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Preface 

 

This work provides new information about the native Southern Ant complex 

Monomorium antarcticum. In the first experimental chapter (chapter two) the 

diversity of species within the complex, the utility of DNA barcode molecular data in 

such taxonomic work and how DNA barcode data combines with traditional 

morphological and morphometric data is investigated. The second experimental 

chapter (chapter three) explores the genetic structuring of the complex and how that 

relates to the complexs recent biogeographic history and the dispersal potential, both 

natural and human mediated. 

The two experimental chapters (chapters two and three) in this thesis have 

overlap of portions of the methods and results as they have been written as a pair of 

papers so as they can be read independently from each other. 

In the appendix is a paper co-authored by the author of this thesis, which 

whilst not part of the requirements for this thesis provides further information 

relevant to the Monomorium antarcticum complex studied and was prompted from 

discoveries during the thesis research, the paper is currently under submission. 
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1. Species Diversity and Species Concepts 

 

1.1 Species Diversity 

 

Biodiversity is one of the overarching themes in biology, how many species, 

in which genus, family or phylum and where they exist or persist are some of the 

enduring questions in biology. Currently about 1.8 million species are formally 

identified (May, 1988; Minelli, 1993). Estimates of how many species there actually 

are range; from under five million to over 50 million (May, 1988). Compare that 

against that the rate of extinctions, there have been 724 known extinctions in the last 

400 years (Reid, 1992). The existence of between two fifths and one twenty fifth of 

all species is recorded (depending of which estimate of total species to believe) and 

of those known species 724 have gone extinct in the last 400 years. It is possible to 

extrapolate those values, hence in that same time period between 1800 and 18000 

species have gone extinct unrecorded. Many species are passing from extant to 

extinct without any formal record of their existence. Those are species which beyond 

their inherent natural and scientific worth may be key species in their ecosystems or 

may hold the secrets to novel and valuable chemical compounds. 

 

1.2 Species Concepts 

 

To discuss species numbers and diversity then it is fundamental to be clear 

about what a species is. Despite all the concern over species counts and extinction 

there is still not a universally accepted species concept, all biologists –and most of 

the public– understand in a practical sense what ‘species’ as a word refers to but at a 

precise level there is still evolution and redefinitions of the term (Stamos, 2003). The 

debate over how to define a species continues from the nineteenth century (Cracraft, 

2000). The most common definition of a species is the biological species concept 

(and other related theories such as the Hennigian species concept) is based upon 

reproductive isolation and gene flow within the species (cohesion) (Mayr, 2000). A 

species is a group of “interbreeding natural populations that are reproductively 

isolated from other such groups” – Mayr 2000. That definition makes no mention of 

morphology, which the majority of species are defined upon, so potentially a species 
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could be defined based upon the temporal separation of its reproductive ‘window’ 

when compared to a morphologically identical individual (Spaak et al., 2004). In that 

case the specific definition is based upon the actual factor that isolates the two 

individuals reproductively; practically a temporal difference in the reproductive 

window is no use in recognising those species apart from at that specific time, so 

typically morphological characters are used to distinguish species. When 

morphological characters are used (apart from characters based on reproductive 

organs) an assumption is made that a morphological difference in a certain structure 

is one of the factors –for example in mate recognition– or is a proxy for reproductive 

isolation (Mayr, 2000; Mishler and Theriot, 2000a; Vogler and Desalle, 1994).  

It is important to note that the concepts of species are relative; each species 

needs a sister taxon with which to compare against. Species are formed from the 

emergence of a reproductive gap between sister species (Meier and Willmann, 2000). 

It is the isolation from it’s closest relative that defines a species not its isolation from 

all other species. One of the main criticisms of the biological species concept is that 

it is based on reproductive isolation. Reproductive isolation is hard to directly 

observe in a natural setting (Knowlton et al., 1997; Mishler and Theriot, 2000a) and 

the concept ,being based upon reproductive isolation, does not apply well to asexual 

or parthenogenetic organisms (Templeton, 1989). 

Other species concepts use criteria other than reproductive isolation or gene 

flow to define a species, making them theoretically applicable to all life forms 

regardless of reproductive process. For example the phylogenetic species concept 

(for which there are several versions, here an attempt at a general synthesis is used 

for brevity) is based on a species being the smallest recognisable group of organisms 

that have a shared ancestry (Mishler and Theriot, 2000b; Stamos, 2003; Wheeler and 

Platnick, 2000). Whilst differing in its defining factor, in its application the 

phylogenetic species concept is similar to the isolation and cohesion based species 

concepts, in that the species are assessed on morphology or molecular features and 

compared to the closest known relative. Another species definition is the 

evolutionary species concept, this concept is based upon the shared evolutionary fate 

of the organisms within a lineage and that those same organisms maintain their 

identity from other organisms not in the lineage (Simpson, 1951; Wiley and Mayden, 

2000). Again the evolutionary species concept relies upon relativity; one group of 

organisms differences and maintained identity, comparative to another group.  
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Spanning the debate over species concepts is the question of whether species 

are a natural concept; in that they are “objective or existing independently of the 

classifier” (Ruse, 1992) and that they are a units of evolution (Ereshefesky, 1992). 

Alternatively species are an approximation to a natural unit that is used to help us 

order nature (Ruse, 1992). The evolutionary species concept by definition tries to 

order species as evolutionary units, but like all the concepts it has an element of 

subjectivity; where is the line drawn on when individuals maintain their identity from 

others and the term ‘evolutionary fate’ is one open in interpretation. Regardless of 

whether species are truly natural or not as a concept – in any of their definitions – 

they are entrenched in biology and useful as a concept to describe and discuss 

biodiversity.  

 

1.3 Species Complexes and Cryptic Species 

 

Species complexes are a group of two or more closely related, probably 

sibling, species (Knowlton, 1993). Species complexes are often, but not by 

definition, composed of cryptic species. Cryptic species are those than cannot be 

easily defined using morphology (Bastrop et al., 1998; Mayr and Ashlock, 1991; 

Morehead et al., 2001). They appear indistinguishable (to us) from each other. 

Species complexes are probably more common than is currently recorded as they 

have mostly been recognised in taxa with human importance as they are the target of 

more research compared to the majority of taxa. For example the Malaria mosquito 

Anopheles gambiae (Coetzee et al., 2000; Collins and Hill, 2005) and the whitefly 

Bemisia tabaci (Brown et al., 1995) were discovered as cryptic species complexes 

after considerable work. 
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2. Discovering Species 

 

2.1 Traditional Taxonomic Techniques 

 

Taxonomy, the description and cataloguing of the diversity of life (Quicke, 

1997), is one of the oldest natural sciences. Aristotle was describing and naming 

‘species’ in the 3rd century BC (Mayr, 1982), albeit with none of the scientific rigor 

used today. Traditional taxonomy includes the naming of taxa (nomenclature), the 

arrangement of taxa within the classificatory framework and the identification and 

description of new taxa. It is the identification of new species that I will be 

concentrating on in this work, as the classification of the study group of this work is 

already well settled. The traditional taxonomic process is based upon identifying 

characters that vary amongst the study group of related species. The characters are 

typically morphological, but behavioural characters are also used, each state of the 

character is prescribed a code and each sample is assessed for each character. The 

result is a matrix of character states which is used to either differentiate the samples 

or group them together depending on the combination of character states each 

possess and which character states are deemed important. That ‘ranking’ of 

characters is one of the processes that make taxonomy somewhat subjective, another 

being that many fields of taxonomy are so specialised. Most fields of taxonomy  

require a degree of prior knowledge of the taxa being studied hence a certain amount 

of trust must be invested in the taxonomist that they are being prudent with their 

conclusions as very few people have the skills and knowledge to dispute their 

conclusions.  

 

  2.2 Morphometrics in Taxonomy 

 

Morphometrics is one potential answer to the problem of subjectivity 

(Blackith and Reyment, 1971). Various measurements of structural features of the 

organisms studied are made, the ratios and or comparative values of the 

measurements are analysed using statistics (Blackith and Reyment, 1971; Zelditch et 

al., 2004) and the samples are again differentiated or coalesced depending on the 

results. Morphometrics have been applied to fossil records to help identify 
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incomplete samples (Elewa, 2004), to detect hybrid zones (Lambert et al., 2006; 

Luebke et al., 1988) but it has also been useful in identifying new insect species 

(Daly, 1985; Patterson et al., 2001). In insects, morphometrics is of particular utility 

when trying to delineate two very similar morphological species which may differ 

slightly in the size or ratio of various body structures (Meunier et al., 1999). Whilst 

morphometrics does remove some of the subjectivity of taxonomy, in that it reduces 

a potentially complex character into a quantitative continuous numerical value, the 

selection on what to measure still has an element of subjectivity. 

 

2.3 Molecular Methods in Taxonomy 

 

The use of molecular data in taxonomic studies is not new. Enzymes have 

been used in the past as diagnostic characters when morphology was not sufficient 

(Ayala and Powell, 1972). The use of actual sequences of DNA is a more recent 

technique in taxonomic biology (Kocher et al., 1989). It involves the sequencing of 

segments of nuclear or mitochondrial DNA (mtDNA). Those sequences are 

compared looking for differences between the sequences that can be used to 

differentiate the samples the sequences were extracted from. DNA sequences in 

taxonomy are typically viewed as another tool, alongside morphology, to be used in 

detecting and describing species. DNA sequences are thought to be particularly 

helpful in taxa with a degree of morphological crypsis such as displayed by cryptic 

species (Paquin and Hedin, 2004).  

 

2.4 DNA Barcoding 

 

Firstly, the conceptual difference between DNA barcoding and molecular 

taxonomy must be noted. The term ‘DNA barcode’ has some implications in regards 

to the methodological basis of the study; it implies the application of the mtDNA 

barcode in isolation from other taxonomic tools such as morphology. DNA 

barcoding is one of the newest and most controversial molecular tools in taxonomy. 

In essence barcoding is the proposition that any species could be identified using a 

universal, short (about 500 base pair) stretch of DNA sequence of the mitochondrial 

genome (Hebert et al., 2004a). The technique compares the barcode to an existing 

database of barcodes. New species could be identified by comparing their DNA 
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barcode to the barcode of their closet relative. The concept of a using a standard 

region of mtDNA to be used across all animal taxa is DNA barcoding’s major 

strength and perhaps its major weakness. DNA barcoding does have many positive 

features. Barcoding reduces the need for specialist taxonomic knowledge; as it is 

relatively easy to extract and sequence a section of DNA. Barcoding does not need 

intact samples, as a DNA sequence can be extracted from a single leg of a fly for 

instance, museum samples can be compared to freshly collected ones and the 

collection of large sample sizes is not necessarily required. Hence the identification 

of new species will hopefully accelerate (Moritz and Cicero, 2004). For animals a 

fragment of the Cytochrome Oxidase One region (COI) is proposed as the universal 

barcode (Hebert et al., 2004a). 

It is the idea of applying DNA barcoding to the discovery of new species that 

has generated the most discussion. When used as a tool in discovering new species a 

sequence threshold must be applied to the sequence data. A sequence threshold is a 

set percentage where if two samples have less genetic distance between them tham 

the preset threshold then they are considered to belong to the same species, but if 

they genetic distance is more than the threshold then they are considered different 

species (Hebert et al., 2004a; Hebert et al., 2004b). The threshold concept relies on 

the assumption that inter-specific variation is greater than intra-specific variation. 

DNA barcoding, whilst a promising tool for accelerating the discovery and 

identification of species, does have several criticisms. Firstly the lack of a true 

universal barcode, no any one barcode will have low intraspecific variation and high 

interspecific variation across all animals (Meier et al., 2006; Nielsen and Matz, 

2006). Some critics claim that the barcoding ‘gap’ between intra and inter specific is 

an artefact of poor sampling and the ‘gap’ disappears with a large sample (Wiemers 

and Fiedler, 2007). In many ways the sequence threshold approach to species 

discovery is too simplistic, ignoring the possibility of different species having 

different rates of evolution for the COI region or that the COI region may be highly 

conserved in some species (Huang et al., 2008). A standard percent sequence 

difference will not work consistently when used in a taxonomic vacuum; some prior 

knowledge of the diversity of the groups studied is required as a comparison with 

which to gauge the appropriate threshold to use. Even proponents of barcoding 

require a traditional taxonomic framework with which to test barcoding against 

(Hebert et al., 2004b). Sampling within the mitochondrial genome (mtGenome) is 
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also a issue, a barcode of around 500 base pairs is only 3 percent of the entire 16500 

base pairs of an insect mtGenome (Stewart and Beckenbach, 2004). A general 

opinion of those that advise caution over the use of DNA barcodes alone is that to 

work with any accuracy the barcodes must be used against a solid taxonomic 

structure (Meyer and Paulay, 2005). However despite all the criticism and problems 

that DNA barcoding seems to have it is still an exciting prospect for future 

taxonomy. It is positive that so many potential problems have been recognised as it 

will make further work more robust and hopefully more biologically accurate. 

