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ABSTRACT

Sedimentary processes related to oscillations of the marine-based sector of Antarctic Ice 

Sheet (AIS) in the Ross Embayment over the past 13 Myr are examined at various 

timescales from stratigraphic records of glacial advance and retreat obtained from the 

McMurdo Sound region. An initial sedimentary model was developed from short (<2 m) 

sediment cores collected from beneath the present-day McMurdo Ice Shelf and seasonally 

open water in the Ross Island region. These cores document sedimentary processes

associated with subglacial, ice shelf and open marine environments since the Last Glacial 

Maximum (LGM) in the Ross Sea Embayment. A radiocarbon chronology from these short 

cores implies that lift-off of grounded ice in the 900 m-deep marine basins surrounding 

Ross Island occurred by ~10,100 14C yr BP. Following lift-off, the ice shelf calving line 

retreated toward its present position. By ~8,900 14C yr BP, seasonally open marine 

conditions extended as far south as Ross Island. Glacial retreat was rapid and preceded the 

timing of Meltwater Pulse 1B. Since 8,900 14C yr BP, the calving line of the Ross Ice Shelf 

has remained pinned to Ross Island despite warmer-than-present temperatures during the 

mid-Holocene.

Depositional models developed for the LGM to recent sediments were then applied to the 

interpretation of the 1284-m-long ANDRILL McMurdo Ice Shelf core (AND-1B) to 

documenting oscillations of the AIS in the Ross Embayment over the past 13 Myr. A

sequence stratigraphic framework for grounding-line fluctuations of under a variety of 

glacial regimes, with three distinct types of glacimarine cycle (sequence motif) identified.

Motif 1 (Pleistocene and Mid to early Late Miocene) is dominated by thick sub-glacial 

diamictite, deposited during glacial advance, with occasional thin interbeds of sparsely- to 

non-fossiliferous mudstone that marks an ice shelf setting during interglacial maxima. Motif 

2 (Pliocene) comprises subglacial to glacimarine diamictite overlain by thin, proglacial 

deposits and capped with substantial beds of diatom-bearing mudstone or diatomite formed 

under open-marine conditions. Motif 3 (Late Miocene) extends from subglacial diamictite 

into a thick proglacial succession that includes a combination of stratified diamictite, 

graded sandstone, conglomerate, and rhythmically-stratified mudstone. The differences in 

these facies successions (motifs) are associated with the long-term evolution of the AIS in 

the Ross Embayment from a cold glacial regime with limited volumes of subglacial 

meltwater (Motif 1) to warmer styles (Motifs 2 and 3) of glaciation with increased

subglacial meltwater discharge, before passing back to the cold style of glaciation that 

characterises the present-day AIS (i.e., limited subglacial meltwater). Each motif was 

interpreted on the basis of modern analogues of glacimarine sedimentation from a range of 

climatic/glacial settings, recording a fundamental change in the mass balance for the AIS in 
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the Ross Embayment. For cold glacial regimes similar to the present day Antarctic Ice 

Sheets, ablation was largely controlled by calving at the marine margin and the melting of 

the underside of ice shelves by oceanic processes. For warmer regimes, in particular for 

Motif 3, ablation by melting was a significant influence on mass balance.

This sedimentary model was then applied in detail to interpret the Pleistocene section of 

AND-1B (upper 150 m) with a chronostratigraphic interpretation constrained by sequence 

stratigraphy, 40Ar/39Ar dating of volcanic ashes, and magneto-stratigraphy. The 

glacimarine sequences in AND-1B drill core correlate one-to-one with cycles in the benthic 

δ18O record for the past ~0.8 Myr (Marine Isotope Stages 20-2), and are interpreted as

recording fluctuations of the AIS in the Ross Embayment with a 100-kyr cyclicity. In this

“100-kyr world”, the AIS is relatively stable, with subglacial to grounding-zone 

sedimentation dominating at the AND-1B drill site, with only thin intervals of ice-shelf 

sedimentation during interglacials and little evidence for open-marine conditions during 

the Late Pleistocene “super-interglacials”. An unconformity spans (~200 kyr) most of the 

Mid-Pleistocene Transition and is inferred to represent large scale expansion of AIS at ~0.8 

Myr. Prior to this, Early Pleistocene glacial/interglacial cycles had a 40-kyr frequency, 

with interglacial periods characterised by open water deposits that contain volcanoclastic 

debris and diatomaceous sediments. This upper 150 m of AND-1B provides clear evidence 

for both a change in the frequency (40- to 100-kyr cycles), and a reduction in the sensitivity 

of a cooler marine-based AIS in the Ross Embayment.
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1

Introduction

During the austral summer of 2006-2007, the ANtarctic geological DRILLing 

(ANDRILL) Programme collected its first geological drill core from a platform on the

McMurdo Ice Shelf, at the northwest corner of the Ross Ice Shelf. Termed the 

“McMurdo Ice Shelf Project”, the key aim was to recover a succession of Miocene, 

Pliocene and Pleistocene sediments that documented past ice shelf/sheet response to 

climatic forcings. 

The aim of this thesis is two-fold: 

 To provide an initial model of sedimentation for beneath the McMurdo Ice Shelf; 

and develop a retreat history of the Antarctic Ice Sheet in the Ross Embayment since 

the Last Glacial Maximum (LGM; ~20 kyr). This model was developed from short 

sediment cores collected during ANDRILL site survey seasons (2003 and 2006), as 

well as archived cores from the McMurdo region. 

 To develop and apply this sedimentation model to the ANDRILL McMurdo Ice 

Shelf drill core (AND-1B) at a variety of time scales; and using this model to 

interpret to climatic implications. AND-1B recovered 1284.87 m of drill core at 

98% recovery. 

This thesis comprises six chapters, most of which are modified from papers that have

resulted, or will result from this thesis. Each chapter is intended to be a distinct piece of 

research that relates to one of the two aims stated above. The very nature of the 

ANDRILL project is collaborative, and all of the papers derived from this thesis are 

multi-authored. The paragraphs below detail the aims of each chapter, and the extent of 

my contribution to each. Where other authors have provided data, I have referenced this 

in the text of each chapter. 

Chapter 1 is an overview of the geologic and tectonic setting of Antarctica, with a focus 

on the Ross Sea sector. It then outlines the major developments in Antarctic climatic 

evolution with a focus on the development of its ice sheets, before discussing the retreat 

of grounded ice sheet in the Ross Sea embayment since the LGM. It finishes by 
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providing background information on the present-day oceanographic and ecological 

setting. This chapter is intended to provide a context for the following chapters, and to 

present the state of knowledge prior to undertaking of this thesis. More detailed and 

critical analysis of the published literature is provided and cited within each of the 

following chapters.

Chapter 2 develops a sedimentary lithofacies model and glacial retreat history for the 

Ross Ice Shelf and the Antarctic Ice Sheet (AIS) system in the McMurdo region from 

the LGM to present. This chapter was based on a series of gravity cores collected from 

beneath the McMurdo Ice Shelf during 2003 (HWD03) and 2006 (HWD06), as well as 

archived marine cores (DF80) collected in McMurdo region. Sediments in the HWD03 

cores were described by Peter Barrett and Gavin Dunbar prior to my involvement in this 

project. Diatom analysis from HWD03 cores in this paper was done by Margaret 

Harper, and this is referenced when used. Tim Naish, Gavin Dunbar, and I described the 

sediments in the HWD06 and DF80 cores. I conducted the diatom and grain size 

analysis for the DF80 and HWD06 cores, as well as the petrology and IRD analysis 

from HWD03, HWD06, and DF80 cores. I also undertook dust content analysis on an 

ice core from Windless Bight. The synthesis of the sediment model and the chronology 

for the retreat of the Antarctic Ice Sheet/Ice Shelf system in the Ross Embayment since 

the LGM was presented in McKay et al. (2008), with input from all co-authors.

Chapter 3 extends the sedimentary model developed in the previous chapter to the entire 

AND-1B drill core. It outlines the sedimentary facies successions associated with 

advance and retreat of the Antarctic Ice Sheet across the drillsite for the past 13 Myr. It 

also documents large-scale changes in the behaviour of the Antarctic Ice Sheet in the 

Ross Embayment, and provides sedimentary models for deposition under three different 

thermal ice sheet regimes. The interpretation of past glacial regimes made in this 

chapter are based on modern analogues of sedimentation in sub-polar (e.g., 

Greenland/Spitsbergen) and polar (e.g. Antarctica) glacial environments. For this thesis, 

a “sub-polar glacial regime” is defined as a glacier/ice sheet that has a vertical 

temperature profile that has a significant zone that is below pressure melting point, but 

also has significant zones that are at pressure melting point, especially at the ice sheet
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bed. Polar glaciers are below pressure melting throughout the vertical temperature 

profile, with the possible exception of a thin zone of water/unfrozen sediments at the 

bed. The use of “wet(warm)-based”, “polythermal” or “dry(cold)-based” was 

considered ambiguous in the context of interpreting past glacimarine sedimentation, as 

the present-day Antarctic Ice Sheet is now known to contain a significant subglacial 

drainage network, and therefore there is potential for some “wet-based” glacial 

deposition in the modern Antarctic environment. I developed the facies descriptions and 

analysis, and interpretations of glacial proximity/environments, with input from Greg 

Browne, Lionel Carter, Tim Naish and Ross Powell. Facies analysis was based on the 

core logging of ANDRILL sedimentology/stratigraphy team during the on-ice core 

characterisation phase of the ANDRILL project. Greg Browne and I identified the three 

sedimentary motifs. I developed the sedimentary model presented in this chapter, and in 

McKay et al. (in review), with input from the ANDRILL sedimentology/stratigraphy 

team. At the end of this chapter a supplementary report documents the textural 

characteristics of each facies type by presenting the grain-size frequency distributions of 

162 samples. Interpretations made in this report are intended to supplement the facies 

descriptions and process interpretations made earlier in the chapter.

Chapter 4 provides a history for the Antarctic Ice Sheet in the Ross Embayment

throughout the Pleistocene. This is based on core descriptions of the upper 150 m of 

AND-1B. It uses the detailed core descriptions provided by ANDRILL 

Sedimentology/Stratigraphy team (Greg Browne, Lionel Carter, Ellen Cowan, Gavin 

Dunbar, Larry Krissek, Rob McKay, Thomas Wilch), as well as a re-description of the 

upper 150 m conducted by Tim Naish, Ross Powell and me at Florida State University 

in 2007. From these descriptions, concepts for a high-resolution sequence stratigraphic 

model for the Pleistocene section of the AND-1B drill core were developed. This

interpretation incorporates elements of the sedimentary models developed in Chapters 2 

and 3, and applies a new chronostratigraphic framework for this thesis. This framework 

is constrained by 40Ar/39Ar dating of volcanic ashes and magnetostratigraphy of AND-

1B (Wilson et al., 2007) and the δ18O benthic marine record of Lisiecki and Raymo 

(2005). This chapter will constitute the basis of a paper that is in the final stages of 

preparation. The exact scope and conclusions in this paper will be determined once the 
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age model is finalised by additional 40Ar/39Ar dating of volcanic ashes, which are due in 

mid-2008. However, despite the absence of these data Chapter 6 provides clear 

sedimentary evidence for a fundamental change in the response of AIS to orbital forcing 

parameters at 0.8 Myr. Prior to 0.8 Myr, the AIS in the Ross Embayment fluctuated 

between a subglacial and open marine state at the AND-1B drillsite, and responded at a 

~40 kyr frequency. After 0.8 Myr, the AIS was more stable, and fluctuated at a 100-kyr 

frequency between a subglacial and ice shelf state.

Chapter 5 provides an overview of the provenance signal of grounded ice passing over 

the AND-1B drill site as determined from the sand grain petrographic results. 

Provenance shifts are noted at interglacial/glacial frequencies. A long-term shift in 

glacially transported detrius from EAIS outlet glacier to the south of the drill site is also 

noted at 0.8 Myr, from basement- into Beacon Supergroup-derived quartz. However, 

whether this is a result of changes in paleogeography due to Plio-Pleistocene volcanic 

cone building, or the progressive down-cutting of outlet glaciers flowing through the 

Transantarctic Mountains is difficult to determine. The conclusions in this chapter are 

necessarily subjective, reflecting the uncertainties associated with interpreting the 

provenance signal. The data and results presented here will be integrated into a 

publication lead by Franco Talarico and Sandra Sandroni (Università di Sienna), who 

have documented the clast content at 10 cm intervals for the entire AND-1B drill core.

Chapter 6 summarises the main results of this thesis, in particular the changes in the 

stratigraphic signature of the AIS in the Ross Embayment during the Late Cenozoic,

and the inferences that can be drawn on the variability in the extent and thermal regime 

of the AIS in the Ross Embayment over this time. The relevance of the AND-1B is then 

discussed in the context of the on-land Neogene geological record from Antarctica, as 

well as our understanding of global proxy records. 
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Introduction

Sedimentation at the ANDRILL (ANtarctic DRILLing) McMurdo Ice Shelf (MIS) site is 

influenced by interactions between the physiography of the region with glaciological, 

and to a lesser extent, oceanographic and biological processes. This chapter first 

discusses the bedrock geology and tectonic history of the Transantarctic Mountains and 

the West Antarctic Rift System, providing background on provenance, paleogeography, 

and volcanism relevant to documenting past configurations of Antarctic Ice Sheets. This 

is followed by an overview of the glacial and paleoclimatic history for the Antarctic 

continent (with a focus on the Ross Embayment) throughout the Cenozoic, examining 

history and mechanisms for ice sheet initiation, variations in the past ice extent and 

glacial terminations. The third section focuses on local controls in the McMurdo Sound 

region and provides a summary of both the on-land and marine geological record 

documenting the retreat of the Antarctic Ice Sheet in the Ross Embayment since the Last 

Glacial Maximum. A better chronology will be needed to understand adequately the 

forcings that drove this retreat. The last section outlines the present-day oceanographic 

and biogenic controls at the ANDRILL McMurdo Ice Shelf project site, and the 

influences these may have had on past sedimentation.

1.1 Geological history of the McMurdo Sound region

Understanding of the bedrock geology within the Ross Sea Embayment is based largely 

on outcrops in the uplifted Transantarctic Mountains (TAM; Figure 1). The geology 

exposed within the TAM is representative of the western margin of the East Antarctic 

craton, with Mesozoic to Cenozoic uplift and igneous activity associated with the break-

up of Gondwana and the development of the West Antarctic Rift system (Figure 2).

1.1.1 Pre-Gondwana break-up

The oldest rocks in the region are metasedimentary clastics and carbonates deposited in 

a broad shallow marine basin along the present site of the TAM in late Precambrian and 

Cambrian times when Antarctica was part of the Gondwana supercontinent (Tingey, 
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1991; Goodge, 2002). These were folded and intruded by granitic magmas during the 

Ross Orogeny, 500-450 Myr (Granite Harbour Intrusive Complex; Laird, 1991). The 

mid-continental mountains of the Ross Orogeny were eroded down in Silurian times to 

a peneplain that reached across Antarctica to the other Gondwana continents. This 

surface is overlain by subhorizontal strata that are largely terrestrial in origin and reach 

a thickness of ~2 km (Beacon Supergroup, 390-180 Myr, Barrett, 1991).

1.1.2 Mid-Jurassic: Initiation of West Antarctic Rift and Gondwana break-up

A reorganisation of the global plate system led to the break-up of the Gondwana 

supercontinent during the Middle Jurassic, and the initiation of the West Antarctic Rift

System with associated volcanism that formed the deposits of the Ferrar Large Igneous 

Group – which includes the Kirkpatrick Basalt, Ferrar Dolerite, and volcanoclastic 

deposits that intrude the sediments of the Beacon Supergroup (Dalziel, 1992; Dalziel 

and Elliot, 1982; Elliot, 1975). Further rifting and crustal stretching during the Early 

Cretaceous resulted in rotated crustal blocks separated by thinned crust that form the 

archipelago that now lies beneath the ice of West Antarctica (Fitzgerald, 2002). 

Figure 1: Map of Antarctica (modified from Barrett, 1996) and McMurdo Sound region, 
showing locations discussed in text. Topographic data is from the Antarctic Digital Database. 
Bathymetry (200 m contours) is based on data from GNS Sciences archives. Oceanic currents 
are from Robinson (2004).
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Figure 2: Geological map (after Craddock et al., 1970) of the Ross embayment sector of the 
Transantarctic Mountains with major features of the West Antarctic Rift system (after Cooper 
and Davey, 1987). Ice flow directions are from Fahnestock et al. (2000). The AND-1B drill site 
is also shown. Topographic data is from the Antarctic Digital Database.
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1.1.3 Paleocene to Eocene: Transantarctic Mountain uplift and depression of the 

Ross Embayment

The TAM are over 3000 km long, have elevations reaching up to 4500 m, and form one

shoulder of the West Antarctic Rift (Figure 2). They have formed along a divergent 

margin, which is unusual for mountains of this height (Fitzgerald, 2002). Stern et al. 

(2005) attribute up to 2000 m (50%) of uplift to isostatic response following glacial 

incision. The age of the TAM uplift episodes are difficult to obtain due to gaps in the 

geological record. Using fission track data, initial uplift of the TAM appears to have 

occurred in several phases from ~115 Myr (Fitzgerald, 1994). Most exhumation began 

around 50-55 Myr (Fitzgerald, 1994) with provenance studies from offshore drilling 

indicating that the Transantarctic Mountains had achieved most of their present height 

by 34 Myr (Smellie, 2001).

1.1.4 Latest Eocene to Oligocene: Development of the Victoria Land Basin and the 

main rifting phase 

Crustal extension and thinning during the Mesozoic rift period led to the development 

of sedimentary basins within the Ross Sea. The Victoria Land Basin, an east tilting half-

graben approximately 350 km long is hinged at the TAM front in the west, and its 

eastern margin is bounded by a major fault extending from Ross Island to Terra Nova 

Bay (Figure 2). Seismic records indicate it contains sediments up to 12 km in thickness 

(Cooper and Davey, 1987). Drill core chronology indicates that the basin begun 

subsiding rapidly between 34 Myr and 31 Myr, and then gradually slowed (e.g., Figure

3; Fielding et al., 2008). In the past ~20 Myr, sedimentation in the Victoria Land Basin 

has kept pace with subsidence. 
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1.1.5 Early Miocene: Initiation of the Terror Rift 

The MSSTS and CRP drill cores (Figure 1) indicate that volcanism associated with

extension of the Terror Rift (Figure 2 and Figure 3) has been occurring in the region since 

~25 Ma (Barrett et al., 1986; McIntosh, 2000). The Terror Rift is a 40 km-wide graben 

currently bound by Mt Erebus and Mt Melbourne, 350 km to the north. It is the most recent 

phase of extension within the Victoria Land Basin (Esser et al., 2004), and is represented by 

the stratigraphic section overlying the beige (Rf) seismic reflector in Figure 3.

1.1.6 Pliocene to Pleistocene: Continued rifting and the formation of Ross Island 

The McMurdo Volcanic Provence is currently dominated in the McMurdo region by Ross 

Island and centred on Mt Erebus (3,794 m). Older volcanoes lie to the south of Ross Island, 

notably Black Island, White Island, Mt Discovery and Mt Morning. Ross Island consists of 

four major volcanic centres - Mt Bird, Mt Terror and Hut Point Peninsula, which surround 

the active Mt Erebus in radially symmetrical pattern, suggesting that hot spot/plume activity 

is responsible for the volcanism (Kyle and Cole, 1974). Continued extension associated 

with the Terror Rift has occurred throughout the late Neogene (Fielding et al., 2008). 

Figure 3: Geological cross-section of McMurdo Sound derived from seismic stratigraphy and 
drill core data, including CIROS-1, the McMurdo Ice Shelf project (MIS), the Southern 
McMurdo Sound project, and the Cape Robert Project(from Naish et al., 2006).
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Basaltic shield volcanism on Ross Island began between 4.6 and 1.3 Myr, first centred 

around Mt Bird between 4.6-3.8 Myr (Wright and Kyle, 1990a), followed by Mt Terror 

from approximately 1.7-1.3 Myr (Wright and Kyle, 1990b). 40Ar/39Ar dating indicates 

that the oldest sub-aerial eruption of Mt Erebus is 1.3 Myr (Esser et al., 2004). Three 

phases in the evolution of Mt. Erebus are documented, beginning with a shield-building 

phase of low-viscosity mafic volcanism between 1.3 and 1.0 Myr (Esser et al., 2004). 

This was followed by a cone building phase, with more differentiated, higher-viscosity 

eruptions of tephrites, basanites and phonotephrites (moderately higher alkali and silica 

content). Since 250 ka, Mt Erebus has been characterised by anorthoclase-phyric 

tephriphonolite and phonolite eruptions (i.e., much higher silica and alkali content).

The loading of the lithosphere by Ross Island has resulted in up to 1.8 km of net 

subsidence beneath Ross Island. A subcircular offshore flexural moat has formed

around the island, providing accommodation space for significant volumes of Plio-

Pleistocene sediment (Stern et al., 1991; ten Brink et al., 1997; Horgan et al., 2005). 

The blue seismic (Rj) reflector in Figure 3 represents the oldest stratigraphic horizon 

associated with this flexural loading and is dated at <3 Myr (Fielding et al., 2008; 

Henrys et al., in prep.)

The stratigraphic interval above the blue reflector (<3 Myr) may also be associated with 

extensive erosion of the western margin of the Victoria Land Basin, probably by 

grounded ice, and a change to a dominant sediment supply from the south (Fielding et 

al., 2008). The presence of large clinoform sets evident in seismic cross sections 

suggests that prior to this, sediment was largely sourced from the western margin of the 

basin (Fielding et al., 2008).
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1.2 Ice Sheet history: Paleogene to Neogene

1.2.1 Geological evidence for major Antarctic climatic events 

The δ18O isotopic ratio from deep-sea benthic foraminifera is influenced by both sea 

water temperature and ice volume. Compilations for the Cenozoic Era (e.g., Zachos et 

al., 2001) give relatively low values (<1.8‰) that suggest an ice sheet-free world in 

Cretaceous and Paleocene times with a gradual cooling through the Eocene. Two 

significant events mark this record (Figure 4), and were recognised in the earliest 

measurements (Shackleton and Kennett, 1975) - a rapid ~1‰ increase at approximately 

34 Myr, interpreted to signify the development of extensive Antarctic sea-ice formation, 

with the initiation of Antarctic bottom water production, and another rapid ~1‰ 

increase at 14 Myr, signifying the development of the EAIS as a permanent feature 

(Shackleton and Kennett, 1975; Kennett and Shackelton, 1976).

1.2.2 Oligocene onset of widespread Antarctic glaciation

The CIROS-1 drill hole provided the first direct record of Antarctic ice advance from 

the late Eocene to early Miocene period (Barrett, 1989; Hannah et al., 1997; Wilson et 

al., 1998). Late Eocene to early Oligocene strata consisted of deep-water turbidite facies 

with lone-stones, indicating some glacial influence, whereas the late Oligocene-early 

Miocene section contained diamictite, sandstone and mudstone (Hambrey et al., 1989) 

typical of near-shore glacimarine sedimentation from fluctuating ice sheets. This 

provided the first evidence that dynamic Antarctic ice sheets reached the Victoria Land 

coast as early late Oligocene times. Drilling in Prydz Bay on the other side of the 

continent reached back to latest Eocene-early Oligocene diamictites (Hambrey et al., 

1991), indicating the TAM was a barrier to the earliest Antarctic ice sheets reaching the 

Ross Sea. Zachos et al. (1992) confirmed an earliest Oligocene age for the first ice 

sheets from an ice-rafting event in cores off the Kerguelen Plateau, and inferred earliest 

Oligocene ice volumes similar to the present day ice sheet. Individual Oi-glaciation 

events inferred on the basis of discrete positive excursions in the benthic δ18O record 

(Figure 4), are believed to represent glaciation over the entire Antarctic continent at 

volumes of 125% relative to the present day Antarctic Ice Sheet, while ice volumes 
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during glacial minima were ~50% of the present day ice sheet (Miller et al., 1991; 

Miller et al., 2005; Pekar et al., 2006).

1.2.3 Late Oligocene to Early Miocene boundary: Continued cooling or widespread 

deglaciation?

Zachos et al. (2001) infer a significant warming during the late Oligocene (Figure 4) 

with widespread deglaciation of the Antarctic continent and warmer bottom water 

temperatures at this time. However, this contrasts with the pollen record from the Cape 

Roberts Project that shows several species of Nothofagus (southern beech) indicating a 

cool temperate climate persisted throughout the Oligocene, with perhaps a slight 

cooling indicated (Prebble et al., 2006; Barrett, 2007). Between 24 and 17 Myr, the 

pollen record shows just one species of Nothofagus along with taxa reflecting a herb-

moss tundra (Askin and Raine, 2000) and periods of extensive grounded ice (Barrett, 

2007). Naish et al. (2001) used well-dated volcanic ashes to show that the sedimentary 

cyclicity in the CRP record is orbitally forced, and also linked a large erosional hiatus at 

23.7 Myr with large-scale ice sheet expansion coinciding the Mi-1 isotope event (Figure

4; Naish et al., 2001). Pekar et al. (2006) explain the abrupt decrease in the benthic δ18O 

record at 25 Myr (Figure 4) as an artefact of the Zachos et al. (2001) curve being spliced 

together at this interval, with more southerly drilling sites sampled below 25 Myr, while

equatorial Atlantic sites were sampled above. Pekar and Christie-Blick’s (2008) 

calibration of the δ18O curve against back-stripped continental margin records suggests 

limited deglaciation, which is more in-line with Cape Roberts Project results and does 

not require climatic decoupling from the atmospheric CO2 record, which shows 

declining levels throughout the Oligocene through to the early Miocene (Pagani et al., 

2005). 
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1.2.4 Drivers for initial ice sheet development

Antarctica has been in a polar position since Early Cretaceous, yet it appears to have 

remained highly vegetated and relatively ice-free until the Eocene/Oligocene boundary 

(approximately 34 Myr; Barrett, 1996). It had long been thought that the thermal 

isolation after continental break-up, and the development of the Antarctic Circumpolar 

Current during the Eocene and Oligocene, directly led to the development of the first 

Antarctic ice sheets (Kennett, 1977). However, a recent coupled GCM (climate)-ice 

sheet model suggests that thermal isolation may play a secondary role, with the major 

influence in the development of the first ice sheets being the decline in atmospheric CO2

(DeConto and Pollard, 2003). This model predicts a three-phase development of the ice 

Figure 4: From left to right: Deuterium record from EPICA Dome C ice core (Jouzel et al., 2007) 
provides a proxy for temperature over the past 740 kyr; δ18O benthic stack (Lisiecki and Raymo, 
2005) shows change from low-amplitude to high-amplitude 40-kyr cycles at 3 to 2.5 Myr 
associated with onset of Northern Hemisphere glaciation, and the onset of 100-kyr cycles at ~900-
700 kyr; δ18O benthic composite record showing large Mi-glacial events followed by a gradual 
cooling (Zachos et al., 2001; Miller et al., 1991); δ18O benthic stack of Zachos et al. (2001) 
showing the major climatic events in the Cenozoic.
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sheets. Declining CO2 initially leads to small scale, temperate/dynamic glaciations at 

high elevations. Continuing decline through a CO2 threshold (between 2-3x present day 

CO2) results in rapid glacial expansion, with dynamic, ephemeral ice sheets controlled 

by orbital variations eventually coalescing into a single, continental-scale East Antarctic 

Ice Sheet.

1.2.5 Early Miocene development of large ephemeral ice sheets

Although the Early Miocene is generally seen as a period relative warmth, marine 

sediment cores from DSDP site 270 indicate periods of extensive grounded ice (West 

Antarctic Ice Sheet) within the Ross Sea embayment since at least the Early Miocene 

(Barrett, 1975; Leckie and Webb, 1983; Bart et al., 2000). Prior to this, glacimarine 

processes within the Ross Sea appear to be restricted to iceberg-related processes 

(Leckie and Webb, 1983). The δ18O and δ13C isotope records also provide evidence for 

major transient glacial advances in Antarctica as early as the Late Oligocene to Early 

Miocene (Zachos et al., 2001). The Mi-1 event at ~23 Myr is characterised by a 200 

kyr-long positive δ18O excursion and may represent an expansion of the EAIS close to, 

or exceeding, its present day volume (Miller et al., 1991; Zachos et al., 2001; Pekar and 

DeConto, 2006). Subsequent glaciations (Mi events) are also noted in the oxygen 

isotope record throughout the Miocene (Figure 4), with large ephermal glaciations 

corresponding to 100 kyr orbital cycles (Miller et al., 1991; Naish et al., 2001; Pekar 

and DeConto, 2006). 

1.2.6 Mid-Miocene cooling 

The 1‰ increase in the δ18O at 13.9 Myr (Figure 4; Shackleton and Kennett, 1975; 

Zachos et al., 2001) is widely attributed to the development of a more stable East 

Antarctic Ice Sheet, similar to that of today. Recent 40Ar/39Ar dating of volcanic ashes 

incorporated into glacigenic deposits in the Dry Valleys sector of the TAM indicate that 

the transition from wet-based to cold based polar glaciation occurred between 13.94 and 

13.62 Myr (Lewis et al., 2007). 
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1.2.7 Pliocene warming

The Early to mid-Pliocene (5.3-3 Myr) is characterised by a relatively stable interval 

with low amplitude cycles in the δ18O record (Figure 4). However, the behaviour of the 

Antarctic Ice Sheet during this time has been hotly debated for over two decades since 

Webb et al. (1984) reported marine diatoms, some as young as Pliocene, in “wet-based”

glacial deposits, named the Sirius Formation (later Group) at high elevations in the 

TAM. Webb et al. (1984) argued that diatomaceous sediments must have been 

deposited in seas in the East Antarctic interior, subsequently to be glacially eroded and 

transported over the TAM, and deposited within Sirius Group sediments. This required 

the loss of at least 2/3 of East Antarctic ice and a final phase of wet-based ice over-

riding the TAM during the mid-Pliocene (~3 Myr). The Sirius Group is also notable for 

the presence of Nothofagus fossils, indicating that coeval vegetation existed at the time 

of its deposition (Francis and Hill, 1996).

A dynamic Pliocene East Antarctic Ice Sheet was seen by many as inconsistent with 

more recent geomorphic evidence of extremely slow landscape evolution in the Dry 

Valleys (e.g., Denton et al., 1993; Summerfield et al., 1999), and prolonged cold 

conditions in the Transantarctic Mountains of southern Victoria Land for the past 14

Myr (Marchant et al., 1996). The hypothesised Pliocene collapse was also inconsistent 

with the deep-sea oxygen isotope record, which did not show a large enough δ18O

increase to reflect such a widespread loss of Antarctic ice (Kennett and Hodell, 1993). 

Studies have since shown the diatoms to be extremely rare in Sirius deposits (~1 

specimen/gram) and to occur also in moraines and local snow (Stroeven et al., 1996; 

Kellogg and Kellogg, 1996; Barrett et al., 1997; McKay et al., 2008). Data in these 

papers also suggests that the diatoms are less abundant at depth and more abundant in 

Sirius diamictites with higher porosity. As a consequence, the marine Pliocene diatoms 

are interpreted as contaminants, and not age-diagnostic for the deposits in which they 

are found. 

Other notable Pliocene strata outcrop in the mountains of the Prydz Bay/Amery Ice 

Shelf region of East Antarctica (Figure 1). The Sørsdal Formation in the Vestfold Hills
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currently lies 25 m.a.s.l (metres above sea level) and consists of Early Pliocene (4.5 to

4.1 Myr) diatomaceous siltstone and sandstones, as well as sandy diamictites. It does 

not contain evidence of coeval terrestrial vegetation during its deposition, but indicates 

marine conditions (Quilty et al., 2000), and that the margin of EAIS was reduced in 

Pliocene times. The Pagodroma Group outcrops in the Prince Charles Mountains that 

flank the present-day Amery Ice Shelf, and consist of early Miocene to Pliocene/Early 

Pliocene glacimarine strata. The Late Pliocene (early Pleistocene?) strata in the 

Pagodroma Group (Bardin Bluffs Formation) are dominated by diamictites, but contain 

occasional laminated (sandstone/mudstone) facies, and silty sandstone facies with rare-

IRD. These deposits provide evidence of “wet-based” fjordal glaciers, interpreted as a 

similar regime to present-day tidewater glaciers of East Greenland, and are associated 

with advance of the East Antarctic Ice Sheet (Hambrey and McKelvey, 2000). 

Combined, these deposits indicate an oscillating margin of the East Antarctic Ice Sheet

(in the Prydz Bay region) between the middle Miocene and Late Pliocene, with 

periodical marine incursions occurring at least 450 km in land from the present-day ice 

Amery Ice Shelf calving line (Whitehead et al., 2006).

1.2.8 Late Pliocene/Early Pleistocene cooling

The Late Pliocene δ18O record (Figure 4) is characterised by a significant step between 

3 and 2.5 Myr, with the record displaying higher amplitudes and gradually increasing 

δ18O values, interpreted as representing the onset of widespread Northern Hemisphere 

glaciation (Shackleton and Opdyke, 1997; Ravelo et al., 2004). Kennett and Barker 

(1990) attributed decreased sedimentation rates in the Weddell Sea Abyssal Plain to the 

expansion of the West Antarctic Ice Sheet to the continental shelf margin between 3 and 

2.4 Myr. They also noted an increase in sea ice extent at this time. Seismic reflection 

data from the Ross Sea indicate a major glacial unconformity, believed to be Late 

Pliocene in age, and inferred to be the result of expansion of the grounded WAIS onto 

the Ross Sea continental shelf (Bart, 2000). 
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1.2.9 Drivers for Late Pliocene/Early Pleistocene glacial/interglacial cycles

Milankovitch (1941) hypothesised that periods of weaker intensity of insolation during 

summer promoted glacial growth in the Northern Hemisphere. Periods of weak summer 

insolation occur during periods of low obliquity (axial tilt; cycles of ~41 kyr) and when 

aphelion occurs during Northern Hemisphere summer. During the 1970’s, the 

development of deep-sea δ18O records showed that over the past 450,000 years, the 

dominant frequency of glacial/interglacial cycles averaged ~100 kyr, and was largely in 

phase with orbital eccentricity (Hays et al., 1976). Although eccentricity has little direct 

influence on insolation compared to precession and obliquity, it does modulate the 

amplitude of the insolation forced by precession. For example, during periods of low 

eccentricity (i.e., more circular orbit) the effect of precession is more subdued. 

The benthic δ18O stack of Lisiecki and Raymo (2005) shows a strong 41 kyr co-variance 

during the Late Pliocene to early Pleistocene (Figure 4). The forcing for these 41-kyr 

cycles is debated, as precession (23 kyr cycles) has a more profound influence on 

insolation intensity, yet the precession signal is not as strong as would be expected in 

δ18O records (Figure 5). Huybers and Denton (in press) suggests that total integrated 

summer insolation controlled by the duration of summer, rather than peak intensity 

insolation, was the critical factor in determining the extent of ice sheet melting in the 

Southern Hemisphere. Due to Kepler’s second law of planetary motion (the Earth 

travels fastest at perihelion) precession is largely cancelled out by the fact that more 

intense summers are of shorter duration, leaving changes in obliquity to exert a greater 

influence on the total integrated summer insolation. Huybers and Tzipermann (2008) 

present an ice sheet/energy balance model that generates 40-kyr glacial cycles for an ice 

sheet subjected to a warmer climate and a thinner profile resulting from increased 

subglacial deformation (i.e., sliding at the base). They favour this obliquity-based 

forcing, as it is in phase between hemispheres. 

Raymo et al. (2006) postulate that precession is the dominant driver for ice growth and 

decay. Using a non-dimensional northern versus Southern Hemisphere ice volume 

model, they demonstrated that because precession-based insolation forcing is out of 

phase between hemispheres, the precession signal will be cancelled out in global 
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proxies such as the δ18O isotope record. Due to differences in isotope ratios between 

northern versus Southern Hemisphere ice sheets, relatively small changes in Antarctic 

ice volume will cancel out larger changes in the Northern Hemisphere. Therefore, this 

should result in obliquity periodicity dominating global proxies for ice volume and sea 

level records, as it is in phase between hemispheres. This is largely what is observed in 

the deep-sea isotope record prior to the Mid-Pleistocene Transition.

1.2.10 The Mid-Pleistocene Transition and the onset of 100-kyr Late Pleistocene 

glacial/interglacial cycles

Between 900 and 700 kyr, the δ18O benthic marine record indicates that 

glacial/interglacial cycles switched from a ~41 kyr to ~100 kyr period. Ice core records 

display a strong correlation to δ18O benthic marine record (Figure 4), and provide the 

highest resolution record of atmospheric conditions over time. Unlike marine records, 

ice cores also record atmospheric gas composition and deuterium proxies for 

temperature. 

The Vostok ice core shows that the past four glacial terminations all display similar 

trends – an increase in temperature initially accompanied by steady increases in CH4

and CO2. This is then followed by a rapid increase in CH4 and a reduction in δ18Oatm, 

inferred to coincide with collapse of the Northern Hemisphere ice sheets. These patterns 

suggest that orbital forcing is amplified initially by greenhouse gases, then by 

deglaciation and ice albedo feedback mechanisms (Petit et al., 1999). 

The pattern of interglacial periods is not uniform, with the length of the current stable 

warm conditions of the Holocene (~11 kyr) far exceeding the length of the previous four 

interglacial maxima. These display shorter warm periods followed by rapid cooling and 

then slower temperature decreases (Petit et al., 1999). The longest continuous ice core 

to date, EPICA Dome C, provides a climate record for the past 800,000 yrs (Jouzel et 

al., 2007). A total of 10 glacial cycles are recorded in the core, including a complete 

record of Marine Isotope Stage 11 (~410 ka). Marine Isotope Stage 11 is an interglacial 

period considered to be an analogue to the Holocene period, as it had prolonged warm 

conditions at the interglacial peak, and corresponds to prolonged period of low-
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amplitude eccentricity (Figure 5). The period prior to Marine Isotope Stage 11 is 

characterised by less warm, but longer glacial maxima (EPICA Community Members, 

2004).

1.2.11 Drivers for the Mid-Pleistocene Transition and the 100-kyr cycles

The cause(s) for the transition to 100 kyr glacial/interglacial cycles has yet to be 

determined. Understanding why northern and Southern Hemisphere climate records are 

in phase may be the key to answering this question. The effect of precession on 

insolation is out of phase between hemispheres, and therefore if it is the main control 

(i.e., modulated by eccentricity cycles at 100ka periodicity), then these records should 

be out of phase. Huybers and Wunsch (2005) suggest that obliquity is still the primary 

control. They note that glacial terminations actually occur at ~80 and 120 kyr periods, 

and point to “beat-skipping” of the obliquity cycle. They speculate that beat skipping 

may occur because obliquity has a greater effect on insolation at high latitudes. The 

effect of obliquity on insolation is more sustained than precession, and is therefore more 

likely to influence basal melting, as it takes ~10 kyr for surface temperature to penetrate 

to the base of a thick ice sheet (precession makes little impact at this timescale). When 

ice sheets are thinner, basal ice sheet temperatures and pressure are lower, and are 

therefore less susceptible to increased insolation – and when the ice sheets are thicker, 

more basal melt and sliding results. This may promote glacial terminations, as increased

sliding thins the ice sheet, moving more ice into the lower-latitude ablation zone, or the 

ocean. Under this model, the warmer climate of the Late Pliocene and early Pleistocene 

is more likely to result in terminations every obliquity cycle. 

Using a single column atmospheric model, Huybers and Denton (in press) show that 

using the duration of summer in the Southern Hemisphere (Figure 5) to drive the model

temperatures that correlate strongly to the ice core record at Dome Fuji can be 

reconstructed. They conclude that glacial terminations may be driven by long summers 

in the south (e.g., less sea ice, increased outgassing of CO2 from Southern Ocean, etc) 

and more intense summers (e.g., positive degree day ablation of ice sheets) in the 

Northern Hemisphere. Due to Kepler’s second law resulting in longer summers having 

lower peak insolation (and vice versa), both signals are almost identical and are in phase 

at both the precession and obliquity timescales. 
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Figure 5: Ice core and deep sea proxies for determining past temperatures and ice volume (from 
Jouzel et al., 2007 and Lisiecki and Raymo, 2005) matched against orbital forcing parameters 
(Berger and Loutre, 1991). Summer duration at 77ºS was determined using a Matlab script for 
daily insolation provided by Huybers (2006), and summing the number of day where insolation 
exceeds 250 W/m2.
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Raymo et al. (2006) point to precession, modulated by eccentricity as the prime control. 

They postulate that the Antarctic Ice Sheet cooled to a degree that the margin became 

marine-based around ~1 Myr. Therefore, changes in Antarctic Ice Sheet were driven 

largely by eustatic sea level fluctuations associated with Northern Hemisphere 

glacial/interglacial cycles, i.e., north drives south, resulting in an in-phase signal.

1.3 The configuration of past ice sheet advance and retreat  in the Western Ross 
Embayment

Approximately two-thirds of the present-day Ross Ice Shelf is nourished by ice streams that 

drain the WAIS, yet its western margin is fed by EAIS outlet glaciers (Fahnestock et al., 

2000; Figure 6A). Glaciological reconstructions at the LGM, indicates grounded ice 

expansion within the Ross Embayment to near the edge of the Ross Sea continental shelf

(Denton and Hughes, 2002) with an almost even contribution from East and West Antarctic 

sourced ice (e.g. Figure 6B). Previous studies of till provenance in the Ross Island region 

indicate that glacial transport by ice sourced from EAIS outlet glaciers to the south of the 

drill site occurred during the last period of grounded ice deposition at the LGM  (Licht et 

al., 2005). This distal provenance source indicates that grounded ice event at the LGM in 

the Windless Bight region was the result of large-scale ice sheet advance in the Ross 

Embayment, rather than localised glacial advance from Ross Island or outlet glaciers in the 

McMurdo Sound region.

In the Windless Bight region, past ice sheets were grounded well below sea level and were 

therefore likely to be highly responsive to oceanographic-related mass balance controls, 

such as eustasy, iceberg calving and ice front/sub-ice shelf melting. Of critical importance 

with regard to ice sheet retreat within the greater Ross Embayment (including sections of 

the presently-grounded WAIS) is that marine ice-sheet grounding lines are inherently 

unstable on reverse bedslopes (Schoof, 2007). When this reverse bedslope is combined with 

an overdeepened bed, forcings such as rising sea levels, decreased accumulation rates, 

increased ice sheet temperature profile and/or basal slipperiness may result in the ice sheet 

being forced into irreversible retreat. This implies that once retreat was initiated for past 

configurations of the ice sheet, it was likely to occur across the entire Ross Embayment, 
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similar to the pattern of retreat documented for the last glacial interglacial cycle (e.g. 

Conway et al., 1999, Denton and Hughes, 2002; see following section for details). 

Taking into account LGM reconstructions, mass balance considerations, and the 

overdeepened/reverse slope nature of the Ross Sea continental shelf since the Late Neogene 

(De Santis et al., 1995), the record of grounded ice sheet deposition at  Windless Bight is 

expected to be intimately tied to the overall state of the AIS in the Ross Embayment as a 

whole. Provided the provenance signal of subglacial deposits indicates at distal EAIS outlet 

glacier source, the sedimentary record of glacial advance and retreat at Windless Bight is

interpreted in this thesis as documenting widespread changes in the volume of marine-based 

sector of the Antarctic Ice Sheet (fed by both the EAIS and WAIS) in the Ross Embayment

(e.g.Figure 7E). 

Figure 6:  Ice flow-line pathways for (A) the present day Ross Ice Shelf showing WAIS 
vs. EAIS contributions (after Fahnestock et al. 2000) and (B) a reconstruction of the 
grounded ice sheet in the Ross Embayment at Last Glacial Maximum, showing the 
WAIS vs. EAIS contribution (after Denton and Hughes, 2002); (C) A high-resolution 
inset of LGM flow-line reconstruction for the McMurdo Sound Region based on 
geological and geomorphic evidence (Denton and Hughes, 2002). This shows the 
pathway for ice sourced from the southern TAM outlet glaciers into Windless Bight
during periods of glacial expansion and grounded ice.
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1.4 Retreat of the Antarctic Ice Sheet in the Ross Embayment since the Last 
Glacial Maximum 

1.4.1 Geological evidence

The Ross Sea Drift covers an extensive portion of the McMurdo Sound region and consists 

of drift sheets that are relatively unweathered and are commonly ice-cored in coastal 

McMurdo Sound. 14C dates of shell material incorporated in the Ross Sea Drift indicates 

that it is Last Glacial Maximum (LGM) age, and it is interpreted as representing an advance 

of a grounded ice sheet during Marine Isotope Stage 2 (Stuiver et al., 1981; Denton and 

Marchant, 2000). The drift reaches a maximum elevation of 710 m at the eastern side of 

Ross Island (Cape Crozier), while along the Scott Coast it reaches elevations of 250 m, 

suggesting that ice was grounded across McMurdo Sound and the profile of the LGM ice 

sheet sloped landward across McMurdo Sound. The grounded ice advanced westward from 

McMurdo Sound, and acted to dam the mouths of the Dry Valleys, resulting in large 

proglacial lakes within the Dry Valleys (Denton et al., 1991). 14C dates indicate that Taylor 

Valley was still blocked by grounded ice in McMurdo Sound between 8900 and 8340 14C

yr BP (Denton et al., 1991). Emerged marine deposits near Marble Point indicate that 

grounded ice had receded by 6430 ± 70 14C yr BP (~7500 cal yr BP) (Stuiver et al., 1981). 
14C dates imply that the Taylor Glacier (draining from the EAIS) actually receded during 

LGM, suggesting little change in EAIS surface height in this region since the LGM (Denton 

et al., 1991).

Since the LGM, the Antarctic Ice Sheet (including the Ross Ice Shelf) is inferred to have 

retreated over 1300 km along the western margin of the Ross Embayment (Conway et al., 

1999), while remaining relatively stable in the east. Drewry (1979) suggested that although 

the grounding advanced northward during the last glacial, floating ice shelves dominated 

the Ross Sea embayment and grounding occurred mostly on local topographical highs (i.e., 

Crary, Mawson, Pennell and Ross Banks), but agreed with Denton et al. (1971) that the 

entire of McMurdo Sound was grounded with ice 1-1.3km in thickness at the LGM, based 

on evidence of glacial advance from the Ross Sea region into the Dry Valleys. Using 

geological data to extend existing ice sheet flowlines and surface contours, Stuiver et al. 

(1981) placed the maximum extent of LGM grounding line at the continental shelf edge.

Denton et al. (1991) also placed the LGM grounding line at the continental shelf margin, 
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based on foredeepening features in the Northern Basin, interpreted as being formed by 

grounded ice - although Kellogg et al. (1996) noted that these features may represent an 

earlier phase of ice advance. 

Sediment cores and geophysical studies place the grounding line of the western sector of the 

Ross Ice Shelf just north of Coulman Island, ~200 km to the south of the continental shelf at 

a latitude of 73º28 S (Figure 7). This is based on the locations of sediment wedges 

interpreted from seismic profiles, and an absence on diamictons north of this point, (e.g., 

Figure 7; Anderson et al., 2002; Shipp et al., 1999; Domack et al., 1999; Conway et al., 

1999). Licht et al. (1996) studying sediment cores, placed it 100 km to the south of 

Coulman Island.

1.4.2 Geophysical evidence of glacial advance in the western Ross Sea

Multibeam swath bathymetry in the Ross Sea reveal geomorphic features associated with 

grounded ice. These include drumlins, grooves, flutes, megascale lineations that extend 

right across the continental shelf (Figure 7; Anderson et al., 2002; Shipp et al., 1999). 

Iceberg furrows and meltwater channels are also evident. Shipp et al. (1999) identified five 

seismic facies associated with sedimentation of the last glacial cycle in the Ross Sea. Each 

facies is distinguished by external geometry, bounding surface features, acoustic signatures 

and internal reflectors. Deposits are thicker in troughs than on the banks. The results were 

correlated with the lithofacies identified by Domack et al. (1999) and the bathymetry to 

determine the extent of the last glacial advance and retreat in the Ross Sea (Figure 7).
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Figure 7: A) Reconstruction of LGM glacial configuration based on seafloor geomorphology 
and seismic profiling (from Shipp et al., 1999); B) Reconstruction of post-LGM glacial retreat, 
showing accelerated glacial retreat along the marine troughs, in particular the Northern Basin 
and Drygalski Troughs (from Shipp et al., 1999); C/D) Examples of swath bathymetry, similar 
to those used to develop reconstructions in A and B (from Mosola and Anderson, 2006); E) 
Chronology for retreat of LGM grounding line (cal. years) after Conway et al. (1999), including 
two 14C age (grey circles) from marine cores in Domack et al., 1999).
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1.5 Regional setting at the present-day AND-1B site

1.5.1 The McMurdo Ice Shelf 

The McMurdo Ice Shelf is bound by Ross Island to the northeast, Victoria Land to the 

west, McMurdo Sound to the north (Figure 8). Its flow near the AND-1B site is ~150 m

yr-1, compared to (>700 m yr-1) for the Ross Ice Shelf, from which it is separated by a 

shear zone that extends from the Cape Crozier on the eastern edge of Ross Island to 

Mina Bluff (McCrae, 1984; Whillans and Merry, 1996). The eastern section is 

characterised by surface accumulation and the western section by net ablation (McCrae, 

1984). Oxygen Isotope compositions indicate that the source of glacial ice is variable across 

the McMurdo Ice Shelf (Kellogg et al., 1996). The western sector contains large volumes of 

ice derived from much higher elevations (i.e., EAIS), probably via the Mulock Glacier to 

the south. Oxygen isotope analysis indicates that most of the surface ice in the western

ablation zone is derived from seawater, suggesting that bottom freezing processes are the 

dominant contributor to the mass balance to the western sector of the McMurdo Ice Shelf 

(Kellogg et al., 1990). Melting near the grounding line (and surface ablation) minimise the 

contribution of ice from the Koettlitz Glacier (Gow and Epstein, 1972). 

Figure 8: Radarsat mosaic 
showing the drainage of the 
Byrd, Mulock and Skelton 
glaciers into the Ross Ice Shelf. 
The zone of shearing between
Minna Bluff and to the right of 
Ross Island separates the 
McMurdo Ice Shelf (MIS) 
from the Ross Ice Shelf 
(Source: Atlas of Antarctic 
Research -www.usgs.gov).
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1.6 Bathymetry and oceanography in the Ross Sea and McMurdo Sound

Bathymetry plays an important role in oceanic water mass transfer, and therefore 

biogenic production and sedimentation. It is also an important factor in reconstructing 

past ice grounding events. The western Ross Sea consists of a series of banks and 

troughs (see Figure 7), that trend in a north-south direction and extend beneath the Ross 

Ice Shelf. The volcanic centres and flexural moats around McMurdo Sound interrupt 

this pattern, and at Windless Bight, the bathymetry consists of a NE-SW trending trough 

that extends to a maximum depth of 950 m and gradually shallows eastwards to 810 m 

(Figure 1; Horgan et al., 2005).

The upwelling of warm, nutrient-rich Circumpolar Deep Water onto the continental 

shelf region of the Ross Sea is important, as it moderates ice cover, provides a warm 

environment for animals, and supplies nutrients for primary production. Once 

Circumpolar Deep Water has been transported onto the Ross Sea continental shelf, it is 

modified into several types of water masses by such factors as sea ice production, 

glacial meltwater and precipitation. Processes in the Ross Sea region are dominated by 

large polynyas in the southwest Ross Sea. These polynyas provide large areas of open 

water (formed by wind and upwelling of warmer water) that allow for high volumes of 

new sea ice production. Brine rejection during this sea ice formation in the Ross Sea 

modifies Circumpolar Deep Water into High-Salinity Shelf Water (Assmann, 2003), 

Figure 9: Simplification of interactions of oceanic water masses occurring on the present-day 
Ross Sea continental shelf, as discussed in the text (modified from Jacobs et al., 1992).
Acronyms: Circumpolar Deep Water (CDW); Antarctic Bottom Water (AABW); High 
Salinity Shelf Water (HSSW), Ice Shelf Water (ISW).
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and its interaction with other water masses (Figure 9) is an important driver of Antarctic 

Bottom Water – and ultimately, global thermohaline circulation. High-Salinity Shelf 

Water that enters the sub-ice shelf cavity is super cooled into Ice Shelf Water, and is 

responsible for significant volumes of sub-ice shelf melting, as well as basal freezing 

process (Jacobs et al., 1992)

The main inflows of these shelf waters to the Ross Ice Shelf cavity are located in eastern 

McMurdo Sound and to the east of Ross Island (Assmann et al., 2003; Figure 1). The 

western part of the Sound is dominated by northward flow from beneath the Ross Ice 

Shelf, with 14C and tritium measurements suggesting a six-year residence time for the 

water under ice shelf (Michel et al., 1979). The flow under the McMurdo Ice Shelf 

passes Hut Point Peninsula in an easterly to northeasterly direction (depending on

bathymetry) at mean speeds of ~6.5 cms-1. The maximum sub-ice shelf current speed 

recorded at Windless Bight was 22 cms-1, but there was a noticeable tidal effect on 

current speed and direction, and possible disruption of currents during the period of 

measurements by a large iceberg (B-15) immediately to the north of Ross Island 

(Barrett et al., 2005). 

Due to re-suspension processes, sediments from depths shallower than 400 m tend to be 

richer in sand, gravel and coarse sponge spicules, while being depleted in organic 

carbon and opal. Also of note is a layer of suspended sediment at the ocean floor in 

McMurdo Sound, which ranges between 25-250 m in thickness (Dunbar et al., 1989).

1.6.1 Biogenic production

During the summer, as the Ross Sea polynyas enlarge and daylight hours increase, 

primary productivity rapidly increases. One of the largest phytoplankton blooms in the 

Southern Ocean forms in the southern Ross Sea during the early spring (Comiso et al.,

1993). In the deep water regions of McMurdo Sound, the organic carbon accumulation 

rates average 45 mg C m-2 day-1, which is an order of magnitude higher than the world 

average for continental margins (Dunbar et al., 1989). 
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Leventer and Dunbar (1988) noted that the surface sediments in the sound are 

dominated by Fragilariopsis curta, a common member of sea ice and open water 

communities, and Thalassiosira spp., which is rarely found in sea ice samples and is 

representative of open water primary production. Fragilariopsis curta is most abundant 

in the southwest of the sound, where sea ice is more prevalent, while Thalassiosira is 

most abundant in the east and northwest Sound. 

1.7 Summary

Changes in past glacial extent are likely to be the primary control on sedimentation at 

the AND-1B drill site beneath the present day McMurdo Ice Shelf (Figure 1), with 

glacial maxima dominated by subglacial deposits of sediments sourced from 

Transantarctic Mountain outlet glaciers feeding into the marine-based AIS in the Ross 

Embayment. Glacial minima are influenced by a combination of biogenic, 

oceanographic and glacimarine processes. This thesis attempts to identify sedimentary 

processes associated with advance and retreat of the marine-based AIS grounding line in 

the Ross Embayment for the past ~13 Ma. Attempts are also made to identify changes in 

glacial thermal regime and extent over time, from non-climatic forcings. One example 

of a non-climatic forcing is volcanic cone building, which may alter glacial flowlines or

ice shelf pinning points. Tectonics are also important, but large-scale changes in 

bathymetry are not predicted in the context of AND-1B (past ~13 Myr) due to the 

tectonic overprint of the Terror Rift, which has been active since 25 Ma. 
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Abstract

Radiocarbon-dated sediment cores from deep basins beneath the McMurdo Ice Shelf, 

and seasonally-open water north of Ross Island, McMurdo Sound, display a 

characteristic succession of sedimentary facies that document the retreat of the 

Antarctic Ice Sheet in the Ross Embayment at the Last Glacial Maximum to its present 

ice shelf configuration. The facies succession records a transition from a nearly-

grounded ice sheet to open-marine environments (north of Ross Island) that comprises 

in ascending stratigraphic order: (1) slightly-consolidated, clast-rich muddy diamict 

dominated by basement clasts from the Transantarctic Mountains, and interpreted as 

melt-out from the basal layer debris proximal to a retreating grounding zone; (2) 

sparsely-fossiliferous (reworked diatom frustules) and non-bioturbated mud lacking 

lonestones, interpreted as a sub-ice shelf facies; and (3) diatom mud and diatom ooze 

indicative of open marine conditions with evidence of iceberg rafting. The succession in 

the open-marine Lewis Basin north of Ross Island is similar, though the diamict is much 

sandier and sedimentation rates 1-2 orders of magnitude higher. A radiocarbon 

chronology from total organic carbon is presented that implies that lift-off of grounded 

ice in the 900 m-deep marine basins surrounding Ross Island occurred by ~10,100 14C 

yr BP. Following lift-off, an ice shelf was maintained to the north of Ross Island until 

~8,900 14C yr BP. A phase of accelerated retreat at that time between the Drygalski 

Trough and Ross Island is identified, and immediately precedes the timing of Meltwater 

Pulse 1b. At ~8,900 14C yr BP, the calving line became pinned to Ross Island, 

significantly decoupling from the grounding line, and marking the transition from a 

retreating ice sheet to the development of the present ice shelf.

