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Endmember

(@ One of the two or more simple compounds of which an isomorphous
(solid-solution) series is composed. For example, the endmembers of the
plagioclase feldspar series are albite (NaAlSi;Og) and anorthite (CaAl,Si,Oy).
Syn. minal.

(b)  One of the two extremes of a series for example, types of sedimentary rock or

fossils.

Source: Glossary of Geology (1980). R.I. Bates and J.A. Jackson (Editors). The
American Geological Institute, Falls Church, Virginia, 751 pages.
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ABSTRACT

Large compositional datasets of the kind assembled in the geosciences are often of
remarkably low approximate rank. That is, within a tolerable error, data points
representing the rows of such an array can approximately be located in a relatively small
dimensional subspace of the row space.

A physical mixing process which would account for this phenomenon implies that
each observation vector of an array can be estimated by a convex combination of a small
number of fixed source or ‘endmember’ vectors. In practice, neither the compositions
of the endmembers nor the coefficients of the convex combinations are known.
Traditional methods for attempting to estimate some or all of these quantities have
included Q-mode factor’ analysis and linear programming. In general, neither method

is successful.

Some of the more important mathematical properties of a convex representation of
compositional data are examined in this thesis as well as the background to the
development of algorithms for assessing the number of endmembers statistically,
locating endmembers and partitioning geological samples into specified endmembers.

Keywords and Phrases: Compositional data, convex sets, endmembers, partitioning by

least squares, iteration, logratios.
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NOTATION

Matrices and vectors are denoted by bold-faced letters preceded or followed by
their orders in parentheses (except when there is absolutely no possible doubt), for
example (nxp) X. The i-th row and j-th column vectors of a matrix such as (nxp) X,
when they require identification, are denoted by (1xp) x; and (nx1) Xj respectively and

the intersection of the these vectors is the element Xjje

The R-mode origins of Q-mode 'factor' analysis, are examined in the first
chapter. In order that there be no ambiguities in the accounts of the two modes, symbols
with a particular R-mode interpretation always appear with a subscript such as Xg» Zg.
It is not necessary to take subscripts to second levels. So, for example, the covariance
matrix of the random vector Xy is Z, in which 'R' has been dropped. An occasional
subscript is necessary to distinguish a Q-mode construct such as RQ. One further
distinction between the arrays used in the discussions of R-mode and Q-mode
procedures is that the order of a multivariate sample of n observations (n > 1) on each of
p variables will always be (pxn) in the R-mode case and (nxp) in the Q-mode. Thus
(pxn) Xy and (nxp) X are data matrices in the R-mode and Q-mode contexts
respectively. Geometrically, the rows and columns of either array represent n points in
p-space and p points in n-space, or vice versa. The R-mode account focusses on the
relative positions of p points in n-space while the Q-mode account focusses on n points
in p-space. With the convention described above for defining the orders of the arrays,
geometrically analogous relationships in the two modes involve algebraically analogous
pairs of matrix equations.

It is a convention to distinguish between random variables and the values they
take by upper and lower case letters respectively. The reservation of upper and lower
case letters to denote matrices and vectors as already described, prevents this distinction
being employed between random variables, vectors or matrices on the one hand, and
their realizations on the other.

The following list sets out in approximately alphabetical order those symbols
that are used consistently with one meaning.



[T

a (1xk)

a, B, v, 6

BI,B2,...,Bk

B (kxp)

B€ (kxp)

B® (kxq)

Bj (kx1)

By (mxn)

Bg" (mxn)

b, (1xp)
B (xxp)

B® (xxp)

C (pxp)

viil
the matrix transpose of the array enclosed by [ ]
a constant
an arbitrary row vector
integers for subscripted variables or points

the k vertices of a convex polytope whose position vectors are
endmembers

a matrix whose rows are endmembers which are the basis for
k-space S. B is the estimate for B

the matrix product BC where C is (pxp) diagonal

a matrix whose rows are the endmembers of a subcomposition
@<p)

the j-th column of B

the matrix of mean-corrected factor scores in the R-mode factor
model

the matrix of mean-corrected rotated factor scores in the R-mode
factor model

the i-th row (endmember) of B
a matrix of compositions of true or theoretical endmembers

a matrix of compositions of perturbed true or theoretical endmembers

a convex cone vertex O, whose generators are endmembers

a diagonal matrix for postmultiplicative column transformations



E (nxp)
E¢ (nxp)
E* (nxp)
e; (1xp)
e (1xp)

i

E; (pxn)

€ (nxp)

€g (pxn)

Inf(vj,vj), the smaller of v, V;

the matrix of mean-corrected standardized scores in an R-mode factor
model

the i-th row of Dy (pxn)

the (i,j)th element of Dy, (pxn)

the diagonal matrix of diagonal elements of X

the diagonal matrix of diagonal elements of Sy

the matrix of incremental adjustments to matrix B of endmembers
the expectation operator

the matrix of residuals in a convex representation X =LB + E
the matrix product EC in the transformation XC = LBC + EC
the matrix of residuals in the equation X = X* + E*

the i-th row of E

a vector of residuals

the (i,j)th component of E

the matrix of residuals in the estimated R-mode factor equation
Wr=LgFe+Eg

the error matrix in the convex model X = AP + €

the matrix of specific errors in an R-mode factor analysis sampling
model



eg (px1)

F (nxp)

f (1xp)

Fy (mxn)

Fy (mxn)

fg (mx1)

f; (mx1)

f, (m+p]x1)
@ (pxp)
¢Rii

@ (pxp)

G (kxn)

H

Mg (pxn)

i,j,m

the vector of specific factors in an R-mode factor analysis model

a matrix of n error vectors created by removing negative components
from L

the error vector x' - x? = (/- I')B
the matrix of factor scores in R-mode factor analysis sampling model

the matrix of (varimax) rotated factor scores (R-mode factor model)

the vector of common factors in an R-mode factor analysis model

the vector of (varimax) rotated factors (R-mode factor analysis)

a vector of mutually orthogonal standardized random variables

the diagonal matrix of specific variances in an R-mode factor model

the i-th diagonal element of @y (pxp)

the covariance matrix of the errors for a partial principal components

solution

the error coefficients matrix. AB = GF

the convex hull of the points B, By,....By

the mean-corrected specific factors of an R-mode factor model
the unit matrix of any order

integers (m is reserved in Chapter 1 for the number of factors)

an integer, the dimension of estimate space S, also the estimated

number of endmembers



L (nxk)

L (1xk)

I (1xk)

P (1xk)

I* (1xk)
I" (1xk)
ij

LR (pxm)

A (nxk)

Ag (pxm)

A; (pxm)

an integer, the dimension of the true mixture space &, also the
true number of endmembers

a loading matrix of estimated mixture coefficients, the components of
each row are the coefficients of a convex combination

the i-th row of L

a vector of mixture coefficients, the coefficients of a convex

combination

the corrected solution for / in which negative components have been

set to zero

the least squares solution for I to the overdetermined system x = IB
the linear programming solution to the overdetermined system x = /B
the (i,j)th component of matrix L

an estimated loading matrix in R-mode factor analysis

the true or theoretical matrix of the contributions of k endmembers to
each of n geological samples. Each row contains the coefficients of a
convex combination

the i-th row of A

a true or theoretical mixture vector, the coefficients of a convex

combination.
the (i,j)th component of A
the factor pattern or loading matrix of an R-mode factor analysis

model
the rotated loading matrix of an R-mode factor analysis model
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AR; i the (i,j)th element of Ay (pxm)

M (nx(p-1)) the matrix of logratios of exact true or theoretical mixtures

M;, (mxm) an orthogonal matrix, MgMpT = MTM, =1

m an integer, the number of factors in an R-mode factor model (Chapter
1 only)

1 (1xp) an exact true or theoretical mixture AP

n the sample size, number of objects or geological samples or
specimens

0 the origin of Euclidean p-space

Og the origin of Euclidean n-space in an R-mode factor analysis
sampling model

P the hyperplane through the points B;,B,,....B,

p the number of variables associated with a single object or geological
sample

Py a hypersphere in n-space whose centre is Oy and radius /n-1

q, s integers, usually less than p

R (nxn) a diagonal matrix, associated with row transformations

R, (kxk) a diagonal matrix

R, (nxn) a diagonal matrix

RQ (nxn) the similarity matrix of a Q-mode analysis

Ry (pxp) the correlation matrix of an R-mode analysis



TRij

xiii
the (i,j)th element (correlation) of Ry

the position vector of R*, the orthogonal projection of point R into
space S

the coefficient of determination between the observed and estimated

values of a variable

the k-dimensional estimate space formed by the intersection of the
positive orthant of Euclidean p-space with the subspace spanned by k
estimated endmembers

the k-dimensional mixture space formed by the intersection of the
positive orthant of Euclidean p-space with the subspace spanned by x
true or theoretical endmembers

the m-dimensional factor space spanned by estimated factor-vectors
the m-dimensional factor space spanned by theoretical factor vectors

diag(s;,8;,.-»8;)

the i-th row total of [B,,B,,....B q] and the i-th diagonal component
of S

correlation matrix of the joint distribution of zy

the sum of the components of [x'l,x'z,...,x'q] where g <p
the standardized sum of the standardized residual logratios
the matrix of unitized column eigenvectors

the j-th column of U (nxp)

non-negative errors in the linear programming method



V (pxp)
v; (px1)
v (px1)
vy (px1)
W (nxp)
W, (pxn)
% (nxp)

X (nxp)

Xy (pxn)
X X,5,..X
x, (1xp)

x (Ixp)

i

X' (nxp)

) S L.
x'; (Ixp)

x' (1xp)

Xiv
the matrix of unitized column eigenvectors
the j-th column of V (pxp)
a unit vector
a unit vector
a matrix whose rows are unit vectors parallel to the rows of (nxp) X
the matrix of row standardized scores of multivariate random sample
a matrix of raw geological data in weight, volume or other units

a matrix of compositional data, containing the concentrations of p

minerals in each of n geological samples

a multivariate random sample or its realization (R-mode)
datapoints whose position vectors are X;,X,,....X;

the i-th row of X

a vector of the composition of a single geological sample
the (i,j)th element of X

equal to the matrix product LB, an estimate of the matrix product
AB, also an estimate of X (nxp) when it is given

estimated positions in k-space S of the datapoints X,,X,,...X
the i-th row of X', equal to LB

an exact mixture, equal to /B where the components of I are the

coefficients of a convex combination



x'ij
X, (nxp)
x"® (1xp)

X* (nxp)

XK
x* (1xp)
X¢ (nxp)
x" (1xp)

Y (nx(p-1))
¥ (pxp)

Vi

Z (nx(p-1))
z (Ix(p-1))

Z; (pxn)

zp (px1)

XV
the (i,j)th element of X'
a matrix of true or theoretical exact mixtures, equal to AP
an exact mixture for a subcomposition

the matrix of orthogonal projections of the rows of X (nxp) into the
space spanned by the eigenvectors v,,v,,...V,

the orthogonal projection of the point X onto k-space S
the position vector of X* and least squares estimate of x
the matrix product XC where C (pxp) is diagonal

the linear programming estimate of x

the matrix of logratio data corresponding to X (nxp)

a diagonal matrix of eigenvalues

the j-th eigenvalue of a positive definite symmetric matrix
the residual matrix for the logratio model

the residual vector for the logratio model

a random sample from a joint distribution of standardized random
variables

a vector of standardized random variables, each component having

distribution mean 0 and variance 1
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TERMINOLOGY

Column transformation: post-multiplication of (nxp) X by non-singular (pxp) diagonal

Composition:

Concentration:

Element:

Factor space:

Factor vector:

Mixture:

matrix C

any (1xp) vector x = (xl,xz,...,xp), uniquely defined on a geological
sample or specimen whose components are all non-negative and sum to
1. The components of x are often interpreted as percentages or ppm
and called concentrations

a component of a composition or part composition (see Composition)

either a component of a matrix or a chemical element

R-mode, an m dimensional space spanned by a set of m orthogonal
(1xn) factor vectors.

R-mode, a vector (1xn) of scores of an individual factor.

a convex combination of distinct compositions. See also Mixture
coefficient

k k
Mixture coefficient: If 21. = land /. >0 allj, then /. is a mixture coefficient and z Lb.
=i i i =tk

n-ball:

Object:

Object space:

Object vector:

i
is a mixture, the vector I = (15lyseesly) is also a composition.

{(xl,xz,...,xn): xf + x% + e x,21 < az}

a sampling unit, a geological sample, a specimen

the measurements on a single variable taken for each of n objects define
a unique point in n dimensional object-space.

a vector of measurements on the p variables associated with a single
object (also an observation vector)




xvil

Part composition: a sub-collection of the components of a composition (see

Composition)

Partial composition: given a composition x (1xp), any other composition formed from a
subcollection of q components of x, 1 < q < p, together with a (q+1)th
component equal to the sum of the remaining (p-q) components of x
(see Composition)

Q-mode: given an array of the values of p variables for each of n objects, an
analysis of the relationships between the p-component object vectors,
usually based on an (nxn) similarity matrix

R-mode: given an array of the values of p variables for each of n objects, an
analysis of the relationships between the n-component variable-vectors,
usually based on the (pxp) correlation matrix

Sample: either a statistical entity (see Johnson and Wichern (1988, Chapter 3))
or a geological specimen

Sample vector: as for variable-vector

Subcomposition: given a composition x (1xp), any other composition x* (1xq),
1 < q < p, formed by scaling a subcollection of q of the components
of x to sum to 1. The scale factor being the reciprocal of the sum of the

q components of x (see Composition)

Variable-space: the measurements on the p variables associated with a single object,
define a unique point in p-dimensional variable-space

Variable-vector: a vector of the n values of a single variable observed for each of n
objects (also the realization of a random sample)



INTRODUCTION

This thesis marks the completion of an initial investigation into the problem of
resolving each of the observation vectors of a compositional dataset into mixtures of a

small set of fixed vectors known as endmembers, whose compositions may be identified

with particular source materials.

Figure 1. lllustration of a Perfect Mixing Process

Involving Three Source Endmembers.

ZERN River |
.'.:"-." BI

River 3

To illustrate, consider the lake (Figure 1) which is fed by three rivers. River 1
carries sediment of fixed composition B, into the lake. Similarly, rivers 2 and 3 deposit
sediments of fixed compositions B, and B, respectively. The three p-dimensional
vectors B,,B,,B; are endmember (source) compositions, each containing measurements
on the same p elements. Various dynamical processes move these source materials

around the floor of the lake. If a sample of sediment is taken off the lake bottom, then



in a perfect (error-free) model, its composition x will be a mixture of the compositions

B,.B,.B;. Algebraically, x will be a convex combination of B,,B,,B;. Thatis,

x = A B+ A8, +AsB,

where A, + A, + Ay =1and Ay, A,, Ay are non-negative.

Denoting the mixture coefficients A, X,, A;] by A and treating B,,B,.B; as
row vectors, then row vector x (1xp) is the matrix product of A (1x3) by matrix B

(3xp) whose rows are B,,B,,B, in that order. This perfect mixture may be written,

x = AB

If a number n samples are taken from different locations on the lake floor, then
their n composition vectors will constitute a matrix X (nxp) which will be the matrix
product of A (nx3), a matrix of mixture coefficients, with B (3xp), the matrix of

endmember vectors. Hence,
X = AB

The rank of X (in this perfect model) will be exactly 3. Therefore, its n row vectors will
occupy a 3-dimensional subspace & of p-space. Further, because each of the
corresponding n sets of mixture coefficients sum to 1, these row vectors define the
positions with respect to the origin of n points inside a plane triangle whose vertices

(extreme points) are defined by B,.B,.B;.

In practice given an array of compositional data X (nxp), the number x of
endmembers and their compositions B,,B,,...,B, are unknown. There will also be
error-causing random contamination, which may be represented by the error matrix €

(nxp). So the theoretical model for the true decomposition of X is given by,



X =AB + €

and the complete 'linear unmixing' problem in a real situation is first to attempt to
identify the space 8 spanned by the unknown B,,B,.....B, (which also implies an
estimate of the integer x), then to estimate both the matrix of endmember compositions,
and the matrix of mixture coefficients. (It should be noted that departures from the
matrix AP of perfect mixtures may include non-random components. For example, the
CaCO; contribution from a biogenic source will appear to vanish in marine sediments
which are taken below the carbonate compensation depth (= 4500m) where CaCOj is

mostly dissolved).

Historically, the problem was not formulated in this manner. Indeed, the
literature to date has really only described algorithms for constructing approximate
decompositions of particular transformations of a compositional data matrix. Suppose
for example W (nxp) is the matrix whose rows are the unit vectors in the directions of
the corresponding rows of the matrix X (nxp) of observed compositional data. The
earliest approach to the unmixing problem was a procedure for eventually expressing
each row of W as an approximate linear combination of k 'extreme' rows of W, where k
was the analyst's choice of its approximate rank. The method employed adaptations of
factor analytic algorithms which were applied to the (nxn) similarity matrix
RQ = WWT. This strategy could not work in general because a real compositional
dataset rarely contains a set of 'extreme' observations, of which linear (or convex)
combinations would account for each of the remaining rows of W (or X) while
simultaneously obeying the non-negativity constraints necessary to account for real

mixtures.

The initial algorithms were extensively modified over time, both to exploit the
‘constant-sum’ property of compositions, and to attempt to grapple with the difficulty of
absent extremes in the observed data. But what remained unchanged throughout these

modifications and has endured until the present is the basic perception of the problem as



an application of factor analysis. The only challenge to the factor-analytic approach has
come from the advocates of the linear programming method, but since this requires
extremes to be specified a priori, it is seen by some to lack objectivity. In fact, the linear

programming method has other weaknesses which are discussed in Chapters 2 and 3.

The adaptation of classical factor analysis brought many of the difficulties of that
dubious practice to the analysis of mixtures. In the conventional analysis of a sample
correlation matrix Ry, the confusion of a perceived low approximate rank k for Ry with
the influence of an underlying k-factor model, is almost universal. Johnson and
Wichern (1988), for example, in their 5 step 'strategy for factor analysis', recommended
first a 'principal component factor analysis' (standardized principal components) with
which to compare the maximium likelihood factor analysis solution which was to follow.
However, the existence or otherwise of an underlying factor model can not be
established from the approximate rank k, low or not (see Chapter 1). In the absence of
an adequate testing paradigm such as that afforded by the maximum likelihood method,
the choice of the number of 'factors' (if any) is always a difficulty. Another difficulty of
course pertains to the rotation of a set of initial factors into an interpretable configuration,
and then there follows the problem of an appropriate oblique rotation of this. There are
no formal solutions to these problems in the analysis of mixtures. Nevertheless, to a
growing school of thought, the (nxn) similarity matrix RQ had replaced the (pxp)
correlation matrix Ry as an array of reliable and exploitable associations. Thus, without
formulating a distinct mixing model with precisely defined properties for each of the
matrices A, B, €, which would in turn permit the derivation of a theoretical structure for
the similarity matrix R, the interchangeability of R, with the correlation matrix Ry was
assumed, and so factor analytic concepts, terminology and algorithms were adapted to

the mixing problem.

Given its importance in the development of the analysis of mixtures, the first

chapter of this work is devoted entirely to a review of principal factor analysis. All those



aspects that were borrowed for mixture analysis are examined in the chapter and,
although not always relevant to that purpose, some issues which challenge existing

orthodoxies in the application of factor analysis are also discussed.

Following that, it is the ultimate endeavour of this work to identify a systematic
approach to the analysis of mixtures which will unite in a single system all the
procedures which may be employed to construct and evaluate endmember estimates,
mixture coefficients and their residuals, for any given array of compositional data. There

are 5 chapters whose contents are as follows:

Chapter 1, as explained above, contains a review of classical factor analysis.

Chapter 2 is on the historical background to the analysis of mixtures. It contains

asurvey of the most important developmental literature.

Chapter 3 covers first, those fundamental properties of mixtures that are
necessary for complete analyses. Following that, an iterative method is developed for
partitioning a compositional dataset by least squares into mixtures of assumed extremes,
then adjusting just those 'extremes’ which are identified by their regression coefficients
as not being extreme enough. Descriptions of the computer algorithms employed at each
stage of a complete analysis are included in the last section. This chapter is the detailed
discussion of the theoretical portion of the paper by Renner er al. (1990) and the

Technical Report by Renner (1988).

Chapter 4 describes applications of the procedures discussed in Chapter 3. The
sections on the analyses of the ferromanganese nodules from the Manganese Nodule
Program (United States National Science Foundation) and the Mid-Pacific cobalt-rich
manganese crusts (United States Geological Survey), set out in detail the Applications

portion of the paper by Renner et al. (1990). The section on the analysis of the bediasite



source materials is the basis for the published Comment by Renner (1989), and the
analysis of the sediments from Lake Te Anau expands on the author's contribution to a

submission to The New Zealand Journal of Marine and Fresh Water Research.

Chapter 5 examines approaches to two problems. The first is the purely
technical matter of exploiting the information in a specimen which has missing values.
For this, the well-researched data base of geochemical analyses of the Nazca Plate
surface sediments provided a particular case for a trial study. The evaluation by Dymond
(1981) of 5 specified sources for these data has become widely cited in the literature.
The large number of missing values for zinc (50 out of 425 samples) had not obstructed
the use of normative analyses (see Chapter 2) on which the evaluation by Dymond (ibid)
was based. So the first section of this chapter describes an attempt to extract all the
information available in the dataset in order to conduct a confirmatory analysis by the
distinctly different procedures advocated earlier in this work. The second problem
concerns the testing of an essentially multiplicative model for the errors in the mixing
model. Again, the Nazca Plate surface sediments proved to be a suitable data base for
experimentation as did the Mid-Pacific cobalt-rich manganese crusts (U.S. Geological
Survey) already analyzed in Chapter 3. The second section of this Chapter largely
summarizes the content of an address to the 18th Geochautauqua, Delaware, October

1989 by Renner, which has been submitted to Mathematical Geology.



CHAPTER 1

A REVIEW OF CLASSICAL FACTOR ANALYSIS

SUMMARY

The orthogonal linear factor model for standard (zero mean unit variance)
random variables with arbitrary joint distribution is defined, and the well-known
relationships between the distribution correlations, the factor loadings and the specific
variances are quoted. The properties of a multivariate random sample drawn from such a
distribution are examined, leading to the derivations of the principal factor and principal

components solutions.

It is shown that, in general, a principal components solution cannot be

rearranged into a factor analytic solution.

Although disjoint clusters of mean-corrected variable-vectors, recognizeable by
their high correlations within clusters and negligible correlations between clusters, are
commonly associated with factors, it is shown that their existence does not constitute a
sufficient condition for an underlying factor model.



1.1 INTRODUCTION

The main purpose of this chapter is to review the essential aspects of classical
factor analysis. This must be done in order to clarify the development of the original
approach to the analysis of mixtures which will be described in Chapter 2. However,
the development of factor analysis itself follows in part the establishment of a sequence
of algorithms which were guaranteed always to work in practice, and have been
followed uncritically by scores of specialists from fields as diverse as clinical psychiatry
to meteorology. Accordingly, the rudiments of the subject are reviewed in some detail,
and where established conventions are not supported by theory, these may be expanded

on whether or not that has any relevance to mixture analysis.

The chapter is divided into a further five sections as follows:

Section 1.2 describes the well-documented properties of the distribution
parameters of the orthogonal linear factor model which are true for all distributions with
second order moments. The assumption that the manifest variables (Everitt (1984))
follow a multivariate normal distribution is not made in this or any of the following
sections because it is not appropriate to the geochemical applications described in
Chapter 2. Maximum likelihood estimation and the likelihood ratio criterion due to
Lawley, for testing hypotheses relating to the estimates (Lawley and Maxwell (1971))

are therefore not discussed.

Section 1.3 examines the implications of the model for particular sample vectors

and sample statistics associated with a multivariate random sample.

Section 1.4 contains the derivation of the principal factor solution when the

distribution correlation matrix and specific variances are known.



Section 1.5 examines the sample (standardized) principal components solution.
Although it is not a factor solution and can not be rearranged into a factor solution, it is
widely interpreted as such. Further, the methods for obtaining it were eventually adapted

to the analysis of mixtures.

Finally, Section 1.6 on orthogonal rotations examines 'simple structure' which,

it is shown, is a phenomenum that is unrelated to the presence of a factor model.

1.1.1 R-mode and Q-mode analyses

Throughout the geochemical literature, any study based on a (pxp) correlation
matrix Ry between p variables is described as an R-mode analysis while a study based
on an (nxn) similarity matrix RQ between n objects is called a Q-mode analysis. In
particular, the application of factor analytic procedures to the matrices Ry or RQ are
known as R-mode or Q-mode factor analyses respectively. This terminology has been

adopted where appropriate in Chapters 1 and 2 of this work.

In order to reserve notation specifically for the minor study of the factor
analysis of the correlation matrix (between variables) which is set out in this chapter,
most quantities in that context will appear with the subscript 'R'. Hence the use of (pxp)
Ry above. Subscripts are not taken to second levels so that the covariance matrix of the
random vector fy, will be denoted by Zg. Subscript 'Q" will be used rarely except to

remove any ambiguity as in (nxn) RQ above.
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1.2 THE ORTHOGONAL LINEAR FACTOR MODEL

Almost exclusively, practical applications of R-mode factor analysis concentrate
on 'factoring' an observed correlation matrix Ry (pxp). The elements of this matrix are
the cosines of the angles between all pairs of mean-corrected variable-vectors of a
multivariate sample. In the Q-mode analysis of mixtures, the elements of an observed
similarity matrix RQ (nxn) are the cosines of the angles between all pairs of object
vectors of a compositional dataset. The 'factoring' of RQ has consequently been

perceived as an exercise in essentially the same algebra as that for the 'factoring’ of Ry.

Adopting Ry, as the estimate of the correlation matrix of the joint distribution of
the manifest variables x (Everitt (1984)), requires that the distribution has second order
moments and implies that the actual variables being studied each have zero mean and unit
variance. Accordingly, let (px1) zy be a vector of standardized components of the
random vector xp. Further, let (mx1) f,, where m < p, be a vector of uncorrelated
(mutually orthogonal) random variables (common factors) which are also standardized,
let A (pxm) be a matrix of correlations (factor loadings) of rank m, and €y (px1) be a
vector of uncorrelated errors (specific factors) whose means are necessarily zero. Then

an orthogonal linear factor analysis model (after Harman (1967)) is given by,

z, = Apfy + & (1.1)

where xp, zp, f and € are of course all defined on the same sampling unit. (Harman
(1967, p.16) assumes that sample correlations are the true population correlations for

most of his exposition).

The model requires fy and g to be uncorrelated, so the (pxp) covariance matrix

ZR = E[zkz;] of the joint distribution of zy is, by equation (1.1),
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Y
L, = AgAp + @ (1.2)
where @, =E[eRe;] is the diagonal matrix of specific variances.

Since zy is the vector of standardized components of X, the covariance matrix

Z; is also the correlation matrix of the joint distributions of xp and zy respectively.

Assuming that model equation (1.1) is true and that the distribution correlation
matrix X, is known, the basic problem of factor analysis then is to determine the
solutions if any, either for Ay (which would imply both m and @y, ), or for @, (which
would imply ApMp where My is an arbitrary orthogonal (mxm) matrix), that will

satisfy equation (1.2).

It will always be assumed that I is of full rank p. Although @ can not be

the zero matrix, equation (1.2) is often described as the (matrix) factorization of e

An alternative way of expressing the model (1.1) is,
2 = | Ap ®7)fy (1.3)

In this form, the p components of z, are linear combinations of [m+p] mutually

orthogonal standardized random variables which are the components of f, }{. The matrix
of these combinations partitioned as in equation (1.3) displays the rectangular array of
loadings and the diagonal array of specific standard deviations, which is the necessary

matrix formulation for the model.

The diagonal elements of Xy are the unit variances of the p components of zg,

so from equation (1.2), fori = 1,2,...,p,
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1 = agl"ma T ¢Rii (14)

The sum of squared loadings on the right of equation (1.4) is the i-th communality,
which Everitt (1984) describes as that part of the variance of zy. which is shared with the
other variables via the the common factors. The second term, Og;;» 18 the i-th specific
variance. All terms on the right of equation (1.4) are non-negative, and their sum is 1,
which appears on the left. The magnitude of the i-th communality is therefore the
proportion of the variance of the i-th variable which is accounted for by the common

factors.

The correlations between the components of z, are the off-diagonal elements of

L. given by
Orij = Z A’Rialea (1.5)

a=1

from equation (1.2).

It is result (1.5) that many authors cite to emphasize the distinction between
principal components and linear factor analysis. Following Harman (1967, pp. 14-15),
the principal components of z are described as accounting for the maximum variation in
the distribution (or the data) because of the well-known optimal properties of their
variances (Seber (1984)). Factor analysis on the other hand is described as accounting
for the covariances (correlations in this case) in view of equation (1.5). This distinction
is specious. A complete set of principal components is determined by a non-singular
transformation of zp which, in a matrix product with its own transpose, determines ZR
exactly (see equation (1.32)). The real distinction between principal components
analysis and factor analysis is that the former should seek to recover equation (1.34) (a
little further on) while the latter should seek to recover equation (1.3). (It is shown in
Section 1.4 that in general, a principal components solution can not be rearranged into a

factor solution).
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The interpretation of the results of an orthogonal R-mode factor analysis
assumed to be based on standardized manifest variables, is determined by an important
property of the elements of the loading matrix A;. Since the components of zy and fy

are standardized, their intercorrelation matrix is,

Corr[zR ,fR] Cov(z, ,fR]

- Bl
= AR (1.6)

by equation (1.1).

Consequently R-mode factor analysts scan the rows of the computed factor
pattern (estimated loading) matrix in order to classify variables with the factor with
which they are most highly correlated. In applications therefore, exploratory R-mode
factor analysis is a clustering technique applied to the variables. Once a cluster of
variables is identified, then the factor with which they are associated is in its turn
identified with some perceived attribute that the variables must have in common
(although it is shown in Section 1.6 that none of this sufficient evidence for the existence

of an underlying factor model).

Remark
If the factors are correlated (oblique) with correlation matrix X, then
Corrlzy,fy] = ARZ; the factor structure matrix. Seber (1984, p.213)
showed that multiplying the vector of factors by Z ;1/2 transforms an oblique

g . I . 1/2
into an orthogonal model (whose loading matrix is obviously AREr ). So

if an oblique factor structure matrix displays unambiguously disjoint groups
of variables, then the presence of these groups may not be so evident among
the loadings of the factor pattern matrix of the corresponding orthogonal

representation.
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Suppose that @ is unique. If m = 1 then Ay is a (px1) column, and by
equation (1.4) there are two possible forms for Ay which differ only by a reversal of the
signs of all its elements (by equation (1.5)). This is the one dimensional elementary case
of the well-known property of orthogonal transformations in Euclidean m-space of the

vector of common factors fy namely, that they all result in valid factorizations of Zj.

T

If matrix M (mxm) is orthogonal where m > 2, then MRME = MM, =L Let

fx = Mgfy, then E[f;] = 0 and Covarlfy,

I
f]= M IM,, = 1. Hence the components of f
have zero means, unit variances and are orthogonal in exactly the same way as fR.

Substituting f, = M;f; into equation (1.1) and setting A; =ARM;, equation (1.1)

becomes,

z, = Apfy + € (1.7)
which is identical in form to equation (1.1). Further,
AyAp)" = AMIM AL
- ARA;
=X, -0, (1.8)

Hence any set of orthogonal (uncorrelated) factors in Eucidean m-space will satisfy
the model given the appropriate mapping M. Similarly, it will be shown later that
indefinitely many solutions to a factor analytic problem can be constructed from a

particular solution.

It should be pointed out that the p (1xm) rows of Ay define p points in m-space,
(mx1) fy defines one point in m-space, and the p components of the product Agfy are

the scalar (inner) products between the position vectors of the first p points and the
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T
(mx1) vector fR. The p rows of ARM;{ are of course the p (mx1) columns of MRAR

each of which has undergone the same rigid body rotation as (mx1) Mfj, (therefore the

p scalar products described above are invariant under this transformation). Hence it is

just as valid to refer to the rotated loading matrix A; as it is to the rotated factors f; ,

The expression on the right of equation (1.8) is called the reduced correlation
matrix (Harman (1967)). It is a correlation matrix with the ones in the diagonal replaced
by the communalities. It is the basic hypothesis of R-mode factor analysis that there is a
reduced distribution correlation matrix of exact rank m < p. If there is no such matrix
then there is no underlying factor model. (This latter observation is also true of oblique

models).

1.3 THE FACTOR SAMPLING MODEL

Associated with a set of n sampling units are the multivariate random samples
XR (pxn), Zy (pxn), Fg (mxn) and €, (pxn). The columns of each of these matrices
are assumed to form four distinct though related collections of n independent identically
distributed vector random variables. The j-th columns of Z,, Fy and &g, denoted by
Zg;» ij and €g; respectively, are related by equation (1.1), j = 1,2,..n. The factor

sampling model is therefore,
Zy, = A\gFp + g, (1.9)

Since E[ZzZgT] = nZg, E[FgFRT] = nI and E[€x€;"] = n®, equations (1.1) to

(1.7), of course, also follow directly from equation (1.9).



16

In general, the mean vector py and covariance matrix Zy of the distribution of
the manifest variables Xp, are unknown. It is not possible therefore to construct matrix

ZR from XR since

-1/2 v
Zp = 87X - "] (1.10)

where Ay is the (pxp) diagonal matrix of diagonal elements of Zy and (nx1)
1=1[1,1,...,11T (nx1). However, an estimate for Zg is the matrix Wy (pxn) of
variables standardized with respect to the sample means and standard deviations of Xg.
That is,

Wy = 87X, - m"| (1.11)

where AS is the (pxp) diagonal matrix of sample variances and m, = X;1[1/n] is the

sample mean vector.

(Primarily, the sample mean vector my and the sample covariance matrix

T

Sy = [XR - my IT:[XR - my IT] Ll are unbiassed estimators respectively of

Ky and Zy).

Postmultiplying throughout equation (1.10) by (nxn) matrix 11T[1/n] and
subtracting corresponding sides of the result from equation (1.10) creates the

mean-corrected form Dy, of matrix Zy. Thatis,

D, = Z, - Z11"[1/n]

or, as in equation (1.12) below,
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-1/2

T
D, = A, [XR - m_1 ] (1.12)

Denoting the i-th sample means of Z;, and Xy by z, and iRi, equations (1.11) and (1.12)

yield,

deij = (Zgij - %)

= (g - ’—(Ri)/‘/cxii (1.13)

(1.14)

It is apparent from equations (1.11) to (1.14) that corresponding rows of Wy and
g T T
the mean corrected matrices D, = [ZR - m,1 ] and Dy = [XR - mgl ] are

parallel vectors in Euclidean n-space. (Note: m, = ZRl[l/n] in equation (1.12)).

Denoting the a-th and B-th rows of Wp by (1xn) Wy, and WRB’ the (o,B)th

element of the sample correlation matrix Ry, is,

T
W, W
r, . = Bo, RE (1.15)

Rof T T
\/ [WRaWRaIWRBwRBJ

Or, more concisely,

R, = W, W, (/[n-1]) (1.16)

Alternatively, the entire right hand side of (1.15) is the scalar product of the two

unit vectors in Euclidean n-space whose directions are from the origin Oy, to the points

WRa(wRal’wRaZ’""wRan) and WRB(WRBI,WRBZ,...,WR&I) respectively.
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The o-th and B-th rows of Wy, are the (1xn) position vectors W ., Wyp with
respect to the origin Ogr of the points Wea(Wra1:WRa2s - sWRon) and
WRB(WRBI’WRBZ’""WRBn) . As was noted above, these vectors are parallel to similarly
defined vectors represented by the corresponding rows of the mean-corrected matrices
Dy and Dy. In particular therefore, OpDy \Wp, and ORDRBWRB are straight lines. Let

ORaB be the angle WroOrWgp then by equation (1.15),

TRep = cos(GRaB) (1.17)

So far, the only condition imposed on the distribution of x, has been that all the
second order moments exist. Now, it will also be required that Sy is a consistent
estimator for Zy, so that TRap is a consistent estimator for ORaps by equations (1.10) to

(1.15), and eRaB is a consistent estimator for arccos(cRaB).

The first requirement of a large sample assumption which will prevail for the

remainder of this chapter is that Trap 18 close to ORep for each o,p=1,2,..p.

So an analysis of the estimated distribution correlation structure becomes an
analysis of the relative angular positions of the p mean-corrected (1xn) variable-vectors,

Wr1-Wgos-.. Wy, in n-space. Equivalently, since the points Wr1WRos--» Wy, lie on

a hypersphere whose centre is O and radius is ¥ n-1, the angular positions and hence

the estimated correlation structure are also determined by the relative positions of
Wr1sWRros-sWpg,, on the hypersphere Pp. The angle BRqp and its cosine cos(B,,g) are
respectively measures of dissimilarity and similarity between the two (1xn) vectors Wi
and Wgg. Unlike functions of the distance between the points Wy and Wgp- the
dissimilarity and similarity measures O B and cos(ORaB) are independent of the
magnitudes of the two vectors. This property has been perceived to be especially
appropriate in the study of the relationships between compositional vectors. It is the

ratios of the various components of composition vectors that distinguish compositions,
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not their absolute values. All parallel vectors have identical compositions.

To complete this geometrical interpretation, it is useful to examine the
relationships between collections of points in n-space whose locations are determined by

the factor model (1.9). First, it is necessary to mean-correct the data as before.

Postmultiplying throughout equation (1.9) by (nxn) matrix 117[1/n] and
subtracting corresponding terms of that result from equation (1.9) creates the
mean-corrected arrays Dp, B, and ng, where Dy is given by equation (1.12),
Bg = Fr(XI-11T[1/n]) and My = €x(I - 117[1/n]). The end result is the

mean-corrected factor equation below,
D, = A;B, + np (1.18)

The sample covariance matrix associated with Z is (pxp) Sg = DgDgT[1/(n-1)].

Substituting for DR from equation (1.18),

g i 1
DDy — = (AgByp + np)(AgBy + '“R) 1
T, T T 1

= A BRBR)\R + A BRnR +1 BRAR +MpNg) = (1.19)

Now DD —— B B" 1 3
ow Dy R RBR annR — are unbiassed estimators for Z, and<D
3 1 il

respectively, and BRnR =1 and n By — — are unbiassed estimators of the covariances

between fp and ;. Therefore, since the components of fy are standardized and

uncorrelated, and the random vectors fy, € are required to be uncorrelated,

1
E[B BT 11]—1 (mxm), and E[BRHE :l =0 (mxp) (1.20)

Applying the expectation operator to either side of equation (1.19) clearly recovers

equation (1.2). From the first result of line (1.20), the expectation of the scalar (inner)
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product of the i-th and j-th (1xn) row vectors of BR[I/J n-1], is the (i,j)th element of I

(mxm). Hence the expected configuration for the row vectors of BR[l/m ] is an

orthogonal set of m unit vectors in Euclidean n-space. Similarly, from the second result
of line (1.20), the expeé’ted orientation of the same m row vectors is orthogonal to the p
(1xn) row vectors of ny. The expected configuration for the rows of ny is also a
mutually orthogonal set since E[anRT] = (n-1)®, another diagonal matrix. For such
configurations to be possible (though not necessarily realized), it is required that
n2p+m. In fact, in order to make full use of the assumption that all sample
covariances are consistent estimators of corresponding distribution covariances, it will be
necessary to assume that n is large enough for the expected geometrical configurations
described above to be approximately true of the positions of the sample variable-vectors.

In that case, from equation (1.19),

D_D

T
R™R

1 T
=2 AAp + O (1.21)
It follows also from the large sample assumption when it is applied to
equations (1.14) and (1.20), that the (1xn) variable-vectors DRI,DRz,...,DRp and the
(1xn) factor vectors BRI,BRZ,...BRm are the position vectors of points on or near the

surface of the hypersphere Pp. So writing out the i-th variable-vector of Dy by equation

(1.18),
m
D, = zi?"RijBRj + Mg, (1.22)
J:

Dividing both sides of this by ¥n-1 creates unit vectors approximately, in the directions

of Dy, and By,,Bg,,....Bg . It is then evident that Ag; ,Apps...hg,, are the
direction cosines (approximately), of the i-th variable-vector with respect to an axis
system defined by the (approximately orthogonal) factor-vectors. This interpretation is
consistent with result (1.6) in which Ay was identified as the matn';c of correlations

between zp and fi. The (nearly) orthogonal set of factor vectors Bp,,Bg,,....Bg . span
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an m-dimensional subspace 4 of Euclidean n-space commonly called the factor space
(which is at variance with the notions of variable and object spaces). The loadings
ARi1-MRigr--»ARim Can also be regarded as the regression coefficients for the position

vector of the orthogonal projection of the point Dy into Ag.

Equation (1.22) is the basis of the factor plots which were historically used to
initiate plane rotations, and are optionally produced by most factor analytic software to
permit visual appraisal of factor solutions. Suppose for example Bg,, By, and ng, are
assumed to be mutually orthogonal, then (Ag;,, Ag;p) are the coordinates of the
(projection of the) i-th variable vector on the plane of By, and Bg,. Hence the p
ordered pairs in the first 2 columns of Ay can be plotted with respect to an orthogonal
reference system assumed to represent By, and Bp,, thus portraying the relative
positions of the projections of DRI,DRZ,...,DRp in the plane of the 1st and 2nd factors.
Such plots can be constructed for m(m-1)/2 pairs of columns of Ay taken two at a time.
In practice, factor analysts must work with the estimate Ly for Ag (see the estimated

model, equation (1.38) in Section 1.4). but the underlying assumptions remain the same.

Finally, the large sample assumption must also guarantee an important relation
between the rows of (mxn) arrays of factor scores that have been orthogonally rotated in
Euclidean m-space. The result seems to be taken for granted in the literature (possibly

due to Harman (1967)) namely,

If fgz MRfR where M (mxm) is orthogonal as in the derivation of equation (1.7),
then the expected forms of the original and the transformed mean-corrected

factor-vectors are both orthogonal systems of vectors.

The transformed factor model can be derived from Equation (1.18) as follows,
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o
[

AgBp + My

Il

I
AgMMB, + Mg
= A B, + 1, (1.23)

Denoting Mg B, by B;; in equation (1.23), and comparing with equations (1.7) and (1.18).

But,
v, ov.T Tl
BY(B}) = M,B,B M (1.24)

If BB = (n-1)I the expected form, then by cquation (1.24) By(Bp)' = (n-DL since

since MRMg =1. Hence the expectation is that the rows of B; will constitute an
an orthogonal system of vectors which also define m points on the hypersphere Pg.
That is, the transformation determined by My, is equivalent to a rigid body rotation of

the (1xn) factor-vectors Bg,,Bg,,...Bg .. Furthermore, this rotation takes place in the

factor space 8. The rows of By span &y and each row of By =MBy is a linear

combination of the rows of By, so every set of rotated factor vectors belongs to Ag.

It is clear that these conclusions demand considerable precision of all the
estimates as a consequence of the large sample assumption. When this precision is
assured and Ly is an initial estimated loading matrix, then by the derivation of
equation (1.23), orthogonal rotations of the m factor vectors may generate

indefinitely many arrays of factor loadings leading to the possible discovery of

interpretable loadings L;{ concomitant with interpretable factors fl{. These issues will

be examined in Section 1.6.
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1.4 THE PRINCIPAL FACTOR SOLUTION

Several procedures for estimating the parameters of the R-mode factor model
have been developed, of which the maximum likelihood method (Lawley and Maxwell
(1971)) and the principal factor solution are possibly the most important. The
multivariate normal assumption which is the basis of the maximum likelihood method
can not validly be extended to the Q-mode treatment of compositional data. In any
event, the historical development of the Q-mode factor approach to the analysis of
mixtures was conceived by its authors (Imbrie (1963), Imbrie and Van Andel (1964)
and, Klovan and Imbrie (1971)), to be an application of the principal factor solution
described by Harman (1960, 1967). That is, a principal components analysis of the
reduced correlation matrix. Harman (ibid) did not 'formally present components
analysis', in which the main diagonal of the correlation matrix is unaltered. Indeed for a
description of that method, he referred the reader to Hotelling (1933) and Anderson
(1958, 1963). Yet, the established procedure for the Q-mode factor analysis of
geochemical data has never included a modification of the main diagonal of the similarity
matrix. Seber (1984, p. 222) remarked that the general confusion between R-mode
factor analysis and principal components analysis 'is not helped' by the use of principal
factor analysis. Algebraically, the complete principal components solution is a special
case of the principal factor solution, as will be demonstrated a little further on. So
although the orthodox principal factor solution is not strictly used in the analysis of
mixtures, the identification of components analysis with the method warrants the
discussion of their relationship which follows. (It might be noted that R-mode principal
factor analysis is still the preferred approach of some geochemists seeking to identify
natural element associations (see for example Walter and Stoffers (1985); Nath, Rao

and Becker (1989)).

Let the reduced correlation matrix (equation (1.8)) be denoted by Z ;z' Then,
Ip = -y
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T
= AgAp (1.25)
Principal factor analysis is described by Harman (1967) as a principal components

analysis of E'R. That basically implies the reduction to canonical form of the symmetric

matrix E;{ (pxp), of rank m < p, and hence to a factorization such as equation (1.25).

T
On the right of equation (1.25), ARA; happens to be equal to E[ARfRf;gAR] so by

equation (1.1) it follows that Zl'{ is the covariance matrix of the difference of random
vectors (zp - &p). Let y, = v;z(zR - €;) be any linear combination of this difference

provided only that v, (px1) is a unit vector (v:;vR =1). If T is the orthogonal projection

of the j-th column (px1) of Ay (pxm) onto the unit vector vy then,

T _
VRAR = [T,,Tps0sTm]
and,
‘ T T
VRZRVR = vRARARvR

2.2 2
=T +T +.. + T (1.26)
>0 (1.27)

Equation (1.26) confirms that ZR is positive semidefinite. It also displays the variance

T 2 P
VpZpVR = G, of yg, as the sum of the squared projections onto vy of the columns of Ap.

The method for finding the maximum value for ci given that vy is a unit vector
yields a more general result (Seber (1984), Johnson and Wichern (1988)) namely, that

the critical values of 0?, are equal to the p eigenvalues y, 2y, 2 ... 2 v, 20, of 21'1

and occur when vy is equal to the corresponding (px1) eigenvectors v;,v,,...,V, (see

also Footnote 1). Therefore the critical values of the sum of squares on the right of

Footnote 1: To maximize v Zv given viv=vTlv = 1, introduce the Lagrange multiplier
v and maximize vT(Z -yl)v. Partially differentiating this with respect to
the components of v, then provided X is symmetric, (£ - yl)v =0is a

necessary condition for turning values of vTEv. Thatis, ZV =yV.
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equation (1.26) are equal to ViV Ve But there are only m (< p) column vectors in
Ag, and the rank of Ay is m by assumption, therefore in Euclidean p-space there
are (p-m) mutually orthogonal vectors which are also orthogonal to the subspace
spanned by the columns of A;. Since the orthogonal projections of all the columns of
Ay onto any of these (p-m) vectors must be zero, then by the inequality at line (1.27),

they constitute a subset v

m+1°Ym+22Vp of the complete set of eigenvectors

V1,¥5,...,Vp, for which the corresponding eigenvalues, W, = W0 = - =V, = 0.
Let (pxp) V = [vl,vz,...,vp] and (pxp) ¥ = diag(wl,\uz,...,wp) then the vector Yr

of principal components of (zg - €) is,

Yr = VT(zR - &),

and by definition,
IV = Vy,

Since VTV =1 (pxp),

VTE;{V -y (1.28)

The matrix product on the left of equation (1.28) is equal to the covariance matrix of the
vector yp. This reduces to the diagonal matrix (on the left), confirming the well-known
result that principal components are mutually uncorrelated.

