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AsStlrAo:

A study is:ade of the equations of heat coaduction wlth sl-ow

combustion. A nathematical nod,el- is established from an interpreta-

tion of the physical raodel, r+ith a few sinpJ-ifying assumptions.

ftris gives rise to a coupled pair of partial d.ifferentiaL eguatious

which are the d.irect concern of this thesisr fhe depend.ent variables

being the tenperature and reactant concentration as functLons of

position and. tine.

The modeL is shown to possess a unique solution for which some

properties, such as Lipschitz conclitj-ons etc. , are establishedl. An

j-nvestigation into the use of a conparieon theorem j-s givenr in

which it is shcwn that no ilirect comparison theorem is i,oesible for

this and related systerirs. However, it is also shown tbat it is

possible to obtain upper and. loirer estimates by appeal-ing to tbe

physical model.

.il, d,iscussion of the bound.ary layer is given and this is fol.l-owedl

by a cletail ed d.iscussion of stabiJ-ity. fhe latter has been one of

the main concerns of earLier authors oa this systenr. Iheir use of

a space-averagiag process to establish a criterion for stability i6

al-so discussed,

Frobably one of the nost interesting features of this system ie
the subclass of problems for which the reactaat is exhausted in a

finite tirne, These hare been named the 'Icut-offtf problems and. they

can be tikened to the free bound.ary problens in fluict ctynarulcs. R

discussion of the cut-off prob}em is given with particuLar exampl-ee

cbosen to il-lustrate the nain features.
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Chapter 1

INTRODUCTION

This thesis j-s concernect wlth the cliffusion of beat 3-n a given

naterial which is undergoing internaL combustion. The nateriaL con-

tains reactant which is consumed by this conbuetion, and heat is
produced. ft is assumed that both the thernal conductivity and cap-

acity of the material as a whore are unchanged by this proces6. Tbe

heat thus produced, is conducted through the material and so gives

rise to a corresponding tenperature increase and. .Gnhances the react-
ion rate. It is the intention of this thesj.s to set up a mathematical

model for this phenomenon and to show that there exists a unique

solutioa' which does in fact represent the temperature aud reactant

concentration. Considerabte attention wilL be 6iven to particular
examples which ilrustrate many of the qualitative a.speete of the

problen.

Recently the problem has received considerable attention and

an extensive literature on this and related problens has accr:mulated.

A comprehensive account of some of the earlier work is given in
Frank-Kamenetskii 1. This work is confined to reactions in whieh

the rate at which the reaction proceed.s is independent of how much

reactant is present at any time (such reactions a.re carLed zero order
rea.ctions). This problem, by no means a triviar- one, is nonetheless
a much easier one to solve. For there is now just one dependent

variablet that of the tenperature which is obtained as a fuactioa
of position and tine. However in the general case, in which the

1.
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reaction rate does depend on the reactant concentration (say to the

nth power), there is a coupling effect in the differential equations.

That is, there are two dependent variables, tbat of the tenperature

and reactant concentration, both of which appear in eacb tlifferentj-al-

equation.

Frank-Kanenetskii derlves the steady-state solution for a

zero order reaction in one di-nension and examines the condi-tions

under which it is possible to obtain such a sol-ution. The extreme

conditions under which this is possibre are ca1Ied the crltical
cond.itions. chanbre 2 coatains a similar treatment for two

dimensional problems. Later work 314 u"r been generarised. to a

nth order reaction, i.e. one in which the reaction rate d.epeads on

the ath power of the reactant concentration. Both of these authors

have used space-e.v€raged. tenperatures, i.e. have converted. what

were partial differential equations into ordinary differential
equations J-n time.

The author lras introduced. to this problen in connection with
the self-heating of woor-. This has been a subject of study for a

number of years in New Zealand, and the prevention of spontaneous

combustion in wool has an obvious relevance to the export trade of
this country. Many experinents have been caried out to d.eternine

the tenperature rises that actually do occur under various conditions.
The results of these and nany assocj-ated calculations are avaj-lable
in walke" et "1 

5'6: Different shapes are used., for exanple
cylindrical, spherical etc. The difficurty of obtaining solutions
for these shapes generally increases with the geometry of the



material. This is seen to be so, for in the case of a aero order

reaction, such as that discussed by Frank-Kanenetskii and Chambre,

no equivalent exact solution can be obtained in three dimensions.

rn wake aad walk et ? , use is mad^e of the numericaL soJ-uti-on of the

problem for a sphere to calculate the central tenperature rises in
geometries which are mathematicalJ-y less tractable than that bf the

former

The approach presented here wilL be more qualitative, though

many examples will be given. After setting up the model, further
conments will be made on the space-averaging process. ( See Chapter S).

I.1 Definltion of the Mod.el

The rate at whicb the reaction proceeds is measured, by the

rate at which the reactant is consuned.. rf I denotes the

reactant concentration as a function of posj_tion (x) and time (t),

then

*i - - g(x'e'\)'

where o denotes the tenperature. The fact that this rate ls aleo
a function of position reflects the possibirity of a catalyst being
present within the material. An nth order reacti-on is one in which

Ta term It occurs in the ri-ght-hand side of equation (1) . rn
much of the literature use is made of the Anhenius equation

.N -BA
- AA € ,

constants.

0l=
at

whereAandBare

. . . , (1.1)

.... (t.z)

I Reference to equatlons
chapter number associated

in the same chapter
wi-th the nunber of

will not include the
the equation.
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The rate at which heat is produced per unit volune likewise

can be written

a = F(xrorl). . . (t.3)

This quantity Q is d.ireetly proportional to 9+ . The factor of
UL

proportionality is, in general, a function of temperature, since

the amount of heat produced by a given amount of reactant depends

on the temperature at which it is consumed. However, the authors

previously rneatiorr"dJ'4 h"rr" implied that e is in fact equal to a

constant nultiple of + . Therefore it nust be recognizecl that
OE

in writing

a = -"*f ..,. (L.4)

where a is a constant, that an approxiraation has been made.

To be preciee i-t is assumed. that this proportionality faetor can be

regard.ed as constant for the temperature range concerned, This

assumption will- be nade with many of the examples which are discussed.

herein, but it is to be rememberetl that there i-s this restriction to

the fittlng of the analysis to any particular problen.

The neclium is assumed to be of q dirnensions, that J-s, x denotes

a vector in the cartesian space of that dimension. The heat produced

by the conbustj-on of reactant di-ffuses through the nedium according

to the equation

. . . . (r.5)

wb'ere k and c are the thermal cond.uctivity and capacity of the
nnaterial respectively, both being constants. a is the r,aplacian
in q dinensions, i.e.

+ao = 1 d20

fid*+"'...(L.6)

kao + e = cft,



Equation (5) can be wrLtten

].Ae
=tc 0t

of time.

2. Thermal insulation
aewhich means ffi' = O

denotes differentlation

5,

f(x,orI) t . . ' . (t.7)

i.e. zero heat fl-ux on the surfacet

on aII points of the surface. 0/0N

in the direction of the outward normal-

AE

wbere !- = k/C, is the thermal diffusitivtty of the material. Tbus

there is the coupled pair of partial differential equatione (f) and

Q) to be solved with prescribecl initial and bound.ary coaditions.

Obviously the initial reactant concentration and temperature varla-

tion can be specified. Further a boundary condition on the tenpera-

ture and its first derivatives with respect to x is gj-ven. The

latter corresponds to whatever physical condition is imposed on the

surface of the naterial. The most usual of these are the following:

l. Prescribed surface temperature, which nay be a function

to the surface.

3, Radiation at the surface, where the flux across the surface

is assuned to be proporti-onal to the temperature difference

between the surface and the surrounding nedium, i.e.
.00 -,kEF + h(O - eo) = O on all points of the surface. The

quantity h j-s called the coefficient of surface heat transfer.

As h'+O this tends to the boundary condition 2, and as h+@

it tends to the condition L.

If the rate of reaction does not d.epencl on the reactant con-

centration then an immediate sinplification occurs. nquation (?)
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becones a quasi-linear equation for the depend,ent variable O. fhis
is the case investigated in Fraak-Kanenetskiil, with tbe rate of heat

procluction given in the Arrhenius equatioa (Z) witb n = O. No attenpt
was made in tbis work to dj-scuss the inpJ.icatione of the reactant be-

coming exhausted.. The reason beiug of course, that Frank-Famenetskil-

wae intereeted i-n the critical state and hence in tines long before

nuch reactant was consumed.. Eowever, consid.eratlon will be given to
this problem here (with general n) and it vtrtII be seen that a criterj.a
for esbablishing the types of reactions for which this doee occur can

be obtained.

In the uext chapter, the exi-stence and uniqueness of the solut6on
J-s proved. This is fol-l-owed. by a discussioa of comparison functione
and reference is made to the boundary layer in chapter 4. An expran-
ation l-s offerecl of the work of ThonasJ and nnfg4 (in whicb the idea
of space-averaged temperatures waa exploited) iu cnapted 5, where a
d'iscussLon of criticaL states is given arso, Final1y, a detal_Led

discussi-on of a particuLar cut-off problen is given in chapter 6.
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Chapter 2

EXISTENCE AND IINIQUENESS OF SOLUTION

Not all- differential equations have solutious. If a neaningful

physical- problen has been comectly fornuLated nathenatically as a

differential equation, then i-t should have a solution. Thus the

question of exi-stence arises. Further if a solution iloes existr wbat

of other possible solutj-ons? And so the question of uniqueness arises

a16o. It ts intend.ed. to establish the existence and uniquenes€ of the

solutions under conditions to be prescribed, and. deduce certain prop-

erties of these solutions.

The equations to be discussed are, of course, those of (t'L)

and (1.7) but it is intended to write these more general].y so as to

include more general situations, There are bowever, certain requirenents

which are suggested by this particuLar problem, as described in Chapter

J.. The functions f(xror\) ana g(xrOr\) are required to be bounded

functions of their argunents over any finite range. They wiLl, also be

continuous functions of their arguments, with the exception of a zero

reaction, if and when the reactant concentration (l) became z?too In

this case f and g will have finite d.iscontinuities when )t = O, since

obviously no heat can be prod.uced and no further reactant cao be con-

sumed once thls has occurred..

The differential- equatioas wiJ-3- be written a€:
q,

r(o) = f ",r(x,t)3.1qLf, ' oxroxt

IC
/ ti(*,t)oo
d dxi

B(x, t rgr\ )

+ c(xrt)o - ae
0t

aaa

f (xrt ror\ )

. (2.1)

OI
0t . . . . (Z,Z)
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The d.onain of the space varj-ables wiLl- be denoted by B. This describes

the volume in q d.inensions occupied by the nedium in which the equations

(2.1) and (Z.Z) apply. It can be seen that the above can be specialized

to the problen as posed j.n Chapter 1 by writing lgt as t' -g for g1

letting "tj = 6ij , all i'j

b+ - O r aJ-Li

c=0i

and supposing that f and g are independent of time, One reason that

the equations are wrj-tten in thj-s nore general way, is that this

r^rould be the first step to generalizing to a more realistic situation

in which the thernal properties of the mediun depended on the temper-

ature and reactant concentration.

The source terrn (-f) genera1-J-y wiJ-1 be positive as the conbustion

ie exothermic. AIso the source will- be a nond.ecreasing function of

temperature, since the rate at which heat is produced increases with,

or is unaffected by, temperature. Further the source w"iJ-J- be non-

d.ecreasing with the reactant concentration, for it usual.J'y depends

on )r lik" In where n)7 Q, SinilarJ.y g wil-l be aegative for the reactant

concentration decreases as the reaction proceeds. Also the reaction

rate (-g) is nondecreasing with tenperature and reactant concentration.

Hence in this particular problenn, the functions f 
".od 

g in equations
r5(f) and (20 wilL be nondecreasing in g and I. Thj.:s/a very usefuL fact

for it is possible to generate a sequence of bounds for the quantities

o and|. For, if an upper bound i.s inserted for \ :.n equation (1)

(i,e. more reactant is supposed. to be present than there is in reality)1
then there is a greater source and hence an upper bound is obtained
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for o. Likew"ise if a! upper bound io substituted for 0 in

equation (2) (i.e. the temperature is supposed to be hotter tban

it actually is), then there is a faster consumption of reactant I

and hence a lower bound is obtained for I This approach can

be used to denonstrate the existence of solutions to the equatlons.

However, though it is intencted to discuss this further, a mucb 
I

Iess restrictive proof can be given. 
I

A very sinilar system is exanined in ltcNabblO in which f was

required to be nonincreasing in I and g nondecreasing in O. McNabb

set up comparison theorems (which will be discussed later) and

using these, he established the existence and uniqueness of

solutions with these conditions. An apparently more geaeral

system is discussed in zeragi;alI, that is a system of n coupled

parabolic partial differentiaL equations,

t+t - Aui = fi(xrtrrr, ..., uil) r . . . . (2,3)
0t

for i = 1r ...1[1. Zeragija hae set up comparison theorems and

d.educed^ the existence and uniqueness of the solutions of the

equations (l). Eowever, the conditions which he has imposed on

tbe functions f; , viz,

lq(xrtrur, ...ru.) - f;(xrtr[rt , ...rul)l ( Klui - ufl ,

inpl.y that 1 is independent of each u. for i / j. Tbis meane

that the system of equations are in effect uncouplecl and the

results are nerely applicable to the equation

0u
;i Au = f (x, t,u) .
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2.1 Pre].l-ninarY Definitions

Let B be a bounded q-ctirnensional domain of real variables ancl

r. - 1DT = f (xrt) : xCB, O<I<TJ . Further denote the boundary of B

by dB and S* as the cylinder l(r,t) I x€aBr O<t(T] If u(x,t)

is dpfined in a given domain D, then for 0 < a < 1 the followlng

clefiaitions will be made:

= Eup lu(xrt) I r(x't)eo

unDto) = lu(P) - u(a)l ,

fae,ql]"
+ aot"l

where,

d(PrQ) = (lx-x, 12 * lt-t,l)L/z
n

n;-(u) is cal,led. the Edlaer coefficient

If u is <tifferentiabl-e, define

l"ll

l"ll

sup
PrQ€ o

l"lf

if P= (xrt)

ofuiaD.

. . . . (2.4)

....(2,5)

....(2.6)

and g= (xrrtr).

(z,z)

. . . . (2.9)

....(z.g)

l"lrfo

Iolrfo

l"ll
where,

r.D(u) - 6up lu(P) - u(Q) |

PrQ€D lx-xf l t lt-tt;

it is said that u is of class CP.

tben it is sai-al that u GC?, Note

evertrnrvhere clifferentlabl-e.

A surface S is saial to be of

rr lu rl "o".r, 

t 

-;""'"p

= l"lD* +

= l"l ,fo +

= l"lf +

# l:s;

.{l*={"
r,D(o),

+ l*tf '
nn

f.D(u) is the tipschitz coefficleat of u i:l D.

rf ueCI ancl ou,/0q € cI for aLL i,
ue Cl does not inpl.y tbat u is

cLass CP tt S can be LocaLly repre-
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sented in the forn

*i = X(xrr ..r xi-1, *i-I, .., xnrt) . . . . (z.rr)

for some i and the functions X are of class CP. Tbe surface S

is covered by a finite nunber of neighbourhoods s- each of which

has a fixed. global representation of the forn (ff) witU X of class

gP. The quantity l"lf iu then interpreted as the maxinun of lul',
-!i 

I

taken over all these neighbourhood's.

