
RAYMOND DOUGLAS BROWNRIGG.

DYNAMIC PROGRAMMING AS A SCHEDULING TOOL IN

MULTIPROGRAMMED COMPUTING SYSTEMS

Submitted for the degree of DOCTOR 0F PHIL0SOPHY in

INF0RMATION SCIENCE at the V'ictorja University of

Wellington, hlELLINGTON, NEW ZEALAND.

DECEMBER 1978



-v-

ACKNOI{LEDGEMENT.

I would like to acknowledge my original
supervisor, Dr. B.A. Murtagh, for the

inspiration resulting in the research

described in Chapter 2 of this thesis,

and his successor, Dr. J.H. Hine, for

his encouragement and support given

during the preparation of this thesis.



-1 V-

DYNAMIC PROGRAMMING AS A SCHEDULING TOOL IN MULTIPROGRAMMED

COMPUTING SYSTEMS.

ABSTRACT

A potentially parallel iterative algorithm for the solution

of the unconstrained N-stage decision problem of Dynamic Programm'ing

is developed. This new solution method, known as Variable Metric

Dynamic Progranmitrg, is based on the use of variable metric

minimisation techniques to develop quadratic approximations to the

optimal cost function for each stage. The algorithm is app'lied to

various test problems, and a comparison with an existing similar

algorithm proves favourable. The Variable Metric Dynamic Progranming

solution method is used in the'implementation of an adaptive high-

level scheduling mechanism on a multiprogrammed computer in a

university environment. This demonstrates a practical application

of the new algorithm. More importantly, the application of Variable

Metric Dynamic Prograrming to a scheduling problem illustrates how

Mathematical Programning may be used in complex computer scheduling

problems to provide in a natural way the required dynamic feedback

mechani sms.

KEYWORDS

Dynamic Prograrming, parallelism, variable metric minimisation,

high-level scheduling, adaptive scheduling, multiprogramming,

dynamic feedback.



-l1r -

CONTENTS

SECTION 1. INTRODUCTION AND OVERVIEW

SECTION 2. A PARALLEL VARIABLE METRIC DYNAMIC PROGRAMMINq

page

I

2.L

2.2

ALGORITHM

INTRODUCTION

BASIS OF THE METHOD

2.2.L The Problem and the Dynamic Programming

Formul ation

2.2.2 The Standard So]ution Method

2.2.3 The Di fferenti al Dynami c Progranm'ing Sol uti on

Method

2.2.4 The Variable Metric Solution Method

PROPERTIES OF THE VARIABLE METRIC ALGORITHM

2.3.1 Flowchart of the Algorithm

2.3.2 Implementation Details

2.3.2.1 Calculation of Gradients

2.3.2.2 Parameter Settings

2.3.3 A Comparison with the Differential Dynamic

Programming Algorithm

2.3.3.1 0ne-Step Quadratic Convergence

2.3.3.2 Results From a Simp'le Non-LQP Problem

2.3.3.3 Storage Requirements

2. 3. 3.4 Computation Requirements

2.3.4 0ther Computational Experience

2.3.5 Possible Extensions to the Algorithm

CONCLUSIONS

5

5

8

2.3

9

11

L7

L7

t7

t7

?0

23

24

28

31

31

33

36

392.4



-11-

C0NTENTS (continued)

SECTION 3. SURVEY ON COMPUTER SCHEDULING

3. ]. INTRODUCTION

3.1.1 Definitions

3.2 MONOPROGRAMMED SCHEDULING

3.3 MULTIPROGRAMMED SCHEDULING

3.3.1 Uniprocessor Multiprograrmed Schedul ing

3.3.1. L Low-Level Schedul ing

3.3.1.2 High-Level Schedu'ling

3.3.2 Adaptive Scheduling

3.3.3 Performance Criteria

3.4 CONCLUSIONS

SECTION 4. APPLICATION OF VARIABLEJIETRIC DYNAMIC

PROGRAMMING TO HIGH.LEVET SCHFDULING

4. I INTRODUCTION

4.? THE PROBLEM

4.2.L The Approach Adopted

4.2.2 The Existing System

4.2.3 Proposed Extensions

4.3 THE APPLICATION

4.3.1 The Dynamic Prograrnning Formulation

4.3.2 The Use of Feedback

4.3.3 Implementation

4.4 RESULTS

4.4.L Analysis of Overall Performance

4.4.? Analysis of Batch Queue Service

4.5 CONCLUSIONS

SFCTTON 5. CONCLUSTONS

BIBLTOGRAPHY

page

40

40

4L

44

45

46

46

51

55

58

62

63

53

65

67

68

7L

73

73

80

82

88

89

92

9B

99

103



LIST OF FIGURES

Fi gure

2.1 Flowchart of the Variable Metric Algorithm

2.2 Converged Trajectories for Three of the Solutions

3.1 Process States in a Multiprogranmed System

4.1 Distribution of Idle Time - Manual Control

4.2 Distribution of Idle Time - Program Control

4.3 Queue 5 Vs. Queue 3 - Manual Control

4.4 Queue 5 Vs. Queue 3 - Program Control

4.5 Queue 7 Vs. Queue 3 - Manual Control

4.6 Queue 7 Vs. Queue 3 - Program Control

4.7 Queue 7 Vs. Queue 5 - Manual Control

4.8 Queue 7 Vs. Queue 5 - Program Control

LIST OF TABLES

Tabl e

Comparison of the Basic Algorithms for a Simple

Non-LQP Problem

Comparison of the Modified Algorithms for a Simple

Non-LQP Problem

Convergence of the Variable Metric Algorithm for

N = 5, 10, and 20

Convergence of the Variable Ftetric Algorithm for

N = 300 50, and 100

page

18

37

43

91

91

94

94

95

95

96

96

page

29

30

35

36

?.1

2.2

2.3

2.4



-1-

SECTION 1.

INTRODUCTION AND OVERVIEt,J.

Operations Research is a relatfvely young science which has

nevertheless produced a wealth of results and useful applications in

the modern world. Computer Science is an even younger science which

has grown rapidly since its inception, and shows no signs of slowing

down its growth rate. This thesis discusses research involving a

blend of disciplines from these two sciences, namely Dynamic

Programming from Operations Research, and Multiprogrammed Scheduling

from Computer Science.

Dynamic Programming is an 0perations Research technique which

has a number of significant applications. However a limiting factor

in the practical application of Dynamic Programming to problems of a

rea'listic size has been the large amounts of computing resources

required for the implementation, the well-known 'curse of

dimensionality' of Dynamic Progranming. This research is directed

towards the development of an iterative algorithm which, by using

Variable Metric minimisation techniques to solve the unconstrained

N-stage decision problem of Dynamic Progranrning, promises to achieve

savings in both computation time and high-speed storage compared with

the traditional solution algorithm. This new algorithm thus helps to

widen the size range of real problems for which Dynamic Programming

may be applied as a general solution method.

The new algorithm is demonstrated by applying it to a problem in

controlling a multiprogrammed computing system. The use of Dynamic

Prograrrning, and in general any form of Mathematical Prograrnming, in



-2-

computer operating systems is a research direction which shows great

potential. This is particularly true for the investigation of dynamic

feedback algorithms, since Mathematical Progranming techniques provide

a means of formalising the feedback mechanisms, which have previously

been characterised by ad hoc arguments. The application chosen

involves the dynamic control of those scheduling parameters which

affect the relative levels of service provided to different classes of

batch customers with the goal of providing 'equitable' service, at the

same time controlling the degree of mu'ltiprogranming in an attempt to

help optimise overall performance. These parameters were previously

set and modified by the computer operators on a much'longer time

scale, but with essentially the same goals in mind. This application

is an excellent demonstration of how Mathematical Programming may be

used for scheduling multiprograrrned computing systems, and of how

Dynamic Programming in particular may be used for optimising a

composite of two or more performance criteria using dynamic feedback.

The following section begins by presenting the unconstrained

discrete-time Dynamic Progranrning problem, the standard Dynamic

Programming so'lution method, and a brief resume of an iterative

solution method, the Differential Dynamic Prograrnning (DDP) solution

method. Then the new Variable Metric Dynamic Prograrming (Vl'lOp)

iterative solution method is developed in detail. The algorithm uses

quadratic approximations to functions as a method of storing

information between iterations, with Variable Metric minimisation

techniques being used to generate these approximations. Imp'lementation

details are discussed, and then the new solution method is compared

with the DDP solution method, which turns out in some respects to be

a special case of the former. This means that the new VMDP solution



-3-

algorithm is able to cope with more complex problems than the DDP

solution algorithm. The new algorithm is then proven to be

quadratica'lly convergent with one-step convergence for the problem

with linear constraints and quadratic criteria (tfre lQp problem).

Results from solving some simple non-LQP problems show that the VMDP

algorithm converges faster than other existing algorithms. Further,

an analysis of the VMDP and the DDP algorithms shows that

computationally the new algorithm is no worse than the DDP algorithm.

As a lead in to a practical application of this new solution

algorithm, Section 3 presents a brief survey of Computer Scheduling.

The survey concentrates on multiprogrammed scheduling in a

uniprocessor environment, although monoprogrammed schedu'l ing and

multiprocessor scheduling are both mentioned. Uniprocessor

multiprogramned scheduling is divided into low-level schedul'ing and

high-'leve1 scheduling, then each of these is further subdivided into

processor scheduling and more general resource scheduling. Adaptive

scheduling is given special mention, since this is a relatively new

but potentially fruitful discipline. Finally, performance criteria

are discussed, since any scheduling implementation must be based on

attempting to optimise some performance criterion.

Sectjon 4 then discusses the application of the VMDP algorithm'

as proposed in Section 2, to a problem in scheduling a multiprograruned

computing system, and the implementation of this on a batch and

interactive computing system in a university environment. The problem

studied is a high-1evel (iob-scheduling) problem in which the

decisions made affect when batch iobs are started, and how many jobs

from each of the different iob classes are to be active together.



-4-

This is proposed not as a replacement for any part of the existing

scheduling mechanism, but as an extension to it. The exist'ing high-

level scheduling mechanism, which consists essentially of a set of

static, operator settable, scheduling parameters, is described and

the proposed extensions, which provide a mechanism for modifying some

of these parameters dynamically, are outlined. Then the problem to

be solved is formulated in Dynamic Programming terms, and the

functions and variables used, both inputs to and outputs from the

solution process, are defined in terms of information available from

or required by the existing scheduling mechanism. Further details of

the specification of the Dynamic Progranming problem are then

discussed, along with details of how the results of the solution

process are applied on a dynamic basis, and how all this is

incorporated into the ex'isting operating system.

Experimental data collected to test the effectiveness of using

the extended scheduling mechanism are presented and analysed. The

analysis concludes that the implementation has been successful in

providing 'improvements in performance in those areas with which the

chosen composite optimality criterion is concerned. In particular, a

small but significant improvement in processor uti'lisation is achieved

as well as larger improvements in the predictability of the relative

service delivered to the different classes of batch iobs.

Section 5 consists of a summary of the main results and findings

of the research performed, and a discussion on the implications of

these for further research. This is followed by a bibliography,

consisting mainly of references for the survey of section 3.



-5-

SECTION 2.

A PARALLEL VARIABLE METRIC DYNMIC PROGRAMHING ALGORITHM.

2.7 INTRODUCTION.

The N-stage decision problem of Dynamic Progranming is concerned

with a system which at any instant may be described by a vector, known

as the state vector, and a set of N decisions, each of which is

specified by a vector, known as the control, or decision, vector. The

problem is to determine the optimal sequence of N decisions which

transforms the system from an initial given state (at time 0), to a

generally unknown final state at time N. The way in which a decision

affects the state of the system during a transition from one stage to

the next is exactly determined by a transformation function, which

specifies, for each stage, the new state of the system, as a function

of the current state and the decjsion apDlied at that stage. The

prob'lem may also have further constraints imposed, in the form of

ljmits on the va'lues of the state and control vectors. The optimality

of the solution is based on a cost function which is a sum of

functions, one for each stage, each being a function of the state of

the system and the decision applied, at that stage.

The standard solution method for this type of Dynamic

Programming problem involVes, at each stage, selecting a number of

discrete values for each component of the state and control vectors,

and, for each different value of the state vector, calculating the

cost of every possible decision which could be taken from that state.

This results in an algorithm whose computational requirements vary

in proportion to dn*t, where d is the number of different values of



-6-

each component of the state and control vector, and n' m are

respectively the dimensionalities of the state and control vectors.

This gives rise to the so-called'curse of dimensiona'lity' of Dynamic

Programming, whereby problems that are solvable in theory may be iust

too large to be handled by the available computing resources. This

failing of the standard solution method has resulted in a search for

other solution methods, usually iterative, which are not as prone to

the dimensional ity problem.

The use of Variable Metric minimisation techniques in solving

the unconstrained version of this problem promises to achieve savings

in both computation time and high-speed storage compared with the

standard algorithm. at the same time alleviating the 'curse of

dimensionality'. The algorithm proposed, which is essentially an

iterative second-order gradient method, has the property of finite

convergence for the LQP problem, and involves the generation of a

quadratic approximation to the optimal cost function as a function of

the state vector at each stage. Variable Metric minimisation

techniques [107, 108] are used to generate the information necessary

to make this quadratic approximation to the cost function in a region

around a nominal (non-optimat ) trajectory. The quadratic information

is then used to update the trajectory in such a way that an overall

reduction in the cost function is achieved. The particular Variable

Metric method used is that which involves a synrnetric rank-l update

formula, which allows the generation of quadratic information without

actually performing a minimisation at each step. Furthenrore, the

implementation of this particular method resu'lts in an inherently

parallel algorithm which is therefore all the more powerful.



-7-

A similar iterative second-order gradient nrethod, known as

Differential Dynamic Programing, has been proposed by Jacobson and

Mayne t87,1021, and this turns out in some senses to be a special

case of the new algorithm, for the discrete time version. It must be

noted here however that the Differential Dynamic Programming solution

rnethod has been extended to the continuous time problem, whereas the

new algorithm is at present considered only in the context of discrete

tinp decisions. In this section, the differences between and the

similarities of the two algorithms are outlined, as well as possible

variations for the new algorithm.

The subscript and superscript notation used for this section is 
I

defined as follows

Vf(\, !*) is a function of two variables, defined at time k.

UIt+, !*) is the first partial derivative of this function with

respect to the variable Ik,

lr
VXu(1u, g*) is the second partial derivative of the function

with respect to 4 and gU.



-8-

2.2 BASIS OF THE METHOD.

2.2.1 The Problem and the Dynamic Prograrruning Formulation.

The unconstrained N-stage decision problem is presented as

follows 
N-l

find totltrl = minimum , t nio 
Lr(4., q) + r(\) ) , (2.1)

" {h,..'!h-1
the corresponding sequence of contro'ls {$, !f, ...'$,-t) '

and the corresponding traiectory {h, 8f , \} ,

where h = q and l1a1 = E(L, !1) ,

with 1* = (Ii, Ii, ..., {t and g* = (yi, gi, ..., ufil ,

the circumflex '^' denoting optimal values.

Application of the Principle of Optimality t87l results in the Dynamic

Prograrnming iterative equation

tot4) = minimum Lr(q, q) * 0r*r(lr(\, !u)) ,
gk

for k = 0, 1, ..., N-l ,

with the boundary condition

t*tl'ol = F(\) .

2.2.2 The Standard Solut'ion Plethod.

(2.2)

The first step of the standard solution rnethod for the above

prob'lem invo'lves the discretisation of each component of the control

vector, and each component of the state vector (if these are not

already discrete-valued). The iterative equation is then solved for

k = N-1., N-2, ...,0, evaluating and storing tk(4) for each of the



-9-

quantised values of \. Each of these evaluations involves the

computation of the expression

vr(\, gk) = Ll(\, !k) * 0r*r(&(+, !k)) (2.3)

for each of the quantised values of Llk, and determining the minimum.

The va'lues of tt*f(.) are determined by interpolating between the

stored values ot tn*1(q*1) from the calculations for the previous

value of k. For each value of 0*(4.) stored, the corresponding

minimising control (denoted by q(4)) rnust also be stored. The

optimal cost is then simply to(l)n and the corresponding sequence

of control s and trajectory are found from the equations

qn = q.(&) '

&*1 = L(&' qk) ,

&=g'
where the evaluation of Q(Q) nnay involve interpolation between the

stored values ol Q(4).

2.2.3 The Differential Dynamic Progranming Solution Method.

The Differential Dynamic Programming method of solution is

iteratiVe and hence requires a nominal sequence of controls, denoted

by {!0, !1, ..., h-t}, fron which is calculated a nominal traiectory

denoted by &, If , ..., i*], using the equations

$=q,
(2.s )

-u 
=f (- - \

Ik+r - qt\' !k/

The nominal cost for this sequence of controls is calculated from the

express i on

(?.4)



-10-

N-l
Vo(h) = 

rlo 
Lr(r*' E) + r(rs) . (z.e)

The next step, the fir st of the iterative prccess, involves the

callculat'ion of the pararneters: gk and Bp for k = N-1, N-2' ..., 0 fron

the recursive set of equations

g*=-c[l.H[ , Bk=-cil.Bk , Q.7)

rlnere Ho(4, !*, !) = Lt(I*, gk) * Lt.q((rk, uk) '

Ak = HI*(lr, !n, uX*t(r**rtt * (rl)'.nlitt**r).tl '

Bk = r[,0(4, ,0, ul*tt&*r) I * (r[)'.ofittu**r).tf ,

ck = r[u(rr, !.., ul*t(&*rll * (rl)'.u$t(ru*rl.r[ '

v[ = HI(l*, o*" ol*t(.q*r)) * s[.HI({, gk, vl*lrio*rtl ,

and vl* = Ar - s[.ck,Bk

with the boundar:r conditJons

vltAl = F*(ix) ,

and v|*tal = F*n(ia) ,

atl uRspecified arguments bei,ng Ik, g*

The second step of the iterative process invslves calcu]ating

the neur traiectory and sequence of conttnols from the equations

6!0 = sq6 ,

0g{, ="gk+tsfdIk , (2.8)

61,*f = q.(Ik + 64, g* * 6,\) - \+f

where e>0 is a sca:lar re,guired to ensure that the quadrratic i,nformation



- 11-

VL
inherent in V| and Vl* is accurate enough. The scalar E, where

0<E<1, limits the magnitude of the departure of the new trajectory

from the nominal trajectory (for whicn V! and Vl* are calculated).

The newly generated sequence of controls is then taken as a nominal

sequence, and the iterative process is repeated.

2.2.4 The Variable Metric Sol ution l4ethod.

The Variable Metric method of solution is also an iterative
process, requiring a noninal sequence of controls from which a nominal

trajectory and norninal cost are calculated as in equations 2.5 and

2.6 for the Differential Dynamic Progranming method. Then for each

iteration of the process, a new cost function is developed and saved

in the form of a quadratic approximation for each stage k, where

k = 0, 1, ..., N. These are then used to generate a new nominal

sequence of controls and a new nominal trajectory for the next

iteration. This process is repeated untjl some criterion for

convergence is satisfied.

(2.s)

(2.10)

is determined as a quadratic approximation around the point Ik. Note

that since ulf is a function of 4, the function I[ is in fact a

function of 11 on'ly. To define the function gi(E), consider the

Given the nominal sequence of controls {%, gf, ..., g,._r}, the

nominal trajectory &, it, ..., \], and the nominal cost VO(!O), a

new cost function, namely

It(ln) = Lk(lu, gi(\)) + rt+r(L(rk, gi(4,)))

with the boundary condition

Iil(\) = F(l,r.)



-L2-

similar opt'imal cost function which is generated for the standard

solution method, namely

0otq) = 
Un 

{Lk(\, !k) * tk*r(!,(+, u*))} (2. 11)

which could also be written as

0r(\) = Lr(\,\(\)) * tr*r(tr(+, e(q))) ,

where Q(Ik) denotes the m'inimising \, which is implicitly a function

of Ik. The differences between the two cost functions are that gil(\)
is not a minimising contro'|, but rather a control which tends to

minimise the cost function I[, and that the values for I[*r(.) are

obtained from a quadratic approximation, rather than from

interpolation between grid points, as are the values tor t1*1(.).