Since VVT =1 (pxp),

L T
ZR = V¥V
1/2 1/2 y
= [V‘i’ )(V‘*‘ ] (1.29)
But y, =y ,=..= %= 0, so equation (1.29) can be rewritten in the form,

T
z, = [V'\P'”zj(V‘\P'm] (1.30)
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where (pxm) V'=[v,,v,,..,v_ ] and (mxm) ¥' = diag(y,¥5,....¥p,)-
Choosing,

ingy 1112
A, = V'Y (pxm) (1.31)

creates an exact solution to equation (1.25) consistent with the uncorrelated set of
. - 12, i .
standardized principal factors fo=%  yg, where (mx1)y, contains the first m

components of (pXx1) yy in order.

Therefore, if the distribution correlation matrix ZR and the specific variances
®;, are known, then the communalities are specified and the principal factor solution will
determine a number m of factors and an exact associated loading matrix. Orthogonal

rotations may then be employed to search for an interpretable factor pattern.

1.4.1 Distribution Principal Components

In general, neither Zy nor @ are known, although X can of course be
estimated. Before moving on to that case, there remains a theoretical problem created by

discarding only the assumed knowledge of @p. This problem is stated below.

If just the distribution correlation matrix Iy is known, what integers m or

diagonal matrices @y of specific variances, will secure an exact solution to equation

(1.25) ?

The adjective 'theoretical' as used to introduce this problem alludes to the
assumption of a known distribution correlation matrix, which is rarely a reality. But
since this assumption has been made it is an ineluctable truth that if there is no exact
solution to equation (1.25) then then there is no underlying factor model. Theoretical or

otherwise, the ensuing discussion does have implications for the processing of the
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observed correlation matrix RR.

Remark  Algebraically the problem seems rather cut and dried. For any assumed
value of m, there are p[p+1]/2 bilinear equations in p[m+1] unknowns (see
equations (1.4) and (1.5)). The actual solubility of these equations aside,
the system will be overdetermined, determined or underdetermined
according as 2m < =>p-1. So for example there is always a simple
single factor solution when p =3 (for which the specific variances may
nevertheless be negative (the ultra-Heywood case)). Most applications of
factor analysis are undertaken with the intention of finding solutions in
which the number of factors is considerably less than half the number of
variables. If the distribution correlations were known, such applications
would be constrained by overdetermined systems for which there can be in
general no exact solutions. When the distribution correlations are
unknown, estimates of the loading matrix based on factor analyses of
the sample correlation matrix are most probably fallacious, unless supported
by rigorous tests on the validity of the estimated parameters. This
pessimistic conclusion seems to prevail even under conditions which are the
most favourable possible for the factor analyst (see Section 1.6).

The problem always has at least one solution. Set m =p and eg =0 in
equation (1.1) and thereafter. Then @ = 0, the communalities are all equal to 1, and
L'z = Z;. Following this special case through the earlier discussion of the principal
factor solution and reinterpreting the notation as appropriate, the distribution correlation

matrix is given by,

By = dply (132)
where the loading matrix is,
AR = V¥ 12 (pXxp) (1.33)

This, of course, is a complete (standardized) principal components solution. Its

importance in applications of factor analysis arises when the (p-k) eigenvalues
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Vi1 VsV of g, are negligible. Then the realizations of z; must approximately
occupy a space of k dimensions (see equation (1.34) below) and a plausible strategy for
modelling such a situation is to make the assumptions which are embodied in equation
(1.1), with the additional requirement that the all the communalities be ‘close to' 1. The
interpretation then is that the data will be k-dimensional with small errors. This is a
heuristic approach to the problem posed above. It does not suggest that the principal
components solution in any way determines the existence of any other factor solution.
Indeed, partitioning the loading matrix of equation (1.33) to separate the k 'common
factors' and the errors does not in general create a solution to equations (1.2) and (1.25).
Basically, zy is a linear combination of p independent random variables (principal
components) and partitioning Ay as described will not produce a linear combination of

[k+p] independent variables akin to the [m+p] variables of equation (1.3).

Writing (px1) fy = [f1s £ o fp]T, the vector of standardized principal

components ¥-12y. . and (pxp) V = [v}, v,, ..., v,l, the matrix of eigenvectors of

*
Zy, then the vector of standardized responses becomes,

Zp = vy fR
. 1/2 S 1/2
= > vy, + 2 v, (1.34)
1=1 j=k+1

where W1, Wi 05 s ,, are assumed to be very small. Suppose that the first sum on
on the right of equation (1.34) corresponds to Af, where,

' 1 T
(pxk) AR = [vl\y}/z, vzxpé/z, s vk\plyz] and (kx1) fR = [fl, f2, - fk 1.

The second sum on the right of equation (1.34) corresponds to the error vector (px1) e,

Hence, the derived 'factor' equation is,

z, = A;zfl'2 * e;z (1.35)
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To obtain the correlation matrix L= E[sz;], a direct approach is to observe that,
I, = VgV’

and expanding the matrix product,

k
Tp= D VY + ivjv;.rwj (1.36)
i=]

j=k+1

Equation (1.36) is the spectral decomposition of L, (see Seber (1984)). The first sum

T
on the right is of k (pxp) matrices and equals [V"P'llz][V"I"llz) where (pxk)
2 1/2 172 '
V' = [V Vaevd and (k) % =yt yl v Thus A = Vet o),
which resembles the loading matrix at equation (1.31). The second sum on the right

of equation (1.36) is of [p-k] (pxp) matrices and equals the covariance matrix of the
errors, denoted by d),;. So making the necessary substitutions into equation (1.36), the
expression for £ which is analogous to equation (1.2) is,

T

= A A, + @ (1.37)

2:R R™™R R

In this model, since f, f, ..., fp are standardized principal components, the k ‘factors'

£, fz, s fk are mutually uncorrelated, and they are uncorrelated with the errors which

are linear combinations of fk+1, fk+2,..., fp. These are necessary properties of an

orthogonal factor model. But unless the errors are mutually uncorrelated so that (IJ;1 is

a diagonal matrix, then this is not a solution to equations (1.2) and (1.25), the off-

. 1 |T
diagonal elements of Z_ will not be exactly equal to the off-diagonal elements of ApA, .

If d’llz did happen to be a diagonal matrix then since its rank is [p-k], k of its diagonal

entries would necessarily be zeros. (In other words, p mutually uncorrelated errors
cannot be formed from linear combinations of only [p-k] random variables). Hence k of
the p components of z; would have no error term and z; would simply be be a

nonsingular linear combination of m common factors and [p-m)] specific factors. This is
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not a factor model (see equation (1.3)). In general therefore, the principal components
solution cannot be rearranged to form an exact factor analytic solution. An exception is
that where Wy, ., =V, ., =.. =y, = V. Then, Iy = V¥VT = V[¥-yIIVT + yI, in

which case (pxm) Ap = V[¥-yI]'/2, discarding zero columns, and ® = yI. But
when W,y 5.y, are merely very small, then by the second term on the right of
equation (1.36), it may be anticipated that the contributions from the elements @'y to the
corresponding elements of Zy in equation (1.37) are small. (Recalling that the v; are

unit vectors whose components must lie in the interval [-1, 1]).

There are wide applications for low rank approximations to large datasets,
which include small non-orthogonal errors that are nonetheless orthogonal to the space
spanned by an approximate basis for the dataset. The standardized principal components
solution given by equation (1.35) when X, is known, is a linear model which relates
the p manifest variables to k eigenvectors. It is not a factor model, even so, these
eigenvectors can serve as the approximate basis or, indefinitely many solutions can be
constructed by orthogonally rotating f'; exactly as for the factor model (see equations

(1.7) and (1.23)).

In the next section, it will be assumed that ER is unknown but that a model
resembling equation (1.35) does account for the observations of a large dataset. The

problem then is to find that solution within an arbitrary rotation of the loading matrix.

1.5 THE STANDARDIZED PRINCIPAL COMPONENTS SOLUTION

The problem of identifying an R-mode factor model becomes a good deal more
obscure in the case where there is no information on any of the distribution parameters,
all of which must be estimated from a multivariate random sample. The principal factor

solution requires initial estimates of the number of factors, and either the communalities
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or the specific variances, in order to estimate loadings. A common initializing
approximation to the communalities is the set of squared multiple correlation coefficients
(Dwyer (1939)) when the sample correlation matrix is non-singular. The maximum
likelihood method also requires first an estimate of the number of factors as well as an
approximation to the specific variances in order to execute an iterative minimization
procedure which may or may not converge, or may or may not need to be steered away

from negative estimates for the specific variances (Heywood cases).

In this section a representation of a data matrix will be examined whose
existence is never in doubt. That is, the sample principal components solution. Apart
from discarding all information on the distribution parameters, the underlying
assumptions and the consequent geometrical interrelationships between the sample

vectors follow from Section (1.3).

Let data matrix X (pxn) now be a realization of the random sample
(XR1sXR2s--Xgy,) from the distribution of random vector x (px1). When each of the
variable-vectors (rows) of X is standardized with respect to its sample mean and
standard deviation the result is Wy (pxn) given by equation (1.11). An estimated form

of the factor model which corresponds to equation (1.18) is given by,

W, = LB, + E, (1.38)

where integer m is now an estimate of the number of factors, matrix Ly (pxm) is an
estimate of Ag given m, the rows of matrix By (mxn) are the concomitant factor-vectors
each of which contains the n estimated factor scores for each of the m factors, and E

(pxn) is a matrix of residuals.

Restating equation (1.16), the (pxp) observed correlation matrix is given by
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R, = W, W, [1/(n-1)] (1.39)

R
and is assumed to be of full rank. Principal factor algorithms must allow for prior
estimates of the communalities to replace the units in the diagonal of Ry (as previously
noted, the squared sample multiple correlations are a frequent choice for initializing these
estimates because the squared distribution multiple correlations are lower bounds
respectively for the communalities associated with each variable (Dwyer (1939)). Since
however an orthodox principal factor analytic solution may not even have an
interpretation in the analysis of mixtures, the remainder of this section will concentrate
on that solution for which the diagonal elements of Ry, are unaltered that is, the principal

components solution.

A rewarding method which produces all the loadings, 'factor’ scores and
residuals for a standardized principal components approximation is the singular value
decomposition of Wy. The following derivation of this method highlights its

geometrical importance.

The (px1) object vectors Wg1,WRose-»Wgy, Which are the columns of (pxn)
Wy, are also the position vectors with respect to the origin O of n points in Euclidean
p-space (O also happens to be the centroid of these n points by equation (1.11). Let vy
(px1) be any unit vector (vRvRT = 1) through O and let v ; be the orthogonal projecton

of the vector Wg; ONto Vg, produced if necessary. Then,

i
VRWR - [01’02’ :Dn]
SO,
m T 2 2 2
VeWeWove =0 +v, +o+ v (1.40)

The turning values for the expression on the right of equation (1.40) are the p

eigenvalues W2 Y2 2 wp> 0, of the symmetric matrix WRWE = [n-l]RR,
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and occur when vy is a corresponding eigenvector. Redefining the (pxp) matrix
V =1[v,vy, ., vp] to be the matrix of unitized eigenvectors of [n-1]Ry and

similarly ¥ = diag(\pl,wz,...,\yp), then by definition,

T
W W,V = Vy

Premultiplying both sides of this equation by (nxp) W;l;,

18 i T
W W W,V = W V¥

and it is evident that (nxp) Wg V is a matrix of p column eigenvectors of (nxn) W;WR,

with the same (pxp) diagonal matrix of eigenvalues ¥ as for the symmetric (pxp) matrix
WRW;. Setting (nxp) U = W;V‘I’_U2 creates a matrix of the unitized eigenvectors of

the symmetric (nxn) matrix W;WR.

-12_ T

(since UTU = w2y w wive ™ = g 2yT

-1/2
vivew ' - 1 (oxp)).

Making W the subject of the expression for U above yields the 'singular value

decomposition' for W (see Seber (1984)).

W, = vy uT (1.41)

Suppose as before that v, ;, ¥, 5. y, are very small. Partitioning equation

(1.41) into two sums according to the magnitudes of the eigenvalues then,

K P
W, = viufw:ﬂ + Y vju}w;/z (1.42)
=1 jok+1

In the first sum on the right hand side of this equation set (pxk) V"I"llz[n—l]‘” . Ll'{,
where (pxk) V'=[ Vi,Vg,...,V ] and (kxk) = diag(y,,W5,.-..Wy). Also, noting that
the vectors u; are transposed, set (kxn) Bl'{ = [ul,uz,...,uk]T[ml]l/z. The second sum

on the right of the equation will be the matrix of residuals, E}'z. Thus equation (1.42)
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with Lg, By and Ej as defined becomes,

W, = LB, + E} (1.43)

which has the same form as equation (1.38), the estimated factor model. This solution

has other properties in common with a factor solution. The 'factor' vectors (rows of B;{)
are standardized. Since VW72 ig non-singular then from equation (1.41), each column
of U must be mean-corrected (sample mean equal to zero) as must the 'factor' vectors.
Each column of U is a unit vector hence the squared magnitude of each 'factor' vector is

[n-1] and so the variance of its components is 1. The 'factor' vectors are necessarily

mutually orthogonal and in turn, orthogonal to the error vectors (rows of E'R). These are
not just consequences of the large sample assumption, but follow from the orthogonality
of the eigenvectors u,,u,,....u, established above. Therefore by equation (1.39) the

sample equivalent to equation (1.37) is,

v T '
R, = L Ly + Fy (1.44)
where Fy = ExE[1/(n-1)] (not Fy). Finally, the (1xn) vectors Wy W, .. W

(variable-vectors) and B, , B 'factor' vectors) are the position vectors of

R1* 7 R2""" BRk (

points on the hypersphere Py. The basic difference between this solution and equation
(1.38) for the factor model is that the error vectors (rows of E;{) can not be mutually

orthogonal under the full-rank assumptions made at the outset.

In view of the strict orthogonality of these 'factor' vectors, premultiplying B'R by

the (kxk) orthogonal matrix M, creates another strictly orthogonal set B; (see the
discussion following equation (1.24). So by rotating the the former set of vectors,

equation (1.43) becomes,

\M;M_B, + E|

WR=LR R™V'RPR
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Thus an alternative solution may be written,

(1.45)

in the same way as the rotated orthodox factor solution. This transformation is used in
the Q-mode factor analysis of mixtures to attempt to create nonnegative loadings which
are a necessary condition for a mixture representation. Unlike the R-mode case, the
actual values that would then be taken by the rotated factor vectors are regarded as an

integral part of the resulting solution.

The i-th row of equation (1.43) can be written,

k

Wy, = legujB;U + Ej (1.46)
=

(which resembles equation (1.22)) and it follows from the geometrical interrelationships

described above that Igi1sIRip»+IRy are the direction cosines (correlations) of the vector

Wp; in the directions of the respective ‘factor' vectors. The 'communalities' given by,

1 £ 2
he, = Zl s (1.47)
J:

are an initial measure of the goodness of fit for each variable. Geometrically, the space
spanned by the 'factor' vectors intersects the n-ball Py in a k-ball. If Wy, is the position
vector of a point on the surface of that k-ball then the sum of squares on the right of

equation (1.47) must be 1. In general of course,

2

hp, €1 (1.48)
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If the first sum on the right of equation (1.42) is a good approximation to Wy

then writing (nxk) U'= [u,,u,,...,u;], an estimate for the former matrix is,

W'

R = LBy

.1/2U.T (1.49)

= V'§
This estimate is held invariant under the orthogonal rotation of the 'factor' vectors which
generated the alternative solution (1.45). Further, since each of its rows is a linear

combination of the 'factor' vectors, each row is orthogonal to the vectors of residuals.

Therefore the point defined by the i-th row vector of Wl'{ is the orthogonal projection into

the subspace spanned by the 'factor' vectors, of the point defined by the i-th row of

W;y. Examining the symmetry of the lower term on the right of equation (1.49) it

follows that the n points in Euclidean p-space defined by the columns of Wl'{arethe

orthogonal projections of the corresponding columns of Wy, into the subspace spanned

by the k columns of V.

The approximation to a rectangular data matrix (defined somewhat differently to
W, ) by a matrix of exact rank k as in equation (1.49) will be used in Chapter 2, together
with the geometrical inter-relationships just described. This section concludes with
some observations on the singular value decomposition defined by equation (1.41)

which will be found to be useful.

The right hand side of equation (1.40) is the sum of squared deviations from O
(the centroid in p-space) of the orthogonal projections of the object vectors onto vy
through O. It is non-negative of course, but suppose only r < p eigenvalues of the
symmetric matrix WRWRT are non-zero. Then there are [p-r] mutually orthogonal
eigenvectors for which the right of equation (1.40) is zero. That can only happen when

for every orthogonal projecton v;=0, j=12,.n That is, each of these
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eigenvectors is orthogonal to every column vector of Wy. Accordingly these columns
lie in a subspace of r dimensions spanned by the first r eigenvectors, and the column

rank of WR isT.

The derivation of the singular value decomposition when rank(Wgp) =r<p
follows that set out above except that ¥~/ in the definition for U must be defined to be
that (pxp) diagonal matrix which has i-th diagonal element equal to ;12 if y, > 0,
and zero otherwise. Although with this adaptation [p-r] columns of U (nxp) will be
zero vectors, (pxp) V must be p mutually orthogonal column eigenvectors. Then the

expression for U can be rearranged into equation (1.41) as before, and the right hand

side of that equation reduces to [vl,vz,...,vr]diag(ﬁl,Nz,...,,/'\Ttr)[ul,uz,...,ur]T.

Equation (1.41) possesses a certain symmetry. Taking the matrix transpose of
both sides of the equation leads to a rearranged expression which permits the same
interpretations to be made of its elements as were made of the original. Hence the
column eigenvectors of (nxr) U are in the orthogonal directions of the critical values of
the spread about Oy in n-space (which is however not the centroid). The sums of the
squared projections of the rows of Wy, onto these (nx1) eigenvectors are equal to the
corresponding eigenvalues. Also the (px1) columns of Wy have been resolved in the
directions of the (px1) orthogonal unit column vectors of V, their components being in
corresponding columns of W1/2UT. Similarly the (1xn) rows of Wy have been
resolved in the directions of the (1xn) orthogonal unit row vectors of UT, their
components being in corresponding rows of VW12, When any of the eigenvalues are
very small, all the components of the row or column vectors of Wy, in the directions of
the corresponding n or p-dimensional eigenvectors, are also very small. Thus the row

or column vectors of Wy would be approximately orthogonal to such eigenvectors.
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1.6 ORTHOGONAL ROTATIONS

In the three preceding sections, repeated reference has been made to the fact that
the factorization of a correlation matrix as in equations (1.2), (1.20), (1.37) and (1.44) is
not unique because postmultiplication of any loading matrix by any conformable
orthogonal matrix would produce an equally valid alternative factorization. This has led
to considerable investigation into analytical (objective) procedures for determining the
terminal solution, and considerable controversy over the validity of any of it. Since the
rotation methods that were developed for R-mode factor analysis have been adopted by
the Q-mode factor analysts, it is necessary to return to the orthodox factor analysis

solution.

Everitt (1984) remarked that rotation methods had acquired a certain 'notoriety".
‘Many statisticians have complained that investigators can choose to rotate factors in
such a way as to get the answer they are looking for'. Everitt (ibid) went on to point out
rightly, that the distribution of points (denoted in this work by Wr1:Wgros, Wep) will
remain invariant and anyway, a confirmatory analysis should always follow. There is
also a constraint imposed by the existence of the factor space & r- Because all factor

vectors must belong to Ay, it is actually not possible to construct 'designed' loadings.

Historically, a rotation to a terminal solution was the resultant of a sequence of
rotations. Factor plots were constructed in the planes of putative factor vectors taken
two at a time. Orthogonal reference axes were drawn to represent the factor vectors, and
the coordinates of the points representing the (projections of the) p variables were the
corresponding p ordered pairs of estimated loadings on the chosen pair of factors. An
orthogonal rotation in the plane would be identified, which ideally would result in most
of the p points being near to either one of the two new axes or near the origin Og with a
few points removed from the origin but between the two axes. Within the constraints

imposed by equation (1.4), the coordinates (loadings) of these points in the new system
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would in the main be high on one axis and low on the other or both very small, with just
a few having moderate loadings on both axes. The sequence of transformations of all
possible pairs of factors was repeated until this 'simple structure' (Thurstone (1947)) for
all the loadings was acheived (see Harman (1967), Lawley and Maxwell (1971),
Morrison (1976), Everitt (1984) and Johnson and Wichern (1988))). Thus, in
applications of exploratory factor analysis which started with a data matrix Xy (pxn) and
no hypotheses about the underlying factor structure, the construction of any solution Ly
for Ag by any means, has conventionally implied the identification of an m-dimensional
factor space S; spanned by an orthogonal reference system in the directions of m
supposed factor vectors. The desired rotation of this reference system to a terminal
solution would, if the configuration of the data permitted, bring each axis near to all the
points of one cluster. It might be noted that there is nothing in these conventions that
challenges (tests) the basic hypothesis that there is a reduced correlation matrix of exact

rank m < p.

From the estimated factor model (equation (1.38)), any initial solution for Bp
determines an m-dimensional factor space Sy spanned by its (1xn) rows Bg,,
1=1,2,.m. This space is a subspace of the n-dimensional Euclidean object space.
The orthogonal rotation MyBy, creates an alternative set of m orthogonal factor vectors
(equation (1.23) et seq.) which, being linear combinations of the rows of By, also
belong to Sp. Thus the transformations LyMyT of any initial solution Ly for Ay are
the loadings associated only with orthogonal systems belonging to some fixed
m-dimensional space Sy. If Sy or, equivalently, the initial Ly are ill-chosen, then all
other loading matrices formed by rotations will be equally spurious. (The Q-mode
equivalent of this situation can lead to serious errors of interpretation (see Section 4.3).
Let it be assumed that by some process a sound approximation to the true factor space
has been identified (such identification may be implicit brought about by the construction
of Ly, or explicit due to the construction of By), then it remains only to discover the

‘correct’ loading matrix.
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In 1935, Thurstone proposed three conditions for 'simple structure'. Later, he
presented five criteria which were an extension of the original three conditions
(Thurstone (1947)). Morrison (1976) observed that, 'in essence these criteria say that
under a simple structure the responses fall into generally mutually exclusive groups
whose loadings are high on single factors, perhaps moderate to low on a few factors,
and of negligible size on the remaining dimensions'. After 1935, many individuals made
specific proposals in pursuit of objective analytical procedures for calculating a multiple
factor simple structure solution. The 'normal varimax' criterion for rotation to a simple
structure published by Kaiser (1958), together with a computer program he published in
a later paper, would, apart from subsequent improvements to the algorithm, appear to be

the best analytical procedure for achieving optimal simplicity of the column loadings.

Given the data matrix Wy, the most favourable geometrical scenario can be
built up as follows. Suppose each of m orthogonal factor vectors is similar to at least
one variable-vector (row of Wp) so that there are indeed m factors. In addition, each
variable-vector is similar to one factor so that there are just m orthogonally located
clusters of points on the hypersphere Py, defined by the p variable-vectors. Each row of
the loading matrix should then have one large and [m-1] small correlations (Thurstone
required at least one zero). Each column of the loading matrix should contain either large
or small correlations as individual variable-vectors make either small or large angles
respectively with each factor-vector. In practice, such a conjunction of such favourable
circumstances is not commonplace. Nevertheless, if it occurs, then the variance
(simplicity) of the squared loadings (cosines) in each column of the loading matrix
described above should be a maximum above all other unitized linear combinations, and
also therefore the sum of these variances should be a maximum. And that is the essence
of Kaiser's procedure. Ultimately, the initial loading matrix is transformed so as to
achieve simultaneously the greatest spread between 0 and 1 of the squared cosines in
each of the columns. As much as is possible, the unsquared cosines are pushed towards

+1, -1 or around 0. (In the 'normal varimax' criterion each row of the initial loading
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matrix is first scaled so that the sum of squares of the row loadings is equal to 1. This

implies that every factor vector defines a pointon the surface of an m-ball whose
centre is Oy and radius ¥n-1 ).

Thus classifying variables on the basis of their correlations with particular
factors is geometrically equivalent to attempting to identify clusters of points on the
surface of the hypersphere Py, that are located around or near to orthogonal axes through
the origin Og. Albeit these clusters are usually somewhat fuzzy, they may alternatively
be disjoint but oblique. (Tryon and Bailey (1970, p. 118) described the application of
cluster analysis to the correlation matrix as a discrete form of factor analysis). Neither
the occurrence on the hypersphere Py, of disjoint clusters in particular nor their relative
locations, are properties of any n-dimensional reference system of which the m factor
vectors may be treated as a subset. And that is the usual justification for rotating these

axes in search of a loading matrix with 'simple structure' (see Everitt (1984, p.25)).

1.6.1 A Note on Mutually Exclusive Groups

Although there is no mathematical requirement that the points
Wr1:Wgrosees Wi be clustered, examples in the literature inevitably reinforce the
universal application of varimax rotation as a method for classifying disjoint groups of

variables to individual factors (see for example Everitt (1984, pp. 22-30)).

But the occurrence of disjoint clusters on Py, is not a sufficient condition for the
existence of an underlying factor model. This last assertion may be expressed more

precisely:

The partitioning of the points defined by p mean-corrected variable-vectors into

m disjoint clusters on the surface of the hypersphere Py, so that the pencil of
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variable-vectors through the origin Oy, to the points of each cluster is orthogonal to every
other such pencil, is not a sufficient condition for an exact m-factor solution to equation

(1.2).

The large sample assumption (Section 1.3) guarantees that the relative positions
of the mean-corrected variable vectors are close to their limiting positions. However,
departures from this configuration due to sample variability are covered by a much

stronger statement namely,

The existence of an m-block diagonal distribution correlation matrix is not a

sufficient condition for an exact orthogonal m-factor model.
The proof follows by reductio ad absurdum.

Suppose that the distribution correlation matrix is of the block diagonal type,
then clearly any reduced correlation matrix that is formed from it, as in equation (1.50)

below, is also a block diagonal matrix.

. =X -0 (1.50)

the matrix @, (pxp) is of course diagonal but otherwise the values of its elements are

irrelevant. Thus equation (1.50) may be written,

(1.51)

Let the reduced correlation matrices E; in the diagonal of E}; be of order (r; xr,)

i=1.2,.,m Assume that all correlations ORop & # [ are large (positive) if they

belong to these submatrices, otherwise they are zero and thus conform to the block




43

diagonal array. Correlations are the limiting values of the cosines of the angles between
all possible pairs of the mean-corrected variable-vectors. The r; variables of the i-th
group are uncorrelated with the variables of any other group (equation (1.51)), therefore
their mean-corrected variable vectors will each tend to be orthogonal to those of any
other group. Hence, all such vectors will define orthogonally located disjoint clusters of
points on the surface of the hypersphere Py. As Harman (1967, p.97) noted, 'a group of
variables having high intercorrelations is encompassed by a "cone" (Harman's quotation
marks) with a relatively small generating angle. If a vector or reference axis of the
common factor space is chosen in the midst of this cone, all variables in the group will
correlate high with it." In the case of the block diagonal correlation matrix described
above, any linear combination of the vectors of a group (the vector through the group
centroid for example) will be orthogonal to all vectors belonging to every other group
(including those through group centroids). So there are indefinitely many
m-dimensional orthogonal systems of vectors which will serve as Harman's reference
axes. Hence, this particular correlation structure appears to be explained by m
orthogonal factors whose linear relationship to the manifest variables is defined by a

loading matrix of perfect simplicity. It remains to show that this is not true in general.

Let it be supposed that the reduced correlation matrix (equation (1.51)) arises

from m orthogonal factors. Therefore by equation (1.25),

X, = AA (1.52)

A, =[ A, 7] (1.53)




such that A, is of order (r,;xm). Substituting from equation (1.53) into equation (1.52),

T T

- 7
o= AATAA] A A, (1.54)
T T
AAT AA; ... AA,
ApA; AL ... A AL

Each of the matrix products of this array reduce to,

I if i=]
AA = (1.55)
v 0 (rixrj) ifi#]

The row vectors A,,(1 <o <r) from A, and ;\’jB (1€£B< r,) from Aj are of order

2 . T, . : g
(1xm), and their scalar (inner) product kiakm is a correlation coefficient which, by

result (1.55) is positive if i = j and zero otherwise. Hence fori=1,2,...,m, Kia can not
be orthogonal to any row vector in A; but must be orthogonal to every other (1xm) row
vector of Ap. Therefore the m (1xm) vectors A, ;‘28""’ A, chosen respectively

from A, A,,..., A_, constitute an m-dimensional orthogonal set. Suppose 7\.17

m7

(1 <y<r)) from A, is not parallel to A,, which is also from A,. Then lly is a

la?

linear combination of A, , Xzﬂ,..., A, since these vectors span m-space. But 7"17 is

orthogonal to each of )"26""’ ?\.m therefore the coefficients of these vectors in such a

0)‘)
linear combination are necessarily zero and so the supposition that XIY is not parallel to

A, is false. It follows by the same reasoning that for i = 1,2,...m,

m. (1.56)
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Substituting for A, from equation (1.56) into equation (1.55), it follows that the (o.,)th
correlation in the i-th correlation submatrix is Oip = Mighip since mmT =1.

That is, the i-th correlation submatrix is the outer product of the (r;x1) vector of
equation (1.56) with itself, for i = 1,2,...,m. This is a particularly severe constraint on
the correlation submatrices which, for r; > 3, is not in general true (even if r; = 3, the
result is not possible unless GiaBGiay/ Oigy < 1 for the 3 permutations of the
off-diagonal elements, otherwise the specific variances are negative). Therefore, m

mutually exclusive subcollections of correlated variables are not a sufficient condition for

the existence of an orthogonal m-factor model, which completes the proof.

Postmultiplying the loading matrix A, by M; to create a new loading matrix A;

does not of course alter the correlations, but since

T
miMR

= [0,0....,1,...0]
which is a (1xm) unit vector with the 1 in the i-th position, the new loading matrix is

given by,

A, =] A (1.57)

The (pxm) matrix on the right of this equation may also be described as block diagonal.
All entries other than the elements of A, are zero. Each A, is a column vector (r;x1) of
the form enclosed in square brackets on the right of equation (1.56). Comparing result
(1.57) with Thurstone's five criteria for simple structure (Thurstone (1947)), this

loading matrix achieves perfection.
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The block diagonal correlation matrix is the ideal outcome for the factor analyst.
Variables can be grouped (clustered) unambiguously on inspection, the underlying
factors are revealed, and their mutual orthogonality is assured. Geometrically, the
mean-corrected variable vectors from a multivariate sample should form themseves into
m of the "cones" of Harman (1967). Yet this, the most favourable disposition of the
distribution parameters for the analyst does not in general arise from a factor model.
Associating each of an orthogonal system of common factors with each of the
orthogonal groups of variables would, in general, be a misinterpretation of the true state

of nature.

What is true in general however, is that a block diagonal distribution correlation
matrix is a consequence of a standardized principal component model (see equations
(1.33) and (1.34)) in which the (pxp) loading matrix is also a block diagonal matrix with
a matching block structure. The demonstration of this statement is quite straightforward.

Let the distribution correlation matrix be given by,

T =|ZX (1.58)

where Z; is of order (r;xr,). An eigenvector v of Z; may be partitioned as below,

v=_v (1.59)

so that v; is (r;x1). If A is the eigenvalue of X, associated with v then,

v = Av (1.60)
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and by equations (1.58) and (1.59),

Z‘.lv1 = Av,
22"2 = 7Lv2
L v =A4dv (1.61)

Assume that none of the Z‘i have a common eigenvalue (which will be true in general) or
zero eigenvalues (which is a consequence of g being full rank), then the p solutions for
A in equation (1.60) must be the set of p eigenvalues of the m submatrices

£.%,,...Z Suppose Lv; =L, V,, 1<0o<r, then the (px1) eigenvector of

-
Iy associated with A; will be the vector of equation (1.59) but with v, =0,

Vy=0,..,v.=v,

i = Vig» Yy = 0. Assembling these p eigenvectors into one array,

the orthogonal matrix V (pxp) of unitized column eigenvectors of Z; can therefore also
be arranged in block diagonal form. Denoting the (r;xr;) matrix of column eigenvectors

of Z; by V., matrix V (pxp) may be written as,

v=[v (1.62)

Recalling equation (1.33), the (pxp) loading matrix for this case is,

A, = V¥ (pxp) (1.63)

Since (pxp) ¥ is the diagonal matrix of eigenvalues (appropriately positioned in the

diagonal),
¥ = diag¥ ¥ Wi (1.64)
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where L.V, =V.W., i=12,.,m. Hence Ay is also a block diagonal matrix of
correlations of the manifest variables z, with the standardized principal components f.

The relation between zy and fy, both appropriately partitioned, is given by,

112
2| =| Y,¥, 12 £ (1.65)
2, Y, Y, f
: /
Zm Vo¥n || fn

The question now is, can a more parsimonious model be derived from this by discarding
[p-m] standardized principal components? For m dimensions to dominate and provide a
good overall account of Z; and each of its submatrices (equation (1.58)), it would be
necessary for the largest eigenvalue of each of the submatrices Z,,Z,,...Z_ to belong to
the set of m largest eigenvalues of Zy. This is not altogether unreasonable given that the
sum of the r; eigenvalues of the i-th submatrix is r; (with their mean value 1 exactly).
Such a solution exists necessarily if for each submatrix of Z one eigenvalue is greater
than 1 while the remainder are less than 1. Then one column in each of the submatrices
of equation (1.65) tends to contain dominant correlations (with one principal
component), the column sums of squares are clearly equal to the eigenvalues. The error

matrix for such a model would not be diagonal but block diagonal.

In practice, sample correlation matrices may hardly ever resemble block diagonal
matrices, but they can frequently be arranged into diagonal blocks of mainly large
correlations with 'off-diagonal’ correlations of moderate to small absolute values.
Otherwise factor analysis would be a curiosity. At the conclusion of a subchapter on
hypothesis testing Lawley and Maxwell (1971, p.38) tender some rather strange advice:
Tt should always be kept firmly in mind that, except in artificial sampling experiments,
the basic factor model is, like other models, useful only as an approximation to reality,

and it should not be taken too seriously' (sic).
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CHAPTER 2

THE HISTORICAL BACKGROUND TO THE ANALYSIS
OF MIXTURES

SUMMARY

Large compositional datasets of the kind assembled in the geosciences are often
of remarkably low approximate rank. That is, within a tolerable error, data points
representing the rows of such an array can approximately be located in a relatively small
dimensional subspace of the row space. A physical mixing process which would
account for this phenomenon implies that each observation vector of the array can be
estimated by a convex combination of a small number of fixed source or ‘endmember’
vectors. The compositions of such vectors are usually unknown, and must be
estimated. Given the endmember compositions, either known or estimated, the matrix of
proportional contributions of each endmember to each observation (approximate
mixture) of the compositonal dataset, must also be estimated.

The analysis of mixtures unites in a single system all the procedures which may
be employed to achieve and evaluate any of these estimates.

Historically, the construction of a mixing representation for a given array of
compositional data has been regarded as an application of Q-mode factor analysis. The
similarity matrix to be factored, which corresponds to the correlation matrix of an
R-mode factor analysis, is the matrix of cosines of all possible angles between the
position vectors of the datapoints. In a terminal solution, the number of endmembers
equals the number of factors, the compositions of the endmembers are the factor scores
of the rotated factors, and the mixture coefficients are available as the components of the
rotated factor pattern (estimated loading) matrix. Most applications of Q-mode factor
analysis however, fall somewhat short of terminal solutions.
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More recently linear programming has been added to the methods available for
linearly unmixing geological samples into specified endmembers, and least squares
techniques have been proposed in order to adjust a set of specified endmembers when
compliance with the linear programming constraints creates unacceptable errors between
the estimated and the observed data.

These approaches to the analysis of mixtures are reviewed in this chapter.
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2.1 BACKGROUND

Large compositional datasets of the kind assembled in the geosciences are often
of remarkably low approximate rank. That is within a tolerable error, data points
representing the rows of such an array can approximately be located in a relatively small

dimensional subspace of the row space.

This phenomenon was recognized more than two decades ago. R-mode factor
analyses that were employed to identify 'natural element groupings', would frequently
yield sets of eigenvalues for the correlation matrices in which only small proportions of
the eigenvalues were greater than one. In general, any result of this kind usually
indicates that points representing the standardized data have non-negligible components
along only a small number of orthogonal axes through the centroid of the data. Thus,

such points approximately occupy a space of relatively small dimensions.

However, papers had begun to appear questioning the validity of any analysis
based on the correlation matrix of 'constant-sum' data, that is data typically measured as
percentages or in parts per million and possibly 'closed' by summing to a constant such
as 100% or 1,000,000 ppm (see, for example, Chayes (1960)). It has repeatedly been
reported since, that significant correlations can be induced between a pair of variables by
manipulating the overall number of variables present in 'closed' sets (see Aitchison
(1986)), that is by forming subcompositions. An elementary example (cited by Imbrie
and Van Andel (1964) and Aitchison (1986)), is the trivial subcomposition of dimension
2 in which both variables sum to a constant, and for which the correlation coefficient
between the pair is necessarily -1. So in general, R-mode analyses, based in particular
on correlations between the variables, can not yield absolute and invariant attributes of

the data such as 'natural element groupings'.
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A physical explanation for the low approximate rank of a compositional dataset,
is that the sample compositions derive from some natural mixing process. This is the
historical geochemical 'mixing model'. Algebraically, it implies that each object vector
(geological sample) is approximately a convex combination of a small number of fixed
source, or endmember vectors which have some genuine physical existence. A
particularly satisfactory feature of this explanation when it is valid, is that it does not

depend on the modelling of relationships between the variables.

It will be shown in Chapter 3 that, under appropriate conditions, ratios formed
from the components of the endmembers of a dataset of subcompositions, are equal to
the ratios formed from the corresponding components of the endmembers of the full
dataset. So, manipulating the number of variables in a subcomposition changes the
values of the corresponding variables in each of its contributing endmembers by just the
common scale factor which restores the sum-to-constant property. Therefore, in the
interpretation of the data as the outcome of a mixing process, 'natural element
groupings' are invariant in general, albeit as components of endmember compositions.

This is intuitively reasonable.

For a given compositional dataset, a mixture analysis may briefly be described
as the determination of a set of endmember compositions together with the contributions

of those endmembers to each composition of the dataset.

When the attention of geochemists first focussed on mixing processes, it was
realized that a mixture analysis was the approximate resolution of a set of object vectors
into linear combinations of extreme (most dissimilar) endmember vectors. It was also
realized that factor analysis was the approximate resolution of a set of mean-corrected
variable vectors into linear combinations of orthogonal (most uncorrelated) factor vectors
(see equation (1.38). Viewed in this way, the two procedures were originally seen to be

essentially the same. The fundamental difference being that the data matrix processed by
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one technique was the transpose of the data matrix processed by the other. Further, the
distinction between the former and the latter approaches to the data had already been

identified by psychologists as R- and Q-techniques.

Cattell (1952, pp. 90-91) used an array of the scores on 8 tests achieved by each
of 7 people to present an illustrative definition of Q-mode factor analysis. His particular
point being that 'the transposed or Q-technique' consisted of 'correlating’ persons
instead of variables (test scores). The correlation between two people indicated the extent
to which they resembled each other. Just as it was true that many people were required
for a reliable correlation between two tests, so it was also true that many tests were
required for a reliable correlation between two people. In any event, the illustration
evoked a possible (7x7) correlation matrix between people which could be factor

analyzed, thus clustering the 'artistic' personalities (for example) and so forth.

Cattell (ibid) did not explicitly specify a Q-mode model. It is to be inferred that
it was of the same form as equation (1.1). Therefore, the factor analytic algorithms that
had been developed to construct R-mode solutions were clearly applicable to the

'transposed or Q-technique' merely by transposing the raw data matrix.

Here then was a precedent for the mixture analysts. Although the Q-mode
correlations between objects were found to be unusable, there was an alternative
similarity measure which was easy to interpret, and, all the necessary algebra was

covered in the R-mode literature.

2.2 Q-MODE FACTOR ANALYSIS OF COMPOSITIONAL DATA

The establishment of Q-mode factor methods in the analysis of mixtures,

originated with the interpretation made of the work of the factor-analytic school by the
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earliest advocates of the technique. In two seminal papers, Imbrie (1963) and Imbrie
and Van Andel (1964) acknowledged their debt in particular, to the publications of
Thurstone (1947), Cattell (1952) and Harman (1960). The papers by Imbrie (1963),
Imbrie and Van Andel (1964), Manson and Imbrie (1964) and Klovan and Imbrie
(1971), together presented extensively worked examples, source code for computer
programs, and some of the algebra for principal factor algorithms as described in detail
by Harman (1960, 1967). It was later noted by Miesch (1976b) that the term factor
analysis may have been 'unacceptable' to workers in multivariate statistics. Miesch
pointed out that the diagonal values in the similarity matrices had been unity in all
applications at that time, so the method might best have been referred to as 'components'’
analysis. Miesch nevertheless promoted factor analytic concepts, terminology and
procedures. For example, the results of an application of 'the extended form of Q-mode
factor analysis' to some petrologic-mixing problems, included 'the communalities' of
vectors which represented compositions in the 'two-factor varimax space' (Miesch

(1976b, p.30)).

Subsequently, the Q-mode factor model has become a well-established concept
in geological research. Like R-mode factor analysis, certain conventions controlling the
execution and presentation of the results of a Q-mode factor analysis are entrenched.
Although of dubious value, such conventions include the reproduction of tables of
eigenvalues, the percentages of the variabilities accounted for by each of the factors,
barcharts to depict the ‘compositions' of varimax-rotated factors (which always contain
negative components) and sometimes even the 'communalities’ associated with the

samples (see for example, Leinen (1987), De Carlo, McMurtry and Kim (1987)).

In the view of many authors (including Harman (1967, p16)), the basic problem
of R-mode factor analysis, given m the number of factors, is the estimation of the factor
loading matrix. (Although it might be suggested that estimating m was the basic

problem). In the analysis of mixtures however, given k the estimated number of
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endmembers, a Q-mode terminal factor solution must yield endmembers with feasible
(non-negative) compositions, together with a concomitant array of feasible
(non-negative) mixture coefficients. The endmembers should have been reached by an
oblique rotation of the axes of the varimax reference system into suitably extreme
positions in the positive orthant of variable-space. But there are no guaranteed methods

for accomplishing this, and so most analyses stop at the varimax rotation of the factors.

It will be argued further on that, although it is possible in some special cases to
construct satisfactory terminal solutions using the Q-mode factor method (certainly with
contrived data), in general it is not. The 'factoring’ of the Q-mode similarity matrix is
inefficient and unnecessary, and the application of varimax rotation to a subcollection of

the principal axes of that matrix possibly obscures rather than locates extreme vectors.

The remainder of this section contains a description of the history of the Q-mode
factor analysis of compositional data. An important aspect of that history are the
attempts to solve two problems that were particularly associated with the method namely,
the identification of feasible extremes and the enforcement of the non-negativity

constraints. These two problems will appear again in Section 2.3 and Chapter 3.

2.2.1 Q-mode Factor Analysis

Note:  Throughout the discussion of the Q-mode analyses that follow in this chapter,
and in the development of the analysis of mixtures in subsequent chapters, the
arrays of observations made on p variables for each of n objects will be denoted
by (nxp) matrices %,X, W as needed. That is, when compared to the
preceding treatment of R-mode factor analysis, n and p will always be
interchanged.
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The first document to set out in some detail a rationale and an algorithm for the
Q-mode 'factor analysis' of geological data was a 'computer program manual' prepared
by Imbrie (1963) and released as a Technical Report by Northwestern University. The
particular abstract problem addressed in the document was that of resolving each row or
column vector of a dataset, into components in the directions of a small number of fixed,
oblique row or oblique column vectors. Accordingly, both R and Q-mode analyses
were presented. Indeed, the author stated at one point that that both analyses are
identical 'mathematically' except in the choice of similarity matrix. For an R-mode
analysis, the similarity matrix specified by Imbrie was the familiar product moment
correlation matrix between the variables. That is, the matrix of cosines of angles between
all possible pairs of mean-corrected (1xn) variable-vectors in n-space (equation (1.15)).
For a Q-mode analysis, Imbrie defined the similarity matrix to be the cosines of angles
between all possible pairs of (1xp) position vectors x;, X; of the data points X, Xj
(objects) in p-space (again equation (1.15) with Dg., DRj replaced by x;, xj). He cited
Imbrie and Purdy (1962), as have many subsequent authors, for the introduction of this
cosine which they called the 'coefficient of proportional similarity' and denoted by cos8.
It has the obvious property of being independent of changes to the magnitudes of the
object vectors. So that for a given set of variables, the similarity matrix R, between
objects is invariant to such elementary row transformations of the (nxp) array % of raw
(weight, volume, count...) data, as the scale changes into compositions X or into unit
vectors W. It is however, altered by scale changes to the columns of %, X or W, a
transformation recommended by Imbrie when simultaneously analyzing major and trace
elements. The symmetric matrix RQ of similarity coefficients is widely referred to as the

'cosO matrix'.

When either an R or a Q-mode analysis concluded with the (varimax) rotation
of an orthogonal set of reference vectors, Imbrie incorrectly called it a 'factor’ analysis
(see below). To distinguish the next possible stage, in which the reference vectors may

be transformed into an oblique reference system (‘representing actual cases’ in a Q-mode
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context), Imbrie coined the unfortunate term 'vector' analysis (which in Mathematics
unites an extensive branch of Algebraic Geometry with Potential Theory, Mechanics and
Continuum Mechanics). Nevertheless, it appears that Imbrie envisaged the construction
of a reference system consisting of relatively few oblique vectors, in the directions of
which each vector representing either a variable-vector or a geological sample could be
resolved. In the Q-mode case, a component in each of these reference directions would
then represent in some way the contribution of that reference vector to the sample. In

essence, that view was correct.

The first of Imbrie's two computer algorithms required the mode of the analysis
(R or Q) as an input argument. Different subroutines were called to calculate the
appropriate similarity matrix. Otherwise, the the program extracted eigenvectors and
eigenvalues of the similarity matrix (with the diagonals intact) and, if required, carried
out a rotation according to the varimax criterion of the specified number of 'factors' (‘a
complete factor analysis'). The second algorithm performed an oblique rotation of the
varimax 'factors' output by the first, thus constructing an oblique loading matrix.
Imbrie stated (ibid, p.14) that for the initial factor matrix, 'using algebraic procedures
described in detail in Harman (1960),...,the principal components method is used'.
That is certainly confirmed by his worked examples. The 2nd edition of Harman's 1960
text (Harman (1967)) states quite explicitly that principal components analysis is ‘not
presented’ as noted in Section 1.2.3. It seems certain then that Imbrie regarded his
procedure as principal factor analysis. Klovan and Imbrie (1971) later used the term in

the description of their improvements on Imbrie's algorithm.