The followi-ng assumptions are made on the partlal- differential

operator L(9) of equation (t).

I. L is of paraboli-c type in F*. That is, there exlsts

a positive number Ho such that for a1l- (xrt) € il, and any

rear- vector { , K^ii(i757, 
,41r'.

and in addition a. . are of class CI.
r-J

Tbe functions f and g will be required to satisfy the Lipscbitz

condition for each (xrt) in 5r,

ln(x,t,o1,It) - h(x,t,02,I2)l< M(lor - e2l + l\ - Iall.. . (2.r2)

Further they wilJ- be required to satisfy the Lipschitz condition

Itr(x,t,gr\) - rr(x'ttrgr))l < K(lx - xrl + It - trl), . . . Q.:-l)

for each fixecl value of O andl. In (fz) aaa (l-f), h E f or g.

fhe initial and boundary conditions of the tenperature aad

reactant concentration are pree cribed. Siace tr satisfies a first

order d.ifferential equation in t, the initial value of .\ ls specified

when t = O. The temperature O, whieh satisfies a second order

If. "ij, bi, and c are of class cc (for sone o(c(l-) in D-1,
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partial differential equation, wil-l- need to be specifled oa 0B

(t > O) as well as on E ioitir4y. These conditions, which

physically are just what can be fixecl, a.re sufficient to shotil that

there exists a unique sol-ution. It is assumed that there existe

a function? in D, whlch coincides w'ith the boundary conditions

Oo(xrt) on S* and. E at t = 0. The inltial. concentration of

rea.ctant is r*'ritten aE )o(xrO). I

Firstly it is intencted to show thaf,, provicled there does exlst

a sol-ution of the systen (1) ana (2) with these boundary and initial I

conditions, then it is unique.

2.2 Uniqueness of the Solution

This wtll be approached in the usual way of assuming the

existence of two solutions O, r \, ana 
"Zt 

\Z and showi-ng that these

are the s&[t€.

Theorem I. Suppose

(a) or_, trI, o2, )2 erist and are continuous in F1,r

(b) their second order xi-derivatives and fi-rst order

t-derivatives exist and. are uniformly bounded ia D1r

(c) t(oi) = f(xrtrgir\),

uIi
dt- = g(xrtreirli),

of = oo(xrt) on sn and on E at t = or

\i = Io(x,o) onEatt=or

for i = 1r2.
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(A) f and g satisfy a Li-pschitz condition as j-n equation (12) i

then O, = O, attd )r- = \r.

Define o, = 01 t remt and I" = ), + sent where rrs are

arbitrary constants and m isrsorils number greater than 2M. (M is

the Lipschitz constant defined. by (fZ) ). Then since 01 = O, and

\f = \, when t = O, unless o, and Orr tr1 .oA \, coincide for t ) O,

o, and \2 must intersect some members of the fanil-y of surfaces o,.

and )u. Hence there exists a tr such that lO, - Orl ( lO" - orlr

lI2 - trrl

at (xtrtt). In the first case choo€e r> O and lsl = r. Then

at the point (xtrtt) it can be showu by an argunent usiag a theorem

of Paraf and Fej6r (as in B"ter"nlz), that r(or) < r,(o"). This

neans trrat r(Or) ( i,(o.) - "rutt'. That is,
T,(e2) - f(xr rt'ro2r 12)

< M(lo2 - oll + lIz - \11) - "ru't'
( (tt(r + lsl) - rn)ent'

i.e. t(92) - f(x'rtrr02r12)

since n > 2M this contradicts the assumption that orrl, are sorutions
of the equations. rn the second case choose s >o and lrl = 6.

Then at the point (x'rtr)n since Ia ( tr. fo" t S trr alZ 
) 0I. 

.ff-, F

Proof 3

That ls, ru"tt t 
z

6trr 
. Eence,

dt
0I.,

E - - g(x"t"o1r\1) ( e(*f 't',92r12) - g(>crt'no'r\) _ msemtl



Againt since

sol-utions of

argument can

two sets nust

g(xtrt t, elrl1)

( (n(lrl + s) -te)"tt'
( (2M -r)""ttt.

n)lM this contraciicts the assumption that

the equations. Eence no such tr exi"sts and

be carried through for sufficiently sna1l. r

coincide. That is gt 
= 

OZ and \1 = \2'

14.

ntlmse

O1r )1 are

since the

aad st the

This conpletes the uniqueness theorem under the conditioas as

stated. It should be noted. that the requirement (cl), viz' that f

and g satisfy a lipschitz condition in O ancl \ , excludes the case

of a reaction of order n where O(n<1. In this case the functions

will not satisfy the Li-ps{4itz condition as \+ 0. For examplet

f =g= X*e.

However in such cases, this difficulty is resolved by red'efining f

and g in the neighbourhood of I= Or say for \( € I so that they do

in fact satisfy a Lipschitz condition in O and \ evertrnlhere' Then

call the corresponding soluti-ons I, ana \g (which by the above will

be unique) ancl d.efine O and \ "t the Linits as t+O . It has to be

shown, of course, that these Ii-nits satisfy the differential equat-

ions and, in fact, that they exist. This wil-l be shown in section

2.4, after the problen bf, existence has been investigated.

2.3 Existence of the Solution

Before the existense proof can be given, three theoremsr which

form the basis of the existence proof in this section, are required.
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The first two of these are proved in Friedmanu.

Theorem 2. Assume that the lateral boundary Sn of Dn ie both of

classes C2 a.nd 
"2+u 

(o< q, <1), that L satisfiee the conditions

I and rf, and that /(xrt) is loca11y Holder coutinuous in Dn.

Assume finally, that thenexists a functio\f of class C2+e io

Df which coincides w:tth the given boundary conditions Oo(xrt)

on S, and on B at t=O. Then there exists a solution of the systen

r(e) = 6(x,t) for (x rt ) in o, 
,

g = go(xrt) on S* and' on E at t = o.

Furthermore, tbe solution is of class cl*F io D, for any o<B<1

and of class c2+[ io il* for some f,>o.

Theorem J. Assume that Sn belongs to both C2 and. ,2+a' and that I

satisfies both I and II. Let /(xrt) be a continuous functlon in

=D* and 1et 9(xrt) Ue a solution of the system

L(o) = /(xrt) in DT,

O = ? onSl andonFatt=0.
Then for any O ( 6( 1, there exists a constant P dependj-ng on3-y

on 6, the operator L, and the donain Dn such that

lulr.*u ( p|il lo t l?12) .

Using these two results it is possible to prove the existence of

solutions to

t(o) = rlr(xrtrg) . .. . (2.r4)
with the same boundary conlitions. In acid.ition to the requirements

inplied fron Theorens 2 and ], the function l, is requlred to satisfy
a I,ipschitz cond.ition in 0, i.€.
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I tl(*,t,er) -t(*,t,o2) | < ulor - 9el for al-I (xrt) in D1.

Ancl further it is assumed that there exists two functions e and 6'

which are continuous in Dr, and satisfy the inequalitiee

r(g)-1,(xrtr9) tto>, t(6) t(*,t,d), ....(2,t5)

Q(xrt) ( eo(xrt) ( d(xrt) on t1 ancl on B at t=o.

The proof given in Append.ix I uses the nethod of successive

approrimations. The sol-ution is shown to be of class Cl+p fot 
"oy

O < P < I and of class C2+T for some T > O.

The third of the theorems necessary to prove the existence for

the system, involves the rate equation (2). That is the existence of

a solution to the systen

0l
* = f(x'tt))t
\ = \o(xro) on E at t=o,

is required. under certain conditions to be prescribed. Note that x is
nerely a parameter as far as thJ-s system is concerned, The statement

given here is due to Coddington and Lu.riosool4.

Theorem 4. Asslr.ne I t. continuous in t and I . Then there exists a

solution of the systen

OT

't = 1G't'))'
\ = \o(x,o) oo g at t=or

on Bome t i_nterval i such that

| \(x,tr) - I(x,tz) I

No nentioa is made of the behaviour of the solution with x. This is
given in the foJ-lowing resul.t:-

Corollary. If \(xrt) is a solution to the system ia Theoren 4n tben,
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frovf&ng f t,s o.f sf.as6,

Llpscbits eonctition) and

i.s atr6o of ela-Es. gx ia +.

tlonain.

3EE{,: fi:on Tbeorea 4, taking tbe sol-ution at enI two pointe

x and x'r t it ean be seelr that

$(x,t)
at

$(xf ,t)
0t

Define h(t) =

laul
h-Tl =

i'€' 
I*tl

wher',e l\ *d M a,re t-he Lipeoh:lts consta,ate for f(xrtr]). Eheu

b;roonsidering n $ O oeparately aod J.nteg at,ilrg the laet resul-t,

it caq be shown that lhl ( Mrfx - xrl. That is,

ll(*rt) - I(x',tll{ utlN - xrlr for dus xrx-rl uhich:is the

required restilt. The secoad resu.It ie obtaineil f,ron tahi.ng the

LipechLts eoa.GlLtl,oa torf,

f,$(xr1,11 - Al { Idlil , rtr}rene L og,(xrtro). Fe.DG€r

l$il ( lnl + ul)rl . Asaiq, by corrsideit,nslf o sepanatery ar*t

integrat!.ng, uppef ead lor,rer bourds afe sbtained fof l.

It is now po€6ibLe to prove the aain resdlt of tbis sectioa.

The proof whLch is given in Appendtx 2 was tsotivated by the :remrks

nade erarlLer la this chapter. r[,n lt,eratj.ve ,BGheile, is, ,Fet utrl aad

ca l,n x and X

Iu(xnO) :is o'f,

Frultber \

(i.e. eati-eflee a
1

clase C- in x, I

is b"ounded i.n the

E f(*rtrI(xrt)),

= 9 txrrt, Xxf rt)).

Xxrt) - ),(xt'rt). Then fron abov'e

l$tx,+rXx,t)) 9(o',1, Xx',t)) l,

\1"-x'l + Mlhl
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it is shown that the sequences so obtained converge to the solutions

of the system given tn (1) anct (2). A fundamental step in establiehlng

the result is a theorem proved by Ascolj- i^rhich (as in Cod'dingtoo

and Levinson) is stated here as a Lernrna. This result enablee us

to say that there exists a linit to the sequences so obtained'

Ascolirs Lerma. On

uniformly boundedt

a bounded domain D' tet O = le] ue an infiaite,

equicontinuous set of functions. Then

@ contains a sequence tUJr r = Lrzt.., which is unifornly con-

vergent on D.

one restriction that has been applied, a physical one taken

from the real problen, is that the reactant concentration is con-

fined between its initial concentration and zero. Al1 this is

saying is that the reactant is being consuned as time proceed.s and

can only be consu:ned as long as the concentration is greater than

zero, Hence I w'il-l be negative, and zero when \ it u""o. This

requirement can be relaxed though it neans a further difficulty

with obtaining uni-form bounds for the iterative solutions for \o.
This i-s however, sinple to resolve, though this is not done in the

proof given in Appendix 2.

2.4 The Cut-off Problen

It will be shorun later that for a reaction of order less than

unity, the reactant wi1-l be exhausted in a finite time. For such

reactions it is clear from the examples given previously, that the

functions f and g will not satisfy the Lipschitz condition in the
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neighbourhoocl of \ = O. So it is necessary to show that there existE

a unique solution when this condition is rel-axed i. €. whea the react-

ion is of order less than unity. In a. reaction of zero order both f
and g will be discontinuous on\= o. rt will be shor,ra that \ is of
class cl as before, but g wiLl not be of cLass g2tc rrorfornly in Dr.

Tbe reason for this linitation j-s the discoutinuity in f on ) = g

onJ-y.

It will be assumed here that heat is being l.lberated only, that
is the reaction is exotherrnic. The physical- situatiou from which thie
analysis arose did' in fact ensure this, but the results tn tbe previous

sections can be applieil to endothernic reactions a].so.

The problen wilL be approached by redefining the function f for
\q€as foLlows:

= f(xrtre)), \)€
fg(x,trer\) = 4rlCrrt, - \)f(xrtrer\), O.<\€ €

= 0, I(O
where €' is smalL. rhe variati-oa of fg wr.th\for any fixect (xrt) in
D1 and any value of o io oonparecl with that of f ln Fig , z,L,



Then tl.ith the assumptions of

0\
fr = g(xrtrdr\t),

L(on) = fe"(x rt ro111\n) I

20.

the previous theoremsr define

S = g(xrtron-l,Xr),0t
with On = e6(xet) n7,Lr oB Sg and, on

17, L

n = 2r7r.,.

E at t {, and \j - \o(xrOf

n77I1 on E at t d. Further (t.) l-e a noaotone decreasing seguence

of positive numbers such that (tn)+O as n+e. For each a, there

exists a Op(xrt) and )n(xrt) in D-1 6uch that 9r, is of class g2*Y (I>O)

in D1 and lo(xrt) is continuous in d1. Since heat is being liberatecl

only it follows that Oa) 06 and hence es will serve as a lower borrnd.

Further, since fron the main result (in Appenclix 2) it was assumed

that there exists a d(xrt) such that

o

6',

and as fe >. f ,
it follows that Cr, ( d in D-1'. That is the same e serves as a.n upper

bound for the sequence of functlons (en). From the ostinates of Fried-

man given in Theoren ], it al-so fol_lows that

lonlr+o

As both the gars and \ots are bound.ed in D1 (oo( oo( 6, o (\n(\o),
then oo and. dorr/Oxi are HtiLder continuous of exponent 6 for a1l i.
This means that the set of functions (orr) are equicontinuous on l-g

and sot by Ascolits lemrnar there exists a li-nrit O defined on Dg whLch

is Eolder continuous of exponent 6 in il1. This follows exactly as in
the previous existence theorem, Sinil-arly AO/Oxt ie Edlcier continuoua
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of exponent 6 in D*. These estimates will apply for al-l types

of reactions i.e. for any reaction order. It wil-I be shown beLow

that in all reactions other thaa one special caser the estinatae

can be improved.

However, firet some properties must be established. for the

function \o. From tbe equation

olo
iE- = g(xrtrgn-lrlo),

write g = \ah(=rtror\), (o 4 q' < r), tr> o

where h is of class c+, and

g = O wben I= O.

