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Abstract 

 
 

The use of δ15N and δ13C signatures to infer sources of enrichment in ecological 

systems relies on predictability in the transfer of δ15N and δ13C ratios. This thesis 

examines patterns of δ15N and δ13C change as pools of nitrogen and carbon move 

from a sewage effluent discharge into organisms in an adjacent coastal rocky reef 

community (Titahi Bay, New Zealand). These changes and their mechanisms are 

examined in the broader context of current research using carbon and nitrogen stable 

isotope ratios in marine ecology, with particular reference to impact assessment.  

 

Firstly this thesis examines the assimilation of nitrogen and carbon isotopes in Ulva 

sp. under varying light conditions and nitrogen source (e.g., nitrate or ammonium). In 

a field study, algae grown at depth and under lower light conditions showed 

comparatively lighter nitrogen isotope signatures relative to the predicted 

concentration of available 15N-enriched sewage nitrogen. In a complementary 

laboratory experiment, results from manipulated light availability and N source (either 

nitrate or ammonium, in equivalent molar concentrations) suggest that: 1) low-light 

conditions can produce algae with lighter nitrogen isotope signatures; and 2) this 

effect was more pronounced for ammonium (3.7 ‰ difference between high light and 

low light treatments) than for nitrate (0.6‰ difference between high light and low 

light treatments) sources. Stable carbon isotope ratios (δ13C) of Ulva sp. grown in 

conditions of low nitrogen availability were shown to be generally lower than those 

grown in nitrogen rich conditions in both field and laboratory studies. Where nitrogen 

supply was sufficient for growth, low light conditions also produced generally lower 

δ
13C signatures than high light conditions. Experimental trials with a uniform 
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dissolved inorganic carbon source and altered light and nitrogen enrichment levels 

produced δ13C levels in Ulva sp. tissue that spanned the recorded δ13C ranges of many 

common algal species; -5.99‰ (high light, with added ammonium and phosphate) to -

17.61‰ (high light without nutrient additions). Chapter 3 of this study examines the 

growth response of Ulva sp. to surplus nitrate and ammonium (the two most common 

forms of nitrogen available to plants in seawater), under light limited conditions. Ulva 

sp. experienced a temporary reduction in growth rate and nitrogen assimilation 

capacity (shown in tissue nitrogen indices) when grown on nitrate, relative to 

ammonium. The magnitude and the temporary nature of these results suggest that in 

natural populations the relative proportion of nitrate or ammonium available is 

unlikely to significantly affect the growth capacity of Ulva sp.. In chapter 4, I use 

δ
13C and δ15N signatures to separately trace the dissolved and particulate fractions of 

sewage effluent dispersal onto a rocky reef community. δ15N signatures from tissue of 

the macroalga Carpophyllum maschalocarpum, and the herbivorous isopod 

Amphoroidea media tracked the distribution and signature of DIN from a sewage 

treatment plant that generated heavy δ15N signatures. δ13C signatures from tissue of 

the filter-feeding half-crab Petrolisthes elongatus tracked the distribution and 

signature of suspended sewage particulate organic matter.  
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Chapter 1 – General introduction 

Overview 

 
 
 
 
 
Coastal marine environments are comprised of a wide variety of species, and many of 

these are of conservation and economic interest. The dynamics and structure of these 

diverse communities are often regulated by complex networks of trophic linkages 

(Walters and Moriarty 1993, Hart and Lovvorn 2003, Levin et al. 2006). Food webs in 

coastal marine environments are influenced by nutrients of both marine and terrestrial 

origin (Cole and Caraco 2001). Terrestrial sources include natural terrestrial organic 

matter, such as leaf litter delivered via streams and rivers, as well anthropogenic 

sources such as sewage and agricultural runoff (Kwak and Zedler 1997, McClelland 

and Valiela 1998b, Chanton and Lewis 2002).  

 

Changes in the levels of nutrient availability and the physical and chemical properties 

of the marine environment have been shown to cause changes in trophic pathways and 

abundances of species in an ecosystem (Heip 1995, McClelland and Valiela 1998a, 

Proulx and Mazumder 1998, Bokn et al. 2002, Tewfik et al. 2005). The adaptation of 

some marine communities to low levels of some nutrients has made them susceptible 

to anthropogenic effects.  

 

Increasing human populations in coastal areas worldwide have caused increases in 

environmental and ecological change. These changes include alteration and 

destruction of habitats and ecosystems, eutrophication, the decline of fish stocks, and 
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changes in sediment flows. Coastal ecosystems are also at risk of damage from 

human-derived pollutants, such as pesticides, hydrochlorides, heavy metals such as 

lead, and petrochemicals from roads (GESAMP 2001).  

 

One of the principal impacts of human population growth is the increased production 

of nitrogen and phosphorus. Often, these nutrient subsidies find their way into 

estuarine and marine food webs. In most marine environments, addition of these 

nutrients leads to increased primary production (Pedersen 1995, Valiela et al. 1997). 

This can be detrimental to coastal ecosystems in several ways. Increased nutrient 

levels can lead to increased biomass of algae with fast nitrogen uptake and 

assimilation rates, and may lead to displacement of other algal species (Valiela et al. 

1997). The decay of excess primary production (e.g., phytoplankton and fast-growing 

macroalgae) can lead to an increase in the consumption of oxygen in water and in 

bottom sediments, leading to mortality of benthic marine organisms (Heip 1995, 

Cloern 2001, Gray et al. 2002). Increased nutrients can also favour the excessive 

growth of toxic algae, which may cause mortality of higher organisms and 

contamination of seafood (Keller and Rice 1989, Butler et al. 1995). It is generally 

accepted that peak seasonal growth of seaweeds in temperate marine environments is 

most often limited by the availability of nitrogen (Hanisak 1983, Fujita et al. 1989, 

Peckol et al. 1994).  

 

In coastal marine systems, nitrate (NO3
-) and ammonium (NH4

+) are typically the 

most abundant forms of inorganic N in seawater. The majority of nitrogen in coastal 

environments worldwide is available to marine macroalgae in the form of nitrate, 

which is typically present in concentrations between 0 and 30 µM (DeBoer 1981, 
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Sharp 1983). Ammonium is most often available in concentrations below 3 µM, but 

can be increased by terrestrial sources of enrichment, such as sewage outflows. Nitrite 

concentrations typically do not exceed 5% of dissolved inorganic nitrogen (DIN) in 

seawater (Sharp 1983). Organic sources of nitrogen available in minor quantities to 

macroalgae in coastal environments are urea (Hanisak 1983), and amino acids 

(DeBoer 1981).  

 

Ammonia is present in seawater in equilibrium between gaseous ammonia (NH3) and 

dissolved ammonium ions (NH4
+). Algae take up ammonium ions by active transport 

across the plasma membrane. Gaseous ammonia is taken up through passive diffusion 

across this membrane. Nitrate ions also require active transport during uptake (Syrett 

1981). However, ammonium is typically taken up into macroalgae in higher rates than 

nitrate (Wallentinus 1984, Thomas & Harrison 1985) and ammonium uptake may 

inhibit the uptake of nitrate in some species, including Ulva sp. (Hanisak, 1983, 

Thomas & Harrison 1987, Rees et al. 2007).   

 

Nitrate requires reduction to nitrite then ammonium prior to assimilation. These steps 

are catalysed by nitrate reductase and nitrite reductase, and have energy requirements 

associated with the production of these enzymes as well as the reduction reaction. 

Because of this energy requirement, rates of nitrate uptake typically vary under 

changing light conditions, and this relationship follows a rectangular parabola 

(Wheeler 1982). Ammonium uptake rates in macroalgae are typically unaffected by 

irradiance (Wheeler 1982, Duke et al. 1989).  
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Ammonium is assimilated into algal tissue by enzymatic conversion to amino acids 

via the glutamine synthetase / glutamine : 2-oxoglutarate aminotransferase pathway 

(Lea & Miflin, 1974). This process is linked to photosynthesis due to the requirement 

of 2-oxoglutarate for the conversion of glutamine to glutamine to glutamate, as well 

as a requirement for ATP (Galvez et al. 1999).    

Both nitrate and ammonium may be stored in algal tissue prior to assimilation. Nitrate 

has been observed to be stored in unreduced intracellular reserves during winter in the 

kelp Laminaria sp., and subsequently used during spring growth (Mann 1982, Raven 

et al. 1992). Although ammonium is not regarded as a major nitrogen storage 

compound in macroalgae, intracellular ammonium concentrations have been observed 

to increase following uptake (Naldi and Wheeler 1999). To a larger extent, organic 

forms of nitrogen are stored in algae where uptake exceeds growth (Gagne et al 1982, 

Raven 1987b, Raven et al. 1992, Naldi and Wheeler 1999). These reserves are 

typically reduced when growth rates exceed nitrogen uptake (Syrett 1981, Mann 

1982).  

 

Seasonally, macroalgal productivity may be limited by light availability and 

temperature (Norin and Waern 1973, Valiela et al. 1997). When light and temperature 

are sufficient for maximum growth rates, typically during spring and summer, 

increases in algal growth rates tend to be limited by the availability of nutrients (Rhee 

1980, Hanisak 1983, Fujita et al. 1989, Peckol et al. 1994, Valiela et al. 1997).  

The relationship between growth and nutrient availability in algae can most simply be 

explained by models such as that developed by Monod (1942) for growth of microbes 

limited by a single substrate. In these, the creation of new biomass is linked simply to 

the uptake rate of the substrate. However in macroalgae, where limiting nutrients are 
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stored in intercellular pools, growth is often decoupled from external nutrient supply, 

and instead can be related to the intracellular concentration of the limiting nutrient 

(Rhee 1980). In this case, growth rates relative to internal nutrient supply typically 

follow a rectangular parabola, with an asymptote equal to the maximum specific 

growth rate (Rhee 1980), and drop sharply as the internal concentrations of the 

limiting nutrient approach zero.  

 

Macroalgae have varying maximum nitrogen uptake rates, and specific growth rates 

which roughly follow morphological lines. Algae with smaller surface area to volume 

ratios, such as kelps, tend to have slower maximum N uptake and growth rates while 

frondose algae with higher surface area to volume ratios tend to have higher uptake 

and growth rates (Wallentinus 1984). More frondose algae also tend to have higher 

nitrogen requirements. This is in part due to their generally higher tissue nitrogen 

concentrations, but also due to the demand for nitrogen required for the creation of 

new tissue (Pedersen & Borum 1997). In ecosystems where all growth requirements 

are available in excess, a small number of fast growing taxa with high uptake and 

growth rates will tend to dominate, displacing slower growing macrophytes and 

reducing diversity (Lavery et al. 1991, Peckol et al. 1994, Valiela et al. 1997).  

 

The movement of nutrients and energy through ecosystems is difficult to measure 

directly. It is possible to measure the uptake and storage of nitrogenous compounds by 

marine primary producers in field situations, but this offers no direct information on 

the sources of the nutrients available for uptake. With knowledge of both source and 

volume of nitrogen available to marine primary producers, managers can take action 

to remedy sources of nitrogen that may be problematic to marine systems. When 
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measuring nutrient movement through food webs, gut content analysis can provide 

details on the amount of food consumed, but this is labour-intensive, difficult in small 

organisms, and can be misleading where consumption volumes differ from nutritional 

values (Smit 2001). 

 

Stable isotopes facilitate indirect measurement of nutrient pathways through food 

chains.  The approach relies upon isotopic “signatures” to infer trophic linkages in 

complex ecosystems (Fry and Sherr 1984).  The approach also facilitates tracing and 

quantifying sources of terrestrially derived enrichment, pollution and sediments that 

may enter aquatic environments (delGiorgio and France 1996, McClelland and 

Valiela 1998b, Jones et al. 2001, Bouillon et al. 2002, Gordon and Goni 2003).    

 

This approach uses the differences in the background levels of isotopes in components 

of the biosphere to determine patterns of nutrient transfer. Stable isotopes of most 

ecologically relevant elements are made up of one extremely abundant isotope, and 

one or more rare isotopes. Where natural differences exist in the levels of enrichment 

in pools of biologically relevant elements, their relative enrichment levels can be used 

to trace the movement of these pools in space and through food chains. The rarity of 

the secondary isotopes also allows for the use of artificially enriched sources of the 

rare isotope as tracers in environmental and physiological studies. In some cases, 

stable isotope analysis offers the only feasible tool to study the subtle impacts of 

different nitrogen and carbon sources on marine ecosystems. 

 

Differences in the atomic mass of the isotopes of an element can result in different 

chemical behaviour of one isotope relative to another. The lighter isotope (with a 
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lower atomic mass) typically forms bonds that can be broken more easily. This 

difference in chemical behaviour can cause different isotopes to vary in their 

representation in reactant and product pools of a reaction. (i.e., the lighter isotope 

generally becomes more concentrated in the product relative to the heavier isotope).   

As elements pass through chemical reactions in different pools in biological systems, 

this process of ‘kinetic fractionation’ leads to isotopes existing in different quantities 

in each pool. The main uses of stable isotopes in ecology (e.g., for nutrient source 

identification and trophic level analysis) rely upon: 1) predictability in fractionation 

processes as pools of isotopes are taken up, (e.g., uptake of nitrogen and carbon by 

algae, and during nitrogen and carbon transfer along food chains); and 2) the stability 

and consistency of the ‘signatures’ of possible nutrient sources. 

 

There is considerable evidence to suggest that these assumptions are rarely met in 

studies of natural systems (Gannes et al. 1997). Notably, carbon and nitrogen stable 

isotope ratios in primary producers have been shown to vary independently of source 

δ
13C and δ15N as a function of the physical and chemical conditions during growth 

(Raven et al. 2002, Finlay 2004, Needoba et al. 2004). Furthermore, the transfer of 

stable isotope signatures along food chains has been shown to be inconsistent between 

species (Gannes et al. 1997, Vanderklift and Ponsard 2003, Fry 2006). For example, 

fractionation during nitrogen assimilation has been suggested to be greater in 

herbivorous than in carnivorous fish due in part to increased excretion rates in 

herbivores (Mill et al. 2007).  Finally, δ13C and δ15N signatures of inorganic carbon 

and nitrogen sources available to marine producers are also variable in time and space 

(Smit 2001, Bedard-Haughn et al. 2003). Thus, successful design and interpretation of 

ecological and environmental stable isotope studies require a system-specific 
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understanding of the reliability of isotope ratio transfer, and the physiological 

processes that cause variability in the isotope signatures of source pools.  

Background, Stable Isotopes as tracers in ecological and environmental 

studies 

Concepts, measurement and terminology  

 

Ecological studies that employ stable isotope ratios use either variation in naturally 

occurring levels (‘natural abundance’ stable isotope studies), or add and follow the 

path of artificially enriched substances in a system (‘enriched’ studies).  

 

In this study, I examine only naturally occurring levels of stable isotopes of carbon 

and nitrogen. The standard measure of carbon (12C to 13C) and nitrogen (14N to 15N) 

natural isotopic abundances are as delta (δ) ratios in parts per thousand (‰). These 

ratios are a measure of the level of presence of the heavier isotope relative to its level 

of presence in an internationally accepted reference standard (see table 1.1).  The 

equations for calculating δ ratios for carbon and nitrogen are: 
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Where the term ‘sample’ refers to the sample being analysed, ‘PDB’ is a reference 

standard of carbonate from the cretaceous PDB formation, and ‘air’ is atmospheric 

nitrogen. Henceforth, references to a sample or pool of nitrogen or carbon as ‘heavier’ 
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indicates a relative enrichment in the heavier isotope (either 13C or 15N), and ‘lighter’ 

indicates a sample less enriched in the heavier isotope.  

 

Table 1.1.  Carbon and nitrogen, their isotopes, their percent abundance in nature, their 
reference standard and percent abundance of isotopes in that standard. (Modified from 
Dawson et. al. 2002) 

Element Isotope Percent 

natural 

abundance 

Standard Abundance 

ratio of 

reference 

standard 

Nitrogen 14N 
15N 

99.63 
0.3663 

Atmospheric N2 3.6764 x 10-3 

Carbon 12C 
13C 

98.982 
1.108 

PDB carbonate 1.1237 x 10-2 

 

Stable isotope levels are measured using mass spectrometry. Advances in 

instrumentation over the last 25 years, particularly the development of automated 

systems for carbon and nitrogen analysis, have contributed to growth in the number of 

stable isotope studies conducted as part of ecological research. All analysis for this 

study was performed using an automated, continuous flow isotope ratio mass 

spectrometer (CF-IRMS). More information on isotope ratio measurement and 

instrumentation may be found in a review by Dawson and Brooks (2001).   

 

Variation in natural abundance stable isotope ratios of inorganic source N and C pools in 

seawater 

Nitrogen  

Dissolved inorganic forms of nitrogen (DIN) in marine and estuarine systems form 

the majority of the N supply that sustains primary production in these environments 

(DeBoer 1981). δ15N ratios of DIN in marine systems tend to vary in space and time, 

as a function of the δ15N ratios of the pools of DIN entering the system, and 
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fractionation effects within the system (Smit 2001, Fry 2006). Within system 

fractionation effects that alter DIN δ15N ratios include sedimentary processes of 

biological nitrification and oxidation, as well as decomposition and mineralization of 

organic N (Bedard-Haughn et al. 2003, Fry 2006). The movement of external sources 

of DIN into marine systems can also create gradients of isotope ratios in primary 

producers, and these gradients can be passed upwards through food chains (Spies et. 

al 1989, McClelland and Valiela 1998, Hadwen and Arthington 2007). 

Some δ15N values of nitrogen potentially available for uptake for marine primary 

producers are listed in table 1.2. Data for this table are sourced from reviews by 

Peterson (1999), Smit (2001), Bedard-Haughn et al. (2003), Fry (2006) and studies by 

Rogers (1999, 2003), Gartner et al. (2002), Savage and Elmgren (2004) and this 

study.  

 

Table 1.2 δ15N ratios of some potential DIN sources for primary producers.  

N species Source Mean (‰) Range (‰) 

Ammonium Remineralised 
(estuarine) 

13.0 10 to 16 

DIN total Fertiliser 0 -2 to 2 

N2 (air) atmosphere 0  

Nitrate North Pacific 6.1  

Nitrate Groundwater  6 to 8 0 to 20 

Total N Septic tank 10 8 to16 

Total N Animal urine -8 -3 to -12 

DIN total Tertiary 
processed sewage 

effluent 

~20 7 to 38 

DIN total Primary or non 
processed sewage 

effluent 

2 0 to 5 
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In some cases the disparate δ15N values of these sources of nitrogen are the result of 

fractionation in reactions that occur prior to their movement into marine systems. For 

example, volatilisation of ammonium during processing of sewage prior to release can 

increase the δ15N ratio of the dissolved nitrogen remaining in the effluent (Bedard-

Haughn et al. 2003, Savage and Elmgren 2004). The more rapid loss of 14N than 15N 

during decomposition of particulate N pools results in a 5‰ -10‰ increase in δ15N 

ratios with increasing depth in the ocean and in soils (Fry 2006). Notably, the 

disparity of δ15N ratios in N pools within the biosphere is limited because biological 

processes such as photoautotrophic growth are often limited by the availability of 

nitrogen. Where this is the case, all (or most) nitrogen is likely to be assimilated, 

regardless of isotope content (Fry 2006). For details on causes of significant 

fractionation in terrestrial pools of nitrogen that may be available to marine systems, 

see reviews by Bedard-Haughn et al. (2003) and Fry (2006).  

Carbon  

 

Bicarbonate ions (HCO3
-) and dissolved carbon dioxide (CO2(aq)) in equilibrium make 

up more than 99% of the dissolved inorganic carbon (DIC) in the world’s oceans. 

Fractionation in the equilibrium reaction between the two compounds results in the 

δ
13C of HCO3

- being around 11‰ higher than that of CO2(aq) (Raven et al. 2002). As a 

result, variability in the δ13C of source carbon available to photoautotrophs may come 

about as a result of changes to the chemical equilibrium of DIC in marine waters. 

Significant inter-species differences in marine primary producer tissue δ13C ratios are 

also generated by tendencies for some species to assimilate only CO2(aq) (particularly 

some of the Rhodophyta) and others to assimilate a mixture of CO2(aq) and HCO3 
-
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(Raven et al. 2002). Some intertidal species may also assimilate atmospheric CO2(aq) 

(with a δ13C of -7.8 ppt) when exposed at low tide (Surif and Raven 1990). 

Methods and assumptions for calculation of isotopic mixing 

 

Studies that use the C and/or N isotopes to estimate nutrient contributions of a range 

of possible sources normally employ mixing models (e.g., Ben-David et al. 1997, 

Ben-David and Schell 2001, Phillips et al. 2005). Much of the discussion in the 

following chapters refers to the assumptions of these models.   

 

The simplest of these models is a two-end mixing model e.g. Spies et al. (1989). 

Where two possible nutrient sources exist, an estimate of the percentage contribution 

of each source to the organism’s nitrogen content can be generated using a two-end 

mixing model, shown here using the example of an effluent nitrogen contribution to 

the total nitrogen budget of an alga. 

))(1()( 151515

yeffluentx NXNXN δδδ −+=  

Where X is the proportion of effluent contribution, δ15Nx is the δ15N of the impacted 

alga, δ15Ny is the background δ15N value. Model from Spies et al. (1989), modified by 

Wayland and Hobson (2001).  

Studies that estimate dietary contributions often employ mixing models that attempt 

to distinguish the relative contributions of more than two possible food sources (Ben-

David et al. 1997, Ben-David and Schell 2001, Phillips et al. 2005). An example of a 

model that uses both δ13C and δ15N ratios to distinguish contributions of three 

possible food sources is shown below (modified from Smit (2001)).  
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The food source values for A, B and C in the equations below are typically adjusted to 

account for fractionation. This adjustment can be made using standard figures for 

fractionation factors between source and consumer (e.g. Smit (2001)), but can be 

adjusted to accommodate variable fractionation, (see Vanderklift and Ponsard 2003, 

Sweeting et al. 2007).  

 

This method first calculates Euclidean distances between the delta ratios of each 

possible food source and the consumer (equation 1 below, calculates one food 

source), and then calculates the contribution of each food source to the consumer’s 

diet as the inverse of the Euclidean distance between the source and the consumer 

(equation 2 below) 

1. 
2151521313 )() consumerAconsumerAA NNCCZ δδδδ −+−=  

Where ZA is the Euclidean distance between the consumer and food source ‘A’, and 

δ
13CA and δ15NA are the signatures for food source ‘A’.  

2. 100%
111

×
++

=
−−−

CBA ZZZ

Zx
X  

Where ZX is the Euclidean distance between any of the food sources and the 

consumer, and 1−
AZ  is the inverse of the Euclidean distance of food source ‘A’ from 

the consumer.  

 

There are several key assumptions that are important to the success and validity of 

these models.  

1. That fractionation is known for each instance of nutrient transfer. 

2. That the food sources are significantly separated in their δ13C and δ15N ratios. 
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3. That the mean isotope ratios of potential nutrient sources used in the analysis 

are accurate over the temporal and the spatial scale of the study.  

Aims 

 
 
This thesis is intended to add to our body of knowledge of the processes of carbon and 

nitrogen isotope assimilation in marine algae, and the effects of these processes on 

techniques that employ carbon and nitrogen stable isotope ratios in marine ecology. 

The model system for this work is the flow of carbon and nitrogen from a sewage 

outflow in Titahi Bay, New Zealand to a shallow, rocky reef. Using field studies in 

this system and laboratory experiments, these aims are addressed in the following 

manner:   

 

1. Examining the stability of δ15N levels in Ulva sp. in reflecting 15N-enrichment 

from sewage effluent loading under varying conditions of light and nitrogen 

availability.  

2. Examining the stability of tissue δ13C in Ulva sp. (i.e. a carbon source at the 

base of a marine food chain) over gradients of light and nutrient availability, 

such as can be found at many terrestrial/marine interfaces.  

3. Investigating the reduction of nitrate to ammonium during nitrogen uptake in 

Ulva sp. as a possible mechanism for growth inhibition and increased 

fractionation in Ulva sp. under light-limited conditions. 

4. Investigating patterns of variability in sewage effluent δ15N and δ13C source 

signatures between treatment type and processing facilities.  
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5. As a case study, using the differences in δ15N and δ13C of sewage and natural 

marine sources to illustrate feeding patterns of marine consumers under 

sewage plume influence.  

 

In chapter 2, I use a logistic model to examine the effect of depth (as a proxy for light 

availability) in Ulva sp. transplanted to sites in a gradient away from the Titahi Bay 

Wastewater Treatment Plant (TBWWTP). I then examine the effect of light 

availability and nutrient source (nitrate or ammonium) on Ulva sp. tissue δ15N 

signatures experimentally in controlled conditions. I experimentally examine growth-

rate driven change in Ulva sp. tissue δ13C ratios under controlled conditions with 

nutrient and light limited growth. I compare these results with patterns of tissue δ13C 

measured in Ulva sp. transplanted to sites in a gradient away from the TBWWTP. In 

chapter three, I address the third aim above using a series of controlled experiments 

with manipulations of nitrogen source and light availability. In chapter four I address 

the fifth aim of this thesis by tracing the movement of δ13C and δ15N signatures in 

source pools of sewage carbon and nitrogen measured at the TBWWTP into 

producers and consumers in an impacted community. Using analysis of covariance 

(ANCOVA), I assess patterns of δ13C and δ15N signatures in a macroalga, a filter 

feeder and an herbivorous grazer in relation to patterns of dispersal of particulate and 

dissolved effluent fractions. Appendix 5 contains an assessment of variability in δ13C 

and δ15N in signatures of dissolved and particulate components of sewage effluent 

following two common treatment types at three treatment plants. 
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Chapter 2 – Effects of light variation and nutrient 
addition on the δ15N and δ13C ratios of Ulva sp.  
 

Abstract  

 

The use of stable isotope signatures to infer sources of enrichment of nitrogen and 

carbon to ecological systems relies on predictability in the expression of the source 

δ
15N and δ13C signatures by primary producers. In this study, assimilation rates of 14N 

vs 15N and 13C vs 14C under varying light conditions and nitrogen (N) source (e.g., 

nitrate or ammonium) are examined for macroalgae.  

To examine nitrogen and carbon fractionation in Ulva sp., I manipulated light 

availability and N source (either nitrate, ammonium or no nutrient addition) in 

factorial designs in laboratory experiments. My results suggest that: 1) low-light 

conditions can produce algae with lower δ15N and δ13C signatures; 2) for δ15N, this 

effect was more pronounced for ammonium than for nitrate sources. 3) δ13C ratios 

were dependent on sufficient supply of nutrients (nitrogen and phosphorus) as well as 

light levels during growth. In laboratory experiments, Ulva sp. tissue δ13C ratios 

ranged from -5.99‰, (grown for 14 days with ambient light and 10 µM added 

ammonium) to -17.6‰, (grown for 14 days in ambient light, with no added nutrients). 

Fractionation rates during assimilation of ammonium by Ulva sp. were separated by 

3.7‰ between high light and low light treatments.  

In a complimentary field study I transplanted individuals of Ulva sp. in a distance 

gradient away from a point source sewage discharge, near the seawater surface and at 

4 m depth. Field measurements of seawater salinity, nitrogen and phosphorus ions, 

and Ulva sp. δ15N ratios indicated that 15N-enriched sewage effluent moved in a 
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buoyant plume; however Ulva sp. grown at depth had comparatively lighter δ15N 

signatures than surface sites estimated to receive the same concentrations of sewage 

effluent. Stable carbon isotope ratios (δ13C) of Ulva sp. covaried spatially with levels 

of dissolved sewage in surface waters. These results provide a cautionary message for 

some applications of stable isotope studies, and generally underscore the need for an 

improved mechanistic understanding of stable isotope assimilation into organisms and 

ecological systems. These results may be particularly important for ecological stable 

isotope studies conducted in areas where light and nutrient availability vary over short 

spatial scales, such as at the marine/freshwater boundary.  

 

Introduction 

 
The application of carbon and nitrogen isotope analysis in the study of marine food 

web linkages and movement of terrestrial matter into the marine environment has 

become commonplace over the last 30 years. The utility of the techniques lies in the 

tendency of carbon and nitrogen pools to retain their δ13C and δ15N ratios to some 

extent as they pass through ecological systems. For example, δ13C ratios of animal 

tissues tend to reflect those of their food sources with only minor, predictable changes 

(Fry 1984). Many of these studies use distinct isotopic signatures of marine plants and 

algae to determine feeding patterns of consumers and the distribution of terrestrial 

carbon and nitrogen sources (Ben-David and Schell 2001, Dunton 2001, Usui et al. 

2006, Fry 2006, Catenazzi 2007). The use of marine algae in ecological stable isotope 

studies relies on an understanding of how isotope signatures of algal tissue reflect 

inorganic source carbon and nitrogen isotope signatures, and how this varies under 

varying physical conditions.   
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Nitrogen enrichment to aquatic ecosystems is a widespread consequence of human 

population growth.  Common sources of enrichment of aquatic and coastal 

environments include sewage discharge and agricultural runoff, which can cause 

increases in the growth rates of nitrogen and phosphorus limited plants and algae 

(Campbell 2001, Armitage et al. 2005). Coastal enrichment can also alter biotic 

interactions (Bokn et al. 2002, Hauxwell et al. 2003, Karez et al. 2004, Tewfik et al. 

2005) and patterns of biodiversity (Morris 1991). Worldwide, there is increased 

pressure to regulate nitrogen enrichment; efficient and reliable tools to identify and 

quantify sources of nitrogen enrichment are required. 

 

Natural abundance nitrogen stable isotope signatures in macroalgae (δ15N signatures) 

are increasingly used as a tool to trace sources of nitrogen enrichment across a wide 

range of ecological systems (Aravena et al. 1993, Erskine et al. 1998, McClelland and 

Valiela 1998, Lojen et al. 2005, Kaushal et al. 2006). This technique has been used 

with success to estimate the effect of terrestrially derived nitrogen on marine systems 

(McClelland et al. 1997, McClelland and Valiela 1998, Rogers 1999, Costanzo et al. 

2001, Gartner et al. 2002, Savage and Elmgren 2004, Costanzo et al. 2005, Savage et 

al. 2004, Cornelisen et al. 2007). The accuracy of some inferences drawn from this 

approach however, depend upon a number of assumptions, which commonly remain 

untested.  

 

Nitrogen stable isotopes are commonly viewed as useful tracers of enrichment 

because different sources of nitrogen often have characteristic and widely divergent 

signatures.  For example, dissolved inorganic nitrogen (DIN) from unprocessed 
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sewage typically has a δ15N value of approximately 5-6‰ (McClelland and Valiela 

1998, this study), and these signatures typically become progressively “heavier” (i.e., 

enriched with 15N relative to 14N) due to greater volatilisation of 14N than 15N during 

treatment prior to discharge (e.g., reported values of processed sewage range from 7 

to 38‰ (Savage et al. 2004). DIN in groundwater entering coastal watersheds from 

natural soils typically has less enriched δ15N values, between 2 and 8‰ (Macko and 

Ostrom 1994). 

 

The accuracy of δ15N signatures as tracers of enrichment sources hinges on primary 

producers incorporating the δ15N signature from the environment to their own tissue 

in a predictable manner. Tracer signatures are often evaluated indirectly from 

organisms (e.g., from primary producers, as opposed to directly from seawater) 

because such organisms facilitate a time-integrated estimate of exposure. Specifically, 

this approach requires that any discrimination between 14N and 15N that is exercised 

by a primary producer as it incorporates and retains nitrogen within its tissue remains 

consistent over the spatial extent of the study.   

 

For marine plants and algae, this process of discrimination between 14N and 15N that 

results in a difference between the δ15N signature of inorganic nitrogen in seawater, 

and the δ15N signature of the algae (i.e. ‘fractionation’) may occur at any of several 

stages. Discrimination during incorporation of DIN from seawater into algal tissues 

may occur during active uptake of DIN over the plasma membrane, and/or during 

reduction of NO3
- to NO2

- and subsequently to NH4
+ (catalysed by nitrate reductase 

and nitrite reductase respectively), and finally during synthesis of amino acids and 

subsequent compounds (Needoba et al. 2004). Typically, the heavier isotopes (which 
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form slightly stronger chemical bonds) are less represented in the product pools of 

these processes. Notably, for discrimination that takes place within the algal cell to 

result in a fractionation effect between seawater DIN and algal tissue, some of the 

isotopically heavier reactant pools need to be effused from the plant.  

 

Previous work suggests that light availability (Wada and Hattori 1978, Heikoop et al. 

1998, Needoba and Harrison 2004), growth rate (McKee et al. 2002), nutrient 

availability (Waser et al. 1998b, McKee et al. 2002), turbulence (Neill Barr, personal 

communication) and N source (Waser et al. 1998a) may all have some effect on 

fractionation during nitrogen incorporation in photoautotrophs.  

 

The δ13C isotopic signatures of photoautotrophs, including marine algae, are a 

function of the isotopic signature of the inorganic carbon available for uptake, and 

their tendency to assimilate 12C into their tissue at a different rate than 13C.   

This discrimination in the assimilation of carbon isotopes causes differences between 

the δ13C ratio of inorganic source carbon (e.g. seawater dissolved inorganic carbon 

(DIC)) and that in algal tissue.  

 

The size of the difference between the δ13C signatures of source carbon and the δ13C 

of algal tissue depends primarily on the magnitude and expression of isotope effects 

during photosynthesis (Farquhar et al. 1982, Raven and Farquhar 1990, Maberly et al. 

1992, Raven et al. 2002). Additionally, as inorganic carbon in seawater is composed 

of HCO3
- and CO2(aq) in equilibrium, and these two sources of carbon possess distinct 

δ
13C signatures in seawater, the δ13C of algal tissue depends of the proportion of the 

two ions taken up and assimilated (Raven et al. 2002).  
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The expression of isotope effects varies between algal species, as a result of 

physiological differences in carbon assimilation (Laws et al. 1997, Raven et al. 2002). 

The two main sources of isotope effects during carbon assimilation arise during 

uptake of carbon across the plasma membrane (Farquhar et al. 1989, Raven and 

Farquhar 1990) and in carbon fixation. The enzymes that facilitate carboxylation, (one 

of the first major processes in the Calvin cycle) discriminate against the heavier 

isotope (13C). The enzyme RuBisCO is responsible for around 95% of CO2 fixation in 

plants, and acts more rapidly with 12C than 13C, in effect a ~30‰ discrimination 

against the heavier isotope for dissolved CO2 (Farquhar et al. 1989, Raven and 

Farquhar 1990). This results in an enrichment of the δ13C of intracellular CO2 relative 

to that in seawater. An expression of this isotope effect as a difference between the 

δ
13C of algal tissue and that of seawater (fractionation) relies on leakage of the 13C-

enriched internal CO2 back out of the alga. A large leakage relative to the rate of 

carbon assimilation will lead to a large fractionation effect, a small leakage will lead 

to a small fractionation effect (Farquhar et al. 1989). Inter-species differences in the 

δ
13C ratios of algae living in identical physical environments are to a large part caused 

by differences in this leakage, and in the relative proportions of HCO3
- and CO2(aq) 

that each species assimilates (Raven et al. 2002).  

 

In addition to inter-species differences, substantial variation in the expression of 

isotope effects in tissue δ13C levels within a species can result from differences in the 

physical conditions in which algae grow. Factors that reduce the availability of CO2 

for carbon synthesis are likely to reduce the level of fractionation associated with 

carbon synthesis. At least some species of algae are able to reduce the leakage of CO2 
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from the cytosol by increasing the expression of a carbon concentrating mechanism 

under conditions of low CO2 availability (Raven 2001). 

 

In phytoplankton, a lower concentration of CO2(aq) at the site of carboxylation relative 

to photosynthetic demand tends to lead to a higher proportion of 13C being assimilated 

and a relative increase in the δ13C ratio of algal tissue (Laws et al. 1995, Laws et al. 

2002). Increased growth rates typically increase internal CO2 demand relative to 

supply (Fry and Wainright 1991, Laws et al. 1995, Burkhardt et al. 1999b, Laws et al. 

2002). Where growth rate is resource-limited, δ13C ratio tends to be negatively 

correlated with availability of the limiting resource (Laws et al. 2002).  

Where light and temperature are sufficient for maximum growth, the availability of 

the nutrient in shortest supply relative to demands will tend to limit growth rate in 

macroalgae (DeBoer 1981). The effects of growth-rate limiting factors on 

phytoplankton δ13C ratios have been shown for phosphorus limitation (Gervais and 

Riebesell 2001), light limitation (Leboulanger et al. 1995, Thompson and Calvert 

1995, Riebesell et al. 2000) and nitrogen limitation (Riebesell et al. 2000). In 

temperate coastal waters growth rates of opportunistic macroalgae are most 

commonly limited by availability of nitrogen (Twilley 1985, Peckol et al. 1994), 

particularly seasonally in periods of high light and temperature.  

 

Interpretation of nitrogen and carbon stable isotope data in coastal ecological studies 

would benefit from a greater understanding of the drivers of variability in the δ13C 

and δ15N signatures of the marine plants and algae that form the base of food chains. 

This is particularly pertinent to studies where measurements are made over gradients 

of freshwater and/or anthropogenic influence such as at the freshwater/marine 
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boundary. In such cases, as well as potential variability in the δ13C and δ15N ratios of 

DIC and DIN, there may be variability in the availability of a suite of factors, such as 

light and nutrient availability, which may potentially result in changes to the isotope 

ratios of plants and algae.  

 

Experimental overview 

 

To date, few studies have attempted to quantify nitrogen isotopic fractionation in 

macroalgae, (Cohen and Fong 2005, Cornelisen 2007). Here I employ field 

observations of sewage influence on the opportunistic macroalga Ulva sp. in situ, and 

the resulting δ15N, δ13C and tissue N content (%N).   

I use controlled laboratory experiments to quantify fractionation patterns of nitrogen 

and carbon isotopes in Ulva sp. under variable depth and nutrient environments. 

Importantly, my experimental treatments are guided by environmental conditions that 

I observed at a New Zealand coastal site impacted by a sewage discharge. 

Methods 

 

The general approach for this work consisted of a field assessment of a sewage 

effluent discharge site at Titahi Bay, Wellington, New Zealand (41° 7’S, 174° 49’E), 

coupled with two controlled laboratory experiments conducted at the Leigh Marine 

Laboratory, New Zealand (36°16’S, 174°48’E). At Titahi Bay, I sampled seawater 

and effluent chemistry and plant tissue isotope concentrations at multiple sites and 

repeated time intervals.  Sites were arrayed in a distance gradient east (generally 

“upcurrent”, n=5) and west (“downcurrent”, n=5) of the Titahi Bay wastewater 

treatment plant (TBWWTP); one additional site was located 50 m immediately 
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offshore of the TBWWTP discharge pipe (Fig 2.1). Sites along this gradient were 

permanently marked with buoys, and established along subtidal rocky reef habitat, 

approximately 50 m offshore, in approximately 4 m of water depth, and 

approximately 100 m apart.  During the six month period of my study, TBWWTP 

released an average of 237.9 litres of tertiary processed sewage per minute (range =   

0 - 1048 l/min), with an average DIN concentration of 0.158 mmol (n = 40; S.E. = 

0.012). Effluent discharged from TBWWTP is generally tertiary processed, except in 

cases of extremely high flow, when some overflow passes directly from the primary 

screening facility to the outflow. Discharge patterns from October 1 2004 to April 1 

2005 are given in Figure 2.2.  

Field estimates of seawater and effluent chemistry  

 

I used a Niskin bottle to collect seawater samples at approximately monthly intervals 

(5 dates between November 2004 and March 2005) at the surface and at 4 m depth 

from each of 11 study sites.  Samples were transferred to polycarbonate bottles and 

stored on ice in the field and subsequently frozen at -20ºC until they could be 

analysed. Ammonium and phosphate concentrations were estimated following 

methods of Koroleff (1983), nitrate and nitrite were estimated using methods of 

Parsons et al. (1984).  To characterise spatial and temporal variation in plume 

concentration, I measured levels of ammonium/ammonia (NH4
+/NH3), nitrate (NO3

-), 

nitrite (NO2
-) and phosphate (PO4

-) in all seawater samples.  I used a multivariate 

analysis of variance (MANOVA) to explore variation in all variables between surface 

and 4 m depths and among sites. MANOVA results were informally evaluated against 

expected decreasing concentration gradients with increasing distance from the 

effluent outflow, and possible differences between concentrations of sewage-derived 
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nutrients in the eastern and western arms of the mooring array. Results of a Wilks 

lambda test are given in table 2.1, and because many of the variables appeared to 

behave similarly and were related to sewage enrichment, I used a principal 

components analysis (PCA) to construct an aggregate variable to characterize overall 

patterns of sewage influence. PC1 scores were then regressed against salinity, 

nitrogen and phosphate ions in seawater samples to test for fit. The first principal 

component (PC1) from this intermediary analysis explained 68.9% of the variance in 

the data set, and in the context of the high variability in this system, I deemed this 

sufficient to justify the use of PC1 scores for each site as a proxy for ‘sewage 

influence’ in subsequent statistical models.  

 

Measurements of salinity and temperature were made using an RBR XR420 data 

logger on 5 runs over 4 dates between January and April 2005. Measurements were 

made in surface waters (i.e., 0.5 m depth) and at 4 m depth at all sites on all dates. The 

data logger was programmed to record at 5-second intervals and was deployed in 

surface water and subsequently at 4 m for a period of 1 minute at each location. 

Salinity and temperature estimates were generated by time-averaging data 

acquisitions over the period of deployment (1 minute = 12 data acquisitions). 
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Figure 2.1 
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Figure 2.2 
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To characterise effluent composition that was discharged from TBWWTP, I sampled 

effluent at weekly intervals (n=3) in March 2005.  Samples were always collected at 

~9am to control for possible diel variation in sewage composition and/or processing. 

Effluent samples were refrigerated at 4˚C on site and then frozen within 3 hours of 

collection until they could be processed. All effluent samples were alkali distilled in 

the presence of Devarda’s alloy to reduce nitrate to ammonium. Total N concentration 

was determined by back titration with standardised acid. Samples were prepared for 

mass spectrometry by drying the remaining solution in excess acid.  

 

Field estimates of nitrogen and carbon isotope signatures 

 

To quantify time-integrated measures of spatial variation in carbon and nitrogen 

isotope signatures over a distance gradient away from the TBWWTP discharge, I 

sampled tissue composition of a common primary producer, the macroalga Ulva sp. 

All algae used for this assay were collected from a common site in Wellington 

Harbour (at a location that was not subject to nitrogen enrichment by sewage). Algae 

were deployed near the surface and at a depth of 4m at each of my sites, and secured 

by rope weave to the buoy lines marking each of my permanent locations. Algae were 

deployed in early October 2004, and algal tissues were first sampled in late November 

2004. Tissue samples were collected from all algae at ~8 week intervals from 

November 2004 to March 2005 (n=3). Samples were maintained on ice in the field 

and subsequently frozen until they could be analysed.  

 

To calculate estimates of carbon and nitrogen isotope signatures within Ulva sp., 

samples were cleaned of any epiphytes and epifauna, dried at 70˚C in a drying oven 
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and ground to a fine powder. All isotope samples were analysed using a Europa Geo 

20/20 isotope ratio mass-spectrometer interfaced to an ANCA-SL elemental analyser. 

Duplicate samples of 1.8 mg of powder were loaded into tin capsules for analysis of 

organic carbon and nitrogen content and carbon and nitrogen isotopic composition. 

The standard analytical error between duplicate analyses is lower than ±0.3‰ for 

nitrogen and ± 0.1‰ for δ13C. Relative isotopic concentrations are reported as δ15N 

values relative to an air standard, where 
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I explored spatial variation in isotope signatures (δ15N and δ13C) graphically using 

time-averaged signatures (± S.E.) of plants collected from each site, near the surface 

and at depth. I examined the manner in which δ15N signatures in Ulva sp. act as 

indicators of nitrogen enrichment from sewage by regressing spatial variation in δ15N 

values (among sites and between depths) on to predicted sewage effluent 

concentrations.  

 

Because my δ15N data were predicted to be bounded by asymptotes at 6‰ and 23.4‰ 

(see below), I used logistic regression bounded by these values in Ulva sp. at two 

depths over a range of sewage effluent concentrations. The model measured sewage 
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concentration with ‘predicted plume concentration’ (PC1), treating “depth” (either 

near surface or at a depth of 4m) as a factor with two levels.  

 

The upper asymptote for the logistic model was calculated from the δ15N ratio of 

sewage effluent DIN (23.4‰), based on the assumption that algae receiving 100% 

sewage effluent would prefer the lighter isotope during uptake and assimilation, if any 

preference was shown. The lower asymptote was set at 6‰ based on data from Ulva 

sp. grown in environments with little or no influence from anthropogenic sources of 

nitrogen (Rogers 1999, Gartner et al. 2002).  

 

I evaluated the degree to which Ulva sp. δ13C levels and tissue nitrogen levels in Ulva 

sp. tissues were affected by sewage plume presence and depth using analysis of 

covariance. ANCOVA models used either Ulva sp. δ13C levels or tissue nitrogen 

content as the dependent variable, with estimated plume concentration (PC1) as a 

covariate and depth as a factor with two levels. A third ANCOVA model, to examine 

patterns of spatial variability in tissue nitrogen not related to effluent dispersal again 

used depth as a factor, but used distance (covariate), and direction (factor with two 

levels) in place of PC1 to predict changes in Ulva sp. tissue nitrogen content. This 

analysis initially used a fully crossed model. Interactions that were non significant in 

all months (‘depth x distance’ and ‘depth x distance x direction’) were subsequently 

removed, and significance tests from the reduced model are presented. 

 

To avoid confounding temporal (e.g., seasonal) variation in plant physiology and/or 

environmental conditions, I conducted separate analyses for each of the three 

successive sampling periods (i.e., for plants deployed from mid October to late 
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November, late November to mid January and mid January to early March). These 

and all following statistical analyses were performed using the R statistical package 

(R development core team, 2005).  

 

Performance of δ
15

N signatures under experimentally manipulated environmental 

conditions 

Experimental overview 

 

To determine the effect of light reduction and nutrient source on the expression of 

δ
15N signatures in Ulva sp., I conducted an experiment that manipulated light levels 

and available nitrogen source (either nitrate or ammonium) under controlled 

conditions in a full factorial design. I measured δ15N ratios, algal growth rates and 

tissue nitrogen content of Ulva sp. tissue grown in these conditions. The latter 

measurements enabled me to infer important relationships between environmental 

conditions, nitrogen demand, and the ecological responses (e.g., growth) of Ulva sp. 

to these conditions.  

To determine the effect of light reduction and nutrient availability on the expression 

of δ13C signatures in Ulva sp., I conducted a separate experiment that manipulated 

light levels and nutrient availability (either 10 µM of added ammonium or no nutrient 

addition) under controlled conditions in a full factorial design.  
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Outdoor chemostat setup 

General apparatus 

 

I used an outdoor seaweed on-growing apparatus for maintaining Ulva sp. in turbulent 

conditions under different light and nutrient regimes. The design of individual 

seaweed growth chambers is shown in Fig. 2.3. Each container had a liquid volume of 

4.5 L determined by the height of its drain weir. A turbulent seawater flow design was 

incorporated into the growth chambers using pivoted ‘dump buckets’ at one end of 

each growth chamber. Each dump bucket tipped 0.75 L of water into the growth 

chamber when full.  

 

Natural low-nutrient seawater was coarsely filtered (200 µm) to remove any large 

objects that could cause blockages in the apparatus, and supplied continuously to the 

experimental apparatus via a nutrient scrubber (see below). A constant supply of 

seawater to the on-growing apparatus was maintained using a header tank. 

 

The culturing system comprised two rows of 8 growth chambers. Each row of eight 

chambers was supplied with seawater directly from the header tank via a supply 

manifold at a rate of 1.2 l min-1 per chamber (via the dump bucket).  
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Figure 2.3 
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Nutrient scrubber 

 

During the course of the δ15N experiment, filtered coastal seawater was supplied to 

the chemostat via a nutrient scrubber, designed to remove nitrogen in seawater prior 

to the additions (with known δ15N ratios) supplied to the experimental system. 

Seawater was run through a longitudinal race (approximately 9 meters long by 200 

mm wide and 100 mm deep) containing free-floating Ulva sp. plants. Seawater was 

pumped through the system at 25 l min-1. The nutrient stripped seawater was then 

pumped to a header tank of the system as described above with surplus seawater fed 

back to the start of the nutrient scrubber. Levels of ammonium and nitrate in header 

tank water, monitored throughout the δ15N experiment, were (mean ± S.E) 0.1 µM ± 

0.1 and 0.1 µM ± 0.01 respectively. Ammonium measurements in seawater entering 

and exiting the algal nutrient scrubber are displayed in Figure 2.4. The data displayed 

were collated from measurements made on a single day (n=3) and analysed using a 

deionised water blank. During the course of the δ13C experiment, filtered coastal 

seawater was supplied directly to the chemostat header tank.  
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Nutrient treatment 

 

Nutrient treatments provided a standardized dose of ~ 10 µM of available nitrogen 

and 2 µM of phosphate to algae for both ammonium and nitrate treatments, and this 

dose was selected because it approximated the level of nitrogen enrichment recorded 

near the TBWWTP. Solutions containing an appropriate combination of ammonium 

chloride, sodium nitrate or dihydrogen phosphate were continuously added into each 

dump bucket at a rate of 1.75 ml h-1 using a 16-channel peristaltic pump to provide a 

steady concentration of available nitrogen and phosphorus. Stock solutions were 

individually made and supplied to each of the pump’s 16 channels. The concentration 

of stock solution varied for each replicate depending on the measured rate of seawater 

input for that replicate. Final seawater nutrient concentrations in each replicate were 
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Figure 2.4. Ammonium reduction effects of the algal nitrogen scrubber.  ‘Goat Island supply’ refers to 
samples of seawater taken from the laboratory inflow. Around 50% of the water entering the scrubber 
flowed from a seaweed holding tank (i.e. ‘Algae holding tank’). Water from the scrubber outflow was 
supplied to the ODC header tank for the δ

15
N experiment.  
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checked and adjustments were made as necessary to either the pump flow rate or the 

individual stock concentrations.  

 

Light treatment 

 
‘Shaded’ treatment chambers were covered by 3 layers of 50% neutral density screen 

(a.k.a. mosquito mesh) giving an irradiance extinction coefficient of around 82%. 

Light extinction measurements were made underwater at the surface of the thalli using 

a Biospherical scalar irradiance (photosynthetic active radiation [PAR]) probe, model 

QSL2100. 

 

Light levels at a weather station at the Leigh Marine laboratory were recorded over 

the duration of the experiments.  

Acclimation of plant tissue to artificial δδδδ
15

N signatures prior to δ
15

N experimental trial 

 

Specimens of Ulva sp. were collected from a common location in Tauranga harbour 

(37º 39’S, 176º 11’E). During storage, algae were provided with a constant flow of 

filtered coastal seawater from the laboratory’s seawater flow-through system and 

maintained at 50% ambient (outdoor) light levels and at ambient temperature.  

Freshly harvested tissue contained nitrogen with a different δ15N to that used in the 

experiment. In order to attribute differences in isotope signature between light and 

shade treatments at the end of the experimental trial to fractionation it was necessary 

to turn over all algal tissue using artificial nitrogen as an N source. Otherwise, 
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differences in growth and N uptake rates between treatments would affect the 

proportion of nitrogen in plant tissue derived from oceanic or artificial sources.  

 

Prior to initiating the δ15N experimental trial, plants were grown in the experimental 

chambers for 2 weeks on nitrogen of known δ15N signatures added to the growth 

chambers, and ambient light levels. In order to remove tissue not equilibrated to the 

artificial nutrient sources and ambient light conditions, algal masses in each chamber 

were measured every two days during this period and approximately half of the algal 

tissue mass was discarded at each weighing to return the experimental biomass to 

around 3g. This procedure was repeated 8 times during the preparation period until  

> 99% of the nitrogen in the Ulva sp. tissue was from ‘artificial’ added nitrogen. The 

constant supply of ‘artificial’ NaNO3 or NH4Cl provided during preparation came 

from the same chemical batches used as nitrogen supply during the experimental 

period. δ15N signatures of the batches of NaNO3 and NH4Cl used were measured in 

triplicate prior to lab trials. All algal tissue was prepared outdoors under ambient 

light.     

Experimental design    

 

Algae were grown under experimental conditions for a period of 14 days. I 

manipulated nutrient source (either ammonium or nitrate) and light availability (either 

shaded or ambient (outside in full sun)) in a fully crossed design. I included four 

replicates for each treatment (a total of 16 separate chambers), and positions of 

treatments within the chemostat were randomized. Sea surface temperatures at the 

extraction point of the laboratory seawater flow through system were recorded daily.  
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I quantified tissue nitrogen content δ13C and δ15N ratios for Ulva sp. samples from 

each experimental chamber, using methods described for field assay samples (above). 

To estimate growth rates, I weighed Ulva sp. specimens on 8 occasions over 14 days. 

Prior to weighing, excess moisture was removed using a salad drier. After each 

weighing, tissue mass of all specimens was standardized to 3g by trimming.  

 

Algal growth rates in lab experiments were calculated for each time interval using a 

logistic growth equation:  

Wt = W0 × eµt 

where Wt is the weight of algae at time t, W0 the initial weight and µ the specific 

growth rate (d–1).   

 

For δ15N I calculated ‘fractionation’ during nitrogen assimilation as the difference 

between δ15N ratios calculated for Ulva sp. tissue and for added NH4Cl and NaNO3.  

For δ13C where the available inorganic carbon source was identical for each treatment, 

I did not calculate fractionation, but compared final (day 14) δ13C ratios between 

treatments.  

 

Statistical analysis  

 

I used two-way analysis of variance (ANOVA) to test for differences in tissue δ15N 

and δ13C values resulting from experimental manipulations of nutrients and/or light. 

Posterior pairwise comparisons between combinations of treatments were made using 

Tukey’s HSD test to adjust for multiple comparisons. An analogous two-way 

ANOVA was used to test effects of experimental treatments on tissue nitrogen 



 39 

content. To test the effect of treatments on growth rates of Ulva sp., I used analysis of 

variance of mean growth rates over the duration of the experiment.  

Data were tested for normality and homogeneity of variance, and post-hoc 

comparisons were performed using Tukey’s HSD test, which adjusts significance 

statistics for multiple testing. All analyses were performed using the R statistics 

package. (R Development Core Team, 2005). 

 

Results

Variation in sewage effluent constituents 

 

MANOVA performed on the responses of all measured sewage constituents suggests 

sewage effluent concentrations varied significantly as a function of depth, direction, 

and distance from the sewage outfall (Table 2.1). A significant interaction between 

‘depth’ and ‘distance’ effects was also detected (i.e., the disparity between samples 

from surface and deeper waters attenuated with distance from the outfall). Generally, 

sewage constituents (e.g., nitrate, ammonium, and phosphate) were elevated in 

surface waters close to the outflow, consistent with an expected concentration 

gradient of treated sewage constituents. Concentrations of nitrite were comparatively 

low (< 1µM) throughout sampled waters, and did not appear to vary systematically in 

relation to the sewage outflow.  

 

The primary constituents of sewage effluent that I quantified show evidence of a 

westerly advection away from the point source of discharge, and this appears to be 

consistent with mean flow patterns in the region (personal observations), and patterns 
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of salinity (Fig. 2.5).  PC1 scores, when regressed against the primary constituents of 

sewage effluent most closely tracked concentrations of nitrate, and TIN measured in 

field seawater sampling (Figure 2.6).   

 

Salinity measurements on all dates, sites and depths ranged between 34.89‰ and 

33.52‰. Seawater temperatures on all dates, sites and depths ranged between  

19.7 ºC and 16.5 ºC. On average, surface sites were 0.057 ºC (± 0.017 S.E. n = 55) 

warmer than 4 m sites.   

 

Table 2.1. Results of MANOVA analysis examining trends in dispersal of the Titahi 

Bay WWTP effluent plume 

 df Wilks  
Approximate  

F 
Numerator 

d.f. 
Denominator 

d.f. 
p 

Depth 1  0.84 4.74 4 102 0.002 

Direction 1 0.63 14.91 4 102 <0.001 

Distance 1 0.90 2.78 4 102 0.030 

Depth*Distance 1 0.87 3.89 4 102 0.006 

Residuals 105      

 

 

Analyses of samples of tertiary-processed sewage effluent collected directly from 

TBWWTP indicate values (mean, S.E.) for constituents that are as follows: 

ammonium (35.56 µM, ± 8.42), nitrate (120.69 µM, ± 8.77), nitrite (1.72 µM, ± 0.39), 

TIN (157.97 µM, ± 12.46), δ15N signature of DIN for unprocessed effluent 5.5 ± 0.1, 

δ
15N signature of DIN for tertiary processed effluent 23.43 ± 2.14.  
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Variation in δ
15

N and δ
13

C signatures recorded in a primary producer  

 

Nitrogen stable isotope signatures in Ulva sp. individuals retrieved from moorings at 

all sites, depths and months ranged between 6.33 ‰ and 22.53 ‰. Carbon stable 

isotope signatures in Ulva sp. individuals retrieved from moorings at all sites, depths 

and months ranged between -22.2 ‰ and -13.1 ‰.  

 

Time-averaged δ15N and δ13C ratios recorded within tissue of Ulva sp. samples varied 

in pattern spatially (among sites and between depths) in a way that is consistent with 

spatial variation in sewage effluent constituents (compare Fig. 2.5 with Fig. 2.7). 

Because I suspected that the “performance” of δ15N as a predictor of sewage 

constituents might differ qualitatively between Ulva sp. tissue sampled near the 

surface and at depth, I tested this hypothesis explicitly using logistic regression. 

Overall, these models suggest that for a given level of available sewage constituents, 

Ulva sp. tissue sampled from 4m depth generally had significantly lower δ15N ratios 

relative to Ulva sp. tissue collected from surface waters (Table 2.2, Fig. 2.8).  

While the relationship between PC1 and δ13C ratios appeared to be more distinct at 

surface sites (Fig. 2.9), there was no overall evidence of an influence of depth on δ13C 

ratios (Fig. 2.7, Table 2.3A). 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7 
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Figure 2.8 
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Figure 2.9 
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Table 2.2. ANOVA comparisons of logistic model fit describing the covariance of 

Ulva sp. δ15N ratios with sewage influence (PC1). Model 1 does not include depth as a 

factor; model 2 includes depth as a factor. 

Period Model Residual df Residual SS df SS F p 

1 15       0.27     
Oct -Nov 

2 17  0.23 2 0.04 1.42 0.273 

1 15     0.60     
Nov- Jan 

2 13        0.37 2 0.23  4.06 0.043 

1 14    0.08     
Jan-Mar 

2 12      0.05 2 0.03   4.08 0.044 
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Table 2.3A. Results of separate ANCOVAs testing for the influence of sewage 
influence and depth on δ13C ratio of Ulva sp. 

Model : response = PC1 + depth + (PC1 x depth) 

Response 
factor 

Source of 
variation 

df SS MS F p 

δ
13C 

November 
PC1   1 8.525    8.525   2.961  0.1024 

 depth          1 5.174    5.174   1.797  0.1967 

 
PC1 x 
depth      

1 4.071    4.071   1.414  0.2498 

 Residuals    18 51.82    2.879   

δ
13C 

January 
PC1           1 23.16  23.16  14.5122  0.0015 

 depth          1 0.6820  0.6820   0.4274  0.5225 

 
PC1 x 
depth      

1 0.0657   0.0657   0.0412  0.8417 

 Residuals    16 25.53   1.596    

δ
13C 

March 
PC1           1 6.041   6.041  12.24  0.0035 

 depth         1 0.5435   0.5435   1.1014  0.3117 

 
PC1 x 
depth      

1 0.1046   0.1046   0.2119  0.6523 

 Residuals   14  6.908  0.4934   
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Table 2.3B. Results of separate ANCOVAs testing for the influence of sewage 
influence and depth on tissue nitrogen content of Ulva sp. 

Model : response = PC1 + depth + (PC1 x depth) 

%N 
November 

PC1           1 1.405   1.405   6.127  0.0235 

 depth         1 1.994   1.994   8.696  0.0086 

 
PC1 x 
depth      

1 1.379   1.379   6.016  0.0246 

 Residuals    18 4.127   0.2293   

%N 
January 

PC1           1 2.550   2.550  6.882  0.0184 

 depth        1  1.276   1.276   3.444  0.0820 

 
PC1 x 
depth 

 1  0.0165   0.0165   0.0444  0.8357 

 Residuals    16 5.930   0.3706    

%N 
March 

PC1          1  0.1295   0.1295   0.4563  0.5103 

 depth         1 0.0845   0.0845   0.2979  0.5938 

 
PC1 x 
depth      

1 0.4401   0.4401   1.551  0.2334 

 Residuals    14 3.972 0.2837   

 

Because I suspected that heavier Ulva sp. δ13C ratios in surface moored algae may 

have been due to nitrogen-driven increases in growth rates, I examined Ulva sp. tissue 

nitrogen content in relation to sewage influence and depth. ANCOVA results showed 

significant increases in tissue nitrogen content of Ulva sp. at sites of higher sewage 

influence (Table 2.3B). This effect was not consistent over all time periods. Tissue 

nitrogen levels of algae sampled in March were highly enriched at all sites, and no 

significant patterns were apparent. Additionally, time averaged tissue nitrogen content 

data showed spatial patterns of nitrogen enrichment that could not be explained solely  
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by PC1 or a PC1 by depth interaction (Fig. 2.10). A separate ANCOVA analysis of 

this pattern showed a tendency for algae to the west (more sewage influenced) to be 

enriched in nitrogen at surface sites, while algae at sites to the east were similarly 

enriched at 4 m sites and depleted at surface sites (Table 2.4 (November), Fig. 2.7 and 

Fig. 2.10). Overall, while Ulva sp. δ13C ratios and tissue nitrogen content followed 

sewage influence (PC1) with some consistency, tissue nitrogen levels also appeared to 

vary spatially in patterns that could not be explained fully by sewage influence (Fig. 

2.9 and 2.10). Linear regression of Ulva sp. δ13C levels against tissue nitrogen content 

suggests a relationship between these two tissue indices, particularly at surface (high 

light, high plume influence) sites (Fig. 2.11). 
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Figure 2.10 
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Fig. 2.11 
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Table 2.4. Results of ANCOVAs testing for the influence of distance and direction 
from the TBWWTP, and depth, on tissue nitrogen in Ulva sp. 

Model : response = distance + direction + depth + (direction x depth) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Log %N 
November 

distance           1  0.0234   0.0234   0.0841  0.7753 

 direction          1  0.4608   0.4608   1.6551  0.2155 

 depth              1  0.5317   0.5317   1.9097  0.1849 

 
Direction 
x depth     

1  3.157   3.157  11.34  0.0037 

 Residuals        17  4.733   0.2784   

%N 
January 

distance         1  0.0001   0.0001   0.0004  0.9848 

 direction          1  1.626   1.626   5.439  0.0340 

 depth              1  2.949  2.949   9.8662  0.0067 

 
Direction 
x depth     

1  0.7144   0.7144   2.390  0.1429 

 Residuals        15  4.484   0.2989   

%N 
March 

distance           1  0.0033   0.0033   0.0115  0.9163 

 direction          1  0.3609   0.3609   1.253  0.2832 

 depth              1  0.1682  0.1682   0.5841  0.4583 

 
Direction 
x depth     

1  0.3506   0.3506   1.218  0.2898 

 Residuals        13  3.743   0.2879   
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Light, temperature and nutrient conditions during laboratory experiments 

 

Daily solar radiation levels at the Leigh Marine Laboratory station during the δ13C 

experiment varied between 32.44 MJm-2 (Day 2), and 19.46 MJm-2  (day 11). The 

mean daily radiation over the duration of the experiment was 27.48 MJm-2 ±1.22 S.E 

(n = 14). Sea surface temperature at the laboratory inflow point ranged between  

17.0 ºC (day 2) and 20.3 ºC (day 13). Mean sea surface temperature over the duration 

of the experiment was 18.7 ºC ± 0.25 S.E (n = 14). Mean concentrations of nitrate, 

ammonium and phosphate in high light, nutrient-added treatments were  

0.14 ± 0.09 µM, 12.85 ± 0.18 µM and 1.38 ± 0.04 µM respectively. Mean 

concentrations of nitrate, ammonium and phosphate in low light nutrient-added 

treatments were 0.12 ± 0.14 µM, 12.20 ± 0.21 µM and 1.26 ± 0.01 µM respectively. 

Mean concentrations of nitrate and ammonium in header tank water were  

0.13 ± 0.10 µM and 0.0 ± 0.04 µM. 

 

Daily solar radiation levels at the Leigh Marine Laboratory station during the δ15N 

experiment varied between 29.11 MJm-2 (day 7), and 7.07 MJm-2 (day 3). The mean 

daily radiation over the duration of the experiment was 21.37 MJm-.2 ± 1.38 S.E (n = 

15). Sea surface temperature ranged between 20.3 ºC (day 14) and 21.1 ºC (day 5). 

Mean sea surface temperature over the duration of the experiment was 20.6 ºC ± 0.06 

S.E (n = 15). Mean concentrations of nitrate, ammonium and phosphate in high light 

nutrient-added treatments were 10.56 ± 0.23 µM, 10.54 ± 0.15 µM and 1.94 ± 0.03 

µM respectively. Mean concentrations of nitrate, ammonium and phosphate in low 

light nutrient-added treatments 9.97 ± 0.22 µM, 9.45 ± 0.09 µM and 1.97 ± 0.07 µM 
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respectively. Mean concentrations of nitrate and ammonium in header tank water 

were 0.1 ± 0.01 and 0.1 ± 0.1 µM. 

Laboratory experiment 1 - Performance of δ
15

N, tissue nitrogen content and algal growth 

under experimentally manipulated environmental conditions 

 

Differences in δ15N ratios between source nitrogen and Ulva sp. tissue (fractionation) 

were significantly (p < 0.001) higher in low light treatments (Fig. 2.12, Table 2.5). 

This increase corresponded to higher tissue nitrogen content and lower growth rates 

for both nutrient treatments receiving low light treatment (Fig. 2.12 and 2.14, Table 

2.5).  A significant interaction between factors ‘light treatment’ and ‘nutrient 

treatment’ indicates that the effect of light reduction on fractionation during growth is 

dissimilar for nitrate and ammonium. A post-hoc Tukey’s paired analysis comparing 

the effect of light reduction on fractionation between ammonium and nitrate 

substrates suggests a strong relationship between light reduction and fractionation for 

ammonium-fed plants (p < 0.001), and a weak relationship between light reduction 

and fractionation during growth on nitrate (p = 0.062).   

 

Laboratory experiment 2 - Performance of δ
13

C signatures tissue nitrogen content and algal 

growth under experimentally manipulated environmental conditions  

 

Laboratory trials using nitrogen concentrations comparable to those found in high 

impact and low impact sites in field sampling would indicate that the large differences 

in δ13C signatures found in field sampling could be generated by differences in 
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nutrient supply during periods of high growth of this species. After 14 days of growth, 

Ulva sp. supplied with seawater with added nutrients showed significantly higher δ13C 

signatures than those supplied with unmodified coastal seawater (p <0.001, Fig. 2.13, 

Table 2.6). There was a significant interaction in the effect of light and nutrient 

treatments on δ13C levels (p <0.001). Ambient light treated algae also receiving 

nutrients showed the highest δ13C values (mean δ13C -5.99‰), while ambient light 

treated algae not receiving nutrients generated the lowest δ13C values (mean δ13C  

-17.61‰). Shade treated algae receiving ambient and nitrogen added seawater 

averaged final δ13C levels of -13.70‰ and -10.20‰ respectively.  

Due to the nature of this interaction there was overall no significant light effect, 

because the response to light treatment depended on whether the algae were receiving 

nutrients or not. A post-hoc Tukey’s paired analysis suggests all combinations of 

treatments shown in Fig. 2.13 are significantly separated with p <0.001.  

Patterns of higher δ13C ratios in the tissue of algae in added nutrient treatments, 

particularly in high light, correspond with patterns of increased tissue nitrogen content 

and growth rates of these treatments (Fig. 2.13 and 2.14, Table 2.6).  

Plants treated with added ammonia and shade showed final tissue nitrogen 

concentrations between 3 and 3.5%, close to the maximum value encountered in field 

plants, while the ‘light control’ treatment gave a mean tissue nitrogen percentage 

below 1, slightly below the minimum single value encountered in field plants.  
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Fig. 2.12 
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Figure 2.13 
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Figure 2.14 



 60 

 

Table 2.5. Results of two way ANOVAs testing for the influence of nutrient treatment and 

light treatment on 14N/15N fractionation, tissue nitrogen content and growth rates in 

experiment 1.

Response 
factor 

Source of 
variation 

df SS MS F p 

Fractionation Nutrient  1   0.39   0.39    2.23     0.16 

 Light  1  20.51 20.51 117.44 <0.001 

 Nutrient*light 1   8.14   8.14   46.60 <0.001 

 Residuals 12   2.10   0.17   

%N Nutrient  1  0.01    0.0008    0.03     0.86 

 Light  1  4.21   4.21 180.02 <0.001 

 Nutrient*light 1  0.01  0.01    0.37    0.56 

 Residuals 12  0.29   0.02   

Growth rate Nutrient  1  0.0001  0.0001   0.1255    0.7293 

 Light  1  0.0406  0.0406  99.33 <0.001 

 Nutrient*light 1    0.000008  0.000008 0.0198    0.8905 

 Residuals 12  0.0049  0.0004   
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Table 2.6. Results of two way ANOVAs testing for the influence of nutrient treatment 

and light treatment on δ13C, tissue nitrogen and growth rates in experiment 2. 

Response 
factor 

Source of 
variation 

df SS MS F p 

δ
13C light           1 0.067    0.067     0.4363     0.5275 

 Nutrient          1 171.46  171.46  1108.3 <0.001 

 
Light x 
Nutrient     

1 49.41   49.41   319.39  <0.001 

 Residuals       8 1.238    0.155   

%N light        1  0.073  0.073   128.8  <0.001 

 Nutrient          1 0.621 0.621  1098.1  <0.001 

 
Light x 
Nutrient    

1 0.022  0.022    39.11  <0.001 

 Residuals     8 0.0045  0.0006   

Growth 
rate 

light        1 0.0846  0.0846   147.85  <0.001 

 Nutrient 1 0.1647  0.1647   93.15  <0.001 

 
Light x 
Nutrient    

1  0.0315  0.0315   17.85  0.0029 

 Residuals  8 0.0141 0.0018   
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Discussion 

Despite the growing application of stable isotope tracers in ecological studies, there 

has been relatively little consideration of the mechanisms—physiological and/or 

environmental—that underlie the incorporation of these signals into ecological 

systems. This is particularly in the case of δ15N ratios that are commonly evaluated 

and interpreted from marine and freshwater algae and plants. I was able to locate very 

little information evaluating or even describing predictability of 15N behaviour under 

varying environmental conditions and levels of nutrient availability. (However see 

Cohen and Fong 2005, Cornelisen 2007.) Incorporation of δ15N ratios within 

microalgae from aquatic environments is known to vary among species, and as 

functions of temperature, light, and nutrient availability (Wada and Hattori 1978, 

Waser et al. 1998a, Waser et al. 1998b, Waser et al. 1999, Needoba et al. 2003, 

Needoba and Harrison 2004), and consequently, observed signatures are not 

necessarily a simple reflection of δ15N ratios found in a particular nitrogen source. 

There is considerable information to suggest that macroalgal δ13C values vary 

spatially (Cloern et al. 2002, Raven et al. 2002, Vizzini et al. 2005) and temporally 

(Cloern et al. 2002, Vizzini and Mazzola 2003) within species in marine systems. 

There is also considerable information to suggest that δ13C values of photoautotrophs, 

both marine and terrestrial, vary in response to environmental variables that affect the 

physiology associated with growth and carbon assimilation (Dawson et al. 2002, 

McKee et al. 2002, Raven et al. 2002). There is, however, a paucity of information 

regarding seasonal and spatial patterns of macroalgal δ13C values as a function of 

environmental variables. This information is required for ecologists to better design 

studies of carbon transfer in coastal marine systems.  Here, my results clearly show 

how light availability alters observed stable isotope signals, and moreover, that for 
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δ
15N ratios this effect differs qualitatively among different forms of nitrogen, and for 

δ
13C ratios this varies on the concentration of nitrogen available for uptake.  My 

laboratory results show how δ15N ratios respond to alterations in light levels, and the 

source of inorganic nitrogen available for uptake (nitrate or ammonium). These results 

also show how δ13C values measured in Ulva sp. respond to variations in light and 

nutrient availability. I recorded significant variation (11.6‰) in δ13C values in algae 

grown for 14 days in controlled conditions. This variation can be attributed to an 

increase of 10µM in the concentration of available dissolved nitrogen, and the 

interaction between light levels and nitrogen concentration. I note that this range in 

δ
13C values extends over the natural range of a considerable number of macroalgal 

species (i.e. possible food sources for marine consumers (Raven et al. 2002)). Natural 

recorded ranges of Ulva sp. from published literature are shown in table 2.7.  
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Table 2.7. Ranges of published δ13C ratios from genus Ulva δ13C ratios including maximum 
and minimum ratios from experimentally manipulated and field conditions in this study. 

Species Notes Origin Date collected 
δ

13
C ratio 

(‰)
Reference 

Ulva 
lactuca 

Drift 
Eden estuary, 
Scotland, UK 

8 January 1995 
-11.05;  
-11.35 

Raven et 
al. 2002 

Ulva 
lactuca 

Attached 

Brighton 
Beach/Papatowai 

Beach, 
New Zealand

1 February 
1996 

-15.5 
Raven et 
al. 2002 

Ulva 
lactuca 

- 
Brighton Beach, 

South of Dunedin, 
New Zealand 

1 July 1998 -17.65 
Raven et 
al. 2002 

Ulva sp. - Gran Canaria 
1 February 

1991 
-15.64 

Raven et 
al. 2002 

Ulva sp. - 
Hampton Bay, Long 

Island, NY, USA 
16 November 

1994 
-16.79 

Raven et 
al. 2002 

Ulva sp. - Singapore 1 April 1996 -17.72 
Raven et 
al. 2002 

Ulva sp. - 
Helmsdale, Scotland, 

UK 
26 July 1998 -15.91 

Raven et 
al. 2002 

Ulva 
lactuca 

Attached –High sewage 
impact site 

Wellington, New 
Zealand 

October 1997 – 
February 1998 

- 13.3 
Rogers 
2003 

Ulva 
lactuca 

Attached – Low sewage 
impact site 

Wellington, New 
Zealand 

October 1997 – 
February 1998 

-17.1 
Rogers 
2003 

Ulva sp. Beach cast 
Paracas Bay, Ica 

Region,Peru 
January –April 

2003 
~ -10.3 – 

- 12 

Catenazzi 
and 

Donnolly 
2007 

Ulva 
pertusa 

Attached –South facing 
(low irradiance) 

Doubtful sound, New 
Zealand 

July 2004 -18.2 
Cornelisen 
et al. 2007 

Ulva 
pertusa 

Attached – North facing 
(high irradiance) site 

Doubtful sound, New 
Zealand 

January 2004 - 12.0 
Cornelisen 
et al. 2007 

Ulva sp. 
Transplanted – Surface 
moored, high sewage 

impact site 

Titahi Bay, 
Wellington, New 

Zealand 
January 2005 -13.1 This study 

Ulva sp. 
Transplanted – Moored 
at 4 m subsurface, low 

sewage impact site 

Titahi Bay, 
Wellington, New 

Zealand 
March 2005 -22.2 This study 

Ulva sp. 
High light, Low N 
coastal seawater 
(Nitrogen starved) 

Laboratory grown  January 2006 - 17.61 This study 

Ulva sp. 
Low light,  Low N 
coastal seawater   

Laboratory grown  January 2006 - 13.70 This study 

Ulva sp.

High light, 10 µM 
ammonium and 1 µM 
phosphate added to 
coastal seawater.  

Laboratory grown January 2006 - 5.99 This study 

Ulva sp.

Low light, 10 µM 
ammonium and 1 µM 
phosphate added to 
coastal seawater.  

Laboratory grown January 2006 - 10.20 This study 
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Ecological implications 

 

One general consequence of my findings concerns the application of δ15N ratios to 

infer patterns of eutrophication. Values of δ15N in study organisms are often evaluated 

over environmental gradients that can include factors that may co-vary with 

concentrations of enriched nitrogen. As a result, interpretation of patterns of nutrient 

enrichment may be confounded by environmental gradients (e.g., light or nutrient 

type) that affect the transfer of δ15N in organisms such as Ulva sp. Similarly, the 

widespread use of stable isotopes to infer trophic pathways may be suspect under 

some environmental conditions (e.g., in regions of varying light, and nitrogen 

availability, such as found in marine and freshwater mixing points). In my laboratory 

experiment, I observed significant variation (3.7 ‰) in δ15N ratios for a given 

concentration of nutrients. My experimental design enables me to attribute this 

variability to the form of the nitrogen source (either ammonium or nitrate), light 

availability, and the interaction between these two environmental variables. I note that 

the range of variability observed among my experimental treatments that received a 

constant concentration of nitrogen enrichment is similar to the ranges of δ15N values 

in many well-designed environmental studies used to infer nutrient concentration 

gradients (e.g., McClelland and Valiela 1998, Gartner et al. 2002).

 

To illustrate the potential effect of fractionation on estimates of sewage nitrogen 

contribution to Ulva sp. tissue we can use a 2-end mixing model from Spies et al. 

(1989), (modified by Wayland and Hobson (2001)).  

))(1()( 151515

yeffluentx NXNXN δδδ −+=  
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Where X is the proportion of effluent contribution, δ15Nx is the δ15N of the impacted 

alga, and δ15Ny is the background δ15N value. We will use the example of time 

averaged δ15N signatures from surface site W3 (18.65‰), and assume a constant 

sewage DIN δ15N signature of 23.4‰ and a background δ15N signature of 6.1‰ (the 

second figure based on δ15N values of oceanic nitrate from Bedard-Haughn et al. 

2003). If we also assume that mean fractionation during nitrogen assimilation at this 

surface site is zero, we can calculate that sewage contributed around 72.5% of the 

nitrogen assimilated by Ulva sp. algae at this site.  In this case, net discrimination of 

2.0 ‰ for the lighter isotope during algal assimilation of nitrogen in seawater would 

cause a shift in this estimate to 61%.  

 

Isotopic mixing models, which are employed to calculate the relative contributions of 

carbon to diets and ecosystems, generally use a mean δ13C value for each potential 

source of carbon (Smit 2001, Gordon and Goni 2003, Usui et al. 2006). Where these 

carbon sources are assimilated into consumers or sediments, the accuracy of the 

models which calculate the relative contributions of sources rely on the stability (or at 

least predictability) of individual source δ13C values over the space and time that they 

have been integrated (Ben-David et al. 1997, Smit 2001).  A further consequence of 

my findings concerns δ13C dietary studies that extend across spatial gradients of light 

and nitrogen availability. Where variability in light and nutrient levels are high, 

between-species differences in primary producer δ13C values may be obscured by 

spatial variability in primary producer δ13C values. For more robust food web and 

trophic level studies I suggest that consideration be given to the effects of spatial 

patterns of nutrient limitation on algal δ13C values. Additionally I suggest studies that 

include macroalgae as a potential food source compile their mean values of algal δ13C 
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over spatial scales that represent the possible foraging areas of consumers included in 

the study to accommodate spatial variability in nitrogen and light availability.   

 

A second implication of these results relates to the tracing of terrestrial sediments. 

Terrestrial plant matter has a tendency towards lighter (more negative) δ13C signatures 

than marine carbon, and retains this signature when it is transported into the marine 

environment (Gordon and Goni 2003). This tendency can be used to trace the origin 

of organic carbon in marine sediments (Gordon and Goni 2003, Usui et al. 2006). A 

heavier algal δ13C signature driven by the presence of nutrient rich terrestrial waters, 

such as that seen in the field portion of this study, could potentially lead towards an 

isotopically heavier, more ‘marine’ signature in sediments.   

 

For robust ecological interpretations of nitrogen stable isotopes, I suggest that more 

attention to the mechanisms of their uptake and assimilation into organisms and 

ecological systems may be needed. Certainly, I would advocate that the assumptions 

of predictability of incorporation of δ15N signatures into primary producers ought to 

be tested or at least considered more frequently.  

 

Further research 

My results and those of others (e.g., Needoba et al. 2004) suggest some fruitful 

avenues for future exploration into some of the mechanisms that may underlie 

nitrogen stable isotope uptake. In particular, my observations suggest that 15N 

fractionation in primary producers varies as a function of light and growth. I suggest 

that such patterns may be the result of differences in the availability of nitrogen 

relative to its rate of uptake and assimilation by algae. Previous studies show that 
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while N fractionation in higher plants and aquatic microalgae tends to vary between 

species (Montoya and McCarthy 1995, Waser et al. 1998b, Needoba et al. 2003, 

Pritchard and Guy 2005), different species may exhibit similar patterns in 

fractionation response to changing physical conditions and available nitrogen 

concentrations (Waser et al. 1999, Kolb and Evans 2003). This suggests that my 

findings and inferences about how nitrogen availability may influence fractionation 

within Ulva sp. may extend more broadly to other species of macroalgae. 

 

In this study, patterns of nitrogen fractionation observed under high light/rapid growth 

and low light/slower growth, with ammonium as a nitrogen source, are consistent with 

studies on microalgae and bacteria in batch cultures with similar treatments (Wada 

and Hattori 1978, Hoch et al. 1992, Hoch et al. 1994, Montoya and McCarthy 1995, 

Waser et al. 1998a, Waser et al. 1998b, Waser et al. 1999, Kolb and Evans 2003). 

However, the maximum fractionation effects observed for Ulva sp. in this study, 

while potentially ecologically significant (with a maximum range of 3.7 ‰ between 

ammonium light and shade treatments), are low in comparison with some of the above 

studies.  

 

Despite similar growth rates for algae receiving nitrate and ammonium within light 

treatments (see Figure 2.14), fractionation evidenced in this study for nitrate was 

lower than fractionation with respect to source ammonium.  Differences between the 

δ15N of nitrate-supplied Ulva sp. tissue and the δ15N of the added nitrate-N were  

-0.19‰ and 0.65‰ for light and shade treatments respectively. The low fractionation 

of nitrate-supplied algae in both shaded and full-light treatments may indicate that the 

mechanism of fractionation during growth on nitrate shown in phytoplankton 
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(Needoba et al. 2004) is not as influential on macroalgal δ15N signatures. Notably this 

mechanism relies on the efflux of 15N-enriched internal pools of unreduced nitrate 

back into the external medium. The capacity of Ulva sp. to store nitrate in unreduced 

form (Naldi and Wheeler 1999) may result in low efflux of nitrate from Ulva sp. 

tissue even when nitrogen is supplied in excess to growth requirements as in the 

shaded nitrate treatments in this study.  

 

Because fractionation is likely to occur as a result of chemical processes involved in 

nitrogen assimilation prior to protein synthesis (Needoba et al.2004) it is likely that at 

least some of the fractionation shown during growth of Ulva sp. on ammonium in low 

light conditions is the result of isotope effects during its diffusion across the plasma 

membrane. This fractionation does not appear to be as great in the active transport of 

nitrate across the plasma membrane and its reduction to ammonium under the same 

environmental conditions.   

 

The apparent positive discrimination for 15N in the ambient light treatment for 

ammonium is also within the range of previous studies conducted on higher plants 

and microalgae (Wada and Hattori 1978, Evans et al. 1996, Pennock et al. 1996, 

Waser et al. 1998a). However, previous evidence of negative fractionation has been 

attributed to discrimination against 15N during leakage of NH3 from N-sufficient cells 

(Waser et al. 1998a). Only net fractionation was measured in this study, and thus no 

measures of uptake and efflux are available. Further studies are required to isolate the 

relative contribution of the physiological processes of nitrogen assimilation to the 

observed patterns of fractionation for nitrate and ammonium in this study.  
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The low δ13C of high light, low nutrient Ulva sp. tissue compared to that of low light 

low nutrient treatments also warrants further examination. This pattern suggests that 

changes in the factor that limits growth (in this case either light or nutrient limitation) 

may alter the expression of 13C/12C fractionation (Riebesell et al. 2000).  

 

The results of this study and of other studies that show seasonal patterns of algal 

isotope ratios (e.g. Cloern et al. 2002, Vizzini and Mazzola 2003) suggest a need for 

further research into the seasonal effects of nutrient limitation and growth on 

macroalgal δ13C values. This line of research is particularly important in the light of 

recent research suggesting seasonality in the degree to which consumer tissues reflect 

food source isotope signatures (Perga and Gerdeaux 2005). In a case where consumer 

tissues only reflect their food sources in periods of high consumer growth, and those 

food sources vary seasonally, consumer tissue would become removed from a direct 

representation of the δ13C values of the food source they consumed.  

 

Conclusions 

 

Systematic variation in δ15N signatures arising from light intensity is of a magnitude 

that necessitates care in the design of studies making use of 15N signatures to infer 

sources of nutrient enrichment. In addition, effects of light availability on 

fractionation in Ulva sp. are further mediated by the source of nitrogen available to 

the plant, with ammonium showing a greater tendency towards differential 

fractionation as a function of light intensity. My work helps to illuminate some of the 

physiological mechanisms that may be important in fractionation of nitrogen during 

its assimilation into macroalgae, and has strong implications for a wide range of stable 
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isotope approaches that rely on understanding of uptake of nitrogen signatures to 

interpret nutrient and/or trophic pathways through ecological systems.  

 

Variation in this study in δ13C values in the opportunistic macroalga Ulva sp. resulting 

from nitrogen enrichment and variation in light levels is of a magnitude that suggests 

care is necessary in the design of stable isotope studies of patterns of carbon flow in 

coastal marine systems. The correspondence of increased δ13C values with increased 

growth rates in experimental trials suggest that like phytoplankton, macroalgae are 

likely to vary over spatial and temporal gradients of physical variables that influence 

growth rate.  
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Chapter 3 – A comparison of growth rates in Ulva sp. 
using nitrate and ammonium as nitrogen sources 
 
 

Abstract 

 
 
Increased nitrogen loading to coastal marine systems often results in excessive 

seasonal growth of marine photoautotrophs, and constitutes an anthropogenic impact 

of growing global concern. This study examines the growth response of a species of 

macroalga (Ulva sp.) to surplus nitrate and ammonium (two common forms of 

dissolved inorganic nitrogen available in seawater), under low light and ambient light 

conditions. I manipulated light and nutrient type (in a factorial design) and used 

repeated measures ANOVA to infer that Ulva sp. experienced a temporary reduction 

in growth rate and nitrogen assimilation capacity when grown on nitrate, relative to 

ammonium. This effect appeared to subside after 14 days of growth. The initial spike 

in growth (and subsequent attenuating response) was mirrored by a temporary 

reduction in levels of glutamine and free amino acid (FAA) content of Ulva tissue.  

The initially slower response of algal growth rates and nitrogen assimilation of 

nitrate-fed algae suggests that growth rates of natural populations of Ulva may 

respond more slowly to episodic pulses of nitrate than to ammonium. However, the 

temporary nature of this effect indicates that growth rates in steady-state populations 

receiving different proportions of their nitrogen supply via continuous enrichment 

from nitrate and/or ammonium sources are likely to be similar. 
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Introduction 

 
 
Nitrogen is commonly recognised as a primary limiting nutrient to the growth of 

seaweeds in coastal environments (Hanisak 1983, Smith 1984, Valiela et al. 1997).  

For many seaweeds, growth during the winter months is further restricted by 

conditions of low light and low water temperatures.  Consequently, growth and 

performance of macroalgae during certain times of the year may be variably limited 

by light and/or nutrients (Valiela et al. 1997).  

 

The excess supply of enriching nutrients in coastal marine communities commonly 

occurs as a result of anthropogenic activities (such as fertiliser additions to pasture, 

and faecal waste from humans and livestock; GESAMP 2001).  

 

The ecological effects of excess algal growth in coastal marine ecosystems are well 

documented (Campbell 2001, Bokn et al. 2002, Hauxwell et al. 2003, Karez et al. 

2004). Typically nitrogen enrichment results in excessive growth of some macroalgae 

and phytoplankton during summer months. The high potential growth rates and rapid 

nitrogen uptake of opportunistic macroalgae give them the tendency to ‘bloom’ in 

optimal conditions (Smith et al. 2005). Increases in growth of benthic algae and 

planktonic photoautotrophs in an ecosystem typically results in a reduction in species 

richness and an increase in biomass of a small number of species. However, the 

ecology of this problem is perhaps better understood than the physiology behind the 

process. Without a solid knowledge of the processes that limit growth in algae, 

potential managerial responses to excess algal growth in coastal environments are 

limited.  
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Of particular interest are the physiological processes that may influence temporal and 

spatial variation in growth rates of opportunistic algae, and how these may depend 

upon sources of nitrogen. Because of their potential for rapid growth, ‘opportunistic’ 

algae can cause nuisance blooms when all nutritive requirements for growth are 

supplied in excess (Wallentinus 1984). The availability of nitrogen to natural algal 

populations tends to be irregular (Sharp 1983). Algae with high surface area to 

volume ratios such as Ulva, which have low storage capacity for nitrogen but high 

potential nitrogen uptake rates, are well suited to transferring episodic increases in 

nutrient concentrations into large increases in growth rates in optimal light and 

temperature conditions (Gagne et al. 1982, Wallentinus 1984). In New Zealand 

waters, opportunistic green macroalgae of the genus Ulva cause nuisance blooms, 

particularly during spring and summer (Snow 1995).  

 

Nitrogen is available to marine algae in a number of chemical forms. Of these, nitrate 

and ammonium make up the majority of available nitrogen in coastal waters, while 

macroalgae are also capable of taking up small quantities of nitrite, urea and organic 

forms of N (Sharp 1983, Smith et al. 2005). The relative proportions of nitrate and 

ammonium available to algae varies temporally and spatially, and as a function of the 

type of anthropogenic activities that may enrich a natural system (Sharp 1983). Algae 

and aquatic plants typically take up ammonium preferentially to nitrate (Thomas and 

Harrison 1987), and at faster rates (Wallentinus 1984, Thomas and Harrison 1985). 

Also, in order for nitrate to be assimilated it is necessary that it first be reduced to 

ammonium (Syrett 1981, Syrett 1989) (Fig. 3.1). There are several potential costs to 

growth associated with this reduction. Firstly, there is a greater cost in photons per 
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unit carbon assimilated during growth on nitrate than would be the case for 

ammonium (Van Oorschot 1955, Raven 1985). Secondly, there are higher costs of 

iron, manganese and molybdenum, metals associated with the catalysis of this 

reduction (Raven 1990). Thirdly, where a significant amount of enzyme is required in 

order to reduce nitrate, cell doubling times are likely to increase, as more of the 

product of this reduction (ammonium) is required to produce more enzyme for the 

same reduction reaction in new tissue (Raven 1984, 1987a).  

 

When the growth of an alga is light limited (energy limited), it may be more 

susceptible to energetic costs associated with other physiological processes. In this 

case it is likely that the increase in photons required per unit carbon assimilated 

should impact on the total carbon produced, and hence the growth rate of the plant. 

In practice this theoretical cost of reducing nitrate to ammonium is often (De Boer et 

al. 1978, Layzell et al. 1985), but not always (Mohanty et al. 1991), reflected in a 

reduction in growth rate. In the case of Ulva in coastal waters, lack of trace metals for 

nitrogen reducing catalysts is unlikely to affect growth rate. Growth in 

photoautotrophs resulting in coastal waters is unlikely to be limited by trace metal 

supply, where nitrogen and phosphorus are generally in shorter supply (Hanisak 1983, 

Valiela et al. 1997).  

 

To date there is conflicting evidence of the advantages to macroalgal growth rates of 

ammonium rather than nitrate as a nitrogen source. However, some empirical 

evidence indicates that algae in low light environments are restricted in their capacity 

to reduce nitrate and instead store it as  
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Figure 3.1 
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unreduced KNO3 (Raven 1987b; Raven 1991), while plants in high light environments 

store their winter-acquired nitrite in organic reduced form as free amino acids (Raven 

and Farquhar 1990, Raven 1991). This study employs semi-controlled full factorial 

laboratory experiments to quantify the nitrate reduction capabilities and growth cost 

of nitrate reduction by the green macroalga Ulva sp. under variable light and nutrient 

environments.  

 

Methods

Experimental overview 

 

To determine the relative cost of nitrate and ammonium as nitrogen sources for Ulva 

sp., I conducted a series of factorial experiments that manipulated light levels and 

available nitrogen source under controlled conditions. These experiments were 

undertaken during summer 2004/5 (experiment 1) and summer 2005/2006 

(experiments 2 and 3) at the Leigh Marine Laboratory (36°16’S, 174°48’E). 

Experiment 1 examined the impact of nutrient source (either nitrate or ammonium), 

and light levels on growth rates, tissue nitrogen content and free amino acid content of 

Ulva sp. tissue. The latter measurements enabled me to infer relationships between 

experimental treatments and the ability of Ulva sp. to assimilate nitrogen under these 

conditions. Experiment 2 mirrored the design of experiment 1, with greater frequency 

of growth measurements to examine the change in effect of nutrient and light 

treatments over time. Experiment 3 was conducted to mirror experiment 2, but used 

algal tissue already acclimatised to the experimental treatments, to test if the patterns 
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shown in experiments 1 and 2 represented an initial acclimatisation of Ulva sp. tissue 

to the experimental treatments.  

 

Specimens of Ulva sp. used for all experiments were collected at a common location 

in Tauranga harbour (37º 39’S, 176º 11’E). Algae were stored prior to use in 

experiments by providing them with filtered coastal seawater from the laboratory’s 

seawater flow-through system. Under these conditions they were maintained at 50% 

ambient light levels and at ambient temperature. Ulva sp. tissue for experiments 1 and 

2 was taken directly from the storage facilities. Tissue for experiment 3 was 

acclimatised to its experimental nutrient treatment for 14 days prior to the experiment 

in 50% ambient light levels. ‘Nitrate’ and ‘Ammonium’ treatments consisted of target 

concentrations of 10µM nitrate or ammonium and 1µM phosphate added to ambient 

seawater.  

General apparatus of outdoor chemostat  

 
Seaweed was maintained in on-growing apparatus (chemostat) for Ulva sp. as 

described in chapter 2.  

Experimental design 

 

I manipulated nutrient source (either ammonium or nitrate) and light availability 

(either shaded or ambient) in a fully crossed design. For experiment 1, I included 

three replicates for each treatment (a total of 12 separate chambers), and in 

experiment 2 and 3, I increased this to 4 replicates for each treatment. Positions of 

treatments within the chemostat were randomized. 
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‘Shaded’ treatment chambers were covered by 3 layers of 50% neutral density screen 

(a.k.a. mosquito mesh) giving an irradiance extinction coefficient of around 82 %. 

Light measurements were made underwater at the surface of the thalli using a 

Biospherical scalar irradiance (photosynthetic active radiation [PAR]) probe, model 

QSL2100. 

 

Light levels at a weather station at the Leigh Marine laboratory were recorded over 

the duration of the experiments. Sea surface temperatures at the extraction point of the 

laboratory seawater flow through system were recorded daily. 

 

Nutrient treatments consisted of either a 10µM nitrate and 1µM phosphate or 10µM 

ammonium and 1µM phosphate addition to seawater. Concentrations of ammonium 

(NH4
+), nitrate (NO3

-), and phosphate (PO4
3-) in the seawater available in each 

experimental chamber were measured in triplicate in each chamber at the start of each 

2 week experimental period. Sampling was repeated during the experimental periods 

to ensure the maintenance of seawater nutrient concentrations, except for experiment 

3, where water samples were taken once at the conclusion of the trial. Samples were 

transferred to polycarbonate bottles and stored on ice until they could be analysed. 

Ammonium and phosphate concentrations were estimated following methods of 

Koroleff (1983), nitrate and nitrite were estimated using methods of Parsons et al. 

(1984).  

Growth rates      

 

To estimate growth rates, I weighed Ulva sp. specimens 3 times over 14 days during 

experiment 1, and 8 times over 14 days during experiments 2 and 3. Prior to 
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weighing, I removed excess moisture using a salad drier. After each weighing, tissue 

mass of all specimens was standardized to 3g by trimming. Algal growth rates in lab 

experiments were calculated for each time interval using a logistic growth equation:  

Wt = W0 × eµt 

where Wt is the weight of algae at time t, W0 the initial weight and µ the specific 

growth rate (d–1).   

Preparation and calculation of tissue %N 

 

Whole plants were kept on ice until such time as they could be analysed, then cleaned 

of any epiphytes and epifauna, dried at 70˚C in a drying oven and ground to a fine 

powder. All isotope samples were analysed using a Europa Geo 20/20 isotope ratio 

mass-spectrometer interfaced to an ANCA-SL elemental analyser. Duplicate samples 

of 1.8g of powder were loaded into tin capsules for analysis of nitrogen content. The 

standard analytical error between duplicate analyses is lower than ±0.3‰ for nitrogen.  

Preparation and calculation of tissue free amino acid content 

Extraction of amino acids was performed following the methods of Barr and Rees 

(2003). I used perchloric acid for amino acid extraction, as this method immediately 

halts plant metabolism (Passonneau et al. 1979). I chopped all algal tissue finely prior 

to this addition, to homogenise the tissue sample and increase the surface area of the 

sample for more complete acid coverage. I conducted all of the extraction procedure 

on ice in order to minimise any enzyme activity not halted by the perchloric acid 

addition. I placed 1.0 g fresh weight (FW) of chopped alga in scintillation vials and 

added 5 ml 1 M perchloric acid, followed by 5ml (1 M KOH / 0.2 M MOPS) after 10 

minutes to neutralise and buffer the solution. I then left the samples on ice for a 
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further 60 minutes to allow metabolites to leave the algal cells. I removed the algal 

tissue, and then centrifuged the remaining solution for 10 minutes at 1750 × g at 4 °C, 

decanted the supernatant and stored this at -80 °C before HPLC analysis. The external 

standards for this test were treated in the same manner as the samples. The amount of 

neutralising solution required to give pH 7 was determined by titration.  

 
Amino acids were analysed following the methods of Barr and Rees (2003).  

20 µl of amino acid extracts (above) were added to 10 µl lithium acetate. This solution 

was vortexed, centrifuged, frozen in liquid nitrogen and freeze-dried for 2 hours. The 

dry samples were then mixed with 30 µl of methanol:10% PITC 

(phenylisothiocyanate) in acetonitrile: triethylamine:water (7:1:1:1, v:v) and left at 

room temperature for 20 min. Following this, 150 µl of ultrapure water and 150 µl of 

heptane were added to each of the samples. The samples were stored at 4°C for less 

than 20 hours prior to HPLC analysis. Amino acids profiles were created using 

reversed phase chromatography on a Shimadzu high pressure binary HPLC system. 

Concentrations of amino acids were calculated using standard curves that were linear 

over the range of concentrations obtained from plant extracts. 

Statistical analysis 

 

I used two way analysis of variance (ANOVA) to test for differences in tissue %N 

values and tissue amino acid concentrations resulting from experimental 

manipulations of nutrients and/or light. Posterior pair wise comparisons between 

combinations of treatments were made using Tukey’s HSD test to adjust for multiple 

comparisons. To test effects of treatments on growth rates of Ulva sp. over the 

duration of the experiments I used a series of two-way ANOVAs (to illustrate growth 
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trends at individual points during the experiments) and a repeated measures analysis 

(to best illustrate overall trend in growth over the duration of the trials). Significance 

estimates in repeated measures analysis are adjusted for repeat testing. All data 

satisfied the assumptions of normality and homogeneity of variances, and effect sizes 

were estimated where appropriate using r2 values.  

 

To test the hypothesis that growth rates of shaded plants receiving nitrate and 

ammonium sources converged over time (i.e. shaded plants suffered an initial cost to 

growth but ‘acclimatised’ to growth on nitrate), mean differences between these 

treatments during experiments 2 and 3 were tested for a trend using linear regression 

analyses.   

 

Results 

Nutrient levels 

 
Levels of nitrate, ammonium and phosphate in algal chambers during experiments 1, 

2 and 3 are shown in table 3.1. Shown are means and standard errors. n = 18 for each 

treatment in experiment 1, n = 24 for each treatment in experiment 2 and n = 16 for 

each treatment in experiment 3.  
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Table 3.1. Concentrations of nitrate, ammonium and phosphate in algal chambers. Mean values 
± standard error 

Experiment 1 

Treatment 
 

Light Shade 

Ion 
Nitrate / 

phosphate 
Ammonium / 

phosphate 
Nitrate / 

phosphate 
Ammonium / 

phosphate 

NO3
- 12.36 ± 0.16 0.14 ± 0.09 13.31 ± 0.16 0.12 ± 0.14 

NH4
+ 0.0 ± 0.05 12.85 ± 0.18 0.0 ± 0.03 12.20 ± 0.21 

C
o
n
ce

n
tr

at
io

n
 (

µ
M

) 

PO4
- 1.29 ± 0.07 1.38 ± 0.04 1.43 ± 0.05 1.26 ± 0.01 

Experiment 2 

Treatment 
 

Light Shade 

Ion 
Nitrate / 

phosphate 
Ammonium / 

phosphate 
Nitrate / 

phosphate 
Ammonium / 

phosphate 

NO3
- 12.81 ± 0.67 2.08 ± 0.14 12.65 ± 0.49 2.06 ± 0.10 

NH4
+ 1.44 ± 0.05 12.27 ± 1.28 1.45 ± 0.07 12.56 ± 1.15 

C
o
n
ce

n
tr

at
io

n
 (

µ
M

) 

PO4
- 1.74 ± 0.03 1.84 ± 0.07 1.75 ± 0.07 1.92 ± 0.13 

Experiment 3 

Treatment 
 

Light Shade 

Ion 
Nitrate / 

phosphate 
Ammonium / 

phosphate 
Nitrate / 

phosphate 
Ammonium / 

phosphate 

NO3
- 10.56 ± 0.23 0.1 ± 0.01 9.97 ± 0.22 0.1 ± 0.01 

NH4
+ 0.1 ± 0.1 10.54 ± 0.15 0.1 ± 0.1  9.45 ± 0.09 

C
o
n
ce

n
tr

at
io

n
 (

µ
M

) 

PO4
- 1.93 ± 0.01 1.94 ± 0.03 1.93 ± 0.00 2.02 ± 0.15 
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Experimental light and water temperature conditions 

 

Daily solar radiation levels at the Leigh Marine Laboratory station during experiment 

1 varied between 32.44 MJm-2 (day 2), and 19.46 MJm-2  (day 11). The mean daily 

radiation over the duration of the experiment was 27.48 MJm-2 ± 1.22 S.E (n = 14). 

Sea surface temperature ranged between 17.0 ºC (day 2) and 20.3 ºC (day 13). Mean 

sea surface temperature at the laboratory inflow point over the duration of the 

experiment was 18.7 ºC ± 0.25 S.E (n = 14). Daily solar radiation levels during 

experiment 2 varied between 33.02 MJm-2 (day 1), and 4.11 MJm-2 (day 15). The 

mean daily radiation over the duration of the experiment was 23.24 MJm-2 ± 2.19 S.E 

(n = 16). Sea surface temperature ranged between 18.4.0 ºC (day 1) and 20.2 ºC (day 

11). Mean sea surface temperature at the laboratory inflow point over the duration of 

the experiment was 19.7 ºC ± 0.11 S.E (n = 16). Daily solar radiation levels during 

experiment 3 varied between 29.11 MJm-2 (day 7), and 7.07 MJm-2 (day 3). The mean 

daily radiation over the duration of the experiment was 21.37 MJm-.2 ± 1.38 S.E (n = 

15). Sea surface temperature ranged between 20.3 ºC (day 14) and 21.1 ºC (day 5). 

Mean sea surface temperature over the duration of the experiment was 20.6 ºC ± 0.06 

S.E (n = 15).  

Growth rates 

 

Growth rates of Ulva sp. during experiment 1 were higher when algae were supplied 

with ammonium rather than nitrate during the first two of the three growth periods 
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(Tables 3.2, 3.3 and 3.4, Fig. 3.2). Growth during the third time period did not appear 

to differ between nitrate and ammonium fed algae. Growth rates of Ulva sp. during all 

periods of experiment 1 were significantly elevated in the presence of higher light. 

Post-hoc Tukey’s HSD analysis showed that the mean growth rates of all light 

treatments were higher than for shade treatments, regardless of nutrient source.  

Overall, a repeated measures ANOVA indicated elevated growth rates of algae fed 

with ammonium versus nitrate (Table 3.5). Not surprisingly, algae in ambient light 

treatments grew significantly faster than shaded treatments over the period of the 

experiment. The significant differences in growth rates between nutrient treatments in 

the first two growth periods appear to be more pronounced in the shaded treatments 

(Fig. 3.2A).  Repeated measures analysis of overall growth rates in experiment 2 (Fig. 

3.3A and C) resolve significantly elevated growth rates in ambient light chambers 

versus shaded chambers, but fail to detect a significant effect of nitrogen source.  
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Table 3.2. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on growth rates in Ulva sp. (Experiment 1, Day 4) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Growth rate Nutrient  1 0.0035  0.0035  12.16   0.0082 

 Light  1 0.0372  0.0372  130.39  <0.001 

 Nutrient*light 1 0.00003  0.00003    0.0947  0.766 

 Residuals 8 
0.0023  0.0003 

  

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

-0.0370 -0.0812   0.00715 0.1040 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-0.1143  -0.1585  -0.0702  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-0.1453  -0.1895  -0.1012  <0.001 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-0.0773  -0.1215  -0.0332  0.0023 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-0.1083  -0.1525  -0.0642  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

 -0.0310  -0.0752  0.0132  0.1899 
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Table 3.3. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on growth rates in Ulva sp. (Experiment 1, Day 8) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Growth rate Nutrient  1 0.0029  0.0029    6.203   0.0375 

 Light  1 0.0582  0.0582  125.32 <0.001 

 Nutrient*light 1 0.0007  0.0007    1.518   0.2530 

 Residuals 12 0.0037  0.0005   

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

-0.0157 -0.0720   0.0407  0.8103 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-0.1240  -0.1804  -0.0676  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-0.1703  -0.2267  -0.1140  <0.001 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-0.1083  -0.1647  -0.0520  0.0012 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-0.1547  -0.2110  -0.0983  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

-0.0463  -0.1027  0.0100  0.1117 
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Table 3.4. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on growth rates in Ulva sp. (Experiment 1, Day 12) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Growth rate Nutrient  1 0.00006 0.00006    0.1111    0.7474 

 Light  1 0.0575  0.0575  105.27 <0.001 

 Nutrient*light 1 0.0004  0.0004    0.6441    0.4454 

 Residuals 12 0.0044  0.0005   

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

0.0063  -0.0548   0.0675 0.9865 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-0.1277  -0.1889  -0.0665  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-0.1430  -0.2041  -0.0819  <0.001 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-0.1340  -0.1951  -0.0729  <0.001 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-0.1493  -0.2105  -0.0882  <0.001 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

-0.0153  -0.0765   0.0458  0.8512 
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Table 3.5. ANOVA analysis of growth rates - adjusted for repeated measures, 
experiment 1. 

Source of 
variation 

df SS F p 

Light 24 0.1514 350.4 <.0001 

Nutrient 24 0.0048 11.181 0.0027 

Time 24 0.0347 40.16 <.0001 

Light x Nutrient  24 0.0005 1.242 0.276 

Light x Time 24 0.0015 1.762 0.193 

Nutrient x Time 24 0.0016 1.830 0.182 

Light x Nutrient 
x Time 

24 0.0005 0.634 0.539 

 

 

Table 3.6. ANOVA analysis of growth rates - adjusted for repeated measures, 
experiment 2. 

Source of 
variation 

df SS F p 

Light  84 0.6260 462.8371 <.0001 

Nutrient  84 0.0001 0.7212 0.3982 

Time 84 0.0941 11.5961 <.0001 

Light x Nutrient  84 0.0020 1.4543 0.2312 

Light x Time 84 0.0373 4.6066 0.0004 

Nutrient x Time 84 0.0088 1.0799 0.3811 

Light x Nutrient 
x Time 

84 0.0124 1.5292 0.1786 
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Figure 3.2 



 91 

Figure 3.3 
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Repeated measures analysis of growth rates from experiment 3 (Table 3.7, Fig. 3.3 B 

and D) again show consistently higher growth rates in ambient light chambers, and no 

difference in growth rates between nutrient treatments.  

 

Table 3.7. ANOVA analysis of growth rates - adjusted for repeated measures, 
experiment 3. 

Source of 
variation 

df SS F p 

Light 84 0.2842 174.07 <.0001 

Nutrient  84 0.0004 0.2200 0.6403 

Time 84 0.0990 10.110 <.0001 

Light x Nutrient  84 0.0001 0.0346 0.8528 

Light x Time 84 0.0458 4.6678 0.0004 

Nutrient x Time 84 0.0097 0.9887 0.4383 

Light x Nutrient 
x Time 

84 0.0063 0.6460 0.6931 

 

Regression analysis of the effect of nutrient source on growth rate through time (Fig. 

3.4, Plot A) under shaded treatments in experiment 2 showed a steady reduction in the 

differences between treatments over time (r2 = 0.81 for linear relationship). High 

variability in a comparative regression from experiment 3 (Fig. 3.4, plot B) reflect 

increases in within-treatment variability in this experiment.   

Amino Acids  

 

Levels of glutamine on day 9 of experiment 1 were significantly elevated when 

treated with ammonium relative to nitrate. Glutamine levels were also higher in 

ambient light treatments relative to shaded treatments. (Table 3.8, Fig. 3.5A). Post-
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hoc paired comparisons using Tukeys HSD analysis showed concordant differences in 

glutamine levels between ammonium and nitrate-fed plants, regardless of light 

treatment (Table 3.8).  

 

In contrast to patterns of glutamine on day 9, levels of glutamine levels in algae 

treated with ammonium or nitrate on day 14 of experiment 1 were indistinguishable 

(Table 3.9, Fig. 3.5B).  Algae in ambient light were still enriched in glutamine relative 

to reduced light treatments.  

 

Total Free Amino Acids (FAA) levels on day 9 of experiment 1 were significantly 

greater for ambient light and ammonium treated algae (Table 3.10, Fig. 3.6A). Post-

hoc Tukey’s HSD analysis gives evidence of significant differences in FAA content 

between ammonium and nitrate treatments in both light and shade.  

 

ANOVA results of FAA levels on day 14 of experiment 1 (Table 3.11, Fig. 3.6B) in 

contrast, show no significant effects of light or nutrient treatment. 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Table 3.8. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on glutamine content in Ulva sp. (Experiment 1, Day 9) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Glutamine Nutrient  1 5.880     5.8800     12.533  0.007 

 Light  1 7.363    7.3633     15.695  0.004 

 Nutrient*light 1 <0.0001  <0.0001  <0.001  1.00 

 Residuals 8 3.753     0.469      

Tukeys HSD post-hoc test between combinations of light and nutrient treatments. 

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

-1.400  -3.190 0.390 0.134 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-1.567  -3.357   0.224 0.088 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-2.967 -4.757  -1.175  0.003 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-0.167 -1.957   1.624 0.990 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-1.567  -3.357   0.224  0.089 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

-1.400 -3.190 0.390  0.133 

 



 98 

 

Table 3.9. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on glutamine content in Ulva sp. (Experiment 1, Day 14 ) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Glutamine Nutrient  1 <0.001 <0.001 <0.001 1.00 

 Light  1 3.853    3.853     35.29  <0.001 

 Nutrient*light 1 <0.001 <0.001 <0.001 1.00 

 Residuals 8 0.873     0.109     

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

<0.001 -0.863910   0.8639099  1.0000000 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-1.133 -1.997 -0.269 0.012 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-1.133 -1.997 -0.269 0.012 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-1.133 -1.997 -0.269 0.012 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-1.133 -1.997 -0.269 0.012 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

<0.001 -0.863910   0.8639099  1.0000000 
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Table 3.10. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on FAA content in Ulva sp. (Experiment 1, Day 9) 

Response 
factor 

Source of 
variation 

df SS MS F p 

FAA Nutrient  1 5564.2   5564.2 41.87 <0.001  

 Light  1 642.4    642.4   4.83  0.059 

 Nutrient*light 1 8.0      8.0   0.060  0.812 

 Residuals 8 1063.1  132.9                       

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

-44.70 -74.84 -14.55 0.006 

Ammonium/ 
Shade 

Ammonium/ 
Light 

-16.27 -46.40  13.87 0.370 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-57.70 -87.84 -27.55 0.0013 

Ammonium/ 
Shade 

Nitrate/ 
Light 

28.43  -1.708 58.57 0.064 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-13.00 -43.14   17.14 0.543 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

-41.43 -71.57 -11.29 0.001 
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Table 3.11. Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on FAA content in Ulva sp. (Experiment 1, Day 14 ) 

Response 
factor 

Source of 
variation 

df SS MS F p 

FAA Nutrient  1 138.04   138.04   0.9953  0.347   

 Light  1 428.41   428.41   3.0888  0.116 

 Nutrient*light 1 480.07   480.07   3.4613  0.099  

 Residuals 8 1109.57   138.70   

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Nitrate/ 
Light 

Ammonium/ 
Light 

5.87 -24.93  36.66  0.926 

Ammonium/ 
Shade 

Ammonium/ 
Light 

0.700 -30.09  31.49 0.999 

Nitrate/ 
Shade 

Ammonium/ 
Light 

-18.67  -49.53  12.06  0.282 

Ammonium/ 
Shade 

Nitrate/ 
Light 

-5.167 -35.96  25.63  0.947 

Nitrate/ 
Shade 

Nitrate/ 
Light 

-24.60  -55.39   6.193  0.123 

Nitrate/ 
Shade 

Ammonium/ 
Shade 

-19.43  -50.23  11.36  0.257 
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Figure 3.7 
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Tissue Nitrogen 

 

There were no significant effects of nutrient and light treatment on algal nitrogen 

content after 9 days of treatment. At the conclusion of the experiment (14 days) 

ambient light treatments had significantly less tissue nitrogen relative to shaded 

treatments (Figure 3.7). Tukey’s post-hoc comparisons between combinations of 

treatments gave no differences significant at a p = 0.05 threshold.  

 

Discussion   

 

Ecological Implications 

 

The initially slower response of algal growth rates and nitrogen assimilation of 

nitrate-fed algae suggests that growth rates of natural populations of Ulva sp. may 

respond more slowly to episodic pulses of nitrate than to ammonium. However, the 

temporary nature of this effect indicates that growth rates in steady-state populations 

receiving different proportions of their nitrogen supply via continuous enrichment 

from nitrate and/or ammonium sources are likely to be similar.  

Impact of nutrient source on growth rates of Ulva sp. under light and dark conditions 

 

Overall, the impact of nitrate reduction on nitrogen assimilation and growth in Ulva 

sp. appeared to be temporary. Perhaps due to the level of natural variability in growth 

rates associated with this system, there was no evidence to suggest an interaction 

between light level and nutrient type on growth rates.  
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The observation that growth rates appeared indistinguishable as a function of nutrient 

treatments at any stage of experiment 3 suggests that any long-term growth cost 

resulting from nitrate reduction is obscured by natural variability in growth rates 

within this system.  

 

Some works have suggested a theoretical advantage to growth on ammonium rather 

than nitrate. Raven et al. (1992) and Raven (1984, 1987a) suggest a greater cost in 

photons per unit carbon assimilated during growth on nitrate than would be the case 

for ammonium, and the need for more of the product of this reduction (ammonium) to 

create catalysts required for this reaction in new cells. If these costs affected growth 

rate in this case, the first would be specific to light limited algae, and the second 

would impact on growth rates at any light level. My findings, however, suggest little 

lasting effect of nitrate reduction on growth rates in Ulva sp. The absence of a 

significant statistical interaction between nutrient and light on growth rates at any 

period during these experiments suggests that a growth-per-photon cost of nitrate 

reduction is minor, at least relative to other sources of variation. However a 

significant effect of nutrient type on the overall growth rate at the beginning of 

experiment 1 and 2 suggests the sum of these costs is (at least temporarily) sufficient 

to slow growth. A third possibility may be that in the long term, both of these costs 

are minor, but the growth reduction I observed in these experiments reflects the 

energetic cost of creating enough catalyst in all tissue present at the start of the 

experiment to facilitate growth on a ‘nitrate-only’ N supply.  

The apparent increase in the within-treatment variance in all light chambers, and in all 

growth rates in experiment 3 may be attributable to UV impacts on the health of the 
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experimental algae, a result of shifting a typically sub-tidal alga to a high UV 

environment (Vinegla et al. 2006).  

 

Impact of light and dark conditions on free amino acid (FAA) content of Ulva sp.  

 

It has previously been shown that under low light conditions, the reduction of nitrate 

to ammonium can become a ‘rate-limiting’ step in the assimilation of nitrogen by 

algae (Wada and Hattori 1978, Needoba et al. 2004). Where this occurs, algae may 

effuse unreduced nitrate (Wada and Hattori 1978, Needoba et al. 2004), or store it in 

an unreduced form (Raven 1987a). However, in situations of excess nitrogen supply 

where sufficient light is present, algae may reduce the nitrate and store it in a variety 

of forms, including amino acids, chlorophyll, and protein. Differences in the presence 

of amino acids in the tissue of nitrate and ammonium-fed Ulva sp. in these 

experiments are taken to represent the ability of these algae to reduce available nitrate.  

Tissue glutamine levels taken on day 9 of experiment 1 showed a significant effect of 

nitrogen source, primarily as a result of differences between shaded plants. This 

significant effect had attenuated by day 14. Glutamine, as the primary amino acid in 

the nitrogen assimilation chain (Vergara et al. 1995) in this case acts as a first 

indicator of the process of nitrate reduction. I suggest that the lower values of 

glutamine on day 9 reflect the greater energetic cost associated with nitrate 

assimilation, and the subsequent reduction in the differences between these values 

reflects acclimatisation to an all-nitrate nitrogen source.  

 

The patterns evident in the total free amino acid pool of Ulva sp. tissue show similar 

patterns to those evident in glutamine pools, however it appears that the shaded nitrate 
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treatment may be slightly slower to recover to the levels of other treatments than was 

the case with glutamine (compare Fig. 3.5 A, B with Fig. 3.6 A and B). A weak 

interaction effect in the response of FAA to light level and nitrogen source (Table 

3.11) may indicate that in this case differences in incident photons may be impacting 

the ability of Ulva sp. to fully reduce excess nitrate to amino acids as recorded in 

some seaweeds in natural populations existing in low light conditions (Raven et al. 

1992). In this case a lack of energy may hinder the reduction of nitrate to nitrite and 

ammonium as shown in Figure 3.1.  

 

Impact of nutrient source on tissue nitrogen 

 

Algae in this experiment were supplied with excess nitrogen and phosphorus, in order 

to highlight light limitation and the cost of reducing nitrate to ammonium as a 

nitrogen source. Lower tissue nitrogen content of high light plants reflects increased 

growth rates under high light, relative to rates of nitrogen uptake. However tissue 

nitrogen in both high and low light treated algae, (reflected in the percentage of 

nitrogen in the total dry weight of tissue,) were high enough that nitrogen limitation 

was unlikely to have any effect on growth rates at any time during the experiment for 

any treatment  (compare Fig. 3.7 A, B with Fig. 2.14).  

 

A previous study on the nitrogen content response of Ulva fenestrata to increases in 

nitrate and ammonium found a greater increase in tissue %N during growth on 

ammonium than on nitrate (Naldi and Wheeler 1999). Naldi and Wheeler’s study also 

measured tissue nitrogen content after 9 days of growth, and generated tissue nitrogen 

concentrations of 4.2% and 4.7% for nitrate and ammonium, respectively. Algae in 
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this study were also grown under conditions of relatively low light availability 

(around 100µEm-2s-1), and showed lower FAA pools in nitrate than in ammonium 

treatments. The nitrate treatment also generated significant intracellular pools of 

unreduced nitrate. This may suggest that nitrogen assimilation in this study was also 

reduced for nitrate relative to ammonium due to reduced nitrate reduction capacity in 

low light conditions.  

Conclusions and further research 

 

Overall there was a temporary reduction of the growth rate and nitrogen assimilation 

capacity of Ulva sp., and I suggest this is indicative of the added cost of reducing 

nitrate to ammonium. This negative effect on growth was not present after around 10 

days of growth in ambient light or shaded conditions, to the point where growth rates 

on nitrate and ammonium were statistically indistinguishable. This initial impact on 

growth rate was mirrored by an initial lag in the production of glutamine, a primary 

amino acid in the nitrogen assimilation chain, and FAA content.  

 

This information suggests that the cost in photons of nitrate reduction is unlikely to 

have lasting impacts on the growth of Ulva sp.  However, these data do not give 

information about the exact nature of the initial growth reduction. Possibilities for 

further research exist in investigating this effect using a time series of amino acid 

profiles, examining particularly the presence of malate, one of the primary energy 

transfer molecules in algae (Scheibe 2004), to further confirm that this reduction in 

growth rate is due to energy limitation. Also, to better understand the nature of this 

initial growth reduction, the nature of changes in nitrate and ammonium uptake during 
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this time need to be examined. It is possible that the initial growth reduction in nitrate-

fed plants reflects a standard cost of reduction per mol nitrate, but is increased due to 

an initial rapid uptake of nitrate.  
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Chapter 4 – δ
15N and δ13C ratios as tracers of the 

dissolved and particulate fractions of sewage effluent

 

Abstract 

 

Particulate and dissolved fractions of sewage effluent may disperse differently, be 

assimilated by different organisms, and have different impacts on marine ecosystems. 

Patterns of dissolved and particulate effluent dispersal can be estimated separately 

using δ15N and δ13C ratios in species that assimilate sewage dissolved inorganic 

nitrogen (DIN) (a marine alga, Carpopyllum maschalocarpum and its epifaunal 

grazer, Amphiroidea media), and sewage particulate organic matter (POM) (a water 

column filter-feeder, Petrolisthes elongatus) over a gradient of effluent influence 

away from a point source discharge. Sewage concentration was estimated by the 

presence of dissolved nitrogen and phosphate ions, and particulate matter in seawater. 

Tissue δ15N levels measured for the alga, grazer and filter feeder all increased 

significantly with increasing sewage influence as estimated from dissolved ion 

concentrations, from (means ± standard error) 5.63‰ ± 0.41, 7.36‰ ± 0.33 and 

9.16‰ ± 0.11 at the site with the lowest sewage influence to 13.35‰ ± 0.39, 10.81‰ 

± 0.28 and 11.97‰ ± 0.16 at the site with the highest sewage influence, reflecting 

assimilation of 15N-enriched sewage DIN (where δ15N ratio of sewage DIN was 23.43 

± 2.14‰). Filter feeder δ13C ratios generally became more depleted with increasing 

seawater turbidity, and ranged from -22.6‰ ± 0.19 to -17.48‰ ± 0.74, reflecting the 

dispersal and assimilation of 13C-depleted sewage particulates (where δ13C sewage 

POM was -27.4‰  ± 0.76).  
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Introduction  

 
 
Expansions of coastal communities worldwide have caused increases in pressures 

responsible for environmental change in marine environments (GESAMP 2001). 

Increases in sewage influence can impact on marine biota directly (e.g., through the 

influence of organochlorides and heavy metals (Addison 1976, Bryan 1976), and 

indirectly (e.g., through ecosystem changes resulting from nutrient enrichment (Bokn 

et al. 2002, Hauxwell et al. 2003, Karez et al. 2004, Tewfik et al. 2005). However, 

sewage impacts on species diversity and abundance can be obscured statistically by 

natural variability in marine community structure (Ellis et al. 2000, Hewitt et al. 

2005). It is therefore important to develop indirect measurements of sewage impact.  

 

Sewage, and other terrestrially derived matter, tends to contain carbon and nitrogen 

that is isotopically distinct from that found in unimpacted coastal marine ecosystems 

(Gartner et al. 2002, Bedard-Haughn et al. 2003, Gordon and Goni 2003, Savage and 

Elmgren 2004). Stable isotope ratios of carbon and nitrogen (δ13C and δ15N ratios) in 

marine biota can provide a method of tracing patterns of terrestrial nutrient sources 

entering marine ecosystems, as the δ13C and δ15N ratios of nutrient sources tend to be 

transferred predictably to the organisms that assimilate them (Fry and Sherr 1984, Fry 

and Wainright 1991).   

 

Stable isotope levels in the tissues of all marine organisms that assimilate sewage-

derived nutrients are valuable as measures of sewage impact because they act as time-

integrative measures of sewage presence, reflecting the contributions of available 

nutrient sources over the period of tissue generation and turnover (Gartner et al. 2002, 
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Gaston and Suthers 2004, Perga and Gerdeaux 2005). In contrast, measurements of 

sewage presence made directly from the water column provide an instantaneous 

measure of sewage dispersal. Rare pulses of sewage effluent missed by water column 

sampling may still be ecologically significant (Wallentinus 1984, Valiela et al. 1997).  

 

The value of stable isotope signatures as tools in sewage impact assessment relies on 

knowledge of how the signatures in study organisms respond to patterns of sewage 

concentration. δ13C and δ15N signatures in consumer tissues can then be used as a 

quantitative measure to link ecological effects in impacted areas to the magnitude of 

sewage influence. The particulate fraction of sewage effluent has the potential to 

impact on marine systems differently to dissolved effluent (Bryan 1976), and 

dispersal of particulates cannot be assumed to co-vary with concentrations of 

dissolved sewage components (Ellis 1989).  

 

Previous research has suggested that marine macroalgae are particularly suited to 

detect the presence of dissolved inorganic nitrogen (DIN) from sewage (McClelland 

and Valiela 1998, Gartner et al. 2002), and that filter-feeding organisms affected by 

sewage will assimilate the distinct δ13C and δ15N signatures of sewage particulate 

organic matter (SPOM) (Rogers 2003, Dolenec et al. 2006, Piola et al. 2006).  

 

Preferential assimilation of one isotope over the other during assimilation may result 

in differences in isotopic signatures between the organism assimilating the nutrients, 

and the δ13C and δ15N signatures of the nutrient pools (fractionation). For consumers, 

fractionation in carbon and nitrogen isotopes is commonly used to estimate trophic 

level, based on standard estimates of fractionation as tissue is broken down and 
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assimilated at each step in the trophic chain. An increase in trophic level normally 

results in an increase in δ15N ratio of the consumer over its diet of between 2.2 and  

3.4‰ (Vander Zanden and Rasmussen 2001, McCutchan et al. 2003). For carbon, 

fractionation is typically below 1‰ (DeNiro and Epstein 1976). However, 

fractionation in consumers has been observed to vary between species, and functional 

groups (Gannes et al. 1997, Vanderklift and Ponsard 2003, Fry 2006). Differences in 

fractionation between animals may differ due in part to differences in excretion rate 

(Mill et al. 2007). For algae, fractionation differences have been observed to differ 

between species, and as a result of the physical conditions in which the algae grow 

(Needoba and Harrison 2004, Cornelisen et al. 2007).  

 

The aim of this work is to describe patterns of particulate and dissolved fractions of 

sewage effluent dispersal separately using δ13C and δ15N ratios in marine organisms 

that assimilate their carbon and nitrogen from either the particulate fraction (a filter 

feeder of water column POM (Petrolisthes elongatus) or the dissolved fraction (a 

macroalga (Carpopyllum maschalocarpum) and its epifaunal herbivore (Amphiroidea 

media).  

 

I hypothesise that the filter feeder (Petrolisthes elongatus) will display contrasting 

patterns of δ13C and δ15N signatures to those of the macroalga (Carpopyllum 

maschalocarpum) and the algal grazer (Amphiroidea media), and that these patterns 

will reflect the movement and assimilation of particulate sewage δ13C and δ15N 

signatures into the filter feeder, and sewage DIN δ15N signatures into the macroalga 

and grazer. These measurements are made over a measured concentration gradient of 
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dissolved and particulate sewage influence surrounding the Titahi Bay wastewater 

treatment plant (TBWWTP) outflow, near Wellington, New Zealand.  

 

Methods 

 

Quantifying environmental variation 

 

I measured water turbidity at all sites (n=11, see Fig 2.1) on 5 occasions during 

December, January and February 2005 to approximate the dispersal patterns of 

effluent particulates around the TBWWTP. The TBWWTP releases effluent with a 

concentration of between 3 and 30mg/L of suspended solids, and is the only major 

inflow of terrestrial waters in the vicinity of the sampling area.  

 

Measurements were made using an RBR XR420 turbidity meter. Measurements were 

made in surface waters (i.e., 0.5 m depth) and at 4 m depth. The turbidity meter was 

programmed to record at 5 second intervals and was deployed in surface water and 

subsequently at 4 m for a period of 1 minute in each location. Turbidity estimates 

were generated by time-averaging data acquisitions over the period of deployment (1 

minute = 12 data acquisitions). To separate turbidity from the wastewater outflow 

point source from natural between-day variation in sea turbidity, averages at each site 

and date were standardised to z values based on the daily mean and standard deviation 

of turbidity at all sites.  

 

Measurements and characterisation of dispersal patterns of the dissolved components 

of the TBWWTP sewage plume are covered in chapter 2. 
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Sampling primary producers and consumers and their stable isotope signatures 

 

I sampled a primary producer (a macroalga, Carpophyllum maschalocarpum; 3 

samples per site) and two primary consumers (grazer: Amphiroidea media; 3 samples 

per site; filter feeder: half crab, Petrolisthes elongatus; 3 samples per site) in a 

distance gradient away from the TBWWTP discharge (Fig. 2.1) in March, April and 

May 2005.  

 

Algae were collected from a depth of ~2 m, within 20 m from shore (immediately 

inshore from distance gradient sites marked by buoys). All algal samples were 

maintained on ice in the field, except during epifauna removal, and subsequently 

frozen until they could be analysed. Samples of A. media were collected from the 

algal samples used in isotope analysis for each site and date. To remove all animals 

(including A. media) from the algal samples, algae were left in plastic bags in the sun 

for 30 minutes until their epifaunal communities died of heat stress. I then rinsed the 

animals from the algae in buckets of freshwater, filtered the water through 156 µm 

plankton mesh, selected out the individuals of A. media from the mesh and froze them 

until they could be analysed further. Petrolisthes elongatus samples were collected 

from beneath rocks around the low tide mark, within 20 m of algal collection points.  

Preparation of tissue samples for isotope and percent carbon and nitrogen analysis 

 

To calculate estimates of nitrogen isotope signatures within C. maschalocarpum, 

frozen samples were cleaned of any epiphytes, dried at 70°C in a drying oven and 

ground to a fine powder. Tissue was collected from a homogenized sample of one 

entire macroalgal specimen, minus thallus and holdfast, to provide a standard 
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relationship between consumer and producer isotope ratios. Previously frozen A. 

media and P. elongatus samples were rinsed in freshwater, dried in a drying oven and 

ground to a fine powder. In order to generate sufficient tissue for isotope analysis of 

each sample, 10 individuals of A. media and P. elongatus were homogenized to create 

single composite samples for each species, site and date. All 10 A. media individuals 

from each site and date were removed from the single specimens of  

C. maschalocarpum used in isotope analysis.  

 

Carbon incorporated into tissue and inorganic carbonate are of different origin and 

therefore different quantities of inorganic carbon in samples would bias analysis of 

results (Fry 1988, Cloern et. al. 2002). Therefore it was necessary to remove all 

inorganic carbon by acidification. Dried and ground algal and epifaunal samples were 

acidified with 1 mol l-1 hydrochloric acid (HCl) using the drop by drop method 

according to Jacob et al. (2005), re-dried at 70°C and re-ground prior to 

spectrophotometry.    

 

All isotope samples were analysed using a Europa Geo 20/20 isotope ratio mass-

spectrometer interfaced to an ANCA-SL elemental analyser. Duplicate samples of 

1.8mg of powder were loaded into tin capsules for analysis of organic carbon and 

nitrogen content and carbon and nitrogen isotopic composition. The standard 

analytical error between duplicate analyses is lower than ±0.3‰ for nitrogen and 

±0.1‰ for carbon. Relative nitrogen isotopic concentrations are reported as δ15N 

values relative to an air standard, where  
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Relative carbon isotopic values are reported as δ13C ratios relative to a VPDB 

standard,  
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where VPDB is an international 13C/12C standard of cretaceous belemnite from the 

Peedee formation in South Carolina, USA. Percent carbon and nitrogen values for 

algal tissue are given for dry weights.   

 

Collection and preparation of samples for source signature 
15

N and 
13

C analysis 

 

To characterise the isotopic composition of effluent discharged from the TBWWTP, I 

sampled primary and tertiary effluent at weekly intervals (n=3) in March 2005. 

Sample processing and δ15N estimates for dissolved nitrogen were acquired as 

detailed in chapter 2. δ13C values of dissolved inorganic carbon (DIC) were not 

included in this study as a possible tracer of dissolved sewage effluent dispersal. High 

concentrations of enriching nutrients (N and P) in effluent have the potential to impact 

the growth rates and 13C assimilation tendencies of the primary producers which 

might be used to track the movement of effluent DIC into marine food chains. For 

analysis of effluent particulate δ15N and δ13C ratios, effluent samples were filtered 

onto Whatman 0.7 µm GFF glass fibre filters and the particulate portion was dried at 

70°C before carbon and nitrogen isotope analysis.  
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Statistical analysis 

 

I examined spatial patterns of turbidity around the TBWWTP using ANCOVA 

analysis. I employed distance from the outflow as a covariate in this analysis, and 

direction from the outflow as a factor at two levels.  

 

Previous dietary research suggests that A. media is herbivorous, and C. 

maschalocarpum is likely to form a significant part of its diet (Robbins 1990). In 

order to test that this dietary tendency resulted in A. media following spatial patterns 

of  δ15N and δ13C in its algal food source (and hence tracking increases in the 

availability of sewage DIN) I examined co-variance in δ15N and δ13C patterns in 

samples of the two species formally using linear regression. A. media isotope ratios 

were fitted against those of the C. maschalocarpum algae they were collected from.  

 

Because my previous analyses suggested that sewage concentrations decrease with 

increasing distances from the TBWWTP outflow, and for dissolved constituents were 

biased toward the westward direction, I explored spatial variation in tissue δ13C and 

δ
15N within each study organism using ANCOVA models where: (1) distance from 

the outfall was included as a covariate, and (2) direction (east or west) from the 

outflow was included as a categorical variable. The full ANCOVA models included 

an interaction term. Data were checked for normality and homogeneity of variance, 

and where appropriate dependent variables were log transformed to improve 

homogeneity of variances.   
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Results 

 

δ
15

N and δ
13

C signatures of particulate and dissolved constituents of sewage effluent 

 

Overall, tertiary processed (final) effluent at the TBWWTP showed enriched DIN 

δ
15N (23.4‰ ± 2.1 S.E.) and comparatively depleted particulate δ15N signatures 

(6.8‰ ± 1.2 S.E.) (Fig. 4.1A). Particulate δ13C signatures in final effluent had low 

δ
13C ratios (-27.4‰ ± 0.76 S.E.), and particulate δ13C did not appear to be greatly 

affected by tertiary processing (Fig. 4.1B). δ15N levels of primary processed dissolved 

(7.3‰ ± 1.6 S.E.), and particulate (5.1‰ ± 1.8 S.E.) effluent fractions were more 

depleted in 15N than for tertiary processed effluent. For more detail on tertiary 

processing effects and between-treatment plant variability in effluent δ15N and δ13C 

signatures see appendix 5.   

 

Spatial variation in dissolved and particulate sewage effluent components 

 
 
Dissolved effluent components tended to be more concentrated in water sampled in a 

westerly direction, and at shorter distances from the TBWWTP outflow. These trends 

in dispersal of dissolved components of TBWWTP sewage effluent are covered in 

more detail in graphical and MANOVA analyses presented in chapter 2 (Fig. 2.4, 

Table 2.1). Graphical representation of turbidity measurements suggest a similar 

westward, surface concentrated pattern of dispersal of sewage particulate matter to 

that of dissolved effluent components (Fig. 4.2). ANCOVA analysis of trends in 

spatial variation in turbidity around the TBWWTP were limited by high between-day 

variability in turbidity (i.e. high residual SS), however there was a  



 118 

Figure 4.1  
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Figure 4.2. Turbidity in surface waters (white triangles) and at 4m depth (black 
circles) Site ‘C’ is at the WWTP outflow, sites marked W1-W5 are at increasing 
distances to the west of the outflow.  Sites marked E1-E5 are at increasing distances 
to the east of the outflow. Error bars +/- S.E. n = 5. 
 
 
 
 
 
weak effect of increasing distance from the TBWWTP outflow on reducing turbidity 

(Table 4.1). 

 

Table 4.1. ANCOVA analysis of water column turbidity change with distance, and 
direction from the TBWWTP.  

 Response factor Source of 
variation 

df SS MS F p 

Turbidity Direction 1 1.645 1.645 1.647 0.2073 
 Distance 1 2.79 2.79 2.7942 0.103 
 Residuals 37 36.945 0.999   
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Variation in δ
13

C signatures recorded in a primary producer, algal grazer and a water 

column filter feeder 

 

Overall δ13C values of C. maschalocarpum were not significantly different as a result 

of direction (east or west from the outflow), or with increasing distance from the 

outflow pipe. However, there was a significant interaction term in this ANCOVA 

analysis, resulting from a tendency toward lower δ13C values at western sites nearest 

the outflow, as well as the most distant sites to the east of the outflow (Table 4.2, Fig. 

4.3 and 4.4). Overall δ13C values of A. media were also not significantly different as a 

result of direction (east or west from the outflow), or with increasing distance from 

the outflow pipe. There was also a significant interaction term in this ANCOVA 

analysis, as A. media followed a similar trend to C. maschalocarpum, showing 

depleted δ13C values at western sites nearest the outflow and most distant sites to the 

east of the outflow (Table 4.2, Fig. 4.3 and 4.4). δ13C values of organic A. media 

tissue showed a significant, but loose relationship with those of the C. 

maschalocarpum plants that they were collected from (Fig. 4.5, plot B).
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Table 4.2. ANCOVA analysis of tissue δ13C signature change with distance, and 
direction (east or west) from the TBWWTP.  

Response factor Source of 
variation 

df SS MS F p 

δ
13C C. 

maschalocarpum 
Direction 1 6.787    3.393   3.252    0.054 

 Distance 1 0.036    0.036   0.035    0.854 
 Distance* 

Direction 
1 36.08   36.08  34.57 <0.001 

 Residuals 26 29.223    1.044   

δ
13C  

A. media  
Direction 1 0.1153   0.0576   0.0833  0.920 

 Distance 1  1.007   1.007   1.455  0.238 
 Distance* 

Direction 
1 7.091   7.091  10.24  0.0034 

 Residuals 26  19.38   0.692    

δ
13C  

P. elongatus 
Direction 1  31.97   15.99  18.35 <0.001 

 Distance 1 24.99   24.99  28.69 <0.001 
 Distance* 

Direction 
1 2.993    2.993   3.4352    0.0744 

 Residuals 26  24.39    0.871   



 122 

Table 4.3a Linear regression analysis of δ15N ratios in individual C. maschalocarpum 
algae, and δ15N ratios in tissue of A. media removed from them.  

 Coefficient Std error T p 
Intercept 4.0210  

  
0.6934 5.7985 <0.0001 

Slope 0.5768  
  

0.0716 8.0569 <0.0001 

Correlation coefficient  

Source df MS F p 

Regression  1  53.7188  64.9138  <0.0001 

Residual 32   2.4804   

Table 4.3b Linear regression analysis of δ13C ratios in individual C. maschalocarpum 
algae, and δ13C ratios in tissue of A. media removed from them.  

 Coefficient Std error T p 
Intercept -10.2476 1.2837 -7.9828 <0.0001 

Slope 0.2410 0.1023 2.3558 0.0250 

Correlation coefficient 

Source df MS F p 

Regression 1 4.1899 5.5498 0.0250 

Residual 32 0.8623   
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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P. elongatus was highly depleted in 13C in high sewage impact areas to the west and 

at shorter distances from the outflow (Table 4.2, Fig. 4.6 and 4.7). δ13C values in P. 

elongatus showed a larger range than A. media or C. maschalocarpum, and appeared 

to follow the general pattern of effluent dispersal evidenced by dissolved effluent 

components and seawater turbidity.   

