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Abstract

An improved protocol for the screening of marine sponges using cyclic loading,

PSDVB, and both lD and 2D NMR spectroscopy is described. Using this new

methodology, 5l sponges were screened. Further investigations were carried out on

seven of the 51 organisms, resulting in the isolation of several known and eight novel

compounds. Clathriols A (32) and B (33) are novel sterols isolated from the sponge

Clathria lissosclera. Both 32 and 33 possess the rare 14B stereochemistry, a feature

only naturally occurring in marine sponges. Both are also moderate anti-infla6matory

compounds' Ten spongian diterpenes were isolated from the New Zealand, sponge

Chelonaplysilla violacea, six of which are novel. Cadlinolides C (138) and D (139) are

similar to several previously reported compounds while pourewic acid A (140),

l5-methoxypourewic acid B (l4l), methylpourewate B (142) and pourewanone (143)

have unique structural features and are of biogenetic significance. Pourewanone (143) is

the first example of a formate isolated from the marine environment. Several of the

novel d i terpenes exhi bit moderate anti-infl ammatory activity.

A potent dinoflagellate toxin was partially purified from cultures of the producing

organism, Karenia brevisulcata. K. brevisulcata is a new dinoflagellate species

implicated in a large toxic algal bloom in Wellington Harbour, New Zealand, which

formed during the summer of 1997/1998. Although the toxin could not be identified,

some of the functionality present, and several possible substructures, is proposed. The

biological activity of the toxin is also described.
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Chapter One

Introduction

l.l Natural Products Chemistrv and Historv

Mankind has a long tradition of utilising natural resources for a variety of applications,

including extracting plants for medicines and dyes, using inorganic minerals for

building and paints, and smelting of ores to obtain pure metals for tools.l'3 The use of

plant extracts as medicines, in particular, has fascinated and intrigued all societies.

Every ancient civilisation used natural resources to treat illness and disease.t'a A, man's

understanding of chemistry has progressed throughout the ages, so too has the desire to

understand the formulation of the active principles of medicinally beneficial plant

extracts' It is the goal of natural products chemists to isolate and elucidate the strucrures

of these active principles.

Use of terrestrial herbs to treat illness has a long-standing history. The marine

environment, however, has played very little role in traditional medicines due to the

difficulty in collecting flora and fauna in all but the most shallow of waters. There is

some evidencen however, that various ethnic $oups did have an understanding of the

biological activities associated with certain marine organisms, even if these compounds

were not used to treat disease [e.g. Hawaii's o'Limu make o Hana" ('oDeadly seaweed of

Hana"), the ancient Egyptians recognition of the poisonous puffer fish

Tetradon stellatus during the Fifth dynasty (-2700 B.C.), or, as most species of toxic

fish do not possess true scales, the Biblical decree not to eat fish without scales,

(Deuteronomy 14:9-10, -1451 B.C.)].4-6 Natural products from marine organisms

remained largely undiscovered until the early 1940s when Jacques Cousteau designed
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the first inexpensive and reliable SCUBA apparatus.r'7 Easier access to shallow sub-

tidal environs allowed the maturing science of terrestrial natural products to diversify

into a totally new area of study. The study of marine natural products blossomed in the

1970s and the number of novel metabolites reported each year has been steadily

increasing until only very recently.8,e

All living organisms produce an enonnous variety of organic molecules for a large array

of uses' Primary metabolites are those molecules produced by all organisms and include

Iipids, proteins, amino acids, and carbohydrates. Such metabolites are primarily the

subject of study of biochemistry.2'lo'tt Secondary metabolites are those molecules that

are produced by individual species for specific end uses. The biological role of a

secondary metabolite can be difficult to identify but often includes defence against

predation or encroachment.2'10'12 It has been suggested that secondary metabolites may

have evolved as a means to consume primary metabolites surplus to the organisms

requirements.13 Secondary metabolites are often very complex chemical entities and are

therefore metabolically expensive to produce, implying that they must provide some

kind of ecological advantage to the producing organism.12 Biologically active secondary

metabolites need to be able to travel throughout a target organism's body in order to

reach the intended sites of action. They therefore need to be able to exist in both

hydrophilic and hydrophobic environs and so are usually of intermediate polarity, in

order to transverse both aqueous and lipid environments.ll

The biological effects of marine derived secondary metabolites, especially those

produced for defensive measures, can be very different in mammals than they are in

other marine organisms; some may have therapeutic effects against mammalian diseases

or illnesses, which is why marine natural products are currently targeted as potential

therapeutic agents.2'10'12'la Although no isolated marine natural product is currently

-2-



available as a pharmaceutical, there is a strong basis for using natural products to treat

disease. Between 1983 and 1994, the United States of America Food and Drug

Administration Agency approved 522 new pharmaceuticals for human use. Although

only 30 (5.7%) of these were true natural products, 127 (24.3%) were semi-synthetic

derivatives of natural products whilst 46 (8.8%) were synthetic but based upon natural

product templates, all of which implies that3gYo of all new pharmaceuticals introduced

between 1983 and 1994 wers natural products based.ls Of the 92 anti-cancer

compounds commercially available up to 1994,57 were derived from natural origins.l'15

Moreover, in 1996 eight of the top twenty selling pharmaceuticals were derived from

natural sources.l6

Currently, there are approximately thirteen marine natural product based

pharmaceuticals in clinical development. Twelve of these are derived from marine

invertebrates.e Several anti-viral and anti-cancer compounds were isolated from the

Caribbean sponge Cryptotheca crypta in the 1950s. Synthetic analogues of these were

developed leading to the anti-viral agent Ara-A (f) and the clinically used anti-cancer

drug Ara-c (2).t)' Bryostatin-l (3), a macrolide isolated from the bryozoan

Bugula neritina, has advanced into phase II clinical trials.l'15'17 The first marine natural

product to enter clinical testing was didemnin B from the tunicate

Trididemnum solidum. Unfortunately, didemnin B was significantly toxic whilst

showing irreproducible activity against a variety of tumours in phase II trials. Several

other metabolites with microtubule stabilising activity similar to taxol are currently

under further investigation. I'l 7
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1.2 New Zealand Geography

New Zealand is an archipelago (see figure 1.1), foturd in the South Pacific Ocean, that

has long been isolated from all other landmasses. This isolation has allowed New

Zealand to develop a unique flora and fauna that is quite distinct from any other.

Prominent New Zealand palaeobiologist Sir Charles Fleming believed that the terrestrial

forests of New Zealand, bear more resemblance to the Mesozoic forests of

Gondwanaland than to other contemporary wooded ateas.ls-20 This unique ecology

extends to NewZealand's marine environment.
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Figure l.l Map of Nerv Zealand. (Courtesy of GeoGraplrX lVlapping, Nen'Zealand)
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During the course of this study, secondary metabolites were isolated from both marine

sponges (multicellular aquatic animals) and dinoflagellates (unicellular aquatic plants).

Examples of the biology of each are described below.

Sponges

Sponges, which constitute the entire phylum Porifer4 are the oldest and simplest

multicellular animals ftingdom Metazoa).2r-23 In fact, sponges are so simplistic that it

was not until the late Eighteenth century that they were commonly accepted as

animals.2l-23 The Porifera are considered to belong to an ancient phylum, as

representatives of all modern groups of sponges were present and widespread in the

early to mid Cambrian era 500 million yea.s ugo.2l'23 Currently the phylum is divided

into three classes, 27 sub-classes, 25 orders, 127 farilies and over 683 genera.23

Currently, there are 7000 species of formally described living sponges worldwide,

although it is conservatively estimated that there at least 15,000 species extarft.22,n

Sponges do not possess many of the normal features associated with other Metazoans.

For example, sponges do not have any truly individual tissues or organs, nor do they

possess circulatory, digestive, or nervous systems.2l-2a Poriferans are sedentary filter

feeders. To feed, sponges use specialised flagellated cells (choanocytes) to pump warer

in the body via ostia, through a series of channels, and out through circular surface

oscules' within these channels are a series of successively finer filters that catch food

particles for the animal to consume.2l-23 Interspersed between the choanocytes and the

outer pinacoderm, which Protects the sponge from the outside environment, is the

connective tissue known as mesohyl. It is within the mesohyl that the skeletal

component of the sponge resides.2l-2a

1.3
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The taxonomy of sponges is a long-standing and difficult problem. Many of the

common markers used to differentiate between species in other phyla, such as colour,

shape, or size, cannot be applied, as sponges grow in indeterminate patterns similar to

many plants. The size, appearance, and morphology of a sponge, is dependent on

external factors such as water current, nutrient levels, the presence of symbionts, as well

as substrate composition and slope.2l-23

Other markers for the identification of sponges have taken precedence over those

mentioned. In particular, the skeletal content of the mesohyl is predominantly used to

identifr different sponge specimens. Sponge skeletons are generally comprised of a

collagen-type fibre known as spongin, which may or may not be combined with

inorganic spines.2l-23 The inorganic spines, which are made of either calcium carbonate

or silica, are known as spicules, the size, shape, and composition of which is often a

diagnostic feature of an individual species and is now commonly used to distinguish

between different sponge specimens.2 I -23

It was once thought that spicules were used for both protection and structure within the

sponge skeleton'2l-23 There is a recent body of evidence, howevero that suggests that

sponges rely less on spicules for defence than might first be imagined. There are many

examples of physical predation upon sponges by more advanced members of the animal

kingdom, including attacks against species possessing the hardest skeletons kno\ m.2l2s-

32 It is now thought that sponges rely more heavily upon biochemical means of defence

against predation and encroachment.2l This is in keeping with the long evolutionary

time-scale within which sponges have been able to develop novel secondary metabolic

means of defence.2l'23



Other methods currently used to differentiate sponges include identification of

individual sponge genomes and also, of more interest to the natural products chemist,

chemotaxonomy. Chemotaxonomy is the use of secondary metabolic composition as a

taxonomic marker for different organisms. It has been used to differentiate between

sponges of different orders, families, and gener4 but is too general to discern between

species.22'23'33

Phylum Porifera is divided into tluee main classes, the Demospongiae, the Calcarea and

the Hexactinellida. The Demospongiae, also known as the siliceous sponges, usually

possess spicules made from silica. The Demospongiae represent 85% of all the

described sponges with approximately 6000 species within 15 orders, 88 families and

around 500 genera. The class also contains all of the sponge orders devoid of any

spicules.2l'2'''o De-orponges are found in many environs worldwide, including the

eight families of sponges that live in freshwater. Most Demosponges, however, are

marine based and are found between tidal (0 m) and hadal (> 6000 m) depths.2r-2+'ra

The Calcarea, or calcareous sponges, possess spicules composed exclusively of calcium

carbonate.2l-23'34 The Calcarea represent 7o/o of all known sponges with approximately

500 described species in five orders, 22 families and 75 genera. Most are inconspicuous

as they are often srnall and lightly coloured. They are usually found in sheltered and

shallow environs (< 1000 m), predominately in tropical waters where they associate

with coral r..6.2l-r'3a

The final class, the Hexactinellida or glass sponges, possess six-rayed siliceous spicules

(hexacts) that are found individually or fused together. The spicules of Hexactinellid

sponges tend to be much longer than those of the other two classes and often make up a

larger proportion of the sponge body than the organic component of the animal tissue.2l-
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23'34 The morphology of the Hexactinellid sponges is so different from that of the

Demospongiae or the Calcarea that some taxonomists believe that Hexactinellid

sponges should form their own sub-phylum distinct from the other two classes, or

maybe even form a different phylum altogether.2z'23 The Hexactinellida are mostly

found in deeper watsr (> 200 m). There are currently about 500 described species

distributed in five orders, l7 families and I l g genera.2l-23,3a

It should be noted that the taxonomy of sponges at the genus and species level is very

fluid and there is often disagreement between taxonomists as to the phylogenic

placement of various individual sponges and even phyletic, class, ordinal, or familial

relationships are often disputed.23

Dinofl agellates (Dinophyceae)

Dinoflagellates are microscopic, single-celled algae of phylum Chromophycota

(kingdom Plantae). Chromophycota is a diverse phylum of photosynthetic plants

covering nine separate classes, grouped together only because they all contain

chlorophylls a and c but not chlorophyll 0.35 Dinoflagellates have also been regarded as

being part of kingdom Protozoa (phylum Sarcomastigophor4 class Dinoflagellata)

rather than as an aquatic plant.3s-:z This debate has led some to believe that

dinoflagellates are phylogenically on the border between prokaryotes and eukaryotes;

they are therefore at times referred to as ,.mesokaryotes',.38,39

The dinoflagellates themselves are small (usually 5 pm to 2 mm in size), motile, cellular

bodies possessing two whip-like tails or flagella; one is usually found wrapped in a

transverse groove around the body while the second is used for movement and travels
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posteriorly behind the cell (see figure l.Z).^o Man), different forms of dinoflagellate are

known; the class comprises fourteen orders and 4g families.3s,al

Figure 1.2 sEM image of Protoceratiumreticulatumshowing ftansverse

and posterior groves. (Courtesy of Dr D. Stirling, ES& l99S)

Under the right environmental conditions, dinoflagellates can undergo a phase of

accelerated reproduction or "bloom'o where the concenftation of algal cetls can rapidly

increase from approximately 10-100 cells/L of seawater to 105-l0s cells/L in only a

matter of days.37'a0 The conditions when this happens usually correspond to a change of

season from winter to spring, or from spring to summer, when there is a substantial

increase in light, water temperature, and nutrient level. Blooms usually require a time of

settled weather as strong winds can disperse the cells if they are close to the surface of

the sea (see figure 1.3).",00
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Figure 1.3 A marine algal bloom in Hawkes Bay, New Zealand. (Courtesy of MrN.

Watsorq Hawkes Bay District Health Boardq 2003)

Mass mortalities of aquatic life can follow algal blooms for two reaso$r. Firsl the large

changes in cell number can result in a massive change in the concentration of dissolved

Oz in the seawater. Fish may dig often after a bloom has collapsd when a massive

depletion of dissolved O2 (anoxia) causes asphp<iation.al Second although most species

of dinoflagellate are harmless, some species produce toxins that when s€creted into the

zurrounding environment, orintroduced into the food chaiq can cause the death of othq

organisms. In some cases, the toxins are not dangerous to the consumer, but rathen they

are accumulated in the tissues of the conzuming organism and can intoxicate predators

higher in the food chain.37'3e'N'42 Abxn*ium, Dinophysis, Karenia, and Kulodiniwn,

are examples of well known toxin-producing dinofl4gellate genera.tt'n'4t

1.5 Isolation of Merine Netural Products

ffr" goat of marine natural products chemistry is to isolate novel chemical structureg

preferably with interesting and useful biological activities. By their very nature,
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biologically active secondary metabolites are often present in concentrations of less than

10 mg/kg of the sample organism, therefore isolating these compounds is expensive,

difficult, and time consuming.e To maximise the chances of achieving this goal, three

questions must be answered.

How does one select an organism with which to work?

How does one purifu (fractionate) the desired secondary metabolite to allow

identification?

3. How does one track the isolation of the interesting secondary metabolite from an

extract of the selected organism?

Selection is based upon a screening test performed on an extract of the organism, in

order to determine if there are any interesting secondary metabolites present. If there

are, the extract is subjected to a series of purification steps (chromatography) to separate

the compound from all the other chemicals present in the crude extract. Testing is

carried out at each stage of the isolation process, in order to confirm the presence of the

target metabolite. Once the compound is pure, it is then identified.

