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Endmenber

(d One of the two or more simple compounds of which an isonorphous
(sotid-solution) series is cortposed. For example, the endrnembcre of the

;plagioclase fcldqpar serles are albite (NaAISLO-/ and anorthite (CaAlaSi2Os).

Syn. miml.

(b) One of thE two extFemes of a series for exannple, types o.f sedimentry rock or
fossils.

Sourse: Glossary af Gealogy (1980). R.L Batos and J.A. Jackson @ditors). The
i{nsricanGecilogical rn-stlnrrc, FaIIs Chrnch, Virgini& 751 pages.
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ABSTRACT

Large compositional datasets of the kind assembled in the geosciences are often of
remarkably low approximate rank. That is, within a tolerable error, data points

representing the rows of such an anay can approximately be located in a relatively snwll

dirnensional subspace of the row space.

A phystcal mixing process whichwould accountfor this phenomenon implies that

each observationvector of an array can be estittated by a convex combination of a small

rutmber of fixed source or 'endmember' vectors. In practice, neither the compositions

of the endmembers nor the coefficients of the convex combinations are known.

Traditional methods for attempting to estimate some or all of these quantities have

included Q-mode factor' analysk and liruar programming. In general, neither metlnd
is successful.

Sotru of the more important mathernatical properties of a convex representati.on of
compositional data are examined in this thesis as well as the background to the

development of algorithms for assessing the nurnber of endmembers statistically,

locating endmembers andpartitioning geological samples into specified endrnembers.

Keywords and Phrases; Compositional data, convex sets, endmembers, partitioning by

least squares, iteration, logratios.
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NOTATION

Matrices and vectors are denoted by bold-faced letters preceded or followed by

their orders in parentheses (except when there is absolutely no possible doubt), for
example (nxp) X. The i-th row and j-th column vectors of a matrix such as (nxp) X,
when they require identification, are denoted by (lxp) x, and (nxl) X, respectively and

the intersection of the these vectors is the element xU.

The R-mode origins of Q-mode 'factor' analysis, are examined in the first
chapter. In order that there be no ambiguities in the accounts of the t'wo modes, symbols

with a particular R-mode interpretation always appear with a subscript such as XR, ER.

It is not necessary to take subscripts to second levels. So, for example, the covariance

matrix of the random vector x* is E* in which 'R' has been dropped. An occasional

subscript is necessary to distinguish a Q-mode construct such as RO. One further
distinction between the arrays used in the discussions of R-mode and Q-mode
procedures is that the order of a multivariate sample of n observations (n > 1) on each of
p variables will always be (pxn) in the R-mode case and (nxp) in the Q-mode. Thus
(pxn) X* and (nxp) X are data matrices in the R-mode and Q-mode contexts

respectively. Geometrically, the rows and columns of either iuray represent n points in
p-space and p points in n-space, or vice versa. The R-mode account focusses on the

relative positions of p points in n-space while the Q-mode account focusses on n points

in p-space. With the convention described above for defining the orders of the iurays,
geometrically analogous relationships in the two modes involve algebraically analogous

pairs of matrix equations.

It is a convention to distinguish between random variables and the values they

take by upper and lower case letters respectively. The reservation of upper and lower
case letters to denote matrices and vectors as already described, prevents this distinction

being employed between random variables, vectors or marrices on the one hand, and

their realizations on the other.

The following list sets out in approximately alphabetical order those symbols

that are used consistently with one meaning.
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A

viii

the mauix Fanspose of the array enclosed by [ ]

a constant

a (lxk) an arbifary row v@tor

a, F, T, 6 integers for subscripted variables or points

B1,82,...,8r th" k vertices of a convex polytope whose position vectors :ue

endmembers

B (kxp) a matrix whose rows are endmembers which are the basis for
k-space S. B is the estimate for p

Bc (kxp) the marix product BC where C is (pxp) diagonal

Bs (kxq) a matrix whose rows are the endmembers of a subcomposition

(qcp)

B, (kxl) ttre j-th column of B

B* (mxn) the matrix of mean-corrected factor scores in the R-mode factor

model

B*t (mxn) the matrix of mean-corrected rotated factor scores in the R-mode

factor model

bi (lxp) the i-th row (endmember) of B

F (rxp) a matrix of compositions of true or theoretical endmembers

Fo (**p) amatrix ofcompositions ofperturbedtrueortheoreticalendmembers

a convex cone vertex o, whose generators are endmembers

C (pxp) a diagonal matrix forpostmultiplicative colurm transformations



D(

Inf(or,vr), the smaller of tr, vi

D* (nxn) the matrix of mean-corrected standardized scores in an R-mode factor

model

D*, (lxn) the i-th row of D* Gxn)

d*tj the (ij)th elementof D* (pxn)

Ar (nxn) the diagonal marix of diagonal elements of E*

Ar (nxl) the diagonal rnatrix of diagonal elements of S*

AB (kxp) the matrix of incremental adjustrnents to matrix B of endmembers

Et . I the expectation operator

E (nxp) the matrix of residuals in a convex representation X = LB + E

Ec (nxp) the manix product EC in the transformarion XC = LBC + EC

E* (nxp) the matrix of residuals in the equation [ = f,* 1f,*

er (lxp) the i-th row of E

e (lxp) a vector of residuals

the (ij)th component of E

E* (pxn) the matrix of residuals in the estimated R-mode factor equarion

WR = L*F*+ E*

e (nxp) the error matrix in the convex model X = AF + e

ex (nxn) the matrix of specific errors in an R-mode factor analysis sampling

model

eij



e* (pxl)

F (nxp)

f (lxp)

F* (mxn)

r[ (mxn)

f* (mxl)

f{ (mxl)

fl {m+nlxr)

o* (rxn)

Qnil

o* (nxn)

G (kxn)

H

(pxn)

ij,m

k

rln

I

x

the vector of specific factors in an R-mode factor analysis model

a matrix of n error vectors created by removing negative components

from L

the error vector x'- xo = 11- Pyn

the manix of factor scores in R-mode factoranalysis sampling model

the matrix of (varimax) rotated factor scores (R-mode factor model)

the vector of common factors in an R-mode factor analysis model

the vector of (varimax) routed facton (R-mode factor analysis)

a vector of mutually orthogonal standardized random variables

the diagonal matrix of specific variances in an R-mode factor model

the i-th diagonal element of O* (pxp)

the covariance matrix of the erors for apartial principal components

solution

the error coefficients matrix. AB = GF

the convex hull of the points 81, B2,...,B1

the mean-corrected specific factors of an R-mode factor model

the unit matrix of anv order

integers (m is reserved in Chapter I for the number of factors)

an integer, the dimension of estimate space S, also the estimated

number of endmembers
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an integer, the dimension of the true mixrure space /, also the

true number of endmembers

L (nxk) a loading mauix of estimated mixture coefficients, the components of
each row are the coefficients of a convex combination

ft (lxk) the i-th row of L

| (lxk) a vector of mixture coefficients, the coefficients of a convex

combination

P (txt) the corrected solution for I in which negative components have been

set to zero

l* (lxk) the least squarcs solution for J to the overdetermined system x = lB

," (lxk) the linear programming solution to the overdetermined system x = lB

the (ij)th component of marrix L

L* (pxm) an estimated loading matrix in R-mode factor analysis

A (nxk) the true or theoretical matrix of the contributions of k endmembers to

each of n geological samples. Each row contains the coefficients of a

convex combination

Iij

l.i the i-th row of A

a true or theoretical mixture vector, the coefficients of a convex

combination.

the (ij)th componentof Af,,:

A* (Pxm) the factor pattern or loading matrix of an R-mode factor analysis

model

A* (Pxm) the rotated loading matrix of an R-mode factor analysis model



L*tj

xii

the (ij)th element of A* (pxm)

M (nx(p-1)) ttre matrix of logratios of exact true or theoretical mixtures

o

oR

P

PR

Q'S

R (nxn) a diagonal matrix, associated with row transformations

Rt (kxk) a diagonal matrix

Rr (nxn) a diagonal matrix

RO (nxn) the similarity matrix of a Q-mode analysis

M* (mxm) anorthogonal matrix, M*M*T = MnTMn = I

an integer, the number of factors in an R-mode factor model (Chapter

l only)

p (lxp) an exact tnre or theoretical mixture l,p

the sample size, number of objects or geological samples or

specimens

the origin of Euclidean p-space

the origin of Euclidean n-space in an R-mode factor analysis

sampling model

the hyperplane through the points Br,Br,...,B*

the number of variables associated with a single object or geological

sample

a hypersphere in n-space whose centre is O* and radius /nll

integers, usually less than p

R" (Rxn) the correlation matrix of an R-mode analysis



tnij

r*

sR

,,6R

S (kxk) diag(s,,s2,...,s1)

xlu

the (ij)th element (correlation) of R*

the position vector of R*, the orthogonal projection of point R into

space S

the coefficient of determination between the observed and estimated

values of a variable

the k-dimensional estimate space formed by the intersection of the

positive orthant of Euclidean p-space with the subspace spanned by k

estimated endmernbers

the r-dimensional mixture space formed by the intersection of the

positive orthant of Euclidean p-space with the subspace spanned by r
true or theoretical endmembers

the m-dimensional factor space spanned by estimated factor-vectors

the m-dimensional factor space spanned by theoretical factor vectors

p

S

A

si the i-th row total of [Br,Br,...,BoJ and the i-th diagonal component

ofS

r

E* (nxn) correlation matrix of the joint distribution of z*

the sum of the componsnts of [x'r,x'2,...,*'o] where q < p

the standardized sum of the standardized residual logratios

U (nxp) the matrix of unitized column eigenvectors

u, (nx1) the j-th column of U (nxp)

uj, uj non-negative errors in the linear programming method



xiv

V (pxp) themarixofunitizedcolumneigenvecors

v.,(nxl) the j+h column of V (pxp)

v (pxl) aunitvector

v* (pxl) a unit vector

\il (nxp) a matrix whose rows are unit vectors parallel to the rows of (nxp) X

T9* (nxn) thematrix of row standardized scores of multivariate random sample

$ (nxp) a matrix of raw geological data in weight, volume or other units

X (nxp) a matrix of compositional data, containing the concentrations of p

minerals in each of n geological samples

X* (pxn) a multivariate random sample or its realization (R-mode)

X1,X2,...X,, datapoints whose position vectors &r€ x1,x2,...,xn

x, (lxp) the i-th row of X

x (1xp) av@torofthecompositionofasingle geologicalsample

*ij the (ij)th element of X

X' (nxp) equal to the matrix product LB, an estimate of the matrix product

Ap, also an estimate of X (nxp) when it is given

X'1,X'2,...,X'n estimated positions in k-space S of the datapoints X1,X2,...X'

x't (lxp) the i-th row of X', equal to f,B

x' (lxp) an exact mixture, equal to lB where the components of I are the

coeffrcients of a convex combination
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x'ij the (ij)th element of X'

Xo (nxp) a marix of true or theoretical exact mixtures, equal to Ap

x's (lxp) an exact mixture for a subcomposition

X* (nxp) the matrix of orthogonal projections of the rows of X (nxp) into the

space spanned by the eigenvectors yl,v2,...vk

x'|. ttre orthogonal projection of the polnt X onto k-qpace S

x* (lxp) the position vector of X* and least squares estimate of x

Xc (nxp) the matrix product XC where C (pxp) is diagonal

x" (lxp) the linearprogramming estimate of x

Y (nx(p-1)) the matrix of logratio data corresponding to X (nxp)

Y (pxp) adiagonal mauix of eigenvalues

Vi the j-th eigenvalue of a positive definite symmetric matrix

Z (nx(p-1)) the residual matrix for the logratio model

z (lx(p-1)) the residual vector for the logrario model

Z* (pxn) a random sample from a joint distribution of standardized random

variables

z* (pxl) a vector of standardized random variables, each component having

distribution mean 0 and variance I
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TERMINOLOGY

Column transformation: post-multiplication of (nxp) X by non-singular (pxp) diagonal

mafix C

Composition: any (lxp) vector x = (x1,x2,...,x0), uniquely defined on a geological

sample or specimen whose components are all non-negative and sum to

1. The components of x are often interpreted as percentages or ppm

and called concenrations

C-oncentration: a component of a composition or part composition (see C-omposition)

Element: either a component of a matrix or a chemical element

Factor space: R-mode, an m dimensional space spanned by a set of m orthogonal

(1xn) factor vectors.

Factor vector: R-mode, a vector (lxn) of scores of an individual factor.

Mixture: a convex combination of distinct compositions. See also Mixture

coefficient

Mixnne coefficient: If It = I and /j > 0 all j, then /, is a mixture coefficient and i r,O,

Ftr : '' J 
S=F'=tl 

I

is a mixture, the vector I = (1,|"2,...,{) is also a composition.

n-ball: {(x,,xr,...,xn): *l+*?r+ "' + *? < u'l

Objecc a sampling unit, a geological sample, a specimen

Object space: the measurements on a single variable taken for each of n objects define

a unique point in n dimensional object-space.

Object vector: a vector of measurements on the p variables associated with a single

object (also an observation vector)
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Part composition: a sub-collection of the components of a composition (see

Composition)

Partial composition: given a composition x (lxp), any other composition formed from a

subcollection of q components of x, I < q < p, together with a (q+l)th

component equal to the sum of the remaining (p-q) components of x

(see Composition)

Q-mode: given an array of the values of p variables for each of n objects, an

analysis of the relationships between the p-component object vectors,

usually based on an (nxn) similarity matrix

given an array of the values of p variables for each of n objects, an

analysis of the relationships between the n-component variable-vectors,

usually based on the (pxp) conelation matrix

either a statistical entity (see Johnson and Wichern (1988, Chapter 3))

or a geological specimen

R-mode:

Sample:

Sample vector: as for variable-vector

Subcomposition: given a composition x (lxp), any other composition xs (lxq),
I < q < p, formed by scaling a subcollection of q of the components

of x to sum to l. The scale factor being the reciprocal of the sum of the

q components of x (see Composition)

Variable-space: the measurements on the p variables associated with a single object,

define a unique point in p-dimensional variable-space

Variable-vecton a vector of the n values of a single variable observed for each of n
objects (also the realization of a random sample)



TNTRODUCTION

This thesis marks the completion of an initial investigation into the problem of

resolving each of the observation vectors of a compositional dataset into mixtures of a

small set of frxed vectors known as endrnembers, whose compositions may be identified

with panicular source materials.

Figure 1. lllustration of a Perfect Mixing Process

Involving Three Source Endmembers.

River I

.--},Pr
River 2

Fz

Ri ver 3
Fs

To illustrate, consider the lake (Figure 1) which is fed by three rivers. River 1

carries sediment of fixed composition p, into the lake. Similarly, rivers 2 and 3 deposit

sediments of fixed compositionr Fz mO Fl respectively. The three p-dimensional

vectors Ft,F ,Fr are endmember (source) compositions, each containing measurements

on the same p elements. Various dynamical processes move these source materials

around the floor of the lake. If a sample of sediment is taken off the lake bottom, then



in a perfect (error-free) model, its composition x will be a mixture of the compositions

Fr,F ,Fr. Algebraically, x will be a convex combination of Fr,pz,F:. That is,

x = IrFr +7"2F2+LFl

where f,r * L + L = I and 1.r, Lr,\are non-negative.

Denoting the mixture cofficients [Lr, L, \l bV I and treating F1,F2,p3 as

row vectors, then row vector x (lxp) is the marrix product of l, (1x3) by matrix p

(3xp) whose rows are Fr,Fz,Fr in that order. This perfect mixture may be written,

x =l,p

If a number n samples are taken from different locations on the lake floor, then

their n composition vectors will constitute a matrix X (nxp) which will be the matrix

product of A (nx3), a matrix of mixture coefficients, with F (3xp), the matrix of

endmember vectors. Hence.

X=AF

The rank of X (in this perfect model) will be exactly 3. Therefore, its n row vectors will

occupy a 3-dimensional subspace ,6 of p-space. Further, because each of the

corresponding n sets of mixture coefficients sum to l, these row vectors define the

positions with respect to the origin of n points inside a plane triangle whose vertices

(extreme points) are defined by Fr,Fr,Fr.

In practice given an array of compositional data X (nxp), the number r of

endmembers and their compositions F1,F2,...,F* are unknown. There will also be

error-causing random contamination, which may be represented by the error matrix I
(nxp). So the theoretical model for the true decomposition of X is given by,
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X=AF+e

and the complete 'linear unmixing' problem in a real situation is first to attempt to

identify the space ,6 spanned by the unknown Fr,Fz,...,F* (which also implies an

estimate of the integer r), then to estimate both the manix of endmember compositions,

and the matrix of mixture coefficients. (It should be noted that departures from the

matrix Ap of perfect mixtures may include non-random components. For example, the

CaCO, contribution from a biogenic source will appear to vanish in marine sediments

which are taken below the carbonate compensation depth (= 4500m) where CaCO, is

mostly dissolved).

Historically, the problem was not formulated in this manner. Indeed, the

literature to date has really only described algorithms for constructing approximate

decompositions of particular transformations of a compositional data matrix. Suppose

for example W (nxp) is the matrix whose rows are the unit vectors in the directions of

the corresponding rows of the matrix X (nxp) of observed compositional data. The

earliest approach to the unmixing problem was a procedure for eventually expressing

each row of W as an approximate linear combination of k 'extreme' rows of W, where k

was the analyst's choice of its approximate rank. The method employed adaptations of

factor analytic algorithms which were applied to the (nxn) similarity matrix

Re = WWT. This strategy could not work in general because a real compositional

dataset rarely contains a set of 'extreme' observations, of which linear (or convex)

combinations would account for each of the remaining rows of \il (or X) while

simultaneously obeying the non-negativity consraints necessary to account for real

mixtures.

The initial algorithms were extensively modified over time, both to exploit the

'constant-sum' property of compositions, and to attempt to grapple with the difficulty of

absent extremes in the observed data. But what remained unchanged throughout these

modifications and has endured until the present is the basic perception of the problem as



an application of factor analysis. The only challenge to the factor-analytic approach has

come from the advocates of the linear programming method, but since this requires

extremes to be specifid a priori, it is seen by some to lack objectivity. [n fact, the linear

programming method has other weaknesses which are discussed in Chapters 2 and 3.

The adaptation of classical factor analysis brought many of the difficulties of thu

dubious practice to the analysis of mixtures. In the conventional analysis of a sample

correlation matrix Rx, the confusion of a perceived low approximate rank k for R* with

the influence of an underlying k-factor model, is almost universal. Johnson and

Wichem (1988), for example, in their 5 step 'strategy for factor analysis', recommended

first a 'principal component factor analysis' (standardized principal components) with

which to compare the maximium likelihood factor analysis solution which was to follow.

However, the existence or otherwise of an underlying factor model can not be

established from the approximate rank k, low or not (see Chapter 1). In the absence of

an adequate testing paradigm such as that afforded by the maximum likelihood method,

the choice of the number of 'factors' (if any) is always a difficulty. Another difficulty of

course pertains to the rotation of a set of initial factors into an interpretable configuration,

and then there follows the problem of an appropriate oblique rotation of this. There are

no formal solutions to these problems in the analysis of mixtures. Nevertheless, to a

growing school of thought, the (nxn) similarity matrix RO had replaced the (pxp)

correlation matrix R* as an iuray of reliable and exploitable associations. Thus, without

formulating a distinct mixing model with precisely defined properties for each of the

matrices A, F, 8, which would in turn permit the derivation of a theoretical structure for

the similarity matrix RO, the interchangeability of Ra with the correlation matrix R* was

assumed, and so factor analytic concepts, terminology and algorithms were adapted to

the mixing problem.

Given its importance in the development of the analysis of mixtures, the frst

chapter of this work is devoted entirely to a review of principal factor analysis. All those



aspects that were borrowed for mixture analysis are examined in the chapter and,

although not always relevant to that purpose, some issues which challenge existing

orthodoxies in the application of factor analysis are also discussed.

Following that, it is the ultimate endeavour of this work to identify a systematic

approach to the analysis of mixtures which will unite in a single system all the

procedures which may be employed to construct and evaluate endmember estimates,

mixture coefficients and their residuals, for any given array of compositional data. There

are 5 chapters whose contents are as follows:

Chapter l, as explained above, contains a review of classical factor analysis.

Chapter 2 is on the historical background to the analysis of mixtures. It contains

a survey of the most important developmental literature.

Chapter 3 covers first, those fundamental properties of mixtures that are

necessary for complete analyses. Following that, an iterative method is developed for

partitioning a compositional dataset by least squares into mixtures of assumed extremes,

then adjusting just those 'extremes' which are identified by their regression coefficients

as not being extreme enough. Descriptions of the computer algorithms employed at each

stage of a complete analysis are included in the last section. This chapter is the detailed

discussion of the theoretical portion of the paper by Renner er a/. (1990) and the

Technical Report by Renner (1988).

Chapter 4 describes applications of the procedures discussed in Chapter 3. The

sections on the analyses of the ferromanganese nodules from the Manganese Nodule

Program (United States National Science Foundation) and the Mid-Pacific cobalt-rich

manganese crusts (United States Geological Survey), set out in detail the Applications

portion of the paper by Renner et al. (1990). The section on the analysis of the bediasite
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source materials is the basis for the published Comment by Renner (1989), and the

analysis of the sediments from Lake Te Anau expands on the author's contribution to a

submission to The New Zealand Journal of Marine and Fresh Water Research.

Chapter 5 examines approaches to two problems. The first is the purely

technical matter of exploiting the information in a specimen which has missing values.

For this, the well-researched data base of geochemical analyses of the Nazca Plate

surface sediments provided a particular case for a trial study. The evaluation by Dymond

(1981) of 5 specified sources for these data has become widely cited in the literature.

The large number of missing values for zinc (50 out of 425 samples) had not obstructed

the use of normative analyses (see Chapter 2) on which the evaluation by Dymond (ibid)

was based. So the first section of this chapter describes an attempt to extract all the

information available in the dataset in order to conduct a confirmatory analysis by the

distinctly different procedures advocated earlier in this work. The second problem

concerns the testing of an essentially multiplicative model for the errors in the mixing

model. Again, the Nazca Plate surface sediments proved to be a suitable data base for

experimentation as did the Mid-Pacific cobalt-rich manganese crusts (U.S. Geological

Survey) already analyzed in Chapter 3. The second section of this Chapter largely

summarizes the content of an address to the 18th Geochautauqua, Delaware, October

1989 by Renner, which has been submitted to Mathematical Geology.



CHAPTER 1

A REVIEW OF CLASSICAL FACTOR ANALYSIS

SUMMARY

Tlrc orthogonal linear factor model for standard (zero mean unit variance)

random variables with arbitrary jotnt distrtbution is defined, and the well-known

relationships between the distribution conelations, thefactor loadings and tlv specific

variances are qrcted. The properties of a multivariate random swnple drawnfrom such a

distribution are emmined, leading to thc dcrivations of tle principalfactor ardprincipal
components solutions.

It is shown that, in general, a principal components solution cannot be

rearranged inn afactor arulytic sohttion.

Altlnugh disjoint clusters of mean-correctedvariable-vectors, recognizeable by

tluir high correlations within clusters and negligible correlations beween chaters, are

commonly associatedwithfactors, it is shawn that their existence does rwt corxtitute a

sfficie nt conditio n for an underlying facnr ntodcl.



1.1 INTRODUCTION

The main purpose of this chapter is to review the essential aspects of classical

factor analysis. This must be done in order to clarify the development of the original

approach to the analysis of mixtures which will be described in Chapter 2. However,

the development of factor analysis itself follows in part the establishment of a sequence

of algorithms which were guaranteed always to work in practice, and have been

followed uncritically by scores of specialists from fields as diverse as clinical psychiatry

to meteorology. Accordingly, the rudiments of the subject are reviewed in some detail,

and where established conventions are not suppofted by theory, these may be expanded

on whether or not that has anv relevance to mixrure analvsis.

The chapter is divided into a further five sections as follows:

Section 1.2 describes the well-documented properties of the distribution

parameters of the orthogonal linear factor model which are true for all distributions with

second order moments. The assumption that the maniftsr variables (Everitt (1984))

follow a multivariate normal distribution is not made in this or any of the following

sections because it is not appropriate to the geochemical applications described in

Chapter 2. Maximum likelihood estimation and the likelihood ratio criterion due to

[,awley, for testing hypotheses relating to the estimates (Lawley and Maxwell (1971))

are therefore not discussed.

Section 1.3 examines the implications of the model for particular sample vectors

and sample statistics associated with a multivariate random sample.

Section 1.4 contains the derivation of the principal factor solution when the

distribution correlation matrix and specific variances are known.
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Section 1.5 examines the sample (standardized) principal components solution.

Although it is not a factor solution and can not be rearranged into a factor solution, it is

widely interpreted as such. Further, the methods for obtaining it were evenhrally adapted

to the analysis of mixtures.

Finally, Section 1.6 on orthogonal rotations examines 'simple structure'which,

it is shown, is a phenomenum that is unrelated to the presence of a factor model.

1.1.1 R-mode and Q-mode analyses

Throughout the geochemical literature, any study based on a (pxp) correlation

matrix R* between p variables is described as an R-mode analysis while a study based

on an (nxn) similarity matrix RO between n objects is called a Q-mode analysis. In

particular, the application of factor analytic procedures to the matrices R* or RO are

known as R-mode or Q-mode factor analyses respectively. This terminology has been

adopted where appropriate in Chapters I and 2 of this work.

In order to reserve notation specifically for the minor study of the factor

analysis of the correlation matrix (between variables) which is set out in this chapter,

most quantities in that context will appear with the subscript 'R'. Hence the use of (pxp)

R* above. Subscripts are not taken to second levels so that the covariance matrix of the

random vector f* will be denoted by Ef. Subscript 'q' will be used rarely except to

remove any ambiguity as in (nxn) RO above.
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L.2 THE ORTHOGONAL LINEAR FACTOR MODEL

Almost exclusively, practical applications of R-mode factor analysis concentrate

on 'factoring' an observed correlation matrix R* (nxl). The elements of this matrix are

the cosines of the angles between all pairs of mean-corrected variable-vectors of a

multivariate sample. In the Q-mode analysis of mixtures, the elements of an observed

similarity matrix RO (nxn) are the cosines of the angles between all pairs of. object

vectors of a compositional dataset. The 'factoring' of RO has consequently been

perceived as an exercise in essentially the same algebra as that for the'factoring'of R*.

Adopting R* as the estimate of the conelation matrix of the joint distribution of

the manifest variables x* (Everitt (1984)), requires that the distribution has second order

moments and implies that the actual variables being studied each have zero mean and unit

variance. Accordingly, let (pxl) z* be a vector of standardized components of the

random vector xR. Further, let (mxl) fp, where fi ( p, be a vector of uncorrelated

(mutually orthogonal) random variables (commonfactors) which are also standardized,

let A* (pxm) be a matrix of correlations (factor loadings) of rank m, and ep (pxl) be a

vector of uncorrelated errors (specific factors) whose means are necessarily zero. Then

an ortlwgonal linearfactor analysis model (after Harman (1967)) is given by,

z*=A*f*+a

where xpr Zj, f* and eR are of course all defined on the same sampling

(1967, p.16) assumes that sample correlations are the true population

most of his exposition).

(l.l)

unit. (Harman

correlations for

The model requires f* and e* to be uncorrelated, so the (pxp) covariance matrix

En = EIh{l of the joinr disrribution of z* is, by equarion ( I . I ),
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ER=A*AI*On (r.2)

where on = E[h{f o the diagonal matrix of specific variances.

Since z* is the vector of standardized components of x*, the covariance matrix

E* is also the correlation matrix of the joint distributions of x* and z* respectively.

Assuming that model equation (l.l) is true and that the distribution correlation

matrix X* is known, the basic problem of factor analysis then is to determine the

solutions if any, either for A* (which would imply both m and O* ), or for Op (which

would imply AnM* where M* is an arbitrary orthogonal (mxm) matrix), that will

satisfy equation (1.2).

It will always be assumed that X* is of full rank p. Although O* can not be

the zero matrix, equation (1.2) is often described as the (matrix) factorization of E*.

An alternative way of expressing the model (1.1) is,

zR=

In this form, the p components of z* are linear combinations of [m+p] mutually

orthogonal standardized random variables which are the components of fl. The matrix

of these combinations par:titioned as in equation (1.3) displays the rectangular array of

loadings and the diagonal array of specific standard deviations, which is the necessirry

marix formulation for the model.

The diagonal elements of X* are the unit variances of the p components of zx,

so from equation (I.2), for i = 1020...,p,

[,r*, of']tl (1.3)
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l= + Q*,,Eri,. (1.4)

(1.s)

The sum of squared loadings on the right of equation (1.4) is the i-th communaliry,

which Everin (1984) describes as that part of the variance of z*, which is shared with the

other variables via the the common factors. The second term, Q^,., is the i-th specific

variance. All terms on the right of equation (1.4) are non-negative, and their sum is l,

which appears on the left. The magnitude of rhe i-rh communality is therefore the

proportion of the variance of the i-th variable which is accounted for by the common

factors.

The correlations between the components of z* are the off-diagonal elements of

X* given by

o*ij = pt*,o^*,o

from equation (1.2).

It is result (1.5) that many authors cite to emphasize the distinction between

principal components and linear factor analysis. Following Harman (1967, pp. 14-15),

the principal components of z* are described as accounting for the maximum variation in

the distribution (or the data) because of the well-known optimal properties of their

variances (Seber (1984). Factor analysis on the other hand is described as accounting

for the covariances (correlations in this case) in view of equation (1.5). This distinction

is specious. A complete set of principal components is determined by a non-singular

transformation of z* which, in a matrix product with its own transpose, determines E*

exactly (see equation (l .32)). The real distinction between principal components

analysis and factor analysis is that the former should seek to recover equation (1.3a) (a

little further on) while the latter should seek to recover equation (1.3). (It is shown in

Section 1.4 that in general, a principal components solution can not be rearranged into a

factor solution).
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The interpretation of the results of an orthogonal R-mode factor analysis

assumed to be based on standardized manifest variables, is determined by an important

property of the elements of the loading matrix A*. Since the components of z* and f*

are standardized, their intercorrelation manix is,

Con[z*,f*l = Cov[z*,f*l

= Ettfll

=AR (1.6)

by equation (l.l).

Consequently R-mode factor analysts scan the rows of the computedfactor

pattern (estimated loading) matrix in order to classify variables with the factor with

which they are most highly correlated. In applications therefore, exploratory R-mode

factor analysis is a clustering technique applied to the variables. Once a cluster of

variables is identified, then the factor with which they are associated is in its turn

identified with some perceived attribute that the variables must have in common

(although it is shown in Section 1.6 that none of this sufficient evidence for the existence

of an underlying factor model).

Remark

If the factors are correlated (oblique) with correlation matrix X, then

Corr[z^,f*] = AnEr the factor structure matrix. Seber (1984, p.213)

showed that multiplying the vector of factors Uy E it/t transforms an oblique

into an orthogonal model (whose loading matrix is obviousl, l*ffz). So

if an oblique factor structure matrix displays unambiguously disjoint groups

of variables, then the presence of these groups may not be so evident among

the loadings of the factor pattern matrix of the corresponding orthogonal

representation.
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Suppose that O* is unique. If m = 1 then A* is a (pxl) column, and by

equation (1.4) there are two possible forms for A* which differ only by a reversal of the

signs of all its elements (by equation (1.5)). This is the one dimensional elementary case

of the well-known property of orthogonal transformations in Euclidean m-space of the

vector of common factors f* namely, that they all result in valid factorizations of \.

fi = Nhf*, then gtfil = 0 and Covartf[,fi] = M*IMI = I. Hence the components of f{

If matrix M* (mxm) is orthogonal where m) 2, then M*M[ = MIMn = I. Let

(1.7)

which is identical in form to equation (1.1). Further,

have zero means, unit variances and are orthogonal in exactly the same way as f*.

Substituting fn = UIfl into equation (1.1) and setting ,fi = l*n4[, equation (1.1)

becomes,

z*=Airi+e*

.,ritnilt = n*rvrfirrl*ll

= A*AI

=ER-OR

Hence any set of orthogonal (uncorrelated) factors in Eucidean m-space will satisfy

the model given the appropriate mapping M*. Similarly, it will be shown later that

indefinitely many solutions to a factor analytic problem can be constructed from a

particular solution.

It should be pointed out that the p (lxm) rows of A* define p points in m-space,

(mxl) f* defines one point in m-space, and the p components of the product A*f* are

the scalar (inner) products between the position vectors of the first p points and the

(1.8)
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(mxl) vector f*. The p rows of A*Mf are of course the p (mxl) columns of M*A[

each of which has undergone the same rigid body rotation as (mxl) Mnfn (therefore the

p scalar products described above are invariant under this transformation). Hence it is

just as valid to refer to the rotated loading matrix Ai as it is to the rotated facton fi.

The expression on the right of equation (1.8) is called the reduced conelation

matrix (Harman (1967). It is a correlation matrix with the ones in the diagonal replaced

by the communalities. It is the basic hypothesis of R-mode factor analysis that there is a

reduced distribution correlation matrix of exact rank m < p. If there is no such matrix

then there is no underlying factor model. (This latter observation is also true of oblique

models).

I.3 THE FACTOR SAMPLING MODEL

Associated with a set of n sampling units are the multivariate random samples

X* (pxn), Zx (pxn), F* (mxn) and 8* (pxn). The columns of each of these matrices

are assumed to form four distinct though related collections of n independent identically

distributed vector random variables. The j-th columns of Z*, F* and e*, denoted by

"*j,f*j and e*, respectively, are related by equation (1.1), j = 1,2,...n The factor

sampling model is therefore,

ZR= A*F* + e*

Since EIZRZRTI = nDp, EIFRFRTJ = nI and E[e*e*r] =

(1,7), of course, also follow directly from equation (1.9).

(1.e)

nO, equations (l.l) to
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In general, the mean vector lk and covariance matrix E* of the distribution of

the manifest variables xR, are unknown. It is not possible therefore to construct matrix

Z* fiom X* since

zR = ol"[** - rt*lt ] (1.10)

where Ar is the (pxp) diagonal matrix of diagonal elements of E* and (nx I )

| = [1,1,...,1]T (nxl). However, an estimate for Z* is the matrix \ilx (pxn) of

variables standardized with respect to the sample means and standard deviarions of X*.

That is,

wR = ort"[** - -*tt ]
(r.1r)

where A, is the (pxp) diagonal matrix of sample variances and m* = Xnl[1/n] is the

sarnple mean v@tor.

(Primarily, the sample mean vector mx and the sample covariance matrix

Sx = [*- -* rrfx. - mx ttf+ are unbiassed estimators respectively of

p* and Xa).

Postmultiplying throughout equation (1.10) by (nxn) matrix 11r[1/n] and

subtracting corresponding sides of the result from equation (1.10) creates the

mean-corcectedfomr D*of matrix Z*. That is,

DR = q- u1Rtttlr/nl

or, as in equation (1.12) below,
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DR = ort"[** - -*1t ] (r.1,2)

(1.15)

Denoting ttre i-th sample means of Z* and X* bV h; ard ;R., equations (1.11) and (1.12)

yield,

d*u=(ro.i -Z*J

= (xruj - x*VtrE[, (1.13)

(1.14)

It isapparent from equations (1.11) to (1.14) that corresponding rowsof W* and

the mean corrected matrices o* = 
[r* 

- -"tt] and D* = [** 
- -*rr] *

parallel vectors in Euclidean n-space. (Note: mr= Z*l[l/n] in equation (1.12).

Denoting the cr-th and B-th rows of Wx by (lxn) W*., and \ilnp, the (cqp)th

element of the sample correlation matrix R* is,

w*owlp
tRop = ffi

Or, more concisely,

RR = w*wl (U1n-ll) (1.r6)

Alternatively, the entire right hand side of (1.15) is the scalar product of the two

unit vectors in Euclidean n-space whose directions are from the origin O* to the points

Wno(*Rot,w po2,...,wnan) and W*p(** p t,w pp2,...,wnpn) respectively.

= wRiL/ t*rtlo*,,
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The q,-th and p-th rows of I{* are the (lxn) position vectors W*o, W*p with

respect to the origin OR of the points Wno(wRol,wRct2,...,wRcn) and

W*p(**pt,wpp2,...,wppn) . As was noted above, these vectors are parallel to similarly

defined vectors represented by the corresponding rows of ttre mean-corrected matrices

D* and D*. h particular therefore, ORDRaWR* md ORDRpWRpare straight lines. Let

Onop be the angle WRaORWRp, then by equation (1.15),

tRop = cos(0*op) (r.17)

So far, the only condition imposed on the distribution of x* has been that all the

second order moments exist. Now, it will also be required that S* is a consistent

estimator for E*, so that r*op is a consistent estimator for opop, by equations (1.10) to

(1.15), and 0pop is a consistent estimator for arccos(opop).

The first requirement of a large sample assumption which will prevail for the

remainder of this chapter is that r*op is close to o*op for each cr,,B = 1,2,...p.

So an analysis of the estimated distribution conelation structure becomes an

analysis of the relative angular positions of the p mean-corrected (lxn) variable-vectors,

WRr,WRz,...,Wpo, in n-space. Equivalently, since the points Wp1,Wt2,...,WRp lie on

a hypersphere whose centre is O* and radius is /n-1 , the angular positions and hence

the estimated correlation structure are also determined by the relative positions of

Wp1,Wp2,...,WRp on the hypersphere P*. The angle 0*op and its cosine cos(O*op are

respectively measues of dissimilarity and similariry between the two (lxn) vectors Wno

and W*U. Unlike functions of the distance between the points W*o and Wpg, the

dissimilarity and similarity measures O*op and cos(O*op) are independent of the

magnitudes of the two vectors. This property has been perceived to be especially

appropriate in the study of the relationships between compositional vectors. It is the

ratios of the various components of composition vectors that distinguish compositions,
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not their absolute values. All parallel vectors have identical compositions.

To complete this geometrical interpretation, it is useful to examine the

relationships between collections of points in n-space whose locations are determined by

the factor model (1.9). First, it is necessary to mean-correct the data as before.

Postmultiplying throughout equarion (1.9) by (nxn) matrix llT[l/n] and

subtracting corresponding terms of that result from equation (1.9) creates the

mean-corrected arrays D*, B* and nR, where D* is given by equation (1.12),

BR = FR(I - llrtl/nl) and Tlp = eR(r - llrtl/nl). The end result is the

mean-corr@ted factor equation below,

DR = AoB* * tln (1.18)

The sample covariance marrix associated with Z* is (pxp) Sn = DRDRrtl/(n-l)1.

Substituting for D* from equation (1. l8),

Tl^h'TlD*D*fr = (AnBn + q*)(A*Bn + In)' ;
= ( A*B*BInl . ARBRq; + q*n[l[ * rl*tll) * (1.19)

Tl rl r 1

Now D*Di 
n_l , BRBifr, -A nnqn - . are unbiassed esrimators for E*, E1 and O*

respectively, and qnl4 unO n*BI a *" unbiassed estimators of the covariances

between f* and e*. Therefore, since the components of f* are standardized and

uncorrelated, and the random vectors f*, e* are required to be uncorrelated,

r[n-n[*] =I (mxm), 
^"d 

E[B*ql*.] =o (mxp) (1.20)

Applying the expectation operator to either side of equation (1.19) clearly recovers

equation (1.2). From the first result of line (1.2.0), the expectation of the scalar (inner)
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prduct of the i-th and j-th (lxn) row vectors of B*[/I-l ], is the (ij)th element of I
(mxm). Hence ttre expected configuration for the row vectors of B*11/5-l I is an

orthogonal set of m unit vectors in Euclidean n-space. Similarly, from the second result

of line (1.20), the e*p"cted orientation of the same m row vectors is orthogonal to the p

(lxn) row vectors of q*. The expected configuration for the rows of Ip is also a

mutually orthogonal set since E[nnqnT] = (n-1)O, another diagonal matrix. For such

configurations to be possible (though not necessarily realized), it is required that

n 2 p + m. In fact, in order to make full use of the assumption that all sample

covariances are consistent estimators of corresponding distribution covariances, it will be

necessary to assume that n is large enough for the expected geometrical configurations

described above to be approximately true of the positions of ttre sample variable-vectors.

In that case, from equation (1.19),

TlrD*D*fr = A*A. * O* (r.2r)

It follows also from the large sample assumption when it is applied to

equations (1.14) and (1.20), that the (1xn) variable-vectors Dp1,Dp2,...,Dpo and the

(lxn) factor vectors Bg1,Bp2,...B*r' are the position vectors of points on or near the

surface of the hypersphere P*. So writing out the i-th variable-vector of D* by equation

( 1.1 9),

DRi = + rlnt (r.22)

Dividing both sides of this by /n- f creates unit vectors approximately, in the directions

of D*, and B*r,8p2,...,8p.. It is then evident that I*,r,X*,r,...,LRi* are the

direction cosines (approximately), of the i-th variable-vector with respecr to an axis

system defined by the (approximately orthogonal) factor-vectors. This interpretation is

consistent with result (1.6) in which A* was identified as the matrix of correlations

between z* and f*. The (nearly) orthogonal set of factor vectors 8p1,8x2,...,8* span
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an m-dimensional subspace z6p of Euclidean n-space commonly called thefactor space

(which is at variance with the notions of variable and object spaces). The loadings

?up11,?uXi2,...,?rRi- can also be regarded as the regression coefficients for the position

vector of the orthogonal projection of the point D*, into z6x.

Equation (1.22) is the basis of the factor plots which were historically used to

initiate plane rotations, and are optionally produced by most factor analytic software to

permit visual appraisal of factor solutions. Suppose for example Bp1, Bp2 and r1ii are

assumed to be mutually orthogonal, then (Intt,l,*,2) are the coordinates of the

(projection of the) i-th variable vector on the plane of B*, and B*t. Hence the p

ordered pairs in the first 2 columns of A* can be plotted with respect to an orthogonal

reference system assumed to represent Bnr and Bp2, thus portraying the reladve

positions of the projections of D*r,D*r,...,DRp in the plane of the 1st and 2nd factors'

Such plots can be construcred for m(m-l)/2 pairs of columns of A* taken two at a time.

In practice, factor analysts musr work with the estimate L* for Ap (see the estimated

model, equation (1.38) in Section 1.4). but the underlying assumptions remain the same.

Finally, the large sample assumption must also guarantee an important relation

between the rows of (mxn) arrays of factor scores that have been orthogonally rotated in

Euclidean m-space. The result seems to be taken for granted in the literature (possibly

due to Harman (1967)) namely,

/; { = Nhf* where \ (mxm) is orthogornl as in the derivation of equation (l-7),

then the expected forms of the original and the transformed mean-corrected

factor-vectors are both orthogonal systems of vectors.

The transformed factor model can be derived from Equation (1.18) as follows,
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DR=A*B*+nR

= A*MIilhBn + rn

= ,f*nl .' IR (r.23)

Denoting NhB* by 4 in equation (1.23), and comparing with equuions (1.7) and (1.18).

But,

nicnitr = NqB*BI( (r.24)

TIf BRBR = (n-l)I the expected form, then by equation (1.24) nifnitr = (n-l)I, since

since M*M[ = L Hence the expectation is that the rows of Bi will constitute an

an orthogonal system of vectors which also define m points on the hypersphere P*.

That is, the transformation determined by M* is equivalent to a rigid body rotation of

the (lxn) factor-vectors Bp1,8t2,...8R.. Furthermore, this rotation takes place in the

factor space A*. the rows of B* span ,4j and each row of Bfi = MnBR is a linear

combination of the rows of Bp, so every set of rotated factor vectors belongs to .4p.

It is clear that these conclusions demand considerable precision of all the

estimates as a consequence of the large sample assumption. When this precision is

assured and L* is an initial estimated loading matrix, then by the derivation of

equation (1.23), orthogonal rotations of the m factor vectors may generate

indefinitely many arrays of factor loadings leading to the possible discovery of

interpretable loadings Lf, concomitant with intelpretable factors f{. Ttnse issues will

be examined in Section 1.6.
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I.4 THE PRINCIPAL FACTOR SOLUTION

Several procedures for estimating the parameters of the R-mode factor model

have been developed, of which the maximum likelihood method (Lawley and Maxwell

(1971)) and the principal factor solution are possibly the most important. The

multivariate normal assumption which is the basis of the maximum likelihood method

can not validly be extended to the Q-mode treatment of compositional data. In any

event, the historical development of the Q-mode factor approach to the analysis of

mixtures was conceived by its authors (Imbrie (1963), Imbrie and Van Andel (1964)

and, Klovan and Imbrie (1971)), to be an application of the principal factor solution

described by Harman (1960, 1967). That is, a principal components analysis of the

reduced correlation matrix. Harman (ibid) did not 'formally present components

analysis', in which the main diagonal of the correlation matrix is unaltered. Indeed for a

description of that method, he referred the reader to Hotelling (1933) and Anderson

(1958, 1963). Yet, the established procedure for the Q-mode factor analysis of

geochemical data has never included a modification of the main diagonal of the similarity

matrix. Seber (1984, p.222) remarked that the general confusion between R-mode

factor analysis and principal components analysis 'is not helped' by the use of principal

factor analysis. Algebraically, the complete principal components solution is a special

case of the principal factor solution, as will be demonstrated a little further on. So

although the orthodox principal factor solution is not strictly used in the analysis of

mixtures, the identification of components analysis with the method warrants the

discussion of their relationship which follows. (It might be noted that R-mode principal

factor analysis is still the preferred approach of some geochemists seeking to identify

natural element associations (see for example Walter and Stoffers (1985); Nath, Rao

and Becker (1989)).

kt the reducedcorrelation mafiix (equation ( 1 .8)) be denoted by E*. Then,

E; = E*-o*
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^*^l
(1967) principal components

(1.2s)

Principal factor analysis is described by Harman (1967) as a princtpal componen

analysis of E*. That basically implies the reduction to canonical form of the symmetric

matrix E* (pxp), of rank m ( p, and hence to a factorization such as equation ( 1.25).

On the right of equation (1.25), ARAI happens to be equal to EtA*f*dlll so br

equation (1.1) it follows that E* is the covariance matrix of the difference of random

vectors ("n - h). t*t yn = v[(z* - h) be any linear combination of this difference

provided only that v* (pxl) is a unit vector (nl"* = l). If t, is theorthogonal projection

of the j-th column (pxl) of A* (pxm) onto the unit vector v* then,

nfA* = lr'T,r,..,,x^)

"[rr*,,r[n*
rl + r2r+ ... + tfr

and,

"f,1*o*

>0

(1.26)

(r.27)

Equuion (1.2O confirms that \ is positive semidefinite. It also displays the variance

T-'2-viD*v* = ol of y*, as the sum of the squared projections onto vR of the columns of A*.

The method for finding the maximum value for d given that v* is a unit vector

yields a more general result (Seber (1984), Johnson and Wichern (1988)) namely, that

the critical values "f 4 are equal to the p eigenvaluss Vr 2 Vz ) ... 2 Vn > 0, of E*

and occur when v*is equal to the conesponding (pxl) eigenvectors v1,v2r...rvp(see

also Footnote 1). Therefore the critical values of the sum of squareson therightof

Footnote 1: To maximiz" vTEv given vTv = vTlv - 1, introduce the Lagrange multiplier

ry and maximize vTlE - ,yt1v. Partially differentiating this with respect to

the components of v, then provided E is symmetric, (E - Vl)v = 0 is a

necessary condition for turning values of vTEv. That is, Xv = ryv.
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equation (1.26) are equal to {1,{2,...,V0. But there are only m (< p) column vectors in

A*, and the rank of A* is m by assumption, therefore in Euclidean p-space there

are (p-m) munrally orthogonal vectors which are also orthogonal to the subspace

spanned by the columns of A*. Since the orthogonal projections of all the columns of

A* onto any of these (p-m) vectors must be zero, then by the inequality at line 0.n),
they constitute a subset ym+t,ym+2,...,vp of the complete set of eigenvectors

Y1,v2,...,v0, for which the corresponding eigenvalues, Vm+l = Vm+2 = ... = Vp = 0.

I*t (pxp) V = [v'vr,...,vp] and (pxp) y = diag(v1,V2,...,Vp) then the vector yR

of principal components of (za - ep) is,

yn = vr(h-sR),

and by definition,

E;v = VY.

SinceVrV=I(pxp),

vrE*v = v (1.28)

The matrix product on the lefr of equation (1.28) is equal to the covariance matrix of the

vector Vp. This reduces to the diagonal matrix (on the left), confirming the well-known

result that principal components arc mutually uncorrelated.

SinceVVr=I (pxp),

ER = vYvr

= [o*"')[n*'";'

Vm+l = Vm+2 = ... = Vp = 0, So equation (1.29) can be rewritten in the form,

(r.2e)

En= In'*'"')[n' *''r')' (1.30)
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where (pxm) V'= [ v1,v2,...:v.] and (mxm) Y' = diag(Vr,Vz,...,V_).

Choosing,

AR - Y'ty'll? pxm) (1.31)

creates an exact solution to equation (1.25) consistent with the uncorrelated set of

standardized principal factors f* = v'-tzy*, where (mxl) J* contains the first m

components of (pxl) Jp in order.

Therefore, if the distribution correlation matrix E* and the specific variances

O* are known, then the communalities are specified and the principal factor solution will

determine a number m of factors and an exact associated loading manix. Orthogonal

rotations may then be employed to search for an interpretable factor pattern.

1.4.1 Distribution Principal Components

In general, neither E* nor (D* are known, although E* can of course be

estimated. Before moving on to that case, there remains a theoretical problem created by

discarding only the assumed knowledge of O*. This problem is stated below.

If just the distribution correlation matru-L*is known, what integers m or

diagonal maffices Q*of specific variances, will secure an exact solution to equation

(1.2s) ?

The adjective 'theorefical' as used to introduce this problem alludes to the

assumption of a known distribution correlation matrix, which is rarely a reality. But

since this assumption has been made it is an ineluctable truth that if there is no exact

solution to equation (1.25) then then there is no underlying factor model. Theoretical or

otherwise, the ensuing discussion does have implications for the processing of the
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observed correlation matrix R*.

Remark Algebraically the problem seems rather cut and dried. For any assumed

value of m, there are p\p+l)/2 bilinear equations in p[m+l] unknowns (see

equations (1.4) and (1.5)). The actual solubility of these equations aside,

the system will be overdetermined, determined or underdetermined

according as 2m<= >p-1. So for example there is always a simple

single factor solution when p = 3 (for which the specific variances may

nevertheless be negative (the ukra-Heywood case)). Most applications of
factor analysis are undertaken with the intention of finding solutions in

which the number of factors is considerably less than half the number of
variables. If the distribution correlations were known, such applications

would be constrained by overdetermined systems for which there can be in

general no exact solutions. When the distribution correlations are

unknown, estimates of the loading marrix based on factor analyses of
the sample correlation matrix are. most probably fallacious, unless supported

by rigorous tests on the validity of the estimated parameters. This

pessimistic conclusion seems to prevail even under conditions which are the

most favourable possible for the factor analyst (see Section 1.6).