11 t
Then it 1tl' =^ , where F = 1.1(f - e) it follor+s that

aPo l-. R'

Tf = U=h(x,t,on-l ,h'), (9 > L) andfn ) 0'

0n

# = o fotltl- = o.

ClearLylgr,(xrt) wiJ.l. be unifornl-y of cl-ass Cl in each region ancl

uo flo is of cl-ass cl in the whole regioa Dr. This follows slnce

lh i. contiauous on the comrnon bouadary of the separate regions

lLoT O and .rUo = 0. Hence

l/n(P) - /{/n(a) | < MIP-Ql tor any P,Q. Dr

where lp-gl - lx-*'1 + lt-t'lifp=(xrt),Q=(x'rtt).
Fron this it is possible to deduce that ,)lo is of class Cl in D* as

folJows. Consid,er

lIo(r)-lo(e) t llnpce)-1trptell . lqo(p)/n(a)l

-TFAT- = @ --TFAI-
and note that the second. factor is unifornly bounded io 5'-. AIso'I
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since trrey',\'s are bounded on F, @ 1ln1 f\ot*,o)] 
Ur, and by

noting the J'o1l-owing ).emma it fol-l-ows tbat the first factor is

bounded on F-.
A

Lemma: There exi-sts a upper

Proof : Suppose a2,

FIA
(aP-bY)-=;s- =

bound for *l for o sarb( Rr 97 r.

b. Then the exoression can be written

So I' is of class CI :-o o-*. Thus the set of functions ()rr) a"e

therefore equicontinuous on 5', and so, once more by Ascolifs lenna,

there exists a linit \ d"rio"a on il,r. Likewiee there exists a linit

/.t which is the linit of the sequence of functions V) and VF = \ .

As in Appendix 2 it is possibte to prove ,ft is of class Cl in 5',

fron the e,luations satisfied by each lo, Then, from an argunent

as above, it follows that \ is also of cLaes Cl in ilr.

The quantities o and \ of class cl is sufficient to ensure the

existence of a solutioa to

gL = g(x,t,orl) ,0t

X = \o(xro) ongatt=or
with the j-nterpretation that g = O when \ = O.

j." o-"r. Now

*et X-^"1 = g(x,t,o,\)

and I-Io=OonFatt=O.

i. e. fuf )'-Iol < M( lo-orr_, | +

)f is of class Cl

g(x, t rgo_1r\rr)

l\-Ll) where the right hand Eide
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tends to zero as n tends to inftnity. Thus It coincides with \ ia

Fg. And Eo a\r/at erists also.

It can be shown that the eurface deflned by .\o(xrt)=Or i.e.

t=Ca(x) , teads to that of \(xrt)=O r i.€. t=C(x), ual-formly in B

a6 n tends to infinity. Conslder, as before,

= !b(xrtroiln, ruol),
p

= !h(xrt ,artrq),

Then by definition ot / , it foJ-lows that la(xrt) --+1u(xrt) ,
A/JOI + ap/at unifornnl-y in O-g as n tende to inflnity. I{ote that tbe

cut-off surface g:iven by /(xrt)= o ie tbat of t= c(x). Thenrlo(xr0(r) )

+4tt(xrC(x)) as a tende. Now the fuaction b caa be taken ae ind.ep-

endent of / for t( c(x). Eence, aln/ldt ls less tb.an -a for arr n,

where alO.

Fi-A. 2.2

Consiiter, (i) Cn -( C. Ihen y't(x.cn) - lr (x,c)

gan

at

w
0t

cnc
i.€. 1u(xrar) - 7u(xra) ), a(c - co). And so as

sicle tends to zerc as n teade, so Co- C a6 n+e.
(fl) cn )2 c, The arguneat folJ.owc aE above, wtth /-o*a/

interchanged, Hence it caa be concludecl that cs(x)-+c(x) a6 n +ao I

the rlght hand
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unlfornly in E.

Al-so, by considering

ah
6t = g(xrtro(xrt) rI(xrt)) - g(xt rtro(xt rt), Xxt rt)),

where n(t) = Xxrt) - Xxtrt), it is possibte to show that

the surface c(x) is of class cl in x, unifornly in B. This neaus

that 0C/0x. is finite evertrn*here for all. i.-t-

Now, excruding the case in which 
H- fe"(*rtrgr\) is dis-

continuous at \=or it can be shown tbat o anct \ satisfy the

systen (1) and (2). rt has already been shor^rn that\ d.oes

satisfy tbe equations and the same result follows for c. This

neans that o is of class cl*F io D, for aay o<B<1 and of class az+u

in D, for some Y> o. rn particular, this means that tbe tempera-

ture o, its first two d.erivatives in x., and its first d.erivatlve
in trare conti-nuous on the surface t = C(x).

However,in the case where f is discontinuous on I= 0 (tnie
coincides with the idea of a zero-ord,er reaction but the discoa-
tinuity in g d.oes not affect the anarysis), the two reg:ions \ > o

and \ = o are coDsl-dered. independeutly. rn fact the problem is
consid'ered as two separate problens which both have solutions by the
results of section ji

I. t(O) = f(x,t,O,I),

3-\
at

O=

\=

in the

g(xrtrOr)),

Oo(xrt) on S, and on E at t = O.

Io(x,O) onEat t -0,
cJ.osure of the region



25.

II.

It is assumed that the boundaries of these regions satisfy the

conditions required by Friedman in Theorens 2 an'd 7. fhat is t

they are both of classes C2 and C2+a for some &)O. If thls is

not so, tben remove a strip about t = C(g) so that tbe boundaries

of E and F d.o satisfy this condition. These theorens imply that

O is of claes C2*{ for some T>O in each of E ana F. Note that iu

order to solve II use is nade of the estinate obtained early in

this section, that is the 1+6 estinate. This neans that O antl

dO/lx,, for all i, are continuous on t = C(x), and tbis wi1l, be all
' l-'

the information that can be obtained for thls particular type of

reaction. By considering the equation for O, equation (1) t it

can be seen why no informatj-on is gained for AA/AL. In the special

case C(x) is a constant, i.e. t-C(x), and this will be a character-

istic of the equation L(O) = f, it fol.lows that the second deriva-

tives of O with respect to x. ane coatinuous ancl 0Or/0t w:iI1 have a

finite discontinuity oa t = C(x). The precise value of this dis-

contiuuity will be in fact the value of the beat source just prior

to the conplete exhaustion of the reactant. However, ia the general-

case it is not possible to attribute the d.iscontinuity on t = C(x)

whorly to either of ao/Ot or to the second derivatives of o with

respect to the x.. This concludes the discussion of the cut off prob1em.

t(o) =

O=

in the

l-

t(*,t) : xeB, (x,t)e5r, t < c(xf .

f (xrt rO rO) ,

Oo(xrt) on S*

closure of tbe region

It*rt) : xeBr (xrt)tDrrt > c(x)J.
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Chapter J

COMPARISON RESULTS AND TI{EIR APPLICATION

TO SPECIAI PROBLEMS

Many exj-stence proofs of systems such as those discussecl in this

thesis, begj-n by estabLishing a conparj-son theoren which enables bounds

to be obtained. for the iterations set up. l,lctlabtlO took this approach

j-n proving the existence and uniqueness of the systern (e't) and (2'2) t

when f is a nonincreasing function of \ antl g is a nondecreasing funct-

ion of 6. His preliminary result wae used in Chapter 2 to establish

the existence and uniqueness of t,he system therein defined. The result

proved by McNabb is stated here as the following tbeorem.

Theoren 5. Supposet

(a) bt, 92, \f, )g exist and are continuous in DT.

(U) Their second order xi-derivatives ancl fj-rst order t-derivatives

exist and. are unifornly bounded in D1, satisfying there the

inequalities

r(0r) - T(xrtro1, \1)

$r - s(xrtro1, \1) \< gI'z - g(x,trg2, \2),
0t 0t

and where,
Af,/A\ -4 0' ae/aA D O'

(c) St(eZ on 51 and O1 (O2, trf < \2 on E at t=O.

Then 01( o2 antl Ir ( \z io i1.
11Zeragj-ja" likewise attenpted to establish a sinilar result for the

system he described (see Chapter 2).

In this chapter it w:ilJ. be shown that it is not possible to estab-
li:h
/a conparisou theorem in the general case without invoking requirenents

on the boundary conditions. This will be fotrlowed by sone exampLes in
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wbich it is possible to obtaiE upper and lower bounds oa the

solution.

J.I' Counter-exanple

In this section an exanple wil-l be given to il-lustrate the

statement that a SeDeral comparison theorem is inpossible' This

wtll be done by consi-d.ering the system (2.1) and (Z.Z), w'ith, at

present! no requirenents on the functions f and g'

It wi]-l be assumecl that:

f = a9+b\,

g = a9+b\,

where a and b are constants. For sinplicity, the geometry shall-

be confined to Q = I and' lxl <fi/z. Thus tbe equations are

o2g - oo = ao+br,
ox2 ot

0\
;t = ao .t, b\.

This problen will be posed with zero boundary aad initial values.

Eence the solution of the above w:i1L be the trivial solution:

e=O, h=0. . . . . (t,t)
This so$ution wil-1 be the knqqn solution for which conparison

functions will be found.. These will be obtained simply by separ-

ating the varj"ables, It will be shown that in general it is

inpossible to find functions prq which renain of constant sign

for all tri.e. which are consistent upper aad lower bounds for

the solution (]).

....(t.L)

..,. (3.2)
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If one proceed-e 1ln the w.ay iad,ioatedl b1r lf-heoreu 5r ed

attedpts to finel solntisns Otr}r rhieh setiaf;r

d2O r _ AOf

oxZ ot

a\ldfi >/ a€ r + b,r['r

Lt wou1d, be exBected that, pnovided the inl.tl,al and boundary

conditlo!.s ,are speo5.fted. co-rrectLy, Or, I a"e upper bo,ueds for

the solutisns to equati.o,a6 (1) ana (e). I{ote that llheortn 5

appJ.J.es only to thc caee a ?t Q, b ( O. Xn tbe above tbe casc

of equaLi t w.iil3-a be t'aken. Further, teke the bouncl,any condf,tioa

fo,r Of :as Or = Q oa x =!n/Zr
atriltny6r=p(!)cosx..f..(r,4)

\t = q(t)cosx, ..,.(1.5\
as a solutlon of the Broblen. Eence, oo substttuti.on Ln the

equati,ons, it fol-J'ows that prg nuet satisfy

S E -(a+r)p-bq, ... r (r,6)

q = ap*bq, .... (5,71

where " = 4-. fhese two equfrtroui ane to be Eor.vedl ulth tbe
dt

ini,f,ial- ooad,itiotoi p(0) = n, e(O) = e.

Botb p aud q are thus s,ol-uti.oae of the eecond order equati.oa

t+(,a*tr--b)$-tr = O, ),1 t.(g.g)
the sol-utions of, whLch are act whcre er eatiaf,Lee

cra+(a*l-b)c-b = O. f ... (3.g)



Further, if the tangent to tbe

the origin, then at this point

solution at a point

it follows that

29,

. . . . (r.1o)

paseed througb

From (5) and (Z) it follows that

dp -(a+I)p - bq
- =dq ap+bq

Try a solution of the forn F = ke. This means that

aa2+(a+l-+b)t+l = o, ... | (r.ft)

the dlscrininant of which is gi-ven by (1+a+b)2 - 4*ti tbe same

as that of equation (9). CaI1 these roots k1' k2. By considering

the p, q plane j-t can be seen that the solution nust l-ie between

these Iines. For P = krgr p = kAQ are two possible solutions

and no solution can cross another at a regular point. It will be

aesumed that k2 is the greater of these (whenever the discrininant

is positive). This area is shown in Fig. 3.1.

k= -(a+l)k - b.
ak +b 1.e. k = k1 or k2.

Thus the ouly possibLe tangents to the solution

the origin are the lines p = kLq, p = k2e,

passing through
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Now sinee tbe cliscriulnants of equations (8) anti (tf) are the

sane, then the case in which \ and k, are real coincides witb the

condition that prq vary "u "ot 
wbere a is rea1. So one obvious

requirement for p and q to be of the same sign for alL t is that

this discrim:Lnant i-s positive. That isn
)(a+b+I)z -4ab >/ o. .... (3,l'2)

For if this were not so, the solutions for prq would oscillate

about the origia in spirals or elJ.ipses (c'f. stokerl5).

For t snallr Fr9 vari-es like "Ott, 
and for t J-arge they vary

t-+
1-ike e^2' . Whether or not \ and k, are of the same sj-ga depend.s

on the sign of b/a, To ascertain the form of the integral- curves

the various cases are considered. In each case arrows are drawn

along the integraL curve to indicate the direction of t increasing,

Also it is assumed in a1I cases that the requirement (fe) fs

satisfied. From Stoker, the forn of the singul-arity is elther a

nodal- point or a saddle point depending solely on the sign of the

deteruinant formecl fron equati-ons (5) and (7). That ie whether or

not -ab+(a+I)b=tf o.

I. a7 On b€O (the case covered by Theoren 5).

Here \kr-( O and so krlt O, \_<0. Fron the crj.teri.a of

Stoker, the singularity J-s a nodal point. See Fig. t,2
over]-eaf.
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trI. aSOr blO.
{,gain k } O, tI< O, but thie tlnie the s5-ngsl"ar{ty is a

s,add]-e polnt. See Sl-9. 5'3.
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Now ln oa6e,s I and tfr if the initlal valuts (QrP) are such that

f,lq> O, theu eLearLy f,or t ) O the eo1uti,on remalrrs in the aana

quaetrant and ,go p anct q 'remain of the sane sige. Thl,o neans that

a oonparidon theoft[ ie possibJ-e. (Note that eince ab ( O, oonctLtlou

(1a) :LE a].w,aJrs eatLefi.eA).

III. a}on b7 O, Euch that (12) ls satl.sfl'ed,

Eence h. rke are of the sane 6igu and tbe sioguJ.ar1ty Le

a sacldJ.e poiat.

(i) trh both posttlvei

tr.r) h,ka borx

f,'lg. 9,4
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fhen it is cleanr that for each of Fre to remai-n s;f ttre saae sLgat

the inttl-aI values ntret satiefy hSp/g iu the fl-rst case, ald

0>p'/Q?\ i.l' the secqndl caE'o. lthat fe (qrP) i.s ip t-he reg5.,oa

s,OB or DOG iln (i), ana al"eo fa (*L). f,his neana that a eonpa:ieoa

the,oarea is lnpossible without restriatt-ng the initl,a]. eoad.itioas.

IVr a{ O, b(O, s,uch that (12) ls Eatiefied.

Eenee, onrLe nore h-nhZ are o.f th,e,earn:e sign'r but tho

siaggtar!.ty Is aow a noclal point.

(t) q,k, bo:tb

(ff) larn, both aegatl.rre:

positive:
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In these cases for prQ to remain of the same sign the initial values

nust satisfy p/Qlk-r in case (i) ancl o7 P/Q>.k, in case (ii). That

is, exactlY as in III.

Note that if the discrininant in (12) i-s zero, the singularity is

always a nodal Point.

Hence it can be seen that, in general it is inpossible to state

a comparison theoren applicable to all cases, without some extra

conditions. Most of the examples disCussecl later are reactions in

whicb f is nouincreasing in \ (tf o) and g is nonincreasing ln

O (alo). That is, case fII.

a

Following the remarks made early in chapter 2, tbat isr by

taking upper and lower bounds for tr r upper and lower bounds are

obtained for O. In view of the comnents in the previous sectiont

however, no direct comparison theoren is possible. Hence to obtain

upper and lower estimates for O an equation of the form

aor - # = f(xrtrotrX), .... (1.t3)

is solved. If f is nonincreaslng in \, it follows that j-f \t is an

upper (lower) bound tor \ then Or is an upper (lower) bound. for O.