These steps are intimately linked. The screening method used to identiff which extracts

contain novel secondary metabolites is often the method used to test fractions generated

tJrroughout an isolation. A screen may require initial fractionation to semi-purify an

extract before testing. After each step in an isolation procedure, fractions generated will

be tested to check that the compound of interest is still present. Screening, testing of

fractions to guide isolations, and methods for fractionation, will each be discussed

below.

l.

2.
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Identification of Interesting Organisms

Extracts of many marine organisms will contain novel biologically active secondary

metabolites, whilst many others will be devoid of any interesting compounds, or they

may only contain previously reported metabolites. In order to decide which organisms

contain novel secondary metabolites, a preliminary screen needs to be performed on an

extract of the organism to assess the presence of any novel metabolites. If possible, it is

also desirable to identi$/ if the interesting metabolites present have been previously

reported (structure dereplication).

There are several strategies available to maximise the likelihood of selecting an

organism that contains novel secondary metabolites. First, a screen targeting a unique

biological activity may be used. This may not be advantageous, however, as known

compounds can be active in many different bioassay systems. Second, unusual

organisms that have not been previously examined could be targeted, as they may

possess a unique biochemical makeup. Finally, chemical testing using various

chromatographic separations prior to screening, or use of different spectroscopic

screens, can select for certain functional groups that often are found in novel structures.

This method can also maximise the chance of identi$ing known compounds at an early

stage.

Historically, screening of organisms for interesting metabolites revolved primarily

around observed thin layer chromatography (TLC) signatures using a variety of running

solvents and visualisation aides (R7 values, W absorbances and fluorescenceso

characteristic chars, etc).46 More recently, high-throughput screening using a variety of

biological assays has become prevalent. Many different in vitro bioassays focussing on

different molecular targets, including anti-cancer, anti-fungal, anti-bacterial and anti-

1.6
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inflammatory agents, are contmonly used to test crude extracts of marine organisms. An

organism is generally selected for further study if a crude extract from it has reached or

exceeded a certain level of biological activity (usually measured as the concentration

required to achieve a certain percentage kill or inhibition of growth e.g. LD56 or

ICro;.l' 16'1732'+e

Guidance of Crude Extract Fractionation

To utilise bioassay-guided fractionation, an extract of the organism selected by the

screening process is fractionated using standard separation technologies. After each step

in the isolation, all the fractions generated are biologically tested to monitor the activity

through the isolation procedure. A compound isolated in this manner will alwavs be

biologically active.

Bioassay guided fractionation does suffer from several disadvantages. Bioassay

processing time can be significant, meaning that the isolation process is often very slow.

Testing at each stage can be very expensive, especially when many fractions requiring

testing may be generated at any stage of the isolation procedure. Valuable mass of an

active compound is sacrificed at each stage for testing, reducing the amount of material

available for the identification of the purified metabolite.6 Identification of known

compounds is impossible with a purely bioassay guided fractionation. Bioassays

themselves are of necessity focussed very nilrowly and often go through ,.boom and

bust" cycles of popularity. This means that compounds isolated using a particular assay

may be of less therapeutic importance if the assay drops from popularity or usefirlness.

Whole body in vivo assays are inherently more useful from a therapeutic perspective

rhan in vitro assays, as they test biological activity in a whole organism rather than in

one cellular target. This can be misleading as the activity as a whole could be due to a
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mixture of biologically active metabolites affecting multiple linked cellular rargets,

rather than one single compound. In vivo assays are generally slow, more expensive and

difficult to perform, and require more material than in vitro cell-, enzyme-, or

receptor-based assays. Often, when an extract triggers an in vfvo based screen, a

surrogate in vitro assay is used to guide the isolation. This may guide the researcher to a

compound that is not active in the original in vivo whole organism assay. The

investigator is totally dependant on one assay to monitor and guide them through the

isolation procedure. If there are any inconsistencies or problems with the assay, the

efficiency of the isolation may be compromised.4s'4e Finally, most bioassays are

qualitative and therefore recovery of the active compounds can be difficult to quantiry

at each step. Also, those assays that can be quantified often exhibit large levels of

uncertainty in the final result (up to + 50Yo), making estimates of recovery difficult to

determine.

Two contrasting approaches for the guidance of an isolation were used in this study.

The first was an NMR based screen, followed by the NMR guided isolation of

metabolites from marine sponge extracts, the results of which are detailed in chapters

two, three, ffid four. The bioassay-guided fractionation of an algal toxin was also

performed and is described in chapter hve.

Methods used in the Isolation of secondary Metabolites

Regardless ofthe approach taken to guide an isolation procedure, a series ofsuccessive

separations must be carried out on a crude extract of the organism, in order to purifu the

interesting secondary metabolites present. There are many methods available for the

separation of a target secondary metabolite from the unwanted material in the crude

extract of a marine organism. It is estimated that an extract of I kg of sponge (wet

1.8
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weight) can contain more than 40 g of polar salts, proteins and sugars, over 5 g of

non-polar fats and steroids, and often less than 10 mg of the target secondary

metabolites.so Any attempt to modifu the polarity of a crude extract will result in the

precipitation of either the polar or the non-polar components, depending upon how the

polarity is modified.so

The most challenging part of the fractionation of secondary metabolites will often be at

the very start of an isolation procedure, due in large part to the vast array of compounds

of differing polarities found in the crude extract. Methods developed to fractionate

crude extracts include liquid/liquid partitioning, column chromatography using different

stationary phases, and vacuum liquid chromatography (VLC).

Liquid/liquid partitioning is a commonly used procedure where the crude extract is

shaken together with an immiscible solvent; ideally the target metabolite concentrates

preferentially in one of the two layers dependant upon its solubility in each. The layer

containing the interesting metabolite can be partitioned several times using different

solvent systems. Muny systems of immiscible solvents have been developed to separare

a wide range of target molecules.sl-s3 The advantages of liquid/liquid panitioning are

that only cornmon glassware is required, the procedure can be carried out on a large

laboratory scale (0-2 kg wet weight sponge), and only common solvents are normally

needed' Liquid/liquid partitioning is not perfect and there are several problems

associated with its use. First, large volumes of potentially environmentally damaging

halogenated solvents are often used. Second, stable emulsions of the immiscible

solvents are often formed. Third, the target metabolites may be spread over more than

one solvent fraction, reducing the resolution of the separation.sa
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Flash chromatography (pressure assisted chromatography) using silica gel (hydrated

silic4 a normal-phase chromatographic stationary phase) is often used as the first step

of an isolation procedure. Silica gel is best utilised to separate non-polar compounds

and is therefore of limited use when trying to fractionate mid-potarity biologically

active metabolites from crude extracts containing compounds of widely varying

polarity.ss Furthermore, polar molecules can irreversibly bind to the substrate,

potentially reducing recovery of materials that may very well be present in only small

amounts.

VLC was designed to help fractionate crude extracts and is a variation of flash

chromatography using silica gel. The crude extract is loaded onto a small column in a

volatile non-polar solvent, which is then removed by an applied vacuum. The column is

then sequentially batch-eluted under vacuum with solvents of increasing polarity. This

method is designed for normal-phase stationary packing materials only and is therefore

only suitable for fractionating non-polar compounds present in small amounts.

Chromatographic resolution of the technique is also limited due to the size and shape of

the column used.s6

Blunt and Munro developed the usage of octadecyl derivatised silica gel (ODS or C1s)

for the reversed-phase fractionation of crude extracts. The crude extract is added to a

small amount of C1s, ard the solvent removed under vacuum. This loaded stationary

phase is then transferred, either dry or as a slurry, onto a larger column, which is then

eluted with solvents of decreasing polarity.54 The method is a vast improvement upon

traditional techniques as it is faster than multiple liquid/liquid partitioning steps, shows

better chromatographic resolution, uses inexpensive glassware and, by using reversed-

phase substrates, polar molecules will not generally bind to the packing material whilst

allowing better separation of biologically active mid-polarity secondary metabolites.sa

-t7-



The method does suffer, however, from the fact that large amounts of extract can be

difficult to concentrate onto the solid support. Also, the process of eluting the column

can lead to stripping of the bonded-phase from the stationary support, reducing

reusability of the substrate. As well, basic compounds do not separate well on Cra.s7 To

prepare the Crs stationary phase, acidic silanol groups on the surface of the silica gel are

reacted with n-octadecyltrichlorosilane, and then with trimethylchlorosilane.ss If this

reaction does not go totally to completion, any uncapped sites will retain their acidic

character and can therefore ionically associate with organic cations (e.g. protonated

amines), leading to an almost irreversible binding of the metabolite to the substrate.

Very strong non-polar solvents are needed to elute these compounds from the C1s

stationary phase.57

Cyclic Loading

West and Northcote developed cyclic loading in 1996 to help in the fractionation of

crude extracts' Cyclic loading utilises poly(styrene-divinylbenzene) (PSDVB) resin, a

reversed-phased stationary phase that deviates from the use of silica gel, Crs,

liquid/liquid partitionso etc, in the initial fractionation of crude extracts.so It was

originally developed for processing extracts of the sponge Mycole hentscheli in an

ongoing screening programme. M hentscheli produces the biologically active

compounds mycalamide A (4), pateamine (s) and peloruside (6).rn*, All three

metabolites vary in both polarity and functionality, and therefore are difficult to

concentrate into one sample for analysis. Pateamine (5), in particular, is very sensitive

to changes in pH.5o'62

1.9
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PSDVB is a rigid, macroporous, cross-linked polymer support that is inexpensive and

reusable. It lacks any polar sites and so does not sufler from irreversible binding of

polar solutes. It has been found that PSDVB is very useful for the separation of basic

compounds and quaternary arnmonium salts.63 PSDVB is chemically inert in most

organic solvents, can be used at a wide range ofpH values (pH l-13), and can withstand

solutions of high ionic strength. These characteristics allow for a wide range of potential

applications.

Cyclic loading addresses the difficulty of loading crude extracts on reversed-phase

supports. The method involves the sequential dilution of a crude extract with HzO in

order to increase its polarity, thereby forcing less polar molecules to absorb to the

stationary phase (although conceptually this can be extended to diluting polar extracts

with increasing amounts of non-polar solvents to cyclic load onto a normal-phase

substrate)' Initially, the crude extract of an organism is passed through a column of

PSDVB, after which it is diluted with HzO. Under normal circumstances, addition of

(6)
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HzO to a crude extract will result in the precipitation of any non-polar fats, triglycerides,

and steroids present. Addition of HzO will not cause precipitation in this case, as the

non-polar metabolites will have already absorbed to the stationary phase and will no

longer be present in the diluted extract.so The diluted extract is then passed through the

same column again, with the mid-polarity compounds absorbing to the packing

material. The eluent is then be diluted further and is passed back tbrough the same

column again. The process of dilution and passing through the column is repeated until

all contpounds of interest are absorbed onto the column stationary phase. In mosr cases,

the target mid-polarity secondary metabolites will have been absorbed once the extract

has been diluted four fold and been passed through the column (see figure 1.4).to

The major drawback of cyclic loading is that the volume of solvent passed through the

column increases at each step. For example, if a sponge sample is extracted twice with

I L MeOH and is cyclic loaded in two dilution steps to 25% MeOH/FI2O, then a total of

14 L would have been passed rhrough the column [(2 x I L) + (l x 4 L) + (l x s L)].

This is time consuming, and often requires the use of large glassware.
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The disadvantage of increasing volume is far out-weighed by the advantages of the

method. No concentration of the crude extract is required prior to loading. No

liquid/liquid partition is performed. The solvents used (Meoft Me2co, Irzo) are

environmentally safe and inexpensive to supply in bulk. Finally, the method is easily

scalable from analytical through to industrial scale.so'e

passed back
ftrough same
PSIR B colurn.
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deslrcd conpoundr
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Once the column has been loaded, it is eluted using a stepped or gradient system of

increasing organic solvent (MeOH or Me2CO) in H2O.s0 The majority of the unwanted

mass of a crude extract is made up of polar salts, sugars and proteins, or non-polar fats

and steroids, while most of the target biologically active secondary metabolites will be

of mid-polarity, and so witl elute between the polar and non-polar compounds from a

reversed-phase support. This exploits the o'mass windo#', the region of lowest eluted

mass yet with the highest proportion of biologically active secondary metabolites

Conceptually, cyclic loading is the opposite of chromatography as the technique's aim

is to change the polarity of the mobile phase to force target compounds to sequentially

absorb to the stationary support. Fine separation is generally not achieved as the crude

extract is loaded over the entire length of the column in a manner similar to VLC,

reducing chromatographic resolution during elution. The aim of the technique, however,

is not to achieve great chromatographic separation, but is to allow easy fractionation of

a crude extract of a marine organism into a few discrete samples at the first stage of an

isolation scheme, separate from the majority of unwanted compounds and therefore

separate from the majority of the mass. The fractions containing the target metabolites

can then be further purified using standard separation techniques.

Variations of the cyclic loading method have also been developed. Backloading is often

used during an isolation procedure. Fractions eluted from reversed-phase

chrornatographic supports are usually mixtures of HzO and an organic solvent, which

are difficult to concentrate as they often "bump" when placed under vacuum. To

backload, the eluted fraction is cyclic Ioaded onto a smaller PSDVB column which can

then be eluted with a small volume of pure organic solvent. This has the effect of

concentrating the sample into a smaller volume of solvent that is easier to evaporate

without bumping than the original H2O/organic solvent mix.50 Another corlmon
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tecbnigue is to cyclic load a fraction o-nto a small amount of pSDVB which is then be

tnr,rasferred onto a larger ooluimn as a stuqr,y. The loaded PSDVB can then be

chromafiogmaphically separated in a silnillar way to Blunt anfl Munro,rs C* mEthod.s0#

These methods harrc become standard procedures used in Victoria University's Marine

Naflual hoducts. Leboratory for the separation of crude extraets in both the soreening of

organisms, as well as in the fraolionatisn of largor sarrple extacts.
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Chapter Two

Sponse Screening and Results

2.1 Initial Sponge Screening Methodologr

Rather than relying upon external bioassays to identifu sponges containing interesting

secondary metabolites, West and Northcote instigated an in-house lH NMR protocol for

the screening of semi-purified extracts. Of primary importance to the screening protocol

was structural novelty, with biological activity a secondary consideration. It was

assumed that novel structures often have novel activities that can be determined after

identification, rather than using biological activity to track the isolation of a secondary

metabolite. The protocol was required to be both cheaper and quicker than what was

available through use of out-sourced bioassays.so It has been noted previously that

in-house methods are preferable to external assays for speed, economy, and accuracy.as

West and Northcote's method used cyclic Ioading to help semi-purifu a crude sponge

extract until a sufficient amount of the sample could be dissolved in a single solvent for

analysis by tH NMR. Approximately 100 g of wet weight sponge was extracted with

MeOH. The extract was cyclic loaded onto PSDVB that was washed with H2O to

remove any polar salts and carbohydrates. The column was then eluted with 30%

MezCO/FIzO, 75yo MezCO/FIzO, and finally Me2co. The 75% Mezco fraction was

then backloaded onto a smaller PSDVB column and then eluted with MezCO. This

sample was evaporated to dryness and analysed by rH NMR in cDCl3.s0

It was assumed that the secondary metabolites most likely to be biologically active are

of intermediate polarity and would generally elute from the PSDVB column in the

75%oMe2co/H2o fraction. If analysis of the tH NMR screen of a sponge indicated the
-24 -



presence of novel secondary metabolites within the extract, fractionation of a bulk

sample extract of the sponge was initiated using NMR guided fractionation. Once a

metabolite was isolated and its structure elucidated, it was submitted for biological

evaluation in any bioassays available. The range of bioassays available to test pure

compounds is far greater in number than those suitable for screening crude extracts, and

the cost is generally lower due to the smaller number of samples submitted. Using this

strategy, West isolated eight novel metabolites, seven clerodane diterpenes, one of

which exhibited marked anti-inflammatory activity, and a biologically inactive sulfamic

acid indolo 13,2- a]cNbazol e. 
5 o

Although West's protocol was successful for the screening and tH NMR guided

fractionation of crude sponge extracts, it suffered from a limited spectral window. Most

of the semi-purified extracts screened still contained large amounts of fats, steroids, and

other primary metabolites, the signals of which obscured most other resonances from

0.5 to 5.5 ppm in the rH NMR spectrum. As a consequence, all the metabolites that

West detected contained olefins, furans, or aromatic rings, and so were readily observed

in the deshielded (> 5.5 ppm) portion of the rH NMR spectrum.so Many biologically

active compounds will not possess these structural features, therefore they would not

have any significant tH NMR signature in the spectral window available in West,s

protocol. The current study expanded upon West's method by utilising 2D NMR

experiments (COSY and HSQC) to better identifu interesting secondary metabolites in

semi-purified sponge extracts.

2.2 Revised Sponge-screening protocol

A standard protocol was established in order to screen extracts of target sponges. The

pre-screen semi-purification remained the same as that used by West.so After
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semi-purification, the screen sample was analysed using three different NMR

experiments; rH, COSY and HSQC. Initially, all screens were performed using both

CDCI: and CD3OD as NMR solvents. Early results indicated that more resonances

attributable to interesting secondary metabolites were observed in samples dissolved in

cD3oD therefore the use of cDCl: was abandoned in order to save time.

Once a suitable number of screens had been generated, all the results obtained were

collated, and mask sheets showing the positions of correlations from common primary

metabolite resonances were generated for both the COSY and HSeC spectra. For

analysis, a COSY or HSQC spectrum generated from a sponge screen was overlaid on

the relevant mask sheet, and the position of any novel signals identified. The

tH 
resonances of a secondary metabolite that had the same chemical shift as those of a

common primary metabolite would generally show novel correlations in the COSY

and/or HSQC spectra. These correlations would allow for a unique spectral signature to

be identified for the interesting metabolic product, irrespective of the primary

metabolites present. Once all interesting correlations had been identified in the

2D NMR experiments, the results from the tH, cosy and HSec NMR spectra were

considered. The screen was then assigned a rating based upon the novelty (position) of

any unusual resonances and correlations, the number of novel signals observed, the

amount of material present as estimated by the strength of the novel resonances, and

also by the availability of the raw sponge material both in terms of frozen sponge

available and ease of recollection.

If a sponge extract was deemed worthy of further investigation, the 30yo MezCO/HzO

and MezCO fractions from the screen were also analysed by NMR to identify the

presence of interesting compounds of a more or less polar nature than those highlighted

by the screen. This would also determine if the metabolites already identified had eluted
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into either of these two fractions, as knowledge of this could help optimise an isolation

of the targeted compounds.

2.3 Sponge-Screening Results

During this study, 51 sponges were screened using the refined NMR based screening

protocol described above (see table 2.1). All of the sponges were screened in

conjunction with the National Institute of Water and Atmospheric research (NIWA). All

organisms, including sponges, collected by NIWA as part of their marine natural

products chemical bio-prospecting programme, are given a Marine Natural products

(vrNP) number as a unique identifier. The sponges screened were collected from around

the North Island of New Zealand, mainly from the Three Kings Islands and Northland,

and also from around D'Urville Island on the northern tip of the South Island (see

figure l.l). Of the 5l sponges screened,43 were not investigated further for a number

of reasons' Many (29) did not appear to contain any compounds of particular interest, or

any novel compounds present were in too low a concentration to allow for efficient

isolation. Fourteen sponges were of moderate interest but were superseded by those of a

higher rating. Eight sponges were selected for large-scale extraction. Unfortunately, the

spectra generated from a large extract of one bore no resemblance to those of the

original screen and so this sample was not further investigated. The remaining seven

sponges are discussed below.
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69

90

91

95

116

134

161

183

190

201

216
219
223
227

232
238

241

246
296

304

352

353
?ta

375

440

547

548

552
704
707

729
744
827

975
1013

1015

1 016
101 I
1019

102'l
'to22

1024

1025

1027

1034

1038

Axinella

Chelonaplysilla

,ssosc/era

violacea

Orange, encrusting, ftiable
lophon fan, haplosclerid

Haplosclerida pale pink petrosia

Matted black finger brown convul.

Choristid (CrettaJike)

Cream sponge lobate fat finger

Yellow crusting sponge (Vermetid)

Flat tophan

Red/orange fan sponge
Orange ball sponge

Mopsella (brown)

Yellow encrusting Adouside-like
Pink fleshy globular sponge

Orange linger sponge

Tan Dysidea Encrusting Mucus

orange flat sponge

Flat yellow fibrous sponge

Three Kings Dredge

Princes

Princes

Great Banier lsland

NZ North Cape

NZ Dredge

NZ Dredge

NZ Dredge

NZ Dredge

NZ Dredge

NZ Dredge

Great Barrier lsland

Thee Kings Dredge
Three Kings Dredge

Stephen's lsland, O'Urvilte

127

1U
143

103

230
130

150

153

115

147

145
'180

283

138

132
133

'132

139

110

206

103

124

162
143

104

40

104

68

92

93

93

102
98

110

58

33

109

92

148

't07

69

84

31

46

29

33

28

42
?n

110

54

7
6

6

0

6

0

0

I
0

I
0

7

0

I
6

7

0

6

0

8

7
o

6

4

0

2

5

0

9

7

7

E

0

0

0

7

9
0

E

0

0

I
E

0

8

6

2

Table 2.1 summary of the sponges screened during this study.
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MNPOl96

An unidentified cream coloured lobate sponge that was collected by dredging near the

Three Kings Islands. The initial screen indicated the presence of an aromatic compound

from several deshielded HSQC correlations (6c 110-130,6H 6.90-7.80). None of the

aromatic resonances showed fuither COSY correlations to other parts of the spectrum.

Several other weak correlations in the aliphatic region of the HSQC spectrum (6c 30-

40,6s 1.00-2.10) were also identified (see figure 2.1). An extract of a large sample of

the sponge (426 g) was fractionated but unforfunately, the aromatic compound degraded

before it could be purified.

MNPOz4I

An unidentified orange fan sponge collected by dredging from the northern tip of the

North Island. Analysis of the screen indicated the presence of an olefin from two

characteristic deshielded HSQC correlations (6c I l6 and 124, 6H 5.30 and 5.60). Several

oxygenated methines were also evident from other correlations in the HSQC spectrum

(6s 58-82, 6H 3.5(H.20). These resonances showed significant couplings to resonances

in other portions of the COSY spectrum (see figure 2.2). An extract of 779 g of the

sponge was made and purification of the metabolite present attempted, however, the

interesting compound degraded over time before it was pure enough to be characterised.

A lack of more raw sponge material prevented further work to isolate the novel

component observed in the original screen.
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MNPO352

A sample of the sponge Biemna sp. collected fiorn the northern part of the North lsland.

The sponge was described as massive with purple exterior and tan interior colouration.

Analysis of the screen HSQC spectrum revealed interesting correlations from several

oxygenated methines, possibly those of a carbohydrate (6c, 60-78, 6H 3.00-4.00 and

acetalihemi-acetal 6c 100, 6H 4.85) as well as several ring junction methines

(6c35-40,611 1.00-1.50). This was supported by COSY correlations consistent with a

carbohydrate moiety. Several of the carbohydrate resonances also coupled strongly to

resonances in the aliphatic region (611 1.50-2.10) of the COSY spectrum (see

figure 2.3).

Extraction of 979gof MNP0352 yielded the known steroid 5a,8cr-epidioxy-6-ene-24-R-

ethylcholesta-3p-ol (7).ut'uu The presence of a sphingolipid compound (8) was also

suggested on the basis of characteristic deshielded NMR (oxyrnethine and amide)

resonances observed.6T-6e Isolation of this compound was stopped when it was deemed

too difficult to separate the sphingolipid from any other lipid material in the sample.

Compounds of this nature are difficult to follow in an NMR guided isolation as the

methylene tH NMR envelope of the metabolites alkyl chain is indistinguishable from

those of any fatty acids, triglycerides, or other long chain alkane derivatives present.

R1:carbohydrate

R2:alkyl chain

R3:alkyl chain

(7) (8)
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MNPO355

A sample of Zyzzya sp. dredged at the Three Kings Islands. Several notable HSQC

correlations from the screen indicated the presence of several hetero-aromatic

resonances (6c 110-140, 6r"1 6.80-8.40). Analysis of the strong COSY correlations from

these aromatic resonances allowed construction of two individual spin systems. Several

of the aromatic lH ,esonances showed further COSY correlations into the aliphatic

region of the spectrum (see figure 2.5). Fractionation of an extract of a further 84 g of

the sponge, in combination with the original screen of 162 g. led to the isolation of a

bis-indole compound containing three brornine atoms, similar in structure to the

topsentin (9) or dragrnicidin (10) families.T0'74 Unfortunately, a suitable chemical

formula could not be identified from analysis of the HRESIMS spectra, nor could the

complete structure of the molecule be determined from the NMR data obtained,

preventing the identification of the isolated metabolite,

Two substructures

figure 2.4).

r--f\a
""\--\2

(e) (10)

identified for the brominated bisindole are shown below (see

Figure 2.4 Strbstructures of a tribromobisindole compound isolated from Zyzzycr sp.
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Bioassays carried out by NIWA on a crude extract of MNP0355 indicated strong

anti-viral RNA activity, prompting further biological testing. A repeat assay on this

crude extract. along with testing of semi-purified fractions of the isolated bisindole, and

on further crude extracts of small samples of MNP0355, all returned negative results.

MNPOTOT

A sarnple of Axinella sp.. collected by dredging from Spirits Bay. at the northern tip of

the North lsland. The initial screen of the sponge (93 g) was one of the most promising

fbund using the revised screening protocol. The HSQC spectrum indicated the presence

of a large variety of deshielded aromatic (6c 105-135,6H 6.20-7.60) and oxymethine

(5q 70-75. 6rr 3.70-4.10) resonances. Substantial numbers of couplings from these

lH resonances were noted in the COSY spectrLlm (see figure 2.6).

Unfortunately, only a small amount of sponge (59 g) was available for extraction. The

extract of this was combined with the original screen sample for further fractionation.

Even when combined, this was less than optirnal for an isolation procedure (ideally

> 0.5 kg of sponge is extracted). Analysis of correlations in both the HSQC and COSY

spectra of semi-purified fractions indicated the presence of a number of compounds

belonging to the oroidin (ll) family of compounds.Ts The (l0Z)- (12) and (l0E)- (13)

geometrical isomers of hymenialdisine were isolated from the sponge and their

structures conltrmed by cornparison with published HRESIMS and NMR data.76,77 The

NMR signatures of both 12 and 13 show a strong pH dependence, as they can exist in

tautomeric fonns depending on the degree of protonation that the metabolite exhibits.Ti
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(12) (13)

A ftrther rretabolite was also isoiated with severa[ NldR resonanc€s similar to those:

observed for 12 and 13. Also, like 12 and 13, this cornpound suffered from a lack of

COSV and HMBC oorrelations ftorn which to assign its struoture due to ths highly

proton defreient nature of the m.olecule. Cor4pounds 12 and 13 are, espeeially proton

deficient in the conjugated lieterocyc.llc portion o,f the moleoules. As a consequence, the

structure of the third metabolite could r-rot be eluoidated using the spec,ha o-btained.

Several dttempts were made to produee crystals suitable for a single crystal x-ray

'struoture analysis, as the, identities of 12, 13, and other related rnetabolites had been

determined in this way.76'78;7e unfortunately none yielded crlnstals amenable to anarysis

by this rnethod.
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MNPOO9O

A sanrple of the orarlge friable sponge Clathria lissosclera, collected at the Three Kinds

Islands, was screened. Novel resonances observed in the HSQC spectrum included

those of several oxygenated methines (6c 62-80, 611 3.00-4.20) as well as several that

appeared to be fiom the ring junction methines and the ring methylenes of a steroid

(6c45-55. 6r-1 0.90-1.50). Also observed were several weak deshielded conelations

from a series of aromatic resonances (5c 115-135,6H 6.60-8.30) (see figure 2.7). An

extract of 610 g of the sponge was fractionated to yield two novel anti-inflammatory

sterols (32) and (33). This work is detailed further in chapter three.

MNPO979

An extract of a tan encrusting sponge of the genus Chelonaplysilla, collected using

SCUBA at Stephen's Island, Marlborough, gave the most interesting screen

encountered dr"rring this study, with the largest number of novel correlations in both the

HSQC and COSY spectra. Several comelations attributable to acetal or hemi-acetal

resonances were present (6g 100-110, 6tr 4.90-5.20). as were those of multiple

oxymethines (6q 70-75,6H 3.30-4.00). Also of interest were conelations relatively

shielded in the carbon dimension (5c 40-55) yet deshielded in the proton (6H 4.00-4.20).

Strong COSY conelations were found from all of the previously mentioned

'Hresonances to all otherparts of the spectrum (see figure 2.8). An extract of 182 g of

the sponge was fractionated to yield several novel metabolites based upon the

reananged spongian diterpene skeleton (138-143). The isolation and structural

elucidation of these compounds is dealt with in chapter four.
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2.4 Conclusions of the Revised Sponge-Screening Protocol

'fhe isolation of several metabolites without significant deshielded lH ,esonances

highlights the importance of using NMR experiments that will reveal signals that would

otherwise be masked by the resonances of common primary metabolites. This has been

achieved by using 2D COSY and HSQC spectra, and by developing masks of primary

metabolite signals, which are used to readily identifu the position of any other novel

correlations present. The use of CD:OD, rather than CDCI3, has led to the isolation of

several metabolites of a more polar nature than those West isolated. Whether the

majority of metabolites found using this revised screening method are more likely to be

structurally novel and/or biologically active than those using West's original protocol

remains to be seen.

Subsequent development of the screening protocol described here has included addition

of an internal standard to the NMR sample to help quantify the approximate amounts of

any novel compounds present, and also a refinement of the criteria used to select and

prioritise sponges for large-scale extraction, Further rvork searching spectral databases,

and potential use of other spectroscopic techniclues including MS, will further enhance

the protocol to be able to identify known compounds, and to identify the most

promising sponge extracts for further investigation.

One important aspect of the refined NMR screening method used during this study is

the relationship between a screen. the fractionation of the target compounds, and the

guidance of an isolation procedure. Guidance of an isolation is obviously carried out

using NMR after each step in isolation. Any resonances highlighted in the screen should

be easily identified in subsequent fiactions generated after various stages of purification.

The purification procedures thernselves represent the application of accepted, robust,
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methods for isolating compounds ftom crude extracts a4d semi-purified fractions. \ttlhat

is not immediately obvious with ilre ourrenl method is whish sponges are worthy of

further investigation. The crucial part of the screening process is to rapidly identifl

sponges containing interesting secondary metabo,liteso in order ts seleet which szuuples

are worthy of further detailed investigation.
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Chapter Three

Clathriols A and B: Novel polvoxvsenated I4B sterols

isolated from the soonge Clathria lissosclera

3.1 Steroid Biosvnthesis

Steroids, which can be regarded as very highly rnodified terpenes, are common

metabolites found in all eukaryotic organisms. The steroid biosynthetic pathway has

been extensively studied and can be summarised as follows. The triterpene precursor

squalene (14), is produced by the unusual tail-to-tail coupling of two famesyl

pyrophosphate molecules.l3'80 Squalene (14) is then enzymatically epoxidised by

.squalene oxidase at one of the two terminal alkenes. The epoxide is protonated, and

then opened via nucleophilic attack by the olefin six carbons away. This yields a

carbocation intermediate which undergoes a series of ring closures that in-turn, is

followed by several 1,2-hydride and 1,2-methyl shifts to form the tetracyclic triterpene

lanosterol (15) (see scheme 3.1). It is thought that both the cyclizations and the

carbocation rearrangen'lents are carried out in a conceded fashion and not as stepwise

proaasses. t''*o

Scheme 3.1 Biosynthesis of lanosterol (15).r3'80

oxr.
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Hydrogenation of the side chain of lanosterol (15) is followed by oxidation of one of

three methyls to a hydroxyrnethyl and then to a formyl group. The formyl group is then

lost as methanoic acid, to form a demethylated product. Similar demethylation occurs

twice more. Isomerization of the A8'e olefin to a As'6 olefin finally forms the archetypical

steroid cholesterol (16) (see scheme 3.2\.t3

Scheme 3.2 Oxidative demethylation of lanosterol (15) to form cholesterol (16).''

Common derivatives of the basic steroid skeleton, exemplified by 16, include oxidation

and alkylation of both the tetracyclic and side-chain portions of the molecule.

Alkylation is believed to occur through stepwise methylation by the biological

methyl-group donor, ,S-adenosylmethionine (17), in a reaction involving nucleophilic

attack of an olefin upon the activated methyl of the sulfonium group of 17, followed by

a 1,2-hydride shifl, before loss of a proton to fonn a new double bond. Methyl and ethyl

l.HcooH

H
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derivatives are commonly found, although examples of up to penlyJ extEllsions are

know^n (see scheme 3.3).tt Blological oxidation is generally earried out by en4rmes of

the eyto-ehrome P45s family, although other e.nzymatic pathwaye cqn also be irsed. t3

,"hfu. ad.nosine

#-->y-4r
It

'{(\,,A=4./+l
I /ahl_l\ffi.lt*Al -rl

Schorne 3.3 Alkylation of steroid side chaitls.13'81

Figure }1 Stereochernistry o-,f cholesJerol (16).E0
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3.2 Sponge Sterols

Following the pioneering research of Djerassi in the 1970s, sBonges have proven to be a

rich sor.,lroe of interesting ste,ro-ids. Many rseent examples have exhibited both nov'el

biological activities and structural diversity with unusual side chains and varied

ftrnetionalities.sl'83 Some researcrhe$ believe that spo.nges may provide the widest

steroid divereity inthe whole arimal kingdom..Ps

Aragusterol A (18) was isolated from arr Okinaw.nn $Fonge, Xesta pongla sp.. Sterol 18

exhibited very strong in vttro activity, inhibiting eell protriferatiou with subqranomolar

ffnge aativities against a varieti of nrammalian cancer coll lines. It also exhibited potent

in vivo activity against tumours in mice,8s Aragusterols B (f D ar-d D (20) were later

reported from the same sponge. Bioassays revealed ftat ilg sholrred redueed activity

w-hencompared to l8 whilst 20, surpriis'ingly, showed 4o activity at all.8-6

(1e)

(20)



Two novel cytotoxie sterols were isolated ftom the Tirnisian sponge Dysidea ineruslans.

Incnislastero,ls A (21) and B (22) exhibi'ted nanonrctar range activity against a series of

humao trilrour eell lines.87

(21) Q2)

.dgo:sterol A (23) was isolated fronn a samp-le o,f Spangia sB.. Th,is sterol acetate

possesses activ.ity that reverses Multidn€ Resis ance (lvIDR) in tumow cellso a

desi-ralle e-ffect for improving the effrcacy of eancer chernotherapy agents. Aftet

treatment with 23, KB-C2 and KB-eV60 eancer sell,s showed a eornplete reversal of

drug resistance to colchicine and vincrisfiine respectively; maldng 23 a stong candidate

for furthor clinical investigations.ss'8e

(23)

l4p Sterols

In 1992, Andersen and Burgoyne isolated a uuique sterol ftom the :spong;e Petra.sia

contignala, Cootignasterol Q4) is the ftrst exarnple ,of, a narurally 'occurring sterol where

rings C and D are flrsed in a cis fashion, leading H-14 to be in t},rc "unnatural" p
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orientation. Equili-bration sfudies on semi-,sy'nthetic l5-keto eterols have shownthat [4p

stErols are nrore stable tharr their 14cr epimers.e0'el eontignasterol @4) show,ed sHong

anti-inflammatory activity, inhibiting histaurine re.leilsCI in rat peritoneal mast cells

([Cso=0.8 pM). As well, 24 inhibited tracheal contractions in ovalbumin-sensitised

guinea pig tracheal rings in a dose dependent mannetr, indicating its potential irse as an

anti-asthmatic agent. The absolute stereochernistry of,?4 was recently published.e:-es

(24)

Shortly after the prblication af 24, fwo more l,4p sterols were ;report€d ftorn the

Okinawan sponge Xestospongia hergg:u,ista. Xestobergsterols A (25) and B (26)

exhibited potelt inhibition of histanrine rele.ase in rat peritoneal mast oe,lls ([C5e:0.05

and 0.10 pM respectively).e6 The structures of 25 and 26 were laterrevissd, afterthey

were reisolated along with xestobergsterol e QT from an Okinawan lrineta sp.. This

study also identified the absolute stereochemishry of 25 by the cd chiral exciton method.

Cytotoxic activity was noted for both 25 and 2? against mruine leukaemia cells.97

-49-



(25) fu=t1, RrOH

(26) R1=R2=!l

(24 Rr:Rz{H

A new 14p sterol, haliclostffronc sulfate (28), was isolated, along with the knovvn

metabolite halistanol sulfate (29), ftona Malaysian Haliclons sp..e8

(2e)

The l4cr (30) and l4B (3D epirners of the same sterol, tamo.sterone sulfate, were

isolatEd from a Microneoian spong€ of a new genus within the baplosclerid family

Oceanapiidae, This. is the first ex-ample of the co-isolatisn of both C-14 epimers sf thE

s&rire sponge sterol.ee

(30) laq

(31) 14p
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3.4

All six reported naturally occurrirrg l4p steroids have been isolated frorn marrine

sponges although there are many exan:ples of synthetic l4B sterols. All natumlly

occurring 14B sterols have a ketone at C-15, potentially offering an enol-stabilised

earbanion rout€ for the epimerisation of C-14.

Clathria lissosclera

Dwing the course of rotrtine NMR based $p-onge screening; it was noted that an eKffact

of the sponge Ctrathrta ltssaselera (MNP0090), dredged from 100 m at the Three Kings

Islirnds, Northland, New Zealand (see figure 3.2), showed correlations indicative of

several oxygenated nrethines in both the COSY and HSQC NMR specfta (see chapter

two). A subsequent MeOII extraot ,sf 610 g of C ltssosclera, fr-aetionated using

repeated reversed-phase chromatography, yieided the novel sterol clatb,riol A (32)

Q6.2 mg).100 F,rthet analysis of the sid,e fractions generated during the isolation of 3-2

indicated the p.resence of se.veral more related sterols. Fufher purification using both

size-e,xclusion and repeated normal-phase chrornatography- resulted in the isolation of a

second novel sterol, clatbrlol B (1.3 mg) (33) (see sclreme 3.,3).tot
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Figure 3.2 Hydrographic chart of the Three Kings Islands.

(Courtesy of Land and Information New Zealand)
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61O9 Clathria /issosc/era

Extract 2 x MeOH

PSDVB column (HP20)

30% Me2CO 80% Me2CO 100% Me2CO

PSDVB (Amberchrom)
Gradient elution

10% MerCO 49a/o-61o/o Me2CO 85% MerCO

PSDVB (Amberchrom)
Gradient elution

35% Me2CO 49Vo-51% Me.CO 51%-53% MerCO 75oh MerQQ

0% MeOH/CHrCl, 10% MeOH/CHrCl, 20% MeOH/CHrCl, 50% MeOH/CHrCl,

5% MeOH/CHrCl, 6-8% MeOH/CHrCl, 10% MeOH/CHrCl,

Si02 (Flash)
4% MeOH/CHrClt

Scheme 3.4 The isolation of clathriol A (32)

and clathriol B (33) from ('lathria Iissosclera.

('lathria li.rsoscleru Bergquist & Fromont (Class Demospongiae. Order Poecilosclerida,

Family Microcionidae) is a thickly encrusting to massive. orange, friable sponge. The

ectosomal skeleton is cornprised of a sparse tangential or paratangential layer of
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subectosomal styles supporting a thin layer of isochelae. Megascleres are slnooth styles

(250 pm long) with microscleres being palmate isochelae (20 pm long) and, less

frequently, toxas (70 pm) (see figure 3.3).t'''ut

Figure 3.3 Physical structure of Clathria lissosclera.

(Courtesy of Professor P. Bergquist)

D: Surface view of Clathria lissosclera surface showing circular oscules.'02

E: lrregular reticulate choanosomal skeleton (x t l3).'02

F: Spicules (x 650).'02
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3.5 Clathriol A

Observation of HRESIMS pseudo-molecular ions in both positive and negative ion

modes enabled the molecular formula of clathriol A (32) (26.2 mg) to be established as

CzsHsoOs V79.3754 [M+H]', L3.7 ppm;477.3582 [M-H]-, A 1.5 ppm), implying five

degrees of unsaturation. Evidence of four exchangeable protons was obtained by

running a negative ion mode HRESIMS of 32, using DzO and CD3OD as the injection

solvent, where a pseudo-molecular ion of 481 .3903 was observed, corresponding to the

exchange of four deuteriums. The four exchangeable protons were assumed to be from

hydroxyl functionalities as a strong OH stretching band (3308 cm-'1 was observed in the

IR spectrum. A C:O stretching band indicative of a saturated ketone was also observed

(1729 cm-l). Further evidence for a saturated ketone was obtained from a '3C NMR

resonance at22l.9 ppm. AII other 28 carbons and 46 hydrogens attached to carbon were

observed in the llc and tH NMR spectra respectively. One-bond carbon-proton

correlations were established by an HSQC experiment. Detailed analyses of the l3C and

DEPT NMR spectra gave evidence of a saturated carbonyl, four oxygenated methines

(6c 75.8, 75.I,71.8,69.6), eight methines (55, 53.4,52,6 49.8,48.5, 47.2,40.4,35.4,

29.4), eight methylenes (6c 39.0,38.2, 38.1,33.5,33.0,31.5,25.8, 22.8), six methyls

(6c 2l .5,20.7,19.8, 19.4" 19.4,13.7) and two quaternary carbons (6c 42.6,36.9). With

no further evidence of double bonds, a tetracyclic structure was required to satisS the

remaining four degrees of unsaturation. It should be noted that severe resonance overlap

in most of the NMR spectra, especially fbr the majority of the methylene 'H resonances

of 32, made the unequivocal assignment of the metabolite's structure a non-trivial

exercise (see figure 3.4).
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Figure 3.4 Shielded portion of the 'H NMR spectrum of

clathriol A (32) indicating severe spectral overlap at 300 MHz.

Examination of correlations in both COSY and lD-TOCSY experiments from the four

well resolved oxymethine 'H resonances between 4.5 and 3.0 ppm allowed the

establishment of two separate substructures. A linear fragment (fragment A) was

established frorn the observation of COSY correlations from the lH resonances of a

rnethylene (C-2:6c 31.5,69 1.7I, I.34) to those of an oxymethine

(C-3:6c71.8,6n3.47) and then to another methylene (C-4: 6c 33.0, 6H 2.15, l.16).

Similarly, a linear sequence of five methine carbons was established on the basis of

observed COSY cross peaks from the resonances of their attached protons [methine

(C-5:6q 48.5,6H LIO) to oxymethine (C-6:6c 75.1,6u 3.06), to oxymethine

(C-7: 6c 75.6, 5n 4.30), to a methine (C-8: 6c 40.4, 6H 1.62) and finally to a methine

(C-14: 6c 53.4, 6H 2.84)l to give fragrnent B. Although no direct linkage between

fragments A and B could be determined through COSY correlations, the linkage was
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established by strong ID-TOCSY correlations" observed between the tH resonances of

H-3 and H-6. This connection was confirmed by an HMBC correlation from the lH

resonance of H-6 to the r3C resonance of C-4, completing substructure I (see figure 3.5).

L,:j*tlfr

H*
Hu%-,.rr,"\

H\o"l

,--\

tH-tH cosY

t6-tsg HMBC

Figure 3.5 Selected COSY and HMBC correlations used to

establish substructure I of clathriol A (32).

Substructure II was determined from COSY correlations observed between the

tH resonances of an oxymethine (C-28: 6c 69.8, 6a 3.77) to those of a methyl

(C-29:6c20.7,6H Ll4) and a methine (C-24:6c 52.6,6H 1.08) (see figure 3.6).

1H-lH cosY

Figure 3.6 COSY correlations used to establish substructure U of clathriol A (32).

Strong long-range HMBC correlations were observed from the tH resonances of the

five remaining methyls of 32. Two secondary methyls [(C-26: 6c 19.4, 6n 0.88) and

(C-27:6c 21.5,6u 0.91 )l showed HMBC correlations to the t'C resonances of each

other, and also to those of a methine (C-25 : 6e 29 .4,6s I . 86), establishing an isopropyl

side chain. They also both correlated to the r3C resonance of methine C-24, thereby

extending substructure II (see figure 3.7).
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1H-13c HMBC

X'igure 3.7 Se,lected HMBC correlations establ-ishiug the

-3-(4-methylpentan-2-ol) side ohain (subsfructure II) of clathriol A (32).

Detailed analysis of the HI\4BC spectrum revealed strong correlations ftorn the

nH resormnce of a tertiaryangular methyl (C-19.: 5c 13.7, SH 0"S3) ts thE l'lCtesonanc,es

o.f a rnethylene (C-l: Ec 382,6n 1.71,0.93), a methine (e-9: 6c 47.2,6s 0,93), a

qu$ternary oarbon (C-10: 6c 36"9) and mettrine e-5 of substnrcture I. This allowed

methyl CH3-19 to be colueeted to quatemary oenlre C-10 and alss established linkages

frorn C-10 to C-1, C-5 and e-9'of substructure'I (secfigure,3.8).

The rH resonanse o,t the other tertiary angular rnethyt (Gt8: 6c 19.4,6H 1.19) showed

strong HMBC correlations to the l3C re-sonanees of a rnethylene

(C-IZ:6c39.0,8n I.37, l.t7), a quaternar.y cerrtre (C-13: 6q42,.6),, a methine,

(C-tr7:Eg49.8,6n i1.72) and also methiuE C-14 of subs-tnrcture I. Thes.e observationsr

allswed placernent of CHrlS at C-13, estabtished the linkagee between C-13 and C,-12,

e-14, and C-17, and,allowed for epansio.n of substrucfure I to include the two angular

melhyle (see figure 3.8).
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r6-1sg HMBC

Figure 3.8 Selected HMBC correlations connecting CH3-18

and CH:-19 to substructure I of clathriol A (32).

The rH resonance of a secondary methyl (C-21: 69 19.8, 6H 0.94) showed HMBC

correlations to the ttc resonances of a methylene (C'22:6c 33.5, 6n 1.60, 0.90) and trvo

methines lC-17 and (C-20: 6c 35.4, 6H l.9l)]. A COSY correlation observed between

the rH resonances of H-20 and CH:-21 indicated the attachment of the secondary

methyl on C-20 between C-17 and C-22 (see figure 3.9).

lH-lH cosY

t6-tsg HMBC

Figure 3.9 Selected HMBC correlations connecting

CH3-21 to substructure I of clathriol A (32).

All of the previous observations had established the connectivities of substructure I

(nineteen carbons) and substructure II (six carbons), leaving three methylenes and a

ketone to be assembled into a tetracyclic structure as required by the remaining degrees

of unsaturation. COSY cross-peaks could not be reliably used to identiff correlations
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from the 'H resonances of the remaining methylenes, due to the severe spectral overlap

in the shielded region of the rH NMR spectrum (see figure 3.4). 1D-TOCSY, HMBC,

and HSQC-TOCSY experiments were therefore used to assign the remaining

connections within the molecule.

The presence of a six-membered ring (ring A of a steroid) was identified by selective

excitation of thelH resottance of H-3 in a lD-TOCSY experiment. Correlations to the

'H resonances of both protons attached to methylenes C-2 and C-l were revealed

sequentially as the spin-lock mixing time was increased, thereby establishing the

connection of C-3 to C-2 and C-2 to C-1. This connectivity was confirmed by a series of

HSQC-TOCSY experiments where a rH resonance of C-l (6c 38.2,69 0.93), showed

TOCSY correlations to a 'H resonance of C-2 (611 1.34) and also of C-3 (5H 3.47),

thereby confirming the C-l C-2 bond and reinforcing the establishment of ring A (see

figure 3.10).

The presence of ring B was established from HSQC-TOCSY conelations from the

rHr"sonance of H-7 (6c75.6,611 4.30) to that of H-9 (6H 0.93) via H-8 (6H 1.62), as

observed sequentially through experirnents with increasing spin-lock mixing times. The

connectivity of the final six-rnembered ring (ring C), was determined from further

HSQC-TOCSY correlations between the rH resonance of H-9 (69 47.2,6H 0.93) and

those of two methylenes [(C-ll: 6c 22.8, 611 1.52, 1.25) and C-12], indicating the

placement of C-l I between C-9 and C-12. The placernent of C-l I was confirmed by the

observation of an HMBC correlation tiom the IH resonance of H-8 to the'3C resonance

of C-l I, thereby completing the connectivity of rings A, B and C (see figure 3.10).
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'D)
H-/

HSQC-TOCSY

1D-TOCSY

//--\ 16_ts6 HMBC

Figure 3.10 Selected correlations establishing the

connectivity of rings At B and C of clathriol A (32).

Further analysis of HSQC-TOCSY correlations from the rH resonances of a methylene

(C-23:69 25.8, 6H 1.36, l.14) to those of H-20 (6H l.9l) and orymethine H-28 (6H 3.77)

revealed connections from C-23 to both C-22 and C-24. This observation was consistent

with an HMBC correlation observed from the tH resonance of H-28 to the

t'C resonance of C-23, thereby linking substructure tr with rings d B and C (see

flrgure 3.1l).

HSQGTOCSY

t;1trg HMBC

Figure 3.11 Selected correlations connecting rings

A,, B and C with substructure tr of clathriol A (32).

Connections to the remaining methylene (C-16: 6c 38.1,6u 2.36,2.18) and ketone

(C-15: 6c 221.9) were assigned on the basis of observed HMBC correlations. HMBC

correlations from the deshielded tH resonance of H-l6p (6H 2.36) to the t'C resonances
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of C-13, C-17 and C-20 revealed the attachment of C-16 to C-17. Observation of

FIMBC correlations fronr the 'H resonances of H-8, H-14 and H-l6P to the

'3C resonance of ketone C-15 provided evidence for the last two carbon bonds, C-14

C-15 and C-15 C-16. Further evidence for the placement of C-I5 was provided by the

deshielded chemical shifts of the 'H resonances of H-14 (6H 2.84),H-l6cr (6H 2.18) and

H-l6B (6H 2.36), and also by an HMBC correlation from the resonance of H-l6p to that

of C-14. These correlations established the five-membered ring (ring D) and completed

the steroidal carbon skeleton of clathriol A (32) (see figure 3.12).

/---\ 1H_t3C HMBC

Figure 3.12 Establishment of the final connectivity of clathriol A (32).

The relative stereochemistry of ten of the thirteen stereogenic centres of clathriol A (32)

were determined by a combination of analysis of NOE correlations, observed in both

1D-gNOESY and ROESY experiments. and by measurement of tH-rH coupling

constants, determined from lH NMR, 'H-'H homonuclear decoupling, and double

quantum filtered COSY (DQF-COSY) experiments. Ring A was assigned as being in a

chair conformation, based on the both large and small vicinal coupling constants of the

protons attached to C-I. C-3 and C-4. The hydroxyl attached to C-3 was assigned as p

(equatorial), on the basis of the multiplicity of H-3. Proton H-3 was assigned as a

(axial). as its resonance showed coupling constants of greater than l0 Hz to both H-2a

and H-4cr, while also showing couplings of less than 5 Hz to H-2B and H-48. Strong
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NOE correlations from the lH resonance of H-3 to those of both H-lct and H-5

confirmed this assignment and also allowed placement of H-5 on the cr (bottom) face of

the molecule. The cr orientation of H-5 was consistent with the large coupling measured

between its resonance and that of H-4P. Strong NOE correlations were also observed

between the IH resonances of H-2p, H-4p and those of CHr-19, revealing the p (axial)

orientation of angular methyl CH3-19, and also establishing the standard steroid frams

A/B ring fusion (see figure 3.13).

n NoE

Figure 3.13 Observed NOEs establishing stereochemistry of ring A of clathriol A (32).

The rH resonance of H-6 showed strong NOE correlations to the resonances of both H-

4p and CH3-19. This, together with its large \,2-trmrs diurial coupling to the resonance

of H-5 (10.5 Hz), established H-6 as being axial on the B face of the molecule, and

thereby assigned the hydroxyl attached to C-6 as being equatorial below the plane of the

molecule (a). Observation of strong NOEs from resonance H-8 to those of both H-6 and

CH3-19 placed H-8 on the p face of the molecule as well. The resonance of H-7 showed

large vicinal couplings to those of both H-6 (9 Hz) and H-8 (10.5 FIz), consistent with

the C-7 hydroryl being equatorial (F). Assignment of the a orientation of H-7 was

supported by strong NOE correlations from the resonance of H-7 to those of H-5 and

H-9 (see figure 3.14).
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/-\ NoE

'i'L-t'
Figure 3.14 Observed NOEs establishing stereochemistry of ring B of clathriol A (32).

A large coupling observed between the resonances of H-8 and H-9, consistent with a

\,2-trans diaxial relationship, implied a trans B/C ring fusion. Methyl CHs-18 was

assigned on the p side of the molecule on the basis of the strong NOE correlation

observed between its lH resonance and that of H-8. Further NOE correlations between

the rH resonances of methyl CH3-IS and methine C-20 also placed the side-chain of

clathriol A (32) on the F face of the molecule (see figure 3.15).

Almost all steroids possess a trans C/D ring fusion. Detailed analyses of NOE

correlations in both ID-gNOESY and ROESY experiments revealed that the resonance

of H-14 showed strong correlations to the tH resonances of both H-8 and CH3-18 on the

p face of the molecule. This observation was consistent with H-14 being in the rare p

orientation, implying a cis CID ring fusion for the sterol. This was confirmed by the

small vicinal coupling constant observed between the resonances of H-8 and H-14 (3

FIz) and also the weak long-range W coupling (< 2Hz) between the resonance of H-14

and those of H-l2p and H-164, as observed inthe COSY spectrum (see figures 3.15

and 3.16).
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n NoE

Figure 3.15 Observed NOEs establishing stereochemistry

of C-14 and rings C and D of clathriol A (32).

rH-rH cosY

Figure 3.16 W-coupling observed in the COSY

spectrum between H-14 and H-12F of,clathrisl A (32).

Aszuming norrnal steroidal absolute configrrratioq the cyclic portion of the rnolecule

can therefore be assigned as 3,S, 55, 6n, 7R,8R,9,S, 10R, l3R, l4R, 17R.

(32)
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Ta.ble 3.1. r3C 
05 MIIZ) and IH (300 MHz) NVIR data (cDoD) of clathriol A (32,)"
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3.6 Clathriol B

Pseudo-molecular ions were observed for clathriol B (33) (1.3 mg) in both the positive

and negative ion HRESIMS modes, corresponding to the formula CzsFIaoOs (463.3423

[M+H]n, A 1.0 ppm; 461 .3298 [M-H]-, L 4.7 ppm), differing from that of clathriol A

(32) by one carbon and four hydrogens, and implying six degrees of unsaturation. As

with 32, all 28 carbons and 42 protons attached to carbon were observed in the t3C 
and

'H NMR spectra. One-bond proton-carbon correlations were established in an

HSQC-DEPT experiment. Again, the presence of a saturated ketone was suggested by

an IR C:O stretch (1729 cm-r; and supported by a deshielded r3C NMR resonance

(6c222.3). The presence of a disubstituted carbon-carbon double bond was indicated by

two deshielded IH resonances (6ey 5.63, 5.26) that correlated to two l3C resonances

(6c 134'6, 130.3) in the HSQC-DEPT spectrum. As there was no further evidence of

double bonds, a tetracyclic structure was required for 33 by the remaining degrees of

unsaturation.

Detailed analysis of the COSY and ID-TOCSY spectra allowed construction of two

separate lH spin systems. The two systems were identified and constructed from the

most prominent resonances in the 'H NMR spectrum, those of an oxygenated

methylene, two olefinic methines, and three oxygenated methines. The first spin system

consisted of a linear sequence of carbons from a methylene (c- I : 6s 36.g, 6s 0.g4, 1.69)

and ending with a methine (c-14: 69 51.7, 6s 2.74), as determined by cosy

correlations between the resonances of their attached protons fmethylene C-l to a

methylene (c-2: 6s 30.4, 6H 1.36, L77), oxymethine (c-3: 6c 71.1, 6n 3.54),methylene

(c'4:6s 32.1,611 1.24,2.24), methine (c-5: 5c 47.0,6H l.16), oxymethine
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(C-6: 6c73.5,6H 3.16), oxymethine (C-7: 6c 74.5, 6n 4.26), methine

(C-8: 6c38.9, 6n 1.58) and finally methine C-l4l (see figure 3.17).

The branch from C-8 to C-12 was difficult to identi$ from COSY correlations due to

the severe spectral overlap of various shielded tH resonances. A series of ID-TOCSY

experiments were therefore carried out to establish this connection. Selective irradiation

of the rH resonance of H-7 (6n4.26), using a variety of spinJock mixing times, revealed

correlations to two methines [H-8 (6n 1.58) and (C-9: 6c 46.0, 6n 0.89)], and two

methylenes [(C-ll: 6c 21.3, 6H 1.20, 1.50) and (C-12: 6c 36.5, 6H 1.19, 1.36)] in

sequence, establishing the C-8 C-9, C-9 C-ll, and C-ll C-12 linkages. A COSY

correlation from the rH resonance of methine H-9 to the deshielded proton H-llp,

which was itself coupled to deshielded proton IiI-LhF, confirmed these connections and

completed spin system I. This spin system was entirely consistent with the structure

established for clathriol A (32) (see figure 3.17).

tH-lH cosy

z^\ 1D-TOCSY

Figure 3.17 Selected COSY and ID-TOCSY correlations

establishing spin system I of clathriol B (33).

The second spin system from a methylene (C-16: 6c 37.9, 6s 2.17,2.40) to an

orymethylene (C-28: 6c64.7,6n 3.45, 3.64) was established from analysis of observed

COSY correlations between adjacent lH resonances [oxymethylene H-28 to a methine

(C-24: 6c 52.3, 6H 1.96), methine (C-25: 6c29.3,6H 1.58) to rwo methyls
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(C-26:6c 19.6, 6H 0.81) and (C-27: 6c 20.8, 6n 0.86); H-24 to olefinic methine

(C-23:6c 130.3, 6n 5.26), olefinic methine (C-22:6c 134.6,6115.63), methine

(C-20:6c34.9,6H2.75) to both a methyl (C-21:6c19.6,6H 0.99) and a methine

(C-17 6c 48.2, 6s 1.76), and finally H-17 to methylene C-161, completing spin

system tr (see figure 3.18).

oH 

- 

lH-lH coSY

Figurc 3.lE Selectd COSY correlations establishing spin system tr of clathiol B (33).

The final connectivity ofthe A B, and C rings was established by analysis ofthe strong

HMBC correlations observed from the rH resonances of two angular methyls

[(C-18: 6c 18.9, 6H 1.21) and (C-19: 6s 13.5, 6n 0.80)]. Strong correlations ftom CII3-19

to the t3C resonances of a quaternary centre (C-10: 6c 36.0), mettrylene C-1, and

methines C-5 and C-9, connected ring A with ring B. A similar analysis from CHg-18 to

the r3C resonarrces of a quaternary centre (C-13: 6c 41.7), methines C-14 and Cl7, and

methylene C-12, completed ring C and connected spin systems I and tr together (see

figure 3.19).
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tpto6 HMBG

tr'igure 3.19 Selected HMBC correlations connecting

spin systems I and II of clathriol B (33).

The only connections within the molecule remaining to be assigned were those to the

ketone, which were finalised on the basis of observed HMBC correlations. Strong

HMBC correlations were observed to a carbonyl r3C resonance (C-15: 6s222.3) fuom

the rH resonances of H-8, H-14 H-16a and H-168. As with clathriol A (32), further

evidence for the placement of ketone C-15 was given by the deshielded chemical shifts

of the adjacent protons H-14 (6H 2.74), H-l6cr ( 6H 2.40) and H-l6B 6H2.17). Weak

W-coupling between the resonances of H-14 and H-16p, as observed in the COSY

spectrum also helped to confirm this assignment. This completed ring D and finalised

the tetracyclic structure of clathriol B (33) (see figure 3.20).
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lH-lH cosY

t;1-ts6 HMBC

Figure 3.20 Selected COSY and HMBC correlations

establishing the final connectivity of clathriol B (33).

The relative stereochemistry of eleven of the twelve possible stereogenic centres of 33,

as well as the geometry of the olefin, were determined from a combination of tH-tH

vicinal coupling constants and NOE measurements. The magnitudes of the tH-tH

vicinal coupling constants were measured in both the lH NIlm. spectrum and in several

selective tH-tH homonuclear-decoupling experiments. NOE, correlations were detected

in both 1D-gNOESY and ROESY experiments. The normal sterol conformation of rings

A B, and C, was confirmed by NOE correlations observed from the rH resonances of

the two angular methyls CI{3-18 and CHr-19 over the I face of the molecule. In

particular, l,3-diaxial NOE correlations from the lH resonance of CHs-19 to those of

H-zP, H-4B and H-6, established the chair conformations of rings A and B, consistent

with the standard steroid trmrs t'rng fusion. Similarly, strong NOE correlations from the

tH resonance of CH3-18 to those of H-8, H-22 and H-23, confirmed the chair

conformation of ring C and also the placement of the side chain on the F face of the

molecule (see figures 3.21 and3.22\.
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The C-3 hydroxyl can be placed as equatorial on the basis of the observed coupling

constants of the resonance of H-3. The resonance of proton H-3 shows two large

couplings (greater than 10 Hz) to those of H-2B and H-48, whilst showing two small

couplings (less than 5 Hz) to those of H-2a and H-4a. This assignment supports the

stereochemistry suggested by the observed NOE correlations from angular methyl

CHr-19. This proposed assignment is further strengthened by observation of an NOE

correlation from the resonance of H-3 to that of H-5 across the cr face of 33 (see

figure 3.21).

Strong NOE correlations from the resonance of H-6 to those of both H-8 and CH3-19,

combined with the two large coupling constants measured between the resonances of

H-6 and both H-5 and H-7, which are consistent with |,2-trans diaxial relationships,

allow placement of the C-6 hydroxyl as equatorial. The C-7 hydroxyl was also assigned

as equatorial on the basis of the large coupling constants between the resonance of H-7

(> 10 Hz) and those of both H-6 and H-8, and also from the strong NOEs observed from

the resonance of H-7 to those of both H-5 and to H-9 across the a face of the molecule

(see figure 3.21).

The unusual B configuration of H-14 was agun suggested by the strong NOE observed

between the resonances of H-8 and H-14. Weak long-range W-couplings were also

observed between the resonances of H-14 and both H-l2B and H-16B, confirming this

assignment. A strong NOE was observed from the 'H resonance of CH3-18 to a

resonance at 2.74 ppm. This correlation, however, had to be ignored as both H-14 and

allylic proton H-20 resonate at almost the same frequency (H-14: 6u 2.74;

H-20:6H2.75) and both are in close spatial proximity to methyl CH3-18, therefore no

valid inference could be made from this observation (see figure 3.21).
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n NoE

f igure 3.21 Selected NOE correlations establishing the relative

stereochemistry ofthe tetracyclic portion of olatbriol B (33).

Restricted rotation ofthe side chaiq and therefore one dominant conformation, between

C-17 and C-20 was indicated by the weak coupling observed between their attached

protons. This was evidenced by the observation of a COSY cross peak between their

rH resonanoes and yet the absence of a measurable coupling constant. These

observations are indicative of a bond angle of approximately 90o between H-17 and

H-20. NOE correlations from the resonance of H-23 to those of CHr-18 and H-16p,

together with a correlation from the resonanc€ of H-22 also to that of CH3-18 clearly

places the olefin of the side chain above the plane of ring D on the p face of the

molecule in an anti-periplanar relationship to H-17. The R configuration of C-20 is

confirmed by an NOE correlation from the resonance of H-16p to that of CH3-21 (see

figure 3.22).

{J n NoE

K
Figurc 3.22 Selected NOE correlations establishing the relative

stereochemistry of C-20 of clathriol B (33).
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Finally, the geometry of the olefin was assigned as E on the basis of tlre large observed

eorrplihg oonstant measured between H-22 and H.23 (15.8 Hz). NOE correlations wcre

observed f,romthe resonanc€ of822to that of H-20, and frorn H-23w those of H-16p,

CHs2l and H-24, qnhich helped to eonfirm this proposal. Assurning nomal steroid

stereo,chsmistry, these observations allow clarbriol B (33) to be assigned as 3,S, 5S, 6R,

7R, 8.R,g.f, l0n, 13,R, l4n" [7.R,2AR,,22(E).

,r-'\[-[

'--[.!laj.Ji'
-/>r.'-o, o

nLl

(33)

21
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3.7

All of the NMR spectral conelations observed for the tetracyclic portions of clathriol A

(32) and for clatluiol A (33) were in complete agreement with each other. The

substitution of the tetracyclic portion is identical in both cases, therefore the consistency

of the independently detennined NMR data helped to confirm the proposed structures of

both metabolites. Both assignments were also consistent with those of the B, C and D

rings of contignasterol (2a) which shares the same functionality of these rings.e2 The rH

and l3C NMR chemical shifts of the side chain of 33 are also consistent with that

published previously for sterols with the same side chain.r03'r0a

Biological Activity

As contignasterol (24), and both xestobergsterols A (25) and B (26), had exhibited

potent anti-inflammatory activity, clathriol A (32) was submitted for both cytotoxicity

and anti-inflammatory testing.e0'ea'e6 [t was found that32 was not cytotoxic to any great

degree in the assay used (HL-60). It was, however, found to possess moderate anti-

inflammatory activity as measured by the inhibition of superoxide production by human

peripheral blood neutrophils, stimulated with either fMLP (N-formyl-methionine-

leucine-phenylalanine) or PMA (phorbol myristate acetate) with ICso values of 33 pM

and 140 pM respectively.ros Due to a paucity of material, clathriol B (33) was not

submitted for cytotoxicity screening, although it returned values of 27 1tM and 130 pM

in the superoxide anti-inflammatory assay, showing remarkably similar potency to that

of 32. Superoxide has been implicated as a cause of inflammation. In this assay, human

neutrophils are stimulated with PMA or fMLP to produce superoxide. The cells are then

exposed to the test compounds in order to assess whether they prevent inllammation as

measured by production of superoxide.r0s PMA and fMLP activate neutrophils at

different points of the cellular anti-inflammation process therefore the different
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activities of 32 and 33 against activation by PMA or fMLP imply that they inhibit

inflammation at different points of the cycle.

Literature describing the use of contignasterol (24) as an anti-inflammatory agent,

suggests that hemi-acetal or alcohol functionality is needed at C-29 for full biological

potency. It is also suggested that CH:-21 methyl ot C-24 isopropyl groups are not

crucial for the biological activity of the molecules.l06'107 Both 32 and 33 possess

alcoholic functionality at C-28, which is close to that portion of 24 that is required for

activity. Minor variation of the side chain between 32 and 33 (i.e. presence of an olefin,

methyl or ethyl substitution atC-24) has no noticeable effect on their anti-inflarrmatory

activity. Similarly, the substitution of the B, C and D rings of 32 and 33 is the same as

that of 24. This may suggest that this functionalisation of the rings is required for the

anti-inflammatory activity noted for these three molecules.

Derivatisations of Clathriol A (32)

Several derivatisations of clathriol A (32) were attempted in order to confirm the

structure of the molecule. Contignasterol (24) shares both similar substitution and the

same stereochemistry of the B, C and D rings as 32 and clathriol B (33). Due to the

slow epimerisation of the hemi-acetal side-chain, the structural assignment of 24 was

carried out on its tetra-acetate derivative. In order to compare the structure of 24 with

that of 32, the tetra-acetate derivative of clathriol A was prepared. The l3C and IH

resonances of clathriol tetra-acetate were assigned from correlations observed in the

COSY, HSQC and HMBC spectra. Both the chemical shifts and coupling constants of

H-8, H-9, H-l6a and H-l6B in both tetra-acetates were essentially identical to those

observed for the contignasterol tetra-acetate, confinning the structural assignment of 32.

3.8

I
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Two further reactions were carried out upon clathriol A (32). First, the base-induced

epimerisation of C-14 via an enolate ion was attempted by reacting 32 with NaOMe.

The reaction generated an intractable mixture of compounds, including some starting

material. It is possible that alkoxide ions were formed with the four hydroxyl

functionalities in competition to with the formation of the enolate ions, forming the

mixture of compounds.

Second, the NaBH+ reduction of C-15 was attempted. Again, this gave a mixture of at

least two compounds. The lH NMR spectrum of the mixture included at least two

additional oxygenated methine resonances. This implies the formation of two C-15

reduction products that are epimers of each other. These would be formed due to a lack

of preference for the attack of the hydride nucleophile upon the two faces of the sp2

ketone centre.

Other Secondary Metabolites Isolated From the Genus Clathria

Metabolites from Clathria appear to be largely under-represented in the marine natural

products literature with very few compounds reported from the genus. The only other

compounds previously reported include four steroids, three carotenoids, two ceramides,

thio-sugars, alkaloids, and polyolefinics.

Three novel 7-keto sterols were isolated from the Meditenanean sponge Clathria

clathrus. Structures (34-36) are the first examples of steroids isolated from a natural

source with the novel dienone oxidation pattem of ring B shown.l08

3.9
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(34) R:H (35) R:Me (36) R:Et

A novel sulfated sterol has recently been isolated from an undescribed Clathria species.

Clathsterol (37) was isolated by bioactivity directed fractionation after the sponge's

crude exfract was shown to contain a strong inhibitor of human immunodeficiency virus

type I revetse transcriptase (HIV-I RT).ton

Tanaka et al have reported a series of related carotenoids (38-a0) from the sponge

Clathriafrondifera in a continuing study on the pigments of Japanese invertebrates.ll0'

il3
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fia- r1:^*T -'"4
(38) (3e) (40)

Capon's goup in Australia have isolated several novel compounds from different

specimens of Clathria including 5-thio-D-mannose (41) from Clathria pyromida,wltjLch

was the first reported isolation of a S-thiosugar from a natural source.ll4 They also

prrblished clathrins A, B, and C (42-44) from an undescribed Clathria species. Although

not biologically active, they are of interest as they are possible linking intermediates

between the mixed terpenoidlshikimate and sesquiterpene/benzoid biosynthetic

pathways.lls Finally, they have also published the structure of the novel anti-bacterial

alkaloid, mirabilin G (45), from an undescribe d Clathria sp..l 16

R:

(41) (42)
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(43) (44)

(4s)

The elathrynamides A, B, and C (46-48) were isolated from an undescribed Clathria

sp.. Amide 46 was shown to strongly inhibit the mitotic cell division of starfish eggs,

and also inhibited the growth of human myeloid K-562 cells ir vilro, whilst 47 and 48

were not partieutarly active in either assay.llT

(46) R:H

(47) R:CH(CH3)CH2CHzCH(OH)CHI

(48) R:CH(CHI)CHzCHzCOCHT

.A. series of novel ceramide homologues (a9) and (50) were recently isolated from

Clathriafasaiulate collected in the South China Sea near Hainan Island.rls
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(49) Rr:CI{3, R2:Ho n:10-13

(50) R1:H, Rz:CHr, n:10-I3

The massive orange Indo-Pacific sponge Clathria basilana yielded the inactive alkaloid

clathryimine A (51), which was notable as it was the fust quinolizinium metabolite

isolated from a sponge.lle

Finally, the Palermo group has recently described three novel pteridine-type alkaloids,

pseudoanchynazines A, B and C (52-54), from a deep sea Clathria sp., collected in the

Southem Atlantic Ocean at a clam flrshery. This group is taking advantage of

aquaculture farms to gain access safely to sponges in areas that would norrrally be

either too deep or too extreme an environ (low visibility, rough weather conditions, etc)

to collect in.l2o

(sl)
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(52) R1=R3:H, R2=A

(53) R1:A, R2:R3:H

(54) R1=R2:H, R3:A

A

-83-



4.1

Chapter Four

Sponsian Diterpene Constituents of the

Marine Soonse C h e Io nap lv silla vio lsc e a

Dictyoceratid and Dendroceratid Sponges

Sponge taxonomists still debate the phylogenic placement of many sponges within

various orders, families, and genera, a situation closely linked to the difficulty in

positively identifying different specimens.2t'23'34In fact, there is even still debate at the

phylum and class level of sponge taxonomy.23 Problems with identification may arise

from either a historical taxonomic misplacement of an archetypical sponge, or from

disagreement on which morphological characteristics (spicule composition, colour,

shape, etc) to use for identification.2t'22'34

Sponges of the Dictyoceratid and Dendroceratid orders exempliff this debate. These

two orders contain sponges totally devoid of mineral spicules, as does the Verongid

order. It is not surprising that sponges devoid of spicules are difficult to identiff, as the

presence of certain spicule types is the most commonly used taxonomic marker.

Historically, sponges lacking inorganic spicules and with an obvious dendritic spongin

skeleton and large sac-shaped choanocytes, were classified as Dendroceratid sponges,

while others with anastomosing (netted) spongin skeletons were placed in the

Dictyoceratid order. Members of the Verongida are quite distinct from those of either

the Dictyoceratid or Dendroceratid orders, as their skeletons are comprised of pith

containing collagen fibres, rather than fibres made from spongin. The histology of

Verongid sponge cells is also quite different to that of the Dictyoceratid or

Dendroceratid orders.2l'33'l2l The difference between dendritic and anastomosing

skeletons can be diffrcult to identify, however, and may have led to sponges currently
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classed as either Dendroceratida or Dictyoceratida, to be artificially separated. As

techniques for the identification of sponges become more sophisticated, problems in

identification may be eliminated and various sponge orders, families, and genera, ffioy

be taxonomically reassigned, created, or removed, on the basis of genetic,

microbiological, or chemotaxonomic considerations. Interestingly, Bergquist has

suggested that, contrary to accepted practice for identification of most other sponge

orders, colour is often a diagnostic feature that can be used to differentiate between

species of the Dictyoceratid and Dendroceratid orders.33

Bergquist has also suggested that sesquiterpene content can be used a chemotaxonomic

marker between members of the two orders.23'tzt Previous work on a New Zealand

Dysidea sp. (Dictyoceratida) carried out within our laboratory has supported this

proposal.l22 During the current study, a series of spongian diterpenes were isolated from

a New Zealand specimen of Chelonaplysilla violacea (Dendroceratida). It was therefore

prudent to evaluate the available literature on any diterpenoids isolated from both the

Dictyoceratid and Dendroceratid orders, to determine if this class of compounds are also

of chemotaxonomic value.
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Kingdom

Phylum

Calcarea

Order Dendroceratida

Metazoa (Animals)

Porifera
/[

(Sponges)

Demos-pongiae Hexactinellida

Dictyocbratida Verongida

Family

S
\

Danvinellidae Dictyodendrillidae/\s
Genera ^rrr( *x,: Darwinella Dendrilla

violacea

Scheme 4.1 Phylogenic relationstnp of Chelonaplysilla violacea. For simplicity, not all

orders or species are shown.2t'23'34;t2r'r23

-86-



4.2 Diterpenes From Dictyoceratid and Dendroceratid Sponges

A survey of the literature to the end of 2002, encompassing all diterpenes produced by

both Dictyoceratid and Dendroceratid sponges, yielded well over 130 individual

structures. The following review summarises the major carbon skeletal groups, with

salient examples, rather than being a comprehensive listing of alt the diterpenes isolated

from the two orders.

4.3 Miscellaneous Diterpenes

Several varied classes of diterpenes have been isolated from Dictyoceratid and

Dendroceratid sponges. Faulkner and Walker published the structures ambliols A (55)

and B (56), ambliofuran (57), ambliolide (58) and dehydroambliol A (59), isolated from

the sponge Dysidea amblia. The structure of 56 was later revised when it was re-

isolated with ambliol C (60).r24'r25

(ss) (s6)

(s7)
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(se) (60)

The sponge Dendrilla sp. collected from a lake in Palau yielded (61), along with several

members of the dendrillolide family of compounds. Several structural revisions of the

dendrillolides were suggested after further isolation of these metabolites ftom the

predatory nudibranch Chromodoris macfarlandi 27'126't27

(61)

Three diterpenes with very different carbon skeletons were isolated from the Red Sea

sponge Chelonaplysilla erecta. Chelodane (62), barekoxide (63) and z,aatfuin (64) were

all biologically inaetive in the assays used, although the initial extract from the sponge

showed significant anti-tumour activity. 128

(62) (63) (64)

Lu and Faulkner isolated three new dolabellane diterpenes (6H7) and a macrolide (68)

from a Dysidea sp. collected in Palau. Neither dolabellane diterpenes nor any
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macrolides had previously been isolated from any species of Dysidea, thus the authors

felt that the four novel compounds were likely to be metabolic products from other

organisms that the sponge had obtained from its environment.l2e

(6s) (66)

AcO

H ""'l
AcO ""

(67) (68)

4.4 Spongian Diterpenes

By far, the most common type of diterpene from either the Dictyoceratid or

Dendroceratid orders, are those based upon the spongian carbon skeleton (69). This

group of compounds is so named, as many of the early members of this class were

isolated from the Dictyoceratid genus Spongia.tr0 The biochemistry of the spongian

diterpenes is punctuated with many examples of highly oxygenated and oxidatively

cleaved carbon skeletons. This is a quite different theme to that of many other classes of

compounds found from sponges.

The first metabolite isolated in this large group was isoagatholactone (70), from the

common Mediterranean bath sponge Spongia officinalis. The structure of 70 was
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confirmed by chemical correlation to the known compound grindelic acid, which

established the absolute stereochemistry of the natural product.l3l

-'{r-'q
.Hc I o)o

\:--,{
\f,,lB

l:.u..
9

(6e) (70)

Three firanospongian diterpenes (71.-73) were isolated from a Papua New Guinean

Spongta fficinalis bearing different levels of oxygenation at C-18.r32 A sample of

Hyatella intestinalis (Dictyoceratida) collected near Darwin, Northem Australia, yielded

three related frranospongian diterpenes (7 4-7 q.t33

(71) R:CH3

(72) R:CHO

(73) R:COOH

(74) R=H

(75) R=OH

(76)

Non-furanospongian diterpenes include those from the New Zealand Dendroceratid

sponge Dictyodendrilla cavernosathat yielded (77-78), A previous study on a specimen

of the same sponge had only given the novel furanosesquiterpenoid pallescenone.l3a
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Q7) (78)

Six spongian diterpenes (79-Sa) were isolated from the sponge Spongia matamata. All

possess carboxylic acid functionality at C-19 and some oxygenation of ring D.r3s

(82) R:H

(83) R=OMe

(84)

(80) R:a-OMe

(81) R:p-OMe

A common structural feattue of many of the spongian diterpenes is an acetal linkage

between C-15 and C-17. Examples include (35-87) from the Caribbean Dendroceratid

sponge lgernella notables,\36 and both (88) and (89) from an Ausftali an Darwinella sp.

@endroceratida).137

:R
R

(85) R=H

(86) R:COCH3

(87) R:COCHzCHzCHT

(88) R:H

(89) R:OAc
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4.5 Rearranged Spongian Diterpenes

Various reuurangements of the basic spongian carbon skeleton are possible. One of the

most common is that found in the shahamin group of compounds, where ring A has

been expanded to a seven membered carbocycle with concomitant confraction of ring B.

Shahamins A-E (90-94) were isolated from two different species of Dysidea sp.

(Dictyoceratida).r38

(e0) (e1) Rr=OAc, Rz:OAc

R1:OAc, R2:OH

R1:OH, Rz:OH

The related chelonaplysins A and B (95-96) were isolated frorn the Dendroceratid

sponge Chelonaplysilla sp. collected at Pohnpei, Micronesia. Metabolite 96 exhibited

moderate anti-microbial activity against the Gram-positive bacterium Bacillus

subtilis.t3e

(e2)

(e3)

(e4)

(es)
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Further members of the shatramin group of compounds, shahamins F-J (97-101), were

isolated concurrently with those mentioned above, although they are based upon a

different rearranged carbon skeleton. 138

(97) Rr:H, Rz=H

(98) Rr:H, R2=OH

(99) R1:OH, Rz:H

There is only one example of a compound where

Norditerpene (102) was isolated from a sample

Spongionella gracilis (Dendroceratida). rao

ring A has been contacted.

of the Meditenanean sponge

(1oo)R:H

(101)R:OH

(102)

Rearrangement of ring B gives the norrisolide family of compounds, including the three

novel diterpenes (103-105) isolated from a Red Sea Dysidea sp.. One of the new

compounds, 103, showed some cytotoxic activity.tot In the same class of compounds is

chelonaplysin C (106) isolated from the same collection of the Micronesian

Chelonaplysilla sp. mentioned previously. l3e
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(103)

(r0s)

(104)

(106)

Baeyer-Villiger type oxidation of ring A also allows for an expansion to occur, fonrdng

a lactone fiurctionality exernplified by spongialactone (107), isolated from the Red Sea

sponge Spongia arabica.taz Collections of a Great Barrier Reef sponge Spongia sp.

yielded a second ring A lactone diterpene (108). Compound 108 exhibited marginal

cytotoxicity against P388 murine leukaemia cells.la3

(108)

Oxidative degradation of ring D is noted in several rearranged spongian diterpenes. A

collection of Darwinella oxeata yielded structures (109-1f0). Both metabolites possess

a lactone linkage between C-l5 and C-I7,and ring D has been lost.raa

(107)

l_

-94-



(109) R:H

(110) R:OH

Similarly, Hambley et al isolated four norditerpenes (111-114) from a sample of

Aplysitta pallida (Dendroceratida).ras In another study, diterpene (115) was reported

from the Dictyoceratid sponge Coscinoderma mathewsi, which was collected at

Pohnpei, Micronesia. Aldehyde 115 is a possible decarbonylation product of (116).146

(111)

(114)

(112)

(11s)

(113)

(116)

The final class of spongian diterpenes are those where methyl C-17 has undergone a

I,2-migration and the C-5 to C-6 bond has been cleaved to open ring B. This common

feature is often found in conjunction with some of the structural motifs noted

previously. Aplysulphurin (117), from a New Zealand Aplysilla sulphurea, is the first

example of an aromatic spongian diterpene.raT Mayol, Piccialli and Sica isolated the

related compounds gracilins A (lf8) and B (ll9), from a Mediterranean Spongionella
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gracitis (Dicfyoceatida), Gracilin B (119) w,as the fhst exa,uple of a bis-norditqpene

ftonn a madne sponge. The same gro-up aehievedilthe isolation of four more gracilin-t1pe

diterpenes ([2,0-123) ovet subsequent ye41s.i40'148't 5o

(120) (121) R:Ac

(122) R+x

(r23)

A firrther Soul:of tolated mEtabolitEs, (124-nq. wereisolated ftom a sanrple ofNew

Zealand Darwirulla axeata (Dendroceratida), as well as from several individuals of the

rnorphologrcally similar sponge Dendrilla rosea. This collection w,a$ the same as that

uAich osntained 10F110. r44

(ll7') (118)

(12s)

(1re)

(r24)
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The anti-bacterial diterpenes 9,ll-dihydrogracilin A (127) and membranolide (128)

were isolated from the Antarctic Dendroceratid sponge Dendrilla membranosa. The

authors suggested that 127 and 128 are defensive metabolites as this particular sponge

had never been observed being predated upon and yet it is devoid of any spicules.lsl

(128)

Three rearranged spongian diterpenes (129-131) were reported from the Dendroceratid

sponge Aplysitla tongo,collected in New South Wales, Australia.l52

(r27)

(130)

Finally, several rearranged diterpenes from a Canadian Aplysilla glacialis were reported

during a study of the bioactive metabolites of nudibranchs, carried out to determine

whether the compounds isolated from nudibranchs were from dietary sources, or were

de novo synthesised by the organism itself. As well as isolating metabolites (132-135)

from,4. glacialis, several related rearranged spongian diterpenes were obtained from the

predatory nudibranch Chromodoris luteomarginata, implying a dietary source for the

isolated natural products. Another diterpene of the marginatane class (136) was also

isolated from the sponge.28

(r2e) (131)

-97 -



(132) (133) (134)

(13s) (136)

There are many other spongian diterpenes reported in the literature. Some have been

isolated from nudibranchs and are considered to be of dietary origin whilst others are

synthetic products. Many of the natural products have not been examined for biological

activity due to a lack of material available for testing. Recent surveys have therefore

focussed on testing both natural and synthetic spongian diterpenes in a variety of assays

to determine uses of these compounds.l53-156

Taxonomic Considerations

The literature survey indicates that spongian diterpenes are found from members of both

the Dictyoceratid and Dendroceratid orders. Diterpenoid content cannot therefore be

reliably used as a taxonomic marker for differentiating between families or genera of

these two orders, as they are currently defined. Also, various researchers have noted that

some species of sponge that cannot be differentiated by classic taxonomic methods may

have very different chemical constituents. Chemotaxonomic criteria may therefore be

difficult to establish for families or genera of the Dendroceratid and Dictyoceratid

orders.l2s'13''t57 Bergquist, however, has suggested that Dendroceratid sponges produce
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4.7

only diterpenes, therefore the presence of other classes of terpene would clearly identify

members of the Dictvoceratida.zs

Biogenesis of Spongian Diterpenes and Spongian Derived Skeletons

The basic tetracyclic spongian skeleton is generated by the cyclization of the diterpene

isoprenoid precursor, geranylgeraniol (137), which is formed by head-to-tail

condensations of four isoprene units. In this particular biosynthetic pathway, 137 is in

an all-nans folded conformation prior to cyclization as shown in scheme 4.2.ts8

+
-H

-

Scheme 4.2 Biogenesis of the basic spongian diterpene skeleton.l5s

The biosynthesis of the shahamin class of compounds follows two linked pathways. The

first forms the seven-member ring shahamins A-E (90-94). Oxidative cleavage of the

C-9 C-11 bond places an electronegative leaving group at C-9. A l,2-hydride shift,

followed by a ring expansion with concomitant loss of the leaving group, gives the final

carbon skeleton. Functionlisation of ring D then forms the individual shahamin

compounds as indicated in scheme 4.3. The formation of shahamins F-J (97-l0l) starts

in a similar way with the oxidative cleavage of the C-9 C-l I bond. Elimination of H-5

(r37)
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foltow,ed by a lp-methyl shift from C-10 to C-9 generates the carbon skeleton,

followed by functionatisation of ring D to, agoiu forrn tlre various colnpounds (see

scheme 4.4).t"

eoOMet{o-. /
shahamh.B ''(\"N-

L,bn/
9RQR/lir'

shdsmlnG-E | |

*,zo
Schemo 4.3 Proposed biogenesis ofshahamins A-E (90-94).ttt

oDddii$r?plalrrsg!

\An",
a[+C*
.

8hd|enin F-J

Scheme 4.4 Fmrposed biogenesi$ of shahanins F-J (97-101).Fg

Ring coutracted metabolite (102) is proposed to, be generated via the meclxrnism

deseribed in scheme 4.5. The opening of a 5,6-epoxide allows a bond shift from C-l

C-10 ts C-l C-5 to form a oontacted spiro-rno-iety. The C-10 oarboeatio,n then
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undergoes nucleophilic attack. Cleavage of the C-6 C-7 bond, followed by oxidation of

C-6 and hydrogenation at C-7, would generate a molecule that could decarboxylate to

generate !02.t40

Scheme 4.5 Proposed biogenesis of (102).140

Members of the norrisolide class (10!105) are biosynthesised as described in scheme

4.6, which starts with the same initial step as that of the shahamins. Initially, the C-9

C-l1 bond is cleaved, which is followed by the migration of the C-7 C-8 bond to form

the five membered ring B, followed by elimination to yield the norrisolides.r26

Scheme 4.6 Proposed biogenesis of the norrisolide compounds (103-105).126

-BH
+
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There are many different compounds reported with ring B opened; all presumably are

generated vra a similar biosynthetic pathway. Oxidation to form a C-6 C-7 epoxide is

followed by l,2-hydride and l,2-methyl shifts. Oxidative cleavage of the C-5 C-6 bond

forms a carboxylic acid which can undergo decarboxylation to fonn the precursor of

gracilin A (118) and other related compounds, which are generated by various

derivatisations of ring D as in scheme 4.T.Isomerization of the diene precursor to 118

or epoxidation followed by reformation of the diene gives an allylic alcohol that can

oxidatively ring open to form 120 and related compounds, shown in scheme 4.3.150'152

Scheme 4.7 Proposed biogenesis of gracilin A (11S) and related compounds.lso'rs2

ox,
......_...........*

oxt.
+

+
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oxi.
+

oxt,

-_-+

l"',

-

Scheme 4.8 Proposed biogenesis of (120) and related compounds.l50'I52

4.8 Novel Spongian Diterpenes from C helo naplys illa vio lacea

A sample of Chelonaplysilla violacea (MNP0979) was collected using SCUBA at

Stephen's Island, Marlborough Sounds, at the nonthern tip of the South Island of New

Zealand (see figure 4.1). The organism was initially described in the field as a tan,

encrusting sponge of the genus Dysidea (Dictyoceratida). Chelonaplysilla violacea

(Class Demospongiae, Order Dendroceratida, Family Darwinellidae) is described as

having a dendritic skeleton composed of smooth, erect, fibres, rising from a basal plate

of spongin. Fibres are concentrically laminar with a very dense outer bark and a diffrrse

pith interior. The sponge is usually found in shaded areas such as caves and archways,
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encru$ting on boulders in sheets 2-3 mm thick. The colour of the sponge is described as

dark purple throughouf with white surface patterning caused by organised sand

reticulation. 23'r2r

Figure 4.1 Hydrographic chart of Stephens Island.

(Courtery of Land and Information New Zealand)

Initial NMR based screening of ll0 g of the sponge revealed many interesting

resonances, including those of multiple acetal/lremi-acetal functionalities, several

oxygenated methines, and also those of several methines with shielded carbon and

deshielded proton correlations, as indicated in the HSQC spectrum (see figure 2.8). An

extract of a further 182 gwas combined with the material generated from the screen.

This combined extract was fractionated using normal- and reversed-phase solid

supports, size-exclusion gel-permeation chromatography and finally, reversed-phase

HPLC, to yield ten spongian diterpenes. Two of the compounds were the known

metabolites tetrahydroaplyzulphurin-l (124) (1.8 mg) and cadlinolide B (133) (1.4 mg),

based upon comparison with published MS and NMR data.2E'r4'r5e Two of the

6e

rafrnde #3
6 {

^\ -CL roor.ttt
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remaining eight metabolites could not be identified on the basis of the NMR and MS

data obtained. The last six metabolites isolated constituted novel structures and are dealt

with below. Two of the six novel compounds share the same carbon skeleton as

cadlinolides A (132) and B (133) and are therefore reported as cadlinolides C and D.28

The remaining four compounds possess different carbon skeletons to those previously

reported and are named based upon the Maori name for Stephen's Island

(Takapourewa).

Scheme 4.9 Isolation scheme for spongian diterpenes

from Chelonaplysilla violacea sp. (part I ).

182 g Ch'lonadysilla violacea

Extract 2 x MeOH
PSDVB column (HP20)

20% Me2CO 4070 Me2CO 6090 Me2CO 80% Me2CO

(SEE NEXT PAGE)
100% Me2CO

+ Screen Samde

PSDVB (Arnborchrcm)
Gradient elution

crs RP

7 5o/o MeOHlZSo/o 0. 1 M CH3COOH

Crr RP

807o MeCN/20olo H2O

cr! RP
750/o MeOHlZSo/o 0.1M CH3COOH

Crr RP

600/o MeCN/40% H2O

PSDVB (A6!e1s17e61
Gradient elution
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I
I

ib?co
80%Mer@

(FROM PREYPIJS PAGE)

Llt20
90% lffiH/1096 l-lrO

f'j6 irlaoFutio% cHror

Schcme 4.l0Isolation scheme for spongian ditetrpenes

from Chelonqlysilla violacea sp. (part 2).

Figure 4.2 Skeleton and appearance of ClvlorryIysillaviolacea.

(Courtesy of Professor P. Bergquist)

C: Chetonaplysillaviolacea, section of fibre to show ma*ed vesiorlarpith (x 120).121

E: Chelonap lysi lla violrce a t2 t
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Cadlinolide C

A single intense pseudo-molecular ion was observed for cadlinolide C (138) (2.4 mg) in

the positive ion HRESIMS mode establishing a molecular formula of C26H3oO3

(319.2260 [M+H]*, L 2.6 ppm) and requiring six degrees of unsaturation. Only one

significant band was identified in the IR spectrum, that of a C:O stretch (1739 cm'r).