Thus there are two major oarts at each stage k for each iteration of

the Variable l€tric method, namely the determination of the function

gi(+), and the determination of the quadratic approximation to t[(4)
around the point IL.

Using the boundary condition 2.1.0, and given the quadratic

approximation to It*t(I**f ) around &*t, namely

(2.t2)

(2.13)

a new function

I***r(In*L) = ak*l * (I1.*r - &*r)lgr*r *

%(\*r - 4*r)THk+l.(\+1 - lu*r)

the functlon qi(4) is determined as follows. Define

Ik(. , .) as

It(\, !*) = Lr(\, u1) * I[*r(tr(4, u1)) ' (2.14)

noting the sirn'ilarity between this and

standard solut'ion method. Now g'iven a

state vector at stage k, the function

the cost function 2.3 in the

fixed value, Sdy d, of the

IO and its derivative



- 13-

dlk/dg{ are calculated for m+1 different values of gk in a suitable

neighbourhood of g+ (r being the dimensionality of gU). Variable

Metric techniques are then used to build up an approximation to the

inverse hessian of IO in a neighbourhood of the point !*, *ith 4*

be'ing fixed ut 4. From this, the 'variab'le metric direction',

o!*(Ii) is calculated from the expression

u!*(4) = -r;l (4).ru (4, sk) '

-'lwhere Iri denotes the inverse hessian. This is the direction that

a Variable Metric minimisation would calculate'in attempt'ing to find

theminimumofl'i 'i ^
k(\, \) as a function of !k, given that the present

value of g.k it y*. This then determines one value for the function

g{(If.), from the expression

(2.16)

point q.(4, s[(4)),

at which lfi*t would be evaluated, is close enough to the point Ik+L'

around which the quadrat'ic approximation to I[*t has been made, for

the approximation to be valid. The use of this scalar cr has a

similar effect to the 'region limit'ing strategy', reported by Arora

and Pierre t9l. This evaluation ot OU1(d) is repeated for a tota'l

of n+1 different values of 1u, such ut 4, in a suitable neighbourhood

of & (n being the dimensionality of 4), to generate a linear

approx'imation to the function as

6s*(1u) = E * B[.(4 - 1*) * oll\ - &ll'

'1. t'1.!i(\) = !L + oogk(xk) '

where a, 0<s<1, is required to ensure that the

(2.15)

(2.17)

equati onThis serves to provide a linear approximat'ion to U[(4) from



-14-

2.16. Note that the vecto. gk is not related to the scalar cr.

l.le now have the situat'ion where the function I[(4) in equation

2.9, which is merely the function Il(\, gk) evaluated ut g* = yi(\),

can be eva'luated apDroximately for any value of 1U. Also, since

It+t(.) is a quadratic expression and g{(+) is linear' dl[/d4 maV

also be evaluated. This is detailed in section 2.3.2.1'. The

algorithm now evaluates I[(\) and its derivative at[/a4 for n+l

different values of \ in a suitable neighbourhood of {, and uses

Variable l'letric techniques to build up gradient and hessian

inforrrration which wil'l serve to approximate tt(q) to second order

about !U. The values of 1U chosen need not necessarily be the same

as those chosen for generating the linear approximation to oU*(4r)'

but some computation time is saved and sonne accuracy retained if they

are the same.

This whole process of generating a quadratic aoproximation to

til(q) about & it repeated for k = N-1, N-2 , 0, to complete the

first step of each iteration. In the second step of the iteration'

a new trajectory and sequence of controls are calculated as follows

6qO=.% ,

6g*=r(9r*8il6\) , (2.18)

dlr*r = &(1* * 61n, U + 0Uu) - \*r

Again the scalar e, 0<a<1, is used to'limit the maqnitude of departure

of the new trajectory from the nominal trajectory so as to ensure



-15-

the accuracy of the quadratic approximation, thereby resulting in a

decrease in the value of the cost function. Note the exoression used

for 6gU is slightly different from that used in the Differential

Dynam'ic Programming nrethod, equations 2.8, this particular expression

being chosen for its similarity to expression 2.16 for evaluating the

function gji(Ik), in which the scalar o is used to lirnit the deviation

from the nominal contro'|. The generation of a new traiectory and

sequence of controls completes one iteration of the a'lgorithm' at

which point a test for convergence is perforrned if necessary.

The particular Varjable Metric update formula used in the

algorithm is the symmetric rank-1. update formula as discussed by

Murtagh and Sargent [108]. Starting with the identity matrix' a

sequence of inverse hessian matrices is generated from the expression

si*l = si * (gi - sili ). (ai - S.i9.i fitsl. (gi - s.,ti )) (2. 1e )

where g.i = !.ia1 - xi ,

and 9i = 9i+l - 9i ,

gi being the gradient of the function of x at the point

Similarly, a sequence of hessian matrices, resulting in

approximation, may be generated from the expression

Hj*1 = Hj * (q-j - Hjpj ). (15 - Hjpj l'ltai. tq - Hisi) )

x1 .

a quadratic

(2.20)

9i for 2.19.where p; and g5 are defined in the same way as gi and

It is the use of this synnnetric rank-l update formula that

allows the quadratjc information to be developed from an arbitrary

set of grid points in a neighbourhood of the point of interest. This

is in contrast to most Variable Metric update methods, in which each



- 16-

new point considered must be a point which has been generated from

the existing quadratic jnforrnation, and must be some point which is

closer to the minjmum of the function than all previous points

generated, closer being in the sense that the function value is less.



-17 -

2.3 PROPERTIES OF THE VARIABLE METRIC ALGORITHM,

2.3.1 Flowchart of the Alqorithm.

Figure 2.1 indicates the method of the Variable Metric algorithm

in flowchart form.

2.3.2 Implementation Details.

2 .3 .?. 1 Cal cul ati on of Gradi ents ,

Variable Metric minimisation techniques require that whenever

an evaluation of the function to be minjmised is carried out, gradient

information must also be determined. The Varjab'le Metric Dynamic

Prograrnming algorithm, although it does not minimise the functions

which are treated with Variab]e Metric technictues (and hence does

not use the actual function values) does require this gradient

information in order to construct the hessian for the quadratic

approximation. A property of the a'lgorithm is that provided that

the necessary functions Lt(\, g*), &(rn, gk)o and F(1..',') have

analytic first derivatives, no extra computation in the form of

numerical differentiation is necessary to determine the required

gradients. It must also be noted that no second derivatives are

used in the computations.

In the case of finding the quadratic information for It(\' !*)

as a function of gu (in order to determine the direction og*(4))'

we have



-18-

ntrol s. tra.iecto

ind I1({, \
and gradient
w.r.t. u*,
update Sr.

rina l[({)
gradi ent

w.r.t. l<1,

update H,

and BO.

ximati
to I[(\).

sol uti on
converged?

Figure 2.1 Flowchart of the \6riable lvletric Algorithm.



-19-

Ir(r*, q] = Lr(r+, gk) * ak*t * (&(q, s*) - rr**r)h*t *

b(fa(4, q) - A*r)IH**r.(!i(*' gi) - l*tr) *

ollf*(r*' q) - &*111" 1z.zt)

resulting in

rllU/dg, = Lr(41, gk) +

fo(4, U).(grr*r * Hk*l"(q.(Ik" q.) - &*r)l *

oll&(r*' uk) - &*rll', (2-22t

which may be calculated analytica'lly to the required accuracy.

In the case of flndin,g the quadratic information for I[(4) as

a function of 4, in ordei' to bu'ild the hessian natrix, we have

atfi/o4 = Ig(4) + (ug/dr1).Iil(&) (2.,23)

A'lso, for the linear approxiination to dgk at a funetion of I*' as in

Z.lV, we have

69+(4.) = 6s+(Ik) * (& - lo)To* * olh* - I*ll' (2-241

where St = dd!*/-uap(4) ,

Now

dgildrk = oddulld4(4)

= er(dd$a4(Q) * ollrr< - I*tl)

wftere 6 rs rhe.r;:|.r;trl] ,;rs hken ro senerare the n+l di,rrerent

va.'!ues of Ik in a neighbourhood "f &. Thus we have

dlfil-d\(E) = l[(4) + oek.tfi(u) + o(ad) , (2.251

wh:ich may be calculated analytfl'cally. Note that fo.r the LQP problem'

ry(q) is zero,, as iis the error tenn si'nce Ogk(Ik): 'fs ,linear and hence



-20-

a0g*/dlk(\) is in fact constant, that is, it is jndependent of 4.

2.3.2.2 Parameter Settjng:.

In the Variable Metric algorithm, there are several parameters

which must be initialised, and may be altered during the ca1culations.

The most important of these is the parameter or, 0<r<1, which is used

in expression 2.16 to limit the difference between the nominal

controls and the new'ly calculated controls. As required in section

2.3.3.1, this variable must be set to, and remain constant at' the

value 1.0 for the one-iteration convergence of an LQP problem. For

other prob'lemso other values may be used for the initialisation and

further, the parameter may be varied between iterations, and even

within a single iteration if desired. A reasonable value for this

parameter is c = 0.5, although values closer to o = 1.0 may be used

successful'ly for prob'lems which are'almost' LQP problems, such as

that discussed in sectjon 2.3.3.2. If u is not kept constant at

unity, then there must be some mechanism whereby the value ass'igned

to cl tends to 1.0 as the iterative process converges. The reason for

this is that when the nominal trajectory is near to the optimal

trajectory, then the changes jn the traiectory and in the controls

from one iteration to the next will be smal1, provided that the

functions used are differentiable. This allows the size of the

neighbourhoods chosen around the points on the traiectory and around

the nominal controls to be small, resulting in a more accurate

quadratic approximation. Now as the approximation becomes more

accurate, it becomes more desirable to treat the problem as an LQP

problem, and hence the value assigned to cx should approach unity.

gne such mechanism for letting o tend towards unity as the iterative



-2I-

process converges is to give to cr the Value of the scalar variable e

which results from the previous iteration, since the value of e

needed for a function decrease does in some way reflect the accuracy

of the quadratic approximat'ions used, Furthermore, the two scalars

o, and e perform similar tasks, both being used to restrict the

deviation from the nominal controls, as may be seen by comparing

equations 2.16 and 2.18.

The other parameters used are those which determine the sizes

of the ne'ighbourhoods around the points U1 and {, which are used

respectively for the generation of the direction 6U,.(1) and the

quadratic approx'imat'ion to the function I[(4). For an LQP problem'

the values used for these parameters are of no analytical consequence,

since exact expressions are generated 'irrespective of the sizes of

the neighbourhoods, although numerical accuracy does need to be taken

into account when assigning these values. For non-LQP problems' some

benefit may be gained from varying the sizes of the neighbourhoods

used. The best values that could be used are those which result in

neighbourhoods which iust containn at each stage, the new values of

the trajectory and control Sequence resulting from the current

iteration, so that the region in which the quadratic inforrnation is

appropriate contains the new traiectory. The rnain difficulty in

achieving this lies jn not being able to predict future deviations

from the current nominal traiectory and sequence of controls.

However it wou'ld generally be the case that these deviations become

smaller as the iterative process converges, which means that the

observed deviations resulting from the previous iteration could be

used as estimates for the deviations resulting from the current



-22-

iteration. This still leaves the problem of choosing initial values

for these parameters, although since it is not necessary that the

neighbourhoods used do contain the new trajectory and sequence of

contro'ls, any small value, sdy 0.01, is likely to be a reasonable

choice. In any case, the va'lues of these parameters wou'ld tend to

be self-regulating if the above method for modify'ing the parameters

is used. If the initial values chosen are too small, then the

quadratic approximations would be more accurate than necessary'

permitting deviations to occur outside the ne'ighbourhoods, thereby

increasing the sizes of the neighbourhoods for the next iteration.

Simi]ar1y, if the initial choice js too 1arge, then the lack of

accuracy in the quadratic approximations would necessitate smaller

deviations to obtain an overall cost function decrease, thereby

decreasing the sizes of the neighbourhoods for the next iteration.

However it is possible that when the injtial choices are too large,

they may be so much too large that the quadratic'information is too

inaccurate to result in any cost function decrease, no matter how

small e is chosen. If this does occur, then the parameters must be

reduced in size and the iteration repeated. Also it is possible

that the use of inaccurate approximations may lead to a non-optima'l

solution. For this reason it would be better to err on the small

side when supplying the initial neighbourhood parameters, since at

worst this would tend to involve quadratic information at a point'

as does the Different'ial Dynamic Progranrning algorithm, rather than

in a region around a point.



-23-

2.3.3 A Comparison with_Lhe Differential Dynamic Progranuning

Al gori thm.

The maior difference between the two algorithms is that the

Variable Metric algorfthm uses the scalar o,O<osl., in building up the

quadratic information for the cost function at each stage, as well

as the scalar e in the second part of each iteration, where the new

nominal controls are generated. In addition to, but partly as a

result of this, more pertinent gradient information is available for

the generation of the hessian matrix for the cost function at each

stage. This means that the Variable Metric algorithm is ljkely to

be able to cope with more complex problems than the Differential

Dynamic Prograrming algorithm. However, for the LQP problem, the

two a'lgorithms generate and use identical information; in fact the

two algorithms are theoretically equivalent for the LQP problem,

provided that o = 1.0 in the Variable Metric algorithm.

The generation by the Variable Metric algorithm of more stable

quadratic approximations in the sense that informat'ion is gathered

over a region rather than at a point, does occur at the expense of

a larger number of function evaluations and floating point

multiplications (either of these being useful as a measure of the

computer time required to solve a problem), although storage

requ1rements are essentially the same. Also, the inherent parallelism

of the new algorithm al'lows for faster rea'l-time solutions to be

obtai ned.



-24-

2.3.3. 1 One-Step Quadratic Convergence.

The unconstrained LQP problem has the property that the functions

tr(+, !.k), Lt(\' gu), and r(\) are respectively linear in & and q'
quadratic in 5U and !U, and quadratic in 5. This results in the

existence of a general quadratic recursion formula for the hessian

of second derivatives of the cost function as a function of the state

vector at each stage. This in turn leads to the one-step convergence

of the Variable Metric a'lgorithmo since the cost function may be

determined exactly for each stage, provided that the scalar a of

expression 2.t6 remains constant at unity.

2.3.3.1.1 General Quadratic Recursion Formula for the Hessian

of V,-(- \rak' '

Theorem 2.1 Given the properties of the LQP prob'lem' the cost

function at each stage is quadratic in the state

vector.

The proof is by induction.

Given t*(q) is quadratic in 1,..

Assume tt*t(\*r) is quadratic in l<n*t, that is, assume

tn*r(\*r) = ap+l * (r**r - &*r)Tg**r *

u"(r**l -\*r)THr+r'(\*r-&*r) , (2'26)

where dk+l = 0t*t(&*r) ,

e*+t = 0l*1(\*1) ,

and tO*, = 0llt n which is the constant hessian matrix-



-25-

Now, from equatlon 2.2

tnf4) = minlpurn Gr(\, gk) * ak*t * (&(+" ux) - \*r)T-gk*r *

a(fa(4, gk) - Es*r)IHr*r-( b*, u1) - 4*r)] '

(2.271,

PerfOnnlng the m'inimisation with respeet to qr, and drropping the

subscript k for convenience of notation,

0(l) - t-(x, g) + 0k+1 + Fki 0) - Ir<*r)T&or *

L"(f(& 0) - r**r)T'ltk*r.(r$, il) - E$1) ' V.281

where g = g(l) is a function of x, which satisfies

Lu(x, x1 + fo(x, q).(sj+r * Hk*1.(flx, !) - &*r)) = 0 .(2.29)

Differentialing with respect ts x

oslol = L*(x, 0) + fx'(sf,+t * Hk*l.(r(x' !) -

d[/dL. (Lu([, L) + fr. (g**r * Hk*l. (f.'(l'

(2.30)

Substituting frsn 2.29

otlo4 = Lo(&, 0) + r*.(g**r * Hk*1.(!(I' q) - &+1))

Df ffe,rent:r'ating again, ttot{ng that fn is constant slnee f is

ar0fA!] ,= Lno * f*.Hk+l.f[ * dg/dx.(t*o + fu.lfk+t.fl)

Differ.ent'iating ?.29 with respect to 5n

@.1dI = -(Lxu

Thus 2.32 becomes

* fr.Hk*t.rl)T{lr, +

noting that f, ls constant

fu.1{k+1,fl)-1 (2.3,l)

, (2.31)

I inear

. (t.32)

t.r,Hj*1,{)

(2.34)

d2t7a42 = L** * fr.Hk*l ri -
(Lxu + fu.Hk+t.fl)l(Luu + fr.Hi+1.{)-lfr-*u *



-26-

Now since L is quadratic in ! and u, L*r, Lxx, and Lru are all

constant, hence dl|-/dxz is constant, that is, 0p(4) is quadratic

in It with constant hessian matrix

Hr=LI**rl.Hk*l.t|'-

(rl, * rl.ro*r.rl')Itrfu * rl.Hk*r.r['t-ltLIu * tl.t**r.tl')
(2.35)

This completes the proof by induction, having developed the recursion

formula 2.35 for the hessian of tO(q).

Note however that for a solution to the problem to exist, the

sequence of Hn must be positive semi-definite. A necessary condition

for this to occur is that the expression

LIu * {.Hn*r.rl'
be non-singular for each stage k.

2.3.3.1.2 0ptimality of q{ when a = 1.0 for the LQP problem.

Theorem 2.2 Given the properties of the LQP problem, and that

the direction 6g+ is found from equation 2.15' then

the control gi = q. * odg* is the optimal control

for the given IU when cr = 1.0. Further, the

linear function 691(\) of equation 2.17 produces

the optimal policy g{(}+) = E * dgk(Ik).

The proof once again relies strong'ly on the properties of the

functions Lf (&, U1) and 1,.(4., g*).



-2V-

rf L*(rb" gk) is quadratic in g*, then tftE, q) is linear tn g*.

Dropping the subscrlpt k for convenience again, thJs lmplies

Lu(x" rr) = Lr(x, -[) * tru.,(u - L) , (2.36)

where Lu, it constant.

Similarly,

!(x, g) = !(x, [) * r,]"(g - [) , (2.ll7J

where f, is constant.

Substituting ifito equatlon 2.29'

Lu,(L, u,) + rr.(g**l * Hk*t.E(1, u) - i;,+r!:) +

(Luu+fu.Hk+x.fll.tl-[]=0 o (2.38)

that is

g. - g = -(Luu * fu.Ht*x.t[t'l

1lr(l' u) + rr.(&*r + H*n1.(!(1, !.) - Ik+l))) -(2-3e)

This is expresslon 2.15 for \(fx) (r'estorin,g the subscript k)'

that is
(?.401

,Hence gfiE) - E * 6g+(Ik) is the optimal contrsl.

From 2."38, (0, - [.) iu 'linear in L", slnce Lu and I are linean i'n x'

and Luu and fo are co.nstant. Thus the function 6\(q), defined as

ok(+)=EuE)-E, (2.41)

is linear in l*. From 2,40, 6gf.t&) = Ok(4) fon n+l values of xn'

and hence the two functions are identical (since a llnear function of

a vectsr of dtimension n is uniquely de.termined by n+l valu€s,)" This

leads to the regulred result that q[(4) = 4 + ogk(Ik) is the sptinal

policy'function at each stage.



-28-

The results of theorems 2.1 and 2.2 combine to prove that the

Vari abl e Metri c al gorithm wi I I converge to the optirna'l sol uti on i n

one iteration for the LQP problem, provided that a = 1.0. From

theorem 2.1 the cost function is determined exactly for each stage

(providing a solution exists), and from theorern 2.2 the algorithm

viill generate optimal controls for the given cost function, and will

also build up the optimal policy function for each stage. The

application of the opt'ima1 poljcy function will lead to the optimal

traiectory after the first iteration of the algorithm.