 

3. Biogeography 

 

3.1 Phylogeography 

 

DNA sequences can be used for much more than identifying organisms or 

diagnosing new species. MtDNA sequences have an aspect of time associated with 

them. Phylogeography studies how a molecular phylogeny relates to past and present 

geographical processes or geographical structure (Avise, 1998; Hewitt, 2001; 

Taberlet et al., 1998). The term phylogeography was coined in 1987 (Avise et al., 

1987), but as a study it has a longer history with a basis in biogeography and the 

theory of plate tectonics (Avise, 1993). Biogeography, the study of where and when 

species exist, dates as far back as Alfred Wallace in the 19th century (Wallace, 1860). 

MacArthur and Wilson updated the study in the mid 20st century making it more 

analytical and current rather than purely descriptive and historical (MacArthur and 

Wilson, 1967). In a sense phylogeography is an extension of biogeography using 

DNA as means to test the ‘whys’ of biogeography. With the appropriate DNA 

sequences and the range of analysis available it may be possible to determine what 

geographic features or processes are important in determining the current distribution 

of species. At the time Avise coined the term, the theoretical basis of 

phylogeography was not novel but the means to test it on a large scale were just 

becoming possible, both financially and practically with the advent of high thru-put 

sequencers.  

Underpinning biogeography and phylogeography is the concept of allopatric 

speciation, the modern theory of which was developed by Mayr (1954, 1963). In 



9 

allopatric speciation a group of organisms belonging to the same species are 

separated by a geographical barrier, a sea, river, mountain range, glacier, desert or 

one of many others. In isolation, and without any interbreeding, the two groups 

evolve intrinsic barriers to reproduction such that the geographical barrier is no 

longer needed to prevent interbreeding of the two groups; a new species is formed. 

The basic techniques of phylogeography are as follows; firstly construct a 

phylogeny of a one or more species based on one or several genes, then apply a 

molecular clock to gain as aspect of time (if necessary and or relevant) to the 

phylogeny and then consider how the patterns within the phylogeny are consistent or 

contrast with potential historical geographical processes. What historical processes 

could explain the structure observed in the phylogeny? Alternatively one can form a 

theory of a historical geographical process and construct a phylogeny to test that 

theory.  

A classic example of phylogeography is the colonisation of the Hawaiian 

archipelago. As new islands emerged via volcanism from the sea they were subject to 

repeated colonisation from the older islands, hence there is a common pattern of the 

newest species inhabiting the newest islands (Roderick and Gillespie, 1998). 

Phylogeography can be also be applied in the aquatic environment, a classic example 

of this is the cichlid fish that inhabit lakes of eastern Africa. Historical fluctuations in 

the lake levels have separated the lakes into several smaller lakelets each with its 

own isolated population of cichlid fishes. Modern populations of several cichlid 

species display clades and or male colouration patterns corresponding to the number 

of lakelets the lake was divided into when the water level fell (Baric et al., 2002; 

Smith and Kornfield, 2002; Verheyen et al., 1996). 

 

3.2 Genetic Population Structuring 

 

Population Structuring is not fundamentally different from phylogeography. 

The major difference is the scale is it applied on and the types of processes it can 

reveal. Population structuring can be considered intraspecific phylogeography (Avise 

et al., 1987). Whilst phylogeography works with whole species as units of population 

structuring – as the name suggests – population structuring ndeals with the sub-

divisions within a species, going as detailed as individual haplotypes (O'Corry-

Crowe et al., 1997; Templeton et al., 1995). Like phylogeography the genetic 



10 

structuring seen in the populations is often related to the current or historical 

geographical processes, or alternatively past geographic processes are inferred from 

the structuring seen in the modern population. In general population structuring deals 

with a more recent time frame than phylogeography due to the structuring of an 

individual population being more recent than the divisions between species. Genetic 

population structuring imparts a layer of detail genetic beyond most phylogeographic 

studies; it can give insights into the dispersal power and patterns of the organism in 

question. Such is the detail that haplotyope networks, a ‘map’ of the connections 

(down to a single base pair change) between haplotypes, can be constructed. A 

haplotype network can inform about the relationships between different populations, 

for example which populations are interbreeding (Johnson et al., 2002). A network 

can help identify population bottlenecks and the subsequent expansion from that 

locality (Meyers et al., 2000) and dispersal routes of organisms particularly in 

invasive species such as the Argentine ant (Linepithema humile) (Corin et al., 2007) 

and an invasive brittlestar (Roy and Sponer, 2002). The dispersal potential of an 

organism can be inferred once a layer of geographic data is added to the genetic data 

(Bohonak, 1999; Wishart and Hughes, 2003). The further apart and more genetically 

similar samples (or populations) are then presumably the faster and further the 

organisms within the population are dispersing. That is the essence of the isolation 

by distance concept (Wright, 1943). It relates the genetic distance between samples 

to the geographic distance between that same pair of samples.  

 

3.3 Phylogeography and Genetic Population Structuring of New 

Zealand Species 

 

New Zealand has a rich scientific history of phylogeography and genetic 

population structuring, a quick search of journals with an engine such as ‘Web of 

Science’ results in hundred of articles focussing on the phylogeography and genetic 

population structuring of New Zealand and its biota. New Zealand has had a long 

history of isolation. It is generally thought to have broken away from Australia and 

the rest of Gondwana around 80 million years ago (mya) (Cooper and Millener, 

1993), taking with it all manner of ancient animals – the tuatara and velvet worm 

(Onychophora) – and plants. Hence all biota was either present on  Zealandia (the 

piece of land that broke away from Gondwana which included present day New 
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Zealand and New Caledonia amongst others) or it reached here transoceanicly in the 

intervening years. Recently there has been some postulating that model of gondwana 

drift was not the case, or rather not the whole story. It is proposed that New Zealand 

was completely submerged at some point  between 85-22 mya and that New Zealand 

only emerged permanently from the sea to accept the biota present today around 22 

mya (Landis et al., 2008; Pole, 1994). Other earlier work (Landis et al., 2008) 

accepted the major reduction of land mass of New Zealand due to sea level rises but 

none had proposed a complete submersion of all land or ‘drowning’. That drowning, 

referred to as the Oligocene drowning, is proposed as responsible for many 

bottlenecks and structuring of populations in New Zealand (Cooper and Cooper, 

1995; Stöckler et al., 2002). 

However the origins of New Zealand’s biota – Gondwanan or oceanic – does 

not change its more recent history. Some of the common themes of the 

phylogeographic and population structuring studies of New Zealand flora and fauna 

include the classic glacial refugia theory (Trewick and Wallis, 2001; Wardle, 1988), 

the vicariance or dispersal of flora and fauna to the Chatham Islands (800km off the 

east coast of the South Island) (Emberson, 1995; Trewick, 2000). Other common 

themes in New Zealand phylogeographic and population structuring studies include 

the separation (or continuity) between North and South Island taxa, as in some kiwi 

species (Baker et al., 1995). The high degree of movement of the tectonic plates 

underneath New Zealand resulting in the formation of the Southern Alps since the 

Oligocene drowning is another common theme as is the “Beech Gap”. The “Beech 

Gap” is an area on the southern west coast of the South Island of New Zealand which 

is devoid (a disjunction of distribution) of many species that occur on the northern 

and southern side of the gap. The gap has been attributed to either tectonic processes 

(Heads, 1998) or glacial events (Willett, 1950). 

 

 

 

 

 

 

4. The Study Organism 
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4.1 Monomorium (Hymenoptera: Formicidae) in New Zealand 

 

There is an amazing diversity of ants. There are 11477 extant described 

species (Bolton et al., 2006). Ants are a fascinating taxonomic subject due to their 

generally conspicuous nesting behaviour, sheer numbers of individuals and the 

curiosity their complex social structure inspires in humans (Don, 2007). Only 38 of 

those 11477 species inhabit New Zealand; just eleven are natives (Ward, 2005) and 

three of those natives belong to the genus Monomorium. Worldwide the genus has 

over 550 species and subspecies, six of those inhabit New Zealand 

The most common and ubiquitous of the native ants is Monomorium 

antarcticum (Fr. Smith) commonly called the Southern Ant (Brown, 1958). It is 

present across all of New Zealand including Stewart Island, the Chatham Islands and 

the Three Kings Islands (Brown, 1958; Don, 1994; Don, 2007). Monomorium 

antarcticum is considered a complex of sibling species rather than a single distinct 

species (Brown, 1958; Don and Jones, 1993; Wang and Lester, 2004). Though 

considered endemic (Ward, 2005) there is a record of samples from Raul Island in 

French Polynesia (Wheeler, 1936). That record, in this author’s opinion, is unlikely 

to be the same species as M. antarcticum rather when using the current key for the 

group. Those samples from Raul appear the same as M. antarcticum. An attempt was 

made to secure samples of that Monomorium species from Raul to include in this 

study but as yet no samples have been secured. Monomorium antarcticum is a 

relatively unremarkable looking ant. The workers are about 3-4mm outstretched in 

length (Brown, 1958), vary in colour from a deep glossy black to a vivid almost 

translucent orange and through shades of orange and brown (Brown, 1958; Don, 

2007). They live in colonies ranging from a single queen with a retinue of less than a 

hundred workers up to a nest presided over by multiple queens (called polygyny; the 

author has observed 9 queens present in one nest) and excess of a thousand workers. 

It is not uncommon to find M. antarcticum cohabiting a nest site such as under a 

rock, where nests are often found, with another native ant species such as M. smithii 

or Huberia striata (Lester et al., 2008). During New Zealand’s late summer 

(February and March) M. antarcticum can be seen in large mating swarms (Smith, 

1895). They are generalist feeders preying upon small invertebrates, are thought to 

collect seeds (Don, 2007) and other plant matter and they can be observed ‘milking’ 
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homopterans such as ‘mealy bugs’ (Brown, 1958; Don, 2007; Lester et al., 2008; 

Smith, 1895). The range of colours displayed by M. antarcticum in conjunction with 

diversity in several structural features has led to the complex being divided into five 

or more ‘species’ (Brown, 1958) based on various characters within that diversity. 

Work has also been done to try and find additional means to delineate the complex. 

These include chemotaxonomy of the venom (Don and Jones, 1993; Jones et al., 

1986) and the morphometrics of several key measurements of the workers (Wang 

and Lester, 2004). Both cited studies found evidence for a complex however neither 

was aiming to try and propose an answer on how to split the complex.  

 

 

5. Research Aims 

 

The aims of this research are to attempt to discover the species diversity 

within the Monomorium antarcticum complex using both molecular data in the form 

of DNA barcodes and morphological features. More broadly, I hope from that 

species diversity to gain some insights into the degree of differentiation necessary 

between two organisms for them to be defined as different species, as the species 

within complexes are usually very closely related. Furthermore I hope to assess the 

utility of DNA barcoding in trying to delineate species and how DNA barcodes are 

consistent, with or conflict with, morphological data. This research also aims to 

provide some insights into the population structuring of the complex, and the 

dispersal potential of the M. antarcticum complex. 
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Chapter Two 

 

Searching for Species within Complexes: A Molecular and 

Morphological study of the New Zealand Ant Complex 

Monomorium antarcticum (Fr. Smith) (Hymenoptera : 

Formicidae). 
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Abstract 

 

The native New Zealand ant complex Monomorium antarcticum was studied using a 

627bp length of the COI region of mitochondrial DNA, traditional morphological 

and morphometric techniques. Evidence was found for at least three species within 

the complex using both molecular and morphological data. However, the results were 

not in concordance with DNA limits for species proposed in other work with other 

species, including ants. It seems all evidence supporting a new species must be 

assessed on its own merits and that conclusions from other work can only be 

transferred between taxa with care. 

