thesis, firrnly rooted in James (1968), is to apply the Laplace-

Beltrami operator to vectors of. m7 or e; functions and to use the fact that the Jack

polynomial is an eigenfunction of this operator with known eigenvalue to expand the

polynomial in rn1 and e1 functions respectively. The same approach could be used for

any other set of basis functions for homogeneous symmetric polynomials, but of the

commonly used such basis functions only these two produce triangular coefficient

matrices. The thesis proves a determinantal expansion for Jack polynomials in

elementary symmetric functions e; (Roberts (2001)), tying in with a similar result

of Lapointe, Lascoux & Morse (2000) for monomial symmetric functiorls rI1, otrd

extending earlier work by the author (Roberts (i998)).

Expansion of Jack polynomials in terms of. mt functions vis-a-vis that in the e1

function provides a natural counterbalance, partly because of differing but comple-

mentary characteristics of the expansions; and partly because algorithms applying

to one expansion may have close analogues in the other. Nevertheless there may

be advantages in the expansion in one or the other basis function in different situa-

tions, and this thesis comes down on the side of the e; functions as being perhaps

more useful in general. Further discussion on the relative merits and demerits of

expanding in the two basis functions is in $8.2 on p. 189.

The thesis starts by reviewing the literature of zonal polynomials, and to some extent
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the more recent literature to do with Jack polynomials and related functions. Any

such review has to be associated with a survey of some of the theory underlying zonal

polynomials and their origin, leading to this chapter being labelled as "Theoretical

overview and literature survey".

It is inevitable that the review is both too broad and too narrow. On the one hand,

zonal polynomials and Jack polynomials enter into the literature of many diverse

fields, extending over many disciplines, principally but by no means exclusively

engineering, physics, pure mathematics and mathematical statistics. In order to

convey an idea of how zonal polynomials and related functions are treated in the

Iiterature, one has to choose between a broad but shallow choice of subject area;

and a narrow spectrum of material covered in greater depth. We have essentially

chosen the latter route.

In $2.3.5 on p. 38 fleeting mention will be made of potential uses of zonal polynomials

in electronics and communications, treating the work of Smith and Gao. There is

a somewhat more extended coverage of the applications of zonal polynomials and

their more recently defined cousins the Jack and Macdonald polynomials, as well as

their asymmetric siblings, in relatively recent physics literature, mainly in quantum

and nuclear physics. Discussion here will centre on work by Forrester and Baker on

the one hand, and Lapointe and Vinet on the other: see $2.3.3 on p. 34.

Nevertheless, the principal focus of this thesis is decidedly in the area of mathe-

matical statistics, in line with the author's background and interests. While the

same point as to the choice to be made between a wider shallower discussion and a

narrower deeper treatment applies within the field of statistics itself, the coverage

of the mathematical and statistical literature of zonal polynomials is intended to be

more complete than the forays into electronics and physics mentioned above.

The definition of zonal polynomials in James (1960) drew on the zonal spherical

functions of group representation theory, essentially due to E. Cartan in 1929, who

extended the Peter-Weyl result to "spherical functions" transforming a set of points

(Hillier & Skeels (1996, p. 16a)). The label "zorral" refers to functions which are

constant on zones: or orbits, of the isotropy group. See also Hannan (1965a, p. 48).

10
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In another sense, however, and especially in the context of mathematical statistics,

zonal polynomials have their origin in James (1954), in which James established

the differential geometric framework for averaging over the orthogonal group. This

allowed the entry of zonal poiynomials onto the stage, informally in James (1955a)

and James (1955b), in which the density function of the non-central Wishart distri-

bution is expressed as symmetric homogeneous functions not yet labelled as zonal

polynomials; and more formally in James (1960), in which the zonal polynomials

are introduced in the context of the density function of the eigenvalues of the sample

dispersion matrix. The genuine mathematical introduction of zonal polynomials to

the statistical world came a little later in James (1961), in which he gave a fairly

comprehensive treatment of them through a group representation approach: this is

discussed in $2.5.

As noted earlier, much of the thesis is rooted in the work of James (1968), in which

a recursive method for generating zonal polynomials through the Laplace-Beltrami

operator was set out. The method seems to have been little used in practice, de-

spite Mclaren (1976) writing a computer programme to effect the method. This

thesis is largely an attempt to refine and develop this method of calculating zonal

polynomials, although applied to Jack polynomials.

This is not to say that there have not been developments in the calculation of

zonal polynomials and Jack polynomials since 1968. Denoting the Jack polynomials

Uv 4") or sometimes merely by ,I,r, there are several methods of calculating Jj")

for particular partitions ) and parameter values o; and there are many formulae

and integral identities involving zonal polynomials and Schur functions in particular

(see Macdonald (1995) and Stanley (1989), for instance). In addition, Knop & Sahi

(1997) have given a method of calculating Jack polynomials directly frorn the Ferrers

diagram which obviates the explicit use of €7 ot rrls or any other basis functions (for

a discussion see 52.2.2 on p. 29); and almost the same method applies to the

asymmetric Jack polynomials. Their method is similar to one of the methods of

calculating Schur functions in Stanley (1999, $7.10).

Zeilberger has recently written a programme using MAPLE, a symbolic manipula-

tion software package, which finds the algebraic expansion of {") using the creation

11
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operators of Lapointe and Vinet: see $2.3.3 on p. 34. The creation operators es-

sentially generalise the Rodrigues formula for classical orthogonal polynomials, and

the program is available publicly on his web site.

This thesis restricts itself to further development of the material in James (1968),

then, not because it is the only possible approach to zonal polynomials and Jack

polynomials, which it patently is not (see Chapter 2); but because it seems to offer

a sensible way to attempt to find approximations to Jack polynomials for practical

use. It is by no means clear that the Knop-Sahi method is practical as a means of

calculating Jack polynomials: their paper was initially at least notable for proving

a conjecture of Macdonald and Stanley about the nature of the coefrcients of the

expansion of Jack polynomials in terms of ms functions (92.2.2). And given the

algebraic expression of Jj") from Zeilberger's program, the polynomial still needs to

be evaluated.

There may well be contexts in which Jack polynomials need to be evaluated exactly.

But this situation is not so likely in statistical practice, as discussed in $2.9.2 on p.

74. Nor is it likely that the theoretical physicists will see the need to calculate them,

as a general matter anyway: they tend to be more concerned about conceptual and

theoretical properties of Jack polynomials and similar functions, and the operators

of which they are eigenfunctions.

In a statistical context, zonalpolynomials arise especially in slowly converging hyper-

geometric expansions for density functions, but applied statisticians would generally

be more interested in (cumulative) distribution functions which give probabilities.

One needs to sum slowly converging hypergeometric expansions for density func-

tions, involving larger and larger weights of partitions indexing the zonal polyno-

mials; one must do this over a grid of variate values; one then needs to integrate

numerically to get the probabilities. And ihe starting point of all of this is the

calculation of the individual zonal polynomials, which is non-trivial. That said, one

is more interested in workable approximations to and bounds on zonal polynomi-

als, and the repetition of those calculations in an efficient manner, than in precise

calculation. See $2.9.3 on p. 75.

12
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More complicated related functions of zonal polynomials, called ertended, i,nuariant

polynomials by Chikuse & Davis (1986), are defined in the evaluation of integrals

arising when exploring more complicated statistical questions, especially in "non-

central" hypothesis testing (when the random variates are not assumed to have zero

mean); in deriving the densities of econometric system estimators; finding the (cu-

mulative) distribution function of statistics; and obtaining Edgeworth expansions,

i.a. These extended invariant polynomials share some but not all of the properties of

zonal polynomials. Their calculation raises even more problems than that of zonal

polynomials, and we shall mention them only in the literature survey, in $2.3.2 on

p.32.

The fi.rst step along the path to obtaining workable approximations to Jack poly-

nomials from James (1968) is to place the e1 functions in a particular order (the

RLO: see $1.5 on p. 15) to give a column vector E; and similarly we let the column

vector M comprise the rnl functions. Let f, denote a generalised Laplace-Beltrami

operator, and define "operator" matrices f,)" and f,)- such that

LE : Q"E and LM -- Q*M (1. 1)

Following the literature review, most of the remainder of the thesis turns on the

matrices f2. There is a close connection between f,)" and O-, in that off the diagonal

they are effectively transpose to each other, and their diagonai elements are closely

related as well. Part of our treatment mirrors that in Roberts (2001), but we give

a slightly longer and more elementary proof of the basic results, and flesh out some

of the details.

In Chapter 3 we derive a determinantal expansion for Jack polynomials in terms of

e1 functions to complement that for rn1 functions found by Lapointe et al. (2000),

our treatment again being based on Roberts (2001). There are strong similarities

between these two expansions, arising from the links between Ot and O-.

Approximations to Jack polynomials can basically proceed in three directions:

1. strearrlining the determinantal expansions;

2. approximating the e1 and rn1 functions; or

3. streamlining the algorithm in Knop & Sahi (1997).

13
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The third question is not tachled in this thesis. Broadly speaking, the first approach

is explored in Chapters 4 and 5, while the second is investigated in Chapters 6 and

7.

In Chapter 4 we investigate the nature of 0' and Q- a little more closely, with a

view to making some progress on the first of the above points. That is, we try to

gain some idea of how to expedite the determinantal expansions, without undue

regard to the calculation of e1 and nz; functions. We also examine how sparse the

O matrices are; and find relationships between diagonal sums and column sums

of fl-, which suffice in principle to obtain bounds on coefficients in the expansion

of Jack polynomials in rnl functions, although that task is undertaken to a greater

extent in Roberts (1998) for the specific value a:2, and only touched upon in this

thesis.

Consider the expansions for the Jack polynomials "lj") in terms of the e1 and ?7r1

functions:

4"t :L i;,^e) : t lfft mt
)^

In Chapter 5 we find the coefficients i!,1 for partitions p and ) assuming a specific

generic form; and also for one or two specific values of ,\ at the final extremity of

the RLO, for any p. The generic operator matrix involved is indexed by partitions

(r),(, - 1,1),..., and one assumes for the purpose of this thesis that tu is large

enough to ensure that the partitions cropping up are listed in the standard non-

increasing manner; there is however some evidence to say that the constraints arising

on the Jfl^ coefficients from this matrix are valid whether or not the partitions are

listed in the standard ordering. Analogous results could be expected to obtain for

the jfu coefficients, but that is not attempted in this thesis.

As regards the second question, viz. that of approximating the e; and rnl functions,

it is natural to consider such approximations when the variates assume particular

forms. The first such examples to spring to mind are the arithmetic and geometric

progressions. In Chapter 6 we investigate the behaviour of the rn1 functions when

variates assume the successive forms of the arithmetic and geometric progression;

while in Chapter 7 we look at the e1 functions when the l'ariates stand in geometric

progression. It seems that both e; and rn1 functions are more easily evaluated

L4
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when variates stand in geometric progression than when they form an arithmetic

progression.

A related question is of course how useful these expansions are, or rather how well

the assumed arithmetic and geometric progression "shapes" of the variates eonform

to the sets of variates arising in practice. One simple point that can be made in

this regard is that when random variates are exponentially distributed, the order

statistics have expected values which stand in geometric progression (because the

distribution function is an "inverted" exponential 1 - e-t'" for constant p > 0).

Since the exponential distribution crops up often in applied statistical work, the

assumption that the variates of Jack polynomials stand in geometric progtession

may be reasonable in some practical situations.

1.5 Notation

1.5.1- Ordering of partitions

Let ) : (lr, Iz, . . ., l,) be a partition of tu (see Macdonald (1995, $I.1), Stanley (1989,

p.77), z.a). Unless stated otherwise, partitions are &ssumed to be in standa^rd form,

i.e. listed as positive non-increasing integers called elements or parts with no trailing

zeroes. Then ) has weight tr()) : DrIt : u, and we write ) F ur(,\). The length of

,\ is given by l()) : r, and the height of ) is h(.\) : 11. The conjugate partition to

.\ is denoted by )': (1i,U,...), and for partitions \,K,r,..., it is understood that

w - w(A) - w(n) - w(r) : .. . unless otherwise specified.

The multiplicity of i in ) is rrz;(.\); further define

,^ : fl rn;(A)! : rnlmz!.. , and

in accord with notation in Stanley (1989, p.77), Macdonald (1995, pp. 24, 110).

15
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The dominance or majorisation partial ordering is denoted by (: thus rc :
(kr,kr,...) < ) : (lr, |t,...) (* &1 * kz * ... * h t h * Iz* ... * 11 for all f, pro-

vided that u,'(rc) : u()). Macdonald (1995) refers to majorisation as the "natural"

partial ordering, while Stanley (19B9, p. 77) prefers the label "dominance ordering".

The conventional total ordering of partitions, viz. the reverce lexicographic ordering

(RLO), is denoted bV t , hence (4) g (3,1). The majorisation partial ordering is

consistent with the RLO: rc ) ) * o 9,1.

For partitions m and ) not uecessarily of the same weight, we define rc * ) :
(kt,kr,...) + (h,Iz,.-.) : (kr + \,k2*12,..'); and the parts of rcU) to con-

tain all the parts of rc together with those of .\. According to Macdonald (1995, p.

5), these operations are dual in the sense that

(rcu,\)':rc'+)'

The rnl functions are stacked into a column vector M in RLO, so that the ordering

of the indices of the vector elements from the top is (*),(, - 1, 1), (, - 2,2).,(* -
2,1, 1),. . . . There is an analogous stacking of the e; functions into a column vector

.8, and of the {") functions into a column vector Y.

Matrices with rows and columns indexed by partitions have those rows and columns

ordered conformally with M and, E, viz. in RLO. Thus the top left element of a

matrix A: (o*,t) is a1.;,1,,.,; while the element to its right is o1u1,1u-r,r), etc. With

this ordering of partitions, an upper (lower) triangular matrix has zeroes below

(above) the diagonal in the conventional manner. The triangular matrices arising

in this thesis will generally be unitriangular in the sense of Macdonald (1995, $I.6),

who defines A to be upper (lower) unitriangular when o,r,1 c&D only be non-zero for

rc),\(n3)).

Let [rc,.\] denote the interval {r : n 2 r ) ,\}. For a matrix,4 with rows and columns

indexed by partitions in RLO, (/)1*,^1 represents the submatrix indexed by rows and

columns in the interval shown, with other elements omitted.

Finally, the transpose of a matrix .4 is denoted by AT, and the number of partitions

of an integer n is denoted bV p(").

16
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L.5.2 d2 chains and d2-1 chains

We define o9 Xto mean that

1. rc > ); and

2. in possibly non-standard orderings of the partitions (and perhaps with an addi-

tional zero appended to rc), rc and ) differ in exactly two elements.

We further define " F A to mean that rc 9 I ana the discrepancy in elements

between rc and A is unity. The analogy with the raising operator in Macdonald

(1979, $1) is immediate; and the 9 relation is the covering relation for the partially

ordered set of partitions with majlrisation ordering (e.g. Brylawski (1973)).

17

Thus

while

(9,8,5,a; 91S, 7,7,4) but (g,8,5,4) 7 rr,7,7,4),

(e,8,5,4) ? (8,8,5,5).

A d2-chain of partitions from rc to .\ of length r is a chain

K : /CO, ldlr... nr- 1, K7 : A

in which rc;..1 for all i.

A d2-1 chain is a d2 chain for which n;d) rc;a1for all i.
I

In Chapter 4 it is convenient to speak of "chains" of partitions generating the above

diagonal entries of O-, and "paths" of partitions traversing the operator matrices.

But the distinction is a little precious, and the terminology is not necessarily optimal.

1.5.3 Augmented rn1 functions; e1 and p1 functions etc.

Let r : /()). Let ^9" denote the symmetric group on n symbols; and S," ) s ;'i, + si

for 1( i n. FollowingRoberts (1998,92.1), we deflne the doubly augmented,ms

d2
ft)



Jack Polynomials, Chapter 1. Leigh Roberts,2007

function

d,am;: t friit"rr*r . . . rtn'",rl"r*r,"00",,*r, . . . nl", ;

s€,9.

then tlre augmented rn1 function

n'TTLS: 
'Oo*^"\n-r)l

as in Takemura (1984, 92.2), and which is denoted as frz.r in Macdonald (1995, p.

110). Finally,

*^-o ^
US

is the conventional monomi,al symmetric polynomial, for which the duplicate mono-

mials in am; have been removed.

The definitions of m1, the elementary symmetric polynomi,al e1, the power sunx

sgmmetric polynomi,al p7 and the Schur function s1 follow Stanley (1989, p. 77) and

Macdonald (1995, $$I.2, I.3).

L.5.4 Bisymmetric matrices, representations

For a matrix X, denote the Kronecker product of X with itself t times by X@t. A

polynomial in the elements of X of degree t may be written uniquely as tr (A"XE'),
where A is a bisymmetric matrix, for which the rows and columns are indexed by

(h,ir,...,ir) and ff1 , j2,...,71) respectively; and tr is short for trace. That A is
bisymmetric means that for s € ,Sr,

(/)(t"r,r"r,...,i,i),(j"r,jgz,..."l"r) : (.4)11r,;r,...,t e),(jt,jz,...,ji

The algebra of bisymmetric matrices ,4 is denoted by 2I. The only case of interest

in this thesis is that for which X is square, for which see Farrell (1985, $ 12.1).

A representation of a group is denoted by

E>y<c
where !s indicates the representation algebra, V the canier vector space and €

the commutant algebra. The group G being represented by the matrices in !8 is

18
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subsumed in the notation, which roughiy follows that in James (1961), and is chosen

to facilitate the discussion on that paper in $2.5 on p. 49. The terminology "carrier

vector space" comes from Littlewood (1950, ch. 1),

L.5,5 Note on product of tensors

Given a vector space I/ with basis {e1, €2t. . .e-}, the tensor product T"V is a vector

space of dimension rn', with basis the elements e18 ei I . . ..

For a matrix .4 acting on V, T"A is that matrix transforming basis tensors such

as el I er. . .. without any symmetry requirements imposed on the tensors; SnA

transforms the tensors assumingthat e1@ez8...- r'28e1 8...; and the exterior

power A'A transforms the tensors assuming that e1 8e28...: -ez& er 8...
and e1 8 er I . .. : fl. The symmetric and exterior powers of A provide irreducible

representations of GL(n). More general arrangements, such as symmetrising over

the first 2 indices when there are 3 factors, lead to reducible representations. To find

the other irreducible representations, symmetrising over the Young's symmetrisers

is required, see r'.a. Akin, Buchsbaum & Weyman (1982, p.276),, Farrell (1985, ch.

12).

Our notation follows that of Macdonald (1995), and seems to be the most common.

Blokhuis & Seidel (1984) give a good review of tensor products, with slightly different

notation.

1.5.6 Other definitions

We generally use the Jack polynomial 4") : Jo without undue regard to normali-

sation, although J, is conventionally defined with normalisation gtven in (5.6) on p.

137. The only part of this thesis in which normalisation of Jo assumes any impor-

tance is in $5.1.1.2 on p. 137.

19
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Operator matrices C)- and f,)", as given in (1.1), are sometimes written as Off and

flfi to emphasise the weight of the partitions used. Their constituent elements may

be written as,rfr^ or o*(rc,)), and t,;[,^ or a"(n,)) respectively. In like manner we

may write the coefficients jl.^ and jff^ introduced in $3'2 as J"(K,)) and i^(*,\)
respectively; and the eigenvalue c; fi.rst given in $3.1.2 as c()).

For the operator matrix f)- we define

n^ =D'7,^'
r))

That is, r1 is the sum of terms above the diagonal in the .\th column. An unrelated

symbol ry is introduced in Definition 7.5 on p. 170. In similar vein, the symbol ( is
used with two meanings, viz. in (5.16) on p. 141 and in Definition 7.13 on p. 175.

But in neither case are the symbols used in any one chapter with two meanings.

.[ denotes the identity matrix of an appropriate order. The natural numbers are

denoted by N, and when 0 is omitted by N-p; and the greatest integral part of a

non-negative number r is denoted bV ["]. The rational, real and complex fields are

denoted by Q,lR and C respectively, while the ring of integers is denoted by Z.

The Laplace-Beltrami operator is defined in $3.1.2 on p. 80.

For a subgroup H of. a group G, by a left coset we meatr gH for g € G. This

notation follows that in Macdonald (1968), for instance, and stands in contrast to

that in Hall (1959) a.rd Hannan (1965a). We set GIH : {gH , g € G}.

1.5.6.1 Acronyms, abbreviations

RLO stands for Reaerse Lenicographic Ordering.

We write iff for i,t and only if.

20

In like manner, we write i.a. for inter alia, viz. among others.
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The densi,ty funct'ion or simply the density is rvritten for the probabi'lity density

funct'ion.

The di,stri,bution Juncti,on is written for the cumulat'iue di,stri,buti,on, Juncti,on.



Chapter 2

Theoretical overview and

literature survey

2.L Farrell's listing of the different approaches to
zotral polynornials

Farrell (1985, p.282) distinguished four approaches to zonal polynomials:

1. his own "algebraic" approach;

2. through the use ofgroup representationsl

3. Saw's and Takemura's approach through "quadratic formst'; and

4. treating the zonal polynomials as spherical functions in the setrse of Helgason

(1e62).

Before extending the list to take cognisance of more recent developments, Iet us

clarify these items briefly. Items 1, 2 and 4 will be treated more fully later.

22
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2.L.L Farrell's approach to zorral polynomials

Farrell's approach to zonal polynomials is direct and elegant, but the zonal polyno-

mials at which he is principally aiming are what he, James (1964) and Takemura

(1984, Ch. 5) called complex zona! polynomials (Jack polynomials with e, : !, better

known as Schur functions). The term zonal polynomial in current usage is restricted

to Jack polynomials with e,:2, which are the Jack polynomials of principal interest

in mathematical statistics, as already noted.

Farrell's method of attack, utilising the centre of the algebra of bisymmetric matri-

ces, quickly produces proofs of integral formulae which are the direct analogues of

those holding in the real case. Also produced is a simple formula for Schur func-

tions in terms of group characters. Unfortunately his methodology which works so

elegantly for the complex field C fails to extend to the real field IR-

In his work on the real case a :2, he essentially applies the same techniques as in

James (1961) and Macdonald (1995), and much of Farrell (1985, Ch. 12) is devoted

to giving the readers enough understanding of representation theory and related

areas for them to understand James' and Constantine's papers. The basic method

is to consider the symmetric group and the general linear group acting on tensor

powers of a matrix. A more detailed discussion of Farrell's work is in $2.8 on p. 69.

In a late section of the same long chapter, Farrell (1985, $ 12.13) also offers an

explanation of Saw's and Takemura's approach to zonal polynomials. We discuss

Takemura's development of Saw's ideas below in $2.1.3.

2.L.2 The approach through group representation theory

By this rather "catch all" title Farrell presumably means the approach taken in

James (1961) and to some extent that in James (1964) and Constantine (1963).

The first of these papers is discussed at some length in $2.5 on p. 49.
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Farrell seems to regard this methodology as "combinatorial" in nature. More pre-

cisely, he labels the computational methods in James (1961) and James (196a) as

combinatorial (Farrell (1985, p. 231)), although the combinatorial nature of the sec-

ond of these papers of James is a little obscure. A closely related approach to that

in James (1961), but utilising more high powered algebraic tools, is in Macdonald

(1995, Ch. VII), This is also discussed later, in $2.6 on p. 64. In any case much of

Farrell's work, especially in Farrell (1985, ch. 12), could be counted as a "represen-

tation theory" approach to zonal polynomials. We comment on Farrell's work in

$2.8 on p. 69.

2.L.3 Saw's approach

Farrell (1985) describes this approach to zonal polynomials as the most elementary

available. While this may have been true at the time of his writing, the mantle

now has surely passed to Knop & Sahi (1997). Nevertheless, Takemura's adaptation

of Saw's work is relatively simple, especially to those with some acquaintance with

the Wishart distribution, and the link with its motivation in mathematical statistics

remains clear. Knop & Sahi (1997) certainly provide an elementary definition of Jack

polynomials, which is summarised in $2.2.2; but the motivation for their definition

is far from clear.

The original article Saw (1977) is not so easy to understand, and Farrell (1985,

$12.13) and Mathai, Provost & Hayakawa (1995, p. 171) both discuss Takemura's

elegant adaptation of Saw's arguments. We present a slightly rough and ready

summary of Takemura's argument, following Takemura (1984, p. 17) and changing

his notation a iittle.

The zonal polynomial C" satisfies the reproductive property

24

€* lc* (xtx)] : a*cn(D) (2.1)

in which the matrix X has the normal distribution, XrX has the Wishart distri-

bution with covariance matrix E, tw : t denotes the expectation operator with

respect to this distribution (James (1964, p. 479), Constantine (1963)), and ar, is a
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constant. Thus one is transf'erring the expectation operator "into" the zonal poly-

nomial: it is as if the zonal polynomial and expectation operators were commuting.

Takemura takes (2.1) as the basis of his definition of zonal polynomials: see also

Macdonald (1995, pp.428,439). Define E'(A) to be the vector E of es functions

from (1.1), but taken in inverse orderl and evaluated at the eigenvalues of the,h x k

symmetric real matrix A. Define an operator r, acting on E'(,4) by

25

r,E'(A): tE'(AW) (2.2)

in which I,1/ has the Wishart distribution with covariance matrix the identity and

degrees of freedom u. The p(u) xp(tu) matrix r, is upper triangular, where p(tr;) is

the number of partitions of Tu.

The row eigenvectors of r, do not depend on u. Stack these eigenvectors to form

an upper triaugular matrix E. That the eigenvectors can be taken in this triangular

form follows hom an inductive proof: one first shows that there is an eigenvector

with but one final non-zero element; then that there is a second eigenvector with

but two final non-zero elements etc., provided that the eigenvalues are distinct. For

Iarge enough number of variables ic the eigenvalues will be distinct, as Macdonald

(1995, p. a39) points out.

Takemura lists a lemma effectively stating that

(2.3)A-
4lU 

- 
tLU-

in which A, is a diagonal matrix containing the distinct eigenvalues of r, along the

diagonal.

Stacking the zonal polynomials into a vector Y : (Y61ry(,-l,r),...,Y(r.))t, and

still following Takemura, define the zonal polynomial by Y(,a) : ZE'(A). The

symbol Y is used rather than the convention al Z or C because of indeterminate

rThe ordering is not quite inverse to the RLO, which would be the lexicographic order. Lei

,\1 : (tu),,\2 = (ur - 1,1),,\3 = (ru -2,2),...,)r: (1-) be the conventionalR.LO. The ordering

in.E'from the top is,\{,)j, ...,\ which is not the siune as lexicographic order, although they

coincide for u.r ( 5.
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normalisation. Then, letting both sides of (2.3) act upon E'(A), development yields

26

Er,E'(A): /v,]E'(A)

Zt, E'(AW) : lv,1'E'(A)

t=E'(AW) : lY,1E'(A)

tY (AW) : L"Y (A) (2.4)

thereby verifying (2.1)

The zonal polynomial thus defined is an eigenfunction of an expectation operator

with respect to the Wishart distribution. The action of the operator r, resembles

those in (1.1) on p. 13, with triangular matrices of coefficients, but with the stacking

of the er functions in the ,E vector in "inverse" order.

Nor is the advantage of this approach restricted to ensuring the validity of the

reproductive property (2.1) and (2.4). What Farrell calls the splitting property of

zonal polynomials can also be proved directly from Takemura's definition:

EHY^(AHBH'): li(A)v^(B)/Y^(I) (2.5)

where the expectation is over the invariant distribution over the orthogonal group

(i.e. the integration is over the Haar measure) (Takemura (1984, p.27)). Contrast

with (2.33) on p. 72.

Davis (1980, p. 293) suggests adapting Takemura's approach to the more compli-

cated extended invariant polynomials Cf'l (see $2.3.2), i.e. stacking them and defin-

ing Cf'r as an eigenvector of an appropriate operator. I know of no work developing

this idea.

2.L.4 Laplace-Beltrami approach

When Farrell described his fourth approach as treating zonal polynomials as spher-

ical functions in the spirit of Helgason (IOOZ), what he presumably had in mind
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was the approach using the Laplace-Beltrami operator in James (1968), which drew

on material in Helgason's book, James utilised the fact that the zonal polyno-

mial is an eigenfunction of the Laplace-Beltrami operator, with known eigenvaiue.

This mirrors the fact that the Jack polynomial is an eigenfunction of a generalised

Laplace-Beltrami operator, so that one can adopt the same approach to Jack polyno-

mials as James (1968) did for zonal polynomials. This thesis is largely based on the

outworkings of this idea, for which see Chapter 3. In fact the generalised Laplace-

Beltrami operator is equivalent to the Calogero-Sutherland operator of physics for

symmetric homogeneous polynomials (Roberts (2001)), perhaps explaining why so

much work on Jack polynomials has been done by physicists. See $2.3.3 on p. 34.

2.2 Other approaches to zonral polynomials and

Jack polynomials

Since Farreil drew up his list of ways of defining zoral polynomials ($2.1), several

other means of defining Jack polynomials have sprung up.

The most important of these, and the line favoured by several recent authors, is to

define Jack polynomials by specifying orthogonality conditions to be satisfied. This

method is described in $2.2.1. Implicitly the Jack polynomials are eigenfunctions of

the quasi Lapiace-Beltrami operator, and the inner product separates eigenfunctions

with disiinct eigenvalues.

Asymmetric Jack polynomials, as well as many other asymmetric polynomials, are

defined as eigenfunctions of more complicated operators, generally comprising both

differential and permutation elements. Their symmetric cousins can be obtained by

similar means using diferential operators, or by symmetrisation over the variates of

asymmetric polynomials.

The Rodrigues formulae for classical orthogonal polynomials produce polynomials

iteratively by applying a differential operator. In like manner, Jack polynomials can

aiso be defined by successive application of creation operators, for which see $2.3.3.
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The parallels between the above means of defining Jack polynomials and the classical

orthogonal polynomials are strong, with an underlying differential equation, the gen-

eration by successive applications of a differential operator (Rodrigues' formulae),

generating functions, and orthogonal eigenfunctions with distinct eigenvalues: see

for instance the Bateman papers edited by Erdelyi, Magnus, Oberhettinger & Tii-

comi (1953), Szego (1939) and Vilenkin (1968, Intro.). From the physics direction,

Baker & Forrester (1997) note the close connection between the Calogero-Sutherland

model and the generalised classical polynomials: Jack polynomials have a close con-

nection with the Calogero-Sutherland model, for which see $2.3.3.

2.2.L Direct definition from orthogonality

By this is meant the definition of symmetric polynomials by directly specifying

orthogonality of functions of differing index or parameter value, with normalisation

conditions imposed.

Following Stanley (1989, p.77) and Macdonald (1995, pp. 305, 377), define an inner

product by

1 pnrpx )sr: So,szoat(') (2.6)

where z1 is defined in $1.5.1 on p. 15. With this inner product, < 4"),"I1") >o:0
when n * A.

Underlying inner products of this form is generally an operator of which the orthog-

onal functions are eigenfunctions, with the eigenvalues dictating the normalisation

requirements.

Macdonald (1995, gVI.1) defines a general class of symmetric polynomials using a

similar definition to that in (2.6), which includes Hall-Littlewood polynomials and

Jack polynomials as special cases. Vilenkin & Klimyk (1995, p. 105) basically follow

Macdonald's approach.

For the wider class of symmetric polynomials, Macdonald (1995, $VI.2) also shows
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the close relationship between the inner products of the form of (2.6), and relations

of the form

!i;'"r^{r)h@): fl(t - nuu)-'/"

^ 
r,J

where jx:< Jx,Js >o. See also Macdonald (1995, $I.4), Stanley (1989, p.79) and

Takemura (1984, pp. 37, 58).

2.2.2 The combinatorial approach of Knop and Sahi

Farrell's labelling of the approaches in James (1961) and James (1964) as combina-

torial (Farrell (1985, pp. 231,282)) is in retrospect a little confusing, in that other

methods more directly combinatorial in nature have since sprung up.

The mantle of most elementary approach to Jack polynomials and zonal polyno-

mials now ciearly belongs to Knop & Sahi (1997), who have provided a directly

constructionist definition of Jack polynomials from the Ferrers diagram. Practically

the same definition works for the asymrnetric Jack polynomials, also glven in the

same paper. Although elementary in nature, this method of generation of Jack poly-

nomials does not necessarily lend itself to computing facility; nor does it easily lead

to the basic reproductive and splitting formulae (2.1) and (2.5), which were readily

obtained from Takemura's definition. We have already commented on the fact that

Takemura's definition closely reflects its motivation, whereas the motivation behind

Knop and Sahi's approach is obscure.

The Knop-Sahi approach is to utilise the conventional Ferrers graph (of the conjugate

partition .\' for J;) and simply consider all ways of mapping the n variables onto

the nodes of the graph. In such an overtly combinatorial setting, the mapping could

be called a colouring, with colours the integers 1,2, , . .,fr,, or rather the variates

TLt fr2r . . . , fin. Roughly speaking one multiplies the variates for each legal colouring

and sums all the resulting monomiais.

There are three rules set up to administer this process. Firstly while variates can

occur multiply in a single colouring, a variate cannot occur twice in any one column;
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secondly, if the same variate occurs in successive columns, the one in the first column

cannot be above the second (i.e. in a higher row); and thirdly, when the same variate

occurs in successive columns and they are in the same row, the monomial product is

to be multiplied by a hook length like factor depending both on a and the arm and

leg lengths of the pair of elements in question. The multiplicative factor or weight

for each colouring is either 0 for an illegal colouring, 1 if there are no horizontally

adjacent cells containing the same variate; or a polynomial in a derived as a product

of the quasi hook length factors. See Stanley (1989, p. 95) or Macdonald (1995, $L1)

for discussion of hook lengths etc.

