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Abstract

The advent of new technology for extracting genetic information from tissue samples

has increased the availability of suitable data for finding genes controlling complex

traits in plants, animals and humans. Quantitative trait locus (QTL) analysis relies

on statistical methods to interpret genetic data in the presence of phenotype data

and possibly other factors such as environmental factors. The goal is to both detect

the presence of QTL with significant effects on trait value as well as to estimate their

locations on the genome relative to those of known markers.

This thesis reviews commonly used statistical techniques for QTL mapping in

experimental populations. Regression and likelihood methods are discussed. The

mixture-modelling approach to QTL mapping is explored in some detail. This the-

sis presents new matrix formulas for exact and convenient calculation of both the

Observed and Fisher information matrices in the context of Multinomial mixtures

of Univariate Normal distributions. An extension to Composite Interval mapping is

proposed, together with a hypothesis testing strategy which is robust enough to de-

tect existing QTL in the presence of slight deviations from model assumptions while

reducing false detections.
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Chapter 1

Introduction

A trait is a quantitative or qualitative characteristic of an individual that is observ-

able and that is used to define a phenotype or character of interest. Phenotypes are

generally classified according to the type of trait values (discrete/qualitative, con-

tinuous/quantitative) used to define them, or according to the mode of inheritance

(Mendelian inheritance, complex inheritance) which is hypothesized by the analyst.

Gelderman (1975) coined the phrase Quantitative trait locus (or loci) (QTL) to mean

a gene (or genes) controlling a quantitative character.

QTL detection techniques use statistical tools to determine if genes significantly

affecting the expression of a trait exist within a given search region on a particular

chromosome. QTL detection aims to estimate genetic effects and mean trait values

within genotype groupings.

QTL mapping goes further, by using more specialized statistical tools to determine

approximate QTL positions relative to those of other genes, called markers, whose

chromosomal locations are known. QTL mapping estimates the genetic distance

between a QTL and a marker. The genetic distance is the number of crossovers or

recombinations that occur between the two loci during meiosis, whereas the physical

distance between them is the number of nucleotide pairs (base pairs) between the loci.
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Genetic distance is measured in Morgans or centiMorgans (cM) , where a Morgan is

the distance over which one recombination event is expected to occur per generation,

and one centiMorgan is equal to 0.01 Morgans.

The relationship between genetic distance and physical distance can vary at dif-

ferent points along a chromosome and it varies from species to species. In humans,

1cM is approximately equal to one million base pairs. QTL analysis is motivated by

the need to understand the mechanisms governing one or more quantitative traits, to

find the genes involved and to understand their cellular functions.

In studies of agronomically important plants and animals, the traits which cap-

tivate the attention of researchers are those which affect productivity. Consider for

example, the QTL analysis of soybean seed protein and seed oil by Chung et al. (2003)

where the trait-values were assayed using near-infrared reflectance spectroscopy. This

method enabled the protein content and seed oil to be quantified by weight (in grams

per kilogram of dried meal), so that the values were suitable for quantitative data

analysis.

Price et al. (1997) analysed genetic contributions to drought resistance in up-

land rice by searching for associations between genetic markers and two shoot-related

mechanisms, stomal closure and leaf rolling, which are evident in rice and which re-

duce transpirational water loss. They measured stomal closure by using a special

instrument called a porometer and then they created three trait assessments from

the porometer readings: stomal resistance before excision, time taken after excision

to reach the fastest rate of stomal closure, and a score of the rate of stomal closure

from one to four (slowest to fastest), based on visual assessment of plots of stomal

resistance against time. They measured leaf rolling by the time (in minutes) taken

for a young fully-expanded leaf to completely roll up after it was cut from the plant

and placed on a flat bench. These traits (along with the corresponding genetic data)

were separately analysed in order to search for QTL.
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Another example is the QTL mapping study carried out by Spelman et al. (1999),

involving New Zealand dairy cattle. They examined 17 non-production traits includ-

ing traits such as adaptability to milking, shed temperament, stature, rump width,

rump angle, live weight, udder support, teat placement and the farmer’s overall opin-

ion of each cow. The 17 traits were subjectively scored on a 9-point scale, where

one and nine represented biological extremes, so we may say that these were pseudo-

quantitative values.

In Human genetics and related studies the traits of interest are generally those

associated with health and fitness or with disease susceptibility. For example, in or-

der to conduct a genome-wide search for QTL underlying asthma, Xu et al. (2001)

recorded several traits from individuals in a sample of 533 Chinese families. They

studied nine asthma-related phenotypes including forced expiratory volume in one

second, airway responsiveness to bronchorestrictors and bronchodilators, serum total

immunoglobulin E (IgE), serum-specific immunoglobulin E, eosinophil count in pe-

ripheral blood and skin-prick tests to three different allergens. The paper by Xu et al.

(2001) gives very good detail on exactly how each phenotype was measured.

Animal models are often used to study the genetics of some diseases that affect

human populations. Animal models (usually mouse models) have the advantage that

they allow a researcher to implement controlled environments for trait development.

In laboratory mice, traits may be induced by chemicals, by diet, by other environ-

mental determinants or by genes.

The use of laboratory animals allows controlled breeding designs to be imple-

mented so that an experimenter can limit the amount of genetic variation that occurs

within the population. Also, very large sample sizes can often be obtained. Moreover,

certain trait assay methods which cannot be applied to human samples can be used

when working with animal models. For example, in order to study the genetics of two

risk factors (lipoprotein levels and obesity) associated with coronary artery disease,
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Warden et al. (1993) used a mouse model. Warden et al. (1993), measured several

traits related to obesity, including body weight, body mass index, percent body fat.

Some animals were sacrificed and dissected to obtain the weights (in grams) of three

intra-abdominal fat pads as additional measures of obesity.

The examples above hint at the variety of traits and trait assessment schemes

which are used in genetic association studies. Notice that trait assay can be carried

out by methods that are as diverse as the use of precision instrumentation and the use

of (sometimes ad hoc) subjective classification. It is not surprising that the chosen

trait and its assay method can affect the choice of QTL detection method, the number

and type of QTL detected and the ease of QTL detection. Solving the problem of

trait assay is a huge challenge for experimenters. The choice of trait evaluation

method may depend on the financial resources available, the available technology, the

amenability of the species under study to a particular assay method, and may be

governed by ethical and practical constraints.

Frankel (1995) gives a good illustration of the importance of trait definition in

his discussion of a case where one disease assay criterion allowed the detection of a

single QTL, but when a more accurate assay method was developed, two QTL were

found. As suggested by Frankel (1995), the best policy is to access several aspects of

the phenotype, and to perform QTL analysis using the data from each aspect that

has been evaluated.

Some researchers have proposed methods of simultaneously using several traits

to search for QTL controlling them all (see Jiang and Zeng, 1995; Corander and

Sillanpää, 2002). However, the implications of multiple-trait analysis are not well

understood and consequently the most popular approaches to QTL mapping use

single-trait analysis techniques.

This thesis looks at the statistical methods that are suitable for analysing any

single continuous trait. We will only require that our trait of interest is continuous or
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quantitative and that our assumptions about its distribution are reasonably justifiable

within the sampled population. The underlying question will be: suppose that we

have observed a continuous trait and that it has multiple genetic determinants, then

how do we find the genes which control it and how do we separate pooled genetic

effects?

1.1 Successes

QTL analysis studies have allowed successful detection of QTL associated with various

traits in different species. Consider the QTL analysis studies cited in the previous

section. Price et al. (1997) found one QTL for slow leaf rolling on chromosome 1 of

the Bala rice variety. They also found two QTL for stomal closure: one located on

chromosomes 3 and one located on chromosome 7 of the Bala rice genome. Spelman

et al. (1999) discovered a QTL for stature on bovine chromosome 14 in New Zealand

Dairy cattle but no QTL was found to be associated with the other 16 traits that

they studied. Chung et al. (2003) detected a QTL for protein yield in soybean. Xu

et al. (2001) found a very significant QTL for Asthma on human chromosome 2 and

evidence for six other QTL of lesser effect.

Hundreds of other reported QTL detections may be found in the literature. Some

of these results are available in on-line databases. For example, many QTL map-

ping results for rats, mice and humans are available from the Rat Genome Database

(RGD), Rat Genome Database Web Site, Medical College of Wisconsin, Milwau-

kee, Wisconsin. World Wide Web (URL: http://rgd.mcw.edu/). Another example

is the Gramene database (http://www.gramene.org, Ware et al. 2002; Jaiswal et al.

2006a,b), which holds over 7300 entries for rice, maize, barley, oat and wild rice.
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1.2 Usefulness and Verifiability

QTL detection results are useful in so much as they can be applied in plant and

animal breeding programs and in positional cloning and characterization of genes.

All of these applications are relatively costly and are severely hampered when false

QTL detections are pursued. False positive error-rates must be kept low so that

the apparent successes of QTL mapping may be translated into true successes in the

areas of marker assisted selection and genetic characterization. It is not possible to

eliminate all false detections because QTL analysis relies on statistical methods, but

a desirable QTL detection strategy should at least keep false positives down to the

nominal value of the chosen significance level.

The traditional approach to find the physical location of a gene controlling a

Mendelian trait is to begin with a known gene product (a protein with a known func-

tion), then determine the protein’s amino acid sequence and use it to isolate the gene.

This approach is not practical for mapping complex traits because there is usually no

information about what proteins could be involved. The aim of positional cloning is

to construct a molecular map by using a genetic map as the starting point. There-

fore QTL mapping is performed first. Then overlapping segments of DNA are copied

from a region which is defined by a confidence interval for the QTL location. Ge-

netic procedures such as mutational analysis are applied to authenticate the selected

gene locations. For detailed discussions of positional cloning see Arondel et al. 1992;

Tanksley et al. 1995; Vladutu et al. 1999; Jander et al. 2002; Morgante and Salamini

2003.

When two or more QTL exist on the same chromosome, methods which assume a

single QTL can reveal a false or ‘ghost’ QTL whose map location is different from any

of the true QTL locations (Knott and Haley, 1992). This lack of accuracy hinders

positional cloning. Several authors have proposed multiple-QTL models (for example
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Kao et al., 1999). This thesis also proposes a multiple-QTL model which is robust

against ghosting. Genetic maps having good precision will aid also positional cloning

because the range of DNA segments to copy and test will then be relatively small.

Since ancient times, plant and animal breeders have found that they could improve

the quality of their stocks by selecting individuals having the desirable phenotype to

be the parents of the next generation. The paper by Soller and Medjugorac (1999)

provides a good overview of how genetic data can be used together with phenotype

data to enhance breeding programs. The paper by Soller and Medjugorac (1999) also

describes how the work of early pioneers like Sewall Wright, Sir Ronald Fisher and Jay

Lush contributed to developing a framework for applying QTL analysis in breeding

programs. Marker assisted selection (MAS) is meant to fine-tune selective breeding

schemes by using both phenotypic and genetic characteristics to select parents.

Marker assisted selection exploits the fact that a trait controlling QTL can be

indirectly selected by selecting for genotypes of a marker that is located very close

to it. Indirect selection is made possible by the fact that tightly linked genes (genes

located very close together on the same chromosome) tend to be transmitted together

in generations. The aim is to increase the frequency of the desired QTL alleles from

generation to generation. If linked QTL can be detected close to known markers, then

breeders have an indication of which markers will be useful for MAS. Marker assisted

selection depends on QTL analysis results. However, MAS has the advantage that

the exact location of the QTL does not need to be estimated. Despite this advantage,

there has been very limited success in MAS breeding programs. For example, Milhal-

jevic et al. (2004) noted that in most published experiments on MAS only about half

of the QTL under selection actually contributed to the realized selection response.

The poor performance of MAS and other applications of QTL mapping output

have caused researchers to be very cautious when interpreting and using QTL analysis

results. Consequently, the strategies of independent validation and cross validation
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(see Visscher et al., 2000; Bohn et al., 2001) and Meta Analyses (see Goffinet and

Gerber, 2000; Xu, 2003), have been used to assess uncertainty in QTL mapping.

Still, there are many cases where researchers conducting independent experiments

have found agreement on the existence and locations of certain QTL. Therefore QTL

analysis remains a popular research area because it can allow the detection of genes

having large effects and because it has the potential to detect QTL of moderate to

small effects, provided that strategies for reducing the uncertainties which plague the

data analysis are found. Developing robust QTL analysis techniques is also a worthy

endeavour because it provides a means to more effectively use the vast amount of

genetic marker data that is being made available through recent genetic mapping

projects.

1.3 The Challenges of QTL Mapping

Some of the challenges that affect model development in the context of QTL analysis

are described below.

1. There is uncertainty about how QTL genotypes contribute to trait expression.

Consequently, there is uncertainty about the conditional distribution of the trait

given a particular QTL genotype. The most common approach is to assume that

a trait is Normally distributed within samples of individuals who have the same

genotype at the selected loci and who come from similar environments.

2. The QTL locations are unknown and QTL genotypes cannot be observed.

Therefore the trait distribution conditional on a QTL genotype must be found

by applying the theorem of conditional probability with assumptions about the

probability of each QTL genotype given each marker genotype.
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3. In order to detect association between marker and QTL, the chosen experi-

mental design must capture information about the probability of each QTL

genotype given each marker genotype. In order to map QTL, it must capture

information for linkage. To detect recombination between two loci, the parent

under consideration must be heterozygous at both loci. The QTL genotypes in

all parents are unknown, therefore a suitable experimental design must allow

inferences to be made about the parental QTL genotypes given their observed

marker genotypes. This is necessary to allow assessments to be made about the

probability that a particular offspring is the result of recombinations between

parental marker and QTL loci. Parents from crosses of inbred lines divergent in

trait values as well as in their marker genotypes are often used with plant and

some animal species. For species in which inbreeding is not feasible, family stud-

ies must be used in order to detect recombination. Still, there is uncertainty

about the probabilities of different QTL genotypes within the marker-classes

generated by any chosen sampling design.

4. Most complex traits are conditioned by more than one locus and there is uncer-

tainty about the number of loci involved. The most common approach to this

problem is to assume a fixed number of loci. However, models which assume

a single QTL often suffer from ghosting (false detections), while models which

assume multiple QTL often suffer from identifiability problems. Otto and Jones

(2000) discuss some of the limitations of techniques that attempt to estimate

the true number of QTL controlling a trait. Where multiple QTL exist, there

may also be a need to separate the effects of different QTL.

5. Traditionally, the main emphasis has been on estimating non-interaction terms

in a linear model for QTL effects. Specific contrasts of conditional trait means,

called additive and dominance genetic effects, receive much attention in the
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literature because they have convenient interpretations (Falconer and Mackay

(1996)). However, in fitting a linear model, the precise choice of contrasts is

not particularly important except for removing the singularity of the model

matrix. Any suitable contrasts may be used, and after fitting, any other desired

contrasts may then be obtained from the fitted means provided that the number

of simultaneous contrasts is not greater than the rank of the model matrix. It is

also noteworthy that common breeding designs produce rank-deficient systems.

For example, Backcross designs produce rank-deficient systems that do not allow

additive and dominance effects to be separated.

6. There is a possibility that interactions may exist between loci. The number of

interactions is unknown.

7. QTL expression can also be influenced by non-genetic factors. There are often

problems distinguishing genetic effects from environmental effects and evaluat-

ing interactions between genetic and non-genetic factors.

8. The heritability of a trait will also affect the power of QTL detection. Heri-

tability is a measure of how much of the total trait variation is due to a genetic

component. Genes controlling traits with low heritability may be difficult to

detect via marker-trait association because most of the variability seen will tend

to be absorbed into the random error.

9. Often, estimated QTL effects are confounded with functions of QTL genotype

probabilities (which are functions of recombination fractions). This confounding

creates bias in the estimated QTL effects. If a QTL is located extremely close

to a marker the magnitude of the estimated effect will be biased downwards

and so the QTL will be difficult to detect. If a QTL coincides with a marker,

then it may go undetected when models assume that markers have no effect on
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trait value (the neutral marker assumption).

10. A dense map of markers can improve the accuracy and precision of QTL map-

ping but there is a point where adding more tightly linked markers does not add

any more information. Fitting a regression based upon very dense marker-map

requires large sample sizes to compensate for the degrees of freedom needed to

estimate the large number of parameters generated. Depending on the species

and the trait being studied, obtaining very large sample sizes may not be possi-

ble. The fact that genotypes at linked markers do not segregate independently

may reduce the utility of overly dense marker-maps. The explanatory variables

may be highly correlated when genotypes of tightly linked markers are used in

regression models. If the map is too dense the resulting model matrix is likely

to be ill-conditioned, leading to poor parameter estimates and more false QTL

detections. If background markers are too close to the position being tested

then they can absorb the QTL effects due the high correlation between marker

and QTL genotypes. Davarsi and Soller (1994) modelled the cost of raising indi-

viduals and scoring markers (for use in a marker-QTL experiment) as a function

of marker spacing and the number of scored individuals in order to access how

these factors affected the ability to detect QTL. They found that a marker spac-

ing between 20 to 30 centiMorgans (cM) generally tends to be optimal and that

any marker spacing below 10 cM is generally not cost effective.

11. The quality of QTL mapping results is affected by sample size. If the sample

size is too small some genotypes may not be observed or the counts in some

genotype classes may be too small to provide reliable estimates of recombination

fractions. There are two sample size problems in QTL mapping. The first

problem is that biological, ethical and budgetary constraints can make it difficult

to obtain large sample sizes. This problem becomes compounded when the trait
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of interest is rare. Several factors can affect whether a particular sample size

is adequate. These factors include, but are not limited to, the breeding design,

marker density, the number and location of QTL, the size of QTL effects and

the heritability of the trait, and the data analysis and estimation techniques

used. The second problem is that there is currently no established procedure

for combining these factors to form criteria for calculating what sample size is

large enough to yield reliable QTL mapping results (Frankel, 1995; Belknap,

1998).

1.4 Review of the model-development literature

Tests for differences between conditional means, analysis of variance, linear regression,

generalized linear regression, mixed models, likelihood methods, empirical methods,

nonparametric methods and Bayesian methods have all been used to analyse quanti-

tative trait loci. Many of these methods have been in existence for decades but the

availability of high speed computers has opened up new ways of using them. The

most widely used models are those based on extensions of the Fisher (1918) linear

model.

Single marker methods test for association between the trait and the genotypes at

each marker, independently, not considering genotypes at any other marker. Single

marker analysis may be based on t-tests for differences between means, simple regres-

sion or one-way analysis of variance (Soller et al., 1976; Stuber et al., 1987; Edwards,

1987) and likelihood ratio tests (Weller, 1986).

Kearse and Hyne (1994) suggested a generalized least-squares regression approach

which uses all markers on a chromosome to improve the precision of single-marker

analysis. The differences in mean trait value of the genotypes at each marker locus

form the vector of response variables. The vector of explanatory variables comprises
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the distance between each marker and a putative QTL. The analysis is repeated for a

series of QTL locations along a chromosome. This procedure is also called ‘multipoint

mapping’. Critical values are based on the assumption of a chi-square distribution

for the residual sum of squares.

Thoday (1961) was among the first to use a pair of adjacent markers to estimate

QTL effects and position. The process of detecting a QTL by simultaneously condi-

tioning on a pair of markers lying on either side of it later became known as Interval

Mapping. Lander and Botstein (1989) proposed a likelihood-based approach to inter-

val mapping which assumed an underlying Normal trait distribution for individuals

having the same QTL genotype. Like Thoday, Lander and Botstein modelled QTL

effects by conditioning on the genotypes at a pair of adjacent markers. However,

the latter used maximum likelihood estimation via the EM algorithm (see Dempster

et al., 1977) to estimate QTL effects.

In an attempt to reduce the computational burden of maximum likelihood esti-

mation for interval mapping, Bridges and Knapp (1990), Haley and Knott (1992)

and Marinez and Curnow (1992) advocated the use of regression methods. They pro-

posed carrying out regressions at several putative QTL locations and taking regres-

sion estimators at the location that maximizes the regression correlation coefficient

as approximations to the desired maximum likelihood estimators.

Whittaker et al. (1996) used contrasts of trait means within marker groupings to

show that the location and effect of an isolated QTL (having no additional QTL in

adjacent intervals) can be estimated from a regression of phenotype on marker type,

without the need for numerical search procedures.

The interval mapping approach of Lander and Botstein (1989) and its regression

approximations all assume that either there is a single QTL between the markers

under consideration, or that there is no QTL anywhere. This leads to a single Normal

distribution under the null hypothesis and a Normal Mixture under the alternative
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hypothesis. The likelihood ratio test in this situation amounts to a test of departure

from normality of the trait distribution. If a single QTL exists within the specified

interval, then additional linked QTL will increase the number of mixing components

and will contribute to the sampling variance. Additional QTL can also lead to pooling

of effects causing biased estimates. If there is no QTL within the specified interval,

the presence of linked QTL outside the testing interval will lead to a null distribution

which is a normal mixture rather than a single normal distribution. This could lead

to false detections if departure from normality of the trait distribution is taken, on its

own, to indicate the presence of a QTL. The removal of outliers may be undesirable if

the true distribution is a mixture because outliers may result from rare combinations

of genotypes which are in fact valid for the mixture. Similarly, transformations to

normality may not be desirable if the underlying distribution is in fact a normal

mixture. Such transformations could hamper the detection of an existing QTL.

Realizing that the likelihood ratio test (LRT) for normality of the trait distribution

does not necessarily constitute a test for a QTL within a specified interval, researchers

needed methods for assessing the results of interval mapping in terms of whether a

QTL was detected.

Bootstrap and permutation methods are useful where an estimator of a statistical

property of interest is available but its distribution is unknown. Churchill and Doerge

(1994) proposed an empirical method for calculating approximate significance thresh-

olds (critical values) against which to compare test statistics for QTL mapping. They

proposed that critical values should be derived from Monte Carlo tests based on the

empirical distribution of these statistics. The idea was to draw samples that would

be representative of the null hypothesis of no QTL within a selected marker interval.

Churchill and Doerge (1994) showed that such a sample can be obtained by randomly

assigning an observed trait value, without replacement, to each sampled individual
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while leaving its genotype unchanged. Although Churchill and Doerge (1994) men-

tion the possibility of extending the permutation tests to the problem of detecting

multiple QTL, this was not explored. In a similar vein, Visscher et al. (1996b) sug-

gested using the bootstrap methodology of Efron (1979), with critical values based

on the empirical bootstrap distribution of the test statistic. Despite their heavy com-

putational requirements, these resampling methods are widely used because they are

simple to implement.

Other researchers used semi-parametric and non-parametric methods to allow for

the fact that a null distribution could be non-normal. For example, Kruglyak and Lan-

der (1995) proposed some Wilcoxon rank-based tests of genetic effects. Zou (2001)

considered a single-QTL framework and applied the Kruglyak and Lander (1995)

rank based test to estimate quantitative trait effects. However her simulation results

showed that for both normal and non-normal data, the non-parametric test performed

similarly to the Normal regressions of Haley and Knott (1992). Zou (2001) also pro-

posed a semi-parametric approach to interval mapping, based upon the exponential

tilt model of Anderson (1979). The exponential tilt model was found to be suscep-

tible to identifiability problems similar to those that plague parameter estimation in

normal mixtures.

A simple procedure that has proved to be very robust against false detection

(ghosting) involves carrying out standard interval mapping with flanking markers to

absorb the variance of background QTL. This procedure, called Composite Interval

Mapping (CIM), was independently proposed by Rodolphe and Lefort (1993), Zeng

(1993, 1994), and Jansen and Stam (1994). These authors showed that CIM can aid

the separation of pooled QTL effects provided that Haldane’s map function holds

reasonably well, and provided that no extra QTL lie within the intervals bracketed

by the nearest flanking markers. However, if Haldane’s map function holds and extra

QTL exist within intervals adjacent to the testing interval, then CIM cannot separate
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the effects of QTL from the resulting region stretching over three adjacent intervals.

Therefore, false detection rates of CIM (traditional LRT based on χ2
1 distribution)

are well controlled only when the testing interval is isolated.

Zeng (1993, 1994) proposed models that allow for multiple QTLs and Hayes et al.

(1993); Jiang and Zeng (1995) considered the problem of QTL-environment interac-

tions.

Obtaining standard errors for estimates of model parameters in CIM and other

mixture models has always been a challenge. Bootstrapping has been proposed as

a method of addressing this problem in QTL mapping problems (Visscher et al.

(1996b)). In order to obtain asymptotic standard errors of model parameters in QTL

mapping, Kao and Zeng (1997) proposed formulae for calculating the conditional

observed information matrix. Kao and Zeng (1997) did not provide formulae for

calculating the Fisher information because they did not take the expectation of the

conditional information matrix. Also, they did not explore the idea of statistical

tests for QTL based upon the asymptotic distribution of the maximum likelihood

estimators. Instead, they used a LOD score of 1.5 (as suggested by Lander and

Botstein, 1989) to determine the threshold value for rejection of the null hypothesis.

The element-wise approach used by Kao and Zeng (1997) is not sufficiently general

to make evaluation of the information matrix both practical and accessible for any

Multinomial mixture of Normals.

Making the information matrix practical to calculate for mixture likelihoods is a

problem that has received much attention in the statistical literature. Hill (1963) used

a power series expansion to simplify the Fisher information matrix for a mixture of two

univariate Normal distributions having equal variances. Behboodian (1972a, 1973)

provided numerical methods for evaluating the Fisher information matrix for mixtures

of two Normal distributions and for mixtures of two Exponential distributions.

For Multinomial mixtures of Normals, McLachlan and Basford (1987, page 47)
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approximated the observed information matrix, in terms of the gradient vector of the

log-likelihood function. In a simulation study, they found that, when compared with

standard errors obtained by bootstrapping, this approximation tended to overestimate

the variance of the parameter estimates. Therefore Basford et al. (1997) recommended

using standard errors based on bootstrap methods rather than using standard errors

based on the observed information formulae of McLachlan and Basford (1987).

The development of Markov Chain Monte Carlo (MCMC) methods has facilitated

Bayesian estimation for mixture models (Casella and George 1992; Smith and Roberts

1993; Diebolt and Robert 1994; Carlin and Lewis, 1996, pages 60, and 159-197;

Richardson and Green 1997). Subsequently, various researchers have applied Bayesian

approaches to parameter estimation in QTL mapping (Guo and Thompson, 1992;

Satagopan et al., 1996; Satagopan and Yandell, 1996; Hoeschele et al., 1997; Ball,

2001).

The Bayesian approach is appealing because it allows the number of mixing com-

ponents (the number of QTL) to be explicitly included as an unknown parameter

in the model, and it also allows estimation of marginal posterior probabilities for

the parameters. However, non-identifiability problems can arise with the Bayesian

approach to finite mixture modelling and the MCMC method can also suffer from

convergence issues (Diebolt and Robert, 1994; Robert, 1996).

This thesis does not explore Bayesian methods for QTL mapping, instead it fo-

cuses on the problem of improving hypothesis testing for parameters in mixture mod-

els under the maximum likelihood framework. The next section outlines the main

contribution of this thesis.
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1.5 Contribution of this Thesis

This thesis explores and develops mathematical and statistical techniques that are

tailored towards extracting a desired type of information from samples of genetic

(DNA) data coupled with measurements of a specific trait. The desired information

is any that will enable detection of genes associated with the trait, estimation of their

genetic effects and, in the presence of linkage, estimation of their genetic location.

The existing strategies for inferring QTL from multiple regressions of trait value

on marker genotypes are consolidated and formalized. Improved hypothesis tests for

Composite Interval Mapping are proposed.

A new extension to Composite Interval Mapping is developed. The proposed

model, named Robust Interval Mapping Version One (RIM1), may be viewed as a

more robust extension of CIM. The RIM1 model fits exactly three putative quantita-

tive trait loci (QTL) and it uses maximum likelihood estimation to obtain estimates

of model parameters. Applications to simulated and real data show that these meth-

ods have strong power to detect QTL while dramatically decreasing the rate of false

detections.

New, very flexible, matrix formulae are developed, allowing exact and convenient

calculation of both the Observed and Fisher information matrices in the context of

Multinomial mixtures of Univariate Normal distributions. Standard errors based on

these formulae are then used to create tests which reduce false detections in CIM

while retaining power to detect QTL.

1.6 Thesis Layout

A brief overview of the literature was presented in this introductory Chapter. In

Chapter 2, there is an overview of classical quantitative genetics definitions of genetic

effects, linkage and sampling designs. Chapter 3 looks at the mixture structure of



19

line-cross designs and highlights aspects of that structure which could carry informa-

tion for model development and hypothesis testing. Chapter 4 reviews the Normal

regression approach to QTL mapping.

Chapter 5 is a long Chapter where new techniques are introduced: information

matrix formulae are introduced in Chapter 5 as well as an extension to composite

interval mapping, named Robust Interval Mapping Version One (RIM1). Chapter

6 tackles the derivation of the information matrix formulae which were presented,

without proof, in Chapter 5. Although the detailed mathematical proofs given in

Chapter 6 are rather tedious, the proofs are necessary because they show why the

proposed formulae constitute an exact evaluation of the information matrix.

In Chapter 7, the proposed methods are applied to simulated data. Extensions

and applications of the proposed methods to some real data are given in Chapter

8. The final chapter (Chapter 9) summarizes the results of this thesis and discusses

areas for further research.
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Chapter 2

Linkage, Breeding Designs and

Genetic Effects

This chapter presents an overview of classical Quantitative Genetics Definitions. The

first section focuses on linkage, recombination probabilities, mapping populations and

experimental designs. In the later sections we look at the definitions of genetic effects

as well as useful properties resulting from these definitions.

2.1 Linkage and Recombination Fractions

Two genes are said to be linked if they are located on the same chromosome. The

proximity of linked genes to each other affects their probability of being transmitted

together from parent to offspring. In meiosis (sperm or egg production) homologous

(similar) chromosomes may overlap and exchange genetic material. This process is

called recombination or crossing-over. Crossover is more likely to occur in the interval

between linked genes that are located far apart than between closely linked genes.

The recombination fraction between two loci is the probability that there will be

an odd number of crossovers between them. Even numbers of crossover are generally
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not considered because they cannot be observed.

Consider a set of chromosomes for which a number of markers have been mapped,

and which contain an unknown number of QTL at unknown locations. For inference

about the properties of these QTL, we need to determine the probability of each

(multi-locus) QTL genotype conditioned on each marker genotype. Assessment of

the recombination fraction between pairs of loci enables us to write down expressions

for the probability of multi-locus genotypes and expressions for the probability that

a QTL allele is transmitted given that certain marker alleles are transmitted.

Consider three linked loci in the order A-B-C and let rAB and rBC be the prob-

abilities of recombinations between loci A and B and loci B and C respectively. Let

rAC be the recombination fraction between loci A and C. Recombinations in the

different intervals may not occur independently (see Ott 1991). For instance, when

the loci are closely linked, a recombination in one interval may reduce the likelihood

of recombination in an adjacent interval.

In genetics, lack of independence between crossover events in different intervals is

called crossover interference or recombinational interference. Under independence, a

double recombination occurs with probability rABrBC . If its true probability is π11

then the coefficient of coincidence is defined as

c =
π11

rABrBC

and recombinational interference is measured by 1− c. In the case of complete inter-

ference c = 0. When c = 1 there is no interference. Positive interference results when

c < 1 and there is negative interference when c > 1.
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Define

π11 = P (recombination in both intervals) = c rABrBC (2.1)

π10 = P (recombination in interval A−B only) = rAB(1− c rBC) (2.2)

π01 = P (recombination in interval B − C only) = rBC(1− c rAB) (2.3)

π00 = P (no recombination in either interval) = 1− rAB − rBC + c rABrBC (2.4)

Recombinations between A and C can occur in two ways. Either there is recom-

bination in the interval A−B and no recombination in the interval B−C or there is

no recombination in the interval A−B and recombination in the interval B−C. This

leads to the general three-locus addition formula for recombination fractions given in

Equation (2.5).

rAC = π10 + π01 = rAB + rBC − 2c rABrBC (2.5)

The expected number of recombination events between two loci is called the genetic

distance between them and is measured in Morgans. Genetic map functions are used

to translate recombination fractions into genetic distances.

The Haldane (1919) map function is the most commonly used genetic mapping

function. It assumes that recombination events occur independently of each other

(no interference) and that they occur as points of a Poisson process along each chro-

mosome. Under Haldane’s assumptions, the number of crossovers between two loci x

Morgans apart has a Poisson(x) distribution. Therefore, Haldane’s map function to

convert the recombination fraction rAB to a genetic distance is

x = −1

2
log(1− 2rAB).

Real data does not usually support the idea of constant levels of interference in all

intervals along a chromosome. However, for simplicity, most common map functions

assume a fixed value for c in the addition formula for recombination fractions. For

example, c = 1 for Haldane’s addition formula. By setting c = 2rAB Kosambi (1944)
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produced an addition formula that allows for non-constant interference. Detailed

descriptions of these and other map functions may be found in Quantitative Genetics

texts (see, for example, Ott 1991, pages 14-19 and 120-129; Liu 1997, pages 318-329).

For recombination probabilities up to 0.1, most map functions give similar estimates

of the map distance (see, for example, Table 10.9 on page 329 of Liu 1997). For,

example, when the recombination fraction is less than or equal to 0.1, the Morgan,

Haldane, Kosambi, Felsenstein, Carter-Falconer map functions yield approximately

the same map distances. Therefore, for very dense maps, the Haldane assumption

does not cause too much concern. It is more of a concern when map density is low.

2.2 Breeding designs

In order to detect association between marker and QTL, the chosen breeding design

must capture information for linkage. The most common breeding designs allow

assessments to be made about recombination probabilities, genotype probabilities

and about the probability of putative QTL genotypes given any marker genotype.

This section gives a brief overview of some commonly used experimental populations

and breeding designs. Here we are considering diploid organisms only.

In the following discussion, the founding parents (first parents) from which inbred

designs are created are denoted by P1 and P2 respectively. The P1 and P2 lines are

assumed to be homozygous at all loci. Additionally, the alleles at any locus in the

P1 line are assumed to be different from the alleles at the same locus in the P2 line.

For convenience, we refer to an allele from P1 line as a ‘high’ allele, and we refer

to the corresponding allele from P2 line as a ‘low’ allele. We denote high and low

alleles, respectively, by uppercase and lowercase Roman letters. We refer to a (single-

locus) genotype from the P1 line as a ‘homozygous-high’ genotype and we refer to

the corresponding P2 genotype as a ‘homozygous-low’ genotype.
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Inbreeding without selection

1. Backcross: B1 or B2

Two diverging, inbred lines (P1, P2) are crossed and the resulting offspring

(F1) are back-crossed with the first parental line (P1) to form the B1 backcross

or with the second parental line (P2) to form the B2 line (see Figure 2.1(a)).

All parents (F1 or P1) or (F1 or P2) are completely informative for linkage.

At any single locus, only two distinct genotypes are possible and they occur

with equal probability. At any locus only the homozygous-high and the het-

erozygous genotypes are possible in the B1 backcross. Likewise, at any locus,

only the homozygous-low and the heterozygous genotypes are possible in the

B2 backcross. Consequently the genotype probabilities in these backcross pop-

ulations do not occur in Hardy-Weinberg proportions (see, for example, Hartl

and Clark, 1997). Nevertheless, the backcross design has the advantage that the

genotype phase (that is, the sister-chromatid locations of alleles in a multi-locus

genotype) of all backcross individuals can be determined.

2. Second filial line: F2 intercross. Two diverging, inbred lines are crossed

to form the F1 line. Then the F1 is ‘selfed’ or made to undergo brother-sister

mating to produce the F2 line (see Figure 2.1(b)). This breeding design is also

referred to as an F2 intercross or simply an intercross. One advantage of the

F2 design is that its genotypes occur in Hardy-Weinberg proportions. However,

only the homozygous F2 individuals are informative for linkage (they allow the

origin of the parental alleles to be determined so allowing recombinantions to

be identified without ambiguity). Consequently, the homozygous F2 individuals

they are the only F2 individuals whose genotype phase can be determined.

3. Second backcross line (BC2). A second backcross line is formed by crossing

the F2 line with the first parental line or with the second parental line. Figure
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MQ//MQ × mq//mq

Parent 1 Parent 2

× MQ//mq

F1

B1 Progeny Probability
MQ//MQ (1 − r)/2
MQ//mq (1 − r)/2
MQ//Mq r/2
MQ//mQ r/2

(a) Backcross













MQ//MQ × mq//mq

Parent 1 Parent 2
MQ//mq

F1
⊗ Inbreeding

F2 Progeny Probability
MQ//MQ (1 − r)2/4
MQ//Mq r(1 − r)/2
Mq//Mq r2/4

MQ//mQ r(1 − r)/2
MQ//mq (1 − r)2/2
Mq//mQ r2/2
Mq//mq r(1 − r)/2

mQ//mQ r2/4
mQ//mq r(1 − r)/2
mq//mq (1 − r)2/4

(b) F2

Figure 2.1: Definitions of backcross (from parent one) and F2 progeny for
a single marker locus (M) and a QTL locus (Q) that are r recombination
units apart. In the F2 population, there are nine distinct two-locus genotypes
– in the F2, the genotype MmQq has two possible phases: MQ//mq and
Mq//mQ.







MQ//MQ × F2 Progeny
Parent 1

BC2 Progeny Probability
MQ//MQ (1 − r)/2
MQ//mq (1 − r)/2
MQ//Mq r/2
MQ//mQ r/2

(a) Second Backcross Progeny













MQ//MQ × mq//mq

Parent 1 Parent 2
MQ//mq

F1

Tissue Culture

DHLs Probability
MQ//MQ 1/2
mq//mq 1/2

(b) Doubled Haploid Lines

Figure 2.2: Definitions of a Second Backcross and Doubled Haploid Lines for
a single marker locus (M) and a QTL locus (Q) that are r recombination
units apart.
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2.2(a) illustrates the case where the backcross is made with the first parental

line.

4. Doubled haploid lines (DHLs). Doubled haploid lines are formed by chem-

ically treating some organisms to cause them to replicate producing identical

copies of themselves (see Figure 2.2(b)). This technique is only practical in a

few species, for example, Zebrafish and Drosophila.

5. Advanced intercross lines: AIL or F(t). Advanced intercrossed lines are

formed by repeated selfing or brother-sister mating of F1 over t−1 generations.

These are created by random mating of F1 individuals followed by random mat-

ing in all subsequent lines over t− 1 generations to produce F2. Davarsi and

Soller (1995) showed that advanced intercross lines generate more recombination

events than F2 or Backcross designs. By assuming that crossovers occur inde-

pendently in adjacent intervals, Davarsi and Soller (1995) derived the following

formula for the recombination fraction in the F(t) in terms of a recombination

fraction (r) in the F2 population:

rt =
1− (1− r)t−2(1− 2r)

2
.

6. Repeatedly backcrossed line. If the offspring from a backcross are repeat-

edly mated with the original parents for a specified number of generations, then

the resulting cross is called a repeatedly backcrossed line.

Inbreeding with selection

1. Recombinant inbred lines (RIL). Recombinant inbred lines are produced by

inbreeding with selection of recombinants. The F2 line is taken through several

generations of ‘selfing’, with selection of recombinant individuals for breeding at

each stage. This design provides a method for replication of these recombinant
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individuals when asexual reproduction is not possible. Recombinant inbred lines

have essentially no within-line genetic variance, but the variance between lines

is considerable because each RIL represents a different multi-locus genotype.

2. Nearly isogenic lines (NIL). Nearly isogenic lines are formed by repeated

back-crossing with selection followed by at least one generation of ‘selfing’ or

sib-mating. A donor parent is crossed with an inbred line to form an F1 line.

The F1 line is then backcrossed to the inbred line for several generations. Then

the individuals in the final generation are sib-mated or ‘selfed’ to form a nearly

isogenic line.

Outbred designs

1. Experiments orchestrated to extract desired information from specific outbred

populations are called, collectively, outbred designs. These include sib-pair

designs, relative pair designs, family triads and case-control designs.

Certain outbred designs require QTL mapping techniques that are quite different

from those used with inbred designs. However, some of the methodology for analysing

QTL in outbred designs are extensions of those used with inbred designs (see Lynch

and Walsh, 1997, Chapters 16-18). This thesis looks at methodology for detecting

QTL in experimental populations, assuming inbred line-cross designs and diploid

organisms.

2.3 Genetic effects

2.3.1 Additive, dominance and epistatic effects

In the Quantitative Genetics literature, the value of a trait (or phenotype) is called

the phenotypic value. Likewise, the part of the phenotypic value that is attributable
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to an individual’s genotype is called the genotypic value. In addition, the expected

values of specific contrasts of mean trait-value amongst the genotype classes (within

a study population) are called genotypic effects.

Each genotypic effect measures the contribution of a particular source of genetic

variation to the expected value of a specific trait given a specific genotype. Both

the size and the direction of each genetic effect depend on the distribution of the

trait within the study population as well as the population the gene and genotype

probabilities.

Fisher (1918) defined additive and dominance effects in a linear model for the

expected value of a trait given a single-locus genotype. Fisher also partitioned the

trait variance according to genetic and environmental sources, with the genetic varia-

tion further partitioned into additive and dominance components. Cockerham (1954)

and Kempthorne (1954) independently extended Fisher’s model to include more than

one locus. This section outlines the Cockerham-Kempthorne definitions for additive,

dominance and epistatic genetic effects.

Suppose that a single locus M has v distinct alleles and denote them by M1, . . . , Mv

respectively. Assume diploid organisms. Suppose also, that

P (Mi) is the probability of allele Mi in the population;

P (MiMj) is the population probability of genotype MiMj;

P (Mi|MiMj) is the probability of the allele Mi among all alleles belonging

to genotype MiMj.

These allele and genotype probabilities have the properties given in Equations (2.6)
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to (2.9) below.

P (Mi) = P (MiMi) + 1
2

∑

j 6=i

P (MiMj) (2.6)

v∑
i=1

P (Mi) = 1 (2.7)

v∑
i=1

∑
j6i

P (MiMj) = P (MiMi) +
∑

j 6=i

P (MiMj) = 1 (2.8)

P (Mi|MiMj) =





1
2
, if i 6= j

1, if i = j
(2.9)

Note that the conditional probability, P (Mi|MiMj), is also the probability that an

individual with genotype MiMj will transmit allele Mi to an offspring.

Denote the trait value by the random variable y. Also, let E(y|Mi) represent the

mean trait-value of individuals having allele Mi at a single locus and let E(y|MiMj)

represent the mean trait-value of individuals with genotype MiMj at that locus. We

denote mean trait-value (in the population under study) by µ, where

µ = E(y) =
v∑

i′=1

(
P (Mi′Mi′)E(y|Mi′Mi′) +

∑

j 6=i′
P (Mi′Mj)E(y|Mi′Mj)

)
. (2.10)

The additive effect of an allele is the difference between the mean trait-value

of individuals having that allele and the population mean trait-value. It may be

interpreted as the phenotypic value associated with a gene that is passed on to an

offspring (see, for example, Falconer and Mackay, 1996, pages 112-117). The additive
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effect of allele Mi is defined as

αMi
= E(y|Mi)− µ

=
v∑

j=1

P (MiMj|Mi) E(y|MiMj)− µ

=
v∑

j=1

P (Mi|MiMj) P (MiMj)

P (Mi)
E(y|MiMj)− µ

=
P (MiMi)

P (Mi)
E(y|MiMi) +

1

2

∑

j 6=i

P (MiMj)

P (Mi)
E(y|MiMj)− µ (2.11)

This implies that

αMi
=

( 1

P (Mi)
− 1

)
P (MiMi)E(y|MiMi)

+
( 1

2P (Mi)
− 1

) ∑

j 6=i

P (MiMj) E(y|MiMj)

−
∑

i′ 6=i

∑

j 6=i

P (Mi′Mj)E(y|Mi′Mj). (2.12)

Equation (2.12) is an example of a contrast : a linear combination of conditional trait

means.

The additive effect can be estimated using the coefficients from a regression of

the trait value on the number of copies of target alleles in the genotype. A direct

consequence of the definition of additive allelic effect (as given in Equation (2.11)) is

that the mean value of the additive allelic effects at a locus is equal to zero:

v∑
j=1

P (Mj) αMj
= 0 =⇒ αMi

= − 1

P (Mi)

∑

j 6=i

P (Mj) αMj
. (2.13)

So far, we have discussed the additive effect of a single allele (the additive allelic

effect) at a single marker M . Now we turn to the additive effect of a genotype at

locus M . Distinct alleles Mi and Mj of the gene at locus M are called codominant

alleles if the alleles can be individually identified in the heterozygous genotype MiMj

(i 6= j). The ability to distinguish loci, and the ability to identify alleles at those loci,
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depends on the instrumentation and processes used to classify DNA segments (see

for example Liu, 1997, pages 62-82).

If the heterozygous genotype MiMj is expressed (on the classification instrument)

in a manner that is identical to MiMi, then Mi is said to display complete dominance

over Mj. Likewise, if it is expressed as MjMj then, then Mj is said to display complete

dominance over Mi. If one allele is completely dominant over the other, then the

marker technology in use does not allow the heterozygous genotype to be distinguished

from one of the homozygous genotypes.

The breeding value or additive (genotypic) effect of a genotype is defined as the

sum of the additive effects of its component alleles. Therefore, this definition assumes

that the different genotypes and their component alleles can be separately identified.

Let us assume that distinct alleles Mi and Mj are codominant. Then the additive

effect of genotype MiMj is equal to

aMiMj
= αMi

+ αMj
. (2.14)

For homozygous genotypes, the additive effect has the form

aMiMi
= 2αMi

= − 2

P (Mi)

∑

j 6=i

P (Mj) αMj
from Equation (2.13) above

= − 1

P (Mi)

∑

j 6=i

P (Mj) aMjMj
(2.15)

The mean of the additive effects of all genotypes at the locus M is called the mean

breeding value of M .

The dominance (genotypic) effect of genotype MiMj is defined as

dMiMj
= E(y|MiMj)− µ− aMiMj

= E(y|MiMj)− µ− (aMiMi
+ aMjMj

)/2. (2.16)
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Note that this dominance (Equation (2.16)) is distinct from the dominance defined

on the previous page, in which genotypes are being classified. This dominance effect

represents interaction between two alleles at the same locus. It is that part of the

difference in mean trait value (between the subpopulation with genotype MiMj and

the overall population) which cannot be accounted for by additive effects. Like the

mean of the additive effects, the mean of the dominance effects is equal to zero when

averaged over a population with genotype probabilities P (MiMj).

Genotypic effects associated with interactions between genes at different loci are

called epistatic effects. The second order epistatic effects (additive × additive, additive

× dominance and dominance × dominance effects) are interactions involving two

distinct loci. For the definitions of these interaction effects, consider two different

loci, M and N . Let Mi and Mj be the ith and jth alleles, respectively, at locus M .

Similarly, let Nk and N` be the kth and `th alleles, respectively, at locus N .

There are four additive × additive interactions for any pair of loci. Each additive

× additive effect measures the interaction of an allele at one locus with an allele

at another locus. The additive × additive effect between allele Mi and allele Nk is

defined as

(αα)MiNk
= E(y|MiNk)− µ− αMi

− αNk
. (2.17)

To calculate E(y|MiNk), the following formulas are useful.

E(y|MiNk) =
∑

j,`

P (MiNk|MiMjNkN`) P (MiMjNkN`)

P (MiNk)
E(y|MiMjNkN`)

P (MiNk) =
∑

j,`

P (MiNk|MiMjNkN`) P (MiMjNkN`).
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The transmission probabilities P (MiNk|MiMjNkN`) are given by

P (MiNk|MiMjNkN`) =





1 if i = j and k = `

1/2 if i = j and k 6= `

1/2 if i 6= j and k = `

1/4 if i 6= j and k 6= `.

There are four additive × dominance interactions for any pair of loci. Each addi-

tive × dominance effect measures the interaction between an allele at one locus and

a genotype at the another locus. It is defined as

(αd)MiNkN`
= E(y|MiNkN`)−µ−αMi

−aNkN`
−dNkN`

−(αα)MiNk
−(αα)MiN`

. (2.18)

We may calculate E(y|MiNkN`) using the following formulas:

E(y|MiNkN`) =
∑

j

P (MiNkN`|MiMjNkN`) P (MiMjNkN`)

P (MiNkN`)
E(y|MiMjNkN`)

P (MiNkN`) = P (MiMiNkN`) +
1

2

∑

j 6=i

P (MiMjNkN`)

P (MiNkN`|MiMjNkN`) =





1 if i = j

1/2 if i 6= j.

There is one dominance × dominance interaction for any pair of loci. The domi-

nance × dominance effect, (dd)MiMjNkN`
, measures the interaction between a genotype

at one locus and a genotype at another locus.

(dd)MiMjNkN`
= E(y|MiMjNkN`)− µ− aMiMj

− aNkN`
− dMiMj

− dNkN`

− (αα)MiNk
− (αα)MiN`

− (αα)MjNk
− (αα)MjN`

− (αd)MiNkN`
− (αd)MjNkN`

− (αd)MiMjNk
− (αd)MiMjN`

(2.19)
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Higher order epistatic effects (those involving more than two loci) may be defined

similarly.

To write down the linear model of Cockerham (1954) and Kempthorne (1954),

suppose that x is a multi-locus genotype. Then, let M and N index loci in x and let

Mi and Mj be alleles at locus M in x. Similarly, let Nk and N` be alleles at locus N

in x.

Let Ax, Dx, (AD)x, (AA)x, and (DD)x be as defined in Equations (2.20) to (2.24).

Ax =
∑
M

∑
i

∑
j>i

aMiMj
, (2.20)

Dx =
∑
M

∑
i

∑
j>i

dMiMj
, (2.21)

(AA)x =
∑
M

∑

N 6=M

∑
i

∑

k

(αα)MiNk
(2.22)

(AD)x =
∑
M

∑

N 6=M

∑
i

∑

k

(∑

`>k

(αd)MiNkN`
+

∑
j>i

(αd)NkMiMj

)
, (2.23)

(DD)x =
∑
M

∑

N 6=M

∑
i

∑

k

∑
j>i

∑

`>k

(dd)MiMjNkN`
(2.24)

The term Ax is the sum of the additive effects for each locus in x, while Dx is the

sum of all the dominance effects. Likewise (AA)x, (AD)x and (DD)x are the sums

of the respective second-order epistatic effects. If epistatic effects of order three and

higher are negligible, then the model for the conditional trait mean is

E(y|x) ≈ µ + Ax + Dx + (AD)x + (AA)x + (DD)x

= µ + Gx (2.25)
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where the genotypic value, Gx, given by

Gx = Ax + Dx + (AD)x + (AA)x + (DD)x (2.26)

is the part of the conditional trait mean which is due to genetic effects.

2.3.2 Harmonized definitions of genetic effects

The genetic effects of Cockerham (1954) and Kempthorne (1954) are based on or-

thogonal contrasts. However, they do not represent harmonized definitions of genetic

effects because the contrast coefficients (see, for example, Equation (2.12)) are depen-

dent on gene and genotype probabilities, and these probabilities will vary for different

populations of a species. Without harmonized definitions for each source of genetic

variation, it would not possible to make valid comparisons between the genetic effects

estimated from different studies. Harmonized effects provide a standard for compari-

son because any specific genetic effect for a study population may be re-expressed as

a function of one or more of the (fixed or unchanging) harmonized genetic effects.

The traditional approach for obtaining a fixed basis for comparisons of genotypic

effects is to take, as the harmonized definitions, Cockerham-Kempthorne genotypic

effects based on an idealized reference population. The chosen reference population

is idealized in the sense that it is required to be in both Hardy-Weinberg equilibrium

and gametic phase equilibrium and its allelic probabilities are required to be known

exactly.

If genotypes at a locus M occur in Hardy-Weinberg proportions, then

P (MiMi) = P (Mi)
2 and P (MiMj) = 2P (Mi)P (Mj) for i 6= j.

Simultaneously requiring the idealized population to have known allelic probabilities

and to be in Hardy-Weinberg equilibrium, fixes its single-locus genotype probabilities.
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If alleles at two distinct loci M and N are in gametic phase equilibrium (linkage

equilibrium), then the probability of the haplotype MiNk is given by

P (MiNk) = P (Mi)P (Nk).

Simultaneously requiring the idealized population to have known allelic probabilities

and to be in gametic phase equilibrium, fixes its multi-locus genotype probabilities.

The F2 population meets these requirements, and so it is often used as the refer-

ence population (see Zeng et al., 2005). The classical approach is to re-express the

genotypic effects of the study population in terms of the genotypic effects of a hy-

pothetical F2 population (derived from the same founding parents as the inbred-line

being studied). Subsequently, the study population is used to try to obtain estimates

for these F2 genotypic effects.

Consider a single locus M with alleles M1 and M2. Let the study population be the

B1 backcross and let the reference population be the F2 intercross. Using Equations

(2.12), (2.15) and (2.16), we obtain the following expressions for the additive effect

(a) and dominance effect (d) of genotype M1M1 in the F2.

a = 1
2

(
E(y|M1M1)− E(y|M2M2)

)
(2.27)

d = 1
4

(
E(y|M1M1)− 2E(y|M1M2) + E(y|M2M2)

)
(2.28)

Likewise, we obtain the following expressions additive effect (a1) and dominance effect

(d1) of genotype M1M1 in the B1 backcross.

a1 = 1
3

(
E(y|M1M1)− E(y|M1M2)

)
= 1

3
(a + 2d) (2.29)

d1 = 1
6

(
E(y|M1M1)− E(y|M1M2)

)
= 1

6
(a + 2d) (2.30)

Therefore, overall effect of of genotype M1M1 in the B1 backcross is given by

bM1M1 = a1 + d1 = 1
2
(a + 2d). (2.31)
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If all genotypes occurring in the F2 population do not occur in the study population,

then it is not possible to separately estimate each F2 genotypic effect. For example,

we cannot separately estimate (F2) additive and dominance effects using a backcross

population. However, if combined data from both the B1 and the B2 backcross is

used, then it is possible to separate the additive and dominance effects.

2.3.3 Partitioning the genetic variance

Equation (2.25) suggests the following linear model for an individual trait value y

within the subpopulation having genotype x.

yx = E(y|x) + ε

= µ + Gx + ε, (2.32)

where Gx is the overall genetic effect and ε is a random error term having mean

zero. This is the linear model of Cockerham (1954) and Kempthorne (1954) for an

individual trait value. Following Fisher (1918), they used it to partition the total

trait variance in terms of both the genetic variance (at a locus) and the variance due

to error.

var(y) = E(y2)− E2(y)

= E E(y2|x)− µ2

= E(µ2 + G2
x + ε2 + 2µGx + 2µε + 2εGx)− µ2

= E(G2
x) + 2E(εGx) + E(ε2)

= var(Gx) + 2cov(ε,Gx) + var(ε), (2.33)

since E(Gx) = 0 and E(ε) = 0 by assumption.

The part of the trait variance which is due to genetic effects is called the total

genetic variance.

total genetic variance = var(Gx) + 2 cov(ε,Gx) (2.34)
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If there are there are no interactions between genetic effects and other sources of

variation such as environmental effects then.

total genetic variance = var(Gx) (2.35)

If there is no covariance between different types of genetic effects (i.e. cov(Ax, Dx) =

0, cov(Ax, (AD)x) = 0, and so on), then the genetic variance may be partitioned as

follows

var
(
Gx

)
= var

(
Ax

)
+ var

(
Dx

)
+ var

(
(AD)x

)
+ var

(
(AA)x

)
+ var

(
(DD)x

)
(2.36)

Furthermore, if there is no covariance between different types of genetic effects and

each type of genetic effect has mean zero, then we also have the simplification given

in Equation (2.37) below.

var
(
Gx

)
= E

(
A2

x

)
+ E

(
D2

x

)
+ E

(
(AD)2

x

)
+ E

(
(AA)2

x

)
+ E

(
(DD)2

x

)
(2.37)

Equation (2.37) holds true for the Cockerham-Kempthorne model because the latter

is based on orthogonal contrasts, which ensure zero covariance between different types

of genetic effects.

In the Quantitative Genetics literature, proportion H2 = var(Gx)/var(y) is called

the ‘broad sense heritability’ and the proportion h2 = var(Ax)/var(y) is called the

‘narrow sense heritability’. The broad sense heritability is the proportion of the trait

variance that is explained by the total variability of the genetic effects, while the

narrow sense heritability is the proportion of the trait variance that is explained

by variability of the additive effects. The ‘narrow sense heritability’ is important

in breeding programs because is is often associated with the degree of resemblance

between relatives (Falconer and Mackay, 1996, page 123).
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2.3.4 Number of genetic effects in a full linear regression

model

Linear regression is commonly used to estimate genetic effects using marker and trait

data. The maximum number of genetic effects that can be directly estimated by

linear regression is one less than the number of distinct genotype groups. Any extra

genetic effects may then be estimated from the fitted means.

Consider ` loci and suppose that, for the population under study, there are κ

genotypes at each locus. Then there are κ` possible `-locus genotypes. A full linear

model includes the maximum of κ` effects. These effects are the intercept and κ` − 1

genetic effects. The number of i-way genetic effects in a full model is equal to

(
`

i

)
(κ− 1)i where i = 1, . . . `.

There are `(κ− 1) main effects and the number of interaction effects is equal to

∑̀
i=2

(
`

i

)
(κ− 1)i = κ` − 1− `(κ− 1).

This implies that the number of interaction terms can increase rapidly as the number

of loci increases. Including a large number of effects in a model can adversely affect

the resolution of point estimates. This because the sample size may not be large

enough to permit accurate parameter estimation.

In the above illustration of the Cokerham-Kempthorne linear model (see Equation

(2.25)), all terms of order three and above were ignored. In practice, such terms

are often ignored in model fitting, not because they are insignificant but because of

constraints imposed by small sample size. In fact many QTL mapping procedures do

not estimate any of the epistatic effects. Rather than ignoring epistasis altogether it

can be useful to fit a few low order interaction effects: for example, up to the second

order as in Equation (2.25).
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The next chapter (Chapter 3) examines the distribution of the trait for inbred

line-cross populations. The distributions of sample means and sample variance of

the trait are also examined. Later, the whole of Chapter 4 is devoted to regression

methods for estimating the effects of QTL genotypes.
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Chapter 3

The Inherent Mixture

This chapter gives a structural overview of the QTL mapping problem in the context

of inbred line-crosses.

3.1 Statistical Exploration of Line-Cross data

Any population generated by an inbred line cross experiment has natural partitions,

determined by groups of individuals having identical genotypes at certain loci. There

are a large number of such partitions but our attention is restricted to distinct sub-

groups involving individuals who are genetically homogeneous at a specific set of

marker loci. This restriction is unavoidable because the data provides information

only for those markers at which individuals have been genotyped.

Suppose that n individuals have been genotyped at a fixed number of loci and

that the experimental design yields s distinct marker genotypes. For each individual,

the observed attributes are marker genotypes and one or more measurable traits of

interest. For simplicity, assume that observations are made on a single trait. Classify

the trait values according to the corresponding marker genotypes. This leads to a
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view of the measurements as values of the random variables

{Yij : i = 1, . . . , s; j = 1, . . . , ni},

where ni > 0 is the number of sampled individuals having marker genotype i. Note

that some marker genotypes may not appear in the sample. We denote the set of

observed trait values by {yij}.
The goal of QTL analysis is to make inferences about QTL using available marker

and trait information. It is therefore useful to consider also a hypothetical labelling

of the trait data based on a partition determined by joint marker and QTL geno-

types. Thus, an alternative representation of the trait data is as values of random

variables Γik`, where i indexes the marker genotype, k indexes the QTL genotype

and ` indexes the individuals within genotype-class ik. Suppose that there are t

possible QTL genotypes. The trait data can be denoted by {γik` : i = 1, . . . , s; k =

1, . . . , t; ` = 1, . . . , nik}, where nik is the number of sampled individuals having geno-

type ik. Essentially, the elements of the set {yij} are rearranged to form the set {γik`}
via an unobservable, one-to-one mapping.

Assume that the trait values are normally distributed (possibly after transfor-

mation) within genetically homogenous sub-populations. Assume that non-genetic

sources of variation are completely random so that the Γik` are independently dis-

tributed as N(µik, σ
2). The trait means, µik, may vary for different genotypes. Typ-

ically, the common variance σ2 encapsulates variability due to non-genetic factors as

well as genetic factors that are not modelled.

Tables 3.1 and 3.2 summarize the properties of the population and sample de-

scribed above. The population means given in Table 3.1 are functions of population

genotype probabilities and genotypic effects (additive, dominance and interaction ef-

fects at and between loci). Marker and QTL position, generally given as pairwise

recombination fractions, help to determine population genotype probabilities.
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Table 3.1: Some population properties of line cross designs

Population Property Notation and Comments Known?

Probability of genotype ik pik (a function of both the breeding

design and unknown recombination

probabilities)

No

Probability of marker genotype i pi (a function of the breeding design

and known marker map)

Yes

Trait mean for genotype ik µik = E(Γik`| ik) No

Trait mean for marker-class i µi = E(Γik`| i) =
∑t

k=1
pik

pi
µik No

Population mean trait value µ = E(Γik`)

=
∑s

i=1 piµi =
∑s

i=1

∑t
k=1 pikµik

No

Trait variance for genotype ik σ2 = σ2
error = E(Γik` − µik)

2

= E(Γ2
ik`)− µ2

ik

No

Trait variance for marker-class i σ2
i = E

(
(Γik` − µi)

2| i)

= E(Γ2
ik`| i)− µ2

i

=
∑t

k=1
pik

pi
E(Γ2

ik`)− µ2
i

= σ2 +
∑t

k=1
pik

pi
µ2

ik − µ2
i

No

Overall trait variance σ2
total = E(Γik` − µ)2 = E(Γ2

ik`)− µ2

=
∑s

i=1 pi E(Γ2
ik`| i)− µ2

= σ2 +
∑s

i=1

∑t
k=1 pikµ

2
ik − µ2

No
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Table 3.2: Some sample properties of line cross designs

Sample Property Notation and Comments Known?

No. of marker genotypes s (observed) Yes

No. of QTL genotypes t (fixed by assumption at the model spec-

ification stage)

Yes

Count for genotype ik nik (unobservable) No

Count for marker genotype i ni =
∑t

k=1 nik (observed) Yes

Total sample size n =
∑s

i=1 ni (observed) Yes

The `
th

trait value belonging

to genotype-class ik, where

i = 1, . . . , s; k = 1, . . . , t.

γik`, ` = 1, . . . , nik. (unobservable) No

The j
th

trait value belonging

to marker-class i, where i =

1, . . . , s.

yij, j = 1, . . . , ni Yes

Sample mean for genotype-

class ik

γik = 1
nik

∑nik

`=1 γik` No

Sample mean trait value for

marker-class i

yi = 1
ni

∑ni

j=1 yij Yes

Overall sample mean y = 1
n

∑s
i=1

∑ni

j=1 yij Yes
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Table 3.2: (continued)

Sample Property Notation and Comments Known?

Asymptotic distribution of

the sample mean for marker-

class i

Y i ∼ N
(

1
ni

∑t
k=1 nik µik,

σ2
i

ni

)
No

Asymptotic distribution of

the overall sample mean

Y ∼ N
(

1
n

∑s
i=1

∑t
k=1 nik µik,

σ2
total

n

)
No

Sample variance of the trait

values in genotype-class ik

S2
ik = 1

(nik−1)

∑t
k=1

∑nik

`=1(γik` − γik)
2 No

Sample variance for marker-

class i

S2
i =

1

(ni − 1)

ni∑
j=1

(yij − yi)
2

=
ni

ni − 1

(
1

ni

( ni∑
j=1

y2
ij

)
− y2

i

)

=
ni

ni − 1

(( t∑

k=1

nik∑

`=1

γ2
ik`

ni

)

−
( t∑

k=1

nik

ni

γik

)2
)

Yes

Asymptotic distribution of
(ni − 1)

σ2
times the sample

variance for marker-class i

The statistic
(ni − 1)S2

i

σ2
is distributed

as a non-central chi-square random vari-

able, with (ni − 1) degrees of freedom

and non-centrality parameter λi, where

λi =
ni

σ2

(
t∑

k=1

nik

ni

µ2
ik −

( t∑

k=1

nik

ni

µik

)2
)

.

No
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The sample mean for marker class i is asymptotically normally distributed, but

the counts ni1, . . . , nit are not observed. We find all possible partitions (by QTL-type)

within the ith marker-class, and weight the resulting density of Y i by the conditional

probability of such a partition, summing over the weighted densities. This gives the

marginal distribution of Y i as a mixture of Normals.

The distribution of the sample variance within a given marker class must also be

estimated by a mixture distribution. Although
(ni−1)S2

i

σ2 is asymptotically distributed

as a noncentral chi-square with ni−1 degrees of freedom and non-centrality parameter

λi as in Table 3.2, the counts ni1, . . . , nit are not observed. Behboodian (1972b)

showed the distribution of the sample variance from such a mixed population is a

multinomial mixture of non-central chi-squares.

3.2 From marker to QTL

The number and location of QTLs in the system are unknown. The aim of QTL

mapping is first to detect the presence of QTL effect, by looking for statistical sig-

nificance that can be attributed to QTL in a particular segment of the genome. The

best case would be a situation in which significance is known to be attributable to

genes within a particular marker interval. Where this case cannot be achieved, the

possibility of attributing significance to the incorrect segment exists and can lead to

the detection of “ghost” or false QTL.

If the detection is significant, then the next goal is to estimate the gene location

in terms of the probability of recombinations between its locus and that of a nearby

marker. Hence, an initial estimate of QTL location comes in terms of the recombi-

nation fractions between each QTL and a specific marker. Later, this is converted to

genetic distance using a map function such as Haldane’s map function. Map functions

are discussed in detail in the literature (see Ott 1991, pages 14-19 and pages 120-129;
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Liu 1997, pages 318-329).

The conventional approach to QTL detection assumes a system containing a spe-

cific number and ordering of putative QTL linked to known markers. For any par-

ticular population and sampling design, the basic information comprises the marker

linkage-map, the experimental design itself, the observed marker genotypes and the

corresponding trait measurements taken for each sampled individual.

Properties of the linkage map and the experimental design are used together in

estimating the conditional distribution of each QTL genotype given a marker geno-

type. Estimation of this distribution typically requires strong assumptions about the

level and structure of recombinational interference between loci, the number of pu-

tative QTL, and the ordering of QTL relative to the markers. The estimated trait

distribution, conditional on the observed marker and QTL genotypes, is used to make

inferences about the sizes of QTL effects and the location(s) of the QTL(s) relative

to the markers.

For convenience, denote the marker genotype and the QTL genotype by i, k

respectively. If multiple marker loci are involved then i is a multi-locus genotype.

Similarly, if we consider multiple QTL loci, then k is a multi-locus genotype. Also,

suppose that

yij is the trait value of individual ij, where individual ij is the jth individual

having marker genotype i;

mij is the marker genotype of individual ij;

qij is the QTL genotype of individual ij.

The foundation of QTL mapping theory is based on the two models listed below.

1. There must be a model, w(ij)k(φ), for the probability that individual ij has

QTL genotype k given that he/she has marker genotype i. Here φ is a vector

of parameters controlling gene and genotype probabilities. Now, mij = i by

observation. However, there is uncertainty about qij. The uncertainty about qij
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may be expressed as

qij = k, with probability w(ij)k(φ).

2. There must be a model, P (yij|mij = i, qij = k; θ) = P (yij| i, k; θ), for the

conditional trait distribution given genotype ik. Here θ is a vector parame-

ters which are thought to control phenotypic value. In genetic linkage studies,

P (yij| i, k; θ) is often referred to as the penetrance of the trait

The conditional probability, w(ij)k(φ), of being in QTL class k given member-

ship of marker class i depends on the breeding design, the level of crossover inter-

ference and the linkage map (the positions of the markers and the QTL along the

genome). Therefore, the parameter vector φ usually captures factors affecting gene

and genotype probabilities within a population, such as population structure, gene

transmission probabilities from parent to offspring and genotype by environmental

interactions.

Let Msireij
, Mdamij

denote the marker genotype of the mother and father, respec-

tively, of individual ij. Also, let Qsireij
, Qdamij

denote the QTL genotype of the father

(sireij) and mother (damij), respectively, of individual ij. The conditional probability

w(ij)k(φ) is calculated by averaging over the possible parental QTL genotypes as in

Equation (3.1).

w(ij)k(φ)

= P
(
qij = k|mij = i; φ, marker genotypes of parents sireij and damij

)

=
∑

Msireij

∑
Mdamij

∑
Qsireij

∑
Qdamij

(
P

(
qij = k|mij = i, Qsire(ij),Msireij

, Qdamij
,Mdamij

; φ
)

× P (Qsireij
|Msireij

; φ)P (Msireij
; mij,φ)

× P (Qdamij
|Mdamij

; φ)P (Mdamij
; mij, φ)

)
(3.1)
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If the mother’s marker genotype is known, then P (Mdamij
; mij, φ) = 1 for the corre-

sponding observed marker genotype, and zero for all other marker genotypes. Like-

wise, if the father’s marker genotype is known, then P (Msireij
; mij, φ) = 1 for the

observed paternal marker genotype, and P (Msireij
; mij,φ) = 0 for all other marker

genotypes. Therefore, if the parent marker genotypes are known, then Equation (3.1)

reduces to

w(ij)k(φ) =
∑

Qsireij

∑
Qdamij

(
P

(
qij = k|mij = i, Qsire(ij),Msireij

, Qdamij
,Mdamij

; φ
)

× P (Qsireij
|Msireij

; φ)P (Qdamij
|Mdamij

; φ)
)

(3.2)

Note that w(ij)k(φ) > 0 and
∑t

k=1 w(ij)k(φ) = 1.

Generally, the conditional probability w(ij)k(φ) is easier to calculate for inbred

designs than for outbred designs. This is mainly because, in simple inbred designs such

as the backcross and the F2 intercross, each inbred parental population is assumed

to be genetically homogenous at all QTL and marker loci. Therefore, if the observed

data is from a single inbred population, we can drop the subscript j and write

w(ij)k(φ) = wik(φ) =
pik

pi

,

where pik is the probability of genotype ik and pi is the probability of marker genotype

i in the inbred population. Also, relationships between siblings and other relatives,

shared maternal effects, and other shared environmental effects are somewhat under

experimental control for inbred line-cross designs. However, population structure,

breeding and shared environmental effects are more difficult to control for outbred

designs.

In the model, P (yij|mij = i, qij = k; θ), for the conditional trait distribution,

the parameter vector θ can capture genetic effects as well as the effects of any extra

covariates, cofactors and interactions that are assumed to affect trait value.
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Marker-based methods depend on the marginal distribution of the trait value

given the observed marker genotype. Using the theorems of conditional probability,

we obtain the marginal trait distribution conditional on marker i as the finite mixture

distribution displayed in Equation (3.3).

P (yij|mij = i; φ,θ) =
t∑

k=1

w(ij)k(φ) P (yij|mij = i, qij = k; θ) (3.3)

Assume that the trait is normally distributed within each genotype class ik, with

common variance σ2 but distinct means µik in each class. If the assumption neutral

markers is made, then the mean, µik, depends only on the QTL genotype because the

trait is assumed to be unaffected by the marker genotypes. We may write µik = µk

under the neutral marker assumption. Individuals within each class ik are genetically

homogeneous at the marker and QTL loci, therefore the within-class variance is as-

sumed to be equal to the error variance, σ2. In the case of this Normal distribution,

we have the Normal mixture density given in Equation (3.4) below.

f(yij; φ,θ) = f(yij; φ, µi1, . . . , µit, σ
2) =

t∑

k=1

w(ij)k(φ)

σ
√

2π
exp

{(yij − µik)
2

−2σ2

}
,

where θ = (µi1, . . . , µit, σ
2). (3.4)

In this model, the error variance actually comprises within individual variation plus

external environmental variation (see for example Falconer and Mackay 1996). More

sophisticated models may explicitly include parameters for estimating the effects of

one or more environmental factors.

The likelihood for a sample needs to take into account any relationships between

relatives. This is achieved by considering possible values for the n-dimensional vector
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(q11, . . . , qsns) containing QTL genotypes for all sample members (see Equation (3.5)).

L(y11, . . . , ysns|m11, . . . , msns ; φ,θ)

=
∑

q11,..., qsns

P (y|m11, . . . , msns , q11, . . . , qsns ; θ)P (q11, . . . , qsns|m11, . . . , msns ; φ)

=
∑

q11,..., qsns

s∏
i=1

ni∏
j=1

P (yij|mij, qij; θ)P (qij|mij; φ
)
, (3.5)

The last line of Equation (3.5) rests on three assumptions. These assumptions are:

1. The trait is genetically determined.

2. If an individual’s phenotypic value is conditioned on his/her genotype, then

its conditional distribution is independent of all other genotypes or phenotypic

values in the pedigree.

3. If an individual’s genotype is conditioned on the genotypes of his/her parents,

then its conditional distribution is independent of all other individuals (except

his/her parents).

If the parents of individual ij are in the sample, then P (qij|mij; φ) depends on

genotypes of sireij, damij (see Equation (3.1)) and so the genotypes of some sample

members may not be independent.

The summation in Equation (3.5) is taken over an n-dimensional space. Therefore,

the likelihood may be computationally demanding to calculate for large pedigrees.

Several algorithms have been proposed in the literature to reduce the number of

arithmetic operations. Examples include the Peeling Algorithm (Elston and Stewart,

1971; Cannings et al., 1978) and the VITESSE Algorithm (O’Connell and Weeks,

1995).

For inbred designs, individuals are all from the same generation. Therefore, they

are regarded as independent and the likelihood for a sample of such individuals has
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the simple form given in Equation (3.6).

L(y11, . . . , ysns|m11, . . . , msns ; φ,θ)

=
s∏

i=1

ni∏
j=1

( t∑

k=1

P (qij|mij = i; φ
)
P (yij|mij = i, qij = k; θ)

)

=
s∏

i=1

ni∏
j=1

( t∑

k=1

w(ij)k(φ) P (yij|mij = i, qij = k; θ)
)

(3.6)

In this thesis, we are focusing on inbred line-cross populations. Therefore, the form

of the likelihood given in Equation (3.6) is of primary interest.

For complete specification of the probability densities, parameter estimates are

needed for φ and θ. Knowledge of φ allows calculation of recombination fractions

between marker loci and QTL. Knowledge of the genotypic means, µik allows calcu-

lation of genotypic effects, which is the first step in determining whether genes exist

that significantly affect trait value. Maximum likelihood estimation and marker-trait

regressions are among the most common methods for estimating these parameters.

In Chapter 4, we discuss QTL mapping by multiple regression and in Chapter 5, we

explore the mixture-likelihood approach to QTL mapping.
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Chapter 4

Regression Methods

Fixed effects linear models have been used, with moderate success, to detect marker-

trait associations and to estimate QTL effects (see for example Haley and Knott,

1992; Marinez and Curnow, 1992; Whittaker et al., 1996). This mapping technique

detects QTL by relating the regression of trait on marker-genotype to a regression

of trait on putative QTL-genotypes. The fixed effects regression or Analysis of vari-

ance (ANOVA) models may be implemented using a variety of constraints and con-

trasts/coding definitions. The purpose of this chapter is to consolidate and formalize

the existing strategies for inferring QTL from multiple regressions of trait value on

marker genotype.

Section 4.1 introduces the theory and notation of regression in the QTL mapping

context. An example follows in Section 4.2, where the theory is applied to the F2,

and the reader is encouraged to compare the general results in the notation-heavy

Section 4.1 with the specific realisation presented in Section 4.2.
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4.1 Multiple Regression with Contrasts

4.1.1 Models, contrasts and implications

Consider a system of s distinct, possibly multi-locus, marker genotypes. The number

of distinct marker genotypes, s, depends on the experimental population, the number

of marker loci, and on whether or not the loci are codominant. For example, in the

case of two codominant markers, s = 4 for the backcross design, and s = 9 for the

F2 design. In the case of two dominant marker loci, heterozygous genotypes cannot

be distinguished from homozygous genotypes, so s = 1 for the backcross design, and

s = 4 for the F2 design.

Given n individuals, the simplest ANOVA model considers the trait value, yij, of

the jth individual with marker genotype i as a function of the background effects u0,

marker effect ui and a random error εij.

yij = u0 + ui + εij. (4.1)

The error terms {εij} are assumed to be independent, identically distributed normal

random variables having unknown variance (denoted by σ2) and mean zero.

Define the mean trait-value of an individual having marker genotype i as

µi = E(Y | genotype i) = E(Y |i). (4.2)

Then

µi = u0 + ui. (4.3)

Let µ = (µ1, µ2, . . . , µs)
T and let p = (p1, p2, . . . , ps)

T , where
∑s

i=1 pi = 1 and pi is

the probability of marker genotype i within the population from which the sample

was drawn. The characteristics of this population depend on the breeding design.

Let µ be the population mean trait-value. Then

µ = pTµ = u0 +
s∑

i=1

piui. (4.4)
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The model is over-parameterised and requires a constraint on the ui. Various con-

straints are possible, and if (for example) we set
∑s

i=1 piui = 0 then the constant

term u0 is equal to the overall mean µ.

Label the individuals so that individual ij is the jth individual having marker

genotype i. Now let m(ij) i′ be a binary indicator variable for the marker genotype of

individual ij. Then

m(ij) i′ = δii′ =





1 if i = i′

0 otherwise.

Equation (4.1) represents a one-way ANOVA model. Equivalently, we may express

this model in the form of a multiple regression, with the phenotypic value for the jth

individual in marker category i given by

yij = u0 +
s∑

i′=1

ui′ m(ij) i′ + εij, (4.5)

Define the matrix Mn×s = (m(ij) i′), a binary incidence matrix where each row has

the value one in the column for the genotype of the corresponding individual, and zero

in all other columns. As in Table 3.2, denote the number of individuals having marker

genotype i by ni. Also let y = (y11, y12, . . . , ysns)
T be a vector of trait values; 1n a

column vector of order n with each element equal to one; u = (u0, u1, u2, . . . , us)
T and

ε = (ε11, ε12, . . . , εsns)
T be, respectively, vectors containing regression coefficients and

independent, identically distributed error terms. Assume that the error terms have

a Normal distribution with mean zero and unknown variance. Then the regression

model may be written in matrix notation as follows:

y = [1n M]u + ε, (4.6)

The model cannot be fitted as given in Equation (4.6) because the model matrix

is X = [1n M] which has (s + 1) columns and rank s, indicating redundancy in the

model. That is, XTX does not have a left inverse, therefore a solution to the least
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squares normalizing equations cannot be found. There are several ways to address

the problem of redundancy in the model matrix. The simplest approach is to remove

the constant term from the model. An alternative approach is to fit the model using

the intercept together with a set of not more than s− 1 linearly independent vectors

in Rs.

In the context of linear models involving s regressors, any set of linearly inde-

pendent vectors in Rs is referred to as a set of contrast vectors. There is usually a

constraint that elements of each contrast vector sum to zero (see for example Hochberg

and Tamhane, 1987; Robertson et al., 1988; Montgomery, 1996; Venables and Ripley,

1997). If the original model matrix is a (n × s) binary incidence matrix, and C is

any matrix whose columns are a set of linearly independent vectors in Rs, then C is

a contrast generator in the sense that its left inverse forms a contrast matrix. When

post-multiplied by the vector of treatment means, the rows of the matrix given by

the left inverse of the contrast generator (C) produces contrasts between treatment

means. Each contrast generator has a unique left inverse. Therefore, in this thesis,

it is convenient to use the term ‘contrast matrix’ rather loosely to when referring to

the contrast generating matrices as well as when referring to the generated contrasts

themselves.

To fit the model given in Equation (4.6) a matrix, Cs×(s−1) = (cip), having rank

(s− 1), is chosen so that X has rank s where X is the recoded model matrix given in

Equation (4.7).

X = [1n MC] (4.7)

The linear model may now be written as

y = Xb + ε = [1n MC]b + ε. (4.8)

The solution by least squares is

b̂ = (XTX)−1XTy. (4.9)
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In addition to removing redundancy, fitting with contrasts yields the benefit of

parameter estimates that can easily be interpreted as linear functions of treatment

means. This facilitates hypothesis tests involving comparisons of treatment means.

In QTL analysis, for example, we are concerned about differences between treatment

means, where the ‘treatments’ are marker-genotype classes. Appropriately selected

contrasts can be used to extract this information.

By comparing equations (4.6) and (4.8), we see that the relationship between the

coefficient vectors u and b is

u0 = b0 and u1 = Cb1, (4.10)

where u = (u0, u1, . . . , us)
T = (u0,u

T
1 )T

and b = (b0, b1, . . . , bs−1)
T = (b0,b

T
1 )T .

If a = (a1, a2, . . . , as)
T is a vector such that aTC = 0 then using b as the vec-

tor of parameters amounts to estimation of the original parameters, u, under the

identification constraint aTu1 = aTCb1 = 0, that is

s∑

k=1

ai ui = 0.

Expanding the matrix structures in Equation (4.10) reveals that the components of

b1 are related such that

bp =

∑s
i=1 ni cip ui −

∑
r 6=p br

(∑s
i=1 ni cip cir

)
∑s

i=1 ni c2
ip

for p = 1, . . . , s− 1. (4.11)

Let C+ denote the unique left inverse of C.

C+ = (CTC)−1CT (4.12)

The new parameters b = (b0, b1, . . . , bs−1) may be interpreted in terms of the original

parameters as follows:

b0 = u0 and b1 = C+u1. (4.13)



58

Denote the pth row of C+ by C+
p•. Then we see that C generates (s − 1) contrasts

of the form C+
p• u1, associated with the hypothesis or linear constraint C+

p• u1 = 0

where p = 1, . . . , s− 1.

Define

Cm = [1s C] (4.14)

then by the definition of M, we have that M1s = 1n and so

[1n MC] = MCm. (4.15)

Therefore, Equation (4.8) is equivalent to Equation (4.16) below.

y = MCmb + ε (4.16)

The estimated mean trait values for the marker categories are given by

µ̂ = Cmb̂. (4.17)

When discussing various features of the model, sometimes it is easier use Cm and

sometimes it is easier use C.

For convenience, let C•p denote the pth column of the matrix C. If X = MCm is

an orthogonal model matrix, then the columns of C are called orthogonal contrasts.

As we shall see later, the use of orthogonal contrasts ensures that the least squares

estimates of the parameters {bp} are uncorrelated. This results in a convenient par-

titioning of the regression sums of squares. The matrix C is an orthogonal contrast

matrix if XTX is diagonal, where X is the model matrix defined in Equation (4.7).

For a model of the form given in Equation (4.8) we have

XTX =

[
1T

n

CTMT

]
[1n MC]

=

(
n 1T

nMC

(MC)T1n (MC)TMC

)
. (4.18)
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In order for XTX to be diagonal, we must have 1T
nMC = 0 and (MC)TMC must be

a diagonal matrix. Therefore, for a regression model involving the constant term, any

two distinct contrasts C•p = (c1p, . . . , csp)
T and C•r = (c1r, . . . , csr)

T (with p 6= r)

are orthogonal if CT
•pM

TMC•r = 0, 1T
nMC•p = 0 and 1T

nMC•r = 0. Note that

1T
nM = (n1, n1, . . . , ns) and that MTM is a diagonal matrix with ni being the ith

diagonal element. Consequently, C•p and C•r, where p 6= r, are orthogonal contrast

vectors if

s∑
i=1

ni cip cir = 0 (4.19)

s∑
i=1

ni cip = 0 (4.20)

s∑
i=1

ni cir = 0. (4.21)

If Equation (4.21) holds for all columns of C, then the contrast vector 1s (which

corresponds to the constant term) is orthogonal to every contrast in C.

Taking Equation (4.10) together with the requirement that 1T
nMC = 0 and the

requirement that (MC)TMC be diagonal implies the following:

1. When C is an orthogonal contrast matrix, using it to estimate b amounts to

estimating the original parameters u under the constraint that 1T
nMu1 = 0,

giving
∑s

i=1 ni ui = 0. This is equivalent to the constraint that
∑s

i=1 p̂i ui = 0,

where p̂i = ni/n.

2. When C is an orthogonal contrast matrix, the components of b satisfy the

equations

b0 = u0 = µ, and bp =

∑s
i=1 ni cip ui∑s

i=1 ni c2
ip

, for p = 1, . . . , s− 1. (4.22)
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4.1.2 Sums of Squares and Hypothesis Tests

Consider the minimal (single-parameter) model given in equation (4.23). To test

whether at least one component of b1 is non-zero, we compare the model given in

Equation (4.8) to the minimal model which fits only the intercept term.

y = 1nb0 + ε. (4.23)

For the minimal model, the maximum likelihood estimator of b0 is b̂0 = y.

Let y = 1ny, then the sum of squares from the ‘minimal’ model is given by

SStotal = (y − y)T (y − y) =
s∑

i=1

ni∑
j=1

(yij − y)2. (4.24)

To see how the constant term (b0) of the minimal model becomes modified when the

full model is fitted, it is useful to define a centered matrix A as follows:

A = MC− 1

n
1n1

T
nMC = HMC (4.25)

where

H = In − 1

n
1n1

T
n . (4.26)

Consider the full model given in Equation (4.8), its least squares solution given in

Equation (4.9) and the partitioned matrix (XTX) given in Equation (4.18). Applying

the formulae for the inverse of a partitioned matrix allows us to partition the least

squares solution to show separate expressions for b̂0 and b̂1 (see Mardia et al., 1979,

pages 458-459; Rao and Toutenburg, 1995, pages 38-39).

b̂ =

(
b̂0

b̂1

)
=

(
y − 1

n
1T

nMC (ATA)−1ATy

(ATA)−1ATy

)
=

(
y − 1

n
1T

nMCb̂1

(ATA)−1ATy

)
(4.27)

The fitted values may be written as

ŷ = Xb̂ = [1n MC] b̂ = y + Ab̂1 (4.28)
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The fact that centering matrix H is idempotent (HT = H and HH = H) and the

fact that A(ATA)−1AT is also idempotent leads to the relationship given in Equation

(4.29).

(y − y)TAb̂1 = yTHTAb̂1 by the definition of H

= yTAb̂1 because H is idempotent and A = HMC

= yTA(ATA)−1ATy by the definition of b̂1

= b̂T
1 (ATA)b̂1 because A(ATA)−1AT is idempotent. (4.29)

The relationship given in Equation (4.29) helps us to relate the residual sum of squares

to the terms of the total sum of squares. The residual sum of squares (SSerror) for

the full model is therefore

SSerror = (y −Xb̂)T (y −Xb̂)

= (y − y −Ab̂1)
T (y − y −Ab̂1)

= (y − y)T (y − y)− b̂T
1 (ATA)b̂1 (4.30)

The amount of variability explained by the regression, SSreg (the regression sum of

squares) is calculated by subtraction:

SSreg = SStotal − SSerror = b̂T
1 (ATA)b̂1. (4.31)

The regression sums of squares, SSreg, has (s− 1) degrees of freedom associated with

it. Table 4.1, below, summarizes the sources of variation provided by the full model.

The variance of the vector of regression coefficients is given by

var(b̂) = σ2(XTX)−1. (4.32)

The error (environmental) variance, σ2, is unknown so we estimate it by using the

residual mean square.

σ̂2 = SSerror/(n− s) (4.33)
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Source of Sum of Degrees of Mean
Variation Squares Freedom Square

Regression on
MC•1,MC•2, . . . ,MC•(s−1) SSreg s− 1 SSreg/(s− 1)

Residual error SSerror (n− 1)− (s− 1) SSerror/(n− s)
Total SStotal n− 1

Table 4.1: One-way ANOVA table.

The test for significant evidence for the truth of all contrasts (H0 : b̂1 = 0 versus

H0 : b̂1 6= 0) is based on the statistic

Freg =
SSreg/(s− 1)

SSerror/(n− s)
∼ Fs−1, n−s (4.34)

This statistic is distributed according to the F -distribution with (s−1) and (n−s) de-

grees of freedom, provided that the errors are independent and identically distributed

with zero mean. If the F test given by Equation (4.34) is statistically significant, then

there is evidence for genetic effects on the trait.

Each contrast has one degree of freedom associated with it. A test for bi = 0

versus bi 6= 0, is a Wald t-test based on regression estimators from the full model.

The test statistic is

tp =
b̂p√

(XTX)−1
pp

SSerror

(n−s)

(4.35)

and it has an asymptotic t-distribution with n− s degrees of freedom.

A test for inclusion of a subset containing q < (s − 1) of the contrasts may be

constructed by fitting reduced model which excludes this subset, and then comparing

the reduced model to the full model via an F test.

Fp =
(SSreg(full) − SSreg(reduced))/(s− q − 1)

SSerror/(n− s)
∼ Fs−q−1, n−s (4.36)

If the contrasts are not orthogonal, and we wish to test any subset of the contrasts,

it is necessary to refit the entire model. On the other hand, using orthogonal contrasts
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leads to parameter estimates that are independent. Therefore, we can add new terms

to (or delete terms from) any sub-model without recomputing the {bp} already in (or

remaining in) the model. When C is an orthogonal contrast matrix, the estimators

for regression coefficients have the form:

b̂0 = y, and b̂1 = diag

(
1(

A•1
)T

A•1
, . . . ,

1(
A•(s−1)

)T
A•(s−1)

)
ATy, (4.37)

where A•p is the pth column of A and

A•p = HMC•p . (4.38)

For any contrast matrix C, the regression sum of squares associated with fitting only

the pth contrast is given by

SSreg(p) = b̃T
p (AT

•pA•p)̃bp, where b̃p = (AT
•pA•p)−1AT

•p y. (4.39)

Orthogonal contrasts yield b̂p = b̃p and SSreg =
∑s−1

p=1 SSreg(p) so the contrast sums of

squares partition the regression sum of squares for the full model.

4.1.3 Inferring QTL from marker regression

The QTL are unknown, therefore standard regression models cannot explicitly include

QTL genotype-indicators as explanatory variables. However, it is important to note

that standard regression of trait-values on marker genotype-indicators does not model

any information about recombination between marker and QTL.

Inference about QTL is made possible by establishing a linear relationship between

an estimable subset of QTL effects and the estimated marker effects. This relationship

is obtained by invoking the theorem of conditional probability while simultaneously

making strong assumptions about

(a) the number of QTL and the genotypes that they generate,
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(b) the recombination between loci and how recombination determines the condi-

tional probabilities of QTL genotypes given marker genotypes (for the breeding

design being studied).

The QTL effects are estimated from the fitted b, and the process of doing so is

equivalent to fitting a further model to the data. Details of this process are given in

the remainder of this section and examples of contrast matrices are given in Section

4.1.4. Then, an example of this process is given in Section 4.2. Bullet points one

to six, below, describe the basic steps for establishing a useable linear relationship

between marker effects and QTL effects.

1. Assume a fixed number of QTL and suppose that, for the breeding design being

studied, they generate t distinct QTL genotypes. If more than one locus is

assumed to affect the trait, then the QTL genotypes are multi-locus genotypes.

For example, a backcross model with one QTL will have t = 2 QTL genotypes.

2. Define µq = (µq1, µq2, . . . , µqt)
T , where µqk is the mean trait value for individuals

having the kth QTL genotype. All of the µqk are unknown parameters.

3. Introduce a matrix Ws×t = (wik), where wik is the conditional probability of the

kth QTL genotype given the ith marker genotype. The conditional probabilities,

wik, are generally non-linear functions of unknown recombination fractions.

4. Apply the theorem of conditional probability to obtain the relationship

µ = Wµq (4.40)

between the marker-group means and the QTL-group means.

5. Estimates of the marker group means are obtained from the marker regression

as µ̂ = Cmb̂, so we have

Cmb̂ = [1s C] b̂ = Wµq. (4.41)
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However, there is no guarantee that the matrix of conditional genotype proba-

bilities, W, has a left inverse. It does not have a left inverse if t > s and even

when t 6 s, the matrix W could turn out to have linearly dependent columns.

Unlike contrast matrices, the matrix W is not a construction whose compo-

nents we can change at will, rather it is determined by both the breeding design

and the locations of the QTL. Lack of linear independence in the columns of

W typically occurs in multi-QTL models, making it impossible to completely

separate the effects of different QTL. In order to reduce Equation (4.41) to

a linear system of equations based on estimable functions of the QTL effects,

we introduce (below) a QTL-contrast matrix to reduce the dimensionality (if

necessary) and to facilitate comparison between QTL group means.

6. Introduce a QTL-contrast matrix, Cq, having t rows and t′ 6 min(s, t) columns,

constructed such that

rank(WCq) = rank(Cq) = t′ and Cq = [1t

∨
C]. (4.42)

The columns of Cq are associated with a column vector, bq, containing t′ QTL

regression coefficients, and with an unobserved binary matrix, Zn×t, of indica-

tors for QTL-genotype. The set of effects in bq is an estimable subset of QTL

effects. Now we have the definition

µq = Cqbq. (4.43)

To place a meaningful interpretation on the regression coefficients bq, we note

that bq is in fact the linear combination of QTL genotypic means given by

bq = (Cq)
+µq. (4.44)

The desired linear relationship between the marker effects and the QTL effects

is

µ̂ = Cmb̂ = WCqbq. (4.45)
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The matrices Cm, and Cq are known constants, while the vector b̂ contains known

estimates obtained from marker regression. Therefore, W and bq are the only un-

knowns in Equation (4.45). The aim is to estimate any unknown parameters (recom-

bination fractions) in W and also to estimate bq (the QTL regression coefficients -

which are linear functions of QTL effects).

The form of the solution is easy to obtain, but as we will see below, the solution

may not be unique. Depending on the number of effects, the number of unknown

recombination fractions and the configuration of W, some systems may even generate

infinitely many solutions because the components of bq may not be separable from

the unknown recombination fractions. Moreover, the requirement that the rank of

WCq be equal to its number of columns, implies that if t′ < t, then some QTL effects

may not be separable from each other.

Let us examine the form of the solution and features of the linear relationship

between b and bq which may be useful for testing hypotheses about QTL.

By definition, the matrices Cm and WCq are of full column rank, so the left

inverse exists in both cases. Multiplying Equation (4.45) by the unique left inverse

of Cm, yields a system of s equations given by

b̂ = (Cm)+ WCqbq. (4.46)

By assumption, all solutions {b̂q, Ŵ} satisfy the relationship given in Equation

(4.47).

b̂q = (ŴCq)
+ Cmb̂. (4.47)

Equations (4.16) and (4.46) suggest that if W were known, then bq could have

been directly estimated via a regression of trait value on marker genotype based on

the model

y = MCwbq + ε, (4.48)
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where Cw is a new contrast matrix defined as

Cw = Cm(Cm)+ WCq. (4.49)

If we treat W as a known constant, then Equation (4.47) implies that the covariance

matrices of the estimated effects b̂q and b̂ may be related as follows:

var(b̂q) = K var(b̂)KT , where K = (WCq)
+ Cm. (4.50)

Haley and Knott (1992) and Marinez and Curnow (1992) independently proposed

searching over several putative QTL locations by selecting recombination fractions

from a grid (thus fixing W), and then fitting a model equivalent to Equation (4.48),

repeating the regression for each set of QTL locations. They suggested that the

solution {b̂q,Ŵ} is the set of points that minimizes the residual sum of squares. It is

important to note that the parameter estimates generated by this search procedure

cannot be uniquely optimal unless Equation (4.46) actually has a unique solution.

If Equation (4.46) is such that the number of unknown parameters is greater than

the number of equations (s), then one could assign valid, arbitrarily chosen values to

inestimable parameters in bq and/or W, thereby generating infinitely many solutions.

If, on the other hand, the number of unknown parameters is less than or equal to

the number of equations, then a finite number of solutions exist. When a finite number

of solutions exist, they may be found by solving the first t′ equations generated by

Equation (4.46) to obtain bq in terms of W, and then back-substituting into the

remaining s − t′ equations to find the unknown recombination fractions. The back-

substitution may generate multiple roots because the recombination probabilities may

combine in a non-linear fashion to form the conditional genotype probabilities.

In the special case of interval mapping based on an F2 sample, together with

the assumptions of isolated QTL and Haldane’s addition formula for recombination

fractions, Whittaker et al. (1996) showed that a quadratic is generated by the back-

substitution process. The constraint that the recombination fraction must lie in the
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interval (0, 0.5) rendered one root infeasible, and so a unique solution was found.

The exact formula for this solution is given in the paper by Whittaker et al. (1996).

Unfortunately, in many other cases, one is not so lucky to obtain a unique solution.

Even when a unique solution is not possible, Equation (4.46) is useful for forming

a hypothesis testing strategy. This is because Equation (4.46) implies that

b̂ = (Cm)+ WCq(Cq)
+µq, (4.51)

so it reveals how each marker regression coefficient captures QTL effects and it reveals

where pooling and bias can occur. It initiates the process of determining whether

statistically significant marker-regression coefficients are indicative of the existence of

certain QTL. For an example, see Section 4.53 and Equation (4.53) below.

4.1.4 Choice of Contrasts

For t categories, a full model fits (t− 1) contrasts plus the intercept, thus including t

contrasts altogether. However, a reduced model that includes the intercept, fits less

than (t − 1) additional contrasts. Fitting a full model ensures that all main effects

and all interaction effects are taken into account. If we fit a full model using different

contrast matrices, the regression coefficients may differ but the same fitted means

will be generated. Therefore, from a mathematical point of view, it does not strictly

matter which contrast matrix is used, provided that it leads to a model matrix that

is of full column rank. Nevertheless, it is beneficial to choose contrasts which yield

regression coefficients that are easy to interpret.

Equation (4.22) shows that when orthogonal contrasts are used, each regression

coefficient has a simple interpretation. Also, the coefficients generated by orthogonal

contrasts are independent, and so the p-values from the Wald t-test for a contrast

in a multiple regression and the corresponding F-test (for inclusion of that contrast)
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will agree. These properties make orthogonal contrasts an appealing choice. How-

ever, orthogonal contrast matrices have the disadvantage that, by definition, their

structures are sample-dependent. Therefore, the sample counts for each factor must

be considered when constructing an orthogonal contrast matrix. Two algorithms for

constructing an orthogonal contrast matrix are given in Appendix A of this thesis.

In QTL mapping there is a need to compare trait values amongst specific genotype

groups. For certain breeding designs, this may require the use of contrasts which

are not orthogonal. Tables 4.2 and 4.3 display traditional contrast coefficients that

are often used in QTL mapping. A recent paper by Zeng et al. (2005) discusses

the interpretations of several popular contrasts (coding systems) which have been

proposed in the QTL mapping literature.

i Genotype C•1 C•2 C•3

1 MMNN 1 1 1
2 MMNn 1 0 0
3 MmNN 0 1 0
4 MmNn 0 0 0

Table 4.2: Traditional contrast coefficients to extract the main and interaction effects
in a linear regression model (involving two loci M and N) for a B1 backcross sample.
Note that additive and dominance effects cannot be separated because the effects
of (MM vs mm) and (NN vs nn) are not estimable.
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i Genotype C•1 C•2 C•3 C•4 C•5 C•6 C•7 C•8

1 MMNN 1 1 1 1 1 1 1 1
2 MMNn 1 1 0 −1 0 −1 0 −1
3 MMnn 1 1 −1 1 −1 1 −1 1
4 MmNN 0 −1 1 1 0 0 −1 −1
5 MmNn 0 −1 0 −1 0 0 0 1
6 Mmnn 0 −1 −1 1 0 0 1 −1
7 mmNN −1 1 1 1 −1 −1 1 1
8 mmNn −1 1 0 −1 0 1 0 −1
9 mmnn −1 1 −1 1 1 −1 −1 1

Table 4.3: Traditional contrast coefficients to extract the additive, dominance and
interaction effects in a linear regression model (involving two loci M and N) for a
F2 sample.
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4.2 An example based on single-marker regression

The main discussion in this section is focused on the case in which the reference

population is an F2 line. Contrasts are used to estimate the dominance and additive

genotypic effects of a putative quantitative trait locus in a single-marker and single-

QTL model.

Consider a single marker M linked at unknown recombination fraction r to a

trait locus Q and an F2 line formed from crossing MQ/MQ and mq/mq inbred lines

and inbreeding the resulting F1 line. Assume that the marker alleles M and m are

codominant, so that there are three observable marker genotypes in the F2 population.

The three marker genotypes are MM , Mm and mm and we denote them by i = 1, 2,

and 3 respectively. There are also three QTL genotypes, QQ, Qq and qq and we

denote them by k = 1, 2, and 3 respectively.

Following the definitions of the additive and dominance genotypic effects given in

equations (2.15) and (2.16), it is clear that the contrasts needed to estimate a the

additive effect a (where a = aMM) and the dominance effect d (where d = dMM) are

given, respectively, by the first and second columns of the matrix C below.

C =




1 1

0 −1

−1 1


 and Cm =




1 1 1

1 0 −1

1 −1 1




If the individuals are ordered in the data so that the first n1 are of marker genotype

MM , the next n2 of Mm and the remaining n3 of mm then

M =




1n1 0 0

0 1n2 0

0 0 1n3


 .
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Whatever the ordering

MTM =




n1 0 0

0 n2 0

0 0 n3


 and 1T

nM = (n1, n2, n3).

The ith row of the model matrix, X = [1n MC], is given by

Xi• =





(1, 1, 1) if individual i has genotype MM,

(1, 0,−1) if individual i has genotype Mm,

(1,−1, 1) if individual i has genotype mm.

XTX =

[
1T

n

CTMT

]
[1n MC]

=




n1 + n2 + n3 n1 − n3 n1 − n2 + n3

n1 − n3 n1 + n3 n1 − n3

n1 − n2 + n3 n1 − n3 n1 + n2 + n3




The matrix (XTX)−1 is equal to

1

16n1n2n3




n1n2 + n2n3 + 4n1n3 2n2n3 − 2n1n2 n1n2 + n2n3 − 4n1n3

2n2n3 − 2n1n2 4n1n2 + 4n2n3 2n2n3 − 2n1n2

n1n2 + n2n3 − 4n1n3 2n2n3 − 2n1n2 n1n2 + n2n3 + 4n1n3




and

XTy =




n1y1 + n2y2 + n1y3

n1y1 − n3y3

n1y1 − n2y2 + n3y3


 ,

which implies that

b̂ =




b̂0

b̂1

b̂2


 =




1
4
(y1 + 2y2 + y3)

1
2
(y1 − y3)

1
4
(y1 − 2y2 + y3)


 =




1
4
(yMM + 2yMm + ymm)

1
2
(yMM − ymm)

1
4
(yMM − 2yMm + ymm)


 .
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Its expected value is therefore

E(b̂) =




1
4
(µMM + 2µMm + µmm)

1
2
(µMM − µmm)

1
4
(µMM − 2µMm + µmm)


 =




µ

a

d




and its covariance matrix is approximately equal to σ̂2(XTX)−1.

The overall genotypic effects are estimated by

û1 = Cb̂1 =




â + d̂

−d̂

−â + d̂


 ,

where the first element estimates the effect of genotype MM , the second estimates

the effect of Mm and the last estimates the effect of mm.

Standard regression produces two pieces of information, estimates for the trait

means within each marker-genotype class, along with their standard errors. Regres-

sion provides estimates for marker effects and tests based on marker effects. In order

to interpret these in terms of QTL effects, we let Cq = Cm, and b̂q = (µ̂, âQQ, d̂QQ)T .

Then, we divide the joint probabilities given in Figure 2.1(b) by the relevant marker-

genotype probabilities to obtain the expression for W given in Equation (4.52) below.

W =




(1− r)2 2r(1− r) r2

(1− r)2 (1− r)2 + r2 (1− r)2

r2 2r(1− r) (1− r)2


 (4.52)

After substituting W, Cm, Cq and b̂q (for bq) into Equation (4.46), we obtain the

relationship

b̂ =




b̂0

b̂1

b̂2


 =




µ̂

(1− 2r)âQQ

(1− 2r)2d̂QQ


 . (4.53)

From the expected value of b̂, we see that while b̂1 and b̂2 are unbiased estimates of

the marker additive and dominance effects respectively, they are downwardly biased
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estimates of the corresponding QTL genotypic effects. The estimates of QTL additive

and dominance effects are confounded by r, the recombination fraction, because the

system of equations specified by expression (4.53) reduces to a system of two equations

in three unknowns. Likewise, the estimate of r is confounded by genetic effects.

The hypothesis test for the regression coefficients tests whether b1 = b2 = 0. The

existence of a linked QTL is indicated by a recombination fraction that is significantly

less than 0.5 in value. Therefore, testing the hypothesis b1 = b2 = 0 is equivalent to

testing that the putative QTL has no significant genetic effects on the trait or that

the QTL is unlinked to the marker.

H0 : b1 = b2 = 0 ⇐⇒ H0 : (aQQ = 0 and dQQ = 0) or r = 0.5. (4.54)

This hypothesis test may be implemented using the F-test for regression

F =
MSreg

MSerror

=
(SStotal − SSerror)/2

SSerror/(n− 3)
∼ F2, n−3. (4.55)

The null hypothesis is rejected at the α significance level if the observed value of F

is greater than the (1− α)-quantile of the F2, n−3 distribution.

Simultaneous (1−α)100% confidence intervals for the bi may be constructed using

the equicorrelated multivariate-t distribution. In the single marker F2 case, we assume

a bivariate t distribution to obtain confidence intervals for bi (i = 1, 2) as given in

Equation (4.56).

bi = b̂i ± tn−s, ρ12 (α)

√
var(̂bi − b̂j) (4.56)

where var(̂bi − b̂j) = var(̂bi) + var(̂bj)− 2cov(̂bi, b̂j)

var(̂bi) ≈ (XTX)−1
ii SSerror/(n− s)

cov(̂bi, b̂j) ≈ (XTX)−1
ij SSerror/(n− s)

ρ12 = cov(̂b1, b̂2)
/√

var(̂b1)var(̂b2)
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The F-test based on Equation (4.55) represents a single, joint test for significant

marker effects. An alternative approach to testing the hypotheses b1 = 0 and b2 = 0

is to carry out multiple testing using separate Students t-tests. In a multiple testing

situation, it may be necessary to make adjustments to the significance level of each

test in order to ensure that the overall significance level of the combined tests is not

greater than the nominal significance level of α. Common adjustments for multiple

testing include making Bonferroni corrections, controlling the false discovery rate or

controlling the family-wise error rate.

Under the simple Bonferroni method, the significance level for each hypothesis

test is taken to be α/m where m is the number of hypotheses being tested. In a

multiple testing situation with correlated hypotheses, this Bonferroni correction may

produce results which are too conservative. Therefore, it is often more desirable to

control the false discovery rate or the family-wise error rate.

The false discovery rate (FDR) is the expected proportion of erroneously rejected

hypotheses among the list of all rejected null hypotheses (Benjamini and Hochberg,

1995). By the FDR method, a significance level for each hypothesis test is chosen

under the constraint that the FDR does not exceed α.

The family-wise error rate (FWER) is the probability of having at least one

falsely significant test-result within the set of hypotheses being tested (Hochberg

and Tamhane, 1987). The control of the FWER is important when a conclusion from

the individual null hypotheses are related (even though the different test statistics

may be statistically independent). By the FWER method, a significance level for

each hypothesis test is chosen under the constraint that the FWER (for each family

of hypotheses) does not exceed α. In the above F2 example, rejection of either b1 = 0

or b2 = 0 will lead to conclusion that there is a QTL. The two hypotheses may thus

be regarded as single family of hypotheses. Therefore, the use of family-wise error

rates is an appropriate approach to this work.
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The F2 example, presented in this chapter, is based on single-marker analysis.

This single-marker methodology uses hypothesis tests based on contrasts of single-

marker means as a QTL-detection strategy. Its main disadvantage is the lack of

independence between the test for a linked QTL and tests for non-zero QTL effects

(see Equations (4.53) and (4.54)). Lynch and Walsh (1997) describe the problem

succinctly:

“A small difference between marker-homozygote means is compatible with
either a tightly linked QTL of small effect or a loosely linked QTL of large
effect”.

Consequently, even if the test is significant, the location of the putative QTL cannot

be precisely determined from a single-marker model.

Regression on several markers has been shown to be more effective for determining

QTL location than regression on one marker. For example, interval mapping by

regression of a trait on two markers tends to be more powerful than single maker

regression (Paterson et al., 1988; Lander and Botstein, 1989; Haley and Knott, 1992;

Whittaker et al., 1996). The regression also can be extended to include other observed,

non-genetic, explanatory variables that are thought to affect the trait.

Variance components regression models have also been used in QTL mapping. For

example, Piepho (2000) proposed a mixed effects regression model to estimate QTL

effects across multiple environments.

The regression can readily be adapted to a generalized linear model for binary

or other categorical traits through the use of logit or probit link functions (see, for

example, Hackett and Weller, 1995; Visscher et al., 1996a).
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Chapter 5

A Robust Interval Mapping

Procedure

In this chapter, a new model for interval mapping is proposed and explored. The

proposed model explicitly fits three QTL, one in the interval of interest and one on

either side of it, while using marker-cofactors to control for the presence of QTL

located further away. It estimates QTL position and effects by conditioning on the

genotypes at four adjacent markers. These four markers define a central interval

(which we will refer to as the testing interval) and its two adjacent intervals. For

convenience, the proposed model (called Robust Interval Mapping Version 1.0) will

be referred to by the acronym RIM1.

Composite interval mapping (CIM) is particularly susceptible to ghosting (false

detections) in a situation where a QTL exists in an adjacent interval but the testing

interval does not contain a QTL. The Likelihood ratio test (LRT) statistic with chi-

square distribution having one degree of freedom is the null distribution generally used

for null hypothesis in CIM. This null distribution is only suitable for situations where

there is no QTL in any of the three intervals. It is often such a poor representation

of the actual null situation that it leads to likelihood ratio tests having rates of false
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positives that far exceed their nominal significance levels. Applying CIM (with LRT)

to simulated data demonstrates that although the LRT performs well in isolated

intervals, false positive rates as high as 100% are possible when testing non-isolated

intervals. This means that while CIM (with LRT) can narrow the location of a

detected QTL to the region covered by the three intervals, it cannot narrow the QTL

location to the central testing interval.

The model RIM1 reduces ghosting by providing a simple multiple-QTL system

that is flexible enough to model several possible null and alternative hypotheses.

It also capitalizes on the strength of composite interval mapping to maintain low

dimensionality in the QTL search by using marker cofactors to control the genetic

background. As such, RIM1 may be viewed as an extension of CIM.

Section One of this chapter outlines the assumptions of the mixture model and

details how the breeding design determines both the format of the mixing proportions

and the types of genotypic effects that are estimable from the model. Section Two

describes maximization of the mixture likelihood. It also tackles the onerous problem

of obtaining standard errors for maximum likelihood estimators of parameters in

Gaussian mixtures by giving information matrix formulae that are practical to use.

Explicit mathematical detail is given in order to show how the overall model struc-

ture can be decomposed into separate matrix systems which can then be individually

modified (to support extensions) without affecting the overall format of the model.

This decomposition of the overall model structure also pays dividends in simplifying

the calculations of the observed and Fisher information matrices. In this chapter,

the RIM1 model is presented in general terms, suitable for application to any line-

cross design, but examples are only given for the B1 backcross. See Chapter 8 for

extensions and for examples of applying RIM1 to the F2.
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5.1 The Model Specification for RIM1

Consider four linked marker loci of known locations, denoted by K, M , N and O

respectively, where the alphabetical order also indicates the marker order with K

being the leftmost marker (Figure 5.1). Denote the recombination fraction between

each pair of adjacent marker loci by rKM , rMN , rNO respectively. Assume that the

markers are so closely spaced that there is not likely to be more than one QTL between

them. Consider also three putative QTL loci denoted by L, Q and R. Suppose that

the loci are in the order K-L-M -Q-N -R-O, with the recombination fractions between

adjacent loci given by rKL, rLM , rMQ, rQN , rNR and rRO respectively. The resulting

genetic map is shown in Figure 5.1. Note that three ordered loci, A-B-C have three

distances AB, BC and AC, but given any two distances and the appropriate mapping

function, the third may be derived.


 
 

 
 



 
 
 
 
 



 
 
rKM rMN rNO

rKL rLM rMQ rQN rNR rRO

K L M Q N R O

Figure 5.1: Genetic map used for modelling.

5.1.1 Genotypic content of the backcross population at the

loci under study

We assume that the loci are bi-allelic and use the corresponding upper and lower case

letters to denote the possible genes in the system. For example,

alleles at locus M : M , m;

alleles at locus N : N , n;

alleles at locus Q: Q, q.
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Here we use uppercase letters to denote alleles that are present in the P1 parental

genotypes and lowercase letters to denote genotypes that are present in the P2 line.

Hence the P1 individuals all have genotype

KLMQNRO//KLMQNRO,

the P2 individuals all have genotype

k`mqnro//k`mqnro,

and the F1 individuals all have genotype

KLMQNRO//k`mqnro.

The B1 backcross is formed by randomly mating P1 and F1 individuals. Therefore

the possible marker genotypes in our backcross population at the pair of loci M and N

(ignoring phase) are MMNN , MMNn, MmNN , and MmNn. The four marker loci,

K, M , N and O taken together, yield 16 marker genotypes. There are eight possible

QTL genotypes. This leads to 128 distinct genotypes at the seven loci. Table 5.1

shows the possible QTL genotypes and the labelling scheme that we use throughout

this discussion. An index k (k = 1, . . . , 8) is used to label the QTL genotypes.

Table 5.1: QTL genotypes and their indices in a B1-backcross model with loci in
the order L-M -Q-N -R.

k QTL genotype k QTL genotype
1 LLQQRR 5 L`QQRR
2 LLQQRr 6 L`QQRr
3 LLQqRR 7 L`QqRR
4 LLQqRr 8 L`QqRr

Let i index the marker genotypes where i = 1, 2, . . . 16. For flexibility, when applying

these methods to other designs, we also let s represent the number of marker groupings
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on which we condition the QTL genotypes. Therefore, s = 16 in the case of a backcross

design and s = 81 in the case of an F2 design.

5.1.2 Relating genotypic content to trait value

Let Yij be a random variable representing the trait value of individual ij, where

individual ij is the jth individual in marker group i. We assume that
∑t

k=1 wik = 1

and that with probability wik (for k = 1, . . . , t), individual ij belongs to QTL group k.

We also assume that µ?
ij is the cofactor effect, µk the QTL effect, and µijk = µ?

ij + µk

is the expected trait value for a random individual having QTL genotype k, marker

type i and the same cofactors as individual ij. The QTL genotypes are unobserved,

therefore, we assume that with probability wik, the trait value Yij is distributed as

follows:

Yij ∼ N(µ?
ij + µk, σ2). (5.1)

This leads to a Normal mixture distribution for the random trait value Yij.

Using the notation Ÿij = Yij − µ?
ij we have the simpler expression

Ÿij ∼ N(µk, σ2)

which represents the distribution of Yij (within QTL group k) after background effects

have been removed. In this construction, we assume that there are no interactions

between loci and that the markers are neutral. Later, in Chapter 8, we will show

how to extend this model to allow for interactions between loci. Our models for the

conditional trait means, {µijk}, and the conditional probabilities, {wik}, of the QTL

genotypes given the marker genotypes are explicitly given below.

In order to specify the conditional trait means, we introduce a contrast matrix

C. The matrix C is a device that will be used to define contrasts of the mean trait

values for the QTL genotypes under study, and hence to define the complete-data
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model matrix. For models having t mixing components (t QTL genotypes), C will

have t rows. The first column of C is constrained to be a vector with all elements equal

to one (to code the intercept), while the remaining columns of C will depend on the

contrasts of interest. The matrix C is required to be of full column rank. Therefore,

the maximum number of contrasts (including the intercept) in C cannot be greater

than the number of mixing components. Note that the matrix C as presented in this

chapter (and in all subsequent chapters) is conceptually equivalent to the matrix Cq

that was introduced in Section 4.1.3. The bold subscript in Cq is henceforth dropped

for convenience and for simplicity because in the current context, it is clear that we

are contrasting QTL genotypic means.

Let b be a vector of coefficients associated with the columns of C, so that

E(Ÿij|QTL genotype k) = µk = Ck•b, (5.2)

where Ck• is kth row of the matrix C. We will always refer to the kth row of the C

as Ck• and its pth column as C•p and we will use analogous notation when referring

to the rows and columns of other matrices.

The elements of b can be expressed as linear combinations of the conditional

trait means. These linear combinations are derived by solving the linear system of

equations defined by Equation (5.2) taken over all genotype classes (k). The expected

values of the elements of b may then be interpreted in terms of traditional genetic

effects via any appropriate model that decomposes the conditional trait means into

functions of those genetic effects.

For our backcross model, fitting no interactions between QTL, C is the 8 × 4
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contrast matrix given in Equation (5.3).

C =




1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0




(5.3)

For our backcross example, the kth row of C corresponds to the kth QTL genotype,

where the QTL genotypes are indexed as in Table 5.1. Refer to locus L, Q and R,

respectively, as the first, second and third QTL locus. For p = 1, 2, 3 our contrast

matrix of Equation (5.3) has the property that

Ck (p+1) =





1, if QTL genotype k is homozygous at the pth QTL locus

0, if QTL genotype k is heterozygous at the pth QTL locus.

For the backcross example, we may write

b = (b0, b1, b2, b3)
T = (b0, bL, bQ, bR)T , (5.4)

and using the genetic model of Cockerham (1954) yields the interpretation of b given

in Equations (5.5) and (5.6) below.

Let app be the additive effect of the homozygous-high genotype at the pth QTL locus

and let dpp be its dominance effect. Then

b0 = E(Ÿij| k = 1)

= E(Ÿij|LLQQRR)

= µ0 −
3∑

p=1

dpp (5.5)
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where µ0 is the expected value of fixed effects arising from all genetic and non-genetic

factors omitted from the model.

For p = 1, 2, 3,

bp = E(Ÿ |QpQp)− E(Ÿ |Qpqp) = (app + 2dpp). (5.6)

The remainder of this section defines a model for the mixing proportions.

The form of the conditional probabilities {wik} of the QTL genotypes, given the

marker genotypes, is determined by the recombination fractions between the marker

and QTL loci, by the genetic map function and by the structure of the experimental

design. Assume the classical three-locus addition formula for recombination fractions:

rMN = rMQ + rQN − 2 c rMQrQN , (5.7)

where c is the coefficient of coincidence.

Assume the following notation for the probability that an F1 individual transmits

a certain QTL allele to an offspring, given that he/she has transmitted a particular

marker haplotype to that offspring.

Define

pL1 = P (L|KM) = (1− rKL − rLM + crKLrLM)/(1− rKM) (5.8)

pL2 = P (L|Km) = (1− crKL)rLM/rKM (5.9)

pQ1 = P (Q|MN) = (1− rMQ − rQN + crMQrQN)/(1− rMN) (5.10)

pQ2 = P (Q|Mn) = (1− crMQ)rQN/rMN (5.11)

pR1 = P (R|NO) = (1− rNR − rRO + crNRrRO)/(1− rNO) (5.12)

pR2 = P (R|No) = (1− crNR)rRO/rNO. (5.13)

Then the following relationships are satisfied for all three-locus genetic map functions:

rKL = (1− rKM)(1− pL1) + rKM(1− pL2) (5.14)

rLM = (1− rKM)(1− pL1) + rKM(pL2) (5.15)
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rMQ = (1− rMN)(1− pQ1) + rMN(1− pQ2) (5.16)

rQN = (1− rMN)(1− pQ1) + rMN(pQ2) (5.17)

rNR = (1− rNO)(1− pR1) + rNO(1− pR2) (5.18)

rRO = (1− rNO)(1− pR1) + rNO(pR2). (5.19)

The fact that equations (5.14) to (5.19) hold for any three-locus map function

makes it possible to relax the assumption of Haldane’s mapping function within the

intervals L-M , M -N and N -O. However, in order for marker cofactors to absorb

background genetic effects, it is necessary to assume Haldane’s mapping function

outside the region covered by these three intervals.

It is difficult to completely eliminate the assumption of no interference without

a multi-locus feasible mapping function that is defined in the context of seven loci.

The problem of finding such a mapping function is outside the scope of this thesis.

Therefore, to simplify the calculation of wik, it is also necessary to assume Haldane’s

map function for triples of marker loci.

For convenience, let xK , xM , xN and xO, denote the genotypes at marker loci

K, M , N and O respectively. Likewise, let xL, xQ, xR, denote the genotypes at

quantitative trait loci L, Q, R respectively. Denote the resulting four-locus marker

genotype by

xK xM xN xO = marker genotype i (i = 1, . . . , 16).

Likewise, denote resulting three-locus QTL genotype by

xL xQ xR = QTL genotype k (k = 1, . . . , t).

Then, the mixing proportions may be calculated as

wik = P (xL|xK , xM) P (xQ|xM , xN) P (xR|xN , xO). (5.20)
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Tables 5.2 to 5.4 provide formulae for calculating the required conditional probabilities

for the backcross. Table 5.5 displays the conditional probabilities wik for the Backcross

example.

Table 5.2: Calculation of P (xL|xK , xM ) for the B1 Backcross
xK , xM P (xL = LL|xK , xM) P (xL = L`|xK , xM)
KKMM pL1 1− pL1

KKMm pL2 1− pL2

KkMM 1− pL2 pL2

KkMm 1− pL1 pL1

Table 5.3: Calculation of P (xQ|xM , xN ) for the B1 Backcross
xM , xN P (xQ = QQ|xM , xN) P (xQ = Qq|xM , xN)
MMNN pQ1 1− pQ1

MMNn pQ2 1− pQ2

MmNN 1− pQ2 pQ2

MmNn 1− pQ1 pQ1

Table 5.4: Calculation of P (xR|xN , xO) for the B1 Backcross
xN , xO P (xR = RR|xM , xN) P (xQ = Rr|xM , xN)
NNOO pR1 1− pR1

NNOo pR2 1− pR2

NnOO 1− pR2 pR2

NnOo 1− pR1 pR1
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Next, we examine the properties pQ1 and pQ2 in order to determine what con-

straints to place on these mixing parameters.

Properties of pQ1:

• pQ1 = 1− c rMQrQN/(1− rMN).

• max(pQ1) = 1 and occurs if rMQ = 0 or rMQ = rMN (since rQN = 0 when

rMQ = rMN).

• For a fixed rMN and fixed c, the value of pQ1 is minimized when the product

crMQrQN is maximized. Therefore, pQ1 is minimized when

rMQ = 1
2c

(1−√1− 2crMN).
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Figure 5.2: A plot of pQ1 versus rMQ for for markers 10 centiMorgans apart (rMN =
0.0906), and a plot of min(pQ1) versus rMN .

If Haldane’s addition formula holds, then c = 1 and pQ1 is minimized when the QTL

is exactly in the middle of the interval so that

rMQ = rQN = 1
2
(1−√1− 2rMN) and

min(pQ1) = 1− 1
4
(1−√1− 2rMN)2/(1− rMN).

As rMN increases min(pQ1) decreases and 0 6 rMN 6 0.5. Therefore, min(pQ1) > 0.5.

See Figure 5.2 for an illustration.
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Properties of pQ2:

• pQ2 is monotonic decreasing (as a function of rMQ) on [0, rMN ]. See Figure 5.3

for an example.
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Figure 5.3: Plot of pQ2 versus rMQ for markers 10 centiMorgans apart (rMN =
0.0906).

If we choose not to assume any specific map function within the three inter-

vals, then the vector of mixing parameters is φ = (pL1, pL2, pQ1, pQ2, pR1, pR2)
T . If

Haldane’s map function is used, then the relationships given in Equations (5.21) to

(5.23) hold, and the vector of mixing parameters reduces to φ = (pL2, pQ2, pR2)
T and

then

pL1 =
1

2
+

√
1− 2rKM + r2

KM(1− 2pL2)2

2(1− rKM)
, (5.21)

pQ1 =
1

2
+

√
1− 2rMN + r2

MN(1− 2pQ2)2

2(1− rMN)
, (5.22)

pR1 =
1

2
+

√
1− 2rNO + r2

NO(1− 2pR2)2

2(1− rNO)
. (5.23)

By construction, for any fixed marker category i, the conditional genotype probabili-

ties {wik : k = 1, . . . , t} sum to one. Our model also requires that each wik is strictly
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greater than zero and strictly less than one. This imposes the following constraints

on the mixing parameters:

0 < pL1, pQ1, pR1 < 1

0 < pL2, pQ2, pR2 < 1

The impact of these constraints is to place the first and third QTL loci (L and R)

strictly exterior to the testing interval (M -N) and to place the second QTL locus (Q)

strictly interior to it.

5.1.3 The model matrix and likelihood function for a sample

Let yij be the trait value of the jth individual with marker genotype i for i = 1, . . . , s

and j = 1, . . . ni where ni is the number of individuals having marker genotype i.

The overall sample size is given by n =
∑s

i=1 ni, and the observed trait values are

organized to form a vector y where

y = (y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , ys1, . . . , ys,ns)
T . (5.24)

Define Z(ij)• to be a (row) vector-valued random variable indicating the QTL-category

identity of observation yij, where

Z(ij)• = (zij1, zij2, . . . , zij t), for i = 1, . . . , s and j = 1, . . . , ni

and zijk =





1, if yij belongs to QTL-category k

0 otherwise.

Z(ij)• ∼ Multinomial(1; wi1, . . . , wit)

The vector Z(ij)• indicates the overall QTL genotype of an individual. However, for

our backcross example, the components of Z(ij)• may be combined to form indicators
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for the genotypes at the separate QTL loci because the quantity Z(ij)•C•(p+1) where

C•(p+1) is the (p + 1)th column of C (for p = 1, 2, 3) has the property that

Z(ij)•C•(p+1) =





1, if individual ij is homozygous at locus Qp

0, otherwise.

The intercept and QTL effects are encapsulated in the vector of coefficients denoted

by b (see Equation (5.2)).

Zeng (1994) has shown that if recombination fractions obey Haldane’s addition

formula, then marker cofactors can absorb the effects of background QTL that are not

included in a linear model. With real data, Haldane’s map function will, at best, only

approximate the true situation. Consequently, while it is true that marker cofactors

can help to control for background QTL effects, marker cofactors may not completely

absorb background genetic effects.

To facilitate the inclusion of background markers as extra cofactors, we introduce a

matrix of cofactors X2, and another set of coefficients, b? associated with its columns.

Non-genetic factors may also be included as columns of X2, if desired. The model for

an individual trait value is:

yij = Z(ij)•Cb + [X2](ij)•b
? + εij (5.25)

where the values {εij : i = 1, 2, . . . s; j = 1, 2, . . . ni} are observations of independent

identically distributed random variables, having Normal distribution with variance

equal to σ2 and mean equal to zero.

It is convenient to separate the conventional part of the regression and those parts

of the linear model which capture QTL effects. To achieve this separation, we define

the centered data:

ÿij = yij − [X2](ij)•b
? = yij − µ?

ij (5.26)

and write Equation (5.25) as

ÿij = Z(ij)•Cb + εij. (5.27)
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Denote the (n× t) matrix of missing data by

Z = (ZT
(11)•, . . . ,Z

T
(1n1)•,Z

T
(21)•, . . . ,Z

T
(2n2)•, . . . ,Z

T
(s1)•, . . . ,Z

T
(sns)•)

T . (5.28)

Then the complete-data model matrix may be written simply as

X = [X1 X2] = [ZC X2] (5.29)

and the model parameters as

ψ =




β

σ2

φ


 , where β = (b,b?)T . (5.30)

The aim is to determine QTL location and effects by estimating the components of

ψ, the parameter vector. We take a maximum likelihood approach to parameter

estimation. The likelihood functions under consideration are presented below.

The probability density function of the trait value yij conditional on Z(ij)• is equal

to

p(yij|Z(ij)•; β, σ2) =
1

σ
√

2π
exp

{(yij − Z(ij)•Cb− [X2](ij)•b?)2

−2σ2

}

and the probability mass function of Z(ij)• is given by the multinomial formula

p(Z(ij)•; φ) =
t∏

k=1

w
zijk

ik .

Therefore their joint density is equal to

fc(yij,Z(ij)•; ψ) =
1

σ
√

2π
exp

{(ÿij − Z(ij)•Cb)2

−2σ2

} t∏

k=1

w
zijk

ik .

Given the complete genotype information at both QTL and marker loci, the (complete-

data) likelihood function may be expressed as follows.

Lc(y,Z; ψ) =
(
σ
√

2π
)−n

s∏
i=1

ni∏
j=1

(
exp

{(ÿij − Z(ij)•Cb)2

−2σ2

} t∏

k=1

w
zijk

ik

)
. (5.31)
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If we had the complete data, then ŷ = Xβ̂ would represent the fitted values from

this model, and the estimates β̂ could be obtained by a linear regression of y on X.

However, unlike the usual case for a general linear model, part of our design matrix

X is unobserved because the Z(ij)• are unknown.

Summing the joint density, fc(yij,Z(ij)•; ψ), over the t possible values of Z(ij)•, we

obtain the marginal density of an individual’s trait value, yij, as the mixture density

given in Equation (5.32).

f(yij; ψ) =
1

σ
√

2π

t∑

k=1

wik exp
{(ÿij −Ck•b)2

−2σ2

}
(5.32)

=
t∑

k=1

wik fik(yij; ψ),

where fik(yij; ψ) =
1

σ
√

2π
exp

{(ÿij −Ck•b)2

−2σ2

}
. (5.33)

Therefore the observed (incomplete) dataset has the following mixture likelihood:

L (y; ψ) =
(
σ
√

2π
)−n

s∏
i=1

ni∏
j=1

( t∑

k=1

wik exp
{(ÿij −Ck•b)2

−2σ2

})
. (5.34)

The mixture likelihood above is the function from which we seek maximum likelihood

estimates of model parameters (β, σ2,φ), in order to determine QTL locations and

effects.

5.2 Maximum Likelihood Analysis

5.2.1 Maximization Procedure

We wish to maximize mixture likelihood given in Equation (5.34), which is the likeli-

hood of the observed data. The system of equations obtained by setting the scores of

this likelihood to zero does not yield an explicit solution for the maximum likelihood



94

estimates (MLEs) of the parameters. Consequently, this likelihood is computation-

ally demanding and is also often unstable to maximize via the usual derivative-based

methods, such as the Newton Raphson procedure. However, a useful feature of miss-

ing data models such as ours, is that the score of the observed likelihood is equal

to the conditional expectation of the score of the complete-data likelihood, given the

observed data (see, for example, McLachlan and Krishnan 1996, page 100).

∂

∂ψ
ln L (y; ψ) = EZ|y; ψ

[ ∂

∂ψ
ln Lc(y,Z; ψ)

]

This well known and important result, which we prove below as Result 5.2.1, is useful

because it provides simple expressions for first derivatives of the observed likelihood,

and it allows us to express the maximum likelihood estimates of the parameters as

functions of the expected values of the missing data (Z). This is a recursive solution

because the expectations of the components of Z are also functions of the model

parameters.

The E-step of the EM algorithm of Dempster et al. (1977) provides a mechanism

for estimating the expected value of the missing data using initial or updated param-

eter estimates. The M-step finds new parameter estimators by calculating the MLE

from the scores the the observed likelihood. It exploits the fact that these are simply

functions of the expected values of the missing data, which were calculated in the

E-Step. Below, we calculate the complete-data and observed likelihood functions and

demonstrate how the EM algorithm should be applied to our model.

Let t be the number of components (QTL genotypes) in the mixture. Then the

natural logarithm of the complete-data likelihood is given by

ln Lc(y,Z; ψ) = −n ln
√

2π − n ln σ +
s∑

i=1

ni∑
j=1

t∑

k=1

zijk ln wik

+
s∑

i=1

ni∑
j=1

1

−2σ2

(
yij − Z(ij)•Cb− [X2](ij)•b

?
)2

.
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To write this in matrix form, let

wi(φ) = (wi1, wi2, . . . , wit)
T , (5.35)

hi(φ) = (ln wi1, ln wi2, . . . , ln wit)
T , (5.36)

Zi = (ZT
(i1)•,Z

T
(i2)•, . . . ,Z

T
(ini)•)

T , (5.37)

and let 1ni
be a column vector of order ni with each element equal to one.

The matrix Zi is the ith block of the (unobserved) matrix of indicators Z and

Zi = ∆iZ (5.38)

where ∆i is an ni × n matrix which is a partition of the identity matrix, In, of order

n such that (for i = 1, 2, . . . , s)

In =




∆1

∆2

...

∆s




. (5.39)

Denote the number of individuals belonging to both marker-group i and QTL-

group k by nik where

nik = 1T
ni

(Zi)•k =

ni∑
j=1

zijk. (5.40)

Denote the number of individuals QTL-group k by mk where

mk = 1T
nZ•k =

s∑
i=1

nik. (5.41)

Then, from equations (5.38) to (5.41), we obtain the following identities.

ZT
i 1ni

= ZT∆T
i 1ni

= (ni1, ni2, . . . , nit)
T (5.42)

1T
nZ = (m1,m2, . . . , mt) (5.43)
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Now we may write the complete-data log-likelihood in matrix form.

ln Lc(y,Z; ψ) = −n ln
√

2π − n ln σ +
s∑

i=1

hT
i (φ)ZT

i 1ni

− 1

2σ2
(y −X1b−X2b

?)T (y −X1b−X2b
?) (5.44)

= −n ln
√

2π − n ln σ +
s∑

i=1

hT
i (φ)ZT∆T

i 1ni

− 1

2σ2
(ÿ − ZCb)T (ÿ − ZCb), where ÿ = y −X2b

? (5.45)

Note that (y −X1b−X2b
?) = (y −Xβ).

The EM algorithm works with a synthetic, complete-data, design matrix con-

structed by replacing the missing {zijk} with their expected values conditioned on

the observed data (trait values and marker genotypes). From the definition of zijk we

have that

EZ|y; ψ(zijk) = E(zijk| yij; ψ) = P (zijk = 1| yij; ψ).

Let τik(yij; ψ) = EZ|y; ψ(zijk), then by Bayes theorem,

τik(yij; ψ) =
P (zijk = 1)P (yij| zijk = 1)∑t
k=1 P (zijk = 1)P (yij| zijk = 1)

. (5.46)

Therefore, for our model,

τik(yij; ψ) =
wikfik(yij; ψ)

f(yij; ψ)
=

wik exp
{

(yij−[X2](ij)•b?−Ck•b)2

−2σ2

}

∑t
k=1 wik exp

{
(yij−[X2](ij)•b?−Ck•b)2

−2σ2

} . (5.47)

Note that
∑t

k=1 τik(yij; ψ) = 1 and that P (zijk = 1| yij; ψ) = wik.

We see that the expected values of the QTL category identities are determined by

the recombination fractions which determine the mixing proportions, by QTL effects,

and by the effects of all extra cofactors (genetic or non-genetic) in our model.

Let

Z̃(ij)• = EZ|y; ψ(Z(ij)•) =
(
τi1(yij; ψ), τi2(yij; ψ), . . . , τit(yij; ψ)

)
(5.48)
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and for the ith block (Zi) of the missing data matrix (Z), let

Z̃i = EZ|y; ψ(Zi) = (Z̃T
(i1)•, Z̃

T
(i2)•, . . . , Z̃

T
(ini)•)

T = ∆iZ̃. (5.49)

Also, let Z̃ = EZ|y; ψ(Z). Then, representing Z̃ as a partitioned matrix, we have

Z̃ =




Z̃1

Z̃2

...

Z̃s




. (5.50)

The complete-data design matrix given in Equation (5.29) cannot be used directly

because it depends on the unknown matrix of category identities.

Note that Z is an unobservable binary indicator matrix (containing only zeros and

ones) so it is estimated by the imputed matrix Z̃ (which can contain fractions). Both

matrices, Z and Z̃, have each row summing to one. The estimated complete-data

design matrix is then

X̃ = [Z̃C X2]. (5.51)

Now,

XTX =

[
CTZTZC CTZTX2

X2
TZC X2

TX2

]
. (5.52)

Therefore we will also need to evaluate EZ|y; ψ(ZTZ).

The element in row k and column k′ (for k, k′ = 1, . . . , t) of the matrix ZTZ is

given by

(
ZTZ

)
kk′ =

s∑
i=1

ni∑
j=1

zijkzijk′

=





∑s
i=1

∑ni

j=1 zijk = 1T
nZ•k = mk, if k = k′

0, if k 6= k′.

Therefore, the matrix ZTZ is diagonal with the kth diagonal element equal to the

overall number of sampled individuals, mk, having the kth QTL genotype.
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Now, we introduce notation for constructing a diagonal matrix from the elements

of a row vector. This notation will greatly simplify calculations later. Suppose that

vT = (v1, v2, . . . vξ) is a row vector of order ξ. Then let diag(vT ) denote the diagonal

matrix (of order ξ) whose ith diagonal element is given by the ith element of vT .

Therefore

diag(vT ) =




v1 0 0 0

0 v2 0 0

0 0
. . . 0

0 0 0 vξ




. (5.53)

In fact, since the kth diagonal element of the diagonal matrix ZTZ is the kth

element of the row vector 1T
nZ, we write

ZTZ = diag(1T
nZ) (5.54)

and so

EZ|y; ψ(ZTZ) = diag(1T
n Z̃). (5.55)

Therefore, EZ|y; ψ(ZTZ) is a diagonal matrix with its kth diagonal element equal

to the expected number of sampled individuals, m̃k, having the kth QTL genotype

conditioned on the observed data.

Let

˜(XTX) = EZ|y; ψ(XTX).

Then

˜(XTX) =

[
CT diag(1T

n Z̃)C CT Z̃TX2

X2
T Z̃C X2

TX2

]
. (5.56)

Note that EZ|y; ψ(ZTZ) 6= Z̃TZ̃ and likewise ˜(XTX) 6= X̃TX̃.

Next, denote the first and second derivatives of the observed log-likelihood as



99

follows:

S(ψ;y) =
∂

∂ψ
ln L (y; ψ) (5.57)

−I(ψ;y) =
∂2

∂ψ∂ψT
ln L (y; ψ). (5.58)

For the complete-data log-likelihood, let

Sc(ψ;y,Z) =
∂

∂ψ
ln Lc(y,Z; ψ) = Uψ (5.59)

−Ic(ψ;y,Z) =
∂2

∂ψ∂ψT
ln Lc(y,Z; ψ) = Uψψ (5.60)

Now we show that the conditional expectation of the score of the complete-data

likelihood, given the observed data is equal to the score of the observed likelihood.

Result 5.2.1. EZ|y; ψ[Uψ] = S(ψ;y)

Proof of Result 5.2.1.

EZ|y; ψ[Uψ] =

∫ ( ∂

∂ψ
ln Lc(y,Z; ψ)

)Lc(y,Z; ψ)

L (y; ψ)
dZ

=
1

L (y; ψ)

∫ ( ∂

∂ψ
ln Lc(y,Z; ψ)

)
Lc(y,Z; ψ) dZ

=
1

L (y; ψ)

∫ ( ∂

∂ψ
Lc(y,Z; ψ)

)
dZ

=
1

L (y; ψ)

( ∂

∂ψ

∫
Lc(y,Z; ψ) dZ

)

=
1

L (y; ψ)

( ∂

∂ψ
L (y; ψ)

)

=
∂

∂ψ
ln L (y; ψ)

= S(ψ;y)

Note that in the above proof, the integrals over Z are in fact generalized integrals

(point sums). Note also that for the above proof to hold, the integration over Z must
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commute with the partial derivative ∂
∂ψ

. A different proof of result 5.2.1 is given in

McLachlan and Krishnan (1996, page 100).

The score functions of the complete-data likelihood are

Uβ =
∂

∂β
ln Lc(y,Z; ψ) = − 1

σ2
(XTXβ −XTy) (5.61)

U(σ2) =
∂

∂(σ2)
ln Lc(y,Z; ψ) = − n

2σ2
+

1

2σ4
(y −Xβ)T (y −Xβ) (5.62)

Uφ =
∂

∂φ
ln Lc(y,Z; ψ) =

s∑
i=1

( ∂

∂φ
hT

i (φ)
)
ZT

i 1ni

=
s∑

i=1

( ∂

∂φ
hT

i (φ)
)
ZT∆T

i 1ni
. (5.63)

Taking the expectation over the distribution Z given ÿ and a set of parameters

ψ, we obtain

∂

∂β
ln L (y; ψ) = EZ|y; ψ[Uβ] = − 1

σ2

(
˜(XTX) β − X̃Ty

)
(5.64)

∂

∂(σ2)
ln L (y; ψ) = EZ|y; ψ[U(σ2)]

= − n

2σ2
+

1

2σ4

(
yTy − 2yT X̃β + βT ˜(XTX)β

)
(5.65)

∂

∂φ
ln L (y; ψ) = EZ|y; ψ[Uφ] =

s∑
i=1

( ∂

∂φ
hT

i (φ)
)
Z̃T∆T

i 1ni
. (5.66)

Setting these to zero and solving the resulting equations yields maximum likeli-

hood estimators of the parameters for a particular value of Z̃, the expected missing

data given the observed data. Equations (5.67) to (5.68), below, display the maxi-

mum likelihood estimates of the parameters, β and σ2, based upon a specific value

of Z̃.

β̂ =
[ ˜(XTX)

]−1
X̃Ty (5.67)

σ̂2 =
1

n

(
yTy − 2yT X̃β̂ + β̂

T ˜(XTX)β̂
)
, (5.68)
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The MLE for the mixing parameters, φ̂, is more complex. In many applications

involving Normal mixtures with equal variance (see McLachlan and Basford 1987,

page 38), the MLEs of the mixing parameters take the form given in Equation (5.69).

ŵi(φ) =
1

ni

(
1T

ni
Z̃i

)
=

1

ni

(ñi1, ñi2, . . . , ñit). (5.69)

However, in QTL mapping problems, Equation (5.69) does not hold because the wik

are functions of recombination fractions and so they are not functionally independent

(example: see Table 5.5). Therefore, any formula for calculating φ̂ will depend on

the breeding design and the genetic mapping function.

For backcross design, if we assume Haldane’s map function between (but not

within) marker intervals, then φ = (pL1, pL2, pQ1, pQ2, pR1, pR2)
T . In this situation,

the MLEs are found by solving ∂
∂φ

ln L (y; ψ) = 0, and they are as given in equations

(5.70) to (5.75) below.

p̂L1 =
ñKKLLMM + ñKkL` Mm

nKKMM + nKkMm

(5.70)

p̂L2 =
ñKKLLMm + ñKkL` MM

nKKMm + nKkMM

(5.71)

p̂Q1 =
ñMMQQNN + ñMmQqNn

nMMNN + nMmNn

(5.72)

p̂Q2 =
ñMMQQNn + ñMmQqNN

nMMNn + nMmNN

(5.73)

p̂R1 =
ñNNRROO + ñNnRrOo

nNNOO + nNnOo

(5.74)

p̂R2 =
ñNNRROo + ñNnRrOO

nNNOo + nNnOO

(5.75)

Alternatively, if (for the Backcross) we assume Haldane’s map function both within

and between marker intervals, then φ = (pL2, pQ2, pR2)
T . In this case, the MLE’s are
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found by solving ∂
∂φ

ln L (y; ψ) = 0 under the constraints given in Equations (5.21) to

(5.23). Therefore, in this alternative situation, the MLE’s are the solutions of quartic

equations in pL2, pQ2 and pR2 respectively.

The EM maximization procedure for obtaining the MLEs is described below.

Implementation of the EM Algorithm

Step 1: Initialize – select initial values for the elements (β, σ2 and φ) of the parameter

vector ψ (see Section 5.4.1).

Step 2: (E-Step) Using the current estimate of ψ, calculate the expected value of

the missing data conditioned on the observed data. That is, using current

parameter estimates together with Equations (5.48) and (5.49), calculate

Z̃i = E(Z|y; ψ) for i = 1, . . . , s and from these calculate Z̃ = E(Z|y; ψ)

as in Equation (5.50). Then construct the complete-data model matrix,

X̃ = [Z̃C X2].

Step 3: (M-Step) Find new estimates of the parameters by maximizing the condi-

tional expectation of the complete-data log-likelihood given the observed data

(see Equations (5.67) to (5.75)).

Step 4: (Update or Terminate) Repeat steps two and three until convergence. 2

5.2.2 The conditional observed information matrix

Under mild regularity conditions, maximum likelihood estimators are asymptotically

Normal with mean equal to the true parameter values and variance-covariance ma-

trix equal to the inverse of the Fisher information matrix (Lehmann and Casella,

1998, pages 443-450). The Fisher information matrix is the variance-covariance ma-

trix of the random vector of scores (see Equations (5.61) to (5.63)). Therefore, it
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is necessary to determine the conditional observed information matrix for the mix-

ture likelihood because it facilitates calculation of the standard errors of parameter

estimates obtained via maximum likelihood estimation.

In the Mixture Modelling Literature, the conditional observed information matrix

is often referred to as the ‘observed information matrix’. In this section, we present

general formulae for calculating the (conditional) observed information matrix. The

formulae presented below have the advantage that, when the number of parameters is

large, they are easy to implement in any programming language which allows matrix

manipulation.

Like its first derivative, the second derivative of the observed likelihood with re-

spect to the parameter ψ, may also be written as a function of the score of the

complete-data likelihood. This leads to a formula for the observed information,

I(ψ;y), in terms of the complete-data information and the missing information.

I(ψ;y) = − ∂2

∂ψ∂ψT
ln L (y; ψ)

= − ∂

∂ψ

{ ∂

∂ψT
ln L (y; ψ)

}

= − ∂

∂ψ

{ 1

L (y; ψ)

( ∂

∂ψT
L (y; ψ)

)}

= S(ψ;y)ST(ψ;y)− 1

L (y; ψ)

( ∂2

∂ψ∂ψT
L (y; ψ)

)
(5.76)

Therefore, using Result 5.2.1 once again,

I(ψ;y) = (EZ|y; ψ[Uψ])(EZ|y; ψ[Uψ])T − 1

L (y; ψ)

( ∂2

∂ψ∂ψT
L (y; ψ)

)
. (5.77)

Likewise

Ic(ψ;y,Z) = Sc(ψ;y,Z)ST
c (ψ;y,Z)− 1

Lc(y,Z; ψ)

( ∂2

∂ψ∂ψT
Lc(y,Z; ψ)

)
. (5.78)
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1

L (y; ψ)

( ∂2

∂ψ∂ψT
L (y; ψ)

)

=
1

L (y; ψ)

(
∂2

∂ψ∂ψT

∫
Lc(y,Z; ψ) dZ

)

=
1

L (y; ψ)

∫
∂2

∂ψ∂ψT
Lc(y,Z; ψ) dZ

=
1

L (y; ψ)

∫
Lc(y,Z; ψ)

Lc(y,Z; ψ)

(
∂2

∂ψ∂ψT
Lc(y,Z; ψ)

)
dZ

=

∫
Lm(Z|y; ψ)

Lc(y,Z; ψ)

(
∂2

∂ψ∂ψT
Lc(y,Z; ψ)

)
dZ,

where Lm(Z|y; ψ) =
Lc(y,Z; ψ)

L (y; ψ)

= EZ|y; ψ

[
1

Lc(y,Z; ψ)

( ∂2

∂ψ∂ψT
Lc(y,Z; ψ)

)]

= EZ|y; ψ

[Sc(ψ;y,Z)ST
c (ψ;y,Z)− Ic(ψ;y,Z)

]
from Equation (5.78),

= EZ|y; ψ

[Sc(ψ;y,Z)ST
c (ψ;y,Z)

]− EZ|y; ψ

[Ic(ψ;y,Z)
]

= EZ|y; ψ[UψU T
ψ ]− EZ|y; ψ[−Uψψ] (5.79)

Define

covZ|y; ψ[Uψ,Uψ] = EZ|y; ψ[UψU T
ψ ]− (EZ|y; ψ[Uψ])(EZ|y; ψ[Uψ])T . (5.80)

To use similar notation to that of McLachlan and Krishnan (1996), let

Ic(ψ;y) = EZ|y; ψ

[Ic(ψ;y,Z)
]

= EZ|y; ψ[−Uψψ], (5.81)

Im(ψ;y) = covZ|y; ψ[Uψ,Uψ]. (5.82)

Substituting the results of Equations (5.79) to (5.82) into the above expression for

the observed information, I(ψ;y), yields

I(ψ;y) = EZ|y; ψ[−Uψψ]− covZ|y; ψ[Uψ, Uψ]

= Ic(ψ;y)− Im(ψ;y). (5.83)
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The term Ic(ψ;y) represents the amount of information about ψ that, given the

observed data, is expected from observation of the complete data if the latter were

available. On the other hand, Im(ψ;y) is the expected amount of information about

ψ that, given the observed data, is associated with the conditional likelihood of the

missing data (see Louis (1982), McLachlan and Krishnan (1996, Chap. 3)).

Element-by-element evaluation of the observed information matrix can be pro-

hibitively tedious when a mixture model depends on a large number of parameters.

For example, if we fit no extra cofactors, then our backcross model has nine param-

eters and so the information matrix is a 9 × 9 matrix comprising 81 elements. We

note that the information matrix is symmetric and therefore we have 9(9+1)/2 = 45

elements to calculate separately. This is still a fairly large number of elements, and

so incorporating such calculations into any computer program would prove to be

both time-consuming and susceptible to typographical errors. Element-by-element

evaluation of the information matrix quickly becomes implausible when several extra

cofactors are included.

Below, we provide formulae to calculate the observed information matrix, without

separately evaluating each of its elements. We show that, irrespective of the number

of parameters in a mixture model, a maximum of ten matrix expressions (blocks) need

to be calculated when evaluating the observed information matrix. Only six blocks

are needed if no extra cofactors are fitted. For the Fisher Information matrix, I(ψ) =

Ey; ψ [I(ψ;y)], either three or five blocks need to be calculated depending on whether

extra cofactors are included in the model. The first and second partial derivatives of

the mixing proportions are simple to calculate because they do not depend on the

data. The formulae presented here avoid element-by-element calculations by directly

operating on matrices which are already available from the model fitting step, and by

directly operating on matrices containing only the first and second partial derivatives

of the mixing proportions.
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In the discussion below, we use the following notation:

(1) For Cb, the column vector of means, we write: µ = Cb.

(2) For a row vector vT , we use diag(vT ) to denote the diagonal matrix whose ith

diagonal element is given by the ith element of vT .

(3) The number of (marker) groupings on which we condition is denoted by s and we

note that s = 16 for a backcross design,while s = 81 for a F2 design.

First, we express the observed information matrix as the partitioned matrix given

in Equation (5.84) below.

I(ψ;y) =




Ibb(ψ;y) Ibb?(ψ;y) Ib(σ2)(ψ;y) Ibφ(ψ;y)

[Ibb?(ψ;y)]T Ib?b?(ψ;y) Ib?(σ2)(ψ;y) Ib?φ(ψ;y)

[Ib(σ2)(ψ;y)]T [Ib?(σ2)(ψ;y)]T I(σ2)(σ2)(ψ;y) I(σ2)φ(ψ;y)

[Ibφ(ψ;y)]T [Ib?φ(ψ;y)]T [I(σ2)φ(ψ;y)]T Iφφ(ψ;y)




(5.84)

Then we calculate each partition using appropriate functions of certain matrices that

are available from the E-M procedure.

Equations (5.85) to (5.94) display exact formulae for calculating the ten distinct

blocks that comprise the upper triangle of the (symmetric) conditional information

matrix.

The matrix expressions representing each component were found by directly apply-

ing the definition of the observed information, together with the rules of expectation

and the rules of matrix addition and matrix equality. The proofs are provided in

Chapter 6, which can be regarded as a technical appendix to the current chapter.



107

Ibb(ψ;y) = EZ|y; ψ[−Ubb]− covZ|y; ψ[Ub,Ub]

=
1

σ2
CT diag(1T

n Z̃)C

− 1

σ4
CT

[
diag

(
ÿT diag(ÿT )Z̃

)

+ diag(µT )
(
diag

(
1T

n Z̃
)
diag(µT )− 2 diag(ÿT Z̃)

)

−
(
diag(µT )Z̃T − Z̃T diag(ÿT )

)(
diag(µT )Z̃T − Z̃T diag(ÿT )

)T
]
C (5.85)

I(σ2)(σ2)(ψ;y) = EZ|y; ψ[−U(σ2)(σ2)]− covZ|y; ψ[U(σ2), U(σ2)]

=
1

σ6

(
ÿTÿ − 2ÿT Z̃µ + µT diag(1T

n Z̃)µ
)
− n

2σ4

− 1

4σ8
µT

[
4 diag

(
ÿT diag(ÿT ) Z̃

)− 4Z̃T diag(ÿT )diag(ÿT )Z̃

+ 4 diag(µT )
(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)

+ diag(µT )
(
diag(1T

n Z̃)− Z̃TZ̃
)
diag(µT )

]
µ (5.86)

Iφφ(ψ;y) = EZ|y; ψ[−Uφφ]− covZ|y; ψ[Uφ, Uφ]

= −
s∑

i=1

(
∂2

∂φ ∂φT
hT

i (φ)

)
Z̃T

i 1ni

−
s∑

i=1

s∑

i′=1

[( ∂

∂φ
hT

i (φ)
)(

diag
(
1T

ni′
∆i′∆

T
i Z̃i

)

− Z̃T
i ∆i∆

T
i′ Z̃i′

)( ∂

∂φ
hi′(φ)

)]
. (5.87)
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Ib(σ2)(ψ;y) = EZ|y; ψ[−Ub(σ2)]− covZ|y; ψ[Ub,U(σ2)]

= − 1

σ4
CT

(
diag(1T

n Z̃)µ− Z̃T ÿ
)

− 1

2σ6
CT

[
2 diag(µT )

(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)

− 2 diag
(
ÿT diag(ÿT ) Z̃

)
+ 2Z̃T diag(ÿT )diag(ÿT )Z̃

− diag(µT )
(
diag(1T

n Z̃)− Z̃TZ̃
)
diag(µT )

+
(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)
diag(µT )

]
µ (5.88)

Ibφ(ψ;y) = EZ|y; ψ[−Ubφ]− covZ|y; ψ[Ub,Uφ]

=
1

σ2
CT

s∑
i=1

[(
diag

(
1T

ni
Z̃i diag(µT )

)−diag(µT )Z̃T
i Z̃i

− diag
(
ÿT∆T

i Z̃i

)
+Z̃T diag(ÿT )∆T

i Z̃i

)( ∂

∂φ
hi(φ)

)]
(5.89)

I(σ2)φ(ψ;y) = EZ|y; ψ[−U(σ2)φ]− covZ|y; ψ[U(σ2),Uφ]

= − 1

2σ4
µT

s∑
i=1

[(
diag

(
1T

ni
Z̃i diag(µT )

)−diag(µT )Z̃T
i Z̃i

− 2diag
(
ÿT∆T

i Z̃i

)
+2Z̃T diag(ÿT )∆T

i Z̃i

)( ∂

∂φ
hi(φ)

)]
(5.90)

The components of the observed information matrix that are associated with the

extra cofactors are given below.

Ibb?(ψ;y) = EZ|y; ψ[−Ubb? ]− covZ|y; ψ[Ub, Ub? ]

=
1

σ2
CT Z̃T X2 − 1

σ4
CT

[
diag(µT )

(
diag(µT )Z̃T − Z̃T diag(ÿT )

)

−
(
diag(µT )Z̃T − Z̃T diag(ÿT )

)
diag

(
µT Z̃T

)]
X2 (5.91)
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Ib?b?(ψ;y) = EZ|y; ψ[−Ub?b? ]− covZ|y; ψ[Ub? ,Ub? ]

=
1

σ2
X2

TX2 − 1

σ4
X2

T

[
diag

(
µT diag(µT )Z̃T

)

− diag
(
µT Z̃T

)
diag

(
µT Z̃T

)]
X2 (5.92)

Ib?(σ2)(ψ;y) = EZ|y; ψ[−Ub?(σ2)]− covZ|y; ψ[Ub? , U(σ2)]

=
1

σ4
X2

T
(
Z̃µ− ÿ

)− 1

2σ6
X2

T

[
2 diag

(
µT diag(µT )Z̃T

)
ÿ

− 2 diag
(
µT Z̃T

)
diag

(
µT Z̃T

)
ÿ

− Z̃ diag(µT )diag(µT )µ + diag
(
µT Z̃T

)
Z̃ diag(µT )µ

]
(5.93)

Ib?φ(ψ;y) = EZ|y; ψ[−Ub?φ]− covZ|y; ψ[Ub? ,Uφ]

=
1

σ2
X2

T

[
s∑

i=1

[
diag

(
µT Z̃T

)
diag

(
1T

ni
∆i

)
Z̃

− diag
(
1T

ni
∆i

)
Z̃diag(µT )

]( ∂

∂φ
hi(φ)

)]
. (5.94)

These calculations are quite general and they may be used to obtain the observed

information matrix for a wide variety linear models involving mixtures of Normals.

Note however that, these formulae for the conditional observed information matrix

were only derived as a first step to obtaining formulae for the Fisher information

matrix. The conditional observed information will not generally be a good approxi-

mation of the Fisher information unless the sample size is large (Basford et al. (1997)).

Moreover, it is possible for the conditional information matrix to be negative definite,

whereas the Fisher information matrix is always non-negative definite. Therefore, in

practice, the Fisher information matrix formulae given in the next section should be

used when calculating the covariance matrix of the model parameters.
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5.2.3 The Fisher information matrix

In this section, we calculate the Fisher information for our Normal mixture model.

Let Z = Ey; ψ[Z̃]. Then Z is the expected value of the missing data over all

possible observations and

Z =




1n1w
T
1 (φ)

1n2w
T
2 (φ)
...

1nsw
T
s (φ)




. (5.95)

By definition, the Fisher information is

I(ψ) = Ey; ψ [I(ψ;y)]

= Ey; ψ

[S(ψ;y)ST (ψ;y)
]
. (5.96)

The components of I(ψ;y) are given, explicitly, in equations (5.85) to (5.94). The

Fisher information matrix is calculated by taking the expectation over y of the ex-

pressions in equations (5.85) to (5.94). These expectations were calculated using

Equations (6.73) to (6.94) which are provided in Section 6.7. The resulting formula

for the Fisher information matrix of our mixture likelihood is given in (5.97) below.

I(ψ) =




1
σ2C

T diag(1T
nZ)C 1

σ2C
TZ

T
X2 0 0

1
σ2X2

TZC 1
σ2X2

TX2 0 0

0 0 n
2σ4 0

0 0 0 −
s∑

i=1

(
∂2

∂φ ∂φT hT
i (φ)

)
Z

T

i 1ni




(5.97)

It is interesting to note that the formulae for the components of the expected

information matrix turn out to be vastly simpler than those for the observed infor-

mation. As an illustration of how one might implement these formulae in practice, R

program code to calculate both the observed and the expected information matrices

(for seven different models) is given in Appendix B.4.
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5.3 Hypothesis testing

This section begins by discussing the options that are available for testing hypotheses

about parameters in our mixture model. Then it outlines our chosen hypothesis

testing strategy.

From an interval mapping perspective, we are mainly interested in parameters

of b which are associated with the QTL in the testing interval. For the backcross,

there are only two genotypes at each locus. Therefore, only one contrast can be

fitted to capture the main effects at each locus. If one imagines that the main effects

have additive and dominance components which are both non-zero, then clearly these

cannot be separated in the backcross, because we cannot estimate two unknowns from

one equation. As previously shown in Equation (5.6), the expected value of bQ is equal

to (aQQ+2dQQ) for the backcross. For the F2, there are three genotypes at each locus,

so one may fit at most two main effects, and it is possible to separate additive and

dominance components (see also Sections 4.1.3 and 4.1.4).

Is there a QTL interior to the testing interval? To answer this question for the

backcross model we need to test the pair of hypotheses

H1 : (bQ 6= 0) and (pQ2 6= 0) and (pQ2 6= 1),

H0 : (bQ = 0) or (pQ2 = 0) or (pQ2 = 1).

Note that if (pQ2 = 0) or (pQ2 = 1), then the QTL is at one of the two flanking

markers. Moreover

(pQ2 = 0) ⇔ (rMQ = rMN) and (pQ2 = 1) ⇔ (rMQ = 0).

We have a composite hypothesis test for QTL effect and location. In applications such

as Marker-Assisted Selection (MAS), where exact location might not be so important,

the simple hypothesis test for QTL effect:

H0b : bQ = 0 versus H1b : bQ 6= 0
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might also be of interest. Such a test would indicate if there is a QTL tightly linked

to the markers. However, if we want to make statements about whether Q is interior

to the testing interval, then the test for effect should be used in conjunction with a

test for position.

Consider the behaviour of the EM algorithm when Q is included in the model

and the null hypothesis (that Q has zero effect) is in fact true. In such situations the

EM algorithm tends to move from initial values towards parameter space boundaries

either by causing some of the estimated means, µk, to become equal or by moving

some of the mixing proportions, wik, towards zero (Lesperance and Lindsay (2001)).

This behaviour means that when there is no QTL interior to the interval M −N ,

the EM could generate a value of bQ that is close to zero. Alternatively, it could

generate a value of bQ that is significantly greater than zero while simultaneously

pushing the location of the QTL (Q) towards either end of the interval. For this

reason, the composite hypothesis test for both effect and location will be more robust

to false detections than the test for effect alone. Simulations indicated (see Chapter 7)

that this consideration is more important for reducing ghosting in Composite Interval

Mapping (CIM) than in Robust Interval Mapping Version 1 (RIM1). The RIM1 model

displays low ghosting irrespective of whether we test for effect only (H0b) or for both

effects and location (H0), whereas CIM only displays low ghosting when H0 is used

for the null hypothesis.

Estimators of other parameters such as bL and bR are also interesting when scan-

ning a linkage group to search for QTL because they allow us to perform informal

checks, for robustness and consistency, by comparing the values of estimators as the

testing interval is moved from one interval to the next.

In likelihood-based models, classical inference about model parameters takes the

sampling distributions of suitable statistics under the null hypothesis, together with
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chosen significance levels, to construct threshold values for acceptance of the null hy-

pothesis. The extent to which observed data supports acceptance or rejection of the

null hypothesis is then determined by estimating the chosen statistic and comparing

its value to the threshold values or to their associated rejection regions. The pre-

ferred tests are likelihood ratio tests, Lagrangian multiplier or score tests and Wald

t-tests (Cox and Hinkley, 1974). These tests are asymptotically equivalent and their

equivalence is based on a quadratic Taylor-series expansion of the score function.

The models under consideration (CIM and RIM1) are mixtures of univariate nor-

mals having equal variances. Therefore, applying the results of Redner and Walker

(1984), we see that under alternative hypothesis (H1) the MLE ψ̂ obtained from the

EM algorithm is consistent for ψ in the sense that as the sample size approaches in-

finity, the MLE converges with probability one to the true parameter value (see also

Basford and McLachlan, 1985; McLachlan and Krishnan, 1996). Moreover, under H1,

the maximum likelihood estimators for the parameters of these mixture models have

an asymptotic Normal distribution with mean equal to the true parameter vector,

and covariance matrix equal to the inverse of the Fisher information matrix. This

result comes from established asymptotic theory (Redner, 1981; Redner and Walker,

1984; Titterington et al., 1985, pages 91-93; McLachlan and Krishnan, 1996, pages

111-113).

The null distribution of the mixture likelihood is complicated because the null

model does not conform to the regularity conditions which are required for the score

statistic to be asymptotically normal (Titterington, 1981; Ghosh and Sen, 1985). This

departure from regularity has two main causes.

1. Under the null hypothesis, the mixing parameters may lie on the boundary of

the parameter space.
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2. The parameters are not identifiable even when the class of mixtures is identi-

fiable. For example, the three statements pQ2 = 0, pQ2 = 1, and bQ = 0 are

equivalent because each statement implies that the marker means do not de-

pend on the genotypes at locus Q. Consequently, the same probability density

function may be generated by different parameter values.

The breakdown in regularity means that the likelihood ratio test statistic,

Λ = −2
(
ln L (y; ψ̂0)− ln L (y; ψ̂)

)
,

does not have the standard asymptotic chi-square null distribution with degrees of

freedom equal to the difference in the number of parameters in the two hypotheses

(see McLachlan and Basford, 1987, pages 21-29).

Various researchers have shown that the true distribution of the LRT involves

a Gaussian stochastic process. This distribution is difficult to calculate in practice.

Chen et al. (2001) reviewed the work of these researchers, summarised the properties

of this Gaussian process and outlined the difficulties of calculating its distribution. As

an alternative strategy for testing for homogeneity in finite mixture models, they also

proposed a modified likelihood ratio test which has simpler asymptotic properties.

Despite the aforementioned concerns, the standard chi-square distribution is often

used with the LRT in QTL mapping applications based on mixture distributions. In

some applications researchers were able to successfully detect QTL despite using this

less than ideal approximation (examples: Jansen and Stam, 1994; Zeng, 1994). The

main disadvantage of using the the standard chi-square distribution with the mixture

LRT is that the rate of false detections can be unacceptably high.

An alternative option is to use empirical estimators obtained by data re-sampling

in order to approximate the distributions of the LRT or of the score statistic. Churchill

and Doerge (1994) applied permutation tests or re-sampling without replacement to
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map QTL. Visscher et al. (1996b) used bootstrapping or re-sampling with replace-

ment to map QTL. In the bootstrap approach to hypothesis testing, the empirical

cumulative distribution function of the bootstrap estimators of a test statistic is used

to approximate its true distribution. Care must be taken when using the bootstrap

approach because Bickel and Freedman (1981) and Swanepoel (1986) have shown

that erroneous results are possible when the bootstrap distribution is not a consistent

estimator of the true distribution. The question of how many bootstrap samples to

take is also important. Beran and Ducharme (1991) suggested that between 1, 000

and 10, 000 bootstraps would be adequate.

Another approach is to use the asymptotic theory of Self and Liang (1987) when

parameters are on the boundary of the parameter space. Self and Liang (1987)

prove, in the presence of identifiability, that if none of the nuisance parameters are

on the boundary and some of the main parameters are on the boundary under the

null hypothesis, then the LRT is distributed as a mixture of chi-squares. Under these

conditions, Self and Liang (1987) found that the large-sample distribution of the LRT

statistic is approximately equal to

2q∑
i=1

χ2
r−νi

P
(
LiV

− 1
2PTS(ψ) > 0

)

where r, q, νi, Li, V, P, and S(ψ) are as described below.

1. Suppose that the parameter vector ψ contains p elements. Suppose also that,

under the null hypothesis the first r components of ψ are explicitly specified.

Then, under the null hypothesis, ψ is restricted to ψ0 with its first r values

specified (r 6 p).

2. For q 6 r, suppose that the first q components of ψ0 lie on the parameter space

boundary.

3. Under the alternative hypothesis, the MLE’s of the first q parameters of ψ
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may or may not lie on the boundary. Therefore, there are 2q configurations for

ψ, where a configuration indicates which of the first q parameters lie on the

boundary, and i is used to index these configurations.

4. The term νi represents the number of elements (among the first q elements of ψ)

that are on the boundary in the ith configuration. When νi < r the expression

χ2
r−νi

denotes the chi-square distribution having r − νi degrees of freedom. We

take χ2
0 to be the distribution with a point mass of one at zero.

5. In the ith configuration, let Bi denote the p × p diagonal matrix, with its jth

diagonal element equal to one if the jth coordinate of ψ is on the boundary,

and equal to zero otherwise. Then construct the orthogonal projection matrix

Pi where

Pi = Ip −Bi I−1(ψ0)
[
BT

i I−1(ψ0)Bi

]+
BT

i .

Let 0 be a q × (p − q) matrix with all elements equal to zero. Then, Li is the

q × p matrix given by

Li = [Iq 0](Pi −Bi).

6. The matrices P and V are such that PVPT is the spectral decomposition of

I(ψ0), where I(ψ0) is the Fisher information matrix evaluated under the null

hypothesis.

7. The object S(ψ) is the vector of scores and V− 1
2PTS(ψ) is its Mahalanobis

transformation when ψ = ψ0. The limiting distribution of this Mahalanobis

transformation is that of a Gaussian random vector having mean zero and iden-

tity covariance matrix. This allows us to calculate the mixing probabilities for

this mixture of chi-squares.

If one or more nuisance parameters lie on the boundary, then the asymptotic distri-

bution of the LRT will not necessarily be a mixture of chi-squared random variables
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unless parameters of interest and these nuisance parameters are uncorrelated (Self

and Liang, 1987; Schoenberg, 2001). In the case of our RIM1 model, it is possible for

nuisance parameters such as pR2 and pL2 to fall on the boundary of the parameter

space. However, the information matrix is block diagonal with respect to β, σ and

φ. Additionally, if Haldane’s addition formula is assumed everywhere, then pR2, pQ2,

and pL2 (the components of φ) will be uncorrelated with each other.

The results of Self and Liang (1987) were derived in the context of samples of inde-

pendent identically distributed random variables. Vu and Zhou (1997) and Andrews

(1999) extended these results to allow for more relaxed assumptions.

Note also that the results of Self and Liang (1987) require identifiability. Normal

mixture distributions do not satisfy this requirement. In fact, the common feature

of the results of Self and Liang (1987), Vu and Zhou (1997) and Andrews (1999)

is that they all require the existence and consistency of the MLE for ψ0. Lack

of identifiability is often a barrier to obtaining a consistent estimator for ψ0 (see

Lehmann and Casella, 1998, page 443).

The fact that our model is unidentified does not put a caveat on proceeding.

Breusch (1986), for example, pointed out that not only is inference possible with

unidentified models but that such inference is often undertaken in the analysis of

many common systems.

Breusch (1986) provided a synopsis of hypothesis testing strategies that are suit-

able for use with different types of unidentified models. His synopsis included the

works of Silvey (1959), Aitchison and Silvey (1960) and Davies (1977).

Davies (1977, 1987) recommended the use of the maximum of score statistics when

a nuisance parameter is only present under the alternative hypothesis. Chang et al.

(2003) also developed score tests for QTL. Chang et al. (2003) appealed to Gaussian

stochastic processes that were previously described in Chen and Chen (1998a,b) for

testing homogeneity in mixture models. They showed that, for large samples, the
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maximum of the square of the score statistic has a null distribution which is approx-

imately equal to the distribution of the maximum of the square of a well-defined

Gaussian process. Then they used simulations to compute this distribution. For

backcross samples, Chang et al. (2003) found that their method yielded threshold

values that were similar to those obtained by the permutation method of Churchill

and Doerge (1994). However, the score statistic approach of Chang et al. (2003) had

a considerable advantage in reducing computing times.

When choosing a method for testing the hypothesis H0 versus H1, it is impor-

tant to consider the fact that, for our mixture distribution, the null hypothesis is

not simply nested within the alternative. Equation (5.97) shows that the Fisher in-

formation matrix is block diagonal. This means that we can carry out tests for β

and φ independently. Therefore, we propose a type of sequential test, which begins

with a hypothesis test for whether the QTL effect b̂Q is significantly different from

zero. That is, we first test H0b : bQ = 0. If a significant QTL effect is found (H0b is

rejected), then hypothesis testing continues with another test to determine whether

we have significant evidence that the QTL is strictly interior to the testing interval.

If H0b is rejected, we construct an approximate interval test based on the two null

hypotheses:

H0m : pQ2 = 1, and H0n : pQ2 = 0.

Note that if H0b is accepted, then there is no need to carry out tests on pQ2 and we

simply declare that there is not enough evidence for a QTL in the interval M–N .

We obtain the variances of the parameter estimates from the inverse of the Fisher

information matrix given in Equation (5.97), and we use the test statistics given in

Equations (5.98) to (5.102).

T1 = T1(̂bQ) =
b̂Q − 0√
var(̂bQ)

(5.98)
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Likewise, define Jm and Jn as tests statistics for whether Q is located at markers M

and N respectively.

Jm = Jm(p̂Q2) =
p̂Q2 − 1√
var(p̂Q2)

(5.99)

Jn = Jn(p̂Q2) =
p̂Q2 − 0√
var(p̂Q2)

(5.100)

Also define the following vector-valued test statistics

Jc = Jc(p̂Q2) = (Jm, Jn) (5.101)

J1 = J1(̂bQ, p̂Q2) = (T1, Jm, Jn) = (T1, Jc) (5.102)

To implement the hypothesis tests, we need some strategy for calculating or ap-

proximating the distributions of T1, Jm and Jn under the respective null hypotheses

H0b, H0m and H0n. The asymptotic distribution of T1 is the least problematic of the

three required distributions.

Under H0b, the parameter bQ is the only restricted parameter and it is strictly

interior to the parameter space boundaries. All mixing proportions are constrained

to be greater than zero in the mixture model. Therefore, the EM maximization

process never allows the probabilities pL2, pQ2 and pR2 to fall upon parameter space

boundaries, although they can become arbitrarily close to it. The fact that the

information matrix is block diagonal with separate blocks corresponding to β and φ

means that the proximity of elements of φ̂ to the parameter space boundary does not

affect the asymptotic distribution of β̂ (Andrews, 1999; Schoenberg, 2001). Therefore,

for large samples, the statistic T1 will be almost Standard Normal if the true value of

bQ is equal to zero.

T1 ∼ N(0, 1) when H0b is true.

The p-value for a test of bQ = 0 versus bQ 6= 0 is given by

p-value of T1 = 2 P (• > |T1|). (5.103)
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If the p-value of T1 is less than the chosen significance level, then H0b is rejected, and

a QTL Q associated with the interval M −N is detected.

It is more problematic to ascertain the asymptotic distributions of Jm under H0m,

and Jn under H0n. There are two main problems:

• If bQ = 0, then pQ2 can never be consistently estimated. However, it is reason-

able to expect that this problem will be mitigated by the fact that we will only

use Jm and Jn after finding that bQ is significantly different from zero.

• When H0m or H0n are true, the parameter pQ2 lies on the boundary of the

parameter space.

Even when bQ > 0, consistency of the MLEs under H0m and H0n is not guaranteed.

Nevertheless, to construct rough tests, we appeal to Self and Liang (1987), Andrews

(1999) and Schoenberg (2001), and to the fact that pQ2 is uncorrelated with the

other elements of ψ. We take the asymptotic distribution of Jm under H0m to be a

50:50 mixture of a degenerate distribution (point mass 1 at zero) and a left-truncated

Standard Normal distribution (truncated to the left of zero), and assume that

when H0m is true, P (• 6 Jm) ≈





1/2 if Jm = 0

1/2 + Φ(x)
∣∣∣
x=Jm

x=0
if Jm > 0,

(5.104)

where Φ(x) is the Standard Normal distribution function.

Similarly, we use a right-truncated Standard Normal distribution and assume that

when H0n is true, P (• 6 Jn) ≈





Φ(x)
∣∣∣
x=Jn

x=−∞
if Jn < 0.

1 if Jn = 0
(5.105)

The p-value for a test of whether Q is interior to the interval M −N is calculated as

follows.

p-value of Jc = p-value of Jm + p-value of Jn

= P (• < Jm) + P (• > Jn) (5.106)



121

If T1 is significantly different from zero, and the p-value of Jc is less than half of the

chosen significance level, then there is evidence for a linked QTL which is strictly

interior to the testing interval. We use half of the chosen significance level in order to

implement a Bonferroni correction for multiple testing on pQ2 with Jc. The p-value

of J1 is taken to be the maximum of the p-values of T1 and Jc.

Despite the fact that these are rough tests, the results in Chapter 7 demonstrate

that these tests have good power to detect QTL and that they are dramatically more

resistant to ghosting than the Chi-square LRT.

For comparison purposes, new permutation tests are also proposed. Consider the

statistics T2 and J2 where

T2 = b2
Q (5.107)

J2 = pQ2(1− pQ2)(b
2
Q). (5.108)

The right tail of the empirical null-distribution of T2 can be used to calculate p-values

for a test of whether bQ = 0, thereby giving an alternative to the asymptotic T1 test

described above. Likewise, a test based on the empirical null-distribution of J2 can

be used rather than the ‘two-step’ J1 test described above.

The permutation method of Churchill and Doerge (1994) involves randomly shuf-

fling the trait values among individuals, while retaining each individual’s genetic

data. This method is only appropriate when there is a single explanatory variable –

for example, fitting a single QTL with no cofactors.

Permuting the sample as per Churchill-Doerge will destroy any association be-

tween the trait and all genotypes. Still, the Churchill-Doerge method might not give

the correct null situation because it will destroy all associations, leading to a situation

where H0 is equivalent to ‘no QTL anywhere’, when the true H0 really should be ‘no

QTL interior to M −N ’ (which means that QTL could be outside the interval).

Rather than shuffling the trait values, it is better to randomise the covariate of
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interest among the subjects. This randomisation method is discussed in Manly (1997,

Chapter 8) in the context of constructing a randomisation test for a coefficient in a

multiple regression. For our QTL mapping problem, we implement this method by

permuting the two-locus ‘MN ’ marker genotypes within each group defined by the

two-locus ‘KO’ genotypes.

For example, in the case of a B1 backcross, we partition the sample into the

four ‘KO’ groups: KKOO, KKOo, KkOO, KkOo. Then, we shuffle only the ‘MN ’

genotypes (MMNN , MMNn, MmNN , MmNn) within each ‘KO’ group. Finally,

to obtain parameter estimates, we apply the chosen model (CIM or RIM1) to each

permuted dataset. When scanning a linkage group for QTL, a new permutation is

used with each testing interval. Appendix B.6 gives R program code for implementing

this permutation for different breeding designs.

Keeping the ‘MN ’ genotypes together (rather than separately permuting the M ’s

and the N ’s) retains the marker distance between M and N consistent with rMN . As

this is a permutation and not resampling with replacement, recombination fractions

rKM , rMN , rNO, will be the the same in the permuted datasets as in the original

dataset.

Resampling the marker genotypes in this way will allow us to test the appropriate

H0. If there is a QTL in the interval this will appropriately break the relationship

between the observed trait value (which is kept tagged to the individual) and the

individual’s ‘MN ’ marker genotype, which is randomly assigned elsewhere. All other

genotypes and cofactors remain tagged to the individual and to the original trait

value. This retains possible linkage of any external QTL with the outer intervals

K −M and N − O, by at least preserving the relationship between y and K, and y

and O, and between y and all cofactors.

If the QTL is tightly linked to, say, K, then its effect will still be seen in the right

places (the K genotype always stays with the right individual, and that individual’s
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score is kept and able to speak to the effect of the QTL near K). But if the QTL is

tightly linked to M , but in the interval K −M , then the shuffling of the M genotype

will break that relationship. Therefore, the expected frequencies of ‘KL’ groups and

‘NR’ groups may be altered by the permutation. However, RIM1 estimates nuisance

parameters in the form of bL, rKL, bR and rNR, which do not need to be the equal

from replicate to replicate.

Suppose that T̂
(1)
2 , T̂

(2)
2 , . . . , T̂

(N)
2 and Ĵ

(1)
2 , Ĵ

(2)
2 , . . . , Ĵ

(N)
2 are estimates of T2 and

J2 obtained from N permutations that reflect the null hypothesis. Suppose that T̂2

and T̂2 are the corresponding estimates from the original sample. Let

I (a 6 b) =





1 if a 6 b

0 if a > b.

Then the empirical null-distribution of T2 is

P (• 6 T2) =
1

N

N∑
i=1

I (T̂
(i)
2 6 T2). (5.109)

Likewise, the empirical null-distribution of J2 is

P (• 6 J2) =
1

N

N∑
i=1

I (Ĵ
(i)
2 6 J2). (5.110)

The empirical p-values for T̂2 and T̂2 may then be calculated as:

p-value of T̂2 = 1− P (• 6 T̂2) (5.111)

p-value of Ĵ2 = 1− P (• 6 Ĵ2). (5.112)

The results of this permutation test are displayed in Chapter 7 and are based on

1000 permutations at each testing interval. The results show that the permutation

method proposed here is also very sensitive to the significance level of the test. This

sensitivity is more severe when the sample size is small than when it is large.
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A key question is how many replicates to create. For their permutation tests,

Churchill and Doerge (1994) recommended at least 1000 shuffles to be used for es-

timating critical values at significance level α = 0.5 and as many as 10,000 shuffles

for smaller significance levels such as α = 0.01. This appears to be a reasonable

recommendation. It is clear that for small significance levels, much more than 1000

permutations may be needed to obtain stable estimates of the critical value. This is

particularly true when the original sample size is also small.

5.4 Computational Issues

5.4.1 Selecting starting points for the EM Algorithm

Böhning et al. (1992) and Seidel et al. (2000) have independently shown that, for

certain mixture distributions, the parameter estimators obtained from the EM al-

gorithm can depend strongly on the starting strategies and stopping rules used in

its implementation. The following quotation, from Lesperance and Lindsay (2001),

points out one feature of iterative maximum likelihood procedures that can cause the

MLEs generated by these procedures to be dependent on the starting value.

“In a multimodal likelihood, an algorithm tends to go to a root nearest
the initial value. Thus it is wise to either search over the space of initial
values or to use starting values known to have good properties.”

In our QTL mapping problem, a fixed value of ψ is required to begin the iterative

procedure for maximizing the likelihood function. If the vector of mixing parameters,

φ, is fixed then a unique maximum likelihood estimator for (β, σ2)T exists (and

may be calculated using Equations (5.67) and (5.68)). Therefore one only needs

to test different mixing parameters in a grid-search for starting values. Potential

starting values consist of the test starting-point together with its maximum likelihood
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estimators for the variance, QTL effects and cofactor effects. The strategy used in

this application consisted of three steps.

1. Choosing a domain of test starting-points.

2. Developing criteria for selecting a point from that domain to form the seed

(starting parameter values) for the EM algorithm.

3. Running the EM algorithm from the chosen starting point.

A straight-forward approach to choosing a domain would be to assume Haldane’s

addition formula for recombination fractions and use a three-dimensional array of

points (pL2, pQ2, pR2), generated by taking evenly spaced points along the interval

(0, 1) in each dimension. Due to the structure of the modelled genetic map, some

dangers of using such a simple approach were apparent. For example, if pL2 ' 0

and pQ2 ' 1 then loci L, M and Q effectively coincide. This would lead to an ill-
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Figure 5.4: Grid of 30 points used as a domain for selecting starting values for the
EM Algorithm
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conditioned model matrix, and if the corresponding points are used to start the EM

algorithm, it is likely that the resulting estimators will be unreliable. This problem

was avoided by restricting the grid to ensure that, for all test starting-points, the

putative QTL were spaced well away from each other. Figure 5.4 shows the design of

the reduced grid. This grid has the added advantage of controlling over-specification

in the model and also speeding up the search for starting values. Note that the grid

search was only used for selecting starting values. The EM algorithm, as implemented

for this work, does not use a grid search to find the maximum likelihood estimator.

Having selected the domain for generating starting values, the next step was to

decide upon a criterion for selecting the best starting point from amongst points in

the domain. Simulations based on different QTL configurations, showed that the

likelihood surface from the grid could be quite uninformative. For some simulated

samples the likelihood surface was very flat, for other samples it appeared to be highly

multimodal. Only occasionally did it appear to be well behaved. Consequently, the

decision was made not to use maximum likelihood alone as the criterion for selecting

starting values.

There is precedence in the literature for choosing starting values using criteria

other than that of maximum likelihood. Asymptotic likelihood theory (see Lehmann

and Casella, 1998, Chapter 6) indicates that, in the case of likelihood estimation in

the presence of multiple roots, consistent and efficient estimators may be obtained

by taking starting values from a sequence of consistent (but not necessarily efficient)

estimators.

Everitt and Hand (1981, pages 47-48) and Lindsay (1995, pages 65-66) discuss

some of the strategies for obtaining starting values which have been proposed in the

mixture-modelling literature. These include ad hoc methods, multiple random starts,

graphical techniques, nonparametric likelihood estimation of the latent distribution,

method of moments and clustering techniques such as k-means.
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For this thesis, a new criterion specially suited to the QTL mapping problem

was developed. The new strategy operates by selecting a point that will minimize

the environmental variance (σ2), while maximizing both the variance between the

marker groups that we condition on, and the variability between the combined QTL

and cofactor classes that occur within each marker class.

Let σ̂2 and β̂ be as given in Equations (5.67) and (5.68). Let `i be the number

of distinct cofactor groups observed within the ith marker group and let nic be the

number of observations belonging to marker i and the cth cofactor group. Also, let yick

be the sample mean for any individual belonging to marker group i and having the

cth cofactor and kth QTL genotype, and let nick ' nicwik be the number of individuals

in this category.

Refer to Table 3.1 for the definitions of σ2
error, σ2

i and σ2
total. Now define:

σ̂2
error =

1

n
(y −Xβ̂)T (y −Xβ̂)

= σ̂2 − 1

n
β̂

T
[
˜(XTX)− X̃TX̃

]
β̂ (5.113)

Assume that the yick are normally distributed with variance equal to σ2
error and with

mean equal to µick. The mean, µick, is approximately equal to yick which is estimated

by µ̂ick (where µ̂ick is the mean of the fitted values in group ick). The variance (σ2
i ) of

the trait values within marker group i may be estimated by Equation (5.114) below.

σ̂2
i = σ̂2

error +

`i∑
c=1

t∑

k=1

wikµ̂
2
ick −

( `i∑
c=1

t∑

k=1

wikµ̂ick

)2

(5.114)

We are also interested in cov(yi, y).

E(yiy) = E
(

yi

n

(
niyi +

∑
i′ 6=i ni′yi′

))

= E
(

ni

n
y2

i +
∑

i′ 6=i
ni′
n

yiyi′

)

= ni

n
E(y2

i ) +
∑

i′ 6=i
ni′
n

E(yi)E(yi′)

= ni

n

(
σ2

i

ni
+ E2(yi)

)
+

∑
i′ 6=i

ni′
n

E(yi)E(yi′) (5.115)
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cov(yi, y) = E(yiy)− E(yi)E(y)

= E(yiy)− E(yi)
(

ni

n
E(yi) +

∑
i′ 6=i

ni′
n

E(yi′)
)

= E(yiy)−
(

ni

n
E2(yi) +

∑
i′ 6=i

ni′
n

E(yi)E(yi′)
)

=
σ2

i

n
using the Equation (5.115) above. (5.116)

Similar arguments lead to the result

cov(yick, yi) =
σ2

error

ni

. (5.117)

Define:

Vm =
s∑

i=1

ni

n
var(yi − y)

=
s∑

i=1

ni

n

(
var(yi) + var(y)− 2 cov(yi, y)

)

=
s∑

i=1

ni

n

(σ2
i

ni

+
σ2

total

n
− 2σ2

i

n

)
. (5.118)

Substituting σ̂2 for σ2
total and σ̂2

i for σ2
i we have the approximation

V̂m =
s∑

i=1

1

n2

(
niσ̂

2 + (n− 2ni)σ̂
2
i

)
. (5.119)

If there are QTL interior to the central testing interval then Vm should be significantly

different from zero.

Now define:

Vqc =
s∑

i=1

ni

n

`i∑
c=1

t∑

k=1

nick

ni

var(yick − yi)

=
s∑

i=1

`i∑
c=1

t∑

k=1

nick

n

(
var(yick) + var(yi)− 2 cov(yick, yi)

)

=
s∑

i=1

`i∑
c=1

t∑

k=1

nick

n

(σ2
error

nick

+
σ2

i

ni

− 2σ2
error

ni

)
. (5.120)
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V̂qc =
s∑

i=1

`i∑
c=1

t∑

k=1

1

nin

(
nicŵikσ̂

2
i + (ni − 2nicŵik)σ̂

2
error

)
. (5.121)

If there are QTL adjacent to the testing interval or QTL located further away

and associated with any cofactor, then Vqc should be significantly different from zero.

If the trait is genetically determined, then V̂m + V̂qc should be much larger than the

error variance.

Variance Ratio =
σ̂2

error

V̂m + V̂qc

(5.122)

The starting value for ψ is taken to be the grid-point (and associated MLEs β̂, σ̂2)

which minimizes the variance ratio given in Equation (5.122). Simulations indicated

that this variance-ratio-minimization (VRM) criterion was quite good at correctly

identifying QTL genotype-clusters within the data because it tended to select starting

values that were close to the true values.

5.4.2 Stopping rules

The standard lack-of-progress stopping criterion was used to terminate the EM-

algorithm. This criterion terminates the algorithm if changes in the likelihood are

smaller than a chosen tolerance value. Let Li−1 and Li denote values of the log-

likelihood for two consecutive steps of the EM-algorithm. Then the algorithm lack-

of-progress stopping criterion is

stop if Li − Li−1 < tolerance.

This simple stopping rule sometimes attracts criticism because it is possible for a

slow-converging algorithm to take small steps in the likelihood and still be far away

from a local maximum. Several alternative stopping rules have been proposed in the

literature (see Lindsay, 1995, page 64).
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In this thesis, a new stopping rule was also developed and tested. If the mixing

parameters are fixed then the MLE is unique. This implies that if the category

identities are not changing on successive iterations, then continuing with iterations

will not improve the likelihood. Our new stopping rule checks whether successive

iterations are changing the category identities of individuals. The stopping rule is

stop if
1

nt
1T

n

[
abs(Znext − Zcurrent)

]
1n < tolerance

where 1n is the summing vector of order n, Zcurrent and Znext are matrices of category

identities obtained from consecutive E-steps, n is the number of individuals and t is

the number of mixing components. The absolute value of the resultant of the matrix-

subtraction, denoted by abs(Znext − Zcurrent), operates in an element-wise manner.

Simulations showed that this new criterion was better at preventing premature

termination of the algorithm than the lack-of-progress criterion. However, when the

tolerance limit for the lack-of-progress criterion was very small (tolerance = 10−6)

the two rules seemed to agree. Therefore, because of its simplicity, the standard

lack-of-progress stopping rule was preferred.

5.4.3 Adjustments to RIM1

The RIM1 model was defined to condition on the genotypes at four markers. When

testing the first or last interval in a linkage group, it is desirable to tweak the model

so that it conditions on three markers instead of four.

When testing the first interval in a linkage group, the markers M , N and O are

available but marker K is unavailable. We define

pL = P (LL|MM) = 1− rLM

which implies that P (L`|MM) = (1 − pL). Next, we substitute pL for pL1 and

(1− pL) for pL2 when calculating the mixing proportions. Instead of the parameters

(pL2, pQ2, pR2), we have (pL, pQ2, pR2).
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Similarly, if the dataset is such that the testing interval is the last interval on the

right, then marker O is not available. We define

pR = P (RR|NN) = 1− rNO

and substitute pR for pR1 and (1−pR) for pR2 when calculating the mixing proportions.

Instead of the parameters (pL2, pQ2, pR2), we have (pL2, pQ2, pR). Conditioning on

fewer than three markers is not permitted for RIM1 and conditioning on three markers

is only permitted when the testing interval is the first or last interval in a linkage

group.

5.4.4 Reduced Models for fitting fewer than three QTL

The Model RIM1 has seven analogous reduced models of which the CIM model is one.

The reduced models are determined by removing some putative QTL from RIM1. We

have the following models.

‘LQR’=RIM1 ‘LR’

‘LQ’ ‘L’

‘QR’ ‘R’

‘Q’=CIM ‘N’=No QTL

The reduced models are not simply nested within RIM1 because they condition on

different numbers of markers than RIM1. For example, the models CIM, ‘L’ and ‘R’

all fit one QTL and need to condition on two flanking markers in order to exploit the

properties of interval mapping. Likewise, the models (‘LR’, ‘LQ’ and ‘QR’) which fit

two QTL must condition on three flanking makers. Still, the form of the likelihood

(and information matrix) is the same for all of the models that contain QTL. However,

the dimensions and contents of C, Z, ψ and W differ between models. This makes

it easy to write modular program code.
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We no not need to write new code to implement each of the seven models. Instead

we write modules to calculate the matrices C, Z, ψ, W and to calculate the first two

derivatives of the natural logarithm of W with respect to φ, where the calculation

depends on which model is being used. Then we feed these objects into a single

module that performs the EM maximization, and into a single module that calculates

the information matrix (see Appendix B). The model containing no QTL may be

implemented as a simple marker-regression. If we are concerned about possible over-

specification in RIM1, popular model-selection techniques could be used to choose

between these eight models. For example, Akaike’s information criterion could be

used for this purpose (Akaike, 1974).

5.4.5 The possibility of a singular information matrix

The Fisher information matrix is always positive semi-definite but it is not always

positive definite. It is possible to obtain a singular (or nearly singular) Fisher in-

formation matrix. This occurrence is indicative of an ill-conditioned system. In a

mixture model, an ill conditioned model matrix may occur when there is collinear-

ity in observed data or when certain mixing parameters lie on the boundary of the

parameter space.

Silvey (1959) and Breusch (1986) suggest that, in special cases, a generalized

inverse could be used to construct hypothesis tests when the information matrix is

singular. Rotnitzky et al. (2000) and Prescott et al. (2002) also developed hypothesis

tests for specific models involving singular information matrices.

It is useful to examine how often our proposed model tends to generate a singular

information matrix. In our implementation, whenever a singular information matrix

is encountered, a warning is returned and the covariance matrix is estimated by

the generalised inverse of the information matrix. Applying RIM1 to 20 intervals

for 200 simulated backcross samples required 4000 calculations of the information
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matrix. None of these 4000 calculations produced a singular information matrix.

Likewise, applying the RIM to a real backcross sample and to a real F2 sample did

not produce a singular information matrix in either case. However, when a non-

parametric bootstrap was applied to one of the simulated data-sets, 11 out of 1000

bootstrap samples yielded a singular information matrix. Similarly, when the real

backcross data was bootstrapped, 70 out of 1000 bootstrap samples yielded a singular

information matrix. When the analyses were repeated using the CIM model, none of

the original data-sets yielded a singular information matrix but similar numbers of

bootstrap samples yielded singular information matrices. More details about these

simulated and real datasets are given in Chapter 7 and Chapter 8 respectively.

The results suggest that because the EM-algorithm never permits the parameter

to fall exactly on the boundary, it is very rare that lack of identifiability will cause

our system to produce a singular information matrix. When a singular information

matrix occurs in this framework it is more likely due to collinearity in the observed

data. The bootstrap technique is based on re-sampling with replacement. Therefore,

rare marker groups that are observed in the original sample are likely to be omitted

in a bootstrap sample. This can increase the risk of introducing collinearity in our

data.

5.4.6 Programming environment

This thesis is not concerned with creating new methods for simulating genetic data

and breeding designs. Therefore, all simulated samples were generated using the QTL

Cartographer (Basten et al., 1994, 2001) software.

The R language and environment (R Development Core Team (2006)) was chosen

for this project because it offers powerful tools for statistical analysis and program-

ming. The flexible indexing and manipulation features associated with its matrix and

list objects made R particularly suited for our data analysis.
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Most of the data analysis was carried out using bespoke programs written in

the R programming language. For the purposes of comparison, Composite Interval

Mapping was also carried out using the QTL Cartographer software. All R program

code to implement the methodology proposed in this thesis was written exclusively

by the author. The core segments of these programs are included in Appendix B to

illustrate that proposed methods are practical to implement.
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Chapter 6

Information Matrix Derivations

This chapter gives detailed mathematical proofs for the information matrix formulae

presented in Equations (5.84) to (5.94) and in Equation (5.97) from the previous

chapter. Although the algebraic manipulations presented in this chapter are relatively

simple, they are quite tedious. We include these technical details as a Chapter rather

than an Appendix because they represent a significant part of the novel contribution

of this thesis. Without these mathematical proofs, there would be no evidence the

proposed formulae are based on exact derivations.

The proofs do not involve any approximations, and so application of the proposed

information matrix formulae does not require any extra assumptions on top of those

assumptions needed for asymptotic maximum likelihood theory to hold. Therefore,

one can expect that in any situation where classical asymptotic maximum likelihood

theory applies, the proposed formulae will give good estimators of the standard errors

of the MLEs.

Readers who are not interested in the details of these mathematical proofs may

proceed directly to Chapter 7, where we apply the methods that are described in

Chapter 5 to some simulated data.



136

6.1 The Complete-Data Conditional Information

In this section we partition the upper triangle of the complete-data (conditional)

information matrix,

Ic(ψ;y) = EZ|y; ψ

[Ic(ψ;y,Z)
]

= EZ|y; ψ[−Uψψ],

into ten blocks and derive formulae for evaluating the blocks.

The score functions of the complete-data likelihood are

Ub = − 1

σ2
(X1

TX1b−X1
Ty + X1

TX2b
?)

= − 1

σ2
(X1

TX1b−X1
T ÿ),

Ub? = − 1

σ2
(X2

TX2b
? −X2

Ty + X2
TX1b)

= − 1

σ2
(X2

TX1b−X2
T ÿ),

U(σ2) = − n

2σ2
+

1

2σ4
(y −X1b−X2b

?)T (y −X1b−X2b
?)

= − n

2σ2
+

1

2σ4
(ÿ −X1b)T (ÿ −X1b),

Uφ =
s∑

i=1

( ∂

∂φ
hT

i (φ)
)
ZT

i 1ni
=

s∑
i=1

( ∂

∂φ
hT

i (φ)
)
ZT∆T

i 1ni
.

Their conditional expectations are therefore:

EZ|y; ψ[Ub] = − 1

σ2

(
CT diag(1T

n Z̃)Cb−CT Z̃Ty
)

(6.1)

EZ|y; ψ[Ub? ] = − 1

σ2
(X2

T Z̃Cb−X2
T ÿ) (6.2)

EZ|y; ψ[U(σ2)] = − n

2σ2
+

1

2σ4

(
yTy − 2yT Z̃Cb + bTCT diag(1T

n Z̃)Cb
)

(6.3)

EZ|y; ψ[Uφ] =
s∑

i=1

( ∂

∂φ
hT

i (φ)
)
Z̃T∆T

i 1ni
. (6.4)

These conditional expectations (Equations (6.1) to (6.4)) specify the components of

EZ|y; ψ[Uψ] which are not relevant for calculating Ic(ψ;y). However, these compo-

nents are presented here because they will be used later, in the calculation of Im(ψ;y),

the conditional missing information.
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The second partial derivatives of the complete-data log-likelihood are:

Ubb = − 1

σ2
X1

TX1

Ub?b? = − 1

σ2
X2

TX2

U(σ2)(σ2) =
n

2σ4
− 1

σ6
(ÿ −X1b)T (ÿ −X1b)

Uφφ =
s∑

i=1

∂

∂φ

[
∂

∂φT

(
hT

i (φ)
)
ZT

i 1ni

]

Ubb? = − 1

σ2
X1

TX2

Ub(σ2) =
1

σ4
(X1

TX1b−X1
T ÿ)

Ub?(σ2) =
1

σ4
(X2

TX1b−X2
T ÿ)

Ubφ = 0

Ub?φ = 0

U(σ2)φ = 0

Evaluating EZ|y; ψ[−Uψψ] simply involves taking the conditional expectations of

(-1) times the second partial derivatives given above. Therefore the ten blocks of

that form the upper triangle of EZ|y; ψ[−Uψψ] (the complete-data information matrix

conditioned on the observed data) are as given below.

EZ|y; ψ[−Ubb] =
1

σ2
CT diag(1T

n Z̃)C (6.5)

EZ|y; ψ[−Ub?b? ] =
1

σ2
X2

TX2 (6.6)

EZ|y; ψ[−U(σ2)(σ2)] = − n

2σ4
+

1

σ6

(
ÿT ÿ − 2ÿT Z̃Cb + bTCT diag(1T

n Z̃)Cb
)

(6.7)

EZ|y; ψ[−Uφφ] = −
s∑

i=1

(
∂2

∂φ ∂φT
hT

i (φ)

)
Z̃T

i 1ni
(6.8)
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EZ|y; ψ[−Ubb? ] =
1

σ2
CT Z̃TX2 (6.9)

EZ|y; ψ[−Ub(σ2)] = − 1

σ4

(
CT diag(1T

n Z̃)Cb−CT Z̃T ÿ
)

(6.10)

EZ|y; ψ[−Ub?(σ2)] = − 1

σ4
(X2

T Z̃Cb−X2
T ÿ) (6.11)

EZ|y; ψ[−Ubφ] = 0 (6.12)

EZ|y; ψ[−Ub?φ] = 0 (6.13)

EZ|y; ψ[−U(σ2)φ] = 0 (6.14)

6.2 Notation and Useful Matrix Identities

6.2.1 Notation

In this section and in all other sections of Chapter 6 we use the following notation.

(1) µ = Cb for the column vector of means.

(2) diag(vT ) to denote the diagonal matrix whose ith diagonal element is given by

the ith element of vT , where vT is a row vector.

(3) Ak• to denote the kth row of a matrix A.

(4) A•k to denote the kth column of a matrix A.

(5) s to denote the number of (marker) groupings on which we condition. For RIM1,

s = 16 for a backcross design,while s = 81 for a F2 design.

(6) t to denote the number of mixture components (QTL groupings). For RIM1,

t = 8 for a backcross design, while t = 27 for a F2 design.

(7) D̃k = diag
(
(Z̃•k)T

)
, where Z̃ is the matrix of imputed category identities that is

defined in Equation (5.50). Note that D̃k is an n× n diagonal matrix.
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(8) In order to allow the separating of marker genotypes, as and when necessary,

we may use double indexing (ij). A reference to row (ij) will correspond to a

row that stores data for the jth individual in group i. Likewise, we may use the

double index (i′j′) to refer to a single column that stores data for individual j′ in

group i′. We may also use a pair of double subscripts when referring to a cell of

a matrix A, such as the cell A(ij)(i′j′), which represents a scalar.

(9) It to denote the t× t identity matrix.

(10) In to denote the n× n identity matrix, and [In]•(ij) to denote its (ij)th column.

6.2.2 General Matrix Identities

This section defines five general matrix identities that will be used later. For these

definitions, let:

(1) u be a t× 1 vector;

(2) v and a be n× 1 vectors, with the kth element equal to vk and ak respectively;

(3) A be an n× t matrix;

(4) diag(vT ) be an n× n diagonal matrix with its ith diagonal entry equal to vi;

(5) 1n be an n× 1 vector of ones.

Then, the five identities displayed in Equations (6.15) to (6.19), below, hold true.

Ak•u = [Au]k• (6.15)

vTA•k = [vTA]•k (6.16)

1T
ndiag(A•k) = A•k (6.17)

A•kuk = [A diag(u)]•k (6.18)

vkak = [diag(v)a]k• = [aT diag(v)]•k = [diag(a)v]k• = [vT diag(a)]•k (6.19)
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6.2.3 Matrix Identities that are Specific to our Problem

This section lists some incidental results that are useful for simplifying the calcula-

tion of Im(ψ;y), the conditional missing information. These results are displayed

in Equations (6.20) to (6.48) below. The definitions of all notation used here may

be found in Chapter 5 and in Section 6.2.1. Note that these incidental results are

just specific applications of the matrix identities given in Equations (6.15) to (6.19)

above. These results are collected together here because this arrangement enables

easy referencing. The usefulness of each formula will become more apparent later,

when we encounter them in the calculation of EZ|y; ψ[UψU T
ψ ] (see Propositions 6.4.1

to 6.4.10).

1T
n Z̃•k µk = [diag(1T

n Z̃)]k• µ = [diag(1T
n Z̃) µ]k• (6.20)

(Z̃•k′)T1n µk′ = [µT diag(1T
n Z̃)]•k′ (6.21)

1T
nD̃k µk = (Z̃•k)T µk = µk(Z̃•k)T = [diag(µT )]k•Z̃T = [diag(µT )Z̃T ]k• (6.22)

µk′D̃k′1n = [Z̃ diag(µT )]•k′ (6.23)

1T
nD̃k1n µ2

k′ = 1T
n Z̃•k µ2

k′

= [diag(1T
n Z̃)]k• µ2

k′

= [diag(1T
n Z̃)]k• [diag(µT ) diag(µT )]•k′ (6.24)

(Z̃•k′)T ÿ = [Z̃T ÿ]k′• = [ÿT Z̃]•k′ (6.25)

D̃k′ÿ = diag
(
(Z̃•k′)T

)
ÿ = diag(ÿT )Z̃•k′ = [diag(ÿT )Z̃]•k′ (6.26)
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1T
nD̃k′ÿ µk = (Z̃•k′)T ÿ µk

= [ÿT Z̃]•k′ µk

= µk[ÿ
T Z̃]•k′

= [diag(µT )]k• [diag(ÿT Z̃)]•k′ (6.27)

ÿT Z̃•k = [ÿT Z̃]•k = [Z̃T ÿ]k• (6.28)

ÿT D̃k = ÿT diag
(
(Z̃•k′)T

)
= (Z̃•k)T diag(ÿT ) = [Z̃T diag(ÿT )]k• (6.29)

ÿT D̃k′ÿ = ÿT [diag(ÿT )Z̃]•k′

= [ÿT diag(ÿT )Z̃]•k′

=
[
diag

(
ÿT diag(ÿT )Z̃

)]
k′k′

(6.30)

1T
ni
∆iZ̃•k = [1T

ni
∆iZ̃]•k = [Z̃T∆T

i 1ni
]k• = [Z̃T

i 1ni
]k• (6.31)

(Z̃•k′)T∆T
i′1ni′ = [1T

ni′
Z̃i′ ]•k′ (6.32)

1T
ni
∆iD̃k = (Z̃•k)T∆T

i ∆i = [Z̃T∆T
i ∆i]k• = [Z̃T

i ∆i]k• (6.33)

D̃k′∆
T
i′1ni′ = [∆T

i′ Z̃i′ ]•k′ (6.34)

1T
ni
∆iD̃k′∆

T
i′1ni′ = [Z̃T

i ∆i]k′•∆
T
i′1ni′

= [Z̃T
i ∆i∆

T
i′1ni′ ]k′•

= [1T
ni′

∆i′∆
T
i Z̃i]•k′

=
[
diag

(
1T

ni′
∆i′∆

T
i Z̃i

)]
k′k′ (6.35)
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1T
nD̃k µk∆

T
i 1ni

= [diag(µT )Z̃T ]k•∆
T
i 1ni

= [diag(µT )Z̃T∆T
i 1ni

]k•

= [1T
ni
∆iZ̃ diag(µT )]k•

= [1T
ni
Z̃i diag(µT )]k•

=
[
diag

(
1T

ni
Z̃i diag(µT )

)]
kk

(6.36)

ÿT D̃k′∆
T
i 1ni

= ÿT [∆T
i Z̃i]•k′

= [ÿT∆T
i Z̃i]•k′

=
[
diag

(
ÿT∆T

i Z̃i

)]
k′k′

(6.37)

µk1
T
n Z̃•k = µk m̃k = 1T

n Z̃•k µk = [diag(1T
n Z̃)]k• µ = [diag(1T

n Z̃) µ]k• (6.38)

Z̃(ij)• µ = [Z̃µ](ij)• = [µT Z̃T ]•(ij) (6.39)

µk1
T
n [In]•(ij) = µk = µk• (6.40)

[diag(Z̃(ij) •)]k•µ = τik(yij; ψ)µk (6.41)

µk1
T
n τik(yij; ψ) [In]•(ij) = τik(yij; ψ)µk1

T
n [In]•(ij),

since τik(yij; ψ) is a scalar

= τik(yij; ψ)µk (6.42)
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ÿT [In]•(ij) = ÿij (6.43)

ÿT τik(yij; ψ) [In]•(ij) = τik(yij; ψ)ÿT [In]•(ij),

since τik(yij; ψ) is a scalar

= τik(yij; ψ) ÿij (6.44)

µT (Z̃(ij)•)
T = µT Z̃T

•(ij) = [µT Z̃T ]•(ij) = [Z̃µ](ij)• (6.45)

µT diag(Z̃(ij)•)µ = µT [diag(µT )Z̃T ]•(ij)

= [µT diag(µT )Z̃T ]•(ij) (6.46)

1T
ni
∆i [In]•(i′j′) = [1T

ni
∆i In]•(i′j′) = [1T

ni
∆i]•(i′j′) (6.47)

1T
ni
∆i τi′k(yi′j′ ; ψ) [In]•(i′j′) = τi′k(yi′j′ ; ψ)1T

ni
∆i [In]•(i′j′),

since τi′k(yi′j′ ; ψ) is a scalar

= τi′k(yi′j′ ; ψ)[1T
ni
∆i In]•(i′j′)

= τi′k(yi′j′ ; ψ)[1T
ni
∆i]•(i′j′), by definition of In

= [Z̃T diag
(
1T

ni
∆i

)
]k(i′j′) (6.48)
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6.3 Conditional Expectations of Products of the

Estimated Category Identities

Like the previous section, this section also presents intermediate results that are used

to simplify the calculation of the conditional missing information. Table 6.1, below,

lists the calculations that are dealt with in this section.

Table 6.1: Selected conditional expectations involving products of estimated category iden-
tities

Conditional expectation Proposition that reveals a formula for its calculation

EZ|y; ψ

[
Z•k(Z•k′)T

]
Proposition 6.3.1

EZ|y; ψ

[
Z•kZ(ij)•

]
Proposition 6.3.2

EZ|y; ψ

[
(Z(ij)•)TZ(i′j′)•

]
Proposition 6.3.3

Proposition 6.3.1.

EZ|y; ψ

[
Z•k(Z•k′)T

]
= Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′

where δkk′ is the Kronecker delta, which has value one if k = k′ and zero otherwise,

and where D̃k = diag
(
(Z̃•k)T

)
and D̃k′ = diag

(
(Z̃•k′)T

)
.

Proof of Proposition 6.3.1. We begin by showing that the matrices Z̃•k(Z̃•k′)T and

EZ|y; ψ

[
Z•k(Z•k′)T

]
differ only in their diagonal elements. Then, we show that when-

ever k is not equal to k′, the diagonal elements of EZ|y; ψ

[
Z•k(Z•k′)T

]
are equal to

zero, but if k = k′ the diagonal elements of EZ|y; ψ

[
Z•k(Z•k′)T

]
are given by the

elements of the row vector (Z̃•k)T .

The matrix Z•k(Z•k′)T is n × n and the element in row (ij) and column (i′j′) is

given by
[
Z•k(Z•k′)T

]
(ij)(i′j′) = zijkzi′j′k′ .
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However, by definition of Z,

zijkzi′j′k′ =





0 if (ij) = (i′j′) and k 6= k′

zijk if (ij) = (i′j′) and k = k′

zijkzi′j′k′ if (ij) 6= (i′j′) for all k and k′

Therefore,

EZ|y; ψ

[
Z•k(Z•k′)T

]
(ij)(i′j′) =





0, if (ij) = (i′j′) and k 6= k′

τik(yij; ψ), if (ij) = (i′j′) and k = k′

τik(yij; ψ) τi′k′(yi′j′ ; ψ), if (ij) 6= (i′j′), (by

independence of individuals).

The matrix Z̃•k(Z̃•k′)T is also n× n and the element in row (ij) and column (i′j′) is

given by
[
Z̃•k(Z̃•k′)T ](ij)(i′j′) = τik(yij; ψ) τi′k′(yi′j′ ; ψ).

Now let D̃k = diag
(
(Z̃•k)T

)
and D̃k′ = diag

(
(Z̃•k′)T

)
. Then

[
D̃k′ ](ij)(i′j′) =





τik′(yij; ψ) if (ij) = (i′j′)

0 if (ij) 6= (i′j′).

and

[
D̃kD̃k′ ](ij)(i′j′) =





τik(yij; ψ) τi′k′(yi′j′ ; ψ) if (ij) = (i′j′)

0 if (ij) 6= (i′j′)

Therefore

[
Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ](ij)(i′j′) = EZ|y; ψ

[
Z•k(Z•k′)T

]
(ij)(i′j′)

This proves Proposition 6.3.1.
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Proposition 6.3.2.

EZ|y; ψ

[
Z•kZ(ij)•

]
= Z̃•kZ̃(ij)• − τik(yij; ψ)[In]•(ij)Z̃(ij)• + [In]•(ij)[diag(Z̃(ij)•)]k•

where In is the n× n identity matrix, and [In]•(ij) is its (ij)th column (with the rows

and columns of In having the same labels as the rows of Z).

Proof of Proposition 6.3.2. We show that the matrices given by EZ|y; ψ

[
Z•kZ(ij)•] and

Z̃•kZ̃(ij)• differ only in their (ij)th row, and that the (ij)th row of EZ|y; ψ

[
Z•kZ(ij)•] is

equal to [diag(Z̃(ij)•)]k• while the (ij)th row of Z̃•kZ̃(ij)• is equal to τik(yij; ψ)Z̃(ij)•.

The matrix Z•kZ(ij)• is n×t and the element in row (i′j′) and column k′ is denoted

by
[
Z•kZ(ij)•

]
(i′j′)k′ = zi′j′k zijk′ .

However, by definition of Z,

zi′j′k zijk′ =





0 if (ij) = (i′j′) and k 6= k′

zijk if (ij) = (i′j′) and k = k′

zi′j′k zijk′ if (ij) 6= (i′j′) for all k and k′

Therefore,

EZ|y; ψ

[
Z•kZ(ij)•

]
(i′j′)k′ =





0, if (ij) = (i′j′) and k 6= k′

τik(yij; ψ), if (ij) = (i′j′) and k = k′

τi′k(yi′j′ ; ψ) τik′(yij; ψ), if (ij) 6= (i′j′), (by

independence of individuals).

Therefore, the (ij)th row of EZ|y; ψ

[
Z•kZ(ij)•] is equal to [diag(Z̃(ij)•)]k•.

The matrix Z̃•kZ̃(ij)• is also n× t and the element in row (i′j′) and column k′ is given

by
[
Z̃•kZ̃(ij)•](i′j′)k′ = τi′k(yi′j′ ; ψ)τik′(yij, ψ),
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which implies that the (ij)th row of Z̃•kZ̃(ij)• is equal to τik(yij; ψ)Z̃(ij)•. The result

stated in Proposition 6.3.2 is obtained by using the (ij)th row of the n × n identity

matrix as a device to modify the (ij)th row of Z̃•kZ̃(ij)•, thereby yielding the desired

expectation.

Proposition 6.3.3.

EZ|y; ψ

[
(Z(ij)•)

TZ(i′j′)•
]

= (1− δ(ij)(i′j′))(Z̃(ij)•)
T Z̃(i′j′)• + δ(ij)(i′j′) diag(Z̃(ij)•)

where δ(ij)(i′j′) is the Kronecker delta, which has value one if (ij) = (i′j′) and zero

otherwise.

Proof of Proposition 6.3.3. The matrix (Z(ij)•)TZ(i′j′)• is t× t and the element in row

k and column k′ is given by

[
(Z(ij)•)

TZ(i′j′)•
]
kk′ = zijkzi′j′k′

=





0 if (ij) = (i′j′) and k 6= k′

zijk if (ij) = (i′j′) and k = k′

zijkzi′j′k′ if (ij) 6= (i′j′) for all k and k′

Therefore,

EZ|y; ψ

[
(Z(ij)•)

TZ(i′j′)•
]
kk′ =





0, if (ij) = (i′j′) and k 6= k′

τik(yij; ψ), if (ij) = (i′j′) and k = k′

τik(yij; ψ)τi′k′(yi′j′ , ψ), if (ij) 6= (i′j′), (by

independence of individuals).

=





[diag(Z̃(ij)•)]kk′ if (ij) = (i′j′)

[(Z̃(ij)•)T Z̃(i′j′)•]kk′ if (ij) 6= (i′j′).

This proves Proposition 6.3.3.
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6.4 Conditional Expectations of Outer Products

of the Score Vectors

We need to calculate the missing-data (conditional) information matrix, Im(ψ;y)

where

Im(ψ;y) = covZ|y; ψ[Uψ,Uψ] = EZ|y; ψ[UψU T
ψ ]− (EZ|y; ψ[Uψ])(EZ|y; ψ[Uψ])T .

Formulae for calculating the components of EZ|y; ψ[Uψ] are already displayed in

Equations (6.1) to (6.4). Table 6.2, below, lists the calculations that are dealt with in

this section. These calculations are concerned with finding a formula for each block

of the upper triangle of the symmetric matrix EZ|y; ψ[UψU T
ψ ]. These formulae are

key to making the calculation of Im(ψ;y) tractable and practical to implement.

Table 6.2: List of propositions that deal with the calculation of each block of the upper
triangle of the symmetric matrix EZ|y; ψ[UψU T

ψ ].
Component (block) Proposition that reveals a formula for this component

EZ|y; ψ[UbU T
b ] Proposition 6.4.1

EZ|y; ψ[U(σ2)U
T

(σ2)] Proposition 6.4.2

EZ|y; ψ[UφU T
φ ] Proposition 6.4.3

EZ|y; ψ[UbU T
(σ2)] Proposition 6.4.4

EZ|y; ψ[UbU T
φ ] Proposition 6.4.5

EZ|y; ψ[U(σ2),Uφ] Proposition 6.4.6

EZ|y; ψ[UbU T
b? ] Proposition 6.4.7

EZ|y; ψ[Ub?U T
b? ] Proposition 6.4.8

EZ|y; ψ[Ub?U T
(σ2)] Proposition 6.4.9

EZ|y; ψ[Ub?U T
φ ] Proposition 6.4.10
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Proposition 6.4.1.

EZ|y; ψ[UbU T
b ] =

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Ub]

)T
+

1

σ4
CT

[
diag

(
ÿT diag(ÿT )Z̃

)

+ diag(µT )
(
diag

(
1T

n Z̃
)
diag(µT )− 2 diag(ÿT Z̃)

)

−
(
diag(µT )Z̃T − Z̃T diag(ÿT )

)(
diag(µT )Z̃T − Z̃T diag(ÿT )

)T
]
C

Proof of Proposition 6.4.1.

UbU T
b =

1

σ4
CT (ZTZCb− ZT ÿ)(ZTZCb− ZT ÿ)TC

=
1

σ4
CT

[
(ZTZCb)(ZTZCb)T − (ZTZCb)(ZT ÿ)T

− (ZT ÿ)(ZTZCb)T + (ZT ÿ)(ZT ÿ)T
]
C (6.49)

Therefore, we need the expectations of the three t× t matrices

1. (ZTZCb)(ZTZCb)T

2. (ZTZCb)(ZT ÿ)T

3. (ZT ÿ)(ZT ÿ)T

First we find the (kk′)th element of each matrix.

Now ZTZCb and ZT ÿ are column vectors of order t. For simplicity let µ = Cb

and µk = Ck•b.

Therefore, ZTZCb = diag(1T
nZ)Cb = diag(1T

nZ)µ.

The kth element of the column vectors ZTZCb and ZT ÿ are, respectively,

[ZTZCb]k• = 1T
nZ•kCk•b = 1T

nZ•k µk

[ZT ÿ]k• = [ZT ]k•ÿ = (Z•k)T ÿ

and, clearly, the kth element is a scalar in each case.
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1. [(ZTZCb)(ZTZCb)T ]kk′ = [ZTZCb]k• [(ZTZCb)T ]•k′

= (1T
nZ•k µk)(µk′(Z•k′)T1n)

= 1T
nZ•k(Z•k′)T1n µk µk′

since µk and µk′ are scalars.

2. [(ZTZCb)(ZT ÿ)T ]kk′ = [ZTZCb]k• [(ZT ÿ)T ]•k′

= (1T
nZ•k µk)(ÿ

TZ•k′)

= (1T
nZ•k µk)(Z•k′)T ÿ

since ÿTZ•k′ is a scalar and so is symmetric.

= 1T
nZ•k(Z•k′)T ÿ µk, since µk is a scalar.

3. [(ZT ÿ)(ZT ÿ)T ]kk′ = [ZT ÿ]k• [(ZT ÿ)T ]•k′

= (Z•k)T ÿ(ÿTZ•k′)

= ÿTZ•k(Z•k′)T ÿ, since (Z•k)T ÿ and ÿTZ•k′ are

both scalars and so are both symmetric.

Hence, we have the following simplifications:

EZ|y; ψ[(ZTZCb)(ZTZCb)T ]kk′ = 1T
nEZ|y; ψ[Z•k(Z•k′)T ]1n µk µk′

EZ|y; ψ[(ZTZCb)(ZT ÿ)T ]kk′ = 1T
nEZ|y; ψ[Z•k(Z•k′)T ]ÿ µk

EZ|y; ψ[(ZT ÿ)(ZT ÿ)T ]kk′ = ÿT EZ|y; ψ[Z•k(Z•k′)T ]ÿ

A formula for evaluating EZ|y; ψ[Z•k(Z•k′)T ] is given in Proposition 6.3.1. There-

fore we now have the (kk′)th element of the expectations of the required matrices.

Next, we inspect that element in each case and show that in every case it can be

written as the (kk′)th element of another matrix. Then we invoke the rule of matrix

equality, so revealing a matrix formula for evaluating the required expectations.
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EZ|y; ψ[(ZTZCb)(ZTZCb)T ]kk′

= 1T
nEZ|y; ψ[Z•k(Z•k′)T ]1n µk µk′

= 1T
n [Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]1n µk µk′

= 1T
n Z̃•k(Z̃•k′)T1n µk µk′ − 1T

nD̃kD̃k′1n µk µk′ + δkk′1
T
nD̃k′1n µk µk′

= [1T
n Z̃•k µk][(Z̃•k′)T1n µk′ ]− [1T

nD̃k µk][µk′D̃k′1n] + δkk′ [1
T
nD̃k1n µ2

k′ ]

since µk and µk′ are scalars and D̃k = D̃k′ , µk = µk′ when k = k′.

Using the identities given in Equations (6.20) to (6.24), we obtain the following sim-

plification.

EZ|y; ψ[(ZTZCb)(ZTZCb)T ]kk′

= [diag(1T
n Z̃) µ]k• [µT diag(1T

n Z̃)]•k′ − [diag(µT )Z̃T ]k• [Z̃ diag(µT )]•k′

+ δkk′ [diag(1T
n Z̃)]k• [diag(µT ) diag(µT )]•k′

= [diag(1T
n Z̃) µµT diag(1T

n Z̃)]kk′ − [diag(µT )Z̃T Z̃ diag(µT )]kk′

+ [diag(1T
n Z̃)diag(µT ) diag(µT )]kk′

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZTZCb)(ZTZCb)T ] = diag(1T
n Z̃) µµT diag(1T

n Z̃)

− diag(µT )Z̃T Z̃ diag(µT )

+ diag(µT ) diag(1T
n Z̃) diag(µT ). (6.50)

We proceed in a similar way to evaluate the next expectation.

EZ|y; ψ[(ZTZCb)(ZT ÿ)T ]kk′

= 1T
nEZ|y; ψ[Z•k(Z•k′)T ]ÿ µk

= 1T
n [Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]ÿ µk

= 1T
n Z̃•k(Z̃•k′)T ÿ µk − 1T

nD̃kD̃k′ÿ µk + δkk′1
T
nD̃k′ÿ µk

= [1T
n Z̃•k µk][(Z̃•k′)T ÿ]− [1T

nD̃k µk][D̃k′ÿ] + δkk′ [1
T
nD̃k′ÿ µk]
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Using the identities given in Equations (6.20), (6.22), (6.25), (6.26) and (6.27), we

obtain the following simplification.

EZ|y; ψ[(ZTZCb)(ZT ÿ)T ]kk′

= [diag(1T
n Z̃) µ]k• [ÿT Z̃]•k′ − [diag(µT )Z̃T ]k• [diag(ÿT )Z̃]•k′

+ δkk′ [diag(µT )]k• [diag(ÿT Z̃)]•k′

= [diag(1T
n Z̃) µÿT Z̃]kk′ − [diag(µT )Z̃T diag(ÿT )Z̃]kk′ + δkk′ [diag(µT )diag(ÿT Z̃)]kk′

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZTZCb)(ZT ÿ)T ] = diag(1T
n Z̃) µÿT Z̃− diag(µT )Z̃T diag(ÿT )Z̃

+ diag(µT ) diag(ÿT Z̃) (6.51)

and taking the transpose of this we obtain

EZ|y; ψ[(ZT ÿ)(ZTZCb)T ] = Z̃T ÿ µT diag(1T
n Z̃)− Z̃T diag(ÿT )Z̃ diag(µT )

+ diag(ÿT Z̃) diag(µT ). (6.52)

EZ|y; ψ[(ZT ÿ)(ZT ÿ)T ]kk′

= ÿT EZ|y; ψ[Z•k(Z•k′)T ]ÿ

= ÿT [Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]ÿ

= ÿT Z̃•k(Z̃•k′)T ÿ − ÿT D̃kD̃k′ÿ + δkk′ ÿ
T D̃k′ÿ

= [ÿT Z̃•k][(Z̃•k′)T ÿ]− [ÿT D̃k][D̃k′ÿ] + δkk′ [ÿ
T D̃k′ÿ]

Using the identities given in Equations (6.25), (6.26), (6.28), (6.29) and (6.30), we

obtain the following simplification.

EZ|y; ψ[(ZT ÿ)(ZT ÿ)T ]kk′

= [Z̃T ÿ]k• [ÿT Z̃]•k′ − [Z̃T diag(ÿT )]k• [diag(ÿT )Z̃]•k′ + δkk′

[
diag

(
ÿT diag(ÿT )Z̃

)]
k′k′

= [Z̃T ÿÿT Z̃]kk′ − [Z̃T diag(ÿT )diag(ÿT )Z̃]kk′ +
[
diag

(
ÿT diag(ÿT )Z̃

)]
kk′
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Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZT ÿ)(ZT ÿ)T ] = Z̃T ÿÿT Z̃− Z̃T diag(ÿT )diag(ÿT )Z̃

+ diag
(
ÿT diag(ÿT )Z̃

)
. (6.53)

After making the relevant substitutions we obtain the following result.

EZ|y; ψ[UbU T
b ] =

1

σ4
CT

[(
diag(1T

n Z̃) µµT diag(1T
n Z̃)

− diag(µT )Z̃T Z̃ diag(µT ) + diag(µT ) diag(1T
n Z̃) diag(µT )

)

−
(
diag(1T

n Z̃) µÿT Z̃− diag(µT )Z̃T diag(ÿT )Z̃ + diag(µT ) diag(ÿT Z̃)
)

−
(
Z̃T ÿ µT diag(1T

n Z̃)− Z̃T diag(ÿT )Z̃ diag(µT ) + diag(ÿT Z̃) diag(µT )
)

+
(
Z̃T ÿÿT Z̃− Z̃T diag(ÿT )diag(ÿT )Z̃ + diag

(
ÿT diag(ÿT )Z̃

))]
C

Simplifying the above expression yields the result of Proposition 6.4.1.

Proposition 6.4.2.

EZ|y; ψ[U(σ2)U
T

(σ2)] =
(
EZ|y; ψ[U(σ2)]

)(
EZ|y; ψ[U(σ2)]

)T

+
1

4σ8
µT

[
4 diag

(
ÿT diag(ÿT ) Z̃

)− 4Z̃T diag(ÿT )diag(ÿT )Z̃

+ 4 diag(µT )
(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)

+ diag(µT )
(
diag(1T

n Z̃)− Z̃TZ̃
)
diag(µT )

]
µ

Proof of Proposition 6.4.2.

U(σ2)U
T

(σ2) =
[
− n

2σ2
+

1

2σ4
(ÿT ÿ − 2µTZT ÿ + µTZTZµ)

]2

=
n2

4σ4
− 2n

4σ6

(
ÿT ÿ − 2µTZT ÿ + µTZTZµ

)

+
1

4σ8

[
(ÿT ÿ)2 + 4µT (ZT ÿ)(ZT ÿ)T µ + µT (ZTZCb)(ZTZCb)T µ

− 4µT (ZTZCb)(ZT ÿ)T µ− 4(ÿT ÿ)ÿTZµ + 2(ÿT ÿ)µTZTZµ
]

(6.54)
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The expectations needed to calculate EZ|y; ψ[U(σ2)U
T

(σ2)] are known from Equations

(5.48) to (5.55) and from Equations (6.50) to (6.53). It only remains to make the

substitutions and simplify the resulting expression. On making the substitutions, we

obtain:

EZ|y; ψ[U(σ2)U
T

(σ2)]

=
n2

4σ4
− 2n

4σ6

(
ÿT ÿ − 2µT Z̃T ÿ + µT diag(1T

n Z̃)µ
)

+
1

4σ8

[
(ÿT ÿ)2

+ 4µT
(
Z̃T ÿÿT Z̃− Z̃T diag(ÿT )diag(ÿT )Z̃ + diag

(
ÿT diag(ÿT )Z̃

))
µ

+ µT
(
diag(1T

n Z̃) µµT diag(1T
n Z̃)− diag(µT )Z̃T Z̃ diag(µT )

+ diag(µT ) diag(1T
n Z̃) diag(µT )

)
µ

− 4µT
(
diag(1T

n Z̃) µÿT Z̃− diag(µT )Z̃T diag(ÿT )Z̃ + diag(µT ) diag(ÿT Z̃)
)
µ

− 4(ÿT ÿ)ÿT Z̃µ + 2(ÿT ÿ)µT diag(1T
n Z̃) µ

]

After simplifying the above expression, we obtain the result of Proposition 6.4.2.

Proposition 6.4.3.

EZ|y; ψ[UφU T
φ ] =

(
EZ|y; ψ[Uφ]

)(
EZ|y; ψ[Uφ]

)T

+
s∑

i=1

s∑

i′=1

[( ∂

∂φ
hT

i (φ)
)(

diag
(
1T

ni′
∆i′∆

T
i Z̃i

)

− Z̃T
i ∆i∆

T
i′ Z̃i′

)( ∂

∂φ
hi′(φ)

)]
.

Proof of Proposition 6.4.3.

UφU T
φ =

[ s∑
i=1

( ∂

∂φ
hT

i (φ)
)
ZT∆T

i 1ni

][ s∑

i′=1

1T
ni′

∆i′Z
( ∂

∂φ
hi′(φ)

)]

=
s∑

i=1

s∑

i′=1

( ∂

∂φ
hT

i (φ)
)
ZT∆T

i 1ni
1T

ni′
∆i′Z

( ∂

∂φ
hi′(φ)

)
(6.55)

First, we find the (kk′)th element of the t× t matrix: ZT∆T
i 1ni

1T
ni′

∆i′Z.
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The kth element of the column vector ZT∆T
i 1ni

is equal to

[ZT∆T
i 1ni

]k• = (ZT )k•∆
T
i 1ni

= (Z•k)T∆T
i 1ni

The k′th element of the row vector 1T
ni′

∆i′Z is equal to

[1T
ni′

∆i′Z]•k′ = 1T
ni′

∆i′Z•k′

Therefore,

[ZT∆T
i 1ni

1T
ni′

∆i′Z]kk′ = [ZT∆T
i 1ni

]k• [1T
ni′

∆i′Z]•k′

= (Z•k)T∆T
i 1ni

(1T
ni′

∆i′Z•k′)

= 1T
ni
∆iZ•k(Z•k′)T∆T

i′1ni′

since (Z•k)T∆T
i 1ni

and 1T
ni′

∆i′Z•k′ are scalars.

A formula for evaluating EZ|y; ψ[Z•k(Z•k′)T ] is given in Proposition 6.3.1. There-

fore we have the following simplifications.

EZ|y; ψ[ZT∆T
i 1ni

1T
ni′

∆i′Z]kk′

= 1T
ni
∆i[Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]∆

T
i′1ni′

= 1T
ni
∆iZ̃•k(Z̃•k′)T∆T

i′1ni′ − 1T
ni
∆iD̃kD̃k′∆

T
i′1ni′ + δkk′1

T
ni
∆iD̃k′∆

T
i′1ni′

Using the identities given in Equations (6.31) to (6.35), we obtain a further simplifi-

cation.

EZ|y; ψ[ZT∆T
i 1ni

1T
ni′

∆i′Z]kk′

= [Z̃T
i 1ni

]k• [1T
ni′

Z̃i′ ]•k′ − [Z̃T
i ∆i]k• [∆T

i′ Z̃i′ ]•k′ + δkk′
[
diag

(
1T

ni′
∆i′∆

T
i Z̃i

)]
k′k′

= [Z̃T
i 1ni

1T
ni′

Z̃i′ ]kk′ − [Z̃T
i ∆i∆

T
i′ Z̃i′ ]kk′ +

[
diag

(
1T

ni′
∆i′∆

T
i Z̃i

)]
kk′

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[ZT∆T
i 1ni

1T
ni′

∆i′Z]

= Z̃T
i 1ni

1T
ni′

Z̃i′ − Z̃T
i ∆i∆

T
i′ Z̃i′ + diag

(
1T

ni′
∆i′∆

T
i Z̃i

)
. (6.56)
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EZ|y; ψ[UφU T
φ ] =

s∑
i=1

s∑

i′=1

[( ∂

∂φ
hT

i (φ)
)(

Z̃T
i 1ni

1T
ni′

Z̃i′ − Z̃T
i ∆i∆

T
i′ Z̃i′

+ diag
(
1T

ni′
∆i′∆

T
i Z̃i

))( ∂

∂φ
hi′(φ)

)]

Expanding and re-grouping the terms in the above expression gives the result of

Proposition 6.4.3.

Proposition 6.4.4.

EZ|y; ψ[UbU T
(σ2)] =

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[U(σ2)]

)T

+
1

2σ6
CT

[
2 diag(µT )

(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)

− 2 diag
(
ÿT diag(ÿT ) Z̃

)
+ 2Z̃T diag(ÿT )diag(ÿT )Z̃

− diag(µT )
(
diag(1T

n Z̃)− Z̃TZ̃
)
diag(µT )

+
(
diag(ÿT Z̃)− Z̃T diag(ÿT )Z̃

)
diag(µT )

]
µ

Proof of Proposition 6.4.4.

UbU T
(σ2) = − 1

σ2
CT

[
− n

2σ2

(
ZTZCb− ZT ÿ

)

+
1

2σ4

[
(ZTZCb)(ÿTÿ)− 2(ZTZCb)(ZT ÿ)T µ

+ (ZTZCb)(ZTZCb)T µ− (ZT ÿ)(ÿTÿ)

+ 2(ZT ÿ)(ZT ÿ)T µ− (ZT ÿ)(ZTZCb)T µ
]]

(6.57)

The expectations needed to calculate EZ|y; ψ[UbU T
(σ2)] are known from Equations

(5.48) to (5.55) and from Equations (6.50) to (6.53). It only remains to make the

substitutions and simplify the resulting expression.
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On making the substitutions, we obtain:

EZ|y; ψ[UbU T
(σ2)]

= − 1

σ2
CT

[
− n

2σ2

(
diag(1T

n Z̃)µ− Z̃T ÿ
)
+

1

2σ4

[
diag(1T

n Z̃)µ(ÿTÿ)

− 2
(
diag(1T

n Z̃) µÿT Z̃− diag(µT )Z̃T diag(ÿT )Z̃ + diag(µT ) diag(ÿT Z̃)
)
µ

+
(
diag(1T

n Z̃) µµT diag(1T
n Z̃)− diag(µT )Z̃T Z̃ diag(µT )

+ diag(µT ) diag(1T
n Z̃) diag(µT )

)
µ− (Z̃T ÿ)(ÿTÿ)

+ 2
(
Z̃T ÿÿT Z̃− Z̃T diag(ÿT )diag(ÿT )Z̃ + diag

(
ÿT diag(ÿT )Z̃

))
µ

−
(
Z̃T ÿ µT diag(1T

n Z̃)− Z̃T diag(ÿT )Z̃ diag(µT ) + diag(ÿT Z̃) diag(µT )
)
µ

]]

After simplifying the above expression, we obtain the result of Proposition 6.4.4.

Proposition 6.4.5.

EZ|y; ψ[UbU T
φ ] =

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Uφ]

)T

− 1

σ2
CT

s∑
i=1

[(
diag

(
1T

ni
Z̃i diag(µT )

)−diag(µT )Z̃T
i Z̃i

− diag
(
ÿT∆T

i Z̃i

)
+Z̃T diag(ÿT )∆T

i Z̃i

)( ∂

∂φ
hi(φ)

)]

Proof of Proposition 6.4.5.

UbU T
φ = − 1

σ2
CT (ZTZCb− ZT ÿ)

[ s∑
i=1

1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)]

= − 1

σ2
CT

s∑
i=1

(
(ZTZCb)1T

ni
∆iZ− (ZT ÿ)1T

ni
∆iZ

)( ∂

∂φ
hi(φ)

)
(6.58)

Therefore, we need the expectations of the two t× t matrices

1. (ZTZCb)1T
ni
∆iZ

2. (ZT ÿ)1T
ni
∆iZ
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The kth element of the column vectors (ZTZCb) and (ZT ÿ) and the k′th element of

the row vector 1T
ni
∆iZ are given below.

[ZTZCb]k• = 1T
nZ•kCk•b = 1T

nZ•k µk

[ZT ÿ]k• = [ZT ]k•ÿ = (Z•k)T ÿ

[1T
ni
∆iZ]•k′ = 1T

ni
∆iZ•k′

The next step is to inspect the kk′th element of the required matrices.

1. [(ZTZCb)1T
ni
∆iZ]kk′ = [ZTZCb]k• [1T

ni
∆iZ]•k′

= (1T
nZ•k µk)(1

T
ni
∆iZ•k′)

= 1T
nZ•k µk(Z•k′)T∆T

i 1ni

since 1T
ni
∆iZ•k′ is a scalar

= 1T
nZ•k(Z•k′)T∆T

i 1ni
µk, since µk is a scalar.

2. [(ZT ÿ)1T
ni
∆iZ]kk′ = [ZT ÿ]k• [1T

ni
∆iZ]•k′

= (Z•k)T ÿ(1T
ni
∆iZ•k′)

= ÿTZ•k(Z•k′)T∆T
i 1ni

, since (Z•k)T ÿ and 1T
ni
∆iZ•k′

are both scalars and so are both symmetric.

Now, we take the expectations of the above expressions and substitute the formula

for EZ|y; ψ[Z•k(Z•k′)T ] which is given in Proposition 6.3.1, obtaining the expectation

of the kk′th element in each case.



159

EZ|y; ψ[(ZTZCb)1T
ni
∆iZ]kk′

= 1T
nEZ|y; ψ[Z•k(Z•k′)T ]∆T

i 1ni
µk

= 1T
n [Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]∆

T
i 1ni

µk

= 1T
n Z̃•k(Z̃•k′)T∆T

i 1ni
µk − 1T

nD̃kD̃k′∆
T
i 1ni

µk + δkk′1
T
nD̃k′∆

T
i 1ni

µk

= [1T
n Z̃•k µk][(Z̃•k′)T∆T

i 1ni
]− [1T

nD̃k µk][D̃k′∆
T
i 1ni

] + δkk′ [1
T
nD̃k µk∆

T
i 1ni

]

since µk is a scalar and D̃k = D̃k′ when k = k′.

Using the identities given in Equations (6.20), (6.22), (6.32), (6.34) and (6.36) we

obtain the following simplification.

EZ|y; ψ[(ZTZCb)1T
ni
∆iZ]kk′

= [diag(1T
n Z̃) µ]k•[1T

ni
Z̃i]•k′ − [diag(µT )Z̃T ]k•[∆

T
i Z̃i]•k′

+ δkk′

[
diag

(
1T

ni
Z̃i diag(µT )

)]
kk

= [diag(1T
n Z̃) µ1T

ni
Z̃i]kk′ − [diag(µT )Z̃T∆T

i Z̃i]kk′+
[
diag

(
1T

ni
Z̃i diag(µT )

)]
kk′

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZTZCb)1T
ni
∆iZ]

= diag(1T
n Z̃) µ1T

ni
Z̃i − diag(µT )Z̃T∆T

i Z̃i + diag
(
1T

ni
Z̃i diag(µT )

)

= diag(1T
n Z̃) µ1T

ni
Z̃i − diag(µT )Z̃T

i Z̃i + diag
(
1T

ni
Z̃i diag(µT )

)
. (6.59)

We evaluate the next expectation using the procedure employed above.

EZ|y; ψ[(ZT ÿ)1T
ni
∆iZ]kk′

= ÿT EZ|y; ψ[Z•k(Z•k′)T ]∆T
i 1ni

= ÿT [Z̃•k(Z̃•k′)T − D̃kD̃k′ + δkk′D̃k′ ]∆
T
i 1ni

= ÿT Z̃•k(Z̃•k′)T∆T
i 1ni

− ÿT D̃kD̃k′∆
T
i 1ni

+ δkk′ÿ
T D̃k′∆

T
i 1ni

= [ÿT Z̃•k][(Z̃•k′)T∆T
i 1ni

]− [ÿT D̃k][D̃k′∆
T
i 1ni

] + δkk′ [ÿ
T D̃k′∆

T
i 1ni

]
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Using the identities given in Equations (6.28), (6.29), (6.32), (6.34) and (6.37) we

obtain the following simplification.

EZ|y; ψ[(ZT ÿ)1T
ni
∆iZ]kk′

= [Z̃T ÿ]k•[1T
ni
Z̃i]•k′ − [Z̃T diag(ÿT )]k•[∆

T
i Z̃i]•k′ + δkk′

[
diag

(
ÿT∆T

i Z̃i

)]
k′k′

= [Z̃T ÿ1T
ni
Z̃i]kk′ − [Z̃T diag(ÿT )∆T

i Z̃i]kk′+
[
diag

(
ÿT∆T

i Z̃i

)]
kk′

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZT ÿ)1T
ni
∆iZ] = Z̃T ÿ1T

ni
Z̃i − Z̃T diag(ÿT )∆T

i Z̃i + diag
(
ÿT∆T

i Z̃i

)
. (6.60)

EZ|y; ψ[UbU T
φ ] = − 1

σ2
CT

s∑
i=1

[(
diag(1T

n Z̃) µ1T
ni
Z̃i − diag(µT )Z̃T

i Z̃i

+ diag
(
1T

ni
Z̃i diag(µT )

))

−
(
Z̃T ÿ1T

ni
Z̃i − Z̃T diag(ÿT )∆T

i Z̃i

+ diag
(
ÿT∆T

i Z̃i

))]( ∂

∂φ
hi(φ)

)
(6.61)

After simplifying the above expression, we obtain the result of Proposition 6.4.5.

Proposition 6.4.6.

EZ|y; ψ[U(σ2), Uφ] =
(
EZ|y; ψ[U(σ2)]

)(
EZ|y; ψ[Uφ]

)T

+
1

2σ4
µT

s∑
i=1

[(
diag

(
1T

ni
Z̃i diag(µT )

)−diag(µT )Z̃T
i Z̃i

− 2 diag
(
ÿT∆T

i Z̃i

)
+2Z̃T diag(ÿT )∆T

i Z̃i

)( ∂

∂φ
hi(φ)

)]
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Proof of Proposition 6.4.6.

U(σ2)U
T

φ =

[
− n

2σ2
+

1

2σ4
(ÿT ÿ − 2µTZT ÿ + µTZTZµ)

][ s∑
i=1

1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)]

= − n

2σ2

s∑
i=1

1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)

+
1

2σ4

s∑
i=1

[(
(ÿT ÿ)1T

ni
∆iZ− 2µT (ZT ÿ)1T

ni
∆iZ

+ µT (ZTZCb)1T
ni
∆iZ

)( ∂

∂φ
hi(φ)

)]
(6.62)

The expectations needed to calculate EZ|y; ψ[U(σ2)U
T

φ ] are known from Equations

(5.48) to (5.50) and from Equations (6.59) to (6.60). It only remains to make the

substitutions and simplify the resulting expression.

On making the substitutions, we obtain:

EZ|y; ψ[U(σ2)U
T

φ ]

= − n

2σ2

s∑
i=1

1T
ni
Z̃i

( ∂

∂φ
hi(φ)

)
+

1

2σ4

s∑
i=1

{[
(ÿT ÿ)1T

ni
Z̃i

− 2µT
(
Z̃T ÿ1T

ni
Z̃i − Z̃T diag(ÿT )∆T

i Z̃i + diag
(
ÿT∆T

i Z̃i

))

+ µT
(
diag(1T

n Z̃) µ1T
ni
Z̃i − diag(µT )Z̃T

i Z̃i + diag
(
1T

ni
Z̃i diag(µT )

))]

×
( ∂

∂φ
hi(φ)

)}

After simplifying the above expression, we obtain the result of Proposition 6.4.6.

Proposition 6.4.7.

EZ|y; ψ[UbU T
b? ] =

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Ub? ]

)T

+
1

σ4
CT

[
diag(µT )

(
diag(µT )Z̃T − Z̃T diag(ÿT )

)

−
(
diag(µT )Z̃T − Z̃T diag(ÿT )

)
diag

(
µT Z̃T

)]
X2



162

Proof of Proposition 6.4.7.

UbU T
b? =

1

σ4
CT (ZTZCb− ZT ÿ)(ZCb− ÿ)TX2

=
1

σ4
CT

[
(ZTZCb)(ZCb)T − (ZTZCb)(ÿ)T

− (ZT ÿ)(ZCb)T + (ZT ÿ)(ÿ)T
]
X2 (6.63)

Now

EZ|y; ψ[(ZTZCb)(ÿ)T ] = diag(1T
n Z̃)µ ÿT (6.64)

and

EZ|y; ψ[(ZT ÿ)(ÿ)T ] = (Z̃T ÿ)(ÿ)T . (6.65)

We need the expectations of the two t× n matrices

1. (ZTZCb)(ZCb)T = (ZTZµ)(Zµ)T

2. (ZT ÿ)(ZCb)T = (ZT ÿ)(Zµ)T

First we find the element in row k and column (ij) of each matrix.

From previous calculations (see the proof of Proposition 6.4.1) we have that kth

element of the column vectors ZTZCb and ZT ÿ are, respectively,

[ZTZCb]k• = 1T
nZ•kCk•b = 1T

nZ•k µk

[ZT ÿ]k• = [ZT ]k•ÿ = (Z•k)T ÿ.

The (ij)th element of the row vector (ZCb)T is equal to

[(Zµ)T ]•(ij) = [µTZT ]•(ij) = µT (ZT )•(ij)

= µT (Z(ij)•)
T

Therefore, the desired elements are:
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1. [(ZTZµ)(Zµ)T ]k(ij) = [ZTZµ]k• [(Zµ)T ]•(ij)

= (1T
nZ•k µk)µ

T (Z(ij)•)
T

= (1T
nZ•k µk)Z(ij)•µ

since µT (Z(ij)•)
T is a scalar

= µk1
T
nZ•kZ(ij)•µ

2. [(ZT ÿ)(Zµ)T ]k(ij) = [ZT ÿ]k• [(Zµ)T ]•(ij)

= (Z•k)T ÿµT (Z(ij)•)
T

= ÿTZ•kZ(ij)•µ,

since (Z•k)T ÿ and µT (Z(ij)•)
T are both scalars.

A formula for calculating EZ|y; ψ

[
Z•kZ(ij)•

]
is given in Proposition 6.3.2, therefore

we only need to make the relevant substitutions and look for patterns in the resulting

matrix expressions.

EZ|y; ψ[(ZTZµ)(Zµ)T ]k(ij)

= µk1
T
nEZ|y; ψ[Z•kZ(ij)•] µ

= µk1
T
n

{
Z̃•kZ̃(ij)• − τik(yij; ψ)[In]•(ij)Z̃(ij)• + [In]•(ij)[diag(Z̃(ij)•)]k•

}
µ

= µk1
T
n Z̃•kZ̃(ij)• µ− µk1

T
n τik(yij; ψ) [In]•(ij) Z̃(ij)• µ

+ µk1
T
n [In]•(ij) [diag(Z̃(ij) •)]k•µ.

Using the identities given in Equations (6.38) to (6.42), we obtain the following.

EZ|y; ψ[(ZTZµ)(Zµ)T ]k(ij)

= [diag(1T
n Z̃) µ]k• [µT Z̃T ]•(ij) − τik(yij; ψ)µk [µT Z̃T ]•(ij) + µ2

kτik(yij; ψ)

= [diag(1T
n Z̃) µ]k• [µT Z̃T ]•(ij) − [diag(µT )Z̃T ]k•[diag(µT Z̃T )]•(ij)

+ [diag(µT )diag(µT )]k•[Z̃T ]•(ij)

Therefore,
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EZ|y; ψ[(ZTZµ)(Zµ)T ]k(ij)

= [diag(1T
n Z̃) µµT Z̃T ]k(ij) − [diag(µT )Z̃T diag(µT Z̃T )]k(ij)

+ [diag(µT )diag(µT )Z̃T ]k(ij)

By the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZTZµ)(Zµ)T ] = diag(1T
n Z̃) µµT Z̃T − diag(µT )Z̃T diag(µT Z̃T )

+ diag(µT )diag(µT )Z̃T . (6.66)

We proceed in a similar way to evaluate the expectation of (ZT ÿ)(Zµ)T .

EZ|y; ψ[(ZT ÿ)(Zµ)T ]k(ij)

= ÿT EZ|y; ψ[Z•kZ(ij)•] µ

= ÿT
{
Z̃•kZ̃(ij)• − τik(yij; ψ)[In]•(ij)Z̃(ij)• + [In]•(ij)[diag(Z̃(ij)•)]k•

}
µ

= ÿT Z̃•kZ̃(ij)• µ− ÿT τik(yij; ψ) [In]•(ij) Z̃(ij)• µ + ÿT [In]•(ij) [diag(Z̃(ij) •)]k•µ.

Using the identities given in Equations (6.28), (6.39), (6.41), (6.43) and (6.44) we

obtain the following simplification.

EZ|y; ψ[(ZT ÿ)(Zµ)T ]k(ij)

= [Z̃T ÿ]k• [µT Z̃T ]•(ij) − τik(yij; ψ) ÿij [µT Z̃T ]•(ij) + ÿij τik(yij; ψ) µk

= [Z̃T ÿ]k• [µT Z̃T ]•(ij) − [Z̃T diag(ÿT )]k•[diag(µT Z̃T )]•(ij)

+ [diag(µT )]k•[Z̃T diag(ÿT )]•(ij)

EZ|y; ψ[(ZT ÿ)(Zµ)T ]k(ij)

= [Z̃T ÿµT Z̃T ]k(ij) − [Z̃T diag(ÿT )diag(µT Z̃T )]k(ij) + [diag(µT )Z̃T diag(ÿT )]k(ij)

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(ZT ÿ)(Zµ)T ] = Z̃T ÿµT Z̃T − Z̃T diag(ÿT )diag(µT Z̃T )

+ diag(µT )Z̃T diag(ÿT ). (6.67)
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EZ|y; ψ[UbU T
b? ]

=
1

σ4
CT

[(
diag(1T

n Z̃) µµT Z̃T − diag(µT )Z̃T diag(µT Z̃T ) + diag(µT )diag(µT )Z̃T
)

− diag(1T
n Z̃)µ ÿT

−
(
Z̃T ÿµT Z̃T − Z̃T diag(ÿT )diag(µT Z̃T ) + diag(µT )Z̃T diag(ÿT )

)

+ (Z̃T ÿ)(ÿ)T

]
X2

Simplifying the above expression yields the result of Proposition 6.4.7.

Proposition 6.4.8.

EZ|y; ψ[Ub?U T
b? ] =

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[Ub? ]

)T

+
1

σ4
X2

T

[
diag

(
µT diag(µT )Z̃T

)− diag
(
µT Z̃T

)
diag

(
µT Z̃T

)]
X2.

Proof of Proposition 6.4.8.

Ub?U T
b? =

1

σ4
X2

T (ZCb− ÿ)(ZCb− ÿ)TX2

=
1

σ4
X2

T
[
Zµ(Zµ)T − ZµÿT − ÿ(Zµ)T + ÿÿT ]X2 (6.68)

Therefore,

EZ|y; ψ[Ub?U T
b? ] =

1

σ4
X2

T
[
EZ|y; ψ[Zµ(Zµ)T ]− Z̃µÿT − ÿ(Z̃µ)T + ÿÿT ]X2

and so we need to calculate EZ|y; ψ[Zµ(Zµ)T ].

The matrix Zµ(Zµ)T = ZµµTZT is n × n and the element in row (ij) and column

(i′j′) is given by:
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[ZµµTZT ](ij)(i′j′) = [Zµ](ij)• [µTZT ]•(i′j′)

= Z(ij)•µµT (ZT )•(i′j′)

= Z(ij)•µµT (Z(i′j′)•)
T

= µT (Z(ij)•)
TZ(i′j′)•µ,

since Z(ij)•µ and µT (Z(i′j′)•)
T are both scalars

A formula for calculating EZ|y; ψ

[
(Z(ij)•)TZ(i′j′)•

]
is given in Proposition 6.3.3,

therefore we only need to make the relevant substitutions and look for patterns in the

resulting matrix expressions.

EZ|y; ψ[ZµµTZT ](ij)(i′j′)

= µT EZ|y; ψ

[
(Z(ij)•)

TZ(i′j′)•
]
µ

= µT
{
(1− δ(ij)(i′j′))(Z̃(ij)•)

T Z̃(i′j′)• + δ(ij)(i′j′) diag(Z̃(ij)•)
}
µ

= µT (Z̃(ij)•)
T Z̃(i′j′)•µ− δ(ij)(i′j′) µT (Z̃(ij)•)

T Z̃(i′j′)•µ + δ(ij)(i′j′) µT diag(Z̃(ij)•)µ

Using the identities given in Equations (6.39), (6.45), and (6.46) we obtain the next

three simplifications.

µT (Z̃(ij)•)
T Z̃(i′j′)•µ = [Z̃µµT Z̃T ](ij)(i′j′),

δ(ij)(i′j′) µT (Z̃(ij)•)
T Z̃(i′j′)•µ = [diag(µT Z̃T )](ij)•[diag(µT Z̃T )]•(i′j′)

= [diag(µT Z̃T ) diag(µT Z̃T )](ij)(i′j′)

and

δ(ij)(i′j′) µT diag(Z̃(ij)•)µ =
[
diag

(
µT diag(µT )Z̃T

)]
(ij)(i′j′).

Hence,
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EZ|y; ψ[ZµµTZT ](ij)(i′j′)

= [Z̃µµT Z̃T ](ij)(i′j′) − [diag(µT Z̃T ) diag(µT Z̃T )](ij)(i′j′)

+
[
diag

(
µT diag(µT )Z̃T

)]
(ij)(i′j′)

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[ZµµTZT ] = Z̃µµT Z̃T − diag(µT Z̃T ) diag(µT Z̃T )

+ diag
(
µT diag(µT )Z̃T

)
(6.69)

and so:

EZ|y; ψ[Ub?U T
b? ]

=
1

σ4
X2

T
[(

Z̃µµT Z̃T − diag(µT Z̃T ) diag(µT Z̃T ) + diag
(
µT diag(µT )Z̃T

))

− Z̃µÿT − ÿ(Z̃µ)T + ÿÿT
]
X2

=
(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[Ub? ]

)T

+
1

σ4
X2

T

[
diag

(
µT diag(µT )Z̃T

)− diag
(
µT Z̃T

)
diag

(
µT Z̃T

)]
X2.

This proves Proposition 6.4.8.

Proposition 6.4.9.

EZ|y; ψ[Ub?U T
(σ2)] =

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[U(σ2)]

)T

+
1

2σ6
X2

T

[
2 diag

(
µT diag(µT )Z̃T

)
ÿ

− 2 diag
(
µT Z̃T

)
diag

(
µT Z̃T

)
ÿ

− Z̃ diag(µT )diag(µT )µ + diag
(
µT Z̃T

)
Z̃ diag(µT )µ

]

Proof of Proposition 6.4.9.

Ub?U T
(σ2) =

n

2σ4
X2(Zµ− ÿ) +

1

2σ6
X2

T ÿ
(
ÿT ÿ − 2(Zµ)T ÿ + µTZTZµ

)

− 1

2σ6
X2

T
(
ZµÿT ÿ − 2(Zµ)(Zµ)T ÿ + Zµ(ZTZµ)T µ

)
(6.70)
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The expectations needed to calculate EZ|y; ψ[Ub?U T
(σ2)] are known from Equations

(5.48) to (5.55) and from Equations (6.66) and (6.69). It only remains to make the

substitutions and simplify the resulting expression.

EZ|y; ψ[Ub?U T
(σ2)]

=
n

2σ4
X2(Z̃µ− ÿ) +

1

2σ6
X2

T ÿ
(
ÿT ÿ − 2(Z̃µ)T ÿ + µT diag(1T

n Z̃)µ
)

− 1

2σ6
X2

T
[
Z̃µÿT ÿ

− 2
(
Z̃µµT Z̃T − diag(µT Z̃T ) diag(µT Z̃T ) + diag

(
µT diag(µT )Z̃T

))
ÿ

+
(
Z̃µµT diag(1T

n Z̃)− diag(µT Z̃T )Z̃ diag(µT ) + Z̃ diag(µT )diag(µT )
)
µ

]

After simplifying the above result, we obtain the result of Proposition 6.4.9.

Proposition 6.4.10.

EZ|y; ψ[Ub?U T
φ ] =

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[Uφ]

)T

+
1

σ2
X2

T

[
s∑

i=1

[
diag

(
µT Z̃T

)
diag

(
1T

ni
∆i

)
Z̃

− diag
(
1T

ni
∆i

)
Z̃ diag(µT )

]( ∂

∂φ
hi(φ)

)]
.

Proof of Proposition 6.4.10.

Ub?U T
φ = − 1

σ2
X2

T (ZCb− ÿ)

[ s∑
i=1

1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)]

=
1

σ2
X2

T ÿ

[ s∑
i=1

1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)]

− 1

σ2
X2

T

[ s∑
i=1

(Zµ)1T
ni
∆iZ

( ∂

∂φ
hi(φ)

)]

(6.71)
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Therefore,

EZ|y; ψ[Ub?U T
φ ] =

1

σ2
X2

T ÿ

[ s∑
i=1

1T
ni
∆iZ̃

( ∂

∂φ
hi(φ)

)]

− 1

σ2
X2

T

[ s∑
i=1

EZ|y; ψ[(Zµ)1T
ni
∆iZ]

( ∂

∂φ
hi(φ)

)]

and so we need to calculate EZ|y; ψ[(Zµ)1T
ni
∆iZ].

The element in row (i′j′) and column k of (Zµ)1T
ni
∆iZ is given by:

[(Zµ)1T
ni
∆iZ](i′j′)k = [Zµ](i′j′)• [1T

ni
∆iZ]•k

= Z(i′j′)•µ1T
ni
∆iZ•k

= µT (Z(i′j′)•)
T (Z•k)T∆T

i 1ni

since Z(i′j′)•µ and 1T
ni
∆iZ•k are both scalars

and so are both symmetric

= µT (Z•kZ(i′j′)•)
T∆T

i 1ni

= 1T
ni
∆i(Z•kZ(i′j′)•)µ, since we have a scalar.

A formula for calculating EZ|y; ψ

[
Z•kZ(ij)•

]
is given in Proposition 6.3.2, therefore

we only need to make the relevant substitutions and look for patterns in the resulting

matrix expressions.

EZ|y; ψ[(Zµ)1T
ni
∆iZ](i′j′)k

= 1T
ni
∆iEZ|y; ψ[Z•kZ(i′j′)•] µ

= 1T
ni
∆i

{
Z̃•kZ̃(i′j′)• − τi′k(yi′j′ ; ψ)[In]•(i′j′)Z̃(i′j′)• + [In]•(i′j′)[diag(Z̃(i′j′)•)]k•

}
µ

= 1T
ni
∆iZ̃•kZ̃(i′j′)• µ− 1T

ni
∆i τi′k(yi′j′ ; ψ) [In]•(i′j′) Z̃(i′j′)• µ

+ 1T
ni
∆i [In]•(i′j′) [diag(Z̃(i′j′) •)]k•µ.
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Using the identities given in Equations (6.31), (6.39), (6.41), (6.47) and (6.48) we

obtain the following simplification.

EZ|y; ψ[(Zµ)1T
ni
∆iZ](i′j′)k

= [Z̃T∆T
i 1ni

]k• [µT Z̃T ]•(i′j′) − [Z̃T diag
(
1T

ni
∆i

)
]k(i′j′) [µT Z̃T ]•(i′j′)

+ τi′k(yi′j′ ; ψ)µk [1T
ni
∆i]•(i′j′)

= [Z̃T∆T
i 1ni

]k• [µT Z̃T ]•(i′j′) − [Z̃T diag
(
1T

ni
∆i

)
]k• [diag

(
µT Z̃T

)
]•(i′j′)

+ [diag(µT )Z̃T ]k• [diag
(
1T

ni
∆i

)
]•(i′j′)

Hence,

EZ|y; ψ[(Zµ)1T
ni
∆iZ](i′j′)k

= [Z̃T∆T
i 1ni

µT Z̃T ]k(i′j′) − [Z̃T diag
(
1T

ni
∆i

)
diag

(
µT Z̃T

)
]k(i′j′)

+ [diag(µT )Z̃T diag
(
1T

ni
∆i

)
]k(i′j′)

= [Z̃µ1T
ni
∆iZ̃](i′j′)k − [diag

(
µT Z̃T

)
diag

(
1T

ni
∆i

)
Z̃](i′j′)k

+ [diag
(
1T

ni
∆i

)
Z̃ diag(µT )](i′j′)k.

Therefore, by the rules of matrix addition and of matrix equality, we have

EZ|y; ψ[(Zµ)1T
ni
∆iZ] = Z̃µ1T

ni
∆iZ̃− diag

(
µT Z̃T

)
diag

(
1T

ni
∆i

)
Z̃

+ diag
(
1T

ni
∆i

)
Z̃ diag(µT ) (6.72)

Substituting this result into the expression for EZ|y; ψ[Ub?U T
φ ], we obtain:

EZ|y; ψ[Ub?U T
φ ] =

1

σ2
X2

T ÿ

[ s∑
i=1

1T
ni
∆iZ̃

( ∂

∂φ
hi(φ)

)]

− 1

σ2
X2

T

[ s∑
i=1

(
Z̃µ1T

ni
∆iZ̃− diag

(
µT Z̃T

)
diag

(
1T

ni
∆i

)
Z̃

)( ∂

∂φ
hi(φ)

)]

− 1

σ2
X2

T

[ s∑
i=1

diag
(
1T

ni
∆i

)
Z̃ diag(µT )

( ∂

∂φ
hi(φ)

)]

Simplifying the above expression yields the result of Proposition 6.4.10.
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6.5 The Conditional Observed Information Matrix

In Chapter 5, Equation (5.84), the conditional observed information was partitioned

into blocks, and formulae for calculating the blocks were given in Equations (5.85)

to (5.94). This section shows how the foregoing results (Equations (6.1) to (6.4) and

Propositions 6.4.1 to 6.4.10) are used to prove Equations (5.85) to (5.94). Essentially,

this section outlines the set of substitutions that must be made in order to derive the

required formulae.

Proof of Equation (5.85).

Ibb(ψ;y) = EZ|y; ψ[−Ubb]− covZ|y; ψ[Ub, Ub]

= EZ|y; ψ[−Ubb]− EZ|y; ψ[UbU T
b ]+

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Ub]

)T

The expectation EZ|y; ψ[Ub] is known from Equation (6.1). For EZ|y; ψ[UbU T
b ], sub-

stitute the result of Proposition 6.4.1. The result follows.

Proof of Equation (5.86).

I(σ2)(σ2)(ψ;y) = EZ|y; ψ[−U(σ2)(σ2)]− covZ|y; ψ[U(σ2), U(σ2)]

= EZ|y; ψ[−U(σ2)(σ2)]− EZ|y; ψ[U(σ2)U
T

(σ2)]

+
(
EZ|y; ψ[U(σ2)]

)(
EZ|y; ψ[U(σ2)]

)T

The expectation EZ|y; ψ[U(σ2)] is known from Equation (6.3). For EZ|y; ψ[U(σ2)U
T

(σ2)],

substitute the result of Proposition 6.4.2.

Proof of Equation (5.87).

Iφφ(ψ;y) = EZ|y; ψ[−Uφφ]− covZ|y; ψ[Uφ, Uφ]

= EZ|y; ψ[−Uφφ]− EZ|y; ψ[UφU T
φ ]+

(
EZ|y; ψ[Uφ]

)(
EZ|y; ψ[Uφ]

)T
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The expectation EZ|y; ψ[Uφ] is known from Equation (6.4). For EZ|y; ψ[UφU T
φ ] sub-

stitute the result of Proposition 6.4.3.

Proof of Equation (5.88).

Ib(σ2)(ψ;y) = EZ|y; ψ[−Ub(σ2)]− covZ|y; ψ[Ub,U(σ2)]

= EZ|y; ψ[−Ub(σ2)]− EZ|y; ψ[UbU T
(σ2)]+

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[U(σ2)]

)T

The expectations EZ|y; ψ[Ub] and EZ|y; ψ[U(σ2)] are known from Equations (6.1) and

(6.3), respectively. For EZ|y; ψ[UbU T
(σ2)], we substitute the result of Proposition 6.4.4.

Proof of Equation (5.89).

Ibφ(ψ;y) = EZ|y; ψ[−Ubφ]− covZ|y; ψ[Ub,Uφ]

= EZ|y; ψ[−Ubφ]− EZ|y; ψ[UbU T
φ ]+

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Uφ]

)T

The expectations EZ|y; ψ[Ub] and EZ|y; ψ[Uφ] are known from Equations (6.1) and

(6.4), respectively. For EZ|y; ψ[UbU T
φ ], we substitute the result of Proposition 6.4.5

Proof of Equation (5.90).

I(σ2)φ(ψ;y) = EZ|y; ψ[−U(σ2)φ]− covZ|y; ψ[U(σ2),Uφ]

= EZ|y; ψ[−U(σ2)φ]− EZ|y; ψ[U(σ2)U
T

φ ]+
(
EZ|y; ψ[U(σ2)]

)(
EZ|y; ψ[Uφ]

)T

The expectations EZ|y; ψ[U(σ2)] and EZ|y; ψ[Uφ] are known from Equations (6.3) and

(6.4), respectively. We substitute the value of EZ|y; ψ[U(σ2)U
T

φ ] from Proposition

6.4.6.
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Proof of Equation (5.91).

Ibb?(ψ;y) = EZ|y; ψ[−Ubb? ]− covZ|y; ψ[Ub,Ub? ]

= EZ|y; ψ[−Ubb? ]− EZ|y; ψ[UbU T
b? ]+

(
EZ|y; ψ[Ub]

)(
EZ|y; ψ[Ub? ]

)T

The expectations EZ|y; ψ[Ub] and EZ|y; ψ[Ub? ] are known from Equations (6.1) and

(6.2). For EZ|y; ψ[UbU T
b? ], we use the results of Proposition 6.4.7.

Proof of Equation (5.92).

Ib?b?(ψ;y) = EZ|y; ψ[−Ub?b? ]− covZ|y; ψ[Ub? , Ub? ]

= EZ|y; ψ[−Ub?b? ]− EZ|y; ψ[Ub?U T
b? ]+

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[Ub? ]

)T

The conditional expectation EZ|y; ψ[Ub? ] is known from Equation (6.2). We substitute

the value of EZ|y; ψ[Ub?U T
b? ] from Proposition 6.4.8.

Proof of Equation (5.93).

Ib?(σ2)(ψ;y) = EZ|y; ψ[−Ub?(σ2)]− covZ|y; ψ[Ub? ,U(σ2)]

= EZ|y; ψ[−Ub?(σ2)]− EZ|y; ψ[Ub?U T
(σ2)]+

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[U(σ2)]

)T

The expectations EZ|y; ψ[Ub? ] and EZ|y; ψ[U(σ2)] are known from Equations (6.2) and

(6.3), respectively. For the expectation EZ|y; ψ[Ub?U T
(σ2)], we substitute the results of

Proposition 6.4.9.

Proof of Equation 5.94.

Ib?φ(ψ;y) = EZ|y; ψ[−Ub?φ]− covZ|y; ψ[Ub? ,Uφ]

= EZ|y; ψ[−Ub?φ]− EZ|y; ψ[Ub?U T
φ ]+

(
EZ|y; ψ[Ub? ]

)(
EZ|y; ψ[Uφ]

)T

The conditional expectations EZ|y; ψ[Ub? ] and EZ|y; ψ[Uφ] are known from Equations

(6.2) and (6.4). For the expectation, EZ|y; ψ[Ub?U T
φ ], we substitute the results of

Proposition 6.4.10.
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6.6 Intermediate Results Involving Integrals

In order to calculate the Fisher information matrix, we take the expectation, over the

distribution of y, of the conditional information matrix. This section presents some

intermediate integrals (see Table 6.3) that are used to facilitate this calculation.

Table 6.3: List of integrals used for calculating of the Fisher information matrix.
Integral (or expectation) Proposition that reveals a formula

for this integral

Ey; ψ[z̃ijk] Proposition 6.6.1

Ey; ψ

[
τik(yij; ψ) τik′(yij; ψ)] Proposition 6.6.2

Ey; ψ

[
ÿij τik(yij; ψ)

]
Proposition 6.6.3

Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)] Proposition 6.6.4

Ey; ψ

[
ÿ2

ij τik(yij; ψ)
]

Proposition 6.6.5

Ey; ψ

[
ÿ2

ij τik(yij; ψ) τik′(yij; ψ)] Proposition 6.6.6

Proposition 6.6.1.

Ey; ψ[z̃ijk] = wik

Proof of Proposition 6.6.1. From Equations (5.32), (5.33), (5.47) and (5.48) we know

that the element in column (ij) and row k of Z̃ is given by

z̃ijk = τik(yij; ψ) =
wik fik(yij; ψ)

f(yij; ψ)

Ey; ψ[z̃ijk] =

∫
τik(yij; ψ)f(yij; ψ) dyij

=

∫
wik fik(yij; ψ)

f(yij; ψ)
f(yij; ψ) dyij

= wik

∫
fik(yij; ψ) dyij = wik
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Proposition 6.6.2.

Ey; ψ

[
τik(yij; ψ) τik′(yij; ψ)] =





0 if k 6= k′

wik if k = k′.

Proof of Proposition 6.6.2. We will examine the cases k 6= k′, and k = k′, separately.

Suppose that k 6= k′. Then

Ey; ψ

[
τik(yij; ψ) τik′(yij; ψ)

]
=

∫
τik(yij; ψ) τik′(yij; ψ) f(yij; ψ) dyij

=

∫
wikfik(yij; ψ)

f(yij; ψ)
wik′fik′(yij; ψ) dyij

= wik′
wikfik(yij; ψ)

f(yij; ψ)
−

∫
wik′

d

dyij

(wikfik(yij; ψ)

f(yij; ψ)

)
dyij

= wik′
wikfik(yij; ψ)

f(yij; ψ)
− wik′

∫
d

dyij

(wikfik(yij; ψ)

f(yij; ψ)

)
dyij

since wik′ is constant

= 0.

Suppose that k = k′. Then, using the fact that
∑

k τik′(yij; ψ) = 1, we have the

following result.

τik(yij; ψ) τik′(yij; ψ) =
(
τik(yij; ψ)

)2

= τik(yij; ψ)
[
1−

∑

k 6=k′
τik′(yij; ψ)

]

= τik(yij; ψ)−
∑

k 6=k′
τik(yij; ψ)τik′(yij; ψ).

Therefore, if k = k′, we have that

Ey; ψ

[
τik(yij; ψ) τik′(yij; ψ)

]
= Ey; ψ

[
τik(yij; ψ)

]−
∑

k 6=k′
Ey; ψ

[
τik(yij; ψ)τik′(yij; ψ)

]

= wik − 0

= wik.
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Proposition 6.6.3.

Ey; ψ

[
ÿij τik(yij; ψ)

]
= wik µk

Proof of Proposition 6.6.3.

Ey; ψ

[
ÿij τik(yij; ψ)

]

=

∫
ÿij τik(yij; ψ)f(yij; ψ) dyij,

=

∫
(yij − µ?

ij) τik(yij; ψ)f(yij; ψ) dyij

= wik

∫
(yij − µ?

ij) fik(yij; ψ) dyij

= wik

∫
yij fik(yij; ψ) dyij − wik µ?

ij

∫
fik(yij; ψ) dyij

= wik(µ
?
ij + µk)− wik µ?

ij(1)

= wik µk.

Proposition 6.6.4.

Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)] =





0 if k 6= k′

wik µk if k = k′.

Proof of Proposition 6.6.4. We will examine the cases k 6= k′, and k = k′, separately.

Suppose that k 6= k′. Then

Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)

]
=

∫
ÿij τik(yij; ψ) τik′(yij; ψ) f(yij; ψ) dyij

= wik µk τik′(yij; ψ)− wik µk

∫
d

dyij

τik′(yij; ψ) dyij,

using Proposition 6.6.3 and integration by parts

= 0.
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Suppose that k = k′. Then, using the fact that
∑

k τik′(yij; ψ) = 1, we have the

following result.

ÿij τik(yij; ψ) τik′(yij; ψ) = ÿij

(
τik(yij; ψ)

)2

= ÿij τik(yij; ψ)
[
1−

∑

k 6=k′
τik′(yij; ψ)

]

= ÿij τik(yij; ψ)−
∑

k 6=k′
ÿij τik(yij; ψ)τik′(yij; ψ).

Therefore, if k = k′, we have that

Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)

]

= Ey; ψ

[
ÿij τik(yij; ψ)

]−
∑

k 6=k′
Ey; ψ

[
ÿij τik(yij; ψ)τik′(yij; ψ)

]

= wik µk, using the previous result and Proposition 6.6.3.

Proposition 6.6.5.

Ey; ψ

[
ÿ2

ij τik(yij; ψ)
]

= wik (σ2 + µ2
k).

Proof of Proposition 6.6.5.

Ey; ψ

[
ÿ2

ij τik(yij; ψ)
]

=

∫
ÿ2

ij τik(yij; ψ)f(yij; ψ) dyij

= wik

∫
(yij − µ?

ij)
2 fik(yij; ψ) dyij,

= wik

∫ (
y2

ij − 2 µ?
ij yij + (µ?

ij)
2
)

fik(yij; ψ) dyij,

= wik

∫
y2

ij fik(yij; ψ) dyij − 2 wik µ?
ij

∫
yij fik(yij; ψ) dyij

+ wik(µ
?
ij)

2

∫
fik(yij; ψ) dyij

= wik

(
σ2 + (µ?

ij)
2 + 2 µk µ?

ij + µ2
k

)− 2 wik µ?
ij(µ

?
ij + µk) + wik(µ

?
ij)

2(1)

= wik (σ2 + µ2
k)
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Proposition 6.6.6.

Ey; ψ

[
ÿ2

ij τik(yij; ψ) τik′(yij; ψ)] =





0 if k 6= k′

wik (σ2 + µ2
k) if k = k′.

Proof of Proposition 6.6.6. We will examine the cases k 6= k′, and k = k′, separately.

Suppose that k 6= k′. Then

Ey; ψ

[
ÿ2

ij τik(yij; ψ) τik′(yij; ψ)
]

=

∫
ÿ2 τik(yij; ψ) τik′(yij; ψ) f(yij; ψ) dyij

= wik (σ2 + µ2
k) τik′(yij; ψ)− wik (σ2 + µ2

k)

∫
d

dyij

τik′(yij; ψ) dyij,

using Proposition 6.6.5 and integration by parts

= 0.

Suppose that k = k′. Then, using the fact that
∑

k τik′(yij; ψ) = 1, we have the

following result.

ÿ2
ij τik(yij; ψ) τik′(yij; ψ) = ÿ2

ij

(
τik(yij; ψ)

)2

= ÿ2
ij τik(yij; ψ)

[
1−

∑

k 6=k′
τik′(yij; ψ)

]

= ÿ2
ij τik(yij; ψ)−

∑

k 6=k′
ÿ2

ij τik(yij; ψ)τik′(yij; ψ).

Therefore, if k = k′, we have that

Ey; ψ

[
ÿ2

ij τik(yij; ψ) τik′(yij; ψ)
]

= Ey; ψ

[
ÿ2

ij τik(yij; ψ)
]−

∑

k 6=k′
Ey; ψ

[
ÿij τik(yij; ψ)τik′(yij; ψ)

]

= wik (σ2 + µ2
k), using the previous result and Proposition 6.6.5.
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6.7 The Fisher Information Matrix

The Fisher (or expected) information is given by

I(ψ) = Ey; ψ [I(ψ;y)] .

To evaluate the expectation (over the distribution of y) of the blocks of I(ψ;y) we

first prove that Equations (6.73) to (6.94) are true. Then the Fisher information

matrix formula given in Equation (5.97) follows by direct substitution.

Ey; ψ

[
Z̃

]
= Z (as given in Equation (5.95)) (6.73)

Ey; ψ

[
diag

(
1T

n Z̃
)]

= diag
(
1T

nZ
)

(6.74)

Ey; ψ

[
diag

(
1T

ni′
∆i′∆

T
i Z̃i

)]
= diag

(
1T

ni′
∆i′∆

T
i Zi

)
(6.75)

Ey; ψ

[
diag

(
1T

ni
Z̃i diag(µT )

)]
= diag

(
1T

ni
Zi diag(µT )

)
(6.76)

Ey; ψ

[
ÿ
]

= Zµ (6.77)

Ey; ψ

[
Z̃T Z̃

]
= diag

(
1T

nZ
)

(6.78)

Ey; ψ

[
Z̃T

i Z̃i

]
= diag

(
1T

ni
Zi

)
(6.79)

Ey; ψ

[
Z̃i

T
∆i∆

T
i′ Z̃i′

]
= diag

(
1T

ni′
∆i′∆

T
i Zi

)
(6.80)

Ey; ψ

[
ÿT Z̃

]
= 1T

nZ diag
(
µT

)
(6.81)

Ey; ψ

[
diag

(
ÿT Z̃

)]
= diag

(
1T

nZ diag
(
µT

))
(6.82)

Ey; ψ

[
diag

(
ÿT∆T

i Z̃i

)]
= diag

(
1T

ni
Zi diag

(
µT

))
(6.83)

Ey; ψ

[
Z̃T diag

(
ÿT

)
Z̃

]
= diag

(
1T

nZ diag
(
µT

))
(6.84)

Ey; ψ

[
Z̃T diag

(
ÿT

)
∆T

i Z̃i

]
= diag

(
1T

ni
Zi diag

(
µT

))
(6.85)
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Ey; ψ

[
Z̃T diag

(
ÿT

)]
= diag

(
µT

)
Z

T
(6.86)

Ey; ψ

[
Z̃T diag(µT Z̃T )

]
= diag

(
µT

)
Z

T
(6.87)

Ey; ψ

[
diag(µT Z̃T ) diag(1T

ni
∆i)Z̃

]
= diag

(
1T

ni
∆i

)
Zi diag

(
µT

)
(6.88)

Ey; ψ

[
diag(µT Z̃T ) diag(µT Z̃T )

]
= diag

(
µT diag

(
µT

)
Z

T
)

(6.89)

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag(µT Z̃T )

]
= diag

(
µT

)
diag

(
µT

)
Z

T
(6.90)

Ey; ψ

[
diag

(
µT diag

(
µT

)
Z̃T

)
ÿ
]

= Z diag
(
µT

)
diag

(
µT

)
µ (6.91)

Ey; ψ

[
diag(µT Z̃T ) diag(µT Z̃T ) ÿ

]
= Z diag

(
µT

)
diag

(
µT

)
µ (6.92)

Ey; ψ

[
diag

(
ÿT diag

(
ÿT

)
Z̃

)]
= diag

(
1T

nZ
(
diag

(
µT

)
diag

(
µT

)
+σ2It

))
,

where It is the identity matrix of order t. (6.93)

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag

(
ÿT

)
Z̃

]
= diag

(
1T

nZ
(
diag

(
µT

)
diag

(
µT

)
+σ2It

))
,

where It is the identity matrix of order t. (6.94)

Proof of Equations (6.73) to (6.76). From the result of Proposition 6.6.1 we have

that Ey; ψ[z̃ijk]. Let

Z =




1n1w
T
1 (φ)

1n2w
T
2 (φ)
...

1nsw
T
s (φ)




.

Then Z(ij)k = wik and Z = Ey; ψ[Z̃]. This proves Equation (6.73).

The results given in Equations (6.74) to (6.76) follow directly from Equation (6.73).
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Proof of Equation (6.77).

Ey; ψ

[
ÿ
]

= Ey; ψ

[
y −X2b

?
]

= Ey; ψ

[
y]−X2b

? = X1b = ZCb = Zµ

Proof of Equations (6.78) and (6.79) . The matrix Z̃T Z̃ is t × t with the element in

row k and column k′ equal to

[Z̃T Z̃]kk′ = (Z̃•k)T Z̃•k′ =
s∑

i=1

ni∑
j=1

τik(yij; ψ) τik′(yij; ψ)

Applying the result of Proposition 6.6.2, we obtain,

Ey; ψ[Z̃T Z̃]kk′ = Ey; ψ[(Z̃•k)T Z̃•k′ ]

=





0, if k 6= k′

∑s
i=1

∑ni

j=1 wik =
∑s

i=1 niwik, if k = k′,

and so Ey; ψ

[
Z̃T Z̃

]
= diag

(
1T

nZ
)
.

The result, Ey; ψ

[
Z̃T

i Z̃i

]
= diag

(
1T

ni
Zi

)
, follows directly.

Proof of Equation (6.80). If i 6= i′, then Z̃i

T
∆i∆

T
i′ Z̃i′ is a t×t matrix with all elements

equal to zero. If i = i′, then Z̃i

T
∆i∆

T
i′ Z̃i′ = Z̃T

i Z̃i.

Therefore,

Ey; ψ[Z̃i

T
∆i∆

T
i′ Z̃i′ ] =





0, if i 6= i′

diag
(
1T

ni
Zi

)
, if i = i′,

= diag
(
1T

ni′
∆i′∆

T
i Zi

)
.
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Proof of Equations (6.81) to (6.83). The vector ÿT Z̃ is a row vector of order t with

the kth element equal to

(ÿT Z̃)•k = ÿT Z̃•k =
s∑

i=1

ni∑
j=1

ÿij τik(yij; ψ).

We know, from Proposition 6.6.3, that

Ey; ψ

[
ÿij τik(yij; ψ)

]
= wik µk.

Therefore the kth element of the 1× t vector ÿT Z̃ is equal to

s∑
i=1

ni∑
j=1

wik µk. = µk

s∑
i=1

niwik.

The vector 1T
nZ diag

(
µT

)
is 1 × t with its kth element equal to µk

∑s
i=1 niwik. This

yields Ey; ψ

[
ÿT Z̃

]
= 1T

nZ diag
(
µT

)
. Therefore, Equation (6.81) is true.

Equation (6.82) follows directly from Equation (6.81) by the definition of the diag

function, which is given in Equation (5.53).

By the definition of ∆i, we have that diag
(
ÿT∆T

i Z̃i

)
= ÿT

i Z̃i and so Equation

(6.83) also follows directly from Equation (6.81).

Proof of Equations (6.84) and (6.85). The matrix Z̃T diag
(
ÿT

)
Z̃ is a t×t matrix with

the element in row k and column k′ equal to

[Z̃T diag
(
ÿT

)
Z̃]kk′ = (Z̃•k)T diag

(
ÿT

)
Z̃•k′ =

s∑
i=1

ni∑
j=1

ÿij τik(yij; ψ) τik′(yij; ψ).

We know, from Proposition 6.6.4, that

Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)] =





0 if k 6= k′

wik µk if k = k′.
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Therefore,

Ey; ψ[Z̃T diag
(
ÿT

)
Z̃]kk′ =





0, if k 6= k′

∑s
i=1 niwik µk, if k = k′

=
[
diag

(
1T

nZ diag
(
µT

))]
kk′ .

This proves Equation (6.84).

Equation (6.85) follows directly from Equation (6.84) together with the definition

of ∆i.

Proof of Equation (6.86). The matrix Z̃T diag
(
ÿT

)
is t × n with the k(ij)th element

equal to:

[Z̃T diag
(
ÿT

)
]k(ij) = [Z̃T ]k•[diag

(
ÿT

)
]•(ij)

= z̃ijk ÿij

= ÿij τik(yij; ψ)

Therefore, using Proposition 6.6.3, we have

Ey; ψ[Z̃T diag
(
ÿT

)
]k(ij) = wik µk = [diag

(
µT

)
Z

T
]k(ij).

Proof of Equation (6.87). The matrix Z̃T diag(µT Z̃T ) is t× n and its k(ij)th element

is equal to:

[Z̃T diag(µT Z̃T )]k(ij) = [Z̃T ]k•[diag(µT Z̃T )]•(ij)

= z̃ijk

t∑

k′=1

µk′ z̃ijk′

=
t∑

k′=1

µk′ τik′(yij; ψ)τik(yij; ψ)
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From Proposition 6.6.2, we know that

Ey; ψ

[
τik′(yij; ψ) τik(yij; ψ)] =





0 if k 6= k′

wik if k = k′.

Therefore, Ey; ψ[Z̃T diag(µT Z̃T )]k(ij) = wik µk = [diag
(
µT

)
Z

T
]k(ij).

Proof of Equation (6.88). The multiplication operation is commutative on diagonal

matrices of the same order. Therefore,

diag(µT Z̃T ) diag(1T
ni
∆i)Z̃ = diag(1T

ni
∆i) diag(µT Z̃T )Z̃

and because diag
(
1T

ni
∆i

)
is a constant matrix,

Ey; ψ

[
diag(µT Z̃T ) diag(1T

ni
∆i)Z̃

]
. = diag(1T

ni
∆i) Ey; ψ

[
diag(µT Z̃T )Z̃]

Taking the transpose of both sides of Equation (6.87) we obtain

Ey; ψ[diag(µT Z̃T )Z̃] = Zdiag
(
µT

)
.

This proves that Ey; ψ

[
diag(µT Z̃T ) diag(1T

ni
∆i)Z̃

]
= diag

(
1T

ni
∆i

)
Zi diag

(
µT

)
.

Proof of Equation (6.89). The matrix [diag(µT Z̃T ) diag(µT Z̃T )] is n × n with the

element in row (ij) and column (i′j′) equal to:

[
diag(µT Z̃T ) diag(µT Z̃T )

]
(ij)(i′j′)

=
[
diag(µT Z̃T )

]
(ij)•

[
diag(µT Z̃T )

]
•(i′j′)

=





0 if (ij) 6= (i′j′)
( t∑

k=1

µkz̃ijk

)( t∑

k′=1

µk′ z̃i′j′k′

)
if (ij) = (i′j′)

=





0 if (ij) 6= (i′j′)
t∑

k=1

t∑

k′=1

µk µk′ τik(yij; ψ) τik′(yij; ψ) if (ij) = (i′j′)
(6.95)
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Using Proposition 6.6.2, we obtain the following result.

Ey; ψ

[
diag(µT Z̃T ) diag(µT Z̃T )

]
(ij)(i′j′) =





0 if (ij) 6= (i′j′)
t∑

k=1

wik µ2
k if (ij) = (i′j′)

= Ey; ψ

[
diag

(
µT diag

(
µT

)
Z

T
)]

(ij)(i′j′)

Proof of Equation (6.90). The matrix Z̃T diag
(
ÿT

)
diag(µT Z̃T ) is t×n and its k(ij)th

element is equal to:

[
Z̃T diag

(
ÿT

)
diag(µT Z̃T )

]
k(ij)

=
[
Z̃T diag

(
ÿT

)]
k•

[
diag(µT Z̃T )

]
•(ij)

= z̃ijk ÿij

t∑

k′=1

µk′ z̃ijk′

=
t∑

k′=1

µk′ ÿij z̃ijk z̃ijk′

=
t∑

k′=1

µk′ ÿij τik(yij; ψ) τik′(yij; ψ)

Therefore,

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag(µT Z̃T )

]
k(ij)

=
t∑

k′=1

µk′ Ey; ψ

[
ÿij τik(yij; ψ) τik′(yij; ψ)

]

Applying the result of Proposition 6.6.4, we obtain the following.

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag(µT Z̃T )

]
k(ij)

= µ2
k wik

=
[
diag

(
µT

)
diag

(
µT

)
Z

T ]
k(ij)
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Proof of Equation (6.91). The matrix
[
diag

(
µT diag

(
µT

)
Z̃T

)
ÿ
]

is a column vector of

order n with the element in row (ij) given by

[
diag

(
µT diag

(
µT

)
Z̃T

)
ÿ
]

(ij)•
=

[
diag

(
µT diag

(
µT

)
Z̃T

)]
(ij)•

ÿ

=
t∑

k=1

µ2
k z̃ijk ÿij

=
t∑

k=1

µ2
k ÿij τik(yij; ψ)

Therefore, using Proposition 6.6.3, we have

Ey; ψ

[
diag

(
µT diag

(
µT

)
Z̃T

)
ÿ
]
(ij)•

=
t∑

k=1

µ3
k wik

= Z(ij)• diag
(
µT

)
diag

(
µT

)
µ

=
[
Z diag

(
µT

)
diag

(
µT

)
µ

]
(ij)•

Proof of Equation (6.92). To prove Equation (6.92), we begin with Equation (6.95),

which is part of the proof of Equation (6.89).

Equation (6.95) implies that [diag(µT Z̃T ) diag(µT Z̃T )] is a n× n diagonal matrix

where the diagonal element in cell (ij, ij) is given by

t∑

k=1

t∑

k′=1

µk µk′ τik(yij; ψ) τik′(yij; ψ).

Therefore, the
[
diag(µT Z̃T ) diag(µT Z̃T ) ÿ

]
is a column vector of order n with the

element in row (ij) given by

[
diag(µT Z̃T ) diag(µT Z̃T ) ÿ

]
(ij)• =

t∑

k=1

t∑

k′=1

µk µk′ τik(yij; ψ) τik′(yij; ψ) ÿij.
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Applying the result of Proposition 6.6.4, we obtain the following.

Ey; ψ

[
diag(µT Z̃T ) diag(µT Z̃T ) ÿ

]
(ij)• =

t∑

k=1

∑

k′=k

µ2
k µk′ wik

=
t∑

k=1

µ3
k wik

=
[
Z diag

(
µT

)
diag

(
µT

)
µ

]
(ij)•

Proof of Equation (6.93). The kth diagonal element of the t × t diagonal matrix

[diag
(
ÿT diag

(
ÿT

)
Z̃

)
] is, by definition, the kth element of the row vector ÿT diag

(
ÿT

)
Z̃.

[ÿT diag
(
ÿT

)
Z̃]•k = ÿT diag

(
ÿT

)
Z̃•k =

∑
ij

ÿijτik(yij; ψ)

Using Proposition 6.6.5, we obtain

Ey; ψ[ÿT diag
(
ÿT

)
Z̃]•k =

∑
ij

wik (σ2 + µ2
k)

=
s∑

i=1

ni∑
j=1

wik (σ2 + µ2
k)

=
s∑

i=1

ni wik (σ2 + µ2
k)

= (n1wi1, n2wi2, . . . , ntwit)
[
diag

(
µT

)
diag

(
µT

)
+σ2It

]
•k

= 1T
nZ

[
diag

(
µT

)
diag

(
µT

)
+σ2It

]
•k

Therefore,

Ey; ψ[ÿT diag
(
ÿT

)
Z̃] = 1T

nZ
(
diag

(
µT

)
diag

(
µT

)
+σ2It

)

and

Ey; ψ

[
diag

(
ÿT diag

(
ÿT

)
Z̃

)]
= diag

(
1T

nZ
(
diag

(
µT

)
diag

(
µT

)
+σ2It

))
.
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Proof of Equation (6.94). The element in row k and column k′ of the t × t diagonal

matrix Z̃T diag
(
ÿT

)
diag

(
ÿT

)
Z̃ is given by

[
Z̃T diag

(
ÿT

)
diag

(
ÿT

)
Z̃

]
kk′ =

(
Z̃T
•k

)
diag

(
ÿT

)
diag

(
ÿT

)
Z̃•k′

=
∑
ij

ÿ2
ij τik(yij; ψ) τik′(yij; ψ)

Using Proposition 6.6.6, we obtain

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag

(
ÿT

)
Z̃

]
kk′

=





0 if k 6= k′

∑
ij wik (σ2 + µ2

k) if k = k′.

=





0 if k 6= k′

∑s
i=1 ni wik (σ2 + µ2

k) if k = k′.

Therefore,

Ey; ψ

[
Z̃T diag

(
ÿT

)
diag

(
ÿT

)
Z̃

]
kk′

=
[
diag

(
1T

nZ
(
diag

(
µT

)
diag

(
µT

)
+σ2It

))]
kk′

.

This chapter provided proofs that the information matrix formulae that were

presented in Chapter 5 do in fact hold for Normal mixtures. These formulae yield

a quick and valid method for estimating the standard errors of the estimated QTL

effects and positions generated by CIM and RIM1. In the next chapter, the Fisher

information matrix formulae are applied to both the CIM and RIM1 models.
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Chapter 7

Simulations and Results

Three new tools were introduced in Chapter 5. These tools are the RIM1 model, the

formulae for calculating the Fisher information matrix for Normal mixture models,

and a compound hypothesis test for QTL effect and position. Backcross samples were

simulated to test the performance of these tools in two different situations. In the

first situation, simulations were based on a trait whose value was determined by the

genotypes at a single QTL. In the second situation, simulations were based on a trait

controlled by many QTL. The same marker-map was used with both cases.

In this chapter, we discuss the details of the simulations and we assess the results.

The results demonstrate that our three tools combine to form a robust framework for

analysing QTL.

• Our formulae for the information matrix generated good estimates for the stan-

dard errors of the MLEs. Moreover, the estimates of standard error became

increasingly better with increasing sample size.

• The compound hypothesis test (with standard errors based on the expected

information matrix) had the ability to control for the fact that QTL effects and

positions test are not separable in the model.
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• The compound hypothesis test improved the performance of CIM by dramati-

cally reduced ghosting while retaining strong power to detect QTL.

• The RIM1 procedure performed as well as the improved CIM. The extra QTL

fitted in RIM1 made it resistant to ghosting even when a simple test for QTL

effect was used instead of the compound hypothesis test.

• For the backcross, samples sizes of 125 yielded unreliable parameter estimates

and low power to detect QTL, whereas sample sizes 500 and 2000 yielded esti-

mates of QTL effect and location.

• In the multi-QTL situation the RIM1 procedure was more resistant to ghosting

than CIM. However, in the multi-QTL situation both CIM and RIM1 expe-

rienced a reduction in power to detect QTL when compared with the power

obtained in the single-QTL situation. Similarly, with both methods ghosting

was also more likely in the multi-QTL situation than in the single-QTL situa-

tion.

7.1 The Single-QTL Situation

An artificial genetic map was defined comprising 35 markers on two chromosomes

together with a single QTL. Figure 7.1 is a visual representation of the genetic map

that was used in the single-QTL situation. The markers were equally spaced, with a

distance of ten centi-Morgans between adjacent markers.

The QTL (labelled QTL 9 ) was placed between markers c2m7 and c2m8 on

chromosome 2, and its genotypes were used to determine the values of a trait labelled

t1. The location and effects of QTL 9 were chosen arbitrarily. The actual location of

QTL 9 was 3.19 centi-Morgans to the right of marker c2m7.



191

1 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Chromosome

P
os

iti
on

 in
 M

or
ga

ns
Genetic Map

c1m1
c1m2
c1m3
c1m4
c1m5
c1m6
c1m7
c1m8
c1m9
c1m10
c1m11
c1m12
c1m13
c1m14

c2m1
c2m2
c2m3
c2m4
c2m5
c2m6
c2m7
c2m8
c2m9
c2m10
c2m11
c2m12
c2m13
c2m14
c2m15
c2m16
c2m17
c2m18
c2m19
c2m20
c2m21

QTL 9

Figure 7.1: Single-QTL, genetic map on which simulations were based.

Haldane’s map function was used to convert genetic distances to recombination

fractions. Consequently, the recombination fraction between c2m7 and c2m8 was

rMN = 0.0906, the recombination fraction between marker c2m7 and the QTL was

rMQ = 0.0309. Therefore, pQ2 = 0.681 and pQ1 = 0.998. The additive effects and

dominance effects of QTL 9 were set to aQQ = 3.14 and dQQ = −0.28 units respec-

tively. Therefore, for the backcross, bQ = (aQQ + 2dQQ) = 2.58 is the only estimable

QTL effect and it is associated with the coding scheme QQ = 1 and Qq = 0.

The QTL Cartographer module Rcross was used to simulate samples from a B1

backcross population. Note that the genetic effects were input into Rcross as the pa-

rameters additive and dominance, with additive = aQQ = 3.14 and dominance =

−2dQQ = 0.56. Appendix B.3 gives an example of how QTL Cartographer was

launched from within the R programming environment.

In Rcross, the broad sense heritability of the trait was taken to be H2 = 1
2
. The
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trait values were determined by taking genotypic values based Cockerham’s (1954)

linear model and adding a random variable having mean zero and variance equal to

σ2, where σ2 is determined by the heritability (H2 = 1
2
) and the genotypic variance.

By definition,

H2 =
var(G)

σ2 + var(G)

where var(G) is the variance of the genotypic values. The genotype probabilities

(P (QQ) = 1
2
, P (Qq) = 1

2
) in backcross and the genotypic effects (aQQ = 3.14, dQQ =

−0.28) imply that the expected value of the genotypic variance in this backcross

population is

var(G) = 1
2
(µ2

QQ + µ2
Qq)− 1

4
(µQQ + µQq)

2

= 1
4
a2

QQ + aQQdQQ + d2
QQ = 1.664 to three decimal places.

Therefore, because H2 = 1
2
, the expected value of σ2 in the simulated data is

σ2 = var(G) = 1.664.

The following samples were all simulated from the same B1 backcross population.

• One hundred replicate samples each containing 125 individuals.

• One hundred replicate samples each containing 500 individuals.

• One hundred replicate samples each containing 2000 individuals.

For a fixed sample size, analysis of replicate samples from the same distribution

represents a Monte-Carlo experiment from which we can estimate the distribution of

any model parameter estimator.

All samples were imported into R objects to facilitate analysis with RIM1 and

calculation of the information matrix for CIM and RIM1. The aim of the analysis

was to scan chromosome 2 to test for the existence of a QTL and to estimate QTL
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location and effect. As this is a simulation study, the true properties of the QTL are

known, so we can assess model performance by comparing model parameters to their

true values. Table 7.1 gives an example of raw output from our implementation of

RIM1 for a sample of size 2000.

Table 7.1: An Example of raw output from our RIM1 implementation

> b1c2.LQR.neut7[[1]] #display RIM1 output for the first sample.

$code

[1] "rim.linecross()"

$information.matrix

[1] "expected"

$chosen.model.desc

[1] "RIM1"

$chosen.model

[1] "LQR"

$mapfun

[1] "Haldane"

$cross

[1] "B1"

$interval

[1] "c2m7" "c2m8"

$markers

[1] "c2m6" "c2m7" "c2m8" "c2m9"

$extra.markers

[1] "c1m1" "c1m2" "c1m3" "c1m4" "c1m5" "c1m6" "c1m7"

[8] "c1m8" "c1m9" "c1m10" "c1m11" "c1m12" "c1m13" "c1m14"

[15] "c2m1" "c2m2" "c2m3" "c2m4" "c2m5" "c2m10" "c2m11"

[22] "c2m12" "c2m13" "c2m14" "c2m15" "c2m16" "c2m17" "c2m18"

[29] "c2m19" "c2m20" "c2m21"

$trait

[1] "t1"
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Table 7.1: An Example of raw output from RIM1 (continued)

$genotype.counts

AAAAAAAA AAAAAAAa AAAAAaAA AAAAAaAa AAAaAAAA AAAaAAAa

721 87 13 82 4 1

AAAaAaAA AAAaAaAa AaAAAAAA AaAAAAAa AaAAAaAA AaAAAaAa

13 62 86 17 1 6

AaAaAAAA AaAaAAAa AaAaAaAA AaAaAaAa

68 10 95 734

$map.hat

rKM rMN rNO

0.0950 0.0925 0.1185

$mle

$mle$convergence.info

chosen.tolerance actual.tolerance num.iterations

1.00e-06 6.88e-07 2.50e+01

$mle$model.params

$mle$model.params$effects

MLE std.err z0 P>|z0|

(Intercept) 0.1637 0.0750 2.183 0.0290

L.AA 0.0415 0.1192 0.348 0.7277

Q.AA 2.7397 0.1020 26.866 0.0000

R.AA -0.1100 0.1078 -1.020 0.3079

c1m1.AA -0.0315 0.0977 -0.322 0.7472

c1m2.AA 0.1951 0.1272 1.534 0.1250

.

.

.

c2m21.AA -0.0073 0.1014 -0.072 0.9426

$mle$model.params$variance

MLE

1.68

$mle$model.params$probs

MLE std.err z0 z1 P>z0 P<z1

pL2 0.99999 0.000246 4.07e+03 -5.11e-02 0.00 4.80e-01

pQ2 0.66548 0.034504 1.93e+01 -9.70e+00 0.00 1.58e-22

pR2 0.00001 0.000198 5.04e-02 -5.04e+03 0.48 0.00e+00

$mle$infmat.is.singular

[1] FALSE
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Table 7.1: An Example of raw output from RIM1 (continued)

$mle$recomb

rMQ rQN rKL rLM rKM rNR

3.23e-02 6.23e-02 1.25e-06 9.06e-02 9.06e-02 9.06e-02

rRO rNO rMN pQ1 pL1 pR1

9.97e-07 9.06e-02 9.06e-02 9.98e-01 1.00e+00 1.00e+00

$mle$loglike

[1] -3417

$mle$startlike

[1] -3447

.

.

.

All extra markers were included as cofactors in the RIM1 and CIM models. The

samples were also analysed using the QTL Cartographer module ZmapQTL. Pro-

gram code for importing QTL Cartographer Rcross and ZmapQTL output files into

R objects is provided in Appendix B.2. Output from CIM-QTLcart (ZmapQTL run-

ning CIM) and from QTL Cartographer’s implementations of Lander and Botstein’s

interval mapping (IM) were compared with output from the RIM1 model and with

output from our implementation of CIM. The output was summarised as shown in

Tables 7.2 and 7.3 for four samples.

The bQ values are given as Q.AA in Table 7.2 and as H1.a in Table 7.3 and these

values are similar (ranging from 2.549 to 2.74 - all close to the true effect 2.58). Also,

RIM1 returned σ2 ranging from 1.631 to 1.678 (all close to the the expected variance of

1.664). RIM1 returned QTL locations r̂MQ ranging from 0.031 to 0.039. To interpret

the map distances returned by ZmapQTl in terms of recombination fractions, we use

the inverse of Haldane’s map function to obtain: r̂MQ = 1
2
(1 − exp−2(position−0.6)),

where 0.6 is the position of c2m7 from the left telomere. Therefore, for sample size

2000, both RIM1 and CIM-QTLcart produced values, r̂MQ, that were close to the

true rMQ of 0.0309.
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Table 7.2: Summarising the output of RIM1 (an example). The estimates shown are
L.AA = b̂L, Q.AA = b̂Q, R.AA = b̂R, pL2 = p̂L2, pQ2 = p̂Q2, pR2 = p̂R2, sigma2 = σ̂2,
and rMQ = r̂MQ. The logarithm of the likelihood function is loglike. The estimated
asymptotic standard deviations of b̂Q and p̂Q2, are sd.bQ and sd.pQ2 respectively.

>#RIM1 output was collected into a list of matrices (named RIM1.nw.all).

>#The sample size is 2000 and the testing interval is c2m7-c2m8.

>#Here is a summary of RIM1 output for samples 1, 2, 3 and 100.

>

> round(RIM1.nw.all[[7]][c(1:3,100),c(5:7,39:43,55:57)],3)

L.AA Q.AA R.AA pL2 pQ2 pR2 sigma2 rMQ loglike sd.bQ sd.pQ2

[1,] 0.042 2.740 -0.110 1 0.665 0 1.678 0.032 -3417.161 0.102 0.035

[2,] 0.101 2.549 -0.269 1 0.675 0 1.618 0.031 -3386.591 0.104 0.033

[3,] 0.048 2.672 -0.068 1 0.600 0 1.637 0.038 -3400.221 0.106 0.036

[4,] 0.031 2.636 -0.049 1 0.593 0 1.631 0.039 -3403.081 0.106 0.036

>

>#Use all 100 RIM replicates to estimate the standard deviation (SD) of bQ.

> sqrt(var(RIM1.nw.all[[7]][,"Q.AA"]))

[1] 0.1116254

>

>#Inspect the 100 values for SD of bQ obtained from the information matrix.

> summary(RIM1.nw.all[[7]][,"sd.bQ"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0978 0.1020 0.1044 0.1044 0.1066 0.1105

Table 7.3: Summarising the QTL Cartographer output for CIM (an example).
Chromosome = c; m = left marker; position = distance in Morgans of Q from
the left telomere; H0.H1 is the LRT statistic for H0

H1
; R2.0.1 = σ̂2

0−σ̂2

var(y) , where σ̂2
0 is

the residual variance under H0; TR2.0.1 = var(y)−σ̂2

var(y) ; H1.a = b̂Q; S1 = nk2
3

6 + nk2
4

24

where k3 = n2 E(ε−ε)3

(n−1)(n−2)S3 , k4 = n2(n+1) E(ε−ε)4

(n−1)(n−2)(n−3)S4 − 3, with ε = y − ŷ, ε = E(ε),
S2 = n

n−1 σ̂2, n = 2000.

>#Zmapqtl output was imported an R object named ‘CIM.all’.

>#CIM.all is a list of matrices (one matrix for each testing interval).

>#Each matrix stores the MLE position obtained by Zmapqtl for each sample.

>#The sample size is 2000 and the testing interval is c2m7-c2m8.

>#Here is a summary of Zmapqtl output for samples 1, 2, 3 and 100

>

> round(CIM.all[[7]][c(1:3,100),],3)

sample c m position H0.H1 R2.0.1 TR2.0.1 H1.a S1

[1,] 1 2 7 0.63 489.891 0.173 0.516 2.742 4.366

[2,] 2 2 7 0.63 391.869 0.147 0.510 2.549 1.302

[3,] 3 2 7 0.64 402.720 0.151 0.513 2.672 0.026

[4,] 100 2 7 0.64 386.756 0.148 0.519 2.636 0.194

>

>#Use all 100 CIM QTLcart replicates to estimate the SD of bQ.

> sqrt(var(CIM.all[[7]][,"H1.a"]))

[1] 0.1120043

>

>#The information matrix is not available from QTL Cartographer.
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As there are no non-genetic factors, the variable TR2.0.1 from ZmapQTL is an

estimate of the broad sense heritability. The values for TR2.0.1 in Table 7.3 range

from 0.510 to 0.519, so they closely estimate H2 which is equal to a half. The variable

S1 from ZmapQTL is a statistic based on the coefficients of skewness and kurtosis,

and it is used to test for normality of the residuals (Basten et al., 2001, pages 48-49).

The next few sections examine the performance of RIM1 and CIM in greater de-

tail. This includes a discussion of the impact of sample size on the behaviour of the

information matrix, on the quality of the maximum likelihood estimates, and on the

performance of our hypothesis tests. The replicate samples allowed calculation of em-

pirical estimates for the standard errors of model parameters and calculation of power

and rates of false detections associated with hypothesis tests. Section 7.1.2 assesses

the behaviour of the estimated Fisher information matrix by comparing standard er-

rors generated by its inverse with empirical standard errors. Section 7.1.1 discusses

the quality of the MLEs of QTL effect and position, while Section 7.1.3 assesses the

power of our hypothesis test to detect QTL and its robustness against false detections.

7.1.1 Quality of the MLEs of QTL effect and position

The RIM1 model is a new extension and generalisation of Composite Interval Map-

ping (CIM). Therefore, it is necessary to test whether this extension constitutes an

improvement over CIM. To ensure that the comparisons were as objective as possi-

ble, the popular QTL Cartographer software was used to simulate all samples and to

analyse those samples via composite interval mapping.

Estimation of the standard errors of the MLEs generated by QTL Cartographer’s

implementation of CIM is not possible without resorting to re-sampling techniques.

In this discussion we will refer to QTL Cartographer’s implementation of CIM as

CIM-QTLcart. The data was also analysed using my own implementation of Zeng’s

CIM model (referred to as CIM in this discussion).
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Figure 7.2: Scatter plots of r̂MQ from simulated data (M = c2m7). The solid
horizonal line at 0.0309 is the true rMQ. Dashed horizontal lines at r̂MQ = 0 and
r̂MQ = rMN = 0.0906 are bounds on rMQ. The estimates r̂MQ were generated by R
program code from this thesis (CIM) and by QTL Cartographer (CIM-QTLcart).
QTL Cartographer selects the MLE from a discrete grid, leading to points aligned
in rows in the graphs on the right.
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The motivation for programming an extended implementation of CIM was to

have a procedure which calculates the information matrix and which allows the EM

algorithm to follow its own native trajectory when moving from a starting point. By

comparison, CIM-QTLcart restricts maximization to a fixed grid.

For interval c2m7− c2m8, Figure 7.2 shows the maximum likelihood estimates of

the recombination fraction rMQ produced by both implementations of CIM. In the

scatter plots, each index value identifies a sample and the corresponding value of r̂MQ

is the MLE generated from that sample.

QTL Cartographer selects the MLE from a discrete grid, leading to points aligned

in rows in the graphs on the right of Figure 7.2. The difference between the two

implementations is only noticeable when a comparison is made between the structured

appearance of the points generated by QTL Cartographer and the random appearance

of the points generated by our extended implementation of CIM. Still, it is clear from

Figure 7.2 that the scatter of points is roughly the same for both implementations of

CIM at each sample size.

The most interesting pattern seen in Figure 7.2 is the effect of sample size on the

ability of CIM to locate QTL. As the sample size increased from 125 to 2000, the

MLEs of rMQ became increasingly stable, settling towards its true value.

Figure 7.3(a) shows that the MLEs of QTL location generated by applying RIM1

to the same data. In interval c2m7 − c2m8, the behaviour of RIM1 was almost

identical to that of CIM with the precision of the estimated QTL location improving

with increasing sample size. The MLEs of rMQ were calculated from the MLEs of pQ2

using the relationships given in equations (5.16) and (5.22). The function

recomb(pQ2) = rMN(1− pQ2) + 0.5(1− rMN)− 0.5
√

1− 2rMN + r2
MN(1− 2pQ2)2

calculates rMQ given rMN and pQ2. If (a, b) is a (1−α)100% confidence interval (CI)

for p̂Q2, then the corresponding (1− α)100% CI for r̂MQ is
(
recomb(b), recomb(a)

)
.
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(a) RIM1: Points r̂MQ from 100 replicates at interval c2m7-c2m8.
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(b) RIM1: Points r̂MQ from 100 replicates at interval c2m7-c2m8, each with a vertical
line stretching over a 99.9% confidence interval (CI) for that point. The CI were
derived using the Fisher Information Matrix formulae given in this thesis.

Figure 7.3: Scatter plots of r̂MQ based on simulated data having only one QTL
between M = c2m7 and N = c2m8. The solid horizonal line at 0.0309 is the true
rMQ. Dashed horizontal lines at r̂MQ = 0 and r̂MQ = rMN = 0.0906 are bounds on
rMQ. The estimates r̂MQ were generated by the RIM1 model.
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Confidence intervals for p̂Q2 were calculated by assuming Normality of the maxi-

mum likelihood estimator. Figure 7.3(b) is a scatter plot of r̂MQ with confidence in-

tervals superimposed unto each point. These plots show that as sample size increases,

not only do the estimates of QTL location become closer to the true location, but the

confidence intervals become shorter as well.

At sample size 125, the confidence intervals generally stretched over the entire

length of the marker interval. The width of most confidence intervals for rMQ was

around 0.04 recombination units in samples of size 500, and around 0.02 recombi-

nation units in samples of size 2000. By Haldane’s map function, this corresponds

to distances of roughly 4 centi-Morgans wide (sample size 500), and 2 centi-Morgans

wide (sample size 2000).

The results show that RIM1 performs as well as CIM in terms of estimating QTL

location. However, an estimated location is only meaningful if the data supports the

existence of a QTL associated with the markers bordering a testing interval. Detection

of significant QTL effect is needed before the question of location can be considered.

The strength of RIM1 over CIM is revealed by looking at the estimated QTL effects.

The box plots in Figure 7.4 display the distributions of estimated QTL effects

generated by CIM and CIM-QTLcart for samples of size two thousand. Estimates of

bQ were plotted for each interval on the second chromosome. Both implementations of

Composite Interval Mapping produced three peaks: one peak in interval c2m6−c2m7,

one peak in interval c2m7− c2m8 and one peak in interval c2m8− c2m9.

We know that there is only one QTL on the map. It is named QTL 9 and is

located within interval c2m7 − c2m8. The range of values for bQ within the central

peak indicate that CIM generated estimates b̂Q that were close to bQ = 2.58, the true

effect of QTL 9.



202

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

c2
m

1-
c2

m
2

c2
m

2-
c2

m
3

c2
m

3-
c2

m
4

c2
m

4-
c2

m
5

c2
m

5-
c2

m
6

c2
m

6-
c2

m
7

c2
m

7-
c2

m
8

c2
m

8-
c2

m
9

c2
m

9-
c2

m
10

c2
m

10
-c

2m
11

c2
m

11
-c

2m
12

c2
m

12
-c

2m
13

c2
m

13
-c

2m
14

c2
m

14
-c

2m
15

c2
m

15
-c

2m
16

c2
m

16
-c

2m
17

c2
m

17
-c

2m
18

c2
m

18
-c

2m
19

c2
m

19
-c

2m
20

c2
m

20
-c

2m
21

interval

b̂ Q

(a) CIM: Sample size 2000, Boxplots of b̂Q based on 100 replicates at each interval.
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(b) CIM-QTLcart: Sample size 2000, Boxplots of b̂Q based on 100 replicates at
each interval.

Figure 7.4: Box plots of b̂Q and from CIM and and CIM-QTLcart, based on simu-
lated samples with a single QTL and sample size 2000. Each plot shows the upper
quartile, median and lower quartile. Whiskers are drawn to the nearest value not
beyond 1.5× (Inter-Quartile Range) from the quartiles; points beyond (outliers) are
plotted individually.
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(a) RIM1: Sample size 2000, Boxplots of b̂Q based on 100 replicates at each
interval.
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(b) RIM1: Sample size 2000, Boxplots of p̂Q2 (1− p̂Q2) (̂bQ)2 based on 100 repli-
cates at each interval.

Figure 7.5: Box plots of b̂Q and p̂Q2 (1− p̂Q2) (̂bQ)2 from RIM1 based on simulated
samples with a single QTL and sample size 2000.
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Figure 7.6: Box plots of the estimates p̂L2 (1 − p̂L2) (̂bL)2, p̂Q2 (1 − p̂Q2) (̂bQ)2 and
p̂R2 (1− p̂R2) (̂bR)2 obtained by applying RIM1 to 20 consecutive intervals spanning
chromosome 2. RIM1 simultaneously fits three QTL (L, Q, R). Each box plot is
based on estimates from 100 replicate samples each of size 2000. There is a single
QTL, interior to the interval c2m7− c2m8. These plots show that, for large sample
sizes, RIM1 can correctly locate QTL within the left or right adjacent intervals as
well as QTL within the central testing interval.
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The two extra peaks generated by Composite Interval Mapping are due to the

confounding of effects in the testing interval with effects from QTL in an adjacent

interval. These two false peaks illustrate the well known ghosting behaviour of CIM.

The box plots in Figure 7.5(a) display the distributions of estimated QTL effects

generated by RIM1 for samples of size two thousand. Like CIM, RIM1 generated a

peak in the interval c2m7 − c2m8. Also like CIM, RIM1 generated estimates for bQ

that were close to the true effect of QTL 9 with some slight overestimation.

In contrast to the three peaks generated by CIM, only one peak was generated by

RIM1. Moreover, this peak was in the interval containing QTL and the estimates of

bQ for all other intervals were close to zero. Figure 7.5(a) demonstrates that RIM1 is

better able to separate QTL effects in nearby intervals than CIM. By fitting nuisance

parameters (bL, bR, pL2, bL2) associated with QTL to the right and left of the testing

interval, RIM1 gains a dramatic reduction in ghosting while retaining power to detect

QTL.

An idea proposed in Section 5.3 was to use a joint test for QTL effect and position

as a strategy to reduce ghosting both in CIM and RIM1. The plots of the quantity

p̂Q2 (1 − p̂Q2) (̂bQ)2 displayed in figures 7.5(b), 7.7(a) and 7.7(b) help to explore this

idea. If (bQ = 0) or (pQ2 = 0) or (pQ2 = 0) then pQ2 (1 − pQ2) (bQ)2 is equal to zero.

The plots of p̂Q2 (1 − p̂Q2) (̂bQ)2 in Figures 7.7(a) and 7.7(b) illustrate a dampening

the false peaks generated by CIM. By jointly examining QTL effect and location, we

can improve the distinction between intervals that contain QTL and those that do

not (see Figure 7.6).

Results of RIM1 for samples sizes 500 and 125 are given in Figures 7.8 and 7.9

respectively. We see that sample size impacts on the quality of the estimates of QTL

effect in much the same way that it impacts on the quality of the estimates of QTL

location. Very small sample sizes (such as sample size 125) can produce spurious

results, leading to increased ghosting and loss of power to detect QTL.
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(a) CIM: Sample size 2000, Boxplots of p̂Q2 (1−p̂Q2) (̂bQ)2 based on 100 replicates
at each interval.
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(b) CIM-QTLCart: Sample size 2000, Boxplots of p̂Q2 (1 − p̂Q2) (̂bQ)2 based on
100 replicates at each interval.

Figure 7.7: Box plots of p̂Q2 (1 − p̂Q2) (̂bQ)2 from CIM and and CIM-QTLcart,
based on simulated samples with a single QTL and sample size 2000.
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(a) RIM1: Sample size 500, Boxplots of b̂Q based on 100 replicates at each inter-
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(b) RIM1: Sample size 500, Boxplots of p̂Q2 (1−p̂Q2) (̂bQ)2 based on 100 replicates
at each interval.

Figure 7.8: Box plots of b̂Q and p̂Q2 (1− p̂Q2) (̂bQ)2 from RIM1 based on simulated
samples with a single QTL and sample size 500.
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(a) RIM1: Sample size 125, Boxplots of b̂Q based on 100 replicates at each inter-
val.
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(b) RIM1: Sample size 125, Boxplots of p̂Q2 (1−p̂Q2) (̂bQ)2 based on 100 replicates
at each interval.

Figure 7.9: Box plots of b̂Q and p̂Q2 (1− p̂Q2) (̂bQ)2 from RIM1 based on simulated
samples with a single QTL and sample size 125.
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7.1.2 Performance of the Fisher information matrix

The formula for calculating the information matrix as given in Equation (5.97) is a

new development. Moreover, its derivation is not dependent on any specific mixture of

normals. Therefore, we have developed a flexible tool for calculating standard errors

of maximum likelihood estimates in RIM1, CIM and in any mixture of univariate

normals.

We now validate the performance of different methods of standard error estimation

using the 100 replicate samples which we have for each of the three sample sizes

(125, 500 and 2000). Estimates calculated from these replicates allow us to form an

empirical approximation of the sampling distribution of those estimates, which we

can use to make these comparisons.

Comparisons with replicates

Take N samples of equal size from the same population. Then Equation (7.1) gives

an empirical estimator for the standard error (standard deviation or SD) of b̂Q based

upon the replicate samples. In Equation (7.1) the expression b̂
(i)
Q denotes the MLE of

bQ obtained from the ith replicate sample.

emp SD of b̂Q =

√√√√√ 1

N − 1




N∑
i=1

(
b̂
(i)
Q

)2

− 1

N

(
N∑

i=1

b̂
(i)
Q

)2

 (7.1)

If we have a sample of sufficiently large size, then asymptotic likelihood theory

provides an estimator for the standard error of b̂Q via the inverse of the Fisher infor-

mation matrix. We estimate the expected information matrix I(ψ) by using Equation

(5.97) and substituting maximum likelihood estimates of the model parameters for

their true values. Then Equation (7.2) gives an estimator for the asymptotic standard

error of b̂Q based upon a single sample.

imat SD of b̂Q =

√[I(ψ̂)
]−1

bQ bQ
'

√
asymptotic var(̂bQ) (7.2)
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For 125, 500 and 2000, respectively, and with interval c2m7− c2m8 as the testing

interval, Table 7.4 compares the standard errors of b̂Q from the expected information

matrix with the corresponding empirical standard errors.

Table 7.4: Simulated Single-QTL Case: Interval c2m7-c2m8; comparison of esti-
mated standard errors (SD) of b̂Q based on one hundred replicates at each sample
size.

Sample size Model emp SD of b̂Q imat SD of b̂Q

Min. 1st Qu. Median Mean 3rd Qu. Max.
125 RIM1 1.350 0.273 0.391 0.425 0.435 0.463 0.803

CIM 0.547 0.273 0.362 0.411 0.414 0.447 0.687
CIM-QTLcart. 0.550 not applicable

500 RIM1 0.443 0.191 0.205 0.211 0.212 0.215 0.305
CIM 0.261 0.191 0.205 0.211 0.210 0.215 0.225
CIM-QTLcart. 0.222 not applicable

2000 RIM1 0.112 0.098 0.102 0.104 0.104 0.107 0.111
CIM 0.112 0.098 0.102 0.104 0.104 0.107 0.111
CIM-QTLcart. 0.112 not applicable

At sample sizes 125, 500 and 2000, the empirical standard errors of QTL effect

from CIM and CIM-QTLcart were within one decimal place of each other. The

information matrix formula gave very stable results with CIM. At sample size 125 CIM

had good agreement between the information matrix estimates for the SD of b̂Q and

the empirical estimates of SD. At sample sizes 500 and 2000, CIM had almost perfect

agreement amongst the empirical standard errors and those from the information

matrix.

At sample size 2000, the models CIM, CIM-QTLcart and RIM1 all gave the same

value (0.112) for the empirical SD of the MLE of QTL effect. RIM1 also showed

reasonable agreement at sample size 500. However the information matrix severely

underestimated the standard errors when the RIM1 model was used with a sample

of size 125. RIM1 seemed more sensitive to small sample sizes than CIM. This is

not surprising because in the backcross, the RIM1 models has to estimate four more

parameters (pL2, pR2, bL, bR) than CIM.
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Table 7.5: MLE b̂Q and its estimated standard error from RIM1 on replicates
Sample size = 125 Sample size = 500 Sample size = 2000

mean mean mean mean mean mean
Interval MLE imat emp MLE imat emp MLE imat emp

b̂Q SD SD b̂Q SD SD b̂Q SD SD
c2m1 - c2m2 −0.09 0.38 0.74 0.12 0.19 0.19 0.00 0.10 0.11
c2m2 - c2m3 0.22 0.48 1.25 0.06 0.24 0.28 0.04 0.12 0.15
c2m3 - c2m4 0.16 0.49 1.06 0.09 0.25 0.29 0.02 0.12 0.14
c2m4 - c2m5 0.05 0.49 1.39 0.07 0.25 0.27 0.04 0.12 0.13

c2m5 - c2m6 −0.03 0.47 0.98 −0.06 0.23 0.25 −0.03 0.11 0.11
c2m6 - c2m7 0.43 0.48 1.61 0.10 0.24 0.48 0.00 0.12 0.13
c2m7 - c2m8 2.14 0.43 1.35 2.57 0.21 0.44 2.58 0.10 0.11
c2m8 - c2m9 0.04 0.45 0.92 −0.03 0.23 0.25 0.00 0.11 0.12
c2m9 - c2m10 −0.13 0.49 1.15 −0.02 0.24 0.26 0.00 0.12 0.14

c2m10 - c2m11 0.07 0.50 1.21 0.08 0.24 0.28 0.03 0.12 0.14
c2m11 - c2m12 0.10 0.48 1.17 −0.01 0.25 0.33 0.04 0.13 0.13
c2m12 - c2m13 0.16 0.48 1.04 0.05 0.25 0.32 0.01 0.12 0.13
c2m13 - c2m14 −0.09 0.48 0.92 0.08 0.25 0.32 0.02 0.12 0.15
c2m14 - c2m15 0.00 0.48 1.12 −0.05 0.25 0.34 0.06 0.12 0.16
c2m15 - c2m16 0.18 0.50 1.17 0.07 0.25 0.31 0.02 0.12 0.16
c2m16 - c2m17 −0.04 0.49 1.25 0.05 0.24 0.31 0.00 0.12 0.14
c2m17 - c2m18 −0.06 0.48 1.08 0.00 0.24 0.30 0.03 0.12 0.14
c2m18 - c2m19 0.09 0.48 1.06 0.06 0.24 0.31 −0.02 0.12 0.16
c2m19 - c2m20 −0.15 0.49 1.16 0.02 0.24 0.34 0.00 0.12 0.15
c2m20 - c2m21 0.13 0.39 0.95 −0.13 0.19 0.28 0.05 0.10 0.12

Table 7.6: MLE b̂Q and its estimated standard error from CIM on replicates
Sample size = 125 Sample size = 500 Sample size = 2000

mean mean mean mean mean mean
Interval MLE imat emp MLE imat emp MLE imat emp

b̂Q SD SD b̂Q SD SD b̂Q SD SD
c2m1 - c2m2 −0.06 0.36 0.53 0.06 0.18 0.17 −0.04 0.09 0.10
c2m2 - c2m3 −0.13 0.46 0.78 0.00 0.23 0.28 −0.03 0.11 0.15
c2m3 - c2m4 −0.13 0.45 0.62 −0.06 0.23 0.27 −0.02 0.11 0.12
c2m4 - c2m5 −0.04 0.46 0.81 −0.11 0.23 0.26 −0.01 0.11 0.14

c2m5 - c2m6 −0.04 0.46 0.73 −0.10 0.23 0.23 −0.05 0.11 0.11
c2m6 - c2m7 1.89 0.44 0.71 1.77 0.23 0.32 1.76 0.11 0.15
c2m7 - c2m8 2.66 0.41 0.55 2.62 0.21 0.26 2.58 0.10 0.11
c2m8 - c2m9 0.79 0.45 0.84 0.89 0.23 0.41 0.82 0.11 0.23
c2m9 - c2m10 −0.16 0.46 0.64 −0.07 0.23 0.28 −0.02 0.11 0.15

c2m10 - c2m11 −0.13 0.45 0.72 0.01 0.23 0.29 −0.02 0.11 0.12
c2m11 - c2m12 −0.03 0.46 0.72 −0.07 0.23 0.31 −0.03 0.11 0.12
c2m12 - c2m13 0.01 0.45 0.79 −0.07 0.23 0.26 −0.05 0.11 0.13
c2m13 - c2m14 −0.06 0.45 0.68 −0.01 0.23 0.34 −0.03 0.11 0.15
c2m14 - c2m15 −0.03 0.45 0.75 −0.08 0.23 0.31 −0.01 0.11 0.15
c2m15 - c2m16 0.05 0.46 0.71 0.03 0.23 0.30 −0.04 0.11 0.15
c2m16 - c2m17 −0.10 0.45 0.67 0.05 0.23 0.28 −0.03 0.11 0.15
c2m17 - c2m18 −0.01 0.45 0.78 0.00 0.23 0.29 0.01 0.11 0.15
c2m18 - c2m19 0.08 0.44 0.71 0.00 0.23 0.30 −0.02 0.11 0.15
c2m19 - c2m20 −0.01 0.45 0.77 −0.08 0.23 0.31 −0.01 0.11 0.15
c2m20 - c2m21 0.02 0.36 0.55 −0.24 0.18 0.19 0.01 0.09 0.12
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The results presented in Section 7.1.1 revealed that the models may behave differ-

ently in intervals that do not contain QTL. Therefore, was necessary to check whether

the information matrix gave sensible values for the standard error of QTL effect in

other intervals.

Tables 7.5 and 7.6 show, for each interval, the mean of b̂Q, the mean asymptotic

standard error (imat SD), and the empirical standard error (emp SD) generated

by RIM1 and CIM respectively. For all intervals sample sizes 500 and 2000, lead

to asymptotic standard errors b̂Q that closely matched the corresponding empirical

standard errors. However, at sample size 125 the empirical and asymptotic errors did

not agree. This emphasises the fact that the information matrix result rests upon

asymptotic theory, so it is not applicable if the sample size is too small.

Is the reliability of the information matrix the same when estimating standard

errors of QTL location as when estimating standard errors of QTL effects? The

answer depends whether the corresponding QTL effect is close to zero.

Define

emp SD of p̂Q2 =

√√√√√ 1

N − 1




N∑
i=1

(
p̂

(i)
Q2

)2

− 1

N

(
N∑

i=1

p̂
(i)
Q2

)2

 (7.3)

and

imat SD of p̂Q2 =

√[I(ψ̂)
]−1

pQ2 pQ2
'

√
asymptotic var(p̂Q2). (7.4)

Table 7.7, below, shows that when the testing interval contained a QTL, the

asymptotic standard errors of p̂Q2 were fairly close to the empirical standard errors.

Note that when we look at all intervals, a different picture will be revealed. For

RIM1, consider the results in Table 7.8 together with the illustration in Figure 7.10.

Likewise, for CIM consider both Table 7.9 and Figure 7.11.
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Table 7.7: Simulated Single QTL Case: Interval c2m7-c2m8; comparison of esti-
mated standard errors (SD) of p̂Q2.

Sample size Model emp SD of p̂Q2 imat SD of p̂Q2

Min. 1st Qu. Median Mean 3rd Qu. Max.
125 RIM1 0.358 0.0007 0.001 0.100 0.080 0.135 0.176

CIM 0.263 0.0007 0.077 0.113 0.097 0.135 0.176
CIM-QTLcart. 0.273 not applicable

Min. 1st Qu. Median Mean 3rd Qu. Max.
500 RIM1 0.149 0.0005 0.063 0.069 0.066 0.073 0.083

CIM 0.117 0.037 0.062 0.069 0.067 0.073 0.083
CIM-QTLcart. 0.119 not applicable

Min. 1st Qu. Median Mean 3rd Qu. Max.
2000 RIM1 0.053 0.029 0.032 0.034 0.034 0.035 0.039

CIM 0.053 0.029 0.032 0.034 0.034 0.035 0.039
CIM-QTLcart. 0.059 not applicable
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Table 7.8: MLE p̂Q2 and its estimated standard error from RIM1 on replicates.
Sample size = 125 Sample size = 500 Sample size = 2000

mean mean mean mean mean mean
Interval MLE imat emp MLE imat emp MLE imat emp

p̂Q2 SD SD p̂Q2 SD SD p̂Q2 SD SD
c2m1 - c2m2 0.61 0.03 0.45 0.73 0.01 0.40 0.60 0.01 0.45
c2m2 - c2m3 0.53 0.04 0.45 0.60 0.01 0.45 0.68 0.01 0.41
c2m3 - c2m4 0.56 0.02 0.46 0.62 0.01 0.45 0.54 0.01 0.47
c2m4 - c2m5 0.59 0.03 0.44 0.52 0.01 0.47 0.58 0.01 0.45

c2m5 - c2m6 0.91 0.02 0.24 0.99 ∼ 0.00 0.05 ∼ 1.00 ∼ 0.00 ∼ 0.00
c2m6 - c2m7 0.71 0.02 0.42 0.95 ∼ 0.00 0.20 ∼ 1.00 ∼ 0.00 ∼ 0.00
c2m7 - c2m8 0.51 0.08 0.36 0.63 0.07 0.15 0.68 0.03 0.05
c2m8 - c2m9 0.10 0.02 0.26 ∼ 0.00 ∼ 0.00 0.01 ∼ 0.00 ∼ 0.00 ∼ 0.00
c2m9 - c2m10 0.27 0.02 0.42 0.01 ∼ 0.00 0.11 ∼ 0.00 ∼ 0.00 ∼ 0.00

c2m10 - c2m11 0.42 0.03 0.46 0.40 0.02 0.45 0.39 0.01 0.45
c2m11 - c2m12 0.49 0.03 0.46 0.33 0.01 0.43 0.39 0.01 0.46
c2m12 - c2m13 0.43 0.03 0.46 0.45 0.01 0.47 0.41 0.01 0.45
c2m13 - c2m14 0.45 0.02 0.47 0.48 0.02 0.46 0.45 0.01 0.46
c2m14 - c2m15 0.46 0.03 0.46 0.41 0.01 0.46 0.44 0.01 0.46
c2m15 - c2m16 0.43 0.03 0.45 0.40 0.01 0.45 0.44 0.01 0.46
c2m16 - c2m17 0.53 0.04 0.45 0.52 0.01 0.47 0.42 0.01 0.45
c2m17 - c2m18 0.47 0.03 0.45 0.45 0.02 0.46 0.53 0.01 0.45
c2m18 - c2m19 0.56 0.02 0.47 0.55 0.01 0.47 0.44 0.01 0.45
c2m19 - c2m20 0.42 0.03 0.46 0.46 0.01 0.46 0.40 0.01 0.43
c2m20 - c2m21 0.41 0.03 0.44 0.34 0.03 0.39 0.43 0.01 0.42
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Figure 7.10: Box plots showing distributions of p̂Q2 from applying RIM1 to one
hundred replicate samples, each having sample size 2000.
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Table 7.9: MLE p̂Q2 and its estimated standard error from CIM on replicates.
Sample size = 125 Sample size = 500 Sample size = 2000

mean mean mean mean mean mean
Interval MLE imat emp MLE imat emp MLE imat emp

p̂Q2 SD SD p̂Q2 SD SD p̂Q2 SD SD
c2m1 - c2m2 0.46 0.03 0.46 0.46 0.02 0.44 0.51 0.01 0.45
c2m2 - c2m3 0.48 0.04 0.45 0.50 0.02 0.44 0.49 0.01 0.44
c2m3 - c2m4 0.46 0.03 0.46 0.44 0.02 0.43 0.57 0.01 0.46
c2m4 - c2m5 0.54 0.03 0.46 0.50 0.02 0.44 0.46 0.01 0.44

c2m5 - c2m6 0.49 0.03 0.46 0.58 0.02 0.44 0.47 ∼ 0.00 0.48
c2m6 - c2m7 0.13 0.04 0.24 0.05 0.02 0.09 0.02 0.01 0.02
c2m7 - c2m8 0.69 0.10 0.26 0.65 0.07 0.12 0.68 0.03 0.05
c2m8 - c2m9 0.58 0.05 0.42 0.78 0.03 0.33 0.89 0.01 0.24
c2m9 - c2m10 0.51 0.03 0.46 0.53 0.02 0.45 0.54 0.01 0.46

c2m10 - c2m11 0.46 0.04 0.44 0.50 0.02 0.45 0.49 0.01 0.47
c2m11 - c2m12 0.50 0.03 0.45 0.47 0.02 0.43 0.48 0.01 0.45
c2m12 - c2m13 0.50 0.03 0.45 0.59 0.02 0.43 0.51 0.01 0.44
c2m13 - c2m14 0.55 0.02 0.47 0.50 0.03 0.43 0.49 0.01 0.44
c2m14 - c2m15 0.52 0.04 0.45 0.54 0.03 0.43 0.49 0.01 0.42
c2m15 - c2m16 0.51 0.04 0.45 0.57 0.02 0.43 0.46 0.02 0.41
c2m16 - c2m17 0.51 0.04 0.45 0.53 0.03 0.42 0.49 0.01 0.42
c2m17 - c2m18 0.51 0.04 0.45 0.52 0.03 0.42 0.53 0.02 0.40
c2m18 - c2m19 0.63 0.04 0.43 0.44 0.02 0.43 0.46 0.02 0.39
c2m19 - c2m20 0.40 0.04 0.43 0.49 0.03 0.42 0.51 0.02 0.39
c2m20 - c2m21 0.54 0.04 0.45 0.50 0.04 0.39 0.58 0.02 0.38
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Figure 7.11: Box plots showing distributions of p̂Q2 from applying CIM to one
hundred replicate samples, each having sample size 2000.
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Figure 7.12: Box plots of the estimates p̂L2, p̂Q2 and p̂R2 obtained by applying RIM1
to 20 consecutive intervals spanning chromosome 2. RIM1 simultaneously fits three
QTL (L, Q, R). Each box plot is based on estimates from 100 replicate samples each
of size 2000. In the interval with the QTL, the relevant RIM1 estimates are close
their true values which are: pR2 = 0.681 when the testing interval is c2m6− c2m7;
pQ2 = 0.681 when the testing interval is c2m7 − c2m8; and pL2 = 0.681 when the
testing interval is c2m8− c2m9.
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The Fisher information matrix is block diagonal for mixtures of univariate Normals

(see Equation (5.97)). Therefore, it is possible to separately investigate the standard

errors of the effects and the mixing parameters.

In Section 5.3, some identifiability problems which plague mixture models were

discussed. The impact of loss of identifiability of the mixing parameter pQ2 when the

effect bQ is close to zero is revealed in Figures 7.10 and 7.11. In intervals that are

located far from a QTL, the estimates of QTL effect (̂bQ) were close to zero, while the

estimates of QTL location (p̂Q2) were unstable, taking on any value within the valid

range. Figure 7.12 also shows that the estimates of QTL location are very stable in

the interval with the QTL (even when this was not the testing interval), but they

were quite unstable elsewhere.

Figures 7.10 and 7.11 give an insight into the behaviour of the EM Algorithm with

the RIM1 and CIM models. Figure 7.10 shows that, in the empty intervals adjacent

to the interval containing the QTL, RIM1 tends to push the postulated QTL onto

the marker that is furthest away from the real QTL (note: pQ2 = 1 implies that

rMQ = 0, while pQ2 = 0 implies that rMQ = rMN). If the real QTL is to the right

of Q, then locus R is the desired QTL. The EM algorithm in RIM1 acts to reduce

the over-specification in RIM1 by pushing Q towards the marker M , and pushing L

towards the marker K. Likewise, if the real QTL is L, then RIM1 tends to push Q

towards M , and R towards N . Thus the pattern extends over two intervals. While

RIM1 models background QTL to absorb the effect of QTLs in the adjacent intervals,

CIM does not. Therefore, when applying CIM to an empty interval adjacent to the

interval with the real QTL, the EM algorithm tries to adjust for the associated effect

by pushing Q as close as it can be to the real QTL (see Figure 7.11).

The impact of loss of identifiability of pQ2 when bQ is close to zero is also evident

in Tables 7.8 and 7.9. When a QTL was present in the central testing interval,

the information matrix gave good estimates for the standard error of the mixing
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parameter pQ2 for large samples. However, in intervals where b̂Q was close to zero,

the standard errors for p̂Q2 were grossly underestimated by the information matrix.

Comparisons with bootstraps

With real populations, it is not usually feasible to take many replicate samples. In

these situations, empirical standard errors of parameter estimates may be via the

bootstrap methodology. Therefore it is useful to compare errors obtained from the

information matrix with empirical errors obtained using the bootstrap methodology.

One thousand bootstrap samples were generated by re-sampling (with replace-

ment) from the first sample having size 125, 500 and 2000 respectively. A simple,

non-parametric bootstrap methodology was used.

At sample size 125, eleven bootstrap samples yielded a singular information ma-

trix. In these cases the Moore-Penrose generalized inverse of the information matrix

was used to estimate standard error. At sample sizes 500 and 2000, the bootstraps

behaved well because all 1000 bootstraps yielded a non-singular information matrix

for every testing interval. The results are summarised in Tables 7.10 and 7.11.

The standard errors from the bootstraps were almost identical to those from the

replicates. At sample sizes 500 and 2000, the asymptotic standard errors (imat SD) for

bQ based on the original sample always agreed well with the corresponding bootstrap

standard errors.

When the corresponding QTL effect was significantly different from zero, the

information matrix estimates for the SD of p̂Q2 tended to agree with the corresponding

bootstrap standard errors. However, when the QTL effect was zero, the information

matrix estimates for the SD of p̂Q2 seemed to be infeasibly small.

In intervals located far from QTL, both the replicates and the bootstraps produced

empirical standard errors for p̂Q2 of between 0.4 and 0.5 (see Tables 7.8, 7.9, and 7.11).

The variable pQ2 represents a proportion and p̂Q2± 3× 0.4 is always outside its valid
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Table 7.10: RIM1 on bootstraps: MLE b̂Q and its estimated standard error.

Sample size = 125 Sample size = 500 Sample size = 2000
Interval orig orig boot orig orig boot orig orig boot

MLE imat emp MLE imat emp MLE imat emp

b̂Q SD SD b̂Q SD SD b̂Q SD SD
c2m1 - c2m2 −0.40 0.71 1.76 0.20 0.21 0.24 −0.06 0.11 0.12
c2m2 - c2m3 0.58 0.57 2.20 −0.24 0.24 0.34 0.16 0.11 0.19
c2m3 - c2m4 0.50 0.58 1.86 0.12 0.26 0.32 −0.02 0.12 0.18
c2m4 - c2m5 −0.30 0.48 1.53 0.29 0.26 0.50 −0.03 0.12 0.13

c2m5 - c2m6 0.28 0.57 1.39 0.37 0.24 0.29 −0.11 0.11 0.12
c2m6 - c2m7 −0.44 0.60 2.14 0.09 0.25 0.33 0.04 0.12 0.14
c2m7 - c2m8 3.20 0.50 2.19 2.67 0.21 0.29 2.74 0.10 0.11
c2m8 - c2m9 0.17 0.44 1.12 −0.42 0.24 0.30 −0.11 0.11 0.12
c2m9 - c2m10 −0.92 0.60 1.43 0.16 0.21 0.28 −0.17 0.13 0.15

c2m10 - c2m11 −0.24 0.51 1.46 0.47 0.21 0.25 0.19 0.11 0.24
c2m11 - c2m12 −0.69 0.47 1.70 −0.23 0.24 0.31 0.28 0.13 0.24
c2m12 - c2m13 −0.71 0.50 1.49 −0.03 0.25 0.33 0.05 0.13 0.19
c2m13 - c2m14 0.24 0.42 1.33 −0.02 0.25 0.35 0.23 0.11 0.18
c2m14 - c2m15 0.86 0.43 1.74 −0.23 0.24 0.36 −0.14 0.12 0.20
c2m15 - c2m16 −0.84 0.50 1.73 0.46 0.22 0.35 −0.01 0.13 0.16
c2m16 - c2m17 −0.81 0.44 1.51 0.00 0.24 0.36 −0.01 0.12 0.15
c2m17 - c2m18 −0.12 0.46 1.66 −0.25 0.24 0.43 0.09 0.13 0.15
c2m18 - c2m19 0.75 0.47 1.76 0.12 0.24 0.43 −0.08 0.13 0.15
c2m19 - c2m20 −1.88 0.66 1.82 0.13 0.25 0.47 0.06 0.14 0.15
c2m20 - c2m21 2.02 0.59 1.71 −0.27 0.19 0.35 0.01 0.08 0.13

Table 7.11: RIM1 on bootstraps: MLE p̂Q2 and its estimated standard error.

Sample size = 125 Sample size = 500 Sample size = 2000
Interval orig orig boot orig orig boot orig orig boot

MLE imat emp MLE imat emp MLE imat emp
p̂Q2 SD SD p̂Q2 SD SD p̂Q2 SD SD

c2m1 - c2m2 ∼ 0.00 ∼ 0.00 0.46 ∼ 1.00 ∼ 0.00 0.32 ∼ 1.00 ∼ 0.00 0.29
c2m2 - c2m3 0.02 0.02 0.41 ∼ 1.00 ∼ 0.00 0.42 0.19 0.03 0.43
c2m3 - c2m4 ∼ 1.00 ∼ 0.00 0.45 ∼ 1.00 ∼ 0.00 0.35 ∼ 0.00 ∼ 0.00 0.43
c2m4 - c2m5 0.97 0.04 0.46 0.01 0.02 0.46 ∼ 1.00 ∼ 0.00 0.42

c2m5 - c2m6 ∼ 1.00 ∼ 0.00 0.29 ∼ 1.00 ∼ 0.00 0.04 ∼ 1.00 ∼ 0.00 ∼ 0.00
c2m6 - c2m7 ∼ 1.00 ∼ 0.00 0.47 ∼ 1.00 ∼ 0.00 0.09 ∼ 1.00 ∼ 0.00 ∼ 0.00
c2m7 - c2m8 0.71 0.14 0.31 0.61 0.08 0.13 0.67 0.03 0.06
c2m8 - c2m9 ∼ 0.00 ∼ 0.00 0.19 ∼ 0.00 ∼ 0.00 0.03 ∼ 0.00 ∼ 0.00 ∼ 0.00
c2m9 - c2m10 ∼ 0.00 ∼ 0.00 0.39 ∼ 0.00 ∼ 0.00 0.22 ∼ 0.00 ∼ 0.00 ∼ 0.00

c2m10 - c2m11 ∼ 1.00 ∼ 0.00 0.49 0.64 0.06 0.37 0.06 0.02 0.42
c2m11 - c2m12 ∼ 0.00 0.02 0.43 ∼ 0.00 ∼ 0.00 0.31 ∼ 1.00 ∼ 0.00 0.40
c2m12 - c2m13 ∼ 1.00 ∼ 0.00 0.49 ∼ 0.00 ∼ 0.00 0.47 ∼ 0.00 ∼ 0.00 0.48
c2m13 - c2m14 ∼ 1.00 ∼ 0.00 0.46 ∼ 1.00 ∼ 0.00 0.44 0.31 0.03 0.37
c2m14 - c2m15 ∼ 0.00 ∼ 0.00 0.46 ∼ 1.00 ∼ 0.00 0.47 0.00 ∼ 0.00 0.43
c2m15 - c2m16 ∼ 0.00 ∼ 0.00 0.47 0.65 0.07 0.39 ∼ 0.00 ∼ 0.00 0.41
c2m16 - c2m17 0.98 0.04 0.46 ∼ 0.00 ∼ 0.00 0.44 ∼ 1.00 ∼ 0.00 0.44
c2m17 - c2m18 ∼ 1.00 ∼ 0.00 0.43 0.00 ∼ 0.00 0.43 1.00 ∼ 0.00 0.45
c2m18 - c2m19 0.10 0.08 0.45 ∼ 0.00 ∼ 0.00 0.44 ∼ 0.00 ∼ 0.00 0.40
c2m19 - c2m20 ∼ 0.00 ∼ 0.00 0.41 ∼ 1.00 ∼ 0.00 0.46 ∼ 0.00 ∼ 0.00 0.45
c2m20 - c2m21 0.32 0.16 0.33 0.92 0.04 0.44 ∼ 0.00 ∼ 0.00 0.41
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range. Therefore, when the QTL effect is zero, it is inappropriate to use the empirical

standard error of p̂Q2 together with assumptions of Normality. This does not put a

caveat on proceeding because estimates of QTL location (and their standard errors)

are only of interest when the corresponding QTL effects are significantly different

from zero.

The information matrix formula given in Equation (5.97) is a reliable method for

estimating the standard error of MLEs in Normal mixture model, and its reliability

improves with increasing sample size. For sufficiently large samples, the information

matrix appears to be particularly good at estimating the standard error associated

with component means (for example QTL effects). However, if one or more component

means are close to zero, the information matrix can yield poor estimates for certain

mixing proportions.

7.1.3 Hypothesis testing

Formal hypothesis testing was used to investigate the abilities of RIM1, CIM and

simple interval mapping (IM) to avoid ghosting and to detect the isolated QTL.

IM and CIM output from QTL Cartographer were tested using the likelihood

ratio test and its usual chi-squared distribution with degrees of freedom equal to the

difference between the number of parameters under the null and alternate hypotheses.

RIM1 and CIM output from our bespoke implementations were tested using the

statistics T1 and J1 as defined in equations (5.98) to (5.100). The statistics T1 and

J1 were calculated using asymptotic standard errors as given in equations (7.2) and

(7.4) respectively. The permutation method, described in Chapter 5, was also used

for hypothesis testing with test statistics T2 and J2. Tables 7.12 and 7.13 display the

results.
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Table 7.12: Percent of times p-value < 0.001 for ten testing methods. Tests applied
to single-QTL situation; 100 replicate B1 backcross samples each of size n = 2000;
data simulated using QTL Cartographer. The LRT results are from QTL Cartog-
rapher. The statistics T1, and T2 are based on b̂Q only, while the statistics J1 and
J2 are used to construct joint tests for b̂Q and p̂Q2. The columns marked ‘asy’ are
based on an asymptotic null distribution, and those marked ‘emp’ are based on an
empirical null distribution obtained by the permutation method.

IM CIM RIM1
Testing asy asy asy emp asy emp asy emp asy emp True
Interval LRT LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 100 1 1 0 0 0 1 1 0 0 -
c2m2 - c2m3 100 1 2 1 2 1 2 1 2 1 -
c2m3 - c2m4 100 0 1 0 1 0 1 0 1 0 -
c2m4 - c2m5 100 0 1 0 1 1 2 1 1 1 -
c2m5 - c2m6 100 0 2 0 2 1 0 0 0 0 -
c2m6 - c2m7 100 100 100 100 15 22 0 0 0 0 -
c2m7 - c2m8 100 100 100 100 100 100 100 100 100 100 QTL 9
c2m8 - c2m9 100 100 94 92 31 19 0 0 0 0 -
c2m9 - c2m10 100 1 4 0 3 0 1 0 0 2 -
c2m10 - c2m11 100 0 1 0 1 0 0 0 0 0 -
c2m11 - c2m12 100 0 1 0 1 0 1 0 1 0 -
c2m12 - c2m13 100 0 0 0 0 0 0 0 0 0 -
c2m13 - c2m14 100 0 0 0 0 0 0 0 0 0 -
c2m14 - c2m15 100 0 0 0 0 0 1 1 0 0 -
c2m15 - c2m16 100 1 3 2 3 1 4 3 3 2 -
c2m16 - c2m17 98 0 0 0 0 0 0 0 0 0 -
c2m17 - c2m18 81 0 0 0 0 0 0 0 0 0 -
c2m18 - c2m19 57 0 0 0 0 0 0 0 0 0 -
c2m19 - c2m20 33 1 1 0 1 0 1 0 1 0 -
c2m20 - c2m21 15 0 0 1 0 0 0 0 0 0 -
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Table 7.13: Percent of times p-value < 0.001 for ten testing methods. Tests applied
to single-QTL situation; data simulated using QTL Cartographer; sample sizes 500
and 125. The LRT results are from QTL Cartographer. The statistics T1, and T2 are
based on b̂Q only, while the statistics J1 and J2 are used to construct joint tests for
b̂Q and p̂Q2. The columns marked ‘asy’ are based on an asymptotic null distribution,
and those marked ‘emp’ are based on an empirical null distribution obtained by the
permutation method.

(a) Backcross sample size n = 500 (single-QTL).
IM CIM RIM1

Testing asy asy asy emp asy emp asy emp asy emp True
Interval LRT LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 100 0 0 0 0 0 0 0 0 0 -
c2m2 - c2m3 100 0 0 0 0 0 0 0 0 0 -
c2m3 - c2m4 100 1 1 0 0 0 1 0 0 0 -
c2m4 - c2m5 100 0 0 0 0 0 0 0 0 0 -
c2m5 - c2m6 100 0 0 0 0 0 0 1 0 1 -
c2m6 - c2m7 100 100 100 95 12 15 4 0 1 0 -
c2m7 - c2m8 100 100 100 100 96 99 98 5 95 13 QTL 9
c2m8 - c2m9 100 66 72 35 21 6 0 0 0 0 -
c2m9 - c2m10 100 0 0 0 0 0 0 0 0 2 -
c2m10 - c2m11 100 0 1 0 1 0 0 0 0 0 -
c2m11 - c2m12 100 1 2 2 1 0 2 1 2 2 -
c2m12 - c2m13 99 1 1 1 0 0 1 1 0 0 -
c2m13 - c2m14 97 0 1 0 0 0 1 0 0 0 -
c2m14 - c2m15 87 0 1 0 0 0 2 0 0 0 -
c2m15 - c2m16 47 0 1 0 1 0 2 0 1 0 -
c2m16 - c2m17 23 1 1 1 1 1 1 1 1 1 -
c2m17 - c2m18 7 0 0 0 0 0 0 0 0 0 -
c2m18 - c2m19 3 0 0 0 0 0 0 0 0 0 -
c2m19 - c2m20 0 0 1 0 1 0 1 0 1 0 -
c2m20 - c2m21 0 1 2 0 2 0 2 0 2 0 -

(b) Backcross sample size n = 125 (single-QTL).
IM CIM RIM1

Testing asy asy asy emp asy emp asy emp asy emp True
Interval LRT LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 29 0 1 0 1 0 9 0 1 0 -
c2m2 - c2m3 49 3 6 0 0 0 16 0 1 0 -
c2m3 - c2m4 84 1 2 0 0 0 13 0 2 0 -
c2m4 - c2m5 98 1 7 1 0 1 23 0 3 0 -
c2m5 - c2m6 100 2 6 0 0 0 12 1 2 0 -
c2m6 - c2m7 100 66 76 0 1 0 32 1 1 0 -
c2m7 - c2m8 100 95 98 14 12 18 74 0 9 1 QTL 9
c2m8 - c2m9 100 18 20 6 1 0 11 0 0 0 -
c2m9 - c2m10 100 0 1 0 0 0 9 0 0 0 -
c2m10 - c2m11 89 2 6 0 1 1 10 2 1 2 -
c2m11 - c2m12 62 1 4 0 2 0 13 1 2 2 -
c2m12 - c2m13 38 2 5 1 2 0 10 0 3 1 -
c2m13 - c2m14 19 0 1 0 0 0 5 1 1 0 -
c2m14 - c2m15 7 0 6 0 1 0 16 0 1 0 -
c2m15 - c2m16 4 2 5 0 1 0 13 1 2 0 -
c2m16 - c2m17 2 0 3 0 0 0 16 0 5 0 -
c2m17 - c2m18 2 2 4 2 1 1 11 2 1 1 -
c2m18 - c2m19 2 2 3 0 0 0 11 2 0 0 -
c2m19 - c2m20 1 3 4 0 2 0 11 0 1 0 -
c2m20 - c2m21 1 1 3 0 0 0 13 0 0 1 -
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Simple interval mapping (IM) with the LRT was able to detect QTL but exhibited

severe ghosting everywhere. As pointed out by Zeng (1994), the fitting of extra

markers as cofactors in CIM helps to absorb background QTL effect thus enabling

better determination of QTL location with CIM than with IM. RIM1 exploits the

strengths of the CIM model by also fitting marker cofactors, and it adds putative

QTL in interval adjacent to the testing interval in order to reduce ghosting.

Tests based on the LRT, and tests based on T1 and J1, are all rough tests in the

sense that all of their assumed asymptotic properties may not fully hold for Normal

mixture models. Nevertheless, the results show that they can yield informative results

because they all have power to detect QTL. At sample size 2000, there was good

agreement between the asymptotic tests based on T1 and J1 respectively and the

corresponding permutation tests (based on T2 and J2).

The tests CIM (LRT) and CIM T1 tended to give similar results with strong (98%-

100%) power to detect the isolated QTL, severe ghosting in intervals adjacent to the

QTL and with little ghosting in intervals further away. The joint test J1 dramatically

reduced ghosting in CIM while retaining its power to detect QTL.

RIM1 out-performed CIM at sample sizes 500 and 2000 with virtually no ghosting

from tests T1 and J1 and power of 95% to 100%. While the joint test seemed to be

essential for reducing ghosting in CIM, it may be noted that the joint test was not

essential for reducing ghosting in RIM1. The simple test for QTL effect was enough

to reduce ghosting in RIM1. This indicates that the form of the RIM1 model is robust

against ghosting.

The tests CIM (LRT) and CIM T1 exhibited more power to detect QTL and more

stability at sample size 125 than the test RIM1 T1. However at this small sample size

ghosting all models experienced more false detections in intervals located far away

from the QTL. At sample size 125, the joint test J1 experienced almost complete

loss of power to detect QTL for both RIM1 and CIM. When we take another look
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at Figures 7.2 and 7.3, these results make sense. At sample size 125, the confidence

intervals for QTL location tended to stretch across the entire testing interval. The

empirical tests based on T2 and J2 also performed poorly at sample size 125. At small

sample size, the permutation tests were more sensitive to the significance level than

the asymptotic tests. Figure 7.13 illustrates that for small samples, the permutations

did not correctly represent the null hypothesis.

Sometimes, with real data there may be no option but to work with small sample

sizes. A QTL with high heritability or large effects may be easy detect and locate

with small sample sizes. However, one has to acknowledge that in most situations,

it may be unrealistic to expect to precisely estimate QTL location using very small

samples. If the sample size is extremely small it might be necessary to concentrate

on QTL detection and to de-emphasize the desire to find precise location.

With very small sample sizes it is helpful to select models having few parameters.

For example, one might consider fitting CIM instead of RIM1 or one might consider

fitting fewer cofactors. In our simulations, all available markers were used as cofactors

(that is, all markers except the ones that we conditioned on). This would not be an

ideal strategy when working with small sample sizes. It would be better use stepwise

regression or similar techniques to select a small subset of the available markers to

include as cofactors. There is also the problem of marker spacing. If map density

is high, then small sample sizes may not offer much chance to detect recombination

between marker and QTL as there may be too few recombinant individuals within the

sample. Therefore, for small sample sizes one might also consider using more widely

spaced markers.

None of the interval mapping models explored in this chapter included interactions

between QTL. Chapter 8 discusses how to include such interactions. However, it must

be noted that if the sample size is too small, it may not be beneficial to add extra

interaction terms to a CIM or RIM1 model.
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Figure 7.13: The empirical distribution of J2 = p̂Q2 (1 − p̂Q2) (̂bQ)2 for interval
c2m7 − c2m8 based on 1000 permutations. The original samples were the first
replicate at each sample size. These three original samples had a single QTL in
c2m7−c2m8 with J2 = 1.446. The permutations were designed to remove the effect
of this QTL. If the permutations correctly generated data under H0, then J2 should
always be close to zero. At sizes 500 and 125, the permutations gave more stable
results with CIM than with RIM1. The plots show that the permutations worked
best when the original sample size was large.
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7.2 The Multi-QTL Situation

It is useful to examine the behaviour of RIM1 and CIM and the performance of our

proposed hypothesis test in a situation where the trait is controlled by multiple QTL.

The QTL Catrographer module Rcross was used to simulate B1 backcross samples

in the multiple QTL situation. In Rcross, Haldane’s map function was assumed and

the trait values are were determined using the Cockerham (1954) genetic model.

The simulations were based on the same marker-map that was used in our single-

QTL situation. The genetic map in Figure 7.1 was modified by adding ten extra

QTL (in addition to the QTL named QTL 9 ), giving eleven QTL altogether. Figure

7.14 shows the resulting genetic map. The QTL locations were chosen in an ad hoc

manner, but the aim was to have QTL with a variety of sizes and directions of effects.

Likewise, the QTL locations were chosen to make QTL detection potentially difficult.

For example, one QTL was made to coincide with a marker and two QTL were placed

in adjacent intervals. Table 7.14 lists the full specification of QTL effects and locations

used for these simulations. The heritability of the trait was set to 1/2, causing the

error variance (σ2) to be equal to overall genetic variance. The expected value of σ2

was approximately equal to 10.22 for these samples.

Table 7.14: Multi-QTL case: QTL locations and effects used for simulations. The
parameters d0 and a0 were input into QTL cartographer and QTL Cartographer
calculated the genotypic values of QQ, Qq and qq as uQQ = a0 − 1

2d0, uQq = −1
2d0

and uqq = −a0 − 1
2d0, respectively.

Q chromosome M N rMQ rQN Additive Dominance bQ = (µQQ − µQq)
a0 = aQQ d0 = −2dQQ = (a0 − d0)

QTL 1 1 c1m7 c1m8 0.0305 0.0641 2.52 0.20 2.32
QTL 2 2 c2m11 c2m12 0.0476 0.0476 0.99 −0.38 1.37
QTL 3 2 c2m15 c2m16 0.0668 0.0275 −1.38 −0.47 1.85
QTL 4 1 c1m1 c1m2 0.0574 0.0376 0.60 −2.41 3.01
QTL 5 1 c1m13 c1m14 0.0396 0.0554 0.48 0.82 −0.34
QTL 6 2 c2m4 c2m5 0.0436 0.0515 0.71 0.14 0.57
QTL 7 1 c1m5 c1m6 0.0569 0.0380 0.45 0.45 0.00
QTL 8 2 c2m3 c2m4 0.0781 0.0148 0.92 −0.37 1.29
QTL 9 2 c2m7 c2m8 0.0309 0.0637 3.14 0.56 2.58
QTL 10 2 c2m19 c2m20 0.0000 0.0906 0.70 0.39 0.31
QTL 11 2 c2m13 c2m14 0.0668 0.0275 1.38 0.47 0.91
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Figure 7.14: Multi-QTL, genetic map on which simulations were based.

The main aim was to scan chromosome two in search of QTL. Another aim was

to examine how detection of QTL 9 (an isolated QTL with good-sized effects) is

affected by the presence of the other QTL. The results of hypothesis testing based

on CIM and RIM1 are presented in Table 7.15, for sample sizes five hundred and two

thousand.

At sample size 2000, all models had good power to detect QTL 9. In the single-

QTL case, moving from sample size 2000 to 500 caused a drop in power of around

five percentage points. In the multi-QTL case, moving from sample size 2000 to 500

caused a drop in power of around 20 percentage points. This indicates that if a trait

is controlled by multiple QTL then a larger sample size may be required for detection

than when only one QTL is involved. The tests CIM (LRT) and CIM T1 showed

highest rate of detection and the highest false positive error rates.
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Table 7.15: Percent of times p-value < 0.001 for nine testing methods. Tests
applied to multi-QTL situation; 100 replicate B1 backcross samples for n =
2000, 500 and 125; data simulated using QTL Cartographer. The LRT results are
from QTL Cartographer. The statistics T1, and T2 are based on b̂Q only, while the
statistics J1 and J2 are used to construct joint tests for b̂Q and p̂Q2. The columns
marked ‘asy’ are based on an asymptotic null distribution, and those marked ‘emp’
are based on an empirical null distribution obtained by the permutation method.

(a) CIM and RIM1 with n = 2000 and multiple QTL.
CIM RIM1

Testing asy asy emp asy emp asy emp asy emp True
Interval LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 2 2 0 0 0 2 1 0 0 -
c2m2 - c2m3 1 2 2 2 1 0 0 0 0 -
c2m3 - c2m4 100 100 96 62 33 38 38 31 38 QTL 8
c2m4 - c2m5 99 99 98 74 60 54 53 49 48 QTL 6
c2m5 - c2m6 2 3 0 3 1 1 0 0 0 -
c2m6 - c2m7 100 98 96 40 24 5 5 5 5 -
c2m7 - c2m8 100 100 100 97 97 93 93 90 92 QTL 9
c2m8 - c2m9 41 46 38 31 12 0 0 0 0 -
c2m9 - c2m10 1 4 0 4 0 2 0 1 0 -
c2m10 - c2m11 25 36 13 28 3 7 4 5 6 -
c2m11 - c2m12 88 97 77 96 62 68 61 66 52 QTL 2
c2m12 - c2m13 38 51 36 47 31 5 4 4 5 -
c2m13 - c2m14 49 60 33 52 19 29 18 16 19 QTL 11
c2m14 - c2m15 14 13 11 7 1 17 17 3 16 -
c2m15 - c2m16 47 58 42 50 24 34 24 26 14 QTL 3
c2m16 - c2m17 28 35 8 23 5 23 5 21 5 -
c2m17 - c2m18 0 0 0 0 0 0 0 0 0 -
c2m18 - c2m19 1 6 0 5 0 5 0 5 0 c2m19 = QTL 10
c2m19 - c2m20 2 7 0 5 0 6 0 5 0 c2m19 = QTL 10
c2m20 - c2m21 0 2 0 2 0 2 0 2 0 -

(b) CIM and RIM1 with n = 500 and multiple QTL.
CIM RIM1

Testing asy asy emp asy emp asy emp asy emp True
Interval LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 0 0 0 0 0 0 0 0 0 -
c2m2 - c2m3 0 1 0 1 0 0 0 0 0 -
c2m3 - c2m4 23 38 20 21 10 32 12 19 9 QTL 8
c2m4 - c2m5 27 42 14 23 8 32 4 19 8 QTL 6
c2m5 - c2m6 0 0 0 0 0 3 3 0 2 -
c2m6 - c2m7 41 49 16 24 5 14 1 10 15 -
c2m7 - c2m8 84 92 74 71 62 78 32 61 40 QTL 9
c2m8 - c2m9 7 8 3 2 1 0 0 0 2 -
c2m9 - c2m10 0 1 0 1 1 1 0 1 1 -
c2m10 - c2m11 5 8 2 3 2 7 3 3 2 -
c2m11 - c2m12 13 27 18 23 11 24 8 22 11 QTL 2
c2m12 - c2m13 5 12 2 9 7 8 3 6 5 -
c2m13 - c2m14 11 19 3 13 5 15 3 10 4 QTL 11
c2m14 - c2m15 0 1 2 1 0 5 5 2 0 -
c2m15 - c2m16 3 4 3 2 1 4 3 2 1 QTL 3
c2m16 - c2m17 1 3 2 1 1 3 2 1 1 -
c2m17 - c2m18 0 0 0 0 0 0 0 0 0 -
c2m18 - c2m19 1 5 0 4 0 5 0 4 0 c2m19 = QTL 10
c2m19 - c2m20 0 1 0 1 0 2 0 1 0 c2m19 = QTL 10
c2m20 - c2m21 1 2 0 2 0 2 0 2 0 -
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Table 7.15: Continued: percent of times p-value < 0.001 for nine testing methods.

(c) CIM and RIM1 with n = 125 and multiple QTL.
CIM RIM1

Testing asy asy emp asy emp asy emp asy emp True
Interval LRT T1 T2 J1 J2 T1 T2 J1 J2 QTL
c2m1 - c2m2 0 1 0 1 0 11 0 2 0 -
c2m2 - c2m3 2 3 0 0 0 14 0 1 0 -
c2m3 - c2m4 1 8 0 0 0 16 0 0 1 QTL 8
c2m4 - c2m5 9 16 2 2 2 21 1 3 1 QTL 6
c2m5 - c2m6 1 5 0 0 0 15 0 1 2 -
c2m6 - c2m7 8 15 0 1 0 22 1 3 0 -
c2m7 - c2m8 15 27 2 4 1 29 0 4 0 QTL 9
c2m8 - c2m9 5 8 0 0 0 13 0 1 0 -
c2m9 - c2m10 0 1 0 0 0 9 0 0 0 -
c2m10 - c2m11 1 6 0 1 0 10 1 1 1 -
c2m11 - c2m12 2 9 0 0 0 13 1 0 1 QTL 2
c2m12 - c2m13 4 7 1 2 1 11 4 2 2 -
c2m13 - c2m14 2 5 0 1 0 10 0 1 0 QTL 11
c2m14 - c2m15 1 4 0 0 0 15 0 0 0 -
c2m15 - c2m16 3 5 0 1 0 12 1 2 0 QTL 3
c2m16 - c2m17 1 9 0 1 0 18 0 2 0 -
c2m17 - c2m18 0 4 1 0 2 13 2 1 0 -
c2m18 - c2m19 2 4 0 0 0 11 1 0 0 c2m19 = QTL 10
c2m19 - c2m20 2 4 0 1 0 14 1 2 0 c2m19 = QTL 10
c2m20 - c2m21 1 3 0 1 0 15 1 2 1 -

In general, the power to detect QTL was lower in the multi-QTL situation than in

the single-QTL situation. None of the methods detected QTL 10. However the lack

of detection of QTL 10 may not be due to the fact that this QTL lies on a marker. It

is most likely due to the fact that while the background error was large (σ2 = 10.22),

QTL 10 had negligible effects with bQ = 0.31. It is certainly possible to detect QTL

that lie on a marker. For example, Table 8.4 shows a real-data situation in which

several QTL were found to coincide with markers.

Although chromosome 1 was not scanned for QTL, it is interesting to note that

QTL 7, which has bQ = 0, could not have been detected using a backcross design.

The next chapter discusses how RIM1 may be applied to other breeding designs.
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Chapter 8

Other Breeding Designs and Real

Data Applications

8.1 Including interactions between QTL

Working with contrast matrices allows us to easily specify a variety of linear models to

explain how genotypes at different loci combine to determine trait value. To include

interaction effects, we choose appropriate contrasts of the QTL genotypic means to

extract the desired effects. These contrasts become additional columns of C and must

be chosen such that the rank C is equal to the number of columns of C. For example,

to include all possible interactions in the backcross model, we define a new contrast

matrix C of the form

C = (C•1, . . . ,C•4,C•5, . . . ,C•t),

where (t − 4) is the number of interaction effects being fitted, and C•1, . . . ,C•4 are

the same as in Equation (5.3). We also have additional elements in the parameter b,

so that

b = (b0, . . . , b3, b4, . . . , bt−1).

The rest of the model remains unchanged.
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8.2 Application to Other Inbred Designs

The backcross and F2, as well as other breeding designs may be implemented in

RIM1 simply by specifying the matrix of category identities (Z), the QTL contrast

matrix (C), the parameters associated with genotypic effects (β) and the matrix of

conditional QTL genotype probabilities (W). The rest of the machinery remains

unaltered. Section 8.2.1 illustrates the details of the implementation of RIM1 for F2

linecross data.

The backcross and F2 designs involve two alleles at each locus and so our discus-

sions, thus far, have been restricted to bi-allelic loci. However, the RIM1 model also

applies to inbred designs where loci can have more than two alleles. Such designs

are often used in practice. For example, the mouse consortium work directed by

Churchill uses eight-way recombinant inbred (RI) lines created from eight commonly

used mouse strains (see Williams et al. 2002). These eight-way RI strains exhibit a

mix of alleles at each locus. Section 8.2.2 explains how RIM1 may be adapted to suit

the situation of multiple alleles at each locus.
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8.2.1 Application to the F2

Let us first configure the matrix of conditional QTL genotype probabilities to reflect

the properties of the F2 design. The definitions of the conditional F1 transmission

probabilities pL1, pL2, pQ1, pQ2 and pR1, pR2 remain as given in Equations (5.8) to

(5.13).

We now need to determine how these transmission probabilities combine to form

conditional genotype probabilities in the F2. The easiest way to do this is to work with

the recombination probabilities π00, π01, π10 and π11, which are defined in Equations

(2.1) to (2.4). For example, if an F2 individual has genotype MMQQNN then both

F1 parents had to transmit the haplotype MQN . The probability that an F1 parent

transmits MQN is equal to π00/2. Therefore, π00/4 represents the probability that

an F2 individual has genotype MMQQNN .

Table 8.1 displays marginal genotype probabilities for the F2, where the loci under

consideration are M , Q and N . By definition, we have the relationships given in

Equations (8.1) and (8.2) and the conditional genotype probabilities in Table 8.2

follow naturally.

pQ1 = P (F1 transmits Q | F1 transmits MN) =
π00

1− rMN

= 1− π11

1− rMN

. (8.1)

pQ2 = P (F1 transmits Q | F1 transmits Mn) =
π01

rMN

= 1− π10

rMN

. (8.2)

Therefore, from Table 8.2, we have simple expressions for the conditional probability

P (xQ|xM , xN). Analogous expressions for P (xL|xK , xM) and P (xR|xN , xO) are easy

to derive. By assuming independent crossovers, we calculate wik as given in Equation

(5.20). This completes the specification of W for the F2 design.
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Table 8.1: Marginal genotype probabilities in an F2 population for a QTL (Q) and
two flanking markers (M and N). The recombination probabilities π11, π10, π01 and
π00 are defined in equations (2.1) to (2.4), with A = M and B = N , and rMN is the
recombination fraction between M and N .
xM , xN P (xM , xN ) P (QQ, xM , xN ) P (Qq, xM , xN ) P (qq, xM , xN )
MMNN 0.25 (1− rMN )2 0.25 π2

00 0.5 π00π11 0.25 π2
11

MMNn 0.5 rMN (1− rMN ) 0.5 π00π01 0.5 (π00π10 + π01π11) 0.5 π10π11

MMnn 0.25 r2
MN 0.25 π2

01 0.5 π01π10 0.25 π2
10

MmNN 0.5 rMN (1− rMN ) 0.5 π00π10 0.5(π00π01 + π10π11) 0.5 π01π11

MmNn 0.5 (1− rMN )2 0.5 π00π11 0.5 (π2
00 + π2

01) 0.5 π10π01

+ 0.5 r2
MN + 0.5 π10π01 + 0.5 (π2

11 + π2
10) + 0.5 π00π11

Mmnn 0.5 rMN (1− rMN ) 0.5 π01π11 0.5 (π00π01 + π11π10) 0.5 π00π10

mmNN 0.25 r2
MN 0.25 π2

10 0.5 π01π10 0.25 π2
01

mmNn 0.5 r(1− rMN ) 0.5 π10π11 0.5 (π00π10 + π01π11) 0.5 π00π01

mmnn 0.25 (1− rMN )2 0.25 π2
11 0.5 π00π11 0.25 π2

00

Table 8.2: Conditional QTL genotypic probabilities in the F2 in terms of the con-
ditional gene-transmission probabilities pQ1 and pQ2.

xM , xN P (xQ = QQ|xM , xN ) P (xQ = Qq|xM , xN ) P (xQ = qq|xM , xN )

MMNN p2
Q1 2pQ1(1− pQ1) (1− pQ1)2

MMNn pQ1 pQ2 pQ2(1− pQ1) + pQ1(1− pQ2) (1− pQ1)(1− pQ2)
MMnn p2

Q2 2pQ2(1− pQ2) (1− pQ2)2

MmNN pQ1(1− pQ2) 1− pQ1 − pQ2 + 2pQ1 pQ2 pQ2(1− pQ1)

MmNn
(1− rMN )2pQ1(1− pQ1)
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The RIM1 model fits three QTL. Consequently, the F2 model has are t = 27

possible QTL genotypes. The matrix of category identities Z is n × 27, where n is

the number of observed individuals. Likewise, the contrast matrix C is 27× t′ where

t′ is the number of contrasts being fitted. Now, we will briefly look at choosing QTL

contrasts for use with the F2 model.

In the F2 there are three possible genotypes at each locus. Therefore, at most two

contrasts can be fitted to extract the main effects at each locus. The QTL contrast

matrix, C, codes the intercept, main QTL effects and any interactions between QTL

that we choose to fit. Suppose that we wish to fit only the main effects, then, for the

RIM1 model, C will have 27 rows and seven columns. Refer to locus L, Q and R, as

the first, second and third QTL locus, respectively. To fit only the main effects, let

Ck 1 = 1 and for p = 1, 2, 3, define

Ck (2p) =





1, if QTL genotype k is homozygous-high at the pth QTL locus

0, if QTL genotype k is heterozygous at the pth QTL locus

−1, if QTL genotype k is homozygous-low at the pth QTL locus.

Ck (2p+1) =





1, if QTL genotype k is homozygous-high at the pth QTL locus

−1, if QTL genotype k is heterozygous at the pth QTL locus

1, if QTL genotype k is homozygous-low at the pth QTL locus.

Therefore, C•1 = 127 and for p = 1, 2, 3, the column vector C•(2p) is a vector of

contrast coefficients for extracting the additive effect of the homozygous-high at locus

p, while C•(2p+1) is a vector of contrast coefficients for extracting its dominance effect.

The parameter vector b is associated with the columns of C, where

b = (b0, b1, b2, b3, b4, b5, b6) = (b0, aL, dLL, aQ, dQQ, aR, dRR),

with aL = 1
2
aLL, aQ = 1

2
aQQ and aR = 1

2
aRR.
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As with the backcross model, the matrix X2 codes genotypes at selected flanking

markers, which are included to control the genetic background. As before, a parameter

vector b? is associated with its columns. The matrix X2 may also contain non-genetic

factors. This completes the RIM1 model-specification for the F2 breeding design.

8.2.2 Designs involving loci with more than two alleles

The RIM1 model readily extends to situations where more than two alleles may be

present at any locus in the data. It places no restriction on the number of alleles at

each locus because it is not defined in terms of allele counts. Rather, it is defined

in terms of genotype categories and genotype probabilities (which are functions of

recombination probabilities).

It is the structure of the breeding design and the number of distinct genotypes

which determine the dimensionality and content of each matrix: Z, C, β = (b,b?)T

and W. The number of rows of C is determined by the number of QTL genotypes.

The number of columns of C and the number of elements in b is determined by the

number of QTL effects that we want to fit. The number of rows of W is determined

by the number of distinct marker genotypes and the number of columns of W by

the number of distinct QTL genotypes. Once the structures of these matrices have

been determined, the practical aspect of programming this extension to RIM1 may

be addressed using the modular strategy described in last paragraph of Section 5.4.4.

The formulae for calculation the MLEs of β and σ will still be as given in Equa-

tions 5.67 and 5.68, respectively. However, the new structure of W will require new

formulae for the MLEs of the mixing parameters because, as described on page 101

below Equation 5.69, any formula for calculation φ̂ will depend on both the breeding

design and the genetic mapping function being used.

When we consider implementing an extension involving more than two alleles at

each locus, we must also consider what impact this will have on our information
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matrix calculations. The overall form of the Fisher information matrix, as given in

Equation (5.97), will not change. However, more effort may be needed to implement

the formula because the last block, Iφφ, of the information matrix requires calculating

a hessian involving the mixing parameters (see Equations 5.97 and 5.36). Like W, this

hessian will depend on both the breeding design and the genetic mapping function,

and its complexity will depend on the complexity of W.

We must also be aware that with more than two alleles at each locus, the numbers

of marker and QTL genotypes involved may be very large indeed and so we need to

make sure that the sample size is large enough to cater for the increase in the number

of parameters to be estimated.

8.3 Applications to real data

In the previous chapter, the RIM1 model was applied to simulated backcross data.

The results showed that the methodology proposed in Chapter 5 lead to improved

tests for QTL. It is also important to assess the behaviour of RIM1 when applied to

real data. Therefore the RIM1 model was also applied to two, publicly available, real

datasets:

• The male F2 mouse dataset of Horvat and Medrano (1995), which is distributed

with QTL Cartographer.

• The backcross drosophila dataset, BM2, of Zeng et al. (2000), obtained from

the URL ftp://statgen.ncsu.edu/pub/qtlcart/data/zengetal99/.

There are several advantages to using public datasets to assess our new methodology.

The main advantage is that it allows us to compare results from our new methodology

with published QTL mapping results for the same datasets. This provides a rough

benchmark for assessing the performance of the new method.
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8.3.1 Real F2 Application

The aim of Horvat and Medrano (1995) was to locate the ‘high growth’ locus, a region

in the mouse genome that increases both weight gain and body size in mature mice.

Analysis was restricted to chromosome 10 because of prior research. They developed

a mouse dataset based on 190 male individuals from an F2 population. The trait was

weight gain (in grams) from 14 to 63 days of age.
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Figure 8.1: Horvat and Medrano mouse map.

The genotypes of the mice were recorded for nine markers on chromosome 10. The

nine markers are D10Mit31, D10Mit42, Igf1, D10Mit9, D10Mit10, D10Mit41,

D10Mit12, D10Nds2 and D10Mit14. Figure 8.1 shows the corresponding marker

genetic map.

In these F2 males, Horvat and Medrano found a high growth (hg) QTL between

D10mit and D10mit12, located at distance of 1.5 centi-Morgans distal to D10mit41.
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In their QTL detection methodology, they took a logarithmic transformation of the

trait values. Then they used the MAPMAKER/QTL 1.1 software (of Lincoln et al.,

1992) to perform Lander-Botstein interval mapping based on the transformed trait.

Their hypothesis tests were based on the LOD ratio statistic, which differs from the

likelihood ratio test statistic by a constant. They used the permutation method of

Churchill and Doerge (1994) to obtain an empirical estimate of the null distribution

of the LOD statistic. From this distribution, they determined empirical threshold

values for QTL detection.

Lander-Botstein Interval mapping (also called simple interval mapping) does not

fit marker cofactors and it does not assume a mixture distribution for the trait.

Rather, it a assumes a single Normal distribution. As Horvat and Medrano used

simple interval mapping, it was necessary for them to transform the trait values to

remove or reduce non-normality. In contrast, our new method, RIM1 assumes a

mixture distribution for the trait values. Therefore, for this dataset, it was neither

necessary nor desirable for us to make a normalizing transform (or change of scale).

Instead, we directly analysed the trait values (weight gain, in grams, from 14 to 63

days of age). Details of configuring the data for analysis with RIM1 are given in

Appendix B.7.

The availability of the Fisher information matrix within the RIM1 procedure is

advantageous because it dramatically reduces the computational burden of interval

mapping. For example, consider the permutation tests carried out by Horvat and

Medrano on this mouse dataset. There are eight marker intervals in this dataset.

In each interval, calculation of the LOD ratio statistic (LOD score) requires two

maximum likelihood calculations. This is because the likelihood must be calculated

under both the null and alternative hypotheses. Each maximum likelihood calculation

involves an iterative computation.

To analyse the eight marker intervals, Horvat and Medrano, carried out 1000
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permutations. This required 1616 maximizations of the likelihood function (16 for the

original dataset and 1600 for the re-samples). In contrast, the RIM1 method required

only eight maximizations, one for each testing interval. Note that these tests are

based directly on the MLEs and their standard errors, and that the standard errors

are obtained by direct calculation of the Fisher information matrix using the formula

given in Equation (5.97).

Table 8.3 displays the results of applying RIM1 to the Horvat and Medrano mouse

data. RIM1 detected a hg QTL between D10MIT41 and D10MIT12 at significance

level 0.01 (p-value for T1(âQ) = 0.0013, p-value for Jc = 0.0007). The MLE for the

recombination fraction between the QTL and marker M = D10Mit41 was rMQ =

0.01496. This corresponds genetic distance of 1.51 centi-Morgans distal to D10Mit41.

A 99% confidence interval for the distance (d̂ist(MQ)) between the D10Mit41 locus

and the hg QTL is (0.3, 2.7), which is 2.4 centi-Mogans wide. Note that, with less

computational effort, the RIM1 procedure lead to the same MLE as that obtained by

Horvat and Medrano (1.5 cM to one decimal place).

Table 8.3: Results of applying RIM1 to the F2 Mouse dataset of Horvat and Medrano
(1995). Shown: estimated additive (âQ) and dominance (d̂QQ) effects, together
with standard errors (SD); p-values of test statistics T1(âQ), T1(d̂QQ), for non-zero
effect; p-value of test Jc for whether QTL is interior to the interval; the estimated
error variance (σ̂2); inter-locus distances dist(MN), d̂ist(MQ) in centi-Morgans.
Asterisks mark significant p-values.

Interval MLE SD MLE SD P-value P-value MLE Actual MLE P-value

of of dist d̂ist

M – N âQ âQ d̂QQ d̂QQ T1(âQ) T1(d̂QQ) σ̂2 MN MQ Jc(p̂Q2)
D10Mit31 – D10Mit42 −1.17 0.55 −0.13 0.31 0.033* 0.682 8.36 9.1 0.0 0.493
D10Mit42 – Igf1 1.81 0.79 0.97 0.45 0.021* 0.029 8.36 4.2 0.0 0.495
Igf1 – D10Mit9 1.15 1.51 −1.10 0.78 0.446 0.158 8.36 1.3 0.0
D10Mit9 – D10Mit10 −3.29 1.74 −0.51 0.88 0.058 0.560 8.36 1.3 0.7
D10Mit10 – D10Mit41 2.24 1.35 1.17 0.71 0.097 0.100 8.29 1.6 1.6
D10Mit41 – D10Mit12 4.78 1.50 1.39 0.75 0.001** 0.063 7.71 3.3 1.5 0.001***
D10Mit12 – D10Nds2 0.05 0.91 −0.14 0.44 0.952 0.758 7.70 2.2 2.2
D10Nds2 – D10Mit14 −1.32 44.89 0.38 22.45 0.977 0.987 8.16 8.3 8.3
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Doerge et al. (1997) also analysed the data of Horvat and Medrano. Assuming

that the quoted threshold value of 9.68 relates to relates to H1:H3, the results in

their Table 4, aggress with the results shown in Table 8.3 of this thesis: (a) a single

QTL found; (b) in the same interval D10mit41 − D10mit12; (c) in the same place

(with Doerge et al. giving only the grid point closest to the position estimated by

RIM1). The hypothesis from Doerge et al. Table 4 that is being tested in Table 8.3,

is H0 : a = 0 and d = 0 versus H4 : at least one of a and d is non zero. That is, H0

versus (H1 or H2 or H3).

Despite the relatively small sample of 190 individuals, this QTL was easy to

detect because it is an isolated QTL with fairly large effects. The estimated additive

allelic effect was aQ = 4.78 grams which implies that the additive genotypic effect is

aQQ = 9.56 grams.

8.3.2 Real Backcross Application

Zeng et al. (2000) used QTL mapping to explore the genetic basis for observed

differences, in a morphological character, between males from two closely related

Drosophila species: Drosophila mauritiana and Drosophila simulans. The morpho-

logical trait studied was the size and shape of the posterior lobe of the male genital

arch. This trait was quantified as the average over both sides of the first principal

component of the Fourier coefficients (see Kuhl and Giardina, 1982) of the posterior

lobe. The resulting trait values, denoted PC1, were used together with marker data

in order to map QTL controlling this morphological character. The PC1 trait assay

methodology is described in Liu et al. (1996), and the techniques used for genetic-

marker data acquisition is described in Zeng et al. (2000).
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Four backcross samples were created and analysed by Zeng et al. (2000):

BM1 Backcross: F1 × D. mauritiana, 192 individuals;

BM2 Backcross: F1 × D. mauritiana, 299 individuals;

BS1 Backcross: F1 × D. simulans, 186 individuals;

BS2 Backcross: F1 × D. simulans, 288 individuals.

(Note: F1 is D. mauritiana × D. simulans.)

We do not aim to re-analyse all of these samples. Rather, we aim to illustrate the

results of applying RIM1 to any real backcross sample. Therefore, in this section, we

illustrate the behaviour of RIM1 by applying it to only one of these samples: BM2.

The linkage map of markers for sample BM2 contained 42 loci having the names

and locations listed below.

1. The first six markers are located on chromosome X and are named: ewg, w,

RpS6, v, Sd, run. The distances (in cM) between adjacent markers in this

linkage group are: 3.60, 10.60, 9.20, 17.20, 18.70.

2. The next 13 markers are located on chromosome 2 and are named: gl, Pgk,

Cg25C, Gpdh, ninaC, Glt, Mhc, DoxA2, DucC, sli, Egfr, twi, zip. The distances

(in cM) between adjacent markers in this linkage group are: 6.98, 10.10, 4.94,

6.51, 6.19, 33.24 3.90, 4.55, 42.06, 37.51, 21.19, 3.71, 7.03.

3. The next 22 markers are located on chromosome 3 and are named: Lsp1, ve,

Acr64B, Dbi, h, CycA, fz, Eip71CD, tra, rdgC, 5-HT2, Antp, ninaE, Fas1, Mst,

Odh, Tub85E, hb, Rox8, Ald, Mlc1, jan, Ef1d2. The distances (in cM) between

adjacent markers in this linkage group are: 4.99, 9.34, 6.97, 7.44, 14.46, 6.79,

3.55, 6.32, 11.86, 4.58, 6.85, 6.35, 11.79, 12.88, 9.15, 3.30, 7.98, 13.09, 10.04,

3.70, 9.79, 3.43.
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Of the 299 cases in sample BM2, four cases had a missing value for the trait PC1,

and 89 cases had a missing genotype at least one marker locus. The paper by Zeng

et al. (2000) does not document their strategy for handling cases with missing marker

and/or trait data.

There are usually two options when working with missing data: either omit cases

or replace the missing data with imputed data. In QTL mapping, we are trying to

detect effects which may be very weak and subtle, and putting imputed trait data

into the method is too great a risk. Therefore, it is best to omit cases with missing

trait data.

Where marker data are missing, we may either replace them with imputed data or

we may omit the corresponding record(s) from the analysis. One method for imputing

missing marker data for an individual is to replace the missing data with their condi-

tional expectations given all the observed marker genotypes for that individual (Jiang

and Zeng, 1997). Another method is to randomly assign a genotype by sampling from

the conditional distribution of the individual’s missing marker genotype given his/her

observed trait and marker data (Yi et al., 2003). This conditional distribution may

be estimated from the E-step in an implementation of the EM algorithm.

When omitting cases with missing marker data, one option is to throw away all

such cases. Another option is to include those cases when considering intervals on

chromosomes where the marker data are complete (or at the very least, only when

testing several intervals away from where the marker data are missing).

For simplicity, all records having missing marker and/or trait data were removed

from the BM2 sample and the RIM1 model was implemented using the remaining 210

records. All available background markers were included as cofactors in the model.

However, no interactions between QTL were modelled. RIM1 is a multi-QTL model

because it fits three QTL, one in a central testing interval and two background QTL,

one on each side of the testing interval. The three linkage groups were scanned for
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QTL by sliding the testing interval along each linkage group, and re-fitting RIM1

for each testing interval. Table 8.4 shows the results of applying RIM1 to the BM2

backcross sample. In Table 8.4, the column entitled ‘Zeng d̂ist(Q)’ shows the locations

of QTL found by Zeng et al. (2000) using a method called Multiple Interval Mapping.

Multiple Interval Mapping (MIM) is a stepwise selection model proposed by Kao

et al. (1999) as an extension to Composite Interval Mapping. MIM starts with a set

of QTL at locations determined by prior CIM modelling, and builds a final model

through several rounds of forward/backward selection. Hypothesis testing with MIM

is based on the LOD score statistic with critical values calculated either from the

traditional LOD cut-off point of 4.4, or from permutation tests. Using the BM2

sample, and fitting MIM with epistatic interactions between QTL, Zeng et al. found

15 QTL. It is useful to compare our RIM1 results with those from MIM because both

models fit multiple QTL.

Applying RIM1 to BM2 (without any interaction terms) revealed 18 QTLs having

significant effects at the 5% significance level. However, only 12 of these effects were

significant at the 0.1% significance level (see Table 8.4). Eleven of the QTL detected

by RIM1 were in similar locations to those found by Zeng et al.. The QTL effects b̂Q

displayed in Table 8.4 are opposite in sign to those presented by Zeng et al. because

the genotypes were coded differently. In RIM1, the homozygous mauritiana genotype

was coded as QQ = 1 and the heterozygous F1 genotype as Qq = 0.

Although 18 significant QTL effects were found, there was not sufficient evidence

that they were all interior to their respective testing intervals. In the joint test

for QTL effect and location, only seven (7) QTL were found to be interior to the

corresponding testing interval and only two (2) of these were significant at the 0.1%

significance level. These results suggest that while a sample of size 210 was useful for

detecting QTL, the sample size was too small to precisely determine QTL location.
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Table 8.4: RIM1 results for the Drosophila dataset BM2 of Zeng et al. (2000). Cases
with missing marker/trait data removed (n = 210). The MLE b̂Q and its standard
error (SD) are in PC1 units; p-value of test T1(̂bQ) for non-zero effect; p-value of test
Jc(p̂Q2) for whether QTL is interior to interval; asterisks mark significant p-values;
map distances dist(M), d̂ist(Q) in centi-Morgans. The column Zeng d̂ist(Q) shows
the locations of QTL found by Zeng et al.
Interval MLE SD×103 P-value Actual Zeng MLE P-value 99.9% CI for

M – N b̂Q×103 of b̂Q T1 (̂bQ) dist(M) d̂ist(Q) d̂ist(Q) Jc(p̂Q2) MLE d̂ist(Q)

ewg – w −1.67 0.47 0.000 *** 0.00 1 0.00 0.498 [0.00, 0.02]
w – RpS6 1.24 1.18 0.295 3.60 3.60
RpS6 – v −2.32 0.46 0.000 *** 14.20 20 18.51 0.002 ** [16.17, 20.53]
v – Sd −0.14 0.43 0.742 23.40 32.51
Sd – run 0.85 0.28 0.003 ** 40.60 47.53 0.491 [47.51, 47.53]

gl – Pgk −1.50 0.41 0.000 *** 0.00 2.87 0.002 ** [0.00, 6.08]
Pgk – Cg25C −0.16 0.57 0.774 6.98 10 14.93
Cg25C – Gpdh 0.01 0.55 0.981 17.08 17.08
Gpdh – ninaC −2.19 0.55 0.000 *** 22.02 26 24.52 0.001 *** [23.02, 25.95]
ninaC – Glt 0.14 0.45 0.758 28.53 31.82
Glt – Mhc −0.92 0.87 0.286 34.72 46.85
Mhc – DoxA2 −0.97 0.54 0.070 67.96 69 68.04
DoxA2 – DucC −0.67 0.54 0.211 71.86 72.89
DucC – sli −1.95 0.38 0.000 *** 76.41 82.13 0.490 [82.13, 82.13]
sli – Egfr −1.95 0.38 0.000 *** 113.92 114 113.92 0.458 [113.92, 113.94]
Egfr – twi 2.25 0.49 0.000 *** 135.11 135 135.11 0.496 [135.11, 135.11]
twi – zip −2.70 0.39 0.000 *** 138.82 143 139.15 0.013 * [139.03, 139.23]

Lsp1 – ve −0.31 0.39 0.414 0.00 0.00
ve – Acr64B −0.26 0.65 0.684 4.99 5 4.99
Acr64B – Dbi −2.15 0.51 0.000 *** 14.33 17 15.61 0.004 ** [14.33, 17.18]
Dbi – h −1.62 0.44 0.000 *** 21.30 24.15 0.001 ** [22.36, 25.81]
h – CycA −1.20 0.54 0.026 * 28.74 28.75 0.430 [28.74, 28.87]
CycA – fz −2.70 0.59 0.000 *** 43.20 47 44.41 0.000 *** [43.24, 45.58]
fz – Eip71CD 0.08 0.70 0.910 49.99 51.25
Eip71CD – tra 0.11 0.53 0.833 53.54 55.57
tra – rdgC 0.32 0.64 0.617 59.86 63.05
rdgC – 5-HT2 0.40 0.59 0.496 71.72 71.72
5-HT2 – Antp −3.48 0.75 0.000 *** 76.30 83 77.69 0.497 [77.69, 77.69]
Antp – ninaE −0.12 0.68 0.863 83.15 84.28
ninaE – Fas1 −0.44 0.44 0.320 89.50 91.25
Fas1 – Mst −0.43 0.48 0.369 101.29 101.29
Mst – Odh −0.50 0.48 0.303 114.17 117 114.17
Odh – Tub85E −1.49 0.70 0.034 * 123.32 123.59 0.495 [123.59, 123.59]
Tub85E – hb 0.11 0.71 0.873 126.62 127.21
hb – Rox8 −1.17 0.50 0.019 * 134.60 141 135.38 0.493 [135.38, 135.38]
Rox8 – Ald 0.91 0.82 0.267 147.69 148.16
Ald – Mlc1 0.89 0.58 0.127 157.73 157.73
Mlc1 – jan −1.52 0.75 0.043 * 161.43 168 161.46 0.076 [161.43, 161.53]
jan – Ef1d2 −1.30 0.45 0.004 ** 171.22 171.22 0.474 [171.22, 171.22]
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In Chapter 7, simulated backcross data revealed that, for small sample sizes, the

information matrix tends to underestimate the standard errors. Also, in intervals

without QTL, lack of identifiability of pQ2 breaks down the ability of the information

matrix to correctly estimate the standard errors of pQ2. This latter situation does not

present a problem because we are only interested in QTL location if the corresponding

QTL effect is significant. To examine how the information matrix behaved for this

real backcross sample, 1000 bootstrap samples were created using simple random

sampling (from BM2) with replacement. As with the simulated data, the information

matrix also underestimated standard errors for this real sample (see Table 8.5).

Table 8.5: Results of bootstrapping the Drosophila dataset BM2 of Zeng et al.
(2000). Looking at chromosome 2 only. The MLEs and the asymptotic standard
errors (imat SD) are from the original sample. The bootstrap standard errors (boot
SD) are based on 1000 bootstrap replicates.

Interval MLE imat SD×103 boot SD×103 MLE imat SD boot SD

M – N b̂Q×103 of b̂Q of b̂Q p̂Q2 of p̂Q2 of p̂Q2

gl – Pgk −1.50 *** 0.41 0.87 0.56 ** 0.15 0.40
Pgk – Cg25C −0.16 0.57 1.06 ∼ 0.00 ∼ 0.00 0.48
Cg25C – Gpdh 0.01 0.55 1.23 ∼ 1.00 ∼ 0.00 0.46
Gpdh – ninaC −2.19 *** 0.55 1.60 0.36 *** 0.12 0.38
ninaC – Glt 0.14 0.45 1.18 ∼ 0.00 ∼ 0.00 0.42
Glt – Mhc −0.92 0.87 1.63 ∼ 0.00 ∼ 0.00 0.49
Mhc – DoxA2 −0.97 0.54 1.99 0.92 0.12 0.39
DoxA2 – DucC −0.67 0.54 1.76 ∼ 0.00 ∼ 0.00 0.39
DucC – sli −1.95 *** 0.38 0.86 ∼ 0.00 ∼ 0.00 0.32
sli – Egfr −1.95 *** 0.38 1.50 ∼ 1.00 ∼ 0.00 0.26
Egfr – twi 2.25 *** 0.49 1.05 ∼ 1.00 ∼ 0.00 0.33
twi – zip −2.70 *** 0.39 1.05 0.20 * 0.09 0.24

8.4 Overview

First, this chapter outlined strategies for fitting interactions between QTL as part

of the RIM1 model, and for applying RIM1 to the F2 and other breeding designs.

Then, RIM1 was applied to two real datasets. In both of these datasets, RIM1

successfully detected QTL, and the results of RIM1 agreed well with QTL mapping

results published by other researchers.
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Chapter 9

Summary and Conclusions

This thesis explored the mixture model, developed a new extension to Composite

Interval Mapping and derived new matrix formulae which makes the evaluation of

the Fisher information matrix tractable for Normal mixtures having an arbitrary

number of mixing components.

A new extension to Composite Interval Mapping was devised The new model,

RIM1, simultaneously conditions on four markers to increase the precision of interval

mapping in the presence of multiple QTL. RIM1 fits exactly three putative QTL, one

in each of three contiguous intervals. Applications to simulated and real data showed

that RIM1 had strong power to detect QTL while dramatically decreasing the rate of

the of false detections. For large samples, RIM1, was shown to dramatically reduce

ghosting (when compared with CIM) while retaining high power to detect QTL.

One might ask whether the robustness against ghosting, exhibited by RIM1, is

due to the modelling itself, or to the choice of estimation procedure. The answer

is that the robustness is due to the modelling itself. In particular, it results from

fitting flanking QTL in the RIM1 model. This is supported by the fact that the

same estimation procedure was used for CIM and RIM1. The commonality in the

estimation procedure for these models is explained in Section 5.4.4. With RIM1,
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similar results are obtained when using the joint hypothesis test for QTL effect and

position or the test for QTL effects only. This also suggests that the robustness of

RIM1 against ghosting is a result of fitting the flanking QTL. It is also interesting

to note that RIM1 is more susceptible than CIM to the problems of a multi-modal

likelihood function. Despite this disadvantage, the structure of the RIM1 model

enabled better control of ghosting than CIM.

Rather than working directly with the recombination fractions, the mixing propor-

tions were expressed in terms of the conditional genotype transmission-probabilities

(for example pQ1 and pQ2). This allows flexibility, because one does not need to

assume any specific three-locus mapping function within intervals. Also the result-

ing expressions have a simple form, which provides freedom from the need for the

common, simplifying assumption that there are no double crossovers within intervals.

The problem of estimating the standard errors of parameters in a mixture model

was addressed through direct calculation of the Fisher Information matrix. New

matrix formulae were derived, allowing exact and convenient calculation of the Fisher

information matrix in the context of Multinomial mixtures of Univariate Normal

distributions. These matrix formulae hold for Normal mixture models with:

• any number of mixing components (for example, models with any number of

QTL);

• any number of extra cofactors (but missing data is not allowed at the cofactors);

• any number of interactions between the missing factors (for example, interac-

tions between different QTL),

• any number of interactions between extra cofactors (for example, fitting inter-

actions between background markers may be useful for capturing interactions

between background QTL that are not explicitly included in the model).
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• different mixing proportions for distinct subgroups within a sample. (One only

needs to specify the relevant mixing proportions. This allows conditioning on

different marker groups. It also allows conditioning on different crosses, thereby

facilitating simultaneous analysis of multiple crosses.)

In addition, the proposed formulae do not require element-wise evaluation of the

Fisher information matrix. This makes the information matrix calculation practical

to implement, irrespective of the number of mixing components involved. Program

code in the R statistical language is provided in Appendix B as an illustration of how

easily the matrix formulae can be programmed using a statistical package that allows

matrix manipulation. The programs also illustrate how the the information matrix

formulae readily accommodates different numbers of mixing parameters for different

models.

This contribution is not only useful for QTL mapping problems. It is also useful

for any statistical application that uses likelihood-based estimation with mixtures of

univariate Normal distributions. Note, however, that these formulae do not hold for:

• mixture models with interactions between missing components and observed

variables. Such mixtures become relevant, for example, if we wish to model

QTL by environment interactions. This is one area for further development.

• models involving mixtures of Normals that have different variances (different

values for σ2).

The availability of the information matrix formulae allowed the development of

improved hypothesis tests to reduce ghosting in both Composite Interval Mapping

and RIM1. The information-matrix formulae provided here, are exact evaluations and

so the requirements for them to be valid do not depend on any extra assumptions on

top of those needed for the asymptotic maximum likelihood theory to hold.



249

If the sample size is large enough, the standard errors produced are expected to

be similar to those obtainable from bootstraps and permutation-based re-sampling

methods . Moreover, this method requires less computing time to compute a threshold

(or critical value) for hypothesis testing than do permutation methods. There is also

no need to compute the model under the the null hypothesis. Simulations showed

that the proposed method causes Composite Interval Mapping to be more robust

against false detections, than do Likelihood Ratio Tests (LRT) based on a chi-square

distribution with one degree of freedom.

The simulated results presented in this thesis show that small sample sizes can

adversely affect the stability of the maximum likelihood estimates generated by both

CIM and RIM1. Multi-QTL models such as RIM1 will suffer more greatly from lack

of identifiability than CIM. Such models will perform better under large sample sizes.

Note that by using the inverse Fisher information matrix as the variance-covariance

matrix of the MLE’s we are invoking asymptotic results. Therefore, it is not surprising

that the results do not hold for small samples.

When the sample size is too small, the Fisher information matrix severely under-

estimates the standard errors of parameters in the mixture model. For example, the

variance of b̂Q will tend to be underestimated for small samples. Unless the estimated

effect b̂Q is itself close to zero, underestimating the variance of b̂Q can increase the

risk of detecting ghost QTL effects when the statistic T1(bQ) is used. Simultaneously,

there will be an underestimate of the variance of p̂Q2. This will push the estimate of

Jc(pQ2) into the extreme tails of its distribution, so we will tend to accept the null

hypothesis that the QTL is not interior to the testing interval. This indicates that,

while it may be possible to detect QTL with small sample sizes, we generally will not

be able to put much confidence in the estimated QTL locations. This behaviour is

not totally undesirable because, in the presence of an unfavourably small sample, at

least we will not place too much confidence in what could be spurious results.
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For any specified model, statistical test and significance level, the power to detect

QTL will be affected by the following factors (Liu, 1997, page 481):

• the number of QTLs affecting the trait and their genomic locations

• the linkage map density and coverage

• the distribution of QTL effects and the existence of gene interactions

• gene and genotype probabilities in the mapping population

• heritability of the trait

• sample size.

Further exploration of the RIM1 model could include an investigation of its behaviour

as these factors change. An important and related consideration is how to select an

appropriate sample size. This is often problematic because, for example, estimates

of heritability and of the proportion of variation explained by QTL are not available

a priori. QTL by environment interactions can also complicate the situation, and so

this is an extension that merits further investigation.

The J1 test was introduced as a method for controlling ghosting in CIM. However

there are problems with the distribution of the J1 test statistic. Therefore, to control

ghosting, it is recommended that RIM1 be used instead of CIM, and that RIM1

should be used with the T1 test statistic rather than the J1 statistic.
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Appendix A

Constructing an Orthogonal

Contrast Matrix

We wish to find a matrix Ck×k−1 so that [1n XC] is orthogonal, where X is an n×k

binary matrix. One method is to use orthogonal polynomial coefficients. If the levels

of our factor a evenly spaced then such coefficients have a convenient interpretation as

coefficients of an orthogonal polynomial model of order k−1. Orthogonal polynomial

coefficients are tabulated in the literature (see for example Draper and Smith (1998)).

Below, we propose two algorithms for obtaining a set of orthogonal contrasts.

Algorithm A.1. Method 1 to find an orthogonal contrast matrix.

1. Select a matrix
∨
Ck×k−1 such that [1n X

∨
C] has rank k.

2. Let R = (v1,v2, . . . ,vk−1), where

v0 = 1n

vt = X
∨
C•t −

t−1∑

h=0

vT
h X

∨
C•t

vT
h vh

vh, for t = 1, 2, . . . , k − 1.

3. C = (XTX)−1XTR is an orthogonal contrast matrix. 2
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Proof that Algorithm A.1 produces an orthogonal contrast matrix. By construction,

the matrix [1n X
∨
C] has linearly independent columns. We also assume here that

the Columns of X are linearly independent, so that the left inverse of X exists. This

is the standard assumption for regression on X. Any matrix consisting of linearly

independent columns can be transformed into an orthogonal matrix via the Gram-

Schmidt Orthogonalisation process. Cadogan (1987), for example, provides a proof

of this well established algebraic result. Step two applies the Gram-Schmidt process

to [1n X
∨
C] to obtain an orthogonal matrix V = (v0,v1, . . . ,vk−1) = [1n R]. We

simply solve the equation XC = R, by pre-multiplying both sides by the left inverse

of X to obtain C = (XTX)−1XTR. Then [1n XC] = V, which is orthogonal. Hence

the algorithm produces an orthogonal contrast matrix C.

Algorithm (A.1) is valid even if X is not a binary incidence matrix. The above

algorithm may be computationally intensive to implement if X is large, so a more

elegant algorithm for obtaining an orthogonal contrast matrix by using only the num-

bers of elements in each category is proposed below. However, the second method

requires that X is a binary incidence matrix.

Algorithm A.2. Method 2 for obtaining an Orthogonal contrast matrix.

1. Let

a = (
√

n1,
√

n2, . . . ,
√

nk)
T ,

D = diag(
√

n1,
√

n2, . . . ,
√

nk) and

E = [Ik−1 0k−1]
T ,

where 0k−1 is a vector of (k−1) zero elements and Ik−1 is the identity matrix of

order (k − 1). The quantity ni denotes the number of observations in category

i (i.e. ni is the number nonzero elements in the ith column of the binary matrix

X) for i = 1, . . . k.
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2. Let R = (v1,v2, . . . ,vk−1), where

v0 = a

vt = DE•t −
t−1∑

h=0

vT
h DE•t
vT

h vh

vh, for t = 1, 2, . . . , k − 1.

3. C = (DTD)−1DTR is an orthogonal contrast matrix. 2

Proof that Algorithm A.2 produces an orthogonal contrast matrix. By definition of its

component matrices, it is clear that the matrix [a DE] has linearly independent

columns. Step two in the algorithm applies the Gram-Schmidt process to the matrix

[a DE] to obtain an orthogonal matrix V = (v0,v1, . . . ,vk−1) = [a R]. We simply

solve the equation DC = R, by pre-multiplying both sides by the left inverse of D

to obtain

C = (DTD)−1DTR.

Now, the matrix [a DC] is orthogonal by construction. Therefore aTDC•i = 0 and

CT
•iD

TDC•j = 0 for i 6= j. However, 1T
nXC•i = aTDC•i and for 1 6 i 6 k − 1.

Also CT
•iX

TXC•j = CT
•iD

TDC•j for 1 6 i, j 6 k − 1. This implies that [1n XC]

orthogonal, so is clear that C is an orthogonal contrast matrix.
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Appendix B

Programs and Code

The R language and environment (R Development Core Team (2006)) is well suited

for our programming needs because its matrix and list objects offer flexible indexing

and manipulation features. This appendix contains R code for implementing RIM1.

It also contains examples of applying these programs to actual data analyses.

Section B.1 provides R code for parameter estimation in RIM1, CIM and six

other models. Section B.2 provides a number of utility functions for QTL mapping

and for importing QTL Cartographer input and output files. Section B.4 contains

R code to implement the information matrix formulas. Usage examples are given in

Sections B.3, B.5, B.6 and B.7. The code in Section B.6 implements a permutation

method which randomises the covariate of interest among the sampled individuals.

The example in B.7 illustrates the analysis of the F2 mouse data from Horvat and

Medrano (1995).
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B.1 R code for parameter estimation in RIM1 and

its sub-models

Table B.1: List of functions used for model fitting

Function Description Dependencies

rim.linecross() Main function for fitting

RIM1 and sub-models.

Calling this function will fit

the models, calculate the

information matrix and

perform hypothesis testing.

Its Return value includes the

logarithm of the likelihood,

maximum likelihood

estimators (MLEs), standard

errors of MLEs,

optionally-the covariance

matrix, p-values, and other

informational output.

validate.cross()

cofactor.matrix()

qtl.design()

contrasts.b1()

contrasts.f2()

qtl.genotype.labels()

cond.markers()

marker.genotype.labels()

cim.H0.regress()

gridvals()

em.unknown.probs()

get.recomb()

validate.cross() Checks that data is valid for

a particular line cross.
cofactor.matrix() Codes the matrix of marker

cofactors

contrasts.b1()

contrasts.f2()
qtl.design() Swiching function for

fac.design.nw() to create a

factorial design for the

genotypes at QTL loci, based

upon the breeding design and

the hypothesis to be tested.

fac.design.nw()

contrasts.b1() Returns contrasts matrices to

be used in fitting the

backcross model.
contrasts.f2() Returns contrasts matrices to

be used in fitting the F2

model.
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Table B.1: (continued)

Function Description Dependencies

qtl.genotype.labels() Creates labels (names) for

the QTL genotypes.

fac.design.nw()

cond.markers() Identifies the marker loci to

condition on, depending on

the model being fitted.
marker.genotype.labels() Creates labels (names) for

the marker genotypes.

fac.design.nw()

cim.H0.regress() Calculate, via linear

regression, the maximum

likelihood of the observed

trait values for inbred

linecross data, a null

hypothesis of no QTL

anywhere (model “N”).

loglik()

gridvals() Selects starting points for the

EM Algorithm.

moment.nw()

checki()

get.probs.start()

em.known.probs()
em.unknown.probs() Calculate (via the EM

Algorithm) the maximum

likelihood of the observed

trait values for inbred

line-cross data, assuming

that the mixing proportions

are not known.

mixing.probs()

moment.nw()

getZij

mle.probs()

loglik()

diff.moments()

haldane.probs()

emcov.fisher()

emcov.observed()
getZij() Estimate QTL-category

identities of individuals.
get.recomb() Used for informational

output only.

recomb.hat.b1()

recomb.hat.f2()
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Table B.1: (continued)

Function Description Dependencies

recomb.hat.b1() Calculates sample estimators

of the recombination

fractions markers (B1

sample). Used for

informational output only.
recomb.hat.f2() Calculates sample estimators

of the recombination

fractions markers (F2

sample). Used for

informational output only.
fac.design.nw() Used for generating all

possible QTL genotypes

given the number of loci and

genotypes at each locus.
loglik() Calculates the natural

logarithm of the mixture

likelihood.
moment.nw() Calculates the kth moment of

a numeric vector.
checki() Reduces the number of

starting possible points that

are tested when selection

starting values for the EM

algorithm.
get.probs.start() Configures the vector of

mixing parameters according

to the model being fitted.
em.known.probs() Calculate (via the EM

Algorithm) the maximum

likelihood of the observed

trait values for inbred

line-cross data, for known

(fixed) mixing proportions.

mixing.probs()

diff.moments()

loglik()
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Table B.1: (continued)

Function Description Dependencies

mixing.probs() Switching function for

calculating the mixing

proportions.

weights.b1()

weights.f2()

diff.moments() Calculate residual error and

assess clustering of groups.
weights.b1() Calculate the mixing

proportions for the backcross

design.

index.genot()

weights.f2() Calculate the mixing

proportions for the F2 design.

index.genot()

mle.probs() switching function to

calculate the MLEs of the

mixing parameters depending

on the type of breeding

design.

phihat.b1()

phihat.f2()

phihat.b1() Calculate the MLEs of the

mixing parameters for the

backcross design.

index.genot()

constrain()

phihat.f2() Calculate the MLEs of the

mixing parameters for the F2

design.

index.genot

constrain()

constrain() Switching function for

contrain.b1() and

contrain.f2().

constrain.b1()

constrain.f2()

constrain.b1() Completes the calculation for

the MLEs of mixing

parameters for the backcross

and ensures that they are

within the valid range.

haldane.probs()

constrain.f2() Completes the calculation for

the MLEs of mixing

parameters for the F2 and

ensures that they are within

the valid range.

haldane.probs()
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Table B.1: (continued)

Function Description Dependencies

haldane.probs() Formats the output of the

MLEs of the mixing

proportions.
emcov.fisher() Calculates the expected

information matrix.

See Section B.4 for de-

tails.
emcov.observed() Calculates the observed

information matrix.

See Section B.4 for de-

tails.

Source Code

#---------------------------------------------------------------------------------------------------

# rim.linecross() : Robust Interval mapping procedure for

# a sample taken from a B1,B2 or F2 population.

# PARAMETERS of rim.linecross():

# data - a data frame

# regressors - (markers)a vector of indices/names of columns in data frame,

# the order of elements in this vector should be the same as locus order.

# all.markers - the names of all makers in the data frame given in locus order

# cross - one of "B1", "B2", "F2"

# homog.high - a character string denoting the homozygous high genotype

# heteroz - a character string denoting the heterozygous genotype

# homog.low - a character string denoting the homozygous low genotype

# hypothesis - one of "H0", "H1"

# maxit - maximum number of iterations.

# r.curr.next - vector where the ith element is the recombination frequency

# between marker i and i+1, so the last value in r.curr.next should be 0.5,

# markers should have the same order as given in all.markers.

# return.all - if true: returns results for all models when AIC is used

# to select a model from among "N","R","L","LR","Q","QR","LQ","LQR"

# return.start - if true the staring values are also returned.

# tol - tolerance limit for stopping the EM algorthm.

# trait - the name of a trait in the data frame(a character string)

# validated -checks that data is valid for a particular line cross,

# set to validated=TRUE to avoid this step when running simulations.

#---------------------------------------------------------------------------------------------------

rim.linecross<-function(hypothesis="H1", cross, data, regressors, homog.high, heteroz, homog.low,

all.markers,trait, maxit=100,tol=1e-6, r.curr.next, mapfun="Haldane",validated=FALSE,

chosen.model="LQR", return.all=FALSE, return.start=FALSE, imat.type="expected"){

m <- match.call()
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if (!validated) #for simulations use validated=TRUE to skip this step

validate.cross(data, regressors,homog.high, heteroz, homog.low,all.markers,trait, 2,1,cross)

gotMASS<- try(find(ginv, mode="function"),silent=TRUE)

if (inherits(gotMASS, "try-error"))

require("MASS")

#Get ready to set up the matrix of coded cofactors

x<-names(data[,regressors])

marker.id<- pmatch(x,all.markers)

if ((marker.id[2]!=marker.id[1]+1) || (length(x)!=2))

stop("regressors should be one pair of adjacent markers")

all.h0<-c("N","R","L","LR")

all.h1<-c("Q","QR","LQ","LQR")

allmodels<-c(all.h0,all.h1)

allhyp<-c(rep("H0",4),rep("H1",4))

names(allhyp)<-allmodels

#list the markers to condition on in each situation

nmarkers<-length(all.markers)#_MN_

if ((marker.id[1]==1)&&(marker.id[2]==nmarkers))

stop("flanking markers are required")

else if (marker.id[1]==1) #_MN0

amconfig<-list(N=c(K=0,O=0),R=c(K=0,O=1), L=c(K=0,O=0), LR=c(K=0,O=1),

Q=c(K=0,O=0), QR=c(K=0,O=1), LQ=c(K=0,O=0), LQR=c(K=0,O=1))

else if (marker.id[2]==nmarkers)#KMN_

amconfig<-list(N=c(K=0,O=0), R=c(K=0,O=0),L=c(K=1,O=0), LR=c(K=1,O=0),

Q=c(K=0,O=0), QR=c(K=0,O=0), LQ=c(K=1,O=0), LQR=c(K=1,O=0))

else #KMNO

amconfig<-list(N=c(K=0,O=0), R=c(K=0,O=1), L=c(K=1,O=0), LR=c(K=1,O=1),

Q=c(K=0,O=0), QR=c(K=0,O=1), LQ=c(K=1,O=0), LQR=c(K=1,O=1))

model.id<-NULL

model1<-chosen.model

if (chosen.model=="RIM1")

chosen.model<-switch(as.character(hypothesis),H0="LR",H1="LQR")

else if (chosen.model=="CIM")

chosen.model<-switch(as.character(hypothesis),H0="N",H1="Q")

if (!is.null(chosen.model)){

model.id<-pmatch(chosen.model,allmodels)

model.id<-model.id[!is.na(model.id)]

}

nmodels<-length(model.id)

if ((nmodels==0)||(nmodels>1)){

model1<-"AIC"

chosen.model<-model.desc<-"LQR"

choice<-c("LQR","LQ","QR","Q","LR","L","R","N")

}
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else{

model.desc<-chosen.model

choice<-chosen.model

}

nmodels<-length(choice)

if (nmodels>1)

aic.selection<-TRUE

else

aic.selection<-FALSE

mle.model<-as.list(1:nmodels)

names(mle.model)<-choice

hold<-mle.model

#drop any names from the vector of recombination freq

r.curr.next<-as.numeric(r.curr.next)

data<-data[!is.na(data[, trait]),]

#left.names and right.names will aid selection of starting values

left.names<-NULL

right.names<-NULL

if(marker.id[1]>1){

left2<-cofactor.matrix(cross,homog.high,heteroz,

homog.low,data,trait,all.markers[marker.id[1]-1])

left.names<-dimnames(left2)[[2]] #K

}

if (marker.id[2]<nmarkers){

right2<-cofactor.matrix(cross,homog.high,heteroz,

homog.low,data,trait,all.markers[marker.id[2]+1])

right.names<-dimnames(right2)[[2]] #O

}

xleft<-marker.id[1]

if (xleft>=1){

left2<-cofactor.matrix(cross,homog.high,heteroz,

homog.low,data,trait,all.markers[xleft])

xleft.names<-dimnames(left2)[[2]] #M

}

xright<-marker.id[2]

if (xright<=nmarkers){

right2<-cofactor.matrix(cross,homog.high,heteroz,

homog.low,data,trait,all.markers[xright])

xright.names<-dimnames(right2)[[2]] #N

}

remove(left2)

remove(right2)

#carry out model selection and/or model fitting
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for(i in 1:nmodels){

CIMH0<-FALSE

chosen.model<-choice[i]

hypothesis<-allhyp[chosen.model]

mconfig<-amconfig[[chosen.model]]

qtl.design.frame<- qtl.design(chosen.model,cross)

if (!is.null(qtl.design.frame)){

qtl.contrasts<-switch(as.character(cross),

B1=lapply(qtl.design.frame,contrasts.b1,AA="QQ",Aa="Qq",hi="AA"),

B2=lapply(qtl.design.frame,contrasts.b1,AA="qq",Aa="Qq",hi="aa"),

F2=lapply(qtl.design.frame,contrasts.f2,AA="QQ",Aa="Qq",aa="qq",hi="AA"))

sum.qtl<-paste(names(qtl.design.frame),collapse="+")

# to fit all interactions use:

#sum.qtl<-paste(names(qtl.design.frame),collapse="*")

qtl.formula<-formula(paste("~",sum.qtl))

qtl.modelfrm<-model.frame(qtl.formula,data=qtl.design.frame)

Ce<-model.matrix(qtl.formula,qtl.modelfrm,contrasts=qtl.contrasts)

dimnames(Ce)[[1]]<-qtl.genotype.labels(chosen.model,cross)

#Ce is the qtl contrast matrix

nqgen<-length(Ce[,1]) #number of qtl genotypes

main.names<-dimnames(Ce)[[2]]

}

else {

CIMH0<-TRUE

Ce<-NULL

main.names<-NULL

nqgen<-0

}

#Set up the matrix of coded cofactors

conditioning.markers<-cond.markers(mconfig,marker.id,nmarkers)

x4<-all.markers[conditioning.markers]

x4a<-conditioning.markers

if (chosen.model=="R")

conditioning.markers<-x4a[x4a!=xleft]

else if (chosen.model=="L")

conditioning.markers<-x4a[x4a!=xright]

flanking.markers<-all.markers[-conditioning.markers]

X2<-cofactor.matrix(cross,homog.high,heteroz,homog.low,data,trait,flanking.markers)

cofactors.names<-dimnames(X2)[[2]]

dat<-data[,c(x4,trait)]

g<-apply(dat[,x4],1,paste,collapse="",sep="")

N<-length(g)

n<-tapply(g,g,length)
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#markerg == (unordered) marker genotype labels from the data

markerg<-names(n)

nmgen<-length(n)

#y will be a list of trait values grouped by marker genotype

y<-split(dat[,trait],g)

indivs<-row.names(dat)

indivs<-split(indivs,g)

sorted.rows<-unlist(indivs)

MCstar<-X2[sorted.rows,]

dimnames(MCstar)[[1]]<-1:N

remove(list=c("dat","X2"))

#store properties to describe the data structure of the current model

rmn<-r.curr.next[marker.id[1]]

if (marker.id[1]>1)

marker.map<-r.curr.next[c(marker.id[1]-1,marker.id)] #rlm,rmn,rnr

else marker.map<-c(0.5,r.curr.next[marker.id]) #rlm,rmn,rnr

rlm<-marker.map[1]

rnr<-marker.map[3]

genot<-marker.genotype.labels(cross,homog.high, heteroz,

homog.low,FALSE,mconfig)

genot2<-marker.genotype.labels(cross,homog.high, heteroz,

homog.low,TRUE,mconfig)

fullqtl<-qtl.genotype.labels("LQR",cross)

genot2<-list(g=genot2,mconfig=mconfig,rmn=rmn,rno=rnr,rkm=rlm,

hi=homog.high,het=heteroz, low=homog.low,qtl3=fullqtl)

hold[[i]]<-list(hypothesis=hypothesis,Ce=Ce,MCstar=MCstar,n=n,y=y, nqgen=nqgen,genot=genot,

genot2=genot2,markerg=markerg,cofactors.names=cofactors.names,mconfig=mconfig,

flanking.markers=flanking.markers,x4=x4)

#now do parameter estimation by finding the mle

if(CIMH0==TRUE){

mle<- cim.H0.regress(MCstar,cofactors.names,n,y,genot,genot2,startvals=FALSE)

startvals<-list(desc="No QTL Anywhere: Marker Regression only")

mle.model[[i]] <-list(mle=mle,startvals=startvals)

}

else{

#indentify the cofactor categories within marker categories to help

#in selecting starting values for the EM algorithm.

ind<-vector("list", nmgen)

names(ind)<-names(n)

ind[[1]]<-1:n[1]

for(j in 2:nmgen)

ind[[j]]<- (1+sum(n[1:(j-1)])):sum(n[1:j])

yc<-as.list(n)

nc<-indc<-as.list(n)

for(j in 1:nmgen){
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Mj<-rbind(MCstar[ind[[j]], ])

ge<-apply(Mj,1,paste,collapse="",sep="")

yc[[j]]<-split(y[[j]],ge)

nc[[j]]<-sapply(yc[[j]],length)

names(nc[[j]])<-NULL

indivsc<-1:n[j]

if (length(ge)>1)

indc[[j]]<-split(indivsc,ge)

else

indc[[j]]<-list(indivsc)

}

#get starting values that reduce residual error while

#separating groups

startvals<-gridvals(cross,hypothesis,Ce,MCstar,cofactors.names,

mapfun,n,nqgen,y,genot,genot2,chosen.model,ind,indc,nc,yc)

probs.start<-startvals$model.params$probs

B.start<-startvals$model.params$effects

sigma2.start<-startvals$model.params$variance

recomb.start<-startvals$recomb

#compute the maximum likelihood via the EM algorithm

mle<-em.unknown.probs(chosen.model,cross,hypothesis,Ce,MCstar,cofactors.names,

sigma2.start, B.start,probs.start,tol,maxit,mapfun,n,nqgen,y,genot,genot2,

startvals=FALSE,recomb.start,imat.type,startvals$mvars,ind,indc,nc,yc)

#store vlaues to output

if (return.start==T)

mle.model[[i]] <-list(mle=mle,startvals=startvals)

else

mle.model[[i]] <-list(mle=mle)

}

if (aic.selection)

mle.model[[i]]$mle$AIC<- (-2*mle.model[[i]]$mle$loglike

+2*(length(mle.model[[i]]$mle$model.params$effects[,1])

+length(mle.model[[i]]$mle$model.params$probs[,1])) )

if (i==1){

bestmodel<-i

if (aic.selection)

minAIC<- mle.model[[i]]$mle$AIC

}

else if (aic.selection){

if (mle.model[[i]]$mle$AIC<=minAIC){

bestmodel<-i

minAIC<-mle.model[[i]]$mle$AIC

}

}

} #end for(i in 1:nmodels) ....
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hold<-hold[[bestmodel]]

chosen.model<-as.character(choice[bestmodel])

#FINISHED

#print some information to assess the quality of the sample

#what are the sample estimates of rkm, rmn,rno?

genotLQR<-marker.genotype.labels(cross,homog.high, heteroz,homog.low,FALSE,amconfig$LQR)

genot2LQR<-marker.genotype.labels(cross,homog.high, heteroz,homog.low,TRUE,amconfig$LQR)

genot2LQR<-list(g=genot2LQR,mconfig=amconfig$LQR,rmn=rmn,rno=rnr,rkm=rlm,

hi=homog.high,het=heteroz, low=homog.low,qtl3=fullqtl)

condLQR.markers<-cond.markers(amconfig$LQR,marker.id,nmarkers)

x4LQR<-all.markers[condLQR.markers]

datLQR<-data[,c(x4LQR,trait)]

gLQR<-apply(datLQR[,x4LQR],1,paste,collapse="",sep="")

remove(datLQR)

nLQR<-tapply(gLQR,gLQR,length)

markergLQR<-names(nLQR)

map.hat<-get.recomb(cross,nLQR,genotLQR,genot2LQR,markergLQR)

#format the output

obj.name<-strsplit(deparse(m$data), "[$,]")[[1]][1]

obj.name<-as.name(obj.name)

data<-strsplit(deparse(m$data), "[$,]")[[1]][2]

val<-list(code=deparse(m[1]),information.matrix=imat.type,

chosen.model.desc=model1,chosen.model=choice[bestmodel],mapfun=mapfun,

cross=cross,hypothesis=as.character(allhyp[choice[bestmodel]]),

data=list(obj.name=obj.name,dat=data),interval=x,markers=hold$x4,

extra.markers=hold$flanking.markers,trait=trait,

genotype.counts=hold$n, map.hat=map.hat,mle=mle.model[[bestmodel]]$mle)

if (return.start==TRUE){

val$startvals.best<-mle.model[[bestmodel]]$startvals

}

if ((aic.selection==TRUE) && (return.all==TRUE))

val$all<-mle.model

val

}

#---------------------------------------------------------------------------------------------------

# validate.cross() : checks that data is valid for a particular line cross

#---------------------------------------------------------------------------------------------------

validate.cross <- function(data, regressors,homog.high, heteroz, homog.low,

all.markers,trait, nfactors=2,ntraits=1,cross){

if(!is.data.frame(data))

stop(paste(m$data, "should be of mode data.frame"))

if(!is.vector(regressors))
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stop("regressors should be a vector")

if(!is.character(trait))

stop("trait should be a character string")

nregs<-length(regressors)

if (nregs!=nfactors)

stop(paste("this method is designed for",nfactors,"loci only"))

if (length(trait)!=ntraits)

stop(paste("Expected one response variable, found",length(trait)))

if(length(unique(c(homog.high,heteroz,homog.low)))!=3)

stop("homog.high, heteroz and homog.low should be unique.")

x<-names(data[,regressors])

if(length(unique(x))!=nfactors)

stop("Regressors should be unique.")

dat<-data.frame(data[!is.na(data[, trait]),x])

names(dat)<-x

fac<-lapply(dat, is.factor)

fac<-unlist(fac)

if(length(fac[fac==T])!=length(x) )

stop("Regressors must be factors.")

fac<-lapply(dat, function(h){any(is.na(h))})

fac<-unlist(fac)

if(length(fac[fac==T])>0 )

stop(paste("Missing values are not allowed at the markers.",

"Missing values found in",paste(names(fac[fac==T]),collapse=", ")))

levs<-lapply(dat,levels)

bad<-function(h,AA,Aa,aa,type){

nbad<-switch(as.character(type),

B1=length(h[(h!=AA) &(h!=Aa)]),

B2=length(h[(h!=Aa) &(h!=aa)]),

F2=length(h[(h!=AA) &(h!=Aa) &(h!=aa)])

)

nbad

}

numbad<-lapply(levs,bad,AA=homog.high, Aa=heteroz,aa=homog.low,type=cross)

numbad<-unlist(numbad)

if (length(numbad[numbad!=0])!=0)

stop(paste("Invalid", cross, "data"))

}

#---------------------------------------------------------------------------------------------------

# contrasts.b1(), contrasts.f2() :

# These functions return contrast matrices for extracting

# certain linear combinations of marker/qtl effects in B1, B2 and F2 samples.
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#

# PARAMETERS of contrasts.b1(), contrasts.f2():

# h - A data frame (or list) containing marker genotypes

# AA - a character string denoting the homozygous high genotype

# Aa - a character string denoting the heterozygous genotype

# aa - a character string denoting the homozygous low genotype

# hi - character string indicating the ’high’ genotype

#---------------------------------------------------------------------------------------------------

contrasts.b1<-function(h,AA,Aa,hi){

genotypes<-levels(h)

cmat<-matrix(nrow=2,ncol=1,

dimnames=list(genotypes,paste(".",hi,sep="")))

cmat[as.character(AA),]<- 1

cmat[as.character(Aa),]<- 0

cmat

}#end of contrasts.b1()

contrasts.f2<-function(h,AA,Aa,aa,hi){

genotypes<-levels(h)

cmat<-matrix(nrow=3,ncol=2,

dimnames=list(genotypes,paste(c(".a",".d"),hi,sep="")))

cmat[as.character(AA),]<-c(1,1)

cmat[as.character(Aa),]<-c(0,-1)

cmat[as.character(aa),]<-c(-1,1)

cmat

}

#---------------------------------------------------------------------------------------------------

# fac.design.nw():

# Generates simple factorial design (does not support fractional factorial designs and replications).

# Used for generating all possible QTL genotypes

# given the number of loci and genotypes at each locus.

# This function is adapted from the S-PLUS function fac.design().

# Example of use:

# fnames<-list(L=c("LL","Ll","ll"),Q=c("QQ","Qq","qq"),R=c("RR","Rr","rr"))

# y <- fac.design.nw(rep(3,3), factor.names = fnames)

#---------------------------------------------------------------------------------------------------

fac.design.nw<-function(levels, factor.names){

if(any(is.na(levels)) || any(as.integer(levels) - levels != 0))

stop("levels must be integer and positive")

nrows <- prod(levels)

ncols <- length(levels)

if(ncols && nrows > 1000000.)

cat("Attempting to create a design with", nrows, "rows\n")

yy <- as.list(1:ncols)
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if(ncols==1)

yy[[1]]<-factor.names

else{

rep1 <- prod(levels[1:(ncols-1)]) #sort in a top-down manner(unlike S-PLUS)

for(i in 1:ncols) {

lev <- 1:levels[i]

j <- rep(rep(lev, rep(rep1, levels[i])), length = nrows)

yy[[i]]<-factor.names[[i]][j]

yy[[i]] <- as.factor(yy[[i]])

rep1 <- rep1/levels[i]

}

}

names(yy)<-names(factor.names)

yy<-data.frame(yy)

yy

}

#---------------------------------------------------------------------------------------------------

# qtl.design(): Swiching function for fac.design.nw() to createa factorial design for the genotypes

# at QTL loci, based upon the breeding design and the hypothesis to be tested.

#---------------------------------------------------------------------------------------------------

qtl.design<- function(chosen.model,cross){

gb1<-c("QQ","Qq")

gb2<-c("qq","Qq")

gf2<-c("QQ","Qq","qq")

qdesign<-switch(as.character(cross),

B1=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(2,1), list(R=gb1)),

L=fac.design.nw(rep(2,1), list(L=gb1)),

LR=fac.design.nw(rep(2,2), list(L=gb1,R=gb1)),

Q=fac.design.nw(rep(2,1), list(Q=gb1)),

QR=fac.design.nw(rep(2,2), list(Q=gb1,R=gb1)),

LQ=fac.design.nw(rep(2,2), list(L=gb1,Q=gb1)),

LQR=fac.design.nw(rep(2,3), list(L=gb1,Q=gb1,R=gb1))

),

B2=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(2,1), list(R=gb2)),

L=fac.design.nw(rep(2,1), list(L=gb2)),

LR=fac.design.nw(rep(2,2), list(L=gb2,R=gb2)),

Q=fac.design.nw(rep(2,1), list(Q=gb2)),

QR=fac.design.nw(rep(2,2), list(Q=gb2,R=gb2)),

LQ=fac.design.nw(rep(2,2), list(L=gb2,Q=gb2)),
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LQR=fac.design.nw(rep(2,3), list(L=gb2,Q=gb2,R=gb2))

),

F2=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(3,1), list(R=gf2)),

L=fac.design.nw(rep(3,1), list(L=gf2)),

LR=fac.design.nw(rep(3,2), list(L=gf2,R=gf2)),

Q=fac.design.nw(rep(3,1), list(Q=gf2)),

QR=fac.design.nw(rep(3,2), list(Q=gf2,R=gf2)),

LQ=fac.design.nw(rep(3,2), list(L=gf2,Q=gf2)),

LQR=fac.design.nw(rep(3,3), list(L=gf2,Q=gf2,R=gf2))

)

)

qdesign

}

#---------------------------------------------------------------------------------------------------

# marker.genotype.labels()

#---------------------------------------------------------------------------------------------------

marker.genotype.labels<-function(cross,homog.high, heteroz, homog.low,index=FALSE,mconfig){

gb1<-c(homog.high,heteroz)

gb2<-c(homog.low,heteroz)

gf2<-c(homog.high,heteroz,homog.low)

if ((mconfig["K"]==0)&& (mconfig["O"]==0)){

labels<-switch(as.character(cross),

B1=fac.design.nw(rep(2,2), list(M=gb1,N=gb1)),

B2=fac.design.nw(rep(2,2), list(M=gb2,N=gb2)),

F2=fac.design.nw(rep(3,2), list(M=gf2,N=gf2)))

}

else if ((mconfig["K"]==0)&& (mconfig["O"]==1)){

labels<-switch(as.character(cross),

B1=fac.design.nw(rep(2,3), list(M=gb1,N=gb1,O=gb1)),

B2=fac.design.nw(rep(2,3), list(M=gb2,N=gb2,O=gb2)),

F2=fac.design.nw(rep(3,3), list(M=gf2,N=gf2,O=gf2)))

}

else if ((mconfig["K"]==1)&& (mconfig["O"]==0)){

labels<-switch(as.character(cross),

B1=fac.design.nw(rep(2,3), list(K=gb1,M=gb1,N=gb1)),

B2=fac.design.nw(rep(2,3), list(K=gb2,M=gb2,N=gb2)),

F2=fac.design.nw(rep(3,3), list(K=gf2,M=gf2,N=gf2)))

}

else {

labels<-switch(as.character(cross),
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B1=fac.design.nw(rep(2,4), list(K=gb1,M=gb1,N=gb1,O=gb1)),

B2=fac.design.nw(rep(2,4), list(K=gb2,M=gb2,N=gb2,O=gb2)),

F2=fac.design.nw(rep(3,4), list(K=gf2,M=gf2,N=gf2,O=gf2)))

}

if(index==TRUE){

val<-as.data.frame(labels)

val<-cbind(val,index=1:length(labels[,1]))

}

else{

val<-apply(labels,1,paste,collapse="",sep="")

names(val)<-val

}

val

}

#---------------------------------------------------------------------------------------------------

# qtl.genotype.labels()

#---------------------------------------------------------------------------------------------------

qtl.genotype.labels<- function(chosen.model,cross){

gb1Q<-c("QQ","Qq")

gb2Q<-c("qq","Qq")

gf2Q<-c("QQ","Qq","qq")

gb1L<-c("LL","Ll")

gb2L<-c("ll","Ll")

gf2L<-c("LL","Ll","ll")

gb1R<-c("RR","Rr")

gb2R<-c("rr","Rr")

gf2R<-c("RR","Rr","rr")

labels<-switch(as.character(cross),

B1=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(2,1), list(R=gb1R)),

L=fac.design.nw(rep(2,1), list(L=gb1L)),

LR=fac.design.nw(rep(2,2), list(L=gb1L,R=gb1R)),

Q=fac.design.nw(rep(2,1), list(Q=gb1Q)),

QR=fac.design.nw(rep(2,2), list(Q=gb1Q,R=gb1R)),

LQ=fac.design.nw(rep(2,2), list(L=gb1L,Q=gb1Q)),

LQR=fac.design.nw(rep(2,3), list(L=gb1L,Q=gb1Q,R=gb1R))

),

B2=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(2,1), list(R=gb2R)),

L=fac.design.nw(rep(2,1), list(L=gb2L)),

LR=fac.design.nw(rep(2,2), list(L=gb2L,R=gb2R)),
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Q=fac.design.nw(rep(2,1), list(Q=gb2Q)),

QR=fac.design.nw(rep(2,2), list(Q=gb2Q,R=gb2R)),

LQ=fac.design.nw(rep(2,2), list(L=gb2L,Q=gb2Q)),

LQR=fac.design.nw(rep(2,3), list(L=gb2L,Q=gb2Q,R=gb2R))

),

F2=switch(as.character(chosen.model),

N=NULL,

R=fac.design.nw(rep(3,1), list(R=gf2R)),

L=fac.design.nw(rep(3,1), list(L=gf2L)),

LR=fac.design.nw(rep(3,2), list(L=gf2L,R=gf2R)),

Q=fac.design.nw(rep(3,1), list(Q=gf2Q)),

QR=fac.design.nw(rep(3,2), list(Q=gf2Q,R=gf2R)),

LQ=fac.design.nw(rep(3,2), list(L=gf2L,Q=gf2Q)),

LQR=fac.design.nw(rep(3,3), list(L=gf2L,Q=gf2Q,R=gf2R))

)

)

if (is.null(labels))

val<-NULL

else{

val<-apply(labels,1,paste,collapse="",sep="")

names(val)<-val

}

val

}

#---------------------------------------------------------------------------------------------------

# cofactor.matrix()

#---------------------------------------------------------------------------------------------------

cofactor.matrix<-function(cross,homog.high,heteroz,homog.low,data,trait,flanking.markers){

marker.design.frame<-as.data.frame(data[,flanking.markers])

names(marker.design.frame)<-flanking.markers

marker.contrasts<-switch(as.character(cross),

B1=lapply(marker.design.frame,contrasts.b1,AA=homog.high, Aa=heteroz,hi=homog.high),

B2=lapply(marker.design.frame,contrasts.b1,AA=homog.low, Aa=heteroz,hi=homog.low),

F2=lapply(marker.design.frame,contrasts.f2,AA=homog.high,

Aa=heteroz,aa=homog.low,hi=homog.high)

)

sum.flank<-paste(flanking.markers,collapse="+")

cofactors.formula<-formula(paste("~",sum.flank))

#Set up the matrix of coded cofactors

modelfrm<-model.frame(cofactors.formula,data=data)

X2<-model.matrix(cofactors.formula,modelfrm,contrasts=marker.contrasts)

xnames<-dimnames(X2)[[2]]

X2<-cbind(X2[,-1])
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dimnames(X2)[[2]]<-xnames[-1]

X2

}

#---------------------------------------------------------------------------------------------------

# cond.markers()

#---------------------------------------------------------------------------------------------------

cond.markers<-function(mconfig,marker.id,nmarkers){

if ((mconfig["K"]==0)&& (mconfig["O"]==0))

marker.id2<-marker.id

else if ((mconfig["K"]==1)&& (mconfig["O"]==0))

marker.id2<-c(marker.id[1]-1,marker.id)

else if ((mconfig["K"]==0)&& (mconfig["O"]==1))

marker.id2<-c(marker.id,marker.id[2]+1)

else

marker.id2<-c(marker.id[1]-1,marker.id,marker.id[2]+1)

marker.id2<-marker.id2[(marker.id2>=1)&(marker.id2<=nmarkers)]

marker.id2

}

#---------------------------------------------------------------------------------------------------

# recomb.hat.b1() : used for assessing the quality of the sample. Used for informational output only.

# Not used for model fitting.

# To see if recombination frequencies between markers, as estimated from the

# sample, resemble recombination frequencies between markers in the assumed marker map.

#---------------------------------------------------------------------------------------------------

recomb.hat.b1<-function(n,genot,genot2,markerg){

cross<-"B1"

#sort marker genotype counts by marker category

n<-n[genot]

temp<-n

n<-rep(0,length(genot))

names(n)<-genot

n[markerg]<-temp[markerg]

N<-sum(n)

mconfig<-genot2$mconfig

gmn<-index.genot(cross="B1",M="M",N="N",genot2=genot2)

rMN<-sum(n[c(gmn$MMNn,gmn$MmNN)])/N

#rMN<-min(genot2$rmn,rMN)

if (mconfig["K"]==1){

gkm<-index.genot(cross="B1",M="K",N="M",genot2=genot2)
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rKM<-sum(n[c(gkm$KKMm,gkm$KkMM)])/N

# rKM<-min(genot2$rkm,rKM)

}

else

rKM<-NA #genot2$rkm

if (mconfig["O"]==1){

gno<-index.genot(cross="B1",M="N",N="O",genot2=genot2)

rNO<-sum(n[c(gno$NNOo,gno$NnOO)])/N

}

else

rNO<- NA #genot2$rno

map.hat<-c(rKM=rKM,rMN=rMN,rNO=rNO)

map.hat<-map.hat[!is.na(map.hat)]

map.hat

}

#---------------------------------------------------------------------------------------------------

# recomb.hat.f2() : used for assessing the quality of the sample.

# Used for informational output only. Not used for model fitting.

# To see if recombination frequencies between markers, as estimated from the

# sample, resemble recombination frequencies between markers in the assumed marker map.

#---------------------------------------------------------------------------------------------------

recomb.hat.f2<-function(n,genot,genot2,markerg){

cross<-"F2"

#sort marker genotype counts by marker category

n<-n[genot]

temp<-n

n<-rep(0,length(genot))

names(n)<-genot

n[markerg]<-temp[markerg]

N<-sum(n)

mconfig<-genot2$mconfig

gmn<-index.genot(cross=cross,M="M",N="N",genot2=genot2)

rMN<- (1- (2*sum(n[gmn$mmnn])/N + 2*sum(n[gmn$MMNN])/N

+ sum(n[gmn$mmNn])/N + sum(n[gmn$MMNn])/N))

if (mconfig["K"]==1){

gkm<-index.genot(cross=cross,M="K",N="M",genot2=genot2)

rKM<- (1- (2*sum(n[gkm$kkmm])/N + 2*sum(n[gkm$KKMM])/N

+ sum(n[gkm$kkMm])/N + sum(n[gkm$KKMm])/N))

}

else

rKM<-NA #genot2$rkm



274

if (mconfig["O"]==1){

gno<-index.genot(cross=cross,M="N",N="O",genot2=genot2)

rNO<- (1- (2*sum(n[gno$nnoo])/N + 2*sum(n[gno$NNOO])/N

+ sum(n[gno$nnOo])/N + sum(n[gno$NNOo])/N))

}

else

rNO<- NA #genot2$rno

map.hat<-c(rKM=rKM,rMN=rMN,rNO=rNO)

map.hat<-map.hat[!is.na(map.hat)]

map.hat

}

#---------------------------------------------------------------------------------------------------

# get.recomb() : used for assessing the quality of the sample.

# Used for informational output only. Not used for model fitting.

#---------------------------------------------------------------------------------------------------

get.recomb<-function(cross,...){

recomb.hat<-switch(as.character(cross),

B1=recomb.hat.b1(...),

B2=recomb.hat.b1(...),

F2= recomb.hat.f2(...))

recomb.hat

}

#---------------------------------------------------------------------------------------------------

# index.genot.b1() : identify one- or two-locus marker genotypes in the model.

#---------------------------------------------------------------------------------------------------

index.genot.b1<-function(M=NULL,N=NULL,genot2){

mconfig<-genot2$mconfig

if ((!is.null(M))&&(!is.null(N))){

MMNN<-genot2$g$index[(genot2$g[,M]==genot2$hi)&(genot2$g[,N]==genot2$hi)]

MMNn<-genot2$g$index[(genot2$g[,M]==genot2$hi)&(genot2$g[,N]==genot2$het)]

MmNN<-genot2$g$index[(genot2$g[,M]==genot2$het)&(genot2$g[,N]==genot2$hi)]

MmNn<-genot2$g$index[(genot2$g[,M]==genot2$het)&(genot2$g[,N]==genot2$het)]

val<-list(MMNN,MMNn,MmNN,MmNn)

names(val)<-switch(M,

K=c("KKMM","KKMm","KkMM","KkMm"),

M=c("MMNN","MMNn","MmNN","MmNn"),

N=c("NNOO","NNOo","NnOO","NnOo"))

}

else if (is.null(N)){

MM<-genot2$g$index[(genot2$g[,M]==genot2$hi)]

Mm<-genot2$g$index[(genot2$g[,M]==genot2$het)]

val<-list(MM,Mm)

names(val)<-c("MM","Mm")
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}

else{

NN<-genot2$g$index[(genot2$g[,N]==genot2$hi)]

Nn<-genot2$g$index[(genot2$g[,N]==genot2$het)]

val<-list(NN,Nn)

names(val)<-c("NN","Nn")

}

val

}

#---------------------------------------------------------------------------------------------------

# index.genot.f2() : identify one- or two-locus marker genotypes in the model.

#---------------------------------------------------------------------------------------------------

index.genot.f2<-function(M=NULL,N=NULL,genot2){

mconfig<-genot2$mconfig

if ((!is.null(M))&&(!is.null(N))){

MMNN<-genot2$g$index[(genot2$g[,M]==genot2$hi)&(genot2$g[,N]==genot2$hi)]

MMNn<-genot2$g$index[(genot2$g[,M]==genot2$hi)&(genot2$g[,N]==genot2$het)]

MMnn<-genot2$g$index[(genot2$g[,M]==genot2$hi)&(genot2$g[,N]==genot2$low)]

MmNN<-genot2$g$index[(genot2$g[,M]==genot2$het)&(genot2$g[,N]==genot2$hi)]

MmNn<-genot2$g$index[(genot2$g[,M]==genot2$het)&(genot2$g[,N]==genot2$het)]

Mmnn<-genot2$g$index[(genot2$g[,M]==genot2$het)&(genot2$g[,N]==genot2$low)]

mmNN<-genot2$g$index[(genot2$g[,M]==genot2$low)&(genot2$g[,N]==genot2$hi)]

mmNn<-genot2$g$index[(genot2$g[,M]==genot2$low)&(genot2$g[,N]==genot2$het)]

mmnn<-genot2$g$index[(genot2$g[,M]==genot2$low)&(genot2$g[,N]==genot2$low)]

val<-list(MMNN,MMNn,MMnn,MmNN,MmNn,Mmnn,mmNN,mmNn,mmnn)

names(val)<-switch(M,

K=c("KKMM","KKMm","KKmm","KkMM","KkMm","Kkmm","kkMM","kkMm","kkmm"),

M=c("MMNN","MMNn","MMnn","MmNN","MmNn","Mmnn","mmNN","mmNn","mmnn"),

N=c("NNOO","NNOo","NNoo","NnOO","NnOo","Nnoo","nnOO","nnOo","nnoo"))

}

else if (is.null(M)){

NN<-genot2$g$index[(genot2$g[,N]==genot2$hi)]

Nn<-genot2$g$index[(genot2$g[,N]==genot2$het)]

nn<-genot2$g$index[(genot2$g[,N]==genot2$low)]

val<-list(NN,Nn,nn)

names(val)<-c("NN","Nn","nn")

}

else{

MM<-genot2$g$index[(genot2$g[,M]==genot2$hi)]

Mm<-genot2$g$index[(genot2$g[,M]==genot2$het)]

mm<-genot2$g$index[(genot2$g[,M]==genot2$low)]

val<-list(MM,Mm,mm)

names(val)<-c("MM","Mm","mm")

}
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val

}

#---------------------------------------------------------------------------------------------------

# index.genot() : identify one- or two-locus marker genotypes in the model.

#---------------------------------------------------------------------------------------------------

index.genot<-function(cross,M=NULL,N=NULL,genot2){

gind<-switch(as.character(cross),

B1=index.genot.b1(M,N,genot2),

B2=index.genot.b2(M,N,genot2),

F2=index.genot.f2(M,N,genot2))

gind

}

#---------------------------------------------------------------------------------------------------

# get.probs.start() : configure the starting mixing proportions depending on the model being fitted.

#---------------------------------------------------------------------------------------------------

get.probs.start<-function(chosen.model,p,mconfig){

if ((mconfig["K"]==1)&& (mconfig["O"]==1)){

probs.start<-switch(as.character(chosen.model),

N=NULL,

R=c(pR1=p$pR1,pR2=p$pR2),

L=c(pL1=p$pL1,pL2=p$pL2),

LR=c(pL1=p$pL1,pL2=p$pL2,pR1=p$pR1,pR2=p$pR2),

Q=c(pQ1=p$pQ1,pQ2=p$pQ2),

QR=c(pQ1=p$pQ1,pQ2=p$pQ2,pR1=p$pR1,pR2=p$pR2),

LQ= c(pL1=p$pL1,pL2=p$pL2,pQ1=p$pQ1,pQ2=p$pQ2),

LQR= c(pL1=p$pL1,pL2=p$pL2,pQ1=p$pQ1,pQ2=p$pQ2,pR1=p$pR1,pR2=p$pR2))

}

else if ((mconfig["K"]==0)&& (mconfig["O"]==1)){

probs.start<-switch(as.character(chosen.model),

N=NULL,

R=c(pR1=p$pR1,pR2=p$pR2),

L=c(pL=p$pL),

LR=c(pL=p$pL,pR1=p$pR1,pR2=p$pR2),

Q=c(pQ1=p$pQ1,pQ2=p$pQ2),

QR=c(pQ1=p$pQ1,pQ2=p$pQ2,pR1=p$pR1,pR2=p$pR2),

LQ= c(pL=p$pL,pQ1=p$pQ1,pQ2=p$pQ2),

LQR= c(pL=p$pL,pQ1=p$pQ1,pQ2=p$pQ2,pR1=p$pR1,pR2=p$pR2))

}

else if ((mconfig["K"]==1)&& (mconfig["O"]==0)){

probs.start<-switch(as.character(chosen.model),

N=NULL,

R=c(pR=p$pR),

L=c(pL1=p$pL1,pL2=p$pL2),

LR=c(pL1=p$pL1,pL2=p$pL2,pR=p$pR),
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Q=c(pQ1=p$pQ1,pQ2=p$pQ2),

QR=c(pQ1=p$pQ1,pQ2=p$pQ2,pR=p$pR),

LQ= c(pL1=p$pL1,pL2=p$pL2,pQ1=p$pQ1,pQ2=p$pQ2),

LQR= c(pL1=p$pL1,pL2=p$pL2,pQ1=p$pQ1,pQ2=p$pQ2,pR=p$pR))

}

else { #((mconfig["K"]==0)&& (mconfig["O"]==0))

probs.start<-switch(as.character(chosen.model),

N=NULL,

R=c(pR=p$pR),

L=c(pL=p$pL),

LR=c(pL=p$pL,pR=p$pR),

Q=c(pQ1=p$pQ1,pQ2=p$pQ2),

QR=c(pQ1=p$pQ1,pQ2=p$pQ2,pR=p$pR),

LQ= c(pL=p$pL,pQ1=p$pQ1,pQ2=p$pQ2),

LQR= c(pL=p$pL,pQ1=p$pQ1,pQ2=p$pQ2,pR=p$pR))

}

probs.start

}

#---------------------------------------------------------------------------------------------------

# checki() : speed up selection of starting values and reduce overspecification.

#---------------------------------------------------------------------------------------------------

checki<-function(yesL,yesQ,yesR,p){

#control the possiblity of overspecifation by ensuring that

#each grid test point has at most one QTL away from a marker

#when testing starting values.

k9<-0.999

k0<-1e-3

if (yesL && yesQ && yesR){

val<- ( ((p$pL2>=k9) && (p$pQ2>=k9))

|| ((p$pL2>=k9) && (p$pR2<=k0))

|| ((p$pQ2<=k0) && (p$pR2<=k0)) )

}

else if (yesQ && yesL )

val<- ((p$pL2>=k9) || (p$pQ2<=k0))

else if (yesQ && yesR)

val<- ((p$pQ2>=k9) || (p$pR2<=k0))

else val<-TRUE

val

}

#---------------------------------------------------------------------------------------------------

# gridvals() : to get good starting point for the EM Algorithm,
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# lay down a grid to determine "trial" mixing proportions.

# The chosen starting values will be the point reduces

# residual error while separating groups, as measured

# by the variable diff returned by the function diff.moments()

#---------------------------------------------------------------------------------------------------

gridvals<- function(cross,hypothesis,Ce,MCstar,cofactors.names,

mapfun,n,nqgen,y,genot,genot2,chosen.model,

ind,indc,nc,yc){

#lay out the grid

mconfig<-genot2$mconfig

rmn<-genot2$rmn

rkm<-genot2$rkm

rno<-genot2$rno

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

yesL<-(length(Lfit)>0)

yesQ<-(length(Qfit)>0)

yesR<-(length(Rfit)>0)

pp<-seq(1e-5,1-1e-5,(1-2e-5)/20)

pp[pp==0.5]<-0.5+1e-5

pL.vals<-pQ.vals<-pR.vals<-0

pL.vals<-0

pQ.vals<-0

pR.vals<-0

if (yesL)

pL.vals<-pp

if (yesQ)

pQ.vals<-pp

if (yesR)

pR.vals<-pp

len.pR<-length(pR.vals)

len.pL<-length(pL.vals)

len.pQ<-length(pQ.vals)

nmgen<-length(n)

markerg<-names(y) #names of the marker genotypes

N<-sum(n)

#We need an index to identify the marker groups
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Y<-unlist(y)

yvar<-moment.nw(Y,2)

mixing.params<-as.list(NULL)

recomb<-as.list(NULL)

maxlike<- -Inf

sdiff<- Inf

for (i in 1:len.pQ){

if (yesQ){

pQ2<-pQ.vals[i]

pQ1<-0.5 + 0.5/(1-rmn)*sqrt(1-2*rmn+rmn^2*(1-2*pQ2)^2)

mixing.params$pQ1<-pQ1 #P(QQ|MMNN)

mixing.params$pQ2<-pQ2 #P(QQ|MMNn)

recomb$rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

recomb$rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

if (mapfun=="Haldane")

recomb$pQ1<-mixing.params$pQ1

}

for (il in 1:len.pL){

if (yesL){

pL2<-pL.vals[il]

pL1<-0.5 + 0.5/(1-rkm)*sqrt(1-2*rkm+rkm^2*(1-2*pL2)^2)

mixing.params$pL1<-pL1

mixing.params$pL2<-pL2

recomb$rKL<-(1-rkm)*(1-pL1) + rkm*(1-pL2)

recomb$rLM<-(1-rkm)*(1-pL1) + rkm*pL2

mixing.params$pL<-(1-recomb$rLM)

if (mapfun=="Haldane")

recomb$pL1<-mixing.params$pL1

recomb$rKM<-rkm

}

for (ir in 1:len.pR){

if (yesR){

pR2<-pR.vals[ir]

pR1<-0.5 + 0.5/(1-rno)*sqrt(1-2*rno+rno^2*(1-2*pR2)^2)

mixing.params$pR1<-pR1

mixing.params$pR2<-pR2

recomb$rNR<-(1-rno)*(1-pR1) + rno*(1-pR2)

recomb$rRO<-(1-rno)*(1-pR1) + rno*pR2

mixing.params$pR<-(1-recomb$rNR)

if (mapfun=="Haldane")

recomb$pR1<-mixing.params$pR1

recomb$rNO<-rno

}

recomb$rMN<-rmn
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recomb2<-unlist(recomb)

names(recomb2)<-names(recomb)

ok.probs<-checki(yesL,yesQ,yesR,mixing.params)

if (ok.probs){

probs.start<-get.probs.start(chosen.model,

mixing.params,mconfig)

mle1<-em.known.probs(chosen.model,cross,hypothesis,

Ce,MCstar,cofactors.names,probs.start,

mapfun,rmn,n,nqgen,y,genot,genot2,

recomb2,nmgen,N,markerg,yvar,ind,indc,nc,yc)

#if (mle1$loglike>=maxlike){

if (mle1$mvars$diff<=sdiff){

# maxlike<-mle1$loglike

sdiff<- mle1$mvars$diff

model.start<-mle1

}

}

} #end for ir

} #end for il

} #end for i

probs.start<-model.start$model.params$probs

recomb.start<-model.start$recomb

startvals<-em.known.probs(chosen.model,cross,hypothesis,

Ce,MCstar,cofactors.names,probs.start,

mapfun,rmn,n,nqgen,y,genot,genot2,

recomb.start,nmgen,N,markerg,yvar,

ind,indc,nc,yc, calclike=TRUE)

startvals

}

#---------------------------------------------------------------------------------------------------

# weights.b1() : calculate the mixing proportions for a B1 cross

#---------------------------------------------------------------------------------------------------

weights.b1<- function(chosen.model,probs,markerg,genot,genot2,nqgen){

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

xgen<-NULL
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qtl3<-genot2$qtl3

highL<-grep("LL",qtl3)

highR<-grep("RR",qtl3)

highQ<-grep("QQ",qtl3)

ppl<-matrix(1,nrow=8,ncol=length(genot2$g$index),dimnames=list(NULL,genot))

ppr<-ppl

ppq<-ppl

mconfig<-genot2$mconfig

rmn<-genot2$rmn

if(length(Lfit)>0) {

if (mconfig["K"]==1){

pL1<-probs["pL1"]

pL2<-probs["pL2"]

gg<-index.genot(cross="B1",M="K",N="M",genot2=genot2)

ppl[,gg$KKMM]<-rep(c(pL1,(1-pL1)),c(4,4))

ppl[,gg$KKMm]<-rep(c(pL2,(1-pL2)),c(4,4))

ppl[,gg$KkMM]<-rev(ppl[,gg$KKMm])

ppl[,gg$KkMm]<-rev(ppl[,gg$KKMM])

}

else{

pL<-probs["pL"]

gg<-index.genot(cross="B1",M="M",genot2=genot2)

ppl[,gg$MM]<-rep(c(pL,(1-pL)),c(4,4))

ppl[,gg$Mm]<-rev(ppl[,gg$MM])

}

}

else

xgen<-c(highL,xgen) #drop LL indices

if(length(Rfit)>0){

if (mconfig["O"]==1){

pR1<-probs["pR1"]

pR2<-probs["pR2"]

gg<-index.genot(cross="B1",M="N",N="O",genot2=genot2)

ppr[,gg$NNOO]<-rep(c(pR1,(1-pR1)),4)

ppr[,gg$NNOo]<-rep(c(pR2,(1-pR2)),4)

ppr[,gg$NnOO]<-rev(ppr[,gg$NNOo])

ppr[,gg$NnOo]<-rev(ppr[,gg$NNOO])

}

else{

pR<-probs["pR"]

gg<-index.genot(cross="B1",N="N",genot2=genot2)
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ppr[,gg$NN]<-rep(c(pR,(1-pR)),4)

ppr[,gg$Nn]<-rev(ppr[,gg$NN])

}

}

else

xgen<-c(highR,xgen) #drop RR indices

if(length(Qfit)>0) {

pQ1<-probs["pQ1"]

pQ2<-probs["pQ2"]

gg<-index.genot(cross="B1",M="M",N="N",genot2=genot2)

ppq[,gg$MMNN]<-rep(rep(c(pQ1,(1-pQ1)),c(2,2)),2)

ppq[,gg$MMNn]<-rep(rep(c(pQ2,(1-pQ2)),c(2,2)),2)

ppq[,gg$MmNN]<-rev(ppq[,gg$MMNn])

ppq[,gg$MmNn]<-rev(ppq[,gg$MMNN])

}

else

xgen<-c(highQ,xgen) #drop QQ indices

w<-ppl*ppq*ppr

dimnames(w)<-list(NULL,genot)

w<-t(w)

#remove QTL genotypes that are not in the model

xgen<-unique(xgen)

if (length(xgen)>0)

w<-w[,-xgen]

w<-w[markerg,]

w

}

#---------------------------------------------------------------------------------------------------

# weights.f2() : calculate the mixing proportions for a F2 cross

#---------------------------------------------------------------------------------------------------

weights.f2<- function(chosen.model,probs,markerg,genot,genot2,nqgen){

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

mconfig<-genot2$mconfig

rmn<-genot2$rmn

rkm<-genot2$rkm

rno<-genot2$rno

xgen<-NULL

qtl3<-genot2$qtl3

highL<-grep("LL",qtl3)
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hetL<-grep("Ll",qtl3)

highR<-grep("RR",qtl3)

hetR<-grep("Rr",qtl3)

highQ<-grep("QQ",qtl3)

hetQ<-grep("Qq",qtl3)

ppl<-matrix(1,nrow=27,ncol=length(genot2$g$index),dimnames=list(NULL,genot))

ppr<-ppl

ppq<-ppl

if(length(Lfit)>0) {

if (mconfig["K"]==1){

pL1<-probs["pL1"]

pL2<-probs["pL2"]

gg<-index.genot(cross="F2",M="K",N="M",genot2=genot2)

ppl[,gg$KKMM]<-rep(c(pL1^2,2*pL1*(1-pL1),(1-pL1)^2),c(9,9,9))

ppl[,gg$KKMm]<-rep(c(pL1*pL2,pL2*(1-pL1)+pL1*(1-pL2),(1-pL1)*(1-pL2)),

c(9,9,9))

ppl[,gg$KKmm]<-rep(c(pL2^2,2*pL2*(1-pL2),(1-pL2)^2),c(9,9,9))

ppl[,gg$KkMM]<-rep(c(pL1*(1-pL2),1-pL1-pL2+ 2*pL1*pL2,pL2*(1-pL1)),

c(9,9,9))

ppl[,gg$KkMm]<-(1/((1-rkm)^2+rkm^2)*

rep(c((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2),

(1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)),

(1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2)),c(9,9,9)))

ppl[,gg$Kkmm]<-rev(ppl[,gg$KkMM])

ppl[,gg$kkMM]<-rev(ppl[,gg$KKmm])

ppl[,gg$kkMm]<-rev(ppl[,gg$KKMm])

ppl[,gg$kkmm]<-rev(ppl[,gg$KKMM])

}

else{

pL<-probs["pL"]

gg<-index.genot(cross="F2",M="M",genot2=genot2)

ppl[,gg$MM]<-rep(c(pL^2,2*pL*(1-pL),(1-pL)^2),c(9,9,9))

ppl[,gg$Mm]<-rep(c(pL*(1-pL),pL^2+(1-pL)^2,pL*(1-pL)),c(9,9,9))

ppl[,gg$mm]<-rev(ppl[,gg$MM])

}

}

else

xgen<-c(highL,hetL,xgen) #drop LL,Ll indices

if(length(Rfit)>0){

if (mconfig["O"]==1){

pR1<-probs["pR1"]

pR2<-probs["pR2"]
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gg<-index.genot(cross="F2",M="N",N="O",genot2=genot2)

ppr[,gg$NNOO]<-rep(c(pR1^2,2*pR1*(1-pR1),(1-pR1)^2),9)

ppr[,gg$NNOo]<-rep(c(pR1*pR2,pR2*(1-pR1)+pR1*(1-pR2),(1-pR1)*(1-pR2)),9)

ppr[,gg$NNoo]<-rep(c(pR2^2,2*pR2*(1-pR2),(1-pR2)^2),9)

ppr[,gg$NnOO]<-rep(c(pR1*(1-pR2),1-pR1-pR2+ 2*pR1*pR2,pR2*(1-pR1)),9)

ppr[,gg$NnOo]<-(1/((1-rno)^2+rno^2)*

rep(c((1-rno)^2*pR1*(1-pR1) + rno^2*pR2*(1-pR2),

(1-rno)^2*(1-2*pR1*(1-pR1)) + rno^2*(1-2*pR2*(1-pR2)),

(1-rno)^2*pR1*(1-pR1) + rno^2*pR2*(1-pR2)),9))

ppr[,gg$Nnoo]<-rev(ppr[,gg$NnOO])

ppr[,gg$nnOO]<-rev(ppr[,gg$NNoo])

ppr[,gg$nnOo]<-rev(ppr[,gg$NNOo])

ppr[,gg$nnoo]<-rev(ppr[,gg$NNOO])

}

else{

pR<-probs["pR"]

gg<-index.genot(cross="F2",N="N",genot2=genot2)

ppr[,gg$NN]<-rep(c(pR^2,2*pR*(1-pR),(1-pR)^2),9)

ppr[,gg$Nn]<-rep(c(pR*(1-pR),pR^2+(1-pR)^2,pR*(1-pR)),9)

ppr[,gg$nn]<-rev(ppr[,gg$NN])

}

}

else

xgen<-c(highR,hetR,xgen) #drop RR,Rr indices

if(length(Qfit)>0) {

pQ1<-probs["pQ1"]

pQ2<-probs["pQ2"]

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

ppq[,gg$MMNN]<-rep(rep(c(pQ1^2,2*pQ1*(1-pQ1),(1-pQ1)^2),c(3,3,3)),3)

ppq[,gg$MMNn]<-rep(rep(c(pQ1*pQ2,pQ2*(1-pQ1)+pQ1*(1-pQ2),(1-pQ1)*(1-pQ2)),

c(3,3,3)),3)

ppq[,gg$MMnn]<-rep(rep(c(pQ2^2,2*pQ2*(1-pQ2),(1-pQ2)^2),c(3,3,3)),3)

ppq[,gg$MmNN]<-rep(rep(c(pQ1*(1-pQ2),1-pQ1-pQ2+ 2*pQ1*pQ2,pQ2*(1-pQ1)),

c(3,3,3)),3)

ppq[,gg$MmNn]<-(1/((1-rmn)^2+rmn^2)*

rep(rep(c((1-rmn)^2*pQ1*(1-pQ1) + rmn^2*pQ2*(1-pQ2),

(1-rmn)^2*(1-2*pQ1*(1-pQ1)) + rmn^2*(1-2*pQ2*(1-pQ2)),

(1-rmn)^2*pQ1*(1-pQ1) + rmn^2*pQ2*(1-pQ2)),c(3,3,3)),3))

ppq[,gg$Mmnn]<-rev(ppq[,gg$MmNN])

ppq[,gg$mmNN]<-rev(ppq[,gg$MMnn])

ppq[,gg$mmNn]<-rev(ppq[,gg$MMNn])

ppq[,gg$mmnn]<-rev(ppq[,gg$MMNN])

}

else
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xgen<-c(highQ,hetQ,xgen) #drop QQ indices

w<-ppl*ppq*ppr

dimnames(w)<-list(NULL,genot)

w<-t(w)

#remove QTL genotypes that are not in the model

xgen<-unique(xgen)

if (length(xgen)>0)

w<-w[,-xgen]

w<-w[markerg,]

w

}

#---------------------------------------------------------------------------------------------------

# mixing.probs() : switching function for calculate the mixing

# proportions depending on the type of breeding design

#---------------------------------------------------------------------------------------------------

mixing.probs<- function(cross,hypothesis,...){

w<-switch(as.character(cross),

B1=weights.b1(...),

B2=weights.b1(...),

F2=weights.f2(...))

w

}

#---------------------------------------------------------------------------------------------------

# loglik() : calculate the log-likelihood for an inbred line cross design

# assuming Normal mixture for the trait distribution.

# PARAMETERS of loglik():

# sigma2 - the error variance

# mu.qtl - the component of the mean due to qtl effects

# (a numeric vector whose length is equal to the

# number of qtl genotypes)

# mu.cofactors - the component of the mean due to the

# effects of extra cofactors

# This is a list (grouped by marker type) of numeric vectors

# w - a matrix of mixing weights, whose rows represent marker genotype

# and columns represents qtl genotype.

# w_{ij} is the probability of being in qtl group j given marker i.

# nmgen - the number of marker genotypes

# n - a list containing the sample counts in each marker grouping

# N - the overall sample size

# y - a list of trait values grouped according to marker genotype (ie a

# list of numeric vectors. We assume that, with probability w[i,k],

# y[[i]][j] comes from a Normal distribution with



286

# mean=mu.cofactors[[i]][j]+mu.qtl[k] and variance=sigma2

#---------------------------------------------------------------------------------------------------

loglik<-function(sigma2,mu.qtl,mu.cofactors,w,nmgen,n,N,y){

lnfj<-function(j,i,w,mu.qtl,mu.cofactors,sigma2,y){

fy<-y[[i]][j]-mu.cofactors[[i]][j]-mu.qtl

#fy is a vector of y_{ij}-m_{ij,k} for all k

fy<-fy*fy/(-2*sigma2)

fy<-exp(fy)

sumwf<-w[i,]%*%fy

#sumwf is a vector of w_{i,k}*f_{i,k}(y_{i,j}) for all k

log(sumwf)

}

lik<-0

for(i in 1:nmgen){

likei<-sapply(1:n[i],lnfj,i,w,mu.qtl,mu.cofactors,sigma2,y)

lik<-lik + sum(likei)

}

lik-N/2*log(sigma2*2*pi)

}

#---------------------------------------------------------------------------------------------------

# haldane.pQ1(): calculate pQ1 from pQ2 and rMN if map function is Haldane.

#---------------------------------------------------------------------------------------------------

haldane.pQ1<-function(rmn,pQ2){

0.5 + 0.5/(1-rmn)*sqrt(1-2*rmn+rmn^2*(1-2*pQ2)^2)

}

#---------------------------------------------------------------------------------------------------

# constrain.b1() : : used in calculating the MLEs of the mixing parameters.

#---------------------------------------------------------------------------------------------------

constrain.b1<-function(pQ1,pQ2,rmn,mapfun){

#this function carries out an exact maximization

max.pQ1<-haldane.pQ1(rmn,1-1e-5)

if (pQ1>max.pQ1)

pQ1<-max.pQ1

if (mapfun=="Haldane"){

cn<-1 #coefficeint of coincidence

pQ1<-haldane.pQ1(rmn,pQ2)

if ((pQ1>max.pQ1) && (pQ2<0.5)){

pQ1<-max.pQ1
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pQ2<-1e-5

}

else if (pQ1>max.pQ1){

pQ1<-max.pQ1

pQ2<-1-1e-5

}

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-pQ2*rmn/(1-cn*rMQ)

}

else{

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

cn<-(1-rmn)*(1-pQ1)/(rMQ*rQN)

}

if (pQ2>1-1e-5){

pQ2<-1-1e-5

pQ1<-haldane.pQ1(rmn,pQ2)

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

}

else if (pQ2<1e-5){

pQ2<-1e-5

pQ1<-haldane.pQ1(rmn,pQ2)

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

}

if (pQ1==0.5) #aviod (1/0) in derivative for infmat

pQ1<-0.5+1e-5

list(pQ1,pQ2,rMQ,rQN)

}

#---------------------------------------------------------------------------------------------------

# constrain.f2() : used in calculating the MLEs of the mixing parameters.

#---------------------------------------------------------------------------------------------------

constrain.f2<-function(gg,n,en,rmn,mapfun,highQ,hetQ,lowQ,sfrac){

#Exact maximization is difficult here,

#we could use numerical maximization algorithm,

#but in the interest of time,

#we will just use a speudo-moment approximation

n1<-sum(n[gg$MMNN])

n1Hi<-sum(en[gg$MMNN,highQ])

n1Lo<-sum(en[gg$MMNN,lowQ])
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p1Hi1<-p1Lo1<-0

if (n1>0){

p1Hi1<-sqrt(n1Hi/n1)

p1Lo1<-1-sqrt(n1Lo/n1)

}

n9<-sum(n[gg$mmnn])

n9Hi<-sum(en[gg$mmnn,highQ])

n9Lo<-sum(en[gg$mmnn,lowQ])

p1Lo9<-p1Hi9<-0

if (n9>0){

p1Lo9<-sqrt(n9Lo/n9)

p1Hi9<-1-sqrt(n9Hi/n9)

}

pQ1<-((n1Hi*p1Hi1+n1Lo*p1Lo1+

n9Hi*p1Hi9+n9Lo*p1Lo9)/(n1Hi+n1Lo+n9Hi+n9Lo))

n3<-sum(n[gg$MMnn])

n3Hi<-sum(en[gg$MMnn,highQ])

n3Lo<-sum(en[gg$MMnn,lowQ])

p2Hi3<-p2Lo3<-0

if (n3>0){

p2Hi3<-sqrt(n3Hi/n3)

p2Lo3<-1-sqrt(n3Lo/n3)

}

n7<-sum(n[gg$mmNN])

n7Hi<-sum(en[gg$mmNN,highQ])

n7Lo<-sum(en[gg$mmNN,lowQ])

p2Lo7<-p2Hi7<-0

if (n7>0){

p2Lo7<-sqrt(n7Lo/n7)

p2Hi7<-1-sqrt(n7Hi/n7)

}

n8<-sum(n[gg$mmNn])

n8Hi<-sum(en[gg$mmNn,highQ])

n8Lo<-sum(en[gg$mmNn,lowQ])

n6<-sum(n[gg$Mmnn])

n6Hi<-sum(en[gg$Mmnn,highQ])

n6Lo<-sum(en[gg$Mmnn,lowQ])

p2Hi6Low8<-p2Low6Hi8<-0

if ((n8>0)&&(n6>0)){

p2Hi6Low8<-(n6Hi/n6)+(n8Lo/n8)
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p2Low6Hi8<-1-((n6Lo/n6)+(n8Hi/n8))

}

p2.68<- 0.5*(p2Hi6Low8 +p2Low6Hi8)

n2<-sum(n[gg$MMNn])

n2Hi<-sum(en[gg$MMNn,highQ])

n2Lo<-sum(en[gg$MMNn,lowQ])

n4<-sum(n[gg$MmNN])

n4Hi<-sum(en[gg$MmNN,highQ])

n4Lo<-sum(en[gg$MmNN,lowQ])

p2Hi2Low4<-p2Low2Hi4<-0

if ((n2>0)&&(n4>0)){

p2Hi2Low4<-(n2Hi/n2)+(n4Lo/n4)

p2Low2Hi4<-1-((n2Lo/n2)+(n4Hi/n4))

}

p2.24<- 0.5*(p2Hi2Low4 + p2Low2Hi4)

pQ2<-((n3Lo*p2Lo3 + n3Hi*p2Hi3 + n7Lo*p2Lo7 + n7Hi*p2Hi7

+ (n2+n4)*p2.24 + (n6+n8)*p2.68 )

/(n3Lo+ n3Hi + n7Lo + n7Hi +(n2+n4)+(n6+n8)) )

max.pQ1<-haldane.pQ1(rmn,1-1e-5)

if (pQ1>max.pQ1)

pQ1<-max.pQ1

if (mapfun=="Haldane"){

cn<-1 #coefficeint of coincidence

pQ1<-haldane.pQ1(rmn,pQ2)

if ((pQ1>max.pQ1) && (pQ2<0.5)){

pQ1<-max.pQ1

pQ2<-1e-5

}

else if (pQ1>max.pQ1){

pQ1<-max.pQ1

pQ2<-1-1e-5

}

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-pQ2*rmn/(1-cn*rMQ)

}

else{

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

cn<-(1-rmn)*(1-pQ1)/(rMQ*rQN)
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}

if (pQ2>1-1e-5){

pQ2<-1-1e-5

pQ1<-haldane.pQ1(rmn,pQ2)

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

}

else if (pQ2<1e-5){

pQ2<-1e-5

pQ1<-haldane.pQ1(rmn,pQ2)

rMQ<-(1-rmn)*(1-pQ1) + rmn*(1-pQ2)

rQN<-(1-rmn)*(1-pQ1) + rmn*pQ2

}

if (pQ1==0.5) #aviod (1/0) in derivative for infmat

pQ1<-0.5+1e-5

list(pQ1,pQ2,rMQ,rQN)

}

#---------------------------------------------------------------------------------------------------

# constrain() : used in calculating the MLEs of the mixing parameters.

#---------------------------------------------------------------------------------------------------

constrain<- function(cross,...){

w<-switch(as.character(cross),

B1=constrain.b1(...),

B2=constrain.b1(...),

F2=constrain.f2(...))

w

}

#---------------------------------------------------------------------------------------------------

# phihat.b1(): Calculte MLEs of the mixing parameters for B1.

#---------------------------------------------------------------------------------------------------

phihat.b1<-function(chosen.model,mapfun,n,en,genot,genot2,probs,markerg){

#sort expected QTL genotype counts by marker category

cross<-"B1"

temp<-en

nqgen<-length(en[1,])

qtl.genotype.labels<-dimnames(en)[[2]]

en<-matrix(0,nrow=length(genot),ncol=nqgen,dimnames=list(genot,NULL))

en[markerg,]<-temp[markerg,]

#sort marker genotype counts by marker category

n<-n[genot]

temp<-n
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n<-rep(0,length(genot))

names(n)<-genot

n[markerg]<-temp[markerg]

N<-sum(n)

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

highL<-grep("LL",qtl.genotype.labels)

hetL<-grep("Ll",qtl.genotype.labels)

highR<-grep("RR",qtl.genotype.labels)

hetR<-grep("Rr",qtl.genotype.labels)

highQ<-grep("QQ",qtl.genotype.labels)

hetQ<-grep("Qq",qtl.genotype.labels)

probs.hat<-as.list(rep(0,length(probs)))

names(probs.hat)<-names(probs)

mconfig<-genot2$mconfig

rMN<-genot2$rmn

rKM<-genot2$rkm

rNO<-genot2$rno

recomb<-as.list(NULL)

if (length(Qfit)>0){

gg<-index.genot(cross="B1",M="M",N="N",genot2=genot2)

denom<-max(1e-5,sum(n[c(gg$MMNN,gg$MmNn)]))

pQ1.vals<-(1/denom*(sum(en[gg$MMNN,highQ])

+sum(en[gg$MmNn,hetQ]) ))

denom<-max(1e-5,sum(n[c(gg$MMNn,gg$MmNN)]))

pQ2.vals<-(1/denom*(sum(en[gg$MMNn,highQ])

+sum(en[gg$MmNN,hetQ]) ))

#rmn.hat<-sum(n[c(gg$MMNn,gg$MmNN)])/sum(n)

cpQ<-constrain(cross,pQ1.vals,pQ2.vals,rMN,mapfun)

probs.hat$pQ1<-cpQ[[1]]

probs.hat$pQ2<-cpQ[[2]]

recomb$rMQ<-cpQ[[3]]

recomb$rQN<-cpQ[[4]]

}#end if (length(Qfit)>0)

if (length(Lfit)>0){

if (mconfig["K"]==1){

gg<-index.genot(cross="B1",M="K",N="M",genot2=genot2)

denom<-max(1e-5,sum(n[c(gg$KKMM,gg$KkMm)]))

pL1.vals<-(1/denom*(sum(en[gg$KKMM,highL])
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+sum(en[gg$KkMm,hetL]) ))

denom<-max(1e-5,sum(n[c(gg$KKMm,gg$KkMM)]))

pL2.vals<-(1/denom*(sum(en[gg$KKMm,highL])

+sum(en[gg$KkMM,hetL]) ))

cpL<-constrain(cross,pL1.vals,pL2.vals,rKM,mapfun)

probs.hat$pL1<-cpL[[1]]

probs.hat$pL2<-cpL[[2]]

recomb$rKL<-cpL[[3]]

recomb$rLM<-cpL[[4]]

}

else{

gg<-index.genot(cross="B1",M="M",genot2=genot2)

probs.hat$pL<-(1/N*(sum(en[gg$MM,highL])

+sum(en[gg$Mm,hetL]) ))

if (probs.hat$pL>1-1e-5)

probs.hat$pL<- 1-1e-5 #avoid overflows

else if (probs.hat$pL<0.5+1e-5)

probs.hat$pL<- 0.5+1e-5

recomb$rLM<-(1-probs.hat$pL)

}

recomb$rKM<-rKM

}

if (length(Rfit)>0){

if(mconfig["O"]==1){

gg<-index.genot(cross="B1",M="N",N="O",genot2=genot2)

denom<-max(1e-5,sum(n[c(gg$NNOO,gg$NnOo)]))

pR1.vals<-(1/denom*(sum(en[gg$NNOO,highR])

+sum(en[gg$NnOo,hetR]) ))

denom<-max(1e-5,sum(n[c(gg$NNOo,gg$NnOO)]))

pR2.vals<-(1/denom*(sum(en[gg$NNOo,highR])

+sum(en[gg$NnOO,hetR]) ))

cpR<-constrain(cross,pR1.vals,pR2.vals,rNO,mapfun)

probs.hat$pR1<-cpR[[1]]

probs.hat$pR2<-cpR[[2]]

recomb$rNR<-cpR[[3]]

recomb$rRO<-cpR[[4]]

}

else{

gg<-index.genot(cross="B1",N="N",genot2=genot2)

probs.hat$pR<-(1/N*(sum(en[gg$NN,highR])

+sum(en[gg$Nn,hetR]) ))

if (probs.hat$pR> 1-1e-5)

probs.hat$pR<- 1-1e-5

else if (probs.hat$pR<0.5+1e-5)
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probs.hat$pR<- 0.5+1e-5

recomb$rNR<-(1-probs.hat$pR)

}

recomb$rNO<-rNO

}

recomb$rMN<-rMN

probs.hat<-unlist(probs.hat)

names(probs.hat)<-names(probs)

probs.list<-as.list(1)

probs.list[[1]]<-probs.hat

rec.hat<-unlist(recomb)

names(rec.hat)<-names(recomb)

rec.list<-as.list(1)

rec.list[[1]]<-rec.hat

probs.hat<-list(phi.hat=probs.list,rec.hat=rec.list)

probs.hat

}

#---------------------------------------------------------------------------------------------------

# phihat.f2(): Calculte MLEs of the mixing parameters for F2.

#---------------------------------------------------------------------------------------------------

phihat.f2<-function(chosen.model,mapfun,n,en,genot,genot2,probs,markerg){

#sort expected QTL genotype counts by marker category

cross<-"F2"

temp<-en

nqgen<-length(en[1,])

qtl.genotype.labels<-dimnames(en)[[2]]

en<-matrix(0,nrow=length(genot),ncol=nqgen,dimnames=list(genot,NULL))

en[markerg,]<-temp[markerg,]

#sort marker genotype counts by marker category

n<-n[genot]

temp<-n

n<-rep(0,length(genot))

names(n)<-genot

n[markerg]<-temp[markerg]

N<-sum(n)

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

highL<-grep("LL",qtl.genotype.labels)

hetL<-grep("Ll",qtl.genotype.labels)
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lowL<-grep("ll",qtl.genotype.labels)

highR<-grep("RR",qtl.genotype.labels)

hetR<-grep("Rr",qtl.genotype.labels)

lowR<-grep("rr",qtl.genotype.labels)

highQ<-grep("QQ",qtl.genotype.labels)

hetQ<-grep("Qq",qtl.genotype.labels)

lowQ<-grep("qq",qtl.genotype.labels)

probs.hat<-as.list(rep(0,length(probs)))

names(probs.hat)<-names(probs)

mconfig<-genot2$mconfig

rMN<-genot2$rmn

rKM<-genot2$rkm

rNO<-genot2$rno

recomb<-as.list(NULL)

if (length(Qfit)>0){

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

cpQ<-constrain(cross,gg,n,en,rMN,mapfun,highQ,hetQ,lowQ)

probs.hat$pQ1<-cpQ[[1]]

probs.hat$pQ2<-cpQ[[2]]

recomb$rMQ<-cpQ[[3]]

recomb$rQN<-cpQ[[4]]

}#end if (length(Qfit)>0)

if (length(Lfit)>0){

if (mconfig["K"]==1){

gg<-index.genot(cross="F2",M="K",N="M",genot2=genot2)

gg2<-list(gg$KKMM,gg$KKMm,gg$KKmm,gg$KkMM,gg$KkMm,gg$Kkmm,gg$kkMM,gg$kkMm,gg$kkmm)

names(gg2)<-c("MMNN","MMNn","MMnn","MmNN","MmNn","Mmnn","mmNN","mmNn","mmnn")

cpL<-constrain(cross,gg2,n,en,rKM,mapfun,highL,hetL,lowL)

probs.hat$pL1<-cpL[[1]]

probs.hat$pL2<-cpL[[2]]

recomb$rLM<-cpL[[4]]

}

else{

gg<-index.genot(cross="B1",M="M",genot2=genot2)

n1<-sum(n[gg$MM])

n3<-sum(n[gg$mm])

plHi1<-plLo1<-plLo3<-plHi3<-0

if (n1>0){

prlHi1<-sqrt(sum(en[gg$MM,highQ])/n1)

plLo1<-1-sqrt(sum(en[gg$MM,lowQ])/n1)

}

if (n3>0){

plLo3<-sqrt(sum(en[gg$mm,lowQ])/n3)
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plHi3<-1-sqrt(sum(en[gg$mm,highQ])/n3)

}

probs.hat$pL<-0.5*(n1*(plHi1+plLo1)+n3*(plLo3+plHi3))/(n1+n3)

if (probs.hat$pL>1-1e-5)

probs.hat$pL<- 1-1e-5

else if (probs.hat$pL<0.5+1e-5)

probs.hat$pL<- 0.5+1e-5

recomb$rLM<-(1-probs.hat$pL)

}

recomb$rKM<-rKM

}

if (length(Rfit)>0){

if(mconfig["O"]==1){

gg<-index.genot(cross="F2",M="N",N="O",genot2=genot2)

gg2<-list(gg$NNOO,gg$NNOo,gg$NNoo,gg$NnOO,gg$NnOo,gg$Nnoo,gg$nnOO,gg$nnOo,gg$nnoo)

names(gg2)<-c("MMNN","MMNn","MMnn","MmNN","MmNn","Mmnn","mmNN","mmNn","mmnn")

cpR<-constrain(cross,gg2,n,en,rNO,mapfun,highR,hetR,lowR)

probs.hat$pR1<-cpR[[1]]

probs.hat$pR2<-cpR[[2]]

recomb$rNR<-cpR[[3]]

}

else{

gg<-index.genot(cross="F2",N="N",genot2=genot2)

n1<-sum(n[gg$NN])

n3<-sum(n[gg$nn])

prHi1<-prLo1<-prLo3<-prHi3<-0

if (n1>0){

prHi1<-sqrt(sum(en[gg$NN,highQ])/n1)

prLo1<-1-sqrt(sum(en[gg$NN,lowQ])/n1)

}

if (n3>0){

prLo3<-sqrt(sum(en[gg$nn,lowQ])/n3)

prHi3<-1-sqrt(sum(en[gg$nn,highQ])/n3)

}

probs.hat$pR<-0.5*(n1*(prHi1+prLo1)+n3*(prLo3+prHi3))/(n1+n3)

if (probs.hat$pR>1-1e-5)

probs.hat$pR<- 1-1e-5

else if (probs.hat$pR<0.5+1e-5)

probs.hat$pR<- 0.5+1e-5

recomb$rNR<-(1-probs.hat$pR)

}
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recomb$rNO<-rNO

}

recomb$rMN<-rMN

probs.hat<-unlist(probs.hat)

names(probs.hat)<-names(probs)

probs.list<-as.list(1)

probs.list[[1]]<-probs.hat

rec.hat<-unlist(recomb)

names(rec.hat)<-names(recomb)

rec.list<-as.list(1)

rec.list[[1]]<-rec.hat

probs.hat<-list(phi.hat=probs.list,rec.hat=rec.list)

probs.hat

}

#---------------------------------------------------------------------------------------------------

# mle.probs() :

# switching function to calculate the MLEs of the mixing parameters

# depending on the type of breeding design

#---------------------------------------------------------------------------------------------------

mle.probs<- function(cross,...){

probs.hat<-switch(as.character(cross),

B1=phihat.b1(...),

B2=phihat.b1(...),

F2=phihat.f2(...))

probs.hat

}

#---------------------------------------------------------------------------------------------------

# moment.nw()

#---------------------------------------------------------------------------------------------------

moment.nw <- function(y, mom, sums = F, centered=T,trim=0){

if (centered==T)

mu<-mean(y, na.rm = T,trim=trim)

else mu<-0

if(sums == F)

val <- mean((y - mu)^mom, na.rm = T,trim=trim)

else val <- sum((y - mu)^mom, na.rm = T)

val

}

#---------------------------------------------------------------------------------------------------

# diff.moments()
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#---------------------------------------------------------------------------------------------------

diff.moments<-function(Y,nmgen,N,n,nc,ind,indc,w,mu.qtl,mu.cofactors,

sigma2,vqtl,yvar){

sig<-sigma2-vqtl

vq<-mom2.est<-rep(0,nmgen)

for(i in 1:nmgen) {

mu.cofaci<-mu.cofactors[[i]]

num<-length(nc[[i]])

muq<-wi<-numeric(0)

for (k in 1:num){

wi<-c(wi,(nc[[i]][k]/n[i])*w[i,])

muq<-c(muq,mu.qtl + mean(mu.cofaci[indc[[i]][[k]]]))

}

#mom2.est[i]=expected value of var(Yi)

mom2.est[i]<-(sig+((wi%*%muq^2) - (wi%*%muq)^2))

nikj<-wi*n[i] #number of each qc in i

vq[i]<- (nikj/n[i]^2)%*%c(sig/(nikj)+mom2.est[i]/n[i]-2*sig/n[i])

}

#vardiff = expected value of var( Ybar_i - Ybar)

vmarkers<-(n/N)%*%(mom2.est/n+(sig+vqtl)/N -2/N*mom2.est )

vq<-(n/N)%*%(vq)

diff<-sig/(vq+vmarkers)

list(vqtl=vqtl,verr=sig,vqc.within.m=vq, vmarkers=vmarkers,

totvar=yvar,diff=diff)

}

#---------------------------------------------------------------------------------------------------

# em.known.probs() : calculate (via the EM Algorithm) the maximum

# likelihood of the observed trait values for inbred linecross

# data, assumming mixing proportions are not known.

# Descriptions of some of the parameters of em.known.probs()

# Ce - the contrast matrix associated with the QTL genotypes

# MCstar - the coded variables representing the extra marker cofactors

# cofactors.names - the names of the extra cofactors being fitted

# probs0 - a vector of mixing proportions (pL,pR,pQ1,pQ2)

# mapfun - one of "Haldane", "General"

# n - a vector containing the sample counts in each marker grouping
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# nqgen - number of qtl genotypes

# y - a list of trait values grouped according to marker genotype.

# ind,indc,nc,yc - indices, counts and traits for cofactor subgroups

#---------------------------------------------------------------------------------------------------

em.known.probs<-function(chosen.model,cross,hypothesis, Ce,MCstar,

cofactors.names,probs,mapfun,rmn,n,nqgen,

y,genot,genot2,recomb,nmgen,N,markerg,yvar,ind,indc,nc,yc,

calclike=FALSE ,mu.all=FALSE){

#em Main

w<-mixing.probs(cross,hypothesis,chosen.model,probs,markerg,genot,

genot2,nqgen)

Z<-matrix(0,nrow=N,ncol=nqgen)

#eventually Z will store the category identities

#Y will be a N vector of trait values partitioned by marker group

Y<-unlist(y) #uppercase Y is a numeric vector, lowercase y is a list

tCstar.MtM.Cstar<-t(MCstar)%*%MCstar

for(i in 1:nmgen) #compute e-step for all indivs in group i

Z[ind[[i]], ]<-cbind(rep(1,n[i])) %*% w[i,]

X<-cbind(Z%*%Ce,MCstar) #model matrix

#m-steps

eZgivenY.XtX1 <- cbind(t(Ce)%*%diag(c(rep(1,N)%*%Z))%*%Ce,

t(Ce)%*%t(Z)%*%MCstar)

eZgivenY.XtX2 <- cbind(t(MCstar)%*%Z%*%Ce, tCstar.MtM.Cstar)

eZgivenY.XtX <- rbind(eZgivenY.XtX1, eZgivenY.XtX2)

b<- try(solve(eZgivenY.XtX,t(X)%*%Y),silent=TRUE)

if (inherits(b, "try-error"))

b<-(ginv(eZgivenY.XtX))%*%t(X)%*%Y

sigma2<-(1/N)*(t(Y)%*%Y - 2*t(Y)%*%X%*%b + t(b)%*%eZgivenY.XtX%*%b)

sigma2<-as.numeric(sigma2)

main.names<-dimnames(Ce)[[2]]

dimnames(b)<-list(c(main.names,cofactors.names),"MLE")

B<-b[main.names,]

Bstar<-b[cofactors.names,]

mu.qtl<-Ce%*%B

mu.cofactors<-as.list(n)

for(i in 1:nmgen)

mu.cofactors[[i]]<-MCstar[ind[[i]],]%*%Bstar

model.params<-list(effects=b,variance=sigma2,probs=probs)

#vqtl<-as.numeric((n/N) %*%((w%*%mu.qtl^2) - (w%*%mu.qtl)^2))

#the above is equal to

vqtl<- as.numeric((1/N)*( t(b)%*%( eZgivenY.XtX-t(X)%*%X)%*%b))
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mvars<- diff.moments(Y,nmgen,N,n,nc,ind,indc,w,mu.qtl,mu.cofactors,

sigma2,vqtl,yvar)

if (calclike==TRUE){

newlike<-loglik(sigma2,mu.qtl,mu.cofactors,w,nmgen,n,N,y)

val<-list(model.params=model.params,recomb=recomb,

loglike=newlike,mvars=mvars)

}

else val<-list(model.params=model.params,recomb=recomb,mvars=mvars)

if (mu.all==TRUE){

val$mu.qtl <-mu.qtl

val$mu.cofactors <-mu.cofactors

}

val

}

#---------------------------------------------------------------------------------------------------

# getZij(): for the e-step: estimate the category identity of each indiv in group i

#---------------------------------------------------------------------------------------------------

getZij<-function(j,i,w,mu.qtl,mu.cofactors,sigma2,y){

#e-step: estimate the category identity of each indiv in group i

fy<-y[[i]][j]-mu.cofactors[[i]][j]-mu.qtl

#fy is a vector of y_{ij}-m_{ij,k} for all k

fy<-fy*fy/(-2*sigma2)

fy<-exp(fy)

wf<-w[i,]*fy #vector of w_{i,k}*f_{i,k}(y_{i,j}) for all k

wf/sum(wf) #vector of z_{ijk} for a specific (i,j) pair and for all k

}

#---------------------------------------------------------------------------------------------------

# em.unknown.probs() : calculate (via the EM Algorithm)

# the maximum likelihood of the observed trait values

# for inbred linecross data, where the mixing proportions are unknown.

#

# Descriptions of some of the parameters of em.unknown.probs():

# Ce - the contrast matrix associated with the QTL genotypes

# MCstar - the coded variables representing the extra cofactors

# cofactors.names - the names of the extra cofactors being fitted

# sigma20 -initial value for the variance.

# b0 - initial values for the effects of all factors being fitted

# (intercept, qtl effects, and effects of any extra cofactors)

# probs0 - initial mixing proportions, a numeric vector

# tol - the MLE is found when

# maxit - the maximun number of iterations allowed.
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# mapfun - one of "Haldane", "General"

# n - a list containing the sample counts in each marker grouping

# nqgen - number of qtl genotypes

# y - a list of trait values grouped according to marker genotype.

# ind,indc,nc,yc - indices, counts and traits for cofactor subgroups

#---------------------------------------------------------------------------------------------------

em.unknown.probs<-function(chosen.model,cross,hypothesis,Ce,MCstar,

cofactors.names,sigma20, b0,probs0,tol,maxit,

mapfun,n,nqgen,y,genot,genot2,startvals=FALSE,recomb,

imat.type="expected",mvars,ind,indc,nc,yc){

#em Main

rmn<-genot2$rmn

rkm<-genot2$rkm

rno<-genot2$rno

nmgen<-length(n) #number of marker geneotypes

markerg<-names(y) #names of the marker genotypes

N<-sum(n)

sigma2<-sigma20

probs<-probs0 #the mixing proportions

main.names<-dimnames(Ce)[[2]]

b<-b0

dimnames(b)<-list(c(main.names,cofactors.names),"MLE")

B<-b[main.names,]

Bstar<-b[cofactors.names,]

Z<-matrix(0,nrow=N,ncol=nqgen)

#eventually Z will store the category identities

mu.qtl<-Ce%*%B

mu.cofactors<-as.list(n)

for(i in 1:nmgen)

mu.cofactors[[i]]<-MCstar[ind[[i]],]%*%Bstar

w<-mixing.probs(cross,hypothesis,chosen.model,probs,markerg,genot,

genot2,nqgen)

rMQ.config<-"Not Used" #will hold informational stuff

count<-0

stopcond<-tol+1

oldlike<-loglik(sigma2,mu.qtl,mu.cofactors,w,nmgen,n,N,y)

startlike<-oldlike

newlike<-oldlike
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#Y will be a N vector of trait values partitioned by marker group

Y<-unlist(y) #uppercase Y is a numeric vector, lowercase y is a list

tCstar.MtM.Cstar<-t(MCstar)%*%MCstar

hardstop<-F

yvar<-moment.nw(Y,2)

while((stopcond>tol) && (count<maxit)&&(!hardstop) ){

prev<-list(b=b,sigma2=sigma2,probs=probs,w=w,

mu.qtl=mu.qtl,mu.cofactors=mu.cofactors,

newlike=newlike)

#e-step

for(i in 1:nmgen) #compute e-step for all indivs in group i

Z[ind[[i]], ]<-t(sapply(1:n[i],getZij,i,w,mu.qtl,mu.cofactors,

sigma2,y))

X<-cbind(Z%*%Ce,MCstar) #model matrix

#m-steps

eZgivenY.XtX1<-cbind(t(Ce)%*%diag(c(rep(1,N)%*%Z))%*%Ce,

t(Ce)%*%t(Z)%*%MCstar)

eZgivenY.XtX2<-cbind(t(MCstar)%*%Z%*%Ce, tCstar.MtM.Cstar)

eZgivenY.XtX<-rbind(eZgivenY.XtX1, eZgivenY.XtX2)

b<- try(solve(eZgivenY.XtX,t(X)%*%Y),silent=TRUE)

if (inherits(b, "try-error"))

b<-(ginv(eZgivenY.XtX))%*%t(X)%*%Y

sigma2<-(1/N)*(t(Y)%*%Y - 2*t(Y)%*%X%*%b + t(b)%*%eZgivenY.XtX%*%b)

sigma2<-as.numeric(sigma2)

dimnames(b)<-list(c(main.names,cofactors.names),"MLE")

B<-b[main.names,]

Bstar<-b[cofactors.names,]

mu.qtl<-Ce%*%B

mu.cofactors<-as.list(n)

for(i in 1:nmgen)

mu.cofactors[[i]]<-MCstar[ind[[i]],]%*%Bstar

#calculate the expected QTL genotype counts and get MLE of probs

qtl.labels<-dimnames(Ce)[[1]]

en<-matrix(0,nrow=nmgen,ncol=nqgen,dimnames=list(names(n),qtl.labels))

for(i in 1:nmgen) #en_{ij}==expected number of indivs in group ij

en[i, ]<- rep(1,n[i])%*%rbind(Z[ind[[i]], ])

best<-probs

rbest<-recomb

wbest<-w
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probs<-mle.probs(cross,chosen.model,mapfun,n,en,genot,genot2,

probs,markerg)

probs.list<-probs$phi.hat

rec.list<-probs$rec.hat

#print(probs.list)

bestlike<-oldlike

improved<-F

for (i in 1:length(probs.list)){

probs<-probs.list[[i]]

recc<-rec.list[[i]]

w<-mixing.probs(cross,hypothesis,chosen.model,probs,markerg,

genot,genot2,nqgen)

newlike<-loglik(sigma2,mu.qtl,mu.cofactors,w,nmgen,n,N,y)

vqtl<- as.numeric((1/N)*( t(b)%*%( eZgivenY.XtX-t(X)%*%X)%*%b))

mvars2<- diff.moments(Y,nmgen,N,n,nc,ind,indc,w,mu.qtl,

mu.cofactors,sigma2,vqtl,yvar)

model.params.hat<-list(effects=b,variance=sigma2,probs=probs)

if (newlike>=bestlike){

mvars<-mvars2

improved<-T

best<-probs

rbest<-recc

wbest<-w

bestlike<-newlike

qtlvar<-vqtl

}

}

probs<-best[names(probs)]

recomb<-rbest

w<-wbest

newlike<-bestlike

if (!improved){

hardstop<-T

#in the unlikely event that this happens, rollback

b<-prev$b

sigma2<-prev$sigma2

probs<-prev$probs

newlike<-prev$newlike

w<-prev$w

mu.cofactors<-prev$mu.cofactors

mu.qtl<-prev$mu.qtl

for(i in 1:nmgen)
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Z[ind[[i]], ]<-t(sapply(1:n[i],getZij,i,w,

mu.qtl,mu.cofactors,sigma2,y))

}

count<-count+1

stopcond<-abs(oldlike-newlike)

oldlike<-newlike

} #end while

#format the output

if ((mapfun=="Haldane")&&(startvals==FALSE)) {

hprobs<-haldane.probs(chosen.model,probs,recomb)

probs<-hprobs$probs

recomb<-hprobs$recomb

}

conv.info<-c(tol,stopcond,count)

names(conv.info)<-c("chosen.tolerance","actual.tolerance","num.iterations")

model.params<-list(effects=b,variance=sigma2,probs=probs)

if(!startvals){

if (imat.type=="expected")

test<-emcov.fisher(chosen.model,cross,hypothesis,mapfun,genot,

genot2,markerg,model.params,MCstar,Ce,cofactors.names,

n,nqgen,nmgen,recomb)

else

test<-emcov.observed(chosen.model,cross,hypothesis,mapfun,genot,

genot2,markerg,model.params,Z,MCstar,Ce,cofactors.names,

n,nqgen,nmgen,y,recomb)

model.params$effects<-cbind(model.params$effects,test$b.result)

model.params$probs<-cbind(model.params$probs,test$probs.result)

dimnames(model.params$probs)[[2]][1]<-"MLE"

names(model.params$variance)<-"MLE"

val<-list(convergence.info=conv.info,model.params=model.params,

infmat.is.singular=test$infmat.singular,

recomb=recomb,loglike=newlike, startlike=startlike,

hardstop=hardstop,mvars=mvars)

}

else{

val<-list(model.params=model.params,recomb=recomb,loglike=newlike,

hardstop=hardstop,mvars=mvars)

}

val
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}

#---------------------------------------------------------------------------------------------------

# haldane.probs()

#---------------------------------------------------------------------------------------------------

haldane.probs<-function(chosen.model,probs,recomb){

Lfit<-grep("L",chosen.model)

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

if (length(Qfit)>0){

pQ1.index<-pmatch("pQ1",names(probs))

if (!is.na(pQ1.index)){

recomb["pQ1"]<-probs["pQ1"]

probs<-probs[-pQ1.index]

}

}

if (length(Lfit)>0){

pL1.index<-pmatch("pL1",names(probs))

if (!is.na(pL1.index)){

recomb["pL1"]<-probs["pL1"]

probs<-probs[-pL1.index]

}

}

if (length(Rfit)>0){

pR1.index<-pmatch("pR1",names(probs))

if (!is.na(pR1.index)){

recomb["pR1"]<-probs["pR1"]

probs<-probs[-pR1.index]

}

}

list(probs=probs,recomb=recomb)

}

#---------------------------------------------------------------------------------------------------

# cim.H0.regress() :

# calculate, via linear regression, the maximum likelihood

# of the observed trait values for inbred linecross data, for H0 of no QTL anywhere

#---------------------------------------------------------------------------------------------------

cim.H0.regress<-function(MCstar,cofactors.names,n,y,genot,genot2,startvals){

#em Main

nmgen<-length(n) #nmgen=number of marker geneotypes

markerg<-names(y) #names of the marker genotypes

N<-sum(n)

Z<-matrix(1,nrow=N,ncol=1)
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#Z only stores coded values for the intercept

#We need an index to identify the marker groups

ind<-vector("list", nmgen)

names(ind)<-names(n)

ind[[1]]<-1:n[1]

for(i in 2:nmgen)

ind[[i]]<- (1+sum(n[1:(i-1)])):sum(n[1:i])

#Y will be a N vector of trait values partitioned by marker group

Y<-unlist(y) #uppercase Y is a numeric vector, lowercase y is a list

X<-cbind(Z,MCstar) #model matrix

#m-steps

XtX <- t(X)%*%X

b<- try(solve(XtX,t(X)%*%Y),silent=TRUE)

if (inherits(b, "try-error"))

b<-(ginv(XtX))%*%t(X)%*%Y

sigma2<-(1/N)*(t(Y)%*%Y - 2*t(Y)%*%X%*%b + t(b)%*%XtX%*%b)

sigma2<-as.numeric(sigma2)

dimnames(b)<-list(c("(Intercept)",cofactors.names),"MLE")

B<-b["(Intercept)",]

Bstar<-b[cofactors.names,]

mu.qtl<-B

mu.cofactors<-as.list(n)

for(i in 1:nmgen)

mu.cofactors[[i]]<-MCstar[ind[[i]],]%*%Bstar

w<-matrix(1,nmgen,1,dimnames=list(markerg,NULL))

#record value of loglikelihood of observed data based on updated mles.

newlike<-loglik(sigma2,mu.qtl,mu.cofactors,w,nmgen,n,N,y)

model.params<-list(effects=b,variance=sigma2)

recomb<-c(rMN=genot2$rmn)

if(!startvals){

#calculatr information matrix

imat<-XtX

eigen.values.imat<-eigen(imat,TRUE,TRUE)$values

imat.is.singular<-any(eigen.values.imat<=.Machine$double.eps)

infmat.singular<-FALSE

if(imat.is.singular){

infmat.singular<-TRUE

imat.inv<-ginv(imat)

}

else



306

imat.inv<-solve(imat)

imat.inv<-imat.inv*sigma2

var.all<-diag(imat.inv)

std.err.beta<-sqrt(var.all)

zstat0.beta<-model.params$effects[,1]/std.err.beta

pval.beta<-2*(1-pnorm(abs(zstat0.beta)))

b.result<-cbind(std.err.beta,zstat0.beta,pval.beta)

dimnames(b.result)<-list(dimnames(model.params$effects)[[1]],

c("std.err","z0","P>|z0|"))

model.params$effects<-cbind(model.params$effects,b.result)

names(model.params$variance)<-"MLE"

val<-list(model.params=model.params,

infmat.is.singular=infmat.singular,recomb=recomb,loglike=newlike)

}

else

val<-list(model.params=model.params,recomb=recomb,loglike=newlike)

val

}
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B.2 Utility functions for QTL analysis (R Code)

Table B.2: List of utility functions

Function Description

lm.linecross() Carries out Linear regression and stepwise regression for F2 and

Backcross data (requires functions contrasts.b1(), contrasts.f2() given

in Section B.1 ).
d.binomial()

d.felsenstein()

d.haldane()

d.kosambi()

d.morgan()

Genetic Map functions

r.binomial()

r.felsenstein()

r.haldane()

r.kosambi()

r.morgan()

Inverse Genetic Map functions

recomb.matrix() Calculates the distance matrix from recombination fraction of

adjacent markers.
cro.import()

rqtl.import()

zmapqtl.import()

These functions import QTL cartographer files into to R/S-PLUS

objects.

cro.import(): import a Rcross input file of the form: ’cross.inp’

rqtl.import(): import a Rqtl output file of the form: ’Rqtl.out’

zmapqtl.import(): import a Zmapqtl output file: ’Zmapqtl.out’

Source Code

#---------------------------------------------------------------------------------------------------

# lm.linecross() : carries out Linear regression and stepwise regression for F2 and Backcross data

#---------------------------------------------------------------------------------------------------

lm.linecross <- function(cross,data, regressors, all.markers,markers.to.fit,

homog.high, heteroz, homog.low, trait, step = F, trace = 1){

m <- match.call()

x<-names(data[,regressors])

marker.id<- pmatch(x,all.markers)

if (is.null(markers.to.fit))

flanking.markers<-x
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else flanking.markers<-markers.to.fit

marker.design.frame<-data.frame(data[!is.na(data[, trait]),flanking.markers])

marker.contrasts<-switch(as.character(cross),

B1=lapply(marker.design.frame,contrasts.b1,AA=homog.high, Aa=heteroz,hi="AA"),

B2=lapply(marker.design.frame,contrasts.b2,Aa=heteroz,aa=homog.low,hi="aa"),

F2=lapply(marker.design.frame,contrasts.f2,AA=homog.high, Aa=heteroz,aa=homog.low,hi="AA")

)

sum.flank<-paste(flanking.markers,collapse="+")

cofactors.formula<-formula(paste(trait,"~",sum.flank))

args <- list(formula = cofactors.formula, data = m$data,

na.action = as.name("na.omit"),

contrasts = as.name("marker.contrasts"), singular.ok = T)

genotypic.mean.lm <- do.call("lm", args)

if(step == T) {

assign("contr", genotypic.mean.lm$contrasts, 1)

low <- paste("~", paste(x, collapse = " + "))

upp <- paste("~", paste(all.markers, collapse = " + "))

genotypic.mean.lm <- suppressWarnings( stepAIC(genotypic.mean.lm,

scope = list(upper = upp, lower = low), trace = trace))

}

genotypic.mean.lm

}

# EXAMPLE of using lm.linecross()

y3<-lm.linecross("B1",b1s1$data, 21:22, b1s1$markers[15:25],

b1s1$markers[15:25],"AA", "Aa","aa", "t1", step = T, trace = 1)

print(y3)

#what markers were selected at the end of the stepwise selection?

markers<- attr(y3$terms,"predvars")[-1]

print(markers)

#or

markers<- attr(y3$terms,"term.labels")

print(markers)

#---------------------------------------------------------------------------------------------------

# map functions: d.binomial(), d.felsenstein(), d.haldane(), d.kosambi(), d.morgan()

#---------------------------------------------------------------------------------------------------

d.binomial <- function(r, N){

#returns distance in Morgans

0.5 * N * (1 - (1 - 2 * r)^(1/N))

}

d.felsenstein <- function(r, k){

#returns distance in Morgans

1/(2 * (k - 2)) * log((1 - 2 * r)/(1 - 2 * (k - 2) * r))

}

d.haldane <- function(r){
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#returns distance in Morgans

ifelse(r < 0.5, -0.5 * log(1 - 2 * r), Inf)

}

d.kosambi <- function(r){

#returns distance in Morgans

0.5 * atanh(2 * r)

}

d.morgan <- function(r){

#returns distance in Morgans

r

}

#---------------------------------------------------------------------------------------------------

# inverse map functions: r.binomial(), r.felsenstein(), r.haldane(), r.kosambi(), r.morgan()

#---------------------------------------------------------------------------------------------------

r.binomial <- function(d, N){

#d=distance in Morgans

#N is the max no of crossovers assumed

ifelse(d < N/2, 0.5 * (1 - (1 - (2 * d)/N)^N), 0.5)

}

r.felsenstein <- function(d, k){

#d=distance in Morgans

(1 - exp(2 * (k - 2) * d))/(2*(1 - (k - 1) * exp(2*(k - 2) * d)))

}

r.haldane <- function(d){

#d=distance in Morgans

0.5 * (1 - exp(-2 * abs(d)))

}

r.kosambi <-function(d){

#d=distance in Morgans

0.5 * tanh(2 * d)

}

r.morgan <- function(d){

#d=distance in Morgans

d

}

#---------------------------------------------------------------------------------------------------

# recomb.matrix() : function for calculating the distance matrix from

# recombination frequency of adjacent markers.

#---------------------------------------------------------------------------------------------------

recomb.matrix <- function(r.curr.next = NULL, d.curr.next = NULL,

Units = "Morgans", return.val = "recomb", mapfun = "Haldane", ...){

#r.curr.next is a vector and d.curr.next is a vector

#return.val may be "recomb"
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#(to return a matrix of recombination fractions)

# or "distance" (to return a matrix of map distances in Morgans)

#Units may be "Morgans" or "cM" (the units of d.curr.next)

#mapfun may be "Haldane","Kosambi","Morgan","Felsenstein","Binomial"

m <- match.call()

if(is.null(r.curr.next) && is.null(d.curr.next))

stop(paste("neither recombination fractions nor distances",

"between consecutive loci were supplied"))

if(!((Units == "Morgans") || (Units == "cM")))

stop(paste("Units must be ’Morgans’ or ’cM’, found",

m$units))

if(!((return.val == "recomb") || (return.val == "distance")))

stop(paste("return.val must be ’recomb’ or ’distance’, found",

m$return.val))

mapfuncs <- switch(as.character(mapfun),

Haldane = T,

Kosambi = T,

Morgan = T,

Felsenstein = T,

Binomial = T,

F)

if(!mapfuncs)

stop(paste("mapfun must be one of ’Haldane’, ’Kosambi’,",

"’Morgan’,’Felsenstein’, ’Binomial’"))

if(!is.null(r.curr.next)) {

if(any(r.curr.next > 0.5))

stop("invalid recombination frequencies")

if(length(r.curr.next) == 1.)

r.curr.next <- c(r.curr.next, 0.)

d.curr.next <- switch(as.character(mapfun),

Haldane = d.haldane(r.curr.next),

Kosambi = d.kosambi(r.curr.next),

Morgan = r.curr.next,

Felsenstein = d.felsenstein(r.curr.next, k),

Binomial = d.binomial(r.curr.next, N))

}

else {

if(length(d.curr.next) == 1.)

d.curr.next <- c(d.curr.next, 0.)

#convert to Morgans

if(Units == "cM") d.curr.next <- 0.01 * d.curr.next

}

x <- d.curr.next

lenx <- length(x)

x[2.:lenx] <- x[ - lenx]
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x[1.] <- 0.

dmat <- matrix(x, lenx, lenx)

dimnames(dmat) <- list(names(x), names(x))

dmat[row(dmat) <= col(dmat)] <- 0.

dmat <- apply(dmat, 2., cumsum)

dmat <- dmat + t(dmat)

rmat <- switch(as.character(mapfun),

Haldane = apply(dmat, 2., r.haldane),

Kosambi = apply(dmat, 2., r.kosambi),

Morgan = dmat,

Felsenstein = apply(dmat, 2., r.felsenstein, k),

Binomial = apply(dmat, 2., r.binomial, N))

dimnames(rmat) <- list(names(x), names(x))

switch(as.character(return.val),

distance = dmat,

rmat)

}

#---------------------------------------------------------------------------------------------------

# functions for importing QTL cartographer files into to R/S-PLUS objects.

# cro.import(): import a Rcross input file of the form: ’cross.inp’

# rqtl.import(): import a Rqtl output file of the form: ’Rqtl.out’

# zmapqtl.import(): import a Zmapqtl output file: ’Zmapqtl.out’

#---------------------------------------------------------------------------------------------------

cro.import <- function(filename){

cat("\n", file = filename, append = T)

#ensure newline before eof for S-PLUS6

yn <- scan(filename, "")

if(!(yn[4] == "cross.inp")){

print(yn[4])

stop("Invalid Rcross input file: ’cross.inp’ not found")

}

cross.index <- grep("-Cross", yn)

traits.index <- grep("-traits", yn)

otraits.index <- grep("-otraits", yn)

sampsize.index <- grep("-SampleSize", yn)

case.index <- grep("-case", yn)

if(length(cross.index) == 0)

stop("missing ’-Cross’ flag")

if(length(traits.index) == 0)

stop("missing ’-traits’ flag")

if(length(sampsize.index) == 0)

stop("missing ’-SampleSize’ flag")

if(length(otraits.index) == 0)
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stop("missing ’-otraits’ flag")

if(length(case.index) == 0)

stop("missing ’-case’ flag")

cross <- yn[cross.index + 1]

traits <- as.numeric(yn[traits.index + 1])

missing.index <- grep("-missingtrait", yn)

if(length(missing.index) > 0) {

missing.trait <- yn[grep("-missingtrait", yn) + 1]

names(missing.trait) <- missing.index

}

else missing.trait <- NA

otraits <- as.numeric(yn[otraits.index + 1])

sampsize <- as.numeric(yn[sampsize.index[1] + 1])

case <- yn[case.index + 1]

starts <- grep("-start", yn)

if(length(starts) > 0) {

starts.what <- yn[starts + 1]

names(starts) <- starts.what

if((sampsize.index == 0) || (sampsize == 0))

stop("sample size should be greater than zero")

by.indiv <- length(starts.what[starts.what == "individuals"]) > 0

by.column <- length(starts.what[(starts.what == "markers") |

(starts.what == "traits") | (starts.what == "otraits")]) > 0

ok.by.column <-( (length(starts.what[(starts.what == "markers")]) >= 1)

&& (length(starts.what[(starts.what == "traits")]) >= 1))

if(by.indiv && by.column)

stop("Data may be ’by individuals (row)’ or ’by column’, not both.")

if(by.column && (!ok.by.column))

stop("file should contain at least one marker and at least one trait")

}

else stop("found no -start flags")

stops <- grep("-stop", yn)

if(length(stops) > 0) {

stops.what <- yn[stops + 1]

names(stops) <- stops.what

}

else stop("found no -stop flags")

if(length(starts) != length(stops))

stop(paste( "Invalid QTl Cartographer, Rcross input file:",

"unequal numbers of ’-start’ and ’-stop’ flags"))

test1 <- (stops.what == starts.what)

if(length(test1[test1 == T]) != length(stops.what))

stop(paste("Invalid QTl Cartographer, Rcross input file:",

"’-start’ and ’-stop’ flags do not match"))

if(by.indiv)
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stop("input in the ’by individuals’ format not supported by cro.import.")

if(ok.by.column) {

markerind <- cbind(starts[names(starts) == "markers"] + 2,

stops[names(stops) == "markers"] - 1)

index.markers <- apply(markerind, 1, FUN = function(h){h[1]:h[2]})

index.markers <- unlist(index.markers)

transtab <- grep("-TranslationTable", yn)

translation.table <- t(matrix(yn[(transtab + 1):(transtab + 18)],

nrow = 3,ncol = 6))

marker.data <- matrix(yn[index.markers], nrow = sampsize + 1)

markers <- make.names(marker.data[1, ])

marker.data <- cbind(marker.data[-1, ])

dimnames(marker.data) <- list(NULL, markers)

traitind <- cbind(starts[names(starts) == "traits"] + 2,

stops[names(stops) == "traits"] - 1)

index.traits <- apply(traitind, 1, FUN = function(h){h[1]:h[2]})

index.traits <- unlist(index.traits)

trait.data <- matrix(yn[index.traits], nrow = sampsize + 1)

traits <- make.names(trait.data[1, ])

trait.data <- cbind(trait.data[-1, ])

misstraits<-(trait.data==missing.trait[1])

trait.data[misstraits]<-NA

trait.data <-apply(trait.data,2,as.numeric)

dimnames(trait.data) <- list(NULL, traits)

if(otraits > 0) {

otraitind <- cbind(starts[names(starts) == "otraits"] + 2,

stops[names(stops) == "otraits"] - 1)

index.otraits <- apply(otraitind, 1, FUN = function(h){h[1]:h[2]})

index.otraits <- unlist(index.otraits)

otrait.data <- matrix(yn[index.otraits], nrow = sampsize + 1)

otraits <- make.names(otrait.data[1, ])

otrait.data <- cbind(otrait.data[-1, ])

missotraits<-(otrait.data==missing.trait[1])

otrait.data[missotraits]<-NA

otrait.data <-apply(otrait.data,2,as.numeric)

dimnames(otrait.data) <- list(NULL, otraits)

dat <- data.frame(marker.data, trait.data, otrait.data)

cartdata <- list(data = dat, identifier = yn[2], cross = cross,

, format = yn[4], transtab = translation.table, markers =

markers, traits = traits, otraits = otraits)

}

else {
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dat <- data.frame(marker.data, trait.data)

cartdata <- list(data = dat, identifier = yn[2], format = yn[4],

cross = cross, transtab = translation.table, markers

= markers, traits = traits)

}

}

cartdata

}

#---------------------------------------------------------------------------------------------------

rqtl.import <- function(filename){

cat("\n", file = filename, append = T)

#ensure newline before eof for splus6

yn <- scan(filename, "")

if(!(yn[4] == "Rqtl.out"))

stop("Invalid Rqtl output file: ’Rqtl.out’ not found")

ntraits.index <- grep("-t", yn)

nqtls.index <- grep("-k", yn)

qtldat.index <- grep("-l", yn)

if(length(ntraits.index) == 0)

stop("missing ’-l’ flag")

if(length(nqtls.index) == 0)

stop("missing ’-k’ flag")

if(length(qtldat.index) == 0)

stop("missing ’-l’ flag, no QTL info found.")

ntraits <- as.numeric(yn[ntraits.index[1] + 1])

nqtl <- as.numeric(yn[nqtls.index[1] + 1])

first.index.qtl <- qtldat.index[2]

last.index.qtl <- qtldat.index[nqtl + 1] + 7

index.qtls <- first.index.qtl:last.index.qtl

qtl.data <- matrix(yn[index.qtls], nrow = 8)

qtl.data <- qtl.data[-1, ]

if(nqtl == 1)

qtl.data <- rbind(as.numeric(qtl.data))

else qtl.data <- apply(qtl.data, 1, as.numeric)

qtl.data <- data.frame(qtl.data)

qtldat <- cbind(qtl.data[, 1:3], qtl.data[, 3] + 1, qtl.data[, 4:7])

datnames <- c("qtl.Q", "chromosome", "marker.M", "marker.N", "recomb.MQ",

"recomb.QN", "additive.Q", "dominance.Q")

names(qtldat) <- datnames

data.frame(qtldat)

}

#---------------------------------------------------------------------------------------------------

zmapqtl.import<-function(filename,type="backcross"){

#ensure newline before eof for S-PLUS6

cat("\n",file=filename,append=T)
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yn<-scan(filename,"")

if (!(yn[4]=="Zmapqtl.out")) stop("Invalid file: ’Zmapqtl.out’ not found")

output.start<-grep("^-s",yn)

output.end<-grep("^-e",yn)

if (length(output.start)==0) stop("missing ’-s’ flag")

if (length(output.end)==0)

stop("missing ’-e’ flag")

index.data<-(output.start+1):(output.end-1)

zmap.names<-yn[(output.start-21):(output.start-1)]

zmap.names<- make.names(zmap.names)

zmap.data<-matrix(yn[index.data],nrow=21)

zmap.data<-apply(zmap.data,1, as.numeric)

dimnames(zmap.data)[[2]]<-zmap.names

if (type=="backcross")

zmap.data<-zmap.data[,1:8]

zmap.data

}
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B.3 Examples of using the utility functions with

QTL Cartographer

#---------------------------------------------------------------------------------------------------

# Using the QTL Cartographer module Rmap, generate the marker map

# Simulate a map of 2 chromosomes-random number of

# markers on each, equally spaced, 10cM apart

#

# QTL Cartographer is copyright:

# Copyright(C) 1194-2001 C. J. Batsen, B. S. Weir and Z. B. Zeng

#---------------------------------------------------------------------------------------------------

remove(list=ls())

wkdir<-"/u/students/nwill/newsims/"

#if a QTL Cartographer resource file exists here, then remove it.

system("rm qtlcart.rc")

#get a random seed to submit to QTL Cartographer

set.seed(120)

myseed<-sample(1e6, 1)

rmap.call<-paste("Rmap -A -V -W", wkdir, "-s", myseed,

"-e b1simmap.log -o b1sim.map -g 3 -f 1 -c 2 -m 20 -vm 4.0",

"-d 10 -t 0.0")

k<-system(rmap.call) #R,

#note: call requires path to QTL Cartographer to be in your PATH variable

#k<-unix(rmap.call, output=T) #S-PLUS

#k<-dos(rmap.call, output=T, trans=F) #S-PLUS

#---------------------------------------------------------------------------------------------------

# Here is an example of using the QTL Cartographer module Rqtl to define QTL positions and effects.

# Here we sprinke nine (9) qtl onto the map.

#---------------------------------------------------------------------------------------------------

myseed<-57627453

rqtl.call<-paste("Rqtl -A -V -W", wkdir, "-s", myseed,

"-e b1simqtl.log -o b1sim.qtl -m b1sim.map -t 1 -q 9 -d 4",

"-b 2.0 -1 2.0 -2 2.0 -E 0.0")

k<-system(rqtl.call) #R

#k<-unix(rqtl.call, output=T) #S-PLUS

#k<-dos(rqtl.call, output=T, trans=F) #S-PLUS

#note: to create more variety, a different ’b1sim.qtl’ file

#(different from the one generated by the above code) was used for our simulations.

#maps haveing 11 QTl and one QTl respectively, were used instead, and they

#were arbitrarily chosen by hand, they were not generated by Rqtl.
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#---------------------------------------------------------------------------------------------------

# Using the QTL Cartographer module Rcross, generate the samples... nsamp of them

#---------------------------------------------------------------------------------------------------

nsamp=100 #the number of replicate samples

sampsize=2000 #the sample size

set.seed(153) #initialize for reproducibility

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro1", sep="")

myseed<-sample(5e7:6e7, 1) #different seed each time

rcross.call<-paste("Rcross -A -V -W",wkdir,"-s", myseed,"-n",

sampsize,"-o",b1datafile, "-e b1sim.log -m b1sim.map",

"-q b1sim.qtl -g 1 -c B1 -H 0.5 -I 0")

k<-system(rcross.call)

}

#---------------------------------------------------------------------------------------------------

# Using the utilty function cro.import(),import the samples into R/S-PLUS objects

#---------------------------------------------------------------------------------------------------

source("cro.import.r")

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro1", sep="")

b1object<-paste("b1s",i, sep="")

assign(b1object, cro.import(paste(wkdir,b1datafile,sep="")))

}

#---------------------------------------------------------------------------------------------------

# Using the utitlity function rqtl.import() to

# import the marker map and qtl information in order to plot the map

#---------------------------------------------------------------------------------------------------

source("vuwfunc.r")

source("cro.import.r")

b1sim100.chrom1<-read.table(paste(wkdir,"Chrom.1",sep=""),

col.names=c("position.morgans","chromosome"))

b1sim100.chrom2<-read.table(paste(wkdir,"Chrom.2",sep=""),

col.names=c("position.morgans","chromosome"))

b1sim100.map<-list(chrom1=b1sim100.chrom1,chrom2=b1sim100.chrom2)

remove(list=c("b1sim100.chrom1","b1sim100.chrom2"))

b1sim100.qtl<-rqtl.import(paste(wkdir,"b1sim.qtl",sep=""))

b1sim100.qtl$d.MQ.haldane.Morgans<-d.haldane(b1sim100.qtl$recomb.MQ)

q.chrom1<-b1sim100.qtl[b1sim100.qtl$chromosome==1,]

q.chrom2<-b1sim100.qtl[b1sim100.qtl$chromosome==2,]

q.chrom1$position.morgans<-

(b1sim100.map$chrom1[ q.chrom1$marker.M,"position.morgans"]

+q.chrom1$d.MQ.haldane.Morgans)
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q.chrom2$position.morgans<-

(b1sim100.map$chrom2[ q.chrom2$marker.M,"position.morgans"]

+q.chrom2$d.MQ.haldane.Morgans)

b1sim100.qtl<-list(chrom1=q.chrom1,chrom2=q.chrom2)

#---------------------------------------------------------------------------------------------------

# plot the genetic map on which the model is based

#---------------------------------------------------------------------------------------------------

source("vuwfunc.r")

source("cro.import.r")

maxx<-max(c(b1sim100.map$chrom1$pos,b1sim100.map$chrom2$pos,

b1sim100.qtl$chrom1$pos,b1sim100.map$chrom2$pos))

max1<-max(c(b1sim100.map$chrom1$pos,b1sim100.qtl$chrom1$pos))

max2<-max(c(b1sim100.map$chrom2$pos,b1sim100.map$chrom2$pos))

plot(c(3,0),c(0,maxx+0.1),axes=F, xlab="Chromosome",

ylab="Position in Morgans",type="n")

title("Genetic Map")

axis(1,pos=-0.05, at=c(1,2))

axis(2,pos=0, at=seq(0,maxx,0.2))

lines( c(1,1),c(0,max1))

lines( c(2,2),c(0,max2))

chrom1.end<-length(b1sim100.map$chrom1[,1])

chrom2.end<-length(b1sim100.map$chrom2[,1])

labs1<-b1s1$markers[1:chrom1.end]

labs1q<-paste("QTL",b1sim100.qtl$chrom1[,"qtl.Q"])

text(b1sim100.map$chrom1$chromosome+0.05,b1sim100.map$chrom1$pos,labs1,adj=0)

#adj=0 means left justify, adj=1 means right justify

points(b1sim100.map$chrom1$chromosome,b1sim100.map$chrom1$pos,pch=3,cex=1.5)

text(b1sim100.qtl$chrom1$chromosome-0.05,b1sim100.qtl$chrom1$pos,labs1q,adj=1)

points(b1sim100.qtl$chrom1$chromosome,b1sim100.qtl$chrom1$pos,cex=0.8)

labs2<-b1s1$markers[(chrom1.end+1):(chrom1.end+chrom2.end)]

labs1q<-paste("QTL",b1sim100.qtl$chrom2[,"qtl.Q"])

text(b1sim100.map$chrom2$chromosome+0.05,b1sim100.map$chrom2$pos,labs2,adj=0)

points(b1sim100.map$chrom2$chromosome,b1sim100.map$chrom2$pos,pch=3,cex=1.5)

text(b1sim100.qtl$chrom2$chromosome-0.05,b1sim100.qtl$chrom2$pos,labs1q,adj=1)

points(b1sim100.qtl$chrom2$chromosome,b1sim100.qtl$chrom2$pos,cex=0.8)

remove(list=c("maxx","max1","max2","labs1","labs2"))

#b1s1$markers

n1<-length(b1sim100.map$chrom1[,"position.morgans"])

n2<-length(b1sim100.map$chrom2[,"position.morgans"])

d.curr.next1<-c(b1sim100.map$chrom1[2:n1,"position.morgans"]

-b1sim100.map$chrom1[1:(n1-1),"position.morgans"],Inf)
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d.curr.next2<-c(b1sim100.map$chrom2[2:n2,"position.morgans"]

-b1sim100.map$chrom2[1:(n2-1),"position.morgans"],Inf)

r.curr.next<-c(r.haldane(d.curr.next1),r.haldane(d.curr.next2))

#save the marker map within each dataset

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro1", sep="")

b1object<-paste("b1s",i, sep="")

assign(b1object,c(eval(as.name(b1object)),r.curr.next=list(r.curr.next)))

}

save(list=ls(),file="b1sim.RData")

#---------------------------------------------------------------------------------------------------

# Perform the analysis - part 1

# Search for QTL on chromosme 2, by Lander & Botstein interval mapping (IM),

# using the QTL cartographer module Zmapqtl: Model 3

#---------------------------------------------------------------------------------------------------

#reformat the data for use with Zmapqtl

nsamp<-100

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro1", sep="")

b1datafile2<-paste("b1s",i,".cro", sep="")

rcross.call<-paste("Rcross -A -V -W",wkdir,"-i", b1datafile,"-o",

b1datafile2, "-m b1sim.map -q b1sim.qtl -g 0")

k<-system(rcross.call)

}

#Run Zmap QTL to search for QTL on chromosome 2 via interval mapping

set.seed(290) #want to use same seed for all data

myseed<-sample(1e6, 1)

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro", sep="")

b1Zfile<-paste("b1s",i,".IM.zed", sep="")

b1Lfile<-paste("b1s",i,".el", sep="")

b1Sfile<-paste("b1s",i,".es", sep="")

zmapqtl.IM.call<-paste("Zmapqtl -A -V -W", wkdir, "-s", myseed,

"-e b1sim.IM.log -o" ,b1Zfile,"-i", b1datafile,"-m", "b1sim.map",

"-t 1","-l",b1Lfile, "-S",b1Sfile, "-M 3 -c 2 -d 1 -n 0 -w 10 -r 0 -b 0")

k<-system(zmapqtl.IM.call)

}

#---------------------------------------------------------------------------------------------------

# Perform the analysis - part 2

# Zeng’s Composite Interval Mapping (CIM) using QTL cartographer

# Fitting all the background markers: Model 1

#---------------------------------------------------------------------------------------------------

nsamp<-100
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wkdir<-"/u/students/nwill/newsims/"

set.seed(290) #want to use same seed for all data

myseed<-sample(1e6, 1)

for (i in 1:nsamp){

b1datafile<-paste("b1s",i,".cro", sep="")

b1Zfile<-paste("b1s",i,".CIM.zed", sep="")

b1Lfile<-paste("b1s",i,".el", sep="")

b1Sfile<-paste("b1s",i,".es", sep="")

set.seed(290) #want to use same seed for all data

myseed<-sample(1e6, 1)

zmapqtl.CIM.call<-paste("Zmapqtl -A -V -W", wkdir, "-s", myseed,

"-e b1sim.CIM.log -o" ,b1Zfile,"-i", b1datafile,"-m", "b1sim.map",

"-t 1","-l",b1Lfile, "-S",b1Sfile,

"-M 1 -c 2 -d 1 -n 0 -w 10 -r 0 -b 0")

k<-system(zmapqtl.CIM.call) #R

}

#---------------------------------------------------------------------------------------------------

# Import the results using the utiltiy function zmapqtl.import(),

# then summarise ZmapQTL results for both IM and CIM .

#---------------------------------------------------------------------------------------------------

wkdir<-"/u/students/nwill/newsims/"

nsamp<-100

zmap.all.intervals<-function(i,model="IM",chrom,marker.start,marker.end,wkdir,type="backcross"){

b1Zfile<-paste("b1s",i,".",model,".zed", sep="")

assign("zmap.out",zmapqtl.import(paste(wkdir,b1Zfile,sep=""),type),1)

get.putative.qtl<-function(j,chrom){

tmat<-zmap.out[(zmap.out[,"c"]==chrom)&(zmap.out[,"m"]==j),]

biggest<-max(tmat[,"H0.H1"])

qtl.test<-rbind(tmat[tmat[,"H0.H1"]==biggest,])

qtl.test[1,]

}

val<-t(sapply(marker.start:marker.end,get.putative.qtl,chrom))

val<-cbind(rep(i,length(val[,1])),val)

dimnames(val)<-list(NULL,c("sample",dimnames(zmap.out)[[2]]))

val

}

unlist.join.matrices<-function(zmap.data,nsamp,chrom,marker.start,marker.end){

val<-zmap.data[[1]]

for(i in 2:nsamp)

val<-rbind(val,zmap.data[[i]])

val

}
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#At thei time, I am only searching chromosome 2 for QTL

chrom<-2

marker.start<-1

marker.end<-20

chrom2.zmap.IM <-lapply(1:nsamp,zmap.all.intervals,model="IM",

chrom,marker.start,marker.end,wkdir)

k<-unlist.join.matrices(chrom2.zmap.IM,nsamp,marker.start,marker.end)

IM.all<-lapply(marker.start:marker.end,function(h,k){k[k[,"m"]==h,]},k)

names(IM.all)<-paste("chrom2.",1:20,"to",2:21,sep="")

chrom2.zmap.CIM <-lapply(1:nsamp,zmap.all.intervals,model="CIM",

chrom,marker.start,marker.end,wkdir)

k<-unlist.join.matrices(chrom2.zmap.CIM,nsamp,marker.start,marker.end)

CIM.all<-lapply(marker.start:marker.end,function(h,k){k[k[,"m"]==h,]},k)

names(CIM.all)<-paste("chrom2.",1:20,"to",2:21,sep="")

remove(list=c("zmap.all.intervals","unlist.join.matrices","chrom2.zmap.IM",

"chrom2.zmap.CIM","k"))

zengtest<-function(h,nsamp,prob){

#QTL Cartographer advocates using chi-square with one degree of freedom.

#the user manual of QTL Cartographer Version 1.15 states:

#’a value of H1/H0 of 3.84 or higher is evidence for a QTL’

#returning percentage of times QTL detected in nsamp trials

temp<-h[,"H0.H1"]

critical.value<-qchisq(prob,1)

length(temp[temp>=critical.value])/nsamp*100

}

IM.detect.05<-sapply(IM.all,zengtest,nsamp,0.95)

CIM.detect.05<-sapply(CIM.all,zengtest,nsamp,0.95)

IM.detect.01<-sapply(IM.all,zengtest,nsamp,0.99)

CIM.detect.01<-sapply(CIM.all,zengtest,nsamp,0.99)

IM.detect.001<-sapply(IM.all,zengtest,nsamp,0.999)

CIM.detect.001<-sapply(CIM.all,zengtest,nsamp,0.999)

c2qtl.actual<-data.frame(QTL=rep(c("YES","NO"),10),

recomb.MQ=rep(NA,20),additive.Q=rep(NA,20),dominance.Q=rep(NA,20))

c2qtl.actual[,"QTL"]<-"NO"

c2qtl.actual[q.chrom2$marker.M,"QTL"]<-"YES"

c2qtl.actual[q.chrom2$marker.M,"recomb.MQ"]<-q.chrom2$recomb.MQ

c2qtl.actual[q.chrom2$marker.M,c("additive.Q","dominance.Q")]<-

q.chrom2[,c("additive.Q","dominance.Q")]

#dominance.Q= -2*dQQ (QTL Catographer manul page 37)

bQ.actual<- (c2qtl.actual[,"additive.Q"]- c2qtl.actual[,"dominance.Q"])
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c2qtl.actual2<-data.frame(c2qtl.actual[,1:2],bQ.actual)

b1.IM.CIM.summary.05<-data.frame(IM.detect.05, CIM.detect.05,c2qtl.actual2)

b1.IM.CIM.summary.01<-data.frame(IM.detect.01, CIM.detect.01,c2qtl.actual2)

b1.IM.CIM.summary.001<-data.frame(IM.detect.001, CIM.detect.001,c2qtl.actual2)

save(list=c("CIM.all","b1.IM.CIM.summary.05","b1.IM.CIM.summary.01",

"b1.IM.CIM.summary.001"), file="b1.IM.CIM.RData")

B.4 R code to implement the information matrix

formulas for RIM1 and its sub-models

Table B.3: List of information matrix functions

Function Description Dependencies

emcov.fisher() Calculates the Fisher information matrix in the

context of the EM algorithm

model.config()

mixing.probs()

Dw.Dphi()

D2w.Dphi2()
emcov.observed() Calculates the conditional observed information

matrix in the context of the EM algorithm

model.config()

mixing.probs()

Dw.Dphi()
model.config() Identifies which model (RIM1=LQR, LQ, QR,

CIM=Q, LR, L, R) is being fitted and hence the

configuration of φ.
mixing.probs() Switching function for calculating the mixing

proportions depending on the type of breeding

design.

See Section B.1 for

details.

Dw.Dphi() Switching function for Dw.Dphi.b1() and

Dw.Dphi.f2

Dw.Dphi.b1()

Dw.Dphi.f2()
Dw.Dphi.b1() Calculates the first partial derivative of

lnW = (lnw)ik with respect to φ for the

backcross design.

index.genot()

Dw.Dphi.f2() Calculates the first partial derivative of

lnW = (lnw)ik with respect to φ for the F2

design.

index.genot()

df2g1()

df2h1()
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Table B.3: (continued)

Function Description Dependencies

df2h1() Calculates the first partial derivative of (lnw)ik

with respect to φ for the F2 design, when

Haldane’s map function is assumed.
df2g1() Calculates the first partial derivative of (lnw)ik

with respect to φ for the F2 design, when a

general three-locus map function is assumed.
D2w.Dphi2() Switching function for D2w.Dphi2.b1() and

D2w.Dphi2.f2()

D2w.Dphi2.b1()

D2w.Dphi2.f2()
D2w.Dphi2.b1() Calculates the second partial derivative of

lnW = (lnw)ik with respect to φ for the

backcross design.

index.genot()

D2w.Dphi2.f2() Calculates the second partial derivative of

lnW = (lnw)ik with respect to φ for the F2

design.

index.genot()

d2f2g1()

d2f2h1()
d2f2h1() Calculates the second partial derivative of

(lnw)ik with respect to φ for the F2 design,

when Haldane’s map function is assumed.
d2f2g1() Calculates the second partial derivative of

(lnw)ik with respect to φ for the F2 design,

when a general three-locus map function is

assumed.

index.genot() Identify marker genotypes in the model. See Section B.1 for

details.

Source Code

#---------------------------------------------------------------------------------------------------

# emcov.fisher()

#---------------------------------------------------------------------------------------------------

emcov.fisher<-function(chosen.model,cross,hypothesis,mapfun,genot,genot2,markerg,params,X2,Ce,

cofactors.names,n,nqgen,nmgen,recomb,cov=FALSE){

N<-sum(n)

probs<-params$probs #the mixing proportions

probs2<-probs

if (mapfun=="Haldane"){

probs2["pQ1"]<-recomb["pQ1"]
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probs2["pL1"]<-recomb["pL1"]

probs2["pR1"]<-recomb["pR1"]

}

m<-model.config(cross,mapfun,chosen.model,probs2,markerg,genot,genot2,recomb)

w<-mixing.probs(cross,hypothesis,chosen.model,probs2,markerg,genot,genot2,nqgen)

d2lnw<-D2w.Dphi2(cross,mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m)

sigma2<-params$variance

main.names<-dimnames(Ce)[[2]]

B<-params$effects[main.names,]

Bstar<-params$effects[cofactors.names,]

length.phi<-length(probs)

length.B<-length(c(B))

length.Bstar<-length(c(Bstar))

#We need an index to identify the marker groups

ind<-vector("list", nmgen)

names(ind)<-names(n)

ind[[1]]<-1:n[1]

for(i in 2:nmgen)

ind[[i]]<- (1+sum(n[1:(i-1)])):sum(n[1:i])

Z<-matrix(0,nrow=N,ncol=nqgen)

I.sigma2.sigma2<-N/(2*sigma2^2)

I.phi.phi<-matrix(0,nrow=length.phi,ncol=length.phi)

mconfig<-genot2$mconfig

for(i in 1:nmgen){

Z[ind[[i]], ]<-cbind(rep(1,n[i])) %*% w[i,]

Zi<-rbind(Z[ind[[i]], ])

iQ<-NULL

iR<-NULL

iL<-NULL

if (length(m$Qfit)>0){

if (mapfun=="Haldane")

iQ<-d2lnw[[i]]$dpQ2 %*% t(Zi) %*% rep(1,n[i])

else

iQ<-cbind(d2lnw[[i]]$dpQ1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpQ2 %*% t(Zi) %*% rep(1,n[i]) )

}

if (length(m$Lfit)>0){

if (mconfig["K"]==1){

if (mapfun=="Haldane")

iL<-d2lnw[[i]]$dpL2 %*% t(Zi) %*% rep(1,n[i])

else

iL<-cbind(d2lnw[[i]]$dpL1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpL2 %*% t(Zi) %*% rep(1,n[i]) )
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}

else iL<-d2lnw[[i]]$dpL %*% t(Zi)%*% rep(1,n[i])

}

if (length(m$Rfit)>0){

if (mconfig["O"]==1){

if (mapfun=="Haldane")

iR<-d2lnw[[i]]$dpR2 %*% t(Zi) %*% rep(1,n[i])

else

iR<-cbind(d2lnw[[i]]$dpR1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpR2 %*% t(Zi) %*% rep(1,n[i]) )

}

else

iR<-d2lnw[[i]]$dpR %*% t(Zi) %*% rep(1,n[i])

}

I.phi.phi<- I.phi.phi - cbind(iL,iQ,iR)

}

I.beta.beta<-1/sigma2 * t(Ce)%*%diag(c(rep(1,N)%*%Z))%*%Ce

I.beta.betastar<-1/sigma2 * t(Ce)%*%t(Z)%*%X2

I.betastar.betastar<-1/sigma2 * t(X2)%*%X2

I.beta.phi<-matrix(0,nrow=length.B,ncol=length.phi)

I.beta.sigma2<-matrix(0,nrow=length.B,ncol=1)

I.betastar.phi<-matrix(0,nrow=length.Bstar,ncol=length.phi)

I.betastar.sigma2<-matrix(0,nrow=length.Bstar,ncol=1)

I.sigma2.phi<-matrix(0, nrow=1,ncol=length.phi)

imat<-rbind( cbind(I.beta.beta,I.beta.betastar,I.beta.sigma2,I.beta.phi),

cbind(t(I.beta.betastar),I.betastar.betastar,I.betastar.sigma2,I.betastar.phi),

cbind(t(I.beta.sigma2), t(I.betastar.sigma2),I.sigma2.sigma2,I.sigma2.phi),

cbind(t(I.beta.phi), t(I.betastar.phi),t(I.sigma2.phi), I.phi.phi))

remove(list=c("I.beta.beta","I.beta.betastar","I.beta.sigma2", "I.beta.phi","I.betastar.betastar",

"I.betastar.sigma2","I.betastar.phi","I.sigma2.sigma2","I.sigma2.phi", "I.phi.phi"))

infmat.singular<-FALSE

imat.inv<- try(solve(imat),silent=TRUE)

if (inherits(imat.inv, "try-error")){

infmat.singular<-TRUE

gotMASS<- try(find(ginv, mode="function"),silent=TRUE)

if (inherits(gotMASS, "try-error"))

require("MASS")

imat.inv<-ginv(imat)

}

param.names<-c(dimnames(params$effects)[[1]],"sigma2",names(params$probs))
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dimnames(imat.inv)<-list(param.names,param.names)

var.all<-diag(imat.inv)

std.err.beta<-sqrt(var.all[dimnames(params$effects)[[1]]])

zstat0.beta<-params$effects[,1]/std.err.beta

pval.beta<-2*(1-pnorm(abs(zstat0.beta)))

std.err.probs<-sqrt(var.all[names(params$probs)])

zstat0.probs<-params$probs/std.err.probs

zstat1.probs<-(params$probs-1)/std.err.probs

pval0.probs<-1-pnorm(zstat0.probs)

pval1.probs<-pnorm(zstat1.probs)

b.result<-cbind(std.err.beta,zstat0.beta,pval.beta)

dimnames(b.result)<-list(dimnames(params$effects)[[1]],c("std.err","z0","P>|z0|"))

probs.result<-cbind(std.err.probs,zstat0.probs,zstat1.probs,pval0.probs,pval1.probs )

dimnames(probs.result)<-list(names(params$probs),c("std.err","z0","z1","P>z0","P<z1"))

val<- list(b.result=b.result, probs.result=probs.result,

infmat.singular= infmat.singular)

if (cov==TRUE)

val$cov<-imat.inv

val

}

#---------------------------------------------------------------------------------------------------

# emcov.observed()

#---------------------------------------------------------------------------------------------------

emcov.observed<-function(chosen.model,cross,hypothesis,mapfun,genot, genot2,markerg,params,Z,X2,Ce,

cofactors.names, n,nqgen,nmgen,y,recomb,cov=FALSE){

N<-sum(n)

probs<-params$probs #the mixing proportions

probs2<-probs

if (mapfun=="Haldane"){

probs2["pQ1"]<-recomb["pQ1"]

probs2["pL1"]<-recomb["pL1"]

probs2["pR1"]<-recomb["pR1"]

}

m<-model.config(cross,mapfun,chosen.model,probs2,markerg,genot,genot2,recomb)

w<-mixing.probs(cross,hypothesis,chosen.model,probs2,markerg,genot,genot2,nqgen)

sigma2<-params$variance

#We need an index to identify the marker groups

ind<-vector("list", nmgen)

names(ind)<-names(n)

ind[[1]]<-1:n[1]

for(i in 2:nmgen)

ind[[i]]<- (1+sum(n[1:(i-1)])):sum(n[1:i])
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main.names<-dimnames(Ce)[[2]]

B<-params$effects[main.names,]

Bstar<-params$effects[cofactors.names,]

length.phi<-length(probs)

length.B<-length(c(B))

length.Bstar<-length(c(Bstar))

mu<-Ce%*%B #mu.qtl

mu.cofactors<-as.list(n)

for(i in 1:nmgen)

mu.cofactors[[i]]<-X2[ind[[i]],]%*%Bstar

mu.cofactors<-unlist(mu.cofactors)

#Y will be a N vector of trait values partitioned by marker group

Y<-unlist(y) #uppercase Y is a numeric vector, lowercase y is a list

Y<- (Y - mu.cofactors) #center y relative to the cofactors

#Now calculate the components of the observed information matrix

diag2.1n.Z<-diag(c(rep(1,N)%*%Z))

diag3.yt.diag1yt.Z<-diag(c(t(Y)%*%diag(Y)%*%Z))

diag1.mu<-diag(c(mu))

diag1.yt<-diag(c(Y))

diag2.yt.Z<-diag(c(t(Y)%*%Z))

I.beta.beta<-(1/sigma2 * t(Ce)%*%diag2.1n.Z%*%Ce

-1/(sigma2^2) * t(Ce)%*%(diag3.yt.diag1yt.Z

+ diag1.mu %*% (diag2.1n.Z %*% diag1.mu - 2*diag2.yt.Z)

- (diag1.mu %*% t(Z) -t(Z)%*% diag1.yt)%*%

t((diag1.mu %*% t(Z) -t(Z)%*% diag1.yt)))%*%Ce

)

I.sigma2.sigma2<- ( 1/(sigma2^3)*(t(Y)%*%Y - 2*t(Y)%*%Z%*%mu

+ t(mu)%*%diag2.1n.Z %*% mu )

- N/(2*sigma2^2)

- 1/(4*sigma2^4) %*% t(mu) %*% ( 4*diag3.yt.diag1yt.Z

- 4* t(Z) %*% diag1.yt %*% diag1.yt %*% Z

+ 4* diag1.mu %*% (diag2.yt.Z - t(Z)%*% diag1.yt %*% Z)

+ diag1.mu %*% (diag2.1n.Z -t(Z) %*% Z) %*% diag1.mu

) %*% mu

)

mconfig<-genot2$mconfig

d2lnw<-D2w.Dphi2(cross,mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m)

I.phi.phi.Ic<-matrix(0,nrow=length.phi,ncol=length.phi)

for(i in 1:nmgen){

iQ<-NULL
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iR<-NULL

iL<-NULL

Zi<-rbind(Z[ind[[i]], ])

if (length(m$Qfit)>0){

if (mapfun=="Haldane")

iQ<-d2lnw[[i]]$dpQ2 %*% t(Zi) %*% rep(1,n[i])

else

iQ<-cbind(d2lnw[[i]]$dpQ1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpQ2 %*% t(Zi) %*% rep(1,n[i]) )

}

if (length(m$Lfit)>0){

if (mconfig["K"]==1){

if (mapfun=="Haldane")

iL<-d2lnw[[i]]$dpL2 %*% t(Zi) %*% rep(1,n[i])

else

iL<-cbind(d2lnw[[i]]$dpL1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpL2 %*% t(Zi) %*% rep(1,n[i]) )

}

else iL<-d2lnw[[i]]$dpL %*% t(Zi)%*% rep(1,n[i])

}

if (length(m$Rfit)>0){

if (mconfig["O"]==1){

if (mapfun=="Haldane")

iR<-d2lnw[[i]]$dpR2 %*% t(Zi) %*% rep(1,n[i])

else

iR<-cbind(d2lnw[[i]]$dpR1 %*% t(Zi) %*% rep(1,n[i]),

d2lnw[[i]]$dpR2 %*% t(Zi) %*% rep(1,n[i]) )

}

else

iR<-d2lnw[[i]]$dpR %*% t(Zi) %*% rep(1,n[i])

}

I.phi.phi.Ic<- I.phi.phi.Ic - cbind(iL,iQ,iR)

}

d1lnw<-Dw.Dphi(cross,mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m)

I.phi.phi.Im<-matrix(0,nrow=length.phi,ncol=length.phi)

for(i in 1:nmgen)

for(j in 1:nmgen){

Di<- rbind(diag(rep(1,N))[ind[[i]],])

Dj<- rbind(diag(rep(1,N))[ind[[j]],])

Zi<-rbind(Z[ind[[i]], ])

Zj<-rbind(Z[ind[[j]], ])

I.phi.phi.Im <- (I.phi.phi.Im +

t(d1lnw[[i]])%*% (diag (c(rep(1,n[j])%*% Dj %*% t(Di) %*% Zi))

- t(Zi) %*% Di %*% t(Dj)%*% Zj )%*% d1lnw[[j]] )

}
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I.phi.phi <- ( I.phi.phi.Ic - I.phi.phi.Im)

remove(list=c("I.phi.phi.Ic","I.phi.phi.Im","Di","Dj"))

I.beta.sigma2<-(-1/sigma2^2 * t(Ce)%*% (diag2.1n.Z%*%mu -t(Z)%*%Y)

-1/(2*sigma2^3) * t(Ce)%*%

( 2*diag1.mu %*% ( diag2.yt.Z - t(Z)%*%diag1.yt%*%Z)

-2*diag3.yt.diag1yt.Z + 2*t(Z)%*%diag1.yt%*%diag1.yt%*%Z

-diag1.mu %*% (diag2.1n.Z - t(Z)%*%Z) %*% diag1.mu

+ (diag2.yt.Z - t(Z)%*%diag1.yt%*%Z)%*%diag1.mu)%*%mu )

I.beta.phi<-matrix(0,nrow=length.B,ncol=length.phi)

I.sigma2.phi<-matrix(0, nrow=1,ncol=length.phi)

for(i in 1:nmgen){

Di<-rbind(diag(rep(1,N))[ind[[i]],])

Zi<-rbind(Z[ind[[i]],])

diag3.1ni.Zi.diag1mu<-diag(c(rep(1,n[i])%*%Zi%*%diag1.mu) )

diag3.yt.Dit.Zi<-diag(c(t(Y)%*%t(Di)%*%Zi) )

Zt.diag1y.Dit.Zi<-t(Z) %*% diag1.yt %*% t(Di)%*%Zi

I.beta.phi <- (I.beta.phi +

1/sigma2 * t(Ce)%*%(( diag3.1ni.Zi.diag1mu - diag1.mu %*%

t(Zi) %*% Zi - diag3.yt.Dit.Zi + Zt.diag1y.Dit.Zi)%*% d1lnw[[i]]) )

I.sigma2.phi <- (I.sigma2.phi +

(-1)/(2*sigma2^2) * t(mu)%*%(( diag3.1ni.Zi.diag1mu - diag1.mu %*%

t(Zi) %*% Zi - 2* diag3.yt.Dit.Zi + 2*Zt.diag1y.Dit.Zi)%*% d1lnw[[i]]) )

}

remove(list=c("Di","Zi","diag3.1ni.Zi.diag1mu","diag3.yt.Dit.Zi", "Zt.diag1y.Dit.Zi"))

diag2.mut.Zt<-diag(c(t(mu)%*%t(Z)))

I.beta.betastar<-(1/sigma2 * t(Ce)%*%t(Z)%*%X2

-1/(sigma2^2) * t(Ce)%*%( diag1.mu %*%( diag1.mu %*% t(Z) - t(Z)%*%diag1.yt)

-( diag1.mu %*% t(Z) - t(Z)%*%diag1.yt)%*%diag2.mut.Zt )%*%X2 )

diag3.mut.diag1mu.Zt <-diag(c(t(mu) %*% diag1.mu %*% t(Z)))

I.betastar.betastar<-( 1/sigma2 * t(X2)%*%X2 -1/(sigma2^2) * t(X2)%*%(diag3.mut.diag1mu.Zt

- diag2.mut.Zt %*% diag2.mut.Zt)%*%X2 )

I.betastar.sigma2<-(1/(sigma2^2)*t(X2)%*%(Z%*%mu-Y)

-1/(2*sigma2^3)*t(X2)%*%( 2*diag3.mut.diag1mu.Zt %*% Y

-2*diag2.mut.Zt %*% diag2.mut.Zt %*% Y

-Z %*% diag1.mu %*% diag1.mu %*% mu

+ diag2.mut.Zt %*% Z %*% diag1.mu %*% mu) )

I.betastar.phi<-matrix(0,nrow=length.Bstar,ncol=length.phi)

for(i in 1:nmgen){
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Di<-rbind(diag(rep(1,N))[ind[[i]],])

diag2.1ni.Di<-rbind(diag(c(rep(1,n[i])%*%Di) ))

I.betastar.phi <- (I.betastar.phi +

1/sigma2 * t(X2)%*%(( diag2.mut.Zt %*% diag2.1ni.Di %*% Z

-diag2.1ni.Di %*% Z %*% diag1.mu )%*% d1lnw[[i]]) )

}

remove(list=c("Di","diag2.1ni.Di","diag2.1n.Z","diag3.yt.diag1yt.Z",

"diag1.mu","diag1.yt", "diag2.yt.Z","diag2.mut.Zt" ))

imat<-rbind( cbind(I.beta.beta,I.beta.betastar,I.beta.sigma2,I.beta.phi),

cbind(t(I.beta.betastar),I.betastar.betastar,I.betastar.sigma2,I.betastar.phi),

cbind(t(I.beta.sigma2), t(I.betastar.sigma2),I.sigma2.sigma2,I.sigma2.phi),

cbind(t(I.beta.phi), t(I.betastar.phi),t(I.sigma2.phi), I.phi.phi) )

remove(list=c("I.beta.beta","I.beta.betastar","I.beta.sigma2", "I.beta.phi","I.betastar.betastar",

"I.betastar.sigma2","I.betastar.phi","I.sigma2.sigma2","I.sigma2.phi", "I.phi.phi"))

# If imat is not positive definite then find a positive definite submarix of imat.

# The covariance matix will be constructed by taking the inverse this positive definite submatrix

# and setting the remaining rows and columns of imat.inv to zero.

imat.len<-length(imat[1,])

eigen.imat<-try(eigen(imat,TRUE,TRUE),silent=TRUE)

if (inherits(eigen.imat, "try-error"))

imat.is.negative.definite<-TRUE

else #check eigenvalues

imat.is.negative.definite<-any(eigen.imat$values<0)

i<-imat.len

minlen<-length(params$effects[,1])

while((imat.is.negative.definite) & (i>=minlen)){

i<-i-1

imat<-imat[1:i,1:i]

eigen.values.imat<-try(eigen(imat,TRUE,TRUE),silent=TRUE)

if (inherits(eigen.imat, "try-error"))

imat.is.negative.definite<-TRUE

else

imat.is.negative.definite<-any(eigen.imat$values<0)

}

imat2.len<-length(imat[1,])

infmat.singular<-FALSE

imat2.inv<- try(solve(imat),silent=TRUE)

if (inherits(imat.inv, "try-error")){

infmat.singular<-TRUE

gotMASS<- try(find(ginv, mode="function"),silent=TRUE)

if (inherits(gotMASS, "try-error"))
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require("MASS")

imat2.inv<-ginv(imat)

}

imat.inv<-matrix(NA,nrow=imat.len,ncol=imat.len)

imat.inv[1:imat2.len,1:imat2.len]<-imat2.inv

param.names<-c(dimnames(params$effects)[[1]],"sigma2",names(params$probs))

if (imat2.len==imat.len)

dropped<-"None"

else

dropped<-param.names[(imat2.len+1):imat.len]

dimnames(imat.inv)<-list(param.names,param.names)

var.all<-diag(imat.inv)

std.err.beta<-sqrt(var.all[dimnames(params$effects)[[1]]])

zstat0.beta<-params$effects[,1]/std.err.beta

pval.beta<-2*(1-pnorm(abs(zstat0.beta)))

std.err.probs<-sqrt(var.all[names(params$probs)])

zstat0.probs<-params$probs/std.err.probs

zstat1.probs<-(params$probs-1)/std.err.probs

pval0.probs<-1-pnorm(zstat0.probs)

pval1.probs<-pnorm(zstat1.probs)

b.result<-cbind(std.err.beta,zstat0.beta,pval.beta)

dimnames(b.result)<-list(dimnames(params$effects)[[1]], c("std.err","z0","P>|z0|"))

probs.result<-cbind(std.err.probs,zstat0.probs,zstat1.probs,pval0.probs,pval1.probs )

dimnames(probs.result)<-list(names(params$probs), c("std.err","z0","z1","P>z0","P<z1"))

val<- list(b.result=b.result, probs.result=probs.result, infmat.singular= infmat.singular)

if (cov==TRUE)

val$cov<-imat.inv

val

}

#---------------------------------------------------------------------------------------------------

# model.config()

#---------------------------------------------------------------------------------------------------

model.config<-function(cross,mapfun,chosen.model,probs,markerg,genot,genot2,rmn){

#this function determines which of the 7 models is being fitted.

Qfit<-grep("Q",chosen.model)

Rfit<-grep("R",chosen.model)

Lfit<-grep("L",chosen.model)

xgen<-NULL

qtl3<-genot2$qtl3

highL<-grep("LL",qtl3)

highR<-grep("RR",qtl3)
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highQ<-grep("QQ",qtl3)

if (cross=="F2"){

hetL<-grep("Ll",qtl3)

hetR<-grep("Rr",qtl3)

hetQ<-grep("Qq",qtl3)

}

mconfig<-genot2$mconfig

pQ1<-pQ2<-0

if(length(Qfit)==0){

if (cross=="F2")

xgen<-c(highQ,hetQ)

else

xgen<-highQ

}

else{

pQ2<-probs["pQ2"]

pQ1<-probs["pQ1"]

}

pL1<-pL2<-pL<-0

if(length(Lfit)==0){

if (cross=="F2")

xgen<-c(highL,hetL,xgen)

else

xgen<-c(highL,xgen)

}

else if (mconfig["K"]==1){

pL1<-probs["pL1"]

pL2<-probs["pL2"]

}

else pL<-probs["pL"]

pR1<-pR2<-pR<-0

if(length(Rfit)==0){

if (cross=="F2")

xgen<-c(highR,hetR,xgen)

else

xgen<-c(highR,xgen)

}

else if (mconfig["O"]==1){

pR1<-probs["pR1"]

pR2<-probs["pR2"]

}
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else pR<-probs["pR"]

kgen<-(1:length(qtl3))

if (length(xgen)>0){

xgen<-unique(xgen)

kgen<-kgen[-xgen]

}

list(Lfit=Lfit,Rfit=Rfit,Qfit=Qfit,pQ1=pQ1,pQ2=pQ2,

pL1=pL1,pL2=pL2,pL=pL,pR1=pR1,pR2=pR2,pR=pR,kgen=kgen)

}

#---------------------------------------------------------------------------------------------------

# Dw.Dphi.b1()

#---------------------------------------------------------------------------------------------------

Dw.Dphi.b1<-function(mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m){

pQ1<-m$pQ1

pQ2<-m$pQ2

pL1<-m$pL1

pL2<-m$pL2

pR1<-m$pR1

pR2<-m$pR2

pL<-m$pL

pR<-m$pR

mconfig<-genot2$mconfig

rkm<-genot2$rkm

rmn<-genot2$rmn

rno<-genot2$rno

dfit.names<-c("dpL","dpR","dpL1","dpL2","dpR1","dpR2","dpQ1","dpQ2")

names(dfit.names)<-c("pL","pR","pL1","pL2","pR1","pR2","pQ1","pQ2")

dfit.names<-dfit.names[names(probs)]

mat<-matrix(0,nrow=nqgen,ncol=length(dfit.names))

dimnames(mat)<-list(NULL,dfit.names)

d1lnw<-lapply(1:length(genot),function(h,x){x},mat)

names(d1lnw)<-genot

matlist<-function(mylist,dqtl,index.qtl,val){

lapply(mylist,function(x,dqtl,index.qtl,val){

x[,dqtl]<-val[index.qtl]; x},

dqtl,index.qtl,val)

}
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if(length(m$Lfit)>0) {

if (mconfig["K"]==1){

gg<-index.genot(cross="B1",M="K",N="M",genot2=genot2)

if (mapfun=="Haldane"){

dpL1.dpL2 <- (1-2*pL2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

d1lnw[gg$KKMM]<-matlist(d1lnw[gg$KKMM],"dpL2",m$kgen,(rep(c(1/pL1,-1/(1-pL1)),c(4,4))*dpL1.dpL2))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL2",m$kgen,rep(c(1/pL2,-1/(1-pL2)),c(4,4)))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL2",m$kgen,

rev(rep(c(1/pL1,-1/(1-pL1)),c(4,4))*dpL1.dpL2))

d1lnw[gg$KkMM]<- matlist(d1lnw[gg$KkMM],"dpL2",m$kgen,rev(rep(c(1/pL2,-1/(1-pL2)), c(4,4))))

}

else{

d1lnw[gg$KKMM]<- matlist(d1lnw[gg$KKMM],"dpL1",m$kgen,rep(c(1/pL1,-1/(1-pL1)), c(4,4)))

d1lnw[gg$KKMm]<- matlist(d1lnw[gg$KKMm],"dpL2",m$kgen,rep(c(1/pL2,-1/(1-pL2)), c(4,4)))

d1lnw[gg$KkMm]<- matlist(d1lnw[gg$KkMm],"dpL1",m$kgen,rev(rep(c(1/pL1,-1/(1-pL1)), c(4,4))))

d1lnw[gg$KkMM]<- matlist(d1lnw[gg$KkMM],"dpL2",m$kgen,rev(rep(c(1/pL2,-1/(1-pL2)), c(4,4))))

}

}

else{

gg<-index.genot(cross="B1",M="M",genot2=genot2)

d1lnw[gg$MM]<- matlist(d1lnw[gg$MM],"dpL",m$kgen,rep(c(1/pL,-1/(1-pL)), c(4,4)))

d1lnw[gg$Mm]<- matlist(d1lnw[gg$Mm],"dpL",m$kgen,rev(rep(c(1/pL,-1/(1-pL)), c(4,4))))

}

}

if(length(m$Rfit)>0) {

if (mconfig["O"]==1){

gg<-index.genot(cross="B1",M="N",N="O",genot2=genot2)

if (mapfun=="Haldane"){

dpR1.dpR2 <- (1-2*pR2)*rno^2 /((1-2*pR1)*(1-rno)^2)

d1lnw[gg$NNOO]<- matlist(d1lnw[gg$NNOO],"dpR2",m$kgen,(rep(c(1/pR1,-1/(1-pR1)),4)*dpR1.dpR2))

d1lnw[gg$NNOo]<- matlist(d1lnw[gg$NNOo],"dpR2",m$kgen,rep(c(1/pR2,-1/(1-pR2)),4))

d1lnw[gg$NnOo]<- matlist(d1lnw[gg$NnOo],"dpR2",m$kgen,rev(rep(c(1/pR1,-1/(1-pR1)),4)*dpR1.dpR2))

d1lnw[gg$NnOO]<- matlist(d1lnw[gg$NnOO],"dpR2",m$kgen,rev(rep(c(1/pR2,-1/(1-pR2)),4)))

}

else{

d1lnw[gg$NNOO]<- matlist(d1lnw[gg$NNOO],"dpR1",m$kgen,rep(c(1/pR1,-1/(1-pR1)),4))

d1lnw[gg$NNOo]<- matlist(d1lnw[gg$NNOo],"dpR2",m$kgen,rep(c(1/pR2,-1/(1-pR2)),4))

d1lnw[gg$NnOO]<- matlist(d1lnw[gg$NnOO],"dpR2",m$kgen,rev(rep(c(1/pR2,-1/(1-pR2)),4)))

d1lnw[gg$NnOo]<- matlist(d1lnw[gg$NnOo],"dpR1",m$kgen,rev(rep(c(1/pR1,-1/(1-pR1)),4)))

}

}

else{

gg<-index.genot(cross="B1",N="N",genot2=genot2)

d1lnw[gg$NN]<- matlist(d1lnw[gg$NN],"dpR",m$kgen,rep(c(1/pR,-1/(1-pR)),4))
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d1lnw[gg$Nn]<- matlist(d1lnw[gg$Nn],"dpR",m$kgen,rev(rep(c(1/pR,-1/(1-pR)),4)))

}

}

if(length(m$Qfit)>0) {

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

if (mapfun=="Haldane"){

dpQ1.dpQ2 <- (1-2*pQ2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

d1lnw[gg$MMNN]<-matlist(d1lnw[gg$MMNN],"dpQ2",m$kgen,

(rep(c(1/pQ1,1/pQ1,-1/(1-pQ1),-1/(1-pQ1)), 2 )*dpQ1.dpQ2))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2",m$kgen,rep(c(1/pQ2,1/pQ2,-1/(1-pQ2),-1/(1-pQ2)), 2))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ2",m$kgen,

rev(rep(c(1/pQ1,1/pQ1,-1/(1-pQ1),-1/(1-pQ1)), 2 )*dpQ1.dpQ2))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ2",m$kgen,

rev(rep(c(1/pQ2,1/pQ2,-1/(1-pQ2),-1/(1-pQ2)), 2)))

}

else{

d1lnw[gg$MMNN]<-matlist(d1lnw[gg$MMNN],"dpQ1",m$kgen,rep(c(1/pQ1,1/pQ1,-1/(1-pQ1),-1/(1-pQ1)), 2))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2",m$kgen,rep(c(1/pQ2,1/pQ2,-1/(1-pQ2),-1/(1-pQ2)), 2))

d1lnw[gg$MmNn]<- matlist(d1lnw[gg$MmNn],"dpQ1",m$kgen,

rev(rep(c(1/pQ1,1/pQ1,-1/(1-pQ1),-1/(1-pQ1)), 2)))

d1lnw[gg$MmNN]<- matlist(d1lnw[gg$MmNN],"dpQ2",m$kgen,

rev(rep(c(1/pQ2,1/pQ2,-1/(1-pQ2),-1/(1-pQ2)), 2 )))

}

}

d1lnw[markerg]

}

#---------------------------------------------------------------------------------------------------

# D2w.Dphi2.b1()

#---------------------------------------------------------------------------------------------------

D2w.Dphi2.b1<-function(mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m){

pQ1<-m$pQ1

pQ2<-m$pQ2

pL1<-m$pL1

pL2<-m$pL2

pR1<-m$pR1

pR2<-m$pR2

pL<-m$pL

pR<-m$pR

mconfig<-genot2$mconfig

rkm<-genot2$rkm

rmn<-genot2$rmn

rno<-genot2$rno
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dfit.names<-c("dpL","dpR","dpL1","dpL2","dpR1","dpR2","dpQ1","dpQ2")

names(dfit.names)<-c("pL","pR","pL1","pL2","pR1","pR2","pQ1","pQ2")

dfit.names<-dfit.names[names(probs)]

mat<-matrix(0,nrow=length(dfit.names),ncol=nqgen)

dimnames(mat)<-list(dfit.names,NULL)

d2h1<-as.list(NULL)

d2h1<-lapply(1:length(dfit.names),function(h,x){x},mat)

names(d2h1)<-dfit.names

d2lnw<-lapply(1:length(genot),function(h,x){x},d2h1)

names(d2lnw)<-genot

#indexing a three-level nested list

#using the fact that dpR dpL=0 etc

matlist<-function(mylist,dqtl,index.qtl,val){

lapply(mylist,function(x,dqtl,index.qtl,val){

x[[dqtl]][dqtl,]<-val[index.qtl]; x},

dqtl,index.qtl,val)

}

if(length(m$Lfit)>0) {

if (mconfig["K"]==1){

gg<-index.genot(cross="B1",M="K",N="M",genot2=genot2)

d2h1.dpL12<- (-1)*rep(c(1/pL1^2,1/(1-pL1)^2),c(4,4))

d2h1.dpL22<- (-1)*rep(c(1/pL2^2,1/(1-pL2)^2),c(4,4))

if (mapfun=="Haldane"){

dpL1.dpL2 <- (1-2*pL2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

d2pL1.dpL22<- (-2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

dh1.dpL1<-rep(c(1/pL1,-1/(1-pL1)), c(4,4))

tempi<-(d2h1.dpL12 * (dpL1.dpL2)^2 + dh1.dpL1 * d2pL1.dpL22)

d2lnw[gg$KKMM]<- matlist(d2lnw[gg$KKMM],"dpL2",m$kgen,tempi)

d2lnw[gg$KKMm]<- matlist(d2lnw[gg$KKMm],"dpL2",m$kgen,d2h1.dpL22)

d2lnw[gg$KkMm]<- matlist(d2lnw[gg$KkMm],"dpL2",m$kgen,rev(tempi))

d2lnw[gg$KkMM]<- matlist(d2lnw[gg$KkMM],"dpL2",m$kgen,rev(d2h1.dpL22))

}

else{

d2lnw[gg$KKMM]<- matlist(d2lnw[gg$KKMM],"dpL1",m$kgen,d2h1.dpL12)

d2lnw[gg$KKMm]<- matlist(d2lnw[gg$KKMm],"dpL2",m$kgen,d2h1.dpL22)

d2lnw[gg$KkMM]<- matlist(d2lnw[gg$KkMM],"dpL2",m$kgen,rev(d2h1.dpL22))

d2lnw[gg$KkMm]<- matlist(d2lnw[gg$KkMm],"dpL1",m$kgen,rev(d2h1.dpL12))

}

}
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else{

gg<-index.genot(cross="B1",M="M",genot2=genot2)

d2lnw[gg$MM]<- matlist(d2lnw[gg$MM],"dpL",m$kgen,(-1)*rep(c(1/pL^2,1/(1-pL)^2),c(4,4)))

d2lnw[gg$Mm]<- matlist(d2lnw[gg$Mm],"dpL",m$kgen,rev((-1)*rep(c(1/pL^2,1/(1-pL)^2),c(4,4))))

}

}

if(length(m$Rfit)>0) {

if (mconfig["O"]==1){

gg<-index.genot(cross="B1",M="N",N="O",genot2=genot2)

d2h1.dpR12<- (-1)*rep(c(1/pR1^2,1/(1-pR1)^2),4)

d2h1.dpR22<- (-1)*rep(c(1/pR2^2,1/(1-pR2)^2),4)

if (mapfun=="Haldane"){

dpR1.dpR2 <- (1-2*pR2)*rno^2 /((1-2*pR1)*(1-rno)^2)

d2pR1.dpR22<- (-2)*rno^2 /((1-2*pR1)*(1-rno)^2)

dh1.dpR1<-rep(c(1/pR1,-1/(1-pR1)),4)

tempi<-(d2h1.dpR12 * (dpR1.dpR2)^2 + dh1.dpR1 * d2pR1.dpR22)

d2lnw[gg$NNOO]<- matlist(d2lnw[gg$NNOO],"dpR2",m$kgen,tempi)

d2lnw[gg$NNOo]<- matlist(d2lnw[gg$NNOo],"dpR2",m$kgen,d2h1.dpR22)

d2lnw[gg$NnOO]<- matlist(d2lnw[gg$NnOO],"dpR2",m$kgen,rev(d2h1.dpR22))

d2lnw[gg$NnOo]<- matlist(d2lnw[gg$NnOo],"dpR2",m$kgen,rev(tempi))

}

else{

d2lnw[gg$NNOO]<- matlist(d2lnw[gg$NNOO],"dpR1",m$kgen,d2h1.dpR12)

d2lnw[gg$NNOo]<- matlist(d2lnw[gg$NNOo],"dpR2",m$kgen,d2h1.dpR22)

d2lnw[gg$NnOO]<- matlist(d2lnw[gg$NnOO],"dpR2",m$kgen,rev(d2h1.dpR22))

d2lnw[gg$NnOo]<- matlist(d2lnw[gg$NnOo],"dpR1",m$kgen,rev(d2h1.dpR12))

}

}

else{

gg<-index.genot(cross="B1",N="N",genot2=genot2)

d2lnw[gg$NN]<- matlist(d2lnw[gg$NN],"dpR",m$kgen,(-1)*rep(c(1/pR^2,1/(1-pR)^2),4))

d2lnw[gg$Nn]<- matlist(d2lnw[gg$Nn],"dpR",m$kgen,rev((-1)*rep(c(1/pR^2,1/(1-pR)^2),4)))

}

}

if(length(m$Qfit)>0) {

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

d2h1.dpQ12<- (-1)*rep(c(1/pQ1^2,1/pQ1^2,1/(1-pQ1)^2,1/(1-pQ1)^2),2)

d2h1.dpQ22<-(-1)*rep(c(1/pQ2^2,1/pQ2^2,1/(1-pQ2)^2, 1/(1-pQ2)^2),2)

if (mapfun=="Haldane"){

dpQ1.dpQ2 <- (1-2*pQ2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

d2pQ1.dpQ22<- (-2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

dh1.dpQ1<-rep(c(1/pQ1,1/pQ1,-1/(1-pQ1),-1/(1-pQ1)), 2 )

tempi<-( d2h1.dpQ12 * (dpQ1.dpQ2)^2+ dh1.dpQ1 * d2pQ1.dpQ22)



338

d2lnw[gg$MMNN]<- matlist(d2lnw[gg$MMNN],"dpQ2",m$kgen,tempi)

d2lnw[gg$MMNn]<- matlist(d2lnw[gg$MMNn],"dpQ2",m$kgen,d2h1.dpQ22)

d2lnw[gg$MmNN]<- matlist(d2lnw[gg$MmNN],"dpQ2",m$kgen,rev(d2h1.dpQ22))

d2lnw[gg$MmNn]<- matlist(d2lnw[gg$MmNn],"dpQ2",m$kgen,rev(tempi))

}

else{

d2lnw[gg$MMNN]<- matlist(d2lnw[gg$MMNN],"dpQ1",m$kgen,d2h1.dpQ12)

d2lnw[gg$MMNn]<- matlist(d2lnw[gg$MMNn],"dpQ2",m$kgen,d2h1.dpQ22)

d2lnw[gg$MmNN]<- matlist(d2lnw[gg$MmNN],"dpQ2",m$kgen,rev(d2h1.dpQ22))

d2lnw[gg$MmNn]<- matlist(d2lnw[gg$MmNn],"dpQ1",m$kgen,rev(d2h1.dpQ12))

}

}

d2lnw[markerg]

}

#---------------------------------------------------------------------------------------------------

# D2w.Dphi2()

#---------------------------------------------------------------------------------------------------

D2w.Dphi2<- function(cross,...){

hessian<-switch(as.character(cross),

B1=D2w.Dphi2.b1(...),

B2=D2w.Dphi2.b1(...),

F2=D2w.Dphi2.f2(...))

hessian

}

#---------------------------------------------------------------------------------------------------

# Dw.Dphi()

#---------------------------------------------------------------------------------------------------

Dw.Dphi<- function(cross,...){

derivative1<-switch(as.character(cross),

B1=Dw.Dphi.b1(...),

B2=Dw.Dphi.b1(...),

F2=Dw.Dphi.f2(...))

derivative1

}

#---------------------------------------------------------------------------------------------------

# df2h1()

#---------------------------------------------------------------------------------------------------

df2h1<-function(rkm,pL1,pL2,dpL1.dpL2,repv,h,repv2=NULL){

df2<-switch(h,

h1=c(2/pL1, 1/pL1-1/(1-pL1), -2/(1-pL1))*dpL1.dpL2,

h2=c(1/pL1*dpL1.dpL2+1/pL2, ((1-2*pL1)+(1-2*pL2)*dpL1.dpL2)/(pL2*(1-pL1)+pL1*(1-pL2)),

-1/(1-pL1)*dpL1.dpL2-1/(1-pL2) ),
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h3=c(2/pL2, 1/pL2-1/(1-pL2), -2/(1-pL2)),

h4=c(1/pL1*dpL1.dpL2 -1/(1-pL2), ((2*pL1-1)+(2*pL2-1)*dpL1.dpL2)/(1-pL1-pL2+2*pL1*pL2),

1/pL2-1/(1-pL1)*dpL1.dpL2),

h5=c(((1-rkm)^2*(1-2*pL1)*dpL1.dpL2 + rkm^2*(1-2*pL2))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2)),

((1-rkm)^2*(-2+4*pL1)*dpL1.dpL2 + rkm^2*(-2+4*pL2))/

((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2))),

((1-rkm)^2*(1-2*pL1)*dpL1.dpL2 + rkm^2*(1-2*pL2))/

((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))))

d.dpL2<-rep(df2,repv)

if (!is.null(repv2))

d.dpL2<-rep(d.dpL2,repv2)

d.dpL2

}

#---------------------------------------------------------------------------------------------------

# df2g1()

#---------------------------------------------------------------------------------------------------

df2g1<-function(rkm,pL1,pL2,repv,h,repv2=NULL){

df2<-switch(h,

g1.1=c(2/pL1, 1/pL1-1/(1-pL1), -2/(1-pL1)),

g2.1= c(1/pL1, (1-2*pL2)/(pL2*(1-pL1)+pL1*(1-pL2)),-1/(1-pL1)),

g2.2= c(1/pL2, (1-2*pL1)/(pL2*(1-pL1)+pL1*(1-pL2)),-1/(1-pL2)),

g3.2= c(2/pL2, 1/pL2-1/(1-pL2), -2/(1-pL2)),

g4.1= c(1/pL1,(-1+2*pL2)/(1-pL1-pL2+2*pL1*pL2),-1/(1-pL1)),

g4.2= c(-1/(1-pL2),(-1+2*pL1)/(1-pL1-pL2+2*pL1*pL2),1/pL2),

g5.1= c(((1-rkm)^2*(1-2*pL1))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2)),

((1-rkm)^2*(-2+4*pL1))/((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2))),

((1-rkm)^2*(1-2*pL1))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))),

g5.2= c(( rkm^2*(1-2*pL2))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2)),

( rkm^2*(-2+4*pL2))/((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2))),

( rkm^2*(1-2*pL2))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))))

val<-rep(df2,repv)

if (!is.null(repv2))

val<-rep(val,repv2)

val

}

#---------------------------------------------------------------------------------------------------

# Dw.Dphi.f2()

#---------------------------------------------------------------------------------------------------

Dw.Dphi.f2<-function(mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m){

pQ1<-m$pQ1

pQ2<-m$pQ2

pL1<-m$pL1

pL2<-m$pL2
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pR1<-m$pR1

pR2<-m$pR2

pL<-m$pL

pR<-m$pR

mconfig<-genot2$mconfig

rkm<-genot2$rkm

rmn<-genot2$rmn

rno<-genot2$rno

dfit.names<-c("dpL","dpR","dpL1","dpL2","dpR1","dpR2","dpQ1","dpQ2")

names(dfit.names)<-c("pL","pR","pL1","pL2","pR1","pR2","pQ1","pQ2")

dfit.names<-dfit.names[names(probs)]

mat<-matrix(0,nrow=nqgen,ncol=length(dfit.names))

dimnames(mat)<-list(NULL,dfit.names)

d1lnw<-lapply(1:length(genot),function(h,x){x},mat)

names(d1lnw)<-genot

matlist<-function(mylist,dqtl,index.qtl,val){

lapply(mylist,function(x,dqtl,index.qtl,val){

x[,dqtl]<-val[index.qtl]; x},

dqtl,index.qtl,val)

}

if(length(m$Lfit)>0) {

if (mconfig["K"]==1){

gg<-index.genot(cross="F2",M="K",N="M",genot2=genot2)

if (mapfun=="Haldane"){

dpL1.dpL2 <- (1-2*pL2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

d1lnw[gg$KKMM]<-matlist(d1lnw[gg$KKMM],"dpL2",m$kgen,df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL2",m$kgen,df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h2"))

d1lnw[gg$KKmm]<-matlist(d1lnw[gg$KKmm],"dpL2",m$kgen,df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h3"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL2",m$kgen,df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h4"))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL2",m$kgen,df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h5"))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL2",m$kgen,rev(df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h4")))

d1lnw[gg$kkMM]<-matlist(d1lnw[gg$kkMM],"dpL2",m$kgen,rev(df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h3")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL2",m$kgen,rev(df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h2")))

d1lnw[gg$kkmm]<-matlist(d1lnw[gg$kkmm],"dpL2",m$kgen,rev(df2h1(rkm,pL1,pL2,dpL1.dpL2,c(9,9,9),"h1")))

}

else{

d1lnw[gg$KKMM]<-matlist(d1lnw[gg$KKMM],"dpL1",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g1.1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL1",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g2.1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL2",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g2.2"))

d1lnw[gg$KKmm]<-matlist(d1lnw[gg$KKmm],"dpL2",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g3.2"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL1",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g4.1"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL2",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g4.2"))
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d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL1",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g5.1"))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL2",m$kgen,df2g1(rkm,pL1,pL2,c(9,9,9),"g5.2"))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL1",m$kgen,rev(df2g1(rkm,pL1,pL2,c(9,9,9),"g4.1")))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL2",m$kgen,rev(df2g1(rkm,pL1,pL2,c(9,9,9),"g4.2")))

d1lnw[gg$kkMM]<-matlist(d1lnw[gg$kkMM],"dpL2",m$kgen,rev(df2g1(rkm,pL1,pL2,c(9,9,9),"g3.2")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL1",m$kgen,rev(df2g1(rkm,pL1,pL2,c(9,9,9),"g2.1")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL2",m$kgen,rev(df2g1(rkm,pL1,pL2,c(9,9,9),"g2.2")))

d1lnw[gg$kkmm]<-matlist(d1lnw[gg$kkmm],"dpL1",m$kgen,rev( df2g1(rkm,pL1,pL2,c(9,9,9),"g1.1")))

}

}

else{

gg<-index.genot(cross="F2",M="M",genot2=genot2)

d1lnw[gg$MM]<- matlist(d1lnw[gg$MM],"dpL",m$kgen,rep(c(2/pL,1/pL-1/(1-pL),-2/(1-pL)), c(9,9,9)))

d1lnw[gg$Mm]<- matlist(d1lnw[gg$Mm],"dpL",m$kgen,rep(c(1/pL-1/(1-pL),(-2+4*pL)/(pL^2+(1-pL)^2),

1/pL-1/(1-pL)), c(9,9,9)))

d1lnw[gg$mm]<- matlist(d1lnw[gg$mm],"dpL",m$kgen,

rev(rep(c(2/pL,1/pL-1/(1-pL),-2/(1-pL)), c(9,9,9))))

}

}

if(length(m$Rfit)>0) {

if (mconfig["O"]==1){

gg<-index.genot(cross="F2",M="N",N="O",genot2=genot2)

if (mapfun=="Haldane"){

dpR1.dpR2 <- (1-2*pR2)*rno^2 /((1-2*pR1)*(1-rno)^2)

d1lnw[gg$NNOO]<-matlist(d1lnw[gg$NNOO],"dpR2",m$kgen,df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR2",m$kgen,df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h2"))

d1lnw[gg$NNoo]<-matlist(d1lnw[gg$NNoo],"dpR2",m$kgen,df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h3"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR2",m$kgen,df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h4"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR2",m$kgen,df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h5"))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR2",m$kgen,rev(df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h4")))

d1lnw[gg$nnOO]<-matlist(d1lnw[gg$nnOO],"dpR2",m$kgen,rev(df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h3")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR2",m$kgen,rev(df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h2")))

d1lnw[gg$nnoo]<-matlist(d1lnw[gg$nnoo],"dpR2",m$kgen,rev( df2h1(rno,pR1,pR2,dpR1.dpR2,9,"h1"))) }

else{

d1lnw[gg$NNOO]<-matlist(d1lnw[gg$NNOO],"dpR1",m$kgen,df2g1(rno,pR1,pR2,9,"g1.1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR1",m$kgen,df2g1(rno,pR1,pR2,9,"g2.1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR2",m$kgen,df2g1(rno,pR1,pR2,9,"g2.2"))

d1lnw[gg$NNoo]<-matlist(d1lnw[gg$NNoo],"dpR2",m$kgen,df2g1(rno,pR1,pR2,9,"g3.2"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR1",m$kgen,df2g1(rno,pR1,pR2,9,"g4.1"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR2",m$kgen,df2g1(rno,pR1,pR2,9,"g4.2"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR1",m$kgen,df2g1(rno,pR1,pR2,9,"g5.1"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR2",m$kgen,df2g1(rno,pR1,pR2,9,"g5.2"))
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d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR1",m$kgen,rev(df2g1(rno,pR1,pR2,9,"g4.1")))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR2",m$kgen,rev(df2g1(rno,pR1,pR2,9,"g4.2")))

d1lnw[gg$nnOO]<-matlist(d1lnw[gg$nnOO],"dpR2",m$kgen,rev(df2g1(rno,pR1,pR2,9,"g3.2")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR1",m$kgen,rev(df2g1(rno,pR1,pR2,9,"g2.1")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR2",m$kgen,rev(df2g1(rno,pR1,pR2,9,"g2.2")))

d1lnw[gg$nnoo]<-matlist(d1lnw[gg$nnoo],"dpR1",m$kgen,rev( df2g1(rno,pR1,pR2,9,"g1.1")))

}

}

else{

gg<-index.genot(cross="F2",N="N",genot2=genot2)

d1lnw[gg$NN]<- matlist(d1lnw[gg$NN],"dpR",m$kgen,rep(c(2/pR,1/pR-1/(1-pR),-2/(1-pR)), 9))

d1lnw[gg$Nn]<- matlist(d1lnw[gg$Nn],"dpR",m$kgen,

rep(c(1/pR-1/(1-pR),(-2+4*pR)/(pR^2+(1-pR)^2), 1/pR-1/(1-pR)), 9))

d1lnw[gg$nn]<- matlist(d1lnw[gg$nn],"dpR",m$kgen,rev(rep(c(2/pR,1/pR-1/(1-pR),-2/(1-pR)), 9)))

}

}

if(length(m$Qfit)>0) {

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

if (mapfun=="Haldane"){

dpQ1.dpQ2 <- (1-2*pQ2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

d1lnw[gg$MMNN]<-matlist(d1lnw[gg$MMNN],"dpQ2",m$kgen,df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2",m$kgen,df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h2",3))

d1lnw[gg$MMnn]<-matlist(d1lnw[gg$MMnn],"dpQ2",m$kgen,df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h3",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ2",m$kgen,df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h4",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ2",m$kgen,df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h5",3))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ2",m$kgen,

rev(df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h4",3)))

d1lnw[gg$mmNN]<-matlist(d1lnw[gg$mmNN],"dpQ2",m$kgen,

rev(df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h3",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ2",m$kgen,

rev(df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h2",3)))

d1lnw[gg$mmnn]<-matlist(d1lnw[gg$mmnn],"dpQ2",m$kgen,

rev(df2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,c(3,3,3),"h1",3)))

}

else{

d1lnw[gg$MMNN]<-matlist(d1lnw[gg$MMNN],"dpQ1",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g1.1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ1",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g2.1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g2.2",3))

d1lnw[gg$MMnn]<-matlist(d1lnw[gg$MMnn],"dpQ2",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g3.2",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ1",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g4.1",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ2",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g4.2",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ1",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g5.1",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ2",m$kgen,df2g1(rmn,pQ1,pQ2,c(3,3,3),"g5.2",3))
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d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ1",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g4.1",3)))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ2",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g4.2",3)))

d1lnw[gg$mmNN]<-matlist(d1lnw[gg$mmNN],"dpQ2",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g3.2",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ1",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g2.1",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ2",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g2.2",3)))

d1lnw[gg$mmnn]<-matlist(d1lnw[gg$mmnn],"dpQ1",m$kgen,rev(df2g1(rmn,pQ1,pQ2,c(3,3,3),"g1.1",3)))

}

}

d1lnw[markerg]

}

#---------------------------------------------------------------------------------------------------

# D2w.Dphi2.f2()

#---------------------------------------------------------------------------------------------------

D2w.Dphi2.f2<-function(mapfun,chosen.model,probs,markerg,genot,genot2,nqgen,m){

pQ1<-m$pQ1

pQ2<-m$pQ2

pL1<-m$pL1

pL2<-m$pL2

pR1<-m$pR1

pR2<-m$pR2

pL<-m$pL

pR<-m$pR

mconfig<-genot2$mconfig

rkm<-genot2$rkm

rmn<-genot2$rmn

rno<-genot2$rno

dfit.names<-c("dpL","dpR","dpL1","dpL2","dpR1","dpR2","dpQ1","dpQ2")

names(dfit.names)<-c("pL","pR","pL1","pL2","pR1","pR2","pQ1","pQ2")

dfit.names<-dfit.names[names(probs)]

mat<-matrix(0,nrow=length(dfit.names),ncol=nqgen)

dimnames(mat)<-list(dfit.names,NULL)

d2h1<-as.list(NULL)

d2h1<-lapply(1:length(dfit.names),function(h,x){x},mat)

names(d2h1)<-dfit.names

d2lnw<-lapply(1:length(genot),function(h,x){x},d2h1)

names(d2lnw)<-genot

#indexing a three-level nested list using the fact that dpR dpL=0 etc

matlist<-function(mylist,dp1,dp2,index.qtl,val){

lapply(mylist,function(x,dp1,dp2,index.qtl,val){
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x[[dp1]][dp2,]<-val[index.qtl]; x},

dp1,dp2,index.qtl,val)

}

if(length(m$Lfit)>0) {

if (mconfig["K"]==1){

gg<-index.genot(cross="F2",M="K",N="M",genot2=genot2)

if (mapfun=="Haldane"){

dpL1.dpL2 <- (1-2*pL2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

d2pL1.dpL22<- (-2)*rkm^2 /((1-2*pL1)*(1-rkm)^2)

d2lnw[gg$KKMM]<-matlist(d2lnw[gg$KKMM],"dpL2","dpL2",m$kgen,

d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h1"))

d2lnw[gg$KKMm]<-matlist(d2lnw[gg$KKMm],"dpL2","dpL2",m$kgen,

d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h2"))

d2lnw[gg$KKmm]<-matlist(d2lnw[gg$KKmm],"dpL2","dpL2",m$kgen,

d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h3"))

d2lnw[gg$KkMM]<-matlist(d2lnw[gg$KkMM],"dpL2","dpL2",m$kgen,

d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h4"))

d2lnw[gg$KkMm]<-matlist(d2lnw[gg$KkMm],"dpL2","dpL2",m$kgen,

d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h5"))

d2lnw[gg$Kkmm]<-matlist(d2lnw[gg$Kkmm],"dpL2","dpL2",m$kgen,

rev(d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h4")))

d2lnw[gg$kkMM]<-matlist(d2lnw[gg$kkMM],"dpL2","dpL2",m$kgen,

rev(d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h3")))

d2lnw[gg$kkMm]<-matlist(d2lnw[gg$kkMm],"dpL2","dpL2",m$kgen,

rev(d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h2")))

d2lnw[gg$kkmm]<-matlist(d2lnw[gg$kkmm],"dpL2","dpL2",m$kgen,

rev(d2f2h1(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,c(9,9,9),"h1")))

}

else{

d1lnw[gg$KKMM]<-matlist(d1lnw[gg$KKMM],"dpL1","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g1.1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL1","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g2.1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL2","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g2.1"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL1","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g2.2"))

d1lnw[gg$KKMm]<-matlist(d1lnw[gg$KKMm],"dpL2","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g2.2"))

d1lnw[gg$KKmm]<-matlist(d1lnw[gg$KKmm],"dpL2","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g3.2"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL1","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g4.1"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL2","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g4.1"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL1","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g4.2"))

d1lnw[gg$KkMM]<-matlist(d1lnw[gg$KkMM],"dpL2","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g4.2"))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL1","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g5.1"))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL2","dpL1",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g5.1"))

d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL1","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g5.2"))
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d1lnw[gg$KkMm]<-matlist(d1lnw[gg$KkMm],"dpL2","dpL2",m$kgen,d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g5.2"))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL1","dpL1",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g4.1")))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL2","dpL1",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g4.1")))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL1","dpL2",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g4.2")))

d1lnw[gg$Kkmm]<-matlist(d1lnw[gg$Kkmm],"dpL2","dpL2",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g4.2")))

d1lnw[gg$kkMM]<-matlist(d1lnw[gg$kkMM],"dpL2","dpL2",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g3.2")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL1","dpL1",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g2.1")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL2","dpL1",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g2.1")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL1","dpL2",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g2.2")))

d1lnw[gg$kkMm]<-matlist(d1lnw[gg$kkMm],"dpL2","dpL2",m$kgen,

rev(d2f2g1(rkm,pL1,pL2,c(9,9,9),"p2.g2.2")))

d1lnw[gg$kkmm]<-matlist(d1lnw[gg$kkmm],"dpL1","dpL1",m$kgen,

rev( d2f2g1(rkm,pL1,pL2,c(9,9,9),"p1.g1.1")))

}

}

else{

gg<-index.genot(cross="F2",M="M",genot2=genot2)

d2lnw[gg$MM]<- matlist(d2lnw[gg$MM],"dpL","dpL",m$kgen,

rep(c(-2/pL^2,-1/pL^2-1/(1-pL)^2,-2/(1-pL)^2),c(9,9,9)))

d2lnw[gg$Mm]<- matlist(d2lnw[gg$Mm],"dpL","dpL",m$kgen, rep(c(-1/pL^2-1/(1-pL)^2,

(4*(pL^2+(1-pL)^2)-(-2+4*pL)^2)/(pL^2+(1-pL)^2),-1/pL^2-1/(1-pL)^2),c(9,9,9)))

d2lnw[gg$mm]<- matlist(d2lnw[gg$mm],"dpL","dpL",m$kgen,

rev(rep(c(-2/pL^2,-1/pL^2-1/(1-pL)^2,-2/(1-pL)^2),c(9,9,9))))

}

}

if(length(m$Rfit)>0) {

if (mconfig["O"]==1){

gg<-index.genot(cross="F2",M="N",N="O",genot2=genot2)

if (mapfun=="Haldane"){

dpR1.dpR2 <- (1-2*pR2)*rno^2 /((1-2*pR1)*(1-rno)^2)

d2pR1.dpR22<- (-2)*rno^2 /((1-2*pR1)*(1-rno)^2)

d2lnw[gg$NNOO]<-matlist(d2lnw[gg$NNOO],"dpR2","dpR2",m$kgen,

d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h1"))

d2lnw[gg$NNOo]<-matlist(d2lnw[gg$NNOo],"dpR2","dpR2",m$kgen,
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d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h2"))

d2lnw[gg$NNoo]<-matlist(d2lnw[gg$NNoo],"dpR2","dpR2",m$kgen,

d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h3"))

d2lnw[gg$NnOO]<-matlist(d2lnw[gg$NnOO],"dpR2","dpR2",m$kgen,

d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h4"))

d2lnw[gg$NnOo]<-matlist(d2lnw[gg$NnOo],"dpR2","dpR2",m$kgen,

d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h5"))

d2lnw[gg$Nnoo]<-matlist(d2lnw[gg$Nnoo],"dpR2","dpR2",m$kgen,

rev(d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h4")))

d2lnw[gg$nnOO]<-matlist(d2lnw[gg$nnOO],"dpR2","dpR2",m$kgen,

rev(d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h3")))

d2lnw[gg$nnOo]<-matlist(d2lnw[gg$nnOo],"dpR2","dpR2",m$kgen,

rev(d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h2")))

d2lnw[gg$nnoo]<-matlist(d2lnw[gg$nnoo],"dpR2","dpR2",m$kgen,

rev(d2f2h1(rno,pR1,pR2,dpR1.dpR2,d2pR1.dpR22,9,"h1")))#h1rev

}

else{

d1lnw[gg$NNOO]<-matlist(d1lnw[gg$NNOO],"dpR1","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g1.1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR1","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g2.1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR2","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g2.1"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR1","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g2.2"))

d1lnw[gg$NNOo]<-matlist(d1lnw[gg$NNOo],"dpR2","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g2.2"))

d1lnw[gg$NNoo]<-matlist(d1lnw[gg$NNoo],"dpR2","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g3.2"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR1","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g4.1"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR2","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g4.1"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR1","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g4.2"))

d1lnw[gg$NnOO]<-matlist(d1lnw[gg$NnOO],"dpR2","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g4.2"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR1","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g5.1"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR2","dpR1",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g5.1"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR1","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p1.g5.2"))

d1lnw[gg$NnOo]<-matlist(d1lnw[gg$NnOo],"dpR2","dpR2",m$kgen,d2f2g1(rno,pR1,pR2,9,"p2.g5.2"))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR1","dpR1",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p1.g4.1")))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR2","dpR1",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p2.g4.1")))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR1","dpR2",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p1.g4.2")))

d1lnw[gg$Nnoo]<-matlist(d1lnw[gg$Nnoo],"dpR2","dpR2",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p2.g4.2")))

d1lnw[gg$nnOO]<-matlist(d1lnw[gg$nnOO],"dpR2","dpR2",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p2.g3.2")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR1","dpR1",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p1.g2.1")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR2","dpR1",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p2.g2.1")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR1","dpR2",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p1.g2.2")))

d1lnw[gg$nnOo]<-matlist(d1lnw[gg$nnOo],"dpR2","dpR2",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p2.g2.2")))

d1lnw[gg$nnoo]<-matlist(d1lnw[gg$nnoo],"dpR1","dpR1",m$kgen,rev(d2f2g1(rno,pR1,pR2,9,"p1.g1.1")))

}

}

else{
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gg<-index.genot(cross="B1",N="N",genot2=genot2)

d2lnw[gg$NN]<- matlist(d2lnw[gg$NN],"dpR","dpR",m$kgen,

rep(c(-2/pR^2,-1/pR^2-1/(1-pR)^2,-2/(1-pR)^2),9))

d2lnw[gg$Nn]<- matlist(d2lnw[gg$Nn],"dpR","dpR",m$kgen,rep(c(-1/pR^2-1/(1-pR)^2,

(4*(pR^2+(1-pR)^2)-(-2+4*pR)^2)/(pR^2+(1-pR)^2),-1/pR^2-1/(1-pR)^2),9))

d2lnw[gg$nn]<- matlist(d2lnw[gg$nn],"dpR","dpR",m$kgen,

rev(rep(c(-2/pR^2,-1/pR^2-1/(1-pR)^2,-2/(1-pR)^2),9)))

}

}

if(length(m$Qfit)>0) {

gg<-index.genot(cross="F2",M="M",N="N",genot2=genot2)

if (mapfun=="Haldane"){

dpQ1.dpQ2 <- (1-2*pQ2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

d2pQ1.dpQ22<- (-2)*rmn^2 /((1-2*pQ1)*(1-rmn)^2)

d2lnw[gg$MMNN]<-matlist(d2lnw[gg$MMNN],"dpQ2","dpQ2",m$kgen,

d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h1",3))

d2lnw[gg$MMNn]<-matlist(d2lnw[gg$MMNn],"dpQ2","dpQ2",m$kgen,

d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h2",3))

d2lnw[gg$MMnn]<-matlist(d2lnw[gg$MMnn],"dpQ2","dpQ2",m$kgen,

d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h3",3))

d2lnw[gg$MmNN]<-matlist(d2lnw[gg$MmNN],"dpQ2","dpQ2",m$kgen,

d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h4",3))

d2lnw[gg$MmNn]<-matlist(d2lnw[gg$MmNn],"dpQ2","dpQ2",m$kgen,

d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h5",3))

d2lnw[gg$Mmnn]<-matlist(d2lnw[gg$Mmnn],"dpQ2","dpQ2",m$kgen,

rev(d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h4",3)))

d2lnw[gg$mmNN]<-matlist(d2lnw[gg$mmNN],"dpQ2","dpQ2",m$kgen,

rev(d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h3",3)))

d2lnw[gg$mmNn]<-matlist(d2lnw[gg$mmNn],"dpQ2","dpQ2",m$kgen,

rev(d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h2",3)))

d2lnw[gg$mmnn]<-matlist(d2lnw[gg$mmnn],"dpQ2","dpQ2",m$kgen,

rev(d2f2h1(rmn,pQ1,pQ2,dpQ1.dpQ2,d2pQ1.dpQ22,c(3,3,3),"h1",3)))

}

else{

d1lnw[gg$MMNN]<-matlist(d1lnw[gg$MMNN],"dpQ1","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g1.1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ1","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g2.1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g2.1",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ1","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g2.2",3))

d1lnw[gg$MMNn]<-matlist(d1lnw[gg$MMNn],"dpQ2","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g2.2",3))
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d1lnw[gg$MMnn]<-matlist(d1lnw[gg$MMnn],"dpQ2","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g3.2",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ1","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g4.1",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ2","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g4.1",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ1","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g4.2",3))

d1lnw[gg$MmNN]<-matlist(d1lnw[gg$MmNN],"dpQ2","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g4.2",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ1","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g5.1",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ2","dpQ1",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g5.1",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ1","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g5.2",3))

d1lnw[gg$MmNn]<-matlist(d1lnw[gg$MmNn],"dpQ2","dpQ2",m$kgen,

d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g5.2",3))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ1","dpQ1",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g4.1",3)))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ2","dpQ1",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g4.1",3)))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ1","dpQ2",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g4.2",3)))

d1lnw[gg$Mmnn]<-matlist(d1lnw[gg$Mmnn],"dpQ2","dpQ2",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g4.2",3)))

d1lnw[gg$mmNN]<-matlist(d1lnw[gg$mmNN],"dpQ2","dpQ2",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g3.2",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ1","dpQ1",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g2.1",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ2","dpQ1",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g2.1",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ1","dpQ2",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g2.2",3)))

d1lnw[gg$mmNn]<-matlist(d1lnw[gg$mmNn],"dpQ2","dpQ2",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p2.g2.2",3)))

d1lnw[gg$mmnn]<-matlist(d1lnw[gg$mmnn],"dpQ1","dpQ1",m$kgen,

rev(d2f2g1(rmn,pQ1,pQ2,c(3,3,3),"p1.g1.1",3)))

}

}

d2lnw[markerg]

}

#---------------------------------------------------------------------------------------------------
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# d2f2h1()

#---------------------------------------------------------------------------------------------------

d2f2h1<-function(rkm,pL1,pL2,dpL1.dpL2,d2pL1.dpL22,repv,h,repv2=NULL){

d2f2<-switch(h,

h1=c(2/pL1, 1/pL1-1/(1-pL1), -2/(1-pL1))*d2pL1.dpL22

+c(-2/pL1^2, -1/pL1^2-1/(1-pL1)^2, -2/(1-pL1)^2)*dpL1.dpL2^2,

h2=c(1/pL1*d2pL1.dpL22 -1/pL1^2*dpL1.dpL2^2 -1/pL2^2,

((pL2*(1-pL1)+pL1*(1-pL2))*(-4*dpL1.dpL2+(1-2*pL2)*d2pL1.dpL22)

-((1-2*pL1)+(1-2*pL2)*dpL1.dpL2)^2)/(pL2*(1-pL1)+pL1*(1-pL2))^2,

-1/(1-pL1)*d2pL1.dpL22-1/(1-pL1)^2*dpL1.dpL2^2-1/(1-pL2)^2),

h3=c(-2/pL2^2, -1/pL2^2-1/(1-pL2)^2, -2/(1-pL2)^2),

h4=c(1/pL1*d2pL1.dpL22-1/pL1^2*dpL1.dpL2^2 -1/(1-pL2)^2,

(((1-pL1-pL2+2*pL1*pL2)*(4*dpL1.dpL2+(2*pL2-1)*d2pL1.dpL22)

-((2*pL1-1)+(2*pL2-1)*dpL1.dpL2)^2)/(1-pL1-pL2+2*pL1*pL2)^2),

-1/pL2^2-1/(1-pL1)*d2pL1.dpL22-1/(1-pL1)^2*dpL1.dpL2^2),

h5=c(((((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(

(1-rkm)^2*((1-2*pL1)*d2pL1.dpL22-2*dpL1.dpL2^2)-2*rkm^2)

-((1-rkm)^2*(1-2*pL1)*dpL1.dpL2 + rkm^2*(1-2*pL2))^2 )/

((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2),

(((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))*

((1-rkm)^2*((-2+4*pL1)*d2pL1.dpL22+4*dpL1.dpL2^2 )+ 4*rkm^2)-

((1-rkm)^2*(-2+4*pL1)*dpL1.dpL2 + rkm^2*(-2+4*pL2))^2)/

((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))^2,

((((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(

(1-rkm)^2*((1-2*pL1)*d2pL1.dpL22-2*dpL1.dpL2^2)-2*rkm^2)

-((1-rkm)^2*(1-2*pL1)*dpL1.dpL2 + rkm^2*(1-2*pL2))^2 )/

((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2)

))

d2.dpL2<-rep(d2f2,repv)

if (!is.null(repv2))

d2.dpL2<-rep(d2.dpL2,repv2)

d2.dpL2

}

#---------------------------------------------------------------------------------------------------

# d2f2g1()

#---------------------------------------------------------------------------------------------------

d2f2g1<-function(rkm,pL1,pL2,repv,h,repv2=NULL){

d2f2<-switch(h,
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p1.g1.1=c(-2/pL1^2, -1/pL1^2-1/(1-pL1)^2, -2/(1-pL1)^2),

p1.g2.1= c(-1/pL1^2, -(1-2*pL2)^2/(pL2*(1-pL1)+pL1*(1-pL2))^2,-1/(1-pL1)^2),

p2.g2.1= c(0,((pL2*(1-pL1)+pL1*(1-pL2))*(-2)-(1-2*pL2)*(1-2*pL1))/(pL2*(1-pL1)+pL1*(1-pL2))^2, 0),

p1.g2.2= c(0,((pL2*(1-pL1)+pL1*(1-pL2))*(-2)-(1-2*pL1)*(1-2*pL2))/(pL2*(1-pL1)+pL1*(1-pL2))^2, 0),

p2.g2.2= c(-1/pL2^2, -(1-2*pL1)^2/(pL2*(1-pL1)+pL1*(1-pL2))^2,-1/(1-pL2)^2),

p2.g3.2= c(-2/pL2^2, -1/pL2^2-1/(1-pL2)^2, -2/(1-pL2)^2),

p1.g4.1= c(-1/pL1^2, -(-1+2*pL2)^2/(1-pL1-pL2+2*pL1*pL2)^2,-1/(1-pL1)^2),

p2.g4.1= c(0, ((1-pL1-pL2+2*pL1*pL2)*2-(-1+2*pL2)*(-1+2*pL1))/(1-pL1-pL2+2*pL1*pL2)^2, 0),

p1.g4.2= c(0, ((1-pL1-pL2+2*pL1*pL2)*2-(-1+2*pL1)*(-1+2*pL2))/(1-pL1-pL2+2*pL1*pL2)^2, 0),

p2.g4.2= c(-1/(1-pL2)^2,-(-1+2*pL1)^2/(1-pL1-pL2+2*pL1*pL2)^2,-1/pL2^2),

p1.g5.1= c(((((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(-2)*(1-rkm)^2

-(1-rkm)^4*(1-2*pL1)^2)/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2),

(( ((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))*4*(1-rkm)^2

- (1-rkm)^4*(-2+4*pL1)^2)/((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))),

((((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(-2)*(1-rkm)^2

-(1-rkm)^4*(1-2*pL1)^2)/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2)),

p2.g5.1= c(-((1-rkm)^2*(1-2*pL1)*rkm^2*(1-2*pL2))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2,

(-(1-rkm)^2*(-2+4*pL1)*rkm^2*(-2+4*pL2))/

((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))^2,

-((1-rkm)^2*(1-2*pL1)*rkm^2*(1-2*pL2))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2),

p1.g5.2= c(-(rkm^2*(1-2*pL2)*(1-rkm)^2*(1-2*pL1))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2,

( ((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))*(-2)*rkm^2

-rkm^2*(-2+4*pL2)*(1-rkm)^2*(-2+4*pL1))/

((1-rkm)^2*(1-2*pL1*(1-pL1)) + rkm^2*(1-2*pL2*(1-pL2)))^2,

-(rkm^2*(1-2*pL2)*(1-rkm)^2*(1-2*pL1))/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2),

p2.g5.2= c( (((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(-2)*rkm^2

- rkm^4*(1-2*pL2)^2)/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2,
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(((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*4*rkm^2

- rkm^4*(-2+4*pL2)^2)/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2,

(((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))*(-2)*rkm^2

-rkm^4*(1-2*pL2)^2)/((1-rkm)^2*pL1*(1-pL1) + rkm^2*pL2*(1-pL2))^2)

)

val<-rep(d2f2,repv)

if (!is.null(repv2))

val<-rep(val,repv2)

val

}

B.5 Using the RIM1 functions in batch mode - an

example

#---------------------------------------------------------------------------------------------------

#to analyse the simulated data, we run R in batch mode.

#example: running R in bacth mode, from a UNIX console

#with input file auto.RIM.r and output file auto.RIM.log

#---------------------------------------------------------------------------------------------------

R CMD BATCH auto.RIM.r auto.RIM.log &

########################### begining of input file auto.RIM.r #####################################

#clear workspace.

rm(list=ls())

#all files below should be in the current working directory.

#import data and functions from R data files.

load("b1sim500mid.1qtl.RData")

load("b1.IM.CIM.500mid.1qtl.RData")

#compile functions from text files

source("vuwfunc.r") #utility functions

source("rim.linecross.r") #rim core functions

source("infmat.rim.r") #information matrix functions

#---------------------------------------------------------------------------------------------------

# Setup for applying the model to all 100 samples

#---------------------------------------------------------------------------------------------------

test.an.interval<-function(samp,i,nruns,map,mapfun,cross,hypothesis,chosen.model){

b1object<-paste("b1s",samp, sep="")
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#print(b1object)

val<-rim.linecross(hypothesis=hypothesis,cross=cross,

data=do.call("$",list(as.name(b1object),"data")),

regressors=i:(i+1),

homog.high="AA", heteroz="Aa", homog.low="aa",

all.markers=do.call("$",list(as.name(b1object),"markers")),

trait="t1", maxit=nruns,r.curr.next=map,mapfun=mapfun,

validated=TRUE, chosen.model=chosen.model)

val$data <- c(obj.name=as.name(b1object),dat="data")

val

}

#---------------------------------------------------------------------------------------------------

# To test the 20 intervals, I am going to use 20 computers so it will finish

# running both RIM1 and CIM very quickly for the 100 samples.

# On a Pentium IV 2.6GHz machine with 1024MB RAM, it should take about three hours

# to finish analysisng 100 samples of size 500.

#---------------------------------------------------------------------------------------------------

# get host name

system("uname -a")

host <- strsplit(system("echo $HOST",intern=T),"\\\.")[[1]][1]

# host list - these are the computers that I am going to use

host.list <- c("chocolate-days","steamboat","brava","orsinis","the-taj", "circa", "pie-cart",

"shamiana", "oriental", "quo-vadis", "taputeranga", "stout", "antrim-hse", "mei-kung",

"aurora", "halswell","wholly-bagels","greta-pt","lone-star","hawkestone" )

host.num<- pmatch(host,host.list)

# make some object names

neut1<-paste("b1c2.LQR.neut",host.num,sep="")

neut0<-paste("b1c2.Q.neut",host.num,sep="")

# We will only be looking at intervals on chromosome two

chrom1.end<-length(b1sim100.map$chrom1[,1])

nsamp<-100

# There are 100 samples.

# Each computer will analyse an interval 100 times by RIM1, and 100 times by CIM...

# and save the output in a file.

print(date())

# ------------------Fit the RIM1 model for each of the 100 samples------------------------------------

# all datasets, b1s1 to b1s100, have the same marker map as b1s1.

assign(neut1,lapply(1:nsamp, test.an.interval, i=chrom1.end+host.num, nruns=200,

map=b1s1$r.curr.next, mapfun="Haldane", cross="B1", hypothesis="H1",chosen.model="RIM1"))

#neut1 is a list object of length 100, and it stores results for just one interval.
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#Each element in the list neut1 contains the RIM1 output for one sample.

save(list=neut1, file = paste("b1c2.",host.num,".1.Rdata",sep=""))

remove(list=neut1)

#--------------------Fit the CIM model for each of the 100 samples-----------------------------------

assign(neut0,lapply(1:nsamp, test.an.interval, i=chrom1.end+host.num, nruns=200,

map=b1s1$r.curr.next , mapfun="Haldane", cross="B1", hypothesis="H1",chosen.model="CIM"))

save(list=neut0, file = paste("b1c2.",host.num,".2.Rdata",sep=""))

remove(list=neut0)

print(date())

############################# end of file auto.RIM.r ###############################################

B.6 Permutation tests with RIM1

#---------------------------------------------------------------------------------------------------

#Running some permutations by R in batch mode

#with input file perm.RIM.r and output file perm.RIM.log

#---------------------------------------------------------------------------------------------------

R CMD BATCH perm.RIM.r perm.RIM.log &

########################### begining of input file perm.RIM.r #####################################

#clear workspace.

rm(list=ls())

#all files below should be in the current working directory.

#import data and functions from R data files.

load("b1sim2000mid.1qtl.RData")

load("b1.IM.CIM.2000mid.1qtl.RData")

#compile functions from text files

source("vuwfunc.r") #utility functions

source("rim.linecross.r") #rim core functions

source("infmat.rim.r") #information matrix functions

#---------------------------------------------------------------------------------------------------

# The original sample is stored in the object b1s1$data.

# To test the 20 intervals, I am going to use 20 computers.

# Each computer will run 1000 permutations for one testing interval.

#---------------------------------------------------------------------------------------------------

# get host name

system("uname -a")

host <- strsplit(system("echo $HOST",intern=T),"\\\.")[[1]][1]

host.list <- c("cuba","waring-taylor","wakefield","wilton-bush","salamanca",

"majoribanks","two-rooms","pipitea","rise", "peking-house",
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"vivian","cafe-laffite","dixon","arizona", "susu",

"cafe-frenzy","hawkestone","quarter","sfuzzi","la-spaghettata")

hostnum<- pmatch(host,host.list)

print(date())

permuter<-function(h,seed,regressors,data,all.markers,...){

if (h==1)

set.seed(seed)

x<-names(data[,regressors])

marker.id<- pmatch(x,all.markers)

if (marker.id[1]==1)

condLQR<-marker.id[1]:(marker.id[1]+2)

else if (marker.id[2]==length(all.markers))

condLQR<-(marker.id[2]-2):marker.id[2]

else condLQR<-(marker.id[1]-1):(marker.id[2]+1)

conditioning.markers<-all.markers[condLQR]

MN<- pmatch(x,conditioning.markers)

KO<-conditioning.markers[-MN]

#individuals grouped by KO two-locus marker genotype

g<-apply(cbind(data[,KO]),1,paste,collapse="",sep="")

indivs<-row.names(data)

indivs<-split(indivs,g)

names(indivs)<-NULL

sorted.rows<-unlist(indivs)

data<-data[sorted.rows,]

shuffle<-function(index){

newseed<-sample(5e7:6e7, 1)

set.seed(newseed)

sample(index,replace=FALSE)

}

#permute the MN genotypes while keeping everything else fixed

perm.indivs<-lapply(indivs,shuffle)

perm.rows<-unlist(perm.indivs)

perm.data<-data

perm.data[,x]<-data[perm.rows,x]

y<-rim.linecross(data=perm.data, regressors=m:(m+1),

all.markers=b1s1$markers,...)

y$data<-list(obj.name="b1s1",dat="data")

y

}

chrom1.end<-length(b1sim100.map$chrom1[,1])

m<-chrom1.end+ hostnum #the right marker

seed<-127+ hostnum #seed for the random number generator
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b1s1.rimperm<-lapply(1:1000,permuter, seed, regressors=m:(m+1),

data=b1s1$data, all.markers=b1s1$markers, hypothesis="H1", cross="B1",

homog.high="AA", heteroz="Aa", homog.low="aa", trait=b1s1$traits[1],

maxit=100, r.curr.next=r.curr.next, mapfun="Haldane",

chosen.model="RIM1", return.all=T,return.start=F)

print(date())

#make object name

thisperm<-paste("permc2.b1s1.",hostnum,sep="")

assign(thisperm,b1s1.rimperm)

save(list=thisperm,file=paste(thisperm,".Rdata",sep=""))

############################# end of file perm.RIM.r ###############################################

B.7 Using the RIM1 functions with the Horvat

and Medrano mouse data

The following R code shows how the data was converted from QTL cartographer
format into an R object suitable for use with the function rim.linecross().

#---------------------------------------------------------------------------------------------------

# Horvat and Medrano F2 mouse data

# Data from: Horvat and Medrano, 1995. Genetics 139:1737-1748

# This data was distributed with QTL Cartographer.

# It is the standard QTL Cartographer input format (cross.inp).

# First we use our utility functions to import it into an R list object.

# Then we analyse the data using rim.linecross().

#---------------------------------------------------------------------------------------------------

# import the data

mousec10<-cro.import("D:/vuw4sim/QTLCartWin/example/realdatc.inp")

# import the marker map

wkdir<-"D:/vuw4sim/QTLCartWin/example/"

rmap.call<-paste("Rmap -A -V -W", wkdir, "-i realdatm.inp", "-o mousec10.map -g 3" )

k<-system(rmap.call)

mousec10.c10<-read.table(paste(wkdir,"Chrom.1",sep=""), col.names=c("position.morgans", "chromosome"))

mousec10.map<-list(chrom10=mousec10.c10)

n1<-length(mousec10.map$chrom10[,"position.morgans"])

d.curr.next<-c(mousec10.map$chrom10[2:n1,"position.morgans"]

-mousec10.map$chrom10[1:(n1-1),"position.morgans"], Inf)

mousec10$r.curr.next<-r.haldane(d.curr.next)

save(list=ls(), file="mousec10.RData")

# finished importing and configuring the data.
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The following R code shows how the Horvat and Medrano mouse data was analysed
using the function rim.linecross().

#---------------------------------------------------------------------------------------------------

# load the Horvat and Medrano F2 mouse data and fit the RIM1 model

#---------------------------------------------------------------------------------------------------

load("mousec10.RData")

#the next line runs RIM1 on all eight intervals

mousec10.rim1<-lapply(1:8, function(h,...){

y<-rim.linecross(regressors=h:(h+1),...)

y$data<-list(obj.name="mousec10", dat="data"); y}, hypothesis="H1", cross="F2",

data=mousec10$data, homog.high="AA", heteroz="Aa", homog.low="aa", all.markers=mousec10$markers,

trait=mousec10$traits[1],maxit=100, r.curr.next=mousec10$r.curr.next, mapfun="Haldane",

chosen.model="RIM1", return.all=T, return.start=F)

#---------------------------------------------------------------------------------------------------

# Finished fitting the model. Nowsummarise the results.

#---------------------------------------------------------------------------------------------------

# this is a small dataset, so print the raw output for all intervals.

print(mousec10.rim1)

#To summarise the results, first determine whether a QTL was detected in each interval

testit.f2<-function(ml,siglevel,bQonly=FALSE){

if (bQonly){

pv.effect.a<-ml$mle$model.params$effects["Q.aAA","P>|z0|"]

pv.effect.d<-ml$mle$model.params$effects["Q.dAA","P>|z0|"]

detected<-FALSE

if ((pv.effect.a<siglevel) ||(pv.effect.d<siglevel))

detected<-TRUE

}

else{

pv.effect.a<-ml$mle$model.params$effects["Q.aAA","P>|z0|"]

pv.effect.d<-ml$mle$model.params$effects["Q.dAA","P>|z0|"]

pv.interior<-ml$mle$model.params$probs["pQ2",c("P>z0","P<z1")]

detected<-FALSE

if ((max(c(pv.interior,pv.effect.a))<siglevel)

||(max(c(pv.interior,pv.effect.d))<siglevel))

detected<-TRUE

}

detected

}

#test QTL effect and position at the 5% significance level

power.rim1.05<-unlist(lapply(mousec10.rim1,testit.f2,0.05,F))
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print(power.rim1.05)

#---------------------------------------------------------------------------------------------------

#for ease of inspection, collect the results into a list/matrix

#---------------------------------------------------------------------------------------------------

getf2mle<-function(h){

pv.effect.a<-h$mle$model.params$effects["Q.aAA","P>|z0|"]

pv.effect.d<-h$mle$model.params$effects["Q.dAA","P>|z0|"]

pv.interior<-max(h$mle$model.params$probs["pQ2",c("P>z0","P<z1")])

sd.aQ<-h$mle$model.params$effects["Q.aAA",2]

sd.dQ<-h$mle$model.params$effects["Q.dAA",2]

sd.pQ2<-h$mle$model.params$probs["pQ2",2]

val<-c(h$mle$model.params$effects["Q.aAA",1], h$mle$model.params$effects["Q.dAA",1],

h$mle$model.params$probs["pQ2",1], pv.effect.a,pv.effect.d, pv.interior,

h$mle$model.params$variance, h$mle$recomb["rMQ"], h$mle$recomb["rMN"],

h$mle$loglike, sd.aQ, sd.dQ, sd.pQ2)

val

}

RIM1.m10.all<-t(sapply(mousec10.rim1,getf2mle))

dimnames(RIM1.m10.all)[[2]]<- c("aQ","dQ","pQ2","pv.aQ","pv.dQ","pv.interior","sigma2",

"rMQ","rMN","loglike", "sd.aQ","sd.dQ","sd.pQ2")

RIM1.m10.all<-as.data.frame(RIM1.m10.all)

RIM1.m10.all$sig.effect<-""

RIM1.m10.all$sig.effect[(RIM1.m10.all$pv.aQ<0.05)|(RIM1.m10.all$pv.dQ<0.05)]<-"*"

RIM1.m10.all$sig.effect[(RIM1.m10.all$pv.aQ<0.01)|(RIM1.m10.all$pv.dQ<0.01)]<-"**"

RIM1.m10.all$sig.effect[(RIM1.m10.all$pv.aQ<0.001)|(RIM1.m10.all$pv.dQ<0.001)]<-"***"

RIM1.m10.all$sig.interior<-""

RIM1.m10.all$sig.interior[RIM1.m10.all$pv.interior<0.05]<-"*"

RIM1.m10.all$sig.interior[RIM1.m10.all$pv.interior<0.01]<-"**"

RIM1.m10.all$sig.interior[RIM1.m10.all$pv.interior<0.001]<-"***"

nmarkers<-length(mousec10$markers)

bmnames<-paste(paste(mousec10$markers[1:(nmarkers-1)],sep=""),"-",

paste(mousec10$markers[2:nmarkers],sep=""),sep="")

row.names(RIM1.m10.all)<-bmnames

x<-RIM1.m10.all[, c("aQ","dQ","pQ2","rMQ","rMN", "sd.aQ","sd.dQ","sd.pQ2","pv.aQ","pv.dQ",

"sig.effect","pv.interior", "sig.interior")]

x<-as.data.frame(x)

dMQ<-d.haldane(x$rMQ)

dMN<-d.haldane(mousec10$r.curr.next[-nmarkers])

#calculate confidence intervals for pQ2

ci.calc<-function(a,pQ2,rmn,sd.pQ2){
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pp<-1-a/2

sd.pQ2[sd.pQ2==0]<-NA

pQ2.l<- pQ2-qnorm(pp)*sd.pQ2

pQ2.l[pQ2.l<0]<-0

pQ2.u<- pQ2+qnorm(pp)*sd.pQ2

pQ2.u[pQ2.u>1]<-1

ci.pQ2<-cbind(lower=pQ2.l,upper=pQ2.u,rmn=rmn)

ci.pQ2

}

ci.pQ2<-ci.calc(0.01,x[,"pQ2"],x[,"rMN"],x[,"sd.pQ2"])

pQ2torMQ<-function(pQ2,rmn){

pQ1<-(0.5+sqrt(1-2*rmn+rmn^2*(1-2*pQ2)^2)/(2*(1-rmn)))

if (any(pQ1>1)) print("yes")

rMQ<-((1-rmn)*(1-pQ1)+rmn*(1-pQ2))

}

#as pQ2 increases rMQ decreases

#calculate confidence intervals for rMQ

ci.rMQ<-cbind(lower=pQ2torMQ(ci.pQ2[,"upper"],ci.pQ2[,"rmn"]),

upper=pQ2torMQ(ci.pQ2[,"lower"],ci.pQ2[,"rmn"]))

#distance in centi Morgans

ci.dMQ<-d.haldane(ci.rMQ)

#collate all results into a tabular object

x1<-data.frame(aQ=round(x$aQ,2),sd.aQ=round(x$sd.aQ,2),

dQ=round(x$dQ,2),sd.dQ=round(x$sd.dQ,2),

pv.aQ=round(x$pv.aQ,4),pv.dQ=round(x$pv.dQ,4),

sig.bQ=x$sig.effect,dMN=round(dMN*100,2),

dMQ=round(dMQ*100,1),

pv.pQ2=round(x$pv.interior,4),sig.pQ2=x$sig.interior,

low.dMQ=round(ci.dMQ[,1]*100,1),

up.dMQ=round(ci.dMQ[,2]*100,1))

row.names(x1)<-bmnames

print(x1)

#check whether information matrix was non singular in all intervals

check.imat<-sapply(mousec10.rim1,function(h){h$mle$infmat.is.singular})

#how many times was a singular imformation matrix encountered

length(check.imat[check.imat==TRUE])

#Answer was zero times for this dataset. [finished]

save(list=ls(), file="results.mousec10.RData")

2
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