 

Key Words 

 

Monomorium antarcticum, species limits, DNA barcoding, diagnosing species, 

mitochondrial DNA (mtDNA) 
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1. Introduction 

 

Cryptic species are species that cannot be separated easily or reliably using 

morphology alone (Bastrop et al., 1998; Blair, 1960; Mayr, 1942). Cryptic species 

are not necessarily closely related, however, in a species complex the species are not 

only hard to separate morphologically but generally thought to be closely related 

(Collins and Paskewitz, 1996). A classic example of a species complex is the malaria 

mosquito Anopheles gambiae Giles (Diptera: Culicidae). Due to human importance 

this complex has been studied since the 1960’s and is one of the earliest recognised 

(Coetzee et al., 2000). The species within the A. gambinae complex are thought to be 

distinguishable only by their behaviour and molecular evidence (Coetzee et al., 2000; 

Collins and Hill, 2005). 

Assuming that closely related species are recently diverged then sibling 

species should show a minimum amount of change – morphological, genetic and 

behavioural – from each other (Ayala et al., 1974). That makes species complexes an 

ideal study group (Panhuis et al., 2001) for trying to answer questions around 

speciation.  

What degree of differentiation must there be between two organisms for them 

to be defined as different species? This question is of constant interest to 

evolutionary biologists (Dobzhansky, 1940; Loeb, 1937; Nei, 1971; Tattersall, 1992) 

and one way to investigate it is to study recently diverged species. 

If the organisms within a complex seem to be morphologically identical or 

the morphology is too variable or complex such as to make an identification using 

morphology impractical then DNA is a potential tool to employ. Molecular data in 

species problems provide a layer of resolution beyond that of morphological 

structures. The change to a sequence of DNA often does not change any vital 

function, or the amino acid sequence itself (Komar, 2006). Consequently, changes 

can accumulate through time potentially differentiating apparently morphologically 

identical organisms. It must be noted that there is an argument that those ‘silent’ 

changes may have little bearing or relation to the mutations that drive speciation 

(Hafner et al., 1987) but that is another issue and is not discussed here. Molecular 

data has proved valuable in a number of cases where morphology was not sufficient 

to delineate a complex (Bastrop et al., 1998; Hebert et al., 2004; Morehead et al., 
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2001).  The Cytochrome Oxidase One (COI) region of the mitochondrial genome has 

proved a popular molecular marker in taxonomic studies when dealing with 

complexes or otherwise. The region possesses enough sequence divergence in most 

animals for the COI region to be an effective molecular tool (Hebert et al., 2003b) 

and sections of is sequence are conserved enough to allow the same primers to be 

used across a range of taxa (Hebert et al., 2003a; Kocher et al., 1989; Sorenson et al., 

1999). The popularity also causes somewhat of a snowball effect, in that the more 

studies that use COI the more future studies will use them so as to allow comparisons 

between studies. 

The use of DNA as a tool in defining species does have detractors. The 

arguments are primarily focussed on when a short (about 500 base pair) sequence of 

DNA such as a fragment of COI, often referred to as a ‘barcode’ (Hebert et al., 

2003a) is used in isolation from morphological characters or further DNA sequences 

to identify new species. Some arguments are that the ‘barcoding gap’, the gap 

between intra and inter specific genetic variation, does not exist if comprehensive 

sampling is undertaken (Meyer and Paulay, 2005; Wiemers and Fiedler, 2007). The 

COI region is criticised for its conserved nature in some organisms –in that is does 

not evolve fast enough- ironically one of the features that made it a popular choice 

for barcoding studies (Hajibabaei et al., 2007). Others note the problems with the 

application of a standard percent DNA sequence difference between samples to 

predict species boundaries (Cognato, 2006). Many note the perils of using DNA in 

isolation from morphology (Moritz and Cicero, 2004; Quicke, 2004; Will et al., 

2005). 

Species complexes are found throughout the biological world and are very 

common in insects, due probably in part to the sheer number of insect species and the 

relatively low taxonomic knowledge. Species complexes have also been found 

relatively often in the well studied insect orders (Collins and Paskewitz, 1996) 

compared to other more conspicuous flora and fauna. Hence there tend to be regular 

discoveries of new species and rearrangement of existing ones within insects. Within 

Australia and New Zealand the Monomorium genus of ants has proved a taxonomic 

problem, with some conflict over how many species there are within it (Anderson, 

2007; Bolton et al., 2006; Heterick, 2001) and the number of complexes within the 

genus (Anderson, 2007). In New Zealand there are considerably fewer ant species 
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than in Australia. However there is only one recognized Monomorium complex, 

Monomorium antarcticum (Fr. Smith).  

The Monomorium antarcticum complex is a group of relatively unremarkable 

ants, thought to be the most common native ant in New Zealand (Brown, 1958). It 

ranges in size from three to five millimetres in length, it exhibits a range of colours 

from jet black to a vivid orange (Brown, 1958), it is a generalist feeder, it is a likely 

seed collector (Don, 2007) but also tending homopterans (Don, 2007; Lester et al., 

2008; Smith, 1895). They are often found nesting in very close proximity –under the 

same rock- as another nest of the same or a different species such as Monomorium 

smithii Forel or Huberia striata (Fr. Smith) (Lester et al., 2008). They are quite 

aggressive, ants actively attacking intruders using their stings, the venom of which, 

differing chemically amongst morphologically distinct nests and is cited as evidence 

for a complex (Don and Jones, 1993; Jones et al., 1986). In addition to the venom 

there is clear evidence for a complex in the size range of specimens and the 

morphological features exhibited (Brown, 1958), morphometric work also points at a 

complex (Wang and Lester, 2004). This paper investigates the complex as a whole 

using traditional morphological, morphometric and molecular data in the form of a 

mitochondrial gene fragment of the COI region. The aim of this work is to attempt to 

define boundaries of the species within the complex using the three techniques 

mentioned above. 

 

 

  2. Methods 

 

2.1 Collection of Samples 

 

The majority of samples were collected during the summer (November- 

February) of 2006-2007. Samples were collected by in the field from nest sites and 

when possible queens, eggs and winged males were collected. Nests were mainly 

situated under rocks and once disturbed as many as ants as possible were collected 

via an aspirator and then decanted into a small plastic container with walls coated in 

Fluontm  (DuPont,Wilmington, DE) to prevent escape. From this container the 

workers, queens and eggs were transferred directly into a vial containing 70% 
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ethanol. A small number of samples were not collected from an actual nest but the 

surrounds of a nest.  

 

Figure 1. Map of samples. The circular points are the M. antarcticum samples and the triangles the M. 

smithii samples. Inset is the samples from Chatham Islands. The alphanumeric code (e.g. G1) refers to 
the sample site, and the following number refers to the extraction number from that site, note that 
some sites had more than one nest. Note that the Chatham Island is not to scale in terms of distance or 
placement relative to mainland New Zealand. 

 
Additional samples were obtained from the Chatham Islands by Phil Sirvid 

(Museum of New Zealand, Te Papa) and Kevin Burns (Victoria University of 

Wellington) and from the Nelson, Marlborough region thanks to the Department of 

Conservation (DOC). The samples obtained from DOC differ from the bulk of the 

samples in that they were collected using baits. A vial containing bait was left out 

then recovered some time later (the exact time the bait was left is unknown), in some 

cases multiple vials were collated into one sample, but it was been noted when that 

occurred and those samples were not included in the morphological section. 

Nevertheless it is likely that a sample from one single baited vial would contain the 

workers from only one nest as M. antarcticum nests have been observed in 

laboratory studies being very protective of food sources (Sagata, 2007). In total 110 
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samples of M. antarcticum were obtained, and 14 samples of M. smithii were also 

collected for use in comparative analysis. The sites of the samples used in the 

molecular and morphology analysis can be seen in figure one. 

 

 

2.2 DNA Extraction, Amplification and Sequencing. 

 

DNA was extracted from a whole ant using the Chelex® method (Walsh et al., 

1991), in some cases a leg of a queen was used so as not destroy the sample. The 

DNA was amplified using the Polymerase Chain Reaction (PCR) (Mullis et al., 

1986), using the general invertebrate primers (L-COI-1490 and H-COII-2198) 

(Folmer et al., 1994) were used. A 25µL PCR mix consisted of; 1 µL of DNA 

template, 1 µL  of each primer at 10 µM, 1µL of BSA at 10mg/µL, 200 µM of each 

dNTP, 2.5µL of 10x NH4 reaction buffer (160mM (NH4)2SO4, 670mM Tris-HCI 

(pH8.8 at 25°C), 0.1% Tween-20) (Bioline), 0.75µL  of 50mM MgCl2 (Bioline) and 

1 unit of BioTaq DNA Polymerase (Bioline). Amplification of target DNA was 

conducted on an Eppendorf Mastercycler® ep gradient thermal cycler, using the 

following conditions: denaturation at 94˚C for 2 min, 30 cycles of 20 sec at 94˚C, 30 

sec at 40 (annealing) and 1 min at 72˚C, followed by extension at 72˚C for 5 min. 

The PCR products were purified using ExoSapIt (USB) and then directly sequenced 

using BigDyeTM Terminator v3.1 and analysed on an ABI 3730 Capillary Sequencer 

(Applied BioSystems). Two sequences used in the molecular analysis, ‘M. smithii. 

Waimarama’ and ‘M. destructor (accession number DQ353305), were not sequenced 

during this work but from previous yet unpublished data (Lester et al) and from 

GenBank® respectively. In some cases an individual site had multiple nest or forms 

and several extractions were made from different individuals (the number after the 

alphanumeric code denotes a different individual was used), hence some sites such as 

H3 show up multiple times within the analysis. 

 

2.3 Molecular Data Analysis 

 

The sequenced DNA fragments were assessed in terms of quality using Finch 

TVtm a chromatogram trace viewer. Sequences of good quality were added to a 

MEGA4tm (Tamura et al., 2007) alignment file; if a base pair site was ambiguous a 
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manual correction was made based on the chromatogram trace file. The sequences 

were aligned by eye and trimmed down to 627 base pairs each, to eliminate 

unreliable sequence at the extreme ends of the files. In total 79 sequences of M. 

antarcticum were included in the analysis and 15 of M. smithii. 

Kimura Two Parameter (K2P) neighbour joining trees (Saitou and Nei, 1987) 

and maximum parsimony trees were created using MEGA4tm with a variety of 

bootstrap values. A sequence of M. destructor was included as an outgroup. A 

number of basic statistics of the clades were generated using a combination of 

MEGA4tm and Origin 6.1 (OriginLab, 1991-2000), the interquartile range was 

calculated using the embedded feature in Origin 6.1, those same statistics were 

calculated between the clades using the within means of the clades. Barcode gap 

graphs between the groups were made by creating a K2P pairwise matrix between all 

of the samples within a clade against all of the samples of another clade in 

MEGA4tm. The proportion of pairwise comparisons from the clade or between the 

clades that fell within the predetermined percent distance bins (0.5% intervals) was 

plotted.  Based on the barcode gap graphs, the molecular tree, and the other statistics 

the samples were assigned to one of nine clades, being A to H and smithii, with 

smithii composed solely of samples of M. smithii. 

 

2.4 Morphological Data 

 

Seventeen morphological characters were used to construct a morphological 

data matrix. They were in part intuitive characters such as colour and size and others 

were adapted from Heterick (2001). The character set used seventeen characters used 

with the states of the characters following each character. Of the characters below, 

five (in bold and underlined) were considered to be useful. Those not in bold or 

underlined were not considered useful or informative because of any one of a number 

of reasons including: there was variation of the character within an individual sample 

such as a few cases with the alitrunk colour, the character was variable between two 

genetically/morphologically very close samples yet the same character was 

consistent between two otherwise genetically/morphologically disparate samples, in 

other words the character was an outlier that clashed with the other molecular and 

morphological characters; the character proved ambiguous showing a degree of 
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gradation between the extremes of the character and hence was difficult to apply with 

consistency. 

 

1. Alitrunk colour, orange/brown [1], dark brown to black [2], pale brown/whitish 

[3], vivid/translucent orange [4]. 

2. Median clypeal margin, distinct teeth projections [1], very slightly rounded lumps 

[2]. 

3. Basal Tooth of Mandibles, enlarged compared to non-apical teeth [1], not enlarged 

compared to non-apical teeth [2]. 

4.Propodeal sculpting, Smooth [1], striae, faint micro-reticulation [2], distinct micro-

reticulation [3]. 

5. Sculpting on waist (not including petiolar process), none [1], micro-reticulation [2] 

6. Propodeal lobe size, more than half as ‘tall’ as distance to dorsal extremity of 

propodeum [1], less than half as ‘tall’ as distance to dorsal extremity of propodeum 

[2]. 

7. Propodeal lobe shape, rounded dorsal edge [1], upturned or pointed dorsal edge 

[2]. 

8. Metaplueral lobes, distinct flanges, longitudinally overlapping with propodeal 

lobes [1], smaller flanges, not overlapping with propodeal lobes [2]. 

9. Propodeal declivity, flattened [1], concave [2] 

10. Propodeal dorsal nodes, rounded [1], pointed [2]. 

11. Postpetiolar keel, no anterior pointing projection, keel points down [1], distinct 

anterior pointing projection [2]. 

12. Antennae colour, antennae same colour as head and alitrunk [1], antennae 

different colour than head and alitrunk [2]. 

13. Promesonotal suture, Absent, may have pit at the midpoint where suture would 

be [1], vestigial, faintly visible as impression on carapace [2], present as visible or 

faintly visible ridge, can be seen best as ‘lip’ when view longitudinally [3] 

14. Petiolar Process, slight projection [1], distinct projection away from petiole [2]. 

15. Metanotal groove, shallow, wide, small rise from propodeum up to mesonotum 

[1], deep, large rise from propodeum up to mesonotum [2]. 

16. Dorsal Propodeal Spiracle, Present as faintly depressed pit midway between 

metanotal groove and declivitous face [1], absent or vestigial as faint longitudinal 

‘crease’ [2]. 
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17. Size, small <3mm [1], large >3mm [2]. -Note this character was only used 

between the H3 dark brown sample and the M. smithii samples. 

 

A matrix of the informative characters was made and a maximum parsimony 

tree was made from the morphological data in PAUPtm4.0 (Swofford, 1998). 

Bootstrap values were not applied to the tree as bootstrap values are unreliable when 

used with a small number of characters (O'Leary et al., 2003). 

 

  2.5 Morphometric Data 

 

Morphometric measurements were to add to the molecular and traditional 

morphological data. As recommended from Wang and Lester (2004), two 

measurements were taken, the Weber’s length; a measurement from the anterior 

margin of the pronotum to the posterior extremity of the metaplueral lobe, and the 

hind tibia length; being the maximum length of the hind tibia. Ten workers were 

measured (where possible) from every sample. Those measurements were then 

pooled into their respective molecular and morphological clades. Additionally four 

detailed samples of 100 workers were made from four molecular and 

morphologically different samples. The Weber’s length and the hind tibia length and 

the ratio of the pooled and detailed samples were tested for coming from the same 

population using the Mann-Whitney test (Mann and Whitney, 1947) employing a 

normal approximation due to the large sample sizes except for when clades C and E 

were tested against each other, in those cases the rank sum for the variable was used. 

The molecular clade H/morphological clade H3DB was not included as it had too 

few individuals. The Mann-Whitney tests were all calculated using StatTools 1.1 

(Palisade, 2005) embedded in Microsoft Excel. The null hypothesis was that the 

samples measured come from the same population in other words that neither 

distribution tested tends to yield smaller values than the other. 
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3. Results 

 

3.1 General Sequence/PCR Results 

 

The PCR products were of good quality and aligned easily by eye, with no 

insertions or deletions. When translated into a protein sequence the result was 

coherent with no abnormal stop codons, this strongly suggests all sequences were 

Mitochondrial DNA (mtDNA) and not nuclear pseudogenes. All the sequences 

exhibited the Adenine-Thymine bias common in insects (Crozier and Crozier, 1993). 

The trimmed length of the sequences was 627 base pairs, with 151 variable sites, 112 

parsimony informative sites, 36 singleton sites and nucleotide composition of 39.3, 

17.3, 30 and 13.3 percent for Thymine, Cytosine, Adenine and Guanine respectively. 

 

  3.2 Molecular Groups 

 

Eight molecular clades were defined from the COI sequence data (Fig 2), the 

basic statistical features of each clade can be seen in figure 3. Two clades -G and H- 

were clearly distinct from all other clades with no overlap with any other group in the 

barcode gap graphs, see figure 4, the clade ‘smithii’ also showed good separation 

from the other groups, but this is to be expected as M. smithii has been described as a 

distinct species. The other five clades ranged in their degree of separation from other 

clades, all exhibiting some overlap of the within and between variation (Fig 4), as 

can be seen with clades A and B and clades B and F. Most groups showed a point of 

separation in the barcode gap graphs of around 3.8%-3.9% K2P distance, those that 

did not such as between clades F and H, F and G (Fig 4) is probably due to a small 

sample size. 
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Figure 2. Neighbour joining tree from the molecular data. 5000 bootstrap replicates, nodes with less 
than fifty percent bootstrap support condensed. The eight molecular clades, plus smithii and the 
outgroup, are labelled. Note that two sequences (H3-5 and H3-7) of the H3 dark brown form were 
included so as to increase the sample size of the unique clade. 
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Figure 3. Box and Whisker plot of the general features of the molecular clades. The black box and whiskers are the summary of the intraclade K2P pairwise matrix and the 
grey the summary of the interclade pairwise matrix of the means of the clades. The whiskers show the range, the box the 25 and 75 percentile range and the mean. Note that 
smithii was not included in the between comparisons for the other clades and that some clades such as clade C, E and H have no within clade box as they have either only on 
sample, no variation amongst the samples, or very little variation respectively. 
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Figure 4. Barcode gap graphs of the molecular clades. The black columns are the intraclade variation, 
and the grey the interclade variation. The vertical axis is the proportion of pairwise comparisons that 
fell within the allotted K2P distance bins. All graphs are to the same scale. With nine clades there are a 
possible 72 graphs, only nine are included here, the first two rows of graphs are Clade G and H, the two 
most distinct clades compared against various other clades, the bottom row of graphs from left are; an 
example of overlap of the within and between variation, the separation of smithii and an example of the 
effect of a poor sample size upon a barcode gap graph. Note that two sequences (H3-5 and H3-7) of the 
H3 dark brown form were included so as to increase the sample size of the clade. 

 

  3.3 Morphological Groups 

 

Six clades were defined from the morphological data using five informative 

characters (Fig 5), those clades being; promesonotal suture present; vestigial suture 

present; no promesonotal suture shallow metanotal groove; no promesonotal suture 

deep metanotal groove; K3 K4 dark brown; H3 dark brown and smithii. The groups 

are referred to hereafter for brevity as; suture present, vestigial suture, no suture 

shallow groove, no suture deep groove, K3 K4 db, H3 db, and smithii respectively. 

They are the same as the molecular clades apart from the molecular clades D, E and F 

were condensed into one clade (no suture shallow groove) in the morphological 

clades. Some morphological characters states such as the presence, absence or 
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vestigial state of the promesonotoal suture were quite difficult to apply consistently as 

the distinction between these characters was slight. The same can be said for the states 

of the metanotal groove; deep and shallow are somewhat subjective terms. The 

median clypeal margin character was far easier to apply with the two states being 

distinct and discrete. 

 

3.4 Morphometric Results 

 

The morphometric data were not as useful as the molecular or morphological 

data in delineating the samples. From the pooled measures only the smithii clade had 

a high probability of coming from a different population compared to the other 

individual molecular and morphological clades for the Weber’s length, hind tibia 

length and the ratio of the two from the Mann-Whitney U tests (Table 1). Clade B 

showed a high probability of coming from a different population when compared 

against almost all (not clade E for the ratio) of the other individual molecular and all 

of morphological clades. All other clades showed mixed results (Table 1). Of the four 

detailed measures (100 individuals from four different samples) all four samples 

showed a high probability of coming from different populations than each other apart 

from C5 and I8 (Table 2). Figure 6 shows with the detailed sample of smithii (H8 on 

the graph) being distinct, all of the H8 plots not overlapping with any of the other 

samples. 
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Figure 5.  Maximum parsimony tree constructed from five morphological characters. Labelled are the 
six morphological clades plus smithii and a theoretical outgroup. Note that there are no bootstrap 
values are assigned to the nodes or branches as the bootstrap technique is unreliable with so few 
characters. 
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Table 1. Mann-Whitney test results of the pooled samples. The test stat quoted is the z-statistic, which is a normal approximation apart for between clade C and E (italicised) 
when the rank sum for the two variables is quoted. ‘W’ is the Weber’s length, ‘HTL’ is the hind tibia length and ‘R’ is the ratio of those two measurements. The degrees of 
significance are * p<0.05 and ** p<0.01. Note that the molecular clades D,E and F were collated to form the morphological clade no suture shallow groove.  The other 
molecular clades all correspond to a single morphological clade. The molecular clade H was not included as it had to few individuals. 
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Table 2. Mann-Whitney test results of the four detailed samples. The test stat quoted is the z-statistic, 
which is a normal approximation., ‘W’ is the Weber’s length, ‘HTL’ is the hind tibia length and ‘R’ is 
the ratio of those two measurements The degrees of significance are * p<0.05 and ** p<0.01. Note 
that H8 is a M. smithii sample. 

 

 

 

 

 

Figure 6. Scatter plot of the detailed morphometric measurements. C5, H8, L1 and I8. All come from 
different molecular and morphological clades. Note H8 is a sample of a smithii sample. 
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  3.5 Integration of Molecular and Morphological Results 

 

With six clades defined from the morphological data and eight from the 

molecular data and considering small level of overlap in some of the molecular 

clades barcodes gap graphs, it seems prudent to be conservative and revert to the 

morphological clades. None of the morphological clades have major conflictions 

with the molecular framework, the congruence of the molecular and morphological 

trees can be seen in figure 7. Of these six clades it would seem responsible to suggest 

only two distinct ‘species’ be based on two clades from this work, these being clade 

H (H3 dark brown) and clade G (suture absent deep metanotal groove). Both clades 

show a clear, large separation from all other samples in the molecular data, the 

closest any one sample within no suture deep groove is to any other individual 

sample is 6.41% K2P genetic distance whilst H3DB is 9.1% K2P away from any 

other individual sample. They both exhibit obvious, easily defined, morphological 

differences from the other samples. The other morphological clades have a degree of 

unresolved molecular data supporting them or the morphological characters that 

define them are difficult to apply consistently. Where the characters supporting them 

are not so easily defined and or recognisable, such as suture present and vestigial 

suture, the distinction between the promesonotal suture being present or vestigial is a 

delicate one. That leaves four clades that have some level of morphological and 

molecular differentiation but there is no evidence to support uniting those remaining 

four clades. 
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Figure 7.  The congruence of the molecular and morphological trees.  A simplified version of the 
molecular tree is on the left and the morphological tree on the right.  The essential structure of the 
trees is unchanged from figures four and five. 

 

 

4. Discussion 

 

Two morphological clades (no suture, deep groove and H3 DB) showed 

sufficient molecular and morphological distinction from the other clades to be 

considered for recognition as distinct species. The remaining four clades showed 

some morphological and molecular differentiation from the other clades but not 

enough to be considered for recognition as species. Nonetheless amongst those four 

clades there must be at least one species, hence the complex encompasses at least 

three species. It is possible that the complex encompasses distinct species (Clades G 

and H), truly morphologically cryptic forms (Clades D, E and F) and perhaps some 

incipient species (Clades A and B), those in the early stages of speciation. More data 

may have helped in the differentiation of the four clades not considered distinct 

species, both in the form of another mitochondrial gene and more morphological 

characters. An expanded sample of some of the underrepresented clades such as 

clades B, C and E may have given better resolution to the barcode gap graphs. It is 
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possible that with more samples some of the barcode gaps may disappear (Wiemers 

and Fiedler, 2007). Similarly with more data for the morphometric analysis, a 

detailed sample - 100 measurements wherever possible- for every sample might 

provide another piece of reliable data to base the clades upon. 

Whilst other molecular focussed work puts an emphasis upon the application 

of a sequence divergence threshold (samples with divergence values less than the 

threshold are grouped together) (Hebert et al., 2004; Hebert et al., 2003b; Smith et 

al., 2005) this work put more importance on the presence or absence of a barcode gap 

in addition to a degree of morphological differentiation. Though an approximate 

threshold can be drawn from the results of this work (3.8%-3.9%), if a threshold was 

defined and applied uniformly the resulting clades would be not as discrete as taking 

a more flexible approach. Other molecular taxonomic work on ants in Madagascar 

(Smith et al., 2005) used thresholds of 2 and 3% and found that the molecular clades 

defined aligned well with the morphological clades, yet if that threshold was 

transferred to this sample set the result would be many more clades with smaller 

barcode gaps, if not overlap. Hence it seems imprudent to apply thresholds from 

other study groups regardless of their relatedness and agrees with other evidence 

against the concept of a universal threshold for insects (Cognto, 2006). 

