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ABSTRACT

A study is made of the equations of heat conduction with slow
combustien. A mathematical model is established from an interpreta-
tion of the physical model, with a few simplifying assumptions.

This gives rise to a coupled pair of partial differential eguations
which are the direct concern of this thesis, %The dependent variables
being the temperature and reactant concentration as functions of
position and time.

the model is shown to possess a unique solution for which some
properties, such as Lipschitz conditions etc., are established. 4n
investigation into the use of a comparison theorem is given, in
which it is shown that no direct comparison theorem is rossible for
this and related systems. However, it is also shown that it is
rossible to obtain upper =nd lower estimates by appealing to the
physical model.

A discussion of the boundary layer is given and this is followed
by a detailed discussion of stability. The latter has been one of
the main concerns of earlier authors on this system. “Their use of
a space-averaging process to establish a criterion for stability is
also discussed.

Probably one of the most interesting features of this system is
the subclass of problems for which the reactant is exhausted in a
finite time. These have been named the “cut-off’ problems and they
can be likened to the free boundary problems in fluid dynamics. A
discussion of the cut-off problem is given with particular examples

chosen to illustrate the main features.
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INTRODUCTION

This thesis is concerned with the diffusion of heat in a given
material which is undergoing internal combustion. The material con-
tains reactant which is consumed by this combustion, and heat is
produced. It is assumed that both the thermal conductivity and cap-
acity of the material as a whole are unchanged by this process. The
heat thus produced, is conducted through the material and so gives
rise to a corresponding temperature increase and . @nhances the react-
ion rate. It is the intention of this thesis to set upia mathematical
model for this phenomenon and to show that there exists a unique
solution, which does in fact represent the temperature and reactant
concentration. Considerable attention will be given to particular
examples which illustrate many of the qualitative aspects of the
problem.

Recently the problem has received considerable attention and
an extensive literature on this and related problems has accumulated.
A comprehensive account of some of the earlier work is given in
Frank-Kamenetskii l. This work is confined to reactions in which
the rate at which the reaction proceeds is independent of how much
reactant is present at any time (such reactions are called zero order
reactions). This problem, by no means a trivial one, is nonetheless
a much easier one to solve. For there is now just one dependent
variable, that of the temperature which is obtained as a function

of position and time. However in the general case, in which the
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reaction rate does depend on the reactant concentration (say to the
nth power), there is a coupling effect in the differential equations.
That is, there are two dependent variables, that of the temperature
and reactant concentration, both of which appear in each differential
equation.

Frank-Kamenetskii derives the steady-state solution for a
zero order reaction in one dimension and examines the conditions
under which it is possible to obtain such a solution. The extreme
conditions under which this is possible are called the critical
conditions. Chambre 2 contains a similar treatment for two
dimensional problems. Later work 3,4 has been generalised to a
nth order reaction, i.e. one in which the reaction rate depends on
the nth power of the reactant concentration. Both of these authors
have used space-averaged temperatures, i.e. have converted what
were partial differential equations into ordinary differential
equations in time.

The author was introduced to this problem in connection with
the self-heating of wool. This has been a subject of study for a
number of years in New Zealand, and the prevention of spontaneous
combustion in wool has an obvious relevance to the export trade of
this country. Many experiments have been carried out to determine
the temperature rises that actually do occur under various conditions.
The results of these and many associated calculations are available
in Walker et al 5’6; Different shapes are used, for example
cylindrical, spherical etc. The difficulty of obtaining solutions

for these shapes generally increases with the geometry of the
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material. This is seen to be so, for in the case of a zero order
reaction, such as that discussed by Frank-Kamenetskii and Chambre,
no equivalent exact solution can be obtained in three dimensions.
In Wake and Walker 7, use is made of the numerical solution of the
problem for a sphere to calculate the central temperature rises in
geometries which are mathematically less tractable than that of the
former.

The approach presented here will be more qualitative, though
many examples will be given. After setting up the model, further
comments will be made on the space-averaging process. ( See Chapter 8$).

l.1l Definition of the Model

The rate at which the reaction proceeds is measured by the
rate at which the reactant is consumed. If A denotes the
reactant concentration as a function of position (x) and time (t),

then

O _ - g(x,8,M), v 7 % 0 Gl
ot

where © denotes the temperature. The fact that this rate is also
a function of position reflects the possibility of a catalyst being
present within the material. An nth order reaction is one in which
a term A occurs in the right-hand side of equation (1) . In

much of the literature use is made of the Arrhenius equation

n =-BA
%% = - AX e , e e e . (1.2)

where A and B are constants.

F Reference to equations in the same chapter will not include the
chapter number associated with the number of the equation.
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The rate at which heat is produced per unit volume likewise
can be written
Q = F(x,0,\). e v oo (1.3)
This quantity Q is directly proportional to %% " The factor of
proportionality is, in general, a function of temperature, since
the amount of heat produced by a given amount of reactant depends
on the temperature at which it is consumed. However, the authors

previously mentioned3’LF have implied that Q is in fact equal to a

constant multiple of 3t ° Therefore it must be recognized that
in writing
Q = -GQ . . ¢ e (l-l"‘)

where a is a constant, that an approximation has been made.
To be precise it is assumed that this proportionality factor can be
regarded as constant for the temperature range concerned. This
assumption will be made with many of the examples which are discussed
herein, but it is to be remembered that there is this restriction to
the fitting of the analysis to any particular problem.

The medium is assumed to be of q dimensions, that is, x denotes
a vector in the cartesian space of that dimension. The heat produced
by the combustion of reactant diffuses through the medium according

to the equation
kAe + Q = C_ ) e e . ) (105)

where k and C are the thermal conductivity and capacity of the
material respectively, both being constants. A is the Laplacian

in q dimensions, i.e.

* e e (1.6)
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Equation (5) can be written

s - 22 o op(x8,N) c e . (1.7

R

where ¥ = k/C, is the thermal diffusitivity of the material. Thus
there is the coupled pair of partial differential equations (1) and
(7) to be solved with prescribed initial and boundary conditions.
Obviously the initial reactant concentration and temperature varia-
tion can be specified. Further a boundary condition on the tempera-
ture and its first derivatives with respect to x is given. The
latter corresponds to whatever physical condition is imposed on the
surface of the material. The most usual of these are the following:
1. Prescribed surface temperature, which may be a function
of time.
2 Thermal insulation i.e. zero heat flux on the surface,
which means %% = 0 on all points of the surface. d/3N
denotes differentiation in the direction of the outward normal
to the surface.
3. Radiation at the surface, where the flux across the surface
is assumed to be proportional to the temperature difference
between the surface and the surrounding medium, i.e.
k%% + h(® - ®,) = 0 on all points of the surface. The
quantity h 1is called the coefficient of surface heat transfer.
As h=>0 this tends to the boundary condition 2, and as h—>
it tends to the condition 1.

If the rate of reaction does not depend on the reactant con-

centration then an immediate simplification occurs. Equation (7)



becomes a quasi-linear equation for the dependent variable ©., This

is the case investigated in Frank-Kamenetskiil, with the rate of heat
production given in the Arrhenius equation (2) with n = 0. No attempt
was made in this work to discuss the implications of the reactant be-
coming exhausted. The reason beimg of course, that Frank-Famenetskii
was interested in the critical state and hence in times long before
much reactant was consumed. However, consideration will be given to
this problem here (with general n) and it will be seen that a criteria
for establishing the types of reactions for which this does occur can
be obtained.

In the next chapter, the existence and uniqueness of the solutgon
is proved. This is followed by a discussion of comparison functions
and reference is made to the boundary layer in Chapter 4. An explan=-
ation is offered of the work of Thomas3 and En:'LgLF (in which the idea
of space-averaged temperatures was exploited) in Chapter 5, where a
discussion of critical states is given also. Finally, a detailed

discussion of a particular cut-off problem is given in Chapter 6.




Chapter 2
EXISTENCE AND UNIQUENESS OF SOLUTION

Not all differential equations have solutions. If a meaningful
physical problem has been correctly formulated mathematically as a
differential equation, then it should have a solution. Thus the
question of existence arises. Further if a solution does exist, what
of other possible solutions® And so the question of uniqueness arises
also. It is intended to establish the existence and uniqueness of the
solutions under conditions to be prescribed, and deduce certain prop-
erties of these solutions.

The equations to be discussed are, of course, those of (1.1)
and (1.7) but it is intended to write these more generally so as to
include more general situations. There are however, certain requirements
which are suggested by this particular problem, as described in Chapter
1. The functions f(x,®,\) and g(x,8,\) are required to be bounded
functions of their arguments over any finite range. They will also be
continuous functions of their arguments, with the exception of a zero
reaction, if and when the reactant concentration (M) became zero. In
this case f and g will have finite discontinuities when X\ = 0, since
obviously no heat can be produced and no further reactant can be con-

sumed once this has occurred.

The differential equations will be written as:

" %
- 2
L(e) = ES aq(x,t)E_Q ¥ :E:bi(xyt)gg ¥ c(x,t)6 - 38 = £(x,t,0,)\)
b3 0X9%; =1 e o
. . . . (2'1)
N _
a = g(x,t,G,X) ¢ e s e (202)
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The domain of the space variables will be denoted by B. This describes
the volume in g dimensions occupied by the medium in which the equations
(2.1) and (2.2) apply. It can be seen that the above can be specialized

to the problem as posed in Chapter 1 by writing Kt as't, -g for g;

letting a93 = 5;5 y all i,]
b, = 0O 5 all i
c = 0 ]

and supposing that f and g are independent of time. One reason that
the equations are written in this more general way, is that this
would be the first step to generalizing to a more realistic situation
in which the thermal properties of the medium depended on the temper-
ature and reactant concentration.

The source term (-f) generally will be positive as the combustion
is exothermic. Also the source will be a nondecreasing function of
temperature, since the rate at which heat is produced increases with,
or is unaffected by, temperature. Further the source will be non-
decreasing with the reactant concentration, for it usually depends
on A like M where n? 0., Similarly g will be negative for the reactant
concentration decreases as the reaction proceeds. Also the reaction
rate (-g) is nondecreasing with temperature and reactant concentration.
Hence in this particular problem, the functions f apd g in equations
(1) and (2) will be nondecreasing in © and \. This)g very useful fact
for it is possible to generate a sequence of bounds for the quantities
© and \ . For, if an upper bound is inserted for A in equation (1)

(i.e. more reactant is supposed to be present than there is in reality),

then there is a greater source and hence an upper bound is obtained



for 6. Likewise if an upper bound is substituted for © in
equation (2) (i.e. the temperature is supposed to be hotter than
it actually is), then there is a faster consumption of reactant
and hence az lower bound is obtained for ) ‘ This approach can

be used to demonstrate the existence of solutions to the equations.
However, though it is intended to discuss this further, a much
less restrictive proof can be given.

A very similar system is examined in McNabblo in which f was
required to be nonincreasing in A and g nondecreasing in O. McNabb
set up comparison theorems (which will be discussed later) and
using these, he established the existence and uniqueness of
solutions with these conditiomns. An apparently more general
system is discussed in Zeragijall, that is a system of m coupled

parabolic partial differential equations,
E = Au‘ = f’b(x,t,u‘ 3 e e e g um) Y s ¢ e (2-3)

for i = 1, <o, m. Zeragija has set up comparison theorems and
deduced the existence and uniqueness of the solutions of the
equations (3). However, the conditions which he has imposed on

the functions f; , viz,

£, (xytyugy oovyun) - £ (x,t,u) 4 covyul)| € Klug - ull,

imply that f; is independent of each uj for 1 # js This means
that the system of equations are in effect uncoupled and the
results are merely applicable to the equation

ot "

f (x,t,u).
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2.1 Preliminary Definitions

Let B be a bounded g-dimensional domain of real variables and
Dp = A{(x,t) : x€B, O<tsT} . Purther denote the boundary of B
by 9B and S, as the cylinder {(x,t) : xedB, 0<t€Ty . If ulx,t)

is défined in a given domain D, then for O0<a <1l the following

definitions will be made:

|ulD = sup lulx,t)| e 0o . (2.48)
¥ (x,t)€D
B0 = sup  [u(® - uw@] .. 2.5)
P,R€D  Ta(p,q)]”%
w2 = ul, 4 B, Ce e (2.6)
where,
aP,Q) = (x=x'12 ¢ lt=t'DDY2 if P= (x,t) and Q= (x',t').

D .
Ha (u) is called the Holder coefficient of u in D.

If u is differentiable, define

D D q Y
lul g = lul, + = Ia_u " R N
=1 laxlq
B D p L D
lul, g = uly, ¢+ zi' %%ﬁ + |g%l y & v s i (28)
A= JRTS 0ty
D B D D
laly = lulg + L (w , e e .. (2.9
where,
1P (w) = sup |u(P) = u(Q)] (2.10)
P’QGD Ix—x'[ * It—t'l L] . e . . .

LD(u) is the Lipschitz coefficient of u in D. If 4u|§ exists, then
it is said that u is of class CP, If uGCl and du/dx; € Cl for all i,
then it is said that tl€C2. Note ue Cl does not imply that u is

everywhere differentiable.

A surface S is said to be of class C® if S can be locally repre-

o)

O
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sented in the form

X, = X(xl, ces Xy g0 Ky g0 ot xq,t) e 5 5 s (2x13)

for some i and the functions X are of class c®. The surface S
is covered by a finite number of neighbourhoods Sj each of which
has a fixed global representation of the form (11) with X of class
cP.  The quantity luli is then interpreted as the maximum of IuI:p
taken over all these neighbourhoods.

The following assumptions are made on the partial differential
operator L(8) of equation (1).

I. L is of parabolic type in D, That is, there exists

i

a positive number H_ such that for all (x,t)€ 6T and any
2 2
real vector €, l-_Zlaijfigj > H°§ fi .
)
T 25 59 b,, and ¢ are of class c® (for some 0<a<l) in 5&,

and in addition aij are of class Cl.

The functions f and g will be required to satisfy the Lipschitz

condition for each (x,t) in D,

Ih(x,t,Ol,)l) - h(x,t,oz,)z)l < M(le:L - ezl + |)‘1 - )21). . o o« (2,12)
Further they will be required to satisfy the Lipschitz condition

~

IBCx,6,00) = g ,t,8,M 1 ¢ K(x =l + [t = £ . . . . (2.13)

f or g.

for each fixed value of ® and A. In (12) and (13), h
The initial and boundary conditions of the temperature and

reactant concentration are prescribed. Since )\ satisfies a first

order differential equation in t, the initial value of X\ is specified

when t = O. The temperature ©, which satisfies a second order
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partial differential equation, will need to be specified on 0B
(t> 0) as well as on B initially. These conditions, which

physically are just what can be fixed, are sufficient to show that

there exists a unique solution. It is assumed that there exists
a function % in DT which coincides with the boundary conditions
eo(x,t) on ST and B at t = 0. The initial concentration of

reactant is written as )b(x,O).
Firstly it is intended to show that, provided there does exist
a solution of the system (1) and (2) with these boundary and initial

conditions, then it is unique.

2.2 Uniqueness of the Solution

This will be approached in the usual way of assuming the

M. and showing that these

existence of two solutions Ol, %l and 62, >

are the same.
Theorem 1. Suppose
(a) LI S P }\2 exist and are continuous in 5T’

(b) their second order xi-derivatives and first order

t-derivatives exist and are uniformly bounded in DT’

(c) L(ei) 5 f(x,t,ei,>i),
axi
3t = g(xotsei';)i)a
8, = Oo(x,t) on S, and on Bat t =0,

I

M

for 4 = 1,2%

Xo(x,O) on B at t =0
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(d) f and g satisfy a Lipschitz condition as in equation (12);

then 6. = 6 and‘>\l = )

1 2 2°
] - mt = mt
Proof: Define ® = 0, + re = and )S = )l + se ~ where r,s are
arbitrary constants and m is:some number greater than 2M. (M is

the Lipschitz constant defined by (12) ). Then since ©, =6, and

xl = XZ when t = 0, unless 6. and 6,, Al an,d.>‘2 coincide for t > O,

02 and XZ must intersect some members of the family of surfaces Or

. . _ _
and )s' Hence there exists a t' such that |62 Gll < lOr Oll,

- - £ ' i = =
|X2 Xll £ |Xs Xll for t < t' and either 6, 6, or )2 Mg

at (x',t"). In the first case choose r » O and |s| = r. Then

at the point (x',t') it can be shown by an argument using a theorem

of Paraf and Fejér (as in Batemanlz),

A
means that L(Oz) < L(Gl) - rme®™',  That is,

that L(Ga) < L(er). This

L&) - £(x',£%,0,,),) < £(x',t",6,,);) = £(x',t',0,,)\,) - rme

In

mt'
ucle, - ol + |X2 =X 1) - rme
(M(r + |s|) - rm)e™"'

1
iee. L(6,) - £(x',6',6,,0) < (24 - m)re™’,

IN

-~

Since m > 2M this contradicts the assumption that 02,)2 are solutions

of the equations. In the second case choose s > 0 and |r| = s.
Then at the point (x',t'), since A\, ¢ A _ for t < ¢! ax2 X .,
: TR v 2y s
6] at
That is, aAZ _ msemt'>’ 6A1 . Hence,
at “ ot

akl

t g(x'st'velsxl) S g(x'vt'yezoxz) - g(}dit"eloﬁ) - msemt'




1k,

'
i.e. 35; - g(xzt',el,kl) £ u(le,- ell + |)2 - )1|) - mse®®

ot

£ M(|r| + s) -ms)emt'

]
< (2M -m)se®t ',

Again, since m»M this contradicts the assumption that 04, )1 are

solutions of the equations. Hence no such t' exists and since the

argument can be carried through for sufficiently small r and s, the

two sets must coincide. That is ©; = 6, and ); = p e

This completes the uniqueness theorem under the conditions as
stated. It should be noted that the requirement (d), viz. that £
and g satisfy a Lipschitz condition in ©® and \ , excludes the case
of a reaction of order n where 0g¢n<l. In this case the functions
will not satisfy the Lipschitz condition as \—> 0. For example,

f=gz= X%O .
However in such cases, this difficulty is resolved by redefining f
and g in the neighbourhood of A= 0, say for A< €, so that they do
in fact satisfy a Lipschitz condition in & and \ everywhere. Then
call the corresponding solutions %; and XE (which by the above will
be unique) and define © and \ as the limits as €»0Q. It has to be
shown, of course, that these limits satisfy the differential equat-

ions and, in fact, that they exist. This will be shown in section

2.4, after the problem bf existence has been investigated.

2.% Existence of the Solution

Before the existence proof can be given, three theorems, which

form the basis of the existence proof in this section, are required.
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The first two of these are proved in FriedmanlB.

Theorem 2. Assume that the lateral boundary ST of DT is both of

2+Q

classes ¢® and C (0O€ a<1), that L satisfies the conditions

I and II, and that @(x,t) is locally Holder continuous in 5&.

Assume finally, that there exists a function 9 of class C2+a in

DT which coincides with the given boundary conditions Oo(x,t)
on ST and on B at t=0. Then there exists a solution of the system

L(®)

#(x,t) for (x,t) in Dy

e

8o(x,t) on Sp and on B at t = O,
1+8

Furthermore, the solution is of class C *Foin DT for any O0< B<1l

and of class CZ*‘ in 5& for some ¥ > 0.

Theorem 3. Assume that S; belongs to both 02 and Ca*a and that L
satisfies both I and II. Let @#(x,t) be a continuous function in

5& and let 6(x,t) be a solution of the system

L(®) g(x,t) in Dy,

@ = Y on Sp and on Bat t =o0.
Then for any 04£6<1, there exists a constant P depending only

on &, the operator L, and the domain D

I such that

lol,,s < PUBl, + 1¥1,).

Using these two results it is possible to prove the existence of

solutions to

L(e) = M (x,t,0) « o o o (2.14)

with the same boundary conditions. In addition to the requirements
implied from Theorems 2 and 3, the function q‘ is required to satisfy

a Lipschitz condition in ©, i.e.
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| m(x,t,61) -7 (x,t,62) | < M|ey - 5|  for all (x,t) in Dp.
And further it is assumed that there exists two functions 6 and ®
which are continuous in 5&, and satisfy the inequalities
L(8) - N(x,t,@ » 0 > L(®) - M (x,t,8), ¢ w . v (2aLE)
8(x,t) & 85(x,t) € 8(x,t) on Bp and on B at t=0.
The proof given in Appendix 1 uses the method of successive
approximations. The solution is shown to be of class Cl+B for any

0<¢B<1 and of class C2+r

for some ¥ > O.
The third of the theorems necessary to prove the existence for

the system, involves the rate equation (2). That is the existence of

a solution to the system

'Z% = g(x’tt)‘)’
A = Ao (x,0) on B at t=0,

is required under certain conditions to be prescribed. DNote that x is

merely a parameter as far as this system is concerned. The statement

given here is due to Coddington and Levinsonlq.

Theorem 4. Assume g is continuous in t and \. Then there exists a
solution of the system

N
ot

A

? (x’ts))o

Xo(x,o) on B at t=0,

on some t interval; such that

| Ax,t1) = A(x,t2) | € Klty - tol.

~
No mention is made of the behaviour of the solution with x. This is
given in the following result:-

Corollary. If Xx,t) is a solution to the system in Theorem k4, then,
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providing g is of class Cl in x and A (i.e. satisfies a

. A
Lipschitz condition) and )o(x,O) is of class C~ in x, A

is also of class Cl in 32, Further b} is bounded in the
domain.,
Proof: From Theorem 4, taking the solution at any two points

x and x', it can be seen that

g_:(xst) = g(x,t,)\(x,t)),
%(x',t) = g(x',t,XX',t))-

Define h(t) = Mx,t) - Mx',t). Then from above

|6h

3| = 1€(x,t, Mx,t)) - §(x',t, Nx',t))],

i.e. |@‘ < lx-x'| + Ml

where Ml and M are the Lipschitz constants for f(x,t,h). Then
by considering h § O separately and integrating the last result,
it can be shown that |h| £ M'|x - x']|. That is,

[Mx,t) - Mx',t)| £ M'|x - x'|, for any x,x'; which is the
required result. The second result is obtained from taking the
Lipschitz condition forg,

[9(x,t,)\) = A| ¢ M|N|, where 4 = £(x,t,0). Hence,

d
’3% & Al 4 MIM.  Again, by considering A$ 0 separately and

integrating, upper and lower bounds are obtained for ).
It is now possible to prove the main result of this section.

The proof which is given in Appendix 2 was motivated by the remarks

made earlier in this chapter. An iterative scheme is set up and
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it is shown that the sequences so obtained converge to the solutions

of the system given in (1) and (2). A fundamental step in establishing
the result is a theorem proved by Ascoli which (as in Coddington

and Levinson) is stated here as a lemma. This result enables us

to say that there exists a limit to the sequences so obtained.

Ascoli's Lemma. On a bounded domain D, let C) = {_6}'be an infinite,

uniformly bounded, equicontinuous set of functions. Then
C) contains a sequence {Onk’ n=1,2,..y which is uniformly con-

vergent on D.

One restriction that has been applied, a physical one taken
from the real problem, is that the reactant concentration is con-
fined between its initial concentration and zero. All this is
saying is that the reactant is being consumed as time proceeds and
can only be consumed as long as the concentration is greater than
zZero. Hence g will be negative,and zero when \ is zero. This
requirement can be relaxed though it means a further difficulty
with obtaining uniform bounds for the iterative solutions for xn'
This is however, simple to resolve, though this is not done in the

proof given in Appendix 2.

2.4 The Cut-off Problem

It will be shown later that for a reaction of order less than
unity, the reactant will be exhausted in a finite time. For such
reactions it is clear from the examples given previously, that the

functions f and g will not satisfy the Lipschitz condition in the
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neighbourhood of A= 0. So it is necessary to show that there exists
a unique solution when this condition is relaxed i. e. when the react-
ion is of order less than unity. In a reaction of zero order both f
and g will be discontinuous on A= O, It will be shown that \ is of
class C1 as before, but 6 will not be of class c2e uniformly in 5&.
The reason for this limitation is the discontinuity in f on X = O
only.

It will be assumed here that heat is being liberated only, that
is the reaction is exothermic. The physical situation from which this
analysis arose did in fact ensure this, but the results in the previous
sections can be applied to endothermic reactions also.

The problem will be approached by redefining the function f for

N<€f as follows:

= f(x,t,0.n), A>E
_2)e

fe (x,t,0,\) = T (3e/2 -2)2(x,t,0,)), Osx<¢E
= o, 2<QO

where € is small. The variation of fg with \ for any fixed (x,t) in

ET and any value of © is compared with that of f in Figs 2.1,

54
O

Fisure 2l

—_——— = = = = =
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Then with the assumptions of the previous theorems, define

N

a.t g(x’ti-é-!xl) 9

L(en) fen(x,t,en,)\n), nz 1l

n
ot

with 6n = €o(x,t) n2 1, on Sp and on Bat t =0, and M, = N o (x,0)

g(x,t,6n-14An), n=2,5,00.

nyl, on B at t 0. Further (€,) is a monotone decreasing sequence
of positive numbers such that (£,)>0 as n—>*. For each n, there
exists a Op(x,t) and Mn(x,t) in Dp such that ®, is of class c2+¥ (¥>0)
in Dp and Ap(x,t) is continuous in Dp. Since heat is being liberated
only it follows that 6,7 ©p and hence 6p will serve as a lower bomnd.
Further, since from the main result (in Appendix 2) it was assumed
that there exists a ©(x,t) such that

0 » L(®) - f£f(x,t,8,\) for a prescribed range of \,

® % 6o on the boundaries of D,

and as fE

v

£y
it follows that &, < ® in 5&. That is the same © serves as an upper
bound for the sequence of functions (Gn). From the estimates of Fried=-
man given in Theorem 3, it also follows that

nl14s € PUEGx,E,00, An)l, + ¥12).
As both the 6p's and l;'s are bounded in Dy (0o < 6n< 8, 0< Mn<ho),
then ©p and 36,/0xi are Holder continuous of exponent & for all i.
This means that the set of functions (Gn) are equicontinuous on 5&
and so, by Ascoli's lemma, there exists a limit & defined on ﬁ& which
is Holder continuous of exponent & in 5&. This follows exactly as in

the previous existence theorem. Similarly 90/dxi is H6lder continuous
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of exponent 0 in BT' These estimates will apply for all types
of reactions i.e. for any reaction order. It will be shown below
that in all reactions other than one special case, the estimates
can be improved.