2.3.3.2 Results from a Simple Non-LQP problem.

To demonstrate the differences between the two a'lgorithms, a

simple non-LQP problem was solved using both algorithms, and a

comparison made of the results. The prob'lem solved was the following

10
minimi'" 

o!; ilqil, + u[ + ltrls - [3]l' ,

and 1o =0

Note that the problem is formulated as two-dimensional in the state

variable, although because of synrmetry it is essentially a scalar

problem. For both algorithms, the nominal control sequence was taken

to be

ilk = 0 , k = 0, 1, ..., 9 ,

this leading to the nominal trajectory

ir, = 0 , k = 0, 1, ...' 10 '
with a nominal cost

subiect to \*1 = \ * ,- ll] ,



-29-

VO = 162

Table I shows the convergence of the two algorithms, through the

values of the nominal cost VO, and the scalar e producing it.

terati on

Differential Dynamic

Prograrming

l,voE

Variable Metric Dynamic

Prograran'ing

vo

nomina'l

1

2

3

4

5

6

7

8

162.000 000

116.753 906

87.150 405

77.465 5?6

73.sLL 723

73.18t 220

73.t74 4r0

73.r74 405

73.L74 405

0.2s

0.50

1.00

1.00

1.00

r.00

135

133

162.000

78.070

73. 184

73.L74

73.t74

73.r7 4

000

810

2?4

405

405

405

1.00

1 .00

1.00

1 .00

86

133

133

Table 2.1 Comparison of the basic algorithms for a simp'le non-LQP

probl em.

The Differential Dynamic Prograrrning method of solution was

programmed by the author following the algorithm proposed by

Jacobson and Mayne ( in t87J, Pag€ 112), with the exception that

computation was halted when the re'lative change in the nominal cost,

AV0/V0, was less than 10-9, this being the convergence test for the

Variable Metric al gorithm.



-30-

For the Variable Metric algorithm, the parameter o was

initialised to the value 0.75, and updated to the value of e

resulting from the previous iteration. The neighbourhood parameters

were initialised to (f + t)/S, k = 0, 1, ...,9, where k denotes

the stagen for each component of the state vector, and the control

variable. These were updated to the abso'lute values of the deviations

occuring at the previous iteration, with a minimum of 10-6 imposed,

this being necessary to ensure a non-zero radius for each of the

neighbourhoods, since in particular the deviations occuring at staqe

k = 0 are always zero for the fixed initial value problem. Both

algorithms were then varied so that at each iteration, the cost was

minjmised with respect to the variable e (see section 2.3.5). Table

2.2 shows the resu'lts of app'lying the two modified algorithms to the

terati on

Differential Dynamic

Programmi ng

l,uoe

Vari ab1 e Metri c Dynami c

Progranrni ng

voe
nomi nal

1

2

3

4

5

6

7

162.000 000

113.842 344 0.213 353

B4.BB1 758 0.431 117

74.6L9 551 0.685 409

73.204 9r9 0.945 010

73.t74 427 1.0

73.174 405 135 1.0

73.174 405 133 1.0

162.000 000

78.070 810 1.0

73.784 224 1.0

73.t74 405 74 0.997 010

73.L74 405 133 1.0

73.774 405 133 1.0

Table 2.2 Comparison of the modified algorithms for a s'imple non-LQP

probl em.



-31-

same simple non-LQP problem. Tab'les 2.1 and 2.2 show that in both

cases the Variab'le Metric algorithrn shows faster convergence than the

Di fferent'ial Dynami c Progranrni ng a1 gori thm.

2.3.3.3 Storage Requirements.

Basic high-speed memory requirements for the Differential

Dynamic Programming algorithm and the Variable Metric algorithm are

much the same. Given the problem where there are N stages, the

dimension of the control vector is m, and the dirension of the state

vector is n, the gradient and hessian information for the Variable

liletric algorithm requires 2(n + 1)2 storage locationsn this being the

same as for the storage of V* and V** for the Differential Dynamic

Progranming algorithm. In addition, the linear approximation to

0g*(1u) requires m(n + 1) storage locations for each stage k' which

is the same as the combined requirements of gt and 8;, for the

Differential Dynamic Programming algorithm. Thus the total basic

storage requirements for each algorithm is Nm(n + 1) + 2(n + 1)2

locations. Further temporary storage is requ'ired for both algorithms,

for the temporary vectors used in the Variiible l'letric minimisation

techniques, and for the storage of the matrices AO, Bk, CO, and C[l

for the Differential Dynamic Programm'ing algorithm.

?_.a. S.q Computati on

Computation requirements may be assessed in two different ways'

name'ly by the number of floating point multiplicat'ions' or by the

number of function eva'luat'ions. The most frequently occurring



-32-

multiplications in the Variable Metric algorithm occur in the

evaluation of the gradient of the function IO(ru'.UJ,)' equation 2.L4,

which involves the evaluation of the gradient of I[+1(&(\' !k))'

this requ'iring nm + n2 multjplications. The number of floating point

multiplications for each stage of each iteration is of order

n(n2m + nm2) since the evaluation of this gradient is performed m

times for each of the n + 1 values of \ in a neighbourhood of \.

As a comparison, the number of floating point mu'ltiplications for

the Differential Dynamic Progranrning algorithm is of order

n3+n2m+nm'.

The most frequent function evaluations in the Variable Metric

algorithm also occur in finding the gradient of the function

It*f(&(\, g*)), for which the function tf(q, g*) must be determined.

This is a matrix function of order m x n and hence is equivalent to

mn scalar function evaluations. If all the functions used are

considered as e'ither scalar, vector, or matrix functions, and the

number of function evaluations is modified accordingly, then the

number of 'scalar equivalent' function evaluations required by the

Variable Metric algorithm is of order n2m2 for each stage of each

iteration. As a comparison, the number of function evaluations

required by the Differential Dynamic Prograrming alqorithm is of

order nt + n2m + nm2 for each stage of each iteration.

Thus using either measure of computation requirements, the

Variable Metric algorithm tends to be a factor of n greater in its

requirements than the Differential Dynamic Prograrming algorithm.

This is not as bad as it may seem at first since discrete decision



-3s-

processes tend to be characterised by a]ow dimensionality in the

state vector and a high dimensionality in the control vector.

Furthermore there is the possibifity of modify'ing the basic Variable

Metric algorithm in such a way that the factor of n in the

computational requirements is removed, except for the first
iteration. This would occur at the expense of an increase in the

high-speed memory requirements (see section 2.3.5) but this is a

less critical factor in the light of widespread use of computers

with virtual memory systems, wherein the apparent amount of high-

speed memory is almost limitless.

A further consideration which is gaining importance in the

comparison of algorithns in the light of real time applications is

that of paral'lelism within an algorithm 5251. Basically, if an

algorithm can be constructed such that certain parts can be

performed independently of others then the execution time can be

reduced by the use of a computer which has more than one arithmetic

processor, and is capable of para11e1 processino. Now the Variable

t4etri c Dynam'ic Prograrnrni ng al gori thm i s i nherently paral 1 el i n

nature at two leVels, firstly in the finding of the gradient of

Ik(\, q) for m + 1 different values of gO, and secondly in the

finding of the gradient of I[(+) for n + 1 different values of 1*-

Thus there is the potential for removing a factor of nm from the

compu'bation time requirements of the Variable Metric algorithm'

although in practice the reduction would probably be determined by

the paralle'l capacity of the computer itself. It must be appreciated

also that the factor of nm would only apply to those parts of the

computation which are performed in paralle'|, and so it would be the



-34-

case that some other part of the algorithm would dominate the

computational requirements. Thus the savings gained by the use of

parallel processing are probably in the order of a factor of n in

the computational requirements. Further research is needed to

determine these savings more accurately.

2.3.4 0ther Computational Experience.

As wel'l as a comparison with the Differential Dynamic

Progranming rnethod of solution, the new algorithm was applied to

the solut'ion of another continuous control problem in a discretised

form. The problem and its solution using the Sequential Conjugate-

Gradient-Restoration algorithm is reported 'in the papers by Heideman

and Levy 177, 787. The discretised form of the prob'lem is as follows

N-l
minimise v6(lo) = 

rlo{l/(N 
* t) ll4llz + 1/N llulll'l +

1/(N + r) ll5ll,

subject to yk*t = Jk * (vl zrt + wrt)/N ,

and .k*t = zk + (wk - yktk + vfr)/N

where I* = (yt, .k) ,

"t 
) '

and

The nomi na]

q = (v*'

5=[l]
control s were chosen as !* = q- , k = 0n ln ... ' N-1.

5,

In

The prob'lem was so'lved for six different values of N, namely

10, 20, 30,50, and 100, representing six levels of discretisation.

each case, the scalar 0 was initialised to 0.5 and updated to the



-35-

value of e result'ing from the previous iteration. The neighbourhood

parameters were initialised to 0.01, and updated to the absolute

values of the deviations occuring at the previous iteration, with

a minimum of 10-6 imposed. The convergence condition was taken as

when the relative change in cost was less than 10-5. Tables 2.3 and

2.4 show the convergence of the solutions for the six problems in

terms of the value of the cost function at each iteration, and the

value of e produc'ing'it. The fact that the nurnbers of iterations

required for the six different problems were respectively 7,7,6,

5,5, and 5 suggests that the continuous solution may be approximated

as closely as desired by choosing an appropriate va1ue for the number

of stages N, with convergence occurring after approximate'ly five

i terati ons .

terati on

N=5
l, ^to t-

N=10

voE
N=20

V^e
U

nomi nal

1

2

3

4

5

6

7

2.811 854

2.387 643 0.5

2.266 878 0.5

2.011 984 1.0

1,.874 444 0.5

1.847 300 1.0

1 .846 903 1 .0

1.846 900 1.0

2.933 303

2.566 520 1.0

2.542 88t 0.0625

2.272 605 0.25

r.904 407 0.5

1.818 281 1.0

1.817 339 1.0

1.817 328 1.0

3.013 719

2.3t9 798 0.25

1.857 106 0.5

1.803 690 0.5

L.802 247 1.0

1.802 209 1.0

1.802 209 1.0

Table 2.3 Convergence

N = 10, and

of the Variable Metric algorithm for N = 5,

N=20.



-36-

terati on

N=30

voe
N=50

voE
N = 100

voe
nomi nal

1

2

3

4

5

3.044 703

?.236 377 0.25

1.821 961 0.s

1.798 459 0.5

1.797 15s 1.0

L.797 r53 1.0

3.071 332

2.79t 443 0.25

1.805 858 1.0

r.793 429 1.0

1.793 110 1.0

1.793 110 1.0

3.092 506

2.L08 423 0.25

1.800 551 1.0

1.79t 470 I .0

1.790 086 1.0

1.790 081 1.0

Table 2.4 Convergence of the Vapiable lt4etric algorithm for N = 30,

N=50,andN=100.

Figure 2.2 shows, by comparing the converged trajectories

obtained as solutions to three of the problems in the discretised

form, that increasing the number of stages N does indeed result in

a closer approximation to the continuous solution, the trajectory

shown for N = 100 being the same as that for the solution of the

continuous problem as obtained by Heideman and Levy, within the

accuracy of the diagram. As reported by Heideman and Levy, the

solution to the continuous problem obtained from the Sequential

Conjugate-Gradient-Restoration algorithrn requires a total of 13

gradient iterations and (with'in these) 17 restoration iterations.

Thus the Variable Metric Dynamic Programming algorithm compares

favourably with respect to the number of iterations required.

2.3.5 Possible Extensions to the Algorithm.

One possible extension to the algorithm is that which is



-37 -

KEY

+-+ N = 5

c-D N = 2O

x...,.I N = 100

Figure 2.2 Converged trajectories for three of the solutions.

mentioned by Jacobson and t'layne as an extension to the Differential

Dynamic Progranming algorithm. This involves the minimisation of the

actual cost function with respect to the scalar e in the second part

of the iteration where the new sequence of controls is calculated

using equations 2.18. This extension is used in the problem referred

to in section 2.3.3.2.

A second, potentially more fruitful, extension is that mentioned

Ix

1.

0.7

+'



-38-

in section 2.3.3.4, whereby the quadratic approximation to I[(q) is

saved at each iteration for each value of the stage k, and each

hessian matrix is updated according to the change in traiectory

caused by changes in the sequence of contro'ls generated from the

previous iteration. It is likely however that for the first iteration

the complete process would have to be carried out in order to generate

a good first approximation to the hessian matrix, in contrast to the

traditional Variable Metric minimisation method of initialising the

hessian matrix to the identity matrix. Thus in the first iteration'

the gradient of t[(4) wou]d be calculated for n + l different values

of \ in a neighbourhood of l*, whereas in subsequent iterations,

the gradient needs only to be calcu'lated for the new !U, with the

change in trajectory from the previous iteration being used as the

step in xn needed to update the hessian. This extension would remove

a factor of n from the computational requirements of the algorithm'

as well as the parallelism at the outer level. However the inherent

paraljelism of order m would still remain at the inner level, that

of finding the gradient of Il(l*, !*) for m + 1 different values of

g* in a nejghbourhood of Q.

A third possibility is the extension of the algorithm to inc'lude

allowance for constraints on the control variables. The

imp'lementation of this into the algorithm would follow the method by

which constraints are introduced into a Variable Metric minimisation

in which a rank-l update formula is used. Fina'lly, it may be

possible to extend the algorithm to cater for the continuous Dynamic

Prograrnming problem, but as yet this has not been investigated at alI.



-39-

2.4 CONCLUSIONS.

The use of Variable Metric minimisation techniques in an

algorithm for solving the N-stage decision problen of Dynamic

Progranrning results in a powerful solution method, which is capable

of taking advantage of a parallel processing computing system. The

algorithm presented compares favourably, in terms of rate of

convergence and range of applications, with the Differential Dynamic

Progranuning algorithm for the discrete time problem, which in some

senses turns out to be a special case of the former. This

favourable comparison is partly a result of the generalisation

itself, and partly due to considerations which are analogous to the

result that Variable Metric minimisation of functions compares

favourably with function minimisation using Newton's method of

second derivatiVes. Possible extensions to the algorithm promise

an even better comparison, although the level of parallelism would

be reduced.



-40-

SECTION 3.

SURVEY ON COMPUTER SCHEDULING.

3.1 INTRODUCTION.

The theory and practice of scheduling is a wide and diverse

field which seems to have its origins in the early 1950's with the

development of the study of the theory of'job-shop scheduling' in

the realm of manufacturing. It was the advent of multiprogranming

and multiprocessing capabi'lities in computers that was responsible

for the upsurge of interest and diversification in the field of

computer scheduling which occurred in the early 1960's.

The field of computer scheduling can be subdivided into three

broad areas of research, namely Sequencing, Monoprograrmed Scheduling'

and Multiprogranmed Scheduling. A fourth area, Performance Analysis,

could be regarded as an integral part of each of the other three,

although it is often studied in its own right. Sequencing, also

known as Deterministic Scheduling, is the study of that class of

problems which requires the determination of the order of processing

of a predetermined set of jobs for which all necessary characteristics

are known in advance. Monoprogrammed Scheduling is concerned with

scheduling jobs on the basis of only one iob being active at any one

time, with each job, once activated, running to completion before

any other job may be activated. This is in contrast to Multiprograrmed

Scheduling, in which several jobs may be active, and thus partia'lly

completed, at any one time. Multiprograrnned Scheduling can be

subdivided into Uniprocessor Scheduling and Multiprocessor Scheduling,

this being determined by whether the computing system being considered



-41-

has only one or more than one Arithmetic Processor, or Central

Processing Unit (CPU). Each of these may be further subdivided into

High-'level and Low-level scheduling. High-Level Scheduling is

concerned with choosing from a'I1 jobs which are waiting to be

processed that job which shou'ld be activated next, and when.

Low-Level Schedu'ling, on the other hand, is concerned with choosing'

from the set of active jobs, which should be using the processor(s)

at any given instant. Performance Analysis has received an upsurge

in interest in the past few years, being not only concerned with

measurement and eva'luation of the effects of scheduling strategies,

but with all aspects of system performance. Final'lyn there is a

research discipline which applies equa'lly to Uniprocessor and

Multiprocessor, High-Level and Low-Level scheduling, and therefore

cou'ld be considered as a further subfield of Multiprogranmed

Scheduling itself. This is Adaptive Scheduling, which is concerned

with scheduling strategies which are able to adapt to dynamically

changing conditions, such as amount of work waiting, structure of the

work'load, structure of individual jobs, and hardware availability.

In general, Adaptive Scheduling is characterised by the use of ad hoc

techniques for providing the feedback information. However the use

of Mathematical Progranrming ideas offers a way of formalising the

feedback mechanisms of Adaptive Scheduling. This offers a strong

challenge, and new hopes for the future for practitioners in this

fiel d.

3.1.1 Definitions.

To avoid

which are used

mi sunderstandi ngs ,

frequentiy in this

it is useful to define several terms

survey.



-42-

A task is a piece of sequential code which is the smallest unit

of work which may compete for resources.

A process is made up of several sequential tasks, designed to

produce some specified result.

A job is a collection of parallel and/or sequential processes

which represents a unit of customer work, and is the largest unit of

work which may be considered by a high-level scheduler.

A mix of processes is that set of processes which have at any

t'ime had some processing done on them, but are not completed. This

includes those processes currently assigned to the processor(s), those

waiting for a processor, and those waiting for some other event, such

as the completion of an I/0 operation.

The following definitions all refer to different states of

processes in a multiprogrammed system. The relationship between these

states and example reasons for transitions between states are shown in

Fi gure 3. 1 .

A scheduled process is a process which has got past the high-

level scheduler, but cannot enter the mix because of unavailability

of initial resources.

An active process is a process which is in the mix.

A ready process is an active process which is currently able

to use a processor, including those processes wh'ich actually are

using a processor.

A waiting process is a non-ready, active process which is

waiting for some resource to become available.

A blocked process is a non-ready, active process which is

waiting for some event other than resource availability.



-43-

a) Initial resourFces fo,und.

b) Freemp,ted by a higher ptfio'tpity process.

c) Ooroutine pass€s csn[ro] to its: paftnerr.

d) Contro'l passed baok from partner.

e) Page fault oc'eurs, '

f) Page arrriv.es in main mgmory,

g) All pr:oeessing eolpleted,

Flswe 3.1 PROCESS STRTES IN R f'tJ-TIPROGmm{D SYSTfn{

SCHEDULED COMPLE

RERDY

UJRITINGBLCCKED

Exampl e transitign reaso.ns.



-44-

3.2 MONOPROGRAMMED SCHEDULING.

Research into the scheduling of iobs on monoprograrmed systems

appears in general to be buried in more general work done in the field

of Multiprogranmed Scheduling. In the situation where processor time

is the only scarce resource considered, then the problem is the same

as that of the single server queueing system, which is analysed

extensively by Conway, t{axwelln and Miller t501, who also include a

brief history of the work accomp'lished in this field.

When two or more resources are considered, then the problem

is s'lightly more complex. Often a monoprogranrned system with

seVeral resources can be considered to have the single resource of

processor time. However, there do occur situations where other

resources may 'become available' in some way. Examples of this occur

when a resource is a mountable storage device of some kind, such as

a magnetic tape reel. In this situation the problem of resource

scheduling becomes the problem of premounting mountable resources

and, in effect, multiprogramming is introduced, since system

resources may be allocated to more than one iob at any one time. In

a paper by Austin, Hanlonn and Russell t12l this problem is discussed,

and the implementation of an a'lgorithm for a monoprograrmed machine is

described. However, as is very cormon with scheduling algorithms' the

algorithm is a heuristic one, although the 'shortest iob first'
discipline forms a basis for it.