Molecular provided an excellent framework from which to search for 

morphological characters and without them the identification of useful 

morphological characters would have taken far longer. Nevertheless the 

morphological data was relied on to decide on the ultimate definitions of the clades. 

This was not an innate preference for morphological data over molecular, rather the 

morphological data were clearer and less convoluted in its groupings. Perhaps with 

more characters the morphological data would have exhibited the same degree of 

ambiguity as the molecular data, as the molecular data had 112 characters 

(parsimony informative sites) compared to the five used in the morphological 

analysis. More characters may have changed the results, different characters may 

have done the same. This work used some different characters than Brown (1958) in 

his revision of the New Zealand ant fauna. For instance he employed colour as a 

major character whilst this work suggests colour is not a good defining character. It 

is impossible to tell if the species boundaries in the two studies align, however the 

two studies do concur with the conclusion that there may only be two “good species” 

within the complex. 
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 Comprehensive sampling is necessary for any credible research and it is 

especially important in any taxonomic study of this kind where the aim is to 

delineate a complex, confidence in the range and resolution of samples is important 

(Bilgin et al., 2006; Morrison, 1996). The sample set used in this study is large in 

comparison to many other molecular taxonomic studies (Baker et al., 1995; Langor 

and Sperling, 1997; Medina et al., 1999; Sperling and Hickey, 1994). However, as no 

knowledge of the boundaries within the complex was known before sampling, there 

was no certain way to ensure a ‘complete’ sample set encompassing all forms of M. 

antarcticum. Additionally there are the practical constraints, both temporal and 

financial and securing an ideal sample set initially is always difficult. For example 

the lone sample that makes up the Clade H could be a sole sample for one of two 

reasons: Clade H is a rare form or it was only sampled once due to chance, or 

perhaps both and it is fortunate it was collected at all. Ideally a second round of 

sampling would take place to expand upon the under represented clades, knowing 

some of the morphological features to look for would help and hopefully make the 

second sampling more focussed than the first. Geographically the sample set was not 

ideal: no samples were obtained from Fiordland, Stewart Island or the far north and 

very few samples were obtained from the east coast of the North Island and Taranaki.  

Collected incidentally, the samples of M. smithii proved valuable in the 

analysis especially of the molecular data. Being one of the closest related species to 

the complex, the smithii clade acted as an excellent outgroup and as a comparison for 

the other clades. As a settled species Smithii gave a good indication of the amount of 

genetic variation to expect within the clades. 

The question of how much differentiation is required for a species to be 

separated from its closest relative does not have a clear answer. Applying a standard 

percentage of sequence divergence would not work uniformly as barcode gaps shift 

depending on the two clades being compared. Morphometrics was of little use, and 

as morphological characters are such a subjective quantity –there is no way to 

objectively compare and standardise morphological characters– it seems that each 

species has its own boundaries, and as such the evidence for a new species must be 

assessed on its own merits. 
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Chapter 3 

 

The Genetic Population Structuring of the Native Ant Complex 

Monomorium antarcticum (Fr. Smith) (Hymenoptera : 

Formicidae) within New Zealand based on Mitochondrial 

DNA: Insights into how the Genetic Structuring Relates to 

Geography and Dispersal Potential.  
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Abstract 

 

The native ant complex Monomorium antarcticum is New Zealand’s most common 

and widespread group of ant species. The complex does not display any strong 

genetic population structuring concordant with current geography, based on the 627 

bp mitochondrial DNA sequences of the cytochrome oxidase 1 region analysed in 

this study. Rather the genetic structuring of the population is attributed to the 

morphological differences within the population. It is proposed that the population of 

M. antarcticum contains cryptic species and was once divided and isolated to refugia 

which resulted in the genetic and morphological difference. A lack of strong genetic 

differentiation of populations is consistent with strong dispersal ability and a 

tolerance of a range of habitats. However, dispersal to the Chatham Islands –

approximately 700kms off mainland New Zealand – is thought to be human 

mediated due to identical haplotypes being collected on both Chatham Island and 

mainland New Zealand. 

 

Key Words 

 

Monomorium antarcticum, dispersal, population structuring, COI, historical refugia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 

1. Introduction 

 

A species’ dispersal capability can have a major effect on the genetic 

structuring of its population that organism belongs to. It is possible to make 

inferences about the potential genetic structuring of a population if good knowledge 

of dispersal and other factors affecting population structuring, such as reproduction, 

is available (Berven and Grudzien, 1900; Chepko-Sade and Halpin, 1987; Loveless 

and Hamrick, 1984). Alternatively good population genetic data can be used to make 

inferences about the dispersal patterns of a population (Avise, 1994; Cook et al., 

2002; Hamrick et al., 1993; Kyle and Boulding, 2000). Furthermore, how the 

dispersal pattern relates to the genetic population structuring can provide interesting 

insights into the micro-evolutionary history of the population (Bohonak, 1999; Tero 

et al., 2003).  

Identifying micro-evolutionary processes can help in the detection of 

potential sources of genetic variation. Identifying where the genetic variation of a 

population exists is an important factor in conservation programs of endangered 

species (Allendorf and Leary, 1988; Paetkau and Stroebeck, 1994), at the very least it 

can help prevent inbreeding (Frankham and Ralls, 1998). Knowledge of micro-

evolutionary processes can assist in the identifying of important areas for 

conservation (Manel et al., 20003; Soares et al., 2008). Knowledge of a population’s 

dispersal potential and the micro-evolutionary processes that shape it can help in the 

retention of biodiversity on a fine scale – the genetic variation within a population – 

which is the basis for variation between species and the ‘higher’ levels of 

biodiversity. 

Invertebrates display a large range of dispersal potential; some disperse in 

huge numbers over large distances whilst others tend to stay close to their hatching 

site throughout their life. Dispersal can have a significant affect on the genetic 

structuring of the population. For example an Australian species of Caddisfly 

(Trichoptera) has little genetic variation across large geographic scales which is 

consistent with widespread dispersal by the winged adults (Hughes et al., 1998). 

Contrastingly another species of Caddisfly from the Canary Islands displays levels of 

genetic variation comparable to a species with a much larger range suggesting the 

species has limited dispersal potential (Kelly et al., 2002).  
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The ant Formica paralugubris of central Europe has very low gene flow 

between geographically distant nests and there is low genetic variation between close 

nests (Chapuisat et al., 1997; Liautard and Keller, 2001). However that example 

raises some of the complicating factors that can arise in the interpreting of genetic 

population structure in insects, especially social insects. Many nests in that study 

were a product of ‘budding’ –one queen leaving a nest with a few workers to form a 

new nest nearby – rather than the queen going on a nuptial flight, matings within the 

same nest were also detected. All genetic population structure studies of insects, 

regardless of reproductive strategy of the organisms in question, can be faced with 

the problem of cryptic species. Cryptic species – species that appear identical – can 

result in genetic variation that in a population structuring context would suggest poor 

dispersal capabilities or isolation currently or at some time in history (Gomez et al., 

2002). 

New Zealand has had a relatively active geological history with many 

upheavals such as the creation of the Southern Alps that run along the longitudinal 

centre of the South Island, several historical inundations of the land and the spread 

and retreat of glaciers (Cooper and Cooper, 1995; Emberson, 1995; Landis et al., 

2008; Stöckler et al., 2002; Trewick and Wallis, 2001; Wardle, 1988; Willett, 1950). 

Consequently there are many examples of population structuring in a New Zealand 

context. The endemic mudfish (Neochanna diversus) displays cryptic species and 

population structuring consistent with it being isolated to disjunct ‘islands’ during 

Pliocene (2-6 million years ago) (Gleeson et al., 1999). The flightless brown Kiwi 

also displays a similar pattern of population structure as the mudfish but in that case 

the genetic variation is in part attributed to low dispersal power (Baker et al., 1995). 

Monomorium antarcticum, the study organism of this work, displays many of 

the aforementioned features that can make studies of genetic population structuring 

difficult. Like many other ant species it can be polygynous (Don, 2007; Wang and 

Lester, 2004), in that the nest can have several queens. Their mating system is like 

that of other ants in that at a certain time – late summer in New Zealand (Smith, 

1895) –newly emerged females (queens) and males will go on nuptial flights to find 

a mate. From there the queens will go on to found nests. These nuptial flight can 

result in sizable moving mating swarms with queens dropping out of the swarms 

along the way to establish nests (Smith, 1895). There is no record of the distance 
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possible during such nuptial flights is known for M. antarcticum. However research 

on Solenopsis invicta the Fire Ant in North America, which is in the same tribe as M. 

antarcticum, shows that with no wind assistance a queen could travel 5.4kms and 

stay aloft for approximately 45 minutes (Vogt et al., 2000). There are records of S. 

invicta queens travelling 10km from the nest they emerged from (Holldobler and 

Wilson, 1990).  

M. antarcticum can inhabit a wide range of habitats, (Brown, 1958; Don, 

2007) both native and disturbed such as pasture and urban gardens. Although not 

known to be closely associated with humans such as in the case of many other ants, it 

may have the potential for human mediated dispersal dues to its commonness in 

urban situations (Don, 2007), their small size, and that during the mating period 

winged queens are occasionally found in unusual places (such as in clothing, 

personal observation) and in cars (Lester, personal correspondence 2008). 

In this work we aim to quantify the genetic variation within the M. 

antarcticum complex and infer from that variation the genetic structuring of the 

population, the dispersal patterns of the complex and its micro-evolutionary history. 

To study the population structuring and the dispersal of M. antarcticum, 

mitochondrial DNA (mtDNA) is used due to its non-recombination during sexual 

reproduction. An individual mtDNA sequence is one of the finest scales of molecular 

data with every nucleotide difference between sequences indicating not only 

differentiation due to drift whilst reproductively isolated but also an element of time, 

in that the longer the lineages the sequences belong to have been isolated (or drifting 

apart) the more nucleotide differences there will between the sequences (Nei, 1971). 

This allows the effective barriers to dispersal and therefore gene flow to be 

recognised, in other words diagnosing some of important factors in micro-evolution 

(Bohonak, 1999; Slatkin, 1987) and macro-evolutionary processes (Avise et al., 

1987).  
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2. Methods 

 

2.1 Collection of Samples 

 

The majority of samples were collected during the summer (November- 

February) of 2006-2007. Samples were collected in the field from nest sites and 

when possible queens, eggs and winged males were collected. Nests were mainly 

situated under rocks and once disturbed as many ants as possible were collected via 

an aspirator and then decanted into a small plastic container with walls coated in 

Fluontm  (DuPont, Wilmington, DE) to prevent escape. From this container the 

workers, queens and eggs were transferred directly into a vial containing 70% 

ethanol. A small number of samples were not collected from an actual nest but the 

surrounds of a nest. The samples were labelled on collection with an alphanumeric 

site code. Additional samples were obtained from the Chatham Islands by Phil Sirvid 

(Museum of New Zealand, Te Papa) and Kevin Burns (Victoria University of 

Wellington) and from the Nelson, Marlborough region thanks to the Department of 

Conservation (DOC). The samples obtained from DOC differ from the bulk of the 

samples in that they were collected using baits. A vial containing bait was left out 

then recovered some time later (the exact time the bait was left is unknown), in some 

cases multiple vials were collated into one sample, but it was been noted when that 

occurred and those samples were not included in the morphological section, however 

it is likely that a sample from one single baited vial would contain the workers from 

only one nest. In total 110 samples of M. antarcticum were obtained, and 14 samples 

of Monomorium smithii were also collected for use in comparative analysis. The sites 

of the samples used in the molecular and morphology analysis can be seen in Figure 

one. 
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Figure 8. Map of samples. The circular points are the M. antarcticum samples and the triangles the M. 

smithii samples. Inset is the Chatham Islands. The alphanumeric code (e.g. G1) refers to the sample 
site, and the following number refers to the extraction number from that site, note that some sites had 
more than one nest. Note that the Chatham Island is not to scale in terms of distance or placement 
relative to mainland New Zealand. 