2.1 Introduction

The Ross Ice Shelf, Antarctica, is the largest ice shelf in the world (560,000 km2) and is 

fed by outlet glaciers that drain the East Antarctic Ice Sheet (EAIS) along its western 

margin (e.g., Denton and Hughes, 2002), although most of the ice shelf is nourished 

directly by fast-flowing ice streams that drain the West Antarctic Ice Sheet (WAIS; 

Bindschadler, 1998). Future stability of the Ross Ice Shelf, which is coupled to the 
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behaviour of the WAIS, has been of wide interest (Mercer, 1978) in the context of 

current global warming projections (IPCC, 2007). Despite calving of a 30 km-wide strip 

of ice from its northern margin in 2000, the Ross Ice Shelf is currently considered to be 

stable, as the mean summer temperature is around -8ºC (Oppenheimer, 1998). Recent 

glaciological evidence indicates that the Ross Ice Shelf is becoming increasingly 

undernourished with one of its ice stream feeders from West Antarctica stagnating and 

at least one other slowing down (Joughin and Tulaczyk, 2002; Joughin et al., 2005). 

Fluctuations in flow velocity of the ice streams near the WAIS grounding line have 

been observed (Joughin et al., 2002; Bindschadler et al., 2003; Bougamont et al., 2003), 

and suggest that over timescales of decades to centuries ice shelves represent the most 

vulnerable element of the WAIS-Ross Ice Shelf system, and that their collapse could 

come rapidly (MacAyeal, 1992). Their demise may be the precursor to eventual collapse 

of the WAIS (Mercer, 1978).

Collapse of the Ross Ice Shelf could affect climate, WAIS extent, and sea level in 

several ways: Firstly, production of dense bottom water could be disrupted by an initial 

large-scale discharge of low density meltwater, reducing the production of bottom water 

around Antarctica. Such an effect could alter the global thermohaline ocean circulation 

system (Clark et al., 2002; Weaver et al., 2003; Stocker, 2003). Secondly, Earth’s 

albedo will decrease as 560,000 km2 of permanent ice cover is replaced with dark 

ocean, albeit with seasonal sea ice cover, consequently amplifying regional warming. 

Lastly, the exchange of heat and water vapour between the ocean and the atmosphere 

could lead to accelerated loss and eventual collapse of the marine-based WAIS in as 

little time as a few centuries, raising sea level by 5 to 6 m (e.g., Alley and Bindschadler, 

2001). Of particular concern is that the fundamental behaviour of the Ross Ice Shelf is 

poorly understood and models on which predictions are based need to be constrained by 

new data (Bentley, 2004; Huybrechts, 2004), including those gathered from records of 

the ancient Ross Ice Shelf during the last major global warming event from the Last

Glacial Maximum (LGM) ~ 22 kyr to present.
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Between 26.5 and 19.5 kyr (LGM), a grounded ice sheet expanded to near the edge of 

the continental shelf (~Coulman Island) at approximately 700 m below present day sea 

level (Anderson et al., 1992; Domack et al., 1999; Bart et al., 2000), and the retreat of 

both grounding and calving lines since then have been reconstructed using cores 

collected from the open Ross Sea and ice seismic reflection profiles (e.g., Licht et al., 

1996; Conway et al., 1999; Domack and Harris, 1998; Domack et al., 1999; Shipp et 

al., 1999). Based on a series of piston cores, Domack et al. (1999) proposed a 

sedimentary model describing the LGM-Holocene retreat of the Antarctic Ice Sheet 

(AIS) in the western Ross Sea. Their lithologic succession in ascending stratigraphic 

order comprises: (1) Massive mud-rich, over-consolidated diamicton reflecting a sub-

glacial setting; (2) a thin, stratified and loosely compacted granulated facies indicative 

of the glacier “sole” lift-off zone; (3) a terrigenous mud sub-ice shelf facies; (4) a 

siliceous mud and ooze characteristic of seasonally-open marine conditions. 

Radiocarbon dating of organic matter in the cores provided a chronology for post-LGM 

retreat of the AIS in the Ross Embayment that showed the grounding line withdrew 

from the outer Drygalski Trough to the vicinity of Ross Island between ~11 and 7 kyr 
14C BP (Domack et al., 1999; Conway et al., 1999). While the grounding line has 

continued to retreat during the Holocene, the calving line has remained pinned at Ross 

Island (Figure 10). 

This chapter examines the sedimentary evidence for Holocene stability of the McMurdo 

Ice Shelf, a small body of permanent floating ice at the northwest corner of the Ross Ice 

Shelf (Figure 10), based on new sediment cores and oceanographic data from beneath 

the McMurdo Ice Shelf, and from seasonally open water immediately to the north of 

Ross Island. It documents a Holocene retreat history of the AIS in the Ross Embayment, 

and provides a revised chronology for the timing of grounding and calving-line retreat 

in southern McMurdo Sound. These observations are then related to the retreat history 

of the AIS in the Ross Embayment since the LGM.
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2.2 Regional setting 

The McMurdo Ice Shelf (area of 2500 km2) is at the northwest corner of the much larger 

Ross Ice Shelf (560,000 km2) and is fed by mainly by glaciers flowing from the 

Transantarctic Mountains and Ross Island and surface accumulation of ~0.3 m/year. It 

is buttressed against the much larger Ross Ice Shelf along a shear zone extending from 

Minna Bluff to Cape Crozier (McCrae, 1984; Whillans and Merry, 1996; Kellogg et al., 

1996; Figure 10), and the presence of the Ross Ice Shelf in this region allows for the 

survival of the McMurdo Ice Shelf. The area over Windless Bight where the cores for 

this study were taken is melting at the base but is free of sediment. A simple calculation 

based on ice flow velocity (100 m yr-1), ice shelf thickness (70 to 150 m) and ice shelf 

accumulation balanced by basal melting shows that basal glacial debris sourced even as 

close as Ross Island would have melted out a few km beyond the grounding line, and 

long before the shelf ice reached the Windless Bight core sites.

Sediment in the western Ross Sea today is accumulating primarily in north-south-

trending troughs between 600 and 1200 m deep, once sites of former ice streams 

draining the WAIS and EAIS-sourced outlet glaciers during the Last Glacial Maximum 

(Hughes, 1977; Mosola and Anderson, 2006). However, 500 km south of the 

continental shelf edge, and 300 km south of the LGM grounding line, volcanic Ross 

Island is surrounded by a basin over 900 m deep, termed a “flexural moat”, formed by 

lithospheric loading (Stern et al., 1991; ten Brink et al., 1997; Horgan et al., 2005). The 

moat is interrupted only for a few kilometres southwest of Hut Point Peninsula (Figure 

10), where the sea floor rises to 600 m, accelerating the ocean current flow between 

McMurdo Sound and Windless Bight.
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Sea floor sediment in the Ross Sea is a mix of biogenic silica (largely diatom remains 

from algal growth in the open ocean or sea ice), terrigenous mud carried in suspension 

from the adjacent continent, and sand and gravel carried by floating ice. Sediment-

bearing ice can be sea-ice with sand windblown from land, McMurdo Ice Shelf 

fragments from the western ablation zone with volcanic surface debris or basal debris 

from TAM outlet glaciers (Barrett et al., 1983). Terrigenous mud dominates the sea 

floor sediment throughout the Ross Sea, even though locally biogenic silica can exceed 

40% in the deeper open water basins (Dunbar et al., 1985). Ice-rafted sand and gravel is 

widespread but forms only a few percent of sea floor sediment (Barrett et al., 1983). 

Sediment origin can be readily determined from mineralogy and clast composition –

quartz-free dark basic to intermediate volcanic rocks come from Ross Island and the 

Figure 10: Map of Ross Island region showing the core sites in this study, and localities 
mentioned in text. The two main provenance areas and raised beaches locations (Dochat et al.,
2000; Hall and Denton, 1999) discussed in text are also shown. BI = Black Island, CB = Cape 
Bird, CC = Cape Crozier, HP = Hut Point Peninsula, MB = Minna Bluff, MD = Mount 
Discovery, WI = White Island, WPG = Wilson Piedmont Glacier.
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volcanoes of southern McMurdo Sound (Kyle, 1990), whereas quartz grains and 

granitoid or metasedimentary rocks come from the quartz-rich Cambro-Ordovician 

basement and overlying Beacon Supergroup strata of the Transantarctic Mountains 

(Craddock, 1970, Plate 13). 

Diatom blooms generate frustules that settle to the sea floor largely as medium sand-

sized pellets from browsing zooplankton in the open waters of the Ross Sea and 

McMurdo Sound (Dunbar et al., 1985). However, some of the frustules remain singular 

and in suspension long enough to be carried by currents beneath the McMurdo Ice 

Shelf. The net current flow is from McMurdo Sound into Windless Bight with a mean 

speed of approximately 7 cm s-1, though there is a strong tidal influence with direction 

reversing and speeds reaching 22 cm s-1 (Robinson and Pyne, 2004). The net flow is 

sufficient to carry frustules and terrigenous mud, but not pellets or sand for tens to 

hundreds of kilometres beneath the ice (Barrett et al., 2005).

2.3 Methods

2.3.1 Core collection and description

Three sediment gravity cores from beneath the McMurdo Ice Shelf, collected during 

2003 (HWD03) and 2006 (HWD06), and six piston cores from the Erebus Basin (in 

McMurdo Sound) and the Lewis Basin (north of Ross Island), collected by the USCGC 

Glacier as part of Operation Deep Freeze (DF) in 1979-80 (Figure 10), were analysed. 

To sample beneath the McMurdo Ice Shelf, three Hot Water Drill (HWD) access holes 

were made, through which a gravity corer was deployed (details in Barrett et al., 2005). 

Detailed logging, sampling, and x-ray imaging of the Deep Freeze 80 cores were 

conducted at the Antarctic Marine Geology Research Facility at Florida State 

University. Core descriptions follow the terminology of Hambrey et al. (1997), and are 

based on visual observations, smear slide analysis, and x-radiography. Undrained shear 

strength was measured using a shear vane. Ice-rafted debris (IRD) was quantified by 

summing the number of grains visible on x-radiographs and exceeding 2 mm in size, in 

1-cm-thick horizontal bands following the method of Grobe (1987). Grains were

counted to a maximum of 10 grains in each cm-band because quantities higher than this 
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were difficult to determine accurately as individual grains began to overlap in the x-ray 

image. Therefore, a maximum value of 10 grains >2 mm to these intervals was 

arbitrarily assigned. This readily allows for diamicton to be distinguished from fine-

grained sediment with ice-rafted debris. Descriptions and logs for the cores analysed in 

this study are provided in the supplementary material at the end of this chapter (Figure 

21 to Figure 35).

2.3.2 Grain size analysis

Dry sieving and Sedigraph analysis determined grain-size frequency distribution at 0.5 

phi intervals for the sand and mud fractions (Dunbar and Barrett, 2005). All sediment 

was unconsolidated and lacking any significant carbonate. Therefore, disaggregation 

was minimal and consisted of Hydrogen Peroxide treatment to remove the organic 

fraction, and stirring in sodium hexametaphosphate (1g/L) in an ultrasonic tank prior to 

wet sieving and Sedigraph analysis. Grain size data is provided as supplementary 

material at the end of this chapter and is presented in Figure 15 and Figure 16.

2.3.3 Sand fraction petrology

The 63-500 μm fraction of each sample was saturated in epoxy to produce pellets for 

sectioning. The pellets were cut into thin sections to give a maximum quartz 

birefringence colour of white. The textural and compositional characteristics of each 

slide were described and point counts of between 300 and 400 grains were undertaken. 

Sand grains were grouped into one of the categories detailed in Table 1. Modal 

petrographic analysis (300+ grain point count) for the 63-500 μm fraction was 

undertaken on grain mount thin sections. The rock fragments and minerals characterised 

in these counts are summarised in Table 1. To determine the provenance of the sand 

grains, individual minerals and rock fragments were grouped into those of lithologies 

found solely or largely in the Transantarctic Mountains and those of more local 

McMurdo Volcanic Group origin (Figure 2). 



Chapter 2: Retreat of Antarctic Ice Sheet (Ross Ice Shelf) since the LGM

54

Mineral/Lithics Description Provenance

Calcite: Mostly organic in origin, although rare grains of metamorphic 
calcite with twinning and zoning were noted in the basal unit 
of HWD03-1.

Byrd Group
Ross Supergroup

Volcanic 
lithics:

Vary from unweathered, angular basaltic groundmass with K-
feldspar, plagioclase, olivine or pyroxene phenocrysts to 
reworked volcanic grains (epiclasts). The epiclasts are usually 
well rounded and display significant quantities of clay 
minerals enclosing feldspars, olivine and pyroxenes and are 
inferred to be the result of significant weathering and transport 
of volcanic source rocks. In HWD03-1 (24-31 cm), these 
weathered epiclast may be calcite-cemented diamictite 
intraclasts and they are grouped together (as they are difficult 
to distinguish, and like MVG grains are interpreted to be 
locally sourced). The volcanic lithics are all inferred to be 
sourced from the MVG, although no distinction of individual 
volcanic centres (i.e., Ross Island, Black Island) is made. 

McMurdo Volcanic 
Group

Volcanic glass Vary from colourless/light brown to red brown. Angular to 
subrounded and often highly vesicular. Rare 
olivine/plagioclase phenocrysts. 

McMurdo Volcanic 
Group

Plagioclase Angular to rounded grains, with a tabular form and cleavage at 
~90º, multiple twinning or local alteration to sericite.

Granite Harbour 
Intrusive Complex

Feldspar Angular to rounded grains, displaying significant alteration 
(visible in plain polarised light) to sericite or albite.

Granite Harbour 
Intrusive Complex
Beacon Supergroup
Ferrar Dolerite
Bryd Group
McMurdo Volcanic 
Group

K-Feldspar Tabular grains with simple twinning. McMurdo Volcanic 
Group
Ferrar Dolerite

Microcline Feldspar with cross-hatched twinning, indicative of a granitic 
source

Granite Harbour 
Intrusive Complex

Quartz Varies from angular to well-rounded. Most grains are mono-
crystalline with straight to strong undulose extinction. Some 
grains have fluid inclusions. Smaller grains of quartz lacking 
distinguishing features may have been identified as feldspar. 
Polycrystalline quartz grains were also included in this group. 
Likely sources of this quartz are from Beacon Supergroup 
sediments, basement granitoids, and basement metasediments 
(esp. polycrystalline quartz) 

Granite Harbour 
Intrusive Complex
Beacon Supergroup

Rounded quartz 
(±overgrowths)

Rounded to well-rounded quartz (±overgrowths) likely derived 
from Taylor group (Beacon Supergroup; Korsch 1974).

Beacon Supergroup

Sedimentary 
lithics

Range from quartz arenite to arkose lithics. Beacon Supergroup
Ross Supergroup

Pyroxene with
exsolution 
laminae

Includes pigeonite displaying distinctive chevron style 
twinning and exsolution laminae, likely derived from Ferrar 
Dolerite (Smellie, 1998).

Ferrar Dolerite

Heavy minerals Generally lacking distinguishable features. Pyroxenes, 
amphiboles and biotite are noted.

McMurdo Volcanic 
Group
Ferrar Dolerite
Granite Harbour 
Intrusive Complex

Table 1: Lithologies and minerals categories for modal analysis of sand fraction.
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The most distinctive indicator of the Transantarctic Mountains provenance is quartz, 

which is absent in the McMurdo Volcanic Group (Kyle, 1990), but can be attributed to 

granites and metasediments, and quartz arenite and arkosic sandstone of the Beacon 

Supergroup that crops out throughout the Transantarctic Mountains. Notably, rounded 

quartz with overgrowths can be directly attributed to Devonian Taylor Group (Beacon 

Supergroup) sandstones (Korsch, 1974). Pyroxene is another important provenance 

marker, with pigeonite being of Ferrar Dolerite origin, and augite of McMurdo Volcanic 

Group origin (Smellie, 1998). In the absence of cleavage, alteration or twinning, 

feldspars could be difficult to distinguish from quartz, except where conchoidal 

fractures, undulose extinction or overgrowths could be seen. Distinguishing feldspar 

from quartz could be normally done with confidence for larger grains (>200 µm).

2.3.4 X-ray diffraction

Bulk mineralogy was quantified by XRD. These measurements were undertaken by R. 

Soong at GNS Science, New Zealand using a Philips X'Pert Pro X-ray diffractometer, 

and quantified using Siroquant, a Rietveld synthesis algorithm (e.g., Taylor, 1991). X-

ray diffraction results are provided in Table 6.

2.3.5 Diatom analysis

Diatom abundances and concentrations for the DF80 cores were determined by settling 

know amounts of suspended sediment using the method of Scherer, (1994). Diatom 

assemblages for the HWD cores are detailed in Barrett et al. (2005), where analysis was 

conducted by Margaret Harper (Victoria University of Wellington). Diatom results are 

shown in detail in Figure 12, while Figure 13 and Figure 14 show photographs of 

representative examples of the various taxa documented from the DF80 cores. Particular 

importance is assigned to the relative abundance of F. curta, as it is an indicator of 

proximal sea-ice formation (e.g., Cunningham et al., 1999; Leventer, 1998). Diatom 

concentration was used a proxy for biogenic productivity/reworking. Changes in the 

relative abundance of fossil diatom species was used as proxy measure of reworking 

following Sjunneskog and Scherer (2005), who interpreted an increase in fossil diatom 

taxa in glacial diamicts relative to overlying muds in short sediment cores from the Ross 
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Sea to be the result of reworking from a variety of older source beds. Diatom results are 

provided in Table 7.

2.3.6 Windless Bight ice core analysis

To test for the presence of supraglacial debris that might have passed through the 

McMurdo Shelf at Windless Bight site, a 20-m-long ice core from near HWD03-01 was 

melted and filtered at 1-m intervals. The cellulose filters (2.5µm) were dissolved by 

acetoylsis mixture (9 parts acetic anhydride, 1 part concentrated sulphuric acid). The 

precipitate was washed in distilled water and weighed. This weight was then combined 

with the ice accumulation estimates of McCrae (1984) to determine the sediment flux of 

supraglacial material that is passing through the ice shelf. The data and methodology for

determining the sediment flux rate is provided on page 103.

2.3.7 Radiocarbon chronology

Twenty three 
14

C ages were obtained from bulk organic carbon in acid insoluble organic 

(AIO) residues at the Rafter Radiocarbon Laboratory, Lower Hutt. Establishing 

radiocarbon chronologies for Pleistocene to recent sediments on the Antarctic margin is 

difficult (e.g., Licht and Andrews, 2002; Mosola and Anderson, 2006; Domack et al., 

1999; Conway et al., 1999). Firstly, the marine reservoir correction (1200-1300 years) 

is substantially greater than for most of the world’s oceans as a consequence of 

enhanced upwelling of “old” deep waters in the region (Gordon and Harkness, 1992; 

Andrews et al., 1999). Secondly, reworking of sediment containing 14C from organic 

matter that is “dead” (i.e., beyond the usable limit of radiocarbon ~>50 kyr in age) 

appears to be significant in the Ross Sea (e.g., Licht et al., 1999). This process increases 

the measured 14C age in proportion to the ratio of “dead” to contemporaneous AIO 

material. 

To place the chronology into context with previous studies, the technique of Andrews et 

al. (1999) is adopted, correcting the AIO dates by subtracting the surface 14C date from 

stratigraphically-lower 14C dates. This technique appears to give consistent results with 

a precision of around ±500 yrs (Andrews et al., 1999) for diatomaceous-rich sediments, 
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which are abundant in the Ross Sea. However, it is less reliable for the transitional ice 

shelf/grounded glacial sediments, where the reworking of old carbon and a lack of 

primary production leads to errors that are likely to be several thousand years too old 

(e.g., Domack et al., 1999; Licht et al., 1998). For the glacially reworked diamicts, this 

error may exceed 10,000 years. Following the techniques reported in these earlier 

studies, ages are given as both reported and corrected (Table 2). However, they are not 

calibrated or adjusted to calendar years.

Lab Code CORE/ DEPTH Depth (cm) Reported Age
(14C yrs)

Percent 
Modern

δ13C δ 14 C Corrected age
(14C yrs BP)

NZA26112 DF80-78 224-226 22510±120 6.03 -23.3 -939.5 NA

NZA25999 DF80-79 24-26 18613±85 9.79 -25.2 -902.1 NA
NZA26000 DF80-79 108.5-111 17667±75 11.01 -24.3 -889.7 NA

NZA25912 DF80-133 136-138 8024±35 36.58 -26 -635 NA

NZA26113 DF80-138 6-8 26310±180 3.76 -24.2 -962.4 NA
NZA26114 DF80-138 143-145 30930±320 2.11 -23.9 -978.8 NA
NZA26111 DF80-138 244-246 20780±100 7.47 -25.9 -925.4 NA

NZA25941 DF80-189 7-9 2470±35 73.03 -27.7 -273.7 0
NZA25939 DF80-189 96-98 7168±35 40.69 -26.7 -594.5 4698
NZA25913 DF80-189 127-129 11331±45 24.24 -25.2 -757.7 8861
NZA25940 DF80-189 176-178 21830±120 6.56 -16.5 -933.3 NA

NZA18135 HWD03-1 0-1 4343±55 58 -27.2 -423.9 0*
NZA18846 HWD03-1 4-5 5845±35 48 -25.2 -520.3 1380
NZA18136 HWD03-1 20-21 18080±100 10 -24.9 -895.3 16480
NZA18137 HWD03-1 33-34 24550±190 5 -23.1 -953.1 NA
NZA18856 HWD03-1 45-46 25750±190 4 -22.6 -959.5 NA
NZA18857 HWD03-1 58-59 22550±170 6 -25 -939.6 NA

NZA18138 HWD03-2 1-2.5 2701±50 71 -26.9 -292.9 0*
NZA18847 HWD03-2 9-10 4743±40 55 -25.3 -449.8 2042
NZA18139 HWD03-2 28-29 6562±45 44 -25.7 -561.6 3861
NZA18140 HWD03-2 58-59 12797±85 20 -25 -798 10096

NZA25403 HWD06-3 0.5-2.5 4675±40 55.5 -28 -448.4 NA
NZA25420 HWD06-3 31-32.5 10982±60 25.31 -24.3 -746.5 NA

Table 2: Reported and corrected radiocarbon (AIO) dates used in this study. Dates were 
corrected by subtracting the reported surface age for each core. Corrections are only made on 
muds and diatom oozes with a reported age of <20ka.
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2.4 Stratigraphy 

The core stratigraphy is summarised in Figure 15 and Figure 16. The descriptions are 

focused on the cores from beneath the McMurdo Ice Shelf (HWD03-1, HWD03-2 and 

HWD06-1) and from the Lewis Basin (DF80-189), where 14C ages in the postglacial 

sediments are in stratigraphic order and sedimentation rates are relatively constant. 

DF80-133 is included because it contains similar lithologies to the other cores. 

However, DF80-133 contains some core disturbance and therefore only one radiocarbon 

date was obtained. Lithologies encountered in these cores include diamicts, muds, 

diatom-bearing muds and diatomaceous ooze.

2.4.1 Clast-rich sandy diamict unit

A moderately-compacted diamict is present at the base of DF80-189 (1.46-1.96 m) and 

DF80-133 (1.47-2.47 m). It consists of poorly-sorted gravel clasts in a muddy, coarse 

sand matrix. The gravel clasts are generally <50 mm in length, (although core diameter 

would not allow larger clasts to be recovered) and are a wide range of lithologies, 

including granite, quartz, meta-sedimentary, and basalt. Faceted and striated clasts are 

common. Undrained shear strength was not measured on the DF cores, as they have 

dried out during storage. However, qualitatively no sediments appeared 

overconsolidated. A thickness for the diamict was unable to be determined, as the cores 

could not penetrate this unit any further than 1 m. 

Grain size (Figure 15 and Figure 16) is characterised by a distinct medium sand mode. 

Mud content is between 10-15%, which is low compared to the other diamicts. This 

relative lack of mud may have resulted from winnowing during or soon after deposition 

or from washing in the core tube, as there is evidence of some core disturbance. 

Sand grain provenance (Table 5) shows a clear Transantarctic Mountain signal (up to 

50%), with common grains of rounded quartz and sandstone lithics (from the Beacon 

Supergroup), as well as varying proportions of microcline (from Granite Harbour 

Intrusives) and pigeonite (from Ferrar Dolerite). The maximum size of Transantarctic 

Mountain grains in this unit was 500 μm (i.e., the upper limit of the size fraction 
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studied). XRD analysis also confirms a generally higher abundance (~25-30%) of quartz 

relative to the overlying units. 

The diatom concentration is very low in this unit (<8x106 v/g), both in DF-133 and 

DF80-189. The unit in DF80-133 is highly disturbed, and although this should not affect 

petrographic results for the 63-500 μm fraction, it may have had some influence on the 

diatom and grain size results. On this account, only the top and bottom of the unit in this 

core was sampled. However, the results support this correlation with DF80-189. The 

increase in Transantarctic Mountain lithologies, higher quartz values as determined by 

XRD, and a general decrease in the proportion of F.curta also support the correlation 

(Figure 15 and Figure 16). This, combined with an age of 8,020 (uncorrected) 14C yr BP 

in the overlying undisturbed mud at 1.36-1.38 m, suggests that the diamict in DF80-133 

has a similar origin to that of DF80-189. 

Figure 11: Photos of various sand grains in 
HWD03 cores. Top left: Pigeonite from 
Ferrar Dolerite (HWD03-1, 3 cm). Top 
right: Rounded Quartz with overgrowth 
from Devonian Beacon Supergroup 
(HWD03-1, 0 cm). Centre left: Microcline 
from granitoid (HWD03-1, 0 cm). Centre 
right: Sedimentary lithic from 
Transantarctic Mountains. Bottom left: 
Well-sorted grains from black sand 
(HWD03-1, 29 cm). Bottom right: Sandy 
mud from upper 10 mm of HWD03-1 
containing vesicular volcanic glass,
volcanic lithics quartz, and feldspar 
(HWD03-1, 0 cm).

2.4.2 Clast-rich muddy diamict unit 

This unit is present in sub-ice shelf cores HWD03-1 (0.31-0.62 m), and HWD06-3 (0-

0.34 m). It is characterised by poorly sorted, angular to subrounded pebbles (generally 

<25 mm) in a sandy mud matrix. The clasts are of mixed lithologies, and display facets 

and striated faces. Like the sandy diamict, the sand grain petrology and XRD analysis 
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show a distinct Transantarctic Mountain provenance. Grain-size distribution indicates 

broad frequency distribution with no distinct mode and a mud content of approximately 

80%. Diatom concentration is <<10x106 valves per gram of dry sediment (v/g), and 

TOC values are consistently low at c.0.25% (Barrett et al., 2005).

Undrained shear strength was measured at 8 to 22 kPa (Barrett et al., 2005). The base of 

this unit in HWD06-3 (0.32-0.34 m) is notably stiffer than overlying sediment, which 

suggests compaction beneath grounded ice. The shear vane could not be used in this 

section of the core due to the abundance of gravel clasts. In HWD03-1, Total Organic 

Carbon (TOC) in this unit varies between 0.10 and 0.18% (Barrett et al., 2005).

2.4.3 Silty-clay unit 

Directly overlying the diamicts are silty clays, although HWD03-1 includes intervals 

0.05 to 0.08 m thick of fine sandy mud, and both HWD03-1 and -2 have such an 

interval for the upper few cm. No grains exceed 2 mm, and almost none exceed 0.5 mm 

(Figure 15). Sand provenance is largely from the McMurdo Volcanic Group.

Petrographic analysis indicates that the sand is composed of rounded, weathered lithics 

that are heavily calcite cemented, and containing volcanic lithics, feldspar and glass. 

This interval likely represents sediment gravity flows, and indicates that this site 

experienced some sediment redeposition immediately following grounding line retreat, 

perhaps as a result of a tidal pumping mechanism (Domack and Williams, 1990). 

 Diatom concentrations are low (Figure 12), between 1x107 (HWD03-2) and 5.5x107

v/g (DF80-189). The assemblages observed are highly fragmented with a mixture of 

reworked oceanic and fossil forms (e.g., Actinocyclus spp., Paralia sulcata, 

Coscinodiscus spp., Thalassiosira spp., Rouxia spp., Denticulopsis spp; Figure 13 and 

Figure 14). The modern sea ice diatom F.curta constitutes <20% of the assemblage (see 

Harper in Barrett et al., 2005).

The lack of IRD or basally transported Transantarctic Mountain grains (Figure 15 and 

Figure 16) suggests deposition beneath an ice shelf that lacks subglacial debris.

Sediment recovered from the surficial ice core at the Windless Bight site indicates that 
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the present day flux of supraglacial material passing through the ice shelf at the 

Windless Bight site and being deposited on the seafloor is 0.05-0.55 µm yr-1 (see ice 

core analysis on page 103), accounting for between 0.1 and 1% of the total sediment 

accumulating on the seafloor.

The maximum unit thickness is 0.60 m (HWD03-2). Radiocarbon ages (Table 2) from 

the HWD sites imply accumulation rates of between 0.01 and 0.05 mm yr-1, and TOC 

values for this unit throughout the cores vary between 0.1 and 0.7% (Barrett et al., 

2005; Licht et al., 1999).

2.4.4 Diatom mud and ooze with dispersed clasts 

Diatom mud and ooze dominate the upper 1.20-1.40 m in both DF80-133 and DF80-

189, taken from the seasonally open water sites of McMurdo Sound and Lewis Basin. 

They consist of a poorly sorted mud that is distinguished from the underlying Silty-clay

unit by its higher concentrations of diatoms (between 2x108 and 1.2x109 v/g) which 

constitute >50% of the sediment. This unit is further distinguished by the presence of

dispersed oversized grains >2 mm. The diatom assemblage is dominated by F.curta, and 

fossil diatom taxa are statistically insignificant. The Transantarctic Mountain signal in 

the sand grain petrology fluctuates between 0 and 20%. The sedimentation rate of 0.19 

mm yr-1 is significantly higher than underlying deposits. For DF80-189, TOC values 

vary between 1 and 2% (Licht et al., 1999). 
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Figure 12: Diatom abundances in cores DF80-189 (top) and DF80-133 (bottom).
(note: diatom analysis for HWDO3 cores was conducted by M.Harper and are presented in 
Barrett et al., 2005).
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Figure 13: Examples of diatom taxa observed in DF80 cores. Scale Bar = 10μm. 
1-3) Fragilariopsis curta; 4) F. obliquecostata; 5) F. curta; 6) Paralia sulcata; ,7) F. 
obliquecostata; 8) unidentified pennate fragment; 9) F. sublineata; 10) Thalassiothrix 
antarctica; 11) Rouxia sp?; 12) Eucampia antarctica; 13) E. antarctica; 14, 15) Denticulopsis
sp?; 16) F. separanda; 17) F. angulata; 18) unidentified?; 19) Thalassiosira torokina; 20) 
Silicoflagellate, genus Distephanus; 21) Porosira glacialis. 
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Figure 14: Examples of diatom taxa observed in DF80 cores. Scale Bar = 10μm.
1,2) Thalassiosira oliverana; 3-5) Thalasssiosira. antarctica; 6) Thalassiosira sp?; 7,8) 
Thalassiosira lentiginosa; 9) Thalassiosira tumida; 10) Actinocyclus actinochilus; 11) Stellirima 
microtais; 12) T. tumida.
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2.5 Chronology

Radiocarbon ages from cores DF80-78 and DF80-79 in the Erebus Basin, and DF80-

138 from the Lewis Basin are not in stratigraphic order, and surface values range from 

18.6 kyr to 26.3 kyr 14C BP (Table 1), indicating that any sedimentation throughout the 

Holocene has been dominated by reworking in these cores. Ages taken from the diamict 

at the base of most cores varied between 20.8 and 25.8 kyr 14C BP, and are not in 

stratigraphic order. This is to be expected, given the reworked nature of glacially 

deposited sediments. The fact that the 14C ages are finite indicates incorporation of post-

LGM carbon, and that the diamicts are glacimarine, rather than deposited by grounded 

ice during the LGM. In all cores, smear slide analysis indicates that organic matter is 

almost entirely restricted to biogenic silica, mostly diatoms, with some sponge spicules.

Four cores provide a stratigraphically ordered chronology of the transition from 

regionally grounded ice to sub-ice shelf and open ocean conditions. These cores are the 

main focus of this study, as they show the least reworking and the most complete facies 

sequence. Two are from Windless Bight (HWD03-1 and HWD03-2), one is from 

northern McMurdo Sound (DF80-133), and another is from the Lewis Basin (DF80-

189). On account of reworking in the cores in central McMurdo Sound (DF80-70 and 

DF80-79), it is difficult to reconstruct the timing of ice shelf retreat through McMurdo 

Sound itself, but a retreat history to the immediate north and south can be constrained.

The near-surface ages of these four cores lie between 2.57 and 4.68 kyr 14C BP. This 

range is similar to those reported in previous studies from the Ross Sea (e.g., Mosola 

and Anderson, 2006; Licht et al., 1996; Domack et al., 1999; and Andrews et al., 1999). 



Figure 15: Composite logs of DF80-189 and HWD03-1, with corrected radiocarbon ages, grain-size histograms, % grains >0.5 mm and >2.0 mm, 63-500 μm (sand) 
provenance, % quartz measured by XRD, and diatom abundances. Bracketed 14C dates are reported (uncorrected) ages.
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Figure 16: Composite logs of DF80-133 and HWD03-2, with corrected radiocarbon ages, grain-size histograms, % grains >0.5 mm and >2.0 mm, 63-500 μm (sand) 
provenance, % quartz measured by XRD, and diatom abundances. Bracketed 14C dates are reported (uncorrected) ages.
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2.6 Discussion

The lithological units can be interpreted as facies with distinct biogenic and sedimentary 

markers for constraining the position of the grounding and calving lines of the 

McMurdo/Ross Ice Shelves around Ross Island. The facies model presented here is 

developed from that of Domack et al. (1999) for the Central and Western Ross Sea, 

with some differences. 

Developing an accurate chronology of events is complicated by difficulties in 14C dating 

Ross Sea sediments (see Methods section). In particular, the “dead” carbon in many 

samples through reworking of older sediment has resulted in ages representing a 

maximum value, rather than the depositional age of the sample. This is especially 

evident in McMurdo Sound. However, this effect is minimised in sediments with 

relatively high accumulation rates of contemporaneous carbon (e.g., Licht et al., 1999), 

allowing us to provide a chronology for the retreat history of the ice sheet/shelf system 

in the Ross Sea that is comparable with previous studies from the marine record (e.g., 

Licht et al., 1996; Licht and Andrews, 2002; Andrews et al., 1999; Domack et al., 

1999). 

Three distinct facies are identified here, from which the retreat of both the grounding 

line and calving line of the Ross Ice Shelf is inferred: 1) sub-ice shelf diamict; 2) sub-

ice shelf sand and mud; and 3) open-water diatom mud and ooze with IRD. 

2.6.1 Sub-ice shelf diamict facies

The sub-ice shelf diamict facies is distinguished by its lithology and Transantarctic 

Mountain provenance. Diatom concentrations are low, and valves are usually broken. 

The assemblages also have relatively higher abundances of fossil and oceanic forms. 

There was no evidence within any of the diamict units that is indicative of deposition 

beneath grounded ice. Given its unconsolidated nature, the diamict is likely to have 

resulted from meltout from the basal debris zone shortly after the retreat of regionally 

grounded ice. However, over-consolidation is not a prerequisite for indicating grounded 
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ice, as sediment cores that have penetrated megascale lineations on the seafloor have 

recovered diamictons with low shear strengths and high water contents (Anderson, 

1999). The ages measured from this unit in the HWD and DF80 cores range between 

20.78 kyr and 25.75 kyr 14C BP, which significantly postdate the 26.86 kyr 14C BP age 

for grounded ice in McMurdo Sound (Dochat et al., 2000), and suggest some input of 

post-LGM carbon, which could not have occurred if the sediment were deposited 

beneath grounded ice. The fact that this unit could not be penetrated by the gravity corer 

may be due to either the presence of an underlying compacted till or the presence of 

large clasts. Coring under the McMurdo Ice Shelf, by the ANDRILL Project, near the 

vicinity of HWD03-1, has revealed an over-consolidated till at 1.94 m below the 

seafloor underlying the less consolidated diamict that constitutes this facies in the short 

cores presented here (Naish et al., 2007). 

Domack et al.’s (1999) muddy pelletised gravel and sand (granulated) facies is not 

included in the model presented here. Domack et al. (1999) noted that this facies is 

stratified, coarsens upwards, has dropstones, and is mineralogically identical to the 

underlying diamict. It is inferred to be derived from the basal glacial debris zone, and 

represents the lift-off of the grounded ice sheet from the sea floor, with a gradual 

increase in sub-ice shelf reworking as the thickness of ice shelf cavity increases. None 

of the diamicts in the HWD or DF80 cores are stratified, suggesting that marine 

deposition or reworking of sediments by sub-ice shelf currents was minimal. However, 

the diamict from Lewis Basin and northern McMurdo Sound (DF80-133 and DF80-189) 

has lower mud content than the diamict at the Windless Bight site (HWD cores), and 

could relate to the granulated facies of Domack et al. (1999). 

2.6.2 Sub-ice shelf sand and mud facies

Sub-ice shelf sand and mud (HWD03 sites; DF80-189, 1.22-1.45 m) are distinguished 

by low diatom concentrations (with a low percentage of sea-ice forms), a lack of grains 

>2 mm in diameter (Figure 15 and Figure 17), a lack of sand grains derived from the 

Transantarctic Mountains, and a slow sedimentation rate (0.01-0.05 mm yr-1). However, 

the upper 0.05 m of HWD03-1 shows an increase in coarse sand (up to 500 μm) with a 

Transantarctic Mountain provenance and includes fine gravel with a mixed provenance. 



Chapter 2: Retreat of the Antarctic Ice Sheet (Shelf) since the LGM

70

The presence of these grains would normally be associated with the calving line of the 

ice shelf. This site is currently beneath the McMurdo Ice Shelf, 5 km from the calving 

line and these grains are too coarse to be transported via sub-ice shelf currents in a 

settling water column. Modern sub-ice shelf currents (<22 cm s-1) are only capable of 

laterally transporting settling fine sand grains (at most) 1 km beneath the ice shelf 

(Barrett et al., 2005). 

Therefore, the presence of these sand grains indicates that either the ice shelf front has 

retreated and then re-advanced over this site, or that reworking of the older diamicts is 

currently taking place beneath the ice shelf. If the ice shelf had retreated past this site 

during the Holocene, a significant increase in diatom deposition and a rapid increase in 

the sedimentation rate would be expected (e.g., DF80-189 and DF80-133). This is not 

the case at either HWD03-1 or HWD03-2 (Figure 15 and Figure 16), indicating that 

there has been no period of seasonally open water above or near the site during the 

Holocene, despite the temperature reconstructions based on deuterium isotopes from a 

number of Antarctic ice cores suggesting an early Holocene optimum up to 2.5ºC 

warmer than present in this region (Steig et al., 2000; Masson et al., 2000). If there has 

been a period of claving-line retreat over the site, it was almost certainly very short 

lived. 

An alternative explanation is the reworking of exposed diamict on the seafloor from 

local bathymetric highs, in particular, the hummocks, drumlins, and lineations that are 

commonly associated with glacimarine deposition elsewhere in the Ross Sea (e.g., 

Shipp et al., 1999). Perhaps sub-ice shelf bottom currents increased in strength as the 

ice shelf front approached the site in the late Holocene. This increased flow could have 

winnowed fine grained material from exposed seafloor diamicts, resulting in localised 

slope instability. This facies is absent in DF80-133, as grains >2 mm are persistent 

throughout the core. This suggests that either the ice shelf did not persist at this site for 

a significant length of time, or this unit has been reworked and eroded.
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In HWD03-1, a distinctive dark interval (0.24-0.31 m) of well-sorted, soft, muddy fine 

to very fine sand (63-97% sand) with mm-scale mud laminations occurs directly above 

the underlying diamict facies. The sand has a sharp lower contact with load features. 

Petrographic analysis indicates that the sand is composted of rounded, weathered 

volcanic glass and lithics. This interval likely represents a series of small sediment 

gravity flows following grounding line retreat. 

2.6.3 Open water diatom mud and ooze facies

This facies is distinguished by its higher accumulation rate (0.2 mm yr-1) associated 

with primary biogenic production. Diatom concentrations are one to two orders of 

magnitude higher (between 5x108 and 12x109 v/g; Figure 12) than for the underlying 

sub-ice shelf facies (4-5x107 v/g) and marked by the high abundance of F. curta, a 

diatom that dominates seasonal sea ice and the adjacent water column in the Ross Sea 

(Leventer, 1998). Associated with this biogenic deposition is the presence of ice-rafted 

coarse sand and pebbles most likely derived from icebergs calving from glaciers along 

the Victoria Land coast and Ross Island (Figure 17).

Figure 17: Core logs, lithological characteristics, and selected x-rays of representative facies 
from HWD03-1 and DF80-189. Note lack of outsized sand grains in sub-ice shelf mud/sands 
in both cores relative to the open water diatomaceous ooze/mud in DF80-189. The laminated 
vitric sand in HWD03-1 is interpreted as a sediment gravity flow. 
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Figure 18: Sediment transport paths during three stages of glacial retreat in McMurdo Sound.

2.7 Sediment provenance and ice shelf dynamics

A strong relationship between sand provenance and the position of the Ross/McMurdo 

Ice Shelf calving lines is identified. During periods of glacial advance, regionally 

grounded ice transports large volumes of sediment derived from the Transantarctic 

Mountains into Windless Bight, and Erebus and Lewis basins (Figure 18). 

Transantarctic Mountain lithologies contribute up to 50% of the 63-500 μm fraction. 

This signal is also evident in the XRD results, with quartz generally exceeding 30% of 

the mineral assemblage. These results are consistent with reconstructions (e.g., Stuiver 

et al., 1981; Denton and Marchant, 2000) of the grounded Ross Ice Shelf transporting 

sediment from the Transantarctic Mountains to the south of Minna Bluff into Windless 

Bight, and around Cape Bird into McMurdo Sound.

The retreat of the grounding line and the development of ice shelf conditions are 

represented by a dramatic increase in the proportion of locally derived McMurdo 

Volcanic Group grains. XRD analysis suggests quartz constitutes <10% of the mineral 
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assemblage, while Transantarctic Mountain-derived sand in the 63-500 μm fraction 

generally contributes <4%. However, there is potential for localised slope instability 

that may distort this signal (Figure 18). Instability may result from ice withdrawal or 

from the winnowing of fine material higher up the slope due to increasing oceanic 

current influence. As the calving line retreated over the site, sediment provenance was 

still dominated by material derived from the McMurdo Volcanic Group, although there 

is a noticeable increase in Transantarctic Mountain lithologies (~10-15%) in the 63-

500 μm fraction. These may result from poorly-sorted ice-rafted debris, well-sorted 

wind-blown sand passing through sea ice, or reworking of older seafloor diamicts

(Figure 18). 

2.8 Timing and magnitude of grounding and calving retreat: Relationships to 
Meltwater Pulses 1A and 1B. 

Within the uncertainties associated with Antarctic radiocarbon ages, the corrected AIO 

ages are consistent with those of previous studies. However, contamination of some 

samples with “dead” carbon is clearly evident in intervals where ages are not in 

chronological order. Nonetheless, two cores are identified where the chronology is 

likely to be reliable. The corrected age of 8.9 kyr 14C BP for DF80-189 (1.27-1.29 m), a 

mud with high diatom concentrations (~5.5x107 v/g; Figure 12) is likely to be robust for 

two reasons: (1) the age was corrected by the AIO age at 0.07 m depth (2.47 kyr 14C 

BP), not the surface and therefore calculating the age from the surface age would result 

in an age >8.86 kyr 14C BP. For example, using the sedimentation rates determined 

between 0.07 and 0.96 m depth (0.19 mm yr-1) to extrapolate the expected age at 0 m 

depth (2.05 kyr 14C yr), would have given a corrected age at 1.27-1.29 m of 9.28 kyr 14C 

BP. However, the simple correction to 0.07 m is used, and rounded up to 8.90 kyr 14C 

BP for the chronology. (2) It coincides with the first signal in the diatom record of 

primary production, which would have provided the first significant influx of non-

reworked carbon and the first signal of IRD (Figure 15). (3) Overlying ages are in 

chronological order and there is no major lithological change. This date indicates that 

open marine conditions were developing above this site at ~ 8.9 kyr 14C BP.
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The underlying glacial sediments are usually low in diatomaceous material, and hence 

contemporaneous carbon, making ages less reliable for dating the retreat of the 

grounding line. However at HWD03-2, the base of 0.60 m-thick mud (which overlies a 

pebbly sandy mud) gives a corrected age of 10.1 kyr 14C BP (Figure 15). This age is

likely to be reliable given that: (1) It has a moderate diatom concentration (>10x106 v/g) 

dominated by modern Ross Sea taxa (e.g., F. curta, F. obliquecostata), (2) there is a 

lack of fossil diatoms which is an indicator of reworking from older sediment 

(Sjunneskog and Scherer, 2005); and (3) overlying sediments are of a uniform lithology 

and the ages are in chronological order, defining a linear age-depth relationship (Figure 

15).

Thus HWD03-2 constrains the age for lift-off of grounded ice 920 m below sea level 

immediately to the south of Ross Island to earlier than 10.1 kyr 14C BP. This is further 

constrained by the ~8.9 kyr 14C BP age obtained for open marine conditions 

immediately to the north of Ross Island from DF80-189. These are included in Figure 

19, which shows the revised chronology for the retreat of the LGM ice sheet in the Ross 

Embayment. 

On the basis of these ages and the lithostratigraphy recorded in the HWD and DF80

cores, the grounding and calving lines of the ice sheet are postulated to have retreated at 

similar rates until between 8.0 and 9.0 kyr 14C BP, when the calving line became pinned 

to Ross Island. Since then it has remained there, while the grounding line continued to 

retreat to its present day position. 
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Figure 19: A chronology for the 
retreat of the ice sheet in the 
Ross Embayment from this study 
(black lines and circles) and 
previous workers (dark grey). 
Solid lines indicate the maximum 
position of the calving line for 
the Ross Ice Shelf, while dashed 
lines indicate the maximum 
position of the grounding line, 
including its present day position 
along the Siple Coast. Ice shelf 
extent at the LGM is poorly 
constrained and is based on a 
sedimentary hiatus observed in 
sediment cores (Licht et al., 
1996). Transect line A-A’ for 
Figure 20 is also shown.
Regional bathymetry (500 m 
contours) and modern ice flow 
for the Ross Ice Shelf (after 
Fahnestock et al., 2000) is also 
shown. Localities mentioned in 
the text are also labelled.
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Figure 20: The retreat history of the ice sheet/shelf grounding and calving line in the Ross 
Embayment, using corrected 14C dates from this study, and those of previous workers. Corrected 
(but uncalibrated) age ranges for Meltwater Pulse (mwp) events 1A and 1B (after Fairbanks, 
1989) are also plotted. Sources for this chronology are: (1) DF80-189, AIO 14C date from 
diatomaceous ooze with IRD, (this chapter); (2) HWD03-2, AIO 14C date from sub-ice shelf 
diatom-bearing mud, (this chapter); (3) KC37, AIO 14C date from sediment core (Domack et al., 
1999); (4) DF80-102, AIO 14C date from muddy diatom ooze, Licht and Andrews, 2002); (5) 
KC31 (AIO 14C date from sediment core, Domack et al., 1999); (6) Oldest penguin bone at 
Cape Bird (Dochat et al., 2000); (7) DF80-57, Oldest marine shell in McMurdo Sound (Licht et 
al., 1999); (8) algal date adjacent to Hatherton Glacier (Bockheim et al., 1989); (9) Inferred 
extent of grounded ice at the Last Glacial Maximum from seismic profiling in the Western Ross
Sea (after Shipp et al., 1999), while timing of grounding line extent at 13.8 kyr 14C BP (ref 9) is 
based on a reworked foram in diamict from a sediment core (NBP9501-7) in the central Ross 
Sea (Licht and Andrews, 2002); * Terrestrial evidence for grounded ice in McMurdo Sound 
(Hall et al., 2000).
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The timing of lift-off of grounded ice at Windless Bight just after 10.1 kyr 14C BP is 

slightly earlier than previous estimates from marine sediment cores further north in the 

Ross Sea (e.g., Domack et al., 1999; Conway et al., 1999; Licht and Andrews, 2002), 

and earlier than the timing of ice retreat based on ages from proglacial lakes in the 

Taylor Valley at 8.34 kyr 14C BP (Hall et al., 2000). These proglacial lakes are inferred 

to have been formed as the result of the grounded ice sheet in McMurdo Sound. If 

correct, this revised chronology indicates that the retreat of the ice sheet in the Ross 

Embayment was more rapid and earlier than previously believed, and raises questions 

over its relationship to Meltwater Pulses 1A and 1B (mwp-1A and mwp-1B). Domack 

et al. (1999) implied that the initial post-LGM retreat of the Ross Ice Shelf grounding 

line from near Coulman Island at ~11 kyr 14C BP postdated, and was thus not the cause 

of, a 20 m rise in sea level between ~12.5 and 11.8 kyr 14C BP (mwp-1A; Fairbanks, 

1989; Bard et al., 1996). The chronology presented in this chapter agrees with this, but 

also indicates that the retreat of the grounding line from the outer Drygalski Trough to 

Ross Island occurred rapidly (within 1,000 years), and appears to immediately precede

mwp-1B, a ~10 m sea level rise that occurred between ~9.2 and 9.8 kyr 14C BP 

(Fairbanks, 1989; Bard et al., 1996).

Considering the uncertainties associated with 14C ages in the Ross Sea, and the 

uncertainties that surround mwp-1B, the chronology is cautiously interpreted in the 

context of global eustatic sea level changes. Taken at face value, the chronology 

suggests that initial lift-off of grounded ice at Windless Bight preceded mwp-1B (Figure 

20), implying that the AIS could have been a significant contributor to eustatic rise.

Nevertheless, a Northern Hemisphere origin for mwp-1B, which may have destabilised 

the marine-based Ross Embyament sector of the ice sheet and triggered the transition 

from an ice sheet to the present ice shelf, cannot be ruled out.

The chronology from this study also places the retreat of grounded and shelf ice from 

the marine basins north of Ross Island much earlier than the chronology derived from 

raised beaches at Cape Bird, where in situ penguin remains date the oldest raised beach 

ridge at 3.59 kyr 14C BP (Dochat et al., 2000) and provide a minimum age for ice shelf 

retreat. However, reworked penguin bones within beach deposits at Cape Bird have 
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been dated at 9.74 kyr 14C BP (Dochat et al., 2000), implying earlier open water 

conditions at this location. Raised beaches along the Scott Coast in McMurdo Sound 

suggest deglaciation shortly before 6.5 kyr 14C yr BP (Hall and Denton, 1999). The 

raised beaches at Cape Bird and the Scott Coast can form only in the absence of an ice 

shelf, and therefore provide a minimum age for grounded ice retreat. The extensive 

reworking in DF80-78 and DF80-79 (supported by the non-stratigraphic order of the 

radiocarbon ages; Table 2) prevents us from determining the timing of ice shelf retreat 

within McMurdo Sound itself where the raised beaches are located (Figure 10). 

Therefore, it is possible that an ice shelf remained in McMurdo Sound until 6.5 kyr 14C 

BP, while open ocean conditions prevailed to the north and east of Ross Island. 

The persistence of proglacial lakes in the Dry Valleys until 8.34 kyr 14C BP (Hall et al., 

2000) provides a maximum age for the retreat of grounded ice in McMurdo Sound, if it 

is assumed they were dammed by grounded ice. However, the presence of these lakes 

does not indicate the extent of grounding within McMurdo Sound itself, and it is 

possible that localised grounding occurred along the western shoreline of McMurdo 

Sound until 8.34 kyr 14C BP, perhaps as a seaward and southward extension of the 

modern Wilson Piedmont Glacier, ~1.5 kyr after the ice lifted off the floors of the 

deeper basins.

2.9 Conclusions

 The ice sheet grounding line retreated rapidly across the Ross Sea continental 

shelf from the outer Dryglaski Trough to south of Ross Island between 11 and 

10 kyr 14C BP.

 By ~8.9 kyr 14C BP, there were open marine conditions immediately to the north 

of Ross Island.

 The Ross Ice Shelf has been pinned to Ross Island since ~8.9 kyr 14C BP while 

the grounding line has continued to retreat towards the Siple Coast. Its calving 

line has not retreated past its present position during this time, despite ice core 

evidence for a mid-Holocene climatic optima 1-2ºC warmer than present (Steig 

et al., 1998).
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 It is suggested that the post-LGM retreat of the ice sheet in the Ross Embayment 

shifted to its contemporary ice shelf mode when the calving line became pinned 

by Ross Island.

 This revised chronology implies an earlier and more rapid retreat history than 

previously reported, and allows for the possibility that the retreat of the marine 

based sectors of the Antarctic Ice Sheet was associated with global eustatic sea-

level pulses.
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2.11 Supplementary data: Core logs

Figure 21: Core log for HWD03-1 (from Barrett et al., 2005).
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Figure 22: Core log for HWD03-2 (from Barrett et al., 2005).
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Figure 23: Core log for HWD06.
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Figure 24: Core log for DF80-70
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Figure 25: Core log for DF80-78.
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Figure 26: Core log for DF80-79.
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Figure 27: Core log for DF80-133.
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Figure 28: Core log for DF80-138
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Figure 29: Core log for DF80-189.
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2.12 Supplementary data: X radiographs

Figure 30: X-radiograph for DF80-70.

Figure 31: X-radiograph for DF80-78.
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Figure 32: X-radiograph for DF80-79.

Figure 33: X-radiograph for DF80-133.



Chapter 2: Supplementary material

95

Figure 34: X-radiograph for DF80-138.

Figure 35: X-radiograph for DF80-189.