Sinilarly, estimates can be obtained for \ Uy using upper and Lower

bounds for O.

Eowever, it is possible for a certaiu class of reactione to

uncouple the differential equations and so get a sol-utlon of the

forn

Ag + f@) = g, .... (5.t4)at"
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It sril1 be shsl{n that I bXr eonsiritering the solutione sf (14) and

boundls f,o.r these soJ-utl,.orl6 r boqnds ean be obtained 'for the reaOtiurt

eojnce,ntrat:i-on ( l) .

Ooneider the sYetea

00
at'

?
l-A .hY-+ + al-O =^cox

E+ E -f,e
l-n the semi-infirr:lte region x O whe:ee O = \= I whea t = O aud /*tO
O=1,onr =O. e'is aoouetaat aqd,nf L. SqlatS-on (16) canthug

he wrttten
oltl-tr\

#f,*:1) = o, ""(3;7)
and heuce by def,ining gt = # ii,e,. o = *9, it followe that

t

#tgl +"(*-rf{"# = # "..(;'xB)
On iategrati-u,g aud ,noting tbat F =-1y'(1-n) t \g/AE = 1 wbaa :t = 0

equatl,on (18) gives
).

{1 + 1+ a(]'-(ililgfl0-.^l = #, ...,(r.r9)
ox

fhi-s is an equatJ-o.u of th.e fsrn l-nitLcatEd in (I4). $[hon n = 1

def,Lae / = -xog) l.€. \ = "4. Then as above lt fs1lowE thet

Ph ! 1 + a(I-e-l) = g. r . . . (r.ao)]f + J. + atl-e-/ = ffir r..
ox

sublec't to the boUnil-ar3r a[d isi,tial. cosditl.onst

fi=Owheat=Or
6=E oB x=,,Or

^AAM

t=*o as x*@ '

.r..(v.tiJ

....(1.16)
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Agaix aE equetion of the fsrm srlggeeted by (14) reeults"

Now to t1luetrate the Lrlea.e Lnvolvedl, this la.tter equatLon

rxt11 be t'qken aer anx exanple, Uae cag Doil b'€ aacle of llheo'reo- 5 wbiob

can be Etatedl:

Tf 0tr6Z exi.st aad' satis:fXr

dL

thea il, ( gz everJnrhere.

One eeLe,ste varioug |tcomparisoc functionsrr atrd, trakes either ily ot f,,

ae the :reqr1rifed ssl.lttiou, l[hnee of the possdb5.llt'J-es are 4.'iecussedl

be,Iow3

1. the solutiOn lntlepe,ndent of x. ThiE rriLl be the astrrnptot:Lc

vaLue of the solutJ.oa of (eo) as x @. It can be eh,om by

di.rect lntegnatlsn of

1 * a(r.-e#) = $g ,

w"ith the inltial- eonditioa of V = 0 when t = O, to be

g@ = r""(#t1. ..,.(r,zu)
Th{s will b,e ran uppe? boun(l, Sakiag ilZ 4 that rlefLnedl in (el-)

and no,te that ou x '=' o, 6L = fl = t and that

t E t""(*#g) ror any a ) o.

Sence it fot1ows fhat the solutiqn of (ZO) ;satlsf,Les

d
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Lt ellou|dl be noteit at thls stage that the s.oluilLoa st lnf,toity

for o andl \ eattrsfyiog (15) a&d (16) whea L = 1r 15 gc'rrea b5r'

i.B'ao =| - and\- = ft;;r ..(3,23)
l+ae-(I+a)t ere(J

Ia vj,erir of the fnegual-l' y in (aa) it fsllowe that

\> 1**, , f,orall I'tlo'
" * "(I+a)t

2,, A lower bounril nay be eor*stllueted. by taklng fiL = r(x1t)F6 1

for sone euitabS-e frrnction r. tf E$) 
= # - # *1+aO-a-d),

and d, is to he a Lower borrnd,, thea r nuet be aucb that

f(S z 0. Eeace Lt is nequirecl tbat

P. (# - *i) ; r# * I + a(I - .-re') ), o,

i'e' ilo.(* fry 1 - tr + a(t - r'+ '*4t- '-1fl^o\ 
D ot

aud a1so, r+1 Ba x*@. fhat Lsr /n+ f,o.

Ih.ea tellse r pat'isfYiag

62r ar

-it=o'dx

'f 
= O QE x = 0.r

r = I 911 l=0.

sherefsre r(x"t) = er .k/z&) 1 and thue o d r'('tr,

It renaias to show that tbe exlreeeion

E E 1-r*""-dt- e-F/'ao V o
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f,or fl*2, O aed O( n ( L. 6o'Ds1.dor E as a fuaetlon of F@

and, tr.

OE = o,;rFo-e-9@)6T. :

and E = O on F* = O.. Therefore EZ O. [huE t(flr)zaQ,

i[1so when t = 0, 9t = ilz = Qi antl on x = or 9L = o { dz'

Henoe it f,olLorrs that the sol,utl-on of (20) satiEf,les

il >/ roe/" * "ffil| erfl r \ '\I+a I \x,a)

7, A qic-b bette:r reeul-t, in th6 E€rse tbat it is a cJ'osar lorEr

bstrnd can ;be constructeel, by f,incling a functd.oa which t-4bes

the eame vaf.ues on the bounclary as that takel by the f,unctl'ou

to b,e found. For thisr take

Eh-atie, 6r=, on.x=0r

ilU=Q oEt=0'
Ae in the p:r'evious casa, it e'ao be ehoun that F(4) 7 O, and

hence
(t+a)t r \t+err/+)('"u(ifu-) -r)

vt_/ \

Ehen "*r ["'r(*Xi - r"s(i tl) 
- 'J ', ). .

ilo obtaiu bounde fsr O take ar equati.on in the for,n gf.ven by

(15). r'or if

u(o) = *-ffi+"\o E o,
ox

....(r.24)
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and an upper bound is taken for L saX It, then a function eatisfying
)

M'(o) = . - €? + axo
ox

will be a bound for the solution of equatisa (24). This is shown

as follows:

M(e) = Mr(o) + a( \ - l')e for anY g'

and. so

M(e') = Nr'(et) + a(tr-)t)et.
Notin6; that \ - )' < O it follows that if a trial function el

can be found satisfying M t (g t ) ( 0, then l'I(o' )

Of ), e on the bound.aries the same inequality, e' V 9r will hold'

ever;rwhere. Likewise by taking a lower bound for ); if it ls poss-

ible to find a function er satisfying Mt(Ot) > O, it foll-ows tbat Ol

is a lower bound for the eolution O.

By appropriate choices of )', bound's are fouad for E below:

1. consider )t = e-t. This is clearly an upper bound' for ) as it

is in fact the value of \ on the boundary x = 0.
2

M, (o) = Cf * ""-te :t .
6x'

Now the solution of Mt (o) = o will be aa upper bound for the

solution of M(O) = O. Eowever, it is not possible to obtain

a. simple analytical solution for this ancl so a function 9r is

sought such th.at Mr (e ' )

Mt(e) = O as x+ao, tends to u(t), where

u(t) = expa(l -e-t) anci u(o) = 1. ....(1,25)

Further u is actually an upper bound as required, but is very

weak, for, as t+o,u tends to ea whereas O (g{ven by (a4)) tencls
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t-o L + a. Tbis euggpet€ that e c' oser bouad soul"d Fossi.blJ'be

sbtai.nect b;rsetting gr = l- + u\rr ilhere -lt satLaf,l.ag
,

$+ae-t = *i, v=o onx=0, an{rhell tooc .. (}.a5}
o.x

fhat is

r = aer,rktsg) - #("-r=e'rcffi - -4+eltrerrc(.= .*1 -+
....(5.27)

Fhus by rleing thio or it f,ollows that

r^Zv 0v\ 0uM'(e,) = "1[* - 
gg\ - ol* r "*-t(l+uv),\a*? 

- o-TJ - vEE '

= -r"-to - "r-tuv + *r-t(t+uv), uslng (45) ana (46)

1, €, I{t (o t ) = **-t(L-o}
Eoweve:r, Or = O (=1) on x = 0 aad t = O aUtl e-o by TheoreA 5i

O(xrt) ( L * rnr ,vrhere u and v are glve'n Uy (25) aad (a?),

respectLveLy, Tft.ie bountl. wil. provf.de the berst estinate f,or

I for e4e1L x oxly1 fqr aE xror I * !ry+ f +,afi- - "-t)*oB(a(1-e-5).
tr'or t suffioiently large this l-aet value ie g:reater

given fn (at), whioh aj-eo :[e err uppet boundl for O.

ialwtratedl bel.ow,

th Oo :'

fhls La

FxI. 5,8.
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Hence to obtaia the best upper bound at a poj-nt (xrt), select

the enaller of I+uv and O- at tbat point.

2, To obtain a lower bound for O a lower

One such bound. is tr- siven in Ql),
as above it is possible to show that

lower bound, where y satisfies

bound is selected for I.

Then proceeding exactly

er=1+(y-l)z isa

...r(3.29)dvffi=
a:td, z

^2oz''-=
^10x

Eense

t=O

e>/

"l-y, y(o) - I i.e. is o.i

satisfies

0z
-. z = Oon x = Oandot

O, the sol-ution of (a4) sutSect to I

satisfies

t.a(t-"-(J-*a)t'4 ' -TGFtf+o-t- vrrll;o
VtzJ

I when

=Lonx=

=0.
. (t,29)

0 and when

. . . . (j,to)

It is also of interest to consider the same problem in a fin1te

domainr though stiLl taken for convenience, in one dinenslon. Hence

suppose that o anct.\ satisfy the same equations, viz. (r:) ana (16)

with n = 1, where o = I on x = o g'4 x = b as well as initially.
Then consider examples exactly as in the seni-infinite problen.

I. By taking X = "-t 
(an upper bound) it follows tbat Of = 1 $ uv

is an upper bound for o, where u = exp(a(r-e-t)) as before, and

v is the solution of

lt} * ""-t = #, v = 0 on x = o, b and whea t = o.
dx'

Note the solution of this Last probLen is given by
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+u2* I
-./

+\.'' n=O'

-ter*tFl
v(x,t) = "G;#=t)"-t-

Bhen ltr(ot} = ae-t'(L-u) ( 0, as t7 L. Iloruever, Or = o on x = orb

and when t = O and so it folLows that L+uv ) I everywhere'

As ,in t-he seni-in,{i.nl,te probl.en., a lower bsund' ls qbt'a{aetl for

O by talcing as a Lowe'r bour,d for \ the expnossioa ).' Then it

is, pos.eib}e to shgw that 9f = I + (y -Llz is a lower bound wbere

IrE are g:lven Uy (a8) and [29), but n'or u = o Qn E = o g! x r b'

that i.s '

z, = *e+*:+r*4"-@Pt'
Iil=U

F.or Mt(Or) = a r(;-'s)>/ O a.E z 1!, andl 6 = gt 6,n the

boUniiari.e:6 x = Orb anil uheu t = O, Eeno.e e> f + (y-l)s eYerSrwbere.

llbus it can be s'ee1 tbat r al-though rro d.irest oouparieOn theorea

ie possllble, upler aod lo:rer bounde oarl be obtaj:red for the tewperatirrc

and reactant conc'ent'.rat-,ior.

(2n+n )

2.

'(en+r)eoz - b2,



Chapter 4
45.

BOIIIIDARY COI\TDITTONS AND TEE BOIIIIDART I,ATER

At thi-s stage it is neces'ary to investigate the physical inpric-
ations wben the tenperature is Prescribed on the bonndary. rn reallty,
it is not always possible to' ignore the therna]. propetles of the sur-
rounding ned'iun. rn a recent paper elitiplS examined the heat cond.uct-
ioa between a sphere and a sumound.ing necllum of dl-fferent thernral
properties ' fhe sphere was assu.ued. to be at a higher temperature j-a-

itially. Philip found the tenperature and heat flux on tbe surface of
the spbere aE a function of tine.

suppose tbat the inner sphere is of thernal conductivlty and dl-ff-
ueitivity given by k and,K respectively. Lircewise the correepondi_ng
quantities for the sumoundingl medium (supposed, to be infinlte ia er_
tent) are \ *u &f Then the boundary conditions oa the surface of
the sphere (r=a1 are that

(i) ["]t="-o = [u]"="*o i.€. the tenperature is continuou.,t"ql 
laol(ii) el*l = k-[-Orrr=a_o -:LFJ"=r*o t.". tbe flux Ls contiauouer

The first of these expresses the fact that there is no sudcten Junp
in the temperature on the surface, while the eecond states that there
is no aecunulation of energy at the surface. rn ord,er to ascertain
what physical assunption is nade when the surround,ing nedi'm ls
neglected, two separate problens w:ir-I be cousidered: one ie based,
on a mod.e' sirnilar to that of ,phllipfs, and the other oa a nod,el,
typi-cal of those usua1ly consid.ered.
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4.1. Different tsound'arv Conditions

A conparison wilL be made for the two problems described' belowt

by calculating the temperature and fl-ux in the seml--infinite region

x) O, r"ri-th a point source p].aced at x = xo(>O) and rrcltched on

instantaneously at t = O. The tenperature and' fl-r:x due to tbis

source wil-I be found and the expressS-ons can be compared directl-y.

(a) x>0, therrnal conductivity k, thernal diffusitivity-( '

x40, rr tt 
\., 

tt tt 1r-'

The equation governing the diffusion of heat in the region can

be written
)o-Gl t aGr

- 
-?(El[-

ox

!,rith the boundary conditj-ons t Gl and fact/0x are continuous

or x = o. In (r) r< and & are interpreted. r" \ and f" for x(01

and the right hand side is mereJ-y the two-dimeneional delta

function. Iience Gr(xrt lxor0) w'i1l be the Greenrs functioa for

this problem. It corresponds to tbe temperature distribution in

a region, initS-atly at zero temperature, when at t = O a concea-

trated heat source is appliecl suddenJ-y and instantaneouely at the

point x = xoc

(b) Consider just the region x) O, of tbermal constants k and tL

Again the equation can be written as ia (t) with G, for Gtr but

now the boundary condition is vritten lr"dGr/dx = EGZ on x = O

(see note 3 on page 6). H is calIed the surface co6ling coeffl-

cient, QZ is th.e Greenrs function for thls probl-emr differeat

from that of (a) because of the different boundary conditione.