 

2.2 DNA Extraction, Amplification and Sequencing. 

 

DNA was extracted from a whole ant using the Chelex® method (Walsh et al., 

1991), in some cases a leg of a queen was used so as not destroy the sample. The 

DNA was amplified using the Polymerase Chain Reaction (PCR) (Mullis et al., 

1986), the general invertebrate primers (L-COI-1490 and H-COII-2198) (Folmer et 

al., 1994) were used. A 25µL PCR mix consisted of; 1 µL of DNA template, 1 µL of 

each primer at 10 µM, 1µL of BSA at 10mg/µL, 200 µM of each dNTP, 2.5µL of 

10x NH4 reaction buffer (160mM (NH4)2SO4, 670mM Tris-HCI (pH8.8 at 25°C), 

0.1% Tween-20) (Bioline), 0.75µL  of 50mM MgCl2 (Bioline) and 1 unit of BioTaq 

DNA Polymerase (Bioline). Amplification of target DNA was conducted on an 

Eppendorf Mastercycler® ep gradient thermal cycler, using the following conditions: 
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denaturation at 94˚C for 2 min, 30 cycles of 20 sec at 94˚C, 30 sec at 40 (annealing) 

and 1 min sec at 72˚C, followed by extension at 72˚C for 5 min. The PCR products 

were purified using ExoSapIt (USB) and then directly sequenced using BigDyeTM 

Terminator v3.1 and analysed on an ABI 3730 Capillary Sequencer (Applied 

BioSystems). Two sequences used in the molecular analysis, ‘M. smithii 

Waimarama’ and ‘M. destructor (accession number DQ353305), were not sequenced 

during this work but from previous yet unpublished data (Lester P J, unpublished 

data) and from GenBank® respectively. In some cases an individual site had multiple 

nests or forms and several extractions were made from different individuals (the 

number after the alphanumeric code denotes a different individual was used), hence 

some sites such as H3 show up multiple times within the analysis. 

 

2.3 Molecular Data Analysis 

 

The PCR products were of good quality with no insertions or deletions. When 

translated into a protein sequence the result was coherent with no abnormal stop 

codons observed, this strongly suggests all sequences were Mitochondrial DNA 

(mtDNA) and not nuclear pseudogenes. All the sequences exhibited the Adenine-

Thymine bias common in insects (Crozier and Crozier, 1993). The sequenced DNA 

fragments were assessed in terms of quality using Finch TVtm a chromatogram trace 

viewer. Sequences of good quality were added to a MEGA4tm (Tamura et al., 2007) 

alignment file; if a base pair site was ambiguous a manual correction was made 

based on the chromatogram trace file. The sequences were aligned by eye and 

trimmed down to 627 base pairs each, to eliminate unreliable sequence at the 

extreme ends of the sequences. The dataset displayed 151 variable sites, 112 

parsimony informative sites, 36 singleton sites and nucleotide composition of 39.3, 

17.3, 30 and 13.3 percent for Thymine, Cytosine, Adenine and Guanine respectively. 

In total 79 sequences of M. antarcticum were included in the analysis and 15 of M. 

smithii in addition to the sequence of M. destructor mentioned previously. 

 

2.4 Phylogeny Construction 

 

Model test 3.7 (Posada and Crandall, 1998) was implemented within Mr 

Model Test (Nylander, 2004) in conjunction with PAUP*4.0 (Swofford, 2002) to 



 

57 

estimate the model of evolution that best fit the sequence data. The hierarchical 

likelihood-ratio tests (hRLT) selected the Tamura Nei model (Tamura and Nei, 1993) 

with gamma-distributed rate variation and proportion of invariable sites variation 

(TrN+I+G,  I=0.5957, G=0.7987,  -lnL = 3406.4309) as the most appropriate model 

of evolution. 

Phylogenies were reconstructed by two methods using the parameters 

estimated in Model Test. The Neighbour-Joining (Saitou and Nei, 1987) method 

implemented in MEGA4 (Tamura et al., 2007) and the Bayesian method 

implemented in Mr Bayes (Ronquist and Huelsenbeck, 2003). The Bayesian analysis 

used six Metropolis-coupled Markov chain Monte Carlo chains, with two being 

‘heated’ due to the relatively large sample size, as recommended in the Mr Bayes 

documentation. The chains started from a random tree and ran for 1 million 

generations, being sampled every hundred generations. The neighbour joining 

method implemented the parameters estimated in Model Test and employed 10000 

bootstrap replicates. In cases where there was more than one sample exhibiting 

exactly the same sequence as another sample all but one of the samples were 

removed from the data set before analysis to prevent possible biasing in the 

phylogenies (Kruse and Sperling, 2001; Stuart and Parham, 2004). 

 

2.5 Morphological Data 

 

Seventeen morphological characters were used to construct a morphological 

data matrix. These were in part intuitive characters such as colour and size and others 

were adapted from Heterick (2001). The character set used seventeen characters used 

with the states of the characters following each character. Characters in bold and 

underlined were found to be useful and used further in the morphological analysis. 

1. Alitrunk colour, orange/brown [1], dark brown to black [2], pale brown/whitish 

[3], vivid/translucent orange [4]. 

2. Median clypeal margin, distinct teeth projections [1], very slightly rounded lumps 

[2]. 

3. Basal Tooth of Mandibles, enlarged compared to non-apical teeth [1], not enlarged 

compared to non-apical teeth [2]. 

4. Propodeal sculpting, Smooth [1], striae, faint micro-reticulation [2], distinct 

micro-reticulation [3]. 



 

58 

5. Sculpting on waist (not including petiolar process), none [1], micro-reticulation [2] 

6. Propodeal lobe size, more than half as ‘tall’ as distance to dorsal extremity of 

propodeum [1], less than half as ‘tall’ as distance to dorsal extremity of propodeum 

[2]. 

7. Propodeal lobe shape, rounded dorsal edge [1], upturned or pointed dorsal edge 

[2]. 

8. Metaplueral lobes, distinct flanges, longitudinally overlapping with propodeal 

lobes [1], smaller flanges, not overlapping with propodeal lobes [2]. 

9. Propodeal declivity, flattened [1], concave [2] 

10. Propodeal dorsal lumps, rounded [1], pointed [2]. 

11. Postpetiolar keel, no anterior pointing projection, keel points down [1], distinct 

anterior pointing projection [2]. 

12. Antennae colour, antennae same colour as head and alitrunk [1], antennae 

different colour than head and alitrunk [2]. 

13. Promesonotal suture, Absent, may have pit at the midpoint where suture would 

be [1], vestigial, faintly visible as impression on carapace [2], present as visible or 

faintly visible ridge, can be seen best as ‘lip’ when view longitudinally [3] 

14. Petiolar Process, slight projection [1], distinct projection away from petiole [2]. 

15. Metanotal groove, shallow, wide, small rise from propodeum up to mesonotum 

[1], deep, large rise from propodeum up to mesonotum [2]. 

16. Dorsal Propodeal Spiracle, Present as faintly depressed pit midway between 

metanotal groove and declivitous face [1], absent or vestigial as faint longitudinal 

‘crease’ [2]. 

17. Size, small [1], large [2]. -Note this character was only used between the H3 dark 

brown sample and the M. smithii samples. 

 

Ten characters (those not in bold or underlined) were not considered useful or 

informative because of any one of a number of reasons; there was variation of the 

character within an individual sample such as a few cases with the alitrunk colour, 

the character was variable between two genetically or morphologically very close 

samples yet the same character was consistent between two otherwise 

genetically/morphologically disparate samples, in other words the character was an 

outlier that clashed with the other molecular and morphological characters; the 
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character proved ambiguous showing a degree of gradation between the extremes of 

the character and hence was difficult to apply with consistency. 

A matrix of the informative characters was made and a maximum parsimony 

tree was made from the morphological data in PAUPtm4.0 (Swofford, 1998). 

Bootstrap values were not applied to the tree as bootstrap values are unreliable when 

used with a small number of characters (O'Leary et al., 2003). 

 

2.6 Population Partitioning and Analysis of Molecular Variance 

 

For the population genetics analysis the sequences were partitioned into four 

different arrangements of possible populations. One based on the six morphological 

groups defined using the morphological data, a second based on the three major 

phylogeny branches, a third based on the North, South and Chatham Islands and a 

fourth based on the habitat the samples were collected from, either native forest, 

native grass/scrubland or disturbed areas/pasture. Those different arrangements of 

the samples into possible populations were then tested for amount of variance within 

and between the populations. This was done using the analysis of molecular variance 

(AMOVA) method implemented in Arlequin 3.1 (Excoffier and Schneider, 2005), 

additionally the Fixation index (Fst) was also calculated in Arlequin 3.1 as a measure 

of the genetic isolation of the different population arrangements. 

 

2.7 Isolation by Distance 

 

The Isolation by distance model (Wright, 1943) was tested by plotting the 

pairwise straight line geographic distance in kilometres against the pairwise Kimura-

two-parameter (K2P) (Kimura, 1980) genetic distance. K2P values were used instead 

of pairwise Fst values in this case as the Fst assumes the populations are restricted to a 

small geographic range as in (Wishart and Hughes, 2003), whereas in this case the 

populations are spread over large ranges. The reduced major axis regression (RMA) 

(Sokal and Rohlf, 1981) and the association between the genetic and geographic 

distance was tested using Mantel’s permutation test (Mantel, 1967), implemented by 

the Isolation By Distance Web Service (Jensen et al., 2005). 
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2.8 Geographical Spread of Samples 

 

A scatter plot of where the samples from the six morphological groups were 

collected was constructed to aid identifying geographical structuring of the 

population. Cook Strait, the water separating the North and South Island, an expanse 

of the South Pacific separating Chatham Island from mainland New Zealand, the 

Southern Alps that run down spine of the South Island and latitude were all 

considered as potential geographic boundaries to dispersal. Pairwise genetic (K2P) 

and geographic distance was plotted for the ‘close’ (defined as within 15km of each 

other) samples. Also a simple column graph was constructed showing the geographic 

separation of all the identical haplotype pairs. 

 

3. Results 

 

3.1 Phylogenies 

 

Both the Neighbour-Joining and Bayesian methods produced essentially the 

same phylogenies structurally (Fig 2). Some minor cosmetic differences we observed 

in term of situation of some samples such as ‘L4-3 Te Kuha’ which was placed 

‘deeper’ on the Bayesian phylogeny than the Neighbour-Joining, though the support 

for its placement is not strong on the Bayesian phylogeny. There are three major 

divisions in both trees, labelled as haplogroup A, B and C. Each is distinct in their 

molecular basis and B and C have consistent morphological features within the 

haplogroup that differentiate it from the others. Haplogroup B consists of several 

smaller morphological groups.  Table 1 shows the large average genetic distances 

between the three haplogroups.  That shows the potential for each lineage to be 

considered as a separate species, however the comparably large variation within 

haplogroup B suggests it may incorporate more than one species. 
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Table 3. Average genetic variation (K2P) within and between the three haplogroups.  

 
 

 

Figure 9. The two phylogenies constructed from the COI sequence data. On the left is the Neighbour-
Joining tree;, bootstrap support for the nodes over 50% are shown. On the right is the Bayesian 
phylogeny, posterior probability support for the nodes over the equivalent of 50% are shown. The six 
morphological clades and the three haplogroups based on the major phylogeny splits are labelled. 
Identical halotypes were removed from the dataset prior to phylogeny construction; the samples with 
superscript symbols represent the samples seen on the phylogeny and the samples as follows; @ - M9-
3, F4-3, E6-3, N8-3, M6-3, F8-3; = - M7-3; # - J9-3; > - E4-3; + - L4-3; $ - K4-3; % - K9-3, L2-3; & - 
G5-3, H9-3, L6-3; ^ - N4-3, P7-3; * - I8-3, I9-3, K6-3, M2-3. 