2.13 Supplementary data: Grain size results

SUMMARY DATA
Frequency

Class midpts -2.00 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 12.50

Class limits -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.0 Rest

HWD06 (0-2cm) 4.81 4.17 5.73 4.15 4.83 7.36 8.06 8.97 9.20 8.66 7.13 5.80 2.48 1.65 1.76 1.46 1.34 1.04 0.94 0.98 0.80 0.64 0.68 0.54 6.84

HWD06 (2-4cm) 2.56 3.18 3.52 4.20 4.39 5.87 7.27 8.46 8.64 7.98 6.27 6.16 2.14 1.56 2.02 1.81 1.78 1.50 1.62 1.75 1.41 1.38 1.35 0.98 12.20

HWD06 (4-6cm) 1.57 1.73 1.24 1.70 2.40 3.41 3.84 4.43 4.76 5.99 5.90 5.46 2.01 2.09 2.91 2.56 3.08 2.91 2.79 4.25 3.14 2.91 2.68 3.14 23.10
HWD06 (6-8cm) 1.23 0.60 1.12 0.86 1.52 1.99 2.70 3.10 3.44 4.33 4.59 5.23 1.94 1.87 3.87 2.77 4.01 3.11 3.04 3.74 3.53 3.11 2.70 2.42 33.20

HWD06 (8-10cm) 1.96 2.33 2.18 2.63 2.56 2.19 2.63 2.81 3.03 3.88 4.03 4.38 2.63 1.77 2.47 3.52 2.73 3.65 2.99 3.91 2.80 2.93 2.73 1.89 31.38

HWD06 (10-12cm) 1.70 1.47 1.09 1.32 1.79 2.10 2.75 3.18 3.42 4.05 4.15 4.38 2.46 2.18 3.06 3.40 3.94 3.53 3.94 4.35 4.42 4.01 3.74 3.87 25.69

HWD06 (12-14cm) 0.98 0.00 0.88 0.80 0.95 1.24 1.49 1.94 2.28 2.99 3.37 4.06 1.77 2.47 4.17 4.01 4.72 3.77 5.03 4.56 4.40 3.38 2.91 0.94 36.88
HWD06 (14-16cm) 0.43 0.36 1.44 1.12 1.28 1.71 2.31 2.67 3.02 3.80 4.10 4.68 2.95 1.89 3.25 3.32 4.04 3.32 3.97 4.55 4.69 4.11 4.19 3.97 28.80

HWD06 (16-18cm) 0.43 0.25 0.94 0.98 1.59 1.94 2.10 2.52 2.86 3.75 4.13 4.84 2.77 3.05 2.96 3.18 3.83 3.54 3.90 4.62 4.48 4.26 3.90 2.82 30.39

HWD06 (18-20cm) 1.70 1.06 0.99 0.87 0.91 1.40 1.69 2.06 2.26 2.90 3.25 3.89 2.48 2.23 2.12 3.34 3.19 3.49 3.34 4.48 3.79 3.72 3.26 2.96 38.62

HWD06 (20-22cm) 0.00 1.74 1.68 1.46 1.41 1.70 2.08 2.31 2.68 3.47 4.16 5.11 2.33 2.38 2.98 3.05 2.70 3.62 3.41 3.83 3.26 2.91 2.55 3.41 35.76
HWD06 (22-24cm) 0.00 0.47 1.42 1.56 1.95 2.36 3.02 3.52 4.03 4.93 5.30 6.25 2.68 2.76 2.81 3.07 3.00 3.13 3.39 3.83 4.09 3.71 3.64 4.15 24.93

HWD06 (24-26cm) 0.00 4.96 0.47 0.60 0.57 0.71 0.93 1.26 1.62 2.29 2.78 4.01 2.82 2.80 3.95 4.42 5.21 4.34 3.95 4.26 3.95 2.60 2.53 4.42 34.57

HWD06 (26-28cm) 2.14 0.72 0.96 1.11 1.31 1.59 1.90 2.28 2.64 3.70 4.76 5.86 3.12 2.85 3.33 4.37 4.99 3.81 4.23 3.60 3.33 2.56 2.29 2.63 29.93

HWD06 (28-30cm) 0.62 1.39 1.21 2.27 2.30 2.52 2.91 3.44 3.80 4.73 5.01 5.93 3.16 3.63 4.27 4.78 4.34 2.95 3.21 3.14 2.26 2.14 1.89 0.82 27.28
HWD06 (30-32cm) 2.21 0.60 1.58 1.63 1.51 2.26 2.98 3.90 4.55 5.68 6.57 7.23 3.39 2.48 3.18 3.64 3.59 2.72 2.95 3.18 2.60 2.08 1.91 1.00 26.58

HWD06 (32-34cm) 1.85 3.34 2.82 2.17 2.81 2.88 3.34 3.64 3.80 4.35 5.12 6.89 3.25 2.10 2.59 2.48 2.86 2.64 2.59 2.70 2.37 2.20 2.04 1.49 27.70

DF80-189 (11-13cm) 0.00 0.00 0.00 0.17 0.14 0.05 0.09 0.20 0.25 0.66 1.55 3.29 2.09 5.31 7.81 5.67 6.23 5.02 5.58 6.42 5.49 3.35 3.07 8.00 29.57

DF80-189 (23-25cm) 0.00 0.00 0.00 0.19 0.08 0.06 0.08 0.09 0.14 0.36 1.13 2.54 3.32 3.34 4.93 3.88 4.26 5.87 5.02 6.63 6.06 5.31 5.31 6.54 34.87

DF80-189 (35-37cm) 0.00 0.00 0.00 0.00 0.33 0.22 0.59 0.39 0.31 0.53 1.00 2.40 3.50 3.35 5.86 5.29 7.27 6.71 5.48 6.33 5.57 5.95 5.29 0.66 32.96
DF80-189 (46.5-48.5cm) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.13 0.32 1.15 2.72 1.90 2.24 5.07 4.20 4.49 5.27 6.64 6.83 6.44 5.47 3.90 43.14

DF80-189 (56-58cm) 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.06 0.02 0.10 0.18 1.00 1.36 3.12 4.65 3.88 4.85 5.14 5.33 6.79 6.69 6.01 6.11 6.11 38.58

DF80-189 (66-68cm) 0.00 0.70 0.66 0.00 0.06 0.04 0.10 0.09 0.26 0.59 1.36 3.51 3.46 2.71 2.71 5.88 6.60 6.87 6.33 8.05 5.97 4.79 4.97 5.06 29.21

DF80-189 (83-85cm) 0.00 0.00 0.00 0.23 0.05 0.06 0.12 0.12 0.12 0.36 0.86 2.40 1.33 4.15 5.55 6.79 6.31 6.22 5.84 7.17 5.84 5.17 4.78 3.64 32.91
DF80-189 (93-95cm) 0.00 0.00 0.00 0.15 0.11 0.24 0.20 0.13 0.14 0.33 0.67 1.41 1.59 2.06 4.92 5.90 4.72 5.90 5.41 6.20 5.41 5.21 4.82 3.74 40.73

DF80-189 (104-106cm) 0.00 0.00 0.00 0.05 0.04 0.03 0.10 0.18 0.40 0.44 0.82 1.48 0.36 3.33 5.39 5.39 5.49 6.47 5.88 7.45 5.69 6.08 5.59 5.39 33.93

DF80-189 (124-126cm) 0.00 0.00 0.00 0.14 0.23 0.55 0.38 0.40 0.69 0.88 1.10 1.68 1.07 1.93 1.68 2.43 3.36 3.27 4.02 6.54 5.61 5.14 4.58 2.15 52.15

DF80-189 (143.5-145.5cm) 0.00 0.00 0.00 0.00 0.02 0.17 0.08 0.13 0.18 0.28 0.65 1.17 0.65 1.12 1.93 3.28 3.86 3.57 4.15 6.27 5.79 5.30 4.73 5.30 51.40
DF80-189 (155-157cm) 9.63 8.90 7.21 6.70 7.88 7.91 8.79 8.26 6.13 3.14 1.72 1.48 0.99 0.68 0.90 0.75 1.17 1.13 1.25 1.46 1.40 1.31 1.19 0.79 9.23

DF80-189 (164.5-166.5cm) 6.59 6.73 7.19 7.46 10.3 14.1 12.0 9.23 6.09 2.79 1.44 1.17 0.71 0.32 0.68 0.50 0.49 0.77 0.89 1.08 0.80 0.77 0.82 0.10 6.84
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SUMMARY DATA
Frequency

Class midpts -2.00 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 12.50

Class limits -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.0 Rest

DF80-189 (182-184cm) 10.9 4.34 7.37 9.98 10.0 14.8 13.3 9.50 5.78 2.61 1.28 1.07 0.32 0.13 0.07 0.02 0.68 0.54 0.37 0.77 0.66 0.40 0.47 0.27 4.17

DF80-133 (6-8cm) 0.00 0.00 0.00 0.00 0.00 0.16 0.10 0.12 0.17 0.35 0.49 1.44 3.54 4.85 8.26 4.04 4.28 3.79 6.10 6.11 6.84 3.60 5.17 5.10 35.48
DF80-133 (26-28cm) 0.00 0.00 0.00 0.00 0.05 0.14 0.19 0.23 0.16 0.20 0.49 0.65 0.49 3.42 4.68 5.07 4.09 4.48 6.82 7.60 6.82 6.24 5.17 5.95 37.04

DF80-133 (46-48cm) 0.00 0.00 0.00 0.11 0.03 0.07 0.08 0.13 0.09 0.13 0.29 0.61 1.95 4.32 3.87 4.45 4.35 4.83 5.99 7.93 6.67 6.38 6.67 5.61 35.47

DF80-133 (66-68cm) 0.00 1.28 1.21 0.00 0.11 0.07 0.18 0.17 0.47 1.07 2.48 6.40 8.57 8.60 9.54 6.74 4.88 3.50 5.47 4.25 5.69 4.01 3.04 4.41 17.86

DF80-133 (89-91cm) 0.00 0.00 0.00 0.09 0.32 0.40 0.42 0.36 0.30 0.54 0.62 1.54 0.82 4.11 7.57 5.73 6.21 5.92 6.89 7.67 6.21 5.63 3.88 9.03 25.72
DF80-133 (113-115cm) 0.00 0.00 0.39 0.22 0.05 0.28 0.39 0.35 0.35 0.49 0.54 1.10 0.69 3.01 5.71 4.57 5.81 4.85 7.04 6.66 6.47 5.71 5.62 9.33 30.36

DF80-133 (133-135cm) 0.00 0.00 0.48 0.00 0.41 0.59 0.65 0.96 1.33 2.64 0.97 1.27 0.76 1.78 3.19 5.48 4.93 5.75 5.57 7.21 7.03 5.93 5.38 2.65 35.04

DF80-133 (163-165cm) 0.34 3.34 3.14 3.41 5.49 8.83 13.9 14.1 10.2 7.21 4.80 4.08 1.55 0.96 1.05 1.39 1.13 0.99 1.39 1.61 1.31 1.27 1.11 1.07 6.42

DF80-133 (247-249cm) 0.37 0.70 0.86 1.33 1.98 2.49 3.25 4.18 6.50 11.4 12.1 9.58 3.43 2.09 1.73 2.25 2.29 2.16 2.42 3.35 2.89 2.38 2.29 4.71 13.24

DF80-79 (10-12cm) 2.29 0.72 2.68 3.55 3.98 6.60 8.36 8.30 7.29 6.33 5.00 5.53 2.71 2.34 2.59 2.88 2.62 3.48 2.17 2.77 2.32 2.39 1.61 2.39 9.12

DF80-79 (18-19cm) 0.00 0.66 0.22 0.55 0.73 0.52 0.76 0.78 0.89 0.87 0.58 1.75 1.06 2.60 2.56 2.47 2.56 2.28 2.28 2.92 3.38 3.01 3.29 1.92 61.36

DF80-79 (28-30cm) 0.00 0.00 0.00 0.27 0.34 0.32 0.34 0.33 0.42 1.11 2.15 6.19 5.70 5.32 4.89 4.52 5.34 3.94 4.19 4.52 4.60 4.68 4.27 2.71 33.84
DF80-79 (54-56cm) 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.08 0.09 0.20 0.81 3.40 2.63 3.82 4.58 4.48 5.92 5.92 6.49 8.20 7.82 7.16 6.01 7.63 24.71

DF80-79 (74-76cm) 0.00 0.00 0.22 0.15 0.14 0.14 0.25 0.23 0.28 0.44 0.82 1.89 0.71 2.63 5.06 5.15 5.63 4.96 6.01 6.20 6.87 5.54 5.44 6.11 35.12

DF80-79 (85-87cm) 0.00 0.00 0.53 0.36 0.25 0.18 0.26 0.30 0.39 0.58 1.01 3.26 3.54 2.71 4.65 7.20 5.47 5.93 6.56 6.29 6.29 5.84 5.11 8.21 25.07

DF80-79 (105-107cm) 0.00 0.25 0.00 0.06 0.04 0.10 0.09 0.11 0.13 0.23 0.33 1.36 1.27 0.07 0.78 5.47 4.78 4.98 6.35 8.10 8.88 7.71 7.52 7.71 33.68
DF80-79 (125-127cm) 0.00 0.00 0.00 0.19 0.15 0.25 0.35 0.43 0.46 0.65 1.09 1.92 2.36 3.51 4.77 4.68 5.33 4.21 5.70 7.39 5.89 5.99 5.14 4.77 34.79

DF80-79 (147-149cm) 0.00 0.00 0.27 0.24 0.17 0.15 0.20 0.21 0.24 0.35 0.59 1.44 0.82 1.98 4.50 4.60 4.50 6.04 5.17 6.42 5.17 5.65 4.22 2.01 45.03

DF80-79 (158-160cm) 0.00 0.00 0.00 0.35 0.04 0.10 0.19 0.22 0.28 0.30 0.44 0.55 1.43 3.46 6.44 8.79 8.30 6.25 6.64 6.83 5.76 5.08 4.69 2.34 31.53

DF80-79 (167-169cm) 0.00 0.00 0.00 0.15 0.20 0.28 0.49 0.56 0.63 0.87 1.02 1.73 1.74 4.65 7.14 6.58 6.86 5.38 5.56 6.03 5.28 4.36 4.82 3.52 32.17
DF80-79 (177-179cm) 0.00 0.36 0.00 0.00 0.03 0.01 0.02 0.01 0.02 0.06 0.26 1.04 0.39 0.98 2.15 2.34 3.71 4.10 6.25 5.76 6.44 6.15 6.05 2.54 51.35

DF80-79 (185-186cm) 0.00 0.00 0.00 0.00 0.04 0.07 0.04 0.05 0.32 3.47 8.75 9.00 4.63 2.81 4.78 3.43 3.66 3.73 4.78 5.30 4.93 4.78 4.10 1.57 29.77

DF80-79 (194-196cm) 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02 0.09 0.43 0.54 0.66 0.20 0.79 1.19 1.98 3.17 4.55 6.03 7.52 8.01 7.62 6.53 50.64

DF80-79 (209-211cm) 0.00 0.00 0.00 0.04 0.01 0.00 0.01 0.00 0.01 0.05 0.15 0.20 0.69 1.26 1.26 3.89 5.88 6.72 9.45 10.4 11.1 9.35 7.98 8.93 22.58

Table 3: Grain size results for HWD06 and DF80 cores. Note: results for HWD03-1 and HWD03-2 are available in Barrett et al., 2005.
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2.14 Supplementary data: Grain size statistics

Percentiles Moment measures Graphic (Folk) Inman Proportions

1% 5% 16% 25% 50% 75% 84% 95% Mean StDev Skew Kurt Mean StDev Skew Kurt StDev Skew Gravel Sand Silt Clay

HWD06 (0-2cm) -2.53 -1.47 -0.34 0.60 2.10 3.66 5.28 11.97 2.77 3.53 1.37 4.66 2.35 3.44 0.30 1.80 2.81 0.13 8.98 69.87 11.65 9.50

HWD06 (2-4cm) -2.01 -1.09 0.30 1.09 2.62 5.71 8.47 15.09 3.84 4.09 0.98 2.95 3.80 4.49 0.49 1.43 4.08 0.43 5.74 62.75 14.19 17.32

HWD06 (4-6cm) -1.78 -0.35 1.51 2.49 5.61 9.69 11.30 14.56 6.12 4.44 0.16 1.77 6.14 4.71 0.18 0.85 4.89 0.16 3.30 39.14 22.60 34.96

HWD06 (6-8cm) -1.75 0.40 2.42 3.45 7.29 11.82 14.26 19.20 7.31 4.40 -0.16 1.73 7.99 5.81 0.22 0.92 5.92 0.18 1.83 28.87 24.35 44.96

HWD06 (8-10cm) -1.89 -0.82 1.41 2.85 6.81 11.80 14.84 21.03 6.79 4.72 -0.13 1.69 7.69 6.67 0.25 1.00 6.71 0.20 4.29 30.31 23.67 41.73

HWD06 (10-12cm) -1.89 -0.21 2.09 3.26 7.00 10.09 11.47 14.28 6.86 4.32 -0.13 1.89 6.86 4.54 -0.02 0.87 4.69 -0.05 3.18 28.23 26.86 41.73

HWD06 (12-14cm) -0.99 1.06 3.37 4.96 7.84 16.81 23.23 36.28 7.97 4.09 -0.33 1.97 11.48 10.30 0.58 1.22 9.93 0.55 0.98 20.00 30.50 48.51

HWD06 (14-16cm) -0.89 0.62 2.73 3.80 7.53 10.51 11.93 14.81 7.36 4.13 -0.18 1.86 7.40 4.45 -0.01 0.87 4.60 -0.05 0.79 26.15 27.29 45.77

HWD06 (16-18cm) -0.78 0.73 2.83 3.87 7.55 11.02 13.05 17.17 7.45 4.13 -0.17 1.83 7.81 5.05 0.12 0.94 5.11 0.08 0.68 25.65 27.84 45.83

HWD06 (18-20cm) -2.01 0.22 3.03 4.41 8.31 12.52 14.61 18.85 7.99 4.34 -0.47 2.04 8.65 5.72 0.11 0.94 5.79 0.09 2.76 20.21 24.67 52.36

HWD06 (20-22cm) -1.07 0.05 2.64 3.73 7.73 11.72 13.50 17.12 7.59 4.41 -0.27 1.76 7.96 5.30 0.08 0.88 5.43 0.06 1.74 26.07 24.30 47.90

HWD06 (22-24cm) -0.74 0.41 2.22 3.17 6.64 9.99 11.26 13.85 6.76 4.20 0.05 1.73 6.71 4.30 0.05 0.81 4.52 0.02 0.47 34.34 24.67 40.52

HWD06 (24-26cm) -1.16 -0.95 3.47 4.86 7.77 11.18 12.55 15.32 7.80 4.22 -0.42 2.17 7.93 4.73 -0.01 1.05 4.54 0.05 4.96 15.24 31.74 48.07

HWD06 (26-28cm) -2.72 0.03 2.69 3.67 6.81 11.00 13.15 17.52 7.11 4.30 -0.12 1.91 7.55 5.26 0.22 0.98 5.23 0.21 2.85 26.11 30.29 40.74

HWD06 (28-30cm) -1.31 -0.09 1.91 2.98 5.79 11.44 17.99 31.31 6.47 4.39 0.15 1.77 8.56 8.78 0.57 1.52 8.04 0.52 2.01 34.12 29.48 34.38

HWD06 (30-32cm) -3.04 -0.30 1.92 2.84 5.53 10.81 16.11 26.88 6.30 4.45 0.18 1.79 7.86 7.66 0.53 1.40 7.09 0.49 2.81 37.89 25.12 34.18

HWD06 (32-34cm) -1.76 -1.02 1.02 2.29 5.32 10.94 14.59 22.01 6.11 4.76 0.12 1.67 6.98 6.88 0.41 1.09 6.79 0.37 5.19 37.81 21.21 35.79

DF80-189 (11-13cm) 2.60 3.82 5.16 5.81 7.96 10.31 11.04 12.52 8.42 3.12 0.05 1.82 8.05 2.79 0.05 0.79 2.94 0.05 6.39 44.14 49.47

DF80-189 (23-25cm) 3.01 4.06 5.48 6.55 8.69 10.83 11.76 13.66 8.92 3.05 -0.18 1.88 8.64 3.02 0.01 0.92 3.14 -0.02 4.66 37.26 58.08

DF80-189 (35-37cm) 1.41 3.86 5.30 6.09 8.04 16.42 25.21 43.09 8.53 3.18 -0.02 1.89 12.85 10.92 0.76 1.56 9.96 0.73 5.78 43.78 50.44

DF80-189 (46.5-48.5cm) 3.76 4.67 6.29 7.26 9.23 12.54 14.16 17.46 9.54 2.86 -0.30 1.74 9.90 3.91 0.27 0.99 3.94 0.25 1.69 32.53 65.78

DF80-189 (56-58cm) 3.86 4.89 6.18 7.06 9.06 11.23 12.25 14.32 9.34 2.82 -0.17 1.71 9.16 2.95 0.08 0.93 3.04 0.05 1.39 35.12 63.49

DF80-189 (66-68cm) -0.74 3.69 5.46 6.23 8.00 10.45 11.57 13.86 8.42 3.17 -0.21 2.54 8.34 3.07 0.16 0.99 3.06 0.17 0.70 6.66 42.62 50.02

DF80-189 (83-85cm) 2.94 4.27 5.55 6.24 8.20 11.18 12.80 16.10 8.71 3.03 0.00 1.84 8.85 3.60 0.30 0.98 3.62 0.27 4.31 43.37 52.33

DF80-189 (93-95cm) 2.54 4.51 5.86 6.71 8.93 12.31 13.98 17.39 9.23 3.05 -0.29 1.92 9.59 3.98 0.28 0.94 4.06 0.24 3.39 36.70 59.91

DF80-189 (104-106cm) 2.76 4.69 5.83 6.62 8.58 10.91 12.02 14.29 8.94 2.92 -0.08 1.86 8.81 3.00 0.15 0.92 3.10 0.11 3.54 39.78 56.68

DF80-189 (124-126cm) 1.11 3.70 6.43 7.59 10.50 16.74 19.70 25.71 9.81 3.18 -0.83 2.66 12.21 6.65 0.38 0.99 6.64 0.39 6.05 24.32 69.63

DF80-189 (143.5-145.5cm) 3.15 5.16 6.86 7.81 10.13 12.65 13.85 16.28 10.04 2.81 -0.68 2.31 10.28 3.43 0.08 0.94 3.50 0.06 2.66 24.82 72.51

DF80-189 (155-157cm) -2.76 -1.92 -1.12 -0.55 1.10 3.13 7.25 13.43 2.38 4.21 1.31 3.64 2.41 4.42 0.54 1.71 4.19 0.47 18.53 59.23 8.32 13.92

DF80-189 (164.5-166.5cm) -2.54 -1.67 -0.80 -0.19 0.91 2.10 3.48 20.37 1.87 3.62 1.84 5.73 1.20 4.41 0.48 3.95 2.14 0.20 13.32 71.90 5.44 9.33

DF80-189 (182-184cm) -4.16 -2.50 -0.94 -0.37 0.75 1.70 2.30 8.88 1.27 3.08 2.27 8.50 0.70 2.54 0.19 2.25 1.62 -0.04 15.25 75.88 2.91 5.97
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Percentiles Moment measures Graphic (Folk) Inman Proportions

1% 5% 16% 25% 50% 75% 84% 95% Mean StDev Skew Kurt Mean StDev Skew Kurt StDev Skew Gravel Sand Silt Clay

DF80-133 (6-8cm) 3.13 4.34 5.31 6.18 8.45 11.13 12.32 14.75 8.86 3.08 -0.07 1.67 8.69 3.33 0.16 0.86 3.50 0.10 2.82 40.98 56.20

DF80-133 (26-28cm) 3.03 4.88 6.03 7.05 8.85 11.12 12.15 14.26 9.22 2.87 -0.19 1.92 9.01 2.95 0.12 0.95 3.06 0.08 2.11 36.67 61.22

DF80-133 (46-48cm) 3.57 4.71 5.99 6.97 8.82 11.03 12.11 14.33 9.14 2.85 -0.15 1.90 8.98 2.99 0.11 0.97 3.06 0.07 1.53 37.68 60.79

DF80-133 (66-68cm) -1.03 3.10 4.17 4.68 6.32 9.05 10.23 12.30 7.03 3.28 0.23 2.61 6.91 2.91 0.30 0.86 3.03 0.29 1.28 12.15 51.56 35.02

DF80-133 (89-91cm) 1.25 4.26 5.44 6.18 8.04 10.04 10.66 11.91 8.41 2.93 -0.01 2.25 8.05 2.47 0.01 0.81 2.61 0.00 4.60 44.92 50.48

DF80-133 (113-115cm) 1.09 4.53 5.78 6.61 8.59 10.32 10.95 12.24 8.80 2.97 -0.26 2.49 8.44 2.46 -0.07 0.85 2.59 -0.09 4.15 38.36 57.49

DF80-133 (133-135cm) 0.61 2.62 5.59 6.46 8.43 12.06 14.33 18.94 8.70 3.33 -0.39 2.35 9.45 4.66 0.32 1.19 4.37 0.35 9.31 34.66 56.03

DF80-133 (163-165cm) -1.29 -0.76 0.52 1.02 1.91 3.54 6.12 10.78 2.99 3.41 1.53 4.67 2.85 3.15 0.52 1.88 2.80 0.50 3.68 75.11 10.05 11.17

DF80-133 (247-249cm) -1.04 0.45 2.07 2.66 3.75 8.08 9.69 11.34 5.29 3.81 0.66 2.33 5.17 3.56 0.48 0.82 3.81 0.56 1.07 53.71 19.72 25.50

DF80-79 (10-12cm) -2.90 -0.61 0.73 1.32 2.99 6.67 8.39 11.17 4.15 3.85 0.78 2.72 4.04 3.70 0.40 0.90 3.83 0.41 3.01 57.62 21.54 17.83

DF80-79 (18-19cm) -0.37 2.44 5.80 7.65 12.86 19.54 22.71 29.15 10.00 3.59 -1.21 3.39 13.79 8.27 0.19 0.92 8.45 0.17 0.66 7.65 18.73 72.96

DF80-79 (28-30cm) 1.12 3.45 4.41 5.26 8.01 11.76 13.95 18.41 8.30 3.47 -0.05 1.70 8.79 4.65 0.32 0.94 4.77 0.24 11.47 38.42 50.11

DF80-79 (54-56cm) 3.40 4.08 5.54 6.42 8.21 9.98 10.69 12.13 8.49 2.78 0.12 2.00 8.15 2.51 -0.03 0.93 2.57 -0.04 4.63 42.04 53.33

DF80-79 (74-76cm) 1.73 4.31 5.81 6.63 8.70 10.91 11.91 13.94 8.98 3.02 -0.26 2.18 8.81 2.98 0.07 0.92 3.05 0.05 4.56 36.36 59.08

DF80-79 (85-87cm) 0.24 3.70 5.29 5.99 8.04 10.00 10.67 12.03 8.27 3.07 -0.11 2.42 8.00 2.61 -0.03 0.85 2.69 -0.02 7.12 42.36 50.51

DF80-79 (105-107cm) 3.00 5.52 6.60 7.40 8.93 10.62 11.41 13.00 9.27 2.69 -0.29 2.63 8.98 2.33 0.06 0.95 2.40 0.03 0.25 2.44 31.80 65.51

DF80-79 (125-127cm) 1.60 3.89 5.49 6.40 8.56 11.12 12.39 14.97 8.84 3.12 -0.22 2.03 8.81 3.40 0.13 0.96 3.45 0.11 5.47 37.95 56.58

DF80-79 (147-149cm) 1.40 4.59 6.03 6.90 9.15 15.42 18.58 24.99 9.42 3.12 -0.48 2.23 11.25 6.23 0.53 0.98 6.28 0.50 3.88 34.04 62.08

DF80-79 (158-160cm) 2.21 4.69 5.64 6.15 7.96 11.49 13.95 18.96 8.60 2.99 0.09 1.93 9.18 4.24 0.49 1.10 4.16 0.44 2.46 48.14 49.40

DF80-79 (167-169cm) 1.40 3.75 5.28 5.93 8.01 11.10 12.76 16.14 8.49 3.20 -0.04 1.92 8.68 3.75 0.29 0.98 3.74 0.27 5.92 43.93 50.15

DF80-79 (177-179cm) 3.65 5.44 7.05 7.79 10.26 15.55 18.06 23.16 10.06 2.76 -0.70 2.70 11.79 5.44 0.44 0.94 5.51 0.42 0.36 1.44 25.67 72.53

DF80-79 (185-186cm) 2.65 3.09 3.70 4.36 7.54 11.61 15.18 22.46 7.82 3.55 0.14 1.58 8.81 5.81 0.44 1.10 5.74 0.33 21.75 33.11 45.15

DF80-79 (194-196cm) 3.91 6.28 7.71 8.36 10.05 12.10 13.07 15.04 10.31 2.43 -0.60 2.27 10.28 2.67 0.13 0.96 2.68 0.13 1.12 18.56 80.32

DF80-79 (209-211cm) 4.41 5.70 6.71 7.27 8.45 9.86 10.45 11.64 8.87 2.29 0.34 2.32 8.53 1.84 0.07 0.94 1.87 0.07 0.47 39.56 59.98

Table 4: Grain size statistics for HWD06 and DF80 cores. Note: results for HWD03-1 and HWD03-2 are available in Barrett et al., 2005.
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2.15 Supplementary data: Sand grain petrology
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0.12 0 0 0 0 1 0 6 46 19 227 300
0.24 0 0 0 0 5 0 7 53 11 224 300
0.36 0 0 0 1 4 0 12 43 22 218 300
0.48 0 1 0 0 2 0 4 59 28 206 300
0.57 0 0 0 0 5 0 9 45 19 222 300
0.67 0 3 4 0 4 0 12 55 15 207 300
0.84 0 2 0 0 4 0 9 48 23 214 300
0.94 1 1 0 0 5 0 5 33 11 244 300
1.05 0 2 0 0 3 0 4 34 9 248 300
1.25 0 0 0 0 1 0 7 48 13 231 300
1.45 2 2 0 2 3 1 9 80 15 186 300
1.56 6 23 3 18 41 3 18 89 14 85 300
1.66 9 39 7 28 39 2 10 75 25 66 300

D
F

80
-1

89

1.83 11 53 5 33 55 2 13 46 25 57 300

0.07 0 0 1 0 3 0 1 18 21 230 274
0.27 0 1 0 0 8 0 10 58 18 205 300
0.47 0 0 2 0 4 0 3 48 26 217 300
0.90 0 5 3 8 31 2 16 63 16 156 300
1.14 0 4 2 7 21 0 13 53 13 187 300
1.34 0 1 0 1 7 0 7 47 16 221 300
1.64 7 18 1 28 30 1 14 66 13 122 300

D
F

80
-1

33

2.48 2 7 0 16 29 0 15 93 12 126 300

0.00 2 1 1 11 42 0 7 33 23 280 400
0.05 1 2 4 6 17 0 29 26 14 301 400
0.11 1 0 4 0 6 2 18 34 15 320 400
0.13 0 0 6 0 2 0 22 13 10 347 400
0.15 0 0 4 0 4 0 38 28 9 317 400
0.20 0 0 10 0 5 0 33 12 14 326 400
0.24 0 0 4 0 4 1 14 24 34 319 400
0.29 0 0 6 0 7 1 2 26 16 342 400
0.31 2 7 2 23 72 0 34 20 4 237 401
0.43 0 21 13 34 107 6 63 40 17 99 400

H
W

D
03

-1

0.53 4 3 12 30 102 4 13 57 9 166 400

0.00 1 0 4 0 18 0 48 39 17 273 400
0.14 0 0 2 0 11 0 41 59 4 283 400
0.36 0 0 3 0 4 0 47 29 7 310 400

H
W

D
03

-2

0.58 0 0 1 0 9 1 57 33 19 280 400

0.11 0 1 0 1 0 0 29 20 14 235 300
0.19 0 1 1 1 8 0 17 37 22 213 300
0.29 0 2 0 0 4 0 6 43 11 234 300
0.55 0 0 0 0 3 0 9 44 7 225 288
0.75 1 1 1 1 6 1 9 38 20 208 286
0.86 0 2 1 0 3 0 0 29 7 258 300
1.06 1 5 0 14 13 0 8 52 16 192 301
1.18 0 1 0 4 4 1 9 10 22 249 300
1.26 0 1 1 3 9 1 6 43 12 224 300
1.48 0 2 2 4 9 0 7 39 8 229 300
1.59 1 3 0 8 18 2 13 48 26 182 301
1.68 1 7 0 7 21 1 10 36 13 204 300

D
F

80
-7

9

1.86 0 0 0 0 0 0 5 21 6 268 300

Table 5: Modal analysis results for sand grain fraction.
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2.16 Supplementary data: XRD results
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DF80/70, 23.5-25.5 cm 22.7 23 5.9 3.2 5.6 1.2 - - - 3.7 11 3.1 20.6
DF80/70, 44-46 cm 6.1 20.5 4.2 1.8 5.5 1 - - - 2.1 13.5 2 43.3
DF80/70, 53-55 cm 6.6 22.2 4.7 3 6.2 0.9 - - - 2.6 9.5 1.8 42.5
DF80/70, 141-142 cm 2.6 20.7 3.8 2.3 9.3 0.3 - - - 2 11.1 1.1 46.8
DF80/70, 156-158 cm 4.2 17.6 3 1.6 5.3 0.7 - - - 4.2 14 2.5 46.9
DF80/70, 220-221 cm 4.1 22.8 4.1 1.7 18.6 0.3 0.7 - - 6 3.9 1 36.8
DF80/78, 5-7 cm 4.8 11 1.6 - 3 3.7 - - 0.1 2.9 9.7 1.7 61.5
DF80/78, 66-68 cm 23 25 5.1 1.6 4.7 0.3 - - - 2.9 12.8 1 23.6
DF80/78, 101-103 cm 15.8 21.3 5 1.8 3.3 0.7 - - - 4 12.9 3 32.2
DF80/78, 157-159 cm 23.5 24.8 6.1 2.1 5.7 0.1 - - - 3.3 8.5 1.4 24.5
DF80/78, 187-189 cm 9.3 18.8 4 1.5 3.5 0.8 - - - 3.6 15.9 3.1 39.5
DF80/78, 227-228 cm 10.1 15.3 5 - 4.3 3.6 - - - 6.6 21.7 5.4 28
DF80/79, 10-12 cm 1.2 31.8 7.8 - 5.4 0.6 - - 0.4 0.6 8.2 0.1 43.9
DF80/79, 28-30 cm 4.7 17.4 2.1 - 3.7 0.4 - - - 2.5 21.2 2.9 45.1
DF80/79, 85-87 cm 5.4 14.9 3.1 - 4.2 1.5 - - - 3.7 19.2 3.8 44.2
DF80/79, 167-169 cm 6.5 16 4.8 - 5.8 2.8 - - - 4.9 17.8 5 36.4
DF80/19, 185-186 cm 4.8 15.8 3.5 - 4.2 1.3 - - - 4.3 15.7 4.1 46.3
DF80/133, 6-8 cm 5.6 10.9 3 1.3 3.2 5.6 - - - 3.4 8.7 2.5 55.8
DF80/133, 66-68 cm 6.5 12.6 3.3 - 3.2 5.4 - - - 3.1 12 3.2 50.7
DF80/133, 133-135 cm 7 13.6 3.7 - 3.5 4 - - - 3.7 10.7 3 50.8
DF80/133, 163-165 cm 26.3 26.3 8.7 1.1 4.3 0.1 - - - 2.4 6.4 2.4 22
DF80/138, 23-25 cm 14.8 16.4 4.1 1 3.1 2 - - - 7.4 18.8 4.7 27.7
DF80/138, 91-93 cm 15.3 18 4.4 0.9 2.4 0.8 - - - 5.5 17.8 3 31.9
DF80/138, 192-194 cm 10.1 14.3 3.5 - 3.1 1.5 - - - 7.9 17.8 5.4 36.4
DF80/138, 214-216 cm 26.7 30.1 10.5 0.3 2.8 1 - - - 3.9 11.9 1.7 11.1
DF80/189, 11-13 cm 6.8 11.3 2.9 1.4 3.1 5.5 - - - 4.1 10.6 3.1 51.2
DF80/189, 35-37 cm 5 7.4 1.5 - 1.5 5.8 - - - 2.6 12.2 2.4 61.6
DF80/189, 66-68 cm 5.7 10.3 1.7 - 2.8 4.8 - 0.8 - 3.1 11.1 2.3 57.4
DF80/189, 83-85 cm 5.5 10.6 2 - 2.2 4.2 - - - 3 10 1.9 60.6
DF80/189, 124-126 cm 6.9 12.9 2.6 0.8 2.2 2.9 - - - 5.5 14.2 3.5 48.5
DF80/189, 143.5-145.5 cm 9.3 14.2 2.8 - 2 2.9 - - - 8.2 13.6 5.2 41.8
DF80/189, 155-157 cm 28.2 28.4 5.5 0.3 2.9 1.3 - - - 6.5 10.9 6.3 9.7
DF80/189, 182-184 cm 26.9 21.7 7 1.1 4.5 0.3 - - - 3.9 13.6 4.9 16.1
HWD03/1, 1-2 cm 15.2 19 4 1.2 3.7 0.2 - - - 4.5 14.5 3 34.7
HWD03/1, 19-20 cm 4.8 14.8 2.6 - 4.6 0.6 - - - 4 12.9 3 52.7
HWD03/1, 26-27.5 cm 4.8 16.5 2.2 - 6.9 - - - - 2.8 12 1.5 53.3
HWD03/1, 51-52 cm 9.2 23.7 4.6 - 3.3 0.2 - - - 4 14.8 3.2 37
HWD06/3, 0-2 cm 18.9 23.3 5.2 1 6 0.7 - - - 7.9 8.6 2.4 26
HWD06/3, 16-18 cm 14.5 20.2 3.9 - 4.6 0.6 - - - 4.3 16.3 4 31.6
HWD06/3, 32-34 cm 15 22.4 5.2 - 6.1 0.1 - - - 3.6 14.2 3.4 30

X- ray Diffraction Quantitative Analysis of Antarctica Samples

Table 6: XRD results for DF80 and HWD cores.
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2.17 Supplementary data: Diatom counts

Table 7: Diatom results from DF80 cores. Note: results for HWD03-1 and HWD03-2 are 
available in Barrett et al., 2005.
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Actinocyclus actinochilus and A.ingens 5 2 1 1 3 0 8 7 3 2 9 0 1 1 1 1 11
Actinocyclus spp 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
Asteromphalus spp 0 0 0 1 0 0 0 3 0 0 0 0 0 1 0 0
Chaet. setae (bulb,llel,spiny, punct) 0 1 0 3 0 0 0 0 0 0 1 7 0 0 2 0
Chaetoceros spores (flange, globe) 0 8 6 6 7 0 0 5 7 3 7 13 13 6 1 0 0
Chaetoceros dichaeta spores PLAIN 8 0 0 0 10 9 0 0 0 0 0 0 0 11 3 1
Coscinodiscus spp C. marginatus 1 0 0 0 2 0 3 0 0 1 0 0 0 0 0 0
Eucampia antartica 9 10 11 11 9 17 19 16 24 31 20 15 8 8 5 13 8
Nitzschia angulata 1 0 2 2 3 0 0 0 0 0 2 4 2 3 1 2 1
Nitzschia curta 69 54 52 52 37 14 23 2 11 21 20 55 33 44 39 30 13
Nitzschia cylindrus 3 4 0 0 0 1 1 1 1 0 0 0 3 2 4 3
Nitzschia kerguelensis 0 1 0 1 0 2 2 0 1 0 0 0 1 2 0 1
Nitzschia obliquecostata 25 20 39 39 41 28 11 4 28 30 22 28 51 49 35 26 17
Nitzschia separanda 2 4 1 1 1 3 0 0 1 0 0 0 1 2 2 0 0
Nitzschia sublineata 5 28 18 18 14 8 4 3 19 16 10 9 15 15 8 19 8
Nitzschia sp. 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3
Paralia sulcata 1 0 0 0 6 9 15 7 2 7 1 0 0 0 6 7
Porosira spp. (glacialis pseudodentic.) 7 7 4 4 13 3 24 14 11 5 17 4 9 13 21 31 20
Proboscia seta 0 2 0 0 0 2 0 0 0 0 1 1 1 2 0 0
Rhizosolenia tips 1 0 0 1 0 1 0 2 1 1 0 1 2 0 0 1
Stellarima microtrias 2 1 2 2 1 0 5 7 0 4 12 1 0 1 5 1 1
Thalassiosira antarctica 24 24 25 25 15 4 4 4 3 6 17 30 26 14 20 24 6
Thalassiosira gracilis 3 0 0 0 1 0 0 1 0 1 0 0 3 3 0 1
Thalassiosira lentiginosa 3 3 0 1 0 6 8 3 0 3 1 4 3 2 1 9
Thalassiosira oliverana 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0
Thalassiosira tumida 2 7 2 1 9 2 1 0 2 1 4 6 4 4 1 2 3
Thalassiosira spp. 0 0 2 2 1 0 1 0 5 10 1 3 0 0 2 2 1
Thalassiothrix/nema frags 24 28 30 30 26 16 19 34 29 29 21 23 17 22 19 17 24
Centric Hex 15 11 10 10 11 77 42 74 41 33 32 17 13 17 11 24 55
Other pennates (including unknown) 0 0 0 0 0 0 1 0 0 1 0 2 0 3 1 0
Fossil (eg. Denticulopsis) 0 0 0 0 1 4 2 1 0 1 0 0 0 0 0 2
Rouxia spp 0 0 0 0 4 6 7 0 0 4 0 0 0 1 2 8
Stephanopyxis (turris, other) 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
Thalassiosira torokina 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0
Corethrone 0 0 0 0 3 0 0 2 0 0 0 0 1 0 0 0
Dactylioselen antarctica 0 0 1 1 2 0 0 0 0 1 1 0 0 0 0 0 0
Synedra spp. 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0
Odentalla weissfloggi 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Navicula gibbula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
Melosira sp. 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Amphora sp. 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Nitzschia stellata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Total 211 216 208 207 202 200 202 211 210 201 214 214 209 213 198 213 211
Fields of View 33 18 25 25 30 12 107 58 483 495 95 10 18 36 17 78 393
Sample Weight (g) .003 .004 .008 .007 .006 .028 .013 .03 .04 .016 .109 .021 .015 .008 .111 .044 .047
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2.18 Supplementary data: Ice core analysis

Accumulation of eolian detritus passing through the ice shelf is a potential source of 

introducing sediments to the seafloor beneath the McMurdo Ice Shelf. To test the 

hypothesis that windblown TAM and MVG-derived sand grains may pass through the 

ice shelf and be deposited on the seafloor, a 21-m long ice core from Windless Bight 

was analysed for dust content. This allowed the rate of seafloor sedimentation of eolian-

derived detritus that has passed through the McMurdo Ice Shelf to be determined. 

2.18.1 Methods

The ice core was collected on 23 October 2004 by Nancy Bertler (Victoria University of 

Wellington) at latitude 77º53.3 S, longitude 167º17.8 E, near the HWD03-1 site. One 

metre lengths of the core were sealed in polyurethane sleeves and melted. This was then 

filtered at 2.5μm, using Grade 5 Whatman cellulose filter papers. To recover the filtrate, 

acetolysis treatment was used to dissolve the cellulose filter paper. Acetolysis is 

commonly used in pollen processing techniques to make cellulose content soluble 

(Erdtman, 1960). 

The filters were placed into 50 ml centrifuge tubes and dehydrated by washing twice in 

glacial acetic acid. Nine parts acetic anhydride was slowly added to one part sulphuric 

acid. 20 ml of this mixture was then added to each sample. The sample was then placed 

in a gently boiling water bath for 30 minutes, or until filter paper was completely 

dissolved. The sample was washed in glacial acetic acid and centrifuged at 3000rpm for 

five minutes (repeated once). The sample was then washed in distilled water and 

centrifuged at 3000rpm for five minutes (repeated six times). The remaining precipitate

was then dried onto pre-weighed cover slips. The difference in weight of the cover slips 

determined the weight of sediment per metre length of ice core. The cover slips were 

then mounted onto slides using Canada Balsam. Several sample bags leaked during the 

melting phase, which explains the gaps in the sampling intervals of 1 m (Table 9).
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2.18.2 Control samples

Dissolving the filter paper was preferred to incineration as it should not destroy the clay 

fraction, although this was an untested technique. To test the integrity of the sampling 

and processing technique, several control samples were run using the above technique:

 An unused filter paper to test solubility by acetolysis mixture (10 ml). A faint

precipitate was recovered with a 0.003 g error (Table 8). Addition of an

additional 10 ml of acetolysis mixture was added to all other samples and this 

appears to reduce this error (e.g., controls 2 and 3)

 Four filter papers: Up to four filter papers were used for some samples. For 

these, it was observed that some filters did not dissolve properly on the first 

acetolysis treatment (leaving an obvious white residue) and required a second 

treatment to dissolve all the remaining cellulose. 

 Distilled water bagged in a polyurethane sleeve and passed through the cellulose 

filter. The sample was then processed alongside the ice core samples. 

 56.3 mg of glacial sediment adjacent to the Baldwin Glacier in the McMurdo 

Dry Valleys. After acetolysis and washing, 54.2 mg of sediment remained (96% 

recovery). 

Sample Error Source of error
Control 1: unused filter paper 0.003g 

gained
Cover slide had a faint white residue - dissolved 
cellulose from the filter paper. Quartz grains also 
noted.

Control 2: distilled water 0.000g No error
Control 3: Four unused filter 
papers

0.001g
gained

Minimal error, cover slide had a faint white residue, 
inferred to be dissolved cellulose from the filter paper

Control 4: Baldwin Glacier 0.003g
lost

4% loss during lab processing 

Table 8: Ice core control sample results.

2.18.3 Determining the rate of sedimentation

The volume of sediment per cubic metre of ice was determined by dividing the weight 

of dry sediment (per metre) by the volume of one metre of the ice core. The volume of 

the ice core was determined by multiplying the cross-sectional area of the core (π r2, 

where r=0.0508 m) by its length. Therefore, the volume of a one metre length of ice 

core is 0.0081 m3.

The equivalent thickness of settled sediment is determined by dividing weight of 

sediment per cubic metre (g/m3) by the average density of the sediment. As the majority 
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of sediment is likely to have been derived from the local basaltic geology (McMurdo 

Volcanic Group), the average density of basalt (2.9x106g/m3) is used. The sedimentation 

rate is determined by multiplying the equivalent thickness by a value of 3 (assuming an

ice accumulation rate of 0.33 m yr-1). 

2.18.4 Results

The sediment flux of material passing through the ice shelf ranges between 0.00005 and 

0.00055 mm yr-1 (Table 9). This accounts for between 0.1 and 1% of the sedimentation 

rate for the sediment core HWD03-2 (0.05 mm yr-1). Sand grain provenance is restricted 

to minerals derived from the MVG. However, no provenance analysis was conducted 

due to potential contamination of quartz grains during processing, as some isolated 

quartz grains were noted in the control samples. The source of this contamination could 

not be determined, but visual examination of thin slides indicates that the error 

associated with the weight measurements is likely to have been insignificant (see 

control 1).

Depth (m) Weight(g) Sediment volume(g/m3) Settled sediment (mm) Sed rate (mm yr-1)
0-1 0.0215 2.65 0.00092 0.00031
1-2 0.0038 0.47 0.00016 0.00005
2-3* 0.0043 0.53 0.00018 0.00006
3-4 0.0092 1.14 0.00039 0.00013
4-5* 0.0134 1.65 0.00057 0.00019
5-6* 0.0097 1.20 0.00041 0.00014
6-7 0.0196 2.42 0.00083 0.00028
7-8* 0.0386 4.77 0.00164 0.00055
8-9* 0.0042 0.52 0.00017 0.00006
9-10 0.0094 1.16 0.00040 0.00013
10-11 0.0243 3.00 0.00103 0.00034
11-12 0.0126 1.56 0.00054 0.00018
13-14 0.0142 1.75 0.00060 0.00020
15-16 0.0161 1.99 0.00069 0.00023
17-18 0.0026 2.20 0.00076 0.00025
Table 9: Ice core sediment results.*- possible leak of polyurethane bag, although integrity of 
samples appeared intact. Samples 12-13, 14-15, and 16-17 were lost during processing, due to 
polyurethane bag leakage.
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Abstract

The Late Cenozoic history of the Antarctic Ice Sheets (AIS) is not well understood, in 

particular, the response of the AIS to Late Neogene warm periods is poorly constrained. 

This is addressed in a 1284.87-m-long sediment core (AND-1B) from beneath the 

McMurdo sector of the Ross Ice Shelf that provides the most complete record to date of 

sedimentary processes associated with fluctuations of the marine-based sector of the 

AIS in the Ross Embayment over the last 13 Myr. The core contains a succession of sub-

glacial, glacimarine and marine sediments that comprise ~60 orbital-scale depositional 

sequences. Each sequence represents an advance and retreat cycle of past ice sheets in 

the Ross Embayment. On the basis of the characteristic facies within these sequences, 

three types of facies associations or sequence “motifs” are identified. These are linked 

to major changes in areal extent of the AIS, glacial thermal regime, and climate. 

Motif 1 is dominated by diamictite of sub-glacial (i.e., grounded ice) origin, overlain by 

thin mudstones interpreted as ice shelf deposits. Motif 1 lacks evidence of subglacial 

melt-water, and represents glaciation under cold, polar conditions during the past ~1 

Myr and the Mid to early Late Miocene. 

Motif 2 is characterised by subglacial diamictite, overlain by a relatively thin 

proglacial-marine facies succession deposited during glacial retreat. Glacial minima 

are represented by diatom-bearing mudstones, and diatomite. Motif 2 represents glacial 

retreat and advance under a “sub-polar” to “polar” glacial regime during the Pliocene 

that was warmer than present, but with limited amounts of subglacial meltwater. 

Motif 3 consists of subglacial diamictite that grades upwards into a 5 to 10 m-thick 

proglacial retreat succession that includes a combination of stratified diamictite, 

graded conglomerate and sandstone, graded sandstone, and rhythmically stratified 

mudstone. Mudstone, rather than diatomite dominated deposition during glacial 

minima, suggesting increased input of meltwater from nearby terrestrial sources during 

glacial minima. Motif 3 represents Late Miocene “sub-polar” glaciation with 

significant volumes of subglacially derived melt-water. 
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3.1 Introduction

The history of the Antarctic ice sheets through the Cenozoic remains poorly known due 

to Antarctica’s remoteness and ice cover for the last 34 million years. Direct physical 

records of Antarctic Cenozoic glacial history have become available only recently, and 

then largely from off-shore shelf basins through seismic surveys (e.g., De Santis et al., 

1999; Bart et al., 2000) and geological drilling programs (e.g., Ocean Drilling Program

(ODP), Cape Roberts Project (CRP), SHALDRIL, and ANDRILL (Hambrey et al., 

2002; Naish et al., 2007)). The number of sites drilled is small and mainly confined to 

three areas: McMurdo Sound (e.g., Barrett et al., 1989; Barrett, 2007), Prydz Bay (e.g.,

Barron et al., 1989; Hambrey et al., 1991; O’Brien et al., 2001) and the Antarctic 

Peninsula (e.g., Barker et al., 1999). Even in McMurdo Sound, where Oligocene and 

Lower Miocene strata are well-documented, research has focused on the evolution and 

relative stability of the larger East Antarctic Ice Sheet (EAIS), whereas the mid-

Miocene to Quaternary history of both EAIS and the West Antarctic Ice Sheet (WAIS) 

remains largely unknown and poorly dated. 

The δ18O record indicates a profound cooling ~14 million years ago, interpreted as 

expansion of the EAIS to perhaps its present-day extent (Zachos et al., 2001). A number 

of lines of evidence, including geomorphic studies from the Transantarctic Mountains 

(Sugden et al., 1993), have suggested that EAIS has been more or less stable and cold 

for the last ~14 million years. This is based largely on 40Ar/39Ar tephrochronology from 

the Dry Valleys region, which places a shift from wet-based terrestrial glaciation to less 

dynamic dry-based terrestrial glaciation at ~13-15 Myr (e.g., Sudgen et al., 1993; 

Sudgen and Denton, 2004; Lewis et al., 2006, 2007). Despite this evidence for a 

stepwise shift in climate and glacial regime, deep-ocean oxygen isotope records indicate 

that moderate oscillations of global ice volume continued until the development of 

Northern Hemisphere ice sheets ~3 Myr (e.g., Raymo, 1994), capable of producing 

global sea-level fluctuations of up to 25 m (Kennett and Hodell, 1993). These ice 

volume changes are thought to have involved an ice cap on Greenland, and the marine-

based WAIS and EAIS margin.
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The occurrences of marine diatom- and Nothofagus-bearing tills of the Sirius Group at a 

number of locations high in the Transantarctic Mountains (TAM) led Webb et al. (1984) 

to propose that diatomaceous sediments had been deposited in interior seas in East 

Antarctica, and subsequently glacially eroded and transported to their present sites. This 

concept requires one or more significant deglaciations of East Antarctica, with wet-

based (subpolar to temperate) glaciation suggested until ~3 Myr. CIROS-2, a sediment 

drill core collected at the mouth of Ferrar Fjord, McMurdo Sound, recovered a 

discontinuous record of this critical Pliocene-to-Pleistocene interval. The Pleistocene 

section of CIROS-2 contains interbedded subglacial and glacilacustrine facies, thought 

to indicate periods of Ferrar Glacier expansion (recorded by the subglacial facies) that 

alternated with periods of AIS expansion in the Ross Embayment. Expansion of the 

grounded AIS into the McMurdo Sound region is interpreted to have dammed a 

deglaciated Ferrar Fjord, as recorded by glacilacustrine facies (Barrett and Hambrey, 

1992). The Pliocene section of CIROS-2 is dominated by diamictite facies, interpreted 

as subglacial deposits of an expanded Ferrar Glacier (an EAIS outlet glacier). Although 

these diamictites are interstratified with glacimarine muds, there is no evidence of 

substantial volumes of subglacial meltwater, suggesting that Pliocene glaciation was not 

much warmer than the present day (Barrett and Hambrey, 1992). 

Although uncertainty remains about the scale of Antarctic ice sheet dynamism (e.g., 

Webb and Harwood, 1991; Sudgen et al., 1993), the Early and Middle Pliocene (5-3 

million years) generally is regarded as a time of global warmth (e.g., Crowley, 1996), 

and an important window into Earth’s future climate if projections of anthropogenic 

global warming (IPCC, 2007) are correct. 

The Quaternary evolution and stability of the WAIS is poorly documented, although its 

behaviour since the Last Glacial Maximum (~18 000 yrs BP) is relatively well-known. 

Since the Last Glacial Maximum, the WAIS has lost up to two-thirds of its mass, with 

ice cover in the Ross and Ronne-Filchner embayments shifting from ice sheets to ice 

shelves. However, a high resolution chronology and understanding of the dynamics 

involved in this retreat of the AIS in the Ross Embayment are yet to be fully resolved 
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(Bindschadler et al., 1998; Conway et al., 1999; Domack et al., 1999; Stone et al., 

2003; McKay et al., 2008). 

The response of the WAIS to late Quaternary orbital cycles remains unclear. Scherer et 

al. (1998) provided physical evidence that parts of the WAIS which are now grounded 

collapsed at least once during the past 0.75 Myr, based on marine diatoms recovered 

from beneath Ice Stream B (Figure 36), which is also partially supported by modelling 

studies of the WAIS by MacAyeal (1992). Marine sediments from DSDP Site 270 

indicate that continental glaciation extended onto the Ross Sea continental shelf 

episodically since at least the late Oligocene (Hayes et al., 1975; Leckie and Webb, 

1983; Bart et al., 2000). To date, no well-constrained and detailed physical record of 

past oscillations of the marine-based sector of the AIS in the Ross Embayment (which is 

likely to have been intimately tied to the state of the WAIS; see Chapter 1 for details)

has been available to test these hypotheses.

Figure 36: Insert map shows Antarctic continent with present day glacial flowlines (after 
Barrett, 1999; Drewry, 1983), location of McMurdo Sound (boxed). Larger map shows 
McMurdo Sound region and the AND-1B drill site near Hut Point (HP), as well as previous drill 
cores (MSSTS, CIROS, CRP) collected in the region. Transect x-x’ shows approximate cross 
section for sedimentation model cartoons (Figure 42 to Figure 44).
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In the austral summer of 2006-07, the latest Antarctic geological drilling program, 

ANDRILL, successfully cored a 1284.87-m-long record of climate and glacial/marine 

history spanning the last 13 Myr. The core (AND-1B) was recovered from beneath the 

northwestern corner of the Ross Ice Shelf (Figure 36; Naish et al., 2007), referred to as 

the McMurdo Ice Shelf (77.89ºS, 167.09ºE) project, and contains ~60 sequences 

recording advance and retreat of a grounded ice margin (Figure 37). Ice shelf thickness 

at the drill site presently is ~82 m, and water depth is ~835 m. This unique core 

represents the most complete record to date of past ice sheet oscillations, with a range of 

lithofacies that can accurately identify periods of glacial advance and retreat within the

Ross Embayment.