As a byproduct of their definition of Jack polynomials, Knop and Sahi prove that

in the expansion

t[") 1r1 : L i7,^(a) rn1 (r)

the functions jf,,^f u, are polynomials in a with non-negative integral coefficients (re-

call from $1.5 that up:il.mtb)l). The result confirmed a conjecture of Macdonald

and Stanley (Stanley (1989, p. 110)) as to the nature of these coefficients.

Knop and Sahi's method is reminiscent of results in Stanley (1999, $7.10), in which

several combinatorial definitions of Schur functions are given; and is further remi-

niscent of "arm" and "leg" functions, or more generally hook polynomial and hook

length types of functions, in Macdonald (1995, ch. I $1, ch. VI $10), Stanley (1989,

p.95) or Aigner (1979, p. 131), z.a.; and in the recent physics literature, Baker &

Forrester (1999). Robinson (1961, p. 44) has earlier references. These latter types

of functions are roughly defined as the product of functions defined on cells of Fer-

rers diagrams, typically involving the number of cells to the right of the point (an

"arm" ) and below the point (a "leg" ). Sometimes one or other of these arm and leg

functions at a point is multiplied by a before adding them together and taking the

product over the Ferrers diagram.

Although above we described the motivation underlying the Knop-Sahi algorithm

as obscure, it must be admitted that there are elements at least which are somewhat

redolent of previous work on Young Tableaux. The forbidding of the one variate

to appear twice in a column is the direct analogue of Young's taking the ordinary

permutation group for rows but the permutations corrected for sign in the columns
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in the Young's symmetrisers; or of the Young Tableaux being only weakly increasing

across rows, but strictly increasing down columns. Moreover the Knop-Sahi process

bears a certain resemblance to the insertion of one entry at a time onto a Tableau

(corresponding to the "lattice permutations") for the calculation of the characters

of the symmetric group. See 'f.a. Littlewood (1950, ch. V), Macdonald (1995, $I.9),

Farrell (1985, $12.4).

Analysis which is ostensibly straightforward can arise from complicated underlying

mathematics. Knop and Sahi's work is a case in point, with seemingly difficult

theory by Opdam (1995) in root systems of semi-simple Lie algebras underlying the

beautifully simple deductions drawn from the theory. See also Vilenkin & Klimyk

(1995, $3.3.1).

2.3 Related literature

In this section we glance at some areas of the literature cognate to zonal and Jack

polynomials.

The choice of topics is selective and the coverage not deep, but the aim is to obtain

at least some idea of these polynomials "in the round" before we embark on a rather

technical overview of Hannan's and James' work, i.4..

2.3.L Differential equations

Muirhead (1970) is an early paper investigating the partial differential equations

satisfied by hypergeometric functions of one matrix argument. Following Constan-

tine (1963) in defining hypergeometric functions as expansions in zonal polynomials,

Muirhead shows that these functions are solutions of a partial differential equation,

with a view to using the properties of the equation to give an asymptotic expansion

of the function.
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There are close links between the hypergeometric functions of matrix argument, the

Laplace transform and Laguerre functions of matrix argument (Herz (1955)). There

are defined matrix analogues of several other of the classical orthogonal polynomials,

generally as hypergeometric functions of matrix arguments with expansions utilising

zonal polynomials and Jack polynomials. The author has not seen the extension of

the hypergeometric functions of matrix argument to the G and I/ functions of Meijer,

which are defined from the univariate hypergeometric functions. But they would be

of interest, since Meijer's functions can express the density function of products of

independent beta and gamma random variates (Mathai & Saxena (1973)), which

is not possible in general for the hypergeometric function. See also Farrell (1985,

$1.1).

2.3.2 Hypergeometric functions of more than one matrix
argument

Given sample size n and number of parameters k, James (1955b) found the need

to integrate over O(e) in his derivation of the density function for the Wishart

distribution for general covariance matrix. Then, in his derivation of the density

of the eigenvalues of the covariance matrix, James (1960) wished to evaluate an

integral over O(n), when he produced the formula:
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f c^(AHr B ndH : cx(A)c>,(B) /c^(I)
J o@)

although not in that notation.

Then in Davis (1979) and Davis (i980) it was shown that

I c-1,+nr xulc^larryv)dv: t c;,^(A, B)c;'^(x,y)/ci(r) (2.e)
J o(n) 6€n.),

where the functions Cf;') are called the extend,ed inuariant polynomiols. The sum-

mation in (2.9) is over those representations 2/ which are contained in Zrc & 2\,

the Kronecker product of representations. The underlying representation theory for

the evaiuation of the integral in (2.9) is given in Davis (1980), and this is set out

in somewhat greater detail in Mathai et al. (1995, Appendix). The expansion (2.9)

(2.8)
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should be compared with (2.8); and with (2.32) and (2.33) on p. 72: the Zx and

Cr are different normalisations of the zonal polynomial.

According to Davis (1980), the original motivation for (2.9) came from an application

of a rather striking twist to the Edgeworth expansion in Davis (1976). For dealing

with a statistic through its Edgeworth expansion, in the latter paper Davis had the

idea of treating a random variate r as s'* z, where s' retains the first 2 moments of

r and can be dealt with through the usual Edgeworth expansion; following which

one can take expectations with respect to the pseudo random variate z, which has

zero mean and variance but higher moments which duplicate those of u. The second

step is usually combinatorial in nature, and combining the two steps is equivalent

to the original outworking of dealing with r through an Edgeworth expansion.

Davis was led to integrals such as that in (2.9) when seeking to apply the methodol-

ogy in Davis (1976) to multivariate analysis of variance. In Davis (1930), the author

is at pains to point out that the extended invariant functions are not zonal polyno-

mials, in the sense that there may not be an extended Laplace-Beltrami operator

for them; and nor may there be suitable differential equations for hypergeometric

functions of 2 matrix arguments as there are for hypergeometric functions of 1 ma-

trix argument. Building on work in Muirhead (1982), Baker & Forrester (1997, p.

214) provide a differential equation satisfied by hypergeometric zFr functions of two

matrix arguments. But it is not clear that this type of differential equation will be

as useful as the simpler analogues for functions of one matrix argument.

The right side of (2.9) is clearly a complicated expansion, even by the standards of

conventional zonal polynomials of one matrix argument which seem in any case to

be so intractable. The complications are even greater than apparent from (2.9) since

the direct product of representations 2n I2A is not multiplicity free: i.e. there are

duplications of some of the 2/ partitions in 2rc I 2,\. See Robinson (1961, $3.3) for

calculation of the multiplicities involved.

The expression (2.9) has been extended to the product of more than two zonal

polynomials in the integrand in Davis (i981), who credits Chikuse with prior claim

on the extension, in a cited but unpublished paper of hers.
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Neither Davis' utilisation of the Edgeworth expansion in Davis (1976), nor the rather

theoretical paper on Cornish-Fisher expansions in Hill & Davis (1968), seem to have

been talcen up to any extent by the statistical or econometric communities; but the

identity (2.8) and its generalisations have created wide interest'

2.3.3 Jack polynomials in Physics

The pretentious title to this subsection notwithstanding, we have surveyed only a

small sample of papers in the area, mainly to do with Baker and Forrester on the

one hand, and Lapointe and Vinet on the other. Most of their papers can be found

as preprints on the internet, which usually differ but slightly from the published

versions:

http: / /mentor. Ianl . gov:8O/!'lelcome .html

One should click on mathf.or Jack polynomials or hep-thfor the Calogero-Sutheriand

model.

Much of the work currently being done on Jack polynomials is by physicists, and

much of that work places those polynomials in the context of broader families of

functions, which are eigenfunctions of operators involving differentiai and permuta-

tion elements.

As noted in $3.i.1 on p. 79, the Laplace-Beltrami operator is equivalent, for the

homogeneous symmetric functions arising in this thesis at least, to the Calogero-

Sutherland operator. There is clearly more to be made of the link between statistics

and physics, but such work lies beyond the scope of this thesis.

2.3.3.1 Calogero-Sutherland model

The Calogero-sutherland model in quantum physics refers to many body problems

with inverse square potential, but only in one dimension (e.g. Baker & Forrester

(1997)). The fact that it is one-dimensional is of course limiting, but treatment at
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that level is at the forefront of what the mathematics is capable of at the moment.

The model is of interest partly because it is the simplest solvable system of this type,

and can provide a vehicle for testing ideas on fractional statistics and quantum chaos:

see for instance Forrester (1995) and Lapointe & Vinet (1996); and for an elementary

view of Maxwell-Boltzmann statistics and the like, in the context of occupancy types

of combinatorial/probability models, see Moran (1968, pp. 32, 105).

The possible states of nature, or the wave functions, are given by the eigenfunctions

of the Schrodinger operator, which are closely related to the Jack polynomials. The

non-symmetric Jack polynomials have to do with the same system on a circle with

exchangeability of particles, whence the permutation operators inserted into the

operators to obtain asymmetric polynomials as solutions, viv-a-vis the symmetric

functions being obtained by differential operators. See Baker & Forrester (1998),

i.a.

2.3.3.2 Creation operators

Higher order Jack polynomials are built up from lower order polynomials by using the

creation operators, which generalise the Rodrigues formula for classical orthogonal

polynomials. The simplest treatment to follow is perhaps Lapointe & Vinet (1995);

one could see Lapointe & Vinet (1997a) and Lapointe & Vinet (1997b) for more

comprehensive treatments.

We have already referred in $1,4 on p. 11 to Zeilberger's use of the creation operators

to generate the Jack polynomials.

2.3.4 Statistics defined on the sphere

Occasionally called ori,entation statistics, spherical statistics or di,rectional statistics,

or similar labels, this area of statistical theory may at first glance appear an undis-

tinguished candidate for discussion in this thesis. But there are several reasons for
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which the choice is a suitable one.

1.

36

2.

In $1.3 we posed a series of questions concerning the use of zonal polynomials

in statistical theory and practice. Given the central position of orthogonal

matrices in the definition of zonal polynomials (for which see $2.5 on p. 49),

and the importance of rotational invariance to the theory of random variates

defined on spheres, this area could be expected to be fertile ground for seeing

how zonal polynomials are used, or not as the case will largely turn out to be.

If the use of zonal. polynomials in statistical theory is obviated, natural candi-

dates to be used instead are

(a) asymptotic limits of the hypergeometric functions defining the densities;

and

(b) asymptotic expansions of the hypergeometric functions.

For statistics at least, the asymptotic limit intended is that for letting the

sample size become indefinitely large.

This area of theory illustrates both of these aspects. That said, the hyper-

geometric functions generally enter only as normalising constants (e.g. Khatri

& Mardia (1977)), and need to be inverted to provide Taylor expansions or

asymptotic expansions for densities. Since the hypergeometric functions ap
pear only as normalising constants, inference within the class of directional

statistics to some extent need not involve zonal polynomials.

There is the analogue of length and magnitude for matrices, generalising the

usual definition for vectors. This would seem an important aspect for multi-

variate analysis, especially in seeking for generalisations of univariate theory.

Central to this area of statistics is the idea of factorisation of measures on dif-

ferential manifolds. This was the original motivation underlying James (1954).

By factorising the Haar measure over the parameter space into that associated

with the Stiefel or Grassmannian manifold on the one hand and the remainder

on the other, one could integrate out the remainder (the nuisance variables)

and leave the integral over the subspace of interest. Muirhead (1982, lem.

9.5.3) gives a good indication of the general idea. Recent developrnents in this

direction include Chikuse (1994), which is described below.

3.

4.
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Basic references in spherical statistics include Downs (1972) and Bingham (1974).

The fundamental distributions are the (matrix) Langeuin and Binghamdistributions,

with densities proportional to etr(FrX) and etr(XTAX) respectively, in which etr

stands for the exponential of the trace. The former can be usefully thought of as

arising from the term etr{( X - M)r 6 - M)} appearing in the multivariate normal

density, with the constraint imposed that XIX : 1. When the mean matrix M

reduces to a vector p, the Langevin distribution is circularly symmetric about the

vector pr. The connection between the Bingham density and the multivariate normal

is even more apparent to the casual observer, and has the advantage of antipodal

symmetry, in that X and -X have the same distribution (Bingham (1974)).

An idea as to the flavour of the subject may be gleaned from Chilcuse (1994). She

decomposes the sample space into orthogonal subspaces, say A and B, of. dimension

p and n'L - p respectively; and then considers a subspaces of dimension k in A

and B. First factorising the invariant measure for the whole space into those for

these subspaces, she then decomposes the data matrix into orthogonal singular value

decompositions, and applies this methodology to finding the distribution of canon-

ical correlation coeficients. She is generalising the methodology of James (1954),

as noted in her introduction. She is also honing previous work on this problem,

obtaining the results even when k < p and k I m -p are not necessarily true.

The polar and elliptic components are defined with respect to a matrix C in Downs

(1972, p. 666). Putting C : I gives the conventional breakdown. Polar (also known

as directional or angular or orientational) and elliptical (length) components are also

called by Downs (1972, p. 668) the modal and concentration matrices respectively.

Whatever they are called, the analogues of direction and length for an n x k matrix

X are X6r X)-t/z and (Xr Xlttz respectively, for n 2 k.

Generalising known univariate results, Chikuse investigates the distribution of the

orientation of a random matrix, which reduces to a relatively simple form when the

matrix is normally distributed: see Chikuse (1990a) and Chikuse (fOSOU), i.a. In

another direction, Bingham, Chang & Richards (1992) describe a means of spherical

regression due to Chang, and there are many other developments in this whole a.rea.
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The fieid is an interesting one in that there are in the literature approximations

obviating the use of zonal polynomials. Those approximations are generally either

as limits of a density for large sample size, or as asymptotic expansions of the same,

as noted above.

2.3.4.L Asymptotic expansions

Farrell (1985, $13.0) mentions the slow convergence of expansions in zonal poly-

nomials, and recommends resorting to asymptotic expansions of hypergeometric

functions.

Muirhead (1982, $9.5) gives an asymptotic limit of the sFg hypergeometric function

as sample size becomes large, tracing the result back to Anderson (1965), who in

turn refers to Girshick. Bingham et al, (1SS2, p. 321) use this method; and Chikuse

(1991b) provides asymptotic limiting distributions for statistics in this general area

as sample size becomes infinite.

It would seem preferable however to obtain an asymptotic expansion to a density

function, or other function of interest, rather than a iimiting form. Such expansions

generally do not converge, but can provide good approximations for large sample

size (e.g. Erdelyi (1956), Whittaker & Watson (L927, ch. VI[).

Muirhead (1982, $9.5) cites Muirhead (1978) in this regard. Chikuse provides asymp-

totic expansions for several distributions in this area, for some of which see Chikuse

(1990a), Chikuse (1990b), Chikuse (1991a) and Chikuse (1993); see also Kent

(1987). Chikuse (1991a) refers to earlier related results of Watson (1983).

2.3.5 An engineering application

Smith and Gao have done much recent work in the general area of engineering for

mobile radios. More precisely, their work has involved the performance of space

38



Jack Polynomials, Chapter 2. Leigh Roberts, 2007

diversity wireless systems. The rough idea is that the myriad of signals reflected

back from many reflectors to the source of an electromagnetic signal is more or

less normally distributed, being the sum of independent small signals. The overall

signals are analysed in the complex domain because there are magnitude and phase

associated with the electro-magnetic waves. The quadratic forms arise because the

strength of the contributions is the square of the magnitude. Density functions of

the quadratic forms are hypergeometric functions of one or two matrix arguments,

defined in terms of "complex" zonal polynomials.

Two key recent papers are Gao & Smith (2000) and Smith & Gao (2000). The first

of these is concerned with the capacity of the mobile radio systems, roughly the

number of users which the system can support, and in that paper Gao and Smith

give the joint density function of the distinct elements of

XIXH , (2.10)

in a form which is computable, albeit not too straightforwardly. In (2.10)' I is a

positive definite diagonal matrix; X has a complex Gaussian distribution; and the

superscript I/ indicates the Hermitian transpose.

The second of these papers concerns the bit error rate of these systems, and here

Smith and Gao provide a computable form of the joint density of the distinct ele-

ments of
yH (XfX")-'y (2.r1)

in which Y also has the complex Gaussian distribution, and X and Y are indepen-

dent.

The density functions of (2.10) and (2.11) are given in Khatri (1966) as hypergeo-

metric functions of matrix argument, but Smith and Gao found that they could not

easily apply those expansions in practice. Instead they used the results of Gross &

Richards (1989), in which hypergeometric functions of matrix argument(s) are ex-

pressed as ratios, with a product of Vandermonde determinants in the denominator'

The problem of evaluation did not lie with the denominator but with the numeratot,

involving a determinant with individual elements containing conventional hyperge-

ometric functions having a single parameter as argument. The Gross-Richards ex-

pression is valid for distinct values of the eigenvalues, and Smith and Gao adapted
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their results to the case with repeated eigenvalues, which involved rather intricate

Iimiting processes.

Gao, Smith & Clark (1998) treats the special case of (2.11) when Y reduces to a

vector, and Smith & Gao (1999) contains further technical details of the outworkings

in this case. The latter paper contains a remarkably simple distribution function for

the complex random variate (2.11) when the matrix It reduces to a vector.

Gao & Smith (i998b) and Gao & Smith (1998a) are generalisations of the work in

Gao et al. (1998).

Smith and Gao's work involves the complex zonal polynomials or Schur functions,

and Gross and Richards' results are valid for the complex field. If this approach

were to generalise to values of a t' 1, it would be a very promising approach to the

calculation of Jack polynomials.

2.4 Technical overview

It is convenient to start the present section with an approach based on Hannan

(1965a) (also published as a separate monograph Hannan (1965b)). Although his

article is primarily written for an audience interested in probability, and is naturally

coloured by his particular interest in time series, Hannan's viewpoint is rather wider

than that of other writers, and parts of his article provide a suitable framework in

which one can approach zonal polynomials from a general perspective.

2.4.L Group G acting transitively on a set Z

To this end, consider a set Z of distinct elements or points zt aL which a group

G acts tra.nsitively by permuting the elements: thus gz1 : zz rrrel,TLs that g e G
moves z1 to 22. Picking out a fixed but arbitrary point zs, tbe isotropy group K is
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that subgroup of G which fixes 26. Changing the reference point produces conjugate

subgroups of G as isotropy groups. Although in principle a change of reference point

will change little of substance, there will often be an obvious choice for zs, or one

for which resulting expressions are simplified in form.

Examples of groups acting as transitive transformation groups in this way include

the following:

Z contains the plots in an analysis of variance applied to an agricultural exper-

iment, with G the symmetric group acting on the plots. This is the example

used in James (1957), which can perhaps lay claim to being the first paper

to apply representation theory to reflect symmetries inherent in experimental

statistics. The point of James (1954), James (1955a) and James (1955b) was

more to facilitate the integration over awkward manifolds, particularly the

orthogonal group; it was later that the central role of zonal polynomials for

this purpose emerged. The invariant relationship matrices in James (1957)

reflect functions in a discrete group which are the equivalent of zonal spherical

functions for continuous groups.

The ideas in James (1957) were refined in James (1982), which in fact rep-

resents an intermediate step in the development of the theory leading to the

introduction of zonal polynomials in James (1960) and James (1961), despite

its late appearance (see Hillier & Skeels (1996, pp. 156, 163)), Farrell (1985,

$12.0)).

As a further example in the analysis of variance, Z contuns characteristics

of offspring of pairings of brothers and sisters frorn different families, with G

comprising the symmetric group acting on the families. This example is the

one used in James (1982).

Z contains the points on the surface ,S2 of the sphere in R3. The reference

point zs is usually taken as the north pole, and G as the group of rotations

of the sphere, viz. O(3). The isotropy group K contains rotations around the

axis joining the north and south poles, and the zones are the orbits of the

isotropy group (see $2.4.2.5), viz. the bands of constant latitude.

4L
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Z consists of the real symmetric matrices. The group G is the general linear

group GL(n) ) .L, acting by mappin g Z > Y -+ LYL". The reference point z6

is logically chosen as the identity matrix, with isotropy group the orthogonal

group O(").

This example provides the mathematical foundation of zonal polynomials in

James (1961). See $2.5.

Z is lhe set of "doublets" in James (1961, $3), a doublet being defined to be

a subdivision of the integers {1,2, . . .,2f} into mutually exclusive pairs. The

group is the symmetric group on2f elements acting in the conventional manner

on the set of doublets. The isotropy group at the element (1, 2)(3, 4)' . . (2f -
1,2f) is the hyperoctahedral group (Macdonald (1995, p' a01)).

This example provides a further central element in the definition of zonal

polynomials, since the hyperoctahedral group imposes symmetries on a gen-

eral tensor to make it correspond to a bisymmetric tensor deriving from a

symmetric matrix (James (fO6t, gZ); see also $2.5.6.4 on p. 60).

2.4.2 Representations of the group G

While it \s Z that is of primary interest, to remain at the level of G acting on Z

renders analysis difficult, since in general Z has no particular structure. It is natural

to remove one stage to consider the points z as left cosets of the isotropy group and

analyse the coset space GIK : {gK , g € G}.

In fact we choose to work with representations of the group G. These are operators

permuting vectors in a "canier" vector space, and are homomorphisrns T(g) - Tn

of G: i.e. they mimic the behaviour of the group, in that T(gr)T(gz) :T(ngz).

Working with general representations of G can focus more directly on the symme-

tries inherent in the original problem. In addition, representation theory is a well

researched area of mathematics about which much is known, so that one is tapping

into a large "pool" of knowledge. In any case one loses nothing by the additional

generality, since the situation in which G operates directly on G lK is a particular
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example contained within the general theory.

For our purposes, representations will in general take the form of either permutation

matrices, as in examples 1 and 2 abovel or will act by translating functions of Z,

i.e. the carrier space is the space of functions on Z of a certain form, as in Example

4 on p. 41 above. Symbolically one has in this latter case

g'b)ilQ) - 6b-")

representing the group by left "translating" a function. Similarly another represen-

tation is given by a right translation

Q"b)ilQ): d(zg).

Considering the translation of a function is a well trodden path; see f.o. Weyl (1946,

p. 23), Farrell (1976, p. 235), Vilenkin (1968, p. 12), Helgason (1962). Tbanslation in

this sense is sometimes referred to as a shift or shift operation, e.g. Vilenkin (1968,

p.27).

Note that the multiplication in a group algebra is effectively translation of a function:

for treating an element in the group algebra as a function on the group, and for t,A €
G (sothatr(e) :0for glr and l forg -r), then (r/)(g) : Dr.r rk)f b-ty):
f @-'d (e.g. Macdonald (1995, p. 388)).

Given that we are representing points z as left cosets gK, tt is natural to consider

functions /(9) invariant on the right: i.e. /(g) : f (gk). The zonal polynomials will

surface as functions which are invariant from either side, viz. they are bi-invariant,

although this bald assertion gives little idea of their significance.

2.4.2,1 The commutant algebra of a representation

The representation algebra of a representation ? is generated by all matricesTo, g €

G, in the representation. The commutant algebra of ? contains all matrices B which

commute with all matrices in the representation algebra.
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There are several other names for the commutant algebra, including commuting

algebra (Hannan (1965a), Robinson (1961)), commuting ring (Burrow (1965)), cen-

traliser (James (1961), James (1982)), central (Weyl (1931)), and commutator al-

gebra (a.a. Weyl (1946), Farrell (1985)). The use of the last of these names is

reasonably widespread, but it could be confused with the commutator in a group

context, viz. an element of the form r-Ly-t*a.

The most common label now seems to be the commutant (algebra) (e.g. Ledermann

(1977)), to which terminology we shall adhere. It should be noted however that our

usage clashes to some extent with older conventions. Thrnbull & Aitken (L932, p.

147), for instance, call a matrix X a commutant of .4 and B when AX - XB.

The commutant is no less important than the representation algebra itself. This is

partly because the commutant is isomorphic to the endomorphism ring of the carrier

space, which provides information about the multiplicity of irreducible component

representations in the representation T.

More centrally, however, the commutant reflects closely the symmetries inherent in

the situation under investigation. For the representation Rl in (2.13) on p. 50, it will

turn out that the zonal spherical function, properly belongingto the carrier space,

can usefully be regarded also as a member of the commutant: in fact the zonal

spherical functions collectively form an orthogonal basis of the commutant. More

precisely, the commutant is spanned by matrices which are zero outside a single

diagonal block, and that block is a zonal spherical function times a unit matrix.

From the zonal spherical function for Rl is directly derived the zonal polynomial:

see $2.5.5.1.1.

The relationship matrices in James (1957) span the commutant, and are the direct

analogues of zonal spherical functions, for the finite group defined in that simple

analysis of variance setting. That the mathematical introduction of zonal polyno-

mials in Ja,rnes (1961) is perhaps a little hard to follow is partly because the jump

from James (1957) to James (1961) depended on theory which was not published

until James (1982).
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2.4.2.2 The endomorphism ring

The isomorphism between endomorphisms of the carrier vector space and the com-

mutant algebra of the representation can be seen as follows.

Recall that a homomorphism of a left module U into a left module W is a mapping

6: U -+ W such that

d@u): ad@) (2.12)

where o actsonr, € U (resp. w €W) to produce amemberof U (resp. Il7). For

a vector space (or linear space), a special case of a module, u is a vector and a is

a matrix operating on the vector space in the conventional way: in the simplest

case o is simply an element of the coefficient field multiplying the vector. Setting

U --W, the homomorphism is relabelled as an endomorphism. See i.a. Ledermann

(1977, p. 33), who is more careful in his use of language and refers to the above

transforms (2.I2) as G-homomorphisms (when a e G).

Suppose now that ? is a representation of a finite group G with carrier space U and

let a be in the representation algebra, i.e. o : DbnTn is a representation of lbng
in the group algebra; then ,/ in (2.12) is in the commutant algebra. In fact, the

commutant algebra and the endomorphism ring of the carrier space are isomorphic.

More generally, when Irtrl is an irreducible representation of G, the dimension of

Hom(U, V[/), called the intertwining number, represents the number of times thatW

appears in U.

2.4.2.3 The commutant as reflecting symmetries

In the context of working with the symmetric group acting on Z (or rnore strictly

with the representation of the symmetric group induced by the trivial representation

of the isotropy group K, so that the permutations merely shufle the left cosets of

K around), Hannan (1965a, p. 14) points out the equivalence of working with

45



Jack Polynomials, Chapter 2. Leigh Roberts, 2007

the commutant algebra;

point pair invariant functions, defined below; and

functions having "rotational symmetry" on Z. These are funetions /(z) for

which f (kr): f (z) for all k e K, and are called zonalfunctions, because they

are constant on lhe zones Kz.

Representing a point z € Z as a left coset of an isotropy subgroup in G, a function

on Z must be a function of G which is invariant on the right: i.e. dkk): $(g) for

all k e K. These functions are called spherical functions. Functions of G having

"rotational symmetry" now are biinvariant, and are called zonal spherical functions:

6(k13kz): d@) for all k1,k2 € K.

The terminology can be traced to the case in which Z contains the points on the

surface of the sphere, and zones are bands of constant latitude (Hillier & Skeels

(1996, p. 164), Hannan (1965a, $5.1), Vilenkin (1968, p. 30).

We show now the connection between these three classes of objects.

2.4.2.4 Point pair invariant functions

Define an equivalence relation on the direct product Z x Z by saying (r, s) - (u, u)

if there exists g e G such that u : gr, u : gs. That is, the equivalence classes

are {(9r,9s) : g eG}, where (r,s) is arbitrarybut fixed. Such equivalence classes

are called poi,nt pair i,nuariants in Hannan (1965a, p. 13), while James (1961, p.

464) gives them no label. Functions defined on Z x Z which are constant on these

equivalence classes are called poi,nt pair inuariant functions.

Given the equivalence class generated by (", s) as above, define a matrix f (r, s) :
(rir') uv

f t if (?,i) - (r, s)
'Y;;: <tvJ 

L 0 otherwise

46

t.

2.

3.



Jack Polynomials, Chapter 2. Leigh Robefis, 2001

When T(g) is a permutation of Z, that the matrices f (r, s) belong to the commutant

is easily seen as follows:

(t(r, s)"(9)),,,,o: I (l(r, s))",,, ,(T(d),,,,0 : (f(r, s)),,,s"0

("(9)f (r, s)),,,",: t (T(g))"r,,,(f (r, s)),,,,0 : (f(r, s))s-r,,,,0: (l(r, s))"r,s,o

In fact, the matrices f (r, s) generate the commutant, and correspond directly to the

zonal spherical functions for continuous groups. That they generate the commutant

can be seen informallv as follows.

As a finite set being transforme d, Z can be considered a vector space of dimension

lZl. For representations of acontinuous group, Z would. be considered as a basis of

the carrier space.

The linear transformations of Z are matrices indexed by the elements zi of Z. If. zi

denotes a basis for the dual space, the matrix with (i, j)th entry zizj is the general

linear transformation of Z. Simplifying by indexing this matrix ffi (zt, zi) an.d ensur-

ing that (zt,z) and (gz;,gz) always have the same value for all g €G, informally

at least one can see that any operation by a group element and muitiplication by

this matrix must commute. See also James (1961, Lemma 5).

The simplest example of the matrices I is the invariant relationship matrices in

James (1957). He defines B, for instance, in which (B)ri : 1 when plots i and j are

in the same block, and 0 otherwise; and similarly for the other matrices (T for when

plots are subject to the same treatment, G for the grand mean and .I the identity),

These matrices generate what James cails the invariant relationship algebra, which

he recognised as spanning the commutant. The carrier "vector space" in his paper

contains linear combinations of the plots.

James (1957) seems not to have found much application in statistical practice. Mann

(1960) is one of the few papers taking up James' ideas, applying them in the context

of testing nested hypotheses in a linear model which is a generalisation of the analysis

of variance. Even James (1982), a paper essentially bridging the gap between James

(1957) and James (f961), cites no papers deriving from its 1957 parent.
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2.4.2,5 Zones and left inrrariance of functions

The relation between point pair invariant functions and zoual functions is immediate.

We follow Hannan (1965a, p. 13).

Given the point pair invariant function ?(r,s), set f (t) :'YQo,z) for some fixed

zo € Z. Then for /c e K, the isotropy group for zs,, one has that /(kz) : 'l(zo,kz) -
lQo,z) : f(z), so that /(.) is a zonal function. Aiternatively, given the zonal

function /(e), so that /(kz) : f ("), we set l(zo,z): f (r) and 7(r, s) :1(gr,gs)

where gr: zo.

2.4.2.6 Projection operators onto the isotropy group

Instead of having the transformation group G act from the left on the left cosets 9K,
it is often more convenient to consider the average over the isotropy group within

the group algebra of G:

"r: 
j Yrl/{l "r*

The operatot e2,, projecting the group algebra into the subalgebra spanned by K, is
generally labelled as a variant of e, and is called e2 here simply to avoid confusion

with e and e1 which assume specific meanings later.

Thus the action of G on the left cosets GIK:

9t: gK -+ (gtS)K : gLgK

is mirrored by the action of G within the group algebra:

gt i 7ez I (grg)"r: 9r9ez.

James (1961) deflnes e1 as the projection operator for the isotropy group of the

symmetric group acting on the doublets in Example 5, and e as the projection

operator for the orthogonal group in Example 4 on p. 41, this being the isotropy

group for the general linear group in this situation (see (2.22)). This latter operator

e is an integral, being the equivalent operation on a continous group to the average
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over a finite group. In similar vein Macdonald (1995, p. 388) defines a simple average

over the isotropy group K when the underlying group of transformations is finite.

2.5 James' definition of zonal polynomials

At first glance the approach to zonal polynomials in James (1961) looks convoluted.

The reasoning is intricate, revoiving around coincidence of commutants for chains

of group representations. It seems worthwhile to explore this paper in some detail,

partly because the article contains the basic definitional mathematics for the main

topic of interest in this thesis; and partly because James' treatment can serve as a

vehicle for comment on the other principal approaches to zonal polynomials.

If James (1961) is a little hard to follow, it is partly because the theory supporting

the move from James (1957) to James (1961) only appeared much later, in James

(1982). And admittedly James (1961) is easier to appreciate now that Macdonald

(1995) has given such a scholarly treatment of the essential ideas therein, on which

we comment in $2.6.

As a preliminary guide to nomenclature to come, there is a basic and large diagram

in James (1961, p. 463) which summarises the chain of reasoning of a major part of

his article: this is roughly reproduced below as the central portion of the figure in

(2.13), with some additions to the figure and slight changes in notation. There are 6

distinct representations appearing in the central column, labelled as R1, R2, . .., R6.

The basic situation which James is investigating is on the second line, for instance,

and is listed as R2. Basic notation is given in $1.5 on p. 15, and descriptions follow.

49



Jack Polynomials, Chapter 2. Leigh Roberts, 2007

R7 DJ>il<A

ROo 
^, 

Pzf 4 Szf

-) RI 9J > 2Ie 4 eQIe e RIR fl' > 2Le

R2 2\>V1 <E
-f R3 2l> e1P2y 4 e1S2ye1

.R8 SU b S2y 4 S2y + R4 Szt b 521e1 4 e1S4e1

RS SubO<S
R}b Su D Pu < % -+ R6 Su D eP2y 4 eQIe

(2.13)

The three elements within each item denoting a representation are respectively the

representation algebra, the carrier space and the commutant algebra. There is some-

times the implication that the first of these acts from the left and the last from the

right, as in the regular representations R7 and R8.