 
The morphological phylogeny (Fig 3) shows much the same structure as 

either of the molecular phylogenies, although it did result in the nesting of the clade 

K3 K4 DB within the clade no suture deep groove. The morphological groups 

aligned with the molecular phylogenies. 
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Figure 10. Maximum parsimony tree constructed from the morphological five morphological 
characters. Labelled are the six clades plus smithii and a theoretical outgroup. Note that there are no 
bootstrap values assigned to the nodes or branches as the bootstrap technique is unreliable with so few 
characters. 
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  3.2. Geographical Groups 

 

There were no strong correlations of a particular morphological clade with a 

particular area (Fig 4). Whilst some groups tended to be associated with a particular 

area, such as vestigial suture, in every case there were exceptions. Identifying 

barriers to dispersal was restricted to the obvious marine barriers between the three 

islands; Cook Strait and the southern Pacific between mainland New Zealand and the 

Chatham Islands. The Southern Alps was discarded as a potential barrier before any 

analysis as although the alps have been found to be a barrier to dispersal in 

freshwater crayfish (Paranephrops spp.) (Apte et al., 2007) M. antarcticum samples 

were collected through several passes and at high altitude discounting the Southern 

Alps as a barrier to dispersal. Similarly latitude was discarded as the samples of the 

many morphological clades such as ‘Suture Present’ were spread almost the entire 

length of New Zealand (Fig 4). No biological basis for a barrier based on latitude 

could be found in any New Zealand fauna; hence any barrier based on latitudes 

would have been arbitrary, based more on the distribution of the samples collected 

rather than having any scientific basis. 
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Figure 11. The locations of the samples of the six morphological clades and M. smithii. Chatham 
Island is shown inset, not to scale in terms of distance from mainland New Zealand. Note the spread 
of each individual group both within the North and South Islands and between them. 

 

3.3 Isolation by Distance 

 

There was not any significant association of genetic and geographic distance 

within the entire dataset, nor within either of haplogroup A or B. Whilst the RMA 

seems to show an association of increasing genetic distance with increasing 

geographic distance within the entire data set (Fig 5 a) and within haplogroup B (Fig 

5 c) the association was not significant. Within haplogroup A the trend is negative 

(Fig 5 b), an unusual result but again the association is not significant. The two 

horizontal ‘bands’ of plots seen in that figure are caused by the relatively large (for 

haplogroup B) genetic distance between the samples F5-3, M3-3, G8-3, G9-3 L4-3 

and L3-3 (the latter not shown on the phylogeny because its sequence is identical to 

that of L4-3) and the rest of the samples but no corresponding increase in geographic 

distance hence a horizontal rather than positively sloped band of plots. 
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Figure 12. Scatter plot of relationship of genetic and geographic distance, the solid lines are the RMA 
regression lines, for all samples (a) r2=0.000169 P= 0.6400; for samples in haplogroup A (b) r2= 
0.00282 P= 0.8200; for samples within haplogroup B (c) r2= 0.01063 P= 0.0840. Note the association 
between genetic and geographic distance is not significant for any of the plots 
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The fine scale plot (Fig 6) shows there is geographic overlap of 

morphological clades. Of particular interest are the two pairwise comparisons of 

samples from the same morphological group (open circles) closest to the vertical 

axis, both being extremely close (less than 500m apart) but belonging to different 

morphological clades, those two pairs of samples are K4-4 and K6-3 and L7-3 and 

L8-3.  

 

 

Figure 13. Genetic distance against geographic distance pairwise plot of close samples (<15km apart). 
Circles are sample pairs from different morphological clades and the squares are sample pairs from 
the same morphological clades. Note the two open circles closest to the vertical axis showing overlap 
of different morphological clades on a very small (<500m) scale. 

 

There is an impressive spread of identical haplotypes across New Zealand 

(Fig 7). A distance of over 400kms between identical haplotypes is not uncommon, 

Although none of the identical haplotypes are between samples in the North and 

South Islands there is spread of identical haplotypes between mainland New Zealand 

and the Chatham Islands (the two topmost columns in Fig 7). 
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Figure 14. Geographical distance between identical haplotype pairs. The asterisks denote pairs 
involving a sample on Chatham Islands hence the much larger distance between those pairs. 

 

3.4 Analysis of Molecular Variance 

 

Of the four partitions of the population that could explain the genetic 

variation within the population, the partitioning based on morphological groups 

showed the highest degree of genetic isolation (table 2). The most obvious 

geographic barrier, the expanses of water separating the three islands where those 

samples were obtained proved a poor explanatory variable for the genetic variance 

within the data, whilst the habitat the samples were collected from seems an 

especially poor explanatory variable. It is not surprising the partitions based on the 
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haplogroups defined from the phylogenies showed a relatively high Fst value as the 

AMOVA employs the same data used to define the haplotypes. 

Table 4. Results of the AMOVA’s. Showing the four different population partitions tested, the 
degrees of freedom of each, the variation among the groups within that partition and it F  value, the p-
value for many was so small as to be considered zero. 

 

 

4. Discussion 

 

The genetic structuring seen in Monomorium antarcticum could be explained 

by four different hypotheses. One; the structure is due to the populations being 

isolated, two; the structure is due to signatures of past geological upheavals, three; 

the complex contains distinct species and intra-specific structuring, four; the lineages 

persist in the panmictic population by chance.  

The explanation of the current isolation of different populations can be 

discarded for several reasons. The geographic spread of the different lineages points 

to good dispersal power and the lack of any significant association between genetic 

and geographic distance. Additionally the low Fst value for the partitioning of the 

population using the North, South and Chatham Islands as a basis shows that there 

seem to be no current geographic isolation of the population and that the 

morphological groups seem genetically and morphologically isolated enough to 

maintain a degree of separation within the population.  

The large distances between identical haplotypes and the aforementioned lack 

of association between genetic and geographic distance shows that M. antarcticum is 

a good disperser. As mentioned in the introduction, Solenopsis invicta, the fire ant is 

an excellent disperser and is very hard to exterminate due to the ability of a nest to 

produce numerous fertile queens and for those queens to spread over a large distance 

in all directions (Holldobler and Wilson, 1990). A similar pattern of dispersal may be 

occurring in M antarcticum, whilst there are no records of within nest mating, there 

are records of huge mating swarms (Smith, 1895). Hence on average an individual 
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queen may not be able to travel a huge distance but with a fast reproductive rate and 

the numbers of queens each nest can produce (Holldobler and Wilson, 1990) the 

dispersal potential for a lineage is substantial. As it was collected in a wide range of 

habitats including alpine zones that would be snow covered for long periods in 

winter it seems that M. antarcticum is able to tolerate environments that would prove 

barriers to many other insect species (Brower, 1994; Fairley et al., 2000). For 

example F5-3 was collected from an alpine beech forest near a ski resort at around 

1000m above sea level whilst M3-3 a sample in the same morphological clade - and 

only 0.96% K2P genetic distance apart - was collected from a beach in the far north 

of New Zealand over 400 kms away. That combination of good dispersal and 

tolerance of a range of habitats seems to explain why there is no geographic 

structuring of the population. With M. antarcticum able to spread far quite quickly 

and very few true geographic barriers to impede its spread the morphological clades 

and haplogroups have become mixed geographically. 

The population does not appear to show any geographic structuring. 

However, it does exhibit strong morphological and genetic structuring. The fixation 

of the morphology of the different clades is a strong reason to discard the hypothesis 

that the structuring just happens to persist in a large panmictic population. Hence the 

presence of more than one species and a degree of structuring based on the past 

geographic structure of New Zealand are the remaining explanations for the genetic 

structuring in the population. The presence of different species is confirmed by 

earlier work by this author (chapter two) and several previous studies (Brown, 1958; 

Don and Jones, 1993; Don, 2007; Lester et al., 2008; Smith, 1895). From that earlier 

work it seems haplogroups A and C (Fig 2) should be considered distinct species 

however there is still structuring both genetic and morphological within haplogroup 

B which may be due to historical geographical processes. 

Past geography has contributed to structuring of other populations of native 

species, for example the New Zealand tree weta (Hemideina thoracica) (Morgan-

Richards et al., 2001). In that case the population structuring is explained by the rise 

in sea levels during the Pliocene, 7-4 million years ago (mya), causing New Zealand 

to be transformed into many small islands and isolating the weta populations; the 

weta sub-populations are still associated with the former ‘islands’ and surrounding 

land and those sub-populations have not mixed geographically to any extent. The 

same basic pattern of restriction and subsequent expansion can be seen in many other 
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species. This can be caused by a cooling of the climate, isolating sections of the 

population (Stevens and Hogg, 2003; Zamudio and Savage, 2003) (usually referred 

to as glacial refugia), periods of a warmer climate restricting the populations to 

alpine ‘sky islands’ (DeChaine and Martin, 2004) or the contraction of an aquatic 

environment (Nguyen et al., 2004). However the population structuring of M. 

antarcticum differs in that it has undergone geographic mixing and the 

morphological groups are not strongly associated with a particular region. Whilst 

there does seem to be some patterns linking geography with a particular 

morphological form was collected; for example samples of no suture deep groove 

were predominantly collected in the North Island and vestigial suture was mostly 

collected in the beech forests of the upper west coast of the South Island. Those 

patterns all had exceptions and could have been a product of the sampling regime, for 

example other morphological forms could have been present in lower densities and 

therefore not collected. 

The spread of ants to the Chatham Islands is of particular interest. At around 

650km (at their closest) from the east coast of the North Island of New Zealand, they 

are situated at the eastern end of the Chatham rise, an undersea ridge extending from 

the eastern coast of the South Island to the Chathams. Dispersal to the Chathams 

would be difficult even for a flying organism such as an ant, and even harder for 

flightless organisms. Flightless insects such as beetles and cockroaches have been 

shown to have dispersed to the Chathams relatively recently (2-6 mya) (Emberson, 

1995; Trewick, 2000). Both of those works raise the possibility of a land bridge 

linking mainland New Zealand and the Chathams sometime around that 2-6 mya 

period as a factor in facilitating the spread of organisms to the Chathams. The time 

frame for that possible land bridge does not seem to fit it with the genetic divergence 

shown between the mainland samples of M. antarcticum and those on Chatham 

Island. If using a conservative mitochondrial DNA evolutionary rate of 1.5% per 

mya as proposed for ants (Quek et al., 2004) then both lineages on the Chathams 

(one lineage represented by N2-3 and the other by P7-3, P8-3 and P9-3) are very 

recent arrivals, with all samples having less than 0.4%  K2P genetic distance between 

the Chatham Island sample and its closest relative on the mainland (some have 

identical haplotypes as seen in fig 7). This indicates the possibility of human 

mediated dispersal to the Chathams which is the opinion of Brown (1958). Although 

not known to have been spread by humans M. antarcticum could have been 
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transported to the Chathams within a cargo of timber, plant material or raw food 

stuffs in recent history. Indeed human mediated dispersal is not uncommon within 

the Monomorium genus with several other species being dispersed by human activity 

(Ward et al., 2006). Alternatively the ants might have reached the Chathams very 

recently under their own powers of dispersal, as the genetic divergences are one 

order of magnitude too recent to be explained by the proposed land bridge, this 

would mean a minimum non-stop flight of 650kms or potentially rafting. 

The genetic and morphological structuring of M. antarcticum and the 

dispersal patterns inferred from it could be part of the explanation for the low ant 

species richness in New Zealand. Good dispersal, tolerance of a range of habitats and 

possibly a low level of human mediated dispersal is keeping the population mixed, 

preventing isolation from occurring frequently and therefore slowing diversification. 
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Collectively chapter two and three have some interesting implications for the native 

ant diversity of New Zealand and the processes that may have contributed to the low 

native ant diversity. It also raises issues regarding the application of DNA barcodes 

in identifying new species and the integration of molecular data with morphological 

data used in taxonomic or population structuring studies. The two experimental 

chapters also suggest some further work on the Monomorium antarcticum complex 

and other native ant species. 

 

1. Implications for the Native Ants of New Zealand 

 

1.1 Implications for the Monomorium antarcticum complex and 

the diversity of Native Ants in New Zealand 

 

The first chapter proves that Monomorium antarcticum is a species complex and that 

it consists of at least three species; the two groups with strong support and the 

remaining samples can be considered to be at least one species. Though with more 

samples and more data – morphological characters in particular – it would not be 

surprising if the complex revealed five or six species. This increases the native ant 

fauna is significantly considering there are only 11 native species currently 

recognised (Ward, 2005). This goes some way to removing the tag of ‘depauparate’ 

(Don, 2007) which is commonly applied to the native ant diversity of New Zealand. 

With the discovery of at least 3 species within the M. antarcticum complex it would 

be logical to do a revision of the other native ant species in New Zealand using 

mitochondrial DNA (mtDNA) and morphology. Such a revision would be easier with 

some of the results from chapter one with regards to the barcode gaps and levels of 

genetic diversity to be expected in related species. An initial mtDNA ‘sweep’ of 

native ant species with the same PCR conditions and primers would not be difficult 

or expensive and may reveal further complexes in need of revision. Monomorium 

smithii would be an excellent first candidate for a mtDNA ‘sweep’ as even from the 

15 sequences used in this work there was a degree of diversity (a maximum of almost 

5% K2P genetic distance between samples) comparable to M. antarctcum. 