- 6(x-xo)6(t),
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These problerns can be solved by talclng LapJ.ace transforns of

equation (1) and solving the resul-ting ordinary differential equation

in xrusing the appropriate boundary cond.itions. on inverting the

transforns so obtained. it is fouacl that the sol-utions are g:iven by:

1 , (x-xJ" l-+ - * (r'x'l \(a) c1 = +(#)t("'W + 
ffi 

e-?,T ), ror a) o' ' ' (4'2)

" 1/ G:'c' 
"-Hs)*#"t"tf'H"r"Gffr . *m).(b) Gz = ;(#)zk-TTr +

lrrow these two expressions can be seen to be equal if we put \-
(a) and E = O in (b) ' For both are now equal- to

,1 , (.-ro)t Lxrrof 1

*Cfrlz("-F + e-?F I . This was expected, of course, because

these two conditioas mean that tbe boundary cond'ition at x = Or for

both probJ-ems is 0G/0x = O. 'Ihat is, the surface x = 0 is tbermally

insulated. fronl (a) tbe second. med.ium in the first caser ana (b) from

its su*oundings in the second case. Also, if in (b)r B tends to

infinity, the expreosioo G2 tends to the expression
1r^+ r.)r 1

e-@) i that is, the sane as G, when { Ls set

tends to infinity corresponds to the caee in whicb

G, 5-s prescribed on the boundary x = O (in ttrie case G, = O on x = O).

Exactl_y the same happens wben the flux kdG/dx is consLdered in the

two cases. Hence, it follows that if the temperature ie prescrlbed

on the boundary, that this is eguilval.ent to neglecting the thermal

dl.iffusiviti of the neighbouring necliun.

This can be argued from physi-cal coneliderations al-so. For if

jq i" negligible (serntr'ared to \), this corresponds to a meditrn wj-th

a large thermal capacity C. Eence any heat which is transfemed acro6B

(4.r)

=Oin

. ) (x-r.l
*tftlz("-z.zr
equal to zero. iI
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the bound,ary x = 0 w:i-ll not produce any significant change in tbe

tenperature in the regioa x ( O.

4.2. The tsoundary Layer

fn the preceding section, consideration was given to the phys5.-

cal reality of the boundary cond.itl-ons inposed. on tbe surface of the

mediun. In any problem, for wh,ich it is desired to find the tenpera-

ture at any poiat as a function of tlne, one of the first things of

interest is the effect of the boundary aail the condltions irnposed tbere.

tn particular, how long iloes it take for these conclitione to have aa

appreciabre affect oa the sorution at any given point? The equatl,6n

for the temperature being paraboJ-ic, iopJ-ies that the effects due to

the boundary are felt ionecliately throughout the med.iun. Eowever, in
practice' one Looks for the points for which the bound.ary condltLoas

have hail a significant effect on the solution there. Sucb poLnts are

eaid to be urithin the boundary J-ayer. Outside the bouadary layer, the

eolution bebaves as though the boundary is not there at all.
For example, take the problen of a semi-iafinite region with a

constant heat source and homogeneous boundary and initLal conditions,

i. g.
2

0-o

-+rox

subjectto€=O

teki.ngi a Laplace

)td-c _E2E-
dx-

ae
t&

onx=O

transforn

(4.4)

and at t

intso
= O. The soLutioo is found by

that

1= -[ r .... (4.5)
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where 6(xrp) = jot"rt)e-ptdt. " " (4'5)

On sol-ving (5) it follows that 5 = *, (1 - e-{ix) and so by invertingp-

this transforn, using Erdelyf-rs tabl-esl7r

+
o(x1t) = t**t|)ue-*^/+r 6*1*2)ettck/ztt), .. .. (4'?)

The expression in (?) is, of course, the complete solution' Eowever

much is to be gained from 3-ooking at tbe soLution more closely' The

solution 5-ndependlent of x is O = t, obtained fron (7) as the

asynrptotlc value as x tends to infinity. At any given ti-ne, it is

possible to obtain a measure of the behaviour of the solution as x

becomes 1,arge. Thls is d.one by considering the asyllptotic expression

for erfc(z) for z large. Hence, fron (7) 
1

o(xrt) = t(]- -+-= "-^2.,. ), . '. ' (4'8)
BrEz2

rshere z = x/Zt* and terms of Otf- 
tl 

bave been neglected. Then
Zrt

by cboosiag a rflevel of significancetr s, that isr for %.7, T, where

"-Y26nty3 = u, the second term in (B) can be negl-ected, a measure

of the vridth of tlre bouadary Layer is obtained.. In the xrt p1ane,

the boundary layer will be marked by tbe parabola *2 = 4Y2t. This

is illustrated in Fig. 4.1. The sorresponding soLution as a functLon

of positioa, at any fixed time is j.ll-ustrated in Fi-g. 4.2.

4.1'
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The boundary Layer ie l-il3e a ldave advancing iato the nedium wlth
1

speed inverseLy proportionaL to (t)2.

The solution ia (8) is, of courEie, on1-y valid fot z large and

so is not appl-icable near the boundary x = o. outside the boundary

layer the solution can be approxinatett by the sol-utioa indepenclent

of xs i-.€. O = t.

To obtain an equivalent form of the soLution (7) near tne

bounclary x = Or use is nad.e of the asynptotic expaneion for erfc(z)

rrhen z is small . Eence,

1^=1
t( 2z/fi2 - z1/2 * ztft\nz ... ).' . . . (4.9)

is validl on1-y for z snaLl- and, so is not appl-icabJ-e near

is therefore of use within tbe boundary layer on1y.

thie sinple example an indicatiou is given on a tecbaique

any probl-em of the type d,iscussed. here. For it is usuall.y

e=
The above

t = 0. It
Fron

useful in
possible

i-nfinity.

clescribed

to find the asSnnptotic vaLue of the sol-ution aE x tends to

Equation (f.4) i-rnpl-ies that the solution of the syetem

ty (t,t) and (1.7) inclepend,ent of x is 6iven by
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....(4.10)

where in tbe diffusion equat5-on t is wiitten for fit ae before' Tble

means o + cr,) is coastant for aLt t and so is equa3- to its inltial

value. Thus by substitutlng for o in the equation given in (1'1) t

*t = -"3+

it is possible to fincl both € and \' In equatioa (11) g(O,I) is

written for tbe u-nit as x tends to infiaity of the expression

g(xr0rt) introcluce'cl ln Chapter 1'

[hese ideas can be of use in other geometriee in a sj'mi]'ar llatrD€r'

3or exampJ-e, ia a finite slab which ls of suf flcient thichess so

tbat the bounctary layers associated with eash boundlary d'o not ov€l-

lap for smalI tine. suppose the slab is of tbickness b, then the

bound.ary layers epread into the region as showo in Fig' 4't'

0\
0t = -g(e,)' ) t

w&:
in the triaugular-shaped region

eolution indlepenilent of time.

. . . . (l+.rt)

Eence it is onlY

one carl ase the

(snaLl tine) tbat
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Tbeotherpenainingcaeetobeconsiderediswhentheslabie

thin. Ihis means that the effect of the boundary ls felt almost

innecliately throughout the whole sl-ab, A perturbatLon expanaion

can be ueed to obtain an approxi-nate sol-ution to the problen' Thls

has to be done in such a way so a6 to avoid obtainj-ng a singuJ'ar

perturbatlon serles.

consider the exa.nple froru chapter 9, that J.a the coupLecl paii

of equations

o2e oe -a\
,7 = 6E+'E'

Al ,5t = -le'
in the region o(x(b eupJect to o = l onx = oandxEbr and

O = L, tr = l- when t = O. Recognition of tbe fact that the epeciuen

is smal-L is gC.vea ln writins O = f +Eu and g*" fot x, where € is

srnall- and u is a function of xrt satisfyiag:

+ =.*t*+, ....(4.r4)
-1 C
0x

*i = -I(r + €u) 
'

.,.. (4.r5)

with honogeneous boundary anct initial conditions. Now in (14) r if

the expansione

....(4.u)

... r (4.r5)

....(4.15)

. . , . (4,17)

u = uo + E5 + tzurt ...t

= \o + Et, + E2)rt ...,

are substituted. and the coefficients of corresponcl.ing powers of

are equated, it foJ-l.ows that,
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2 -. .?utoo olo o'oi doi-L oli
.- = "#, ,;2- = # * "U1* for i = LtZ' ... . Thj-s 5ives

rise to what is called a singular perturbation series' A cliscussioa

of these is given in Van Oyfel8. To avoid' this, F is written for €

in eo-uatfoa (14) onIy, and. j.s consiclered as a constant' Then oa

equating coryespondLq powers of t as before it follows:

o2u
o

-=
ox

6Io
5r
^?0u.

a
^1ox

0up;f +

=-\o,

0u.
= BF* +

0\
oaEF'

aI.
LAEF'

.. .. (4.r8)

. . . , (4.19)

. . . , (4.eo)

. . . . (4.2L)

bas homogeneoue

-1r \1 =O

0\
at = -(I, * ti-Ilo * ..... + uo\r-r) .

Equati-ons (a0) ana (21) apply for i E 1r2r ... . oi

bouadary and initial conditions (i=O includ.ed) and Io

when t = 0,

oa solving (J.9) subject to the above initial cond'ition it is

found that lo = e-t. Then substituting in (r8), taking Laplace

transforns it fo].lows that
2-ctu

o

-+
-aclx

where i
o

Ppio, subject to ilo = O on x = 0 ancl x = bi

- r)e-t- ...o(4,22)

a
=p+1

= 7 "-Ptro(x,t)dt. to
1

'2

? "-t*'frt/tt' uirr( zn.r)nx/\
-"E (zn*I{en*r)2n' - g^r]

uo(xrt)

4b2a
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This er4rression, in (ee) r represents an approximation to the soLution

oftbeprobJ.enasposedpreviousIy.ItistheIi@approxi-

mation to the solution. Mathematically, it is the solutLon of the

diffusion equation subject to heat generation which depeads on the

surface tenperature and the surfac0 reactant concentration' EOw goocl

this approximation is, depends on the thickness of the specinen'

A better approximation can be obtalned by solving for the

second-order terns \r5i given by the coupled eo.uations (20) and

(2L) with i r I. This is done by taking laplace transforns of the

equations and, solving, exactly as before. In (af) r use is made of

the sol-ution uo given Ln (ZZ), or rather the Laplace transforn of uor

to forn a first order linear ordinary differential- equation for \r.

As one proceeds for higher order approximations, the prob}ens of

computation increase, and so it is aot j.ntended to state the bigher

terme, except to note that it is possible to solve for these ia

principLe. Further, if the uo, ulr ... so obtained wben p I O are

expanded. in powers of F, the term independ.ent of B should be tbat

obtained by puttins I = 0 in (f8 - ef). For exampl-e,
?

u l^ = *ax(t -r)e-t ancl tbis is the solution of 0 uo
o-p=o F

subject to honogeneous bounclary conditions on x = 0 and x = b.

To use these perturbation series a6 approximations to the sol-u-

tion, it is necessary to put F = € = 1. ft is interesting to note

that uolp=t t" the eame crpFa66iou aa that denotedl by v in Chalter ]
(see pp. 4t - 4a).

= " # = -"\o,
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Thus tbe fiuile s].ab caa be rbolvedltt Ji'n tbe fo].lowtug ttays:

(i) if it ls thln, tben the Sierturbation eef:Les obtaLned I'n thle

section can, be ueedl

(ii,) tg it i,s t-h5-ck, tben ne,err the edgee the bouudary layer soli1gl'oa

ls a useful approXi.m*tlonrand in the eentne the eolutlon appro4!'-

nat,es an i4fiuJ-ta prohJ-em forr sufficientl.y ana1l tlne' tr'ol] xerge

tine tbe specinEA wi.1I bebave tike a thi-a epecinen, Ln tbat tbe

e,ffect of the bounttary Ls f,elt tb.rouShoutl thougb it nay be that

oihrtrng to tle equatio:r being nonLiaear, the pertu:sbation eerLes

wi]-t not be va].idt tbere'

fheee icleae cau.. ba e4eralized to anSr' type o'f rreactl'oo in aut

particular geometry, Srovlded that it ie- poe,sl.ble to obta;i.n L:laear

equatio;4e' ,f,o:r the tenns :bf, the pentgibatLon ser:Los'
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Cbapter 5.

TEE SPACE - AVERAGING PRoCESS A$D cBIErgAI,=qfATEs

As it was mentioned in Chapter 1, many of the autbors who have

stuclied. this particular system have mad.e use of what wilL be calIed

a space - averaging process. It j-s intended to extrlJ-ain this in detail

and connent on its vaLiclity. Tbese authors have been interested nain-

1y J-n deternioi.ng the critical conditions, So before any discussj-on

of the space - averaging process can be givea, a definition of what ie

meant by cri-tical conditions nust be made.

5.1. The Critica]. State.

There is some difficuLty in d.efining the critical stater aadl just

this problen has occupied the attention of nany authors in the last

few years. A state vriLl- be said to subcrj.tical if the corresponcling

soLution is stable n and. supercritical if the corresponding solution is

unstabLe. The extreme case of stability shall be callecl critical stab-

il.ity. However, the question is left as to how to d.ecide whether or

not a given solution is stable ot unstable. This shal-L be defined

here as in BeJ-lman19. That is, a soJ.utlon, o, of a partial d.ifferent-

ia3- equation is said. to be stable, if any solutionrO, of the equation

whose boundary values are sufficiently |tcl-oserr to Ors boundary values,

remains |tcJ"oserf to O for al-l vaLues of the independent variables. The

term rrcJ-oserr wj-J.J- be used in the fol-lowing 6en6e: el and. 0, are suff-

iciently close in a set B if the rnaximum of lOf- Oal is sufficiently

srnalL. lt shouJ.d be noted that stabiLity is not necessarily the same

as being bounded.
)dStoher'" set up a criterion for the stabil-ity of an equil-ibriun



state of a nechenical- gysten through the application

snra].]- osci.ll-ation6. This has been extended to cover

erned by systens of partial differentiaL equations.

the crj.terion is justified for a class of parabolic

sider tbe equatioa for a zero ord.er reactionr which

can be rtritten

ae + f(x,o) = 3E .

Then the stabil-ity of the steady state solutions of

fron considerations concerning the solutions of the

55.

of the nethod of

situations gov-
2'lIn McNabb--,

equatione. Con-

fron Cbapter J.

....(5.1)
(L) can be decidecl

equation

. . . . $,7)

aO + f(xrO) = O. .,.. (5,2)

In particular, each menber of a one parameter fanii-y of stead.y state

solutions is stable in any closed reg:ion not containing points at

which tbe nember touches the envelope of the f"nJlX. As an example,

McNabb discussed the equation

o2o + 6eo =
ax2

in a srab of thiol@ess 2b. This is the equatioa derived fron the

Amheaius equation (1.2), by naking a binomial approxinnation. Tbe

steady state solutj.oa of (7) was glveo in Kamenetskiil ae

o = oo - 2logcosirf(u"?tt*"] , . . . . (5,4)

where o6 satisfied 
"S = corh2( o.Oyil*a . Then 6crit is the max-

j-mum 6 for which a solution of this last equation is real i.e. require
y = coshz{aazylz1* to have a real sor-ution. By defining tr= (oazyp1*,

it fol-lows that coshrr/y = (Z/bbZ)+. Hence to find, the naxim'm 6,

all that is necessary is to find the ninirnum of eoshc/q for alr pos_

itive [, This is found. by successive iterations to be ]..'5rr and

00
6T'
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hence 6crit = O'88/U2. Or if the value of 6 j-s fixect, it follows

that the criticaL size of the sl-ab is g:iven by b = O' 94/6+, That

is if 6b2> o'88 tfre solutions of (3) are uastable and in fact, ao

ls sbown in l{cNabb, are unboqnclecl as t tends to infinity. If

6b2<O.BB the solution is stable and tends to the steady state given in

(4), as t tends to infinity. Tbe critical state is given, of courset
a

by 6b' = o'88. This is illustrated in tbe figure below.

ri,g:14.