The representation algebra for most of the representations above the line in (2.13)

is 2[, consisting of bisymmetric tensors A of rank 4/, with 2f covariant (lower,

"row") and 2/ contravariant (upper, "column") indices: see i.a. Spiegel (1959)

for the definitions of covariant and contravariant tensors. These representations are

representations of G L(n) , since 2l is the enveloping algebra of. La2! , for L e G L(n).

The exception is R1R, which furnishes a representation of O(n).

Below the line are representations of. S2y, the symmetric group on2f symbols. The

representation algebra is the group algebra of the symmetric group, denoted by the

same symbol in an abuse of notation.

The more generai representations underpinning James' diagram but not appearing

in the original are four in number, and listed on the left side of (2.t3). Two of them

are listed as ROa and ROb, since they are identical save for the interchange of their

representation algebras and their commutants: these representations interrelate I
on the one hand, and ,52y on the other. The other basic underlying representations

are labelled as R7 and R8: the former of these is the regular representation of 2[,

and the latter is the regular representation of .S21. The arrows from the left-most

column to the middle coiumn indicate that the carrier space has been restricted,

using the projection operators e and e1 defined in (2.22) and (2.26) on pp. 56 and

61 respectively. Further details of the overall structure of the diagram (2.13) are in
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$2.5.3.

The carrier space for the regular representation R7 is also shown as 2[, but is capable

of a dual and more revealing interpretation. A polynomial in the elements of a matrix

X can be written uniquely as tr (,AXEzl) where A is bisymmetric, so that the carrier

space of R7 may be considered either as 2[; or as consisting of polynomials in the

elements of a matrix X. That is.

RT U>21 <U ++ a > tr (uxe2r) < a (2.14)

2.5.L The situation of interest

The basic situation James wishes to analyse is that of Example 4 on p. 41: viz. the

carrier space I/ consists of functions of real positive definite symmetric matrices Y,

and the group actionon Vis given by GL(n,R):G ) L: Q()) + d (f'Vytr\.
r\tt\/

This representation, labelled as R2, is of basic interest in statistics for the following

reason.

Consider a\ n x k data matrix, where k is the number of variates of interest, and n

is the sample size; it will usually be the case that n > k. Denoting the covariance

matrix of X by D, that of Lr X is LTDL. Disregarding the adjustment required

to allow for the non-zero sample mean, the covariance matrix X is estimated by

Xrxfn, which is unchanged by data transformations X -+ fJX, where.F/ is an

orthogonal matrix. The adjustment for the sample mean is standard, see f.a. the

discussion in Mardia, Kent & Bibby (1979, p. 10) on the "centring" matrix.

2.5.2 Overview of Jamest reasoning

It will turn out that R1, R2 and RJ are equivalent representations; likewise R4, Rb

and R6 are equivalent.

51

Choosing the second interpretation of the carrier space of R7 in (2.14), the carrier



Jack Polynomials, Chapter 2. Leigh Roberts, 2001

space of R1 contains polynomials of the form tr (e"X*'t1, in which the projection

operator e is also a bisymmetric matrix. These are polynomials in the elements of

X, but assume the further specific form of being functions of. Xr X. This shows

the link between Rl and R2, the carrier space for the latter being symmetric real

matrices.

The zonal spherical functions (ZSFs) for R1 span the commutant eQIe. The zonal

polynomial (ZP) is defined as

zsF(x): zP(xrx)

in an obvious if unimaginative notation. The zonal polynomials thus span the com-

mutant l8 of R2. James (1961) identifies the commutants of the first three repre-

sentations with those of the second three, and investigates E by finding E. This is

the intricate part, since R5 involves the doublets mentioned in Example 5 on p. 42,

which caused Farrell to label James' approach as combinatorial.

2.5.3 Description of the diagram (2.13)

The restriction from Rl to R1R is indeed a "restriction" of a representation in the

conventional terminology: the representation algebra is restricted to that represent-

ing a subgroup of the group previously represented, and is the opposite process of

the third meaning of induction discussed at the end of $2.5.4 on p. 54. 2l' is that

subalgebra of 2l generated by orthogonal matrices, as shown in (2.23). The carrier

space is unchanged.

In the major part of the diagram (2.13), however, we are not defining restrictions of

representations. In projecting the carrier space V onto a subspace ofitself, say Vo -
ezV or Ve2, wE are in contrast taking a component of the original representation:

i.e. we are stripping away those parts of the matrices in the previous representation

algebra which operate on subspaces orthogonal to I/q, to leave smaller matrices

operating on a carrier space % of reduced dimension. The commutant becomes

e2Ve2, which is commutative in the examples above (for Rl, R3, R4 and R6). That

the commutant is commutative means that the representation with carrier space Vs
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is multiplicity free (see Curtis & Reiner (1962, pp. 319, 340) or Ledermann (L977,

p.27), i.a.).

The projection operators in the diagram (2.13) are defined below: the projection

e onto the orthogonal group is defined in (2.22); and the projection e1 onto the

hyperoctahedral group is described in $2.5.6.4.

The representation algebra 2lr of R2 is spanned by the matrices A arising in $2.5'4.

The carrier space O in Rb is the set of functions on D, the set of doublets, defined

in Example 5 on p. 42.These are described later.

Although not especially emphasised in James (1961), the symmetry in the action of

G L(n) and S2y is apparent from the diagram (2. 13) . The dual role of the actions of

these two groups is even more apparent from Macdonald (1995, Ch. VII) and Farrell

(1985, ch. 12).

2,5.4 The basic representation of interest R2

A representation of. GL(n,E) : G is induced to act on the vector space of polyno-

mials of degree / in the elements of a general symmetric matrix Y, say 6V), by the

congruence transformation Y -+ LY Lr. The representation is given formally as

(R2) 6-+Ld (2.15)

and is defined by

(Lil V) : LQ(}') = 6 (r'-Lv rr1 (2.16)

The notation Ld for the result of L < G acting on the polynomial {, although con-

ventional, is rather misleading, since the matrix multiplying an appropriate vector

of polynomials is very much larger than the original matrix .L. Choosing a basis of

monomials in the elements of. Y, / becomes a vector, say p; and similarly denote

the operating matrix by A, so that the representation (2.15) becomes:

(R2) p+llv or L_>4,
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The matrices A, as -L varies over GL(n), span the algebra 2[r, a subalgebra of the

bisymmetric tensors 2[. The dimensions of these algebra-s are compared in (2.17)

and (2.18).

Recall that the number of ways of choosing rn elements from n, is (*+j-t), *hen

repeated elements are allowed. (e.g. Stanley (1986, p. 15)). Further, Iet LAI be the

7th induced matrix of l. If one considers the transformation X : AY for n-vectors

X and Y and n x n matrix A, then the homogeneous products of I elements of Y are

transformed into the homogeneous products of j elements of X by the f x t matrix

4UI, where t: ("*t-t). fne terminology and notation is that of Littlewood (1950,

p. 178).

The form of A is known to be (Z,tz1)i/l 1Ju*u, (1961), Macdonald (1995, p. 160)). The

latter of these sources cited gives the relationship in more modern notation: A -
5i($'z(I)) (see i.a. Blokhuis & Seidel (1984), who use D1 for,9t, for an explanation

of the nature of these matrices). Thus, if Y and L be n x n matrices, and setting
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*',- ') : #('*- *. ) (2.17)

the vector rp is s x 1 and the matrix A is s x s.

It is perhaps worth commenting on the various uses of the word induction here. The

first is the representation of G sending L -+ lt; and the second is the matrix .L
inducing the matrix LVI for the symmetric tensor representation. Another general

meaning is the representation on a group induced by a representation on a subgroup

(e.g. Ledermann (1977, Ch. 3), Vilenkin (1968, p. 31)). The principal use of the

latter example in this thesis is when the representation on the isotropy subgroup is

trivial, so that the induced representation permutes the left cosets (representing the

points of Z: see $2.4.1 on p. 40).
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2.5.5 The representation R7 leading to ItL

Let X be a n x n matrix. The dimenoion of the matllc-es in the representation

algebra o-f R7 is t x t, for

t:("+:{-t):L(L+fgr-t)*. ) (2.18)-\ zf /-(2/)! \^' n "'/

It is easy to show that t/s > 2f x lllP,f\|, where s is talrcn from (2.17); iB fact

this lower bound is ltrea,k unlesg n >> /.

The typica,tr polynomial in the carrier space of R7 is (using the summation cotrven-

tion, a,ud restricting ourselves to 2f : 2 indices of emhi type in ordet to illustrate)

*ig,k41 (2.le)

in which the tensor a is bisy-mmetric.

GL(n) > ,[ aets on (2.19), ft'om the left say, moving it to the following polSmomial

in the carrier space

(r'1) f,' (L-,)::,!;k4""Ta

Alternativelg L msy act from tie right, moving (2.-19) to

4t:.!:.!:(r);1 (r);;

Equiva;Iently, ono could operate ouly on the bisymmetric tenssrs (retaining the rep

resentation algcbra but simpliffing the carrier spase, so that an equivalent repre

seutaition obtains), representing the polynomial (2.19) as

digi (2.20)

Flom the left .L moves (2.20) fo

(r-')lJ @.r):: d;lt"

and from the right -t moves (2.20) to

"!;$ 1r"yfi1r;1t; (2.27)
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Whether one chooses to have these representations act from the left or the right,

the commutant naturally acts from the opposite side. Commutants in general need

not be representations of G, because although they act upon the carrier space'

they need not be homomorphisms of G. But regular representations have regular

representations acting from the opposite side as commutants: see for instance Hall

(1959, $6.3).

The tensor e is an operator effecting an average over the orthogonal group from the

risht (c.f. (2.21)):

(2.22)

2.5.5.L Zonal spherical functions

Zonal spherical functions arise in the context of representations when there are

massive subgroups of class 1: see $2.7 on p. 68. But we shall place the discussion

in the context of Rl and R1R.

Because the commulant eQIe is itself commutative (e.g. Farrell (1985, thm. 12.10.4)),

Rl is multiplicity free: i.e. R1 is the direct sum of mutually inequivalent irreducible

representations. Those irreducible representations are indexed by the even partitions

2A of 2/, from Hannan (1965a, p. 36), James (fO6f;, Macdonald (1995, p. 402), i.a.:

say

Rl : 
^PrRt'^

where Rlzr is the irreducible representation of GL(n) associated with the partition

2Ar 2f.

Each R121 however becomes reducible when it is restricted to represent O(rz) rather

than G.L(n):

(E1n) 2L' > ?Ie
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r
4::: : Jo,_,@)ii 

@)i: dH

where dH is the normaiised Haar measure on the orthogonal group.

where 2[' is that subalgebra of 2[ generated by the orthogonal matrices only: i.e.
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2[' is spanned by tensors of the form

(H)ii@)'n: "', for .F/ e O(n) . (2.23)

Each .B1zr is restricted in this way to become RIR2s.

The trivial representation occurs exactly once in RIR2;, from Frobenius reciprocity

(e.g. Burrow (1965)). Thus there is exactly one element of the representation matri-

ces in Rl&zx which is fixed at unity, with the remainder of the row and column in

which it occurs identically zero (for an appropriate basis of the carrier space): see

i.a. James (1968), Mathai et al. (1995, p. 319)'

Moving back to the representation matrices in .R12;, say from f^(h) to T)(9), and

assuming both that a suitable basis of the carrier space has been chosen and that

the left cosets of -Il represent points of. Z, then the first column of functions fi(g)
are functions which are right invariant under f/ and therefore de facto functions on

Z, called, spherical functions or associated spherical functions (Hannan (1965a, p.

16), Vilenkin (1968, p. 30), Hillier & Skeels (1996, p. 164)); and the topmost of

these functions is also left invariant under H, and so is a zonal function: it is called

a zonal spherical function, labelled as d(g), and is invariant under the action of fI
from either side.

We mention the following points, highlighting the special nature of the zonal spher-

ical functions {}(9) for ) F /.

1. There is a link between the biinvariant functions and the commutant, noted

in $2.4.2.3 on p. 45. For a representation containing the irreducible compo-

nent .812r once only, the corresponding block in the matrix in the commutant

assumes the form 6^k)1. It is in this sense that the zonal spherical functions

d^fu) span the commutant.

Since eDJ.e is a commutative algebra, the identity is the (direct) sum of the

primitive idempotents. These primitive idempotents are the zonal spherical

functions, or more precisely the blocks d^k)I for ,\ F /.

This form of the commutant generalises to the situation in which the multi-

pliciiy exceeds one (Hannan (1965a, p, 16)), but we do not need the extra
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generality here because Rl is multiplicity free.

If the carrier space contains functions on Z, i.e. the carrier space contains func-

tions on G which are right invariant under .[/, the zonal spherical function is

also in the carrier space: the zonal spherical function spans the 1 dimensional

space which is invariant under f^(h).

The zonal spherical functions are a basis of biinvariant functions on G.

With the exception of the first element, functions in the first row of ?r(g) are

not constant on left cosets of H, and do not represent functions on the set Z.

5. Rows and columns are reversed in the above comments should right cosets

correspond to points of Z nther than lefb cosets.

The functions Q(/z) in RlR are mutually orthogonal, with respect to integration

over the uniform measure on H, with the product of functions being that in the

group algebra of H.

Choosing one of the basis functions to be d^@), one can integrate the elements

fi(D over the orthogonal group, whereupon all integrals vanish save for that with
(i,j): (1,1), viz. the zonal spherical function. The zonal spherical function is
identically unity on O(n), and one sees the importance of using the zonal spherical

functions as basis functions for the purpose of integration over the orthogonal group.

More generally, Vilenkin & Klimyk (1995, $3.3.1) show that zonal spherical functions

of a Lie Group G are eigenfunctions of operators having the form of Laplace-Beltrami

operators. These functions are related to different root systems, and need not be

hypergeometric functions.

2.5.5.1.I- Zonal polynomials

Macdonald (1995, p. 419) states that a polynomial function /(r) of the elements of
the matrix r which is invariant under the action from the left of the orthogonal group
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O(n) necessarily assumes the form f .(d, a polynomial function of the elements of

A: rTt. That is

/(") : I &r) for all k e O(n) and all r

=+ /(c) - f.(rra)
The zonal spherical function Q^@) has been expressed as the zonal polynomial

d^. (r'*) : 6^. (y).

2.5.6 Erom ROa to R3. and from ROb to RG

2.5.6.1 The actions of ?1 and ,921 on the carrier space P2y

Let P2y denote the space of covariant tensors of rank 2/. Then il > a acts on r € P2y

as follows, where we illustrate with f : L:

(or)nrrr: aloixilrirn

The action of the symmetric group ,921 on &y is as follows:

(sr)ir,r, -- friar,isz

2.5.6,2 The actions of ,S2y and 2[ on P21 conrmute

The representation of 2[ on Pzy, with each a € ?l representing itself upon multiplying

from the lefto has commutant SU. This can be seen as follows, still using ,f = 1 for

illustration:

(asr) i,i, : "!i::(rr)*,0, 
: o!l!r' * 0",,*",

(sar)rrnr: (ofi)i"r,r" 
" - of]!i"r*rc.b: : ol"lrt'h"-t2fikrkz: a!;!;rn,r,n",

The point is made more succinctly in Farrell (1980, p. 305). The comrnutativity of

the two actions is also noted in Hannan (1965a, p. 34).
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Note that in the coordinate free definition of a bisymmetric matrix in Farrell (1985'

Defn. 12.1.8) as a matrix A satisfying

PoA: APo ,

where Po are (orthogonal) permutation matrices operating on the indices, recasting

the equation as

A : P;r AP, : PI APo

shows that A is simply invariant under the rows and columns being subject to the

same permutation.

2.5.6.3 Representations with P21 as carrier space

It was James' insight to consider

(ftOa) *, PU 4 Szt

and

(n0b) Su b P2s 42[

and to mimic the basic representation of interest RZby imposing symmetry require-

ments on, P21in the carrier spaces in ROa and R0b. Imposing the symmetry arising

from the action of the orthogonal group using e e 2l as defined above in (2.22)

will be used for R0b; and imposing symmetry by permuting the indices with the

symmetric group -92y, leading to the projection e1 € 521, to be defined below, will

be utilised for ROa.

2.5.6.4 The hyperoctahedral group and the projection operator e1

The class of polynomials of degree / in elements of a symmetric matrix Y contains

elements of the form

f,:f;t'; ali

the enveloping algebra for which class contains tensors of rank 2/, with / covariant

and / contravariant indices 
,iiirii.:.::ii e.24)
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satisfying particular symmetry conditions. These tensors are, firstly, to be bisym-

metric with respect to .9y operating on lower and upper indices simultaneously; and

secondiy to be of unchanged value when a given vertical pair of indices are inter-

changed, since Y is symmetric. The subgroup of S2y containing these symmetries

is the hyperoctahedral group, say HG2y, or more simply /{G' There are /! ways of

permuting the vertical pairs of indices, to be multiplied by )I to allow for the possi-

ble interchange of each such vertical pair. For general /, then, gGzf is a subgroup

of S2y of order 2l fl.See Macdonald (1995, p. 401).

Although the form of. (2.2Q is convenient from the point of view of seeing which

symmetries should apply to the indices, in order to consider z as a member of

the carrier space P2y one wants to consider all the indices as covariant in order to

preserve the usual rules of tensor contraction. We rewrite (2.2$ in the form

zit,ir;ig,izi..iir,i! (2'25)

from which the connection with the doublets in $2.5.8 will become clear.

ln order to impose the requisite symmetry on the tensor in (2.25) above, the operator

is a simple average over the elements of the hyperoctahedral group (see the discussion

in $2.4.2.6 on p. 48). Following James (1961) we call this operator €1:

6i

(2.26)

The set erPzt thus consists of elements of the form (2.25) such that for any s € ,Sy,

Zi,j niz j z;...;i l,j ! 
: Zi il j iliisz,j szi...ii s t,i a J

and for which in addition there is symmetry when interchanging i1 and js for any t

in (2.25).

2.5.7 Comparing R4 and R5

between the representations

",:h,e'

The isomorphism

(R4) SztD S2ye14eyS2ye1
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and

(ft5) Su>o{S
folLqlrs bec&use e1 is'the projection onto the isotropygroup at the doublet (12X34) . . ..

Thus D is the set of functions on the cssets,of the isotropy group; and we choose

to work with the average over the isotropy group than with the coset, in line with
the eomments in $2. .2.6.

2.5.8 Comparing R5 and RG

To show the connection between

(n5) SztbO<$

ard
(R6) S-ir > ePsT 4 eile

is honrever leso straightforward.

Citing the first main invariant theorem in Weyl (1946, ch. 2), James (1961n eqn.

(15)) states that the subspace r&r h geuerated by tensors assumiug the fuiqi of
produets of Kronei:ker delta funetion$. That is, the set eP21 has as basis the set of
furictions of the forrr

d;r*, d;o"r,4 . .. dds(et-r),ri,r(zt)

as s varies o\ter a tranwersal ot HG in ,92y (e.g. Ma€donald (1968, p. 44)), i.e. one

reprcsentative is chosen fiom each soset.

Jirm.es' claim can be illustrated by "r example with f = 2:

e {6i,;"6.i,s,1 = | @Hi (H)fi (rr)rf fnffi 6i,.i,6iusnd,H

= | fnf; @)iiEr' )I:,Qf )r'^ 6 i,su6 5,s d.E

6ia

- | t*wX:Frnt)U d,H = I o^r"n*,ud,H =d;,,;,d;",;.
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The connection between R5 and R6 is then immediate. For the tensor dlr;.drr;nd;r;u . . .,

for instance, there is a direct correspondence with the doublet (13)(24)(56) ..'.

The point about eP2y being generated in the above fashion is more readily under-

stood from Macdonald (1995, p. 419). Let u1 ,. . .,un be the columns of an rz x n ma-

trixsuchthatapolynomialfunction/(rt,. ..,un): f (ku1,...,kun) forall k eO(n).

Then Macdonald states that / is a polynomial in the inner products (u,ui). Choos-

ing the pairs of vectors u; and u3. corr€sponds to picking a doublet; and the functions

/ correspond to the functions on the doublets, which James (1961) denotes by O,

as do we. Macdonald also refers to Weyl (1946, ch. IIA, $9) for the first main the-

orem on invariants, but the reasoning in his treatment does not depend on Weyl's

theorem.

In any case James (1961, eqn. (5)) had already assumed this result of Weyl's earlier

in his paper, when he defined the projection operator e (our equation (2.22)). There

an average over the orthogonal group to define Rl was assumed to be of the form

6@rr) for suitable matrices s: making this assertion allowed his claim that Rl and

R2 were equivalent.

Let t, : 6i"ri,r5i*iar... € eP2y for the doublet u : (ir1ir2) (frsir+) ... € D, where

s € .92y; and d, € lD a function assuming the value L at u,0 otherwise. Then the

matrices in the commutants contain elements of the form a(pt.u)d,rd,i,, or its image

a(p,.u)trtj under the isomorphism between the commutants of Rb and R6, where

the asterisk denotes the corresponding member of the dual space, ild a(p'.u) is a

point pair invariant function (see 92.4.2.4 on p. 46). James calculates a(p,u) a.s the

number of cycles in his diagram "intertwining" the doublets p, and u: this number

turns out to be the length of ) when 2) defines the equivalence class in question

(James (1961, p.  6a)).

Reverting to /:3, and for the doublets p: (13)(24)(56), u: (L4)(23)(56), for

instance, the (,r,c, z)th element of a matrix say f in the commutant of R6 is

63
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Taking the trace of this matrix leads to

tr f : 6;rir6ir;o6iuiuSirie 5izit 5iuiu : dirird"nt 5nrro6'n"

in accord with James' claim that this number is no(p'')'

v, A : (2, 1) F 3 and a(p, u) : [.()) : 2.

64

x 6;u;uSiuiu : n2

for these values of pr, and

2.6 Macdonald's definition of zonal polynomials

The treatment of basically the same material as James' in Macdonald (1995, Ch.

I, App. A; Ch. VII) is terse, and has the demerit of demanding rather a strong

background in algebra, including the rudiments of category theory. On the other

hand, Macdonald's treatment is more or less self contained, in contrast to Jemes'

treatment, resting as the latter partially does on rather obscure initial references.

It is not our intention to dissect Macdonald's treatment as closely as we did James'.

Rather we shall emphasise the overall approach that Macdonald is taking, plac-

ing it in broad terms within the framework of James (1961), and relating specific

developments in Macdonald's book to the ubiquitous diagram (2.13) of James.

2.6.L The initial setup

We first show that Macdonald and James (1961) are basically taking a similar ap
proach to the same problem.

Following Macdonald (1995, p. 388) we write G for a finite group, A as its group

algebra, and .K for a subgroup. Setting e : (IllKl) In." k, Macdonald claims that

Enda(Ae) and eAe are anti-isomorphic. This can be seen as follows.

The elements of Enda(Ae) are {6, say, where 4n(") -- he. One chooses the elements

h from a right transversai, i.e. one representative h is chosen from each right coset

(again see Macdonald (1968, p. 44)).
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Then fbe) : gdk) from the definition of an endomorphism of a module. Using the

fact that e is an idempotent leads to

Qn(e) : dn("") : edn(e) : ehe

Qnbe): sdn(e) - seh,e

dnrdnr(g"): geh2ehle

This is nothing more than the representations R1 and R4 in (2.13) on p' 50, upon

substituting 2[ and Szy respectively for G in the above.

The result is analogous with that in Macdonald (1995, (3.6), p. 416) stating that

the endomorphism ring of the right cosets of /{ is isomorphic to the biinvariant

functions, in the context of polynomial functions on elements of matrices in G.L(n),

and where ^I( is the orthogonal group. The operator ey in that case is analogous to

that in (2.22) on p. 56.

2.6.2 Development of Macdonald's ideas

As with James (1961) and Farrell (1985, ch. 12), the basic element on which Mac-

donald operates is the tensor power of a matrix. FYom Macdonald (1995, p. 156) we

have

65

T"*(V) :72^V : 
^gr*M^ 

s F.\(Y)

where Mr is the irreducible representation of. 52^ indexed by ,\ and f^(y) is the ir-

reducible (symmetrised tensor) representation of GL(n) indexed by ). The notation

in (2.27) perhaps neecls some clarification. The direct sum is firstly a breakdown of

the vector space Tz'"V into a direct sum of subspaces, as indicated. The compo-

nents are however not just vector subspaces, but also act as carrier spaces to matrix

operators which represent the indicated groups. And T2*V is to be thought of not

just as a vector space, but as the representation of.T2^A with carrier space Tz^V.

More precisely, T : Tz*V is a ,S2- x G-module (Macdonald (1995, p. a21)).

The expansion (2.27) requires only that the coefficient field for V has characteristic

0. and hence is valid for both iR and C.

(2.27)
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The teusor power T : Tz^V defined in Macdonald (1995, p. AL7) is the direct

analogue of. P21in James (1961). Denoting the hyperoctahedral group by f/G and

the orthogonal group by K, we have the direct correspondences

THG - erPzf and TK : ePzf (2.28)

where we write equals for isomorphisms. The superscript in ?Fc denotes an averag-

ing over the application of HG or equivalently the subset invariant under the action

of HG; and similarly for K. Thus we are essentially working with R3 and R6, to

use the notation in (2.13).

We have noted elsewhere that the complex case is much easier than the real case,

and nowhere is this clearer than in Farrell's work. In Macdonald's work this fact

is manifested in (2,25), where the complicated action of the wreath product I/G
is replaced in the complex case by a simple diagonalisation operator, utilising the

complex conjugate of a complex number: see Macdonald (1995, $VII.5).

The Gelfand pairs (52*, HG) and (G, K) provide the representations R4 and Rl
respectively, as already noted.

Macdonald (1995, p.  I ) takes the basic action defining R7 in (2.13) as

P(x) -+ sP(r) : P@g)

Thus a point corresponds to a right coset of the isotropic subgroup, not the left

coset as in Hannan (1965a). There is a consequential distinction between (2.16) and

the action on symmetric real matrices underlying R2 in (2.13):

p(o) + gp(o) - p(sros) ,

from Macdonald (1995, p.477), in which x,o e GL(n) and in addition o is sym-

metric.

Macdonald (1995, p. 402) shows that ?/( -- AMzx from consideration of the induced

representation 1fi6. The character of the indueed representation turns out to be the

plethysm h"lhrl: D*,,s2q, from Read (1968, $7.2) or Littlewood (1950, p.206),

since f/G is the semi-direct (wreath) product of ,92 and ,S-. See Cohn (1981, p'
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278) for an explanation of the wreath product, and Read (1968) for the connection

between wreath product and plethysms.

Macdonald's proof that ?FG : @Fzx is longer, and utilises the fact that regular

representations have irreducible components repeated the same number of times as

their dimensionality.

He makes the connection between Rl and R3 by showing that also e6P(G) :

@Fz.r. Finaily, like James, he moves from Rl to R2 by insertin1Y: XXr, or the

equivalent: the mapping p(rrr) -+F@) in Macdonald (1995, p.418).

Apart from its innate elegance, Macdonald's approach offers the advantage of as-

suming at the start that the representations of interest are going to be multiplicity

free, i.e. that (G, /() is a Gelfancl pair: this simplifies matters considerably. In other

words Macdonald restricts his attention to double cosets of. K, or rather the space

of functions on G which are constant on double cosets, which is to be spanned by

the zonal spherical functions. He establishes a simple lemma stating that the pair

is Gelfand when KrK : Kr-rK for all r € G. He then applies the lemma to the

situations of interest to shorv that in fact he need only be concerned with the case

in which (G, K) is a Gelfand pair.

This could be contrasted with Vilenkin (1968, p. 29), who defines zonal spherical

functions when a representation ?(g) of G is of class 1 relative to a massive subgtoup

I{. His approach is adumbrated in $2.7, and the basic equations there are similar

to those in Hannan (1965a, pp. 15, 16).

Vilenkin's methodology is well suited to obtaining parallels with classical systems

of orthogonal polynomials, and extending into new families of special functions'

Also his approach lends itself readily to more complicated scenarios, such as repre-

sentation theory over non-compact, infinite dimensional Lie groups, etc. Vilenkin

& Klimyk (1992, p. 321), for instance, deal with Gelfand pairs for non-compact

isotropy groups, for which generalised functions, or "distributions" in the sense of

say Antosik, Mikusinski & Sikorski (1973)' are required'
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But however elegant Vilenkin's outworking, he seems to fail to mention just how of-

ten his assumptions are going to be valid, and what sufficient conditions there might

be to guarantee the validity of his theoretical outworking. The beauty of Macdon-

ald's approach lies in his applying a simple criterion to show that his simplifying

assumptions are valid for the situation of interest.

2.7 Vilenkin and Klimyk's work

The work of Vilenkin and Klimyk in the area of Jack polynomials is part of an

encyclopaedic publication exploring the interrelationship between special functions

and representations of Lie groups. Their collaborative effort appears first as a three.

volume set Vilenkin & Klimyk (199i) Vilenkin & Klimyk (1993) and Vilenkin &
Klimyk (1992); and a separate volume appeared soon afterwards: Vilenkin &
Klimyk (1995), Publication wa^s some years in the pipeline, and in fact Vilenkin

died at about the same time that the first volume appeared.

The four volumes bear the strong imprint of Vilenkin (1968), which made its orig-

inal appearance in Russian in 1965. Vilenkin's and Klimyk's approach facilitates

the ordering of a vast array of seemingly disparate results on the various types of

classical orthogonal polynomials; and allows extension into new families of invariant

polynomials and other special functions (Vilenkin & Klimyk (1991, Intro.), Vilenkin
(1968, Preface)).

Their approach to spherical functions is to consider a transformation group G with
isotropy group H as above, and to define H to be a massive subgroup of class 1 when

there is essentially only one vector a such that ha : a for all h e If. Setting a: er

and e2, eB,. . . as remaining members of an orthonormal basis of the carrier space,

Vilenkin (1968, p. 30) defines the zonal spherical function as

t"(g) : (T(s)eyey) (2.29)

The inner product may be considered the canonical one, viz. (e;,ei):6ii.
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The spherical functions, or the associated spherical functions, are defined as

tu(s) : (T(g)ei,e1)

which are constaut on right cosets of // in G.

(2.30)

Vilenkin & Klimyk (1991, p. 101 ff) give essentially the same approach; while

Hannan (1965a, pp. 15, 16) gives formulae analogous to (2.30), although in other

respects his treatment is quite different.

One gets the impression that the work of Vilenkin and the other Russian writers

(Gelfand, Naimark etc.) in the area of group representation theory and its applica-

tions to special functions was not widely lcnown in the West, at least until the late

1980s or 1990s; and in particular the work was not known amongst the statistical

community.

2.8 Farrell's work on zonal polynomials and sum-

mary of Jam€st, Macdonaldts and Famellts ap-

proaches

Farrell distinguished between James' and his approaches to zonal polynomials in that

they were classified separately in $2.1. His approach to "complex" zonal polynomials

is elegant, and distinct from James' approach to real zonal polynomials in James

(1961), but his method does not generalise to the real case.

James (1964) is an extraordinary farrago of results which were known to James and

Constantine at that time. As Farrell (1985, $12.0) notes, the paper is apparently

without error, but contains a large number of striking assertions concerning zonal

polynomiais of both the real and complex kinds, the provenance of which wa^s un-

clear. In the remainder of that same chapter Farrell sets out to justify the general

tenor of results in James (1964), with an approach which is basically the same as that

adopted in James (1961) and Macdonald (1995), although offering greater intuition'
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2.8.L Farrell's approach to complex zonal polynomials

Farrell (1980) works with polynomials in the elements of a matrix X e GL(n) ot

the form

e(X): tr (nsX@-) '

The matrix E6 is bisymmetric, and the symbol e does not have the implication of a

projection operator: we simply follow Farrell's notation.

Again denote by 21 the algebra of bisymmetric matrices, and its centre by C(g).
Working in the complex field, Farrell (1980, p. 303) shows the equivalence of

e(UXU.): e(X) for U unitary and X e GL(n);

X,Y e GL(n); ande(XY) : e(Y X) for

Eo e C(%) .

Whereas James' basic approach was to project the bisymmetric matrices onto a

subspace invariant under the orthogonal group, Farrell's is to consider C(?1). A

key lemma in Farreil (1985, $12.6), due to Wedderburn, isolates the nature of the

centre of the algebra when subalgebras are mutually commutant. The lemma finds

an elegant application to the interrelationship between the symmetric group and

the general linear group in ROa and R0b, showing that the centre is spanned by the

zonal spherical functions.

2.8.1.1 Product of group characters

The irreducible components of R7 in (2.13) on p. 50 are repeated as many times

as their number of rows, since R7 is a regular representation. One block of this

representation, corresponding to the partition ) say, contains fi multiples of an

irreducible representation F;, say. Then the submatrix corresponding to Il in C(fl)
will contain A8[, provided we are working within C; where -I1 denotes the identity

matrix of appropriate dimension (eg, see Hannau (1965a, p. 12)); and A is fi x fi.
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R1 is multiplicity free, and the irreducible element of the centre of. eDIe is Pu^ in

Farrell's notation, which corresponds to a.[1, treated as one diagonal block in an

otherwise zero n^ x n- matrix. The a is a character of GL(n\ and each individual

diagonal element of the -I matrix gives an equivalent representation to another in

which the position of the non-vanishing diagonal element is permuted. Permuting

those diagonal elements multiplies the character of GL(n) by the number of rows of

the irreducible representation, viz. 11(1).

We thus have the following simple formulation of Schur functions (or "complex"

zonal polynomials, or Jack polynomials with a : 1) in terms of group characters:

C.r(x): 1;(1)x;(X) (2.31)

The simplicity of (2.31) is not replicated when working in the real field lR' because

the commutant assumes a more complicated form.

2.8.L.2 Derivation of key formulae for complex case

One advantage of Farrell's approach is a quick derivation of several of the key integral

identities which characterise the zonal polynomials, but derived for the complex

zonal polynomials. Setting U(n) to be the unitary group, chief among these identities

are the "splitting identity":

f '='.------aa,\ ,tr C^tXlC^tYl
I C^(UXU*\')dUJu@) Ct'(I)

and the reproducing property of the zonal polynomial:

C^. C^: axdt

where the convolution * denotes the product in the group algebra

(2.32)
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I
c^*11r.) : I d^,;xu-')dr1uyau,

J U(n)

and a1 is a constant. There are several other integral identities of this type, eg

Farrell (1985, p.264); and Farrell (1980, p. 304).
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There are often equivalent formulae for "real" zonal polynomials. The equivalent to

(2.32), for instance, from Jnmes (1961, p. 467) or Macdonald (1995, gVII.4), is

72

z^(A)z^(B)
(2.33)

zxQ)

Nevertheless it is clear in general that working in the complex field is often far

simpler than working in the real field. The most obvious example from this thesis is

that the Schur functions are far more tractable than zonal polynomials, a fact uoted

by several authors, including Takemura (1984) and Farrell (1985, $12.0). Moreover,

Bingham et al. (1992, p. 316) comment that the complex case is easier than the

real for their work in statistics on the sphere (see $2.3.4). Smith and Gao make

similar comments, noting in particular that the random variates defined by (2.10)

and (2.11) are quite intractable in the real case: see $2.3.5 on p. 38.

2.8.2 Mini summary of Jamest, Macdonald's and Farrell's
arguments

The nub of the argument in each of James (1961), Farrell (1985, Ch. 12) and Mac-

donald (1995) is, in the notation of 92.6.2 on p. 65,

7H^GxK : (rll)'" : (Tf^")*

which gives a one dimensional space in centre of ?, invariant under both //G and

-tr(, spanned by the zonal spherical function corresponding to 2).

Ior,t^(oHBH')rtH -
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2.9 The place of zonal polynomials in statistical

theory

2.9.L The central place of zonal polynomials in multivariate

statistical theory

The central position of zonal polynomials in multivariate statistical theory is vicar-

ious, in that it is the density function which is central; and the density function of

statistics and random variates arising in multivariate theory tend to be hypergeomet-

ric functions of matrix argument(s), which are most readily defined as expansions in

zonal polynomials. Statistical theory often proceeds via generating functions, par-

ticularly the Laplace transform and the Fourier transforml and when the density

functions have hypergeometric function expansions in zonal polynomials, so do these

generating functions.

The two arms of statistical inference are estimation of parameters, and hypothesis

testing. Looking first to the estimation, to obtain marimum likelihood estimators

one needs to integrate the density over the parameter space for fixed values of

the variate. For method of moments estimators, one needs the mornents of the

distribution: given the generating function, the moments are obtained from setting

the variates to unity in the zonal polynomials; alternatively one evaluates an integral

involving the hypergeometric expansion for the density over the entire variate space

to obtain the moments. As for hypothesis testing, the basic aim is to calculate

probabilities, for which one has to integrate the density over a subspace of the

variate space.

While the main use of zonal polynomials in statistical theory is as a constituent

of hypergeometric functions as described above, that is not their only use. Their

role in directional statistics is rather indirect, as discussed in $2.3.4 on p. 35; but

their position in generalising and improving Stein's variance estimators in higher

dimensions was pivotal. Utilising methods which depended on the properties of

zonal polynomials, Shorrock & Zidek (1976) for instance found optimal estimators
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of the generalised variance (the determinant of the covariance matrix) for the linear

model. See also Zidek (1978) and references therein.

2.9.2 Little need for exact calculation

Even if the zonal polynomials are so central to the theory of mathematical statis-

tics, it may not be overly restrictive to seek merely a workable approximation to

zanal polynomials rather than precise evaluation. After all, the practitioner is not

primarily interested in calculation of a zonal polynomial as a one-off exercise. One

is interested in having workabie approximations to whole families of them (for all

partitions of a given weight, say), and efficient algorithms for repeating those calcu-

lations for growing partitions of the one lot of variates on the one hand; and for a

grid search for numerical integration over many collections of variate values on the

other.

The challenge for the first of these is to use the previously evaluated zonal polyno-

mials for their calculation for partitions of higher weight, in an efficient recursive

algorithm. The challenge in the second is to find some way of summarising the prop-

erties of a collection of variates, so that one does not have to recalculate completely

from scratch upon a change of variates. One possible way of doing this is to fit a
geometric progression to a set of variates, easily done by obtaining a straight line

regression of the logarithms of (positive) sample variates, when the Jack polynomial

can relatively easily be approximated by either the e1 ot TrLT function expansion:

we make a preliminary excursion along this path in Chapters 6 and 7. See also the

comments in $8.3 on p. 190.

There is clearly scope for accumulating rounding errors, at any of the stages of

calculation. But on the other hand it may not be crucial to obtain very precise

results. For estimating tail probabilities of a statistic, for instance, an answer of say

10-3 for a probability may well be sufficient for one's purpose: an error by a factor

of 10, say, stil means that a test of a hypothesis can be rejected at the 1% level.

An approximation to the value of the density function, or better an exponentially

falling upper bound on its value, will facilitate greatly the numerical calculation of
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probability, or possibly hasten a decision that the probability is

2.9.3 Two basic problems with the application of zonal poly-
nomials

There are two basic problems with

1. numerical awkwardness

2. interpretation of the successive

polynomials.

using zonal polynomials in practice.

terms of the hypergeometric expansions in zonal

2.9.3.L Numerical awkwardness

There are several aspects to this.

Hypergeometric expansions are slow to converge. Muirhead (lgzb, p. 28a\

comments on how hard it is to work with zonal polynomials, citing Sugiyama
needing 100 terms of the series for a 1F1 function to converge. To have prob-
lems with the 1F1 function augurs ill for the use of the "balanced" z-Fr and

1Fe functions; for in the rFr function the n! term in the denominator of the
hypergeometric function expansion has no counterweight in the numerator.

Within each "overall" term of the hypergeometric expansion lies a summation
over zonal polynomials indexed by partitions of a gtven weight; and partitions
of integers are intrinsically highly non-linear.

One problem with using the RLO, the conventional total ordering of parti-
tions, is that neighbouring partitions can be quite distant in any conceivable

reasonable metric on the partitions. The partitions (3,17) and (25), for in-
stance, are adjacent in the RLo; but they have no elements in common, and

their lengths are very different.
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Calculation of each zonal polynomial is difficult. This thesis for instance is

concerned with their calculation, or rather their calculation via determinants

involving €s or TrLs functions. And the calculation of these basis functions may

be non-trivial, let alone forming them into determinants.

For the one set of variates, one needs efficient ways to reproduce calculations

for different partitions of the one weight; and then efficient algorithms to

perform calculations for partitions of increasing weight, recursively from the

partitions of lower weight. Again, this task is complicated by the highly non-

linear nature of partitions.

One needs then to repeat the procedure for different sets of variates. Ideally

one would like to expedite this by utilising previous calculations.

What is remarkable is that not only are the zonalpolynomials hardly ever calculated,

there is virtuaily no literature on their approximations, or on algorithms that can

be applied quickly if approximately, to their estimation. Nor does there seem to be

any work done on approximating e1 and m1 functions in the literature, or at least

in the statistical and combinatorial literatures.

The fact that so little attempt to calculate zonal polynomials is made, even with the

extraordinary increase in computing power since their definition in 1960, indicates

that the problem lies above all in obtaining sensible algorithms for their calculation.

Part of the problem may be the intrinsic and complicated non-linearity of partitions

of integers.

2.9.3.2 Interpretation of successive terms

The principal reason for which so little work is done on evaluating zonal polynomials

may not even be the numerical awkwardness as adumbrated above, so much as the

fact that the successive terms in the hypergeometric expansions have no logical

interpretation per se. In the Edgeworth expansion, for instance, the first terms

have an interpretation. The first term corrects for the non-zero third cumulant, the

following for the non-zero fourth cumulant; and these cumulants have standard
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interpretations in terms of the characteristics of the distributions involved. In some

sense one is compensating for increasing ievels of non-normality, even if one usually

takes the Edgeworth expansion no further, since it does not in general converge.

One would prefer an asymptotic expansion from which, despite the frequent failure

to converge, one can ofben get good approximations to the function in question,

and often a bound on the error from the first omitted term in the series. Working

with asymptotic expansions in more than one dimension may admittedly be a lit-
tle more daunting; and there would still be the problem of meaningful statistical

interpretation of successive terms.

2.9.4 Size of matrices

Given the few attempts to calculate zonal polynomials numerically, naively one

might have thought the problem to be that the order of the matrix argument in the

zonal polynomial increased with sample size. Given the rapid increase in p(n) as

r, -+ oo, even a very modest sample size would then have made the calculation of
zonal polynomials prohibitive. But this seems not to be the problem, in statistical

applications at least.

The order of the matrices seems not to go up with sample size, at least while one

deals with sums of squares/products types of matrices. An example is afforded

by the analysis of variance, in which both the "Between" sum of squares and the

"Within" sum of squares involve sums of squares and products: both quantities

estimate a variance matrix under different scenarios, and the variance matrix has

dimension the number of par",meters estimated. It is a similar story for the a^rchety-

pal inference problems producing density functions which are expanded in series of
zonal polynomials, since most of them invoive estimates of one covariance matrix or

another.

To be sure, the number & of parameters can be large, especially for estimators in
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econometric system of equations: p(fr) is then quite large, behaving as

#-'("tg)
for la,rge k (e'g., Andrews (199E, e. 70)).

On the other ha;rd, rz x n determinants ean be calculated in O (n2'3e) tine, according

to GrbtEche-l & Lorasz (1995, $10), and the determinants a,risiug in Chapter 3 a,re

almost diagoual; they are moreorr"er extrernely sparse, accordin-g tp results in $4.2

on p. 1.01. The size of the matrices elisitrg in practiee should not prorrc too great a

barrier to the application of the determinantal rnethods discussed in this thesis.
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Chapter 3

Determinantal expansions of Jp in
terms of e1 and rn; functions, and

their interrelationship

3.1- Preliminary

3.1.1 Introduction

In this chapter we find the matrices f)m and f|" in (1.1) on p. 13, and exhibit their

interrelationship. In chapters 4 and 5 we shall explore the structure of these matrices

in greater detail.

Given that the rnl and er functions span the homogeneous symmetric polynomials,

one can find the entries in O- and O" "from first principles" by expanding ,Crn'

in terms of the rn1 functions, and Ee^ in terms of the e1 functions. This was the

approach taken in Roberts (1998). There the single value q : 2 was used, but in

fact the outworking is almost identical for general o.
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Lapointe et al. (2000) have provided the analogue of the Q- operator matrix for the

Calogero-Sutherland operator in mathematical physics, say Ofrs; they have also

expressed Jp ffi a determinantal expansion based on f,tp". Roberts (2001) shows

that for homogeneous symmetric polynomials (but not for general functions), the

Calogero-Sutherland and the Laplace-Beltrami operators differ by a constant, i.e.

that

QEs:Q*+kI. (3.1)

With O- available from Lapointe et al. (2000), Roberts (1998, ch. 2) and (effectively)

in Macdonald (1995, p.327, Ex. 3(c)); and the interrelationship between f,)- and

O" derived in Roberts (200i) and provided in $3.3 below, one could infer O" from

C)m. Aiming at a self contained exposition we reverse the process, deriving f,)u and

thereby deducing Q-.

In the first part of the chapter, we give the basic form of the determinantal expansion

of "I1, following Roberts (2001). This sets the framework for the whole thesis.

We then show the interrelationship between O- and f,)", again following Roberts

(2001); and we find the f,)u matrix from first principles, simplifying the proof in

Roberts (1998). Finally, we show consistency of the resulting matrix Q* deduced

from f,l" in this way, with the 0- matrix as given in Lapointe et al. (2000) and

Roberts (1998, ch. 2).

3.L.2 Overview

Following Stanley (1989, p. 84), and letting Dt: 010u, we define the operator:

80

2@)-C:iizui=l

ftrq

r?n?+F n' 
Do*1'-1' 

.{-l ry- 
- 

ry.
i'i=l -l
i#i

(3.2)

which we shall call the quasi Laplace.Beltrami operator. The operator will usually

be denoted by L, except in $3.3 where the more precise notation 4(a) is called for.

fi is an eigenfunction of .C:

L J7: ct Jt, (3.3)
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with eigenvalue

81

3.2.L Preliminary technical results

Lemma 3.1

Let
tF-mS-oJp: ) .J'oim^- L J|*e*.

(3.4)

(3.5)

"^:(n-;),-I iti+ZD,t;
We shall occasionally write .!") for 

"^.

The relation LM : {l*M breaks down into:

E mt: c^ fm^+ t (flT)^* m^.
l)r

It will turn out that Of; is upper triangular with zero diagonal, as anticipated in the

range given for the sumrnation, and in addition does not depend on o. In similar

veln LE : {luE decomposes into:

L e7: c^, a^+ t (Oi).1^ r,.
r)l

The connection between Q" and f,)- is given by

Ql':-oQT'
thereby justifying the suffix l, since 0! is lower triangular.

Roberts (2001) shows that similar equations hold for the Calogero'Sutherland oper-

ator, with the eigenvalue adjusted by the constant k in (3.1). That is, the expansion

of fi in terms of e1 and rnl functions can be obtained from either the Laplace-

Beltrami or the Calogero-Sutherland operator: one merely adjusts the eigenvalue

by the constant k in all the formulae occurring in this chapter.

3.2 Determinantal forms of Jo in e1 and nz1 func-

tions
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'Tken i$, -, 0 anless p 2 n ; and, j&, - 0 urzles.r n ) p'. Moreauq #, + A and

iir' # s.

Proof 3"1

Thestatements for the rnq funetionsrare well,known (e.g. Maedonald (l:995, p,p. 816,

379-), Stanlqy (1989, p. 77)). Give-n that ,\ > rc ifr rc' > lf, the conclusions for the,e1

funotions then follow diieetly by notiqg (from Ta,kemura (19M, p.  B) or Macdonald
(1,995, p, 20), c.o.) that, for $itable eonstants: u*o:

ITT n: 
"" 

+ E t)6s, 86, ,

o}n'
t

Lernma 3'.2

If n > \, than.there i;s a
d2 d2 d2

cnoxnK,:K;o ?"t? t*2... i6":,\.

Xkat is; f,or eaeh q, there arc i an;d j suelz tkat

,sc = (kr, . .., &;, . . .,,k;, . . .) anil &s+1 : (&r,.. ., &i - 1, . . ., k; * 1,. . .)

whern the entries otla,er than the i,th md, jth atv wnaltereil

Proof 8.2

L;et, i be the minirnum index such that k; > I.a and &a ) &i+r. ,Once i hag been

fixed, set y to be- the mintnum index euch that k > b # l. Then, setting ,rn :
(&rr,..,&*r, k -!rki+r,. .,,k4-1,ki *1,k;+r,...), one possible choice for rc1 ts rct.

It is straightforw:ard to show that either ffi > K,* > .tr or n > rc*: .\. In the forner
ease the procegs can b.e continued-

Theorem 8.3

Giuen the dT'tr cha. dz dz ilz
rLn K :* ? rr 7 

r,r... i *, : A oI lmgth r, th,en

cn-e\ > r.(o+1)

Proof 8.S

For tny ,r and ,\, from (3.4_) one has that

I

cn - e^= f i(ii - ktl+ 
fr I{ti - bxk, +,r) (3.6)
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TV-hen o T i, the first summatio,n in the right side of (8,6) iE Z 1 and the srooud is

>3.

Csrollary 3.3

lc>.\=*c6)d1. f

The eouverse to corollary s.3 is in\ralid, as shown iu t-h.e next ocaimple.

Eocample 3.4

Wh,en K * A, then en ) Cl, ca = c\ and co 1. c7 f,,tE a;ll pasSi,ble.

Theinstanoe-sof aaudAbetro-waresuehthat m I f 
"na 

nl A; andthe'neigenv,aluern

ehom a,re iu tact d' -* cr - (n - ff) w:

rc = (5,5, 1,1), I - (4,4,4) + En: -ZZ+fr SZ) d1 : -24+; 4g

rc=(4,1,1), .\= (S,3) + 6"--O+f fa -E\--9+ Etf
n: (4,1,1,1), ,[=(3,3,1,) + do--18+$ fS(61 - -LZ+;$

I

3.2."2 Jp ffi a determinantal form in e; functions

Let Jr : D*ii* €rs - i;' E irn ar obvious notation. Setting i : jfr in this:

subseetion" cme has

,E,Jr-E jr E-ir EE= jr o'^E.

But from. (3.3J one has

E Jo':' ap trp: cp iT E
so that

ir (flu - op I).8: 0.
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The e1 functions are linearly independent, so that

jt (o' - co I) -g . (3.7)

Now, from Lemma 3.I, ji,*: 0 unless n ) p'. In the matrix Q - "0.I, 
we therefore

omit all rows and columns indexed by partitions o such that

p'9o; or o9p'and oy'p'.

The matrix resulting from these deletions is O!,6. It is lower triangular, with zero

in the last diagonal element, but no further zeroes along the diagonal, by virtue of

Corollary 3.3. The vector of coefficients 7 - lf is likewise reduced, albeit without

change of notation; consistent with this, the vector E is truncated, also without

changing notation.

In fact the last column of O!,0 is zero. One can utilise the final diagonal element to

normalise fi, or one can insert .E into that vacuous final column. Setting z to be a

column vector of zeroes save for unity in the final position, we have respectively:

i' fri,r: i' (e'o,s + (olz)) : (o, o, o, . . .,0, N) : N zr

where jit : lf and the 0 in (0lz) is a zero matrix of the appropriate order; and

j, Q.r,r: j, (ni, + (01.8)) : Jp zr .

With a non-zero final diagonal element, the matrices O!,1 and dle,2 are non-singular

from Corollary 3.3, and

j' : N zr (n;,r)-t - Jo { (n;l)-' .

The two inverse matrices have proportional final rows, since the cofactors are iden-

tical'Therefore 
r- N . ,^-\

Jo : 
a.t 1nTJ 

det (Cl!,r) .

3.2.3 Jp ffi a determinantal form in ms functions

Now letting j : j7, 
^ 

similar argument to that in $3.2.2 leads to the analogue of

(3.7):

i' (Q* - co I) :9 . (3.8)
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From Lemma 3.1 again, j3,^:0 unless p > K. In the matrix Ol* - co I, we therefore

omit all rows and columns indexed bv partitions a such that
n,o>p; or p9o and py'o.

The matrix resulting from these deletions is flfro. It is upper triangular, with zero

in the first diagonal element, but no further zeroes along the diagonal, by Corollary

3.3. Again the vector of coefficie\ts jT is abbreviated without change of notation,

as is M.

Setting y to be a column vector of zeroes save for unity in the first position, we have

respectively:

i' a},r: ir (aTp + (g/lo)) - N u'
where ito: N; and

j, aT;,: j, (aT,o+ (Mlo)) : Jo f .

With non-zero diagonals, the matrices flfr, and flfr, are non-singular, and

j' : N a' (07)-' - Joyt (o[,)-t .

The two inverse matrices have proportional first rows, since the cofactors are iden-

tical. We may thus write

, N - /^- \Jo:@ det(ofrr) .

Altogether we have established the following theorem.

Theorem 3.5

Using the aboue notation we haue

+ : #aet ('i,r) : ffiaet (CIfr,) . (3.e)

I

3.2.4 Shape of determinantal expansions

Obtainiug the expansion of ,.Io from determinants as in the first equation of (3.9) is

illustrated schematically by the diagrams in Figure 3.1.
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J.qr,z) -

Jtga):

d e{s)

:fi d ,e(cnl)

fi a d e{s,z}

fi&gde6,1s)
frggge'P'.'t)

d, e(6)

fi d e(4J)

nvd,., e(B;2)

finnd, e(l,rg)

$s&ftdeor,L,
8fisfinde(z,rs,
8s80ofi.et16)

/(u) :

;
.1

Figurc 3.2: det(n6r,r) and det(o6r)

Figure a.l: aet(n[s,D') *d a*(n;u1,r)

The'dots' in the diagrams indicate sero,es. For.higher w(p), the tritmgular motrices

co:$aining the etrements CI are spar,se, as dissu,sqed in $4.2. For Q!,2, the columns of

e funetions are replaned by zeroes,'eave for a normalising constant on the diagonal.

S-irrilarty the expansion in determinantal form of J, in terms of rny funetions is

illustrated by Figure 3.2.
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3.3 Symmetry between the operator matrices f,)m

and 0e

3.3.1 Preliminary technical material

We take as given the inner product (. ,.)" used to define the Jack polynomials, with

respect to which they are mutually orthogonal (see Stanley (1989, p.77), Macdonald

(1995, ch. VI, $$1, 10)): rhis inner product is given explicitly in (2.6) on p. 28.

The notation and treatrnent here follow that in Macdonald (1995, p. 378).

With respect to (. , .)o, the set of functions {gf)} is defined as those which are dual

to the rnl functions. That is,

(g[f),nlx)o - dpr'

The operator {r., is defined as

,o glP = at, , (3.10)

and satisfies the following identity:

t:/.slu'lls-_ L.

3.3.2 The principal theorem

The following result is a direct analogue of Roberts (1998, thm. 3.6)'

Theorem 3.6

Define operator matrices Q as follows:

g(a) 14: CIt-(o) M L@) E: Or"(o) E (3.11)

and break them up i,nto diagonal and off-d,iagonal por-tions

or*(o) : Dt*(a) + of;(o) o'"(a) = DI'(d) + oi(o) 
'
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where D rnotrices are dii;agonal; .rtrad Of(a) ond Of;'-(a) hatte zerc diaganaXa.

Thendilff(a) is apper /rliangul,ar, s,nd ilaes not ,il,epend om a. Writing Af (") as d}ff,

we hsue moreouer that

Oi(") : -ot Of t'

P'roof 3.6

Ftom'Theorem 3.9, tihe oBeraton rnatrix O'(*) is lowcr triangular, ild the sff-

diag.onal terus contain a faetor of a. The proof is fiea immediate from Lemma

$.8, noting that the term inv.olving the identffi matrix in (3.13) naturally hne no

impact ofithe diagonal, I

Lemrha 3.7

-o g$lo,l - 6u f,@l wtre - (1 + a),tl (3.121

uiherc lc1 '= u(n - 1).

Proof, Ii"T

Macdonald (1995, p. 320) defiuee qn operator tr*, which he catls the Laplaee'

Beltrarni operator, as

Eo - P(a) - w(n -1.) - 4(a) - 41.

Ftom Macdonald (1995, p 330, Elc. 3) on€ has

oJoEo *aELlo &/a:0r

ot eqtrivalently

-a tr,Vo - u)o1' otlt.

Nsnr the left side of (3.1'2) beeomes

-o g$la) = -e(nri"anr) -ro oo urlo-k1cr=w, f,@) utlu-&1G+a),

66reerng with the right side. I

Lemma 3.8

Ou{*) - -e0-(Llo)'+ tcl(l+ o)l (3.13)
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Firoof 3.8

Fq on (3.11) we may vrrflte

E{"l m*.- E (OI*to1)* nar. (3.14)
p

The fact that the E(") operat'or is self-adjoinJ witl respeet to tie inner produet

(,,.)o (see e.g. Vilenkin & Klimyk (1995, p. 112), or Starrley (1989, p. 84)) allorrs

us to write

(f(")/"1 w*lo-,(g14, E@)m*)o - (ot*(a))* , {$"16)

ftom which the following is immediato:

p(a) fi.,): I (or*(o))"^ eg) . (s.16)
,6

The relation (3.10) and f"emma 3,7 i'nply

-o g$lal E^ .- tiaE@i *"luuo - el(l f a)e; - u)o g(d g\l) - hr(l * a)e1 . (S.12)

Ftom (3.16) and (3"10),, w€ have

-og$/d) E^ : tt)a I (ot-(*)),.^ sg) - &r(t * e)e1

- I (n*C*l)", e* - &1(1-F a)e^. (3.IS)
,7

Iaterchangiug a and 1la, this orpr.ession is equiraleat to

E@) ex= -o T (n,-(t/")),^ e, * ft1(I * ale;= f (ot"1e;)^* e",
frN,

whence (3.13) follow* I

3,4 The action af E on tnle e; functions

Tleorem 3.9

Let 
^ 
- (h,Iz,...,lr), with r : t(A), ffien

Fh
E@I ex: cx e^ - a f f 0* - ti # 2u) e1...,j0ao....,1;-r,,-.) (3.19)

Jr&=l u:l
J>ft
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in wkich the partition dn the final owbecript ddffers furn A only dn the lsth and ith
popiti,ans, and, nwy not be in tlle stanilard wwkly dewvnsing arder.

Proof 3.9

From Theoren 3.12, one has that

, (, \ n r
Let^-tlf[ ",oltet,*al td=1 | j=l I m=l j,&=1

\i# / i>h

while ftoln Theorem 3.17n aod for any s.,

(3.20)

E e" : c(cl, a, - e((g)') e",.

Equation (3.20) may nqw be written as

*,)r-Y^Y^

= (p<r,,))) es*aA (,+t- ",,) (r e(,*,k) 
H $*+ti-zu)*,**,,-,,*,)

in w,hich for the last equation we have applled Theorem 3.1.6. An application sf

Lemma 3.11 a,nd the zubstitution of u : h - u complete the proof. I

3.4.1 Technical support for the calculation of Les

temmas 3.10 and 3.lL have to do with values of the eigenralues c1 a,Ird c1,, a[d &re

used in the proofs of Theorsns 3.9 and 3.1.7. Theorem$ 3.120 3.16 and 3.17 are in-put

to Theoreur 3.9.

Lemma 3.10

Let : (Ir,la,...,L). Then

E ex -= (l u,n,',) * . ",r_q

\n

"* | t sL eb-r1f,) ea;(G)
l*'

nO (3.21)
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Proof 3.10

Fbom (3.4) une. have

"^, 
= (n-;)'r -f i ti'+ZDrt;f

Noting that the multipHcity of 7 in )n is li - Li*r, it is tedious but straightforward

to verify that

F' xj=l(p *--)
?

Erryr - zE i Ir-w ,

i:-L

fiheCIce the reeult follon'q.

91.

Lennma 3.11 lv

r c(0i)) + oI ti - t\,h: e^t . (8,2s)

i-d i=r

Proof 8"11

Ftom Lenrna 3.10 one may write
t

c1r.) = c(4, - c((t)') : nt - i(t + tl

which irnnediately impties (3:2?'). I

Theorem 3"12

Lct f = fll=, fr be'tJtc pra:duet af fanetions f; of the iwleteminete uari,@t€s nL, . . .,, nn,.

ffinther let F be a diffcrentdal operator of the larvt
n o a3,ff

"r =Ir #.; Er?@
in whi,eh the fimctiiaw qn ol thc uariates & do not irwolue iliffemfiial aperators.

Th,en
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Proof 3.12

The first order terms combine in the conventional fashion using the product rule for

differentiation, as does the second order operator when both differentiations apply

to the one element of the product. This leads to the first term of the right side of

(3.23). The second order operators however also lead to cross products, as detailed

in the final term in (3.23).

Lemma 3.13

Fori,ntegralt>0

t ('+") - i,, -2u\ (s+zt).
\ t / ?,' '\u+t/

The proof by induction on t is straightforward. At each stage

increased by 2 to use at the next stage.

In order to motivate the next lemma, we first consider an example.

Example 3.14

The monomial yly] . . .UZ Uo+flo*2 . . .yoa6 d,oes not appear i,n, €sa6q1€,'-t; it appears

once : (!) tfmes in eoq6eo; it appears b : (i) times 'in, ao16-1r-o1;1i etc. The

monomi,al in questi,on has type 2"1b, followi,ng f,he terrninology oJ Stanley (1999, p.

309), The binomi,al coffici,ent (l) * interpreted 0,s zero if c < 0. I

Lemma 3.15

Suppose that 2a * b - r * s. Then a gi,uen monomial of type 2"lb appea* (l) times

'i,n eg,a): ar €s, wheret: a+b-r: s - a,. I

Theorem 3.16

Let j>k. Then

n k-L

D "? 
ei-{t;) en-t(ii) - Io "i "r -lti + k - 2u) eiar-u eu

i=l z=0

i,n which the circumfi,er indicates ornission of the uariate.

(3.24)

Proof 3.L6

We consider a given monomial of type 2k-t1i-k+2t, and count the number of times

92
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the value of s is
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it appears on the lef,t and right sides of (3.2'4).

Fhom Lem:ela 3.15, the nunrber of appearances otr the dght side of (3.24) is

* ('- *,**)- t;,r + tr - M (;--:J)

: /, f -nr*'o) -"F,u +rr-M (;-r;.7)
while the numbe,r on the left side of (3.24) ic

(k-t) (lr-n+zt1\tJ
The eqrrclily of the nunber of appearanc€s on either side,is a direot concequ6uce of

Leqma3.1$, settingu:a-k and s: j -k. I

Theore,m 3.17

L e*: s(ny 'ay

P,roof 3,tr7

Onl.y the find terrn in (3"!) need be cousidered. First restricting ours-elrr'Es to the

variabes s1 arrd fi;s, it is easily showu that

(+ Dr* =+p-r) r" -- n! 2,e,-z(ffi\*(sr+or) +-r (, ) (s"zs)
\sr-sz - fiz-frt -/

w,bere the extended circumfex agaia ildicates taissiug variableg.

Surnining over all possib-Ie .dciices of pairs of v,ariates plainly gives al multiple af e,-

Counting the nirmbpr of monomials iu the right side of (3"25) yields

(l-3) (;) .,(7-lx;)
Dividiug this quantity UV (), the number o-f nonomials i[ e,r yields

Le,:, ("- +) ",

,An ap-peal to Lemma 3.10 completes the proof. I

3
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3.5 Consistency of CIe and 0- derived by different

means

We now show the consistency of O' as provided in Theorem 3.9; and O- as given

in Lapointe et al. (2000), Roberts (1998, thm. 2.4), and as a closely related exercise,

in Macdonald (1995, p.327, Ex. 3(c)). We first state the form of Q-.

Theorem 3.18

Let ) ts w, (.(A) : r, and write ) in the conventional non-increasing order with a

trailing zero: ) : (lr, lz,. , .,1r,0). Then

IN*h/2]r
)-, 6(t6,t5),i m(th-i,ei+i)u^z
i=l

L mx: c^ ITL^ * (3.26)

where

K(.1,,c),;: (3.27)

The first summation in (3.26) is over all distinct subpartitions ,11 : (lx,!), to >
(.i 2 O,such that,\ : )r U lzi Ar*J; : [.p - !i, t1 is the multiplicity of 4 - i in
(t*-i,tj+i) U)2, while fz is the multiplicity of (.i*i,in ((.p-i,li +i)U)2; unless

[n - i: !.j * i, in which case t is the multiplicity of. l* - i.

Proof 3.18

The proof in Lapointe et al. (2000) draws on their earlier papers. A self contained

proof is in Roberts (1998, p. 19). I

Theorem 3.19

As regards off-di,agonal terms, the erpansions of Le; in Theorem 3.9, and that of

Lmt i,n Theorem 3.18, are consi,stent wi,th Theorem 3.6.

Proof 3.19

Choose ) : (lr, |i,...) and n - (le * u,Ij -u,...) where I and rc differ in exactly

t Atnr;
h,ti

13 )l; >0

t G)ri)

I t;r

when (.*-i> Lj+i

when (.*-i:{j*i,
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2 elements, and the listings gtven are not necessarily in standard weakly decreasing

order.

Consider (0').r,", for which .\ is the source partition, and within the ,\th row one

moves left from the )th column to the rcth column in (O'). Disregarding the factor

of c,
(Q")r,*:l**u-(Ii-a)

according to Theorem 3.9.

Now consider (0-),.,^. The "source" partition is to be considered rc, not ,\, in

Theorem 3.18; and one moves within the mth row right from the rcth column to

the .\th column in O-. Should the multiplicities of 16 and Ii in ,\ be unitg and still

disregarding o,

(O-)',^ : Atu+,li-o : lh *u - (li - o) - lp - li *2u : (O")r,'

The factor K allows for multiple occurrences of l* - i and /3 * a in ,\, since these

are counted singly in the first summation of (3.26) and multiply in Theorem 3.9.

Should these values be equal, the multiple is the number of times the pair of values

can be chosen.

The argument in the next theorem is analogous to that in Roberts (2001, Thm. 8)'

Theorem 3.20

95

I

Giaen that Lmo: Ior, ap,xTTtrnt then ao,o -- Cp, where co is the eigenualue of L

giuen i,n (3.1).