Furthermore M. smithii has a relatively poor sample record due to it often being mis-

identified as M. antarcticum (Don, 2007). Whilst not the aim of this study a good 
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distinguishing character to separate M. smithii and M. antarctiucm was found, the 

median clypeal margin. The median clypeal margin carinae of M. antarcticum is 

more distinct and produced as denticles compared to the more rounded carinae of M. 

smithii. All the M. antarcticum samples displayed that differentiation from M. smithii 

except for the single sample of H3 DB, that sample had a clypeal margin like that of 

M. smithii. That one sample of H3 DB was differentiated from the M. smithii samples 

by size, being alike in the aforementioned clypeal margin shape and coloration. 

Sharing those characters with M. smithii may indicate that H3 DB is really a sibling 

species of M. smithii and should be considered separately rather than as part of the 

M. antarcticum complex. Alternatively perhaps H3 DB is a hybrid of M. antarcticum 

and M. smithii, considering its exhibition of some M. smithii features but being in 

size like M. antarcticum. The opportunity for such a hybrid may be possible in light 

of the two species displaying myrmecobioses, that is nesting alongside each other 

(under the same rock in this case) (Lester et al., 2008). 

 

1.2 Processes contributing to the Low Ant (Hymenoptera: 

Formicidae) Diversity in New Zealand 

 

Compared to the rest of the world New Zealand has very low native ant diversity, our 

closest neighbour, Australia, has 1275 species (Bolton et al., 2006). This raises the 

obvious question of why is the New Zealand ant fauna so species poor? Some 

explanations include the temperate climate of New Zealand and the low number of 

distinct habitats compared to Australia (Don, 2007); New Zealand has no tropical 

rain forest, chaparral or desert. The latter does have some support from chapter three, 

as many previous sources describe the M. antarcticum complex exhibits a tolerance 

of a broad range of habitats (Brown, 1958; Don, 2007; Smith, 1895). Some of that 

tolerance may be due to M. antarcticum’s nature as a complex. If, however, that 

tolerance of a range of habitats is typical of other native ant species then in 

conjunction with the lack of the contrast of habitats as seen in Australia there is less 

possibility for specialisation of species based on habitats. Such tolerance for 

differences in habitats may also contribute to the dispersal capabilities of native ants.  

 

Being able to inhabit practically any habitat found in New Zealand means no regions 

can be considered barriers to dispersal. Monomorium antarcticum like most ants does 
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not have the capability to disperse long distances, for instance a distance of 50km is 

probably beyond a single queen’s flight even with a strong tail wind. However as the 

queen could establish a colony, a second generation queen could complete such a 

flight or establish a colony and so on until the distance is achieved. Of course ants do 

not disperse in such a focussed manner but the potential to disperse long distances 

over many generations is possible. Comparably the arid regions of Australia could 

act as a dispersal barrier to many Australian species as they could not survive in the 

arid region nor by pass it easily. The desert regions (or any other impassable region) 

act as an isolation barrier. 

The combined relative lack of habitat diversity, the high environmental 

tolerance of native species and good dispersal contribute to the low native ant species 

richness in New Zealand. 

 

  1.3 Human Mediated Dispersal of Monomorium antarcticum 

 

There is support in chapter three for the dispersal of M. antarcticum by humans to 

the Chatham Islands, perhaps on two separate occasions with the four samples 

collected and analysed coming from two different molecular and morphological 

lineages. The spread of species incidentally by humans has implications for the 

conservation of species both in terms of mixing disjunct populations therefore 

reducing genetic diversity of the species as a whole and the potential to introduce 

invasive species that could threaten native species. Human mediated dispersal is a 

major factor contributing the problem of invasive ant species. Invasive ants can have 

devastating affects on the native habitat (Bond and Slingsby, 1984; Hill et al., 2003; 

Hoffmann et al., 1999; O’Dowd et al., 2003). As of 1999 147 ant species have been 

recorded outside their native range (McGlynn, 1999), and five species of ants are 

included in Invasive Species Specialist Groups (ISSG) ‘100 of the worst’ list of 

invasive species (Lowe et al., 2000). If is it possible for M. antarcticum - a species 

not known until now for its human assisted dispersal - to reach the Chatham Islands 

then there is the potential for an introduced or invasive species to reach the Chathams 

and disrupt the many species unique to the islands.  

The impact of human mediated dispersal does not always come from invasive 

species. As previously mentioned, the unnatural dispersal of organism (and that is 

what human mediated dispersal can be considered as) can result in the mixing 



 

82 

naturally isolated populations (Ellstrand and Schierenbeck, 2006; Olden et al., 2004). 

There may have been a genetically distinct population of M. antarcticum on the 

Chathams some time in the past progressing on its own evolutionary trajectory 

isolated from the mainland populations. The dispersal of mainland lineages to the 

Chathams may have resulted in the homogenising of that population with the 

mainland populations and hence a loss of the diversity previously present. 

 

  1.4 Conservation Implications for New Zealand’s Native Ants 

 

Most importantly this work increases the number of native ant species in New 

Zealand and accurate taxonomy is a fundamental in the conservation of species, 

quantifying the success of conservation efforts is impossible if a species is 

unidentified. Furthermore any surveys of ant species richness within New Zealand 

will be able to more accurately record the diversity present and any changes in the 

site in question. However there is another less obvious conservation implication from 

this work than the two above, the potential for native species to be used as biological 

barriers round ports and airports to help prevent the introduction of exotic ant 

species. Such a system involves the establishment of native species around ports, 

airports and other areas susceptible to invasion of exotic species; the native species 

acts as a barrier to the spread of introduced species and may allow the extermination 

of the exotic species whilst it is still relatively contained and feasible. A program of 

establishing ants around ports and airports would be more effective and easier than 

many other species due to their small size, relatively large area they ‘patrol’ 

(Holldobler and Wilson, 1990) and the aggressiveness many ant species display 

towards one another. Monomorium antarcticum displays a considerable 

aggressiveness towards other ant species, in particular towards the recently 

introduced Argentine ant (Linepithema humile) (Sagata, 2007). In addition to that 

aggressiveness the increase in diversity as discovered in this work and the tolerance 

of range of habitats would increase M. antarcticum’s effectiveness as a biological 

barrier, with diversity of the native biota being one factor affecting the establishment 

success of exotic organisms (Kennedy et al., 2002; Tilman, 1997). In essence a 

program of establishing native species around areas sensitive to invasion places the 

newly introduced species in immediate contact with the biodiversity likely to reduce 

is establishment success. 
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2. Utility of Molecular Methods 

 

  2.1. Application of DNA Barcodes in Identifying New Species 

 

The utility of mtDNA sequences in taxonomic studies can be clearly seen in chapter 

two. Without the molecular data the results would have been less conclusive with 

only the morphological and morphometric data, which whilst the morphological data 

showed essentially the same designation of clades as the molecular data it cannot be 

considered ideal with only five informative characters used. However it is careful not 

to over emphasise the value of the molecular data, because it did have some 

drawbacks. Without any morphological data to provide a different perspective on the 

molecular results the results would have been as distinct with the matter of how to 

treat overlap of the barcode gaps. 

The overlap of some of the barcode gap graphs is evidence of one of the 

drawbacks of the concept of a standard genetic percentage difference to be used to 

diagnose species. Considering other work and the papers on the issue of a standard 

percentage difference for insects it seems that the standard difference would be 

around the two percent mark. The application of the two percent difference to the 

data used in chapter would have given more, smaller clades, with most having 

overlap of barcode gaps and sharing morphological characters. I believe that the idea 

of a standard percentage difference has fundamental problems that will result in 

errors if the idea is applied in isolation. Species boundaries are essentially natural, 

whilst standard percentage differences are an arbitrary construct with no relation to 

the biological species concept as defined by Mayr. The standard percentage 

difference relies upon three major assumptions, firstly that the changes in the 

mtDNA sequence used are representative of the entire functional genome (an issue 

for all molecular data), secondly that two percent of genetic change is sufficient for 

two organisms to no longer to be potential mates and thirdly, all species are formed 

the same way and that two percent (or more) is the genetic difference between all 

insect species. 

 

  2.2. Integration of Molecular and Morphological data 
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Both chapters demonstrate the need for integration of molecular and morphological 

data. Without the layer of morphological data in chapter two the conclusions would 

not have been so assured, neither would the resulting clades identified be of much 

use to further workers on the M. antarcticum complex. With no morphological data 

the boundaries of the clades would be defined by sequence data alone. Further work 

on the complex in terms of testing the consistency and reliability of the clade 

boundaries or describing any of the clades as species would not be easy as 

individuals could not be assigned to a clade without DNA sequencing.  

Similarly the work in chapter three would be more speculative with out the 

morphological data. In terms of the attributing the genetic variation to an explanatory 

variable the morphological groups acted as an alternative possibility to the variation 

other than habitat or geography. Without the morphological data it would have been 

more likely that the genetic population structuring would have been attributed solely 

to geographic upheavals resulting in isolation rather than the presence of more than 

one species. 

 

3. Further Studies 

 

3.1. Future Studies on the Polygyny of the Monomorium 

antarcticum complex 

 

Polygynous nests, those with multiple queens, are not uncommon within the 

Monomorium antarcticum complex; several nests were collected during this work 

with multiple queens, one with nine queens. As mentioned in chapter three, polygyny 

can affect the dispersal patterns of the population; indeed there is a tendency for 

polygynous species of ants to be poorer dispersers than monogamous species 

(Holldobler and Wilson, 1990; Keller, 1993). The nests of polygnous species can be 

founded by ‘budding’ rather than by queens following mating and a nuptial flight. 

Also called ‘nest fission’ ‘budding’ is where one of the several queens leaves the nest 

with a retinue of workers to start a new nest close to the original nest (Chapuisat et 

al., 1997; Holldobler and Wilson, 1990; Liautard and Keller, 2001; Sundstrom et al., 

2005). Such a pattern of dispersal results in highly related nests in close proximity. 
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Furthermore, mating between males and newly emerged queens from the same nest 

have been detected (Chapuisat et al., 1997; Liautard and Keller, 2001). Without 

knowledge of budding and within nest mating it can affect the way potential 

dispersal and genetic isolation by distance is interpreted from genetic data. The high 

relatedness of close nests can be an indicator of the species being a poor disperser 

and that geographic distance is highly correlated with genetic distance. Such a 

pattern would be accentuated if the samples were not well spaced apart, in that the 

samples tended to be clusters of nests, with each cluster being geographically 

separate.  

 However assessing the degree of nest budding, within nest mating and the 

contribution of each queen to the brood would be relatively easy to test for. To assay 

the level of budding and within nest mating several ‘clusters’ of samples within a 

small area containing as many nests as possible would need to be collected, with 

each cluster being approximately 1km apart, ideally entire nests excavated where 

possible to ensure collecting as many queens as possible. Then mtDNA sequences of 

all the queens from each nest would be sequenced. Those sequences would then be 

analysed using an analysis of molecular variation (AMOVA) and from that calculate 

a fixation index (Fst) for both within and between the clusters of samples. A very low 

Fst value with a high significance value within the clusters and a high Fst value 

between the clusters would mean budding may be taking place or at least that few 

queen embark on nuptial flights of any distance (Liautard and Keller, 2001). Further 

work with non mitochondrial DNA would be needed to detect the level of within nest 

mating of queens and males. 

 Testing for the contribution of each queen of a polygynous nest to the brood 

would require a mtDNA sequence of all the queens within a nest and a sequence of 

many (perhaps 50 or more) workers within the nest. If the majority of the worker 

sequences are closely related and align with one of the queens then clearly she is the 

dominant or perhaps the original queen. Alternatively if the worker sequences are not 

all closely related and align with different queens then more than one queen is 

contributing to the brood. Such a data set could also reveal if any foreign queens are 

being accepted into the nest. 

 Considering that multiple queens were only found in 10 of the 25 nests where 

any queens were recovered it seems that the M. antarcticum complex is not an 

obligatory polygynous species. For that reason the complex would be a good model 
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organism to investigate the phenomenon of polygyny, as it would be possible to 

study both polygnous and monogamous nests and the impact multiple queens have 

on the size and subsequent dispersal of the nests. Perhaps the presence or absence of 

polygyny differs between the species within the complex.  
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