-45-

3.3 MULTIPROGRAMMED SCHEDULI NG.

For the purposes of this survey, only the uniprocessor case of

Multiprogranmed Scheduling will be considered, although it should be

noted that some of the research reported applies equa'l1y or partly

to Multiprocessor Scheduling also. Research into Multiprograrn'ned

Schedu'ling can be directed at establishing general laws and results

which are expected to hold true universally, or at analysing the

situation for a specific system, or at a combination of these. The

most widely used research tool for establishing the general laws

and results is Analytic Modeling, in which a mathematical model is

developed and analysed. For studying specific systems, two main

approaches are available. Experimental Measurement involves the

design and execution of experiments on a real system, and the analysis

of the data collected. Model Simu'lation differs from this in that it

is a simulated system on which the experiments are performed, the

advantages of this being that results are generally available more

quickly, experiments may be duplicated and reproduced, and the

experimental process has a lessen disruptive influence on the normal

running of the system.

Coffman and Kleinrock t451 present a wide variety of priority

scheduling algorithrns and c'lassify these according to various

attributes, also providing sorne ideas on how users could attempt to

'outwit'each of the algorithms. Qther papers of a survey type have

been published by t'tcKinney [103], Conway, Maxwell, and Miller t501,

Hellerman t811, Lorin t981, Sayers t1351, Anderson and Sargent [71'

Coffman and Denning t43J, and Bunt t291.



-46-

An integral part of any scheduling algopithm is the choice of a

criterion for performance evaluation on which to base the decisions

that must be made. However it is often the case that in the design

of a computing system the objective of the scheduling is not formulated

explicitly, but eventually appears implicitly within the operating

system. It also frequently occurs that in theoretical discussionsn

only simple performance criterian such as processor uti'lisation' or

job throughput, are used, whereas to keep in line with the growing

emphasis on multiple resource allocation and resource scheduling'

research is needed into more complex performance criteria. It turns

out that this need is being fulfilledn with a wide range of performance

criteria of varying complexity and versatility having been studied

s i nce the ear'ly 1970 ' s .

3.3.1 Uniprocessor Multiprogrammed Schedul'ing.

The study of Multiprograruned Scheduling can be subdivided into

H'igh-Level Scheduling and Low-Level Scheduling, with most research

being directed at either one or the other of these. However, Clark

and Rourke t39l have studied interactions between high-'level and low-

level strategfes in an attempt to determine 'universally better'

al gori thms.

3.3.1.1 Low-Level Schedul ing.

Low-Level Scheduling can be further subdivided into the two

fields of low-leve'l processor allocation, which is also known as task

dispatchingn and low-leve'l resource al'location. The first of these

is a special case of the second, in whjch the processor is the on'ly



-47 -

resource considered, however there is sufficient research devoted

to this discipline for it to be considered separately.

The study of task dispatching in multiprograrmed systems is

essential'ly concerned with ways of creating many logical processors

by multiplexing the physical processor(s), this usually being

performed by software within the operating system rather than by

hardware. There were several task dispatching algorithms in

existence by the late 1960's, the most basic of these being the

Round Robin, in which the active processes are considered in a fjxed

Sequence, and the processor is allocated to the next process in the

sequence which is a1so ready. A modification of this is the Ready

Queue Round Robin, in which the ready processes form a separate

queue and the processor is allocated on a First Come First Served

basis. Other algorithrns superimpose the notion of priority on the

basic ready queue structure by linking a newly ready process into

the ready queue at some position which reflects the calculated

priority of the process. This ca'lculated priority could depend on

many factors, such as external priority, expected service time of

the process, or type of process (whether operating system function or

not for examp'le ) .

New developments since this time have generally involved

methods of improving performance according to some obiective, by

altering the method of determining these calculated priorities. Chua

and Bernstein t38l introduce the concept of level of attained service

for a process, and use this to determine priority. This serves to

model several new disciplines, known as Late Aryival Round Robin'

Early Arrival Round Robin, and Partial Round Robin, each of these



-48-

having different performance characteristics. Kleinrock and

Muntz tg2lalso use the concept of attained service in an algorithm

which varies the discipline used according to the level of service

attained by a process. Another algorithm involving variation of the

discipline used is that proposed by Blevins and Ramamoorthy l22f in

which dynamic feedback is used to determine the best discipline to

use. Sherman, Baskett, and Browne t1301 use microscopic level trace

data to allow the definition of BEST and WORST disciplines using the

performance criterion of processor utilisation. This allows absolute

comparisons of previously defined disciplines and also allows the

ability to test disciplines which attempt to approximate the BEST

di sci pl i ne.

In a slightly different approach to the problem, Bernstein and

Sharpe t21J present an algorithm which is based on the assumption that

process switching invo'lves overheads of some kind, and hence the amount

of process switching should be kept to a minimum. A similar approach

is adopted by Potier, Gelenbe, and L'Enfant t1171, who present an

adapt'ive algopithm which attempts to reduce process switching

overheads at times of overload by allocating extra CPU quanta to the

running process on the basis of the number of arrivals during the

current quantum. This is a generalisition of the algorithm proposed

by Coffman t42l and further analysed by Heacox and Purdom t761.

The study of Low-Level Resource Allocation is concerned with

the allocation of a wide variety of resources to the requesting

processes. Typical resources dealt with are the processgr' memory

space, data transfer channels, and peripheral devices. Sometimes a

further resource, narn'ly data sets, such as program code filesn fldY



,49-

also be considered. Generally the resources considered are the

processor, main memory, and I/0 channe'ls. There has been, however, a

great dea'l of research directed at the study of Memory Management'

wherein the two resources of central processor and main memory are

the only ones considered.

The study of Mernory Management originated with the advent of

multiprogramning, with research being directed at fitting fixed sized

programs into memory so as to waste as little as possible. With the

advent of virtual memory and paging, the field of Memory Management

has diversified to encompass the dynamic allocation of memory to

active processes. Various methods for supplying the required code

and data to active processes have been studied under the headings of

paging strategies for general multiprograrnming systems, and swapping

strategies for time-sharing systems.

Paging strategies are genera'l'ly composed of three sub-

strategies, namely page fetch, which determines when pages are brought

into main memory, pdge placement, which determines where the new page

is to reside, and page replacement, which determines which pages' if

any, are to be removed from main memory, and when this removal takes

place. Early strategies used page demand as the fetch sub-strategy'

First In First Out or Least Recently Used as the replacement sub-

strategy, and the simple placement sub-strategy of replac'ing the old

by the new. Since then, a variety of paging strategies and sub-

strategies have been developed, including Denning's Working Set demand

paging strategy t55, 56, 571, Belady and Kuehner's Biassed Page

Rep'lacement sub-strategy t191, a modification to the l.lS strategy

proposed by Rodriguez-Rosell lt|n which incorporates foreground-



-50-

background ideas, and the Page Fault Frequency replacement sub-

strategy proposed by Chu and Opderbeck 1371.

Swapping strategies for time-sharing systems include that

reported by Abel], Rosen, and Wagner tll in whjch the decision to

Swap a process into the mix is based on priority considerations, but

the choice of processes to be swapped out involves memory management

considerations. Nielsen [111] investigates, through simulat'ion, the

desirability of including into swapping algorithms various features

such as program relocation and memory'krunching'. The effects of

using bulk memory as a swap medium, faster transmission rates for

disk storage, and hardware disk optimisers are also investigated.

Finally, Anderson and Sargent t6l perform a statistical evaluation of

swap scheduling algorithms of the FB* type, in which there is one

high-priority queue for service requests which have not received any

service, and N-1 lower-priority queues for those service requests

which have been started but not completed.

In the wider area of more general resource allocation, it seems

that advances have been made only jn recent years. One possible

exp'lanation for this is that the problem has only been recognised as

be'ing important for this short timen the reason being that the

importance of resource scheduling in genera'l has grown mainly for

eCOnOmic reasons, aS ever-increasing amounts of time and money are

being spent on computing and computing hardware. Dahm, Gerbstadt'

and Pacelli t53l introduce a series of ideas on system organisation

necessary for resource allocation to be feasible. This seems to mark

the beginn'ings of the direction of endeavour towards the problem'

although at this stage no attempt is made to give serious suggestions



-51-

for the implementation of these ideas. Pass and Gwynn t1161 present

an adaptive resource allocation algorithm which uses predictor-

corrector methods to optimise local and global measures of system

performance. Hamlet t73l discusses the implications of the choice

of resource allocation algorithm for accounting procedures, in terms

of efficiency, reproducibility, and fairness to users. Finally'

Lynch and Page t1001 describe an implementation of an algorithm which

controls resource allocation through task swapping. A generalisation

of this algorithm, analysed by Kameda t881, involves a dynamic

resource load ba1ancing strategy, with light users of a congested

resource being able to bid for a higher overall priority without

increasing the total cost of service.

3.3.1.2 High-Level Scheduling.

As is the case with Low-Level Scheduling, High-Level

Scheduling may be subdivided into the two fields of High-Level

Processor Scheduling and High-Level Resource Scheduling' the former

being a special case of the latter. A great deal of background

research and useful results for High-Level Processor Scheduling have

come from the fields ofproduction scheduling, sequencing, and queueing

theory. Excellent surveys of this background material may be found in

Conway, Maxwelln and Milter i50l and Sevcik t1291. At that time' by

the early 1970's, there was a wide variety of algorithms available for

high-level scheduling of the processor. Some of them, such as First

Come First Served and Random Selection' were used primarily for

comparison purposes. Qther algorithms which had been studied are

Last Come First Served (LCFS), Shortest Processing Time (SPT), Round

Robin, Feedback, Foreground-Background, and pre-emptive versions of



-52-

LCFS and SPT, this latter being named Shortest Remaining Processing

Time. In the specialised field of time-sharing systems, Coffman and

Muntz t46l discuss also the Shortest Elapsed Time Sharing, Basic Pure

Time Sharing, and Shortest Expected Remaining Time disciplines.

There have been since some deve'lopments which have particular

reference to High-Leve'l Processor Scheduling, the most notable of

these being Kleinrock's parametric model for a continuum of priority

based algorithms t911. This model encompasses al1 previously

considered priority algorithms and defines three others, the Selfish

Round Robin, Last Come First Served with pickup, and Last Come First

Served with seizure. It turns out that artificial as it may seem'

the Selfish Round Robin discipline is readily amenable to analysis.

Sevcik t1291 later introduces an algorithm based on service time

distributions, known as the Smallest Rank algorithm, and proves this

to be optimal under certain conditions. Under more general conditions,

he also shows that the Shortest Remaining Processing Time discipline

is optimal within a broad class discip'lines which, it is argued,

contai ns the gl obal ly opt'imal di sci pl i ne.

More recently, Bunt t29l has introduced a new scheduling

discipline known as the Single Queue (SQ) discipline. This is based

on Kleinrock's parametric rnodel in which processes in service gain

priority'linearly at rate B, and queued iobs gain priority at rate c.

One important difference in the basic SQ algorithm is that a fixed

number of the highest priority processes are considered to be processed

simultaneously, that iS, a fixed degree of multiprogranrning is a'lways

in force. A further modification is introduced in which the parameter

B is dynamically regulated by a feedback mechanism, resulting in



-53-

'improved service during short periods of overload.

High-Level Resource Scheduling is probably the most important

area of Multiprogrammed Scheduling in the sense that more is to be

gained, in terms of any criterion used, by the use of a 'better' high-

level resource scheduling algorithm. However there are several

problems associated with resource scheduling, under the general

heading of determination of unknowns, that must be taken into

consideration before such an algorithm may be constructed and

imp'lemented. A general job-shop computing system is characterised

by a variety of jobs and processes exhibiting wide variations in

resource requirements, and in particular a giVen process may vary

widely in its overall resource requirements from one run to the next

if for examp'le a different set of data is supplied for input.

Two possible ways of dealing with this problem are the use of

the concept of'average iob', and the use of user-stated maximum

resource requirements for each resource being considered. The first

of these methods is only suitable when the degree of multiprograrming

is quite high (between twenty and thirty is proposed by Needham in

t821, p213) s0 that the total requirement for each resource tends to

remain stable. The second, more comnon, method of user-stated maximum

resource requirements is a method which is used to some extent in

many high-level scheduling algorithms. A thirdn more basic method of

resource scheduling can be achieved without any fore-knowledge of job

and process characteristics. This method involves the modification

of the degree of mult'iprogranming on the basis of feedback

information obtained from the system on resource loadings. If one

or more of the resources being considered is overloaded, then the

1..- ! .,'i



-54-

degree of multiprogrannning is reduced, either by suspending or

swapping out one of the active processes (a function of the low-level

scheduler), or by allowing the degree of multiprogramm'ing to drop of

its own accord as processes finish. This method can be modified in

many ways, by determining the best process to swap out (at the'low

level) or by determining the best process to activate next when it is

desired to increase the degree of multiprogranuning. An algorithm

using the simple form of this method is proposed by Bard t161.

Codd t40, 411 presents a static, non-priority algorithm for

resource scheduling when exact resource requirements are known.

Abell, Rosenn and Wagner [1] describe a dynamic, priority driven

resource scheduler in which low priority processes are rolled out to

free resources for a higher priority process, this necessitating

accurate prior knowledge of resource requirements. Thesen t1361

describes a dynamic resource scheduling algorithm which solves a

knapsack type linear progranm'ing problem formulated in terms of a

heuristic utility function to determine the best mix of processes.

Once again, resource requirements need to be known accurately in

advance, although user-supplied estimates may be sufficient, and

more realistic, requirements for the algorithm. Austin, Hanlon, and

Russell t12l describe one particular aspect of a resource scheduling

algorithm, which is implenented in a monoprogranming environment but

could be extended to a multiprogranning environment, in which a iob

is not started until all reusable resources have been allocated.

Larmouth [94] describes another, priority driven a'lgorithm in which

alt resources must be allocated before a job will start. This is

achieved by reserving resources for the highest priority iob until

all of its resource requirements can be met.



-55-

Combinations of these methods may be used. One implerpntation

is detailed by Northouse and Fu t1141 in which a iob is classified

into one of several different classes of resource requirements on the

basis of user supplied information. A selection algorithm then

determines the mix by considering the dynamical'ly varying average

resource requirements of the different classes. An evaluation of the

choices made by the selection algorithm, on the basis of some

performance criterion, is used to provide feedback to the algorithm.

3.3.2 Adapti ve Schedul i ng.

The introduction of dynamic feedback algorithms into the field

of High-Leve1 Resource Scheduling is possibly the most important

advance which has been made in recent years. As computing systems

have becorne more advanced, their operating systems have become more

and more complex, and the interactions between system parameters

(those aspects of a system which may be measured or set, including

hardware) have become more and more subtle, particularly in

multiprocessing-multiprogranming systems. This has meant that the

development of accurate system models has become increasingly

difficu'lt, and that the production of a system model has become less

useful sincethe use of a complex model consumes large quantities of

the computing resources that it is designed to help conserve.

However the use of feedback in an adaptive algorithm allows a simple

model to be used, since the subtleties of the real system can be

accounted for by the feedback mechanism, provided that all independent

parameters are taken into account. Another useful feature of adaptive

algorithms is that drifts in the characteristics of the input stream

can be accounted for on a much smaller time scale than they could be



-56-

otherwise. Further, the use of Mathematical Progranning techniques

from Operations Research promises to provide a way of formalising the

dynamic feedback mechanisms, thereby improving the theoretical

foundations on which the research stands. However, as Chandy and

Yeh t32l have mentioned recently, practitioners seem slow to

familiarise themse'lves with some of the wide variety of Mathematical

Prograrming techniques available, resulting in a dearth of research

publications utilising this potentia'l1y fruitful blend of disciplines.

The development of adaptive techniques for High-Level Resource

Scheduling apoears to have had its orjgins in the early 1970's, with

the algorithm proposed by Northouse and Fu t114.l, in which feedback is

used both to provide dynamic estimates of the workload, and to modify

job selection procedures on the basis of the effectiveness of previous

decisions. The algorithm proposed by Bard t16l is a further adaptive

hi gh-1eve'l resource schedu'l i ng al gori thm, a1 though on'ly the two

resources of CPU and main memory are considered. In this algorithm,

feedback is used to determine the effect on the system of the

currently specified degree of multiprograrming,. and to modify this

if the system is overloaded or underutilised.

The introduction of dynamic feedback mechanisms has not been

restricted to the field of High-Level Resource Scheduling, examples

of its use having been reported in the other fields of High-Leve1

Processor Scheduling, Low-Level Processor Schedulingn Memory

Management, and more general Low'Level Resource Allocation. Blevins

and Ramamoorthy t22l propose an algorithm in which the actual

processor scheduling discip'line used is based on feedback information

in terms of the distribution of service times of service requests'



-57 -

and the effects of earlier decisions on system performance. Badel

et al t13l propose an adaptive algorithm for controlling the degree

of mu1tiprogranrning in a virtual memory system. This is essentially

a low-level processor scheduling algorithmn even though one of the

goals is the prevention of thrashing, a memory management problem.

Potier, Gelenbe, and L'Enfant t1171 also propose an adaptive low-

level processor scheduling algorithm in which adaptjve techniques

are used to reduce task-switching overheads when traffic intensity

is high. More recently, Gelenbe and Kurinckx t70.1 have proposed a

dynamic feedback algorithm for controlling the degree of

multiprograrming in a virtual memory system. This is known as Random

Injection Control, and operates by artificially limiting the set of

ready processes through the creation of a further state, known as

the impeded state, into which a process moves after having acquired

a certain amount of CPU time. The time spent in the impeded state

is then determined by a random variab'le, whose distribution is a

function of the throughput of the system.

Denning i57l introduces the use of feedback into Memory

Management with the Work'ing Set strategy, which uses implicit feedback

to control the effective degree of multiprogranming. This in a sense

acts as a buffer between the high-level scheduling algorithm and the

resource allocation algorithm, since it restricts the processes which

are to be considered by the low-level scheduler. Pass and Gwynn t116.1

propose a low-level resource allocation a'lgorithm in which feedback

information in the form of deviation from expected gIobal system

performance is used to modify the parameters of a local performance

measure on which is based the scheduling decisions in the form of

resource request fulfillment. Another low-Ievel resource allocation



-58-

algorithm, proposed by Kameda i881, uses implicit feedback in the form

of an 'invisible hand' to rectify imbalances in resource utilisations.

This involves a bidding mechanism whereby al1 users bid for priority

of the resources they use, on a dynamic basis, when the processes are

active. Since a user is constrained by the total cost to him for the

whole job, he cannot bid very high'ly for a resource of which he is a

heavy user, whereas'light users of a congested resource can afford

to bid highly for that resource, thereby dissolving the imbalance.

In the field of High-Level Processor Scheduling, Bunt [29]

describes the use of dynamic feedback in an algorithm which uses

feedback information, in terms of the arriva'l rate of iobs and the

load on the system, to alter the scheduling strateoy dynamically to

cope with peak periods of overload. Finally, Larmouth t94, 951

describes the implementation of a high-level resource scheduling

a'lgorithrn in which information on long-term resource usages is used

as feedback information for the more general function of long-term

resource management, which rations the system resources over

relatively long time periods of the order of days and weeks, rather

than milliseconds and seconds.

3.3.3 Performance Criteria.

In a general job-shop, batch and/or remote, computing system'

'it is freguently the case that all the user is interested in is

getting his best'value for money', that is, the fastest turnaround

for the lowest cost, whereas the installation management must

consider such items as income, machine utilisation, 'user

satisfaction', and iob throughput, as well as turnaround. Further'



-59-

the cost to the user is not necessarily a financial cost; it may

in units of number of jobs submitted, cards keypunched, or lines

code written for example, the actual criterion used depending

entirely on the whims of the user.