The problem always has at least one solution. Set m = p and e* = 0 in

equation (1.1) and thereafter. Then O = 0, the communalities are all equal to l, and

E'R = ER. Following this special case through the earlier discussion of the principal

factor solution and reinterpreting the notation as appropriate, the distribution correlation

matrix is given by,

ER = A*AI

where the loading maffix is,

This, of coursg, is a complete

importance in applications of

AR = vv rtz (pxp)

(1.32)

( 1.33)

(standardized) principal components solution. Its

factor analysis arises when the (p-k) eigenvalues
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V1a1,V512,...,V0 of E*, are negligible. Then the realizations of z* must approximately

occupy a space of k dimensions (see equation (1.34) below) and a plausible strategy for

modelling such a situation is to make the assumptions which are embodied in equation

(1.1), with the additional requirement that the all the communalities be blose to' l. The

interpretation then is that the data will be k-dimensional with small enors. This is a

heuristic approach to the problem posed above. It does not suggest that the principal

components solution in any way determines the existence of any other factor solution.

Indeed, partitioning the loading matrix of equation (1.33) to separate the k 'common

factors' and the errors does not in general create a solution to equations ( 1 .2) and ( I .25).

Basically, z* is a linear combination of p independent random variables (principal

components) and partitioning A* as described will not produce a linear combination of

[k+p] independent variables akin to the [m+p] variables of equation ( 1.3).

Writing (pxl) f*= [f1, f2,...,foJT, the vector of standardized principal

( 1.34)

components Y-l/2yn, and (pxp) V = [y1, v2, ... , vol, the matrix of eigenvectors of

E*, then the vector of standardized r&ponses becomes,

'n = vYt/tf*

KP
= f ",vf/I * Ivivl/2fii=l j=k+t "

where Vt*r, Vt*2,... , Vp are assumed to be very small. Suppose that the first sum on

on the right of equation (1.34) corresponds to A*f* where,

(pxk) AR = [ "rvl", "ry'rl',..., "*Vi" ] and (kxt) fn = [ f, fr,..., f* ]t.

The second sum on the right of equation (L34) corresponds to the error vector (pxl) eir.

Hence, the derived'factor' equation is,

ERz* = A*f* + ( 1.3s)
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To obtain the correlation matrix E* = E[z*d], a direct approach is to observe rhar,

ER = vYvr

and expanding the matrix producg

En= (1.36)

(r.37)

In this model, since fr, f2,..., fp are standardized principal components, the k 'factors'

fyf2,..., fn are mutually uncorrelated, and they are uncorrelated with the errors which

are linear combinations of fk+l, fk+2,..., fp. These tue necessary properties of an

orttrogonal factor model. But unless the errors are mutually uncorrelated so that O* is

a diagonal matrix, then this is not a solution to equations(1-2)and(1.25),theoff-

diagonal elements of X*will not be exactly equal to the off-diagonal elements of A*Af .

ff On did happen to be a diagonal matrix then since its rank is [p-k], k of its diagonal

entries would necessarily be zeros. (In other words, p mutually uncorrelated errors

cannot be formed from linearcombinations of only [p-k] random variables). Hence k of

the p components of z* would have no error tenn and z* would simply be be a

nonsingular linear combination of m corilnon factors and [p-m] specific factors. This is

i","1* *,f;,"1*,

Equation (1.36) is the spectral decomposition of X* (see Seber (1934). The fust sum

on the right is of k (pxp) ma&ices and equats In'*'t")[n'*''r')rwhere(pxk)
y = [vr,y2,...,v1], and (kxk) yJft =Wl'1vt'',..,*l'1. ThusA*= y'ry'1/2 (pxk),

which resembles the loading matrix at equation (1.31). The second sum on the right

of equation (1.36) is of [p-k] (pxp)matrices and equalsthecovariancematrixofthe

etrors, denoted bV On. So making the necessary substitutions into equation (1.36), the

expression for E* which is analogous to equation (1.2) is,

T
ER=A;A;*o*
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not a factor model (see equation (1.3)). In general therefore, the principal components

solution cannot be rearranged to form an exact factor analytic solution. An exception is

that where Vm+l = Vm+2 = ... = Vp= V. Then, En = VYVT = V[Y-VI]VT + VI, in

which case (pxm) An= V[Y-ryI]t/2, discardinE zero columns, and O* = Vf. But

when Vp1,VE,2,...,{o are merely very small, then by the second terrn on the right of

equation (1.36), it may be anticipated that the contributions from the elements O'* to the

corresponding elements of E* in equation (1.37) are small. (Recalling that the vj are

unit vectors whose components must lie in the interval [-1, l]).

There are wide applications for low rank approximations to large datasets,

which include small non-orthogonal erors that are nonetheless orthogonal to the spac€

spanned by an approximate basis for the dataset. The standardized principal components

solution given by equation (1.35) when E* is known, is a linear model which relates

the p manifest variables to k eigenvectors. It is not a factor model, even so, these

eigenvectors can serve as the approximate basis or, indefinitely many solutions can be

constructed by orthogonally rotating fn exactly as for the factor model (see equations

(1.7) and (1.23)).

ln the next section, it will be assumed that E* is unknown but that a model

resembling equation (1.35) does account for the observations of a large dataset. The

problem then is to find that solution within an arbitrary rotation of the loading matrix.

I.5 THE STANDARDIZED PRINCIPAL COMPONENTS SOLUTION

The problem of identifyrng an R-mode factor model becomes a good deal more

obscure in the case where there is no information on any of the distribution parameters,

all of which must be estimated from a multivariate random sample. The principal factor

solution requires initial estimates of the number of factors, and either the communalides
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or the specific variances, in order to estimate loadings. A common initializing

approximation to the communalities is the set of squared multiple correlation coefficients

(Dwyer (1939)) when the sample corelation matrix is non-singular. The maximum

likelihood method also requires frst an estimate of the number of factors as well as an

approximation to the specific variances in order to execute an iterative minimization

procedure which may or may not converge, or may or may not need to be steered away

from negative estimates for the specific variances (Heywood cases).

In this section a representation of a data matrix will be examined whose

existence is never in doubt. That is, the sample principal components solution. Apan

from discarding all information on the distribution parameters, the underlying

assumptions and the consequent geometrical interrelationships between the sample

vectors follow from Section (1.3).

Let data matrix X* (pxn) now be a realization of the random sample

(xp1,xp2,...,xxr,) from the distribution of random vector xx (pxl). When each of the

variable-vectors (rows) of X* is standardized with respect to its sample mean and

standard deviation the result is W* (pxn) given by equation (1.11). An estimated form

of the factor model which corresponds to equation (1.18) is given by,

WR = L*B* * En (1.38)

where integer m is now an estimate of the number of factors, matrix Lp (pxm) is an

estimate of A* given m, the rows of matrix B* (mxn) are the concomitant factor-vectors

each of which contains the n estimated factor scores for each of the m factors, and Eg

(pxn) is a matrix of residuals.

Restating equation (1.16), the (pxp) observed correlation matrix is given by
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RR = wRwl [1/(n-1)] ( 1.3e)

and is assumed to be of full rank. Principal factor algorithms must allow for prior

estimates of the communalities to replace the units in the diagonal of R* (as previously

noted, the squared sample multiple correlations are a frequent choice for initializing these

estimates because the squared disnibution multiple correlations are lower bounds

respectively for the communalities associated with each variable (Dwyer (1939)). Since

however an orthodox principal factor analytic solution may not even have an

interpretation in the analysis of mixtures, the remainder of this section will concentrate

on that solution for which the diagonal elements of R* are unaltered that is, the principal

components solution.

A rewarding method which produces all the loadings, 'factor' scores and

residuals for a standardized principal components approximation is the singular value

decomposition of W*. The following derivation of this method highlights its

geometrical importance.

The (pxl) object vectors wRl,wR2,...,wRn which are the columns of (pxn)

lVj, ore also the position vectors with respect to the origin O of n points in Euclidean

p-space (O also happens to be the centroid of these n points by equation (l.l l). lrt v*

(pxl) be any unit vector (vRyRT = l) through O and let u, be the orthogonal projecton

of the vector wRj onto vp, produced if necessary. Then,

"lw* = [ur,ur, .., ,0n]

n[w*w["^ = u? *r'r*...* u: (1.40)

SO'

The turning values for

eigenvalues Vr 2 Vz >

the expression on

'.') y > 0. of the,p

the right of equation (1.40) are the p

symmetric matrix W*WI = [n-l]R*
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and occur when v* is a corresponding eigenvector. Redefining the (pxp) matrix

V = [vt, y2,..., vo] to be the matrix of unitized eigenvectors of [n-l]R* and

similarly Y = diag(V1,{2,...,{o), then by definition,

T
WRW;V = VV

Premultiplying both sides of this equation by (nxp) W[,

w[w*w[v = wlvv

and it is evident that (nxp) WIV is a matrix of p column eigenvectors of (nxn) WIW*,

with the same (pxp) diagonal matrix of eigenvalues Y as for the symmetric (pxp) matrix

W*WI. Setting (nxp) U = WIVY-tE creates a matrix of the unitized eigenvectors of

the symmetric (nxn) matrix WIW*.

(since uTu = v-t2vrw*wflvv-tft = ry''l2vtvvy-t" = I (pxp)).

Making W* the subject of the expression for U above yields the 'singular value

decomposition'for W (see Seber (1984)).

wR = vYlzur (1.41)

Suppose as before that Vk+I, V112,..., Vo are very small. Partitioning equation

(1.41) into nyo sums according to the magnitudes of the eigenvalues then,

kp
wR =;n,ufvfn * l.",ulvj/2

l= I l=k+ I
(r.42)

In the first sum on the right hand side of this equation set (pxk; V'V'1/21n-ll-t/t= L*,

where (pxk) V'- [ vr,vr,...,Vk] and (kxk) Y'= diag(r1r1,{2,...,{1). Also, noting that

the vectors uiare transposed, set (kxn) Bi = [u,,ur,...,u*lT[n -l)'l'. The second sum

on the right of the equation will be the matrix of residuals, E*. Thus equation (1.42)
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with LR, B" and E* as defined becomes,

rrl r I nl . nlyy^=L^D^+tt-
KKKK (1.43)

which has the same form as equation (1.38), the estimated factor model. This solution

has other properties in common with a factor solution. The 'factor' vectors (rows of B*)

are standardized. Since YYtz is non-singular then from equation (1.41), each column

of U must be mean-corrected (sample mean equal to zero) as must the 'factor' vectors.

Each column of U is a unit vector hence the squared magnitude of each 'factor' vector is

[n-l] andsothe varianceofitscomponents is 1. The'factor'vectors arenecessarily

mumally orthogonal and in turn, orthogonal to the error vectors (rows of E*). These are

not just consequences of the large sample assumption, but follow from the orthogonality

of the eigenvectors ulru2r...,unestablished above. Therefore by equation (1.39) the

sample equivalent to equation (1.37) is,

RR=L;L[+ Fi (r.44)

where FR = EREf;tl/(n-l)l (not F*). Finally, the (lxn) vectors W*"W*r...,WRp

(variable-vectors) and B*r, BR2,..., B*u ('factor'vectors) are the position vectors of

points on the hypersphere P*. The basic difference between this solution and equation

(1.38) for the factor model is that the error vectors (rows of Ex) can not be mutually

orthogonal under the full-rank assumptions made at the outset.

In view of the strict orthogonality of these 'factor' vectors, premultiplying B* by

the (kxk) orthogonal matrix M* creates another srrictly orthogonal set B[ (see the

discussion following equation (1.24). So by rotating the the former set of vectors,

equation (1.43) becomes,

WR=t-*u[ru*n**E*
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Thus an alternative solution may be written,

(1.45)

in the same way as the rotated orthodox factor solution. This transformation is used in

the Q-mode factor analysis of mixtures to attempt to create nonnegative loadings which

are a necessary condition for a mixture representation. Unlike the R-mode case, the

actual values that would then be taken by the rotated factor vectors are regarded as an

integral part of the resulting solution.

The i+h row of equation (1.43) can be written,

wRi = il*,,ni, * ERi
j=l

(1.46)

(which resembles equation Q.nD and it follows from the geometrical interrelationships

dessribed above that /*,r,1*,2,...n/pi1 are the direction cosines (correlations) of the vector

Wni h the directions of the respective 'factor' vectors. The 'communalities' given by,

h*?= t

(1.47)

Wn = tilni * E|

h;? = Eti

are an initial measure of the goodness of fit for each variable. Geomenically, the space

spanned by the Tactor' vectors intersects the n-ball P* in a k-ball. If WRi is the position

vector of a point on the surface of that k-ball then the sum of squares on the right of

equation (L.47) must be 1. In general of course,

(1.48)
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If the frst sum on the right of equation (I.42) is a good approximation to W*

then writing (nxk) U'= [u1,u2,...,u11, an estimate for the former matrix is,

w; = 48*
- y,ry'1/2g'T (1.4e)

This estimate is held invariant under the orthogonal rotarion of the 'factor' vectors which

generated the alternative solution (1.a5). Further, since each of its rows is a linear

combination of the 'factor' vectors, each row is orthogonal to the vectors of residuals.

Therefore the point defined by the i-th row vector of W* is the orthogonal projection into

the subspace spanned by the 'factor' vectors, of the point defined by the i-th row of

W*. Examining the symmetry of the lower tenn on the right of equation (1.49) it

follows that the n points in Euclidean p-space defined by the columns of tV* are the

orthogonal projections of the corresponding columns of W* into the subspace spanned

by the k columns of V'.

The approximation to a rectangular data matrix (defined somewhat differently to

W*) bf a matrix of exact rank k as in equation (1.49) will be used in Chapter 2, together

with the geometrical inter-relationships just described. This section concludes with

some observations on the singular value decomposition defined by equation (1.41)

which will be found to be useful.

The right hand side of equation (1.40) is the sum of squared deviations from O

(the centroid in p-space) of the orthogonal projections of the object vectors onto vR

through O. It is non-negative of course, but suppose only r < p eigenvalues of the

symmetric matrix W*W*T are non-zero. Then there are [p-r] mutually orthogonal

eigenvectors for which the right of equation (1.40) is zero. That can only happen when

for every orthogonal projecton oi=0, j=1,2,...n That is, each of these
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eigenvectors is orthogonal to every column vector of W*. Accordingly these columns

lie in a subspace of r dimensions spanned by the fust r eigenvectors, and the column

rank of W* is r.

The derivation of the singular value decomposition when rank(\ils) - r < p

follows that set out above except that Y-12 in the definition for U must be defined to be

that (pxp) diagonal matrix which has i-th diagonal element equal to y,-ll2 if ry, > 0,

and zero otherwise. Although with this adaptation [p-r] columns of U (nxp) will be

zero vectors, (pxp) V must be p mutually orthogonal column eigenvectors. Then the

expression for U can be rearranged into equation (1.41) as before, and the right hand

side of that equation reduces to [v,,vr,...,vr]diag(fr r,JrV2,...,/-VJ[u.ur,...,urlT.

Equation (1.41) possesses a certain symmetry. Taking the matrix transpose of

both sides of the equation leads to a rearranged expression which permits the same

interpretations to be made of its elements as were made of the original. Hence the

column eigenvectors of (nxr) U are in the orthogonal directions of the critical values of

the spread about O* in n-space (which is however not the centroid). The sums of the

squared projections of the rows of W* onto these (nxl) eigenvectors iue equal to the

corresponding eigenvalues. Also the (pxl) columns of W* have been resolved in the

directions of the (pxl) orthogonal unit column vectors of V, their components being in

corresponding columns of tyl/29T. Similarly the (lxn) rows of W* have been

resolved in the directions of the (lxn) orthogonal unit row vectors of UT, their

components being in corresponding rows of VYrr}. When any of the eigenvalues are

very small, all the components of the row or column vectors of W* in the directions of

the corresponding n or p-dimensional eigenvectors, are also very small. Thus the row

or column vectors of W* would be approximately orthogonal to such eigenvectors.
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1.6 ORTHOGONAL ROTATIONS

In the three preceding sections, repeated reference has been made to the fact that

the factorization of a correlation matrix as in equations (1.2), (1.20), (1.37) and (1.44) is

not unique because postmultiplication of any loading matrix by any conformable

o'lthogonal matrix would produce an equally valid alternative factorization. This has led

to considerable investigation into analytical (objective) procedures for determining the

terminal solution, and considerable controversy over the validity of any of it. Since the

rotation methods that were developed for R-mode factor analysis have been adopted by

the Q-mode factor analysts, it is necessary to return to the orthodox factor analysis

solution.

Everin (1984) remarked that rotation methods had acquired a certain 'notoriety'.

'Many statisticians have complained that investigators can choose to rotate factors in

such a way as to get the answer they are looking for'. Everitt (ibi{ went on to point out

rightly, that the distribution of points (denoted in this work by Wp1,Wp2,...,Wp/ will

remain invariant and anyway, a confirmatory analysis should always follow. There is

also a constraint imposed by the existence of the factor space ,6p. Because all factor

vectors must belong to ,6p, it is actually not possible to construct'designed'loadings.

Historically, a rotation to a terminal solution was the resultant of a sequence of

rotations. Factor plots were constnrcted in the planes of putative factor vectors taken

two at a time. Orthogonal reference axes were drawn to represent the factor vectors, and

the coordinates of the points representing the (projecrions of the) p variables were the

corresponding p ordered pairs of estimated loadings on the chosen pair of factors. An

orthogonal rotation in the plane would be identified, which ideally would result in most

of the p points being near to either one of the wo new axes or near the origin O* with a

few points removed from the origin but between the two axes. Within the constraints

imposed by equation (1.4), the coordinates (loadings) of these points in the new system
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would in the main be high on one axis and low on the other or both very small, with just

a few having moderate loadings on both axes. The sequence of transformations of all

possible pairs of factors was repeated until this 'simple structure' (Thurstone (1947)) for

all the loadings was acheived (see Harman (1967), Lawley and Maxwell (1971),

Morrison (1976), Everitt (1984) and Johnson and Wichern (1983))). Thus, in

applications of exploratory factor analysis which started with a data matrix Xj (lxn) and

no hypotheses about the underlying factor structure, the construction of any solution L*

for A* by any means, has conventionally implied the identification of an m-dimensional

factor space S* spanned by an orthogonal reference system in the directions of m

supposed factor vectors. The desired rotation of this reference system to a terminal

solution would, if the configuration of the data permitted, bring each axis near to all the

points of one cluster. It might be noted that there is nothing in these conventions that

challenges (tests) the basic hypothesis that there is a reduced correlation matrix of exact

rank m<p.

From the estimated factor model (equation (1.38)), any initial solution for B*

determines an m-dimensional factor space S* spanned by its (lxn) rows Bpi,

i = 1,2,...m. This space is a subspace of the n-dimensional Euclidean object space.

The orthogonal rotation M*B* creates an alternative set of m orthogonal factor vectors

(equation (1.23) et seq.) which, being linear combinations of the rows of B*, also

belong to S*. Thus the transformations LaMRT of any initial solution L* for A* are

the loadings associated only with orthogonal sysrems belonging to some fixed

m-dimensional space SR. If S* or, equivalently, the initial L* are ill-chosen, then all

other loading matrices formed by rotations will be equally spurious. (The Q-mode

equivalent of this situation can lead to serious errors of interpretation (see Section 4.3).

Irt it be assumed that by some process a sound approximation to the true factor space

has been identified (such identification may be implicit brought about by the construction

of Lp, or explicit due to the construction of Bp), then it remains only to discover the

'correct' loading matrix.
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In 1935, Thurstone proposed three conditions for'simple structure'. Later, he

presented five criteria which were an extension of the original three conditions

(Thurstone (1947)). Morrison (1976) observed that, 'in essence these criteria say that

under a simple structure the responses fall into generally mutually exclusive groups

whose loadings are high on single facton, perhaps moderate to low on a few factors,

and of negligible size on the remaining dimensions'. After 1935, many individuals made

specific proposals in pursuit of objective analytical procedures for calculating a multiple

factor simple structure solution. The 'normal varimax'criterion for rotation to a simple

structure published by Kaiser (1958), together with a computer program he published in

a later pap€r, would, apart from subsequent improvements to the algorithm, appear to be

the best analytical procedure for achieving optimal simplicity of the column loadings.

Given the data matrix W*, the most favourable geometrical scenario can be

built up as follows. Suppose each of m orthogonal factor vectors is similar to at least

one variable-vector (row of Wp) so that there are indeed m factors. In addition, each

variable-vector is similar to one factor so that there are just m orthogonally located

clusters of points on the hypersphere P* defined by the p variable-vectors. Each row of

the loading matrix should then have one large and [m-l] small conelations (Thurstone

required at least one zero). Each column of the loading matrix should contain either large

or small correlations as individual variable-vectors make either small or large angles

respectively with each factor-vector. In practice, such a conjunction of such favourable

circumstances is not commonplace, Nevertheless, if it occurs, then the variance

(simplicity) of the squared loadings (cosines) in each column of the loading matrix

described above should be a maximum above all other unitized linear combinations, and

also therefore the sum of these variances should be a maximum. And that is the essence

of Kaiser's procedure. Ultimately, the initial loading matrix is transformed so as to

achieve simultaneously the greatest spread between 0 and I of the squared cosines in

each of the columns. As much as is possible, the unsquared cosines arc pushed towards

+1, -l or around 0. (In the 'normal varimax' criterion each row of the initial loading
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matrix is first scaled so that the sum of squares of the row loadings is equal to l. This

implies that every factor vector defines a point on the surface of an m-ball whose

centre is O" and radius Gt I .

Thus classifying variables on the basis of their correlations with panicular

factors is geometrically equivalent to attempting to identify clusters of points on the

surface of the hypersphere P* that are located around or near to orthogonal axes through

the origin O*. Albeit these clusters are usually somewhat fuzzy, they may alternatively

be disjoint but oblique. (Tryon and Bailey (1970, p. I 18) described the application of

cluster analysis to the correlation matrix as a discrete form of factor analysis). Neither

the occurrence on the hypersphere P* of disjoint clusters in par:ticular nor their relative

locations, are properties of any n-dimensional reference system of which the m factor

vectors may be treated as a subset. And that is the usual justification for rotating these

axes in search of a loading matrix with 'simple strucnlre' (see Everitt (1984, p.25)).

1.6.f A Note on Mutually Exclusive Groups

Although there is no mathematical requirement that the points

Wp1,Wt2,....,WR- be clustered, examples in the literature inevitably reinforce the

universal application of varimax rotation as a method for classifying disjoint groups of

variables to individual factors (see for example Everitt (1984, pp.22-30)).

But the occurrence of disjoint clusters on P* is not a sufficient condition for the

existence of an underlying factor model. This last assertion may be expressed more

precisely:

The partitioning of the points defined by p mean-corcected variable-vectors into

m disioint clusters on the surface of the hypersphere Pp, so that the pencil of
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variable-vectors through the origin O* ro ilw poirxs of each cluster is ortlngonal to every

other such pencil, is not a sufficient cond.itionfor an exact m-factor solution to equation

(r.2).

The large sample assumption (Section 1.3) guarantees that the relative positions

of the mean-corrected variable vectors are close to their limiting positions. However,

departures from this configuration due to sample variability are covered by a much

stronger statement namely,

The existence of an m-block diagonal distribution correlation matrix is not a

sfficient conditionfor an exact orthogonal m-factor nndel.

The proof follows by re&rctio ad absurdwn.

Suppose that the distribution correlation matrix is of the block diagonal type,

then clearly any reduced correlation matrix that is formed from it, as in equation (1.50)

below, is also a block diagonal matrix.

ER=X*-O* ( l.s0)

the matrix O* (lxl) is of course diagonal but otherwise the values of its elements are

irrelevant. Thus equation (1.50) may be written,

ER=

['' 
" ,,]

(1.s1)

Lrt the reduced correlation matrices rj in *re diagonalof x* be of order (r,xr,)

i = 1,2,...,m. Assume that all correlations oRop s# pare large (positive) if they

belong to these submatrices, otherwise they are zero and thus conform to the block
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diagonal array. Correlations are the limiting values of the cosines of the angles between

all possible pairs of the mean-corrected variable-vectors. The r, variables of the i-th

group are uncorrelated with the variables of any other group (equation (1.51)), therefore

their mean-corrected variable vectors will each tend to be orthogonal to those of any

other group. Hence, all such v@tors will define orthogonally located disjoint clusters of

points on the surface of the hypersphere P*. As Harman (1967, p.97) noted, 'a group of

variables having high intercorrelations is encompassed by a "cone" (Harman's quotation

marks) with a relatively small generating angle. If a vector or reference axis of the

courmon factor space is chosen in the midst of this cone, all variables in the group will

correlate high with it.' In the case of the block diagonal correlation matrix described

above, any linear combination of the vectors of a group (the vector through the group

centroid for example) will be orthogonal to all vectors belonging to every other group

(including those through group centroids). So there are indefinitely many

m-dimensional orthogonal systems of vectors which will serve as Harman's reference

axes. Hence, this particular correlation structure appears to be explained by m

orthogonal factors whose linear relationship to the manifest variables is defined by a

loading matrix of perfect simplicity. It remains to show that this is not true in general.

lrt it be supposed that the reduced correlation matrix (equation (1.51)) arises

from m orthogonal factors. Therefore by equation (1.25),

xR = A^AI

Now A* can be parritioned as in equation (1.53) below

( l.s2)

( 1.53)AR=

[::



such that A, is of order (r,xm). Substituting from equation (1.53) into equation (1.52),

E;= A,Al A,AI

ArAl LrLf,

n,4l

::l
(r.s4)

A',AT A",AIi A'"At

Each of the matrix products of this array reduce to,

A.AT =lJ (1.5s)

The row vectors \o(l < a S 1) from A, and l,rp (l < p S rr) from A, are of order

(lxm), andtheirscalar(inner) product X,"Xll isa correlation coeffrrcient which, by

result (1.55) is positive if i = j and zero otherwise. Hence for i = 1,2,...,m, \o can not

be orthogonal to any row vector in A, but must be orthogonal to every other (1xm) row

vector of A*. Therefore the m (lxm) vectors I1o, 2u2p,..., X-., chosen respectively

from 41, 1r2,..., A-, constitute an m-dimensional orthogonal set. Suppose lrr,

(1 <yS rr) from A, is not parallel to I1o, which is also from Ar. Then lr, is a

linear combination of I1o, I2p,..., ?r,-. since these vectors span m-space. But ?Lr, is

orthogonal to each of \p,..., I*r, therefore the coefficients of these vectors in such a

linear combination are necessarily zero and so the supposition that Ir, is not parallel to

trro is false. It follows by the same reasoning that for i = 1,2,...m,

(1.s6)

where m. (lxm) is a row of the (mxm) orthogonal marrix MR (MRMI= fVfllVf*= D.

Jrl 
ir i =:

[o G.xr,) if i * j

^[l::]_
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Substituting for A, from equation (1.56) into equation (1.55), it follows that the (cr,F)th

correlation in the i-th correlation submatrix is oio' = Iiolip since mrmiT = t.

That is, the i-th conelation submatrix is the outer product of the (r,xl) vector of

equation (1.56) with itself, for i = 1,2,...,m. This is a particularly severe constraint on

the correlation submatrices which, for r, > 3, is not in general true (even if r, = 3, the

result is not possible unless oiopoicy I o ipy < I for the 3 permutations of the

off-diagonal elements, otherwise the specific variances are negative). Therefore, m

mutually exclusive subcollections of correlated variables are not a sufficient condition for

the existence of an orthogonal m-factor model, which completes the proof.

Postmultiplying the loading matrix A* by fnfl. creare a new loading matix Ai

does not of course alter the correlations, but since

Ta,M* = [0,0,...,1,...0]

which is a (1xm) unit vector with the I in the i-th position, the new loading matrix is

given by,

Ai=

^_l
['' 

^'

(1.s7)

The (pxm) matrix on the right of this equation may also be described as block diagonal.

All enries other than the elements of I, are zero. Each 1,, is a column vecror (r,xl) of

the form enclosed in square brackets on the right of equation (1.56). Comparing result

(1.57) with Thurstone's five criteria for simple structure (Thurstone (1947)), this

loading matrix achieves perfection.
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The block diagonal correlation matrix is rhe ideal outcome for rhe factor analysr

Variables can be grouped (clustered) unambiguously on inspecrion, the underlying

factors are revealed, and their mutual orthogonaliry is assured. Geometrically, the

mean-colrected variable vectors from a multivariate sample should form themseves inro

m of the "cones" of Harman (1967). Yet this, rhe most favourable disposition of the

disribution parameters for the analyst does not in general arise from a factor model.

Associating each of an orthogonal system of common factors with each of the

orthogonal groups of variables would, in general, be a misinterpreration of the true state

of nature.

What is true in general however, is that a block diagonal distribution correlation

matrix is a consequence of a standardized principal component model (see equations

(1.33) and (1.3a)) in which the (pxp) loading marrix is also a block diagonal marrix wirh

a matching block structure. The demonstration of this sratement is quite straightfonvard-

Let the distribution correlation marix be given by,

xR --

,j
where E, is of order (r,xr1). An eigenvector v of E* may be partitioned as below,

[t'

t22

(1.s8)

(1.5e)V=

[:]

so that vr is (r,xl). If l. is the eigenvalue of E* associated wirh v rhen,

E*v - l.v (1.60)
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and by equations (1.58) and (1.59),

Ervr

Ezvz

E-v* = Lv^

- L",

- L",

(1.61)

Assume that none of the E, have a corlmon eigenvalue (which will be tnre in general) or

zerc eigenvalues (which is a consequence of E* being full rank), then the p solutions for

l, in equation (1.60) must be the set of p eigenvalues of the m submatrices

E1,E2,...,X-. Suppose Eivio = Liovlo, I S a < 11, then the (pxl) eigenvector of

E* associated with 2uro will be the vecror of equation (1.59) but with vl = 0,

Y2 = 0, ... , vi = vio,..., Ym = 0. Assembling these p eigenvectors into one array,

the orthogonal matrix V (pxp) of unitized column eigenvectors of E* can rherefore also

be arranged in block diagonal fonn. Denoting the (.iKJ matrix of column eigenvectors

of E by V', matrix V (pxp) may be wrinen as,

(1.62)

Recalling equation (1.33), the (pxp) loading matrix for this case is,

An = VY'n (pxp) (1.63)

Since (pxp) Y is the diagonal matrix of eigenvalues (appropriately positioned in the

diagonal),

"=["" 
"J

v = dia{Y1,y2,...,y-) (1.64)
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where EiVi = V,Y,, i = 1.,2,...,m. Hence A* is also a block diagonal matrix of

correlations of the manifest variables z* with the standardized principal components f*.

The relation between z* and fR, both appropriately partitioned, is given by,

"-.*.]f :j|:| ["'

urLl2., 
,,Y,,,,

(1.6s)

The question now is, can a more parsimonious model be derived from this by discarding

[p-m] standardized principal components? For m dimensions to dominate and provide a

good overall account of E* and each of its submatrices (equation (1.58)), it would be

necessary for the largest eigenvalue of each of the submatrices Er,E2,...,E,n to belong to

the set of m largest eigenvalues of \. This is not altogether unreasonable given that the

sum of the rt eigenvalues of the i-th submatrix is r, (with their mean value I exactly).

Such a solution exists necessarily if for each submatrix of E* one eigenvalue is greater

than I while the remainder are less than 1. Then one column in each of the submatrices

of equation (1.65) tends to contain dominant correlations (with one principal

component), the column sums of squares are clearly equal to the eigenvalues. The error

matrix for such a model would not be diagonal but block diagonal.

In practice, sample correlation matrices may hardly ever resemble block diagonal

matrices, but they can frequently be arranged into diagonal blocks of mainly large

correlations with 'off-diagonal' correlations of moderate to small absolute values.

Otherwise factor analysis would be a curiosity. At the conclusion of a subchapter on

hypothesis testing Lawley and Maxwell (1971, p.38) tender some rarher srrange advice:

'It should always be kept firmly in mind that, except in artificial sampling experiments,

the basic factor model is, like other models, useful only as an approximation to reality,

and it should not be taken too seriously' (sic).
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CHAPTER 2

THE HISTORICAL BACKGROUND TO THE ANALYSIS

OF MIXTURES

SUMMARY

Large compositional datasets of the kind assembled in the geosciences are often

of remarkably low approximate rank. That is, within a tolerable error, data points
representtng the rows of such an array can approximately be located in a relatively snnll
dimensional subspace of the row space. A physical mixing process which would
account for this phenomenon implies thnt each observation vector of the array can be

estimated by a convex combination of a small number of ftxed source or'endrnember'
vectors. The compositions of such vectors are usually unknown, and must be

estimated. Gtven the endnember compositions, either known or estimated, the matrix of
proportional contributions of each endmember to each observation (approximate

mixare) of the compositonal dataset, must also be estimated.

The analysis of mixtures unites in a single system all tle procedures which may

be employed to achieve and evaluate any of these esttmates.

Historically, the construction of a mixing representationfor a given array of
compositional data has been regarded as an application of Q-mode factor anatysis. The

similariry matix to be factored, which coruesponds to the correlation matrix of an
R-mode factor analysis, is the matrix of cosines of all possible angles between the

position vectors of the datapoints. In a rcrminal solution, the number of endmembers

equals the rutntber of factors, the compositions of the endmemberE are thefactor scores

of tlrc rotatedfactors, end the mixtwe cofficiens are available as the components of the

rotatedfactor pattern (estimated loading) matrtx. Most applications of Q-ntode factor
analysis however,fall somewhat slnrt of terminal solutions.
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2.L BACKGROUND

Large compositional datasets of the kind assembled in the geosciences are often

of remarkably low approximate rank. That is within a tolerable error, data points

representing the rows of such an iuray can approximately be located in a relatively small

dimensional subspace of the row space.

This phenomenon was recognized more than two decades ago. R-mode factor

analyses that were employed to identify'natural element groupings', would frequently

yield sets of eigenvalues for the correlation matrices in which only small proportions of

the eigenvalues were greater than one. [n general, any result of this kind usually

indicates that points representing the standardized data have non-negligible components

along only a small number of orthogonal axes through the centroid of the data. Thus,

such points approximately occupy a space of relatively small dimensions.

However, papers had begun to appear questioning the validity of any analysis

based on the correlation matrix of 'constant-sum' data, that is data typically measured as

percentages or in parts per million and possibly 'closed' by summing to a constant such

as 1007o or 1,000,000 ppm (see, for example, Chayes (1960)). It has repearedly been

reported since, that significant correlations can be induced between a pair of variables by

manipulating the overall number of variables present in 'closed' sets (see Aitchison

(1986), that is by forming subcompositions. An elementary example (cited by Imbrie

and Van Andel Qg64) and Aitchison (1986)), is the trivial subcomposition of dimension

2 in which both variables sum to a constant, and for which the correlation coefficient

between the pair is necessarily -1. So in general, R-mode analyses, based in particular

on correlations between the variables, can not yield absolute and invariant attributes of

the data such as'natural element groupings'.
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A physical explanation for the low approximate rank of a compositional dataset,

is that the sample compositions derive from some natural mixing process. This is the

historical geochemical'mixing model'. Algebraically, it implies that each object vector

(geological sample) is approximately a convex combination of a small number of fixed

source, or endmember vectors which have some genuine physical existence. A

particularly satisfactory feature of this explanation when it is valid, is that it does not

depend on the modelling of relationships between the variables.

It will be shown in Chapter 3 that, under appropriate conditions, ratios formed

from the components of the endmembers of a dataset of subcompositions, are equal to

the ratios formed from the corresponding components of the endmembers of the full

dataset. So, manipulating the number of variables in a subcomposition changes the

values of the corresponding variables in each of its contributing endmembers by just the

common scale factor which restores the sum-to-constant propeny. Therefore, in the

interpretation of the data as the outcome of a mixing process, 'natural element

groupings' are invariant in general, albeit as components of endmember compositions.

This is intuitively reasonable.

For a given compositional dataset, a mixture analysis may briefly be described

as the determination of a set of endmember compositions together with the contributions

of those endmembers to each composition of the dataset.

When the attention of geochemists first focussed on mixing processes, it was

realized that a mixture analysis was the approximate resolution of a set of object vectors

into linear combinations of extreme (most dissimilar) endmember vectors. It was also

realized that factor analysis was the approximate resolution of a set of mean-corrected

variable vectors into linear combinations of orthogonal (most uncorrelated) factor vectors

(see equation (1.38). Viewed in this way, the two procedures were originally seen to be

essentially the same. The fundamental difference being that the data matrix processed by



s3

one technique was the transpose of the data matrix processed by the other. Further, the

distinction between the former and the latter approaches to the data had already been

identified by psychologists as R- and Q-techniques.

Cattell (1952, pp. 90-91) used an array of the scores on 8 tests achieved by each

of 7 people to present an illustrative definition of Q-mode factor analysis. His panicular

point being that 'the transposed or Q-technique' consisted of 'correlating' persons

instead of variables (test scores). The correlation betwern two people indicated the extent

to which they resembled each other. Just as it was true that many people were required

for a reliable correlation between two tests, so it was also true that many tests were

required for a reliable correlation between two people. In any event, the illustration

evoked a possible (7x7) correlation matrix between people which could be factor

analyzed, thus clustering the 'artistic'personalities (for example) and so forth.

Canell (ibi{ did not explicitly specify a Q-mode model. It is to be infened that

it was of the same form as equation (1.1). Therefore, the factor analytic algorithms that

had been developed to constmct R-mode solutions were clearly applicable to the

'transposed or Q-technique'merely by transposing the raw data matrix.

Here then was a precedent for the mixture analysts. Although the Q-mode

correlations between objects were found to be unusable, there was an alternative

similarity measure which was easy to interpret, and, all the necessary algebra was

covered in the R-mode literature.

2.2 Q-MODE FACTOR ANALYSIS OF COMPOSITTONAL DATA

The establishment of Q-mode factor methods in the analysis of mixtures,

originated with the interpretation made of the work of the factor-analytic school by the
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earliest advocates of the technique. In two seminal papers, Imbrie (1963) and Imbrie

and Van Andel (1964) acknowledged their debt in particular, to the publications of

Thurstone (L947), Cattell (1952) and Harman (1960). The papers by Imbrie (1963),

Imbrie and Van Andel (1964), Manson and Imbrie (1964) and Klovan and Imbrie

(1971), together presented extensively worked examples, source code for computer

programs, and some of the algebra for principal factor algorithms as described in detail

by Harman (1960, 1967). It was later noted by Miesch (1976b) that the term factor

analysis may have been 'unacceptable' to workers in multivariate statistics. Miesch

pointed out that the diagonal values in the similarity maffices had been unity in all

applications at that time, so the method might best have been referred to as'components'

analysis. Miesch nevortheless promoted factor analytic concepts, terminology and

procedures. For example, the results of an application of 'the extended form of Q-mode

factor analysis' to some petrologic-mixing problems, included 'the communalities' of

vectors which represented compositions in the 'two-factor varimax space' (Miesch

(1976b, p.30)).

Subsequently, the Q-mode factor model has become a well-established concept

in geological research. Like R-mode factor analysis, certain conventions controlling the

execution and presentation of the results of a Q-mode factor analysis are entrenched.

Although of dubious value, such conventions include the reproduction of tables of

eigenvalues, the percentages of the variabilities accounted for by each of the factors,

barcharts to depict the 'compositions' of varimax-rotated factors (which always contain

negative components) and sometimes even the 'communalities' associated with the

samples (see for example, kinen (1987), De Carlo, McMurtry and Kim (1987)).

In the view of many authors (including Harman (1967,p16)), the basic problem

of R-mode factor analysis, given m the number of factors, is the estimation of the factor

loading matrix. (Although it might be suggested that estimating m was the basic

problem). In the analysis of mixtures however, given k the estimated number of
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endmembers, a Q-mode terminal factor solution must yield endmembers with feasible

(non-negative) compositions, together with a concomitant array of feasible

(non-negative) mixture cofficients. The endmembers should have been reached by an

oblique rotation of the axes of the varimax reference system into suitably extreme

positions in the positive orthant of variable-space. But there are no guaranteed methods

for accomplishing this, and so most analyses stop at the varimax rotation of the factors.

It will be argued funher on that, although it is possible in some special cases to

construct satisfactory terminal solutions using the Q-mode factor method (cenainly with

contrived data), in general it is not. The 'factoring'of the Q-mode similarity matrix is

inefficient and unnecessary, and the application of varimax rotation to a subcollection of

the principal axes of that matrix possibly obscures rather than locates exmeme vectors.

The remainder of this section contains a description of the history of the Q-mode

factor analysis of compositional data. An important aspect of that history are the

attempts to solve two problems that were particularly associated with the method namely,

the identification of feasible extremes and the enforcement of the non-negativity

constraints. These two problems will appear again in Section 2.3 and Chapter 3.

2.2.1 Q-mode Factor Analysis

Note: Througlnut the discussion of the Q-tnode analyses that follow in this chapter,

and in the development of the analysis of mixtures in subsequcnt chapters, the

arrays of obsemations made on p variables for each of n objects will be denated

by (nxp) matrices $, X, W as needed. That is, when compared to the

preceding teatrnent of R-mode factor analysis, n and p will always be

interclnnged.
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The hrst document to set out in some detail a rationale and an algorithm for the

Q-mode 'factor analysis' of geological data was a 'computer program manual'prepared

by Imbrie (1963) and released as a Technical Report by Northwestern University. The

particular abstract problem addressed in the document was that of resolving each row or

column vector of a dataset, into components in the directions of a small number of fixed,

oblique row or oblique column vectors. Accordingly, both R and Q-mode analyses

were presented. Indeed, the author stated at one point that that both analyses are

identical 'mathematically'except in the choice of similarity matrix. For an R-mode

analysis, the similarity matrix specified by Imbrie was the familiar product moment

correlation matrix between the variables. That is, the matrix of cosines of angles between

all possible pairs of mean-corrected (l xn) variable-vectors in n-space (equation (1. 15)).

For a Q-mode analysis, Imbrie defined the similarity matrix to be the cosines of angles

between all possible pairs of (lxp) position vectors x,, x, of the data points Xt, Xj

(objects) in p-space (again equation (1.15) with D*,, D*, replaced by x;, xr). He cited

Imbrie and Purdy (1962), as have many subsequent authors, for the introduction of this

cosine which they called the 'coefficient of proportional similarity' and denoted by cosO.

It has the obvious property of being independent of changes to the magnitudes of the

object vectors. So that for a given set of variables, the similarity matrix RO between

objects is invariant to such elementary row transformations of the (nxp) array $ of raw

(weight, volume, count...) data, as the scale changes into compositions X or into unit

vectors W. It is however, altered by scale changes to the columns of $, X or W, a

transformation recommended by Imbrie when simultaneously analyzing major and trace

elements. The symmeric matrix Rq of similarity coefficients is widely referred to as the

'cosO matrix'.

When either an R or a Q-mode analysis concluded with the (varimax) rotarion

of an orthogonal set of reference vectors, Imbrie inconectly called it a 'factor' analysis

(see below). To distinguish the next possible stage, in which the reference vectors may

be transformed into an oblique reference system ('representing actual cases'in a Qmode
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context), Imbrie coined the unfornrnate terrn 'vector' analysis (which in Mathematics

unites an extensive bnanch of Algebraic Geometry with Potential Theory, Mechanics and

Continuum Mechanics). Nevertheless, it appears that Irnbrie envisaged the construction

of a reference system consisting of relatively few oblique vectors, in the directions of

which each vector rcpresenting either a variable-vector or a geological sample could be

resolved. In the Q-mode case, a component in each of these reference directions would

then represent in some way the contribution of that reference vector to the sample. In

essence, that view was correct.

The first of Imbrie's two computer algorithms required the mode of the analysis

(R or Q) as an input argument. Different subroutines were called to calculate the

appropriate similarity matrix. Otherwise, the rhe program extracted eigenvectors and

eigenvalues of the similarity matrix (with the diagonals intact) and, if required, carried

out a rotation according to the varimax criterion of the specified number of 'factors' ('a

complete factor analysis'). The second algorithm performed an oblique rotation of the

varimax 'factors' output by the first, thus constructing an oblique loading matrix.

Imbrie stated (ibid, p.l4) that for the initial factor matrix, 'using algebraic procedures

described in detail in Harman (1960),...,the principal components method is used'.

That is certainly confirmed by his worked examples. The 2nd edition of Harman's 1960

text (Hannan (1967)) states quite explicitly that principal components analysis is 'not

presented' as noted in Section 1.2.3. It seems certain then that Imbrie regarded his

procedure as principal factor analysis. Klovan and Imbrie (1971) later used the term in

the desc:ription of their improvements on Imbrie's algorithm.

The original algorithms were elementary. For the Q-mode case, suppose X

(nxp) is a matrix of n observations on the concentratio,ns of p mineral constituents (rcte

again that this is the transpose of the conventional notationfor R-mode analyses\. ltis

not necessary for each row vector to be a composition, that is, with unit sum (see

Terminology). Transforming the rows of X into unit vectors creates the manix W
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(nxp).The (lxp) rows w1,ve2,...,re' of W are the position vectors of the points

W1,W2,...,W' on the surface of a unit hypersphere, cenrre O in p-space, since

wiwiT = 1, i = 1,2,...,n. The (nxn) similarity matrix for the rows of X whether they

are compositions or not is given by,

Re = wwr (2.r)

Denoting the angle between the unit vectors w, and *j by 0,r, the (ii)th element of RO

is the inner produuct wwT which is equal to cos(01i). Provided tr ) p, which is usually

assumed, the maximum possible rank for RO is p. It has at most p positive eigenvalues

and the remainder are zero (cf. Section I.2.3, equations (1.25) to (1.31)) . Let

r < p < n be the actual rank of (nxp) X. Let (nxn) diagonal matrix R contain the

magnitudes of the row vectors of X so that r,, = (xrx,T)l/2. 1"n X = RW and since

R is obviously of rank n, then rank(W) = rank(X) = r. Let Y (nxn) be the diagonal

matrix of eigenvalues (in order of magnitude down the diagonal so that the lower [n-r]

are zero), and let (nxn) U be the matrix of corresponding unitized column eigenvectors,

then by definition,

R^U = UYv

Postmultiplying both sides of this by Ur,

RQ = UYUT

= [u*r/2luYr/2f

= LoL;

(2.2)

(2.3)

In equation (2.3), the initial loading matrix (nxr) Lo contains the first r columns of

UYlz which it replaces in equation (2.2), by discarding the [n-r] zero column vectors

formed in the matrix product by the zeros in the diagonal of Y. Imbrie assumed that

there must exist a unique (rxp) matrix Bo whose r rows are mutually orthogonal, such
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that \il = LoBo. The result is true by the singular value decomposition theorem

(transpose equation (1.41), and note the remarks at the end of Section I.2.4). Basically,

Imbrie followed the interpretation of the elements of Lo as direction cosines with respect

to an orthogonal reference system, which was noted earlier in relation to equation (1.46)

but with p and n interchanged. It was not necessary however, to construct Bo. A

rotation according to the varimax criterion was then undertaken on Lo to create (n><r) L",

and notionally (rxp) 8", so that in the abstract,

w = LuBu (2.4)

Imbrie remarked in his discussions of both R and Q-mode analyses that the varimax

procedure should align the reference vectors (rows) of Bn as near as their orthogonality

would permit, to the extremes of the 'vector configuration' (rows of W in this case). In

the R-mode case, such variables are the most independent of the set, and in the Q-mode

such samples are compositionally the most divergent. Thus the first estimate of the

extremes could be identified by the highest absolute loadings in each of the columns of

(nxr) Lv. Suppose then that the (rxp) submatrix W, contains the rows of \il with the

highest loadings in each of the r columns of Lv. That is, of all the rows of W, each row

of W, makes the smallest angle with one of the rows of 8". The rows of L" which

correspond to W, constitute a nonsingular submatrix (rxr) Lru such that,

wr = L;B'
hence,

and so from equation (2.4),

B" = ["])'*,

f -rlw = lt "[ril lw,L UI J

= Lzwr (7.s)

From this equation, it is evident that the unit vectors representing the set of n geological

samples have each been expressed as linear combinations of a fixed subset containing r
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of their members. Although Imbrie did not make a clear statement of the equations to be

solved or of any constraints that would apply to any solution such as equation (2.5), it is

manifestly clear that the aim of his procedure was to identify that submatrix W, of W

such that all the elements of matrix L, in equation (2.5) would be non-negative. That,

after all, would be the unique solution in terms of extreme vectors for W. It is equally

clear that in general, W, does not exist. For example, if the rank of W were exactly 3,

there is no reason why there should be 3 vectors of W which would define the vertices

of a spherical triangle whose boundaries would contain all the remaining points.

Imbrie did not set great store by the recovery of a mixture representation

X = LrX, in which W and W, are transformed back into X and X, (the

corresponding submatrix), and L, is transformed into a matrix of mixture coefficients

(see Terminolgy) Lr. Indeed, his second program for the resolution of the rows of W

into components L, with respect to oblique reference vectors W, stopped at that point.

His reasons were that in most geological work it is the pattern of regional variations

which is of interest rather than the exact numbers, and since the required transformation

is linear, nothing of value is achieved by the calculation. The fact is, a sufficient

condition for the recovery of the representation X = LtXr from W = L2W1, is that

each row vector of X is a composition (see equation (3.16)). If each row of X is not a

composition, then the resolution of X into mixtures of the rows of the submatrix X,

may not be possible. He did include a brief sentence on the transformation of equation

(2.5) into a linear relation bet'ween the original object vectors. A complete computation to

achieve his intended solution is as follows. If the (rxr) diagonal matrix R, is the

submatrix of R (defined above) which corresponds to X, then X = RW and

X, = RrWr. Equation (2.5) can be transformed into,

x = [*tr*;'l*,*,)
= LlXr (2.6)
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From the point of view of computer algorithm preparation, there are two important

observations to make about this equation. The first is that, if X is a matrix of

compositions, then the simpler and equivalent operation for constnrcting L, is to divide

each row of L, by the sum of its components. This amounts to an elementary row

operation on both sides of equation (2.5) which is demonstrated in Chapter 3. The

second is that trW, has been constructed by some method so that it does consist of unit

row vectors but it is not a submatrix of W, then R, does not exist. Again, this is not a

problem if X is a matrix of compositions, since any point on the unit hypenphere can be

projected onto the hyperplane defined by the datapoints of X.

In Imbrie's contrived Q-mode example, he had constnxcted a (l0xl0) array in

which the latter 7 object vectors were convex combinations (mixtures) of the first 3,

hence r = 3 by design. Also, since the first 3 object vectors were created as

compositions (each summing in fact to l0fl'Vo), all object vectors were compositions (see

Chapter 3). Consequently his computer programs progressed from equation (2.1)

through to (2.5) intemrpted only by the nomination of reference vectors 1,2,3 to execute

an oblique rotation. The selection of these vectors was based on an inspection of the

largest elements in the columns of the varimax rotated loading matrix (and

foreknowledge). An important convention of R-mode factor analysis was adopted, to

become a standard device of Q-mode 'factor' analysis also. From the well-known result

that the sum of the eigenvalues of the (nxn) similarity matrix equals its trace n, the

cumulative proportions of n (the 'sum of squares') for each of the eigenvalues were

tabulated. Thus the apparent dimensionality k of the data could be assessed by the

percentage of the total variability about the origin accounted for by the first k orthogonal

'factors'. For the contrived data, the sum of the first 3 eigenvalues was 10 which

represented l00Vo of the possible total.

Imbrie's second illustration was based on a (31x6) array of real data which can

only be described as very small. The exact rank r of the data matrix appeared to be 6 (on
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inspection of the table of eigenvalues). However, Imbrie chose the approximate rank k

to be 3 because several entries on the 3rd varimax'factor'were nearly equal to those on

the fint two. He described entries on the 4th as trivial as would have been those on the

5th and 6th axes. That is, in equation (2.2), it may be supposed that the last 3

eigenvalues wer€ negligible and so Lo was defined to contain just the first thlee columns

of UYlz. Hence for Imbrie's purposes, equations (2.3) to (2.6) would have become

approximations. Thus, Q-mode'factor'analysis was to be employed to approximate a

matrix of rank p by the linear combinations of a matrix of rank k < p.

Although the largest absolute loadings in the fust 2 columns of the varimax

rotated matrix (31x3) Lu did not identify true extremes in the (31x6) matrix W, the

second largest loadings purportedly did. Imbrie's criterion for an extreme vector was

that no loading on it be greater than 1. He ignored another criterion namely, that no

loading on any other reference vector be negative (which would also pose difficulties in

inteqpretation). Eight of the loadings on two of the reference vectors for this illustration

were negative, three of them quite large, indicating that the third vector was not extreme.

The precise notion of a mixture and the implied constraints of the convex combination

were not set out in the document. Towards the end, Imbrie remarked of the second

illustration that 'all wells (vectors) can be considered as various mixtures of the reference

wells (vectors)'. There remained one serious difficulty which Imbrie did not discuss,

and that was the possibility that an array may have been of very low approximate rank k

but did not contain a (kxp) submatrix W, of extreme row vectors. Later this was to

raise the problem of setting out objective procedures for constructing k (unobserved)

extreme vectors which would then serve as endmembers. This problem is complicated

by the fact that there may be no such vectors or indefinitely many of them. It is for this

reason that many authors have been content to report the results of analyses which were

concluded at the varimax rotated reference svstem.
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Because Imbrie's program processed the matrix RO in the same way as a

correlation matrix, it could accept a maximim of only 70 cases.

The document contained some oddities. Krumbein (1957) was credited with

the original use of vector notation with compositional data. A statement which was

reinforced a little later by by Imbrie and Van Andel (1964). Krumbein's paper dealt with

a 2 component system (A,B) which could be transformed into a composition (P,Q)

where P = A/(A+B) and Q = B/(A+B). (The quantities A and B happened to be the

thicknesses of sand and shale at a control point). Quoting a result from Kempthorne

(1952) that the arcsine square root transformation of P into angle ol stabilized the

variance of a sample proportion based on a binomial random sample, Krumbein

constructed a complex variable (6- + i/A ) which defined a v@tor from the origin of

length (A+B;tlz and in a direction ol from the real axis. This vector permitted

development of single contour system maps which simultaneously conveyed thickness

and composition, and facilitated statistical analysis of the map data. Krumbein promised

further presentation and illustration.

Another curiousity was Imbrie's asserrion that most Q-mode studies at that time

used the product moment correlation coefficient between samples (not variables) as the

measure of similarity. He included a table of these 'correlations' to demonstrate their

absurdity, although his tabulation of azero coefficient between a sample and itself was

invalid.

The paper by Imbrie and Van Andel (1964) was an expanded descriptive

version of Imbrie (1963). Parts of it were almost identical to the latter paper, with the

same if not more detailed Q-mode illustration using the same (10x10) array of contrived

data, and the same if not more fulsome citations (particularly to Thurstone (1947),

Cattell (1952) and Harman (1960)). However, where Imbrie (1963) worked through

two examples each of R and Q-mode 'factor' analysis, and covered the theoretical
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background to each equally, Imbrie and Van Andel illustrated the absurdity of

performing R-mode analyses on a 2-component composition, and repeated Chayes'

(1960) warning about the use of the correlation coefficient in the analysis of

compositional data in general. Accordingly their paper focussed on Q-mode 'vector

analysis' only. In a number of developments, they used the term endmember to describe

extreme vectors, and discussed the formation of mixtures of endmembers right from the

start. They recommeded ttrat each column of the final loading matrix be plotted onannp

on which a loading was associated with its sample location, and so the geographic

pattern would be indicated by contours showing the areal distribution of the proportional

contribution of each endmember in all samples. If such a map pattern seemed to be

random, they advised that the endmember should be disregarded. In the analysis of the

(10x10) array of Imbrie's (1963) contrived data, they inroduced the barchart (called a

'histogram') to portray the compositions of the 3 endmembers, and employed a ternary

plot with the endmembers as vertices, to display the relative positions of the samples

with respect to each other and the vertices, in terms of the contrived loadings.

Imbrie and Van Andel reconunended but did not illustrate the advantages of

changes of scale on the columns (variables) of (nxp) X to give major and trace elemens

equal weight in an analysis. It must be observed that postmultiplication by a

non-singular (pxp) diagonal matrix will not effect the true rank r < p of X but it may

profoundly effect the approximate rank k.

Expanding the lexicon of unfortunate terminology, Imbrie and Van Andel called

the matrix of loadings (components) on the principal reference axes through O, the

'principal components factor matrix'. The axes themselves they called'factors'(after

Imbrie (1963)) and worse, 'theoretical endmembers'. These vectors could never be

endmembers of any sort. Their location and mutual orthogonality guarantee the presence

of negative components (concentrations) which are geologically impossible ro interpret.

Further, since there is an obvious field of investigation into the presence of hypothetical



65

endmembers in a dataset, the term 'theoretical endmember' should be reserved for such

endmembers in theory. The row sums of squares of the loading matrix were called

'communalities', n aturally.

In addition to the analysis of the contrived data, Imbrie and Van Andel

compared the results of hitherto conventional analyses with those of Q-mode 'vector

analyses' of certain heavy mineral suites of the Gulf of California and of the

Orinoco-guyana Shelf. Whereas the conventional analyses sought characteristic

averages ('pigeonhole classification'), the identification of single extreme samples or

endmembers permitted mixtures and gradational sequences to be'unravelled'. These

were demonstrated to good effect on contour maps.

The paper set out a table of the loadings on 6 endmembers, chosen from the

data, for a subset of the Gulf of California samples. As was the case with Imbrie's

(1960) selection of endmembers fom his data ('real cases') there were negative loadings

some of them quite large and in all the columns in this case. No such table was

reprcduced for the Orinoco-Guayana Shelf data.

The paper by Imbrie and Van Andel (1964) is still frequently cited by authors

reporting the results of the analyses of mixrures. It was a superior document to the

'computer program manual' of Imbrie (1963), being considerably more detailed, better

illustrated and professionally presented. But principally it is still true that for certain

large arrays of actual mixtures, the consequent low approximate rank of a dataset

together with a useable loading matrix would readily be revealed by the method

pioneered by Imbrie (1963) and described by Imb'rie and Van Andel (1964).

Following Imbrie and Van Andel's (1964) paper, reports of the application of

Q-mode 'factor' analysis to geological problems started to appear in research journals. A

number of computer programs for its implementation also became available. Klovan
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(1966) for example, reported on an analysis in which sediment samples were sieved into

ten size-ranges which were each measured as percentages by weight of the whole

sediment. This was a rather unusual dataset for an analyis of mixtures, given the

arbitrariness of the grain-size classes. But it was Klovan's aim to identify the

'depositional environments', if any. His formation of the 'cos0 matrix' and extraction

of the frst 3 principal axes which were rotated according to the varimax criterion, led

him to postulate surf energy, gravitational settling and current energy as the 3 energy

types influencing grain-size distributions at a depositional site. Having computed the

loadings on each of the three rotated reference vectors, he divided each squared loading

by the corresponding 'communality' thus 'normalizing' the factor components which

were then plotted on a ternary diagram. Klovan's transformation was equivalent to

projecting his estimates onto the surface of the unit sphere. There is a one to one

correspondence between the points of that sphere and the plane of the ternary plot whose

vertices are the determined by the varimax reference vectors. Klovan asserted that the

'procedure is similar in intent to the oblique projection method of Imbrie and Van Andel

(1964)'. That asseftion is false.

The next major development was an improvement to the computer algorithm

which exploited the algebraic relationships between W, U, V and Y. The basic

method, originating with Imbrie (1963) and already described, was to compute directly

the eigenvalues and eigenvectors of the (nxn) similarity matrix WWT, where n denotes

the number of objects. Even today, machine limitations place serious resnicdons on the

number of objects that can be processed by this method. Klovan and Imbrie (197I)

published a computer algorithm that constructed (pxp) WTW where p denotes the

number of variables, and hence obtained (pxp) V and Y. The (nxp) matrix Lo

followed by matrix multiplication (see equation (2.3)). Their algebnaic summary started

with the 'basic factor equation'of Harman (1967>, it contained 17 numbered equations,

one error and an incomplete derivation of the matrix equation for Lo. The equality of the

non-zero eigenvalues of WWT and WTW was not derived but quoted from 'matrix
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theory' in mid argument. Just as in the earlier papers, the truth of the results on which

the improved computer algorithm was based rested on the unstated singular value

decomposition theorem. It will be helpful to demonstrate why this is so.

ln the development of the account of the analysis of mixtures in Chapter 3 and

of Q-mode methods generally, the integers n and p have been interchanged in most

arrays. However, there are always exceptions, and these are prominent in the singular

value decomposition of (nxp) manix Vtr. At the risk of being repetitive, this result is

now revised with the appropriate changes in notation. As before, (pxp) Y is the

diagonal matrix of the p non-zero eigenvalues of (nxn) WWT and (nxp) U the matrix of

corresponding unitized column eigenvectors, so by definition,

wwru = uy

Premultiply both sides of this by (pxn) Wr to obtain,

wrwwru = wruy

and on inspection, WTU is a (pxp) matrix of column eigenvectors of (pxp) symmetric

matrix WTW. Hence,

v = wruy-t2 (2.7)

is the (pxp) matrix of unitized column eigenvectors of (pxp) WrW (it can readily be

verified that VrV = I (pxp)). Rearranging equarion (2.7) to make W the subject, the

singular value decomposition of rectangular matrix (nxp) W is given by,

w - uyl/zvr (2.8)

Postmultipying both sides of equation (2.8) by V,

\ilv = uyt/' (z.g)

From equations (2.2) and (2.3),

Lo = WV (2.10)
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and,

Bo=vT (2.1l)

With the appropriate attention to detail, these results are easily derived when

rank(W) = rank(X) = r ( p, as was discussed in Secrion 1.2.4. With real geological

data however, matrices X (nxp) and W (nxp) are usually of rank p, and it is their

approximate rank k, equal to the number of non-negligible eigenvalues in the diagonal of

Y which determines, by equations (2.9) and (2.10), the k columns retained in Lo and

the k rows retained in Bo. This latter choice is made by the analyst.

By constructing (pxp) V and Y from (pxp) WrW, then (nxk) Lo and (kxp)

Bo as in equations (2.9) and (2.10), the algorithm by Klovan and Imbrie (1971) would

accept at most n = 1500 objects and p = 50 variables for running on a 'moderate-size'

computer This was a vast improvement over the maximum of 70 objects for the

algorithm written by Imbrie (1963). There were devices in the program for examining

differing choices for k, ultimately the final choice was up to the user. The program

stopped at the varimax rotated loading matrix, that is at the construction of Lu and B'.

There were no notable developments to the Q-mode'factor'procedure until the

publication of three interrelated papers by Miesch (1976a), Klovan and Miesch (L976)

and Miesch (1976b). Miesch (1976a) was a 'companion paper' to Klovan and Miesch

(I976), but it referred the reader to Miesch (1976b) for a more complete account of 'the

extended form of the Q-mode method'. Klovan and Miesch (1976) contained the source

code and progam descriptions for a modification to the algorithm by Klovan and Imbrie

(1971), and a new program ro permit 'Q-mode model-building'. Miesch (1976b)

covered the first two papers in greater depth but without reproducing the source code. It

also provided four extensively worked illustrations based on published data. The three

papers taken together focussed on the Q-mode 'factor' analysis of compositional data

and presented 'an extension of the method of Q-mode factor (vector) analysis'of data

matrices with constant row-sums.
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Miesch (1976b) conceded at the outset that Q-mode 'factor' analysis was a

misnomer. Nevertheless, he perservered and indeed reinforced the factor analytic

interpretation of the mixing model, while simultaneously attempting to exploit the

closure constraint (constant row-sum) of compositions in order to acheive solutions with

feasible mixture coefficients and endmember compositions. Drawing attention once

more to the unsolved difficulties associated with the R-mode analysis of compositional

data in general, the authors of the three papers made much of the advantages of the

Qmode processing of data that summed to a constant. Principally these were claimed to

be,

(a) The reproduction of 'unbiassed' approximations of the original data in the

original units of measurement.

(b) The construction of 'factors' in terms of the original units of measurement.

(c) The construction of 'composition'loadings of the samples on the 'factors'.

(d) A validation procedure for the 'factor model' by means of 'factor variance'

diagrams.

(e) The provision for the user of methods to propose hypothetical endmembers

and to 'test' their validitv.

There was no proof given that the approximations are 'unbiassed'. It is

obvious that, if both the original and the approximate data matrices have the same

constant row-sum A, then the matrix of residuals must have constant row-sums equal to

zero. Perhaps that is what was intended.

A necessary condition for the implementation of the Klovan and Miesch

procedure was that the data be of the constant row-sum type, in common units of

measurement (proponions, percentages or ppm). It is easily shown (see equation

(3.16)) that if, in the equation X'= LB, the (nxp) approximation X' for matrix X has

row-surns all equal to A and the (kxp) matrix B of k extreme vectors also has row-sums

A, then (nxk) L is necessarily a matrix of mixture coefficients. These are the so-called
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'composition' loadings of the samples on the 'factors'.

Miesch (1976b) asserted 'that if the factor solution is to be used as a device for

summarizing geochemical or penologic data or for the purposes of sample classification,

negative composition scores can be perfectly acceptible'. He maintained that the set of

scores for each varimax axes was indicative of the general compositional nature of the

'theoretical' endmember. These remarks probably influenced numerous later authors

who were satisfied to stop their analyses at the construction of varimax rotated axes and

report the positive and negative 'composition'scores obtained on each axis.

The algebra for the 'cos0' matrix was presented along with a detailed

illustration in Miesch (1976b) of the oprional invertible transformarion,

xl' = (x1i - xmin )/(xmaxj - xmin;) (2.r2)

which is self-explanatory, and intended to eliminate the distinction in magnitudes

between major and minor (trace) elements . The 3 options provided were (i) to make

the transformation as set out in equation (2-12), (ii) to define xmin, to be zero, (iii) to

define xmin, to be zero and xmax, to be one (the identity nansformation). Since the

original data summed to a constant the point Xi(x;1,xi2,...,*ip) was transformed under

equation (2.12) from one hyperplane into the point Xl,(xli1,X112,...,xt,/ on a second

hyperplane. Transforming the coordinates of the latter into the components of a unit

vector was equivalent to projecting the point from the second hyperplane into the point

Wr on the surface of the unit hypersphere along a radius through the centre O. (All

points must lie in the positive orthant). In such a procedure, there is a one-to-one

correspondence between the three points X,, Xl, and W, taken two at a time which

accounts for the claimed advantages (a), (b), (c) and (e) above. An approximation to the

point Wt for which the 'communality' will be less than l, can be pdected onto the

hypersphere and then transformed into a point representing a composition in the original
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units. Since x1, = (xls1,xl,r,...,xl,o) is in general no longer a composition vector, the

case made that the appropriate coefficient of similarity is the cosine of the angle between

two composition vectors will not always apply to xl, and xl, .

An extreme vector could be chosen by the user and transformed into a

composition in exactly the same way. Since the algorithm was built on that of Klovan

and Imbrie (1971), both (nxk) Lo and (kxp) Bo were available, and by retaining the full

rank (pxp) matrix V, it was possible to form either (lxp) wr,"* = /r,"*80 when (1xk)

Irr"* was specified, or /n"* = wn"ruV when wnew was specified, discarding the last

[p-k] components from the latter matrix product. So the problem of identifying a

geologically interpretible set of endmembers when none were present in the data was

confronted by allowing users to experiment with their own choices.

The three papers are probably most important for their approach to assessing the

minimum number of endmembers required for a viable representation for (nxp) W of the

form W'= LoBo. Miesch (1976b) commented that this could be done before the

compositions of the endmembers were actually known. The demonstration of the truth

of that comment is elementary. Suppose the approximate rank of (nxp) W is assumed to

be k. From equations (2.10) and (2.11), redefine (nxk) Loto contain the frst k

columns of WV, and (kxp) Bo to contain the first k rows of VT. Then, the (nxp) matrix

approximation W' for W is determined uniquely, provided that the chosen set of

extreme unit vectors W, belong to the subspace spanned by the first k eigenvectors. For

such a choice of extremes, Wr = LrBofor some non-singular (kxk) L, and so,

\[' =

=

LoBo

[r.or,;t]r,,no;

Lzwt (2.13>
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The derivation of this equation is similar to that for equation (2.5) except that W, is of

order (kxp) and not necessarily a submatrix of (nxp) W'(nor in general a submatrix of

(nxp) W). The rcws of W, = LrBo are required to be k linearly independent unit

vectors which clearly belong to the subspace spanned by the rows of Bo, for which all

the elements of (nxk) matrix L, in the equation (2.13) are non-negative. With these

stated conditions, it is not necessary that W, or the (kxp) matrix X, of endmembers that

corresponds to Wt be known. Using this result, Renner (1982) published plots of the

estimated against the observed values of 10 (major and nace) variables for a

4-endmember representation of 60 marine sediments. Thus the goodness-of-fit of the

approximation had been made available for graphical appraisal without knowledge of the

actual compositions of the endmembers. (All but one of the plots were remarkably

linear, despite transformations of the type (2.12) followed by projections onto the

surface of the unit hypersphere. Hence there seemed to be strong evidence for some kind

of mixing process).

Miesch (1976a), Klovan and Miesch (1976) and Miesch (1976b) proposed that

the goodness-of-fit of the successive approximations corresponding to k = 1,2,3,....,

could be illustrated on a 'factor variance' diagram. This was an overlaid plot of the

coefficients of determination between the estimated values (columns of W') and

observed values (columns of W) for each of the p variables, against k the number of

'factors'. Miesch (1976b) provided a modest demonstration that the eigenvalues and

sample 'communalities' could be misleading where they are used as indicators of the

degree to which the 'factor model'can be used to reproduce the original data. In fact,

the problem seems to be more serious than he suggested (this problem will be examined

in Chapten 3 and 5). Without doubt, if it is the purpose of a mixture analysis to account

for the observed values of the variables in terms of parsimonious linear combinations of

a small number of endmembers, then all other things being equal, the success of that

analysis must be judged by the precision of the esrimates. Miesch tried to accomodate

variables that seemed to be accounted for only by their own 'unique' factors by
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incrementing the estimates due to the remaining endmembers. Geochemically, an

element that seems to be accounted for by its own endmember alone is probably just

that.

Like the paper by Imbrie and Van Andel (19&) before them, one or other of

these three papers continue to be cited in the research literature.

The textbook on geological factor analysis by J<ireskog, Klovan and Reyment

(1976) presented an extensive coverage of R- and Q-mode techniques. An entire chapter

was devoted to basic mathematical and statistical concepts, and included a derivation of

the singular value decomposition of a rectangular matrix. Sixteen years after the paper

by Chayes (1960), there was no discussion of the constant sum problem associated with

the R-mode analysis of compositional data. The chapter on Q-mode methods asserted

that the similarity matrix was the 'mainstay' of Q-mode 'factor' analysis. The text

compared the results of 'Imbrie Q-mode factor' analysis, coordinates analysis and

correspondence analysis, after each were applied to the (10 xlO) array of contrived data

originally published by Imbrie (1963). 'Imbrie Q-mode factor' analysis revealed that

rank of the data matrix was exactly 3.

Clarke (1978) noted that most 'factor' analysis solutions had failed to

'satisfactorily decompose' sets of mixture data. He observed that it was extremely

unlikely that orthogonal 'factors' would all lie in the positive 'quadrant' (onhant) of

p-space. Unless they did so, the original compositional data, expressed as linear

combinations of such 'factors', could not easily be interpreted as mixtures. He

proposed an oblique solution in which the oblique factors (a) belonged to the space

spanned by the rows of (kxp) Bo (see equation (2.13\), (b) lay 'on the edge' of the

positive orthant of p-space and (c) were closest to an appropriately chosen set (kxp) D

of reference vectors. If no 'natural' set D of directions presented itself, Clarke

suggested using the initial 'factors' Bo. He set out the algebra, and the source code of



74

two subroutines to be called from the program published by Klovan and Imbrie (1971).

To outline the algebna, let (lxp) b, and d, be the i-th rows of the the oblique solution

matrix (kxp) B and the (kxp) matrix D of reference vectors respectively. The linear

programming method was employed to maximize the objective function b,d,T subject to

the constraints (i) that b, and d, were both in the space spanned by the rcws of Bo, and

(ii) that \ was a composition vector. This method must nonnally determine a solution

for bt in the 'edge' of the positive orthant. Clearly if d, had been chosen in the positive

orthant then the linear programming solution would be bi = di.

It is interesting that Clarke's extreme vectors were constructed in the coordinate

hyperplanes in order to enforce the non-negative components in the solutions that were

required of extreme composition vectors such as endmembers. If the object of the

exercise had been to move oblique vectors (chosen from within the positive orthant)

outwards in order to enforce non-negative mixture coefficients, then the coordinate

hyperplanes would also have been the boundaries. The non-negativity conditions that

must be imposed on the mixture coefficients are as imponant for the purposes of

interpretable solutions as those imposed on the endmember compositions. Clarke's

procedure did not enforce both sets of non-negativity constraints, and so feasible

complete solutions for the decomposition of mixtures continued to elude the Q-mode

'factor' analysts.

Because it could not guarantee non-negative mixture coefficients, Full, Ehrlich

and Klovan (1981) dismissed Clarke's method as 'deficient'. They were also critical

because the endmembers chosen by his algorithm would always lie on the edge of the

positive orthant when the possibility existed that there were satisfactory solutions

'closer' to the data points. The title of their paper proclaimed 'an objective definition of

external endmembers in the analysis of mixtures' and the paper itself reported on a

revision to the model-building computer program by Klovan and Miesch (1976). Their

criteria for the detection of 'proper' endmembers, shedding the factor analytic



15

terminolgy, required quite simply that in equation (2.13), the elements of the matrices Lt

and W, be positive and that the 'endmembers must minimize in some way the

hypenrolume of the space defined by the data'. These criteria were included in a section

entitled Definition Of Endmembers'and were presumably what the authors intended by

that title. There is obvious confusion here between the definition of endmembers and an

objective method for estimating them. Any set of vectors which satisfied the complete

set of non-negativity constraints would define the directions of a set of endmembers.

Geological viability would be one criterion for accepting or discarding such a set. The

objectivity of the methods available at rhe time had become a major worry to the rigorous

minded. The problem of choosing the number of endmembers was, according to Full,

Ehrlich and Klovan (ibid, p333) who cited Bezdek, 'acknowledged to be the most

critical unsolved problem of cluster analysis'. (No matter that it was not critical, it was

not unsolved and it was not cluster analysis, except perhaps to factor analysts!). Having

chosen the number of endmembers by any methd, to proceed to tinker either with the

components of L, and solve for W1, or with the components of W, and solve for L2,

with the object of satisfying the non-negativity constraints, was not universally

perceived as being'objective'.

Full, Ehrlich and Klovan (ibifl did not include the source code for their

computer algorithm, and the descriprion of it was incomprehensible. However it is

possible to conclude that their intention was to adjust when necessary, the bounding

hyperplanes of the polytope whose vertices were the cunent exreme points. If, for the

position vectors of these extreme points, there existed negative elements in the associated

loading matrixn then not all data points were internal to the polytope. This situation was

to be rectified by moving the 'edges' of the polytope outwards, parallel to the original

'edges', until the most remote external data points were just internal. This was done

iteratively, as the negative loadings associated with each new set of extreme points

determined further adjustments. The vertices of the final polytope would define the

terminal solution for the endmembers. It is to be assumed that Full, Ehrlich and Klovan
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intended the hypervolume of the convex hull of these vertices to be a minimum (which is

not what they said). No proof was offered that, from a given set of initial extreme

points, the terminal hypervolume was the minimum for all polytopes whose veftices

defined extreme vectors that satisfied the non-negativity conditions.

The choice of initial extreme points remained a problem. Full, Ehrlich and

Bezdek (1982) proposed another modification to the model-building algorithm of

Klovan and Miesch (1976) which would employ the'fuzzy c-means algorithm' (due to

Bezdek) to locate initial extreme points in the space defined by the intersection of the

surface of the unit hypersphere with the 'factor' subspace spanned by the varimax axes.

(But still, the problem of the determination of the 'proper' number of endmembers they

stated 'is acknowledged to be the most critical unsolved problem in cluster analysis'

citing Bezdek yet again). Their paper assumed that the 'proper' number of endmembers

had been determined. The situation that the proposed algorithm was intended to avoid

was that in which an 'abberant'outlier with no apparent relationship to the remainder of

the data points would be chosen as an initial extreme point and thus bias the orientation

of the entire sequence of iteratively constructed polytopes thereafter. The choice of any

single point as an initial extreme, whether it was an outlier or not, seemed to risk

introducing a bias. Thus the 'fuzzy c-means' algorithm was intended to generate 'cluster

centres'well inside the convex hull of the dataset which would serve as initial vertices of

a polytope that would be expanded by the iteration procedure. Such cluster centres

would represent the combined propenies of many points rather than just one point.

There is no reason to expect that the distribution of the data points on the unit

hypersphere will in general permit the identification of (fuzzy\ clusters whose centres

would provide estimates of the terminal locations, or even the correct orientation of the

vertices of the required polytope. Outliers in the data will usually exhibit large residuals

in relation to their estimates in 'factor' space and always require attention of one form or

another, even possibly exclusion. An outlier with an acceptable residual may be evidence
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of a dataset which is merely sparse in its region of p-space. Certainly, no outlier should

qualify for selection as an initial extreme unless its associated residual is unexceptional.

This raises an interesting point. In the Q-mode 'factor' analysis literature, which spans

roughly nvo decades, very little attention has been paid to an accurate specification of the

mixing model and the approximation to it. It is impossible to determine in mosr papers

whether the authors are discussing the raw compositional data or some approximation.

Apart form Miesch (1976b), the same symbols are used for both. The Q-mode 'factor'

analysts had the 'communality'to test for the presence of outliers. They also had access

to the elements of the similarity matrix (nxn) Re = WWT to confirm such a test

(consider (nxl) Ww,T). One of the advantages of the compurarion of the appropriate

submatrices of RO, is that a nearest and furthest neighbours table can be constructed.

Outliers will show up on such a table as remote from everything else. The real

advantage of the table however, is that when the datapoints occupy a region in p-space

approximately shaped in the form of the required [k-l] dimensional polytope, then k

distinct goups of objects will be detecrable near rhe verrices, such that objects within a

group iue near neighbours, and objects in separate groups are far neighbours. One

object only from each group will then serve as an initial extreme.

Another modification to the Q-mode 'factor' procedure was published by

kinen and Pisias (1984). Their method was to move each non-feasible 'varimax' axis

towards the 'mean'in incremental steps until there were no negative components in the

vector representing the axis. It required the determination of the position vector f
('mean composition') of the centroid with respect to the 'varimax' reference axes

(transformed into compositions presumably). Each 'varimax' reference axis b,u

i = 1,2,...,k was checked for negative components. If at least one non-trivial negative

component was present, then an oblique vector was formed, given by (l - ()b," + (i
where ( = q/100, o = 1,2,...,100. Incrementing a from 0 in steps of l, the

'composition' of each new oblique vector was tested for the presence of non-trivial

negative 'concentrations'. When a vector was reached with only positive and at most,

rivially negative components, then the latter if present were set to zero and the vector
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thus modified became one of the k required solutions. Suppose f and b,u were the

position vectors of the points X and B,v respectively, then (l - ()bj + 6 F would be

the position vector of a point on the straight line XB,". This line would lie in the

hyperplane defined by the constant row-sum consnaint if this characterized the data. But

the procedure could also be applied to the transformed points defined by the rows of

(nxp) W, on the surface of the unit hypersphere. Like all previous papers, this one

relied on the varimax rotation to construct an initial matrix of non-negative loadings, a

property which was expected to be preserved in the subsequenr load.ings, through the

progressive tilting of the reference vectors towards the centroid.

The title of the paper by Leinen and Pisias (ibifi was 'An objective technique

for the determining endmember compositions and for partitioning sediments according to

their sources'. In this context, 'partitioning' implied the determination of feasible

mixture coefficients which was not fully discussed. It must be assumed that the

rclationship between the'varimax'vectors and the selected oblique vectors is in general

non-singular and permits the substitution for the 'varimax' vectors in the matrix

approximation (see for example, equation (2.13)). The real issue however, was

objectivity. Leinen and Pisias stated repeatedly that theirs were objective means of

determining endmembers. They incorrecrly dismissed the method based on the

'objective definitions'of Full, Ehrlich and Klovan (1981) on the grounds rhar ir required

the presence of 'pure' (undefined) endmembers within the dataset, and that it was

unlikely to construct endmembers with zero concentrations for some of the variables.

They also criticized the approach by Clarke (1978) on much the same grounds as had

Full, Ehrlich and Klovan (19S1). The former criticism resulted in a terse rebuttal. Full

and Ehrlich (1986) pointed out that the paper by Full, Ehrlich and Klovan (1981) made it

explict on at least six different occasions that it was not necessary to have sampled

endmembers in order to execute their procedure. They also remarked that the majority of

their solutions produced endmembers on the 'edges of the positive orthant' and therefore

possessed zero components. Full and Ehrlich then went on to criticize lrinen and Pisias
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for permitting negative 'abundances' (mixture coefficients), for assuming that the mean

vector is a meaningful measure for a multivariate collection of samples, and finally for

assuming that the varimax factors contain explicit or unambiguously useful information.

What is particularly interesting about rhis last criticism is that it ever so briefly challenged

the universally accepted procedure for rotating the principal axes of the initial Q-mode

'factor' solution.

kinen and Pisias (1986) followed Full and Ehrlich (1936) with a rejoinder

which conceded the major objections of the latter aurhors, and otherwise cited the

literature in defence of their use of the mean vector and the varimax factors.

An important contribution made in the kinen and Pisias (1984) pspcr, was rhe

report of the application of their technique to data from the Nazca Plate in the Southeast

Pacific Ocean. Numerous studies had been made of this data but Leinen and Pisias

(1984) set out a detailed comparison of the results of their method, based on 'facror'

analysis, with the results published by Dymond (l9Sl) and based on the partitioning by

linear programming of a 'normative composition model'. The differences between the

two sets of results were not altogether remarkable. However, Dymond's methods

involved the manipulation of endmember composition ratios rather than proper

compositions. These were specified on the basis of the magnitudes of the ratios with

respect to selected 'normalizing elements' of the elements within the dataset. The matrix

of scaled mixture coefficients was then constructed (the 'partitioning') by linear

programming, which of course guaranteed non-negative loadings. This procedure will

be explained a little more fully in the next section, but on the evidence, it hardly seemed

to be objective, and it certainly was not 'factor' analysis.
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NORMATIVE ANALYSIS AND LINEAR PROGRAMMING

Because compositional data must lie in the positive orthant of p-space, Q-mode

'factor' analysts had assumed since the earliest paper by Imbrie (1963) that rotation of

the orthogonal principal factors'according to the varimax criterion would result in an

(nxk) matrix L" of predominantly non-negarive loading coefficients. Such negative

entries as existed should have been negligible and were treated as zeros. So although the

loadings on the varimax rotated a;(es were originally intended by Imbrie (ibid)toexpose

extreme samples in the data, the construction of Lu > 0 whenever that was

accomplished was also half a solution to the whole problem of enforcing all the

non-negativity constraints.

Another principal was maintained by the application of the varimax criterion.

Once the number k of endmembers had been specified, the analytical procedure which

concluded with the varimax rotation of the principal axes was se€n ro be totally objective.

It produced the unique varimax 'decomposition' of (nxp) W by a sequence of essentially

optimizing algorithms (first on the sums of squared projecions (1.40) then on the

variance of the squared loadings). But objective strategies for the analytical roration of

the 'varimax factor vectors' into an oblique configuration conforming to the

non-negarivity constraints set out by Full, Ehrlich and Klovan (1981) seemed usually to

be defeated by real data.

Heath and Dymond (1977) completely bypassed the Q-mode 'facror' procedure,

both for assessing the approximate rank of their particular compositional dataset and for

seeking feasible extremes by simply specifying the number and composirion ratios of the

required endmembers.

The samples used for the Heath and Dymon d (tbiA study were a subset of size

22 ftom almost 200 surface samples taken from the Western Nazca Plate. In order to
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partition each element among four possible sources (which were described as Detrital,

Hydrothermal, Hydrogenous (or Authigenic), and Biogenous), Heath and Dymond

constructed simple algebraic relations based on 'interelement relations and on previous

knowledge'of the Northwestern Nazca Plate geochemistry. One of these relations made

the Biogenous element ratios redundant so that, rather than dwelling in detail on the

particular representation reported in their paper, the method for the general case is

described below.

Irinen (1987) explained that 'normative partitioning techniques estimare element

contributions to a mixture from various endmember sources based on rafios of the

elements to a key element. An element which is strongly concentrated in a source is

usually chosen as the normalizing element'.

At the heart of the normative analysis is a (kxp) matrix of element ratios B"

which correspond to the (kxp) matrix of endmembers B. The procedure is quite readily

appreciated if argued backwards. Let (nxp) matrix X' contain the estimated sample

concentrations, let (nxk) L be a matrix of mixture coefficients and let (kxp) matrix B

contain the estimated endmember concentrations then,

X'=LB (2.r4)

In each endmember (row of B), there is a 'normalizing element' distinct from that in

each of the other endmembers. Define the (kxk) diagonal matrix R* to conrain the

concenrration of the normalizing element of the i-th endmember in the i-th diagonal

position for each i = 1,2,...k.

Then,

x' = [rn ;[n]n) (2.rs)

(2.16)

and so,

X' = L*B*
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The (kxp) matrix B* is the array of 'elemental ratio coefficients'. Naturally, the entry in

the i-th row of B* corresponding to the normalizing element is l. It was rhis matrix

that Heath and Dymond (1977) and later Dymond (1981) actually specified in their

respective papers from considerations of prior knowledge and on inspection of the data.

The paper by Heath and Dymond (1977) seemed to be a prelude ro the 1981

paper by Dymond. The two papers presented studies of Nazca Plate Sediments. Both

had four conjectured 'sources' (endmembers) in common. The first paper was based on

a very few samples however, and the elements of L* were implied by the collection of

simple algebraic relations, as were the elements of R". These relations permined the

recovery of the decomposition (2.14) (op. cit., Table 4) but would probably have been

unreliable for a larger study. The results of a Q-mode 'factor' analysis were included

towards the end of the paper to confirm what was described as 'essentially a form of

normative analysis'.

Dymond (1981) reported on a much larger study. The data consisted of 425

samples selected from cores during the cruises conducted by Oregon State University

and Hawaii Institute of Geophysics as part of the Nazca Plate Project. Nevertheless,

only 8 variables were analysed, and no mention was made of the accomodation into the

analysis of the 50 samples which had at least one missing value. A 'normative sediment

analysis model' was employed to evaluate 'five components of sediment'. These were

defined apriori as (1) Detrital, (2) Hydrothermal, (3) Biogenic, (4) Hydrogenous

(Authigenic), and (5) Dissolution Residue. The 'elemental ratio coefficients' marrix

corresponding to these five sources (endmembers) and denoted here by (5x8) Bn was

specified @ymond (1981, Table 3)). That is the 40 matrix elements of B, were chosen

by Dymond. The overdetermined system to be solved would appear to have been,

X = L*B* (2.r7)
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in which the matrix on the left is the (425x8) matrix of original compositional data. The

components of the i-th row of X are given by 8 equations (if there are no missing

values) in the 5 unknown elements of the i-th row of (425x5) L*. Dymond solved these

equations for the 425 rows of LN by linear programming, rhe analytical details of which

are described in the next section (it may be assumed that a solution was obtained for all

cases since the number of missing values per sample did not exceed 3). The

non-negativity constraints of the linear programming methd assured Dymond of the

feasible solutions for each row of \ that he was looking for. He also found by trial and

error that scaling up the equations for the trace elements by a factor of 20 produced the

most satisfactory sums for the residuals. Finally, rhe row-sums of the (425x8) matrix of

compositional data were not constant (note that a vector of compositional data does not

imply a composition). Therefore, since the (5x5) diagonal matrix RN (equarion (2.15))

was unknown, it was not possible to derive equation (2.14) back via equations (2.16)

and (2.15). Dymond overcame that obstacle by specifying also the concentrations of the

normalizing elements for each endmember (Dymond (1981, p.143)), which

consequently defined R*. Those concentrations were'taken from the same literature

sources that were used to obtain the elemental ratios'.

Although Dymond (1981) cited Narula and Wellington (1977) as the reference

for his particular application of the linear programming method, a complete formulation

of the actual linear programming problem to be solved appeared in an appendix of the

paper by Dymond et al. (1984), together with an iterative procedure for adjusting

putative endmembers to maintain the non-negativiry constraints. This 1984 papea which

reported on an analysis of ferromanganese nodules from the National Science

Foundation supPofted Manganese Nodule hogram, is examined in Chapter 4. Dymond

et al. descibed it as a 'normative nodule analysis' even though the appendix does not

deal with element ratios. Nor do they appear anywhere else in the paper. The appendix

does state that the compositions of the endmembers must be specified, and echoes the

statement on page 938 that the extreme samples within the dataset were assumed to have
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compositions close to the proposed'true endmembers'.

2.3.1 Partitioning by Linear programming

Consider the overdetermined system (not in general an equality) relating a given

(lxp) compositional vector x, an unknown (1xk) vector of mixture coefficients I, and a

given (kxp) matrix B of the concentrations of k endmembers b1,b2,...,b1, given by

x=/B= (2. r8)
kIl.nH_JJ

J=r

The system (2. l8) determines p equations for the components of the estimate of x in the

k (< p) unknown mixture coefficients lr,lr,...,ly. The 'partitioning'problem is to find a

feasible solution for the mixture coefficients. (The early papers by Dymond set out to

solve not the system (2.1S) but rather the system x = l*B* in which x and I11 are

corresponding rows of X and L" respectively in equation (Z-17) (see Dymond (1981)).

There is no loss in generality in proceeding with the problem as stated).

Dymond (1981), Dymond et al. (1984) and owen (1987) stated one way or

another that the least squares solution l* for / which minimizes the sum of squares of

the residuals below,
P^
I (*, - *;)'
l=t

(2.r9>

where x* = l*B (exactly), is unusable because a non-negativity constraint can not be

imposed on each of /1*,/2*,"..,/**. lnstead, they recommended the linear programming

solution l" for I which minimizes the sum of the absolute values of the residuals
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tl*,
j=1

-*"jI (2.20)

where x" = l"B (exactly), given all the required non-negativity constrains.

The least squares solution will be fully discussed in Chapter 3, but at this point a

geometrical comparison between the two approaches is revealing. Suppose the

endmember vectors span a k-dimensional space S, a subspace of which is the convex

cone c= {y: y =aB, (lxk) a > 0}. The point X whose position vector with

respect to the origin O is x, is a fixed datapoint. Minimizing expression (2.19), is to

locate the point X*, defined by x*, which must be in the space S and also lies on the

hypersphere with centre X, whose radius is a minimum. Minimizing expression (2.20),

is to locate the point X", defined by x", which must be in space C and also lies on the

cross polytope with centre X, whose diagonal is a minimum. Whether X* is also in C

or not, it is the point in S which is closest to X. The diagonals of the cross polytope are

parallel to the Oxtxr...5 reference system in Euclidean p-space. In general, a solution

in the interior of C will be where a vertex of the cross polytope touches C from p-space.

The position of that point is determined by the orientation of the reference axes in relation

to C. In general no diagonal (axis) will be orthogonal to C. (As an aid to visualizing

the form of the cross polytope, let yj = xj - *,'j j -- 1,2,..,p, translating the reference

system. In 2 dimensions, lyrl + lyzl=d defines the sides of a square whose four

vertices have (yr,y2) coordinates (td,0), (0,+d) respectively, rnther like a plane

diamond. In 3 dimensions, lyrl + lyrl + lyrl = d defines the sides of an octahedron,

with its six vertices also on the axes, given by (ad,0,0), (0,1d,0), (0,0,1d), rather like a

solid diamond. Minimizing expression (2.20) creates the 'diamond' with smallest

possible diagonal 2d. when /" ) 0, X" is a vertex of this 'djamond').

If the linear programming techniques advocated by Dymond (1981), Dymond

et al. (1984) and Owen (1987) are employed to solve the overdetermined system (2.18)

for l, then the resultant estimate x" (where x" e C) is not in general the position vector
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of the nearest point X* in S to X unless x € C, in which case x" = x (as it is with the

least squares approach). It is proven a little further on that when x e C the linear

programming method, which minimises the absolute error sum given all the

non-negativity constraints, will solve q < k of the p equations implicir in (2.18) exactly.

The number q being the number of non-zero loadings obtained in the solution 1".

Therefore Q 
( k element concentrations are determined exactly, the remainder contribute

to error term (2.20). The location of X" relative to the extreme points 81,B2,...,B1

(defined by b1,b2,...,b1) is not as apparent as with the least squares solution X* (see the

next section).

The possibility that one or more of the Br,Br,...,Bo are not extreme points for

the data is obscured by the linear programming method since no solution for the loading

vector I can have negative components.

Dymond (1981) cited an algorithm by Narula and Wellington (1977) for the

linear programming solution of the overdetermined sysrem (2.18) subject to

non-negativity constraints on all components, and the minimisation of the absolute error

sum (2.20). The vector x" = l"B is the linear programming estimate of x, where point

X" must belong to convex cone C but not necessarily to H, the convex hull of the points

B 1rB2,...,81.

The linearprogramming problem with the required solution is formulated in rhe

following way. First, the j-th error is expressed as the difference of non-negative

variables, that is,

*j-*"j = D., -V' i = 1,2,.--,P (2.2r)

where uj t 0, uj t 0. One or other of these will be shown to be zero for each j (see

below). Then since x" = l"B, there are p constraint equations in the (k+2p) variables

lpl2,...,ly, t)1,D2,...,o0, V1,V2,...,V0. These are obtained by substituting for x,', in the
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j-th enor (equation (2.21) and are given by

k
L" b.+D.
-mmtlm=l

The non-negativity conditions are

uj = *j' j = 1,2,...,P (2.22\

(2.23)flll2,...,lk, D'D2,...,D0, v1,v2,...,vpl > 0

and the objective function to be minimized in this case is

p

! (u, + v,)
J=t

(2.24)

The three statements (2.22), (2.23) nd (2.24) together constitute a linear programming

problem (see Hadley (1962) and Bazaraa and Sheny (1979)). To show rhat it will yield

the required solution, it is necessary only to prove the following result.

For any optimal feasible solution, at least one of tlu pdrr DlrVl is zero for each j.

Proof:

Suppose uj t 0 and v, > 0 are two components of an optimal feasible solurion.

Let | = Inf(ur,vi) then setting u: =uj- 6, u j =uj- E, it follows that u, -u j =rj - uj

so that u:, u: are also components of a solution, and one or other of the pair is zero.

However, uj + vi = oj * u : - 2E) 0, meaning that for the new solution, the objecrive

function has been reduced bv 2E. Hence its former value can not be a minimum unless

€ = 0 which requires one or other of o1, v1 to be zero. It is obvious therefore that,

given the non-negativity constraints, minimizing the objective function (2.24) is

equivalent to minimizing expression (2.20).

The proof of the next theorem shows that the linear programming solution ro the

overdetermined system (2.18) of p equations, is simply rhe exacr solurion to q (q*) of

these equations.
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The optimalfeasible solution to the linear programrning problem (2.22), (2.23>,

(2.24) will containq3kexact solutions to the p linear equations x = IB, tle remaining

lp-ql inequatiors contribute to tlv error (2.20).

Proof:

Assuming that the rank of the augmented matrix associated with the set of linear

equations (2.22) is p, then the optimal basic feasible solution (see Hadley (1962)) to the

linear programming problem (2.22), (2.23), (2.24) will contain at leasr (k+p) zero

values among the (k+2p) variables. If in particular q (q < k) of the lyl2,...,ly are

non-zero, then at most (p-q) of the uj, vj are non zero. That is, there are at most (p-q)

linear equations (2.22) in which one or other (but nor both) of rhe ur, v, is non-zero

leaving at least p-(p-q) = q equarions in which both ur, vj are zero. Therefore q < k of

the components of x will be estimated exactly.

The overdetermined system x = iB represents p estimates in the k unknowns

112,...Jy. In general, the linear programming problem (Z.ZZ), (2.23), (2.24) provides

an exact solution f", for k of these p equations, subject to the non-negativity constraints.

It will always provide the same feasible solution no rnatter how ill-fitting the remaining

tp - kl linear expressions are. In other words, [p - k] of the components of x may be

made arbitrarily unsuitable without altering the linear programming solution.
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CHAPTER 3

TTru RESOLUTION OF COMPOSITIONAL DATASETS

INTO CONVEX COMBINATIONS

OF EXTREME VECTORS

SUMMARY

In this chapter, the mixing or convex model is introducedfromfirst principles,
and the most important of its properties and those of its estimetes are derived,. A
geometrical interpremfion of the model which should be mimicked by its estimates, is
that rclinearly independent erdrnembers in tlv positive ortlnnt of Euclidean p-space ore
the position vectors of the K vertices (extreme points) of a convex polytope inside which,
all points representing mixtwes of tte endmembers must belong.

An intuitively reasonable result is shown to be tue under quite mild conditions.
The resuh is that a convex representation for a composition in terms of a given set oJ

endtnember composirtons can be uniquely transformed into a convex representationfor a
subcomposition in terms of the corresponding subcompositions of the given
endmembers. The ratios of the components of a subcomposition are equal to the ratios
of the coffesponding components of its full composition, therefore the relative
magnitudes af the components of the endmembers are invariant under such a
transformation.

The first problem examined, is that of resolving a single composition into a
convex combination of known endmember compositions. This problem can be

formulated algebraically as an overdetermined system of equations for the mixture
cofficients. It is proposed that the best solution to this system is a vector of mixture
cofficients which is parallel to the vector of least squares regression cofficients.
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When one or more of these regression cofficients is negative, then at least one

of the endmembers is not exteme. A mettnd for adjusting non-extreme endmembers

outwards is developed which is based, in part, on the magnitudes of the mixture
cofficients of such endntembers. Further, the new set of endmcmbers always rernains
in the space spanned by tle origirul set.

Moving onfrom the single to many compositions, the major problem examined
in this chapter is tlat of cotutucting a convex representationfor a cornpositioral dataset

in the absence of any prior information on an underlying mixing process. Tlu proposed
solution to this problem contains three distinct stages.The first is the identification of an
estimate space for the unknown natural mixtures, and the ortlwgonal projection of the
raw data into tlwt space. The next is the identification of ncar extrernes in the projected
dataset which can be treated as initial endmembers. In the third, and most complex
stage, an iterative algoritlun constructs least squares estimates for the natrix of mixutre
cofficients associated with the initial endmembers. If any mixture cofficients are
negative, the algorithm adjusts the endrnembers to new positions in tlu estimate space
then recomputes a new matrix of mixture cofficients. This process can be repeated until
either all mixture cofficients are positive or an adequate ryproxirnate solution has been

reaclvd.

An illustration compares four sets of solutions which were obtained for the
same raw data by altering the intial extremes and adjustment method,s. Two sets of
soltttiors are exact and were the result of tlrc procedure converging, and two were twt.

The chapter concludes with a description of some of the computer algoritlvns
tlat have been createdto undenakc mixture aralvses.
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3.1 CONVEX MODELS

A multivariate sample of compositional data X (nxp) contains measurements on

p variables for each of n objects or geological samples. Hence, as has been noted in the

last chapter, the vector of variables associated with a single object is a row rather than a

column vector. The components of the (lxp) vector x are the coordinates of the point X

in Euclidean p-space, thus x is also the position vector of X with respect to the origin O.

The terms rows, points, object vectors and position vectors will be used interchangeably

when there is no ambiguity concerning the object being referred to.

The correct formulation of the traditional geochemical mixing model should be a

matrix relation of the form X = AF + 8, in which each row of X (nxp) is composed

of a convex combination of the r rows of the fixed matrix p (rxp) together with an

ellor vector.

The r rows of p must be linearly independent and are the true endrnember or

source compositions. The mkture cofficients that make up each row of A (nxx) are

non-negative and sum ro l. The (nxp) matrix Xo = AP is the true or theoretical array

of exact mixtures, and 8 (nxp) is an error matrix.

The rank of Xo is r. Therefore its n rows are the position vectors with respect

to the origin of n points in a r-dimensional subspace ,6 in the positive orthant of

Euclidean p-space. Further, these n points are interior to the convex polytope whose

vertices are defined by the rows of p.

If the elements e,, of matrix I are always very small, then the rows of X are

approximately given by linear combinations of the rows of F, attd so the 'approximate

rank' of X is r, the number of true endmembers.
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It is generally the case that, although a mixing process may be believed to be

responsible for the geochemical dataset X, the number r and the matrices A, p and I are

unknown.

When matrix X is given and matrix estimates L and B are obtained forA and p

respectivelY, then an approximate form of the model is given by the linear relation

X=LB+E (3.1)

The estimates L, B and E have many propefties in common with their

theoretical counterparts. For the remainder of this thesis, the four matrices X, L, B, E

in equation (3.1) will be defined as follows.

(i) X (nxp) is a matrix of compositional data. Its components xij are the

concentrations of p minerals in n geological samples usually associated with each of n

locations. Accordingly, xij > 0 all ij. Since the data are compositional, then for each

i = 1,2,...,n, either,

(3.2)

or it is possible to introduce a 'fill up' value (Aitchison (1986)),

p

I*,, =A
j=l

p

*ip*l=o-F_,*t.i (3.3)

Equation (3.2) is often described as the 'constant row sum' property of

compositional data. When A = 1, equation (3.2) defines a composition. This will

usually be the case for the theoretical discussion that follows, but in all applications, the

data will be expressed as percentages.
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(ii) B (kxp) is an estimate of the fixed basis matrix p. lt is of rank k, rhe

estimate for r, and its components bU are concentrations of the same mineral types as X.

Hence btj 
= 

0 all ij and whichever of the equations (3.2) or (3.3) is true for X, musr

also govern the row sums of B.

(iii) L (nxk) is a matrix of estimated loadings or mixtwe cofficients {1 such that

/tj t 0 all ii, and for each i,

(3.4)

(iv) E (nxp) is a matrix of residuals e,r.

An important restriction on these matrix dimensions which governs the

interpretation of the model is that k < p.

A fifth matrix X' (nxp) given by

X'= LB (3.5)

is the estimate of the theoretical array of mixtures Xo = AF specified by the model.

The rank of X'is k the estimate of r. It is usually assumed that the true errors eij are

very small. Hence, X'should be a good approximation to X, whose approximate rank

wil be k, the estimated number of endmembers.

The matrix X' will frequently be referred to as the estimated mixture matrix, just

as its rows will be the estimated mixture compositions, It is treated as a surrogate for

the observed matrix X, particularly for the purpose of geochemical interpretation.

k

I.t..=t
J=t

Each row of X' is a convex combination of the rows of B by Definition (iii).
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The matrix of residuals is the difference between the observed data matrix and

estimated mixture manix

E = X-X' (3.6)

by equations (3.1) and (3.5).

The k rows b1,b2,...,bk of B are called endnembers. They are esdmates of the

where It and ei are the i-th rows of L and E respectively. Similarly, the corresponding

vector of estimated mixture concentrations x', is by equation (3.5),

(3.7)

(3.8)

true endmembers Ft,Fz,...,F* which are the r rows of p. From equation (3.1), the

vector of concentratioos xl for the i-th geological sample may be wrinen

k
xi = liB + e. = I tubj * 

",J=r

k
x'. = I.B = I /,rb:

j=l

The endmember vectors b1,b2,...,b1 are the position vectors with respect to the

origin o of the k vertices B1,B2,...,B1of a convex ser (see Hadley (1962)) which is the

convex hull H of these points (see Bazaraa and Shetty (1979)).

Various subspaces are defined by altering the constraints on the coefficients of

the endmembers in equation (3.8).

(a) When there are no restrictions on the loadings /11, the endmembers form a

basis for a k-dimensional space whose intersection with the positive orthant of p-space,

is the estimate space S. This space is the estimate of ,,6 the true mixture space. The

rows of X' are the position vectors of points in S.
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(b) The non-negativity constraino /,j > 0 of Definition (iii), determine points in

the convex cone C whose generators are b1,b2,...,bp.

(c) The sum-to-one requirement (3.4) defines the (k-1) dimensional hyperplane

P through the points 81,82,...,8k.

(d) Finally, the intersection of the sets contained in the convex cone C and the

hyperplane P which is implied by both the non-negativiry constraints and the sum-to-one

requirement, is the convex hull H of 81,B2,...,B* (see also, Full, Ehrlich and Klovan

(1981) and Full, Ehrlich and Bezdek (1982)). It follows that if k=2, H is a line

segment BrBz (see Figure 3.1), if k = 3, H is a plane triangle BIB2B3, and if k = 4,

H is a tetrahedron BIB2B3B4, where p is always greater than k. In general, H is a

convex polytope by definirion @azaraa and Shetry (lWg)).

Itt & and XU be two points belonging to H with position vecrors xi and xi respectively.

Then the position vector of any point X' on the line joining these points is given by

x'=Lxl + (l-},)xir. when0<1.<1,then 1. and (l-x) arepositive,thepointX'

clearly belongs to H and it lies on the line beween the other two. If X' is an ercreme

point of H, then there arc no distinct points Xl, Xg of H for which this configuration is

possible.

The vertices 81, 82,..., Ba of the convex polytope H are extreme points of H

(see Bazaraa and Shetty (1979)).

In the 2-dimensional illustration provided by Figure 3.1 below, the plane of the

page is the estimate space S. It is not sufficient to ascertain that 26, the true mixture

space, is just 2-dimensional. Assuming that the datapoints form a'fuzzy' line around

BtBr on Figure 3.1, a plane at right angles to the page for example would be a very poor

alternative estimate space S. Alternatively a plane fixed by the origin and two outliers



96

among the datapoints could be remote from the 'fuzzy'line and therefore also a poor

estimate space. It is for this reason that the choice of S will later be based on a least

squarcs criterion involving all the datapoints.

It is not important that the points of S do not necessarily represent compositions.

Any p-component vector of quantities measured on the same scale can be transfonned

into a unique composition vector whose direction is unaltered. That is, * = w7lwj

forms the unique parallel composition vector x from w. The choices for b, and b, may

not be extreme which, in Figure 3.1, would place at least one point estimate outside the

cone c. Thus the convex cone C must be a subset of the estimate space S.

Allfeasible mixture estimntes x', are convex combinations of the endmember

vectors and are represented by points that belong to the convex set H. Hence the rows

of X' define points that form a subset of H and equarions (3.5) or (3.8) are esrimates of

the convex model Xo = AF. A particular solution of (3.1), (3.5) or (3.8), based on a

realization of X, is a convex representation fot the estimate X' of the mixture array Xo

of geochemical dataset X.

By equations (3.4) and (3.8), the composition of the i-th sample is

approximately resolved into a mixture of the endmembers in which the proportional

contribution to the whole sample of the j-th endmember is /i;. This interpretation has

been conveyed historically by the term 'mixing' model, and the computation of the

loadings lii as linear unmixing. Equivalently, the i-th sample may be regarded as

partitioned somewhat in the set-theoretic sense, into k disjoint sources whose relative

concentrations identify them respectively with the b1,b2,...,bp (see Dymond, et al.

(1984), I-einen and Pisias (1984), Full and Ehrlich (1986) and Irinen (1987)).
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Figure 3.1. Subspaces Defined by Linear Combinations of Two Endmembers. (Estimated

mixlure x' = lB). ln this Z-dimensional illustration, the estimate space S is

in the plane of the page, convex cone C is the region bounded by the line pair

OB1 and OBt, and the hyperplane P reduces to the straight line through Bt BZ.

The convex set H of feasible estimated mixtures is the line interval Bt BZ.

Given the compositional dataset X, the construction of a convex representation

(equation (3.1)) strictly requires, first the identificarion of k-dimensional space S, which

implies k the estimated number of endmemben, together with the residual matrix E, and

then the solutions if they exist, for the matrices L and B in equations (3.1) or (3.5).

Since in general, solutions for B are indeterminate in number, each b, i=1n2,...k,

should be chosen in some sense as close as possible to the convex hull of the points

x'1,X'2,...,X'n (see for example, Full, Ehrlich and Klovan (1981)). such a choice

usually guamntees that the endmember vectors have geologically feasible compositions,

at the risk of underestimating their most extreme possible displacements. In geochemical

terms, this may mean for example the detection of a clay with some extraneous materials

instead of a 'pure' clay, the tnre extreme.

hull H ol B .,and B,
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3.1.1 Subcompositions

Compositional data which are not'closed'or are incomplete are commonplace in

geochemistry. The data may be measured in percentages but not sum to l00vo because

components of no interest have been discarded or not recorded. For a single sample,

such data will be referred to as a part composition. The components of a part

composition may each be divided by the sum of all the componenrs, thus forming a

sttbcomposition. Alternatively, if, for example, all the components are measured on a

percentage scale, an additional variable may be formed which is equal to 100 minus their

sum. Dividing each of this enlarged collection of variables by 100 would create a partictl

composition.

Convex representations for one or more composition vectors are readily

modified for subcollections of the variables. Let the composition x (lxp) be an

approximate mixture grven by

x = I B+e (3.e)

(dropping the row subscripts from equation (3.7)). Then the exact mixrure is given by

x'= f B (3.10)

Consider a vector formed from a subcollection of q of the components of x, where

kcqcp, and which, without loss of generality, may be taken to be [x,, x2,..., xq].

This vector is a parr composition. Denote the first q columns of B (kxp) by Br, B,2, ...,

Bo. By equation (3.10),

k
x'.=)/ b.J -.m 

mJ
m=l

= f B.
J

hence,

(3.1l)



That is, any linearrepresentation including a convex representation projects orthogonally

from p to q-space.

Suppose now subcomposition vectors x's, bs1, bs2, ..., bs* are formed from

[x'1, xi, ..., x'nl, and the k rows of I Br,82,..., Bo] GxO. The row-sum t of

[x'1, x'2, ..., *'o] and the k row-sums s, of I Bt, 82, ..., Bo] are given by,

99

[x'r,x'r,...,x'nl = I [B 1,82,...,8q]

=[ and l,=,o,, =,,, i = 1,2,...,k

(l/t) [x'r,x'r,...,x'nJ = (l/0 lS S-l[n1,82,...,8q]

and this can be written,

x't = ,t Bt

(3.r2)

(3.13)

(3.15)

P,.:=P, P,to-,

Assume t >0 and s,>0, i=1,2,...k, thenforeachiandj=1,2,...,e,

x'j =xr/t, bl., =b,,/s, (3.r4)

The (kxk) diagonal matrix S = diag(sr,s2,...,s1) is nonsingular by assumption, so from

equation (3.12),

where F = (l/t)ts and B$ = S-l[Br, F.2, ..., Bol. crearly, x't and the k rows of Bs are

all compositions with unit sums by (3.13).

It will now be shown that equation (3.15) is a convex representation for the

subcompositional vector x's. Since rs = (l/t)rs,
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kII
m=l

k

= (1/0 I /,r*
m=l

kq
=(r/t) Il. I

lrr=l j=l
qk

=(l/r)IIl^
j=lm=l

b.
mJ

b
mJ

by the equation for t on the left of definitions (3.13). Hence the nonnegative loadings

4t, 
j = r,z,...k, also sum to one. so, the creation of a subcomposition in which the

subcollections of q components of x' and the corresponding q components in each of

br, b2,..., bk, all sum to one, results in a convex representation (3.15). That is,

provided S is nonsingular and the rank of Bs is k, the subcomposition vector x's can be

identified with the siune, but similarly transformed sources as x', ahhough the loadings

differ. This means that the convex set Hs of feasible esrimared mixtures defined by

equation (3.15) should be of the same geometrical form as the convex ser H, a line

segment if k = 2, a plane triangle if k = 3 and so forth.

Aitchison (1986) stated an elementary result (by equation (3.14)), that the ratio

xs/xs- of any two components of a subcomposition is the same as the ratio xr/x* of the

corresponding components in the full composition (which accounrs for the

covariance structure of the 'lograrios' (Aitchison (1986, p.65)). It follows

equations (3.14) and (3.15) that, provided b,_ * 0,

=l

fixed

from

b. /b.ulm

The important result that has been established above is that provided S is

nonsingular and the rank of Bs is k, a convex representation for a composition x'in

terms of a given set of endmember compositions B can be uniquely transformed into a

convex representation for a subcomposition x's of x', in terms of the corresponding

subcompositions Bs of the given endmembers B. The ratios of the components of a

ui lui =ulm
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subcomposition are equal to the ratios of the corresponding components of its full

composition, so the relative magnitudes of the components of the endmembers are

invariant under such a transfomration.

Aitchison (1986, Table 3.1) illustrated the substantial changes in correlations

between selected pairs of variables which follow successive movements from a full

composition to a number of subcompositions. There is nevertheless one possible value

of the correlation coefficient between two variables of any subcompositional dataset Xs

(nxq), which can not change and must equal the correlation between the corresponding

variables of the full compositional dataset X (nxp). That value is 1. Suppose that in the

dataset Xs, the ratio xs,r/xs,- = v for all i = 1,2,...,n Then the n ordered pairs

(xtir,xt;.), i = 1,2,...,n, lie on a straight line through the origin with slope lfu, and

therefore have correlation 1. But by the ratio property, it is also the case that xtlx;rr, = v

for all i = 1,2,...,n, so the same result applies to the (,m)th variables of X. Nearly

linear associations, that is, correlations greater than about 0.90 between two components

of a composition, occur quite frequently in practice. For example, a correlation of this

order between the oxides Al2O3 and SiO, is a common indicator of a silicate (clay)

endmember which, if identified, ofren implies negligible quantities of these oxides in the

remaining endmembers. In any event, the presence of any high correlations between the

variables of X should be reflected by approximately constant ratios for the appropriate

components of the endmembers.

The unit sum obtained above for the components of F is a special case of a more

general result concerning row Sums. By equation (3.11) with g = P, the row sum given

by

t i ,.0*,
j=1 m=l

i,* I o-,
m=l j=l

(3.16)
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pp
If :x', = Ib-o = A (anyconstant>0),m =1,2,...,k, thenHl/Hml

Fl j=l
erq

Alternativefy,il Ebrj = 1, rn = 1,2,...k, andoneof f x'.,
j=l " j=i

by (3.16) so must be the other.

k

I 1,"

m=1

Lt*
m=l

= 1 necessarily.

is equal to 1, then

These results can be exploited in algorithms for constructing the matrices L and

B when the rows of X' are compositions. For example, suppose the matrices Lo and

Bo are exact feasible solutions to the matrix equation X' = LB, however, the rows of

Bo are not compositions but unit vectors. Then dividing each of the rows of Lo and Bo

by their respective row-sums would result in an exact convex representation for X' in

terns of feasible endmember compositions. This is a much simpler operation than that

described by equation (2.6). Moreover equation (2.6) requires the magnitudes of the

final endmember vectors, and these may not exist if the endmembers do not belong to

X'. Since Q-mode factor analysis starts with the transformation of the data into unit

vectors, it was considerations such as these that were at the basis of the advantages

claimed for processing constant sum data that were made by Miesch (1976a,b) and

Klovan and Miesch (1976).

3.L.2 A Note on Partial Compositions

There is an alternative to the derivation of equation (3.15), in which the part

composition was transformed into a subcomposition. That altemative is to reconstruct

equation (3.12) into a convex combination of partial compositions.

Suppose a (q+l)th component is added as a 'fill up' value to each part

composition in equation (3.12). Then each part composition acquires an extra

component and becomes a partial composition. For the vector [x'1, x'2, ..., x'ol, the

additional component X''..i is redefined as follows,
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q

=1_I
j=1

x'.
J

kkq
= I l_ I.I,"'0,",

m=l m=l j=l

k

I l*u
m=l

=t - i*',
j=l

_ x'o+l

similarly, for the part composition [b*1,br2,...,b-oJ of the m-th endmember,

b*q+r = I - lon', for m = 1,2,...,k
j=l

Forming convex combinations of both sides of the last equation, ftom the given vector I
of mixture coefficients,

m q+l

The components of I sum to I by definition, so on interchanglng the order of the double

sum on the left,
k

I./*b,,, q*r

Hence the (q+1) dimensional compositional vectors [x'1,x'2,...,x'o+l], and

lbn 1,b^2,...,b* q*11, m = 1,2,...,k, satisfy equations (3.11), (3.12) but with (q+l)

replacing q.

An immediate corollary of this result is that the rank k of an (nxq) matrix of

exact mixtures of part compositions, is unaltered by the addition of an (nxl) column of

constructed'fill up' values (which correspond to geochemical residues).

Databases consisting of part compositions, that is, retaining the measurements

of q < p of the components of full compositions, are commonplace in geochemisrry. In

Chapter 5 one such database is analyzed afrer its conversion to partial compositions, and

the endmembers obtained are then transformed into subcompositions. In view of the

results of the last two sections, the same endmember subcompositions should be
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obtained from a sound mixture analysis whether the subcompositions are formed before

or following the analysis.

3.1.3 A Note on Sampling Distributions

A theory for the joint probabiliry distribution of a random composition vector x

given by

x=trF+e=)I,p,*,
j=1

would usually need to incorporate two distinct components of variation.

(3.17)

The first arises from the sampling procedure. For statistical purposes,

geochemists routinely report the collection of 'random' samples of geological specimens

such as marine sediments, rock samples and so forth (see, for example, Woronow and

l,ove (1988)). Such reported randomness is usually a perception of the collection

method. A designed sampling procedure may for example, follow a uniform probability

distribution defined on the region from which the samples are to be taken or a systematic

selection of sampling points (stations) uniformly disnibuted on the region. But other

probabitity sampling methods are also valid. (It should be remarked that most sampling

schemes are purposive. Samples are usually recovered from sites which possess

particular attributes of interest).

Given any valid probability sampling method, then by the assumed model

(3.17), there is associated with each point in the sample space a unique (but unknown)

realisation of the mixture loading vector I which is, therefore, a random vector. The

unknown joint probability distribution of the components of l, is defined on a

(r-l)-dimensional hyperplane $0 in the positive orthant of r-space. It is, in some

obscure way, related to both the sampling scheme and the mixing process that is under

study. It would be an error to assume that a 'random'collection method implied a
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(r-l)-dimensional uniform disribution defined on $G.

The second component of variation involves the additive elTor vector e in

equation (3.17). An intuitively more satisfactory way to describe the deviation from the

tnre mixture p - Ip, is to suppose each component of p is rescaled by the

corresponding component of a 'perturbing' vector p (Aitchison (1986)) so that,

(3.18)

If x= pop denotesaperturbationof p then x= (lp)op = I'p(Fop) = lPpP, where

pP is the result of perrurbing each of the k rows of p by the same perturbation vector

P, and Ip is amixture loading vector by equation (3.16). If p' x, > 0, j- 1,2,...,P, and p

itself is the product of many similar independent perturbations, then the random vector

z (lx(p-l)), defined by zj= log"(p/p/ and hence y (1x(p-l)) where,

*: = riPy'f,un,o-

yr= log"(xy'xo) =log"(lrrllo) + log"(prleo), i = 1,2,...,p-L

will, under certain regularity conditions, follow multivariate normal distributions

(implying that x will follow an additive logistic normal distribution (Aitchison (1986)).

Thus provided all matrix elements are non-zero (an unrealistic condition in general),

then by equation (3.19) the rows x1,x2,...,xn of (nxp) dataset X can be transformed

into the'logratio'row vectors ]1,y2,...,X,. of (nx(p-l)) matrix Y = M +Z where,

Y1, = log"(*,y'*,J = log"(p,/rr,o) + log"(p'lp,o), j = 1,2,...,p-1. (3.20)

Under appropriate hypotheses, Y may be analysed by the family of procedures based on

the multivariate normal distribution. But equation (3.20) and therefore the matrix

equation Y =M +Z are particular cases of the familiar'response = signal + noise'

model. When the structure of M is assumed, then the validity of that assumption can be

(3.19)
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tested by the consequent properties of Z. Ideally those should be of a random sample

from a multivariate normal distribution whose mean vector is 0.

This Chapter however, is concerned principally with the determination of x'ii,

the components of the estimated mixture matrix X', which is the first step in solving the

mixing problem. Testing the validity of any solution is the next step and that matter will

be raised again in Chapters 4 and 5. The severest practical measure of the inadequacy of

the estimated mixtures, X', is the proportion of the coefficients of determination

(between the observed and estimated mixture variables (see Miesch (1976b) which are

less than some predetermined cutoff value which in this work has been chosen to be 0.5.

3.2 PARTITIONING PROCEDURES

Before examining the general problem of constructing a convex representation

(3.1) for a dataset X of n samples, the case of the single geological sample is considered

first.

The simplest partitioning problem is that where an endmember assemblage B

(kxp) has been estimated and, given the composition x (1xp) associated with a single

sample, it is required to find the loading vector f. (lxk). This is the 'linear unmixing'

problem (after Full, Ehrlich and Bezdek (1982)) reduced to one case, and it really

embodies the two questions,

is the given sample a mixture of the given endmembers, within tolerable

erTors;

if it is, then what is the contribution l, of the endmember b, to the sample,

where j=1,2,...,k ?

(a)

(b)
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3.2.1 Partitioning by Least Squares

kt x be the position vector of the data point X with respect to the origin O. It is

proposed in this Section that the best approximation to x in the space S spanned by the k

rows of B, is the position vector of the orthogonal projection of X into S. That

approximation will require transforming into a composition. The answers to questions

(a) and (b) above are then determined by the precision of the latter approximation.

In the single sample case k ( p, n = 1, x (lxp) and B (kxp) are known. The

the problem therefore becomes that of finding the solution for I (lxk) in an equation of

type (3.7) without subscript i as below

x = I B+e

When I is obtained, the estimated mixturo x'is

x'=

k_s
LI
j-- I

k

lB = I
j=1

/.b.+eJJ

/. b.
JJ

(3.2r)

(3.22)

The orthogonal projection of the point X onto the estimate space S defines a

unique pointX* in S with position vector x* = l*B, where l* is the vector of least

s quare s re gres sion coeffi c ie nts.

Proof:

Let x* = l*B be the position vecror with respect to O of the orthogonal

projection of X onto S. The point X* must be in S but is not necessarily on hyperplane

P. Since the rows of B span S, any other (lxp) vector y € S has the form y = aB for

some a (lxk). It is required that line XX* is orthogonal to S so,



108

(x-x*;yT = g

That is,

(x - t*B)BTaT = 0 for all a,

which implies

(x-t*B)Br = 0 (lxk),

thus,

,* = xBr(BBr)-t (3.23)

Manix (BBT) Gxk) must be nonsingular since B is assumed to be of rank k. Hence,

x*=l*B=*BTIBBT;-IB (3.24)

The vector I* (lxk) given by equation (3.24) is the vector of least squares regression

coeffrciens (Rao (1973)) obtained by minimising

1x, - x*r)2 (3.2s)

in the solution of the overdetermined system,

x=lB = (3.26)

Which completes the proof.

This is an opportune point at which to make an obvious comment. If x = aB

for some a (lxk), then systcm (3.26) would become an equation whose augmented

matrix would be of exact rank k. By equation (3.23) l* would be equal ro a. Thar is,

least squares procedures will construct exact solutions to sysrems like (3.26) when they

exist. This somewhat obvious result permits the employment of a single least squares

tj=l

kI t.r.H-JJ
J=r
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algorithm to solve a variety of exact as well as overdetermined systems which arise in the

analysis of mixtures. A frequent application for it is to construct the (nxk) manix of

mixture coefficients L for the equality X' = LB given that the rows of (nxp) X' belong

to the space spanned by the rows of (kxp) B.

The sum of squares (3.25) is equal to the squared distance (XX'r;2. Since this

is minimised, X* is the nearest point in k-space S to point X.

It is evident that angle XOX* happens also to be a minimum. In the triangle

xox*, the side XX* is normal to oX*, the hyporenuse oX is fixed, and XX* is a

minimum distance, so XX*/OX = sin(XOX*) is a minimum as must therefore, be the

angle XOX*. It follows that the 'coefficient of proportional similarity' (Imbrie and

Purdy (1962)), cos(XOX*), is a maximum.

(A 2-dimensional illusration of the foregoing is provided in Figure 3.2 below).

The least squares approximation x* thus has a relative composition which is

most similar to x among those position vectors of points in S (for detailed discussions of

proportional similarity see the Q-mode factor accounts of Imbrie and Van Andel (1964),

Klovan (1966), Klovan and Imbrie (1971), Jdreskog, Klovan and Reyment (1976) and

Miesch (1976b)).

Returning to question (a) posed at the start of this section, if angle XOX* were

zero, then x would be an exact mixture of b1,b2,...,b1. If angle xox* were merely

'small', this could be perceived as falling within a'tolerable error'. (If x were in fact an

approximate mixture of br,br,...,b* but the error vector was not orthogonal to S, then

angle XOX* would be less than the true angular error). Finally, if angle XOX* were

'large' then either the error vector was also 'large' or the hypothesis that the sample is a

linearcombination of the given endmembers would not be plausible.
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Assuming that angle XOX* is'small', thers are now two possibilities. Either

all t*j ) 0 so that X* is in convex cone C, or at least one /*j a 0 and X* is outside C. In

either case, line OX* can be produced onto point X' on hyperplane P by creating I

where,

l, = l*r/
k

T
m=1

/**, j = 1,2,...,k (3.27)

(3.28)

The components t, j = 1,2,...,k, of I obey equation (3.4) and so the estimated mixture

x'given by,

x'= lB = x*/

is the position vector of a point X' on hyperplane P by equation (3.27). It follows from

equation (3.16) that provided br, b2,..., b*are compositions, then x'is also a

composition.

Angles XOX* and XOX'are equal since x'is parallel to x* by equation (3.28).

Hence x'remains most similar to x and, therefore, the best approximation to x among

the position vectors of points of hyperplane P.

If all f *j 2 0, then by equation (3.27), ull I > 0, X' is a point in H, and the

problem is solved (see Figure 3.2 (a)). The required partitioning of the sample into the k

given endmembers is defined by the componentr /j, j = 1,2,...,k of the loading vector t

constructed at equation (3.27). That is the answer to question (b) at the start of the

section.

If / *j < 0, then /, < 0 (the denominator of equation (3.27) being positive). The

point X'is on the hyperplane P but outside the convex set H, meaning that at least one

of the b1,b2,...,b1 is not an endmember (see Figure 3.2 (b>).

k

I /*,o
m=l
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Figure 3.2. Orthogonal projection of point X onto the estimate space spanned by two

endmembers. x'= f 1b,1+f 2b2. Line XX' is perpendicular to S, which in

this case is the plane through OB182. Hyperplane P is the line through Bt BZ.

Convex cone C is lhe region bounded by the line pair OB1, OB2. ln a good

. representation, angle XOX* would be small. (a) lf f 
1 ,f 2 , O then X' is inside

C. (b) lf f1 .O, f Z > 0 then X'is outside C as shown. ln either case, OX'

produced musl intersecl line 8182 in poinl X'.

Assuming that the k+l vectors x, b1,b2,...,bk are approximately linearly

dependent as above, a new problem arises, namely to find an alternative set of k vectors

which define extreme points whose convex hull will include X', and usually

B1,B2,...,8*. This problem is considered in the next section.

Finally, from equation (3.24) it follows that any point R with position vector

(1xp) r may be projected orthogonally into estimate space S according to the relation

r* = rBT(nBT;-ln (3.2e)

The matrix Br133r;-tB is an orthogonal projection operator (Rao (1973)). It may be

employed in order to construct the nearest point in S to any point outside S, otherwise it

(b)(a)
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behaves as an identity operator. Postmultiplying any matrix of consrructed vectors such

as adjusted endmembers by this operator guarantees that all poins remain in S.

3.2.2 Partitioning by Linear Programming

The incorporation of the overdetermined system (3.26) into an appropriately

formulated linear programming problem has been discussed in Section 2.3.

The principal advantage of the linear progrilrnming solution is that, for each

sample vector x and from a specified set of (feasible) endmembers b1,b2,...,bu, the

non-negativity constraints guarantee a feasible solution f" for the loadings l. The

approximation x" = l"B to x is also feasible.

The disadvantages are,

(i) in general, when the point X", whose position vector is x", is in the interior

of the convex cone C, it is not the closest point in C to X,

(ii) in general, when X" is on the surface of C, at least one of br,b2,...,b* is

not an endmember and the components of the solution I" do not measure the

magninrde of the consequent discrepancy.

In the light of these disadvantages, it will be seen that question (a), posed ar the

start of Section 3.2, is not readily resolved by this method. The answer ro question (b),

of course, is I" as described in Section 2.3.1.

Dymond et al. (1984) described an iterative algorithm which adjusted the

endmembers in order to account for the errors resulting from the linear programming

partition. The algorithm works only for a data matrix X (nxp) in which n > k. Briefly,
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it amounts to a least squares solution for AB to the overdetermined sysrem

L(B + AB) = X, when B has been specified, each row of L has been constructed by

the linear programming method, and X of course is known. The substitution of

B'= B + AB for B in the system (3.26) establishes a new set of constraints for

another linear programming solution for a new loading matrix. From that point, an

iterative cycle has been defined which can be repeared until some error criterion is

satisfied.

There are aspects of this process which are unsarisfacory. These will be

mentioned in Section 3.4.3.

3.3 ENDMEMBER ADJUSTMENT

Remaining with the case of the single sample, suppose vectors b1,b2,...,by are

a given set of endmembers for a geochemical dataset. It is assumed that the space S

spanned by b1,b2,...,b* is the best fitting subspace of Euclidean p-space for the dataset.

However, in the particular case of a compositional vector x, the least squares partition

results in loading vector I (by equations (3.23), (3.27)) and esrimared mixrure x'

(equation (3.28)) for which angular error XOX' is small, but where a number s of the

components of l, denoted by /o,/p,...,/6, flro Iess than zero 0 < s < k. So that within a

tolerable error, the composition of x is a linear combination of any set of basis vectors of

S but as noted earlier, X' lies outside the convex hull of 81,82,...,8, indicating that at

least one of b1,b2,...,b* is not an endmember.

The location of X'relative to B' 82,..., B* determines the components of the

loading vector l. Since 1.,,1g,..., /6 sre less than zero, line segments x'Bc' X'Bp, ...,

X'B6 are intersected internally by s bounding hyperplanes containing the faces of the

convex polytope BrB2...Bk. If subspace S is to be preserved as the estimate space for
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the dataset, then the construction of endmembers for x and possibly b1, b2, ..., bk,

requires moving these bounding hyperplanes outwards within S until X'is no longer an

exterior point. This means that the s points Bo, Bp,. .., 86 will be fixed while the

remaining (k-s) vertices of the polytope must be moved outwards (see Figure 3.3

below).

(Note: a bounding hyperplane through the q < k vertices B", Bs, ..., Bd of the

convex polytope H, is the set of points (y: y = /"b.+/obb+...+/dbd,/"+/o+...+/o = l).
The subset of this for which l^, |,6, ..., /o ) 0, is clearly also a convex polytope. A face

of H is the convex hull of (k-1) of the vertices and is contained in rhe bounding

hyperplane through those vertices).

Setting the s negative components of I to zero and rescaling the remainder to

sum to one creates a corrected loading vector l0 from which the violation of the

non-negativity constraint has of course, been removed. The new mixture x0 = PB,

remains a convex combination of the endmembers as required. Assuming (k-s) of the

components of P are non-zero, then x0 is the position vector of a point X0 in that

bounding convex polytope whose (k-s) vertices are not extreme for the dataset. There is

an error vector f between the 'best' approximation X' and the new point X0 which

results from this intervention. Thus, it is possible to employ f to adjust the non-exrreme

vertices outwards, and by that means, to move the s bounding hyperplanes ourwards.

The correction described above is equivalenr ro a redefinirion of I in order ro

obtain feasible loadings, namely:
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If the components lo, /p, ..., 16 of I are less than zero then,

set

followed by,

lo=lF=."-/U=0,
k

f = lrr 
-=I=,t, 

j = 1,2,...,k (3.30)

This creates the loading vector P. Since /o = /p 3 ... 3 lo = 0 by definition, then

by the second expression in (3.30), Fo = /0p = ... = PO = 0 and the complete set of

components of P are the coefficients of a convex combination. In the case that s = 0,

that is, when none of the components of I are negative, it is consistenr to define f = I
and x0 = x'. Hence P and x0 are defined whether or not x' is external to polytope

BlB2...Bk.

Figure 3.3. Adjustment of Two Endmembers in a Three Endmember Representation.

x'= /1b1+t2b2+tgb3 where /1.0. X'B1 is intersected infernally 1at X0; by

side B2B3 of plane triangle B1B2B3. Moving 82 to 8.2 and 83 to B.3 is an

outward displacement of the side 8283. X' belongs to the conv€x hull ol

81B'28'g as required, bul this not always th€ cas€ for all points in 81B2B3.
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(It should be evident that a computer algorithm that had constructed l* by

equation (3.23) for each composition vector x belonging to a dataset X could then

implement correction (3.30) automatically for each l).

The point X0, whose position vector is x0 = l0B, lies on the hyperplane

through the (k-s) points 8", 86, ..., Bd which are the points 81, 82, ..., Bk excluding

Bo, Bp, ..., 86. The vector, f = (x'- x0) = (r- r-0)8, lies in hyperplane P in a

direction out of polytope BtB2...Bk, and is the error vector created by correction (3.30).

If vector f were added to each of b", b6, ..., bo, then recalling from the last paragraph

that s of the components of P are zero while the remaining (k-s) components sum to

one,

k

Itfcon+r) =
h=l

k
-.5 r4

h=l

k

I lflnn * t*'
h=l

= *o * (*'- ro)

=xt

Hence, X'lies on the hyperplane through the points whose position vectors are given by

br, + f, h = a,b,...,d. These points could serve as new vertices to replace B., 86, ...,

Bo. Since X'is extemal to the original polytope, this adjustment moves only the vertices

that are not extreme just far enough to place X' on the new boundary. It is equivalent to

defining an adjustrnent AB (kxp) to matrix B as a linear function of the error vector f
(lxp). That is, the new or adjusted marrix of endmembers B' (kxp) is given by

B' = B +AB (3.31)

where

AB=Gf (3.32\
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In the case described above,

g=
Dh

for h = a, b, ...,d

otherwise

In the single sample case, matrix G is a (kxl) column vector but, for a number

n of samples, G would be kxn, and f would be replaced by nxp matrix F of error row

vectors.

The principal shortcoming of the simple adjusrnent in which f is added to each

of b", b6, ..., bo, is that it moves all non-extreme vertices by the same displacement.

Apart from the possibility that points representing observations which were internal to

polytope BlB2...Bk may be external to the new polytope, such an adjustment does not

necessarily satisfy the geochemical requirement that extreme points should be as close to

the convex hull of the data points as possible. That requirement would suggest that

vertices that were remote from the external point X' should be moved the least, as in

Figure 3.3. This criticism also applies to the method proposed by Full, Ehrlich and

Klovan (1981) who stated that moving the edges of the polytope outwards, parallel ro

the'original edges', was a strategy designed to keep the terminal hypervolume 'defined

by the data'to a minimum.

An alternative expression for 95 in equation (3.32) which accomplishes a

displacement directly proportional to loading is given by,

{;

gn = l|/ lt'l'

Hence, combining equations (3.31) and (3.32),

(3.33)

and

bh = br,*(/fl llolt)(r'-*o) (3.34)
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= 
F,,fon 

* [Atr lrol'(*,-*o)

= *o * (*'- *o)

= x' (3.35)

Therefore X'lies on the boundary hyperplane through 8'",B'6,...,8'4 as before.

Note that in the special case that all Pn are zero except P_, then P,,, = I and by

equation (3.33), gn=0allh*m, and g,n= 1. Further, x0=PB =b^ so thatby

equation (3.34) b'h = bh all h + m, and b'- = x', which is reasonable.

The possibility arises that some of the components of the new set of

endmembers b'u,b'6,...,b'o are negative. A vector with one or more negative

components is not in the positive orthant of p-space and a least squares projection onto

estimate space S employing the orthogonal projection operator as in equation (3.29) with

a non-negativity consnaint, provides a feasible best solution.

Another possibility is that some members of the original dataset now have

negative loadings on some of the bo,bp,...,b6, b'",b'6,...,b'6. If this is the case, then

the panitioning procedure and endmember adjustment outlined above form the basis of

an iterative algorithm for repeatedly adjusting the positions of successive sets of k trial

endmembers until they are extreme (see also Section 3.4.3 below).

An obvious property of matrix adjustments which are linear combinations of the

errors, like equations (3.32) and (3.3a), is that if all the points are interior ro rhe

polytope H, then f = 0 (or F = 0) and so AB = 0. Hence an automated algorithm

which adjusted endmembers by the incremental matrix of equation (3.32) (or more

generally, by AB = GF), could not move from a set of proper extreme points. These

extreme points could be the initial vertices, or they could have been constructed as the

k

I tfu;
h=1
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outcome of a sequence of such adjustments.

Another important property of these adjustments is that a new set of

endmembers must always belong to s. By equations (3.30), (3.31) and (3.32), the

adjusted matrix is,

B' B+AB

B+Gf
B + G(x'- xo)

(rn + G(t - to)) B (3.36)

From the last line above, it is clear that each of the new endmembers (rows) of (kxp) B'

is a linear combination of the rows of B and therefore a vector belonging to estimate

space S.

Provided each of the rows of B is a composition, then the rows of B' will also

be compositions. That is, the adjustments all take place in hyperplane P, rhe subset of

estimate space S to which all compositions belong. This observation is readily apparent

for the 3 endmember configuration of Figure 3.3. By way of proof, it need only be

established that the row sums of the matrix (I* + G(l - P)) att total I (see equation

(3.16)) . Since rhe i-th row-sum of this matrix is

l+ - tit

the result follows at once. Thus if the rows of B are compositions, then so are the rows

of B'. And since it has already been established that rhe latter must belong to estimate

space S, they must then define points on hyperplane p.

k
g' I (/j

J=t
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3.4 GEOCHEMICAL DATASETS

So far, the development of algorithms for the determination of mixture

coefficients and the adjustment of endmembers has been restricted to the special case of

the single geological sample with a given set of endmember estimates. In this secrion,

the generalized problem of constructing a convex representation for a number of samples

will be examined. It will be assumed that only the matrix of observed compositional data

X (nxp) is given, and that it is required to resolve X into the forrn (3.5) in the absence

of prior knowledge of matrices L and B. That is, all the information needed to

determine these two matrices is contained onlv in X.

3.4.1 The Estimate Space

It has already been noted that if the observed data resulted from some unknown

mixing process with small random errors, then there should be a subspace S whose

dimension is k < p, such that the rows of X (nxp) are approximately linear

combinations of any k basis vectors of S. When that is the case, the approximate rank of

the matrix X is k which is an estimate of the number of true endmembers. Thus, the

first step in solving equation (3.5) for L and B is to identify S.

Ideally, this is accomplished by locating an orthogonal reference system in

p-space for which the ordinates of the observed datapoints on some axes are large, and

on the remaining axes are negligible. Then S is the subspace that is spanned by the unit

vectors which define the first set of axes. This is because the object (data) vectors will

approximately be linear combinations (the large ordinates) of those unit vectors. In

practice, such outcomes as 'large' and 'negligible' ordinates on distinct sets of axes are

not usual. What is common nevertheless is a rapid diminishing of the magnitudes of the

spread around the origin O in the directions of certain eigenvectors taken in turn.



t2l

If v (pxl) is any unit column vector, then the components of the (nxl) vector

Xv are the orthogonal projections of the n rows of X onto v. Thus the scalar vTXTXv

is the sum of the squares of those projections (c/. equation (1.40)). The critical

(turning) values of this sum of squares are equal to the p eigenvalues \rl > vz 2 ... >

Vo 2 0 of the symmetric matrix XTX, and occur when v is in the directions of the

corresponding eigenvectors v1,v2,...,v0, respectively (see sections 1.4 and 1.5).

If V- = 0, then the sum of squares v_TXTXv_ = 0 so that the orthogonal

projection of each row of x onto v- is zero. It follows that for all j, m s j s p, vj = 0

and v, is orthogonal to every row vector of X. If the eigenvectors were taken as an

alternative orthogonal reference system, then the coordinates of every datapoint of X, as

measured on the m-th to p-th axes, would be zero demonstrating that the data occupied a

space of at most (m-l) dimensions. Further, each row of X would then bc an exact

linear combination of the first (m-l) eigenvectors so rhar the rank of X must at most be

(m-1).

When V- is not zero but nonetheless is very small, then all the results of the

preceding paragraph become approximations.

Symmetric matrices xXT (nxn) and XTx (pxp) have the same non-zero

eigenvalues Vr ) v22...> vp>0 (see the derivarion of equarions (1.41) and

(2.7)). These are associated with both the nxp matrix U = [u'u2,...,up] of unitized

eigenvectors of XXT and the pxp matrix v = [vr,v2,...,"0] of unitized eigenvectors of

xTx. If pxp Yrn - diag({[r,{vr,...,fvJ, then the singular varue decomposition

(see sections 1.5 and 2.2.1) for X is given by

x = u Yl/2vT (3.37)

This result is an immediate consequence of the readily verifiable relation X"j = ffru, as

in the derivation of equadon (2.8). Letting j = 1,2,...,p, ir follows at once that
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XV = UYl2, and equation (3.37) is obtained by postmultiplying both sides of this by

VT = V-1.

The sum of the eigenvalues is trace(Y) which also equals the trace of XXT and

XTX. Hence the the total sum of squares for the data is,

iv =
j=1

X = t{yur,...,{Qu, 

[l 
.

it i,,
t=l J=t

kpI*,rIv:
J=t J=l

=iod
i=l

(3.38)

which will be invariant for all orthogonal transformations in p-space.

If the rows of X have been transformed into unit vectors so that XXT is a

similarity matrix, then the right hand side of (3.38) is equal to n. Such a transformarion

is the basis of Q-mode 'factor' and cluster analysis. With or without the transformation,

an assessment of the approximate dimensionality of the data resrs on the magnitude of

the quotient

(3.3e)

for k < p. fl as is often the case for k much less than p, it happens that quotient (3.39)

is large (for example 0.99), then the sum of the squares of the orthogonal projections of

the rows of x on the eigenvectors yk*r, vk*2, ..., vp is a negligible proportion of the

total (equation (3.38)). The approximate rank of X is k and the consequenr existence of

a linear model (3.1) to account for the data seems to follow.

Equadon (3.37) can be expanded as the matrix sum (3.40) below

H]
FV*tu**r,...,./r6uoJ (3.40)
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Geometrically, the v1,v2,...,v0 are orthogonal

alternative reference system. The coordinates

two matrix addends of equation (3.40)

unit vectors in p-space representing an

of point X, in this system are (from rhe

({Vruir, {Vf ,r, ..., ./-tynu,u, {Q*ruit* r, ..., {Vou,o) (3.41)

Now the uij are components of n-dimensional unit vectors and k exists such that for j >

k the y, are negligible. Thus f*, u,, is approximately zero for j > k in (3.a0) and (3.41)

so that the rows of X occupy the k-dimensional space S defined by the v1,v2,...,v1

ilxes system within the errors determined by the ff, u,r, j > k.

The two matrices in the sum on the right of equation (3.40) can be associated

with the terrns in equations (3.1) and (3.5). The first matrix is X* and the second is E*.

Rewriting equation (3.40),

X=X*+E*=X'+E (3.42)

where X' is the result of the premultiplication of X* by an (nxn) diagonal matrix which

rescales its rows into compositions. Assuming the rows of X sum to one and the rows

of X' sum to one, then the rows of E sum to zero to mainrain the matrix equation.

The vectors v1,v2,...,vn form a basis for the estimate space S in the positive

orthant of p-space. From equations (3.40) and (3.42), it follows that the rows of X',

being scalar multiples of the corresponding rows of X*, must belong to S since each is a

linear combination of vr,vr,...,vk. It is within S that the estimated endmembers

b1,b2,...,b1 will be sought. So for the purpose of assessing the validity of a nascent

convex representation, the estimates for Xo = AF and e already exist as the matrix of

estimated mixtures (nxp) X' and the residuals (nxp) E = X - X'. Similar

observations to these were made in Section 2.2.1 (see the derivation of equation (2.I3)).
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Being orthogonal, v,,v2,...,vn tend to lie outside the positive orthant of

p-space (*,j 2 0) and would not determine the directions of feasible solutions for

b1,b2,...,b1. Various writers have recommended varimax and oblique rotations of the

set v1,v2,...,vn in the context of Q-mode 'factor' analysis (see the summaries in Section

2.2.1 of the papers by Imbrie (1963), Imbrie and van Andel (L9&), Klovan (1966),

Klovan and Imbrie (1971), Jdreskog, Klovan and Reyment (1976), Miesch (1976a"b),

Clark (1978), Full, Ehrlich and Klovan (1981), Full, Ehrlich and Bezdek (1982),

Leinen and Pisias (1984)). In that context, such vectors, which are not possible

endmembers in general, were chosen because of the availability of orthogonal rotation

algorithms, in particular, the varimax merhod (Kaiser (1953)). These methods had been

developed to construct objectively a'simple structure' from the loading matrix that had

been derived from an R-mode factor analysis. Such rotations are not constrained by

non-negativity conditions on all matrix elements. Indeed, such a constraint is impossible

on the components of the factor vectors. Nor are the factors they create compelled

towards the position vectors of extreme or nearly extreme points. (Somewhat

informally, the convex hull of a set of 'nearly extreme' points encloses most of the

datapoints in dimension q < p).

The ideal outcome for an R-mode factor analysis is that in which the

mean-corrected variable-vectors define disjoint, orthogonally located clusters of points

(whether or not a factor model exists). The ideal outcome for a mixnre analysis is that

in which object vectors define uniformly disrributed points within a convex polytope (if

a mixing model exists). The varimax criterion is designed for and quite efficient at

detecting the former configuration. There are no theoretical grounds to expect it to work

in the latter.

The singular value decomposition creates (nxp) X* the least squares

approximation to (nxp) X in S. This is geometrically obvious because in the refercnce

system defined by the eigenvectors v1,v2r...,yo, the coordinates
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({Vr uir, {vz urz, ..., {v* ui1,0, ..., 0) (3.43)

of the point X*r place it at the foot of the orthogonal projection of X, onto the coordinate

hyperplane S spanned by y1,v2,...,v* (compare lines (3.41) and (3.43)) . Therefore,

the rows of X* are the orthogonal projections of the rows of X into S.

The angular error XiOX* = XiOX'i can be examined for each i = 1,2,...,n.

Large angular deviations identify both outliers among the samples and gross

typographical errors in the dataset. Large in this context usually means more than four

times the mean angular error

x.ox'.It
(3.44)

and is rare in a good linear representation. The quantity (3.M), rogether with the

quotient (3.39), are two initial goodness of fit indicators for the estimated mixtures X'

obtained from the singularvalue decomposition of X.

Experience with quite modest datasets (n > 60) has shown that the singular

value decomposition is robust in the sense that correcting or removing outliers has little

effect on either the eigenvalues or eigenvectors. The space S is identified by all the

information in all the samples. Its dimension k defines the approximate rank for (nxp)

X and the estimate for r, the true number of endmembers. The rows of (nxp) X' are

the compositions formed by rescaling the orthogonal projecrions of the rows of X into

S. Thus, X' is both the estimate of Xo = AP, and the 'best' approximation to X for a

conjectured k-source mixing process given by equation (3.1). The next problem is to

solve the equation (3.5) for (nxk) L and (kxp) B, and the first step in rhe solution is to

locate k extreme or nearly extreme points of X'.

1\q
; .L.

l= I
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3.4.2 The Identification of Extreme Observations

Let the extrenf,e poins 81, B2,..., Br b defined by the set of endmembers

b1, b2,..., bt. Thc lemma below establishes an elementary properry of the coordinates

*tj, j = 1,2,..., p, of points X'i l]'ing inside the convex hull of 81, 82,..., 81.

Provided X'= LB is an array of exact mixtures as in the convex

representations (3.1) through (3.5),thenfor each i= 1,2,..-,n,

tf bpj s b"j s bo., a=1,2,...,k

then OU, = x'U S bo., . (3.45)

Proof:

Suppose a typical row of X'is given by x' so,

x' = IB for some I

and,

Suppose also, xi > bU for all i = 1,2,...,k.
k

Then since /, 2 0, i = 1,2,...,k *d I /i = 1,
i=l

kk
I/.*'.>It.u..

That is,

*: t *i

a contradiction.

k

"i = | 4u,,
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A similar contradiction can be deduced if it is assumed that x, < b,, for each

i = 1,2,...,k.

Which completes the proof.

Hence, the endmembers contain the extreme values for each variable. This

result is true in any reference system, and must also apply for example to the entries in

the k columns of t{[, ur, {V, u2, ...,./y* u1l, or even a varimax rorarion on this

matrix.

It is not necessarily the case that every endmember must contain extreme values

for one or more of the variables. Consider

b, = fllZ, U2,0,01, bz = [0, 0, Il2,Il2], b, = [1/8, 3/8, U8,3l8l

These are 3 compositions. Now,

F,b, + Fzb, = UZ IP1,F1,F2,F2J

Clearly b, can not be a linear combination of b1, b, so that b'b2,b3 are possible

endmembers. None of the components of b, is extreme in the current reference system.

If, however, the axes are rotated in the direction of the eigenvectors, all three have

extreme values in the rotated reference system.

If (3.45) does not hold for bp, or b*., then bp or bo is not an endmember. A

sort on the magnitudes of the components in each of the p columns of (nxp) X' and in

each of the k columns of (nxk) t{Vrur,{vrrz, ..., {ryuu1l, will reveal extreme

samples.

In theory, k extreme samples which account for the maxima and minima for all

estimated concentratiors X'ii, and the maxima and minima of the components ffru' on
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the eigenvectors v1,v2,...,vp, will serve as a set of k initial endmembers. In fact, k

samples with all those properties not only do not necessarily exist, but such extreme

samples as do exist are often outliers whose estimated mixtures are in S but remote from

the body of the data. Accordingly nearly extreme samples are usually a more reliable

choice.

Since the eigenvectors define the mutually orthogonal directions of the turning

values of greatest spread about O, the neighbourhoods of the extremes of the
l-components ly.,ut, on the eigenvectors y1rv2,...,vk are more informative than those

obtained from varimax rotated ixes.

Note: Leinen (1987) stated that 'the experiment is therefore biassed by the

choice of endmember compositions'. In fact, the process is a multivariate extension of

the estimation of the 2 extremes of a bounded univariate distribution, and bias or not is

then a consequence of the sampling procedure. Another kind of bias would be

introduced if the extremes of raw data matrix X rather than X' were used as k initial

endmembers as evidently undertaken by Dymond et al. (1984). These vectors do not as

a rule span estimate space S which has been determined by all the samples.

Consequently, estimated mixtures based on convex combinations of such vectors may

be quite remote from S.

3.4.3 Adjustments to Endmembers

It is generally the case that extreme points are not contained in the rows of the

dataset of estimated mixtures (nxp) X'. That is, if k initial (or trial) endmembers (kxp)

B, were chosen from the rows of X' and the exact solution for (nxk) L, constructed for

the matrix equation X'= LB (equation (3.5)), then some of the elements of Lrwould

be negative. The solution to this problem should be to move outwards those initial
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vertices that did not define bounding hyperplanes for the dataset. This would creare new

trial endmembers B, and a new loading matrix L2. lf negarive loadings persisted, then

further outward displacements of the curent trial endmembers would be necessary. This

procedure could be incorporated into an iterative algorithm which would be repeated in

anticipation thag incrementally moving non-exreme trial vertices of the curcnt polytope

outwards would ultimately make all the data points of X' into interior points of the

terminal polytope. This would be accomplished without the terminal vertices being more

remote from the estimated mixture data points than was necessary. A description of

iterative algorithms that possess some of these properties follows.

Assume that the rows of both (nxp) X', the estimated mixture matrix, and

(kxp) B, a set of trial endmembers (without subscript), are all compositions belonging

to the estimate space S. Therefore, they are all position vectors of points on the

hyperplane P which is a subset of S.

Each (lxk) loading vector t, of (nxk) L is the exacr solution of the equation

(lxp) x'i = /iB, and may be consrmcted by the operation (3.23), for i = 1,2,...,n.

Hence, X'= LB.

Associated with each of the solutions for 1,, there is the loading vecror (lxk) pi

created by the correction (3.30), and the composition (lxp) xot = PiB which is also

the position vector of a point in P. These n pairs of vectors are the rows of the matrices

(nxk) L0 and (nxp) X0respecively. Hence, X0 = LOB. (Note that if /ij r 0, j =
1,2,...,k then P; = {, and xOi = xi, which must be the position vector of an interior

point of BlB2...Bk).

Let (nxp) F = X'- X0 be the matrix of error row vectors created by the n

applications of correction (3.30). If F * 0, then ar leasr one point (row) of X' is

external to H, the convex polytope 8182...Bk. So at least one of the trial endmembers
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is not extreme. Accordingly, the non-extreme vertices of BrBr...Bk must be identified

and moved outwards. Generalizing the method defined by equarions (3.31) and (3.32)

for the case of a single external point, let G be a (kxn) matrix of error vector

coefficients. The new or adjusted matrix of endmembers (kxp) B'= B + AB as

before, where the incremental matrix adjustrnent (kxp) AB is defined by,

AB=GF

The h-th row of AB is the linear form,

(3.46)

ab.
n 8ni fi (3.47)

Au (lxp) error vectors f, = (x'1- xOi) lie in the hyperplane P, i = 1,2,...,n, as must each

abh, h = 1,2,...,k. Consequently, the new endmembers must represent points

belonging to hyperplane P and therefore to estimate space S. This can be demonstrated

by following the same steps as for the derivation of equation (3.36). The adjusted

matrix B'is,

B+AB = B+GF

= (Ir + G(L - l-o))n

Therefore the rows of B' belong to the space spanned by the rows of B, which is S by

assumption.

The i+h row-sum of the matrix (I* + G(L - L0; is given by,

kn
1 + IIBi.,(/o;-tJ,lj=l 

"=t

Reversing the order of the double sum in the line above reduces the term in parentheses

to 1- I =0, and the entire expression to 1. Hence by equation (3.16), since all the

rows of B are compositions, the i-th row of B' is also a composition, i=1,2,...k.

-s- ,Lt
i-t
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Therefore, the incremental matrix adjustments defined by equation (3.46),

which are based on linear combinations of the errors f,, will move selected vertices to

new positions on the hyperplane P in estimate space S. This satisfies a necessary

condition for any solution to the equation X'= LB, namely that all vertices of the

polytope BtB2...Bk are points of the hyperplane P. Otherwise the required equality,

X'= LB, where X'and L are as defined above, would be false.

If F - 0, then the rows of X' represent points which are internal to

BrB2...Bk. Further, AB - 0 by equation (3.46), and no displacemenrs ro any of the

vertices could follow by implemenring this method.

The last two paragraphs have established general properties of the adjustments

(3.46). It remains now to specify the matrix G of error vector coefficients (see

equations (3.46) and (3.a7)). In fact, research into the the choice of G is not complete.

The ultimate goal is an iterative procedure which would steadily diminish the erors at

each cycle, and be guaranteed to converge to k extreme points (vertices) in the

hyperplane P. Monitoring the effors is quite straightforward, and the single scalar given

by trace(FTF)/np has proven adequate for tracking the approach toward total inclusion of

all the estimated mixture data points within a polytope (see equation (3.50)). The

construction of an algorithm that would be attracted towards k vertices from any k intial

points within k respective neighbourhoods (of near extremes for example), has proven

to be a good deal more difficult. Two ad hoc solutions which not only have proven

successful on real data, but also could serve as slarting points for more elaborate

procedures, are described below.

The first employs a weighted mean error vector coefficient. In equation e.a7)
define

g6i = /o;5/nn (3.48)
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where r1 is the number of vectors of theform /fff,, i = 1,2,...,n, with non-zero

magnitudes, and the loading Pu, is the weight. This coefficient for the error vector f, has

similarproperties to that defined by equation (3.33) for the error vector f associated wirh

a single external point X'. The term g11f1 connibutes a d.isplacement to Bn which is

directly proportional to P*, which in turn is a measure of the external displacement of

X't from Bn. Since the sum of the components of P is 1, the denominator of the

expression on the right of equation (3.33) is less than one. A more conservarive

adjustment then is to rcmove lP l2 m- the denominator of the error vecor coefficient

and rely on the iterative procedure to compensate for the diminished displacements.

Obviously when there are a number of points external to the polytope it would not be

sensible to form the vector sum of all the displacements, consequently for each point Bn

a mean displacement is constructed, hence the inclusion of nn in the denominator. This

is the number of vectors in the vector sum on the right of equation Q.a7\ whose

magnitudes ars non-zero. It is the inner product 16 of the two n-dimensional vectors y,

6 where Ti =0 if ,ih -0, yi = I if /ih >0, 6i=0 if lf1l2 =0, 6i = I if
lfilz > o.

The second choice for the (kxn) matrix of error vector coefficients is,

G = (LrL)-l Lr (3.4e)

This form of G is that which minimises the sum of squared residuals formed by solving

the overdetermined system x'= Lo(B + aB) or equivalently, F = LOAB (see Rao

(1973)). It is diff,rcult to interpret adjustments to endmembers which are the regression

coefficients for the orthogonal projections of each of the columns of (nxp) F into the

space spanned by the columns of the estimated loading marrix (nxk) L0. Worse,

experience has shown that the method can diverge sharply when used iteratively.

Experience has also shown however, that it is very efficient for reducing the mean

squared error (3.50) iteratively, and therefore can produce useful results if there is an
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intervention when (3.50) attains a minimum.

Dymond et al. (1984) described a similar adjustment process except that they

did not identify an estimate space S to which k endmembers must belong. Instead they

specified k and solved the overdetermined system X = L(B + AB) for AB. The left

hand side of this system was the observed data X, initial extremes were chosen from X,

and L was obtained by linear programming methods. Their results will be discussed in

Chapter 4.

As in Section 3.3 these strategies lead to iterative procedures, the convergence

of which can be monitored by computing a mean squared error

*0..)2
rJ'# t F, '.'u'

(3.s0)

which is race(FTF)/np as remarked earlier. Thus the residual matrix E is a fixed

property of the identification of k-dimensional space S. Mean squared enor (3.50) is the

additional penalty for stopping the iteration before all xOU are equal to x',r. And that

would imply that the convex hull of the current set of trial extreme points did not include

all the X',. Such a situation arises if extreme points are pushed into the coordinate

hyperplanes of the positive orthant of p-space without fully enclosing the data points X,.

An illustration involving applications of the coefficients (3.48) and (3.49) is

postponed until Section 3.4.5 where the question of the convergence of these procedures

will be raised. The most exacting analysis requires that the data first be rescaled. In

Section 3.4.4 which follows, there is a brief discussion of a column transformation that

will be a standard procedure of the mixture analyses of this thesis.
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3,4.4 Transformations

The expression (3.1) disguises a computational problem which should be

evident from the interpretation placed on equation (3.40). That is, thar the smallness of

some of the eigenvalues may not be due to random departures from a low dimensional

configuration of the dampoints, but to the presence of low scales of measurements on

some of the variables. Many geochemical datasets combine observations on collections

of major elements measured in percentages, and trace elements measured in parts per

million. It is possible for the two classes of measurements to differ on a common scale

by a factor of the order of 1 in 10,000. The apparent dimensionality of the complete

dataset on such a common scale would reflect at most the number of major elements.

Indeed the trace elements would determine eigenvectors that were very close to the axes

on which they were measured.

A simple transformarion, based on the observed data, which removes this

difficulty is to divide each column of data matrix X by the maximum data value in ttrat

column (Imbrie and Van Andel (l964) and Miesch (L976b,1980). This rescales all

element concentrations into the interval [0,1]. It also preserves the individual

coefFtcients of variation. Equation (3.1) becomes, on post-multiplicarion by the column

rescaling, nonsingular, (pxp) diagonal marrix C,

XC=LBC+EC

X"=LB"+E" (3.s 1)

So for example, where compositional constraint (3.2) defines a hyperplane in

the positive orthant given by

or
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i*, =e
j=l

on which all points X1, X2, ..., Xn, 81, 82, ..., Bk must lie, the post-multiplication by

c sets up a correspondence with points X"1, Xc2,,.., Xcn, Bc1, B"2,..., Bcn on the

hyperplane

(3.s2)

(3.53)t
j=1

c.x". = AJJ

If the error matrices E or E" are zera (for an exact or contrived model), loading matrix L

is unchanged by this transforrnation. In practice however, the singular value

decomposition of matrix Xc produces different eigenvalues and eigenvectors as a result

of the unit scale of measurement imposed on the p variables.

Both the partitioning and endmember-adjustment procedures described earlier

take place in space sc leading to the identification of the convex set Hc c Sc, and the

determination of L. The inverse transformation C-l creates the estimate space S, and the

convex set H in which the relative positions of all points are preserved.

Post-multiplication of (nxp) X by the non-singular d.iagonal marrix (pxp) C is a

special case of an elementary column operarion. Throughout this work it will be used to

improve the precision of the estimates for k, (kxp) B and (nxk) L, and it will always be

referred to as the colurnn transformation.

3.4.5 Illustration

A l0-dimensional array of compositional data of exact rank 3, originally due to

Imbrie (1963, Table 9A), has been thoroughly worked through by others in the contexr

of Q-mode factor analysis (see Section2.2.l). These data are appropriately denoted by
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(10x3) X'. They are are highly suitable for illustrating the merhods for solving the

matrix equation X'= LB (equation (3.5)) because the known contrived solution can be

derived almost at once without the Q-mode rigmarole, and it is relatively easy to assess

the different solurions constructed by the iterative methds described in Section 3.4.3.

All computations described below take place following the column transformation of X'

(see equation (3.51)). Indeed, the final procedure in any analysis is the inverse column

transformation.

A singular value decomposition of the column transformed data was performed

first. The relative magnitudes of the first three eigenvalues (equation (3.39) were

90.82Vo,6.16Vo and.3.OZVu which sum to lAOVo. The orthogonal projection of the data

into the space spanned by the first 3 eigenvectors proved to be an identity transformation

as expected. The orthogonal projections of the 10 samples on each of those eigenvectors

were the coordinates of the data points in the reference system defined by the

eigenvectors. Since extreme points must contain extreme values for the data (see Section

3.4.2), the samples were ranked from largest to least coordinate on each axis

(eigenvector). The reordered sample numbers are ser out on table 3.1. In each column

of that table, the sample with the largest value is at the top, the sample with the least is at

the bottom.

It is evident at once from Table 3.1 that samples 1,2 and 3 have the highest and

lowest coordinates on each axis (eigenvector) and therefore qualify as initial

endmembers. This conclusion would be equally evident from a similar rable constructed

for each of the 10 variables. Using these sample as initial endmembers in the iterative

algorithm, revealed at the outset that F = 0, the 3 samples were true extremes, and

that, together with the computed (10x3) loading matrix L (Table 3.2), confinned the

published resuls (see Imbrie (1963, Table 98) without any iterarions being performed.
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The compositions of these 3 samples are displayed forpurposes of comparison

with later estimates on Table 3.3. They are the 'A' group of columns numbered 1, 2 and

3, in both the upper and lower tables respectively.

Although it did not feature in the analysis, a ternary diagram provides the

simplest representation of the (untransformed) lO-dimensional data (see Figure 3.1)).

The known loadings (Table 3.2) of all the samples on the first 3 samples, serve as

coordinates of the points in a 3-space. But since such coordinates form the coefficients

of convex combinations, the points that they represent all lie in the plane equilateral

triangle of the diagram. The positions of the data points relative to each other are

immediately apparent from this figure. Any three points within the positive orthant of

lO-space whose convex hull enclosed the triangle of Figure 3.1, wouldconstitute a

feasible solution to the equation (10x3) X' = LB. Only one verrex of the triangle is in

a coordinate hyperplane (Table 3.3, group A', column 2, variable l0 is zero), so it

would appear that [rere are indefinitely many feasible solutions.
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Suppose now that samples I,2 and 3 are ignored. From Table 3.1, another set

of possible trial extremes are samples 5, 7 and 10, all three accounting quite well for the

highs and lows on the 3 axes. Using Figure 3.1 in lieu of a nearesr neighbours analysis,

it is evident that these points rue not only remote from each other, but are also the

vertices of a triangle which is roughly similar ro rhe that defined by samples 1,2 and 3.

It need hardly be pointed out that, because they belong to the data, samples l, 2 and 3

constitute the 'best' solution to equation (3.5).

A solution was sought, initializing the iterative procedure wittr samples 5,7 and

10, and employing the mean error vector coefficient defined by equation (3.48). The

mean squared error (equation (3.50)) reduced monotonically from the beginning,

reaching a local minimum of 2.8x10-7 at l0 iterations. Thereafter it slowly increased.

The compositions of the estimated endmembers at the 10th iteration are set out on Table

3.3, in the upper table, under group 'B'.

Comparing the estimates with the corresponding compositions of samples l, 2
and 3 (Table 3.3, group'A'), the similarities are so srriking that it must be asked, why

did the algorithm not reach these 3 points or three external points in each of their

respective neighbourhoods?

An examination of the uncorrected loadings revealed that neither the 2nd nor 3rd

consuucts were quite extreme. But the 2nd was already constrained by the coordinate

hyperplane, Variable 10 = 0. A tentative answer then, is that the non-negativity

constraint on the components of the estimates kept overriding the adjustment. lnstead of

moving outwards out of the positive orthant, the 2nd consEuct was forced to move in

the coordinate hyperplane in a direction that kept the 4th point extemal (see Figure 3.1)).
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Table 3.3

Endmember Gomposltlons For Contrlved Data

Orlglnally Dueto lmbrle (1963)

C

2

B
,,

A
2

1

2

3

4

5.00 10.00 3.00

25.00 30.00 6.00

15.00 17.00 10.00

5.00 17.00 13.00

5.00 8.00 25.00

20.00 8.00 15.00

1 0.00 5.00 1 3.00

5.00 4.00 8.00

5.00 1.00 5.00

5.00 0.00 2.00

5.00 10.05 3.00

25.00 30.21 6.01

15.00 17.06 10.00

4.99 17.01 13.00

5.00 7.84 24.95

20.01 7.96 't5.00

1 0.01 4.96 13.00

5.00 3.97 8.00

5.00 0.97 5.00

s.01 0.00 2.oa

5.48 10.00 ',t.25

28.22 30.00 0.00

15.87 17.00 8.25

4.10 17.00 12.oo

1.87 8.00 29.25

20.42 8.00 16.75

9.36 s.00 1s.00

4.48 4.00 9.00

4.87 1.00 6.00

5.32 0.00 2.50

5

6

7

I
I
10

C

2

B

2

A
2

1

2

3

4

5

6

7

I
9

10

5.00 10.00 3.00

25.00 30.00 6.00

15.00 17.00 10.00

5.00 17.00 13.00

5.00 8.00 25.00

20.00 8.00 15.00

10.00 5.00 13.00

s.00 4.00 8.00

s.00 1.00 5.00

s.00 0.00 2.00

4.68 10.00 2.96

24.68 30.00 5.86

14.87 17.00 9.96

4.23 17.00 12.98

4.81 8.00 25.1 0

20.77 8.00 15.04

10.32 5.00 13.05

5.06 4.OO 8.O2

5.26 1.00 s.o2

5.32 0.00 2.o1

5.78 10.08 1.22

30.19 30.31 0.00

16.40 17.09 8.22

3.54 17.O3 1 1.97

0.00 7.76 29.28

20.87 7.93 16.77

8.95 4.90 15.02

4.1 6 3.95 9.01

4.79 0.95 6.01

s.52 0.00 2.51
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Figure 3.4. A ternary diagram of ten data points based on the contrived 1o-dimensional

compositional dataset of exact rank 3, originally due to lmbrie (l969). Since

t = t b1 + l2b2 * lgbg, the position of the point X in a 3-space may be

defined by the coordinales (tt,tZ,/g). Buf t1 + 12 + /g = 1 and

\,l2,lg)0, so th€ points lie in a plane equilateral triangle whose vertices are

poinls 1, 2 and 3.

Samples 5, 7 and l0 were maintained as initial extremes but the procedure was

re-executed with the marix of error vector coefficients defined by equation (3.49).

Again, the mean squared error (equation (3.50)) reduced monotonically, but this time it

reached zero exactly (F = 0), after l1 cycles. Hence, no further adjustments were

possible. The estimated endmember compositions for this solution are set out on Table

3.3, in the lower table, under group 'B', and may be compared with those for samples

l, 2 and 3 under group 'A'. This solution is a set of true extremes. The second

construct is identical to sample 2 but in the other two, rhe maximum (or minimum) for

each variable, if it occurs, has been slightly increased (or decreased). So for example,

Variable I takes the minimum value 3.00 in sample 3 and 2.96 n consrruct 3. Variable

5 takes the maximum value 25.00 in sample 3 and 25.10 in construct 3. Geochemically,

this would have to be pronounced a satisfactory solution because the endmember

estimates are true extremes which are proximate to particular samples in the dataset.

Returning to Table 3.1, the samples 4,6 and 9 appear to be possible initial

endmembers. A glance at Figure 3.1 suggests quite the opposite. Sample 4 is exacrly
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halfway between samples I and 2, on the side of the triangle. Nevertheless such

graphical aids are not always available. The algorithm was executed with these trial

extremes, fint by employing the error vector coefficient defined by equation (3.a8) and

then by employing definition (3.49).

The solution to the first (definition (3.48)) was anorher set of E:ue extremes, that

is, the mean squared error (equation (3.50)) dropped ro zero exactly, halting further

adjustments. These extremes are set out on Table 3.3, in the upper table, under group

'C'. Once again construct 2 is identical to sample 2, variable maximum values on the

other two constructs are driven up, and minima are driven down.

The second application (definition (3.49)), behaved in a fashion which had been

observed before. The mean squared error fell monotonically, reaching a minimum

(6.9x19-z; at the 23rd cycle, then it appeared to diverge quite sharply. The esrimated

endmember compositions at that stage are set out on Table 3.3, in the lower table, under

group'C'. They are the most different from samples 1, 2 and.3 of the four sets of

solutions, but not significantly so. That is, the patterns of variable associations within

the constructs and the major and minor sources of each of the variables, is almost

perfectly preserved.

For the four differing iterations involving the two types of error vector

coefficients and two distinct sets of initial vertices, each eror vector coefficient secured

one exact solution by converging, and one estimated solution before diverging.

A monotonic increase in the mean squared error can be caused either by

increasing numbers of points becoming external to the current polytope at each cycle or,

and probably simultaneously, the magnitudes of individual error vectors becoming

larger. This suggests that the trial vertices are not being moved outwards. With the

matrix of error vector coefficients defined by equation (3.49), this may result from some
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of the coefficients being negative, or of course, the non-negativity constraint preventing

outwardly adjusted vertices from lying outside the positive orthanr. The mean error

vector coefficients defined by equation (3.48) are necessarily non-negative, and must

result in an outward displacement of each vertex unless stopped by a coordinate

hyperplane.

Clearly there are a number of modifications to rhe algorithm that could be

examined. In order of increasing demands on machine time, three approaches are: (l) It
would be desirable to find if there is a best direction to move when a vertex is placed in a

coordinate hyperplane, as happened in this illustration. Thar is, a direction which would

not only cause a continuation of the reduction in the mean squared error, but a greatest

reduction. (2) The mean error vector coefficient (equation (3.4S)) tends to absorb the

magnitudes and directions of the major errors which could, perhaps, be picked off one at

a time. (3) The only value that the mean squared error can converge to with rhe existing

procedure, is zero. If the algorithm searched the neighbourhoods of the current trial

extremes for those directions which optimized the reduction in the mean squared error,

then convergence of this quantity to non-zero values would become a possibility. The

estimates derived by such a process would be the best near exremes for the given initial

set.

However, the chief virtue of coefficients (3.48) and (3.49), is that they are

relatively readily computed. A satisfactory analysis hinges largely on the selection of

the initial extremes, and that depends on rhe configuration of the data. If there had been

a much larger number of samples in this illustration, then provided the data points were

relatively uniformly distributed inside the triangle of Figure 3.1, samples 4,6 and 9

would never have been selected, and possibly even better choices than samples 1,2 and

3 would have been available. Alternatively, any number of points in a region bounded

by a circle would contain no information on the posirions of the true vertices. In the

general case, the most satisfactory configuration for the data points of (nxp) X'is a
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convex polytope which, it must be assumed, is similar to (and inside) the true polytope.

Then, the possible divergence of procedures based on either definition (3.48) or (3.49)

is not a serious problem in practice, provided the mean squared error (3.50) decreases

monotonically from the initial set of vertices. The polytope which results in the

minimum mean squared error should, like the first solution above, have been achieved

by incremental steps into a nearly true extreme conformation.

3.5 STATISTICAL ALGORITHMS

The procedure for constructing a convex representation (3.5) is broken down

into a series of tasks which are allocated to specific computer programs. By describing

these programs in the order in which they are executed, it is intended to illustrate in this

section how the relevant results of the preceding sections are linked together to form a

step by step approach to a parricular solution of the form (3.5).

All programs have been written in either FORTRAN 77 or SAS 5.16 (SAS

Institute Inc. (1985)) and, at default input array sizes (800x40), will run under CMS on

an IBM 4381 with 4Mb of core storeage. Larger arrays are presently limited only by a

16Mb maximum on core for this machine. All FORTRAN programs are ser up to rake

task specifications interactively but, due to the large array sizes, are programmed to be

sent automatically to the batch machine. The source code for SVD FORTRAN (in two

parts) and LSQSEEK FORTRAN (also in two parts) which are described below, appear

in the Appendix.

It should not need mentioning that scanning the raw data as well as producing

basic summary statistics, before launching into a mixture analysis, can reveal assofied

anomalies like missing values, typographical errors and so forth, which must be attended

to. Sometimes a decision must be made whether or not to exclude from the analysis a
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variable which appears to be almost dichotomous. For example, a trace element may

take mostly zero values and perhaps one or two other values. The presence of such

variables, which can not usually be modelled by a continuous mixing process, will

simply degnde the overall analysis.

SETUP SAS

This program reads the raw data. It keeps the required variable list and drops

samples which have missing values or otherwise belong to an exclusion list. If not

already in the form of compositions, the retained variable list is usually transformed to

sum to l00Vo by the formation of a subcomposition or partial composition for each

sample' All measurements which are initially in ppm are divided by 10000 before this

transformation is made. The hyperplane so-defined is a permanent reference space in the

positive orthant for the all the subsequent algorithms. That is, all estimares or

transformed datapoints are ultimately projected onto, or transformed back into this

hyperplane- The final form of the required (nxp) data matrix is written to disk as raw

data, a typical file-id would be CONSTSUM DATA, for input into the following

programs.

SVD FORTRAN

The subnoutines in this program include: SCALE which, according to directions

from the console, divides each input variable by its maximum, forms fractional ranges or

leaves the data unchanged; UNIT which only on requesr projects each datapoint onto the

unit hypersphere (as for a Q-mode factor analysis), but otherwise leaves the data

unchanged; CONSLQ will project any estimate with a negative componenr onto the

nearest coordinate hyperplane. Algebraically, the algorithm is a constrained least

squares. It is not necessary for the rowsums of the input raw data to be constant. But,

if the rowsums are l00%o, the main algorithm of this program restores this sum to the

rows of the estimated mixture matrix.
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The program reads CONSTSUM DATA, and following the execurion of

subroutines SCALE and UMT, a partial singular value decomposition is performed on

the transformed data. The number of dimensions (eigenvectors) sought initially is

usually set at l0 or p (the number of variables), whichever is the smaller. For the first

execution, the program will on request output only the maximum and minimum for each

variable and the largest l0 (or p) eigenvalues.

If the number of endmembers (eigenvectors) k together with full ourput are

specified, the program will write to disk the files: LOADINGS DATA consisting of the

(nxk) components of the n samples on the k eigenvectors which span space Sc (not the

matrix L); ESTIMATE DATA which is the (nxp) marrix X'in space S; EIGEIWEC

DATA which contains the first k eigenvectors in the space Sc; and finally SVD

LISTING which contains all the test statistics such as the eigenvalues, their relative

magnitudes and cumulative sums, the angles between each observed vector in Sc and its

approximation in Sc, and the mean angular error.

It has been found that gross angular deviations for individual samples often arise

from errors in the data. A possible cleanup of the data may take place at this stage

resulting in re-executions of SETUP and SVD.

RSQUARE SAS

In an exact representation (E =0 in equation (3.1)), the n ordered pairs of

observed and estimated values for each variable are the coordinates of n points on a

straight line through the origin with slope l. Clearly, a necessary condition for an exact

solution is that the coefficients of determination (r2) for all p sets of ordered pairs be

equal to 1. The success of any solution depends on the reliable accounting for the values

of each of the variables, otherwise the validity of the derived mixing process could be

cast into doubt. So, although the tesr sratistics produced by SVD may appear

satisfactory for some value of k, it is necessary to check the p values for 12 (as above)
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before fixing k and hence the file ESTIMATE DATA. (It may also be necessary ro

examine the residuals, an option which is examined in Chapter 5). A table of the p

values of / for k=2,3,...., may sometimes provide advance information on the

structures of the endmembers, and indicate which variables are not accounted for by the

estimated mixing process (see Chapter 5).

Program RSQUARE SAS reads files CONSTSUM DATA and ESTIMATE

DATA, performs lineprinterplots if required and computes the p values for /.

LOADINGS SAS

When SVD has constructed both files ESTIMATE DATA and LOADINGS

DATA for some specified k, LOADINGS SAS can read LOADINGS DATA and plot

pairs of variables whose values are the coordinates of the orthogonal projections of the

data into the k-dimensional subspace of S' spanned by the first k eigenvectors. This

progam has been used to examine the locations with respect to the estimated data points,

of derived endmembers which had been appended to ESTIMATE DATA. It also

provides an immediate visual appraisal of the soundness of choosing the special values 2

or 3 for k. If the plotted points are collinear, then k = 2. If one set of plotted points is

collinear and the remainder are triangular, then k = 3.

CORR SAS

Very high correlations between variables are evidence of the existence of

invariant linear associations. Such associations in turn arise from the existence of

endmembers which contain the extreme concentrations of these same variables. This

progam will read either CONSTSUM DATA or ESTIMATE DATA and produce rhe

product moment correlation matrix for all the variables. Either correlation matrix may be

useful for confirming later estimates of the endmembers.

EXTREMES FORTRAN
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This program transforms the variables of any input raw data matrix A rnto

fractional ranges. That is, the transformed element ac,, = (a,j - minr)/(max, - minr). It

reads bandwidth ( from the console and then writes out all observation vectors forwhich

any component lies in the intervals [0,(] and 11-(,11. It therefore provides a rapid dump

of the extreme observations that it finds in A, and is usually executed twice, one run

reading LOADINGS DATA, the other reading ESTIMATE DATA.

VARSORT SAS

An alternative method for identifying extreme observations is to sort on the

magnitudes of each variable taken one at a time, and to list the m largest and m least

ObSCrvAtiONS. VARSORT SAS wiII read ESTIMATE DATA or LOADINGS DATA and

sort each of the respective variable lists. A table can be prepared showing which sample

numbers have the largest and least values on each of the variables. Ultimately, k extreme

samples are to be chosen as initial endmembers.

NEIGHOBJ FORTRAN

A nearest and furthest neighbours rable also identifies extreme samples. Outliers

should have been detected by the table of angular deviations outpur by SVD, however

any sample whose nearest neighbour is remote and which is also consistently furthest

from most the others, would be a biassed choice for an initial extreme sample. Ideally, in

a k-dimensional estimate space, k families of samples will be identified as k d"istinct

groups of nearest and furthest neighbours. Executing this program to identify the initial

extremes, one from each group, is the straightforward alternative to the algorithm

proposed by Full, Ehrlich and Bezdek (1981). It is important of course, that near

neighbours not tle mistaken for distinct extremes. Another important application for the

nearest neighbours table is for Q-mode clustering. This particular algorithm has been

employed for this purpose by Glasby, Hunt and Renner (1985), Churchman, Hunt,

Glasby, Renner and Griffiths (1988), Glasby, stoffers, walrer, Davis and Renner

(1988) and Kunzendorf, Gwozdz, Glasby, stoffers and Renner (1988).
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NEIGHOBJ FORTRAN includes the subroutines SCALE and UNTT described

earlier. It reads ESTIMATE DATA and always execures UNIT. The darapoints,

whether transformed by SCALE or not, are projected onto the surface of the unit

hypersphere so that their proximities (similarities) to each other are given by the inner

products of their position vectors. This program oprionally writes out the similarity

matrix to disk forprocessing by other clustering algorithms.

LSQSEEK FORTRAN

The principal objective of this program is to find, by the iterative reduction of

the mean squared error (3.50), k extreme points 81,82,...,B1, Such that every row

vector of X' can be expressed as a convex combination of their position vectors

b1,b2,...,bk, subject always to the non-negativity constraints. The program contains all

the subroutines described above. It is initialized by reading the row numbers of the

initial near extremes of X' from the console. At the end of any cycle, the current matrix

L0 is that computed by orthogonal projections of the samples into S" and correcred for

negative loadings on the culrent extreme vectors in S". The current extreme vectors

(after the initial set) are those which were adjusted to remove errors due to redefining

negative loadings to zero in the previous L0. There are rwo methods available for

endmember adjusunent. Both employ the error vectors created by removing the negative

loadings from L. The first moves non-extreme points outwards from the convex

polytope by computing the adjustments defined in equations (3.47) and (3.48), the

second employs the least squares approach, definition (3.49), to fit new extreme points

to the colrected matrix L0. The method selected is read from the console as is the

maximium number of iteration cycles permined. Output from the program includes the

mean squared error at each cycle, the compositions of the current endmembers (at end of

the final cycle), the loadings for each sample on the current endmembers, individual

angular errors and the mean angular error for the column transformed data.
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When none of its components is negative, no corections are made to the matrix

L, then there are no errors (F = 0) and consequently no adjustments to the extreme

points (AB = 0). So, from such a stage, the iterative algorithm would endlessly

reproduce the same estimates B and L until stopped. This may happen with the initial

choice of extreme points or at some later cycle. In most cases, it is more practical to

intervene when the rate of reduction of the mean squared error slows to the point where

excessive machine time conributes little improvement to it. It has been found then that

the absolute values of the components of AB are negligible so that the the compositions

of the endmembers differ trivially from cycle to cycle.

To prevent underflow, errors f,, of absolute magnitude less than 10-20 are

redefined to zero. Thus, a squared error is greater than or equal to l0a0 or zero.

(Underflow occurs on the IBM438I at about 5x10-7e).

I-SQMODEL FORTRAN

A problem sometimes arises where it is required to resolve one or more samples

into a set of given endmembers. If the samples and the endmembers are concatenated

into one file, LSQMODEL will read that file, read the row numbers of the endmembers

from the console, project the samples orthogonally into the space spanned by the

endmembers (transformed if necessary), scale the regression coefficients to sum to I for

outpuL and compute the angles berween observed and approximated samples.

Unlike LSQSEEK above, the program makes no corrections to the loadings, so

it will be evident at once if one or more of the endmembers are not extreme. It will also

be evident from the magnitude of the angle between them whether or not a sample is too

remote from the least squares approximation to it, to be regarded as a mixture of the

given endmembers. LSQMODEL can be used to check that the rank of a matrix like

ESTIMATE data is exactly k. There should be no angular errors whatever rows are

chosen as endmembers. It can also be used to monitor the final output from LSQSEEK.



r51

ffth conslrustd endmembers aro appentted rc ESTIIyIAIE DATA,, the new fiIc can be

tEad by LsQl![oDEL and the loadings of the old file q,{rurputrd against rhe cn b66s

in the n€w.. AiEdgo$rcnt might,thon he madc thar tho unclrected loadtngs oulBu-tfrom

I.9:QIvIOD-Et werQ orril.elc nor zufficienrly s{milar to thqso orUput by L$eSEEl(
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CHAPTER 4

APPLICATIONS

SUMMARY

In thk clwpter, mixture analyses employing the techniqucs dcscribed in the last
clnpter are conducted on three compositional datasets. The first is a rea:nalysis of a snall
'weU'beharyd' stttdy of ferrmanganeEe nodules which conftrms results ttwt lnd aheady
been publishcd. The other two datasets lave not previously been snbjected to a mixture
analysis.

An illustration is also provided in the form of a comment of the application of
some af the procedures described in the last cha.pter to assess a putative set of
endmembers.



153

4.1 FERROMANGANESE NODULES FROM MANO? site H

The raw data for this first application appeared in Dymond et al. (1984,

Table 1)- The paper itself was a report of a study which was part of the United States

National Science Foundation supported Manganese Nodule Program (MANOP). Site H

was a region of the eastern equatorial Pacific within 6oN to 7o'N, and 92o'W to 93o'W.

Ferromanganese nodules and crusts from sire H had been analysed for the p = 14

elements Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Znand Ba in each of 16

nodule tops, 16 nodule bottoms, 17 whole nodules and 3 crusts, thus n = 52. Results

obtained by Dymond et al. (1984) are included in this secrion in order to compare rheir

linear programming based method with the proposed least squares approach.

4.1.1 A Linear Programming Based Analysis

Dymond et al. (1984) proposed three accretionary processes (and hence 3

endmembers) to account for the data. These were identified as: Hydrogenous

precipitation, meaning the direct precipitation or accumularion of colloidal metal oxides

from seawater; Oxic diagenesis, involving reactions in oxidized sediments that add

transition metals to nodules; Suboxic diagenesis, where the reduction of manganese

from the (IV) to the (II) valence in the sediments and the oxidarion ro rhe (tV) valence

result in nodule accretion. They based their description of subsequent nodule chemical

compositions upon the model that nodule compositions, both mineralogical and

chemical, respond consistently to the seafloor environment.

Accordingly, they initialized an iterative search for a 3 endmember basis by

assuming that 3 extreme samples in the dataset were close to pure endmembers. Their

linear programming method in which a linear reformulation of sum (2.20) defines both

the constraint equations and objective function as described in Section 2.3.1, was



154

employed to partition each of the composition vectors. From the notes included in an

appendix, it would seem that endmember adjustmenrs were determined by applying

G = GrL)-lLr to the matrix E of residuals (see Dymond et at. (19g4, Appendix l)).

Endmember compositions obtained after 3 iteration cycles (Dymond et al.

(1984' Table 6)) are reproduced here, in parentheses, in Table 1. The coefficients of

determination (proportions of explained variance P; between the observed and their

estimated values for each element (after Miesch, 1976b) are also reproduced in

parentheses in Table 2 after Dymond et al. (1984. Table 6).

4.1.2 A Least Squares Based Analysis

A 'fill-up'value was constructed (equation (3.3)) for all samples, creating X

(52 x l5) of parrial compositions which was then column transformed into Xc according

to equation (3.51). The singular value decomposition of X" showed that the relative

contributions of the first three (largest) eigenvalues to the sum of squares (equation

(3-38)) werc 94.39vo,2.76vo, 2.o3vo, totalling 99.LBvo (see quotient (3.39)), the 4th

largest contribution being 0.30Vo. A subspace of 3 dimensions was therefore identified

as the transformed estimate space S", and the mean angular error (equation (3.44)) for

angles between the rows of X" and its approximation X'cin S" was 4.9o (mean

similarity 0.9963).

Three extreme vectors belonging to X'c were used to initialize an iterative search

for Bc based on least squares methods for determining both L0 with correcrion (3.30),

and ABc as in equations (3.46) and (3.49). However, the elements of the matrix of

error vector coefficients G were defined by gr,t = ((LTL)-lLT)rri only for /in t 0.

Otherwise gli = 0 thus preventing an 'inward'component to the adjustment Abcn due to

the product of a negative loading with the i-th error F,. Iterations were stopped after 2
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cycles when the mean squared enor (3.50) had been reduced to 4.7 x l0-5.

Endmember compositions B = B"C-l appear without parentheses in Table 4.1.

Coefficients of determination (proportions of explained variance) between X and

X' = ( y'c ;g-1 are set out, also without parentheses, in Table 4.2.

4.1.3 Comparisons

It is evident from Table 4.1 that corresponding pairs of endmembers consffucted

by algorithms which incorporated partitioning by least squares and linear programming

respectively are not fundamentally geochemically distinct. The mean angular errors

associated with each algorithm were, for untransformed data, both of the order of 1.10.

It is difficult to assess the relative positions of the 2 sets of endmembers since one of

them is maintained in estimate space S and extreme for dataset X'. Nevertheless, there

are l0 extreme values of variables constructed by the linear programming approach

which are not extreme for the same variables in either the raw data X or the estimated

mixtures X'.

Comparing the coefficients of determination between estimated and observed

values of the elements in Table 4.2, it will be seen that the least squares based analysis

created generally closer estimates than the linear programming method, most notably in

the case of Mn. It created inferior estimates for Na, which with K and,Zn were the least

well accounted for by either analysis. However, the database was small and particularly

tractable, so it is therefore reassurring that overall the results obtained by the two

methods were very similar.

Plots of the least squares estimates of each of the variables against their

observed values appear in Figure 4.1 (see for example, Renner (19g2). See also
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Dymond et al. (1984. Fig.8) for a comparison of these resulrs with theirs). The plots

permit a graphica-l assessment of the goodness of fit, and in a perfect rcpresentation, each

set of points would lie on a straight line through rhe origin with slope one. A detail rhat

the plots show quitc clearly is a group of three points which appear as distinct outliers,

located together but remote from the rest, for the plots of Na, Ca, Ti, Mn, Fe, Co, and

Zn. Such configurations often inflate the coefficient of determination because of the

apparent lineariry between the centres of disjoint clusters. In each plot, these outlying

points represenr the three qusrs prr-Z, pl r-4, pl r-5, Dymond et al. (19g4, Table l)).

Accordingly, these crusts were removed from the database, and the remaining

49 nodule compositions were transformed as for equarion (3.51). The singular value

decomposition of the resulting 49 x 15 array revealed that a remarkable 99.ASVy of sum

(3'38) was attributable to the first two eigenvalues. A least squares based analysis,

orthogonally projecting the data into the 2-space spanned by the corresponding

eigenvectors, determined two endmembers rather close respectively to the compositions

of nodule top v48-l and nodule bottom vsz-r (Dymond et al. (19g4. Table l)). The

mean angular error for the rwo endmember representation of the transformed data was

5-490 (mean similarity 0.9954), and. the mean squared error (3.50) after one irerarion

was 1-5 x 10-7. The subsequent coefficients of determination were depressed further for

Na, K andZn (which were least well accounted for with 3 end^members) but lay in the

ranges 4.92 - 0.94 for Al, si, Mn, Fe, co and cu, and the range 0.69 - 0.g9 for Mg,

Ca, Ti, Ni and Ba- In other words, the 49 nodule compositions were accounted for,

almost as well with 2 endmembers, as the same data plus 3 crusts were with 3

endmembers.

These laner results suggest that a greater mathematical parsimony is possible in

interpreting the data than was implied by the inirial geochemical assumption of three

accretionary processes. This suggestion would seem ro be confirmed by the very low

loadings associated with the Hydrogenous endmember in Dymond et al. (1984. Table Z)
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for all but the 3 crusrs.

It is to be inferred from the paper by Dymond et al. (1984) thar rhe three

proposed accretionary processes would account for different compositions measured on

a nodule top, its bottom, and the whole nodule. An inference which was confirmed in

part by the detemrination of an oxic endmember which was abundant among the tops and

a suboxic endmember abundant among the bottoms. The whole nodules, on the other

hand, were generally mixtures of these two. Statistically, it would have been an error to

treat the nodule data as a compositional multivariate sample of order (49x15) as has been

done here, without declaring (testable) assumptions concerning the independence of the

observation vectors. There were in fact only 17 sampling units (nodules) present. One

was too small for measurable top and bottom compositions so that two of these vectors

were missing. It must be assumed that the 3 sets of composition vectors per nodule

were related, though possibly perturbed from each other by the systematic processess

described by Dymond et al. (1984). In any event, the effectively small nature of rhe

database made for a straighrforward mixture analysis by either process and hence to the

very similarresults.
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Table 4.1

Endmembor composltlons (%) lteratlvely Adjusted to Flt parililonlng

by Loast Squaroa and by Llnear programmlng (ln pamntheses) for

MANOP data

Element Hydrogenous Orlc Suboxlc

nh

Mg

AI

Si

K

Ca

Ti

Mn

Fe

Oo

Ni

Or

7rl

Ba

1.7s (1.04)

1.12 (1.04)

1.19 (1.18)

5.14 (s.22)

0.51 (0.49)

2.5s (2.60)

0.51 (0.s3)

20.60 (22.20)

't8.23 (19.00)

0.13 (0. 13)

o.s3 (0.s5)

0.06 (0.0s)

0.064 (0.07s)

0.1 41 (0. 1 48)

2.53 (1 .61 )

2.34 (2.30)

2.61 (2.71)

s.73 (5. e0)

0.84 (0.82)

1.ss (1.s2)

0.17 (0.1 7)

32.28 (31.6s)

4.92 (4.45)

0.03 (0.028)

0.e8 (1.01)

0.s9 (0.62)

0.25 (0.25)

0.43 (O.44',)

(3.28)

(1.38)

(0.7s)

(1.63)

(0.02)

( 1 .2s)

(0.0365)

(48.00)

(0.4e)

(0.003s)

(0.44)

(0.1 1s)

(o.22')

(0.20)

4.04

1.36

0.59

1.25

0.60

1.20

o.a245

46.86

0.1 0

o.oo12

0.38

0.079

o.21

o.17
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Figure 4-1 Least squares estimates vs. observed compositions for MANOP data.

The estimates w€re obtained by projecting the raw data orthogonally into

3-dimensional estimate space, then rescaling to form compositions.
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Figure 4.1. (continued)
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MID.PACIFIC COBALT.RICH MANGANESE CRUSTS

The raw data for this second application came from the Mid-Pacific subset

(170oE to l50oW, 18oS to 32oN) of cobalt-rich manganese crust data of the United

States Geological Survey world ocean-ferromanganese,crust database (Lane et al.,

1986).

Measurements on p = 22 oxides SiO2, TiO2, MnO2, FerO3, Al2O3, CorOo,

NiO, CuO, CaO, MgO, NarO, K2O, CO2, prO, and HrO, and minor elements As, Ce,

Mo, Pb, Sr, V and Zn featured in the analysis. Athough in many cases only the lower

limits of detectable concentrations had been recorded for the minor elements. Sixteen

samples were found to have exceptionally large ind.ividual angular deviations from their

corresponding orthogonal projections in an estimate space of 10 dimensions, following

an exploratory singular value decomposition. Of these, 3 were heavily contaminated

with serpentinite or other material and were excluded, 4 had MnOrlFerO, ratios greater

than 7-5 and were also excluded on the grounds of having a significant hydrothermal

component. The remainder were found either to have errors which were corrected, or to

have genuine outliers which indicated faulty measurements, and were also excluded.

ultimately, the number of samples available for analysis otalled n = 27 5.

This data was scaled to sum to 1007o creating X (275 x 22) which was then

column transformed into X" according to equation (3.51). A singular value

decomposition of X" determined that the relative magnitudes of the first 4 eigenvalues

were 91.267o, 3,59Vo, l-4l%o and O.92Vo, which sum to 97.l8%o (see equations (3.38)

and 3.39)). A rather parsimonious 4 endmember representation was conjectured to

account for the data because the remaining eigenvalue s atA.6IVo or less characterized a

rapidly diminishing variation along individual eigenvectors. The total of 15 our of 22

coefficients of determination (between the observed and estimated variables) which

exceeded 0.5 (Table 4.3) for k = 4 increased only slowly by progressing to 5, 6 then 7
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endmembers. (A fuller discussion of this issue appears in Section 5.2 concerning

endmember hypothesis testing).

Four extreme vectors belonging to X'c were used to initialize the iterative search

for Bc, employing the least squares solution for L and the weighted mean error vector

coefficient (equations (3.46) and (3.48)) to adjust current endmembers. Iterations were

stopped after l0 cycles when the mean squared error (3.50) had dropped to 6.9 x 10a.

The 4 resultant endmember compositions constructed by this method are set out

in Table 4.3. Maximum values for each element are displayed in boldface. These

endmembers can be identified with each of

(i) a silicate (clay) phase, rich in si, Al, Mg, Na, K, retaining manganese

oxides;

(ii) a cobalt-rich manganese oxide phase, with a high ratio Mn/Fe = 3.77 and

rich in Co,Ni, but low in Cu;

(iii) a biogenic phosphate phase, highest in cao, coz,p2osand sr all with

biogenous associations;

(iv) a hydrogenous phase with the ratio Mn/Fe = 0.85, high in Fe, As, ce and

Pb, and which are associated with the iron oxide phase.

The coefficients of determination (f) between the estimated values for each

variable in the 4 endmember representation and their corresponding observed values are

also set out in Table 4.3.

The iterative construction of a clay endmember with SiO, (r2 = 0.92) and

Al2o3 (p = 0-86), and a biogenic endmember with cao (rz = 0.96), coz
(r2 = o.72), Pzos (r2 = 0.90) and Sr (rz = o.77), is extremery reassuring but nor

extremely interesting. Sources such as these, would be expected to contribute
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components to marine rnanganese deposits over extensive regions of the ocean floor.

Turning to the other two endmembers, 1l out of 22 ofthe variables, consisting

of the oxides Mno2, Fe2o3, co3oo, Nio and tl2o and the elements As, ce, Mo, pb, v
and Zn, were found to be most highly concentrated on either the cobalt-rich or the

hydrogenous endmembers (Table 4.3). Their coefficients of determinarion (Table 4.3)

range from 0.10 (HzO) to 0.96 (MnO2). The goodness of fitforeach of rhese ll
variables can be assessed from Figure 4.2 which displays plots of the estimated against

their observed values. There are,275 points on each plot which, ideally, would lie on a

line through the origin with slope 1. Evidently, the plot for As (/ = 0.64) is fair, and

those for Ce (/ = 0.48) and, Zn (r2 = 0.37) are poor. It would have to be concluded

that tIrO (l = 0.10) had not been fitted at all. Adopting the rule that a value of

f < O-S indicates an inadequate estimate, these latter 3 elements are not explained by

this 4-endmember mixing process. Otherwise, the remaining 7 plots appear satisfactory.
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Table 4.3

Endmcmber Composltlona (%) lteratlvely Adjusted to Flt par{lilonlng

by Leet Squarcs and Goefflclente of Determlnailon 1ly Betwaon

Estlmaled and Observod Values for Mld-paclflc

GobalhRlch Manganeec Crust Dats

Elemant Slllcate Co ba lt-rlch Bloganlc Hydrogenoue r2

sio2

Ti02

Mn02

Fe2Og

At2o3

Co304

NO

o.o

m
rvto

N%o

K2o

@z

Pzos

HP
As

C€

I\ro

Pb

Sr

V

h

32.&l

2.41

14.67

16.88

10.54
0.45

0.45

0.16
3.83

3.79
2.97
2.09
0.64

0.64

7.52

0.000

0.004

0.000

0.000

0.032

0.019

0.069

0.00

1.36

60.46

14.48

0.00

2.40
1.23
0.07

3.47

2.50

2.92

0.78

0.39

0.48

8.69

o.o24

0.1 08

0.093

0.203

0.1 68

0.068

0.102

1.78

0.91

30.64

11.41

0.90

0.29

0.68

o.12

25.12
1.56

1.89

o.44

3.0 2

13.93

6.61

0.018

0.1 14

0.075

0.1 50

0.203
0.070

0.078

9.50

2.51

33.40

35.10
1.07

0.67

o.17

0.10

2.s3

1.29

2.17

0.36

0.30

0.60

9.6 2

0.036
0.182
0.045

o.244
0.1 86

0.080
0.050

o.92

o.44

0.96

0.83

0.86

0.76

0.83

0.06

0.96

0.25

o.22

0.62

o.72

o.90

0.1 0

0.64

0.48

0.79

0.71

o.77

0.69

0.37
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Figure 4.2 Least squares estimates vs. observed compositions for Mid-pacific data.

The estimates were obtained by projecting the raw data orthogonalty into the
3-dimensional estimate space, then rescaling to form compositions.
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Figure4.2. (continued)
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4.3 BEDIASITE SOURCE MATERIALS

l,ove and Woronow (1988) have outlined a procedure to determine the minimum

number of endmembers in an endmember mixture, and estimate the compositions of

those endmembers. Their techniques include an examination of the hypothesis of

complete subcompositional independence and, if that is rejected, tests on the correlation

matrices of mixtures of proposed endmembers to determine which endmembers, if any,

contribute to the observed data. The transformation of the raw data to logratios and the

subsequent application of statistical tests based on the multivariate normal distribution

(see Aitchison (1986)) are innovations in the study of the problem of resolving

compositional datasets into mixtures of latent endmembers. Reporting on the application

of their procedure to an aray of 31 bediasite compositions, Love and Woronow (1988)

concluded that a mixture of just two endmembers 'does satisfy the data', and they

provided'inner and outer endmember compositions for generating a two-endmember

representation.

The purpose of this comment is to demonstrate that such a representation is not

compatible with the relative positions of the compositional data-points in 9-space, and

consequently does not create satisfactory approximations to the bediasite compositions.

1) If just two endmembers do satisfy the data, then within a tolerable error, the 3l

bediasite compositions (Love and Woronow (1988), Table 4.4) are the position vectors

of 3l collinear points in 9-space. Further, the endmembers will be the extreme points of

that collinear set. This is a geometrical consequence of the conventional endmember

'mixing model' (see Figure 3.1). Such collinearity is invariant under transformations to

subcompositions (see Aitchison (1986)) of rank greater than 2 (see Section 3.1.1), as

well as column transformations such as changes of scale (see Section 3.4.4). Thus,

given the diverse magnitudes of the ranges of the 9 major oxides in the bediasite data, a

tolerable error would have to imply evident collinearity even following the column
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ffansformation equivalent to the division of each major oxide by its observed maximum

(Miesch (r97 6b, 1980)).

Accordingly in this analysis, the 3l bediasite composition vectors were first

rescaled to sum to l00Vo, thus locating the 3l datapoints on an 8-dimensional hyperplane

in 9-space. Then the 4 inner and outer endmember compositions (Love and Woronow

(1988)) were appended, and finally this enlarged array was column transformed, each

major oxide being divided by its maximum. The rows of the resultant (35x9) matrix X

are the position vectors with respect to the origin of the transformed datapoints, which

now lie on a second 8-dimensional hyperplane in 9-space.

It is an intuitively obvious result of algebraic geometry that the orthogonal

projection of a straight line onto any plane is another straight line, except if the former is

normal to that plane. So the 35 transformed datapoints representing the 31 bediasites

and the 2 pain of inner and outer endmembers were projected onto each of two mutually

orthogonal planes as displayed in Figure 4.3.

Although any pair of non-parallel planes would have served, the chosen two

provide perspectives of the greatest spread of the datapoints from the origin. This is

because each of the planes is spanned respectively bynvoof thethree9-dimensional

eigenvectors associated with the 3 largest eigenvalues of the symmetric (9x9) matrix

XTX. (A discussion of the properties of this matrix, which is not the covariance matrix

of a principal components analysis, can be found in the treatments of the singular value

decomposition of rectangular matrices in Section 1.5, Section 2.2.1 and Section 3.4.1 ).

In Figures 4.3 the projections of points representing bediasites are square, those

reprcsenting the inner and outer endmembers are circular, joined respectively by sfaight

lines.
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It is apparent from Figures 4.3 (a) and (b) thar neither pair of endmembers are ar

the exhemities of an approximately linear set of points defined by the bediasites. Nor do

their inner and outer properties appear to have any geometrical meaning.

2) The conventional check on the on the validity of a derived endmember

representation is to tabulate the coefficients of determination benpeen the estimated and

observed values of all the variables (after Miesch (1976b)). In fact, if a representation is

good, then, for any variable, the pairs of estimated and observed values determine points

which must lie close to a straight line through the origin, with slope one. It is sufficient

in this case to follow convention. Estimated composition vectors were formed first by

projecting the observed vectors orthogonally into the plane spanned by the two outer

endmember vectors' and then scaling the position vector of each projection to form a

mixture. That is, so that the coefficients of the two endmember vectors in the resultant

linear combination summed to one (see Secrion 3.2.1). Coefficients of determination

between the estimated and correspond.ing observed values of each of the variables. are

set out in Table 4.4. Five out of 9 of the coefficients are less than 0.5.

It is not possible on the basis of the uniformly low values of those coefficients

to conclude that the two-endmember representation accounts for the given data.

Table 4.4

Coeff lclents of Determ I natlon

Between Estlmated and Observed Varlables

In Woronow and Love's Two-Endmember

Representatlon of Bedlaslte Data

AI

Mg

K

Ti

Mn

tla

si

tu

Ca

0.43

0.56

0.45

0.71

o.47

0.43

0.63

o.14

0.76
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Figure 4.3. The orthogonal projections of 31 bediasite data points and 2 pairs of inner and

outer endmembers due to Woronow and Love (1988) onto each of two mutually

orthogonal planes. Endmember pairs are joined by straight lines.
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3) There is a deeper difficulty concerning the original (31x9) array Xo of this

analysis. The singular value decomposition of the data, when column transformed as

above, nevertheless yields a largest eigenvalue which accounts for 97.30Vo of the total

for the 9 eigenvalues.

(These are the 9 non-zero eigenvalues of a symmeric matrix of the typ" x;Xo defined

above, but not including the 4 inner and outer endmembers). Projecting the column

transformed datapoints onto the unit hypersphere as for a Q-mode factor analysis (see

Section 2.2-l) produces an almost identical result. Consequently even the column

transformed data must be quite densely clustered about the eigenvector associated with

the first eigenvalue.

Such a configuration also calls into question the procedure which resulted in the

initial rejection of the hypothesis of complete subcompositional independence (r,ove and

Woronow (1988)).

4,3.1 Further Comment

The preceding discussion illustrates the consequences of an inappropriate choice

of the estimate space S, in this case snaight lines in the positive orthant defined by the

pair of estimated inner and outer endmembers. However, Woronow and Love (l9gS)

made more fundamental elTors before they set out to estimate their endmember

compositions. In their abstract, Woronow and l-ave (ibi| asserted that'the bediasites,

being random samples of endmember mixtures, afford opportunities to establish a

paradigm for endmember identification, determine the minimum number of
lithologic/geochemical endmembers contributin g to the bediasite compositions, and

estimate the major-element chemistries of those endmembers'. Further on, in their

section on statistical methods, they cautioned that 'logratioed data must be tested for

multivariate normality, as the standard statistical procedures assume that underlying
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distribution of the data'. A little later they stated that in the bediasite study 'the togratioed

data passed the radius test for normalitv'_

The problem of choosing random geological samples has already been discussed

in Section 3.1.3. In order to select random samples of 'endmember mixtures,as

Woronow and Love claimed to have done, they would have had to have known or ar

least assumed the distribution of mixture coefficients on the sample space in order to

define the geological equivalent of a probability sample (of samples). If what they really

meant was that the selection process was based on a uniform probability distribution

over the known collection(s) of bediasites, then that would not define a random sample

of endmember mixtures at all. However, this is a general problem of geological data

collection which has no clear solution because of the nature of mixing processes,

particularly unknown mixing processes. It does not necessarily impair a mixture

analysis unless an unwitting but substantial design bias in favour of one or more

endmembers reduces the conributions of the remainder to the level of the errors.

What appears to be more difficult to understand is their assenion that the

'logratioed' data should be multivariate normal. Woronow and Love (ibtd) did not

define or even describe the model that they set out to test for. There is no mention for

example of logratioed errors or residuals (see Chapter 5), but rarher, of the properties of
the covariance matrix of logratioed closed (constant sum) data. It can only be concluded

therefore that the logratioed data referred to were derived from the (31x9)

compositional data marix Xo. But, by equation (3.20), these particular logratios

cannot follow a multivariate normal distribution unless the p,/l,o are the components

of a multivariate normal distribution, or are constant for i = I,2,...,3L. Since pi is a

composition vector all i, this latter condition would imply that pl = llz=. . . = F3r,

or that the data could be accounted for by one endmember. Confirmation of that

possibility exists in the very high proportion (97.3ovo) of the total sum of squares for the

column ransformed data, achieved by the first eigenvalue.
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LAKE TE ANAU SEDIMENTS

Lake Te Anau is one of I I large glacial lakes formed on the eastern flanks of the

Southern AIps of the South Island, New Zealand. With an area of 347 km2, it is rhe

largest lake in the South Island. It is also the lgth deepest in the world. The lake has

three fiord arms which extend Northwest and West to the Southern Alps (see Figure

4'4). Until the present, almost no information on sediment input or trace element content

of sediments existed for this lake.

In 1986, Operation Raleigh conducted a detailed sampling of sediments from

Lake Te Anau, representing the frst extensive survey of the trace element geochemistry

of sediments within a single lake in New Zealand. In all, 108 locations were sampled

and n = 102 analyses were made available for this studv.

The compositions of a set of endmembers were determined using the sequence

of procedures described in Section 3.4 and 3.5. The variable list for this analysis

contained the major element oxides sio2, Al2o3, cao, Mgo, N%o, K2o, Tio2, Fe2o3,

MnO, P2O5, LOI, and the minor elements V, Cr, Ba, Zn, Cu, Ni and Co, making

P = 18' Both CaCO, and Corg (organic carbon) had been deleted from the list because

their measurements were already included in those for CaO and LOI (loss on ignirion).

Since the list contained major element oxides and LoI (measured in percentages), and

minor elements (measured in ppm), the latter were converted to percentages and the

components of each sample corrected to sum to l00Vo. Prior to all singular value

decompositions, iterative least squares panitioning and adjustment of extreme vectors,

the observations on each variable had been divided by the maximium for that variable.

That is, the compositional data matrix was column transformed to acheive similar

weightings for each of the variables (see Sectio n j.4.4).
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It was found that the sum of the first 5 eigenvalues obtained from the singular

value decomposition of the column transformed data matrix accounted for 98.94Vo of the

total sum of squares (equation (3.38)). When the datapoints (rows) of this marrix were

orthogonally projected into the space spanned by the first 5 eigenvectors to determine the

estimated mixture datapoints, only two coefficients of determination (r2) between the

observed values of the variables and their estimates were less than 0.5. Thus more than

50Vo of the variation in each of the remaining 16 variables was explained by the

S-dimensional approximation. Accordingly, a 5-endmember representation was

constructed to account for the original compositional data. Five extreme vectors from the

estimated mixture matrix were used to initialize the iterative algorithm, using the mean

error vector coefficients (equations (3.46) and (3.48)), which was sropped when the rhe

mean squared error (equation (3.50)) had fallen monoronically ro 2.8x10-5. The 5

endmember compositions and the coefficients of determination 1/; for each element that

were achieved by this representation are listed in Table 4.5. The maximum values for

each element of the table are displayed in bold face.

In addition, each sediment was partitioned into the components of a mixture of
the five endmembers- The proportional contribution of each endmember to the

composition of a sediment is a measure of the abundance of that endmember at the

location (sampling point) from which the sediment was taken. In Figure 4.4 amap of
the lake has been shaded to show the regions in which each end.member was found to be

the most abundant. Each region is defined by a collection of neighboring sampling

points for which a single endmember was dominant. However, if all endmember

concentrations for a sediment were found to be less than 30Vo, then the map was

unshaded in the vicinity of its sampling point.

All 5 endmembers were characterised by relatively high Si and Al levels, but a

single clay endmember was not isolated by the analysis. Diatoms which could be a

possible source of silica, are relatively abundant in the sediments, and their distribution
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is still being studied.

Descriptions of the five endmembers, identified by the Roman numerals I - V

respectively, ore as follows:

I. High in cr, Mg and Ni, negligible p, Ba and cu. This element

assemblage indicates the presence of material derived from

ferromagnesian rocks (that is, basic plus ultrabasic rocks, greenstones).

Sediments dominant in endmember I were taken from The southern s@tor

in the vicinity of the waiau River (Figure 4.4). This part of the lake is

surrounded by Pleistocene outwash gravels.

II. Highest in si, Na and K, lowest in Ti, Fe and zn, andnegligible p, LoI,

cu, Ni and co. This element assemblage indicates the presence of

material derived from acidic rocks. Sediments dominant in endmember tr

occur near the heads of the three fiords as well as one sample taken at the

northern head of the lake (Figure 4.4). The locations from which these

samples were taken are all surrounded by metamorphic rocks of the wet

Jacket and Bradshaw formations.

m. Highest in Ti, Fe, P, LOI, V, Ba, Zn,Co and high in Ca. l,owest in Si,

Al and negligible cr, cu, Ni. This element assemblage indicates the

presence of organic carbon (LoI) plus titanomagnetite and igneous

apatite-bearing rocks. only three samples were dominant in endmember

III. These were located ar the head of the northern arm of the Middle

Fiord and at rhe head of North Fiord (Figure 4.4), both regions that are

surronded by metamorphic rocks of the wet Jacket and Bradshaw

formations. Accordingly, sediments that were dominant in endmember II
tended to be subdominant in endmember III.
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[V. Highest ca and Mg, and negligible K, Mn and Ni. This assemblage may

reflect material rich in amphiboles. Sediments dominant in endmember IV

occur principally at the head of the lake (Figure 4.4) which is surrounded

by metamorphic rocks of the Bradshaw formation, Da:ran Diorite and

upper Eocene sandstones. Two samples dominant in this endmember

were taken from the south Fiord (Figure 4.4) virtually opposire an

intrusion of Darran Diorite.

v. Highest Al, Mn and cu, high Fe and negligible Na and cr. This

assemblage indicates the presence of minor amounts of adsorbed

transition metals (Mn, zn, cu, Ni and co). Samples dominant in

endmember v were found in the three major deep basins of the lake

(Figure 4.4).

There were a number of sediments having no dominant endmembers, that is, all

mixture coefficients were less than 307o. These samples were found off the Eglinton

River, which is the shallow area between two major basins, and the Middle Fiord

(Figure 4.4) . These samples appear to be transitional between the samples from the

heads of the lake and those from the deep basins.

This mixture analysis has d"iscriminated between the the sed.iments from near the

heads of the lake and those from the major deep basins. For samples taken from the

heads of the lake' the locat geology appears to have determined the compositions of the

sediments, as might be expected. Samples high in endmembers II and III were formed in

those parts of the lake with the same surrounding geology, but these two endmembers

reflect different local sedimentation conditions. Endmember II accounts for lithogenous

sedimentation and endmember III accounts for organic sedimentation. The high organic

content of the sediments rich in endmember III (see LOI under III on Table 4.5) was

derived from decayed vegetation at the headwaters of the lake (Figure 4.4). Samples
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from the deep basins are high in endmember V and represent fine-grained composite

material with a significant carbon content but low sedimentation rate. Adsorption of
transition elements onto the frne-grained clay materials occured in these samples.

Imbrie and Van Andel (1964) remarked that, if the end.member map panerns arc

'systematic with respect to known geological and hydrographical pafiLmeters, then the

results may b accepted as both statistically and geologically significant'(see Chapter 2).

They were describing contour maps formed from the values of each mixture coefficient

rather than the single map of the distributions of dominant endmembers. perhaps also,

their claim for statistical significance was not quite appropriate. Nevertheless, the

distributions of dominant endmembers displayed on Figure 4.4 are 'systematic with

rcspect to known geological and hydrographical pinameters', and would therefore seem

to confirm a mixing process involving the 5 sources constructed by this analysis.
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Table 4.5

Endmember composltlons (%) ltarailvety Adjusted to Flt padlilonlng

by Least Squares, and Coefflclents of Determlnsilon (F) Between

Ectlmated and €)bsened values for Lake Tc Anau sadlment Data

Elemcnt r2tvil
Endmembar

ill

si02

Al2o3

m
rvbo

N%o

Kzo

Ti02

Fe2O3

i,/hO

Pzos

LOI

V

Cr

Ba

7r

o'r

Ni

Oo

61.08

16.02

2.47

5.89

1.87

1.40

0.68

7.63

0.1 9

o.o0

2.67

0.0144

0.0384
0.0000

0.0071

0.0000

o.o247
0.0039

69.96
16.50

3.O7

1.16

4.20
2.7I
0.30

1.9s

0.02

o.oo

0.00

0.0026

0.0025

0.0569

0.0035

0.0000

0.0000

0.0007

27.24

10.65

3.71

2.29

1.06

1.31

1 .78
11 .42

o.26

o.89
39.29

0.0225
0.0000

0.0624
0.0 1 81

0.0000

0.0001

0.0058

46.56

15.33

10.06

5.99

3.67

0.00

't.42

9.05

0.00

o.42

7.44

0.0180

0.0091

0.0248

0.0059

0.0037

0.0003

o.oo27

51.04 0.83

21.20 0.69

0.91 0.88

3.83 0.93

0.00 0.78

2.O2 0.81

0.45 0.61

10.82 0.82

0.3 7 0.56

o.42 0.68

8.83 0.63

0.0189 0.72

0.0000 0.92

o.0477 0.40

o-o147 0.57

0.0 21 9 0.98

0.0066 0.96

0.0045 0.46
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Figure 4.4. Lake Te Anau shaded to display regions in which endmembers | - V were found

to be dominant. Regions which were found to have no dominant endmember are

unshaded.
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CHAPTER 5

APPROACHES TO TWO UNSOLVED PROBLEMS

SUMMARY

Tlrc presence of one or more missing values tn a sample would normallyforce
the exclwion of that sample from a mixture analysis. This is because algorithms
constructed b process uniquely dSned p-dirnensional data cannot in gerrcral manipulate
obiect vectors with undefined components. A possible solution to this dfficutry in the
case that a mixing process is believed to be present, is to exploit the overdetermined
aspect of the mixrure equations to impure values for those that are missing. This svarcgy
is demanstratedfor the well-researched database of Nazca plate surface sedtments.

Traditionally, the estimate for the nutnber of endmembers has been assessed by
mapping or by inspection of the cofficients of determination between the obsemed, and
estimatedvariables' Mapping entails the plotting on a map of tlrc regionfrom which the
samples were taken, either the contours of the contribwions of each endmember to each
sample, or some other portrayal of the distributton of endmember abund,ances.
Assessment by thts method is too elaborate except for final confirmation and display.
Alternatively, choosing a number of endmembers which results in suitabty high
cofficients of determinationfor all or most variables may accountfor elements which
are not pan of the conjectured mixing process. Even worse it may result in the
identification of enfunembers which do not infact exist.

Another avenue for assessment lies in an examination of the distibutions of
certain logratios. The dffirences between corresponding logratio+ransformed, observed
and estimated dataform an array of residuat logratios. A linear combination of these is
formedfor each sarnple whtch, under a randomperturbation asswnption shouldfogow a
univariate rnnrnl distibution. Wtatlur or not this scalar Is normal can be readily tested.
It can also be examined graphically for such desirable qualities as symmetry when the
test for normaliry may be too severe. This proced,ure is employed, to assess the
decompositions of the United States Geological Survey Mid-pacific cobalt-rich
monganese crust dhta and tlte Nazca plate surfate sediment data.
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5. 1 MISSING VALUES

Missing values are a common occurence in geochemical data. For example,

different laboratories do not always analyse for identical lists of elements in the

collections of samples which eventually form a single database. euite often trace

elements are present in a sample but in concentrations below the analytical detection

level, and each of these will be recorded as an upper limit or simply as non-zero which is

'missing'. Mixture algorithms of the type described in this work can not process object

vectors with undefined components. But, since the non-missing components in a

sample contain valid information on any underlying mixing process thar may account for

the data as a whole, it would seem desirable to develop a method for imputing values for

those that are missing which will permit the information in the non-missing components

to be extracted.

Suppose that, without loss of generality, the dataset X (nxp) is partitioned so

that the first r samples have missing values on rhe [q+l]-th to p-th variables (q < p).

These missing values are all located in the top right (rxtp-ql) submatrix Xr2, where X is

partitioned as in equation (5.1) below, the order of xu being (rxq)

[= (5.1)

The array X' of estimated mixrures associated with

of missing values, is given by

X, irrespective of the presence

X'=LB (s.2)

["tt*,r-l
L*,t *rrl

from equadon (3.5). Partitioning equation (5.2) in the same way as equation (5.1),
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f*i' *i'l = [t,,][8,,
L*;, *;) 1",,J

Btt]
(5.3)

where the orders of x'11, Lu and Bn are (rxq), (rxk) and (kxq) respectively,

k<qcp.

Three interrelated marix equations can be extracted from equation (5.3). They

ilQ,

(s.4)

(i) from the botton (n-r) rows,

[x, x;, 
] = 

"r, [8,' B,r]

(iD ftom the first q columns,

[*' '] = 
[t, 

,-l ", , (s.5)

L*;,.1 L',,J
(iii) from the top right submatrix correspond.ing to the block of missing values,

xi, = L,,Brz (5.0)

These three equations follow from the approximate decomposition of (nxp) X. Arguing

in reverse, it is anticipated that, assuming that a mixing process is present, the separate

computations of the estimates (5.4) and (5.5) in that order, will allow the derivation of

[x''1estimate (5.6). The singular value decompositions of lxzrxz2l *o 
| ;tt I musr

L^zrl
establish a common approximate rank k, the estimated number of endmembers, and lead

to similar estimates for Xrr.

Following the methods described in Section 3.4, a possible procedure for

accomplishing this, is fust, to project the rows of [X, xrrl orthogonally into the best
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fitting k-dimensional subspace of p-space, forming [X'21 X'22J. Then, the matrices

Lrt and [Brr B12l can be constructed satisfying equation (5.4). with the (kxq)

submatrix B1obtained in this way, it is possible to solve the overdetermined sysrem

Xll = LtrBl for (rxk) Lrr. In practice, a safer estimate is probably obtained by

solving the overdetermined system corresponding to equation (5.5) in which the left

hand side is replaced by the first q columns of X. In any event, the matrix X'r, of
estimated mixtures corresponding to the submatrix of missing values can then be

obtained by equation (5.6) since L' and B' have both been consrructed. The matrix

X'r, then replaces Xu in X so that a mixture analysis can be undertaken on all n

samples.

It is not necessary in the computations thar (kxp) B = [Bn Brrl be a marrix

of proper endmembers. Any k rows of [x'21x'221will suffice. Indeed, bearing in

mind the approximate nature of the representation, there may be merit in initially setting

k = g' since, if (qxp) [X'31 X'32J consisrs of q rows of [X'r, x'zz] (provided

q < [n-r] of course), then ultimately,

lxl x;r] = Lgr [8,, B,ri (s.7)

where L1 is of order (qxk). So a first approximation to equarions of the type (5.4) to

(5'6) can be made by deliberately overspecifying the system. That is, the singular value

decomposition referred to above may be employed to identify the best-fitting

q-dimensional space and the orthogonal projections of the raw data into that space

corresponding to the left hand side of equation (5.4). (That will be possible provided the

exact rank of [xzrxzz] is equal to p. If it were less than p, then an exact mixture

analysis would be carried out on [xnxzzl anyway). The right hand side of equation

(5.5) may also be obtained by least squares (as in Section 3.2.1) but in terrns of (qxq)

X'r, instead of Brr. Finally, X'r, would be obtained in terms of X'rr.
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Following the substitution of X'r, for Xn in the raw data x (nxp), the

estimated endmember solutions (kxp) [Bll Bt2] would be constructed on a second pass

through X.

5.1.1 Nazca Plate Surface Sediments

Dymond (1981) reported that sediment samples for this srudy were selected

primarily from cores recovered during cruises conducted by the Oregon State University

and Hawaii Institute of Geophysics as part of the Nazca Plate project. Add.itional

samples were obtained from the core collections of the Lamont-Doherty Geological

Observatory and the Scripps Institution of Oceanography. Nearly all samples werc taken

from the 5 to l0 cm level of gravity cores. The various maps that were reproduced in

Dymond's paper (ibiA indicated that the region from which the samples were taken lies

to the West of the Peru-Chile Trench, from about 80pW to 120pW, and from the equator

down to 40eS. A total of 425 analyzed samples were listed on microfiche which was the

source of the data for this work. Two rows on the list were illegibly smudged, and were

discarded. Thus there were available for this study a total of 423 samples each analyzed

for the abundances of the 8 elements Al (vo), si (vo), Mn (vo), Fe (vo), Ni (ppm), cu
(ppm), Zn (ppm) and Ba (Zo).

Due to contamination during storage, the values of zinc for 50 Lamont-Doherty

samples were not recorded. Since 50 samples formed a relatively large proportion of the

total dataset, it was these missing values which were imputed.

For all singular value decompositions, all calculations of the loading matrices of

mixture coefficients (by least squares) and all measurements of the angles between the

observed and estimated object vectors which follow, the values of each variable were

first divided by its observed maximum (the column rransformation of equation (3.51))
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following the formation of compositions (sums to lffiVo). The final operation before

reporting the results at any stage of an analysis was the inverse of the first column

transformation.

Of the 423 samples available, 373 contained ttre abundances on all 8 elements.

The trace elements were transformed into percentages, and, for the imputation operation,

a'fill-up value'(Aitchison (1986) or remainder tenn as in equation (3.3), was included

to complete the sum to l00%o. These 373 partial compositions with no missing values

thus constituted a (373x9) dataset with constanr row-sums equal to lNVo. The singular

value decomposition algorithm was used to construcr (373x9) lX'21X,22), from which

the (5x9) submatrix [X'31 X'32] was selected. Then a representation of the form (5.4)

was obtained but in terms of (5x9) [x'31 x'32] rarher than (5x9) [Br l Bl2]. The least

squares partitioning algorithm was used to construcr the (373x5) loading matrix

corresponding to L, for this representation.

Zinc was then dropped from all 423 samples and replaced by a 'fill-up value'

creating a second dataset of order (423x8) also with fixed row-sums equal to 1007o. et
was shown in Section 3.1.2 that inclusion of the 'fill-up' term should not alter the rank

of the estimates nor the loading matrix). Representation (5.5) was constructed by the

least squares partitioning algorithm to determine (50x5) L' and the redundan t (373x5)

Ltt (for checking), using the previously identified submarrix (5x8) X'r, in place of
Brr. Hence a (50x1) vector of estimates for the missing values followed by substitution

in equation (5.6). This made a thtd dataset of order (423x9) available for reanalysis.

The success of the imputation operation can be assessed by the scanning the

angular elrors for the 50 samples before and after the imputation. The column

transformed (423x8) dataset was projected into the best fitting 5-dimensional subspace,

and the angular deviations benveen the 50 pairs of observed and estimated object vectors

were recorded as in table 5.1 column I. Similarly, the column transformed (41ix9)
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dataset was projected into the best fitting 5-dimensional subspace, and the angular

deviations between the 50 pairs of observed and estimated object vectors were also

recorded as in table 5.1 column II. Scanning across rows, it is evident that the angles in

Column II tend to be somewhat smaller than the corresponding angles in Column I.

Indeed the mean angular deviations for Column I and Column II are 5.24o and 5.07o

respectively' That is, following the imputation, an observed vecror tends to be

somewhat closer to its estimate in the Sdimensional space than before imputation.

An unexpected result of this study was the recognition that the mean angular

deviation of the 50 samples from the Lamont-Doherty cores was significantly higher than

that for the remaining samples. The overall mean angular deviation for the column

transformed (423x8) dataset (from which zinc had been dropped) was 4.270 compared

to 5.240 for the subset of 50 Lamont-Doherty samples. When all 423 angular deviarions

were transformed into rank order statistics and then partitioned into those from the

l,amont-Doherty Observatory and those that were not, the mean rank of the former was

268.90 and of the latter was 204.37. Under an a priori assumption that these sets of
deviations were random samples from the same distribution, the expected value for both

mean ranks would have been 212. Thedepartures from this were highly significant. An

approximate chi-square statistic with 1 degree of freedom was found to be IZ.ZB

(Mann-Whitney) with tail-end probabiliry 0.0005.

All423 samples contributed to the determination of the first 5 eigenvectors in

8-space (zinc having been excluded). But the 50 Lamont-Doherty samples were on

average more remote from the space spanned by those eigenvectors than the remaining

samples. The average magnitudes of the angular deviations do not appear so different as

to suggest distinct mixing processes. tt is possible that analyses from the separate

laboratories were relatively biassed in some way.
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Table 5.1

Angular Deviations Between Observed and Estimated Object Vectors for
Samples with Missing varues Before Imputation I and After Imputation II

2.0931

8.1990

s.9426

7.0654

10.5604

7.5001

5.9448

5.8063

18.3168

6.0612

4.9434

5.1 393

7.3840

6.4419

9.6260

4.9808

5.7115

2.0891

7.s835

5.6692

6.6506

10.3855

7 .5',t 4',|

5.6592

5.s537

1 6.6355

6.0148

4.8476

4.996s

7.2590

6.1 51 0

9.0154

4.7869

s.577',|

3.6701

0.8491

4.8758

1.7905

s.41 81

1.5678

10.8046

4.7 37I
8,1 353

3.s919

2.8937

4.2565

8.5833

7.3922

7.6267

4.3296

2.4708

3.7212

0.8833

4.7678

1 .881 I
5.3617

1.s688

1 0.8514

4.597'l

7.85't6

3.5805

2.74s8

4.127 4

8.6493

6.7700

7.49s7

4. 1 831

2.3919

3.3671

4.4274

5.4740

3.7512

1 .7714

1.s61I

6.8641

7.6982

4.9942

5.6347

o.7 457

1.4567

't.8217

1.9096

3.4097

2.5374

3.4123

4.3089

5.3032

3.5020

2.0421

1.6454

6.3743

7 .1464

4.7 061

5.3427

0.7693

1.4635

1.8217

1.890s

3.4200

2.6235

Dymond's description (ibid) of the normative analysis and partirioning by linear

programming of the data into Hydrothermal, Biogenic, Deuital, Hydrogenous

(Authigenic) and Dissolution residue componenrs (endmembers) has already been

described in Section 2.3. His paper has been widely cited in view of both his mode of

analysis and the model he constructed for explaining the formarion of marine sediments

(see for example, Leinen and Pisias (1984), Walter and Stoffers (1985), Leinen (1987),

owen (1987), chen and owen (1989), Dean, Gardener and parduhn (19g9) and Nath,

Rao and Becker (1989)). With 423 samples now available, the opportunity exists to
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Substituting for b,o in equation (5.g) from equarion (5.9),

b,j = b",j lp bNn

for j = 7,2,...,p- In the case of Dymond (19g1, Table 3) the 5 components were

transformed as in equation (5.10) to form subcompositions (since there were only g

elements and no residue). Each elemental abundance was recorded as a percentage as set

out in Table 5.2 (a). Hence, Table 5.2 (a) contains the theoretical subcompositions of
endmembers which have been derived as a direct consequence of Dymond's a priori
assumptions. There are two possible methds for making an appraisal of these

assumptions using the procedures described in Chapter 3. The firsr would be to project

assumpuons
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perform an independent mixture analysis on them without any

concerning the compositions of the endmembers.

prior

As was described in Section 2.3, the basis of Dymond's accounr was the table

of 'elemental ratio coefficients of the five components used in the normative analysis',

which were specifrej a priori. It is a simple matter to transform such a table into a

collection of (sub)compositions B (kxp) which are in this case the conjectured

endmembers for the data. If nr GxR) is the array of 'elemental ratio coefficients' as

defined by equations (2.15) and (2.16) and b,o is the concenrration of the normalizing

element in the i-th endmember. then

for j = 1,2,...,p, The row-sums of B are each

on either side of equarion (5.8),
p

(s.8)

I so summing over the p components

(s.e)

bx,i = b,j/b,o

(5.10)
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the data (as a subcompositional dataset with 8 variables) into the space spanned by the

vectors in Table 5-2 (a) and then to examine the the signs of the mixture coefficients and

the magnitudes of the angular erors. The second would be to independently construct

five endmember estimates from the data and compare these with the vectors in

Table 2 (a). The latrer method has been followed here.

Four separate mixture analyses were conducted. The first two on the (373x8)

and (423x8) datasets of subcompositions respectively. The third and fourth on the

(373x9) and' (423x9) datasets of partial compositions. In each case, the data matrices

were column transformed (equation (3.51)). Singular value decompositions attribured

berween 99-OVo to 99.27o of the cumulative sums of squares to the first five eigenvalues

in all 4 cases. The mean angular erors were of the order of 3o (arccos 0.999) for the

subcompositions and 40 (arccos 0.998) for the panial compositions. For the iterarion

procedures, the two forms of the matrix G of error vector coefficients defined by

equations (3.48) and (3.a9) were chosen consecutively for each analysis, making a total

of 8 sets of estimates. Iteration cycles were stopped when the mean squared error

(equation (3.50)) was in the range 1.1x10a to l.6xlOa which seemed to be the best that

could be achieved. In every case the mean squared error fell monotonically until the

procedure was stopped.

It is not proposed to reproduce 8 tables of estimated endmembers here. All 8

contained 3 subcompositions that were remarkably similar to and therefore readily

identifiable with the Detrital, Hydrothermal and Biogenic components of Table 5,2 (a).

There was however some diversity in the estimates of the remaining two. Further,

where the first 3 were always returned by the iterative algorithm when the initializing

extremes were altered, the last 2 were by no means so stable. Table 5.2 (b) sets out as

subcompositions the estimates obtained from the (423x9) dataset of partial

compositions, applying the error vector coefficients defined by equation (3.49) for a

mean squared error of 1.2x104.
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In geochemical terms, the component by component similariry between the first

columns of Tables 5.2 (a) and (b) is remarkable, bearing in mind that Al, si, Mn, Fe and

Ba are major, while Ni, Cu andZn are trace elements. Dymond's composition for this

component was taken from'summary analyses of igneous and sedimentary rock'.

The estimated endmember in the second column of Table S.Z (b) is more

extreme than the hydrothermal component in Table 5.2 (a). The elemenrs Al, Si, Ni and

Ba were driven down to zero by the iterative algorithm, while holding small values in

Dymond's subcomposition. Iron, on the other hand, was somewhat higher than

Dymond's value. Corresponding values for Mn, Cu, and Zn are in strong agreement

and, taken together, it is clear that the iterative algorithm reconstructed the hydrothermal

component.

Comparing the third columns of Tables 5.2 (a) and (b), what stands out is the

similarity of the very high values for Si, although the last few decimal places above 99Vo

meant the presence or absence of the other elements in the subcompositions. Again the

iterative estimate was the more exreme but the nearly equal values for Ba are possibly

notable. Dymond stated that the biogenic source is composed of predominantly biogenic

opal (an amorphous form of hydrated silicon dioxide) and refractory organic matter.

For each of the two sets of 5 endmembers, the fourth columns of Table S.Z (a)

and (b) agree in being the dominant sources of Mn and Ni, as well as being high in Cu

and Fe. But the values of the element concentrations hardly correspond at all. A similar

pattern emerged for the last pair of endmembers. The fifth columns of Table 5.2 (a) and

(b) display very similar Ba, an element with strong biogenic associations. Dymond

chose it as the index element for this endmember which was supposed to consist of

relatively insoluble elements of carbonate and siliceous organisms. Otherwise, the two

components display high Al, Fe, Cu andZn but not in comparable concentrations.
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Table 5.2 (a)

Endmember Subcomposltlons (%) for Nazca plate Data

Ilerlvad From Dymond (1981, Table 3)

Element Dct rltal Hyd rol h erma I Blogenlc Aulhlgenlc Dlssolutlon

regldue

AI

si

Mn

Fo

Ni

oJ

ful

Ba

o.42

9.04

20.17

6S.54

0.06

o.29

0.13

0.35

26.55

0.00

o.37

18.58

0.35

0.85

o.21

53.09

21.132

63.396

0.338

14.793

0.032

0.025

0.030

0.2s4

0.1 99

99.484

0.002

0.099

0.004

0.005

0.008

0.1 99

2.84

8.52

. 56.82

28.41

1.89

0.95

0.19

0.38

Table 5.2 (b)

Endmamber Subcomposlilona (%) lor Nazca plate Data

Computed by Least Squarrs parililonlng

AI

Si

Mn

Fs

Ni

aJ

7r

Ba

0.00

0.00

20.1 5

79.42

0.00

o.28

0.15

0.00

0.00

0.00

46.1 I
51.78

1 .41

0.60

0.03

0.00

23.7 43

64.084

0.000

12.104

0.o22

0.017

0.030

0.000

0.000

99.784

0.000

0.000

0.000

0.000

0.015

0.201

1s.13

0.00

4.06

27 3A

o.26

1.11

0.45

s1.63
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The conclusion to be drawn from this analysis is that there is quite srrong

evidence in favour of Dymond's first three specified endmembers but the contributions,

if any, to the bulk of the samples from his last rwo are too slight to allow their stable

estimation. That raises the issue of the valid estimation of the number of endmembers.

which will be examined in the next section.

The transformation of element ratios into the components of partial compositions

naturally requires that the concentrations of the normalizing elements be known.

Dymond supplied these concentrations which, he stated, were taken from the same

literature sources that were used to obtain the elemental ratios found in Dymond (l9gl,

Table 3). He assumed a value for (1) the concentrarion of Al in pure detritus ro be

8.4Vo, (2) the concenration of Fe in pure hydrothermal material to be i4.8Tq (3) the

concentration of Si in pure biogenic opal to be36.0Vo, (4) the concentration of Ni in

hydrogenous (authigenic) material to be l.OVo, and (5) the concenrration of Ba in the

dissolution residue to be Z7 .OVo.

It was noted above that the estimated endmember subcompositions set out in

Table 5.2 (b) were derived from the estimated endmember partial compositions extracted

iteratively from the (423x9'S dataset. These partial composirions narurally conrained the

estimates of the concentrations of the specific 8 elements for each full composition of a

5-endmember mixing process. The estimated concentrations for the 5 normalizing

elements in parricular, together with Dymond's choices (from above) in parentheses,

were,

Considering each pair of concentrations at a time, there

between the first figure, constructed from the data, and

(2) Fe 38.8Vo (34.8Vo), (3) Si 3I.2Vo (36.0Vo),

(5) Ba 22.2Vo (27.|Vo)

is an evident comparabiliry

the second, taken from the

(l) Al 9.\Vo (8.4Vo),

(4) Ni 0.9Vo (I.OVo),
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literature. These figures are estimates of the concentrations of the normalizing elements

in each of the conjectured sources in which they are exreme. In geochemical terms,

there is no evidence in these figures to refute Dymond's choices.

Leinen and Pisias (1984) employing a Q-mode factor method (see Chapter 2)

also analyzed the Nazca Plate sediment data. Apart from stating that the dataset

contained 423 samples for which the concenffations of Al, Si, Fe, Mn, Cu, Ni, Zn, and

Ba had been determined, they made no mention of missing values or of the number of

samples that were included in their analysis. They converted the element concentrations

of the raw data to oxides then formed subcompositions. In order to compare their

terminal solution with Dymond (1981, Table 3), they had to recalculate their estimated

endmember oxide subcompositions as element ratios. These ratios appear in L-einen and

Pisias (1984, Table 3). By employing equation (5.10), the columns of this table have

been transformed into 5 endmember element subcompositions which are displayed in

Table 5.3.

Table 5.3

Endmember Subcomposltlons (y") for Nazca plate Data

Derlved From Lelnen and Plslas (1984, Table 3)

Element Detrltal Hydrothermal Blogenlc Authlgenlc Dlssolutlon

resldue

AI

Si

Mn

tu

Ni

Ar

7Jl

Ba

25.157

49.987

4.830

19.s22

o.277

0.1 46

0.050

0.030

o.37

1.42

22.81

7 4.78

0.16

0.32

0.13

0.01

1.63

73.36

20.95

0.00

o.82

0.39

0.05

2.81

15.94

0.00

't7.34

34.74

0.55

o.67

o.21

30.53

0.75 1

68.264

4.505

25.346

0.000

0.1 30

0.068

2.93s
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Apan from their hydrothermal endmember, it is difficult to understand the

claims made by Leinen and Pisias (1984) for high level of concordance with Dymond's

components. Working from their table of 'endmember ratios', they concluded that the

'distribution patterns of detritus from the two techniques are virtudly identical', for

hydrothermal sediment the'ratios of Al, Mn, Cu andZnto Fe are virtually identical, for

dissolution residue 'the composition of the factor analysis endmember is remarkably

similar to the linear programming endmember except for Fe and Mn', and for the

authigenic sediment they conceded that the two set of results differed most. Comparing

the corresponding subcompositions of Tables 5.2 (a) and Table 5.3, it is evident that

conclusions of great similarity between the results of the two techniques (that is, Q-mode

factor and nomrative analysis) are a little exaggerated.

5.2 TESTING ENDMEMBER HYPOTHESES

This concluding section not only introduces an alternative approach to the

problem of assessing the number of endmembers, but also brings together many of the

most important ideas covered in the previous two chapters. Where it is necessary, those

ideas are revised in summary form.

Mixture analysis, including norrnative analysis, partitioning by linear

programming or principally Q-mode factor analysis, has become a well-established

quantitative method over the last two decades (for a discussion and comparison of these

three techniques, see Leinen (1987)). Its relevance to geochemistry is that it can be used

to identify the systematic components of variation in large compositional datasets.

An illustration of a perfect mixing process is provided in the introduction to this

thesis. [n summary, suppose three rivers each bear sedimentary materials of fixed (1xp)

compositions Fr, p, and F3 respectively, into a lake. These 3 source materials are
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called endmembers, and p > 3 is the number of elements whose abundances fomt a

composition. Assuming mixing takes place without contamination, a sample of

sediment from the lake floor will have a (1xp) composition vector x given by,

x = XrFr + 7'2Fz+ IrFr (5.11)

where

and

?',t+1r+\

xt, L, L
=l
>0

(s.12)

(s.13)

Equations (5.11), (5.12) and (5.13) identify x as a convex combination of the

endmembers, and therefore the position vector of a point in the interior of a plane

riangle in p-space. The position vectors of the vertices of the triangle are the 'extreme'

compositionr Fr, F2 and pr.

In matrix form,

X= =lp (5.14)

where I is (1x3) and p is (3xp). If n samples are taken from the lake floor, their

compositions x1,x2,...,x' all (lxp), constitute an (nxp) array X of exact rank 3 given

by

l^r,tr,trrlll

X=AF

where (nx3) A is the matrix of mixturc coeffrcients.

(s.ls)

In reality, even if a mixing process has been at work, nature never delivers

compositional data matrices of exact low rank like 3 in the illustration above. It is
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therefore assumed that naturc created

X=AF+e (s.16)

In this model X, is (nxp), A is (nxr) and p is (xxp) where x is the number of true

endmembers. Error manix I is of course (nxp) and represents the non-systematic

contribution o the data.

since matrices A, p and I are usually unknown, the estimated mixing model is,

X=LB+E (5.17)

In this representation, X is the same as in equadon (5.16). The matrix of estimated

mixture coefficients L is of order (nxk) and the matrix of estimated endmembers B is

(kxp) where k is the estimated number of endmembers. The matrix of residuals is E

(nxp).

An important matrix for the purposes of interpretation is (nxp) X' given by

X'=LB (5.18)

The matrices X, X', A, L, p and B have two properties in co[lmon. First,

every matrix element must be non-negative and second, each row-sum must be I (or

l}OVo). These two conditions define a composition (Aitchison (1986)) which therefore

applies to every row in each matrix. Furrher, since the rows of (nxp) Ap define poinrs

within the convex hull of the points whose position vectors are the rows of p, equation

(5.16) represents a convex model for the particular random experiment under study.
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It follows from the constant row-sum assumption that the row-sums of e and

E must each be zero.

The matrix X' is the estimate of the matrix of true mixtures Ap. It is of exact

rank k. The original data matrix X is of 'approximate rank' k if each of its rows is

well-approximated by a linear combination of any k linearly independent (1xp) vectors,

and that is essentially a subjective concept. Nevertheless, in view of the intrductory

illustration and from equations (5.16), (5.17) and (5.18), it is clear that if X were

determined by a r-component mixing process contaminated by small non-systematic

errors, then the chosen approximate rank of X should be close to r. That raises an

interesting question: which then would be the more serious error, to choose k less than

K, the unknown tnre number of endmembers, or to choose k greater than r ?

In the case that all variables have equal weight (by transformation to fractional

ranges or otherwise) and endmember estimates are chosen in order of their remoteness

from each other, the answer to the question is that to choose k > r is the more serious

error. This is because,

(i) k > r implies the identification of source components which do not

actually exist,

(ii) the presence of such false components (as rows) in B may result in

non-trivial concomitant estimated mixture coefficients (elements of L in equation (5.17))

for samples that are near such components and,

(iii) elements may be accounted for in the estimate which do not feature in the

true mixing process.

(The geometrical view is that the estimated endmember compositions are the position

vectors of the k vertices (extremes) of a convex polytope which must contain all the

estimated data points (rows of X'). If k > x then extra vertices have been added to
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include in the estimated polytope, departures from the true polytope due to errors).

In the mixing model defined by equation (5.16), the rows of p span ,,6, a

r-dimensional subspace of the positive p-orthant. tn the estimated model, equation

(5.17)' the rows of B span S a k-dimensional subspace of the positive p-orthant. The

optimistic stance is that S will be located close to ,,6. For example, if there were just 2

true endmembers and hence the data resembled a'fuzzy' line then S would be a line

through the 'fuzz'. Choosing k correctly equal to 2 in this example would not of itself

yield a a satisfactory solution if the line S were located through some region of p-space

remote from .'6 (see Section 3.1, Figure 3.1).

Roughly summarizing Section 3.4, an analysis of mixtures can be conducted

according to rhe following 5 steps.

1. Choose k-space S (for example, by the singular value decomposition of (nxp)

X or any non-singular transformation of X).

2. Project the rows of X orrhogonally (by least squares) into S to form (nxp) X'

3. Test the validity of rhe choice of S.

(i) by mapping.

(ii) by inspection of the p coefficients of determination (f) between

corresponding pairs of observed and estimated variables, that is between

corresponding columns of (nxp) X and (nxp) X'.

(iii)by examining tlu resi&nlsformedfollowing tlu transformation of the

observed and estimated data to logratios.

4. Locate initial extremes (kxp) Bo and compute the mixture coefficients (nxk) Lo

by least squares.

5- Iteratively consEruct the terminal solurions (kxp) B and (nxk) L, exploiting the

magnitudes of least squa.res regression coefficients.
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Steps 4 and 5 summarize the iterative construction of the estimate equation

(5'17) which is described in Section3.4-3 and Section 3.4.5. It suffices to say that,

contrary to statements that have appeared in the literature, the least squares method

constnrcts the 'best'estimate when it is required to partition a given sample into

specified endmembers. Further, the possible occurrence of negative values for some

regression coefficients indicates not only that at least one endmember estimate is not

extreme enough, but also that the magnitudes of the remaining positive coefficients

determine the adjusunents to be made to the non-extreme endmembers.

Steps I through 5 outline an integrated approach to a mixture analysis the acrual

detail of which is substantial. It is desirable that an assessmenr of the estimate of the

dimensionality of the data be made at the earliest stage possible, which in this srrategy is

at Step 3.

Mapping, Step 3 (i), usually takes the form of a conrour plot of the columns of
(nxk) L or some other portrayal of the distributions of the estimated endmembers.

Naturally these are displayed on a map of the region from which the samples were taken

and are quite elaborate to prepare. Mapping is actually out of sequence in this scheme

because it requires a terminal solution for equation (5.17). So, it is usually used for the

final confirmation of the geographical continuity of endmember abundances and, of

course' for descriptive purposes. It was initially demonstrated by Imbrie and Van Andel

(1964).

lnspection of the p coefficients of determinarion, Step 3 (ii), was recommended

by Miesch (1976b) and remains a most severe and relarively quick tesr of the validity of

a decomposition of the form equation (5.18). The problem seems to be that

concentrating on the precision of all or most the estimated variables is likely to force

elements which may not belong to a natural mixing process into the endeavour to model

it. Rather like regression models with unknown numbers of explanatories, this
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enhances the risk of overspecification which in a mixture analysis results in the inclusion

of source components in the physical model which do not in fact exist.

The formation of logratios, Step 3 (iii), highlighted in italics, implies

remodelling the residuals. The difference of the logratios of corresponding componenn

of X and X' is a logratio residual whose behaviour may be predicted approximately

provided that X' is indeed close to (unknown) Ap, and rhe values of the logratio

residuals have been determined by chance mechanisms which permit the valid

application of the multivariate central limit theorem.

Aitchison (1986) discussed the situation where a composition evolves over time

into another composition. The latter composition is called a perturbed composition. It is

possible to calculate a perturbing vector whose componenrs scale the components of the

original vector. A summary follows of the basic algebra, which was even more briefly

covered in Section 3.1.3.

tu (lxp) is a primeval composirion vecror, that is i U, = l, where F; > 0 all j.
Fi'J

p (lxp) is a compositional 'perturbing' vecror. The perturbation of p is defined to be

P

FoP = 
fu,o,, vzPz,. .,rhpoj /D(p,p), D(p,p) = Iptpi (5.19)

J=r

For any constant A,

(AF)op=Fo(Ap)=Fop (s.20)

If t is a second perturbing vector then it follows from equations (5.19) and (5.20) that,

[topot = (pop)ot = 
[u, 

pf y V2p2xz, . . .,tbpprp] /D!t,p,r) (5.21)
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where D(;r,p,t) =

It is quite straightforward to show that the resultant of a sequence of perturbations is a

single perturbation r whose components are respectively the products of corresponding

components of the perturbations in the sequence, scaled by a common factor to maintain

their sum to l. In the case of two perrurbations and by equations (5.19) and (5.21), a

resultant composition x would be given by,

x = popor = [,o(poT) = por = [pro' Vzn2,...,tbno] /D(y,,n) (S.ZZ)

where trj = pjrj and D(p,r) = Itljrj.

Cancelling the denominator in equation (5.22),

*/*p = Itjn/t pop = Itipir/Frpor,

It follows that the logratios formed from a sequence of perturbations are additive, for in

the case of two,

log(x.,/xo) = tos(rry'rh) + log(rrftro)

= log(q/h) + log(p/p/ + log(t /ro) j = 1,2,...,p-l (5.23)

provided xi, [ri, p;, T1 ) 0, i = 1,2,...,p. Generalizing equation (5.23), if it is

assumed that a resultant perturbation is made up of many minor perturbations then,

under certain regularity conditions y.;= Iog(rr/rr),no> 0, j = 1,2,...p-1, will jointly

follow a multivariate normal distribution.

kt xt be the i-th row of (nxp) X. Assume that x, has been perturbed from a

primeval perfect mixture Fi = liF by a resultanr perturbation ni of many independent

pernrbations. Then,

p

I u,o,','
J=l
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log(xiy'xip) = log(triy'FiJ + log(n,y'nip) (s.24)

provided xii, F1i, trij ) 0, i = 1,2,...n, j = 1,2,...p-1. Substituting scalars ytj, \
and zUfor each logratio in equation (5.24),

Yij =mij+zij

These tenns are the components of respectively of the vectors Ji, mi and zt Hence,

Ji =mi+zi (5.25)

and this takes the familiar fomr,

Response = Signal + Noise

In the light of the remarks made above, it may be anticipated that zi - No-1(0, E),

i = 1,2,...,n. The n row vectors Ji of equation (5.25) constitute an (nxp) array Y

given by

Y =M+Z (s.26)

all of these being nx(p-l) matrices. If the stochastic model is correct, Z should resemble

a multivariate random sample from the ND_l(0, E) distribution.

It shoutd be evident at once that, since A and F ate unknown, there are no

observations available on log(r,y'r/ bV equation (5.24), and therefore no observations

on zij. If it is further assumed that X' is a good approximation to Ap, then p,, may be

replaced by x',j for all ij in equation (5.24), and so zU = log(n r/nt ) becomes the

(ij)th logratio residual.
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Just as it is always sound practice to examine the distribution of the residuals in

a regression analysis, it is proposed here that the distribution of logratio residuals, as

described above, may be employed to assess the plausibiliry of an endmember analysis.

If a random vector follows a multivariate normal distribution, then the scalar

formed by any linear combination of its components must follow a univariate normal

distribution. The strict application of this condition is too severe for geochemical

compositional data. There are frequently zeros, repeated values and outlien among the

observations for any one variable. Any variable which is not part of a mixing process

may not be expected to have normally disrributed logratio residuals. If just one marginal

distribution is non-normal, then the joint distribution of the whole collection is not

multivariate normal. (Consider a linear combination of zeros for all but the abberant

component). Therefore, a relatively forgiving statistic was formed as follows. After

making the logratio transformation, each of the (p-l) components of the n residual

vectors was standardized (to zero mean and unit variance). Foreach sample, these (p-1)

standardized variables were summed and their sum was standardized to form a statistic

which will be denoted here by il. The value of [l- for the i-th sample would be

calculated as follows.

Ar:
I

(Yu.=
I

- z//s,

-z)t", (s.27)

where s. is the appropriate sample standard deviarion for samples of size n.

The univariate central limit theorem would in the absence of srong

intercorrelations predispose tf- to follow a univariate normal d.istribution which, under

the ruling assumption, must otherwise be normal. The normality of f,, can of course,

be tested by the chi-square goodness of fit test which has the advantage of being immune

to outliers.

p-1

It'u
J=r

(Zt
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5.2.1 Mid-Pacific Cobalt-Rich Manganese Crusts

This first illustration of the use of logratio residuals is based on the mixture

analysis which was described in Section 4.2. Four endmember compositions were

estimated for the 275 samples from a Mid-Pacific subset of the United States Geological

survey world ocean ferromanganese crust database (Lane et al. (19g6)). The

endmembers were identified as (1) Silicate (clay), (2) Cobalt-rich manganese oxide,

(3) Biogenic phosphate, (4) Hydrogenous (Authigenic) and their estimated

compositions are displayed in Table 4.3.

The (275x22) raw data matrix of this analysis was column transformed

(equation (3.51), then a singular value decomposition was performed on the transformed

arury ' Hence, the 22 major and trace elements had equal weights in the analysis. The

spaces spanned by k = 2,3,...,10 eigenvectors were taken respectively for choices of

s. setting k = 2,3,...,10 in turn, 9 forms of the (z7Sxzz) approximation X'c were

computed whose precision increased with k.

The proportional cumulative sum of the eigenvalues (equation (3.39))

associated with each value of k = 2,3,...,7 is expressed as a percentage variability in

the first row at the top of Table 5.4. The chi-square values in the next row of Table 5.4,

are the values taken by the goodness of fit statistic with 4 degrees of freedom for the

frequency distributions of tl. These frequency distributions are depicted as histograms

on Figure 5.1. The coefficients of determination (r2) between the observed and

estimated variables for each of these numbers of endmembers are in the body of Table

5.4.

The rule is that any value for r2 < 0.5 (or a pearson correlation < 0.7)

indicates an inadequate estimate. Such values are printed in boldface on the table and a

ranking scheme keeps keeps them at the bottom of each column.



207

From the fint column of Table 5.4, it can be seen that 9 elements out of 22 are

accounted for by k=2 dimensions. It is noteworthy that, of these 9 elements (or

oxides), two ( SiO, and AlrO/ were dominant in a clay endmember, and four (MnOr,

Mo, NiO and CorOo) were dominant in a cobalt-rich manganese oxide endmember (see

Table 4.3). Each endmember had been constructed, in the course of a 4 endmember

mixture analysis, by the iterative procedures described in Section 3.4.

The inclusion of a third dimension then produced a remarkable increase in the

values of r2 for CaO, PrO, and COr, which can be read from the hrst and second

columns of Table 5.4. Further, the iterative algorithm had allocated these 3 oxides

together with Sr, almost exclusively to the 3rd endmember which was identified as

'biogenic phosphate' (see Table 4.3).

According to the rule, the addition of a 4th dimension did not account for any

more variables. The f value for Ce, the largest contender, rose from 0.38 to 0.47

which is still less than 0.5 (see Table 5.4). It did, however, improve the precision of the

estimates for the 15 variables accounted for by 3 endmembers. It also led to the

construction of a 4th endmember, identified as hydrogenous, which was the principal

source of FerO3 and the trace elements As, Ce, Pb and V.

The 4 estimated endmembers appeared geochemically viable and, as can be seen

from Table 5.4, the inclusion of more dimensions would have added one or two

elements at a time at the cost of rapidly dwindling parsimony. On these grounds the 4

endmembers of Table 4.3 we believed to provide a satisfactory account of the data.

The construction of the summary statistic tl required that samples with zero

values be excluded so that the logratios were defined. Differing but small numbers of

samples were dropped automatically by the algorithm for each value of k that was

examined. Figure 5.1 displays 6 histograms. The first at the top left is of the
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probabilities expressed as percentages for the standard normal distribution. The

remaining 5 are relative frequency histograms, also in percentages, for the frequency

distributions of tl-. This statistic was constructed from the logratio residuals arising

from representations based on k= 2,3,...,6 endmembers as indicated on Figure 5.1.

The histogram which most nearly resembles the standard normal is that for 3

endmembers. The chi-square value for this frequency distribution was 8.63 (Table 5.4)

which with 4 degrees of freedom is not significant. Since the chi-square values

associated with all other values of k are highly significant, it is therefore tempring to

conclude that the data results from a mixing process involving just 3 sources.

Apan from the very satisfactory way in which the iterative algorithm located the

extreme compositions for the 4 endmember representation already mentioned, the next

illustration will show that caution is needed in the interpretation of the distriburions of

€t-. One further effect was observed which is quite important. Although not all shown

here, the distributions of tf were in fact constructed for k = 2,3,...,10. For k ) 5,

the kunosis of the distributions increased montonically and sharply as did the

corresponding chi-square values. This effect was due to the increasing precision of the

estimates producing disproportionately many logratio residuals near to zero on the

standardized scale. Such an effect is an obvious consequence of over-specification,

whether it is of the explanatories in a regression analysis or of the endmembers in a

mixture analysis.
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Table 5.4.

Coafflclents ol Determlnatlon (#) Batween Estlmated and Observed

Varlables for Mld-Paclflc Data.

(Note: Valuas rcr ? < 0.5 are prlnted In boldface)

Endmembere 2

Varfablllty 94.8"/"

Chlsquare 20.1 1

3

96.2/"

8.63

4

97.2o/"

36.26

5

97.8%

12.39

6

s8.3%

23.8

7

98.6%

37.92

sio2

MnO2

At2o3

Mo

Sr

V

Nio

Pb

&so+

co
Fe203

Pzos

As

ffi2
Kzo

Oe

Ti02

7n

o.o

irto
N"ZO

Hzo

0.93

0.85

0.83

o.79

0.65

0.54

0.51

o.52

0.50

0.0 2

0.o5
0.0 2

0.33
0.0 0

0.47
0.23
o.27
0 .21

0.0 5

0.1 1

0.00

0.01

0.93

0.87

0.85

0.80

0.67

o.62

0.62

0.68

0.52

0.73

o.72

0.64

0.59

0.55

0.50

0.3 8

0.44
o.27
0.0 6

0.13
0.0 0

0.10

0.93

0.96

0.86

0.80

0.78

0.69

o.82

o.71

0.75

0.96

0.82

0.91

0.64

o.72

0.62

0.47
0.4 4

0.37
0.0 6

0.2 5

o.22
0.11

0.95

0.96

0.90

o.82

0.79

o.75

0.84

0.73

0.76

0.96

0.82

0.9'l

0.87

0.73

0.62

0.75

0.53

o .47

0.3 3

0.3 6

0.2 6

o.12

o.97

0.98

0.94

0.83

0.80

0.76

0.85

0.90

0.78

0.97

0.93

0.91

0.88

0.73

o.72

0.94

0.53

0.58

0.3 7

0.3 7

0.3I
0.14

0.98

0.98

0.94

0.89

0.80

0.80

0.86

0.90

0.93

0.98

0.94

o.92

0.89

o.77

o.75

0.95

0.69

0.61

0.62

0.3 7

0.39
0.19
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5,1.2 Nazca Plate Surface Sediments

The second illusration is based on an analysis of 425 surface sediments from

the Nazca plate which have been made available on microfiche by Dymond (1981). For

these data, Dymond (ibi{ tabulated a priori the elemental ratio coefficients of five

components (endmembers) he used in a normative analysis. These were identified as (1)

Deuital, (2) Hydrothermal, (3) Biogenic, (4) Hydrogenous (Authigenic), (5)

Dissolution residue (see Sections 2.3 and 5.1) .

The data were analysed in exactly the same way as the Mid-Pacific data above.

But first a five endmember representation was constructed to be compared with

Dymond's table of elemental ratio coefficients. It was found (Section 5.1) that the first

three iteratively constructed estimates were very close to Dymond's components (1), (2)

and (3). However the 4th and 5th constructs were similar to components (a) and (5)

only in possessing the same dominant elements, and not in the actual magnitudes of

those elements (cl l-einen and Pisias (1984)). By varying the initializing components of

the iterative routine, the frst three estimates were found to be stable while the 4th and

5th were not. So it was with this information at hand that the logratio residuals were

examined.

Table 5.5 and Figure 5.2 ne to be interpreted in the same way as Table 5.4 and

Figure 5.1 respectively. From Table 5.5, it will be seen that there were only 8 variables

present and 6 of these were accounted for by 2 endmembers. The associated chi-square

value (Table 5.5) was 71.14 which with 4degrees of freedom refuted the underlying

assumptions. The poor fit is evident in the asymmetry of the histogram at the top right

of Figure 5.2. lf a mixing process did account for the data, then it would seem possible

that a 2-endmember reprcsentation forced the transfer of part of the systematic effect into

the residuals. The inclusion of a 3rd endmember lifted 12 for Ni from 0.24 to 0.88 and

dropped the chi-square value from 71.14 to 31.51, the minimum (Table 5.5). The
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corresponding histogram @gure 5.2) adopted a symmetric shape but its kurtosis also

denied the normal hypothesis. However, regression analysts might argue that its

symmebry is the imporant development because an absence of symmetry tends to deny

randomness in the errors.

Increasing the number of endmembers accounted for Ba when k > 4 but, from

the appearance of the histograms, resulted in unacceptable kurtosis. A judgement

supported by the gross chi-square values. Just as for the distributions formed by

increasing the values of k in the study of the Mid-Pacif,rc data, this effecr was due to the

disproportionately many logratio residuals near to zero on the standardized scale.

On the basis of the evidence presented here, the normal model is not

sustainable. However, if a mixing process were responsible for the data, then 2

endmembers would be too few and 3 the maximum for'best behaved'residuals.

Table 5.5

Goetflclents of determlnatlon (/y between estimated and obserued

varlables for Nazca Plate data

(Note: Values tor P < 0.5 are prlnted In boldface).

Endmembers

Va rla b ll lty
Chlsqua re

2

92.8"/"

71.14

3

96.Oo/o

31.51

4

98.4%

109.45

5

99.2a/o

243.47

6

99.syo

194.46

7

99.8olo

1 93.09

Fs

Si

Mn

Ar

AI

bl

Ni

Ba

0.91

0.89

0.88

o.70

0.65

0.50

o.24
0.0 3

0.92

0.90

0.89

0.85

0.84

0.51

0.88

0.35

0.99

0.99

0.89

0.88

0.99

0.53

0.90

0.6 9

0.99

1.00

0.90

0.91

1.00

0.56

0.99

0.95

0.99

1.00

0.91

0.92

1 .00

0.98

0.99

0.97

0.99

1.00

0.92

0.99

'1.00

0.98

0.99

1.00
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Figuro 6.2, Hislograme of the standardi2ed sums
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In conclusion, the choice of of the number of endmembers in a mixture analysis

is an esdmate of the true number, and that should be tested. Relying in parricular on the

coefficient of determination to measure the precision of the estimates for all or most of

the variables is to run the risk of over-specification. That is, the idenrification of

endmembers that do not exist and the inclusion of elements into the solution thar were

not part of the natural mixing process. This is a direct consequence of reckoning erron

into the systematic part of the solurion.

There are plausible theoretical grounds for anriciparing normal distributions

among the logratio residuals of those variables that do belong ro a mixing process and

for which the estimated mixtures are close to the true mixrures. The testing of the

logratio residuals for each variable separately is a possibiliry, although the rejection of

the normal disaibution hypothesis may nor necessarily imperil a mixrure hypothesis. A
single summary statistic can indicate directly when the systematic part of the estimated

model has been included in the elrors, and when over-specification seems likely. This

statistic could possibly be improved by including in it only those variables that are

currently satisfactorily estimated.
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APPENDIX



g

c

?22

C,****,***:*'**it******if.******rr** S\2,.D0 FORTRAN ***.*.***+**rr**,**********rr****.
e
C NOTES: fhis progran r.eads the arg,unrent,B f,or Ehe sjngular valueC deeoqpoeition program s\rDi I'o,RT&AN.

CfIARACTER*1 REPIJY
eo!CI4oN /I"AtsELl IlwAR,, NEiND, I gCAX.E, trIrNrf, , rFE, rcot[T,,rcoNC***tt'**rs*****'**** ************************,*lt*-r*ix******,****+r*rt*****.*****

c MArrf progranr n
e ******. *******.* * * **,**.i|r*,* **.,****** * *d.***rt** **.****** ****rt*** * **,***.ft* * **1r*,**

CAI,-L LOAD

GATI, WRITE

BjTOP

EIi[D

Read regtrired eonstants fre& E,elurilral

wr.ite requi,red eonst.arrts to disk

End of IvIAf.N progralB

(]*,* * **,**,it*** ****r*rrr*r* ** **,.**,*** ***.*r*.**.1r x ***,*:*.*** ***.**.*** *****.*** * **ir.**** * *C-* pr:o-cedute LOAD (Ioa<i Ea!, da!a) *
C**,******,**,*****',ar****$rt *.**.******,*************-i**tk****.*t****.**.*****.*,**.***,

SUBIRSITtr'INB T.OAD
CIIARACF$R*I REPIIE
rc€!4{oN /T"B,BEI,1/N\IAR, NEIID, rSgAI,E, IUNTT. IpE, reoNE, rcoN
col{TrN[rE
Wnrrs{e ,2)
I9gT{'2.{./).5X,,'Ent,er the nu$JDer of, variabtes (at dosr 4O)')
BEAD (5, *l i6ae
W,RITE (6,3)

3 8ORMAT (/ ,8X,, Ent^r
READ (5, *) NEND

4 CONTINUE
I{RITA (6,5)

5 
_ 

fORI\.t lT l/ t SX,'Key inB 5x,1
Gi sx, r

the nurnbes of end-xrember,s (at mosg 10) n )

READ {5, *) IS,CALF
rF (r$cALE.NIi.0"AltD.

6 EONTIINT}E]
.ivR.rTi (5, ?)

7 FoRMi\t (1, Sx,n , Bow
BESD (6,,8) REP,trY

I eoRMA[ (A1]
fF (REFLY.Ngr,.,t.,I@ REPrrt.NE. , N'
Ittl{IT d tr

llnr 1

rF (RErav.59. rlqr
CQIiTTINUE
t{RrrB (6,10)
Fo.RlitAl[ (/n.sx, tDoe,e the data gwr to, L00? ?
BEAD (5,111 B,E;PLx

y/'n'I

0 f,or no scaJ.ing p,f vari"ables,'l
!. for dl-vieion by ob:ssrved ,rlaxfunr,unn I I2 for: fractj,onal raages, )

r] ca[.E.NE.'1.]t]iIE. rgcA!8,[tE,2l s,O ro a

c

c****
c

ih***

L

4

.no,rrnalize (obj,eoDs iat,o renl.t. veetore,) ?

. ANE. RtsPlilY,. N.E, t 1r,t .AND,,

.A}ID'.8.EPLV.NE-'n'l GO TO 5

,OR.REF,&Y.EQ,.tnn) IUN:fT - 0
9l

10
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11 FoR.MAE (A1l
IF (REBnY. NE., Yt . 4$1E,. REpIl,I. NE . r y r .,,AND j0 gnrru.titg.rtrgr,Bt{D,,REpLy,NE.,ir, j-eo-ro 

OIPE=1
_^ rr (REpl"y.EO.rN'"OR.REpLy.EQ.rn") IpE = 012 cobrTINuE

iltRtrTE (6,13)
13 FoF,DilAtrl/rsr{.,'outsput, roadingo, ra:rka, angleo and estin5teg? :f/n',)READ(5.I.4) REFLY
14 FORMAgtal)

LF (8pp.tg . if[E , 'Y'' ,,Ali{D . REpLt . NE . 'y,]. . Ariitp .@ napr,y.NE. 'N, ,sND.REPLY.NE. 'frr 1 eO To 12
ICONT - tr
rr (REpx"g.EQ. rN' .oR.BEprrx.EQ., nr ) trcoM! = 015 EONTIN:TtrE.
w,RrTE (6.16,1

16 FORI'!LT,(l,5xr,Output non-n€gativ,e etitimateo oa13r (roolr:ise) ? ylnrl
FaeD (6,17) REPIJY

x7 r'oRMAT (A1)
IF (BEF!f, .NA].'Y' .AND, R.EPLY.NE..' Y' .AND,g REpIrI.ltE.,rNr .A.IiilD.F.EFr,Y.NB,,'n,, GO TO 15
reON = tr-

IF (REFLY.EQ.rg'r .O8..B,BpGy.Be.'n, ) fCON = 0
lryBrrE (6, lgl

18 FOFI{A.T (/ 
"SXr 

rAl.J. eorriea.t ? yln ,,)
REitD (5" lr9l) REPLI

19 Eo8!4Ar (A1)
f F (EEPX.{. N,E . t Y' . AblD . A,EpLy. NE ., y, I GO f,O 1
RETUR[[

"*o** uro End of procedure LOAD *trr*r
rr

e**** * ***1t* *** *******'* * ***'****'***rt*-**r*. * ***rkdF*it** * *,***** * * **.*.**** *****E* *c+ prooedu.re rgtRlat (Wrlte cofistants to di.slc| *
C**.******.**.*.x*****:k**r****.te*.+*********,rb******.**.*******,********,***,***** **

snBRouTrNE WRITD
eoliq oN /-LABETX/I{I/aF.,NESTD, rScaLE, rUNrT, rp8,tr,coNTr. rC-ON

_ t[RI,f,E (11,1) {vARrNEND'1S(]ALE, runxr"Lri,, rc6Nrf neos1 foRMATIlX,7r5)
RAUUSN

C***'* Efrd. of procedure ![RfIl-E *****
BDID



c**'*.*r***if,rt**,*-*********.****** s.vDl ,FORIIRAII ***,*.**********************r*
c
e NorES: (1) Ehi.s l,s a singular value deocmposltioo al,gorrd.th.C (21 lry)ut raw dati must be in greeiietd.
c (3) s,mrary inforsnatioa is written to disl. ddnanre 13,C estsi$at,ed A ddname i11, ,recov,ered A ddnane 1?. th;c loadJ-ag netrix ddnane 15, the eigeavectors 1ao-runrrste ddnqn€ L9,.
c

REAL*X 6 A (8O0, 401, Aa (8 00, 401,' D (900, 10), nr,ucrH (8oo L
nANCE ( {q t, C {4,A t 40 }, I/ ( 4 O, CO i, S,bbg, zERo;oNE, rEsE,
wE (800,40t

colfrfoN / r'ABe'rtL / t'!R.o' oNE, rEsr. NoE r. NvaR, lrEND r ltltll, rscAr.E, rlD{rr, rFE
,, IeONIf I.CON. IrAUIJT

IIAES,LZIA
1taggr"3y'&atrcg
lr'AEE[4./e,v
II,ABEI,SID
/-tABE!6,/Rr,NCTH.

2U

Defi.ne conaeants,
ZERO- : 0.0Q+O0
OIIE - 1.0Q+00
TES! - 1.00-10

Ctt****,**.**************************.*rF*********************..*.****,r****it***
c MArN program *
C******'********'k**********.************* ****;****r****ih**********r.***.***il

fJoad raw data from d"isk

Res,caLe eo1usns {nto f,raet,iona_l rarrge€

Be,scale rona iaLo uait rr.cetors

Forn the ruatsi.x product e - A transpoGe b!, A
Eigenvalues ahd eigeavectsors of natrix C

TnEtf
Ootrrponents on orthogonaL alres (Lrsadingr rnatrix,I

0
e

c

0
e
0
0
g
g

C****

c

c

e

e

c

c

c

c

CAIL ITOAE

CIU,L SeALE

cn"rri uNn?

cArlr. 81i1,!!i

CAIJL EISET

rr (rcqNT.Eo.1I

CAI,I, C,OD@TS

eAri! n;gT
c

END IF
EITOP

C.*.***
END

e

End of I{AXN prograrn t* rr* *

C'****'t n******* * ******** ******** *****.**** t ******* * *.****ti* **.*'***** ***,**.**
C* procedn:lre LOAD (Ioad raw datal *
el**.,rF*** * ***:*** * * **'* **.**.* ****.**.** * ***** ** *,**t**.***** ****** * t,******** ***.*,*
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SUBROUTTNE I,OAD
REAL*16 A (900, 40), ZERO, ONE, TEST
COMMON / LAB.E'T.I / ?'ERo, oNE, TEST, NoBJ, MVAR, NEND, MAL, IscAtE, TUNIT, IP EQ , rcoNT, rcoN, rFAUtrg /LABEL2/A

c**** Program reads numbers of elements, end-mernbels etc
READ ( 12, 'r) NVAR, NEND, ISCAIE, IUNIT, IpE, ICONT/ ICONc**** Program reads and counta rorvg of j.nput matri.x
NOBrT : 1

]- CONTINUE
c**** Input matrix must be in freefield

READ (t0,*, END:2) (A(NOB,J,.'),.t - l,lwAR)
NOBrf=NOBJ+1
GOTOl

2 CONTINUE
c**** Prggram countg one more than true number of, recordsNOBJ-NOB,J-1

RETURN
c****

END
C***tk************rt*********************************lt**********rt*rr*******
C Procedure SCALE (scale columns) *
C* * * * * *'r * * * * * * * * ** * * * * * * * tt* * ** * * * * * * * * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * *

SUBROUTINE SCALE
REAL*16 A (900, 40) , R.e.NcE ( 40) , RMAX, RMrN, ZERO, ONE, TEST
coMMoN /LABET'L/zERo, oNE, TEST,M, N, KErrtAL, rscALE, ruNrr, rpE, rcoNT,@ rcoN,rFAULT

O /LABELz/A
E /IABEL3/RANGE

C*** Colunn ranges are initialized t,o one
DO L J-1rN

RANGE (,1) = ONE
1 CONTINUE

rF (rscALE.GT.0) rHEN
CALI. TITIJE
DO 6 J=1rN

M1-l

in case there is no scaling

DQ 2 K=2tM
- rF (A(K,J) .GT.A(M1,,J) ) M1 - I(2 CONTINUE

RMjIX = A(!{1 ,J)
M1=1
DO 3 K:2,M

IF (A(K,J).LT.A(M1,J)) Ml - K3 CONTTNUE
R,MIN = A(I{l,J)
IF (ISCALE.EQ,1) RANGE(,t) = RtvlAX
IF (ISCAIE.EQ.2) RANGE(J) = RMAX -
DO 4 I=1,M

IF (ISCALE.EQ.1) A(I,,t)- A(I,,J)
IF (ISCAIJE .EQ.2l A (I,,t) = (A (f 1 ,I)4 CONTINUE

End of procedure LOAD *****

RI4IN

/Rr'rAx
-RMrN) /nenen (,r)
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. wRr,TE(13,5) JfRlllAx,Rt{lN
5 - FOAMAT I1Xy'sX, T VARIABTJET , 13, 5x, ' tilttcxutJ!{ =, , F13 . 6,1e FX, ,lflNll,tut'{ 

=r , F13 . 6)6 CONtrXNUE
BND TF
RAT['RN

ct**t End of prooedure SCALE ****
END

C*Jh*t!ttit* ******** **.********,:r***r.*******.***** **t.***f *****?t *** *.****,********C Froqedure Ut{fT (unit veeLots) *
c****.*.*****r**.*. ********************t*,*i**********i*iiiii*********,********

S.T'BROUTIIrE I'NItr
REAS*16 .A (8i00/ 40) , RIlrirGEE (gOO) , R, S,SO, ZERO, Ol,{E, lESt

-co!6[ctN /r'anur"1,/zERo.oNE,TEsrrM,ifrrgrun,iscai,urrltNrl,rpE,rcoN1,
B rcoN,rFAutrg hiAEELZlAg A,AE8I.6y'RLTS,GTHc***t Row J-er,rgths stored as oNE in ease of rlo row unitizlng,
E0 1 tr:X,rM

RLNGfll (l) = gNE:
1 OON.TINTIEg*'*** If ruNIT = X, the row,s ,of A boconre unit veetorgi.F ( IUNXT. EQ. 1) THEII

DO 4 I=1.,M
ssQ=zERo
DO 2; ge1r11

SSQ*S88+A(I'g1x*2
2 CONTINI,'E

g - 9SeRr(SSO)
RTNGTH(r) - g

De 3 rT: r![
e(I,rI) - A(fatlllR

3 colwtrlflrtE
4 CONTI}II'E

END IF
RETIIRN

c*,***
END

e****** i********.***n**r.*.*****,**.*.rr********.******.**.****,*****..*************
C Prosed,Ure Sy!d\{ (A transpose * ,A) *
e*'** * * ******* ** ** ***** ** *** *** ** ***** ** i****.***i,*******i ***.***** *****,***

g-ltB:BOfJSINE SY[tt't
REAI{r1 6 .A (800 I 40 }, e ( {0., r!0), v ( 40. 40) 

" 
gERo, oNE, TES.T

CO!8{ON /I'AEEtr.,LIZERO, ONE, fEEE'Mr N' KE'I,!AIJ, XSCAi,E, IU,SIT,IP8,ICONT,e reoN,rrAullrg /r.ABEL2,/AA / r,,ABEr,4/e ,v
DO 3 I=l,,N

DO 2 J=llN
C (I' \t) -ZER9
DO l_ K=1 ,M

C (X,,f) =C (Ir J) +A (R, I) *A (K, J)

End of prodedure UNIT ****
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CONTINU.E
eolvTIlwE

GONEI}TUE
BE:IIIRN

c.*t**
E-6tp

End of procedure Sln4{

c.** * ****tt)k* t.r****** *.***,***-*** * * #****,*** **,***** rt******* n***********,**.** *'*
c Proeedu,re EIGEN *
c*** *Jt*:*'*** * **tl**** ***,**,*,.****** ****.**.k** rr*,**4*** ***+**** !rt***,rti*** *******it,

5(tsROUBtn'E itXGE!il
RaAL*16 c ( 40, 40 ) , {t ( 40' 40) 

'Ef,tArr 
( 4CI) r xl (40) r xz (40) ruERo. oNE,1 $UM!d,EE51,SXIM1I 5tIM2'tT.NOTBTDIAG,TEIGVA!,ICIlMl

COIA{ON /:I,AB- UAt / ZUROT ONE;, TEST, NOtsJr N r KE r tiAL r ISCAtr U r IttNIT. IpE,g rcoNT,rcoN,rFAutrg lIuABEtrr,4/CrV
c

QAI'I. grf.TLE
C***'* Sum the di.agronal eLe$ent,s o€ Eyr@€Grj.e rat,rlx e

DIAG = ZERO
DrO 2 X.=lrl$

D'IAS-DXA€+C(I'It
DO 1 J=trN

.1,(Ir.J) = C(f,\t)
1 C-ONT$NUE
2 CONEIN{IE

c*rb** Forur matrix C sqrrar,ed. t.o separrate elgeftva:-ue,s
Do 5 r-l,N

DO 4 ,tr=trrN
C(fn,f) : EERO
Do,3 K=l,N

e{lrJ) = C(IrJ) + V(IrK)*'1t(t(r,f)3 CONTII{UE
4 ColulrNuE
5 CONTINIJE

c***' M : eLgenvah.ls nr:rqtbeFr Ertarting ntth the larg'estC SIIMM - 'EERO

I-d E1
6 eoiltlBISrUE

IT=0
DO 7 f-1rN

XX (I) = OnlE
7 CO}ITIMT.E
8IT=IT'+L

DO gr r'=lrs

1

A
?

*.***

X2 (,I) = Zg,RO
DO g J*trrtil

xA (Il r- 112 (I) * C (r, J) *Xl{,I)
CQNSTN.UE

'EIGV.:AL = X2,(1:)
S{Di,t = zgRO
DO LO I=1rN

xz (Tl = xZ (r) /EIG\rA-Ir
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8II!11 - S0trll + QAES (xZ (X) - x1(Il ))il (r) - X€ (x)
10 colmrNus

e
Ir' {[T.LT.10001 TEEN

GO rO 14
E!S,B

IF (8,Utr{1.6T.StJ!42) IHEN
wRrTE (6,13)

[3' EoRlttar (2(l'1.,r5*r'Eteration di.verging., pro.c€aai.lrg atopBedr)
!h,L = 1
go To 21

SND llr
END IF

14 CONII!'II'E
SUM2 - SUM1
,rF (su!,t1.eT.TEsrj co To 8c***r** ot'herwiser 9trd of it€ration fon !d-E-b EvC EVAI (M) = Ef G\rA,!
EVAIJ (M) - QggRI (El€vg,r,1
SUMM - SUIOI + EI|AL (M)
ctn4l = gur4.uDIAG

15 SI!M1 = ZERO'
DO 16 f:l,r til

50!11 - sq!!l + Xz.I) *x2(I)
16 COIITTNUE

lz&Ncfltl - egeRT (SUtfi)
DO L? f-1,N

V'(I'M) = X2 (I) /vLN€trH
17 CONIINUE,

c
DO 1E I=L1N

Do 1g tl-lrN
C(IrJ) - C(IriI) - V([,M) *V(lt"M)*EIQVAI/

18 gOl'ItISnrE
c

ra ( (M.t,KE)'.AltD. (CtMi.r,E.0. ggi. 9Q+00) l THENC TF (M.I.T. KE) TIIENM-M*1
GOTO6

EIJSE,
rF (Itt.r.T.KE) E$EN

KE-Ir!
!{RrrB {r-1, *}!f,RrrE {, q, ilWRIIE (13,20i)

20 FOft!{AT (2(/rl
EITD IF

EHD I3
c*.***

gn CONT'!{UE 
End of colll'utatisn of eiggaveetsrs

YTBTTE (5 r24,
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c
c
c
c
c

24 FOAMAT (10 (/l,2X,, EreEll-tUES,, l1l,
WRI'fE (5,25) {E\'AL(r),t=1,K8)

e5 PORMAT(2X"F15.7I
,OIlMf = .ZERO

SU!i!{ = 38RG
DO,30 I-1IKE

SUtt{ o SUMDI + EvnE (r}
Ev.rALI - X00*EVAL (I) /Ofae
CIIMI=CIIIII+U\tALr

IVRITE (13. 29) I,Ev,AJr (I),EVAII,CUMI
?,? rORI\{AT (trX,'EIGE!{\/AIUE ,rf3rp,is.?rtls.?, r *, r!F1g.Z, | *t,30 CONTINUE

ylRx,rE (13,,31) 91116$DrAGrM
31- FOBITIAT 12 l/', , JlX, ,r gvr" OF EIGEII\'ALUES = , , t g.. {, SX,L , suM oF DrAGq.lrAx. EtaivtENfs or,F16 .4r6K,rii _f ,t4l
write to dick ttte ltE![Ii eig.enwe.ctors that are assoeiated with the
NailD 1a:rgf€st eigenvaluee in osder of xragnituae. 

-fheg6 vectors fordran atrlproxlmate bas.l,s fo:l matrix A aC at beginninE CIf this procedure

CAXJE TT'PLE
wRrrE (13,36) K8
DOr 34 I=1rN
WRITEI (19,33) (\f (I. S) ,,|:J.., KE)
ntsrTE (13,37) (V(r,"t),rJ-l,KE)
rolu{eir ('10t'8.rt}
CONEf,TII'E
$lRrrE (61 35) KE
qffillAEU?XrlZr' Elg.envectors stored and written to digtrrD
FoRllar (r 0' , , THE' , 13, r Eregtnt5c[oRg, )
roBlrAT (x,N, 10.11 0 . 11)

RETURN 
End of Brocedr,rre -ETGEN

END
C*'****rt**,****************** ***** *****************.***,*******,.*******!r***
C proeedure eOMptS (Courponent,s o,r loading matri.r) *
c****** ****** * *'******'* * *,.******* * ****.**** ***i*:**********.******** *.***.** **,*

EUBBOUtrINE Cot@rs
REAI,*I6 a(900,,40) ,D (900,10),c (40, tl0),v(40,40),

Pql-8,q91, $$Q (10) , SsQr, ssQJ, Dl{tNftt, DMINLI, zsRo/oNE, TEST
,XNtrEGER .IRO!$ {8100, 101,
co0/IoN /taBBL,)./?,ESOrONE,tESr,NoB,T,NVARrNEND.liIA,L:, IigCCtErIUNX!rfpE,

ICONTT ICON, IFAULT
lt;,aql',z/A
hrABEL4/C,V
/T"A3,E;I.slD

eompute tsh€ J.oadiag nratri-x D(Ir,tl .

qAlil I[I3T'E
DO 3 I=1rNOBJ

DO 2 .I=I"KEND

33
34

35
35
31

c**** ****

e
e
e
B

c
c
c



D(f,J) - EERO
DO 1 K=trl[ltAR

D (I, !t) - E (Ir.I;
1 CONT'Iry.U,E
2 COMITNUE
3 CONTINUE

C.'l*** gonstru€t rank,s of
DO 600 iI:lrNEND

DUAt(.rt = D,(,Lr,J)
DO 601. f:l ,NOBiI

D,t{Il = D(tr.tt)
fF (D,J(I).GT.D!rtAl(J) DI{AXJ - D,J(I)

60]. CONTINUE
DO 5 Krtr,t{QB,n

pl4tN.l : Dl'lAXJ

DO 4 f=leNOB,f
rF (D.t{r} .LE.Dr{xlu) TtrEN

DMIN,I = D,f (I)
IMfNO = tr

EIiID IT
4 COITTEIIUE

IROW(U'{INJTJ) : (
C*trn

DJ (IMXNrt) = 2*Dl{AltJ
6 cor{TrMrE

600 cot{trlrlrE

230

+ A(XrB) *V(.K',Jl

€lements in colrlnns ,6f iniLj-al loadirrg raatri:c

Fush out of teaoh

Ct**'**

7
i@

:g

tftrite Io-adings to diskflles, ddaam€s 13 and 15
;lvRItE (13,7) NEI(D
roRMAT (f 0 ' , 1X, ' OE61EST NIrtltBER' /

,5X,' rEEtlr3rr Co[u!6ls or lurrtaE loaDrNG I,'ATRDIt)

PO f0 f-1,NO8O
WRIIE(:13, B) I, {D (I, O} 1rI=1rN8ND)

^ WRI.IE (15? 9) (D (I, rI) 
" 
J=I'NEND)g l'oR!'qr (1x, 13,tro trxrrib. eJ i9 FORIdAE (108 A.4|

10 CONETNUE
C***** .*'**** Row-unit:i.zed datarF. (ruNrE.FQ..l) TILEN

DO 12 .I-1rNEND
SggJ = ZERO
DO X.l I-1INO.E,J

S-SQ,I = SSOJ + D (f , J) *D (I, J)1,1 COUEINUE
SEA (J) = SSQ'J

12 Co!flrINUE
vilRrrE (13, 13)

13-rORlAtr(/1X"'CO!Il!8I SUMS OF SQITARES Or INIEIAE ITOADINGS (Row'UNIxrIrZ
eED DATA,) '/)

WB.LrE (13, 14) ($Se (J.) 
" 
OJI,.NSND)
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14 FORMIIT(4X,10 (lX,810.4) )gND TI'
CA[,I" TTTTE
lrRrsE (13, 703)

703 rOgIlAT (!.X, ' RANKS OF ETEME$qS IN CorjIJM!{S OF TNT.TTAT, IOADING MATRXX,'

701
?00

cr****

e/l
DO 700 I-tr,NOBJ

WRI$E (1.3, 701) I, (IROW (I. J) , r.T=1r NE}|D)
roEelAT (LX, t4 n2x, 1 Oxs)

CONFINO,a
RETUR.N

End of ptroeedure COtdpES **t

I
c
e
c
c

e
c

END
e* ****.**** ***.***** * ******* * ******* * ********** **rt*i.** * ****,***** ****.**** **
C Proceduce ESf (Astiln4Le matrlx A usl.ng end-ruembers asl a basis) *
C*** ******:t************'********.*rt***********it*****.********.*****t******n

g{JB8O[IT'I,NE Eg[
^REAJ,tl6 A(800,{ql,D{qqg,1O},eE(800,40),v(40,401rc(40,4r0),D,r(800),q EM({o,40) ,x(40) ,xE (4O) ,e RDNeTB (s00),&a,lTGE (401 , guM, EERorotfE, sEsr,pr,ANG&E,gtrtMA, stJuAE
co*o{oN lt;&BeI,L/ zERo, ONE , TE8r. NOErr, NVIAR, NEND, MAi, rSCAtrg, irrurr, rBpG , xcoNf, rcon, rpi,gl.rg / r,aB.st2/A

A II,ABEI"3/RANGEg lr,aBtt4./crrv'G lria,Fg!,s/og lr,lEELG/RLN@,![il

cqpute the est,i$ate of, A (AE) uslng NEND eolr,lrrurs of D aad
:NENE columng of lt (NEND rows o,f, V trana,poec)
sinee natsraix rrnrltiprication is asgociatlve, eolurtr-rs are rescaledbefor.e rolrg.

CAI,I{ TITI,E
cal,[ tsBIISFS (V, EM.!MR, NEND]

eaXl the A estinate AE(I,O).
DO 4 ,I-lrNOB.f

SUMA - ZERO
Stl!4AS ,= 8ERO,
DJ(I) = EERg'
DO 2 ,tr-l,NVilR

AE(I'J) : SERO
DO 1 K=trrNEt{D

AE(Ir,J) = AE(IrJ) + D(I,K)*V(O,K)1 coflTTlilua
X (J) - A, (Ir,J)

XE (Jt = AE (X, tf)
2 CONTINUE

rF (ICON.EQ.X} TIIEN
cAXiI CONtr"SQ,(E!1,, X, Xts , wAR, NEND )

ENE IF
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1,0,1

212

DO10IJ+l,I{ttAR
Const,rai,ned LSe estjrnate ortly Lf Xf,AtrLE - 0rrF' (IFAUIrT.Eq.O) AB(I.,fr) =, 8E(,f)

S:[E{A = €Ilti[A + A (I, Jl *A (f , ,t)
sltMAE = $uN!AE: + AE(rrit) *AE,(I,,t)

CqtITII{UE
,SlllhE - QSQRT (.Stt!4AE)
SI/I{A - 9S-QRE (StIMh)
DO 3 J:1iNVAR

DO(r) - D,r(r) * (AE (r,.7) /SSMAE) * (A(tr,J) /S$!tA)3 CONT.INUE
4 CONIINIJEe***rt rnverse operationa eo prrocedures S.C.A!E aad UNIT

DO ? tr=l,t{OBJ-
$IJIIA r ZERO
SDD|AE * EERO
DO 5 J-lrtfiI,ARg*.*** Recsale qL1 matrj.* ellementsA(I' J) = A(I,,t) 'tRAltGE (,tt *RLNGTH (f )
Ag (Ir.f) = AE (Ir,J) *RAN$E (.t) *RI"NGTH (T)lglrllBESTWA+A(r,rI]

sullAE E 8\ruAE+AE(r,J'
5 CO}IIINT'E

c**** rf lpE - L, i-nllut data srrgred to 10,0tTF (IFE.E8.1) TTIEN
DO 6 rI:lrNVAR

A (I7 rf) r 100tA (I, Ol /SrttMA
_ 4q (tr" J') = 100*As,(t, '') /sl'[rAs6 CONTINI'E

ElD IF
7 CONIINT'E

c
C lVr[te out the estimate o'f ,A to d:is.k, ddrrame - L],c

DO 11 I=lrNOBrf
watrn (11,8) He![D
EOru{AT (ra}
OLi:I
{2=8

ht€ger arlthneLic. To obt.aln I data-values pet re,eold
KQ q S\tARl8
KS = 8* (lItrAR/8)
IE (K8.Ir,T:.]|t'AR) KQ
DO 1.:0 Jo :leKQ

fF {IN\TAA.GT.JZ)
$tRrrE (11,9)
wRrEE (17,9)

ELSE
t{RrTE (11,9)
wRrrE (17r 9)

END IT
roBlrAT (8110.4)

c**
C:t:t 6

c****

=KQ+1_

THEN
(AE (x, tr), J=J1 r..72 )( A ('Ir J) , r7=il1, J2)

(AE (I,,J) , \t:,tl,, N[iAF,)
( a (x, J} , rr=rrx, NvAn)



2l:3

,r1-,fl *8
oI2-J2+8

rO SON:rINUE
11 COjrsrNuO

nrRrrfi (13, 1.1)
wB,rTE (13r 15),p1 _ 4rtQ|EAlr pNE)
SIrltlA = Z,EBO,
DO 13 I*1,NOB,I

AlqGx,8 = 180*eAReog (D,t(il ) /pr;sultlA iSUI{A+A[G&E
rwRxTa (L?, L2, I,D.t (f ),AI*IGIrE
FORMAT {1X, X4,2S'10. rt)

CONTTNUE
gU!!A - 8It!'tAl$O8"7
wRxTE (13,1.6) St!{a

1tt FORI{AT(il!(,IGOODNE'SS Ot' E'rE By aNcLEs (BEFoRE REscAtrrNc op DATA)')
L5 FORIAT (' 0n, lXr'OBI]ECT IIU^dBER'./

EEE!{EEN PR,EDICfED .AIID OaS]ER'IIIID' /
BESWEEN PREDTCTED AI{D OBSERVED' I
ERROB. -t"F10.4, t D eREEgt )

1,2
13

0 9XTTCOSTNES Or AlrGr.Es
0 19*, rat[GLES (DE,eROES]

16 FORIT|AE lr 0t ,AX,tr![tL[N A]ICULtrR
ITETORN

c.*.r** Ead of, proeedu:re EgT ****
EtVE

C*ttt,i+* * ******** *,**,*lv**,* * ******** rh***Ji*** **.*,****-* ********,t ***t**** *****t
C procedure TTTIJE (page throry and tLtle)
c* ****,* ***,*** *** ***r***** ****.*** * t*.t**,* **,****** ** *.* f******.* ***,*** f r***.***

SE.BRO0TTNE !I.TI,S
BEAL*16 ZgRO, 0![8, T.E'SE
CIIARACTER*3 R, g

_co&s{oN /LlaarillzERoroNE,TE8T,NOB\trNVAR'NEt[DrIIATJTTSCAIJETIUNITTTpE
e n treo$-T, rcoN, rFAuLf,
rurrrE (x3.1)

1 POAIqer (',1t}
Ii = ,No I
I - tNot
rr (IwrT.EQ.l) R='Yes'
trF (rPE.EQ.1) S-7Yes'

, t{RIrE (13,2) l{oEor![vAR,NEND, ISCAIE| S., g
2 roru4aT(1xr'lruuBaRS or oBrtEcts ;t,141
@ ., vA8rABrrgg' :r r I3rg ,., END-IGMBER8 =, , rzi
G ', scstE }IIIMBER = , ,r2,0 t, Ros{-tNrlrzE = trA3l
0 ',, .1008 RQII-5IIM - i ,Aa, /,r 0, I

RETURN
EIilD.

C**** * ******** ****'*rk** ***tt***** *****i** ***.***.**n ******** * ****.**** *****.*
e* pnooedur.e CONLSO *
e******'****'*** * **l'***.* * **.*****it ****rt**** lf ******,***.*i****.** *it**.**,** **.**,**

SUBROUTINE CONT,SQ (EM, X, XE. t[\rAn, $END'
REAL*16 EM(40, 4,01,B.7,{10, 40),e (10,t 0),DZ (10},X(40} rXE (40) r
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0 r (10) r nur*,R!4AX, E!4rJA
EERO - 0.00+00
:RMIN = EERO

trE=0ecb**'* Identif,y the la:cgest negativeEO 1 ,J=lrl$IAR
rE. (JM(OI .LE.EMTN) THEN

lE=IZ*t
iIZ = rf

RlvlIN - XE (.I)
EIID TF

1 CONTINUE
e***'* If a ,Iargeot, negatiwe e,sti,nate €xlgts th€n ...rF (IZ,elx.0) TnElr

RMAI( = QABS (EM (1,,ft!: )
Eltl .o l-

e**** Identl.try the iargest eLement ln column OEDO 2 f:l,NtNb:
'EfvII.tZ = eA,BS (EM(I,,tZ) )IF (EMXOZ.etr.R!dA]() TtrEN

R!tB,* - EIIIJB
f&l-I

E!{D IT
2 coNlINuE

Qrtrt*tt E,xclude x(.'z) ,ftom vesEoE xDO 3 ,tr -trrllVAR
rfl:J
trF (,t.Gf .JZ) dII - ,J - 1
It('I1) : X(J)

3. COUTINUE
C***tt Co-mput€ the nelc bag,[s, gatrix

DO:5 I = IINEND
f1 :f
IF (I.Gtr.IMl 11 -I-LDO4,J=lrNVAR

,fL - ct
IE (J.Gt..72,) 

'tr1 -J-1.Bzf'to) - EM(I,r.tl - E;M(r,gu ) *E!,{(rMr,tl /nu(fM,,fU )

4 do'r.rf#Jrl'.t1) = Bz(r;iT)

5 coNT[llu,E
DO8T.:trINEND-1

EO?.t*l?NEtrfD-1
C (f , 'tl = EERQ
Do6I(:r,tw.a,R-1.

6 coNufiJ;'J) = C (r' J) + Bz (r' K) *Bz ('t' K)

7 collTINuEI co![TIIwrE
NEUD!=NEND-1
CAI/L. D'ryERS (e, NENDI, IfAIILTIc't*** Continue provided matrlx C non-siag
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rr {,rF}il[.T.8Q.0] TIIAN
DO 10 .tr = l,NEti[.D - I

Y('t) = ZA38
DO 9f -I,NVAR-1

Y(.t) - Y (,f) + X (r) 'tEz (J, Xl9 COSEINUE10 coNrrNu.E
DCI 12 J: IIDIEND - 1

D'E (sT) - 8g80
DO1l.K=1,NEND-1

1r coNrrilfiJdr) 
= EE(ur) + Y(K)*c(!L"tl

lE Co}?TINUE
DO 1{ r.f - .1rNVAR, - 1

XE (J) = AEf,o
Do X.3 K = 1,KENo ,- 1

:tE (.t) - EE (O) + Ds (K, *Ez (K, it113 cowxxlruE
lft cgNTr[IuE

c**** Shuffle agryronernt,s gf XE ,aloogq
DO15O-lrt{\it*R-t

iIL:rtr-tr
IF ( (!fitAR+l-trl .LT.OZ) iI1 = rr
xE (!$tAB-Jl) ,s lcE Ct{vAR-.r)15 CONTII{T'E

l(E ('IE) - ZERO
e*{** Eind if ,l.arcgostr negat.ive ...

END TF
e**** End if rFAUr,E = o

EN,E IF'
REISUFN

c**t* Ead of psoeedure egNr.gg
END

e*,* * ilrt****ri**,*.*.ril*.** * **.***.*,** t!*** **** * ******** *****jt*,** ***.**,*.** ****r*it** *
e* Pr,ocedure IDfIIE8S ,*
g**:h * *'**:***** ***'***** **rk**** *,* **.*** *.** * f,***.**,*r *****it** f ***f,t*** *****.***

sEEnouTrNE INVSFS (!t-N, IFAULE]
BEAL*I6 .A [10, 10] , B (,10, 10] n ZERO, ONE. !88T, DEt, pirl, Rri,IrtX,, DgMgtn** Form tlhe tnverse of Nil}I mal,aix'e, and rltuxn as A

SERO - 0.0e+00
,ONE : n .0Q#00
TEST -: 1,.0Q-15

IF-&UI"T -, 0
DO 2 f=l,N

DO 1 J=lrl{
B(I,.tr) = ZERO

1 eONTINUE
Btf 'f) - O![E

2 CeNT.ruuE
DET : ONEg****
DO g J-1,N

outsidd, loog otartg be,low
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e**** Etnd largest elenent in:eoirgrr1 J {.J < ff,l of, natni* A
KMI\X : J
IF (\t.Lr,N) EIIEN

RI{AX - pAtsS (A(.I"J} )
DO 3 K=.I+lrN

rf (QABS (A (Ko J) ) "Cr. H!4Ari) lttEN
RFIAI( - ;QABB (A (K, -I) )
NI'IAtr( e K

ADIE TI.3, coMErlrtTE
E}TD; IF

o**** 
-_InLerelra.nge the J-th and l{llAlG-th rowg,, maxJ,nuising pLvotsxE (.ffMAX.er.J) THEN

Do 4 fl-lrl{
DUI{. - A-(Jr.ill}
A' (..t, ,t1) - A (tldeg, tJ1)
A (RliilAl{, itrl} = D,[J!{
DUM = B(,f,Jl)
'B(fiFJXl'-,B {!$4i(,rll}
B (l0nXr,f1) - DUt'l'

d coNrllfuE
END Il'
PI|T * A'(,f,Ol
E8? - D8f,*PIrT
xF toarr8 (.Pwt . er. EEsrl rrfEN

DOSJl-1rN
A (iI' O1! = A (Jr Jl l /FVf

. B(,Jr,ltrl) = B(lr,,Jlt/pvt.5 AON[rluuE
DO 7 f-l,N

Dr[trM - A(Ir,t]
DO 6 .T,tr:l, N

18 (niNr.,r-) TsbN
A(r,Jll = Atr.Jt-) - A(Jrffl)*prm
B'(Ir.t-11 = B(t.,Jl ) - B(J,,Il)*uua:

EICE TI'
6 CONTTNUE
7 COIITINUE

C'l'*** Wattning, neaE-sir4nrJ.ariLy of ,tlatrix A
E["S

wRrrE (6, g)
€ _ ro$.44" 12 (,1 ), 5;X, I 

processiog stopped, Det,erninant app.roachingr,L I zero. rl
c*r'rc'r 

rFAU&r - r set flag to st.otrt fuo.Elrer processl'llg

GO TO t2
END IPg eoNsrNUE
DO 11 I-lrN

Du^ 10 rL=,X.rN
A (lt, r7) : B (I I r7-l

1r0 CIONAINUE
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11 CONTINUE
12 CONTINUE

C**** End of outside loop
RETURN

C,r**t, End of proeedure INVERS
END

C*******)k*********tt**:t*i.***************rk*f**********tr*********r(*********
C Procedure TRNSPS (transpose)
Ct * ** * * * * *:l ** * ** ** * * * ******:l * * * * * * * ** tt* * * ** * * * * * * tt**tr* * * rk*** * *rr * * * * ** * * *

SUBRoUTINE TRNSPS (V, EM, NVAR, NEND)
REAL*16 EM (40 ,40r , V (40, 40)
DO 2 I=1,NEND

DO 1 J:1INVAR
EM(I,J) = V(J, I)

1 CONTINUE
2 CONTINUE

RETURN
C**** End of procedure TRNSPS **tr*

END
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C***f,,r*fr,,****,*****rr***+*** f,SOS€EK0 FOBfBAII *********rt*rt****.*rr*****,r*.r**
c
C, NOTES': Thi.s prognam reads the argrura€nts for the lterative 'Least,
c rsquere's partjrtionile,g program DSQSEEI(!. FORT8AN
c

r![lrEeER IROIT(1,0)
CTTARACEER,*I REPIuY
CoD@{oN /LAE.EL]- /' TRo!{, 5vAR, riIEilD, !ltiar., r g eALE, rlrNrr, rc

c************************r,h**************it****.**!***,*****ft**ft*******r* ***
e lr fN proglran r
c****th* * *tf'**,*,*** **+*.***** ****.**it * * ***,**** * ******t* *lt *{r**** * ****.**** * ****
C Read required consgarrts from terminal

e.a,xJl. LoAD
e Write required constadt's to disk

qALL !{RrTg
c

stsoP
c****

END
c
git**.**r** ******** *.**'****** ****.**** * **,#**t** ******** **.****** * *i!*.*.**** ****
C* Frooedure LOAD (.loaC law dat,a) *
e***.***** *******,* ***!b,**** * *,***!rd** * *****.*** * **i**r.**.** *****}*** ***,***** ****

SUBROU{BI!{E LOADI
xNEEGER rRO!{ (1O)
CT1i[,![ACTER* 1 REPI"Y
COMIVTON /LABEIJI / IROT{, IiIVAR, NEND,, MA!, TsCAI,E, IT'NI T, I G

]- CONTIIft'8
w8.xTE ('6,2)

2 FOB!4AT (Zlll r5X;'Etrte,r the nunbsr of vartables (at. most 40';,rtr
BEAD (5' *1 1[\rAR
lfRrfE (6,3)

3 FOAIIAE1/,5:(,t!3rrt.c- the ouilben of e-.[d-mei(frberg (at, most 10)tl
READ (5, *) NEIID
wRrss(6,21) $END

21, Fo8ldAjt l,l ,5Kt'Key j.n tbe , 
"I2r, row nr:nbeLs wtrieh identif3r endsrern

B"erS' ' /7DO 22 I*1INEND
BEAD (5, *) rBCIW(r)

22 CoNTrt{uE
4 CONTINU€

WRITE (6,5)
5, E'O8!!!ATl/"S\rtKey' in 0 for no s,caling of variabl-esrt/
0 5x, ' 1 for dj-wLsion b,y observed rnax-lnrurl, | /
@ Sxr t 2 for fracLi.onal- ranEe.e, )

R,EAD (5,*} ISEAIE
Ir (IS'CALE.NE. 0.AND. ISCAI,E.NE. 1.A,IID. ISSALE.lCE. 2l' €CI EO 4
CON-ITNgE
wRIgE (6,7i

7 EO$/!AT(y'rSX,rRon notna]'lze (objects into urrit rfibetorg) ? y/n!l
R8,IAD (6, B) REPITY

I FOrylAr (A1)

Ead of, !-IIAIN progrran *****
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IF (REFI^Y.NE. tYt
0 nxFr,T.NE.,Nr
IUFIT = 1
IE (REPLY. EQ,. 'N'
CONTIDIUg
WRlrE,(6,10')
rOBMAT ll ,'xr 'Key. itr nul{iber of itseEatioits {sr 0 f,o'r none'} , )
REjAD (5, *) rtfAl,
CONTf,NXI.E
r{8xtE {'6,19}
FOB!\[AI(1'5X'll(gY in 0 fore 1'5Q er.ror vccto,li eoef,ficierttsrrl

E SXr,' l, for rnean error veetoE coeff,icients'.}
READ(5,*) rG
lF (rc.NE.0,ADIIr,IG,NE_1) CO rO 11
IIBITE (6,1.5)

READ (5,161 RBP!,r
roBlt&I(A1)
I8 (REPLS.NE,'Y'
RDfuRr,r

c****
EFD

c
e* * ***.**** it ?k'*..;l*,iP+.* * **,*.***** * ****.**,****,*********rt** *** **.*t**** * ****** * *.*,*
c* Proaedure WRI:TE {srtite constanta t,o disk) *
C* 4 **,rt*?t*** ******,** ***'****** *'***** ** * *+***** * ***** *** * *rk*.**** * *'**,**** *.**

coBRoutraNE $rR.-rlFE
INEEGBR IROI{(IO)
gOldtON y'r.qEEIrl/IROI{, }ntAR' NEND 

'MAIrr 
I$CAI"E fUNIf , IG

wRrrs (1.1r 1) NvAa.. NSND,lrh,f,, trscAtE,IUNI,E, rG
1 FOBIIAT (1X,618l

vl[RITE ( l-1,2l (I8Oj{ (n } , X:l, FEND }
2 FOBMAT(1X,1916)

tsE]TURI!iI

cf* ** End of procedure V{RITE *****
END

9

10'

L1

L2

. eND. REPI4I . NE . t y. . AND .

.AI{D.REPIJY-NE.'n') GO TO 6

.OR.F,$PIY.EQ.'n'] IUIIIT = 0

.a$IE.REPDY.NE.'y') oO tO t
End otr proeerdrure LOIAD

15

r.5.

****-*
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e*************'************ LSQ8EEKI FOR. RAN *****i******r**tt************,**
c
e NOTBS: (1)c {2}c (3)
c
c
c
c
c
c
c

REeiE*16

A least Fquares iterative partitioning progrrarr
Input raw data must be in freefieX.d, io* total.e r 100,t
Srrmrarli lnfotmatialr is wrltten t'o diSk d-dname 13,the mergod mattiees 4 plue eatirrat,ed A ddnane 11"the J.oadi.ng nabr5.x, ddname 15, the atrgenveof,,orc ddrianne 19,
and wher-r k : 2r the two noct extr.erne end!€fnbers possibte
dclaEne 21.

A (800r40) ,AE (900,40) , E (800, 40) ,D {900,40) . R (gO0) ,
RANGE {40) , C (40,40) , B (40,40) , EX (40, 40} ,Op (40, 40) ,
8SOS, Z,EROT OI[8, TESI
rRorn ( 401

/-LABer!L/ sERo, o.tvg, rEsr/NoBJ, NVA8,, NEND, DIA!, rSCAr,, ruN8, rrAUlT
IIABEI{2/A, EX, OF, fROVf
A,ABtsT3/RA}IGE
/I'ABALA/E
/r"ABErr5/D,AE
/IABEL6/R
/rAB8f,?lE
/r,ABEr,8/re

8EF(O - 0.00+00
ONE - 1.0e*00
'TESI r 1.00-20

C**** * ******it* *** t **** ** ***.**** ******** *r* ****,** ***.** *t* I ***** **.* ***** * *
C IIAIN program *
C**,*** ** ****** ****,**.*** ******** **************.****t ****** * *** * * ** ********

Load raw dat,a frsn dLek

Regcale columng into fractional rang€g

Resca1e lro,ws l-nto uait veotorg

a
B

I![PEGEB.
c

coDa{oN
G

e
e
e
g

B

o

c

c

c

c

c

G

c

c

CAI.I I,OAD

gAtI, 6C.AI"E

CAIJL UNXI

0AEL E[,Ig

cl[Lt gEEr

ceJ"L col,tFls

CAI"L ENDMEM

callr Es[

STOP
c

c**** *****End of !dAXN prograrr
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END
c
d****tE**':t****j!******* *****r****{r********.********.*i*********************
C* Frocedure LOAD (toad rar data) *
C** **'****** ****.**t ** ******** *.******.***,******* ********.*****.t**** ***:******

SUBROUTINE tOAD
&EAr.,*] 6 A(900, {0) ? EX (40,40),Op (40, 40), AEROTONS, lESt
TNTEGAR rRoer(40)

_ 
col\s{oN /naaal! /_zERo, ol[E , TEgr, ![otso, !IvAR, I{END, !rtar., rsc&I', ru!fltr, rrAuri3g /LABEr,2/A. EX, OP, rBOWA lrABELBlnc

Cx*** Progr:an-.reads nr:mbers of eJ_ernents, ead..metbe.rg ete
B,EA,D,(12, * ) tnrAR, NEWDr!,tAtr, Igcal,r lt NT, rg
BBAD (l2r*) (rROIt(I) nI-t;NEI(D)g**** Progtanr, re'adg and eountg rowg of Lnput fiAtaix
NOtsJ = 1

1 COMTINUE
C**'** fnput nat,rix nust b,e in fseefield

BEjLD (10r., *, END - !) (A (!loB.Jr.7) 1g -- l,t{\raR)
NOBJ-NOBJ+L
coEol

2 CONTT.NT'E
C**** Fnogram oo'r.lnts one more than true nunber qf, reeordsNOBrtr-NOBJ-1 -

RE:TUBN
c*.* * *

END
End of proee.dute IiOAD **** *

e*** * **r****** ******** ******** * *i*.t***rl* ttt,******* **.****** * *****.***********
C proEedure SCALE (scale colunrns) *
C*******t?t****r!****************************i****,********** **it******,**.**

SUBROUIINE SCAIJE

^REnL*16 "a(9:09, {91 rEs(40, 40),op (40, 40),G nancE,(40l"Rt{ax;R!,tiit.ziino,olair,rpsr
II{,TEGEB IROW (40)
COD {ON /.I,ABEI,UAESo.NQNEr 3SST,M, N, KE.,!{AL' ISCAL" IIINT, TT$,UIJfg /I;a,E}EL2,/A,EX"oF., rRowg /r"arer3/RA![cac*** eolumlr Eanrges are r.nitr.alised Lo one .in oase ther.e is
DO 1 ,tr-lrN

B.dNGE (J) - ONE
1 CONTEN.UE

rr (rscAr,.cT.0) THtsN
CAI,TJ TIILE
DO, 6 rf-XrN

M1:1
DO 2 K:2rM

IE (A (K, \t) . GT.A (!,!1r.t) ) !1l = K2 CONIISIUE
R!.{AX - A(MlrJ}
Ml-1
DO 3 E-2rM

no ocal.i;ng



M2

X!' (A(K'if).LT.A(Mlrrx)) Mf = K3 CONIIHUE
RMIN - A(Mlr,t)
IF (rg-CA&.8Q.tr) RANGE(Ol - RltAt(
IF (I9CAL.EQ.2) Rjl!ilCE(J) i- Rltlx - R!{It{
DO { tr;l.,M

Il' (rSCAL. EO. X) A ( I, dI) - A,(tre O! /SMAI(Ir ( ISCAI,. E8. 2 ) A (f r f) - {8 (I,,t) -RI{XN} /BAN€E (,Jlo *rtr![uB
WRfTE ( 13 r 5) ,t, RIilAJi, RlrlIN

5^ ronMAI (1Xl5R, 'VARraEr"E' ,t3r5x, ,!.tAgrM[tM o, ,87.3.6r@ gx,, 'utrllrMtt!! =r , ei3. 6)6 couTrNuE
END IP
RETURN

e****
lsliD

e

e
0

c****
G*rt***

g** **'****** * ****.**** ******** * **,** **** f ******** *** ** ** * * ******* *****i,** * *C Procedure UNftr (unit veetorsl *
C****************it*****'*****************.****,*,*** ***.*******if***********rr

SUEROUTINE uNIT
REA.I"*I6 A[80]0, 40], EX (40, dOt) lOD (4,07 40].

R (800) ,ssQn aE8ofoNE, tEg.f,8.IJNGTH
rNtrE€AR rROSt(d0)
colo4oN l.La tsLl,lg&Ro,,oNE, TEST,M, N, KEr!,tAt, IgCAr., ruNT, IFAI'LT

/ rta&Eriz I a,, Ex, op, rRow
/IIABELFIR

rf rUNF:
R(I) is rhe

DO 3 I=1rM
R(I} = OS1E

rF (rulfr.E0.1,) TLEN
S'SQsZERO
DO 1 .f.-lrN

8SQ-8$Q*A(Xr,tl**2
CONBINUE
RINGEH - QSQB,T(S$9)
DO 2 J-XI,N

A(-tr'.D = f,(I;iJ) /RIi$G'E1l
collTil[ruE
R(I) : RrrN@rtt

glTD IF
3 CONtr.INUA

RETURN
c**** Ead of proeedure uNm ****

E.ND
Cit'tt*******t*tt**r**********.* *****r,**rt:t*rtrt't*,rr:t******.******,*.*.**t*lt********
C Proeedute El,tS (Copf roela 6,f A into end-nternbers)
C*** * * * * *** * * ** * ***.** t* ***.*,*!$rr* * *.* ** ** *ii ****** * ** *:*.* * * i *iil*+il********

qUBRO.I'EENE ED,I8

_REA!.r16 a(800:, 4r0),B({0, 40) 
"c(40, 

40),EX(40, {0),op (40, 401,B zERo,oNErTEsr

End sf preoced'ure SCALE ****

1, the rolrs of A beeoene unit v.eqtorg
lengrt[ of the i-th row vectsr
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IITTEGER. r8o!r{40}
coDSloN [rrABEir'L/z$'Rorol{ErTEgr,NoB,rr},IlraRr}rE![8.![ArJ,rgcAt,rrulrrrrF.AgLT

@ fi,aBErJ2,/ArExrop, rRow
A /r.iABEr4/B

C**** For,$ afrdlr of, end-menbe:rs from speeif.l,6d rowg of A
DO 2 f,+l,rEND

DO 1 J-l,NtrAR
B(IrJ) - A(IROtf (f),.I}

1 coNTrNuE
2 CONEINUE

DO 5 I:I,NEND
EO { ,l-n_lNBND

C(I'J) - ZERO
DO 3 K-lntw&R.

C ([, if) - C (tr' iI) + B (I' K] *B ('f, K)
3 COMTINUE
!T CONTINUE
5 CONTINT'E

eAtt rNr/ERs (c,NED|D, TFAULTI
DO I I-l,rNEl{D

DO ? itr-lrlfl/AR
EX(Irit) - ZERO
DO 6 K-1,NE![D

EX(fr.,t) - EX(I.il) + e(IrK)*ts(K,,t)
6 CONTI,NUE
7 CONTI}IUE
I coNrINuEc** Qonstruet the_orthogonatr projeet,iott operator op (p!1trl), into s-space

DO 11 I-1rM/AR
DO 10 IT-I,MAR

OP(I'J) - ZERO
DO 9 K-1'NEND

OP (I, J) - OP (Ir d) + B (,K, I) *EX tn, dt)9 eolf,rlwE
10 CONAINUg
lX CONTTNUE

C** 6tore Lnitia1 E[ds ia mat,rix liK {Extneqres) r spa[ding k-sBaee
DO 13 I=l,Nt!t{D

DO L2 -J.rrlr t{rlA3
EX (I, iI) = E (I,,t)

T2 CONTIITT'E
13 CONTINUE

BEIURN
C***-* End o;f prooedufe EMS

END
e**** ******rr!t*,**.rt************:*****t*****'*******,******t*.********.*.*****tr*
e plocedure SEEK (Search for EMS)
C* * *****t** ***,*.*.****,******** ***:k**** ***rt.***t * **.rtt*,*** **tr**.** ir ***.if,,*,*** ***

SOAR,OUTI}IE EEEK
.REAL*1,6,A(8.11-0.rt0lrAE(800r410t,E(900,,40),R.ANGE(40,,X(40)"XE({0),0 o (999'!91lcJ40' {0) ,Eir (40,40} ,er {e 0. ari} .plqo,4,bi ,r ilorio) ,0 y ( 40) , ZERO, Ot{E r lfEsf,r SUM,.EIltr



2M

rNTEesR NE (8001,NF (401 , IROW(40)
colrodoN,/LABStl/UEgOrONE,TEgr,t{OB,t,bIItARrN&IID,lrullrrI8CA&,rUN$aIFAIIITCg fiJABM,zlA, EX,oF,IROW

@ I.DABEIJ3,IBAIIGEg luregr,ala
G /LAB.E&s/E"A&g IEAaELTIE
@ ,/:LABEL:8y'IG

c,*.**

CA&L TITI,E
wRIrE (6,*l r>>>>>>D IG -

Pelrrit
,,IG
zero nurnber of Lterations

t{A:L=!4AIJ+L
DO 31 rT - l:.rl'fNL

It.l.rtrf-1
DO 3 .I=1,{END.

Dg 2 .]*1"[TEND
C('I'J) : AERO
DO 1 K=l"!{VAR

C(['J} - C([rJ) + B(I,K)*B(,1rttl
co$TrNuE

CONTTNi'E
CONTINUE

eAL[,, MVSRE (Cf NEND,IFAUI,|T)

e** Conrpute the loading rtatr:lx D (Ir,"T-,' .
DO I 'M*tr,NOD,tr

DO 5 ,IqX.TNEND
Y (rI) : 4ggP
DO 4 I-1rNVAR

Y(r7) - Y{'t} +
CONTINUE

co![rINuE

A (M. D *B (Or r)

DO 7 ,tr=tr.rNEND-
D (M'J) '- EERO
Eo 6 K=I,NENIJ*

6 collHlHr* - D (M, r7) + Y (K) *c (K, r)
e**** .AlI loadiagE trrust b,6 oon-negfa-tLverr (D(M,,t).I,,E,BERO) D([t,.7) = ZE O7 cor{rrNuE

8 CONTIN,SE
IF (rUNr,EO.0,) s[tENgt't'* Regcale loadtrrrgs t,o r,rrrit, rlow-sumg
DO L1 I=,lrN0E,f

SUM - SERO
DO 9 J=I'NEND

SUM.=SIIM+D(I,,J,)
9 CONfINUE

DO 10 'J=Lr}IEN-D
D (l,J) - D (I,J) y'gIJM

10 CORTINUE

1
2
3

4
5
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11 COm[rNUE
END IF

e*'tt* rolrm AE,. egttinat,e gf (scatredl qatrix A *****
DO 14 l-tr nNOBd

DO 1,3,I-LrN\IAR
AEr(IrtD - ZERO
DO 12 B-LSBND

AE(Ir,t) - AE(Ir.fl + D(frK)*B(KrfllL2 coNTxt{uEC*** eonst,tuct the error matrix E, C(I?J) - ExJ

c*** prevelrr *3lio.l ljfuIlr;'Tj*l'
IA ( (-!ESE,I,f,.EI,t) .A![D. (EI,t.LT.EBST) ) EIO - EERO
E (Ir.7) r Efd13 co.NTn{uE

14 COI-ITTNUE
CALXJ IVIEANSO(m1)

Crl**** *,rt** T€St tO eontinrle i.teratlOns n****
IF (XS.r".MAr") TTIEN

C***** **** Identrify zerO 6!rOE veCtOcE *.***.*
DO 300 I ,= l.NOBil

$gQ = aERO
DO301 J=lrlrttlAR

SSg - 8€-Q + 'E (I, J) *E (f , J)
3,01. CONTIUUE

NE(I) - 0rF (ssQ.er.tEsT) NE(r) - 1
3OO CON{TINUE

e***** **.** erl!U;1+ tshe nOn-ZeAO veCt,OlS *****
DO 303 .t = l,'NEl{D
NI'(,fl - 0

Do304 I-trr.fOBtf
NC=0
Ir (D(r,it).C1!.ZEBO) NC = 1
l{8 (iI) = NF(J) + Nf*NE{I)

304 eoNTr!{uE
x-F (l[_F(J).EQ.0,] Nrlo; - 1

303 coNe[NilE
C*** Xmpnove lnet.rl.lg 8,, eoBstruct €r,r,ror vector coeff,.i_cient matris Gc
c*i** xf r€ = 0 then eonstruc[ kxls eat.rix D-trangPo.ae*D (k = NEND)
c

rP (rc.Eo.0) THEN
DO 1-7 I-1 r NEtritD

DO 16 rI:lrNEND
e (I"fl = EEF,O
DO 15 K=I,NOBII

e(r,J) - C(I.J) + D(K.I)*D(K,O)15 colrrrNuE16 colrrr}rnE
t1 coDff,xNu-E

CAI'I, IIWIERS (Cr NEIIO, IFAUIL,T)
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Elnt Xr
c
c**** construct the transpose of error rector ooeffi-elent natrlx G

DO 20 I=LrNOBrI
DO 19 ,I-1rNEND

C**'* Errx is a drllmy variabla
litrg - EERO
18 (rc.EQ.0l tHElr

DO 18 K-IINEND
EtrJ - EI,t + D(IrK) *CtKrJl

18 coN!-rNuE
EI.SE

EXdr = D (r,J) /l{E (.t)
END IT
AE (X' \t) r EXJ19 colrTr.lruE20 CO}ITINUE

DO !00 I-leNOBrI
NZ aQ
DO 101 J!tr,NEND

IF (D(I,'t).GT.BERO) NB - Nz + X

1ox aoNtrifTE((D(r,'t) 'rf,'TE8} 'AIID' (rG.EQ.!')) AE(r'J) - 8ERO

rF (Nz.EQ.NE!|D' IHEN
DO 110 rf - LrNEIID

11o colrrrffiJr' 
o) ' sPie

END IF
100 COI{IXTNUE

DO 1.03 I=tr,NEND
EO 10tl ,I-llrliI\IAB

F(I'J) - EERO
DO 105 K-1,![OBrI

10s coNTriJ;, 
Jt : F (r, r) + aE (K, r) *E (K,.t)

B(I/J) - B(f rr7) + F,(Ir.t)10rt ooNfrt$xlE
10,3 @N.trlruE

e**** Froject nen EMs Lnto opaoe S (coaetraiaed i.f nacqssary)DQ 27 Ie lrNB![D
Do 23: ,r c lf liMAR

C (I,,f) - B (I, d)
C T{EINUE
DO 25 ,t - l,r![ri7AR

B (I'.7) - EERO
DO 24 R-1I![VAB

24 n"i{lir* - B (rr fi} + c t:' K) *oP (K' r}
25 CONETNUE
21 c-oNtrINuE

C***** Enforee constants row-s-ufirg on gratrix E and r.egcale ****
DO 30 I-IINEND

23
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$IlM - ZERO
DO 28 J-lrlWAR

IF (B(Ir,t).LT.ZERO) B(I,.t) - AERO
B (I' \t) = B (Ir rt) *RANGE {,t)

SUM = SUM + B(Ir.t)
28 CONTINUE

DO 29 rf=l ,NVAR
B (I,,t) = 100*B (I,Jl / (StJlt*RANcE

29 CONTINUE
30 CONTTNUE

END IT
31 CONTINUE

WRITE (13,32) (IROW (rf) , J-1, NEND)
32 ToRMAT (5l/') ,1x, ' TNITTAL END-!,TEMBERS AT ROWS" 1016)

RETURN

END
C**** * ******** **** **** ******** * *** * **** ***** **** * *******,***rl***** ****rr**
C procedure COMPTS (Components or l-oading rnatrix) *
C***** ********* ***** ** )r ****** ** * ******** ******* ** ******** ** *i***********

SUBROUTINE COMPBS
REAL*16 A (800, 40),AA (900, 40), D (900, 40),R (800),C (40, 40),8 (40, 4O),G nx (40,40) ,oP (40,40) ,0 y (40) , sse (40) , sIrM, sser,sse,J, zERo,oNE,TEsr
TNTEGER rROVt(40)
coMMoN lLABg'Ll/,zERoroNE,TEST,NoBJ,N\':AR,NEND,t{Ar,, rscAl. rtNT, TFAqLTg /LABEL2/A,EXTOP,TROW

@ /LABEL4/B
Q /LABELs/D,AE
@ / LAtsEL6,/R

c****

CAIJL TITLE
c** **

Il. (IUNT.EQ.1) THEN
DO 2 I-1 INOB.I

DO 1 J=I,NEND
D (I, ,t) : D (r, ,J) /R (IROW (,t) )1 CONTINUE

2 CONTIbIUE
DO 5 I-1 rNOB.f

SUM - ZERO
DO 3 IT=I,NEND

SUM:SIjM+D(Ir.t)
3 CONTINUE

DO 4 rf=l.NBND
D(I,J) : D(I,.t)/SUM

4 CONTINUE
5 CONTINUE

END IT'

(,t) )

****

to diskfiles, ddnasres 13 and 15

End of procedure SEEX

Unitized rows reguire reecaled loadinge

C**'t *

1L

!9rite loadings
WRITE (13,11) NEND
FORIT4AT (,A, TL]{T TOBJECT NUUAERT,/
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B ,5x,, rHE,,r3r, coLUMNs oF r,se LoADTNG MATRrxr/)
WRITE (13, 19) (IROW ('J) ,,J=1, NEND)
wRrrE (13,20)
DO 14 f=lrNOB.f

WRITE (13, 12) I, (100*D (I, J),J:lrNEND)
WRfTE (15, 13) (D (r, ,J) , il-L, NEND)

L2 FORIIIAT (1x, I3, 10 (lX, F'l0 .2) )
13 FORI'|AT (1018.4)
14 CONTINUE

c** *** *** ** *

END IF
RETURN

c** **

e
0

TNTEGER
COMMON

Row-unit.ized data
rF (ruNT.EQ.1) THEN
DO 16 J:1 , NEND

SSQJ : 2s3q
DO 15 I=IINOBJ

SSQ'J - SSQJ + D (I, J) *D (f ,,t)]-5 CONTINUE
SSQ (.t) : SSQ,I

16 CONTINUE
wRrrE (13,17)

1? FORIV1AT (/Ly.,' COLT'MN SUMS OF SQUARES
EED DATA) ' /)

WRITE (13,18) (SSO (,t) , J-t,NEND)
18 FORr{AT (4X, 10 (1X, F10. 4) )
19 FORMAT (5X,10 (lX, I10) )
20 FORMAT('0')

END
C********t***************************rt**********************************
c Procedure ENDMEM (Rescale, store and print estinated EMs) *
c***********************************************************************

SUBROUTINE ENDMBM
REAL*16 A(800,40)

OT INITIAL IOADINGS (ROW UNITTZ

End of procedure COMPIS ****

,D (800,40) ,AE (900r 40) , B (40,40) , C (40,40) ,D,J (900) ,
,oP (40,40) ,
, suM, zERo, ONE, BEST, pIrAllGLE, SIntA, SUMAE, DE!

G

@

e
e

EX (40,40)
BANGE (40)
rRovf (40)

/.l,AE.E,Lt/ zERo, oNE, TEST, NoB,t, NVAR, NEND,MA!, rscAl, rttNT, rFAUr,T
/LA3.8,L2/A, Ex,oP, IRow
/LABET3/RANGE
lLABELA/B
/LABELs/D,AE

IF (NEND.EQ.2) THEN
CALL TWOEXT

END IF

Rescale the estimate of B

sinee mat,rix multiplication is agsociative, colunns are rescaLedbefore rows.
CALI. TTTIE

c

U

c
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c
DO 3 f-1r l{EllD

SIilIA - ZERO
DO 1 rI=lrMIA8,

I (Ir J) - E (I;.O) *'RAIIGE (,t)
suldA -sdttn,+B(I'J.)I COr{lrr$ItE

DO 2 t7=lrNI/'AR
E (r, J) r 100*8 (I, g) /SUAA2 CONTTNUE

3 CONTINUE
c
e wrlt€ olrt the es,t,inabed endrnembers
c

DO 11 t-:lrNEtilD
!{RIfE (13,81 rROw (r) , r8 l'ORDteT(1Xr, (r,I4rrl END-ME!@ER ?rI2)
O1 -L
il2 * fP

eih**rr rqtgg€r aait,txtretiE. To obtain 10 data-val.ues per reoord
KQ - ffi.a.n /LO + L
DO tO J{ =1rKQrF (!TrtAB.eE.,J?) IHEN

3['IUTE ('13r 9] ( B(Xr,t) r,J=.ttrrg:2]
EIuSE

IfRrtrE (13,91 ( B(I,,r) ril-rflrlilvAB)
EIID Ir

I ro,RMA,T (20X,10r10.4)
,J1 =JI*10,/2 - J2 .t 1..010 co-NTrNuE

11 CON'IXNIIE
DO 1,4 X=1-;NE!ID

,Jl -1
J2-gg*'*'tt* Integer ari.ttunetia. Eo. obtain I data-values per teeordKQ-Mren/8+1
DO 19 ,frJ =XrKgrr (wan.GB.Jz) TtNElr

WRITE lL},1'Z, ( B (I,.f) n,tl-,trlr J2)
EI,6A

[.{RIIE (L9,L2) ( B (f,/J),lT:.il,2$VfR)
END I,E

12 E'ORMAT (9F10.4)
fi1-gr143
J2=J?*8

13 CO!.ruIi[0E
14 CODmTNUE

RBTUR}I
C***'* End o,f trrrocgdure END!&M ****

END
cl******** ****it'*.it* ******** * ***..*,**r********* *f *.*r**.* *** ******** **.**** ***.*.*
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c Proc€drrre EST (Est'tmate rcatrLx. A using ead-nmbers as a bBsisl *
e**** * ***t** * ******'it********* i *******it* ***'********.***** ***,**f,*,t******** *

SUBROUIINE. EgT

-REAxr*16 A (8010, 40), D (800, 40),AE (800r {0) . B ( tl0, 40), C ( 40, ttO),0 px (40,40) ,op (40,40) ,DJ(ood),- 
'

c _ __ , RA$AE (40 ) , SUtl, AERO, ONE, TESI; pr, AI{GLE, SttMA, SU!{aE, DUtr
TNTEGEB rEOW(40)

,e()laficN./r.\BELl-laERO,ONE,TEST,NOEiIrl[trA8.r!.IDNDTMAI],r€CALrrUFTrISAIr,Tg lLABErizy'A,EX,OP, rROt!g ILAEEI,3IBAITGE
E IlABET4/Bg /iI"aBE[,5,,/D,AE

Cor$Fuee thc est,im,ate of A (.AE)

Since ctat,rlx multJ.plication is
befote rowa.

CAII, TITIi,E

c
c
e
e
c

c****

c****

DO ? I:leNOBrtr
:SU&IA = .ZERO

DO $ g=1r1q1749

Row I

a3godiat{V€., eolwnrrs are rogcaled

must sun to 100 for A

RegaaIG the eollgrns

c
c
c

A ( I, tT) - A (f , if) *RAIIGE (.t)
. sqlln - suMA + A(Ir,tf5 co$TrlruE

Do 6 J=l,twAR
A' (r,' il) - 100*A (X, t) /SUltA6 CONEIINIE

7 coNrrlnrE

Gal.L the A e,et,:i.met€ AE(IrJI.
DE[, - 1.0,0Q-20
DO t[ I:lr'lSOErf

Slrflte, - ZERO
SUlilAE = ZERO
D.t(I) = 6ERO
DO 2 ,t=lrmtAR

AE(rrJ) = ZERO
DO 1 K=I,NEND

Ag(X,,t) = AE(tr,r7) + D(I,K)*B(K,.f)1 CO'IVTXNUE
s,uti,lA = sulvlA + A(r,,r) *A(r.Jt
SITMAE - 8UI{AE + AE (.I.,I) *AE {ir,t)2 coNfrtfuE

SUI,IAE * QSORT (SttMeE]
SU!!A - eSeRT (SUl,rA)
DO 3 ,I-1IN\/AR

_ D't(x) = DJ(r) + (AE(r"J)/SUitrAE)*(A(r".I)/SU!{A)
3 CONTINUE

D.t(I, - D.f (I) - DEL
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c
C lrlrite out,
c

DO 11
.I1
J2

e,*,***
KO
DO

4 CONTINUE

th€ estlnate of & to d.j.ekr ddnane -
I=1 r lil0Bil
*f
i$

fDtreger asitlunetie. gg obtairr S .data-riralues per .regordr W{/AR/8 * I
10 JJ -lrKQ!r' {wAR.Gf.Oz} rHoN

ERfTE (11,9) (An 1f rr7),Orrfl,.f2)
WRITE lL7 , 9I ( A ('I, J) ,lI-'Jl, t72)

EI.SE
r$n-EE (11, 9) (AE (I, Jl ,,tr=,flrNlrgR)
WRfTE (17,9) ( A(f r,t) ,.I*r.fl7!W,.gR)

END IT
9, FOETVIAT (gr10 

" 
it)

rf,L-J]. *8
,X2-O2*8

10 CONTINUE
11 CONTIT{'US

wRrrE (13.14)
wRr E (13,15)
PI : 4*0ATAtl(Qffi')
SUMA = ZERO
DO 13 I*1'!IOB.I

ANGITE = 1g,0*QARCOS (D,t (I) ) /p,r
SUMA *StlMll+AIrGLE
![&rrE (13? 12] r,Et (r) ,A]IGEE
FO-8MAE (1X, r4, AF10.4)

oolr,T$firts
SIIMiL o SUII|AINOB,J
IrrRxTts (L3, l6 SgLlA
E.ORMAI (rlx,,' GOODIIESS Ot' Fff BX ANTGI,ES 'l
$OR!!AT l'A' iL;g2 IOB,IECT NITMBER, /gx"coslNEs oE ANGI"ES EETWEE{ FREDTCTEE JtltD OESERV-ED'/

19x, /AltGrJEs (DEGREES) BETWEEN PREDICTED aNO OASERVEO') 
-

I'ORI{AT l' A' ,4N, .!4qA!f $I{CU!;AR ERROR -f ,!'10.4, ' DEGttEESt }
REIT,T'RN

E ld of trlroced,ure E$X ***i*

11

L2
x3

14
15

g
0

16

c****
EIID

C*****rt,******,**rt*****,***.***it** *****,***r*******,***,it*******.***r* ********
C procedure TfrLE (page throw and title)
C** ******* * ******** *****.t** * *** * *** * ***t* * * ** i****,*** * *,**,***i *r*******f*

SUBROI'IINE TTTI.E
REAr,*1 6 8ERO, ONE, tBSr
CHI,FJLSTER*3 R
coMlioN / TTAB,ALL / ZERO" Ot{E r TES.r. NOBcr, WAR, t{aND, MAr., r SCAI,, Xt N1rr, r.!.allLllllRrrE (13,1l

1 FORD{AB (r1.)
R-,No't
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fE(fUNT.EQ.1)R=fYest
wRrTE (L3,21 NoB,t, IWAR, NEND, ISCAL, R

2 rORMAT(2X,' NITMBER OF OAJECTS n, ,14,,, NuMBER or vaiiiei*6-ll,rs,
', NUMBER OF END-MEMBERS -',I2,
', SCALEIIUMBER-trI2,
', ROW-UNITf T'E - 't*3r/rt0, l

RETURN
END

c****rr ** * ******** ******** *** * **** * *** ***** ** **** ** * ******** ******** *****
C Procedure MEANSQ (Form mean of sum of sqJuares of all rxxp errors) *
C**x***************J.rt**********************************************r****

SUBRoUTINE MEe,r{SQ (rT1 )
REA!*15 A (800' 40), E ( 800' 40), Ex (40. 40), oP (40' 40), ssQ, zERo, oNE, aEsr
INTEGER IROW(40)
coMMoN / LAEE,LL / aERO, ONE, TE ST, NOB.', NVAR, NEND, litAL, I SCAL,

/LABEL?/A, Ex, op, rRow
/l.easnt /n

ZERO
I:1r NOBrf

1 .7=1, NVAR
SSQ = SSO + E (I,J) *E (f ,.t)1 CONTTNUE

2 CONTINUE
SSQ = SSQ/ (NyART.NOBJ)
wRrTE(13,16) rT1,SSQ

16 FORIIAT (t0' ,4y., 'ITERATION NUMBER , ,I4,Q r MEAII seuARED ERRoR =,rflS.g)
RETURN

c**** End of procedure MEAI{SQ ****
END

c:t*********************************************************************
c* Prosedure CONTSQ *
c**********************************************************************

SUBROUTINE CONLSQ (EM, X, XE, NVAR, NEND)
REAL*16 EM(40,40) ,BZ (40,40) ,c(40,40) .DZ (40) .X(40),XE (40),

G Y (40) , RMrN, R!4AX, EMr\tZ
ZERO : 0.0e+00
RMIN : ZERO

IZ=0
C**** fdentify the largest negative

DO 1J-IINVAR
IF (XE (J) .I,T.RMTN) THEN

L2-LZ*L
JZ:,J

RMIN : XE (.t)
END IF

1 CONTINUE
c****

rF (rz.cT.0) TflEN
RTIAX - OABS (EM (1, JZ) )

G

0
e
0

IUNT, ITAULT

ssQ :
DO2

DO

If a 'largeet' negat,ive egtinate exislg then
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trMrLe***:* Identt,fy th€ lalgest eXenant in colrrqtrN it8DO 2 f-1,ffit{D
EMIitZ - QABS (E&r(r,.tA) )rF (El,{rir8.cT. RMAII tnEN

BbrlA)l - I['{I.JZ
IM- I

Et{E IT
2 eoMtrtruE

C**** ExcJ,ude X("tu) fsoo ve,otoE x
DO 3 ..tr -lrtt[\lA8,

,f1 = rT

fE (,f,eI.JZ) in-J-1.
x(Jl) - X(J)

3 CODilSrNUE
c**** compute ths nelr baeig metEi.x

EO5I=I,NEND
TL-tr,
rr (I'GT.IU) trl =I-[
DO 4 { '= 1r llnf11

,tt, r ,t
Itr (\t.CE.ts) rJL - 'J - 1
Bs (I.J) - EM(,fr.f) - Frl't(I,,tZ) *E!4(rM".t) /ED{('fMrtZ)
EZ (I1'"tl1 : BE (Ir,I)4 co_Nrlt{uE

5 CONTIITUE
DOOf=XrrNsIID-1

,D.O 7 ,f = 1r NEND - tr
e(f,g'1 - ZEttO
EO6; KqI,NVJ\8-1

C (I' J) = C (rr J) + EA (I' K) *BE (rr' K)
6 oolffrNtf,E
7 COI\ITINUEI CogTirstra

NEt'lDl : ,!*EN:D -, t
CALIJ n[Tl/E'RS (C,TEI{D1, TFAUIJE)

cr**** Co.ntl,nue p.fir,v,i.ded matrl,x C nonFgingIF {.T8.AUTE.E.Q;O}, THEN
DO 10J=I,}IEND-1

V (.7) = EERO
DO 9 tr - I,NV'AB, - 1

r (o - Y (.r) + x (r) *Bu (,t, x)I cou,ErNuB
10 COI0TIICUE

EO 12 't ; IINEND - 1
Dz (J) * ZERO
DOXlKrlr,l{END-1

DS (,t) - DZ (,J) + V (K) *C (Kr.t)
11 CONTINUE
L.2 CONTINU:E

DO14f=lr,gNllg-!
XE (.J) = SERO
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DO!.3K-lrNEND-1
XE ('J) I XE (frl + Dz (K) *Bz (Kr,t)

13 co$trrNuE
14 CONTXNUE

C**r* Shuffle c'ofirponents of XE alorrgrEO15J*1,[n/AI[-1
Jl -,f-1If ( (M/nR+l-rt) ,trr.t.tZl Jl r g
xE (NI|AR-!Tl) - !$:{}f$3'11r6r115 cox,lrNuE

xs (ixE) = ZERO
C**** End i.f, 'l.a.rgiest' nggatlve i.i

E}TD IF
c**** End if r,pAIlr,T -. o

ENt' IF.
R,EEURN

Critt* Eq4 of proeedu:ce CONLSQ
END

C* * * **tb*,**** *.* **** ** *** ****.** * ******* *.** **.***.* f **** ******** *,********** **
C* Proc_edure II{VERS *
C**tt * ******* ******it* * *****,*** ***'****** **'**.*.************ ***:r**** **il***** *

S@ROUTINE INI/ER,S {A,S, IEAULT)
RnarJ*l6 A ({0, 40) 

' 
B (40' 4 0) , uERoroNB' Tgsr. DET' Plrrxr RlitAl(r DUMC**** Fptrr t,he inverse pf rOOt natria-e, ind riturn as A

EERO = 0.0Q+00
oNE = 1.00+00
IEST : 1..0Q-15

I,FAIltrrl : 0
DO 2 I-nrN

DO 1 .X-LrN
E (I' 't) = 'EERO

1 eolqrllfuE
ts (X,I) - ODIE

2 :CONTIIIOE
DET - ONE

C**** Outgide ].oop rltarte bclow
DO 9 J-1rN

e**** Find J,argest eJ-emeDt in co'].uE|lt i (i < N) of, ntatri.x A
XMAI( = J
IF (,t.IJf-N) TEEN

RD(NI - QAB9 (A (.I,,L) I
DO 3 KjJ+l,}r

rF (QABS (,A (K, or) I ,q!. R!{At() BEEN
F}il[AX - QA.EB (A (A,,t] t
,KldAll = K

EIID Ir.
3 CONTTNUE

EI{D IT
ct*** Xnterchas-ge the j-tb aad KMeX-th Egws, *no.iglsing p,lrvot

rF (Kthx.GT.4 THEN
DO { Jl-lrN

DUM - A(,tr.r1)
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A (J' Jl'l : A(fi![Nl' rf-i)
A(KMA:('.t1) E DIIM
DllM - B(Jrrtl)
B ('I' Jl) - B {Xl[Al(, ill)'
E (KMA:{"tl) = DtM

II COITTTNUE
g$ID XF
PVT - A(J,.t)
DET - DET*P\ff
rF (oAgs(Pw)'cT.rEsT) TSBN

DO5,Jl *lrN
A ('lr 'IX) - A (ilr.tl) lPVf
B (Ur,t1) : E (iI, J1) /pVT

5 CONIIITUE
DO 7 l.rlrN

EUt*l = A(I,,J)
DO 6 J1-1rN

r8 (I.NE,J) EHEN
A{f 

' 
Jl} - A (Ir,tl) - A(J, 

'f11 
*P*

B(rr,l1) - B(t.,tl) - B(Jrg11*gUtlC
END IF

6 CONTINUE
? CONTINIIE

c**** Wanning, $sar-sLngLularity g.f natrir A
EI,SE

IwRTTE (,6, g)
8- foRMAT{2 l/N nsx, 'procesat$g stapped. Dete,rminant approaehing,',I , z€ro. ,)

e****
I.FAUITT - 1
@ao12
E}ID IE

I CONTTNUS,
EO 11 f:lrN

DO 10 J:lrN
A(r,J) : 8,(I,J)

10 CONTINI'E
11 COIIIX!{UE
X.2 CCINTINUE

e**** End of outsLde loop
RETU,RN

C*** ri End of pro€edure It{ttERS
END

Qri.!,tt*rtttikrk***.**'***,*..*.*,********.****.**:*r'r******.*t***.**,********tt***tr1r.**.*,***
g. PloeedJrre TISOEXT (Most ertr€me poaeribLe,pair of EMs) *
c***** * *****,*** ****..*.*** **.**.t*1b* * *.***..*tb**-****r**** *-**t**.*** i**.*i**** *******

SUEROIITINE TV{OtsXT

_R$AI{*16 e{809a 4i0),D (8010,40) ,AE (800, {0,) ,B,({0r 40} ,C (40"40t ,D,X(gOOtr0 EX({0,40) rOP (40r40) ,'0 RAIIGE (40) , SUtt, zERor oNE, TESE, FlrANGtE,gItMA, SIil[ABrD-ErJ
nfl[aGER rRO?l(40]
coD44Ot{ ILAEELL/Z$RO,ONE,TEST'NOBJ,tiM*RrNENDrl{AlrrSeS!,rlrNirrIl.AUr"E

$€ flag to stotr, funther pro:eos9ljnE
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g h.aaEt2/arExroP, rRowg I.ABEI,3IRMIGEg ILABET,4IB
G A,'ABEL5,/D,rAE

c
C rf NEND - 2 tshen the eet of f,easi.ble estitr-rates is a straisht line.c This p:eoee'dure locates the mosL errtt€$e possibile eetfunatei on thatC tri-ne.
c

CAbT IITLE
e

lfEG : L
I-0

99 CONTIITI'E
frf*1

DEL r (1.00e-06)*r
DO 100 dI - l,liMB

SIll'tA - (ONE + DEIJ)rtEX(1,,t) - DSL*EX(2,iF)
Xr ($U!{A.IJT.ZEBO) NEG - -1100 coNrrNuE

:IF tlIEe,,GT.0) GO TO 99
D:Ene= (1.00Q-06)*(I - 1)
trBrEE (I3, 20t ) DEr,

?01 ro8}4Ar(5x,tDEtrj = 
"F10.4)DO1O1 J:IETiIviAR

C (nr O) :, (ONE + DELI *EX (1,.t) - DE&*EX (2r,J)
101 CONTTNUE

N&G=1
I:0

199 eoNTxNuE
I=f*1

DE'L - (1.009-961 *1
DO 102 ril - IrNVAR

SUt'lA: (ONE + DEt"l*gv(zrq - DEI'*EX(1rrt)
IF (S[I!4A,LT.ZERO:} NEG - -1IO2. CONITINUE

I:F (.NBe"cE.O) cO tO 199
DEL= (L.O0Q-06,)*{f - 1)
IVRITE (13,301} DEI,

301 FORMA! (5X,'DET, ,= t ,F10.4)
DO X0'3 rT = lrNtr'&,R

el?rill = (oNE + DaL)f'Ex(2r,t) - pgl*gx(1,,1,J)
XO,3 SONTITIUSI

ffRITE (13,1O4)
1,04 FORIIIAT('0',5Xr'THE I[tO MOS! EIfir*SME POINTS 9;OBSTBIE',1)

DO 3 tr-[aNEND
$tlt'IA : ZERO
DO 1 ,tE1,lfir.An

C (Ir it) =C (tr't7) *&AN€E (.tr):
SoDdA = S[nA + C(I,O
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1 CONAINUE
DO 2 Ji1,NVA3,

C (I, fl - 1-0,0tC (I" J) /$tt!rA
2 C€NIINUE
3 CONfINUE

c
C WrLte out ths mogt €xtrqn€ p-ossLble pair of Elltg
c

DO 11 I=I,NEND
wRrrE (13,8) r

8 AOA!{AT(1Xr'tr@8! EXjIRElctE , rt?lrrl-1
'J2 - 10

C**** Integer aritltnetic. no obtain 10 data-values trr€r teqord
llQ'NVAR/I.+1
DO 10 ,J.f -1 ,KQ

rP {NVAn.GT..I2} IHEN
WBIT'E (13.9) ( C(I",t),J-'Ilrrtz)

ELSE
nRfTE (13., 9l ( C (I, O) r,tr=Jl, lsfARI

ErD II'
9 8ORMAT (20X,10F10.4)

rfl=,tr1 *10
JE-J,2*LA

10 CO.NIINUE
11 colflrlrruE

DO 1il I=I,NEND
O1 -tr.I2-8

C*'*** Intege* ari.ttEnstic. lo obtain I data-v,.alues pet recordKQ-l{tIAR/8+1
DA 13 J,t *lrKe

rE (l{ltAR.GT..t2) TBEN
WBf E (2LrL?l ( C(I,Jlrrl:iflnf2)

gLSE
!{RITE 42LtLzl ( C (r,[) rJ-J1rlitVtB)

E!(D IF
12 aoRMAT (9F10.41

{1 =,fl*8J2-J2+8
13 @r{TrNuE
1.4 colrmNuE

REfl'RN
c'**** End of procedure rgioExT ****

END


	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf
	10128.pdf
	10129.pdf
	10130.pdf
	10131.pdf
	10132.pdf
	10133.pdf
	10134.pdf
	10135.pdf
	10136.pdf
	10137.pdf
	10138.pdf
	10139.pdf
	10140.pdf
	10141.pdf
	10142.pdf
	10143.pdf
	10144.pdf
	10145.pdf
	10146.pdf
	10147.pdf
	10148.pdf
	10149.pdf
	10150.pdf
	10151.pdf
	10152.pdf
	10153.pdf
	10154.pdf
	10155.pdf
	10156.pdf
	10157.pdf
	10158.pdf
	10159.pdf
	10160.pdf
	10161.pdf
	10162.pdf
	10163.pdf
	10164.pdf
	10165.pdf
	10166.pdf
	10167.pdf
	10168.pdf
	10169.pdf
	10170.pdf
	10171.pdf
	10172.pdf
	10173.pdf
	10174.pdf
	10175.pdf
	10176.pdf
	10177.pdf
	10178.pdf
	10179.pdf
	10180.pdf
	10181.pdf
	10182.pdf
	10183.pdf
	10184.pdf
	10185.pdf
	10186.pdf
	10187.pdf
	10188.pdf
	10189.pdf
	10190.pdf
	10191.pdf
	10192.pdf
	10193.pdf
	10194.pdf
	10195.pdf
	10196.pdf
	10197.pdf
	10198.pdf
	10199.pdf
	10200.pdf
	10201.pdf
	10202.pdf
	10203.pdf
	10204.pdf
	10205.pdf
	10206.pdf
	10207.pdf
	10208.pdf
	10209.pdf
	10210.pdf
	10211.pdf
	10212.pdf
	10213.pdf
	10214.pdf
	10215.pdf
	10216.pdf
	10217.pdf
	10218.pdf
	10219.pdf
	10220.pdf
	10221.pdf
	10222.pdf
	10223.pdf
	10224.pdf
	10225.pdf
	10226.pdf
	10227.pdf
	10228.pdf
	10229.pdf
	10230.pdf
	10231.pdf
	10232.pdf
	10233.pdf
	10234.pdf
	10235.pdf
	10236.pdf
	10237.pdf
	10238.pdf
	10239.pdf
	10240.pdf
	10241.pdf
	10242.pdf
	10243.pdf
	10244.pdf
	10245.pdf
	10246.pdf
	10247.pdf
	10248.pdf
	10249.pdf
	10250.pdf
	10251.pdf
	10252.pdf
	10253.pdf
	10254.pdf
	10255.pdf
	10256.pdf
	10257.pdf
	10258.pdf
	10259.pdf
	10260.pdf
	10261.pdf
	10262.pdf
	10263.pdf
	10264.pdf
	10265.pdf
	10266.pdf
	10267.pdf
	10268.pdf
	10269.pdf
	10270.pdf
	10271.pdf
	10272.pdf
	10273.pdf
	10274.pdf
	10275.pdf
	10276.pdf