Proof 3.20

We use the notation from Lemma 3.1:

Jo:D jT* *,
p)n

LJo:D, ift r,^,
p)n

: t jft r, a6,7 TTLT

p)n n)_r

whence
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: ifr d,p,p ffip* terms of loriver order in the RLO (3'28)

But alss ftom (8.3) one has

EJo: co Jp: "oD itn *o
p-n

=epjTpmp*termsoflowerorderintheRl,o(s.2.)
. lr a

Also fiom Lemna 3.1 onel knour,s thal jffi# Q w'hence the result ftom a eomparison

of {3.28) and (3.ee). I

3.6 Extended examPle

Before discussing methods for generatiug the Slm matrix in Chapter 4, we illustrate

the above material with au extended example.

For partitiorc of'weight 4:

--= 

[

-*r- 

[

044
e(B,r)-e($ 2 6

ep,zy - c1+1 2

e{c,rJ) - c(4) Lz

d1t,tnl,11 - e(4)

mW)44
natre,g -I - Ba 2 6

ffi(zst -2 - 4a 2

96

eWL4
c(s,l) 2 $

c(zrll:n 2

d(2J'i-) Lz

G1I,t,1,1.1

m(ul,t)

l7i(1,tr"1,t)

-B - 5e tn'

-6-6o

Jp1 =
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The above example conforns with the elra,mple given in Lapointe- e-t a,1. (2t)00).

(o z \
oil,tlo - | c12,r,r; - c1z.z) Lz 

I

\ c11,r,r,r1 - ctzpl /

J7z;,t) =

Tlrrning to the e1 basis functions;

J$r:

Jga,r) :

m(r,A 2

fllp,l,r-) -1 -a, l2
lzt(1,1,1,r) -4 - 2q

Qe:

c(!,1,1,1)

-4a tzJ,r)

-4fl -2a 4z"e)

-6o -2a e6,r)

-I?a c(4)

-6-6e
-4a -3 - 5a

-4cr -Za -2 - 4a

-6e -Zat -1 - 3o

-LZo

e(+)

e(s,l)

Ep,q

e(2,1,1)

g(t,1,1,1)

/ qr,r,r,r; - c1a,r)

| -quots,ty,o: | _4;t-
\

c1z,t,r; - c1s,r) 
tl

-2a c(z,z\ - c(g,L) 
|

-Ga -2a 0 ,l

-5 - 3a e(a1

-4a -2 - 2a e(s,r)

-4u -2a -L - e e[2,2)

-6a -2,a e(g,r,r)



Chapter 4

The composition of the operator
matrices Oe and Qm

The f,)- and Q" matrices can be used directly to obtain the Jack polynomials frorn

the determinants derived in Chapter 3. Alternatively one may prefer to work with

the relations

r -\-;* srp: L Jpi mt: )-, J|x et ,

.\^
reproduced from (3.5) in Lemma 3.1.

Mathematically there is of course no distinction between these two approaches, but

highlighting the j coefficients in (a.1) throws those coefficients into relief, and pushes

the calculation of e; and rn1 functions into the background. This is convenient

because it may turn out that only a few of the terms in this expansion dominate; or

because when weights of partitions increase, there are reiationships connecting the

coefficients j calculated for the different weights, as we shall see in $4.6.

We work chiefly with f,)-, since the off-diagonal elements do not contain a. We

first define the chains by which the off-diagonal elements of O- are defined; and

then the paths through the elements of f)- which give the coefficients of the e1 and

rn1 functions in the determinantal expansions. The distinction between paths and

chains is convenient, but terminology here is awkward: both paths and chains as

(4.1)

98
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used here are chains in the sense of partially ordered sets.

Consideration of all possible chains enables one to count the number of off-diagonal

elements in Q*, thereby showing that f,lm is highly sparse when partition weights

increase.

We then define d2 paths, showing that the number of such paths from p to A, and

the lengths of those paths, are important clues in deciding when one should omit
part of the calculations of Jp,.r coefficients without losing much accuracy. This sort

of decision can be placed in the context of powers of incidence matrices.

4.L Derivation of CI'1n through core chains

A convenient way in which to derive the above-diagonal elements of O- is to draw

up a chart or matrix of "chains", commencing from all distinct elements I of the

partitions .\, and generating the chain (l), (l - 1,1), (, - 2,2),....

Definition 4.1

A "core cha'in" or "cha'in" is a sequence oJlengthr: ltl of partitions, say Ko,KL,...,K,
such thatrc6 : (l) U ), rc1 : (l - 1, 1) U \, K2 : (I - 2,,2) U A, .... Symbolically, the

chain i,s generatel, as

ra : (/) u ) -+ (, - 1,1) u,\ -+ ... -)
(i,*) ur whenli,seuen

(+,?) uAwhen Ii,sodd

It i,s conaenient to allow the deoenerate case in which I : I.

Consider the chain matrix CMsin Figure 4.1, which lists the d2-1 chains used to

obtain the operating matrix when w : 5. The numbers constituting the first and

third elements in each entry above the diagonal arise from Theorem 3.18 on p. 94.

The first element is the difierence I; - I1i the letter in between the two numbers

identifies the chain by which that entry is generated; while the third element is K as

99
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CMs:

) (5) (4,1) (3,2) (3,12) (2r,L) (2,lt) (1')

(5) & 5aI 5al

(4,1) a,b, c 3a1 4b2 4b1

(3,2)

(3,1')

d,e 2el

b,f,9

3d2

zbL 3/3

(2',L)

(2,1t)

h,i, 2h3

i,k 2jL0

(lu ) I

Figure 4.1: The chain matrrxCMs

given in (3.27) on p. 94. The numbers in the entry 3d2in position ((3,2), (2,2,L)),

for instance, arise from 3 - 3 - 0 and 2 : (il0.

The core chain a, viz. (5,0) -l (4,1) -+ (3,2), contains the partitions occurring in

the expansion of L m6yi it also contains incidentally the sequence (a,1) -l (3,2)

occurring in L mgs1. In the operator matrix Of there correspond three elements

above the diagonal, viz. ,6),(n,r) uod ,|}),(r,21 in the first row uod rft,r),(e,z) itr the sec-

ond, as indicated in Figure 4.1. Similarly chain 6 consists of (4,1), (3,1,1), (2,2,L),
generated as ( )u (1) -+ (3,1)U (t) -+ (2,2)U (1), and gives rise to 3 elements above

the diagonal in the operator matrix.

Chains producing just one entry (paths c,g,i,k,l in this case) spring from the sub-

partition (1,0), and produce no off-diagonal terms in 0-. Those chains shown with
just two elements, such as d and e, each give rise to just one element in the CMs

matrix above the diagonal. In the general case chains with length r glve rise to

r(r * 1)/2 elements above the diagonalin CMn Any particular element above the

diagonal arises from just one chain, and it is easy to see that this is always the case,

for any weight u of the partitions considered.

Lemma 4.2

The number of chains in the CM. matrix rr Xo'-t p(j), wherep(O) : L. I! we omi,t

100



Jack Polynomials, Chapter 4. Leigh Roberts, 2001 101

chains contai,ni,ng but one element (those chains for which the source subpartition is

(1,0)), the number of chains red,uces to Dt-'p(i) :Di p@ - i).

Proof 4.2

The number of chains is the total number of (non-zero) elements in the entire set of

partitions of tu, counting only distinct elements within each partition. The number

of partitions of tu containing an element 1 is p(w - 1), since these partitions a"re

just a partition of w - 1 with a 1 adjoined. Similarly the number of partitions of ur

containing an element 2 rs p(w - 2), etc.

Theorem 4.3

The number of non-zero elements aboue the d'iagonal in C M. is

I

ior* -,,lilzl(Ulzl+t) :fe", - i)
J=r 2 -"

v lz)(u l2l + L)

Proof 4.3

For an element j in ,\, from Definition 4.1 one has that the number of partitions in

the corresponding chain inCM- is r * t:U/21* I : Q, say. The number of pairs

of elements able to be chosen from these i. (g), and for each such pair the first can

represent the source partition on the diagonal, and the second the target partition

above the diagon aI in C M.. As noted in Proof 4.2, p(w - i) is the number of chains

of length t.

Multiplying the numbers above the diagonalin CMs in Figure 4.L, and inserting

the Laplace-Beltrami eigenvalues c; in the diagonal (,\,.\)th position, Ieads to the

operator matrix f,lfl, shown in Figure 4.2.

4.2 Sparsity of CIur

The matrix O- is highly sparse, in that the proportion of non-zero elements above

the diagonal tends quickly to zero as u -) oo.

I
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(5) (4,1) (s,2) (3,1,1) (2,2,'1) (2,1,1,l.) (1r L, 1, 1,l.)

(5) c(o) o o 0 0 0 0

(4,1) 0 q4J) 3 I 4 0 0

(s,21

(3,12)

0

0

0

,0

c1a,z) 2

;0 €(3,x,1)

6

2

0

,9

0

0

(z',t)

(2, rt)

0

0

0

Q

00
00

c\Zz;t), 6

0 e(z-tr,I,l)

0

2A

(lu) 0 0 0 0 0 0 c11,rrr,1'Q

Figure 4.2: The oPeratol matrix f'ff

Lemqa 4.4

Ldo<A<B,urti|,Iettgl:t(t-L)..,ft-i*1)denptethefaltrdngfaato,rial,with
f(o) - 1". Tlnew

[" *,"**d^ - q$ (-t)i tol 
(a$-illzex{a - a$-it/zuxfi)

Je'" *-- 
r?^ Ki+t

in whieh t = 2s * \,, an/trff > 0 ds n c(,wt6nt.

Proof 4.4

The proof oonsist€ of substituti&g U - tfa wd integratiug by parts. The series

ters-rinate$, since t is a non-nqa.tive iuteger in applicatious of the leqma in this

paper.

Lempa 4,5

As a J oo, and for ws > K-z + L,

102
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Proof 4.5

For r y.6-z aad,^ 2 0, the fuaetion

*r-Il2rKtfi

h non-decroasing in r. For ?Do - I 7 K-2, then,

ru-Z w-2 - fw-L

l- 
-x'-ttveK.6dnsE 

it-L/veK'/I< | *r-Lf2:"Ktft4* (4.3)
Jws-L i*o ,ruo

Set II" = D;j, ir-tlz"Kt/i. Theno aF u, -r opo fiom (a.fl and teuna 4,4 we have

that

Ho - eK'r* (+. o(t)) ,

H,=eK'fr(ry-^'^ a \4r-v \rr ffi+rt+"(1)) and

Ez_e:K,n W_W*T#*o(@)
One oan reqnite the left hand side of (4'2) as

/.or,2 \ 1

( ? *' ) rJo - (u+ r)fi' + i rr,
\z /

which simplifieo- to the right hand side.

Theorem 4.6

Set K- - *tffi. As w 4 s, the faeti;on f, al tke elements aboae the iliagonol of

tke Q, matri,r wkieh nre nafl..zeta so'ti,lfree

f,,,:o(ryr-"@\,._"\ Kl " l

Pru-oJ 4,6

Fton Theorem 4.30 the fraction of non-zero eleneuts in the top half of R, is

$ tilrlflr /2)+ 1) -,^.. ^'\lJ 
--P\w-J)

_r-J 
-

lw- p(uXpJg)-t)
2

I
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say. C.oncentmting on the num:erator .E of the last expression,

n:f T(ry+r) rff) =("8.,H)T(ry+r)no)
for any ur6 intermediate between 0 and a :2. Chooee tro such that for i 2 uo,

p(il 5 u*fildi. This is possible, shce aE u, -| oo' p(w) * 
"x'Fl(Auty'5) 

(e.g-

,A,postol (L976, p. 316 fl), Applnng Lemma 4.5 yields

" = E ry(ry + r) rtu).F, + (ry.') #
Rerurning to (4.4), one sees;:" JtJ,"tt')

Corollary 4.7

Tha ftactiton f, af no;n-zero, ele:rnents in the upper kaff af the Q, matrin satisfies

i.+0osu.r-'m. I

4.9 From the operator matrix fl to the coefficient

matrix C

One san rewrite the relationships in (4.1) or (3.5) more succinctly as:

V:@M=CuE

in whieh CF = ffi) and O = fuj,^) will be referred to as the (Jack polynomial)

coe$cjent matrices with respect to the ra1 and e1 firnctioirs,-respectively; and f -
(J1r;, Jt -r,r)"...).

104
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Flom (3.8) one has

iT'(n^-coI):g'

The constraint in (4.6) arising from the Ath entry in the row vector is

105

D itr- uT,x: ko - ") iT,^ (4.7)

,>rr^

The system of equations given in (4.6) and (4.7) provides a means of evaluating the

if;s, coefficients by back substitution. The outworking is similar for the el function,

for which (4.7) becomes

I if,,* ,u*,x: (cp - cx') ii,x

\>nlP'

One benefit from setting out the calculations as in (4.7) and (a.8) is that finding

bounds on the 1 coefficients is facilitated. Should, for instance, one have an upper

bound on the Jf;, coefficients foli ) ), and an upper bound on the elements alfr^

in the )th column, one can get an upper bound for the coefficient Jf,1 from (4'7)'

Roberts (lgg8, $5.3) has attempted some analysis in this direction, since the column

sums above the diagonal in O- are easy to calculate: see $4.5. Also the results in

Chapter 5 concerning the 7* coefficients as u, -> oo are based on (4.7).

4.4 The composition of the coefficients

The matrices Op,r arising in Chapter 3, by whose determinants one can calculate

Jack polynomials, are almost diagonal: there is a single diagonal either immediately

above or below the principal diagonal, coupled to a triangular matrix which becomes

quite sparse a.s ur -+ oo. The terms arising in those expansions assume a specific

form, illustrated schematically below.

(4.6)

(4.8)

j
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4.4.L The composition of the iT,x coefficients

For the expansion of Jo in m1 functions, according to Theorem 3'5 on p' 85 we first

delete the redundant initial rows and columns in ftfrr, One then finds all possible

paths from the top left corner to the bottom right corner, where the first part of

the path is a d2 path, and the second part moves straight down the main diagonal.

Tbe process is illustrated in the diagram for the calculation of 4al. Labelling the

elements of the matrix by ar',,r with the first row and column indexed by (4) and

the last by (1'), the d2 path proceeds from d(n),(l) to r,.r(z,r,r),(z,t,t;, where crrla;,1+; in

fact contains the element nz1+yi while the diagonal part of the path proceeds from

(r(2,1,1),(2,1,1; to tr,llra;,1ra;.

rnq) -) tr
IY

m(s,r) -+ -+ tr
+

me,z) o
I*

I Tntt 12\ |

| \-r- / 
|

\
Tn6n1 O

Figure 4.3: Ol?1,r

The above-diagonal terms corresponding to this path are marked by the squares, and

the only other off-diagonal representative is the functior rn(2,12). With the remaining

terms denoted by circles, the corresponding term in the expansion is

,l?l,tu,rl'|3,r),(2,r,r)m(2,r,r; d1s'r; dlrn;

where d^: cn - c(4).

The coefficient of rne,Lz) is found by summing over ail possible such paths: a d2

path from the top left element to the diagonal element (r(2,1,1),(2,r,11, followed by a

path down the remainder of the diagonal to the bottom right element.
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For weights exceeding 5 there will be in general further redundant rows and columns,

indexed by rc such that p S rc but p / n. The d2 paths simply bypass those elements,

such that the diagonal elementS u,.,r - c,6 c, enter into the determinant, but then

cancel, as shown in Theorem 3.5. The problem with this is that the diagonal element

will vanish if c, - c, which happens occasionally: see Example 3.4 on p. 83. So

one should jettison redundant rows and columns before starting calculations, and

not just for purposes of expediting the calculation.

Moving the first column of.msfunctions to the right of the matrix in Figure 4.3 yields

a matrix of the same shape as that used in Lapointe et al. (2000). Our approach

through d2 paths of 0 is equivalent to their calculation of Jack polynomials as

determinants of "Hessenberg" matrices.

4.4.2 The composition of the iup,s coefficients

f
I

tv

+
I

tr<- ts elra;

Figure 4.4: Qfq,t

The story is analogous for the e; functions. After deleting redundant final rows and

columns in Qfay,r, the d2 path proceeds from the bottom right corner upwards below

the diagonal to the preassigned diagonal element, and along the diagonal element

thereafter. For the example shown in Figure 4.4, the term in the expansion of Jlay

is
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ee)(,

\
e1a,r)

@
e1z,tz)

\

a(t q,1z,z'1 e p,z1 d laf (r.r'1 d lr,r,t1
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where d,t*: c*, - c@).Again, the coefficient of ep,z1 is given as the sum of the terms

arising from such combinations of d2 and diagonal paths.

Letting the d2 path have length s, the contribution to the coefficient of e' contains

a factor of (-o)', since the diagonal terms are positive. For the expansion in rnl

functions, on the other hand, the diagonal terms are negative: given the sign

changes implicit in the definition of the determinant, all contributions to the Jack

polynomial are of the one sign for these latter expansions.

4.4.3 Dominant terms in the determinantal expansions

The more important terms in the determinantal expansions can be expected to arise

as follows.

Consider the expansion in terms of the rnl functions. Assuming the rn1 functions

are relatively insensitive to change in the index partition .\ (and we shall see in Chs.

6 and 7 that this is not always the case), the dominant terms can be expected to

be those with the d2 chains (starting at the top lefb corner) terminating about the

middle of the matrix. This enables all the lower terms (towards the bottom right

corner) on the diagonal to enter into the expression, and those diagonal terms are

large. Within the d2 chain itself, the chain should keep close to the diagonal at the

upper lefb corner of the matrix, in order to minimise the number of upper diagonal

terms used, since those diagonal terms have small magnitude. Lower down the d2

chain, one should move away more from the diagonal, since those diagonal terms

are somewhat larger.

Likewise, restricting ourselves to the coefficient of. mt in Jp, the dominant terms are

expected to be those with d2 chains (over [p, )]) which hug the diagonal at the top

end, and move away from it at the bottom end (towards the (),.\)th element).

The coefficients jff^ contain relatively few terms for p and ) close in the RLO; but

they contain large numbers of terms for p high and .\ low in the RLO, because the

interval [p, )] then supports many d2 chains. Otherwise expressed, the jf;^ coefficient

108
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in the latter case arises towards the end of the recursive backward substitution in

(4.7), also rendering the coefficient subject to substantial rounding errors.

Analogous comments apply to the expansion of Jack polynomials in el functions,

save that the diagonal elements of greatest magnitude are now at the top of the

operator matrix rather than the bottom. The situation concerning dominant terms

is less transparent, since the sign changes in the elements make it harder to gauge

the importance of individual terms in the overall picture'

The diagonal terms can be expected to be much larger in magnitude than the off-

diagonal terms, at least for the bottom end of the diagonal for the rnl functions and

the top end for the e; functions. This can be seen informally from the results in $4.5'

in which most of the results suggest that column sums 41 of Om are of comparable

magnitude to the diagonal elements c1- co: see in particular Corollary 4'16.

Our discussion has centred on the rn1 functions, since in (a.7) it is the columns

of O- which are involved with the back substitution. Similarly from (4.8) it is

the columns of Ou which are involved, i.e. the rows of O-. The row sums of CI-

are less tractable than the column sums, and the ofi-dia,gonal elements are greater

towards the bottom right corner of fl- than at the top left, because the value of

K in Theorem 3.18 is large (the multiplicities of the elements are large for ,\ low in

the RLO). But overall one again expects column sums and diagonal elements for Ot

to be broadly comparable in magnitude, so that individual ofi-diagonal terms will

generally be less than diagonal elements.

4.4.4 Path descriptors in terms of core chains

Following on from Figure 4.1, Figures 4.5 and 4.6 illustrate two particular d2 paths

from (5) to (15).

Descriptors such as abbhj and aefi for those examples need not identify uniquely the

109
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(5)

(4,1)

(3,2)

(3, 1, 1)

(2,2,r)

(2,1,1, 1)

(1u)

-+tr
J
. --) -+tr

J

J
-+tr

I

tr

+

.-+ tr

Y

to (15)Figure 4.5: d2 path abbhj from (oJ

(o/

(4,1)

(3,2)

(3, 1, 1)

(2,2,7)

(2, 1, 1, 1)

(1u )

-+tr
.t

J

-ftr
+

d2 path aefi from

-+tr
J

I
Y

-+tr
I

(5) to (15)Figure 4.6:
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underlying d2 path. For partition weight 6, for instance, consider the core chain

(6) -+ (5,1) -+ (4,2) -+ (3,3)

which is labelled as, say, o. Then chains from p : (6) to ) < (3,3) may contain

the subchains (6) -+ (5,1) + (3,3) -+ . . . and (6) -r (4,2) -+ (3,3) + " ', both of

which are indexed by aa. . ..

Apart from this ambiguity from multiple passes through the one chain, the labelling

of d2 paths by the core chains through which successive off-diagonal elements pa-ss

identifies the path uniquely.

4.4.5 Incidence matrices

A simple means of investigating the structure of paths passing from partitions rc to

) in 0- is to define an incidence matrix Q say, with unity inserted in the place of

every non-zero element above the diagonal in Off. Then the number of paths from

rc to .\ of length s is the (rc,.\)th entry in Q'. See Stanley (tgg6, p. 113) for further

details, although note that tnu I ordering is not a partial ordering, since it is not

transitive.

For counting the number of d2-1 paths from rc to ) along the lines of Lemma 3.2, one

could similarly define an incidence matrix with unit (rc,,\)th entry when o 9 ). Notu

d,2
that 5 is not a partial ordering either, although it provides the covering relation for

the majorisation partial ordering > (..g. Brylawski (1973)). The ma:cimum length

of a path from rc to ) is given in Greene & Kleitman (1986).

4.5 Relative magnitudes of diagonal and

off-diagonal terms in fl-
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Lemma 4.8

The sum, of tke el,etpents dn Off (stri,ctty) aboue the (,\, \)tk diagonoJ pasit'i;an i's gwen

by.

tl2

\t :lwfr^ - f htrx +Itl - l)tr.

"9.r t,f;; t:l
FOOG

=w(w-1) -E,f +I iIi- f bto
j=L i=l ,f;;

:Z(*-2)-;E q+i iri

--T(*- 1) - *frr'mi*,t=, Miiftrn*lii *l (4'12)

i<k

Proof 4.8

Consider the first two entries \,12 of A. This pair gives rise to elemne.uts qrr6.,r' with

row indices the partitions m: (Jr *c,Is- c,.-.), for c: L.,..',12, the difference

in each row pair being h - trz* 2c. Summing these latter terme gives b(tr ' lz) +
ZI;j3e : ,r(fr +'1). Repeating this for all p-airs (lr,li) for i ) 1 yields the sum

Drrrl'(h + 1) ,_ (u - Ilxtn + 1); aad further repeating the process for al.l paim

yields the sum for the colur.nr above the diagonal of

(ur - h)(tr + t) + (tu - L^ - d(lr+ 1) + (w - It, - Ia - Ic) (ta + 1) + . . .

oOmgq

- ! w (ti *t) - t k Ui +1) - I fu (tp + 1)

j,=l ,=1 Xi'&=1
i<k

oooo ,fil

: a(w+ r") - Ilr' - w - r rlo - t tiT - i)
i=t 1€_- r.=1

whene r = 4(A). This expression easily reducee to (4.10).

The equivalence of (4.9), (4.10), (4.11) and (4.12) is straigh$forward to show' The

iufiaite: qp.per lirni't ,to, the summatious is of csurse'notional: the upper limit to j is

(.\) w.hen [y is involved, and h(.\) wher mt s involved. I

(4.e)

(4.10)

(4.11)
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Tbeorem'4.9

flr r4rn - u(ru - 1). (4.13)

Froof 4.9

The multiBlicities fOr the conjugate partition l' are giv.en Uy *j : Io - t141. Sub

,stitution of. rnl fai mi ir (4.12), noting that

@ cic

E i mln[- D i ^l b*', (414)

t;;; i='

and sorne simplifleation yield the result.

Corollary 4.9

ttt, 1ir..'-iilo (4.18)4^':T+rLq-Lttt
:' '=:

4r, - et= w+ I Ii - 2D i ti (4.16)

t+l i=t
These are imrnediate from (4.11) and (4.13). Alternatively (4,15) is eastly proved

directly from (4.12) and (4.14). I

Leuna 4.10

If 
^: 

(* - t) U n, w,itk ur(rc) =' t and h(n) S w - t, ther1

4x-T*-t(w-t+1)

cr - crs : (" -;) (, - t) - ru * |t* - t)' (A-LT)

The eqtatian. (4.17) wittr be epplied in$5.L t

f;emma ,Xl
Far ang pafiitions n ord,.tr sueft that w{n);: u(A),,

e[") - #) = f,r ca - ei) + #r @? - 4)

,[ -#) - -oEr (rr - ki) - ]f Wi -r3,1,

hvm (3.4)

y'rom (3,21)

\IICTOHIA UNIVERSITY OF WELLINGTON
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"[") - "f) = -* (#t - "f/")
\a - r,h: - !f $i - ki- l f W - t?,) : - (no,- r1r,) ftorl (4.11), (4.1s)

rln - ed: c!1) - r|} : - (r'g, - rlt')

Proof 4.1L

The proverance of the firs,t, second and fourth equations is as indieated. The re-

mainins equatioas are consequences of the other thr,ee. I

Lamma 4.12

Le,trc> . The;n

e1s ) c7 and flx d V^x

Proof 4.12

Co.olluu,;' 3.3 o-n p. 83 gives the fust result for any a ) 0, vhile the seaond followp

from the final equatiqn of Lernraa 4.11.

Lenoma 4.13

#=|tr-1)- rt^:-!z (,.,-1) *?r,

Proof 4.13

Flom (3.4) aod temma 3.10 one has

cy-c7,-(o*t, [; -ltr6if l;]

T e result foltrows from equation (4.f f) and Theo.rem 4.g.

Theqrem 4.14

If nrtr^ * rvv, then 
cr _ crl _ c * 1

41, - 4t 2,

(4.18)

I
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Froof 4.14

The proof is immediate from (4.16) *d (4.18). The

Theorem 4.15.

Corollary 4.14

reeult is also a oorollary of

115

C1ar1 - C1r'r,1

--

fl(t-1

a*1 r

Theoreq 4,15

Il ry** ryo then
Cn- C^ C^, - e*,

-T--3v-l-r
4X - 4n tl*t - rlst

Proof 4.15

The proof ie immediate from Lcmma 4.11.

Theorem 4.16

Let n> h. Then

r

1 < 1'-er <*
4t - rlr

*< t^-o'"1
r.lx - :4ta

cn* e^ r

4x - Tla

when a > 1;

'udtene,(1; and

w:hm a:1.

Pi'oef, 4.16

Reca,lling t'ha.t m > ) ++ I' ) rcnn the theorem folloss immgdiately from Lemnas

4.11 and t[.12'.

Corollary 4.16

trFith p ).I, sef

ry= 
c(Ei-c'l

C,P - a\

4 ., when a) licp-cA
?.
q

Thm

(4.1e)
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(4.20)

9?r '\-!< ''n <'
Cp- CA a

rlx

cP-c^

when a <-l; and

when a -- I. I

The significance of Corollary 4.16 is as follows. From (4.7) on p. 105, and letting .L

be an upper bound o\ iT* for rc ) ,\, one has that

itr^s t #a
This type of result can form the basis for obtaining bounds on fl"i coefficients as .\

moves down the RLO. The basic result (4.20) can be refined, in that the upper bound

on the Jf," coefficients need only apply to those partitions rc such that a.rfr1 > 0. Work

along these lines is in Roberts (1998, $5.3)

One caveat needs to be borne in mind as regards the Corollary 4.L6. One does not

in fact want 41, because that column sum includes elements in the redundant first

rows of the operator matrix (the rows indexed Uy o I p when calculating Jr)' The

constraint in (4.20) is therefore weaker than one would wish.

4.6 Sticing and reflection results on i p,t coefficients

Evaluating I coefficients through d2 paths in the fashion of $4.4 provides elementary

proofs of "slicing" and "reflection" results, extending results of Takemura (1984' p.

bg) to general a > 0. The terminology is non-standard. Our development broadly

follows that of Roberts (1998, $4.3), who refers to reflecting results as "dual" results;

but this seems poor terminology, partly because the word dual assumes so many

meanings in mathematics, and partly because its usage there is inconsistent with

the use of the word dual in Stanley (1989, $3), and in Macdonald (1995). Diagonal

elements of the coefficient matrix C in $4.3 are normalised to unity.

For expansions in the nz1 functions, the "slicing" theorems essentially allow us to

slice off either the common first row or common first column from the standard

Ferrers diagrams for the root and target partitions p and .\, and leave the jff^
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coefficient unchanged. For the e1 functions, the procedure is to slice off the first row

for the root partition p and the first column of the target partition ); or to slice off

the first column of p and the first row of ), in both cases leaving the J!; coefficient

unchanged.

The reflection result has to do with reflecting the partition .tr, or rather its Ferrers

diagram, in a rectangular p x q grid of cells. Denoting the reflecting partition of .\

bv r,
(qo) :)+'\

where I is in non-decreasing order, and contains initial zeroes if h(,\) - q; clearly

tu(,\) + u.'(f) : pq. Let u.'()) : u; as previously, and ur(.\) : 6.

While the slicing and reflection results certainly assist in the calculation of Jr, theY

are not necessarily of much help in calculating the "difficult" j coefficients' The hard

Jff^ coefficients to calculate are those with p high and ,\ low in the RLO, since [p, )]

then supports many d2 paths; and the Ferrers diagrams do not have a common

initial row or column.

The situation is not fundamentally different for e1 functions. Coefficients jj,^ are

hard to calculate when p and ) are high in the RLO, which is when the slicing

results do not apply. As for the reflection results, the Jp,.r coefficients which are hard

to calculate tend to have reflecting partitions p and ) of far greater weight than p

and .\.

4.6.L The basic supporting result for the slicing and reflec-

tion theorems

The following lemma underpins all of the slicing and reflection results. Throughout

thissectionwenormalisesotbatj"o,r':jT,o:1'Alsorecallthedefinitionsofo!'o
and flfro from $$3.2.2 and 3.2.3 on pp. 83 and 84 respectively.

LT7
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Lemma 4.LZ

(Ofr,0)[p,,rr] : (ofr,0) b,,^"j1 if;,s,: if,",x,

(oi,,o)r^,,r11 : (Qi,,o)trr,p;r + if,,,x,: i"o,,x,

Proof 4.17

The coefficients if;S are formed from d2 paths over [p,,\], according to tbe develop

ment in $4.4.

The further terms arising io fff^ are the diagonal terms (Ofo),.," for which A > rc.

None of those terms is zero, from Corollary 3.3, since all indices in Ofrs are majorised

by p. And all those terms cancel, as they appear in both numerator and denominator

in Theorem 3.5.

The proof of the second result is analogous.

4.6.2 Slicing theorems

We divide this section into technical lemmas underpinning the slicing theorems and

the theorems themselves. The supporting results a,re conveniently subdivided into

results to do with ofi-diagonal and diagonal elements, and eigenvalues.

4.6.2.1 Supporting technical results

4.6.2.L.L Off-diagonal elements

Lemma 4.18

Let n> ),, withp> t(\). Then

118

T

(cl#),,r : (Of*o),+(1e),)+(1P)

(oi,) 
^,, 

: (Oi,*o),1+(rp 
),,€,+(1P)

(4.21)

(4.22)
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Std,tt with n ) \, let q 2 h(n). Then

(Q#')',r. : (o#*o),*(c),xr(c)

(Oi,)^r : (oi,*o)ruJc),Au(q)

Proof 4.18

o 9 .l iff rc r (1e) 9 .1+ (ru)

a,nd

"oir itr rau(q)9,lu(q)

so tlat (4.21) and (4.23) Are a eonseqlrence of Theorem 3.18 on p. 94.

equations (4,22) and (+.Za) follorn'from Theorem 3.6 on p.' E7.

4.6.2.L.2 Diagonal elemeuts

temma 4.19

Il p> l{\), then

(ofio) 
^,^ 

- (ffi1r,1,0) 
^*1rn;,r*1ro1

(oir).r,r : (o!L,by,o) 14p1,,r+1rr1

If qZh{.x), tksn

(ofrr) 
^,^ 

= (Qfr,rd,o) rutolaurk)

(CIi,') 
^a 

: (Q!atrr4,n) ro(cj"ru(o)

Proof 4,19

119

(4.23)

(4.%)

The other

I

(4.25)

(4.26)

(4.27)

(4.28)

p>\ iff p+(11 >A+(f),
while the (,\,,\)th element of CIf is cr - cp-r eo tbat the proof of (4.25) i5 immediate

from Lemna 4.2A. Give.rr Lemma 4.21, the proof' at (!.2r1) is similarly evi-dent from

p2\ ifi pu(q) > Au(q).
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For (4.?6) one has that

\)= p' iff' A + (IP) > p'+ (1P)

while the diagonal elemente &r€ c.1, -e, and el,u(p) - cNlpl, whence the result follows

ftom Lemma 4.20, Sinilarly

\7 p' itr ) u (q) z p'u (s),

with diagonal elenents c1, - cu and c),+(le) - cpr4.(rr)r and (4,28) is immediate from

Lernma 4.21. I

4"6.2,1.3 Elgenvalues

The point of the rl$d two lemmas is that tbe differerce iu eigeuvalues depends on

I only through its weight u. Recall the definition of c^ in (3.4) on p. 8L.

Le :rra 4,20

Letp2AQ). Then
p(p + 1)

cA+(xe) -e\:rtP--T+aw

Lemma 4.21

Let qZ h($. fhen'

cru(c) - cl = rw + a ry- (q +')

4.6.2.2 The sliciug tbeorems

There are four basis theslems -to be stated here. For cotnploteness $'e sentisn a

known fifth resulg, Theorem 4.26, which is a direct eorollary of both Theorems 4.22

and 4.25.