If all these factors are to be taken into account in the design

of a scheduling algorithm, then the use of a single measure to be

optimised is often not an effective way of managing a computer

installation. What is required is some criterion which makes a

trade-off between the divergent goals of making efficient use of the

available computing resources, and providing acceptable or better

service to all users of those resources. One such a'lgorithm'

presented by Aggarwal and McCarl i4l, optimises a composite of the

four different items of in-process inventory, facilities utilisation,

lateness, and mean setup time, representing respectively the criteria

of waiting time, utilisation, turnaround, and overheads. A slightly

different approach is adopted by Bunt i29l who describes a scheduling

algorithm in which the performance criterion, that of maintaining

'an acceptable level of service', varies with the workload. The

particular criterion used, that of throughput measured as a percentage

of work submittedn enhances the dynamic, self-regulating nature of

the algorithm used, Lynch and Page t100:l describe a scheduler in

which independent components evaluate decisions and make

recormendations on the basis of different performance criteria, such

as response time, turnaround time, and resource utilisation. A th'ird

component then combines these recornmendations to make the best use

of the resources under the existinq conditions. Thesen t1361 presents

a heuristic performance criterion which takes account of resource

utiljsation, iob priorities, and iob deadlines, to maximise machine

be

OT



-60-

utilisation as well as to avoid excessive tardiness.

0ther criteria which appear in the literature include Bernstein

and Sharpe's 'deviation from promised service' l?L), in which the

difference between actual and promised rates of comp'letion of

processes is minimised, Clarke and Rourke's 'elapsed time

multiplication factor' [39] which compares the rate of processing

of processes with the rate which would occur if the process was

alone in the mix, and which is simjlar to Kle'inrock's 'wasted time'

t911, and a group of six criteria for use in time-sharing systems,

as described by Stimler t134]. Various other crjteria appearing in

the literature are throughput, resource utilisation' mean waiting

tirne, response time, and, in the field of comparison of computing

systems, qual'ity of performance, such as hardware and software

reliability.

As far as the implementation of a performance criterion is

concerned, it is suggested by Hellerman t81l that the procedure for

the design of a scheduling mechanism should consist of the following

four steps:

1. Define an objective function in terms of the criterion

chosenn assuming that al1 necessary information is

known in advance.

2. Devise a 'best' scheduling strategy to optimise this

objective function.

3. Devise an algorithm for extracting, estimating' or

ranking the varjables required in L from the observed

vari abl es .

4. Devise a mechanism which imbeds algorithm 3 into strategy 2'



-61-

Further, since the scheduling algorithm of any operating system

is genera'lly imbedded within the system, and hence difficult to rnodify

after release of the operating system, it is also desirable that the

actual implementation be flexible enough to allow any particular

installation to determine the exact nature of the performance

obiective in terms of the parameters which may be set by the

installation manager or modified on a routine basis, for example

when the shift changes from day to night, or when the operating mode

changes from batch to interactive. This would also cater for long-

term changes in the work load encountered. An example of the

provision of such installation nrodifiable parameters occurs in the

scheduler described by Lynch and Page t1001, for the IBM 0S/VS2

Release 2 operating system.



3.4

-62-

CONCLUSIONS.

This has been a brief survey of computer schedul'ing with

particular emphasis on the scheduling of a uniprocessor

multiprograrrned computing system. One conclusion to be drawn from

this survey'is that the study of adaptive algorithms for scheduling

multiprograrmed systems is gathering momentum as a useful research

field. Further, it is to be noted that there are distinct

advantages to be gained from the use of Mathematical Prograruning

techniques within dynamic feedback algorithms, although it would

appear that the cha'llenge is yet to be actioned by the maiority of

practitioners in this field. The next section presents iust such a

scheduling algorithm, in which the Mathematical Progranming technique

used is Dynamic Prograrming, in particular the Variable l'letric

Dynamic Prograrnning algorithm as developed in section 2-



-63-

SECTION 4.

APPLICATION OF VARIABLE METRIC DYNAMIC PROGRAIO{ING TO HIGH-LEVEL-

SCHEDULING.

4.1 INTRODUCTION.

The use of Mathematical Progranming techniques in Computer

Science research is suitably demonstrated with the application of

Variable Metric Dynamic Programming to the solution of a iob

scheduling problem, and the implementation of this in the operating

system of a batch and interactive computing system running in a

university environment. Essentially the application consists of

extending the existing iob schedu'ling mechanism by modify'ing on a

dynamic basis some of the iob scheduling pararneters that were

previously set by the operators. These parameters affect the

overall degree of multiprogramming and the relative service provided

to different classes of batch iobs.

The Dynamic Programming approach allows for two distinct levels

of feedback, one being characterised by short-term or internal

variations, such as variations in the current workload, and the other

being characterised by 'long-term or external variations, such as the

change from day-shift to night-shift. The short-term variations are

taken into account by app'lying a single solution of the problem to

different startjng points, or states of the system. This is possible

because the Dynamic Progranming solution may be presented in the form

of a policy, which provides an optimal decision for any one of a

large number, or even a continuum, of starting states. In contrast'

the long-terrn variatjons are taken into account by the



-64-

re-specification of some of the fixed inputs to the solution process,

such as the exact nature of the cost funct'ions which renresent the

optinrality criterion, and then the re-solving of the problem to

provi de a new pol 'i cy.



-65-

4.2 THE PROBLEI4.

The problem to whjch the Dynamic Progranming solution method

is to be applied is a fair'ly simple problem in the context of the

high-level scheduling of a multiprogranrmed computing system. The

reason for this is that the application is jntended to demonstrate

the feasibility of the Dynamic Programming approach and its wide

range of applicability rather than to provide a solution to a

difficult scheduling problem. Thus the problem has been chosen

bearing in mind the desirability of a simple approach to the

sol uti on.

In a batch and interactive computing system, there is usually

a clear-cut distinction between the batch work and the interactive

work. The batch work consists of jobs which arrive mainly from local

or remote card readers, but may also be submitted as non-interactiVe

jobs from interactive terminals. All such iobs are queued in some

way for consideration by the high-1evel scheduler. The interactive

work, however, consists of a stream of processes which interact with

or are invoked from the remote terminals. Generally these interactive

processes are implicitly given higher priority than processes which

form part of batch iobs because they bypass some' if not all' of the

controls imposed by the high-1eve1 scheduling mechanism.

considering now the non-jnteractive work, these iobs are

generally divided into several resource classes on the basis of some

externally declarable variables, such as resource requirements or

requested priority, this information being provided by the user for

the high-level scheduler. The primary function of the high-level



-66-

scheduler is to determine when batch iobs are to be activated. These

decisions are made on the basis of knowledge of the characteristics

of the jobs and of instant resource avai'labilities. A secondary

function of the high-1evel scheduler is to determine which iob is

to be activated, given that a decision has been made to activate a

iob, However it is often the case, in more comp)ex high-leve1

scheduling mechanisms, that the 'which' decisions can influence the

'when'decision, and thus this should be viewed more as a ioint

function than a secondary function. These 'which' decisions are

often made on the basis of external considerations, such as

requested turnaround times, or current operating environment.

This brings us to the statement of the problem to be approached.

Given a high-level scheduling rnechanism which categorises each

incoming batch job into one of several resource classes' we want to

devise some dynamic method of determining how many batch jobs should

be active at any one time, and how this total is to be divided among

the different resource classes. The spec'ification of the total

number of batch jobs which should be active, which is determined on

the basis of attempting to improve overall system performance'

performs the function of specifying when a new iob should be

activated. Similarly, the specification of how this total is

divided among the different resource c'lasses, which is to be

determined on the basis of the relative service to be provided to

the different classes of batch customer, specifies which class of

job should be activated next.



-67 -

4.2.1 The Approach Adopted.

As has already been mentioned, the problem to be solved has

been chosen with a reasonably simple solution approach in mind. This

approach basically involves extending the existing high-leve'l

scheduling mechanism, which already al'lows the specification' by

parameters, of the total number of batch iobs which should be active

as well as how this total should be divided among the different

classes of jobs. The extensions then take the form of modifying

these parameters dynamically, in order to achieve Some prespecified

goal .

One important aspect of the approach is that not all of the

total work processed can be controlled using these parameters. In

particular, interactive work cannot be controlled in this way since

in general this work bypasses the queueing mechanisms of the high-

level scheduler. Further, there usually exists some class of 'special'

jobs, such as the few iobs which do not fit into the normal resource

classes because of special resource requirenpnts, which it is

desirable to schedule'by hand', and hence may not be control'led by

the proposed extensions. This leaves us with the problem of

controlling the non-interactive, non-special portion of the total

work load. Hereafter, this work will be known aS the normal batch

work, and all other work wi'll be known aS the uncontrolled work.*

The extent of this uncontrolled work may vary significantly'

either because of variat'ions in the number of interactive users' or

*During this implementation, the portion of the total- work load being

controlled varied between approximately 2O% ana 5O/"'



-68-

because of the existence of one of the special batch iobs. In either

case, these dynamic variationS are of a long-term nature, on a time

scale of the same order of magnitude as iob completions' although

some short-term variation may be jntroduced by the dynamic nature of

requests for service from each interactive user. Thus it is not

inappropriate to perform a high-level scheduling function on the

basis of using on'ly those resources which are not be'ing used by the

uncontrolled work. Even though some minor resources contention will

occur because of the short-term variations' this is acceptable

because there is always some resources contention in a multiprogramned

system resulting from the short-term dynamic nature of resource

requests themselves, this being a problem for the 'low-level scheduler

to resolve.

4.2.2 The Existing System.

The computing system available at victoria university of

Wellington is a Burroughs 86700 computer with 196,608 words of main

memory. This is used for batch and interactive work, the maiority

of all work being student work, either for teaching or research

purposes. The operating system being used currently is the Burroughs

86700 Master Control Program (MCP) Versjon II.9. This provides for

a number of jnstallation defined batch job queues, and a series of

parameters to be used for the high-leve'l scheduling of this batch

work. The incom1ng interactive work, on the other hand, is controlled

directly by one or a number of supervisory programs' known as Message

Control Systems (I.'ICS's). A low-level scheduling mechanism is also

provided, along with some parameters which may be used to modify its

behavi our.



-69-

0n the current system there are five job queues, each for a

different class of batch iobs. Three of these queues are reserved

for normal batch iobs, with the classifications being based on the

maximum requirements for the three resources of CPU time, I/0 time'

and'lines printed. These are labeled as Queue 3, Queue 5, and Queue

7. The other two queues are used for'special'iobs, Queue 0 bein5l

reserved for high-priority operator entered iobs' such as iobs to

assist with error recovery after a failure, and Queue 9 being used

for customer iobs which do not fit into any of the three normal

classes, because of excessive or exceptional resource requirements.

Each queue has associated with it a maximum dec'lared priority. A

job's declared pliority performs the dual functjon of specifying

where in the queue the incoming iob is to be inserted, as well as

being used by the low-level scheduler for allocating resources.

The high-level scheduling mechanism is a parameter drjven

algorithm wh'ich selects jobs from the queues and passes them to the

low-'level scheduling mechanism for further consideration. This

function is performed by the MCP procedure SELECTI0N, which rernves

a job from one of the iob queues, and changes its state from queued

to a state known as scheduled, or to the ready state. At this stage'

a job is considered to be a process jn its own right' this process

containing code to fire up the processes which make up the iob

proper, and code to perform certain housekeeping functions which do

not require a process to be fired up, such as the removal of files'

The parameters used by SELECTIQN are known as mjxlimits,

consisting of one QUEUE MIXLIMIT for each iob queue and an overall

batch MIXLII4IT. These are limits on the number of processes



-70-

currently active, decisions being made by comparing these limits with

the individual queue mixcounts, and the overal'l batch mixcount, which

is mere'ly the sum of the individual queue mixcounts.

The decisions made by SELECTIQN consider first the overall

mixcount and then the queue mixcounts. Considering the queues in

some well-defined order, the overall mixcount is compared with the

overall mixlimit. If the overall mixlimit is higher, the the mixcount

for the queue being considered is compared with the corresponding

queue mixlimit. If this mixlimit is higher, then iobs will be started

from the head of this queue until either the queue mixlimit is

equalled, or the overall mjxlimit is equalled, or the queue is empty.

The job at the head of the queue is determined by the declared

priority, with First Cone First Served being used to eliminate ties.

This process of looking at each queue in turn is repeated every time

that a job arrives into any queue, or a iob 'is completed, or any one

of the mixlimit parameters is changed.

Setting of the high-level schedu'ling parameters is done entirely

by the computer operators, without any fixed time schedule, and for

a variety of reasons. In genera'l the changes are rnade when the need

becomes apparent, that is, when it is noticed that an undesirable

situation exists. The reason for making a change usually involves

the impl icit goal of remedying the undes'irable situati'on. Another

cormonly used method of effecting a change is for an operator to

override the parameter settings by entering a cormand to activate a

specific queued iob, whjch might be done ifn for instance, there was

a temporary 1u'll in the amount of interact'ive work.



-7 1,-

Since operating conditions may vary dramatically duping the

course of a single day's processing, it is difficult to specify a

typical set of high-'level scheduling parameters. However, assuming

a light interactive load, and a moderate influx of batch jobs' the

parameters might be set as fo'llows. The individual queue mixlimits

would be set to 4 for Queue 0, 3 for Queue 3, 2 for Queue 5' I' for

Queue 7n and 0 for Queue 9. The Queue 0 limit is set to a relatively

large number because of the high priority of operator entered jobs.

However it is very rare that this limit is in force, as it is very

infrequent that there are any Queue 0 jobs running at all. The

Queue 9 limit is set to zero because these iobs are the special jobs

which are activated manual)y at all times. The other queue mixlimits

ref'lect to some extent that Queue 3 is a high-priority queue for

short jobs, Queue 7 is a low-priority queue for long jobs, and

Queue 5 is somewhere in between. Finally, the overall batch mixlimit

would be set to 8, this being higher than the sum of the individual

queue mixlimits for Queues 3, 5, and 7 So that as soon as a iob is

entered into Queue 0, it would begin executing.

4.2.3 Proposed Extensions.

The aim of the proposed extensions is to control the scheduling

of work from Queues 3, 5, and 7 on a dynamic basis, by modifying the

jndivjdual mixlimit parameters for these queues. Thjs is to be done

in such a way that some prespecified goal is always aimed for. This

goal is to reflect in some way a desire to deliver different levels

of service to the different classes of batch iobs, as well as a

general desire to maintain, and improve 'if possible, the overall

system performance.



-72-

The level of overall systern performance can be controlled by

specifying the individual queue mixlimits only insofar as these

parameters can be used to control the degree of multiprograrming

within the system. Given then that this attempt to control the degree

of multiprogramming results in a decision as to how many iobs shou'ld

be active from Queues 3n 5, and 7, the goal of providing different

leveJs of service to the different c'lasses of batch jobs then involves

specifying how this total is to be divided among the three queues'

thereby resulting in values for the individual mixlimit parameters.



-73-

4.3 THE APPLICATION.

The applicatjon of discrete Dynamic Programming to the problem

as defined involves firstly the formulation of the problem in Dynamic

Programming terms, then the specification of all the variables and

functions required for this formulation, and finally the determination

of how this is to be incorporated into the existing operating system.

For the Dynamic Progranming formulation, the problem must be specified

as an N-stage decision problem, where the decisions are based on an

attempt to optimise a specified cost function, and rely on knowledge

of how they will affect the state of the system' in the form of a

transformation function. The spec'ificat'ion then involves deciding

exactly which variables are to be used to describe the state of the

system and the decisions taken, and the exact nature of the cost

function and the transformation function. Finally the details of

incorporating the solution process into the existing operating system

are concerned mainly with how the state of the system is determined,

and how the decisions are applied.

4 . 3. 1 The Dynami c Programriri ng Formul ati on .

The unconstrained N-stage decision problem of Dynam'ic

Progranrming, which is the class of problem to which the Variable

Metric Dynamic Prograrnming solution method js addressed' involves

a set of N decisions, corresponding to N time intervals. These

decisions are made on the basis of controlling the state of the system

at the start of each time interval to minimise a cost function, which

'is a function of the states and the decisions. The control imposed

by a decision is defined by a transformation function, which specifies



how a decision rnodifies

interval in question.

mi n'imi se
{qorurr...r\-l}

subject to \+l =

-74-

the state of the system during the time

In mathematical terms, this is expressed as

N-1.

{olo Lr.(l1., sk) + F(5) }

(4.1)

tr(q' !*) , k = o, 1, .", N-l

The vector xk represents the state of the system at time k, the vector

\ represents the decision taken at tirne. k, the scalar functions L*

and F together form the cost function, and the vector functions JU are

the transformation functions for each time interval.

The Dynamic Progranming formu'lation now involves the

specification of exactly how the state vector l<u represents the state

of the system, exactly what the components of the control vector

represent, and what the transformation functions fn are. The other

quantities as yet undefined are the time horizon, N, and the functions

making up the cost function. These need not be specified here since

they are variables which may be modified to take into account long-

term variations in the operating environment, and thus are more

appropriately specified in the djscussion of the implementation.

Further, the cost function is the mechanjsm by which management

decisions are incorporated into the extended scheduling mechanisnt

and thus should be considered to be a parameter rather than an

integral part of the problem formulation.

The specifjcatjon of the components of the state vector IL ,t

essential'ly a problem of selecting from the'large number of items of

avajlable information those which are relevant to the problem in

hand. The mixcounts for the normal batch queues must be part of the



-75-

state of the system since these are what we are trying to control.

0ther information relevant to the control of the level of service

provided to the norrnal batch customers takes the form of the numbers

queued of each class of iob. Finally there must be a variable which

measures in some way the degree of multiprogranming, since this is

the other variable we are trying to control. Because the problem

under consideration involVes contro'l'ling on'ly the numbers of batch

iobs active, the absolute degree of multiprogranming 'is of no

special interest. What is required is some variable which reflects

in some way the difference between the actual and desired degrees of

multiprogramming, so that a decision may be made to increase or

decrease the total number of normal batch iobs active. The actual

variable used is a count of scheduled and suspended processes, with

an added consideration of available memory to account for when there

are no processes either scheduled or Suspended. A suspended process

is a process which has been temporarily removed frorn the ready state

by the low-level scheduler, which has considered the degree of

multiprogramming to be too high. For ease of description, this

variable will henceforth be known as the scheduled count.

The obvious choice of control or decision variables is the desired

values of the individual queue mixcounts for the normal batch queues.

This choice allows a decision to involve simp'ly setting the individual

queue mixlimits to the computed desired values, and letting the

existing high-level scheduling mechanism effect the required changes.

Further the control over the degree of multiprogranming is contained

implicitly within this information, in that the total number of normal

batch iobs which should be active is simply the sum of the specified

ind'ividual mixlimits. In fact what has been chosen for the control



-76-

vector is the set of differences between the actual and desjred queue

mixcounts. This allows the same simple implementation of a decision

but has other subtle benefits which will become evident later.

The transformation functions reflect how a certain decision

will'influence the state of the system, by predicting the value of

the state vector at the next stage as a function of the cuffent state

and the decision applied. For this particulalimplementation, the

transformation does not depend on which time interval is being

considered, thus we have to specify only one function whichn for

each time interval, determines just how the state variables, name'ly

the queue lengths, the queue mixcounts, and the scheduled count, are

affected by a decision to modify the normal batch mixcounts by given

amounts. Further, some consideration must be given to the tradeoff

between the simp'licity and the accuracy of this function.

The values of the new queue lengths resulting from a decision

are taken as the old values from which have been subtracted the

corresponding values of the decisions. Thus if it is decided that

it is des'irable to increase the mixcount for a particular queue by

one, then the transformation will predict that the length of the queue

will decrease by one, since a iob must be removed from the queue to

increase the mixcount for that queue. The values of the new queue

mixcounts resulting from a decisjon are taken as the old queue

mixcounts to which have been added the decision variables. Fina]ly

the schedu'led count is modified by adding to it the sum of the

decision Variables, s'ince this sum represents the desired overall

change in the number of active processes. The use of the decision

variables directly, instead of having to compute differences, is one



-77 -

of the advantages of using the differences as the control vector over

using the actual desired queue mixcounts. This argument applies to

the transformation of the queue lengths also-

Now expressing these ideas mathematically, the transformation

function has the following form

(4.2)

stage,

and A is a 7x3 matrix with the following values

x1*1 = x1 * A'tr1 , k = 0, 1, ".' N-l

where t<o*f is the predicted state at the next

Ik is the current state of the system'

g* is the decision made'

A-

--1 0 0

0 -1 0

00-1
100
010
001.
111

The ability to use this simple general form of the transformation

function is a further result of the decision to use differences for

the control vector in preference to the new desired mixcounts' An

important point to note about this transformation function is that

it is a linear equation, which has implications for the robustness

of the solution policy provided by the Variable lvletric Dynamic

Progranuning a'lgorithm. These implicat'ions will be discussed later.