In this chapter, the lithofacies scheme for AND-1B is presented. This scheme is based 

on classifications developed from previous drill holes, and is used to track changes in 

glacial and marine depositional environments as recorded in AND-1B. Three vertical 

facies successions (Figure 38 to Figure 41), or “motifs”, occur repeatedly in AND-1B. 

In this chapter, these “motifs” are defined and related to glacial-interglacial oscillations 

of the grounding line under three different styles of glaciation, or thermal regimes, for 

the Late Cenozoic ice sheets. Based on data from AND-1B and previous drill cores 

from McMurdo Sound, a depositional model for each “motif” is presented that accounts 

for AIS grounding line oscillations within the Ross Embayment, the influence of local 

EAIS outlet glaciers, and coastal processes in the western Ross Sea. 

3.1 Previous high-latitude glacimarine depositional models

Previous work on sedimentary models, as well as process studies from high-latitude 

continental shelf settings, have identified stratigraphic subdivisions and sedimentary 

characteristics for different glacial thermal regimes, (i.e., “polar”, “sub-polar” and 

“temperate”; Table 10) that are highly dependent on climatic setting, local 

physiography/oceanography, and glacial processes (e.g., Elverhøi et al., 1983; Anderson 

and Ashley, 1991; Powell and Molnia, 1989; Powell and Domack, 2002; Dowdeswell et 

al., 1998; Ó Cofaigh et al., 2001; Ó Cofaigh and Dowdeswell, 2001; Desloges et al., 
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2002). The use of polar, sub-polar, and temperate terminology was chosen over other 

terminologies for glacial style (i.e., “wet-based” versus “dry based” or polythermal etc), 

as there are clear glaciological definitions for these terms, and they allow for ready 

comparison with modern analogues from these modern latitude bands.

Late Quaternary sedimentation associated with the cold “polar” glacial regime of WAIS 

and EAIS represent the coldest end member for present-day glacimarine deposition (see

Table 10), with no significant surface melt and limited subglacial meltwater influence. 

This produces low (<0.05 mm yr-1) terrigenous sedimentation rates in the 

glacimarine/ice shelf environment relative to higher biogenic sedimentation rates (>0.2

mm yr-1) in nearby open marine environments, including the immediate vicinity of ice 

shelf calving lines (Domack et al., 1999; McKay et al., 2008). These studies examined 

sedimentary processes associated with the transition from a grounded ice sheet to open-

marine environments in continental shelf basins within the Ross Sea (including under 

the McMurdo Ice Shelf) since the Last Glacial Maximum. They have identified a facies 

succession that comprises, in ascending stratigraphic order: 

 Massive mud-rich diamict(ite), interpreted as subglacial till deposited beneath 

grounded ice.

 Stratified diamict(ite) with a sandy mud component, interpreted as a basal debris 

melt-out zone associated with lift-off and development of a floating ice shelf. 

 Sparsely fossiliferous (<10% biosiliceous, mostly reworked diatom frustules) and 

non-bioturbated mud(stone) lacking lonestones, interpreted as a sub-ice shelf facies.

 Diatom-bearing to diatom-rich (i.e., 10-50% diatomaceous) mud(stone) and 

diatom(ite) ooze (>50% diatomaceous) with lonestones, indicative of open marine 

conditions and iceberg rafting. 

“Temperate” glaciers (i.e., those at the pressure melting point throughout) represent the 

warmest end-member for glacimarine sedimentation, and are characterised by large 

meltwater plumes with high sediment load. Terrigenous sedimentation rates are several 

orders of magnitude higher (e.g., 2-20 m yr-1) than their polar glacimarine counterparts, 

diluting or suppressing the biogenic component to a few percent (Cowan and Powell, 

1991; Powell and Domack, 2002). Graded laminae and rhythmic bedding with iceberg-
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rafted debris are characteristic of glacimarine sedimentation under a temperate glacial 

regime, due to the abundance of meltwater.

“Sub-polar” glacimarine deposition is more difficult to characterise, as it represents an 

intermediate phase between temperate and polar glaciation. Therefore, glacimarine 

sedimentation under a sub-polar regime varies widely in response to the extent of 

surface and subglacial melting or iceberg influences, even in similar climatic settings 

(see Table 10). In modern glacial environments, an increase in subglacial meltwater is 

likely to produce a higher terrigenous sedimentation rate during grounding line 

retreat/advance (Table 10). Deposition of rhythmically-laminated sediments and 

outwash facies, such as sands and conglomerates, is also more probable in a meltwater-

dominated regime, but these facies have also been documented in some colder subpolar 

environments, such as East Greenland (Dowdeswell et al., 1998; Ó Cofaigh et al., 2001; 

Ó Cofaigh and Dowdeswell, 2001). An additional complication is that the extent of 

subglacial meltwater discharge is also likely to be spatially variable along the grounding 

line (Powell, 1990).

The three ‘motifs’ defined in this chapter for AND-1B are used to further enhance 

sequence stratigraphic models of high-latitude continental margins, as well as to provide 

insight into the Late Cenozoic evolution of the Antarctic ice sheets. These “motifs” 

represent a continuum of glacial regime, from a system dominated by cold polar ice 

(similar to that of today) during the Mid to early Late Miocene, to a warmer regime with 

abundant subglacial meltwater discharge during the Pliocene, and back into the present-

day style of cold polar glacimarine sedimentation during the Pleistocene. The 

stratigraphic architecture of the motifs are entirely controlled by variations in the 

position of the grounding/calving lines as they have accumulated in deep water, below 

the direct influence of the wave-base and sea level fluctuations. 

Table 10 (next page): Modern (post-LGM) analogues from various glacial thermal regimes. 
Increases in subglacial outwash can be related to sedimentation rates and facies assemblages. 
Sedimentation rates in temperate regimes (not shown) are orders of magnitude higher than 
Spitsbergen example (2-20 m yr-1 within 1km from grounding line; Cowan and Powell, 1991). 
No temperate regime is inferred for AND-1B.



Glacial 
regime

Type example Grounding line 
proximity

Subglacial/marine conditions Characteristic glacimarine sedimentary 
processes

Characteristic lithofacies Climatic setting References

Proximal Basal melting rate of Ross Ice Shelf at grounding line <4m/yr to- 
>40m/yr.
Subglacial meltwater discharging from Siple Coast grounding line  
is unknown, but appears to rare and localised during LGM retreat. 
TAM outlet glacier (MacKay Glacier) basal melting rate is 1.7m/yr, 
with no conduit flow observed.
Suspended Particulate Matter (SPM) beneath Ross Ice Shelf, 
~100km from grounding line (site J9) is 0.68 mg/l.
SPM up to 14mg/l within 5km of MacKay Glacier grounding line.

Subglacial till deformation and lodgment. Melt-
out of debris entrained in basal ice expected 
close to grounding +/- sediment gravity flows. 
Subglacial till accumulation rate is 4.1mm/yr at 
Mackay Glacier. Proximal glacimarine 
accumulation rate is 5.5mm/yr at Mackay 
Glacier.
Tidal pumping of grounding zone.
Slope instability after grounding line retreat.

Massive diamicton (subglacial till) beneath 
present-day, grounded WAIS ice streams.
Overthickening of subglacial till packages in 
grounding zone wedges during still-stands.
Massive or stratified diamicton (meltout of 
basal debris and debris flows near grounding 
line).  
Strong to weakly (non-cyclic) laminated 
muds with occasional sand beds and minor 
biosiliceous component.

 Distal Basal melting rate of ice shelves near calving line is estimated at 
0.4m/yr, but is usually lacking sediment.
Open marine environment with high biogenic productivity and 
iceberg calving.
SPM at McMurdo Ice Shelf edge <5mg/l (includes biogenic 
component)

Suspension settling of fine particles advected 
from open water under the ice shelf +/- sediment 
gravity flows. If ice shelf is narrow and fringing 
epibenthic communities may occur. 
Sediment accumulation rates are ≤0.05mm/yr 
beneath McMurdo Ice Shelf. 
Biogenic sedimentation dominates in open water  
 (sed. rate ≤0.2 mm/yr).

Weakly laminated muds with occasional 
sand beds and minor reworked biosiliceous 
component (debris-free ice shelf). 
Biosiliceous ooze with iceberg rafted debris 
(open marine environment).
Local bioturbation and macrofossils if ice 
shelf is fringing.

M
ot

if
 2

a

 Proximal Ice front melting and iceberg calving. 
Some subglacial meltwater discharge. 
SPM generally 8-15 mg/l, but rare meltwater generated surface 
plumes up to 35 mg/l. 
Meltwater discharge is spatially variable.

Englacial debris released by ice front melting. 
Melting of basal debris from calved icebergs. 
Sediment accumulationation rate ~ 3 mm/yr 
(250 m from grounding line)

Massive or stratified diamicton (meltout of 
basal debris near grounding line).
Sandy muds to muddy sands.
Sand laminae common.

M
ot

if
 2

b

 Distal At distances >5km from grounding line:
-SPM higher  in surface layer of water colum due to phytoplankton 
blooms.
-SPM below 50m water depth is <2mg/l.

Biogenic dominated sedimentation with sed. rate 
up to 2 mm/yr (due to high productivity and 
sediment focussing)

Diatomaceous ooze and biosiliceous pebbly 
muds (contains iceberg rafted debris) 
common at distances >5km from grounding 
line.

Proximal Meltwater production varies between fjords.
Icebergs dominate some E. Greenland fjords (e.g. Scoresby Sund), 
others are dominated by meltwater production (e.g. Kejser Franz 
Joseph Fjord (KFJ)). 
SPM at head of Kangerlussuaq fjord (iceberg dominated) is ~2 mg/l. 

Meltwater process can dominate iceberg 
sedimentation, even in iceberg dominated fjord.
Sed rate in Kangerlussuaq is 24 mm/yr at head 
of fjord.

Massive or stratified diamicton (meltout of 
basal debris near grounding line + iceberg 
scouring).
Stratified (including cyclopels/ cyclopsams) 
and massive non-bioturbated muds with 
dispered clasts dominate inner KJF Fjord 
and Scoresy Sund.
Sediment gravity flows also common.

 Distal Icebergs dominate outer Scoresby Sund. 
Meltwater production dominates in KFJ.

SPM in mouth of Kangerlussuaq fjord <0.5 mg/l.

Iceberg rafting and scouring dominates outer 
fjords in Scoresby Sund.
Meltwater plumes dominate in outer KFJ Fjord 
and continental shelf with sed. rate ~ 1.1 mm/yr. 
Sedimentation rate in Kangerlussuaq is 0.6 
mm/yr at mouth of fjord

Massive Diamicton deposited in iceberg-
dominated Scoresby Sund
Ice recession from inner shelf to outer-mid 
KFJ fjord is marked by change from 

 laminated mud to bioturbated mud. 

M
ot

if
 3

Proximal Meltwater dominated. Icebergs contribute 1-8 mm/yr to sediment 
accumulation rate.
SPM up to 300-500 mg/l in Konsfjord.

Basal debris deposited close to grounding line.
Settling of mud and rare sand from meltwater 
plumes dominates near ice front.
Sediment accumulation rate of 100 mm/yr near 
ice front in Kongsfjord.

Massive or stratified diamicton (meltout of 
basal debris near grounding line).
Fine-grained muds with layers or lenses of 
sand/pebbles (iceberg rafted debris) and 
cyclopels/cyclopsams. 
Sand laminae and gravels common within 
1km of ice front (sed. gravity flows). 

Distal Meltwater dominated (Icebergs contribute 1-8 mm/yr to 
sedimentation rate).
SPM values of 1-5 mg/l (5-15km from grounding line) in 
Kongsfjord.

Settling of mud from meltwater plumes still 
dominates 10 km from ice front.
Sedimentation accumulation rate of 1 mm/yr, 10 
km from ice front.

Fine grained muds with an increase in 
bioturbation relative to ice proximal deposits 
(due to lower sed. rate).

Western Antarctic 
Peninsula
(fringing ice shelf 
or tidewater cliffs)

Polar to 
Subpolar 
(iceberg 
dominated)

AND-1B
interpretation

Ross Embayment, 
Antarctica
(large and fringing 
ice shelves)

Polar

M
ot

if
 1

Spitsbergen 
(fjord with 
tidewater cliffs)

Subpolar 
(iceberg 
dominated, 
some 
meltwater 
influence)

Subpolar 
(meltwater 
dominated)

East Greenland 
(fjord - tidewater 
cliff)

Mean Annual Temp 
-6.4ºC
Mean Summer Temp 
5.1ºC
Sea Surface Temp
-1 to 3ºC

Dowdeswell et al., 1998
Dowdeswell and Dowdeswell, 
1989
Elverhøi et al., 1980;1983

Mean Annual Temp
-3ºC
Mean Summer Temp 
2ºC
Sea Surface Temp
-1 to 1.6ºC

Mean Annual Temp 
-7.6ºC
Mean Summer Temp 
2.6º 
Sea Surface Temp 
-1 to 3ºC

Mean Annual Temp 
(McMurdo)
-17ºC
Mean Summer Temp 
(McMurdo)
-3ºC
Sub-Ice-Shelf Water Temp 
-2ºC

Carter et al., 1981
MacPherson, 1987
Powell et al., 1996
Dawber and Powell, 1997
Tulaczyk et al., 1998
Domack et al., 1999
Rignot and Jacobs, 2002 
McKay et al., 2008

Domack and Williams, 1990
Domack and Ishman, 1993
Ashley and Smith, 2000
Powell and Domack, 2002
Domack et al., 2001

Dowdeswell et al., 1994
Syvitski et al., 1996
Azetzu-Scott and Syvitski, 1999
Evans et al., 2002
Ó Cofaigh et al., 2001
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3.2 Geological setting

AND-1B was drilled in the southern portion of the Victoria Land Basin (Figure 36), 

one of three major north-south trending sedimentary basins that form the West 

Antarctic Rift System. The drillhole is located on the western margin of the Victoria 

Land Basin within the Terror Rift, a 70-km-wide structure extending from Mt. Erebus 

in the south to Mt. Melbourne, ~350 km to the north (e.g., Cooper et al., 1987). 

Within McMurdo Sound, the Terror Rift contains ~3.5 km of sediments, accumulated 

along its central axes since the middle Miocene (Henrys et al., 2007). Sediment in the 

western Ross Sea today is accumulating primarily in the north-south-trending basin 

troughs between 600 and 1200 m deep. These troughs are thought to be the sites of 

former ice streams that drained the WAIS- and EAIS-sourced outlet glaciers during 

the Last Glacial Maximum (Hughes, 1977; Denton and Hughes, 2000; Mosola and 

Anderson, 2006). The AND-1B drillsite is situated within a ~900 m deep basin that 

surrounds most of Ross Island. Termed a “flexural moat”, this basin is believed to 

have formed through a combination of localised lithospheric loads emplaced by the 

development of Ross Island’s volcanoes, beginning around 4.6 Myr, superimposed on 

the regional pattern of rift subsidence (Stern et al., 1991; Horgan et al., 2005). 

3.3 Glacial setting

AND-1B was drilled at Windless Bight beneath the McMurdo Ice Shelf (Figure 36), 

which is considered to be an extension of the Ross Ice Shelf at its northwest margin. 

The McMurdo ice shelf has a surface snow accumulation of ~0.3 m/year (McCrae, 

1984), and the present day calving line is ~5 km from the drillsite. Basal melting of 

the ice shelf is currently occurring at the AND-1B drill site, but the ice is likely free of 

sediment (McCrae, 1984; Barrett et al., 2005). The Ross Ice Shelf itself is a major 

component of the WAIS system with approximately two-thirds of the ice shelf being 

nourished by ice streams that drain the WAIS, yet its western margin is fed by EAIS 

outlet glaciers (Fahnestock et al., 2000; Figure 36). Glaciological reconstructions of 

grounded ice expansion within the Ross Embayment during the LGM (Denton and 

Hughes, 2000) indicate an ice sheet that extended to near the edge of the continental 

shelf and was fed by a contribution from both East and West Antarctic (Figure 6), 
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although uncertainty over the exact contribution from each source during the LGM 

remains (e.g. Licht et al., 2005).  

The glacimarine cycles in AND-1B are interpreted as documenting retreat and 

advance of a large marine-based ice sheet within the Ross Embayment. This ice sheet 

was susceptible to large variations in spatial extent through glacial/interglacial cycles. 

The provenance of clasts within subglacially deposited diamictites in the AND-1B 

record are consistent with transport by glacial ice sourced from EAIS outlet glaciers 

to the south of the drill site (Pompilio et al., 2007; Talarico and Sandroni, 2007), 

indicating that grounded ice events in AND-1B were the result of a large scale 

advance of the ice sheet across the Ross Embayment, rather than localised glacial 

advance from Ross Island or outlet glaciers in the McMurdo Sound region. 

Ice sheets that occupied the Ross Embayment during past glacial maxima were 

separated from the land-based sector of the EAIS by the Transantarctic Mountains, 

but linked by large outlet glaciers (Figure 6). Therefore, the marine-based ice sheets 

in the Ross Embayment would have had significantly different mass balance controls 

and responses to past warm periods than the land-based sector of the EAIS. Subglacial 

sediments in AND-1B were deposited by an ice sheet that was grounded well below 

sea level and was likely to be highly responsive to oceanographic-related mass 

balance controls, such as eustasy, iceberg calving and sub-ice melting. Of critical 

importance with regard to ice sheet retreat within the greater Ross Embayment 

(including sections of the presently-grounded WAIS) is that marine ice sheet 

grounding lines are inherently unstable on reverse bedslopes (Weertman, 1974; 

Thomas and Bentley, 1978; Schoof, 2007). When combined with an overdeepened 

bed, forcings such as rising sea levels, decreased accumulation rates, increased ice 

sheet temperature profile and/or basal slipperiness may result in the marine ice sheet 

being forced into an irreversible retreat. This implies that once retreat was initiated for 

past configurations of the ice sheet in the Ross Embayment, it was likely to occur 

across the entire embayment, similar to the pattern of retreat documented for the last 

deglaciation (e.g. Conway et al., 1999, Denton and Hughes, 2002; Licht et al., 1999, 

Domack et al., 1999; Shipp et al., 1999). Therefore on a glacial/interglacial timescale, 

the record in AND-1B of advance and retreat of the ice sheets in the Ross Embayment 

is likely to be intimately tied to the overall state of the WAIS. The AND-1B record 
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documents past changes not only in the extent of the marine-based ice sheet in the 

Ross Embayment over the past 13 Myr, but also provides insight into changes in the 

ice sheet temperature profile (i.e., thermal regime) and basal slipperiness (i.e., basal 

meltwater) 

3.4 AND-1B lithofacies scheme

AND-1B was described at the Crary Science and Engineering Centre, in McMurdo 

Station, Antarctica, using standard sedimentological techniques to produce detailed 

stratigraphic logs (Figure 37; Krissek et al., 2007). From the initial descriptions, 

eleven lithofacies were defined in the core (Table 11).

3.4.1 Facies 1: Diatomite

Description: Facies 1 consists of massive to weakly-stratified diatomite (e.g., Figure 

39A). Stratification is defined by colour changes or laminae/beds of sandstone and 

gravel. Dispersed pebbles, granules and coarse sand are common throughout and may 

deform the laminae beneath. The degree of bioturbation is variable and commonly 

consists of simple horizontal, mm-scale ovoid burrows, although several different 

types of mm- to cm-scale trace fossils are present. Micro-faulting with mm- to cm-

scale offsets is common throughout, although usually more intense in intervals 

overlain by diamictites (Facies 9 and 10). Pure diatomite (e.g., Figure 39A), lacking a 

significant terrigenous component but with occasional lonestones, is common, 

although some intervals comprise up to 50% terrigenous material (e.g., Figure 40B). 

Interpretation: Facies 1 represents biopelagic sedimentation, with a variable 

contribution from hemipelagic deposition in a high nutrient, marine environment. 

Periods of iceberg rafting are recorded throughout. 
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Facies number and name Predominant Process interpretation
Motif 1 

(%)
Motif 2 

(%)
Motif 3 

(%)

1 - Diatomite -Pelagic rain +/- hemipelagic suspension 
settling

0 37 0

2 - Mudstone -Hemipelagic suspension settling 1 8 22

3 - Interstratified mudstone 
and sandstone

-Low to mod. density sediment gravity flow
-Hemipelagic suspension settling +/-IRD

-Redeposition by marine outwash

2 6 10

4 - Mudstone with 
dispersed/common clasts

-Subglacial deposition
-Hemipelagic suspension settling

-Rainout from ice rafting

4 11 29

5 - Rhythmically 
interlaminated mudstone 

with siltstone or sandstone

-Suspension settling from turbid plumes
-Low-density turbidity current deposition

-Rainout from ice rafting

0.3 0.2 6

6 - Sandstone - Sediment gravity flow 0 2 3

7 - Conglomerate -Redepostion by marine outwash
-Redepositional by mass flow

0.7 0 2

8 - Breccia -Sediment redeposition by mass flow. 
-Volcanic debris flow.

0 0.5 0.1

9 - Stratified diamictite -Subglacial deposition
-Rainout with currents
-Debris flow depositon

24 3 3

10 - Massive diamictite -Subglacial deposition
-Rainout without currents

-Debris flow depositon

68 31 26

11 - Volcanic sediments -Primary volcanics deposits/volcanic debris 0 1 0

Table 11: Summary of lithofacies documented in the core. Percentage of facies that contribute 
to each motif is also included. 

Figure 37: (next page) Stratigraphic log, Lithostratigraphic Units (LSU), and interpretation of 
AND-1B core. Age intervals are based on the initial age model of Wilson et al. (2007). 
Diatom abundance histogram is based on visual estimates from smear slides. Facies 
abundance curve measures the relative abundance of diamictite facies (Facies 9, 10) vs. 
mudstone-rich/“outwash type” facies (Facies 2, 3, 4, 5, 6, 7) within each sequence. It 
represents a proxy for changes in glacial regime related to subglacial meltwater outwash 
during glacial retreat, minima and advance. However, this is complicated in some sections by 
slope processes (e.g., 100-150 mbsf). The glacial proximity curve was determined using the 
models presented in to Figure 42 to Figure 44.  The glacial proximity curve shows the 
transition from marine(m) to ice distal (d), ice proximal (p) and ice contact/subglacial (i) 
deposition. GSEs define each sequence boundary. 
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3.4.2 Facies 2: Mudstone

Description: This facies is represented by silty claystones to clayey siltstones (e.g., 

Figure 38A) that are predominantly massive in structure. If present, stratification is 

identified by a change in either colour or particle size, with sandstone laminae or thin 

beds (mm to cm scale) present locally. Sandstone laminae and beds are predominantly 

volcanic in composition, massive or graded, and often display planar or ripple 

lamination. Bioturbation commonly is absent, although it can be sufficiently intense 

to obscure primary stratification. Bioturbation usually increases towards contacts with 

Facies 1. Lonestones are largely absent, but generally are more common where 

bioturbation is present. Below 759.32 metres below seafloor (mbsf), bioturbation 

appears to be absent to extremely rare. However, bioturbation may be present but 

obscured by a significant dark-coloured overprint, attributed to abundant pyrite. A 

biosiliceous component (e.g., diatom-bearing (10-25%) to diatom-rich (25-50%) 

mudstone) is also common above 586.59 mbsf but rare to absent below this depth. 

This distribution of biogenic opal may be due, at least in part, to an opal C-T 

transformation at ~600 mbsf (Scherer et al., 2007). 

Interpretation: Facies 2 records environments that were either distal or proximal to 

grounded ice and were dominated by hemipelagic suspension settling. Greater 

bioturbation is thought to imply a more distal environment, with slower sedimentation 

rates, whereas non-bioturbated mudstone may have been deposited in a more 

proximal grounding line environment. In the lower part of the core (below 759.33 

mbsf), the apparent lack of bioturbation in 5- to 10-m-thick mudstones may indicate 

an environment where sedimentation rates were too high to support a benthic infauna. 

Alternatively, the heavy pyritization or dysaerobic condition in this part of the core 

may have obscured any bioturbation. The lack of diatoms in these units may also be 

due to rapid input of terrigenous sediment, which would have restricted primary 

productivity due to turbidity in the water column. 

When stratified, the siltstone and sandstone laminae may represent a contribution 

from distal sediment gravity flows, or the winnowing of fines, perhaps related to 

submarine outwash or bottom currents. This facies may also include a rare ice-rafted
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component in the form of rare lonestones/pebble nests or poorly sorted coarse 

sand/diamictite beds.

3.4.3 Facies 3: Interstratified mudstone and sandstone

Description: Facies 3 consists of mudstones similar in texture and composition to 

those of Facies 2, but interbedded with graded and massive sandstones on a cm to dm 

scale (e.g., Figure 39C). The sandstones are mainly very fine- to medium-grained, but 

can reach coarse sand grade. The sandstone beds commonly are graded, and are 

associated with a variety of sedimentary structures, notably planar and ripple 

lamination. The lower contacts of the sandstones usually are sharp, whereas the upper 

contacts are gradational (e.g., Figure 39C). Some sandstone intervals are dominated 

by volcanic grains, whereas others contain a diverse range of minerals. Lonestones of 

various lithologies are common, and occasionally deform underlying laminae. 

Bioturbation often is present within finer-grained intervals, and is also more common 

near contacts with Facies 1. 

Interpretation: The fine-grained nature of this facies and the lack of in situ

macrofossils or benthic diatoms indicate deposition in a deep-water environment. The 

interstratified nature is probably the result of hemipelagic sedimentation derived from 

turbid plumes, which alternated with distal to proximal sediment gravity flows or 

turbidity currents resulting from grounding-line processes or volcanic/tectonic 

activity. Sandstones with a notable quartzo-feldspathic component and containing 

planar and ripple-laminae (e.g., Figure 41C) suggest the influence of proglacial 

grounding-line fan processes. These types of sandstones commonly occur near other 

facies interpreted as proglacial (e.g., rhythmically interlaminated mudstone with 

siltstone/sandstone, stratified diamictites, conglomerates, etc). Ice rafting also may 

have contributed sand grains and clasts with diverse lithologies. Traction currents are 

another process that probably was active during deposition of this facies, either 

reworking the tops of gravity flow deposits or as separate (discrete) traction currents.
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3.4.4 Facies 4: Mudstone with dispersed/common clasts

Description: Facies 4 comprises mudstones/sandy mudstones with dispersed (trace -

<1%) clasts or mudstone with common (1-5%) clasts. Facies 4 differs from Facies 2 

(which may also contain rare lonestones) based on the persistence of clasts throughout 

Facies 4, albeit sometimes in very low abundances. Facies 4 is also very similar to the 

two diamictite lithofacies (Facies 9, 10), but is distinguished by the relative 

abundance of sand or gravel, using the classification scheme of Moncreiff (1989). 

Clasts are predominantly granules to small pebbles with diverse lithologies. 

Bioturbation can be pervasive locally, but often is absent. Micro-faulting and 

fracturing are common, particularly when Facies 4 underlies diamictite. Stratification, 

if present, is defined by changes in colour and grain size. Diatoms are present in some 

intervals above the volcanic succession at 558.75-759.33 mbsf (Figure 37), but are 

rare to absent below 759.33 mbsf. 

Interpretation: The depositional conditions interpreted for Facies 4 are similar to 

those interpreted for Facies 2, except that the presence of dispersed/common clasts 

indicates rainout from floating ice, either beneath an ice shelf or from icebergs. In 

association with Facies 10, intervals of Facies 4 that lack bioturbation could indicate 

deposition beneath grounded ice, although intervals with clast nests record deposition 

beneath iceberg zones (Powell and Cooper, 2002). The presence of bioturbation 

suggests a marine environment that was relatively distal to the grounding line. The 

high mud content is interpreted as representing sedimentation from turbid plumes in a 

pro-grounding-line marine environment, with clasts being contributed from floating 

ice. 

3.4.5 Facies 5: Rhythmically interlaminated mudstone with siltstone or sandstone

Description: Facies 5 consists of rhythmically interlaminated couplets of either 

siltstone or very fine-grained sandstone that grade upward into claystone with 

iceberg-rafted debris (e.g., Figure 41B). Claystone and siltstone form fining-upward 

couplets that are bundled into packages 2 to 5 cm thick. Each package contains 6-10 

couplets both above and below a claystone-dominated lamina, which itself is up to 2 

cm thick. Individual couplets have a basal lamina of clayey siltstone or very fine 

sandstone 2 to 5-mm thick, which grades into a claystone lamina 1-2 mm thick. 
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Thinner couplets appear more discrete and their sandstone/siltstone laminae are well-

sorted. Thicker couplets are less well-defined, contain more mudstone, and their 

sandstone/siltstone is less well sorted. Couplet thicknesses vary systematically within 

each package, producing a strong rhythmicity. Mudstone laminae can be present 

within the sandstone in the coarser part of a couplet. Facies 5 also contains lonestones, 

which have formed impact structures in the underlying laminae, clast nests, and lenses 

and beds of poorly-sorted, medium- to coarse sandstone and granules (Figure 41A).

Interpretation: Facies similar to Facies 5 have been described from modern temperate 

to sub-polar glacimarine environments in Alaska and the Greenland margin (Table 

10), where they are deposited in quiet-water basins by suspension settling from 

meltwater plumes (Mackiewiez et al., 1984; Cowan et al., 1999; Ó Cofaigh and 

Dowdeswell, 2001). A similar origin for this facies in AND-1B is inferred here. These 

couplets are termed cyclopsams (sandstone/mudstone) for the coarser, more ice-

proximal deposits and cyclopels (siltstone/mudstone) for the finer, ice-distal 

equivalents. The rhythmicity probably resulted from turbid meltwater plumes 

interacting with tidal currents near the top of the water column. This interaction 

modulated the settling of suspended sediment to the sea floor (Cowan et al., 1999). 

3.4.6 Facies 6: Sandstone

Description: Facies 6 comprises interbedded siltstone, muddy sandstone, and very 

fine to coarse-grained sandstone. The beds predominantly are volcanic-rich and black 

in colour, and occasionally contain mud rip-up clasts. Normal grading is common, 

although some massive beds are present. Planar lamination is the most common 

stratification type, with rare cases of cross-stratification present. Reverse-graded 

sandstone beds are also present, but are less common than normal-graded beds. Bed 

bases usually are sharp and irregular, whereas tops are either gradational or sharp and 

planar. Soft-sediment deformation structures are common locally. The sandstones are 

often interbedded with sandy mudstones or siltstones, which are either massive or 

laminated. 

Interpretation: This facies is mostly interpreted as turbidites, usually with incomplete 

Bouma sequences (Bouma, 1962). Beds grading upward from Ta (massive sandstone) 

and Tb (planar laminated sandstone) intervals before passing directly into Te (massive 
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mudstone) intervals are common. Though complete Bouma sequences from Ta to Te 

divisions do occur, they generally are rare. The incomplete sequences are interpreted 

as fines-depleted, proximal turbidites. Because these beds generally are volcanic-rich, 

the turbidity flows that deposited them may have been triggered by co-seismic activity 

related to volcanism. 

3.4.7 Facies 7: Conglomerate

Description: Facies 7 comprises matrix- to clast-supported sandy muddy 

conglomerate (e.g., Figure 41D), usually with rounded to subrounded clasts of diverse 

lithologies. The conglomerates often are weakly stratified, and generally are <2 m 

thick. Rarely, conglomerates are composed of >90% elongate mudstone intraclasts, 

with horizontally aligned long (a-) axes. Basal contacts of the conglomerate beds are 

sharp and irregular, and generally have relief of ~1 cm. When associated with Facies 

4, 9 or 10, the contacts are often gradational. 

Interpretation: Facies 7 is uncommon within the core, and probably records episodes 

of submarine sediment redeposition, possibly during turbulent discharge from 

subglacial conduits. Alternatively, they may result from the winnowing of the fine 

fraction from diamictite deposits.

3.4.8 Facies 8: Breccia

Description: Facies 8 is composed of poorly sorted breccias of sand, granule and 

gravel clasts in a muddy or sandy matrix. The clasts are dominated by angular to 

subrounded granules and pebbles of volcanic origin or mud intraclasts. The lower 

contacts of the breccias generally are sharp and irregular, and vary from horizontal to 

inclined (<30°). 

Interpretation: These breccias are interpreted to have formed by sediment 

redeposition by submarine mass flow processes, mainly from a volcanic source.

3.4.9 Facies 9: Stratified diamictite

Description: Facies 9 is represented by clast-rich to clast-poor diamictite. 

Stratification ranges from weak to well-defined, and is identified by changes in 
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colour, clast concentration or particle size (e.g., Figure 38B). Horizontal alignment of 

clasts is not used as a criterion for stratification, although preferred long-axes

orientation is common. The matrix ranges from muddy to sandy, and the biogenic 

silica content is variable, ranging from absent to biosiliceous-rich (i.e., comprising up 

to 50% of the matrix). Clasts are angular to rounded, poorly sorted, and include a 

wide range of lithologies, such as mudstone intraclasts and volcanics, 

metasedimentary and sedimentary rocks, granites, dolerites, and marbles. Outsized 

clasts and pebble nests are present in some intervals (e.g., Figure 41A). Facies 9 is 

often interbedded with, or grades to, Facies 10. Bioturbation is present in some 

intervals, but is rare overall.

Interpretation: The origin of the stratified diamictites is diverse. Thinner beds 

associated with marine facies (e.g., Facies 1) are interpreted to have formed by ice 

rafting or debris flow deposition. For stratified diamictites that are associated with ice 

contact or grounding-line proximal facies (e.g., Facies 3, 4, and 10), depositional 

processes may have included rain-out of basal glacial debris and associated reworking 

by marine outwash, or debris flows sourced from the grounding line (Powell, 1990). 

Alternatively, a stratified diamictite may have been deposited beneath grounded ice. 

Some of the stratified diamictites are dominated by mudstone intraclasts, which may 

correspond to the granulated facies of Domack et al. (1999), interpreted to represent 

meltout of basal debris during the initial phase of lift-off of grounded ice.

3.4.10 Facies 10: Massive diamictite

Description: In general, the textural and compositional characteristics of Facies 10 are 

identical to those of the stratified diamictites of Facies 9 (Figure 52 and Figure 53). 

Although Facies 10 is not stratified, alignment of clast long axes to the horizontal 

plane is common. Sharp lower contacts are often associated with load features, and 

fracturing is common. The mud, sand, and clast contents of Facies 10 are variable, 

and the diamictite may be interbedded with, or grade into and out of, Facies 4 or 9. 

Clast roundness is also variable, ranging from angular to rounded. 

Interpretation: This facies is interpreted as probably recording subglacial deposition

from debris-rich basal ice, although rainout from floating ice and icebergs, and 
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deposition by mass flows originating from the grounding line cannot be excluded. 

Although the specific depositional process may not be interpretable for a particular 

diamictite, the occurrences of Facies 10 generally are taken as indicators of ice 

proximity. When the basal contact of an interval of Facies 10 is sharp and overlies a

zone of physical mixing (e.g., Figure 39A), that diamictite is interpreted as a till, 

deposited beneath grounded ice. 

3.4.11 Facies 11: Volcanic rocks and sediments

This facies consists of primary and near-primary volcanic deposits. It includes lapilli 

tuffs, and one phonolitic lava flow (646.49 to 649.3 mbsf). With the exception of the 

lava flow, all deposits of Facies 11 have undergone some minor redeposition. 

3.5 Sequence stratigraphic framework

Sixty unconformity-bounded glacimarine sequences in the AND-1B core are 

recognised (Figure 37). Each sequence base is placed at an unconformity interpreted 

as a glacial surface of erosion or GSE (after Fielding et al., 2000). GSEs are 

identified on the basis of sharp facies dislocations that separate massive diamictite 

from underlying facies which are usually deformed or intermixed (e.g., Figure 

38A/Figure 39 A). 

Each GSE is overlain by a vertical succession of lithofacies that are interpreted as 

recording: 1) the retreat of grounded ice from the site, after a glacial advance and 

maximum; and after grounding line retreat, 2) the possible development of ice-shelf, 

and then perhaps open-marine, conditions during a glacial minimum. Subsequent ice 

readvance led to glacial overriding and development of the overlying GSE. Variations 

in lithofacies with time primarily reflect changes in depositional energy that are 

interpreted to reflect changes in glacial proximity. GSEs and glacimarine sequences 

are not evident in the volcanic successions between 558.75 and 759.33 mbsf, and 

between 1220 and 1275 mbsf. Although there is considerable lithological variation 

within these glacial/interglacial sequences, three characteristic facies successions are 

identified, termed “motifs” (Figure 38 to Figure 41), that are interpreted as recording 

deposition under distinctly different glacial regimes. The relative abundances of 
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lithofacies within each motif are detailed in Table 11. Ages discussed in the text 

(Figure 37) are based on the initial chronostratigraphy of Wilson et al. (2007), which 

incorporates 40Ar/39Ar ages, microfossil biostratigraphy, and magnetostratigraphy. 

3.5.1 Motif 1: Diamictite dominant

The basal portion of Motif 1 is a massive diamictite (Facies 10, 68% of the total facies 

assemblage), 3 to 30 m thick, that passes upward into stratified diamictite (Facies 9, 

24% of the total facies assemblage). The basal diamictites are overlain by thin (0.2 to 6 

m-thick) beds of mudstone with dispersed clasts (Facies 4) and silty claystone (Facies 

2), with or without interstratified volcanic sandstone. Figure 38 shows an example of 

Motif 1, with representative photos, in AND-1B. Sequences exhibit a sharp base, 

underlain by deformed and often stratified diamictite (Facies 9), interstratified 

sandstone and mudstone (Facies 3), sandstone (Facies 6) or mudstone (Facies 2) of the 

underlying sequence (e.g., Figure 38A). Sediments directly above and below the GSE 

often display evidence of soft-sediment deformation and shearing, along with clastic 

intrusions. In addition, the massive diamictites commonly display a strong fabric of 

horizontally aligned clasts. This clast fabric together with the extensive deformation at 

the GSE suggests deposition beneath grounded ice. The diamictite facies are interpreted 

to record periods of grounded ice or proximal glacimarine sedimentation at the site. 

Diatom-poor, finer-grained facies that lack an ice-rafted component are inferred to have 

been deposited in a low-energy environment beneath an ice shelf, while interbedded 

mudstone and sandstone facies are inferred to represent proximal glacimarine settings, 

such as near a grounding-line or beneath an ice shelf. Motif 1 dominates the upper 82.7

m of the core (Late Pleistocene) and the interval at 1083-1285 mbsf (Mid to early Late 

Miocene), except for the volcanogenic interval at 1168-1275 mbsf (see Figure 37).
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Figure 38: Example stratigraphic log of a Motif 1 sequence from AND-1B (56.0 to 69.5 mbsf) 
and representative photos of facies assemblages within Motif 1. Interpretations are based on 
the facies deposition model. The glacial proximity curve shows the transition from marine(m) 
to ice distal (d), ice proximal (p) and ice contact/subglacial (i) deposition. Sedimentary facies 
are indicated by the number series 1 to 11 (Table 11). Legend for lithological units is 
provided in Figure 37.
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3.5.2 Motif 2: Interstratified diamictite and diatomite 

Sequences of Motif 2 dominate the stratigraphic section at 82.7 to 586.59 mbsf 

(Figure 37). Each sequence has a basal massive diamictites, 1 to 20 m (Facies 10, 

31% of the total facies assemblage), deposited during a glacial maximum. The basal 

diamictite is overlain by a grounding line retreat succession of stratified diamictite 

(Facies 9, 3% of the total facies assemblage) or mudstone with dispersed clasts 

(Facies 4). The grounding-line retreat succession passes upward into increasingly 

more ice-distal and open marine deposits, including glacimarine biosiliceous 

mudstone with iceberg-rafted debris (e.g., Facies 3 and 4) and open-marine diatomite 

(Facies 1, 37% of the total facies assemblage) with minor or rare iceberg-rafted 

debris. The diatomite records the most open-water and ice-distal depositional 

conditions developed during glacial minima. The diatomite units range up to 90 m 

thick (e.g., 376-460 mbsf), and lack significant terrigenous mud. Facies that record 

glacial readvance may be present above the diatomite in Motif 2, and consist of 

mudstone- and sandstone-rich facies (Facies 2, 3 and 4). This record of glacial 

readvance is overlain by stratified diamictites immediately below the next GSE.

Motif 2 is subdivided into two “sub-motifs”, distinguished by the extent of 

terrigenous sedimentation during the glacial minimum and retreat/advance phases. 

Motif 2a (150.7 to 376.3 mbsf) contains diatomite with a minor (<10%) terrigenous 

component throughout, with retreat and advance successions generally 1-2 m thick 

(e.g., Figure 39). The glacial minimum in Motif 2b (82.7 to 150.7 mbsf; 376.3 to 586 

mbsf) is recorded by terrigenous-bearing to terrigenous-rich diatomites (i.e., 

containing 10-50% terrigenous material), and thicker retreat and advance successions 

of mudstone-rich facies (e.g.Figure 40). 
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Figure 39: Example stratigraphic log of a Motif 2a sequence from AND-1B (250 to 267.40 
mbsf) and representative photos of facies assemblages within Motif 2a. Interpretations are 
based on the facies deposition model. The glacial proximity curve shows the transition from 
marine(m) to ice distal (d), ice proximal (p) and ice contact/subglacial (i) deposition. 
Sedimentary facies are indicated by the number series 1 to 11 (Table 11). Legend for 
lithological units is provided in Figure 37.
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Figure 40: Example stratigraphic log of a Motif 2b sequence from AND-1B (539.00 to 563.80 
mbsf) and representative photos of facies assemblages within Motif 2b. Interpretations are 
based on the facies deposition model. The glacial proximity curve shows the transition from 
marine(m) to ice distal (d), ice proximal (p) and ice contact/subglacial (i) deposition. 
Sedimentary facies are indicated by the number series 1 to 11 (Table 11). Legend for 
lithological units is provided in Figure 37.
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Soft-sediment deformation features, clastic dykes, fractures, and brecciation 

immediately below the GSEs in Motif 2 are attributed to sub-glacial deformation or 

deformation at the grounding line during ice advance. Many of the transitions from 

diamictite to diatomite facies appear to have been rapid, with the transition recorded 

by mudstone-rich facies successions generally less than 1 m thick. Above 295 mbsf, 

the re-advance successions often are truncated by a GSE, overlain by a thick massive 

diamictite. The diatomite below the GSE typically is deformed, sheared and 

intermixed with the subglacial till that lies above that GSE (e.g., Figure 39A). 

3.5.3 Motif 3: Interstratifed diamictite and mudstone 

Motif 3 dominates the interval between 770 and 1083 mbsf in AND-1B. Motif 3 

displays some similarities to Motif 2, but lacks diatomite and is composed almost 

entirely of diamictite (Facies 9, 10; 29% of the total facies assemblage) and 

terrigenous mudstone-rich facies. Facies 2, 3, 4 and 5 (e.g.,Figure 41) together 

comprise 67% of the facies assemblage within Motif 3. The facies assemblages 

associated with grounding line retreat and readvance (e.g., Facies 3-5) generally are 

10 to 40 m thick in Motif 3 (see Figure 37), which is thicker than their equivalents in 

Motif 2. This thickness difference may imply a higher sedimentation rate for Motif 3 

than for Motif 2. In all cases of Motif 3, a thin massive diamictite (Facies 10) overlies 

the GSE, and is interpreted as tillite deposited during a glacial maximum. This 

massive diamictite is overlain by interstratified diamictite (Facies 9 and 10), which 

passes upward into interbeds of rhythmically interlaminated mudstone and sandstone 

(Facies 5), interstratified mudstone and sandstone (Facies 3), or mudstone (Facies 2). 

Conglomerate (Facies 7) and mudstone with dispersed clasts (Facies 4) also are 

common within this sequence.
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Figure 41: Example stratigraphic log of a Motif 3 sequence from AND-1B (1052.00 to 
1067.00 mbsf) and representative photos of facies assemblages within Motif 3. Interpretations 
are based on the facies deposition model. Sedimentary facies are indicated by the number 
series 1 to 11 (Table 11). The glacial proximity curve shows the transition from marine(m) to 
ice distal (d), ice proximal (p) and ice contact/subglacial (i) deposition. Legend for 
lithological units is provided in Figure 37.
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3.6 Discussion: Sedimentation models of glacimarine deposition at AND-1B

3.6.1 Sedimentation during a cold, polar glacial regime 

Motif 1 is consistent with sedimentary models previously derived from the study of 

modern processes and glacial systems in cold polar regimes, and from successions 

deposited during the retreat of AIS in the Ross Sea embayment since the Last Glacial 

Maximum. However, Motif 1 notably lacks open-marine diatomites (e.g., diatom-

bearing/rich mudstone and diatomite), similar to those forming in the present-day 

Ross Sea (e.g., Domack et al., 1999; Dunbar et al., 1989; McKay et al., 2008; 

Sjunneskog and Scherer, 2005), and there is also a near-complete absence of 

reworked diatoms within the diamictite facies. The massive diamictites generally are 

interpreted as either subglacial (basal) till (especially if clast long axes have a strong 

horizontal alignment and the diamictite overlies a GSE) or proximal glacimarine 

deposits of a grounding zone wedge. Diamictites with these attributes are 

characteristic of LGM deposits collected from the Ross Sea region (e.g., Domack et 

al., 1999; Licht et al., 1999). The thin interbedded sandstones and mudstones, as well 

as diamictites with well-defined stratification, are similar to modern sediments 

collected from the sub-ice shelf zone beneath the McMurdo Ice Shelf (McKay et al., 

2008). Although these mudstones and sandstones are thin in Motif 1 sequences, they 

indicate that glacial retreat and glacial minima conditions produced an ice shelf over 

the site during the deposition of Motif 1, much like conditions at present. Open water 

conditions with biogenic-dominated sedimentation are not recorded at the AND-1B 

drill site during deposition of Motif 1 sequences. 

Beneath the present-day McMurdo Ice Shelf, ~60 cm of sediments have accumulated 

since ice shelf conditions were initiated 10, 000 14C yrs BP (McKay et al., 2008). This 

sedimentation rate (0.06 mm yr-1) is much lower than the rate for open-water 

diatomaceous ooze (~0.2 mm yr-1) deposited in the Ross Sea (Domack et al., 1999; 

McKay et al., 2008). Diatom remains are present only in trace amounts in the upper 

82.7 m of AND-1B (Figure 37; Scherer et al., 2007), despite the presence of sparsely 

fossiliferous mudstone and sandstone facies, interpreted as sub-ice shelf deposits. The 

low diatom abundances within the diamictite facies suggest a minimal amount of 

erosion within this interval, because erosion of open-marine diatomite should have 
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recycled more diatomaceous material into the overlying diamictites, as is observed in 

diamictites of Motif 2 and of the Last Glacial Maximum from the Ross Sea (e.g., 

Scherer et al., 2004; Sjunneskog and Scherer, 2005). If erosion by over-riding ice was 

so significant that all traces of underlying diatomite were removed, then it is unlikely 

that thin sub-ice shelf deposits would have been preserved. Attempts are currently 

underway to define a higher resolution chronology from these sub-ice shelf deposits 

to test this hypothesis (see Chapter 4). 

The presence of Motif 1 from 1.10 Myr (Figure 37) implies that, for several 

glacial/interglacial cycles, ancestral configurations of the Ross Ice Shelf and the AIS 

in the Ross Embayment were similar to the configurations of the Last Glacial 

Maximum to the Holocene deglaciation. Compared to its extent during the Pliocene, 

an expanded ice sheet or ice shelf persisted in the Ross Embayment for extended 

periods, as recorded by the Middle to Upper Pleistocene and Middle Miocene sections 

of AND-1B, even in a relatively deep water setting. The glacial regime during 

deposition of Motif 1 was probably similar to the regime of the last glacial cycle - an 

ice sheet with a cold polar glacial regime, a vertical temperature profile entirely below 

freezing, and negligible surface melting and subglacial outwash. Ablation was 

probably controlled by sub-ice shelf melting and calving at the ice shelf margins, so 

oceanic temperature and circulation, and eustatic sea level change were the major 

controls on ice volume fluctuations. In the Ross Embayment, this regime persisted 

through the mid to Late Pleistocene and in Mid to early Late Miocene time.
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Figure 42: Sedimentary model for Motif 1, along a generalised profile of transect x-x’ (see 
Figure 36). Glacial minima (top) at the drill site are characterised by sub-ice shelf deposition 
of mudstone interbedded with sediment gravity flows of volcanogenic sandstone. Facies 
associated with glacial advance/retreat (middle) of ice sheet over the AND-1B drillsite lack 
significant subglacial meltwater. During glacial maxima (bottom) grounded ice occupies 
McMurdo Sound, which results in the formation of “ice dammed” lakes during the 
Pleistocene (e.g., Hall et al., 2000; Barrett and Hambrey, 1992).
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The sedimentation model for Motif 1 (Figure 42) also incorporates interpretations 

made from the drill cores collected closer to the Victoria Land coast (e.g., CIROS-2). 

This model shows the damming of the mouth of Ferrar Fjord by an expanded ice sheet 

in the Ross Embayment during glacial maxima, which was interpreted to have caused 

deposition of glacilacustrine rhythmites in CIROS-2 (Barrett and Hambrey, 1992). 

According to Motif 1, deposition at the AND-1B site during ice advance was 

dominated by massive diamictites of subglacial origin (i.e. subglacial till). Based on 

the assumption that unconformities are minor within the Pleistocene section of Motif 

1, interglacial sedimentation at AND-1B occurred almost entirely by sub-ice shelf 

processes with hemipelagic deposition and sediment gravity flows associated with 

grounding-line retreat/advance. Where the upper parts of Motif 1 contain locally 

derived McMurdo Volcanic Group sediments (Figure 36), a depositional environment 

proximal to the calving line is inferred, probably similar to that of present-day 

conditions at AND-1B. 

3.6.2 Sedimentation during a dynamic polar/sub-polar glacial regime

Motif 2 records more dynamic fluctuations of the ice sheet than Motif 1. Motif 2 

sequences dominate the Pliocene section of AND-1B, and are most notable for 

repetitions of diamictite (34% of the total facies assemblage) overlain by diatomite 

(37% of the total facies assemblage). The diamictites are interpreted as sub-glacial 

tills deposited during glacial maxima, whereas the diatomites record open-marine 

settings during glacial minima. The lack of terrigenous fine-grained sediment (i.e., not 

iceberg rafted debris) within or associated with the diatomites implies a lack of sub-

glacial meltwater entering the Ross Embayment during glacial minima. Episodes with 

greater meltwater supply may be recorded by the muddy proglacial facies 

(constituting ~10 to 25% of some sequences; Figure 37) included in a few glacial 

retreat and advance sequences.
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Figure 43: Sedimentary model for Motif 2, along a generalised profile of transect x-x’ (see 
Figure 36). During glacial minima (top) open marine conditions prevail at the drill site with 
deposition of diatomaceous ooze. During ice sheet glacial advance/retreat (bottom) processes 
may be similar to those in Motif 1, although sequences within Motif 2b display evidence of an 
increased meltwater process at the grounding line. During glacial maxima, conditions were 
similar to that for Motif 1 (Figure 42), although CIROS-2 sediments are dominated by 
subglacial deposition beneath an expanded Ferrar Glacier, rather than glacilacustrine 
sediments (Barrett and Hambrey, 1992).
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Motif 2 records a more dynamic AIS in the Ross Embayment than present, with 

periods of open-water deposition (see Figure 43) during glacial minima. The 90 m-

thick diatomite above 459.24 mbsf indicates open-marine conditions in the Ross 

Embayment for up to 400,000 years, and perhaps spanning several glacial-interglacial 

cycles in the Early Pliocene (Wilson et al., 2007). 

Diatomites deposited during the Holocene have been documented from basinal 

settings similar to the setting of AND-1B, but located immediately north of Ross 

Island (McKay et al., 2008) and farther north in the Ross Sea (e.g., Domack et al., 

1999). These Holocene deposits indicate that diatomites can accumulate close to an 

ice shelf calving line, so the Pliocene calving line did not have to retreat significantly 

from the present-day calving-line position to allow deposition of diatom muds and 

oozes at AND-1B. However, several indicators of warmer than present conditions do 

accompany the AND-1B diatomites. While the transitions from glacial to open-

marine facies are stratigraphically thinner in Motif 2 than in Motif 3, the transitions in 

Motif 2 do display clear evidence of elevated rates of sediment delivery (especially in 

Motif 2b). Evidence is also present that sedimentation was influenced by sub-glacial 

melt-water during advance and retreat of the grounding-line. This evidence includes 

turbidites (Facies 6), and ~5- to 10-m-thick intervals of massive mudstone (Facies 2), 

mudstone with dispersed to common clasts (Facies 4), and graded/stratified outwash 

sandstone interbedded with mudstone (Facies 3) that contain tractional sedimentary 

structures, such as ripple-cross-stratification of inferred glacifluvial origin (Table 11; 

Figure 37). These facies commonly lie directly on top of stratified and massive 

diamictites deposited by grounded ice and during ice lift-off. Preliminary analysis of 

diatom assemblages also provides strong evidence of warmer-than-present surface 

waters during the deposition of the Pliocene diatomites (Scherer et al., 2007)

Figure 43 presents a model for the deposition of Motif 2 sequences. During retreat of 

grounded ice, sedimentation at AND-1B was influenced by variable amounts of 

meltwater (Motif 2a versus 2b) from the Ross Embayment ice sheet grounding line. 

Deposition during glacial minima occurred in open-water conditions, with little or no 

terrigenous input from EAIS outlet glaciers or the Ross Embayment ice sheet via 

glacimarine or coastal processes. Although Motif 2 is interpreted to record a more 

dynamic AIS in the Ross Embayment, it may also reflect moderate warming relative 
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to present day conditions. Under warmer conditions, a large ice shelf was not 

sustained in the Ross Embayment, so that glacial minima are represented by open-

water sediments, rather than those deposited beneath an ice shelf. 

In some cases, the transition from massive diamictite deposited beneath grounded ice

(i.e., subglacial till) to marine diatomite with a negligible terrigenous component 

occurs within 1 m (e.g., 224.20 to 225.20 mbsf), suggesting rapid ice retreat and 

transition from a grounded ice sheet to an ice-free Ross Embayment. These thin 

intervals of transitional facies are most common in Motif 2a in the Upper Pliocene 

section (~150.7 to 295.5 mbsf). The upsection increase in top-truncation of the 

sequences in the Upper Pliocene may indicate greater erosion during glacial 

readvance (either due to larger ice volume or a decrease in basin subsidence), or may 

reflect original deposition of thin readvance successions (i.e., less meltwater supply). 

Motif 2 is interpreted to reflect an increased degree of dynamicism of the AIS in the 

Ross Embayment, under a subpolar to polar glacial regime that was warmer than 

present, but cooler than conditions during the deposition of Motif 3. If the ice sheet

had largely withdrawn from the Ross Embayment during the glacial minima recorded 

in Motif 2, then the lack of terrigenous sedimentation at AND-1B during those 

minima indicates limited sediment delivery from local EAIS outlet glaciers. In 

addition, glacial regimes along the margin of the EAIS and for the TAM outlet 

glaciers were polar, with little to no meltwater production. However, a warmer ice 

sheet occupied the Ross Embayment, and episodic meltwater production did deliver 

moderate volumes of terrigenous sediment to the grounding zone during some times 

of glacial retreat and advance, as recorded by Motif 2b sequences. Local glaciation in 

the TAM probably was similar to conditions in modern sub-polar to polar 

environments dominated by iceberg production (Table 10) during the deposition of 

Motif 2a sequences in the Late Pliocene. Similar conditions, but with an increased 

meltwater influence, are interpreted to have existed during the deposition of Motif 2b 

in the Early Pliocene (Figure 37). The increased abundance of terrigenous mudstone 

facies at 82.7 - 150.7 mbsf, within glacial minima, retreat, and advance sequences (see 

Figure 37), is associated with the presence of volcanic sandstone turbidites and debris 

flow deposits. Alternatively, rather than representing a significant paleoclimatic 

change, this increased mud input may record increased slope instability during 
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volcanic cone building on Ross Island, especially on Hut Point Peninsula - which may 

have also been promoted as a new pinning point for the retreating ice shelf calving 

line.