Variation in δ
15

N signatures recorded in a primary producer, algal grazer and a water 

column filter feeder    

 

δ
15N values of C. maschalocarpum  tissue showed patterns of enriched δ15N 

signatures to the west, and at sites close to the outflow (Table 4.4,  Fig. 4.6 and Fig. 

4.7). C. maschalocarpum  δ15N signatures ranged between 5.63‰ ± 0.41 S.E. at the 

most 15N-depleted site (Site E5) and 13.35‰ ± 0.39 S.E at the most 15N-enriched site 

(Site W2). A. media tissue also showed enriched δ15N signatures to the west and at 

sites closer to the outflow (Table 4.4, Fig. 4.6, Fig. 4.7, and Fig. 4.8). Additionally, 

δ
15N signatures of A. media showed a consistent relationship with those of with C. 

maschalocarpum, which was linear over the range of values recorded (Fig. 4.5, Plot 

A). Filter feeder (P. elongatus) tissue also showed significantly enriched δ15N

signatures in the high sewage impacted areas to the west and at short distances from 

the outflow (Table 4.4, Fig. 4.6 and 4.7). These increases were also strongly 

correlated with δ15N enrichment in the primary producer C. maschalocarpum, (i.e. 

with patterns of sewage DIN dispersal) (Fig. 4.5).  
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Figure 4.6 
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Figure 4.7 
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Figure 4.8 
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Table 4.4. ANCOVA analysis of tissue δ15N signature change with distance, and 
direction (east or west) from the TBWWTP.  

Response factor Source of 
variation 

df SS MS F p 

δ
15N C. 

maschalocarpum 
Direction 1 110.4   55.18  46.60 <0.001 

 Distance 1 13.76   13.76  11.62   0.0020 

 Distance* 
Direction 

1 4.194    4.194   3.541   0.0703 

 Residuals 26 33.86 1.167   

δ
15N  

A. media  
Direction 1  57.25   28.63  46.68  <0.001 

 Distance 1  2.287    2.287   3.730    0.064 
 Distance* 

Direction 
1  2.664    2.664   4.344    0.046 

 Residuals 26  17.170    0.613   

logδ15N 
P. elongatus 

Direction 1  0.2419  0.1209  121.8 <0.001 

 Distance 1 0.0294  0.0294   29.64 <0.001 
 Distance* 

Direction 
1 0.0006  0.0006    0.5722     0.456 

 Residuals 26 0.0621 0.0021   
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Discussion

Between-species differences in tissue δ
13

C and δ
15

N response to sewage effluent 

 

C. maschalocarpum showed patterns of elevated δ15N signatures that correspond to 

areas of predicted high effluent concentration. No measures of ‘clean’ oceanic DIN 

δ
15N signatures were made during this study due to the impractically large quantity of 

water required to get a signature measurement from oligotrophic waters (Gartner et al. 

2002). However previous studies performed in temperate coastal waters suggest that 

background oceanic and coastal DIN signatures range between ~ 6 and 7‰, (Miyaki 

and Wada 1967, Sigman et al. 1997). δ15N levels in C. maschalocarpum taken from 

clean environments (Mokahinau Islands, Leigh and Poor Knights Islands) in New 

Zealand ranged between 5.3 and 7.6‰ (pers. com Neill Barr).   

It is likely that C. maschalocarpum tissue δ15N signatures from sites 300-500 metres 

to the east of the outflow (5.6 - 7.1‰) represent relatively unimpacted conditions. 

Macroalgae are generally reliant on water column DIN to meet their nitrogen 

requirements (Wallentinus 1984), and the increase in C. maschalocarpum δ15N 

signatures at short distances from the outflow suggests that sewage DIN (23.4‰ ± 2.1 

S.E.) forms an increasing portion of their nitrogen budget at these sites.  

C. maschalocarpum tissues showed the largest range in δ15N signatures of the three 

species tested, indicating sensitivity to the presence of 15N-enriched sewage effluent.  

 

Depleted δ13C values in C. maschalocarpum at some sites are potentially the result of 

increases in the availability of effluent DIC. DIC concentrations in sewage effluent 

are generally higher than those in seawater (Llorens et al. 1993, Ballester et al. 1999), 
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and the dilution of DIN concentrations from tertiary processed effluent sewage to 

seawater at sampling sites W2 and E1 indicate that sewage was typically diluted by 

only ~90% within 50-100 metres of the TBWWTP outflow (compare Fig. 2.2 with 

2.4). However, sewage DIC assimilation to algal tissue does not offer the same 

potential as a tracer of sewage dispersal as the assimilation of sewage DIN. Because 

nitrogen is generally present in very low concentrations in clean seawater in the Titahi 

Bay area relative to their concentrations in sewage (tertiary processed sewage leaving 

TTBWWTP has around 200 times the TIN concentration of seawater at low impact 

sites in this study), nitrogen from effluent can contribute a large proportion of the 

nitrogen available to algae despite dilution. While CO2 is slightly more soluble in 

freshwater than saltwater, assuming that sewage derived CO2(aq)/HCO3
- follow similar 

patterns of dilution to nitrogen and phosphate ions, it is likely that CO2(aq)/HCO3
-  

from sewage effluent contributed only a small proportion of DIC available to  

C. maschalocarpum at high-impact sites. Notably, the 13C-depletion of  

C. maschalocarpum at high-impact sites is in contrast to the previously recorded 13C-

enrichment in Ulva sp. at high impact sites and in high nitrogen laboratory trials in 

chapter 2, and may suggest that C. maschalocarpum has less physiological demand 

for CO2 (potentially slower growth rates) at high impact sites. Additionally,  

C. maschalocarpum at some low impact sites also showed depleted δ13C values (Fig. 

4.3). 

 

A. media showed spatial patterns of elevated δ15N signatures that correspond to areas 

of high predicted effluent concentration. Spatial patterns of A. media δ15N and δ13C 

were correlated with patterns shown in its host alga, C. maschalocarpum. δ
13C ratios 

of A. media were, however, comparatively stable over the spatial scale examined here, 
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and δ15N showed a lower range of values than C. maschalocarpum in response to 

increasing predicted effluent influence. Where a direct trophic link between the alga 

and its herbivorous epifauna would typically result in δ13C and δ15N increases 

(enrichment) of ~ 1 ‰ and 2.2 – 3.4 ‰ for carbon and nitrogen, respectively (DeNiro 

and Epstein 1976, Vander Zanden and Rasmussen 2001, McCutchan et al. 2003), this 

is not evident in the isotope ratios of C. maschalocarpum and A. media (Fig. 4.3 and 

4.4). δ13C ratios of A. media were on average 0.79‰ lower than those of  

C. maschalocarpum. At relatively unimpacted sites to the east of the outflow point,  

A. media show δ15N ratios around 1-2‰ above those of their host plant. This 

relationship is obscured in sites receiving higher sewage concentration to the west of 

the outflow. While the patterns of isotope ratios in Figures 4.3 and 4.4 do not 

expressly distinguish C. maschalocarpum as a dietary component of A. media, they do 

indicate a degree of shared isotopic response of the two species to patterns of sewage 

influence. As the sampling procedure used to generate δ15N and δ13C values 

representative of C. maschalocarpum tissue used a homogenised sample of the entire 

alga, minus thallus and holdfast, it is possible that the diet of A. media was separated 

from this value based on selective feeding on certain parts of the alga. δ13C values of 

brown algae have been noted to vary across tissue types (Stevenson et al. 1984). 

Alternatively, the shared patterns of δ15N and δ13C values in A. media and  

C. maschalocarpum may indicate C. maschalocarpum as a partial component of the 

diet of A. media, or that other algal species (forming some part of its diet) in the 

vicinity of the host alga shared similar physical and chemical conditions for growth, 

and so shared patterns in isotopic composition.  
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P. elongatus showed increased δ15N (range ~3‰) and strongly decreased δ13C (range 

~6‰) in areas of high effluent influence. Because the δ15N signature of TBWWTP 

POM is similar to that of clean coastal and oceanic POM measured  in other studies 

(Cloern et al. 2002, Gartner et al. 2002) it is possible that high δ15N values of P. 

elongatus in ‘high impact’ sites show a movement of δ15N-enriched sewage DIN into 

the pelagic food chain. Due to dilution effects on sewage DIC is it unlikely that 

sewage DIC could similarly significantly influence δ13C levels of P. elongatus.  

 

Increased sewage influence at sites close to the outflow appears to be reflected in a 

reduction in P. elongatus δ13C signatures.  This is likely to reflect the feeding patterns 

of P. elongatus, a filter feeder of water-column particulates (Morton and Miller 1968). 

Typical marine POM δ13C signatures range from ~ –19‰ to –24‰ (Cloern et al. 

2002, Evans et al. 2006, Piola et al. 2006, Vizzini and Mazzola 2006). Because 

TBWWTP SPOM carbon (δ13C  = -27.4‰ ± 0.76 S.E) is separated from this, it is 

likely that an increase in dietary intake of SPOM at sites close to the TBWWTP 

outflow is the cause of depleted δ13C signatures of P. elongatus tissues in those areas. 

 

Conclusions 

 

The influence of sewage DIN δ15N signatures in C. maschalocarpum at high impact 

sites, and the large range in δ15N signatures between ‘low impact’ and ‘high impact’ 

sites suggest that C. maschalocarpum δ
15N signatures are particularly sensitive 

indicators of dissolved effluent availability. In addition, depleted δ13C levels in the 

tissue of the benthic filter-feeder P. elongatus only in areas of high particulate 

concentrations adds to the body of evidence that suggests benthic filter-feeders are a 
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suitable measure of dispersal of terrestrially-derived POM. Notably, the low δ13C 

values of POM released from this treatment plant facilitate this effect, and similarly, 

the 15N-enriched nature of TBWWTP DIN enables its sewage DIN to be traced. 

Tracing studies of this nature require dissolved and particulate isotope source 

signatures distinct from those nutrient sources available to organisms in natural state 

environments.  
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Chapter 5 - General Discussion 

 
 
Variability in 14N/15N fractionation in Ulva sp. as a function of light level during algal 

growth highlights the need for care in the design of impact assessments and trophic 

studies that use δ15N as a tracer of nitrogen flow. In particular, chapter 2 highlights the 

need for care in the design of δ15N studies  

1) across depth gradients 

2) that require comparisons of nitrogen loading or trophic linkages in situations 

where varying turbidity may affect the available light to algae.  

Some studies of nitrogen loading may require modification to traditional mixing 

models that calculate percentage contributions of various potential nitrogen sources 

(Smit 2001, Umezawa et al. 2002, Lapointe et al. 2005). Where depth strata vary 

consistently in light availability, it may be plausible to modify traditional mixing 

models to account for depth dependent fractionation effects. Potentially, such 

modifications would require an understanding of how fractionation is likely to vary 

across a gradient of light levels, as a function of species, and the relative availability 

of different inorganic forms of nitrogen. Notably, water column turbidity may be 

increased by eutrophication, via increases in phytoplankton densities (Short and 

Wyllie-Echeverria 1996, Greve and Krause-Jensen 2005).  

 

Studies of phytoplankton and terrestrial plants have shown considerable among-

species variability in 14N/15N fractionation (Waser et al. 1998, Kolb and Evans 2003). 

However, the mechanisms that control 14N/15N fractionation in algae are poorly 

understood (Handley and Raven 1992, Waser et al. 1998). Research opportunities 
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exist firstly in developing a mechanistic understanding of 14N/15N fractionation in 

algae, and secondly in identifying how environment-driven fractionation differences 

are likely to vary across taxonomic groups and macroalgal morphologies. Because 

macroalgae differ in their physiology of uptake, assimilation and storage of nitrogen, 

it is likely that some species of macroalgae will fractionate differently than others 

(Wallentinus 1984, Waser et al. 1998). Differences in δ15N levels of algal species 

living in close proximity to each other would suggest that this is the case in natural 

environments (Cloern et al. 2002, Vizzini et al. 2005). Species that fractionate more 

stably under different environmental conditions would be preferable species for δ15N 

tracer studies. These species will generate tissue δ15N ratios that are representative of 

the δ15N ratios of their source nitrogen consistently over the physical gradients 

common in impact assessments and at freshwater/marine boundary points (Ellis et al. 

2000, Huret et al. 2005). A mechanistic understanding of macroalgal nitrogen 

fractionation would aid in the selection of these species by researchers.  

 

The ability of Ulva sp. to assimilate considerable quantities of nitrate in unreduced 

form (Naldi and Wheeler 1999), combined with the acclimatisation of this species to 

reducing heavy nitrate loads under low light conditions shown in chapter 3, may 

account for the comparatively low 14N/15N fractionation found for Ulva sp. in this 

study relative to those in studies of phytoplankton growth on nitrate (Waser et al. 

1998, Needoba et al. 2003, Needoba et al. 2004). Phytoplankton show considerable 

fractionation effects under high nitrate and low light (Needoba and Harrison 2004), 

and there is evidence that the mechanism for fractionation during algal growth on 

nitrate is efflux of 15N-enriched internal pools of nitrate when the N assimilation 
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process is rate limited by the energetic requirements of nitrate reduction (Wada and 

Hattori 1978, Needoba et al. 2004).  

 

Further study on this mechanism and on the mechanism of fractionation during 

macroalgal growth on ammonium would require experimental facilities for keeping 

macroalgae alive in a closed system. In this manner it would be possible to 

completely control the level and δ15N signature of seawater DIN and measure change 

in the δ15N signature of this DIN. Analysis of this type would also require 

measurement of δ15N signatures of intracellular pools of nitrogen to isolate the stage 

of nitrogen assimilation at which isotope discrimination occurs, e.g., see Needoba et 

al. (2004).  

 

Chapter 2 shows that δ13C levels in macroalgae may vary considerably over gradients 

of sewage influence and nutrient enrichment. The experimental portion of this chapter 

showed that light and nutrient limitation may affect algal δ13C levels independently of 

source DIC δ13C signatures. Experimental manipulation of nitrogen and light supply 

within levels found in natural environments generated differences in δ13C signatures 

of ~ 11‰. Field measurements over a gradient of anthropogenic nutrient enrichment 

resulted in a range in algal δ13C levels of ~ 6.7‰. One of the potential consequences 

of the large differences in δ13C levels measured in this chapter relates to trophic 

studies that employ carbon isotopes in consumer tissues to deduce feeding patterns. 

The high variation in a macroalga shown here over short spatial and temporal scales 

suggests that considerable noise may be introduced into consumer feeding studies that 

extend over physical and chemical gradients that can affect algal δ13C levels. 

However, environmental influences on δ13C levels in natural algal populations extend 
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beyond the effects of light and nutrient limitation shown in this study. Algal δ13C 

signatures can also be affected by turbulence (Finlay 2004), and vary on geographical 

scales possibly as a result of temperature differences (Wiencke and Fischer 1990, 

Smit 2001). Because of this, particular attention in food source study design should be 

paid to generating ‘average’ δ13C values for food sources that are accurate over the 

spatial scales of the consumer’s feeding range, and care should be exercised in the 

interpretation of results where the mean δ13C ratios of possible food sources are 

closely spaced. 

 

Chapter 4 illustrates the use of δ15N signatures in a macroalga and grazer as a tracer of 

isotopically heavy sewage DIN from the dissolved fraction of sewage effluent, and 

δ
13C signatures in a filter-feeder as a tracer of sewage particulates. The successes of 

these tracing methods depend on the significant separation of effluent source 

signatures from nutrient sources in unimpacted environments. For effluent from the 

TBWWTP, macroalgal δ15N ratios are a good proxy for dissolved effluent dispersal 

patterns because the δ15N ratio of effluent DIN is considerably higher than that of the 

DIN generally available to macroalgae in unimpacted areas (Gartner et al. 2002, 

Bedard-Haughn et al. 2003). With reference to appendix 5, it should not be assumed 

that this effect is applicable to all tertiary wastewater treatment plants. The treatment 

plants at Moa Point and Hutt Valley appear to generate DIN δ15N signatures within 

the range commonly associated with unimpacted areas (Rogers 1999, Bedard-Haughn 

et al. 2003, Rogers 2003, Savage and Elmgren 2004).  

In contrast, δ13C signatures would appear to be stable across wastewater treatment 

plants and treatments. The mean δ13C signature across all plants and dates measured 

here (-25.85‰ ± 0.236 S.E.) would appear to be typically (but not always) lower than 
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δ
13C signatures for POM across a wide range of coastal and oceanic systems (Cloern 

et al. 2002, Evans et al. 2006, Piola et al. 2006, Vizzini and Mazzola 2006).  

 

There are also few macroalgae that generate average δ13C signatures lower than the 

δ
13C signatures for sewage particulates measured here (Raven et al. 2002). Generally 

these are macroalgae that are not able to utilize isotopically heavier HCO3
- as a carbon 

source (Raven et al. 1995, Raven et al. 2002). Because of this, sewage POM is likely 

to generate more negative δ13C signatures in the tissue of most marine organisms that 

consume it. Notably however, the difference between sewage POM and alternative 

sources of particulate carbon is likely to be less in areas affected by natural terrestrial 

sources of POM (Moore and Suthers 2005).  

 

Patterns observed throughout this thesis highlight a particular need for greater 

understanding of the drivers of isotopic change in marine primary producers. An 

understanding of these drivers is required to interpret spatial and temporal variability 

in consumer isotope ratios. Studies that use isotope ratios to deduce patterns of 

enrichment and consumer feeding commonly examine the tissues of organisms with 

slow turnover times, and that feed over wide spatial scales (Gaston et al. 2004, Gaston 

and Suthers 2004, Hadwen and Arthington 2007). Where the isotopic composition of 

nutrient sources such as algae vary spatially and temporally, there is no guarantee that 

the isotopic composition of the organism is proportional to the mean isotopic values 

of its nutrient sources. For example, seasonal patterns in turnover of consumer tissues 

(Perga and Gerdeaux 2005), combined with seasonal patterns of isotopic change in 

algae (Cloern et al. 2002, Vizzini and Mazzola 2003) provide a mechanism for 

separation of consumer isotope ratios from the mean values of the food they have 
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consumed. Uneven spatial patterns in isotope ratios of a single food/nutrient source, 

combined with spatially uneven feeding patterns would similarly provide a 

mechanism for separation of consumer isotope ratios from the mean values of the 

food within their feeding range.  

While temporal and spatial variability in algal isotope ratios can hinder interpretation 

of consumer isotope data, when understood it could potentially provide insight into 

small-scale spatial and temporal variability in ecological systems.  
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Appendices 

Appendix 1 - Measurement of very low ammonium concentrations 

 

In order to accurately measure the very low concentrations of ammonium present in 

scrubbed seawater it was necessary that I modified the methods of Koroleff (1983) by 

using a distilled water blank instead of a low-ammonium seawater blank. Because the 

deionised water blank was different in chemical composition (other than ammonium) 

from the samples being measured I compared the response of the distilled water to 

seawater in spectrophotometer absorbance tests. I generated three standard curves 

using distilled water, scrubber seawater and coastal (Goat Island) seawater with a 

gradient of artificial ammonium additions between 0 and 40µM. Parallel lines would 

indicate an identical linear spectrophotometer response to the increases of ammonium 

for all three blanks. The zero blank for all these measurements was made using 

distilled water with no added ammonia. Notably, on the day of this test Goat Island 

seawater was depleted (to near zero) in ammonium, and this is reflected in the similar 

y-intercepts of all three samples. While absorbance appears to increase slightly in 

distilled water samples when ammonium concentrations are high, the relationship 

appears stable at concentrations less than 20µM. (Fig. 6.1, Table 6.1).  
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Table 6.1 Regressions on ammonium standard curve with alternative blanks   

Curve Adjusted 
R2 

Estimate 
S.E. 

Slope Y 
intercept 

Intercept 
S.E. 

p 

Deionised water 0.9999 0.0016 0.0156 -0.0017 0.0009 <0.0001 

Scrubber 
seawater 

0.9998 
  

0.0028 0.0147 -0.0004 0.0016 <0.0001 

Goat Island 
seawater 

0.9997 0.0030 0.0144 0.0088 0.0018 <0.0001 
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Figure 6.1 Spectrophotometer standard curves with ammonium additions to distilled water 
(white circles), scrubber seawater (black triangles), and Goat Island seawater (pink circles).  
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Appendix 2 – Ulva sp. tissue chlorophyll levels following experiment Chapter 3 

 

At the conclusion of the experimental period of chapter 3, I measured tissue 

chlorophyll content, and took photos of Ulva sp. tissue from each treatment under 

magnification. To measure chlorophyll content I chopped the algal tissue and soaked 

it for 24 hours at 4°C in a solution of 4:1 methanol:dimethylsulphoxide (v:v)(Duncan 

and Harrison 1982).  I removed the algae and measured absorbance of the solution at 

650, 665 and 750nm. I converted the spectrophotometer measurements of absorbance 

to concentrations of chlorophyll a and b using formulae from Holden (1965).  

The very low chlorophyll levels in the ‘ambient light/no added nutrient’ treatment 

(Table 7.1, Fig. 7.1 and 7.2) suggest that photosynthesis and growth in algae receiving 

this treatment was likely to have been limited by a lack of nitrogen (Healey 1973, 

Radmer and Kok 1977). The reduction in chlorophyll storage in nitrogen limited 

conditions is likely to have been caused by reduced chlorophyll production, and 

potentially via catabolism of chlorophyll compounds to supply nitrogen to other 

cellular processes (Bird 1982).   
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Table 7.1 Results of two-way ANOVA examining the influence of nutrient treatment 

and light treatment on chlorophyll (a + b) content in Ulva sp. (Chapter 3 - Day 14) 

Response 
factor 

Source of 
variation 

df SS MS F p 

Chlorophyll 
 a + b 

Nutrient  1  46.10   46.10 21.54  0.0017 

 Light  1 191.5  191.5 89.48 <0.001 

 Nutrient*light 1   0.056    0.056   0.0262  0.875  

 Residuals 8 17.12  2.14                        

Tukeys HSD post-hoc test between combinations of light and nutrient treatments.  

Comparison Difference  Lower Upper P adjusted 

Ammonium/ 
Shade 

Ammonium/ 
Light 

4.057 0.2314   7.882 0.0381 

Control / 
Light 

Ammonium/ 
Light 

-7.853 -11.679 -4.028 <0.001 

Control / 
Shade 

Ammonium/ 
Light 

-4.070   -7.895 -0.2448 0.0375 

Control / 
Light 

Ammonium/ 
Shade 

-11.91 -15.735 -8.085 <0.001 

Control / 
Shade 

Ammonium/ 
Shade 

-8.127 -11.952 -4.3014 <0.001 

Control / 
Shade 

Control/ 
Light 

3.783   -0.0419   7.609 0.0525 
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Figure 7.1 
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Figure 7.2 
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Appendix 3 – Within site and date variability in transplanted Ulva sp. δ13C, δ15N, %C and 

%N data 

 
In order to gauge the between-plant variability in isotope values and C and N content 

at each mooring on each date, I sampled three whole plants from two sites on each of 

the three sampling dates. Sampling and analysis of algae was carried out following 

methods described in chapters 2 and 3. The sites for repeat sampling were selected to 

be representative of the highest and lowest available levels of sewage impact. Based 

on seawater nutrient concentrations, I judged site W3 as the most impacted site, and 

site E4 as the least impacted. Means and standard errors are presented in Table 8.1.  
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Table 8.1. Within site and date variability of δ13C, δ15N, %C and %N in transplanted 
Ulva sp. at two sites from the mooring array situated around the TBWWTP as 
described in chapter 2. Shown are the figures for the single (whole plant) sample used 
in statistical analyses, a mean value generated from individual analysis of three whole 
plants from the same site and date, and the standard error of that mean. The sites 
selected, W3 and E4, are representative of a high impact and low impact site 
respectively.  

Site   E4 (surface)

Nov   %C %N δ13C δ15N 

Single sample  30.38 1.245 -22.185 7.19 
Triplicate mean  31.67667 1.331667 -21.1283 7.43 

Triplicate standard error 0.85861 0.045674 0.576602 0.187705 

Jan       

Single sample  31.86 1.45 -19.495 10.285 
Triplicate mean  31.82 1.55 -19.465 9.428333 

Triplicate standard error 0.035119 0.076376 0.032532 0.486624 

March       

Single sample  37.175 3.18 -17.14 7.725 
Triplicate mean  35.80833 3.243333 -17.08 7.158333 

Triplicate standard error 0.701536 0.053645 0.147422 0.324786 

 

Site   W3 (surface) 

Nov   %C %N δ13C δ15N 

Single sample  34.615 2.07 -19.045 16.765 
Triplicate mean  35.17167 2.173333 -19.3817 18.505 

Triplicate standard error 0.401002 0.053645 0.168333 1.575471 

Jan       

Single sample  35.495 2.225 -13.1 22.21 
Triplicate mean  34.58167 2.458333 -14.4167 21.98667 

Triplicate standard error 0.548105 0.137184 0.677208 0.323024 

March       

Single sample  35.145 2.945 -13.415 16.98 
Triplicate mean  36.43167 2.965 -13.8717 16.39333 

Triplicate standard error 0.643495 0.10153 0.414893 0.673457 
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Table 8.1. continued 

Site   E4 (4m depth) 

Nov   %C %N δ13C δ15N 

Single sample  41.075 2.655 -19.13 7.215 
Triplicate mean  36.19167 2.351667 -19.0933 7.005 

Triplicate standard error 2.466118 0.154389 0.274853 0.156072 

Jan       

Single sample  29.87 1.22 -17.13 7 
Triplicate mean  29.12333 1.24 -18.01 6.983333 

Triplicate standard error 0.373333 0.030551 0.448442 0.101379 

March       

Single sample  37.51 4.12 -16.35 7.205 
Triplicate mean  34.83667 3.64 -16.6 6.485 

Triplicate standard error 1.339469 0.246847 0.180278 0.367163 

 

Site   W3 (4m depth) 

Nov   %C %N δ13C δ15N 

Single sample  30.11 1.9 -20.85 8.895 
Triplicate mean  32.455 1.975 -21.55 9.5975 

Triplicate standard error 1.914684 0.061237 0.35473 0.573589 

Jan       

Single sample  34.685 1.37 -18.94 11.82 
Triplicate mean  35.045 2.156667 -18.08 11.77333 

Triplicate standard error 0.757809 0.54364 0.502394 0.146211 

March       

Single sample  32.725 2.89 -15.43 9.935 
Triplicate mean  36.10833 3.18 -16.2933 8.295 

Triplicate standard error 1.703693 0.145717 0.496532 0.830226 
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Appendix 4 – Nitrogen content of Carpophyllum maschalocarpum in the vicinity of the 

TBWWTP 

 

To examine the effect of sewage nitrogen enrichment on the nitrogen status of the 

macroalga Carpophyllum maschalocarpum I examined tissue nitrogen content (%N) 

at a gradient of sites at increasing distances from the TBWWTP as detailed in chapter 

5. I used the same tissue samples and analysis to collect %N data that I employed to 

collect δ13C and δ15N measurements in that chapter.  

Patterns of nitrogen enrichment in C. maschalocarpum did not appear to follow 

general patterns of sewage dispersal. Rather, C. maschalocarpum %N levels appeared 

elevated at low-impact sites to the east of the outflow (compare Fig. 9.1 with Fig. 

2.4).  
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Figure 9.1. Time averaged nitrogen content of C. maschalocarpum tissue by site. Site marked C on the x-axis 
represents the sampling site at the outflow point to the TBWWTP, sites marked W1-W5 are at increasing distances 
to the west of the outflow, E1-E5 at increasing distances to the East of the outflow. Error bars +/- 1 S.E. 
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Appendix 5 –Variability in sewage effluent δ
13

C and δ
15

N signatures 

 

To test whether values of source δ13C and δ15N signatures found in sewage effluent 

varied considerably between treatment plants, I sampled particulate δ13C and δ15N and 

DIN concentration and δ15N signatures concurrently at two further tertiary processing 

plants in the Wellington area (at Moa Point and Hutt Valley). Staff from these 

facilities collected samples at ~9am on sampling days. Methods for my sampling and 

sample processing of effluent from these additional facilities are identical to those for 

TBWWTP detailed in chapter 2 (for dissolved effluent constituents) and chapter 5 (for 

particulates). I used 2-way ANOVAs to test the effects of treatment, treatment plant 

and their interaction on the DIN concentrations and δ15N signatures of dissolved 

effluent, and also the δ13C and δ15N signatures of effluent POM. DIN concentration 

and DIN δ15N data were log-transformed prior to ANOVA analysis to improve 

homogeneity of variances.  

 

DIN concentration and δ15N signatures of sewage DIN varied among treatment plants, 

treatment processing, and there was a significant interaction between these two factors 

(Table 10.1, Fig. 10.1). Overall, tertiary processing reduced DIN and increased δ15N, 

though the size of the tertiary processing effect varied greatly among treatment plants 

(i.e., the likely source of the significant interaction). δ15N signatures of DIN were 

always higher than those for POM N from the same treatment plant. δ13C signatures 

of sewage POM were not significantly separated either between treatments or 

between treatment plants (Table 10.2, Fig. 10.2).  
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Figure 10.1 
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Figure 10.2 
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Notably, δ15N signatures of DIN in tertiary processed effluent discharged from both 

Moa Point and Hutt Valley plants during the period of my sampling were within the 

range of DIN δ15N signatures commonly associated with ‘clean’ coastal areas (Spies 

et al. 1989, Rogers 1999, Smit 2001, Gartner et al. 2002, Savage et al. 2002, Bedard-

Haughn et al. 2003, Savage et al. 2004; and see Table 1.2). The similarity of sewage 

DIN δ15N signatures leaving these facilities and ‘clean’ coastal nitrogen signatures is 

potentially inconvenient for researchers/managers wishing to trace dispersal of 

dissolved nitrogen from the Hutt Valley and Moa Point (and other similar) facilities 

using δ15N signatures in primary producers. Primary producer tissue generated in 

areas impacted by the Moa Point and Hutt Valley outflows during the sampling period 

are likely to have δ15N signatures similar to primary producers from ‘clean’ areas.  

 

The small increase in DIN δ15N signatures between primary and tertiary processed 

effluent at the Moa Point and Hutt Valley WWTPs matched low nitrogen removal at 

these treatment facilities. The reduction and oxidation processes during sewage 

secondary and tertiary processing facilitate the removal of nitrogen from the effluent 

in the form of NH4 and N2 gases. Fractionation occurs during these processes 

generating heavier DIN δ15N signatures in the remaining dissolved (tertiary 

processed) nitrogen pool (Macko and Ostrom 1994, Bedard-Haughn et al. 2003). 

Given the similarity of both DIN δ15N signatures and DIN concentration in primary 

effluent at all facilities I would suggest that the higher δ15N signature of TBWWTP 

tertiary DIN is a reflection of more efficient N-removal processes and hence greater 

fractionation of the sewage DIN pool at this facility.  
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Table 10.1. ANOVA analysis of sewage dissolved inorganic nitrogen (DIN) 
concentration change and DIN δ15N change as a result of tertiary processing at three 
wastewater treatment plants 

Response factor Source of 
variation 

df SS MS F p 

Log (DIN 
concentration) 

Plant 2 0.685 0.342 51.77 <0.001 

 Treatment 1 1.085 1.085 164.1 <0.001 
 Plant* 

Treatment 
2 1.029 0.514 77.80 <0.001 

 Residuals  0.079  0.007   

Response factor Source of 
variation 

df SS MS F p 

Log (δ15N 
(DIN)) 

Plant 2 0.334 0.167 22.79 <0.001 

 Treatment 1 0.336 0.336 45.80 <0.001 

 Plant* 
Treatment 

2 0.147 0.073 9.99 0.003 

 Residuals  0.088 0.007   

 
 
Table 10.2. ANOVA analysis of sewage POM δ13C and δ15N change as a result of 
tertiary processing at three wastewater treatment plants 

Response factor Source of 
variation 

df SS MS F p 

Particulate δ13C Plant 2 1193.1 596.5 1.996 0.179 
 Treatment 1 3.1 3.1 0.010 0.921 
 Plant* 

Treatment 
2 3.3 1.7 0.006 0.995 

 Residuals 12 3586.2 298.8   

Response factor Source of 
variation 

df SS MS F p 

Particulate δ15N Plant 2 98.04 49.02 5.002 0.026 
 Treatment 1 8.067 8.067 0.823 0.382 
 Plant* 

Treatment 
2 6.789 3.394 0.346 0.714 

 Residuals 12 117.6 9.800   
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Figure 2.1

Location of field assessment of sewage effluent. Left panel gives location of sampled region within New Zealand, right panel shows the spatial 

arrangement of sites located ~50 m off the shoreline to the east and west of the outflow pipe of the Titahi Bay wastewater treatment plant. Sites 

are labelled sequentially to reflect distance from the discharge site (C), to the east (generally upcurrent) or to the west (downcurrent). 



Figure 2.2

‘A’ Concentration of nitrogen ions in effluent leaving the Titahi Bay WWTP over the period of the field assessment. 

Lines from bottom: dotted line gives nitrite concentration, dashed line gives nitrate concentration, solid line gives ammonia/ammonium

concentration. Dotted/dashed line (top) gives total inorganic nitrogen (TIN). 

‘B’ Flow rate of effluent leaving Titahi Bay WWTP over the period of the field assessment. Data courtesy of Hadley Bond, Porirua City Council.
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Figure 2.3. Diagram of an individual algal growth chamber, a component of the outdoor chemostat used to 

manipulate nutrients and light under turbulent flow conditions.



Figure 2.5. Concentrations of Ammonium (A), Nitrate (B),Nitrite (C), TIN (D), phosphate (E) ions, and salinity (F) in seawater sampled at surface 

(unshaded bars) and 4m depth (shaded bars) for an array of 11 sites near the Titahi Bay WWTP during summer 2004-2005. 

Given are mean concentrations +/- S.E. n = 5.
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Figure 2.6. Concentrations of Ammonium (A), Nitrate (B), Nitrite (C), TIN (D), phosphate (E) ions, and salinity (F) in seawater samples, regressed 

against first principle component scores (PC1) for sewage influence for the site at which they were taken. 

Plot A, r2 = 0.2278, Plot B, r2 = 0.6341, Plot C, r2 = 0.0340, Plot D, r2 = 0.6170,Plot E, r2 = 0.3265, Plot F, r2 = 0.1357. 
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Figure 2.7. A. Time-averaged means of δ13C ratios of Ulva sp. tissue taken from all sites. B. Time-averaged means of δ13C ratios of Ulva

sp. tissue taken from all sites. C. Time-averaged means of tissue nitrogen content for Ulva sp. tissue taken from all sites. Unshaded bars 

represent surface sites, shaded bars are from sites at 4 metres depth. n= 3, error bars +/- S.E. January and March replicates were lost 

for site E5, n=1 for this site. 
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Figure 2.8. Response of tissue 15N signatures to variation in sewage effluent concentration estimated from the first principal 

component score of a PCA (see methods). Fitted lines were generated from a logistic regression (see Table 2). Dashed line 

fitted to white triangles represents the predicted response of Ulva sp. tissue  to sewage concentrations near the seawater 

surface while  solid line fitted to black squares represents the predicted response of Ulva sp. to sewage concentrations at 4m 

depth. P-values given in each panel evaluate the null hypothesis that the responses of  Ulva sp. to sewage concentrations 

are the same at the surface and at depth. Relationships are evaluated separately for three sampling periods (A) October-

November (B) November-January, (C) January-March.
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Figure 2.9. Regression of tissue δ13C ratios of whole Ulva sp. individuals collected from around the 

TTBWWTP against first principal component (PC1) score for sewage influence for the 

site at which they were collected. Plots A, B and C show δ13C ratios from algae collected in November, Janurary

and March, respectively. White circles show surface sites, black circles show sites at 4 metres depth. Solid lines are

used for significant (p < 0.05) regressions of surface sites, dashed lines are used for significant regressions of 4m sites. 

Plot A, regression surface; r2 = 0.2255

Plot B, regression surface; r2 = 0.5965

Plot C, regression surface; r2 = 0.5502, regression 4m; r2 = 0.2917
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Figure 2.10. Regression of tissue nitrogen content of whole Ulva sp. individuals collected from around the TBWWTP 

against first principal component (PC1) score for sewage influence for the site at which they were collected. Plots A, B and 

C show tissue nitrogen content from algae collected in November, January and March, respectively. White circles show 

surface sites, black circles show sites at 4metres depth. Solid lines are used for significant (p < 0.05) regressions of surface

sites, dashed lines are used for significant regressions of 4m sites.

Plot A, regression surface; r2 = 0.6310 
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Figure 2.11. Regression of tissue δ13C against tissue nitrogen content from whole Ulva sp. individuals collected 

from around the TTBWWTP. Plot A, B and C show data from algae collected in November, January and March, 

respectively. White circles show surface sites, black circles show sites at 4metres depth. Solid lines are

used for significant (p < 0.05) regressions of surface sites, dashed lines are used for significant regressions of 4m 

sites. 

Plot A, regression surface; r2 = 0.6310

Plot B, regression surface; r2 = 0.2609, regression 4m; r2 = 0.4546

Plot C, regression 4m; r2 = 0.6087
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Figure 2.12. Effects of light availability and nutrient source on fractionation of nitrogen (A) and tissue 
nitrogen content (B) of Ulva sp. from the 15N laboratory experiment (Experiment 1). Whiskers on plot give 

data range, dark bars at the centre of boxes represent the median for each treatment, upper and lower 

limits of each box give the upper and lower quartiles for each treatment. 
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Figure 2.13. Effects of light and nutrient availability on fractionation Final tissue δ13C ratio (‰)
(A) and tissue nitrogen content (B) of Ulva sp. from the 13C laboratory experiment (experiment 2). 

Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, 

upper and lower limits of each box give the upper and lower quartiles for each treatment. 
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Figure 2.14. Effects of light and nutrient availability on growth rate of Ulva sp in 15N laboratory experiment (A) and 13C

laboratory experiment (B). Growth rates for A were measured every two days, growth rates for B were averaged over the length of 

the experiment. 

A. Triangles are chambers receiving ammonium as a nitrogen source, squares are chambers receiving ammonium as a nitrogen 

source. Shaded chambers are represented by shaded symbols, unshaded chambers are represented by unshaded symbols. 

Errors bars +/- 1 S.E n=4 for each point. 

B. Whiskers on plot give data range, dark bars at the  centre of boxes represent the median for each treatment, upper and lower 

limits of each box give the upper and lower quartiles for each treatment. 
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Figure 3.1. Representation of nitrate reduction and assimilation in algae. Nitrate (NO3-) is reduced to nitrite (NO2-)

and then ammonium (NH4+), then converted to glutamine and subsequent amino acids via the Glutamine synthetase/glutamine : 

2-oxoglutarate aminotransferase (GS/GOGAT) pathway. Figure modified from Syrett (1981)

Further amino acids and proteins



4 9 14

-0.2

-0.1

0.0

0.1

0.2

Day Treatment

Ammonium Nitrate

Light Shaded Light Shaded

0

0.10

0.15

0.20

0.25

0.05

0.35

0.30
G

ro
w

th
 r

a
te

 d
if

fe
re

n
c
e
s
 

fr
o

m
 d

a
il

y
 m

e
a
n

s
 (

d
-1

)

G
ro

w
th

 r
a
te

 (
d

-1
)

A
B

Figure 3.2.  A. Experiment 1 - 2004/2005. Time series of residual growth rates of Ulva sp. after accounting for changes in growth rate due to 

changing ambient environmental conditions (e.g. sunlight). Figures displayed are treatment means of chamber growth rate – mean growth rate 

for all chambers during that period. Given are means +/- S.E. n = 3 for each point. Ammonium treated plants given as triangles, nitrate treated 

plants given as circles. Ambient light treated plants given as white symbols, reduced light treated plants given as black symbols. 

B. Experiment 1. - 2004/2005. Time-averaged growth rates (+/- S.E.) for all treatments. n = 3 for each point Whiskers on plot give data range, 

dark bars at the centre of boxes represent the median for each treatment, upper and lower limits of each box give the upper and lower 

quartiles for each treatment. 
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Figure 3.3 

Plot A. Residuals of growth rate means for treatments for experiment 2. - 2005/2006. Ammonium treated 

plants are represented by triangles, nitrate treated plants are represented by circles. Ambient light treated 

plants have white symbols, reduced light treated plants have black symbols. Given are means +/- S.E.

Plot B. Residuals of growth rate means for treatments for experiment 3 - 2005/2006. Ammonium treated 

plants are represented by triangles, nitrate treated plants are represented by circles. Light treated plants 

have white symbols, reduced light treated plants have black symbols. Given are means +/- S.E.

Plot C. Mean growth rates for all treatments – Experiment 2. – 2005/2006 

Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, 

upper and lower limits of each box give the upper and lower quartiles for each treatment

Plot D. Mean growth rates for all treatments – Experiment 3. – 2005/2006 Whiskers on plot give data range, 

dark bars at the centre of boxes represent the median for each treatment, upper and lower limits of each 

box give the upper and lower quartiles for each treatment
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Figure 3.4. 

Growth differences between nitrate and ammonium plants grown in shaded conditions in Experiment 2. -

2005/2006 (Plot A) and Experiment 3 (Nutrient source acclimatised tissue) 2005/2006 (Plot B). Each point 

represents differences in two-daily growth rates between the two treatments. 
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Figure 3.5 Plot A. Mean tissue glutamine levels for all treatments. Tissue samples taken on day 9 of Experiment 1. – 2004/2005. 

Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, upper and lower limits of 

each box give the upper and lower quartiles for each treatment

Plot B. Mean tissue glutamine levels for all treatments. Tissue samples taken on day 14 of Experiment 1. – 2004/2005. Whiskers on plot 

give data range, dark bars at the centre of boxes represent the median for each treatment, upper and lower limits of each box give the 

upper and lower quartiles for each treatment
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Figure 3.6. 

Plot A. Mean tissue Total Free Amino Acid (FAA) levels for all treatments. Tissue samples taken on day 9 of Experiment 1. –

2004/2005. Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, upper and

lower limits of each box give the upper and lower quartiles for each treatment

Plot B. Mean tissue Total Free Amino Acid (FAA) levels for all treatments. Tissue samples taken on day 14 of Experiment 1. –

2004/2005. Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, upper and

lower limits of each box give the upper and lower quartiles for each treatment
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Figure 3.7 Plot A. Mean tissue nitrogen content for all treatments. Tissue samples taken on day 9 of Experiment 1. –

2004/2005. Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, 

upper and lower limits of each box give the upper and lower quartiles for each treatment

Plot B. Mean tissue nitrogen content for all treatments. Tissue samples taken on day 14 of Experiment 1. – 2004/2005. 

Whiskers on plot give data range, dark bars at the centre of boxes represent the median for each treatment, upper and 

lower limits of each box give the upper and lower quartiles for each treatment
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Figure 4.1. 

Plot A - δ15N levels in TBWWTP dissolved inorganic nitrogen (DIN) and sewage particulate organic matter (POM) 

Plot B - δ13C levels of sewage POM. Black bars give values for primary processed effluent, white bars give values for 

tertiary processed effluent. Error bars +/- 1 S.E. 
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Figure 4.3. Time averaged δ13C ratios in tissue of C. maschalocarpum (A), A longipes (B) and P. elongatus (C) by site. Site marked C on the 

x-axis represents the sampling site at the outflow point to the TBWWTP, sites marked W1-W5 are at increasing distances to the west of the 

outflow, E1-E5 at increasing distances to the East of the outflow. n=3, Error bars +/- 1 S.E.  
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Figure 4.4. Time averaged tissue δ15N values in C. maschalocarpum (A), A longipes (B) and P. elongatus (C) by site. Site 

marked C on the x-axis represents the sampling site at the outflow point to the TBWWTP, sites marked W1-W5 are at 

increasing distances to the west of the outflow, E1-E5 at increasing distances to the East of the outflow. n=3, error bars 

+/- 1 S.E.  
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Figure 4.5. Regression plots of the relationship between tissue δ13C and δ15N values in individual  C. maschalocarpum plants and those 

of the epifaunal grazer A. longipes collected from their surface. 
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Figure 4.6. Tissue δ13C ratios of C. maschalocarpum (plot A), A. longipes (Plot B), and P. elongatus (Plot C) at 

distance from the TBWWTP. Data points are marked with black circles (east sites), white circles (west sites),

and pink triangles (centre site). Significant effects of distance or direction in ANCOVA analysis are highlighted 

with regression lines through separate East or West data sets. Slopes and intercepts of regression lines presented 

are based on separate regression analysis of ‘surface’ or ‘4m’ data sets. Centre sites are not included in regression fits.   
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Figure 4.7. Tissue δ15N ratios of C. maschalocarpum (plot A), A. longipes (Plot B), and P. elongatus (Plot C) at distance from the 

TTBWWTP. Data points are marked with black circles (east sites), white circles (west sites), and pink triangles (centre site). 

Significant effects of distance or direction in ANCOVA analysis are highlighted with regression lines through separate East or West 

data sets. Slopes and intercepts of regression lines presented are based on separate regression analysis of ‘surface’ or ‘4m’ data 

sets. Centre sites are not included in regression fits.   
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Figure 4.8. δ15N vs δ13C plots of C. maschalocarpum (Plot A), A. longipes (Plot B) and P. elongatus (Plot C) at 11 sites 

with varying sewage influence. Shown are time averaged values. Standard errors for time averaged means of δ13C and 

δ15N are shown in figures 5.3 and 5.4 respectively. 



Figure 7.1 Magnification of Ulva sp. cells after treatment with the factorial regime of light and nutrient

additions described in the experiment from chapter 2. Photos above correspond to

(Photo A - ambient light/no nutrient addition), (Photo B - Ambient light, added 10µM ammonium and 1µM Phosphate)

(Photo C - Shaded/no nutrient addition), and (Photo D - Shaded/ added 10µM ammonium and 1µM Phosphate). 
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Figure 7.2. Effects of light and nutrient availability on the chlorophyll content of Ulva sp. tissue after 14 days 

of sustained growth. Whiskers on plot give data range, dark bars at the  centre of boxes represent the 

median for each treatment, upper and lower limits of each box give the upper and lower quartiles for each 

treatment. 
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Figure 10.1. Dissolved inorganic nitrogen (DIN) concentration (A) and DIN δ15N signature (B) in primary and 

tertiary processed effluent at three WWTP’s in the Wellington region. Black bars give values for primary 

processed effluent, white bars give values for tertiary processed effluent. n =3, Error bars +/- 1 S.E. 
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Figure 10.2. δ15N (plot A) and δ13C (plot B) ratios of the particulate fraction of effluent in primary (black bars) and 

tertiary (white bars) processed effluent from WWTPs in the Wellington region. n=3,  Error bars +/- 1 S.E. 
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