Considering now the tradeoff between simplicity and accuracy'

it cou'ld be argued that accuracy in the specification of the



-78-

transformation function is not as important as the establishment of

trends, since there is little hope of producing a specification which

is accurate enough not to need any other information in the application

of the solution. That is, it is very likely, no matter how accurately

the transformation function is specified, that there would be some

effects that wou'ld not be accounted for. Moreover, the establishment

of trends is sufficient to provide a basis for feedback mechanisms to

take control of the sjtuation. For example in the transformation of

the queue'lengths, the predictjon that a decrease in a queue mixcount

will increase the corresponding queue 'lengt.h specifies that if the

queue mixcount is reduced, then the queue length will increase by the

same amount, which is always true only if steady state conditjons

apply. In the real situation, it might really mean that the queue

length will not decrease as fast as it was decreasing' or that'it

will increase faster than it was increasing, but the trend is still

the same. These trends provided by the transformation function are

reflected in the policy produced by the solution process. The policy

then provides decisions which will modjfy the state of the system in

the desired direction.

Now although these decisions are not optimal, because the

transformation function is not accurate, continued application of the

solution policy with feedback will result in near optimal states'

provided that uncontrollable influences do not produce large short-

term variations, and provided that the lack of accuracy does not

result in oscillations about the optimal state. The former of these

potential problems has been mentioned a'lready in connection with the

time scale of large scale resource demands made by the uncontrolled

work, and the latter is addressed later in the discussion of the cost



-79-

function used. Given that these potential problems are not serious,

this leads us to the conclusion that simple transformation functions

do have a use, and may even be preferable if the simplicity provides

other benefits.

To complete the problem formulation, it now remains to discuss

just how the policy is to be applied to the phys'ica1 system in order

to achieve the goal implicit in the definitions of the cost function.

This involves determining just how the input information, in the form

of a measurement of the state of the system, results in a decision,

in the form of the specification of the new queue mixljmits for the

normal batch queues.

The Variable Metric Dynamic Progranming solution algorithrn

produces the solution policy in the form of a vector and a matrix

for each stage k. The vector, known ut E, is the decision proposed

for some nominal state, and the matrix, known as Bp, indicates iust

how this dec'ision should be modified to account for variations in

the state of the system. Mathematically, i1 !* represents the nominal

state at stage k, and \ is the curent state, then the decision uk

corresponding to this state is found from the expression

!{. = !* * BI'(+ - &)

Bearing in mind that this decision vector represents the desired

changes in the normal batch queue mixcounts, the app'lication of a

decision now involves adding this vector to the vector of current

mixcounts, and outputting these as the new queue mixlimits.

(+.r1

An important point to note here is the assumption of the



-80-

robustness of the policy, this assumption being that expression 4.3

holds true for all values of \. As it happens' this assumption is

valid when the problem being solved by the Variable Metric Dynamic

Programming solution method is an LQP problem, this being

characterised by a linear transformatjon function and a quadratic cost

function. This possibility of guaranteed robustness is another

reason for choosing a simple transformatjon function in preference

to an accurate but complex one. However this does not mean that the

prob'lem must be chosen to be an LQP problemn since it is possible to

jnclude in the implementation some mechanism for re-solving the

problem for new values of the nomjnal state whenever the actual

state is not close to the nominal state for expression 4.3 to be

val i d.

4.3.2 The Use of Feedback.

As has already been mentioned, the use of Dynamic Prograrming

provides two distinct levels of feedback. The first of these, to take

care of short-term variations, involves the app'lication of the policy

at each tirne interval, in particularo in the observation of the state

of the systemn and in the way the solution policy is actually used-

The other 'level , to deal with long-term variations, invo'lves modifying

the Dynamic Programming problem itself to provide a new policy.

Given the Dynamic Programming formulation as discussed, there

are two different ways in which short-term feedback information is

used. Firstly the calculation of the current state of the system may

involve feedback items. For example, the calculation of the number

of scheduled processes takes into account the amount of available



-81-

memory, and converts this into a 'deficiency' of scheduled processes'

This conversion must use some value for the amount of remory that an

'average' process would require, and it is thjs value which could be

determined dynamically by feeding back, at some predefined interval '
the mean memory requirements of the active processes. Further, it

is easy to visualise slightly different problem formulations which

cou'ld use more feedback information in the determination of the state

of the system. For example, if the state vector was concerned with

units of work, rather than numbers of iobs, for the lengths of the

job queues, then feedback information regarding the predicted size

of the iobs in each queue would be useful.

The second form of short-term feedback is inherent in the way

the solution policy is used in this 'implementation. The Variable

Metric Dynamic Prograruning solution method provides a solution policy

for each stage of the problem, with each policy normally being used

once to calculate a sequence of decisions, given a starting state

and the transformation function for each stage. This however assumes

that the transformation is exact, and further, that the prob'lem has

been solved using sufficient time stages to cover the whole period

over which control is to be applied. Since neither of these

assumptions is practicable in this imp'lementation' we are forced to

use some other method of calculating the decisions at each Stage'

The method chosen is to solve the problem for a given number of stages'

N, and to use the policy produced for the first stage for making a1'l

decisions. Thus each decision is considered to be the first decision

of an N-stage decision sequence. This method overcomes the earlier

discussed problem of inaccuracy 'in the transformation function

because the state of the system is reobserved every time a decision



-82-

is made, instead of being calculated from the previous state using

the transformation function. This constitutes the other form of

short-term feedback. Instead of accepting the prediction of the new

state as made by the model, which is represented by the transformation

function, the physica'l system is used to determine the transformation

for making the next decision. This feedback is provided for each

variable represented in the state vector, and hence we have a situation

involving multiple feedback, which is in contrast to the maiority of

feedback scheduling mechanisms in which only one variable is modified

by feedback.

An example of the other level of feedback is that discussed

at the end of the previous section, whereby information is gathered

to determine the validity of the solution policy in the case of a

non-LQP problem formulation. This could be achieved by maintaining

as a feedback item some vector which represents a cument average

state of the system. This vector could then be compared with the

nomina'l state to decide whether or not the problem needs to be re-

so'lved for a new nominal state. When a decision is made to re-solve

the problem, this new vector would be used as the best value for the

new nominal state.

4.3.3 Implementation.

A discussion of the implementation of the proposed problem

formulation now requires that the remaining variables of the Dynamic

Programming problem be specified, along wjth some details of how the

whole process is imbedded into the exist'ing operating system' The

most important variable yet to be specified is the exact nature of



-83-

the cost function, but also the expression for ca1culating the number

of scheduled processes, the length of the tirne interval, and the

number of stages still have to be specified.

As has a'lready been indicated, the aim of the cost function for

this implementation is to provide well defined different levels of

service to the normal batch customers by contro'l1ing the numbers of

active batch iobs frorn the d'ifferent classes, and to improve overall

system performance by controlling the degree of multiprogranming.

Now the information available concerning the degree of

multiprogranrning is the state variab'le which represents the number

of scheduled processes. Thus to control the degree of

multiprogranrn'ing we can spec'ify a desired value for the number of

scheduled processesn and attempt to keep the actual number as close

as possible to this des'ired value. Considering now the provision of

different levels of serviceo this may be achieved by attaching

different degrees of importance to the need to process iobs jn the

different queues, specifically by we'ight'ing the queue lengths.

Further, Some cognisance may be taken of the actual queue mixcounts

by a'iming to have a balanced mixture of iobs active from the batch

queues at all times, but too much importance cannot be attached to

this aim because the total number of batch jobs rnust be determined

by the scheduled count.

To rnake it easier to use the cost function, it is convenient

to generalise its form with respect to each component of the state

vector. This'is done by consideping each co1tponent to have a target

value, and by using the weighted squared difference between the

observed value and the target to be the contribution of that component



-84-

to the cost functjon. The determjnat'ion of the target vector, and

the wejghts, is how the cost function can be influenced by management

policy decisions. l'lathematica'l'ly then, the contribution of the whole

state vector, X, to the cost functjon at any stage is given by the

expressi on

7

.1.*t (x.' - ti )2
'l=r

where w is the vector of weights'

and t is the vector of target values.

(4.4 )

The control or decision vector may also make some contribution to

the cost function at al1 stages except the last (since there is no

decision taken after the last stage has been reached). For this

imp'lementation, the expression chosen is the sum of squares of the

components of the control vector. This reflects a desire to make

decis-ions which are small in magnitude, remembering that the decisions

are the desired changes in mixcounts, so that the potential problem

of over-reacting to an undesirable state, thereby resulting in

oscillations, is reduced. This contribution to the cost function is

expressed mathematically as the expression

(+.s1

The fact that the cost function we are usinq is separable'into the

state and control contributjons is not a requirement of the

formulation, noris jt a significant simplification as far as the

solution process is concerned. However what is significant is that

the cost function as specified is quadraticn which means that the

problem to be solved is an LQP problem, since the transformation

3
Iu?

ilt 1



function has already been specifjed as a linear function. Finally'

it should be noted that the cost function is identical for each stage

k, resulting in a final form as follows

-85-

3

- ti )' * .,irri

- ti)'

, k = 0, 1, ...r N-1.

(4.6)

Lr.(4, !*) = 
.,11*r(".,

7

F(x) = .[.w.' (xt
'l=r

For the purposes of an initial irnp'lementation, and in the

absence of any prespecified management policy, the we'ights were

chosen as 1,2, and 3 respectively for the queue lengths of Queues

7,5, and 3, 1 for each of the queue mixcounts, and 100 for the number

of scheduled processes. Similarly, the target values were chosen as

zero for each of the queue lengths, reflecting a desire to complete

all the queued work, L,2, and 3 respectively for the queue mixcounts

for Queues 7, 5, and 3, reflecting a desire to have if possible a

'good' mjx of iobs, and 4 for the number of scheduled processes. The

large weight selected for the number of scheduled processes reflects

that the attempt to control the degree of multiprogranming results

in an equality constraint, in contrast to the mininrisation of a

weighted sum of squares which results from the attempt to provide

different levels of service to the norma'l batch queues. Similarly'

the small weights chosen for the queue nixcounts reflect that not as

much jmportance is attached to these requirernents as there is to the

others, remembeping that the output from the policy is a set of

desired mixcounts.

As has been mentioned, the formula for calculating

of scheduled processes involves the sum of the scheduled

the

and

number



,86-

suspended processes, with some consideration

available memory in case this sum is zero-

is the expression

gi ven to the amount of

The actual formul a used

s+u-(a
where s is

u is

a is

r is

schedul er

and m is

a process.

- r)/m
the observed number of scheduled processes'

the observed number of suspended processes '
the observed arpunt of available memory jn words'

the amount of memory in words that the low-level

attempts to keep free (by suspending processes),

the estimated mean amount of memory required for

(4.7)

Both r and m have been taken as 16000 words. Fina'lly the number of

stages for the initial problem solution has been chosen as 6, with

a time interval of 60 seconds.

The Burroughs 86700 MCP provides several useful mechanisms for

allowing programs to interact with it, mostly taking the form of MCP

procedures which are external]y callable by a certain class of

programs. Firstly, the procedure SYSTEMSTATUS provides the caller

with a wide range of jnformation concerning the instantaneous state

of the system. This is used by our imp'lementation for determining

the amount of available memory, the number of scheduled processes'

and the number of suspended processes. Secondly, the procedure

DCKEYIN allows the calling program to behave as if it were an

Operatorn by entering corunands and receiving responses, this being

used to determine the mixcounts of the normal batch queues and to

set the new queue mixlimits. The existence of these mechanjsms means

that the operating system itself does not need to be modifiedn since

an ordinary program, given the necessary 'security clearance', [ldY



-87-

interact with it. Finally the use of an ordinary program to enhance

the high-level scheduling mechanism is further expedited by the

provision within the MCP for what is known as a SUPERVISOR. 0nce

a program has been nominated as the SUPERVISOR" then it is

automatically initiated whenever the operating system is restarted'

such as after a system failure.

Considering briefly the practicality of the implementation'

the overheads involved in running the program' to observe the state

of the system and apply the policy to determine a new set of queue

rnixlimits every 60 seconds, turned out to be in the order of 0.1%

of CPU time. Given that this could probably be reduced by an order

of magnitude from this initial implementation by incorporating the

policy application function into the operating system itself' the

practicality of implenrenting these extensions to the high-level

scheduling mechanism is assured.



-88-

4.4 RESULTS.

To test the performance of the application, data obtained from

an independent source have been used to compare various aspects of

system performance with and w'ithout the controlling program present'

This data collection is part of an earl'ier implemented performance

measurement and reporting system 124), wh'ich essentially collects

all data which js available from the operating system. The data

collected during twelve days of running without the controlling

program have been analysed in coniunction with a similar amount of

data collected after the program was running in its final form.

Some teething problems with the implementation have meant that there is

a delay of several months between the two sets of ddta, which may have

some implications for the ana'lysis. The analysis itself consists of

two parts, reflecting the composite nature of the optimality criterion.

The first of these consists of the analysis of overall system

performance to determine the effect of attempting to control the

degree of multiprogranrning, and the second consists of an analysis

of the relative service given to the djfferent classes of normal

batch customer.

In an attempt to reduce the inherent variance in the data'

which have been collected at approximately one minute intervals, the

analyses have been performed on the averages of these data over

twe'lve minute jntervals. Further, the data have been selected in

an attempt to reduce the influence of external variations' For

instance, only those twelve minute intervals during which at Ieast

some batch work Was queued have been considered. Also, the time

period 12 midday to 1 pm is not considered because that time s'lot



-89-

is reserved for, and frequently used by, software maintenance staff'

Similarly the whole of Monday morning is not considered since that

time is often used by hardware maintenance engineers. Finally' the

time periods 11 am to 12 midday and after 4 pm are not considered

either because the operating environment changed between the two sets

of data for these time periods. In particular, when the

implementation was not running, these times used to be reserved for

batch work only, but before the final implementation was running

these times were changed to include interactive work as well. Thus

to sunrnarise, the data have been analysed for all twelve minute

intervals in the time slots 9 am to 11 am (except Mondays), and L pm

to 4 pmn dur.ing which there was at least one batch job queued.

4.4.1. Analysis of 0verall Performance.

In analysing whether or not the attempt to control the degree

of multiprogramming has resulted in improved overa'll system

performance, it first must be decided iust how this performance is

to be measured. The aim of using the high-level scheduling

mechanism to control the number of scheduled processes is to provide

the low-level scheduling mechanism with a continuous selection of

processes from which to chose when deciding to allocate resgurces'

The reason for doing this js the assertion that if the low-level

scheduler always has a choice, then it can make better decisions'

Thus what should be measured to determine a change in performance is

that variable which the low-level scheduler is trying to optimise'

which in general is resources utilisation. One of the ways this can

be measured is through the measurement of the utilisation of the

central processor. As it happens, the data col'lected include



-90-

processor idle time, the complement of processor utilisation, and it

is this variable which has been analysed.

Figures 4.1 and 4.2 show the distributions of idle time,

expressed as a percentage of elapsed time, for the two different

situations, namely when the high-1evel scheduling parameters were

operator controlled, and when they were program controlled. Because

of the non-nonnal nature of the distributions, which is to be

expected, normal tests of significant differences cannot be used

with any confidence. However, non-parametric tests may be used in

this situation, and in particular the Wilcoxon U-test may be used to

test for differences in the means. This test involves ranking the

joint data in a specified wayn and adding the ranks of one of the

subsets. A statistic involv'ing this sum may then be tested against

a normal distribution,

To test for a difference in the means, the null hypothesis is

taken that the two sets of data come from the same distribution'

against the alternative that the second set of data comes from a

distribution which has a lower mean. This results in a z-value of

?.L6, which indicates a significant result at the 2% leve1 for a one'

sided test. That is, at the ?% level of s'ignificance, the nu'l'l

hypothesis is reiected on the basis of differences in the means'

with the mean for the second set of data being lower. This means

that the application involving dynamic control over the degree of

multiprogramming, through the queue mixlimits, has shown a snall but

statistically significant increase in cPU utilisation' as measured

by idle time, over the situatjon involving operator setting of the

high-1evel schedul'ing parameters. In interpreting this result'



-91-

50.
FREGIft\cY

40

30

n

10

X IDLI TII',E

Ftgmo 4.1 DISTRIzuION OF IDLI TII-€ - F,FI\I-H- CC|{TRCX-

N-136
t-cFI{ - 119
iI). - ll2

40

30

n

to

' IDI-E TI}f.

Fiqurc 42 DISTRIzuTIOf.{ OF IDLE TI|€ . PRCGRFF4 CC|IITRCT-

N-7V
I*'EA\ - t9J
S.D. ' tSO

50-
FREALEFf,Y



-92-

cognisance must be taken of the possible variation caused by

uncontrollable djfferences between the two samples' such as

differences in work load present. Further, it must be remembered

that the amount of control that can be imposed by the application is

limited to that portion of the workload that is not interactive or

special jobs. Thus we cannot state for certain that an improvement

in overall performance has resulted from the appfication of dynamic

control of the normal batch work. However, what we can State, and

this is possibiy a more important observation, is that this

application certainly has not resulted in a reduction in CPU

utilisatjon, which means that there are no overa'l'l performance

losses which could offset gains made in the consideration of the

other performance factors.

4.4.2 Analysis of Batch Queue Service.

The prov'ision of different levels of service to batch customers

is incorporated into the Dynamjc Programming formulation by

specifying the weighted squared queue lengths as part of the cost

function, the weights themselves reflecting the desfred different

'levels of service. In attempting to minimise this functionn the

solution will attempt to keep the actual squared queue lengths in

inverse proportion to the weights associated with them. Thus to

test the effectiVeness of the jmplernentation' some rneasure of how

wel I the queue l engths adhere to th'i s rel ati onshi p i s requ'ired .

The method chosen for this is to perform a least squares regression

on the pairs of queue lengths, and to use the variance of the

residuals as an inverse measure of the goodness of the relatjonship.

However it must be pointed out that the goal provided for by the



-93-

cost function is not in conflict with the sort of goals that the

operators were aiming for when the paraneter setting was done by

hand. This fact is necessary for any s'ignificant differences in the

variances of the residuals to be meaningfu'I.

Figures 4.3 through 4.8 show the regressions of the queue

lengths taken pairwise, before and after the imp'lementation of program

control of the high-level scheduling parameters. The slope of the

regression line and the varjance of the residuals for each

regression have been specified on the diagrarns.

Taking these pairwise, the ratios of the residual variances

can be used to test for differences jn the goodness of fit of the

negression equations. The null hypothesis in each case is that the

residual variances are the same' wjth the alternative that the

variance of the second set of data (frorn when the queue mixcounts

r^Jere controlled dynamically) is lower. Firstly, for the regression

of Queue 5 against Queue 3, the F-ratio is 11.2. This is a very

strong result, which reiects the null hypothesis at the 2%1eve1 of

significance, and even at the 0.1% 1evel . l'le can infer from this

that the dynamic control of the queue mixcounts does result in a

sign'ificantly better fit of the lenilth of Queue 5 to the length of

Queue 3. Similarly for the regression of Queue 7 against Queue 3'

the F-ratio is 3.07, wh'ich also indicates that the null hypothesis

would be rejected at the 2% level, and also as low as the 0 't% level '

Qnce again this indicates a significantly better fit of the length

of Queue 7 to the length of Queue 3 when the queue mixcounts are

bei ng control 1 ed dynam'ica1 1y. Fi na1 ]y, for the regressi on of

Queue 7 against Queue 5, the F-ratio js 1.54, which is significant



-94-

3s
SLILE 5
LENGTH 30

E

n
15

10

5

0

3s
GXfLE 5
LENGTH 30

E

n
t5

10

5

0

*
t6

*

*
*

*

*

*

*

*

{e

*

,k*

l( rF

,r* **
#{*r*

{T

N '-Lfr
FESID. LH{H$E ' 104

10t2 1

OLEl.f 3 LENGTH

Flgr,ne 43 AI,E[.E 5 U9, 6[IL.E 3 - l-'H\LfL SITRCI.

*
*

**

if

*

rF

*

*

,Opf, - t.57

S**
{e*

N -tZ
FFSID. IffiIFNE - 9ff

AL.EI.f 3 LENGTH

Ft$r.e 4.4 Gtfl..E 5 US. Q|*Ei.f 3 - PROGRFF{ CCNTRO-



-95-

35
GI.fII Z

LENGTH 30

E

n
TS

10

5

0

35
GX-B.E 7

LENGTH 30

E

n
15

10

5

0

t
* {6*

.OPE ' 216

N-179
F[S[I). LFRIS{E - SS

- 2-O4,

)F

*
t
*
if

rF*

*
*
*

*

1Dt2t
dff 3 LrNsrH

Flgrne 45 ALILE Z US. q-fL.E 3 - yfbUl COf{TRg*

{r*

**I*
*

**fl
*

if
*
*
.tFf*

rl
{*

*
.rF

*f
t*****

t t t * N -1Zl* lF lF lF F6ID. (,RIgt1E - 31.4

CIfLE 3 urNsrH

Ffgrne 4$ OLELE 7 rE OLB-E 3 - pRocfifr'l CCf{TRCI-



3s
GI.-ELE Z
LENGTH 30

E

n
15

10

5

o

35
ol,ELf 7
LENGTH 30

E

n
1s

10

5

0

-96-

*

dF,r

#

*-l--
-ffi

.I,#*
*x*

rr

N- LN
tz4FEsID. LRIFNCE

G|..Etf 5 LENGTH

Flgrne 47 Cl.fl,,E 7 US' Atf(f 5 - l,H\tt{- mNTROt-

&. - 127

,ffi
t**
#

N- t
a,.oFESID. T'RTFITTE

A..ETI 5 LENGTH

Ffgrre 48 6l.Eu 7 rE 6LfLE 5 - pROGRFI.4 COf'{TRO[-



-97 -

at the 2% 1eve1, but is not s'ignificant at the 0.L% level. Thus on

the basis of the data analysed, and bearing in mind the unknown

effects of different workloads and' more importantly' different

arrival rates, we cannot confidently reiect the nul'l hypothes'is that

the variances of the residua'ls are the same. In other words the fit

of the length of Queue 7 to the length of Queue 5 may not have been

s.ignif icantly improved by the dynam'ic control of the queue nixcounts.

Considering these three results together, jt wou'ld appear that

the major effect of the dynamic control of the queue rnixcounts has

been to relate the lengths of Queues 5 and 7, which were already

tied together somewhat, to the length of Queue 3. llhether or not

this has resulted in a degradation of service for Queue 3 is an

unanswered question which is beyond the scope of this apnlication

since the cost function used for the Dynarnic Programming problem

reflects a 'management decision' which 'is more concerned With

relative service to the different queues than with absolute service

to any one queue. Thus what can be stated is that in terms of the

criterion reflected jn the choice of cost function, the application

has succeded in achieving improvements in performance.



-98-

4.5 CONCLUSIONS.

The application of Variable Metric Dynam'ic Programming to the

problem of dynam'ically modifying some of the high-level scheduling

parameters in a batch and interactive conputino systen has been

successful. This success is a result of the fact that on the basis

of each component of a composite criteriono significant improvements

in performance have been obtained. Further, since the implementation

is an initial one, for which many variables have been assigned

approximate or nominal values, experimentation with some of these

variab'les is likely to lead to further improvements. Not only does

this demonstrate the applicability of Variable Metric Dynamic

Progranrming as a solution method, but also it demonstrates the

beneficial use of a lr4athematical Progrannnjng technique in a Computer

Scjence appf ication. These techniques often lend themselves

natural]y to the inclusion of feedback mechanisrns into the

application, thereby reducing the need for an accurate system model'

This is an advantage in operating systems research, since accurate

models are difficult to obtain. A final contribution to the success

of the application is the practicality of the imp'lementation, which

involves reasonably low, and potentially neglig'ib1e overheads'

Finally, this applicat'ion has left unanswered a number of

questions which rnay be used as inspiration for future research topics.

These will be discussed in the following section on overall

conc'lusions and implications for future research'



-99-

SECTION 5.

CONCLUSIONS.

The successful use of Dynam'ic Prograrnn'ing as a scheduling tool

in a multiprogrammed computing system is a good example of how

Mathematical Prograrnming in general nay be applied to Cornputer

Science prob'lems in which dynamic feedback is desirable, or even

necessary, to take account of unforseeable variations. The success

of the appl icati on has further impl 'icati ons for the vi abi I i ty i n

a practical situation of variable Metric Dynamic Progranrming, being

the particular Dynamic Programming solution method used.

Consi deri ng f i rstly the Varj abl e l'letri c Dynami c Programmi ng

algorithm itself, the majn conclusion to be reached from the

research directed towards the development of thjs algorithm is that

the use of Variable lletric minimisation techniques for generating

quadratic approx'imations to functions results in a Dynam'ic

Programming solution algorithm which has advantages over existing

algorithms. The new iterative algorithrnn for the unconstrained

N-stage decision problem, compares favourably with the existing

Differential Dynamic Progranrn'ing algorithm. This has been

demonstrated by app'lying both algorithms to the solution of a s'imp]e

theoret'i cal probl em. Further, by anal ysj ng the two al gori thms

themselves, the DDP algorithm is shown to be in some respects a

special case of the new VMDP algorithm, which has implications for

the range of applicability of the new algorithrn'

Th'i s i ni ti al Proposal of

unexplored openings for future

the algorithm has left a number of

research. 0f those directlY



-100-

concerning the new algorithm as'it stands, the rnost important is the

extension of the algorithm to be able to handle the inclusion of

constra'ints in the problem definition. One further possibility which

has not been mentioned is the application of Variable Metric

minimjsation techniques to the iterative solution of the continuous

time problem. This would entail the development of a new algorithm

using a Similar approach, rather than involving the extension of the

existing algorithm.

As a lead in to the application of the new algorithm, a brief

literature survey has consjdered current research on the scheduling

of multiprogrammed computing systems. The main conclusions reached

by this survey are that the use of feedback mechanisms has been

recognised as a potentia'lly powerful scheduling tool, and that

research directed towards this is steadi'ly gaining nomentum. Further,

however, it is concluded that there js not yet a great deal of

research directed towards the use of Mathematical Progranninc

techniques, which provide the feedback mechanisms in a natural way'

Fina'lly, considering the app'l'ication itsel f , what has been

demonstrated is a mechanism for controlling dynamjcally some of the

high-1eve1 scheduling parameters in a rnultiprogrammed computing

system. The jmplementation of this has resulted in the attainrnent

of significant improvements in terms of the actual criteria

represented by the cost funct'ion being used. Some further research

into the'fine-tuning'of some of the variables be'ing used as

parameters is likely to lead to further improvements. The use of

Variable Metric Dynamic Programming for the app'lication has resulted

jn a high-level scheduling mechanisrn which uses dynamic feedback for



-101-

a relatively large number of variables. This is because of the

natural way the solution policy provided by the VMDP algorithm is

app'lied at each stage to a newly observed value of the state of the

system.

A further benefit from using Dynamic Progranrning is that the

solution process operates in such a way as to optimise a cost function

which reflects a management decisjon. In the current implernentation,

this cost function may be modified to reflect changing management

desires, although this cannot be done on a dynamic basis. However,

the structure of the Dynamic Programming formulation provides the

ability to parameterise a generalised cost function in such a way

that dynamic modifications are possible. This involves considering

the scalar variables which constitute the cost function parameters

to be part of the state of the system, remain'ing constant unless

altered by operator input. A further extension to this would then

be to have these cost function parameters rnodified by some

independent feedback mechanism which takes into account a more general

form of the management policy requirements.

To summarise, a new iterative Dynamic Prograr,ming algorithm,

called Variable Metric Dynamic Prograriming, has been developed, and

shown to have advantages over existing algorithms. A brief

literature survey concerning the scheduling of multiprogramrned

computing systems concludes that the use of Mathematical Prograrming

techniques in computer scheduling is a relatively unexplored but

potentially fruitfu'l research direction. Finally the new Dynamic

Programming algorithrn is applied to a high-leve'l scheduling problem'

resulting in a successful demonstration of both the capabilities of



-1,02-

the new solution algorithm in a pratical situation and, more

general 1y, the potenti a1 power of Mathernat'ical Progranrm'ino techni ques

for providing feedback mechanisms.



-103-

B IBL IOGRAPHY.

The following abbreviations are used to denote sources of some

of the references.

ACM Association for Computing Machinery

AFIPS Arnrican Federation of Information Processing Societies

FJCC Fall Joint Computer Conference

IEEE Institute of Electrical and Electronics Engineers

NRLQ Naval Research Logistics Quarterly

SIAM Society for Industrial and Applied Mathematics

SJCC Spring Joint Computer Conference

1. ABELL' V.A., R0SEN, S., and WAGNER, R.E., Sehedulirg in a

Genez'al Pt*pose openatirg Systan, AFIPS FJCC' Vol. 37,1970.

2. ABRAMS, M.D. and TREU, S., / MetTtodolqA for fnteraetiue

Canputex Seruiee Measurement, Comnunications of the ACM, Vol . 20,

No. 12, L977.

3. AGAJANIAN, A.H., A Bibliography on System Perfonnance Eoaluationo

Computer, Vol. 8n No- lln L975.

4. AGGARWAL, S.C. and MCCARL, 8.A., Ihe Deoelopment and Ettaluation

of a Cost-Based Composite Seheduli'ng RuLe' NRLQ, Vol. 21, No. 1,

1974.

5. ALDERS0N, A., LYNCH, W.C., and RANDELL, 8., Thrashing in a

Multiprograwned Paging System, in 0perating Systems Techniques'

Edited by C.A.R. Hoare and R.H, Perrott, Academic Press'

London, 1972.



-104-

6. ANDERSON, H.A. and SARGENT, R.G., Inuestigation Lnto Sehednling

for an fnteractioe Conrputing System, IBH Journal of Research

and Development, Vol. 18n No. 2, L974.

7- ANDERS0N, H.A. and SARGENT, R.G., l,Iod.eli.ng, Eualuntion, and

Penforrnanee Measurements of Time-Slnri,ng Cornputer Systems'

Computing Reviews, Vol. 13, No. 12,1972.

8. ARBUCKLE, R.A. , Conrputer Analysis artd Throughput Ettahtati'on'

Computers and Automation, Vol. 15, No. 1., 1965.

9. AROM, J.K. and PIERRE, D.A., optimal Trajeetories for

MuLti,.dLmensionaL Non-Linew Proeesses by ftetated Dynarde

Prograrnning" IEEE Transactions on Systems, Man, and Cybernetics,

Vol . Sl4C-3, No. 1, 1973.

10. AR0M, S.A. and KACHFIAL, S.K. , Optinrisation of Design Papanetet's

in a vi.rhtal Memory System, Proceedings of the Computer Science

and Statistics Seventh Annual Symposium on the Interface,

pp. 92-99, 1973.

11. ARTHANARI, T.S. and RAMAMURTHY, K.G., / Braneh and Bowtd

ALgo itfun for Sequeneing N iobs on M ParaLLeL Proeesso?s'

Opsearch, Vol. 17, pp. 147-156, 1971.

L2. AUSTIN, 8.J., HANLON, P.P., and RUSSELL, J.J., Job SeheduLing

in a Monoprogrqwned Elwirownenf, Australian Computer Journal,

Vol . 6, No. 1., 1974.



l-
-105-

13. EADEL' M., GELENBE, E., LEROUDIER, J." and P0TIER, D., A l,tofuT;

of Peef'ow,unoe fo* Vi.raM,L Mew"V 8,yetarnry Proceedlngs of the

trEEE, Vol. 63, FF. 958-965, 1975.

14. BAKER, K-R. and MARTIN, J.8., An Eqperimental Corrpa,rteon of

futution Algori,thrns far the SimlTLe Maehi.ne Ewildneee Problen'

NRLQ, V,sl . 21, No. 1, 1971t.

15. BALUT, S.J.,, Sehedul,ing to xtini,nf.se the Nuribe, 'of Inte Jobe

ulhqi Set-W qnd fuoeesei.ng T'irnes ave lJr,wezttaLn, I'tla.nagengnit

Science, Vol. 9, No. 11, 1973.

16. BARD, Y,, Aryl,i,eabi.on of tke Page &nfiuEt Irdet (PSr) ta

Vivhtal. 'l&arwrry , gptem P.erfwmanee" IBM Journal of Research and

Developnent, Vo,l. 19, No. 3, 1975,

17 , BARD, Y ., Euperilnemtal EoaX.ustton of Syetem Penfomwvane, IBM

System ,Journal, Vol, 12, No. 3,, 1973.

18. BASS, L,rt., On WAiwaL Proeasean SolwdaLi,ng f'or lfuLti"pwgp@twtLw'

SIAI'I Journal on Computing, Vol. 2, Nb. 4, 1973.

19. BELADY, L.A. and KUEHNER, C.J., Wt1frfttc Spizee &twing i;n Ao.nput'er

Egsteme, Co.mnunications of the ACM, Vol . \2, No' 5, 1969.

2,A. BEN-BASSAT' lvl, and BOROVITS, L, Compute? fretuonk Seheiluldng,

0MEGA, Vol. 3, No. 1, 1.975.



-,105-

?!,BERNSTEIN,'A.J.andSHARPE,J.C'rAPo76eg'M'$'enae\ledwlwfor

a fuine-Ehiqying sgetem, Gormunications of the ACI'|, vo],14, No. ?,

1971.

22. BLEVINS, P.,R,. and rRAtlAllO0xTltY, c.v., aep.eete af a wnadeaT:ty

Adaptdve hperating Sgort:em, IEEE Transactions On Computers '
Vol, C-25, No. V, t976.

23. BQIINER, A..J., Us'tng fusten tr[o:mt]top Ottbput to fitprooe Penfomtwrce,

IBM $ystems Journal , \lol - I' No'. 4' 1969'

24. BRg16;NRLCG, R.D. , 86l,0A Petfwtee'Reptorti,ttgo Technical Report

No, 60, Applied l4athenratics Div'ision, Department of Scientific

and Industrial Reseanch, New Zealand, 1977.

25. BR0WNRIGG, R.D- , PwaLl>eL tuoaeasnn'g ffiA' AAwwte Prograrni'ng'

M.Sc.Thesi.s,Vietoriatjniversityof}{ellington'Nev{ZeaIand'

197t[.

26. BRUI{O" J., COFFlvtAN, E.G. JR" and SET}II, R', seTte&fiing

fniepe,nd.ent frasfus to Reduee likiqt Fini'eki'ng Pi-rrreo Gomnunicauons

of the ACM, Vol , t7, No. 7, l9v4-

27 . BUCtlllOLZ, t{. " A 'Se\eeted EibT'€'agrapttV on Cwpute:r Wstent'

Perfawtee tuta,Luani.on, Computer Group NewS, Voll. 2, No' 8' 1969'

?8. BUNT, R,8., Seheihfi'ilng teelmi,ryes fon openati'r'tg Sgstems'

Computer, Vol ' 9, No' 10' 1976.



-1Q7-

2g. BtiNT, R,B,-, Selpprnrhg.tiw seTa&tlets f,er Operatcng, Sgsterne"

Technical Report No. 76, University of Torontoo 1975.

30. BUNT, R. an TS.ICIIRITZIS, D. , An Anrtptubed Bi'bli.ognaphg for

Opw&i,ng gggtern$t Comp,uting ReviewS, VOl. X3' No. 8, 1972.

31, CALINMERT, P., Sgste.rn Perfoinwtse &nltmtiort: Suntey atrd.

Api2ralsal, conmun'tcations of the ACt{, vsl. 10' 1116 1' 1,967.

3e, CHANDY, K.M. and YEH, R.T., (fditors) t 6\aurant rrends i'n

tuogy@Etng Methodptagg,, VaLtma fXf, E:aftuOwe Mode'f;i,W, Frentice

Hall, Englewood C'li;ffs, L978-

33.Cf,fANSON,S.T.andBISHoP,C.D."Asiwtttd'onstuduafAdqbi'tse

S.ehedwllflg poli.ei;ee'l,n Inte*ac*i;ue Corryuter Wstetns' Performance

Evaluatlon Review, Vo] . 6, No. 3, t97V,

34. ClfEN, P.P.S. and F.RANKLIN, 1,,1., (gditors), Inbewtati,onali

Bgnrpoa,itnn orr, Canpwte* Ferfomwtee \tadeldng" Mbaeunenent' qIE

Eualas,6im.. ACI'I' t'hw Yo-rk' 1976.

35. CHENG, P.S., Ttu,ee Dyiten EAitfiem lbileb'ing' IBM Systems Journal ,

Vol. I' No. 4' 1969.

36. CHESTER, K.td. ,, Con1ptter Resowee ALloeati,ort' Datamation" Vol ' 20'

No. 9, L974.

g7, cHU, l{"}rl. and ,0PDERBECK' H. " Awlgsts of tb,e PEE Repv"reenren*

AL;govi,tlvn aia a Setni-MWl<ou ltloclnl," CACM" Vol. 19, No. 5' 1976.



-108-

38. CHUA, Y.S. and BERNSTEIN, A.J., Armlysis of a Fee&ack schedulen'

SIAM Journal on Computing' Vol. 3, No. 3, 7974'

39. CLARKE, S.R. and R0uRKE, T.A., A SirruLation studg of the Effeets

of Var"Lous Job-SeheduLing Algot"ithns in Conrputet' Sgstems, INFOR'

VoI. 1.0, No. 3, L972.

40. CQDD, E.F., MuLti,pnognan Seheduling: Patts L and 2' Introduetion

ond Wrcorg, Cormunications of the ACM, Vol . 3, No' 6, 1960'

4f . C0DD, E.F., Ih,tltipz,ogranr ScheduLing: Parts 3 and 4' Scheduling

Algorit?an and EnternaL Constyaints, Corrnunications of the ACM'

Vo] . 3o No. 7,1960.

42. C0FFMAN' E.G. JR., Analgsi,s of TWo Time-svnring Algorithms

Designed. fot, Linrtted suapping, Journal of the ACM, Vol. 15'

No. 3, 1968.

43. COFFMN, E.G. JR. and DENNING, P.J., 7perating sgstems Theory,

Prentice Hall Series in Automatic computation, 1973.

44. CoFFMAN, E.G. JR. and GRAHAM, R.L. n Optinwl Sche&t'Ling for

hto-pnoeessor systems, Acta Informatica, vol. 1, No. 3,797?.

45. CoFFMAN, E.G. JR. and KLEINRoCK, L., Conputer Schedaling Inethods

qnd rhein Countermeasu?es' AFIPS SJCC, Vol ' 32, 1968'

46. CoFFMN, E.G. JR. and MUNTZ' R.R., Models of htte Time-sharing

Disei,plines for Resource AlLoeation" Proceedings of the ACM

National Conference, Vol . 24, pp. 217-228' 1969'



- 109-

47. CoFFMN, E.G. JR., Deadlocks in contpute? s\stems' in 0perating

systems: International computer state of the Art Report, edited

by C. Boon, 1972.