3.6.3 Sedimentation during a dynamic sub-polar glacial regime

Motif 3 is interpreted as the record of glacial retreat, minimum and advance phases 

dominated by deposition of terrigenous siliciclastic sediments. At AND-1B, large 

volumes of glacial outwash mud, supplied from nearby sources, prevented diatomite 

from accumulating. This mud supply suggests that significant subglacial meltwater 

was provided from local EAIS outlet glaciers and from the glacial advance and retreat 

of the ice sheet that occupied the Ross Embayment. Supporting evidence includes the 

greater abundance of mud-rich proglacial facies (Facies 2, 3, 4, 5), which form 67% 

of the total facies assemblage in Motif 3. Within glacial retreat and advance 

sequences, conglomerate (Facies 7), sandstone (Facies 6) with ripple cross-

stratification, and rhythmically interlaminated mudstone with siltstone or sandstone 

(Facies 5) are all more abundant than in the other two motifs. These facies probably

represent deposition influenced by considerable sub-glacial marine outwash and mass 

flows near the grounding line of an expanded ice sheet in the Ross Embayment. 

Rhythmically interlaminated mudstone and sandstone constitute 6% of the total facies 

assemblage in Motif 3 (whereas they are rare to absent in Motifs 1 and 2), and form 

intervals up to 8 m thick, with cyclopsams (sandstone/mudstone couplets) grading 

upward into cyclopels (siltstone/mudstone couplets; Figure 41A/B). Lonestones that 

deform underlying laminae, and poorly sorted sandstone beds, are also associated 

with occurrences of Facies 5. Although diatoms may have been deposited with these 

muds, and subsequently destroyed by diagenesis, there is no evidence of the 

extremely high productivity conditions recorded by Motif 2. The dominance of 

siliciclastic lithofacies in Motif 3, together with the apparent lack of bioturbation and 

diatoms, suggest an environment with high sedimentation rates, principally of fine-

grained material, in a deep-water setting influenced by iceberg-rafting. The rapid 

input of terrigenous mudstone during glacial minima is interpreted to have diminished 

biosiliceous productivity or diluted the input of biosiliceous debris.
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The facies successions within Motif 3 are consistent with Holocene sedimentation 

models for sub-polar environments dominated by large and relatively consistent input 

of subglacial outwash (c.f. Table 10). These environments are dominated by 

suspension settling from turbid meltwater plumes, sediment gravity flows, and 

associated iceberg rafting (e.g., Ó Cofaigh and Dowdeswell, 2001; Dowdeswell et al., 

1998). Supporting evidence in the AND-1B core includes the higher abundance of 

facies deposited in proximal glacial and subglacial environments (i.e., 

massive/stratified diamictites, conglomerates, rhythmically interlaminated mudstone 

and sandstones), which are interpreted to record retreat/advance of a grounded ice 

sheet in the area of the drill site. Intervals of rhythmically interlaminated mudstone 

with siltstone/ sandstone (Facies 5) are interpreted to have been deposited during 

grounding-line retreat, in the presence of large volumes of subglacial meltwater. 

Cyclopsams grade upward into cyclopels, indicating the transition from a proximal to 

a more distal glacimarine environment. Taken together, these changes in depositional 

environment imply significant glacial dynamism and ice volume changes on West 

Antarctica during the deposition of Motif 3.

Terrigenous sediments dominate the record of deposition during the glacial minimum 

in Motif 3, from which the largest extent of subglacial melting and outwash recorded 

in AND-1B is inferred. This evidence of significant subglacial melting and outwash 

suggests major fluctuations in volume of grounded ice that occupied the Ross 

Embayment. The significance of mudstones being deposited during glacial minima 

(when the AIS in the Ross Embayment was no longer influencing sedimentation at 

AND-1B), raises questions about the thermal state of the EAIS margin in the Ross 

Embayment during these times. In the absence of a proximal Ross Embayment AIS 

grounding line, the persistent supply of terrigenous muds during glacial minima 

required a local meltwater source. Therefore, terrestrial or marine-terminating TAM 

outlet glaciers (e.g., the Ferrar and Blue Glaciers) probably provided this source, and 

that meltwater processes were occurring on the EAIS margin/outlet glaciers at this 

time (Figure 44). 
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Figure 44: Sedimentary model for Motif 3, along a generalised profile of transect x-x’ (see 
Figure 36). During glacial minima (top), sedimentation during open marine conditions at the 
drill site are dominated by hemipelagic suspension settling associated with increased 
meltwater derived from TAM outlet glaciers, relative to Motif 1 and 2. During ice sheet
glacial advance/retreat over the drill site, there is a significant increase in facies associated 
with meltwater process at the grounding line, (Facies 5, 7, 9) and other mudstone rich facies 
(Facies 2, 3, 4). The ice sheet configuration for the glacial maxima is expected to be similar to 
that for Motif 1 (Figure 42). 
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3.7 Conclusions

The AND-1B drill core provides the most continuous, high-resolution record of AIS 

oscillations and evolution over the past 13 Myr yet recovered. Stratigraphic signatures 

for repetitive oscillations of AIS extent in the Ross Embayment under three different 

glacial regimes since the Middle Miocene are identified. Development of a high 

resolution age model for AND-1B is currently underway, and will allow the 

observations made in this chapter to be correlated with other proxy climate records 

(e.g., ice and marine isotope records), thus providing new insight into Antarctica’s 

influence, and response to, Late Cenozoic climate events. 

All three motifs display evidence of subglacial erosion and of deposition by a 

grounded ice sheet. Ice-proximal conditions were followed by a period of proglacial-

marine or open-marine sedimentation during retreat of the ice terminus, and 

succeeded by additional proglacial-marine deposition or erosion during subsequent 

AIS readvance in the Ross Embayment. The different motifs record changes in the 

areal extent of the ice sheet, with its mass balance controlled by changes in 

surface/basal melting and calving processes through the Late Cenozoic. 

During the Middle Miocene, sedimentary sequences of Motif 1 were deposited 

beneath grounded ice and floating ice shelves. Evidence for subglacial melt-water or 

erosion generally is lacking in these sequences, suggesting a cold, polar glacial regime 

for both the WAIS and the EAIS during this time. Sequences deposited during the 

Late Miocene (Motif 3) contain strong evidence for significantly higher volumes of 

subglacial melt-water and terrigenous sediment supply by both the ice sheet that 

occupied the Ross Embayment and local EAIS outlet glaciers. This evidence includes 

the repeated presence of outwash facies deposited during AIS grounding line retreat 

and advance in the Ross Embayment, as well as the deposition of mudstone facies, 

rather than diatomite, during glacial minima. In contrast, the Pliocene sequences of 

Motif 2 document dynamic fluctuations of the marine-based AIS in the Ross 

Embayment, in the form of subglacial till (diamictites) alternating with open-marine 

diatomites. The meltwater influence on sequences of Motif 2 appears to have 

decreased through time, as evidenced by the progressive upsection thinning of 
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outwash facies deposited during the transitions from subglacial to open marine 

conditions. This is interpreted as representing a decrease in meltwater influence,

recording the transition from a sub-polar glacial regime in the Early Pliocene to a 

polar glacial regime in the Late Pliocene. Pleistocene sequences of Motif 1 record a 

return to cold polar glaciations, dominated by subglacial and ice shelf deposition with

a general lack of subglacial meltwater influence. This style of glaciation is consistent 

with modern conditions beneath the Ross Ice Shelf.
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3.9 Supplementary report: Grain size analysis

3.9.1 Grain size method

Between 10 and 30 g of sample was disaggregated by drying and crushing gently 

between wooden blocks. After crushing, the samples were tested for carbonate, and if 

present, were treated in 10% HCL until the reaction was complete. The samples were 

then stirred in calgon (1g/L) in an ultrasonic bath until disaggregated, which could

take several hours. Once fully disaggregated, the sample was wet sieved into sand and 

mud fractions. The sand fraction (63 μm to 2 mm; 4ø to -1ø) was dry sieved at 0.5ø 

intervals, while a 1.5 g sub-sample of the mud fraction was stirred in calgon for 15 

minutes in an ultrasonic bath and analysed by SedigraphTM 5100. Data for material 

>63μm, recovered during the dry sieving phase, were then merged with the Sedigraph 

data. Given the same sample size, the gravel fraction (>2 mm) cannot be reliably 

estimated, and although recorded, was excluded from the statistical analysis. The 

relative abundance of gravel was recorded at 10-cm intervals by visual analysis during 

core characterization (Krissek et al., 2007). 

While the removal of aggregates within the diamictite samples was difficult without 

destroying the original grain-size distribution, it was successful in most cases. The 

presence of aggregates can be identified by significant jump in the distribution 

between the sieve and Sedigraph (~4ø), as well as during thin-section analysis of the 

sand fraction, allowing the magnitude of any aggregate error to be determined

qualitatively. However, mudstone and diamictite intraclasts were a relatively common 

component in some diamictite deposits, and this error could not be determined. Given 

the consolidated and sometimes cemented nature of these deposits, and that the 

intraclasts were composed of the same material as the diamictite matrix, it was 

impossible to record grain-size distribution and maintain the original depositional 

grain size of many of these samples, and this is an accepted error. The results are 

presented according to the facies assigned during initial core characterisation, and 

confirms in most case, the initial descriptions.
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3.9.2 Facies 1: Diatomite

Eight samples of diatomite were selected for grain size analysis, with the primary aim 

to extract the sand fraction for thin section analysis. Due to the small sample sizes and 

low proportion of terrigenous sediment, no attempt was made to dissolve the biogenic 

silica. In most samples, there are small peaks in the sand fraction, probably 

representing an IRD component. Although the grain-size distribution fits into the 

silty-clay to clay mode, this may be an artefact of the physical crushing of the fragile 

diatom frustules during processing. The line chart in Figure 45 shows the grain-size 

distribution for AND-1B diatomite (black lines) plotted alongside diatomites from 

DF80-189 (red lines; see Chapter 2), which were not crushed during processing. This 

indicates that errors resulting from physical crushing were minimal. However, both 

samples were disaggregated in an ultrasonic tank, which may also damage diatom 

frustules.

3.9.3 Facies 2: Mudstone

Twenty-two samples of mudstones were processed for grain size analysis. All but one 

sample fit into the silty-clay to clay mode, and in some samples the clay fraction 

(>8ø) reaches 80%. Only one sample has a distinct fine sand mode that shows a jump 

between the sieve and Sedigraph, and is suspected to have incompletely disaggregated 

during processing. The sand fraction is absent in most samples (Figure 46), indicating 

little to no input of ice-rafted debris (from either a floating ice shelf or ice-bergs). 

Figure 45: Grain-size results for Facies 1: Shepard diagram (left) showing textural 
classification and frequency curve for AND-1B (black lines) and DF80-189 core (red lines 
(presented in Chapter 2 of thesis).
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Figure 46 shows the comparison of AND-1B mudstones versus those from the HWD 

and DF80-189 cores (red lines; presented in Chapter 2 of this thesis) and those from 

the Cape Roberts Project (blue lines; Dunbar and Barrett, 2004). The distribution in 

AND-1B correlates well with those of the HWD and DF cores, in which the mudstone 

facies are interpreted to have been deposited beneath a floating ice shelf that is free of 

basal debris. The Cape Robert Project mudstones all have a distinct fine sandstone 

mode, which is likely to be the result of either the distal component of coastal 

processes (i.e., suspension settling), or proximal grounding line processes associated 

with the MacKay Glacier (Fielding et al., 2000). 

3.9.4 Facies 3: Interstratified mudstone and sandstone

The grain-size frequency distribution of Facies 3 (34 Samples; Figure 47) is highly 

variable, making it difficult to define any significant pattern. The distribution of this 

facies in AND-1B (black lines) correlates well with the interstratified sand and 

mudstone from HWD03-1 between 0 and 24 cm (red line), indicating that this facies 

can be deposited in a sub-ice shelf environment, although open marine environments 

are also a possibility. Sediment gravity flows or grounding line processes, including 

possible tidal pumping (Domack and Williams, 1990; Domack et al., 1999; Powell 

and Domack 2002; Anandakrishnan, and Alley, 1997), are the probable depositional 

processes for these interstratified mudstone and sandstone. 

Figure 46: Grain-size results for Facies 2: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines) and similar facies from 
the Cape Robert Project (Dunbar and Barrett, 2004), and HWD03-1/DF80-189 core (red lines; 
presented in Chapter 2 of this thesis).
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3.9.5 Facies 4: Mudstone with dispersed/common clasts

Sixteen samples were analysed for grain size, with the frequency distribution of the 

facies (Figure 48) lying between that of Facies 2 (mudstone; Figure 46) and Facies 10 

(massive diamictite; Figure 53). The coarser fraction is indicative of either ice-rafted

debris, or deposition in a glacimarine environment that is (relative to Facies 2) more 

proximal to the grounding line. The clay fraction (>8ø) can be as high as 80%, which 

is a similar value to that observed for Facies 2. One sample shows a spike at 4ø 

(Figure 48), which is likely due to incomplete disaggregation during processing.

Figure 47: Grain-size results for Facies 3: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines) and similar facies in 
HWD03-1 (red lines; presented in Chapter 2).

Figure 48: Grain size results for Facies 4: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines).
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3.9.6 Facies 5: Rhythmically interlaminated mudstone with siltstone or sandstone

Five samples were selected for grain size analysis, all of which are lacking any coarse 

sand. Although the clay fraction dominates all samples and the distribution is similar to 

Facies 2 (mudstone), there are broad modes in the silt range for three of the samples

(Figure 49). The other two samples show similar distributions to those of Facies 2. 

3.9.7 Facies 6: Sandstone

A total of 11 sandstone samples were analysed for grain-size distribution. Seven of 

these were taken from >1-m thick intervals of graded volcanic sandstones and 

siltstone (grey lines in Figure 50). The graded volcanic sandstones all have well-

defined modes in the very-fine sand or silt range, as well as a notable clay component. 

The range of different modes, and the high proportion of clay in the volcanic sands 

reflects the graded nature of these sandstones, suggesting the influence of turbidity 

currents. The clay is suggestive of suspension settling as the distal component of 

sediment gravity flows. Two more samples were taken from a sandstone (100.10 and 

100.61 mbsf) that directly over Facies 9 (stratified diamictite), and another from a 

sandstone (1032.47 mbsf) that is interstratified with Facies 5. The sandstones (black 

lines in Figure 50) associated with Facies 5 or 9 have well-defined modes, contain 

little clay, and correspond well with the sand unit in HWD03-1 (24-31 cm), which is 

also directly overlying a diamictite interpreted as melt-out of basal debris. This, along 

with their association with grounding line proximal facies suggests re-sedimentation 

and sorting by traction currents associated with grounding line processes (possibly 

tidal pumping). A fine volcanic sandstone interval (0.48-m thick) with pebble size 

Figure 49: Grain-size results for Facies 5: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines).
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clasts within the ~90 m thick diatomite interval was also sampled and has a broad silt 

mode, consists of 40% clay, and may represent either a IRD or debris flow interval. 

3.9.8 Facies 7: Conglomerate

Only three samples (Figure 51) were collected for processing, due to the difficulties in 

obtaining statistically significant result for facies with a high proportion of gravel (and 

the small sample size). One sample (790.74 mbsf) did not contain enough fine 

material for Sedigraph analysis, and the coarse nature of the sample is indicative of a 

conduit discharge deposit (e.g., Figure 41D). The sample at 48.03 mbsf was 

designated a conglomerate during core description, but displays a uniform distribution 

that is more akin to Facies 9 and 10 (stratified and massive diamictite; Figure 52 and 

Figure 53). Reassessment of this description reveals that this conglomerate is only 26-

cm thick, matrix-supported, and clast-rich (but dominated a single clast). It is better 

classified as clast-rich diamictite, with deposition by basal debris meltout from 

floating ice inferred. The third sample (1221.8 mbsf) is a volcanic conglomerate, that 

has a well-defined sandstone mode and a broad clay “tail”, and given its association 

with volcanic sands above and below, is probably a volcanic debris flow.

Figure 50: Grain-size results for Facies 6: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines) and similar facies from 
the Cape Robert Project (Dunbar and Barrett, 2004), and HWD03-1/DF80-189 core (red lines; 
presented in Chapter 2).
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3.9.9 Facies 8: Breccia

No grain size samples analysis due to coarse nature of deposits.

3.9.10 Facies 9: Stratified diamictite

All 22 stratified diamictites analysed for grain size lacked a well-defined mode (Figure 

52), although some display a very broad medium-silt mode, which is not as common in 

Facies 10 (massive diamictites; Figure 53). Most stratified diamictites are a muddy 

diamictites, but the clay fraction (>8ø) is highly variable in abundance (ranges from 17-

74%).

Figure 51: Grain-size results for Facies 7: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines).

Figure 52: Grain-size results for Facies 9: Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines).
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3.9.11 Facies 10 – Massive diamictite

Twenty-six massive diamictites were analysed for grain size (Figure 53). They lack any 

well-defined mode, which is similar to Facies 9 (stratified diamictites). Some display a

very broad mode combining the fine sand to fine silt modes, but this is not as common as 

for Facies 9. Most are classified as muddy diamictite and the proportion of clay fraction 

(>8ø) is generally higher than Facies 9 (ranges from 22-78%). The massive diamictites in 

AND-1B have significantly higher clay proportions than other diamictites from the Ross 

Sea embayment and adjacent TAM till deposits (e.g., Figure 53). Cape Roberts Project 

diamictites (blue lines in Figure 53) have a well-defined fine sand mode, which is absent 

in AND-1B diamictites. The most logical explanation for this difference is that 

diamictites within Cape Roberts Project drill core were deposited by expansion of the 

TAM outlet glacier corresponding to the present-day MacKay Glacier (Powell et al., 

2000; Fielding et al., 2000). Therefore, CRP diamictite are expected to contain a higher 

proportion of basement rocks as part of their basal bed load. 

Diamictites deposited by an expanded AIS in the Ross Embayment at the AND-1B site 

are expected to be entraining older diamictite units as the grounding line migrates

across the seafloor of the Ross Embayment, and therefore incorporating mud-rich facies 

into the glacial bed load. The uniform distribution in AND-1B correlates better with the 

average for Ice Stream B till (Tulaczyk et al., 1998; Figure 53), but is slightly finer 

grained. Although the processes at both sites are likely to be similar (i.e., deposition 

beneath a marine-based ice sheet), AND-1B is more distal to a source of subglacially 

exposed bedrock, and therefore more subglacial sediment deposited at AND-1B is 

likely to be entrained from (mud-rich) diamictites that are believed to blanket the 

majority of the sea floor of the Ross Embayment continental shelf (Webb et al., 1979; 

Bart et al., 2003). Differences in glacial process could also explain this variance in 

grain-size distributions (e.g., grounding zone deposition versus subglacial till; extent of 

the ice streaming versus slower-moving ice at AND-1B). The textural classification of 

AND-1B diamictite appears to be consistent with diamictites from the Ross Ice Shelf 

Project (RISP) and DSDP 272 from the Ross Sea continental shelf (Figure 53). This 

observation also supports deposition by expansion of the marine-based AIS in the Ross 

Embayment eroding soft sediments from the Ross embayment continental shelf, rather 

than direct erosion of Paleozoic to Mesozoic bedrock by expanded TAM outlet glaciers. 
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Figure 53: Top: Grain-size results for Facies 10 - Shepard diagram (left) showing textural 
classification; and frequency curve (right) for AND-1B (black lines) and similar facies from 
the Cape Robert Project (Dunbar and Barrett, 2004), and the average frequency curve for 
upstream B tills (green line; Tulaczyk et al., 1998); Bottom: Comparison of textural 
classification to other Ross Embayment diamictites interpreted as subglacial till (modified 
from Tulaczyk et al., 1998).
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3.10.1.1 Supplementary data: Grain-size frequency from AND-1B 

Class limits
(phi)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Rest

Depth (mbsf)

F
ac

ie
s

9.99 10 0.00 1.20 1.39 1.06 1.06 1.25 1.48 1.71 1.90 1.90 2.17 2.04 2.17 0.81 1.91 1.30 3.24 3.97 4.86 6.16 5.27 4.94 4.78 3.97 3.56 35.89
20.01 4 0.00 0.00 0.06 0.34 0.40 0.40 0.46 0.57 0.69 0.80 0.92 0.86 0.98 0.79 1.69 2.81 3.00 4.12 4.12 4.50 5.53 4.31 3.28 2.91 1.22 55.22
20.27 3 0.14 0.00 0.53 0.96 0.57 0.72 0.91 1.05 1.20 1.20 1.39 1.24 1.44 0.77 0.27 2.05 2.14 2.49 3.47 3.47 4.54 4.27 3.21 2.76 3.29 55.92
20.51 4 0.00 0.45 0.00 0.11 0.23 0.34 0.57 0.57 0.57 0.68 0.80 0.91 1.02 1.08 0.92 1.11 2.22 2.77 3.42 4.34 5.08 4.71 3.78 3.42 3.78 57.13
25.93 3 0.00 0.00 0.14 0.41 1.52 3.38 7.65 11.38 10.69 9.03 8.07 5.86 5.44 2.85 3.84 3.95 4.79 4.86 4.26 2.97 2.20 1.64 0.87 0.59 1.22 2.38
25.96 3 0.00 0.00 0.00 0.00 0.37 0.75 1.87 4.48 5.97 6.34 6.34 5.22 4.85 2.47 3.13 4.67 7.10 9.53 5.69 4.09 4.60 2.43 2.30 1.28 3.58 12.92
26.53 3 0.00 0.00 0.00 0.00 0.09 0.09 0.37 0.82 1.37 1.83 3.30 3.75 3.30 2.68 3.74 3.57 5.70 9.10 7.48 5.95 5.27 4.93 4.08 3.91 1.87 26.78
31.63 10 1.27 0.70 1.27 1.58 1.39 0.95 1.08 1.14 1.33 1.33 1.52 1.27 1.20 2.29 0.58 1.66 1.83 2.08 2.66 2.58 3.32 3.16 2.41 3.32 4.49 53.61
42.1 4 0.00 0.00 0.00 0.00 0.04 0.04 0.18 0.31 0.66 0.92 1.45 1.67 2.02 2.36 2.53 3.22 3.87 3.59 4.60 5.98 2.67 4.70 4.70 4.51 6.44 43.55

42.36 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.18 0.53 1.05 1.58 0.77 1.78 2.77 3.37 3.17 3.47 2.57 4.65 3.66 2.97 3.57 3.37 60.41
42.58 4 0.00 0.00 0.00 0.10 0.10 0.20 0.29 0.49 0.59 0.59 0.69 0.69 0.69 0.97 1.45 2.50 2.98 4.62 4.33 4.81 4.23 4.43 4.33 4.62 4.23 52.07
44.84 9 0.00 0.00 1.33 1.33 1.00 1.16 1.28 1.83 2.11 2.16 2.33 2.22 2.27 2.08 4.66 8.52 6.99 6.19 5.38 5.54 5.30 3.45 3.45 3.13 1.69 24.58
48.03 7 3.56 1.07 0.94 2.22 2.22 3.02 3.56 3.43 3.29 3.49 3.96 3.56 3.56 1.46 1.35 0.91 2.56 4.20 3.29 4.02 3.90 3.47 3.90 2.98 3.17 26.92
48.19 9 0.54 0.18 0.18 0.36 0.45 0.58 0.89 1.12 1.39 1.56 2.41 3.80 6.35 3.15 4.04 6.64 10.70 11.17 7.50 6.17 4.76 4.06 1.64 3.28 3.36 13.74
50.14 10 0.00 0.39 1.75 0.78 0.91 1.10 1.49 1.95 2.86 3.57 5.52 6.81 9.15 4.92 3.32 6.63 8.81 7.57 6.09 4.02 3.73 3.19 1.95 2.25 0.65 10.59
50.61 10 4.04 2.24 2.54 3.66 3.44 3.59 3.44 3.14 3.06 2.91 3.29 3.44 3.36 1.19 2.74 4.45 5.08 4.79 3.77 4.17 3.94 3.48 3.54 3.08 2.40 15.24
52.97 3 1.14 1.55 1.96 2.23 2.42 3.28 3.60 3.56 3.19 2.60 2.46 2.19 2.23 1.21 1.32 1.65 2.32 3.18 3.51 4.96 4.83 5.16 5.03 4.77 5.63 24.02
53.1 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.18 0.27 0.18 0.54 0.47 0.70 2.20 3.70 9.80 11.80 10.20 9.30 6.90 6.80 5.50 6.20 25.19

53.23 9 0.93 2.42 3.73 2.89 2.46 2.80 3.44 3.73 3.99 3.82 4.03 4.12 4.92 2.91 3.05 5.62 8.46 7.90 6.23 4.73 2.78 2.23 1.61 1.39 2.06 7.74
56.81 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.75 19.22 26.18 13.31 3.30 2.14 2.75 4.67 4.63 3.80 3.69 2.60 2.57 1.81 1.56 0.29 5.68
58.97 9 2.34 1.48 2.06 1.40 1.60 1.44 1.81 2.22 2.43 2.47 2.67 2.71 3.50 1.78 0.83 2.05 3.04 4.17 4.88 5.30 4.52 4.52 4.59 4.03 4.31 27.84
67.8 10 1.46 0.53 0.81 0.93 1.06 1.62 1.87 2.18 2.62 2.68 2.87 2.55 2.68 0.81 1.25 1.22 3.12 4.12 9.37 10.59 8.16 5.79 3.89 3.35 1.83 22.64

70.75 10 0.86 1.60 1.66 1.43 1.31 1.48 1.94 2.57 3.37 3.48 3.94 3.31 3.20 1.52 1.62 2.12 2.53 3.43 2.88 3.22 4.25 5.21 4.38 3.77 3.08 31.85
74.71 10 0.85 1.24 1.08 0.91 0.88 1.70 2.05 2.25 2.64 2.77 3.06 2.74 2.87 1.54 0.66 1.56 2.07 2.59 5.11 7.71 6.59 5.48 4.22 3.48 2.37 31.57
77.52 10 0.00 1.75 1.75 0.75 0.75 1.50 1.94 2.44 2.82 2.94 3.13 2.69 2.69 1.48 2.12 0.66 1.75 3.14 4.16 6.21 6.43 6.35 4.75 4.46 3.94 29.36
82.4 9 1.07 1.01 1.66 1.96 1.25 1.19 1.37 1.54 1.72 1.78 2.26 2.08 2.79 2.39 2.38 2.62 4.15 4.69 4.77 5.15 5.00 4.92 4.15 4.08 4.23 29.77
83.5 2 0.00 0.16 0.45 0.20 0.24 0.28 0.24 0.20 0.20 0.20 0.20 0.24 0.49 0.30 0.00 1.64 2.03 2.90 3.96 5.99 5.99 6.28 6.57 5.61 1.16 54.43

83.97 2 1.99 0.00 0.35 0.41 0.18 0.29 0.29 0.23 0.18 0.18 0.29 0.41 0.70 0.18 0.09 0.76 1.52 3.32 4.65 6.46 7.98 7.31 6.46 5.89 6.27 43.60
84.31 2 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.14 0.22 0.29 0.36 0.65 0.55 0.95 0.00 1.36 4.85 7.67 9.32 9.12 9.71 8.15 6.41 4.66 35.52
85.2 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.18 0.24 0.42 1.07 0.88 0.20 2.15 8.42 9.30 10.28 8.42 8.03 6.27 5.78 5.19 33.10

86.05 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 1.18 0.88 0.49 0.29 1.28 4.02 6.38 5.99 6.58 6.77 6.48 4.52 54.87
86.31 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.46 1.83 3.51 5.80 2.80 1.46 3.19 4.65 5.60 7.41 6.20 5.08 5.94 5.17 4.39 4.05 32.30
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Class limits
(phi)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Rest

Depth (mbsf)

F
ac

ie
s

86.74 2 0.00 0.00 0.00 0.06 0.06 0.06 0.25 0.50 1.24 1.86 2.48 3.84 4.59 1.37 2.00 4.63 3.96 4.63 3.87 4.30 4.13 5.22 4.63 5.22 4.13 36.97
90 2 0.58 0.00 0.24 0.29 0.38 0.48 0.62 0.86 1.30 1.97 2.98 3.46 4.81 1.22 0.95 1.97 2.71 4.10 5.25 4.26 5.00 5.41 4.59 5.58 6.40 34.60

93.15 3 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.26 1.95 2.18 1.17 0.19 0.00 2.56 5.60 6.55 7.98 7.98 8.83 6.84 6.74 4.37 36.65
95.3 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.12 0.26 0.20 2.22 1.91 10.47 12.89 9.27 7.25 6.24 5.84 4.63 1.31 37.26

95.55 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 1.33 5.89 10.41 3.52 1.22 4.01 2.49 4.74 5.14 5.38 5.14 5.70 5.70 5.46 2.97 30.75
96.58 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.09 0.13 0.17 0.21 0.34 0.28 1.09 0.20 3.57 7.24 6.34 6.84 5.95 7.04 5.65 5.85 5.25 43.71
97.35 9 0.00 0.67 0.77 0.86 0.81 1.01 0.72 1.05 1.24 1.34 1.44 1.82 2.63 2.16 1.67 3.26 4.68 5.60 4.60 4.43 4.60 4.60 4.43 4.10 2.17 39.31
99.92 2 0.00 0.00 0.12 0.06 0.12 0.06 0.06 0.06 0.06 0.06 0.12 0.18 0.36 1.69 0.59 3.15 10.23 8.16 4.82 4.72 4.62 4.23 4.13 4.13 0.06 48.19
100.1 6 0.43 0.00 0.54 0.86 1.18 1.56 2.90 8.11 16.22 17.08 14.55 8.65 4.99 1.54 0.86 1.23 1.39 1.72 1.63 1.98 1.63 1.50 1.28 1.10 1.17 5.92

100.61 6 0.00 0.12 0.23 0.51 0.51 0.94 5.35 17.14 22.80 14.41 10.00 6.01 4.14 1.03 0.84 1.52 2.00 1.71 1.56 1.30 1.06 0.99 0.75 0.65 0.31 4.14
100.79 9 1.76 1.29 1.50 0.93 1.19 1.14 1.19 1.55 1.92 1.92 2.12 2.12 2.59 3.02 3.89 6.72 11.98 9.27 5.87 6.03 4.71 3.86 3.55 2.24 0.07 17.54
109.19 9 3.50 0.10 0.80 0.90 0.20 0.50 0.40 0.40 0.60 0.80 1.20 1.50 2.10 1.86 4.91 9.11 11.00 8.07 6.87 6.01 6.10 4.47 3.87 3.18 3.18 18.38
109.74 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.10 0.35 0.70 2.51 4.22 7.94 8.34 7.64 6.43 6.53 6.03 6.23 4.62 38.19
111.17 3 0.00 0.16 0.07 0.05 0.05 0.11 0.05 0.11 0.11 0.11 0.22 1.79 7.86 6.58 13.12 16.68 14.95 10.86 6.52 5.04 3.39 2.43 1.91 1.13 3.22 3.48
117.63 1a 1.15 0.00 0.97 0.61 0.73 0.91 0.97 0.91 0.85 0.91 1.27 1.70 4.06 2.48 1.29 3.50 6.50 8.08 7.58 6.16 6.25 5.33 3.83 3.58 5.41 24.99

118 4 0.55 2.05 1.96 1.87 2.37 3.01 2.74 2.69 2.37 1.83 1.78 1.78 2.19 0.93 1.80 3.74 4.53 5.82 5.46 5.68 4.53 5.03 4.67 4.10 2.37 24.15
118.62 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.16 0.41 0.97 2.04 0.97 1.94 3.99 6.13 6.42 6.03 5.83 6.51 6.22 5.83 6.13 40.16
119.15 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 1.76 3.99 4.82 2.15 4.00 7.06 8.92 12.18 11.48 9.18 6.71 6.00 4.33 3.09 2.47 11.74

122 2 0.62 1.24 1.92 1.73 1.61 1.61 1.42 1.67 1.98 1.98 2.23 2.48 3.40 2.76 2.78 4.74 7.90 7.22 6.32 5.64 4.81 4.29 3.76 3.01 0.90 21.97
124.39 9 0.00 0.23 0.46 0.05 0.23 0.14 0.14 0.14 0.23 0.23 0.32 0.51 0.83 0.71 0.97 6.39 10.36 9.40 6.68 7.27 4.94 5.13 4.65 4.26 5.13 30.61
125.95 2 0.00 0.00 0.00 0.00 0.04 0.00 0.08 0.08 0.08 0.12 0.16 0.16 0.27 0.12 0.69 1.09 1.98 2.67 2.77 3.96 3.36 4.55 4.55 4.85 3.76 64.69
126.39 4+2 0.00 0.00 0.00 0.04 0.00 0.04 0.09 0.09 0.09 0.13 0.17 0.21 0.47 0.61 2.25 0.98 0.39 3.52 2.45 4.31 4.99 4.70 5.38 4.60 3.03 61.46
128.78 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.50 0.50 0.50 2.48 3.67 2.78 4.46 5.25 5.65 6.54 6.25 7.34 54.04
131.72 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.43 1.76 1.18 2.56 1.57 2.95 3.35 3.74 2.85 4.33 4.43 4.43 4.92 61.41
133.48 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.58 1.97 4.08 5.81 8.21 3.69 2.03 2.18 3.90 5.61 5.69 4.36 4.21 4.68 3.98 3.90 3.12 31.96
134.68 4 0.00 0.00 0.20 0.61 0.47 0.54 0.34 0.41 0.81 1.83 4.26 10.41 15.01 5.11 9.77 12.32 9.77 7.28 5.43 4.72 3.13 2.43 1.02 1.85 0.77 1.53
141.29 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 1.00 1.28 4.16 8.91 11.59 18.32 18.32 14.36 8.22 5.54 2.67 2.48 2.97 0.00
141.4 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.13 2.68 5.31 10.14 19.07 26.64 17.38 6.92 3.55 2.34 1.78 0.84 0.19 1.40 1.59

141.58 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.47 5.90 5.59 10.48 23.58 20.90 11.61 6.43 3.30 2.50 2.68 0.36 0.00 4.29 1.79
141.72 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.11 1.16 10.29 30.41 21.00 12.16 7.83 5.89 3.70 1.94 1.51 1.26 0.52 0.49 0.43 0.00 1.14
141.84 6V 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.70 2.49 4.53 13.15 23.85 9.03 9.23 13.08 9.27 5.08 3.01 1.74 0.94 0.80 0.66 0.42 1.88 0.00
146.58 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 1.70 5.56 7.57 9.12 2.52 4.12 9.52 9.59 7.79 5.92 5.17 4.35 4.95 2.85 3.82 1.87 13.34
146.83 10 0.56 0.00 0.65 1.08 1.51 1.42 1.68 1.90 2.29 2.42 2.89 2.94 3.54 2.02 1.29 3.33 5.82 10.89 12.55 9.98 6.28 4.61 2.72 2.57 3.86 11.19
147.76 10 0.00 5.97 19.89 7.46 5.47 6.46 6.96 7.46 11.93 13.42 11.43 3.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
148.32 10 0.00 1.93 1.29 1.65 1.36 1.43 0.93 1.22 1.58 1.58 1.72 1.93 2.44 0.57 1.96 3.03 6.46 5.07 4.09 5.07 4.50 4.82 4.58 4.66 3.52 32.62
150.42 9 3.42 1.95 1.81 2.28 1.54 1.68 2.01 2.15 2.55 3.22 4.43 4.63 5.16 2.81 2.43 2.30 3.93 5.20 5.07 5.32 4.59 4.89 4.05 3.93 3.87 14.80
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Class limits
(phi)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Rest

Depth (mbsf)

F
ac

ie
s

150.95 4 0.00 0.00 0.38 0.38 0.38 0.33 0.33 0.33 0.33 0.27 0.27 0.27 0.38 0.74 2.30 1.15 0.96 3.74 4.70 5.75 4.99 5.94 6.71 6.90 8.15 44.29
151.5 4 0.00 0.35 0.17 0.17 0.17 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.17 0.17 1.84 1.17 0.49 2.43 2.43 4.37 5.44 5.54 6.21 5.54 6.21 56.52

151.71 1b 0.00 0.00 1.12 3.98 1.99 0.43 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.00 1.10 0.46 0.55 1.38 1.01 3.77 3.49 4.41 5.70 6.43 7.07 56.50
178.98 1a 2.41 1.95 1.09 0.63 0.40 0.40 0.40 0.34 0.34 0.29 0.23 0.23 0.29 1.10 0.00 1.17 0.09 1.44 1.08 1.53 3.51 5.31 7.11 7.11 10.44 51.11
180.38 1a 0.00 0.00 0.20 0.20 0.26 0.33 0.40 0.40 0.40 0.26 0.26 0.20 0.13 0.67 1.72 1.34 1.53 1.34 3.53 4.11 5.35 6.88 7.55 8.60 7.93 46.43
180.68 1b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.00 0.07 0.07 0.15 1.75 0.79 1.08 0.39 1.77 2.66 5.61 4.92 6.69 7.18 8.07 10.23 48.41
181.22 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.19 0.19 0.28 0.78 2.37 1.48 2.76 2.66 2.17 4.04 3.55 3.35 3.95 4.64 3.26 64.22
181.89 2 1.90 0.47 0.27 0.34 0.14 0.00 0.07 0.00 0.14 0.54 0.61 0.34 0.34 0.14 0.76 1.61 2.27 3.32 4.83 4.07 4.93 6.63 5.40 6.35 4.45 50.11
181.94 9 0.00 4.04 3.63 3.63 3.15 2.74 2.74 2.46 2.60 2.81 3.56 3.56 3.90 2.01 1.50 2.59 3.37 3.85 3.43 3.01 3.25 2.95 2.65 3.13 1.86 27.61
191.24 1+10 0.00 0.38 0.21 0.14 0.17 0.19 0.23 0.24 0.24 0.31 0.31 0.30 0.45 0.14 0.03 0.39 3.48 3.97 3.77 5.90 6.09 5.80 5.71 5.61 5.13 50.79
211.74 1a 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.24 1.96 0.49 0.07 0.98 1.86 4.60 3.72 7.05 9.01 10.09 10.09 8.13 39.87
224.53 3 1.59 0.64 0.00 0.21 0.64 0.74 0.85 0.85 0.85 0.85 0.96 0.85 0.96 0.59 0.63 1.44 2.34 3.24 4.40 6.20 6.56 8.18 6.92 6.65 6.65 36.22
224.67 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.44 2.29 5.47 8.57 2.15 3.03 2.13 3.44 6.31 6.72 7.95 7.95 6.89 5.08 4.84 4.18 22.46
224.88 3 0.00 0.00 0.00 0.17 0.17 0.23 0.35 0.23 0.23 0.35 0.64 0.58 0.52 0.12 0.68 1.55 0.10 3.19 4.55 5.32 7.64 8.70 7.35 6.87 9.28 41.20

225 9 3.28 3.23 3.53 4.82 4.13 4.23 4.08 4.08 4.62 4.28 4.62 4.62 4.67 1.96 2.84 4.12 4.62 4.76 5.17 5.63 4.30 3.16 2.11 2.15 2.20 2.79
225.38 10 0.00 0.00 0.32 0.24 0.32 0.24 0.32 0.40 0.40 0.48 0.64 0.64 0.88 1.36 0.28 1.42 2.93 3.12 3.02 4.81 5.38 5.66 6.51 6.04 7.55 47.01
258.55 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 2.73 0.00 0.39 0.68 0.10 1.16 1.55 1.84 4.45 7.16 8.03 9.87 61.93
260.42 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.00 1.19 0.89 1.09 2.18 2.08 2.38 2.77 3.96 4.56 4.56 3.57 70.44
260.7 3 0.00 0.00 1.32 3.45 4.85 5.80 6.09 5.43 4.48 3.08 2.86 3.08 3.60 2.30 3.39 4.50 5.17 4.27 4.10 3.60 3.77 3.43 3.04 2.87 3.09 12.42

267.88 4 0.00 0.00 0.00 0.00 0.09 0.18 0.27 0.27 0.44 0.62 0.89 1.06 1.33 1.28 1.60 3.10 2.06 3.47 2.25 3.75 5.16 4.79 5.82 5.44 4.13 51.99
283.2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.08 0.16 0.41 0.83 1.17 0.78 0.10 1.96 3.82 5.09 3.52 4.99 5.29 5.97 6.07 59.42

293.23 2 0.00 0.00 0.00 0.10 0.00 0.10 0.10 0.10 0.10 0.20 0.20 0.31 0.51 0.31 1.47 2.94 3.04 5.59 5.30 5.49 5.20 6.37 5.98 6.47 5.79 44.32
296.72 10 0.00 0.80 0.22 1.02 1.16 1.24 1.75 1.89 2.18 2.33 2.98 3.71 4.00 0.69 0.93 3.78 4.24 5.48 4.78 4.55 5.09 4.24 5.09 5.02 5.09 27.71
307.04 10 0.96 0.00 0.17 0.35 0.17 0.35 0.52 0.70 1.04 1.22 1.48 1.65 1.91 1.06 1.97 2.24 2.69 3.95 3.95 5.83 4.57 5.65 5.65 6.10 1.43 44.39
316.23 4 0.00 0.00 0.46 0.46 0.84 1.07 1.53 1.76 2.30 2.68 3.22 3.52 3.68 2.94 2.56 3.80 5.82 5.20 4.89 5.28 4.74 5.28 4.35 3.96 2.87 26.78
358.94 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 1.44 5.60 10.19 3.90 3.83 4.24 5.38 5.13 3.18 4.32 4.07 3.91 4.32 4.24 4.56 31.53
359.95 3 0.00 0.33 0.17 0.17 0.08 0.08 0.17 0.08 0.08 0.08 0.17 0.33 1.51 2.46 2.89 2.22 3.37 4.53 4.92 5.40 4.63 4.34 4.92 5.59 5.40 46.08
361.6 3 0.00 0.00 0.00 0.76 0.54 0.76 0.65 0.76 0.65 0.44 0.76 1.74 6.96 5.99 7.47 8.14 5.62 5.12 3.86 3.69 4.78 3.61 4.03 4.20 3.86 25.60

381.92 1b 0.00 0.42 0.32 1.05 0.84 1.37 1.37 1.37 1.27 1.27 1.48 1.48 1.90 0.81 1.66 3.19 1.81 2.59 3.62 3.97 4.57 6.04 6.55 6.30 3.97 40.79
413.16 6 0.00 0.00 0.00 0.00 0.13 0.13 0.00 0.13 0.13 0.38 0.77 1.28 2.56 2.60 4.45 10.03 10.68 9.30 8.56 9.20 6.90 6.81 4.51 3.50 4.88 13.07
460.09 3 0.00 0.00 0.12 0.47 0.35 0.83 0.71 0.71 0.83 0.71 0.71 0.94 1.53 1.30 2.93 4.86 4.21 4.86 5.04 4.86 5.59 5.04 5.50 5.22 4.67 38.02
464.07 10 0.00 0.62 0.44 0.35 0.79 0.53 0.35 0.44 0.53 0.44 0.53 0.62 0.97 0.54 2.59 2.96 7.59 7.87 7.04 6.94 6.39 6.39 4.72 5.37 3.06 31.94
473.22 2+4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.60 1.00 1.00 4.10 4.80 5.60 6.90 6.60 6.00 63.29
479.18 10 1.53 0.61 0.31 0.82 0.92 0.71 0.92 1.02 1.22 1.22 1.63 2.04 2.55 2.52 3.25 1.83 4.33 3.91 3.83 4.74 4.33 4.16 5.08 4.49 6.49 35.53
481.15 4 0.00 0.00 0.45 0.09 0.09 0.18 0.09 0.18 0.18 0.27 0.36 0.54 0.90 0.75 0.68 3.78 3.20 3.98 4.75 4.85 5.63 4.27 5.24 5.92 4.46 49.18
488.58 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.20 0.00 1.20 3.91 3.21 4.71 5.62 6.12 7.02 7.32 60.47
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Class limits
(phi)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Rest

Depth (mbsf)

F
ac

ie
s

494.33 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 2.01 4.32 3.12 4.22 3.72 4.92 3.92 5.13 4.92 4.22 58.59
501.2 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.50 0.50 1.10 3.01 3.82 5.72 5.92 5.92 6.03 7.53 59.85

504.55 1b 0.00 0.00 0.31 0.20 0.20 0.31 0.31 0.41 0.41 0.31 0.51 0.61 0.92 2.29 1.78 1.78 3.94 2.63 5.63 5.26 8.07 9.01 8.07 9.20 9.29 28.54
519.11 9 0.00 1.16 3.10 3.02 3.33 2.94 2.71 3.18 3.49 3.33 3.72 5.27 5.19 3.04 5.23 6.40 5.70 5.47 5.00 4.36 4.30 3.95 2.44 2.56 1.63 9.48
523.39 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.17 0.43 1.12 1.39 3.12 6.73 8.77 9.55 8.19 8.68 8.09 7.02 5.07 5.07 3.70 22.81
523.65 3 1.03 0.00 0.16 0.40 0.40 0.55 1.03 1.66 2.37 2.69 3.32 3.95 3.95 2.64 5.54 5.76 6.53 6.69 5.61 5.15 5.46 4.84 3.38 3.69 2.15 21.06
523.93 4+9 3.38 0.82 0.64 0.91 1.19 1.01 1.28 1.19 1.46 1.46 1.55 1.55 1.92 1.21 3.83 6.04 5.38 4.89 4.81 4.98 4.08 3.91 3.75 4.49 4.16 30.09
545.15 4 0.00 0.00 0.00 0.10 0.20 0.31 0.41 0.51 0.72 1.02 1.23 1.84 2.05 2.26 2.02 3.30 5.69 6.05 4.59 5.41 5.69 5.41 4.68 5.14 3.67 37.70
778.7 10 0.00 0.00 0.71 0.83 0.47 0.59 1.07 1.42 1.54 1.90 2.37 2.73 3.08 2.26 1.88 2.04 3.02 2.94 2.78 3.35 3.11 3.60 3.02 2.94 2.37 49.95

790.74 7 32.09 5.54 6.93 5.54 6.00 5.08 3.00 2.31 2.54 2.77 3.46 2.77 2.31 19.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
827.21 3 0.00 0.28 1.12 4.49 4.21 4.21 5.76 6.04 5.62 6.60 8.85 5.90 3.93 1.46 1.05 1.89 2.10 2.43 2.98 2.98 3.15 3.10 2.85 2.73 2.64 13.63
830.64 9 0.00 0.27 0.18 0.53 0.53 1.33 2.66 3.72 3.90 3.81 4.07 3.54 3.63 0.97 0.72 1.98 4.59 2.96 2.89 3.25 3.46 4.09 5.01 4.59 3.81 33.52
850.95 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 4.19 5.59 6.98 7.88 8.08 6.78 7.18 5.98 5.39 2.49 39.30
852.19 3 0.00 0.00 0.00 0.00 0.00 0.00 0.45 5.25 16.94 22.49 19.04 10.94 5.70 2.46 2.02 2.07 2.07 1.97 1.56 1.22 1.17 0.92 0.81 0.78 0.73 1.41
853.25 9 0.00 0.38 0.58 1.35 1.35 1.54 2.02 2.41 2.60 2.69 3.08 2.79 3.86 1.70 1.51 2.42 3.02 2.87 2.57 3.40 3.47 3.55 3.77 3.77 3.70 39.62
854.36 10 3.48 2.26 1.39 2.26 2.70 1.83 2.00 1.91 1.74 1.57 1.74 1.48 1.65 0.90 0.97 1.54 2.13 2.72 3.31 3.38 3.97 4.63 4.56 4.56 4.19 37.12
856.01 4 0.00 0.00 0.00 0.00 0.24 0.24 0.37 0.49 0.61 0.61 0.86 0.98 1.10 1.22 1.21 1.87 2.99 2.99 4.86 4.95 5.51 5.98 6.73 6.64 5.61 43.92
891.17 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.90 2.01 2.71 3.41 5.62 5.62 6.32 5.92 6.53 6.83 53.61
902.8 10 0.00 0.00 1.25 0.67 1.00 1.25 1.75 1.84 2.09 2.09 2.67 2.84 3.42 2.04 1.87 3.34 2.64 3.27 3.27 3.27 3.66 3.97 3.89 3.81 3.81 40.29

1032.47 6 0.00 0.00 0.00 0.00 0.00 0.00 0.37 2.25 9.15 20.19 26.99 13.13 5.54 1.40 0.88 1.11 1.02 1.09 0.98 1.02 1.17 1.13 1.13 0.94 0.62 9.87
1032.83 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.36 1.18 1.21 2.83 4.30 4.39 5.47 5.86 6.54 5.96 6.35 6.15 5.86 5.96 37.49
1033.58 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 1.92 3.20 4.22 3.45 4.32 5.37 4.99 4.89 4.32 4.80 4.61 4.99 2.59 46.15
1043.53 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.19 0.93 3.07 4.60 7.73 8.22 5.87 4.99 4.31 3.72 4.70 3.92 4.99 2.35 40.34
1053.27 9 1.61 0.00 0.32 0.65 0.32 0.73 0.56 0.81 0.97 1.05 1.13 1.45 1.37 0.76 1.68 1.24 2.74 1.24 4.15 3.62 4.94 5.38 6.00 6.18 6.18 44.93
1060.4 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.08 0.38 0.68 0.98 1.13 1.23 2.48 1.15 3.15 1.81 2.86 4.96 5.73 7.26 6.87 7.07 4.77 47.26

1062.87 3 0.00 0.00 0.00 1.25 2.41 4.15 10.91 9.65 8.59 7.72 7.72 6.66 5.79 3.37 2.53 2.68 2.75 2.94 2.14 2.78 2.40 2.72 2.49 1.95 0.93 5.46
1063.66 10 0.00 2.68 1.22 1.46 1.09 1.58 1.22 1.58 1.70 1.82 1.70 2.68 2.92 1.78 1.07 4.14 2.68 4.22 5.21 6.44 6.21 5.29 5.52 4.60 4.83 26.36
1066.17 10 0.00 0.95 0.58 0.58 0.36 0.51 0.66 0.80 0.95 1.02 1.09 0.95 1.09 1.53 0.09 0.45 1.80 1.80 2.96 4.76 4.67 4.40 5.66 5.66 4.58 52.10
1095.46 9 0.00 1.42 0.99 1.28 0.78 0.78 1.14 1.42 1.85 2.06 2.41 2.77 3.20 2.06 1.39 1.86 2.87 3.41 3.18 5.12 4.81 5.20 5.59 5.51 4.50 34.38
1164.3 2+10 2.02 2.61 1.49 1.49 1.27 1.49 1.42 1.57 2.02 2.09 2.39 2.76 2.91 1.64 2.21 3.76 3.10 3.76 4.13 5.09 5.16 4.94 5.31 5.24 4.65 25.45

1164.48 4 0.00 0.00 0.00 0.32 0.08 0.16 0.24 0.16 0.24 0.24 0.24 0.32 0.48 0.53 0.58 0.87 3.79 3.59 5.15 6.61 7.19 7.68 7.97 7.58 5.54 40.42
1167.68 10 1.00 2.36 1.43 1.00 1.28 1.43 1.28 1.64 2.28 2.64 3.14 3.71 4.28 3.48 2.97 3.11 4.10 4.03 4.66 4.31 4.59 4.59 4.38 4.45 3.46 24.38
1168.08 4 0.00 0.00 0.00 0.08 0.08 0.16 0.16 0.23 0.31 0.39 0.62 0.85 1.17 0.95 0.56 2.69 5.29 7.12 5.48 6.83 7.41 7.89 7.60 6.92 4.71 32.51
1196.18 10 1.44 0.40 0.40 0.64 0.48 0.80 0.64 1.04 1.28 1.52 1.76 2.33 2.89 2.53 3.34 3.77 4.85 5.36 5.61 6.28 5.86 5.86 4.35 4.94 3.93 27.70
1197.4 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.30 0.00 0.41 0.81 1.52 4.15 8.00 8.91 8.61 9.01 9.11 8.40 40.60

1198.43 9 0.00 0.00 0.37 0.22 0.22 0.29 0.29 0.37 0.59 0.81 0.96 1.18 1.91 1.52 4.59 6.09 7.31 6.84 5.81 6.93 5.43 5.34 4.50 5.90 3.84 28.67
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Class limits
(phi)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Rest

Depth (mbsf)

F
ac

ie
s

1198.43 10 0.00 0.00 0.37 0.22 0.22 0.29 0.29 0.37 0.59 0.80 0.95 1.17 2.64 2.79 3.68 7.44 7.72 7.07 5.97 5.51 5.51 4.78 5.33 4.69 4.13 27.47
1199.74 10 0.00 0.95 2.27 2.42 1.90 1.90 1.83 2.49 3.22 3.59 4.10 5.34 6.52 4.40 3.83 6.71 5.67 5.17 4.31 4.56 3.76 3.14 2.83 4.19 2.89 12.01
1220.27 3 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.09 0.09 0.19 0.66 0.85 1.66 1.66 3.91 9.97 12.90 11.73 8.70 8.01 6.74 5.18 5.57 3.22 18.67
1221.8 7 0.00 0.00 0.00 0.00 0.06 0.06 2.12 5.72 13.30 19.73 16.26 9.96 7.39 2.32 1.10 2.07 2.54 2.45 2.45 2.38 2.05 1.13 1.58 1.67 0.33 3.32

1248.12 6V 0.00 0.00 0.00 0.10 0.00 0.10 0.10 0.10 0.10 0.10 0.30 1.69 21.53 15.45 7.41 7.71 10.86 8.97 5.98 5.72 3.99 1.05 2.41 3.15 3.15 0.00
1275.18 3V 0.00 0.00 0.19 0.19 0.19 0.37 0.65 0.74 0.46 0.46 0.56 7.13 10.46 5.33 5.87 13.11 13.83 11.38 8.43 7.20 4.75 2.88 1.73 3.02 1.08 0.00
1275.6 9 0.00 0.00 0.00 0.14 0.28 0.28 0.21 0.28 0.42 0.35 0.35 0.42 0.56 0.28 0.29 2.43 2.34 3.02 6.23 7.79 7.50 8.37 8.67 7.89 6.23 35.64

1277.45 9 0.00 0.00 1.56 0.93 0.70 0.93 1.24 1.63 2.41 2.80 3.27 4.74 4.82 1.54 3.49 4.00 4.45 5.27 4.82 5.27 3.78 4.45 4.38 4.00 3.49 26.03
1279.84 3 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.20 0.39 0.46 0.66 2.63 5.98 4.86 5.04 7.03 8.57 6.43 7.37 6.34 5.74 6.00 6.00 6.52 4.80 14.83
1280.2 9 0.00 0.99 0.99 0.85 1.05 0.92 1.51 2.30 3.29 4.14 5.52 6.50 6.77 3.78 2.55 4.34 4.27 4.34 4.27 5.61 4.46 4.08 4.53 4.78 2.93 15.24
1281.6 9 0.00 0.00 0.57 0.71 0.50 0.85 1.06 1.28 1.84 2.27 3.19 4.25 4.75 3.64 2.74 3.84 4.78 4.85 4.93 5.95 6.11 5.72 4.78 5.95 5.79 19.65

1282.04 10 1.11 1.66 0.74 0.99 1.48 1.54 1.97 2.46 3.64 4.74 6.04 7.33 6.72 3.71 3.39 3.68 4.79 4.50 4.32 4.67 4.67 4.03 4.14 4.14 1.87 11.68
1275.60(d) 9 0.00 0.00 0.00 0.16 0.08 0.16 0.24 0.33 0.41 0.49 0.49 0.49 0.24 0.97 1.32 1.06 1.63 1.92 4.03 4.90 4.90 5.57 6.43 7.40 7.30 49.46