The original algorithms were elementary. For the Q-mode case, suppose X
(nxp) is a matrix of n observations on the concentrations of p mineral constituents (note
again that this is the transpose of the conventional notation for R-mode analyses). It is
not necessary for each row vector to be a composition, that is, with unit sum (see

Terminology). Transforming the rows of X into unit vectors creates the matrix W
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(nxp). The (1xp) rows W ,Wo,...,W_ of W are the position vectors of the points
W,,W,,..,W_ on the surface of a unit hypersphere, centre O in p-space, since
WiWiT =1,1=1,2,..,n. The (nxn) similarity matrix for the rows of X whether they
are compositions or not is given by,

R = WW'

0 (2.1)

Denoting the angle between the unit vectors w, and W by Bij, the (i,j)th element of RQ
is the inner produuct wwT which is equal to cos(eij). Provided n > p, which is usually
assumed, the maximum possible rank for RQ is p. It has at most p positive eigenvalues
and the remainder are zero (¢f. Section 1.2.3, equations (1.25) to (1.31)) . Let
r<p<n be the actual rank of (nxp) X. Let (nxn) diagonal matrix R contain the
magnitudes of the row vectors of X so that r; = (x,;x,))!/2. Then X = RW and since
R is obviously of rank n, then rank(W) = rank(X) =r1. Let ¥ (nxn) be the diagonal
matrix of eigenvalues (in order of magnitude down the diagonal so that the lower [n-r]
are zero), and let (nxn) U be the matrix of corresponding unitized column eigenvectors,

then by definition,

Postmultiplying both sides of this by UT,

T
RQ = U¥YU
T
_ (U‘P]/ZIU‘PWJ 2.2)
T
= LOLO (2.3)

In equation (2.3), the initial loading matrix (nxr) L, contains the first r columns of
UY¥!”2 which it replaces in equation (2.2), by discarding the [n-r] zero column vectors
formed in the matrix product by the zeros in the diagonal of ¥. Imbrie assumed that

there must exist a unique (rxp) matrix B, whose r rows are mutually orthogonal, such
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that W = L B,. The result is true by the singular value decomposition theorem
(transpose equation (1.41), and note the remarks at the end of Section 1.2.4). Basically,
Imbrie followed the interpretation of the elements of L, as direction cosines with respect
to an orthogonal reference system, which was noted earlier in relation to equation (1.46)
but with p and n interchanged. It was not necessary however, to construct B,. A
rotation according to the varimax criterion was then undertaken on L to create (nxr) LY,

and notionally (rxp) BY, so that in the abstract,

w = L'B’ (2.4)

Imbrie remarked in his discussions of both R and Q-mode analyses that the varimax
procedure should align the reference vectors (rows) of BY as near as their orthogonality
would permit, to the extremes of the 'vector configuration' (rows of W in this case). In
the R-mode case, such variables are the most independent of the set, and in the Q-mode
such samples are compositionally the most divergent. Thus the first estimate of the
extremes could be identified by the highest absolute loadings in each of the columns of
(nxr) LY. Suppose then that the (rxp) submatrix W, contains the rows of W with the
highest loadings in each of the r columns of LY. That is, of all the rows of W, each row
of W, makes the smallest angle with one of the rows of BY. The rows of LY which

correspond to W, constitute a nonsingular submatrix (rxr) L," such that,

W, = L‘]’BV
hence,
v v -1
B' = (Ll] w,
and so from equation (2.4),
W = [LV(L‘;) }WI
= LW, (2.5)

From this equation, it is evident that the unit vectors representing the set of n geological

samples have each been expressed as linear combinations of a fixed subset containing r
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of their members. Although Imbrie did not make a clear statement of the equations to be
solved or of any constraints that would apply to any solution such as equation (2.5), it is
manifestly clear that the aim of his procedure was to identify that submatrix W, of W
such that all the elements of matrix L, in equation (2.5) would be non-negative. That,
after all, would be the unique solution in terms of extreme vectors for W. It is equally
clear that in general, W, does not exist. For example, if the rank of W were exactly 3,
there is no reason why there should be 3 vectors of W which would define the vertices

of a spherical triangle whose boundaries would contain all the remaining points.

Imbrie did not set great store by the recovery of a mixture representation
X = L;X, in which W and W, are transformed back into X and X, (the
corresponding submatrix), and L, is transformed into a matrix of mixture coefficients
(see Terminolgy) L. Indeed, his second program for the resolution of the rows of W
into components L, with respect to oblique reference vectors W, stopped at that point.
His reasons were that in most geological work it is the pattern of regional variations
which is of interest rather than the exact numbers, and since the required transformation
is linear, nothing of value is achieved by the calculation. The fact is, a sufficient
condition for the recovery of the representation X = L,X, from W = L,W,, is that
each row vector of X is a composition (see equation (3.16)). If each row of X is not a
composition, then the resolution of X into mixtures of the rows of the submatrix X,
may not be possible. He did include a brief sentence on the transformation of equation
(2.5) into a linear relation between the original object vectors. A complete computation to
achieve his intended solution is as follows. If the (rxr) diagonal matrix R, is the
submatrix of R (defined above) which corresponds to X, then X = RW and

X, =R;W,. Equation (2.5) can be transformed into,

-1
X [RL2R1 IRIWIJ

LK (2.6)
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From the point of view of computer algorithm preparation, there are two important
observations to make about this equation. The first is that, if X is a matrix of
compositions, then the simpler and equivalent operation for constructing L is to divide
each row of L, by the sum of its components. This amounts to an elementary row
operation on both sides of equation (2.5) which is demonstrated in Chapter 3. The
second is that if W, has been constructed by some method so that it does consist of unit
row vectors but it is not a submatrix of W, then R, does not exist. Again, this is not a
problem if X is a matrix of compositions, since any point on the unit hypersphere can be

projected onto the hyperplane defined by the datapoints of X.

In Imbrie's contrived Q-mode example, he had constructed a (10x10) array in
which the latter 7 object vectors were convex combinations (mixtures) of the first 3,
hence r =3 by design. Also, since the first 3 object vectors were created as
compositions (each summing in fact to 100%), all object vectors were compositions (see
Chapter 3). Consequently his computer programs progressed from equation (2.1)
through to (2.5) interrupted only by the nomination of reference vectors 1,2,3 to execute

an oblique rotation. The selection of these vectors was based on an inspection of the
largest elements in the columns of the varimax rotated loading matrix (and
foreknowledge). An important convention of R-mode factor analysis was adopted, to
become a standard device of Q-mode 'factor' analysis also. From the well-known result
that the sum of the eigenvalues of the (nxn) similarity matrix equals its trace n, the
cumulative proportions of n (the 'sum of squares’) for each of the eigenvalues were
tabulated. Thus the apparent dimensionality k of the data could be assessed by the
percentage of the total variability about the origin accounted for by the first k orthogonal
‘factors'. For the contrived data, the sum of the first 3 eigenvalues was 10 which

represented 100% of the possible total.

Imbrie's second illustration was based on a (31x6) array of real data which can

only be described as very small. The exact rank r of the data matrix appeared to be 6 (on
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inspection of the table of eigenvalues). However, Imbrie chose the approximate rank k
to be 3 because several entries on the 3rd varimax 'factor’ were nearly equal to those on
the first two. He described entries on the 4th as trivial as would have been those on the
5th and 6th axes. That is, in equation (2.2), it may be supposed that the last 3
eigenvalues were negligible and so L, was defined to contain just the first three columns
of U¥!2, Hence for Imbrie's purposes, equations (2.3) to (2.6) would have become
approximations. Thus, Q-mode 'factor’ analysis was to be employed to approximate a

matrix of rank p by the linear combinations of a matrix of rank k < p.

Although the largest absolute loadings in the first 2 columns of the varimax
rotated matrix (31x3) LY did not identify true extremes in the (31x6) matrix W, the
second largest loadings purportedly did. Imbrie's criterion for an extreme vector was
that no loading on it be greater than 1. He ignored another criterion namely, that no
loading on any other reference vector be negative (which would also pose difficulties in
interpretation). Eight of the loadings on two of the reference vectors for this illustration
were negative, three of them quite large, indicating that the third vector was not extreme.
The precise notion of a mixture and the implied constraints of the convex combination
were not set out in the document. Towards the end, Imbrie remarked of the second
illustration that 'all wells (vectors) can be considered as various mixtures of the reference
wells (vectors)'. There remained one serious difficulty which Imbrie did not discuss,
and that was the possibility that an array may have been of very low approximate rank k
but did not contain a (kxp) submatrix W, of extreme row vectors. Later this was to
raise the problem of setting out objective procedures for constructing k (unobserved)
extreme vectors which would then serve as endmembers. This problem is complicated
by the fact that there may be no such vectors or indefinitely many of them. It is for this
reason that many authors have been content to report the results of analyses which were

concluded at the varimax rotated reference system.
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Because Imbrie's program processed the matrix R, in the same way as a
prog p Q

correlation matrix, it could accept a maximim of only 70 cases.

The document contained some oddities. Krumbein (1957) was credited with
the original use of vector notation with compositional data. A statement which was
reinforced a little later by by Imbrie and Van Andel (1964). Krumbein's paper dealt with
a 2 component system (A,B) which could be transformed into a composition (P,Q)
where P = A/(A+B) and Q = B/(A+B). (The quantities A and B happened to be the
thicknesses of sand and shale at a control point). Quoting a result from Kempthorne
(1952) that the arcsine square root transformation of P into angle o stabilized the

variance of a sample proportion based on a binomial random sample, Krumbein

constructed a complex variable (YB +iYA ) which defined a vector from the origin of

length (A+B)!/2 and in a direction  from the real axis. This vector permitted
development of single contour system maps which simultaneously conveyed thickness
and composition, and facilitated statistical analysis of the map data. Krumbein promised

further presentation and illustration.

Another curiousity was Imbrie's assertion that most Q-mode studies at that time
used the product moment correlation coefficient between samples (not variables) as the
measure of similarity. He included a table of these 'correlations' to demonstrate their
absurdity, although his tabulation of a zero coefficient between a sample and itself was

invalid.

The paper by Imbrie and Van Andel (1964) was an expanded descriptive
version of Imbrie (1963). Parts of it were almost identical to the latter paper, with the
same if not more detailed Q-mode illustration using the same (10x10) array of contrived
data, and the same if not more fulsome citations (particularly to Thurstone (1947),
Cattell (1952) and Harman (1960)). However, where Imbrie (1963) worked through

two examples each of R and Q-mode 'factor' analysis, and covered the theoretical




background to each equally, Imbrie and Van Andel illustrated the absurdity of
performing R-mode analyses on a 2-component composition, and repeated Chayes'
(1960) warning about the use of the correlation coefficient in the analysis of
compositional data in general. Accordingly their paper focussed on Q-mode 'vector
analysis' only. In a number of developments, they used the term endmember to describe
extreme vectors, and discussed the formation of mixtures of endmembers right from the
start. They recommeded that each column of the final loading matrix be plotted on a map
on which a loading was associated with its sample location, and so the geographic
pattern would be indicated by contours showing the areal distribution of the proportional
contribution of each endmember in all samples. If such a map pattern seemed to be
random, they advised that the endmember should be disregarded. In the analysis of the
(10x10) array of Imbrie's (1963) contrived data, they introduced the barchart (called a
‘histogram') to portray the compositions of the 3 endmembers, and employed a ternary
plot with the endmembers as vertices, to display the relative positions of the samples

with respect to each other and the vertices, in terms of the contrived loadings.

Imbrie and Van Andel recommended but did not illustrate the advantages of
changes of scale on the columns (variables) of (nxp) X to give major and trace elements
equal weight in an analysis. It must be observed that postmultiplication by a
non-singular (pxp) diagonal matrix will not effect the true rank r <p of X but it may

profoundly effect the approximate rank k.

Expanding the lexicon of unfortunate terminology, Imbrie and Van Andel called
the matrix of loadings (components) on the principal reference axes through O, the
‘principal components factor matrix'. The axes themselves they called 'factors' (after
Imbrie (1963)) and worse, 'theoretical endmembers'. These vectors could never be
endmembers of any sort. Their location and mutual orthogonality guarantee the presence
of negative components (concentrations) which are geologically impossible to interpret.

Further, since there is an obvious field of investigation into the presence of hypothetical
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endmembers in a dataset, the term 'theoretical endmember' should be reserved for such
endmembers in theory. The row sums of squares of the loading matrix were called

'‘communalities’, naturally.

In addition to the analysis of the contrived data, Imbrie and Van Andel
compared the results of hitherto conventional analyses with those of Q-mode 'vector
analyses' of certain heavy mineral suites of the Gulf of California and of the
Orinoco-guyana Shelf. Whereas the conventional analyses sought characteristic
averages (‘pigeonhole classification'), the identification of single extreme samples or
endmembers permitted mixtures and gradational sequences to be 'unravelled'. These

were demonstrated to good effect on contour maps.

The paper set out a table of the loadings on 6 endmembers, chosen from the
data, for a subset of the Gulf of California samples. As was the case with Imbrie's
(1960) selection of endmembers fom his data ('real cases') there were negative loadings
some of them quite large and in all the columns in this case. No such table was

reproduced for the Orinoco-Guayana Shelf data.

The paper by Imbrie and Van Andel (1964) is still frequently cited by authors
reporting the results of the analyses of mixtures. It was a superior document to the
‘computer program manual' of Imbrie (1963), being considerably more detailed, better
illustrated and professionally presented. But principally it is still true that for certain
large arrays of actual mixtures, the consequent low approximate rank of a dataset
together with a useable loading matrix would readily be revealed by the method

pioneered by Imbrie (1963) and described by Imbrie and Van Andel (1964).

Following Imbrie and Van Andel's (1964) paper, reports of the application of
Q-mode 'factor' analysis to geological problems started to appear in research journals. A

number of computer programs for its implementation also became available. Klovan
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(1966) for example, reported on an analysis in which sediment samples were sieved into
ten size-ranges which were each measured as percentages by weight of the whole
sediment. This was a rather unusual dataset for an analyis of mixtures, given the
arbitrariness of the grain-size classes. But it was Klovan's aim to identify the
'depositional environments', if any. His formation of the 'cos® matrix' and extraction
of the first 3 principal axes which were rotated according to the varimax criterion, led
him to postulate surf energy, gravitational settling and current energy as the 3 energy
types influencing grain-size distributions at a depositional site. Having computed the
loadings on each of the three rotated reference vectors, he divided each squared loading
by the corresponding 'communality' thus 'normalizing’ the factor components which
were then plotted on a ternary diagram. Klovan's transformation was equivalent to
projecting his estimates onto the surface of the unit sphere. There is a one to one
correspondence between the points of that sphere and the plane of the ternary plot whose
vertices are the determined by the varimax reference vectors. Klovan asserted that the
'procedure is similar in intent to the oblique projection method of Imbrie and Van Andel

(1964)'. That assertion is false.

The next major development was an improvement to the computer algorithm
which exploited the algebraic relationships between W, U, V and ¥. The basic
method, originating with Imbrie (1963) and already described, was to compute directly
the eigenvalues and eigenvectors of the (nxn) similarity matrix WWT, where n denotes
the number of objects. Even today, machine limitations place serious restrictions on the
number of objects that can be processed by this method. Klovan and Imbrie (1971)
published a computer algorithm that constructed (pxp) WTW where p denotes the
number of variables, and hence obtained (pxp) V and ¥. The (nxp) matrix L
followed by matrix multiplication (see equation (2.3)). Their algebraic summary started
with the 'basic factor equation’ of Harman (1967), it contained 17 numbered equations,
one error and an incomplete derivation of the matrix equation for L. The equality of the

non-zero eigenvalues of WWT and WTW was not derived but quoted from 'matrix
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theory' in mid argument. Just as in the earlier papers, the truth of the results on which
the improved computer algorithm was based rested on the unstated singular value

decomposition theorem. It will be helpful to demonstrate why this is so.

In the development of the account of the analysis of mixtures in Chapter 3 and
of Q-mode methods generally, the integers n and p have been interchanged in most
arrays. However, there are always exceptions, and these are prominent in the singular
value decomposition of (nxp) matrix W. At the risk of being repetitive, this result is
now revised with the appropriate changes in notation. As before, (pxp) ¥ is the
diagonal matrix of the p non-zero eigenvalues of (nxn) WWT and (nxp) U the matrix of

corresponding unitized column eigenvectors, so by definition,
"
WW U = U¥

Premultiply both sides of this by (pxn) WT to obtain,
WWW'U = WUy

and on inspection, WTU is a (pxp) matrix of column eigenvectors of (pxp) symmetric

matrix WIW. Hence,

v = wiug”? 2.7

is the (pxp) matrix of unitized column eigenvectors of (pxp) WTW (it can readily be
verified that VTV =1 (pxp)). Rearranging equation (2.7) to make W the subject, the
singular value decomposition of rectangular matrix (nxp) W is given by,

w = uy'AyT (2.8)

Postmultipying both sides of equation (2.8) by V,

wv = vy’ (2.9)

From equations (2.2) and (2.3),
L. = WV (2.10)




and,

B =V (2.11)

With the appropriate attention to detail, these results are easily derived when
rank(W) = rank(X) =r < p, as was discussed in Section 1.2.4. With real geological
data however, matrices X (nxp) and W (nxp) are usually of rank p, and it is their
approximate rank k, equal to the number of non-negligible eigenvalues in the diagonal of
¥ which determines, by equations (2.9) and (2.10), the k columns retained in L, and

the k rows retained in B, This latter choice is made by the analyst.

By constructing (pxp) V and ¥ from (pxp) WTW, then (nxk) L, and (kxp)
B, as in equations (2.9) and (2.10), the algorithm by Klovan and Imbrie (1971) would
accept at most n = 1500 objects and p = 50 variables for running on a 'moderate-size'
computer This was a vast improvement over the maximum of 70 objects for the
algorithm written by Imbrie (1963). There were devices in the program for examining
differing choices for k, ultimately the final choice was up to the user. The program

stopped at the varimax rotated loading matrix, that is at the construction of LY and B".

There were no notable developments to the Q-mode 'factor' procedure until the
publication of three interrelated papers by Miesch (1976a), Klovan and Miesch (1976)
and Miesch (1976b). Miesch (1976a) was a 'companion paper' to Klovan and Miesch
(1976), but it referred the reader to Miesch (1976b) for a more complete account of 'the
extended form of the Q-mode method'. Klovan and Miesch (1976) contained the source
code and program descriptions for a modification to the algorithm by Klovan and Imbrie
(1971), and a new program to permit 'Q-mode model-building'. Miesch (1976b)
covered the first two papers in greater depth but without reproducing the source code. It
also provided four extensively worked illustrations based on published data. The three
papers taken together focussed on the Q-mode 'factor' analysis of compositional data
and presented 'an extension of the method of Q-mode factor (vector) analysis' of data

matrices with constant row-sums.
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Miesch (1976b) conceded at the outset that Q-mode 'factor' analysis was a
misnomer. Nevertheless, he perservered and indeed reinforced the factor analytic
interpretation of the mixing model, while simultaneously attempting to exploit the
closure constraint (constant row-sum) of compositions in order to acheive solutions with
feasible mixture coefficients and endmember compositions. Drawing attention once
more to the unsolved difficulties associated with the R-mode analysis of compositional
data in general, the authors of the three papers made much of the advantages of the
Q-mode processing of data that summed to a constant. Principally these were claimed to
be,

(a) The reproduction of 'unbiassed’ approximations of the original data in the

original units of measurement.

(b) The construction of 'factors' in terms of the original units of measurement.

(c) The construction of ‘composition’ loadings of the samples on the 'factors'.

(d) A validation procedure for the 'factor model' by means of 'factor variance'

diagrams.

(e) The provision for the user of methods to propose hypothetical endmembers

and to 'test' their validity.

There was no proof given that the approximations are 'unbiassed’. It is
obvious that, if both the original and the approximate data matrices have the same
constant row-sum A, then the matrix of residuals must have constant row-sums equal to

zero. Perhaps that is what was intended.

A necessary condition for the implementation of the Klovan and Miesch
procedure was that the data be of the constant row-sum type, in common units of
measurement (proportions, percentages or ppm). It is easily shown (see equation
(3.16)) that if, in the equation X' = LB, the (nxp) approximation X' for matrix X has
row-sums all equal to A and the (kxp) matrix B of k extreme vectors also has row-sums

A, then (nxk) L is necessarily a matrix of mixture coefficients. These are the so-called




70

‘composition' loadings of the samples on the 'factors'.

Miesch (1976b) asserted 'that if the factor solution is to be used as a device for
summarizing geochemical or petrologic data or for the purposes of sample classification,
negative composition scores can be perfectly acceptible’. He maintained that the set of
scores for each varimax axes was indicative of the general compositional nature of the
'theoretical' endmember. These remarks probably influenced numerous later authors
who were satisfied to stop their analyses at the construction of varimax rotated axes and

report the positive and negative 'composition' scores obtained on each axis.

The algebra for the 'cos®' matrix was presented along with a detailed
illustration in Miesch (1976b) of the optional invertible transformation,
xlij = (x;; - xmin,)/(xmax; - xmin,) (2.12)
which is self-explanatory, and intended to eliminate the distinction in magnitudes
between major and minor (trace) elements . The 3 options provided were (i) to make
the transformation as set out in equation (2.12), (ii) to define xminj to be zero, (iii) to
define xminj to be zero and Xmax; to be one (the identity transformation). Since the
original data summed to a constant the point Xi(xn,xiz,...,xip) was transformed under
equation (2.12) from one hyperplane into the point X';(x;;,x';5,...,x'; ) on a second
hyperplane. Transforming the coordinates of the latter into the components of a unit
vector was equivalent to projecting the point from the second hyperplane into the point
W, on the surface of the unit hypersphere along a radius through the centre O. (All
points must lie in the positive orthant). In such a procedure, there is a one-to-one
correspondence between the three points X,, X!, and W, taken two at a time which
accounts for the claimed advantages (a), (b), (¢) and (¢) above. An approximation to the
point W, for which the ‘communality' will be less than 1, can be projected onto the

hypersphere and then transformed into a point representing a composition in the original
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units. Since x1, = (x! il,xliz,...,xlip) is in general no longer a composition vector, the

case made that the appropriate coefficient of similarity is the cosine of the angle between

two composition vectors will not always apply to )(1i and x! i-

An extreme vector could be chosen by the user and transformed into a
composition in exactly the same way. Since the algorithm was built on that of Klovan
and Imbrie (1971), both (nxk) L, and (kxp) B, were available, and by retaining the full
rank (pxp) matrix V, it was possible to form either (1xp) Woow = LewBo When (1xk)
I, was specified, or I ., = w__ V when w__ was specified, discarding the last
[p-k] components from the latter matrix product. So the problem of identifying a

geologically interpretible set of endmembers when none were present in the data was

confronted by allowing users to experiment with their own choices.

The three papers are probably most important for their approach to assessing the
minimum number of endmembers required for a viable representation for (nxp) W of the
form W' =L B,. Miesch (1976b) commented that this could be done before the
compositions of the endmembers were actually known. The demonstration of the truth
of that comment is elementary. Suppose the approximate rank of (nxp) W is assumed to
be k. From equations (2.10) and (2.11), redefine (nxk) L to contain the first k
columns of WV, and (kxp) B, to contain the first k rows of VT. Then, the (nxp) matrix
approximation W' for W is determined uniquely, provided that the chosen set of
extreme unit vectors W, belong to the subspace spanned by the first k eigenvectors. For

such a choice of extremes, W, = LIBO for some non-singular (kxk) L, and so,

W' = LB,

-1
LLOLI ILIBOJ

= L,W, (2.13)
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The derivation of this equation is similar to that for equation (2.5) except that W, is of
order (kxp) and not necessarily a submatrix of (nxp) W' (nor in general a submatrix of
(nxp) W). The rows of W, =L,;B are required to be k linearly independent unit
vectors which clearly belong to the subspace spanned by the rows of By, for which all
the elements of (nxk) matrix L, in the equation (2.13) are non-negative. With these
stated conditions, it is not necessary that W, or the (kxp) matrix X, of endmembers that
corresponds to W, be known. Using this result, Renner (1982) published plots of the
estimated against the observed values of 10 (major and trace) variables for a
4-endmember representation of 60 marine sediments. Thus the goodness-of-fit of the
approximation had been made available for graphical appraisal without knowledge of the
actual compositions of the endmembers. (All but one of the plots were remarkably
linear, despite transformations of the type (2.12) followed by projections onto the
surface of the unit hypersphere. Hence there seemed to be strong evidence for some kind

of mixing process).

Miesch (1976a), Klovan and Miesch (1976) and Miesch (1976b) proposed that
the goodness-of-fit of the successive approximations corresponding to k = 1,2,3,....,
could be illustrated on a 'factor variance' diagram. This was an overlaid plot of the
coefficients of determination between the estimated values (columns of W') and
observed values (columns of W) for each of the p variables, against k the number of
factors'. Miesch (1976b) provided a modest demonstration that the eigenvalues and
sample ‘communalities' could be misleading where they are used as indicators of the
degree to which the 'factor model' can be used to reproduce the original data. In fact,
the problem seems to be more serious than he suggested (this problem will be examined
in Chapters 3 and 5). Without doubt, if it is the purpose of a mixture analysis to account
for the observed values of the variables in terms of parsimonious linear combinations of
a small number of endmembers, then all other things being equal, the success of that
analysis must be judged by the precision of the estimates. Miesch tried to accomodate

variables that seemed to be accounted for only by their own 'unique' factors by
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incrementing the estimates due to the remaining endmembers. Geochemically, an
element that seems to be accounted for by its own endmember alone is probably just

that.

Like the paper by Imbrie and Van Andel (1964) before them, one or other of

these three papers continue to be cited in the research literature.

The textbook on geological factor analysis by Joreskog, Klovan and Reyment
(1976) presented an extensive coverage of R- and Q-mode techniques. An entire chapter
was devoted to basic mathematical and statistical concepts, and included a derivation of
the singular value decomposition of a rectangular matrix. Sixteen years after the paper
by Chayes (1960), there was no discussion of the constant sum problem associated with
the R-mode analysis of compositional data. The chapter on Q-mode methods asserted
that the similarity matrix was the 'mainstay' of Q-mode 'factor’ analysis. The text
compared the results of Tmbrie Q-mode factor' analysis, coordinates analysis and
correspondence analysis, after each were applied to the (10 x10) array of contrived data
originally published by Imbrie (1963). 'Imbrie Q-mode factor' analysis revealed that

rank of the data matrix was exactly 3.

Clarke (1978) noted that most 'factor' analysis solutions had failed to
‘'satisfactorily decompose' sets of mixture data. He observed that it was extremely
unlikely that orthogonal 'factors' would all lie in the positive 'quadrant’ (orthant) of
p-space. Unless they did so, the original compositional data, expressed as linear
combinations of such 'factors', could not easily be interpreted as mixtures. He
proposed an oblique solution in which the oblique factors (a) belonged to the space
spanned by the rows of (kxp) B, (see equation (2.13)), (b) lay 'on the edge' of the
positive orthant of p-space and (c) were closest to an appropriately chosen set (kxp) D
of reference vectors. If no 'natural' set D of directions presented itself, Clarke

suggested using the initial ‘factors' B,. He set out the algebra, and the source code of
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two subroutines to be called from the program published by Klovan and Imbrie (1971).
To outline the algebra, let (1xp) b, and d, be the i-th rows of the the oblique solution
matrix (kxp) B and the (kxp) matrix D of reference vectors respectively. The linear
programming method was employed to maximize the objective function bidiT subject to
the constraints (i) that b, and d, were both in the space spanned by the rows of B, and
(ii) that b, was a composition vector. This method must normally determine a solution
for b; in the 'edge’ of the positive orthant. Clearly if d, had been chosen in the positive

orthant then the linear programming solution would be b, = d,.

It is interesting that Clarke's extreme vectors were constructed in the coordinate
hyperplanes in order to enforce the non-negative components in the solutions that were
required of extreme composition vectors such as endmembers. If the object of the
exercise had been to move oblique vectors (chosen from within the positive orthant)
outwards in order to enforce non-negative mixture coefficients, then the coordinate
hyperplanes would also have been the boundaries. The non-negativity conditions that
must be imposed on the mixture coefficients are as important for the purposes of
interpretable solutions as those imposed on the endmember compositions. Clarke's
procedure did not enforce both sets of non-negativity constraints, and so feasible
complete solutions for the decomposition of mixtures continued to elude the Q-mode

'factor' analysts.

Because it could not guarantee non-negative mixture coefficients, Full, Ehrlich
and Klovan (1981) dismissed Clarke's method as 'deficient'. They were also critical
because the endmembers chosen by his algorithm would always lie on the edge of the
positive orthant when the possibility existed that there were satisfactory solutions
‘closer' to the data points. The title of their paper proclaimed 'an objective definition of
external endmembers in the analysis of mixtures' and the paper itself reported on a
revision to the model-building computer program by Klovan and Miesch (1976). Their

criteria for the detection of 'proper' endmembers, shedding the factor analytic
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terminolgy, required quite simply that in equation (2.13), the elements of the matrices L,
and W, be positive and that the 'endmembers must minimize in some way the
hypervolume of the space defined by the data’. These criteria were included in a section
entitled 'Definition Of Endmembers' and were presumably what the authors intended by
that title. There is obvious confusion here between the definition of endmembers and an
objective method for estimating them. Any set of vectors which satisfied the complete
set of non-negativity constraints would define the directions of a set of endmembers.
Geological viability would be one criterion for accepting or discarding such a set. The
objectivity of the methods available at the time had become a major worry to the rigorous
minded. The problem of choosing the number of endmembers was, according to Full,
Ehrlich and Klovan (ibid, p333) who cited Bezdek, 'acknowledged to be the most
critical unsolved problem of cluster analysis'. (No matter that it was not critical, it was
not unsolved and it was not cluster analysis, except perhaps to factor analysts!). Having
chosen the number of endmembers by any method, to proceed to tinker either with the
components of L, and solve for W,, or with the components of W, and solve for L,,
with the object of satisfying the non-negativity constraints, was not universally

perceived as being 'objective’.

Full, Ehrlich and Klovan (ibid) did not include the source code for their
computer algorithm, and the description of it was incomprehensible. However it is
possible to conclude that their intention was to adjust when necessary, the bounding
hyperplanes of the polytope whose vertices were the current extreme points. If, for the
position vectors of these extreme points, there existed negative elements in the associated
loading matrix, then not all data points were internal to the polytope. This situation was
to be rectified by moving the 'edges’ of the polytope outwards, parallel to the original
'edges’, until the most remote external data points were just internal. This was done
iteratively, as the negative loadings associated with each new set of extreme points
determined further adjustments. The vertices of the final polytope would define the

terminal solution for the endmembers. It is to be assumed that Full, Ehrlich and Klovan
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intended the hypervolume of the convex hull of these vertices to be a minimum (which is
not what they said). No proof was offered that, from a given set of initial extreme
points, the terminal hypervolume was the minimum for all polytopes whose vertices

defined extreme vectors that satisfied the non-negativity conditions.

The choice of initial extreme points remained a problem. Full, Ehrlich and
Bezdek (1982) proposed another modification to the model-building algorithm of
Klovan and Miesch (1976) which would employ the 'fuzzy c-means algorithm' (due to
Bezdek) to locate initial extreme points in the space defined by the intersection of the
surface of the unit hypersphere with the 'factor' subspace spanned by the varimax axes.
(But still, the problem of the determination of the 'proper’ number of endmembers they
stated 'is acknowledged to be the most critical unsolved problem in cluster analysis'
citing Bezdek yet again). Their paper assumed that the 'proper’ number of endmembers
had been determined. The situation that the proposed algorithm was intended to avoid
was that in which an 'abberant’ outlier with no apparent relationship to the remainder of
the data points would be chosen as an initial extreme point and thus bias the orientation
of the entire sequence of iteratively constructed polytopes thereafter. The choice of any
single point as an initial extreme, whether it was an outlier or not, seemed to risk
introducing a bias. Thus the 'fuzzy c-means' algorithm was intended to generate 'cluster
centres' well inside the convex hull of the dataset which would serve as initial vertices of
a polytope that would be expanded by the iteration procedure. Such cluster centres

would represent the combined properties of many points rather than just one point.

There is no reason to expect that the distribution of the data points on the unit
hypersphere will in general permit the identification of (fuzzy) clusters whose centres
would provide estimates of the terminal locations, or even the correct orientation of the
vertices of the required polytope. Outliers in the data will usually exhibit large residuals
in relation to their estimates in 'factor' space and always require attention of one form or

another, even possibly exclusion. An outlier with an acceptable residual may be evidence
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of a dataset which is merely sparse in its region of p-space. Certainly, no outlier should
qualify for selection as an initial extreme unless its associated residual is unexceptional.
This raises an interesting point. In the Q-mode 'factor' analysis literature, which spans
roughly two decades, very little attention has been paid to an accurate specification of the
mixing model and the approximation to it. It is impossible to determine in most papers
whether the authors are discussing the raw compositional data or some approximation.
Apart form Miesch (1976b), the same symbols are used for both. The Q-mode 'factor'
analysts had the 'communality’ to test for the presence of outliers. They also had access
to the elements of the similarity matrix (nxn) Ry = WWT to confirm such a test
(consider (nx1) WWiT). One of the advantages of the computation of the appropriate
submatrices of RQ, is that a nearest and furthest neighbours table can be constructed.
Outliers will show up on such a table as remote from everything else. The real
advantage of the table however, is that when the datapoints occupy a region in p-space
approximately shaped in the form of the required [k-1] dimensional polytope, then k
distinct groups of objects will be detectable near the vertices, such that objects within a
group are near neighbours, and objects in separate groups are far neighbours. One
object only from each group will then serve as an initial extreme.

Another modification to the Q-mode 'factor’ procedure was published by
Leinen and Pisias (1984). Their method was to move each non-feasible 'varimax' axis
towards the 'mean’ in incremental steps until there were no negative components in the
vector representing the axis. It required the determination of the position vector X
(‘'mean composition') of the centroid with respect to the 'varimax' reference axes
(transformed into compositions presumably). Each 'varimax' reference axis b."
1=1,2,...k was checked for negative components. If at least one non-trivial negative
component was present, then an oblique vector was formed, given by (1 - Ob," + {x
where { = «/100, a =1,2,...,100. Incrementing o from 0 in steps of 1, the
‘composition’ of each new oblique vector was tested for the presence of non-trivial
negative ‘concentrations’. When a vector was reached with only positive and at most,

trivially negative components, then the latter if present were set to zero and the vector
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thus modified became one of the k required solutions. Suppose X and b,Y were the
position vectors of the points X and B," respectively, then (1 - {)b.¥ + { X would be
the position vector of a point on the straight line XB.*. This line would lie in the
hyperplane defined by the constant row-sum constraint if this characterized the data. But
the procedure could also be applied to the transformed points defined by the rows of
(nxp) W, on the surface of the unit hypersphere. Like all previous papers, this one
relied on the varimax rotation to construct an initial matrix of non-negative loadings, a
property which was expected to be preserved in the subsequent loadings, through the

progressive tilting of the reference vectors towards the centroid.

The title of the paper by Leinen and Pisias (ibid) was 'An objective technique
for the determining endmember compositions and for partitioning sediments according to
their sources'. In this context, 'partitioning' implied the determination of feasible
mixture coefficients which was not fully discussed. It must be assumed that the
relationship between the 'varimax' vectors and the selected oblique vectors is in general
non-singular and permits the substitution for the 'varimax' vectors in the matrix
approximation (see for example, equation (2.13)). The real issue however, was
objectivity. Leinen and Pisias stated repeatedly that theirs were objective means of
determining endmembers. They incorrectly dismissed the method based on the
‘objective definitions' of Full, Ehrlich and Klovan (1981) on the grounds that it required
the presence of 'pure' (undefined) endmembers within the dataset, and that it was
unlikely to construct endmembers with zero concentrations for some of the variables.
They also criticized the approach by Clarke (1978) on much the same grounds as had
Full, Ehrlich and Klovan (1981). The former criticism resulted in a terse rebuttal. Full
and Ehrlich (1986) pointed out that the paper by Full, Ehrlich and Klovan (1981) made it
explict on at least six different occasions that it was not necessary to have sampled
endmembers in order to execute their procedure. They also remarked that the majority of
their solutions produced endmembers on the 'edges of the positive orthant' and therefore

possessed zero components. Full and Ehrlich then went on to criticize Leinen and Pisias
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2.3 NORMATIVE ANALYSIS AND LINEAR PROGRAMMING

Because compositional data must lie in the positive orthant of p-space, Q-mode
‘factor' analysts had assumed since the earliest paper by Imbrie (1963) that rotation of
the orthogonal 'principal factors' according to the varimax criterion would result in an
(nxk) matrix LY of predominantly non-negative loading coefficients. Such negative
entries as existed should have been negligible and were treated as zeros. So although the
loadings on the varimax rotated axes were originally intended by Imbrie (ibid)to expose
extreme samples in the data, the construction of LY > 0 whenever that was
accomplished was also half a solution to the whole problem of enforcing all the

non-negativity constraints.

Another principal was maintained by the application of the varimax criterion.
Once the number k of endmembers had been specified, the analytical procedure which
concluded with the varimax rotation of the principal axes was seen to be totally objective.
It produced the unique varimax 'decomposition’ of (nxp) W by a sequence of essentially
optimizing algorithms (first on the sums of squared projections (1.40) then on the
variance of the squared loadings). But objective strategies for the analytical rotation of
the 'varimax factor vectors' into an oblique configuration conforming to the
non-negativity constraints set out by Full, Ehrlich and Klovan (1981) seemed usually to

be defeated by real data.

Heath and Dymond (1977) completely bypassed the Q-mode 'factor' procedure,
both for assessing the approximate rank of their particular compositional dataset and for
seeking feasible extremes by simply specifying the number and composition ratios of the

required endmembers.

The samples used for the Heath and Dymond (ibid) study were a subset of size

22 from almost 200 surface samples taken from the Western Nazca Plate. In order to
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partition each element among four possible sources (which were described as Detrital,
Hydrothermal, Hydrogenous (or Authigenic), and Biogenous), Heath and Dymond
constructed simple algebraic relations based on 'interelement relations and on previous
knowledge' of the Northwestern Nazca Plate geochemistry. One of these relations made
the Biogenous element ratios redundant so that, rather than dwelling in detail on the
particular representation reported in their paper, the method for the general case is

described below.

Leinen (1987) explained that 'normative partitioning techniques estimate element
contributions to a mixture from various endmember sources based on ratios of the
elements to a key element. An element which is strongly concentrated in a source is

usually chosen as the normalizing element'.

At the heart of the normative analysis is a (kxp) matrix of element ratios By
which correspond to the (kxp) matrix of endmembers B. The procedure is quite readily
appreciated if argued backwards. Let (nxp) matrix X' contain the estimated sample
concentrations, let (nxk) L be a matrix of mixture coefficients and let (kxp) matrix B

contain the estimated endmember concentrations then,

X' = LB (2.14)
In each endmember (row of B), there is a 'normalizing element' distinct from that in
each of the other endmembers. Define the (kxk) diagonal matrix Ry to contain the
concentration of the normalizing element of the i-th endmember in the i-th diagonal
position for each i=1,2,..k.
Then,
- [LRN][R;B] (2.15)

and so,
(2.16)
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The (kxp) matrix By, is the array of 'elemental ratio coefficients'. Naturally, the entry in
the i-th row of By corresponding to the normalizing element is 1. It was this matrix
that Heath and Dymond (1977) and later Dymond (1981) actually specified in their

respective papers from considerations of prior knowledge and on inspection of the data.

The paper by Heath and Dymond (1977) seemed to be a prelude to the 1981
paper by Dymond. The two papers presented studies of Nazca Plate Sediments. Both
had four conjectured 'sources' (endmembers) in common. The first paper was based on
a very few samples however, and the elements of Ly were implied by the collection of
simple algebraic relations, as were the elements of Ry These relations permitted the
recovery of the decomposition (2.14) (op. cit., Table 4) but would probably have been
unreliable for a larger study. The results of a Q-mode 'factor’ analysis were included
towards the end of the paper to confirm what was described as 'essentially a form of

normative analysis'.

Dymond (1981) reported on a much larger study. The data consisted of 425
samples selected from cores during the cruises conducted by Oregon State University
and Hawaii Institute of Geophysics as part of the Nazca Plate Project. Nevertheless,
only 8 variables were analysed, and no mention was made of the accomodation into the
analysis of the 50 samples which had at least one missing value. A 'normative sediment
analysis model' was employed to evaluate 'five components of sediment'. These were
defined a priori as (1) Detrital, (2) Hydrothermal, (3) Biogenic, (4) Hydrogenous
(Authigenic), and (5) Dissolution Residue. The ‘elemental ratio coefficients' matrix
corresponding to these five sources (endmembers) and denoted here by (5x8) By was
specified (Dymond (1981, Table 3)). That is the 40 matrix elements of By were chosen

by Dymond. The overdetermined system to be solved would appear to have been,

X= LB

NBN (2.17)




83

in which the matrix on the left is the (425x8) matrix of original compositional data. The
components of the i-th row of X are given by 8 equations (if there are no missing
values) in the 5 unknown elements of the i-th row of (425x5) L. Dymond solved these
equations for the 425 rows of Ly by linear programming, the analytical details of which
are described in the next section (it may be assumed that a solution was obtained for all
cases since the number of missing values per sample did not exceed 3). The
non-negativity constraints of the linear programming method assured Dymond of the
feasible solutions for each row of L, that he was looking for. He also found by trial and
error that scaling up the equations for the trace elements by a factor of 20 produced the
most satisfactory sums for the residuals. Finally, the row-sums of the (425x8) matrix of
compositional data were not constant (note that a vector of compositional data does not
imply a composition). Therefore, since the (5x5) diagonal matrix Ry (equation (2.15))
was unknown, it was not possible to derive equation (2.14) back via equations (2.16)
and (2.15). Dymond overcame that obstacle by specifying also the concentrations of the
normalizing elements for each endmember (Dymond (1981, p.143)), which
consequently defined Ry. Those concentrations were 'taken from the same literature

sources that were used to obtain the elemental ratios'.

Although Dymond (1981) cited Narula and Wellington (1977) as the reference
for his particular application of the linear programming method, a complete formulation
of the actual linear programming problem to be solved appeared in an appendix of the
paper by Dymond er al. (1984), together with an iterative procedure for adjusting
putative endmembers to maintain the non-negativity constraints. This 1984 paper, which
reported on an analysis of ferromanganese nodules from the National Science
Foundation supported Manganese Nodule Program, is examined in Chapter 4. Dymond
et al. described it as a 'normative nodule analysis' even though the appendix does not
deal with element ratios. Nor do they appear anywhere else in the paper. The appendix
does state that the compositions of the endmembers must be specified, and echoes the

statement on page 938 that the extreme samples within the dataset were assumed to have




84

compositions close to the proposed 'true endmembers'.

2.3.1 Partitioning by Linear Programming

Consider the overdetermined system (not in general an equality) relating a given
(1xp) compositional vector x, an unknown (1xk) vector of mixture coefficients l,and a

given (kxp) matrix B of the concentrations of k endmembers b,.b,,...,b, given by

k
Xx = IB = Zz. b. (2.18)
=1

The system (2.18) determines p equations for the components of the estimate of x in the
k (< p) unknown mixture coefficients 11,12,...,1k. The 'partitioning’ problem is to find a
feasible solution for the mixture coefficients. (The early papers by Dymond set out to
solve not the system (2.18) but rather the system x = I\yBy in which x and I are
corresponding rows of X and Ly respectively in equation (2.17) (see Dymond (1981)).

There is no loss in generality in proceeding with the problem as stated).

Dymond (1981), Dymond et al. (1984) and Owen (1987) stated one way or
another that the least squares solution /* for / which minimizes the sum of squares of

the residuals below,

P o2
j; (x; - X7 (2.19)

where x* = I*B (exactly), is unusable because a non-negativity constraint can not be
imposed on each of % L¥,....[ . *. Instead, they recommended the linear programming

solution I" for I which minimizes the sum of the absolute values of the residuals
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i |, - =% (2.20)

i=1
where x" = I"B (exactly), given all the required non-negativity constraints.

The least squares solution will be fully discussed in Chapter 3, but at this point a
geometrical comparison between the two approaches is revealing. Suppose the
endmember vectors span a k-dimensional space S, a subspace of which is the convex
cone C={y:y=aB, (Ixk)a=>0)}. The point X whose position vector with
respect to the origin O is x, is a fixed datapoint. Minimizing expression (2.19), is to
locate the point X*, defined by x*, which must be in the space S and also lies on the
hypersphere with centre X, whose radius is a minimum. Minimizing expression (2.20),
is to locate the point X", defined by x", which must be in space C and also lies on the
cross polytope with centre X, whose diagonal is a minimum. Whether X* is also in C
or not, itis the point in S which is closest to X. The diagonals of the cross polytope are
parallel to the Ox1x2...xp reference system in Euclidean p-space. In general, a solution
in the interior of C will be where a vertex of the cross polytope touches C from p-space.
The position of that point is determined by the orientation of the reference axes in relation
to C. In general no diagonal (axis) will be orthogonal to C. (As an aid to visualizing
the form of the cross polytope, let yj=%;-x"; j=1.2,.p, translating the reference
system. In 2 dimensions, ly,l + ly,| =d defines the sides of a square whose four
vertices have (y1,y,) coordinates (+d,0), (0,£d) respectively, rather like a plane
diamond. In 3 dimensions, ly,| + ly,| + ly;| = d defines the sides of an octahedron,
with its six vertices also on the axes, given by (£d,0,0), (0,2d,0), (0,0,£d), rather like a
solid diamond. Minimizing expression (2.20) creates the 'diamond' with smallest

possible diagonal 2d. When I" >0, X" is a vertex of this 'diamond').

If the linear programming techniques advocated by Dymond (1981), Dymond
et al. (1984) and Owen (1987) are employed to solve the overdetermined system (2.18)

for I, then the resultant estimate x" (where x" € C) is not in general the position vector
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of the nearest point X* in S to X unless x € C, in which case x" = x (as it is with the
least squares approach). It is proven a little further on that when x ¢ C the linear
programming method, which minimises the absolute error sum given all the
non-negativity constraints, will solve q < k of the p equations implicit in (2.18) exactly.
The number q being the number of non-zero loadings obtained in the solution 7.
Therefore q < k element concentrations are determined exactly, the remainder contribute
to error term (2.20). The location of X" relative to the extreme points B,,B,,....By
(defined by b]»bz»---abk) is not as apparent as with the least squares solution X* (see the

next section).

The possibility that one or more of the B,.B,....,B, are not extreme points for
the data is obscured by the linear programming method since no solution for the loading

vector I can have negative components.

Dymond (1981) cited an algorithm by Narula and Wellington (1977) for the
linear programming solution of the overdetermined system (2.18) subject to
non-negativity constraints on all components, and the minimisation of the absolute error
sum (2.20). The vector x" = I"B is the linear programming estimate of x, where point
X" must belong to convex cone C but not necessarily to H, the convex hull of the points

B,,B,,...,B,.

The linear programming problem with the required solution is formulated in the
following way. First, the j-th error is expressed as the difference of non-negative

variables, that is,

X, ~X" & = Vi i=12,..p (2.21)

where v, 20, v, 2 0. One or other of these will be shown to be zero for each j (see
below). Then since x" = I"B, there are p constraint equations in the (k+2p) variables

11,12,...,lk, V15005000055 Vi3V V

p- These are obtained by substituting for x"j in the
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j-th error (equation (2.21) and are given by

k
2 btV = X, j=12, (2.22)

m=1

The non-negativity conditions are

[11,12,...,lk, ul,uz,...,'op, VI’VZ""’Vp] >0 (2.23)

and the objective function to be minimized in this case is

P
j; (0, +v) (2.24)

The three statements (2.22), (2.23) and (2.24) together constitute a linear programming
problem (see Hadley (1962) and Bazaraa and Shetty (1979)). To show that it will yield

the required solution, it is necessary only to prove the followin g result.

For any optimal feasible solution, at least one of the pair VY, is zero for each .

Proof:

Suppose v > 0 and v;> 0 are two components of an optimal feasible solution.
Let &= Inf(v,,v,) then setting V=v;- & v, =v;- &, it follows that V-V =, - v,
so that u'j, v'j are also components of a solution, and one or other of the pair is zero.
However, v+ V= v+ V- 2€ 2 0, meaning that for the new solution, the objective
function has been reduced by 2&. Hence its former value can not be a minimum unless
€ = 0 which requires one or other of V;, V; to be zero. It is obvious therefore that,

given the non-negativity constraints, minimizing the objective function (2.24) is

equivalent to minimizing expression (2.20).

The proof of the next theorem shows that the linear programming solution to the
overdetermined system (2.18) of p equations, is simply the exact solution to q (q<k) of

these equations.
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The optimal feasible solution to the linear programming problem (2.22), (2.23),
(2.24) will  contain q < k exact solutions to the p linear equations x = IB, the remaining

[p-ql inequations contribute to the error (2.20).

Proof:

Assuming that the rank of the augmented matrix associated with the set of linear
equations (2.22) is p, then the optimal basic feasible solution (see Hadley (1962)) to the
linear programming problem (2.22), (2.23), (2.24) will contain at least (k+p) zero
values among the (k+2p) variables. If in particular q (q < k) of the l,ly,...,1, are
non-zero, then at most (p-q) of the u ;» v; are non zero. That is, there are at most (p-q)
linear equations (2.22) in which one or other (but not both) of the uj, V; is non-zero
leaving at least p-(p-q) = q equations in which both u;, v; are zero. Therefore q < k of

i
the components of x will be estimated exactly.

The overdetermined system x = IB represents p estimates in the k unknowns
l1,ly,..,l. In general, the linear programming problem (2.22), (2.23), (2.24) provides
an exact solution I", for k of these p equations, subject to the non-negativity constraints.
It will always provide the same feasible solution no matter how ill-fitting the remaining
[p - k] linear expressions are. In other words, [p - k] of the components of x may be

made arbitrarily unsuitable without altering the linear programming solution.
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CHAPTER 3

THE RESOLUTION OF COMPOSITIONAL DATASETS
INTO CONVEX COMBINATIONS
OF EXTREME VECTORS

SUMMARY

In this chapter, the mixing or convex model is introduced from first principles,
and the most important of its properties and those of its estimates are derived. A
geometrical interpretation of the model which should be mimicked by its estimates, is
that xlinearly independent endmembers in the positive orthant of Euclidean p-space are
the position vectors of the k vertices (extreme points) of a convex polytope inside which,
all points representing mixtures of the endmembers must belong.

An intuitively reasonable result is shown to be true under quite mild conditions.
The result is that a convex representation for a composition in terms of a given set of
endmember compositions can be uniquely transformed into a convex representation for a
subcomposition in terms of the corresponding subcompositions of the given
endmembers. The ratios of the components of a subcomposition are equal to the ratios
of the corresponding components of its full composition, therefore the relative
magnitudes of the components of the endmembers are invariant under such a
transformation.

The first problem examined, is that of resolving a single composition into a
convex combination of known endmember compositions. This problem can be
formulated algebraically as an overdetermined system of equations for the mixture
coefficients. It is proposed that the best solution to this system is a vector of mixture
coefficients which is parallel to the vector of least squares regression coefficients.
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When one or more of these regression coefficients is negative, then at least one
of the endmembers is not extreme. A method for adjusting non-extreme endmembers
outwards is developed which is based, in part, on the magnitudes of the mixture
coefficients of such endmembers. Further, the new set of endmembers always remains
in the space spanned by the original set.

Moving on from the single to many compositions, the major problem examined
in this chapter is that of constructing a convex representation for a compositional dataset
in the absence of any prior information on an underlying mixing process. The proposed
solution to this problem contains three distinct stages. The first is the identification of an
estimate space for the unknown natural mixtures, and the orthogonal projection of the
raw data into that space. The next is the identification of near extremes in the projected
dataset which can be treated as initial endmembers. In the third and most complex
stage, an iterative algorithm constructs least squares estimates for the matrix of mixture
coefficients associated with the initial endmembers. If any mixture coefficients are
negative, the algorithm adjusts the endmembers to new positions in the estimate space
then recomputes a new matrix of mixture coefficients. This process can be repeated until
either all mixture coefficients are positive or an adequate approximate solution has been
reached.

An illustration compares four sets of solutions which were obtained for the
same raw data by altering the intial extremes and adjustment methods. Two sets of
solutions are exact and were the result of the procedure converging, and two were not.

The chapter concludes with a description of some of the computer algorithms
that have been created to undertake mixture analyses.




3.1 CONVEX MODELS

A multivariate sample of compositional data X (nxp) contains measurements on
p variables for each of n objects or geological samples. Hence, as has been noted in the
last chapter, the vector of variables associated with a single object is a row rather than a
column vector. The components of the (1xp) vector x are the coordinates of the point X
in Euclidean p-space, thus x is also the position vector of X with respect to the origin O.
The terms rows, points, object vectors and position vectors will be used interchangeably

when there is no ambiguity concerning the object being referred to.

The correct formulation of the traditional geochemical mixing model should be a
matrix relation of the form X = AP + €, in which each row of X (nxp) is composed
of a convex combination of the k rows of the fixed matrix B (kxp) together with an

€ITOr VecCtor.

The x rows of B must be linearly independent and are the true endmember or
source compositions. The mixture coefficients that make up each row of A (nxx) are
non-negative and sum to 1. The (nxp) matrix X, = AP is the true or theoretical array

of exact mixtures, and € (nxp) is an error matrix.

The rank of X, is k. Therefore its n rows are the position vectors with respect
to the origin of n points in a k-dimensional subspace 4 in the positive orthant of
Euclidean p-space. Further, these n points are interior to the convex polytope whose

vertices are defined by the rows of B.

If the elements &; of matrix € are always very small, then the rows of X are
approximately given by linear combinations of the rows of B, and so the 'approximate

rank' of X is x, the number of true endmembers.
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It is generally the case that, although a mixing process may be believed to be
responsible for the geochemical dataset X, the number k and the matrices A, B and € are

unknown.

When matrix X is given and matrix estimates L and B are obtained for A and B

respectively, then an approximate form of the model is given by the linear relation

X =LB +E (3.1)

The estimates L, B and E have many properties in common with their
theoretical counterparts. For the remainder of this thesis, the four matrices X, L, B, E

in equation (3.1) will be defined as follows.

(i) X (nxp) is a matrix of compositional data. Its components X;; are the
concentrations of p minerals in n geological samples usually associated with each of n
locations. Accordingly, Xjj 2 0 alli,j. Since the data are compositional, then for each
1=1,2,...,n, either,

P
X;; = A (3.2)
=1

J

or it is possible to introduce a 'fill up' value (Aitchison (1986)),

Xing1 = A - Z X;; (3.3)

j=1
Equation (3.2) is often described as the 'constant row sum' property of
compositional data. When A = 1, equation (3.2) defines a composition. This will

usually be the case for the theoretical discussion that follows, but in all applications, the

data will be expressed as percentages.
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(i) B (kxp) is an estimate of the fixed basis matrix B. It is of rank k, the
estimate for k, and its components bij are concentrations of the same mineral types as X.
Hence bij 2 0 all i,j and whichever of the equations (3.2) or (3.3) is true for X, must
also govern the row sums of B.

(iii) L (nxk) is a matrix of estimated loadings or mixture coefficients Iij such that
lij 20 all i,j, and for each i,

k
Y= (3.4)

(iv) E (nxp) is a matrix of residuals &

An important restriction on these matrix dimensions which governs the

interpretation of the model is that k < p.

A fifth matrix X' (nxp) given by

X'=LB (3.5)

is the estimate of the theoretical array of mixtures X, = AB specified by the model.
The rank of X" is k the estimate of . It is usually assumed that the true errors g; are
very small. Hence, X'should be a good approximation to X, whose approximate rank

will be k, the estimated number of endmembers.
The matrix X' will frequently be referred to as the estimated mixture matrix, just
as its rows will be the estimated mixture compositions. It is treated as a surrogate for

the observed matrix X, particularly for the purpose of geochemical interpretation.

Each row of X'is a convex combination of the rows of B by Definition (iii).
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The matrix of residuals is the difference between the observed data matrix and

estimated mixture matrix

E=X-X (3.6)

by equations (3.1) and (3.5).

The k rows by,b,,...,b, of B are called endmembers. They are estimates of the
true endmembers B,B,.....B,. which are the k rows of B. From equation (3.1), the
vector of concentrations x; for the i-th geological sample may be written

1

k
x,=LB +e = 21 L;b, + e 3.7)
=

where ; and e, are the i-th rows of L and E respectively. Similarly, the corresponding

vector of estimated mixture concentrations x', is by equation (3.5),

k
W = LB = Zl I b, (3.8)
1=

The endmember vectors by,b,,...,.by are the position vectors with respect to the
origin O of the k vertices Bl,Bz,...,Bk of a convex set (see Hadley (1962)) which is the

convex hull H of these points (see Bazaraa and Shetty (1979)).

Various subspaces are defined by altering the constraints on the coefficients of
the endmembers in equation (3.8).

(a) When there are no restrictions on the loadings /;;, the endmembers form a

ij
basis for a k-dimensional space whose intersection with the positive orthant of p-space,
is the estimate space S. This space is the estimate of & the true mixture space. The

rows of X' are the position vectors of points in S.
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(b) The non-negativity constraints lij 2 0 of Definition (iii), determine points in

the convex cone C whose generators are by,by,....by.

(¢c) The sum-to-one requirement (3.4) defines the (k-1) dimensional hyperplane
P through the points BI,BZ,...,Bk.

(d) Finally, the intersection of the sets contained in the convex cone C and the
hyperplane P which is implied by both the non-negativity constraints and the sum-to-one
requirement, is the convex hull H of B,,B,,....B, (see also, Full, Ehrlich and Klovan
(1981) and Full, Ehrlich and Bezdek (1982)). It follows that if k =2, H is a line
segment B, B, (see Figure 3.1), if k = 3, H is a plane triangle B,B,B;, and if k = 4,
H is a tetrahedron B,B,B,B,, where p is always greater than k. In general, H is a

convex polytope by definition (Bazaraa and Shetty (1979)).

Let X, and X"3 be two points belonging to H with position vectors x}, and Xg respectively.
Then the position vector of any point X'on the line joining these points is given by
X'=Ax, + (1- l)xh. When 0 <A < 1, then A and (1-A) are positive, the point X'
clearly belongs to H and it lies on the line between the other two. If X' is an extreme

point of H, then there are no distinct points X, Xii of H for which this configuration is

possible.

The vertices B,, B,,..., B, of the convex polytope H are extreme points of H

(see Bazaraa and Shetty (1979)).

In the 2-dimensional illustration provided by Figure 3.1 below, the plane of the
page is the estimate space S. It is not sufficient to ascertain that 4, the true mixture
space, is just 2-dimensional. Assuming that the datapoints form a 'fuzzy' line around
B,B, on Figure 3.1, a plane at right angles to the page for example would be a very poor

alternative estimate space S. Alternatively a plane fixed by the origin and two outliers




among the datapoints could be remote from the 'fuzzy' line and therefore also a poor
estimate space. It is for this reason that the choice of S will later be based on a least

squares criterion involving all the datapoints.

It is not important that the points of S do not necessarily represent compositions.
Any p-component vector of quantities measured on the same scale can be transformed
into a unique composition vector whose direction is unaltered. That is, x = W/).‘.wj
forms the unique parallel composition vector x from w. The choices for b, and b, may
not be extreme which, in Figure 3.1, would place at least one point estimate outside the

cone C. Thus the convex cone C must be a subset of the estimate space S.

All feasible mixture estimates X', are convex combinations of the endmember
vectors and are represented by points that belong to the convex set H. Hence the rows
of X' define points that form a subset of H and equations (3.5) or (3.8) are estimates of
the convex model X, = AB. A particular solution of (3.1), (3.5) or (3.8), based on a
realization of X, is a convex representation for the estimate X' of the mixture array X,

of geochemical dataset X.

By equations (3.4) and (3.8), the composition of the i-th sample is
approximately resolved into a mixture of the endmembers in which the proportional
contribution to the whole sample of the j-th endmember is lij' This interpretation has
been conveyed historically by the term 'mixing' model, and the computation of the
loadings lij as linear unmixing. Equivalently, the i-th sample may be regarded as
partitioned somewhat in the set-theoretic sense, into k disjoint sources whose relative
concentrations identify them respectively with the b,.b,,....,b, (see Dymond er al.

(1984), Leinen and Pisias (1984), Full and Ehrlich (1986) and Leinen (1987)).




Figure 3.1. Subspaces Defined by Linear Combinations of Two Endmembers. (Estimated
mixture x' = IB). In this 2-dimensional illustration, the estimate space S is
in the plane of the page, convex cone C is the region bounded by the line pair
OB1 and OBZ, and the hyperplane P reduces to the straight line through B4B..

The convex set H of feasible estimated mixtures is the line interval B1 82.

‘Hyperplane' P

Convex hull H of B 1amd 82

'Convex cone' C

Estimate space S

Given the compositional dataset X, the construction of a convex representation
(equation (3.1)) strictly requires, first the identification of k-dimensional space S, which
implies k the estimated number of endmembers, together with the residual matrix E, and
then the solutions if they exist, for the matrices L and B in equations (3.1) or (3.5).
Since in general, solutions for B are indeterminate in number, each b, i=1,2,..k,
should be chosen in some sense as close as possible to the convex hull of the points
X'l,X'z,...,X'n (see for example, Full, Ehrlich and Klovan (1981)). Such a choice
usually guarantees that the endmember vectors have geologically feasible compositions,
at the risk of underestimating their most extreme possible displacements. In geochemical
terms, this may mean for example the detection of a clay with some extraneous materials

instead of a 'pure’ clay, the true extreme.
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3.1.1 Subcompositions

Compositional data which are not 'closed' or are incomplete are commonplace in
geochemistry. The data may be measured in percentages but not sum to 100% because
components of no interest have been discarded or not recorded. For a single sample,
such data will be referred to as a part composition. The components of a part
composition may each be divided by the sum of all the components, thus forming a
subcomposition. Alternatively, if, for example, all the components are measured on a
percentage scale, an additional variable may be formed which is equal to 100 minus their
sum. Dividing each of this enlarged collection of variables by 100 would create a partial

composition.

Convex representations for one or more composition vectors are readily
modified for subcollections of the variables. Let the composition x (1xp) be an

approximate mixture given by

Xx =IB+e (3.9)

(dropping the row subscripts from equation (3.7)). Then the exact mixture is given by

x'=1B (3.10)

Consider a vector formed from a subcollection of q of the components of x, where
k <q <p, and which, without loss of generality, may be taken to be [X15 Xg5 ees Xgl-
This vector is a part composition. Denote the first q columns of B (kxp) by B,, B,, ..,

B ¥ By equation (3.10),

k
x'.=n§l by = IB, (3.11)

hence,
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[x'l,x'z,...,x'q] = l[Bl,Bz,...,Bq] (3.12)
That is, any linear representation including a convex representation projects orthogonally

from p to g-space.

Suppose now subcomposition vectors xS, b%,, b%,, ..., b5, are formed from
[x'ys X5, oy x'q], and the k rows of [ B,.B,, .., Bq] (kxq). The row-sum t of

[x';, Kigymerag x'q] and the k row-sums s; of Bl, B,, .., Bq] are given by,

iX'fi Zklmbmj=t and ibij:si, i=12,..k (3.13)
B

Assume t >0 and $;>0, i=1,2,.k, then for eachiandj=1,2,..q,

'S — ' S —
Xy = xj/t, bij = bij/si (3.14)
The (kxk) diagonal matrix S = diag(s;,s,,...,5,) is nonsingular by assumption, so from

equation (3.12),

(1/0) [ X peX' ] = (1/) 1S S7'[B,B,,...B ]

and this can be written,
x* = I'B° (3.15)

where I* = (1/)IS and B =S'![B, B, ..., B ]. Clearly, x* and the k rows of B® are

all compositions with unit sums by (3.13).

It will now be shown that equation (3.15) is a convex representation for the

subcompositional vector X', Since I° = (1/1)IS,
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k k
m};:; = (1/t) mz=11msm
k
de%i%
m=1 j=1
k
=(1/9) i > by,
j=1m=1

=1

by the equation for t on the left of definitions (3.13). Hence the nonnegative loadings
ljs, j=12,.k, also sum to one. So, the creation of a subcomposition in which the
subcollections of q components of x' and the corresponding q components in each of
b,, B ooy b,, all sum to one, results in a convex representation (3.15). That is,
provided S is nonsingular and the rank of BS is k, the subcomposition vector x's can be
identified with the same, but similarly transformed sources as x, although the loadings
differ. This means that the convex set H® of feasible estimated mixtures defined by
equation (3.15) should be of the same geometrical form as the convex set H, a line

segment if k = 2, a plane triangle if k = 3 and so forth.

Aitchison (1986) stated an elementary result (by equation (3.14)), that the ratio
x*/x5  of any two components of a subcomposition is the same as the ratio xj/xm of the
corresponding components in the full composition (which accounts for the fixed
covariance structure of the 'logratios' (Aitchison (1986, p.65)). It follows from

equations (3.14) and (3.15) that, provided b, #0,

bl /by, = by /b,

1

The important result that has been established above is that provided S is
nonsingular and the rank of B is k, a convex representation for a composition x' in
terms of a given set of endmember compositions B can be uniquely transformed into a
convex representation for a subcomposition x' of X', in terms of the corresponding

subcompositions B* of the given endmembers B. The ratios of the components of a
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subcomposition are equal to the ratios of the corresponding components of its full
composition, so the relative magnitudes of the components of the endmembers are

invariant under such a transformation.

Aitchison (1986, Table 3.1) illustrated the substantial changes in correlations
between selected pairs of variables which follow successive movements from a full
composition to a number of subcompositions. There is nevertheless one possible value
of the correlation coefficient between two variables of any subcompositional dataset X*
(nxq), which can not change and must equal the correlation between the corresponding
variables of the full compositional dataset X (nxp). That value is 1. Suppose that in the
dataset X5, the ratio xsij/xsim =v for all i = 1,2,...,n. Then the n ordered pairs
(xsij,xsim), i =1,2,...,n, lie on a straight line through the origin with slope 1/v, and
therefore have correlation 1. But by the ratio property, it is also the case that xij/xim =V
for all i = 1,2,...,n, so the same result applies to the (j,m)th variables of X. Nearly
linear associations, that is, correlations greater than about 0.90 between two components
of a composition, occur quite frequently in practice. For example, a correlation of this
order between the oxides Al,O, and SiO, is a common indicator of a silicate (clay)
endmember which, if identified, often implies negligible quantities of these oxides in the
remaining endmembers. In any event, the presence of any high correlations between the

variables of X should be reflected by approximately constant ratios for the appropriate

components of the endmembers.
The unit sum obtained above for the components of F is a special case of a more

general result concerning row sums. By equation (3.11) with q = p, the row sum given

by

Kk
= z i i bmj (3.16)
=1
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k
If 2:(']. = 2bmj = A (any constant > 0), m = 1,2,...,k, then zllm = 1 necessarily.
¥ i= m=

k
Alternatively, if iibmj =1, m=1,2,...k, and one ofix'j, lem is equal to 1, then
= = m=

by (3.16) so must be the other.

These results can be exploited in algorithms for constructing the matrices L and
B when the rows of X' are compositions. For example, suppose the matrices L and
B, are exact feasible solutions to the matrix equation X' = LB, however, the rows of
B, are not compositions but unit vectors. Then dividing each of the rows of L and B,
by their respective row-sums would result in an exact convex representation for X' in
terms of feasible endmember compositions. This is a much simpler operation than that
described by equation (2.6). Moreover equation (2.6) requires the magnitudes of the
final endmember vectors, and these may not exist if the endmembers do not belong to
X'. Since Q-mode factor analysis starts with the transformation of the data into unit
vectors, it was considerations such as these that were at the basis of the advantages
claimed for processing constant sum data that were made by Miesch (1976a,b) and

Klovan and Miesch (1976).

3.1.2 A Note on Partial Compositions

There is an alternative to the derivation of equation (3.15), in which the part
composition was transformed into a subcomposition. That alternative is to reconstruct

equation (3.12) into a convex combination of partial compositions.

Suppose a (g+1)th component is added as a 'fill up' value to each part
composition in equation (3.12). Then each part composition acquires an extra
component and becomes a partial composition. For the vector [X';, X'5, ..., x'q], the

additional component x'q 1 1s redefined as follows,



—
—

Similarly, for the part composition [b bmq] of the m-th endmember,

ml? m2""’

m g+1

b =1 - ibmj for m=1,2,...k
J:

Forming convex combinations of both sides of the last equation, from the given vector /

of mixture coefficients,

lmbm q+1 = Z i m mJ

m=1 m=1j=1

The components of I sum to 1 by definition, so on interchanging the order of the double

sum on the left,

Hence the (q+1) dimensional compositional vectors [x'l,x'z,...,x'q+l], and

[b b, q+1], m = 1,2,....k, satisfy equations (3.11), (3.12) but with (q+1)

ml? m2""’

replacing q.

An immediate corollary of this result is that the rank k of an (nxq) matrix of
exact mixtures of part compositions, is unaltered by the addition of an (nx1) column of

constructed 'fill up' values (which correspond to geochemical residues).

Databases consisting of part compositions, that is, retaining the measurements
of q < p of the components of full compositions, are commonplace in geochemistry. In
Chapter 5 one such database is analyzed after its conversion to partial compositions, and
the endmembers obtained are then transformed into subcompositions. In view of the

results of the last two sections, the same endmember subcompositions should be
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obtained from a sound mixture analysis whether the subcompositions are formed before

or following the analysis.

3.1.3 A Note on Sampling Distributions

A theory for the joint probability distribution of a random composition vector x
given by
x=xb+e=j§:‘,lxjﬁj+ 3 (3.17)

would usually need to incorporate two distinct components of variation.

The first arises from the sampling procedure. For statistical purposes,
geochemists routinely report the collection of 'random' samples of geological specimens
such as marine sediments, rock samples and so forth (see, for example, Woronow and
Love (1988)). Such reported randomness is usually a perception of the collection
method. A designed sampling procedure may for example, follow a uniform probability
distribution defined on the region from which the samples are to be taken or a systematic
selection of sampling points (stations) uniformly distributed on the region. But other
probability sampling methods are also valid. (It should be remarked that most sampling
schemes are purposive. Samples are usually recovered from sites which possess

particular attributes of interest).

Given any valid probability sampling method, then by the assumed model
(3.17), there is associated with each point in the sample space a unique (but unknown)
realisation of the mixture loading vector A which is, therefore, a random vector. The
unknown joint probability distribution of the components of A is defined on a
(x-1)-dimensional hyperplane % in the positive orthant of x-space. It is, in some
obscure way, related to both the sampling scheme and the mixing process that is under

study. It would be an error to assume that a 'random' collection method implied a
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(x-1)-dimensional uniform distribution defined on %.

The second component of variation involves the additive error vector € in
equation (3.17). An intuitively more satisfactory way to describe the deviation from the
true mixture g = AP, is to suppose each component of p is rescaled by the

corresponding component of a 'perturbing' vector p (Aitchison (1986)) so that,
X, =up/ ,:é‘l” P (3.18)

If x= pop denotes a perturbation of p then x= (AB)op = AP(Bop) = APBP, where
ﬂp is the result of perturbing each of the k rows of B by the same perturbation vector
p,and AP is a mixture loading vector by equation (3.16). If Py X, > 0, j= 1,2,...,p, and p

itself is the product of many similar independent perturbations, then the random vector

z (1x(p-1)), defined by z= loge(pj/pp) and hence y (1x(p-1)) where,

y;= loge(x/xp) = loge(uj/up) + logc(pj/pp), j=12,..,p-1 (3.19)

will, under certain regularity conditions, follow multivariate normal distributions
(implying that x will follow an additive logistic normal distribution (Aitchison (1986)).
Thus provided all matrix elements are non-zero (an unrealistic condition in general),
then by equation (3.19) the rows x,,X,,....x, of (nxp) dataset X can be transformed

into the 'logratio' row vectors y,,y,.....y,, of (nx(p-1)) matrix Y = M + Z where,

Yij =loge(xij/xip) = loge(p,ij/u ip) + loge(pij/pip), j=12,.,p-1 (3.20)

Under appropriate hypotheses, Y may be analysed by the family of procedures based on
the multivariate normal distribution. But equation (3.20) and therefore the matrix
equation Y =M + Z are particular cases of the familiar 'response = signal + noise'

model. When the structure of M is assumed, then the validity of that assumption can be
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tested by the consequent properties of Z. Ideally those should be of a random sample

from a multivariate normal distribution whose mean vector is 0.

This Chapter however, is concerned principally with the determination of x'ij,
the components of the estimated mixture matrix X', which is the first step in solving the
mixing problem. Testing the validity of any solution is the next step and that matter will
be raised again in Chapters 4 and 5. The severest practical measure of the inadequacy of
the estimated mixtures, X', is the proportion of the coefficients of determination
(between the observed and estimated mixture variables (see Miesch (1976b)) which are

less than some predetermined cutoff value which in this work has been chosen to be 0.5.

3.2 PARTITIONING PROCEDURES

Before examining the general problem of constructing a convex representation
(3.1) for a dataset X of n samples, the case of the single geological sample is considered

first.

The simplest partitioning problem is that where an endmember assemblage B
(kxp) has been estimated and, given the composition x (1xp) associated with a single
sample, it is required to find the loading vector . (1xk). This is the 'linear unmixing'
problem (after Full, Ehrlich and Bezdek (1982)) reduced to one case, and it really

embodies the two questions,

(@) is the given sample a mixture of the given endmembers, within tolerable
€ITOTS;
(b) if it is, then what is the contribution 1j of the endmember bj to the sample,

where j=1,2,...k ?
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3.2.1 Partitioning by Least Squares

Let x be the position vector of the data point X with respect to the origin O. Itis
proposed in this Section that the best approximation to X in the space S spanned by the k
rows of B, is the position vector of the orthogonal projection of X into S. That
approximation will require transforming into a composition. The answers to questions

(a) and (b) above are then determined by the precision of the latter approximation.

In the single sample case k < p, n =1, x (I1xp) and B (kxp) are known. The
the problem therefore becomes that of finding the solution for I (1xk) in an equation of

type (3.7) without subscript i as below

Il
—
—

—
1l
—

x =I[IB+e [.b.+e (3.21)

When [ is obtained, the estimated mixture x' is

k
x'=1IB =2 Lb, (3.22)
i=1

The orthogonal projection of the point X onto the estimate space S defines a
unique point X* in S with position vector x* = I*B, where I* is the vector of least

squares regression coefficients.

Proof:

Let x* = [*B be the position vector with respect to O of the orthogonal
projection of X onto S. The point X* must be in S but is not necessarily on hyperplane
P. Since the rows of B span S, any other (1xp) vector y € S has the form y =aB for

some a (1xk). It is required that line XX* is orthogonal to S so,
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(x - X"‘)yT =0

That is,
(x-I*B)B'a' = 0 foralla,

which implies
(x - I*B)B" = 0 (1xk),

thus,
¥ = xB' (BBT)! (3.23)

Matrix (BBT) (kxk) must be nonsingular since B is assumed to be of rank k. Hence,

x* = B = xB (BB")'B (3.24)

The vector I* (1xk) given by equation (3.24) is the vector of least squares regression

coefficients (Rao (1973)) obtained by minimising

i (x; - x*j)2 (3.25)

=1
in the solution of the overdetermined system,

x=IB = > Lb, (3.26)

Which completes the proof.

This is an opportune point at which to make an obvious comment. If x = aB
for some a (1xk), then system (3.26) would become an equation whose augmented
matrix would be of exact rank k. By equation (3.23) I* would be equal to a. That is,
least squares procedures will construct exact solutions to systems like (3.26) when they

exist. This somewhat obvious result permits the employment of a single least squares
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algorithm to solve a variety of exact as well as overdetermined systems which arise in the
analysis of mixtures. A frequent application for it is to construct the (nxk) matrix of
mixture coefficients L for the equality X' = LB given that the rows of (nxp) X' belong

to the space spanned by the rows of (kxp) B.

The sum of squares (3.25) is equal to the squared distance (XX*)2. Since this

is minimised, X* is the nearest point in k-space S to point X.

It is evident that angle XOX* happens also to be a minimum. In the triangle
XOX*, the side XX* is normal to OX*, the hypotenuse OX is fixed, and XX* is a
minimum distance, so XX*/OX = sin(XOX*) is a minimum as must therefore, be the
angle XOX*. It follows that the 'coefficient of proportional similarity' (Imbrie and

Purdy (1962)), cos(XOX*), is a maximum.

(A 2-dimensional illustration of the foregoing is provided in Figure 3.2 below).

The least squares approximation x* thus has a relative composition which is
most similar to x among those position vectors of points in S (for detailed discussions of
proportional similarity see the Q-mode factor accounts of Imbrie and Van Andel (1964),
Klovan (1966), Klovan and Imbrie (1971), Joreskog, Klovan and Reyment (1976) and
Miesch (1976b)).

Returning to question (a) posed at the start of this section, if angle XOX* were
zero, then x would be an exact mixture of b,,b,,....b,. If angle XOX* were merely
'small’, this could be perceived as falling within a 'tolerable error'. (If x were in fact an
approximate mixture of b,.b,....,b, but the error vector was not orthogonal to S, then
angle XOX* would be less than the true angular error). Finally, if angle XOX* were
'large’ then either the error vector was also 'large' or the hypothesis that the sample is a

linear combination of the given endmembers would not be plausible.
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Assuming that angle XOX* is 'small’, there are now two possibilities. Either
all l*j > 0 so that X* is in convex cone C, or at least one I*j < 0 and X* is outside C. In

either case, line OX* can be produced onto point X' on hyperplane P by creating /

where,
k
= [* * j= ’
L lj/nélzm, j=12,..k (3.27)

The components lj, j=1,2,..k, of I obey equation (3.4) and so the estimated mixture
x' given by,

k
x' = IB =x%f 3 (3.28)
m=1

is the position vector of a point X' on hyperplane P by equation (3.27). It follows from
equation (3.16) that provided b,, b,, ..., b are compositions, then x'is also a

composition.

Angles XOX* and XOX' are equal since x' is parallel to x* by equation (3.28).

Hence x' remains most similar to x and, therefore, the best approximation to x among

the position vectors of points of hyperplane P.

If all / *2 0, then by equation (3.27), all ; 2 0, X' is a point in H, and the
problem is solved (see Figure 3.2 (a)). The required partitioning of the sample into the k
given endmembers is defined by the components lj, j = 1,2,....k of the loading vector I
constructed at equation (3.27). That is the answer to question (b) at the start of the

section.

If/ *j <0, then lj < 0 (the denominator of equation (3.27) being positive). The
point X'is on the hyperplane P but outside the convex set H, meaning that at least one

of the b,,b,,...,b, is not an endmember (see Figure 3.2 (b)).
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Figure 3.2. Orthogonal projection of point X onto the estimate space spanned by two
endmembers. *=/lFyby+lpb,. Line XX* is perpendicular to S, which in
this case is the plane through OB4B,. Hyperplane P is the line through B4B,.
Convex cone C is the region bounded by the line pair OBy, OB,. In a good
representation, angle XOX* would be small. (a) If /4,F5 >0 then X* is inside
C. (b) If 1'1 <0, l"2 > 0 then X* is outside C as shown. In either case, OX*

produced must intersect line BBy, in point X'

(a) (b)

Assuming that the k+1 vectors x, b;,b,,...,b, are approximately linearly
dependent as above, a new problem arises, namely to find an alternative set of k vectors
which define extreme points whose convex hull will include X', and usually

B,,B,,...,B,. This problem is considered in the next section.

Finally, from equation (3.24) it follows that any point R with position vector

(1xp) r may be projected orthogonally into estimate space S according to the relation

r* = rB (BB")'B (3.29)

The matrix BT(BBT) !B is an orthogonal projection operator (Rao (1973)). It may be

employed in order to construct the nearest point in S to any point outside S, otherwise it
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behaves as an identity operator. Postmultiplying any matrix of constructed vectors such

as adjusted endmembers by this operator guarantees that all points remain in S.

3.2.2 Partitioning by Linear Programming

The incorporation of the overdetermined system (3.26) into an appropriately

formulated linear programming problem has been discussed in Section 2.3.

The principal advantage of the linear programming solution is that, for each
sample vector x and from a specified set of (feasible) endmembers b;,b,,...,b,, the
non-negativity constraints guarantee a feasible solution I" for the loadings I. The

approximation x" =["B to x is also feasible.

The disadvantages are,

(i) in general, when the point X", whose position vector is x", is in the interior
of the convex cone C, it is not the closest point in C to X,

(i) in general, when X" is on the surface of C, at least one of by,b,,...,b, is
not an endmember and the components of the solution " do not measure the

magnitude of the consequent discrepancy.

In the light of these disadvantages, it will be seen that question (a), posed at the
start of Section 3.2, is not readily resolved by this method. The answer to question (b),

of course, is I" as described in Section 2.3.1.

Dymond et al. (1984) described an iterative algorithm which adjusted the
endmembers in order to account for the errors resulting from the linear programming

partition. The algorithm works only for a data matrix X (nxp) in which n > k. Briefly,
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it amounts to a least squares solution for AB to the overdetermined system
L(B + AB) = X, when B has been specified, each row of L has been constructed by
the linear programming method, and X of course is known. The substitution of
B'=B + AB for B in the system (3.26) establishes a new set of constraints for
another linear programming solution for a new loading matrix. From that point, an
iterative cycle has been defined which can be repeated until some error criterion is

satisfied.

There are aspects of this process which are unsatisfacory. These will be

mentioned in Section 3.4.3.

3.3 ENDMEMBER ADJUSTMENT

Remaining with the case of the single sample, suppose vectors b,,b,....,.b, are
a given set of endmembers for a geochemical dataset. It is assumed that the space S
spanned by b,,b,,...,b, is the best fitting subspace of Euclidean p-space for the dataset.
However, in the particular case of a compositional vector x, the least squares partition
results in loading vector I (by equations (3.23), (3.27)) and estimated mixture x'
(equation (3.28)) for which angular error XOX' is small, but where a number s of the
components of [, denoted by laJB’---J& are less than zero 0 <s <k. So that within a
tolerable error, the composition of x is a linear combination of any set of basis vectors of
S but as noted earlier, X' lies outside the convex hull of B,.B,,...,B, indicating that at

least one of bl,bz,...,bk is not an endmember.

The location of X' relative to B,, B, ..., B, determines the components of the
loading vector /. Since b lﬁ, ..., lg are less than zero, line segments X'B,, X'BB,
X'Bj are intersected internally by s bounding hyperplanes containing the faces of the

convex polytope B;B,...B,. If subspace S is to be preserved as the estimate space for

VICTORIA 141
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the dataset, then the construction of endmembers for x and possibly b, by, ..., by,
requires moving these bounding hyperplanes outwards within S until X' is no longer an
exterior point. This means that the s points B, BB" .., Bg will be fixed while the
remaining (k-s) vertices of the polytope must be moved outwards (see Figure 3.3

below).

(Note: a bounding hyperplane through the q < k vertices B a» By -+ By Of the
convex polytope H, is the set of points {y : y = Ib b+ . +lby, [+ +. 4+l =1}
The subset of this for which I, I, ..., 1320, is clearly also a convex polytope. A face
of H is the convex hull of (k-1) of the vertices and is contained in the bounding

hyperplane through those vertices).

Setting the s negative components of I to zero and rescaling the remainder to
sum to one creates a corrected loading vector I° from which the violation of the
non-negativity constraint has of course, been removed. The new mixture x° = I°B,
remains a convex combination of the endmembers as required. Assuming (k-s) of the
components of I° are non-zero, then x is the position vector of a point X? in that
bounding convex polytope whose (k-s) vertices are not extreme for the dataset. There is
an error vector f between the 'best' approximation X' and the new point X° which
results from this intervention. Thus, it is possible to employ f to adjust the non-extreme

vertices outwards, and by that means, to move the s bounding hyperplanes outwards.

The correction described above is equivalent to a redefinition of / in order to

obtain feasible loadings, namely:
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If the components tes lB’ ..., I5 of I are less than zero then,

set Ia=lB=“'=18=O,
. k
followed by, 10=1/ :?:“J’“’ i= 12k (3.30)
This creates the loading vector I°. Since I, = lg = ... = I = 0 by definition, then
by the second expression in (3.30), 10, = IOB =...=1% =0 and the complete set of

components of I are the coefficients of a convex combination. In the case that s = 0,
that is, when none of the components of / are negative, it is consistent to define I° =
and x° = x'. Hence I° and x° are defined whether or not x' is external to polytope

B,B,..B,.

Figure 3.3. Adjustment of Two Endmembers in a Three Endmember Representation.
x' = I1b1+12b2+/3b3 where /i< 0. X'By is intersected internally (at XO) by
side BoBg of plane triangle ByByB3. Moving By to B'; and By to B'y is an
outward displacement of the side B,B3. X' belongs to the convex hull of

B{B'sB'5 as required, but this not always the case for all points in B{B5Bg.

B,
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(It should be evident that a computer algorithm that had constructed I* by
equation (3.23) for each composition vector x belonging to a dataset X could then

implement correction (3.30) automatically for each I).

The point X°, whose position vector is x° = I °B, lies on the hyperplane
through the (k-s) points | J - B, which are the points B, B,, ..., B; excluding
B, BB’ ..., Bg. The vector, f = (x'-x% = (I - I'O)B, lies in hyperplane P in a
direction out of polytope B,B,...B,, and is the error vector created by correction (3.30).
If vector f were added to each of b,, b, ..., by, then recalling from the last paragraph
that s of the components of I are zero while the remaining (k-s) components sum to

one,
3 0 £ 0 0 - 0
D4, +H = 'b +x-x) YL
h=1 h=1 h=1

xO + (x'- xO)

Hence, X' lies on the hyperplane through the points whose position vectors are given by
b, +f, h=apb,..d. These points could serve as new vertices to replace B, By, ...,
B,. Since X'is external to the original polytope, this adjustment moves only the vertices
that are not extreme just far enough to place X' on the new boundary. It is equivalent to
defining an adjustment AB (kxp) to matrix B as a linear function of the error vector f

(I1xp). Thatis, the new or adjusted matrix of endmembers B' (kxp) is given by

B' =B +AB (3.31)

where
AB = Gf (3.32)
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In the case described above,

1 forh=a,b, ..d
g =
0 otherwise

In the single sample case, matrix G is a (kx1) column vector but, for a number
n of samples, G would be kxn, and f would be replaced by nxp matrix F of error row

Vectors.

The principal shortcoming of the simple adjustment in which f is added to each
of b,, by, ..., by, is that it moves all non-extreme vertices by the same displacement.
Apart from the possibility that points representing observations which were internal to
polytope B,B,...B, may be external to the new polytope, such an adjustment does not
necessarily satisfy the geochemical requirement that extreme points should be as close to
the convex hull of the data points as possible. That requirement would suggest that
vertices that were remote from the external point X' should be moved the least, as in
Figure 3.3. This criticism also applies to the method proposed by Full, Ehrlich and
Klovan (1981) who stated that moving the edges of the polytope outwards, parallel to
the 'original edges', was a strategy designed to keep the terminal hypervolume 'defined

by the data' to a minimum.

An alternative expression for g, in equation (3.32) which accomplishes a

displacement directly proportional to loading is given by,
2
g =1/ 11l (3.33)
Hence, combining equations (3.31) and (3.32),

by, = b, + @/ 111 - x% (3.34)

and
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3 0 k 0 X 0.2 012 0
hE_tllhb‘h =}§l“b“+};(lh) /1117 (x - x9)

xo + (x' - xO)

- (3.35)

Therefore X' lies on the boundary hyperplane through B',,BY....,B'; as before.

Note that in the special case that all /°; are zero except I’ , then /°_ =1 and by
equation (3.33), g, =0 all h # m, and g, = 1. Further, x? =B = b_, so that by

equation (3.34) b', = by all h # m, and b’ =x/, which is reasonable.

The possibility arises that some of the components of the new set of
endmembers b'a,b'b,...,b'd are negative. A vector with one or more negative
components is not in the positive orthant of p-space and a least squares projection onto
estimate space S employing the orthogonal projection operator as in equation (3.29) with

a non-negativity constraint, provides a feasible best solution.

Another possibility is that some members of the original dataset now have
negative loadings on some of the ba,bB,...,bs, b',,b'y.....,b'y. If this is the case, then
the partitioning procedure and endmember adjustment outlined above form the basis of
an iterative algorithm for repeatedly adjusting the positions of successive sets of k trial

endmembers until they are extreme (see also Section 3.4.3 below).

An obvious property of matrix adjustments which are linear combinations of the
errors, like equations (3.32) and (3.34), is that if all the points are interior to the
polytope H, then f=0 (or F = 0) and so AB =0. Hence an automated algorithm
which adjusted endmembers by the incremental matrix of equation (3.32) (or more
generally, by AB = GF), could not move from a set of proper extreme points. These

extreme points could be the initial vertices, or they could have been constructed as the
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outcome of a sequence of such adjustments.

Another important property of these adjustments is that a new set of
endmembers must always belong to S. By equations (3.30), (3.31) and (3.32), the

adjusted matrix is,

B' = B + AB
= B + Gf
= B + G(x'-x%
= I+ G -1°)B (3.36)

From the last line above, it is clear that each of the new endmembers (rows) of (kxp) B'
is a linear combination of the rows of B and therefore a vector belonging to estimate

space S.

Provided each of the rows of B is a composition, then the rows of B' will also
be compositions. That is, the adjustments all take place in hyperplane P, the subset of
estimate space S to which all compositions belong. This observation is readily apparent
for the 3 endmember configuration of Figure 3.3. By way of proof, it need only be
established that the row sums of the matrix (I + G(I-19) all total 1 (see equation

(3.16)) . Since the i-th row-sum of this matrix is
3 0
1+ gij;(lj - 1)

the result follows at once. Thus if the rows of B are compositions, then so are the rows
of B'. And since it has already been established that the latter must belong to estimate

space S, they must then define points on hyperplane P.
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3.4 GEOCHEMICAL DATASETS

So far, the development of algorithms for the determination of mixture
coefficients and the adjustment of endmembers has been restricted to the special case of
the single geological sample with a given set of endmember estimates. In this section,
the generalized problem of constructing a convex representation for a number of samples
will be examined. It will be assumed that only the matrix of observed compositional data
X (nxp) is given, and that it is required to resolve X into the form (3.5) in the absence
of prior knowledge of matrices L and B. That is, all the information needed to

determine these two matrices is contained only in X.

3.4.1 The Estimate Space

It has already been noted that if the observed data resulted from some unknown
mixing process with small random errors, then there should be a subspace S whose
dimension is k < p, such that the rows of X (nxp) are approximately linear
combinations of any k basis vectors of S. When that is the case, the approximate rank of
the matrix X is k which is an estimate of the number of true endmembers. Thus, the

first step in solving equation (3.5) for L and B is to identify S.

Ideally, this is accomplished by locating an orthogonal reference system in
p-space for which the ordinates of the observed datapoints on some axes are large, and
on the remaining axes are negligible. Then § is the subspace that is spanned by the unit
vectors which define the first set of axes. This is because the object (data) vectors will
approximately be linear combinations (the large ordinates) of those unit vectors. In
practice, such outcomes as 'large’ and 'negligible' ordinates on distinct sets of axes are
not usual. What is common nevertheless is a rapid diminishing of the magnitudes of the

spread around the origin O in the directions of certain eigenvectors taken in turn.
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If v (px1) is any unit column vector, then the components of the (nx1) vector
Xv are the orthogonal projections of the n rows of X onto v. Thus the scalar vIXTXv
is the sum of the squares of those projections (cf. equation (1.40)). The critical
(turning) values of this sum of squares are equal to the p eigenvalues V2,22
v, 2 0 of the symmetric matrix XTX, and occur when v is in the directions of the

corresponding eigenvectors ViVoseenVp respectively (see sections 1.4 and 1.5).

If y =0, then the sum of squares vaXTva = 0 so that the orthogonal
projection of each row of X onto v, is zero. It follows that for all j m<j <p, yi= 0
and Y is orthogonal to every row vector of X. If the eigenvectors were taken as an
alternative orthogonal reference system, then the coordinates of every datapoint of X, as
measured on the m-th to p-th axes, would be zero demonstrating that the data occupied a
space of at most (m-1) dimensions. Further, each row of X would then be an exact
linear combination of the first (m-1) eigenvectors so that the rank of X must at most be

(m-1).

When y_ is not zero but nonetheless is very small, then all the results of the

preceding paragraph become approximations.

Symmetric matrices XXT (nxn) and XTX (pxp) have the same non-zero
eigenvalues y, >y, > .. 2 Y, 2 0 (see the derivation of equations (1.41) and
(2.7)). These are associated with both the nxp matrix U = [ul,uz,...,up] of unitized
eigenvectors of XXT and the pXxp matrix V = [vl,vz,...,vp] of unitized eigenvectors of
XTX. If pxp W12 = diag(\/$1,\/$2,...,\/$p), then the singular value decomposition
(see sections 1.5 and 2.2.1) for X is given by

X = U‘PI/ZVT (3.37)

This result is an immediate consequence of the readily verifiable relation ij = Njuj as

in the derivation of equation (2.8). Letting j = 1,2,....p, it follows at once that
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XV = U¥!2, and equation (3.37) is obtained by postmultiplying both sides of this by
V=V,

The sum of the eigenvalues is trace(¥) which also equals the trace of XXT and

XTX. Hence the the total sum of squares for the data is,

2
X.. =
1 :

n
=1 j=1 i

' 0x? (3.38)

\u:
= 1

j=

1
which will be invariant for all orthogonal transformations in p-space.

If the rows of X have been transformed into unit vectors so that XXT is a
similarity matrix, then the right hand side of (3.38) is equal to n. Such a transformation
is the basis of Q-mode 'factor' and cluster analysis. With or without the transformation,
an assessment of the approximate dimensionality of the data rests on the magnitude of

the quotient

S ow/d v (3.39)
= A

for k <p. If, as is often the case for k much less than p, it happens that quotient (3.39)
is large (for example 0.99), then the sum of the squares of the orthogonal projections of

the rows of X on the eigenvectors Vii1s Vieas -+ Vo 18 @ negligible proportion of the

P
total (equation (3.38)). The approximate rank of X is k and the consequent existence of

a linear model (3.1) to account for the data seems to follow.

Equation (3.37) can be expanded as the matrix sum (3.40) below

= = T s - T
X = [V\qul,...,wl%uk] vy | ¥ [‘/‘4{(+1“k+1"""j‘l{)“p] Vit (3.40)

“T T
Vk Vp
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Geometrically, the VisVgsenV, Are orthogonal unit vectors in p-space representing an
alternative reference system. The coordinates of point X, in this system are (from the

two matrix addends of equation (3.40))

(«lwluil, ‘“Vz“iz’ s «/wkuik, W&Huikn’ - wlwpuip) (3.41)

Now the u;; are components of n-dimensional unit vectors and k exists such that for j >
k the y; are negligible. Thus \/-\]_Ij u;; is approximately zero for j > k in (3.40) and (3.41)
so that the rows of X occupy the k-dimensional space S defined by the VisVose Vi

axes system within the errors determined by the Wj Uy i>k

The two matrices in the sum on the right of equation (3.40) can be associated
with the terms in equations (3.1) and (3.5). The first matrix is X* and the second is E*.

Rewriting equation (3.40),

X =X*+ E* = X'+ E (3.42)

where X' is the result of the premultiplication of X* by an (nxn) diagonal matrix which
rescales its rows into compositions. Assuming the rows of X sum to one and the rows

of X' sum to one, then the rows of E sum to zero to maintain the matrix equation.

The vectors V{,Vy,...,¥, form a basis for the estimate space S in the positive
orthant of p-space. From equations (3.40) and (3.42), it follows that the rows of X/,
being scalar multiples of the corresponding rows of X*, must belong to S since each is a
linear combination of VisVy,..,Vp. It is within S that the estimated endmembers
by.b,.....b, will be sought. So for the purpose of assessing the validity of a nascent
convex representation, the estimates for X, = AP and € already exist as the matrix of
estimated mixtures (nxp) X' and the residuals (nxp) E = X - X'. Similar

observations to these were made in Section 2.2.1 (see the derivation of equation (2.13)).
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Being orthogonal, V15¥g,...,Vy tend to lie outside the positive orthant of
p-space (xij 2 0) and would not determine the directions of feasible solutions for
b;.b,.....b,. Various writers have recommended varimax and oblique rotations of the
set Vy,V,,...,V) in the context of Q-mode 'factor' analysis (see the summaries in Section
2.2.1 of the papers by Imbrie (1963), Imbrie and Van Andel (1964), Klovan (1966),
Klovan and Imbrie (1971), Joreskog, Klovan and Reyment (1976), Miesch (1976a,b),
Clark (1978), Full, Ehrlich and Klovan (1981), Full, Ehrlich and Bezdek (1982),
Leinen and Pisias (1984)). In that context, such vectors, which are not possible
endmembers in general, were chosen because of the availability of orthogonal rotation
algorithms, in particular, the varimax method (Kaiser (1958)). These methods had been
developed to construct objectively a 'simple structure' from the loading matrix that had
been derived from an R-mode factor analysis. Such rotations are not constrained by
non-negativity conditions on all matrix elements. Indeed, such a constraint is impossible
on the components of the factor vectors. Nor are the factors they create compelled
towards the position vectors of extreme or nearly extreme points. (Somewhat
informally, the convex hull of a set of 'nearly extreme' points encloses most of the

datapoints in dimension q < p).

The ideal outcome for an R-mode factor analysis is that in which the
mean-corrected variable-vectors define disjoint, orthogonally located clusters of points
(whether or not a factor model exists). The ideal outcome for a mixture analysis is that
in which object vectors define uniformly distributed points within a convex polytope (if
a mixing model exists). The varimax criterion is designed for and quite efficient at
detecting the former configuration. There are no theoretical grounds to expect it to work

in the latter.

The singular value decomposition creates (nxp) X* the least squares
approximation to (nxp) X in S. This is geometrically obvious because in the reference

system defined by the eigenvectors Via¥0es Vi the coordinates




125

Ny vy, Yy, ug, o Yy ug, 0, ..o, 0) (3.43)

of the point X*, place it at the foot of the orthogonal projection of X, onto the coordinate
hyperplane S spanned by V1,Vy,...Vy (compare lines (3.41) and (3.43)) . Therefore,

the rows of X* are the orthogonal projections of the rows of X into S.

The angular error X,0X* = X,0X’; can be examined for each i = 1,2,...,n.
Large angular deviations identify both outliers among the samples and gross
typographical errors in the dataset. Large in this context usually means more than four

times the mean angular error

n
23 x0x, (3.44)
i=1

and is rare in a good linear representation. The quantity (3.44), together with the
quotient (3.39), are two initial goodness of fit indicators for the estimated mixtures X'

obtained from the singular value decomposition of X.

Experience with quite modest datasets (n > 60) has shown that the singular
value decomposition is robust in the sense that correcting or removing outliers has little
effect on either the eigenvalues or eigenvectors. The space S is identified by all the
information in all the samples. Its dimension k defines the approximate rank for (nxp)
X and the estimate for «, the true number of endmembers. The rows of (nxp) X' are
the compositions formed by rescaling the orthogonal projections of the rows of X into
S. Thus, X" is both the estimate of X, = AP, and the 'best' approximation to X for a
conjectured k-source mixing process given by equation (3.1). The next problem is to
solve the equation (3.5) for (nxk) L and (kxp) B, and the first step in the solution is to

locate k extreme or nearly extreme points of X'.




3.4.2 The Identification of Extreme Observations

Let the extreme points B, B,.,..., B, be defined by the set of endmembers
b;, b,...., b,. The lemma below establishes an elementary property of the coordinates

X% 3= 1, 2,.., p, of points X', lying inside the convex hull of B,, B,,..., By.

Provided X' =LB is an array of exact mixtures as in the convex

representations (3.1) through (3.5), then for each i=12,...,n,
if bBj < baj < baj, = 1.2,k

then bB' £x.<b . (3.45)

Proof:
Suppose a typical row of X' is given by x' so, ‘

x' = [B for some [

and, |

k
x'j = Zﬁ libij

Suppose also, x'j - bij foralli=1,.2,...k.

k
Thensince [, > 0, i=12,..k and 3 I = I,
1 1

i=1

k k
i>=:1 Ix, > ; Lb,

That is,

a contradiction. (
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A similar contradiction can be deduced if it is assumed that x'j < bij for each
bE 1,25k,

Which completes the proof.

Hence, the endmembers contain the extreme values for each variable. This
result is true in any reference system, and must also apply for example to the entries in
the k columns of [\/El u, \/Gz W53 g \/\_yk u, ], or even a varimax rotation on this

matrix.

It is not necessarily the case that every endmember must contain extreme values

for one or more of the variables. Consider

b, = [1/2,1/2,0,0], b, =1[0,0, 1/2, 1/2], b, =[1/8, 3/8, 1/8, 3/8]
These are 3 compositions. Now,

Blbl + B2b2 = 1/2 [B]’Blszvﬁz]

Clearly b; can not be a linear combination of b,, b, so that b,,b,,b; are possible
endmembers. None of the components of b, is extreme in the current reference system.
If, however, the axes are rotated in the direction of the eigenvectors, all three have

extreme values in the rotated reference system.

If (3.45) does not hold for ij or baj then bB or b, is not an endmember. A
sort on the magnitudes of the components in each of the p columns of (nxp) X' and in
each of the k columns of (nxk) [\/Elul,xlﬁzuz, \/Gkuk], will reveal extreme

samples.

In theory, k extreme samples which account for the maxima and minima for all

estimated concentrations x'.., and the maxima and minima of the components Wu on
ij Iy
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the eigenvectors V{,Vy,...,Vy, Will serve as a set of k initial endmembers. In fact, k
samples with all those properties not only do not necessarily exist, but such extreme
samples as do exist are often outliers whose estimated mixtures are in S but remote from
the body of the data. Accordingly nearly extreme samples are usually a more reliable

choice.

Since the eigenvectors define the mutually orthogonal directions of the turning
values of greatest spread about O, the neighbourhoods of the extremes of the
components \/ﬁjuij on the eigenvectors v,,v,,...,v, are more informative than those

obtained from varimax rotated axes.

Note: Leinen (1987) stated that 'the experiment is therefore biassed by the
choice of endmember compositions'. In fact, the process is a multivariate extension of
the estimation of the 2 extremes of a bounded univariate distribution, and bias or not is
then a consequence of the sampling procedure. Another kind of bias would be
introduced if the extremes of raw data matrix X rather than X' were used as k initial
endmembers as evidently undertaken by Dymond et al. (1984). These vectors do not as
a rule span estimate space S which has been determined by all the samples.
Consequently, estimated mixtures based on convex combinations of such vectors may

be quite remote from S.

3.4.3 Adjustments to Endmembers

It is generally the case that extreme points are not contained in the rows of the
dataset of estimated mixtures (nxp) X'. That is, if k initial (or trial) endmembers (kxp)
B, were chosen from the rows of X' and the exact solution for (nxk) L, constructed for
the matrix equation X'= LB (equation (3.5)), then some of the elements of L,would

be negative. The solution to this problem should be to move outwards those initial
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vertices that did not define bounding hyperplanes for the dataset. This would create new
trial endmembers B, and a new loading matrix L,. If negative loadings persisted, then
further outward displacements of the current trial endmembers would be necessary. This
procedure could be incorporated into an iterative algorithm which would be repeated in
anticipation that, incrementally moving non-extreme trial vertices of the current polytope
outwards would ultimately make all the data points of X' into interior points of the
terminal polytope. This would be accomplished without the terminal vertices being more
remote from the estimated mixture data points than was necessary. A description of

iterative algorithms that possess some of these properties follows.

Assume that the rows of both (nxp) X', the estimated mixture matrix, and
(kxp) B, a set of trial endmembers (without subscript), are all compositions belonging
to the estimate space S. Therefore, they are all position vectors of points on the

hyperplane P which is a subset of S.

Each (1xk) loading vector I, of (nxk) L is the exact solution of the equation
(Ixp) x'; = B, and may be constructed by the operation (3.23), for i = 1,2,....n.

Hence, X' =LB.

Associated with each of the solutions for L, there is the loading vector (1xk) 10i
created by the correction (3.30), and the composition (1xp) )‘(0i = IOiB which is also
the position vector of a point in P. These n pairs of vectors are the rows of the matrices
(nxk) L and (nxp) X respectively. Hence, X? = LB. (Note that if 1;20,j=
1,2,....,k then IOi =1, and xoi = X;, which must be the position vector of an interior

point of B,B,...B,).

Let (nxp) F = X' - X be the matrix of error row vectors created by the n
applications of correction (3.30). If F # 0, then at least one point (row) of X' is

external to H, the convex polytope B,B,...B,. So at least one of the trial endmembers
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is not extreme. Accordingly, the non-extreme vertices of B,B,...B, must be identified
and moved outwards. Generalizing the method defined by equations (3.31) and (3.32)
for the case of a single external point, let G be a (kxn) matrix of error vector
coefficients. The new or adjusted matrix of endmembers (kxp) B'= B + AB as

before, where the incremental matrix adjustment (kxp) AB is defined by,

AB = GF (3.46)

The h-th row of AB is the linear form,

1l
Ab, = 2‘; g f. (3.47)
1=

All (1xp) error vectors f,=(x- xoi) lie in the hyperplane P, i = 1,2,...,n, as must each
Ab,, h=1.2,. k. Consequently, the new endmembers must represent points
belonging to hyperplane P and therefore to estimate space S. This can be demonstrated
by following the same steps as for the derivation of equation (3.36). The adjusted
matrix B'is,

B + AB B + GF

(I + G(L-L")B

Therefore the rows of B' belong to the space spanned by the rows of B, which is S by

assumption.

The i-th row-sum of the matrix (I, + G(L - L9) is given by,

k n
1+ Zzgia(laj'lo?j)

j=lo=1
Reversing the order of the double sum in the line above reduces the term in parentheses
to 1-1=0, and the entire expression to 1. Hence by equation (3.16), since all the

rows of B are compositions, the i-th row of B' is also a composition, i=1,2,...k.
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Therefore, the incremental matrix adjustments defined by equation (3.46),
which are based on linear combinations of the errors fi, will move selected vertices to
new positions on the hyperplane P in estimate space S. This satisfies a necessary
condition for any solution to the equation X' = LB, namely that all vertices of the
polytope B, B,...B, are points of the hyperplane P. Otherwise the required equality,
X'=LB, where X' and L are as defined above, would be false.

If F = 0, then the rows of X' represent points which are internal to
B,B,...B,. Further, AB = 0 by equation (3.46), and no displacements to any of the

vertices could follow by implementing this method.

The last two paragraphs have established general properties of the adjustments
(3.46). It remains now to specify the matrix G of error vector coefficients (see
equations (3.46) and (3.47)). In fact, research into the the choice of G is not complete.
The ultimate goal is an iterative procedure which would steadily diminish the errors at
each cycle, and be guaranteed to converge to k extreme points (vertices) in the
hyperplane P. Monitoring the errors is quite straightforward, and the single scalar given
by tracc(FTF)/np has proven adequate for tracking the approach toward total inclusion of
all the estimated mixture data points within a polytope (see equation (3.50)). The
construction of an algorithm that would be attracted towards k vertices from any k intial
points within k respective neighbourhoods (of near extremes for example), has proven
to be a good deal more difficult. Two ad hoc solutions which not only have proven
successful on real data, but also could serve as starting points for more elaborate

procedures, are described below.

The first employs a weighted mean error vector coefficient. In equation (3.47)

define
gni = O/, (3.48)
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where n, is the number of vectors of the form /° fi, i=1,2,..,n, with non-zero
magnitudes, and the loading /% is the weight. This coefficient for the error vector f, has
similar properties to that defined by equation (3.33) for the error vector f associated with
a single external point X'. The term g;f; contributes a displacement to B, which is
directly proportional to 10ih, which in turn is a measure of the external displacement of
X', from B,. Since the sum of the components of I is 1, the denominator of the
expression on the right of equation (3.33) is less than one. A more conservative
adjustment then is to remove | |2 from the denominator of the error vector coefficient
and rely on the iterative procedure to compensate for the diminished displacements.
Obviously when there are a number of points external to the polytope it would not be
sensible to form the vector sum of all the displacements, consequently for each point B,
a mean displacement is constructed, hence the inclusion of n, in the denominator. This
is the number of vectors in the vector sum on the right of equation (3.47) whose
magnitudes are non-zero. It is the inner product ¥8 of the two n-dimensional vectors ¥,
& where vy, =0 if Lpy=0, v;=1if [, >0, §,=0 if lfil2 =0, 6;=1 |if
If,12 > 0.

The second choice for the (kxn) matrix of error vector coefficients is,
G = (L)1 LT (3.49)

This form of G is that which minimises the sum of squared residuals formed by solving
the overdetermined system X'= LB + AB) or equivalently, F =~ L°AB (see Rao
(1973)). Itis difficult to interpret adjustments to endmembers which are the regression
coefficients for the orthogonal projections of each of the columns of (nxp) F into the
space spanned by the columns of the estimated loading matrix (nxk) L%. Worse,
experience has shown that the method can diverge sharply when used iteratively.
Experience has also shown however, that it is very efficient for reducing the mean

squared error (3.50) iteratively, and therefore can produce useful results if there is an
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intervention when (3.50) attains a minimum.

Dymond er al. (1984) described a similar adjustment process except that they
did not identify an estimate space S to which k endmembers must belong. Instead they
specified k and solved the overdetermined system X =~ L(B + AB) for AB. The left
hand side of this system was the observed data X, initial extremes were chosen from X,
and L was obtained by linear programming methods. Their results will be discussed in

Chapter 4.

As in Section 3.3 these strategies lead to iterative procedures, the convergence
of which can be monitored by computing a mean squared error

L3y - X0 (3.50)

n
L e

which is tracc(FTF)/np as remarked earlier. Thus the residual matrix E is a fixed
property of the identification of k-dimensional space S. Mean squared error (3.50) is the
additional penalty for stopping the iteration before all x°ij are equal to x'ij. And that
would imply that the convex hull of the current set of trial extreme points did not include

all the X';. Such a situation arises if extreme points are pushed into the coordinate

hyperplanes of the positive orthant of p-space without fully enclosing the data points X..

An illustration involving applications of the coefficients (3.48) and (3.49) is
postponed until Section 3.4.5 where the question of the convergence of these procedures
will be raised. The most exacting analysis requires that the data first be rescaled. In
Section 3.4.4 which follows, there is a brief discussion of a column transformation that

will be a standard procedure of the mixture analyses of this thesis.
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3.4.4 Transformations

The expression (3.1) disguises a computational problem which should be
evident from the interpretation placed on equation (3.40). That is, that the smallness of
some of the eigenvalues may not be due to random departures from a low dimensional
configuration of the datapoints, but to the presence of low scales of measurements on
some of the variables. Many geochemical datasets combine observations on collections
of major elements measured in percentages, and trace elements measured in parts per
million. Itis possible for the two classes of measurements to differ on a common scale
by a factor of the order of 1 in 10,000. The apparent dimensionality of the complete
dataset on such a common scale would reflect at most the number of major elements.
Indeed the trace elements would determine eigenvectors that were very close to the axes

on which they were measured.

A simple transformation, based on the observed data, which removes this
difficulty is to divide each column of data matrix X by the maximum data value in that
column (Imbrie and Van Andel (1964) and Miesch (1976b, 1980)). This rescales all
element concentrations into the interval [0,1]. It also preserves the individual
coefficients of variation. Equation (3.1) becomes, on post-multiplication by the column

rescaling, nonsingular, (pxp) diagonal matrix C,

XC = LBC + EC

or

X = LB® + ES (3.51)

So for example, where compositional constraint (3.2) defines a hyperplane in

the positive orthant given by




Y & (3.52)

on which all points X s Xy uns X, By, By, oo, B, must lie, the post-multiplication by
C sets up a correspondence with points X% X%, v ch, B¢, B 5oy B¢, on the

hyperplane
i cx. = A (3.53)
~ i j
i=1
If the error matrices E or E° are zero (for an exact or contrived model), loading matrix L
is unchanged by this transformation. In practice however, the singular value

decomposition of matrix X° produces different eigenvalues and eigenvectors as a result

of the unit scale of measurement imposed on the p variables.

Both the partitioning and endmember-adjustment procedures described earlier
take place in space S° leading to the identification of the convex set H® C S€, and the
determination of L. The inverse transformation C! creates the estimate space S, and the

convex set H in which the relative positions of all points are preserved.

Post-multiplication of (nxp) X by the non-singular diagonal matrix (pxp)Cisa
special case of an elementary column operation. Throughout this work it will be used to
improve the precision of the estimates for k, (kxp) B and (nxk) L, and it will always be

referred to as the column transformation.
3.4.5 Illustration
A 10-dimensional array of compositional data of exact rank 3, originally due to

Imbrie (1963, Table 9A), has been thoroughly worked through by others in the context

of Q-mode factor analysis (see Section 2.2.1). These data are appropriately denoted by
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(10x3) X'. They are are highly suitable for illustrating the methods for solving the
matrix equation X' = LB (equation (3.5)) because the known contrived solution can be
derived almost at once without the Q-mode rigmarole, and it is relatively easy to assess
the different solutions constructed by the iterative methods described in Section 3.4.3.
All computations described below take place following the column transformation of X'
(see equation (3.51)). Indeed, the final procedure in any analysis is the inverse column

transformation.

A singular value decomposition of the column transformed data was performed
first. The relative magnitudes of the first three eigenvalues (equation (3.39) were
90.82%, 6.16% and 3.02%, which sum to 100%. The orthogonal projection of the data
into the space spanned by the first 3 eigenvectors proved to be an identity transformation
as expected. The orthogonal projections of the 10 samples on each of those eigenvectors
were the coordinates of the data points in the reference system defined by the
eigenvectors. Since extreme points must contain extreme values for the data (see Section
3.4.2), the samples were ranked from largest to least coordinate on each axis
(eigenvector). The reordered sample numbers are set out on table 3.1. In each column
of that table, the sample with the largest value is at the top, the sample with the least is at

the bottom.

It is evident at once from Table 3.1 that samples 1, 2 and 3 have the highest and
lowest coordinates on each axis (eigenvector) and therefore qualify as initial
endmembers. This conclusion would be equally evident from a similar table constructed
for each of the 10 variables. Using these sample as initial endmembers in the iterative
algorithm, revealed at the outset that F =0, the 3 samples were true extremes, and
that, together with the computed (10x3) loading matrix L (Table 3.2), confirmed the

published results (see Imbrie (1963, Table 9B) without any iterations being performed.
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The compositions of these 3 samples are displayed for purposes of comparison
with later estimates on Table 3.3. They are the 'A’ group of columns numbered 1, 2 and

3, in both the upper and lower tables respectively.

Although it did not feature in the analysis, a ternary diagram provides the
simplest representation of the (untransformed) 10-dimensional data (see Figure 3.1)).
The known loadings (Table 3.2) of all the samples on the first 3 samples, serve as
coordinates of the points in a 3-space. But since such coordinates form the coefficients
of convex combinations, the points that they represent all lie in the plane equilateral
triangle of the diagram. The positions of the data points relative to each other are
immediately apparent from this figure. Any three points within the positive orthant of
10-space whose convex hull enclosed the triangle of Figure 3.1, would constitute a
feasible solution to the equation (10x3) X' = LB. Only one vertex of the triangle is in
a coordinate hyperplane (Table 3.3, group 'A’, column 2, variable 10 is zero), so it

would appear that there are indefinitely many feasible solutions.
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Table 3.1
Samples Ranked According to The magnitudes of
Their Orthogonal Projections on Each Eigenvector
For Data Due to Imbrie (1963)

Axis1 Axis2 Axis3
1 2 3
5 7 10
6 9 2
3 4 9

10 8 7
8 1 6
4 5 8
9 10 4
7 6 5
2 3 1

Table 3.2

Loadings on The First Three Samples, of The Ten
Samples of Data Due to Imbrie (1963)

-

Sample 1 2 3
1 1.0 0.0 0.0
2 0.0 1.0 0.0
3 0.0 0.0 1.0
4 0.5 0.5 0.0
5 0.8 0.0 0.2
6 0.4 0.0 0.6
7 0.2 0.7 0.1
8 0.5 0.3 0.2
9 0.2 0.6 0.2
0 0.1 0.1 0.8
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Suppose now that samples 1, 2 and 3 are ignored. From Table 3.1, another set
of possible trial extremes are samples 5,7 and 10, all three accounting quite well for the
highs and lows on the 3 axes. Using Figure 3.1 in lieu of a nearest neighbours analysis,
it is evident that these points are not only remote from each other, but are also the
vertices of a triangle which is roughly similar to the that defined by samples 1, 2 and 3.
It need hardly be pointed out that, because they belong to the data, samples 1, 2 and 3

constitute the 'best' solution to equation (3.5).

A solution was sought, initializing the iterative procedure with samples 5, 7 and
10, and employing the mean error vector coefficient defined by equation (3.48). The
mean squared error (equation (3.50)) reduced monotonically from the beginning,
reaching a local minimum of 2.8x1077 at 10 iterations. Thereafter it slowly increased.
The compositions of the estimated endmembers at the 10th iteration are set out on Table

3.3, in the upper table, under group 'B'.

Comparing the estimates with the corresponding compositions of samples 1, 2
and 3 (Table 3.3, group 'A"), the similarities are so striking that it must be asked, why
did the algorithm not reach these 3 points or three external points in each of their

respective neighbourhoods?

An examination of the uncorrected loadings revealed that neither the 2nd nor 3rd
constructs were quite extreme. But the 2nd was already constrained by the coordinate
hyperplane, Variable 10 =0. A tentative answer then, is that the non-negativity
constraint on the components of the estimates kept overriding the adjustment. Instead of
moving outwards out of the positive orthant, the 2nd construct was forced to move in

the coordinate hyperplane in a direction that kept the 4th point external (see Figure 3.1)).
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Table 3.3

Endmember Compositions For Contrived Data

Originally Due to Imbrie (1963)

A B C
1 2 3 1 2 3 1 2 3
1 5.00 10.00 3.00 5.00 10.05 3.00 5.48 10.00 1.25
2 25.00 30.00 6.00 25.00 30.21 6.01 28.22 30.00 0.00
3 15.00 17.00 10.00 15.00 17.06 10.00 15.87 17.00 8.25
4 5.00 17.00 13.00 4.99 17.01 13.00 410 17.00 12.00
5 5.00 8.00 25.00 5.00 7.8424.99 1.87 8.00 29.25
6 20.00 8.00 15.00 20.01 7.96 15.00 20.42 8.00 16.75
7 10.00 5.00 13.00 10.01 4.96 13.00 9.36 5.00 15.00
8 5.00 4.00 8.00 5.00 3.97 8.00 4.48 4.00 9.00
9 5.00 1.00 5.00 5.00 0.97 5.00 4.87 1.00 6.00
10 5.00 0.00 2.00 5.01 0.00 2.00 5.32 0.00 2.50
A B C
1 2 3 1 2 3 1 2 3
1 5.00 10.00 3.00 4.68 10.00 2.96 5.78 10.08 1.22
2 25.00 30.00 6.00 24.68 30.'00 5.86 30.19 30.31 0.00
3 15.00 17.00 10.00 14.87 17.00 9.96 16.40 17.09 8.22
4 5.00 17.00 13.00 4.23 17.00 12.98 3.54 17.083 11.97
5 5.00 8.00 25.00 4.81 8.0025.10 0.00 7.76 29.28
6 20.00 8.00 15.00 20.77 8.0015.04 20.67 7.983 16.77
7 10.00 5.00 13.00 10.32 5.00 13.05 8.95 4.90 15.02
8 5.00 4.00 8.00 5.06 4.00 8.02 4.16 3.95 9.01
9 5.00 1.00 5.00 5.26 1.00 5.02 4.79 0.95 6.01
10 5.00 0.00 2.00 5.32 0.00 2.01 5.52 0.00 2.51
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Figure 3.4. A ternary diagram of ten data points based on the contrived 10-dimensional
compositional dataset of exact rank 3, originally due to Imbrie (1963). Since
X = I1b1 + 12b2 + 13b3, the position of the point X in a 3-space may be
defined by the coordinates (I1,15,13). But ly + I + I3 =1 and
l4.l5,l3 20, so the points lie in a plane equilateral triangle whose vertices are

points 1, 2 and 3.

Samples 5, 7 and 10 were maintained as initial extremes but the procedure was
re-executed with the matrix of error vector coefficients defined by equation (3.49).
Again, the mean squared error (equation (3.50)) reduced monotonically, but this time it
reached zero exactly (F = 0), after 11 cycles. Hence, no further adjustments were
possible. The estimated endmember compositions for this solution are set out on Table
3.3, in the lower table, under group 'B', and may be compared with those for samples
1, 2 and 3 under group 'A’. This solution is a set of true extremes. The second
construct is identical to sample 2 but in the other two, the maximum (or minimum) for
each variable, if it occurs, has been slightly increased (or decreased). So for example,
Variable 1 takes the minimum value 3.00 in sample 3 and 2.96 in construct 3. Variable
5 takes the maximum value 25.00 in sample 3 and 25.10 in construct 3. Geochemically,
this would have to be pronounced a satisfactory solution because the endmember

estimates are true extremes which are proximate to particular samples in the dataset.

Returning to Table 3.1, the samples 4, 6 and 9 appear to be possible initial

endmembers. A glance at Figure 3.1 suggests quite the opposite. Sample 4 is exactly
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halfway between samples 1 and 2, on the side of the triangle. Nevertheless such
graphical aids are not always available. The algorithm was executed with these trial
extremes, first by employing the error vector coefficient defined by equation (3.48) and

then by employing definition (3.49).

The solution to the first (definition (3.48)) was another set of true extremes, that
is, the mean squared error (equation (3.50)) dropped to zero exactly, halting further
adjustments. These extremes are set out on Table 3.3, in the upper table, under group
'C". Once again construct 2 is identical to sample 2, variable maximum values on the

other two constructs are driven up, and minima are driven down.

The second application (definition (3.49)), behaved in a fashion which had been
observed before. The mean squared error fell monotonically, reaching a minimum
(6.9x1077) at the 23rd cycle, then it appeared to diverge quite sharply. The estimated
endmember compositions at that stage are set out on Table 3.3, in the lower table, under
group 'C'. They are the most different from samples 1, 2 and 3 of the four sets of
solutions, but not significantly so. That is, the patterns of variable associations within
the constructs and the major and minor sources of each of the variables, is almost

perfectly preserved.

For the four differing iterations involving the two types of error vector
coefficients and two distinct sets of initial vertices, each error vector coefficient secured

one exact solution by converging, and one estimated solution before diverging.

A monotonic increase in the mean squared error can be caused either by
increasing numbers of points becoming external to the current polytope at each cycle or,
and probably simultaneously, the magnitudes of individual error vectors becoming
larger. This suggests that the trial vertices are not being moved outwards. With the

matrix of error vector coefficients defined by equation (3.49), this may result from some
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of the coefficients being negative, or of course, the non-negativity constraint preventing
outwardly adjusted vertices from lying outside the positive orthant. The mean error
vector coefficients defined by equation (3.48) are necessarily non-negative, and must
result in an outward displacement of each vertex unless stopped by a coordinate

hyperplane.

Clearly there are a number of modifications to the algorithm that could be
examined. In order of increasing demands on machine time, three approaches are: (1) It
would be desirable to find if there is a best direction to move when a vertex is placed in a
coordinate hyperplane, as happened in this illustration. That is, a direction which would
not only cause a continuation of the reduction in the mean squared error, but a greatest
reduction. (2) The mean error vector coefficient (equation (3.48)) tends to absorb the
magnitudes and directions of the major errors which could, perhaps, be picked off one at
a time. (3) The only value that the mean squared error can converge to with the existing
procedure, is zero. If the algorithm searched the neighbourhoods of the current trial
extremes for those directions which optimized the reduction in the mean squared error,
then convergence of this quantity to non-zero values would become a possibility. The
estimates derived by such a process would be the best near extremes for the given initial

set.

However, the chief virtue of coefficients (3.48) and (3.49), is that they are
relatively readily computed. A satisfactory analysis hin ges largely on the selection of
the initial extremes, and that depends on the configuration of the data. If there had been
a much larger number of samples in this illustration, then provided the data points were
relatively uniformly distributed inside the triangle of Figure 3.1, samples 4, 6 and 9
would never have been selected, and possibly even better choices than samples 1, 2 and
3 would have been available. Alternatively, any number of points in a region bounded
by a circle would contain no information on the positions of the true vertices. In the

general case, the most satisfactory configuration for the data points of (nxp) X'is a
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convex polytope which, it must be assumed, is similar to (and inside) the true polytope.
Then, the possible divergence of procedures based on either definition (3.48) or (3.49)
is not a serious problem in practice, provided the mean squared error (3.50) decreases
monotonically from the initial set of vertices. The polytope which results in the
minimum mean squared error should, like the first solution above, have been achieved

by incremental steps into a nearly true extreme conformation.

3.5 STATISTICAL ALGORITHMS

The procedure for constructing a convex representation (3.5) is broken down
into a series of tasks which are allocated to specific computer programs. By describing
these programs in the order in which they are executed, it is intended to illustrate in this
section how the relevant results of the preceding sections are linked together to form a

step by step approach to a particular solution of the form (3.5).

All programs have been written in either FORTRAN 77 or SAS 5.16 (SAS
Institute Inc. (1985)) and, at default input array sizes (800x40), will run under CMS on
an IBM 4381 with 4Mb of core storeage. Larger arrays are presently limited only by a
16Mb maximum on core for this machine. All FORTRAN programs are set up to take
task specifications interactively but, due to the large array sizes, are programmed to be
sent automatically to the batch machine. The source code for SVD FORTRAN (in two
parts) and LSQSEEK FORTRAN (also in two parts) which are described below, appear

in the Appendix.

It should not need mentioning that scanning the raw data as well as producing
basic summary statistics, before launching into a mixture analysis, can reveal assorted
anomalies like missing values, typographical errors and so forth, which must be attended

to. Sometimes a decision must be made whether or not to exclude from the analysis a
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variable which appears to be almost dichotomous. For example, a trace element may
take mostly zero values and perhaps one or two other values. The presence of such
variables, which can not usually be modelled by a continuous mixing process, will

simply degrade the overall analysis.

SETUP SAS

This program reads the raw data. It keeps the required variable list and drops
samples which have missing values or otherwise belong to an exclusion list. If not
already in the form of compositions, the retained variable list is usually transformed to
sum to 100% by the formation of a subcomposition or partial composition for each
sample. All measurements which are initially in ppm are divided by 10000 before this
transformation is made. The hyperplane so-defined is a permanent reference space in the
positive orthant for the all the subsequent algorithms. That is, all estimates or
transformed datapoints are ultimately projected onto, or transformed back into this
hyperplane. The final form of the required (nxp) data matrix is written to disk as raw
data, a typical file-id would be CONSTSUM DATA, for input into the following

programs.

SVD FORTRAN

The subroutines in this program include: SCALE which, according to directions
from the console, divides each input variable by its maximum, forms fractional ranges or
leaves the data unchanged; UNIT which only on request projects each datapoint onto the
unit hypersphere (as for a Q-mode factor analysis), but otherwise leaves the data
unchanged; CONSLQ will project any estimate with a negative component onto the
nearest coordinate hyperplane. Algebraically, the algorithm is a constrained least
squares. It is not necessary for the rowsums of the input raw data to be constant. But,
if the rowsums are 100%, the main algorithm of this program restores this sum to the

rows of the estimated mixture matrix.
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The program reads CONSTSUM DATA, and following the execution of
subroutines SCALE and UNIT, a partial singular value decomposition is performed on
the transformed data. The number of dimensions (eigenvectors) sought initially is
usually set at 10 or p (the number of variables), whichever is the smaller. For the first
execution, the program will on request output only the maximum and minimum for each

variable and the largest 10 (or p) eigenvalues.

If the number of endmembers (eigenvectors) k together with full output are
specified, the program will write to disk the files: LOADINGS DATA consisting of the
(nxk) components of the n samples on the k eigenvectors which span space S€ (not the
matrix L); ESTIMATE DATA which is the (nxp) matrix X' in space S; EIGENVEC
DATA which contains the first k eigenvectors in the space S¢ and finally SVD
LISTING which contains all the test statistics such as the eigenvalues, their relative
magnitudes and cumulative sums, the angles between each observed vector in S€ and its

approximation in S€, and the mean angular error.

It has been found that gross angular deviations for individual samples often arise
from errors in the data. A possible cleanup of the data may take place at this stage

resulting in re-executions of SETUP and SVD.

RSQUARE SAS

In an exact representation (E = 0 in equation (3.1)), the n ordered pairs of
observed and estimated values for each variable are the coordinates of n points on a
straight line through the origin with slope 1. Clearly, a necessary condition for an exact
solution is that the coefficients of determination (r2) for all p sets of ordered pairs be
equal to 1. The success of any solution depends on the reliable accounting for the values
of each of the variables, otherwise the validity of the derived mixing process could be
cast into doubt. So, although the test statistics produced by SVD may appear

satisfactory for some value of k, it is necessary to check the p values for 12 (as above)
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before fixing k and hence the file ESTIMATE DATA. (It may also be necessary to
examine the residuals, an option which is examined in Chapter 5). A table of the p
values of r2 for k=2,3,...., may sometimes provide advance information on the
structures of the endmembers, and indicate which variables are not accounted for by the

estimated mixing process (see Chapter 5).

Program RSQUARE SAS reads files CONSTSUM DATA and ESTIMATE

DATA, performs lineprinter plots if required and computes the p values for r2.

LOADINGS SAS

When SVD has constructed both files ESTIMATE DATA and LOADINGS
DATA for some specified k, LOADINGS SAS can read LOADINGS DATA and plot
pairs of variables whose values are the coordinates of the orthogonal projections of the
data into the k-dimensional subspace of S¢ spanned by the first k eigenvectors. This
program has been used to examine the locations with respect to the estimated data points,
of derived endmembers which had been appended to ESTIMATE DATA. It also
provides an immediate visual appraisal of the soundness of choosing the special values 2
or 3 for k. If the plotted points are collinear, then k = 2. If one set of plotted points is

collinear and the remainder are triangular, then k = 3.

CORR SAS

Very high correlations between variables are evidence of the existence of
invariant linear associations. Such associations in turn arise from the existence of
endmembers which contain the extreme concentrations of these same variables. This
program will read either CONSTSUM DATA or ESTIMATE DATA and produce the
product moment correlation matrix for all the variables. Either correlation matrix may be

useful for confirming later estimates of the endmembers.

EXTREMES FORTRAN
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This program transforms the variables of any input raw data matrix A into
fractional ranges. That is, the transformed element a°ij = (aij - minj)/(maxj - minj). It
reads bandwidth { from the console and then writes out all observation vectors for which
any component lies in the intervals [0,(] and [1-{,1]. It therefore provides a rapid dump

of the extreme observations that it finds in A, and is usually executed twice, one run

reading LOADINGS DATA, the other reading ESTIMATE DATA.

VARSORT SAS

An alternative method for identifying extreme observations is to sort on the
magnitudes of each variable taken one at a time, and to list the m largest and m least
observations. VARSORT SAS will read ESTIMATE DATA or LOADINGS DATA and
sort each of the respective variable lists. A table can be prepared showing which sample
numbers have the largest and least values on each of the variables. Ultimately, k extreme

samples are to be chosen as initial endmembers.

NEIGHOBJ FORTRAN

A nearest and furthest neighbours table also identifies extreme samples. Outliers
should have been detected by the table of angular deviations output by SVD, however
any sample whose nearest neighbour is remote and which is also consistently furthest
from most the others, would be a biassed choice for an initial extreme sample. Ideally, in
a k-dimensional estimate space, k families of samples will be identified as k distinct
groups of nearest and furthest neighbours. Executing this program to identify the initial
extremes, one from each group, is the straightforward alternative to the algorithm
proposed by Full, Ehrlich and Bezdek (1981). It is important of course, that near
neighbours not be mistaken for distinct extremes. Another important application for the
nearest neighbours table is for Q-mode clustering. This particular algorithm has been
employed for this purpose by Glasby, Hunt and Renner (1985), Churchman, Hunt,
Glasby, Renner and Griffiths (1988), Glasby, Stoffers, Walter, Davis and Renner
(1988) and Kunzendorf, Gwozdz, Glasby, Stoffers and Renner (1988).
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NEIGHOBJ FORTRAN includes the subroutines SCALE and UNIT described
earlier. It reads ESTIMATE DATA and always executes UNIT. The datapoints,
whether transformed by SCALE or not, are projected onto the surface of the unit
hypersphere so that their proximities (similarities) to each other are given by the inner
products of their position vectors. This program optionally writes out the similarity

matrix to disk for processing by other clustering algorithms.

LSQSEEK FORTRAN

The principal objective of this program is to find, by the iterative reduction of
the mean squared error (3.50), k extreme points B,B,,....B,, such that every row
vector of X' can be expressed as a convex combination of their position vectors
b;,b,.....b,, subject always to the non-negativity constraints. The program contains all
the subroutines described above. It is initialized by reading the row numbers of the
initial near extremes of X' from the console. At the end of any cycle, the current matrix
LY is that computed by orthogonal projections of the samples into S€and corrected for
negative loadings on the current extreme vectors in S¢. The current extreme vectors
(after the initial set) are those which were adjusted to remove errors due to redefining
negative loadings to zero in the previous L. There are two methods available for
endmember adjustment. Both employ the error vectors created by removing the negative
loadings from L. The first moves non-extreme points outwards from the convex
polytope by computing the adjustments defined in equations (3.47) and (3.48), the
second employs the least squares approach, definition (3.49), to fit new extreme points
to the corrected matrix LY The method selected is read from the console as is the
maximium number of iteration cycles permitted. Output from the program includes the
mean squared error at each cycle, the compositions of the current endmembers (at end of
the final cycle), the loadings for each sample on the current endmembers, individual

angular errors and the mean angular error for the column transformed data.
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When none of its components is negative, no corrections are made to the matrix
L, then there are no errors (F = 0) and consequently no adjustments to the extreme
points (AB =0). So, from such a stage, the iterative algorithm would endlessly
reproduce the same estimates B and L until stopped. This may happen with the initial
choice of extreme points or at some later cycle. In most cases, it is more practical to
intervene when the rate of reduction of the mean squared error slows to the point where
excessive machine time contributes little improvement to it. It has been found then that
the absolute values of the components of AB are negligible so that the the compositions

of the endmembers differ trivially from cycle to cycle.

To prevent underflow, errors f;; of absolute magnitude less than 1020 are
redefined to zero. Thus, a squared error is greater than or equal to 104% or zero.

(Underflow occurs on the IBM4381 at about 5x10°79).

LSQMODEL FORTRAN

A problem sometimes arises where it is required to resolve one or more samples
into a set of given endmembers. If the samples and the endmembers are concatenated
into one file, LSQMODEL will read that file, read the row numbers of the endmembers
from the console, project the samples orthogonally into the space spanned by the
endmembers (transformed if necessary), scale the regression coefficients to sum to 1 for

output, and compute the angles between observed and approximated samples.

Unlike LSQSEEK above, the program makes no corrections to the loadings, so
it will be evident at once if one or more of the endmembers are not extreme. It will also
be evident from the magnitude of the angle between them whether or not a sample is too
remote from the least squares approximation to it, to be regarded as a mixture of the
given endmembers. LSQMODEL can be used to check that the rank of a matrix like
ESTIMATE data is exactly k. There should be no angular errors whatever rows are

chosen as endmembers. It can also be used to monitor the final output from LSQSEEK.



151

If the constructed endmembers are appended to ESTIMATE DATA, the new file can be
read by LSQMODEL and the loadings of the old file computed against the endmembers
in the new. A judgement might then be made that the uncorrected loadings output from

LSQMODEL were or were not sufficiently similar to those output by LSQSEEK.
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CHAPTER 4

APPLICATIONS

SUMMARY

In this chapter, mixture analyses employing the techniques described in the last
chapter are conducted on three compositional datasets. The first is a reanalysis of a small
‘well-behaved’ study of ferrmanganese nodules which confirms results that had already
been published. The other two datasets have not previously been subjected to a mixture
analysis.

An illustration is also provided in the form of a comment of the application of
some of the procedures described in the last chapter to assess a putative set of
endmembers.
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4.1 FERROMANGANESE NODULES FROM MANOP site H

The raw data for this first application appeared in Dymond er al. (1984,
Table 1). The paper itself was a report of a study which was part of the United States
National Science Foundation supported Manganese Nodule Program (MANOP). Site H
was a region of the eastern equatorial Pacific within 6°N to 7°'N, and 92°'W to 93°'W.
Ferromanganese nodules and crusts from site H had been analysed for the p = 14
elements Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn and Ba in each of 16
nodule tops, 16 nodule bottoms, 17 whole nodules and 3 crusts, thus n = 52. Results
obtained by Dymond ez al. (1984) are included in this section in order to compare their

linear programming based method with the proposed least squares approach.

4.1.1 A Linear Programming Based Analysis

Dymond et al. (1984) proposed three accretionary processes (and hence 3
endmembers) to account for the data. These were identified as: Hydrogenous
precipitation, meaning the direct precipitation or accumulation of colloidal metal oxides
from seawater; Oxic diagenesis, involving reactions in oxidized sediments that add
transition metals to nodules; Suboxic diagenesis, where the reduction of manganese
from the (IV) to the (II) valence in the sediments and the oxidation to the (IV) valence
result in nodule accretion. They based their description of subsequent nodule chemical
compositions upon the model that nodule compositions, both mineralogical and

chemical, respond consistently to the seafloor environment.

Accordingly, they initialized an iterative search for a 3 endmember basis by
assuming that 3 extreme samples in the dataset were close to pure endmembers. Their
linear programming method in which a linear reformulation of sum (2.20) defines both

the constraint equations and objective function as described in Section 2.3.1, was
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employed to partition each of the composition vectors. From the notes included in an
appendix, it would seem that endmember adjustments were determined by applying

G = (LTL)'L" to the matrix E of residuals (see Dymond e al. (1984, Appendix 1)).

Endmember compositions obtained after 3 iteration cycles (Dymond et al.
(1984, Table 6)) are reproduced here, in parentheses, in Table 1. The coefficients of
determination (proportions of explained variance r2) between the observed and their
estimated values for each element (after Miesch, 1976b) are also reproduced in

parentheses in Table 2 after Dymond er al. (1984, Table 6).

4.1.2 A Least Squares Based Analysis

A 'fill-up' value was constructed (equation (3.3)) for all samples, creating X
(52 x 15) of partial compositions which was then column transformed into X¢ according
to equation (3.51). The singular value decomposition of X¢ showed that the relative
contributions of the first three (largest) eigenvalues to the sum of squares (equation
(3.38)) were 94.39%, 2.76%, 2.03%, totalling 99.18% (see quotient (3.39)), the 4th
largest contribution being 0.30%. A subspace of 3 dimensions was therefore identified
as the transformed estimate space S¢, and the mean angular error (equation (3.44)) for
angles between the rows of X¢ and its approximation X' in S¢ was 4.9° (mean

similarity 0.9963).

Three extreme vectors belonging to X'® were used to initialize an iterative search
for B® based on least squares methods for determining both L with correction (3.30),
and AB€ as in equations (3.46) and (3.49). However, the elements of the matrix of
error vector coefficients G were defined by g, = ((LTL)'ILT)hi only for [, > 0.
Otherwise g;; = 0 thus preventing an 'inward' component to the adjustment Ab®, due to

the product of a negative loading with the i-th error f°.. Iterations were stopped after 2
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cycles when the mean squared error (3.50) had been reduced to 4.7 x 1075,

Endmember compositions B = B°C! appear without parentheses in Table 4.1.
Coefficients of determination (proportions of explained variance) between X and

X'=(X"*)C1 are set out, also without parentheses, in Table 4.2.

4.1.3 Comparisons

Itis evident from Table 4.1 that corresponding pairs of endmembers constructed
by algorithms which incorporated partitioning by least squares and linear programming
respectively are not fundamentally geochemically distinct. The mean angular errors
associated with each algorithm were, for untransformed data, both of the order of 1.1°.
It is difficult to assess the relative positions of the 2 sets of endmembers since one of
them is maintained in estimate space S and extreme for dataset X'. Nevertheless, there
are 10 extreme values of variables constructed by the linear programming approach
which are not extreme for the same variables in either the raw data X or the estimated

mixtures X'

Comparing the coefficients of determination between estimated and observed
values of the elements in Table 4.2, it will be seen that the least squares based analysis
created generally closer estimates than the linear programming method, most notably in
the case of Mn. It created inferior estimates for Na, which with K and Zn were the least
well accounted for by either analysis. However, the database was small and particularly
tractable, so it is therefore reassurring that overall the results obtained by the two

methods were very similar.

Plots of the least squares estimates of each of the variables against their

observed values appear in Figure 4.1 (see for example, Renner (1982). See also
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Dymond et al. (1984, Fig.8) for a comparison of these results with theirs). The plots
permit a graphical assessment of the goodness of fit, and in a perfect representation, each
set of points would lie on a straight line through the origin with slope one. A detail that
the plots show quite clearly is a group of three points which appear as distinct outliers,
located together but remote from the rest, for the plots of Na, Ca, Ti, Mn, Fe, Co, and
Zn. Such configurations often inflate the coefficient of determination because of the
apparent linearity between the centres of disjoint clusters. In each plot, these outlying

points represent the three crusts P11-2, P11-4, P1 1-5, Dymond er al. (1984, Table 1)).

Accordingly, these crusts were removed from the database, and the remaining
49 nodule compositions were transformed as for equation (3.51). The singular value
decomposition of the resulting 49 x 15 array revealed that a remarkable 99.05% of sum
(3.38) was attributable to the first two eigenvalues. A least squares based analysis,
orthogonally projecting the data into the 2-space spanned by the corresponding
eigenvectors, determined two endmembers rather close respectively to the compositions
of nodule top V48-1 and nodule bottom V52-1 (Dymond er al. (1984, Table 1)). The
mean angular error for the two endmember representation of the transformed data was
5.49° (mean similarity 0.9954), and the mean squared error (3.50) after one iteration
was 1.5 x 107, The subsequent coefficients of determination were depressed further for
Na, K and Zn (which were least well accounted for with 3 endmembers) but lay in the
ranges 0.92 - 0.94 for Al, Si, Mn, Fe, Co and Cu, and the range 0.69 - 0.89 for Mg,
Ca, Ti, Ni and Ba. In other words, the 49 nodule compositions were accounted for,
almost as well with 2 endmembers, as the same data plus 3 crusts were with 3

endmembers.