In this case it is obvious that if the system is stable, it means

that the soLution is in fact boundecl, and if it is unstabl-e, that the

solution is unbound.ed., though tbis is not general,ly the case.

Thus there is no problern in cLassifying any zero order reaction,

but in the general case of a nth ord.er reaction the picture is far
from clear. The following connents wil-I apply to the most general

type of system, that is as dessribed in chapter 1. when the comes-

ponding temperature-time curves are d.rar,rn, it is obvious tbat the

behavj-our is d.ifferent fron that illustrated ln Fi-g. .5.J-. The tenp-
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erature fj,rst ri-ses as though it wa.s a ze?o order reactiont then

owing to the reactant coneumption becoming significant, this effect

gracluaLly doninates. fhus the temperature reacbes a maximum ancl

then tends asymptotically to zero. This is shown in Fig. 5.2.

FiE. 5.?

Thus any disturbance ad.ded to any particuJ-ar state will eventually

shrink to zero as t increasesr and it is never posslble for auy

sucb d.isturbance to grow exponentially witb t. Using tbe definl-

tion of sta'uility g:iven on p.t4, one rnust conclude that auy reaction

of nonzero ord,er is necessaril-y stabl-e. However iu the paper by

Thomas and Bowe"8 u.o attenpt i-s made to set up a cr5.terj.on for criti-

ca1 stability. It is intended. to discues this further.

For conditions, which are d.efiaed by Thonas and Bgwes to be

stable, curves of Oo (the centre temperature) againet t increase to

a maximum(and then fall) in such a way that Ago/At decreasee as t

increases, i.e. azeo/otz1o. However, if the condition' are

unstable (again in the sense of Thomas and Bowes) Oo ftotted against

t passes through a point of inflection and thea risee much more

rapidJ-y to a maxi.mum which is much higher than in the stable case.

i
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This type of tenperature behaviour is conventionall-y considered as

cbaracteristic of ignition, and the lowest value of any parameter

(such as 6 before) for which a curve of 0o against t includes such

an inflection while the temperature is rising is then defined'' again

conventionally, as the critical state. with the type of reactlon

that is cousidered here, this is a reasonable approximation' For

therateatwbichheatisevo1vedis@w.ithtenperature.

However, if there wa-s a more marked variation of heat prod'uctlon vnith

temperature, then the criterion would become anbiguoUe.

This criterion cau be thought of in a different way, althougb

the same conclusions, as to which states are stable and which are

unstabler are reached., For the stable caset any snal-L dlsturbance

aclded to the system will- tend, to decrease with time. one could say

that the d,isturbed state grow6 back on to the undf.sturbed' state. In

the unstable caser atrY such disturbance will first grow away fron

the uadisturbed, state anil then gradualJ.y decrease to zero for J-arge

time. Such behaviour can be calLetl tfvariation increasingtt 4a coB-

pared. to ftvariation decreasingtt in the former cerS€. Thonas et.81'

wish to distinguish between these two cases. It is suggested here

that what tbey are reall,y saying is that the systen shall be stable

or unstabl-e according to whether it is asynptotically stable or

unstabl-e. The worE traslmptoticalS.ytf is used here in the sense that

a zeto order reaction can be regarded as the linit of a sequence of

nth order reactions. This r*:ill- be d.j.scussed, below where a pa.rticuLar

example will be dj-scussed which illustrates asynptotic instabil-ity.

Consider the coupled systen,
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....(5,r)

. . . . (5.6)

. . . . (5.?)

= -gArg

rrrbere s is a parameter i in a finite sl-ab of thickness 2b, wLth

€=1, \=lwhent =Oe-nd.O =L onx= b. Now, ingeneralt under

the criterion of Be1lnan, this eysten is said to be stable for any

s I O. If a = Or then the reaction is effectively of zero ordert

ancl so the probLem j-s sjmilar to that proposed at the beginning of

this section. tr'or this casel

a2o

0x-

subject to I =

tbe stab5-Iity o

frcm
2g-9+o

-1cx

0e= f,fr

I on x = b and O = 1 when t = 0. Then as ia McNabbt

f the steady state soLutions of Q) can be ddcidlect

. . . . (5.8)0.

A family of sol-utioas satisfying the boundary condition 6O/6x = O

at x = O and strrnmetrical about x = O is O(xrA) = Aco€x. The stead'y

state solution O(xrA) touches the envelope at x =t*/2, e = O (in

fact the envel-ope is just these two points in this case) ancl is

therefore stable in aay region lxl < b if b 1 n/2. The correapondiag

solutionsatisfyingO = 1 otlx = b is g = cos x/cosb, Bhus it is

said that the critical size of the region is b = n/2. For this value

of b, the solutioa of (7) is unbounded ae t tends to infinity.
Now, returni-ng to the case o / O and tak{ng a region which

exceeds the critical size, i.e. is unstable, when c = Or then it may
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Tben the

that the

curves
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systeu is as3mptoticalLy unstable as a tende to zero.

f,or varioua c wil]. be shown in Fig. 5.3.

o(= €

Fig. 5.J

Thus it can be seen how the criterion set up by Tbonas hinges on

the corresponding zero order reactj-on. Suppose that the ti-me scaLe

of reactant consunption is Large compared to that of tbe ti-ne taken

to reach a quasi-stead.y state (tAat is the temperature curve flattena

off). Note that this corresponds to a smalL in the above example.

Then for sna.J.J. tine the temperature behaves as though the reaction

was of zero order, in that if a snal.L ctisturbance is acldeclr tbis

tends to grow exponential-Ly, or disappearsr witb ti-ne dependiug

whether or not the reaction is stable.

5.2. The SDace-averaAing Process

The authors with which this thesis w:iL1 be nainly concerned. are

Thomas and Bowe"3'8'9 and AilLer aad Enig4. The prlmary aim of theee

authors is to convert the partj.al. differentiaL equations into orclin-

ary differential equations in the independ.ent variabLe t, thereby
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meking the equations easier to solve' This is doue by an inte-

gration over space and replaciug the temperature and reactant

concentration by the averages of these quaatities over the whole

region. consider the equations for a heated body, which can be

written, using suitabl-e dimensionless variables as

a6 = *?+"f!,

In (9) tbe Laplacian is in the appropi:[ate d,imension. For a

s;runmetricalJ-y beated body, A€ = Oze/axt. * 00/0x where J = Orlr2

for a slab, cyliader, and sphere respectively. The region oceupied

by the material- wiLl be denoted by V and its boundary by S. The

function f(O) is in general a nonlinear function of temperature

e.go as the Arrhenius equatiotr f = A1-B/Q. These equations are to

be soLvecl subject to a prescribed value of I on S and, prescribed

vai.tres of 0 ancl \ initi""Lly.

Now this is done in the authors meationed previ-ousJ-yt but lt

is felt that at no stage j-s it c1ear Just what assunptions are madet

and horv the systen. arrived at resenbles that l+itb vrhich they startecl.

8o by integrating throughout tbe whole region V and using Gaussl

theorem in the appropriate d.i:eensions it foJ-l-ows tbat

1 F --. rA jd d6 . _di
7$ graou.*} = aT + taT.

In (11) V is used. for the volu.ne of the region

average temperature and reactant concentration.

(10) it foll-ows that

0\E=

d;E

-.\nr(e) .

....(5,9)

. . . .(5.1o)

. . . .(5.11)

*na 5, i are tbe

Likew'ise, by usLng

= -3{fr(e)av ' . . . .(5.12)
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The introd.uction of the quantiti"u 6 *na T explains the use of tbe

term ttspace-averaging processtr. At this point two assumptionE are

made. These are outlined below.

(i) The second term in ecluation (fe) can be written -a'O'Ff (6),

where A(t) : {rft(e)aVnlnf(6). If tbe region ie large enougb,

then for sufficient3-y snal-l- tine before the boundary has had a

eignificant effect on O and \, l(t)pI. Indeed this is the fLrst

approximation made. Eowever, it can be noted. that this is equiva-

lent to using a perturbation expansioa in which tbe first tern

repre6ents the sol-ution independent of x, while tbe higher order

terms represent the effect of tbe boundary J-ayer as it moves

into the region. For if x/el\ is written for x in (9) ancl (fO) t

and corresponding power series expansions are written for € and )

it fol-l-ows tbat

l(t) = 1+€Ar(t)+€2lr(t)+... ....(5.11)

Eence, the approximation made is to neglect aLL terms but the

first in (rF), and so,

4rn
= -atr"f(€). ....(5.14)

(ii) The other approximation made compensates for the negJ-ect of

the boundary aad the conditione i:aposed there. Since the tempera-

ture is now the same over the whol-e region, it follows tbat the

temperature just insi-cle the boundary is d.l-ffereat fron the

tenperature of the environnent (or tbe temperature inposed on the

boundary). So the first term in (ff), which is nroportiona.l to

the heat fJ-ux oa the surface S, is replaced by a term which

suggests a heat J-oss to the environnent given by l,Iewtonts law of

dT
dt
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,qoolj-ng. That is, $ { Sraae.q5 e -Fg , where S is the surface

area of the region V. (Tbe surroundiugs are assumed to be at zero

temperature). The quantity p is calJ-ed the effective heat-transfer

coefficient. It is called this becauee the coeffj-cient represents

the surface cobling coefficieat (see p.6), when the tenperature

variation across the region i-s replaced by an averaged temperature.

Tbe approxination wbich is made can be regarded a6 a truncatecl per-

turbatiou e:tpansion also. For the expressions above to be equalt

B woulcl nornalS-y be a function of tine. In fact

P(t) = { grad.o.fl! /sd . . . . (5.t5)

Since interest is focussed. on tines near those at which O reacbes

its maximum, and coadlltions are quasi-steady, F(t) is approximately

constant. Thj.s is the approxinatLon made hele. (t'tote that when

t=O r p raust be infinite). Ilence the equation can be written as

dE . ged
dt v'

dl= _aET .. .... (5.16)

Thue the systen haE been reduced to the pair of ordinary differ-

ential. equations (14) and (15) j'n t. The spatial- variation of O antl

) had been eliniaated, eee Fig.!.4.

Fig.5.4.
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The problen wbich arises is to ctetenniae tbie value of F for the

different geonetries discuseecl. Tbonas et. al. were concerned w.ith

cleternining the conclitions for rrcriticalitytt and so interest has beea

confined with times prior to the temperature reaching its maxj^Bum'

For zero order reactions (n= O) , Kamenetskiil obtained values fron

the heat baLance (see equation (15)) i'n the steady state' To facili-

tate discussion of this, the quaatities 6 anA 1 will- be si'rapLy

writtea as O ancl \ , where it is now unilerstood that the forner are

meant. Hence, In the steadY state

f(e) = *U".
I(anenetekii, using a binonial approrination to tbe Arrheaius lawt

wrote f(O) = 6 eg . Then, the steady state sol-ution for the tenpera-

ture ls given by so1-ving the resul-tiag transcendentaL equation' Iu

the cases mentioned before S/V = 1+i. This has two roots provicledl

the para:neter (f+i)p is sufficientl-y large (see Fig,5,5).

('; )o o

....(5.r?)

A,f=,5e"
j/-

FLg,.5.5-
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The smallest value of F for whj-cb the equation hao reaL roots rep-

reseats the criticaL state (i.e. if F were sma].]-er, then it is not

possible to fincl a steady state solution, in fact the system is un-

stable). Eence, by finding the gradi-ent of the tangent to f = 6eO

which passes through the origin it follows that p = Oe,/(l+J)'

Thonas9 uses tbese estimates in deternining the conditions for

a critical state (in tUe sense that he forrnulatedl) for a reaction

other than one of zero order. The vaLiclity of this depends on the

extent to which the transient tenperature tlistribution is of the

same form aE the critical eteady state' Probably the latest paper

of Acll-er aad Enig4 gio"u the nost iLLustrative clescription of the

systen, that is equations (f4) and (f6). Here the equatioas are

combined as

*i = - i(r-le/rnt(c)), .. (5.18)

obtainecl. by dividing tbe equatioae, wbere A = (l+i)F antt the initial

conclitioae tr = 1, O = O. t is regarded. as a paraneter for the inte-

gral curves obtained by integrating equation (f8). These are iLluet-

rated below j.n Fig.J.6. (See over page).

From equation (L2) t the significant parameters ate a and A.

The rest of the paper is devoted to discussing the relationshlp

between them when the conditions are critical j-.e. to finding the

first curve which passes through a point of inflection, and the cor-

responding naxinum temperature rise. This is calLed by the ignition

teraperature by the chemists. The above anaLysis givee Or"* = 1*o*.

To the chenist this represeats the highest tenperature possibl-e

before ahother reaction takes over and ignites the nateriaL. The
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reoponslble for m-trcb

It is f,eJ.t that, Lf ttllvt-ebed to u6,e the crf,terl-on gtven by

ThouaE to cJ.as if,y reactioas as Etab1e ,or U,laetabtre, :Lt uonldl be nrcb

rotrs us'G,f,ltl to consicle.r the aeynptotic etabiltty as cliecueged ea.rIle:r.

EbE introd,uction of the of the effectJ.ve beat-transfer coefficient i.s
reasona'bx'es Ln that jr.t w:ilt glve a faLr].y accu:rate angweri provicledt

the tr:r,auF':[eat teaperature dLstribrutj-on up to aad noer Lte aarJ-uun

is uearlSr the saae as :i.a the cri.tical eteadltrr state. EowEver, f,t i.c
qot a teebnique that natunal-lSr loadle i.teelf to hJ.gher onderr approx-

*?atiorne or that rri.Il alJ.ow the arlor nad,e La Lhe aBproxinatlon to
be ca3.cuJ-ated, ea"eily.
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TEE CUI-OFF PROBLS,I

In this chapter, a d.etailed discuEsion of what will be called

tbe cut-off problem will- be given. It is f,eLt that tbere is a

class of probLens which are of conslderable mathematical- lnterest

ernd are in nany ways like the cl-aseical free boundary problems 5-n

fluid clynami-ce.

6,L, The Exlgtenoe of Cut-off .

It is intended. to show that tbere is a

which the reaetant Ls exhausteil in a finite

to exhaust the reactant w:ill-, of courser be

and, so there wil-} appear a boundary, as yet

no further heat is geaerated'. ft was shown

2,4) that there dlid exist a uuique solution

sider the couplecl pair of equations

ae + alnf(x,e) = 8i '

class of problene for

time. Tbe tine takea

a fuaction of position

unknown, beyontl which

in Chapter 2 (section

of this problen. Con-

.... (6.f)

. . . . (6.4)0l6T= - trnf(xro) ,

It will be assu.nect that f is a bounded positive function. (es it

was mentioned in Chapt er 3 t f is nondecreasing rrritb O aLso. ) These

requirements were alL satLsfied in the physical- situations fron

which this analysis &roso.

Equation (2) can be written

gg)= r(x,o), nttl'0t\n-1/ ....(6.J)
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' ' ' ' (6'4)

In the fj.rst case, \ / l, if *-o is plottecl against ti-ne for a

fixed, x, the slope is 6iven by (n-1) f (xro). Assune that the react-

ant is consuned' in a finite ti-ne, i'e' \= O for t = to' Then as t

tends to to, \t-o tends to zero or iafinity according as a ie less

than or greater than unity. This is il-lustrated below'

fi

Now, if a function of time is unbounded as t tends to tor then it

follows that its derlvai;ive (assuning that it exists) is also

unboundeil as t tends to to. This is provecl' in the following Lernrna.

!s,: Assume that

is unbounded

t+ t .
o

Assume to the contrary that ft(t) is bounded for aJ.J- t,

and in particul-ar as t+to. Then there exlst Bl-r Ba

such that Bz4 T'(t)

i.e. Bat

T(t), Tr(t) erist

ast4t, Then
o

for O-< t <t and that T(t)
o

T t (t) is aLso unbounded as

Proof:
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which inpl.ies tnat T(t) is bor:nded as t*to i tbue

contradicting the ProPosition'

Eence, if n ) 1, f(xro) tends to infinity as t tencls to to. This

contradicts the requirement that f be bound'ed. Further it follows

that, ia tbe case of n) l-, all the reactant cannot be consured i':r

a finite time. In the case of n 1 ! Lt can be shown that the

reactant will be consumed in a finite ti-me' Since f is boundecl and

positive

lq> f(xro(xrt)) 7. n for

Thus fron (l) it follows tbat

* ,tt-") < (n-r)n ,

al-l xrt.

(n<1)

i. €. .\1-o ) r-o (t-n)nt ro
(6,5)

where lo is tbe initial concentration of I as a function of poeitS-on.

However, silce it is an obvj-ous physical requirement that \ renain

positive, lt follows that,\ becones zero in a finlte timet say to.

Then for t 7 to there is no further heat generation aad equatioa (l-)

becones sinpJ-y

deAg = trOE

which is the heat conduction equatlon w:ith no beat source.

For the case tl = lr plot l-og (VI) against time and note that

Log (V\) tends to infinity as X tendls to zero.

. . . . (6.5)
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tshe eloBe wI11 be gd-ven by ,f (xra). Eemce the Eaae ArgF![eat wt'Il

apply aE Lt dtitl in the oase n ? 1'

trhue' it, naY be eonclu.dled'l

n ( I the reaef,ant r*il'x be coueuned l'n a fid.te tl.nir

nV L. the reaa,tanrt cannot be consus.Ed i.n a finite tlue aait wLlL tendl

assrnptotical,ly te aqrs as t becoue,s large. Thls phenonetou (tn the

former case) bas pronptecl the name ttsutr-'ff problenrr.

!ftea ther,e is, no outrEff (n 
" 

1) the Broblem o'f, actual\r

so1ving the equatious (1) and (2) wiJ-l be more straight-forwardlr :Lu

that, aJ.thougb the equatioas are uonlLueEr, tbere Le ao dlvl-aLon of,

tbe rogion in t'be (.xnt) Etrte,ee ia wb;icb tkey.apply'

Inteye.st W!I.J- rror bre conf,l.nedt to n ( Ir where tbere Ls a qut-off,

tise to wh1oh willl in geueral' be a firnction of !(r EEI c{r). Ehe

problen may be stated as

aa + a\nr(xro') = *9, r<o(

*9, t) c(x)

.. t.(6r?l

.r,.(6.8)A9



= - trtrf (xro) .
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. . . . (5.9)

(The last of tbese is subject to tbe condition A = O when t = C(x) ) '

These equations are to be solved with gj-ven initial (€ ana I ) and

boundary (O onl-y) conditions. If n is zero, the interpretation

that f = 0 wb.en t z C(x) must be added'' Thie wil-I meaa a sharp cut-

off in the heat source and rate of reactant consunption. There are

also some coatinuity conditions on 1 = C(x). It was shown in Chap-

ter 2 that tbe temperature and. its first derivatives l.|-ith respect to

xi are continuous on the cut-off surface. FhysicalJ-y tbls i's nerely

asserting that both the tenperature and heat fhur are continuous.

Note that it is assumed here that there is no change in the ther-naI

properties of the naterial brought about by tbis burning process'

Otherwise these conditions (and the equations) woul-dt have to be

noclified to al1ow for this.

In the case of a nonuero order reaction it has been ebow:c tbat

AO/A| is continuous on t = C(x). Further it vras notecl that in a

reaction of zero orcler it is aot possible, in general, to attrlbute

the discontinuity on 1 = C(x) whoIly to either AOrlAt or to the

eecond d.erivatives of g witb respect to the x1. Though in the

opecj-al- caoe of C(x) constant it is onJ.y Ae/Af, which can be dliscontLn-

llolrs r

To ill-uetrate the posi-tion further, consider the sent-infinite

problem x > O in which tbe tenperature is prescribecl on x = O (and

r,rhen t = O). Then the cut-off curve (as it is in this case) divictes

tbe positive quad.rant of the (xrt) plane as it is shown i-n Fig.5.].

alfr
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As it is drawn with Ct(x))Or the cut-off curve replegenls a

Irave advancing into the region Leaving bebind it a bgrnt out residue

in which the ordinary heat conduction equation aptrr}ies. Ja the eol-

ution of these problens one of tbe prinary u:xknownE is, of coutrset

the cut-off curve itsel-f, as wel1. as the depeudent variablee g and )

She probLenr j-s etilL well-posed however, because of the iufornatLou

about I on t = C(x).

6.2. Examples of Cut-off Problens.

Consider the zero order reaction in wbich f ls merely a functioa

of O. fhen the cut-off probl-em whea tbe equations are ind.ependent

of x, is given by

This

For

att

da r\
Ei = af(o) =-"t? , t(C. ...

is a conparatively si-nple system to solvet at least in

example, when f(e) = a t B0 the sol-utLon subject to O

. (5.10)

princlple.

= Or l= t
The tine

eq rctron (?)
ei*-t o.'" ({)

=oris e = ftte"Ft-r) , \ = r -${ ""Ft- 1) ,
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of, cut-off ie grvea by \,= 'o i'e,. t =* los ( r * $) . Eence

dA/:61 = O for t)C, which Lnpl5.ea that 6 = o1 aDi[ l= O for t>C.

fhese a're i,Llustratecl below.

Eln. 5.4

lfhe eolutlon above would b,e tbe ae5rnBtotic ve.lue as x teode to

tafS-atty of the senl-infLnl.te problen nC.th O = 0 e[ r = O. 
'**"

5rrobl.eu :Ls more difflsuLt to so1ve, llhat 5.e, i't Lo requlrect to

s:glrile

oeg

as,Z

00
0tt+ a(e + F0) t ( s(r) '...(5.11)



0I = |E
subjectto6=Oon
on t = C(x). For I

having a horizontal

t ) c(x)

cr + pe) , t ( c(x)

x = O and rvhen t = Oi I =

) O the cut-off curve wi]-L

asynptotet=Casabove.

?4,

,... (6.ra)

. . . . (6,11)

t=0, )=0
as shown belowt

a2o

-ox

0e
0tt

J. rshen

appear

Ehe solution of (ff) is easily obtainecl for t < C = nin C(x) t by

taking Laplace transformsi, as e = cs I u9*"rttvr"*l ill Eowever,

it does not appear possible to o", "1, such technique for poiats for

which t ) C. For exarnpJ-e, at the point B (%rtB), the solution must

in sone way take into account the fact that the reactant has been

burnt out alread.y at sone points.

At this stage of tbe problem, it was considered, that one way of

obtaining the solution would be to u6e a perturbation expansion l-u F.

Fod when I = O, the cut-off curve is t = constant (passing through A

1n Fig. 6.5), Deaote this by t = Co. Substitute 0 = Oo * 961 . ., t

\ = \o + B), + .. . Aad. further it was thou6ht tbat the continuity

condition€i on t = C(x) could be transferred to t = Co by using suitable
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Taylor expansions , However, when this was done lt r'+as noticed' that

the expausions were singuJ-ar. on cl-oser inspection of tbe problen

it:i.s found. that this should have been expected', for, the zero order

problen has as cut-off curve a cbaracteristic of the parabolic dif-

ferential equation. so the solution so obtaiaed was not in fact

taking into account what it shouLd have been, i'e' that tbe reactant

is exhausted at some points earlier than it is at others' Thj'e tech-

nique would bave worked for the solution iaclepend'ent of x l'e' 4s iD

equation (tO). Eere O and, \ coulct have been expanded in power eeries

in 9i the solution obtained being exactly as given, except that it

wouldbeexpandedinpowersofB.Thisls,ofcourse,becausethe

cut-off curve, for any F, occurs at the sane time for any point'

The problem discussed above has not been solved completeLyt

however, it is hoped that it se1rres to illustrate some of tbe proper-

ties of the systen. It ls now inteatled to discuss in d'etall- another

probLen of interest, whieh can be solved. using a similarity technique'

5.4. A Sinilarity Solutiou.

This problem, is again a zero order reaction, whicb as sbown in

section J-, will exhaust the reactant in a finlte tine. Eeat will be

generated according to f = cr + 9g/x2. Eence the problem can be

stated

a2e Be ae

- 
+ " *5 = ;;, t<C(x) . . . . (6.14)

6xt x

# 
: **, t>c(x) " " (5'15)
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26,

. .. . (6.16)

conditlons these

terns of the

tl

There wirl be solvecl subject to the initial cond'itLons e = ax2r

\ = Yx2 and boundary condition'Q = bt s1 3 = O' It is possib3'e to

el-ininate one of the constants. By a suitable s{aling of tbe cle- ii.

pendent variabLes, it follows that & can be taJren ae uuity' This

can be done by writing o€ and g) for I and \ 
"e"pectivel-y, 

and

reclefining a and b as qa and ob, the equations and boundary con-

diti.ons are then as abovel with c = 1. In effect all this is

d.oing, is choosi-ng a particular member of a cl-ass of probLemet

which are defined for variou6 &' The particular member is that

obtained. when o = I. 0n first glaace, it appears that this problen

possesses al-I the difficulties of the one in the previous section.

Ilowever, this problem possesses a similarity solution wbich enabl-ee

the partial differential" equations to be written as ordinary ctif-

ferential equations in a sj.ngle variable. For if the transforma-

tions

a r-> FX

2t +r-t
o -+r2o
I * r2\,

are appl,ied to both the equations and the bou.ndary

are !gg[34g1],. Eence the probJ.em can be written in
1

single variabLe v = x/t?. Define

o=r2l\\ r g\z/, I
^l\ = xth.(z), )

. . . . (6.12)
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Then equation (16)

'l .

in'(z) =

reduces to

L2+
z-

2z

2z

The

a.nd

subJect to tbe conditi.on that h tends to il as z teuds to infiaity'

The cut-off curve in tlre xrt pJ-ane is defined, by \(xrt) = 01 i'€'

b(z) = 0, which lnplies z = K. Eeace the curve'g = C(x) wil'I be the
1

parabo1ar x = i(tU . Equati,on (1-B) is appl-lcable for only z) K andl

is subJect to the definl-ng conclition for K, h(K) = O'

Likernrise eguations (L4) ana (r5) reduce to

g,,(z) + (42+u7/ilgt(z) +(Fe ile,k) +1 = Orz)K,..(5.19)

gtt(z) +(42+23/2)g,'(il + zg,Q) E Of z<K "'(6'20)
matchiag condition6 on the cut-off curve z = K become slnply g

dg/d"z continuous on 2 = I(.

t

T<K

e1**,ir lzo) T>(

eounC rin [rt)
.{,*,t*; tt't)

ztE I o q,lr \ = Trsr

EE:6.9.
The bounclary antl inj.tial conditions on O and I can now be appJ-J.ed f,o

g ancl h respectively. Hencet

g--ra)
I as z+cD

u+UJ
g, t\t A/uZ as z*O, i.e. zzg(d-tb as z{o.
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the situati.onOn

is

looking at the z Plane for

as

g-A/zZ BrBt continuous g+8 r

Since the function g depeuds on z a1one, lt follows that the isotherms

(lines joining points of the same function value) are parabolas in the

x,t pLane also.

Equation (eO) can be sol-ved by latti4g g(z| = w( il/22 and so

z from zero to infinitYn

wr.t +zw'/z-w -0, w(o)=b.

One solution of this differential equation

other can be found by substituting w = (f

substitutingn and solving for w, aud hence

is t + z2/z and so

+ zz/z)v?) in (2L).

g it foll-ovrs that

(5.21)

the

On

eG) = r(j[+ t/22) + n7"-"2/47, + n*(t*t/zz)etb/il),

wbere R is an arbitrary constant. Tbe latter wil:. o" r.""u: "rt:.::.t
by using the matching conditions at z = K. In general-r R w'il-L be a

function of K,

Howevern equatS-on (fg) presents sone clifficulty. By writing

J = 7-/z it folLows that

y2g" (ey+L/zfllr +(B+z)e + 1 -o. .... (6,2t)

Ilence it fol-lows that X = 0 (i,e. z = (D ) is an iregular singular

point and so there w:lll not exist a solution in serj-es. Further

the sol-ution of (19) wtren I = O (c.f, Qz)) is

so = 1 t P(* + t/z?1 + q!-l"2/4/z +,r*C+ + r/22)ect(z/il),
That is Bo(o) ie finite. Then it woul-d. be expected that g(o) is



finlte aIso,

d,iff erential-

ting

e(z)

where u = u2

4sGf I

?9,

since p / 0 does not al-ter greatly the character of.the.found

equation. The conplementary function of (19) is/Uy let-

= soe(s), ....(6.a4)

provicled,462 +66 + B+2 =0. The differenti.alequation

can be solved by taking a contour integral

. (6.2j)

in (25)

e(E) = f "rsr(r),b,
where c is an appropriate contour in the conpJ.ex plane. This gLves

G(s) = / ers r6-1(r+t/4)6'1/2 ar, lc 
-r^-r | ' ' (5'?5)

where c is such th.at I-""u J!+t/4>u'r/'7 o = o.JL
since 6 must satisfy only the quad.ratic equatloa above, tbeu it can

be chosen as the positive root, whlch imlJ-ies -3/4 -{ Real(6) <+f
provided 9V O,

Two possJ-bJ'e choices for C are:

and 6 i.s a constant. Hence G(s) satj-sfies

+(Bo+Lo+6)Gr+oG = or ,..

Thus

-
T
o

Oot
l+

the two ind.ependent

e-rs{r/a - ,16+3/2

e-ru(t/4 - 116+3/2

solutione for G(e) ate

- 0/4)o'll2]ro-ra" ,

"6-1dr ,
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'B)

Thus the

e(z)

where C

sanne as

P is set

( compare

e(z)

where u = u2 and 6

greater real part.

After a litt]-e
+ t n\ I 

to
I.r\ZrPl = lrfr-=Jr 6za't2 o

is the root ot 402 + 56 +

manipulation these

"-ultuz/4 - s 16+3/2

Bo.

9+2=0whichhasthe

caa be written as

' (6':r)

(zo) can be "r;r".: 

(6'tz)

+ (o + i/z)Qz/+ - ')bq"6d",
....(6.27)
. . .. (6.e8)

.f..(6.70)

solution of (f9) can be written as

= ,'u\rrr(zrg)+orr(z,g)J #t ....(6.29)
and D are arbi.trary constants. Since equatioo (eO) is tUe

that satisfied by the complementary function of (L9) when

equal- to zero, then tbe general sol-utj-on of the forner is

= ja*z fr;" {u214 - ")u'3/2 s6-1ds '

(29) ) :

= rtuoto rr(zro) + Bt2?ro) ],
where 6o = 6 when F =O i.e. 6o is the larger root of 4p2+ 5p + 2 = Ot

which means that 69 = 4 . It is a simple exercise to verify that

both I1(zrO) ancl lr(zrO) are 1-inear combinations of the J-inearl-y ln-

dependent solutions given in (ZZ). In fact, it can be shown that

they both behave iri-lke-lF/z as z tends to zero. Then in order to

satisfy the recluirement for g( z) as z o, it fol-Lows tbat A+B = -b/r#.
llow as z4(D, g(z)-ra, and so the asymptotic behaviour of the

integrals in (27) and (28) nust be cal"culated. It can be showu that

fot z Iarge,

u'u -r(u, p) + Ctl

226 rz(u rg) '+

6+3/2
I' (r+o ),/o

o I 
as z.+(D .

Henee, C = t" * g|r#'
Thus the soLutj.on of the equations (19) and
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e(il = -r-{u rrG,il/n*+_s(K)(rr(z,o) - rz(z,o)) J, z1K . . (6.17)

rr^ = 
"utl 

. u*t,#ri"rrrz,F) + u(r) rr(z,u)i- # , z> K

vrhere BrD are functions of K given by the cond.itionsi ,; 
'UUrU'i''n'

are continuous on z = K. AlL the way through this conputation the

known expression for zlK (see equation Qe)) was of assista.nce in

checking tb.e soLutions obtained.

The quautity I(, as nentioned prevS-ously, is given by h(K) = O.

By integration of equation (f8) , using (f9), it foLlows that K sat-

isfies the following equation

# + ge(K){t *::olt<z) + eFe'(K) - ag - lf(rz + p1 = o. (6.t5)

Hence, using (55) and the equations obtainea rron (]3) ana (94) for

g and d,g/dz continuous on z=Kr it is possi-b1e to find tbe conpJ-ete

answer to the problem. Ilowever, the resuLting equation for K is
extremery diffi-cult to use in practice. The author has actually

found tbis equation, but it vriIl- not be written here. rn order to

demonstrate the type of equatj-ons obtained^, the asymptotic vaLue of
K wi].l be obtaineil for K Iarge. ThLs can easiry be done using the

as}rnptotic behaviour of the integral-s glven in ( j1) ana 32). Thus

using the expressions Ln (33) and (74) at z = I(r for z large it follows

that,

B * (za-ilt# for K large.

Then this nay be used tn the equation

in using asynptotic expansions of I,
the respective orders of nragnitude.

. . (6,36)

for K, i.e, (15). Bowever, in
and I^ r care must be taken hr:tth1'

For, us5-ng (j6) ,



g(K) = a(t+z/zz) -..., -l

g, (K) = -4a/zt -... , J 
for large z '

If juet the first order terms are ta.ken it fo1lows that

L2F+
i. €. K= ('f rfrlEiu )*

aF(l+lord)-aF -f(ra"p) = o,

f,or K J-arge.

Bz.

6.t?i
(6.r8)

....$r3g)

This expression repreaents the first approxination to tbe behavLour

of K for enaLL f. By taking higher ord.er terms a better approximat-

l-oa could be obtained,. f,ikewise the behaviour of K r"Jtth F can be

obtained by findiug as)reptotLc expansions of I, and I, for J.arge p.

It wouLd be expectecl that B J.arge would inply that E is large aLeo.

Eence it ean be seen that it is possibLe to use the equations

to obtal-n estjrnates for K. of course, it is possible in the generaI

caser but tbis vrould invoLve an enormous anount of calcul-ation.



8r,

e.!@,.
c0Ncl,usIoNS

It is felt that the most interesting features of tbe systen

described. in this thesls have been discussed'. This is botb fron

the point of view of previous investigations into tbe probl-ent and

of tbat of the natbenatician. Ijflth reference to tbe aspects dis-

cussed in Chapters 2 and J, it is boped tbat as our knowleclge anfl

scope of the nachinery Decessary to establ-ish the eXistencet unique-

rressr etc. of solutions expands, so vrlLl the general-ity of the

results obtained. Tbere is, of course, a ]ot of interest in these

qualitative properties at present ancl ao doubt sone si6:rificant

advances wiLl be made in the near future. It is felt tbat there is

a more general- comparison theorem possibl-e, which wou1d. have embodietl

the resuJ-ts given in ChaPtet 3.

From the technical poiut of view there are, of courser a 1ot

of itifficult problems to solve with this systen. Many of the pro-

blems for which it is possib3-e to obtain solutions aaalytlcall-y are

given in the book by Carslaw and J""g""22. Eowever, there is a much

greater nunber of probl-ems for whicb there is no such eol-ution. For

these, oae is forced to rnake varioua approxinations and find pertur-

bation expaireions j-n different reg;ions of the ind.ependlent varia.b1e6.

By doing this, one often gains an insight i-nto the difficult features

of such problems, This ie usually of assistance when tbe problen

is to be computed on an electronic computer. With the tremendous

devel-opments in computing, it is now possible to solve many of the
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extren€l-y nonlJlnqar probJ.6m6 whiob were too forl{id.e.b16 in the past,

'i:his approach ie the oae which wi-Ll.r'usuaa3.y be tbe nost fruitful for

the plractieing ee.iantLst. &oweve:r, this ba.s not beea attempt,ed here.

llhene ere nary aspects of this probJ.em that bave not been coa-

s1dered' AE it has been meqtLo,nerd. in the conte,:rt of this thesd.e,

there a?e llafly sf-npl5.f,y1.ng assuslrtio.ne trhLeh hato bee.n inade to the

physieal rao'd,e;L fton whi-ch iibie analysia arore. Probably the most

obvious of theee is. the one that suppooed the t,berual propertj.ee

o.f the ne*itur are unchanged.by the conbustioa. Sone of the requiredl

uae.hiner,yr for provlng, the exi.stence of a eol-utLon to sueh a eyeitea

barg been eover6d. in C-hapter 2, and this woul-d foro ari i:rterest&ag

generalization of the refiltrts.
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APPE}IDIX

A.1. Existence of Sol-utions to ],(o)= lL(x.t.O).

2 lnd can, L satisfiee the conditions IAssume S* bel-ongs to C- t

and II .(as in Chapter 2), anci\(xrtrO) is ll6lcler continuous (exponent

a) in 5', for each fixed value of O. Further asaume that t[ satisfies

a J,ipschitz cond.ition iu e, with Lipschitz constant M| and that there

exists two functions O and 6 satisfylng the inequalitiee given in (2.15).

Finally assune tbat there exists a functior y of class C2*o iu d,n whicb
I

coincides w'ith the given boundary conditions Oo(xrt) on Sn and. on B

at t = O. Then there exists a soLution of the system

1,(O) = r|,(xrtrO),

e = eo(xrt) on S" and on E at t = Or

of

t'{o1

Moo

= \(x,tr6) - Md

= $xrtrOo_1) MOo_L for a= 2111. , , ;

= Ootxrt) on S* and on B at t = Or nV1 .

such that 0 is of class Cl*F in D* for any o < F <l- and of class 
"2+t

for sone {> o.

Proof: Couslder the eet functions defined by

r(01)

li(on)

oo

Now if Or._1 is Holcier continuoua with expoaent c, J.a Dgr then so

j-s the functioa /o_rtxrt) 
= ilxrtrOo_r(xrt)). Then by Theorem 2

Oo exists and is E6'lder continuous w"ith expouent e 5-n F*.

Furthernore, from Theorem J, for any 0{6(1

leolr+o < P( ll"-tlo + lrll2 + I"Ilon-rlo).

rt is shown in r.rcl{abb1o th"t
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g ( on \< on_I

that is (Oo) is a monotone decreasing eeqrience which j-s boundecl

beLow. Thls inp].ies that frn(*rt) is a].so bounded in iln and so

leolf+O is bouncled by a constant Pt ind.epenclent of n.

Hence the Ii-uit of this sequence exists anct ctefines a functlon

O in Dr. Furtber O is HoLder contlauous of erponent 6. r}om

Theoren 2, this neans that the systen

L(ot) Mer = tlxrtro) U9, Or = Oo on the bound,-

ariesi has a soLution Or of cLass Cl+p in D, for any 04p<l- and

of cLass ,2+( for some f,>0.

Now

L(o' - oo) - M(er - oo) = f,(x,t) 
=

= |(x,tie) - ?(*rt,o1-1) - M(e - on-I)
and Ot- On = 0 on the boundaries of D, while

l0(x,t) |

Sluce, by Theoren J, le'-€rrl < Kr lfrkrt) | anct the rJ-ghthand

side tends to zero as n tends to infinity, or coincid.es vf,ltb o

in ilr. Hence this o is the sol-ution of the system as requLred,
and is of class cltg io Dn for any o <B<L aad of cr-ase c2+6 for
some T> o.

Moreover, siace each oo is bound.ed, it foLlows fron tbe

L+6 estinate above that

lolfrO ( prn where pr is depend.ent on only

6rLrlrand t .
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A,2. Existence of Solution to the Complete Systen.

Assune s, be3-ongs to c2 and c2*n, r, satisfiee the condtitions r
ancl rr, as in chapter 2, t and g satisfy the l,ipschitz conditions
givea in (2.12) and (2.t3), and g is negative for \) O and zero whea

tr= o' It is further assumed that there exLsts a functionlof claee
^2+a . =u--_- in D? which coincides with the boundary conditioas oo of o on

s* and E'at t = o. elso the initial cond,ition \o(xro) is assuned. to
be of cl-ass cl on B, and it is assumed. that there exists two fuactiona
p and 5 continuous in iln and having continuous bounded clerivatlves ln
D*r ,sucb that for O -( \ (Io,

r(g) - f(x,t,9,)) > o > \(6) _ f(x,t,6rl),
g, (eo

Thea there exists a solutlon of the systen

L(9) = f(xrtrer\),
0)
of = g(xrtrorlr),

e = Oo(xrt)onSrandonFatt=0,
I = Io(xr0)on Batt=0r

such that € i-s of class cl-+p in D, for any 0( p<t ancl of class 
"2+Tin D* for some [) O, an6 I is of class Cl in dr.

Proof: Consider the set of functions defined by

9Ir
at = g(xrt 16, If ) ,

L(On) = f(xrtrOn, \n), n=1r2r...
gb
ot = g(x, t ron_1 , Io) , n7. Z
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in Dr, where

en = 0o (n)rl) oa S, ancl on E at t = or

\o = \o |.nVD onFatt=O,
Now if I' i" Hiild.er conti.nuous w:i-th exponeat a in

so is tbe function fo(xrtrg) = f(xrtrOr\(xrt)). By

in Appendi-x 1, Oo exists and. is certainly of claes C1

tloreover leolf*O ( Pr,

D-*, th"o

the result

in D-.I'

where Pr depeads on 6, Lrprand, fo. This neaas that Pr depends on

Oorlu r blrt as it vr:iIl- be shown that tbe6e are unifornly bound.ed.

it follows that there wiJ-l exist a unLform bounct for the seguence

(l0nl1+6) . fn fact it can be shorflo tbat

9, ( en { 5 for each nrin iln.

Theoren 4 inpJ.ies that )o(xrt) exists and., provid.ecl Oo_, is
of class Cl tn Dry then so too is \o, From the requiremente on

g it folLows that each \o satisfies O(\n ( \o in D-r. Next it
is shown that o ( on ( 6 J-n Dr. Thi.s forLows fron the comparisoa

theorems proved by McNabblo. For

L(en) - f(xrtrenrln) = o ( Lgo) - f(xrtrerlo),
r,(On) - f(xrtren,U) = o ) L(d) - f(xrtr6, o).

And since I { urr( 6 on the bound.aries of D* , these inequalitJ-es

aLso hoLd. in the interior. Also siuce eacb co is EiiLder coutln-
uous of exponent c (at Least) , then obvJ.ously each oo is equi-
continuous on D-r. Dy the Ascoli Lenma, there exists a subsequ-

ence tgnl , d'efined for k= Lrlr,., of (on), converging 'nifornly
to a L{mit functioa g ctefinecr on dr. rt is sinple to show from

lolr*o { Pt that I is of cr.ass co in 51 , and, further that o ie
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of class cl in x,

T'ikew"ise the same procedure foLlows from Oi\n(lo which

inplies the existeace of a Lirn{t \. Thie linit is shomr to be of

9lt',of g(xrtron_1rln),

Denote hrr(t) _= \o(xrt) - \o{*r 't). Therefore,

!!l.ot = B(xrtrorr-1(xrt) r\o(xrt) )- s(t'rtroa-l(xrrt) rln(rfrt)) r

t'"'i8t1 € uflu"l tloo-r(x,r)-on-r(x'rt)l] + Klx-x'1,
us5-ng the Lipschitz cond.ition on g. Note Maad. K are ind.ependent

of n. Then since each oo-, ie of crass clin x, by consid.erin8

UZ O separateJ.y, it foJ-lows that

lho(t) | = l\(xrt) (xf rt) | -( gr lx-x'l ror a13- xrxr in B.

Likeraise by r,riting

Io(x,t) = Io(x,o) + t rr*rz,oo-1(x,z),\(x, z)) dz r

it follows that

llo(xrt) - Io(xi!') |

since (0o) and (lo) are unifornry bound.ed for arl n, it folLows

that

ll(xrt) - I(x,t') I

So it can be coucLudecl that \ ts of class cl in dr.
Thusr under the assumptions of the theorem o and I are

certainLy HoJ-der conti-nuous with expoaent a, in Dr. This is
sufficlent to ens[re tbat the systen
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L(er) = f(xrtrortr),

# = g(xrtrel\) r

of crass gr*F in D, anct of cLass t2+T in Dr.

or = go onSnandonBatt=0r

)r = Io oagatt=Or

has a solution Or, It ulth gt of class Cl+P for any O <9<L in D,

and a].so of class ,2+t for some T >o in D-T.

Now

L(et-en) = p (xrt) s f(xrtrorl) - l(xrtronr\n),

aodl Ot-eo = O on the boundaries of D, whiLe, from lbLeclnante

estimates (Theoren J)

lo'- onl ( P' l/(x,t) | .

But lfi|:l-fit l

and so aE n teads to l-afiaity through the val.ues nk the righthanil

side tend.s to zero. f,ence Or coLncicleE w:ith O in il, and so O ie

A si-ciJ.ar argunent using the equatlon

0It
51- = g(xrtrerl)

shows that )t ancl \ coLncide in 01,. Thus 0/0t exl-sts and, more-

over is of class cl i.:r Dn., since g, O, and \ are aLso.I
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