48. C0FFMAN, E.G. JR., ELPHICK, M.J., and SH0SHANI, A., Sgstem

Deadloeks,,ACMComputingSurveys,Vol'3,No'2'1971'

49. COLIN, A.J .r., rnttoduetion to operating systems, Macdonald and

Arneri can El sevi er, 1971.

50. CoNWAY, R.W., MAXWELL, W.L. ' and MILLER, L'l||" llzeotg of

seheduli.ng, Addison wesley, Reading, Massachusetts, 1967.

51. CRITCHLoW, A.J ., GeneraLised. Ihulti,proeessi,ng attd MuLtiprogronrttng

Sgstems' AFIPS FJCC' 1963.

52. CR00KE' S., MINKER, J-n and YEH, J., KeA Wond i'n Contest and

Bibliogz,apw on conputer systems Eoalu.ation feehniques, Technical

Report No. TR-146, University of Maryland computer science

Centre, L971.

53, DAHM, G.M., GERBSTADT, F.H., and PACELLI, M'M', A Sgstem

hrgani,sation for Resouree allocation' cormunications of the

ACM, Vol . 10, No. 12, L967.

54. DE MEIS, W.M. and wEIzER, N., Measu.rement sn'd Analysis of a

Dennnd. paging yime-shari,ng System, Proceedings'of the ACM

National Conference, Vol. 33, pp' 201-2L6' 1969'



-110-

55, DENNING, P.J., Resowee A|.tooestfim i,,n lduLti,proeese cotrpuber

sgstems, Ph,D. Thesis, l4assachusetts Institute of Technologyt

Cambridge, Ma'ssachusetts' 1968.

56, DEITINIING, F.J., fhe Wotzki;ng \et Modet f,or wogwt Be?ntti'ow,

Comnunicati'ons of the ACN!" Vol . 1l' No. 5' 1968'

57. DENNI1rIG, P.J., Ilwoahi.ng: Ita C.auses qtd Prettercti.or.t' AFIPS FJCC'

Vol. 33, 1968.

58. DQELLING' N., C,anptte? Resouqces Sh,artr1g - Some Crynts and

Fped.ieti;ons, Gomp,uters and Autosotion, vol , L7, No. 10' 1968.

,59, DRUt*tl0ND, Dl.E. JR. , A Fenap,eet'iue nt Sgsten Perfotrnanee

Evaluattan, IBM Systems Journal, Vol. 8, No' 4' 1969'

60. EASTMAN, W.1., EVEN, S., and ISAACS, J.M., Bor*'t'ds f,ot the

WtiiltnL Sekedul;ing af N iahs an I,! tuoeeasavs' Management Science,

Vol. 11, No. 2, 1964.

61. iEtrL$N, 5. and.cllQ[{DHuRY, I.G., A Note en 8.tea'fu-state Re:eulta

,Ln &tetpdng and, Job-xttop sahedUlingo Sinrulationn vol .23, No. 3'

19V4.

62, ELI,IAGHRABY, S.E., llhe lh^ehine geEtene',i,ng ?roblem - nettieu atd

Estensions, NRLQ, Vol. 15, No. 2, 1968'

6i3. ESTRIN, G., Rettdeu of 'sgetem Pe*fot'nwtee &talu'sti'of1: 9ufr)eg

utd. ApprctaaT;to by P. calingss. t, computing Reviews, vol. 8'

p, 160, 1967.



-11 1-

64. FERNANDEZ, E.B. and BUSSELL, 8., Bot*tds on the Nwnbet of

Pyoeessoys and. Ti,me for lfuLti.pnocessor Optintal Sehedules, IEEE

Transactions on Computers, Vol . C-22, No' B, 1973'

65. FISHER, M.L., Optimal Solution of sehedali.ng Ptoblems using

Lagvmtge lhultipli.ers: Pant 1, 0perations Research, vol . 2L,

No.5, 1.973.

66. GANN0N, J.D., (rditOr), An Annotated Bi,bLiogtaphy ort. cotrputer

Progran Engineering (Znd Edi,tlod, Report No. CSRG-3l' Computer

science Research Group, university of Toronton L974.

67. GAVER, D.P. and SCHEDLER, G.S., Apprortnate ModeLs for Proeessor

Utitisati,on i,n lhuLtiprograrvned. Conputer Systems, SIAM Journal

on Computing, Vo1 ' 2, No- 3, 1973'

68. GAVER, D.P. and SCHEDLER, G.S., Ptocessor Uttlisation in

IhuLtiprog,amni,ng Sy stems tt'i.a Dtffusion AppnorLmations, 0perati ons

Research, Vo] . 21, No- 2, 1973.

69. GELDERS, L. and KLEINDoRFER, P.R.n Coordi,nating Aggregate utd'

DetaiLed. Seheduling Deeisions in the 1ne-Maehine Job-Shop: Part

1, Theory, Operations Research, Vol ' 22, No' L, 1974'

70. GELENBE, E. and KURINCKX, A., Random Inieetion controL of

Multt)prognamLng in virtual Mentory, IEEE Transactions On

Software Engineering, Vo] . SE-4, No' L, L978'



'lLZ'

7L. GUTTAG, J.''AtI Ar'tnotated Bibl,i'ogvq:hA m Cottpater Ptogywn

Erryineeri,ng Grd Edi,tis,,rt)' Report frlo. CSR6-54' Cornputer Science

Research Gtnoup, tlniversity of Toronto, 1975'

72.HABERI{ANN,A.N.,fueilerltd.onaf*y'atemDecidloeks"Conmuni:cations

of the ACM, Vol . L2, No- 7, 1969.

73. HAMLET, R.6,, Efffuci.ant tulultd,programrtng Reaouree ALTaoatton md'

Aeeaunti,ng, cOrlnunications of the ACM, VsI. 16, No, 6, 1973.

74. HARALAIv|BO,POULOS, G. and NAGY, G., ProfLLe of a thiloerai,tg

carpwten Uoet Corwrrwnitg, International Journal of l4an-l'lachine

Studies, VoI , 9, No. 3, tgV7,

75. HAVENDER, J,W., Aaoddd.ng Ded.Loc!<s 'tn ltultitasking Sgetexts' IBH

Sy.stems Journal , Vol. 7, No. 2' 1968.

76. 'HEACoX, H.c. and PURD0M, P.w", Awly,ei';e of Tua flime-shwtng

.@teueimg Modets, JOUr.nal of the ACFI, Vol. 19, No. t" L972.

77, I{EIDEMAN, J,0. and LEVY, A.V.o Sequenb'f"a't Ca,Aiugate-C*ad'iant'

Restopatd,on a\gori,tl*n foy apttnw,L control Problerw' Pwt 1'

Fheotg" Journal of Qptimisation Theory and ApBIications, Vol ' 15'

No. 2, 7975.

78. HEIDEMAN, J.C. and LEVY, A.V., Sgquartbia'[. 0oniugate-C*adLertt-

Restonati.on Alg'nvfittm for Opthw|' ComttoL Ptoblerns' Pwt 2'

EuanptT;eso Journal of gptimisation Theory and Applications' VoI' 15'

No. 2, 1975.



- 113-

79. HELD, M. and KARP, R.M., A Dyrwnte Progromning Appnoaeh to

Sequeneing Probl'ems, SIAM Journa'l , Vo1 ' 10, No' L' 1962'

80. HELLER, J., Sequenet)ng Aspects of l,lultiprogvarrnLng, Journal of

the ACM, Vol. B, No. 3, 1961.

81. HELLERMAN, H., Some PytncipLes of Time-Stwri'ng SeheduLer

Strateg"Les, IBM Systems Journal, Vol ' 8, No' 2' 1969'

g2. HoARE, C.A.R. and PERR0TT, R.H. n (Editors), Opet'ating Systems

Teehniques, Academic Press, London, 1972'

83. HQLLQWAY, C.A. and NELS$N, R.T,, A Proeedtse fon Job sltop

ScheduLing uith Due Dates, VariabLe Ptocessi-ng Iines' and a

DynarrrLe ArritsaL Proeess, Research Paper No. 123, Graduate School

of Business, Stanford University' 1972.

84. H0LL0WAY' C.A. and NELSoN, R.T. , Job Shop seheduLing uvt'th Due

Dates and. VaytabLe Pracessing Iimes' Management Science' Vol ' 20'

No. 9, 1974.

85. HoLT, R,C., Some Deadloek Properties of conputer systems, ACM

Computing Surveys, Vol. 4, No ' 3, 1972'

86. HoRN, W.A., Some Simple Seheduling Algori,thms, NRLQ' Vo] . 2L'

No. L, L974.

87. JACoBSON, D.H. and MYNE, D.Q., Diffetential Dynanie tuogranrnLng'

American Elseviern New York, L970'



-114-

88. KAMEDA,

Strategy

Journal

H.,

4n

of

The Arnlysis of an Adaptiue Workload Balaneing

C ornputi'ng Sy st ems Re sou.ree lulmt ag ement, I n ternati ona I

Computer and Information Sciencesn Vol' 4, No' 4, 1975'

89. KIMBLEToN, S.R. and BAKER, K.R. , A Heun',LstiealLy Otilented

Approaeh to Seheduling Batch Produetion Orilented Cotrrputer Systems"

Proceedings of the 7th Hawaii International Conference on System

Sciences, pp. 28-30t L974.

KLEINR0CK, L., A Conseruatdon Lau for a wide cLass of Queueing

Diseiplines, NRLQ, \bl . 12, No. 2, 1965.

90.

91. KLEINROCK,

sJcc, lbl .

1.,

36'

A Conti.nwn of Time-SharLng AlgoritVans, AFIPS

1970.

92. KLEINRQCK, L. and M[NTZ, R.R., Pyocessor Sltnring Queueing Models

of MLned, Sehedultng Ddsci,plines for Iine-sLtmed systems, Journal

of the ACM, \bl 19, No. 3, 7972-

LA}!PS0N, B.W. , A Seheduling Phi,Loeophy for lhflti'proeessing

Systems, Cormunications of the ACM, \bl ' l'1, No' 5, 1968'

93.

94. LARI',!OUfH, J., Schedwling for a Share

Practice and ExPerience' \bl - 5, No.

bhe Maehine" Software

1975.

of

L,

95. LARM0Ltl-H, J., SehedrtLing for fnmedi,ate Iuwrcound., hiversity

of Salford Computing Laboratory, L977 '

LAWLER, E.L., On, Scheduling Problens uytth DefettaL costs'

l,lanagement Science, Vo'l 11, N0.2, 1964.

96.



-115-

97. LlU, C.l-. and LAYLAND, il.lf., Sehedali'ng, A|'gori'tlrne for

Mt\tiproeeaeing i,n a Ewd-EeaL-:Tinre 'E?wctonmer,ft, Journal of

the A0M" Vo''I. 20, No. tr' 1973.

98. LORIN, f1,,, Psalile!,'i;sm i.a Ew&taPe ad' So'ffuia'ne: fleaf;'mil

Ary,pwqr.ut aonouweneg, Frentice Ha'lI' 1971'

99. Llf,AS, H.C,, Pe.rfamtimee EVo:l,tmti,on Wld Matvttgving' Af,ilL

Computing Surv,eys, Vol. 3, No. 3, 1971.

100. LYNCH, H.W. and PAGE, J.8., W.w AS/VSZ Rel,eoee 2 Sgsten Ree'otnoe

il[qrogero IB]rl Systems rlsurnal, lbl. 13, No, 4, L974'

101,. MARSIJALL, B.S, , Wnsri.e \al,e4lati'on of, Di,epateTtt'ng tui'ari,tias

ttndav g$/s:6A tMr, Datalmtion' Vol. 15, No' 8, 19-59'

102. IIAYNE, D.Q,n A, Seeonil-Oyiler Grd'f,e.nt Mettnd' fon Detentfinirtg

optdnral Trqieetories of Non-Linew Dt eerete-Pi'rne sgetens'

International Journal of eontrol, 11o1. 3, No, 1, 1-966'

103. MCKINNEY, J.,M., A &mteg of Analgtie Ptme-Wing ltladnls,

ComLputing Surveys, hl. l, No. 2, 1',959.

104. IGNAIEHT0N, R' , Sebeduling uttth Deqdl;i'nes ald ['oee Fwwtiiona'

I,lana,gement Science, bl. 6, No. 1' 1959.

105. MNrz, R.R. and I.$FEIAN, E,G. JR. , tueengti.tse sehe&tld:mg ,e

Mal,-Ttne Taelca on Mwlbtpnaeessot Sgstens' Joufnal Of the ACil'

Vol. 17, rNo. 2, 1970,



-116-

!.06, MuRPflY, J.E ., Reeotufiee ALlrogafian wLt?t Interloek DeteetLom in a

Ih,tl,ti,task S.gsten" AFIPS RICC, Vol . 33, Par"t 2, 1968'

107. MIRTAGIJ, B.A. and SARCENT, R'bt.H. , A Constrsined Infrdwi'e6'ti'on

Mefipd,ttith&tndftC,bneConilergenee:rin0ptimisation'Editedby

R. Fletcher, Academic Press, London' 1959'

108. MIRTAG|FI, 8.A.. and $ARGENT, R.vJ. H.,'Cotrputfitio,rwt Erperi,ertce'

urL*L &Mdilfrtiaa'Llg Conuergen:t l"Itnifiisqtiqrl Metlwd9l COmputer'

Journal, bl. 13, No. 2' 1970.

109. NABESHIIA , I, Gerrcral Sohedali'ng Algoti'ttvns with AppTicatiorrc

to Pwal,LeL Soheihtl,i.ng *ad lituLtipro,gwawi,ng Sehe&fi,lng;, Journal

of the 0perationrs Reseat'ch society of Japan, b|. 14, No. 2' 1971.

110, NE}{, C., Job-ffiop s heduldng, Data Processing,r lhl' 16' No' 2'

t974,

111. NIELSEN" N.R., An Arl'aLgei.a of gome r,hne-5|tayung yeellniqleg'

Conmunications of the A0M, \bl- 14, No. 2, I97l'

lLz. NIELSEN" N.R., ELedbLe Prteing: an AppWaeh to tlte alrloeat'i,on

of contptlley Resor&ees, AEIPS FJCC, !bl. 33n Part 1' 196'8.

113. NIELSEN, N.R., The A|Loesti.on of carputer Resogeea - Is tui;ei;rtg

tlw Anewer?, Cormunications of the ACM, -w*l . 13, No. 8, 1970.

114. N0RTHOIEE, R.A. and Fu, K. S', W:namt'e &e'lrcdul'ing of Lwge Dt'gl"tal

Cdtputer Sgstemc tlsdng AdaBti,ve C'vr+*,o;l; 'an'd Chwte*dng Tee.ha$Queo'



-tL7-

IEEE Transactions on Systems, }"t1n, and CyberneticSn \fol. 51ffi-3,

No, 3, 1973.

115. oPPENHEIMER, G. and WEIZER, N. , Reeowee ltratqema:nt fo? a Me&hm-

Sealre *ime-Sttwtng Opa'rebi;ng Sgatem, Cormr;nicatiOns of the ACil'

Vol. 11' No. 5, 1968.

116. PASS, E.M. and G:l^lYNN, J., An Adopt'i"ue Mi,'eroeeheifuLee fot a

MuLti;p*ograwned CornButer Systen, Proceedings of the ACM National

Confere'nce, 197'3.

717. PoTIER, D., GELENBE, E., and L'ENmNT, J., Adryti.ae AL?;oeation

of Certtral ?raeesedng Ilni.t Qt;tmta, Journal of the ACt't' \tol 23'

No. 1, 1976.

11S. PRICE, T.G., An An6Lgsds of Centtal Proeeseor Se,lwdul,irry d''n

Itultdpvogmnrwd. Cornput4r Systems, TechniCal Report NO. 57'

Digital Systems Labor"atory, Stanfond Electronics LaboratorJr' 1972.

119. PILLAN, W.J., A SintuXation af a 8670'0 Cowputen System' M.Sc.

Thesl's, 0taEo thiversity' Dunedin, New Zealand, 1976'

120. RAI{SAY, K. and STRA[ES, J.C,, A ReaL Ti;me Prtortfu Sele&il'er"

Proceedings of the ACfrt National Conference, \bl. 2l' 1966'

L?1. REITER, A., 4 Resowee Al|aeati,on Seheme far ltuX,ti,-Uset On-Line

apenati,on of a SnnLl cowputer, AFIPS SJCC, \fo]. 30, 1967.



I22. RODRIGUEZ-ROSELL,

utd Eualuation' of

ACM, \bl . L6n No.

-1.18-

J. and DtPuY,

a Workdng Set

4, L973.

J-P. , The Deeign, Irnplementation'

Di,spateher, Cormunications of the

L23. RQSEN, S., Leetuyes on the Measurement ond Etaluation of ttte

perfonnmtce of Conrputing Systems, SIAlil Regional Conference Series

in Appl ied lr{athematics, No. ?3, 1976.

L24. ROTHKoPF, ld.H., sche&tling rndepend'ent rasks on PataT'LeL

Proeessors, l,tanagement Science' Vol . 12, No. 5' 1966'

L25. SCHNECK, P.8., rhe Wth of lAulfiprognarwing, Software Practice

and Experience, Vol. 4, No. 1, 1974.

126. SEAN,IAN, P.H. and SQtf,Y, R.C., Sirmtlating Operating Systems, IBM

Systems ,Journal n Vol. B, No. 4' 1969.

L?7. SE\[IK, K.C., Optimal P?oeeesor Scheduldng lthen Semsiee-I'fmes

are flypereryonentially Di,stributed and Preenrption Ooethead is Not

Negligilbl.a, Technica'l Report No. CSRG-16, Computer systems

Research Group, lhiversity of Toronto, 1972.

L?8. SEVCIK, K.C., Seheduling for Minirrurn TotaL Loss Using Senuiee-

Iime Di.stributi,ons, Journal of the ACl4, Vot. 21, No. 1' 1974.

LZg. SEVCIK, K.C.n The ltse of Seruiee-Time Di,stributions tn Sehedali,ng,

Technical Report No. CSRG-14, Computer Systems Research Group'

l.hiversity of Toronto, L972.



-119-

130. SHERI\,IAN, S., BASKETT' F., and BRoWNE, J-C., Traee-Driuen Modeling

md. Arnlysis of CPll Scheduli.ng in a lrluLtiprograwnLng System'

Conmunications of the ACM, \,bl . 15, No. L2, 1972.

131. SHIRLEY, S., Eualuating Benehnatk Tests' Data Systems' September

1969, pp.31-33.

L32. SPINNER, A.H., Seqtencing Theotg - DeueLopment to Date' NRLQ,

Vol . 1.5, No. 2, 1968.

133. STE\ENS, D.F., On Ooereoming High-Pri.oti.ty PataLgsi.s in

ItuLtiprogramring Systems: A Case Eistoty" COrmunicationS Of the

ACM, \bl . 11, No. 8, 1968.

134. STIMLER, 5,, Some CyLteria for Time-Sttaring System Petfot'nwtee'

Comnrunications of the ACIvl, Vol . 12' No. 1' 1969'

135. THE C0MPTRE CoRPoRATIoN, sperati.ng Systems Suroey' Edited by

A.P. Sayers, Auerbach' 1971.

136. THESEN, A., ScheduLing of Conrputer Progtons for Opti.naL Machine

Iltilisation, BIT, Vol. 13, No - Z, 1973.

L37. TSICHRITZIS, D.C. and BERNSTEIN, P.A. , }perating Systems'

Academic Press, New York, 1974.

l38. VARIAN, L.C. and COFH'1AN, E.G. JR' , An Enpirieal Skldu of ttte

Behauiour of Pnograns in a Paging Enttirownent, PrOCeedings of

the ACM Symposium on 0perating system Principles, 1967.



- 120-

139. WALKE, 8., Progran Replacenent fot Better ThToughput, IEEE

Transact'ions on Software Engineering, Vol . SE-3, No' 5, 1977 '

140. WICKENS, R. F. , A B?ief Reuieu of contputer Assessment Methods,

Radio Electronics Engjneering' Vol' 26, No' 5, 1968'


	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf



