RAYMOND DOUGLAS BROWNRIGG.

DYNAMIC PROGRAMMING AS A SCHEDULING TOOL IN
MULTIPROGRAMMED COMPUTING SYSTEMS

Submitted for the degree of DOCTOR OF PHILOSOPHY in
INFORMATION SCIENCE at the Victoria University of
Wellington, WELLINGTON, NEW ZEALAND.

DECEMBER 1978

ACKNOWLEDGEMENT .

I would like to acknowledge my original
supervisor, Dr. B.A. Murtagh, for the
inspiration resulting in the research
described in Chapter 2 of this thesis,
and his successor, Dr. J.H. Hine, for
his encouragement and support given

during the preparation of this thesis.

VICTORIA 'MNIVERSITY ©F WELLINGTON

-jv-

DYNAMIC PROGRAMMING AS A SCHEDULING TOOL IN MULTIPROGRAMMED

COMPUTING SYSTEMS.

ABSTRACT

A potentially parallel iterative algorithm for the solution
of the unconstrained N-stage decision problem of Dynamic Programming
is developed. This new solution method, known as Variable Metric
Dynamic Programming, is based on the use of variable metric
minimisation techniques to develop quadratic approximations to the
optimal cost function for each stage. The algorithm is applied to
various test problems, and a comparison with an existing similar
algorithm proves favourable. The Variable Metric Dynamic Programming
solution method is used in the implementation of an adaptive high-
level scheduling mechanism on a multiprogrammed computer in a
university environment. This demonstrates a practical application
of the new algorithm. More importantly, the application of Variable
Metric Dynamic Programming to a scheduling problem illustrates how
Mathematical Programming may be used in complex computer scheduling
problems to provide in a natural way the required dynamic feedback

mechanisms.

KEYWORDS

Dynamic Programming, parallelism, variable metric minimisation,

high-level scheduling, adaptive scheduling, multiprogramming,

dynamic feedback.

“i{i=

CONTENTS

SECTION 1. INTRODUCTION AND OVERVIEW

SECTION 2. A PARALLEL VARIABLE METRIC DYNAMIC PROGRAMMING

ALGORITHM
2.1 INTRODUCTION

2.2 BASIS OF THE METHOD
2.2.1 The Problem and the Dynamic Programming
Formulation
2.2.2 The Standard Solution Method
2.2.3 The Differential Dynamic Programming Solution
Method
2.2.4 The Variable Metric Solution Method
2.3 PROPERTIES OF THE VARIABLE METRIC ALGORITHM
2.3.1 Flowchart of the Algorithm
2.3.2 Implementation Details
2.3.2.1 Calculation of Gradients
2.3.2.2 Parameter Settings
2.3.3 A Comparison with the Differential Dynamic
Programming Algorithm
2.3.3.1 One-Step Quadratic Convergence
2.3.3.2 Results From a Simple Non-LQP Problem
2.3.3.3 Storage Requirements
2.3.3.4 Computation Requirements
2.3.4 Other Computational Experience
2.3.5 Possible Extensions to the Algorithm

2.4 CONCLUSIONS

11
17
17
17
17
20

23
24
28
31
31
33
36
39

-ii-

CONTENTS (continued)

SECTION 3. SURVEY ON COMPUTER SCHEDULING

3.1 INTRODUCTION
3.1.1 Definitions
3.2 MONOPROGRAMMED SCHEDULING
3.3 MULTIPROGRAMMED SCHEDULING
3.3.1 Uniprocessor Multiprogrammed Scheduling
3.3.1.1 Low-Level Scheduling
3.3.1.2 High-Level Scheduling
3.3.2 Adaptive Scheduling
3.3.3 Performance Criteria
3.4 CONCLUSIONS
SECTION 4. APPLICATION OF VARIABLEF METRIC DYNAMIC
PR -
4.1 INTRODUCTION
4.2 THE PROBLEM
4.2.1 The Approach Adopted
4.2.2 The Existing System
4.2.3 Proposed Extensions
4.3 THE APPLICATION
4.3.1 The Dynamic Programming Formulation
4.3.2 The Use of Feedback
4.3.3 Implementation
4.4 RESULTS
4.4.1 Analysis of Overall Performance
4.4.2 Analysis of Batch Queue Service
4.5 CONCLUSIONS
SECTION 5. CONCLUSIONS
BIBLIQGRAPHY

page
40

40
41
a4
45
46
46
51
55
58
62

63
63
65
67
68
71
73
73
80
82
88
89
92
98
99
103

LIST OF FIGURES

Figure
2.1 Flowchart of the Variable Metric Algorithm

2.2 Converged Trajectories for Three of the Solutions

|
i |

w

N e S X
~N O o B

(00]

Process States in a Multiprogrammed System

Distribution of Idle Time - Manual Control

Distribution of Idle Time - Program Control

Queue 5 Vs.

Queue
Queue
Queue
Queue

Queue

5 Vs.
7 Vs.
7 Vs.
7 Vs.
7 Vs.

LIST OF TABLES

Table

2:l

2.2

23

2.4

Queue
Queue
Queue
Queue
Queue

Queue

Comparison of the

Non-LQP Problem

Comparison of the

Non-LQP Problem

3 - Manual Control
3 - Program Control
3 - Manual Control
3 - Program Control
5 - Manual Control
5 - Program Control

Basic Algorithms for a Simple

Modified Algorithms for a Simple

Convergence of the Variable Metric Algorithm for

N =25, 10, and 20

Convergence of the Variable Metric Algorithm for

N = 30, 50, and 100

page
18

37
43
91
91
94
94
95
95
96
96

page

29

30

35

36

SECTION 1.
INTRODUCTION AND OVERVIEW.

Operations Research is a relatively young science which has
nevertheless produced a wealth of results and useful applications in
the modern world. Computer Science is an even younger science which
has grown rapidly since its inception, and shows no signs of slowing
down its growth rate. This thesis discusses research involving a
blend of disciplines from these two sciences, namely Dynamic
Programming from Operations Research, and Multiprogrammed Scheduling

from Computer Science.

Dynamic Programming is an Operations Research technique which
has a number of significant applications. However a Timiting factor
in the practical application of Dynamic Programming to problems of a
realistic size has been the large amounts of computing resources
required for the implementation, the well-known 'curse of
dimensionality' of Dynamic Programming. This research is directed
towards the development of an iterative algorithm which, by using
Variable Metric minimisation techniques to solve the unconstrained
N-stage decision problem of Dynamic Programming, promises to achieve
savings in both computation time and high-speed storage compared with
the traditional solution algorithm. This new algorithm thus helps to
widen the size range of real problems for which Dynamic Programming

may be applied as a general solution method.

The new algorithm is demonstrated by applying it to a problem in
controlling a multiprogrammed computing system. The use of Dynamic

Programming, and in general any form of Mathematical Programming, in

computer operating systems is a research direction which shows great
potential. This is particularly true for the investigation of dynamic
feedback algorithms, since Mathematical Programming techniques provide
a means of formalising the feedback mechanisms, which have previously
been characterised by ad hoc arguments. The application chosen
involves the dynamic control of those scheduling parameters which
affect the relative Tevels of service provided to different classes of
batch customers with the goal of providing 'equitable' service, at the
same time controlling the degree of multiprogramming in an attempt to
help optimise overall performance. These parameters were previously
set and modified by the computer operators on a much longer time
scale, but with essentially the same goals in mind. This application
is an excellent demonstration of how Mathematical Programming may be
used for scheduling multiprogrammed computing systems, and of how
Dynamic Programming in particular may be used for optimising a

composite of two or more performance criteria using dynamic feedback.

The following section begins by presenting the unconstrained
discrete-time Dynamic Programming problem, the standard Dynamic
Programming solution method, and a brief resume of an iterative
solution method, the Differential Dynamic Programming (DDP) solution
method. Then the new Variable Metric Dynamic Programming (VMDP)
iterative solution method is developed in detail. The algorithm uses
quadratic approximations to functions as a method of storing
information between iterations, with Variable Metric minimisation
techniques being used to generate these approximations. Implementation
details are discussed, and then the new solution method is compared
with the DDP solution method, which turns out in some respects to be

a special case of the former. This means that the new VMDP solution

algorithm is able to cope with more complex problems than the DDP
solution algorithm. The new algorithm is then proven to be
quadratically convergent with one-step convergence for the problem
with Tinear constraints and quadratic criteria (the LQP problem).
Results from solving some simple non-LQP problems show that the VMDP
algorithm converges faster than other existing algorithms. Further,
an analysis of the VMDP and the DDP algorithms shows that

computationally the new algorithm is no worse than the DDP algorithm.

As a lead in to a practical application of this new solution
algorithm, Section 3 presents a brief survey of Computer Scheduling.
The survey concentrates on multiprogrammed scheduling in a
uniprocessor environment, although monoprogrammed scheduling and
multiprocessor scheduling are both mentioned. Uniprocessor
multiprogrammed scheduling is divided into Tow-level scheduling and
high-level scheduling, then each of these is further subdivided into
processor scheduling and more general resource scheduling. Adaptive
scheduling is given special mention, since this is a relatively new
but potentially fruitful discipline. Finally, performance criteria
are discussed, since any scheduling implementation must be based on

attempting to optimise some performance criterion.

Section 4 then discusses the application of the VMDP algorithm,
as proposed in Section 2, to a problem in scheduling a multiprogrammed
computing system, and the implementation of this on a batch and
interactive computing system in a university environment. The problem
studied is a high-level (job-scheduling) problem in which the
decisions made affect when batch jobs are started, and how many jobs

from each of the different job classes are to be active together.

This is proposed not as a replacement for any part of the existing
scheduling mechanism, but as an extension to it. The existing high-
level scheduling mechanism, which consists essentially of a set of
static, operator settable, scheduling parameters, is described and
the proposed extensions, which provide a mechanism for modifying some
of these parameters dynamically, are outlined. Then the problem to
be solved is formulated in Dynamic Programming terms, and the
functions and variables used, both inputs to and outputs from the
solution process, are defined in terms of information available from
or required by the existing scheduling mechanism. Further details of
the specification of the Dynamic Programming problem are then
discussed, along with details of how the results of the solution
process are applied on a dynamic basis, and how all this is

incorporated into the existing operating system.

Experimental data collected to test the effectiveness of using
the extended scheduling mechanism are presented and analysed. The
analysis concludes that the implementation has been successful in
providing improvements in performance in those areas with which the

chosen composite optimality criterion is concerned. In particular, a

small but significant improvement in processor utilisation is achieved

as well as larger improvements in the predictability of the relative

service delivered to the different classes of batch jobs.

Section 5 consists of a summary of the main results and findings

of the research performed, and a discussion on the implications of
these for further research. This is followed by a bibliography,

consisting mainly of references for the survey of section 3.

SECTION 2.
A PARALLEL VARIABLE METRIC DYNAMIC PROGRAMMING ALGORITHM.

2.1 INTRODUCTION.

The N-stage decision problem of Dynamic Programming is concerned
with a system which at any instant may be described by a vector, known
as the state vector, and a set of N decisions, each of which is
specified by a vector, known as the control, or decision, vector. The
problem is to determine the optimal sequence of N decisions which
transforms the system from an initial given state (at time 0), to a
generally unknown final state at time N. The way in which a decision
affects the state of the system during a transition from one stage to
the next is exactly determined by a transformation function, which
specifies, for each stage, the new state of the system, as a function
of the current state and the decision applied at that stage. The
problem may also have further constraints imposed, in the form of
limits on the values of the state and control vectors. The optimality
of the solution is based on a cost function which is a sum of
functions, one for each stage, each being a function of the state of

the system and the decision applied, at that stage.

The standard solution method for this type of Dynamic
Programming problem involves, at each stage, selecting a number of
discrete values for each component of the state and control vectors,
and, for each different value of the state vector, calculating the
cost of every possible decision which could be taken from that state.
This results in an algorithm whose computational requirements vary

in proportion to dn+m, where d is the number of different values of

each component of the state and control vector, and n, m are
respectively the dimensionalities of the state and control vectors.
This gives rise to the so-called 'curse of dimensionality' of Dynamic
Programming, whereby problems that are solvable in theory may be just
too large to be handled by the available computing resources. This
failing of the standard solution method has resulted in a search for
other solution methods, usually iterative, which are not as prone to

the dimensionality problem.

The use of Variable Metric minimisation techniques in solving
the unconstrained version of this problem promises to achieve savings
in both computation time and high-speed storage compared with the
standard algorithm, at the same time alleviating the 'curse of
dimensionality'. The algorithm proposed, which is essentially an
jterative second-order gradient method, has the property of finite
convergence for the LQP problem, and involves the generation of a
quadratic approximation to the optimal cost function as a function of
the state vector at each stage. Variable Metric minimisation
techniques [107, 1081 are used to generate the information necessary
to make this quadratic approximation to the cost function in a region
around a nominal (non-optimal) trajectory. The quadratic information
is then used to update the trajectory in such a way that an overall
reduction in the cost function is achieved. The particular Variable
Metric method used is that which involves a symmetric rank-1 update
formula, which allows the generation of quadratic information without
actually performing a minimisation at each step. Furthermore, the
implementation of this particular method results in an inherently

parallel algorithm which is therefore all the more powerful.

A similar iterative second-order gradient method, known as
Differential Dynamic Programming, has been proposed by Jacobson and
Mayne [87, 1021, and this turns out in some senses to be a special
case of the new algorithm, for the discrete time version. It must be
noted here however that the Differential Dynamic Programming solution
method has been extended to the continuous time problem, whereas the
new algorithm is at present considered only in the context of discrete
time decisions. In this section, the differences between and the
similarities of the two algorithms are outlined, as well as possible

variations for the new algorithm.

The subscript and superscript notation used for this section is
defined as follows

Vk(is a function of two variables, defined at time k.

> Uy)

-

k : : . : . g ; .
Vx(ék’ gk) is the first partial derivative of this function with

respect to the variable Xy -

vk (%, s gk) is the second partial derivative of the function

xu =k

with respect to Xy and Yy -

2.2 BASIS OF THE METHOD.

2.2.1 The Problem and the Dynamic Programming Formulation.

The unconstrained N-stage decision problem is presented as

follows
N-1
)
k_

find 00(50) = minimum L

{ugs-wouy_q!
the corresponding sequence of controls {l,, gl, PETRe gN-l} ;

L (x5 u) + Flxy) by (2.1)

and the corresponding trajectory {%,, 31, - gN} >

where %5 = ¢ and &, = f & 0)

1

: = 2 n - (11 2 m
with x, = (xg, XF» «..» X,) and u, (ups Ups oes W) s
the circumflex '~' denoting optimal values.
Application of the Principle of Optimality [87] results in the Dynamic

Programming iterative equation

Vk(ék) = misimum Lk(ék, gk) + Vk+1(fk(5k’ gk)) s
Uy

for k=0, 1, ..., N-1 , (2.2)

with the boundary condition

2.2.2 The Standard Solution Method.

The first step of the standard solution method for the above
problem involves the discretisation of each component of the control
vector, and each component of the state vector (if these are not
already discrete-valued). The iterative equation is then solved for

k = N-1, N-2, ..., 0 , evaluating and storing Vk(ék) for each of the

quantised values of Xy - Each of these evaluations involves the
computation of the expression

Vi (xs u) = L (s u)+ Vo (F(xys up)) (2.3)
for each of the quantised values of Uy s and determining the minimum.
The values of Vk+1(.) are determined by interpolating between the
stored values of Vk+1(5k+l) from the calculations for the previous
value of k. For each value of Vk(ﬁk) stored, the corresponding
minimising control (denoted by gk(ﬁk)) must also be stored. The
optimal cost is then simply Vo(g), and the corresponding sequence

of controls and trajectory are found from the equations

9 = 9(%)
X-k'*'l = fk(X_k, Qk) s (2.4)
Xg=co

where the evaluation of gk(gk) may involve interpolation between the

stored values of Ek(ék).

2.2.3 The Differential Dynamic Programming Solution Method.

The Differential Dynamic Programming method of solution is
jterative and hence requires a nominal sequence of controls, denoted
by {u,, Ql’ — gN—l}’ from which is calculated a nominal trajectory

denoted by {Xn» X;s --.» Xy}, Using the equations
=0° =1 =N

Xg =€
(2.5)

¥ea1 = B B
The nominal cost for this sequence of controls is calculated from the

expression

=HJ=

N-1
Vy(Xg) = kZO L (X s G) + Fxy) - (2.6)
The next step, the first of the iterative process, involves the
calculation of the parameters % and Bk for k = N-1, N-2, ..., O from

the recursive set of equations

-1 .k _ -1
—‘k Ck H 'Y Bk - -Ck .Bk » (2.7)
_ il
wnere H (x> U A) = L (x w) + 2 F (g, u)
T k+1 k T ,k+1,- k
A Hxx(ék’ Uy Yy (—k+1)) + x) Yy (5k+l)'fx ’
k- - k+1 - T k+1 k
Bk Hux(l(ks Ek’ VX ﬁk)) k () V (—k+1) fX ’
_ uk - k+1,- T k+1 k
G = Huge By V(x4)) (f)V Vax Bear) Ty
k - k+1 k - k+1
Ve = o B W)+ Bt G B N By))
and Vk =A - BT C,.B
XX k k*7k""k

with the boundary conditions

all unspecified arguments being gk, Qk

The second step of the iterative process involves calculating

the new trajectory and sequence of controls from the equations

620 =€y s

GQk = eqy + Bkﬁﬁk " (2.8)
8xpp1 = FiXy + 8% Uy + 00) - Xy

where >0 is a scalar required to ensure that the quadratic information

-11-

inherent in Vi and Vtx is accurate enough. The scalar e, where

O<e<l, limits the magnitude of the departure of the new trajectory
from the nominal trajectory (for which Vi and Vtx are calculated).
The newly generated sequence of controls is then taken as a nominal

sequence, and the iterative process is repeated.

2.2.4 The Variable Metric Solution Method.

The Variable Metric method of solution is also an iterative
process, requiring a nominal sequence of controls from which a nominal
trajectory and nominal cost are calculated as in equations 2.5 and
2.6 for the Differential Dynamic Programming method. Then for each
iteration of the process, a new cost function is developed and saved
in the form of a quadratic apnroximation for each stage k, where
k =0, 1, ..., N. These are then used to generate a new nominal
sequence of controls and a new nominal trajectory for the next
iteration. This process is repeated until some criterion for

convergence is satisfied.

Given the nominal sequence of controls {go, Ups wees EN-l}’ the
nominal trajectory {20, gl, e ZN}, and the nominal cost Vo(go), a

new cost function, namely
TR) = L (xps uk(x) + Tf () (X0 uX(x))) s (2.9)

with the boundary condition

IF(xy) = Flxy) (2.10)

is determined as a quadratic aporoximation around the point gk. Note

that since u¥* is a function of Xys the function I; is in fact a

’L:

function of Xy only. To define the function EE(Ek), consider the

SN2

similar optimal cost function which is generated for the standard

solution method, namely

_k
which could also be written as
Vie(x) = L(xes 0 (x) + Vo (F (xs G (%)) s (2.12)

where Qk(gk) denotes the minimising u, . which is implicitly a function
of Xy - The differences between the two cost functions are that gﬁ(;k)
is not a minimising control, but rather a control which tends to
minimise the cost function I¥, and that the values for Ik+1() are
obtained from a quadratic approximation, rather than from
interpolation between grid points, as are the values for Vk+1(.).

Thus there are two major parts at each stage k for each iteration of
the Variable Metric method, namely the determination of the function
Eﬁ(ék), and the determination of the quadratic approximation to Iﬁ(ﬁk)

around the point X,

Using the boundary condition 2.10, and given the quadratic

P " -
approximation to Ik+1(5k+1) around X, .15 namely

_ = T
Pea1®en) = 2 ¥ g = Xe) G

(2.13)
) TH

X1 ™ Xen) e Ban ~ Xt

the function Ei(ék) is determined as follows. Define a new function

Ik(., .) as

Ik(ﬁka u) = Lk(ék’ u) + I§+1(fk(§k, gk)) s (2.14)

noting the similarity between this and the cost function 2.3 in the

standard solution method. Now given a fixed value, say 5;, of the

state vector at stage k, the function Ik and its derivative

-13-

dIk/dgk are calculated for m+l different values of Uy in a suitable
neighbourhood of Qk (m being the dimensionality of gk). Variable
Metric techniques are then used to build up an approximation to the
inverse hessian of Ik in a neighbourhood of the point Uy with Xy

being fixed at 5;. From this, the 'variable metric direction',

6gk(_;) is calculated from the expression

iy ool i T
Suy (x,) = =T, (x). T (%, u) (2.15)

where I;ﬁ denotes the inverse hessian. This is the direction that

a Variable Metric minimisation would calculate in attempting to find
o B i . .
the minimum of Ik(gk, gk) as a function of Uy s given that the present

value of Uy is Qk. This then determines one value for the function

Hi(ﬁk)’ from the expression

ur(xp) = O, + ody (x)
where a, 0<o<l, is required to ensure that the point fk(gi, gﬁ(z&)),

at which I}

k+1 would be evaluated, is close enough to the point Xy 41

around which the quadratic approximation to IE+1 has been made, for

the approximation to be valid. The use of this scalar a has a

similar effect to the 'region limiting strategy', reported by Arora

and Pierre [9]. This evaluation of ng(5;) is repeated for a total

of n+l different values of Xpes such as 5;, in a suitable neighbourhood
of Zk (n being the dimensionality of ék), to generate a linear

approximation to the function as

Su

u (%) (2.17)

oy * By = B+ ollge - XJ®

This serves to provide a linear approximation to gﬁ(gk) from equation

-14-

2.16. Note that the vector o, is not related to the scalar a.

Sy

We now have the situation where the function Ii(ﬁk) in equation
ok . -
2.9, which is merely the function Ik(gk, gk) evaluated at Uy gk(gk),
can be evaluated approximately for any value of Xy - Also, since
N) . . " . & N
Ik+1(') is a quadratic expression and _!k(ﬁk) is Tinear, dIk/d§k may

also be evaluated. This is detailed in section 2.3.2.1. The

algorithm now evaluates Iﬁ(gk) and its derivative dIE/dék for n+l
different values of Xy in a suitable neighbourhood of Zk’ and uses

Variable Metric techniques to build up gradient and hessian

information which will serve to approximate Iﬁ(gk) to second order
about Xk‘ The values of Xy chosen need not necessarily be the same
as those chosen for generating the linear approximation to ng(ék),

but some computation time is saved and some accuracy retained if they

are the same.

This whole process of generating a quadratic approximation to

I¥(x,) about Zk is repeated for k = N-1, N-2, ..., 0, to complete the

first step of each iteration. In the second step of the iteration,

a new trajectory and sequence of controls are calculated as follows

g = =g

_ T
dgk = E(gk + Bkéék) , (2.18)
OXp1 = B(X * 0% Ty * 08Uy) - Xy

Again the scalar e, 0O<e<l, is used to 1imit the maanitude of departure

of the new trajectory from the nominal trajectory so as to ensure

-15-

the accuracy of the quadratic approximation, thereby resulting in a
decrease in the value of the cost function. Note the expression used

for 6gk is slightly different from that used in the Differential

Dynamic Programming method, equations 2.8, this particular expression
being chosen for its similarity to expression 2.16 for evaluating the

function gﬁ(ﬁk), in which the scalar a is used to 1imit the deviation

from the nominal control. The generation of a new trajectory and
sequence of controls completes one iteration of the algorithm, at

which point a test for convergence is performed if necessary.

The particular Variable Metric undate formula used in the
algorithm is the symmetric rank-1 update formula as discussed by
Murtagh and Sargent [108]. Starting with the identity matrix, a
sequence of inverse hessian matrices is generated from the expression

Siep = S5 * (B4 - Sjap)- (g - S39¢)/(a4- 0y - S394)) (2.19)

where By = Xypn = %4 »

and 95 = 9447 - 94 >
9; being the gradient of the function of x at the point X -

Similarly, a sequence of hessian matrices, resulting in a quadratic
approximation, may be generated from the expression
= H. . - H.p. = H.p:)/ (pr.(q. - Hips .
Hipq = Hy + (a5 - Hpy). (a5 - Hypy)7(p5-(q5 - Hipy)) (2.20)

where Py and q; are defined in the same way as p; and g for 2.19.

It is the use of this symmetric rank-1 update formula that
allows the quadratic information to be developed from an arbitrary
set of grid points in a neighbourhood of the point of interest. This

is in contrast to most Variable Metric update methods, in which each

-16-

new point considered must be a point which has been generated from
the existing quadratic information, and must be some point which is
closer to the minimum of the function than all previous points

generated, closer being in the sense that the function value is Tess.

-17-

2.3 PROPERTIES OF THE VARIABLE METRIC ALGORITHM.

2.3.1 Flowchart of the Alaorithm.

Figure 2.1 indicates the method of the Variable Metric algorithm

in flowchart form.

2.3.2 Implementation Details.

2.3.2.1 Calculation of Gradients.

Variable Metric minimisation techniques require that whenever

an evaluation of the function to be minimised is carried out, gradient
information must also be determined. The Variable Metric Dynamic
Proaramming algorithm, although it does not minimise the functions
which are treated with Variable Metric techniques (and hence does

not use the actual function values) does require this gradient
information in order to construct the hessian for the quadratic
approximation. A property of the algorithm is that provided that

the necessary functions Lk(ﬁk, gk), fk(ﬁk’ gk), and F(EN) have

analytic first derivatives, no extra computation in the form of
numerical differentiation is necessary to determine the required
gradients. It must also be noted that no second derivatives are

used in the computations.

In the case of finding the quadratic information for Ik(ék, Ek)
as a function of u, (in order to determine the direction ng(ék)),

we have

-18-

[input

N Y

ta]cu]ate nominal
ontrols, trajector

J -
% choose_§k Choose !;
= = i = N N a
k=N-1 j = 0 near x, >~ maan i,
i=0,
A A A A Y
" 719
find Ik(gﬂ, gk)
and gradient
w.r.t. u,,
update Si'
\
Find T*(x))
k*=k
and gradient
w.r.t. x,,
update Hj
and Bk‘
save
quadratic
approximation
*
to Ik(ﬁk).

evaluate new
cost

solution
converged?

Figure 2.1 Flowchart of the \ariable Metric Algorithm.

Ly) = Ll w) + gy + (Blxys u) - X)) gey
(e U = Xegy) Mg (B (g) = gy
ol f (xp> up) = Xy 4qll%s (2.21)
resulting in
dI, /du, = Lu(>_<k, Ek) +
fu(ék’ Ek)’(9k+1 ¥ Hk+1'(fk(§k’ Ek) B gk+1)) *
o[fy (xp> U) = X 4l1%s (2.22)

which may be calculated analytically to the required accuracy.

In the case of finding the quadratic information for I;(;k) as
a function of X5 in order to build the hessian matrix, we have
dIE/dék - I;(ﬁk) + (dﬂf/dﬁk)'lﬁ(ﬁk) 2 (2.23)
Also, for the Tinear approximation to 6gk as a function of Xy s as in
2.17, we have
Su, (x,) = su, (x,) (2.24)
where Bk = dﬁgk/dlk(ék)
Now

dgi/dgk - udégk/dﬁk(ﬁk)

a(dsy, /dx, (X,) + ollx, = X)
= OL.Bk + o(as) ,
where & is the length of the steps taken to generate the n+l different

values of Xy in a neighbourhood of gk. Thus we have
dIF/dx, (x,) = I¥(x,) + oan.Il’j(fk) + o(ad) , (2.25)

which may be calculated analytically. Note that for the LQP problem,

I (5k) is zero, as is the error term since égk(gk) is linear and hence

*
u

-20-

gk/dgk(lk) is in fact constant, that is, it is independent of x, .

2.3.2.2 Parameter Settings.

In the Variable Metric algorithm, there are several parameters
which must be initialised, and may be altered during the calculations.
The most important of these is the parameter o, O<u<l, which is used
in expression 2.16 to 1imit the difference between the nominal
controls and the newly calculated controls. As required in section
2.3.3.1, this variable must be set to, and remain constant at, the
value 1.0 for the one-iteration convergence of an LQP problem. For
other problems, other values may be used for the initialisation and
further, the parameter may be varied between iterations, and even
within a single iteration if desired. A reasonable value for this
parameter is a = 0.5, ajthough values closer to a = 1.0 may be used
successfully for problems which are 'almost' LQP problems, such as
that discussed in section 2.3.3.2. If a is not kept constant at
unity, then there must be some mechanism whereby the value assigned
to o tends to 1.0 as the iterative process converges. The reason for
this is that when the nominal trajectory is near to the optimal
trajectory, then the changes in the trajectory and in the controls
from one jteration to the next will be small, provided that the
functions used are differentiable. This allows the size of the
neighbourhoods chosen around the points on the trajectory and around
the nominal controls to be small, resulting in a more accurate
quadratic approximation. Now as the approximation becomes more
accurate, it becomes more desirable to treat the problem as an LQP
problem, and hence the value assigned to o should approach unity.

One such mechanism for letting o tend towards unity as the iterative

-21-

process converges is to give to o the value of the scalar variable e
which results from the previous iteration, since the value of e
needed for a function decrease does in some way reflect the accuracy
of the quadratic approximations used. Furthermore, the two scalars
o and e perform similar tasks, both being used to restrict the
deviation from the nominal controls, as may be seen by comparing

equations 2.16 and 2.18.

The other parameters used are those which determine the sizes

of the neighbourhoods around the points Qk and Zk’ which are used
respectively for the generation of the direction ng(gk) and the
quadratic approximation to the function Iﬁ(lk). For an LQP problem,
the values used for these parameters are of no analytical consequence,

since exact expressions are generated irrespective of the sizes of
the neighbourhoods, although numerical accuracy does need to be taken
into account when assigning these values. For non-LQP problems, some
benefit may be gained from varying the sizes of the neighbourhoods
used. The best values that could be used are those which result in
neighbourhoods which just contain, at each stage, the new values of
the trajectory and control sequence resulting from the current
jteration, so that the region in which the quadratic information is
appropriate contains the new trajectory. The main difficulty in
achieving this lies in not being able to predict future deviations
from the current nominal trajectory and sequence of controls.

However it would generally be the case that these deviations become
smaller as the iterative process converges, which means that the
observed deviations resulting from the previous iteration could be

used as estimates for the deviations resulting from the current

-22-

iteration. This still leaves the problem of choosing initial values
for these parameters, although since it is not necessary that the
neighbourhoods used do contain the new trajectory and sequence of
controls, any small value, say 0.01, is Tikely to be a reasonable
choice. In any case, the values of these parameters would tend to
be self-requlating if the above method for modifying the parameters
is used. If the initial values chosen are too small, then the
quadratic approximations would be more accurate than necessary,
permitting deviations to occur outside the neighbourhoods, thereby
increasing the sizes of the neighbourhoods for the next iteration.
Similarly, if the initial choice is too large, then the lack of
accuracy in the quadratic approximations would necessitate smaller
deviations to obtain an overall cost function decrease, thereby
decreasing the sizes of the neighbourhoods for the next iteration.
However it is possible that when the initial choices are too large,
they may be so much too large that the quadratic information is too
inaccurate to result in any cost function decrease, no matter how
small ¢ is chosen. If this does occur, then the parameters must be
reduced in size and the iteration repeated. Also it is possible
that the use of inaccurate approximations may lead to a non-optimal
solution. For this reason it would be better to err on the small
side when supplying the initial neighbourhood parameters, since at
worst this would tend to involve quadratic information at a point,
as does the Differential Dynamic Programming algorithm, rather than

in a region around a point.

-23-

2.3.3 A Comparison with the Differential Dynamic Programming

Algorithm.

The major difference between the two algorithms is that the
Variable Metric algorithm uses the scalar o, O<a<l, in building up the
quadratic information for the cost function at each stage, as well
as the scalar € in the second part of each iteration, where the new
nominal controls are generated. In addition to, but partly as a
result of this, more pertinent gradient information is available for
the generation of the hessian matrix for the cost function at each
stage. This means that the Variable Metric algorithm is 1likely to
be able to cope with more complex problems than the Differential
Dynamic Programming algorithm. However, for the LQP problem, the
two algorithms generate and use identical information; in fact the
two algorithms are theoretically equivalent for the LQP problem,

provided that o = 1.0 in the Variable Metric algorithm.

The generation by the Variable Metric algorithm of more stable
quadratic approximations in the sense that information is gathered
over a region rather than at a point, does occur at the expense of
a larger number of function evaluations and floating point
multiplications (either of these being useful as a measure of the
computer time required to solve a problem), although storage
requirements are essentially the same. Also, the inherent parallelism
of the new algorithm allows for faster real-time solutions to be

obtained.

-24-

2.3.3.1 One-Step Quadratic Convergence.

The unconstrained LQP problem has the property that the functions

L and F(are respectively Tinear in Xy and Uy s

fk(5k, u), k(fk’ u), xy)

quadratic in Xy and Uy s and quadratic in Xy This results in the

existence of a general quadratic recursion formula for the hesSian

of second derivatives of the cost function as a function of the state
vector at each stage. This in turn leads to the one-step convergence
of the Variable Metric algorithm, since the cost function may be
determined exactly for each stage, provided that the scalar a of

expression 2.16 remains constant at unity.

2.3.3.1.1 General Quadratic Recursion Formula for the Hessian

of Vk(ﬁk).

Theorem 2.1 Given the properties of the LQP problem, the cost
function at each stage is quadratic in the state
vector.

The proof is by induction.
Given VN(5N) is quadratic in xy.
Assume Vk+1(5k+1) is quadratic in x,,,, that is, assume

~

_ < T
Ve Ben) = Ber * Kag = K G
(2.26)

N

- _
(Kr1 ™ Zyan) Hiar (an = Xan) o

A

where CHR Vk+1(5k+1) s
., k¥l =
Ga = Uy (Xgyp)
and H - Vk+1 , which is the constant hessian matrix.

k+1 XX

=25

Now, from equation 2.2

P - T
V) = mingmum Ly (X0) + 2y *+ (Bl Up) = Xyep)-Gyen

B (X 0 = Fipp) Hipg- (B0 8)) = Xyg))
(2.27)
Performing the minimisation with respect to Uy and dropping the
subscript k for convenience of notation,
U(0) = L0t 8) + g + (£(x 8) = Zyyq) o9 *
(%,) = Xyyq) Hyp-(F6 0) - X0q) (2.28)

Ly (%) + F (% @) (gyyq * Mg (B 0) = Xy04)) =0 .(2.29)

Differentiating with respect to x

di/dx = L (x, 0) + f.(gyyy + Hpp-(F 0) - X 4)) +

do/dx. (L, (xs 0) + F- Qg + g (B 0) - X 09)))

Substituting from 2.29

d/dx = L (x, 0) + f.(gyq * Hipr (f(x, 0) - X.,q)) - (2.31)

Differentiating again, noting that fx is constant since f is linear

27 2 _ T T
d20/dx? = L + f.H q-f, + do/dx (L + foHepfy) - (2:32)

Differentiating 2.29 with respect to x, noting that fu is constant

_ TT Ty~-1
du/dx = -(Lxu * f k+1 fx) (Luu + fu'Hk+1'fu) : (2.33)

Thus 2.32 becomes

29 JdAy2 = _
dPU/dx® = L+ Hq-fy

T\T Ty-1 T
(LXu + fu.Hk+1.fx).(Luu # fu'Hk+1‘fu) '(Lxu + fu'Hk+1'fx)

(2.34)

-26-

Now since L is quadratic in x and u, L ., L s and L ~are all

Xu

constant, hence d?0/dx? is constant, that is, Vk(gk) is quadratic

in Xy with constant hessian matrix

- 1K k kT
Hk = Lxx + fx'Hk+1'fx -
k k kit Tr K k kTy-1,,k k kTt
(Lxu + fu'Hk+1'fX).(Luu + fu'Hk+1'fu) .(LXu + fu'Hk+1'fX)

(2.35)
This completes the proof by induction, having developed the recursion

formula 2.35 for the hessian of Vk(ﬁk).

Note however that for a solution to the problem to exist, the

sequence of Hk must be positive semi-definite. A necessary condition

for this to occur is that the expression

k k kT
Luu + fu'Hk+1'fu

be non-singular for each stage k.

2.3.3.1.2 Optimality of gi when o = 1.0 for the LQP problem.

Theorem 2.2 Given the properties of the LQP problem, and that

the direction 6gk is found from equation 2.15, then
the control gﬁ = gk + aagk is the optimal control
for the given Xy when a = 1.0. Further, the

linear function égk(ﬁk) of equation 2.17 produces
the optimal policy gﬁ(gk) = gk + ng(ﬁk).

The proof once again relies strongly on the properties of the

functions Lk(gk, gk) and fk(ék’ gk).

=27 =

If Lk(gk, gk) is quadratic in u,, then Lﬁ(gk, gk) is linear in u,.

Dropping the subscript k for convenience again, this implies

L(xs w) = L(x, u) +L,.(u-u) , (2.36)
where Luu is constant.

Similarly,
flx, w) = flx, @) + fi(u-0) , (2.37)

where fu is constant.

Substituting into equation 2.29
L, (x> u) + f,- (g q + Hpyq o (F(x5 u) - Xe41)) t

T -
(Luu * fu'Hk+1'fu)-(!.‘ u) =0 , (2.38)

that is

- _ Ty=1
u-u-s=s -(Luu + fu'Hk+1'fu) .

(L, (%, u) + Fo(gyq + Hpq- (FO6 W) - X)) -(2.39)
This is expression 2.15 for égk(gk) (restoring the subscript k),

that is

Su (2.40)

u, (%) = 0, (%)

JtC|

* = P .
Hence Ek(ﬁk) u + Sgk(ék) is the optimal control.
From 2.38, (0 - u) is linear in x, since L, and f are linear in X,
and Luu and fu are constant. Thus the function dgk(gk), defined as

80, (%) = 0, (x,) - Ty (2.41)

is Tinear in x, . From 2.40, ng(ék) = dgk(§k) for n+l values of x,,

and hence the two functions are identical (since a linear function of
a vector of dimension n is uniquely determined by n+l values). This
leads to the required result that Eﬁ(ék) =u + ng(ék) is the optimal

policy function at each stage.

~98-

The results of theorems 2.1 and 2.2 combine to prove that the
Variable Metric algorithm will converge to the optimal solution in
one iteration for the LQP problem, provided that o = 1.0. From
theorem 2.1 the cost function is determined exactly for each stage
(providing a solution exists), and from theorem 2.2 the algorithm
viill generate optimal controls for the given cost function, and will
also build up the optimal policy function for each stage. The
application of the optimal policy function will Tead to the optimal

trajectory after the first iteration of the algorithm.

2.3.3.2 Results from a Simple Non-LOP problem.

To demonstrate the differences between the two algorithms, a
simple non-LQP problem was solved using both algorithms, and a

comparison made of the results. The problem solved was the following

%0 %, 1%+ uy o|lI”
minimise 1% + ud + ||Xq0q - {]l ;
k=0 k 10 9

. B 1
subject to 5k+1 = Xy + uk'[l] 3

and Xy

1
|©

Note that the problem is formulated as two-dimensional in the state
variable, although because of symmetry it is essentially a scalar
problem. For both algorithms, the nominal control sequence was taken

to be

this lTeading to the nominal trajectory

B=0 5 k=0, 1, oy 10,

with a nominal cost

-29-

-

V, = 162

0
Table 1 shows the convergence of the two algorithms, through the

values of the nominal cost VO’ and the scalar e producing it.

Differential Dynamic Variable Metric Dynamic
Programming Programming
iteration Y, £ VO £
nominal |162.000 000 162.000 000
1 116.753 906 0.25 78.070 810 1.00
2 87.150 405 0.50 73.184 224 1.00
3 77.465 526 1.00 73.174 405 86 1.00
4 73.511 723 1.00 73.174 405 133 1.00
5 73.181 220 1.00 73.174 405 133
6 73.174 410 1.00
7 73.174 405 135
8 73.174 405 133

Table 2.1 Comparison of the basic algorithms for a simple non-LQP

problem.

The Differential Dynamic Programming method of solution was
programmed by the author following the algorithm proposed by
Jacobson and Mayne (in [87], page 112), with the exception that
computation was halted when the relative change in the nominal cost,

9

AVO/VO, was less than 1077, this being the convergence test for the

Variable Metric algorithm.

-30=

For the Variable Metric algorithm, the parameter o was
initialised to the value 0.75, and updated to the value of €
resulting from the previous iteration. The neighbourhood parameters
were initialised to (1 + k)/5, k =0, 1, ..., 9, where k denotes
the stage, for each component of the state vector, and the control
variable. These were updated to the absolute values of the deviations
occuring at the previous iteration, with a minimum of 10-6 imposed,
this being necessary to ensure a non-zero radius for each of the
neighbourhoods, since in particular the deviations occuring at stage
k = 0 are always zero for the fixed initial value problem. Both
algorithms were then varied so that at each iteration, the cost was
minimised with respect to the variable € (see section 2.3.5). Table

2.2 shows the results of applying the two modified algorithms to the

Differential Dynamic Variable Metric Dynamic
Programming Programming
iteration VO € VO £
nominal |162.000 000 162.000 000
1 113.842 344 0.213 353 | 78.070 810 1.0
2 84.881 758 0.431 117 | 73.184 224 1.0
3 74.619 551 0.685 409 | 73.174 405 74 0.997 010
- 73.204 919 0.945 010 | 73.174 405 133 1.0
5 73.174 427 1.0 73.174 405 133 1.0
6 73.174 405 135 1.0
7 73.174 405 133 1.0

Table 2.2 Comparison of the modified algorithms for a simple non-LQP

problem.

-31-
same simple non-LQP problem. Tables 2.1 and 2.2 show that in both
cases the Variable Metric algorithm shows faster convergence than the

Differential Dynamic Programming algorithm.

2.3.3.3 Storage Requirements.

Basic high-speed memory requirements for the Differential
Dynamic Programming algorithm and the Variable Metric algorithm are
much the same. Given the problem where there are N stages, the
dimension of the control vector is m, and the dimension of the state
vector is n, the gradient and hessian information for the Variable
Metric algorithm requires 2(n + 1)? storage locations, this being the

same as for the storage of VX and VXx for the Differential Dynamic

Programming algorithm. In addition, the linear approximation to

6gk(§k) requires m(n + 1) storage locations for each stage k, which
is the same as the combined requirements of Y and Bk for the

Differential Dynamic Programming algorithm. Thus the total basic
storage requirements for each algorithm is Nm(n + 1) + 2(n + 1)?
locations. Further temporary storage is required for both algorithms,
for the temporary vectors used in the Variable Metric minimisation

techniques, and for the storage of the matrices Ak, Bk’ Ck, and Cil

for the Differential Dynamic Programming algorithm.

2.3.3.4 Computation Requirements.

Computation requirements may be assessed in two different ways,
namely by the number of floating point multiplications, or by the

number of function evaluations. The most frequently occurring

-32-

multiplications in the Variable Metric algorithm occur in the

evaluation of the gradient of the function Ik(lk’ gk), equation 2.14,
which involves the evaluation of the gradient of Iﬁ+l(fk(5k’ gk)),

this requiring nm + n? multiplications. The number of floating point
multiplications for each stage of each iteration is of order
n(n2m + nm?) since the evaluation of this gradient is performed m

times for each of the n + 1 values of Xy in a neighbourhood of Zk'

As a comparison, the number of floating point multiplications for
the Differential Dynamic Programming algorithm is of order

n® + n?m + nm?.

The most frequent function evaluations in the Variable Metric
algorithm also occur in finding the gradient of the function

I§+1(fk(§k, gk)), for which the function ft(x » u,) must be determined.

This is a matrix function of order m x n and hence is equivalent to
mn scalar function evaluations. If all the functions used are
considered as either scalar, vector, or matrix functions, and the
number of function evaluations is modified accordingly, then the
number of 'scalar equivalent' function evaluations required by the
Variable Metric algorithm is of order n?m? for each stage of each
iteration. As a comparison, the number of function evaluations
required by the Differential Dynamic Programming algorithm is of

order n® + n?m + nm?® for each stage of each iteration.

Thus using either measure of computation requirements, the
Variable Metric algorithm tends to be a factor of n greater in its
requirements than the Differential Dynamic Programming algorithm.

This is not as bad as it may seem at first since discrete decision

~33-

processes tend to be characterised by a Tow dimensionality in the
state vector and a high dimensionality in the control vector.
Furthermore there is the possibility of modifying the basic Variable
Metric algorithm in such a way that the factor of n in the
computational requirements is removed, except for the first
jteration. This would occur at the expense of an increase in the
high-speed memory requirements (see section 2.3.5) but this is a
less critical factor in the light of widespread use of computers
with virtual memory systems, wherein the apparent amount of high-

cpeed memory is almost limitless.

A further consideration which is gaining importance in the
comparison of algorithms in the light of real time applications is
that of parallelism within an algorithm [25]. Basically, if an
algorithm can be constructed such that certain parts can be
performed independently of others then the execution time can be
reduced by the use of a computer which has more than one arithmetic
processor, and is capable of parallel processing. Now the Variable
Metric Dynamic Programming algorithm is inherently parallel in
nature at two levels, firstly in the finding of the gradient of

I (x> u) for m+ 1 different values of u,, and secondly in the

finding of the gradient of IE(ék) for n + 1 different values of Xy -

Thus there is the potential for removing a factor of nm from the

computation time requirements of the Variable Metric algorithm,

although in practice the reduction would probably be determined by
the parallel capacity of the computer itself. It must be appreciated
also that the factor of nm would only apply to those parts of the

computation which are performed in parallel, and so it would be the

-34-

case that some other part of the algorithm would dominate the
computational requirements. Thus the savings gained by the use of
parallel processing are probably in the order of a factor of n in
the computational requirements. Further research is needed to

determine these savings more accurately.

2.3.4 Other Computational Experience.

As well as a comparison with the Differential Dynamic
Programming method of solution, the new algorithm was applied to
the solution of another continuous control problem in a discretised
form. The problem and its solution using the Sequential Conjugate-
Gradient-Restoration algorithm is reported in the papers by Heideman

and Levy [77, 781. The discretised form of the problem is as follows
. N-1 .
minimise Vy(xq) = kZo{l/(N + 1) [IxJI* + /N llull®3 +
/(N + 1) [Ixyl?
subject to y, ., = ¥ * (vk - zﬁ + wﬁ)/N ’
= 2
and 2y = 2t (W -zt v)/IN
where x, = (y,» z,)
u = (Vs W) s
_10
and Xy = [1] .

The nominal controls were chosen as Qk =

|
-
-~
1]
o
-
(="
-
-
=
1
—

The problem was solved for six different values of N, namely
5, 10, 20, 30, 50, and 100, representing six levels of discretisation.

In each case, the scalar o was initialised to 0.5 and updated to the

-35-
value of e resulting from the previous iteration. The neighbourhood
parameters were initialised to 0.01, and updated to the absolute
values of the deviations occuring at the previous iteration, with
a minimum of 107°

imposed. The convergence condition was taken as

when the relative change in cost was less than 10-5. Tables 2.3 and
2.4 show the convergence of the solutions for the six problems in
terms of the value of the cost function at each iteration, and the
value of € producing it. The fact that the numbers of iterations
required for the six different problems were respectively 7, 7, 6,

5, 5, and 5 suggests that the continuous solution may be approximated
as closely as desired by choosing an appropriate value for the number

of stages N, with convergence occurring after approximately five

iterations.
N=5 N =10 N =20
iteration Yy £ Y £ Y £
nominal |2.811 854 .933 303 .013 719
1 2.387 643 .566 520 1.0 .319 798 0.25
2 2.266 878 .542 881 0.0625|1.857 106 0.5
3 2.011 984 .272 605 0.25 .803 690 0.5
4 1.874 444 .904 407 0.5 .802 247 1.0
5 1.847 300 .818 281 1.0 .802 209 1.0
6 1.846 903 .817 339 1.0 .802 209 1.0
7 1.846 900 .817 328 1.0

Table 2.3 Convergence of the Variable Metric algorithm for N

N = 10, and N = 20.

1
o
-

-36-

N = 30 N = 50 N = 100
iteration VO & VO € VO €
nominal [3.044 703 3.071 332 3.092 506

1 2.236 377 0.25(2.191 443 0.25(2.108 423 0.25
1.821 961 0.5 {1.805 858 1.0 |1.800 551 1.0
1.798 459 0.5 [1.793 429 1.0 |{1.791 470 1.0

S W N

1.797 155 1.0 |1.793 110 1.0 |1.790 086 1.0
5 1.797 153 1.0 |1.793 110 1.0 |1.790 081 1.0

Table 2.4 Convergence of the Variable Metric algorithm for N = 30,
N = 50, and N = 100.

Figure 2.2 shows, by comparing the converged trajectories
obtained as solutions to three of the problems in the discretised
form, that increasing the number of stages N does indeed result in
a closer approximation to the continuous solution, the trajectory
shown for N = 100 being the same as that for the solution of the
continuous problem as obtained by Heideman and Levy, within the
accuracy of the diagram. As reported by Heideman and Levy, the
solution to the continuous problem obtained from the Sequential
Conjugate-Gradient-Restoration algorithm requires a total of 13
gradient iterations and (within these) 17 restoration iterations.
Thus the Variable Metric Dynamic Programming algorithm compares

favourably with respect to the number of iterations required.

2.3.5 Possible Extensions to the Algorithm.

One possible extension to the algorithm is that which is

AT

4+
+
Z
I
w

-] 5] N=2O .'
XeetosX N = 100 ;;
/"
+
o/,
* / 5".‘
//o‘ ’ "
+ —a k. o 0T x
|] 1 [y 1 I [| >
-0.20 -0.15 -0.10 -0.05 | x0

0.05

Figure 2.2 Converged trajectories for three of the solutions.

mentioned by Jacobson and Mayne as an extension to the Differential

Dynamic Programming algorithm.

This involves the minimisation of the

actual cost function with respect to the scalar ¢ in the second part

of the iteration where the new sequence of controls is calculated

using equations 2.18.

to in section 2.3.3.2.

This extension is used in the problem referred

A second, potentially more fruitful, extension is that mentioned

~38-

in section 2.3.3.4, whereby the quadratic approximation to IE(Ek) is

saved at each iteration for each value of the stage k, and each
hessian matrix is updated according to the change in trajectory

caused by changes in the sequence of controls generated from the
previous iteration. It is likely however that for the first iteration
the complete process would have to be carried out in order to generate
a good first approximation to the hessian matrix, in contrast to the
traditional Variable Metric minimisation method of initialising the
hessian matrix to the identity matrix. Thus in the first iteration,

the gradient of Iﬁ(ék) would be calculated for n + 1 different values
of Xy in a neighbourhood of Zk’ whereas 1in subsequent iterations,
the gradient needs only to be calculated for the new gk, with the

change in trajectory from the previous iteration being used as the

step in Xy needed to update the hessian. This extension would remove

a factor of n from the computational requirements of the algorithm,
as well as the parallelism at the outer level. However the inherent
parallelism of order m would still remain at the inner level, that

of finding the gradient of Ik(gk, gk) for m + 1 different values of

in a neighbourhood of gk.

,L_c

A third possibility is the extension of the algorithm to include
allowance for constraints on the control variables. The
implementation of this into the algorithm would follow the method by
which constraints are introduced into a Variable Metric minimisation
in which a rank-1 update formula is used. Finally, it may be
possible to extend the algorithm to cater for the continuous Dynamic

Programming problem, but as yet this has not been investigated at all.

-39-

2.4 CONCLUSIONS.

The use of Variable Metric minimisation techniques in an
algorithm for solving the N-stage decision problem of Dynamic
Programming results in a powerful solution method, which is capable
of taking advantage of a parallel processing computing system. The
algorithm presented compares favourably, in terms of rate of
convergence and range of applications, with the Differential Dynamic
Programming algorithm for the discrete time problem, which in some
senses turns out to be a special case of the former. This
favourable comparison is partly a result of the generalisation
itself, and partly due to considerations which are analogous to the
result that Variable Metric minimisation of functions compares
favourably with function minimisation using Newton's method of
second derivatives. Possible extensions to the algorithm promise
an even better comparison, although the level of parallelism would

be reduced.

-40-

SECTION 3.
SURVEY ON COMPUTER SCHEDULING.

3.1 INTRODUCTION.

The theory and practice of scheduling is a wide and diverse
field which seems to have its origins in the early 1950's with the
development of the study of the theory of 'job-shop scheduling' in
the realm of manufacturing. It was the advent of multiprogramming
and multiprocessing capabilities in computers that was responsible
for the upsurge of interest and diversification in the field of

computer scheduling which occurred in the early 1960's.

The field of computer scheduling can be subdivided into three
broad areas of research, namely Sequencing, Monoprogrammed Scheduling,
and Multiprogrammed Scheduling. A fourth area, Performance Analysis,
could be regarded as an integral part of each of the other three,
although it is often studied in its own right. Sequencing, also
known as Deterministic Scheduling, is the study of that class of
problems which requires the determination of the order of processing
of a predetermined set of jobs for which all necessary characteristics

are known in advance. Monoprogrammed Scheduling is concerned with

scheduling jobs on the basis of only one job being active at any one
time, with each job, once activated, running to completion before

any other job may be activated. This is in contrast to Multiprogrammed

Scheduling, in which several jobs may be active, and thus partially
completed, at any one time. Multiprogrammed Scheduling can be

subdivided into Uniprocessor Scheduling and Multiprocessor Scheduling,

this being determined by whether the computing system being considered

-41-

has only one or more than one Arithmetic Processor, or Central
Processing Unit (CPU). Each of these may be further subdivided into

High-level and Low-level scheduling. High-Level Scheduling is

concerned with choosing from all jobs which are waiting to be
processed that job which should be activated next, and when.

Low-Level Scheduling, on the other hand, is concerned with choosing,

from the set of active jobs, which should be using the processor(s)

at any given instant. Performance Analysis has received an upsurge

in interest in the past few years, being not only concerned with
measurement and evaluation of the effects of scheduling strategies,
but with all aspects of system performance. Finally, there is a
research discipline which applies equally to Uniprocessor and
Multiprocessor, High-Level and Low-Level scheduling, and therefore
could be considered as a further subfield of Multiprogrammed

Scheduling itself. This is Adaptive Scheduling, which is concerned

with scheduling strategies which are able to adapt to dynamically
changing conditions, such as amount of work waiting, structure of the
workload, structure of individual jobs, and hardware availability.

In general, Adaptive Scheduling is characterised by the use of ad hoc
techniques for providing the feedback information. However the use
of Mathematical Programming ideas offers a way of formalising the
feedback mechanisms of Adaptive Scheduling. This offers a strong
challenge, and new hopes for the future for practitioners in this

field.

3.1.1 Definitions.

To avoid misunderstandings, it is useful to define several terms

which are used frequently in this survey.

=] P

A task is a piece of sequential code which is the smallest unit
of work which may compete for resources.

A process is made up of several sequential tasks, designed to
produce some specified result.

A job is a collection of parallel and/or sequential processes
which represents a unit of customer work, and is the largest unit of
work which may be considered by a high-level scheduler.

A mix of processes is that set of processes which have at any
time had some processing done on them, but are not completed. This
includes those processes currently assigned to the processor(s), those
waiting for a processor, and those waiting for some other event, such

as the completion of an I/0 operation.

The following definitions all refer to different states of
processes in a multiprogrammed system. The relationship between these
states and example reasons for transitions between states are shown in
Figure 3.1.

A scheduled process is a process which has got past the high-
level scheduler, but cannot enter the mix because of unavailability
of initial resources.

An active process is a process which is in the mix.

A ready process is an active process which is currently able
to use a processor, including those processes which actually are
using a processor.

A waiting process is a non-ready, active process which is
waiting for some resource to become available.

A blocked process is a non-ready, active process which is

waiting for some event other than resource availability.

-43-

ACTIVE ‘0‘ e

BLOCKED

Example transition reasons.

a Initial resources found.

o

Preempted by a higher priority process.

(@]

Coroutine passes control to its partner.

o

(¢}

Page fault occurs.

“h

)
)
)
) Control passed back from partner.
)
) Page arrives in main memory.

)

g) A1l processing completed.

Figure 31 PROCESS STATES IN A MULTIPROGRAMMED SYSTEM

-44-

3.2 MONOPROGRAMMED SCHEDULING.

Research into the scheduling of jobs on monoprogrammed systems
appears in general to be buried in more general work done in the field
of Multiprogrammed Scheduling. In the situation where processor time
is the only scarce resource considered, then the problem is the same
as that of the single server queueing system, which is analysed
extensively by Conway, Maxwell, and Miller [50], who also include a

brief history of the work accomplished in this field.

When two or more resources are considered, then the problem
is slightly more complex. Often a monoprogrammed system with
several resources can be considered to have the single resource of
processor time. However, there do occur situations where other
resources may 'become available' in some way. Examples of this occur
when a resource is a mountable storage device of some kind, such as
a magnetic tape reel. In this situation the problem of resource
scheduling becomes the problem of premounting mountable resources
and, in effect, multiprogramming is introduced, since system
resources may be allocated to more than one job at any one time. In
a paper by Austin, Hanlon, and Russell [12] this problem is discussed,
and the implementation of an algorithm for a monoprogrammed machine is
described. However, as is very common with scheduling algorithms, the
algorithm is a heuristic one, although the 'shortest job first'

discipline forms a basis for it.

-45-

3.3 MULTIPROGRAMMED SCHEDULING.

For the purposes of this survey, only the uniprocessor case of
Multiprogrammed Scheduling will be considered, although it should be
noted that some of the research reported applies equally or partly
to Multiprocessor Scheduling also. Research into Multiprogrammed
Scheduling can be directed at establishing general Taws and results
which are expected to hold true universally, or at analysing the
situation for a specific system, or at a combination of these. The
most widely used research tool for establishing the general Taws
and results is Analytic Modeling, in which a mathematical model is
developed and analysed. For studying specific systems, two main
approaches are available. Experimental Measurement involves the
design and execution of experiments on a real system, and the analysis
of the data collected. Model Simulation differs from this in that it
is a simulated system on which the experiments are performed, the
advantages of this being that results are generally available more
quickly, experiments may be duplicated and reproduced, and the
experimental process has a lesser disruptive influence on the normal

running of the system.

Coffman and Kleinrock [45] present a wide variety of priority
scheduling algorithms and classify these according to various
attributes, also providing some ideas on how users could attempt to
‘outwit' each of the algorithms. Other papers of a survey type have
been published by MCKinney [103], Conway, Maxwell, and Miller [501,
Hellerman [811, Lorin [9871, Sayers [135], Anderson and Sargent £71,
Coffman and Denning [43], and Bunt [29].

-46-

An integral part of any scheduling algorithm is the choice of a
criterion for performance evaluation on which to base the decisions
that must be made. However it is often the case that in the design
of a computing system the objective of the scheduling is not formulated
explicitly, but eventually appears implicitly within the operating
system. It also frequently occurs that in theoretical discussions,
only simple performance criteria, such as processor utilisation, or
job throughput, are used, whereas to keep in line with the growing
emphasis on multiple resource allocation and resource scheduling,
research is needed into more complex performance criteria. It turns
out that this need is being fulfilled, with a wide range of performance
criteria of varying complexity and versatility having been studied

since the early 1970's.

3.3.1 Uniprocessor Multiprogrammed Scheduling.

The study of Multiprogrammed Scheduling can be subdivided into
High-Level Scheduling and Low-Level Scheduling, with most research
being directed at either one or the other of these. However, Clark
and Rourke [39] have studied interactions between high-level and low-
level strategies in an attempt to determine 'universally better'

algorithms.

3.3.1.1 Low-Level Scheduling.

Low-Level Scheduling can be further subdivided into the two
fields of low-level processor allocation, which is also known as task
dispatching, and low-level resource allocation. The first of these

is a special case of the second, in which the processor is the only

-47-

resource considered, however there is sufficient research devoted

to this discipline for it to be considered separately.

The study of task dispatching in multiprogrammed systems is
essentially concerned with ways of creating many logical processors
by multiplexing the physical processor(s), this usually being
performed by software within the operating system rather than by
hardware. There were several task dispatching algorithms in
existence by the late 1960's, the most basic of these being the
Round Robin, in which the active processes are considered in a fixed
sequence, and the processor is allocated to the next process in the
sequence which is also ready. A modification of this is the Ready
Queue Round Robin, in which the ready processes form a separate
queue and the processor is allocated on a First Come First Served
basis. Other algorithms superimpose the notion of priority on the
basic ready queue structure by linking a newly ready process into
the ready queue at some position which reflects the calculated
priority of the process. This calculated priority could depend on
many factors, such as external priority, expected service time of
the process, or type of process (whether operating system function or

not for example).

New developments since this time have generally involved
methods of improving performance according to some objective, by
altering the method of determining these calculated priorities. Chua
and Bernstein [38] introduce the concept of level of attained service
for a process, and use this to determine priority. This serves to
model several new disciplines, known as Late Arrival Round Robin,

Early Arrival Round Robin, and Partial Round Robin, each of these

-48-

having different performance characteristics. Kleinrock and

Muntz [92Jalso use the concept of attained service in an algorithm

which varies the discipline used according to the level of service |
attained by a process. Another algorithm involving variation of the

discipline used is that proposed by Blevins and Ramamoorthy [22], in

which dynamic feedback is used to determine the best discipline to

use. Sherman, Baskett, and Browne [130] use microscopic level trace

data to allow the definition of BEST and WORST disciplines using the
performance criterion of processor utilisation. This allows absolute
comparisons of previously defined disciplines and also allows the

ability to test disciplines which attempt to approximate the BEST

discipline.

In a slightly different approach to the problem, Bernstein and
Sharpe [21] present an algorithm which is based on the assumption that
process switching involves overheads of some kind, and hence the amount
of process switching should be kept to a minimum. A similar approach
is adopted by Potier, Gelenbe, and L'Enfant [117], who present an
adaptive algorithm which attempts to reduce process switching
overheads at times of overload by allocating extra CPU quanta to the
running process on the basis of the number of arrivals during the
current quantum. This is a generalisation of the algorithm proposed

by Coffman [42] and further analysed by Heacox and Purdom [76].

The study of Low-Level Resource Allocation is concerned with
the allocation of a wide variety of resources to the requesting
processes. Typical resources dealt with are the processor, memory
space, data transfer channels, and peripheral devices. Sometimes a

further resource, namely data sets, such as program code files, may

-49-

also be considered. Generally the resources considered are the
processor, main memory, and I/0 channels. There has been, however, a
great deal of research directed at the study of Memory Management,
wherein the two resources of central processor and main memory are

the only ones considered.

The study of Memory Management originated with the advent of
multiprogramming, with research being directed at fitting fixed sized
programs into memory so as to waste as little as possible. With the
advent of virtual memory and paging, the field of Memory Management
has diversified to encompass the dynamic allocation of memory to
active processes. Various methods for supplying the required code
and data to active processes have been studied under the headings of
paging strategies for general multiprogramming systems, and swapping

strategies for time-sharing systems.

Paging strategies are generally composed of three sub-
strategies, namely page fetch, which determines when pages are brought
into main memory, page placement, which determines where the new page
is to reside, and page replacement, which determines which pages, if
any, are to be removed from main memory, and when this removal takes
place. Early strategies used page demand as the fetch sub-strategy,
First In First Out or Least Recently Used as the replacement sub-
strategy, and the simple placement sub-strategy of replacing the old
by the new. Since then, a variety of paging strategies and sub-
strategies have been developed, including Denning's Working Set demand
paging strategy [55, 56, 571, Belady and Kuehner's Biassed Page
Replacement sub-strategy [19], a modification to the WS strategy

proposed by Rodriguez-Rosell [1227 which incorporates foreground-

-50-

background ideas, and the Page Fault Frequency replacement sub-

strategy proposed by Chu and Opderbeck [371.

Swapping strategies for time-sharing systems include that
reported by Abell, Rosen, and Wagner [1] in which the decision to
swap a process into the mix is based on priority considerations, but
the choice of processes to be swapped out involves memory management
considerations. Nielsen [111] investigates, through simulation, the
desirability of including into swapping algorithms various features
such as program relocation and memory 'krunching'. The effects of
using bulk memory as a swap medium, faster transmission rates for
disk storage, and hardware disk optimisers are also investigated.
Finally, Anderson and Sargent [6] perform a statistical evaluation of
swap scheduling algorithms of the FBN type, in which there is one
high-priority queue for service requests which have not received any
service, and N-1 lower-priority queues for those service requests

which have been started but not completed.

In the wider area of more general resource allocation, it seems
that advances have been made only in recent years. One possible
explanation for this is that the problem has only been recognised as
being important for this short time, the reason being that the
importance of resource scheduling in general has grown mainly for
economic reasons, as ever-increasing amounts of time and money are
being spent on computing and computing hardware. Dahm, Gerbstadt,
and Pacelli [53] introduce a series of ideas on system organisation
necessary for resource allocation to be feasible. This seems to mark
the beginnings of the direction of endeavour towards the problem,

although at this stage no attempt is made to give serious suggestions

25 =

for the implementation of these ideas. Pass and Gwynn [116] present
an adaptive resource allocation algorithm which uses predictor-
corrector methods to optimise Tocal and global measures of system
performance. Hamlet [73] discusses the implications of the choice

of resource allocation algorithm for accounting procedures, in terms
of efficiency, reproducibility, and fairness to users. Finally,
Lynch and Page [100] describe an implementation of an algorithm which
controls resource allocation through task swapping. A generalisation
of this algorithm, analysed by Kameda [88], involves a dynamic
resource load balancing strategy, with Tight users of a congested
resource being able to bid for a higher overall priority without

increasing the total cost of service.

3.3.1.2 High-Level Scheduling.

As is the case with Low-Level Scheduling, High-Level
Scheduling may be subdivided into the two fields of High-Level
Processor Scheduling and High-Level Resource Scheduling, the former
being a special case of the latter. A great deal of background
research and useful results for High-Level Processor Scheduling have
come from the fields of production scheduling, sequencing, and queueing
theory. Excellent surveys of this background material may be found in
Conway, Maxwell, and Miller [50] and Sevcik [129]. At that time, by
the early 1970's, there was a wide variety of algorithms available for
high-Tevel scheduling of the processor. Some of them, such as First
Come First Served and Random Selection, were used primarily for
comparison purposes. Other algorithms which had been studied are
Last Come First Served (LCFS), Shortest Processing Time (SPT), Round

Robin, Feedback, Foreground-Background, and pre-emptive versions of

-52-

LCFS and SPT, this latter being named Shortest Remaining Processing
Time. In the specialised field of time-sharing systems, Coffman and
Muntz [46] discuss also the Shortest Elapsed Time Sharing, Basic Pure

Time Sharing, and Shortest Expected Remaining Time disciplines.

There have been since some developments which have particular
reference to High-Level Processor Scheduling, the most notable of
these being Kleinrock's parametric model for a continuum of priority
based algorithms [91]. This model encompasses all previously
considered priority algorithms and defines three others, the Selfish
Round Robin, Last Come First Served with pickup, and Last Come First
Served with seizure. It turns out that artificial as it may seem,
the Selfish Round Robin discipline is readily amenable to analysis.
Sevcik [1291 later introduces an algorithm based on service time
distributions, known as the Smallest Rank algorithm, and proves this
to be optimal under certain conditions. Under more general conditions,
he also shows that the Shortest Remaining Processing Time discipline
is optimal within a broad class disciplines which, it is argued,

contains the globally optimal discipline.

More recently, Bunt [29] has introduced a new scheduling

discipline known as the Single Queue (SQ) discipline. This is based

on Kleinrock's parametric model in which processes in service gain
priority linearly at rate g, and queued jobs gain priority at rate a.
One important difference in the basic SQ algorithm is that a fixed
number of the highest priority processes are considered to be processed
simultaneously, that is, a fixed degree of multiprogramming is always
in force. A further modification is introduced in which the parameter

g is dynamically regulated by a feedback mechanism, resulting in

~53-

improved service during short periods of overload.

High-Level Resource Scheduling is probably the most important
area of Multiprogrammed Scheduling in the sense that more is to be
gained, in terms of any criterion used, by the use of a 'better' high-
level resource scheduling algorithm. However there are several
problems associated with resource scheduling, under the general
heading of determination of unknowns, that must be taken into
consideration before such an algorithm may be constructed and
implemented. A general job-shop computing system is characterised
by a variety of jobs and processes exhibiting wide variations in
resource requirements, and in particular a given process may vary
widely in its overall resource requirements from one run to the next

if for example a different set of data is supplied for input.

Two possible ways of dealing with this problem are the use of
the concept of 'average job', and the use of user-stated maximum
resource requirements for each resource being considered. The first
of these methods is only suitable when the degree of multiprogramming
is quite high (between twenty and thirty is proposed by Needham in
[82], p213) so that the total requirement for each resource tends to
remain stable. The second, more common, method of user-stated maximum
resource requirements is a method which is used to some extent in
many high-level scheduling algorithms. A third, more basic method of
resource scheduling can be achieved without any fore-knowledge of job
and process characteristics. This method involves the modification
of the degree of multiprogramming on the basis of feedback
information obtained from the system on resource loadings. If one

or more of the resources being considered is overloaded, then the

-54-

degree of multiprogramming is reduced, either by suspending or
swapping out one of the active processes (a function of the low-level
scheduler), or by allowing the degree of multiprogramming to drop of
its own accord as processes finish. This method can be modified in
many ways, by determining the best process to swap out (at the Tow
level) or by determining the best process to activate next when it is
desired to increase the degree of multiprogramming. An algorithm

using the simple form of this method is proposed by Bard [16].

Codd [40, 417 presents a static, non-priority algorithm for
resource scheduling when exact resource requirements are known.
Abell, Rosen, and Wagner [1] describe a dynamic, priority driven
resource scheduler in which low priority processes are rolled out to
free resources for a higher priority process, this necessitating
accurate prior knowledge of resource requirements. Thesen [136]
describes a dynamic resource scheduling algorithm which solves a
knapsack type linear programming problem formulated in terms of a
heuristic utility function to determine the best mix of processes.
Once again, resource requirements need to be known accurately in
advance, although user-supplied estimates may be sufficient, and
more realistic, requirements for the algorithm. Austin, Hanlon, and
Russell [127] describe one particular aspect of a resource scheduling
algorithm, which is implemented in a monoprogramming environment but
could be extended to a multiprogramming environment, in which a job
is not started until all reusable resources have been allocated.
Larmouth [94]1 describes another, priority driven algorithm in which
all resources must be allocated before a job will start. This is
achieved by reserving resources for the highest priority job until

all of its resource requirements can be met.

-55-

Combinations of these methods may be used. One implementation
is detailed by Northouse and Fu [114] in which a job is classified
into one of several different classes of resource requirements on the
basis of user supplied information. A selection algorithm then
determines the mix by considering the dynamically varying average
resource requirements of the different classes. An evaluation of the
choices made by the selection algorithm, on the basis of some

performance criterion, is used to provide feedback to the algorithm.

3.3.2 Adaptive Scheduling.

The introduction of dynamic feedback algorithms into the field
of High-Level Resource Scheduling is possibly the most important
advance which has been made in recent years. As computing systems
have become more advanced, their operating systems have become more
and more complex, and the interactions between system parameters
(those aspects of a system which may be measured or set, including
hardware) have become more and more subtle, particularly in
multiprocessing-multiprogramming systems. This has meant that the
development of accurate system models has become increasingly
difficult, and that the production of a system model has become less
useful since the use of a complex model consumes large quantities of
the computing resources that it is designed to help conserve.

However the use of feedback in an adaptive algorithm allows a simple
model to be used, since the subtleties of the real system can be
accounted for by the feedback mechanism, provided that all independent
parameters are taken into account. Another useful feature of adaptive
algorithms is that drifts in the characteristics of the input stream

can be accounted for on a much smaller time scale than they could be

-56-

otherwise. Further, the use of Mathematical Programming techniques
from Operations Research promises to provide a way of formalising the
dynamic feedback mechanisms, thereby improving the theoretical
foundations on which the research stands. However, as Chandy and

Yeh [32] have mentioned recently, practitioners seem slow to
familiarise themselves with some of the wide variety of Mathematical
Programming techniques available, resulting in a dearth of research

publications utilising this potentially fruitful blend of disciplines.

The development of adaptive techniques for High-Level Resource
Scheduling appears to have had its origins in the early 1970's, with
the algorithm proposed by Northouse and Fu [1147, in which feedback is
used both to provide dynamic estimates of the workload, and to modify
job selection procedures on the basis of the effectiveness of previous
decisions. The algorithm proposed by Bard [161 is a further adaptive
high-level resource scheduling algorithm, although only the two
resources of CPU and main memory are considered. In this algorithm,
feedback is used to determine the effect on the system of the
currently specified degree of multiprogramming, and to modify this

if the system is overloaded or underutilised.

The introduction of dynamic feedback mechanisms has not been
restricted to the field of High-Level Resource Scheduling, examples
of its use having been reported in the other fields of High-Level
Processor Scheduling, Low-Level Processor Scheduling, Memory
Management, and more general Low-Level Resource Allocation. Blevins
and Ramamoorthy [22] propose an algorithm in which the actual
processor scheduling discipline used is based on feedback information

in terms of the distribution of service times of service requests,

-57-

and the effects of earlier decisions on system performance. Badel
et al [13] propose an adaptive algorithm for controlling the degree
of multiprogramming in a virtual memory system. This is essentially
a low-level processor scheduling algorithm, even though one of the
goals is the prevention of thrashing, a memory management problem.
Potier, Gelenbe, and L'Enfant [117] also propose an adaptive Tow-
level processor scheduling algorithm in which adaptive techniques
are used to reduce task-switching overheads when traffic intensity
is high. More recently, Gelenbe and Kurinckx [707 have proposed a
dynamic feedback algorithm for controlling the degree of
multiprogramming in a virtual memory system. This is known as Random
Injection Control, and operates by artificially limiting the set of
ready processes through the creation of a further state, known as
the impeded state, into which a process moves after having acquired
a certain amount of CPU time. The time spent in the impeded state
is then determined by a random variable, whose distribution is a

function of the throughput of the system.

Denning [57] introduces the use of feedback into Memory
Management with the Working Set strategy, which uses implicit feedback
to control the effective degree of multiprogramming. This in a sense
acts as a buffer between the high-level scheduling algorithm and the
resource allocation algorithm, since it restricts the processes which
are to be considered by the low-Tevel scheduler. Pass and Gwynn [116]
propose a low-level resource allocation algorithm in which feedback
information in the form of deviation from expected global system
performance is used to modify the parameters of a local performance
measure on which is based the scheduling decisions in the form of

resource request fulfillment. Another low-Tevel resource allocation

-58-

algorithm, proposed by Kameda [881, uses implicit feedback in the form
of an 'invisible hand' to rectify imbalances in resource utilisations.
This involves a bidding mechanism whereby all users bid for priority
of the resources they use, on a dynamic basis, when the processes are
active. Since a user is constrained by the total cost to him for the
whole job, he cannot bid very highly for a resource of which he is a
heavy user, whereas light users of a congested resource can afford

to bid highly for that resource, thereby dissolving the imbalance.

In the field of High-Level Processor Scheduling, Bunt [29]
describes the use of dynamic feedback in an algorithm which uses
feedback information, in terms of the arrival rate of jobs and the
Toad on the system, to alter the scheduling strategy dynamically to
cope with peak periods of overload. Finally, Larmouth [94, 951
describes the implementation of a high-level resource scheduling
algorithm in which information on long-term resource usages is used
as feedback information for the more general function of long-term
resource management, which rations the system resources over
relatively long time periods of the order of days and weeks, rather

than milliseconds and seconds.

3.3.3 Performance Criteria.

In a general job-shop, batch and/or remote, computing system,
it is frequently the case that all the user is interested in is
getting his best 'value for money', that is, the fastest turnaround
for the lowest cost, whereas the installation management must
consider such items as income, machine utilisation, 'user

satisfaction', and job throughput, as well as turnaround. Further,

-59-

the cost to the user is not necessarily a financial cost; it may be
in units of number of jobs submitted, cards keypunched, or Tines of
code written for example, the actual criterion used depending

entirely on the whims of the user.

If all these factors are to be taken into account in the design
of a scheduling algorithm, then the use of a single measure to be
optimised is often not an effective way of managing a computer
installation. What is required is some criterion which makes a
trade-off between the divergent goals of making efficient use of the
available computing resources, and providing acceptable or better
service to all users of those resources. One such algorithm,
presented by Aggarwal and MECarl (41, optimises a composite of the
four different items of in-process inventory, facilities utilisation,
lateness, and mean setup time, representing respectively the criteria
of waiting time, utilisation, turnaround, and overheads. A slightly
different approach is adopted by Bunt [29] who describes a scheduling
algorithm in which the performance criterion, that of maintaining
'an acceptable level of service', varies with the workload. The
particular criterion used, that of throughput measured as a percentage
of work submitted, enhances the dynamic, self-regulating nature of
the algorithm used. Lynch and Page [1001 describe a scheduler in
which independent components evaluate decisions and make
recommendations on the basis of different performance criteria, such
as response time, turnaround time, and resource utilisation. A third
component then combines these recommendations to make the best use
of the resources under the existing conditions. Thesen [136] presents
a heuristic performance criterion which takes account of resource

utilisation, job priorities, and job deadlines, to maximise machine

-60-

utilisation as well as to avoid excessive tardiness.

Other criteria which appear in the literature include Bernstein
and Sharpe's 'deviation from promised service' [21], in which the
difference between actual and promised rates of completion of
processes is minimised, Clarke and Rourke's 'elapsed time
multiplication factor' [39] which compares the rate of processing
of processes with the rate which would occur if the process was \
alone in the mix, and which is similar to Kleinrock's 'wasted time' |
[91]1, and a group of six criteria for use in time-sharing systems,
as described by Stimler [134], Various other criteria appearing in
the literature are throughput, resource utilisation, mean waiting
time, response time, and, in the field of comparison of computing
systems, quality of performance, such as hardware and software

reliability.

As far as the implementation of a performance criterion is
concerned, it is suggested by Hellerman [81] that the procedure for
the design of a scheduling mechanism should consist of the following
four steps:

1. Define an objective function in terms of the criterion

chosen, assuming that all necessary information is
known in advance.

2. Devise a 'best' scheduling strategy to optimise this

objective function.

3. Devise an algorithm for extracting, estimating, or

ranking the variables required in 1 from the observed
variables.

4. Devise a mechanism which imbeds algorithm 3 into strategy 2.

-61-

Further, since the scheduling algorithm of any operating system
is generally imbedded within the system, and hence difficult to modify
after release of the operating system, it is also desirable that the
actual implementation be flexible enough to allow any particular
installation to determine the exact nature of the performance
objective in terms of the parameters which may be set by the
installation manager or modified on a routine basis, for example
when the shift changes from day to night, or when the operating mode
changes from batch to interactive. This would also cater for long-
term changes in the work load encountered. An example of the
provision of such installation modifiable parameters occurs in the
scheduler described by Lynch and Page [1001, for the IBM 0S/VS2

Release 2 operating system.

-62-

3.4 CONCLUSIONS.

This has been a brief survey of computer scheduling with
particular emphasis on the scheduling of a uniprocessor
multiprogrammed computing system. One conclusion to be drawn from
this survey is that the study of adaptive algorithms for scheduling
multiprogrammed systems is gathering momentum as a useful research
field. Further, it is to be noted that there are distinct
advantages to be gained from the use of Mathematical Programming
techniques within dynamic feedback algorithms, although it would
appear that the challenge is yet to be actioned by the majority of
practitioners in this field. The next section presents just such a
scheduling algorithm, in which the Mathematical Programming technique
used is Dynamic Programming, in particular the Variable Metric

Dynamic Programming algorithm as developed in section 2.

-63=

SECTION 4.
APPLICATION OF VARIABLE METRIC DYNAMIC PROGRAMMING TO HIGH-LEVEL

SCHEDULING.

4.1 INTRODUCTION.

The use of Mathematical Programming techniques in Computer
Science research is suitably demonstrated with the application of
Variable Metric Dynamic Programming to the solution of a job
scheduling problem, and the implementation of this in the operating
system of a batch and interactive computing system running in a
university environment. Essentially the application consists of
extending the existing job scheduling mechanism by modifying on a
dynamic basis some of the job scheduling parameters that were
previously set by the operators. These parameters affect the
overall degree of multiprogramming and the relative service provided

to different classes of batch jobs.

The Dynamic Programming approach allows for two distinct levels
of feedback, one being characterised by short-term or internal
variations, such as variations in the current workload, and the other
being characterised by long-term or external variations, such as the
change from day-shift to night-shift. The short-term variations are
taken into account by applying a single solution of the problem to
different starting points, or states of the system. This is possible
because the Dynamic Programming solution may be presented in the form
of a policy, which provides an optimal decision for any one of a
large number, or even a continuum, of starting states. In contrast,

the long-term variations are taken into account by the

-64-

re-specification of some of the fixed inputs to the solution process,
such as the exact nature of the cost functions which represent the
optimality criterion, and then the re-solving of the problem to

provide a new policy.

-65-

4.2 THE PROBLEM.

The problem to which the Dynamic Programming solution method
is to be applied is a fairly simple problem in the context of the
high-level scheduling of a multiprogrammed computing system. The
reason for this is that the application is intended to demonstrate
the feasibility of the Dynamic Programming approach and its wide
range of applicability rather than to provide a solution to a
difficult scheduling problem. Thus the problem has been chosen
bearing in mind the desirability of a simple approach to the

solution.

In a batch and interactive computing system, there is usually
a clear-cut distinction between the batch work and the interactive
work. The batch work consists of jobs which arrive mainly from local
or remote card readers, but may also be submitted as non-interactive
jobs from interactive terminals. A1l such jobs are queued in some
way for consideration by the high-Tevel scheduler. The interactive
work, however, consists of a stream of processes which interact with
or are invoked from the remote terminals. Generally these interactive
processes are implicitly given higher priority than processes which
form part of batch jobs because they bypass some, if not all, of the

controls imposed by the high-level scheduling mechanism.

Considering now the non-interactive work, these jobs are
generally divided into several resource classes on the basis of some
externally declarable variables, such as resource requirements or
requested priority, this information being provided by the user for

the high-level scheduler. The primary function of the high-Tlevel

-66-

scheduler is to determine when batch jobs are to be activated. These
decisions are made on the basis of knowledge of the characteristics
of the jobs and of instant resource availabilities. A secondary
function of the high-level scheduler is to determine which job is

to be activated, given that a decision has been made to activate a
job. However it is often the case, in more complex high-Tevel
scheduling mechanisms, that the 'which' decisions can influence the
'when' decision, and thus this should be viewed more as a joint
function than a secondary function. These 'which' decisions are
often made on the basis of external considerations, such as

requested turnaround times, or current operating environment.

This brings us to the statement of the problem to be approached.
Given a high-level scheduling mechanism which categorises each
incoming batch job into one of several resource classes, we want to
devise some dynamic method of determining how many batch jobs should
be active at any one time, and how this total is to be divided among
the different resource classes. The specification of the total
number of batch jobs which should be active, which is determined on
the basis of attempting to improve overall system performance,
performs the function of specifying when a new job should be
activated. Similarly, the specification of how this total is
divided among the different resource classes, which is to be
determined on the basis of the relative service to be provided to
the different classes of batch customer, specifies which class of

job should be activated next.

-67-

4.2.1 The Approach Adopted.

As has already been mentioned, the problem to be solved has
been chosen with a reasonably simple solution approach in mind. This
approach basically involves extending the existing high-Tevel
scheduling mechanism, which already allows the specification, by
parameters, of the total number of batch jobs which should be active
as well as how this total should be divided among the different
classes of jobs. The extensions then take the form of modifying
these parameters dynamically, in order to achieve some prespecified

goal.

One important aspect of the approach is that not all of the
total work processed can be controlled using these parameters. In
particular, interactive work cannot be controlled in this way since
in general this work bypasses the queueing mechanisms of the high-
level scheduler. Further, there usually exists some class of 'special'
jobs, such as the few jobs which do not fit into the normal resource
classes because of special resource requirements, which it is
desirable to schedule 'by hand', and hence may not be controlled by
the proposed extensions. This leaves us with the problem of
controlling the non-interactive, non-special portion of the total
work load. Hereafter, this work will be known as the normal batch

work, and all other work will be known as the uncontrolled work.*

The extent of this uncontrolled work may vary significantly,
either because of variations in the number of interactive users, or
*During this implementation, the portion of the total work load being

controlled varied between approximately 20% and 60%.

~68-

because of the existence of one of the special batch jobs. In either
case, these dynamic variations are of a long-term nature, on a time
scale of the same order of magnitude as job completions, although
some short-term variation may be introduced by the dynamic nature of
requests for service from each interactive user. Thus it is not
inappropriate to perform a high-level scheduling function on the
basis of using only those resources which are not being used by the
uncontrolled work. Even though some minor resources contention will
occur because of the short-term variations, this is acceptable
because there is always some resources contention in a multiprogrammed
system resulting from the short-term dynamic nature of resource
requests themselves, this being a problem for the low-Tlevel scheduler

to resolve.

4.2.2 The Existing System.

The computing system available at Victoria University of
Wellington is a Burroughs B6700 computer with 196,608 words of main
memory. This is used for batch and interactive work, the majority
of all work being student work, either for teaching or research
purposes. The operating system being used currently is the Burroughs
B6700 Master Control Program (MCP) Version II.9. This provides for
a number of installation defined batch job queues, and a series of
parameters to be used for the high-Tevel scheduling of this batch
work. The incoming interactive work, on the other hand, is controlled
directly by one or a number of supervisory programs, known as Message
Control Systems (MCS's). A low-level scheduling mechanism is also
provided, along with some parameters which may be used to modify its

behaviour.

-69-

On the current system there are five job queues, each for a
different class of batch jobs. Three of these queues are reserved
for normal batch jobs, with the classifications being based on the
maximum requirements for the three resources of CPU time, I1/0 time,
and lines printed. These are labeled as Queue 3, Queue 5, and Queue
7. The other two queues are used for 'special' jobs, Queue 0 being
reserved for high-priority operator entered jobs, such as jobs to
assist with error recovery after a failure, and Queue 9 being used
for customer jobs which do not fit into any of the three normal
classes, because of excessive or exceptional resource requirements.
Each queue has associated with it a maximum declared priority. A
job's declared priority performs the dual function of specifying
where in the queue the incoming job is to be inserted, as well as

being used by the Tow-level scheduler for allocating resources.

The high-level scheduling mechanism is a parameter driven
algorithm which selects jobs from the queues and passes them to the
Tow-level scheduling mechanism for further consideration. This
function is performed by the MCP procedure SELECTION, which removes
a job from one of the job queues, and changes its state from queued
to a state known as scheduled, or to the ready state. At this stage,
a job is considered to be a process in its own right, this process
containing code to fire up the processes which make up the job
proper, and code to perform certain housekeeping functions which do

not require a process to be fired up, such as the removal of files.

The parameters used by SELECTION are known as mixTlimits,
consisting of one QUEUE MIXLIMIT for each job queue and an overall

batch MIXLIMIT. These are 1imits on the number of processes

-70-

currently active, decisions being made by comparing these Timits with
the individual queue mixcounts, and the overall batch mixcount, which

is merely the sum of the individual queue mixcounts.

The decisions made by SELECTION consider first the overall
mixcount and then the queue mixcounts. Considering the queues in
some well-defined order, the overall mixcount is compared with the
overall mixlimit. If the overall mixlimit is higher, the the mixcount
for the queue being considered is compared with the corresponding
queue mixlimit. If this mixlimit is higher, then jobs will be started
from the head of this queue until either the queue mixlimit is
equalled, or the overall mixlimit is equalled, or the queue is empty.
The job at the head of the queue is determined by the declared
priority, with First Come First Served being used to eliminate ties.
This process of looking at each queue in turn is repeated every time
that a job arrives into any queue, or a job is completed, or any one

of the mixlimit parameters is changed.

Setting of the high-level scheduling parameters is done entirely
by the computer operators, without any fixed time schedule, and for
a variety of reasons. In general the changes are made when the need
becomes apparent, that is, when it is noticed that an undesirable
situation exists. The reason for making a change usually involves
the implicit goal of remedying the undesirable situation. Another
commonly used method of effecting a change is for an operator to
override the parameter settings by entering a command to activate a
specific queued job, which might be done if, for instance, there was

a temporary 1lull in the amount of interactive work.

ST l-

Since operating conditions may vary dramatically during the
course of a single day's processing, it is difficult to specify a
typical set of high-level scheduling parameters. However, assuming
a light interactive load, and a moderate influx of batch jobs, the
parameters might be set as follows. The individual queue mixlimits
would be set to 4 for Queue 0, 3 for Queue 3, 2 for Queue 5, 1 for
Queue 7, and 0 for Queue 9. The Queue 0 limit is set to a relatively
large number because of the high priority of operator entered jobs.
However it is very rare that this limit is in force, as it is very
infrequent that there are any Queue O jobs running at all. The
Queue 9 limit is set to zero because these jobs are the special jobs
which are activated manually at all times. The other queue mixlimits
reflect to some extent that Queue 3 is a high-priority queue for
short jobs, Queue 7 is a low-priority queue for long jobs, and
Queue 5 is somewhere in between. Finally, the overall batch mixlimit
would be set to 8, this being higher than the sum of the individual
queue mixlimits for Queues 3, 5, and 7 so that as soon as a job is

entered into Queue 0, it would begin executing.

4.2.3 Proposed Extensions.

The aim of the proposed extensions is to control the scheduling
of work from Queues 3, 5, and 7 on a dynamic basis, by modifying the
individual mixlimit parameters for these queues. This is to be done
in such a way that some prespecified goal is always aimed for. This
goal is to reflect in some way a desire to deliver different levels
of service to the different classes of batch jobs, as well as a
general desire to maintain, and improve if possible, the overall

system performance.

T A

The level of overall system performance can be controlled by
specifying the individual queue mixlimits only insofar as these
parameters can be used to control the degree of multiprogramming
within the system. Given then that this attempt to control the degree
of multiprogramming results in a decision as to how many jobs should
be active from Queues 3, 5, and 7, the goal of providing different
levels of service to the different classes of batch jobs then involves
specifying how this total is to be divided among the three queues,

thereby resulting in values for the individual mixlimit parameters.

-73-

4.3 THE APPLICATION.

The application of discrete Dynamic Programming to the problem
as defined involves firstly the formulation of the problem in Dynamic
Programming terms, then the specification of all the variables and
functions required for this formulation, and finally the determination
of how this is to be incorporated into the existing operating system.
For the Dynamic Programming formulation, the problem must be specified
as an N-stage decision problem, where the decisions are based on an
attempt to optimise a specified cost function, and rely on knowledge
of how they will affect the state of the system, in the form of a
transformation function. The specification then involves deciding
exactly which variables are to be used to describe the state of the
system and the decisions taken, and the exact nature of the cost
function and the transformation function. Finally the details of
incorporating the solution process into the existing operating system
are concerned mainly with how the state of the system is determined,

and how the decisions are applied.

4.3.1 The Dynamic Programming Formulation.

The unconstrained N-stage decision problem of Dynamic
Programming, which is the class of problem to which the Variable
Metric Dynamic Programming solution method is addressed, involves
a set of N decisions, corresponding to N time intervals. These
decisions are made on the basis of controlling the state of the system
at the start of each time interval to minimise a cost function, which
is a function of the states and the decisions. The control imposed

by a decision is defined by a transformation function, which specifies

-74-

how a decision modifies the state of the system during the time

interval in question. In mathematical terms, this is expressed as

N-1
minimise [T L(xes up) + Flxy) }
{_!0 sUjsens ’EN_I} k=0

(4.1)
subject to x, ., = fk(ﬁk’ gk) , k=0,1, ..., N-1 |
The vector Xy represents the state of the system at time k, the vector
Uy represents the decision taken at time k, the scalar functions Lk
and F together form the cost function, and the vector functions fk are

the transformation functions for each time interval.

The Dynamic Programming formulation now involves the
specification of exactly how the state vector Xy represents the state
of the system, exactly what the components of the control vector
represent, and what the transformation functions fk are. The other
quantities as yet undefined are the time horizon, N, and the functions
making up the cost function. These need not be specified here since
they are variables which may be modified to take into account Tong-
term variations in the operating environment, and thus are more
appropriately specified in the discussion of the implementation.
Further, the cost function is the mechanism by which management
decisions are incorporated into the extended scheduling mechanism
and thus should be considered to be a parameter rather than an

integral part of the problem formulation.

The specification of the components of the state vector Xy is
essentially a problem of selecting from the large number of items of
available information those which are relevant to the problem in

hand. The mixcounts for the normal batch queues must be part of the

==

state of the system since these are what we are trying to control.
Other information relevant to the control of the level of service
provided to the normal batch customers takes the form of the numbers
queued of each class of job. Finally there must be a variable which
measures in some way the degree of multiprogramming, since this is
the other variable we are trying to control. Because the problem
under consideration involves controlling only the numbers of batch
jobs active, the absolute degree of multiprogramming is of no
special interest. What is required is some variable which reflects
in some way the difference between the actual and desired degrees of
multiprogramming, so that a decision may be made to increase or
decrease the total number of normal batch jobs active. The actual
variable used is a count of scheduled and suspended processes, with
an added consideration of available memory to account for when there
are no processes either scheduled or suspended. A suspended process
is a process which has been temporarily removed from the ready state
by the low-level scheduler, which has considered the degree of
multiprogramming to be too high. For ease of description, this

variable will henceforth be known as the scheduled count.

The obvious choice of control or decision variables is the desired
values of the individual queue mixcounts for the normal batch queues.
This choice allows a decision to involve simply setting the individual
queue mixlimits to the computed desired values, and letting the
existing high-level scheduling mechanism effect the required changes.
Further the control over the degree of multiprogramming is contained
implicitly within this information, in that the total number of normal
batch jobs which should be active is simply the sum of the specified

individual mixlimits. In fact what has been chosen for the control

-76-

vector is the set of differences between the actual and desired queue
mixcounts. This allows the same simple implementation of a decision

but has other subtle benefits which will become evident later.

The transformation functions reflect how a certain decision
will influence the state of the system, by predicting the value of
the state vector at the next stage as a function of the current state
and the decision applied. For this particular implementation, the
transformation does not depend on which time interval is being
considered, thus we have to specify only one function which, for
each time interval, determines just how the state variables, namely
the queue lengths, the queue mixcounts, and the scheduled count, are
affected by a decision to modify the normal batch mixcounts by given
amounts. Further, some consideration must be given to the tradeoff

between the simplicity and the accuracy of this function.

The values of the new queue lengths resulting from a decision
are taken as the old values from which have been subtracted the
corresponding values of the decisions. Thus if it is decided that
it is desirable to increase the mixcount for a particular queue by
one, then the transformation will predict that the length of the queue
will decrease by one, since a job must be removed from the queue to
increase the mixcount for that queue. The values of the new queue
mixcounts resulting from a decision are taken as the old queue
mixcounts to which have been added the decision variables. Finally
the scheduled count is modified by adding to it the sum of the
decision variables, since this sum represents the desired overall
change in the number of active processes. The use of the decision

variables directly, instead of having to compute differences, is one

=17

of the advantages of using the differences as the control vector over
using the actual desired queue mixcounts. This argument applies to

the transformation of the queue lengths also.

Now expressing these ideas mathematically, the transformation

function has the following form

Xepg = X FAY . k=01, ooy N1 (4.2)
where X1 is the predicted state at the next stage,
Xy is the current state of the system,

Uy is the decision made,
and A is a 7x3 matrix with the following values
-1 0 07
0 -1 0
0 0 -1
A= 1 0 0
0 1 0
0 0 1
1 1 1]

The ability to use this simple general form of the transformation
function is a further result of the decision to use differences for
the control vector in preference to the new desired mixcounts. An
important point to note about this transformation function is that
it is a linear equation, which has implications for the robustness
of the solution policy provided by the Variable Metric Dynamic

Programming algorithm. These implications will be discussed later.

Considering now the tradeoff between simplicity and accuracy,

it could be argued that accuracy in the specification of the

-78-

transformation function is not as important as the establishment of
trends, since there is little hope of producing a specification which
is accurate enough not to need any other information in the application
of the solution. That is, it is very likely, no matter how accurately
the transformation function is specified, that there would be some
effects that would not be accounted for. Moreover, the establishment
of trends is sufficient to provide a basis for feedback mechanisms to
take control of the situation. For example in the transformation of
the queue lengths, the prediction that a decrease in a queue mixcount
will increase the corresponding queue length specifies that if the
queue mixcount is reduced, then the queue length will increase by the
same amount, which is always true only if steady state conditions
apply. In the real situation, it might really mean that the queue
Tength will not decrease as fast as it was decreasing, or that it

will increase faster than it was increasing, but the trend is still
the same. These trends provided by the transformation function are
reflected in the policy produced by the solution process. The policy
then provides decisions which will modify the state of the system in

the desired direction.

Now although these decisions are not optimal, because the
transformation function is not accurate, continued application of the
solution policy with feedback will result in near optimal states,
provided that uncontrollable influences do not produce large short-
term variations, and provided that the lack of accuracy does not
result in oscillations about the optimal state. The former of these
potential problems has been mentioned already in connection with the
time scale of large scale resource demands made by the uncontrolled

work, and the latter is addressed later in the discussion of the cost

<TG

function used. Given that these potential problems are not serious,
this leads us to the conclusion that simple transformation functions
do have a use, and may even be preferable if the simplicity provides

other benefits.

To complete the problem formulation, it now remains to discuss
just how the policy is to be applied to the physical system in order
to achieve the goal implicit in the definitions of the cost function.
This involves determining just how the input information, in the form
of a measurement of the state of the system, results in a decision,
in the form of the specification of the new queue mixlimits for the

normal batch queues.

The Variable Metric Dynamic Programming solution algorithm
produces the solution policy in the form of a vector and a matrix
for each stage k. The vector, known as gk, is the decision proposed
for some nominal state, and the matrix, known as Bk’ indicates just
how this decision should be modified to account for variations in
the state of the system. Mathematically, if gk represents the nominal
state at stage k, and Xy is the current state, then the decision uy

corresponding to this state is found from the expression

up = B * By (X - X (4.3)

Bearing in mind that this decision vector represents the desired
changes in the normal batch queue mixcounts, the application of a

decision now involves adding this vector to the vector of current

mixcounts, and outputting these as the new queue mixlimits.

An important point to note here is the assumption of the

-80-

robustness of the policy, this assumption being that expression 4.3
holds true for all values of Xy - As it happens, this assumption is
valid when the problem being solved by the Variable Metric Dynamic
Programming solution method is an LQP problem, this being
characterised by a linear transformation function and a quadratic cost
function. This possibility of guaranteed robustness is another
reason for choosing a simple transformation function in preference
to an accurate but complex one. However this does not mean that the
problem must be chosen to be an LQP problem, since it is possible to
include in the implementation some mechanism for re-solving the
problem for new values of the nominal state whenever the actual
state is not close to the nominal state for expression 4.3 to be

valid.

4.3.2 The Use of Feedback.

As has already been mentioned, the use of Dynamic Programming
provides two distinct levels of feedback. The first of these, to take
care of short-term variations, involves the application of the policy
at each time interval, in particular, in the observation of the state
of the system, and in the way the solution policy is actually used.
The other level, to deal with long-term variations, involves modifying

the Dynamic Programming problem itself to provide a new policy.

Given the Dynamic Programming formulation as discussed, there
are two different ways in which short-term feedback information is
used. Firstly the calculation of the current state of the system may
involve feedback items. For example, the calculation of the number

of scheduled processes takes into account the amount of available

-81-

memory, and converts this into a 'deficiency' of scheduled processes.
This conversion must use some value for the amount of memory that an
‘average' process would require, and it is this value which could be
determined dynamically by feeding back, at some predefined interval,
the mean memory requirements of the active processes. Further, it

is easy to visualise slightly different problem formulations which

could use more feedback information in the determination of the state
of the system. For example, if the state vector was concerned with
units of work, rather than numbers of jobs, for the Tengths of the
job queues, then feedback information regarding the predicted size

of the jobs in each queue would be useful.

The second form of short-term feedback is inherent in the way
the solution policy is used in this implementation. The Variable
Metric Dynamic Programming solution method provides a solution policy
for each stage of the problem, with each policy normally being used
once to calculate a sequence of decisions, given a starting state
and the transformation function for each stage. This however assumes
that the transformation is exact, and further, that the problem has
been solved using sufficient time stages to cover the whole period
over which control is to be applied. Since neither of these
assumptions is practicable in this implementation, we are forced to
use some other method of calculating the decisions at each stage.

The method chosen is to solve the problem for a given number of stages,
N, and to use the policy produced for the first stage for making all
decisions. Thus each decision is considered to be the first decision
of an N-stage decision sequence. This method overcomes the earlier
discussed problem of inaccuracy in the transformation function

because the state of the system is reobserved every time a decision

=83

is made, instead of being calculated from the previous state using

the transformation function. This constitutes the other form of
short-term feedback. Instead of accepting the prediction of the new
state as made by the model, which is represented by the transformation
function, the physical system is used to determine the transformation
for making the next decision. This feedback is provided for each
variable represented in the state vector, and hence we have a situation
involving multiple feedback, which is in contrast to the majority of
feedback scheduling mechanisms in which only one variable is modified

by feedback.

An example of the other level of feedback is that discussed
at the end of the previous section, whereby information is gathered
to determine the validity of the solution policy in the case of a
non-LQP problem formulation. This could be achieved by maintaining
as a feedback item some vector which represents a current average
state of the system. This vector could then be compared with the
nominal state to decide whether or not the problem needs to be re-
solved for a new nominal state. When a decision is made to re-solve
the problem, this new vector would be used as the best value for the

new nominal state.

4.3.3 Implementation.

A discussion of the implementation of the proposed problem
formulation now requires that the remaining variables of the Dynamic
Programming problem be specified, along with some details of how the
whole process is imbedded into the existing operating system. The

most important variable yet to be specified is the exact nature of

-83-

the cost function, but also the expression for calculating the number
of scheduled processes, the length of the time interval, and the

number of stages still have to be specified.

As has already been indicated, the aim of the cost function for
this implementation is to provide well defined different levels of
service to the normal batch customers by controlling the numbers of
active batch jobs from the different classes, and to improve overall
system performance by controlling the degree of multiprogramming.
Now the information available concerning the degree of
multiprogramming is the state variable which represents the number
of scheduled processes. Thus to control the degree of
multiprogramming we can specify a desired value for the number of
scheduled processes, and attempt to keep the actual number as close
as possible to this desired value. Considering now the provision of
different levels of service, this may be achieved by attaching
different degrees of importance to the need to process jobs in the
different queues, specifically by weighting the queue lengths.
Further, some cognisance may be taken of the actual queue mixcounts
by aiming to have a balanced mixture of jobs active from the batch
queues at all times, but too much importance cannot be attached to
this aim because the total number of batch jobs must be determined

by the scheduled count.

To make it easier to use the cost function, it is convenient
to generalise its form with respect to each component of the state
vector. This is done by considering each component to have a target
value, and by using the weighted squared difference between the

observed value and the target to be the contribution of that component

-84-

to the cost function. The determination of the target vector, and
the weights, is how the cost function can be influenced by management
policy decisions. Mathematically then, the contribution of the whole
state vector, x, to the cost function at any stage is given by the

expression
7
2
izlwi(xi - 1) (4.4)

where w is the vector of weights,

and t is the vector of target values.

The control or decision vector may also make some contribution to
the cost function at all stages except the last (since there is no
decision taken after the last stage has been reached). For this
implementation, the expression chosen is the sum of squares of the
components of the control vector. This reflects a desire to make
decisions which are small in magnitude, remembering that the decisions
are the desired changes in mixcounts, so that the potential problem
of over-reacting to an undesirable state, thereby resulting in
oscillations, is reduced. This contribution to the cost function is

expressed mathematically as the expression

(4.5)

ne~—1w
=
- N

The fact that the cost function we are using is separable into the
state and control contributions is not a requirement of the
formulation, nor is it a significant simplification as far as the
solution process is concerned. However what is significant is that
the cost function as specified is quadratic, which means that the

problem to be solved is an LQP problem, since the transformation

-85-

function has already been specified as a Tinear function. Finally,
it should be noted that the cost function is identical for each stage
k, resulting in a final form as follows

3

7
.lei(xi - t5)% + ‘zluﬁ y k¥ 0y 715 an.5 Bk
1= 1=

L2y)
(4.6)

]
o~

F(x) w(x, - 1:1.)2

o 10

For the purposes of an initial implementation, and in the
absence of any prespecified management policy, the weights were
chosen as 1, 2, and 3 respectively for the queue Tengths of Queues
7, 5, and 3, 1 for each of the queue mixcounts, and 100 for the number
of scheduled processes. Similarly, the target values were chosen as
zero for each of the queue lengths, reflecting a desire to complete
all the queued work, 1, 2, and 3 respectively for the queue mixcounts
for Queues 7, 5, and 3, reflecting a desire to have if possible a
'good' mix of jobs, and 4 for the number of scheduled processes. The
large weight selected for the number of scheduled processes reflects
that the attempt to control the degree of multiprogramming results
in an equality constraint, in contrast to the minimisation of a
weighted sum of squares which results from the attemnt to provide
different levels of service to the normal batch queues. Similarly,
the small weights chosen for the queue mixcounts reflect that not as
much importance is attached to these requirements as there is to the
others, remembering that the output from the policy is a set of

desired mixcounts.

As has been mentioned, the formula for calculating the number

of scheduled processes involves the sum of the scheduled and

-86-

suspended processes, with some consideration given to the amount of
available memory in case this sum is zero. The actual formula used
is the expression
s+u-(a-nr)/m (4.7)
where s is the observed number of scheduled processes,
u is the observed number of suspended processes,
a is the observed amount of available memory in words,
r is the amount of memory in words that the low-level
scheduler attempts to keep free (by suspending processes),
and m is the estimated mean amount of memory required for
a process.
Both r and m have been taken as 16000 words. Finally the number of
stages for the initial problem solution has been chosen as 6, with

a time interval of 60 seconds.

The Burroughs B6700 MCP provides several useful mechanisms for
allowing programs to interact with it, mostly taking the form of MCP
procedures which are externally callable by a certain class of
programs. Firstly, the procedure SYSTEMSTATUS provides the caller
with a wide range of information concerning the instantaneous state
of the system. This is used by our implementation for determining
the amount of available memory, the number of scheduled processes,
and the number of suspended processes. Secondly, the procedure
DCKEYIN allows the calling program to behave as if it were an
operator, by entering commands and receiving responses, this being
used to determine the mixcounts of the normal batch queues and to
set the new queue mixlimits. The existence of these mechanisms means
that the operating system itself does not need to be modified, since

an ordinary program, given the necessary 'security clearance', may

87

interact with it. Finally the use of an ordinary program to enhance
the high-Tevel scheduling mechanism is further expedited by the
provision within the MCP for what is known as a SUPERVISOR. Once

a program has been nominated as the SUPERVISOR, then it is
automatically initiated whenever the operating system is restarted,

such as after a system failure.

Considering briefly the practicality of the implementation,
the overheads involved in running the program, to observe the state
of the system and apply the policy to determine a new set of queue
mixlimits every 60 seconds, turned out to be in the order of 0.1%
of CPU time. Given that this could probably be reduced by an order
of magnitude from this initial implementation by incorporating the
policy application function into the operating system itself, the
practicality of implementing these extensions to the high-Tlevel

scheduling mechanism is assured.

4.4 RESULTS.

To test the performance of the application, data obtained from
an independent source have been used to compare various aspects of
system performance with and without the controlling program present.
This data collection is part of an earlier implemented performance
measurement and reporting system [247, which essentially collects
all data which is available from the operating system. The data
collected during twelve days of running without the controlling
program have been analysed in conjunction with a similar amount of
data collected after the program was running in its final form.

Some teething problems with the implementation have meant that there is
a delay of several months between the two sets of data, which may have
some implications for the analysis. The analysis itself consists of
two parts, reflecting the composite nature of the optimality criterion.
The first of these consists of the analysis of overall system
performance to determine the effect of attempting to control the

degree of multiprogramming, and the second consists of an analysis

of the relative service given to the different classes of normal

batch customer.

In an attempt to reduce the inherent variance in the data,
which have been collected at approximately one minute intervals, the
analyses have been performed on the averages of these data over
twelve minute intervals. Further, the data have been selected in
an attempt to reduce the influence of external variations. For
instance, only those twelve minute intervals during which at least
some batch work was queued have been considered. Also, the time

period 12 midday to 1 pm is not considered because that time slot

-89-

is reserved for, and frequently used by, software maintenance staff.
Similarly the whole of Monday morning is not considered since that
time is often used by hardware maintenance engineers. Finally, the
time periods 11 am to 12 midday and after 4 pm are not considered
either because the operating environment changed between the two sets
of data for these time periods. In particular, when the
implementation was not running, these times used to be reserved for
batch work only, but before the final implementation was running
these times were changed to include interactive work as well. Thus
to summarise, the data have been analysed for all twelve minute
intervals in the time slots 9 am to 11 am (except Mondays), and 1 pm

to 4 pm, during which there was at least one batch job queued.

4.4.1 PAnalysis of Overall Performance.

In analysing whether or not the attempt to control the degree
of multiprogramming has resulted in improved overall system
performance, it first must be decided just how this performance is
to be measured. The aim of using the high-level scheduling
mechanism to control the number of scheduled processes is to provide
the low-level scheduling mechanism with a continuous selection of
processes from which to chose when deciding to allocate resources.
The reason for doing this is the assertion that if the lTow-1evel
scheduler always has a choice, then it can make better decisions.
Thus what should be measured to determine a change in performance is
that variable which the low-level scheduler is trying to optimise,
which in general is resources utilisation. One of the ways this can
be measured is through the measurement of the utilisation of the

central processor. As it happens, the data collected include

-90-

processor idle time, the complement of processor utilisation, and it

is this variable which has been analysed.

Figures 4.1 and 4.2 show the distributions of idle time,
expressed as a percentage of elapsed time, for the two different
situations, namely when the high-level scheduling parameters were
operator controlled, and when they were program controlled. Because
of the non-normal nature of the distributions, which is to be
expected, normal tests of significant differences cannot be used
with any confidence. However, non-parametric tests may be used in
this situation, and in particular the Wilcoxon U-test may be used to
test for differences in the means. This test involves ranking the
joint data in a specified way, and adding the ranks of one of the
subsets. A statistic involving this sum may then be tested against

a normal distribution.

To test for a difference in the means, the null hypothesis is
taken that the two sets of data come from the same distribution,
against the alternative that the second set of data comes from a
distribution which has a lower mean. This results in a z-value of
2.16, which indicates a significant result at the 2% Tevel for a one-
sided test. That is, at the 2% level of significance, the null
hypothesis is rejected on the basis of differences in the means,
with the mean for the second set of data being lower. This means
that the application involving dynamic control over the degree of
multiprogramming, through the queue mixlimits, has shown a small but
statistically significant increase in CPU utilisation, as measured
by idle time, over the situation involving operator setting of the

high-level scheduling parameters. In interpreting this result,

-91=

_
SO N - 177
‘ MAN = 197
FREQUENCY <p. = 150

40.
30
20
10

T L]

20 40 60 80
x IDLE TIME

Figore 4.1 DISTRIBUTION OF IDLE TIME - MANUAL CONTROL.

50 N = 136
MEAN = 159
FREQUENCY sp. = 112
40
30
20
10
ZD 40] 6 |} & L})
x IDLE TIME

Fi gure 4.2

DISTRBUTION OF IDLE TIME - PROGRAM CONTROL.

-92-

cognisance must be taken of the possible variation caused by
uncontrollable differences between the two samples, such as
differences in work load present. Further, it must be remembered
that the amount of control that can be imposed by the application is
limited to that portion of the workload that is not interactive or
special jobs. Thus we cannot state for certain that an improvement
in overall performance has resulted from the application of dynamic
control of the normal batch work. However, what we can state, and
this is possibly a more important observation, is that this
application certainly has not resulted in a reduction in CPU
utilisation, which means that there are no overall performance
losses which could offset gains made in the consideration of the

other performance factors.

4.4.2 PAnalysis of Batch Queue Service.

The provision of different levels of service to batch customers
is incorporated into the Dynamic Programming formulation by
specifying the weighted squared queue Tengths as part of the cost
function, the weights themselves reflecting the desired different
levels of service. In attempting to minimise this function, the
solution will attempt to keep the actual squared queue lengths in
inverse proportion to the weights associated with them. Thus to
test the effectiveness of the implementation, some measure of how
well the queue lengths adhere to this relationship is required.

The method chosen for this is to perform a least squares regression
on the pairs of queue lengths, and to use the variance of the
residuals as an inverse measure of the goodness of the relationship.

However it must be pointed out that the goal provided for by the

93~

cost function is not in conflict with the sort of goals that the
operators were aiming for when the parameter setting was done by

hand. This fact is necessary for any significant differences in the

variances of the residuals to be meaningful.

Figures 4.3 through 4.8 show the regressions of the gueue
lengths taken pairwise, before and after the implementation of program]
control of the high-level scheduling parameters. The slope of the
regression line and the variance of the residuals for each

regression have been specified on the diagrams.

Taking these pairwise, the ratios of the residual variances
can be used to test for differences in the goodness of fit of the
regression equations. The null hypothesis in each case is that the
residual variances are the same, with the alternative that the
variance of the second set of data (from when the queue mixcounts
were controlled dynamically) is lower. Firstly, for the regression
of Queue 5 against Queue 3, the F-ratio is 11.2. This is a very
strong result, which rejects the null hypothesis at the 2% level of
significance, and even at the 0.1% level. We can infer from this
that the dynamic control of the queue mixcounts does result in a
significantly better fit of the length of Queue 5 to the length of
Queue 3. Similarly for the regression of Queue 7 against Queue 3,
the F-ratio is 3.07, which also indicates that the null hypothesis
would be rejected at the 2% level, and also as Tow as the 0.1% Tevel.
Once again this indicates a significantly better fit of the length
of Queue 7 to the length of Queue 3 when the queue mixcounts are
being controlled dynamically. Finally, for the regression of

Queue 7 against Queue 5, the F-ratio is 1.54, which is significant

-94-

L OPE = 261

35
QUELE 5
LENGTH 30
25

20

15

10
* ¥ N =173

> E &+ * RESID. UARIANCE = 1004
0 : %
¥ F B 1th 12 14
QUELE 3 LENGTH

Figua 43 QUELE 5 US. QUELE 3 - MANUAL CONTROL.

35_
QUELE 5
LENGTH 30 —
S.—_J
A OPE = 157
20_
¥
15 s
10 —
c N = 171
RESTD. UARIANCE = 200
0
b 2 14
QUELE 3 LENGTH

Figura 44 QUELE 5 US. QUELE 3 - PROGRAM CONTROL.

35
QUELE 7 *

LENGTH 30 —

* ¥

N = 179

RESID. UARIANCE = %5

5 B 1b

L 14

QUELE 3 LENGTH

Figura 45 QUELE 7 US. QUELE 3 - MANUAL CONTROL.

35 =
QUELE 7
LENGTH 30

QUELE 3 LENGTH
Figura 4.6 QUELE 7 US. QUELE 3 - PROGRAM CONTROL.

= *
aEE 7 £

LENGTH 30 —

Kt N = 179
AN ¥* ¥ * RESID. UARIANCE = 324

KE A dok ¥
ilass O R N

QUELE S LENGTH
Flgura 47 QUELE 7 US. QUELE 5 - MANUAL CONTROL.

X —
QUELE 7
LENGTH 30

XIIE, N =171
b S * RESID. UARIANCE = 2.0
T il

T th 5 b X B F

QUELE 5 LENGTH
Figure 4.8 QUELE 7 US. QUELE 5 - PROGRAM CONTROL

-97-

at the 2% level, but is not significant at the 0.1% level. Thus on
the basis of the data analysed, and bearing in mind the unknown
effects of different workloads and, more importantly, different
arrival rates, we cannot confidently reject the null hypothesis that
the variances of the residuals are the same. In other words the fit
of the length of Queue 7 to the length of Queue 5 may not have been

significantly improved by the dynamic control of the queue mixcounts.

Considering these three results together, it would appear that
the major effect of the dynamic control of the queue mixcounts has
been to relate the lengths of Queues 5 and 7, which were already
tied together somewhat, to the length of Queue 3. Whether or not
this has resulted in a degradation of service for Queue 3 is an
unanswered question which is beyond the scope of this application
since the cost function used for the Dynamic Programming problem
reflects a 'management decision' which is more concerned with
relative service to the different queues than with absolute service
to any one queue. Thus what can be stated is that in terms of the
criterion reflected in the choice of cost function, the application

has succeded in achieving improvements in performance.

-98-

4.5 CONCLUSIONS.

The application of Variable Metric Dynamic Programming to the

problem of dynamically modifying some of the high-level scheduling

parameters in a batch and interactive computing system has been
successful. This success is a result of the fact that on the basis i
of each component of a composite criterion, significant improvements \
in performance have been obtained. Further, since the implementation |
is an initial one, for which many variables have been assigned

approximate or nominal values, experimentation with some of these

variables is likely to lead to further improvements. Not only does

this demonstrate the applicability of Variable Metric Dynamic

Programming as a solution method, but also it demonstrates the

beneficial use of a Mathematical Programming technique in a Computer

Science application. These techniques often lend themselves

naturally to the inclusion of feedback mechanisms into the

application, thereby reducing the need for an accurate system model.

This is an advantage in operating systems research, since accurate

models are difficult to obtain. A final contribution to the success

of the application is the practicality of the implementation, which

involves reasonably low, and potentially negligible overheads.

Finally, this application has left unanswered a number of
questions which may be used as inspiration for future research topics.
These will be discussed in the following section on overall

conclusions and implications for future research.

-99-

SECTION 5.
CONCLUSIONS.

The successful use of Dynamic Programming as a scheduling tool
in a multiprogrammed computing system is a good example of how
Mathematical Programming in general may be applied to Computer
Science problems in which dynamic feedback is desirable, or even
necessary, to take account of unforseeable variations. The success
of the application has further implications for the viability in
a practical situation of Variable Metric Dynamic Programming, being

the particular Dynamic Programming solution method used.

Considering firstly the Variable Metric Dynamic Programming
algorithm itself, the main conclusion to be reached from the
research directed towards the development of this algorithm is that
the use of Variable Metric minimisation techniques for generating
quadratic approximations to functions results in a Dynamic
Programming solution algorithm which has advantages over existing
algorithms. The new iterative algorithm, for the unconstrained
N-stage decision problem, compares favourably with the existing
Differential Dynamic Programming algorithm. This has been
demonstrated by applyina both algorithms to the solution of a simple
theoretical problem. Further, by analysing the two algorithms
themselves, the DDP algorithm is shown to be in some respects a
special case of the new VMDP algorithm, which has implications for

the range of applicability of the new algorithm.

This initial proposal of the algorithm has left a number of

unexplored openings for future research. Of those directly

concerning the new algorithm as it stands, the most important is the
extension of the algorithm to be able to handle the inclusion of
constraints in the problem definition. One further possibility which
has not been mentioned is the application of Variable Metric
minimisation techniques to the iterative solution of the continuous
time problem. This would entail the development of a new algorithm
using a similar approach, rather than involving the extension of the

existing algorithm.

As a lead in to the application of the new algorithm, a brief
literature survey has considered current research on the scheduling
of multiprogrammed computing systems. The main conclusions reached
by this survey are that the use of feedback mechanisms has been
recognised as a potentially powerful scheduling tool, and that
research directed towards this is steadily gaining momentum. Further,
however, it is concluded that there is not yet a great deal of
research directed towards the use of Mathematical Programming

techniques, which provide the feedback mechanisms in a natural way.

Finally, considering the application itself, what has been
demonstrated is a mechanism for controlling dynamically some of the
high-level scheduling parameters in a multiprogrammed computing
system. The implementation of this has resulted in the attainment
of significant improvements in terms of the actual criteria
represented by the cost function being used. Some further research
into the 'fine-tuning' of some of the variables being used as
parameters is likely to lead to further improvements. The use of
Variable Metric Dynamic Programming for the application has resulted

in a high-level scheduling mechanism which uses dynamic feedback for

-101-

a relatively large number of variables. This is because of the
natural way the solution policy provided by the VMDP algorithm is

applied at each stage to a newly observed value of the state of the

system.

A further benefit from using Dynamic Programming is that the
solution process operates in such a way as to optimise a cost function
which reflects a management decision. In the current implementation,
this cost function may be modified to reflect changing management
desires, although this cannot be done on a dynamic basis. However,
the structure of the Dynamic Programming formulation provides the
ability to parameterise a generalised cost function in such a way
that dynamic modifications are possible. This involves considering
the scalar variables which constitute the cost function parameters
to be part of the state of the system, remaining constant unless
altered by operator input. A further extension to this would then
be to have these cost function parameters modified by some
independent feedback mechanism which takes into account a more general

form of the management policy requirements.

To summarise, a new iterative Dynamic Programming algorithm,
called Variable Metric Dynamic Programming, has been developed, and
shown to have advantages over existing algorithms. A brief
literature survey concerning the scheduling of multiprogrammed
computing systems concludes that the use of Mathematical Programming
techniques in computer scheduling is a relatively unexplored but
potentially fruitful research direction. Finally the new Dynamic
Programming algorithm is applied to a high-level scheduling problem,

resulting in a successful demonstration of both the capabilities of

-102-

the new solution algorithm in a pratical situation and, more
generally, the potential power of Mathematical Programming techniques

for providing feedback mechanisms.

BIBLIOGRAPHY.

The following abbreviations are used to denote sources of some
of the references.
ACM Association for Computing Machinery
AFIPS American Federation of Information Processing Societies
FJCC Fall Joint Computer Conference
IEEE Institute of Electrical and Electronics Engineers
NRLQ Naval Research Logistics Quarterly
SIAM Society for Industrial and Applied Mathematics

SJCC Spring Joint Computer Conference

1. ABELL, V.A., ROSEN, S., and WAGNER, R.E., Scheduling in a

General Puwrpose Operatingy System, AFIPS FJCC, Vol. 37, 1970.

2. ABRAMS, M.D. and TREU, S., A Methodolagy for Interactive
Conputer Service Measurement, Communications of the ACM, Vol. 20,

No. 12, 1977.

3 AGAJANIAN, A.H., A Bibliography on System Performance Evaluation,

Computer, Vol. 8, No. 11, 1975.

4, AGGARWAL, S.C. and MCCARL, B.A., The Development and Evaluation
of a Cost-Based Composite Scheduling Rule, NRLQ, Vol. 21, No. 1,

1974.

5. ALDERSON, A., LYNCH, W.C., and RANDELL, B., Thrashing in a
Multiprogrammed Paging System, in Operating Systems Techniques,
Edited by C.A.R. Hoare and R.H. Perrott, Academic Press,

London, 1972.

10.

11.

12.

-104-

ANDERSON, H.A. and SARGENT, R.G., Investigation into Scheduling
for an Interactive Computing System, IBM Journal of Research

and Development, Vol. 18, No. 2, 1974.

ANDERSON, H.A. and SARGENT, R.G., Modeling, Evaluation, and
Performance Measurements of Time-Sharing Computer Systems,

Computing Reviews, Vol. 13, No. 12, 1972.

ARBUCKLE, R.A., Computer Analysis and Throughput Evaluation,

Computers and Automation, Vol. 15, No. 1, 1966.

ARORA, J.K. and PIERRE, D.A., Optimal Trajectories for
Multidimensional Non-Linear Processes by Iterated Dynamic
Programming, IEEE Transactions on Systems, Man, and Cybernetics,

Vol. SMC-3, No. 1, 1973.

ARORA, S.A. and KACHHAL, S.K., Optimisation of Design Parameters
in a Virtual Memory System, Proceedings of the Computer Science
and Statistics Seventh Annual Symposium on the Interface,

pp. 92-99, 1973.

ARTHANARI, T.S. and RAMAMURTHY, K.G., A Branch and Bound
Algorithm for Sequencing N jobs on M Parallel Processors,

Opsearch, Vol. 17, pp. 147-156, 1971.

AUSTIN, B.J., HANLON, P.P., and RUSSELL, J.d., Job Scheduling
in a Monoprogrammed Environment, Australian Computer Journal,

Vol. 6, No. 1, 1974.

13.

14.

15.

16.

17.

18.

19.

20.

-105-

BADEL, M., GELENBE, E., LEROUDIER, J., and POTIER, D., 4 Model
of Performance for Virtual Memory Systems, Proceedings of the

IEEE, Vol. 63, pp. 958-965, 1975.

BAKER, K.R. and MARTIN, J.B., 4An Experimental Comparison of
Solution Algorithms for the Single Machine Tardiness Problem,

NRLQ, Vol. 21, No. 1, 1974.

BALUT, S.J., Scheduling to Minimise the Number of Late Jobs
When Set-Up and Processing Times are Uncertain, Management

Science, Vol. 9, No. 11, 1973.

BARD, Y., Application of the Page Survival Index (PSI) to
Virtual Memory System Performance, IBM Journal of Research and

Development, Vol. 19, No. 3, 1975.

BARD, Y., Experimental Evaluation of System Performance, 1BM

System Journal, Vol. 12, No. 3, 1973.

BASS, L.J., On Optimal Processor Scheduling for Multiprogramming,
SIAM Journal on Computing, Vol. 2, No. 4, 1973.

BELADY, L.A. and KUEHNER, C.J., Dynamic Space Sharing in Computer

Systems, Communications of the ACM, Vol. 12, No. 5, 1969.

BEN-BASSAT, M. and BOROVITS, I., Computer Network Scheduling,

OMEGA, Vol. 3, No. 1, 1975.

21.

22.

23.

24.

25.

26.

27.

28.

-106-

BERNSTEIN, A.J. and SHARPE, J.C., 4 Poliey-Driven Scheduler for
a Time-Sharing System, Communications of the ACM, Vol.14, No. 2,

1971.

BLEVINS, P.R. and RAMAMOORTHY, C.V., Aspects of a Dynamically
Adaptive Operating System, I1EEE Transactions on Computers,

Vol. C-25, No. 7, 1976.

BONNER, A.J., Using System Monitor Output to Improve Performance,

IBM Systems Journal, Vol. 8, No. 4, 1969.

BROWNRIGG, R.D., B6700 Performance Reporting, Technical Report
No. 60, Applied Mathematics Division, Department of Scientific

and Industrial Research, New Zealand, 1977.

BROWNRIGG, R.D., Parallel Processing and Dynamic Programming,
M.Sc. Thesis, Victoria University of Wellington, New Zealand,

1974.
BRUNO, J., COFFMAN, E.G. JR., and SETHI, R., Scheduling
Tndependent Tasks to Reduce Mean Finishing Time, Communications

of the ACM, Vol. 17, No. 7, 1974.

BUCHHOLZ, W., A4 Selected Bibliography on Computer System

Performance Evaluation, Computer Group News, Vol. 2, No. 8, 1969.

BUNT, R.B., Scheduling Techniques for Operating Systems,

Computer, Vol. 9, No. 10, 1976.

29.

30.

31.

32.

33

34.

35«

36.

37,

-107-

BUNT, R.B., Self-Regulating Schedulers for Operating Systems, |

Technical Report No. 76, University of Toronto, 1975. ‘

BUNT, R. and TSICHRITZIS, D., 4n Annotated Bibliography for 1

Operating Systems, Computing Reviews, Vol. 13, No. 8, 1972. \

CALINGAERT, P., System Performance Evaluation: Survey and

Appraisal, Communications of the ACM, Vol. 10, No. 1, 1967.

CHANDY, K.M. and YEH, R.T., (Editors), Current Trends in
Programming Methodology. Volume III, Software Modeling, Prentice

Hall, Englewood Cliffs, 1978.

CHANSON, S.T. and BISHOP, C.D., 4 Simulation Study of Adaptive
Seheduling Policies in Interactive Computer Systems, Performance

Evaluation Review, Vol. 6, No. 3, 1977.

CHEN, P.P.S. and FRANKLIN, M., (Editors), International
Symposium on Computer Performance Modeling, Measurement, and

Evaluation, ACM, New York, 1976.

CHENG, P.S., Trace Driven System Modeling, IBM Systems Journal,

Vol. 8, No. 4, 1969.

CHESTER, K.W., Computer Resource Allocation, Datamation, Vol. 20,

No. 9, 1974.

CHU, W.W. and OPDERBECK, H., Analysis of the PFF Replacement

Algorithm via a Semi-Markov Model, CACM, Vol. 19, No. 5, 1976.

38.

39.

40.

41.

42.

43.

44.

45.

46.

-108-

CHUA, Y.S. and BERNSTEIN, A.J., 4nalysis of a Feedback Scheduler,
SIAM Journal on Computing, Vol. 3, No. 3, 1974. |

CLARKE, S.R. and ROURKE, T.A., A Simulation Study of the Effects |
of Various Job-Scheduling Algorithms in Computer Systems, INFOR, |

Vol. 10, No. 3, 1972.

CODD, E.F., Multiprogram Scheduling: Parts 1 and 2, Introduction

and Theory, Communications of the ACM, Vol. 3, No. 6, 1960.

CODD, E.F., Multiprogram Scheduling: Parts 3 and 4, Scheduling
Algorithm and Extermal Constraints, Communications of the ACM,

Vol. 3, No. 7, 1960.

COFFMAN, E.G. JR., Analysis of Two Time-Sharing Algorithms
Designed for Iimited Swapping, Journal of the ACM, Vol. 15,

No. 3, 1968.

COFFMAN, E.G. JR. and DENNING, P.J., Operating Systems Theory,

Prentice Hall Series in Automatic Computation, 1973.

COFFMAN, E.G. JR. and GRAHAM, R.L., Optimal Scheduling for

Two-Processor Systems, Acta Informatica, Vol. 1, No. 3, 1972,

COFFMAN, E.G. JR. and KLEINROCK, L., Computer Scheduling Methods

and Their Countermeasures, AFIPS SJCC, Vol. 32, 1968.

COFFMAN, E.G. JR. and MUNTZ, R.R., Models of Pure Time-Sharing
Disciplines for Resource Allocation, Proceedings of the ACM

National Conference, Vol. 24, pp. 217-228, 1969.

47.

48.

49.

50.

51.

52.

53.

54.

-109-

COFFMAN, E.G. JR., Deadlocks in Computer Systems, in Operating
Systems: International Computer State of the Art Report, edited
by C. Boon, 1972.

COFFMAN, E.G. JR., ELPHICK, M.J., and SHOSHANI, A., System

Deadlocks, ACM Computing Surveys, Vol. 3, No. 2, 1971.

COLIN, A.J.T., Introduction to Operating Systems, Macdonald and

American Elsevier, 1971.

CONWAY, R.W., MAXWELL, W.L., and MILLER, L.W., Theory of

Scheduling, Addison Wesley, Reading, Massachusetts, 1967.

CRITCHLOW, A.J., Generalised Multiprocessing and Multiprogramming
Systems, AFIPS FJCC, 1963.

CROOKE, S., MINKER, J., and YEH, J., Key Word in Context and
Bibliography on Computer Systems Evaluation Techniques, Technical
Report No. TR-146, University of Maryland Computer Science
Centre, 1971.

DAHM, G.M., GERBSTADT, F.H., and PACELLI, M.M., A System
Organisation for Resource Allocation, Communications of the

ACM, Vol. 10, No. 12, 1967.

DE MEIS, W.M. and WEIZER, N., Measurement and Analysis of a
Demand Paging Time-Sharing System, Proceedings of the ACM

National Conference, Vol. 33, pp. 201-216, 1969.

55.

56.

&7.

58.

59.

60.

61.

62.

63.

-110-

DENNING, P.J., Resource Allocation in Multiprocess Computer
Systems, Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1968.

DENNING, P.J., The Working Set Model for Program Behaviour,

Communications of the ACM, Vol. 11, No. 5, 1968.

DENNING, P.J., Thrashing: Its Causes and Prevention, AFIPS FJCC,
Vol. 33, 1968.

DOELLING, N., Computer Resources Sharing - Some Comments and

Predictions, Computers and Automation, Vol. 17, No. 10, 1968.

DRUMMOND, M.E. JR., A Perspective on System Performance

Evaluation, IBM Systems Journal, Vol. 8, No. 4, 1969.

EASTMAN, W.L., EVEN, S., and ISAACS, J.M., Bounds for the
Optimal Scheduling of N jobs on M Processors, Management Science,

Vol. 11, No. 2, 1964.

EILON, S. and CHOWDHURY, I.G., 4 Note on Steady-State Results
in Queueing and Job-Shop Scheduling, Simulation, Vol. 23, No. 3,
1974.

ELMAGHRABY, S.E., The Machine Sequencing Problem - Review and

Extensions, NRLQ, Vol. 15, No. 2, 1968.

ESTRIN, G., Review of 'System Performance Evaluation: Survey
and Appraisal’, by P. Calingaert, Computing Reviews, Vol. 8,

p. 160, 1967.

64.

65.

66.

67.

68.

69.

70.

FERNANDEZ, E.B. and BUSSELL, B., Bounds on the Number of |
Processors and Time for Multiprocessor Optimal Schedules, IEEE |

Transactions on Computers, Vol. C-22, No. 8, 1973.

FISHER, M.L., Optimal Solution of Scheduling Problems Using |
Lagrange Multipliers: Part 1, Operations Research, Vol. 21,

No. 5, 1973.

GANNON, J.D., (Editor), An Amnotated Bibliography on Computer |
Program Engineering (2nd Edition), Report No. CSRG-31, Computer

Science Research Group, University of Toronto, 1974.

GAVER, D.P. and SCHEDLER, G.S., Approximate Models for Processor
Utilisation in Multiprogrammed Computer Systems, SIAM Journal

on Computing, Vol. 2, No. 3, 1973.

GAVER, D.P. and SCHEDLER, G.S., Processor Utilisation in
Multiprogramming Systems via Diffusion Approximations, Operations

Research, Vol. 21, No. 2, 1973.

GELDERS, L. and KLEINDORFER, P.R., Coordinating Aggregate and
Detailed Scheduling Decisions in the One-Machine Job-Shop: Part

1, Theory, Operations Research, Vol. 22, No. 1, 1974.

GELENBE, E. and KURINCKX, A., Random Injection Control of
Multiprogramming in Virtual Memory, IEEE Transactions on

Software Engineering, Vol. SE-4, No. 1, 1978.

e I

72.

73.

74.

p

76.

77.

78.

-112-

GUTTAG, J., 4n Amnotated Bibliography on Computer Program
Engineering (3rd Edition), Report No. CSRG-54, Computer Science

Research Group, University of Toronto, 1975.

HABERMANN, A.N., Prevention of System Deadlocks, Communications

of the ACM, Vol. 12, No. 7, 1969.

HAMLET, R.G., Efficient Multiprogramming Resource Allocation and

Accounting, Communications of the ACM, Vol. 16, No. 6, 1973.

HARALAMBOPOULOS, G. and NAGY, G., Profile of a University
Computer User Community, International Journal of Man-Machine

Studies, Vol. 9, No. 3, 1977.

HAVENDER, J.W., 4voiding Deadlocks in Multitasking Systems, IBM

Systems Journal, Vol. 7, No. 2, 1968.

HEACOX, H.C. and PURDOM, P.W., Analysis of Two Time-Sharing

Queueing Models, Journal of the ACM, Vol. 19, No. 1, 1972.

HEIDEMAN, J.C. and LEVY, A.V., Sequential Conjugate-Gradient-
Restoration Algorithm for Optimal Control Problems, Part 1,
Theory, Journal of Optimisation Theory and Applications, Vol. 15,

No. 2, 1975.

HEIDEMAN, J.C. and LEVY, A.V., Sequential Conjugate-Gradient-
Restoration Algorithm for Optimal Control Problems, Part 2,

Examples, Journal of Optimisation Theory and Applications, Vol. 15,
No. 2, 1975.

79.

80.

81.

82.

83.

84.

85.

86.

87.

-113-

HELD, M. and KARP, R.M., A Dynamic Programming Approach to

Sequencing Problems, SIAM Journal, Vol. 10, No. 1, 1962.

HELLER, J., Sequencing Aspects of Multiprogramming, Journal of

the ACM, Vol. 8, No. 3, 1961.

HELLERMAN, H., Some Principles of Time-Sharing Scheduler

Strategies, IBM Systems Journal, Vol. 8, No. 2, 1969.

HOARE, C.A.R. and PERROTT, R.H., (Editors), Operating Systems

Techniques, Academic Press, London, 1972.

HOLLOWAY, C.A. and NELSON, R.T., A Procedure for Job Shop
Scheduling with Due Dates, Variable Processing Times, and a
Dynamic Arrival Process, Research Paper No. 123, Graduate School

of Business, Stanford University, 1972.

HOLLOWAY, C.A. and NELSON, R.T., Job Shop Scheduling with Due
Dates and Variable Processing Times, Management Science, Vol. 20,

No. 9, 1974.

HOLT, R.C., Some Deadlock Properties of Computer Systems, ACM

Computing Surveys, Vol. 4, No. 3, 1972.

HORN, W.A., Some Simple Scheduling Algorithms, NRLQ, Vol. 21,
No. 1, 1974.

JACOBSON, D.H. and MAYNE, D.Q., Differential Dynamic Programming,

American Elsevier, New York, 1970.

88.

89.

90.

a1.

92.

93-

9.

95.

9.

-114-

KAMEDA, H., The Analysis of an Adaptive Workload Balaneing
Strategy in Computing Systems Resource Management, International

Journal of Computer and Information Sciences, Vol. 4, No. 4, 1975.

KIMBLETON, S.R. and BAKER, K.R., 4 Heuristically Oriented
Approach to Scheduling Batch Production Oriented Computer Systems,
Proceedings of the 7th Hawaii International Conference on System

Sciences, pp. 28-30, 1974.

KLEINROCK, L., A Comservation Law for a Wide Class of Queueing

Disciplines, NRLQ, Yol. 12, No. 2, 1965.

KLEINROCK, L., 4 Continuum of Time-Sharing Algorithms, AFIPS
sJcc, Wl. 36, 1970.

KLEINROCK, L. and MINTZ, R.R., Processor Sharing Queueing Models
of Mized Scheduling Disciplines for Time-Shared Systems, Journal

of the ACM, Vol 19, No. 3, 1972.

LAMPSON, B.W., 4 Scheduling Philosophy for Multiprocessing

Systems, Communications of the ACM, Vol. 11, No. 5, 1968.

LARMOUTH, J., Scheduling for a Share of the Machine, Software

Practice and Experience, 1. 5, No. 1, 1975.

LARMOUTH, J., Seheduling for Immediate Turnround, University

of Salford Computing Laboratory, 1977.

LAWLER, E.L., On Scheduling Problems with Deferral Costs,

Management Science, Vol 11, No. 2, 1964.

97.

98.

99.

100.

101.

102.

103.

104.

105.

=115«

LIU, C.L. and LAYLAND, J.W., Scheduling Algorithms for
Multiprocessing in a Hard-Real-Time Environment, Journal of

the ACM, Vol. 20, No. 1, 1973.

LORIN, H., Parallelism in Hardware and Software: Real and

Apparent Concurrency, Prentice Hall, 1971.

LUCAS, H.C., Performance Evaluation and Monitoring, ACM

Computing Surveys, Vol. 3, No. 3, 1971.

LYNCH, H.W. and PAGE, J.B., The 0S/VS2 Release 2 System Resource

Manager, IBM Systems Journal, Vol. 13, No. 4, 1974.

MARSHALL, B.S., Dynamic Calculation of Dispatching Priorities

Under 0S/360 MvT, Datamation, Vol. 15, No. 8, 1969.

MAYNE, D.Q., 4 Second-Order Gradient Method for Determining
Optimal Trajectories of Non-Linear Discrete-Time Systems,

International Journal of Control, Vol. 3, No. 1, 1966.

MCKINNEY, J.M., A Survey of Analytic Time-Sharing Models,

Computing Surveys, Vol. 1, No. 2, 1969.

MCNAUGHTON, R., Scheduling with Deadlines and Lose Functions,

Management Science, Vol. 6, No. 1, 1959.

MINTZ, R.R. and COFRMAN, E.G. JR., Preemptive Scheduling of
Real-Time Tasks on Multiprocessor Systems, Journal of the ACM,

Vol. 17, No. 2, 1970.

106.

107.

108.

109.

110:

111.

112.

113.

114.

-116-

MURPHY, J.E., Resource Allocation with Interlock Detection in a

Multitask System, AFIPS FJCC, Vol. 33, Part 2, 1968.

MURTAGH, B.A. and SARGENT, R.W.H., 4 Constrained Minimisation
Method with Quadratic Convergence, in Optimisation, Edited by

R. Fletcher, Academic Press, London, 1969.

MWRTAGH, B.A. and SARGENT, R.W.H., Computational Experience
with Quadratically Convergent Minimisation Methods, Computer

Journal, Vol. 13, No. 2, 1970.

NABESHIMA, I, General Scheduling Algorithms with Applications
to Parallel Scheduling and Multiprogramming Scheduling, Journal

of the Operations Research Society of Japan, Vol. 14, No. 2, 1971.

NEW, C., Job-Shop Scheduling, Data Processing, Vol. 16, No. 2,
1974.

NIELSEN, N.R., An Analysis of Some Time-Sharing Techniques,

Communications of the ACM, Vol. 14, No. 2, 1971.

NIELSEN, N.R., Flexible Pricing: An Approach to the Allocation

of Computer Resources, AFIPS FJCC, Vol. 33, Part 1, 1968.

NIELSEN, N.R., The Allocation of Computer Resources - Is Pricing

the Answer?, Communications of the ACM, Vol. 13, No. 8, 1970.

NORTHOUSE, R.A. and FU, K.S., Dynamic Scheduling of Large Digital

Computer Systems Using Adaptive Control and Clustering Techniques,

115,

116.

117.

118.

119.

120.

121.

IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3,
No. 3, 1973.

OPPENHEIMER, G. and WEIZER, N., Resource Management for a Medium-
Seale Time-Sharing Operating System, Communications of the ACM,

Vol. 11, No. 5, 1968.

PASS, E.M. and GWYNN, J., 4n Adaptive Microscheduler for a
Multiprogrammed Computer System, Proceedings of the ACM National

Conference, 1973.

POTIER, D., GELENBE, E., and L'ENFANT, J., Adaptive Allocation
of Central Processing Unit Quanta, Journal of the ACM, Vol 23,

No. 1, 1976.

PRICE, T.G., An Analysis of Central Processor Scheduling in
Multiprogrammed Computer Systems, Technical Report No. 57,

Digital Systems Laboratory, Stanford Electronics Laboratory, 1972.

PUWLAN, W.Jd., 4 Simulation of a B6700 Computer System, M.Sc.

Thesis, Otago University, Dunedin, New Zealand, 1976.

RAMSAY, K. and STRAWSS, J.C., A Real Time Priority Scheduler,

Proceedings of the ACM National Conference, Vol. 21, 1966.

REITER, A., A Resource Allocation Scheme for Multi-User On-Line

Operation of a Small Computer, AFIPS sJcc, Vol. 30, 1967.

122.

123.

124.

125.

126.

127 .

128.

129.

-118-

RODRIGUEZ-ROSELL, J. and DUWPUY, J-P., The Design, Implementation,
and Evaluation of a Working Set Dispatcher, Communications of the

ACM, Yol. 16, No. 4, 1973.

ROSEN, S., Lectures on the Measurement and Evaluation of the \
Performance of Computing Systems, SIAM Regional Conference Series

in Applied Mathematics, No. 23, 1976. |

ROTHKOPF, M.H., Scheduling Independent Tasks on Parallel

Processors, Management Science, Vol. 12, No. 5, 1966.

SCHNECK, P.B., The Myth of Multiprogramming, Software Practice

and Experience, Vol. 4, No. 1, 1974.

SEAMAN, P.H. and SOWY, R.C., Simulating Operating Systems, IBM

Systems Journal, Vol. 8, No. 4, 1969.

SEVCIK, K.C., Optimal Processor Scheduling When Service-Times
are Hyperexponentially Distributed and Preemption Overhead is Not
Negligible, Technical Report No. CSRG-16, Computer Systems

Research Group, University of Toronto, 1972.

SEVCIK, K.C., Scheduling for Minimum Total Loss Using Service-

Time Distributions, Journal of the ACM, Vol. 21, No. 1, 1974.

SEVCIK, K.C., The Use of Service-Time Distributions in Scheduling,
Technical Report No. CSRG-14, Computer Systems Research Group,

University of Toronto, 1972.

130.

131.

132.

133.

134.

135

136.

137,

138.

SHERMAN, S., BASKETT, F., and BROWNE, J.C., Trace-Driven Modeling

and Analysis of CPU Scheduling in a Multiprogramming System,
Communications of the ACM, Vol. 15, No. 12, 1972.

SHIRLEY, S., Evaluating Benchmark Tests, Data Systems, September

1969, pp. 31-33.

SPINNER, A.H., Sequencing Theory - Development to Date, NRLQ,

Yol. 15, No. 2, 1968.

STEVENS, D.F., On Overcoming High-Priority Paralysis in
Multiprogramming Systems: A Case History, Communications of the

ACM, Yol. 11, No. 8, 1968.

STIMLER, S., Some Criteria for Time-Sharing System Performance,

Communications of the ACM, Vol. 12, No. 1, 1969.

THE COMPTRE CORPORATION, gperating Systems Survey, Edited by

A.P. Sayers, Auerbach, 1971.

THESEN, A., Scheduling of Computer Programs for Optimal Machine

Utilisation, BIT, Vol. 13, No. 2, 1973.

TSICHRITZIS, D.C. and BERNSTEIN, P.A., Operating Systems,

Academic Press, New York, 1974.

VARIAN, L.C. and COFRMAN, E.G. JR., 4An Empirical Study of the
Behaviour of Programs in a Paging Environment, Proceedings of

the ACM Symposium on Operating System Principles, 1967.

139.

140.

-120-

WALKE, B., Program Replacement for Better Throughput, IEEE

Transactions on Software Engineering, Vol. SE-3, No. 5, 1977.

WICKENS, R.F., 4 Brief Review of Computer Assessment Methods,

Radio Electronics Engineering, Vol. 26, No. 5, 1968.

	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf

