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Abstract

The bandwidth-duration product, WT, is a fundamental parameter in most theories of aural
amplitude discrimination of Gaussian noise. These theories predict that detectability is depen-
dent on WT, but not on the individual values of bandwidth and duration. Due to the acoustical
uncertainty principle, it is impossible to completely specify an acoustic waveform with both finite
duration and finite bandwidth. An observer must decide how best to trade—off information in the
time domain with information in the frequency domain. As Licklider (1963) states, “The nature
of [the ear’s] solution to the time—frequency problem is, in fact, one of the central problems in the
psychology of hearing.” This problem is still unresolved, primarily due to observer inconsistency
in experiments, which degrades performance making it difficult to compare models.

The aim was to compare human observers’ ability to trade bandwidth and duration, with
simulated and theoretical observers. Human observers participated in a parametric study where
the bandwidth and duration of 500 Hz noise waveforms was systematically varied for the same
bandwidth-duration products W7 =1, 2, and 4, where W varied over 2.5-160 Hz, and 7 varied
over 400-6.25 ms, in octave steps). If observers can trade bandwidth and duration, detectabil-
ity should be constant for the same W7 . The observers replicated the experiments six times so
that group operating characteristic (GOC) analysis could be used to reduce the effects of their
inconsistent decision making. Asymptotic errorless performance was estimated by extrapolating
results from the GOC analysis, as a function of replications added.

Three simulated ideal observers: the energy, envelope, and full-linear (band-pass filter, full-
wave rectifier, and true integrator) detectors were compared with each other, with mathematical
theory and with human observers. Asymptotic detectability relative to the full-linear detector
indicates that human observers best detect signals with a bandwidth of 40-80 Hz and a duration
of 50-100 ms, and that other values are traded off in approximately concentric ellipses of equal
detectability. Human detectability of Gaussian noise was best modelled by the full-linear detector
using a non-optimal filter. Comparing psychometric functions for this detector with human data
shows many striking similarities, indicating that human observers can sometimes perform as well
as an ideal observer, once their inconsistency is minimised.

These results indicate that the human hearing system can trade bandwidth and duration of
signals, but not optimally. This accounts for many of the disparate estimates of the critical band,
rectifier, and temporal integrator, found in the literature, because (a) the critical band is adjustable,
but has a minimum of 40-50 Hz, (b) the rectifier is linear, rather than square-law, and (c) the
temporal integrator is either true or leaky with a very long time constant.

Keywords: ideal observers, energy detector, envelope detector, full-linear detector, bandwidth-
duration product, bandwidth—duration reciprocity, acoustical uncertainty principle, narrow-band
short-duration Gaussian noise, diotic, critical band, auditory filter, temporal integrator, audi-
tory time constant, group operating characteristic (GOC) analysis, all-combinations analysis,
function-of-replications—added (FORA), function of replications combined estimation (FORCE)
analysis, asymptotic performance, hon-parametric measures of detectability, information theory
measures of detectability.
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Notation

Table 1: Notation, acronyms, and abbreviations.

Symbol Meaning

A Amplitude of a tone

A Area under the ROC curve

Asiro Area under the SIFC ROC curve

Aotrc Area under the 2IFC ROC curve

a? Proportion or percentage of energy constrained by duration 7
a(12...n) Permutation index for the ordering of n events

ACA All combinations analysis

AERB Average equivalent rectangular bandwidth (Hz)

ATT At The Time sampling strategy

|A(w)|? Energy spectrum (frequency is in radians)

32 Proportion or percentage of energy constrained by bandwidth W
buffers Mixed and scaled SN and N digital signals

c Observer’s criterion

Caorrc Channel capacity (bits) of an observer in a 2IFC task

CB Critical band

c.df. Cumulative distribution function

X Chi distribution

X2 Chi-square distribution

d Measure of sensitivity d—prime

d, Measure of sensitivity for normals with unequal variance
D Scurfield’s discriminability measure (bits)

Dy Scurfield’s discriminability measure for two events (bits)
Dsg Scurfield’s discriminability measure for six events (bits)
Dn Scurfield’s discriminability measure for n events (bits)
Dh Relative discriminability for n events

E Energy

ERB Equivalent rectangular bandwidth (Hz)

ERD Equivalent rectangular duration (ms)

EssT 429 Essential duration constraining a2% energy (ms)
EssWg2q,  Essential bandwidth constraining 32% energy (Hz)
EssWTy ~ Essential WT based on EssT ¢, and EssWy,

F F distribution

FAR(c) False—alarm rate at criterion ¢

FFT Fast Fourier transform

FORA Function of replications added

FORCE Function of replications combined estimation

r Gamma function

Ga(z|\,n) Gamma distribution

GOC Group operating characteristic

(continued. ..
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Table 1: Notation, acronyms, and abbreviations continued. ..

Symbol Meaning

Hn Shannon entropy, average information, prior uncertainty of ordering of n events
HR(c) Hit rate at criterion ¢

IFFT Inverse fast Fourier transform

i.i.d. Independently, identically, distributed

K Parameter of Kaiser window

£(z) likelihood ratio of

L2 The signal space of finite energy signals over duration a
mROC Mean receiver operating characteristic

N Noise-alone

“No” Observer responds “No”

Ny Noise power per unit cycle (in energy units)

N(p,0%)  Normal distribution with mean g, variance, o2

Q Bandwidth (in radians)

P(C)sirc Proportion correct in the SIFC task

P(C)arrc Proportion correct in the 2IFC task

p.d.f. Probability distribution function

P Probability

ROC Receiver operating characteristic

p Spearman’s correlation coefficient: rho

8 Signal-alone

SIFC Single-interval forced—choice task

o Standard deviation

o2 Variance

o3 Variance of N Gaussian waveform, also equal to V-rms and Ny
a§ Variance of 8§ Gaussian waveform, also equal to V-rms and Sy
SKE Signal known exactly

SKS Signal known statistically

SN Signal-plus—noise

SNR Signal-to—-noise ratio (decibels)

So Signal power per unit cycle (in energy units)

SPL Sound pressure level (decibels)

T Duration (seconds)

T Kendall’s correlation coefficient: tau

TdB Three—dB bandwidth (Hz)

2IFC Two-interval forced—choice task

transients  Unmixed § and N digital signals, prior to conversion to buffers
TSD Theory of signal detectability

U Mann-Whitney U/ statistic

Vv The hypervolume under an ROC hypersurface

V-pp Peak-to—peak voltage

V-rms RMS voltage

VLS Very-large-sets of transient signals

w Bandwidth (Hz)

WT Bandwidth—duration product (dimensionless)

“Yes” Observer responds “Yes”

Z Standard normal distribution, A/(0, 1)







Chapter 1

Human hearing

“That’s funny,” said Pooh. “I dropped it on the other side,” said
Pooh, “and it came out on this side! I wonder if it would do it again?”
And he went back for some more fir—cones.

It did. It kept on doing it. Then he dropped two in at once, and leant
over the bridge to see which of them would come out first; and one of
them did; but as they were both the same size, he didn’t know if it was
the one which he wanted to win, or the other one. So the next time he
dropped one big one and one little one, and the big one came out first,
which was what he said it would do, and the little one came out last,
which was what he had said it would do, so he had won twice... and
when he went home for tea, he had won thirty—six and lost twenty—eight,
which meant that he was—that he—well, you take twenty—eight from
thirty—six, and that’s what he was. Instead of the other way round.

And that was the beginning of the game called Poohsticks . ..
A. A. Milne.

7Dsychophysics is concerned with describing how an organism uses its sensory systems to detect
events in its environment. This description is functional, because the processes of the sensory
systems are of interest, rather than their structure. One psychophysical theory, the Theory of
Signal Detectability (TSD), uses a combination of statistical decision theory and the concept of the
ideal observer to model an observer’s sensitivity to events in its environment (Peterson, Birdsall, &
Fox, 1954). TSD is stimulus—oriented, because properties of the stimuli are used to determine the
theoretically best, or ideal, observer for a given detection task (Green & Swets, 1966; Jeffress, 1964).
This observer may then be used to compare the performance of human, and other, observers. For
instance, the ability of humans to detect simple acoustic waveforms can be modelled as a linear
system consisting of a filter, rectifier, integrator, and sampler (e.g., Jeffress, 1964, 1967, 1968).

A number of psychophysicists have used the work of Peterson et al. (1954) to derive energy and
envelope detectors for acoustic tones or noise, masked by noise (e.g., Green, 1960a; Green & Swets,
1966; Green & McGill, 1970; Jeffress, 1964, 1967, 1968; Marill, 1956; McGill, 1968a; Whitmore,
1969). These detectors are considered to be ideal observers for acoustic waveforms that are known
only statistically, rather than exactly. This includes Gaussian noise, and deterministic signals

1



2 1. Human hearing

where the observer does not have access to all the properties of the waveform (e.g., sinusoidal
phase is unknown). These energy and envelope detectors have been able to explain many of the
human hearing system’s abilities.

The energy and envelope detectors have two main parameters: signal-to—-noise ratio and the
bandwidth—duration product, W7 . Signal-to—noise ratio is the strength of a waveform, usually
measured in decibels relative to some standard. W7 is a measure of the spread of a waveform in
time and frequency, where V is bandwidth in hertz, 7 is duration in seconds, and WT is dimen-
sionless. Do these fundamental parameters play a réle in determining the detectability of acoustic
waveforms? One theory of tone-in—-noise and noise-in—noise energy detection suggests that any
combination of YW and 7T, for the same WT, results in equal detectability, because the product of
W and T is the parameter (Green & McGill, 1970). This is known as bandwidth-duration reci-
procity. This theory also relates signal-to—noise ratio directly to detectability, dependent on WT
(Green & McGill, 1970). It is not clear, however, how well this theory (and other similar theories)
applies to human hearing.

The focus of the current study is to consider the detectability of narrow-band, short-duration,
Gaussian noise (also called small-WW7 noise) by humans, when bandwidth and duration are sys-
tematically varied. Detectability of noise has not been studied in nearly as much detail as tones.
Noise, however, resembles the types of sounds the human hearing system normally has to pro-
cess (Miller, 1947; Moller, 1983, 1989); sounds that appear limited in time, bandwidth, and energy.
Noise also has the advantage over tones, because its bandwidth and duration can be varied rela-
tively independently of one another.

Acoustic waveforms can be represented as a Fourier transform pair. This relationship allows
a waveform to be defined in the time domain and in the frequency domain. A direct result
of the Fourier representation of waveforms is the acoustical uncertainty principle. This prin-
ciple specifies that a waveform cannot have a finite bandwidth and a finite duration, and that
the WT of a waveform has a lower bound. Because it is impossible to completely specify a
band-limited acoustic waveform in finite time, and vice-versa, an observer (ideal, human, or
electronic) must decide how best to trade—off information in the time domain with information
in the frequency domain. As Licklider (1963, p. 993) states, “The nature of [the ear’s] solution to
the time—frequency problem is, in fact, one of the central problems in the psychology of hearing.”
This problem is still unresolved, primarily due to observer inconsistency in experiments, which
degrades performance making it difficult to compare models.

1.1 The theory of signal detectability

In the 1950’s, some psychophysicists realised that classical psychophysics was inherently
flawed, and so modified their theories based on new ideas coming out of the engineering fields of
information theory and signal analysis (e.g., Munson & Karlin, 1954; Smith & Wilson, 1953). The
new engineering paradigm of TSD (Peterson et al., 1954), in particular, was suited to analogous
detection problems in sensory psychology (Green, 1960b; Jeffress, 1964; Marill, 1956; Tanner &
Swets, 1954; Tanner, 1960a, 1961).

The improvement over classical psychophysical methods was twofold. One, the decision mak-
ing processes were separated from the sensory processes, exposing the classical sensory threshold
to be a response threshold. Two, properties of the environment, other than the signal were included
in the theories. In particular, Tanner and Swets (1954) postulated that noise was always present in
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a human detection task. This view was backed up by Jeffress, who commented that ‘the idea of an
“absolute threshold” is meaningless—all thresholds are masked thresholds, all involve detecting
the signal in a background of noise’ (Jeffress, 1968, p. 187). In general, psychophysical theories
derived from TSD have lead to a better understanding of human sensory processes.

1.1.1 The theory of ideal observers

An ideal observer may be derived using the fundamental detection problem paradigm. In mod-
elling the task of an observer detecting a signal in noise, the fundamental detection problem is
the simplest, nontrivial, detection task (Egan, 1975). In a trial, an observer is presented with a
stimulus (evidence) in a finite observation interval, which could have come from either a noise-
alone (N) or a signal-plus—noise (8N) event. Over a series of trials, evidence from both types of
events is presented. This evidence randomly fluctuates from trial to trial, to the extent that there
is confusability about which event the evidence came from. The observer must decide, at the end
of each trial, which event occurred given the evidence. Because the evidence is confusable, the
observer sometimes makes errors in judgement about which event occurred. The detectability of
the signal is quantified by analysing how the errors are traded off as a function of the observer’s
criterion.

The theory of ideal observers relates the detectability of a signal to definite physical characteris-
tics of the signal (Green & Swets, 1966). The evidence is modelled as a random variable, derived
from transformations of the physical stimulus. No observer can make perfect detections of a sig-
nal masked by noise if there is overlap between the evidence distributions associated with the N
and 8N events. The aim of deriving an ideal observer is, therefore, to establish the best possible
performance, given the events are confusable. It is not always known whether an ideal observer
is the ideal for a given signal, because the ideal observer depends on a mathematical theory of the
physical stimulus. Theories, by their very nature, never truly capture the properties of the real
world, and, therefore, involve simplifications and assumptions.

The concept of the ideal observer (Lawson & Uhlenbeck, 1950; Peterson et al., 1954) originated
from machine (especially radar) detection tasks. The ideal observer was a mathematical theory of
a detection task, where the signal to be detected was noise degraded, and the observation of the
signal was limited to a finite time. The aim of the theory was to determine to what extent noise
limited the detection of the signal. Peterson et al. (1954) derived the theory of signal detectabil-
ity and showed that the optimal detector invariably used the likelihood ratio decision axis, or a
decision axis strictly monotonic with likelihood ratio, as a basis for decisions about the existence
of the signal. If the signal is known to the observer exactly, and the observer can transform the
evidence to a quantity monotonic with likelihood ratio, then the observer is considered to be an
ideal sighal-known-exactly (SKE) observer. If the observer does not have an exact representation
of asignal (e.g., if the signal is random noise), or if the observer is unable to use information about
some property of a deterministic signal (e.g., the phase of a tone), the observer is considered to be
a signal-known-statistically (SKS) observer.

The early radar engineers considered the ideal observer as a mathematical theory that pre-
dicted the best possible performance for a particular class of signals, with particular restrictions
on the information the observer had about the signals (Lawson & Uhlenbeck, 1950; Peterson et al.,
1954). When the theory was extended to psychophysics, the emphasis changed, because unlike
engineers, psychophysicists were not interested in designing detection systems; they were trying
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to understand existing systems that did not necessarily perform ideally, and whose internal pro-
cesses were usually inaccessible.

Marill (1956) and Green and Swets (1966) argued for the usefulness of the ideal observer in
human psychophysical research, because (a) it puts an upper bound on performance measures,
(b) differences between human and ideal observers give interesting insights, and (c) a difference
between human and ideal observers maybe specifiable, and therefore lead to a powerful predic-
tive model. As Green and Swets (1966) said, “The principle is parsimony—it is unnecessary to
invent psychological mechanisms to explain a change that may be traced to the stimulus situation
itself” (p. 152). The réle of the ideal observer in psychophysics, however, has been controversial.

According to McGill and Teich (1991), the early psychophysical theories and experimental re-
sults based on TSD (Green, 1960a; Jeffress, 1964; Pfafflin & Mathews, 1962) showed that many
auditory masking phenomena could be explained solely by the statistics of the stimulus. This
suggested that detection tasks could be described by an ideal observer without leaving the stim-
ulus domain. This was a conservative view of an ideal observer. Optimal detectability was de-
scribed by the physical properties of the stimulus in the absence of further processing. The best
example of a conservative ideal observer is the detection of a tone in narrow-band noise by a
cross—correlation detector. Using the conservative view, the SKS observer is not an ideal observer,
because it is outperformed by the SKE observer. McGill and Teich (1991) explained that these pure
stimulus—oriented theories were not enough to describe human hearing. Some psychophysicists
(e.g., Green & Swets, 1966), therefore, adopted a more liberal view of the ideal observer, where
the aim was to derive the best observer given particular constraints on the signal, and on the ob-
server. Therefore, there may be a number of possible ideal observers for a given task, depending
on which signal properties the observer can use. The conservative psychophysicists would argue
that the constraints on the observer mean the observer is not ideal, but for the purpose of psy-
chophysics, the liberal view is the more useful, because the emphasis is on describing existing
systems, and on developing meaningful and practical benchmarks for comparison.

Critics of the ideal observer concept, such as Martel and Mathews (1961), have come up with
a variety of detection schemes to discount the ideal observer in general. These schemes result in
perfect detection at any signal-to—noise ratio, but are straw—men, because they usually involve
some infinite task, such as taking derivatives to infinity, sampling a signal over an infinite dura-
tion, assuming perfect measurement capabilities, or ignoring the effects of the uncertainty princi-
ple (Martel & Mathews, 1961). The original concept of the ideal observer, however, intended the
observation to occur in a finite time.

The concept of the ideal observer in psychophysics is too important to simply abandon. The
original engineering goal of designing systems, rather than describing systems, however, should
not dictate how psychophysicists use the ideal observer. In this research, the concept of the ideal
observer is taken to mean the liberal view. This is because the aim in psychophysics is to under-
stand real observers. By manipulating an ideal observer, to make it less and less ideal, it may be
possible to better understand human hearing. The ideal observer then simply becomes a func-
tional model of a system.
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1.1.2 Psychophysical tasks and ROC analysis

In modern psychophysics, the experimental methods most widely used are the single-interval
forced—choice (SIFC) task and the two-interval forced—choice (2IFC) task.! Both have been used
as a basis for theories about the detectability of many types of acoustic stimuli, and there are a
number of theoretical relationships linking the two tasks. For instance, Lapsley Miller, Scurfield,
Drga, Galvin, and Whitmore (1999) and Scurfield (1995, 1996) have examined and extended the
non-parametric relationships between the SIFC and 2IFC tasks, both theoretically and experimen-
tally. One of their conclusions was that the SIFC task is often preferable to the 2IFC task. It is still
important to consider both tasks, as a number of theoretical findings have only been derived for
one or the other task. The theoretical links between the SIFC and 2IFC tasks may then be used to
transform predictions for one task to the other.

The SIFC and 2IFC tasks

The fundamental detection problem can be applied, in theoretical and experimental work, as
an SIFC task (Egan, 1975). The SIFC task consists of a set of independent trials, each of which
contains an observation interval, a decision interval, and a pay-off interval. During the obser-
vation interval either the SN event occurs or the N event occurs. The observer never has direct
access to these events, only evidence associated with the events. During the decision interval, the
observer’s task is to decide whether the SN event occurred, based on this evidence. The evidence
is modelled as a univariate random variable X, conditional on each event: Xgy and Xy. X is
known as the decision axis. To make a decision, the observer partitions X by using a criterion;
if the evidence is greater than or equal to the criterion then the observer responds “Yes” it was a
signal, otherwise if the evidence is less than the criterion the observer responds “No” it was not
a signal. The observer may vary the criterion depending on the prior probabilities of the events
and the pay-offs. During the pay-off interval the observer may receive knowledge of results,
monetary rewards, or other pay-offs, based on the four possible outcomes (hit, miss, false—alarm,
and correct-rejection).

Each trial in a 2IFC task contains two observation intervals, a decision interval, and a pay-off
interval. In one observation interval the SN event occurs, and in the other the N event occurs.
During the decision interval, the observer’s task is to decide in which interval the SN event oc-
curred, or equivalently, the task may be to decide which order the two events occurred. Although
these two formulations of the task are conceptually different, the task can be modelled the same
way. The evidence the observer uses is the result of some comparison of the evidence from the
first interval and the evidence from the second interval. This comparison may be modelled as
the arithmetic difference between the evidence from each interval. This difference is a univariate
random variable conditional on each 2IFC event-ordering, and forms the 2IFC decision axis. To
make a decision, the observer partitions the decision axis by using a criterion; if the evidence is
greater than the criterion then the observer responds “One”, otherwise if the evidence is less than

1To reduce ambiguity, these forced—choice tasks should be named by the number of intervals presented in any one trial.
Others refer to them by the number and type of decision alternatives, which has led to confusion. The SIFC task has been
referred to as the “Yes”-“No” task (Green & Swets, 1966), the rating task, (Green & Swets, 1966), the single-interval task
(Egan, 1975), the fixed interval observation experiment (Egan, Schulman, & Greenberg, 1959), and the two-alternative
forced—choice (2AFC) task—because the observer has two possible decision alternatives (Creelman, 1965; McFadden,
1970). The 2IFC task (Egan, 1975; Markowitz & Swets, 1967) is also known as the two—category forced—choice task (Marill,
1956), the forced-choice task (Green & Swets, 1966; Swets & Green, 1961), and the two-alternative forced-choice (2AFC)
task (Green & Swets, 1966; MacMillan & Creelman, 1991; Swets, 1959).
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the criterion the observer responds “Two”. The 2IFC task can, therefore, be analysed in the same
way as an SIFC task, because the event-orderings of the 2IFC task can, themselves, be regarded
as events. Thus, both the SIFC and 2IFC task may be regarded as two-event tasks, even though
the way in which stimuli are presented is different for each task. The observer may vary the cri-
terion, depending on the prior probabilities of the event-orderings, and the pay-offs. During
the pay-off interval, like the SIFC task, the observer may receive knowledge of results or pay—
offs based on the four possible outcomes (hit, miss, false—alarm, and correct-rejection) where the
event-ordering whose associated evidence distribution has the larger mean is designated as the
equivalent of the SN event.

If the same measure of detectability is used for both the SIFC and 2IFC tasks, the resulting
performance in the 2IFC task is greater than for the SIFC task. This is because there is more
information in the 2IFC task on each trial. For instance, if the underlying distributions are normal,
dyre = V2d5pc (Egan, 1975).

The ROC curve

One of the more important concepts to come out of TSD is the receiver operating characteristic
(ROC) curve, which summarises the observer’s performance as a function of the observer’s crite-
rion. The ROC curve is a graph of the observer’s hit rate against false—alarm rate, for all possible
criteria (Egan, 1975; Green & Swets, 1966; Peterson et al., 1954). It shows the observer’s ability
to discriminate between the two events. Both SIFC and 2IFC ROC curves can be generated by
either repeating a “Yes”-“No”(or “One”-“Two”) experiment, each time with the observer using
a different criterion, or using an N—point or continuous rating-scale where the observer employs
multiple criteria within an experiment (Rockette, Gur, & Metz, 1992; Watson, Rilling, & Bourbon,
1964; Watson, Kellogg, Kawanishi, & Lucas, 1973; Wilcox, 1967). Some make a distinction be-
tween the “Yes”’-“No0” and rating tasks (e.g., Bamber, 1975; Green, 1964b), but this is unnecessary
if the “Yes”—“No” task is considered as a two—point rating task. Green and Swets (1966) show that
the theoretical SIFC ROC curve is the same for either method, and there is evidence that this is
also true for empirical SIFC ROC curves (Emmerich, 1968; Hanley & McNeil, 1982; Nachmias,
1968; Watson et al., 1964, 1973). Intuitively, there should also be no difference between 21IFC ROC
curves obtained by the “One”-“Two” or rating methods. This has not been pursued, however,
for the preferred measure of detectability in the 2IFC task is P(C)arc, Which does not require
obtaining the ROC curve. There are only a few examples of theoretical or empirical 2IFC ROC
curves in the literature (Drga, 1988; Egan & Clarke, 1966; Friedman & Carterette, 1964; Falmagne,
1985; Leshowitz, 1969; Perniske, 1987; Schulman & Mitchell, 1966). Luce (1997) explained that
“...Nno one seems ever to collect 2-alternative, forced—choice ROC curves, there being a myth to
the effect that this procedure, unlike the yes—no one, is unbiased.”

Measures of detectability

A measure of detectability is a number that summarises an observer’s performance in a psy-
chophysical task. If the task involves a sensory system then a measure of detectability is also
a measure of sensitivity. A measure of detectability should ideally be free from confounding by
processes hot associated with stimulus properties (non-sensory processes), such as the prior prob-
abilities of the events, the pay-offs, and the decision criterion. A measure of detectability is also
more useful if it is non-parametric, for comparisons may then be made among different observers
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and different detection tasks, regardless of the nature of the underlying evidence distributions, or
decision axes.

Scurfield (1995, 1996) suggested that a measure of detectability should also be a metric, that is,
the measure should have a true zero, be nonnegative, be invariant to labelling of the events and
decisions, and obey the triangle inequality. A metric is a distance measure (Borowski & Borwein,
1989).2 Therefore, if a measure of detectability is also a metric, then it is a measure of the dis-
tance between the evidence—points from one event-set to evidence—points in another event-set
in evidence-space. The larger the distance among the evidence points, the greater their discrim-
inability, and vice-versa. It is important to understand that this is not the Euclidean distance,
nor is it a simply a measure of the difference between the means of the evidence distributions. A
distance summarises the relationship among all possible evidence values.

With particular assumptions, the SIFC and 2IFC tasks are related theoretically through their
ROC curves and measures of detectability by:

1. Parametric relationships, such as dypc = v2d5ro, Which have limited generality, because
they usually assume normal evidence distributions (Egan, 1975; Elliot, 1964; Marill, 1956;
Tanner & Swets, 1954; Tanner & Birdsall, 1958; Schulman & Mitchell, 1963, 1966; Simpson &
Fitter, 1973).

2. The non-parametric relationship that equates the area, Asirc, under the receiver operating
characteristic (ROC) curve in the SIFC task to the proportion of correct decisions, P(C)arrc,
in the 2IFC task (Green, 1964b; Green & Moses, 1966; Green & Swets, 1966). Lapsley Miller
et al. (1999) extended this relationship, by removing unnecessary assumptions about how
the evidence is distributed, by generalising to discrete random variables, and considering
evidence distributed over the z decision axis and not just the likelihood ratio decision axis
L(z).

3. Scurfield’s (Lapsley Miller et al., 1999; Scurfield, 1995, 1996) new measures of detectability:
Dsirc and Corrc.

4. A method of deriving the 2IFC ROC curve from the slope of the SIFC ROC curve (Green
& Swets, 1966) and a method of deriving the 2IFC ROC curve from the SIFC hit rates and
false—alarm rates (Lapsley Miller et al., 1999).

These relationships are important, because they predict psychophysical performance indepen-
dently of any one psychophysical task (Green, 1964b; Green & Swets, 1966; Swets, 1959). This
was previously impossible with classical psychophysical methods (Swets & Green, 1961).

To date, the most common measures of detectability in use are: d’, which is parametric;
P(C)sirc and P(C)arrc, Which are both dependent on the prior probabilities of the events and
decision criterion; and Agirc and Asrrc, Which although non-parametric, and independent of pri-
ors, pay-offs and criterion, are not metrics. Only Scurfield’s (1995, 1996, 1998) new information-
theoretic measures (see Chapter 6), Dsirc and Corpc, are metrics (or pseudo—metrics if the deci-
sion axis is not strictly monotonic with the likelihood ratio decision axis), non-parametric, and
independent of prior probabilities, pay—offs, and decision criterion.

Scurfield’s new measure of detectability is based on information theory and is applicable to
multiple events (Lapsley Miller et al., 1999; Scurfield, 1995, 1996, 1998). It is a transform of A gipc

ZMore specifically, a distance between sets in a metric space is the infimum (or greatest lower bound) of the distance
between points in one set and points in the other (Borowski & Borwein, 1989).
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for the two-event SIFC case:
Dsirc = log 2 — Hsrre, (11)
where

Hsire = —Asirc log(Asire) — (1 — Asire) log(1 — Asire). (1.2)

Hsirc represents the Shannon entropy (Shannon, 1949b) of the areas above and below the ROC
curve. Agirc itself cannot be interpreted as a distance measure, but with this transformation to
Dsrrc it becomes a distance measure. Scurfield (1996) showed that Dgrc is (a) a pseudo—metric
in general, (b) a true metric for likelihood ratio decision axes (or for axes strictly monotonic with
likelihood ratio), and (c) a measure of the distance between the events SN and N.

The maximum value of Dg;pc is log(2). This maximum occurs when Asjpc = 1, or Agipc = 0.
As Asire and 1 — Agire become closer in value, Dgire, decreases with zero being the minimum
value (occurring when Asirc = 1 — Agire = 0.5). The log base used is arbitrary, although log,
has some advantages, because the unit of Dgrc is bits, and the range is [0,1]. Similar to the
relationship Asirc = P(C)arrc, Dsirc is equal to the channel capacity, Corpc, in the 2IFC task
(Lapsley Miller et al., 1999).

Scurfield extended Dgirc to multi-event multi-interval tasks (see Chapter 6; Scurfield, 1995,
1996). This can be applied in simple SIFC experiments, where there are multiple SN events (e.g.,
different signal-to—noise ratios) and one N event. Instead of calculating Asrc or Dsre for each
level relative to the N event, the global measure of detectability D,, summarises the observer’s
ability to discriminate among all n events. This notation is used from now on: D- for two events
(instead of Dg1rpc) and Dy for six events.

1.1.3 Waveform representation

TSD takes a stimulus—oriented approach by using physical properties of the stimuli to deter-
mine the nature of an ideal observer. Therefore, to model an ideal observer, an appropriate math-
ematical representation of acoustic waveforms is necessary.

The usual way of representing an acoustic waveform is to describe the fluctuation of some
physical property of the waveform (e.g., power, voltage) as a function of time in the time domain.
By using the Fourier transform or integral, the same waveform can also be specified as a function of
frequency in the frequency domain. Psychophysicists are most interested in the set of waveforms to
which the human hearing system is sensitive. These waveforms have three defining properties:
they appear to have a finite bandwidth, a finite duration, and a finite energy content (e.g., a
spoken word). Properties of this subset of waveforms can be derived from the Fourier integral
(Papoulis, 1962).% This section, and the more detailed explanation in Appendix A, describe (a)
the difficulties of defining the properties of bandwidth, duration, and their product for finite
energy waveforms, and (b) how finite energy waveforms may be represented by a set of 2W7T
numbers. These descriptions indicate how and why WT is a fundamental parameter for acoustic
waveforms. Finally, the nature of the energy and envelope functions, and their distributions, is
introduced.

3For a mathematically rigorous and relatively complete coverage of waveform representation, refer to Franks (1969).
For a more accessible review, see the relevant sections in Papoulis (1962) and Vakman (1968).
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Acoustical uncertainty principles

In the context of Fourier representation of acoustic waveforms, it is impossible for a waveform
to be limited in both time and frequency. If a waveform is limited in time, then it must have an
infinitely wide bandwidth, and conversely, if a waveform has a finite bandwidth, then it must
have an infinite duration. This result is known as the acoustical uncertainty principle. There are
many forms of the acoustical uncertainty principle, because W and 7 can be defined in many
ways. All acoustical uncertainty principles, however, specify a lower bound to the bandwidth—
duration product,* WT, indicating that a waveform cannot have finite spread in both domains.

The acoustical uncertainty principle contradicts what seems to be a defining property of the
waveforms to which the human hearing system is sensitive: that waveforms are both band-
limited and time-limited. How can this contradiction be resolved? If a small amount of energy
is allowed to exist outside the bounds of bandwidth or duration, then it is meaningful to refer to
band-limited and time-limited waveforms, because these waveforms have essentially all of their
energy between two well-defined bounds. The energy outside these bounds is so small as to be
virtually nonexistent. The problem is that the energy is there, and this makes defining the band-
width and duration arbitrary. As a result there are many definitions of YV or T, depending on the
nature of the problem or the context, and there are also many different forms of the uncertainty
principle (see Bourret, 1958; Brillouin, 1962; de Bruijn, 1967; Cohen, 1989; Franks, 1969; Gabor,
1946; Hilberg & Rothe, 1971; Kay & Silverman, 1957, 1959; Lampard, 1956; Landau & Pollak,
1961, 1962; Leipnik, 1959; Slepian & Pollak, 1961; Weyl, 1931; Zakai, 1960).

The acoustical uncertainty principle was traditionally based on the analogous uncertainty
principle of guantum physics. This has lead to problems of interpretation when applied to acous-
tics. Landau, Pollak, and Slepian have provided the best alternative approach to the classical
acoustical uncertainty principle. In a series of papers entitled “Prolate Spheroidal Wave Func-
tions, Fourier Analysis and Uncertainty” they have proposed new definitions of the concepts of
bandwidth and duration, and derived the corresponding uncertainty principle (Landau & Pollak,
1961, 1962; Slepian & Pollak, 1961). An excellent overview of this research is in Slepian (1983).

Landau and Pollak (1961) suggested that a good definition of W and 7 would describe the
behaviour of the waveform f(t) in a given finite time interval and likewise the behaviour of its
spectrum F'(w) in a given finite frequency band. They argued that although waveforms cannot be
bounded in both domains, bounds that essentially constrain the waveforms can still be specified.
One way to specify these bounds is to look at the energy content and energy spread of a waveform
in both the time and frequency domains. Bandwidth and duration can be specified by calculating
the proportion of energy constrained between two bounds, relative to the total energy of the
waveform. The proportion of energy 32, constrained by the essential bandwidth, 2, is defined as

J2 1AW)I dw
2
T Al 9

where 0< 32 <1, and |A(w)|” is the energy spectrum (see Appendix A). Similarly, the proportion

4The bandwidth-duration product is abbreviated to W7 if the measurement of bandwidth (W) is in Hertz (Hz), or
Q7 if bandwidth () is in radians per second. The conversion is 2 = 27)V. Some authors use B instead of W or refer to
the duration-bandwidth product, 7WW. T is the duration in seconds.
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of energy, o2, constrained by the essential duration, is defined as
T/2 :
A0

N ENTTOIR ¢4

where 0 < a? < 1, and f(¢) is an acoustic waveform. These definitions have been used in psy-
chophysical experiments by Ronken (1970a, 1970b). An algorithm for calculating the essential
bandwidths and durations of digital or digitised signals is given in Appendix B.

The dimensionality of waveforms

Shannon’s sampling theorem shows how a waveform of bandwidth W in an interval 7 can be
approximately represented by the linear combination of 2WW7T weighted sines and cosines, which
are orthogonal basis functions (Goldman, 1953; Shannon, 1949a). No waveform can be exactly
represented by a finite number of orthogonal basis functions—in fact an infinite number of func-
tions is required. Instead, it can be shown that a finite energy waveform can be approximately
represented by 2T orthogonal basis functions (Landau & Pollak, 1962), thus giving a finite
number of degrees of freedom. Slepian (1983) describes these types of signals as being asymptot-
ically 2WT dimensional. The basis functions are traditionally sinusoids, but generalised Fourier
analysis shows that any other orthogonal function may also be used (Davenport & Root, 1958).
Some of these functions have better properties than the sinusoids (Landau & Pollak, 1962).

Waveform representation using generalised Fourier analysis simplifies many derivations, as
well as giving useful geometrical analogies of waveforms as vectors in m—dimensional space
(Davenport & Root, 1958; Franks, 1969; Harmuth, 1968; Helstrom, 1960; Landau & Pollak, 1962;
Vakman, 1968). An important application is in the representation of acoustic signals. In particular,
Gaussian noise may be represented as 2W7 samples, where each sample is actually a Gaussian
random variable (see Appendix A).

Energy and envelope representation

A detector is a set of mathematical functions, a computational algorithm, or an electronic
system, that transforms a waveform, and outputs a single value or waveform, that summarises
some aspect of the input waveform. Therefore, the formulation of a detector inherently requires
a description of the waveforms, both before and after the transformation.

Engineers, and some psychophysicists, have traditionally reserved the term ‘detector’ to de-
scribe the output of a rectifier. In psychophysics, however, it is more useful to use the term detector
to refer to the entire system of filters, rectifiers, integrators, and samplers. This is how the term
‘detector’ is used here. Two common detectors are the energy and the envelope detector. The
emphasis in this section is not on deriving these detectors, but on introducing the representation
of the energy function and the envelope function, and their distributions.

An energy detector outputs the energy of the waveform, f(¢),

Ene(t) = / f2(t) dt. (1.5)

It can be implemented, computationally and electronically, with a square-law rectifier, and a true
integrator.
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An envelope detector outputs a function that is tangential to the peaks of a waveform. There
are many forms of envelope functions, but, according to Rice (1982), differences are generally
so small that they are only of theoretical interest. One definition is what Rice called the natural
envelope

Env(t) = a?(t) + b%(t) (1.6)

where a(t) and b(t) are the in—phase and quadrature components, respectively, of f(t) (see Gold-
man, 1953). One way to implement an envelope detector, computationally or electronically, is to
rectify the waveform with a linear rectifier (either half-wave or full-wave), then integrate it with
a leaky integrator. The shape of the envelope function is varied by manipulating the time constant
of the integrator. A short time constant means the envelope hugs the rectified waveform closely,
a long time constant means the envelope reacts slowly to changes in the waveform (see Figure 4.3
in Chapter 4 for examples).

de Lano (1949) showed that the signal-to—noise ratio at the output of a linear rectifier is greater
than that of a square—law rectifier. This finding is in contrast to many other proofs that claim to
show that the energy detector is optimal. de Lano (1949) also showed that at small (less than
unity) and very large (unspecified) signal-to—noise ratios the two detectors are equivalent. Ac-
cording to de Lano, the difference is due to the energy detector having larger signal-to—noise ratio
intermodulation distortion® than the envelope detector; something that is usually ignored in the
development of the energy detector.

Marcum (1960) suggested that people preferred working with the square-law rectifier, be-
cause the linear rectifiers were more difficult to work with, mathematically. In fact, many people
used the square—law rectifier to model systems with a linear rectifier. According to Marcum, “The
difference in results for the linear and square law [rectifiers] turns out to be so small that extreme
accuracy must be used in the calculations to show the relation in its true form.” (Marcum, 1960,
p.189). In Marcum’s evaluation of the linear and square—law rectifiers, testing appeared to be
done only for particular criteria (e.g., a false alarm rate of 10 %, and a hit rate of 0.5). Marcum did
not give a criterion—free measure of the differences between these detectors.

Marcum (1960) showed that the two detectors were identical when W7 =1 and 70, that be-
tween these values the linear detector was better (by 0.11 dB at W7 =10), and that for WT > 70,
the square—-law detector was better, and asymptotically exceeded the linear detector by 0.19 dB, as
WT tended to infinity. The test, however, was also at only one criterion, as a function of signal-to—
noise ratio. In Chapter 4, Marcum’s predictions are put to the test by evaluating the performance
of detectors using linear and square—law rectifiers, for Gaussian noise waveforms with W7 =1, 2
and 4, where the difference is measured using the psychometric functions of A and D,.

Although the energy function has been defined as a continuous function of time, it may
also be approximately represented as a set of samples from a finite sampling space, using gen-
eralised Fourier analysis (see Appendix A). Otherwise, according to Grenander, Pollak, and
Slepian (1959), to derive the exact distribution of energy in a finite time sample of band-limited
white Gaussian noise, a particularly difficult integral equation needs to be solved. This has been
achieved by using the methods of Slepian (1954), however, the math is inaccessible. For psy-
chophysical purposes, it is generally considered to be adequate to work with approximations.
For small WT waveforms, however, these approximations are not necessarily good enough.

5“The unwanted modulation of one frequency by another caused by a non-linear stage” (Sinclair, 1988, p.157).
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Grenander et al. (1959) showed that an approximation of the energy in a finite sample of band-
limited white Gaussian noise, for large 7, results in 2W7T coefficients that are statistically inde-
pendent. The sum of the coefficients is distributed as a x? probability distribution function, with
2WT degrees of freedom. They state that the approximation is “quite good” even for small WT.
Their plots of the x? approximation compared with the exact solution, show the discrepancy for
small WT. It is not really known how this difference affects the detection statistics, because a
model of an energy detector using the exact solution has not been formally derived.

The distribution of the envelope function for narrow-band noise is a Rayleigh distribution
(Jeffress, 1968, 1970), and is a special case of the x distribution (for two degrees of freedom). The
Rayleigh distribution is derived from a continuous representation of narrow—band noise. Jeffress
(1968) showed that for transient noise, the optimal envelope detector integrates over a duration
equal to the reciprocal of the bandwidth (i.e., W7 =1), indicating that the Rayleigh distribution
is also appropriate for transient waveforms. McGill (1967) showed how the energy statistics for
WT =1 waveforms may also be derived by transforming from Rayleigh envelope statistics to en-
ergy statistics, for bursts of narrow-band noise. Both Jeffress (1968) and Green and McGill (1970)
used this transformation to extend their tone—in-noise envelope and energy models, respectively,
to larger WT. Through a change of variable, the x envelope statistics and the x? energy statistics
are related, and result in the same ROC curves for tone—in—noise detection. It is unclear, how-
ever, how well these statistics represent the underlying distributions, given that Marcum’s (1960)
results suggest there should be a difference between the two detectors for W7 > 1.

Envelope detectors, as psychophysical theories, have only been developed for tone—in-noise
and for noise-in—noise with W7 =1. Chapter 4 uses computer simulations of noise-in—-noise de-
tection, for energy and envelope detectors, for signals of W7 =1, 2, and 4.

1.1.4 Summary

The results from this section indicate how ideal observers could be derived by using gen-
eralised Fourier analysis, where the waveform can be viewed as essentially time-limited and
band-limited, with finite degrees of freedom, and finite energy. In representing Gaussian noise,
generalised Fourier analysis, rather than Shannon’s sampling theorem, is more robust and results
in better approximations of the waveform. For noise-in—noise detection, ideal observers have
been derived that are energy detectors and envelope detectors (for W7 =1 only). Before evalu-
ating these detectors in more detail, it is useful to first describe the functional properties of the
human hearing system, then show why the energy and envelope detectors are useful models of
human hearing.

1.2 Overview of human hearing models

Mathematical representations of acoustic waveforms form the basis of theories about human
hearing. For instance, modern theories of hearing using TSD are usually based on a finite Fourier
waveform representation. The use of Fourier analysis to describe hearing can be traced back
to Ohm and Helmholtz (Boring, 1957; Whitfield, 1967). Ohm’s Acoustic Law (1843; in Boring,
1957) says that for a complex waveform, the ear hears the Fourier sine and cosine components.
Helmholtz proposed that the ear has a series of tuned resonators that split a compound waveform
into elementary sinusoids, like Fourier analysis (Green & Swets, 1966).
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By the twentieth century, the model of the ear as a Fourier analyser was well established
and accepted. As Fourier analysis itself was developed (particularly due to its use in quantum
physics), more interest was paid to the details of the models of human hearing based on this
analysis. In particular, the resolution of human hearing was limited by the acoustical uncertainty
principle.

Stewart (1931) was the first to suggest that the limits of detectability of an acoustic signal were
defined by an acoustical uncertainty principle, analogous to the Heisenberg uncertainty principle
of quantum physics. He proposed the relationship Av.At = 1, but did not define either the
bandwidth Av or the duration At¢. Kock (1935) followed on from Stewart (1931) and looked at
the effect of Stewart’s uncertainty principle in music. There was also interest in time—frequency
analysis, most notably by Gabor (1946). Gabor gave a credible basis for studying hearing in
terms of instantaneous time—frequency analysis, where the acoustical uncertainty principle defined
the resolution. Corliss (1963, 1967) applied Gabor’s findings in a simple mechanistic model of
hearing, based on a threshold system, where she specified an explicit relationship between the
uncertainty principle and the energy resolution of the ear.

Filter Rectifier Integrator Sampler

if z > ¢ say “Yes”
if z < ¢ say “No”

Decision

Waveform

Figure 1.1: The general structure for a simple model of hearing, with illustrations for an envelope detector
(in the time domain). The example shows an SN trial where a Gaussian noise input waveform of
WT =2 {25ms, 80Hz: 16dB} is presented to the detector. The filter is matched to the bandwidth
of the signal, the rectifier is full-wave, the integrator is leaky with a time constant of 50 ms, and
the sampler takes sample z at time ¢. A decision is made as to whether a signal was present by
comparing the evidence z to a criterion c.

Further application and development of Gabor’s (1946) work was overshadowed by the pop-
ularity of TSD in the 1950’s and 1960’s. Other research, however, focused on particular processes
of the human hearing system rather than considering its overall abilities. These processes were
frequency selectivity (filtering), rectification, temporal integration, and sampling. The basic struc-
ture of such a system is shown in Figure 1.1, with an example of an envelope detector processing
an 8N waveform (based on the models of Jeffress, 1964, 1967, 1968). This section considers the
nature of these individual processes, to give a context for the ideal observer models, discussed in
the subsequent section.
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1.2.1 Frequency selectivity

The human hearing system is able to enhance the detectability of band-limited waveforms by
using a process analogous to electronic filtering. This process is known as the auditory filter. It
increases the signal-to—noise ratio by reducing noise that would otherwise mask the signal. Mask-
ing is the obscuring of one sound by another (Jeffress, 1970). The existence of a filtering process is
not controversial, but the characteristics of the process are controversial. These characteristics in-
clude (a) the bandwidth of the auditory filter, especially the minimum bandwidth or critical band,®
(b) the shape of the filter, (c) how the bandwidth changes with centre frequency, (d) whether the
filter bandwidth is fixed or adjustable, and whether information can be combined across critical
bands, and (e) whether the critical band changes over the duration of the signal.

The critical band

The concept of the critical band was devised by Fletcher to account for the filtering process of
the human hearing system (Fletcher, 1940, 1953). Fletcher described the critical band as a filter
with a fixed bandwidth for a specific frequency. From this, he defined the masked threshold of a
tone as the level where its intensity just equalled the intensity of the noise within the critical band.
This definition is now known as the critical ratio (Scharf, 1970).” The model Fletcher fits to his
data appears to have required much imagination; luckily for Fletcher, his critical band model has
been thoroughly tested and examined by many other researchers and its general form is a vital
construct in explaining human hearing (Schafer, Gales, Shewmaker, & Thompson, 1950; Scharf,
1970; Greenwood, 1961).

Reed and Bilger (1973) suggested that if the critical band concept is appropriate, then different
methods of estimating it should come up with similar numbers. This is not the case, indicating
the auditory filtering process is not as straightforward as expected, or there are methodological
problems with many of the studies. On the other hand, Kaplan (1975) warned that the nature of
different experimental paradigms may result in different estimates of the critical band even if the
critical band was invariant. In either case, using critical band estimates for modelling performance
in a different type of task should be done with caution.

One methodological problem is that some techniques for measuring the critical band do not
make direct measurements of the critical band, such as Fletcher’s (1940, 1953) critical ratio method.
Other techniques, however, do estimate the critical band more directly, such as Patterson’s notched
noise method (Patterson, 1974, 1976; Patterson & Henning, 1977; Patterson, Nimmo-Smith, We-
ber, & Milroy, 1982) and Houtgast’s (1974) modulation method. Another methodological problem
comes about from observer inconsistency. This particularly affects Fletcher’s method, causing
overestimation of the critical band. Scharf (1970) suggests that many critical band estimates are
only reliable to within £15%, due to within and between observer variability. A third problem
is that the stimuli used are usually tonal transients, whose duration cannot be manipulated inde-
pendently of bandwidth. Thus, there is a confounding of the signal bandwidth and the critical
bandwidth if different durations are used, either within or across experiments. de Boer (1985)
summarised other problems inherent in studying the concept of the critical band. These included

6Not to be confused with the bandwidth of an individual hair cell.

"The critical ratio is a measure of the threshold in decibels. It may be converted to a critical band by dividing by 10
and taking the anti-logarithm. This estimate is usually 2.5 times smaller than estimates of the critical band using direct
methods. Scharf (1970), however, points out that Fletcher’s original assumption, that the threshold was at 0 dB, is probably
wrong, and if the threshold is reset to -4 dB, then the discrepancy between the two estimates disappears.
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nonlinearities, stimulus variability, off-frequency listening and frequency splatter, temporal fac-
tors such as the “overshoot effect”, two-tone suppression, and whether the critical band was
always available or needed time to work.

de Boer (1962) attempted to reconcile the critical band literature by suggesting that very nar-
row critical band estimates are the result of artifacts from tone-in—-noise masking where the noise
is very narrow-band and the tone is in the centre of the noise band. He believed this was because
the fluctuations of narrow-band noise interacted with the tone in a different way to wide-band
noise, so it was not just the effective power of the noise contributing to the masking. He suggested
that using narrow bands of noise as a signal may be a way of analysing this problem.

As aresult, it is still not clear if the critical band is fixed, and the widely ranging estimates are
due to these methodological problems, or whether it is flexible, and the widely ranging estimates
are due to changes of the filtering process. Assuming the auditory filter is flexible, some have
suggested that the concept of the critical band should be reserved for estimates of the minimum
detection bandwidth (Bernstein & Raab, 1990).

Auditory filter shape

Patterson’s research has focused on estimating the shape and bandwidth of the auditory filter
(Patterson, 1974, 1976; Patterson & Henning, 1977; Patterson et al., 1982). Determining the shape
of the filter is important, because it could have a large effect on estimates of the critical band. This
research showed that:

e The auditory filter is symmetric on a linear scale, when measured using a notched noise
masker test.

e The auditory filter is not rectangular and is not single—tuned, but somewhere in between.
The rounded-exponential (roex) filter was suggested as an appropriate shape.

e Energy detectors with more realistic filter shapes resulted in changes to the slope of the
function of threshold versus bandwidth, compared with that of the ideal rectangular filter.

¢ The typical method of estimating the critical band, by varying the bandwidth of the masker,
is confounded, because the threshold is not just a function of signal power, but also WT. In
other words, the detectability of a noise is determined by its signal-to—noise ratio and WT.

e The derivations for non-rectangular filters are still only valid for large W7 . For small WT
the Gaussian approximation is not appropriate so the mathematics is more difficult.

Despite using more realistic models, the difference in the predicted thresholds was not greatly
different to those predicted from the simpler models.

Kollmeier and Holube (1992), on the other hand, considered the effect of the definition of
bandwidth on estimates of critical bands, for a variety of filter shapes. Depending on which
auditory filter shape they chose, the critical band varied from about 43 Hz to 159 Hz for the
equivalent rectangular bandwidth (ERB).2 The critical band also depended on the definition of
bandwidth chosen, and this interacted with the assumed auditory filter shape.

It appears, therefore, that part of the problem of disparate estimates of the critical band comes
from the assumptions made about the shape of the filter, which is further confounded by how

8See Section 3.3.1 for various definitions of bandwidth.
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bandwidth is defined. There are no simple answers to these problems, except to be very clear
about which filter shapes and definitions of bandwidth are being used.

Critical bands as a function of frequency

Some researchers have developed analytical expressions for the critical band, as a function of
centre frequency, by fitting functions to the collective body of experimental results. If CB is the
bandwidth of the critical band, and f is the centre frequency, then some of these expressions are:

e Zwicker and Terhardt (1980):

CB = 25+ 75[1 + 1.4(f/1000)?]°:%?, (1.7)

e Moore and Glasberg (1983):

CB = 6.23f%+93.39f + 28.52, (1.8)

e Moore and Glasberg (1987), based on Greenwood (1961):

CB = 19.5(6.046f+1), and (1.9)

e Moore, Peters, and Glasberg (1990):

CB = 24.7(4.37f+1). (1.10)

The experiment described in Chapter 3 uses noise signals centred at 500 Hz. Equations (1.7), (1.8),
(1.9), and (1.10) predict critical bands, at 500 Hz, of 117, 76.77, 78.5, and 78.7 Hz, respectively.
These estimates are all similar, because the functions are similar for low frequencies. The differ-
ences are primarily due to assumptions about the shape of the auditory filter. Moore and Glas-
berg (1987) concluded that there was still controversy over the estimates of the filter bandwidth,
especially at the lower frequencies, and that the functions do not take into account individual
variability.

Is the critical band fixed or adjustable?

It is generally accepted that the critical bandwidth changes with centre frequency. More con-
troversial is whether the critical bandwidth is fixed or adjustable at individual frequencies. So
far the answer has been difficult to determine, because (a) there are large individual differences,
(b) data are noise degraded with observer inconsistency, (c) estimates tend to depend on the task
used and the assumptions made about the shape of the filter, and (d) that bandwidth and dura-
tion are often confounded in critical band experiments, especially when using tonal transients.
The evidence for adjustable critical bands comes from research into short duration signals. Long
duration signals generally provide reliable ‘steady-state’ estimates of the critical band. Scharf
(1970) provides a good summary of critical band estimates for short durations.

Hamilton (1957) estimated critical bandwidths by measuring masked thresholds of tone—in-
noise stimuli in terms of W7 . Here, W referred to the bandwidth of the masker transients (which
varied from 19-1100 Hz, and were all 2000 ms long), and 7T referred to the duration of the 800 Hz
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tonal transient (which ranged from 25 to 400 ms in duration, implying their bandwidths varied
from 40 Hz down to 2.5 Hz). Unlike many other studies, he considered the effects of frequency
domain spreading of the tones, as a function of tonal duration, when the tones were windowed
with a rectangular pulse. That is, as duration decreased, the bandwidth of the tonal transient
spread by the reciprocal of the duration. Hamilton made the assumption that although the tones
had varying bandwidths, most of the spread was within one critical band. If this was the case
then the hearing system would not filter out part of the tonal transient.

Hamilton’s (1957) results, albeit averaged across observers, indicated that the critical band-
width, effective at masking the tonal transient, was somewhat dependent on the duration of the
transient. Between 100-400 ms the critical band estimate was the same, at about 145 Hz, but as
duration decreased to below 50 ms, the critical band estimate increased considerably. Hamilton
suggested that this was not due to frequency spreading of the signal, above and beyond what
would be expected from the reciprocal of the duration, but instead may be described by signal
“salience”. He admitted that this was merely descriptive, and did not explain why the critical
band would appear to widen. His estimate of 145 Hz has often been quoted since, but looking
more closely, his graph indicates that depending on the interpolation used, there could be quite a
range in the estimate. Assuming that the data are as noisy as psychophysical data normally are,
then this estimate could easily be less than 100 Hz.

Hamilton (1957) showed that equal W7 from different combinations of YV and T resulted in
the same masked thresholds. He concluded that “there was no detection improvement until the
filter width reached a critical value dependent on tonal duration” (p. 511). Hamilton suggested
that an increase in the energy threshold as a function of W7 was due to the ear not integrating
fully beyond 50 ms, but it is not clear that Hamilton could make this inference from the rather
noisy data, based on a threshold model.

Creelman (1961) extended research into critical bands by using damped sinusoids, as they
were meant to be more complex than tones, and similar to speech sounds. He found some
evidence that observers could adjust their bandwidths, but found that it was difficult to make
stronger conclusions, because of confounding with the spectral characteristics of the signals.

Swets, Green, and Tanner (1962) also considered that the critical band may be adjustable at
each frequency. They were prompted to consider this possibility because of the many disparate
estimates of the critical band in the literature. They considered that variability in the estimates
may have come about because (a) the hearing system may behave differently depending on the
experimental task, (b) that the critical band may be dependent on overall signal level, (c) that the
assumed shape of the critical band would influence measurement, (d) that there could be inter-
actions between external filtering of the signal and internal filtering, (e) that small differences in
measurement can result in large differences in estimates, and (f) that the critical band parameters
may not be fixed:

“We would suggest a consideration—in theory construction and in research strategy—
of the possibility that the parameters of the mechanism of frequency selectivity vary
from one sensory task to another under intelligent control. If they do, then, of course,
we cannot speak of, or measure the critical band.” (Swets et al., 1962, p.113).

van den Brink (1964) estimated thresholds by varying the duration of the tone and the band-
width of the combined tone-in—-noise signal. The masker was continuous, and the mixed signals
were passed through a very steep filter to minimise the spread of the short duration tone in the
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frequency domain. He found evidence that supported a critical band that increased as the tone
duration decreased, thereby supporting the findings of Creelman (1961), Green, Birdsall, and Tan-
ner (1957) and Hamilton (1957). Northern (1967) also obtained unusually wide estimates of the
critical band for short duration noise.

Researchers such as Green (1960a), Jeffress (1964), Mulligan and Elrod (1970), and Swets (1963)
all thought the critical band could be flexible, although apparently Jeffress changed his mind in
later research (personal communication, Whitmore, 1998). Other researchers, such as Spiegel
(1979), have suggested that the critical band is fixed, but observers can attend to more than one
critical band at a time depending on the task. It is difficult, if not impossible, to separate out
these two possibilities experimentally, because they have the same effects.® Spiegel (1979) was
interested in finding out whether the critical band was fixed or adjustable. He considered spec-
tral integration, and the critical band, by varying the signal bandwidth to estimate the maximum
limit of integration, and by varying the masker bandwidth to determine the critical band. At that
time, no other study had manipulated both with the same observer, so differences reported in
the literature may have been due to individual observer differences. He also pointed out that the
variability in experiments was so great that no one experiment could be used to standardise criti-
cal band estimates. His results were consistent with an energy detector, except for an attenuation
constant, and the critical band was estimated to be about 80 Hz (at a 1 kHz centre frequency). He
also found evidence that frequency information could be combined over 3 kHz, indicating that
either the critical band was flexible or critical band channels could be integrated. Scharf (1970), on
the other hand, summarised the research into short duration critical bands as indicating that as
duration decreased, detectability became independent of bandwidth and all energy contributed
to masking.

There is evidence that for short durations, critical band estimates are wider than the steady-
state estimates. It is difficult to say, however, whether this difference comes from a variable critical
band, or a combination of information across critical bands, or whether this distinction is even
meaningful.

Temporal effects on the critical band

It is possible that some of the differences in critical band estimates were a result of how the
filter changed with time. For instance, Green (1969) considered whether the critical band nar-
rowed after the onset of a stimulus—a form of sharpening that may be similar to that in touch
and vision. Zwicker and Fastl (1972) also considered a related idea: is the critical band perma-
nently on, or does it “develop” during excitation? Research had indicated there was a difference
between auditory filter masking functions using continuous stimuli versus those using transient
stimuli, but it was not clear whether this was due to the development of the critical band or was
simply a transient artifact. Zwicker and Fastl (1972) concluded that if the transient signals were
designed carefully, so that their frequency and time domain properties did not include unwanted
transients, then there was little difference between the auditory filter masking functions for the
two types of stimuli. Thus, the critical band did not develop. On the other hand, Dai and Green
(1993) suggested, after considering the role of duration in profile analysis experiments, that the
auditory filter bandwidth did decrease after stimulus onset.

It is very difficult to avoid confounding time and frequency when measuring the temporal na-

9Section 1.4.2 considers this research in more detail.
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ture of the auditory filter. For instance, comparing long and short transients, with the same band-
width, is not enough, because potential interactions with the temporal integrator are ignored. In
general, the evidence to date is not reliable enough to distinguish between a critical band that
is constant over the duration of a particular stimulus, but may vary for different stimuli, and a
critical band that varies over the duration of a stimulus.

1.2.2 Rectification

If an ideal observer integrates, or sums, temporal waveform information, then the waveform
must first be rectified, otherwise the integral, or summation, will tend to the mean of the wave-
form. In hearing models, the rectifier is usually placed between the filter and the integrator. The
two forms of rectification commonly used in modelling human hearing are square-law and lin-
ear (full or half-wave) rectification. It is the form of the rectification that primarily determines
whether an observer is classed as an energy (square—law) or envelope (linear) detector. Sec-
tion 1.1.3 discussed the differences between the two types of rectification.

The physiological evidence strongly suggests that the auditory nerve performs half-wave rec-
tification, because the neural firing pattern is phase-locked (Laming, 1986; Whitfield, 1967), at
least for frequencies below 4 kHz. The neurons fire during rarefaction of the waveform. Many re-
searchers tend not to use linear detectors, however, because (a) they are considered more difficult
mathematically, and (b) the two types of rectification are incorrectly considered to be equivalent.
The two forms of rectification only result in the same statistics for W7 =1 and 70, so in general,
they should not be considered functionally identical (Marcum, 1960).

There has been little work to see if psychophysically, rather than physiologically, rectification
is better modelled by a linear rectifier for human hearing. An exception is Gilkey (1981) and
Gilkey and Robinson (1986) who found some evidence that a computer simulation using a half-
wave rectifier was better correlated with human data than one using a square-law rectifier (see
Section 1.4.1). The problem has been that most tests have compared energy versus envelope de-
tection, where the integrator is also different, rather than comparing forms of rectification without
confounding from other processes.

1.2.3 Temporal integration and sampling

The use of a temporal integrator in models of human hearing, according to Moore, Glasberg,
Plack, and Biswas (1988), was first suggested by Munson (1947; in Moore et al., 1988) and Zwis-
locki (1960, 1969; in Moore et al., 1988) and was based on similar models for electronic detectors
(North, 1943/1963). The integrator is typically modelled as a true integrator, which discharges
completely at the end of integration, or a leaky integrator (either a rectangular running averager
or a negative—exponential). Physiologically, integration is considered a higher—order process, oc-
curring at a neural level. Gambardella and Trautteur (1966), for instance, showed that the cochlea
could not be the place where temporal analysis of waveforms is conducted.

Integration time, time constants, and sampling time

True integration, or true summation, is usually modelled as occurring over the duration of
the signal, resulting in a single number at the end. This number is the sample statistic or evidence
used to make decisions about the events. True integration may also be modelled as a process that
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sweeps over the signal giving a continuous output, thus requiring a sampling strategy to give the
sample statistic. For true integration, an optimal sampling strategy is to sample at the end of the
signal, therefore, the integration time is the same as the sampling time, and is usually the same as
the signal duration.

Leaky integration is usually modelled as a process, therefore requiring a sampling strategy.
For leaky integration, however, there is often confusion as to what is meant by time constant,
response time, decay time, integration time, effective duration, and sampling time. The terms response
time, decay time, and time constant are synonymous, and are equal to the ERD for the leaky
integrator.

The time constant of a leaky integrator is defined as the length of time it takes for the integrator
to reach the proportion 1 — e~! of the final saturated value.'® In electronic terms it is also equal
to RC and is the equivalent rectangular duration (ERD) of the integrator’s impulse response.™* It
is also simple to derive the time constant with respect to the essential duration, Ess7 ,2¢, of the
leaky integrator. It is a transform of the ERD:

EssT a2, = —log,(1 —a?)ERD/2 (1.11)

where o? is the proportion of energy constrained. This equation can be rewritten to calculate
the proportion of energy constrained for any integration time, D, (assuming the integration time
begins at time zero):

o> = 1—¢ 2D/ERD (1.12)

For instance, after a time equal to the ERD, the proportion of energy constrained is
a2 =1-—e"?=286.5%.

The effective duration, or integration time, of a leaky integrator is related to the time constant.
Mathematically, the integration time is infinite, but practically, after a certain time, the value of
the input waveform no longer contributes significantly to the current output value, because the
negative exponential weighting is so small. Determining the effective duration, therefore, requires
a criterion. The effective integration time is usually defined with respect to the proportion of the
final saturated value. For instance, Jeffress (1968) attempted to define the effective integration
time by using electronic simulations. This can also be done mathematically by considering the
integral of the impulse response. For a standardised integrator, the integral goes from 0 at time
zero to 1 at infinity (the saturated value). The integrator reaches 1 — e~! after a duration of one
time constant, 1 — e~2 after two time constants, and so on. Jeffress’ electronic integrator took
2.8 time constants to reach about 95% of the saturated value. Mathematically, after three time
constants, the integrator is 95% saturated, and after five time constants, the integrator is 99%
saturated. Alternatively, the effective integration time could be specified in terms of the energy
of the impulse response, and defined in terms of the essential duration. This is about 1.3 time
constants for Ess7 g5 4%.

Sampling time refers to the time the output of the integrator is sampled, to obtain a sample
statistic. There are a number of ways of sampling the output of a leaky integrator, including
sampling at a particular time and peak sampling. It may be difficult to determine if the sam-
pling strategy is optimal for a transient waveform, because it is dependent on properties of the

10skilling (1965, p. 42) also discusses time constants for negative exponential decay, but in a slightly different context.
1 See Section 3.3.2 for definitions of duration.
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waveform, and its window, rather than the integrator. Specific sampling strategies for a tran-
sient waveform and a leaky integrator include (a) sampling at the time equal to the time constant,
(b) sampling at a time equal to the signal duration (absolute duration, or otherwise), (c) sam-
pling at the average time of the maximum output of the integrator, and (d) peak sampling, where
the actual sampling time varies for each waveform. Jeffress (1968) suggested, however, that the
statistics of the envelope maxima probably did not differ from the statistics of random samples of
the envelope in a way that could be measured in a psychophysical experiment. Other sampling
strategies that could be used include averaging the output, taking “multiple-looks™ at the output
then taking the largest or averaging them, and so on.

Experimental estimations of the temporal integrator

There have been a variety of studies on how the human hearing system deals with temporal
information (Scharf, 1978). Such studies essentially estimate the maximum and minimum time
the human hearing system can integrate temporal information, without degradation in perfor-
mance. Estimating either, especially with tones, is difficult, because short duration stimuli spread
in the frequency domain, and may interact with auditory filters. Conversely, long durations result
in extreme boredom for experimental observers, and may result in unreliable data.

Green (1973) explained that for many tasks it is optimal to integrate for a long time, because
this increases the effective signal-to—noise ratio. On the other hand, for tasks such as the detection
of clicks, it is optimal to integrate for a very short duration. After considering the evidence,
Green (1973, 1985) estimated the maximum integration time to be about 200 ms (+100 ms) and
the minimum integration time to be on the order of 1-2 ms or 10-20 ms depending on which
experimental paradigm was used. de Boer (1985) came to similar conclusions.

Studies that have found evidence that the time constant of the temporal integrator was short
include Robinson and Pollack (1973), Robinson (1974), and Ronken (1973). Studies that have
found long duration (greater than 200 ms) time constants include Makita and Miyatani (1950)
and Henning and Psotka (1969). Most experimental findings have indicated, however, that the
human hearing system has active control over the integration time (Garner, 1947; Garner & Miller,
1947; Green et al., 1957).

In studying maximum integration time, a time versus intensity experiment with long duration
signals is usually employed (Green, 1985). The rationale of these experiments is that the intensity
of a signal may be traded off for duration for constant detectability. If the human hearing system
has a maximum integration time there will be a point where the intensity of a signal must be held
constant (instead of decreased), as the duration increases. In other words, as fast as one end of
the integrator fills up the other end empties. The resulting function will have a breakpoint at this
time. In reality, the function does not look like this because of the difficulty of collecting data
using very long durations. It appears that there is always some improvement with duration. This
could possibly be accounted for if the observer combined information across multiple looks of the
long process.

Green et al. (1957) ran three experiments to establish the effect of duration and intensity on
detectability of tones in noise. Instead of estimating the durations and intensities that gave equal
detectability (e.g., Garner, 1947) they came up with a three parameter equation of the ‘surface
of detectability’ where the parameters were duration, intensity, and detectability. This equation
came from three experiments: (1) duration was constant and amplitude was varied, (2) energy
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was constant and duration was varied, and (3) amplitude was constant and duration was varied.

Results from the first experiment indicated that, for each duration, as the energy of the signal
increased, detectability also increased as a function of intensity. In log coordinates, for both d’
and E/Ny, this was a linear function. In the second experiment, detectability was constant over
a region of duration (ranging from about 20 ms to 200 ms) and was attenuated for shorter and
longer durations. The third experiment showed that detectability continued to increase as dura-
tion increased while power was kept constant. These results could indicate that the ear optimally
integrates acoustic power over this range, but the process breaks down for longer or shorter du-
rations. It could also indicate a bandwidth phenomenon. The frequency content of a sinusoid is
spread proportional to the reciprocal of its duration. For short durations, if the critical band is
narrower than this bandwidth, then not all the signal energy will be passed and performance will
deteriorate. Likewise, if the critical band has a lower bound, then long duration sinusoids will
include more masker thereby attenuating performance.

Finally, Green et al. (1957) compared their results to the signal-known-exactly, or cross—-
correlation, detector assuming either matched bandwidths, or critical bandwidths narrower or
wider than ideal. They found that this model, as expected, did not adequately describe human
performance, except for the results of the second experiment if an attenuation factor was included.

Moore et al. (1988) tackled the problem of the shape of the temporal window by applying
the same analogies and experimental procedures that Patterson (1974, 1976) used to study the
critical band, except that they were applied in the time rather than the frequency domain. They
described the temporal window as a weighted running average of the waveform energy. Moore
et al. (1988) believed that the observer was able to choose the best window for the task. For
longer duration signals, they suggested the observer was able to combine information across
the outputs of multiple windows in the same way that, as has been conjectured, observers can
combine information across critical bands. The alternative, they suggested, was that the observer
was able to use windows with adjustable durations. Moore et al. (1988) found evidence that the
temporal window for their experiments can be well described by an asymmetrical roex function
with an ERD of 8 ms.

The shape of the temporal window suggested by Moore et al. (1988) is quite different to that
of the true integrator or the negative exponential leaky integrator. The roex function has a peak
in the middle of the window such that the current value of the waveform is weighted less than
near values in the past. In comparison, the energy detector assumes a rectangular window to
give true integration, which implicitly discharges at the end of the signal. The envelope detec-
tor assumes an exponential window that weights the current value of the waveform more than
previous values.

de Boer (1985) criticised the concept of the temporal integrator as being an ad hoc model. This
is perhaps why there are so many disparate estimates of the time constant. Gerken, Bhat, and
Hutchison-Clutter (1990) also considered the evidence for the existence and nature of the tem-
poral integrator. They concluded that many things said about the form of the integrator were
due to experimental artifacts—especially when using very long duration signals. In particular,
the concept of a constant integration time was not supported, indicating observers could gather
temporal information for much longer durations than previously thought.

Viemeister and Wakefield (1991) presented a good summary of the temporal resolution-inte-
gration paradox. The paradox is that a number of models (with supporting empirical evidence)
have indicated the temporal integration time to be short, and a number that it is long. Models
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that assume short integration times are bad at predicting the results of models that assume long
integration times, and vice-versa. The usual explanation is that the auditory system is flexible,
and uses multiple time constants, or that the time constant mechanism is flexible, and may be
matched to the signal duration. They suggested a different type of temporal integration where
the observer combines information from multiple looks at the output of an integrator with a short
time constant. Such a model consists of the usual critical band filter and half-wave rectifier,
but the leaky integrator is short (3 ms) and the running output is stored in a memory with its
own decay characteristics. Their experiments indicated that this could be happening, and were,
therefore, able to account for the paradox.

Preliminary investigations, using the simulation described in Chapter 4, were run to test
Viemeister and Wakefield’s (1991) hypothesis, using the small W7 noise signals from the experi-
ments reported in Chapter 3. On a stimulus level, there was a large correlation between between
full integration, and a short leaky integrator (3 ms), sampled with a long rectangular running
averager (500 ms). This running averager is a way of implementing a multi-look model, where
a look is taken at every sample point. These results indicated that it would be difficult to test the
two theories, because they predicted similar outcomes.

Experimental estimations of the sampling strategy

Experimental estimates of the sampling strategy of the human hearing system have focused
mainly on whether the hearing system uses peak sampling or samples at a particular time. The
method has generally been to correlate human performance with simulations using each type
of sampling strategy (see Section 1.4.1 for further studies using this method). There have been,
however, only a few studies that considered sampling strategy. Part of the problem has been a
lack of mathematical models for peak detection, because of difficulties with the statistics of peak
detection (Jeffress, 1968).

Nichols and Jeffress (1966) considered the detection of sinusoids in wide—band noise. They
calculated correlations among four observers and two electronic observers. They found that the
electronic observer that used average voltage was a better predictor of both the events (N and 8N)
and the human observer’s responses, than the electronic observer that used the peak voltage.

Gaston and Jeffress (1974) considered different sampling strategies for an envelope detector:
peak voltage detection and end-of-signal voltage detection. They found that while performance
for end-of-signal detection plateaued at the end of 200 ms, peak detection continued to increase
out to 2 seconds. Gaston and Jeffress (1974) suggested that the reason peak sampling is more
effective at long durations is that the samples are less variable and, therefore, the magnitude of d’
increases. Indlin (1979a, 1979b), however, produced some evidence that human detection of noise
bursts may be better described by a peak amplitude type detector rather than an energy detector.

Gilkey (1981) and Gilkey and Robinson (1986) also tested sampling strategies, using simula-
tion, and found that the best strategy partly depended on the form of integration assumed (see
Section 1.4.1). The problem of testing sampling strategies was that differences in performance
may be subtle under any given sampling scheme.

1.24 Summary

The details of the four main components of human hearing: filtering, rectifying, integrating,
and sampling; are still being developed. The current study attempts to clarify some of these con-
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troversial problems by using error-reducing techniques in the human experiments, and through
simulation.

Research into the nature of the critical band has produced conflicting and contradictory re-
sults, partly due to methodological problems. The current study attempts to deal with some of
these problems by (a) estimating the detection bandwidth using noise signals with systematically
varied bandwidths and durations, (b) carefully designing the signals to be well-defined in both
the time and frequency domain, and (c) using error—reducing techniques to remove the effects
of observer inconsistency. Further discussion about critical band research is continued in Sec-
tion 1.4 after energy and envelope detectors are introduced, and then the critical bands of human
observers are evaluated in Chapter 5.

The form of rectification used by the human hearing system is evaluated in the Chapter 5 by
investigating the full-linear detector. The only difference from the energy detector is that the full-
linear detector uses a full-wave, rather than a square-law, rectifier, therefore, the confounding
caused by the different integrator is removed. Although the full-linear detector is a linear detec-
tor, it should not be considered an envelope detector, in the usual sense of the term, because of
the true integrator. An envelope detector will asymptotically approach the full-linear detector as
the leaky integrator time constant gets large.

There is no consensus on the form of the temporal integrator. The nature of true integrators
and leaky integrators, with short and long time constants, are considered in Chapter 4, by using
simulations, then correlated with human performance (in Chapter 5). Because there is no clear
criteria for optimal sampling of a leaky integrator, the simulations using a leaky integrator in
this project will consider multiple sampling strategies to help establish what strategies result in
optimal detectability.

Evaluating each component individually has caused ambiguous results, because of confound-
ing due to interactions with other components. What is needed is a model of how the components
work together as a system. The next section introduces two types of system for noise-in—noise
and tone-in-noise detection: the energy detector and the envelope detector. Then, more recent
research into the components of human hearing are discussed with respect to these detectors.

1.3 Energy and envelope detectors

The previous section discussed the nature of the various processes of human hearing: filtering,
rectifying, integrating, and sampling. These processes have also been evaluated as a whole, and
not just as individual components, by using TSD to derive ideal observers, such as the energy and
the envelope detector. The energy detector consists of a band—pass filter, square—law rectifier, and
a true integrator. An envelope detector consists of a band—pass filter, linear rectifier, and a leaky
integrator. This section describes various ideal energy and envelope detectors. The next section
looks at experimental evaluations and comparisons of these detectors, as well as modifications
to these detectors to make them work more like humans. Both tone-in-noise and noise-in—noise
models are considered because their development did not occur in isolation.

Two common approaches in deriving an ideal observer are by (a) using the dimensionality
of sampling spaces and (b) making mathematical analogies to electronic components. The two
approaches are essentially the same, but can result in confusion by taking analogies too far. For
instance, the limitations of real electronic components may be incorporated in an electronic model.
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Others have confused the discrete signal representation for real sampling (Pridham, 1968). Essen-
tially, the same result can be derived from either approach.

1.3.1 Engineering models

The engineering models of tone-in—-noise and noise-in—noise detection began the develop-
ment of energy and envelope detectors as psychophysical models of human hearing.

Peterson et al. (1954) showed that the detectability of a deterministic signal, masked by white
Gaussian noise, could be directly related to signal energy. Their measure of detectability was
d> = 2F /Ny, which was modified by Tanner and Birdsall (1958) to d’ = /2E/N,. This SKE ob-
server is a cross—correlation detector, derived using the likelihood ratio (Elliot, 1964). The under-
lying distributions are normal with equal variance, and d’ is the standardised difference between
the means. The biggest problem with this derivation is that it is only approximately related to
signal energy for small W7 Although the cross—correlation detector may not be a good model
of human hearing, it is important to consider its properties, because it can be used as a compar-
ison to the signal-known-statistically (SKS) ideal observers. Peterson et al. (1954) also derived a
number of other detectors including an envelope detector for deterministic signals.

Urkowitz (1967) was also interested in the engineering problem of the detection of an effec-
tively finite, deterministic, signal in band-limited Gaussian noise. Information about the exact
nature of the signal was unknown, except for the bandwidth. Because the signal is unknown, a
cross—correlation detector is inappropriate, so Urkowitz derived an energy detector instead. Un-
like many other derivations of the energy detector, Urkowitz went to some length to explain the
waveform representation used and its limitations. He also explicitly derived the band—pass case.
Although he was aware of the work by Grenander et al. (1959), where the exact energy distribu-
tion of essentially band and time limited noise was derived, Urkowitz used the sampling plan
approach, because he believed the difference for engineering uses was negligible for W7 > 1.
He used Shannon’s sampling scheme, but in an appendix used the Karhunen-Loéve expansion,
which relied on using prolate spheroidal wave function as the orthogonal basis functions; a more
rigorous way that gives the same result for W7 > 1. To derive WT =1, he transformed the energy
statistics to envelope statistics, which resulted in the Rayleigh—Rice detection statistics (based on
Davenport & Root, 1958).

1.3.2 Early SKS observer models of human hearing

Early SKS ideal observer models were either energy or envelope detectors of tone-in—-noise or
noise—in-noise. The energy detectors of Green, McGill, and Pfafflin and Mathews, and the enve-
lope detectors of Marill, Jeffress, and Whitmore and Drga are considered. The subsequent section
then examines how well these models describe experimental results from human observers.

Marill’s envelope detector

Influenced by the early psychophysical work by Tanner and Birdsall (1958), Marill (1956) ex-
tended TSD to include ideal observers for the 2IFC task, and incorporated a variable criterion into
the model to account for psychological noise. He argued that his ‘response model’ was superior,
because it removed the unobservable psychological experience, and concentrated solely on pre-
dicting responses from stimuli without needing to specify the psychological stimulus magnitude.
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He also showed how the introduction of ‘catch-trials’ allowed the observer’s task to be defined
also without reference to psychological phenomena. Specifically, Marill derived the SKE case and
the SKS (phase) for tone-in—noise detection in the 2IFC task.

Green’s energy detector

Green (1960a) derived an energy detector for 2IFC noise—in—noise detection, based on Peterson
et al. (1954). He assumed that W7 was large so he was able to use a Gaussian approximation for
the N and 8N distributions. From these distributions, he derived P(C)21rc, assuming a difference
decision rule. Green (1960a) was interested in using noise as a signal, as well as a masker, because
the bandwidths of the signal and noise form a continuum. When the bandwidths are identical,
the task is to detect increments in intensity. When the bandwidths are different, the detectability
of the masked stimulus or the effectiveness of the masking stimulus can be studied.

Green (1960a) aimed to see how the detection of a noise signal depended upon the power,
bandwidth, centre frequency, and duration of the signals. When the signal and noise bandwidths
were the same, no additional filtering could improve detectability. Thus, Green’s model could
draw all its parameters from the physical signal, rather than the observer. Green’s model is also
applicable to the case where the signal bandwidth is narrower than the masker, if a filter is incor-
porated.

Green’s (1960a) energy detector consisted of an ideal rectangular filter, a square—law rectifier,
and a true integrator. Sampling occurred at the end of the input signal, thus integration was over
the duration of the signal. Green used a square-law rectifier to generate a value whose average
was monotonic with signal intensity. It was a mathematical convenience that the square—law was
chosen over a linear rectifier, which implies Green did not set out to derive an energy detector in
particular. The integrator smoothed the output of the filter and rectifier, and the sampler returned
a number to be used as the evidence for a decision. The parameters that resulted were a band-
width, which was either the bandwidth of the signal or the bandwidth of the filter (whichever
was smaller), and a duration, which Green said was the signal duration, but, more accurately, it
was the duration out of the filter (which for a narrow filter could be longer than the original signal
duration due to ringing). Green realised this but used signal duration, because for large WT, the
two are nearly identical. The resulting detector is ideal, because it is monotonic with likelihood
ratio. Green considered his model had the minimum number of elements necessary to begin to
describe human hearing, and that it gave a basis to build a more realistic or detailed model.

The detection statistics of Green’s energy detector are x? with 2T degrees of freedom (Green,
1960a; Green & Swets, 1966). Because of the Gaussian approximation, this detector is only valid
for WT > 30, although some researchers believe the approximation is good for W7 > 10. The
measure of detectability he derives is d'-like, and is only valid for signal-to-noise ratios less
than 0 dB, where the variances of the distributions remain essentially equal. Green and Swets
(1966) extended this derivation to a number of related energy detectors: both for tone-in—-noise
and noise—in—noise detection, and for simple and pedestal style experiments. It is unfortunate
that the popularity of Green’s detector has meant that many researchers ignore the limits on WT
and signal-to—noise ratio, and apply the model regardless. This is despite the fact that McGill
and his colleagues subsequently developed a similar energy detector for small and large W7 and
arbitrary signal-to-noise ratio.
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Pfafflin and Mathews’ energy detector

Pfafflin and Mathews (1962) derived a 2IFC energy detector that consisted of a single-tuned
band-pass filter, a square-law rectifier, and a true integrator. A number of assumptions were
made to simplify the mathematics. For example, the duration of the signal must be larger than
the response time (1/W) of the filter. This implied their model was not applicable to WT=1. They
also stated that there is essentially no difference between the square-law and half-wave rectifiers
if the signal is symmetric about zero. Assuming large WT (implicitly), they derived P(C)airc,
and, therefore, came up with a normal approximation. In comparing performance of the sim-
plified mathematical model with a Monte Carlo simulation (which had fewer assumptions) they
found good agreement.

McGill’s energy detector

McGill (1967, 1971) tried to reconcile ideal energy detection with a possible neural counting
model in the auditory system. The aim was to mimic the continuous x? energy detection statistics
with counting (Poisson and negative binomial) statistics to find out if something akin to energy
detection could occur within a discrete neural counting model. He achieved this aim, and showed
that the resulting characteristics of the counting model were essentially the same as the energy
detector, for many circumstances. McGill (1971) postulated that this type of Poisson counting
process underlies the flux of information flowing through any sensory monitoring system. For
noise intensity discrimination, his results for the neural counting mechanism gave essentially the
same results as the energy detector of Green (1960a). This was because the neural counting model
obeyed Weber’s law and produced psychometric functions dependent on signal-to—noise ratio,
but not overall level.

McGill (1967) and Green and McGill (1970) based their derivations on a novel formulation of
Gaussian noise, which used the convolution of Rayleigh noise (W7 =1) samples, spaced 1/7 Hz
apart in the frequency domain. The result was independent samples of noise. This appears to
be an alternative, but equivalent, way of achieving waveform representation using the sampling
space, as discussed in Appendix A. From this representation of noise, it can be shown that WT
is related to degrees of freedom, v, where W is the bandwidth of the counting process, and is
unknown, and 7 is the post-stimulatory observation period, which is also unknown and not
necessarily the same as the signal duration. McGill (1967) showed that if IV is the total energy in
the noise stimulus, then N/WT = N/v = Ny, where N is the mean noise energy per Rayleigh
component, and is comparable to the noise power per unit cycle in models like those of Peterson
et al. (1954).

McGill (1968b) showed how to derive a tone—-in—noise energy detector from a Rayleigh—-Rice
envelope detector. He called it the “energy” form of the Rayleigh—Rice distributions. He showed
that this detector was equivalent to Marill’s (1956) ideal observer, but that it could also be derived
without reference to an ideal observer simply by considering the energy distributions of the sig-
nals. Because Jeffress (1964, 1967) showed that a detector based on Rayleigh—Rice statistics only
applied to noise with W7 =1, McGill’s transformed energy detector also applied only to noise of
WT=L

McGill (1968b) realised, however, that an imperfect human observer may have a much wider
bandwidth than an ideal observer, and therefore detectability would be based on statistics with a
much larger W7 (assuming the observer integrated over the duration of the signal). Therefore,
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he generalised his energy detector to accommodate noise of any integer W7, by using the model
of wide band noise developed in McGill (1967). The output statistics of this detector were x? with
2 degrees of freedom for N, and non—central x2 with 2 degrees of freedom and a non—centrality
parameter for SN. From these statistics, he derived the psychometric function for P(C)spc for
arbitrary, integer, WT.

Green and McGill (1970) expanded on earlier work by deriving energy detector psychometric
functions for 2IFC tone-in—noise and noise—in—noise detection tasks. For the noise-in—noise case,
P(C)arrc, defined using a ratio decision rule, was shown to be the probability associated with the
tail of an F distribution with (2T, 2WT) degrees of freedom beyond the cutoff of Ny /(So + Np).
Similarly, P(C)21rc for the tone-in—noise case was shown to be the probability associated with the
tail of an F distribution with 2WT, 2WT) degrees of freedom, and a non-centrality parameter of
2E /Ny. The psychometric function for tone-in—noise predicted that as WT increased, detectabil-
ity decreased. This is because most of the signal is concentrated within a bandwidth of 1/T Hz,
thus as the amount of noise masker is increased, the signal becomes harder to detect. The psycho-
metric function for noise—in—noise predicted that as VW7 increased, detectability increased. This
indicated that a noise—in—noise observer should strive to match the bandwidth and duration of
the signal to optimise detectability. McGill (1968a) and Green and McGill (1970) also produced
polynomial versions of the P(C)s1rc, Noise—in—noise and tone—in-noise, psychometric functions
for arbitrary WT.

Jeffress’ envelope detector

Jeffress was an advocate of the simple—filter model of the ear, based on the concept of the ideal
observer. He believed that monaural phenomena could be explained by a narrow filter followed
by a simple detector, because he could find no experimental evidence that the ear was a sophis-
ticated detector (Jeffress, Blodgett, Sandel, & Wood, 1956). He considered the problem of tone-
in—noise detection by studying the statistics of the stimulus using a stimulus—oriented approach
(Jeffress, 1964, 1967, 1968). He took three themes—mathematical models, electronic models, and
psychophysical experiments—and tried to build a consistent model of tone-in—noise detection.

Assuming continuous tones, masked by narrow-band noise, Jeffress (1967, 1968) presented
Rice’s (1954) derivation of the envelope detector, where the evidence was derived from inde-
pendent, instantaneous samples of the envelope of the waveform. This process produced the
Rayleigh distribution for narrow-band noise, and the Rice distribution for tone-in—-noise. The
detector was then implemented as an electronic model where the output was shown to be a good
fit to the mathematical model, for particular values of bandwidth, integration time constant, and
sampling strategy.

Jeffress (1967, 1968) then compared Rice’s (1954) envelope detector with the envelope detector
of Peterson et al. (1954) and claimed they were the same, because the form of the probability
distributions were similar. He made the argument that Rice’s parameter was the signal-to—noise
ratio A/o (where o2 is the rms noise voltage, 2N, WV, of bandwidth W, and A is the amplitude of
the tone) and that Peterson et al. (1954) had the parameter E /N, (where the energy of the tone is
E = AT /2,and Ny is the power per unit cycle of the noise). Therefore, \/2E /N, was equivalent
to A/o. Furthermore, A?/2NoWW = A?T /2Ny, therefore, WT=1. This is despite the fact that
Rice was dealing with continuous waveforms and Peterson et al. (1954) were dealing with gated
waveforms. Jeffress claimed that this showed the envelope detector of Peterson et al. (1954) used
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a filter with a bandwidth that was the reciprocal of the duration of the waveform. He did not,
however, use an electronic model to test these relationships.

Jeffress (1968) stated that, ideally, there was an optimal bandwidth for a given signal duration,
and an optimal time constant, and that the ideal detector would match both of these parameters
using the signal duration. His ideal SKS detector for gated signal in continuous noise therefore
had a filter with a bandwidth that was the reciprocal of the signal duration, followed by a matched
envelope filter.

Jeffress (1967, 1968) obtained statistics of the performance of his electronic simulations by sam-
pling the output of the integrator at the end of the gated signal for the SN event, and randomly for
the continuous noise from the N event. Frequency histograms were obtained from the samples
that approximated the underlying probability density functions, and the estimated p.d.f. moments
were used to calculate measures of detectability, and to assess the form of the SN and N distri-
butions. Jeffress found that the SN distributions approached normality as signal level increased,
and that although the N distributions were skewed, they were not well fitted by the Rayleigh
distribution. These results, along with experimental results of other researchers, lead Jeffress to
develop the non-central x model of tone-in—noise detection. This model was developed because
it seemed that performance was somewhere between Rayleigh—-Rice (which is a special case of the
x distribution) and normal-normal.

Jeffress (1967, 1968) derived the x model using the same approach as McGill (1968a, 1968b).
Because Yy statistics can be derived from y? statistics, McGill’s generalisation to arbitrary W7 can
be used, with a change of parameter, to extend the degrees of freedom of the xy model. Jeffress
noted that the y and x2 models give the same ROC curves for tone-in-noise detection.

Although Jeffress’ focus was on tone—in—-noise detection, the envelope detector is appropriate
for noise-in—noise detection too. Whitmore et al. (1968) and Drga (1988) are the only ones to have
developed a psychophysical model for this case, but only for W7 =1.

Whitmore and Drga’s envelope detector

Much of Whitmore’s research has focused on the detection of narrow-band noise signals in
both monaural and binaural tasks (e.g., Wilbanks & Whitmore, 1967; Whitmore, Williams, & Er-
mey, 1968; Whitmore, 1969; Whitmore, Drga, & Taylor, 1993). He thought that Jeffress’ (1968)
envelope model was a better model of human hearing than the energy models of Green and
McGill (1970), but at the time there was no theory of noise—in—-noise detection for the envelope
detector.

Rayleigh—Rice statistics were a good model of an envelope detector for tone-in—-noise detec-
tion, so Whitmore thought Rayleigh—Rayleigh statistics would be a good model for an envelope
detector of narrow-band noise. The task was modelled as increment detection of narrow-band
noise (assuming that either both the signal and masker noise were narrow-band, or a narrow—
band filter [critical band] operated on a wider-band noise process).

Whitmore et al. (1968) derived the psychometric function using Egan’s formulae for Rayleigh—
Rayleigh ROC curves and showed that

Asirc = (ai+a§)/(20?¢+a§) (1.13)

where o3; and o2 were the rms voltages of the masker and signal noises. This turned out to be
a special case of Green and McGill’s (1970) energy detector for W7 =1, which implied that for
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WT =1, the noise—in—noise energy and envelope detectors were identical.

Drga (1988) derived the 2IFC ROC curves and psychometric functions for the Rayleigh math-
ematical model and the negative exponential mathematical model. These derivations were based
on the SIFC derivations of Whitmore et al. (1968) and Egan (1975). The negative exponential
distribution is a strictly monotonically increasing transform of the Rayleigh distribution, and re-
sults in the same ROC curves for the SIFC task (Egan, 1975). Drga was interested in establishing
whether the 2IFC ROC curves and psychometric functions were equal for the two distributions,
because the negative exponential is easier to work with mathematically.

1.3.3 ldeal observers of narrow-band Gaussian noise

Egan and Clarke (1966) and Green and Swets (1966) both concluded that the experimental
results ruled out the cross—correlation (SKE) detector as a model of human performance, and that
either the energy or the envelope detector were better. McGill and Teich (1991) asked why a
real detector would not optimally detect tone—in—noise akin to a cross—correlation detector. One
answer is that this same detector also has to detect noise as well, thus only one mechanism is used
for detecting deterministic and non-deterministic signals. Birdsall (1960) also suggested a reason
for a human observer to use energy detection, rather than cross—correlation, for deterministic
signals, would be when the memory template is very noisy. In this case, an SKS observer would
be superior.

Green and Swets (1966) made the important point that the way noise is represented is funda-
mental to any development of an ideal observer. Subtle changes in representation may have major
effects on a detector based on that representation. Most criticisms of an ideal observer are directed
towards the representation of noise. They also believe that models of human hearing should be
parsimonious so that psychological mechanisms are not be invented for a phenomenon that can
be explained in the stimulus domain.

All of the models discussed in the previous section were remiss in at least one of the following
areas:

1. The derivations of the models were incomplete—either missing important details of the
waveform representation or of the detection statistics.

2. They did not define both bandwidth and duration. These definitions are vital, because the
degrees of freedom are specified entirely by their product: WT.

3. They were restricted to only W7 =1 or very large W7 and small signal-to-noise ratio so
that a normal approximation could be used.

4. Many underlying assumptions and approximations were left unspecified.

Focusing on the positive: Urkowitz (1967) provided probably the best description of wave-
form representation; Green and McGill (1970) and Egan (1975) did the best job of deriving the
detection statistics for arbitrary degrees of freedom; McGill (1967) and Pfafflin and Mathews
(1962) came closest with how they used and defined bandwidth and duration; and Green and
Swets (1966) did a reasonable job of outlining the effects of their assumptions. These positives
can perhaps be joined up to form a cohesive theory of energy and envelope detection.

The previous sections have described the theory of signal detectability, ideal observers, wave-
form representation, and some of the vast body of research into human hearing. This research
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project is a follow-on from Whitmore et al.’s (1968) noise—in—noise envelope detector, and Green
and McGill’s (1970) noise-in—noise energy detector. This section presents an overview of the spe-
cific mathematical detector assumed for this project. Because no theory exists for an envelope
detector of narrow-band noise with W7 > 1, the energy detector will be used as the main math-
ematical model, with comparisons made to the envelope detector when appropriate.

The current study focuses on the detectability of essentially band and time limited Gaussian
noise, which is masked by wider band (but same duration) Gaussian noise, thus a filter needs
to be explicitly included. For simplicity, the filter is assumed to be an ideal rectangular filter,
because incorporating more complicated filters is easier to do by simulation rather than math-
ematics. Later, the computational models will be compared to the mathematical models. The
concept of internal noise is not included, because the use of GOC analysis (introduced in Chap-
ter 2) reduces the effect of internal noise, and FORCE analysis allows the asymptotic performance
to be estimated.

WT and energy detection

Section 1.1.3 and Appendix A explained how the bandwidth—duration product characterised
the acoustical uncertainty principle and defined the dimensionality of the signal space. Because
WT is afundamental parameter in waveform representation, it is also a parameter in all stimulus—
oriented psychoacoustic theories.

Using an electronic analogy, the energy detector of narrow-band Gaussian noise, masked by
wider-band Gaussian noise, consists of a filter, square—law rectifier, and a true—integrator. It is
assumed that the filter has the same bandwidth as the S signals, and that the signal duration is
unchanged. The output of the integrator, at time 7, is proportional to an approximation of the
energy of the filtered signal. This model may be approximated electronically or computationally,
and, therefore, provides another way of modelling human hearing.

Evidence distributions

After filtering, the waveform can be represented approximately as a sampling of 2W7T points,
where each point is independently, identically, distributed (i.i.d.) as standard normals A/(0, o2).
This assumption is probably the weakest, because it does not take into account the windowing of
the signal in the time domain. From Section 1.1.3 and Appendix A, an essentially time-limited
and band-limited signal, with finite energy can be represented approximately by 27 indepen-
dent sample values.

As was discussed in Section 1.1.3, it is generally considered that the x? approximation for the
distribution of energy is adequate for psychophysical purposes. If this model is used, then an
energy detector can be derived that results in a non-standard x? distribution with 2T degrees
of freedom for the N event and a non-standard x? distribution with 2T degrees of freedom
for the SN event. If WWT =1 then Urkowitz (1967) suggested transforming to envelope statistics,
resulting in distributions that are Rayleigh. This distribution is meant to be the exact solution for
WT=L1. Itis in fact, however, a transform of a 2 distribution with two degrees of freedom, that
Grenander et al. (1959) showed to be not equal to the exact solution for the distribution of energy.

Egan (1975) showed how a vector of 2T normally distributed variates may be transformed
into a non-standard x? distribution with 2/T degrees of freedom. It is non-standard, because
the variances of the SN and N events are different.
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ROC curves and psychometric functions

Egan derived the y2 ROC curves from the appropriate y? distributions, using likelihood ratio,
along with related measures of detectability such as Agsrc (Egan, 1975, section 5.6). He also
showed that the hit rate and the false—alarm rate have the same form, but differ in the values of
the parameters (Egan, 1975, Appendix C.4, p. 239) . Specifically, the rate is given by one minus
the distribution function H (c), as a function of the criterion c:

WT-1
c/o

1— H(clo, WT) = exp <;—Zc> 3 (/)" (1.14)

7!
i=0

Egan only derived Asrc for the case of W7 =1, where he showed that the relationship be-
tween hit rate and false-alarm rate was power-law. For larger W7, he derived another measure
of detectability D, that is specific to the x? detection problem.

Green and McGill (1970) derived the more general measure of detectability, P(C)arc, for the
x? detector. This may be equated to Asirc through the relationship Asirc = P(C)arrc, Which
holds for a ratio decision rule in the 2IFC task for continuous random variables. There are in-
dications that this relationship also holds empirically for W7 =1 noise-in-noise signals (Laps-
ley Miller et al., 1999; Whitmore et al., 1968). Green and McGill (1970) gave the formula for the
psychometric function, P(C)2rc as a function of S and Ny, as

Asirc = P(C)arc
J=WT -1

Z VT -1 ( Np >j ( So + No >2WTj1 (1.15)
= 7\ S + 2Ny So + 2Np

where C is the combinatoric operator. If Ny is assumed to be unity then the signal-to—noise ratio is
equal to 10 log(So). A family of psychometric functions, for different WT, is shown in Figure 1.2(a)
for Asirc.

The psychometric function for D,, as a function of signal-to—noise ratio, may also be derived
by simply transforming Asirc using equation (1.1). The corresponding family, for different WT,
is shown in Figure 1.2(b), which has never before appeared in the literature.

There is contradictory evidence that the envelope and energy detectors result in the same
performance for W7 > 1. For the tone-in-noise task, Jeffress (1964, 1967, 1968) indicated that
the two detectors are equivalent for arbitrary W7 It is not clear whether this equality holds for
noise—in—noise detection, because there is no equivalent theory for arbitrary W7 . The results from
Marcum (1960), however, indicate that there should be a difference between the two detectors,
for both tone-in-noise and noise-in—noise detection, because there is a difference in the output of
square—law and linear rectifiers. This result, however, was based on the assumption that y and
x? were the underlying distributions. It is true that one may be transformed into the other. The
question is whether these distributions are accurate models for the noise process, especially for
small WT. At least for energy detection, the x? distribution is only an approximation.

A mathematical model of envelope detection for noise—in—noise is, therefore, more of a prob-
lem, because the theory has not been explicitly developed for this task for W7 > 1. By analogy,
it is likely that the energy and envelope ROC curves will be the same for noise-in—noise. This is
because the N evidence distribution is the same for tone-in-noise and noise-in-noise, and the SN
noise—in—noise evidence distribution is of the same form as the N evidence distribution. Thus, it
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Figure 1.2: Psychometric functions of (a) A, (after Green & McGill, 1970; McGill & Teich, 1991) and (b) D-,
from equation (1.1), for the x? energy detector, as a function of W7 and signal-to-noise ratio.
The lowest function is for WT =1/2, the next twelve are for WT =1-12, and the rest are in steps
of 5 for WT =15 to 50.

will be assumed, for the moment, that the same ROC curves underly both energy and envelope
detection. Deriving this mathematically is outside the scope of the current study. Instead, the en-
velope detector for noise-in—noise detection is evaluated with computer simulations (Chapter 4).

1.4 ldeal observers as models of human hearing

All of the energy and envelope detectors introduced in the previous section have WT as a
fundamental parameter. In other words, these detectors have bandwidth—duration reciprocity,
because detectability is the same regardless of the individual values of YW and 7. In studying
real observers, estimates of VW and 7 are also of interest, but only W7 may be estimated without
making large assumptions about how the observer filters and integrates waveforms. As a result,
researchers have had to be very crafty in their experimental designs and methods.

The energy and envelope detectors, as models for human hearing, have been modified as more
evidence comes in about how the human hearing system works. One way the energy detector has
been modified, for instance, was by incorporating an internal noise process. This process attenu-
ates performance to match that of a noisy human. Detectors have also been modified to have fixed
or unmatched filter bandwidths, various non-ideal filter shapes, fixed temporal integrators, and
various sampling strategies. This section firstly describes the initial testing of the ideal observer
models, then describes how some of these models have been modified, and compared.

Marill’s envelope detector

Marill’s (1956) envelope detector predicted the scale and slope of the human psychometric
function better than that predicted by the SKE model, although both models were unable to ac-
count for the location of the function. In other words, the human psychometric function was
attenuated relative to the theoretical function. Marill attempted to explain the location problem
by appealing to internal and external noise, and suggested the internal filter of the ear was wider
than the implicit filter of the ideal observer. His 2IFC experiments were confounded, however,
because he used no interval between the two observation intervals. This potentially caused inter-
actions between the signals in each interval.
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Green’s energy detector

Green (1960a) conducted two experiments to test his energy detection model: one that ma-
nipulated duration for a constant bandwidth of 3800 Hz, the other that manipulated bandwidth
as a function of one duration and a variety of centre frequencies. Results from the first experi-
ment indicated that except for the longest duration, performance was similar for all durations.
In general, performance was attenuated 5-6 dB from the theoretical, but the psychometric func-
tions were steeper. The data, however, are extremely noisy and it is difficult to pick any shape
out. Analysis at threshold indicated that performance was constant with duration. Results from
the second experiment indicated that performance was the same at all bandwidths, and all centre
frequencies, except for the highest, implying the ear is capable of manipulating its critical band if
it proves useful to do so. Green suggested that the small critical bands, estimated with tone-in-
noise studies, could possibly be added together to make filter banks that would effectively widen
the bandwidth.

Green suggested that his model was useful, because, except for one variable (attenuation),
performance was consistent with the model across most bandwidths, durations, and centre fre-
quencies. He inferred that the human hearing system could therefore match bandwidth, and
duration, and that the attenuation was due to some internal noise process. He could not, how-
ever, account for the steeper psychometric functions. Green, however, was only able to test large
WT signals. Considering Green and McGill’s (1970) subsequent psychometric functions for the
energy detector, the shape for large W7 values is very similar as W7 changes, thus, Green (1960a)
would not have been able to identify more subtle variations in detectability.

Although the energy detector has been subsequently modified and extended, this study is still
important. It was one of the first to systematically consider detectability of noise signals, as a
function of bandwidth and duration, and the data have been used as a baseline for comparison
ever since.

Pfafflin and Mathews’ energy detector

Pfafflin and Mathews’s (1962) research was influenced by Jeffress et al. (1956) and Sherwin,
Kodman, Kovaly, Prothe, and Melrose (1956), and they anticipated much of the research to come
in the 1960’s and later. For the tone-in-noise pedestal task, they compared the performance of
their ideal energy detector, implemented mathematically and computationally, with human ex-
perimental data. They found that the energy detector could account for many of the phenomena
associated with tone-in-noise pedestal experiments. They compared their energy detector model
with Green (1960a), and could account for the attenuated results two ways: (a) an energy detec-
tor with a very wide bandwidth and (b) an energy detector with a bandwidth nearer the critical
band estimates in the literature of around 200 Hz that had internal noise added to the test statistic.
Pfafflin and Mathews (1962) decided that the latter was more likely and used this model to test a
number of pedestal phenomena.

Jeffress’ envelope detector

Jeffress primarily used electronic simulations to test and develop his tone-in-noise envelope
detector, but he also compared his findings to the experimental results of other researchers. His
initial findings (Jeffress, 1964) indicated (a) that the SKS observer, which cannot use phase in-
formation, was a better model of tone-in-noise detection for human observers than the SKE ob-
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server, (b) that there was empirical evidence against threshold models, and (c) there was weak
evidence that the ear adjusted the filter bandwidth with longer signal durations (commensurate
with Hamilton, 1957).

In considering the task of detecting a gated signal masked by continuous noise, Jeffress used
an electronically simulated envelope detector to account for the results of Green et al. (1957). The
simulation consisted of a narrow-band filter, half-wave rectifier, and a leaky integrator with a
short time constant. The best performance of the simulation occurred at a duration equal to the
reciprocal of the bandwidth of the filter, but the results were not consistent with Green et al. (1957).
When he increased the time constant of the integrator, performance became similar to Green et al.
(1957). According to Gilkey (1981), Jeffress (1964) considered an adjustable critical bandwidth,
but by his later papers felt he could explain the data of Green et al. (1957) without appealing to
the ‘questionable’ hypothesis of an adjustable bandwidth.

Jeffress (1968) suggested that the differences between ideal and human performance were that
(a) the human observer used different auditory bandwidths and time constants, (b) the human
data were noise degraded from observer inconsistency, and (¢) humans used different sampling
strategies. He suggested that the statistics of sampling at the end of the integrator, compared with
the maximum of the integrator, would not differ very much, and would probably not show up
in a psychophysical experiment. The observer would, however, respond differently to the same
stimuli under each strategy.

Jeffress (1968) considered the role of duration in tone—in—noise detection by fitting the xy model
to the output of the electronic simulation, and to human performance. It was relatively straight-
forward to establish the appropriate W7, but next to impossible to establish YV or 7 without mak-
ing gross assumptions about one or the other. Jeffress assumed that duration was determined by
the integration time, and not by the duration of the original waveform for long durations (where
the integrator has ample time to saturate). For short duration signals, he admitted the effective
duration was more dependent on the original waveform, but that it was difficult to specify. Jef-
fress had trouble working out an appropriate value for 7, because the leaky integrator output
was not necessarily proportional to duration. If 7 was equal to the original signal duration, per-
formance should have improved as signal duration decreased, for constant signal-to—noise ratio.
This did appear to occur, but it was not known whether it was due to a reduction of WT, the
narrow filter, or both.

Jeffress (1968) concluded that (a) monaural detection of tone-in—noise in continuous noise was
best modelled with a modified non-central x distribution (of which the Rayleigh-Rice distribu-
tions are a special case), (b) the time constant for monaural detection was about 50 ms, which
implied an effective integration time of about 140 ms, (c) the effective signal duration for signals
shorter than the effective time constant, was shorter than the absolute signal duration, which
meant the effective signal-to—noise ratio was less than that computed using absolute signal du-
ration, and (d) the assumption of a 50 ms time constant gave 50-70 Hz estimates of the critical
band.

Whitmore and Drga’s envelope detector

Whitmore et al. (1968) evaluated the noise-in—noise envelope and energy detectors two ways:
by comparing the tone-in-noise and noise—in—noise detector in SIFC and 2IFC experiments, and
by comparing the noise—in—noise detector for three different values of W7 in a 2IFC experiment.
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The ROC curves for the tone-in-noise versus noise—in—noise experiment were well fitted by the
traditional normal-normal equal variance model (they did not show if the Rayleigh model fitted),
but the empirical psychometric functions were definitely not well fitted by the normal model. In-
stead they found that the human data were well described by the W7 =1 psychometric functions,
for tone-in—noise and noise-in—-noise, except for an attenuation factor. John Whitmore has kindly
let me reanalyse his data. Figure 1.3 shows these data transformed from Agirc and P(C)arrc into
d’' compared with the theoretical functions. The SIFC empirical psychometric functions are less
noisy, because the data were collected using a rating scale experiment. This decreases the error
when calculating Agirc using the trapezoidal rule.
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Figure 1.3: Psychometric functions of d’ as a function of signal voltage (assuming ox=1) for each observer
in (a) the SIFC rating experiment and (b) the 2IFC binary—choice experiment in Whitmore et al.
(1968). Psychometric functions for each observer are translated with a multiplicative constant
until they fall on the theoretical functions (dashed line and open symbols are tone-in—noise, solid
line and closed symbols are noise-in—noise).

Whitmore (1969) ran a 2IFC noise-in—-noise experiment, where the duration was varied for
the same bandwidth, to produce narrow-band noise signals with nominal values of WT=1/2, 1,
and 2. A surprising result was that all the empirical psychometric functions were best fitted by
WT =1, regardless of whether the signals were W7T =1/2, 1, or 2. This suggested that the human
hearing system could not accommodate the changes in duration—perhaps implying that it used
a fixed bandwidth and a fixed integration time—regardless of the signal. This finding was not
consistent with the literature, but Whitmore (1969) did not offer a reason why.

John Whitmore kindly allowed me to reanalyse his data from this experiment as well. Plotted
in Figure 1.4 are the theoretical psychometric functions for each WT, attenuated to best fit the data
for each observer. It does indeed appear to be the case that W7 =1 is the best fitting model for all
data sets. The data set for the longest duration (representing a nominal W7 =2) fall between the
theoretical for WT=1/2 and 1. This is strange because it theoretically should have resulted in the
steepest psychometric function.

Some computer simulations were run, using Sim 10 (Chapter 4; Lapsley Miller, 1998c) to see
if the signal generation method Whitmore (1969) used could result in signals with the nominal
parameters of W7 =1/2, 1, and 2. No evidence was found that the technique used by Whitmore
(1969) could have resulted in signals with W7 < 1. This is backed up by Laming (1986) who
said that WT =1/2 existed only as a mathematical formula and did not have any physical inter-
pretation. The most likely explanation was that when the signal duration was reduced, using a
rectangular gate, the frequency spread, resulting in a waveform with W7 > 1. Whitmore then
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filtered this short transient to shape it in the time domain. Because the signal was so short, the
filter possibly warped the signal even more. This occurred because filters and gates are only ca-
pable of resolving a waveform to a minimum WT, which is generally greater than unity. For
the longer duration signals, the filter-shaping procedure may have reduced its effective duration.
Indications from the simulations were that all the signals had a very similar WT, between 1 and
2, but with different bandwidths and durations.

If the bandwidths of the observers’ auditory filters were dependent on duration, then the
longer duration condition may have been filtered using a narrower filter, and, therefore, reduced
the effective W7 . Thiswould also decrease the signal-to—noise ratio. In support of this possibility,
the attenuation for this condition was about 5 dB greater than for the 17.8 ms ()7 =1) condition.
Further computer simulations, this time modelling non-ideal energy and envelope detectors, us-
ing parameters estimated from a human observer in the current project, resulted in somewhat
similar results. In particular, one combination of parameters did result in a shallower psychome-
tric function for the long duration signals. The purpose of the simulations was to show there was
at least one other possible set of circumstances that could give Whitmore’s (1969) results, aside
from the ear operating with a fixed WT.
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Figure 1.4: Attenuated theoretical psychometric functions, for each observer, and for three different signal
durations, from Whitmore (1969).

1.4.1 Stimulus-level analysis

Green (1964a) made a distinction between what he called molar psychophysics and molecular
psychophysics. Molar psychophysics uses averages of sets of responses to large numbers of stim-




38 1. Human hearing

uli, whereas molecular psychophysics studies performance on a stimulus-by-stimulus basis. He
described the advantages of the molecular approach as including the ability to test a hypothesis
(a) that may not predict a difference in detectability at the molar level, or (b) when not enough
data can be collected to test at a molar level. Gilkey (1981) and Gilkey and Robinson (1986) added
that the molar approach to psychophysics assumes that different models can be distinguished
solely on the shape of their ROC curves and psychometric functions. But, Gilkey argued, this
assumption does not hold up because (a) differences between the evidence distributions may be
small, (b) variability in human data swamp small differences between models, (c) ROC curves
and psychometric functions are not necessarily sensitive to changes in distribution shape, (d) two
different distributions may produce the same ROC curve, and (e) that many models perform at a
much higher level than humans. He suggested that a molecular approach may be better able to
address these issues.

Green (1964a) thought that the problem facing molecular psychophysics was that observers
were not consistent in their responses, when presented with the same stimulus. He tested some
of his predictions experimentally using taped waveforms so observer consistency could be mea-
sured, and estimated that the ratio of internal to external noise was unity. Molecular analysis
required, according to Green, that the effects of non-stimulus variables on the response must be
predictable. He believed that predictability was limited by internal noise, because its influence
could not be directly measured. An alternative approach is to remove these effects. To do this,
stimuli are presented multiple times and responses are averaged across the same stimulus to re-
move error (Ahumada, 1967; Gilkey, 1981; Gilkey & Robinson, 1986). The responses can then
be compared with responses from an ideal observer—usually a computer simulation—that has
been presented the same stimuli. By using simulations, the model can be tweaked until both the
simulation and the human are responding in a similar way.

Sherwin et al. (1956) were the first to construct an electronic-analog—model (EAM) simulation
for human hearing. Their true—power detector consisted of a band—pass filter and a square—law
rectifier, followed by a leaky integrator with various time constants. Sherwin et al. (1956) at-
tempted to measure hit rates and false-alarm rates, but, because they did not have well defined
observation intervals, they had to guess when N events occurred. Although they talked about
correlations, in fact they built up histograms of responses for both the EAM, and the humans, and
compared the hit and false-alarm rates. They found that although the EAM and humans had a
similar hit rate (because the criterion for both was set to achieve this aim), the false-alarm rate for
the humans was half that of the EAM. They concluded that their model was an appropriate one
for human hearing, but their filter bandwidth was probably too wide.

Pfafflin and Mathews (1966) used digital computers to generate sets of reproducible noise—
some of which had tones added. Prior to this time, noise waveforms were irreproducible, or
taped, which had unacceptable noise and distortion characteristics on playback. Spectral analysis
was performed on the waveforms so that the energy could be calculated within a 100 Hz width
around the tone. The relative energy difference was calculated between pairs of stimuli, and this
statistic was used as the independent variable. Human experiments using the same stimuli were
run repeatedly and the proportion of correct detections for each stimulus pair was plotted against
the energy statistic. Results from the different conditions all indicated that P(C') increased with
increasing energy difference, thereby discounting the cross—correlation detector, but supporting
the energy detector.
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Ahumada’s filter bank theory

Ahumada (1967) varied the filter bandwidth of an EAM energy detector to establish which
bandwidth had the highest correlation with human performance for the same tone—in-noise stim-
uli. He repeated the experiment four times using the same stimuli and calculated the sum-of-
ratings for each stimuli over each, and all, observers. The sum-of-ratings for each stimuli was
then correlated with the energy-statistic from the EAM. The stimuli were 500 Hz tonal transients.

He estimated the energy passed by the EAM for each stimuli, and the sum-of-ratings to a
“Yes”-*“No” rating scale for each stimuli. He then calculated hit and false-alarm rates and d’,. 1
Two observers performed worse than the EAM with no filter, and the other two performed as
well as the EAM with a bandwidth of around 100 Hz. Ahumada used only 33 SN stimuli and 27
N stimuli, therefore, sampling variability was high.

Ahumada found the curious result that human data, for SN stimuli, were best correlated with
an EAM bandwidth of about 40 Hz, but the N stimuli were best correlated with a much wider
bandwidth. Similar results were obtained in a replication of this experiment with new stimuli
(Ahumada & Lovell, 1969). Ahumada suggested this may be because the ear is better modelled
by a bank of filters. For the SN stimuli, the bulk of the energy would always be in one filter,
and thus would be more highly correlated with a narrow bandwidth. But for N stimuli, the best
correlation would be for the bandwidth that covered the range of filters being monitored in the
filter bank. He also suggested that instead of a filter-bank, there was frequency sharpening at
higher signal-to—noise ratios, that is, the bandwidth of the filter decreased with increasing signal
levels.

Ahumada continued the same line of investigation, but with more stimuli and with a deeper
level of analysis (Ahumada & Lovell, 1971; Ahumada, Marken, & Sandusky, 1975). They found
higher correlations, using an energy model, for 8N stimuli compared with N stimuli, again sug-
gesting the observers’ bandwidths may be wider on N trials. They also found evidence that some
energy bands had negative correlations for SN stimuli. They did a similar analysis to Ahumada
(1967) by correlating the output of non-optimal energy detectors (single-tuned filter, square-law
rectifier, and full integrator) with the observers’ sum-of-ratings. The detectors were non-optimal,
because the filter bandwidth was not matched to the signal, and the integration time was not nec-
essarily over the entire duration of the signal. They found that (a) N stimuli resulted in higher
correlations if the energy detector had a wide bandwidth and long integration time compared
with the SN stimuli, (b) SN stimuli resulted in much higher correlations than N stimuli, but (c) if
stimuli from both events were analysed together, then the correlations were slightly higher again.
The best energy detector was the one most correlated with the N stimuli—a surprising result
given the 8N stimuli had higher correlations, but some of the differences in the correlations were
tiny.

They then calculated FFTs of subsections of the stimuli (in a time and frequency matrix) and
correlated the energy in each region with the observer sum-of-ratings, over eight replications.
They found negative correlations in the regions outside of the signal in time and frequency for
SN stimuli, but not for N stimuli. This implied a lateral suppression mechanism. They also found
the extremely wide bandwidth estimates for N trials only occurred if the noise was gated, rather
than continuous. They surmised that the observer searches for a pattern of temporal and spectral
changes, rather than just an overall increase in levels, by negatively weighting the information

24! is a measure of detectability estimated from the negative diagonal of an ROC curve (Green & Swets, 1966). It is
equal to ¢ if the underlying distributions are normal with equal variance.
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preceding the tone in time, and outside of the frequency band where a tone could be presented.
Thus, the filter bandwidths and integration times for N stimuli were wider and longer than for
8N stimuli, because the observer was searching for these changes through time and frequency.

Wilcox (1968) followed up Ahumada’s (1967) suggestion of modelling tone-in—noise detection
with a filter bank and energy detector, and compared it to the linear—uncertain model, which
Wilcox had derived. The idea was to model the uncertainty of the observer as to the exact form
of the signal to be detected. The model consisted of a weighted sum of a linear and a quadratic
function of the input waveform. Special cases were the energy and envelope detectors.

The linear-uncertain model assumed large W7, and incorporated observer uncertainty using
an internal noise model. As uncertainty increased, if the internal specification of the signal was
poor, the observer behaved more like an energy detector; as uncertainty decreased, the observer
behaved as a pure linear (SKE) detector. An important difference between the models was that
the correlation between a noisy linear-uncertain observer and an electronic energy detector that
received only noise, was never less on N trials than on 8N trials. This was the opposite of what
was predicted by the filter-bank model.

Wilcox (1968) compared the filter—bank and the linear—uncertain models by correlating the
human responses with the output of computer simulations. He found that the linear-uncertain
model, and its special cases, could not account for the human data for monaural experiments.
Ahumada’s (1967) filter—bank model, however, was better able to account for the human results,
though not in all cases.

Wilcox (1968) also compared the performance of an electronic cross—correlation detector, an
electronic energy detector, and three human observers in a tone-in-noise task. There was no cor-
relation between the human observers and the cross—correlation model. Correlations were higher
for 8N trials, compared with N trials, for human observers and the energy detector, thereby giving
support to the filter-bank model. The filter—bank model could not predict human performance
when the signal presentation interval was shortened, but Wilcox did not take frequency spread
into account.

There appears to be some empirical support for the filter bank model, however, it is possible
the evidence may be a result of interactions between a filter with a fixed bandwidth (for N and SN
signals), and the 8N signal bandwidth and spectrum shape. Also, only a few filter bandwidths
were usually tested in these simulations, leaving the possibility that the maximum correlated
bandwidth is somewhere between the tested values. Chapters 4 and 5 follow up this alternative
scenario in more detail.

Gilkey’s comparison of tone-in-noise detectors

Gilkey modelled human tone-in-noise detection with computer simulations (Gilkey, 1981;
Gilkey, Robinson, & Hanna, 1985; Gilkey & Robinson, 1986). He hoped that using molecular
psychophysical methods to study human hearing would enable him to make distinctions between
competing models that predicted the same or similar performance at a molar level. He used
a quasi—-molecular approach where the same stimulus was presented on several trials and the
average response calculated and compared to various computational detectors. By averaging
responses for the same stimulus he was able to reduce internal noise such that the parameters of
the stimulus could be used to predict performance. His approach was influenced by molecular
and quasi—molecular research of Ahumada (1967), Ahumada and Lovell (1971), Ahumada et al.
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(1975), Green (1964b), Pfafflin and Mathews (1966), Sherwin et al. (1956), Watson (1962/1963) and
Williams and Jeffress (1967).

Gilkey observed that all these previous studies assumed only one type of model—usually the
energy detector—so he compared empirical results from human observers with envelope, energy,
and other detectors. To do this he used a flexible computer simulation for tone-in-noise detection,
where the signal duration was shorter than the noise duration, and the signal bandwidth was
narrower than the noise bandwidth. He used a narrow-band single-tuned digital filter, a half-
wave or square—law rectifier, a leaky integrator with variable time constant, and various sampling
strategies (average over the signal or noise duration, end of signal or noise duration, or maximum
over noise duration). By choosing different combinations, different detectors were implemented.

The human data were collected from a binary—choice, SIFC, tone-in—-noise experiment using
reproducible stimuli presented multiple times at two different signal levels (Gilkey, 1981; Gilkey
etal., 1985). The number of stimuli per event was 25, but each stimulus was presented between 78
and 198 times. Thus, at the molar level, sampling variability, due to the small number of stimuli
per event, would be so huge as to negate any conclusive analysis, but at the molecular level, the
reduction of noise greatly enhanced the ability to predict stimulus-by-stimulus performance.

The measure of detectability used for the human experiment was the proportion of “Yes”
decisions for each, individual, noise stimulus, with and without the addition of a tone. The hit
rate (with the tone) or false-alarm rate (without the tone) for each noise signal could then be
calculated and plotted as a single point in the ROC space. The decision variable of the simulation
was converted to the predicted proportion of “Yes” decisions by using a logistic approximation
to the cumulative normal. The least-squares fit of the obtained proportion of “Yes” decisions and
the predicted proportion of “Yes” decisions, was used to get a goodness—of-fit statistic.

As expected, the results of the molar analysis on the human data were hugely variable. Gilkey
presented the mean ROC results, but did not use the sum-of-ratings to generate GOC curves (see
Chapter 2). He then compared the molar ROC points with the molecular ROC points (for each
stimulus) and noted the huge variability of the latter. He suggested that the average ROC point
did not summarise the data. This is, presumably, because he compared error degraded points to
points where error had been removed (see Chapter 2). If the observer had no internal noise then
the ROC points for each stimulus would fall only on corners of the ROC space. Instead the points
were spread throughout the ROC space.

Gilkey compared virtually every combination of filter bandwidth, rectifier, integrator time
constant, and sampling strategy with the human data, and the N and SN events were analysed
together. The results showed (a) an interaction between type of integration and type of sampling
strategy, (b) that the best correlation was when the bandwidth was around 50 Hz, and (c) that
half-wave rectification was more effective at predicting the results than square—law rectification.
The two best used integrators and sampling strategies that either (a) had a short integrator time
constant and then averaged over the integrator output, or (b) had a long integrator time constant
and took the maximum of the integrator output.

Gilkey then focused on analysing specific models from the literature. The envelope detector
consisted of a narrow filter, half-wave rectifier, leaky integrator with a short time constant (1 ms),
and sampling at the end of the signal interval. The leaky integrator detector differed from the
envelope detector by having a longer time constant for the integrator of 50-100 ms. The energy
detector consisted of a filter, square—law rectifier, leaky integration with a very short time con-
stant, and average sampling. This approximated true integration.
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Results from the envelope detector with a short time constant did not agree at all with the
experimental results. Better fits were obtained by changing the sampling strategy of the integrator
to coincide with the end of the signal duration, or to average the integrator output over the signal
duration. Results from the leaky integrator detector were improved by changing the sampling
strategy from the end of the signal to the maximum value over the entire duration of the noise
masker. The energy detector’s performance was also comparable to the other simulated detectors.

Gilkey also found that the performance of two other detectors was more correlated with the
performance of the human observers than any of the other standard detectors. Model 1 was better
than the energy detector (which differed only in the form of the rectification) and the envelope
detector (which differed only in the time constant). It used a 50 Hz band-pass filter, a half-wave
rectifier, a leaky integrator with a 0.1 ms time constant, and sampling strategy of the average
value of the integrator output over the signal duration (thereby approximating true integration).
Model 2 consisted of a 50 Hz filter, half-wave rectifier, leaky integrator with a 200 ms time con-
stant, and a sampling strategy of taking the maximum output over the masker duration.

The performance of the two best detectors was very similar. Gilkey did not think this was
surprising, because his research showed high correlations between the predictions from these dif-
ferent models. None of the results of the goodness—of-fit tests with the human data, however,
were very high. Gilkey acknowledged this, so performed split-half correlation tests, which in-
dicated that much of the human variability was potentially explainable. Therefore, he looked at
multiple detector models where spectral and temporal weighting functions were calculated. If
only the part of the signal around the centre frequency and within the signal duration was used,
then the other spectral or temporal weights would be zero. They were not, in fact some were
negative, suggesting a process analogous to lateral inhibition or suppression.

A further finding was that changes in the filter bandwidth did not markedly change the cor-
relation between observers. Gilkey suggested that the human critical band may vary from trial-
to-trial. Using simulations, however, Gilkey showed that even a fixed bandwidth model could
produce similar results. Further analysis, using the best fitting simulation to test patterns of cor-
relations against other models, indicated that unless the model fitted the data perfectly, there
would likely be a difference found between SN and N events. Particularly that SN filter band-
widths would be underestimated and N bandwidths overestimated.

1.4.2 Experimental evaluations of the simple detection models

A number of studies have shown that the ideal energy or envelope detector models are not
sufficient to explain human hearing. On one hand they appear too simple because they are deaf
to fine details in acoustic waveforms and, on the other hand, too complex because they are able
to adjust their bandwidths and time constants to optimally fit the signal. This is not surprising,
because the original aim was to develop parsimonious explanations for the simplest detection
problems. This section covers a variety of studies that focused on the detectability of complex
or Gaussian noise signals by humans, and considers whether the simple detection models are
sufficient to explain the experimental findings.

Studies that manipulated both YW and T

Creelman (1961) was interested in studying the combined effect of YV and 7 on detection. The
signals he chose were repeated damped sinusoids with a damping period of 10 ms, durations that
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were multiples of this period (10-200 ms), and five damping rates. The pre-damped frequency
was 500 Hz, but he does not specify the frequency characteristics of the actual waveforms pre-
sented to the observers. By examining Creelman’s graphs, the W-7 matrix of conditions and
results can be created (studying W7 was not the focus of his study). There were only a few con-
ditions where the same W7 was used. The first experiment resulted in two observers producing
the same performance for the two W7 =1 and W7 =2 conditions, but W7 was not traded in the
larger WT conditions. The third observer was more variable. In the second experiment, con-
stant performance was found for W7 =2 and 16 for one observer, and WW7 =2 and 4 for another
observer; otherwise performance decreased as duration increased and bandwidth decreased.

Michaels (1961) suggested that an envelope detector would be a good model for his intensity
discrimination experiment using narrow-band, short-duration, noise. He had sixteen conditions
of four bandwidths (0.5, 2, 8, and 32 TdB Hz) and four durations (32, 128, 512, and 2048 ms). It
is unlikely the resulting signals had these properties because it is extremely difficult to generate
signals with W7 < 1. He implicitly claims to have V7 =0.016, 0.064, and 0.0256, but this is prior
to creating the transients with a relay system. This would have increased the actual bandwidth
presented to the observers considerably. Michaels did not analyse his data with respect to WT,
however, it is possible to pick out W7 combinations for comparison. The conditions with WT < 1
and WT > 16 were ignored, because they did not include enough combinations for comparison.
The conditions for YWWT =1 and 4, indicated however, that the difference limen tended to decrease
with increasing duration, and to decrease with increasing YW7 . These patterns are only apparent
when averaged across observers.

Majernik, Konecny, and Nehnevaj (1978) studied detection of noise signals by varying both
bandwidth and duration. They used a Same-Different task, but although the two stimuli in a
trial were contiguous, there was no inter-stimulus interval. Therefore, like Marill (1956), there
was a confounding of forward and backward masking. The transients were gated with a rectan-
gular gate, then filtered with bandwidths equal to integer critical bands, but the way the critical
bandwidths were measured was not mentioned. Majernik et al. (1978) found a strong duration
effect, where short durations had much larger difference limens than long durations. This was
interpreted as due to the increase in W7 as duration increased. The difference between the one-
critical band and three—critical band stimuli was a small constant difference in the difference limen
over all durations, with no interaction. They also found a small effect at short durations indicating
that the observers’ critical bandwidth may have widened.

Raab and Goldberg (1975) studied intensity discrimination of reproducible noise as a function
of intensity, bandwidth, and duration. Their aim was to compare three models of intensity dis-
crimination (Green’s (1960a) energy detector, McGill’s (1967, 1971) counting model, and Penner’s
(1972) counting model) with the performance of real observers. The three models all predicted
bandwidth-duration reciprocity, but they found that there was no reciprocity for the conditions
they studied, and concluded disparagingly that the results were “...an embarrassment for all
three models...” (Raab & Goldberg, 1975, p. 442). Bandwidth and duration were not treated
symmetrically by the auditory system, with results being largely independent of bandwidth, but
dependent on duration.

The values of WT, however, were all very large (5, 50, 158, and 500) and may have exceeded
the critical band or temporal integration time of the ear. Their conclusions about bandwidth-
duration reciprocity were also made only for W7 =50, and only for two combinations: ¥//=5000 Hz
and 7=10 ms, and WW=500 Hz and 7=100 ms. Despite these issues, it does seem that there is some
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evidence that bandwidth and duration were treated differently by the hearing system, because
although the noise signals were all equal in energy, they did not result in equal detectability.

Hanna (1984) also looked at reproducible noise as a function of bandwidth and duration. He
hypothesised that the discrimination of two noise bursts should increase as either bandwidth or
duration increased (while keeping signal-to—noise ratio equal; energy increases). Hanna found
that performance increased as duration increased up to 25 ms, but that an increase in bandwidth
increased performance only slightly. For the very short duration signals (0.1 ms—6.4 ms), the
nominal W7 was 0.005, 0.02, 0.08, and 0.32. The problem was that duration was defined before
filtering. After filtering, the effective W7 would be considerably bigger; at least unity. Hanna also
used the normal model, which is inappropriate for small W7 . Therefore, Hanna’s conclusions are
unfounded.

van den Brink and Houtgast (1990) considered spectro-temporal integration of windowed
tones, and other more complex signals, by estimating temporal integration as a function of band-
width, and spectral integration as a function of duration. Their first experiment indicated that
the long—duration, wide-band signal was the most difficult to detect and that the short-duration,
narrow-band signal was the easiest. The second experiment considered six different combina-
tions of W7 =1 band-pass, impulse response, signals. They found that as bandwidth increased,
and duration decreased, that the masked threshold increased. It appeared that for the three
narrow-band and long—-duration signals that the masked threshold was about the same. The
final experiment tested the two extremes from the second experiment by widening the band-
width of the narrow-bandwidth long-duration condition and lengthening the duration of the
short-duration wide-band condition. They achieved these signals by grouping windowed tone
components. The overall effect was the required spread in duration and frequency (either by
randomly choosing or sweeping the position of the tones). They hoped to measure the critical
bandwidth for temporal integration and the critical time window for spectral integration. For the
fixed duration condition, they found that once the bandwidth increased beyond 1/3 octave that
thresholds increased. For the fixed bandwidth condition they found a critical masking interval
of about 30 ms. They found that efficient integration occurred if the signal was restricted to 1/3
octave bandwidth and was within 30 ms. Integration still occurred for signals outside of this
region, but it was less efficient. Their results are difficult to interpret, because they did not use
a theoretical observer to compare performance for these complex signals, although they assume
that energy is the appropriate quantity for detection.

Formby, Heinz, Luna, and Shaheen (1994) used noise bursts to study detection of speech-like
sounds. They were particularly interested in how noise signals were integrated over time. They
used Green’s (1960a) model of noise detection, but modified it to include the case when the sig-
nal bandwidth was narrower than a critical band. They compared fixed and random level gated
maskers and tested detectability of noise signals with bandwidths from 62 to 4000 Hz (in octave
steps), centred at 2500 Hz, and durations from 10 to 480 ms. They did not say how and when
bandwidth was measured. It is likely bandwidth was measured prior to gating (with a raised
cosine window), thus their estimates of W7 would be wrong—especially for the short duration
signals. The condition of 10 ms and 62 Hz would probably have a bandwidth over 100 Hz, for
instance. Unfortunately, without this information it is difficult to interpret their findings. In gen-
eral, they found evidence of a critical band of around 500 Hz. They also found that the human
hearing system does not act like an ideal constant-)V7 detector, because performance is atten-
uated as duration increases and as bandwidth increases, but with no major interaction between
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them. A further problem is in using Green’s model, which is only applicable to large WT, about
30% of their conditions had a W7 nominally smaller than this requirement. Thus, their multi-cue
model is suspect because it is based on faulty premises.

Adjustable critical bands revisited

In extending the work by Raab and Goldberg (1975), Schacknow and Raab (1976) found evi-
dence that the critical band was flexible, but it did not match the signal bandwidth. They devel-
oped Green’s (1960a) large-W7T noise detection model to account for the case where the signal
bandwidth was narrower than the masker bandwidth. This extension, however, relied on a nor-
mal approximation, and was, therefore, valid only for large W7 . Schacknow and Raab (1976)
realised this, but still felt obliged to offer many other reasons as to why human observers did
better than the theory in the W7 =10 condition.

Bernstein and Raab (1990) further extended the work of Schacknow and Raab (1976) by con-
sidering the effect on critical band estimates as signal bandwidth (but not duration) was varied.
They used a modified energy detector to compare results where the energy detector’s perfor-
mance was degraded due to internal noise. From experiments using tones and noises in gated
and continuous maskers, they found that the critical bandwidth was rather wide (on the order of
hundreds of hertz) and varied as the signal bandwidth varied. The critical band did not, however,
vary to match the bandwidth of the signal. It tended to always be wider than necessary. The crit-
ical band estimates were also narrower in the continuous masker condition. Bernstein and Raab
(1990) suggested that this may be due to off-frequency listening, which could only be beneficial
with continuous maskers.

Bernstein and Raab (1990) interpret their findings as indicating that the filtering inherent in the
human hearing system is adjustable. They suggest that the term “detection bandwidth” should
be used to refer to the internal filter bandwidth estimates, and that the term “critical bandwidth”
should, therefore, be reserved for the smallest estimate of the detection bandwidth. They also
suggest that the wide detection bandwidths are made up by summing across critical bandwidths.
The reason why they are wider than the signal bandwidth, they postulate, is to enable some form
of lateral suppression or inhibition perhaps similar to that postulated by Houtgast (1974).

Bernstein and Raab (1990) consider only Green’s (1960a) energy detector model. This model
is only suitable for large W7 and small signal-to—noise ratio. They claim that the Gaussian ap-
proximation is not badly violated by small W7, but they give no reason why they do not use the
x? model instead.

Models incorporating internal noise

de Boer (1966) extended Green’s (1960a) energy detector model for noise signals, by including
the concept of internal noise. He stated that although frequency resolution and temporal integra-
tion are modelled as different processes, the slowly modulating temporal aspects of narrow-band
noise maskers detract from locking onto the appropriate frequency range. This makes separating
out the effects of time and frequency processes difficult. Instead, Boer suggested that if narrow-
band noise signals and wide band noise maskers were used, frequency resolution was easily
shown. At the time it was not well known how the auditory system dealt with wide-band noise
signals, so this study compared performance with both types of signals.

de Boer (1966) derived an average intensity detector, which was essentially the same as the
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energy detector of Green (1960a), except that it was not applicable for very large W7 (but did not
specify how large), as it implied too fine a discrimination compared with experimental evidence.
de Boer also included internal noise as a way of accounting for the human experimental data. The
statistics of his model were based on normal distributions, with either equal or unequal variance.
His data analysis was somewhat dubious, because it relied on a number of arbitrary assumptions
relating to assumed integration times, and a threshold difference limen based on d'. His analysis
also assumed that the human hearing system matched the signal bandwidth.

de Boer (1966) tried to explain both his own data and those from the literature that gave rise
to psychometric functions with different slopes, but again the analysis assumed a normal model.
He also suggested that for wide-band signals, the critical band is ‘turned-off’, and that for short
duration signals, the temporal integrator is switched off too. Overall, his data are consistent with
his theory for long duration noise, but not for short noise bursts.

Henning (1967) also considered a different energy detector; one that did not predict perfect
performance for very large signal-to—noise ratios and arbitrarily small differences in frequency
(in a frequency discrimination task). The resulting model slowly varied the centre of the filter
such that it could be modelled as a random variable. This variation is a form of internal noise.
Henning was able to account for some psychophysical data for both frequency and amplitude
discrimination, but could not account for amplitude detection. His data were so noisy that it was
unclear if the model was useful or not.

Ronken (1969) considered the detectability of Rayleigh noise, which he considered a compro-
mise between tones and wide-band noise. The noise was generated as tonal transients, with each
sample having a random amplitude, because Rayleigh noise was considered to have a constant
amplitude over short durations. He compared his results to Green and McGill’s (1970) energy de-
tector and found only a 0.7 dB attenuation over a wide range of signal levels. His signal-to—noise
ratio measure, however, was not 10log, (03 /03%;); instead Ronken defined signal-to—noise ratio
as 10log; (02, /0%). The difference in attenuation is not constant with changes in signal power,
but at higher signal levels the difference is minimal.

Hautus and Irwin (1992) followed up the research by Ronken (1969) and Whitmore et al.
(1968), which had given contradictory results: Ronken found attenuations of human data from
the theoretical of only about 1 dB, whereas Whitmore et al. found a 5-6 dB attenuation. The differ-
ence between the two studies was in the type of signal used. Whitmore et al. used narrow-band
noise generated using electronic filters. Ronken used sinusoids distributed with a Rayleigh distri-
bution. This required the assumption that the amplitude of transient Rayleigh noise is constant,
but is variable across a set of transients. A further difference was that Whitmore et al.’s signals
were 10 ms in duration and 100 Hz wide whereas Ronken’s were 100 ms in duration and therefore
approximately 10 Hz wide (assuming reciprocal spreading in the frequency domain). These dif-
ferences aside, theory would predict approximately the same level of performance. Hautus and
Irwin (1992) replicated these experiments and found that the best fitting psychometric function,
averaged over three observers, was when W7T=1/2. The ROC curves, especially for the noise
signals, were best fitted with a much larger W7 . Furthermore, attenuation in each experiment
was on the order of 4 dB.
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Distractor and probe experiments

Kaplan (1975) compared Green’s (1960a) energy detector model with Ahumada’s (1967) energy-
contrast model by using tone distractors in either the SN or N trials of a 2IFC 500 Hz tone—in—noise
experiment. His aims were to estimate the critical band by varying the distance of the distractor
from the tone, and differentially test the predictions of the two energy models. One distractor
was presented on each trial at an intensity 3 dB down from the observer’s threshold. Distractors,
which changed the threshold for the 500 Hz—200 ms tone were interpreted as indicating the width
of the critical band. The estimate of the critical band was 80 Hz, but that depended on interpola-
tion. Simulations using the two models showed that Green’s model was able to account for the
findings, but the energy—contrast model could not.

Moore, Hafter, and Glasberg (1996) used a probe signal method to test the auditory filter
width. The results indicated that probes were more detectable if only one auditory filter was
attended. (Dai, 1991; in Moore et al., 1996) made a distinction between the filter characteristics
measured using the probe signal method, and that using notched noise. The former he called
the “attention” bandwidth, because it represented the effective bandwidth through which the
observer listened. This may be the result of the combination of multiple auditory filters.

Wright and Dai (1994b) used the probe signal method to estimate the auditory filter band-
width, as signal duration was manipulated. The resulting probe-signal-contour (PSC) function
(in decibels as a function of frequency) resembled the shape of the auditory filter for long dura-
tions. Short durations, however, resulted in much wider PSC functions than long durations, but
a notched-noise experiment indicated that the auditory filter was in fact narrower than indicated
by the PSC function for the short duration. Wright and Dai (1994b) interpreted this as indicating
the observer is able to listen through multiple filters, but does not necessarily do so. A second
probe signal experiment used probes of unexpected durations. They found that performance de-
teriorated for probe durations unmatched with the target duration, for both short and long target
durations (5 and 295 ms). They discounted the possibility of energy splatter in the frequency do-
main for short durations, because the estimated bandwidths were much wider than the spread.
They concluded that the observer matched the duration of the integration interval to the duration
of the expected target signal, and that one way of viewing this is that observers listen through a
flexible time—frequency window.

Wright and Dai (1994a) called the PSC function the probe-signal-contour filter, but explained
that it was not a model of the peripheral auditory filter. Instead, they suggested it was perhaps
a result of combining multiple auditory filters, and that this process occurred much higher up
in the auditory system. Under certain circumstances the PSC filter may resemble the auditory
filter shape if the observer is only listening through one channel. They also considered changes
in the PSC filter as a result of continuous or gated maskers. They found that gated maskers
broadened the PSC filter for long signals for some observers, and that the gated data were more
variable. Their data suggested that different observers used different listening strategies in these
experiments, which indicated that combining data across observers should be done cautiously.

Dai and Wright (1995) compared a multi-look model to the energy detector by getting ob-
servers to detect (a) signals where the duration was unexpected, because they were attending to
signals of a fixed duration, and (b) sighals where the duration was uncertain on each trial. In
both cases the onset of the signal was marked. The experimental results indicated a decrement in
performance in (a) as the unexpected duration varied away from the expected duration, but no
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decrement as duration was varied in (b) where the duration was uncertain. This indicated that
observers could selectively listen for a particular interval, or could use a flexible temporal inte-
gration interval if the situation warranted it. Predictions for the energy and multi-look models
were essentially identical for these tasks. The data were fitted in case (a), but real observers did
better than the models in case (b). Dai and Wright (1995) concluded that the energy detector was
more parsimonious for their experiment, but there was no way of testing the two models in this
context.

Dai and Wright (1996) compared predictions based on Fletcher’s (1940) critical band model
and Green and Swets’s (1966) energy detector for tone—in—noise tasks, where duration was varied
from 2 ms up to 1000 ms, and found results fell somewhere in between the two models. Because
the normal assumption is not appropriate for small YW 7T, they modelled the data using x? random
number simulations. Their findings indicated that the human observers behaved like an energy
detector, but not ideally.

1.43 Summary

Although many studies have shown that the human hearing system is capable of complex
tasks, many of them have also shown that the evaluation of the simple energy and envelope
detectors is still needed, because results are still contradictory.!?

There is evidence that the hearing system can use energy or envelope cues in detection, but
there is no evidence that the filtering and integrating processes of the ear are optimally matched
to an arbitrary waveform. Thus, although an observer may be using energy information, the
resulting performance would not be optimal. To test whether this is the case requires more subtle
investigation than just comparing ROC curves or psychometric functions.

The general approach of Ahumada and Gilkey is an excellent way of assessing different mod-
els and their relationship to human performance, but what stands out is how few stimuli were
used. Even if observer inconsistency was reduced by repeated presentations, the number of stim-
uli would result in large sampling variability. In the current study, there are enough stimuli and
enough replications so both molar and quasi-molecular psychophysics can be used. Human hear-
ing may then be tested from both perspectives.

1.5 Overview

According to Boer, models of human hearing tend to only explain time domain phenomena,
or frequency domain phenomena, but not both: “This is a deplorable situation, the more so since
‘meaningful’ sounds necessarily include variations in frequency and time” (de Boer, 1985, p. 142).

The aim of this study is to estimate some properties and parameters of the human hearing
system, by conducting a parametric study that compares human performance to simulated and
theoretical performance of energy, full-linear, and envelope detectors. The task is amplitude dis-
crimination of small-WW7T Gaussian noise signals, masked by wide-band Gaussian noise. Noise
signals are used, because, unlike tones, it is possible to manipulate their bandwidth and duration
relatively independently. The parameters VW and 7 are varied for specific values of W7 . From

130ther models of human hearing have also been developed by Durlach and Braida (1969), Laming (1986), Moore
(1975), Richards, Heller, and Green (1991) and Richards (1992). It is beyond the scope of the current study to examine
these models in detail.
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the results, estimates of the parameters of the human hearing system’s filter, rectifier, integrator,
and sampler are obtained.

This chapter examined the literature on the properties of the human hearing system, and how
these properties have been modelled. It seems there is some evidence that the filtering and in-
tegrating processes of the hearing system may be fixed, and other evidence that they may be
flexible. Assumptions, flaws, and simplifications in the mathematical models of energy and en-
velope detection were pointed out. These models incorporate the bandwidth—duration product
WT, which implies that detectability of a waveform is dependent on the product, but not on the
individual values of W and 7. This is counterintuitive when it comes to human experience and
the human data in the literature.

Most of the problems with the mathematical models come about from the way the acoustic
waveforms are represented mathematically. Section 1.1.3 and Appendix A looked more closely at
the waveform representation literature and found that the traditional Fourier integral approach
is somewhat limited, and that there are generalisations to the Fourier integral that could result
in better models. The acoustical uncertainty principle is directly related to W7, such that WT
has a minimum value, and is dependent on how YW and T are defined. This problem of definition
underpins much of the controversy about the mathematical models and waveform representation.

There is still a number of holes in the literature. In particular, it is not clear how, or even if, the
human hearing system is able to trade off bandwidth for duration to optimise signal detectability.
This project puts the theories to the test with computer simulation and human experimentation.
It can be seen as a three-way comparison among the mathematical models, the computational
models, and the data from human experiments. It is expected that human performance will not
be well modelled by the ideal energy and envelope detectors over all conditions and levels. The
following chapters present the details and results of these comparisons.

Firstly, the problem of observer inconsistency is explained, and the new analyses for dealing
with this problem are introduced in Chapter 2. Chapter 3 describes the experimental method-
ology, and the generation of essentially band and time limited Gaussian noise signals with the
desired W, T, WT, and signal-to—noise ratio. The experiment is replicated six times to allow
estimation of asymptotic error—free performance. Results from these analyses are then compared
with the linearly attenuated mathematical energy detector.

Chapter 4 focuses on computational simulations. The aim is to establish whether the math-
ematical models described in this chapter are good models for the type of essentially band and
time limited Gaussian waveforms used in the experiment. The results of energy, full-linear, and
envelope detector simulations are presented. The pattern of the attenuation of human perfor-
mance from theory is then examined by running hundreds of sub-optimal energy and envelope
detector simulations and correlating the simulation evidence with the sum-of-ratings from the
human experiment. These results are presented in Chapter 5.

Finally, in Chapter 6, Scurfield’s (1995, 1996) multi-event information—-theory measure of de-
tectability, D,,, is used to compare asymptotic human performance to the simulated optimal full-
linear detector. D,, allows relative comparisons so performance is described in terms of the pro-
portion relative to the ideal observer. Contour plots of W7 —detectability space are presented that
show how the human hearing system trades off time and frequency information.







Chapter 2

Unique and common noise

“Like warmed-up cabbage served at each repast,
The repetition kills the wretch at last.”

(Decimus Junius Juvenalis) Juvenal.

Variability in the responses of observers in psychophysical experiments, which have been re-
peated multiple times with the same stimuli, may be categorised into unique noise and common
noise. Unique noise is due to random perturbations in the observer, and its environment, on each
presentation of the same stimulus. This noise causes the observer to make inconsistent decisions
about the same stimulus. Common noise is the result of random perturbations of the events (and
is why the evidence for each event is represented as a random variable), that are the same across
repeated presentations of the stimuli. If an experiment is not repeated then the effects of unique
and common noise are indistinguishable.

According to Taylor, Boven, and Whitmore (1991), common noise is the complement of unique
noise. It is the statistical component that is consistent from replication to replication, and ideally
comes from using identical stimuli in each replication. If only a subset of possible stimuli are
used in an experiment (which is the usual case), then the common noise component is affected by
sampling variability, and the observer’s performance will not necessarily reflect the underlying
population statistics, even if unique noise is removed. Both unique noise and sampling variability
make it difficult to interpret psychophysical results, therefore, this chapter focuses on methods for
reducing unigue noise and common noise sampling variability in psychophysical data.

2.1 Unique noise variability

Observer inconsistency is the biggest problem still facing experimental psychophysics. As
Green and Luce (1974, pp. 373) stated: “Perhaps the single most pervasive characteristic of psy-
chophysical data is the inconsistency of subjects when answering most questions we ask them
about simple stimuli”. If observers were consistent, their ratings (decisions) would be identical
for each presentation of the same stimulus. Observers, however, are not consistent, and their
ratings vary considerably across repeated presentations.

51
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To deal with the effects of observer inconsistency, either the error must become part of the
model, by explicitly describing all forms of noise, or the error must be eliminated. Observer
inconsistency has generally been characterised by using the concepts of internal noise and external
noise where the emphasis was on the sources or causes of noise, or error, in experimental tasks (e.g.,
de Boer, 1966; Green, 1964a; Pfafflin & Mathews, 1962; Raab & Goldberg, 1975). Drga (1988) says,
however, that these concepts are neither mathematically precise, nor mutually exclusive.

Boven (1976), Taylor (1984) and Taylor et al. (1991) replaced the concepts of internal and ex-
ternal noise with those of unique and common noise, which emphasised the statistical components
or effects of error rather than sources of error. For any single replication of an experiment, the
effects of common and unique noise are inseparable, but when more than one replication is run,
ratings can be averaged across replications for the same stimulus. Averaging removes some of the
unique noise while retaining common noise. This process, when applied to ROC analysis, is GOC
analysis.

GOC analysis was introduced by Watson (1962/1963). The technique has been used by Ahu-
mada (Ahumada, 1967, Ahumada & Lovell, 1969, 1971; Ahumada et al., 1975) in tone-in-noise
detection experiments; Boven (1976) for studying observer inconsistency in multiple-observer
experiments; McAulay (1978) in frequency discrimination experiments; Taylor (1984) in study-
ing the auditory psychophysics of birds; Metz and Shen (1992) in medical diagnostics; Galvin,
Podd, Drga, and Whitmore (1999) and Whitmore and Galvin (1993) for comparing the Type | and
Type 1l tasks; Lapsley, Scurfield, Drga, Galvin, and Whitmore (1993) and Lapsley Miller et al.
(1999) for studying whether Agirc = P(C)arc for both discrete and continuous random vari-
ables; and Drga (1999) and Whitmore et al. (1993) for studying amplitude discrimination. Taylor
etal. (1991) summarised the earlier research and provided a comprehensive coverage of applying
GOC analysis. Recently, Drga (1993a, 1993b, 1995, 1999) has reported on his development of the
theory of GOC analysis, and the development of FORCE analysis, which can predict asymptotic
performance.

The results of GOC analysis—from experiments on humans and other animals, and computer
simulations—show that data from any single replication of an experiment could not support any
theory with confidence. This is because unique noise can change the shape and attenuate an ROC
curve or psychometric function. Observer inconsistency does not just affect psychophysical data;
all psychological data suffers from error due to observer inconsistency.

2.1.1 Group operating characteristic (GOC) analysis

GOC analysis can be viewed as removing error in the ordering of the stimuli, where the or-
dering is implied by the observer’s rating. Because of error, the ratings for each stimulus can
be modelled as a random variable. The statistical principle on which GOC is based is stochastic
ordering (Drga, 1999). If X and Y are the random variables of the ratings associated with two
stimuli, then X and Y are stochastically ordered if the cumulative distribution function (c.d.f.) of
X is greater than or equal to the c.d.f. of Y. That s, if Fx () > Fy(t), forall ¢, and Fx (¢) > Fy (¢)
for some non-zero interval, then X is stochastically less than Y (Drga, 1999). By using stochas-
tic ordering, the GOC curve can be shown to be based on the expected stimulus ordering of the
unique-noise degraded stimuli, as replications are added and variability due to unique noise re-
moved. For example, for the jt" stimulus, the common noise component is z;. If this component
is degraded by unique noise, represented by the random variable U ;, the unique-noise degraded
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stimulus is Yj; = x; + Uj;. The asymptotic GOC curve is the curve for stimuli ordered by E(R;),
where R; is the rating of the jt" stimulus. Drga (1999) showed that this is the same as the GOC
curve ordered by E(Y};) if and only if Y;; and R; are stochastically ordered. Stochastic ordering
is necessary to project back from the rating scale to the underlying evidence distributions. The
focus here, however, is on the practical calculations of a GOC analysis.

One way to do GOC analysis, which principally involves calculating the GOC curve, is de-
scribed by Taylor et al. (1991) and Watson (1962/1963). Drga (1999) suggested a different method,
which is computationally more memory efficient, and can be used for real valued ratings and
not just integers, but is functionally the same as Taylor et al. (1991) and Watson (1962/1963). An
example of Drga’s method is shown in Tables 2.1 and 2.2 for four replications of a 9—point rating
scale experiment, with one N event and two SN events, and five SN stimuli and ten N stimuli.

Table 2.1: Example sum-of-ratings table for four replications of an experiment.

Stimulus  Event Rating Sum-of-rating
Repl Rep2 Rep3 Rep4

1 N 3 5 8 1 17
2 N 1 2 2 4 9

3 N 4 3 5 2 14
4 N 2 4 5 2 13
5 N 6 1 2 6 15
6 N 1 2 1 1 5

7 N 5 4 6 3 18
8 N 1 1 4 1 7

9 N 9 3 4 1 17
10 N 1 1 4 2 8

1 SN1 4 1 1 3 9

2 SN1 4 5 5 6 20
3 SN1 8 6 5 1 20
4 SN1 9 4 2 1 16
5 SN1 4 5 4 2 15
1 SN2 6 1 3 4 14
2 SN2 9 8 5 8 30
3 SN2 7 7 9 9 32
4 SN2 9 7 7 7 30
5 SN2 8 6 4 8 26

1. Calculate the sum-of-ratings across replications for each stimulus (see Table 2.1).

2. The sum-of-ratings may then be converted to an average,! and analysis proceeds in exactly
the same way, with the average rating being sorted instead of the sum-of-ratings. If the
number of replications is not the same for each stimuli then the ratings must be averaged so
each total is weighted appropriately.

1The sum is a type of average, and is computationally faster. The arithmetic average and the sum—of-rating GOC
curve is the same, if the number of replications for each stimulus is the same. Any form of averaging may be used, e.g.,
arithmetic, geometric, harmonic, sine, or z—transform averaging (Drga, 1993a).
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Table 2.2: Example GOC hit rates and false—alarm rates, calculated from the sum-of-ratings.

Sum-of-rating Tally Cum. Tally Rate
N 8N1 8N2 N 8N1 8N2 FAR HR1 HR2

5 1 0 0 10 5 5 1.0 1.0 1.0
7 1 0 0 9 5 5 0.9 1.0 1.0
8 1 0 0 8 5 5 0.8 1.0 1.0
9 1 1 0 7 5 5 0.7 1.0 1.0
13 1 0 0 6 4 5 0.6 0.8 1.0
14 1 0 1 5 4 5 0.5 0.8 1.0
15 1 1 0 4 4 4 0.4 0.8 0.8
16 0 1 0 3 3 4 0.3 0.6 0.8
17 2 0 0 3 2 4 0.3 0.4 0.8
18 1 0 0 1 2 4 0.1 0.4 0.8
20 0 2 0 0 2 4 0.0 0.4 0.8
26 0 0 1 0 0 4 0.0 0.0 0.8
30 0 0 2 0 0 3 0.0 0.0 0.6
32 0 0 1 0 0 1 0.0 0.0 0.2
Total 10 5 5

3. All the resulting sum-of-ratings, over all events and stimuli, are sorted into ascending or-
der, and separate tallies are recorded for each event (see the first four columns of Table 2.2).
The same sum-of-rating may occur more than once for the same event (e.g., sum-of-rating
17 in Table 2.2), and across events (e.g., sum-of-rating 15 in Table 2.2). The minimum pos-
sible sum-of-rating is equal to the minimum rating times the number of replications. The
maximum sum-of-rating is equal to the maximum possible rating times the number of
replications. In the example, the theoretical minimum is 4 and the maximum is 36, but the
actual minimum is 5 and the maximum is 32.

4. The sum-of-ratings are now treated as cut-offs, like in a rating scale experiment. The tallies
for each event are cumulated from the largest sum-of-rating value to the smallest across all
events (see the columns 5-7 in Table 2.2). If a sum-of-rating value does not have a tally for
a particular event then zero is added to the cumulative tally.

5. The cumulative tallies are then divided by the number of stimuli for that event and the
result is the hit rates and false alarm rates for the GOC curve (see the last three columns in
Table 2.2), which may then be plotted in the ROC space.

6. From the GOC curve, analysis proceeds like ROC analysis for rating—scale data to obtain
the desired measures of detectability.

As more replications are included in the GOC analysis, more unique noise is removed and the
GOC curve tends towards the theoretical curve.? If there is no common noise then the GOC curve
does not converge to a stable position as more replications are added (Drga and Whitmore, 1999,
personal communication).

The striking difference between the results of ROC analysis and GOC analysis can be seen by
comparing the GOC curve to the mean ROC (mROC) curve. An example is given in Figure 2.1.

20r sample-theoretical curve if, as in most experimental cases, only a sample of stimuli were used.
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The mROC curve summarises the multiple ROC curves from a multiple replication experiment,
and gives the average, unique—noise degraded, ROC curve. It is calculated by averaging the hit
rates and false—alarm rates for each criterion over each replication (Dorfman & Berbaum, 1986;
MacMillan & Kaplan, 1985). This does not eliminate observer inconsistency—it just gives the
expected performance for a single replication.
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Figure 2.1: The GOC curve and the mROC curve for all observers, and the theoretical ROC curve in the SIFC
condition in Experiment | from Lapsley Miller et al. (1999) (reprinted with permission). (a) is in
linear probability coordinates and (b) is in z—coordinates.

The results of GOC analysis may help explain some psychophysicists’ preoccupation with
normal-normal models. Hanley and McNeil (1982) comment that the majority of psychophysical
data can be fitted very well on the assumption that the underlying random variables are normal—
regardless of the appropriateness of this assumption. There is, unfortunately, a belief that TSD
is only applicable to detection tasks where the evidence is normally distributed (Hodos, 1970;
Simpson & Fitter, 1973). Hanley and McNeil (1982) suggest that many researchers have been
turned off TSD because of this mistaken belief. TSD does not need the assumption that the evidence
is distributed as a normal density. There are, in fact, many psychophysical models that use other
distributions (e.g., Egan, 1975; Green & Swets, 1966; Jeffress, 1968). Non-parametric measures of
detectability, such as A and D,,, then allow comparisons to be made among detectors without
needing to know, or assume, how the evidence is distributed.

Taylor et al. (1991) demonstrated, using known, finitely discrete, evidence distributions, that
once GOC analysis has been performed the apparent normality may disappear. This phenomenon
was also found by Lapsley Miller et al. (1999) where it was known that the theoretical distributions
were overlapping discrete uniform distributions. The theoretical ROC curve was, therefore, a
straight line in linear ROC space, but very curvilinear in the z—transformed ROC space. The
experimental data showed that (a) the mROC curve was curvilinear in linear ROC space and was
well fitted by a straight line in z—coordinates—inconsistent with the theoretical model—implying
the normal model may be appropriate, but that (b) after GOC analysis, the GOC curve tended
towards the theoretical ROC curve. Figure 2.1 shows the SIFC mROC and GOC results combined
across all observers compared with the known SIFC ROC curve. This is an extreme example;
many theoretical models, based on distributions other than the normal, predict ROC curves that
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are not too dissimilar from the normal-normal model. The effect of GOC analysis in these cases
may be to bring out underlying asymmetries (e.g., for Rayleigh—-Rice models) and to decrease
the attenuation of the empirical psychometric function from the theoretical. In summary, the
results from GOC analyses show that any interpretation of noise-degraded data must be made
cautiously, because it is too easy to draw erroneous conclusions about the underlying processes.

2.1.2 Function of replications combined estimation (FORCE) analysis

FORCE analysis is a data—modelling procedure developed by Vit Drga, Alan Taylor, and John
Whitmore (Drga, 1999). The analysis estimates asymptotic measures of detectability from GOC
analysis, by fitting a data model of the measure of detectability as a function of replications added
(FORA) to the empirical FORA, and extrapolating to infinity. This process works because as
replications are added, performance generally improves asymptotically.

FORCE analysis is calculated on the measures of detectability, for instance, A, D», and d'.
This procedure gives excellent estimates from only a few replications. A rule-of-thumb recom-
mended by Drga (1999) is a minimum of 8-10 replications for good asymptotic estimates, how-
ever, 6-7 replications may also give reasonably reliable results. FORCE analysis is possible with
3-5 replications, but the resulting estimates may be biased and have large sampling variability.
Drga (1999) gives some estimates of the variability in the asymptotic measure, as a function of
replications—added, but it is calculated from only one data set (by calculating the variability of
the estimates of multiple sub—samples of n replications from 75 replications of an experiment).
Prior to the development of FORCE analysis, over 16 replications was necessary before perfor-
mance neared asymptotic levels. One GOC experiment (Drga, 1999) was repeated 100 times to
assess how performance improved with the addition of more replications.

The empirical function of replications—added (FORA)

The first step in FORCE analysis is to calculate the (arithmetic) average measure of detectabil-
ity as replications are added. This process is easiest explained by example. Assume that an
experiment was replicated six times. First, the GOC curves for all combinations of one replication
are calculated, then the measures of detectability for each GOC curve are calculated and aver-
aged. This first point is merely the average of the measures from the six ROC curves, because the
GOC curve of one replication is just the ROC curve. Next all the combinations of two replications
are calculated. Fifteen GOCs of two replications can be calculated from a total of six replica-
tions. Then twenty combinations of three replications, fifteen combinations of four replications,
six combinations of five replications, and finally one combination of six replications. The number
of combinations as replications are added is of course the binomial coefficient: *C,., where n = 6
and r is replications added. When plotted, Drga calls these points the empirical FORA.

An example of the effect of this process, for real data, is shown in Figure 2.2(a). These data
comes from six replications of one level from the experiments in this thesis (see the FORA for
the experimental condition {25ms, 40Hz: 8dB} in Figure E.1(e) and Figure E.2(e) in Appendix E).
Note how both the error and the rate of increase in A decrease as replications are added.
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Figure 2.2: An example of (a) a six replication empirical FORA, and (b) the same FORA in log-increment
coordinates. The error bars represent +1 standard deviation. Note the ordinate does not cover
the entire range of A.

The empirical function of detectability—increments and replications—added in log-increment
coordinates

Plotting the average measure of detectability against replications—added generally (but not
necessarily) gives a monotonically increasing set of points. Drga discovered that by plotting the
log of the increment in the measure of detectability against the log of replications added, that all
the data sets he examined? could be fitted extremely well by a straight line with a negative slope.
In fact, most of the data sets Drga examined, from a variety of experiments, have Pearson’s corre-
lation coefficients of less than -0.99. The results obtained in this research project (see Appendix E)
also showed correlations of less than -0.99, in most cases.

Figure 2.2(b) shows an example of the increment of detectability as a function of replications
added in log-increment coordinates. The Pearson’s correlation coefficient is -0.9998 indicating
the data are indeed linear in these coordinates. These straight lines indicate how a data model
can be fitted to the empirical FORA in linear coordinates. The point is not to fit a model to the
log-increment data, because they only represent increments in detectability, and, therefore, can
not be used directly as a model to estimate asymptotic detectability. The log—increment plot is
still useful, however, because it shows biases. If the plot turns up at the end, relative to the fitted
FORA, then the asymptotic estimate will be under-estimated; if it turns down then the estimate
will be over—estimated (Drga, 1999).

Modelling the detectability—increments as a function of replications-added

Drga (1999) derived a regression function to fit to the detectability—increments as a function
of replications—added. To model the increments as a function of replications—added, consider n
replications of an experiment. If §; = A; —A;_;, where 2 < j < n, then §; is the (j —1)™ increment
in mean—A values and may be approximated by a straight line, as suggested by the log-increment

3In developing FORCE analysis, Drga has examined over 70 data sets, from six different observers, and six experiments
(the six observers did not participate in every experiment).
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plot, of the form

log,(5;) ~ mlog,(j)+c
= log.(j") + log, (k)
= log, (kj™). (2.1)

where k = exp(c). This implies that 6; ~ k;j™. If the empirical log—increment plot is exactly linear
then this inequality is exact. Note that any log base may be used, but the development of FORCE
has used the natural logarithms. If A, is the first value then

i
Ai = A+ k™
j=2
= A +k> ™ where i > 2. (2.2)
j=2
This is the fitted FORA function, which may be extrapolated to infinity:

o0
A = Ar+k)y ™
j=2

A + k<£<_m> —1) (2.3)

where ((z) = Z‘;’;l j~*is Riemann’s ¢ function. This function does not converge quickly because
it sums from below. Instead, an alternative formulation, which sums alternately from above and
below, is used

((x) = ﬁi(—l)(ﬁl)jﬂ{ 24)
j=1

It should be noted that if the first form of the ¢ function is used, then Equation (2.3) only converges
if m < —1. If the second form of the ¢ function is used then Equation (2.3) converges if m < 0.
Equation (2.3) gives an estimate of the asymptotic measure of detectability if an infinite number of
replications were run.

To estimate the asymptotic measure of detectability, a parameter triplet (A1, k&, m) is required,
which minimises the total least-squares error between the fitted FORA, of the form in equa-
tion (2.2), and the empirical FORA. The initial values for these parameters are A, which is the
average A from the ROC curves, and k£ and m calculated from equation 2.1 by simple regression.
A gradient—-descent method is then used to calculate the final values (Drga, 1999). Note that the
initial parameter values may be any number, but convergence is faster and more reliable if the
initial values are close to the final values.

An example of a FORA fitted to the example data set from Figure 2.2 is shown in Figure 2.3(a)
where the dashed line on the plot is the asymptotic measure of detectability. The function of line
segments is not connecting the points of the empirical data set; they are connecting the points
of the fitted FORA derived as above. Line segments are used as a visual aid, because the fitted
FORA is generally on top of the empirical FORA. In virtually all cases examined so far, the fit
is excellent for the measures of A, D, Dg, and d'. The results from P(C), however, tend to be
unreliable, because P(C) values are more variable due to measurement error. The fact that P(C)
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Figure 2.3: An example of a FORA fitted to the empirical FORA (a) using the method described by Drga
(1999). The dashed line shows the asymptotic estimate of A. (b) shows the empirical log—
increment FORA (solid points), and the linear function associated with the parameters from the
fitted FORA.

is confounded with the criterion may also be a factor, because this also increases variability.

The linear equation based on the parameters estimated from Drga’s fitting method may also be
plotted in log—increment coordinates. This is illustrated in Figure 2.3(b). The examples shown are
for a relatively ordinary data set. Appendix E shows both types of plots for all the data collected
in this research project, including some data sets that do not behave quite as well.

According to Drga (1999), the estimate of asymptotic performance has sampling error itself,
and may be biased for small numbers of replications. The bias shows itself by either over-
estimating or under—estimating the asymptotic value. This bias decreases as the number of repli-
cations increases. Bias may be assessed by considering the fitted and empirical FORA. If the
last few empirical points fall below the fitted FORA then the asymptotic measure will be over-
estimated, likewise, if they fall above then the asymptotic measure will be underestimated. In
the log-increment plot, the empirical points will tend to curve down, or up, respectively. This
may be difficult to assess for small numbers of replications, which is unfortunate because these
cases are more likely to be biased. After considering the FORCE analysis in the current project,
it appeared that another way of assessing biases could be to consider the linearity of the em-
pirical log-increment FORA. The less linear the empirical log—increment FORA, the more likely
the asymptotic estimate was biased; in some cases the estimate was an impossible number (e.g.,
greater than unity for A).

2.2 Common noise sampling variability

Even if unique noise is removed from psychophysical data, interpretation of the results may
still be difficult, because of common noise sampling variability. Generally, the more stimuli that
are used, the lower the sampling variability. It is important, however, to have some estimate of
the degree of variability for a given sample size.

Derivations of ideal observers consider the population statistics of the stimuli. This is analo-
gous to saying that the ideal observer is presented with every possible stimulus in the stimulus
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set of interest. But in an experiment or simulation, generally only a sample of stimuli can be taken
from the (perhaps infinite) stimulus set. What is the effect of this sampling variability and how
should it be measured?*

Although sampling variability comes about from using only a subset of possible stimuli, it is
easier to model the variability of the evidence, rather than the variability of the stimulus. The
evidence is a result of a stimulus, and may be modelled as a sample from a probability distribu-
tion. This approach comes from the theory of ideal observers, which shows how the distribution
of a physical property of class of waveforms may be used to calculate the detectability of those
waveforms. For example, the distribution of the energy of narrow-band Gaussian noise may be
modelled as x2. If the detection task is intensity discrimination, then the detectability statistics
are based on two x? distributions (for N and SN events).

In an experiment, the subset of waveforms used as stimuli can be modelled as a sampling from
the evidence distributions, even when these distributions are unknown. The samples from the N
and 8N evidence distributions form the sample theoretic ROC curves, which are also unknown. It
is important to realise that the GOC curve tends towards the sample theoretic ROC curve, not the
population theoretic ROC curve. If a different sampling of waveforms were chosen as stimuli,
then the GOC curve would tend towards a different sample theoretic ROC curve. It is simplest
to model the variability of the sample-theoretic ROC curve by measuring the variability of a
measure of detectability derived from the ROC curve, for instance A.

The problem of determining the amount of sampling variability of A, for a given number of
stimuli, lends itself to simulation. The general procedure (Lapsley Miller, 1995a, 1995b; Laps-
ley Miller et al., 1999) is to

1. Choose N and 8N evidence distributions, with known parameters, and calculate the theo-
retical measures of detectability and ROC curves.

2. Generate M random deviates from these distributions to form the sample set of evidence.

3. Either generate the sample-theoretic ROC curve directly from the samples (by using the
procedure described in Section 2.1.1), or convert each sample to a rating on an N—point
rating scale (by binning the data) then generate the sample-theoretic ROC curve.

4. Calculate the measures of detectability.
5. Repeat the sampling procedure R times.

6. Calculate the sample statistics (mean, variance, etc.) of each measure of detectability, over
the R replications.

By systematically varying the sample size (M), variability as a function of samples size may be as-
sessed (Lapsley Miller, 1995a). In comparison to the simulation method, the maximum variability
of A may be estimated assuming binomial sampling (Bamber, 1975; Pollack & Hsieh, 1969).

Pollack and Hsieh (1969) ran Monte Carlo simulations, using a similar method, to assess sam-
pling variability of A for very small sample sizes. They used three different evidence distribu-
tions: normal with unequal variance, uniforms with unequal variance, and negative exponentials
with unequal k, and sample sizes of 10 to 40. They found that:

4In an experiment common noise may also occur from systematic error across replications.
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Figure 2.4: Simulated sampling variability of a negative exponential model for four sample sizes (a) 5, (b)
50, (c) 500, and (d) 5000. The population theoretic ROC curve (smooth solid curve) is overlayed
on all plots, but is only visible in (a). It should be noted that the lines in (a) are not a grid, but are
in fact the ROC curves. The grid pattern occurs because a sample size of 5 severely restricts the
resolution in the ROC space.
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Figure 2.5: Simulated sampling variability of A for (a) three models with A=0.87 compared with the max-
imum binomial sampling variability, and (b) for the negative exponential ROC curve, at three
signal-to—noise ratios.

e The sampling variability of A, defined as the standard error of the arithmetic mean, after
100 repeats, increased as the overlap between the distributions decreased (either because
the difference between the means of the N and SN distributions decreased or the variance
increased).

e For different classes of probability distribution, similar standard deviations were obtained
when A was similar and the number of samples were the same. This implies that sampling
variability of A is relatively independent from the conditions leading to that value. It is
an important result, because estimates of sample size or variability may be made without
needing to know the form of the underlying distributions.

e Variability was slightly less than that predicted by binomial sampling, especially for larger
A. The maximum variance, o2, , assuming binomial sampling is

oty = Al —A)/n. (2.5)

These findings were verified and extrapolated to larger stimuli per event (for it is unlikely
that any substantive experiment would use fewer than 40 stimuli per event) by running similar
simulations using the program RAYSImML (Lapsley Miller, 1995a).

To indicate the problem of sampling variability, Figure 2.4 shows the effect of sampling vari-
ability in the ROC space of samples from negative exponential evidence distributions (equivalent
to a signal-to—noise ratio of 0 dB and a theoretical A=0.667) repeated 100 times. Figure 2.4(a) (b),
(c), and (d) are based on 5, 50, 500, and 5000 samples per event respectively. It should be noted
that the lines in (a) are not a grid, but are in fact the ROC curves. The grid pattern occurs because
a sample size of 5 severely restricts the resolution in the ROC space. Sample-theoretic A, from
this number of stimuli, could range from zero to one. The variability illustrated in Figure 2.4(b),
for a sample size of 50, is also of concern, because there are many papers in the literature that use
fewer than 50 stimuli per event.®

5A quick perusal of some recent journals produced the following examples. The Journal of the Acoustical Society of
America, Vol. 97(6): 10, 25, and 50 stimuli per event, and 48 stimuli in total; Perception and Psychophysics Vol. 55(2): 24,
72, 100; and Memory and Cognition Vol. 19: 20-40 stimuli per event.
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Figure 2.6: Sampling variability of A for the negative exponential psychometric function for (a) 50 samples
per event, and (b) 800 samples per event. Error bars are +1 standard deviation.

Figure 2.5(a), shows the standard deviation of the arithmetic average of A as a function of sam-
ples per event for three models: normal-normal equal variance, uniform-uniform equal variance,
and negative exponential. The parameters of each model have been carefully chosen to give ap-
proximately A=0.87 despite their ROC curves being quite different. It seems as though the nature
of the distribution has little effect on the resulting sampling variability. The binomial variabil-
ity, which was suggested by Pollack and Hsieh (1969) as a good approximation to the sampling
variability in the ROC space, is also included for comparison, but it consistently overestimates
the error. Figure 2.5(b) shows that, for the negative exponential model, as signal-to—noise ratio
increases, sampling variability of A decreases. The relationship between A and signal-to-noise
ratio is given in equation (1.15). An argument could be made therefore, to use fewer stimuli at
larger signal-to—noise ratios, and thereby have the same variability for all signal levels. This is not
necessarily a good idea, because the phenomenon is possibly an artifact, because A is bounded
at one. If the sampling variability of d’ is measured instead, the variability increases with signal—
to—noise ratio. Figure 2.6 shows an example of the effect of sampling variability in the negative
exponential psychometric function for 50 and 800 samples per event.

Bamber supports the third result of Pollack and Hsieh (1969) by citing two proofs (Dantzig,
1951, in Bamber, 1975; Birnbaum and Klose, 1957, in Bamber, 1975) that give a smaller maximum
sampling variability (¢2,,,) on the assumption that the evidence distributions are continuous ran-
dom variables, and the ROC curve is totally above or totally below the chance line (Bamber uses
the term “stochastically comparable”). If N > Np, where N is the sample size for each event,

and Ag is the greater of A and 1 — A, then the maximum sampling variability is

e = 3on(@NL = DAa(l - 46) - (No - Nu)(1 - Aa)
+§(NG — 2N +1)[1 — (24¢ — 1)2]). (2.6)

Bamber then proves that if, additionally, the decision axis is strictly monotonic with likelihood
ratio (Bamber uses the term “monotonic posterior”) then the maximum sampling variability is
smaller:

1 .
2 _ _ _ _ _ 2
O mono — SNGN), [(2NG + 1)A(;(1 A(;) (NG NL)(l A(;) ] (2.7)
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To evaluate these formulae, the program RAYSIML (Lapsley Miller, 1995b) was used to run the
following simulations:

1. Overlapping uniform distributions of equal mean and unequal variance, giving A=0.5 (see
Figure 2.7(a)). This approximates the case of Fig. 7a. in Bamber (1975, p. 404). The ROC
curve is a vertical line with a false—alarm rate=0.5 (see Figure 2.7(e)).

2. Overlapping uniform distributions of unequal mean and unequal variance, giving A=0.87
(see Figure 2.7(b)). The ROC curve is a vertical line with a false—alarm rate=0.13 (see Fig-
ure 2.7(f)).

3. Negative exponential distributions of equal variance, giving A=0.5 (see Figure 2.7(c)). This
should fulfil the requirements of being monotonic with likelihood ratio. Note that these two
distributions are the same so the ROC curve falls along the chance line (see Figure 2.7(f)).

4. Negative exponential distributions of unequal variance, giving A=0.87 (see Figure 2.7(d)).
The ROC curve is strictly monotonically increasing (see Figure 2.7(h)).

Each simulation generated 100 ROC curves, each with 200 points.
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Figure 2.7: The theoretical evidence distributions (a)—(d), and associated ROC curves (e)-(h), used for the
four simulations run to test Bamber’s (1975) sampling variability formulae. (a) and (e) uniform
distributions with equal mean and unequal variance (A=0.5), (b) and (f) uniform distributions
with unequal mean and unequal variance (A=0.87), (c) and (g) negative exponential distributions
with signal-to—noise ratio=—oo dB (A=0.5), and (d) and (h) negative exponential distributions
with signal-to—noise ratio=7.5 dB (A=0.87).

Figure 2.8 shows variability as a function of the number of samples for the three definitions
of omax, from Equations (2.5), (2.6), and (2.7), for equal samples per event compared with the
simulations described above. The resulting ROC curves for simulation (1) should, according to
Bamber, maximise Equation 2.5. This appears to be the case as shown in Figure 2.8. The variability
in simulation (3) is overestimated by the binomial variance, but both the other definitions fit the
simulation well. In fact when A=0.5, Equations (2.6) and (2.7) are equal, because the functions
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Figure 2.8: Sampling variability using the three definitions of omax, from Bamber (1975), compared with
simulations using uniforms and negative exponentials. (a) shows the standard deviation of A for
simulations designed to give A=0.5, and (b) shows the standard deviation of A for simulations
designed to give A=0.87. Note that both axes are scaled using log.,.

fall on top of one another. This can also be shown algebraically by substituting A=0.5 into the
equations.

Figure 2.8(b) shows o.,.« for the three definitions, for equal samples per event, compared with
simulations (2) and (4) described above. The sampling variability of the uniform distributions are
well described by Equation 2.5. For negative exponentials, the binomial variability overestimates
the variability as expected, and both the other definitions fit the simulation well. When A=0.87
Equations (2.6) and (2.7) are no longer equal and instead o, > 02,. > 02.no, s predicted by
Bamber.

Note, too, that the relationship between sampling variability and sample size is linear in log
coordinates—something that neither Pollack and Hsieh (1969) nor Bamber (1975) appear to have
noticed. They also have the same slope, indicating that the rate of improvement in sampling
variability is constant, but the initial amount of variability is dependent on A.

To estimate the maximum sampling variability given an empirical A, Bamber suggests replac-
ing A and Ag with the sample A in all three equations; changing Ny, for N — 1 in Equation (2.5),
and changing the denominator from 3NNy, to (3NgN — Ng — Ny, + 1) in Equation (2.7). From
a knowledge of A and the number of stimuli per event, the variability may therefore be estimated
without running simulations.

2.3 Implications for experiments

Unigue noise and common noise sampling variability cause uncertainty in the interpretation
of experimental results. It is therefore important in an experiment to minimise both types of error.
To decrease common noise sampling variability, more stimuli per event, and, therefore, more
trials per replication, are required. To decrease unique noise variability, more replications, and,
therefore, more repeats of the same stimuli are required. Both these requirements increase the
total number of trials needed in an experiment.

Obviously, it is important to reduce both the common and unique noise variability, but re-
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ducing both cannot be achieved without increasing the number of trials, and, therefore, the time
spent doing the experiment. The less time that is spent per condition, the better, because more
conditions can be attempted. At the very least an educated decision about the number of stimuli,
trials, replications, and conditions may be made, even if the results are still not ideal.




Chapter 3

Experiments

“All our science, measured against reality,
is primitive and childlike—and yet
it is the most precious thing we have.”

Albert Einstein.

M athematically, the energy and envelope detectors show bandwidth—duration reciprocity, be-
cause they predict the same performance for a given WWT, regardless of the values of W or 7.
Practically, even if the human hearing system is capable of ideal performance, there would still
be physiological limitations that restrict the range over which time and frequency information
may be integrated. Previous experiments reported in the literature have been inconclusive and
contradictory, with (a) some indicating that the critical band or detection bandwidth may or may
not be fixed, (b) that rectification may be square-law or linear, (c) that temporal integration may
or may not occur over fixed durations or with fixed time constants, and (d) that sampling may be
peak detection, end of signal, or some other strategy.

Many of these experiments were not able to fully test the nature of the auditory filter, recti-
fier, temporal integration, and sampler, because they were not considered together as a system.
Because experimental manipulations in the frequency domain affect the time domain, and vice—
versa, it is necessary to consider both temporal and frequency domain phenomena together. These
experiments were also limited due to the abiding problem of observer inconsistency.

To try and reconcile these problems, the experiments in this project were designed to para-
metrically, and independently, vary the bandwidth and duration of the signals, for three values
of WT. The experiments were also repeated multiple times so GOC and FORCE analysis could
be applied.

3.1 Overall Design

The experimentation was designed to show whether the human hearing system is capable of
bandwidth-duration reciprocity.

67
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The stimuli chosen for the experiments were narrow-band short-duration Gaussian noise
waveforms, because it is possible to manipulate both the bandwidth and the duration of such
stimuli relatively independently of each other. Chapter 1 reported that both the energy and enve-
lope detector models have been proposed as optimal for the detection of this class of waveform.
Given the same type of waveform, can the human hearing system also perform optimally (under
any or all circumstances), and be modelled by an energy or envelope detector?

It is unlikely that any ideal mathematical model would be appropriate for the human hearing
process, except perhaps over a small range. Based on previous research, it is more likely that
these ideal models may only be appropriate if an attenuation constant is included. It is unclear
from the previous research, however, if this attenuation is due to unique noise degradation, or
whether there is some limitation in the hearing system’s ability to detect such waveforms. This
will be assessed by using GOC and FORCE analysis.

The hearing system will only optimally detect a signal if it can match the bandwidth, and
integrate over the entire duration, of the signal, for only then can the signal-to-noise ratio be
optimised, and all the degrees of freedom used. For instance, if the hearing system matches
the bandwidth, but only integrates over half the duration of the waveform then W7 will halve
and performance will drop. Likewise, if the hearing system matches the duration, but uses a
bandwidth wider than that of the signal, then the W7 of the noise will increase more than for
the signal-plus—noise, and so the signal-to—noise ratio will decrease making the signal harder to
detect. It may also be the case that the hearing system is inflexible and uses the same bandwidth
(ata particular frequency) regardless of the duration of the signal; or that the ear always integrates
for the same length of time, but can tune the bandwidth.
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Figure 3.1: Theoretical energy detector psychometric functions for (a) A, and (b) D». The points indicate the
experimental signal-to—noise ratios.

Bandwidth—duration reciprocity of the human hearing system can be explored parametrically
by varying W and 7 for different bandwidth—duration products. The mathematical model of
energy detection predicts (see Figure 3.1 and 3.2) that detectability (a) should be the same for the
same value of WT, (b) should increase as W7 increases, and (c) should increase as the signal-to—
noise ratio increases. If the hearing system cannot perform in this manner, then detectability will
be attenuated, thereby indicating its limitations. The mathematical model for envelope detection
is only developed for WT =1, where it predicts the same performance as the energy detector.
Simulations of full-linear and envelope detectors for larger W7 are considered in Chapter 4.
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Figure 3.2: Theoretical ROC curves based on the energy detector for the experimental values tested.

Performance using this parametric design can be visualised as a surface in three—dimensional
WT-space. Two axes are bandwidth and duration. Although bandwidth and duration take
on real values their product is integer under the x?> model of detectability, therefore the two-
dimensional bandwidth-duration plane results in diagonal strips of possible WT values when
plotted in log coordinates (see Figure 3.3). The third axis is a measure of detectability (for ex-
ample: Agsire, Do, Dg, equivalent signal-to-noise ratio, or attenuation). Mathematical theory
predicts that this surface should be constant for the same W7 . By examining how human perfor-
mance differs from this model we should gain some insight as to how the human hearing system
works.
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Figure 3.3: Experimental parameter space for W, 7, and WT in (a) log, and (b) linear coordinates.

Lapsley Miller et al. (1999) showed that the SIFC task is generally preferable to the 2IFC task
because (a) it requires fewer assumptions about how the evidence is used to make a decision,
(b) the supposed benefit of the 2IFC task, that it is unbiased, is shown to be false, (c) the effect
of the inter-stimulus—interval is unclear (i.e., decay from the first interval affecting the second
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interval, time-order effects, etc.), and (d) SIFC experiments are generally faster to run, because
there is only one observation interval, and no inter-stimulus—interval. It is also the case that both
P(C)arrc and the 2IFC ROC curve may be derived or estimated from the SIFC hit rates and false—
alarm rates, but it is impossible to derive or estimate the SIFC ROC curve from the 2IFC ROC
curve (Lapsley Miller et al., 1999). The SIFC task is also preferable over the Same-Different task,
because none of the theory for noise-in—noise detection has been derived for this task, and much
of existing theory requires the assumption of normality (e.g., Irwin, 1989). Therefore, the SIFC
task was used for the experiments in this project.

Table 3.1: Defining parameters for each signal set. Bandwidth, duration, and WT are defined by EssWg» 4%,
EssT 92.4%, and EssWT g2 4%% (See Section 3.3). The code is used for labelling graphs in figures.

WT W (MHz) T (ms) Signal-to-noise ratios (dB) Code

1 2.5 400.00 —0,0,4,8,12,16 1A
1 50  200.00 —0,0,4,8,12,16 1B
1 10.0  100.00 ~0,0,4,8,12,16 1C
1 20.0  50.00 —0,0,4,8,12,16 1D
1 40.0  25.00 —0,0,4,8,12,16 1E
1 80.0  12.50 —0,0,4,8,12,16 1F
1 160.0 6.25 —0,0,4,8,12,16 1G
2 50  400.00 —00,—4,0,4,8,12 2H
2 100 200.00 —00,—4,0,4,8,12 21
2 20.0  100.00 —00,—4,0,4,8,12 2]
2 40.0  50.00 —00,—4,0,4,8,12 2K
2 80.0  25.00 —00,—4,0,4,8,12 2L
2 160.0  12.50 —00,—4,0,4,8,12 2M
4 100 400.00 —00,—8,-4,0,4,8 4N
4 20.0  200.00 —00,—8,-4,0,4,8 40
4 40.0  100.00 —00,—8,-4,0,4,8 4P
4 80.0  50.00 —00,—8,-4,0,4,8 4Q
4 160.0  25.00 —00,-8,-4,0,4,8 4R

3.1.1 Terminology

The terminology used in the experimental design is summarised as follows.

Condition: There were three experimental conditions: WT =1, WT =2, and WT =4. Each exper-
imental condition consisted of a number of experimental levels with different bandwidths
and durations but the same bandwidth—-duration products.

(Experimental) Level: An experimental level consisted of six Signal Levels, each at a different
signal-to—noise ratio (including —oco dB where only noise was presented) If “Level” is used
on its own, it means “Experimental Level”.

Signal Level: The six signal levels within an experimental level, were set at specific signal-to—
noise ratios, and each consisted of 500 waveforms (stimuli).

Replication: A replication refers to a single presentation of the 3000 waveforms (500 waveforms
x 6 Signal Levels) belonging to a specific Condition and Level. Each replication was com-
pleted in 8-15 sessions.




3.2 Method 71

Session: In a session, a random sample (200, 300, or 375) of waveforms were presented from one
replication of one specific Condition and Level in a series of trials.

Trial: Each trial consisted of a warning interval, an observation interval where a waveform was
presented, a decision interval where the observer made a rating (decision) about the evi-
dence presented, and a reset interval.

{Xms, YHz: ZdB}: is used to concisely summarise a condition, experimental level, and signal
level. If there is no signal level specified then the reference is to all signal levels.

3.1.2 Details of the experimental design

Each experimental condition used a different W7 . Values for ¥ and 7 were chosen by deter-
mining the approximate maximum and minimum durations and frequencies that the experimen-
tal system could accommodate (these restrictions were determined by length of time to generate
and analyse the stimuli, the cost of storage for long duration signals, the earphone response to
short duration signals, and earphone characteristics over the signal frequency band). After de-
termining the minimum bandwidth and maximum duration, bandwidths and durations for the
other levels were calculated by doubling bandwidth and halving duration until the upper bounds
were reached. Within each condition, there were six signal levels, at six different signal-to-noise
ratios. Figure 3.3 shows these parameters in log, and linear coordinates and Table 3.1 shows the
parameters for every signal set. Figure 3.1 illustrates where these values fall on the theoretical
energy detector psychometric functions, and similarly, in Figure 3.2 for the theoretical energy
detector ROC curves.

A number of analyses were used. Firstly, ROC analysis (including mROC, GOC and FORCE
analysis) was used to estimate detectability (Section 3.4). Secondly, analysis with the Bester corre-
lation method examined the relationship between the sum-of-ratings from the human observers,
and the performance of various ideal, and not-so-ideal, simulated observers on a stimulus-by-
stimulus basis (Chapter 5). Finally, the six different signal levels were treated like a six—event
experiment so that multiple—event ROC analysis could be done (Chapter 6).

3.2 Method

The experiments were run in a psychophysics laboratory consisting of a sound-attenuated
chamber, with five observer booths, and a control room. The experimental system was based on
both commercial and purpose-built equipment and software.

3.2.1 Observers

The three observers were all adults with normal hearing over the range of frequencies be-
ing tested. Observer 1! had participated in one other amplitude discrimination experiment, Ob-
server 2 was a novice observer, and Observer 3 had over thirty years experience as an observer
in psychoacoustic experiments. Observer 1 and Observer 2 trained for the task for approximately
two months, completing over 30 000 practice trials, using a variety of W7 =1 signals (not the final

LObserver 1 was taking the potentially ototoxic drug hydroxy—chloroquine throughout the experiment. An independent
audiogram, conducted by an ENT surgeon at the end of the experiment, indicated she had clinically normal hearing
over the range of frequencies in the experiment, but 40-50 dB hearing loss at very high frequencies. Observer 2 also
had clinically normal hearing as measured by an ENT surgeon six months after the experiment finished. Observer 3 had
age-related hearing loss at higher frequencies.
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signal set) with and without feedback. This practice time was also used to finalise experimental
parameters. Observer 3 completed at least one practice session of each experimental level before
beginning the experiment.

3.2.2 Experimental equipment

Figure 3.4 shows a block diagram of how the experimental system was configured. The com-
ponents of the system were:?

Briel & Kjeer Frequency Analyzer, Type 2121: The frequency analyser was used for calibration
and system analysis. The internal noise floor of the frequency analyser was estimated by
reading the output on the smallest scale with no input. This self measurement read approx-
imately 8.2 uV. The analyser was calibrated before each set of measurements.

Sound Chamber: The sound chamber is a sound-attenuated and electrically—-shielded room, on
the middle floor of a three-story wooden house. There are six booths with headsets and ob-
server interface boxes, although only booth three was used for the experiments. The sound
chamber characteristics were measured by Taylor (1984) using the Briel & Kjer frequency
analyser and 1 inch Brlel & Kjeer condenser microphone (cartridge type 4144). Attenuation
followed a negative exponential function of frequency with —15 dB at 28 Hz, —45 dB at
400 Hz, and —65 dB at 2000 Hz for airborne sound.

486DX-33 MHz Computer: The 486DX-33 MHz Computer runs the MS-DOS 6.22 operating
system and is the host for the HP 68030 coprocessor (communicating on a PC-ISA bus) and
Turtle Beach soundcard. In the experiment it was responsible for signal output on interrupt
from the timers.

HP 68030 Co—processor: The HP 68030 Co—processor (16 MHz) is a computer on a board that is
hosted in the 486DX-33 MHz Computer. It is the experimental control computer, and runs
the HP BAsic 5.1 operating system. It is connected to the Programmable Timers by an HPIB
and to the HP 6940B Multiprogrammer by a GPIO bus.

Programmable Timers: The six programmable timers were purpose built by the School of Psy-
chology. They were used to control the timing of the intervals and for triggering events
in the experiments, communicating over an HPIB. The timers were based on the Intel 8254
programmable timer chip. Drivers for the Timers were written in HP BAsIc 5.1 by Linton
Miller.

Observer Interface: The observer interface boxes were built by the School of Psychology and are
mounted in each sound chamber booth. Mounted on the front of the box are two buttons
and a 12 cm Systron Donner slider for observer responses, and six LED lights to indicate the
timing of the intervals and observer feedback. Each light is controlled by a different timer
and are software programmable to be either on or off. The entire box may be rotated and
raised or lowered to suit the observer.

The slider controls a linear potentiometer. At the end of each response interval the voltage
across the potentiometer is read by the Respondometer (with 2048 possible values) and
converted into a rating on a 2000 point rating scale.

2Calibration and measurement of the equipment was not done under ideal circumstances. The Brilel & Kjaer frequency
analyser used for some of the analyses required a BNC input so the testing of any equipment with balanced-line output
required going through a Line 1/0 before measurement, which added noise. The Turtle Beach ADC-DAC, used for some
measurements, was also not independent of the system because the DAC was used to generate test signals and the ADC
to take samples.

Noise floors were estimated using the Bruel & Kjeer frequency analyser, with 8 kHz low-pass filtering, so the noise-floor
was assumed to be distributed over only 8 kHz. Harmonic distortion was estimated by generating a tone with the Turtle
Beach DAC, repeatedly sampling the system with the Turtle Beach 16 bit ADC, then calculating the spectral-averaged FFT.
The harmonics were then estimated graphically. This was not an ideal test, because the test signal was not completely
independent from the system. The 16 bit ADC, however, allowed much finer measurement than the other 12 bit ADCs
available.
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Figure 3.4: Block diagram of the experimental equipment. Note that the equipment within the dashed box
is in the sound-attenuated chamber. The other equipment is in the control room.
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Respondometer: The Respondometer reads voltages from the buttons and sliders in the sound
chamber. It consists of an HP 69442A High Speed A/D Voltage Converter Card (12 bit
ADC, clocked at 20 kHz), an HP 69336A High Speed Scanner Card (a sixteen channel mul-
tiplexer reading a maximum of 20000 channels per second), both housed in an HP 6940B
Multiprogrammer, and interface circuitry (latches) in a purpose built box. Drivers for the
Respondometer were written in HP BAsic 5.1 by Linton Miller.

Wall
Interface box
—Slider 1 »
. 16 channel
—Slider 6 > hp 69336A 12 bit ho 68030
Multiplexing re< hp 69422A >p cgm uter
—Button 1 > Scanner ADC P
' H—1—
Latches :
—Button 12 > ‘6 ’
1ov =_no button ~| Housed in the hp 6940B
6.6V = ‘?ft button Multiprogrammer
3.3V =right button
0V = no button

Figure 3.5: Functional relationships among the components of the Respondometer.

Figure 3.5 shows the functional relationship among the components. The cable from the
observer interface to the scanner carries voltages from the sliders (6 lines) and buttons (12
lines). Voltages from the buttons are latched until read and then they are cleared. The
scanner multiplexes across each line so the ADC can read each voltage.

Gaussian Noise Generator: The 8.1 kHz (AERB) low-pass Gaussian Noise Generator was pur-
pose built by the School of Psychology. As shown in Figure 3.6, the passband is flat out to
about 8 kHz and the roll-off after 8 kHz is about 24 dB per octave. The temporal-averaged
phase spectrum tended to zero, indicating random phase components.

Turtle Beach Multisound Monterey sound card: The Monterey sound card system consisted of
the Turtle Beach Tahiti sound card with a Rio midi synthesiser daughter board. The Rio
was removed because it was not required and introduced unnecessary noise into the sys-
tem. The Tahiti sound card consisted of 16 bit ADC and DAC chips. It was housed in the
486DX-33 computer and was connected on the PC-ISA bus. The DAC system consisted
of a 128x interpolator, a fourth order Delta-Sigma modulator, a 16-bit DAC, and an ana-
log low-pass filter. The board was controlled by Motorola 65001 DSP. Software drivers for
both the ADC and DAC were written in Motorola 65001 code and BORLAND PASCAL 7.0 by
Linton Miller.

In the experiments, the DAC was used to convert the signal buffers to an analog waveform
at a clocking rate of 44 100 Hz (note that the sound card automatically low—pass filtered the
output to 20 kHz using a second-order Butterworth filter). The ADC was used for system
analysis.

Line I/0O: The Line I/0, used to convert BNC lines to three—pin balanced lines and vice—versa,
was purpose built in the School of Psychology. The Line 1/0 balanced line to BNC unit
had a noise floor of approximately 13-14.5 xV. The BNC to balanced line unit, however,
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Figure 3.6: Amplitude spectrum of the Gaussian noise generator set at 8 kHz. 107 six-second samples were
taken at a clocking rate of 44 100 Hz and analysed with a 2'® point FFT.

could not be measured independently, because the frequency analyser required a BNC in-
put. Thus, the combined BNC to balanced line to balanced line to BNC gave a noise floor of
approximately 17.5 uV. This part of the system is usually driven at 2 V-rms, thus the noise
floor is at least 140 dB down (or 134 dB down re 1 V-rms).

Hatfield Step Attenuators, Model 2050: Two attenuators were used: one to attenuate the back-
ground masker prior to mixing, and the other to attenuate the mixed signal and continuous
masker. The step attenuators added no measurable noise to the system.

Mixer: The mixer was purpose built by the School of Psychology. It was used to mix the signal
and the continuous background masker. The free—floating noise floor of the Mixer was
measured at 40 pV-rms (—133 dB re 2 V-rms, —127 dB re 1V-rms) using the Briel & Kjeer
frequency analyser via the Line 1/0.

Headset Amplifier: The diotic/dichotic headset amplifier was purpose built by the School of
Psychology. In the experiments, the amplifier was run in diotic mode meaning the same
signal was output to both headphones with no phase shift. The free—floating noise floor of
the headset amplifier was measured as approximately 14-15 pV at the test point, with the
output loaded with the TDH-39 100 2 earphones, and 16 pV at the measure output (used
for calibration). This equates to a noise floor of approximately —113 dB relative to 73 mV
(the voltage of the calibration signal) and —135 dB re 1 V-rms.

TDH-39 100 €2 Earphones: The earphones were fitted with Rudmose Tracor RA125 Otocups and
MX41/AR cushions. Rudmose Otocups were rated the best for using with TDH-39 ear-
phones and MX-41/AR cushions, out of those tested by Copeland and Mowry (1971). The
earphones were driven by the Headset Ampilifier. The two earphones were matched for fre-
guency response and calibrated such that gain for each earphone was equal at the frequency
of interest (500 Hz).

The earphones were calibrated using a Bruiel & Kjeer Type 4152 artificial ear, the Bruel & Kjaer
Type 2121 frequency analyzer, and a 1 inch Briel & Kjeer Cartridge Type 4144 condenser
microphone. Test signals were generated using the 16 bit DAC. To calibrate, the earphone
was removed from the otocup, then plugged into the headset amplifier, and clamped to the
artificial ear using 500 g of pressure. A continuous 500 Hz tone was generated, attenuated
to 316 mV-rms, and passed to the headset amplifier. The appropriate channel (i.e., left ear
or right ear) of the headset amplifier was trimmed until the desired SPL of 106 dB was
obtained. The procedure was then repeated for the other earphone and channel.
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Figure 3.7 shows the sound pressure level from each earphone over a number of test fre-
guencies after trimming.
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Figure 3.7: Calibration curves for the two TDH-39 earphones used in all experiments. Points are interpolated
with a cubic spline.

Systron Donner Digital Multimeter, Model 7344A: The multimeter was used to calibrate the
test signal and masker voltage. The signal was calibrated first, using one Hatfield step
attenuator, then it was unplugged and the continuous masker was calibrated using another
attenuator (without changing settings on the first attenuator).

Entire signal output system: When driving the complete system with a 2.8 V-peak, 2.5 kHz si-
nusoid, stopped down to 0.4868 V-rms at the headset ampilifier, the first harmonic was mea-
sured at 79 dB down from the fundamental. Total harmonic distortion was estimated to be
-76 dB (0.0158%) and the noise floor was approximately -108 dB relative to the fundamental.

3.2.3 Experimental control

Four separate, but interrelated, computer programs controlled the running of the experiments:
RANDOMBOT (Lapsley Miller, 1997), RUNITBOT, (Lapsley Miller & Miller, 1997), SIGNALS (Miller,
1997¢), and ANALBOT (Lapsley Miller, 1998a).

RANDOMBOT was written to (a) create all the data files that the programs RUNITBOT, SIG-
NALS, and ANALBOT used to run the experiment, (b) create the signal and event combinations
for each trial, then randomise the presentation order (with event run-limiting), and (c) create
a randomised or counterbalanced order for replications in an experiment. A linear congruent
pseudo-random-number—generator was used for randomisation (Scurfield, 1994).

RUNITBOT was the main experimental control program. Its functions were to (a) read in the
files that described the current experimental session, (b) establish experimental parameters and
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calculate the trial sequence, (c) program the timers to sequence the intervals, (d) spawn the pro-
gram SIGNALS so the appropriate waveforms were output during the observation interval, (e)
convert the slider voltage read from the respondometer into a rating between 1 and 2000, adjusted
for maximum and minimum voltage on the line, (f) determine when the slider was correctly reset,
by repeatedly polling the respondometer, before beginning the next trial, (g) calculate the mea-
sures of detectability and display ROC curves of the current session, for observer feedback, and
(h) save the observer’s ratings and other data to file.

The functions of SIGNALS were to (a) output to the DAC a continuous, unwindowed, sine
wave of a specific frequency, amplitude and phase for calibrating the system before starting an
experimental session, (b) load the appropriate random signal sequence using the information
passed by RUNITBOT, (c) read in the signal buffer for the next trial from file (during the previous
trial’s decision interval, or before the session began if it was the first trial) then output it to the
DAC during the observation interval of a trial, when triggered by the programmable timers. For
practice trials this may also entail randomly choosing a waveform on-the—fly.

ANALBOT performed the majority of the data analyses, including (a) ROC, mROC, and GOC
analyses, and (b) the calculation of attenuations from the theoretical (x?) energy detector, and the
fitted polynomial full-linear psychometric functions. Results were output to file so they could be
easily used for IATEX tables and GNUPLOT graphics (Williams & Kelley, 1997).

Timing within a trial

An experimental session consisted of a set number of trials. Each trial consisted of a series of
intervals: warning, observation, decision, and reset (possibly with feedback). The timing of the
intervals on each trial was controlled by the programmable timers.

The first timer unit, which controlled the warning interval light, was triggered by RUNIT-
BOT. Subsequent software triggering of each experimental interval occurred on interrupt from
the timers at the end of the previous interval. Hardware triggers from each Timer unit were used
to trigger other events, such as the output of the signal (under control of the SIGNALS program) in
the observation interval, the activation of the appropriate light on the Observer Interface box, and
oscilloscope displays. RUNITBOT and SIGNALS ran independently, but were synchronised before
each trial began.

Figure 3.8 illustrates the functional timing relationships among components in the course of
an experimental trial.

Replication and session design

Observer 1 and Observer 2 completed conditions WT =1, WT =2, and WWT =4 consecutively,
but, within a condition, the order of sessions was randomised over experimental level with the
constraints that (a) all sessions of a replication for all levels were completed before starting on the
next replication and (b) within a replication, each session was a different level from the previous
session. For Observer 3, sessions were also randomised over condition. The differences between
the observers occurred because there had been delays with signal generation so only the WT =1
signals were available when Observer 1 and Observer 2 were due to start data collection. Ob-
server 3 started data collection after Observer 1 and Observer 2 had finished so all signals were
available. From the observers’ perspective, they listened to a different experimental level every
time they ran a session.
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Trials for the six signal levels (one N event and five SN events) were intermixed within a ses-
sion using the multi-signal-level rating-scale procedure described in Tucker, Evans, and Jeffress
(1967). Thus, fewer N trials were needed if all signal levels were run together, instead of sep-
arately. The only potential problem was that the resulting false-alarm rate was then common
across the hit rates for each signal level.

The number of trials in a session was tailored to the observer to minimise fatigue and boredom
while still maximising the number of trials completed daily (the more sessions run, the longer
each replication took, because there was some overhead with starting and stopping each session).
Observer 1 and Observer 2 completed a level of each W7 =1 replication in eight sessions of 375
trials, and each WT =2 and W7 =4 replication in ten sessions of 300 trials. Observer 3 completed a
level of each replication in fifteen sessions of 200 trials. A session took 10-20 minutes to complete
depending on the duration of the current set of waveforms, the number of trials, the length of the
trial intervals, and whether the observer took small pauses (micro-breaks).

Each session began with a set of practice trials. Observer 1 and Observer 2 listened to 24 prac-
tice trials in W7 =1 (two signals at each signal-to—noise ratio starting with the highest, stepping
down to the lowest and then up again), and 12 practice trials in the subsequent experiments (only
one signal at each signal-to—noise ratio). Observer 3 listened to seven practice trials in all sessions:
alternating the highest signal-to—noise ratio signals with noise—alone signals (starting and ending
with a signal-plus—noise).

The observers typically completed 800-1500 trials a day. Data collection continued for about
eight months for each observer, requiring at least a couple of hours commitment per day, every
day.

Observer 1 and Observer 2 both completed six replications of each level and condition, re-
sulting in 324000 trials in total per observer. Observer 3 completed three replications of eight
levels: WT=1: {25ms, 40Hz} and {6.25ms, 160Hz}, WT=2: {400ms, 5Hz}, {50ms, 40Hz}, and
{12.5ms, 160Hz}, and WT =4: {400ms, 10Hz}, {100ms, 40Hz}, and {25ms, 160Hz}, resulting in
72000 trials. In total, 720 000 decisions were collected. These decisions (ratings) formed the basic
data set.

Trial Design

The key to running multiple replications of an experiment is to use different randomised trial
sequences for each replication. Order effects then become part of the unique noise and not the
common noise.

The program RANDOMBOT was used to pre-calculate these trial sequences. All event and
signal combinations were calculated then a pseudo-random number generator was used to ran-
domly sort the sequence. The last number at the end of a replication was used to seed the gen-
erator for the next replication. Additionally, two tests were made. Firstly, a check was made at
the end of each replication to see if the seed chosen for the next replication had been used before.
Secondly, every trial was event run-limited.

Event run-limiting is needed because humans tend to be poor random number generators.
That is, very long sequences of one event are not seen as random, and problems such as the
gambler’s fallacy may result. The run-limit should not, however, be a fixed number—especially
if trial-by-trial feedback is used (because the observer may realize this and count). To stymie
the observer, the maximum run-limit should be randomised on every trial. For instance, on one
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trial the event run-limit may be three, but the next trial may be five. Thus, the observer cannot
predict the next event. In these experiments the minimum run-limit was three and the maximum
run-limit was five.

3.2.4 Procedure

Table 3.2: Interval durations for each observer.

Interval Durations (ms)

Observer Warning Decision Reset

1 50 1250 300
2 100 1250 300
3 300 1350 250

Table 3.2 presents the durations for each interval in a trial for each observer. At the begin-
ning of each trial, an amber LED indicated the warning interval. This interval was immediately
followed by an observation interval (indicated by a red LED). The length of the observation inter-
val was equal to the absolute duration of waveform, which varied with experimental level. On
each trial a randomly chosen stimulus was presented to the observer diotically® through the ear-
phones, simultaneously with the observation interval light. The observer then made a rating by
setting the slider in the decision interval (indicated with a green LED) and then a flashing red LED
indicated that the rating had been recorded and that the slider should be reset. The reset interval
had a minimum duration to help pace the observer so that the trials were not rushed. The next
trial began once the slider was correctly reset to the left. The observer could take micro-breaks at
any stage by not immediately resetting the slider. Breaks were encouraged to reduce fatigue and
to minimise repetition strain injuries.

The Observers’ Task

The observers’ task, in each trial, was to detect if a signal was presented in the observation
interval. The observer was asked to move the slider to the right-hand-side of the scale if they
were certain that a signal was presented and to the left-hand-side of the scale if they were certain
that only noise was presented. They were encouraged to use as much of the scale as possible and
to be consistent in how they used the rating scale.

3.25 Stimuli

The signal generation and analysis is detailed in Section 3.3 and Appendix C. Briefly, sig-
nals for each W7 combination were generated and mixed with gated wide-band Gaussian noise
(4300 Hz ERB, 4000 Hz EssWys 49) of the same duration as the signal. All signals were presented
to the observers mixed with a continuous wideband Gaussian noise masker (8102 Hz AERB,
8310 Hz EssWys 4%).4

3Langhans and Kohlrausch (1992) considered the difference between monaural and diotic tasks and found that in some
circumstances the diotic masked threshold is lower than the monaural threshold by a few decibels. They surmised that
this was due to less internal noise in the diotic case, because a comparison could be made across ears. This would be a
good experiment to replicate using GOC analysis to see whether asymptotic performance is the same.

4See Section 3.3.1 for definitions of these bandwidth measures.
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Signal sets for the six signal levels of each experimental level and condition were stored as sep-
arate files on CD-ROM and transferred onto the hard-disk of the experimental computer at the
beginning of each experiment. The points making up each waveform were stored as 16-bit codes
such that they could be output directly to the sound card. During a trial, a pre-chosen random
waveform was loaded off disk, and output to the 16-bit DAC at a clocking rate of 44100 kHz,
then mixed with a continuous background Gaussian—noise masker (8 kHz, low-pass).

Calibration

The noise-alone masker level was set to 60 dB SPL per unit cycle, and the continuous back-
ground noise masker level to 20 dB SPL per unit cycle . Thus, the masker to continuous back-
ground masker signal-to-noise ratio was 40 dB. The maximum signal signal-to—noise ratio was
16 dB so the maximum SPL produced was 96 dB per unit cycle. Although this SPL may seem
high, the amount of energy involved was small, because the durations were relatively short.

At these levels the continuous background masker was able to effectively mask much of the
unwanted environmental noise passed by the sound-attenuated chamber while contributing less
than 0.01% to the total masking power.

Prior to each session, the signal generation system was manually calibrated by (a) generating
a continuous 500 Hz sinusoid and setting the attenuators so the sinusoid was 73 mV-rms at the
headset amplifier (this resulted in noise of 10 mV-rms). The continuous masker was calibrated to
1.4 mV-rms.

3.3 Signal generation and analysis

Chapter 1 considered previous experimental and theoretical research into the detectability of
Gaussian noise waveforms, discussed ways of representing this type of waveform, and consid-
ered the resulting limiting case or uncertainty principle. To investigate the detectability of this
class of waveforms experimentally, a procedure was needed to generate Gaussian noise wave-
forms of a given WT, but for a variety of bandwidths, durations, and signal-to—noise ratios.

The section starts by describing how to define and measure W, 7, WT, and signal-to—noise
ratio for digital waveforms. Then a novel signal generation method (Drga, 1997b, 1998) that was
used to generate the signals for the experiments and simulations, is described. Finally these signal
sets are analysed to determine whether they fulfil the requirements of approximating band and
time limited Gaussian waveforms of the desired bandwidth, duration, WT, and signal-to—noise
ratio.

3.3.1 The frequency domain

Characterising the spectrum of a waveform, or set of waveforms, generally means estimating
the frequencies over which the waveform is most concentrated. This estimate is not necessarily
straightforward. If the spectrum is rectangular then the bandwidth is the width of the spectrum.
Finite duration spectra, however, can not be rectangular and many definitions of bandwidth may
justifiably be used.
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Measures of bandwidth

There are a number of measures of bandwidth. Some are more useful for theoretical problems
(e.g., the Heisenberg bandwidth), and some are more useful for practical problems (e.g., the TdB
bandwidth). Choosing which one to use for a particular application can be difficult, especially
when the application has both theoretical and practical components.

Three dB bandwidth: The three dB (TdB) bandwidth is calculated by finding the frequency
with maximum power, then to the right (and left for band—pass spectra) finding at which fre-
quency the spectrum is 3 dB down from the maximum. Obviously this only makes sense if the
spectrum has a single peak and does not have much ripple in the passband. Likewise, band-
widths for six, or any other, dB points may be measured but three is the most common standard,
because the TdB points are at half the power of the maximum.

Equivalent rectangular bandwidth (ERB): The ERB is defined as the sum of the absolute val-
ues of the power spectrum divided by the maximum power value and multiplied by the funda-
mental frequency. In other words, a rectangle is calculated that has the same maximum value
and the same area as the spectrum, and the bandwidth is then derived from the definition of that
rectangle.

Average equivalent rectangular bandwidth (AERB): For real signals the ERB can be distorted
if the passband is noisy. This is because the maximum value is used to determine the height. If we
can assume that the spectrum is a result of sampling from a distribution with a smooth spectrum,
then the AERB may be used instead. This method was developed in conjunction with Vit Drga.
It can be seen as a way of estimating the population spectrum from sample spectra by averaging
out the error.

Instead of taking the peak value, the average value of the flat part of the pass band is used
instead. The flat section could be determined heuristically, but at the moment it is estimated
through visual inspection of the spectrum. Calculation is then done like the ERB, but using the
average value instead.

The spectrum of a Gaussian noise waveform, windowed with the Kaiser window, is flat
through part of the passband for waveforms of W7 > 1 so the AERB may be more appropriate
as a measure of bandwidth. For W7 =1, the shape of the spectrum is dominated by the spectrum
of the window and is smoother with a single peak so the ERB may be more appropriate. See
Appendix C for examples.

Essential bandwidth (Ess)V g2¢,):  There seems to be no definition of the essential bandwidth for
discrete—time in the literature. Based on the definition of essential bandwidth for continuous fre-
quency (Equation 1.3) by Landau and Pollak (1961), for a given proportion of energy constrained
(8?), a heuristic algorithm was developed. It assumes that the spectrum has a single peak (al-
though there may be small local maxima) and that the spectrum is concentrated in frequency.
According to Miller (1998, personal communication) this algorithm will result in the minimum
bandwidth. The algorithm will work for spectra of other shapes but the interpretation of the
resulting bandwidth may be more difficult. The steps are:

e Decide on the proportion of energy to be constrained, e.g., 95%.
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e Calculate the total energy in the power spectrum by summing the discrete values in the
spectrum.

¢ Find the bin with the largest value and calculate its proportion of energy relative to the total
energy. If it already contains more than requested, then the bandwidth may be determined
by linear interpolation.

e If more energy is required, check the point to the left and to the right of the maximum
point and choose the largest. Repeat the previous step to determine whether all the energy
is contained in those points. If not, set a left/right marker on that index and a right/left
marker on the original bin. Look to the bin right of the right marker and left of the left
marker and choose the largest. Repeat until the energy equals that required.

e The bandwidth is the width between the current left point and the current right point (or
proportion of that point that results in the energy required).

The algorithm, in pseudo—code, is presented in Appendix B. Depending on the application, the
DC component may, or may not be, important. The algorithm, as presented, includes the DC
component by looping from zero, but this may be changed to one if necessary.

3.3.2 The time domain

Presenting a timelimited waveform to an observer is not as simple as turning a waveform
on and off, because the process of switching causes undesirable spread of the waveform’s spec-
trum (Harris, 1978; Nuttall, 1981). This is a serious problem for psychophysicists, for instance,
Zwicker and Fastl (1972) showed that signals that were poorly designed in the time domain, led
to erroneous conclusions about the nature of the critical band.

The extent of the spread in the frequency domain, however, can be minimised by using non-
rectangular switching, or windowing in the time domain. There are many different windows and
the best one depends on the application. According to Harris (1978) and Geckinli and Yavuz
(1978) the Kaiser window (Kaiser, 1966) has a number of desirable properties in both the time and
frequency domain.

Measures of duration

There have been a number of measures of duration suggested in the literature including
the Heisenberg duration, essential duration (Ess7 ), equivalent statistical duration (Bendat &
Piersol, 1986), equivalent rectangular duration (ERD), squared—equivalent rectangular duration
(ERD2), and according to Gerken et al. (1990): the time interval from stimulus onset to offset, the
half-power points, the temporal interval containing 90% of full amplitude, and the on-off interval
used to control an electronic switch. Gerken et al. (1990) concluded that the controversy is how
to include the transitional rise/fall portion of the waveform. Algorithms for the calculation of the
various duration measures, when using digital signals, are not always as forthcoming. The algo-
rithms used in this project are described, then the duration measures are compared. Note that all
these duration measures may be calculated on a data window or a waveform, but the waveform
must be rectified first.
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Equivalent rectangular duration (ERD): The continuous time ERD is defined as the integral
of the absolute values of the time series divided by maximum power. It may also be defined in
terms of the cross—correlation function. In discrete time the sum of the absolute values of the time
series is divided by the maximum power value and multiplied by the time-base. In other words,
a rectangle is calculated that has the same maximum value and the same area as the time series
and the duration is then defined as the base of the rectangle.

Drga’s ERD2: Drga (personal communication) has suggested a new measure of duration that is
symmetrical with the ERB (see Section 3.3.1). Like the ERB, this measure is based on the total
power in the time domain divided by the maximum power and multiplied by the time-base.
The difference between the two measures is the rectification assumed. The result is a narrower
measure of duration compared with the ERD.

Essential duration (Ess7 ,2%): Like the essential bandwidth, there appears to be no definition
of the essential duration for discrete—time in the literature. Based on the definition of essential
duration for continuous time (Equation 1.4) by Landau and Pollak (1961), for a given proportion
of energy constrained (a?2), a heuristic algorithm was developed for discrete time. This algorithm
is virtually identical to that for the essential bandwidth, except that the discrete values in the
time-series are squared first. The algorithm, in pseudo-code, is presented in Appendix B.

Absolute duration: The absolute duration of a discrete time series is simply the number of
points in the time series times the time-base. It is not necessarily a good measure of duration,
because much of the time series could be essentially zero. It may be used for defining the total
number of points in a digital waveform. For the Kaiser window, the ERD and Ess7 ¢ may be
calculated from the absolute duration, or vice-versa, by multiplying with a scalar.

The Kaiser window

In Chapter 1, it was suggested that a useful definition of duration for psychophysical applica-
tions may be the essential duration, because it is defined with respect to the spread of energy in
the time domain. Landau and Pollak (1961) showed that the essential bandwidth and duration
could be used to define an acoustical uncertainty principle, and, as a result, the prolate spheroidal
wave function family constrained the most energy in both domains. Kaiser (1966) suggested that
a prolate spheroidal wave function may, therefore, be useful as a data window, because it would
maximise the energy contained in a waveform, compared with other data windows.

Kaiser has provided one solution by deriving an approximation to the prolate spheroidal wave
function window. This approximation is accurate and easy to use, because it has only one param-
eter (see Kaiser, 1966; Geckinli & Yavuz, 1978; Harris, 1978; Nuttall, 1981; Rabiner & Gold, 1975).
Other solutions include a window based on the discrete prolate spheroidal wave function (Bar-
bosa, 1986). The characteristics of Barbosa’s window are apparently very similar to the Kaiser
data window, but it is more difficult to calculate.

The continuous time Kaiser window (Harris, 1978; Kaiser, 1966; Nuttall, 1981) is a family of
weighting functions, k(t, ),

k(t,g) = %Io(m/l—(Qt/L)Q), 1] < L2, 3.1)
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Figure 3.9: Examples of the Kaiser window family for k = 0 to k = 15.
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Figure 3.10: Examples of the Kaiser window spectra for k = 6, Kk = 9, and x = 12, for a 500 ms window.
Note how the main lobe widens and the side lobes drop as « increases.

where I is the modified Bessel function of the first kind and order zero, L is the absolute duration
of the window and « is a parameter taking on useful values from 0 to about 15.° In the frequency
domain, the spectrum K (f) is

in 272 F2 _ .2
K(f,k) = > \(/7%) for all f. (3.2)

Figure 3.9 shows the Kaiser window family for x = 0 (horizontal line) to «x = 15 (narrowest
window) for a standardised duration. Figure 3.10 shows the spectrum of the Kaiser window
for three values of k. By varying &, time domain and frequency domain characteristics may be
traded-off. As k gets larger the window gets narrower, and the main lobe of the spectrum gets
wider as the side lobes get lower. This is a direct effect of the acoustical uncertainty principle.
Choosing « depends on the application, but in general, values between 8-12 give good results in
both domains.

5The parameter x is more commonly known as § in the literature but this would cause confusion with 32 in the
definition of essential bandwidth.
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In discrete time, the Kaiser window k(n) is defined as (Galvin & Whitmore, 1986)

Io |K(1 —{2n/(N —1)}?)% N-1
k(n,k) = o) In| < 5

(3.3)

Note that continuous time and discrete time versions are equivalent if 7 = % n = t, and
k = w,T. Similar definitions of the discrete—time window are given by Harris (1978) and Nuttall

(1981).

ERD and Ess7 ¢ of the Kaiser window

Galvin and Whitmore (1986) derived the ERD of the Kaiser window because they needed a
way of defining the duration of a set of signals that had been windowed. They stated that “For
stationary processes, windowing reduces the energy of a time series in proportion to the area
under the window”. They also suggest that the ERD is the most appropriate measure of duration
for calculating the signal-to-noise ratio, or the bandwidth—-duration product. This may be true
for practical applications, but, at least historically, there is little evidence in the literature of the
use of ERD for deriving or measuring WT. In fact, in the psychophysical literature, duration is
often never defined, or is defined as the absolute duration of the signal.®

Their derivation showed that the ERD is a constant proportion of the duration of the window
for a given value of k. They did not, however, explicitly relate this to the energy content, which
they claimed was proportional to the area under the window. The derivation itself is clear. They
start, however, from the discrete Kaiser window, but then derive the ERD of the continuous Kaiser
window without saying how they are related. A table of proportions of duration, for a number
of k, is presented. They then make the assumption that the ERD of a windowed stationary time—
series is equivalent to the ERD of the window alone.

Despite these concerns, the derivation is extremely useful, because it shows that to calculate
the ERD, the proportion for a given « is simply multiplied with the absolute duration. In practical
terms it works because the ERD of the window is, on average, the same as the rectified temporal-
averaged time-series of a set of signals.

It is difficult to derive the essential duration for a given a2 using similar techniques to Galvin
and Whitmore (1986). Therefore, numerical approximations were used to compare the absolute
duration, the ERD, and the essential duration (for o?= 0.05 to 1.0 in steps of 0.05) for the discrete—
time Kaiser window.

The standardised ERD, as shown in Table 3.3, for each value of « (0-15) for the Kaiser window
was the same, to 5 decimal places, of those tabulated in Galvin and Whitmore (1986). The stan-
dardised Ess7T ¢, varied in a similar way, except for when x = 0 (where Ess7T ¢, equalled o2, but
the ERD equalled 100%). To calculate the Ess7 «, the proportion for a given o? and « are simply
multiplied with the absolute duration. These relationships are shown graphically in Figure 3.11,
and are tabulated in Tables C.1 and C.2 in Appendix C.

There is an interesting comparison also, which can be seen in Figure 3.11, between essential
duration and ERD: for 4 < « < 12, the ERD constrains a similar amount of energy (about 0.924)
giving a very similar performance to an essential duration with o ~ 0.92. For most practical pur-

6 According to Whitmore (1999, personal communication), the Bartlett window was often used, where the absolute
duration was equal to the ERD. The absolute duration was not that of the signal, however, but the time between the onset
and offset of the gate.
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Table 3.3: The ERD and EssT g5.49 Of the Kaiser window, as a proportion of absolute duration, and as a
function of k. The ERD values are the same as stated in Galvin and Whitmore (1986) to 5 d.p.

K ERD ESST92,4%
0 1.00000  0.92400
1 092823  0.89955
2 0.79551  0.81477
3 0.68417  0.70051
4 0.60365 0.61110
5 0.54481  0.54825
6 0.50002  0.50188
7 046461  0.46578
8 043574  0.43657
9 041164  0.41228
10 0.39113  0.39165
11 0.37340  0.37384
12 0.35788  0.35826
13 0.34414  0.34449
14 033187  0.33219
15 0.32082 0.32112
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Figure 3.11: The essential duration of the Kaiser window, as a proportion of absolute duration, and as a
function of . Each filled circle line represents a different proportion of energy constrained for
the essential duration with the bottom line representing Ess7 54, increasing in steps of 5% to
EssT 1009 at the top. The open circle line represents the proportion of absolute duration for the
equivalent rectangular duration.
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Figure 3.12: WT of the Kaiser window, as a function of . Each line represents a different definition of WT.
This suggests that to obtain a YWT of one, the proportion of energy to be constrained in both
domains should be slightly larger than 90%.

poses, then, ERD is equivalent to an EssT g, 49. Essential duration is perhaps better, theoretically,
when parameters such as W7 are important, because it can be directly manipulated and related
to the results of Landau and Pollak (1961, 1962) and Slepian and Pollak (1961) (see Chapter 1 and
Appendix A).

3.3.3 Defining WT

The definitions of bandwidth, duration, and W7 are arbitrary. It seems that the definitions
used in both experimental and theoretical work are chosen as much for tradition, rather than
theoretical considerations. For psychophysical purposes, the definitions that appear to best bridge
the gap between theoretical and practical purposes are the essential bandwidth and duration
measures of Landau and Pollak (1961, 1962), Slepian and Pollak (1961) and Slepian (1976, 1983).

The ERD for x = 9 constrains approximately 92.4% of the energy. It seems reasonable then to
use 92.4% as the proportion of energy constrained by the essential duration, because then these
measures may be compared directly. It is also reasonable, if the aim is to treat the time and
frequency domains equivalently, to expect the bandwidth measure to constrain the same amount
of energy as the duration measure. Therefore, the definition of W7 used to define the signals in
this project was EssWgs 49, X EssT 92 49, Many other measures of bandwidth and duration were
also measured but the standard was EssWT g, 49,. This definition results in a minimum WT of
approximately one for k = 9. The corresponding ERD x ERB was about 0.71.

Figure 3.12 compares WT as a function of . This figure shows the minimum Y7 obtainable
when using the Kaiser window for four definitions of W7 . Table C.5 shows the effect of these
various definitions on the resulting W7 for the sets of § waveforms used in the experiments.
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3.3.4 Signal generation with the IFFT

Drga (1997b, 1998) has developed an approach of generating time and band limited Gaus-
sian noise by a method originally suggested by John Whitmore. A similar approach has been
described in Hsueh and Hamernik (1990), however, the current method was developed indepen-
dently. The steps in Drga’s approach are to (a) create a spectrum with a particular bandwidth,
and a large number of spectral components; each component having a random amplitude and
phase, (b) calculate the inverse fast Fourier transform (IFFT) to get a very long time series, (c)
chop sections out of the time series to get the individual transients, (d) scale the transients so they
have a mean of zero and a variance of one, (e) scale and mix the transients to make buffers of
the desired signal-to—noise ratio, then (f) window the buffers to get the desired duration. This
approach generates waveforms that are particularly well defined in the frequency domain—far
better than those created with a digital filter approach.

This new method was used to generate the signals for the experiments and simulations in
this project. Thus, the rest of this section is devoted to describing this method and analysing the
resulting experimental signals.

The process begins by randomly sampling complex frequency components, from the input
bandwidth, to be transformed into a time series by the IFFT. The components make up random
amplitudes and phases, and are selected from a bivariate distribution. Drga (1998) prefers the
circular uniform distribution (uniform amplitude and uniform phase). According to Drga, the
normality of the final waveforms is not dependent on the distribution of amplitude and phase of
each component in the input spectrum. The central limit theorem indicates that if many compo-
nents are included, the distribution will eventually tend to a Gaussian distribution.

The final quality of the waveforms depends on the fundamental frequency (which is the re-
ciprocal of the number of points in the IFFT times the discrete time-base (clocking rate) in Hz).
The smaller the fundamental frequency, the larger the IFFT for the same duration waveform. It
requires lots of computer memory to store these very large arrays.

Practically, to generate a signal set with a particular W7 requires a bit of trial-and—error and
some rules—of-thumb. In this project, a Kaiser window with parameter x = 9 was used. By suc-
cessive approximation, the input bandwidth to the IFFT was estimated for each combination of W
and 7 so that the resulting time series would have the desired bandwidth. It was serendipitously
found that if the bandwidth was narrower than the spectrum of the window, the resulting WT
would be near unity regardless of the duration. This is because only the window was contribut-
ing to the bandwidth spread. By varying the duration of the chopped transients, all required
bandwidths were obtained. For larger WT, the required YV and T were obtained iteratively by
generating small signal sets of various input bandwidths and calculating the resulting bandwidth
and duration.

The IFFT used was based on the algorithm in Numerical Recipes (Press, 1988) which was
implemented in assembly code by Linton Miller. This implementation was an extension of BI1G-
ARRAYS, a set of methods written by Miller (1997a), to enable BORLAND PASCAL 7.0 to access all
available computer memory. BORLAND PAsSCAL 7.0 for MS-DOS normally has the limitation that
variables cannot be greater than 64 Kb, because memory addresses are only 16 bit. BIGARRAYS
beats this 64 Kb limit by providing 32 bit arrays.

All IFFTs were radix 2 with 222 points. This size was chosen because it was the largest that
could be achieved on the computer available (with 80 Megabytes RAM) without paging (which
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slowed the calculations down too much). The larger the IFFT the better, because it increases the
number of spectral components that can be included within the input bandwidth.

The duration of a time series from a 222 point IFFT, with clocking rate 44 100 Hz, is 95 seconds.
From this very long time series, unique transients of the desired duration were selected. It is
important to (a) leave enough time between each successive transient so the correlation between
successive transients is small and (b) include random jitter to remove any periodicity effects.

Firstly, some autocorrelation functions were calculated for the very long time series. The au-
tocorrelation functions were symmetrical about the midpoint with a duration of 95 seconds. The
width of the main lobe was approximately 2/ where W was the bandwidth of the input spec-
trum. From the main lobe, the functions decayed rapidly as a function of the input bandwidth.
For wide bandwidth signals the autocorrelation was essentially zero outside of the main lobe. For
very narrowband signals, the autocorrelation remained significant throughout the duration of the
function. Thus, no matter what lag is included, consecutive pairs of transients will be correlated.
The rule-of-thumb was to make the minimum distance between consecutive pairs of transients
at least 4/W seconds. For example, if the input spectrum had a bandwidth of 0.5 Hz at 500 Hz,
the time between pairs would be a minimum of 8 seconds. Further to this, the random jitter
factor had a minimum of zero and a maximum of the number of points in the transient. From
these numbers, the maximum number of transients that could be chopped from one long time
series was calculated. Any left-over points were spread between the transients if there were more
points than there were transients being chopped, otherwise the extra points were left at the end.
Finally, the total number of IFFTs to be run was calculated by dividing the number of transients
required by the maximum number of transients that could be selected per IFFT. These numbers
for each signal set generated are specified in Tables C.3 and C.4.

It is important to note that, at this point, the transients are gated using a rectangular window.
This causes unacceptable spreading in the frequency domain; in fact these transients have a much
wider bandwidth than the input spectrum. By windowing the transients over the entire duration
of the waveform, with the Kaiser window, the spreading in the frequency domain is minimised. It
is important, due to the nature of the present study, that signals are windowed over the entire du-
ration to minimise frequency domain spreading. As described in Section 3.3.2, this window gives
very near optimal constraint of energy in both the time and frequency domains. The bandwidth
will still be wider than the input spectrum, but the window will ensure that it is as constrained
as possible (with respect to the energy content). As shown in Harris (1978), windowing only over
the beginning and end of a waveform increases the height of the side lobes.

Before mixing the § and N transients to make signal buffers that can be output to a digital-to-
analog converter (DAC), the transients are scaled so both the § and N transients have variance, or
power, of one. Given this constraint it is possible to calculate the scalar needed to give the desired
signal-to—-noise ratio. The signals and noises were randomly and uniquely mixed, scaled, then
converted into 16-bit buffer codes suitable to be output to the DAC.

When the transients were converted to buffers, an appropriate scaling was determined by
mapping the absolute maximum value of all the transients to 16 bits. Not all of the signal sets
were generated before starting the experiments, therefore, there had to be some allowance for
subsequent extreme signal sets, otherwise the signals could not all be scaled to the same level. A
maximum value of 7 was chosen, because the largest value obtained in the practice signal sets was
6.8 standard deviations. The maximum standard deviation of the signal sets, however, tended to
be no more than 5.5, so in most cases the full scale of the DAC was not used.
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Figure 3.13: The Kaiser windows (x = 9) used to gate the signals for the seven different durations required
in the experiments.

3.3.5 Signal analysis of experimental transients

The sets of transients were analysed in both the time and frequency domains to ensure each
set were close to the desired parameters.

The transients in the time domain

Figure 3.13 shows the scale of the Kaiser data window for the seven durations used in the
experiments. The shape is the same, because x = 9 was used for all signals.

The transients in the frequency domain

The waveform sets were fast-Fourier—transformed (FFT), then spectral-averaged, to obtain
frequency domain information. The size of the FFT depended on the number of time domain
points: 2!6 point FFTs were used for signals less than 20000 points (giving frequency domain
resolution of 0.67 Hz) and 2'® point FFTs for signals greater than 20000 points (giving 0.17 Hz
resolution). Thus, all waveforms were zero-padded to some degree. The size of the FFT was
chosen to maximise the effect of interpolation in the bandwidth estimation procedure while still
minimising calculation time.

The power spectra for all waveform sets are presented in in Figures C.1 and C.2, with power in
decibels. The spectra were scaled by the maximum power within each transient set. In all cases,
the 8 spectra are plotted between 0 and 1000 Hz and the N spectra are plotted between 0 and
8000 Hz. All spectra extend to 22 050 Hz, but there is little or no detail beyond the points plotted.

The spectral-averaged phase spectra, for each § and N transient set, over the frequencies
where the power was greater than -72 dB, tended to zero, because the random phases cancelled
out for all transient sets.

Measuring signal-to—noise ratio

In signal generation, the signals and maskers are mixed to give a desired signal-to—noise ratio.
In signal analysis, the signal-to—noise ratio is estimated from the power spectrum.

Subsets of 500 $ and N transients were selected, without replacement, to form buffers for each
signal-to—noise ratio. The estimates of bandwidth were, however, taken over the entire § and N
transient sets, thus the actual signal-to—noise ratio was slightly different from that desired due to
sampling variability.
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In Drga’s (1997b) signal generation program, the ERB of the $ and the AERB of the N tran-
sients were used to specify the scalar, when mixing the signal with the noise maskers. Once the
scalar is determined, it is possible to estimate what the signal-to—noise ratios would be for any
of the other bandwidth measures. Subsequently, Drga (personal communication, 1997) derived a
method of estimating the actual signal-to-noise ratio from the spectrum of the buffers, assuming
the ERB and an ideal rectangular spectrum. From these estimates, the signal-to—noise ratios for
the other bandwidths may be estimated by considering the near constant difference in signal-to—
noise ratio. This is shown in Tables C.11, C.12, and C.13 for the signal sets used in the experiments.

Drga’s method is to estimate the difference between the peak of the SN signal power, rpeax,
and the average SN signal power outside the § signal passband, so only masker is included,
raoors (1 KHz—4 kHz in this case). The signal-to—noise ratio is related to this difference by the
relationship

SNRpeae = 1010g;q [10077esk/meo)/10 1] (3.4)

This method is prone to variable estimates due to noisy passbands. To remedy this, the method
was amended to (a) estimate the masker floor by including the average power of the entire N
passband as well as rqq,;, NOtated rgy1, and (b) by taking the average power of some of the §
passband, notated rsnave, if the top was flat (this requires visual inspection of the spectrum), or
the peak if the top was rounded. This gives a signal-to-noise ratio estimate of

SNRave = 10log;, |10(msave/Tsxex)/10 11 (3.5)

For WT > 1, the passband does not necessarily have a single peak (for W7 =1, the passband is
forced into a smooth curve by the spectrum of the window) and tends to be flat, with random
ripple, over a particular bandwidth. If the power in the band is not averaged, the signal-to—
noise ratio may be biased by a number of decibels because of sampling variability (up to 2-3 dB
difference was noted in some cases) especially for small signal-to-noise ratios. Tables C.14, C.15
and C.16 show this difference for the signal sets used in the experiments. Note that for W7 =1,
except for the very wideband signals, there was no flat part to the spectrum so the peak power
was used for both.

Descriptive statistics of the transients

Tables C.7 and C.8 present the descriptive statistics (mean, standard deviation, skewness, and
kurtosis) of each pre-mixed waveform set, before and after scaling. The scaling is part of the signal
generation procedure where each waveform set is rescaled by the sample mean and standard
deviation so that they are distributed with a mean of zero and a standard deviation of one. This
rescaling aids in the mixing of the waveforms to obtain a specific signal-to—noise ratio and does
not affect the skewness or kurtosis.

A standard normal distribution has a mean of zero, a variance of one, a skewness of zero
(symmetrical), and a kurtosis of three. In all cases, the rescaled waveform sets can be considered
normally distributed on the basis of their skewness and kurtosis measures.
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Histograms

Normality may also be tested by plotting the standardised z-histogram for each waveform set
against the normal distribution that has the same mean and standard deviation. For the set of
signals generated for this project the 8 histograms were normal out to 2.5-3.5 standard deviations
and the N histograms were normal out to 3.5-4 standard deviations. The divergence from nor-
mality outside of these deviations is only slight out to 4 standard deviations. The best fits tend
to be for the longer duration signal sets because there are many more points contributing to the
distributions, and for larger W7 because there are many more spectral components contributing
to the waveforms.

Correlation

Ideally there should be no correlation between consecutive pairs of transients (chopped from
the same IFFT) but this is impossible to achieve for very narrow-band processes. This is because
their auto—correlation function does not tend to zero very quickly for any time lag.

Pearson’s product-moment correlation coefficient was used for all correlation tests. The fol-
lowing tests were performed on the $ and N transient sets for each experimental level:

global—-r: is the correlation over all pairs of points, selected as described below, in the transient
set.

mean-r: is the average correlation for each transient pair over all transient pairs where the tran-
sients are selected as described below. This should tend to zero, because no provision is
made for positive and negative correlations.

z—test: tests whether the measured correlation deviates from the expected correlation of zero.

Overlapping, ordered pairs: This test measures sequential dependency by correlating consec-
utive pairs of transients: transient-one with transient-two, transient-two with transient-three,
etc. The global-r coefficient is akin to measuring the auto—correlation for the specific offset of
one transient duration and ideally should result in a value of zero—that is there is no correlation
between consecutive pairs.

The top half of Tables C.9 and C.10 report the results of this test on each transient set. The
largest absolute correlation is a mere 0.018665. This indicates that the number of points-between—
signals (see Tables C.3 and C.4) were suitably large for all signal sets.

For virtually all the § sets, and some N sets, the z—test indicated that the correlations, although
minute, were large enough to be considered significantly different from the ideal of zero. This
should be taken with a grain of salt, because the number of points contributing to each correlation
are on the order of millions—it is easy to find significant differences if the set size is large enough.
The practical significance of a global correlation of less than 0.0187 is negligible.

Independent, random pairs: This test measures the correlation of pairs of transients chosen
randomly, unlike in the overlapping, ordered pair test where the pairs were taken in order. Thus,
global-r is no longer a point on the autocorrelation function. In general, this results in similar
global-r correlations as the overlapping, ordered pair test, but there are fewer pairs contributing
to the correlation.
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The bottom half of Tables C.9 and C.10 reports the results of this test on each transient set. The
largest absolute correlation is a mere 0.019031 and does not come from the same signal set that
gave the largest overlapping, ordered pair correlation.

3.3.6 Signal analysis for buffers

The digital codes of the buffers were analysed, then some selected buffers were analysed as
analog waveforms at the headset amplifier, and out of an artificial ear, using an analog-to—-digital
converter.

In Figure 3.14, the spectrum of the digital buffer codes for signal set {6.25ms, 160Hz: 16dB}
was used to compare the same buffers at the headphone amplifier, through the earphone, and
through an artificial ear. This signal set was used, because the very short duration would highlight
any problem with the response time of the system. Note that a 100 Hz high—pass filter was used
when sampling through the artificial ear (to reduce the effect of low frequency vibrations) which
attenuated the low frequencies in the spectrum. Note too that a different earphone from the
experimental earphones was used for this test but it had similar frequency characteristics. The
blip in the spectra at about 3 kHz is an artifact of this earphone.

The shape of the spectrum at the headset amplifier closely reflects the original digital buffer
spectrum. The noise at the low frequencies are harmonics from the mains frequency. The biggest
difference is the noise floor, which is much greater due to the small voltage of the signal at the
headset amplifier.

The shape of the spectrum through the earphones and artificial ear is still recognisable as
the original buffer spectrum, but it is also shaped by the earphone frequency response, which is
only flat out to 1 kHz (see Section 3.2.2 and Figure 3.2.2). Thus, the final quality of the signals
is determined mainly by the spectral characteristics of the earphones. The frequency response of
the earphones, however, has the same shape for all the signal sets so can be considered a constant
source of error.

3.4 Results

In this section, the experimental data are analysed using ROC analysis (Section 1.1.2), mROC
analysis (Section 2.1.1), GOC analysis (Section 2.1.1), and FORCE analysis (Section 2.1.2). More
advanced analyses are detailed in Chapters 4, 5, and 6. The ROC, mROC, and GOC analyses
were calculated using ANALBOT (Lapsley Miller, 1998a). The FORCE analysis was calculated
using ACA (Drga, 1997a), which was modified slightly for the current experiment. All graphs
were produced by the program GNUPLOT (Williams & Kelley, 1997).

Observer 3’s data were used only as additional corroboration that the findings for Observer 1
and Observer 2 were similar for another observer. Because there were not enough replications
completed for reliable FORCE analysis, only ROC, mROC, and GOC results are presented for
Observer 3.

3.4.1 Model fitting

For most of the analyses in this section, comparisons are made to a mathematical ideal ob-
server. The ideal observer chosen was the x? energy detector, specified in Chapter 1. The energy
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Figure 3.14:
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The spectrum of the buffer set {6.25ms, 160Hz: 16dB} (a) as the original digital codes, (b) at
the headset amplifier, (c) through the earphones and an artificial ear. The fall-off at low fre-
quencies in (c) is due to a 100 Hz high-pass filter, which was used to remove low frequency
environmental vibrations.
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detector was chosen over the envelope detector, because there are theoretical ROC curves and
psychometric functions for the three W7 products considered. The energy detector is also a sim-
pler model, because there are only two parameters: W7, and signal-to—noise ratio. The value of
the WT parameter was WT =1 for condition W7T =1, W7 =3 for condition W7 =2, and WT=5
for condition W7 =4. The values for WWT were chosen from the signal analysis of the simulations
in Chapter 4, which used the same waveforms. Results from these simulations indicated that the
actual WT was larger than that indicated from the signal analysis on the original waveforms (see
Section 3.3). Because the x? model has integer degrees of freedom, V7T was rounded to the small-
est integer larger than the average estimated W7 . The other parameter, effective signal-to—noise
ratio, was estimated by considering the linear attenuation from the energy detector.

Some graphs also have results from a data model, to be introduced in Chapter 4, which are
polynomial psychometric functions for a full-linear detector.

3.4.2 ROC and mROC analysis

Each experimental level consisted of one noise—alone event and five signal-plus—noise events.
The experiment also used a 2000 point rating—scale, so each level produced one false-alarm rate
array, and five hit rate arrays, each with a maximum of 2000 points.” The ROC curves were plotted
in the usual way, as parametric functions of hit rate versus false—alarm rate, as a function of the
criterion (which was each possible rating from 1 to 2000). The false-alarm rates were common to
each signal-to—noise level within an experimental level.

The ROC curves for each observer’s six replications for each experimental level are presented
in Appendix D, and an example in Figure 3.15(a). On each ROC space are thirty ROC curves (five
signal-to—noise ratios x six replications). The most immediate property of all the ROC curves
is the variability of the six replications from the same observer, experiment condition, level, and
signal-to-noise ratio. This degree of observer inconsistency is similar to previous multiple repli-
cation experiments (e.g., Lapsley Miller et al., 1999). There does not seem to be any major differ-
ences among observers.

As WT increases, the ROC curves tend to become more symmetrical about the negative diag-
onal, but are too noisy to fit to any particular model. In comparing experimental levels, the long
duration—-narrow bandwidth levels from all conditions appear to be attenuated for all observers.

Tables D.10-D.18 (in Appendix D) show the measures of detectability, A and D,, averaged
over the six replications, and their standard deviations. The standard deviations indicate the
amount of observer inconsistency over the six replications. The average measure is used as an
initial value in the FORCE analysis.

The mROC curve shows the average performance of an observer in the ROC space. It is ob-
tained by averaging the hit rates and false—alarm rates for the same criterion over the replications
for a specific signal-to—noise ratio and specific condition and level. The averaging in mROC anal-
ysis may be of any form, for example, arithmetic, z—transform, or arcsine. Arithmetic averaging
is simplest, but distorts extreme hit rates and false—alarm rates because they are bounded by zero
and one. Averaging with the z—transform has the opposite effect because it is undefined when
hit rates and false-alarm rates are zero or one. Arcsine averaging is therefore preferable, for the
arcsine function has a sigmoidal shape but is finite for zero and one. The results from these ex-

"The overall minimum rating was 1, and the overall maximum was 1968, rather than 2000. This was because the
conversion was calibrated off the minimum and maximum voltages on the line.
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Figure 3.15: Examples of the results of (a) ROC analysis, (b) mMROC analysis, and (c) GOC analysis, for Ob-
server 1 in level {25ms, 40Hz}. The theoretical functions plotted in (b) and (c) are the attenuated
energy detector ROC curves for W7 =1.
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periments show little difference between arithmetic and arcsine mROC curves so only the results
from arcsine averaging are presented.

The mROC curves for each observer’s six replications of each experimental level are presented
in Appendix D, and an example in Figure 3.15(b). Results averaged over all observers are not pre-
sented. Although the analysis is possible, observers are not necessarily comparable (e.g., their
critical bands could be different). On each ROC space are the five mROC curves; one from each
signal level. It is now clearer that as W7 increases, the mROC curves tend to become less asym-
metrical, because variability in the hit rates and false—alarm rates has been reduced. In comparing
experimental levels, the long—duration, narrow-bandwidth levels from all conditions are atten-
uated for all observers. Within an experimental level, in all cases, detectability increases as a
function of signal-to—noise ratio—something that was unclear in the ROC curves, because many
of them overlapped.

Each empirical mROC curve in Appendix D is also overlayed with an attenuated theoretical
x2 ROC curve. This curve is fitted by calculating the area under the empirical curve then finding
the signal-to—noise ratio that gives the same area on the x? psychometric function (for the appro-
priate WT). This is done by solving Equation (1.15) for the given W7 . The resulting equation is a
polynomial. A bisection root—finding algorithm was used to numerically solve specific cases. The
x? hit rates and false-alarm rates for that W7 and signal-to-noise ratio were then determined
using Equation (1.14). This comparison indicates that in virtually all cases, the empirical mMROC
curve is less asymmetrical than the mathematical theory predicts, especially for larger signal-to—
noise ratios. Additionally, in all cases, the mROC curve is attenuated from the ideal mathematical
theory. Both these findings can be explained by unique noise that not only diminishes perfor-
mance, but changes the underlying evidence distributions such that they are less asymmetrical
than expected.

Measures of detectability from the mROC curve were calculated, and compared to the average
measures calculated from the ROC analysis above. The results were similar. For instance the
average values of A (from the tables in Appendix D) may be compared with the mROC values in
Tables D.1-D.9. This comparison shows agreement between the two estimates of A, generally to
2 decimal places.

3.4.3 GOC analysis

As described in Chapter 2, GOC analysis removes much of the observer inconsistency by
averaging out unique noise in the ratings for each stimulus. Figures D.15-D.21 in Appendix D,
and an example in Figure 3.15(c), show the GOC curves calculated from the sum-of-ratings from
the six replications, at each of the five signal-to—noise ratios, completed by each observer. Like the
mROC analysis, attenuated theoretical ROC curves (dashed curves) are fitted to each GOC curve.

The GOC curves for WT =1 for all three observers are strikingly close to the attenuated the-
oretical ROC curves, however, the attenuations are not constant over level. For the W7 =2 con-
dition, the attenuated W7 =3 energy detector ROC curves also fit well, but there are more cases
of discrepancies in shape. The discrepancies become slightly larger again in the W7 =4 condition
with the W7 =5 model. The discrepancies are greater if the W7 =2 or W7 =4 theoretical curves
are used instead of W7 =3 and W7 =5.

Observer 1 appeared to find the extreme long duration—-narrow bandwidth levels particularly
difficult, especially {400ms, 10Hz} illustrated in Figure D.17(n). The levels at the other extreme,
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short-duration wide—bandwidth also proved slightly more difficult than those in the middle.
Observer 2 was better at long duration—-narrow bandwidth levels than Observer 1, but his perfor-
mance was still more attenuated for these levels, compared with performance for the less extreme
levels. The shortest-duration widest-bandwidth level also proved slightly more difficult than
those in the middle. Observer 3 did not do as many levels, but his data do indicate similar pat-
terns to the other observers except for the {6.25ms, 160Hz} where his performance was far more
attenuated from the middle. Unfortunately there are no data from the {400ms, 2.5Hz} level for
comparison.

Although the improvement over the mROC is considerable, there is not enough GOC evidence
to say for sure that the energy detector is inappropriate, given the number of stimuli per event
(e.g., compare the discrepancies to the sampling variability indicated in Figure 2.4).

3.4.4 FORCE analysis

FORCE analysis was calculated on the six replications of each experimental level for Ob-
server 1 and Observer 2 to estimate asymptotic performance. Analysis for Observer 3 was not
included because reliable FORCE analysis requires more than three replications. The tables in
Appendix E show all the results from the FORCE analyses, including the parameters of the fit-
ted FORA, the asymptotic measure of detectability, and the linearity (correlation) of the empirical
FORA in log-increment coordinates.

For WT =1, the FORCE analyses for each level and signal-to—noise ratio all converged to an
asymptotic measure for both A and d'. All the slopes were well below -1. The improvement in
A, to A, was not constant over experimental levels or signal levels, thus the slope of the FORCE
psychometric function could potentially change shape compared with the mROC or GOC psycho-
metric function. Two signal levels did not converge for D,—{25ms, 40Hz: 0dB} for Observer 1
and {200ms, 5Hz: 0dB} for Observer 2.

For WT =2 all the FORCE analyses converged to an asymptotic measure for A and d'. The D,
FORCE analysis for Observer 1, however, did not converge or converged to impossible values for
all the signal levels in {400ms, 5Hz} despite the FORCE analyses for A and d' behaving well.

For WT =4, the FORCE analysis of A for Observer 1 showed problems in level {400ms, 10Hz}.
{400ms, 10Hz: -8dB} did not converge and {400ms, 10Hz: 8dB} converged to an impossible value.
FORCE analysis for D, emphasised this level as problematic, because {400ms, 10Hz: -8, -4, 0dB}
did not converge and {400ms, 10Hz: 4, 8dB} converged to impossible values. The d’ analysis did
not converge for {400ms, 10Hz: -8dB}. The problems at this level are not surprising given the
poor performance compared to other levels. There is likely still a large amount of unique noise in
the data. All but one FORCE analysis for Observer 2, on the other hand, converged. The exception
was for D» {25ms, 160Hz: -8dB} that did not converge.

Overall, the absolute correlation coefficients, for levels that converged validly, were bigger
than 0.9900, indicating that the data are indeed linear in log—increment coordinates (remember
this is not a measure of how well the fitted FORA fits the data in log coordinates but a measure
of the linearity of the data in these coordinates). The levels that did not converge, or converged to
impossible values, tended to be from experimental levels in which the observer did particularly
badly, or signal levels for very low signal-to—noise ratios.

The d' results were also more likely to converge than A or D-, presumably because d’ is posi-
tively unbounded. It is unclear why D is not as reliable as A given it is merely a transform of A




100 3. Experiments

(as is d'). The other non-parametric measure that is not a transform of A is P(C),ax, however, no
results are reported here for it is extremely unreliable in FORCE analysis. This is possibly because
it contains more error (because it is measured at the negative diagonal and does not gain any
smoothing effect of the integration of area), and because it is confounded with criterion.

Figures E.1, E.3, E.5, E.7, E.9, and E.11 show the empirical FORA (with +1 standard deviation
error bars), the fitted FORA, and the asymptotic measure of detectability for each signal-to—noise
ratio and for A. Points greater than unity are not plotted, because they are impossible values.

Figures E.2, E.4, E.6, E.8, E.10, and E.12 shows the empirical FORA in log-increment coordi-
nates for the increments in A, as well as the fitted FORA. The parameters for each fitted FORA
may be read from the corresponding tables in Appendix E. The ordinate of all the FORASs in log-
increment coordinates have been scaled onto the same range to allow easy comparisons among
them. Remember if the slope is greater than -1 then the FORA do not converge. These figures
illustrate the tables for A, enabling comparisons among the rates of improvement. They are pre-
sented in full, because to date, there are no published results using this analysis.

The FORA in linear coordinates show:

1. that the variability (indicated by the error bars) tends to decrease as replications are added—
this is not entirely intuitive because the number of combinations of replications increases then
decreases as a function of replications added,

2. that rogue FORA do not necessarily have larger error bars,

3. that some FORA are quite close to their asymptotic value but others are quite far away
possibly indicating that more replications would be required to achieve the same reduction
of unique noise in the final data set. This criterion could be used as a halting rule in an
experiment, instead of completing the same number of replications for each level.

4. the improvement, graphically, from average performance (not mROC, but average A, which
was shown to give essentially the same value), to GOC performance, to asymptotic perfor-
mance.

For the FORA in log—-increment coordinates there is

1. a tendency for the A from the higher signal-to—noise ratios to converge more quickly than
the lower signal-to—noise ratios (indicated by lines with a steeper slope that often cut across
the other fitted FORA),

2. a tendency for d' FORA to be more neatly lined up (i.e., similar slopes) in order of largest
signal-to—noise ratio to smallest, than for A (not illustrated).

3. atendency for the last point to not fall on the fitted FORA. According to Drga (1998, personal
communication) this is because the final point is not averaged, because only one combina-
tion (all six replications) contributes to it.

3.4.5 Psychometric functions

Appendix F summarises the analyses conducted so far by presenting psychometric functions
for mROC, GOC, and FORCE analyses and comparing them to the energy detector mathematical
model. Figures F.1, F.3,F5, F.7, F9, and F.11 show the psychometric functions from the FORCE,
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GOC, and mROC analyses, calculated from the six replications completed by Observer 1 and
Observer 2 for each experimental condition and level. Each figure shows:

1. atheoretical psychometric function (the x? energy detector for W7 =1 for condition WT =1,
the x? energy detector for W7 =3 for condition W7 =2, and the x? energy detector for
WT =5 for experimental W7T =4),

2. the empirical psychometric points for each signal-to—noise ratio from the FORCE, GOC,
and mROC analyses for each observer, and

3. the attenuated theoretical psychometric function for the FORCE, GOC, and mROC analyses
where the attenuation is the linear average of attenuation in dB for each five signal-to—noise
ratios relative to the model being tested. For the FORCE analysis, a point was only included
in the attenuation calculation if the point had converged sensibly.

Results from condition W7 =1 indicate, as anticipated from the GOC and FORCE results, that
the amount of attenuation is not constant as YW and 7 are varied. There is more attenuation at the
extremes. Both Observer 1 and Observer 2 have the least attenuation in level {25ms, 40Hz} after
FORCE analysis. Observer 2 has less over-all attenuation than Observer 1.

The attenuation is the arithmetic average attenuation in decibels. This, of course, tells us noth-
ing about the shape of the psychometric function. Looking at Figure F.1 there are good FORCE fits
to the attenuated theory for all levels except {400ms, 2.5Hz} and to a lesser extent {200ms, 5Hz}.
It appears that {400ms, 2.5Hz} results in a steeper psychometric function and would probably be
better described by an energy detector with a larger W7T. This is consistent with the idea that the
detection bandwidth has a minimum value. Once that minimum is reached, the auditory filter
must pass more noise, so there is more attenuation, but, as a result, the YW7 must increase be-
cause W has increased (this of course assumes that 7 stays the same). Level {400ms, 2.5Hz} also
illustrates how FORCE has changed the shape of the psychometric function compared with the
mROC results. In fact, going by the mROC results alone could be very misleading. Observer 2’s
results also indicate that W7 =1 is an appropriate model, because all his FORCE results fall on or
near the attenuated YW7 =1 energy detector psychometric function. His {400ms, 2.5Hz} level is
not as steep as Observer 1, indicating, perhaps, a narrower detection bandwidth.

For the condition W7 =2, Observer 1's results are generally consistent with the attenuated
theoretical WT =3 x? psychometric functions, except for the long duration-narrow bandwidth
conditions {400ms, 5Hz} and {200ms, 10Hz}. Both levels indicate problems with the smallest
signal-to—noise ratio of -4 dB in the FORCE psychometric functions, with one converging to a very
high number and the other converging, but showing negligible improvement over the mROC re-
sults. Both have the effect of skewing the average attenuation. Observer 2 produces slightly more
variable results with more points falling above and below the psychometric functions compared
with Observer 1 but his performance overall is again better than Observer 1. Again, performance
for both observers is more attenuated at the extremes.

There was also justification for using the YW7 =3 model, rather than the W7 =2 model, because
Observer 2 consistently performed better than the W7 =2 model in level {50ms, 40Hz}. This may
also indicate that the energy detector is not an appropriate model for human hearing.

For WT =4, Observer 1’s performance for the long duration {400ms, 10Hz} deteriorated fur-
ther, compared with {400ms, 2.5Hz} and {400ms, 5Hz}, with two signal-to-noise ratios not con-
verging after FORCE analysis. All the other levels, however, are closer to the theoretical than in
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the other experimental conditions with performance in level {50ms, 80Hz} falling on-top of the
theoretical. Observer 2 also shows less attenuation than in other conditions with both {100ms,
40Hz} and {50ms, 80Hz} falling onto the theoretical.

3.4.6 Attenuation analysis

The attenuation analysis summarises the information from the psychometric functions by
plotting the average linear attenuation of the data from the model as a function of bandwidth
and as a function of duration. A signal level only contributed to the attenuation of the FORCE
function if it converged successfully. Rogue data points from the FORCE analysis for Observer 1
in levels {400ms, 5Hz: -4, 12dB}, {200ms, 10Hz: -4dB}, and {400ms, 10Hz} were dropped, be-
cause they biased the attenuations. This is not unreasonable as it was obvious that these levels
converged with difficulty.

If the ear can trade W and 7 such that it is an optimal energy or envelope detector, then the
attenuation function should be flat with 0 dB attenuation. This analysis, however, is very specific
to the assumed parameters. If an energy detector with a different W7 was chosen, for instance,
then the shape of the attenuation functions may be slightly different (due to the change in slope
of the psychometric function for small WT).

Figure 3.16 shows the average attenuation in decibels from two types of psychometric function:
the mathematical energy detector (dashed lines and open symbols) and the data model for the
full-linear detector (solid lines and solid symbols), to be introduced in Chapter 4. The values of
the WT parameter used for the energy detector were the same as for the psychometric function
analysis in the previous section. Attenuation functions are shown for the FORCE, GOC, and
mROC analyses, calculated from the six replications completed by each observer.

Further attenuation analysis is in Section 4.6.2, where attenuation is relative to the full-linear
detector. For the two models, attenuation functions were of similar shape but the actual attenua-
tions were different. It is not surprising that the shape is similar, because the differences between
the shape of the psychometric functions for the energy and full-linear detector is subtle.

For each observer and experimental condition, the attenuation function for mROC, GOC, and
FORCE analysis followed roughly the same shape with an approximately equal improvement in
attenuation after each analysis. The difference in mROC to GOC tends to be on the order of 2-
3 dB and from GOC to FORCE about 0.5-1.5 dB (ignoring the rogue points of Observer 1 in levels
{400ms, 5Hz} and {400ms, 10Hz}).

The shape of the attenuation functions tends to be an asymmetrically bowl shaped with a
steeper left side that corresponds to long duration levels. The bottom of the bowl tends to be
around 40-80 Hz and 25-100 ms.

For reference, the Tables F.1-F.6 give the actual attenuations for each signal-to-noise ratio as
well as the average attenuations on which the psychometric functions from Appendix F are based.

3.5 Summary

The first two sections of this chapter described the experimental methodology. The third sec-
tion discussed the signal generation and analysis and considered how to define the properties of
essentially band and time limited Gaussian noise in a practical context. The bandwidth, duration,
and WT, were defined as the EssWys 49, EssT 9249, and EssWT g 49 respectively. This does not
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Figure 3.16: Attenuation functions after FORCE, GOC and mROC analyses, for each observer in each condi-
tion. Solid lines and solid symbols represent attenuation from the full-linear detector; dashed

lines and open symbols from the energy detector.
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stop any set of waveforms being defined by other methods—in fact it can prove useful to com-
pare the relationships among the different definitions of bandwidth and duration. A new method
of generating and analysing such signals—specifically for simulations and experiments—was de-
scribed and thirty-six sets of transients were generated then converted into experimental stimuli.
The signal analysis indicated that the sets of signals that were generated had the properties they
were designed for within reasonable bounds of variability.

The fourth section reported on the initial findings of the experiments—primarily with respect
to the energy detector mathematical model. It appears that human detection of small W7 noise
signals cannot be modelled as

1. an ideal energy detector, because even after FORCE analysis, performance is still attenuated
from the theoretical energy detector for many experimental levels,

2. an ideal envelope detector, because that model predicts performance equal to the optimal
energy detector for W7 =1, and similar performance across all levels,

3. an energy or envelope detector that is linearly attenuated from the theoretical, because at-
tenuation is not constant for the same WT.

4. an energy detector with a fixed critical band, because although the psychometric functions
are steeper than the theoretical energy detector for long duration signals, they are not, in
general, correspondingly shallow for short duration signals.

Although the human hearing system does not operate either with optimal, varying parameters
or fixed parameters, it seems that for some cases that the hearing system is able to operate opti-
mally. These cases tend to be when the signal bandwidth is around 40-80 Hz and the duration is
around 25-100 ms. There is also no indication that it is appropriate to combine results across ob-
servers. The results so far indicate that each observer solves the time—frequency problem slightly
differently for the same stimuli.

Chapter 4 presents the next step which is to compare the performance of humans to simulated
detectors where the stimuli are the same. This eliminates one source of potential differences—the
difference between ideal and real signals. To analyse further how the hearing system is using time
and frequency information, Chapter 5 analyses simulations of energy, full-linear, and envelope
detectors where the filter, rectifier, integrator, and sampling strategy parameters are systemati-
cally varied in sub—optimal ways. The evidence output from these simulations is then correlated
with the human sum-of-ratings. Chapter 6 then takes advantage of some of the useful properties
of Scurfield’s (1995, 1996) information theoretic measures of detectability to assess performance
in three—dimensional YWT —space.




Chapter 4

Simulated observers

“In theory,
there is no difference between practice and theory,
but in practice there is.”

7Tme is a problem with human psychophysical experiments, because it takes hours of work to
collect even a few, useful, data points. Simplifying assumptions are a problem with mathemat-
ical models to the extent that many models are not practically realisable. Thus, a mathematical
model may not be a good model of real world detection problems. Simulation—electronic or
computational—can be used to bridge the gap by modelling both human and mathematical ob-
servers.

Computer simulations have advantages over mathematical models and electronic simulations:

e They can avoid the problems of intractable mathematics by numerical approximation and
estimation.

o It is generally easier to manipulate the parameters of computer simulations than of mathe-
matical models.

e It may be easier to model physical devices, such as electronic filters, computationally rather
than mathematically.

e Computer simulations are nowadays cheaper and easier to use than electronic components.

The main problem with computer simulations is the temptation to generate data for every pos-
sible combination of parameters. This quickly becomes impossible to analyse. As such, only
selected simulations are dealt with in this chapter. Undoubtedly there are others that could, or
even should, be run.

The computer simulation, Sim 1O (Lapsley Miller, 1998¢c), was designed to simulate the math-
ematical ideal observers discussed in Chapter 1, and to model the human observer performances
in the experiments from Chapter 3. Simulations that were run included:
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e Simulations using the same digital waveforms that were used in the experiments on hu-
mans, so ideal observer performance could be compared directly to human performance on
a stimulus-by-stimulus basis, as well as over all stimuli:

— for simulated detectors with optimal parameters, and

— for simulated detectors with non-optimal parameters, including systematically varying
(a) the filter bandwidth, (b) the leaky integrator time constant, and (c) the sampling
time.

e Simulations of different ideal observers detecting the same signals to enable direct compar-
isons of performance.

e Simulations using a very large number of stimuli per event, something impossible with
humans, allowing estimation of the underlying distributions.

The design of Sim 10 was formulated after contemplation of previous simulations discussed in
the literature (see Chapter 1) including Ahumada (1967), Gaston and Jeffress (1974), Gilkey (1981),
Gilkey and Robinson (1986), Green (1988), Indlin (1979a, 1979b), Jeffress and Gaston (1967), Jef-
fress (1968), Makita and Miyatani (1950), Pfafflin and Mathews (1962, 1966), Raab and Leshowitz
(1968), Sherwin et al. (1956), Whitmore and Bowden (1985), and Williams and Jeffress (1967).

4.1 General description of Sim 10

Sim 10 (Lapsley Miller, 1998c¢) is a flexible simulated ideal observer, which filters, rectifies,
integrates, then samples digital waveforms. It is modular in form, such that each component is
a separate entity, receiving an input waveform and delivering an output waveform. The output
may be captured and saved to file at any stage in the system so that signal analysis can be per-
formed after each transformation. The modules may be configured for many types and variations
of ideal observer by changing the filter, rectifier, integrator, and sampling strategy characteristics.

The simulations were run as SIFC experiments (see Chapter 1), but it is relatively straight-
forward to post hoc analyse the evidence as if it were from a two-interval forced—choice (2IFC)
experiment if required.! Simulations may be run as multiple batch—jobs or run interactively.

The main components of Sim 10 are the:

Signal Generation Module: that reads in the experimental buffers or transients from disk, or
generates some simple signals on-the—fly.

Digital Filter Module: including the classic infinite impulse response (1IR) filters such as the But-
terworth, and the single-tuned or resonator filter.

Rectifier Module: that gives the choice of half-wave, full-wave, or square-law rectification.

Integrator Module: that implements true, leaky (negative exponential), and leaky (running av-
erage) integration.

Sampling Strategies Module: including peak sampling, sampling at a specific index or time,
sweep sampling, averaged sampling, and end of waveform sampling.

1For example, by pairing up SN and N stimuli, and taking the difference or the ratio of the evidence associated with
each pair. This assumes no interactions due to forward or backward masking, or leakage of one signal into the next.
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After a simulation was finished, various analyses were performed including ROC analysis (see
Section 4.4.6), signal analysis of the output of each component (see Section 4.3), parameter es-
timation of the output of the simulation (see Section 4.4), and correlation analysis with human
performance (see Chapter 5). ROC analysis was always performed, and the other analyses de-
pended on the context of a particular simulation.

SiM 10 outputs results to a number of files including:

* .SUM: a summary of the characteristics of the signals, parameters of each component of the
simulation, the evidence statistics, and the running time.

* _ROC: hit rates and false—alarm rates for each signal level.

* . STT: measures of detectability and attenuations from the energy detector for each signal level.
*  EVD: the output of the simulation (the evidence) for each signal.

* . POW. the spectral-averaged power spectra out of the filter for each signal level [optional].

* _RCT: the temporal-averaged rectifier output for each signal level [optional].

* INT: the temporal-averaged integrator output for each signal level [optional].

* . BAD: the batch file for batch—job sessions that defines every parameter required by Sim 10.

4.1.1 Signals

Sim 10 can read in stored signals or, for testing purposes, it can generate a number of test
waveforms, e.g., random numbers from particular distributions with or without added deter-
ministic signals. For the stored signals it can read in and convert the digital buffers (used in the
experiments) to the digital equivalent of an analog voltage value, or it can read in the 8 and N
transients used to create the buffers and mix them to a desired signal-to—noise ratio on—-the—fly,
using pre-calculated bandwidths. Multiple signal-to—noise ratios may be tested at one time and
the number of stimuli per event may be unequal.

4.1.2 Digital Filters

SimM 10 has a variety of filters, including the classical IIR filters, and the single—tuned filter.
The implementation of the filters (FILTERIT, Miller, 1997b) was generated on-the—fly, allowing
the filter design and implementation to be seamlessly integrated with Sim 10. FILTERIT was based
closely on the programs GENCODE and MKFILTER by Fisher (1996). For a good description of the
characteristics of the classical IR filters see Jeruchim, Balaban, and Shanmugan (1992).

The filter used for the majority of simulations was a third order Butterworth filter (see Fig-
ure 4.1). The Butterworth filter (Stearns, 1975) is characterised by a smooth power gain function,
which is maximally flat in the passband and the stop-band, and has a relatively sharp cutoff. The
transition band rapidly decreases as a function of the squareness of the power—gain characteristics
and the smallness of the order of the filter.

Jeruchim et al. (1992) state if the filter is normalised to the 3 dB bandwidth, it is completely
specified by the order of the filter. As the order tends to infinity, the filter approaches the ideal
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Figure 4.1: The power spectrum of the Butterworth filter impulse response. The power spectrum (in decibels
relative to the maximum power) is for a 14 Hz band—pass, third—order, Butterworth filter, centred
on 500 Hz. The right graph zooms in on the passband.

rectangular low—pass filter. The TdB bandwidth can be converted to EssW,, 49, by the equation:?
EssWgo 4 = 1.16 x TdB +0.4 4.1
Similarly for ERB:

ERB = 1.05x TdB +0.11. (4.2)

4.1.3 Rectifiers

Three types of rectification are common in the literature: half-wave, full-wave, and square-
law. Either the half-wave or the full-wave rectifier may be used in an envelope detector. Half-
wave is said to be the most likely type of rectification in the human hearing system for physio-
logical reasons (Jeffress, 1968). There appears to be little difference between the performance of
the two rectifiers when used in an envelope detector. The square-law rectifier is also important,
because it is a defining part of the energy detector. All three types of rectification have been imple-
mented in Sim 10. If f(¢) is the input to the rectifier, as a function of time, then, then the rectifier
output r(¢) is defined as:

o full-wave rectifier: r(t) = | f(t)|,

e square-law rectifier: 7(t) = f(t)2, and

e half-wave rectifier: { "

4.14 Integrators

Integration is a type of low—pass filtering. A true or full integrator sums each waveform value
without weighting, thus each value contributes equally to the output. A leaky integrator, on the
other hand, weights the current value of the waveform, and the previous N —1 values, by negative

2This equation was determined empirically for a variety of W, 7, and WT, and is good for TdB bandwidths greater
than 6 Hz.
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Figure 4.2: Example output for a true integrator (left), a 10 ms box—car integrator (middle), and a 10 ms leaky
integrator (right) to a 100 ms windowed sinusoid input.

exponential coefficients and then sums. The points in the waveform do not contribute equally to
the output at any one time. Between the true and leaky integrator is the box—car integrator. It is
a leaky integrator, because it does not integrate over the entire duration of the waveform, but the
weightings are equal (like a true integrator).® Sim 10 employs true, leaky, and box—car integrators.

True integration

True integration sums every value of the waveform without weighting. This process is funda-
mental to the energy detector but physiologically it is not likely, because there is no mechanism
to discharge the integrator (Jeffress, 1968). Figure 4.2(a) shows an example of the output of a true
integrator where the input was a 500 Hz windowed sinusoid of 100 ms duration.

Box—car integration

The box—car integrator (also known as the moving-weighted—average integrator and the run-
ning-average integrator) averages the current value of the waveform, and the NV — 1 previous
values of the waveform over N points. Box—car integration is a type of low—pass filtering, but,
according to Stearns (1975, p. 105), it does not have a good low-pass transfer function. The box—
car takes V — 1 values to fill up and N — 1 values to empty thereby increasing the length of the
waveform by N — 1 values.

Figure 4.2(b) shows an example of the output of a box—car integrator of 10 ms duration with
an input of a 500 Hz windowed sinusoid of 100 ms duration.

Leaky integration

Leaky integration, using the negative—-exponential function, may be used to implement the
envelope detector. With a short time constant, the envelope closely follows absolute changes in
the waveform. As the time constant increases, the envelope reacts only to larger changes in the
waveform (Jeffress, 1968).

SiM 10 uses the recursive algorithm for negative-exponential leaky integration by Brignell and
Rhodes (1975). The input to the algorithm is the time constant (in ms). This time constant is also
the ERD of the integrator. Equation (1.11) defines the time constant with respect to Ess7 . The

3The term leaky always refers to a negative exponential integrator here.
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effective duration of the integrator, however, is dependent on the duration of the input waveform
if it is shorter than the time constant.

Brignell and Rhodes (1975) derived a discrete-time leaky integrator from the classic electronic
leaky integrator (smoother). It is also known as the RC integrator, for its properties depend on
the value of its resistor and capacitor. This electronic integrator has the transfer function

1
H&) = 15 Res #3)
and an impulse response of
1 —t

Brignell and Rhodes (1975) showed that the output of the equivalent discrete-time integrator is
y; = kx; + exp (—aT)y;—1. (4.5)
and that unity gain may be achieved if k is set to 1 — exp (—aT'). This gives
yi = (1= b)a; + byi (4.6)

where T is the clocking rate, a = 1/RC, b = exp (—aT’), and the time constant is —7'/ log, b = RC.

This algorithm is easy to implement, is very efficient, and the time constant is its only pa-
rameter. Figure 4.2(c) shows the output of a leaky (negative—-exponential) integrator, with a time
constant of 10 ms, to a 500 Hz, 100 ms windowed sinusoid.

4.1.5 Sampling Strategies

As described in Gilkey and Robinson (1986), sampling strategies are required if the type of
integration does not return a single number. They defined their sampling strategies in terms of
the observation interval duration. This is not the best way of defining the sample point, because
the duration of the waveform increases as it passes through the filter and the integrator, so the
waveform may extend some way past the nominal observation interval.

It is not clear exactly what sampling time results in optimal detectability, so Sim 10 uses a
number of sampling strategies: peak sampling, sampling at a specific index or time, sweep sam-
pling (where samples are taken from evenly spaced points over the waveform), averaged sam-
pling, and end of waveform sampling. Any one simulation may be set up to use multiple sam-
pling strategies so their effects can be compared.

4.1.6 Analysis of the evidence

The output of the integrator under a particular sampling strategy is the evidence. It can be
seen as a sample from the underlying probability distributions of the SN and N events. As such,
SiM 10 records the mean, variance, skewness, and kurtosis of the evidence for each event.

4.1.7 ROC analysis

For each signal level Sim 10’s performance is analysed using ROC analysis. The evidence is
treated like a rating, but it is not binned into an N—point rating scale. This is because binning
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results in a decrease of information. If the evidence distribution is very asymmetrical, such as
a negative exponential, then binning may result in most of the evidence falling into only a few
bins. Instead the evidence for all events was sorted, then tallied and transformed into hit rates and
false—alarm rates using Event-Decision matrices. This process is essentially the same as described
for calculating GOC curves from sum-of-ratings in Chapter 2.4

From the hit rates and false-alarm rates the ROC curves were plotted and measures of de-
tectability (A, D, d', P(C)max) calculated. Additionally, the linear attenuation of the psychometric
function from a stated x2 model were calculated if appropriate.

4.2 Energy, full-linear, and envelope detector simulations

This section describes simulating the performance of three types of detector: energy, full-
linear, and envelope (see Figure 4.3). The energy and envelope detectors were chosen because
they have been suggested as good candidates for noise—in—-noise detection (see Chapter 1). The
full-linear detector was chosen as a compromise between energy and envelope detection.® Firstly,
mathematical theory was compared with simulations of an energy detector. Secondly, the full-
linear and envelope detectors were compared with the energy detector, and each other. Because
mathematical theories for full-linear and envelope detectors do not exist for arbitrary WT, these
comparisons were solely computational in nature.

The general similarities and differences among these observers are illustrated in Figure 4.3.
Firstly, note that the duration of the time domain is the same in all the illustrations, but the range
of the amplitude varies to accentuate changes in the shape of the waveform, rather than over-
all levels. The band—pass filter is identical for all detectors. The square-law rectifier, however,
accentuates the main peaks, and suppresses smaller peaks, compared with full and half-wave
rectification of the same waveform. Comparison of full and half-wave rectification shows that
the shape is very similar, but the half-wave rectified waveform is not as dense, because negative
components are transformed to zero. For integration, there is a subtle difference in the shape
of the true integrator output, for square-law and full-wave rectification. The effect of the time
constant on the leaky integrator is also illustrated, with the short time constant closely following
changes in the rectified waveform, and with the long time constant tending towards true integra-
tion. Sampling is not illustrated.

To evaluate the detectability of small-W7 Gaussian noise by humans, it is useful to first con-
sider systems that result in optimal detectability. Estimating the maximum detectability of a class
of waveforms provides a baseline for comparisons with other systems. Chapter 1 described how
the energy and envelope detectors are considered to be ideal observers of small W7 Gaussian
noise. These ideal observers make particular assumptions about the nature of the waveforms
that cannot be realised in physical systems. It is, therefore, not clear that the same ideal observer
would produce the same level of performance with the current digital signals, compared with the
idealised signals. It would be difficult, and possibly infeasible, to design the ideal observer to
optimally detect these digital signals, because of the difficulty in specifying these signals math-

“4For practical reasons, binning was used for the few simulations where there were hundreds of thousands of stimuli.
The resolution of the binning was the maximum rating minus the minimum rating divided by 500 000.

SRunning simulations for every other possible detector (by considering every combination of filter, rectifier, integrator,
and sampling strategy) was not feasible. Preliminary investigations of leaky-energy detection (equal-bandwidth filter,
square-law rectifier, and leaky integrator) in particular, did not indicate marked differences from the energy detector. This
detector, however, is probably worthy of further investigation.
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ematically. Such a model would need to incorporate the window, non-rectangular filtering, and
waveform samples that may not be independently, identically, distributed.

The simulated ideal observer allows a compromise where the mathematical model may be
tested using a variety of waveforms. Comparisons may then be directly made with the mathe-
matical models to see if the differences between the digital waveforms and the mathematically
ideal waveforms result in differences in their detectability.

The main aims are to:

e simulate an ideal energy detector and compare it to mathematical theory by

— doing signal analysis on the output of the filter and rectifier of the energy detector, to
measure the effect these processes have on the subsequent bandwidth, duration, and
WT,

— modelling the distribution of the evidence as a gamma probability density function to
estimate YW7T and signal-to—noise ratio, and to see if the gamma model can be justified
for these types of signals (where the x> model is a special case of the gamma model,
with fixed, integer, WT),

e compare the ideal energy, full-linear, and envelope detectors to establish any differences or
similarities in performance,

o fit polynomial psychometric functions to the energy detector and full-linear detector psy-
chometric functions. This establishes a data model to be used as a baseline comparison
with the human performances, and other simulated performances, for the same signals.
Although the theoretical energy detector psychometric functions are known, they are not
necessarily appropriate for the experimental signals, and there are no theoretical functions
for the full-linear detector.

The first series of simulations used the same buffers as those used in the experiments.® The
second series of simulations used the transients from the experiments (see Chapter 3), but with
many more signal levels and stimuli. The aims were not to model human performance directly,
but to generate psychometric functions for arbitrary signal-to—noise ratios. The third series of
simulations used very large sets of signals (VLS signals). The aim here was to generate enough
sample points to estimate the evidence distributions produced by particular combinations of sig-
nal parameters and simulated ideal observer parameters. These simulations were not done using
signal sets for all the experimental levels. Only a subset were chosen, because the signals take
gigabytes of disk, and the simulations take days to run.

Further simulations are introduced in Chapter 5 where an attempt is made to model the hu-
man data from Chapter 3 with non-ideal detectors.

4.2.1 General form of the optimal detectors

The general form of the detectors is illustrated in Figure 4.3. The simulated energy detec-
tor consisted of an equal-bandwidth filter (where the bandwidth of the filter was equal to the

6Although it should be remembered that the digital buffers, i.e., DAC codes, are used in the simulations but the hu-
mans are presented with analog waveforms, generated from these buffers, which are mixed with a background masker,
attenuated, amplified, and passed through earphones.
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bandwidth of the § waveforms), a square—law rectifier, and a true integrator. The sampling strat-
egy was to take the last value from the integrator. This value constituted the evidence, and was
approximately proportional to the energy of the filtered waveform.

The simulated full-linear detector was identical to the energy detector except it used a full-
wave rectifier. It consisted of an equal-bandwidth filter (where the bandwidth of the filter was
equal to the bandwidth of the § waveforms), a full-wave rectifier, and a true integrator. The sam-
pling strategy was to take the last value from the integrator. This value constituted the evidence.
Although the full-linear detector is a linear detector (because of the linear rectifier), it is not an
envelope detector, because it employs a true integrator. The true integrator means the output of
the integrator does not follow the shape of the input waveform.

The simulated envelope detector consisted of an equal-bandwidth filter, a half-wave recti-
fier, and a leaky integrator. The time constant of the integrator was equal to the ERD of the
input waveform, therefore, the time constant was different for different signal sets. Two sam-
pling schemes were used: peak detection and sampling at the time equal to the absolute duration
of the waveform (the average peak of the integrator tended to occur just before the end of the
waveform). The latter is abbreviated to ATT sampling.

The equal-bandwidth filter was a third—order band—pass Butterworth filter, centred on 500 Hz.”
The TdB bandwidth of the § transients was used as the filter bandwidth.® The filter was allowed
to ring for an additional duration of four times the reciprocal of the TdB bandwidth.

4.2.2 Simulations using experimental buffer waveforms

Eighteen simulations were run for each detector, using the same digital buffers that were used
in the experiments. These buffers were integers, coded specifically to be output to a 16 bit DAC, so
were converted on-the—fly in the simulation to reals. As described in Chapter 3, the 500 buffers for
each signal set were sampled without replacement from the appropriate S and N event transient
sets. The parameters of the 500 waveforms forming each signal set are described in Table 3.1.
The desired signal-to—noise ratios were obtained by using the ERB for the § transients and the
average ERB (AERB) for the N transients. Tables C.14, C.15, and C.16 show the corresponding
signal-to—-noise ratio measured by other means.

An additional energy detector simulation was run on the {25ms, 160Hz} buffers, using five
different filter bandwidths. The aim was to compare the effect of the equal and unequal filter
bandwidths on the subsequent measures of SN bandwidth and duration.

4.2.3 Simulations using experimental transient waveforms

These simulations used more stimuli per event (2500 for the SN events and 3000 for the N
event), and more signal-to-noise ratios, than the experimental buffer simulations in Section 4.2.2.

Eighteen simulations were run for each detector, using signals with the same bandwidth, du-
ration, and WT as the experiments. The stimuli were created from the transients used in making
the experimental signal buffers. SN transients were created for each signal-to-noise ratio by mix-
ing each § transient with a randomly selected N transient. For each signal-to—noise ratio, sam-
pling was done without replacement and a unique random seed was used. Thus, although the

7As the order of the Butterworth filter increases, the more rectangular it becomes. The larger the filter order, the more
spread there is in the time domain, and the filter takes longer to calculate and run. A third-order filter was chosen as a
compromise among the shape of the spectrum, spread in the time domain, and running time.

8These values may be read from Table C.5 on page 224.
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transients were reused for each signal-to-noise ratio, they were mixed differently. The same seed
was used across ideal observers, however, so that the same signals were presented, eliminating
one source of variability in the comparisons.

Signal levels were chosen so that the signal-to—noise ratios increased in 3 dB steps, and that the
corresponding A approximately covered its entire range from 0.5 to 1.0. There were fifteen signal
levels for the W7 =1 signals (-18-21 dB), fourteen signal levels for the W7 =2 signals (-20-16 dB),
and thirteen signal levels for the W7 =4 signals (-20-13 dB), including —oo (the N event).

The desired signal-to—noise ratios were obtained by using the AERB for both § and N tran-
sients. Because both transient sets were scaled to give a variance of one, it is a simple matter
to rescale the § transients to give the desired signal-to—noise ratio when mixed with the noises,
using the formula

AERBg

_ SNR/10
Scalar \/10 X AERBy

4.7

4.2.4 Simulations with very large sets (VLS) of signals

To address the problem of sampling variability, due to small samples of stimuli per event,
energy detector simulations, similar to those in Section 4.2.3 were done on very large sets (VLS)
of signals.

Using the same methods as were used to generate the transients for the experiments, VLS
signals were generated. The size of the set was determined by how many signals could fit on a
650 Mb CD-ROM. The input statistics to the IFFT were exactly the same as for the experiments
except that different random seeds were used.

Only one combination of W and 7 were used for each WT: {6.25ms, 160Hz: -0, 0, 4, 8, 12,
16dB} with 200000 N transients and 100000 § transients, {50ms, 40Hz: -0, -4, 0, 4, 8, 12dB} with
25000 N and 8 transients, and {50ms, 80Hz: -co, -8, 4, 0, 4, 8dB} with 25000 N and 8§ transients.
The 8N stimuli were made by different random combinations of the N and § transients.

4.3 Signal analysis

For the energy detector buffer simulations, the output of the filter and rectifier were captured
and spectral or temporal-averaged to allow further signal analysis. The resulting spectra and
waveforms were analysed to estimate the effect of these transforms on bandwidth, duration, WT,
and signal-to-noise ratio.

The size of the FFT was 2'6 for all levels except for {400ms, 2.5Hz} and {400ms, 5Hz}, where
an FFT size of 2!7 was used instead. This was because the narrow filters used in these levels
caused spread in the time domain, thereby increasing the duration of the waveforms. It was not
practical to run all the FFTs at larger sizes due to time and storage constraints. At a clocking rate
of 44100 Hz and a size of 2'6, the resolution was 0.67 Hz. All the waveforms were zero—padded
to bring their actual size to the size of the FFT (Brigham, 1974).°

An FFT was calculated on the filter output for each waveform in a particular buffer set, then
spectral-averaged to give one spectrum for each signal level. The ERB, EssWys 49, EssWgs9,, and
TdB bandwidths were estimated using the algorithms from Chapter 3. The signal-to—noise ratio,

9For efficiencies of speed, a radix—2 FFT was used, therefore, the size of the data set had to be a power of two.
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relative to the N spectra, was estimated using Equation (3.5), where the passband cut-offs were
the same as used for the signal analysis of the SN buffer spectra in Chapter 3.

The output of the rectifier for each waveform from a signal level was temporal-averaged to
give one time-series. The duration of the time—series was estimated using Ess7 g5 4%, EssT g5%,
and ERD. Because the rectifier was square-law, the waveform was already proportional to its
energy so the waveform points were not squared again in calculating the essential durations.
Likewise, for the ERD, the square—root of each waveform point was calculated first. This resulted
in duration estimates consistent with those taken before rectification, and allowed for direct com-
parisons.

For each signal level, W7 was estimated four ways:

1. Essential 92.4%: EssWT go.49, = EssWgs 49, X EssT g2.4%.
2. Essential 92.4%: EssWT 959, = EssWyso, X EssT g5%.

3. Equivalent rectangular: WT agrexerp = AERB x ERD.
4. ERD-TdB: WT rapxerp = TdB x ERD.

These four estimates were chosen to see how the definition of W or 7 interacted with the estimate
of WT—especially as a function of signal-to—noise ratio. Estimates using the ERB based on
maximum power were not used because they tended to be very similar, but more variable, than
those based on average power in the passband. Tables 4.1, 4.2, and 4.3 show the bandwidth,
duration, WT, and signal-to-noise ratios, estimated from the spectral-averaged filter output and
the temporal-averaged rectifier output. The results indicate that regardless of the definition of
bandwidth or duration, W7 decreases as sighal-to—noise ratio increases. Although there is some
time—-domain leakage, duration is relatively constant as a function of signal-to-noise ratio.

The bandwidth decreases because of an interaction between the filter shape and the input
waveform’s spectrum. The N spectra are flat so the TdB bandwidth matches that of the filter
(compare the 3 dB values in Tables 4.1, 4.2, and 4.3, with the 3 dB values in Table C.5). The SN
spectra, on the other hand, are not flat within the TdB points. If the SN signal-to-noise ratio is
larger than 3 dB, then the TdB bandwidth of the S spectra does not match that of the filtered SN
spectra, because the shape of the spectrum has changed; likewise the EssWgy, 49 Of the S spectra
do not quite match the filtered SN spectra for the same reason.

The results indicated, for W7 =1, that there was spread in the time domain. As a result of the
filtering, the durations were quite a bit longer and the bandwidths narrower than the original 8
signals. The estimates of W7 varied from around 1.34 for the N signals to 1.06 for the largest
SN signals, except for {400ms, 2.5Hz}, which had larger estimates—presumably because the very
narrow filter rang for much longer. For the W7 =2 signals there was slight time domain leakage
from the filtering, but the result was estimates of WW7 that were smaller than the original signals
for the larger signal-to—noise ratios. The estimates of W7 varied from around 2.37 for the N
signals to 1.88 for the largest SN signals. W7 =4 showed the least time domain leakage, and,
again, WT decreased as signal-to—noise ratio increased. For W7 =1, only the 16 dB signal levels
resulted in a effective YWWT similar to the original S transients but with narrower bandwidths
and longer durations than the original signals. This indicates that the Butterworth filter has a
minimum WT resolution of around 1.

Care is needed when comparing across the experimental conditions of W7 =1, WT =2, and
WT =4, because the EssWgy, 4% bandwidth is constant, but the TdB bandwidth gets larger. For
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instance experimental signals for levels {6.25ms, 160Hz}, {12.5ms, 160Hz}, and {25ms, 160Hz}
have an EssWy, 49 0f 160 Hz but the 3 dB bandwidth changes from 110 to 141 to 166 Hz. This is
because as WT changes from 1 to 2 to 4, the shape of the spectrum becomes more rectangular—
forcing the 3 dB points further apart—resulting in a steeper spectrum (e.g., compare the 8 spectra
in Figures C.1(g), (m), and (r)).

4.3.1 Effect of filter bandwidth on estimates of signal bandwidth

If a SN waveform is filtered, the subsequent estimate of the waveform’s bandwidth can vary
considerably, depending on (a) the signal-to-noise ratio of the input signal, (b) the bandwidth
of the filter relative to that of the signal-alone, and (c) the definition of bandwidth used. It is
important to consider this problem, because models of detectability depend on the properties of
the waveform out of the filter. Therefore, the effect on the signal bandwidth after filtering, as a
function of signal-to—noise ratio, was estimated by varying the bandwidth of the filter from very
narrow to very wide (relative to the bandwidth of the original signals).

Repeated energy detector simulations were run on the {25ms, 160Hz} signal set. Firstly, a very
narrow filter bandwidth of 28 Hz was used, which was well within the signal band. A slightly
larger bandwidth of 108 Hz was then used, then an equal-bandwidth of 166.38 Hz. Finally, two
very wide bandwidths of 280 and 360 Hz, were used that were much wider than the § bandwidth.
All other parameters were held constant.

W, T, and WT, were estimated as a function of signal level. As the bandwidth of the filter
increased, the W7 estimated at each signal level diverged: when the filter was very narrow the
WT’s were virtually identical, but when the filter was very wide W7 varied from being still
rather small at large signal-to—noise ratios, to being very large for N signals. As above, WT
changed because bandwidth changed. This phenomenon is evident in the spectra of these filtered
waveforms shown in Figure 4.4 where the spectra are scaled relative to their maximum power. As
signal-to—-noise ratio increases, the shape of the passband becomes rounder at the edges compared
with the N spectra and the transition band becomes steeper. Compare these spectra with the
original 8§ spectrum in Figure C.1(r). This phenomenon helps explain the findings presented in
Tables 4.1, 4.2, and 4.3 that indicate that regardless of the definition of bandwidth or duration, W
and WT decreased as signal-to—noise ratio increased.

This phenomenon has important ramifications. If the internal filtering process of the ear does
not exactly reflect the shape of the spectrum of the signals (and all indications are that this is the
case) then the bandwidth of the signals will change after filtering as a function of signal-to—noise
ratio. Thus, the mathematical model of energy detection is not totally appropriate, because it
assumes that WT is constant with signal-to—noise ratio. Even if signals were rectangular then
WT would still vary if the shape of the filter was not rectangular. It is only when both the filter
and the signal spectra are rectangular, and the filter bandwidth is less than or equal to the signal
bandwidth, that W7 would necessarily be constant with increasing signal-to—noise ratio.

4.3.2 Equal-bandwidth filtering

Because the signal sets do not have ideal rectangular spectra, there is no specific point where
the bandwidths are equal, so an arbitrary decision must be made as to the point at which the filter
matches the signal. If the criterion is set so the filter bandwidth is well within the passband of the
signal, the result may be equivalent W7 products at each signal level, but the spirit of matching
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the bandwidth is not met—and for YW7T =1 there is no flat part to the S spectrum. Choosing the cri-
terion based on the 8 signal 3 dB points at least provides an objective method, as well as the benefit
of having the filter specified by its 3 dB points. If the criterion is chosen using a different definition
of bandwidth, then the bandwidth measure must be converted into 3 dB points—something that
is a function of YWT and possibly other variables as well. For instance Equation (4.1) gives the
conversion from TdB to the EssWgy, 49 Of the third—order Butterworth filter, and Equation (4.2)
gives the conversion from TdB to the ERB. Both were estimated from the simulated impulse
response of the digital filter over the range of bandwidths used in the experiments.
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Figure 4.4: The spectral-averaged filter output of the W7 =4, {25ms, 160Hz: 16dB}, signals after Butter-
worth filtering with TdB bandwidths of (a) 28 Hz, (b) 108 Hz, (c) 166.38 Hz (equal-bandwidth),
(d) 280 Hz, and (e) 360 Hz.
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4.3 Signal analysis
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122 4. Simulated observers

4.4  Analysis with the gamma model

The signal analysis from the energy detector simulations in Section 4.3, showed that W7 de-
creased as signal-to-noise ratio increased, for all experimental levels. This implies that the x?2
model of energy detection does not fully capture the nature of energy detection of real signals
with real filters, because it assumes WT is constant with signal-to-noise ratio. The x? distribu-
tion is, however, a special case of the gamma distribution. The parameters of the gamma distri-
bution can be related to signal-to—noise ratio and W7, where the latter can take on real, rather
than integer, values. The aim, therefore, of the gamma model analysis is to evaluate whether it
is possible, or useful, to model noise-in—noise detection using real-valued WT, by (a) estimating
the effective W7 and signal-to—noise ratios from the output of the energy detector simulations,
then (b) comparing these estimators with the original signal statistics, and (c) the estimates from
the signal analysis of the simulations. Using the gamma density function, although intuitively
appealing, has not been justified or derived from the properties of the stimuli, thus it can only be
considered a data model.

441 The gamma probability density function Ga(x|A, n)

The gamma probability density function, Ga(z|A, n) is defined (Borowski & Borwein, 1989;
Larson, 1982) as
)\nl.nfl e

Ga(z|\,n) = o) e z,m,A >0 (4.8)

with mean n/) and variance n/\2.  The parameters n and X are sometimes referred to as the
shape and scale parameters (some authors define the scale parameter as « = 1/A). The gamma
p.d.f. has a maximum at (n — 1) /A when n > 1 but is unbounded as z tends to zero for 0 < n < 1.

For half integer n and A = 1/2, the gamma p.d.f. is known as the x? p.d.f. with degrees of
freedom, » = 2n. The non-standardised x? allows for X to range over [0, ), and is the form
traditionally used to model the energy detector, because A can be related to the signal-to—noise
ratio.

4.4.2 Justification of gamma model for energy detection

Because of the relationship between the x? and gamma p.d.f.’s, it is a logical step to allow non-
integer n and use the gamma p.d.f. to model the energy detector. This approach has not been
justified or derived from the representation of the waveforms, like the x2 model, but there is no
obvious reason why it would not be a useful representation.®

Others have also modelled the output of an energy detector with the gamma distribution. For
instance, Steenson and Stirling (1965) used Monte Carlo simulations to model the transformation
of white Gaussian noise through a narrow-band Butterworth filter, a square-law rectifier, and
a leaky integrator. Their motivation for using the gamma p.d.f. came from work by Bussgang,
Nesbeda, and Safran (1959; in Steenson and Stirling, 1965) who suggested that the amplitude
output of the post detection filter could be modelled using the gamma distribution. They found
an excellent approximation to their data with the gamma p.d.f, where the degrees of freedom

10 different form of waveform representation would be required that results in real degrees of freedom. The form of
waveform representation described in Chapter 1 is only one of many possibilities.




4.4 Analysis with the gamma model 123

parameter, IV, was fitted to the right-hand tail of the samples. With respect to the amplitude
distribution, Steenson and Stirling (1965) say they are not simple mathematical functions. The
gamma distribution is an approximation for when the detector (rectifier) is square-law. There
does not appear, however, to be any mathematical development of the gamma model for energy
detection.

4.4.3 Fitting the gamma model

The general procedure used to fit the gamma model was to take the evidence from the energy
detector simulations, and estimate n and \ for each signal level. From these two parameters, W7T
and signal-to—noise ratio were estimated.

The relationship of W7 to gamma parameters is straightforward because W7 = n. Relating
signal-to—noise ratio to the gamma parameters requires more inference. It is assumed that this
relationship is analogous to that for the x> model. From Egan (1975) and Parzen (1960), the
relationship between X of the non-standardised x> model and signal power is A = 1/202, where o
is the variance of the normal distribution (which is related to the signal power of the waveforms)
that gave rise to the x2 distribution. Because x? is a special case of the gamma, it is inferred that
the relationship holds for the gamma parameter \. For the N evidence o> = 0%, and for the
8N evidence o = o%,,, however, o2 is needed to estimate the signal-to-noise ratio. Using the
relationship o2, = 0% + o3,

2 2
SNR = 1010g<M>. (4.9)
oN

So in terms of the estimators 72 and & = 1/},

—

WT = a (4.10)
and
SNR = 1010g<w>. (4.11)
ax

There are a number of methods of parameter estimation, such as the method of moments
(MOM) (Larson, 1982), the method of maximum likelihood (MLE) (Bowman & Shenton, 1988),
and Bayesian methods (Robert, 1994). Bayesian methods are preferable because they allow the
analyst to use prior knowledge. There does not seem to be, however, any easily available algo-
rithms for gamma estimation using Bayesian methods so the next best method, MLE estimation,
was used instead. Although perhaps preferable to MOM estimation, MLE estimation has been
criticised as being unstable for small variation on z, at least for small sample sizes (Robert, 1994).

4.4.4 Method of maximum likelihood

The method of maximum likelihood estimation (MLE) is to find the likelihood function of the
sample values, then estimate the unknown parameters by finding the values that maximise the
likelihood function (Larson, 1982). The gamma distribution does not give a closed form solution
for MLE estimators, so numerical methods are used instead. Bowman and Shenton (1988) show
how this is done and give the algorithms required.
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According to Bowman and Shenton (1988), the maximum likelihood estimators for the two
parameter gamma distribution are:

log.(7) —¢(n) = y (4.12)
where ¢(z) = d log, I'(x)/dz is the polygamma function, and
ajx = A (4.13)

where y = log, (A4/G), with
A = =) (4.14)

the arithmetic mean, and

(4.15)

the geometric mean. The program GAMMAIT (Lapsley Miller & Miller, 1998) implemented their
FORTRAN algorithm in BORLAND PASCAL 7.0.

445 Gamma parameter estimation of the energy detector simulations

Because parameter estimation works better on large sample sets, the first set of analyses con-
sidered the VLS signals. They were generated using the same SIGGEN input parameters as the
experimental levels with parameters {6.25ms, 160Hz}, {50ms, 40Hz}, and {50ms, 80Hz}. The
two gamma estimators were calculated for each signal level, and the corresponding gamma dis-
tributions were then compared with the histograms of the evidence to visually assess their fit.

The estimation procedure was then run on the equal-bandwidth energy detector simulations
using the buffer waveforms, despite the much reduced sample sizes. This enabled comparisons
between all the different conditions and with the signal analysis.

There are a number of ways to assess the goodness—of-fit of the estimated parameters in-
cluding the x? test and assessing the fit in the ROC space compared with the x> mathematical
model and the energy detector simulation. Unfortunately, it is not appropriate to directly do a
Kolmogorov-Smirnoff test to see if the gamma c.d.f. estimated from the data is significantly dif-
ferent from the empirical c.d.f. This is because the estimators from the data are used to derive the
theoretical distribution against which the data are tested. Thus, the function used to test the sig-
nificance of the Kolmogorov-Smirnoff statistic is no longer given by its standard formula; instead
Monte—Carlo methods are required to find the new distribution (Press, 1988, p. 627). It would
be appropriate, however, to use Kolmogorov-Smirnoff testing to see if the simulation data dif-
fer from the theoretical parameters, but we can already easily tell that they are not the same by
visually inspecting the data.

The assumptions for the x? test'! can be met because a degree of freedom is lost for every
estimated parameter. The y? test is conservative, because it tends not to reject the null hypothesis.
The arbitrariness of the significance level means that it should not be used—without thought—to

' Not to be confused with the x 2 energy detector model!
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reject the null hypothesis. Instead, it can be used to find patterns across signal-to—noise ratio or
WT, or patterns of the y? value itself can be assessed.

VLS energy detector simulations

These simulations were described in Section 4.2.4. Figures 4.5, 4.6, and 4.7 shows histograms
(represented with circles, because bars occluded too much detail) of the evidence output. Shown
are the results from the N event and five SN events. Because the distributions are so asymmet-
rical, unequal bin widths were used. Each bin in the histogram contains at least 4000 tallies for
WT =1 and 1000 tallies for W7 =2 and WT =4. Comparisons could only be made with the theo-
retical parameters and the simulation performance, because no signal analysis was done on these
simulations.

Overlaying the histograms are the gamma density functions fitted using MLE estimation. The
MLE estimators for the N events do not seem to describe the histogram particularly well; the
evidence distributions appear to be more peaked. The largest SN event, however, is visually well
fitted by the gamma estimator for {6.25ms, 160Hz}.

Table 4.4: The gamma estimators for the evidence distributions from ideal energy detector simulations on
the VLS signals, and results of the x? tests.

Signal Set SNR(dB) WT & SNR (dB) v df  Significance
6.25ms, 160Hz  —oo 15144  3.5008 —oo 2887.2746 47  p<0.05
0 13251  7.0575  0.0687 1160.9994 22  p<0.05
4 1.2211 126567  4.1753 8586533 22  p<0.05
8 11337 27.1890  8.3036 3894510 22  p<0.05
12 1.0699 64.9117 12.4407 129.8899 22 p < 0.05
16 1.0381 160.8218  16.5261 708782 22 p<0.05
50ms, 40Hz —0 27701  4.9813 —oo 325.2306 22 p<0.05
4 2.6070  7.0039 —3.9141 3115102 22  p<0.05
0 2.4840  10.0096  0.0409  251.5399 22 p<0.05
4 2.3675  17.5445  4.0176  179.6901 22  p < 0.05
8 22559  36.9563  8.0747  242.4668 22  p< 0.0
12 2.2244 84.7393 12.0444 195.7136 22 p < 0.05
50ms, 80Hz —0 57534  5.5463 —oo 4773.4083 22 p<0.05
-8 56484  6.4073 —8.0809 34458468 22  p<0.05
—4 53646  7.9705 —3.5043 22556730 22 p < 0.05
0 5.1125 11.5426 0.3388 1132.1888 22 p < 0.05
4 4.8230 20.8801 4.4165 400.5370 22 p < 0.05
8 46800 43.8103  8.3879  184.2035 22 p<0.05

Table 4.4 shows the results of the x2 goodness of fit tests on the MLE gamma estimators. All
are significant at the 5% level indicating that the underlying distributions are not well fitted by a
gamma density function.

Although the signal analysis is based on the buffer signal sets, the estimates from the VLS
signal sets may still be compared, because the same process was used to generate both sets. Com-
parison of the WWT estimators, in Table 4.4, with the signal analysis in Tables 4.1, 4.2, and 4.3
shows similar trends, as YW7T decreases as signal-to—noise ratio increases. The overall size of WT
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is also bigger than that estimated from the signal analysis. The estimates of signal-to—noise ratio
are also slightly larger.

Buffer energy detector simulations

Despite having only 500 samples per event for the buffer simulations, parameter estimation
using the gamma distribution was done so that the estimators could be directly compared to the
signal analysis (Tables 4.1, 4.2, and 4.3). Because the distributions are asymmetrical, unequal bin
widths were used. Each bin contained at least 50 tallies.

Tables 4.5, 4.6, and 4.7 show:

e That the estimates of W7 and signal-to—noise ratio appear to be similar to the original signal
parameters.

e The estimated VW7 tends to decrease with increasing signal-to—noise ratio. This is the same
phenomenon that was noticed in the signal analysis of the buffers, however, the actual val-
ues are different.

e The estimated signal-to—noise ratio appears to be similar to, but not the same as, both the
theoretical signal-to—noise ratio and that estimated from the signal analysis of the buffers.

¢ WT and signal-to—noise ratio estimators tend to be slightly larger than the values from the
signal analysis.

e The size of the x? test statistic is relatively the same across signal level for the experimental
condition WT =1, but diverges for W7 =2 and WT =4. For WT =2, the N test statistic is 2-3
times larger than for the largest SN event indicating that as signal-to—noise ratio decreases
the distribution of the evidence becomes less like a gamma distribution. For W7 =4 the x?
test statistic is huge for small signal-to-noise ratios.

The results were very similar to the gamma estimation based on the VLS signals but more vari-
able. The MLE estimators for the N events do not describe the histograms particularly well. The
fit improves for the SN event as signal-to—noise ratio increases, but the results of x? tests indicate
that there is still a difference for many cases.

Summary

All the comparisons of histograms and estimated parameters indicate that the gamma proba-
bility density function is not appropriate for modelling detection of these types of waveforms—
especially for N and 8N signals with small signhal-to—noise ratio. The histograms tend to be more
peaked than the gamma p.d.f. with the same statistics. This does not mean that the energy detector
is inappropriate, merely that the detectability of the small-)V7T signals is not based on a gamma
distribution. This is because the models of energy detection make a number of assumptions about
the form of the input waveforms: (a) the spectrum is rectangular, (b) the filtering is ideal, and (c)
the waveform is continuous in the time domain—or that a finite duration waveform does not
cause spread in frequency domain. None of these assumptions are practically possible so it is no
surprise that the distribution of the evidence is not the same.

Even though the gamma is not an ideal fit, is it still a useful descriptor of the evidence? One
way of assessing this is by seeing if the ROC curves produced by the gamma densities are good
fits to the ROC curves of the simulations.
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Table 4.5: The gamma estimators of the evidence from ideal energy detector simulations on WT =1 buffers
and results of the x? tests.

Signal Set SNR(dB) WT & SNR (dB) 2 df  Significance
400ms, 2.5Hz ~ —oo 14817  0.7687 —oo 63.0695 47 ns
0 1.2160 1.6790  0.7337 71.3826 47  p<0.05
4 11646 3.0731  4.7678  42.0652 47 ns
8 11094 67141  8.8840  40.0437 47 ns
12 1.0971 13.9318  12.3358 459152 47 ns
16 1.0087 32.0624 16.0968 42.3613 47 ns
200ms, 5Hz —00 15221 0.5825 —oo 43.9237 47 ns
0 14203 1.0049 —1.3955 33.3610 47 ns
4 11962 2.1120  4.1925  51.5921 47 ns
8 1.0821 44916 82678 67.2670 47  p<0.05
12 11025 102512 12.2008  41.7298 47 ns
16 1.0444 26.6114 16.5016  59.2353 47 ns
100ms, 10Hz —00 1.6851  0.5118 —oo 50.8509 47 ns
0 14025  0.9680 —0.5005 62.6991 47 ns
4 12371 2.0419 47557  47.7270 47 ns
8 11744 44165  8.8244  61.4472 47 ns
12 1.0483 104447 12.8793 51.6183 47 ns
16 1.0244 269175 17.1255  63.1983 47 ns
50ms, 20Hz —0 15427 0.5913 —oo 53.4345 47 ns
0 13832  1.1228 —0.4626 44.3256 47 ns
4 11832 1.8831  3.3942 509732 47 ns
8 11186 44755  8.1753  50.6593 47 ns
12 1.0918  9.8057 11.9269  55.3164 47 ns
16 1.0681 26.1276  16.3537  54.4244 47 ns
25ms, 40Hz —0 15776 0.5269 —oo 53.7034 47 ns
0 13772 11148 04752  57.6628 47 ns
4 12132 2.0190  4.5202  49.4631 47 ns
8 11478 4.3471  8.6033  43.9225 47 ns
12 1.0033 10.8708  12.9293  47.9336 47 ns
16 1.0093 26.9241  16.9980  54.6320 47 ns
12.5ms, 80Hz ~ —oo 14615  0.6028 —oo 61.3070 47 ns
0 1.3842  1.1114 —0.7377  52.8520 47 ns
4 1.1402 21240  4.0203 70.0764 47  p<0.05
8 1.0842  4.2627  7.8331 519751 47 ns
12 1.0662 10.6827 12.2329 429531 47 ns
16 10720 254171 16.1454  49.3413 47 ns
6.25ms, 160Hz  —oo 15539 0.5566 —oo 47.8500 47 ns
0 1.3035 1.2676  1.0636  53.6667 47 ns
4 12024  2.0322  4.2344 815485 47  p<0.05
8 1.1068 44971 85002  30.5063 47 ns
12 11636 94501 12.0354 64.3799 47  p<0.05

16 1.0463 25.7964  16.5656  55.6755 47 ns
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Table 4.6: The gamma estimators of the evidence from ideal energy detector simulations on WT =2 buffers
and results of the x? tests.

Signal Set SNR (dB) WT &  SNR(dB) 2 df  Significance
400ms, 5Hz —o0 2.7333  0.7974 —oo 80.5658 47  p<0.05
—4 23480 12196 —2.7616 825057 47  p<0.05
0 24129 15668 —0.1555  46.3998 47 ns
4 22552 3.0399  4.4905 1048504 47  p<0.05
8 24956 50613  7.2812  64.8280 47  p<0.05
12 23195 120688 11.8366  46.9882 47 ns
200ms, 10Hz ~ —oo 2.8520 0.7676 —oo 132.0424 47  p<0.05
—4 26319 1.0849 —3.8369  65.1422 47  p<0.05
0 2.8215 1.38904 —0.9148 73.1057 47 p < 0.05
4 2.6600 25095 35580  45.9307 47 ns
8 2.2071 5.8471 8.2069 74.2254 47 p < 0.05
12 2.2492 13.8711 12.3226 49.1052 47 ns
100ms, 20Hz ~ —oo 2.6679  0.8183 —oo 1351572 47  p<0.05
—4 2.7103 1.1215 —4.3112 89.2775 AT p < 0.05
0 23623 17801  0.7021 565323 47 ns
4 23736 27915  3.8228 743970 47  p<0.05
8 24789 56214  T7.6864  53.9394 47 ns
12 2.1989 14.0464 12.0861 53.9453 47 ns
50ms, 40Hz —o0 2.8097  0.7389 —oo 780733 47  p<0.05
—4 2.5775 1.1619 —2.4223 52.5189 47 ns
0 24153 17581  1.3970  65.3078 47  p<0.05
4 23087 26716  4.1758  56.0055 47 ns
8 2.3264 58732 84190  36.0063 47 ns
12 2.2391 13.4471 12.3550 54.8343 47 ns
25ms, 80Hz —o0 26431  0.8591 —oo 1206787 47  p<0.05
—4 2.6693  1.0906 —5.6956  86.6553 47  p<0.05
0 25276 1.6061 —0.6076  82.0287 47  p<0.05
4 24520 2.8319  3.6102 656740 47  p<0.05
8 22015 58811  7.6682  56.3617 47 ns
12 2.1758 13.7001 11.7454 32.4579 47 ns
12.5ms, 160Hz  —oo 2.9155  0.7498 —oo 92.7545 47  p<0.05
—4 2.5444 1.1235 —3.0230 54.7852 47 ns
0 25873 14796 —0.1172  64.0813 47  p<0.05
4 23021  3.0209 48132  50.8469 47 ns
8 22050 57969 82812  53.6605 47 ns

12 2.1004 13.9691  12.4629 46.0187 47 ns
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Table 4.7: The gamma estimators of the evidence from ideal energy detector simulations on W7 =4 buffers
and results of the x? tests.

SignalSet  SNR(dB) W7 &  SNR(dB) Y2 df  Significance
400ms, 10Hz ~ —o 5.6078  0.9305 —oo 66824.2977 47  p<0.05
-8 57778 1.0373  —9.4038  3610.3830 47  p<0.05
—4 57923 1.2320 —4.8810 830.4632 47  p<0.05
0 49339 19336  0.3260 261.6715 47  p<0.05
4 49543 32170 3.9045 107.8578 47  p<0.05
8 46170 7.1088  8.2214 68.9207 47  p<0.05
200ms, 20Hz ~ —oo 5.3325 0.9764 —oo 667.4780 47  p<0.05
-8 5.1629 1.1263 —8.1404 495.0537 47 p < 0.05
4 49387 1.3865 —3.7681 2315173 47  p<0.05
0 51050 1.8322 —0.5730 119.4464 47  p<0.05
4 45949 3.5708  4.2440 87.1131 47  p<0.05
8 46382 7.1024  7.9754 475130 47 ns
100ms, 40Hz ~ —oo 5.6389  0.9096 —oc 2951.82890 47  p<0.05
-8 6.1070 0.9679 —11.9341  1151.3025 47  p < 0.05
4 5.6834 1.1669 —5.4846 511.7167 47  p<0.05
0 49563 1.8912  0.3305 172.9706 47  p<0.05
4 47460 3.2888  4.1756 838762 47  p<0.05
8 45850 7.0004  8.2645 55.2484 47 ns
50ms, 80Hz ~ —oo 5.6692 0.8807 —oc 17437155 47  p<0.05
-8 5.0160 1.1544 —5.2641 1165.1101 47 p < 0.05
—4 55780 1.1871 —4.7585 627.7478 47 p<0.05
0 51376 1.8130  0.1612 1754348 47  p<0.05
4 49757 3.1113 3.9745 119.8667 47 p < 0.05
8 46676 6.9505  8.3331 67.9883 47  p<0.05
25ms, 160Hz ~ —oo 5.3195 0.9422 —oo 353.5518 47  p<0.05
-8 5.9728 0.9823 —13.7119 3264431 47  p<0.05
—4 52457 1.2892 —4.3394 195.0536 47  p<0.05
0 49610 1.9069  0.1023 1011715 47  p<0.05
4 5.2635 3.0579  3.5128 86.1814 47  p<0.05

8 4.8297 6.7072 7.8663 63.5610 47 ns
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4.4.6 Assessing the gamma estimators in the ROC space

Assessing the gamma parameter estimators in the ROC space is appropriate because ROC
analysis provides the basic data for many other analyses. The problem is that the SN events
cannot be assessed independently from the N event, because the N evidence is used for the false—
alarm rate for all the ROC curves. This is a particular problem here, because the indications from
the other analyses suggest that the evidence from the N event is not distributed as a gamma.

Figure 4.8 compares the ROC curves from (a) the energy detection simulations, (b) the gamma
MLE estimations, and (c) the ideal energy detector (x2 mathematical model) assuming the theo-
retical W7 and signal-to—noise ratios—not those estimated from the signal analyses. For all WT,
the estimated gamma ROC curves and the theoretical x> ROC curves are reasonably similar. The
simulation ROC curves, however, are more symmetrical and fall slightly below the other ROC
curves, on the left hand side of the ROC space, and cross over on the right-hand side. The esti-
mated gamma ROC curve is closer to the x? curve than the simulation from which the gamma
was estimated. All three sets of ROC curves are different, but are probably not different enough
to reliably test them in an experiment.

Figures 4.9, 4.10, and 4.11, on pages 136-138 at the end of this section, make the same compar-
isons for the buffer simulations. In general, for W7 =1, the fitted gamma ROC curves are a better
fit to the simulation ROC curve than the x2 energy detector model with theoretical parameters
(note that the gamma model using the theoretical parameters would result in the same ROC curve
as the x2 model.) The x? ROC curves tend to fall above the gamma and simulated ROC curves,
indicating that the buffers did not result in the desired signal-to—noise ratio; in particular, levels
{50ms, 20Hz} and {12.5ms, 80Hz}. Much of this difference, however, can be accounted for by
sampling variability. There are also a number of excellent fits where the three sets of ROC curves
essentially fall on top of one another. The three sets of W7 =2 and W7 =4 ROC curves were also
very close for all experimental levels, and there were no signal levels with curves as disparate
from the x2 model as the few rogue levels for W7 =1.

In sum, the majority of the x> and gamma ROC curves fitted the simulated energy detector
ROC curves surprisingly well. The gamma tended to give a better fit than the x> model, because
the gamma parameters were estimated from the data, rather than the theory, thereby reducing the
effects of sampling variability. The results seem to indicate that although the distributions may
be different to that of the simulation evidence, their properties are such that they still provide
a reasonable model of the simulation’s performance. It could be the case, for instance, that the
simulation evidence is a subtle transform of a gamma distribution.

447 Summary

It is possible that another density could be more appropriate than the gamma. It is preferable,
however, to only use densities that have some basis in theory (even if not fully developed as
with the gamma). There does not appear to be any other distribution suggested in the literature,
other than the x? and gamma, which could be used as a model of energy detection. Drga (1998,
personal communication) has mentioned some distributions, for which the gamma is a special
case, but the difference could be modelled as the form of the rectifier. Because the rectifier in an
energy detector is square-law, the other distributions could not be justified on this basis. They
may, however, be useful in modelling a linear detector.

Investigation in the ROC space indicates that the x? and gamma models are very nearly indis-
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Figure 4.8: The simulated energy detector ROC curves for the VLS signal transients (solid curves), the cor-
responding fitted gamma ROC curves estimated from the simulation evidence (dotted curves),
and the ideal x> energy detector ROC curves (dashed curves).
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tinguishable, and, therefore, practically equivalent. It is unlikely experimental data could make
a distinction between these models in the ROC space. The simulated ROC curve, however, was
slightly different to both models indicating that neither are totally appropriate. The gamma model
may, however, prove more useful in estimating parameters when WT is not the same for each
event.

Little mention has been made so far of the linear detectors. This is because mathematical
theory has not been fully developed for them. It is assumed that if the energy detector does not
produce evidence distributed as x?2 for these types of signals, then it is likely the linear detectors
would do the same (but for a different distribution such as the x). This is because the signals and
the filters are the same for all these detectors.

The next section explores in more detail the differences between these different detectors by
considering differences in their psychometric functions.

4.5 Comparisons among detectors

There is some doubt as to whether the mathematical energy detector accurately predicts per-
formance for real signals, because of simplifying assumptions in the mathematical derivation.
There is also some doubt as to whether the energy, envelope, and full-linear detectors are equiv-
alent for all W7 . These problems are not resolved, primarily because the mathematics involved
is difficult. Simulations, however, provide an alternative approach to evaluating these models.

Firstly, the psychometric functions from the simulated energy detector are compared to the
mathematical energy detector. Then, various comparisons are made among the energy, full-linear,
and envelope detectors.

45.1 Energy detector psychometric functions

The psychometric function can be used to compare the performance of the mathematical en-
ergy detector, from Equation (1.15), to the simulated energy detector. Figure 4.12 shows the per-
formance of the simulated energy detector (square symbols) relative to the theoretical psycho-
metric function for (a) the buffer simulations and (b) the transient simulations. The most salient
finding is that the empirical points for each experimental level are very similar, within each ex-
perimental condition, give or take some sampling variability. For the values considered, YV and
T may be traded off for the same performance. This also implies that the results may be averaged
across signal-to—noise ratio for each type of simulation within an experimental condition.

Comparing the points for each experimental condition with the theory shows that

o for the seven W7 =1 levels, the fit with respect to shape is very good but there is some
attenuation of the data points.

e for the six WT =2 levels, the W7 =2 mathematical model does not fit the simulations’ psy-
chometric function; instead the mathematical model for W7 =3, with some linear attenua-
tion, provides a more satisfactory fit.

o for the five W7 =4 levels, the mathematical model for W7 =5, with some linear attenuation,
provides a better fit than W7 =4.
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The simulated energy detector ROC curves for the signals used in condition W7 =1 (jagged solid
curves), the corresponding fitted gamma ROC curves estimated from the simulation evidence
(smooth solid curves), and the ideal x? energy detector ROC curves (smooth dashed curves).
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Figure 4.10: The simulated energy detector ROC curves for the signals used in condition WT =2 (jagged
solid curves), the corresponding fitted gamma ROC curves estimated from the simulation ev-
idence (smooth solid curves), and the ideal x2 energy detector ROC curves (smooth dashed
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Figure 4.11: The simulated energy detector ROC curves for the signals used in condition WT =4 (jagged
solid curves), the corresponding fitted gamma ROC curves estimated from the simulation ev-
idence (smooth solid curves), and the ideal x2 energy detector ROC curves (smooth dashed
curves).
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Figure 4.12: Comparison of the energy and full-linear detectors for the (a) the 18 buffer simulations and (b)
the 18 transient simulations. Both are compared with the energy detector theoretical psychome-
tric functions.
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On closer inspection, the psychometric functions of the simulated energy detector, for the W7 =2
condition, fall between the W7 =2 and W7 =3 mathematical functions. Similarly, for the WT =4
condition, the psychometric functions of the simulated energy detector, fall between the W7 =4
and W7 =5 mathematical functions. This phenomenon is supported by the findings in the previ-
ous sections that W7 changes with signal-to—noise ratio. The N event contributes to every point
in the psychometric function so the relationship of W7 to the shape of the function is likely to
be complicated. This is because each point is made up of two different W7 values—one value is
common across signal-to—-noise ratio and the other varies.

The attenuation of data points may be because of the way signal-to—noise ratio is defined, but
this does not change the shape of the psychometric function, merely the position.

4.5.2 Energy and full-linear detector comparisons

Some researchers suggest that the energy and envelope detectors should result in virtually the
same performance for the same stimuli. The envelope detector, however, differs from the energy
detector in two respects: the rectifier and integrator; and has an additional parameter: the time
constant. To establish whether any difference between the energy and envelope detector was
due to the rectifier or the integrator, a third detector was tested: the full-linear detector. This
detector was the same as the energy detector, except it used a full-wave rectifier. According to
Marcum (1960), the output of the two rectifiers should be the same when W7 =1 and W7 =70.
In between these values, the linear detector gives a higher effective signal-to—noise ratio and for
values greater than 70, the square—law detector is superior.

Figure 4.12 shows the psychometric functions for the energy and full-linear simulations (top
graph for buffers and bottom graph for transients), and compares them with the mathematical
(x?) psychometric function, for the energy detector, for W7 =1 to 5. The full-linear detector is
generally superior to the simulated energy detector, especially for the W7 =2 and 4 waveforms.
The full-linear detector is also superior than the mathematical energy detector for the W7 =2
and 4 waveforms, but is worse than the mathematical detector for W7 =1 (as is the simulated
energy detector).

Comparisons using D,

To compare detectors, differences in D, were computed and plotted as a function of signal-to—
noise ratio. D, was chosen as the measure of detectability for this analysis, because its properties
are particularly suited to making comparisons.

Figure 4.13(a) shows the D, psychometric functions for the energy and full-linear transient
simulations, averaged across experimental level within an experimental condition (the fitted lines
are a data model, introduced in the next section). This figure shows that the full-linear is a su-
perior detector for these small-WWT signals. Figure 4.13(b) plots the differences in D, in bits,
for each WT. As WT increases, so does the difference in performance of the two detectors. For
WT =1, the difference is very tiny; presumably the waveforms have an effective W7 that is just
slightly greater than unity, assuming the two detectors are meant to perform identically at W7 =1
as Marcum (1960) would suggest. For larger WT the difference is greater, reaching a maximum of
approximately 0.085 bits at 0 dB for W7 =4. The difference across signal-to—noise ratio is a result
of the shape of the psychometric function. As the signal-to—noise ratio gets very small or very
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large both functions asymptotically approach zero or one, so the functions become shallower and
the difference becomes smaller.

4.5.3 Polynomial psychometric functions

The analyses in the previous section have shown a difference between the energy detector
mathematical model and the simulations. There are no mathematical models for the full-linear
detector, so polynomial psychometric functions were fitted to the transient simulations’ results, to
build data models for the full-linear and energy detector. Because performance in detecting the
small-WT signals was similar across combinations, three models were fitted for each detector:
one for each WT.

The fitting procedure used was the Marquardt-Levenberg non-linear least-squares algorithm
implemented in GNUPLOT (Williams & Kelley, 1997). The form and order of the fitted polynomial
was based on the energy detector polynomial psychometric functions, in Equation (1.15), derived
by Green and McGill (1970) and McGill and Teich (1991). The free parameters were the coefficients
of the polynomial (the exponents were fixed) and a translation factor. The initial values were the
ideal energy detector coefficients and a translation factor of 0.1.

The results of the transient simulations were used, because they had at least 12 points on the
psychometric function. The A’s for each signal-to—noise ratio were averaged across each level for
a given WT condition. The fitting procedure weighted each point on the psychometric function
by the sampling standard deviation (from Equation (2.7) with the correction for empirical data).

The psychometric function with the best fitting coefficients for the W7 =1 energy detector is:

a(S(z —b)+1)

Alz) = S@—h+2) (4.16)
where a = 1.00176, b = 0.49549, z is the signal-to-noise ratio in decibels, and the function
S(z) converts decibels back into power (assuming the decibels are relative to unity power) as
S(y) = 10¥/1°, For WT =2 the best fitting solution is:

a(S(x —b) +1)° +¢(S(x —b) + D* +d(S(z —b) +1)3

A(z) = S5 727 (4.17)

where a = 1.00231, b = 1.65215, ¢ = 4.92657, and d = 10.15526, and for W7 =4 the best fitting
solution is:

a(S(x—0b)+1)° +c(S(z—b)+1)8 +d(S(x—b)+1)" + e(S(x—b)+1)¢ + f(S(x—b)+1)°

Alz) = (S(w=h)+2)°

(4.18)

where a = 0.99357,b = 0.67053, ¢ = 9.21547,d = 33.76075, e = 92.62537, and f = 119.77846.
The best fitting solutions for the full-linear detector simulations, for each W7, are the same as
Equations (4.16), (4.17), and (4.18) for the energy detector but with different coefficients:

WT =1 a =1.00208 and b = 0.37701.
WT=2: a =1.00065,b = 1.06690, ¢ = 4.97944, and d = 10.07645.

WT=4: a=0.99330,b = 0.11746, c = 9.26275, d = 32.71755, e = 99.33391, and f = 113.77148.
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Comparison of the energy and full-linear detectors for the transient waveforms used in the ex-
periments. (a) The fitted polynomial psychometric functions converted to D, (lines) and the
empirical data points for the simulations averaged over signal-to—noise ratio for each experi-
mental level at each WT, (b) the difference between the energy and full-linear fitted psychome-
tric functions (lines) and the difference between the full-linear and energy detectors, averaged
over each waveform set, for each signal-to-noise ratio and WT (points).
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Figure 4.14: Comparison of the arithmetic difference of D, between (a) the envelope and energy detectors,
and (b) the full-linear and envelope detectors, for the buffer waveforms used in the experiments.
Plotted is the difference in D, (bits), averaged over each buffer waveform set for each (averaged)
signal-to—noise ratio and WT, for the two envelope sampling strategies: at this time (ATT) and
peak.

The fitted energy and full-linear psychometric functions are plotted in Figure 4.13. They clearly
show that the full-linear detector is superior for small W7 Gaussian noise, for W7 > 1.

45.4 Envelope detector simulations

As described in Chapter 1, the ideal mathematical envelope detector has only been derived
for tone—in—-noise signals and for W7 =1 noise-in—noise signals. Therefore, the aims of the ideal
envelope simulations were to:

e To establish whether performance is the same as for the energy detector or the full-linear
detector, especially for higher—order W7 where no mathematical theory exists.

e To compare sampling strategies: peak detection versus sampling at a specific time.

Comparison using D

Buffer simulations of the envelope, energy, and full-linear detectors were compared. The
envelope detector used an equal-bandwidth Butterworth filter, a half-wave rectifier, a leaky inte-
grator with a time constant equal to the ERD of the input signals, and two sampling plans: peak
detection and sampling at the time equal to the absolute duration of the waveform.

Comparison of the envelope detector with the energy and full-linear detectors revealed some
surprises:

e The difference between the energy detector and the envelope detector with a peak sampler
is virtually nonexistent. Previous suggestions have implied that the two would be equal
if the envelope detector sampling was at a particular time, rather than at the peak. This
may be partly because the shape of the waveform (which was windowed over the entire
duration) forced the peak to occur, on average, at a particular time instead of any time over
the duration of the waveform.
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e The ATT envelope detector is better than the energy detector for W7 =2 and W7 =4, and
slightly worse than the energy detector for W7 =1.

e Compared to the full-linear detector, the envelope detector (for both sampling plans) did
not perform as well. As WT increased, the difference in performance became greater. The
ATT envelope detector was, however, better than the peak envelope detector.

The reasons the full-linear detector performed better than the envelope detectors could be:
e Because the sampling time was not optimally chosen (this should be investigated further).

e Because the integrator time constant was not optimal (this should also be investigated fur-
ther).

4.6 Comparisons with human data

Section 4.5 showed that the full-linear detector is generally better than the energy detector for
the types of signals used here. Chapter 1 also pointed out other research that supported the idea
that the linear rectifier is more appropriate for human detectors. Therefore, in lieu of a theoretical
model for linear detection of noise signals, the fitted polynomial functions were compared to
the human data from Chapter 3 by comparing psychometric functions and differences in the
attenuation functions.

Like the theoretical psychometric functions, the fitted models can be used to compare perfor-
mance by considering the shape and the attenuation of data. In particular, the attenuation may be
estimated by solving the roots of the polynomial to obtain a function in terms of signal-to—noise
ratio, calculated by numerical estimation using a bisection method.

4.6.1 Psychometric functions

Appendix F shows the human psychometric functions compared to the mathematical energy
detector and the simulated full-linear model. The results for the comparison with the energy
detector were reported in Section 3.4.5and 3.4.6.

Figures F.2, F4, F.6, F.8, F.10, and F.12, show the psychometric functions from the FORCE,
GOC, and mROC analyses, calculated from the six replications completed by Observer 1 and
Observer 2 for each experimental condition and level. Each figure shows:

1. a psychometric function fitted to the appropriate full-linear detector from Equations (4.16),
(4.17), or (4.18).

2. the empirical psychometric points for each signal-to—noise ratio from the FORCE, GOC,
and mROC analyses for each observer, and

3. the same full-linear psychometric function attenuated to fit the human psychometric func-
tions. The attenuation is the linear average of attenuation in decibels for each five signal-
to-noise ratios relative to the model being tested. For the FORCE analysis, a point was only
included in the attenuation calculation if the point had converged sensibly.

The functions are plotted on the opposite page to the energy detector analysis to allow compari-
son.




4.6 Comparisons with human data 145

Results are very similar to the mathematical energy detector analysis except for the degree
of attenuation. This is partly because the full-linear model was fitted with an attenuation pa-
rameter. The goodness—of-fit between the human data and psychometric functions for W7 =1 is
essentially the same for each type of detector, because the models have virtually the same shape.
For WT =2 and WT =4, the human data appear to be slightly better fitted by the full-linear de-
tector.

4.6.2 Attenuation analysis

The attenuation analysis summarises the information from the psychometric functions by
plotting the average linear attenuation of the data from the model as a function of bandwidth
and as a function of duration. A signal level only contributed to the attenuation of the FORCE
function if it converged successfully. Rogue data points from the FORCE analysis for Observer 1
in levels {400ms, 5Hz: -4,12dB}, {200ms, 10Hz: -4dB}, and {400ms, 10Hz}, were dropped, be-
cause they biased the attenuations. This is not unreasonable as it was obvious that these levels
converged with difficulty. Attenuations were calculated, using a bisection method, from the fitted
polynomials from Equations (4.16), (4.17), or (4.18).

Figure 3.16 (on page 103) shows the average attenuation in decibels from two types of psycho-
metric function: the mathematical energy detector (dashed lines and open symbols) and the data
model for the full-linear detector (solid lines and solid symbols). For the two models, attenuation
functions were of similar shape but the actual attenuations were different. It is not surprising
that the shape is similar, because the differences between the shape of the psychometric functions
for the energy and full-linear detector is subtle. The attenuation from the full-linear detector
compared to the energy detector was less for W7 =1 and W7 =2 but greater for W7 =4.

An obvious question is whether the attenuation functions from the different conditions give
the same pattern when matched for bandwidth or when they are matched for duration (or nei-
ther). If they match for bandwidth, then that would indicate that the ear was adjusting its de-
tection bandwidth and/or its integration time based on the bandwidth of the signal. If duration
is matched instead, then the ear was adjusting its parameters based only on the duration of the
signal. Figure 4.15 shows, for each observer, the three attenuation functions (after GOC analysis)
matched for duration then for bandwidth. They are matched for GOC and not FORCE analysis
because of Observer 1's rogue points, which changed the shape of the function.

Observer 1’s attenuation functions are more similar when they are matched for duration than
for bandwidth, but Observer 2’s attenuation functions match better for bandwidth. In neither case
is the relationship between bandwidth and duration-matching clear cut. It looks like both band-
width and duration information is used by the hearing system but that bandwidth and duration
are being traded off in a suboptimal way.

Because the attenuation functions of the human performance are not constant with experimen-
tal level, the human hearing system cannot be trading—off W and 7 optimally. The next chapter
considers more realistic models of human performance by taking the energy, full-linear, and en-
velope detectors and systematically manipulating their parameters until they start performing
like humans.
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Chapter 5

Correlations between humans and
simulations

“How little you mortals understand time.
Must you be so linear, Jean-Luc?”

Q (Star Trek: The Next Generation).

Stimulus—level, or molecular, analysis has been successfully employed by both Ahumada (1967)
and Gilkey (1981) to study the psychophysics of human hearing. Their general method was to
measure the association between human observers’ ratings for each stimulus and the output from
simulated electronic and computational detectors for the same stimulus, to estimate properties of
the human hearing system (see Section 1.4.1 of Chapter 1).

Like GOC analysis (see Chapter 2), their approach reduces the effects of observer inconsistency
in decisions (ratings). Experiments are replicated multiple times, with the same stimuli, then
ratings are averaged to remove error. The averaged ratings are then correlated with the output of
a simulated detector, which has been presented the same waveforms.?

The ratings from the human observers can be viewed as implying an ordering, or sorting,
of the stimulus set. On each replication, the stimuli are sorted into a particular order, using the
rating scale. The order is slightly different on each replication due to unique noise. If the ratings
are averaged for each stimulus, then the unique noise is removed, and as more replications are
added, the order of the stimuli tends to a fixed order. The evidence output from a computational
detector also implies a sorting of the stimuli. The correlation between the two observers is then
a measure of the extent the two observers sorted the stimuli into the same order. Thus, like ROC
analysis, only an ordinal scale is required for the analysis.

By manipulating the properties of the detector, the pattern of correlation, as a function of the
manipulated property, can indicate the nature of an underlying process.

1Gilkey’s method required converting the sum-of-ratings and evidence values to hit rates and false-alarm rates first.
This step is unnecessary.
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5.1 The Bester correlation method

The Bester correlation method? was developed from the methods of Ahumada (1967) and Gilkey
(1981), and was used to evaluate the hearing systems of the human observers from Chapter 3:

e To evaluate if the square—law or the linear (full or half-wave) rectifier was a better model
for human hearing.

e To estimate the detection bandwidth for each observer, and each experimental level, by
varying the bandwidth of the simulation’s filter.

e To establish the form and parameters of the temporal integrator and sampler.

e To determine the detector that best described the human observers’ performances in all con-
ditions and levels, and compare its performance directly to human psychometric functions.

The reliability of the Bester correlation method was also tested by analysing data sets from another
experiment, where the number of replications was larger than in the current experiment.
The Bester correlation method can be summarised as follows:

e Energy, full-linear, and envelope detector simulations were run, using Sim 10 (Chapter 4;
Lapsley Miller, 1998c), where either a particular parameter was systematically varied (e.g.,
the filter bandwidth), while holding all other parameters and processes constant, or differ-
ent forms of a process (e.g., square—law versus linear rectification) were compared.

e The simulated detectors were presented the same digital waveforms that were used in the
human experiments.

e The evidence output from SiMm 10’s sampler was then correlated with the sum-of-ratings
from the human experiments, using Spearman’s rank—order correlation coefficient (using
the program BESTER (Lapsley Miller, 1998Db)).

e The correlation was plotted, as a function of the varied parameter or process, and the maxi-
mum correlation point or maximum correlated process was determined.

o |If a parameter was varied, the value of the parameter associated with the maxima was used
to estimate the parameter of the underlying process. If processes were compared, then the
process resulting in the highest correlation was assumed to indicate the best model (out of
those tested) for the underlying human hearing process.

The Bester correlation method measures to what extent two observers (humans and/or com-
puter simulations) have sorted the stimuli into the same order. The closer the two orderings
match, the stronger the inferences that may be drawn from the data. The actual ratings or evi-
dence values are irrelevant, only the rank—order is important. This is why Spearman’s rank—order
correlation coefficient was used, rather than Pearson’s product-moment correlation coefficient,
because it measured the correlation between the orderings. Kendall’s rank—order correlation co-
efficient was also considered, but gave very similar results to Spearman’s coefficient. Because
Spearman’s is better known than Kendall’s coefficient, it was chosen in preference, although ei-
ther would be appropriate.

2Bester stands for best—estimated—ranking.
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5.1.1 Estimating the form of the rectifier

The results from Section 4.5.2 indicated that there was a difference between the energy and
full-linear detector for W7 > 1, and that this difference was due to the rectifier (square—law or
linear). The envelope detector was also found to be better than the energy detector for W7T > 1.
If the main difference between these models is the rectifier, then the first analysis should be to
see which form of rectification is more likely in the human hearing system. This may be done
by comparing the correlations for the energy and full-linear detectors, because all their other
parameters and processes are equal. If there is a difference in correlation then it can only be
due to the rectifier. Section 5.3 reports this analysis, in conjunction with estimating the detection
bandwidths for the human observers in the current experiment.

5.1.2 Estimating critical and detection bandwidths

The simulated detector’s filter is meant to represent the critical, or detection, bandwidth of
the auditory filter. If simulations are run with the same signals, and the bandwidth of the simula-
tion’s filter is systematically varied, then it is possible to estimate the detection bandwidths of the
human observers. This is achieved by calculating the correlation between the simulated detector
and the human observer’s ratings for the same stimuli, and plotting the resulting correlations as
a function of the simulation’s filter bandwidth.

The correlation-bandwidth function shows the relationship between the bandwidth of the
simulation’s filter (the independent variable) and the correlation between the human’s and simu-
lation’s stimulus orderings (the dependent variable). The shape of this function differs depending
on the signal-to-noise ratio of the waveforms. Large signal-to—noise ratios produce the same,
high, correlation for many bandwidths. This is because the large signal swamps the noise, such
that the ordering of the stimuli is similar, regardless of the amount of masker passed by the filter
(with unequal bandwidth). The N event, on the other hand, tends to result in a correlation-
bandwidth function with a single peak. This phenomenon is used to measure the detection band-
width most correlated with human performance, because the estimate is not confounded with
the signal bandwidth. Because there is no signal to match bandwidths in the N event trials, the
estimated bandwidth should reflect that of the detection bandwidth. This approach is also justi-
fied from the signal analysis of the simulations in Chapter 4, where it was shown that the signal
bandwidth changed after filtering as a function of signal-to—noise ratio. Only the bandwidth of
the N signals indicated the actual bandwidth of the filter, despite the same filter being used for all
the signals. Section 5.3 reports the estimated detection bandwidth for the human observers in the
current experiment, using the energy and full-linear detectors.

“Detection” or “critical” bandwidth?

Bernstein and Raab (1990) suggested that the term detection bandwidth should be used instead
of critical bandwidth, and that the latter should be reserved for the smallest estimate of the detection
bandwidth. This is because detection bandwidths are estimates of the effective bandwidth of the
auditory system, and may arise from a higher—order process that combines information across
critical bands. It is premature to say whether the bandwidth estimates from the Bester correlation
method are estimates of the critical band, therefore, the more neutral term, detection bandwidth,
is used at this stage.
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5.1.3 Estimating the form and parameters of the integrator

Once the detection bandwidth has been estimated, and the form of the rectifier determined,
the different forms of integration may be tested with little confounding from the other processes.
The integrators that were evaluated included the true integrator and the leaky integrator with
various time constants. This analysis was done in conjunction with testing the best sampling
time, because the two processes are interrelated.

5.1.4 Estimating the form and parameters of the sampler

To estimate how the human observers sampled the output of the integrator, two sampling
strategies were simulated, and the correlations resulting from the Bester correlation method anal-
ysis were compared. Sampling at a particular time was investigated by sampling at approxi-
mately 30 different times, then calculating the correlation with the human observers. The results
were plotted as correlation—duration functions, where the duration represented the sampling
time, or duration from the beginning of the integrator output. There was a separate correlation—
duration function for every time constant and integrator. By comparing these functions, it was
possible to estimate the best integrator time constant and sampling time combination.

The other sampling strategy tested was a peak detector. The strategy was to use the peak of
the output of the integrator for each individual signal, as the sample or evidence. This peak could
occur at any time, but tended towards the same time, because of the Kaiser window. Thus, the
difference between sampling at a particular time, and peak sampling, was not necessarily that
great. This strategy produces only one correlation coefficient, rather than a function.

5.2 Analysis of the Agirc = P(C)arrc project with the Bester cor-
relation method

The current experimental data are based on only six replications of the experiment. If there is
observer inconsistency in the data, then six replications of data may still be too variable to draw
conclusions from the correlation analysis. One way of assessing the effect of this variability is by
considering data from a different experiment where more than six replications were run. Kindly
the other authors of the “Agirc = P(C)2rrc” project (Lapsley Miller et al., 1999) have let me use
the data sets and signals to help assess how the estimates from the Bester correlation method vary
when individual replications, or groups of six are analysed.

The experiment was an SIFC amplitude discrimination experiment. The observer’s task was
to indicate their confidence that a SN event occurred by making a rating on a continuous rating
scale. The ratings were subsequently binned into a 64 point rating scale for analysis.

The stimuli were narrow-band Gaussian noise transients with a duration of 8.2 ms (ERD),
windowed with a Kaiser window (x = 9), and a bandwidth of 92 Hz (ERB), centred at 250 Hz,
and masked by wider band Gaussian noise (1.5 kHz) with a signal-to—-noise ratio of 7.5 dB. These
transients had an essential YW7T of approximately unity, and an equivalent W7 of approximately
0.75. The background masker (4 kHz, low-pass) was continuous. Three observers ran 32 repli-
cations and one observer ran 48 replications® of the experiment with 500 stimuli per event. Each

3When comparing across observers, only the first 32 replications were used unless otherwise stated.
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observer used a different set of stimuli. Observers 1 and 3 in the Agjpc = P(C)2pc project are
also Observer 1 and Observer 3 in this project.

The data analysed here are the sum-of-ratings for each observer, for various combinations
of replications: single replications, consecutive groups of six replications, and the total number
of replications. The Bester correlation method was used to calculate the correlation between the
human observers’ ratings and the evidence from a simulated energy detector, presented with the
same digital signals.

Method

Energy detector simulations were run using the same digital signals that were used in the
experiments, where the filter bandwidth was systematically varied.* The aim was to find the
maximum of the correlation-bandwidth function for the N event, for sum-of-ratings over all
the replications, by iteratively varying the filter bandwidth until the maximum was found. The
bandwidth associated with the maximum correlation was used as an estimate of the detection
bandwidth (resolution was + 10-20 Hz).

Results
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Figure 5.1: Correlation-bandwidth functions based on the sum-of-ratings from 32 replications for each ob-
server. (a) N event (b) SN event. The vertical bars indicate the bandwidth corresponding to the
maximum correlation for the N event.

Figure 5.1 shows the correlation—-bandwidth functions for each observer. Also shown in Fig-
ure 5.1(a), with vertical bars, are the filter bandwidths of the energy detector best correlated with
the human sum-of-ratings for the N event. Observer 2 had the narrowest filter so it is no sur-
prise that his performance in the ROC space was greater than the other observers. Observer 3’s
correlation-bandwidth plot shows two maxima; indicating that perhaps he changed strategy, or
perhaps treated larger signals differently to smaller signals.

To investigate this phenomenon further, correlations were calculated over sets of six consecu-
tive replications (six replications were chosen for comparison with the current experiment). The

4These analyses were done before it was found that the full-linear detector better described human performances. For
WT =1, however, the difference is very slight.
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Figure 5.2: Correlation—-bandwidth functions for sets of six consecutive replications for each observer.

results, shown in the top four graphs in Figure 5.2 indicate that the estimated detection band-
widths of Observers 1, 2, and 4 were relatively stable over time but Observer 3’s bandwidth
changed dramatically.

Correlations were calculated over individual replications, to further assess variability of the
N event. The bandwidth associated with the maximum of the correlation-bandwidth function,
for each replication, is illustrated in Figure 5.3 for each observer. It appears that the change in
Observer 3's bandwidth occurred in separate replications, not within a replication. This indicated
a change in the detection bandwidth with time, rather than the adoption of a different bandwidth
for different types of signals. It should be noted that no additional simulations were run to iso-
late each maximum, so the resolution of the detection bandwidth estimates, for estimates greater
than 1 kHz, are only accurate to 500 Hz. Observer 2 was very stable over time. Observer 4 sta-
bilised over the first few replications. Observer 1 was stable except for three replications in the
middle. Observer 3, however, was very unstable with widely varying bandwidths over the first
24 replications. The second 24 replications were far more consistent.

Reliability of the Bester correlation method

Variability of the estimated detection bandwidth across replications indicates that some unique
noise in amplitude discrimination experiments comes from observers not holding a constant de-
tection bandwidth. What effect does this have on analysis using the sum-of-ratings data? Using
sum-of-ratings data does not appear to average the maximum correlated bandwidths from the
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Figure 5.3: Detection bandwidths for individual replications, plotted in order of completion, for each ob-
server. The horizontal line indicates the estimated detection bandwidth calculated over all repli-
cations. (a) Observer 1, (b) Observer 2, (c) Observer 3, and (d) Observer 4.

individual replications. Instead, the correlation—-bandwidth functions relationship may have mul-
tiple maxima. In general, however, the analyses also indicate that the detection bandwidths esti-
mated from the sum-of-ratings data may not be that different, on average, from single replication
estimates.

In the current experiment, the methodology was different from the Asjpc = P(C)a1rc project
in that replications were not completed in one session (or consecutive sessions), but were spread
out over weeks in a randomised session design. Thus, analysis on single replications may not
show whether the observer is using different detection bandwidths across experimental sessions.

In sum, the only effects on correlations when using six replications are (a) for the correlation
coefficients to be smaller than for larger replication sizes, and (b) for the estimates to be more
variable. The correlation-bandwidth function, however, tends to be similar. Further analysis,
however, may be indicated if the correlation-bandwidth function has multiple maxima.
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5.3 Energy and full-linear detectors

One of the simplest models for detection of small-)V7 Gaussian noise is the energy detector,
because it has only one free parameter—the bandwidth of the filter. Similar to the energy detector
is the full-linear detector, which uses a linear instead of square—law rectifier. It was shown in
Chapter 4 that the ideal full-linear detector was better than the ideal energy detector at detecting
the signals used in the experiments (Chapter 3).

Preliminary analyses indicated that for simulated observers, one of the biggest contributors
to the ordering of the stimuli was the form of the rectifier, rather than the form of the integration
or sampling. Because the envelope detector differs from the energy detector, in both the form of
the rectifier and the integrator, the effect of the rectifier cannot be isolated. By using a full-linear
detector, however, the effect of the rectifier can be isolated without confounding from the inte-
grator. The best correlated detection bandwidth can then be used as a constant, so the temporal
characteristics of the envelope detector may be manipulated more easily.

The aims of the correlation analysis with the energy and full-linear detectors, were to (a) es-
tablish the rectifier best correlated with the human sum-of-ratings, (b) use the detector associated
with the best correlated rectifier to estimate the detection bandwidths for the human observers, in
each experimental level, and (c) use the detector with the best correlated bandwidth and rectifier
to estimate the best sampling time, assuming a true integrator (leaky integration is evaluated in
the next section).

5.3.1 Method

Energy detector simulations, similar to those from Section 4.2 in Chapter 4, were run repeat-
edly on all the buffer signal sets, with each repeat using a different 3 dB bandwidth for the Butter-
worth filter. All other parameters and processes were held constant. Because the filter bandwidth
was not equal to the § signal bandwidth, the simulated observers were not optimal observers.

Simulations were run in sets (of various sizes), where the filter bandwidth was systematically
varied. After each set the correlation-bandwidth function was plotted, and the maximum found.
The resolution of the maximum was increased by running further sets of simulations, where the
filter bandwidth was varied over a smaller range, encompassing the maximum. Thus, sets of
simulations were run iteratively until the maximum was estimated to an accuracy of about 1 Hz.
The number of simulations run, and the bandwidths used, depended on where, and how quickly,
the maximum was found. This analysis was done individually for each observer so there were,
in fact, three maxima to be estimated for each buffer set.

The full-linear detector simulations were run repeatedly on all the buffer signal sets, with each
repeat using a different 3 dB bandwidth for the Butterworth filter. Bandwidths were selected from
10 Hz to 4096 Hz in 50 equal steps on an octave scale. All other parameters of the detector were
held constant (full-wave rectification, true integration) and the integrator was sampled at the end
of the output. Thus, the resolution of the bandwidth estimate was not quite as high as for the
energy detector, but the process was faster because it was automated.

Once the best correlated bandwidth was found, the simulation for that bandwidth was re-
peated, but this time the output of the integrator was sampled at thirty different points spaced
equally between 10 ms, and then end of the integrator (on a linear scale) to estimate the best
correlated sampling time.
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5.3.2 Results

1 ) ’ ) f ' f ' f ' f
(@) Obs 1: WT1 | | |
400ms, 2;5Hz

0.8 ot

02 4

Spearman’s Correlation Coefficient
o
N

0.2 S SN S S S
1 4 16 64 256 1024 4096
Bandwidth (Hz)

Figure 5.4: Correlation-bandwidth functions of Observer 1 based on the energy detector simulation (open
symbols), and the full-linear detector simulation (closed symbols), in condition W7 =1, level
{400ms, 2.5Hz}, for the N event (square symbols) and largest SN event (circle symbols).

The correlation was calculated between the sampled output for each stimulus, from each sim-
ulation, and the human observer sum-of-ratings for the same stimulus. Figures G.1-G.6 in Ap-
pendix G show the correlations coefficients plotted as a function of filter bandwidth for the N and
largest SN event for when the integrator was sampled at the end of output, for both the energy
and full-linear simulations. An example is shown in Figure 5.4.

The rationale for estimating the detection bandwidth from the correlation-bandwidth function
was described in Section 5.1.2. As expected, the shape of the correlation-bandwidth function
differed depending on the signal-to—noise ratio of the waveforms. Large signal-to—noise ratios
produced the same, high, correlation for many bandwidths. The N event, on the other hand,
tended to result in a correlation—-bandwidth function with a single peak. Except for very wide
band signals the final estimate of the detection bandwidth is within 1 Hz of the actual peak for
the energy detector.®

The correlation-bandwidth functions for the full-linear detector tended to be a similar shape,
but the correlation coefficients were consistently higher than for the energy detector, indicating
that the full-linear detector described the human’s detectability better than the energy detector.
The exception was for Observer 1 in the experiment level {6.25ms, 160Hz}, where the difference

5The small blip at 1000 Hz in the correlation-bandwidth function is due to the changeover from a band-pass to a
low-pass filter.
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between the energy and full-linear detectors was negligible. The estimated detection bandwidths
from the full-linear simulations tended to slightly larger than for the energy detector simulations.

The correlation—duration function, where each point is a different sampling time of the output
of the integrator, showed an increase in correlation as a function of duration, reaching a plateau
just before the point where the integrator was full (see Figure 5.10 on p. 163). This time was,
coincidently, about the same time as the absolute duration of the waveform.

Table 5.1: Comparison of the estimated TdB and EssWg, 4% detection bandwidth (Hz) for each observer,
for each experimental condition and level. The detection bandwidth was estimated from the full-
linear simulations.

Experimental Detection Bandwidth (T'dB) Detection Bandwidth (EssWg» 49,)
Level Observer 1 Observer2 Observer3 Observerl Observer2 Observer 3
400ms, 2.5Hz 55 49 — 58 51 —
200ms, 5Hz 63 43 — 66 45 —
100ms, 10Hz 71 55 — 74 58 —
50ms, 20Hz 71 71 — 74 74 —
25ms, 40Hz 147 90 188 154 95 197
12.5ms, 80Hz 722 102 — 755 107 —
6.25ms, 160Hz 566 450 650 591 471 677
400ms, 5Hz 55 43 55 58 45 58
200ms, 10Hz 71 49 — 74 51 —
100ms, 20Hz 90 49 — 95 51 —
50ms, 40Hz 115 55 115 121 58 121
25ms, 80Hz 240 80 — 251 84 —
12.5ms, 160Hz 347 102 566 363 107 591
400ms, 10Hz 55 49 63 58 51 66
200ms, 20Hz 71 49 — 74 51 —
100ms, 40Hz 90 63 80 95 66 84
50ms, 80Hz 147 71 — 154 74 —
25ms, 160Hz 213 102 639 222 107 668

Plotting the detection bandwidth as a function of original signal bandwidth and duration in-
dicates that both the bandwidth and the duration of the original signal plays a large role in setting
the bandwidth of the auditory filter (see Figure 5.5). It looks as though the detection bandwidth
is flexible, and that it does not match the bandwidth of the signal. The detection bandwidth also
appears to have a minimum of around 55 Hz (TdB), or 65 Hz (EssWgs 4%), for Observer 1, and
43 Hz (TdB), or 51 Hz (EssWgs.4%), for Observer 2. Table 5.1 shows the detection bandwidths for
all levels and all observers, including Observer 3 (although these figures are based only on three
replications). This minimum could, perhaps, be considered an estimate of the critical bandwidth.

Also plotted on these figures are the bandwidths and durations associated with the ideal full-
linear detector. The ideal bandwidth is defined to be equal to the EssWy, 49, bandwidth of the
8 transients, and the ideal duration is equal to the Ess7T g5 49, duration of the Kaiser window, be-
cause, according to Green and McGill (1970), an ideal noise—in—noise detector should match the
bandwidth and duration of the signal. These definitions were used to determine the parame-
ters of the experimental signals in Chapter 3. Observer 2 crosses the equal-bandwidth line, so that
for wide-band short-duration signals, his detection bandwidth is narrower than that of the sig-
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nal. Observer 1’s detection bandwidth is always wider than the signal. This would imply that
Observer 1 always performs worse than the full-linear detector, but that Observer 2 is able to
perform as well as the full-linear detector at some levels once unique noise in the sum-of-ratings
was removed. In fact, one level does appear to fall on the ideal line for Observer 2: {25ms, 80Hz}.
These functions are very similar for the energy detector simulations but the bandwidths tended
to be slightly smaller. They also resulted in lower correlations.

Variability of the correlation-bandwidth functions over replications was also considered. A
succinct way of displaying this information is to plot the maximum correlated bandwidth as a
function of replication. These plots, for the full-linear detector simulations, are shown in Fig-
ure 5.6. Observer 1 is reasonably stable for longer durations but for the short durations the esti-
mated bandwidth varies considerably—especially for W7T =1. It should be noted that this analysis
is on single replication data so the bandwidth estimates are confounded with other unique noise
sources to a greater degree than the six replications combined. Both Observer 1 and Observer 2
are more stable for W7 =2 and 4, compared with W7 =1. This is perhaps due to the difficulty of
minimising the filter bandwidth, because of the effect of the lower bound imposed by the acous-
tical uncertainty principle as W7 gets small.

For the current experiment, the correlation analysis would not easily pick up if an observer
kept a constant bandwidth within an experimental session, but varied it across sessions. This is
because each replication was completed over a period of weeks in 10-15 sessions. The results
reported in Section 5.2, from the Asirc = P(C)amrc project, were from an experiment where
the replications were completed in 1-2 sessions within the same day. Thus, a variable detection
bandwidth explanation can be put forward with more confidence.

5.4 Envelope detectors

A variety of envelope detector simulations were run on all the buffer signal sets where the
filter bandwidths used were the best correlated bandwidths for each observer from the full-linear
simulation of the previous section.

A preliminary simulation indicated that there was no difference between half-wave and full-
wave rectification on subsequent correlations with human observers (i.e., the two forms of rec-
tification resulted in the same stimulus orderings) so half-wave rectification was chosen, to be
true to Jeffress’ notion of the envelope detector. There was, however, a substantial difference in
the stimulus orderings by a square-law rectifier compared to both the full-wave and half-wave
rectifiers.

541 Method

Preliminary tests indicated that the best correlations occurred for leaky integrators with long
time constants. To investigate this finding, ten envelope detector simulations were run for each
bandwidth—each with a different integrator time constant (10, 120, 230, 340, 450, 560, 670, 780,
890, and 1000 ms).

Two sampling strategies were used (a) peak detection of the output of the integrator for each
waveform, and (b) sampling the output of the integrator at thirty different points spaced equally
between 10 ms and the end of the integrator (on a linear scale).
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5.4.2 Results

Figure 5.7 shows an example of the correlation between the sum-of-ratings for Observer 2
in level {400ms, 2.5Hz} and the output of each envelope detector simulation (for each integrator
time constant), as a function of thirty sample times. The results from other simulations tended
to have higher correlations, but the difference between short and long time constants was not as
extreme.

Figure 5.8 shows that for envelope detector simulations, the correlation as a function of sam-
pling time increases with time, but only very slightly after about 200ms. Figure 5.9 shows that
the best correlated sampling time is relatively independent from the integrator time constant. In
log coordinates these sets of lines are roughly equally spaced as a function of signal duration,
especially for Observer 1.

These sets of figures indicate that (a) the correlation increases as the integrator time constant
increases and that this increase appears to tend towards an asymptote, and (b) the correlation—
duration function reaches a plateau near the peak of the integrator output. If the integrator was
allowed to leak further then this correlation would eventually drop as the signal decayed away.
The overall maximum correlation does not always occur with the longest time constant, but once
the plateau has been reached, differences are tiny and are presumably just statistical fluctuations.

The difference in the shape of the correlation—duration function between the N and SN events
is minimal; that is, the best correlations are for a similar decay time and sampling time. The
actual correlations for the SN events tend to much larger (often over 0.9). There is less cause
for concern in using the SN event data for testing duration parameters, because the shape of the
signal window was identical for all events. The shape in the frequency domain for each event,
however, was not identical for filters with bandwidths different to the signal bandwidth, thus
leading to the difference in the shape of the correlation-bandwidth functions. In the end, the SN
event data were not used for estimating duration properties, mainly due to the sheer amount of
data analysis and presentation that would entail.

5.5 Assessing the best detector model

Although there is no one detector that is always better correlated with human performance
than any other, the full-linear detector stands out as generally being better correlated. The dif-
ference, however, between the full-linear detector and the envelope detector with a long time
constant is tiny. The latter may be more justifiable physiologically, but the full-linear detector is
simpler to work with, so will be used to compare with the human psychometric functions.

5.5.1 Differences in correlation

Figure 5.10 shows some examples of the correlation between the sum-of-ratings for Observer 1
and Observer 2 and the output of (a) the energy detector with the best correlated bandwidth, (b)
the envelope detector for the 230 ms and 1000 ms time constants, and (c) the full-linear detector
with the best correlated bandwidth; all sampled at thirty different times. Except for the enve-
lope detector with the 230 ms time constant, all the detectors tended to be the best in their class.
The additional envelope detector was included, because its time constant was closest to Green’s
posited 200 ms (Green, 1973, 1985). Also included in these graphs are the standardised temporal-
averaged output of the four integrators. The biggest difference between detectors occurs for the
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Figure 5.10: Correlation—-duration functions based on the output of four different detectors (energy, full-
linear, and envelope [time constant=230 ms and 1000 ms]), sampled at thirty different times, and
the sum-of-ratings from Observer 1 (left) and Observer 2 (right). Overlayed are the temporal-
averaged output of the four integrators, and the Kaiser window. Stimulus sets from top to
bottom are {400ms, 2.5Hz}, {6.25ms, 160Hz}, {100ms, 20Hz}, and {50ms, 80Hz}.
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long duration signals. This is not surprising, because the effect of the integrator time constant
should be relative to the signal duration.

The energy detector, except for level {6.25ms, 160Hz} for Observer 1, is consistently worse
than the full-linear detector and the envelope detector with a time constant of 1000 ms. For the
longer duration signals, the envelope detector with a time constant of 230 ms tended to be the
worst. Looking at the temporal-averaged integrator outputs, the correlation—duration functions
are more similar if the output of the integrators are similar. In particular, there is not much differ-
ence between full-linear with a true integrator and the envelope detector with a very long time
constant. If the integrator output was allowed to continue then the leaky integrator would even-
tually dissipate, whereas the full integrator would hold its value. It seems to be the case that for
the envelope detector, that correlations would continue to improve if the time constant was in-
creased further, but the most parsimonious model is the full-linear with an unequal bandwidth,
full-wave rectifier, true integrator, and sampling strategy at the end of the signal.

The best sampling times were related to the time the temporal-averaged integrator output
reached its peak. This is not the same sampling strategy as sampling the peak of individual
waveforms (that detection scheme resulted in lower correlations in general).

The simulations that tended to give high correlations were compared to see if there was one
detector that best described human hearing (bar graphs of the correlations are shown in Fig-
ures G.7 and G.8 in Appendix G). The candidates included (a) the energy detector with the best
correlated bandwidth, sampled at the end of the integrator [Energy-EOI], (b) the same energy
detector but the best correlated sampling time—this is usually the same as the end of the inte-
grator, but small statistical fluctuations may favour another time [Energy—-ATT], (c) the full-linear
detector with the best correlated bandwidth, sampled at the end of the integrator [Full-EOI], (d)
the same full-linear detector, but the best correlated sampling time [Full-ATT], (e) the envelope
detector with the best correlated time constant (usually 1000 ms), sampled with a peak detector
[Env.—Peak], and (f) the envelope detector with the best correlated time constant and sample time
[Env.—ATT]. The actual values for the various parameters do not matter, because this comparison
is among different classes of simulated observers.

These comparisons indicated that both energy detectors (Energy—ATT and Energy-EOI), and
the peak envelope detector (Env.—Peak), gave consistently lower correlations, compared with
both the full-linear detectors and the ATT envelope detector. There was essentially no difference
among the latter detectors. This is probably because a leaky integrator with a long time constant
tends towards a true integrator, making the difference between the two models negligible.

5.5.2 Psychometric functions

A test of the Bester correlation method is to compare the psychometric functions of the best
correlated simulation with the human observers. Figures G.9 and G.10 show the psychometric
function of the best-correlated full-linear detector, the human functions after GOC and FORCE
analysis, and the ideal full-linear detector polynomial psychometric function estimated in Chap-
ter 4. The data points have all been translated by their attenuation, such that they fall onto the
ideal full-linear model so their shapes may be easily compared. Labels on each graph report the
degree of attenuation in decibels. When considering the comparison, remember that the best fit
was chosen solely from the N event ratings. Many of the functions are extremely well fitted by
the full-linear detector simulations, especially for non-extreme signal sets.
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Figure 5.11: Examples of the overall best correlated full-linear detector psychometric functions compared
with FORCE and GOC analyses, for Observer 1. The data points from the GOC, FORCE, and
best correlated detector have been translated by their average attenuation so that they fall onto

the ideal full-linear detector function.
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the ideal full-linear detector function.
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The important findings are that:

¢ the shape of the ideal full-linear psychometric function accurately describes the shape of
most of the empirical data points (human and simulation) except for some of the long-
duration levels. The data points, as a function of signal-to—noise ratio, steepen in a similar
way as the ideal model and change in the same way as W7 of the signals change.

e the human data points tend to follow the same pattern where the best—correlated data points
fall away from the ideal function, for instance, the point associated with the smallest signal—-
to—noise ratio in Figure G.9(i) and Figure G.10(i) is well under the fitted function for all
observers.

e in some cases there is essentially no attenuation between the human data and the best-
correlated full-linear simulation. This can be seen where the human and the best-correlated
data points fall on top of one another—if there was just differing levels of attenuation then
the points may fall on the same function but at different places. This indicates that even
though performance may not be ideal, the best—correlated full-linear detector still predicts
performance extremely well (e.g., Figures G.9 (b), (d), (j), (I), and (q) for Observer 1 and
Figures G.10(c) and (I) for Observer 2). What is unclear is why sometimes it is the GOC data
that fit well and other times the FORCE data.

e insome cases there is essentially no attenuation from the ideal full-linear detector indicating
that humans, once error has been removed, can perform ideally (e.g., Figures G.9(q) and (r)
for Observer 1 and Figures G.10(k) and (I) for Observer 2).

Figures G.9(p) and (g) and G.10(k) and (1) are enlarged and reproduced as Figures 5.11 and 5.12,
for comparison.

5.5.3 Signal analysis

Tables G.1-G.6 in Appendix G show the results of signal analysis on the best—correlated full-
linear detector simulations. The interaction between estimated signal power (converted from esti-
mated signal-to—noise ratio) and estimated W7 are illustrated in Figures 5.13 and 5.14. These fig-
ures show that as signal power increases, estimated WW7T decreases—in some cases quite markedly.
Note that Observer 2 crosses the ideal W7 line. This does not mean that ¥ and 7 were optimally
matched. The analysis was similar to that for the ideal energy detector in Section 4.3 except that
the duration measures were for a linear rectifier, so they did not need the additional transforma-
tions required for the square-law rectifier. The tables and figures show that

e The signal-to—noise ratio, estimated using Equation (3.5), is barely changed by the detector,
despite the bandwidth of the filter being unequal to the signal. This is due to the method of
calculating the signal-to—noise ratio, which was estimated from the pass band of the spec-
trum to the masker floor (this method is described in Section 3.3.5). It is possible that for the
cases where the observer bandwidth is narrower than the signal bandwidth, the signal-to-
noise ratio would be underestimated slightly as the average ERB measure requires averag-
ing through the passband of the signal. The cutoffs used were for the unfiltered signal. This
does not seem to have made much difference to the final estimates.
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e The duration of the waveform out of the rectifier is barely changed from the input duration,
because the filter bandwidths are all rather wide so there is little ringing. There is a small
tendency for durations to decrease as sighal-to—noise ratio increases.

e The ERD duration estimates are smaller than the EssT g5 45 estimates in the cases where the
observer’s bandwidth is wider than the signal bandwidth. For the input signals these mea-
sures were essentially the same so presumably this difference comes about from a change in
the shape of the waveform envelope after filtering.

e For the cases where the observer’s bandwidth is wider than the signal bandwidth (which is
most cases), the estimated bandwidth (for all bandwidth measures) decreases markedly as
signal-to—noise ratio increases. The degree of decrease is dependent on the bandwidth mea-
sure, because the TdB bandwidth only considers the peak of the waveform (and is therefore
sensitive to the shape of the spectrum), whereas the EssWy, and AERB are calculated over
the entire spectrum. This phenomenon was described and illustrated in Section 4.3.1.

e Because the bandwidth changes with signal-to-noise ratio, the estimates of W7 also de-
crease with signal-to—noise ratio. The bigger the difference between observer and signal
bandwidth, the greater the change in W7 as a function of signal-to—noise ratio. Again the
degree of decrease also depends on which definition of W7 is used. Because the duration
measure is stable, this difference in W7 is primarily due to the change in bandwidth.

The information in these tables goes some way to answering the question “What is the réle
of the bandwidth—-duration product W7 in the detectability of diotic signals?”. They show that
for a set of signals with the same W7, but different bandwidths, durations, and signal-to—noise
ratios, that the human hearing system does not use a constant W7 to detect those signals, even
though such a strategy would be optimal. In other words, the parameters of the human hearing
system cannot be modelled with a constant W7 theory (such as the x? energy detector model).
But neither does the hearing system use fixed parameters. It appears that although the hearing
system is able to integrate over the full duration of the waveform, with apparently little error, that
its ability to filter with a bandwidth equal to that of the signal, is limited to a minimum bandwidth
of around 40 Hz.

This chapter has explored the quasi-molecular, or stimulus-by-stimulus, approach to study-
ing human hearing. The other extreme is to use an measure that encompasses all stimuli and all
events. Such a measure is Scurfield’s (1995, 1996) multi-event information theory measure of de-
tectability, D. The next chapter looks at this analysis more closely by calculating D¢ for both the
human data (after GOC and FORCE analysis) and the simulations (ideal and best—correlated).
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Chapter 6

Multiple—event discriminability

“Reality is nothing but a collective hunch.”
Lily Tomlin.

The previous chapter considered a stimulus-by-stimulus approach to studying human hear-
ing. This chapter explores the other extreme of analysing all stimuli and all events together. By us-
ing Scurfield’s (1995, 1996) multi-event information theory measure of detectability, D ,,, on both
human and simulated ratings, overall performance can be assessed by measuring human dis-
criminability relative to simulated discriminability. The term “discriminability” is preferred over
“detectability” here, because it better reflects the task of distinguishing among n events rather
than two events.

An abiding problem in psychophysics, and especially ROC analysis, has been the inability
to measure performance over multiple events; most theory applies only to two-event tasks. Re-
cently Brian Scurfield generalised ROC analysis to multiple-events and derived a discriminability
measure, D,,, (where the subscript stands for the number of events) which overcame the prob-
lems of previous methods (Scurfield, 1995, 1996, 1998; Lapsley Miller, Scurfield, Drga, Galvin, &
Whitmore, 1999). This measure was derived using both ROC analysis and information theory.
Scurfield (1995, 1996) was primarily concerned with unidimensional decision axes, but recently
he generalised his results to multi-dimensional multiple—event ROC analysis (Scurfield, 1998).

6.1 Scurfield’s discriminability measure D,

Scurfield (1995, 1996) showed that an observer’s performance in discriminating n indepen-
dent events may be represented as n! ROC hypersurfaces, in n—dimensional ROC hyperspaces.
For instance, in the three event case, performance is described by six ROC surfaces in three di-
mensions. A transformation of the hypervolumes under each of the ROC hypersurfaces is then
used to measure discriminability. This measure is called D,,.

Scurfield (1996) defined D,,, for the n—event single-interval forced—choice task, as

D, = logn!) —H, (6.1)

171
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where
Hn = _Zva(12...n) log (Va(12...n)) (6.2)

= - Z P(on(12...n)) IOg (P(on(lzn))) . (63)

The notation «(12...n) is the index for a possible permutation of the ordering of n events. To
sum over a means to sum over all possible permutations. V is the hypervolume under the ROC
hypersurface, and X is the univariate random variable conditional on each event. J,, is both
a measure of the prior uncertainty of the ordering of the n events and a measure of the average
information from a particular ordering of the n events. Therefore, D,, is a measure of the average
certainty about the ordering of the n events.! Scurfield also showed, with particular assumptions,
that D,, is equal to the channel capacity of the corresponding n—event n—interval forced—choice
task.

Scurfield derived D,, to have the nine properties he believed were essential for a psychophys-
ical measure:

1. D, is non—parametric, allowing it to be applied to any detection problem regardless of the
underlying distributions, and allowing comparisons across detection tasks regardless of the
decision axis.

2. D, is independent from the criterion adopted by an observer.
3. Itis independent from the prior probabilities of each event occurring.
4. It has a finite value when events are perfectly discriminable.

5. The discriminability of n events is no less than the discriminability of a subset of these
events—that is the measure of the task of discriminating more events reflects the additional
difficulty.

6. D,, hasatrue zero, so that the inability to discriminate among the events has an appropriate
value.

7. Ratios of D,, are relative measures of discriminability, allowing comparisons among ob-
servers and tasks. In particular, Scurfield (1996) showed that D,, may be transformed to a
measure of relative discriminability, D},, by dividing through by the maximum value of D,,,
which is log(n!).

8. Itis invariant to scaling of the decision axis.

9. Itisinvariant to the labelling of the events, because the important factor in discrimination is
the correspondence between decisions and events—not the identity of the events.

Implicit in these properties is that D,, is applicable to more than two events.

D,, may also be calculated using empirical data. If a rating scale experiment is used, then
the calculation of the ROC hypersurfaces may be bypassed, and a generalisation of the Mann-
Whitney U statistic used instead. Miller (1998a) wrote an algorithm to calculate D,, using this

LFor discrete random variables this is not entirely true due to equalities of the evidence, but this does not negate the
use of D,,.
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method. This algorithm is, unfortunately, factorially, exponentially, complex in the number of
events. Although it has huge complexity, it is currently practical up to about Dy.

According to Miller (1999, personal communication) it is extremely difficult to describe how
to calculate D,, for arbitrary n. This is because in the discrete case (empirical data are invariably
discrete) there is the problem of determining all possible combinations of ties, and their weight-
ings, when evidence from different events is given the same rating. The calculation of D, is
relatively straightforward when there are fewer than four events, but it is more complex for four
or more events. Scurfield (1995) put forward a conjecture for the n—event case, but according
to Miller (1998, personal communication) Scurfield did not correctly express the weightings on
the different possible ties. Miller’s algorithm addresses the problem of determining all the ties
and weightings for any given n. As an example, Equation (6.4) shows the formula for one of the
twenty—four hypervolumes used to calculate D4, where N; is the number of stimuli for event 4,
and R; is one of the set of ratings for event i. The operator #(x) is the number of permutations of
ratings for which the argument z is true (Scurfield, 1996).

V=
a(1234) - (N1N2N3N4)

1
+§(#(Ra(1) < Ry(2) < Rags) = Raqy)

+#(Ra(1) < Ra2) = Ra3) < Raa))
+#(Ra(1) = Ra(2) < Ra3) < Ras)))

#(Ra1) < Ra2) < Ras) < Ra(a))

1

+7(#(Ra) = Raz) < Ra(s) = Raw))
1

+E(#(Ra(1) = Ru(2) = Ro(3) < Raa)) + #(Ra) < Rag2) = Ra(3) = Ras)))
1

t51 (#(Ra(1) = Ra(2) = Ra3) = Raqw))] - (6.4)

The last four parts of this equation deal with the problem of establishing all the possible combi-
nations of ties, and their weightings.

This algorithm is different to that suggested by Scurfield (1995, p. 95). Scurfield’s conjecture
was only applicable to three events or less. Scurfield constructed the equations by generalising
the two and three event cases, and overlooked the problem shown in Equation (6.4), where the
weight of the third term is 1/4, not 1/6. According to Miller (1999, personal communication), the
weighting of each term relates to the number of ways the term can be constructed, remembering
that equality is symmetric: Rq1) = Ry(2) is the same as R, ) = R,(1). In the term R,y =
Ry (2) = Ra(3) < Rya) there are six possible ways of arranging R, (1), R (2), and R, 3 across the
equalities, hence the weighting for this term is 1/6. In the term R,1) = Ry2) < Ry3) = Ra),
however, R, (1) and R, 2 are interchangeable, and similarly R,y and R, 4), but R, (1) and Ry (2)
cannot be permuted with R, 3, and R,(4), because the inequality in between is not symmetric.
Thus, there are only four possible arrangements of R, ;) in this term, so the weighting is only 1/4.

Miller also showed that the overall weighting should be 1/(N;NyNs ... N,,), rather than the
size of the rating scale to the power of the number of events as Scurfield (1996) suggested.
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6.2 Multiple—event analysis of multiple-signal-level tasks

Scurfield’s generalised ROC analysis is relevant to the experiments from Chapter 3, which
used a multiple-signal-level task (Tucker et al., 1967). This is because the N event and five SN
events may be viewed as the six events in a single-interval, six—event, unidimensional, forced-
choice experiment. In each experimental session, all six signal levels were interleaved in random
order, but the ROC analysis considered only the pairing of each SN event with the N event.? Re-
sults from a six—event analysis, however, should be interpreted cautiously, because the observers
were not told to treat the experiment as a six—event task. They were all aware, however, that
six events were presented within a session, and that the analysis would be two-event. A similar
degree of caution should also be used in evaluating the results of the two-event analyses. There
is, however, some precedent for two—-event analysis of a multiple-signal-level experiment.

Although the observers were not explicitly asked to make ratings about the ordering of the
events, their ratings may be still be analysed as if they were participating in a multiple—event
experiment. This is because the observer only had access to the evidence, rather than the events,
therefore, the ratings about the evidence are being ordered on the rating scale, rather than the
events. In making ratings, the observer maps the (expected) range of the evidence onto the entire
range of the rating scale.

Therefore, it is suggested that it is appropriate to analyse the current experiment as a Six—
event task. If there is a problem, then the six-event analysis would presumably return results
inconsistent with the findings from the other analyses. Regardless of whether the analysis is
totally appropriate for the current experiment, the testing and evaluation of Scurfield’s analysis
is important, because it is new and untried in human psychophysical experiments.

6.3 Multiple—event analysis of experiments and simulations

In the context of this experiment, Dg may be used for global comparisons between the simu-
lations and the human performances. This is in contrast to the previous chapter where the focus
was on how observers order individual stimuli. There are some problems with using Dg for this
type of experiment:

e Each signal level is being treated like a separate discrete event when they are points from
a continuous event set (that is, signal-to—-noise ratio is a continuous quantity). Therefore,
unlike psychometric functions and attenuation analysis, results from different conditions
cannot be compared if the signal-to—noise ratios are different. In the current experiment,
relative comparisons can still be made amongst experimental levels, because the signal-to—
noise ratios are the same within an experimental level.

e Dg has not been derived for the theoretical energy, full-linear, or envelope detector (ideal
or non-ideal), so there is no baseline for comparison. It is possible though, in this case, to

2Traditionally, stimuli from one SN event and one N event would be presented in random order, but if the aim is to
test multiple SN events, then this requires the unnecessary presentation of as many N events as SN events. The current
method is more efficient. There are some other practical benefits for running a multiple-signal-level experiment with
interleaved events, rather than separate sessions of each level. In the latter case, each session would require the observer
to recalibrate their use of the rating scale, so that the entire scale was used. On some sessions, this would require rating
very small signals at the extreme, and on others very large signals at the the same extreme, possibly leading to confusion
and an increase in observer inconsistency. It is probably better, therefore, to mix the levels within a session, so that the
overall expected range of sound pressure level is the same over all sessions.
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estimate Dy using computer simulation. Given that there were differences shown between
the ideal energy detector theory and the simulated observers (in Chapter 4), it is likely that
the theoretical multi-event observer, based on the same distributions of energy, would not
be appropriate for the current type of signals anyway.

Each empirical Dg was calculated from the GOC hit rates and false-alarm rates, using the pro-
gram DeLEN (Miller, 1998a). Each D¢ for the ideal full-linear detector simulations was calculated
with the same algorithm by sorting the evidence output of the simulation, and calculating hit
rates and false—alarm rates.

Asymptotic Dg were also estimated using FORCE analysis. The method was the same as
described in Chapter 2, with average D¢ being calculated for each combination of replications
added, a FORA being fitted, then the asymptotic value estimated. The program FORCED (Miller,
1998b) was used for this analysis. Miller (1998b) used Drga’s FORCE analysis algorithm (Drga,
19974, 1999), but it was implemented using efficient dynamic programming methods, and incor-
porated the program DELEN.

The results of the FORCE analyses are presented at the end of Appendix E. Tables E.19
and E.20 show the FORCE results, including the parameters k, m, and D ; used to fit the FORA,
the asymptotic measure of detectability, and the correlation. Figures E.13-E.18 show the empir-
ical and fitted FORA with asymptotic values. The figures are scaled over the entire range of Dg
and the error bars are +1 standard deviation. Finally, Figure E.19 shows the FORCE results in
log-increment coordinates.

Only two conditions did not sensibly converge: {400ms, 5Hz} and {400ms, 10Hz} for Ob-
server 1. These experimental levels converged to impossible values. The other long duration-
narrow bandwidth levels, {400ms, 2.5Hz}, {200ms, 10Hz} and {200ms, 20Hz} also indicated
problems, because the empirical FORA was still far from the asymptotic estimate for Observer 1.
This indicates there is still a lot of unique noise in the data. Figure E.19 also highlights the problem
with these conditions: the slopes of the fitted and empirical FORA in log-increment coordinates
is more shallow compared to the other levels, indicating the rate of convergence is slower. All the
other levels have very similar slopes. All experimental levels converged for Observer 2.

Figure 6.1 shows graphs of D§ as a function of experimental level for each experimental con-
dition. There are two z—axes showing bandwidth and duration respectively. The data are (a) D§
for each human observer after GOC analysis, (b) asymptotic Dg for each observer after FORCE
analysis, and (c) Dg for the ideal full-linear detector simulation.

As with the previous FORCE analyses in Chapter 3, the FORCE results follow those of the
GOC results but with a larger measure of discriminability. The exception is for the long duration-
narrow bandwidth levels of Observer 1 mentioned above, which tended to indicate that asymp-
totic performance would be better than expected given the difference between FORCE and GOC
results in the other levels.

The ideal full-linear detector performs at approximately the same level across experimental
levels within an experimental condition. The average is 2.651955 bits for W7 =1, 3.620842 bits for
WT =2, and 3.87244 bits for W7 =4 where the maximum (perfect performance) is

Demax)y = log(6!)/log(2) ~ 9.5 bits. (6.5)

In all cases, the ideal full-linear detector discriminates better than the human observers after GOC
analysis but the degree of difference varies with condition and level. The FORCE analyses indi-
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Figure 6.1: Relative discriminability D5, after GOC and FORCE analyses, for Observer 1 and Observer 2
compared with the ideal full-linear detector simulation.
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cate, however, that in some experimental levels, the human observers are capable of performing
the task as well as the simulated full-linear detector if all unique noise is removed.

According to Scurfield (1996), the relative discriminability is a measure of the ordering of
the events relative to perfect discrimination. If the ideal full-linear detector simulation data are
viewed as approximations or estimations of ideal performance, for these signals, then the relative
discriminability of the signals is 28% for W7 =1, 38% for WT =2, and 41% for YWT =4. In compar-
ison, the relative discriminability of the ordering of these events for the energy detector is 28% for
WT =1, 35% for WT =2, and 36% for WT =4.

Discriminability may also be calculated relative to another observer. For instance, the relative
discriminability of the event orderings for the energy detector, compared with the full-linear
detector, are 98.6% for W7 =1, 91.2% for W7 =2, and 89.3% for W7 =4, indicating again that the
full-linear detector is a better detector.

Figure 6.2 shows graphs of relative detectability for each observer relative to the ideal full-
linear simulation using the same stimuli. This way of presenting the data highlights how D,, may
be used to make relative comparisons. Comparing the difference between the graphs of Dy ver-
sus those of the proportion of Dg relative to the ideal full-linear detector shows roughly the same
pattern within an experimental level. The proportion measure, however, accentuates the differ-
ences among each level and is possibly more useful. The scale of the other graphs compresses the
differences due to the scaling being over the entire range of possible performance.

For WT =1, the human observers after GOC analysis tend to do best at levels {50ms, 20Hz}
through {12.5ms, 80Hz}, where they perform at least 80% as well as the ideal full-linear detector
simulation with a maximum of just over 90% for Observer 2 in level {25ms, 40Hz}. For the
narrower bandwidths, performance drops off with the full-linear detector discriminating over
twice as well as Observer 1 in level {400ms, 2.5Hz}. In the condition W7 =2, Observer 2 nearly
reaches ideal performance in level {50ms, 40Hz}. His performance is over 80% in each level
except for the two extremes. Observer 1, on the other hand, has a more peaked function (at
{50ms, 40Hz}) with performance dropping either side especially for the narrower bandwidths.
For the condition WT =4, Observer 1 function slightly peaks at {50ms, 80Hz} whereas Observer 2
peaks at {100ms, 40Hz}.

After FORCE analysis, the relative discriminability of the humans to the full-linear detector
reaches 100+5% for the best conditions. The fact that the human observers reach over 100%
is probably just due to sampling variability, or possibly the FORCE analysis overestimated the
asymptotic value.

Comparing Observer 1 and Observer 2 indicates that Observer 1 does not discriminate among
the event orderings as well as Observer 2 except for the short duration—wideband signals (es-
pecially {25ms, 160Hz}). The degree of improvement is greater for Observer 1 compared with
Observer 2 but this may be because her performance was more noise-degraded. Her asymptotic
performance is, in many cases, higher than Observer 2 but because only six replications were
completed it may be that the FORCE analysis is biased (Drga, 1998; personal communication).

6.3.1 Comparison of Dg with psychometric functions

The psychometric function is a powerful descriptor of an observer’s performance regardless
of whether there is a theoretical function to use as comparison. This is because it directly relates
performance to changes in the independent variable. But there are problems with psychometric
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functions: (a) it can be hard to assess the degree of difference between data and theory if the data
are not simply linearly attenuated from the theory, (b) the N event contributes to all points thereby
increasing its contribution to the analysis over the other events, and (c) it is difficult to compare
performance across different tasks.

In the current analysis, one of the more noticeable differences between analysis with psycho-
metric functions and that of Dg, is that there is little difference between D¢ for the W7 =2 and
WT =4 events—only about 0.25 bits, whereas the YW7T =1 events were less discriminable by about
1 bit. In comparison the W7 =4 psychometric functions shows greater detectability than W7 =2.
The difference is that with Dg, the measure is discriminability among all events, not just the N
event relative to each SN event.

It is possible that Dg is related to the slope, or shape, of the psychometric function—as W7T
increases so does the slope of the function such that each function looks similar once W7T > 4.
If this is the case then the set of five signal-to—noise ratios, which result in the same A on their
psychometric function, will result in the same Dg. Consider again, the hypothetical psychometric
functions in Figure 3.1. The experimental signal-to—noise ratios are spread further on W7 =2,
and 4 compared with W7 =1. This would imply that the events may be more discriminable.

The only other appropriate measure we have that summarises across all signal levels is the
attenuation from the psychometric function. The pros of attenuation analysis are that it is with
respect to a particular theory, returns a number with a useful unit (dB), and specifically deals with
the continuous nature of signal-to—noise ratio even though we only have six levels. The con is
that it is with respect to a particular theory! If we’re unsure of the theory, for whatever reason,
then interpreting the attenuation factor is difficult and may be misleading.

Dg on the other hand is independent of any theory or ideal observer, summarises performance
across all signal levels, and allows for relative comparisons within an experimental level. If Dg is
also calculated on an appropriate theory (mathematical or computational) then further compar-
isons may be made.

Attenuation analysis across signal level biases the results by the N event, because the false—
alarm rate is used in the calculation of each A. D¢, on the other hand, treats each event equally so
the global measure of detectability is weighted evenly over event.

Comparing the empirical attenuation functions (in Figure 3.16) with the empirical Dg graphs
(in Figure 6.2) indicates that the shape of the function relating D to bandwidth or duration is
very similar to the attenuation function within an experimental level (except of course that the
attenuation gets smaller as performance improves whereas D¢ gets larger).

Both analyses show that humans can act analogously to an ideal full-linear detector if W7 =2
or W7 =4 and the bandwidth is about 40-80 Hz. But D4 can do this without having to appeal
to a specific theory about how signal-to—noise ratio should be measured or how the measure of
detectability relates to the signal-to—noise ratio.

It is illustrative to consider the limitations of using a two—event measure of detectability, such
as A, in summarising overall discriminability in the current experiment. With A there is (a) no
method of combining information across all signal levels, (b) no easy way of enumerating how
performance differs within and among observers, and (c) differences in attenuation cannot be
measured without a specific theory.

For example, Observer 1 obtained As of 0.52, 0.56, 0.68, 0.79, and 0.89 in level {400ms, 2.5Hz}
after GOC analysis. The ideal full-linear detector obtained As of 0.64, 0.77, 0.88, 0.94, and 0.97.
The ideal full-linear detector did better—that is obvious. But the numerical difference of A does
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not mean anything, nor can relative comparisons be made, because A is not a metric (there is no
zero). Comparisons can be made, however, to the fitted ideal polynomial psychometric function,
and the average attenuation measured. The best—correlated full-linear detector was attenuated
from the fitted model by 0.15 dB, but the data points fell close to the attenuated psychometric
function. Observer 1’s data were attenuated by 8.1 dB. Thus, Observer 1 would need the signal-
to—noise ratios increased by about 8 dB to perform as well as the ideal full-linear detector. But
Observer 1's data points do not fall on the attenuated psychometric function (as can be seen in
Figure F.2(a); some points are above and others below the curve) so average attenuation is not
an appropriate descriptor of performance. In comparison, the corresponding Dg measures are
1.26 bits for Observer 1 and 2.63 bits for the ideal full-linear detector. Thus, the ideal full-linear
detector can discriminate among the event orderings twice as well as Observer 1.

The limitations of Dg in the current analysis reflect ignorance about how Dg relates to the
underlying evidence distributions for the task of noise—in—noise discrimination. Scurfield (1995,
1996) shows how the theory could be derived, but the math is forbidding.

6.3.2 Detectability as a function of Wand T

As with the attenuation analysis, plotting each Dg as a function of bandwidth or duration
may indicate how the human observers deal with these parameters as WW7 changes. Figure 6.3
shows, for each observer, the proportion of Dg for each experimental level relative to the full-
linear detector simulation, but plotted either as a function of signal duration (left hand side) or
signal bandwidth (right hand side). The GOC data are used, because there are valid points for all
experimental levels.

It is fair to say that performance is dependent on both the bandwidth and duration of the
signals but the importance of each parameter is not necessarily the same. It appears that perfor-
mance for Observer 1 is best described by duration; that is the hearing system is adjusting how
it detects signals by using the duration of the signal more than the bandwidth. For Observer 2
the opposite is indicated, that the hearing system is using frequency information more so than
duration.

A different way of viewing the same data is by plotting a three dimensional surface of de-
tectability with W and 7 forming the two independent variable axes and some measure of de-
tectability forming the third. In Figure 6.4 the proportion of Dg relative to the ideal full-linear
detector simulation was used, because ideal detection would give a flat surface. The four figures
show contours for each observer after GOC and FORCE analysis. Attenuation could also be used,
but gives saddle-shaped surfaces that do not show the different regions of equal detectability
as clearly. The figures show the contour map of human performance relative to the simulation.
High-order cubic spline approximations were used to fit the contours, using GNUPLOT (Williams
& Kelley, 1997). Linear interpolation gave similar results but tended to overemphasise the discrete
grid of values tested.

It should be noted that because only three W7 values were tested, the contours are restricted
to a narrow diagonal band. Thus, the contours are artificially bounded, especially to the top
right of the diagram where W7 would normally increases without bound. The bottom left is a
more accurate depiction because the uncertainty principle limits how small W7 can get—for real
signals it is difficult to generate W7 < 1. Obviously more data need to be collected for larger WT
to help map out this surface.
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Figure 6.3: Proportion of Dg, relative to the ideal full-linear detector simulation, after GOC analyses, for
each observer and each condition, plotted as a function of signal duration (a) and (c) or signal
bandwidth (b) and (d).

6.3.3 The rbole of WT

This new method of analysis gives insight into the question of how WT affects detectabil-
ity. The contour maps in Figure 6.4 show relatively similar contours for both GOC and FORCE
analyses. Because the data are so sparse the contours must only be viewed as indicative. They
suggest that for the types of signals tested, that the human hearing system is designed to best
detect signals of durations concentrated within 25-50 ms, bandwidths concentrated between 40-
80 Hz, and WT =~ 2. Detectability drops off around this area in what appears to be elongated
concentric rings, relative to the simulated ideal full-linear detector. This indicates that the detec-
tion bandwidth, and the temporal integrator’s time constant and sampler, are neither fixed nor
ideally flexible. If these parameters were fixed then the rings would not be as elongated; if they
were ideally flexible then there would be ridges running along equal W7 coordinates rather than
rings. It would seem that the human hearing system is ideally suited to detect a particular band-
width and duration, but, within a small range, can trade bandwidth for duration for the price of
a drop in detectability.

Scurfield’s (1995, 1996) multiple—event ROC analysis and associated measure of discriminabil-
ity gives another way of viewing performance that complements psychometric function and at-
tenuation analysis. Dg does not really help in determining whether a theory is appropriate or not
but does help in enumerating how well observers are performing at a task as well as allowing rel-
ative comparisons among experimental levels and among observers (human and computational).
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Chapter 7

Discussion

“.. . luckily Owl kept his head and told us that the Opposite to an
Introduction, my dear Pooh, was a Contradiction; and, as he is very
good at long words, | am sure that that’s what it is.”

A. A. Milne.

Chapter 1 showed that the models derived from TSD all incorporate the bandwidth-duration
product WT as a fundamental parameter. Detectability of a waveform is, therefore, dependent on
the product, but not on the individual values of W and 7. This result is inconsistent with human
experience and the human data in the literature. The data reported in the literature, however,
are also ambiguous and contradictory. There is some evidence that human hearing processes are
fixed, and other evidence that they are flexible. Also, the mathematical models, which are used to
compare and model human hearing, have unrealistic assumptions, flaws, and simplifications.

A crucial problem with psychophysical experiments on human hearing is the level of observer
inconsistency. This error can change the apparent form of the underlying evidence distributions,
which can lead to inappropriate conclusions. Chapter 2 discussed the problem of observer in-
consistency and stated that this variability could be partitioned into unique and common noise.
Two related methods of removing the effects of unique noise, GOC and FORCE analysis, were de-
scribed, as were methods of estimating the amount of sampling variability in the common noise.

Chapter 3 described the experimental method and results. Briefly, two observers participated
in an experiment where W, T, and W7 were systematically varied. The experiment was repli-
cated six times to allow for mROC, GOC, and FORCE analyses. Results from these analyses were
compared with the attenuated x? energy detector models, and it was found that humans were
not optimally, or even consistently, matching YWT as predicted by the x> model. Data from a
third observer, for three replications of eight (out of eighteen) experimental levels, supported the
results from the other observers.

Chapter 4 focused on comparisons among computational simulations and mathematical mod-
els. There were differences found between the simulated and mathematical energy detector,
because the signals and simulation components did not have ideal (impossible) properties. In
comparing computer simulations (energy, full-linear, and envelope) it was found that the full-
linear detector did perform at a higher level than the energy detector for W7 > 1—at least for
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the types of signals used in the experiments. Because there was no mathematical theory for the
full-linear detector, polynomial psychometric functions were fitted to the full-linear simulation
data to be used as a data model. The human psychometric functions, with an attenuation factor,
were slightly better fitted by the full-linear model, but the degree of attenuation was not constant
across experimental level or condition.

The pattern of the attenuation of human performance from theory was partially explained,
in Chapter 5, after running multitudes of suboptimal energy, full-linear, and envelope detector
simulations, then correlating the simulation evidence with the sum-of-ratings from the human
experiments. Firstly, it was found that a linear rectifier (full or half-wave) described the human
data better than a square—law rectifier. By varying the filter bandwidths of simulated energy and
full-linear detectors, it was found that not only did the detection bandwidth not match the signal
bandwidth it was also not fixed. There was, however, a minimum value of around 40-50 Hz that
was only obtainable with long duration signals.

Compared to the energy detector, the simulated envelope detectors were found to be slightly
more correlated with human performance, when the time constant was very long, and the sam-
pling time was approximately at the end of the input waveform—or just past the peak of the
integrator. The full-linear detector, however, explained the data just as well as the envelope de-
tector, but with fewer parameters. Comparisons of the best—correlated full-linear detector with
human data and the fitted polynomial model showed striking similarities for many of the exper-
imental levels, indicating that humans can perform as well as an ideal observer, after reducing
unigue noise.

Chapter 6 described a multiple-event analysis, run on both the human data and simulated
full-linear detector using Scurfield’s information theory measure of discriminability: D,,. By
comparing the relative discriminability of the human performance to the simulated performance,
contour plots of discriminability were drawn for each observer. These plots showed that the
hearing system detected signals of around 40 Hz and 50 ms the best, and performance was atten-
uated around these values. Therefore, the hearing system appears to be trading bandwidth and
duration, but not entirely succeeding.

It could be argued, however, that the differences in the attenuation functions were due to
differences in unique noise. That is, the observers were able to trade YW and 7, but were more
noisy in some levels, than others. Ignoring the rogue levels, FORCE analysis indicated that the
differences within the attenuation functions were not due to more unique noise in some levels
than others, because the analysis estimated performance without unique noise. It showed that
the change in attenuation of the attenuation functions, after FORCE analysis, was relatively con-
stant within a condition. Therefore, the overall shape of the attenuation function was not greatly
changed.

7.1 Comparison with previous research

Comparing the current results with previous research, described in Chapter 1, shows support
for the findings that the human hearing system was flexible, but not optimal.
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Critical band estimates

Even if the auditory filter is flexible, the concept of the critical band still has meaning as the
minimum bandwidth the filter can adopt. The results from the correlation analysis in Chapter 5
indicated that the detection bandwidths, for the two observers, were asymptotically approaching
about 40-50 Hz (depending which bandwidth definition was used) as signal duration increased.

Patterson (1976) estimated the critical band (for a 500 Hz tone, with a 600 ms duration), to
be 69.2 Hz (TdB). This condition was most similar to {400ms, 2.5Hz}, where the estimated TdB
bandwidths were 55 Hz for Observer 1 and 49 Hz for Observer 2. These figures are very similar
given the different type of signal, different observers, and different method of estimation.

The critical band estimates, for the current observers, are close to the predictions of 77 Hz,
from the analytical formulae in Equations 1.8-1.10 by Moore and Glasberg (1983, 1987) and Moore
etal. (1990). Zwicker and Terhardt’s (1980) analytical formula for critical bandwidth, on the other
hand, predicted 117 Hz (from Equation 1.7).

The current estimates are also roughly consistent with the smaller estimates of the critical
bandwidth from Swets et al. (1962) and Kollmeier and Holube (1992).

Evidence for an adjustable auditory filter

The results from the correlation analysis in Chapter 5 indicated that the detection bandwidths
for the two observers varied, depending on the bandwidth, duration, and WT of the signal. It
appeared as if the hearing system was attempting to match the bandwidth of the signal, but
tended to overestimate the optimal size. This is consistent with the research of Hamilton (1957),
Majernik et al. (1978), Northern (1967) and van den Brink (1964), because they also found wider
bandwidth estimates for short duration signals.

de Boer (1966) suggested that for wide—-band signals that the critical band is ‘turned-off’ and
that for short duration signals that the integrator is switched off too. Similarly, Scharf (1970)
suggested that for short duration signals, detectability was independent of bandwidth, implying
there was no filtering. The current data indicate that for wide—band signals, the detection band-
width widens considerably, but it is still more highly correlated with a filtered waveform than
with no filter at all.

Schacknow and Raab (1976) extended Green’s (1960a) noise—in—noise theory to account for the
case where the critical band was wider than the signal bandwidth, but only for large WT, thus
the current results cannot be analysed with Schacknow and Raab’s (1976) model. They did not
have enough data points to allow for accurate estimation of the width of the critical band, but it
appeared to be wider than other estimates. For a constant duration of 100 ms, and various wide
bandwidths, the critical band was estimated to be somewhere between 100 and 1000 Hz. This
is consistent with the very wide detection bandwidths found in the wide bandwidth conditions
(160 Hz) in the current experiment. It is inconsistent with the results from the 100 ms duration
levels, however, because those levels resulted in reasonably narrow detection bandwidth esti-
mates. This perhaps indicated that Schacknow and Raab’s (1976) observers were influenced more
by bandwidth, than by duration, when detecting the wide band signals.

Bernstein and Raab (1990) also found evidence that the critical band was not fixed, and that
it was often wider than the signal bandwidth. Their signal parameters were closest to {100ms,
10Hz}. This level, in the current experiment, resulted in detection bandwidth estimates of around
55 and 71 Hz (TdB). Bernstein and Raab (1990) estimates, however, were around 700 Hz. The
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centre frequency of the tone was 1000 Hz so direct comparison may not be justified.

Another similar condition from Bernstein and Raab (1990) was for WT = 5, where the band-
width was 50 Hz and the duration around 100 ms. The centre frequency was much higher, how-
ever, at 1500 Hz. Their detection bandwidth estimates were 314 and 659 Hz, which can be com-
pared to 63, 80, and 90 Hz (TdB) from the experimental level {100ms, 40Hz}. One possible reason,
aside from the differences between the signals, is that their estimates were inflated due to the pres-
ence of unique noise. It is difficult to make comparisons because as the current research shows,
different observers can have quite different detection bandwidths.

The results are also consistent with Wright and Dai (1994a, 1994b). They found that the de-
tection bandwidth varied, depending on when and where observers expected time and frequency
information. They also showed that different observers sometimes solved detection tasks differ-
ently.

Detection bandwidth versus the critical band

The current study was unable to distinguish whether observers were adjusting the bandwidth
of the auditory filter, or summing across critical bands (Spiegel, 1979), because both theories pre-
dict the same results for this type of experiment. The results were consistent, however, with the
concept of a detection bandwidth (Bernstein & Raab, 1990), or an attention bandwidth (Dai, 1991,
in Moore et al., 1996). These detection bandwidths may be the result of the observer combin-
ing information across critical bandwidths or adjusting the bandwidth for a filter at the centre
frequency. The term *“detection bandwidth” is preferable to “attention bandwidth”, because the
latter implies other cognitive processes.

Rectification

The simulations in Chapter 4 showed that a linear rectifier outputs a higher signal-to-noise
ratio than a square—law rectifier, for the values of W7 tested. The simulations in Chapter 5 clearly
indicated that the human observers were also behaving as if they were using a linear, rather than
a square—law, rectifier. These results are consistent with Gilkey (1981) and Gilkey and Robinson
(1986), and with the physiological studies reported by Jeffress (1964) and Laming (1986).

Pfafflin and Mathews (1962) thought that any differences due to the rectifier would be too
small to be shown experimentally. What the current study has shown is if unique noise is re-
moved, and WT > 1, then the full-linear detector fits the human psychometric functions better
than the square-law detector.

Integration time and time constant

The correlation analysis (Chapter 5) results showed higher correlations between human rat-
ings and simulated observers, when a true integrator, or a leaky integrator with a very long time
constant, was used. This is consistent with the findings of Makita and Miyatani (1950) and Hen-
ning and Psotka (1969), but not consistent with studies supporting leaky integration with a short
time constant (Jeffress, 1967, 1968; Robinson & Pollack, 1973; Robinson, 1974; Ronken, 1973).

Although the observers’ performance was attenuated for long durations, the correlation anal-
ysis did not indicate that the hearing system was integrating over too short a time, or with too
short a time constant. In most cases, the correlations with the leaky integrator simulations showed
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increasing correlations as the time constant increased for all experimental levels, and the best—
correlated sampling time coincided with approximately the end of the waveform. This point co-
incided with either the (nearly) saturated value of the true integrator, or just past the peak output
of a leaky integrator.

Previous researchers have found performance was attenuated when using very long stimuli
(Green et al., 1957). It was difficult to tell, however, whether this drop was caused by observer
fatigue, or an inability to maintain integration. The indications are that observers can integrate for
very long times, but that unique noise may also increase, because it is more difficult to concentrate
on the task.

The current results are somewhat consistent with Gerken et al. (1990), who found evidence
against the exponential temporal integrator. They also suggested that there is quite possibly cog-
nitive control over temporal integration, and thus methodology may interact with detectability.
The results are also consistent with the ‘multi-look’ model of Viemeister and Wakefield (1991),
but like Dai and Wright (1995), it is difficult to distinguish among different models, because they
all predict similar outcomes for the type of experiment used in the current study.

Sampling strategies

The results from the correlation analysis (Chapter 5) suggested that humans sampled the
output of the integrator at a particular time, rather than sampling the peak output. The best-
correlated sampling time tended to coincide with a time just past the average peak output of a
leaky integrator, or a time just before the true integrator was saturated. For the types of signals
used in the current study, this time also coincided with approximately the end of the absolute du-
ration of the original signal. This finding is consistent with Gilkey (1981) and Gilkey and Robinson
(1986).

Nichols and Jeffress (1966) also found that peak detection did not describe human perfor-
mance. Instead they found average voltage a better predictor. Gaston and Jeffress (1974), on the
other hand, found that the peak envelope detector was the best predictor of human performance
for long duration signals. They used only one decay time (50 ms), however, for their envelope de-
tector. The correlation analysis indicated that that humans do not use such a short time constant,
and the performance is much better described by time constants an order of magnitude larger.
The difference between peak and ATT sampling is then minimal.

In the current study, the Kaiser window was used, which forced the peak to occur in the mid-
dle of the waveform, on average. This process possibly changes the statistics of peak detection.
Because the mathematics of peak detection are difficult, simulations were used instead. They
showed that for W7 > 1, the peak-envelope detector behaved similarly to the energy detector,
rather than the full-linear or envelope (with ATT sampling) detectors.

Attenuation from theory

Asymptotic performance was predicted, using GOC and FORCE analysis, then compared to
ideal performance. One comparison was to measure the attenuation of the human psychometric
functions from the ideal functions (both mathematical and simulated). This analysis showed that
GOC and FORCE analyses reduced attenuation. In some levels, the attenuation was so small as
to be essentially due to sampling variability; in some cases it was slightly negative.
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Comparing the WT =1 data to Ronken (1969), the current mROC attenuation for the compara-
ble condition is 6 dB, which is better than Ronken’s result by about 1.5 dB. After FORCE analysis,
the attenuation is about 2.8 dB from the theoretical. It is difficult to compare the shapes of the psy-
chometric function because Ronken chose to present his data as functions of decibel increments.

Hautus and Irwin (1992) replicated and compared Ronken (1969) and Whitmore et al. (1968)
and found the attenuation to be around 4 dB from the theoretical, and that the attenuation was
about the same for each experiment, within an observer. The reason Ronken and Whitmore et al.
found a difference may, therefore, have been due to individual differences in the observers. As
was seen in the correlation analysis in Chapter 5, there could be large differences in the estimated
critical band—particularly for short duration signals. It should be noted that Whitmore et al. used
very short duration signals (10 ms) and Ronken used reasonably long duration signals (100 ms). It
may have been the case that the short duration signals resulted in an extremely wide bandwidth
that would have passed more noise and therefore increased attenuation. For Ronken’s longer
duration signals, the observers may have found it easier to more closely match the bandwidth.
Finally it should be noted that Whitmore et al.’s study used the same observer as in the present
study (Observer 3). This observer’s detection bandwidth has been shown here, and in a number
of other experiments, to be particularly wide and rather variable over replications.

Simulated detectors best correlated with human observers

Ahumada found that correlations for SN signals were higher for narrower filters than the
correlations for N signals (Ahumada, 1967; Ahumada & Lovell, 1969, 1971; Ahumada et al., 1975).
Ahumada interpreted this as suggesting that the observers monitored the output of a filter-bank.
In 8N trials, the signal would always occur in one filter, therefore, the correlations would match
a narrow filter. In N trials, the energy in the signal could be distributed over a wider bandwidth;
therefore, the best correlations would be for a filter covering the width of the filter bank.

The correlations, with respect to filter width, in the current study indicated a similar phe-
nomenon, and were not inconsistent with a filter bank model. The number of filter widths tested,
however, were greater than Ahumada, and indicated than the largest SN signals showed sim-
ilar correlations for a wide range of filter bandwidths. As signal-to—noise ratio decreased, the
correlation-bandwidth function tended to converge to a function with a single peak.

The process of making ratings, or decisions, about the existence of a signal masked by noise
can be seen as a sorting or ordering exercise. The correlation analysis measures the extent to which
two observers sort the stimuli into the same order. If the observers sort the stimuli into exactly
the same order, then it is impossible to tell the difference between them, because the same ROC
curves will result.

The 8N signals, with large signal-to—noise ratios, result in very similar correlations across a
wide range of filter bandwidths because filtering does not change the order in which they are
sorted. The signals are so big, compared to the noise, that even if the filter is much wider than
the signal, relatively little noise is passed, therefore, the sorting order is not greatly affected. As
signal-to—-noise ratio decreases, the more the wide-band random noise affects the effective signal-
to-noise ratio, as the filter bandwidth is varied. The result is that large SN trials cannot be reliably
used to estimate the detection bandwidth. Instead, it is only the N trials that will show the de-
tection bandwidth. This does not rule out Ahumada'’s filter bank theory, but merely shows that it
cannot be assessed with this particular method. Ahumada has based his theory on data that can
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be explained a simpler way, that is, a fixed bandwidth model.

The findings from the correlation analysis in Chapter 5 are similar to that of Gilkey (1981) and
Gilkey and Robinson (1986) even though they studied tone—in-noise detection. Firstly, he found
that half-wave rectification resulted in higher correlations with the human data than square-law
rectification. Gilkey found two detectors that gave better results for some observers than any of
the other standard detectors. The full-linear detector is similar to Gilkey’s best detector, which
computed the average value of the integrator output (the time constant of the integrator was very
short making the output essentially the same as the rectifier) over the signal duration of the half-
wave rectified waveform. The difference is that the full-linear detector summed the integrator
output of a full-wave rectifier, whereas Gilkey essentially implements a true integrator by using
an averager as a sampling strategy, thereby making the two models virtually identical.

Evidence for matching bandwidth and duration

The results showed that, in general, the human observers did not match the signal parameters.
The exception was for Observer 2, who crossed the equal bandwidth lines in Figure 5.5. One level
fell on this line, {100ms, 40Hz}, and levels {25ms, 80Hz} and {25ms, 160Hz} were very close.
This implies there are particular combinations of W and 7T that could result in ideal detection by
humans, once unique noise was removed. Observer 1 also neared the equal bandwidth line for
level {25ms, 160Hz}.

It is difficult to compare the current results with Green (1960a), because his signals were all
for larger W7 noises. He showed that the human hearing system appeared to be able to match
bandwidth and duration, and perform consistently with his energy detection model, except for
an attenuation factor. Most of this attenuation was removed in the current study, through GOC
and FORCE analyses, showing that humans were better modelled by a full-linear detector.

Green’s (1960a) finding was typical of most human experiments: human performance never
matched that of the ideal observer, because data were always degraded by unique noise. This
has caused many to question the usefulness of the concept of the ideal observer. The justifica-
tion given in defence was that an ideal observer gave the limits of detectability, and served as a
baseline for comparison. The finding that, under some circumstances, observers can match the
parameters of the stimuli, is interesting, because it suggests that the concept of the ideal observer
is not just good as a baseline, but is also useful as a model of actual human hearing.

Bandwidth—-duration reciprocity

The energy and envelope detectors of Green (1960a), Green and McGill (1970), Jeffress (1968),
McGill (1967, 1968b), McGill and Teich (1991) and Whitmore (1969) all predict bandwidth—duration
reciprocity. The results of the correlation analysis, and the multiple-event analysis, indicate that
human observers do not show ideal reciprocity. Instead, the contour plots in Chapter 6 suggest
there are regions of equal detectability, indicating reciprocity, but it is attenuated relative to the
simulated full-linear detector. Both bandwidth and duration information is used, but the two
observers solved the trade—off differently, perhaps with different weightings for the information
in each domain. It seems the hearing system tries to trade bandwidth and duration, to optimise
detection, but does not, in general, succeed. Performance falls between a detector with fixed
parameters and a detector that matches parameters.

Michaels (1961) found that detectability decreased with decreasing duration for W7 =1 and 4
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whereas the current results showed the opposite effect. It was not clear in Michael’s experiment,
however, that the signals had the desired parameters, and observer inconsistency was also high.

The data reported by Creelman (1961) give some support for the current results for the con-
dition W7 =1 and W7 =2, because he too found that performance dropped at longer durations.
Performance also decreased with increasing W7 that may or may not be paradoxical depending
on whether his signals can be considered more like tones, or more like noise.

Unlike Whitmore (1969), the shape of the psychometric functions did change with varying
duration and fixed bandwidth. The condition of W7 =1/2 was not tested but W7 =1 and 2 were
in the current experiment. Whitmore (1998, personal communication) said that no frequency
domain analysis was done to test that the signal generation method produced signals with the
required parameters. It was assumed that the bandwidth was the same for each condition, and
that the duration did not change after filtering. Simulations reported in Chapter 1 indicated that
Whitmore probably could not have generated signals with the stated, nominal bandwidths and
durations.

Unlike the current study, which showed sub-optimal bandwidth—duration reciprocity, Raab
and Goldberg (1975) found no bandwidth-duration reciprocity for the conditions they studied
(although only two conditions allowed this comparison). Raab and Goldberg (1975) also found
that bandwidth and duration were not treated symmetrically by the auditory system, with results
being largely independent of bandwidth, but dependent on duration.

Hanna (1984) found that performance increased as duration increased up to 25 ms and that
increasing bandwidth increased performance to a lesser extent. It is hard to compare his results,
however, because there were problems with his definitions of bandwidth and duration.

van den Brink and Houtgast (1990) showed in their first experiment that as bandwidth or du-
ration increased, detectability decreased. Their signals were quite different to the current signals,
they used a different experimental procedure, and they tested at a higher frequency, but their
results are roughly similar to the current findings. The exception is for their second experiment,
where they showed increasing thresholds for short-duration, wide-band, signals, whereas the
attenuation functions in Appendix F show the biggest attenuations for long-duration, narrow-—
band signals.

van den Brink and Houtgast (1990) tested shorter durations, and wider bandwidths, than the
current study. Their results indicated that for wide band signals, the critical masking interval
equated to about 80 ms. Converting their estimates of maximum efficiency to the 500 Hz region
of the current experiment implied that the optimum bandwidth should be 9 Hz, and the optimum
duration to be about 80 ms. The product is approximately YW7 =1 and is similar to the condition
{100ms, 10Hz}. This condition does not produce optimum detectability for WT =1, nor is WT =1
better than larger WT.

Formby et al. (1994) conducted a study of WT, similar to the current experiment, but at a
higher test frequency (2500 Hz). Their study was flawed, however, because they did not provide
important details, such as how they defined bandwidth, or WT. It is likely that they measured
bandwidth prior to gating. Their results were partly inconsistent with the current results. They
found that performance was attenuated as duration increased, but they also found that perfor-
mance was attenuated as bandwidth increased. In comparison, the current study indicated that
observers were able to accommodate a widening bandwidth, albeit sub-optimally. The difference
between the two studies probably hinges on how bandwidth was defined and measured.
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7.2 Analysis of the new analyses

This project involved a number of analyses, including some new ones. GOC analysis, FORCE
analysis, attenuation analysis, Bester correlation method analysis, and multiple—-event analysis all
provided different ways of viewing the data, but also, they all had limitations.

GOC analysis

GOC analysis proved its worth by removing unique noise to reveal the shape of the error-
reduced experimental psychometric functions and ROC curves.

The mROC curves in Appendix D show a similar phenomenon to Whitmore et al. (1968),
where they look less asymmetrical than would be expected from the x? energy detector model.
The psychometric functions, however, are better fitted by the model—also like Whitmore et al.
(1968). After GOC analysis, however, the GOC curves are more asymmetrical than the mROC
curves, and are better fitted by the theory. The difference in the psychometric functions, however,
is mainly a linear attenuation, rather than a change in the shape of the function.

The improvement in average attenuation from mROC to GOC analysis (see Tables F.1-F.6)
ranged from 1.8-3 dB, after six replications, with slightly more improvement at longer durations.
This should not be seen as a general prediction, because the improvement is dependent on the
level of unique noise.

FORCE analysis

FORCE analysis provided estimations of asymptotic performance, for both the usual two—
event measures of detectability and the new multiple-event measure D,, for six events. When
FORCE analysis converged quickly, it provided reasonable estimates of asymptotic performance.
In some experimental levels, however, there was still too much unique noise in the data for sensi-
ble estimates to emerge.

The problem of the signal levels being too low in some experimental levels was considered
before the experiments were run. At the time, it was considered more important to have the same
signal-to—noise ratios for each level, in each condition, so direct comparisons could be made. It
would have also been presupposing the outcome to have run higher signal-to—noise ratios for
the levels in which the observers were doing badly. As a result, there appears to be more unique
noise for the long duration signals, making the six replication FORCE analysis less reliable. It is
unclear how many more replications would be needed to reduce the unique noise in these levels.

Another reason why the long duration conditions could be problematic is due to the common
noise. Drga (1998, personal communication) has suggested that long durations may result in an
observer using information from different parts of the waveform, on successive presentations of
the same stimulus. Therefore, there may be no common component across replications. This, of
course, would not only be a problem in the time domain; a wide bandwidth signal may produce
the same phenomenon in the frequency domain. There is little evidence, however, to suggest that
there was no common noise in these conditions.

FORCE analysis, in general, resulted in a 0.5-2 dB improvement over the GOC results, indicat-
ing that the GOC analysis had removed most of the unique noise even after only six replications.
The improvement was greater, however, for the lower signal-to—noise ratios, indicating that the
amount of unique noise is dependent on signal level. It may also be an artifact due to mea-
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surement error in the shallow regions of the psychometric functions. FORCE analysis showed,
however, that observers were able to perform ideally under some circumstances.

Bester correlation method analysis

The Bester correlation method analysis played an integral part in this study, because it helped
reveal the nature of the different processes making up human hearing. By carefully reducing the
possibility of confounding, the energy detector was shown to not be a good model of human
hearing, compared with the full-linear or envelope detector. This analysis also showed that some
observer inconsistency may come from a detection bandwidth that varies over time.

Multiple—event analysis

Multiple-event analysis was shown to provide a useful measure of overall performance, in-
dependent of any theory about the detectability of the signals. As noted, however, it does not
generalise to arbitrary signal-to—noise ratio in the same way as attenuation analysis. Therefore,
it is recommended that in this type of experiment, both analyses are used, because they make
complementary contributions.

The multiple-event measure of discriminability, D,,, for six events, was also shown to work
with FORCE analysis to give good estimates of asymptotic performance. The amount of number-
crunching involved with this particular analysis is impressive, because both procedures require
calculating large combinatorics. It took only a few minutes on a Dec Alpha (Personal Workstation,
333 MHz clock speed), however, to run the analysis on the entire data set.

7.3 Therole of WT

The human hearing system cannot be modelled as a constant W7 system. The results from
the experiments and simulations indicate that for a set of signals with the same WT, but different
bandwidths and durations, the human hearing system does not use a constant W7 to detect those
signals, even though such a strategy would be optimal. The hearing system cannot be modelled as
a fixed parameter system either, because (a) it appears to integrate over duration with apparently
little error, and (b) it is able to vary the detection bandwidth. Instead, the hearing system appears
to use both time and frequency information to fit the detection bandwidth to the signal. It does not
succeed, in general, in making an optimal match, and it is also limited to a minimum bandwidth
of around 40-50 Hz. The reason the hearing system does not match bandwidth and duration
exactly, even though it is flexible, maybe because it errs on the side of caution due to uncertainty
about the edges of the signal in time and frequency.

The evidence from the current experiments quite clearly indicates that the human hearing
system uses linear rectification. This finding eliminates the energy detector as a model for the
detectability of small YWT Gaussian noise in human hearing. It was impossible to tell, however,
which form of linear rectification was more appropriate (full-wave or half-wave), because both
forms of rectification led to essentially the same sorting of the stimuli.

WT was also shown to decrease as signal-to—noise ratio increased, for physical and computa-
tional signals with the same bandwidth and duration. The human data were also consistent with
this phenomenon. Any new mathematical model of detectability of small W7 signals must take
this into account.




7.4 Future directions 193

7.4 Future directions

On reflection, this experiment did not treat the time domain equally with the frequency do-
main. Either the gated masker should have been continuous—or at least longer than the signal
duration—or the maskers should have had the same bandwidth as the signals. If the signal was
embedded in a masker, which was wider in time and in frequency, then the uncertainty as to the
position of the signal would be equivalent in both domains. A better understanding of tempo-
ral integration may result by studying how the hearing system attempts to detect a non—existent
signal in a N trial.

Future experiments could include:

e extending the current parameters to larger WT,

e isolating the parameters that result in the best detectability to find out if the hearing system
is trading W and 7 ideally, but over a much smaller range than was considered, and

e mapping out WT space for other centre frequencies.
Additional simulations could include:

e implementing some of the recent, more complex, models of human hearing, such as those
suggested by Dau, Puschel, and Kohlrausch (1996a, 1996b) and Richards (1992),

e implementing more realistic filters, such as the gamma-chirp, gamma-tone, and roex (Irino
& Patterson, 1997; Patterson et al., 1982),

e extending the simulations to do correlation analysis in a similar direction to Ahumada et al.
(1975), but perhaps using more sophisticated analyses, such as wavelet decomposition or
instantaneous time—frequency analysis.

Further theoretical work could include:
e deriving the detection statistics for the full-linear detector,
¢ deriving energy, full-linear, and envelope detectors for multiple-events, and

e incorporating a YWT parameter that varies with signal-to—noise ratio.
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Appendix A

The problem of waveform
representation

The problem of waveform representation is the cause of most of the criticisms about ideal ob-
servers (Green & Swets, 1966; Tanner, 1960b). This appendix expands on some of these problems,
which were introduced in Section 1.1.3 of Chapter 1.

The acoustical uncertainty principle shows that a waveform cannot be both band and time—
limited. This is a problem because, paradoxically, most psychophysical tasks, using human or
animal observers, appear to involve detecting a transient waveform, with a limited bandwidth.
Conversely, many psychophysical theories make the assumption that the waveform is infinitely
long (or, less commonly, an infinite bandwidth). The theories that attempt to deal with the de-
tectability of transient waveforms, of limited bandwidth, generally require more sophisticated
mathematics, because they need to deal with the effects of the uncertainty principle on the wave-
form representation. The result is that waveform representation of essentially band and time-
limited waveforms merely approximates the original waveform of interest. This approximation
is not necessarily accurate as the bandwidth—-duration product nears the limit imposed by the
uncertainty principle. Because many psychophysical theories are interested in small W7 signals,
the accuracy of this representation becomes paramount.

Waveform representation with the Fourier Integral

If f(t) is the representation of a waveform in the time domain and F'(w) is the representation
of a waveform in the angular frequency domain, then the two are related via the Fourier integral
equation

1 o0

ft) = — F(w)e/*tdw (A1)
2 J_ o
and the inverse Fourier integral equation
Flw) = / f(t)e 3+t at, (A.2)

to form what is known as a Fourier pair. The Fourier integral analyses or decomposes a waveform
into a linear combination of weighted sinusoids (Franks, 1969; Papoulis, 1962; Vakman, 1968).

F(w) provides information about both amplitude and phase as a function of frequency. If
A(w) is the amplitude spectrum (or Fourier spectrum), and ¢(w) is the phase spectrum, then the
relationship is F(w) = A(w)el?@) . Another representation of the amplitude frequency domain
information is the energy spectrum, A?(w), which is the square of the Fourier spectrum. The con-
cept of energy here is a mathematical concept, and should not be confused with the energy in a
physical signal.
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An important result, which links the energy content in the two domains, is Parseval’s theorem

/ If())2dt = QL/ A% () dw (A.3)
s T J_ o
which shows that the energy of the waveform in the time domain is equal to the energy of the
waveform in the frequency domain.

Fourier analysis and acoustical uncertainty principles

It is impossible for a waveform to be limited in both time and frequency. If a waveform is
limited in time, then it must have an infinitely wide bandwidth, and conversely, if a waveform
has a finite bandwidth, then it must have an infinite duration. This result is known as the acoustical
uncertainty principle. There are many forms of the acoustical uncertainty principle because ¥V and
T can be defined in many ways. All acoustical uncertainty principles, however, specify a lower
bound to the bandwidth—duration product, WWT, indicating that a waveform cannot have finite
spread in both domains.

The acoustical uncertainty principle contradicts what seems to be a defining property of the
waveforms to which the human hearing system is sensitive: that waveforms are both band-
limited and time-limited. How can this contradiction be resolved? If a small amount of energy
is allowed to exist outside the bounds of bandwidth or duration then it is meaningful to refer to
band-limited and time-limited waveforms, because these waveforms have essentially all of their
energy between two well-defined bounds. The energy outside these bounds is so small as to be
virtually nonexistent. The problem is that the energy is there, and this makes defining the band-
width and duration arbitrary. As a result there are many definitions of YV or 7, depending on the
nature of the problem or the context, and there are also many different forms of the uncertainty
principle (see Bourret, 1958; Brillouin, 1962; de Bruijn, 1967; Cohen, 1989; Franks, 1969; Gabor,
1946; Hilberg & Rothe, 1971; Kay & Silverman, 1957, 1959; Lampard, 1956; Landau & Pollak,
1961, 1962; Leipnik, 1959; Slepian & Pollak, 1961; Weyl, 1931; Zakai, 1960).

The acoustical uncertainty principle was traditionally based on the analogous uncertainty
principle of quantum physics. This has lead to problems of interpretation when applied to acous-
tics. Landau, Pollak and Slepian have provided the best alternative approach to the classical
acoustical uncertainty principle. In a series of papers entitled “Prolate Spheroidal Wave Func-
tions, Fourier Analysis and Uncertainty” they have proposed new definitions of the concepts of
bandwidth and duration, and derived the corresponding uncertainty principle (Landau & Pollak,
1961, 1962; Slepian & Pollak, 1961). An excellent overview of this research is in Slepian (1983).

Landau and Pollak (1961) suggested that a good definition of W and 7 would describe the
behaviour of f(¢) in agiven finite time interval and likewise the behaviour of F'(w) in a given finite
frequency band. They argued that although waveforms cannot be bounded in both domains,
bounds that essentially constrain the waveforms can still be specified. One way to specify these
bounds is to look at the energy content and energy spread of a waveform in both the time and
frequency domains. Bandwidth and duration can be specified by calculating the proportion of
energy constrained between two bounds relative to the total energy of the waveform.

The essential bandwidth and duration, defined in Equations (1.3) and (1.4), are reproduced
here as Equations (A.4) and (A.5). The proportion of energy 32, constrained by the essential band-
width, Q, is defined as

J21AW) dw
2
T Al (A4
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Similarly, the proportion of energy, a?, constrained by the essential duration,® 7, is

T/
a? = M (A.5)

JEL PO dt

where o? and 3? range between 0 and 1, f(t) is an acoustic waveform, and A2(w) is its energy
spectrum.

Landau and Pollak (1961) derived an acoustical uncertainty principle from these definitions
of bandwidth and duration. They showed that if either o or 3? is specified, the other must re-
main below a certain maximum, which depended on the bandwidth—duration product 27 . This
acoustical uncertainty principle does not specify a single number as a lower bound, like in some
definitions, but a function of the energy constrained in each domain. From this uncertainty prin-
ciple, the waveform which best constrained energy in both domains was shown to be a prolate
spheroidal wave function. This function concentrates the most energy, in both domains, out of all
the finite energy functions. Its one parameter is proportional to the bandwidth-duration prod-
uct.?

It may be asked what is the minimum bandwidth—duration product for this new definition.
The answer is no longer quite as simple because it depends on what is considered to be a suitable
amount of energy to be left out of one, or the other, domain. This may be seen by some as a
failing of the new definition, but it is not, because (a) it shows that there is no such thing as a
truly time-limited and band-limited waveform, and (b) it highlights the arbitrary nature of the
definitions of bandwidth and duration. The classical approach avoids these issues by defining a
measure (variance) which does not explicitly indicate how well the waveform is bounded in one
domain or the other.

The dimensionality of waveforms

Shannon’s sampling theorem is the best known example of waveform representation using
a sampling space (Shannon, 1949a; Goldman, 1953). This theorem shows how a band-limited
signal may be represented by taking samples from the time series every 1/2)V seconds. These
samples are Fourier coefficients. The waveform is reconstructed by interpolating between the
samples with sinc functions. Due to Fourier symmetry, a similar result holds for time-limited
signals where samples are taken in the frequency domain every 1/27 Hz. The sampling theorem
assumes that sampling is done over infinite time or infinite frequency respectively. Practically,
this type of sampling can never be achieved, however, excellent approximations can be achieved
by taking 2WWT samples of the waveform. This approximation is good for large W7 and for
signals concentrated in both time and frequency.

This theorem has an intuitive appeal, but the formulation lacks mathematical rigour, especially
with respect to taking 2W7 samples. It is easier to understand why the sampling theorem works,
and why there are limitations, when it is seen as a special case of signal representation using a
sampling space. This representation uses the concept of approximate dimensionality of sampling
spaces and relies on a generalised view of frequency.

The set of all finite energy waveforms may be defined as the space, £2_, where all complex
valued waveforms, f(t), are defined on the real line and are absolute square integrable. Any
arbitrary real waveform, s(t), in £2_ space can be expanded into a generalised Fourier Series as a
complete system of orthogonal functions

s(t) = Y skpr(t) (A.6)
k=1

IKharkevich (1960) has also suggested this definition. He also states that the integral is a constant proportion of the total
energy. Kharkevich goes on to examine the resulting W7 = for a 90% proportion of energy constrained in both domains
for a variety of data windows. Additionally, Chalk (1950) uses a similar definition to derive the optimum pulse-shape for
pulse communication.

2For the proofs of the mathematical properties of prolate spheroidal wave functions see Landau and Pollak (1961,
1962), Papoulis (1962), Slepian and Pollak (1961).
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where the s;, are the Fourier coefficients. Because the basis functions, ¢y (t), are orthogonal, these
coefficients are given by

o0
sp = / s(t)pr(t) dt. (A7)
This generalised Fourier Series tends to an integral when m — oc.

The process of sampling can be seen as a mapping from £2- — C™ where m is chosen as a
compromise between accuracy and economy (Franks, 1969) and C is the complex number plane. It
is a many-to—one mapping in the sense that there is no unique set of numbers for each waveform
in £2. The sampling space is said to have m~dimensions and m degrees of freedom. As m — oo,
the degrees of freedom increase without bound. The waveform, s(t), is also m—-dimensional, thus
s(t) is a point in m—dimensional space, or in other words, s(t) can be represented as a multi—
dimensional radius vector from the origin. The waveform energy is represented as the squared
magnitude of the sampling®:

/OO s2(t)dt ~ isi (A.8)

The nature of the orthogonal basis functions used depends on the goal. Shannon’s sampling
theorem, for instance, uses sinc functions. However, Landau and Pollak (1962) demonstrate con-
vincingly that sinc functions are not optimal; instead prolate spheroidal wave functions are the
best basis functions. Their argument can be summarised as follows:

If a waveform s(t) is band-limited then it cannot also be time-limited. From Equation (A.5),
however, s(t) can be thought of as approximately time-limited if most of its energy is contained
in the interval || < 7/2:

T/2
S5, s dt

2 2
ffooo s d a®=1—ep (A.9)
where e is a measure of the degree to which s(t) fails to be time-limited. E(e) is the set of all
band-limited waveforms satisfying Equation (A.9).

How can the dimensionality of E(er) be measured? E(er) is not finite—dimensional for there
is no finite set of functions whose linear combinations exactly represent each waveform in E(er).
However, E(er) is approximately m—dimensional, if there exists m linearly independent functions
©0, - - - » Ym—1, Whose linear combinations approximate each s(t) in E(er) to within a small fraction

of the energy in s(¢):
min/
{a,—} —00
where again, d,,, is small.

The form of the orthogonal basis functions ¢y, ..., ¢, 1 that are used is arbitrary. Landau
and Pollak (1962) compare the best function with the more traditional sinc function. They state
that for real understanding of the dimension of E(er) the ¢; that gives the best approximation, by
making d,,, as small as possible over all E(e7), should be used, but for many practical applications
choosing the simplest function is better (as is perhaps the case with Shannon’s sampling theorem).
They show that the best basis, for any m, should be (m + 1) linearly independent most concentrated
band-limited functions. These functions are proven by Landau and Pollak (1962) to be the prolate
spheroidal wave functions.

Landau and Pollak (1962) go on to prove that | 2WT | +1 of the best basis functions, ¢;, approx-
imate a concentrated function to a degree proportional to the energy 2. outside of the interval.

With sinc functions, |2WWT | + 1 sinc functions will approximate s(¢) in energy roughly to within
a constant times er, that is, within a constant times the square root of the unconcentrated energy.

m—1 2

s(t) = D aipi(t)

0

it < 682 (A.10)

3Also known as the generalised Pythagorean theorem.
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A sampling series approximation with 27 + C terms will not approximate every concentrated
function to a degree proportional to the unconcentrated energy. This is in direct contrast to the
prolate spheroidal wave functions.

Similar results can be derived for waveforms that are not totally band-limited. Landau and
Pollak (1962) conclude that “the degree of approximation achievable by sampling functions is in
a very real sense poorer than the degree achievable by the best basis functions” (p. 1297).

Band-pass waveform representation

In the time domain, the representation of a band-pass signal, f(t), is achieved by representing
the waveform in terms of its odd and even components such that the odd components are in
phase and the even components are in quadrature. This is possible through the properties of the
Hilbert transform (Goldman, 1953).

f(t) = a(t)coswot — b(t) sinwpt (A.11)

where a(t) and b(t) are low—pass signals with upper cutoffs w. = W/2 and carrier frequency
wo > W/2

Gaussian noise waveform representation

The concept of the sampling space simplifies the representation of stochastic waveforms. As-
suming stationary, white Gaussian noise, the probability density of a given noise level, n, at any
arbitrary time, ¢, is

1 —n2/242
p(n) = Ee /2 (A.12)

where ¢ is the rms noise level. Using the concept of the sampling space, noise can be represented
as the weighted linear combination of 2V 7T basis functions:

2WT

n(t) = Y nepr(t) (A.13)
k=1

where the basis functions are prolate spheroidal wave functions (Slepian & Pollak, 1961) and the
coefficients are given by

S / n(t)on(t) dt. (A14)
The coefficients, ny, are the Gaussian random variables, p(n), from Equation (A.12), with mean
ng = 0, and variance o2 = Ny (uniform power spectrum), A'(0,Ny). They are independently,
identically, distributed (i.i.d.) for all &:

1 2
p(ng) = —— e /N0 (A.15)

The Karhunen-Loéve expansion shows how band-limited white noise can be represented in
m~dimensions for the interval 7, by using an orthogonal basis in £2- (Davenport & Root, 1958;
Franks, 1969; Urkowitz, 1967)

n(t) =~ Zai%(t)a It < T. (A.16)
=1

If the noise is second-order stationary, band-limited, white Gaussian noise, Slepian shows that
the basis functions, ¢;(t), are prolate spheroidal wave functions, that m = 2WT, and the «;
coefficients are independent Gaussian variates n; from Equation (A.14) (Slepian, 1954; Slepian &
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Pollak, 1961). Because the ; are orthogonal, the energy of n(¢) in the interval [0, 7] is

2WT

.
/ n(tydt ~ Y nj. (A.17)
0 k=1

If the noise is band—pass instead of low—pass, the representation changes but the result is the
same (see Davenport & Root, 1958; Franks, 1969; Goldman, 1953; Urkowitz, 1967). The noise is
split into two modulation components—one in phase (cosine component) and one in quadrature
(sine component)

n(t) = ne(t) coswet — ng(t) sinwst (A.18)

where w is the reference angular frequency and n.(t) and ns(t) are low—pass functions with band-
width |f| < W/2. If n(t) has a flat power spectrum, Ny, then n.(t) and n(t) also have flat power
spectra each equal to 2N, over | f| < W/2. Thus, n.(t) and ns(t) each have WT degrees of freedom
and variance 2Ny W.

According to Urkowitz (1967), the energy in n(t) can be approximated as

T 17
/ n?(t)dt ~ 3 / [n2(t) + nZ(t)] dt (A.19)
0 0
which improves as T increases. The series expansion for the energy in n.(t) and ns(t) is
T 1 WT
/ n2(t)ydt = — Y a’ (A.20)
0 w i=1
T 1 WT
/ n2(t)ydt = — a2 (A.21)
0 W=

where a = n(y).

Summary

By using generalised Fourier analysis, with prolate spheroidal wave basis functions, Gaussian
noise may be represented, in an approximate form, by 2W7 samples. This representation is better
than that achievable with Shannon’s sampling theorem.

More generally, because the definitions of W, T, and YW7 are somewhat arbitrary, and because
the representation of band and time-limited waveforms involves approximations, it is important
to make clear which definitions are being used.

As a final comment, about the nature of band and time-limited waveforms, Slepian (1983)
provides a useful insight. He argued that it is “senseless to ask if real signals are bandlimited,
or timelimited” because “continuity is not a verifiable notion in the real world” (p. 389). Band-
limiting and time-limiting are models. It may be the case that real waveforms may be both band
and time-limited, but because they cannot be measured at their limit, it is impossible to know.
Slepian warns that it may be unwise to assume that the limits imposed by the extremes of a
mathematical model in fact exist in real waveforms. As a result, Slepian (1976, 1983) gave an
alternative interpretation to the notion of band and time limited signals by redefining band and
time limiting so that they did not depend on the detailed behaviour of waveforms, or their spectra,
at infinity. He suggested that a waveform is band-limited and time-limited if, at a given level,
there is energy lying outside YV and 7 which is not measurable in the real world.




Appendix B

An algorithm for calculating the
essential bandwidth and duration

This appendix presents an heuristic algorithm for calculating the essential bandwidth
EssWge9, and duration EssT 429, of digital or digitised signals. The code for the time domain
and frequency domain is effectively the same, but for clarity they have both been presented. The
main difference is that the energy spectrum is already in units of energy, whereas each element in
the time series must first be squared. Also, depending on the application, the DC component may,
or may not be, important. The algorithm, as presented, includes the DC component by looping
from zero, but this may be changed to one if necessary.

The algorithm in pseudo—code

input
waveform : an array of real values representing a time series.
wavespectrum : an array of real values representing a power spectrum.
wavesize : the number of elements in the waveform.
spectrumsize : the number of elements in the spectrum.
timebase : the resolution of the time series in seconds.
fregbase : the resolution of the spectrum in hertz.
tolerance : an arbitrary cutoff to determine how close the energy is to the desired bound.
a? : proportion of energy constrained in the time domain.

32 : proportion of energy constrained in the frequency domain.
output
essential_duration: a real value representing duration in seconds.

essential_bandwidth: a real value representing bandwidth in Hz.
energy_time: a real value representing the total energy in the time domain.

energy_freq: a real value representing the total energy in the frequency domain.

215



216 B. An algorithm for calculating the essential bandwidth and duration

function essential_bandwidth (wavespectrum, 32, spectrumsize, fregbase, tolerance)
(* Essential bandwidth for the discrete spectrum, wavespectrum, with spectrumsize elements, and with
resolution of freqbase Hz, for a given proportion of energy constrained (32). Based on the definition for
essential bandwidth for continuous spectra by Landau and Pollak (1961). *)
energy «+ 0; total_energy < 0; p + 0; max_e_elt + 0; max_e_idx + 0
call find_maximum_energy_freq (wavespectrum, spectrumsize, max_e_elt, max_e_idx)
total_energy « energy_freq (wavespectrum, spectrumsize)
lowerindex < max_e_idx; upperindex < max_e_idx
p < wavespectrum[max_e_idx] / total_energy
energy < energy +p
if (energy + tolerance) > 32 then
(* Required proportion of energy is contained in max_e_idx, so interpolate to get bandwidth. *)
bandwidth «+ 3%/energy x fregbase
return bandwidth

else
while (energy + tolerance) < 3% do
if (lowerindex > 0) and (upperindex < spectrumsize) then
(* Sum bin with most energy from either side of max_e_idx. *)

if wavespectrum[lowerindex-1] > wavespectrum[upperindex+1] then
lowerindex < lowerindex - 1

p < wavespectrum[lowerindex] / total_energy
energy < energy +p
else
upperindex « upperindex + 1
p + wavespectrum[upperindex] / total_energy
energy < energy +p
fi
else if (lowerindex = 0) and (upperindex < spectrumsize) then
(* If the lowest index is reached then sum only from the upper index. *)
upperindex < upperindex +1
p «+ wavespectrum[upperindex] / total_energy
energy <« energy +p
else if (lowerindex > 0) and (upperindex = spectrumsize) then
(* If the highest index is reached then sum only from the lower index. *)
lowerindex < lowerindex - 1
p < wavespectrum[lowerindex] / total_energy
energy <« energy + p

else if (lowerindex = 0) and (upperindex = spectrumsize) then
bandwidth + spectrumsize x fregbase

return bandwidth
fi
endwhile

fi

(* Use linear interpolation to calculate the bandwidth. *)

bandwidth « ((32 - (energy-p))/p + (upperindex-lowerindex)) x fregbase

return bandwidth
end
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function essential_duration (waveform, o?, wavesize, timebase, tolerance)
(* Essential duration for the discrete timeseries, waveform, with wavesize elements, and with resolution
of timebase seconds, for a given proportion of energy constrained (a2). Based on the definition for essential
duration for continuous timeseries by Landau and Pollak (1961). *)

energy < 0; total_energy « 0; p «+ 0; max_e_elt + 0; max_e_idx «+ 0

call find_maximum_energy_time (waveform, wavesize, max_e_elt, max_e_idx)

total_energy « energy_time (waveform, wavesize)

lowerindex + max_e_idx; upperindex < max_e_idx

p + sgr(waveform[max_e_idx]) / total_energy

energy < energy +p

if (energy + tolerance) > «? then

(* Required proportion of energy is contained in max_e_idx, so interpolate to get duration. *)
duration «+ o2/energy x timebase

return duration

else
while (energy + tolerance) < o do
if (lowerindex > 1) and (upperindex < wavesize) then
(* Sum bin with most energy from either side of max_e_idx. *)

if sqr(waveform[lowerindex - 1]) > sqr(waveform[upperindex +1]) then
lowerindex < lowerindex +1

p < sgr(waveform[lowerindex]) / total_energy
energy < energy +p
else
upperindex < upperindex + 1
p < sgr(waveform[upperindex]) / total_energy
energy < energy +p
fi
else if (lowerindex = 1) and (upperindex < wavesize) then
(* If the lowest index is reached then sum only from the upper index. *)
upperindex < upperindex +1
p < sqr(waveform[upperindex]) / total_energy
energy < energy + p

else if (lowerindex > 1) and (upperindex = wavesize) then
(* If the highest index is reached then sum only from the lower index. *)

lowerindex < lowerindex+1
p « sgr(waveform[lowerindex]) / total_energy
energy <« energy +p

else if (lowerindex = 1) and (upperindex = wavesize) then
duration « wavesize x timebase

return duration
fi
endwhile

fi

(* Use linear interpolation to calculate the duration. *)

duration + ((o? - (energy-p))/p + (upperindex-lowerindex)) x timebase

return duration
end
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function energy_frequency (wavespectrum, spectrumsize)
(* Assumes input is a discrete energy spectrum, wavespectrum, which contains spectrumsize elements.
Energy at 0 Hz (DC) is included. *)

energy <+ 0

for i «+ 0 to spectrumsize do

energy < energy + wavespectrumli]

return energy

end

function energy_time (waveform, wavesize)
(* Assumes input is a discrete time series, waveform, of wavesize elements. *)
energy <+ 0
for i «+ 1 to wavesize do
energy <« energy + sqr(waveformli])
return energy
end

procedure find_maximum_energy_freq (wavespectrum, spectrumsize, max_e_elt, max_e_idx)
(* Assumes input is a discrete energy spectrum, wavespectrum, of spectrumsize elements. *)
max_e_elt + wavespectrum][0]
max_e_idx < 0
for i « 1to spectrumsize do
if wavespectrum[i] > max_e_elt then
max_e_elt «+ wavespectrum[i]
max_e_idx < i
fi
end

procedure find_maximum_energy_time (waveform, wavesize, max_e_elt, max_e_idx)
(* Assumes input is a discrete timeseries, waveform, of wavesize elements. *)
max_e_elt + sqr(waveform[1])
max_e_idx < 1
for i «+ 2 to wavesize do
if sqr(waveform[i]) > max_e_elt then
max_e_elt « sqgr(waveform[i])
max_e_idx < i
fi
end




Appendix C

Signal analysis

This appendix describes the properties of the waveforms generated for the experiments and
simulations. The analyses are described in more detail in Chapter 3.

Properties of the Kaiser window: The standardised Ess7 ¢, as a function of &, is tabulated in
tables C.1 and C.2 for a?=5-100%, and is shown graphically in Figure 3.11.

Signal generation parameters: Tables C.3 and C.4 show the necessary parameters required to
generate signals using SIGGEN. All other parameters are derivable from these values.

Transient bandwidths, durations, and W7 Table C.5 shows the measured bandwidths, dura-
tions, and bandwidth—duration products of the transient waveforms for a variety of definitions.
See Section 3.3.3 for more detail.

Power spectra: Figures C.1and C.2 show the spectral-averaged power spectra for the premixed
8 and N transients. The spectra are displayed in dB coordinates which were scaled by the maxi-
mum power within a signal set.

Roll-off of § and N transition bands: Table C.6 shows the roll-off, in decibels per octave, of
the transition band of the spectral-averaged transient power spectra. Roll-offs are calculated for
both the § and N signal sets between -3 dB and -60 dB. The upper transition band was used in
both cases.

Descriptive statistics of transients: Tables C.7 and C.8 present the descriptive statistics (mean,
standard deviation, skewness, and kurtosis) of each transient signal set, before and after scaling.

Correlation tests on transients: Tables C.9 and C.10 show the results of the correlation tests
described in Section 3.3.5.

Signal-to—noise ratio estimates: Tables C.11, C.12, and C.13 give the signal-to-noise ratio es-
timates of the SN transients based on the bandwidths of the § and N transients, for a variety of
bandwidth definitions. Tables C.14, C.15, and C.16 give the signal-to—noise ratio estimates of the
8N buffers based on the measurements made on the spectral-averaged SN power spectra.
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Figure C.1: 8 power spectra in dB (relative to maximum power) for each experimental level.
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Figure C.2: N power spectra in dB (relative to maximum power) for each experimental level.
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Signal Set -3dB freq. (Hz) -60dB freq. (Hz) Roll-off (dB/octave)
400ms, 2.5Hz 500.87 503.17 8637.99
200ms, 5Hz 501.76 506.00 4690.37
100ms, 10Hz 503.48 512.67 2183.55
50ms, 20Hz 506.90 524.57 1152.86
25ms, 40Hz 513.81 549.17 593.71
12.5ms, 80Hz 527.61 598.34 314.04
6.25ms, 160Hz 555.18 694.64 176.30
400ms, 5Hz 502.22 505.09 6937.10
200ms, 10Hz 504.48 510.09 3569.66
100ms, 20Hz 509.09 520.37 1803.50
50ms, 40Hz 517.69 540.73 907.23
25ms, 80Hz 536.15 581.55 486.12
12.5ms, 160Hz 570.58 662.09 265.61
400ms, 10Hz 505.23 508.09 6990.15
200ms, 20Hz 510.40 516.19 3501.15
100ms, 40Hz 520.76 532.36 1793.68
50ms, 80Hz 541.64 564.74 946.18
25ms, 160Hz 583.03 629.52 514.94
400ms, 4000Hz 4327.36 4330.28 58598.09
200ms, 4000Hz 4325.39 4331.23 29262.67
100ms, 4000Hz 4322.52 4334.09 14784.26
50ms, 4000Hz 4316.05 4339.21 7382.65
25ms, 4000Hz 4327.65 4374.50 3669.40
12.5ms, 4000Hz 4326.57 4420.08 1847.71
6.25ms, 4000Hz 4327.04 4511.19 948.03
400ms, 4000Hz 4328.96 4331.85 59163.10
200ms, 4000Hz 4328.90 4334.69 29572.11
100ms, 4000Hz 4328.70 4340.37 14670.20
50ms, 4000Hz 4328.57 4351.74 7399.81
25ms, 4000Hz 4327.82 4374.47 3685.04
12.5ms, 4000Hz 4327.15 4419.84 1864.24
400ms, 4000Hz 4328.95 4331.85 59059.69
200ms, 4000Hz 4328.88 4334.69 29445.51
100ms, 4000Hz 4328.79 4340.36 14801.86
50ms, 4000Hz 4328.74 4351.74 7453.42
25ms, 4000Hz 4328.38 4374.45 3732.04

Table C.6: Transition band roll-off, in dB/octave, of S and N spectral-averaged transient power spectra.
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Table C.7: Descriptive statistics of the 8 transients.

C. Signal analysis

Original Rescaled
8 transients Mean SD Mean SD Skewness  Kurtosis N
400ms, 2.5Hz —0.00000 0.00277 0.00000 1.00000 0.00000 3.03247 106967500
200ms, 5Hz —0.00000 0.00396 0.00000 1.00000 —0.00000 2.99468 53482500
100ms, 10Hz 0.00000 0.00558 0.00000 1.00000 0.00011 3.03102 26742500
50ms, 20Hz —0.00000 0.00548 0.00000 1.00000 —0.00021 2.99095 13370000
25ms, 40Hz —0.00000 0.00789 0.00000 1.00000 —0.00009 2.95012 6685000
12.5ms, 80Hz 0.00000 0.01107 0.00000 1.00000 —0.00067 2.94173 3342500
6.25ms, 160Hz  0.00000 0.01097 0.00000 1.00000 —0.00265 3.01035 1672500
400ms, 5Hz 0.00000 0.00831 0.00000 1.00000 0.00000 2.99832 106967500
200ms, 10Hz 0.00000 0.01158 0.00000 1.00000 0.00001 2.99543 53482500
100ms, 20Hz 0.00000 0.01646 0.00000 1.00000 0.00014 2.99807 26742500
50ms, 40Hz 0.00000 0.02326 0.00000 1.00000 0.00010 2.98556 16044000
25ms, 80Hz 0.00000 0.03309 0.00000 1.00000 0.00015 2.99650 6685000
12.5ms, 160Hz  0.00001 0.04626 0.00000 1.00000 0.00029 2.98804 3342500
400ms, 5Hz 0.00000 0.01264 0.00000 1.00000 0.00001 2.96158 106967500
200ms, 10Hz — — 0.00000 1.00000 0.00000 2.99519 53482500
100ms, 20Hz 0.00000 0.02522 0.00000 1.00000 —0.00003 2.97760 26742500
50ms, 40Hz 0.00000 0.03562 0.00000 1.00000 —0.00001 3.00250 13370000
25ms, 80Hz 0.00000 0.05057 0.00000 1.00000 0.00014 3.00517 6685000
Table C.8: Descriptive statistics of the N transients.
Original Rescaled
N transients Mean SD Mean SD Skewness  Kurtosis N
400ms, 4000Hz —0.00004 0.25577 0.00000 1.00000 —0.00088 3.00032 128361000
200ms, 4000Hz —0.00000 0.25577  0.00000 1.00000 0.00038 3.00028 64179000
100ms, 4000Hz 0.00015 0.25569 0.00000 1.00000 —0.00132 2.99821 32091000
50ms, 4000Hz  —0.00012 0.25545 0.00000 1.00000 0.00088 2.99743 16044000
25ms, 4000Hz  —0.00020 0.25597  0.00000 1.00000 0.00092 3.00551 8022000
12.5ms, 4000Hz —0.00051 0.25587  0.00000 1.00000 0.00051 2.99708 4011000
6.25ms, 4000Hz  0.00003 0.25570  0.00000 1.00000 0.00408 2.99602 2007000
400ms, 4000Hz —0.00002 0.25581 0.00000 1.00000 —0.00034 2.99933 128361000
200ms, 4000Hz  0.00007 0.25586  0.00000  1.00000 0.00034 2.99913 64179000
100ms, 4000Hz —0.00010 0.25593 0.00000 1.00000 —0.00023 2.99684 32091000
50ms, 4000Hz 0.00002 0.25572 0.00000 1.00000 —0.00011 2.99887 16044000
25ms, 4000Hz  —0.00028 0.25569  0.00000  1.00000 0.00337 2.99507 8022000
12.5ms, 4000Hz  0.00021 0.25568 0.00000 1.00000 —0.00154 2.99930 4011000
400ms, 4000Hz —0.00004 0.25583  0.00000 1.00000 0.00055 3.00035 128361000
200ms, 4000Hz  0.00003 0.25585  0.00000 1.00000 —0.00035 3.00051 64179000
100ms, 4000Hz  0.00000 0.25587  0.00000 1.00000 —0.00008 3.00292 32091000
50ms, 4000Hz  —0.00015 0.25578 0.00000 1.00000 —0.00089 2.99942 16044000
25ms, 4000Hz  —0.00001 0.25577  0.00000 1.00000 0.00147 3.00333 8022000




Table C.9: Correlation tests on the S transient sets.

Correlation Tests: overlapping, ordered pairs

S—transients global-r mean-r z Pairs  Total Points

400ms, 2.5Hz 0.009041  0.006410 93.488862 2499 106924713
200ms, 5Hz 0.002365 0.003787 17.290944 2499 53461107
100ms, 10Hz  —0.011461 —0.017752 —59.258716 2499 26731803
50ms, 20Hz —0.018665 —0.016006 —68.243216 2499 13364652

25ms, 40Hz 0.002810 —0.005217 7.263397 2499 6682326
12.5ms, 80Hz —0.006210 —0.004286 —11.351398 2499 3341163
6.25ms, 160Hz  0.012534 0.009464 16.207579 2499 1671831

400ms, 5Hz 0.004018  0.004681  41.552021 2499 106924713
200ms, 10Hz  —0.009435 —0.009483 —68.991676 2499 53461107
100ms, 20Hz 0.007681  0.006646  39.714298 2499 26731803
50ms, 40Hz —0.003022 —0.000184 —11.048327 2499 13364652
25ms, 80Hz —0.004181 —0.007164 —10.808000 2499 6682326
12.5ms, 160Hz  0.006619 0.010813 12.098112 2499 3341163

400ms, 10Hz 0.000013 —0.000417 0.129883 2499 106924713
200ms, 20Hz  —0.006851 —0.006885 —50.094882 2499 53461107
100ms, 40Hz  —0.002584 —0.003514 —13.359034 2499 26731803
50ms, 80Hz 0.001925  0.003144 7.037321 2499 13364652
25ms, 160Hz 0.001540  0.001881 3.981042 2499 6682326

Correlation Tests: independent, random pairs

S-transients global-r mean-r z Pairs  Total Points

400ms, 2.5Hz 0.001886 —0.001182 13.796454 1250 53483750
200ms, 5Hz 0.001499 0.012477 7.750095 1250 26741250
100ms, 10Hz 0.008447 0.011354 30.888166 1250 13371250

50ms, 20Hz —0.014088 —0.007312 —36.427075 1250 6685000
25ms, 40Hz —0.015057 0.000369 —27.529466 1250 3342500
12.5ms, 80Hz 0.015791  0.001881  20.416230 1250 1671250
6.25ms, 160Hz  0.019031 0.006033  17.405548 1250 836250

400ms, 5Hz 0.009165 0.003151  67.029573 1250 53483750
200ms, 10Hz 0.003133  0.006375 16.199555 1250 26741250
100ms, 20Hz 0.004059 0.006529  14.840827 1250 13371250

50ms, 40Hz —0.003192 —0.006472 —8.253628 1250 6685000
25ms, 80Hz —0.005369 —0.009551 —9.815069 1250 3342500
12.5ms, 160Hz  0.016167 0.014601  20.902063 1250 1671250

400ms, 10Hz  —0.002087 —0.002028 —15.262937 1250 53483750
200ms, 20Hz 0.000689  0.002161 3.561387 1250 26741250
100ms, 40Hz  —0.005292 —0.006188 —19.351298 1250 13371250
50ms, 80Hz 0.004382  0.006183  11.329296 1250 6685000
25ms, 160Hz 0.010269 0.009506  18.774795 1250 3342500
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C. Signal analysis

Table C.10: Correlation tests on the N transient sets.

Correlation Tests: overlapping, ordered pairs

N-transients global-r mean-r z Pairs  Total Points
400ms, 4000Hz —0.000178 —0.000182 —2.013098 2999 128318213
200ms, 4000Hz 0.000392  0.000383 3.137236 2999 64157607
100ms, 4000Hz —0.000522 —0.000510 —2.953992 2999 32080303
50ms, 4000Hz  —0.000338 —0.000377 —1.353773 2999 16038652
25ms, 4000Hz  —0.000300 —0.000276 —0.849448 2999 8019326
12.5ms, 4000Hz  0.000556  0.000594 1.112982 2999 4009663
6.25ms, 4000Hz —0.002237 —0.002154 —3.169221 2999 2006331
400ms, 4000Hz —0.000865 —0.000864 —9.797942 2999 128318213
200ms, 4000Hz  0.000051  0.000050 0.408733 2999 64157607
100ms, 4000Hz  0.000561  0.000567 3.178341 2999 32080303
50ms, 4000Hz  —0.000246 —0.000217 —0.984548 2999 16038652
25ms, 4000Hz  —0.000628 —0.000670 —1.777344 2999 8019326
12.5ms, 4000Hz —0.000142 —0.000163 —0.284549 2999 4009663
400ms, 4000Hz —0.000101 —0.000103 —1.139714 2999 128318213
200ms, 4000Hz —0.000404 —0.000401 —3.234474 2999 64157607
100ms, 4000Hz  0.000216 0.000195 1.224154 2999 32080303
50ms, 4000Hz 0.001046  0.001059 4.187269 2999 16038652
25ms, 4000Hz  —0.000206 —0.000193 —0.582270 2999 8019326
Correlation Tests: independent, random pairs
N-transients global-r mean-r z Pairs  Total Points
400ms, 4000Hz —0.000509 —0.000506 —4.078443 1500 64180500
200ms, 4000Hz  0.000056  0.000061 0.315154 1500 32089500
100ms, 4000Hz —0.000213 —0.000210 —0.853712 1500 16045500
50ms, 4000Hz  —0.000143 —0.000178 —0.405307 1500 8022000
25ms, 4000Hz  —0.000201 —0.000259 —0.401600 1500 4011000
12.5ms, 4000Hz  0.003686  0.003716 5.220354 1500 2005500
6.25ms, 4000Hz —0.001506 —0.001378 —1.508233 1500 1003500
400ms, 4000Hz —0.000134 —0.000131 —1.075034 1500 64180500
200ms, 4000Hz  0.000154 0.000147 0.870715 1500 32089500
100ms, 4000Hz —0.000369 —0.000378 —1.478273 1500 16045500
50ms, 4000Hz 0.000553  0.000533 1.567580 1500 8022000
25ms, 4000Hz 0.001269 0.001226 2.542123 1500 4011000
12.5ms, 4000Hz —0.001891 —0.001850 —2.678134 1500 2005500
400ms, 4000Hz  0.000197  0.000191 1.577698 1500 64180500
200ms, 4000Hz  0.000209 0.000214 1.181257 1500 32089500
100ms, 4000Hz  0.000448  0.000458 1.793088 1500 16045500
50ms, 4000Hz 0.000618  0.000689 1.749532 1500 8022000
25ms, 4000Hz  —0.000393 —0.000427 —0.786912 1500 4011000
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C. Signal analysis

Table C.14: Estimates of signal-to—noise ratio (dB) calculated from the W7 =1 buffer power spectra.

Signal Set Desired SNR  Maximum SNR  Average SNR
400ms, 2.5Hz 0.00000 —0.55626 —0.55626
4.00000 4.11807 4.11807
8.00000 8.30068 8.30068
12.00000 11.82199 11.82199
16.00000 15.67593 15.67593
200ms, 5Hz 0.00000 —0.45463 —0.45463
4.00000 4.08816 4.08816
8.00000 7.87108 7.87108
12.00000 12.03830 12.03830
16.00000 16.14839 16.14839
100ms, 10Hz 0.00000 —1.28081 —1.28081
4.00000 4.01578 4.01578
8.00000 8.17273 8.17273
12.00000 11.83220 11.83220
16.00000 16.07561 16.07561
50ms, 20Hz 0.00000 0.24428 0.24189
4.00000 3.23998 3.23998
8.00000 8.01368 8.01368
12.00000 11.77771 11.77771
16.00000 16.17118 16.17118
25ms, 40Hz 0.00000 0.14908 0.14908
4.00000 3.88117 3.87703
8.00000 8.02929 8.02929
12.00000 12.25730 12.25730
16.00000 16.04753 16.04753
12.5ms, 80Hz 0.00000 0.23492 0.22505
4.00000 3.87479 3.87119
8.00000 7.64512 7.64076
12.00000 12.07039 12.06823
16.00000 16.07881 16.07555
6.25ms, 160Hz 0.00000 0.92455 0.91833
4.00000 3.89781 3.89488
8.00000 8.03902 8.03655
12.00000 11.91046 11.90827
16.00000 16.05588 16.05412




Table C.15: Estimates of signal-to—noise ratio (dB) calculated from the W7 =2 buffer power spectra.

Signal Set Desired SNR  Maximum SNR  Average SNR
400ms, 5Hz —4.00000 —3.91857 —4.35315
0.00000 —0.08684 —0.27410
4.00000 4.33541 4.21120
8.00000 7.80223 7.77945
12.00000 11.94647 11.93248
200ms, 10Hz —4.00000 —3.90949 —4.12258
0.00000 —0.15371 —0.25501
4.00000 4.05235 3.94920
8.00000 7.79132 7.63917
12.00000 12.22139 12.07296
100ms, 20Hz —4.00000 —3.31973 —3.73603
0.00000 0.44085 0.20146
4.00000 3.98791 3.78112
8.00000 8.20215 8.09127
12.00000 11.98688 11.84985
50ms, 40Hz —4.00000 —3.15207 —3.35671
0.00000 0.75757 0.61468
4.00000 3.71265 3.68189
8.00000 7.97039 7.94178
12.00000 12.08796 12.04652
25ms, 80Hz —4.00000 —3.96125 —4.41907
0.00000 0.30519 0.01521
4.00000 4.12651 4.04806
8.00000 7.71912 7.57076
12.00000 11.95396 11.88666
12.5ms, 160Hz —4.00000 —3.43759 —3.63833
0.00000 0.21261 —0.31269
4.00000 4.53558 4.49110
8.00000 7.83869 7.82192

12.00000

11.97870

11.85426
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236 C. Signal analysis

Table C.16: Estimates of signal-to—noise ratio (dB) calculated from the W7 =4 buffer power spectra.

Signal Set Desired SNR  Maximum SNR  Average SNR

400ms, 10Hz —8.00000 —5.47017 —7.55798
—4.00000 —2.66808 —3.53568

0.00000 0.38567 0.07302

4.00000 4.16302 3.88451

8.00000 8.16745 8.03860

200ms, 20Hz —8.00000 —6.00610 —7.60815
—4.00000 —3.54685 —3.83918

0.00000 0.34170 —0.15450

4.00000 4.32710 4.15577

8.00000 8.48315 8.07886

100ms, 40Hz —8.00000 —5.28031 —7.57393
—4.00000 —3.45046 —4.38874

0.00000 0.34885 0.05788

4.00000 4.17974 3.84169

8.00000 8.12801 7.90032

50ms, 80Hz —8.00000 —6.38848 —7.77954
—4.00000 —3.96285 —4.52925

0.00000 0.48639 —0.16830

4.00000 4.03657 3.81618

8.00000 8.33893 8.00105

25ms, 160Hz —8.00000 —6.42417 —8.26007
—4.00000 —3.58829 —4.27207

0.00000 0.39972 —0.00037

4.00000 4.29254 4.03224

8.00000 8.13553 7.99451




Appendix D

ROC, mROC, and GOC Analyses

This appendix presents the results of the ROC, mROC, and GOC analyses described in Chap-
ter 3. Attenuated theoretical ROC curves (dashed curves) in each mROC and GOC space are the
WT =1 x? energy detector for the WT =1 for experimental condition; the W7 =3 x? energy de-
tector, for experimental condition YWW7 =2; and the WWT =5 energy detector, for experimental con-
dition W7 =4. The explanation for fitting these particular models, and the method for doing so,
is given in Chapter 3.

Measures of detectability

Tables D.1-D.9 show the measures of detectability, A and D,: for the energy detector (for the
theoretical and empirical signal-to—noise ratios), and the mROC, GOC, and FORCE analyses for
each observer. Tables D.10-D.18 show the measures of detectability, A and D, averaged over the
six replications, and their standard deviations.

ROC curves

Figures D.1-D.7 show the six single-replication ROC curves at each of the five signal-to-noise
ratios completed by each observer. Remember that the false—alarm rate is common within a level.
mROC curves

Figures D.8-D.14 show the mROC curves calculated from the six single-replication ROC curves
at each of the five signal-to—noise ratios completed by each observer.

GOC curves

Figures D.15-D.21 show the GOC curves calculated from the six single-replication ROC curves
at each of the five signal-to—noise ratios completed by each observer.
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Table D.10: Empirical average A and D», and standard deviations for Observer 1 in the condition W7 =1.

Experimental Theory  Empirical Average St. Dev. Average St Dev.
Level SNR (dB) SNR (dB) A A D D
400ms, 2.5Hz 0 —0.5563 0.51209 0.00998 0.00071  0.00000
4 4.1181 0.53614  0.02057  0.00500  0.00002
8 8.3007 0.61618  0.00869 0.03954  0.00004
12 11.8220 0.70404 0.00901 0.12399 0.00013
16 15.6759 0.79328 0.01410 0.26571  0.00076
200ms, 5Hz 0 —0.4546 0.53264 0.01201  0.00349 0.00001
4 4.0882 0.57994  0.01236 0.01897  0.00004
8 7.8711 0.65464 0.01428 0.07079  0.00017
12 12.0383 0.78525 0.01478  0.25048  0.00080
16 16.1484 0.85872  0.01685 0.41412 0.00196
100ms, 10Hz 0 —1.2808 0.53703  0.01146 0.00434 0.00001
4 4.0158 0.63304 0.01292 0.05221 0.00010
8 8.1727 0.73538  0.01161 0.16687  0.00029
12 11.8322 0.83324 0.01302 0.35062  0.00084
16 16.0756 0.91038  0.00740 0.56529  0.00060
50ms, 20Hz 0 0.2443 0.56529  0.00780 0.01252  0.00001
4 3.2400 0.61331 0.01312 0.03789  0.00008
8 8.0137 0.74321  0.00720 0.17833  0.00012
12 11.7777 0.84511 0.00882 0.37849  0.00046
16 16.1712 0.93271 0.00313  0.64440 0.00014
25ms, 40Hz 0 0.1491 0.55205 0.01898  0.00888  0.00005
4 3.8770 0.62061 0.01065 0.04274  0.00006
8 8.0293 0.75813  0.01034 0.20229  0.00030