These latter results suggest that a greater mathematical parsimony is possible in
interpreting the data than was implied by the initial geochemical assumption of three
accretionary processes. This suggestion would seem to be confirmed by the very low

loadings associated with the Hydrogenous endmember in Dymond et al. (1984, Table 7)
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for all but the 3 crusts.

It is to be inferred from the paper by Dymond er al. (1984) that the three
proposed accretionary processes would account for different compositions measured on
a nodule top, its bottom, and the whole nodule. An inference which was confirmed in
part by the determination of an oxic endmember which was abundant amon g the tops and
a suboxic endmember abundant among the bottoms. The whole nodules, on the other
hand, were generally mixtures of these two. Statistically, it would have been an error to
treat the nodule data as a compositional multivariate sample of order (49x15) as has been
done here, without declaring (testable) assumptions concerning the independence of the
observation vectors. There were in fact only 17 sampling units (nodules) present. One
was too small for measurable top and bottom compositions so that two of these vectors
were missing. It must be assumed that the 3 sets of composition vectors per nodule
were related, though possibly perturbed from each other by the systematic processess
described by Dymond er al. (1984). In any event, the effectively small nature of the
database made for a straightforward mixture analysis by either process and hence to the

very similar results.
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Table 4.1

Endmember Compositions (%) Iteratively Adjusted to Fit Partitioning

by Least Squares and by Linear Programming (in Parentheses) for

MANOP data
Element Hydrogenous Oxic Suboxic
Na 1.75 (1.04) 2.53 (1.61) 4.04 (3.28)
Mg 1.12 (1.04) 2.34 (2.30) 1.36 (1.38)
Al 1.19 (1.18) 2.61 (2.71) 0.59 (0.75)
Si 5.14 (5.22) 5.73 (5.90) 1.25 (1.63)
K 0.51 (0.49) 0.84 (0.82) 0.60 (0.62)
Ca 2.55 (2.60) 1.55 (1.52) 1.20 (1.25)
Ti 0.51 (0.53) 0.17 (0.17) 0.0245 (0.0365)
Mn 20.60 (22.20) 32.28  (31.85) 46.86  (48.00)
Fe 18.23  (19.00) 4.92 (4.45) 0.10 (0.49)
Co 0.13 (0.13) 0.03 (0.028) 0.0012 (0.0035)
Ni 0.53 (0.55) 0.98 (1.01) 0.38 (0.44)
Cu 0.06 (0.05) 0.59 (0.62) 0.079  (0.115)
Zn 0.064 (0.075) 0.25 (0.25) 0.21 (0.22)
Ba 0.141  (0.148) 0.43 (0.44) 0.17 (0.20)




Table 4.2

Coefficients of Determination Between Estimated and Observed Elements
Obtained from Partitioning by Least Squares

and by Linear Programming (in Parentheses)

for MANOP data

Element Coefficient

of Determination

(% explained variance)

Na 55.3
Mg 84.5
Al 95.0
Si 93.0
K 55.8
Ca 95.2
Ti 98.1
Mn 96.8
Fe 98.9
Co 99.1
Ni 80.3
Cu 97.6
Zn 47.7
Ba 76.9

(64.0)
(84.1)
(94.8)
(91.8)
(54.7)
(91.1)
(97.7)
(86.2)
(99.5)
(99.6)
(81.9)
(97.3)
(47.8)
(75.86)
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Figure 4.1 Least squares estimates vs. observed compositions for MANOP data.
The estimates were obtained by projecting the raw data orthogonally into the

3-dimensional estimate space, then rescaling to form compositions.
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Figure 4.1. (continued)
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Figure 4.1. (continued)
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4.2  MID-PACIFIC COBALT-RICH MANGANESE CRUSTS

The raw data for this second application came from the Mid-Pacific subset
(170°E to 150°W, 18°S to 32°N) of cobalt-rich manganese crust data of the United
States Geological Survey world ocean-ferromanganese-crust database (Lane er al.,

1986).

Measurements on p = 22 oxides SiO,, TiO,, MnO,, Fe,0,, Al,03, Co;0,,
NiO, CuO, Ca0, MgO, Na,0, K,0, CO,, P,05 and H, O, and minor elements As, Ce,
Mo, Pb, Sr, V and Zn featured in the analysis. Athough in many cases only the lower
limits of detectable concentrations had been recorded for the minor elements. Sixteen
samples were found to have exceptionally large individual angular deviations from their
corresponding orthogonal projections in an estimate space of 10 dimensions, following
an exploratory singular value decomposition. Of these, 3 were heavily contaminated
with serpentinite or other material and were excluded, 4 had MnO,/Fe, 0, ratios greater
than 7.5 and were also excluded on the grounds of having a significant hydrothermal
component. The remainder were found either to have errors which were corrected, or to
have genuine outliers which indicated faulty measurements, and were also excluded.

Ultimately, the number of samples available for analysis totalled n = 275.

This data was scaled to sum to 100% creating X (275 x 22) which was then
column transformed into X¢ according to equation (3.51). A singular value
decomposition of X¢ determined that the relative magnitudes of the first 4 eigenvalues
were 91.26%, 3.59%, 1.41% and 0.92%, which sum to 97.18% (see equations (3.38)
and 3.39)). A rather parsimonious 4 endmember representation was conjectured to
account for the data because the remaining eigenvalues at 0.61% or less characterized a
rapidly diminishing variation along individual eigenvectors. The total of 15 out of 22
coefficients of determination (between the observed and estimated variables) which

exceeded 0.5 (Table 4.3) for k = 4 increased only slowly by progressing to 5, 6 then 7
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endmembers. (A fuller discussion of this issue appears in Section 5.2 concerning

endmember hypothesis testing).

Four extreme vectors belonging to X'® were used to initialize the iterative search
for B, employing the least squares solution for L and the weighted mean error vector
coefficient (equations (3.46) and (3.48)) to adjust current endmembers. Iterations were

stopped after 10 cycles when the mean squared error (3.50) had dropped to 6.9 x 104,

The 4 resultant endmember compositions constructed by this method are set out
in Table 4.3. Maximum values for each element are displayed in boldface. These

endmembers can be identified with each of

(i)  asilicate (clay) phase, rich in Si, Al, Mg, Na, K, retaining manganese
oxides;

(i)  a cobalt-rich manganese oxide phase, with a high ratio Mn/Fe = 3.77 and
rich in Co,Ni, but low in Cu;

(iii) a biogenic phosphate phase, highest in CaO, CO,, P,0O5 and Sr all with
biogenous associations;

(iv) a hydrogenous phase with the ratio Mn/Fe = (.85, high in Fe, As, Ce and

Pb, and which are associated with the iron oxide phase.

The coefficients of determination (r?) between the estimated values for each
variable in the 4 endmember representation and their corresponding observed values are

also set out in Table 4.3.

The iterative construction of a clay endmember with Si0O, (r? =0.92) and
Al1,0, (12 =0.86), and a biogenic endmember with CaO (r? = 0.96), CO,
(r2=0.72), P,05(r? =0.90) and Sr (r2 = 0.77), is extremely reassuring but not

extremely interesting. Sources such as these, would be expected to contribute
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components to marine manganese deposits over extensive regions of the ocean floor.

Turning to the other two endmembers, 11 out of 22 of the variables, consisting
of the oxides MnOz, Fe,0;, Co;0,, NiO and H,O0 and the elements As, Ce, Mo, Pb, V
and Zn, were found to be most highly concentrated on either the cobalt-rich or the
hydrogenous endmembers (Table 4.3). Their coefficients of determination (Table 4.3)
range from 0.10 (H,0) to 0.96 (MnO,). The goodness of fit for each of these 11
variables can be assessed from Figure 4.2 which displays plots of the estimated against
their observed values. There are 275 points on each plot which, ideally, would lie on a
line through the origin with slope 1. Evidently, the plot for As (r2 = 0.64) is fair, and
those for Ce (r2=0.48) and Zn (1% = 0.37) are poor. It would have to be concluded
that H,O (r? = 0.10) had not been fitted at all. Adopting the rule that a value of
12 < 0.5 indicates an inadequate estimate, these latter 3 elements are not explained by

this 4-endmember mixing process. Otherwise, the remaining 7 plots appear satisfactory.
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Table 4.3

Endmember Compositions (%) lteratively Adjusted to Fit Partitioning
by Least Squares and Coefficients of Determination (r2) Between
Estimated and Observed Values for Mid-Pacific
Cobalt-Rich Manganese Crust Data

Element Silicate Cobalt-rich Biogenic Hydrogenous r2
SiO, 32.83 0.00 1.78 9.50 0.92
Ti02 2.41 1.36 0.91 2.31 0.44
MnO, 14.67 60.46 30.64 33.40 0.96
Feo,0q 16.88 14.48 11.41 35.10 0.83
AI203 10.54 0.00 0.90 1.07 0.86
Cog0, 0.45 2.40 0.29 0.67 0.76
NiO 0.45 1.23 0.68 0.17 0.83
Qo 0.16 0.07 0.12 0.10 0.06
Ca0 3.83 3.47 25.12 2.53 0.96
MgO 3.79 2.50 1.56 1.29 0.25
Na,O 2.97 2.92 1.89 2H7T 0.22
K;0 2.09 0.78 0.44 0.36 0.62
002 0.64 0.39 3.02 0.30 0.72
P205 0.64 0.48 13.93 0.60 0.90
H0 7.52 8.69 6.61 9.62 0.10
As 0.000 0.024 0.018 0.036 0.64
Ce 0.004 0.108 0.114 0.182 0.48
Mo 0.000 0.093 0.075 0.045 0.79

0.000 0.2083 0.150 0.244 0.71
Sr 0.032 0.168 0.203 0.186 0.77
Vv 0.019 0.068 0.070 0.080 0.69
Zn 0.069 0.102 0.078 0.050 0.37
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Figure 4.2 Least squares estimates vs. observed compositions for Mid-Pacific data.
The estimates were obtained by projecting the raw data orthogonally into the

3-dimensional estimate space, then rescaling to form compositions.
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Figure 4.2. (continued)
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4.3 BEDIASITE SOURCE MATERIALS

Love and Woronow (1988) have outlined a procedure to determine the minimum
number of endmembers in an endmember mixture, and estimate the compositions of
those endmembers. Their techniques include an examination of the hypothesis of
complete subcompositional independence and, if that is rejected, tests on the correlation
matrices of mixtures of proposed endmembers to determine which endmembers, if any,
contribute to the observed data. The transformation of the raw data to logratios and the
subsequent application of statistical tests based on the multivariate normal distribution
(see Aitchison (1986)) are innovations in the study of the problem of resolving
compositional datasets into mixtures of latent endmembers. Reporting on the application
of their procedure to an array of 31 bediasite compositions, Love and Woronow (1988)
concluded that a mixture of just two endmembers 'does satisfy the data', and they
provided inner and outer endmember compositions for generating a two-endmember

representation.

The purpose of this comment is to demonstrate that such a representation is not
compatible with the relative positions of the compositional data-points in 9-space, and

consequently does not create satisfactory approximations to the bediasite compositions.

1) If just two endmembers do satisfy the data, then within a tolerable error, the 31
bediasite compositions (Love and Woronow (1988), Table 4.4) are the position vectors
of 31 collinear points in 9-space. Further, the endmembers will be the extreme points of
that collinear set. This is a geometrical consequence of the conventional endmember
'mixing model' (see Figure 3.1). Such collinearity is invariant under transformations to
subcompositions (see Aitchison (1986)) of rank greater than 2 (see Section 3.1.1), as
well as column transformations such as changes of scale (see Section 3.4.4). Thus,
given the diverse magnitudes of the ranges of the 9 major oxides in the bediasite data, a

tolerable error would have to imply evident collinearity even following the column
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transformation equivalent to the division of each major oxide by its observed maximum

(Miesch (1976b, 1980)).

Accordingly in this analysis, the 31 bediasite composition vectors were first
rescaled to sum to 100%, thus locating the 31 datapoints on an 8-dimensional hyperplane
in 9-space. Then the 4 inner and outer endmember compositions (Love and Woronow
(1988)) were appended, and finally this enlarged array was column transformed, each
major oxide being divided by its maximum. The rows of the resultant (35x9) matrix X
are the position vectors with respect to the origin of the transformed datapoints, which

now lie on a second 8-dimensional hyperplane in 9-space.

It is an intuitively obvious result of algebraic geometry that the orthogonal
projection of a straight line onto any plane is another straight line, except if the former is
normal to that plane. So the 35 transformed datapoints representing the 31 bediasites
and the 2 pairs of inner and outer endmembers were projected onto each of two mutually

orthogonal planes as displayed in Figure 4.3.

Although any pair of non-parallel planes would have served, the chosen two
provide perspectives of the greatest spread of the datapoints from the origin. This is
because each of the planes is spanned respectively by two of the three 9-dimensional
eigenvectors associated with the 3 largest eigenvalues of the symmetric (9x9) matrix
XTX. (A discussion of the properties of this matrix, which is not the covariance matrix
of a principal components analysis, can be found in the treatments of the singular value

decomposition of rectangular matrices in Section 1.5, Section 2.2.1 and Section 3.4.1).

In Figures 4.3 the projections of points representing bediasites are square, those
representing the inner and outer endmembers are circular, joined respectively by straight

lines.
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Itis apparent from Figures 4.3 (a) and (b) that neither pair of endmembers are at
the extremities of an approximately linear set of points defined by the bediasites. Nor do

their inner and outer properties appear to have any geometrical meaning.

2) The conventional check on the on the validity of a derived endmember
representation is to tabulate the coefficients of determination between the estimated and
observed values of all the variables (after Miesch (1976b)). In fact, if a representation is
good, then, for any variable, the pairs of estimated and observed values determine points
which must lie close to a straight line through the origin, with slope one. It is sufficient
in this case to follow convention. Estimated composition vectors were formed first by
projecting the observed vectors orthogonally into the plane spanned by the two outer
endmember vectors, and then scaling the position vector of each projection to form a
mixture. That is, so that the coefficients of the two endmember vectors in the resultant
linear combination summed to one (see Section 3.2.1). Coefficients of determination
between the estimated and corresponding observed values of each of the variables, are

set out in Table 4.4. Five out of 9 of the coefficients are less than 0.5.

It is not possible on the basis of the uniformly low values of those coefficients

to conclude that the two-endmember representation accounts for the given data.

Table 4.4

Coefficients of Determination
Between Estimated and Observed Variables
in Woronow and Love's Two-Endmember

Representation of Bediasite Data

Si 0.43 Ti 0.71 Al 0.63
Fe 0.56 Mn 0.47 Mg 0.14
Ca 0.45 Na 0.43 K 0.76
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Figure 4.3. The orthogonal projections of 31 bediasite data points and 2 pairs of inner and
outer endmembers due to Woronow and Love (1988) onto each of two mutually

orthogonal planes. Endmember pairs are joined by straight lines.
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3) There is a deeper difficulty concerning the original (31x9) array X, of this
analysis. The singular value decomposition of the data, when column transformed as
above, nevertheless yields a largest eigenvalue which accounts for 97.30% of the total

for the 9 eigenvalues.

(These are the 9 non-zero eigenvalues of a symmetric matrix of the type XgXO defined
above, but not including the 4 inner and outer endmembers). Projecting the column
transformed datapoints onto the unit hypersphere as for a Q-mode factor analysis (see
Section 2.2.1) produces an almost identical result. Consequently even the column
transformed data must be quite densely clustered about the eigenvector associated with

the first eigenvalue.

Such a configuration also calls into question the procedure which resulted in the
initial rejection of the hypothesis of complete subcompositional independence (Love and

Woronow (1988)).

4.3.1 Further Comment

The preceding discussion illustrates the consequences of an inappropriate choice
of the estimate space S, in this case straight lines in the positive orthant defined by the
pair of estimated inner and outer endmembers. However, Woronow and Love (1988)
made more fundamental errors before they set out to estimate their endmember
compositions. In their abstract, Woronow and Love (ibid) asserted that 'the bediasites,
being random samples of endmember mixtures, afford opportunities to establish a
paradigm for endmember identification, determine the minimum number of
lithologic/geochemical endmembers contributing to the bediasite compositions, and
estimate the major-element chemistries of those endmembers'. Further on, in their
section on statistical methods, they cautioned that logratioed data must be tested for

multivariate normality, as the standard statistical procedures assume that underlying
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distribution of the data’. A little later they stated that in the bediasite study 'the logratioed

data passed the radius test for normality',

The problem of choosing random geological samples has already been discussed
in Section 3.1.3. In order to select random samples of 'endmember mixtures' as
Woronow and Love claimed to have done, they would have had to have known or at
least assumed the distribution of mixture coefficients on the sample space in order to
define the geological equivalent of a probability sample (of samples). If what they really
meant was that the selection process was based on a uniform probability distribution
over the known collection(s) of bediasites, then that would not define a random sample
of endmember mixtures at all. However, this is a general problem of geological data
collection which has no clear solution because of the nature of mixing processes,
particularly unknown mixing processes. It does not necessarily impair a mixture
analysis unless an unwitting but substantial design bias in favour of one or more

endmembers reduces the contributions of the remainder to the level of the errors.

What appears to be more difficult to understand is their assertion that the
logratioed' data should be multivariate normal. Woronow and Love (ibid) did not
define or even describe the model that they set out to test for. There is no mention for
example of logratioed errors or residuals (see Chapter 5), but rather, of the properties of
the covariance matrix of logratioed closed (constant sum) data. It can only be concluded
therefore that the logratioed data referred to were derived from the (31x9)
compositional data matrix X, But, by equation (3.20), these particular logratios
cannot follow a multivariate normal distribution unless the pij/uip are the components
of a multivariate normal distribution, or are constant for i = 1,2,...,31. Since Kiisa
composition vector all i, this latter condition would imply that g, =p, =. . .= Hiis
or that the data could be accounted for by one endmember. Confirmation of that
possibility exists in the very high proportion (97.30%) of the total sum of squares for the

column transformed data, achieved by the first eigenvalue.
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4.4 LAKE TE ANAU SEDIMENTS

Lake Te Anau is one of 11 large glacial lakes formed on the eastern flanks of the
Southern Alps of the South Island, New Zealand. With an area of 347 km?, it is the
largest lake in the South Island. It is also the 19th deepest in the world. The lake has
three fiord arms which extend Northwest and West to the Southern Alps (see Figure
4.4). Until the present, almost no information on sediment input or trace element content

of sediments existed for this lake.

In 1986, Operation Raleigh conducted a detailed sampling of sediments from
Lake Te Anau, representing the first extensive survey of the trace element geochemistry
of sediments within a single lake in New Zealand. In all, 108 locations were sampled

and n = 102 analyses were made available for this study.

The compositions of a set of endmembers were determined using the sequence
of procedures described in Section 3.4 and 3.5. The variable list for this analysis
contained the major element oxides Si0,, Al,0O4, CaO, MgO, Na,0, K, 0, TiO,, Fe,0,,
MnO, P,0s, LOI, and the minor elements V, Cr, Ba, Zn, Cu, Ni and Co, making
p = 18. Both CaCOj; and Corg (organic carbon) had been deleted from the list because
their measurements were already included in those for CaO and LOI (loss on ignition).
Since the list contained major element oxides and LOI (measured in percentages), and
minor elements (measured in ppm), the latter were converted to percentages and the
components of each sample corrected to sum to 100%. Prior to all singular value
decompositions, iterative least squares partitioning and adjustment of extreme vectors,
the observations on each variable had been divided by the maximium for that variable.
That is, the compositional data matrix was column transformed to acheive similar

weightings for each of the variables (see Section 3.4.4).
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It was found that the sum of the first 5 eigenvalues obtained from the singular
value decomposition of the column transformed data matrix accounted for 98.94% of the
total sum of squares (equation (3.38)). When the datapoints (rows) of this matrix were
orthogonally projected into the space spanned by the first 5 eigenvectors to determine the
estimated mixture datapoints, only two coefficients of determination (r?) between the
observed values of the variables and their estimates were less than 0.5. Thus more than
50% of the variation in each of the remaining 16 variables was explained by the
S-dimensional approximation. Accordingly, a 5-endmember representation was
constructed to account for the original compositional data. Five extreme vectors from the
estimated mixture matrix were used to initialize the iterative algorithm, using the mean
error vector coefficients (equations (3.46) and (3.48)), which was stopped when the the
mean squared error (equation (3.50)) had fallen monotonically to 2.8x107, The 5
endmember compositions and the coefficients of determination (r%) for each element that
were achieved by this representation are listed in Table 4.5. The maximum values for

each element of the table are displayed in bold face.

In addition, each sediment was partitioned into the components of a mixture of
the five endmembers. The proportional contribution of each endmember to the
composition of a sediment is a measure of the abundance of that endmember at the
location (sampling point) from which the sediment was taken. In Figure 4.4 a map of
the lake has been shaded to show the regions in which each endmember was found to be
the most abundant. Each region is defined by a collection of neighboring sampling
points for which a single endmember was dominant. However, if all endmember
concentrations for a sediment were found to be less than 30%, then the map was

unshaded in the vicinity of its sampling point.

All 5 endmembers were characterised by relatively high Si and Al levels, but a
single clay endmember was not isolated by the analysis. Diatoms which could be a

possible source of silica, are relatively abundant in the sediments, and their distribution
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is still being studied.

Descriptions of the five endmembers, identified by the Roman numerals I - V

respectively, are as follows:

I

I11.

High in Cr, Mg and Ni, negligible P, Ba and Cu. This element
assemblage indicates the presence of material derived from
ferromagnesian rocks (that is, basic plus ultrabasic rocks, greenstones).
Sediments dominant in endmember I were taken from The southern sector
in the vicinity of the Waiau River (Figure 4.4). This part of the lake is

surrounded by Pleistocene outwash gravels.

Highest in Si, Na and K, lowest in Ti, Fe and Zn, and negligible P, LOI,
Cu, Ni and Co. This element assemblage indicates the presence of
material derived from acidic rocks. Sediments dominant in endmember I
occur near the heads of the three fiords as well as one sample taken at the
northern head of the lake (Figure 4.4). The locations from which these
samples were taken are all surrounded by metamorphic rocks of the wet

Jacket and Bradshaw formations.

Highest in Ti, Fe, P, LOI, V, Ba, Zn ,Co and high in Ca. Lowest in Si,
Al and negligible Cr, Cu, Ni. This element assemblage indicates the
presence of organic carbon (LOI) plus titanomagnetite and igneous
apatite-bearing rocks. Only three samples were dominant in endmember
III. These were located at the head of the northern arm of the Middle
Fiord and at the head of North Fiord (Figure 4.4), both regions that are
surronded by metamorphic rocks of the wet Jacket and Bradshaw
formations. Accordingly, sediments that were dominant in endmember II

tended to be subdominant in endmember IIL
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IV. Highest Caand Mg, and negligible K, Mn and Ni. This assemblage may
reflect material rich in amphiboles. Sediments dominant in endmember IV
occur principally at the head of the lake (Figure 4.4) which is surrounded
by metamorphic rocks of the Bradshaw formation, Darran Diorite and
upper Eocene sandstones. Two samples dominant in this endmember
were taken from the South Fiord (Figure 4.4) virtually opposite an

intrusion of Darran Diorite.

V. Highest Al, Mn and Cu, high Fe and negligible Na and Cr. This
assemblage indicates the presence of minor amounts of adsorbed
transition metals (Mn, Zn, Cu, Ni and Co). Samples dominant in
endmember V were found in the three major deep basins of the lake

(Figure 4.4).

There were a number of sediments having no dominant endmembers, that is, all
mixture coefficients were less than 30%. These samples were found off the Eglinton
River, which is the shallow area between two major basins, and the Middle Fiord
(Figure 4.4) . These samples appear to be transitional between the samples from the

heads of the lake and those from the deep basins.

This mixture analysis has discriminated between the the sediments from near the
heads of the lake and those from the major deep basins. For samples taken from the
heads of the lake, the local geology appears to have determined the compositions of the
sediments, as might be expected. Samples high in endmembers II and III were formed in
those parts of the lake with the same surrounding geology, but these two endmembers
reflect different local sedimentation conditions. Endmember II accounts for lithogenous
sedimentation and endmember II1 accounts for organic sedimentation. The high organic
content of the sediments rich in endmember II1 (see LOI under III on Table 4.5) was

derived from decayed vegetation at the headwaters of the lake (Figure 4.4). Samples
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from the deep basins are high in endmember V and represent fine-grained composite
material with a significant carbon content but low sedimentation rate. Adsorption of

transition elements onto the fine-grained clay materials occured in these samples.

Imbrie and Van Andel (1964) remarked that, if the endmember map patterns are
'systematic with respect to known geological and hydrographical parameters, then the
results may be accepted as both statistically and geologically significant' (see Chapter 2).
They were describing contour maps formed from the values of each mixture coefficient
rather than the single map of the distributions of dominant endmembers. Perhaps also,
their claim for statistical significance was not quite appropriate. Nevertheless, the
distributions of dominant endmembers displayed on Figure 4.4 are 'systematic with
respect to known geological and hydrographical parameters', and would therefore seem

to confirm a mixing process involving the 5 sources constructed by this analysis.
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Table 4.5

Endmember Compositions (%) Iteratively Adjusted to Fit Partitioning

by Least Squares, and Coefficients of Determination (r2) Between

Estimated and Observed Values for Lake Te Anau Sediment Data

Endmember
Element I I i v v r2
Si0, 61.08 69.96 27.24 46.56 51.04 0.83
Al,0, 16.02 16.50 10.65 15.33 21.20 0.69
Ca0 2.47 3.07 3.71 10.06 0.91 0.88
MgO 5.89 1.16 2.29 5.99 3.83 0.93
NaO 1.87 4.20 1.06 3.67 0.00 0.78
K,0 1.40 2.78 1.31 0.00 2.02 0.81
TiO, 0.68 0.30 1.78 1.42 0.45 0.61
Fe,04 7.63 1.95 11.42 9.05 10.82 0.82
MnO 0.19 0.02 0.26 0.00 0.37 0.56
P205 0.00 0.00 0.89 0.42 0.42 0.68
LOI 2.67 0.00 39.29 7.44 8.83 0.63
Vv 0.0144 0.0026 0.0225 0.0180 0.0189 0.72
Cr 0.0384  0.0025 0.0000 0.0091 0.0000 0.92
Ba 0.0000 0.0569 0.0624 0.0248 0.0477  0.40
Zn 0.0071 0.0035 0.0181 0.0059 0.0147 0.57
Cu 0.0000 0.0000 0.0000 0.0037 0.0219 0.98
Ni 0.0247  0.0000 0.0001 0.0003 0.0066 0.96
Co 0.0039 0.0007 0.0058 0.0027 0.0045 0.46
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CHAPTER 5

APPROACHES TO TWO UNSOLVED PROBLEMS

SUMMARY

The presence of one or more missing values in a sample would normally force
the exclusion of that sample from a mixture analysis. This is because algorithms
constructed to process uniquely defined p-dimensional data cannot in general manipulate
object vectors with undefined components. A possible solution to this difficulty in the
case that a mixing process is believed to be present, is to exploit the overdetermined
aspect of the mixture equations to impute values for those that are missing. This strategy
is demonstrated for the well-researched database of Nazca Plate surface sediments.

Traditionally, the estimate for the number of endmembers has been assessed by
mapping or by inspection of the coefficients of determination between the observed and
estimated variables. Mapping entails the plotting on a map of the region from which the
samples were taken, either the contours of the contributions of each endmember to each
sample, or some other portrayal of the distribution of endmember abundances.
Assessment by this method is too elaborate except for final confirmation and display.
Alternatively, choosing a number of endmembers which results in suitably high
coefficients of determination for all or most variables may account for elements which
are not part of the conjectured mixing process. Even worse it may result in the
identification of endmembers which do not in Jact exist.

Another avenue for assessment lies in an examination of the distributions of
certain logratios. The differences between corresponding logratio-transformed observed
and estimated data form an array of residual logratios. A linear combination of these is
Jormed for each sample which, under a random perturbation assumption should follow a
univariate normal distribution. Whether or not this scalar is normal can be readily tested.
It can also be examined graphically Jor such desirable qualities as symmetry when the
test for normality may be too severe. This procedure is employed to assess the
decompositions of the United States Geological Survey Mid-Pacific cobalt-rich
manganese crust data and the Nazca Plate surface sediment data.
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5.1 MISSING VALUES

Missing values are a common occurence in geochemical data. For example,
different laboratories do not always analyse for identical lists of elements in the
collections of samples which eventually form a single database. Quite often trace
elements are present in a sample but in concentrations below the analytical detection
level, and each of these will be recorded as an upper limit or simply as non-zero which is
'missing'. Mixture algorithms of the type described in this work can not process object
vectors with undefined components. But, since the non-missing components in a
sample contain valid information on any underlying mixing process that may account for
the data as a whole, it would seem desirable to develop a method for imputing values for
those that are missing which will permit the information in the non-missing components

to be extracted.

Suppose that, without loss of generality, the dataset X (nxp) is partitioned so
that the first r samples have missing values on the [q+1]-th to p-th variables (g <p).
These missing values are all located in the top right (rx[p-q]) submatrix X,,, where X is

partitioned as in equation (5.1) below, the order of X11 being (rxq)

X = Xy Xyg (5.1)

x21 x22

The array X'of estimated mixtures associated with X, irrespective of the presence

of missing values, is given by

X' = LB (5.2)

from equation (3.5). Partitioning equation (5.2) in the same way as equation (5.1),




(5.3)

where the orders of X'1» Ly, and B,, are (rxq), (rxk) and (kxq) respectively, and

k <q<p.

Three interrelated matrix equations can be extracted from equation (5.3). They

are,

(i) from the botton (n-r) rows,

[X'21 Xéz] =Ly, [Bu Blz] 5.4)

(ii) from the first q columns,

X L.|B (3.3)

ml =1 P
le L21

(iii) from the top right submatrix corresponding to the block of missing values,

XIZ * L11312 (5.6)

These three equations follow from the approximate decomposition of (nxp) X. Arguing
in reverse, it is anticipated that, assuming that a mixing process is present, the separate

computations of the estimates (5.4) and (5.5) in that order, will allow the derivation of

X
estimate (5.6). The singular value decompositions of [X21 X22] and - must

21
establish a common approximate rank k, the estimated number of endmembers, and lead

to similar estimates for X21.

Following the methods described in Section 3.4, a possible procedure for

accomplishing this, is first, to project the rows of [X,; X,,] orthogonally into the best
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fitting k-dimensional subspace of p-space, forming [X';; X';,]. Then, the matrices
L,, and [B,, B,,] can be constructed satisfying equation (5.4). With the (kxq)
submatrix B, obtained in this way, it is possible to solve the overdetermined system
X1 = LBy, for (rxk) L,,. In practice, a safer estimate is probably obtained by
solving the overdetermined system corresponding to equation (5.5) in which the left
hand side is replaced by the first q columns of X. In any event, the matrix X', of
estimated mixtures corresponding to the submatrix of missing values can then be
obtained by equation (5.6) since L,, and B, have both been constructed. The matrix
X'}, then replaces X, in X so that a mixture analysis can be undertaken on all n

samples.

It is not necessary in the computations that (kxp) B = [B,, B,,] be a matrix
of proper endmembers. Any k rows of [X';, X'5,] will suffice. Indeed, bearing in
mind the approximate nature of the representation, there may be merit in initially setting
k=gq. Since, if (gxp) [X '31 X'35] consists of q rows of [X 21 X'5,]  (provided

q < [n-r] of course), then ultimately,

[X:'n X%z] =Ly, [Bn B]2J (5.7)

where L31 is of order (gxk). So a first approximation to equations of the type (5.4) to
(5.6) can be made by deliberately overspecifying the system. That is, the singular value
decomposition referred to above may be employed to identify the best-fitting
g-dimensional space and the orthogonal projections of the raw data into that space
corresponding to the left hand side of equation (5.4). (That will be possible provided the
exact rank of [X,, X,,1 is equal to p. If it were less than p, then an exact mixture
analysis would be carried out on [X,; X,,] anyway). The right hand side of equation
(5.5) may also be obtained by least squares (as in Section 3.2.1) but in terms of (gxq)

X'3) instead of B,,. Finally, X';, would be obtained in terms of X'ss.
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Following the substitution of X', for X,, in the raw data X (nxp), the
estimated endmember solutions (kxp) [B,, B,,] would be constructed on a second pass

through X.

5.1.1 Nazca Plate Surface Sediments

Dymond (1981) reported that sediment samples for this study were selected
primarily from cores recovered during cruises conducted by the Oregon State University
and Hawaii Institute of Geophysics as part of the Nazca Plate project. Additional
samples were obtained from the core collections of the Lamont-Doherty Geological
Observatory and the Scripps Institution of Oceanography. Nearly all samples were taken
from the 5 to 10 ¢cm level of gravity cores. The various maps that were reproduced in
Dymond's paper (ibid) indicated that the region from which the samples were taken lies
to the West of the Peru-Chile Trench, from about 80°W to 120°W, and from the equator
down to 40°S. A total of 425 analyzed samples were listed on microfiche which was the
source of the data for this work. Two rows on the list were illegibly smudged, and were
discarded. Thus there were available for this study a total of 423 samples each analyzed
for the abundances of the 8§ elements Al (%), Si (%), Mn (%), Fe (%), Ni (ppm), Cu

(ppm), Zn (ppm) and Ba (%).

Due to contamination during storage, the values of zinc for 50 Lamont-Doherty
samples were not recorded. Since 50 samples formed a relatively large proportion of the

total dataset, it was these missing values which were imputed.

For all singular value decompositions, all calculations of the loading matrices of
mixture coefficients (by least squares) and all measurements of the angles between the
observed and estimated object vectors which follow, the values of each variable were

first divided by its observed maximum (the column transformation of equation (3.51))

v
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following the formation of compositions (sums to 100%). The final operation before
reporting the results at any stage of an analysis was the inverse of the first column

transformation.

Of the 423 samples available, 373 contained the abundances on all 8 elements.
The trace elements were transformed into percentages, and, for the imputation operation,
a 'fill-up value' (Aitchison (1986)) or remainder term as in equation (3.3), was included
to complete the sum to 100%. These 373 partial compositions with no missing values
thus constituted a (373x9) dataset with constant row-sums equal to 100%. The singular
value decomposition algorithm was used to construct (373x9) [X'y, X'5,], from which
the (5x9) submatrix [X'3; X'5,] was selected. Then a representation of the form (5.4)
was obtained but in terms of (5x9) [X'5, X'5,] rather than (5x9) [B,, B,,]. The least
squares partitioning algorithm was used to construct the (373x5) loading matrix

corresponding to L, for this representation.

Zinc was then dropped from all 423 samples and replaced by a ‘fill-up value'
creating a second dataset of order (423x8) also with fixed row-sums equal to 100%. (It
was shown in Section 3.1.2 that inclusion of the fill-up' term should not alter the rank
of the estimates nor the loading matrix). Representation (5.5) was constructed by the
least squares partitioning algorithm to determine (50x5) L, and the redundant (373x5)
L,, (for checking), using the previously identified submatrix (5x8) X'3, in place of
B,,. Hence a (50x1) vector of estimates for the missing values followed by substitution

in equation (5.6). This made a third dataset of order (423x9) available for reanalysis.

The success of the imputation operation can be assessed by the scanning the
angular errors for the 50 samples before and after the imputation. The column
transformed (423x8) dataset was projected into the best fitting 5-dimensional subspace,
and the angular deviations between the 50 pairs of observed and estimated object vectors

were recorded as in table 5.1 column L. Similarly, the column transformed (423x9)
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dataset was projected into the best fitting 5-dimensional subspace, and the angular
deviations between the 50 pairs of observed and estimated object vectors were also
recorded as in table 5.1 column II. Scanning across rows, it is evident that the angles in
Column II tend to be somewhat smaller than the corresponding angles in Column 1.
Indeed the mean angular deviations for Column I and Column II are 5.24° and 5.07°
respectively. That is, following the imputation, an observed vector tends to be

somewhat closer to its estimate in the 5-dimensional space than before imputation.

An unexpected result of this study was the recognition that the mean angular
deviation of the 50 samples from the Lamont-Doherty cores was significantly higher than
that for the remaining samples. The overall mean angular deviation for the column
transformed (423x8) dataset (from which zinc had been dropped) was 4.27° compared
to 5.24° for the subset of 50 Lamont-Doherty samples. When all 423 angular deviations
were transformed into rank order statistics and then partitioned into those from the
Lamont-Doherty Observatory and those that were not, the mean rank of the former was
268.90 and of the latter was 204.37. Under an a priori assumption that these sets of
deviations were random samples from the same distribution, the expected value for both
mean ranks would have been 212. The departures from this were highly significant. An
approximate chi-square statistic with 1 degree of freedom was found to be 12.28

(Mann-Whitney) with tail-end probability 0.0005.

All 423 samples contributed to the determination of the first 5 eigenvectors in
8-space (zinc having been excluded). But the 50 Lamont-Doherty samples were on
average more remote from the space spanned by those eigenvectors than the remaining
samples. The average magnitudes of the angular deviations do not appear so different as
to suggest distinct mixing processes. It is possible that analyses from the separate

laboratories were relatively biassed in some way.
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Table 5.1

Angular Deviations Between Observed and Estimated Object Vectors for
Samples with Missing Values Before Imputation I and After Imputation II

I II I I I IT
2.0931 2.0891 3.6701 3.7212 3.3671 3.4123
8.1990 7.5835 0.8491 0.8833 4.4274  4.3089
5.9426 5.6692 4.8758 4.7678 5.4740 5.3032
7.0654  6.6506 1.7905 1.8818 3.7512 3.5020

10.5604 10.3855 5.4181 5.3617 1.7714  2.0421
7.5001 7.5141 1.5678 1.5688 1.5619 1.6454
5.9448 5.6592 10.8046 10.8514 6.8641 6.3743
5.8063 5.5537 4.7376  4.5971 7.6982 7.1464

18.3168 16.6355 8.1353 7.8516 4.9942  4.7061
6.0612 6.0148 3.5919 3.5805 5.6347  5.3427
4.9434 48476 2.8937 2.7458 0.7457 0.7693
5.1393 4.9965 4.2565 4.1274 1.4567 1.4635
7.3840 7.2590 8.5833 8.6493 1.8217 1.8217
6.4419  6.1510 7.3922 6.7700 1.9096 1.8905
9.6260 9.0154 7.6287 7.4957 3.4097  3.4200
4.9808 4.7869 4.3296 4.1831 2.5374 2.6239
5.7118. 5.8771 2.4708 2.3919

Dymond's description (ibid) of the normative analysis and partitioning by linear
programming of the data into Hydrothermal, Biogenic, Detrital, Hydrogenous
(Authigenic) and Dissolution residue components (endmembers) has already been
described in Section 2.3. His paper has been widely cited in view of both his mode of
analysis and the model he constructed for explaining the formation of marine sediments
(see for example, Leinen and Pisias (1984), Walter and Stoffers (1985), Leinen (1987),
Owen (1987), Chen and Owen (1989), Dean, Gardener and Parduhn (1989) and Nath,

Rao and Becker (1989)). With 423 samples now available, the opportunity exists to
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perform an independent mixture analysis on them without any prior assumptions

concerning the compositions of the endmembers.

As was described in Section 2.3, the basis of Dymond's account was the table
of ‘elemental ratio coefficients of the five components used in the normative analysis',
which were specified a priori. Itis a simple matter to transform such a table into a
collection of (sub)compositions B (kxp) which are in this case the conjectured
endmembers for the data. If By (kxp) is the array of 'elemental ratio coefficients’ as
defined by equations (2.15) and (2.16) and b, is the concentration of the normalizing

element in the i-th endmember, then

bNij = bij/bia (5.8)

for j=1,2,..,p. The row-sums of B are each 1 so summing over the p components

on either side of equation (5.8),

P
?;1 byig = 1/b,, (5.9)
Substituting for b,, in equation (5.8) from equation (5.9),
P
by, = by, /;1 byia (5.10)

for j=1,2,..,p. In the case of Dymond (1981, Table 3) the 5 components were
transformed as in equation (5.10) to form subcompositions (since there were only 8
elements and no residue). Each elemental abundance was recorded as a percentage as set
out in Table 5.2 (a). Hence, Table 5.2 (a) contains the theoretical subcompositions of
endmembers which have been derived as a direct consequence of Dymond's a priori
assumptions. There are two possible methods for making an appraisal of these

assumptions using the procedures described in Chapter 3. The first would be to project
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the data (as a subcompositional dataset with 8 variables) into the space spanned by the
vectors in Table 5.2 (a) and then to examine the the signs of the mixture coefficients and
the magnitudes of the angular errors. The second would be to independently construct
five endmember estimates from the data and compare these with the vectors in

Table 2 (a). The latter method has been followed here.

Four separate mixture analyses were conducted. The first two on the (373x8)
and (423x8) datasets of subcompositions respectively. The third and fourth on the
(373x9) and (423x9) datasets of partial compositions. In each case, the data matrices
were column transformed (equation (3.51)). Singular value decompositions attributed
between 99.0% to 99.2% of the cumulative sums of squares to the first five eigenvalues
in all 4 cases. The mean angular errors were of the order of 3° (arccos 0.999) for the
subcompositions and 4° (arccos 0.998) for the partial compositions. For the iteration
procedures, the two forms of the matrix G of error vector coefficients defined by
equations (3.48) and (3.49) were chosen consecutively for each analysis, making a total
of 8 sets of estimates. Iteration cycles were stopped when the mean squared error
(equation (3.50)) was in the range 1.1x10%# to 1.6x10# which seemed to be the best that
could be achieved. In every case the mean squared error fell monotonically until the

procedure was stopped.

It is not proposed to reproduce 8 tables of estimated endmembers here. All 8
contained 3 subcompositions that were remarkably similar to and therefore readily
identifiable with the Detrital, Hydrothermal and Biogenic components of Table 5.2 (a).
There was however some diversity in the estimates of the remaining two. Further,
where the first 3 were always returned by the iterative algorithm when the initializing
extremes were altered, the last 2 were by no means so stable. Table 5.2 (b) sets out as
subcompositions the estimates obtained from the (423x9) dataset of partial
compositions, applying the error vector coefficients defined by equation (3.49) for a

mean squared error of 1.2x104.




92

In geochemical terms, the component by component similarity between the first
columns of Tables 5.2 (a) and (b) is remarkable, bearing in mind that Al, Si, Mn, Fe and
Ba are major, while Ni, Cu and Zn are trace elements. Dymond's composition for this

component was taken from 'summary analyses of igneous and sedimentary rock'.

The estimated endmember in the second column of Table 5.2 (b) is more
extreme than the hydrothermal component in Table 5.2 (a). The elements Al, Si, Ni and
Ba were driven down to zero by the iterative algorithm, while holding small values in
Dymond's subcomposition. Iron, on the other hand, was somewhat higher than
Dymond's value. Corresponding values for Mn, Cu, and Zn are in strong agreement
and, taken together, it is clear that the iterative algorithm reconstructed the hydrothermal

component.

Comparing the third columns of Tables 5.2 (a) and (b), what stands out is the
similarity of the very high values for Si, although the last few decimal places above 99%
meant the presence or absence of the other elements in the subcompositions. Again the
iterative estimate was the more extreme but the nearly equal values for Ba are possibly
notable. Dymond stated that the biogenic source is composed of predominantly biogenic

opal (an amorphous form of hydrated silicon dioxide) and refractory organic matter.

For each of the two sets of § endmembers, the fourth columns of Table 5.2 (a)
and (b) agree in being the dominant sources of Mn and Ni, as well as being high in Cu
and Fe. But the values of the element concentrations hardly correspond at all. A similar
pattern emerged for the last pair of endmembers. The fifth columns of Table 5.2 (a) and
(b) display very similar Ba, an element with strong biogenic associations. Dymond
chose it as the index element for this endmember which was supposed to consist of
relatively insoluble elements of carbonate and siliceous organisms. Otherwise, the two

components display high Al, Fe, Cu and Zn but not in comparable concentrations.




Table 5.2 (a)

Endmember Subcompositions (%) for Nazca Plate Data

Derived From Dymond (1981, Table 3)

Element Detrital Hydrothermal Biogenic Authigenic Dissolution
residue
Al 21.132 0.42 0.199 2.84 26.55
Si 63.396 9.04 99.484 8.52 0.00
Mn 0.338 20.17 0.002 - 56.82 0.37
Fe 14.793 69.54 0.099 28.41 18.58
Ni 0.032 0.08 0.004 1.89 0.35
Cu 0.025 0.29 0.005 0.95 0.85
Zn 0.030 0.13 0.008 0.19 0.21
Ba 0.254 0.35 0.199 0.38 53.09
Table 5.2 (b) |
Endmember Subcompositions (%) for Nazca Plate Data
Computed by Least Squares Partitioning
Al 23.743 0.00 0.000 0.00 15.13
Si 64.084 0.00 99.784 0.00 0.00
Mn 0.000 20.15 0.000 46.18 4.06
Fe 12.104 79.42 0.000 51.78 27.36
Ni 0.022 0.00 0.000 1.41 0.26
Cu 0.017 0.28 0.000 0.60 1.11
Zn 0.030 0.15 0.015 0.03 0.45
Ba 0.000 0.00 0.201 0.00 51.63
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The conclusion to be drawn from this analysis is that there is quite strong
evidence in favour of Dymond's first three specified endmembers but the contributions,
if any, to the bulk of the samples from his last two are too slight to allow their stable
estimation. That raises the issue of the valid estimation of the number of endmembers,

which will be examined in the next section.

The transformation of element ratios into the components of partial compositions
naturally requires that the concentrations of the normalizing elements be known.
Dymond supplied these concentrations which, he stated, were taken from the same
literature sources that were used to obtain the elemental ratios found in Dymond (1981,
Table 3). He assumed a value for (1) the concentration of Al in pure detritus to be
8.4%, (2) the concentration of Fe in pure hydrothermal material to be 34.8%, (3) the
concentration of Si in pure biogenic opal to be 36.0%, (4) the concentration of Ni in
hydrogenous (authigenic) material to be 1.0%, and (5) the concentration of Ba in the

dissolution residue to be 27.0%.

It was noted above that the estimated endmember subcompositions set out in
Table 5.2 (b) were derived from the estimated endmember partial compositions extracted
iteratively from the (423x9) dataset. These partial compositions naturally contained the
estimates of the concentrations of the specific 8 elements for each full composition of a
5-endmember mixing process. The estimated concentrations for the 5 normalizing
elements in particular, together with Dymond's choices (from above) in parentheses,

were,

(1) A19.8% (8.4%), (2) Fe 38.8% (34.8%), (3) Si31.2% (36.0%),
(4) Ni0.9% (1.0%), (5) Ba 22.2% (27.0%)

Considering each pair of concentrations at a time, there is an evident comparability

between the first figure, constructed from the data, and the second, taken from the
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literature. These figures are estimates of the concentrations of the normalizing elements
in each of the conjectured sources in which they are extreme. In geochemical terms,

there is no evidence in these figures to refute Dymond's choices.

Leinen and Pisias (1984) employing a Q-mode factor method (see Chapter 2)
also analyzed the Nazca Plate sediment data. Apart from stating that the dataset
contained 423 samples for which the concentrations of Al, Si, Fe, Mn, Cu, Ni, Zn, and
Ba had been determined, they made no mention of missing values or of the number of
samples that were included in their analysis. They converted the element concentrations
of the raw data to oxides then formed subcompositions. In order to compare their
terminal solution with Dymond (1981, Table 3), they had to recalculate their estimated
endmember oxide subcompositions as element ratios. These ratios appear in Leinen and
Pisias (1984, Table 3). By employing equation (5.10), the columns of this table have

been transformed into 5 endmember element subcompositions which are displayed in

Table 5.3.
Table 5.3
Endmember Subcompositions (%) for Nazca Plate Data
Derived From Leinen and Pisias (1984, Table 3)
Element Detrital Hydrothermal Biogenic Authigenic Dissolution
residue

Al 25.157 0.37 0.751 1.63 15.94
Si 49.987 1.42 68.264 73.36 0.00
Mn 4.830 22.81 4.505 20.95 17.34
Fe 19.522 74.78 23.346 0.00 34.74
Ni 0.277 0.16 0.000 0.82 0.55
Cu 0.146 0.32 0.130 0.39 0.67
Zn 0.050 0.13 0.068 0.05 0.21

Ba 0.030 0.01 2.935 2.81 30.53
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Apart from their hydrothermal endmember, it is difficult to understand the
claims made by Leinen and Pisias (1984) for high level of concordance with Dymond's
components. Working from their table of 'endmember ratios', they concluded that the
'distribution patterns of detritus from the two techniques are virtually identical’, for
hydrothermal sediment the 'ratios of Al, Mn, Cu and Zn to Fe are virtually identical, for
dissolution residue 'the composition of the factor analysis endmember is remarkably
similar to the linear programming endmember except for Fe and Mn', and for the
authigenic sediment they conceded that the two set of results differed most. Comparing
the corresponding subcompositions of Tables 5.2 (a) and Table 5.3, it is evident that
conclusions of great similarity between the results of the two techniques (that is, Q-mode

factor and normative analysis) are a little exaggerated.

5.2 TESTING ENDMEMBER HYPOTHESES

This concluding section not only introduces an alternative approach to the
problem of assessing the number of endmembers, but also brings together many of the
most important ideas covered in the previous two chapters. Where it is necessary, those

ideas are revised in summary form.

Mixture analysis, including normative analysis, partitioning by linear
programming or principally Q-mode factor analysis, has become a well-established
quantitative method over the last two decades (for a discussion and comparison of these
three techniques, see Leinen (1987)). Its relevance to geochemistry is that it can be used

to identify the systematic components of variation in large compositional datasets.

An illustration of a perfect mixing process is provided in the introduction to this
thesis. In summary, suppose three rivers each bear sedimentary materials of fixed (1xp)

compositions B,, B, and B, respectively, into a lake. These 3 source materials are
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called endmembers, and p > 3 is the number of elements whose abundances form a
composition. Assuming mixing takes place without contamination, a sample of

sediment from the lake floor will have a (1xp) composition vector x given by,

x = A8, +A,B, + APy (5.11)
where M+ +A; =1 (5.12)
and AAyudy 20 (5.13)

Equations (5.11), (5.12) and (5.13) identify x as a convex combination of the
endmembers, and therefore the position vector of a point in the interior of a plane
triangle in p-space. The position vectors of the vertices of the triangle are the ‘extreme’

compositions B, B, and ;.

In matrix form,

AB (5.14)

»
Il
T
>
L
>
Ml
™
I

where A is (1x3) and B is (3xp). If n samples are taken from the lake floor, their

compositions X,,X,,....x all (1xp), constitute an (nxp) array X of exact rank 3 given

by
X = AP (5.15)

where (nx3) A is the matrix of mixture coefficients.

In reality, even if a mixing process has been at work, nature never delivers

compositional data matrices of exact low rank like 3 in the illustration above. It is
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therefore assumed that nature created
X =AB + ¢ (5.16)

In this model X, is (nxp), A is (nxx) and B is (kxp) where x is the number of true
endmembers. Error matrix € is of course (nxp) and represents the non-systematic

contribution to the data.
Since matrices A, B and € are usually unknown, the estimated mixing model is,
X =LB + E (5.17)

In this representation, X is the same as in equation (5.16). The matrix of estimated
mixture coefficients L is of order (nxk) and the matrix of estimated endmembers B is
(kxp) where k is the estimated number of endmembers. The matrix of residuals is E

(nxp).
An important matrix for the purposes of interpretation is (nxp) X' given by
X' = LB (5.18)

The matrices X, X', A, L, B and B have two properties in common. First,
every matrix element must be non-negative and second, each row-sum must be 1 (or
100%). These two conditions define a composition (Aitchison (1986)) wﬁich therefore
applies to every row in each matrix. Further, since the rows of (nxp) AP define points
within the convex hull of the points whose position vectors are the rows of B, equation

(5.16) represents a convex model for the particular random experiment under study.
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It follows from the constant row-sum assumption that the row-sums of € and

E must each be zero.

The matrix X' is the estimate of the matrix of true mixtures AP. It is of exact
rank k. The original data matrix X is of 'approximate rank' k if each of its rows is
well-approximated by a linear combination of any k linearly independent (1xp) vectors,
and that is essentially a subjective concept. Nevertheless, in view of the introductory
illustration and from equations (5.16), (5.17) and (5.18), it is clear that if X were
determined by a x-component mixing process contaminated by small non-systematic
errors, then the chosen approximate rank of X should be close to x. That raises an
interesting question: which then would be the more serious error, to choose k less than

K, the unknown true number of endmembers, or to choose k greater than x ?

In the case that all variables have equal weight (by transformation to fractional
ranges or otherwise) and endmember estimates are chosen in order of their remoteness
from each other, the answer to the question is that to choose k > k is the more serious

error. This is because,

(i) k>« implies the identification of source components which do not
actually exist,

(i) the presence of such false components (as rows) in B may result in
non-trivial concomitant estimated mixture coefficients (elements of L in equation (5.17))
for samples that are near such components and,

(iii) elements may be accounted for in the estimate which do not feature in the

true mixing process.

(The geometrical view is that the estimated endmember compositions are the position
vectors of the k vertices (extremes) of a convex polytope which must contain all the

estimated data points (rows of X'). If k > k then extra vertices have been added to
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include in the estimated polytope, departures from the true polytope due to errors).

In the mixing model defined by equation (5.16), the rows of B span &, a
x-dimensional subspace of the positive p-orthant. In the estimated model, equation
(5.17), the rows of B span S a k-dimensional subspace of the positive p-orthant. The
optimistic stance is that S will be located close to &. For example, if there were just 2
true endmembers and hence the data resembled a 'fuzzy' line then S would be a line
through the 'fuzz'. Choosing k correctly equal to 2 in this example would not of itself
yield a a satisfactory solution if the line S were located through some region of p-space

remote from & (see Section 3.1, Figure 3.1).

Roughly summarizing Section 3.4, an analysis of mixtures can be conducted

according to the following 5 steps.

1. Choose k-space S (for example, by the singular value decomposition of (nxp)

X or any non-singular transformation of X).

2, Project the rows of X orthogonally (by least squares) into S to form (nxp) X'
3. Test the validity of the choice of S.

(i) by mapping.

(ii) by inspection of the p coefficients of determination (%) between
corresponding pairs of observed and estimated variables, that is between
corresponding columns of (nxp) X and (nxp) X'.

(iii) by examining the residuals formed following the transformation of the
observed and estimated data to logratios.

4, Locate initial extremes (kxp) B, and compute the mixture coefficients (nxk) L,
by least squares.
5. Iteratively construct the terminal solutions (kxp) B and (nxk) L, exploiting the

magnitudes of least squares regression coefficients.
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Steps 4 and 5 summarize the iterative construction of the estimate equation
(5.17) which is described in Section 3.4.3 and Section 3.4.5. It suffices to say that,
contrary to statements that have appeared in the literature, the least squares method
constructs the 'best' estimate when it is required to partition a given sample into
specified endmembers. Further, the possible occurrence of negative values for some
regression coefficients indicates not only that at least one endmember estimate is not
extreme enough, but also that the magnitudes of the remaining positive coefficients

determine the adjustments to be made to the non-extreme endmembers.

Steps 1 through 5 outline an integrated approach to a mixture analysis the actual
detail of which is substantial. It is desirable that an assessment of the estimate of the
dimensionality of the data be made at the earliest stage possible, which in this strategy is

at Step 3.

Mapping, Step 3 (i), usually takes the form of a contour plot of the columns of
(nxk) L or some other portrayal of the distributions of the estimated endmembers.
Naturally these are displayed on a map of the region from which the samples were taken
and are quite elaborate to prepare. Mapping is actually out of sequence in this scheme
because it requires a terminal solution for equation (5.17). So, it is usually used for the
final confirmation of the geographical continuity of endmember abundances and, of
course, for descriptive purposes. It was initially demonstrated by Imbrie and Van Andel

(1964).

Inspection of the p coefficients of determination, Step 3 (ii), was recommended
by Miesch (1976b) and remains a most severe and relatively quick test of the validity of
a decomposition of the form equation (5.18). The problem seems to be that
concentrating on the precision of all or most the estimated variables is likely to force
elements which may not belong to a natural mixing process into the endeavour to model

it. Rather like regression models with unknown numbers of explanatories, this
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enhances the risk of overspecification which in a mixture analysis results in the inclusion

of source components in the physical model which do not in fact exist.

The formation of logratios, Step 3 (iii), highlighted in italics, implies
remodelling the residuals. The difference of the logratios of corresponding components
of X and X" is a logratio residual whose behaviour may be predicted approximately
provided that X' is indeed close to (unknown) AB, and the values of the logratio
residuals have been determined by chance mechanisms which permit the valid

application of the multivariate central limit theorem.

Aitchison (1986) discussed the situation where a composition evolves over time
into another composition. The latter composition is called a perturbed composition. It is
possible to calculate a perturbing vector whose components scale the components of the
original vector. A summary follows of the basic algebra, which was even more briefly
covered in Section 3.1.3.

p
K (1xp) is a primeval composition vector, that is 2; W= 1, where K = 0 allj.
=

p (1xp) is a compositional 'perturbing' vector. The perturbation of p is defined to be

P
pop = ["Llpl’ B «+ 5 5 upppJ /D(p,p), D(u,p) = J:ZI P (5.19)

For any constant A,

(AR)op = Ho(Ap) = Hop (5.20)
If T is a second perturbing vector then it follows from equations (5.19) and (5.20) that,

HopoT = (Hop)oT = []J.]pl‘t], HoPyTos « « 5 pppptp]/D(p.,p,t) (5.21)
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P
where D(W,p,7) = 3" wpt.
=1

It is quite straightforward to show that the resultant of a sequence of perturbations is a
single perturbation © whose components are respectively the products of corresponding
components of the perturbations in the sequence, scaled by a common factor to maintain
their sum to 1. In the case of two perturbations and by equations (5.19) and (5.21), a

resultant composition x would be given by,

X = HopoT = Ho(PoT) = RoRt = BiRys BoTns ooy ppan/D(u,n) (5.22)
where ;= T and D(p,x) = Zujnj.
Cancelling the denominator in equation (5.22),

XfXp = WM/, = WPt/ poT,

It follows that the logratios formed from a sequence of perturbations are additive, for in

the case of two,

log(xj/xp) log(uj/ up) + log(nj/np)

log(uj/u.p) + log(p/pp) + log('cj/*cp) j=1.2,..p-1 (523)

provided x;, p;, p;, 7;,>0, i=1,2,...,p. Generalizing equation (5.23), if it is
assumed that a resultant perturbation is made up of many minor perturbations then,
under certain regularity conditions ¥ log(nj/np), Ty > 0, j=1,2,...p-1, will jointly

follow a multivariate normal distribution.

Let x; be the i-th row of (nxp) X. Assume that x; has been perturbed from a
primeval perfect mixture K, = AP by a resultant perturbation n, of many independent

perturbations. Then,
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log(xij/xip) — log(uij/uip) = log(nij/nip) (5.24)

provided Xijr Wijp T35 > 0,i=1,2,..n, j=12,.p-1. Substituting scalars Yijr My

and z; for each logratio in equation (5.24),

T

These terms are the components of respectively of the vectors y;, m; and z; Hence,

y, =m + z (5.25)
and this takes the familiar form,

Response = Signal + Noise

In the light of the remarks made above, it may be anticipated that z; ~ N (0, X),
i=1,2,..,n. The n row vectors y; of equation (5.25) constitute an (nxp) array Y
given by

Y =M+ 1Z (5.26)

all of these being nx(p-1) matrices. If the stochastic model is correct, Z should resemble

a multivariate random sample from the Np_1(0, X) distribution.

It should be evident at once that, since A and B are unknown, there are no
observations available on log(r; ]nip) by equation (5.24), and therefore no observations
on z. If it is further assumed that X' is a good approximation to AP, then Ky may be
replaced by x'ij for all i,j in equation (5.24), and so Zy = log(rcij/nip) becomes the

(i,j)th logratio residual.
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Just as it is always sound practice to examine the distribution of the residuals in
a regression analysis, it is proposed here that the distribution of logratio residuals, as

described above, may be employed to assess the plausibility of an endmember analysis.

If a random vector follows a multivariate normal distribution, then the scalar
formed by any linear combination of its components must follow a univariate normal
distribution. The strict application of this condition is too severe for geochemical
compositional data. There are frequently zeros, repeated values and outliers among the
observations for any one variable. Any variable which is not part of a mixing process
may not be expected to have normally distributed logratio residuals. If just one marginal
distribution is non-normal, then the joint distribution of the whole collection is not
multivariate normal. (Consider a linear combination of zeros for all but the abberant
component). Therefore, a relatively forgiving statistic was formed as follows. After
making the logratio transformation, each of the (p-1) components of the n residual
vectors was standardized (to zero mean and unit variance). For each sample, these (p-1)
standardized variables were summed and their sum was standardized to form a statistic
which will be denoted here by 9°. The value of I for the i-th sample would be

calculated as follows,
-1
Z. = (z.. - zj)/sj

1 : 1

o

—
Il
p—

Ti= (Z-Disy, (5.27)

1

where s_is the appropriate sample standard deviation for samples of size n.

The univariate central limit theorem would in the absence of stron g
intercorrelations predispose U~ to follow a univariate normal distribution which, under
the ruling assumption, must otherwise be normal. The normality of I, can of course,
be tested by the chi-square goodness of fit test which has the advantage of being immune

to outliers.




5.2.1 Mid-Pacific Cobalt-Rich Manganese Crusts

This first illustration of the use of logratio residuals is based on the mixture
analysis which was described in Section 4.2. Four endmember compositions were
estimated for the 275 samples from a Mid-Pacific subset of the United States Geological
Survey world ocean ferromanganese crust database (Lane er al. (1986)). The
endmembers were identified as (1) Silicate (clay), (2) Cobalt-rich manganese oxide,
(3) Biogenic phosphate, (4) Hydrogenous (Authigenic) and their estimated

compositions are displayed in Table 4.3.

The (275%22) raw data matrix of this analysis was column transformed
(equation (3.51), then a singular value decomposition was performed on the transformed
array . Hence, the 22 major and trace elements had equal weights in the analysis. The
spaces spanned by k = 2,3,...,10 eigenvectors were taken respectively for choices of
S. Setting k =2,3,...,10 in turn, 9 forms of the (275%22) approximation X'® were

computed whose precision increased with k.

The proportional cumulative sum of the eigenvalues (equation (3.39))
associated with each value of k = 2,3,....7 is expressed as a percentage variability in
the first row at the top of Table 5.4. The chi-square values in the next row of Table 54,
are the values taken by the goodness of fit statistic with 4 degrees of freedom for the
frequency distributions of ¥°. These frequency distributions are depicted as histograms
on Figure 5.1. The coefficients of determination (r2) between the observed and
estimated variables for each of these numbers of endmembers are in the body of Table

5.4.

The rule is that any value for 1> < 0.5 (or a Pearson correlation < 0.7)
indicates an inadequate estimate. Such values are printed in boldface on the table and a

ranking scheme keeps keeps them at the bottom of each column.
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From the first column of Table 5.4, it can be seen that 9 elements out of 22 are
accounted for by k = 2 dimensions. It is noteworthy that, of these 9 elements (or
oxides), two ( SiO, and Al,O,) were dominant in a clay endmember, and four (MnO,,
Mo, NiO and Co,0,) were dominant in a cobalt-rich manganese oxide endmember (see
Table 4.3). Each endmember had been constructed, in the course of a 4 endmember

mixture analysis, by the iterative procedures described in Section 3.4.

The inclusion of a third dimension then produced a remarkable increase in the
values of r2 for CaO, P,05 and CO,, which can be read from the first and second
columns of Table 5.4. Further, the iterative algorithm had allocated these 3 oxides
together with Sr, almost exclusively to the 3rd endmember which was identified as

'biogenic phosphate' (see Table 4.3).

According to the rule, the addition of a 4th dimension did not account for any
more variables. The r? value for Ce, the largest contender, rose from 0.38 to 0.47
which is still less than 0.5 (see Table 5.4). It did, however, improve the precision of the
estimates for the 15 variables accounted for by 3 endmembers. It also led to the
construction of a 4th endmember, identified as hydrogenous, which was the principal

source of Fe,0, and the trace elements As, Ce, Pband V.

The 4 estimated endmembers appeared geochemically viable and, as can be seen
from Table 5.4, the inclusion of more dimensions would have added one or two
elements at a time at the cost of rapidly dwindling parsimony. On these grounds the 4

endmembers of Table 4.3 are believed to provide a satisfactory account of the data.

The construction of the summary statistic 9 required that samples with zero
values be excluded so that the logratios were defined. Differing but small numbers of
samples were dropped automatically by the algorithm for each value of k that was

examined. Figure 5.1 displays 6 histograms. The first at the top left is of the
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probabilities expressed as percentages for the standard normal distribution. The
remaining 5 are relative frequency histograms, also in percentages, for the frequency
distributions of 9. This statistic was constructed from the logratio residuals arising
from representations based on k = 2,3,...,6 endmembers as indicated on Figure 5.1.
The histogram which most nearly resembles the standard normal is that for 3
endmembers. The chi-square value for this frequency distribution was 8.63 (Table 5.4)
which with 4 degrees of freedom is not significant. Since the chi-square values
associated with all other values of k are highly significant, it is therefore tempting to

conclude that the data results from a mixing process involving just 3 sources.

Apart from the very satisfactory way in which the iterative algorithm located the
extreme compositions for the 4 endmember representation already mentioned, the next
illustration will show that caution is needed in the interpretation of the distributions of
J". One further effect was observed which is quite important. Although not all shown
here, the distributions of 9" were in fact constructed for k = 2,3,...,10. For k 2 5,
the kurtosis of the distributions increased montonically and sharply as did the
corresponding chi-square values. This effect was due to the increasing precision of the
estimates producing disproportionately many logratio residuals near to zero on the
standardized scale. Such an effect is an obvious consequence of over-specification,
whether it is of the explanatories in a regression analysis or of the endmembers in a

mixture analysis.




Coefficients of Determination (rz) Between Estimated and Observed

(Note: Values for 2 <0.5 are printed in boldface)
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Table 5.4.

Variables for Mid-Pacific Data.

Endmembers 2 3 4 5 6 7

Variability 94.8% 96.2% 97.2% 97.8% 98.3% 98.6%
Chisquare 20.11 8.63 36.26 12.39 23.8 37.92
Si02 0.93 0.93 0.93 0.95 0.97 0.98
MnO, 0.85 0.87 0.96 0.96 0.98 0.98
Al,Oq 0.83 0.85 0.86 0.90 0.94 0.94
Mo 0.79 0.80 0.80 0.82 0.83 0.89
Sr 0.65 0.67 0.78 0.79 0.80 0.80
Vv 0.54 0.62 0.69 0.75 0.76 0.80
NiO 0.51 0.62 0.82 0.84 0.85 0.86
Pb 0:52 0.68 0.71 0.73 0.90 0.90
Cog0y 0.50 0.52 0.75 0.76 0.78 0.93
Ca0 0.02 0.73 0.96 0.96 0.97 0.98
Fe,Og 0.05 0.72 0.82 0.82 0.93 0.94
PoO% 0.02 0.64 0.91 0.91 0.91 0.92
As 0.33 0.59 0.64 0.87 0.88 0.89
CO, 0.00 0.55 0.72 0.73 0.73 0.77
KoO 0.47 0.50 0.62 0.62 0.72 0.75
Ce 0.23 0.38 0.47 0.75 0.94 0.95
TiO2 0.27 0.44 0.44 0.53 0.53 0.69
Zn 0.21 0.27 0.37 0.47 0.58 0.61
(07 0] 0.05 0.06 0.06 0.33 0.37 0.62
MgO 0.11 0.13 0.25 0.36 0.37 0.37
Na20 0.00 0.00 0.22 0.26 0.38 0.39
HO 0.01 0.10 0.11 0.12 0.14 0.19
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Figure 5.1.

data.
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5.1.2 Nazca Plate Surface Sediments

The second illustration is based on an analysis of 425 surface sediments from
the Nazca plate which have been made available on microfiche by Dymond (1981). For
these data, Dymond (ibid) tabulated a priori the elemental ratio coefficients of five
components (endmembers) he used in a normative analysis. These were identified as (1)
Detrital, (2) Hydrothermal, (3) Biogenic, (4) Hydrogenous (Authigenic), (5)

Dissolution residue (see Sections 2.3 and 5.1) .

The data were analysed in exactly the same way as the Mid-Pacific data above.
But first a five endmember representation was constructed to be compared with
Dymond's table of elemental ratio coefficients. It was found (Section 5.1) that the first
three iteratively constructed estimates were very close to Dymond's components (1), (2)
and (3). However the 4th and 5th constructs were similar to components (4) and (5)
only in possessing the same dominant elements, and not in the actual magnitudes of
those elements (¢f. Leinen and Pisias (1984)). By varying the initializing components of
the iterative routine, the first three estimates were found to be stable while the 4th and
5th were not. So it was with this information at hand that the logratio residuals were

examined.

Table 5.5 and Figure 5.2 are to be interpreted in the same way as Table 5.4 and
Figure 5.1 respectively. From Table 5.5, it will be seen that there were only 8 variables
present and 6 of these were accounted for by 2 endmembers. The associated chi-square
value (Table 5.5) was 71.14 which with 4 degrees of freedom refuted the underlying
assumptions. The poor fit is evident in the asymmetry of the histogram at the top right
of Figure 5.2. If a mixing process did account for the data, then it would seem possible
that a 2-endmember representation forced the transfer of part of the systematic effect into
the residuals. The inclusion of a 3rd endmember lifted r? for Ni from 0.24 to 0.88 and

dropped the chi-square value from 71.14 to 31.51, the minimum (Table 5.5). The



212

corresponding histogram (Figure 5.2) adopted a symmetric shape but its kurtosis also
denied the normal hypothesis. However, regression analysts might argue that its
symmetry is the important development because an absence of symmetry tends to deny

randomness in the errors.

Increasing the number of endmembers accounted for Ba when k > 4 but, from
the appearance of the histograms, resulted in unacceptable kurtosis. A judgement
supported by the gross chi-square values. Just as for the distributions formed by
increasing the values of k in the study of the Mid-Pacific data, this effect was due to the

disproportionately many logratio residuals near to zero on the standardized scale.

On the basis of the evidence presented here, the normal model is not
sustainable. However, if a mixing process were responsible for the data, then 2

endmembers would be too few and 3 the maximum for 'best behaved' residuals.

Table 5.5

Coefficients of determination (r2) between estimated and observed
variables for Nazca Plate data

(Note: Values for r2 <0.5 are printed in boldface).

Endmembers 2 3 4 5 6 7

Variability 92.8% 96.0% 98.4% 99.2% 99.5% 99.8%
Chisquare 71.14 31.51 109.45 243.47 194.46 193.09
Fe 0.91 0.92 0.99 0.99 0.99 0.99
Si 0.89 0.90 0.99 1.00 1.00 1.00
Mn 0.88 0.89 0.89 0.90 0.91 0.92
Cu 0.70 0.85 0.88 0.91 0.92 0.99
Al 0.65 0.84 0.99 1.00 1.00 1.00
Zn 0.50 0.51 0.53 0.56 0.98 0.98
Ni 0.24 0.88 0.90 0.99 0.99 0.99

Ba 0.03 0.35 0.69 0.95 0.97 1.00




Figure 5.2. Histograms of the standardized sums of logratioed residuals for Nazca Plate
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In conclusion, the choice of of the number of endmembers in a mixture analysis
is an estimate of the true number, and that should be tested. Relying in particular on the
coefficient of determination to measure the precision of the estimates for all or most of
the variables is to run the risk of over-specification. That is, the identification of
endmembers that do not exist and the inclusion of elements into the solution that were
not part of the natural mixing process. This is a direct consequence of reckoning errors

into the systematic part of the solution.

There are plausible theoretical grounds for anticipating normal distributions
among the logratio residuals of those variables that do belong to a mixing process and
for which the estimated mixtures are close to the true mixtures. The testing of the
logratio residuals for each variable separately is a possibility, although the rejection of
the normal distribution hypothesis may not necessarily imperil a mixture hypothesis. A
single summary statistic can indicate directly when the systematic part of the estimated
model has been included in the errors, and when over-specification seems likely. This
statistic could possibly be improved by including in it only those variables that are

currently satisfactorily estimated.
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Ch ke kdkookokok kok ke ko e sk b sk ok ok ok ok ok ok ke SVDO FORTRAN * ks ok ok ok ke ok ok ok ok ok ke ok ke ok ok ke R Rk ok ok ok

NOTES: This program reads the arguments for the singular value
decomposition program SVD1 FORTRAN.

o0

CHARACTER*1 REPLY

COMMON /LABELl/NVAR,NEND,ISCALE,IUNIT,IPE,ICONT,ICON
Chhr A A rFr kA Ak IR AR KA I AR A IR R Ak kk ki ok h ok kA Ak ke kR ke kR Rk ke ki ok ok ko &k k ke k kb Kok ok ok

c MAIN program K
C*************'k*********************************************************
c Read required constants from terminal
CALL LOAD
c Write required constants to disk
CALL WRITE
c
STOP
ChExk End of MAIN program EREEE
END
c
C******************k****************************************************
e Procedure LOAD (load raw data) *

C***********************************************************************

SUBROUTINE LOAD
CHARACTER*1 REPLY
COMMON /LABELl/NVAR,NEND,ISCALE,IUNIT,IPE,ICONT,ICON
1 CONTINUE
WRITE (6, 2)
2 FORMAT (2(/),5X,’Enter the number of variables (at most 40)7)
READ (5, *) NVAR
WRITE (6, 3)
3 FORMAT (/,5X,’Enter the number of end-members (at most 10)7)
READ (5, *) NEND
4 CONTINUE

WRITE (6,5)
5 FORMAT (/,5X,’Key in 0 for no scaling of variables,’/

@ 5 oM 1 for division by observed mazimum,’/
@ 5X,’ 2 for fractional ranges’)

READ (5, *) ISCALE
IF (ISCALE.NE.O.AND.ISCALE.NE.l.AND.ISCALE.NE.2) GO TO 4
6 CONTINUE
WRITE (6, 7)
7 FORMAT (/,5X,’Row normalize (objects into unit vectors) ? y/n’)
READ (6, 8) REPLY
8 FORMAT (Al)
IF (REPLY.NE.’Y'.AND.REPLY.NE.'Y’.AND.
@ REPLY.NE.'N'.AND.REPLY.NE.’n') GO TO 6
IUNIT = 1
IF (REPLY.EQ.'N’.OR.REPLY.EQ.'n') IUNIT = 0
9 CONTINUE
WRITE (6, 10)
10 FORMAT(/,5X,’Does the data sum to 100% ? y/n’)
READ (6,11) REPLY




11

@

12
13
14

@

15
16

17

18

19

C****

c

C*x*x*x**x

C*
Chr*rkkx

CxXx*xk
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FORMAT (A1)
IF (REPLY.NE.’Y’.AND.REPLY.NE.’y’.AND.

REPLY.NE.’N’ .AND.REPLY.NE.’n’) GO TO 9
IPE = 1
IF (REPLY.EQ.’N’ .OR.REPLY.EQ.’n’) IPE = 0
CONTINUE

WRITE (6, 13)

FORMAT (/, 5X, ' Output loadings, ranks, angles and estimates? y/n’)
READ (6,14) REPLY

FORMAT (A1)

IF (REPLY.NE.’Y’.AND.REPLY.NE.'y'.AND.

REPLY.NE.’N’ .AND.REPLY.NE.’n’) GO TO 12
ICONT = 1
IF (REPLY.EQ.’N’.OR.REPLY.EQ.’n’) ICONT = 0
CONTINUE

WRITE (6,16)

FORMAT (/, 5X, ' OQutput non-negative estimates only (CONLSQ)? y/n’)

READ (6,17) REPLY

FORMAT (A1)

IF (REPLY.NE.'Y’.AND.REPLY.NE.’y'.AND.
REPLY.NE.’N’.AND.REPLY.NE.’n’) GO TO 15

ICON = 1

IF (REPLY.EQ.’N’.OR.REPLY.EQ.'H’) ICON = 0

WRITE (6, 18)

FORMAT (/,5X,'All correct ? y/n ")

READ (5,19) REPLY

FORMAT (A1)
IF (REPLY.NE.’Y’.AND.REPLY.NE.’y') GO TO 1
RETURN

End of procedure LOAD Fkhdk
END
******************************************************************

Frocedure WRITE (Write constants to disk) =*
******************************************************************
SUBROUTINE WRITE
COMMON /LAEELl/NVAR,NEND,ISCALE,IUNIT,IPE,ICONT,ICON
WRITE (11,1) NVAR,NEND,ISCALE,IUNIT,IPE,ICONT,ICON
FORMAT (1X, 7I5)

RETURN
End of procedure WRITE SRR
END
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CHxhkkk Kk kkokkhkhkkkokokhkdhkkkkk SVD1 FORTRAN Je e g ok ok ok ok gk ok ok ok kK ok ek ko ke k ok R ok ok

c
C NOTES: (1) This is a singular value decomposition algorithm.

(8 (2) Input raw data must be in freefield.
c (3) Summary information is written to disk ddname 13,
C estimated A ddname 11, recovered A ddname 17, the
C loading matrix ddname 15, the eigenvectors (columns)
c ddname 19.
c
REAL*16 A(800,40),AE(800,40),D(800,10),RLNGTH (800),
@ RANGE(40),C(40,40),V(40,40),SSQS,ZER0,0NE,TEST,
@ WE (800, 40)
C
COMMON /LABELl/ZER0,0NE,TEST,NOBJ,NVAR,NEND,MAL,ISCALE,IUNIT,IPE
@ , ICONT, ICON, IFAULT
@ /LABEL2/A
@ /LABEL3/RANGE
@ /LABEL4/C,V
@ /LABEL5/D
@ /LABEL6/RLNGTH
Crxkx Define constants
ZERO = 0.0Q+00
ONE = 1.0Q+00
TEST = 1.0Q-10
C***********************************************************************
c MAIN program x
C***********************************************************************
C Load raw data from disk
CALL LOAD
C Rescale columns into fractional ranges
CALL SCALE
C Rescale rows into unit vectors
CALL UNIT
c Form the matrix product C = A transpose by A
CALL SYMM
c Eigenvalues and eigenvectors of matrix C
CALL EIGEN
c
IF (ICONT.EQ.1l) THEN
(o} Components on orthogonal axes (Loading matrix)
CALL COMPTS
c
CALL EST
C
END IF
STOP
Chskx End of MAIN program RAHRK
END
c
c***********************************************************************
C* Procedure LOAD (load raw data) %

C***********************************************************************




@
@
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CHkkx
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@
@
@
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SUBROUTINE LOAD
REAL*16 A (800,40),ZERO,ONE, TEST
COMMON /LABELl/ZER0,0NE,TEST,NOBJ,NVAR,NEND,MAL,ISCALE,IUNIT,IPE
» ICONT, ICON, IFAULT
/LABEL2/A
Program reads numbers of elements, end-members etc
READ (12, *) NVAR, NEND, ISCALE, IUNIT, IPE, ICONT, ICON
Program reads and counts rows of input matrix
NOBJ = 1
CONTINUE
Input matrix must be in freefield
READ (10,*, END = 2) (A(NOBJ,J),J = 1,NVAR)
NOBJ = NOBJ + 1
GO TO 1
CONTINUE
Program counts one more than true number of records
NOBJ = NOBJ - 1

RETURN
End of procedure LOAD EREER
END
******************************************************************
Procedure SCALE (scale columns) %

******************************************************************

SUBROUTINE SCALE
REAL*16 A(800,40),RANGE(40),RMAX,RMIN,ZER0,0NE,TEST
COMMON /LABEL1/ZERO, ONE, TEST,M, N, KE, MAL, ISCALE, IUNIT, IPE, ICONT,
ICON, IFAULT
/LABEL2/A
/LABEL3/RANGE
clumn ranges are initialized to one in case there is no scaling
DO 1 J=1,N
RANGE (J) = ONE
CONTINUE
IF (ISCALE.GT.0) THEN
CALL TITLE
DO 6 J=1,N
Ml=1
DO 2 K=2,M
IF (A(K,J).GT.A(M1,J)) Ml = K
CONTINUE
RMAX = A (M1, J)
Ml=1
DO 3 K=2,M
IF (A(K,J).LT.A(M1,J)) Ml = K
CONTINUE
RMIN = A (M1,J)
IF (ISCALE.EQ.1l) RANGE (J)
IF (ISCALE.EQ.2) RANGE (J)
DO 4 I=1,M
IF (ISCALE.EQ.1l) A(I,J)= A(I,J)/RMAX
IF (ISCALE.EQ.2) A(I,J)=(A(I,J)-RMIN) /RANGE (J)
CONTINUE

RMAX = RMIN
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WRITE (13,5) J,RMAX,RMIN

5 FORMAT (1X/5X, ' VARIABLE’ , I3, 5X, ' MAXIMUM =’ ,Fl3.6,
@ 5X, "MINIMUM =’,F13.6)
6 CONTINUE
END IF
RETURN
Cr k¥ End of procedure SCALE XX
END
C***********************************************************************
c Procedure UNIT (unit vectors) k

c***********************************************************************

SUBROUTINE UNIT
REAL*16 A(800,40),RLNGTH(800),R,SSQ,ZER0,0NE,TEST
COMMON /LABELl/ZER0,0NE,TEST,M,N,KE,MAL,ISCALE,IUNIT,IPE,ICONT,
@ ICON, IFAULT
@ /LABEL2/A
@ /LABEL6/RLNGTH
C**** Row lengths stored as ONE in case of no row unitizing
DO 1 I=1,M
RLNGTH (I) = ONE
1 CONTINUE
CHhkkx If TUNIT = 1, the rows of A become unit vectors
IF (IUNIT.EQ.l1l) THEN
DO 4 I=1,M

SSQ=ZERO
DO 2 J=1,N
SSQ = S8Q + A(I,J)**2
2 CONTINUE
R = QSQRT (SSQ)
RLNGTH(I) = R
DO 3 J=1,N
A(I,J) = A(I,J)/R
3 CONTINUE
4 CONTINUE
END IF
RETURN
Chkkk End of procedure UNIT ok ok
END
C***********************************************************************
€ Procedure SYMM (A transpose * A) ¥

C***********************************************************************

SUBROUTINE SYMM
REAL*16 A(800,40),C(40,40),Vv(40,40),ZERO,ONE, TEST
COMMON /LABELl/ZER0,0NE,TEST,M,N,KE,MAL,ISCALE,IUNIT,IPE,ICONT,

@ ICON, IFAULT
@ /LABEL2/A
@ /LABEL4/C,V
DO 3 I=1,N
DO 2 J=1,N

C(I,J)=ZERO
DO 1 K=1,M
C(I,J)=C(I,J)+A(K,I)*A(K,J)
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1 CONTINUE
2 CONTINUE
3 CONTINUE
RETURN
Cx¥xk End of procedure SYMM Fide XK
END
Ck % & % % % %k ok ok kK K K K Kk KK Kk sk K R ok e ke ok Kk ok sk K ok T ok SR ke ok ok ok Sk Sk T A ok kK ke ok k ke kR kR ok Kk ok ke ok K ke
cC Procedure EIGEN *

O e T I S SV S P

SUBROUTINE EIGEN
REAL*16 C(40,40),V(40,40),EVAL(40),X1(40),X2 (40),ZERO, ONE,

1 SUMM, TEST, SUM1, SUM2, VLNGTH, DIAG, EIGVAL, CUMT

COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, N, KE,MAL, ISCALE, IUNIT, IPE,
@ ICONT, ICON, IFAULT
d /LABEL4/C,V

CALL TITLE
Erizas Sum the diagonal elements of symmetric matrix C

I=1,
DIAG = DIAG + C(I,I)
Do 1 J=1,N
v(I,J) = C(I,J)
1 CONTINUE
2 CONTINUE
CredRe Form matrix C squared, to separate eigenvalues
DO 5 I=1,N
DO 4 Jg=1,N
C(I,J) = ZERO
DO 3 K=1,N
C(I,J) = C(I,J) + V(I,K)*V(K,J)
CONTINUE
CONTINUE
CONTINUE
CmFk M = eigenvalue number, starting with the largest
< SUMM = ZERO
M =1
6 CONTINUE
IT =0
DO 7 I=1,N
X1(I) =
CONTINUE
IT = IT + 1
DO 9 I=1,
X2 (1) ZE
DO 9 J=1,N
X2(I) = X2(I) + C(I,J)*X1(J)
9 CONTINUE
EIGVAL X2 (1)
SUM1 ZERO
Do 10 I=1,N
X2 (I) = X2(I)/EIGVAL

U W

ONE

@ ~1
Iz

RO
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SUM1
X1(I)
10 CONTINUE

SUM1 + QABS (X2 (I) - X1(I))
X2 (I)

o

C
IF (IT.LT.1000) THEN
GO TO 14
ELSE
IF (SUM1.GT.SUM2) THEN
WRITE (6,13)
13 FORMAT (2(/),5X,’Iteration diverging, processing stopped’)
MAL = 1
GO TO 21
END IF
END IF
14 CONTINUE
SUM2 = SUM1
IF (SUM1.GT.TEST) GO TO 8
CHxkikdk Otherwise, end of iteration for M-th EV
C EVAL (M) EIGVAL
EVAL (M) QSQRT (EIGVAL)
SUMM SUMM + EVAL (M)
CUMI SUMM/DIAG
15 SUM1 = ZERO
DO 16 I=1,N
SUM1 = SUM1 + X2 (I)*X2(I)
16 CONTINUE
VLNGTH = QSQRT (SUM1)
DO 17 I=1,N
V(I,M) = X2(I)/VLNGTH
17 CONTINUE

DO 18 I=1,N
DO 18 J=1,N
C(I,J) = C(I,J) - V(I,M)*V(J,M)*EIGVAL
18 CONTINUE

IF ((M.LT.KE) .AND. (CUMI.LT.0.9999Q+00)) THEN
C IF (M.LT.KE) THEN
M=M+ 1
GO TO 6
ELSE
IF (M.LT.KE) THEN
KE = M
WRITE (13, *) ’>>>>>>> Number of endmembers
WRITE( 6,%*) ’>>>>>>> Number of endmembers
WRITE (13, 20)
20 FORMAT (2 (/))
END IF
END IF
CREES, End of computation of eigenvectors
21 CONTINUE
WRITE (5, 24)

’ ,KE
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24 FORMAT (10(/),2X,’ EIGENVALUES’, (/))
WRITE (5,25) (EVAL(I),I=1,KE)
25 FORMAT (2X,F15.7)
CUMI = ZERO
SUMM = ZERO
DO 30 I=1,KE
SUMM = SUMM + EVAL (I)
EVALI = 100*EVAL (I)/DIAG
CUMI = CUMI + EVALI
WRITE (13,29) I,EVAL(I),EVALI,CUMI
29 FORMAT (1X,’EIGENVALUE ’,I3,F15.7,F15.2,’ %’,F15.2," %)
30 CONTINUE
WRITE (13,31) SUMM,DIAG,M
31 FORMAT (2(/),1X,’SUM OF EIGENVALUES = ’,F9.4,5X,

1 "SUM OF DIAGONAL ELEMENTS =’,F10.4,5X,'M =',14)
C
C Write to disk the NEND eigenvectors that are associated with the
C NEND largest eigenvalues in order of magnitude. These vectors form
C an approximate basis for matrix A as at beginning of this procedure
c
CALL TITLE
WRITE (13,36) KE
DO 34 I=1,N
WRITE (19,33) (V(I,J),J=1,KE)
WRITE (13,37) (V(I,J),J=1,KE)
33 FORMAT (10F8.4)
34 CONTINUE
WRITE (6,35) KE
35 FORMAT (/5X,I2,’ Eigenvectors stored and written to disk’)
36 FORMAT (0’ ,”THE’ ,13,’ EIGENVECTORS')
37 FORMAT (1X,10F10.4)
RETURN
Ch**x* End of procedure EIGEN Hokk K
END

C***************************‘k*******************************‘k******'k****

c

Procedure COMPTS (Components or loading matrix) *

c***********************************************************************

@

oEe®E

SUBROUTINE COMPTS
REAL*16 A(800,40),D(800,10),C(40,40),V(40,40),
DJ(800),SsQ(10),SSQI, SSQJ, DMAXJ, DMINJ, ZERO, ONE, TEST
INTEGER IROW (800,10)
COMMON /LABELI/ZER0,0NE,TEST,NOBJ,NVAR,NEND,MAL,ISCALE,IUNIT,IPE,
ICONT, ICON, IFAULT
/LABEL2/A
/LABEL4/C,V
/LABELS5/D

Compute the loading matrix D(I,J).
CALL TITLE

DO 3 I=1,NOBJ
DO 2 J=1,NEND
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D(I,J) = ZERO
DO 1 K=1,NVAR
D(I,J) = D(I,J) + A(I,K)*V(K,J)
1 CONTINUE
2 CONTINUE
3 CONTINUE
® Construct ranks of elements in columns of initial loading matrix
DO 600 J=1,NEND
DMAXJ = D(1,J)
DO 601 I=1,NOBJ
DJ(I) = D(I,J)
IF (DJ(I).GT.DMAXJ) DMAXJ = DJ(I)
601 CONTINUE
DO 6 K=1,NOBJ
DMINJ = DMAXJ

DO 4 I=1,NOBJ
IF (DJ(I).LE.DMINJ) THEN
DMINJ = DJ(I)

IMINJ = I
END IF
4 CONTINUE
IROW (IMINJ,J) = K
CE** Push out of reach
DJ (IMINJ) = 2*DMAXJ
6 CONTINUE
600 CONTINUE
Ch*kk Write loadings to diskfiles, ddnames 13 and 15

WRITE (13,7) NEND
7 FORMAT (’0’,1X,’OBJECT NUMBER’ /
@ > THE’ ,I3,’ COLUMNS OF INITIAL LOADING MATRIX
@)
DO 10 I=1,NOBJ
WRITE (13,8) I, (D(I,J),J=1,NEND)
WRITE (15, 9) (D(I,J),J=1,NEND)
8 FORMAT (1X,I3,10(1X,F10.4))
9 FORMAT (10F8. 4)
10 CONTINUE
Cx ok ok ok e d % ok ok Row-unitized data
IF (IUNIT.EQ.1l) THEN
DO 12 J=1, NEND
SSQJ = ZERO
DO 11 I=1,NOBJ
SSQJ = SSQJ + D(I,J)*D(I,J)
171 CONTINUE
SSQ (J) = SSQJ
12 CONTINUE
WRITE (13,13)
162 FORMAT (/1X, ' COLUMN SUMS OF SQUARES OF INITIAL LOADINGS (ROW UNITIZ
@ED DATA)’ /)
WRITE (13,14) (SSQ(J),J=1,NEND)
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14 FORMAT (4X,10(1X,F10.4))
END IF
CALL TITLE
WRITE (13,703)
703 FORMAT (1X,’RANKS OF ELEMENTS IN COLUMNS OF INITIAL LOADING MATRIX’
@/s)
DO 700 I=1,NOBJ
WRITE (13,701) I, (IROW(I,J),J=1,NEND)
701 FORMAT (1X, I4,2X,101I5)
700 CONTINUE
RETURN
CHrxkx End of procedure COMPTS i
END
C*********************************t*************************************
(& Procedure EST (Estimate matrix A using end-members as a basis)*
C*********************************'k*************************************
SUBROUTINE EST
REAL*16 A(800,40),D(800,10),AE(800,40),V(40,40),C(40,40),DJ(800),
EM(40,40),X(40),XE (40),
RLNGTH (800) , RANGE (40) , SUM, ZERO, ONE, TEST, PI, ANGLE, SUMA, SUMAE
COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND,MAL, ISCALE, IUNIT, IPE
, ICONT, ICON, IFAULT
/LABEL2/A
/LABEL3/RANGE
/LABEL4/C,V
/LABELS5/D
/LABEL6/RLNGTH

@ e®E® ® ®

Compute the estimate of A (AE) using NEND columns of D and

NEND columns of V (NEND rows of V transpose)

Since matrix multiplication is associative, columns are rescaled
before rows.
CALL TITLE

CALL TRNSPS (V, EM, NVAR, NEND)

a0

Call the A estimate AE(I,J).

(pNeNe]

DO 4 I=1,NOBJ
SUMA = ZERO
SUMAE = ZERO
DJ(I) = ZERO
DO 2 J=1,NVAR
AE(I,J) = ZERO
DO 1 K=1,NEND
AE(I,J) = AE(I,J) + D(I,K)*V(J,K)

1 CONTINUE
X(J) = A(I,J)
XE (J) = AE(I,J)
2 CONTINUE

IF (ICON.EQ.l) THEN
CALL CONLSQ (EM, X, XE, NVAR, NEND)
END IF
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DO 101 J = 1,NVAR
SRHAK Constrained LSQ estimate only if IFAULT = 0
IF (IFAULT.EQ.0) AE(I,J) = XE (J)
SUMA = SUMA + A(I,J)*A(I,J)
SUMAE = SUMAE + AE (I, J) *AE(I,J)

101 CONTINUE
SUMAE = QSQRT (SUMAE)
SUMA = QSQRT (SUMA)

DO 3 J=1,NVAR
DJ(I) = DJ(I) + (AE(I,J)/SUMAE)* (A(I,J)/SUMA)
3 CONTINUE

4 CONTINUE
G RK Inverse operations to procedures SCALE and UNIT
DO 7 I=1,NOBJ
SUMA = ZERO

SUMAE = ZERO
DO 5 J=1,NVAR

Cxxk* Rescale all matrix elements
A(I,J) = A(I,J)*RANGE (J)*RLNGTH (I)
AE(I,J) = AE(I,J)*RANGE(J)*RLNGTH(I)
SUMA = SUMA + A(I,J)
SUMAE = SUMAE + AE(I,J)
5 CONTINUE
Ch*x* If IPE = 1, input data summed to 100%
IF (IPE.EQ.1l) THEN
DO 6 J=1,NVAR
A(I,J) = 100*A(I,J)/SUMA
AE(I,J) = 100*AE(I,J)/SUMAE
6 CONTINUE
END IF
7 CONTINUE
c
C Write out the estimate of A to disk, ddname = 11
C
DO 11 I=1,NOBJ
Cx* WRITE (11,8) NEND
C** 8 FORMAT (I2)
Jl = 1
Jg2 = 8
CrXHN Integer arithmetic. To obtain 8 data-values per record
KQ = NVAR/S8
KS = 8* (NVAR/8)

IF (KS.LT.NVAR) KQ = KQ + 1
DO 10 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (11,9) (AE(I,J),Jd=J1,J2)
WRITE (17,9) ( A(I,J),J=J1,J2)

ELSE
WRITE (11,9) (AE(I,J),J=J1,NVAR)
WRITE (17,9) ( A(I,J),J=J1,NVAR)
END IF

9 FORMAT (8F10.4)
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Jl = J1 + 8
J2 = J2 + 8
10 CONTINUE

11 CONTINUE
WRITE (13,14)
WRITE (13,15)
PI = 4*QATAN (ONE)
SUMA = ZERO
DO 13 I=1,NOBJ
ANGLE = 180*QARCOS (DJ(I)) /PI
SUMA = SUMA + ANGLE
WRITE (13,12) I,DJ(I),ANGLE
12 FORMAT (1X, I4,2F10.4)
13 CONTINUE
SUMA = SUMA/NOBJ
WRITE (13,16) SUMA
14 FORMAT (1X,’GOODNESS OF FIT BY ANGLES (BEFORE RESCALING OF DATA)’)
15 FORMAT (“0’,1X,’OBJECT NUMBER’ /
| @ 9X, "COSINES OF ANGLES BETWEEN PREDICTED AND OBSERVED’ /
@ 19X, ' ANGLES (DEGREES) BETWEEN PREDICTED AND OBSERVED’)
| 16 FORMAT (’/0’,4X, MEAN ANGULAR ERROR =’,F10.4,’ DEGREES’)

RETURN
| O 375 End of procedure EST Lt
END
C***********************************************************************
c Procedure TITLE (Page throw and title)

‘ C***********************************************************************
| SUBROUTINE TITLE
‘ REAL*16 ZERO,ONE, TEST
CHARACTER*3 R, S
| COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCALE, IUNIT, IPE
@ , ICONT, ICON, IFAULT

| WRITE (13,1)

1 FORMAT (’17)

| R = 'No ’
S = "No’
IF (IUNIT.EQ.1l) R = 'Yes'’
IF (IPE.EQ.1) S = 'Yes’

WRITE (13,2) NOBJ,NVAR,NEND, ISCALE,R,S
2 FORMAT (1X,'NUMBERS OF OBJECTS =’,I4,
‘ VARIABLES =/,13,
END-MEMBERS =/, I2,
SCALE NUMBER = ’,12,
ROW-UNITIZE = ’,A3,
100% ROW-SUM = 7 ,A3,/,70")

e ®

~ N NN
N S N v o~

RETURN

END
C**********************************************************************
C* Procedure CONLSQ ®
c**********************************************************************

SUBROUTINE CONLSQ (EM, X, XE, NVAR, NEND)

REAL*16 EM(40,40),BZ(10,40),C(lO,lO),DZ(lO),X(40),XE(40),
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Q Y (10) , RMIN, RMAX, EMIJZ
ZERO = 0.0Q+00
RMIN = ZERO
IZ =0
Crekidek Identify the largest negative
DO 1 J=1,NVAR
IF (XE(J) .LT.RMIN) THEN
12 = 12 + 1
JzZ = J
RMIN = XE (J)
END IF
1 CONTINUE
CHhHchk If a ’"largest’ negative estimate exists then

Ch*xkx

CHh*xx*k

Ch*x**k

Lo oES )

Chx*x*xx%x

IF (IZ.GT.0) THEN
RMAX = QABS (EM(1,JZ))
M =1

Identify the largest element in column JZ

DO 2 I=1,NEND
EMIJZ = QABS (EM(I,JZ))

IF (EMIJZ.GT.RMAX) THEN

RMAX = EMIJZ
IM=1I
END IF
CONTINUE

Exclude X (JZ) from vector X
DO 3 J =1,NVAR

Jl =g
IF (J.GT.Jz) J1l =J - 1
X(J1) = X(J)
CONTINUE
Compute the new basis matrix
DO 5 I = 1,NEND
I1 =1I
IF (I.GT.IM) I1 =TI - 1
DO 4 J = 1,NVAR
Jl = J
IF (J.GT.JZ) J1l =J - 1
BZ(I,J) = EM(I,J) - EM(I,JZ)*EM(IM,J)/EM(IM,JZ)
BZ (I1,J1) = BZ(I,J)
CONTINUE
CONTINUE
DO 8 I = 1,NEND - 1
DO 7 J = 1,NEND - 1
C(I,J) = ZERO
DO 6 K = I,NVAR - 1
C(I,J) = C(1,J) + BZ(I,K)*Bz(J,K)
CONTINUE
CONTINUE
CONTINUE
NEND1 = NEND - 1

CALL INVERS (C,NEND1, IFAULT)

Continue provided matrix C non-sing
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IF (IFAULT,EQ.0) THEN
DO 10 J = 1,NEND - 1

Y (J) = ZERO
DO 9 I =1,NVAR - 1
Y(J) = Y(J) + X(I)*Bz(J,I)
9 CONTINUE
10 CONTINUE

DO 12 J = 1,NEND - 1
DZ (J) = ZERO
DO 11 K = 1,NEND - 1
DZ(J) = DZ(J) + Y(K)*C(K,J)

11 CONTINUE
12 CONTINUE
DO 14 J = 1,NVAR - 1
XE (J) = ZERO
DO 13 K = 1,NEND - 1
XE(J) = XE(J) + DZ(K)*BZ(K,J)
13 CONTINUE
14 CONTINUE
CFdewiE Shuffle components of XE along
DO 15 J = 1,NVAR - 1
Jl =J -1
IF ((NVAR+1-J).LT.JZ) Jl = J
XE (NVAR-J1l) = XE (NVAR-J)
15 CONTINUE
XE (JZ) = ZERO
(ot gt tts End if "largest’ negative
END IF
(SRl End if IFAULT = 0
END IF
RETURN
CRRNE End of procedure CONLSQ
END
C***********************************************************************
C* Procedure INVERS X

C'k**********************************************************************

SUBROUTINE INVERS (A,N, IFAULT)
REAL*16 A(lO,lO),B(lO,lO),ZER0,0NE,TEST,DET,PVT,RMAX,DUM

Cx&k* Form the inverse of NXN matrix A, and return as A
ZERO = 0.0Q+00
ONE = 1.0Q+00
TEST = 1.0Q-15
IFAULT = 0
DO 2 I=1,N
DO 1 J=1,N
B(I,J) = ZERO
1 CONTINUE
B(I,I) = ONE
2 CONTINUE
DET = ONE
Ok ko Outside loop starts below

DO 9 J=1,N




Chrxx* Find largest element in column j (j < N) of matrix A
KMAYX = J
IF (J.LT.N) THEN
RMAX = QABS (A (J,.J))
DO 3 K=J+1,N
IF (QABS(A(K,J)).GT.RMAX) THEN
RMAX = QABS (A (K, J))

KMAX = K
END IF
3 CONTINUE
END IF
G X Interchange the j-th and KMAX-th rows, maximising pivot

IF (KMAX.GT.J) THEN
DO 4 Jl1=1,N
DUM = A (J,J1)
A(J,J1) = A(KMAX,Jl)
A (KMAX,Jl) = DUM
DUM = B(J,J1)
B(J,J1) = B(KMAX,J1)
B (KMAX, J1) = DUM
4 CONTINUE
END IF
PVT = A(J,J)
DET = DET*PVT
IF (QABS (PVT) .GT.TEST) THEN
DO 5 J1 = 1,N
A(J,J1) = A(J,J1)/PVT
B(J,J1) = B(J,Jl) /PVT
CONTINUE
DO 7 I=1,N
DUM = A(I,J)
DO 6 Jl=1,N
IF (I.NE.J) THEN

w

A(I,Jl) = A(I,Jl) - A(J,Jl)*DUM
B(I,Jl) = B(I,Jl) - B(J,Jl)*DUM
END IF
6 CONTINUE
7 CONTINUE
Cldak® Warning, near-singularity of matrix A
ELSE
WRITE (6, 8)
8 FORMAT (2 (/) ,5X, ' Processing stopped. Determinant approaching’,
1 " zero. ')
(L Set flag to stop further processing
IFAULT = 1
GO TO 12
END IF
9 CONTINUE

DO 11 I=1,N
DO 10 J=1,N

10

A(I,J) = B(I,J)

CONTINUE
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11 CONTINUE
12 CONTINUE

Chrx®R End of outside loop
RETURN
Ee%kk End of procedure INVERS
END
C***********************************************************************
C Procedure TRNSPS (transpose)

ChAIIAA XA A A AR R AAARARRA AR A AR AR A AA R KA AN AR AT A AR AR Ak hkhhhhkhkhhhkhkhkhhkhhhhkhkhhk

SUBROUTINE TRNSPS (V,EM, NVAR, NEND)
REAL*16 EM(40,40),V (40, 40)
DO 2 I=1,NEND
DO 1 J=1,NVAR
EM(I,J) = V(J,I)

1 CONTINUE
2 CONTINUE
RETURN
CHEHRE End of procedure TRNSPS RAHR

END
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c************************* LSQSEEKO FORTRAN khkkhkhkkhkkhhkhkhhkhhkhkhhrhkdhhkkhkhkkhdkhk
(2

c NOTES: This program reads the arguments for the iterative least

C squares partitioning program LSQSEEK1 FORTRAN
c

INTEGER IROW(10)
CHARACTER*1 REPLY
COMMON /LABEL1/IROW,NVAR,NEND,MAL, ISCALE, IUNIT, IG

Chrhhkhhkhkhhhhhhkhhkhhhhdhdhkk kb ko hdkrhhhhhkhhhhhkhhhhhhxhhdhrhkhhhhhhddhhhhk

C MAIN program *
C***********************************************************************
[ Read required constants from terminal
CALL LOAD
c Write required constants to disk
CALL WRITE
&
STOP
ok e End of MAIN program A3 e
END
c
c***********************************************************************
C* Procedure LOAD (load raw data) *

Chrhkhkhhhhkhhkhkhhhk kA A A A KA R AR AR KA KA AR A AR KRR IR AR AT A kA kA bk ok khhh Ak bk hkhhkk

SUBROUTINE LOAD
INTEGER IROW (10)
CHARACTER*1 REPLY
COMMON /LABELI/IROW,NVAR,NEND,MAL,ISCALE,IUNIT,IG
1 CONTINUE
WRITE (6, 2)
2 FORMAT (2 (/) ,5X, "Enter the number of variables (at most 40)’)
READ (5, *) NVAR
WRITE (6, 3)
3 FORMAT (/,5X,"Enter the number of end-members (at most 10)7)
READ (5, *) NEND
WRITE (6,21) NEND
21 FORMAT (/,5X,’Key in the ’,I2,’ row numbers which identify end-mem
@ers’, /)
DO 22 I=1,NEND
READ (5, *) IROW(I)
22 CONTINUE
4 CONTINUE
WRITE (6, 5)
5 FORMAT (/,5X,’Key in 0 for no scaling of variables,’/
@ 5X,7 1 for division by observed maximum, ’/
@ 53, ¥ 2 for fractional ranges’)
READ (5, *) ISCALE
IF (ISCALE.NE.Q.AND.ISCALE.NE.1.AND.ISCALE.NE.2) GO TO 4
6 CONTINUE
WRITE (6, 7)
7 FORMAT (/,5X,’Row normalize (objects into unit vectors) ? y/n’)
READ (6,8) REPLY
8 FORMAT (Al)




9
10

11

@
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IF (REPLY.NE.’Y’ .AND.REPLY.NE.’y’ .AND.

REPLY.NE.’N’ .AND.REPLY.NE.'n’) GO TO 6
IUNIT = 1
IF (REPLY.EQ.’N’.OR.REPLY.EQ.’n’) IUNIT = 0
CONTINUE

WRITE (6,10)

FORMAT (/, 5X, "Key in number of iterations (or 0 for none)’)
READ (5, *) MAL

CONTINUE

WRITE (6,12)

12 FORMAT (/,5X,’Key in 0 for LSQ error vector coefficients,’/

15

16

Ch*xxk

&

@

5X;* 1 for mean error vector coefficients’)
READ (5, *) IG
IF (IG.NE.O.AND.IG.NE.1l) GO TO 11
WRITE (6, 15)
FORMAT (/,5%X,’All correct ? y/n )
READ (5,16) REPLY

FORMAT (A1)
IF (REPLY.NE.’Y’ .AND.REPLY.NE.’y’) GO TO 1
RETURN
End of procedure LOAD RPN
END

Chekdhhkhdhhhbhhhkhhhkhhhhk Ak kA hkAdhhrhddhdrhhdbhhhkhdhhhhhhhhbrhhhhrhrrdhhhhhhok

C*

Procedure WRITE (Write constants to disk) *

ChrhhhkhkhhAhkrdkA AR KAAAXA KA KA AR KAk hk bk hhkhA AR Ak AR Ak kb hkrddhkhkdhdoh kb hkdhkdhd

Chx**k

SUBROUTINE WRITE
INTEGER IROW(10)
COMMON /LABEL1/IROW,NVAR,NEND,MAL, ISCALE, IUNIT, IG
WRITE (11,1) NVAR,NEND,MAL,ISCALE, IUNIT, IG
FORMAT (1X, 6I8)
WRITE (11,2) (IROW(I),I=1,NEND)
FORMAT (1X,10I6)
RETURN
End of procedure WRITE ThELR
END
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C************************* LSQSEEKl FORTRAN **kkkkkkhkhhhhkhkhhkhhkhhkhkdhhhkhhkhk

C
C NOTES: (1) A least squares iterative partitioning program
c (2) Input raw data must be in freefield, row totals = 100%
C (3) Summary information is written to disk ddname 13,
c the merged matrices A plus estimated A ddname 11,
c the loading matrix, ddname 15, the eigenvectors ddname 19,
(& and when k = 2, the two most extreme endmembers possible
C ddname 21.
C
c
c

REAL*16 A (800,40),AE(800,40),E(800,40),D(800,40),R(800),

@ RANGE (40) ,C (40, 40) ,B (40,40) ,EX(40,40),0P (40, 40),

@ SSQS, ZERO, ONE, TEST

INTEGER IROW (40)
C

COMMON /LABEL1/ZERO,ONE, TEST,NOBJ, NVAR, NEND,MAL, ISCAL, IUNT, IFAULT

@ /LABEL2/A,EX, OP, IROW

@ /LABEL3/RANGE

@ /LABEL4/B

@ /LABEL5/D, AE

@ /LABEL6/R

@ /LABEL7/E

@ /LABEL8/IG

ZERO = 0.00Q+00

ONE = 1.0Q+00

TEST = 1.0Q-20
C***********************************************************************
(o) MAIN program v
C***********************************************************************
g Load raw data from disk

CALL LOAD
c Rescale columns into fractional ranges

CALL SCALE
c Rescale rows into unit vectors

CALL UNIT
Cc

CALL EMS
c

CALL SEEK
C

CALL COMPTS
G

CALL ENDMEM
c

CALL EST
(o

STOP

CrREH End of MAIN program TRHEK
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END
&
c***********************************************************************
Gk Procedure LOAD (load raw data) *

C******************************************‘k****************************

SUBROUTINE LOAD
REAL*16 A(800,40),EX(40,40),0P (40,40) , ZERO, ONE, TEST
INTEGER IROW (40)
COMMON /LABEL1/ZERO, ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCAL, IUNT, IFAULT
@ /LABEL2/A,EX, OP, IROW
@ /LABEL8/1G
CH*Hkx Program reads numbers of elements, end-members etc
READ (12, *) NVAR, NEND,MAL, ISCAL, IUNT, IG
READ (12, *) (IROW(I),I=1,NEND)

Crrkk Program reads and counts rows of input matrix
NOBJ = 1
1 CONTINUE
Ch*xx Input matrix must be in freefield

READ (10,*, END = 2) (A (NOBJ,J) ,J = 1,NVAR)
NOBJ = NOBJ + 1
GO TO 1
2 CONTINUE
CEAixS Program counts one more than true number of records
NOBJ = NOBJ - 1

RETURN
QAk Ak End of procedure LOAD Kk Kk k
END
C***********************************************************************
C Procedure SCALE (scale columns) *

C***********************************************************************

SUBROUTINE SCALE
REAL*16 A (800,40),EX(40,40),0P (40,40),
@ RANGE (40) , RMAX, RMIN, ZERO, ONE, TEST
INTEGER IROW (40)
COMMON /LABELI/ZER0,0NE,TEST,M,N,KE,MAL,ISCAL,IUNT,IFAULT
@ /LABEL2/A, EX, OP, IROW
@ /LABEL3/RANGE
C*** Column ranges are initialized to one in case there is no scaling
DO 1 J=1,N
RANGE (J) = ONE
1 CONTINUE
IF (ISCAL.GT.0) THEN
CALL TITLE
DO 6 J=1,N
Ml=1
DO 2 K=2,M
IF (A(K,J).GT.A(M1,J)) Ml = K

2 CONTINUE
RMAX = A (M1,J)
Ml=1

DO 3 K=2,M
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IF (A(K,J).LT.A(M1,J)) Ml = K
3 CONTINUE

RMIN = A (M1, J)
IF (ISCAL.EQ.1) RANGE (J)
IF (ISCAL.EQ.2) RANGE (J)
DO 4 I=1,M

IF (ISCAL.EQ.1l) A(I,J)= A(I,J)/RMAX

IF (ISCAL.EQ.2) A(I,J)=(A(I,J)~-RMIN)/RANGE (J)

RMAX
RMAX - RMIN

4 CONTINUE
WRITE (13,5) J,RMAX,RMIN
5 FORMAT (1X/5X, ' VARIABLE’ , I3, 5X, MAXIMUM =/,F13.6,
@ 5X, "MINIMUM =/,F13.6)
6 CONTINUE
END IF
RETURN
CRX X% End of procedure SCALE L Y
END
C***********************************************************************
c Procedure UNIT (unit vectors) *

C***********************************************************************
SUBROUTINE UNIT
REAL*16 A (800,40),EX(40,40),0P (40, 40),
@ R(800),S5Q, ZERO, ONE, TEST, RLNGTH
INTEGER IROW (40)
COMMON /LABEL1/ZERO,ONE, TEST,M, N, KE,MAL, ISCAL, IUNT, IFAULT

@ /LABEL2/A, EX,OP, IROW
@ /LABEL6/R
Chxkk If IUNT = 1, the rows of A become unit vectors
Chxkkk R(I) is the length of the i-th row vector
DO 3 I=1,M
R(I) = ONE
IF (IUNT.EQ.1l) THEN
SSQ=ZERO
DO 1 J=1,N
SSQ = SSQ + A(I,J)**2
1 CONTINUE
RLNGTH = QSQRT (SSQ)
DO 2 J=1,N
A(I,J) = A(I,J)/RLNGTH
2 CONTINUE
R(I) = RLNGTH
END IF
3 CONTINUE
RETURN
Chxk* End of procedure UNIT IR
END
C***********************************************************************
C Procedure EMS (Copy rows of A into end-members)

C***********************************************************************

SUBROUTINE EMS
REAL*16 A(800,40),B(40,40),C(40,40),EX(40,40),0P (40,40),
@ ZERO,ONE, TEST
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INTEGER IROW (40)
COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCAL, IUNT, IFAULT

@ /LABEL2/A,EX, OP, IROW
@ /LABEL4/B
CHhXxE Form array of end-members from specified rows of A

DO 2 I=1,NEND
DO 1 J=1,NVAR
B(I,J) = A(IROW(I),J)
1 CONTINUE
2 CONTINUE
DO 5 I=1,NEND
DO 4 J=1,NEND
C(1,J) = ZERO
DO 3 K=1,NVAR
C(I,J) = C(I,J) + B(I,K)*B(J,K)

3 CONTINUE
4 CONTINUE
5 CONTINUE

CALL INVERS (C, NEND, IFAULT)
DO 8 I=1,NEND
DO 7 J=1,NVAR
EX(I,J) = ZERO
DO 6 K=1,NEND

EX(I,J) = EX(I,J) + C(I,K)*B(K,J)
6 CONTINUE
7 CONTINUE
8 CONTINUE

C** Construct the orthogonal projection operator OP (pxp), into S-space
DO 11 I=1,NVAR
DO 10 J=1,NVAR
OP (I,J) = ZERO
DO 9 K=1,NEND
OP(I,J) = OP(I,J) + B(K,I)*EX(K,J)

9 CONTINUE
10 CONTINUE
11 CONTINUE
e*% Store initial EMs in matrix EX (Extremes), spanning k-space

DO 13 I=1,NEND
DO 12 J=1,NVAR
EX(I,J) = B(I,J)

12 CONTINUE
13 CONTINUE
RETURN
G Rk End of procedure EMS
END
c****************'k*-k****************************************************
c Procedure SEEK (Search for EMS)

C‘k**********************************************************************

SUBROUTINE SEEK

REAL*16 A (800,40),AE (800,40),E(800,40),RANGE (40),X (40) ,XE (40),

@ D(800,40),C(40,40) ,EX(40,40) ,0P (40,40),B(40,40),F (40,40),
@ Y (40) , ZERO, ONE, TEST, SUM, EIJ




C**

C**

C**

C**

*
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@
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INTEGER NE (800) ,NF (40), IROW (40)
COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND,MAL, ISCAL, IUNT, IFAULT
/LABEL2/A,EX, OP, IROW
/LABEL3/RANGE
/LABEL4/B
/LABEL5/D, AE
/LABEL7/E
/LABEL8/IG

CALL TITLE
WRITE (6, *)

ISSS>>5>> IG = ', IG
Permit zero number of iterations

MAL = MAL + 1
DO 31 IT = 1,MAL
IT1 = IT - 1
DO 3 I=1,NEND
DO 2 J=1,NEND
C(I,J) = ZERO
DO 1 K=1,NVAR
c(I,J) C(I,J) + B(I,K)*B(J,K)
CONTINUE
CONTINUE
CONTINUE
CALL INVERS (C,NEND, IFAULT)

Compute the loading matrix D(I,J).
DO 8 M=1,NOBJ
DO 5 J=1,NEND
Y (J) ZERO
DO 4 I=1,NVAR
Y(J) = ¥Y(J) + A(M,I)*B(J,I)
CONTINUE
CONTINUE
DO 7 J=1,NEND
D (M, J) ZERO
DO 6 K=1,NEND
D(M,J) = D(M,J)
CONTINUE
All loadings must be non-negative
IF (D(M,J).LT.ZERQO) D(M,J) = ZERO
CONTINUE
CONTINUE
IF (IUNT.EQ.O0)

+ Y (K) *C (K, J)

THEN
Rescale loadings to unit row-sums
DO 11 I=1,NOBJ
SUM ZERO
DO 9 J=1,NEND
SUM SUM + D(I,J)
CONTINUE
DO 10 J=1,NEND
D(I,J) D(I,J)/sSuM
CONTINUE
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11 CONTINUE
END IF
CHhxxk Form AE, estimate of (scaled) matrix A * ok ok ok
DO 14 I=1,NOBJ
DO 13 J=1,NVAR
AE(I,J) = ZERO
DO 12 K=1,NEND
AE(I,J) = AE(I,J) + D(I,K)*B(K,J)

12 CONTINUE
CHxx Construct the error matrix E, E(I,J) = EIJ
EIJ = A(I,J) - AE(I,J)
CH¥K Prevent possible underflow later
IF ((-TEST.LT.EIJ).AND. (EIJ.LT.TEST)) EIJ = ZERO
E(I,J) = EIJ
13 CONTINUE

14 CONTINUE
CALL MEANSQ (IT1)

Ch&kdk ***%* Test to continue iterations Fdke koK
IF (IT.LT.MAL) THEN
Crk ke ke **** Identify zero error vectors IS
DO 300 I = 1,NOBJ
SSQ = ZERO
DO 301 J = 1,NVAR
SSQ = SSQ + E(I,J)*E(I,J)
301 CONTINUE
NE(I) = 0
IF (SSQ.GT.TEST) NE(I) = 1
300 CONTINUE
€ Rorkokik **** Count the non-zero vectors Fok kX
DO 303 J = 1,NEND
NF(J) =0
DO 304 I = 1,NOBJ
NC = 0
IF (D(I,J).GT.ZERO) NC =1
NF (J) = NF (J) + NC*NE(I)
304 CONTINUE
IF (NF(J).EQ.0) NF(J) = 1

303 CONTINUE
C*** Improve matrix B, construct error vector coefficient matrix G
c
C*** If IG = 0 then construct kxk matrix D-transpose*D (k = NEND)
c
IF (IG.EQ.Q) THEN
DO 17 I=1,NEND
DO 16 J=1,NEND
C(I,J) = ZERO
DO 15 K=1,NOBJ

C(I,J) = C(I,J) + D(K,I)*D(K,J)
15 CONTINUE .
16 CONTINUE

17 CONTINUE
CALL INVERS (C,NEND, IFAULT)




246

END IF
c
C**** Construct the transpose of error vector coefficient matrix G
DO 20 I=1,NOBJ
DO 19 J=1,NEND

CHhEx EIJ is a dummy variable

EIJ = ZERO

IF (IG.EQ.0) THEN

DO 18 K=1,NEND
EIJ = EIJ + D(I,K)*C(K,J)

18 CONTINUE
ELSE
EIJ = D(I,J) /NF (J)
END IF
AE(I,J) = EIJ
19 CONTINUE
20 CONTINUE
DO 100 I=1,NOBJ
NZ =0
DO 101 J=1,NEND
IF (D(I,J).GT.ZERO) NZ = NZ + 1
IF ((D(I,J).LT.TEST).AND. (IG.EQ.1)) AE(I,J) = ZERO
101 CONTINUE

IF (NZ.EQ.NEND) THEN
DO 110 J = 1,NEND
AE(I,J) = ZERO
110 CONTINUE
END IF
100 CONTINUE
DO 103 I=1,NEND
DO 104 J=1,NVAR
F(I,J) = ZERO
DO 105 K=1,NOBJ

F(I,Jd) = F(I,J) + AE(K,I)*E(K,J)
105 CONTINUE
B(I,J) = B(I,J) + F(I,J)
104 CONTINUE
103 CONTINUE
CxEkx Project new EMs into space S (constrained if necessary)

DO 27 I = 1,NEND
DO 23 J = 1,NVAR
C(I,J) = B(I,J)

23 CONTINUE

DO 25 J = 1,NVAR

B(I,J) = ZERO
DO 24 K=1,NVAR
B(I,J) = B(I,Jd) + C(I,K)*OP(K,J)
24 CONTINUE
25 CONTINUE
27 CONTINUE
Clakiz k% Enforce constant row-sums on matrix B and rescale

DO 30 I=1,NEND

*k kKk




28
29
30
31
32

Ch***x
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SUM = ZERO
DO 28 J=1,NVAR
IF (B(I,J).LT.ZERO) B(I,J) = ZERO

B(I,J) = B(I,J)*RANGE (J)
SUM = SUM + B(I,J)
CONTINUE
DO 29 J=1,NVAR
B(I,J) = 100*B(I,J)/ (SUM*RANGE (J))
CONTINUE
CONTINUE
END IF
CONTINUE

WRITE (13,32) (IROW(J),J=1,NEND)
FORMAT (5(/) ,1X, ' INITIAL END-MEMBERS AT ROWS’ ,10I6)
RETURN

End of procedure SEEK Feokikede

END

C***********************************************************************

c

Procedure COMPTS (Components or loading matrix) *

C***********************************************************************

C
Chkx*
1
2
3
4
S
Crxx*
11

@ @

D ®

SUBROUTINE COMPTS

REAL*16 A(800,40),AE(800,40),D(800,40),R(800),C(40,40),B(40,40),
EX (40,40) ,0P (40, 40),
Y (40),S50Q(40) ,SUM, SSQI, SSQJ, ZERO, ONE, TEST

INTEGER IROW (40)

COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCAL, IUNT, IFAULT
/LABEL2/A,EX,OP, IROW
/LABEL4/B
/LABEL5/D, AE
/LABEL6/R

CALL TITLE
Unitized rows require rescaled loadings
IF (IUNT.EQ.1l) THEN
DO 2 I=1,NOBJ
DO 1 J=1,NEND
D(I,J) = D(I,J)/R(IROW(J))
CONTINUE
CONTINUE
DO 5 I=1,NOBJ
SUM = ZERO
DO 3 J=1,NEND
SUM = SUM + D(I,J)
CONTINUE
DO 4 J=1,NEND
D(I,J) = D(I,J)/SUM
CONTINUE
CONTINUE
END IF
Write loadings to diskfiles, ddnames 13 and 15
WRITE (13,11) NEND
FORMAT (’0’,1X,’OBJECT NUMBER’/
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@ £ 5%, ' THE’,I3,’ COLUMNS OF LSQ LOADING MATRIX’/)
WRITE (13,19) (IROW(J),J=1,NEND)
WRITE (13,20)
DO 14 I=1,NOBJ
WRITE (13,12) I, (100*D(I,J),J=1,NEND)
WRITE (15,13) (D(I,J),J=1,NEND)

12 FORMAT (1X,I3,10(1X,F10.2))
1.3 FORMAT (10F8.4)
14 CONTINUE
Chxkkkkkhkkk Row-unitized data

IF (IUNT.EQ.1) THEN
DO 16 J=1,NEND
5SQJ = ZERO
DO 15 I=1,NOBJ
S$SQJ = SSQJ + D(I,J)*D(I,J)
15 CONTINUE
SSQ(J) = SSQJ
16 CONTINUE
WRITE (13,17)
17 FORMAT (/1X,’COLUMN SUMS OF SQUARES OF INITIAL LOADINGS (ROW UNITIZ
@ED DATA)’ /)
WRITE (13,18) (SSQ(J),J=1,NEND)
18 FORMAT (4X,10 (1X,F10.4))
19 FORMAT (5X,10 (1X,I10))
20 FORMAT (7 0')

END IF

RETURN
CHkkk End of procedure COMPTS ek

END
C***********************************************************************
C Procedure ENDMEM (Rescale, store and print estimated EMs) *

C***********************************************************************
SUBROUTINE ENDMEM
REAL*16 A(800,40),D(800,40),AE(800,40),B(40,40),C(40,40),DJ(800),
EX (40,40),0P (40, 40),
RANGE (40) , SUM, ZERO, ONE, TEST, PI, ANGLE, SUMA, SUMAE, DEL
INTEGER IROW (40)
COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCAL, IUNT, IFAULT
/LABEL2/A, EX, OP, ITROW
/LABEL3/RANGE
/LABEL4/B
/LABEL5/D, AE

® ®

e

IF (NEND.EQ.2) THEN
CALL TWOEXT
END IF

Rescale the estimate of B

Since matrix multiplication is associative, columns are rescaled
before rows.
CALL TITLE

[PEeNeNeNe!
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(©
DO 3 I=1,NEND
SUMA = ZERO
DO 1 J=1,NVAR
B(I,J) = B(I,J)*RANGE (J)
SUMA = SUMA + B(I,J)
1 CONTINUE
DO 2 J=1,NVAR
B(I,J) = 100*B(I,J)/SUMA
2 CONTINUE
3 CONTINUE
(&
C Write out the estimated endmembers
c
DO 11 I=1,NEND
WRITE (13,8) IROW(I),I
8 FORMAT (1X,’ (7 ,I4,7) END-MEMBER 7 ,12)
Jl =1
J2 = 10
Cxrkk Integer arithmetic. To obtain 10 data-values per record
KQ = NVAR/10 + 1
DO 10 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (13,9) ( B(I,J),J=J1,J2)
ELSE
WRITE (13,9) ( B(I,J),J=J1,NVAR)
END IF
9 FORMAT (20X,10F10.4)
Jl = J1 + 10
J2 = J2 + 10
10 CONTINUE
11 CONTINUE
DO 14 I=1,NEND
\ Jl = 1
| J2 = 8
CHERY Integer arithmetic. To obtain 8 data-values per record
KQ = NVAR/8 + 1
DO 13 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (19,12) ( B(I,J),Jd=J1,J2)
ELSE
WRITE (19,12) ( B(I,J),J=J1,NVAR)
END IF
12 FORMAT (8F10.4)
Jl = J1 + 8
J2 = J2 + 8
13 CONTINUE
14 CONTINUE
RETURN
Chdekik End of procedure ENDMEM x XX
END

C*******'k***************’k***‘k*******************************************




C Procedure EST (Estimate matrix A using end-members as a basis) *
C***********************************************************************

SUBROUTINE EST

REAL*16 A(800,40),D(800,40),AE(800,40),B(40,40),C(40,40),

@ EX (40,40) ,0OP (40,40) ,DJ(800),

RANGE (40) , SUM, ZERO, ONE, TEST, PI, ANGLE, SUMA, SUMAE, DEL

INTEGER IROW (40)

COMMON /LABELl/ZER0,0NE,TEST,NOBJ,NVAR,NEND,MAL,ISCAL,IUNT,IFAULT

/LABEL2/A, EX,OP, IROW
/LABEL3/RANGE
/LABEL4/B
/LABEL5/D, AE

o ®®

Compute the estimate of A (AE)

QO0000

before rows.
CALL TITLE

Since matrix multiplication is associative, columns are rescaled

Chxxk Row I must sum to 100 for A

DO 7 I=1,NOBJ
SUMA = ZERO
DO 5 J=1,NVAR
C****
A(I,J) = A(I,J)*RANGE (J)
SUMA = SUMA + A(I,J)
5 CONTINUE
DO 6 J=1,NVAR
A(I,J) = 100*A(I,J)/SUMA
6 CONTINUE
7 CONTINUE

Call the A estimate AE (I, J).

s XeNP]

DEL = 1.00Q-20
DO 4 I=1,NOBJ

SUMA = ZERO

SUMAE = ZERO

DJ(I) = ZERO

DO 2 J=1,NVAR
AE(I,J) = ZERO

DO 1 K=1,NEND
AE(I,J) = AE(I,J) + D(I,K)*B(K,J)

Rescale the columns

1 CONTINUE
SUMA = SUMA + A(I,J)*A(I,J)
SUMAE = SUMAE + AE (I,J)*AE(I,J)
2 CONTINUE
SUMAE = QSQRT (SUMAE)
SUMA = QSQRT (SUMA)
DO 3 J=1,NVAR
DJ(I) = DJ(I) + (AE(I,J)/SUMAE)* (A(I,J)/SUMA)
3 CONTINUE

DJ(I) = DJ(I) - DEL
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4 CONTINUE

C Write out the estimate of A to disk, ddname = 11

c
c
Ch*kx
Y
10
13
12
13
14
5
16
Ck***
CHkh*
c
Ch***

DO 11 I=1,NOBJ
Jl =1
J2 = 8
Integer arithmetic. To obtain 8 data-values per record
KQ = NVAR/8 + 1

DO 10 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (11,9) (AE(I,J),J=J1,J2)
WRITE (17,9) ( A(I,J),J=J1,J2)
ELSE
WRITE (11,9) (AE(I,J),J=J1,NVAR)
WRITE (17,9) ( A(I,J),J=J1,NVAR)
END IF
FORMAT (8F10.4)
Jl = J1 + 8
J2 = J2 + 8
CONTINUE
CONTINUE
WRITE (13,14)
WRITE (13,15)
PI = 4*QATAN (ONE)
SUMA = ZERO
DO 13 I=1,NOBJ
ANGLE = 180*QARCOS (DJ(I))/PI
SUMA = SUMA + ANGLE
WRITE (13,12) I,DJ(I),ANGLE
FORMAT (1X,I4,2F10.4)
CONTINUE
SUMA = SUMA/NOBJ
WRITE (13,16) SUMA
FORMAT (1X, ' GOODNESS OF FIT BY ANGLES ‘)
FORMAT (' 0’ ,1X, 'OBJECT NUMBER’ /
@ 9X,’COSINES OF ANGLES BETWEEN PREDICTED AND OBSERVED’ /
@ 19X, " ANGLES (DEGREES) BETWEEN PREDICTED AND OBSERVED")
FORMAT (‘0" ,4X, "MEAN ANGULAR ERROR =’ ,F10.4,’ DEGREES’)
RETURN
End of procedure EST Kok ek
END
***********'k*******************************************************
Procedure TITLE (Page throw and title)
*******************************************************************
SUBROUTINE TITLE
REAL*16 ZERO,ONE, TEST
CHARACTER*3 R
COMMON /LABELl/ZER0,0NE,TEST,NOBJ,NVAR,NEND,MAL,ISCAL,IUNT,IFAULT
WRITE (13,1)
FORMAT (’17)
R = 'No '
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IF (IUNT.EQ.l) R = ’Yes’
WRITE (13,2) NOBJ,NVAR,NEND, ISCAL,R
2 FORMAT (2X,’ NUMBER OF OBJECTS =’,I4,

@ ", NUMBER OF VARIABLES =',1I3,

¢ ", NUMBER OF END-MEMBERS =’ ,I2,

@ F, SCALE NUMBER = ’,I2,

@ " ROW-UNITIZE = ’,A3,/,70")

RETURN

END
C***********************************************************************
C Procedure MEANSQ (Form mean of sum of squares of all nxp errors)*

CHkkkkkkkdkok ok ok ok ok ok Kk ok & ko k Kk ok ok ok o & sk ok & ok ok ok ok Sk Kk g ok ok ok e ke ko o o e ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ek

SUBROUTINE MEANSQ (IT1)

REAL*16 A(800,40),E(800,40),EX(40,40),0P (40,40),SSQ, ZERO,ONE, TEST
INTEGER IROW (40)

COMMON /LABEL1/ZERO,ONE, TEST, NOBJ, NVAR, NEND, MAL, ISCAL, IUNT, IFAULT
@ /LABEL2/A, EX, OP, IROW

@ /LABEL7/E

SSQ = ZERO
DO 2 I=1,NOBJ
DO 1 J=1,NVAR
SSQ = SSQ + E(I,J)*E(I,J)
1 CONTINUE
2 CONTINUE
SSQ = SSQ/ (NVAR*NOBJ)
WRITE (13,16) IT1,SSQ
16 FORMAT (’0’,4X,’ ITERATION NUMBER ’,I4,
@ ’ MEAN SQUARED ERROR =’ ,F15.8)
RETURN
CHh¥ &k End of procedure MEANSQ KREX
END
C**********************************************************************

C* Procedure CONLSQ A
C**********************************************************************

SUBROUTINE CONLSQ (EM, X, XE, NVAR, NEND)
REAL*16 EM(40,40),Bz(40,40),C(40,40),Dz(40),X(40),XE (40),

@ Y (40) , RMIN, RMAX, EMIJZ
ZERO = 0.0Q+00
RMIN = ZERO
Iz =0
CR ATk Identify the largest negative
DO 1 J=1,NVAR
IF (XE(J).LT.RMIN) THEN
Iz = IZ + 1
Jz = J
RMIN = XE (J)
END IF
1 CONTINUE
CHhek*x If a "largest’ negative estimate exists then ...

IF (IZ.GT.0) THEN
RMAX = QABS (EM(1,JZ))




Ch* %%

Chx*x*x*

Cx***

(oo B0 I 3]

Ch*xkx

i1
12

IM =1
Identify the largest element in column JZ
DO 2 I=1,NEND
EMIJZ = QABS (EM(I,JZ))
IF (EMIJZ.GT.RMAX) THEN

RMAX = EMIJZ
IM =1
END IF
CONTINUE

Exclude X (JZ) from vector X
DO 3 J =1,NVAR
Jl = J
IF (J.GT.JZ) J1 =J - 1
X(J1) = X(J)
CONTINUE
Compute the new basis matrix
DO 5 I = 1,NEND
I1 =1
IF (I.GT.IM) I1 =1 - 1
DO 4 J = 1,NVAR

Jl =g
IF (J.GT.Jz) J1 =J - 1
BZ2(I,J) = EM(I,J) - EM(I,JZ)*EM(IM,J)/EM(IM,JZ)
BZ (I1,J1) = BZ(I,J)
CONTINUE

CONTINUE
DO 8 I = 1,NEND - 1
DO 7 J = 1,NEND - 1
C(I,J) = ZERO
DO 6 K = I,NVAR - 1
C(1,J) = C(1,J) + BZ(I,K)*BZ(J,K)
CONTINUE
CONTINUE
CONTINUE
NEND1 = NEND - 1
CALL INVERS (C,NEND1, IFAULT)
Continue provided matrix C non-sing
IF (IFAULT.EQ.0) THEN
DO 10 J = 1,NEND - 1

Y (J) = ZERO
DO 9 I = 1,NVAR - 1
Y(J) = Y(J) + X(I)*Bz(J,I)
CONTINUE
CONTINUE
DO 12 J = 1,NEND - 1
DZ (J) = ZERO
DO 11 K = 1,NEND - 1
DZ (J) = DZ(J) + Y (K)*C(K,J)
CONTINUE
CONTINUE

DO 14 J = 1,NVAR - 1
XE (J) = ZERO
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DO 13 K = 1,NEND - 1
XE (J) = XE(J) + DZ(K) *BZ (K, J)

13 CONTINUE
14 CONTINUE
AN Shuffle components of XE along
DO 15 J = 1,NVAR - 1
Jl=J -1

IF ((NVAR+1-J).LT.JZ) Jl = J
XE (NVAR-J1l) = XE (NVAR-J)

15 CONTINUE
XE (JZ) = ZERO

C% Xk End if ’largest’ negative ...

END IF
Cxxx* End if IFAULT = 0

END IF

RETURN
CEEa% End of procedure CONLSQ

END
c***********************************************************************
C* Procedure INVERS %

C %k ok ok sk ke ok ok ok ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok o ok ok ok ok g 9 ok ok ok ok ok ok ok S ok ok ok T ok ok s ok ok ok gk ok ok ok ok ek ok ok

SUBROUTINE INVERS (A,N, IFAULT)
REAL*16 A(40,40),B(40,40),ZERO,ONE, TEST,DET, PVT, RMAX, DUM
Cx*xk% Form the inverse of NXN matrix A, and return as A
ZERO 0.00Q+00
ONE 1.00+00
TEST 1.00-15
IFAULT 0
DO 2 I=1,N
DO 1 J=1,N
B(I,J) = ZERO
1 CONTINUE
B(I,I) = ONE
2 CONTINUE
DET = ONE
Cr¥xk Outside loop starts below
DO 9 J=1,N
Ch*xk Find largest element in column j (j < N) of matrix A
KMAX = J
IF (J.LT.N) THEN
RMAX = QABS (A(J,J))
DO 3 K=J+1,N
IF (QABS(A(K,J)) .GT.RMAX) THEN
RMAX = QABS (A (K, J))

KMAX = K
END IF
3 CONTINUE
END IF
CEREN* Interchange the j-th and KMAX-th rows, maximising pivot

IF (KMAX.GT.J) THEN
DO 4 Jl1=1,N
DUM = A(J,J1)
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A(J,J1) = A(KMAX,Jl)
A (KMAX, J1) = DUM
DUM = B (J,J1)

B(J,Jl) = B(KMAX,Jl)
B (KMAX,Jl) = DUM
4 CONTINUE
END IF

PVT = A(J,J)
DET = DET*PVT
IF (QABS(PVT) .GT.TEST) THEN
DO 5 J1 = 1,N
A(J,J1) = A(J,J1) /PVT
B(J,J1) = B(J,Jl)/PVT

5 CONTINUE

Ch*k*x

8

Cx*x*%x*

10
11
12

Ch**%
C*x*x %%
Ok ***

c
Ch*x%

DO 7 I=1,N
DUM = A(I,J)
DO 6 Jl=1,N
IF (I.NE.J) THEN

A(I,Jl) = A(I,J1) - A(J,J1)*DUM
B(I,Jl) = B(I,J1) - B(J,J1)*DUM
END IF
CONTINUE
CONTINUE
Warning, near-singularity of matrix A
ELSE
WRITE (6, 8)
FORMAT (2 (/) ,5X, ' Processing stopped. Determinant approaching’,

1 ! zero. 7)
Set flag to stop further processing

IFAULT = 1
GO TO 12
END IF
CONTINUE
DO 11 I=1,N

DO 10 J=1,N

A(I,J) = B(IIJ)

CONTINUE
CONTINUE
CONTINUE

End of outside loop
RETURN
End of procedure INVERS

END
*******************************************************************

Procedure TWOEXT (Most extreme possible pair of EMs) ®
*******************************************************************

SUBROUTINE TWOEXT

REAL*16 A (800,40),D(800,40),AE (800,40),B(40,40),C(40,40),DJ(800),
@ EX (40, 40),0P (40, 40) ,
@ RANGE (40) , SUM, ZERO, ONE, TEST, PI, ANGLE, SUMA, SUMAE, DEL
INTEGER IROW (40)

COMMON /LABEL1/ZERO, ONE, TEST, NOBJ, NVAR, NEND,MAL, ISCAL, IUNT, IFAULT
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@ /LABEL2/A, EX, OP, IROW
@ /LABEL3/RANGE
@ /LABEL4/B
@ /LABEL5/D, AE
If NEND = 2 then the set of feasible estimates is a straight line.
This procedure locates the most extreme possible estimates on that
line,
CALL TITLE
NEG = 1
I =0
99 CONTINUE
I =1I+1
DEL = (1.00Q-06)*I
DO 100 J = 1,NVAR
SUMA = (ONE + DEL)*EX(1,J) - DEL*EX(2,J)
IF (SUMA.LT.ZERO) NEG = =1
100 CONTINUE

IF (NEG.GT.0) GO TO 99
DEL = (1.00Q-06)*(1 - 1)
WRITE (13,201) DEL
201 FORMAT (5X,’DEL = ’,F10.4)
DO 101 J = 1,NVAR
C(1,J) = (ONE + DEL)*EX(1,J) = DEL*EX (2, J)
101 CONTINUE

NEG = 1
I=0
199 CONTINUE
I=I+1
DEL = (1.000-06)*I
DO 102 J = 1,NVAR
SUMA = (ONE + DEL)*EX(2,J) - DEL*EX(1,J)
IF (SUMA.LT.ZERO) NEG = =1
102 CONTINUE

IF (NEG.GT.0) GO TO 199
DEL = (1.00Q-06)*(I - 1)
WRITE (13,301) DEL
301 FORMAT (5X,’DEL = ’,F10.4)
DO 103 J = 1,NVAR
C(2,J) = (ONE + DEL)*EX(2,J) - DEL*EX(1,J)
103 CONTINUE

WRITE (13,104)
104 FORMAT (0’ ,5X,’ THE TWO MOST EXTREME POINTS POSSIBLE’, /)
DO 3 I=1,NEND
SUMA = ZERO
DO 1 J=1,NVAR
C(I,J) =C(I,J)*RANGE (J)
SUMA = SUMA + C(I,J)
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1 CONTINUE
DO 2 J=1,NVAR
C(1r,J) = 100*C(1,J)/SUMA

2 CONTINUE
3 CONTINUE
c
C Write out the most extreme possible pair of EMs
c
DO 11 I=1,NEND
WRITE (13,8) I
8 FORMAT (1X, 'MOST EXTREME ’,I2)
Jl =1
J2 = 10
Ckh&kx Integer arithmetic. To obtain 10 data-values per record
KQ = NVAR/10 + 1
DO 10 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (13,9) ( C(I,J),J=J01,J2)
ELSE
WRITE (13,9) ( C(I,J),J=J1,NVAR)
END IF
9 FORMAT (20X,10F10.4)
JlL = J1 + 10
J2 = J2 + 10
10 CONTINUE
11 CONTINUE
DO 14 I=1,NEND
Jl =1
J2 = 8
Corkkk Integer arithmetic. To obtain 8 data-values per record
KQ = NVAR/8 + 1
DO 13 JJ =1,KQ
IF (NVAR.GT.J2) THEN
WRITE (21,12) ( C(I,J),J=J1,02)
ELSE
WRITE (21,12) ( C(I,J),J=J1,NVAR)
END IF
12 FORMAT (8F10.4)
Jl = J1 + 8
J2 = J2 + 8
13 CONTINUE
14 CONTINUE
RETURN
Ck*xx End of procedure TWOEXT FhER

END
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