133.48(r) 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.31 1.87 2.70 3.74 3.27 2.75 4.24 6.18 6.44 6.44 4.85 6.27 5.21 4.15 4.59 2.74 34.15
141.84(r) 6V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 4.37 12.81 11.93 8.59 15.00 16.10 11.99 5.55 3.84 3.43 1.92 0.27 1.23 2.40 0.00
48.19(r) 9 0.00 0.00 0.30 0.59 0.44 0.30 0.89 1.18 1.63 1.78 2.07 2.22 2.37 1.79 2.00 4.17 8.94 9.46 8.07 6.77 7.29 5.21 3.73 4.60 4.17 20.05
50.14(r) 10 0.00 1.67 0.93 0.74 0.93 1.30 1.49 1.86 2.42 2.60 2.79 2.60 2.97 3.69 3.65 5.93 11.02 9.95 7.14 6.99 5.70 4.25 2.20 3.50 7.29 6.38

852.19(d) 3 0.00 0.00 0.00 0.00 0.00 0.00 0.57 4.32 15.57 24.43 21.59 11.93 5.80 1.48 1.04 1.39 1.46 1.26 1.29 0.95 0.88 1.02 0.64 0.43 0.36 3.59
86.31(r) 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.38 2.45 3.00 2.92 4.96 9.35 9.74 9.07 8.21 6.59 6.20 4.39 5.15 5.25 21.00
90.00(r) 2 0.00 0.00 0.00 0.44 0.44 0.44 0.44 0.66 0.88 0.99 1.10 0.88 1.21 0.66 1.59 3.46 4.02 9.35 7.01 7.58 7.86 6.17 5.33 5.99 8.79 24.69

Table 12: Grain-size frequency data for AND-1B. (d) Duplicate sample. (r) Sample reprocessed due to incomplete disaggregation of original 
sample.
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3.10.1.2 Supplementary data: Grain-size statistical data from AND-1B 

Percentiles Moment 
measures

Graphic 
(Folk)

Inman Proportions
1% 5% 16% 25% 50% 75% 84% 95% Mean StDev Skew Kurt Mean StDev Skew Kurt StDev Skew Gravel Sand Silt Clay

9.99 10 -1.52 0.12 3.22 5.76 8.32 11.67 13.37 16.83 8.11 4.16 -0.58 2.34 8.30 5.07 0.01 1.16 5.08 0.00 2.59 16.75 27.51 53.15
20.01 4 0.26 3.21 6.16 7.22 12.12 23.04 28.23 38.76 9.79 3.39 -0.91 2.84 15.50 10.90 0.48 0.92 11.03 0.46 0.06 6.43 26.57 66.94
20.27 3 -0.78 1.55 5.87 7.36 10.88 14.89 16.80 20.66 9.65 3.77 -1.13 3.25 11.18 5.63 0.05 1.04 5.46 0.08 0.67 10.67 19.20 69.45
20.51 4 0.31 3.38 6.75 7.79 10.92 14.39 16.03 19.37 10.05 3.27 -1.17 3.66 11.23 4.74 0.08 0.99 4.64 0.10 0.46 5.80 20.92 72.82
25.93 3 -0.29 0.45 1.15 1.53 2.86 5.58 6.52 8.54 3.65 2.76 1.02 3.82 3.51 2.57 0.38 0.82 2.68 0.36 0.14 63.42 29.73 6.71
25.96 3 0.44 1.27 2.22 2.92 5.75 7.72 9.56 11.65 5.87 3.46 0.53 2.42 5.84 3.41 0.09 0.88 3.67 0.04 0.01 36.19 41.29 22.51
26.53 3 1.32 2.58 4.21 5.51 7.24 10.49 13.36 19.18 7.79 3.39 0.10 1.94 8.27 4.80 0.39 1.36 4.58 0.34 0.00 14.93 43.49 41.58
31.63 10 -2.26 -

0.43
3.99 6.61 10.40 13.36 14.77 17.63 9.12 4.40 -1.07 2.93 9.72 5.43 -0.19 1.10 5.39 -0.19 3.23 12.78 17.00 66.99

42.1 4 1.86 3.43 5.58 6.74 9.50 11.58 12.56 14.57 9.28 3.27 -0.50 2.03 9.22 3.43 -0.11 0.94 3.49 -0.12 0.00 7.27 28.83 63.89
42.36 2 3.11 4.73 6.60 7.90 11.49 15.30 17.11 20.78 10.32 2.94 -0.92 2.44 11.73 5.06 0.11 0.89 5.25 0.07 0.00 3.46 22.56 73.98
42.58 4 1.34 4.31 6.41 7.39 10.24 13.40 14.90 17.94 9.86 3.12 -0.82 2.68 10.52 4.19 0.11 0.93 4.25 0.10 0.00 4.42 25.90 69.68
44.84 9 -1.04 0.57 3.34 4.92 6.74 9.88 12.91 19.09 7.15 3.82 -0.05 2.22 7.66 5.20 0.31 1.53 4.79 0.29 1.33 17.69 44.66 36.31
48.03 7 -4.12 -

1.30
0.92 2.25 6.75 10.32 12.03 15.52 6.41 4.80 -0.13 1.75 6.57 5.32 0.00 0.85 5.55 -0.05 5.57 32.30 21.68 40.44

48.19 9 -0.84 1.77 3.72 4.76 6.25 8.13 9.66 11.95 6.62 3.16 0.25 3.02 6.54 3.03 0.13 1.24 2.97 0.15 0.89 18.91 54.12 26.08
50.14 10 -1.24 0.53 2.62 3.35 5.41 7.17 8.41 15.69 5.56 3.32 0.48 3.02 5.48 3.75 0.19 1.63 2.89 0.03 2.14 34.13 45.09 18.63
50.61 10 -3.35 -

1.76
0.01 1.33 5.44 8.39 9.84 13.19 5.20 4.52 0.10 1.99 5.10 4.72 -0.03 0.87 4.91 -0.11 8.82 33.33 30.12 27.73

52.97 3 -2.07 -
0.91

0.98 2.40 7.44 9.91 10.84 12.75 6.68 4.59 -0.26 1.84 6.42 4.54 -0.27 0.75 4.93 -0.31 4.65 27.76 22.99 44.61
53.1 3 3.79 5.56 6.41 6.81 8.04 10.02 10.89 12.66 8.71 2.50 0.37 2.08 8.45 2.19 0.29 0.91 2.24 0.27 0.00 1.26 48.15 50.58

53.23 9 -1.98 -
1.24

0.62 1.83 5.07 6.80 7.82 10.85 4.67 3.72 0.25 2.63 4.50 3.63 -0.14 1.00 3.60 -0.24 7.09 36.19 41.70 15.03
56.81 3 2.40 2.67 2.93 3.09 3.60 6.17 7.29 11.26 4.84 2.60 1.56 4.80 4.61 2.39 0.74 1.14 2.18 0.69 0.00 60.51 27.58 11.90
58.97 9 -2.79 -

1.19
1.84 3.55 7.48 10.35 11.64 14.26 7.08 4.52 -0.39 2.09 6.99 4.79 -0.14 0.93 4.90 -0.15 5.88 22.25 26.57 45.30

67.8 10 -2.59 0.07 2.54 4.64 7.30 9.42 12.05 17.52 7.11 3.96 -0.33 2.46 7.30 5.02 0.09 1.49 4.75 0.00 2.80 21.05 38.65 37.50
70.75 10 -1.93 -

0.67
1.97 3.21 7.80 11.20 13.08 16.92 7.25 4.55 -0.31 1.86 7.62 5.44 -0.01 0.90 5.56 -0.05 4.11 26.03 21.57 48.30

74.71 10 -1.91 0.01 2.44 3.99 7.78 11.48 13.92 18.87 7.57 4.30 -0.42 2.13 8.05 5.73 0.12 1.03 5.74 0.07 3.16 21.88 27.83 47.13
77.52 10 -1.57 -

0.01
2.39 3.97 7.91 10.59 12.03 14.95 7.51 4.25 -0.41 2.11 7.44 4.67 -0.10 0.93 4.82 -0.15 3.51 21.68 25.95 48.86

82.4 9 -2.05 -
0.66

2.82 4.70 7.72 10.60 11.95 14.70 7.50 4.26 -0.45 2.27 7.50 4.61 -0.08 1.07 4.56 -0.07 3.74 17.94 31.16 47.15
83.5 2 -0.10 5.48 7.18 7.93 11.90 23.40 28.86 39.96 10.13 2.95 -1.12 4.16 15.98 10.64 0.60 0.91 10.84 0.57 0.61 2.52 22.82 74.05

83.97 2 3.65 7.00 7.67 9.49 11.63 12.64 14.70 9.53 3.32 -1.35 5.43 9.71 3.08 0.03 1.14 2.82 0.12 2.34 3.16 24.97 69.53
84.31 2 3.39 6.05 6.94 7.43 8.79 11.24 12.54 15.19 9.40 2.56 -0.07 2.05 9.42 2.79 0.37 0.98 2.80 0.34 0.00 1.73 33.82 64.44
85.2 2 4.06 5.96 6.64 7.11 8.53 10.85 12.00 14.34 9.19 2.57 0.14 1.74 9.06 2.61 0.34 0.92 2.68 0.30 0.00 0.91 40.73 58.36

86.05 3 4.38 6.59 7.61 8.33 10.53 13.46 14.85 17.68 10.45 2.43 -0.66 2.17 11.00 3.49 0.24 0.88 3.62 0.19 0.00 0.26 20.52 79.22
86.31 3 2.67 3.39 5.00 6.11 8.16 10.98 12.43 15.38 8.49 3.23 -0.05 1.75 8.53 3.67 0.18 1.01 3.72 0.15 0.00 11.75 36.39 51.86
86.74 2 1.54 2.72 4.39 5.77 8.60 11.59 13.08 16.10 8.59 3.54 -0.29 1.81 8.69 4.20 0.08 0.94 4.34 0.03 0.00 14.94 28.89 56.17

90 2 -0.67 2.07 3.81 6.02 8.63 10.83 11.78 13.71 8.41 3.73 -0.50 2.32 8.07 3.76 -0.17 0.99 3.98 -0.21 0.82 17.16 25.46 56.57
93.15 3 3.24 4.21 6.66 7.29 8.84 11.46 12.86 15.72 9.31 2.76 -0.20 2.04 9.45 3.29 0.25 1.13 3.10 0.30 0.00 4.54 32.03 63.43
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Percentiles Moment 
measures

Graphic 
(Folk)

Inman Proportions
1% 5% 16% 25% 50% 75% 84% 95% Mean StDev Skew Kurt Mean StDev Skew Kurt StDev Skew Gravel Sand Silt Clay

95.3 3 5.12 6.01 6.53 6.89 8.42 15.08 19.73 29.18 9.25 2.66 0.19 1.42 11.56 6.81 0.75 1.16 6.60 0.71 0.00 0.24 44.47 55.29
95.55 3 2.90 3.37 3.93 5.31 8.05 11.04 12.97 16.89 8.22 3.37 0.01 1.64 8.32 4.31 0.20 0.97 4.52 0.09 0.00 17.77 31.64 50.58
96.58 2 4.02 5.88 6.72 7.39 9.41 11.95 13.16 15.62 9.74 2.66 -0.26 1.73 9.76 3.08 0.22 0.88 3.22 0.16 0.00 0.99 31.51 67.50
97.35 9 -1.24 1.08 4.38 5.88 8.50 13.59 16.44 22.23 8.46 3.91 -0.56 2.38 9.77 6.22 0.31 1.12 6.03 0.32 1.44 12.92 31.02 54.62
99.92 2 3.64 5.26 5.97 6.49 9.29 222 330.51 550.14 9.54 3.07 -0.35 1.79 115.25 163.69 0.98 1.03 162.27 0.98 0.12 1.15 37.99 60.74
100.1 6 -0.97 0.59 1.52 1.81 2.54 3.79 6.56 10.45 3.57 3.09 1.59 5.00 3.54 2.76 0.60 2.05 2.52 0.59 0.97 76.10 11.97 10.96

100.61 6 -0.34 0.81 1.29 1.51 2.08 3.24 4.99 9.07 3.02 2.71 2.11 7.27 2.79 2.18 0.63 1.95 1.85 0.57 0.35 81.80 11.01 6.84
100.79 9 -2.47 -

0.75
2.88 4.60 6.17 8.29 21.42 142.29 6.41 3.79 -0.09 2.79 10.16 26.31 0.77 15.89 9.27 0.65 4.56 16.68 51.50 27.27

109.19 9 -
22.11

-
0.66

4.62 5.30 6.65 8.97 10.41 13.27 7.00 3.61 -0.37 3.42 7.23 3.56 0.13 1.56 2.89 0.30 4.40 8.60 53.93 33.07
109.74 2 4.81 5.67 6.50 7.05 8.92 11.57 12.91 15.63 9.41 2.65 0.01 1.51 9.44 3.11 0.30 0.90 3.20 0.24 0.00 0.26 38.14 61.60
111.17 3 2.91 3.70 4.41 4.81 5.60 6.65 7.45 9.73 5.97 1.97 1.19 5.94 5.82 1.67 0.30 1.34 1.52 0.22 0.23 10.46 77.14 12.17
117.63 1a 0.84 4.20 5.72 7.45 10.00 10.99 12.99 7.68 3.65 -0.38 2.80 7.55 3.54 -0.02 1.16 3.39 0.04 2.12 12.91 41.83 43.14

118 4 -1.82 -
0.87

1.27 3.50 7.05 9.82 11.97 16.36 6.77 4.39 -0.27 2.05 6.77 5.29 0.00 1.12 5.35 -0.08 4.56 22.64 32.48 40.32
118.62 3 3.62 5.06 6.44 7.15 9.18 11.36 12.39 14.47 9.47 2.79 -0.24 1.80 9.34 2.91 0.10 0.92 2.98 0.08 0.00 1.79 33.35 64.86
119.15 6V 2.87 3.42 4.90 5.57 6.72 8.21 9.20 11.95 7.12 2.52 0.73 3.14 6.94 2.37 0.19 1.32 2.15 0.16 0.00 10.70 61.67 27.63

122 2 -1.79 -
0.63

2.55 4.21 6.56 9.14 13.67 24.45 6.71 4.04 -0.14 2.33 7.59 6.58 0.35 2.08 5.56 0.28 3.77 20.11 42.18 33.93
124.39 9 0.13 4.92 5.74 6.17 7.98 10.59 11.72 14.02 8.57 3.05 -0.11 2.51 8.48 2.87 0.29 0.84 2.99 0.25 0.69 2.80 46.72 49.79
125.95 2 4.13 6.03 7.77 8.82 11.82 15.09 16.64 19.78 10.81 2.48 -1.15 3.23 12.08 4.30 0.12 0.90 4.43 0.09 0.00 0.97 16.63 82.39
126.39 4+2 3.67 5.42 7.52 8.45 11.81 16.01 18.00 22.05 10.59 2.63 -1.03 3.00 12.44 5.14 0.21 0.90 5.24 0.18 0.00 1.33 19.49 79.18
128.78 2 4.96 6.16 7.61 8.43 10.27 12.07 12.92 14.65 10.45 2.41 -0.62 1.97 10.27 2.61 0.01 0.96 2.65 0.00 0.00 0.06 20.13 79.82
131.72 2 4.21 5.33 7.29 8.52 11.10 13.67 14.88 17.36 10.59 2.63 -0.95 2.49 11.09 3.72 0.02 0.96 3.80 0.00 0.00 0.51 19.97 79.52
133.48 3 2.15 2.84 3.73 4.65 7.72 11.20 13.07 16.87 8.03 3.59 0.01 1.59 8.17 4.46 0.23 0.88 4.67 0.15 0.00 20.70 31.68 47.62
134.68 4 -0.28 2.45 3.34 3.69 5.01 6.21 6.94 8.58 5.10 2.06 0.58 4.81 5.10 1.83 0.12 1.00 1.80 0.07 0.20 34.69 57.51 7.60
141.29 6V 3.95 4.85 5.52 5.92 6.62 7.38 7.84 9.07 6.70 1.22 0.30 3.32 6.66 1.22 0.11 1.19 1.16 0.05 0.00 1.19 85.15 13.67
141.4 6V 3.79 4.25 4.91 5.20 5.74 6.30 6.67 8.21 5.91 1.34 2.19 11.05 5.77 1.04 0.15 1.47 0.88 0.06 0.00 2.86 91.34 5.79

141.58 6V 3.59 3.93 4.71 5.06 5.59 6.33 6.91 9.59 5.90 1.59 1.77 7.47 5.74 1.41 0.31 1.82 1.10 0.20 0.00 6.50 84.39 9.11
141.72 6V 2.89 3.27 3.60 3.76 4.19 4.99 5.57 7.11 4.57 1.41 2.63 13.47 4.45 1.07 0.46 1.28 0.98 0.40 0.00 42.12 55.29 2.59
141.84 6V 2.06 2.73 3.35 3.60 4.29 5.45 5.91 7.41 4.62 1.51 1.05 4.68 4.51 1.35 0.30 1.04 1.28 0.27 0.07 44.78 51.39 3.77
146.58 3 2.33 2.84 3.56 4.16 6.00 8.18 9.39 13.21 6.60 2.96 0.72 2.65 6.32 3.03 0.28 1.06 2.92 0.16 0.00 24.19 48.98 26.83
146.83 10 -1.13 0.43 2.93 4.54 6.65 8.00 9.31 11.18 6.43 3.31 -0.12 2.97 6.30 3.22 -0.16 1.27 3.19 -0.17 1.21 21.68 52.16 24.96
147.76 10 -1.68 -

1.52
-

1.19
-

1.01
0.84 2.11 2.45 2.90 0.68 1.60 0.00 1.87 0.70 1.58 -0.09 0.58 1.82 -0.12 25.86 74.08 0.04 0.02

148.32 10 -1.58 -
0.45

3.34 5.53 8.02 11.17 12.85 16.25 7.83 4.17 -0.52 2.37 8.07 4.91 0.00 1.21 4.75 0.02 3.22 15.83 30.74 50.20
150.42 9 -3.19 -

1.58
1.31 2.78 6.16 8.70 9.84 11.94 5.80 4.24 -0.09 2.20 5.77 4.18 -0.14 0.94 4.26 -0.14 7.18 29.64 31.64 31.54

150.95 4 -0.18 4.64 6.88 7.70 9.65 11.30 12.08 13.67 9.70 3.00 -0.95 3.77 9.53 2.67 -0.09 1.03 2.60 -0.07 0.39 3.29 24.32 72.00
151.5 4 0.73 5.68 7.64 8.46 10.51 12.61 13.61 15.63 10.43 2.71 -1.28 4.89 10.59 3.00 0.03 0.98 2.98 0.04 0.52 1.13 18.32 80.02

151.71 1b -1.02 -
0.51

7.45 8.56 10.45 12.28 13.16 14.93 9.98 3.74 -1.71 5.29 10.35 3.77 -0.23 1.70 2.85 -0.05 1.13 7.00 11.76 80.11
178.98 1a -2.66 -

1.20
7.59 8.56 10.05 11.32 11.92 13.15 9.71 3.93 -1.75 5.51 9.85 3.26 -0.35 2.13 2.17 -0.14 5.45 3.56 9.92 81.07

180.38 1a 0.52 4.89 7.36 8.18 9.77 11.47 12.27 13.91 9.94 2.85 -1.03 4.04 9.80 2.60 -0.03 1.12 2.46 0.02 0.20 2.83 19.58 77.38
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180.68 1b 4.24 6.17 7.66 8.42 9.92 11.23 11.85 13.11 10.26 2.43 -0.62 2.42 9.81 2.10 -0.08 1.01 2.09 -0.08 0.00 0.45 18.97 80.59
181.22 2 4.19 5.38 7.38 8.64 12.05 15.85 17.66 21.32 10.68 2.63 -1.06 2.72 12.36 4.98 0.13 0.91 5.14 0.09 0.00 0.76 19.82 79.42
181.89 2 -3.35 3.79 6.80 7.80 10.01 13.03 14.46 17.37 9.76 3.40 -1.44 5.39 10.42 3.97 0.12 1.06 3.83 0.16 2.64 2.51 21.92 72.93
181.94 9 -1.65 -

1.34
0.29 2.00 6.22 10.73 13.64 19.57 6.20 4.90 -0.04 1.66 6.72 6.51 0.19 0.98 6.68 0.11 7.67 31.14 23.00 38.19

191.24 1+10 0.26 5.71 7.10 7.85 10.08 12.69 13.93 16.45 10.02 2.91 -1.04 4.04 10.37 3.33 0.16 0.91 3.42 0.13 0.59 2.59 23.78 73.04
211.74 1a 3.60 5.72 7.52 8.13 9.40 11.01 11.79 13.36 9.80 2.53 -0.53 2.86 9.57 2.22 0.08 1.09 2.13 0.12 0.00 2.07 20.74 77.19
224.53 3 -2.65 1.20 6.16 7.20 8.97 10.93 11.86 13.74 8.88 3.60 -1.03 3.92 9.00 3.32 -0.11 1.38 2.85 0.02 2.23 7.76 25.39 64.62
224.67 3 2.68 3.25 3.96 5.62 7.59 9.69 10.89 13.34 7.84 3.11 0.17 1.98 7.48 3.26 0.05 1.02 3.47 -0.05 0.00 16.85 39.70 43.45
224.88 3 1.17 5.25 7.23 7.90 9.53 10.96 11.65 13.03 9.73 2.74 -0.74 3.42 9.47 2.28 -0.07 1.04 2.21 -0.04 0.00 3.47 23.13 73.40

225 9 -2.74 -
1.70

-
0.35

0.72 3.55 6.74 7.58 9.50 3.79 3.67 0.20 2.25 3.59 3.68 0.04 0.76 3.97 0.02 10.04 44.16 33.40 12.40
225.38 10 0.25 4.04 6.84 7.80 9.80 11.58 12.42 14.14 9.78 3.06 -0.96 3.53 9.69 2.93 -0.10 1.10 2.79 -0.06 0.32 4.58 22.32 72.78
258.55 3 4.31 6.93 8.73 9.31 10.56 11.79 12.38 13.57 10.96 2.18 -1.23 3.82 10.55 1.92 -0.05 1.10 1.82 0.00 0.00 0.12 8.44 91.44
260.42 3 4.85 6.36 8.40 9.40 12.52 15.69 17.19 20.25 11.14 2.25 -1.36 3.61 12.70 4.30 0.09 0.90 4.40 0.06 0.00 0.33 12.58 87.08
260.7 3 -1.04 -

0.47
0.55 1.33 5.03 7.98 9.41 11.76 5.09 4.11 0.35 2.06 5.00 4.07 0.05 0.75 4.43 -0.01 1.32 42.73 31.10 24.85

267.88 4 1.75 3.95 6.41 7.73 10.24 13.48 15.02 18.14 9.90 3.09 -0.84 2.66 10.56 4.30 0.11 1.01 4.30 0.11 0.00 5.14 22.68 72.17
283.2 4 4.01 6.31 7.69 8.67 10.74 12.85 13.85 15.88 10.63 2.48 -0.98 2.95 10.76 2.99 0.04 0.94 3.08 0.01 0.00 0.98 17.28 81.74

293.23 2 3.14 5.28 6.59 7.43 9.51 11.83 12.93 15.16 9.71 2.79 -0.45 2.19 9.68 3.08 0.11 0.92 3.17 0.08 0.00 1.73 29.33 68.94
296.72 10 -1.04 0.68 3.06 5.01 7.72 10.28 11.38 13.60 7.58 3.96 -0.30 2.11 7.39 4.04 -0.11 1.01 4.16 -0.12 1.02 22.27 29.56 47.15
307.04 10 -1.37 2.31 5.54 6.83 9.16 17.36 21.77 30.75 9.11 3.62 -0.81 2.99 12.16 8.37 0.54 1.11 8.12 0.55 1.13 9.39 26.26 63.22
316.23 4 -0.44 1.19 3.25 4.61 7.31 10.32 12.20 16.03 7.46 3.81 -0.10 1.99 7.59 4.49 0.13 1.06 4.48 0.09 0.46 21.07 35.23 43.24
358.94 3 2.88 3.36 3.95 4.98 7.82 10.77 12.06 14.66 8.13 3.46 0.07 1.53 7.94 3.74 0.13 0.80 4.05 0.04 0.00 17.41 34.04 48.55
359.95 3 0.99 4.37 6.21 7.13 9.64 12.13 13.31 15.71 9.58 3.11 -0.67 2.72 9.72 3.49 0.05 0.93 3.55 0.03 0.50 2.76 30.42 66.32
361.6 3 -0.25 2.79 4.18 4.84 6.97 10.08 11.46 14.27 7.56 3.51 0.10 2.03 7.54 3.56 0.25 0.90 3.64 0.23 0.00 14.03 44.68 41.29

381.92 1b -0.84 0.87 4.82 6.62 9.08 12.18 13.76 16.98 8.79 3.86 -0.79 2.69 9.22 4.68 0.01 1.19 4.47 0.05 0.74 13.40 22.21 63.65
413.16 6 2.58 3.92 5.19 5.62 6.93 8.60 9.69 11.27 7.38 2.55 0.63 2.98 7.27 2.24 0.20 1.01 2.25 0.23 0.00 5.51 61.72 32.76
460.09 3 0.04 2.71 5.41 6.40 8.81 11.53 12.86 15.55 8.86 3.42 -0.52 2.47 9.02 3.81 0.07 1.03 3.72 0.09 0.12 7.78 33.64 58.46
464.07 10 -1.05 2.98 5.74 6.31 8.12 11.22 13.13 17.00 8.51 3.33 -0.44 2.97 8.99 3.97 0.31 1.17 3.70 0.36 1.06 5.55 41.92 51.47
473.22 2+4 6.18 7.32 8.40 9.07 11.03 13.08 14.05 16.03 11.01 2.06 -0.87 2.31 11.16 2.73 0.11 0.89 2.83 0.07 0.00 0.12 11.50 88.38
479.18 10 -2.60 0.56 4.10 5.72 8.66 10.89 11.84 13.75 8.28 4.01 -0.66 2.66 8.20 3.93 -0.20 1.05 3.87 -0.18 2.45 13.06 28.73 55.76
481.15 4 1.29 5.04 6.53 7.47 9.91 12.92 14.35 17.25 9.81 3.01 -0.78 2.93 10.26 3.80 0.17 0.92 3.91 0.14 0.45 2.87 27.62 69.07
488.58 2 6.31 6.95 8.24 8.99 10.68 12.39 13.21 14.87 10.88 2.12 -0.78 2.16 10.71 2.44 0.04 0.95 2.48 0.02 0.00 0.11 13.34 86.55
494.33 3 5.04 5.78 7.20 8.23 10.99 14.06 15.51 18.48 10.49 2.56 -0.73 1.96 11.23 4.00 0.13 0.89 4.16 0.09 0.00 0.01 23.21 76.78
501.2 2 5.93 6.98 8.12 8.87 10.62 12.30 13.09 14.71 10.83 2.16 -0.75 2.08 10.61 2.42 0.03 0.93 2.49 -0.01 0.00 0.08 14.66 85.26

504.55 1b 0.47 4.13 6.33 7.24 8.82 10.21 10.83 12.10 8.91 2.87 -0.51 3.23 8.66 2.33 -0.14 1.10 2.25 -0.10 0.31 4.18 31.40 64.12
519.11 9 -1.52 -

0.86
0.95 2.32 5.10 7.42 8.52 11.83 5.07 3.75 0.26 2.49 4.86 3.81 -0.02 1.02 3.78 -0.10 4.26 36.17 39.50 20.06

523.39 5 3.68 4.82 5.69 6.18 7.61 9.70 11.06 13.83 8.24 2.67 0.49 2.07 8.12 2.71 0.33 1.05 2.69 0.28 0.00 1.81 54.52 43.67
523.65 3 -

19.71
1.44 3.31 4.58 6.62 9.25 11.31 15.80 6.99 3.64 0.04 2.37 7.08 4.17 0.23 1.26 4.00 0.17 1.19 20.32 43.37 35.12

523.93 4+9 -4.50 -
0.91

3.36 5.14 7.56 10.66 12.04 14.84 7.53 4.27 -0.52 2.52 7.65 4.56 -0.02 1.17 4.34 0.03 4.84 13.53 35.22 46.41
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545.15 4 0.97 3.15 5.50 6.28 8.63 11.89 13.57 16.99 8.83 3.34 -0.34 2.08 9.23 4.11 0.22 1.01 4.04 0.23 0.00 8.40 35.00 56.59
778.7 10 -0.79 1.47 3.89 5.85 9.99 15.66 18.35 23.82 8.98 4.06 -0.71 2.19 10.74 7.00 0.20 0.93 7.23 0.16 0.71 16.01 21.39 61.89

790.74 7 -8.20 -
5.93

-
3.76

-
2.70

-0.51 2.96 4.03 4.15 0.24 2.64 0.44 1.63 -0.08 3.48 0.04 0.73 3.90 0.16 44.56 35.79 19.64 0.01
827.21 3 -1.11 -

0.56
0.66 1.41 3.24 7.99 9.55 12.41 4.76 4.22 0.59 2.12 4.48 4.19 0.42 0.81 4.45 0.42 1.41 55.62 18.02 24.95

830.64 9 -0.47 0.93 2.39 3.57 8.12 11.21 12.77 15.95 7.66 4.25 -0.26 1.71 7.76 4.87 -0.03 0.81 5.19 -0.10 0.44 27.72 20.82 51.01
850.95 2 5.25 5.58 6.44 7.01 8.76 13.13 15.62 20.67 9.40 2.69 0.04 1.42 10.28 4.58 0.54 1.01 4.59 0.49 0.00 0.01 39.64 60.34
852.19 3 1.14 1.47 1.85 2.06 2.63 3.49 4.68 7.84 3.27 2.06 2.21 8.46 3.05 1.67 0.54 1.82 1.41 0.45 0.00 80.81 14.54 4.65
853.25 9 -0.98 0.44 2.68 4.11 8.61 12.17 13.85 17.28 8.04 4.37 -0.45 1.86 8.38 5.34 -0.02 0.86 5.58 -0.06 0.96 23.68 20.94 54.42
854.36 10 -3.08 -

1.64
1.02 3.69 8.55 11.58 13.05 16.03 7.58 4.93 -0.62 2.08 7.54 5.69 -0.20 0.92 6.02 -0.25 7.14 18.89 18.92 55.05

856.01 4 1.16 3.78 6.52 7.44 9.46 11.85 12.98 15.29 9.54 3.07 -0.70 2.72 9.66 3.36 0.05 1.07 3.23 0.09 0.00 5.51 25.61 68.88
891.17 2 5.32 6.32 7.58 8.34 10.26 12.20 13.12 14.99 10.44 2.38 -0.55 1.81 10.32 2.70 0.06 0.92 2.77 0.03 0.00 0.01 20.78 79.21
902.8 10 -1.03 0.75 3.25 5.03 8.73 12.20 13.84 17.18 8.27 4.20 -0.50 1.99 8.61 5.14 0.00 0.94 5.29 -0.03 1.25 19.62 23.36 55.77

1032.47 6 1.24 1.70 2.13 2.36 2.84 3.76 6.94 15.12 4.11 3.21 1.81 4.93 3.97 3.24 0.77 3.93 2.40 0.71 0.00 77.63 8.68 13.69
1032.83 5 3.80 4.90 6.16 6.94 8.94 11.16 12.20 14.31 9.27 2.82 -0.11 1.66 9.10 2.93 0.11 0.92 3.02 0.08 0.00 1.64 36.56 61.80
1033.58 5 3.83 4.46 5.86 6.74 9.37 14.44 16.90 21.89 9.49 3.06 -0.32 1.57 10.71 5.40 0.40 0.93 5.52 0.36 0.00 2.11 34.76 63.13
1043.53 5 3.94 4.60 5.47 6.02 8.70 13.57 16.22 21.61 9.04 3.11 -0.05 1.40 10.13 5.27 0.46 0.92 5.38 0.40 0.00 1.18 42.52 56.29
1053.27 9 1.50 5.75 7.31 9.59 11.76 12.79 14.89 9.23 3.75 -1.10 3.68 9.38 3.79 -0.15 1.23 3.52 -0.09 1.94 9.04 20.35 68.67
1060.4 2 2.83 4.59 6.99 7.85 9.71 12.53 13.87 16.58 9.85 2.84 -0.63 2.33 10.19 3.54 0.18 1.05 3.44 0.21 0.00 3.38 23.39 73.23

1062.87 3 -0.53 0.19 0.90 1.34 2.84 5.78 7.49 10.28 3.84 3.30 1.07 3.42 3.74 3.17 0.44 0.93 3.29 0.41 0.00 64.86 21.59 13.55
1063.66 10 -1.61 -

0.61
2.98 5.06 7.73 10.15 11.28 13.57 7.44 4.12 -0.46 2.38 7.33 4.22 -0.16 1.14 4.15 -0.14 3.89 17.76 31.75 46.60

1066.17 10 -1.45 1.80 6.64 7.73 10.23 13.15 14.53 17.34 9.68 3.60 -1.24 3.89 10.47 4.33 0.00 1.18 3.94 0.09 1.53 8.01 18.06 72.40
1095.46 9 -1.54 0.34 3.34 5.39 8.50 11.14 12.47 15.19 8.09 4.10 -0.56 2.32 8.11 4.53 -0.11 1.06 4.57 -0.13 2.42 17.68 24.72 55.18
1164.3 2+10 -2.37 -

1.37
2.15 3.91 7.57 10.05 11.20 13.55 7.08 4.40 -0.43 2.25 6.98 4.52 -0.20 1.00 4.53 -0.20 6.12 19.42 28.86 45.59

1164.48 4 1.57 5.58 6.91 7.60 9.23 11.53 12.67 14.97 9.59 2.76 -0.55 2.95 9.60 2.86 0.21 0.98 2.88 0.19 0.00 2.50 28.32 69.18
1167.68 10 -2.00 -

0.88
2.44 3.72 7.02 9.91 11.41 14.46 6.89 4.25 -0.23 2.13 6.96 4.57 -0.03 1.02 4.49 -0.02 4.78 22.70 31.25 41.27

1168.08 4 1.98 4.51 6.19 6.90 8.61 10.87 12.12 14.67 8.98 2.85 -0.19 2.33 8.97 3.02 0.19 1.05 2.97 0.18 0.00 4.04 36.33 59.63
1196.18 10 -2.72 1.10 4.07 5.46 7.72 10.36 11.77 14.63 7.79 3.78 -0.42 2.66 7.86 3.97 0.04 1.13 3.85 0.05 2.25 13.39 37.59 46.78
1197.4 5 5.60 6.76 7.54 8.05 9.45 11.03 11.78 13.30 9.97 2.26 -0.08 1.64 9.59 2.05 0.14 0.90 2.12 0.10 0.00 0.16 24.10 75.74

1198.43 9 0.35 3.39 5.12 5.72 7.67 10.32 11.65 14.36 8.12 3.24 -0.03 2.23 8.15 3.29 0.22 0.98 3.26 0.22 0.37 7.54 45.69 46.40
1198.43 10 0.34 3.38 5.23 5.89 7.84 10.51 11.97 14.94 8.27 3.22 -0.10 2.29 8.35 3.43 0.23 1.03 3.37 0.23 0.37 6.85 44.53 48.25
1199.74 10 -1.48 -

0.61
1.85 3.03 5.39 8.01 9.36 11.76 5.61 3.76 0.22 2.42 5.54 3.75 0.04 1.02 3.75 0.06 3.22 33.31 38.40 25.07

1220.27 3 3.36 4.89 5.86 6.24 7.35 9.21 10.46 13.30 8.01 2.52 0.62 2.54 7.89 2.42 0.38 1.16 2.30 0.35 0.00 2.08 58.53 39.38
1221.8 7 0.84 1.30 1.84 2.11 2.78 4.08 6.27 9.08 3.70 2.58 1.74 5.71 3.63 2.29 0.60 1.62 2.22 0.58 0.00 74.61 17.36 8.03

1248.12 6V 3.05 3.62 3.88 4.03 5.19 6.54 7.29 9.17 5.50 1.75 0.68 2.99 5.46 1.69 0.33 0.91 1.70 0.23 0.00 24.13 66.11 9.76
1275.18 3V 0.57 3.12 3.77 4.35 5.65 6.73 7.31 8.72 5.60 1.80 -0.25 3.58 5.58 1.73 0.01 0.96 1.77 -0.07 0.19 21.20 69.90 8.71
1275.6 9 1.15 5.25 6.86 7.46 8.99 10.94 11.92 13.92 9.35 2.77 -0.49 3.06 9.26 2.58 0.15 1.02 2.53 0.16 0.00 3.32 29.88 66.80

1277.45 9 -1.05 0.86 3.06 4.00 7.13 10.15 11.69 14.82 7.27 3.94 -0.11 2.01 7.29 4.27 0.08 0.93 4.32 0.06 1.56 23.48 32.61 42.35
1279.84 3 2.32 3.56 4.57 5.34 7.02 9.08 9.87 11.59 7.41 2.79 0.43 2.41 7.15 2.54 0.11 0.88 2.65 0.08 0.00 10.45 51.40 38.15
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Percentiles Moment 
measures

Graphic 
(Folk)

Inman Proportions
1% 5% 16% 25% 50% 75% 84% 95% Mean StDev Skew Kurt Mean StDev Skew Kurt StDev Skew Gravel Sand Silt Clay

1280.2 9 -1.49 0.57 2.50 3.27 6.03 8.77 9.86 12.63 6.20 3.75 0.18 2.22 6.13 3.67 0.07 0.90 3.68 0.04 1.97 32.85 33.62 31.56
1281.6 9 -0.66 1.51 3.44 4.52 7.33 9.54 10.36 12.04 7.26 3.54 -0.09 2.24 7.05 3.33 -0.11 0.86 3.46 -0.12 0.57 20.70 36.84 41.89

1282.04 10 -2.05 -
0.32

2.05 2.89 5.34 8.10 9.19 12.51 5.58 3.75 0.22 2.45 5.53 3.73 0.10 1.01 3.57 0.08 3.51 36.91 33.72 25.86
1275.60(d) 9 1.53 4.86 7.21 8.11 9.96 11.80 12.67 14.44 10.04 2.82 -0.93 3.37 9.95 2.82 -0.04 1.06 2.73 -0.01 0.00 3.10 20.73 76.16

133.48(r) 3 2.74 3.50 5.16 5.99 8.08 11.81 13.99 18.41 8.56 3.23 -0.02 1.67 9.07 4.47 0.36 1.05 4.42 0.34 0.00 8.74 40.43 50.83
141.84(r) 6V 3.11 3.50 3.95 4.32 5.39 6.22 6.72 8.20 5.46 1.46 0.76 3.62 5.36 1.40 0.08 1.01 1.39 -0.04 0.00 17.75 76.42 5.82
48.19(r) 9 -0.36 1.91 4.62 5.69 7.13 9.41 10.55 12.87 7.49 3.26 -0.03 2.58 7.43 3.14 0.10 1.21 2.97 0.15 0.30 13.46 48.49 37.75
50.14(r) 10 -1.56 0.29 2.87 4.37 6.17 7.87 9.16 10.14 6.07 3.15 -0.19 3.12 6.07 3.06 -0.12 1.15 3.14 -0.05 2.60 19.70 54.06 23.63

852.19(d) 3 1.12 1.51 1.90 2.11 2.62 3.35 3.98 8.51 3.32 2.34 2.58 9.65 2.83 1.58 0.50 2.32 1.04 0.31 0.00 84.20 9.76 6.04
86.31(r) 3 3.33 4.16 5.56 6.03 7.41 9.61 10.55 12.45 8.05 2.73 0.45 2.14 7.84 2.50 0.24 0.95 2.50 0.26 0.00 4.15 53.84 42.00
90.00(r) 2 0.15 2.83 5.86 6.42 8.08 9.98 10.60 11.86 8.36 3.05 -0.29 2.83 8.18 2.56 -0.05 1.04 2.37 0.06 0.00 7.50 41.53 50.97

Table 13: Grain-size statistics for AND-1B samples. (d) Duplicate sample. (r) Sample reprocessed due to incomplete disaggregation of original 
sample.
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Abstract

Past fluctuations of the Antarctic Ice Sheet (AIS) in the Ross Embayment are 

reconstructed for the Pleistocene by developing a model for the glacimarine 

depositional sequences documented in detail from the upper 150 m of the AND-1B 

drill core. This model reveals glacial to interglacial fluctuations of the AIS in the 

Western Ross Embayment responding at orbital frequencies. Chronology is 

constrained by an age model based on 40Ar/39Ar dating of volcanic ashes and 

magnetostratigraphy. The glacimarine sequences in AND-1B appear to correlate one-

to-one with cycles in the benthic δ18O record for the past ~0.8 Myr (Marine Isotope 

Stages 20-2). Five sequences between ~1.7 and 1.0 Myr can also be matched with 

specific intervals in the δ18O record, and indicate oscillations of the AIS grounding 

line operating at a 40-kyr frequency. The AND-1B drill core also provides new insight 

into the response of the AIS in the Ross Embayment across the Mid-Pleistocene 

Transition. Prior to 1.0 Myr, glacimarine sequences have a 40-kyr duration, whereas 

subsequently 100-kyr glacimarine cycles can be clearly recognised in the core. 

During this “100-kyr world”, subglacial (i.e., grounded ice) to grounding-zone 

sedimentation dominates at the AND-1B site, with only thin intervals of ice-shelf 

sedimentation during interglacials. An unconformity in AND-1B that spans most 

(~200 kyr) of the Mid-Pleistocene Transition is inferred to represent large scale

expansion of AIS in the Ross Embayment at ~0.8 Myr. Prior to the Mid-Pleistocene 

Transition interglacial periods are characterised by open-water conditions with high 

abundances of volcanoclastic deposits and occasional diatomaceous sediments. 

4.1 Introduction

The West Antarctic Ice Sheet (WAIS; Figure 54) is commonly cited as being 

potentially unstable on account its marine-based nature (Mercer, 1978; Oppenheimer, 

1998), yet little is still known about its past dynamics and response, even during 

Pleistocene warm intervals (Vaughan and Arthern, 2007). The record obtained from 

AND-1B provides the first opportunity to correlate a record of the marine-based AIS
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extent in the Ross Embayment directly with Antarctic ice core records and other 

proxies of sea level and temperature change from far-field deep-sea and coastal sites. 

This Chapter provides insight into the following questions:

 To what extent did the Antarctic Ice Sheet volume vary during past interglacial 

periods during the Pleistocene?

 What is the response of the AIS in the Ross Embayment to orbital variations; and 

how did the ice sheets evolve through the onset of the 100-kyr cycles at the Mid-

Pleistocene transition?

 What constraints can be placed on AIS contribution to global sea level during the 

Late Pleistocene “super interglacials”  e.g., Marine Isotope Stages (MIS) 5 and 9, 

11?

 What processes were occurring at the grounding line of past ice sheets in the Ross 

Embayment during glacial retreat?

The marine δ18O isotope record provides a proxy for past global ice volume and 

changes in oceanic temperature (Miller et al., 1987; Shackleton, 2000). However, 

determining the relative timing and extent of Northern Hemisphere versus Southern 

Hemisphere ice volume changes during this time, as well as the timing and magnitude 

of deep-water cooling since the start of the Pliocene (e.g., Miller et al., 2005) makes 

the δ18O isotope record difficult to interpret. This highlights the need for continuous 

records of past fluctuations in ice sheet extent from around the Antarctic continental 

margin.

4.2 Proxy records of Pleistocene ice volume and sea level fluctuations

Both the Vostok and EPICA Dome C ice core records show that although each of the 

past five interglacial periods (since 430,000 yrs BP) have an average periodicity of 

100 kyr, each has distinctive climatic characteristics. For example, Marine Isotope 

Stage 11 is relatively long lasting (~30 kyr) with relatively low CO2 concentrations of 

between 266-287 ppm (Petit et al., 1999), while Marine Isotope Stage 5 and 9 are 

shorter lived (Figure 5), and have significantly higher CO2 concentrations of between 
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287 and 300 ppm. Deuterium profiles from the EPICA Dome C record indicate that 

peak local temperatures during these “super-interglacials” (Marine Isotope Stage 5e, 

7, 9 and 11) were between 2 to 4.5ºC higher than present-day interglacial values 

(Jouzel et al., 2007). Kawamura et al. (2007) uses O2/N2 ratios (a proxy for local 

summer insolation) to orbitally tune the chronology for the Dome Fuji (Antarctica) ice 

core record. This improved chronology provides evidence that the timing of 

temperature and δ18O changes in the Dome Fuji record lags Northern Hemisphere 

insolation by only 1-4 kyr, while they are completely out of phase with Southern 

Hemisphere insolation. Kawamura et al. (2007) interpreted this to imply that the last 

four glacial terminations were driven by changes in Northern Hemisphere insolation. 

Interglacials between 800,000 and 430,000 years ago also have an average periodicity 

of 100 kyr. However, they are characterised by being significantly cooler and longer 

duration than the Late Pleistocene “super-interglacial” periods. Peak temperatures at 

Dome C during earlier interglacial periods (Marine Isotope Stages 13, 15 and 17) are 

between 1-1.5ºC cooler than the present-day interglacial period (Jouzel et al., 2007). 

As yet, the mechanism for this change in amplitude has not been determined. Changes 

in the amplitude of obliquity cycles are cited as a possible cause, as are changes in 

ocean circulation, albedo, carbon dioxide or glacio-eustasy (EPICA Community 

Members, 2004). 

The Antarctic ice core record currently extends back only to 0.8 Myr and correlates 

well with stacked δ18O benthic records from the deep sea (Figure 4). Recently, 

Lisiecki and Raymo (2005) compiled a record of benthic δ18O from 57 globally-

distributed deep-sea drilling sites, which extends the high resolution record of glacial 

cycles back to the start of the Pliocene (5.3 Myr). The benthic δ18O record indicates 

that prior to 0.9 Myr, glacial/interglacial cycles had a period of ~41 kyr, and are of 

lower amplitude than the Late Pleistocene 100-kyr glacial cycles. While the pattern of 

cyclicity is well-described, the mechanisms that drove this period of change through

the Mid-Pleistocene Transition are not well understood (see Chapter 1). 
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Figure 54: Map of Antarctica and Ross Island (RI) region showing the AND-1B drill core 
site, and locations mentioned in this chapter.

4.3 Evidence for WAIS “collapse” during the Pleistocene?

Scherer et al. (1998) provided diatom and 10Be evidence that parts of the WAIS now 

grounded were exposed to open marine conditions at least once during the past 0.75 

Myr. They constrained the timing of this WAIS “collapse” from the occurrence of 

Thalassiosira antarctica in tills beneath Ice Stream B (Figure 54). However, some 

argue that the diatom assemblage can not constrain the timing of widespread WAIS 

retreat more accurately than to the past 1.3 Myr (Kerr, 1998). Despite lacking a high 

resolution chronology, two intervals in particular (Marine Isotope Stages 5 and 11) 

were cited by Scherer et al. (1998) as most probable candidates for widespread retreat 

of the WAIS.

Evidence of open marine conditions/extensive ice shelf conditions in McMurdo 

Sound during Stage 5e is provided by reworked, ice-cored marine sediments at Cape 

Barne (Figure 54) on Ross Island (Stuiver et al., 1981). This deposit is composed of 

20% biogenic material (including sponge spicules, fragmentary carbonate shells, 

diatoms and foraminifera) and has been 230Th /234U dated at 120,000 ±6,000 yrs 
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(Ward and Webb, 1986). Stuiver et al. (1981) interpreted this marine deposit as a 

glacial erratic that was incorporated in the base of an ice shelf (as is happening for the 

present-day McMurdo Ice Shelf), and transported to Cape Barnes as the ice shelf 

grounded during the last glacial advance. These marine deposits were therefore seen 

as providing an age for the last period of extensive ice shelf conditions in McMurdo 

Sound prior to the Last Glacial Maximum (Stuiver et al., 1981). Coral reef studies in 

the Bahamas indicate sea levels were ~2 m higher than present day for most of 

Marine Isotope Stage 5e, although a brief and rapid rise of between 6 to 9 m higher 

than present is recorded just before the end of Marine Isotope Stage 5e (Neumann and 

Hearty, 1996; Hearty, et al., 2007). However, there is uncertainty regarding the extent 

of the Greenland Ice Sheet reductions at this time (North Greenland Ice Core Project 

members, 2004), and estimates of its contribution to the Stage 5e sea-level highstand 

are as high as ~4 to 5.5 m (Cuffey and Marshall, 2000). 

Scherer et al. (1998) cited Marine Isotope Stage 11 as the most probable candidate for 

“collapse” of the grounded portion of the WAIS. Marine deposits preserved at 20 ± 3 

m above sea level on the tectonically stable coastlines of Barbardos and Bermuda 

have been dated at between 390 and 550 kyr (Hearty et al., 1999). Sea levels of 20-m 

higher-than-present during Marine Isotope Stage 11 would require complete removal 

of the Greenland and West Antarctic Ice Sheets (~12 m of sea level equivalent), as 

well as a reduction in volume around the margin of the East Antarctic Ice Sheet. 

However, accurately determining past sea level highstands from reef and elevated 

beaches are complicated by uncertainties associated with tectonics, isostatic 

adjustment following redistribution of water from ice sheets to oceanic basins 

(Howard, 1997; Chappell, 1998), and somewhat ambiguous chronologies.

Marine Isotope Stage 31 (1.07 Myr) is another potential period for Scherer et al.’s 

(1998) WAIS retreat. Perhaps the assessment of <0.75 Myr for Thalassiosira 

antarctica is indeed too young, as its first stratigraphic occurrence is not yet well 

defined, and is potentially as old as 1.3 Myr (Barron, 1996; Scherer et al., 1998; Kerr, 

1998). Furthermore, Marine Isotope Stage 31 stands out as significantly warmer than 

the other low-amplitude 41-kyr glacial cycles of the early-Pleistocene (Lisiecki and 
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Raymo, 2005). In addition, Scherer et al. (2008) reported on a warm-water marine 

carbonate unit deposited during Marine Isotope Stage 31 recovered by the Cape 

Roberts Project (77ºS). The age of this unit is well-constrained by 87Sr/86Sr dating of 

carbonate shells, 40Ar/39Ar dating of volcanic ashes, biostratigraphy, as well as 

coinciding with a paleomagnetic reversal assigned to the base of the Jaramillo 

subchron (1.07 Myr). The authors demonstrated from stable isotope measurements, 

calcareous nannofossils and diatom data that the peak warmth for this deposit, and for 

ODP site 1094 in the Southern Ocean, occurred during a phase of peak Southern 

Hemisphere insolation, prior to deglaciation in the Northern Hemisphere. This lends 

support to the hypothesis of Raymo et al. (2006) that local insolation (driven largely 

by precession) was a key control for determining ice volume in each hemisphere – at 

least during the periods of extremely high intensity Southern Hemisphere insolation.

MacAyeal’s (1992) numerical model of the WAIS indicated the potential for 

“collapses” of the ice sheet that may be irregularly timed with respect to orbital 

forcing parameters. He suggested that the distribution of soft, deformable till 

underlying the WAIS may be critical in determining its likelihood of collapse. 

Because of isolation from the atmosphere, it takes several thousands of years for 

climatic changes at the ice sheet surface to reach the ice sheet base, and the presence 

or absence of till is critical in determining the response of the ice sheet. Therefore 

extremely warm (but shorter) periods may not necessarily result in WAIS collapse. 

An example of this potential non-linear behaviour was presented in a numerical ice 

sheet simulation (forced by a simplified saw-toothed 100-kyr pattern of sea level and 

air temperature change running over the past 1 Myr) that resulted in only three, 

irregularly timed collapses. However, MacAyeal was careful to state this sporadic 

pattern of collapse as a qualitative result, which needed to be tested by the direct 

geological record.

The glacimarine record contained in the AND-1B drill core provides the first 

opportunity to obtain a direct record of AIS variability in the Ross Embayment for the 

Pleistocene, and thus to test the sensitivity of this integrated EAIS/WAIS system (see 

Chapter 1) to orbital scale climate forcing. This chapter develops a high-resolution 
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sequence stratigraphic model for the AND-1B drill core, with a chronology 

constrained by 40Ar/39Ar and magnetostratigraphy. It aims to identify the response of 

past ice sheets that occupied the Ross Embayment in the Pleistocene to past warm

periods, especially the “super-interglacials” of the past ~0.4 Myr and Marine Isotope 

Stage 31. To achieve this, a detailed description of each sequence is provided. This is 

done in order to identify any potential zones of significant erosion within these

sequences. Paleoenvironmental interpretations are also given, and are based on 

observations and interpretations made in Chapters 2 and 3, as well as the published 

literature. 

4.4 Methods

The methods used in this chapter apply facies analysis techniques involving grain-

size, IRD, diatom abundances, etc, as in Chapters 2 and 3, to the upper 150 m of the 

AND-1B drill core. AND-1B was initially described at the Crary Science and 

Engineering Centre, in McMurdo Station, Antarctica, using standard sedimentological 

techniques to produce detailed stratigraphic logs (Krissek et al., 2007), and eleven 

lithofacies were defined in the core (Chapter 3). T. Naish, R. Powell and I re-

examined the upper 150 m of the core at the Antarctic Research Facility during June 

2007. This was done to cross-check the initial description, and to confirm correct 

interpretation of the glacial/interglacial sequences. Several potential volcanic ash 

horizons suitable for 40Ar/39Ar dating were also identified (by P. Kyle and J. Ross) 

during this second phase of description.

 The grain-size processing techniques are detailed in Chapter 3 (page 154). Diatom 

abundances are based on my visual estimates as determined from smear slides, and 

are presented as log-scale histograms in Figure 55, Figure 58 and Figure 60. Clast 

frequency data were provided by F. Talarico (University of Sienna) and represent the 

numbers grains exceeding 2 mm that were exposed at the cut core face, while density 

data were taken from Niessen et al. (2007). 
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4.5  Pleistocene glacial/interglacial sequence stratigraphy of the AND-1B drill 
core 

The Pleistocene record in AND-1B is represented in the upper 146.79 mbsf (Wilson et 

al., 2007). Above 82.74 m, the AND-1B drill core can be generalised as “muddy 

diamictite with thin intervals mudstone and sandstone”. Between 146.79 and 82.74 

mbsf, AND-1B contains only 23% diamictite. These diamictites are interbedded with 

~10 to 20-m thick successions of volcanic sands, muds, and in two sequences, 

diatomite. 

Nine unconformity-bound glacimarine sequences are defined in the upper 82.74 m of 

AND-1B, and five are defined between 146.79 and 82.74 mbsf. Each sequence 

contains a basal glacial surface of erosion (GSE) that marks the passage of grounded 

ice across the site during glacial advance. A GSE is identified by diamictite (most 

commonly massive) with a sharp basal contact that usually overlies sheared or

physically intermixed facies of the underlying sequence. Not all sequences boundaries 

(GSEs) are erosional, as some glacial readvance/grounding line facies successions are 

preserved. In this case, the sequence boundary may occur over a zone (generally <1

m) where stratified diamictite passes into massive diamictite with strong horizontal 

alignment of clast long axes. Recovery was poor for the upper 24.17 m of the drill 

core, but stratigraphic integrity below 24.17 mbsf is excellent (98% core recovery) 

and drilling disturbance was rare.

4.5.1 Sequence 1: Diamictite with interbedded sands and muds (10.08 to 0 mbsf)

Description: Although core recovery was limited, the base of Sequence 1 is defined 

by a stiff diamictite at 10.08 to 9.69 mbsf, and considered to be over-compacted. 

There was no recovery above this interval in AND-1B, but seven short (gravity and 

push) sediment cores were collected at the drillsite prior to the drilling of AND-1B. 