However, first some properties must be established for the

function Xn. From the equation

3t g(xstsen-lv}‘n)!

write g h(x,t,6,%), (0<€a<1l), A>0
where h is of class Cl, and

0 when M= O.

g

Then if/uP =X , where B = 1/(1 - a) it follows that
a’u'n 1

it - Eh(xvtsen-l’/“‘nﬁ)! (B> 1) and Mp > O,
o
o & 0 for/un = 0.

Clearly/;n(x,t) will be uniformly of class C1 in each region and
; 1. =
so g is of class C7 in the whole region DT' This follows since
A is continuous on the common boundary of the separate regions
!an> 0 and _/un = 0. Hence
lm, (B) - u (@) € M|P-q|  for any P,Qe BT

where [P-Q] = |[x=x'| + [|t=t'| if P = (x,t), @ = (x',t").

From this it is possible to deduce that An is of class Cl in DT as

follows. Consider
D@ @1 PE-u P@t e (@
= S TREETROY -al ’

and note that the second factor is uniformly bounded in 5&. Also
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since the/Mh 's are bounded on 5& (o £,A5 £ {}O(X,O)J B), and by
noting the following lemma it follows that the first factor is

bounded on 5&.

IaB-bBl

Lemna : There exists a upper bound for Ta=bl for 0€a,b<R, B2 1.

Proof: Suppose ay b. Then the expression can be written

PP 2P a-e/a)?) ¢ Bl g bl
a-b N (1-b/a) = = :

So xn is of class Cl in 5&. Thus the set of functions (An) are

therefore equicontinuous on DT and so, once more by Ascoli's lemma,
there exists a limit A defined on 5&. Likewise there exists a limit
M which is the limit of the sequence of functions Qﬂh) and/MB = X .
As in Appendix 2 it is possible to prove M is of class Cl in 5&
from the equations satisfied by each/un. Then, from an argument
as above, it follows that N\ is also of class Cl in 5&.

The quantities © and N of class Cl is sufficient to ensure the
existence of a solution to

XI

9A
ot

g(x,t,e,X),

\

with the interpretation that g = O when \ = O. A' is of class C

XO(X,O) on Bat t =0,
1

in DT' Now

%E(>:‘xn) = g(x,t,O,X) w g(x9t9en_loxn) ’

and Y-)\ =0on B at t = 0.

. 3
i.e. 3;()'-xn) £ M(le-on_ll + IX-xnl) where the right hand side
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tends to zero as n tends to infinity. Thus )\' coincides with \ in
Dp. And so 3)\/dt exists also.

It can be shown that the surface defined by M,(x,t)=0, i.e.
t=C,(x) , tends to that of A(x,t)=0, i.e. t=C(x), uniformly in B

as n tends to infinity. Consider, as before,

n = lh(xotQGi\wn/uﬂB)’
at B

ou = Ln(x,t,0,uP).

ot S '

Then by definition of # , it follows that M,(x,t) —>/(A(x,t),

Mp/dt — 9u/3t uniformly in T'J-T as n tends to infinity. Note that the
cut-off surface given by M(x,t)= O is that of t= C(x). Then My(x,C(x))
—’/L(X,C(x)) as n tends. Now the function h can be taken as indep-

endent of u for t< C(x). Hence, 3My/dt is less than -a for all n,

where a» 0,

A
n
C
4 . . >t
Fig. 2.2
Consider,(i) Cp £ C. Then M (x,Cp) - M(x,C) ¢  -a,

Ch =~ ©
i.e. m(x,Cp) - M(x,C) 2> a(Cc - Ch)e And so as the right hand

side tends to zero as n tends, so Cn—P C as n—> =,

(ii) Cn 2 C. The argument follows as above, with M, and M

interchanged. Hence it can be concluded that Cp(x)—> C(x) as n = 2
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uniformly in B.

Also, by considering

glx,t,0(x,t) ,A(x,t)) - g(x',t,0(x",t), Xx',t)),

cvlo
o |5

where h(t) = Mx,t) - Xx',t), it is possible to show that

1}

the surface C(x) is of class Cl in x, unfarmly in B. This means
that i)C/E)x:.L is finite everywhere for all i.
Now, excluding the case in which lim fé(x,t,e,X) is dis-
n—>o= n
continuous at A=0, it can be shown that O and \ satisfy the
system (1) and (2). It has already been shown that A\ does
satisfy the equations and the same result follows for 8. This

okl in DT for any O0<B<L1l and of class C2+K

means that © is of class C
in BT for some ¥> 0. In particular, this means that the tempera-~
ture ©, its first two derivatives in XS and its first derivative

in t,are continuous on the surface t = C(x).

However, in the case where f is discontinuous on \= O (this
coincides with the idea of a zero-order reaction but the discon-
tinuity in g does not affect the analysis), the two regions A >0
and \= O are considered independently. In fact the problem is
considered as two separate problems which both have solutions by the

results of section 3%:

I. L(e) = f£(x,t,8,)\),
0
ﬁ' = g(xstse’)‘)’
8 = Go(x,t) on Sy and on Bat t = 0.
N\ =

)O(X,O) on B at t = 0,

in the closure of the region
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E = {(x,t): xeB,(x,t)c—DT,t< c(x)}.
1I. L(e) = f(x,t,0,0),
(] =

Oo(x,t) on Sg
in the closure of the region

F = {(x,t): xGB,(x,t)QDT,t>'C(x)}-

It is assumed that the boundaries of these regions satisfy the
conditions required by Friedman in Theorems 2 and 3. That is,

they are both of classes 02 and C2+a for some a20. If this is

not so, then remove a strip about t = C(x) so that the boundaries

of E and F do satisfy this condition. These theorems imply that

© is of class 02+1 for some ¥>0 in each of E and F. Note that in
order to solve II use is made of the estimate obtained early in

this section, that is the 1+06 estimate. This means that © and
60/3xi, for all i, are continuous on t =C(x), and this will be all
the information that can be obtained for this particular type of
reaction. By considering the equation for O, equation (1), 1%

can be seen why no information is gained for 36/0t. In the special
case C(x) is a comstant, i.e. t=C(x), and this will be a character-
istic of the equation L(®) = f, it follows that the second deriva-
tives of © with respect to x; are continuous and 98/90t will have a
finite discontinuity on t = C(x). The precise value of this dis=-
continuity will be in fact the value of the heat source just prior
to the complete exhaustion of the reactant. However, in the general
case it is not possible to attribute the discontinuity on t = C(x)
wholly to either of 06/38t or to the second derivatives of © with

respect to the xi.

This concludes the discussion of the cut off problem.
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Chapter 3

COMPARISON RESULTS AND THEIR APPLICATION

TO SPECIAL PROBLEMS

Many existence proofs of systems such as those discussed in this
thesis, begin by establishing a comparison theorem which enables bounds
to be obtained for the iterations set up. McNabblo took this approach
in proving the existence and uniqueness of the system (2.1) and (2.2),
when f is a nonincreasing function of N and g is a nondecreasing funct-
jon of ®. His preliminary result was used in Chapter 2 to establish

the existence and uniqueness of the system therein defined. The result

proved by McNabb is stated here as the following theorem.

Theorem 5. Suppose,
(a) 91, 62, \1, ) exist and are continuous in Dr.
(b) Their second order xj-derivatives and first order t-derivatives
exist and are uniformly bounded in Dp, satisfying there the
inequalities

L(61) - F(x,t,01, A1) > L(82) - f(x,t,82, A2),

0 )
3%1 - g(x,t,01, A1) £ _A2 - g(x,t,07, x2)9
ot

and where,
of/on & 0, dg/e® > O.

(c) ©1%6p on Sp and 61 €63, A\1 € X2 on B at t=0,
Then ©1€ 67 and M1 € X2 in Dy,
Zeragijall likewise attempted to establish a similar result for the
system he described (see Chapter 2).
In this chapter it will be shown that it is not possible to estab-
?i'comparison theorem in the general case without invoking requirements

on the boundary conditions. This will be followed by some examples in



27,
which it is possible to obtain upper and lower bounds on the

solution.

%,1. Counter-example

Tn this section an example will be given to illustrate the
statement that a general comparison theorem is impossible. This
will be done by considering the system (2.1) and (2.2), with, at
present, no requirements on the functions f and g.

It will be assumed that:

f = a® + bX,
g = ab + b,
where a and b are constants. For simplicity, the geometry shall

be confined to q = 1 and |x| € n/2. Thus the equations are

2
a_% = 22 = ab «+ b)’ e o o e (301)
ox ot

g_)\ = a® + b\. « s e @ (3«2)

This problem will be posed with zero boundary and initial values.
Hence the solution of the above will be the trivial solution:

® =0, A=0. e woa (BuF)
This soJution will be the known solution for which comparison
functions will be found. These will be obtained simply by separ-
ating the variables. It will be shown that in general it is
impossible to find functions p,q which remain of constant sign

for all t,i.e. which are consistent upper and lower bounds for

the solution (3).
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If one proceeds in the way indicated by Theorem 5, and

attempts to find solutions ©',)\' which satisfy

28t 1
el - '& é ad! +b)\',
3x2 ot
\}
S 7 e ek

it would be expected that, provided the initial and boundary
conditions are specified correctly, ©', \' are upper bounds for
the solutions to equations (1) and (2). Note that Theorem 5
applies only to the case a 2 0, b< 0. In the above the case

of equality will be taken. Further, take the boundary condition

for 6' as ' =0 on x =%n/2,
and try &' = p(t)cos x, A D)
N = qg(t)cos x, i » o n (3:5)

as a solution of the problem. Hence, on substitution in the
equations, it follows that p,q must satisfy
P = =(a+l)p - ba, s & » o (3.6)
§ = ap + bg, o x5 o KonPd

where ° = d . These two equationé are to be solved with the
dat

initial conditions: p(0) =P, q(0) = Q.
Both p and q are thus solutions of the second order equation

¥ +(a+l-b): - br = O, v oa k(3,8
the solutions of which are e%*' where a satisfies

u.2 +(a*1-b)a - b = O. L T R (3.9)
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From (6) and (7) it follows that

dp _ =(a+l)p - bg

dq ap + bq « & e e (3010)

Try a solution of the form p = kq. This means that
ak? + (a+l+b)k + b = O, o o o o (3.11)
the discriminant of which is given by (1sa4b)® - Lab; the same
as that of equation (9). Call these roots kj, kr. By considering
the p,q plane it can be seen that the solution must lie between
these lines. For p = kyq, p = kpq are two possible solutions
and no solution can cross another at a regular point. It will be

assumed that kp is the greater of these (whenever the discriminant

is positive). This area is shown in Fig. 3.1.

]:; M =k2q

Fige Sl

Further, if the tangent to the solution at a point passed through
the origin, then at this point it follows that

k = 2k + B i.e. k = k1 or kp.

Thus the only possible tangents to the solution passing through

the origin are the lines p = kja, p = koq.
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Now since the discriminants of equations (8) and (11) are the
same, then the case in which kl and k2 are real coincides with the
condition that p,q vary as eat where a is real. So one obvious
requirement for p and q to be of the same sign for all t is that
this discriminant is positive. That is,
(a+bs1)® - 4ab > O. e e (3.12)

For if this were not so, the solutions for p,q would oscillate

about the origin in spirals or ellipses (c.f. Stokerls).
For t small, p,q varies like ekﬁx and for t large they vary
kat

like e « Whether or not k1 and k2 are of the same sign depends
on the sign of b/a. To ascertain the form of the integral curves
the various cases are considered. In each case arrows are drawn
along the integral curve to indicate the direction of t increasing.
Also it is assumed in all cases that the requirement (12) is
satisfied. From Stoker, the form of the singularity is either a
nodal point or a saddle point depending solely on the sign of the
determinant formed from equations (6) and (7). That is whether or
not =-ab + (a+l)b = b § 0.

I. a%0, b€0 (the case covered by Theorem 5).

Here klkaé 0 and so kz) &, klé-O. From the criteria of

Stoker, the singularity is a nodal point. See Fig. 3.2

overleaf.



II. a<0, b2 0.
Again kzz o, klé 0, but this time the singularity is a

saddle point. See Fig. 3.3.

>q

=k,q
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Now in cases I and II, if the initial values (Q,P) are such that
P/Q >0, then clearly for t >0 the solution remains in the same
gquadrant and so p and q remain of the same sign. This means that
a comparison theorem is possible. (Note that since ab< O, condition
(12) is always satisfied).
III. a20, b> 0, such that (12) is satisfied.
Hence kl,k2 are of the same sign and the singularity is
a saddle point.

both positive:

"\

= 1q
/ =k2q
0]

(i) k) ok,

>

,QV

D

Fig. 3.5
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Then it is clear that for each of p,q to remain of the same sign,
the initial values must satisfy klf'P/Q in the first case, and
O?.P/Q'zkl in the second case. That is (Q,P) is in the region
AOB or DOC in (i), and also in (ii). This means that a comparison
theorem is impossible without restricting the initial conditions.
IV. a<€0, b€ 0, such that (12) is satisfied.
Hence, once more kl,k2 are of the same sign, but the
singularity is now a nodal point.

(i) k,,k, both positive:
=k2q

=Kyq

Fig. 3.6

(ii) k,,k, both negative:
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In these cases for p,q to remain of the same sign the initial values
must satisfy P/QZk:L in case (i) and 02 P/szl in case (ii). That
is, exactly as in III.
Note that if the discriminant in (12) is zero, the singularity is
always a nodal point.

Hence it can be seen that, in general it is impossible to state
a comparison theorem applicable to all cases, without some extra
conditions. Most of the examples discussed later are reactions in

which f is nonincreasing in A (b} 0) and g is nonincreasing in

¢ (a}0). That is, case III.

3,2, Bounds for the Solutions.

Following the remarks made early in Chapter 2, that is, by
taking upper and lower bounds for A, upper and lower bounds are
obtained for ©. In view of the comments in the previous section,
however, no direct comparison theorem is possible. Hence to ocbtain
upper and lower estimates for © an equation of the form

% = f(x,t,0', N), e o o o (3.13)

PG A
is solved. If f is nonincreasing in A, it follows that if A' is an
upper (lower) bound for A then ©' is an upper (lower) bound for O.
Similarly, estimates can be obtained for N\ By using upper and lower
bounds for 0.

However, it is possible for a certain class of reactions to
uncouple the differential equations and so get a solution of the

form

A+ £(@) = %% e . (3.10)
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It will be shown that, by considering the solutions of (14) and

bounds for these solutions, bounds can be

concentration (X).

Consider the system

2

3 9 + aXna
2
0x

3
at

in the semi-infinite region x O where 0 = A =1 when t

O =1o0onzx =0.

be written

i-n

sl -

and hence by defining ¢ =

ax2 at

On integrating and noting that ¢ =-1/(1-n), 3¢/0t = 1 when

equation (18) gives

2

9_2 + 1 +
2

ox

This is an equation of the form indicated in (14).

define ¢ = =logh i.e.

2
iy + 1+ a(l-e-g)

0x

A

30

d

-Ye

o}

i-n

n-1

t

a is a constant

)

k]

i.

_ﬁ(éﬂ) * a(n-l,)w“ ¢%n%%

fg-n)

= e

-

a(1-(n=1¢g) )

i

and n £ 1.

obtained for the reactant

When n

(3.15)

. . (3.16)

0O and

3L it follows that

IS

=1

/

Equation (16) can thus

(3.17)

(3.18)

(3.19)

Then as above it follows that

at

subject to the boundary and initial

O when t

of

k]

conditions,

.

(3.20)

f ~
jac A

0
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Again an equation of the form suggested by (14) results.
Now to illustrate the ideas involved, this latter equation
will be taken as an example. Use can now be made of Theorem 5 which
can be stated:

If ¢l’¢2 exist and satisfy

A A g, o9,
> - Ft—' -+ f(¢l) >/ > = Er + f(¢2) for x,t td 0’
0x ox
£ = = H
¢1 < ¢2 on X t Oq
then ¢1 X ¢2 everywhere.

One selects various "comparison functions" and takes either ¢1 or ¢2

as the required solution. Three of the possibilities are discussed
below:
1+ The solution independent of x. This will be the asymptotic

value of the solution of (20) as x . It can be shown by

direct integration of

1+ a(l-e'¢) = %% P

with the initial condition of @ = O when t = O, to be

g = 1og(a_+_e_

@ 1l + a

(1+a)t
). v s 5w (Fe2l)

This will be an upper bound. Taking ¢2 as that defined in (21)

and note that on x = 0, ¢1 =@ =t and that

. for any a2 0.

(1+a)t
- 10gGL_)

Hence it follows that the solution of (20) satisfies

(1+a)t 5
g < 1ogG‘—:-:———) for all x,t30. . . . (3.22)
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It should be noted at this stage that the solution at infinity

for © and \ satisfying (15) and (16) when n =1, is given by

_ 8 _ P
= = 3¢ and )m = e 7,
1.e. 0w = l+a and )\m . o1 ta . . (3.23)
1 + ae-(142)t a + e(l+a)t

In view of the inequality in (22) it follows that

A3 e for all =,t 2 0.
& @ e(l+a)t
A lower bound may be constructed by taking ¢l = r(x,t)8yp »

for some suitzble function r. If F(#) = azg _ g +1 +a-e-?)
dx ot :

and ¢1 is to be a lower bound, then r must be such that

F(@) > O. Hence it is required that

2
- %{E’g—i)'r;g@*l*a(l-e“r‘”@ » 0,

2
i.e. ¢cn<-a——z- T\ 1 or+all - o+ re-¢‘°,- e-rqw) % 0,
ox ot

and also r—»1 as x—+®. That is, ¢1—~> Poo.

Then take r satisfying

62r or
__.a_.zo’
0x
r = 0 on x = 0,
r = 1 on t = 0.

1
Therefore r(x,t) erf(x/2t%)y and thus 0 <r <1l.

It remains to show that the expression

E = l-r+re-¢w-e_r¢°°>,0
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for ¢m>, 0O and 0<r<l. Consider E as a function of ¢m
and r.
OE ~-r@ -3
= r(e "® - @) =z O
7
and E = O on @ _ = 0. Therefore E> 0. Thus F(¢l)2 0.
Also when t = O, ¢1 = ¢2 = 0; and on x = 0, ¢l =0 ¢ ¢2.

Hence it follows that the solution of (20) satisfies
@ ) erf/ x ) "
2t£

A much better result, in the sense that it is a closer lower

logfa + e(1+a)t
l+a

Z

bound can be constructed by finding a function which takes

the same values on the boundary as that taken by the function

to be found. For this, take
X a + e(l"a)t
¢l = t + erf -—_2[ (lOg(l_-:__) - t).
2t
That is, ¢1 =% onx =0,
¢l =0 ont =0.

As in the previous case, it can be shown that F(¢l) 2 0, and

hence
(1+a)t

)<1og(§ll—_-:—:l——— ) - t) < 4.
a

" e(1+a)t)) i ]

1 + a

X

t «+ erf(—-%;
2t

Then exp Erf(—%)(t - log(
2t

Z

N

To obtain bounds for O take an equation in the form given by

For if

2y -8 + a\e

M(6) T

= 0, e o & (3.24)

o o
™
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and an upper bound is taken for ), say X', then a function satisfying

2
M'(e) = 9—2- - % + aNe £ 0 $.8. BY,
0x

will be z bound for the solution of equation (24). This is shown

as follows:

M(e) = M'(®) + al(Xx- XN)e for any €,
and so
M(e') = M'(®&') + a()-)")e'.

Noting that X=- X\ € O it follows that if a trial function ©'
can be found satisfying M'(8') €0, then M(®') £ M(®). Providing
©' 2 O on the boundaries the same inequality, ©' 2> ©, will hold
everywhere. Likewise by taking a lower bound for »; if it is poss-
ible to find a function @' satisfying M'(8') %> 0, it follows that 6'
is a lower bound for the solution ©.

By appropriate choices of M, bounds are found for & below:
1. Consider )' = e-t. This is clearly an upper bound for A as it

is in fact the value of A on the boundary x = O,

2
M'(8) = 2—% 2 EEOE = %% P
0x

Now the solution of M'(®) = O will be an upper bound for the
solution of M(®) = 0. However, it is not possible to obtain
a simple analytical solution for this and so a function €' is
sought such that M'(®') £ 0. Note that the solution of
M'(®) = 0 as x»m, tends to u(t), where

u(t) = exp a(l - e-t) and u(0) = 1. . . . . (3.25)
Further u is actually an upper bound as required, but is very

weak, for, as t->m,u tends to e® whereas © (given by (24)) tends
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to 1 + a. This suggests that a closer bound could possibly be

obtained by setting &' = 1 + uv, where v satisfies

azv - v

—_ 4+ ae = =—, v=0 onx=0 and when t =0. . . (3.26)
2 ot

ox

That is

-+, , ,
- X .
v = a.erf(—z¥> . T (e 1xerfc(—5T - it%)+elxerfc( +1t§) -2)
2t & ) 21;g ‘
. . . . (3027)

Thus by using this 6' it follows that

2
Mv(e’) u(—a v = av) du + ae-t(l+uv),

2 ~9t) - Vot
0x

s =he 4 = ae Cuy # ae-t(1+uv), using (25) and (26)
i.e. M'(6') = ae"U(l-u) < O as u> 1.
However, ' = © (=1) on x = 0 and t = O and so by Theorem 5;
6(x,t) € 1 + uv where u and v are given by (25) and (27)
respectively. This bound will provide the best estimate for
©® for small x only, for as x*»®, 1 + uv > 1 + a(l - e-t)exp(a(l-e-S).
For t sufficiently large this last value is greater than em,

given in (23), which also is an upper bound for 6. This is

illustrated below.

B
___________ 2 B
1+wvy
& »x

Fig. 3.8.
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Hence to obtain the best upper bound at a point (x,t), select

the smaller of l+uv and ew at that point.

To obtain a lower bound for © a lower bound is selected for .

One such bound is %az given in (23). Then proceeding exactly

as above it is possible to show that 6! 1+ (y-1)z is a

lower bound, where y satisfies

axmy, y(0) = 1 d.e. is 6y i o & w5 (Fud8)

and z satisfies

2
9—% = %% s, 2 = Oon x = Oand 2z = 1 when t = O.
0x e o v o (3.29)

Hence ©, the solution of (24) subject to ® =1 on x = O and when

t = 0 satisfies

-(1l+a)t
a(l - e ) x

It is also of interest to consider the same problem in a finite

domain, though still taken for convenience, in one dimension. Hence

suppose that © and A satisfy the same equations, viz. (15) and (16)

with n =1, where ® = 1 on x = 0 and x = b as well as initially.

Then consider examples exactly as in the semi-infinite problem.

1.

By taking ) = ¢ " (an upper bound) it follows that ©' = 1 + uv
is an upper bound for ©, where u = exp(a(l-e_t)) as before, and

v is the solution of

62v -t av
—= + ae = 3x» V= Oonx =0, b and when t = 0.
0x

Note the solution of this last problem is given by




k2.
_@ma Pt

o0
A _ < in(2m+1)®x/b
vl b1 = B cos(%b x)__l . t__#b asS e ‘ sin .
(°°S zb ) ® m4=0 (2m+1) [(2m+1)2n2 - baj
.. .. (3.31)

Then M'(8') = ae—t(l-u) & 0, as u3z l. However, 0' =0 on x = 0,b

and when t = O and so it follows that l+uv 2 © everywhere.

As in the semi-infinite problem, a lower bound is obtained for
® by taking as a lower bound for ) the expression )CD. Then it
is possible to show that &' =1 + (y=-1)z is a lower bound where

y,z are given by (28) and (29), but now z = O on x = O and x = b.

That is,
@ e
. LM
- _Lié s:l.n(am-rl)mﬂe- = t
T 2m+1
m=0
For M'(6') =a '(1-z) 3> 0 as z <1, and & = 6' on the

boundaries x = O,b and when t = O. Hence 6> 1 + (y-1)z everywhere.

Thus it can be seen that, although no direct comparison theorem

is possible, upper and lower bounds can be obtained for the temperature

and reactant concentration.
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Chapter &4
BOUNDARY CONDITIONS AND THE BOUNDARY LAYER

At this stage it is necessary to investigate the physical implic=-
ations when the temperature is prescribed on the boundary. In reality,
it is not always possible te' ignore the thermal propeties of the sur-
rounding medium. In a recent paper Philipl6 examined the heat conduct-
ion between a sphere and a surrounding medium of different thermal
properties. The sphere was assumed to be at a higher temperature in-
itially. Philip found the temperature and heat flux on the surface of
the sphere as a function of time.

Suppose that the inner sphere is of thermal conductivity and diff-
usitivity given by k and‘K,respectively. Likewise the corresponding
quantities for the surrounding medium (supposed to be infinite in ex-
tent) are kl and Kj} Then the boundary conditions on the surface of

the sphere (r=a) are that

(1) [e}r=a-0 = {O]r=a+0 i.e. the temperature is continuous,
. 3
(ii) E[E;J kl[gg] i.e. the flux is continuous,
r=a-0 r=a+0

The first of these eéxpresses the fact that there is no sudden Jump
in the temperature on the surface, while the second states that there
is no accumulation of energy at the surface. In order to ascertain
what physical assumption is made when the surrounding medium is
neglected, two separate problems will be considered: one is based

on a model similar to that of -Pbilip's, and the other on a model,

typical of those usually considered.
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4,1, Different Boundary Conditions

A comparison will be made for the two problems described below,
by calculating the temperature and flux in the semi-infinite region
x>0, with a point source placed at x = xo(>0) and switched on
instantaneously at t = O. The temperature and flux due to this
source will be found and the expressions can be compared directly.
(a) x>0, thermal conductivity k, thermal diffusitivity K.

x< 0, " " kl’ g n Kqe

The equation governing the diffusion of heat in the region can

be written

2
0 G oG
1 B T _
— - ko - - olex)el), » & o FHL)

with the boundary conditions: Gy and kaGl/ax are continuous
on x = 0. In (1) k and X are interpreted as kl and x.L for x<0,
and the right hand side is merely the two-dimensional delta

function. Hence Gl(x,t;xo,o) will be the Green's function for
this problem. It corresponds to the temperature distribution in

a region, initially at zero temperature, when at t = 0 a concen-

trated heat source is applied suddenly and instantaneously at the

point x = X e

(b) Consider just the region x> O, of thermal constants k and X
Again the equation can be written as in (1) with G, for Gy, but
now the boundary condition is written kan/ax = HG, onx = 0
(see note 3 on page 6). H is called the surface .codling coeffi-
cient. G2 is the Green's function for this problem, different

from that of (a) because of the different boundary conditions.
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These problems can be solved by taking Laplace transforms of
equation (1) and solving the resulting ordinary differential equation
in x,using the appropriate boundary conditions. On inverting the

transforms so obtained it is found that the solutions are given by:

-xo)" X _ R (er Xy
(a) G, = 1(—)-2”( LE?-':_+ ’I-;—;i—e- LRE ), for x>0, .+ « (k.2)

1 X4 X

VX R
o - st L ) B (i - 1),
e oo e (B3

ow these two expressions can be seen to be equal if we put kl = 0 'in

(a) and H = 0 in (b). For both are now equal to

2 bt ey
%(i%)z(e- I - ) This was expected, of course, because
these two conditions mean that the boundary condition at x = 0, for
both problems is 3G/dx = 0. That is, the surfzce x = 0 is thermally
insulated from; (a) the second medium in the first case, and (b) from

its surroundings in the second case. Also, if in (b), H tends to

infinity, the expression G2 tends to the expression

(1-&3 (x+x)*

C—-) ( - e“-ZI?-) ; that is, the same as Gl when xi is set
equal to zero. H tends to infinity corresponds to the case in which
G2 is prescribed on the boundary x = O (in this case G2 =0 on x = 0).
Exactly the same happens when the flux kdG/0x is considered in the
two cases. Hence, it follows that if the temperature is prescribed
on the boundary, that this is equivalent to neglecting the thermal
diffusivity of the neighbouring medium.

This can be argued from physical congiderations also. For if

xl is negligible (compared to kl), this corresponds to a medium with

a large thermal capacity C. Hence any heat which is transferred across
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the boundary x = 0 will not produce any significant change in the

temperature in the region x < O.

L,2. The Boundary Layer

In the preceding section, consideration was given to the physi-
cal reality of the boundary conditions imposed on the surface of the
medium. In any problem, for which it is desired to find the tempera-
ture at any point as a function of time, one of the first things of
interest is the effect of the boundary and the conditions imposed there.
In particular, how long does it take for these conditions to have an
appreciable effect on the solution at any given point? The equation
for the temperature being parabolic, implies that the effects due to
the boundary are felt immediately throughout the medium. However, in
practice, one looks for the points for which the boundary conditions
have had a significant effect on the solution there. Such points are
said to be within the boundary layer. Outside the boundary layer, the
solution behaves as though the boundary is not there at all.

For example, take the problem of a semi-infinite region with a

constant heat source and homogeneous boundary and initial conditions,

l.€.
2
276 fils)
* l = . . . . (4.4)
ax2 ot

subject to ® = O on x = 0 and at t = 0. The solution is found by

teking a Laplace transform in t so that

[

—

d
dx

- P5 = i | e e+ e e (4.5)

n
Lol 1o
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- -
where G(X,p) = {O(X,t)e ptdto P I ) (4-6)
. . 3 -{px ; i
On solving (5) it follows that 8 = 52(].— e ) and so by inverting

this transform, using Erdelyi's tablesl7,

p
Olx,t) = t 4 x(%)?e"e/‘*t - (bbPVerfe(x/2tD), . . . o (D)
The expression in (7) is, of course, the complete solution. However
much is to be gained from looking at the solution more closely. The
solution independent of x is © = t, obtained from (7) as the
asymptotic value as x tends to infinity. At any given time, it is
possible to obtain a measure of the behaviour of the solution as X
becomes large. This is done by considering the asymptotic expression

for erfc(z) for z large. Hence, from (7),

2
1 -z
O(th) = t(l - "g e ce e ) [l * s e (4-8)
8nZz0
3 -l
where 2z = x/2t° and terms of O(E?; ) have been neglected. Then

z
by choosing a "level of significance" s, that is, for z > ¥, where

e-y2/8n%y3 = s, the second term in (8) can be neglected, a measure

of the width of the boundary layer is obtained. In the x,t plane,
the boundary layer will be marked by the parabola x° = hyat. This
is illustrated in Fig. 4.1. The corresponding solution as a function

of position, at any fixed time is illustrated in Fig. L.2.

tT




48.

a4
y
=

The boundary layer is like a wave advancing into the medium with
speed inversely proportional to (t)%.

The solution in (8) is, of course, only valid for z large and
so is not applicable near the boundary x = O. Outside the boundary
layer the solution can be approximated by the solution independent
of x, i.e. © = t.

To obtain an equivalent form of the solution (7) near the
boundary x = O, use is made of the asymptotic expansion for erfe(z)

when z is small. Hence,

& = t( ZZ/E% - z2/2 + 23/1.2‘11::eL z5s s e o o . (B.9)
The above is valid only for z small and so is not applicable near
t = 0., It is therefore of use within the boundary layer only.

From this simple example an indication is given on a technique
useful in any problem of the type discussed here. For it is usually
possible to find the asymptotic value of the solution as x tends to
infinity. Equation (1.4) implies that the solution of the system

described by (1.1) and (1.7) independent of x is given by
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30 _ (D
'a—t- = —aat 9 e e o o (4.10)

where in the diffusion equation is written for Xt as before. This
means © + aX is constant for all t and so is equal to its initial

value. Thus by substituting for © in the equation given in (1.1),

<
>

= -g(e,X) 9 e 0o o e (l’"nll)

o
s

it is possible to find both © and \. In eguation (11) g(®&,)\) is
written for the limit as x tends to infinity of the expression
g(x,8,\) introduced in Chapter 1.

These ideas can be of use in other geometries in a similar manner.
For example, in a finite slab which is of sufficient thickness so0
that the boundary layers associated with each boundary do not over-
lap for small time. Suppose the slab is of thickness b, then the

boundary layers spread into the region as shown in Fig. L,3,

£ v

|
|
|
|
\\ ’I’
boundary boundary
layer layer

Hence it is only in the triangular-shaped region (small time) that

one can mse the solution independent of time.
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4,3, The Thin Slab and the Techniques of Perturbation.

The other yemaining case to be considered is when the slab is
thin. This means that the effect of the boundary is felt almost
immediately throughout the whole slab. A perturbation expansion
can be used to obtain an approximate solution to the problem. This
has to be done in such a way so as to avoid obtaining a singular
perturbation series.

Consider the example from Chapter 3, that is the coupled pair

of equations

o
n

[}

>

0

08

—— - —_— + Qo 9 . . . . (4012)
ax2 0t ot

%%- = -Xe s e s * 0 (4013)

in the region 04 x<b subject to ©® =1 on x = 0 and x = b, and

6 = 1, =1 when t = O. Recognition of the fact that the specimen
i

is small is given in writing © = 1+ &u and €2x for x, where € is

small and u is a function of x,t satisfying:
2

3 3 3 |

-a——lzln - E-a—% +* ag—t N . . . . (LI‘QlL")
X

0

a‘t‘ a =K1 +Eu) , e e . . (4.15)

with homogeneous boundary and initial conditions. Now in (14), if

the expansions

u u o+ Euy o+ £2u2+ AT o e o oo (4.16)

)o + Exl + EC)Z". e 80y . e . . (4-17)

are substituted and the coefficients of corresponding powers of

are equated, it follows that,
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2%, oy, Owy dw_, )y
S = agyo = 3% +agzy for i = 1,2, «.+ « This gives
ox 0x

rise to what is called a singular perturbation series. A discussion
of these is given in Van Dykelg. To avoid this, B is written for 13
in eouation (14) only, and is considered as a constant. Then on

equating correspondimg powers of € as before it follows:

62u auo ako

ax2 = B?'-t— “ a-a—T;— 3 s W B @ (4.18)
a)o

W = - \o ’ s e e 0 (4.19)
azui du, aki

axz = B 'é—t— o+ a W N e ¢ o (l+¢20)
o

a_t- = -(xi + ui_lxo +* sei000 * uoxi-l) . e e ¢ o (4021)

Equations (20) and (21) apply for i = 1,2, ... . u; has homogeneous

=0

boundary and initial conditions (i=0 included) and )o =1, )i =

when t = O,
On solving (19) subject to the above initial condition it is
found that Ao = e Y, Then substituting in (18), taking Laplace

transforms it follows that

B
d v, a - -
dxa - o¥5] = Bpno $ subject to u = Oonx =0and x = by
where ﬁo =/ e-ptuo(x,t)dt. Bo
2
u (x,8) = -"%(“S(%bé")ﬁ -2 . c e e . (B,22)
cos%bﬁ

2 _(aeVTE/ab
4b“a 2{ e sin(2n+1)mx/b

LU (2n+1)[(2n+1)21t2 - Bazj
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This expression, in (22), represents an approximation to the solution

of the problem as posed previously. It is the first-order approxi-
mation to the solution. Mathematically, it is the solution of the
diffusion equation subject to heat generation which depends on the
surface temperature and the surface reactant concentration. How good
this approximation is, depends on the thickness of the specimen.

A better approximation can be obtained by solving for the
second-order terms Al,uli given by the coupled equations (20) and
(21) with i = 1. This is done by taking Laplace transforms of the
eguations and solving, exactly as before. In (21), use is made of
the solution u  given in (22), or rather the Laplace transform of U,
to form a first order linear ordinary differential equation for )l.
As one proceeds for higher order approximations, the problems of
computation increase, and so it is not intended to state the higher
terms, except to note that it is possible to solve for these in
principle. TFurther, if the Uy Uy eoe SO obtained when B # O are
expanded in powers of B, the term independent of P should be that

obtained by putting f = O in (18 - 21). TFor example,

2
ul, = Zax(b=-x)e Y and this is the solution of ° Vo 82,
ox ot o

subject to homogeneous boundary conditions on x = 0 and x = b.
To use these perturbation series as approximations to the solu-
tion, it is necessary to put B = € = 1. It is interesting to note

that uolB=l is the same expression as that denoted by v in Chapter 3

(see pp. 41 - Lk2).
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Thus the finite slab can be "solved" in the following ways:

(1) 4if it is thin, then the perturbation series obtained in this

section can be used;j

(i) if it is thick, then near the
is a useful approximation,and
mates an infinite problem for

time the specimen will behave

edges the boundary layer solution
in the centre the solution approxi-
sufficiently small time. For large

like a thin specimen, in that the

effect of the boundary is felt throughoutj though it may be that

owing to the egquation being nonlinear, the perturbation series

will not be valid there.

These ideas can be generalized to any type of reaction in any

particular geometry, provided that

it is possible to obtain linear

equations for the terms in the perturbation series.
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Chapter 5.

THE SPACE = AVERAGING PROCESS AND CRITICAL STATES

As it was mentioned in Chapter 1, many of the authors who have
studied this particular system have made use of what will be called
a space - averaging process. It is intended to explain this in detail
and comment on its validity. These authors have been interested main-
ly in determining the critical conditions. So before any discussion
of the space - averaging process can be given, a definition of what is

meant by critical conditions must be made.

5.1. The Critical State.

There is some difficulty in defining the critical state, and just
this problem has occupied the attention of many authors in the last
few years. A state will be said to subcritical if the corresponding
solution is stable, and supercritical if the corresponding solution is
unstable. The extreme case of stability shall be called critical stab-
ility. However, the question is left as to how to decide whether or
not a given solution is stable or unstable. This shall be defined
here as in Bellmanlg. That is, a solution, ©, of a partial different-
ial equation is said to be stable, if any solution,(), of the equation
whose boundary values are sufficiently '"close" to ©'s boundary values,
remains '"close'" to © for all values of the independent variables. The

term "close'" will be used in the following sense: 6, and O, are suff-

1 2
iciently close in a set B if the maximum of IOl- eal is sufficiently
small. It should be noted that stability is not necessarily the same

as being bounded.

20 . :
Stoker set up a criterion for the stability of an equilibrium
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state of a mechanical system through the application of the method of
small oscillations. This has been extended to cover situations gove=-
erned by systems of partial differential equations. In McNabbzl,
the criterion is justified for a class of parabolic equations. Con=-

sider the equation for a zero order reaction, which from Chapter 1

can be written

28
ot °* ‘

Then the stability of the steady state solutions of (1) can be decided

a8 + f(x,8) = o & o (5.1)
from considerations concerning the solutions of the equation

26 + f(x,6) = O. e 7w s (Sl
In particular, each member of a one parameter family of steady state
solutions is stable in any closed region not containing points at
which the member touches the envelope of the family. As an example,
McNabb discussed the equation

e
k) ) ils)
2 + 63 = a—t' 9 » . . . (5-3)
ox
in a slab of thickness 2b. This is the equation derived from the
Arrhenius equation (1.2), by making a binomial approximation. The

steady state solution of (3) was given in Kamenetskii' as

& = 8, - 2log cosh[(6e072)%x] . e o o . (5.4)
where 6o satisfies eQ'= cosha(éeeyz)%b . Then 6crit is the max-
imum 6 for which a solution of this last equation is real i.e. require

y = coshz(ébzy/z)% to have a real solution. By defining v = (6b2y/2)%,

it follows that cosh@ /¢ = (2/5b2)%. Hence to find the maximum &,

all that is necessary is to find the minimum of coshT /g for all pos=-

itive 7. This is found by successive iterations to be 1¢51, and
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hence 8 = O-88/b2. Or if the value of & is fixed, it follows

rit
that the critical size of the slab is given by b = 0-94/6%. That

is if 6b°> 0-88 the solutions of (3) are unstable and in fact, as

is shown in McNabb, are unbounded as t tends to infinity. If
6b25,0-88 the solution is stable and tends to the steady state given in
(4), as t tends to infinity. The critical state is given, of course,

by 6b> = 0+88. This is illustrated in the figure below.

6 A e

e

Ve

\
v

Fig.5.1.
In this case it is obvious that if the system is stable, it means
that the solution is in fact bounded, and if it is unstable, that the
solution is unbounded, though this is not generally the case.

Thus there is no problem in classifying any zero order reaction,
but in the general case of a nth order reaction the picture is far
from clear. The following comments will apply to the most general
type of system, that is as described in Chapter 1. When the corres-
ronding temperature-time curves are drawn, it is obvious that the

behaviour is different from that illustrated in Fig.5.1. The temp=-
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erature first rises as though it wes a zero order reaction, then
owing to the reactant consumption becoming significant, this effect
gradually dominates. Thus the temperature reaches a maximum and

then tends asymptotically to zero. This is shown in Tig. S.2.

SIS

pant

Fig. 5.2

Thus any disturbance added to any particular state willfeventually
shrink to zero as t increases, and it is never possible for any

such disturbance to grow exponentially with t. Using the defini-
tion of statility given on p.54, one must conclude that any reaction
of nonzero order is necessarily stable. However in the paper by
Thomas and Bowes8 an attempt is made to set up a criterion for criti-
cal stability. It is intended to discuss this further.

For conditions, which are defined by Thomas and Bewes to be
stable, curves of 60 (the centre temperature) against t increase to
a maximum(and then fall)in such a way that aeo/at decreases as t
increases, i.e. 6260/6t2<: 0. However, if the conditions are
unstable (again in the sense of Thomas and Bowes) 60 plotted against
t passes through a point of inflection and then rises much more

rapidly to a maximum which is much higher than in the stable case.
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This type of temperature behaviour is conventionally considered as
characteristic of ignition, and the lowest value of any parameter
(such as 6 before) for which a curve of Oo against t includes such
an inflection while the temperature is rising is then defined, again
conventionally, as the critical state. With the type of reaction
that is considered here, this is a reasonable approximation. For

the rate at which heat is evolved is nondecreasing with temperature.

However, if there was a more marked variation of heat production with
temperature, then the criterion would become ambiguous.

This criterion can be thought of in a different way, although
the same conclusions, as to which states are stable and which are
unstable, are reached. For the stable case, any small disturbance
added to the system will tend to decrease with time. One could say
that the disturbed state grows back on to the undisturbed state. In
the unstzble case, any such disturbance will first grow away from
the undisturbed state and then gradually decrease to zero for large
time. Such behaviour can be called "variation increasing'" as com=-
pared to '"variation decreasing" in the former case. Thomas et.al.
wish to distinguish between these two cases. It is suggested here
that what they are really saying is that the system shall be stable
or unstable according to whether it is asymptotically stable or
unstable. The word "asymptotically" is used here in the sense that
a zero order reaction can be regarded as the limit of a sequence of
nth order reactions. This will be discussed below where a particular

example will be discussed which illustrates asymptotic instability.

Consider the coupled system,
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2
2_6 ‘., Xne — g—e M e & & e (5’5)
ax2

% - -aXe c e e . (5.6)

where o is a parameter; in a finite slab of thickness 2b, with
=1, A\=1whent =0 2nd ® =1 on x = b. DNow, in general, under
the criterion of Bellman, this system is said to be stable for any
o« 0. If a = 0, then the reaction is effectively of zero order,
and so the problem is similar to that proposed at the beginning of

this section. For this case,

2
u’ + 9 = a_e' 9 e o & e (50?)
2 1
ox

subject to ® =1l on x = b and & =1 when t = O, Then as in McNabb,
the stability of the steady state solutions of (7) can be decided
from
2
-Lg + e = O. . . . . (5'8)

dx2

A family of solutions satisfying the boundary condition 96/9x = O
at x = 0 and symmetrical about x = 0O is 8(x,A) = Acos x. The steady
state solution ©6(x,A) touches the emvelope at x =%*n/2, 8 = 0 (in
fact the envelope is just these two points in this case) and is
therefore stable in any region |x| € b if b < mn/2. The corresponding
solution satisfying © = 1 on x = b is ©® = cos x/cos b, Thus it is
said that the critical size of the region is b = m/2. For this value
of by, the solution of (7) is unbounded as t tends to infinity.

Now, returning to the case @ # O and taking a region which

exceeds the critical size, i.e. is unstable, when @ = O, then it may
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be said that the system is asymptotically unstable as « tends to zereo.

Then the curves for various o will be shown in Fig. 5+3%

\

Fig. 5.5

Thus it can be seen how the criterion set up by Thomas hinges on
the corresponding zero order reaction. Suppose that the time scale
of reactant consumption is large compared to that of the time taken
to reach a quasi-steady state (that is the temperature curve flattens
off). Note that this corresponds to a small in the above example.
Then for small time the temperature behaves as though the reaction
was of zero order, in that if a small disturbance is added, this
tends to grow exponentially, or disappears, with time depending

whether or not the reaction is stable.

5.2. The Space-averaging Process

The authors with which this thesis will be mainly concerned are

8
Thomas and Bowess’ "9 and Adler and Enigu. The primary aim of these

authors is to convert the partial differential equations into ordin-

ary differential equations in the independent variable t, thereby



1.

making the equations easier to solve. This is done by an inte-
gration over space and replacing the temperature and reactant

concentration by the averages of these gquantities over the whole
region. Consider the equations for a heated body, which can be

written, using suitable dimensionless variables as

00 AN
LB = —at e a.—at N ] (5'9)
ox n
7t -xf(e) . . o« +(5.10)

In (9) the Laplacian is in the appropriate dimension. For a

symmetrically heated body, A 629/6x2 + % 08/dx where j = 0,1,2
for a slab, cylinder, and sphere respectively. The region occupied
by the material will be denoted by V and its boundary by S. The
function £(®) is in general a nonlinear function of temperature
e.g. as the Arrhenius equation f = Ae-B/e. These equations are to
be solved subject to a prescribed value of © on S and prescribed
valules of © and A initially.

Now this is done in the authors mentioned previously, but it
is felt that at no stage is it clear just what assumptions are made,
and how the system arrived at resembles that with which they started.
8o by integrating throughout the whole region V and using Gauss'

theorem in the appropriate dimensions it follows that

i, _ d8 a
V £ grud e.@ — dt + a dt - ’ L . l(s.ll)

In (11) V is used for the volume of the region and 5,$tare the
average temperature and reactant concentration. Likewise, by using
(18) it follows that

dx
= = -%GfﬂeMv. e ooe e(5.12)



62,
The introduction of the quantities 8 and‘; explains the use of the
term "space-averaging process'". At this point two assumptions are
made. These are outlined below.
(i) The second term in equation (12) can be written -aA}Pf(g),
where A(t) £ ,(r)nf(e)dV/V'an(B'). If the region is large enough,

then for sufficiently small time before the boundary has had a

significant effect on © and A, A(t)® 1, Indeed this is the first

approximation made. However, it can be noted that this is equiva=-

lent to using a perturbation expansion in which the first term
represents the solution independent of x, while the higher order
terms represent the effect of the boundary layer as it moves
into the region. For if x/€¥* is written for x in (9) and (10),
and corresponding power series expansions are written for © and »
it follows that

AE) = 1w EA(8) & ESAL(E) ¥ ... c e e (5013)
Hence, the approximation made is to neglect all terms but the

first in (13), and so,

= = axnf(g) ° e o e+ @ (5.14)

&l

(ii) The other approximation made compensates for the neglect of
the boundary and the conditions imposed there. Since the tempera-
ture is now the same over the whole region, it follows that the
temperature just inside the boundary is different from the
temperature of the environment (or the temperature imposed on the
boundary). So the first term in (11), which is proportional to
the heat flux on the surface S, is replaced by a term which

suggests a heat loss to the environment given by Newton's law of
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.6o0ling. That is, % 4 grad 6.dS = -B8 , where S is the surface
area of the region V. (The surroundings are assumed to be at zero
temperature). The quantity B is called the effective heat-transfer.
coefficient. It is called this because the coefficient represents
the surface cooling coefficient (see p.6), when the temperature
variation across the region is replaced by an averaged temperature.
The approximation which is made can be regarded as a truncated per-
turbation expansion also. For the expressions above to be equal,

B would normally be a function of time. In fact

) = 4

Since interest is focussed on times near those at which © reaches

grad 6.d8 /S8 . e 2w 5 XSu15)

its maximum, and conditions are quasi-steady, B(t) is approximately
constant. This is the approximation made here. (Note that when

t=0, P must be infinite). Hence the equation can be written as

de S o
-dT -+ vBe - -a'g—z ' « ¢ o @ (5'16)

Thus the system has been reduced to the pair of ordinary differ-

ential equations (14) and (16) in t. The spatial variation of 6 and

N has been eliminated, see Fig.5.k.

e I

2l
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The problem which arises is to determine this value of B for the
different geometries discussed. Thomas et. al. were concerned with
determining the conditions for nepriticality" and so interest has been
confined with times prior to the temperature reaching its maximum.
Tor zero order reactions (n=0) , Kamenetskiil obtained values from
the heat balance (see equation (16)) in the steady state. To facili=-
tate discussion of this, the quantities ] and’x will be simply
written as ® and A , where it is now understood that the former are
meant. Hence, in the steady state

£(e) = ope . N C 1))

Kamenetskii, using a binomial approximation to the Arrhenius law,
wrote £(8) = éee . Then, the steady state solution for the tempera-
ture is given by solving the resulting transcendental equation. In
the cases mentioned before S/V = 1l+¢j. This has two roots provided

the parameter (1+j)B is sufficiently large (see Fig.5.5).

N
£ / QTJ)BE’

Fig.5.5.
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The smallest value of B for which the equation has real roots rep-
resents the critical state (i.e. if P were smaller, then it is not
possible to find a steady state solution, in fact the system is un-
stable). Hence, by finding the gradient of the tangent to f = éee
which passes through the origin it follows that B = oe/(1+j).

‘I‘homas9 uses these estimates in determining the conditions for
a critical state (in the sense that he formulated) for a reaction
other than one of zero order. The validity of this depends on the
extent to which the transient temperature distribution is of the
same form as the critical steady state. Probably the latest paper
of Adler and Enig4 gives the most illustrative description of the
system, that is equations (14) and (16). Here the equations are
combined as

de i
& = - 7 (1-ne/\"(e), e ooeo. (5.18)

obtained by dividing the equations, where A = (1+j)B and the initial
conditions A =1, ® = 0. t is regarded as a parameter for the inte-
gral curves obtained by integrating equation (18)., These are illust=-
rated below in Fig.5.6. (See over page).

From equation (12), the significant parameters are a and A.
The rest of the paper is devoted to discussing the relationship
between them when the conditions are critical i.e. to finding the
first curve which passes through a point of inflection, and the cor-
responding maximum temperature rise. This is called by the ignition
temperature by the chemists. The above analysis gives emax = l+n%,
To the chemist this represents the highest temperature possible

before another reaction takes over and ignites the material. The
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prevention of such uncontrolled combustion is responsible for much

of the interest of this system among chemists.

o /'\

Fig.5.6.
is
It is felt that, if it/wished to use the criterion given by
Thomas to classify reactions as stable or unstable, it would be much

more useful to consider the asymptotic stability as discussed earlier.

The introduction of the of the effective heat-transfer coefficient is

reasonable, in that it will give a fairly accurate answer; provided
the transient temperature distribution up to and near its maximum
is nearly the same as in the critical steady state. However, it is
not a technique that naturally lends itself to higher order approx-
imations or that will allow the error made in the approximation to

be calculated easily.



Chapter 6.
THE CUT-OFF PROBLEM

In this chapter, a detailed discussion of what will be called
the cut-off problem will be given. It is felt that there is a
class of problems which are of considerable mathematical interest
=nd are in many ways like the classical free boundary problems in

fluid dynamics.

6.1. The Existence of Cut-off.

It is intended to show that there is a class of problems for
which the reactant is exhausted in a finite time. The time taken
to exhaust the reactant will, of course, be a function of position
and so there will appear a boundary, as yet unknown, beyond which
no further heat is generated. It was shown in Chapter 2 (section
2.4) that there did exist a unique solution of this problem. Con-

sider the coupled pair of equations

a0+ aN’i(x,0) = <2, e e . (6.1)
B - o Nsxe) s« o T

It will be assumed that f is a bounded positive function. (As it
was mentioned in Chapter 3, f is nondecreasing with © also.) These
requirements were all satisfied in the physical situations from
which this analysis arose.

Equation (2) can be written

o (A"
at —nTl) - f(X’O)’ n # 1 L R (605)
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aa—t (log 1/A) =  £(x,8) , n=L C . (6.1)

In the first case, n # 1, if )}—n is plotted against time for a
fixed x, the slope is given by (n-1) f (x,0). Assume that the react-
ant is consumed in a finite time, i.e. A= 0 for t = to. Then as t
tends to to’ Xl-n tends to zero or infinity according as n is less

than or greater than unity. This is illustrated below.

-1
PN 4\ ,
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o ng| |
|
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i | >t
\/ t
Fig. 6.1

Now, if a function of time is unbounded as t tends to to' then it
follows that its derivative (assuming that it exists) is also

unbounded as t tends to to. This is proved in the following lemma.

Lemma: Assume that T(t), T'(t) exist for O£t <t and that T(t)
is unbounded as t— to. Then T'(t) is also unbounded as
t—=t .
(o]
Proof: Assume to the contrary that T'(t) is bounded for all t,

B

and in particular as t—a-to. Then there exist Bl’ >

such that B2£ T'(t) € Bl .

i.e. Bt € 2(t) - 7(0) £ Byt ,



69.
which implies that T(t) is bounded as t—>t_ j thus
contradicting the proposition.

Hence, if n > 1, £(x,0) tends to infinity as t tends to t . This
contradicts the requirement that f be bounded. Further it follows
that, in the case of n> 1, all the reactant cannot be consumed in
a finite time. In the case of n £ 1 it can be shown that the
reactant will be consumed in a finite time. Since f is bounded and
positive

M > £(x,0(x,t)) z m for all x,t.

Thus from (3) it follows that

3?; O <€ (@-un, (n < 1)

i.e. gy S )ol-n - (1-n)mt , e o o o (6.5)

.where Xo is the initial concentration of A as a function of position.
However, since it is an obvious physical requirement that A remain
positive, it follows that A\ becomes zero in a finite time, say to.
Then for t > to there is no further heat generation and equation ()

becomes simply

0e
&0 = 3t ... (6.6)

which is the heat conduction ecquation with no heat source.

For the case m = 1, plot log (1/)) against time and note that

log (1/A) tends to infinity as A tends to zero.
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The slope will be given by f(x,0). Hence the same argument will

apply as it did in the case n 7 s

Thus it may be concluded:
n < 1 the reactant will be consumed in a finite time,
n > 1 the reactant cannot be consumed in a finite time and will tend
asymptotically to zero as t becomes large. This phenomenon (in the
former case) has prompted the name "cut-off problem'.

When there is no cut-off (n » 1) the problem of actually
solving the equations (1) and (2) will be more straight-forward, in
that, although the equations are nonlinear, there is no division of
the region in the (x,t) space in which they apply.

Interest will now be confined to n < 1, where there is a cut-off
time t_ which will, in gemeral, be a function of x, say C(x). The

problem may be stated as

A8+ aXif(x,8)

i

s < 0(x) i w » v LGV

ol ojo
D D

26 ” . t> olx) C e . (6.8)
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%—*— = = \'f(x,8) . R ()]
(The last of these is subject to the condition A= 0 when t = C(x)).
These equations are to be solved with given initial (6 and A) and
boundary (& only) conditions. If n is zero, the interpretation

that £ = O when t2C(x) must be added. This will mean a sharp cut-
off in the heat source and rate of reactant consumption. There are
also some continuity conditions on t = C(x). It was shown in Chap-
ter 2 that the temperature and its first derivatives with respect to
x4 are continuous on the cut-off surface. FPhysically this is merely
asserting that both the temperature and heat flux are continuous.
Note that it is assumed here that there is no change in the thermal
properties of the material brought about by this burning process.
Otherwise these conditions (and the equations) would have to be
modified to allow for this.

In the case of a nonzero order reaction it has been shown that
38/dt is continuous on t = C(x). TFurther it was noted that in a
reaction of zero order it is not possible, in general, to attribute
the discontinuity on t = C(x) wholly to either 396/3t or to the
second derivatives of © with respect to the x;. Though in the
special case of C(x) constant it is only 06/0t which can be discontin-
uous.

To illustrate the position further, consider the semi-infinite
problem x>0 in which the temperature is prescribed on x = O (and

when t = 0). Then the cut-off curve (as it is in this case) divides

the positive quadrant of the (x,t) plane as it is shown in Fig.6.3.
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Fig.6.3.

As it is drawn with C'(x) >0, the cut-off curve represents a
wave advancing into the region leaving behind it a burnt out residue
in which the ordinary heat conduction equation applies. In the sol-
ution of these problems one of the primary unknowns is, of course,
the cut-off curve itself, as well as the dependent variables © and N\ .

The problem is still well-posed however, because of the information

about A on t = C(x).

6.2. Examples of Cut-off FProblems.

Consider the zero order reaction in which f is merely a function

of 8. Then the cut-off problem when the equations are independent

of x, is given by

e _ o ax
at = af(@) = adt N t<C. « o e o (6.10)

This is a comparatively simple system to solve, at least in principle.

For example, when £(8) = a + B® the solution subject to 8 = 0, A=1

at t =0,1is 6 = % oPEi 1y ., %=1 -3¢ e*PP- 1), The time
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of cut-off is given by A= O i.e. = log (1 » %E) . Hence

C =a---‘-3
de/dt =0 for t>C, which implies that © = a, and A= O for t>C.

These are illustrated below.

34\
————— 8=a — s Ty |
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O é; —

Fig. 6.4

The solution above would be the asymptotic value as x tends to

infinity of the semi-infinite problem with © = O on x = O. This

problem is more difficult to solve. That is, it is required to

solve
a%e 26
a——z' + a(a + Be) = '—? 9 t < C(X) e & e s (6011)
X
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) o 39 , t > c(x) g ¢ w3 L
2 t

ox

= _(aa+pe), t<C(x e e e (6.13)

d
subject to ® = O on x = O and when t = O} A=1when t =0, 2=0
on t = C(x). Tor B> O the cut-off curve will appear as shown below,

having a horizontal asymptote t = C as above.

AL
A
'B
c-—————_—————_—_—_-—_—_——.—-.——
y: — X
Fig. 6.5.
The solution of (11) is easily obtained for t < C = min C(x), by

x>0
: ) % _Bu z
taking Laplace transforms, as € = « J e"Verf(x/2u?) du. However,
©

it does not appear possible to use any such technique for points for
which t > C. For example, at the point B (xB,tB), the solution must
in some way take into account the fact that the reactant has been
burnt out already at some points.

At this stage of the problem, it was considered that one way of
obtaining the solution would be to use a perturbation expansion in B.
for when B = O, the cut-off curve is t = constant (passing through A
in Fig. 6.5). Denote this by t = C, . Substitute 6 = 6  + &) =+ ..,

A=%, *+ BA] + .. . And further it was thought that the continuity

conditions on t = C(x) could be transferred to t = C° by using suitable
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Taylor expansions. However, when this was done it was noticed that
the expansiohs were singular. On closer inspection pf the problenm
it is found that this should have been expected, for, the zero order
problem has as cut-off curve a characteristic of the parabolic dif- \
ferential equation. So the solution so obtained was not in fact
taking into account what it should have been, i.e. that the reactant
is exhausted at some points earlier than it is at others. This tech-
nique would have worked for the solution independent of x i.e. as in
equation (10). Here © and \ could have been expanded in power series
in P; the solution obtained being exactly as given, except that it
would be expanded in powers of B. This is, of course, because the
cut-off curve, for any B, occurs at the same time for any point.

The problem discussed above has not been solved completely,
however, it is hoped that it serves to illustrate some of the proper-
ties of the system. It is now intended to discuss in detail another

problem of interest, which can be solved using a similarity technique.

6.3, A Similarity Solution.

This problem, is again a zero order reaction, which as shown in
section 1, will exhaust the reactant in a finite time. Heat will be

generated according to f = o + Be/xa. Hence the problem can be

stated
2% 0 20
— + o + = e t<C(x) e 8 o o (601"")
ax2 x2 at ?
2
06 - 00
= s 3T 0 t > c(x) s u v .o (6.15)
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R 2

—— = - ( o+ Be/x )

° . e . (6.16)
subject to =0 on t = C(x).

There will be solved subject to the initial conditions @ = ax ,
A - ¥x° and boundary condition'® = bt on x = 0. It is possible to
eliminate one of the constants. By a suitable séaling of the de-
pendent variables, it follows that & can be taken as unity. This
can be done by writing a® and oM for © and A respectively, and
redefining a and b as aa and ab, the equations and boundary con-
ditions are then as abovej with a = 1. In effect all this is
doing, is choosing a particular member of a class of problems,
which are defined for various &. The particular member is that
obtained when @ = 1, On first glance, it appears that this problem
possesses all the difficulties of the one in the previous section.
However, this problem possesses a similarity solution which enables
the partial differential equations to be written as ordinary dif-
ferential ecuations in a single variable. TFor if the transforma-
tions
X —>» Irx
t "’rat
6 ——arzﬁ
A —> r2),

are applied to both the equations and the boundary conditions these

are unchanged. Hence the problem can be written in terms of the

1
single variable z = x/t2. Define

ng(z), }
N Ce e (67)

®
p
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Then equation (16) reduces to

- . _ 1 (z)
In'(z) = % 4 Egg- , ... . (6.18)

subject to the condition that h tends to ¥ as z tends to infinity.
The cut-off curve in the x,t plane is defined by Ax,t) = 0, i.e.
n(z) = O, which implies z = K. Hence the curve t = C(x) will be the
Kf%

parabola, X = . Equation (18) is applicable for only z>X and

is subject to the defining condition for K, h(K) = 0.
Likewise equations (14) and (15) reduce to

22511 (2) + (bz + 22/2)g'(z) + (B & 2)g(z) + 1

0, z>K ...(6.19)

Zzg"(z) + (bz + 23/2)g'(z) + 2g(z) 0, z <K ...(6.20)
The matching conditions on the cut-off curve z = K become simply g

and dg/dz continuous on z = K.

t¢
=K
1)(\(
a ec\’uni'u'm (z0) 'D >K
e=bt P
eqm !6.’\ (\ﬂ)
equstion (14)
Pa N 222 ; A= ¥t S

Fisl6.6.
The boundary and initial conditions on © and A can now be applied %o
g and h respectively. Hence,

g — a
as zo®
h— ¥

2
g ~ b/z as z=>»0, i.e. zag(z)-—)b as z >0,
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On looking at the z plane for z from zero to infinity, the situation

is as
& N .
A 2 t
g"b/za g,g' continuous g=a .

Since the function g depends on z alone, it follows that the isotherms
(lines joining points of the same function value) are parabolas in the
x,t plane also.

Equation (20) can be solved by letting g(z) = w(z)/z2 and so

w't +zw'/2 = w =0, w(0) = b. .. .. (6.20)
One soiution of this differential equation is 1 «+ 22/2 and so the
other can be found by substituting w = (1 + z2/2)v(z) in (21). On
substituting, and solving for w, and hence g, it follows that

g(z) = b(E + 1/2%) + R(e-zz/l+ z o+ n%(% + l/za)erf(z/2)>,

e s o s (6422)
where R is an arbitrary constant. The latter will be found, of course,
by using the matching conditions at z = K. In general, R will be a
function of K,

However, equation (19) presents some difficulty. By writing
y = 1/z it follows that

yog'' - (2y + 1/2y)g" + (B +2)g + 1 =o0. . o v« §6,23)
Hence it follows that y = O (i.e. z = @ ) is an irregular singular
point and so there will not exist a solutiom in series. Further

the solution of (19) when B = 0 (c.f.(22)) is
8y = -+ + P2+ 1/22) + Q(g-za/%/z + n%(% + 1/z2)erf(z/2)).

That is go(w) is finite. Then it would be expected that g(m) is
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finite also, since B # O does not alter greatly the character of .the
differential equation. The complementary function of (19) igygguiet-
ting

g(z) = s°a(s), C e . (6.24)

where s = z2 andg © is a constant. Hence G(s) satisfies

LsG'' 4+ (86 +10 +8)G' + 6G = O, v 2w » 0825)

provided 462 4 66 + B+ 2 =0. The differential equation in (25)
can be solved by taking a contour integral

G(s) = {erSP(r)dr,

where C is an appropriate contour in the complex plane. This gives

G(s) = J &% ré-l(r+l/4)6*3/2dr,
c . . (6.26)
where C is such that ‘:ers rb(r+1/#)6'5/2~] e = 0.

Since 6 must satisfy only the quadratic equation above, then it can
be chosen as the positive root, which implies -3/4 £ Real(s) £ =%,
provided B7 O.

Two possible choices for C are:

(1) o, -1/4) ,

(ii)

AlY

Thus the two independent solutions for G(s) ame

,I; R 1/4 - r)6+3/2 n (1/4)6’3/2}1‘6_16.1‘ and

9

7 e 81/l - r)a'B/2 r%Lar

]
Yy
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where s = z2 and 6 is the root of 462 + 66 + B+ 2 = 0 which has the

greater real part.
After a little manipulation these can be written as
< - - bedl 6
I.(z,B) = 1 e s{(22/4 - 5)6*3/2 + (o « 3/2)(22/# - 8) ’%}s ds,
150 s |
. . . . (6.27)

1 T -8, 2 6+3/2 &6-1
Iz(z,B) = “Fo43 £he (z¢/k - 8) s ~ds . e o .. (6.28)
Thus the solution of (19) can be written as
g(z) = 2{CL (2,0 ¢ DI(z,B)) - gz 4 .+« - (6:29)

where C and D are arbitrary constants. Since equation (20) is the
same as that satisfied by the complementary function of (19) when
B is set equal to zero, then the general solution of the former is

(compare (29)):
2270041, (2,0) + BIy(2,0) ], N (1))

g(z)

& when B =0 i.e. 65 is the larger root of 4p2+ 6bp +2 = 0,

1]

where 60
which means that b6g = -1 . It is a simple exercise to verify that
both I;(z,0) and Iz(z,O) are linear combinations of the linearly in-
dependent solutions given in (22). In fact, it can be shown that
they both behave like- %/z as 2z tends to zero. Then in order to
satisfy the requirement for g(z) as z 0, it follows that A4B = -b/n%.

Now as z—® , g(z)>a, and so the asymptotic behaviour of the
integrals in (27) and (28) must be calculated. It can be shown that
for z large,

26 1,0843/2
z Il(z,B) —> (F) " (1+6)/6

226 Iz(Z’B) O as Z--® ., . . (6031)
5+3/2
1 , ok
Hence, C = (a + m)m . o v o s (6.32)

Thus the solution of the equations (19) and (20) can be stated,
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glz) = -z-l{bll(z,o)/n%i- B(K)(I,(2,0) = I,(2,0)) } , 2<K . . (6.33)
o¢3/2
g(z) = 22°{(a ¢ gEpIrrimy I,(2,8) + D(O) Iy(z,B) ] - 55 , 2> K

e 0o« (6.34)

where B,D are functions of K given by the conditionsj g and dg/dz
are continuous on z = K. All the way through this computation the
known expression for z <K (see equation (22)) was of assistance in
checking the solutions obtained.

The quantity K , as mentioned previously, is given by h(K) = O.
By integration of equation (18) , using (19), it follows that K sat-
isfies the following equation

:-LK% + Bg(K)(1 =+ 10/K2) + 2Pg'(K) - ap - ¥(12 + B) = O. (6.35)

Hence, using (35) and the equations obtained from (33) and (34) for
g and dg/dz continuous on z=K, it is possible to find the complete
answer to the problem. However, the resulting equation for K is
extremely difficult to use in practice. The author has actually
found this equation, but it will not be written here. In order to
demonstrate the type of equations obtained, the asymptotic value of
K will be obtained for K large. This can easily be done using the
asymptotic behaviour of the integrals given in (31) and (32). Thus
using the expressions in (33) and (34) at z = K, for z large it follows
that,

B~ (2a-b)%n% for X large. ‘ e » >« 16.36)
Then this may be used #n the equation for K, i.e. (35). However, in
in using asymptotic expansions of Il and 12, care must be taken with

the respective orders of magnitude. For, using (36),
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vauy (6.370
for large z . o 4 e e
ba/zd - ve. (6.38)

2) _

g(K) a(l+2/z

g'(X)

If just the first order terms are taken it follows that

%% + aB(1410/K°) - ap -¥(12 +B) = O,

%
i.e. K= (Jﬂ’_(ﬁ%?.ﬂ) for K large. e o+ o (6,39)

This expression represents the first approximation to the behaviour

of K for small ¥. By taking higher order terms a better approximat-

ion could be obtained. Likewise the behaviour of K with B can be

obtained by finding asymptotic expansions of Il and 12 for large B.

It would be expected that B large would imply that K is large also.
Hence it can be seen that it is possible to use the equations

to obtain estimates for K. Of course, it is possible in the general

case, but this would involve an enormous amount of calculation.
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Chapter ¥
CONCLUSIONS

Tt is felt that the most interesting features of the system
described in this thesis have been discussed. This is both from
the point of view of previous investigations into the problem, and
of that of the mathematician. With reference to the aspects dis=-
cussed in Chapters 2 and 3, it is hoped that as our knowledge and
scope of the machinery necessary to establish the existence, unigue-
ness, etc. of solutions expands, so will the generality of the
results obtained. There is, of course, a lot of interest in these
qualitative properties at present and no doubt some significant
advances will be made in the near future. It is felt that there is
a more general comparison theorem possible, which would have embodied
the results given in Chapter 3.

From the technical point of view there are, of course, a lot
of difficult problems to solve with this system. Many of the pro-
blems for which it is possible to obtain solutions analytically are
given in the book by Carslaw and Jaegerza. However, there is a much
greater number of problems for which there is no such solution. TFor
these, one is forced to make various approximations and find pertur-
bation expansions in different regions of the independent variables.
By doing this, one often gains an insight into the difficult features
of such problems. This is usually of assistance when the problem
is to be computed on an electronic computer. With the tremendous

developments in computing, it is now possible to solve many of the
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extremely nonlinezr problems which were too formidsble in the past.
this approach is the one which will usually be the most fruitful for
the vpractising scientist. However, this has not been attempted here.

There zre many aspects of this problem that have not been con-
sidered. As it has been mentioned in the context of this thesis,
there are many simplifying assumptions which have been made to the
physical model from which this analysis arose. Frobably the most
obvious of these is the one that supposed the thermal properties
of the medium are unchanged.by the combustion. Some of the reguired
machinery for proving the existence of az soluticn to such a system
has been covered in Chapter 2, and this would form an interesting

generalization of the results.
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APPENDIX

A.l., Existence of Solutions to L(8)=WUx,t,8).

Assume ST belongs to 02 and Ca*a, L satisfies the conditions I

and II (as in Chapter 2), and N (x,t,0) is Holder continuous (exponent

o) in 5& for each fixed value of ©, Further assume that N satisfies

a Lipschitz condition in 6, with Lipschitz constant Mj and that there
exists two functions O and 8 satisfying the inequalities given in (2.15).
240

in B& which

coincides with the given boundary conditions eo(x,t) on ST and on B

Finally assume that there exists a function”y of class C

at t = 0, Then there exists a solution of the system

L(6)

'\,(X,t,@),
6

8,(x,t) on Sy and on Bat t = 0,

T
14B 247

such that © is of class C in DT for any O <B <1 and of class C

for some Y¥>O.

Proof: Consider the set of functions defined by

n

L(ey) - Mo N(x,t,0) - M6 ,

.
L(On) - MO,

1}

"’(x,t,en_l) - Mon-l for n=2,3,..- ;

o} and onﬁatt:O, nzl.

n

eo(x,t) on S
Now if en_l is Holder continuous with exponent o in ﬁé,

is the function ¢n_lkx,t) B q}x,t,en_l(x,t)). Then by Theorem 2

then so
On exists and is Holder continuous with exponent &« in ET'
Furthermore, from Theorem 3, for any 0<6€1

l8yl145 € PUMpoqlo* ¥l + Mo, 1.

It is shown in McNabblO that
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g =
8 <8, <6 ., €70,

that is (On) is a monotone decreasing sequence which is bounded
below. This implies that ¢n(x,t) is also bounded in 5& and so

lenl1+6 is bounded by a constant P' independent of n.

Hence the limit of this sequence exists and defines a function

® in DT. Further © is Holder continuous of exponent &. From

Theorem 2, this means that the system

L(e') - mMe' = '1}x,t,9) - M8, ©' =6, on the bound-
aries; has a solution ©' of class Cl*B in DT for any 0L B< 1 and
of class CZ*K.for some ¥>O0,

Now

¢(X,t) =

Q(X,tje) = N(x,t,0n1) - M(6 - 8,)

n

L(e' - &,) - M(8* - o)

and 6'- 6, = O on the boundaries of D! while
|#(x,t)| £ 2M|® - én-1| in D, .
Since, by Theorem 3, le'-enl < K'|@(x,t)| and the righthand
side tends to zero as n tends to infinity, ©' coincides with ©

in DT' Hence this © is the solution of the system as requieed,

el in DT for any 0 <B<L 1 and of class 02+8 for

and is of class C
some ¥ 0.

Moreover, since each On is bounded, it follows from the
1+6 estimate above that

'ollvb € P', where P' is  dependent on only

6,L,pyand "L .
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A.2. Existence of Solution to the Complete System,

Assume ST belongs to C2 and C2+a

y L satisfies the conditions I
and II, as in Chapter 2, ¥ and g satisfy the Lipschitz conditions
given in (2.12) and (2.13), and g is negative for A> 0 and zero when

X.= O, It is further assumed that there exists a functioxn)ﬂ of class

02+a in ﬁé which coincides with the boundary conditions 6, of 6 on

ST and B at t = 0. Also the initial condition ko(x,o) is assumed to
be of class Cl on §, and it is assumed that there exists two functions

6 and 8 continuous in DT and having continuous bomnded derivatives in

Dy, Such that for os)s)\o,

L(8) - £(x,t,8,)) > 0 7 L(8) - £(x,t,8,)),

& £8,<¢® onsS;andon3Batt=o.
Then there exists a solution of the system
L(e) = £(x,t,0,\),
%% = g(x,t,0,)),
= - 8,(x,t) on S, and on B at t = 0 ,
A = A (x,8) on Batt=o,

such that 6 is of class Cl+B in DT for any 0< B<1 and of class 02+t

in DT for some ¥> 0, and A is of class Cl in DT‘

Proof: Consider the set of functions defined by

3\ -
—1 = glx,t,8, )

ot 1),

L(ey)

£(x,t,6n, M), n=1,2,..,

N
E’\ - g(xition-l’ Xn) g n

\"
n
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&np = 6, (n21) on S, and on B at t = 0,

A, = X (azl) onBatt=o.
Now if Xn is Holder continuous with exponent a in 5&, then

so is the function fn(x,t,e) = f(x,t,0,\,(x,t)). By the result

in Appendix 1, 6, exists and is certainly of class Cl in DT'
]

Moreover lenli,6 < P's
where P' depends on 6, L,Y,and fn. This means that P' depends on
on,kn y but as it will be shown that these are uniformly bounded
it follows that there will exist a uniform bound for the sequence
(16nl3,4) - In fact it can be shown that

0 <6p £ 6 for each n,in BT'

Theorem 4 implies that }n(x,t) exists and, provided On-l is
of class Cl in ﬁ&, then so too is xnf From the requirements on
g it follows that each )‘n satisfies 0$>\n < )‘o in BT' Next it
is shown that €6, <6 in 5‘1" This follows from the comparison

10
theorems proved by McNabb . For

L(6y) = £(x,t,8,,\,;)

0 £ Lge) - t(x,t,g,kn),
L(6y) - fix,t,6,,\y) = 02 L(B) - f(x,t,8, ,).

And since 046, ¢ 6 on the boundaries of Dp » these inequalities
also hold in the interior. Also since each ®, is Holder contin-
uous of exponent o (at least) , then obviously each On is equi-

continuous on 5&. By the Ascoli lemma, there exists a subsequ-

ence (OnQ » defined for k= 1,2,.., of (8,), converging uniformly
to a limit function © defined on 5&. 1t is simple to show from

l6l,,5 € P' that & is of class C® in Dy 4 and further that O is
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of class C:L in x.
L_ikewise the same procedure follows from ngnsko which
implies the existence of a limit N\. This limit is shown to be of
class CT in 5&, Each \n is of class CT in B&, where

.
BN o g, t,001,0n)

Denote h,(t) Xn(x,t) - Xn(x',t). Therefore,

%ﬁ = g(x,t,en_l(x,t),Xn(x,t))-g(x',t,en-l(X',t),kn(x'gt))q
1.e.l§_%,. < M{Ihnl v 16, 4 (x,t) - on_l(x',t)l} + Klx - x'[,

using the Lipschitz condition on g. Note Mand K are independent
of n. Then since each en_l is of class Clin X, by considering
hZ O separately, it follows that

Ihg{t)] = [N(x,t) - (x',t)] € K'|x-x'| for all x,x' in B.
Likewise by writing

£

Xn(x,t) = Xo(x,O) + [ g(x,2,0,_5(x,2),)\,(x,2)) dz ,

it follows that

IAn(x,t) - Xn(x;t')l < | z le(xy2,6p.7(x,2) A\y(x,2))] dz ] .

Since (0,) and (A ) are uniformly bounded for all n, it follows
that

INx,t) = M(x,t")| € K|t - t'| for all t,t' < T.
So it can be concluded that \ is of class CY in 5&.

Thus, under the assumptions of the theorem © and \ are
certainly Holder continuous with exponent a in 5&. This is

sufficient to ensWre that the system
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L(G') = f(x’t’e’X),

oA

3‘{"— = glx,t,8,N),
o = ©5 on ST and on B at t = O,
\!' = ), on Bat t = 0,

has a solution ©', \' with 6' of class C1+B for any 0 <f<1 in Dy

and also of class CZ+1’ for some ¥ >0 in ET'
Now
L(e'-8,) = @ (x,t) = f£(x,t,0,7\) = ¥(x,t,6n,\pn),

and ©'-6, = O on the boundaries of D, while, from Friedman's

T

estimates (Theorem 3)
er-e,l £ P'gx,t)].
But 1#(x,t0] £ M(lO - 84] + I), = N,
and so as n tends to infinity through the values n;, the righthand

side tends to zero. Hence ©' coincides with © in D_ and so © is

T
A+P 2+ in D_.

of class C .

in DT and of class C
A similar argument using the equation

U
%c_ = g(x,t,8,\)

shows that )\' and A\ coincide in 5&. Thus 3N/dt exists and more-

over is of class CT in ﬁi since g, 6, and \are also,
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