Theorem 4.22

Let p > Ao and let p 2 f(l)'. Then

i:Ts-J&xr"}.r+1r4 (4'29)

I

I
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Prosf, 4"22

Notinsthat p) m) A iffp+(1o) > r*(1p),> )+(fr), we coneidet ffi)p,n, md
t.- \
[of;a1ro1,o / [p+{1P},.\+0p}l

Thesc ms,trices are identical off the diagoual, ftom (4.21), while all the diagonal

ter.ur6 eoincide ftom (4.25). Th" result (4,2g) then follonrs from Lemma 4'17' I

Theorem 4.?3

Lat h) p'; ond lielp > d(l) and, p> h(p). the:n

i'i,o - J,pr1pp*(r.)
(4,30)

Frssf ,4,23

Seeing that

\ > n> p! ifr ,\ + (1P) > rc * (1n) > P'* (1P),

one contra€ts (CI;,')t^,o,r ild (ryrt n)F+(1r),p,+(1pr,' Eouation (4'z?) again yields

that thc -off-diagonal terms are eQual.

The diagonal terurs, sf the ma,tiieCs 8,r€ cr, - co and en,u(p) - r,qbr, W'hich are equal

,by Lem a 4.21. The reBult follows from ternura A.LI' I

Theorern 4,24

Let p ) ),, and lct El lr'(l). Il'rem

ih,- Jfrk),^r(o) (4.31)

Pro,af 4.24

Norins that p > 16 > .\ ifi pu (s) > rcu (E) > .\ u (s), *e congider (oIl.)rr,^r dd
/\I c)tJa I
\o'ru{e),0,; hu(s),ru(c)l

These matrices are identicat off the diagona,l, ftom (4-23). AII the diagmal terme

assurne the form G*- cp and c*g1n; - c,pt(s; resBectivelyo a,nd are ideutical from temma

4.21, Th-e result follows ftom Leiiim a 4,L7. l

1,21
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Tbeorem 4.25

Let A 7 p'; and ket q > h(f) and q I tlp)' Tl'ten

i'8,^ -Jfu1rr;,r'1al (432)

Proof 4.25

I>n>p' iff )U(q)>rcU(q)> P'U(q)

one corffiraste (o;,ilt^*,1 aoa (q*,ro),')t^u(*).,orr(or. Apptyirg (a'24) yields that the

ofr-diagonal terms of these matris€s are equal'

The diagoual erms i,fe. Co, - c, a;nd crr+(rq) - cplge)r which a,re equal by Lemma

4.20. The rsult follows frsm Lemna4-17. f

The following theorem is well k4orirn: see i.a. Stantey (1989, p' 90), Jarnes (1964'

p, aeB).

Theo,rem 4.26

When tlzere are esaetl;y p'uari,a-tes, Md'uhen ((p) --p'

Jp4(ra) - fiLtrz.. . frpJp = epJP

Proof 4.26

Jpag*1= f ifr1rpy,1+(1r) tnl+(rp) = e'1n'2''' sPD tfin *^
pilt PIf

where vre have us€d theorelq 4.22 an the one hand, and the fact that

n?,l.|(lP) - fiL'.Z,, .fipfTLl

on the, othcr.

Theorem 4.26 could rilso be proved by expanding in a1 functioas and applyiqs Ths'

srem 4.25, There see$c ns obvio,us aualOgOUs expression fo: Jolrtrs) in terms of' Jo'

I
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4.6.3 Reflection results

This section is divided into technical lemmas underpinning the reflection theorems,

the theorems themselves, and an example. The preliminary supporting results are

again subdivided into results to do with off-diagonal and diagonal elements, and

eigenvalues.

4.6.3.L Supporting technical results

4.6.3.L.1 Off-diagonal elements

Lenma 4.27

Define the refl,ecting partiti,onsE andl, and the refl,ecting weight6, as in5/*'6'

Let n > ), p > /(I) and, q >- h(rc)- Then

(o3)"; : (O#)x,x

Proof 4.27

o9 s ffi K,9\

Visualising the p x g grid in which the Ferrers diagrams are being reflected shows that

in the calculations specified in Theorem 3.18, the difference in partition elements is

mirrored whether looking from the left of the diagram or the right, so that the A

in that formula is the same for both cases; Iikewise the multiplicities in K in that

formula are identical.

Corollary 4.27

From Theorem 3.6 one has

(oi,).r,' : (CI#h,r

L23

I
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4,6.8.1.2 Diagonal elemeats

Trenma 4.28

(nfr),n,n = (qlfrdrr 
I

I

Froof 4.28 l

Diagonal elements a,f-e e.t - c, and %,- cp. These are equal, ftom Tlieorem 4-32- I

The follorir,ing mesult is needed for Lemura,4",30.

Lemma 4.29

Letp-q, Thw)F:f'.

Lenma 4.$0,

WhmP = Qt

L24

Ii

(oi")^r: (%Jxr

Proof 4"3O

Diaeonal eleurents a,f,€ cr, - on and ,eJ, - e.F. tsut %, : qz from teurma 4.29" and

one c&n appeal to Tbeotem 4"32 to see that c\r - ep = W - eF. I

4.6.S,tr.3 Eigenvalues

Lemma 4,31

Suppose that n9 x. rnrnol'It artd

Cr - GI: En- CX.

Froof'4"31
For any patfitions ,6 and .[ of the narr,e weight, recall ftom (3"6) that

cr - c.tr = !i(ti - ki) +|lW-,i)(kr'+ li)
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FIow suppose that r 'f r; and further snppo$e that n and ,lt differ in just' the lth ,.v j 
.1 - --EE ---

and izth eleurelts. Ther 
,

od - ct = -Jr +,iz *fr tnr, t li, - Iri, - Ir)

=-b,+1- r';)+(p+1-jr)+ |tr-k,*q-tin-(e-&rn)-k-t,)l I

I

=ft-fi r I

I

Theorem 4.S2

Su,ppaae that rc>),' Th,enE>T; anil

Cn- C^= Cn- 4.

Proof, 4"32,

Apply Lenna 3.2 on p. 82 a.ud Lemsra 4.31.

4.8.9.2 The reflection theorelms

Theorem 4.33

tt^= j{t

Proof 4,38

From-temmas 4*2V and 4.28 one has

($frr)ro,^r: ((Hu)na

The res.ult nom' follows frorn Lemma 4.17.

Thesren 4.34

Ifp-g,thwt
fi,^: jii

t

I
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Proof 4.34

From Corollary 4.27 and Lemma 4.30, one has

(0i,0)h,p,t : (CIi,0)tr,at : (fs,o)6,a,1

where we have in addition used Lemm a 4.29. The result now follows from Theorem

4.r7.

4.6.3.3 Example

L26

I

Example 4.35

Let p: (3,2) : (3,2,0) and ,\ - (2,2,1). Set h : 4, r

(4 - 3,4-2,4 - 0) : (4,2,!), and f : (4 -2,4-2,4-
i ft ,21,12,2,11 

: ift ,2,t1,12,2,2) 
an d i (t,21,1r,2,r1 : i (+,2,t1,1s,2,21'

: 3, whereby P -
i) : (3,2,2). Thus

I

4.7 Relative parsimony of expansions in e1 and rnl

functions

It is clear intuitively that expansion in rnl functions may be more parsimonious in

general than expansion in e; functions, because the rn1 expansion tends to employ

the bottom right corner of the f,)* matrix and delete the top left corner, while the

reverse applies for the e1 expansion. But the top left corner contains more matrix

elements and provides the springboard for more d2 paths than does the bottom right

corner.

We are unable to prove generally that expansions in rn1 functions are more parsi-

monious than those utilising e; functions, i.e. that their expansions coutain fewer

terms. But the circumstantial evidence is reasonably convincing. We shall illustrate

with O-, so that for expansion in e; functions one moves in a d2 path above the

diagonal from the bottom right corner.
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Firstly we note that the first row of flf contains []] elements, disregarding the

diagonal element; while the final column contains but one element above the diago-

nal. The expansion of J1.-r,r1 in e; functions certainly contains more terms than the

expansion in terms of rnl functions, since removing the final column does nothing to

reduce the number of d2 paths, while deleting the first row removes several paths'

Reasoning further along this same track, the number of elements to the right of the

d.iagonal for rows indexed by partitions of length not exceeding 2 is easily shown to

be Jwz f 8+O(r); but the number of elements above the diagonal for their conjugate

partitions, viz. (2,2,2,. ..), . . . , (1',), or equivalently those partitions with height not

exceeding 2, is just 2w + O(l). See Lemma 4.36.

Lemma 4.36

Let, nrowsdenote the number of terms in the ,\th row of Off, excluding the diagonal

element; and let ncoli denote the number of terms in the .\th column of f,)-,

excluding the diagonal element' Then

t
1(r)<

( wQw ) when w ,is euenl-tnrOW^: \
, | (u,- 1)(3tu - 1) 

when w is odd,(8

when

when

2w-3
2w-4

To this must be added the number of terms with /(rc) : 2 and l(I) : 3' which can

arise from the pairings K: (w - t,0) and (t,0). The number of these terms arising

is respectively ff] and [f]. So

I nro.,: rrr (r?r +1) .f,6?] -,l;])

I ncoll :
h(.\)<2

Proof 4.36

First considering nrow* and

1.0L, the number of terms c..r',;

applying reasoning similar to

with /(rc) S 2 and /(.\) < 2 is

w'i,s euen

w is odd

that in Thm 4.3 on P.

t(n)32
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in whieh the final tern of the summation is to be divided b5r 2 when ur is eveu'

This may be,rewritter nlore simply as

For even'u,

t(n)32

while for odd ur,

0(n)!2

nroue= t?l ([t] + x) . p [;]

The fiornulae for n;eol,21follow tnore simBly'

A partition A of the for.,m (2o1b), for o ) l,b ) 1, has four elemeots above. it in the

O matrir two from tte (2,2) Pairing, to give (3,1) and (40); one from (Z'1) to

give (3,0); and one from (1J) to give (2,0). The partition (1') has but oae element

abov-e its diagonal position, while (2,1-=z) has two elements above it.

Wben ur is even, Qflo\ has 2 elenentg above it, giving a total of

^G-z) 
+r +2+2=2w-3

elements all-ove the diagonal elements l such that h('\) S 2'

When trl is odd and u; ) 1, the partition (2@-tlP,f) has 3 elements above bhe

diagonal" Srving a total of

^(+- r) * 7 +zta: zro - 4
\2 /

elements above the diagonal elements .\ such that h('\) < 2' I



Chapter 5

The operator and coefficient

matrices Qrn and Cm for

indeterminate weight w

The purpose of this chapter is to place the treatment of the operator and coefficient

matrices in the last two chapters in a context valid for general weight ur, however

large.

We find the ji^coefficients for partitions p and .\ of a specific simple form, and also

for a handful of values of ) low in the RLO for any p. To prove these results it is

not necessary that 12 -| oo, merely that u,r be sufficientiy large that the partitions

considered are listed in the standard non-increasing manner' There is circumstantial

evidence that the results are in fact valid for any positive values of ur'

The operator matrices Q- and f,)" will be labelted as gf)- and gO" in this chapter

in part as a reminder that we are dealing with a generalised situation in which tu

is indefinite. In like manner the coefficient matrices C* and C" will be denoted by

gC* and gC". The generalised matrices gQ^,1Qu, gC- and gC" have infinitely

many rows and columns, whereas 0-, 0', C* andC" are p(u) x p(w)'

I29
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5.1 The generalised operator mattix gQm

The rows and columns in Table 5.1 are indexed by the partitions (tu), (tl-1,1), (t'r-

2,2), (w -2,7,1), . . ., with entries calculated from Theorem 3.18 on the assumption

that r.u is arbitrarily large.

tu) tu-1,1 u-2,2)(w-2,L2 u - 3,3) (u - 3,2, L) (u - 3, 13)

(r) '(tlj lxtu lxu.r 0 lxtl 0 0

(tu - 1, 1) 0 C1u-t,r) r(w - 2) 2(w - I) r(w-2) 1(u-1) 0

(w - 2,2)

(ut - 2,1,L)

0

0

0

0

c(1u-2,2) 1 X 2

0 c1w-z,rz)

\w-\ r(w-z) 0

0 1('u.,- 3) 3(w - 2)

(to - 3,3)

(w - 3,2,,1

(u., - 3,13)

0

0

0

0

0

0

0

0

0

0

0

0

clro-a,3) 1x3 0

0 clrr-8,2,1) 3xZ

0 0 c1s;-3,rs)

Table 5.1: The generalised operator matrix gQ- up to the 3rd block

At first sight, for a given value of u.r the generalised operator matrix gfl- is only

a valid construct as far as the fwlz]th block: up to that block the gQm matrix

mimics the standard Of matrix, while beyond that block some partitions are in

non-standard form, with the leading element not necessarily the largest. But it

is likely that every column of the generalised operator matrix gO provides a valid

constraint on the Jfr1 coefficients, provided that the eigenvalues cl &r€ calculated as

if the first element were in fact the largest: Roberts (1998, Ch. 7) illustrates this

for the case of a:2 through an extended example.

Were this conjecture indeed to be true, i.e. if every column of. gQ* gave rise to a

valid constraint on the jm coefficients along the lines of (4.7) on p' 105, one could

consider taking linear combinations of columns in gO* to produce new constraints

on the 7- coefficients. The resulting inequalities and bounds on the coeficients

would be valid for any value of ur.

130
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Example 5.1

For w :6, lor instance, up to the hrd, block, u'iz' the block headed by partitions with

Iead,ing element w - 3, the parti,ti,ons are i,n stand,ard form, and the top Ieft corn'er

oJ the g{ln matrir reprod,uces the top left corner of the standard Q{ matrix'

Forw:4, on the other hand,, anil setting p - (4), the column in (4'7) on p' 105

indexed, bA @ - 3,2,1) - (1, 2,I) prod,uces the constraint

3j?ft,rt * Zjftrz,z't * jT'Ql,,) * 3jl'Qpl: (4 + 5a) jT'Q'''') (5'1)

whi,ch corresponds to the (, - 3,z,L)th column of Table 5'1'

This constrai,nt 'is uali,d,, proui,iled, that one id,entifies partitions (3,1) and (1'3) on

the one hanil, and, (2,1,1) and, (1,2,1) on the other. For the constraint arising from

the (w -2,L,1')th column in Table 5.1 is

6if,p,r1 * ZiT,<r,z) - (3 + 5a) jf,,p,1,1'1 ,

which i,s i,dentical to (5.1)'

The sth diagonal block in gO- contains the matrix Clf;, for I : 1, 2,' . ., save that the

diagonal elements are displaced by a constant, from (4.17) on p' 113' The constancy

of the ofi-diagonal elements is a consequence of Theorem 3.18 on p. 94'

5.1-.1- The generalised coefficient matrix gC*

Rows and columns in Table 5.2 are still indexed by the partitions (u), (u-1,1), ('-
2,2), (w - 2,L,1), . . ., but the notation is compacted' Thus partition 11 in the 4th

group is (to - 4,2,L,1), with (2,1,1) being the 4th partition of 4 in the R"LO; and

partition 17 in the 5th group is (tr- 5,2,2,1), since (2,2,I) is the 5th partition of 5

in the RLO. This matrix will be called the generalised Jack polynomial coefficient

matrix, and denoted by gC^. The diagonal elements are set to unity'

our main result, Theorem 5.9, gives the entries marked x in gc^' within each

block (bordered by lines), elements to the left of the X elements are zero: for those

131
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po

block

I
0

2

1

34
2Z

5 6V
3 33

I I 101112

44444
L3 t4 15 16 17 18 19

5555555
r_0 1 X .r XW X X

2l I x x x x
a2
4?

1

1

X
x

x
X

x
xw

5ts
63
v3

1

1

L

x
OX
000x

x
0tr
000x

84
94
104
114
L24

x_

x
,x-

x
L,

13 5

145
155
1.6 6

L75
185
195

Tabtre 5.2: The generalis.ed ooeffieient matdx gC* ap to the $th blook
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elements the partition indexing the row does not majorise the partition indexing the

column. Those zeroes are inserted explicitly in the (3,4)th and (3,5)th blocks, using

an obvious notation, in order to illustrate.

We commence with the definition of the row and column partitions which define the

elements X.

Definition 5.2

A (r, s,b,v)-stand'ard partiti'on, denoted bU \r,tr,r, has the forrn Ar,6,u : (w - 5, s -
b)uv, where0 < b <s, w(u):b, h(u) ( s- b, ands<wf2. I

For fixed. b, and setting .1r,6,, to represent the row partition and .\s,6,, the column

partition, the (1r,6,r, )1,6,r)th elements in the gC^ matrix are precisely those marked

with an X in Fig. 5.2, for t > r. As z varies' one moves from one X symbol to

another within the (r, t)th block. The particular form of z is immaterial for the

principal theorem in the next section.

The pattern of Xs within a block stabilises as we move to the right along the seme

row block: the pattern arising from the rth row block is stable by the 2(r - 1)th

column block. That is, with root partition (* - r,. . .), the pattern is stable by the

column block containing elements of the form (to - 2(, - 1),.-.)-

Example 5.3

Setti,ng r : 4 we haue the tollowing table

(w - 4,4,0) -+ (ur - 5, 5,0) -l (tu - 6,6,0) + . . .

(ur-4,3,L) -+(w-5,4,1) +(w-6,5,1) -+...
(w - 4,2,2) -r (ur - 5,3,2) -i (u - 6,,4,2) + . . '

(. - 4,2, 1, L) -+ (ur - 5,3, 1, 1) -+ (. - 6,4,1,1) -> . ' .

(w - 4,1,1, 1,1) -+ (u - 5,2,,1-, 1, L) + (Tl - 6,3, 1,1, 1) -+ . . .

The correspond,ing X elements in the \th column block are underscored in Table 5.2.

I

b:0
b:L
b:2
b:2
b:3
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5.1.1.L The PrinciPal Theorem

The prood of Theorem 5.9 deprmds o:r the following simple lemnas' the proo& of

which are omitted. The hyper,geometrie expansion (1 - n)-tl" provides sevcral

relationships for Jaek p-olyuomialsn for Oa orample of which see (2'7) ou p' 29'

Lemna 5,4

Letting rFo(lla; s) = (1 - s)-tl" - [fu fli,yi, we haae

j-r/r \ | R, -aj+)-a Iu,-flo(;.n)fir and ffi:T
Lemma 5.5

Sapposc that, \7,9,12 > f6 > \t,bn - Then6': 1r,0,r, tor soT nc g suck that t ( s { f' I

Lemma 6.6

Proaided' thot s: <t,
u-(Io,o,r, ltd,r) : ru t h - 2s

Froof 5.6

Proof ir frorn Theoren 3.18 sn p. 94. I

temma 5,7

Far w Z 2t:,

e(Xr,6,,,) - c(Ir,a,o) - (f - r) [1 + a{u.r + b - (t+ r)}]

Proof'5.7
Proof is fton (3$ on p. 81.

tenma 5.8

14

t

o()t ,ap) - c(lr-r;a") f art(Ir-r,u.o, Aqar")

e(l",o,z) - c(It,a,r)
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re-t\Zt-w-b-1): i-r

Theoreu 6.9

Let (t -g)-\": EFn pif , define lci,y aa in Definition 5.9i let r 3t ( wf\,

set t : w - 2r *b. Tlten, for r <t,

i!(\rpr"Ato,r) : fr.-tffi
uthile tot r:t,

i*(\n",4'ro,r) -' Ps = L

Note that the particular ferm oJ v is irnrnaterial Jor this rwwlt.

135

onil

(5.?)

Proof 5.9

In order to simplify notation, set 7m(.tr7,6,,,I",t*) = inr", a'rn(Ie,o,,,nlt,a,') : tr/c,t &nd

c{}",1,u) = cr'

As,in (4.7} on p. 105, the cons,traint on the 1ff^ coefficients from tle colurnn in gO-

indexed by \,a beoomes

!-f:1

t i,;r+i wr4io : (c' - e') Y'"
i4

For s -- r *ln an application of temmas 5,6 aad 8.7 to (5.3) shows that

^ 
.-2r*b L 0

Jrf*L-@:A*T+L
thersby establiehing (5.2) when t = r * 1, since 9r. : L'

For the geueral inductive proof, suppose that

jr,r:O-"ffiffi'
for s = r * 1, .,. rt - t, tnclusive.

Setting s = t - l and s : t in (5"3) leads respectively to

t-t";2

t irsai u,41,t-r = (6 - e'l)r",t-r
i'=o

(5.3)

(5"4)
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and t-r-.L

t irr4i ur+it - (c,, - ei ir,r (5'5)

i--0

Noting from Lemma 5.6 that tu* does not depend on ?r, we ea;n sub'stitute (5'4) lnto

(5.5) to obtain

(ct - .q-t) it,t-t *jr,t-l ut-6t : (4 - et) j*;

fr-om u'hich, after simplificatiol using Lemmas 5'8 and 5'4'

b - at - 4-t *,wt-t,t - !h-'' :- y,-' -:), ,

Jr,t'-L 7-at - F*'-t s-(t-'-*)'

thereb.y establisbisg the result. I

To thie moreggnerat fra,rnewo-rk one can apply the slicingtheorens given ia $4'6.2'2'

The followiug theorerns are immediate corollaries of Theorems 4.22 anLd 4-24t

Theorem 5.10

Let p - (u-r)ua; l: (to-r)Ur, uhere to(o): ro(r) = r anilw-r 2'

max(h(o), lr;(r)). Then

i*(p, )=i*(o,r) I

Theorem 5.1!.

Let p= (rs - r) U o, A = (to - t) u r, utitht ,= u(r) 2 r = u(o) ) rnax(Ia(q)' h(")h

and, sagpttse that t(o) - I(r) = p. Set fi - @ - r - 1) U [o - (1p)]' A1 - (n - t -
1) u [r - (1u)J. Then

lT(,p,4) ,=- jn(p1, )i1")

Example 5.1L

In arcler to i;[.twtrat;e the tlieor,erm, let p: (u-2, 1]1)r ,\ - (u'- 5,3,2), zitt ': w -3'
llte"n,foruZ5,

i* (p,l) = r- ((t'), (r' - 3,2,1))

Setlnng w, to wn thc elements initrieutd, bU W il:n Table, 5.2 o,r4 Ewal. I
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5.1.1.2 consistency of Theorem 5.9 with the Knop-Sahi result

One consequence of Theorem 1.1 in Knop & Sahi (1997) is that in the expansion

Jo : Dxip;trL^, the coefficients 70,1 are polynomials in a with positive integral

coefficients. We exhibit consistency between this result and Theorem 5'9'

Inthisthesiswehavegenerallyused,IptodenotetheJackpolynomialwithin.
determinate normalisation. In the literature, however, the symbol J, is generally

understood to incorporate the normalisation given in Stanley (1989, p' 97) as

.TTT
rtr,.tr : II Jj - i+ 1 + a(Io - i)l (5.6)

(i,i)ep

where the product is taken over the points (i, j) of the Ferrers diagra^m fot p.

For this section only, clenote by 7 *u Jack polynomial with conventional normal-

isation, and by i ttr. Jack polynomial with the normalisation used in this thesis'

Then set

7o:lTo,*** and io:l?0,***

so that 7^,^ is given UV (SS), and l1; : 1. tutorrolr.r"l; ,n =Tr,ox'ip,^' We verify

that'i',, xip,u is a polynomial in a for p = )r,b,, and re -- )t,b,r'

For the partition (*-r,r-b)Uu,restrict the product in (5'6) to the finalw-2r*b:
r eiements in the first row of the Ferrers diagram, which is the part of the first row

jutting out from the lower parts of the diagram. Then

-i 
(\,,u,,).,b,,) : r,, ll [1+ CI(s - k)] (5'7)

/c=1

where .L1 is a polynomial in a, containing the remaining elements of the product in

(5.6). From (5.2), on the other hand,

? ()r,u,r, Ar,o,r) -- Lz x :J!=--- uz '\ 
|I]=lt" - i * *)

where L2 is a polynomial in a.

L37
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Flom the hypergeometric expansion given in Lemma 5'4

138

(5.8)

(t - r)t'1r-, 
-lnl-r t 1 \

Ili=r(t - J +;)
n}=n_G!_ - IIl=i '(t +"i)
|I]=1t"-r+*) - ili=lt"(r - j) + 1l

L3
one has

'i (tr,,u,,, At,b,r) :

where .L3 is a PolYnomial in a.

Ili:J't*@-i) +11

The maximum value of f for which the partition )1,6,, remains in standard listing, i'e'

in non-increasing order of elements of the partition, it lry], so that the maximum

value of. t-r it l;] . From (5.7) and (5.8) one sees that -i (\,,u,,, \,,b,,) x'i (\,,a,',)t,b,')

is a polynomial in c'

5.2 The iffs coefficients for ,\ low ln the RLO

Our approach to the operator matrix O* started from the top left hand corner'

and proceeded downwards by back substitution as in (a.7) on p. 105. For leading

coefficient unity, the ifrlcoefficients for low ) in the RLO are ratios of complicated

polynomials inT.o.

In this section we shall commence from the bottom right extremity of O-, consid-

ering how some of the 1ff^ coefficients behave for very low ,\ without first working

through the coefficients for higher ). We shall see in Chapter 6 that the rnl func-

tions tend to be of higher order for low ) than for high .\, highlighting the problem

that the terms for low .\ in (1.1) may weil dominate for large partition weights: but

our simple approach here can only deal with a handful of coefficients'

We utilise the fact that the Jack polynomials are known when all the variables

assume the value unity, and equate coefficients of the highest powers of n.. Combining

these results with constraints available from the final columns of the operator matrix

allows one to identify three of the extreme rightmost coefficients, using the final

coefrcient as numeraire.
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Let m1(f) denote the vallue of rm1 whern all variab'le.B as,sume the value unity.

Deftaition 5.12

Let ei(a,d,,n) ilenote the e7 fwnction euoluatd lor whm the n Pariables farin on

srith.meti,e pragttwsion, with f'wst memher a and eornm,an differenee d: tlttts the n I

wariabtrrx atrc a+ id,, wi,th i = 0r 1, ' . .,rt - L. I 
I

llenna 5.1S

ry-o*f,f"-tt (5.e)

ffi:{*tr"-1) + fiw-zxrn-1) (b10)

Proof 5.18

The proof reguires the following relations (Abra.moinitz & S,teguq (1964' eqnB. 23.1-4

and 7, p. S0a));

r , , ').. i,, _ r(r + 1)(2r + t), ir, == (/ir)' (b.rl)F;_r(r+r,)_,t:Ti ?=::7, F \i=r /
First note that

e1(a,d,n) = at (a + 4 + (" +2d)+ "' + (a + {n' - 1}d)

which easily reduces to (5,9) upou the;applicationsf the first of the relatioue (5.11).

As for tle second relation,

e.(a,it,rr1 :fi1" + jd,)fl tr**u)
J:4 &=i+1

n-2
: I(, +id)er(o + ff + rl4 d,tu -i - 1)

J{
which sinplifies to (5.10) upon apptying (5.9) and (6.11). I

Let,l1,1 : (1'h .lar = (?,,1'-e); Xzg: (2,201--4); and lsr = (3,t'-u); aad firrther

abbreviate m&(I) to na;g(fl' Jp,1; to Jiy and o;o to q;.
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Leinma 5'14

t l' 
- 

ur(ru - 1) 
mr-t +ur(tu - 1)(rr- g)(Sto - t) n -2 +O (**t)lnzrr(r):*tL*- 2 Lv ,-n'-+tr"iu./J,

mzr(r)= 

'|n 
[r,-' - 

(w - L\!n - 2) n -2 +o ("'-')] (5.13)

n|0-2
mwT)=fu+o(n'-3)

mB,,(I\: ffi*o (*'-')

Proof 5.,14

We have

rzr11(r) : ("\ : ( n 
"..) 

: W,.t \utl \u,t - utJ

so that

ar! rns(J) : f,tP - er(0,1, w\ r#-L + e2(0, L,w) nt-L a o (n',-s) ,

whiah simplifies to (5.12) up-on aBplying Leurma (5.13)' trn sirnilar vcin'

m'r(I)= (r, * - 2,1. - ut *r) = W
(ur - 2)l mn(I) = nP-L- er(o, L,w - L) nw-Q + o (n''-3) ,

which ltkewi$e simplifies,to (5.13). For the remainder of the proof, simpty note t'hat

m'2g1 -( ^):rz(n-1-)"'(n-ur+g)': \2, u-4,n,*@+2) - 2(w-a)l

nasr(r):(r, *-s,Z-u.r*r) :W r

Now, as ?? -l! oot

JnV) = iftrnur(I) + rfirnrr( I) + iWzzg) + i{r,n,.,,(t) + o (n'-s) (5'14)

When the n rrariates are. unity, Stanle,y (1989, p. 93) states that d has value

Jug)-.II ["- (,t- 1)+a(j- 1)] = n'+g1nq-\tngrnq-2+CI(nu-s) (5.15)

GJ)ep
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where the first equation is taken ftom Stanley (1989, p' gg), with the product taken

orrer the Ferrers diogla,m for p. The highest order coefficients 9i a,re found in Theorem

,5,?0, and in fact gp is given tn S-tanloy (1989, p. lOB}' One notes sonoe resetnblsnce

between (5.6) and (5.15).

Wb shatl use the coeffic.ient Jfi as nrrm'er'aite, and define

c*=t# (5.16)

Equating eoefficients betwoon (O.fa; and (5.15) wiu give ru relations (5'17), (5'18)

a,nd (5.19) eoncemiog the four jp; eoefficients singled out above. Ftrrtter relations

(8.2A) af,al (5,23) are obtained from the eonrtraints implicit in the fioal 2 eolirnns

of Op,r.

5,2-0.1 Equating cofficients

Equating eoefficients between (5"14) and $.fS), Md utilising Lemna 5'14, one ob

tains' the followiug equationst j4 _ r (b.12)a:i
(5"18)

(5.1s)

S'i:rrplification of (5,18) and (5.19) Ieads respectively to the following equations.

-Lrt{zt- ,* *^

- (sr(u - 1) + (u@ - 3) + 2(sr

'L *!-=s'-ffiT1*-211 -

r,r(3ur- t) _ibl@-f) - iu . +, i!r=r: 
=sz-rffii - @4 - 6- 1to'- 311 - v'

141

3u-1 2ge
=:@(P)

(5.20)

(5,2x):
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5.2.0.2 CoustraiotE hlrpliclt in the tvro final colurnnE of Offt

t-emma 5.tr5

cxl - wp-ry amd ctt: ey1* at* e - I

Proof 5.X.5

Proof ls from (3.4) on p. 81. I

The constralatg irnplicit in the .lzrth and .trrrth columne of Ofr are

3(to - 2)-rsr + ftu - z)(ur - 3)jzz = i:,'lj(ep- zr) (5'2?) 
i

w(w - 1Um : jrr(cp - cu) (5.23) I

Applying (5.29) and Lequa 5.[5, tbe equation (5.23) roproduces (5'20), while (5'Z.2\ ]

besom-es

3(sr* (*-4en:e,,(#.?) F.24)

5.2.0.3 R,easeem.bling the jigsaw

Solving (5.?1) and (5.24) leado to the followilg theorern'

Theorem 5,tr6,

Xhe eoffieients (m, {m andtsi. aIE giaen hg (5.20)'

i,,-B)czz;:du +fr-ffi W (srb)

whe,re u1q le the l,slhdng faetorial; 's,nd

r-. _1 _ gr - 9{ - e _hge- fi(fi- E)i (6.26)(sr: 6- Zr* .ffiZy - ,1.r)-
t

The solutions, in Theorem 5.16 become ratier morp tractable for partitions p of

teagth lee tha,n 3.

L42
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Theoreih 5.17

Wen t(p) 32, g -r"--a*2a*1 -t21:- 6

or eEfi,ualemtly, fra,m (5.16),

ja,r - &jzt : izt- 
(o + t)r(o + z) 

,r,

Proof 5.17

Subtracting (5.21) from (5.24) ;'ieltls

{r, - 
3'r; 1 *Czr(u- 1) : *' (#.+) - #

Fbom Lemmae 5.18 and 5.21 one may write

C"-H
a*1

= T[a(u + 1] - (,r, - 1)l + 
ft,?"*rzl 

* d+e+ L - *l

- 2 
lhr".rofsu - 1) -75o,rs4 *tUAtO # ,,w- 

" - t)]w'1e1 Yz+

SinPlif irg, one get-s 6 r

Car * (42 - t)o'it t

a*1,.
= T1o(ro * 1) - (0,, - r)J+ fiW+1 - 4 - #( 

mI) -a - 1)

:+[a(u + 1) - (, - 1)]- (* + r1_L $.27)

Fbom (5.30) and (5.38) one has

O _o*L _r^-
rx(2) 2 -s21r

substitution of wbricb iu (5.27) completes the proof. I

Lremna 5.18

wken l(P) < 2' 
'^' 

( n'-- o- ' - 1\szr\ur, _2_ Z )

143
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a*\n,: 
TL@Uu+ 

r) - (* - DI + hl-r*rzt 
* 6 * a *1 -'] (5'28)

Proof 5.18

The proof ernploys (5.20) and (5.38). The result may be verified using the code in

I
$5.2.2.

Theorem 5.1.9

When l(p) {'2,

en-ft** 1)' + #--# 1,, - 
2)' -H. t]

Proof 5.19

Summing (5.25) and (5.26), simplification yie-Ids tho result'

Corollary 5'19

When p - (al:,

en-!(*+r)0.

Theorems 5.16, 5.1? and 5.19 octeud results in Roberts (1998r $6.5) to general values

of a.

5.2.L Finding the values of 91

We Eha11 give two ways of findiug the 91 ild g, coefficientsn the second of whie,h is

to be applied when t(P) : Z"

I
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5"2.1.1 General aPProach

Theorem 5,20

Faf P:= (f1nr2, ...), define

@m{F
A:E*r; A:Dr?i C=Et'""'

a-l c=l

145

c=1

,:i*3, a=f'3
.s=l s=l

ete,Far p': (r{, ri.,...), de$ne s,irnillarly ar :l,sr!

Thcn, dm the erpansdon (5-1:5),

gz: gtr -
Atrsp we nate tkat

gt = ap - (n -1)ur = ur(1 - a) + aA' - A

(C + uz7') + 
"1o 

+ A) + (a - r)lzsr * (a - l)ur1

ZA,:B*w g'-LrE*f,"*t,

(5.2e)

t5.30)

(5.31)

Proof 5"20

F,bem t6i,15)

s,: Et-ft-r)+oft-1)
(f.,)€r

wh.ere the,sumrnatisn is ovel the cells of the Ferrers diagrarr, The frnal equation of

(5.29) follorivt ftom the relations

i= A a,Ed r
r'l-)€r

j:A'

Fbr (5.30), note the following relations

E E d=A(ur-l) and E E i-A'$n-l\ (5.32)

(t/)€f ft,,)€A (i./)€l (tsl)€r
tlit*inct pain of cels tliatinct' pdrq of osllb

E t ik:Az -c and t I i;I:AA'-iro+D)'
(ij)€r(e,4€l 6i)€r (ft't)cr

dtstinor paio of celts distitret pairE of ceus 
GJS)

Now (5.30) *d (5.31) follow from (5'32), (S.Se; a,nd (6.11)' I

E
(''d)€r
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6.2.1.2 Approach suitable for short p

Wb define

146

and set

- rr(rr - t) ; g\z: _rz*oTz(tz.:\ ,gtt:oT

'ts- 
-z,*+- ry, c-bc.

r-2 r-[
G(a,u,r)= f(r+ra) I tt + kot

(5.34)

(5.38)

i=0 ft=jtl

which can be evahrated ftom Lemna 5.1'3 as

(5.35)

One hae in geueral

and

gr:g.tt*gtz*grs*... (5.36)

9a = G(0, onrr) + G(-1, a,rz) * G(-Z,,a, rs) * . . .

*rtllrz* 9u9ts * rluqts + "'
But rrith ra : 0n

(o"sr1

A\t-.tAr
9r: 9t * grz'= i*@ - 1) - r2(t + ar1) : latpl - d

where

# - rz(I- *rr) . (5.39)

The baeie result for gs is the followiug.

Lemma 5.21.

Illlhen 1:\p\ < 2,

1_11
nr: ho'urqal(3ur- 

1) - lrolwpl|+ d@*aw -a- 1) (5.4r))

Proof S,.21

The proof is a.straightforward but tedious rnanipulation employing (5'35)' Maple

eode enabliug verification of the reeult is included in $5'2'2' t

ffi :f,n*b- r) + tin'* 
ho'v- 2)(Br - 1)
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Iu Chapter 6 some evidenoe is presented ts ehow that nr,r ftrnctions may be of higher

.order when A is lorr tn the RLO, so that tfu ifrr coefrcients,may assuno greater

iinportance when A'is low. The simple methodolory, iu $5.2 would however be hard

p-ushed to provide more coefrcients $; Ior.\ at the lon'er ottremity of the R'LO'

5.2,2 Supporting NIaPle code

Some obvious abbreviatious Are made, e.g. 0 is written as o in the eode,

6,2.2.L Maple code fsr Lenma 5,2L

The code urilises suecessively (5.35), (5.34), (5.38), (5.39) and (5.37). The rmriable s

is defined from (5.40). The final two lines in each case indicate t'he reeult of inputting

t-he preeedlng eode into MaPIe.

G: =(x, a,r) -> (a*x* (r-1) l2+x-'2/2+a'2* (:r-2) * (3*r-D /2$ *r* (r-t') ;

911:=a*r1*(:1-D 12;

gl2 : =-r2+a*r2+ ft2-D / 2 ;

91 : =glt+gt2;
pbi: =r2*a+r1.*32;

wl=rtf,r2;

92 : =G (0, a,r1) +0(-1, a,r2) +gt l.*912 ;

,' =!Q,*g2-a^2'rw* (w-t) * (w-2) * (3*w-1) +12't'a*w* (rr-1) *phi

- l!*phl* (phi+a*w-a-l ) ;

s'inp ify(z);
> si.upLify(z);

0

L47
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5"2-2.2 lvlaple code for tetnma 5.L8

The code utilices:suceEssively (5.34), (5.38) a,nd @.e$. The variables lhs and rh,s aro I

an obvious notation from (5.28), sav€ that they have been multiplied by a constrtnt' 
I

148

g11:=a*r1*(l:_I-Ll /2t
gL2 t =-r2+axr2* (r2- L) / 2 ;

gt:=9:11+912;

phi : =r2+a*r1{,r21
u:=tL*t2i
lefths : =w*( -1) * (w-2) * $ l2tgUwl (v-1) ) * ( (gl-a) / (:g.?) - (v-D / 2) ;

r,ighths 1 = ( f+a) *s* (w-1) * (w-2) / 4* (a*(n+l) - (r-1))

+phl* (-a*r't* (w-1) +phi+a+l-lr) ;

simplify (lefths- igbths) ;

> s.inplify(lefths-righths) ;

0



Chapter 6

Evaluation of the ms functions

6.1 Summary

Most of the work in this chapter is effected by an expansion of. ams functions in p1

functions, proved as Theorem 6.1. This facilitates the calculation of rnl functions

when the variates assume a geometric progression, for the pr functions are then

quickly found. But it also enables us to investigate the rnl functions when the

variates stand in arithmetic progression, at least as far as evaluating the higher

order behaviour is concerned.

From Corollary 6.9, for variates in arithmetic progression, the asymptotic behaviour

of. ms functions is given by rt,,, : O (ne!)) as n. -+ m. For variates in geometric

progression, and letting n -+ oo for a fixed ratio between successive terrns, the vector

M of. rnl functions behaves independently of /(,\) at the highest order; but then

Ietting the ratio of one term to the next -l 1 means that the dominant rn1 functions

are those for long ) (low in the RLO), according to Theorem 6.15. For more general

variate behaviour one has no particular results. A little tentatively, one can perhaps

say that there is some evidence that rnr functions are of higher order when ) is low

in the RLO.
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6.2 Preliminary

According to standard results on transformations from one set of basis functions

for the symmetric homogeneous polynomials to another basis, the expression of nr,l

functions in terms of p1 functions can be accomplished in two steps: for instance,

the transformation from rnr functions to s1 functions involves the Kostka numbers,

and the trausformation from sr functions to p1 functions involves the character table

of the symmetric group (e.g., Macdonald (1995, $L6), Stanley (1999, ch. 7)).

Macdonald (1995, $I.6, Ex. 10) mentions the transition matrix from the p1 basis to

the arnl, essentially derived as a variant on a matrix of Kostka numbers, but our

Theorem 6.1 seems simple enough to derive directly.

Our first result Theorem 6.1 utilises a simple application of the inclusion exclusion

principle to prove an expansion of the ornl functions in terms of the p1 functions.The

expansion has the additional virtue of being relatively parsimouious, at least in

comparison with the standard determinantal expansion of e1 functions in terms of

the p1 functions (e.g., Macdonald (1995, $L2), Aigner (1979, p. 163)). The latter

expansion contains terms indexed by partitions of ,\, whereas our result contains

terms indexed by partitions of /(.\). The main theorem is proved for indeterminate

variates taken to indeterminate powers, although in the appiications in later sections

of this chapter we shall restrict those powers to be integers.

It is an easy application of Theorem 6.1 to find the rnl functions when the variates

stand in geometric progression, since the p; functions are then readily calculated;

and it is an easy extension to let the number of variates become infinite. Before

then, in a less obvious application, Theorem 6.1 will also be used to evaluate rn1

functions when variates assume an arithmetic progression, restricting ourselves to

finding higher order terms only.

Let a, a*d,, a*Zd,, . . . , a*(n-I)d be the rz variates in arithmetic progression. The

first situation investigated held d fixed as n -+ oo, so that the range ofthe n variates

also becomes infi.nite: while in the second case considered nd was kept fixed, so that
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the range of the variates remained constant while their number became infinite' In

the former c&se ?nl :O(n') and in the latter ca's€ 171'1 -O(n'+t), where r: ('(\)'

In either case, then, one can expect that for large n the most important of the jff^

coefficients will be those for long partitions ,\. That is unfortunate, in that the most

difrcult coefficients iil to calculate are those with short p (high in the RLO) and

Iong ) (low in the RLO), since these are the end product of a long sequence of back

substitutions; otherwise expressed, [p, )] supports many d2 chains'

Before starting the subject matter of this chapter, it is perhaps worth noting that

while variates are anticipated to be non-negative in most statistical applications

of Jack polynomials, calculation of both the rnl functions and the e1 functions

simplifies greatly when variates are symmetrically placed about 0: Theorem 7'1 on

p. 166 refers.

6.3 The expansion of aTn^ it p^ functions

In this section it is convenient to extend the definition of pi : Dit d to quantities

j which are not necessarily non-negative integers. For a vector u : (i, i,k, . . '), we

write interchangeably P.t: P(ti,*,...): p(i,i,k.,..') : p(l')p(i)p(D "' : P;PiPx""

Further, let,9, denote the symmetric group on r symbols, say the integers 1,2, "',T,
so that the action of s € ,9' on i is given by si = s(t)' Finally, when A is a partition

of length r, the definition of am1tr,tr,...,t") itr (6.2) is consistent with that of amx given

in $1.5 on p. 15.

Theorem 6.1 is valid for r; and tr. being indeterminants such that the usual rules of

exponents are followed. That is, fli ,'1 i"well defined, fli s'b : aD;ti, n0 :1 etc'

Formally one can proceecl to define a Z-modttle X containing finite linear combi-

nations (with integral coefficients) of elements of the form dt'd1" . . .nT , in which

jt e J; and where J is an additive abelian semi-group with identlty, viz. zero. Thus

i, j,k € J implies that i *i : i+i € J, (i+i)*k: i+ U+ft) and i+0:0+i :'i'
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A product in X is defined bY

nnifr'; ...r'; x dr'dr' -. -rr; - *l*i"?*iz ' "az"*i"

When ji:0 for i e / g {1, 2,'' .,n'}, we abbreviate by writing

n

ll,i' - fl'1'i:1 ial

Thus X is the commutative ring with identity generated by the elements { for

i : 1,. . .,'tr, and I € ,I. The identity it III=, rf , and we adopt the convention that

0j:0 for all j € J.

We work with X 8z Q, thereby allowing the coefficients to be rational numbers

(see Atiyah & Macdonald (1969, pp. 1,24); and curtis & Reiner (1962) and cohn

(1989), say, for fuller treatments of the tensor product). In fact the only elements

of X arising in this section are those with at most r indices non-zero. Should r ) fl,

one can augment the set of indeterminants by r - 7z zeroes.

Theorem 6.1

Let X be a cornmutati,ae ring with iilentity generated, bg elements of the fomn d, for

i :1,. . . ,n and j € J, where J is an ad,d,iti,ue abeli'an semi,-group with identity' The

product in X i,s defined' as in (6.1).

Define,,augmented monomial symmetric functions" os follows:

Q,TT1711,12,...J,) : t nlt nlt nl,*'lt-"'!2 " ' *"1.

1r,'',f2.-''lt=L

where the "d" und,erneath the summation si,gn i,nilicates that only distinct aalues of

the i,ndices Ji are to be used,.

For x,: (kr, k2,...) | r, where n i's listed in non-increasing order,

Ei=r ki for i < ('(n), with o*(0) :0' Then

set o*(i) :

a,Tr,(t1,t2,...,t,) : t 
(-1fl'l+" 

I fi r (ls(o"(j-r)+ri * 1"1o*g-1)+2) + "' + l'(o-(r)))

nrr pE 
s€s, j=t 

(6.3)

L52
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in which p(i) : pi : D:=rxi; terms in the right side of (6.2) and (6'3) are to be

i,nterpreted, as elements of X }nQ; and where z, i,s d'efi,ned in $1.5 on p. 15, and

i,s in any case giuen below i,n (6.1. I

The am1tr,rz,..,t,) function reduces to the falling factorial when ali variate values are

unity: see Example 6.4. In particular, amgr,tz,...,r") Vo,nishes when r > n'

It is convenient to decompose z" as follows.

153

o : (1-t ,2^,,.. .) + z*:n i^i mi! -- #ffi':fr (64)

in which the multiplicity rn1 : mt(n), as in $1.5.1 on p. 15. The constant zn is

expressed as a ratio of 0, and y^ because in the conventional setting out as a sum

of brackets of similar terms of "type" nl r, the brackets contain rt f y* terms, while

0,. is retained outside the rcth bracket as a weighting factor'

Some definitions and examples are given before commencing the proof-

6.3.1 Definitions

6.3.1.1 The concave map associated with a partition nl r

For rc : (kr, kz,. . ., kr) F r, where rc is listed in standard non-increasing order with

(,(n) - t, defi.ne a map

o^ : {0, L,2,,...,t} -+ {0, 1,2,...,r}

bYi

oo,i,: o^(i) :D*t for L 3 i < t; and a'0 : 0

J=1

In particular o*t = r. Associated with such a map and a vector (h,Lr,...,1') one

defines the function

Qo* : P$t +... * lo"r)P (lo*t+r +' " + lo.z) "'P (Io^$-r)+i * "' + I')
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e(r)

: fIP (L*,tJ
.}=t

Ln,i :lo,.U-t)+t *,, . * 1",i.

(6.5)

inwhich,forls j<{(n),

For s € ,S,,, and writing so'i, tar s (ai), one further defin'es

LEo,l - lo(o,0-r)+11 * .. . * trtroi

qson:pficr *.., * lcr,.r)p(lo(oor+r) +.,, + loo"g) . ..g,(Irb*$-l)+r) +...*lro)
{(t')

= fIP (f,"*,i)
i=1'

ti.3.1"2 The nth bracket B"

The mth bra*et is defined a,$:

Bn:l I o-". (6.6)
a" 6,

The number of mouomial terrrs iD E- rs. rl.fg^- whioh is the number of ways of

ehoosing subsets of sises, lr+,kzr. . . ftom u(n) : r objects, There s,f€ aecordingly no

duplicat:es of monomials in B*, unleee different Buns of distinct terms of the vector

,(11,12, ... n lr) hapBm to coincide, as illustrated in Exa,mples 6.4 and 6.5.

Ffurther defrnitione are given at the begiruing o{ $6.4.

6"3.1.3 Rephrastng Theorem 6.tr

The equatiou (6.3) can aow be rewritten more compactly as

ffi(rt,t,o*.ri : E #*4 F_r 
(r,*,r) : 

E ryf e**

= (-l;'wl*" 0* Bn

154
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6.3,2 Examples

Beiore proceeding to a proof of Theorem 6.1, we illustrate with e.xamples.

Example 6.2

4rn(6,1) = t-'??(6,r) : i

155

afni: E "ftr-D nI:pan-w I
t*f=l 'i=1i,j=1,

r*i

Example 6.3

o*o

I

rlt(i,z,t) =luta:vis& - t vlu?u*- E @iut + u'nsi + sfsi) + zluf ,

which he.eortes

r,rl1,2;t) = p(s,2it) - (p6,r) +pVA*pF,4) *}Po

Exarnple, 6.4

&rn\,i&il - pipipkpr

- (Pi+,tP',*Pr * Fi+aFlPt * F;+tFiFr, + pi+kpi.pt * Fi+tFtPn * px+l4iPg)

* (Pi+tq*+t *Pi+rrqi+t * P+t4i+x)

*Z(p+t+nFt I Pr+,,i+tpn * P**+tPi i pt+*uq;I - 6pr+r+*+r (6'8)

Tk.e braekdcil, wpressiow, togetlter atdt;h the first anitr lwt te,rtns, are inilw,ed bg

m: (14), (2,1,1), (z,z), (S,l), (4)

resBe*tinehg, Re"cal,Xing the d,efinition o! tlw nth bm.eket in (6,6)t equation (6,8) isr

reea,st os

a,rnie;,it9^t): 811"1,r,11 - Bqz,r,r) * Bp,z1* ?86r,11 - 6E(4) (6,9)

In the Edaen (tredcagrapfuie) a:rdar af tenns in (6.9), the a'alaw of y* are 4!,4n 8, 6,4!

and those of 0* are 1, 1, 10 2,,6 respecti,aetrg, Th,e mamber of tet:rna wi'thdn e'aeh brocket

i,s 4!f9", ond the r.snatants outsid,e are 0*,
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The term pi+j+npt in the (3,1)th bracket, for instance, 'i,s correcti'ng Jor the terms

aboae it a! the lorm p+ipxpt, Pt+nPip1 and' Pi+xP;Pt i,n the (2,1,1)th bracket as well

o,s pipipkpt in the (1,1,1,1)th bracket'

Note that the cofficients in (6.8) and, (6.9) are consistent with the falling factorial

etpansion

n@) : n(n -1)(" - 2)(" - 3) -- nn - 6n3 * Ilnz - 6n' (6.10)

The erpansion (6.8) red,uces to (6.10) when all aariate ualues are unitg, and' naturallg

aanishes when n < 4. In (6.9) there are 6 entri,es in Bp1,r1, 11 entries in Bp,z1*

ZBp,q, etc.

Example 6.5

Set \ - (4,2,2,I) i,n EtamPIe 6./1. Then

aTn s : Zmg,z,z,r) : t glu?yl,at : P(4,2,2,r)

i,jf J

- (2p(u,r,r) * p$,2,2)* p(a,a,r) * 2pg,z,z;) + (2p1o,sy * p(s,a))

*2 (P1a,ry * 2Pg,z) + P(s,4)) - 6Ps I

6.3.3 Proof of Theorem 6.1

Returning to the proof of the principal theorem, the logic of the proof is that of

the inclusion exclusion principle. The left side of (6.3), iz' arn6,i,r;;, for instance,

contains monomial elements ,n.fr.. . in which no t,r variate repeats, so that there are

nG) : n(n - 1) . . .(n - 3) monomial elements. The first term on the right side has

elements of the same kind, but the variates can repeat, so that that term contains

n4 monomial elements upon expansion. The succeeding terms on the right side serve

to subtract those elements which appear in the first term on the right but not in

the left side, and then to compensate for the over-colrection etc.

The proof proceeds as if the vector (lr,lr,. .. ,1") had distinct components li' But

the equation (6.3) is an identity involving /r, 12,... etc., and is valid whether those

156
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courpo'ents are distinct or not, The expression (6..8), for iustanee, is \nalid for general

i,, i, h and I regardless of whether they happen to coincide or not.

Prsof 6.1

Ftom (6.On let

ditr\(t1,tz,".Jr) = 

' 

(-!.f"1+" r!* Bn,
rFr

so that the aim ie to,show that rl' - eo. The startiug point is that ** - 0' wh'en I

ro(n) < 4, as ie,evideut ftom Examples 6.2, 6.3 and 6,4. Suppoee now that rpo : f,*

for ta(re) < r.

Forl(u(rwrite
&Fll(;lt,trzr,.,l,+r1 : ,@TtX(!7.12r.,.i1u1 X @/'J'l(tr+r,L+:,...,tn+r) * X*' (6'12)

All terrr.ls in X" have exponents combining at least one element of {Irrhr..',1'}
with at least oue element of {l*a1, lu+r,.. - ,lr+t}'

First sot 'ut = r. The equation (6.12) becomes

o'Trl(lt,tzr.qtng:@fflql""ts,...l,) XFt"+r +X"' (6"13)

Regardi+g Jo and t, as distinct for unequal u and 1I,, ffi diseuseed in the preAmble

ts this prsof, one caa state tbat Fh+, fu uot a factor of X''

The equation (6.13) becom:e

I t-r)n'ir)+r+1 thn B*,: (t,-t)6(r)1'; ',/""") x pr,+r+ x' (6'14)

rrt-rfl \"F" /

Equatins coefficients of {a* X PL+r in (6.14), for rc F r one has

dnu(r) - M*'

But f" = 0" by the inductive hypothesis; and ru(l) - 0:*, so that

dru(r) - 0reu(11'

The argumeat gencralises imm€diately' ll/rite (6'12) as

ar1tr{lyntx,-.1;4n}=@?r}(lp,tE-.,,to)x[(n-u)!p(lrra1*1"+s+"'+I"+t)#y-]+X"

(6.11)
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where P(lu+t*Iu+z+...+I"a1) is not afactor of Yu'

For rFu, we equate coefficients of Qo*xP(Ir+t*lu+z+ "' +l'a1) to see that

dru(r-u+l) - (r- u)14)"

But r/' - g' by the inductive hypothesis; and d'Lr11-u+l) : (r - u)!0^, so that

dru(r-u+l) : 0rcu(r-u*l)

forallu,Llulr'

6.4 Behaviour of the aTTLs functions when the un-

derlying variables form an arithmetic progres-

sion

For the remainder of this chapter we assume that,\: (lr,Iz,...,lr) F ur, so that

fu € Na for each j. In other words, the set J in the last section becomes the set of

non-negative integers.

Definitions 6.6

The timiting processes lor the ari,thmeti,c progressions in $6.1 inaolue rz -) oo with a

and, d constant on the one hand,; and, a anil, d,n constant on the other. In the former

case, the parameters arising are Cs,i and, C1,i, which simplify substantially, as shown

for instance in Theorem 6.11. The second, case sees the analogow ernergence of Ds,i

and D1,1, for whi,ch there i,s no obttious simplificati'on'

I

For j € N+, and with nts r anil t -- ['(n),

c 6i '"/ d\jo,i: 
I.t and Ct,i: d'-' (.o -;)

J:T
/-t
i=O

D\i:l tf'* nd)i - ailDo,j (n)"'-''"df #r and'
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^rtttlr0,,: /--fr,Ct,r,*,l ani! Gr,,, = E ICt,E*.'il Co,Lo*,i

g€5r li:l se5; tsl tR

t
ff'',* = D ff Do,ro',, end

c€Sn j=l

tf
H\^=E E DL,L,n,in,Do,t'"^,t I

s€So d=l i=\
tfr

Lemma 6.7

For j € N+,

H *, = ?i:, -* * o @i-t1 (6.15)

?^ J'+1 2 \

The praof is fu,nrneildate lrom ahram,owitz I Stegun (1964, eqrts. 23.1.4 and T, p'

Agil. W*n j :!, the final tenn i'n (6'15) is redandunt' I

Lemma 6.8

We eansiiler tuta limining processes: lor the first a and d, aw' fiAed', and' n -l oo;

whdle foi the second, a and nd, are fr'sed, so that d, + A and n -) oa'

Lemrna 6.8(a)

Let a and' d, be frned'' ond i € N+' Than, as n -+ @,

# : #*d': t, - *] + o fu-z) - cai *+ +o @-2) .

Leurna 6.8(b)

Let a 'amd, dm bc fr'xed, and' i G N+. Them, a8 n -> &'

e,= i (1)",-'," q' #-L- # E ({),'',*)' 
+o (n-\na

j./;\ 1 r ".=I (1)",-'t"d)'# -fr,1(a+nd,)i -oif +o(*-')
i=o \?/ 'I''T

- Doi *+ +o b-\ .

li
I
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Proof 6.8

n, - H,u + kd)i= fr;; (1)n*'a'r'

in Which 00 = [. Reversiug tte order of sumr'nation, an a,pplication of temna 6'7

Yields r r,r i,r-l
pr:Df .loi-'a'Iro

n* \t/ 7;o

: nd *t io,-an(,, - 1) . t (to).t-'ul# -+ *o (,'-')]

. r .-i'n,t',., dj I n 1 ^r--r.'l: na,r + -liai-ran@ 
-1) + i (t,)"n'*r' L+ -i*o ("-')l I

FZ

Theorerm 6.9

["et ),F ur, 4(.1) - t' For a awl d ftseilo and n -]'oo'

trrn;_In tlt 1- ta-...,-.,"-*r)+Afu-2) (6.16)
#n: i Go,,t', *; [;i Gr,(r') - @ 

Gs'(n,n ,/ \ r

For a anil dn fr,nd, and n 4 oon

T:i *,,,",. * (i rrr,(rn) - # r-{o,rr,''-oy) +o @-2) (6'17)

Proof 6,9

Firet, for d constant and wlth X =' t(n), one has from (6.5) and Lemma 6'8(a) t-hat

, 9!,n 
= 

P (Lai q (L",?\,':' P (L"'t)
*u+t - n1/,+t

-+l,.-- -c'&*r* \: 
I+ t'o'tn

+^ ,1nt t
: 

H".,r,. 
,,,,+ ; D"r*^,lItoo,,o + o (*-')

Jfl

Flom (o.o), one may write 
Un Ba_ 5-. ncqn.

'.i= fo,ffi
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Fiually, from (6.tt) one has

ctrn'i-E (-t)*t*' ,nBn
*Fr

161

:H("',,r', + I Grlr',) -; 'ffiG0,(2,r'-') +o (n-2) (6'18)

tl t \ L n:i1"o,(rr1*}c,'o,l)-@('0,(2,1'-2)+a(n_2)|
lrhich simplifies to (6.16). The proof of (6.17) is analogous' utilising Lemma 6.8(b)' 

I

I

Corollary 6'9

Ier Ats w, Far a and, d fi'td, anil as tl -) oo'

trt's -- O (nu''+4r)1 '

Far a anil nd' flfred,, an;d ae n -| oo' thi's becomes

rn\= O (narl1 '

Tkus in either mse the longer partitions ), haae ms functione whi,ah are oJ higher

order tlwn sh;afier pwl;itions os 1?, -| oo. I

Lemna 6.1O

Define

nr= * EU [1+1"1o*19-1)+1) +lc(o*(r-1)*2) + " ' +1,(o"0))] 
1

g€.9r i=l

rt:: tfltt *L,*,i)-l
uE sel, i=L

=,8, fi"*oo^,. *"p* $ar* fi'u,r"-,,+o(n-2)
:Go,'*1"r" +o(n-2)

ant\ :F f-f)r( An 0-_ *AO!:
nw+" - /-t \ Ll 

Uo Tlr-t " nw*t

Then

Go,o: Pg*r*

(6.1e)
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and,

Proof 6.10

First note hom Defnitioru 6.6 that

tt
fI Go'".n'' = II
.i=7 t=tr

and

'Ttien

Ch:erylte.r 6. Iieigh nobertq 200X-

H:ryG-g)

6Lrn,i,

-:

Lo*ni * |

: # V*r*

(.6rp0,3 * 1)

I

I

H--+('-lY,
Go," - 

F, go",Iu,n,i 
:t nilh

audtt
G\*: I Icrn&n,,i f,f o&&.'

e€.gv i:l fi

:E**I1"*'-''
:ED.#("-f)

r€5" tt=I

-a'-,@*o ( -*) !xfx

which reduces to (6,20).

Theorem 6.11

Far a and d fr,6ed, and as fi -f oo:,

W: 11r) I,.T(" - g)] - 1,e,,.-21 
* o('-')

Froof 6.11

The proof fullows from (6.18) and Lemqa 6.10.

L62

(o.ro;

(6,21)

(tr"*,r'* 1)
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Example 6.12

For the uector (\,12,Q),

1f11,1,1;:6

t1lr1z,t):m+6*6
1

18):p'+lF;-.11
As in the d,efiniti,on of B* in (6.6), the factor of yi' ensures that there are no

d,uplicates in r* unless di,fferent sums of distinct te;rms of the uector (h,lr, ' ' ' ,1")

happen to coincid,e. Terms ari,si,ng here naturally mirror those arising in Example

6.3. r

6.5 Behaviour of the aIrLA functions when the un-

derlying variables form a geometric progres-

sion

163

It is easy to apply Theorem 6.1 when the underlying variates form a geometric

progression, since the values of. pi are readily found for this case.

LetthevariablesbetS-ri-Lfotj:!'2'"''n'Usingthestandardformulafor
summing a geometric progression, from (6.3) one has

arrl(\,t2,...,6) : t ry:,p* I, (L,^,i)

:, (-rXt^r+"t11t=ti"!, 
rc.22)

fr, zn *-s";j L - L-'

Example 6.13

Let then uariables be {xj : j:0,"', n_ r}' Then' from Etample 6'2

r"$r):PaP,-Pz:(#) (H) -(=#) r
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Theorem 6.14

Let A: (lr, 12,.. ,,,1r) fu urittcn in stanilard rwn-inereasing m,iler, so that in partie'

ular l(\),= r. Let the aoriates, be {ni : j :0, . . ., n-L}, sttd aet u= f,j=.fu'- 1)l;'

Tlten, e,sG+A'
arrbT--slu+O(c"+1)

Proof 6.14

Flortr (6,2) the lowest Bourer arisins in the summation will arise when s'r : 1 is

as$ociated with h, 8a - fi wit! 12, etc', giving riee to the polrer u' I

6.5.L Infinite number of variates

It is convenient simply to let the number of underlying vaiiates beeome iirfinite, for

w.hich the numeratsrs of the expressions in (6.23) eorrespondiug to F(Lon,i reduce

to unity. 'We simply note the following.

Theorem 6.15

Let .),: (lrn lz, . . ., [") F u. Suppose that the uariates fonn' an infinite geornetric

prvgressiomf , Jori= 0,1,2,.. ., udth 0 < r <L' Then

(1 -o1e(x)r*^*# as n11,

Prsof 6.15

Notingthat 1 1 1 -.
G*jG aa n/'I',

one se€s that the dminaut bracket in (6.7) on p. l5-4 is that for the lo4gest partitiou

n: (1t), which coutains the single term pt,pIEpI, . . .. Then

r. lt
Ftr9tiPrs.. . - 1;6 fr iJ "'

1.11 ( 1 \t(r)- E6-a ' \t - "/
un lL, I



Chapter 7

Evaluation of the es functions

when variates form a geometric

progresslon

All of the e1 functions remain of the same order as n -+ oo, at least when the variates

are positive, and bounded above and below away from zero: for then e, : O (n')

as ?? -+ oo, and et : o (nr). The vector E of. e7 functions behaves in the highest

order as a constant vector times n'. For the rn1 functions, in contrast, there is

circumstantial evidence to say that rnl functions are of higher order for '\ Iower in

the RLO: see $6.1.

The er functions are relatively easy to calculate once the variates are assumed to

follow a geometric progression. Less complete results are available otherwise, except

for the artificial case in which variates are symmetric about the origin, when the el

and rnl functions simplify. This situation is quickly disposed of in the first section,

which is the only part of this chapter in which variates are not assumed to stand in

geometric progression. The evaluation of e1 functions when variates are assumed to

follow an arithmetic progression does not seem particularly tractable'

165



Jack Polynomials, Chapter 7. Leigh Roberts, 2407

7.L A tangent: when the variates are symmetric

about the origin

As a prelude we consider briefly the perhaps artifical case for which the variates a^re

tr; for i: L,..,tffii where m: n/2,, with n, even, and n, is as usual the number

of variates. In this section the variates are not assumed to stand in geometric

progression.

The e; functions simplify substantially, and to a lesser extent so do the nel functions,

as noted in the following result.

Theorem 7.1

Let ri > 0 for j : L,Z,"',m: nlL, with n an euen i'nteger; and' with n:
(kr,kz,. . .), let 2n - (2fu,2k2,.' .)' Then

e2*(l.ny, *rz, .' ., *:n*) : er(-t?, -,3,''', -*L)

For parti,tions A not of the form 2n for sorne K, i.e. for which not aII constituent

elements o,re euen,

e1(*r1, *rzr.. .,tc-) - 0

ms(tx1r*r2,..., tz-) - 0

Proof 7.1

For the variates which are symmetric about zero, aly monomial fr!Y, where Y is a

monomial in the va,riates fi2t...,fr^ and. k is an odd integer, is offset by (-r1)k Y.

The occurrence of ri must be balanced by an occurrence of. -r1to contribute to

the e1 function.

7.2 Calculating e": one can assume that r n12

For variates standing in geometric progression, Theorem 7.3 allows us to assume

that r < n/2 without loss of generality. That theorem is in turn a direct corollary

166
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of Theorem 7.2, a,ud is illustrated in Ex-aurple 7.4-

167

ln this scction we Consi er the variates to be st for i, € It where the index set fr = J

is a multiset (that is, multiple values are allorned): -[ = {fr, 'i2,. .., a,r}, where d; € trR

and whele without loss of gene-rality $re assume that 'di ( i6 w.hen i < k' We set

I * a : {it* a,dz* @,.. .,i?.+a} for a € ]R; and sirnilarly for'I- a, aLf etc', on

the understanding that the order of elements in o - f is to rev€Ioed.

Theorem 7.2,

Faruanatesxi Jors i 0 andi,ef :{'ir' lq,r...,d*}, utkem?, € R wdiili'pwhen
j < I+, ('et I sati*fg tlrc sgrn;mefiy conililtian

I - h=i'^- I

frrtlrcr defineN:ir *i,,2*.,.*ini Ah, = it*iz+."+ i", and' Nr" = ip-"a1*

rn-r*z +... + i,o" Then

en-, -- 6h €,

uherc&:N-A[o"-JVi",

Froof 7.2

Define the elementary synmetric funetions for the virriates in the statenent of the

theorem: n

e": sl1) - E *h*dz ...ni': Ito

'1lii;:f:.i 
tEr'l

where the uinirnum nunber in I' is Ns7 and the marcimum Nr".

In vieur of the equality

{i;ir,i1r,...,t;} * N* : A[" - ti,.+r-rl, h+t-hr"',l"+r-rin]

the index set .I' satisfies the symmetry condition

I" - JVo" == Ni" - It

Fbr vtiriates inverse to tbe above, :itz. s-r for d € -I1, define the corresponding
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elementary symmetric function

where

168

el4=Irt
i€-I' 

I

Now

#n: n* effl')= offDt-" (7'1) 
ii€rr, I

= sjv-r6,Ictr*,1 - slv-/v1n E *i - *N-Nt I tt == strl-JVo'-*'ult, I 
l

i€I; d€J\llr'-'trn i€f"-'Nqn

Thesrem 7.3

Far uwi,atesur far a >0 awli € I: {1,2,...,D}, omeh,as

@6-r ': gb g,

h- (n*t) G -')

Proof 7.S

Apptry Tbreor,em 7.2, with

N -."(tJx) , JVs, - 
r(rf 1) and JVrn =n(rz* 1) - /v,* I

2 , -'v' 
2

Exam,ple 7.4

Forn:6 anekua

#l _- sLfiz,.s + ... + ues4ni: si6 (e-ar-s +. .. + n*rr-r) = firu#

whieh eawesponils io ('1.1); and'than

u[tl -s.lr (r-4s-'s+... + a-'*-') - 13 fr6-4#-5 +... +o6-1$6-q)

-,s9 (uzrt+... + nuot) : d e$)

the mukisets in thts @'se sre

12 - {3,4-5,5,6,6,707,8,9} and .[s : {6,7r8,8,919110,10n11,12}
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7.3 The basic recursion for e"

In Theorem 7.8 we obtain a recursion for the ei functions when the variates stand

in geometric progression. This recursion can be solved to provide atr expression for

the ei functions, given as Theorem 7.12, which turns out to be quite suitable for

finding approximations and upper and lower bounds ftor ei. These results provide

expressions, approximations and bounds for the e1 functions, and in turn for the

Jack polynomials fi.

Denote the variates by r'
set

fori: L,2,...,n, with rt0 andtlLi and for j € N+

aj: rj -I
(7.2)

so that pi: aj(ri" - 1). There are in fact standard determinantal expansions for

p3 in terms of e3 and vice-versa: see e.g. Macdonald (1995, p. 28). While the py

functions are easy to calculate when the variates stand in geometric progression, the

method we propose is more parsimonious and facilitates finding approximations.

In order to set the scene, we calculate a few of the ei functions for small j.

+
"t:I ri:at(r"-1)

=\ i; "-1-" 
n

ez: L n'n' :t t niri :orI ri({ - i) : a1nna1 - apz(*n -7)
,tp=f i=l j=ifl i=l
r<J

The next example will be treated in some detail, since it illustrates the general

approach.

.\ ^i-^i-k:FS f ridroas: )_ t"r! r L /_/ /_t
lifZl i=' i=i+1"=i+1

n-2 n-L n-l n

:t t xnri a1(r"-ri):t D riri a1(*"-C)
i:l j=itl i=l j=i*L

n-l n a-1
: arnn€z- rt t t nir2j : a1nne2 - ot I #a2('-2" - 

"o)

Al

i=l j-i*l i=1
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: ary" ez- rr I f as (:n2" - ttt) = a1tfte2 - a1a2s.tuet * atazE 
"tti=L i=[

= atxw*z -'a1*2x2tue1* a1a2as,(as" - 1)

In simila,r vein one cart prov€ the followisg:

e4 : arg,nes - a1a2t2nez * atazallfiSoet - &1a2aga4(rn" - t)

and Theorem ?.8 states t-hat this generalises. We proeeed as follo-wS.

Definition 7.5

ForL(r(nandLSt, Iet

Note that

Lemrna 7.6

'Y 
- rt* rlr-L,l - rlr-\,t*L = x!' .-r-.L - fh-1,t*1

er

Proof 7"6

The final summation in (7.3) evaluates as

o'(n* - "n"-n)

wheace the result follon'e upon increasing the rarges of the remaining summationg

by 1, as in the €xample fo-r e,s above Definituion 7.5. I

Lemrca 7.7

Ford,l€I|[+ and'd<i'

170

n1+1 m-r*Z n-l r
Tht: I "t' I ni' ... t ri'-' t nn' (7.3)

ir=tr ig=ir*[ ir-t=k-z*l {;=J' 1{1

pt: lln - ot (r"o - 1) anil 4.t: er f7'4)

r

a; atai-dt: ,, op
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I

Theorem 7.8

Let Ag: fl{=r"r , rnith Ao -= L. Then I

r-1

"o 
,= f(-1)'-lArs"*€r-* * (-1)"-t'4' ("'" - 1) (7'5) 

|

g-l I

I

Proof 7.8 I

The proof coDsists of (r - 1) applications of Lemma 7.6, as well as noting (?'a): 
I

4 =\rt:'at,::er-t- Atp*tp= a1finQ7-,t- atuz$znq-z*A$aq;-2,8 -'.' I 
l

Lemma 7,9

For 0 4t 1r,

where

Ar-tut- Ar.t# ," = L-t-t #h "
(7.6)

I

ss: A/a([) .

Proof 7.9

Leftsideof (7.6) :A,-t(# -#*) : A,-,+@,-a)

^ At-t etY 
= right side of (7,6)- trr_t ffi *r*_t

where we hape ueed Lemna 7.7. I

when n 7 L, it is,tempting to replace, the bracket (""n - l) in (?.5) by s"', Pa$ly

becauee the omitted term should b.e small, at least when r is not too clcr,se to 1; and

partly because ai t- sin as n -f oo, whereupsa all terms in (7.5) are reldered of the

sa,lBe ofder by the change.

To this end we pursue the following series of recursions. Firs.t set b, - 1-1)t-1A";

ce : bsfitui /.0 = ].; and sinee €t : aL(*" -1), also let fi ='a1fia. Then, for n > 1,

let r-1 f;

/,: E br$o*fr-o+bns'n: t cr!,-o. 0-7)
g=l c=l
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The intention is to harre f pick up the highest order terus of e" in (7.5).

The syrnbots $ aud fi in thie section should not be confirsed with the 4forgotton

symr,retric functionsl' /r in Macdonald (1995, p. 22).

Theorem 7.10

The solution to (7.V) is Eum hY

fr: Arfr'n-u where " = (;)

Proof 7.10

Settiqg zi: lgf uin, one uay rewrite (Z.Z) as

r-1,r,h: Lbrz,-u+b, with zL: &r

!i=1.

We need to prove that

a - A'/s(i)

for r > 1..

(7.8)

Nsw the use of Lemma 7.? establishes the result fot r = 2. Assume then that

a: A1/xG)

fbr t < r. Repeated use of temma 7.9 establishes the truth of (7.8) for t = r. I

Our approaeh to the plineipal theorem, Theorem 7.12, is a trifle iudirect. Fbr +
we consider (r. + 1) Ier',els of functions, each picking up higher order ter:ns than the

nex.t. We illustrate for e3.

Exemple ?.Ll
We rerurile (7.5) as

4 : Gr@r-t * e2,er-"+. .. + (h-ftt* qeo - br (7.9)

172
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anitr tahdng our cue from (7.7) one $mg write

ls - 4lz*cglr*e6/o 9s = e*z*ez,gt lns: ctlu 'i'e: -k
fa = q,ft * ezfo 9z : otgt ht : -b2'

ft : cr.ft 9t := -br
Jo = f i

Then gfuen th.e lnst o! the fotrla,zni;ng rel,atior,w, the rarnainiler Jotrloa lr*ai[. I

I

€a, - e#z*e2e1*esea-h = ,fa*gs*hs*is : 4os* ra*Qzz*$ss ,

h = e:r.,y*r;z;Fo-bz = fz*W*ha : #vz*6n*dn
€7: efis-b1 = fr,*g1 : 6ot*6t
9s:1 -- /o :=goo

in uihi,eh f, : 6u, g, - Sy ete.; anil S', - I (*@=il4) os n, -* Qo" Tha fimeliorw

6i, qrc d,e$ned farmatlg dn thc pron! of Theorem '1.12. I 
I

Following the same procedure with a greater sdeptht of functions, we have the 
I

fotrlowiug recult.

Theorem 7.12

Fartr 4n,

er: fr - etfr-t * artuz;,-z - o,1a2&sj7-s * ... : it- I)tAsfr-1 (7.10)

-a

in whieko when,I > 0,

li = Aidn-u where ": (i)

Proof ?.12

D€fitre,ftuictioiu dr by 6i,:0 ifl> ri doo:1; audfol i-0|...,f; - 1,

r-j
6fi: el6i,r-t* czdi,,-z+ ... + Q.-.idii = E c*di,r-n

&:1

dsi=-:bi forj-1,...,r
Then {1; and 6aor-i satisfy the sarme recursion, whmce

dir: Iciflo,r-i
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Courg-a,riog -the fi'6 m^lues, one sees that k' - -bi-

For the isductlon needed to eomplete the proof, assurne

t
e;t : $0, * fiV+ .'. + 6o -I dl,

J=o

for f < r. ln fact (7.11) ie valid for t ( 3 hom Exa,uople 7"11.

dqn + 6v + ,',* Q*

rf;-IZ1
: D ctofta$-k+ t c*6r;,-t + . . . + D"r6r-rir-& * D"od,-r,,-n * 6*

&=t h=L lc=l &=tr

= or ( 0,"-r *dr"'-r + ... + dt-L"-r)

*oz (do,n-e * 6t,r--z+, . . + 0r-2,,r-z)+ . -. + cr6ou * 6r,

- ALE!-L* rae.r-Z + , . , + (-.-ret * EeA - b,

so veriffig (7..tff for t = r, in view of (7.9).

lMe then have

@t- 60,r# dr,, *,.., = do,,. - hds,r-t- .,,: dq,n - Atdg,r-tt Azdo;r-e- - -.

in which

6o; - AiC'^-"

from Theorem 7.10, where , - €)t doo - 1 and h*:0 whenirv€r & > 0. Finally

vre id.entify dtu' and 6. I

7,4 Magnitude of suce€ssive terms in the €xpofi-

sion of e,

It is clearly of some interest to inrrcstjgate the nagnitude of successive tergs in

(?.rq.

(7,11)
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Definition 7.L3

Setti,ng et tu be the rutio of the magndtade of the (t + 1)flt

terrn in (X.10), ane ho,e

175

terrn to that ol the tth

" Atfr-t &gir-t':-:-::! A*tfir-t+t Qr-.t+rf,,n

tor A <t 1r.

Er+l-i 1 - *-r-t*i
E*-

sn*L l. - r-t
(7.L2)

I

In particular, since terns in (7.10) alternate in sigu and (r is aon-increasing in t
ftom Lemlna 7.14(a), finer and finer bounds are found for e" by truncating further

and further after (1 falls below unity.

Lemma 7,14(a)

Far xrn,r constanf $ as stril;cltlg m;m;pttandewllg ilecra,sing dnt. Syrnbolical,lg,

t,r'+c\

Lemrua 7.14(b)

For trnrt constant,

r ,v + lq,t.,/ I

Settiag 'y = r + 1 - 2t, it is readily shown from Definitisn 7.13 that

c,:#+l,-trt - r) - !rf-r,-t-s)('-r)2+ rxo(('- r)')]

ftis eapressisn leads imnediately to Lerqma.s 7.15(a) and 7.16.

Lem,ma 7.16(a)

n-+* (r = *-(Pn-r*L\l' :#

Lerima 7.16(b)

whens)l' 
r*L r?+t-t r*1- t - ,r*L-t

" , +A,*L t ){t)@
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r*L 
"r*1-l 

rt1-t _ sr+L-t

"' z + *"+t t 
(st(@

Proof 7,15(b)

Ftoar (7.19) and LernrnaT.L9.

Lemrna 7.16

r+t-ts\1+G+ 

-
Lemma 7,17

Wmn)2,then(1<t.

Proof 7.17

, fr'-L - n' / _r-1et:ffi<@1x'-n1r
in whie.h for the last step nne have used ,'( n.

Gorollary 7.17

I! s Z2 and.r -4n/2, 
thm (71x-n12.

Leinma 7,18

nc>1.+*(+<0.
ofi

Proof ?.18

e':ffi::'
sa,y. So.me simplification yields

AZ d r t-- ''tl-t r\/-r*l-l r\ tl^r*l
ft-+, dngr: -(r-r) (*t- 1) (cr+t-i-1) -t(or+r -1) + (r+1) ("'- D

whence the result follows from Lemtna 7.1.9, with o: r * 1 and b: t-

L76

I

I

I
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Lemrna 7.19

Lctg(n) = r(ro-1) - b(f - L\;,, uith a > b and* ) 0. T'hm d,(") S 0; and

qp(s)-Aiffn=-t.

Proof 7,19

fivwt -- abnb-L(r - ""-u) t ::;H ','.: 
and r

Lomma 7J0
Let a,b e N1, with a'> b; awil sat". : [;] anil c - a - rnb' then

foa:1* sb+*%+...+"(m-l)D *tl-\ nnu I
F_r nb_t_

L77

Lepma 7.2X

LA m: [*r=!] qnd c --'r * L - t, - mt. Tken fum Definitian '1.18 an p- 176 and

Lemma 7.2CI ane hos

<r: ft(r*"' +nzt +...*c(*-rv +fi "*') (?'13)

t

Flom (ZI3) ao obsious way in which to obtain approeimatious to (1 is to develop

the final term in the bracket. ABproximations may for inetanee be found by using

the follorring ineq.ualities;

n"-L n"-t fi" e

., <st-l t *r"i
There are,other possibilities, For s > 1n the basic csefficients og defined iu (7.2) eqioy

t-he properfy that at.) -z ) os ) ..., with ai 11as'J -) oo. This may provide

further opportunities,for appriximatitins, but the point is nst pursued fiuther.
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7.5 Approximate evaluation of e"

The fi.rst of the approximations in Proposition 7.22 leads to a convenient means

of obtaining good approximations to er, by summing an infinite series which is

related to that used to define the d functions (e.9, Whittaker & Watson (1927)).

Partial sums of these series are conveniently found by defining recursive functions,

so that the same simple computer code can be iterated in a "do" loop to evaluate

e" functions.

The result achieving this end is Theorem 7.28 on p. 183, based on approximating e"

by the infinite series (7.28), which ultimately behaves as a series of the form (7.15).

Proposition 7.22

Suppose that t is not too clase to 0 or r, and that n is not too close to 1. Then

e,=# (7.14)

If t is clase to r, and,r is not too close rl ,, ,nrn

L78

4r+7-t _ 1qr=T r

Although (7.28) is based on two approximations, viz. the application of (7.14) and

then extending the series obtained to infinity, the bracketed term in (7.28) can

be evaluated very efficiently to high accuracy. The principal result to this end is

Corollary 7.27, buL preliminary work is needed before then. The starting point is
to simplify notation, transforming the bracket in (7.28) into the function g(a, b) in
(7.15).

7 .5.L Definitions

Set

g(a,b) - 1 - ab + a2b3 - a3b6 * oaf0 - o5b15 + ... (7.15)



Jac* Polynomin&s, Chapter 7. Leigh Roberts, 2A07 179

f,or a, b €' q and where Inl <, 1, lbl 5 1 and lrbl < 1, :so that g('a,b) convergeg

absolutely. We shall in fa,st be dealing with the case in whieh aob e (0,1), for which

ls(a,b),1 < 1.

The functiotr E;(a, b) ean be giveu in explicit form when o = -L (Jansen (1975' pp'

Bl, 89, 4g2, 4g4)). While this special case is of littte interest herei We s-haU see that

the general expansion (?,15) can be calculated very efficieutly iu a r-eeureive mamer.

To this end, define the individual ters,rs in (7.15) by

,u)(o, b) : (-1)i eibi6+t)12 (7.16)

and the following variants:

*r[fl(o,61 - uo)(aaio b) 9.14

as well as partia,l sums

ii
s|)@,a):E u$)(#',t):Irl,0(p,a) (?.1s)

ft=O ,t=0

for 0 { i (,oo, 0 < I S oo. We have already implicitly used the abbreviatior

g[*)(o, b) - s(a, b)

and further simplify uotation by setting

sr(*)(o,0) - g;(a,b) a4d gfll,r',b) = s'6@,b)

Wb uote'that

b)i @,b) = gr(ats, b) - E (aY#,b) - 9;."r'(o, b) (7'19)

It is further convenient to define

t f') (r, b; u) - g,0-t)(r, a) + uft (a, 6)u (?.20)

so that
ttP(",0;1) = sf)@,ti)

For grbi(r,&), ,r!i)(o,b) and t!)@,b,u) we oecasionally write gre), ,,!r)' aua n[')(o)

respectively; and we fiuther sometimes set

nfr (n[rt (r)) = rdo6ji)n

with obnrious extensions of this notation t0 higher levels of recursion.
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7,5.2 Preliminary work

Lemma 7.23

180

4.t'(u, o)uo)fu, b) - uo+1)(a, b)

Proof 7.23

J-1 i-l i-t
fI o[t,(u, b) : fl -(r) (eb&, b) - fl(-l)af+t = (-r)jai6E(t+r)
ft=O k=0 it=0

Non j:r g, jU + 1)It*+l):Lk:"t
&=0 &=l

so that from (7.16)

i-t
fI "[u1a, 

b] : (-1Y aivu+l)tz : u0(4, b)

&=0

from whieh one finally has

i-l i
u[t:) tn,b)u'o) 

(a, b) : rrjl (o, a) II u[4 1o, a) : '[J 
'r$) 

(u, b) : su+r) {o, b) r
ft=O k=0

Ir,esma7.24

g, - gF-"|+ rj') ui,+i =hjfl (gr*i) (r,zl)

where i 2 A and; j is ang pas'itiue ilnteger.

Praaf 7.24

Flom (7,15) and (7.16) one has

s@,b)= i us)(o, ul : it- r)tsi:Pu+r112
i=0 i=0

E

:1*I(-t)'o'6i$+rtl2
i=t
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: 1 + |(- t)o*1rlc+16(r+1)G+s)12
k=0

s
: | - ab!(-Dr1u61&6t(e+r.)/z

lo=0

+ t - ab g(ah,b) $.22)

- 9,(0)(o,4 + u(l)(a,-b) ft(c, D) (7.23)

As a coirollary of (7.23), aod bearine fi.19) in inind,,

sc(o, b) - gju) (*, b) + uft) (a, 6) gr+, (an b) (v,24)

Indgction oo (7"23) proceeds as fotlows. Coneider the equatlon

g - g(h-t\ + o[*) 9u , F,25)

which \me knsw ftom (7.23) to be satisfied for k = L. Assume that (7.?5) is true for

k3i,

Theu, ftom temmaV.Z3 and (7'24)

g :, g$-t\ +ufltsi- e(r--l) * uU) 
[n10, 

* rrr(t) ei*]

- gti-L) *u0 +n?\rf) 9j+r: g$ +uU*\gi*,

Thus (7.25) is satisfied for ft = J'* 1, and ,for all k > 0. Finallyo from (7.19)'

sr: gf\ + ulj*t)gr*r*,

froln which the first regult in (7.!1) followe. The s€cond result then follows from

(?.20). I

Lernmq 7.25

181

r,ltl(" * ur),-, nf'tp1 + *{fl,

Proof 7,25

Proof is immediate frsm (7.20).
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Corollqry 7.25

182

e=fio and B:A(^*+).Dn,*|lif (?.s6)
&=1 \ a/ 

tH 
oLt

e*-nf,ihl,)...$;t'l,r,

ru{1it6g"r . .. nl!:) t + u,) - 6tl") 6ail . . . hl!"'),ra u.t1},rjrz) . ..r8:'*

where in, jne Na,for t 3 k < a.

Lemma 7,26

For e;ach h, let jp bc ang posdli,ue integer, q,nd set,i&+r - jx*dx lar L < lc S u. Then

*FJ, ...d;i"t - 1ty^ aAbB

where

Proof 7.26

F'tom (7.16) and (7.,17) we have

uY,i ofot ..."f:) - (-L)a aAtit€

where
'a 'y

g =l!* g :|,inf?iis,+ i* +Ll/z
.lr=1 lt=l

Now imFose the eonditions that i6a1 -. j6 * Lai i.e, 'i6..1 - r,r * ELt j1. Wo ffnd

that C: B, I

7.5.3 Prilrcipal results

Theortem 7.27

With notation dief,neil, i,n $7"5.1,

where for eaelt h, jx h ang po,si,tiue inlegr, anili,loal- i**i,p far 1S k 1v-L.
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Corollary ?'27

With tha s,arfie natatiian as dn the t-heore'm,

183

9i,": na'r6u's ...ky:;')gY:-r) * (-r)* aAbBga,+t'

where j, i,s ang pasitiae irtt;qger; A End B are giuan i;n (7,96); ond A 1 Si,aio 4 7 
I

when0<a<LandO<b<1.

Proof T;2f 
I

!}e theoren follows from repeated application of Leurrna 7.24 For the corollary, 
;

vr.rite from Leruorna T.M:

gd, = g|,-t) + rlr,")gc*1,

$o thqt the thesrem implies 
l

su, : hy,i hfP . , .hf,,;,) (ny:^, + ,*P so*i,)

Wc now apply C'orollary 7.25 t'o write

ott : n!{ttnyf' . , .ffi's ng-r)i r ,g,"rg:' . . ."{;'tuf;i) st"+in

and finally apply Lemuta ttr.?;6to obtein

u* = a[iiln$) . . .hy:;n#-t, + (-t)A aA bB &,+i, I

Theorem 7.28

IietY = (-t)to-r-As.-r.fr-tu+ t wwl E =(u S L. Assunxing tlte appnnim'ation (I.fi)
on p. ,178 t'a be WpXi,wble lar t 7 fis, then

ro-2
r, = E(-L)'Arf,*+Y

t=0

-y z lnll't (rff 
) (. . " (uf,';', (r$"-o;) )) * (-t)" zo ,-' €,f

far arbdtrAf.y positdue tntegers v, 1'fxd ik lor k - 1r,. ..1U: -1;1 uher'eit+r : i'**i*,
taith i1: g; anil whereo < € <1. The functiona gf) and h!) a;rc defind in (7,15)

attd (7.90) respecttwely; sml A wtd B are dcfineil, in (l'26)'

Note 7.28

Il pract-iee the integers je would be set to a low €ommon value, and the result'-ing



Jae.k Polyraonrial* Ghapber V. LeW Roberts, ?001

slnall a,q4ouqt of co&puter coding would be app.lied reeursively to obtain any deeired

level of accuraey.

Proof 7.28

Flom (7.10) one has

to-2
u, : f(-L)'Arf,-r* (-11r0-t Aa-th-u+,, * ... + (-1)t'.4-

f:0

ts-2
* Ht-nl'Arf,-r+ Y - Y z +Y* : -YzP ! *vzo # -t:ofit

*(-t;r'-to+ty Zl-ou+r*-{r-to+r)(r-to)/2 g.ZV)

q7rfug1sle€ hare applied (7.1.4), Further approxinating by taking the series in (7.27)

to infinity, we write

to-2

* = E(- L)rAtf,-t+y - y z (, -'= + # - 
t:+ 

.. .) g.w)
t=o 

'-\- g' fi3 fi6 "")

lo-2
: 

Et-tl'Arl,-r+v -YZ g (r,:)
&=0

ta_z: D(_r)rAtl,_r+y
t-0

-y B [oli', (rg') (. (r$:;', (rf'-,)) .)) * (-1)A so n-'ou*i"]

fromCorollaryT.2Z Notingthat [g(a,e)l < lwhen0 < o < 1a,nd0 < b< I
completes the proof.

The fir.et ap.proxir,nate tem in (7.27) is that sqafeining #. Although Propoeitibn

7.22 does not apply when f ls clore to its upper limit of r, the inaccunarey in the

appro-xination in the final terms of (7,.27) ie uulikell' to be material in the overall

reerrlt.
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7.6 Calculating e;: the main theorem

Theorem 7.29

Let L - (ro s, t, . . .) and Ai: fli=n a16, atith Aa = l. Th,en

in wlyiclt f x = frf"ft. ..; and,, whcn Q ) 0,

fs: Aer@-n where " = (1) 
'\4')

fo : 1,' and fr= a when g < o.

Proof 7;29

lo \ /* \ /o \c\: Er€sa+... : ( ff-rl'l"f,-;) { It-t)iAif,_il { It-t)kA*f,_* | ...
\ 'l=o / \ j=o / \r=o /

from Theorem 7.12i I

Example 7.30

We ilhptrate The,ore:m 7.99 when l(.1) : ,3, say ) - (r,s,t). Then sdrtra €A :
e7€seq (beconse at which praper"tg Macd,o,nald (1995, p. 30'6) crllts the e:s fitnetilons a

multiplicative family of polgnarnials), it, iis nataral to define f t - fot,h,

el = e(rFif) =. Qrg.s€t

= ("fn - a.rfr_r*&to,e,lr_z-. .) (/, -"r/r_t*a1a2fr_, -...)
x (/r - at"frt*a1a2Js-2-...) (7.29)

- f, - at(frqfrf:t* Irt*qft,+ f'li'/r-r)
+^? (f. -ri '=r/* + f,-J r,f t-t + .f"f"-rft-r )

*a1a2(f,-rl'ft* f'.fe-2fi * f,I,t*z) + ... (?.30)
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7.7 Approximations to e1

One can truncate at the level of each individual e" function, i.e. using (7.29), or at

the composite level e) using (7.30) or Theorem 7.29.

When G < 1, Lemma 7.L4 on p. 175 shows that terms succeeding the tth in (7.14)

change sign and decrease in magnitude, so that bounds are easily obtained for e" by

truncating after the tth term. Obtaining bounds for the e; functions seems more

difficult.

Since the eq functions are a multiplicative family of polynomials, one should pre'

sumably operate approximations at the level of the individual e" functions. Upon

multiplying the e, functions to get the e1 functions, one could attempt to balance

the numbers of positive and negative errors; one would watch for accumulating

errors; and one would seek to balance the accuracy required in approimating an

e1 function with its importance in the overall determinantal expansion of the Jack

polynomial.



Chapter 8

Conclusion

In some respects this thesis has been a little disappointing for the author. It is

frustrating to set something up and not get it past the drawing board, in the sense

that no calculations of Jack polynomials have yet been effected by the methods

advocated. Not even that: there have been no experiments carried out to evaluate

how well the arithmetic and geometric progression approximations to the variates

translate into the variates which arise in practice; nor have the methods suggested

for calculation of e; and rnl functions when variates assume a geometric progression

been tried out. We have been rather vague in stating how easy ii will be to shorten

the process of using the determinantal expansions, although it is clear that there

will be shortcuts available. The thesis title may have been misleading, as stressed

at the beginning of the thesis; but in its main premise it is accurate, in that one is

only groping towards the calculation of Jack polynomials. That step is only a means

to an end, viz. the applications of Jack polynomials to practical problems, whether

in statistics or elsewhere.

Nevertheless, the disappointments are only skin deep. With the determinantal ex-

pansions in Chapter 3 one is close now to calculating Jack polynomials, or at least

to obtaining workable approximations to them for practical purposes. The dictates

of time meant that I could not carry out the later stages of the programme; but

those developments are tantalisingly close.
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More importantly, however, I have enjoyed working in this area. My enthusiasm for

the general areas of invariant polynomials, group representation theory, Lie groups

and algebras and other mathematical areas on the one hand; and the applications

of factorisation of measures and differential geometry to statistical theory on the

other, is undimmed.

8.1 A wishlist

At the end of any enterprise comes the inevitable wishlist of what might have been.

I should like to have drawn more heavily on combinatorial mathematics. The

algorithm for calculating Jack polynomials in Knop & Sahi (1997) seems at

first glance to be a prime candidate for the application of Polya's theory of

counting, as outlined in say de Bruijn (1963) (see de Bruijn (1964) or Riordan

(1964) for more elementary accounts); but the problem at hand seemed not

quite to fit into that framework. On the other hand, the principle of inclusion

exclusion played a vital part in Chapter 6, and there is hardly auy more basic

theory in combinatorics.

If one could apply combinatorial methodology to the Knop-Sahi algorithm, it
would be likely to apply equally well to the asymmetric Jack polynomials as

to the symmetric Jack polynomials.

James (1968) drew some of his inspiration from Helgason (t902), and it might

have been desirable to have placed the thesis more firmly in the framework of

Lie groups and algebras, and symmetric spaces. Hannan (1965a, p. 50) also

summarises the nub of Helgason's material on symmetric spaces.

As far as practical, it would seem worthwhile treating the asymmetric polyno-

mials and the symmetric polynomials simultaneously.

At the conceptual end of things, the asymmetric polynomials are hardly any

more difficult to define than the symmetric polynomials, and they can give rise

to more general models. The problem of calculation for applications may or

may not be more severe than for the symmetric polynomials: that is untested.
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According to a recent private communication from Peter Forrester, future

research by physicists in this area may well emphasise the asymmetric polyno-

mials, deriving the symmetric polynomials by symmetrisation as needed. This

emphasis is certainly reflected in recent papers of Forrester, most saliently

perhaps in Baker & Forrester (1999).

8.2 Relative merits of expanding Jack polynomi-

als in the e; and m1 functions

Expansion of Jack polynomials in terms of ms functions vis-a-vis that in the e1 func-

tion provides a natural counterbalance. There is firstly the verification of theorems

and calculations from consistency of results using two distinct but related method-

ologies; in fact the methodologies are sufficiently similar that many algorithms could

apply to expansion in either €7 at TTt s functions.

But the complementarity of these two approaches lies more deeply than duplication

of calculations. The expansion of Jack poiynomials in e1 functions produces coeffi-

cients of both sign, potentially allowing cancelling so that fewer terms need be used;

while expansion ln rns functions produces coefficients of the one sign, potentially

facilitating finding lower or upper bounds if one can find dominant terms in the

expansion. One or the other basis function may be more convenient to calculate

under different scenarios: in particular, when the variates are eigenvalues of a ma-

trii, Takemura (1984, $4.5) stresses that the e; functions are more readily computed

than the rrzl functions, because they are calculated from the principal minors.

Both e1 and rnl functions may be convenient to work out when the variates form a

geometric progression, to judge from the results in Chapters 6 and 7.

An advantage of the e; functions is that they belong to what Macdonald (1995, p.

306) calls the multiplicative family of polynomials, in that one can multiply together

the egy : er' corrponents to provide the composite function: €^: €h etz , when

.\ : (lr, lr,. . .). No similar advantage accrues to the rnl functions. There would seem
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to be real advantages in this property in that one can first calculate the component

functions ej to any level of approximation desirable, then multiply the components

together in many different ways to obtain the e; functions: there are after all many

more partitions .\ than there are distinct component ei functions.

On the other hand, theoretical developments of Jack polynomials have generally

utilised the power symmetric functions p;, Schur functions s; or the ne1 functions,

and it is the last named which has been used recently in definitions of Jack poly-

nomials (Macdonald (1995, ), Stanley (1989, p. 77) etc.); and from the evidence in

Chapter 4, expansion of Jack polynomials as determinants in rn1 functions involves

fewer terms than the analogous expansion in e1 functions.

Decisions as to the preference of one expansion over the other have to await numer-

ical evidence, and will in any case depend on the circumstances of the particula^r

modelling situation.

8.3 On the assumptions that variates forrn arith-
metic or geometric progressions

It is clearly convenient to make the assumption that the variates form a geometric

progression, since both e1 and rnl functions are then easily calculated, according to

results in Chapters 6 and 7. If one assumes that the variates are approximately a

geometric progression, then fitting a regression line to the logarithms will produce

a good fit (assuming the variates to be positive, as they often will be in statistical

applications).

The distortion induced by making global assumptions that variates form an arith-

metic progression or geometric progression is untested. In statistical hypothesis

testing, moreover, one may be particularly interested in outliers, for which the as-

sumption that the variates assume the form of an arithmetic progression or geometric

progression may be highly questionable.
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Insofar as the geometric progression approximation to the variates is globally suit-

able, the calculation of fi effectively becomes one dimensional, apart from a scaling

factor. Estimation of Jack polynomials can then be effected by interpolation over

that one parameter.

8.4 A beginning, not the end

Even if zonal polynomials have "gone off the boil" as claimed in Chapter 1, and even

if statisticians have circumvented the calculation of zonal polynomials through the

use of asymptotic expansions of hypergeometric functions, there is still interest in

calculating zonal and Jack polynomials by statisticians, combinatorialists, electronic

engineers and physicists, among others. If this thesis prompts a reawakening of the

latent interest of mathematicians in these polyuomials, I shall be well pleased.

Whatever the global impact of this thesis, however, the distribution of which must

have an atom at zero with large probabiiity, I am glad to have finished it. One

reason for this is that I am now free to continue research in this area. I have learnt

much, and it is again time to balance reading the literature with developing and

applying ideas which have occurred to me but have not yet been developed.

The other reasons for which I am glad to finish are perhaps more obvious.
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