Sections of mud with dispersed clasts were recovered at 2.16 to 1.335 mbsf from a 

push core (AND-1A), while the other six cores recovered the uppermost 0.5 mbsf of 

the seafloor sediments (Dunbar et al., 2007). The cores from the 0.5-0 mbsf interval 

consist of a variety of interbedded sequences of sand and mud, including a <0.35-m 



Chapter 4: Pleistocene history of AIS from AND-1B

185

thick basal bed of mud with dispersed clasts of Transantarctic Mountain and 

McMurdo Volcanic Group lithologies. The sandstone and mudstones are overlain by a 

thin (<0.07 m) bed of graded very fine volcanic sand with a sharp, erosional base and 

well-rounded lithics and glassy fragments of mainly volcanic origin. The top of the 

cores usually consist of a thin (<0.3 m) mudstone commonly with sand and clasts of 

Transantarctic Mountain and McMurdo Volcanic Group lithologies, and abundant 

biosiliceous material. 

Paleoenvironmental interpretation: The GSE at base of this sequence was not 

recovered and is inferred somewhere between 17.16 and 10.08 mbsf. The diamictite 

(10.08 to 9.69 mbsf) and mudstone with dispersed clasts (2.16 to 1.335 mbsf) appear 

overcompacted relative to overlying sediments, indicating deposition beneath a 

grounded ice sheet, and possibly at the Last Glacial Maximum. The surface sediments 

from the gravity and push cores are similar to the HWD cores collected from beneath 

the McMurdo Ice Shelf (Chapter 2; McKay et al., 2008). This, combined with the lack 

of diatomaceous-rich muds or oozes, indicates a lack of open marine conditions at the 

drill site, and that McMurdo Ice Shelf has persisted at the drillsite since the ice sheet

grounding line retreated from the region ~10 14C kyr BP (McKay et al., 2008). 
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Figure 55: Stratigraphic log (0-52 mbsf), with data plotted showing facies distribution, 
bioturbation index, clast abundance (Krissek et al., 2007), % biogenic silica, density (Niessen 
et al., 2007) and grain-size frequency (sample depth(s) shown with each analysis). Glacial 
proximity curve and sequence interpretation is developed from facies analysis, and shows 
Sequences 2-4. The glacial proximity curve shows the transition from marine(m) to ice distal 
(d), ice proximal (p) and ice contact/subglacial (i) deposition. Legend for lithological units is 
provided in Figure 37.
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4.5.2 Sequence 2: Interbedded sandstone and mudstone overlying interbedded 

stratified and massive diamictite (41.1 to 26.68 mbsf)

Description: The GSE at the base of this sequence (41.90 mbsf) is defined by a sharp 

contact that overlies a zone of deformed mudstone with clasts in the underlying 

sequence (Figure 56D). The diamictite (41.90 to 41.10 mbsf) overlying the GSE is 

massive, and passes upward into a stratified diamictite that contains cm-scale medium 

to coarse sandy beds. A “pebble nest” from 35.92 to 35.87 mbsf (Figure 56C) passes 

up into a massive diamictite (35.87 to 31.21 mbsf) that lacks a defined clast 

orientation and has a high degree of cementation. The diamictite interval has highly 

variable clast abundance, and alternates between sandy or muddy diamictite. 

The diamictite beds are overlain by an interval of cm-scale interbedded volcanic 

sandstone and mudstone (26.68 to 25.03 mbsf). The basal contact of this interval is a 

very sharp, planar surface (Figure 56B). The volcanic mudstones are slightly to 

moderately bioturbated and are interbedded with 0.2- to 0.5-m thick beds of fine to 

medium-grained graded volcanic sandstone with gradational upper and lower contacts 

(Figure 56A). Smear slides indicate abundant angular volcanic glass and trace values 

of diatoms and sponge spicule remains. The volcanic muds are overlain by clayey 

siltstone/silty claystones (25.03 to 24.17 mbsf) that lack biogenic silica, but have 

diffuse mm- to cm-scale burrows. This is overlain by a mudstone with dispersed clasts 

(20.65 to 19.55 mbsf) that lacks bioturbation but contains mm-thick laminae of fine to 

very fine volcanic sand, and a 29-cm thick bed of interbedded coarse silt/fine sand

composed of quartz, feldspar and heavy minerals (see Chapter 5). The top of this 

sequence was not recovered, due to the unconsolidated nature of volcanic sediments. 

No core was recovered between 24.17 and 20.65 mbsf and, although unlikely, the 

possibility of a sequence boundary within this interval cannot be ruled out. 
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Figure 56: Representative photos of facies and GSEs from Sequences 2 to 3 AND-1B.

Paleoenvironmental interpretation: The massive diamictite overlying the GSE at the 

base of the sequence is interpreted as subglacial till, due to deformation in the 

mudstone with dispersed clasts at the top of the underlying sequence (Figure 56D). 

The intervals lacking clast orientation may represent either subglacial till or 

grounding zone deposits. Although there is a general lack of confirmed modern 

examples of grounding zone deposits to support this interpretation, Anderson (1999) 

noted that grounding zone deposits are expected to have random clast orientation. The 

presence of the pebble nest (Figure 56C) associates sections of this deposit with 

periods of floating ice (Powell and Cooper, 2002) and suggests the entire diamictite 

interval (41.90 to 26.68 mbsf) represents a period of grounding line oscillations as 

subglacial environments alternated with proximal glacimarine environments. The 

bioturbated mudstone and volcanic sandstone beds above the diamictite interval 

indicate a period when grounded ice lifted off the sea floor at the drill site. The 

moderately bioturbated mudstones/sandstones lack biogenic silica and oversized 

clasts (i.e., iceberg rafted debris), suggesting deposition beneath a floating ice shelf 

lacking a basal debris layer, and are consistent with the sub-ice shelf facies inferred in 
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Chapter 2. The volcanic sand intervals are likely to be reworked, as the sharp planar 

surface (Figure 56B) separating the volcanic mudstone and sandstone from diamictite 

and is indicative of an erosive surface, suggesting deposition by a debris flow. This 

interpretation allows for deposition of the volcanic sandstone and mudstone units 

beneath a floating ice shelf. The debris flows may be related to submarine volcanism, 

or slope instability following grounding line retreat. However, an open-marine 

environment is also a possibility. The mudstones with Transantarctic Mountain clasts 

at the top of the sequence probably represent readvance of the grounding line, with 

deposition by grounding-line-related debris flows or ice-proximal basal-debris 

meltout.

4.5.3 Sequence 3: Diamictite overlain by conglomerate, mud with dispersed clasts 

and silty claystone (47.70 to 41.90 mbsf)

Description: The GSE at base of this sequence is defined by a sharp surface beneath a 

90 cm-thick zone of very weakly-stratified diamictite (defined by mm-scale texture 

changes) that overlies strongly stratified diamictite in the underlying sequence (Figure 

57B). The weakly-stratified diamictite grades into massive diamictite (46.80 to 44.40 

mbsf) with a strong fabric defined by horizontal alignment of clast long axes. This is 

overlain by another stratified diamictite (44.40 to 43.09 mbsf) before passing into a 

5.8-cm thick “conglomerate” bed with abundant granule-sized mudstone intraclasts 

and a sharp irregular lower contact (Figure 57A). The “conglomerate” is overlain by a 

51 cm-thick mudstone with dispersed, rounded mudstone intraclasts, and a 19 cm-

thick very dark greenish-grey silty-claystone that lacks clasts and has no evidence of 

bioturbation (Figure 56E). The top of this sequence consists of another mudstone with 

dispersed mudstone intraclasts (4.3 cm thick). This entire interval is lacking biogenic 

silica and significant bioturbation.

Paleoenvironmental interpretation: The strong horizontal alignment of clast long axes 

in the massive diamictite near the base of this sequence, and the presence of deformed 

sediments immediately beneath the GSE is indicative of deposition beneath grounded 

ice (i.e., subglacial till). The stratified diamictite above (weakly stratified) and below 
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(strongly stratified) the GSE suggest the grounding line advance phase of the 

underlying sequence was preserved, and therefore minimal erosion is inferred. The 

mudstone with dispersed intraclasts overlying the stratified diamictite (and 

conglomerate bed) at ~43.03 mbsf shows similarities to the “granulated” facies 

defined by Domack et al. (1999). This granulated zone indicates probable deposition 

during melt-out from the basal debris zone and is therefore associated with the lift-off 

of grounded ice, before passing into the silty claystone lacking clasts that was likely

deposited beneath a floating ice shelf free of basal debris (c.f. Chapter 2). The lack of 

any bioturbation and biogenic silica, indicates that the ice-shelf calving line lay 

seaward of the drillsite before a return to grounding-line proximal glacimarine 

sediment resumed, as inferred by the mudstone with dispersed clasts at the top of the 

sequence.

4.5.4 Sequence 4: Diamictite overlain by conglomerate and mudstone with 

dispersed clasts (51.10 to 47.86 mbsf)

Description: The GSE at the base of this sequence is gradational and inferred on the 

basis of calcite-cemented massive diamictite with horizontally aligned clasts (51.10 to 

48.91 mbsf) overlying a zone of muddy sandy conglomerate (52.96 to 51.10 mbsf) 

(Figure 57D). At 48.91 mbsf, the massive diamictite grades into a well-stratified 

diamictite, with abundant mudstone intraclasts and inclined, continuous, planar 

laminae of mudstone and sandstone (Figure 57C). The upper part of this sequence 

(48.28 to 47.70 mbsf) consists of mudstone with dispersed clasts (with thin sandstone 

laminae ~1 grain thick), before passing into a clast-rich diamictite in the upper 0.18 m 

(Figure 57B).

Paleoenvironmental interpretation: Due to gradational nature of the GSE at the base 

of this sequence and diagenetic overprint (i.e., mottled texture) in the overlying 

diamictite, erosion by glacial overriding is difficult to identify. However, it is 

apparent that a subglacial environment existed at the drillsite. The stratified diamictite 

with abundant mudstone clasts is indicative of the “granulated facies” of Domack et 

al. (1999) that is associated with sedimentation in the immediate vicinity of the 
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grounding zone, following “lift-off” of grounding line. Clast-rich zones of stratified 

diamictite that include mudstone and sandstone laminae (ranging from horizontal to 

sub-horizontal) are also indicative of this granulated facies. Facies preserved in this 

sequence are consistent with a proximal grounding-line throughout its deposition.

Figure 57: Representative photos of facies and GSEs from Sequences 3 to 5 AND-1B.

4.5.5 Sequence 5: Diamictite overlain by thin interbedded sandstone and 

mudstone (56.49 to 51.10 mbsf)

Description: The base of this sequence is defined by a GSE with a sharp base (Figure 

59A) overlain by a massive diamictite (56.49 to 54.40 mbsf) with clasts horizontally 

aligned along long axes. This is in turn overlain by a weakly-stratified diamictite 

(54.40 to 53.47 mbsf), displaying mm-scale clay “stringers” (possible drilling 

disturbance), before passing into a diamictite with well-defined horizontal 

stratification characterised by stratigraphic alternations in texture and clast beds 

(Figure 57E). This facies then passes sharply into a laminated clayey siltstone (53.13 
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to 52.96 mbsf) with slight to moderate bioturbation and fragments of diatom remains 

(~1% of matrix; Figure 58). The clayey siltstone is interbedded by a single bed of 

black volcanic sand before passing back into diamictite. The top of the sequence 

consists of drilling-disturbed diamictite (e.g. "fall-back debris” of unconsolidated 

diamictite/conglomerate), and an undisturbed muddy sandy conglomerate in the 

uppermost 0.22 m of the sequence (Figure 57D).

Paleoenvironmental interpretation: The interpretation for this sequence is similar to

Sequence 3, with a strong-clast fabric of the massive diamictite at the base of this 

sequence suggesting deposition beneath grounded ice, before passing into grounding-

zone “lift-off” and then into “debris-free” sub-ice shelf facies. Of note in this interval 

are the highly-fragment diatom remains, consistent with the sub-ice shelf mud facies 

documented in Chapter 2. The diatom remains are interpreted as being advected to the 

drillsite by oceanic circulation beneath an ice shelf free of basal debris during the 

glacial minima.

4.5.6 Sequence 6: Diamictite overlain by thin interbedded sandstone and 

mudstone (67.10 to 56.49 mbsf)

Description: The GSE at the base of this sequence directly overlies weakly-stratified 

diamictite with inclined laminations of concentrated clasts (white arrow in Figure 

59C). The diamictite (67.10 to 60.62 mbsf) at the base of this sequence is mostly 

massive, with random clast orientations, but has intervals of well-defined horizontal 

alignment of clasts on long axes. The massive diamictite is overlain by a weakly-

stratified diamictite (60.60 to 56.90 mbsf), defined by mm- to cm-scale inclined 

laminations of silty claystone, some containing siliceous microfossils. Mudstone 

intraclasts are also common within intervals of the stratified diamictite. However, 

sections of this stratified diamictite are also massive (e.g., 58.15 to 57.45 mbsf). The 

top of the sequence consists of a slightly bioturbated, laminated clayey siltstone 

(53.13 to 52.96 mbsf; Figure 59B), that is interbedded by thin (< 0.06 m) sandstone 

beds, including a volcanic sandstone at 56.50 mbsf (Figure 59A). Diatom remains are 

relatively common (smear slide estimates between 1-10%; Figure 58) in both the 
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clayey siltstone (Facies 2) and stratified diamictite (Facies 9) between 58 and 53 

msbf. This interval is classified as Diatom Unit 1 by Scherer et al. (2007), and 

consists of Pleistocene, Pliocene and Miocene diatoms. These include  the extant 

species of Actinocyclus actinochilus (3.02 Myr to present) and Thalassiosira 

antarctica (~1.1 Myr to present), and the extinct taxa of Thalassiosira elliptipora 

(1.08 to 0.73 Myr) and Rouxia leventerae (2.08 to 0.14 Myr). However, the presence 

of anomalously old (e.g., Actinocyclus actinochilus) or long ranging taxa (e.g.,

Paralia sulcata, and Stephanopyxis) are characteristic of post-LGM Ross Sea 

glacimarine sediments that have been reworked, and there are only limited 

occurrences of Fragilariopsis spp, which currently dominate the Ross Sea. (Scherer et 

al., 2007). 

Paleoenvironmental interpretation: The diamictite units within the basal section of 

this sequence are considerably thicker than most of the overlying sequences, showing 

in some places evidence of grounded ice (horizontal alignment of clast long axes), and 

in others grounding-line proximal glacimarine deposition (random clast orientations

and laminations). Sequence 6 draws some parallels with Sequence 2, and may 

represent a prolonged period of grounding zone fluctuations at the drill site during ice 

volume maxima. The glacial minimum in this sequence is represented by a facies that 

is consistent with a floating ice shelf (mudstone with sandstone laminae) free of basal 

debris (i.e., lacking of dropstones), and contains a diatom assemblage characteristic of 

sediment recycled by subglacial and glacimarine processes (c.f. Sjunneskog and 

Scherer, 2005), similar to that documented in the Holocene cores reported in Chapter 

2 of this thesis.
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Figure 58: Stratigraphic log (48-100 mbsf), with data plotted showing facies distribution, 
bioturbation index, clast abundance (Krissek et al., 2007), % biogenic silica, density (Niessen 
et al., 2007) and grain-size frequency (sample depth(s) shown with each analysis). Glacial 
proximity curve and sequence interpretation is developed from facies analysis, and shows 
Sequences 4-10. The glacial proximity curve shows the transition from marine(m) to ice distal 
(d), ice proximal (p) and ice contact/subglacial (i) deposition. Legend for lithological units is 
provided in Figure 37.
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4.5.7 Sequences 7-9: Interbedded diamictites (82.60 to 67.10 mbsf)

Description: These three sequences consist solely of a series of interbedded massive 

and stratified diamictites, underlain by GSEs at 82.60, 72.48 and 70.37 mbsf. The 

basal GSE of Sequence 9 is well defined by a sharp contact, and extensive 

deformation of the facies at the top of the underlying sequence. The GSE at the base 

of Sequence 8 (72.48 mbsf) is subtle contact that consists of massive diamictite 

overlying inclined, weakly-stratified diamictite. The stratified diamictite intervals are 

between 0.58 and 0.18 m thick, and are characterised by mm-scale laminae with high 

clast concentrations and horizontal alignment of long-axes. A series of claystone 

laminae that appear to be highly sheared occur at the top of Sequence 8 (Figure 59D). 

A smear slide from one of these claystone “stringers” from at 70.49 mbsf contains 

~5% fragmented diatoms. 

Paleoenvironmental interpretation: These sequences represent fluctuations between a 

subglacial and ice-proximal glacimarine depositional environment. The contact 

between Sequences 7 and 8 appears to be erosive due to the sheared claystone laminae 

with diatom fragments at the top of Sequence 8. These laminae suggest that claving-

line deposits at the top of Sequence 8 were subsequently eroded by the glacial 

advance represented by the base of Sequence 7. The claystone laminae (with 3-5% 

diatom remains; Figure 59D) also indicate reworking and erosion of sub-ice shelf 

mudstones during the same glacial advance. While it is possible that open marine 

sediments were also deposited and eroded, no diatomite or diatom-rich mudstone 

laminae were found in the diamictite, and it is concluded there were in fact no open 

marine conditions during the deposition of this sequence, or any of the younger ones.
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Figure 59: Representative photos of facies and GSEs from Sequences 5 to 10 in AND-1B.

4.5.8 Sequence 10: Interbedded diamictites overlain by mudstone (interbedded 

with volcanogenic facies), diatomite, and mudstones with lapilli tuff and 

volcanic ash beds. (99.25 to 82.60 mbsf)

Description: The GSE at the base of this sequence is represented by a transitional 

zone (rather than an erosional surface) from silty claystone into stratified diamictite 

(Sequence 11) and then into a massive diamictite (Sequence 10) with horizontally-

aligned clasts at 99.25 mbsf (Figure 61C). This passes into a stratified diamictite 

(98.38 to 97.08 mbsf) with a sharp upper contact overlying silty claystone (97.08 to 

94.52 mbsf) that is moderately to highly bioturbated, and has rare thin sandstone 

interbeds (Figure 61B). The interval between 94.52 and 90.31 mbsf is characterised 

by clast-rich volcanic diamictites, bioturbated clayey siltstones, and a 2-m-thick 

interval of physically intermixed clayey volcanic sand (containing calcareous shell 

debris), diatom rich silty claystone, and silty claystone/clayey siltstone. This passes 

into a diatom-bearing mudstone with common clasts (90.31 to 90.00 mbsf) of mostly 

volcanic lithologies, grading upwards into diatom-rich silty claystone with moderate 
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bioturbation (90.00 to 89.39 mbsf). Then follows a silty-claystone-rich diatomite with 

dispersed clasts (89.39 and 86.92 mbsf; diatoms constitute up to 70% of the matrix) 

that passes up into a diatom-rich mudstone. This is overlain by a bioturbated 

mudstone (86.63 to 82.74) interbedded with laminated sandstone (but lacking clasts), 

and several volcanic ash and tuff beds (40Ar/39Ar dated at 1.014±0.04 Myr; Wilson et 

al., 2007). This mudstone contains only trace values of very poorly preserved diatom 

remains. The contact between the mudstone and the underlying diatom-rich mudstone 

is sharp, inclined and irregular (Figure 61A). The upper portion of this mudstone is 

highly deformed and physically intermixed with lapilli tuff units. This intermixed 

zone immediately underlies the GSE in the overlying sequence.

Paleoenvironmental interpretation: The massive diamictite at the base of the 

sequence is interpreted as subglacial till or grounding-line proximal deposition during 

the glacial maxima. This passes upward into facies consistent with deposition beneath 

an ice shelf lacking basal debris (i.e., glacimarine but distal from the grounding line). 

Though these sediments lack clasts they contain sandstone laminae that probably 

represent distal sediment gravity flows. The sequence is interrupted between 94.52 

and 90.31 mbsf, by a series of debris flows (volcanic diamictites with interbedded 

sandstones and mudstones) most likely associated with nearby volcanic activity. More 

than one debris flow is inferred on the basis that the volcanic diamictites and 

sandstones are interbedded with thin (<0.2 m) intervals of bioturbated silty claystone 

deposited in a low energy environment. A period of biogenic deposition, with a 

decreasing contribution from hemipelagic suspension settling followed the deposition 

of the volcanic debris flows, and is associated with a glacial minimum. Ice-rafted

debris was constant throughout the deposition of the silty-claystone-rich diatomite, 

but is absent in the overlying mudstone (Figure 58). The contact between the 

mudstone and the underlying diatomite at 86.63 mbsf is sharp and irregular, indicating 

that it is zone of erosion. After deposition of the mudstone, an advancing grounding 

line resulted in the deposition of silty claystone with sandstone laminae. The presence 

of only traces of poorly-preserved diatoms and the lack of clasts also suggest an ice 

shelf covered the site at this time. However, the presence of several well-preserved 

volcanic ash and lapilli tuff deposits are difficult to explain if a debris-free ice shelf 
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was present over the drillsite, and the interval is thicker (~4 m) than expected for ice 

shelf deposits (> 1 m). Therefore, it may be associated with a renewed phase of 

volcanism, and was relatively rapidly deposited by distal component of sediment 

gravity flows, interbedded by volcanic ash and tuff settling through the water column.

4.5.9 Sequence 11: Diamictite, volcanic sandstone and silty claystone (103.72 to 

99.58 mbsf)

Description: A well-defined, sharp GSE overlies deformed sediments at 103.72 mbsf 

(Figure 62A). The base of the sequence consists of a 0.42-m-thick massive diamictite 

overlain by weakly stratified diamictite. The lithological change is defined by slight 

changes in clast abundances and claystone laminae with common diatom fragments. 

The stratified diamictite is clast-rich, containing mostly volcanic lithics or mudstone 

intraclasts. This is overlain by an interval of sandstone (100.69 to100.08 mbsf) with 

deformed ripple cross-stratification, and contains mudstone clasts with common 

diatom fragments. This sandstone was classified as volcanic during the initial core 

description, but thin-section analysis indicates that it is non-volcanic, being composed 

almost entirely of weathered mudstone (including diatom fragments) and diamictite 

intraclasts. The sandstone interval has a sharp basal contact (Figure 61E). At its top, it 

passes sharply into a silty claystone (with rare clasts) with slight to moderate 

bioturbation, but lacking diatoms (Figure 61D) and then into a stratified diamictite 

(Figure 61C).

Paleoenvironmental interpretation: This sequence marks the transition from grounded 

ice (massive diamictite interpreted as basal till) to an ice-proximal glacimarine 

deposition, inferred from the stratified diamictite and deformed rippled sandstone 

probably deposited by a tidal pumping mechanism (e.g., Figure 64). This passes into a 

sub-ice shelf silty claystone that is lacking clasts and has slight to moderate 

bioturbation. Readvance of the grounding line is preserved in the form of the stratified 

diamictite.
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Figure 60: Stratigraphic log (98-154 mbsf), with data plotted showing facies distribution, 
bioturbation index, clast abundance (Krissek et al., 2007), % biogenic silica, density (Niessen et 
al., 2007) and grain-size frequency (sample depth(s) shown with each analysis). Glacial proximity 
curve and sequence interpretation is developed from facies analysis, and shows Sequences 11-15.
The glacial proximity curve shows the transition from marine(m) to ice distal (d), ice proximal (p) 
and ice contact/subglacial (i) deposition. Legend for lithological units is provided in Figure 37.
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4.5.10 Sequence 12: Diamictite overlain by mudstone with dispersed clasts (109.42 

to 103.72 mbsf)

Description: The GSE at the base of sequence overlies deformed facies in the 

underlying sequence and is overlain by a mostly massive diamictite (109.42 to 103.92 

mbsf; Figure 62C). However, the basal section of the diamictite (109.42 to 108.95

mbsf) contains weak, mm-scale stratification defined by texture and colour changes,

and evidence of intermixing with mudstone from the underlying sequence. This passes 

into massive diamictite (109.42 to 103.94 mbsf) with intervals of clast long-axis 

alignment, and randomly orientated clasts that are well-cemented and contain common 

diamictite intraclasts (Figure 62B). The top of the sequence (103.92 to 103.72 mbsf) 

consists of a mudstone with dispersed clasts and rare diatom fragments. The mudstone 

also includes a thin (0.03 m), poorly sorted, black volcanic sandstone bed (Figure 62A).

Figure 61: Representative photos of facies and GSEs from Sequences 10 to 11 in AND-1B.
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Paleoenvironmental interpretation: The diamictite at the base of the sequence deforms 

underlying glacimarine deposits (Sequence 13), which indicates glacial overriding by 

grounded ice, before passing into glacimarine/ice shelf deposition close to the 

grounding line. The diamictite in the overlying sequence contains common diatom 

remains (Figure 60), suggesting an open marine environment may have occurred some 

time between the deposition of Sequence 12 and 11.

4.5.11 Sequence 13: Volcanic sandstones and mudstones, mudstone with dispersed 

clasts, diatomite, and diamictite (125.00 to 109.42)

Description: The massive diamictite (125.00 to 123.23 mbsf) at the base of this 

sequence contains sections of physical intermixing with stratified diamictite, and passes 

upward into interbedded stratified diamictite and silty claystones (122.66 to 120.94 

mbsf; Figure 62E) with abundant granules of mudstone intraclasts and soft sediment 

deformation features. This is overlain by an interval of interbedded volcanic sandstones 

and siltstones (120.94 to 118.91 mbsf). Bioturbated silty claystone and mudstone with 

common clasts (118.91 to 117.90 mbsf) overlie the volcanic interval before passing into 

a diatomaceous-rich mudstone and diatomaceous ooze (117.90 to 117.02 mbsf; Figure

62D). These are capped by sandy volcanic breccias and unstratified dm-scale beds of 

volcanic sandstones (117.02 to 111.94 mbsf). The top of the sequence consists of 

mudstone with dispersed intraclasts, passing into a bioturbated silty claystone (lacking 

clasts) with fragmented remains of diatoms that are interbedded with volcanic 

sandstone beds. An intermixed zone of mudstone with dispersed clasts and diamictite 

directly underlies the GSE of the overlying sequence (Figure 62C). 

Paleoenvironmental interpretation: This sequence records the transition from a subglacial 

to an open marine environment that is interrupted by sediment gravity flows associated 

with volcanic activity. Open marine conditions are recorded during the glacial minima, as 

evidenced by diatom-bearing mudstone and diatomite with associated ice-rafted debris. 

Readvance of the grounding line appears to have been associated with an ice shelf, on 

account of silty claystone that lacks clasts, but has common (5-20% smear slide estimate) 

fragmented diatom remains. However, thick volcanic sand beds complicate this signal.
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Figure 62: Representative photos of facies and GSEs from Sequences 11 to 13 in AND-1B.

4.5.12 Sequence 14: Diamictite, volcanic sandstones, mudstone with dispersed 

clasts and silty claystones (150.73 to 125 mbsf)

Description: The GSE at the base of this sequence is a gradational contact between 

150.73 to 149.30 mbsf characterised by a physically mixed zone of mudstone with 

dispersed clast and diatomite (underlying sequence) that passes sharply into stratified 

diamictite (defined by clast concentrations) and then into massive diamictite at 149.30 

mbsf (Figure 63D). The massive diamictite contains up to 5% diatom remains (Figure 

60). The diamictite becomes stratified again between 147.83 and 146.79 mbsf before 

passing upward into a sandstone (composed of various lithologies) with mm-scale 

parallel laminations that is capped by a 3-cm thick stratified (inclined), clast-rich 

diamictite that is dominated by mudstone intraclasts (Figure 63C). Unconformably 

overlying the diamictite is a ~12 m thick interval of graded, volcanic sandstone beds, 

stratified at cm- to dm-scale (Figure 63B). The beds commonly grade upwards, 

contain occasional flame structures and parallel laminations, and have sharp bases. 

These volcanic sandstones are overlain by mudstone with dispersed clasts (Figure 
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63B) interbedded with mm- to cm-scale volcanic sandstone beds (134.72 to 132.84 

mbsf) and then into silty claystone and clayey siltstone (132.82 to 125.46 mbsf). 

Some intervals of the silty claystones and clayey siltstones have rare to moderate 

bioturbation, and laminae defined by colour changes. Some of the volcanic sandstones 

contain mudstone lonestones that deform underlying laminae (Figure 63B). The top of 

the sequence is characterised by a bioturbated mudstone with dispersed clasts. There 

is some evidence of physical intermixing of mudstone with common clasts and sandy 

mudstone with dispersed clasts between 126.50 and 126.14 mbsf.

Paleoenvironmental interpretation: This sequence shows evidence for grounded ice at 

the glacial maximum (massive diamictite interpreted as basal till), followed by 

grounding line deposition during glacial retreat associated with thin 

sandstone/diamictite deposits (~0.3 m thick) truncated by volcanic sediment gravity 

flows (displaying flame structures, parallel laminae, and graded beds). Most of the 

mudstone and sandstone deposited during the glacial minimum in this sequence are 

probably related to local volcanism, although some periods of slower sedimentation 

are recorded by highly bioturbated zones (diatom abundances are between 1-2% in 

smear slide estimates; Figure 60). Rare mudstone lonestones deform underlying 

laminae. These lonestones are of an identical lithology to the mudstone beds 

interstratified with the volcanic sandstone unit (Figure 63B). This suggests that the 

grounding line was in the immediately vicinity and was actively entraining clasts of 

mudstone laminae into its basal bedload. The mudstone clasts were then ice-rafted a 

very short distance before being released by sub-ice shelf melting.
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Figure 63: Representative photos of facies and GSEs from Sequences 13 to 15 in AND-1B.

4.6 Subglacial, glacimarine and marine processes of the Antarctic Ice Sheet 
system in the Ross Embayment during the Pleistocene

The transitions from subglacial to glacimarine facies in the AND-1B drill core 

provide new insight into the subglacial environment and grounding line processes of 

past ice sheets in the Ross Embayment throughout the Pleistocene. Each sequence 

described above shows clear transitions from periods of grounded ice overriding the 

drill site location (or in the immediate vicinity) to a glacimarine environment, and in 

several cases open-marine conditions. 

The subglacial environment is represented in most sequences by massive diamictite 

with strong horizontal alignment of clasts a-axes, implying deposition of basal till 
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beneath grounded ice. This lithology commonly rests on a GSE beneath which 

deformed and physically intermixed facies can be seen, consistent with overriding and 

deformation by grounded ice. Intervals of diamictite with a random clast fabric are 

more difficult to interpret, as they can form in a subglacial (e.g., 

lodgement/deformation till), glacimarine (e.g., basal debris melt-out), ice shelf or 

open marine environment (e.g., iceberg-scoured glacimarine debris) (e.g., Anderson et 

al., 1980; Powell and Molnia, 1989; Dowdeswell et al., 1994; Domack et al., 1999). 

These along with stratified diamictite facies (commonly with higher proportion of 

mudstone intraclasts) could also represent a grounding zone wedge system (e.g., 

Powell and Alley, 1997; Anadakrishnan et al., 2007). The identification of such 

deposits may ultimately be important, as Alley et al. (2007) provide modelling 

experiments that suggest the presence of a grounding zone wedge system may help to 

maintain grounding line stability, even during periods of small scale (~10 m) sea level 

increases. This has the implication that only large-scale sea level rises are likely to 

result in widespread grounding-line migration. 

No facies were found that might represent significant conduit or sediment-laden 

subglacial meltwater-plume discharge. Several intervals are classified as 

conglomerates, but all are < 1 m thick. These conglomerate deposits are associated 

with the final transition from grounding-zone deposition to more distal glacimarine 

deposition of muds, and are probably equivalent to the granulated deposits of Domack 

et al. (1999), or the clast-rich diamictite deposits associated with grounding line 

retreat at the base of DF80-189 (Chapter 2). The grain-size frequency distributions of 

these conglomerates are consistent with those of the diamictite facies (e.g., Figure 51, 

Chapter 3). As a result, these conglomerates are interpreted as a clast-rich equivalent 

of the stratified diamictite deposits. 

Some sequences (e.g., 11 and 14) contain sandstone beds within subglacial and 

glacimarine transition facies that represent the initial phase of ice retreat (Figure 60). 

Some of these sandstones display cross-bedding, which suggests the influence of 

traction currents. The very well-sorted, cross-bedded sandstone (consisting almost 

entirely of mudstone/diamictite intraclasts) in the glacial retreat succession within 
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Sequence 11 (100.69 to 100.08 mbsf) is the most notable unit of this type. The 

sandstone has a mean grain size range of 700 to 880 μm (see grain-size frequency 

curves at 100.61 and 100.10 mbsf in Figure 60). Currents of the order of 30-50 cms-1

are required to move sand in this size range (Hjulstrom, 1939). Sand deposits of this 

grain-size frequency and lithology (i.e., mudstone and diamictite intraclasts) are a 

consistent facies associated with the initial retreat phase in LGM to Holocene 

sediment cores collected from the Ross Sea (e.g., Domack et al., 1999), and from sub-

ice shelf deposits beneath the McMurdo (e.g., sand unit in HWD03-1 (31 to 24 cm); 

Chapter 2) and Amery Ice Shelves (Hemer et al., 2007), as well as in the Antarctic 

Peninsula (Evans and Pudsey, 2002). 

In the absence of any evidence for subglacial meltwater discharge, the most likely 

process for formation of these currents is “tidal pumping” resulting from grounding 

line migration through a tidal cycle (e.g., Alley et al., 1987; Domack and Williams, 

1990). Where the sea floor profile is relatively flat on either side of the ice sheet-ice 

shelf transition, the “grounding line” may advance and retreat daily as the tide falls 

and rises. Tidal height variations at the present-day Siple Coast grounding line are of 

the order of ~ 1 m (Anadakrishnan and Alley, 1997), and may result in the 

development of a thin water film between the ice sheet and the bed (Alley et al., 1987; 

Figure 64). In addition, MacAyeal et al. (2006) has linked long-period waves derived 

from Alaskan storms to iceberg calving at the Ross Ice Shelf front, and Domack et al.

(2007) has suggested that long-period waves may also contribute to grounding-zone 

“pumping” deposition, as it will result in higher amplitude oscillations than tidal 

influences.

As the grounding line continues to retreat upstream of the AND-1B drill site, 

deposition of muds continues, free of basal glacial debris beneath a floating ice shelf. 

Bioturbation is absent, or of moderate intensity, and diatom remains are absent, or 

rare and poorly preserved, suggesting limited sub-ice shelf oceanic circulation. These 

observations are consistent with observations beneath other ice shelves (Domack et 

al., 1999; Hemer and Harris, 2003; McKay et al., 2008; Chapter 2).
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Figure 64: Cartoon to illustrate simply the tidal pumping process (based on cartoons from 
Domack and Williams, 1990 and Anadakrishnan et al., 2007). The height of the tidal cavity 
(pumping zone) is of the order of several mm (Alley et al., 1987). Not to scale.

During open marine conditions, volcanic sandstone and mudstone units dominate. 

Two sequences (Sequences 10 and 13) contain diatomite intervals with ice-rafted 

debris, indicative of an open marine environment (e.g., Chapter 2). However, both of 

these intervals contain thick, continuous successions (~5 to 12 m) of volcaniclastic 

diamictite, sandstones, and mudstone. Some of these volcanic intervals are physically-

intermixed and are interpreted to be deposited by volcanic debris flows, turbidity 
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currents, as well as near-primary volcanic ash fall. The association of these 

volcaniclastic intervals with open marine diatomite facies suggests a linkage between 

volcanic-rich sediments and an open marine environment. For sequences where the 

glacial minima are most likely represented by a floating ice shelf above the drill site 

(i.e., Sequences 3-9 and 11-12), the maximum thickness of any volcanic-rich bed is 4 

cm. 

At face value, this observation suggests that Sequences 2 and 14 were also deposited 

in open water environments. The glacial retreat and minima facies in Sequence 14 

consists of volcanic sandstones (including a 12-m thick turbidite sequence) that are 

interbedded with highly bioturbated mudstones (containing ~1% diatoms). The 

mudstone at the top of this sequence is 7-m thick, almost an order of magnitude 

thicker than the mudstones facies deposited in Sequences 9-3 and 12-11, or for 

mudstones deposited beneath Antarctic ice shelves in the Holocene (McKay et al., 

2008; Hemer and Harris, 2003). These observations, combined with the 12-m thick 

volcanic sandstone succession, point towards an open marine setting for the glacial 

minima in Sequence 14. 

The upper half of Sequence 2 has poor recovery, but subglacial to glacimarine 

diamictites in this sequence are overlain by at least 1.5 m of volcanic sandstone and 

mudstone. The basal contact of this volcanic interval is very sharp and planar, 

suggesting that it is erosional and that the volcanic mudstone is the result of a 

sediment gravity flow. It is difficult to determine from these criteria alone if open 

marine waters surrounded the drillsite during the glacial minimum in this sequence, 

but given the association with volcaniclastic sediments it is a possibility. 

4.7 Sedimentary evidence for erosion and unconformities

The presence of ice shelf deposits in Sequences 1 to 6 suggests there are minimal 

periods of time missing between sequences, despite potential erosion by GSEs. 

Holocene ice shelf deposits around the Antarctic margin are characteristically thin (<1 

m); and have lower sedimentation rates than their open marine counterparts (McKay 

et al., 2008; Hemer and Harris, 2003; Evans and Pudsey, 2002; Domack et al., 2005). 
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Therefore, if erosion of open marine sediments had occurred, then it is likely that the 

thin ice shelf deposits would have also been eroded. In the unlikely situation that the 

marine deposits have been eroded while the thin ice shelf deposits are preserved, there 

should be some evidence of recycling of the marine sediments within the basal section 

of the diamictite in the overlying sequence. 

There is no evidence of recycled diatoms in diamictite from Sequences 1 through 7. 

Trace amounts of diatoms are noted in the basal diamictite from Sequences 11 to 14 

(Figure 58 and Figure 60), and these sequences overlie marine sediments. The upper 

~20 cm of Sequence 8 contain “wispy” laminae of claystone that are sheared and 

contain ~5% diatom remains. These laminae (Figure 59D) have a similar style of 

deformation to those associated with GSEs separating diatomite from diamictite in the 

Pliocene section of AND-1B (c.f. Figure 39A; Chapter 3). 

Sequence 9 is different from the overlying Sequences 10 to 14 in that it lacks trace 

numbers of diatoms but overlies a sequence that is rich in diatoms. However, the open 

water diatomite facies is overlain by a silty claystone (sub-ice shelf) and stratified 

diamictite. This record of grounding line advance in the upper part of Sequence 10 

and continuing into Sequence 9, indicates that the advance was largely non-erosive 

and therefore sediment recycling was minimal. This largely non-erosive nature during 

the late Pleistocene (0.8 Myr to present) is probably the result of the cold-polar 

regime of ice sheet that occupied the Ross Embayment during this time period. 

4.8 Chronostratigraphy and correlation to the marine oxygen isotope timescale

The age model presented in Figure 65 has been developed from the initial 

chronostratigraphy of Wilson et al. (2007). It integrates 40Ar/39Ar dates from volcanic 

ashes and the magnetostratigraphy, with the sequence stratigraphy developed in this 

chapter. The magnetic reversals at 84.97 and 80.03 mbsf are identified as 

Brunhes/Matuyama (0.781 Myr) and Matuyama/Jaramillo (0.988 Myr) boundaries, 

respectively (Wilson et al., 2007). These events provide good age control, as they are 

constrained by the 40Ar/39Ar date of 1.014 ±0.04 Myr from a felsic tephra at 85.53 
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mbsf (Wilson et al., 2007). The reversed magnetic transition at 91.13 mbsf (Figure 

65) almost certainly represents the base of Jaramillo subchron (1.072 Myr). Using 

these constraints, Sequences 14, 13, 10 and 9 can be accurately tied to excursions in 

the isotope curve (Figure 65). 

Sequences 14 and 13 are dated by 40Ar/39Ar age of basaltic tephras at 1.67±0.03 Myr 

and 1.65±0.03 Myr, respectively (Wilson et al., 2007; Figure 65). As there are no 

magnetic reversals in these sequences, they are not as well constrained, but most they 

were probably deposited between Marine Isotope Stage 60 to 54 (Figure 65). 

Sequences 11 and 12 are poorly constrained, most likely being deposited during two 

~40,000 year intervals somewhere between Marine Isotope Stages 53 and 34. 

However, they were most likely to have been deposited within the Matuyama Chron 

below the Cobb Mountain subchron, due to inferred erosion of the Cobb Mountain 

subchron by the base of Sequence 10. This implies unconformities totalling ~0.5 Myr 

between the top of Sequence 13 and the bottom of Sequence 10. 

The base of Sequence 9 can be confidently correlated with the glacial advance 

represented by Marine Isotope Stage 20 on account of the Bruhnes/Matayama 

geomagnetic boundary occurring within the diamictite interval at the sequence base. 

Sequences 1-9 have been tentatively correlated with the nine Marine Isotope Stage 

interglacial events in the Lisiecki and Raymo (2005) δ18O benthic stack (Figure 65). 

In this age model, every named isotope stage can be linked to particular 

glacial/interglacial cycle in the AND-1B core for the past ~0.8 Myr. Further 40Ar/39Ar 

dates on volcanic ash are currently being obtained to improve the confidence of the 

correlation of individual glacial minima to Marine Isotope Stage interglacials in the 

δ18O benthic record 

Critical to this age model is the age of Sequences 1 and 2. The diamictite at the base 

of Sequence 2 (at ~10 mbsf) is most likely to have been deposited during the Last 

Glacial Maximum. Although there is significant core loss between 10 and 24 mbsf

this is probably due to difficulty in coring unconsolidated lithologies during this 

interval (e.g., volcanic sands etc). A volcanic ash sample at ~25 m is currently being 
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dated to test these assumptions, and provide an age constraint for the top of Sequence 

2.

There appear to be at least two periods of erosion in early Pleistocene (>0.8 Myr) part 

of the AND-1B core. The older occurs between ~1.6 and 1.13 Myr and the younger 

somewhere between ~0.99 and 0.8 Myr. The earliest part of the Pleistocene, 

corresponding to the Olduvai subchron (1.8 -1.7 Myr) is also missing from the record.
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Figure 65: Age model based on integration of magnetostratigraphy, tephrochronolgy and the 
sequence stratigraphic model. Solid arrows indicate absolute ages (and associated errors), 
while dash arrows indicate interpretation based on sequence stratigraphic model, showing the 
transition from marine(m) to ice distal (d), ice proximal (p) and ice contact/subglacial (i) 
deposition. Legend for lithological units is provided in Figure 37.
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4.9 Identifying periods of past retreat and expansion of the Antarctic Ice Sheet 
in the Ross Embayment during the Pleistocene

4.9.1 The Late Pleistocene (0.8 Myr to present)

In AND-1B, the Late Pleistocene sequences (Sequences 1-9) characterise a period of 

relative stability of the AIS in the Ross Embayment, and open-marine conditions are 

not recorded in the AND-1B drillsite. This stability is interpreted primarily as a 

consequence of a persistent cold glacial thermal regime (and cold climate) that 

maintained an extensive ice shelf across the Ross Embayment during interglacial 

periods. Despite this stability, there is clear evidence of ice shelf grounding and ice 

sheet deposition during each of the nine glacial cycles over the past 0.8 Myr, implying 

significant sensitivity of past ice sheets in the Ross Embayment to either climate, sea 

level, or both. 

Over the past 0.8 Myr, only Sequence 2 and Sequence 8 provide evidence of possible 

calving-line proximal, ice shelf sedimentation. A confident interpretation for 

Sequence 2 is difficult because several metres of the upper part were not recovered. 

However, diatom remains abundances are low (~1% of matrix from smear slide

estimates) throughout the interglacial mudstone facies in Sequence 2, suggesting sub-

ice shelf conditions more extensive or similar to that of today. In the previous section, 

these facies were tentatively correlated with MIS 5. Geological evidence for calving 

line proximal, ice shelf conditions in McMurdo Sound supports this interpretation as

reworked marine shells, dated as Marine Isotope Stage 5e, have been reported from 

Cape Barne, ~45 km to the north of the drillsite (Stuiver et al., 1981). The age model 

developed from this sequence stratigraphic approach is tentative and dating the top of 

this sequence is critical to its robustness. 40Ar/39Ar dating of volcanic ashes in glacial 

minima facies at 25 and 54 mbsf (Jake Ross, New Mexico Tech., pers. comm.) will be 

available in the near future. There is also potential for obtaining maximum 

depositional ages of the diamictite deposits by dating enclosed volcanic clasts.

The diamictite in Sequence 2 contains evidence for fluctuations between grounded 

and marginally floating ice associated with the grounding zone. These fluctuations 
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could correspond to Marine Isotope Stage 7, a lower amplitude interglacial period just 

prior to 0.2 Myr. 

Sequences 3 to 6 all contain evidence for debris-free ice shelf conditions during 

glacial minima, but no evidence for open marine conditions. It is difficult to gauge the 

duration of these periods of sub-ice shelf deposition at MIS, but they are of similar 

thickness (<1 m) to Holocene ice shelf sediments elsewhere (e.g., Hemer and Harris, 

2003; Evans and Pudsey, 2002), implying a similar duration (i.e., several thousand 

years during the peak of each Marine Isotope Stage interglacial). These periods of 

deposition beneath a debris-free ice shelves coincide with the higher-amplitude 

“super-interglacials” of the past ~400 kyr (e.g., Marine Isotope Stage 5e, 9, 11), and 

correspond to ~120-130 m of sea level fluctuations between glacial and interglacial 

peaks (Miller et al., 2005) .

Rapid or large (>20 m?) sea level rises are likely to destabilise the grounding line 

(Alley et al., 2007; Schoof, 2007) and expose the base of the thick ice shelf to warm 

oceanic masses upwelling onto the Ross Sea continental shelf, in turn leading to rapid 

basal melting of ice shelf (Payne et al., 2004; Dupont and Alley, 2005). Recent 

modelling experiments and observations at the Siple Coast grounding line suggest that 

slower/lower amplitude sea level rises are less likely to have resulted in extensive ice 

shelf development, as development of sedimentary wedges at the grounding line 

results in thickening the overlying ice sheet, which in turn helps stabilises the 

grounding line (Alley et al., 2007; Anadakrishnan and Alley, 1997). If this model is 

correct, then it may help to explain the lack of extensive ice shelf conditions during 

the lower-amplitude fluctuations in the benthic δ18O record, and suggests that only the 

high-amplitude 100-kyr interglacial/glacial signal will result in “lift-off” and retreat of 

the grounding line.

The lack of open marine deposits, and the presence of ice shelf deposits during 

interglacial periods, implies a cooling of the glacial regime at 0.8 Myr to the extent 

that an extensive ice shelf persisted across the Ross Embayment during interglacial

periods. Large ice shelves require cold ice in order to be sustained (Mercer, 1978; 
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Alley et al., 1989) – currently ice at the surface of Upstream B site and at J9 (Ross Ice

Shelf) averages -25ºC (Clough and Hansen, 1979; Engelhardt et al., 1990). The 

implication of more extensive ice shelves during interglacials in a cooler glacial 

regime is that they will increase the buttressing effect on the grounded ice sheet that 

feeds it (Mercer, 1978; Rignot et al., 2004). A cooling in the glacial regime to the 

extent that large ice shelves could be maintained during interglacials in the Late 

Pleistocene helps to explain the relative stability of AIS in the Ross Embayment since 

0.8 Myr, relative to more dynamic Pliocene, when the Ross Embayment sector of AIS 

was probably warmer and therefore ice shelves were less likely to form during 

interglacials.

4.9.2 Mid-Pleistocene Transition

The unconformity at 82.6 mbsf coincides with the onset of the Mid-Pleistocene 

Transition and is inferred to represent large-scale expansion of AIS in the Ross 

Embayment at ~0.8 Myr. This corresponds to the transition from the earlier 40 kyr 

glacial/interglacial cycles to the later 100 kyr cycles since that time (Lisiecki and 

Raymo, 2005). The 100-kyr glacial-interglacial cycles of the Late Pleistocene are 

documented to be in phase between hemispheres, which has led some to postulate a 

Northern Hemisphere control on deglaciation of the Antarctic Ice Sheet, though either 

eustatic forcing or changes in ocean temperature (Thomas and Bentley, 1978; Stuiver 

et al., 1981; Denton et al., 1986; Denton and Hughes, 2000; Kawamura et al., 2007). 

In the current age model (Figure 65), the base of Sequence 7 is correlated with the 

glacial advance associated with Marine Isotope Stage 16, which is characterised in the 

benthic δ18O record by the first large negative excursion (~3.5‰), suggesting that this 

was a particular cold glacial period (Figure 65). This advance is inferred to have 

eroded facies deposited during a period of calving-line proximal ice shelf 

sedimentation at the drillsite, which is correlated with Marine Isotope Stage 17 (i.e., 

the top of Sequence 8). 
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4.9.3 The Early Pleistocene

Prior to the Mid-Pleistocene Transition, the ice sheets in the Ross Embayment were 

more dynamic, with several periods of open water conditions in McMurdo region. 

Sequence 10 is the last period of prolonged open marine conditions recorded at the

drillsite and its timing coincides with Marine Isotope Stage 27 to 31. However, the 

magnetic reversal that is correlated to the base of Jaramillo subchron (1.072 Myr) 

occurs at 91.13 mbsf, within an interval of physically-intermixed volcanic sand and 

diatomite. This interval is interpreted as a volcanic debris flow. Therefore, the 

climatic signal associated with the peak warmth during Marine Isotope Stage 31 may

not be as well-preserved in AND-1B as it was in CRP-1 drillsite, ~150 km to the 

north of AND-1B (Scherer et al., 2008). However, the presence of the intermixed 

diatomite at this time is clear evidence of open-water conditions at the drillsite during 

Marine Isotope Stage 31. Dating the overlying mudstone via the magnetic reversal at 

the top of Jaramillo subchron (0.988 Myr), indicates that the sea floor was not eroded 

at the drillsite during the following glacial maximum of Marine Isotope Stage 30 

(Figure 65). 

Micropaleontology and isotopic analysis of Marine Isotope Stage 31 deposits at CRP-

1 and Southern Ocean drill sites (ODP Site 1094) indicate that ice-free conditions 

(and minimal sea ice) and high sea surface temperatures occurred in phase with high 

values of southern latitude insolation and precedes Northern Hemisphere deglaciation

(Scherer et al., 2008). Scherer et al. (2008) suggest that this in-phase relationship 

supports the hypothesis of Raymo et al. (2006) that prior to 1 Myr local insolation 

driven primarily by precession, had a direct control on volume changes in the 

Antarctic Ice Sheets. Scherer et al., (2008) imply that at least for the warmest 

Southern Hemisphere orbital configuration, that ice sheet growth and decay is 

antiphased between the northern and Southern Hemisphere, and that glacial cycles in 

each hemisphere could operate at 20-kyr cyclicity (c.f. Raymo et al., 2006). 

According to the age model (Figure 65) Sequences 14 and 13 could represent either a 

20 or 40-kyr cycles, but not 100-kyr cycles. This is a consequence of the interglacial 

facies in Sequences 14 and 13 having 40Ar/39Ar ages of 1.67 (±0.03) Myr and 1.65 
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(±0.03) Myr respectively. The maximum range of the errors is separated by 80 kyr, 

but the overlap could also allow for 20 kyr cyclicity. However, direct correlation to 

the isotope curve suggests that Sequences 14 and 13 are 40 kyr cycles.

4.10 Conclusions 

 The nine late Pleistocene glacimarine sequences (0.8 Myr to present) in the 

AND-1B drill core match the glacial-interglacial cycles of the Antarctic deep 

ice core and marine deep-sea benthic δ18O records. The preservation of thin 

interglacial ice shelf deposits between all of the sequences indicates that erosion 

by grounded ice during glacial periods has been minimal. 

 There is no evidence of open marine conditions at the AND-1B drill site for the 

past 0.8 Myr. Claving-line proximal/open marine conditions may have occurred 

during Marine Isotope Stage 5e, but conclusive proof is lacking, and the ice 

sheet configuration probably mirrored that of the present day Ross Ice Shelf.

 There is no evidence in AND-1B for the widespread collapse of AIS in the Ross 

Embayment during Marine Isotope Stage 11, as postulated by earlier workers.

 The early Late Pleistocene (0.8 to 0.5 Myr) is characterised by sequences mostly 

containing subglacial to glacimarine/grounding-line proximal deposits (e.g., 

Sequences 9, 7 and 6). These sequences are indicative of minor fluctuations of 

the grounding line in the vicinity of the drillsite. Not enough is yet known about 

modern grounding line depositional processes to determine if the facies 

observed (i.e., alternations of stratified and massive diamictite) are a response to 

climatic or eustatic forcing, or a result of shorter-term depositional patterns as 

part of grounding zone wedge sedimentation. However, one subtle contact 

between massive and stratified diamictite (separating Sequence 7 from 8) at the 

sequence boundary contains highly sheared, diatom-bearing mudstone 

intraclasts that suggests some erosion of a thin ice shelf deposit. This may

indicate that this sequence boundary was a larger-scale event. 

 For the period before 0.8 Myr, the AND-1B sequences record more dynamic ice 

sheet behaviour in the Ross Embayment, with several sequences documenting 

subglacial deposition followed by periods of open marine sedimentation at the 
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drill site and in the Ross Embayment. Sequence 10 spans at least two Glacial-

Interglacial cycles (Marine Isotope Stages 31 to 27) as there is no evidence of a 

subglacial deposition associated with Marine Isotope Stage 30 at AND-1B. This 

supports the hypothesis that AIS in the Ross Embayment was much smaller 

during Marine Isotope Stage 31, and was not able to re-establish itself for the 

following glacial cycle. 

 The early Pleistocene sequences (~1.7 to 0.8 Myr) in AND-1B appear to 

represent 40-kyr cycles (obliquity), although 20-kyr precessional-based pacing 

can not be ruled out. Either way, the early Pleistocene sequences document a 

fundamental change in the past response of the ice sheet system in the Ross 

Embayment to orbital forcing.
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Abstract

The detrital sand grain mineralogy of the Late Cenozoic glacimarine sequences in the 

AND-1B drill core documents changes in provenance during discrete glacial and 

interglacial phases of Milankovitch duration cycles. However, there is also a 

provenance shift from a composition that contains higher abundances of rounded 

quartz indicative of the Beacon Supergroup (above 80 mbsf), to one that has a more 

subdued Beacon Supergroup signal. This up-core change at ~0.8 Myr reflects a 

change in the source or volume of ice derived from Transantarctic Mountain outlet 

glaciers to the south of the drill site. This change in ice source or volume may be 

influenced by changes in paleogeography resulting from Plio-Pleistocene volcanic 

cone building or alternatively, changes in the volume of outlet glaciers passing 

through the Transantarctic Mountains into the Ross Embayment during glacial 

maxima – or it may represent a combination of both. 

5.1 Introduction

The AND-1B drill core site is currently situated beneath the McMurdo Ice Shelf in a 

~900 m deep basin and is surrounded by several large volcanic islands (Figure 66). 

Sedimentary processes at the drillsite have been influenced by numerous changes in 

the configurations of glacial extent and thermal regime of the ice sheet, and tectonic 

activity, as well as the evolution of late Neogene and Quaternary volcanism, that have 

occurred at drillsite over the past ~13 Myr. 

The sand grain (63-500 μm) petrology in the AND-1B region for the LGM to 

Holocene gravity cores (presented in Chapter 2) highlight the changes in provenance 

that can occur over a single glacial termination. Typically, Transantarctic Mountain 

detritus is transported within the basal debris layer of grounded ice during glacial 

maxima and the initial phase of glacial retreat. During glacial minima, deposition 

beneath the McMurdo Ice Shelf results in starvation of Transantarctic Mountain

detritus at the drillsite, while fine-grained McMurdo Volcanic Group detritus 

dominates. In open water conditions, such as occurs the Lewis Basin in the present-

day Ross Sea, some Transantarctic Mountains lithologies are carried into the region as 
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a component of Iceberg Rafted Debris from outlet glaciers calving into the Ross Sea, 

together with volcanic detritus derived from glaciers draining off the local volcanic 

islands (Chapter 2).

In this chapter, a number of complexities are evaluated that complicate this relatively 

simplistic provenance signal. The emergence of major volcanic centres during 

deposition of the drill core is likely to have altered past glacial flow-line pathways. 

(Figure 67). The most notable of these volcanic emergences are Mt Bird at ~4.6 Myr

(Wright and Kyle, 1990a), Mt Terror at ~1.75 Myr (Wright and Kyle, 1990b), and

Hut Point Peninsula and Mt Erebus at ~1.3 Myr (Esser et al., 2004). White Island 

dates back to 7.65 Myr, but its northern margin is as young as 0.17 Myr (Cooper et 

al., 2007). Minna Bluff formed between 11 and 7.26 Myr, but contains a large 

unconformity at ~10 Myr that is the presumed result of glacial overriding at this time 

Figure 66: Geological map (after 
Craddock 1970 and Borg et al., 1989). 
Also shown are present day glacial 
flow lines of major outlet glaciers into 
the Ross Ice Shelf (after Fahnestock et 
al., 2000; and Drewry, 1983) including 
inferred catchments (based on 
elevation data of Drewry, 1983). Table 
1 provides details on characteristic 
minerals derived from the bedrock 
geology.
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(Wright and Kyle, 1990c). This chapter questions how changes in paleogeography can 

influence sediment provenance and glacial flowlines during glacial maxima. It also 

identifies the competing influences of changing geography and ice volume on 

sediment composition during past glacial maxima.

Changes in glacial volume over either West or East Antarctica may alter the flow-line 

paths of Transantarctic Mountain outlet glaciers that feed into the Windless Bight 

Basin. Conceptually, a thicker WAIS may result in diverting more ice derived from 

Figure 67: Paleogeography reconstructions based on the known chronology of volcanism in 
the McMurdo region (Wright and Kyle, 1990a,b,c; Esser et al., 2004; Cooper et al., 2007). 
Black arrows represent hypothesised glacial flowlines for grounded ice advance from
Transantarctic Mountain outlet glaciers as discussed in text. The reconstruction at 10 Myr 
accounts for glacial overriding of a smaller Minna Bluff, which is documented by an 
erosional unconformity (Wright and Kyle 1990c).
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the Byrd Glacier region, rather than the Mulock or Skelton Glaciers, into the vicinity 

of AND-1B (Figure 68). 

Licht et al. (2005) presented a provenance study of tills in the Ross Sea and 

comparing them to till samples from West Antarctica and the Transantarctic 

Mountains outlet glaciers. This study concluded that tills deposited in the Central 

Ross Sea were deposited at the convergence of East and West Antarctic Ice Sheet 

derived ice (i.e., a similar scenario to Figure 68B), indicating that southern

Transantarctic Mountain outlet glaciers are the probable source for sediments in 

AND-1B. 

5.2 Methods

A total of 79 thin sections, from the entire AND-1B drill core were analysed from the 

sand fraction (63-500 μm) following grain size analysis. Methodology for preparing 

the thin sections was identical to that in Chapter 2. Following preparation of the grain 

mount thin sections, modal petrographic analysis (300 grain point count) for the 63-

500 μm fraction was undertaken. However, groupings for modal analysis were 

slightly different than Chapter 2, due to the different objective of this study. Due to 

the rigorous disaggregating during grain size processing in most samples, sandstones 

composed of intraclasts were not disaggregated – as they were generally 

Figure 68: Hypothesised effect on glacial flowlines for two different glacial maxima 
scenarios, where the relative contribution of East versus West Antarctic Ice Sheets to glacial 
advance in the Ross Embayment is changed. Under the scenario of a smaller and thinner 
WAIS, East Antarctic Ice Sheet flow-lines may extend further into the central Ross Sea.
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unconsolidated and represent the original depositional grain size. Diamictite or 

mudstone intraclasts were not counted as they mostly removed during grain-size 

processing, and to maintain consistency, if they were present they were not counted. 

The abundances of rock fragments and minerals characterised in these counts are 

summarised in Table 14. 

The most notable change from Chapter 2 was the division of quartz into four sub-

categories (angular, rounded, rounded with overgrowths, and metamorphic quartz). 

Quartz was the most distinctive indicator of the Transantarctic Mountains provenance in 

Chapter 2, as it is absent in the McMurdo Volcanic Group (Kyle, 1990). Rounded quartz 

with overgrowths can be directly attributed to Devonian Taylor Group (Beacon 

Supergroup) sandstones (Korsch, 1974), while metamorphically shocked quartz is 

attributed to metasediments of the Ross Supergroup or syn-tectonic plutons of the Granite 

Harbour Intrusive Complex (Gunn and Warren, 1962). Rounded Quartz is likely to also 

be derived from the Beacon Supergroup. Angular quartz can be attributed to any of these 

groups. 

5.3 Results

The results and the provenance of any given sample is highly facies dependent (Table 14) 

as was noted in Chapter 2. Diamictite facies tend to contain abundant Transantarctic 

Mountain detritus, whereas open marine diatomites are rich in volcanic detritus (Table

14). Figure 69 shows the down core variability of volcanic grains relative to facies. The 

sand fractions in the diatomite samples (yellow data points) contain ~50% or more 

volcanic glass and lithics, whereas diamictite samples (green data points), with rare 

exceptions, contain less than 25% volcanic lithics or glass (Figure 69). 

Mudstone (dark grey) and mudstone with dispersed clasts (light grey) change 

composition down core, with samples above 150 mbsf generally containing >25 % 

volcanic grains, well above the base level for the diamictite samples. Below 150 mbsf, 

abundances are generally <25% and more closely mirror abundances in the diamictite 

facies (Figure 69). 
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Due to the dominance of feldspar and volcanic grains in many of the samples, the 

majority of mineral assemblages have abundances of <5%, making it difficult to 

identify statistically significant trends from most mineral or lithic groups. However, 

quartz usually constitutes between ~10%-30% (Table 14) in the diamictite facies. 

Figure 69 shows a depth plot for the ratio of Qr (rounded quartz with overgrowths and 

rounded quartz) to Qa (angular quartz), which allows for identification of provenance 

signal that is not affected by the abundance of volcanic grains. Above 80 mbsf, the 

ratio in all but one diamictite sample exceeds 0.2, while below 80 msbf it never 

exceeds 0.2 in the diamictite samples. 

5.4 Discussion

5.4.1 Long-term provenance signal shifts in diamictite facies

Above ~80 mbsf, the significantly higher proportion of rounded quartz grains (many 

of which display overgrowths; Table 14) indicates an increase contribution from 

Devonian Beacon Supergroup sediments. This result agrees strongly with the initial 

petrology results of the clasts presented in Pompilio (2008) where there is a consistent 

increase in the abundance of dolerite above 82.74 mbsf. Ferrar Dolerite crops out as 

sills that intrude Beacon Supergroup sediments in the Transantarctic Mountains 

(Tingey, 1991). Therefore, an increase in Beacon Supergroup is expected to be 

associated with an increase in Ferrar Dolerite clasts. Dolerite lithics and pigeonite, a 

pyroxene characteristic of the Ferrar Dolerite, were noted in the sand fraction, but 

were rare (<2.3%) in all samples, and no statistically significant trend is observed. 

The abundance of quartz in the diamictite facies of the upper 80 m averages ~30%. 

This value is consistent with quartz abundances from LGM (and retreat-phase) 

diamictites from the McMurdo region, which range between 30-37% for cores 

immediately north of Ross Island (Licht et al., 2005; Chapter 2) and from beneath the 

McMurdo Ice Shelf (Chapter 2). This suggests flow-line paths for periods of 

grounded ice during the Late Pleistocene (past 0.8 Myr) where similar to those of the 

LGM throughout the deposition of the diamictites in upper 80 m of the AND-1B drill 

core.
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Figure 69: Sequence motifs, Lithostratigraphic Units (LSU) and the lithologic log of AND-1B 
plotted alongside (left to right): Ratio of Qr (rounded quartz and quartz with overgrowths) to Qa 
(angular quartz), percentage QTOT (total quartz grains); and percentage volcanic grains (volcanic 
lithics and glass). Legend for lithological units is provided in Figure 37.
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The increased Beacon Supergroup quartz signal for the upper 80 m suggests that

grounded ice during glacial maxima was sourced from the Mulock/Skelton Glacier 

catchments. The Mulock and Skelton Glacier catchments are contained within a 

region where the rock strata are known to be dominated by Beacon Supergroup 

(Craddock, 1970; Figure 66), before overriding over ~30-40 km of Granite Harbour 

Intrusive Complex and Ross Supergroup (metasediments) outcrops, and passing into 

the Ross Ice Shelf. In contrast, the catchment of the Byrd Glacier (further south) is 

significantly larger (Figure 68) and while the bedrock beneath this catchment is 

largely unknown, the outlet glacier itself predominantly cuts through Granite Harbour 

Intrusive Complex and Byrd Group (limestone, marble and sedimentary strata) 

(Craddock, 1970; Figure 66). Till samples studied by Licht et al. (2005) from the 

southern margin of lower Byrd Glacier contain only 5.6% quartz, and 70% calcite, 

which appear to be representative of the adjacent Byrd Group strata. The Darwin and 

Hatherton Glaciers, two smaller outlet glaciers immediately to the north of the Byrd 

Glacier also have catchments that override Beacon Supergroup, and could potentially 

contribute to the provenance signal observed in the upper 80 m, but relative to the 

Mulock and Byrd glaciers, the present volume of ice derived from these glaciers is 

minor.

A provenance from the Mulock/Skelton Glaciers region throughout most AND-1B is 

also inferred by Talarico et al. (2007), who noted that low-grade metasediments, and 

granite clasts dominate the clast assemblage of this interval of the AND-1B drill core, 

as well as higher abundances of dolerite clasts. They attributed these metasediments 

as being sourced from phyllites and low-grade meta-sandstones from the Skelton 

Group (Ross Supergroup; Figure 66), where the only known outcrops occur between 

the Skelton and Mulock Glacier.

Below 80 mbsf, the provenance signal is more difficult to determine from the sand 

fraction. It is clear there is a decrease in Beacon Supergroup quartz, but not an overall 

decrease in the total abundance of quartz (Figure 69), which is suggestive of an 

increasing contribution from the Granite Harbour Intrusive Complex. However, the 

clast data still indicate a Skelton/Mulock Glacier source for most of the Pliocene

(Talarico, written communication 2008). The decrease in rounded quartz abundance

in the sand fraction below 80 msbf could represent a change in the relative 
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contribution of ice sourced from the Mulock or Skelton Glaciers, but geological 

mapping of the Beacon Supergroup is not of high enough resolution to confirm this 

possibility. Alternatively, it may be indicative of a thinner EAIS, as this would result 

in ice entraining stratigraphically lower bedrock, in this case the Granite Harbour 

Intrusive Complex, underlying the Beacon Supergroup in the Skelton/Mulock Glacier 

region (Craddock, 1970). In all cases, diamictite deposits interpreted as subglacial till 

are probably sourced from southern Transantarctic Mountain glaciers, as glaciological 

models require large-scale expansion of the WAIS in order to deflect southern 

Transantarctic Mountain outlet glacier ice around Minna Bluff into the AND-1B 

region (Denton and Hughes, 2002; MacAyeal et al., 1996). 

Based on this change in provenance at ~80 msbf, some broad inferences can be made 

regarding the cause for the change in glacial flowlines during glacial maxima. The 

depositional processes (Motif 1) responsible for the upper 80 m of AND-1B

subglacial strata are likely to be similar to those in Motif 1 from the Mid to early Late 

Miocene interval of the core (i.e., 1083-1285 mbsf; Chapter 3). Motif 1 is inferred to 

represent glacial advance of similar magnitudes during deposition of both these 

intervals. However, unlike the Pleistocene, diamictites in sequences in the Mid to Late 

Miocene section of core display no increase in Beacon Supergroup-derived quartz, but 

do contain metasedimentary clasts indicative of the Byrd region (Talarico et al., 

2007). The emergence of volcanic islands during the Late Miocene, Pliocene and 

Quaternary probably had a significant influence on the glacial flowlines orientation 

over the drill site. In the absence of Ross Island during the Late Miocene, and a 

smaller Minna Bluff that is overridden by ice during glacial maxima, ice derived from 

the Byrd Glacier is more likely to flow through the AND-1B drill site (e.g., Figure 

67D). 

In addition to this, Motif 1 sequences in the early Late Miocene part of the core occur 

around the time of (or just after) the formation of Minna Bluff (~11 Myr), and there is 

also a significant glacial unconformity at Minna Bluff at ~10Myr, suggesting that ice 

flowed over Minna Bluff at this time (Wright and Kyle, 1990c). White Island had 

probably yet to emerge at this time (Cooper, 2007), and Black Island was probably

smaller in size (Wright and Kyle, 1990c). Both of these factors may have resulted in an 

increased flux of ice derived from the Byrd Glacier region. Deposition of the sequences 
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above 80 mbsf, coincides with the final phase of the emergence of Ross Island, and the 

first phase of subaqueous volcanism beginning on Mt Erebus and Hut Point Peninsula

just prior to ~1.3 Myr (Kyle 1981; Esser et al., 2004). The development of a larger Ross 

Island conceivably results in diverting most of the Byrd Glacier to the east of Ross Island 

(Figure 67A). This agrees well with flow-line reconstructions of Denton and Hughes 

(2000).

Inferences of changes in the past volume of the WAIS based on sand fraction provenance 

alone is difficult as changes in local paleogeography may have a significant influence on 

provenance during glacial maxima. Improved chronology of the volcanic evolution in the 

McMurdo region should help to resolve some of the uncertainties presented here. In the 

meantime, numerical models need to be developed to test these hypotheses for past 

glacial flowlines, and should take into account changes in paleogeography as well as the 

relative ice fluxes from East and West Antarctica.

5.4.2 Glacial to interglacial variability

Figure 70 shows a log of the sand fraction petrology results for upper 150 m of AND-1B, 

with respect to glacimarine sequences outlined in Chapter 3. It highlights provenance 

variability through individual glacial/interglacial cycles. However, not all glacial minima 

contain the same provenance signal. For example, the glacial minima facies (at ~25 mbsf) 

in Sequence 2 are characterised almost entirely by volcanic glass before passing upwards 

in proglacial mudstone and sandstone that have a similar proportion of quartz as the 

overlying diamictite in Sequence 1. The glacial minima facies in Sequence 3 contains 

quartz throughout, and although there is an increase in volcanic lithics and glass, it is not 

the dominant provenance signal, suggesting a relatively closer proximity to the ice sheet 

grounding line throughout the glacial minima. 
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Figure 70: Petrographic results for the upper 150 m of the AND-1B drill core. Also shown is
the sequence stratigraphy model present in Chapter 3 showing the transition from marine(m) 
to ice distal (d), ice proximal (p) and ice contact/subglacial (i) deposition. Legend for 
lithological units is provided in Figure 37.
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During deposition of the open-water diatomites in Sequences 10, 13 and 15, the sand 

fraction is dominated by well-preserved volcanic lithics and glass, which is similar to 

Pliocene diatomite, again indicating that iceberg rafting at the drillsite was mostly 

influenced by calving either from (proto-)Ross Island glaciers, or from the Koettlitz 

Glacier near the base of Mt. Discovery and Mt. Morning. These glaciers are expected 

to expand during open water conditions as they have low-altitude catchments, and 

therefore open water conditions in the McMurdo region would provide increased 

precipitation. 

The diamictite at the base of Sequence 14 has a consistent provenance signal 

throughout, and this provenance signal continues through to the sandstone unit that 

caps it. This sandstone contains abundant mudstone and diamictite intraclasts. Unlike 

the diamictite samples, clasts in this sandstone were not disaggregated, as their grain 

size was clearly a product of the depositional processes (e.g., cross-rippled, well 

sorted sandstone; Chapter 3). However, to maintain consistency, these intraclasts were 

not included in the modal analysis, but visual estimate places their abundance at ~30-

40%. Despite this, the provenance of this sandstone is almost identical with that of the 

underlying stratified diamictite indicating that it associated with grounding line 

processes, and supports the tidal pumping mechanism for this deposit (discussed in 

Chapter 4). This sandstone is overlain by a series of volcanic sands consisting almost 

entirely of angular and vesicular volcanic glass. The mudstone overlying the volcanic 

sandstone shows a similarity in provenance to that of the diamictite at the base of 

Sequence 14, as well as the diamictite in the overlying Sequence 13. This similarity in 

provenance to the overlying diamictite suggests that the mudstones in the upper part 

of Sequence 14 were probably the product of grounding-line processes associated 

with glacial re-advance, rather than the fine grained, distal component of volcanic 

sediment flows associated with the underlying volcanic sandstone.
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5.5 Conclusions

 The diamictite and proglacial mudstone-rich facies in the upper 150 m of the 

AND-1B display a consistent provenance signal that has a notable quartz 

component and limited volcanic grains. However, the sequences with thicker 

glacial minima successions contain volcanic sandstone that are dominated by 

angular volcanic glass.

 The sand fraction in the diatomites units indicate that deposition of clastic 

detritus during open water conditions at the drillsite is dominated by volcanic 

lithics, with a minor granite component. This is likely to have been the result 

of icebergs calving from outlet glaciers off an early Ross Island and the 

terminus of the ancestral Koettlitz glacier.

 Above 80 mbsf, there is a distinct increase in the Beacon Supergroup 

provenance signal. From the available data it is difficult to ascertain an exact 

source area, but it is consistent with rock outcrops exposed in the catchments 

of the Mulock/Skelton Glacier. The final phase of volcanic cone building in 

the McMurdo Region during the Quaternary coincides with a significant shift 

in the provenance signal of AND-1B at ~80 mbsf. Changes in paleogeography 

throughout the Neogene and Quaternary may complicate any climate signal 

that may be observed in the provenance signal.

 The provenance signal in the sand fraction of glacial maxima diamictites is 

consistent with the clast abundance data (Talarico et al., 2007) that indicates a

Mulock/Skelton Glacier source.
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sample (mbsf)
Facies 

no. Qa Qr Qog Qmet Plag Ls Lm
Dolerite + 
Pigeonite 

granite+ 
microcline Feldspar

Pyroxen
e Lv Glass other

9.99 10 21.0 8.0 3.0 0.7 8.7 0.7 1.0 0.3 1.7 25.7 6.3 13.7 7.7 1.7
20.01 4 5.0 2.0 0.3 0.7 4.0 0.0 0.0 0.3 0.3 29.3 9.3 1.3 42.3 5.0
20.27 3 16.0 2.7 1.0 0.3 6.0 0.7 0.7 0.3 0.3 31.0 8.7 21.3 9.7 1.3
24.73 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 94.3 1.3
25.93 3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.7 1.0 3.7 94.0 0.3
25.96 3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 1.3 2.0 2.3 93.7 0.3
26.53 3 2.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 4.3 3.0 9.7 78.7 0.7
30.07 10 17.3 7.0 1.7 0.3 14.0 0.7 1.0 0.3 1.0 33.0 11.0 6.3 5.3 1.0
31.63 10 16.0 2.7 1.7 0.7 15.3 0.7 0.7 0.3 0.7 38.7 6.3 7.3 5.0 4.0
37.87 10 19.3 2.7 1.3 1.0 11.0 0.0 1.0 0.7 0.7 44.3 8.0 6.3 3.0 0.7
42.10 4 22.0 1.3 0.0 1.3 11.7 0.0 0.0 0.3 0.7 45.3 6.3 6.3 3.3 1.3
42.36 2 17.7 0.0 0.0 0.0 6.7 0.0 0.0 0.7 0.0 57.3 4.3 7.3 0.7 5.3
42.58 4 7.0 0.3 0.0 0.7 2.3 0.3 0.0 0.0 0.3 11.7 27.0 22.3 27.7 0.3
43.86 9 15.1 3.3 1.0 1.3 6.3 1.3 1.0 0.3 2.0 31.3 16.1 4.9 13.5 2.6
44.84 9 23.3 3.3 2.0 1.0 12.3 0.7 2.0 0.7 3.0 26.3 10.0 12.7 1.0 1.7
50.14 10 33.7 1.3 1.3 1.0 5.3 0.0 0.3 0.0 0.0 29.3 21.7 4.0 0.7 1.3
53.23 9 25.0 10.3 3.0 3.7 6.7 3.7 5.3 2.0 1.7 29.3 3.7 4.0 0.0 1.7
58.97 9 22.0 7.7 4.0 2.7 5.3 0.7 1.0 1.0 1.0 26.7 7.3 12.3 6.7 1.7
67.80 10 27.3 4.3 1.0 1.3 5.3 0.3 1.0 1.0 3.7 31.0 4.0 14.3 4.3 1.0
70.75 10 20.0 15.7 4.3 4.3 6.7 1.3 2.3 0.3 0.3 29.7 3.7 8.3 2.0 1.0
77.52 10 23.0 5.0 1.3 1.3 2.7 0.0 1.3 0.0 5.3 42.0 1.0 16.0 1.0 0.0
82.40 9 11.7 3.0 1.0 0.0 7.0 0.0 2.0 0.3 2.0 44.3 6.0 9.3 11.7 1.7
86.31 3 4.7 0.0 0.7 0.3 1.0 0.0 0.7 0.0 0.3 44.5 11.6 32.6 2.7 1.0
90.00 2 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 9.0 4.3 71.3 12.0 1.3
95.55 3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 5.7 7.0 78.7 1.0
103.30 10 13.0 0.3 0.0 0.3 3.3 0.0 1.3 0.3 0.7 43.3 19.3 6.0 10.3 1.7
109.19 9 12.3 0.3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 25.7 21.3 26.7 13.0 0.0
117.63 1a 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 3.3 41.3 48.0 1.3
118.62 3 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 9.3 17.0 5.0 67.3 0.0
119.15 6V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 10.3 2.0 87.0 0.0
122.00 2 12.3 2.0 0.3 1.0 3.7 1.0 1.3 1.0 1.7 38.7 11.3 17.3 7.0 1.3
124.39 9 27.3 0.3 0.0 0.0 8.0 0.0 0.0 0.3 0.3 40.3 11.7 9.7 1.7 0.3
125.95 2 37.7 2.0 0.7 1.3 3.3 0.0 0.3 0.3 1.0 35.7 8.7 6.0 1.7 1.3
126.39 4+2 22.3 2.0 0.0 1.3 6.7 0.0 2.0 0.7 1.3 40.7 5.7 13.3 2.0 2.0
131.72 2 23.3 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 64.7 0.3 4.0 3.0 0.3
133.48 3 3.3 0.7 0.0 0.0 1.7 0.0 1.0 0.0 0.0 8.0 7.3 23.3 54.0 0.7
141.00 6V 0.3 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 1.0 0.0 0.0 98.0 0.0
141.58 6V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 98.7 0.0
141.72 6V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.3 97.0 0.0
141.84 6V 1.0 0.0 0.0 0.0 0.3 2.7 0.0 0.0 0.0 4.0 0.0 0.7 91.3 0.0
146.58 3 28.0 0.0 0.0 0.7 5.7 0.0 1.7 0.3 1.0 52.7 3.7 4.0 1.7 0.7
146.83 10 27.7 0.7 0.7 0.7 6.0 0.7 3.7 1.0 1.7 42.3 4.0 6.0 3.0 2.0
147.76 10 18.3 1.7 0.3 1.7 4.7 0.0 2.0 1.7 1.3 28.0 11.3 22.3 4.0 2.7
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sample (mbsf)
Facies 

no. Qa Qr Qog Qmet Plag Ls Lm
Dolerite + 
Pigeonite 

granite+ 
microcline Feldspar

Pyroxen
e Lv Glass other

148.32 10 12.7 1.7 0.7 1.3 4.3 0.0 0.3 0.7 0.7 21.0 7.0 20.7 28.7 0.3
150.42 9 15.0 1.3 0.0 0.3 5.7 0.0 0.7 0.3 1.3 29.0 8.0 21.0 13.7 3.7
150.95 4 2.0 0.0 0.0 0.0 1.3 0.3 0.0 0.0 0.0 3.3 11.3 53.0 26.7 2.0
151.71 1b 1.7 0.0 0.0 0.0 1.3 0.3 0.0 0.0 0.0 10.3 31.3 38.0 12.0 5.0
178.98 1a 0.7 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 9.7 7.0 64.3 16.7 0.3
180.38 1a 0.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 4.0 5.7 69.3 19.3 0.7
181.94 9 25.3 1.0 0.0 1.7 4.3 0.0 26.3 0.3 2.3 33.3 2.0 2.3 0.0 1.0
191.24 1b+10 12.3 1.7 0.0 2.0 2.3 0.0 1.0 0.3 1.3 18.3 11.7 37.0 11.3 0.7
211.74 1a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
225.38 10 17.0 1.3 0.0 2.3 5.3 0.7 1.3 0.3 2.0 42.0 12.0 13.3 2.0 0.3
260.70 3 8.7 0.3 0.3 0.3 3.3 1.3 0.3 0.0 0.0 24.0 6.3 31.3 22.3 1.3
267.88 4 25.7 0.0 0.0 0.3 5.3 0.0 0.7 0.3 2.0 42.3 8.3 8.0 6.0 1.0
296.72 10 0.7 0.0 0.0 0.0 1.0 0.0 0.3 0.0 0.0 14.0 6.3 54.7 22.0 1.0
307.04 10 17.0 0.3 0.3 0.0 6.0 0.7 0.3 1.7 0.0 45.7 6.7 12.7 7.7 1.0
316.23 4 16.7 2.7 0.3 0.7 3.4 0.7 0.3 1.0 1.4 33.3 8.5 23.1 7.5 0.3
464.07 10 14.7 0.3 0.0 0.3 5.3 0.0 0.0 0.0 1.7 39.7 13.7 15.3 7.3 1.7
479.18 10 13.0 0.3 0.0 0.0 4.3 0.7 0.0 0.0 1.3 39.3 16.7 17.3 5.7 1.3
519.11 9 11.0 0.3 0.0 0.0 2.0 0.0 0.0 0.7 0.3 22.6 10.0 18.6 33.9 0.7
545.15 4 18.3 0.0 0.0 0.0 2.3 0.0 0.0 0.3 1.0 26.3 15.3 31.7 3.3 1.3
778.70 10 34.3 4.5 0.6 0.0 1.9 0.3 3.6 2.3 1.0 32.0 7.4 11.0 0.6 0.3
778.90 4 36.0 2.7 1.0 0.3 1.7 0.3 0.3 0.3 0.7 37.0 6.0 11.7 1.7 0.3
830.64 9 1.7 0.3 0.0 0.0 2.1 0.0 0.0 0.0 0.3 8.0 8.7 75.9 2.1 0.7
852.19 3 0.7 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 6.0 5.3 81.3 4.0 1.0
853.25 9 30.7 3.0 1.3 2.0 1.7 1.3 0.0 1.3 1.7 48.7 2.7 5.3 0.0 0.3
854.36 10 36.0 1.3 0.3 1.0 1.7 0.3 1.3 0.0 2.3 34.0 4.0 12.3 5.3 0.0
902.80 10 14.0 0.7 0.3 0.3 4.7 0.3 0.7 0.3 2.0 31.0 7.7 31.0 6.7 0.3

1032.47 6 31.7 6.3 0.7 0.3 7.0 0.3 0.0 0.0 1.7 37.0 0.3 10.3 4.0 0.3
1033.58 5 31.0 0.7 0.0 0.0 3.0 0.0 0.0 0.3 0.7 54.3 1.0 8.7 0.3 0.0
1167.68 10 21.7 0.3 1.0 1.3 8.3 0.7 0.0 0.0 3.3 38.7 3.3 19.3 1.7 0.3
1168.08 4 21.0 1.3 0.3 0.3 3.3 0.0 0.3 1.0 0.3 26.7 2.3 18.7 24.0 0.3
1196.18 10 15.9 0.0 0.0 0.0 6.3 1.6 0.0 0.0 0.0 54.0 4.8 12.7 3.2 1.6
1199.74 10 21.0 0.3 0.0 1.7 5.7 0.0 0.0 0.3 0.3 43.0 5.0 15.0 7.3 0.3
1221.80 7 16.7 1.0 0.0 2.0 1.0 0.0 0.3 0.3 2.0 26.3 4.3 17.3 28.7 0.0
1275.60 9 22.7 5.3 1.0 1.0 2.3 0.0 0.0 0.0 0.0 23.3 3.3 36.7 3.7 0.7
1280.20 9 22.6 2.7 0.0 0.7 5.0 1.7 0.3 0.0 1.7 54.5 2.7 6.3 1.3 0.7
1282.04 10 20.7 1.7 0.7 0.7 7.3 3.3 0.3 1.0 1.0 52.0 4.7 5.3 0.3 1.0

Table 14: Percentage data from modal analysis of sand fraction from AND-1B. Angular quartz (Qa), rounded quartz (Qr), rounded quartz with overgrowths 
(Qog), metamorphic quartz (Qmet), plagioclase (Plag), sedimentary lithics (Ls), metamorphic lithics (Lm), volcanic lithics (Lv). Other category includes 
Olivine, Kaesurite, Amphiboles, Marble, Opaque, Isotropic minerals, Biotite, Chlorite, Calcite and unidentified heavy minerals. 
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Introduction

The primary aim of this thesis is to identify the sedimentary processes associated with 

oscillations of the marine-based sector of Antarctic Ice Sheet (AIS) in the Ross 

Embayment through facies analysis of the AND-1B drill core from the western Ross 

Embayment. A specific goal is to identify changes in the extent and thermal 

characteristics of the past ice sheets that occupied the Ross Embayment during 

glacial/interglacial cycles during Late Cenozoic time (13-0 Myr). The research 

addresses this issue on a number of timescales, beginning with the development of a 

sedimentary model that could be applied to the deglaciation in the Ross Sea Embayment 

since the Last Glacial Maximum (LGM) (Chapter 2). This sedimentary model is then 

applied to evaluate cyclic sedimentary and glacial processes associated with the 

behaviour of the AIS in the Ross Embayment over the past 13 Myr, the period covered 

by the ANDRILL core (Chapter 3). A facies approach for grounding-line fluctuations of 

polar to sub-polar ice sheets is developed within a sequence stratigraphic framework. 

This analysis identifies three distinct types of glacimarine cycles, termed “sequence 

motifs”, each characterised by a specific vertical succession of facies. The differences 

in these motifs reflects the long-term evolution of the Ross Embayment sector of the AIS

from a cold-polar glacial regime through to a relatively warmer, sub-polar style of 

glaciation, and then back to the cold polar style of glaciation that characterises the Late 

Pleistocene section of the AND-1B drill core. Each motif is interpreted on the basis of 

modern analogues of glacimarine sedimentation from a range of climatic/glacial 

settings, and represents fluctuations of the grounding line of a marine based ice sheet as 

it advances and retreats from the Ross Embayment. These three motifs are used to infer 

changes in the controls on AIS mass balance and stability in the Ross Embayment 

during the Late Cenozoic. Comparisons are also made between the record in AND-1B 

and other geological records of Neogene and Quaternary age, as well as global proxies 

of past variability in oceanic temperature and ice volume. 
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6.1 Development of a sedimentary model for the seafloor beneath the McMurdo 
Ice Shelf since the Last Glacial Maximum

A sedimentary model was presented in Chapter 2 for the LGM-Holocene deglaciation of 

the Ross Sea, based on short sediment gravity and piston cores from the beneath the 

McMurdo Ice Shelf, and from the seasonally open waters of McMurdo Sound and north 

of Ross Island. This sedimentary model is characterised by a clast-rich diamictite 

deposited in a grounding-line proximal environment immediately following the retreat 

of grounded ice at the LGM. The diamictites pass into mudstone-dominated sediments 

that lack clasts (>2 mm), a facies that is indicative of deposition beneath a floating ice 

shelf that is free of basal debris. In the present-day seasonally-open water north of Ross 

Island, pre-Holocene ice shelf muds are overlain by Holocene accumulations of diatom-

bearing muds or diatom ooze with IRD. This sediment model represents the modern 

“type” example for cold-polar, glacial-interglacial cycles within the AND-1B drill core.

6.2 Sedimentary model associated with a cold-polar marine-based ice sheet in the 
Ross Embayment: Motif 1

The sedimentary model associated with Pleistocene and Mid to early Late Miocene 

section of the AND-1B sediment drill core (Chapters 3 and 4) is consistent with the 

model developed for the LGM-Holocene record in Chapter 2, and is characterised by 

Motif 1 sequences (Chapter 3). Glacial maxima in Motif 1 are represented by massive 

diamictites deposited beneath grounded ice, as interpreted from the sharp basal contacts

of the diamictites and the deformation of underlying sediments due to glacial 

overriding. The glacial-retreat facies in Motif 1 contain no evidence for conduit 

discharge from beneath grounded ice, such as well-sorted conglomerates (e.g., Powell, 

1990). The facies include some sandy conglomerates and sandy diamictites, but these 

are regarded as gently winnowed on the basis of their poor sorting and most likely the 

result of sub-ice shelf currents close to the grounding line, perhaps including a tidal 

pumping mechanism (e.g., Domack and Williams, 1990). Well-sorted, cross-bedded 

sandstone deposits cap some of the glacial retreat diamictite (and conglomerate) facies, 

and most likely result from tidal pumping processes. The facies succession then passes 

into quiet ice shelf deposition characterised by fine-grained mudstone facies. 
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Due to a lack of direct modern observations, much remains unknown regarding 

grounding zone and subglacial processes for marine-based sectors of the AIS. However, 

the observations of diamictite interpreted as subglacial till from AND-1B can provide 

some insight. Powell and Alley (1997) predicted that a marine ice sheet in a cold-polar 

regime would probably result in wedge of diamictite occurring at the end of a diamictite 

sheet up to tens of metres thick and several kilometres long – a “glacimarine sheet 

wedge deposit”. Many of the subglacial tills in AND-1B are of comparable thickness 

and consistent with this view. Even during the cold-polar regime of the Late 

Pleistocene, where the ice sheet is colder than freezing throughout most of its thickness, 

the marine-based sectors of the AIS were most probably thawed at parts of its bed, 

depositing water-saturated and deforming subglacial tills (Alley et al., 1986; Powell and 

Alley, 1997; Tulaczyk et al., 1998). This is supported in AND-1B by evidence of 

deformation due to sliding basal ice (e.g., aligned clasts, and minor physical intermixing 

of underlying deposits) in the diamictites units interpreted as subglacial till deposits, 

including those deposited under the cold polar regime of the past 0.8 Myr. 

6.3 Sedimentary model associated with a dynamic sub-polar marine-based ice 
sheet in the Ross Embayment: Motif 2

During the Pliocene, the AIS was highly dynamic in the Ross Embayment, and 

oscillated between states of fully grounded ice and open marine conditions at the drill 

site. This period is characterised by cyclic sequences of diamictite, mudstones and 

diatomites (Motif 2; Chapter 3). Two sub-motifs are defined, based on the degree of 

terrigenous sedimentation during glacial retreat and minima phase. Subglacial to 

grounding-line proximal diamictite facies in Motif 2a are overlain by thin (<1-5 m) 

glacial retreat successions of mudstone-rich facies before passing into open water 

deposition of diatomites. Motif 2a is indicative of some subglacial meltwater at the 

grounding line during glacial retreat of the AIS in the Ross Embayment. Motif 2b 

characterises sequences during the lower Pliocene section of the AND-1B drill core, and 

consist of a basal unit of diamictite overlain by a relatively thick (~10 m) proglacial 

retreat facies succession consisting of mudstone and sandstones, before passing into 

diatomite that has variable degrees of (0-50%) terrigenous input. Motif 2b is 

characteristic of glacial regime where there is a greater abundance of subglacial 
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meltwater associated with glacial retreat and advance, relative to Motif 2a. Throughout 

the Pliocene Epoch, the terrigenous proglacial retreat/advance facies become 

progressively thinner up-section and are particular thin (<1 m) in the upper Pliocene 

section of AND-1B (~230 to 152 mbsf). This is indicative of gradual cooling of the 

glacial regime of the marine-based AIS in the Ross Embayment and the transition from 

a sub-polar towards a cold-polar regime. 

6.4 Sedimentary model associated with a dynamic sub-polar WAIS: Motif 3

During the Late Miocene, there was a warmer glacial regime, as characterised by Motif 

3 sequences (Chapter 3). Glacial maxima in Motif 3 consist of massive diamictite 

deposited beneath grounded ice, before passing into a glacial retreat facies succession 

that commonly include conglomerate and stratified sandstone. These facies are

consistent with significant subglacial meltwater, with conduit discharges and grounding 

line fan processes (Powell, 1990; Chapter 3). Cyclopels, cyclopsams and thick (>10 m) 

intervals of mudstone are deposited immediately following grounding line retreat and 

during the glacial minima phase. Such facies are all indicative of significant discharge 

of sub-glacially derived meltwater (Mackiewiez et al., 1984; Cowan et al., 1999), and 

comparison to modern glacial analogues implies a thermal regime for AIS in the Ross 

Embayment during the Late Miocene that was similar to present-day sub-polar 

environments (cf. Spitsbergen and Greenland; Table 10), where meltwater processes

have a primary influence on ice sheet mass balance controls. 

6.5 Response of WAIS to Late Cenozoic climate cycles

The key aim of the ANDRILL McMurdo Ice Shelf project is to determine past ice sheet 

responses to climate forcings at a variety of timescales (Naish et al., 2005). Chapter 2 

provides insight into the response of the AIS in the Ross Embayment to warming since 

the Last Glacial Maximum. The sedimentary model developed in Chapter 2 is also 

relevant to the Late Pleistocene record in AND-1B (Chapter 4), for which a cold-polar 

glacial regime has been inferred for the Ross Embayment sector of AIS (Chapter 3). 
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Here, I have evaluated the ice sheet record as expressed in high-resolution facies 

analysis and by comparison to deep-sea sediment core records (past ocean temperature 

and ice volume). Critical to the accurate assessment of the AND-1B record, with respect 

to other global climate proxy records, was a robust chronology. Refinement of the age 

model for the Neogene (and Quaternary) sections will continue to add insight into the 

response of the AIS to past climatic variability, and this potential is discussed in the 

following sections. 

6.6 Timing of the retreat of AIS in the Ross Embayment since the Last Glacial 
Maximum and the sub-orbital Holocene record 

Deglaciation of the Antarctic Ice Sheets is believed to have contributed ~14-18 m to 

post-LGM eustatic sea level rise, with approximately two-thirds of this thought to have 

been sourced from the WAIS (Huybrechts, 2002; Denton and Hughes, 2002). However, 

there is still considerable debate surrounding the timing (and extent) of the retreat of the 

AIS since the LGM. Resolving this uncertainty has significant implications for our 

understanding of Antarctica’s recent role in the global climate system, in particular its 

response to orbital forcing and contribution to thermohaline circulation. 

Clark et al. (2002) pointed to Antarctica as a source for Meltwater Pulse-1A, a rapid 20-

m-sea level rise centred on 12,000 14C yr BP (Fairbanks 1989). This led Weaver et al.

(2003) to suggest on the basis of numerical modelling that meltwater discharge of this 

magnitude sourced from Antarctica would result in strengthening of North Atlantic 

Deepwater production, resulting in the Bølling-Allerød warm event (i.e., last glacial 

termination) in the Northern Hemisphere. This establishment of strong North Atlantic 

Deepwater formation was then susceptible to the freshwater “forcing” by decay of the 

Northern Hemisphere Ice Sheets that is inferred to have lead to the Younger Dryas cold 

event in the Northern Hemisphere (Broecker et al., 1989; Clark et al., 2002; Weaver et 

al., 2003). 

The post-LGM retreat history of marine-based AIS in the Ross Sea Embayment, based 

on marine sediment cores (Domack et al., 1999; Chapter 2 of this thesis), implies that 
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the majority of AIS retreat in the Ross Embayment occurred after 11,000 14C yr BP, and 

therefore could not have contributed to Meltwater Pulse 1A. The data presented in 

Chapter 2 indicates that by ~9,000 14C yr BP the ice shelf calving line had reached its 

present-day position. This phase of rapid retreat coincides with Meltwater Pulse 1B 

between ~9.2 and 9.8 14C yr BP (~10 m sea level rise; Fairbanks, 1989). The chronology 

in Chapter 2 indicates that the retreat of grounding line from the outer Drygalski Trough 

to Ross Island preceded Meltwater Pulse 1B, while open marine conditions near Ross 

Island occurred immediately following it. Although this chronology is not sufficiently 

accurate to constrain the timing of grounding line retreat to one of these meltwater 

events, it is good enough to show that Antarctica was not a significant contributor to 

Meltwater Pulse 1A. 

A simple interpretation of the chronology presented in Chapter 2 suggests that initial 

grounding line retreat was probably initiated by eustatic sea level rise associated with 

disintegration of the Northern Hemisphere ice sheets. Once ice shelf conditions had 

began to develop across the outer Ross Sea embayment (following Meltwater Pulse 

1A), rapid thinning of ice shelf probably occurred, as exposure of the base of the ice 

shelf to oceanic processes results in rapid basal melting from beneath (Shepherd et al.,

2004; Payne et al., 2004; Alley et al., 2007). This melting event may have contributed 

to Meltwater Pulse 1B.

Open water conditions were in place immediately north of Ross Island by ~9 14C Kyr, 

yet the sub-ice shelf record at the HWD sites indicates persistent ice shelf conditions 

throughout the Holocene (Chapter 2), implying a stable calving line for the Ross Ice 

Shelf throughout the warmest period of the Holocene. Ice cores from around the Ross 

Sea sector indicate warmer-than-present temperatures (~2º warmer) between ~7.2 and

5.2 14C Kyr BP (Masson et al., 2000; Steig et al., 2000). This temperature optimum 

coincides with the first open water conditions in McMurdo Sound proper at 6500 14C yr 

BP (Licht et al, 1996; Conway et al., 1999). Chapter 2 reconciles discrepancies between 

the terrestrial and marine geological for glacial retreat chronology by suggesting that an 

ice shelf remained in place within McMurdo Sound up to ~6.5 14C yr BP, and its break-

up around this time could be related to this temperature optimum. There is also a 
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notable IRD peak in DF80-189 around this time (Figure 15), which may have resulted 

from the break-up of the McMurdo Sound ice shelf. 

6.7 Determining the response of WAIS to orbitally influenced climate cycles 
during the Pleistocene 

During the late Pleistocene (0.8 Myr to present), the glacimarine sequences in AND-1B 

were found to have a ~100 kyr cyclicity (Chapter 4). These sequences record a marine-

based AIS in the Ross Embayment that had a cold polar regime (Chapter 3) and was

relatively stable, with only grounded ice sheet or floating ice shelves recorded. There is 

no physical evidence of any prolonged marine conditions at the drill site. As the AND-

1B record is interpreted as recording advance and retreat of ice sheets across the entire 

Ross Embayment (see Chapter 1), this implies that there was no large-scale WAIS 

“collapse” in past 0.8 Myr, a period that included “super-interglacials” centred on 420 

and 120 Kyr. Prior to Mid-Pleistocene Transition, the Ross Embayment sector of the 

AIS was more dynamic and fluctuated between a grounded state and open marine 

conditions at the AND-1B drill site. These fluctuations occurred at a higher frequency 

than for the Late Pleistocene sequences, in some if not all episodes, with a period of 40 

kyr.

6.8 Comparison with Neogene geologic records from East Antarctica

6.8.1 Prydz Bay region

Comparisons can be made between the AND-1B record and the Neogene strata from the 

Prydz Bay region of East Antarctica, which is a direct record of variations in extent of 

ice in the Lambert drainage basin, itself ~7% of the East Antarctic Ice Sheet (Hambrey 

and Dowdeswell, 1994). However differences between the deep-water facies in the 

AND-1B drill core and the shallow water facies of the Pagodroma Group need to be 

kept in mind. The middle to late Miocene Fisher Bench Formation from the Pagodroma 

Group contains evidence for increased subglacial meltwater in glacial retreat facies with 

the presence of 2 or 3-m-thick intervals of rhythmically laminated clay and siltstone, as 

well as a high proportion of boulder/cobble gravels indicative of subglacial conduit 
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discharge (Hambrey and McKelvey, 2000). The claystone and siltstone laminae form 

couplets ~1-3 mm thick, and are consistent with the rhythmically-laminated mudstone 

with siltstone/sandstone documented in Motif 3 from AND-1B (Chapter 3). The pebble 

to cobble gravels, interpreted as sub-aquatically discharged glacifluvial (e.g., conduit

discharges) sediments, might be considered equivalent to conglomerate and stratified 

sandstone facies in Motif 3 from AND-1B. Diatom biostratigraphy suggests that the 

Fisher Bench Formation was deposited sometime between 12.7 and 8.5 Myr. This age 

lies in the range of the Late Miocene Motif 3 strata in AND-1B (Wilson et al., 2007; 

Chapter 3), and supports the interpretation in Chapter 3 that subglacially-derived 

meltwater process were common on the margin of EAIS during the Late Miocene. 

While the Miocene strata in the Pagodroma Group deposits have sedimentary features 

indicating a significantly warmer-than-present glacial regime, the Pliocene Bardin Bluff 

deposits in the Pagodroma do not contain evidence for subglacial meltwater facies such 

as tidal rhythmites or conduit discharge facies (Hambrey and McKelvey, 2000). 

Inferences of a “wet-based” glacial regime for the Bardin Bluffs Formation are based on 

the presence of mud-rich diamictites with striated and facetted clasts. These diamictites 

are indicative of sliding at the base of the expanded Lambert Glacier. However, basal 

melting and sliding occur beneath the present-day East Antarctic Lambert Glacier 

(Allison, 1979). Inferring a warmer-than-present environment strictly on the basis of 

“wet-based” deposition (e.g., Whitehead and McKelvey, 2001; McKelvey et al., 2001) 

is equivocal, as lodgement and deformation till appear to be common facies deposited 

beneath the cold-polar, marine-based portions of WAIS and EAIS in the cold–polar 

regime of the Pleistocene, as documented in AND-1B and other studies (Domack et al., 

1999; Hemmer and Harris, 2003; this study). However, inferences of a warmer-than-

present climate can be made from the glacial minima successions in the Bardin Bluff 

deposits, as there is an absence of ice shelf facies (Hambrey and McKelvey, 2000). 

Glacial minima facies are represented by ice-berg rafted debris and rockfall deposits, 

indicating that the glaciers in the Lambert fjord terminated as tidewater cliffs, rather 

than an ice shelf. The presence of Early Pliocene marine deposits at Marine Plain in the 

Vestfold Hills also indicates that there was recession of the marine-based margin of 

EAIS during glacial minima in Pliocene times (Quilty et al., 2000). 



Chapter 6: Synthesis

253

These observations are consistent with the Pliocene record in AND-1B drill core, where 

there are many periods of open-water conditions in the Ross Embayment and little 

evidence of prolonged ice shelf conditions like those of today (e.g., Motif 2). 

Comparison of the Pliocene Pagodroma with AND-1B suggests that the marine-based 

sectors of the WAIS and EAIS both had warmer temperature profiles (sub-polar to 

polar) relative to the present-day cold polar environment, at least to the extent that they 

could not support ice shelves in large embayments during glacial minima.

6.8.2 Transantarctic Mountains

Terrestrial glacial deposits and related sediments scattered at high elevations throughout 

the Transantarctic Mountains have been collectively termed the Sirius Group (Mercer, 

1972, McKelvey et al. 1991). They have long been recognised to be of wet-based 

glacial origin and deposited from ice flowing from the East Antarctic interior 

(Mayewski, 1975, Denton et al., 1984), and some deposits contain a coeval Nothofagus

flora (Francis and Hill, 1996). Pliocene marine diatoms found in the deposits at several 

locations led some to suggest that the deposits were younger than this, implying open 

seas in the interior during the geologically recent past. However, a range of 

circumstantial evidence has shown this to be unlikely (Sugden et al., 1993) and further 

studies suggest atmospheric contamination as a more probable source for the diatoms 

(McKay et al., 2008).

The McMurdo Sound region does contain deposits on land of well-established Pliocene 

age. These include the Pecten Conglomerate, a fjordal deposit now at an elevation of 

~200 m in the floor of Wright Dry Valley (Webb, 1974); Late Miocene to Pleistocene 

glacial-interglacial sequences at least 328 m in thickness in the floor of lower Taylor 

Dry Valley (McKelvey, 1981); and a comparable sequence ~165 m thick cored in the 

floor of Ferrar Fiord (Barrett and Hambrey, 1992). These deposits comprise glacial and 

coastal facies that are little different from those being deposited today.
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A feature of the McMurdo Sound region has been the extensive geomorphological 

research over the last two decades (Summerfield et al., 1999, Sugden and Denton 2004). 

This has been accompanied by soil studies, surface age dating and tephrochronology 

(Marchant et al., 1996), and has led most recently to discoveries of moraines and 

fossiliferous deposits marking the transition from temperate to cold-based ice 14 Myr

ago at the edge of the East Antarctic Ice Sheet in this region (Lewis et al., 2007). This 

body of work implies a persistent cold landscape adjacent to the Ross Embayment 

throughout the last 14 Myr. However, this is not inconsistent with most of the AND-1B 

record, as the Pliocene diatomite beds in AND-1B imply very little terrigenous sediment 

entering the basin despite being adjacent to (100 km west of) a mountain range with 

peaks exceeding 3000 m. Although there is evidence for significant meltwater in the 

AND-1B record during the Late Miocene (Motif 3 sequences; Chapter 3), there as yet is 

no evidence of coeval vegetation growing on land during the deposition of AND-1B 

sequences, based on initial palynological studies (Scherer et al., 2007). This suggests 

that Sirius Group deposits were likely deposited prior to the deposition of the AND-1B 

sequences. Although ice that feeds the AND-1B drill site is sourced from the EAIS, the 

sedimentary sequences in AND-1B are primarily responses to the expansion and 

contraction of the marine-based AIS across the entire Ross Embayment (see Chapter 1 

and 3). As a grounded ice sheet at the AND-1B drill site will be marine-based at the 

AND-1B drill site, the mass balance controls (e.g., eustasy, iceberg calving and sub-ice 

melting) will therefore be the same as for most of the WAIS. Therefore, this 

disconnection between a cold-polar regime for the EAIS and a subpolar regime for the 

AIS in the Ross Embayment and low altitude EAIS fjordal outlet glaciers may be 

explained by the different mass balance controls for terrestrial versus marine-based ice 

sheets. 

6.9 Correlation to global proxies and implication for orbital control of the Late 
Cenozoic Antarctic Ice Sheets 

Chapter 4 developed a high–resolution glacial sequence stratigraphic model for the 

Pleistocene section of the AND-1B, and this was compared to the composite benthic δ18O 

marine record of Lisiecki and Raymo (2005), a proxy for ice volume and deep-sea 

temperature. Using the stratigraphic tools developed in this thesis, and with continuing 
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development of the AND-1B age model, this approach is being applied to older sections of 

the core (e.g., Naish et al, in review) to determine the past contributions of the Antarctic Ice 

Sheets to global sea level changes at an orbital (i.e., 40-100 kyr) timescale. Here a 

comparison is made to a composite benthic δ18O marine record (Zachos et al., 2001) on a 

much broader time scale. This provides insight into the major changes through time in mass 

balance controls for AIS in the Ross Embayment that are implied by the three distinctive 

sequence motifs (Figure 71; Chapter 3).

The oldest part of the AND-1B core (Mid to early Late Miocene; 1285 to 1083 mbsf) is 

characterised by Motif 1 (cold polar glacial regime). This motif represents large-scale 

expansion of AIS onto the Ross Sea continental shelf, by a cold-polar style of ice sheet

similar to that of the late Quaternary. They may correspond to the large positive δ18O 

excursions (Figure 71) during the Mid to early Late Miocene (e.g., Mi-4 and Mi-5; Miller et 

al., 1991).

The overlying strata in Late Miocene (1083 to 770 mbsf) in AND-1B are characterised by 

Motif 3 sequences (sub-polar glacial regime with abundant subglacial meltwater). The 

chronology of this section of the AND-1B is not yet well constrained. There are probably 

numerous unconformities in this section of the core, but at this stage these are unable to be 

determined from the initial age model. Motif 3 likely correlates to low amplitude interval in 

the benthic δ18O record between 11 and 6.5 Myr (Figure 71). The Motif 3 sequences 

between 1083 and 900 mbsf generally have thicker diamictite units than for Motif 3 

sequences above 900 mbsf. These thicker diamictites could correspond to some of the late 

Miocene δ18O excursions (e.g., Mi-6 and Mi-7; Figure 71; Miller et al., 1991). Most of the 

latest Miocene is probably missing from the record and coincides with a ~180 m volcanic 

succession dated at ~6.5 Myr.
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Figure 71: Correlation of AND-1B to δ18O marine records, based on data from Zachos et al. 
(2001). Smoothed curve is curve is based on a 5 point running mean. Ages for Mi-events are from 
Miller et al., 1991. Legend for lithological units is provided in Figure 37.
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The Early Pliocene section of AND-1B is characterised by Motif 2b sequences (sub-

polar glacial regime with some meltwater influence). Of note here is a 90-m-thick 

interval of diatomite deposited between 4.4 and 3.5 Myr. Initial diatom biostratigraphy 

suggests that a ~800 kyr unconformity exists at 440 mbsf (Naish et al., in review), and 

this is marked stratigraphically by a volcanic debris flow unit at this depth. The entire 

interval is considered to represent a prolonged period when the AND-1B drill site was 

ice-free, and due to the long duration of marine deposition it probably represents 

widespread and prolonged retreat/absence of the marine-based portion of the AIS in the 

Ross Embayment at this time. This would have resulted in sea levels ~5 m higher than 

present and there is some support for this in an average δ18O value of 3‰, though 

reaching as low as 2.73‰ in the δ18O benthic record (Lisiecki and Raymo, 2005). These 

low values correspond to sea levels of ~25 m higher than present (Dowsett and Cronin, 

1990; Crowley, 1996), and would require almost complete deglaciation of WAIS, as 

well as the Greenland Ice Sheet and about 10 m sea level equivalent of the margin of 

EAIS. Thick (>10 m) proglacial retreat facies in Motif 2b indicate that subglacial-

derived meltwater played a role in controlling ice sheet mass balance, but this 

diminishes with time as the AND-1B record passes into the Late Pliocene. 

The Late Pliocene section of the AND-1B consists of Motif 2a sequences, which differ 

from Motif 2b in the rapid transitions from diamictite to diatomite facies. Proglacial 

retreat facies are generally <1 m thick. This implies a significant reduction in subglacial 

melting and a general cooling in glacial thermal regime. This interval coincides with the 

gradual increase in δ18O values from marine benthic records between ~3 Myr and 1 Myr 

(Figure 71). This trend is generally attributed to global cooling from ~3.1 Myr and the 

development of the Fennoscandian and Laurentide ice sheets from ~2.5 Myr 

(Shackleton and Opdyke, 1977). The lack of subglacial meltwater associated with 

glacial retreat implies that mass balance became largely controlled by calving of ice 

from the marine margin, as well as from basal melting of floating ice shelves that may 

have fringed the margin of Antarctica. An increasing influence of eustatic sea level 

control associated with ephemeral Northern Hemisphere ice sheets at this time is also 

implied. 
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During the Pleistocene section of AND-1B, the development of the present-day style of 

cold-polar glaciation is documented by a large scale expansion of AIS in the Ross 

Embayment at 0.8 Myr, as indicated by a change from Motif 2 sequences to Motif 1 

sequences, and an associated unconformity (Chapter 4). Since 0.8 Myr, the AIS has 

oscillated at a frequency of 100 kyr, whereas before this it responded at a 40-kyr 

cyclicity (Chapter 4). This change in thermal regime coincides with the Mid-Pleistocene 

Transition that is well documented in the δ18O benthic record (Figure 71). Interglacial 

periods during the Late Pleistocene are characterised by extensive ice shelf conditions, 

rather than open marine conditions. This indicates that although it oscillates at a 100-kyr 

periodicity, the AIS has been a relatively stable feature in the Ross Embayment over the 

past 0.8 Myr, compared to Pliocene and Late Miocene times.
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