All 20 carbon and all 30 proton resonances were observed in the l3C and lH NMR

spectra, and one-bond proton-carbon correlations were detected in an HSQC-DEPT

experiment. Prominent signals in the I3C spectrum included resonances of a carbonyl

(6c172.5), an olefin (69 147.0, 122.9), an acetal (6c 103.5), and an oxygenated

methylene (6c 73.1). The olefin was assigned as tetrasubstituted from the lack of any

HSQC-DEPT conelations to these l3C resonances. With no other evidence of multiple

bonds, the remaining degrees of unsaturation required cadlinolide C (138) to have a

tetracyclic structure.

Initial analysis of the correlations from various proton resonances in both the COSY and

HMBC spectra, allowed construction of several substructures. In particular, a linear

fragment of three methylenes was connected on the basis of COSY correlations between

the resonances of their attached protons [(C-1:69 40.0,6s 1.95, 1.13) to

(C-2: 66 20.6,6H l.5l) to (C-3: 6s 39.7, 6H 1.32, 1.19)1. Strong HMBC correlations

were observed from the rH resonances of two methyl singlets [(C-1s: 6c27.6,6H 0.76),

(C-19: 6c32.9,6H 0.90)l to the r3C resonances of each other, two methylenes [C-3 and

(C-5: 6g 51.2, 6H 1.80, 1.26)l and a quaternary centre (C-4: 66 31.9), establishing the

link of C-3 to gem-dimethyl quatemary centre C-4. Finally, the tH resonance of a third

methyl singlet (C-20: 6c 31.9, 6H l.l3) showed HMBC correlations to two methylenes
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[C-l and C-5] and to a quaternary carbon

1,3,3 -himethylcyclohexyl moiety (see figure 4. 3 ).

(C-10: 6c 39.6), establishing

/'--\

1H-lH cosY
t6-ts6 HMBG

Figure 4.3 Establishment of 1,3, 3-trimethylcycloheryl

substructure of cadlinolide C (13E).

A second substructure was oonstructed from observed COSY cross-peaks between the

tH resonances of several methylenes and methines. These observations allowed

connection of a linear chain consisting of a pair of methylenes [(C-l l: 6c 27.0,

6n 2.48, 1.93), (C-12 6c 25.6, 6H 1.95, 092)l that were adjacent to two methines

[(C-13: 6c37.6,6s 2.65), (C-14: 6c41.7,6H 3.01)]. The resonance of H-13 showed

further correlations to an orymethylene pair (C-16: 6c 73.1, 6H 4.18, 3.58), while H-14

showed a significant cross-peak to an acetal tH resonance (C-15: 6c 103.5, 6H 6.01).

HMBC correlations from the tH resonance of H-15 to C-16, and from the deshielded

rH resonance of C-16 to C-15, established the connectivity of a tetrahydrofuran ring.

This was confirmed by observation of long-range W-coupling between H-15 and the

shielded 
tH resonance of orymethylene C-16 (see figure 4.4).

1H-rH cosY
t;-1-tsg HMBC

Figure 4.4 Establishment of the tetrahydrofuran zubstructure of cadlinolide C (138).
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A strong COSY correlation was observed between the lH resonances of a methyl

(C-6: 6c 14.4, 6n 1.a0) and a methine (C-7: 6c 40.7, 6H 4.18). HMBC correlations were

observed from the lH resonances of both these centres to the ttc .esonances of each

other, and also to that of the carbonyl (C-17: 6c 172.5) to establish a third fragment (see

figure 4.5).

,--l*
-.---*li.g+f\--*-l?'/
ov \o>r.---

1H-1H cosY
t6-rsg HMBC

Figure 4.5 Establishment of the side chain of cadlinolide C (f3t).

The previous observations had accounted for 18 of the 20 carbons of 138, leaving a

tetrasubstituted olefin to be assigned. The placement of the olefirq and therefore the

final connectivity of the molecule, was established from analysis of several key COSY

and HMBC correlations. HMBC correlations were observed between the rH re$onanc€s

of methyl C-6 and methine C-7 to the t3C resonanoe of a dizubstituted olefinic carbon

(C-8: 6c 122.9). The resonance of H-7 also showed HMBC correlations to the

r3C resonances of the second disubstituted olefinic carbon (C-9: 6c 147.0') and to C-14,

which established the linkage of the side chain to the olefin at C-8 between C-9 and

C-14 and connected the side chain with the tetrahydrofuran zubstructure. A strong

HMBC correlation was observed from the lH resonance of C-20 to the l3C resonance of

C-9, allowing connection of the 1,3,3-trimethylcyclohexyl ring to the olefin. The

deshielded tH resonance H-l lb showed a correlation to the l3C resonance of quaternary

centre C-10, which helped to confirm the linkage between the olefin and the

1,3,3-ffimethylcycloheryl ring. A homo-allylic coupling was observed between H-lla

and H-14 in the COSY spectrum that confirmed the placement ofthe olefin within a six-

membered ring. Finally, although no HMBC correlations were observed between the
-109-



resonances of H-15 and C-17, a lactone linkage could be deduced by the final required

degree of unsaturation, and also by the absence of any alcohol functionality within the

molecule, as evidenced by the lack of an OH stretch in the IR spectrum. The lactone

linkage is supported by the deshielded chemical shift of H-I5, and also the r3C chemical

shift of carbonyl C-17 which is similar to that of tetrahydroaplysulphurin-l (124),

cadlinolide A (132) and cadlinolide B (133) (see figure 4.6).u

/-\

1H-lH cosY
t;1-tsg HMBC

Figure 4.6 Establishment of final connectivity of cadlinolide C (138).

The relative stereochemistry of 138 was established from vicinal rH-rH homonuclear

coupling constants, measured in the tH NNm. and lH decoupled NMR experiments, and

from NOE correlations established from a ROESY experiment. A small coupling was

meazured between H-14 and H-l5, zuggesting a small dihedral angle between these two

protons. An NOE correlation was observed between H-13 and H-14, implying that they

are on the same face of the molecule (see figure 4.7). H-15 also showed a strong NOE

correlation to CHr-6, implying that C-6 is on the same face as protons H-14 and H-15.

NOE correlations were observed between CI{3-6 and H-5b, implying that H-5b is also

on the same face as methyl C-6. NOE correlations were observed from H-7 to H-5q H-

5b and also to CH3-20, supporting this assignment (see figure 4.8). These observations

allowed the relative stereochemistry of cadlinolide C (l3S) to be assigned as 7R*, 10^l*,

13,S*, 14S*, l5,S*, which was consistent with the stereochemistry determined for

tetratrydroaplysulphurin- | (124), which had been solved by x-ray diffraction.28'r'r4'l5e
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n NoE

X'igUrc 4.7 NOE correlations and stereochemistry of tetratrydrofuran

ring of cadlinolide C (13t).

n NoE

X'igurc 4.t Selected NOE conetations establishing the ster€ochemistry ofthe

1,3,3-timethylcycloheryl and lactone rings of cadlinolide c (Ft).
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Table 4.1 r3c (75 MHz) and rH (300 Mlxz) NIvIR Data (CDClj of oadlinolide C (13s)"
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4.10 Cadlinolide D

The molecular formula of cadlinolide D (139) (0.8 mg) was determined as CzJ\zOc

from observation of several pseudo-molecular ions in the positive ion HRESIMS mode

(349.2399 [M+H]n, A 7.5 ppm; 371.2201[M+Na]", A 2.1 ppm;719.4483 [2M+Na]', A

2.5 ppm), requiring six degrees of unsaturation. Due to the small amount of 139

isolated, a l3C NMR spectrum could not be obtained therefore atl 2l observed l3C

chemical shifts referred to below, were observed as correlations in the HSQC-DEPT or

HMBC spectra. All32 tH resonances were observed in the lH NMR spectrum. As with

cadlinolide C (138), only one significant peak was observed in the IR spectrum (C=O

stretch, 1744 cm'r). Notable r3C resonances included those of a carbonyl (6c 171.8), an

olefin (69 145.7, 122.2) and two acetals (6c 109.2, 102.2). Again, the olefin was

assigned as tetrasubstituted as no HSQC-DEPT correlations were observed to these two

t3C resonances. After accounting for the olefin and the carbonyl, the remaining degrees

ofunsaturation of139 required a tetracyclic structure.

A significant feature of the tH NMR spectrum was the 3:1 ratio observed between

several closely related resonances, implying the presence of two similar compounds

(diastereomers). Several unsuccessful attempts were made to separate these compounds;

therefore the following structural elucidation was performed on a mixture of

diastereomers in a 3:l ratio. Cadlinolide B (133) had previously been reported as a

similar inseparable pair of diastereomers. 28

As with cadlinolide C (138), a 1,3,3-trimethylcyclohexyl ring could be established. A

strong COSY correlation was observed between the rH resonances of two methylenes

[(C-l: 6c 39.2, 6u 1.92, l.l3), (C-2: 6c 20.9,8u 1.51)]. Specific correlations between the

tH resonances of methylenes C-2 and C-3 could not be unequivocally distinguished in
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the COSY spectrum due to some spectral overlap. A ID-TOCSY correlatioq however,

was observed between the lH resonances of C-2 and those of C-1, and also to those of

another methylene (C-3: 6q 39.5, 6H 1.35, 1.20), which established the connectivity of

the three methylene chain C-l to C-3. As with cadlinolide C (138), strong HMBC

correlations were observed from the tH resonances of two singlet methyls [(C-18:

6c 28.1, 6s 0.76), (C-19: 6c32.9,6n 0.90)] to the t3C resonances of each other, a pair of

methylenes [c-3 and (c-5: 6c 51.0, 6n 1.78, r.25)] and a quaternary carbon (c-4:

6s31.9), establishing the connection of the methylene chain C-l to C-3 with the

gem-dimahyl quaternary carbon C4. The rH resonance of a third methyl singlet (C-20:

6c 31.2, 6H l.13) showed HMBC correlations to the r3C resonances of two methylenes

[c-l and c-5], and a quaternary carbon (c-10: 6c 40.1), thereby completing the

l, 3, 3 -trimethylcycloheryl substructure (see fi gure 4. 9).

1H-lH cosY
t;-q-tog HMBC

1D-TOCSY

Figure 4.9 Establishment of 1,3,3 -trimethylcycloheryl

substructure of cadlinolide D (139).

A chain of four carbons was connected on the basis of observed COSY cross-peaks

between their attached lH resonances [methylene (c-11: 6s 25.8, 6n 2.35, 2.07\ to

methylene (C-12:8c24.7,6H 1.88, 1.19) to methine (C-13: 6c30.0, SH z.eoy to methine

(C-14: 6c 38.9, 6H 3.17)1. The resonance of H-l3 showed a further coupling to an acetal

proton (C-16: 6c 109.2, 6H 4.92) while H-14 showed a correlation to the second acetal

'H resonance (C-15: 6c102.2,6H 5.97). The lack of a hydroryl functionality within the
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molecule, as evidenced by the lack of an OH stretching band in the IR spectrunq

coupled with the chemical shifts of both methines C-15 and C-16, suggest that C-I5 and

C-16 are connected via an ether linkage, which would form a tetrahydrofuran ring

similar to that found in cadlinolide C (13S). Unfortunately, no HMBC correlations were

observed between methines C-15 and C-16 to help confirm this linkage (see

figure 4.10).

lH-lH cosY

Figure 4.10 Establishment of the tetrahydrofuran ring of cadlinolide D (139).

As with 138, an intense COSY correlation was observed betwe€n the rH resonances of a

methyl (C-6: 6c 14.8, 6H l.a0) and a methine (C-7: 6c41.2, 6H 4.19). The tH resonanc€s

of both showed strong HMBC correlations to the ItC resonance of the other, and also to

that of a carbonyl (C-17:6c 171.8) to complete a third fragment (see figure 4.5).

The analysis detailed above had assigned 18 ofthe 21 carbon centres of 139, leaving an

orygenated methyl and a tetrasubstituted olefin to be assigned. As with cadlinolide C

(l3E), several key HMBC and COSY correlations were used to identify the placement

of these functionalities, and to complete the final structrne of the molecule. The

rH resonances of C-6 and C-7 each showed an HMBC correlation to the l3C resonance

of an olefinic carbon (C-8: 6q 122.2) while H-7 also showed an HMBC correlation to

C-14, which together imply the attachment of the side chain at C-8. Similar to l3t, the

lH resonance of C-20 showed a strong correlation to the l'C resonance of the second

dizubstitr*ed olefinic carbon (C-9: 6c 145.7), establishing the link betwe€n C-9 and

-l15-
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C-10 and thereby connecting the 1,3,3-trimethylcyclohexyl moiety to the olefrn. A

homo-allylic coupling was observed in the COSY spectrum between H-lla and H-14,

helping to confirm the olefinic linkage between C-8 and C-9 within a six-membered

ring. The rH resonance of an oxygenated methyl (C'21: 6c 56.2, 6H 3-45) showed a

strong HMBC correlation to C-16, establishing the methyl ether attachment at, and the

acetal nature of, C-16. This was confirmed by observation of an HMBC correlation

from the resonance of H-16 to the resonance of C-21. As with cadlinolide C (138), no

direct HMBC correlation from H-15 to C-17 was observed to confirm a lactone linkage

although this was implied by the remaining degree of unsaturation required by the

molecular formula. The magnitudes of the tH resonance of H-15 and the t'C resonance

of C-17 and the absence of an OH stretching band in the IR spectrunr, were all

consistent with a lactone linkage. Finally, the largest difference in rH ohemical shifts

noted between the major and minor epimers of 139 ocsurs at methine H-16, implying

that this is the epimeric position of the moleculg which is the same diastereomeric

position as reported for cadlinolide B (133) (see figure 4.1l)'28

,/-\

lH-lH cosY
tg-tsg HMBG

Figure 4.ll Establishment of final connectivity of cadlinolide D (f39).

The relative stereochemistry of 139 was estabtished by measurement of tH-rH vicinal

coupling constants, determined from the lH NNm. spectrurg and also from NOE

correlations observed in a ROESY experiment. The magnitude of the coupling constant

between H-14 and H-15 is small, suggesting a small vicinal angle between these
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proton$. An NOE correlation was observed between H-13 and H-14, indicating that

these protons a^re on the same face of the molecule. NOE conelations were observed

from CHs-6 to H,5b, H-14 and H-15 implying that methyl C-6 and H-5b are on the

same face of the molecule as H-14 and H-15. This was supported by NOE correlations

detected berween H-7 and both H-5b and CHr-20 (see figure 4.12).

a\ NoE

Figure 4.12 Selected NOE correlations establishing the stereochemistry of the 1,3,3-

trimethylcycloheryl and lactone rings of cadlinolide D (139).

Small coupling constants are measured between H-13 and H-16 for both the major and

minor epimers. The major epimer, however, shows a very small coupling constant (3.2

tlz) which may be indicative of a dihedral angle of -90o between these two protons,

implying that the methoxy group of the major epimer is in pseudo-arial orientation (see

figure 4.13).

o)t'oiiul'o-H"A
Ai'A'--l{},'-"

H^C/[ " 
A

'21

f igure 4.13 Proposed stereochemistry of t*ratrydrofuran

ring of the major epimer of cadlinolide D (f39).

Based on the previous observations, the relative stereochemistry of the major epimer of

cadlinolide D (f39) can be assigned as 7R*, l0,S*, l3R{', l4,S*, 15,51 consistent with the

relative stereochemistry of cadlinolides d B, and C (132, 133, 138).2t
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4.ll Pourewic Acid A

The molecular formula of pourewic acid A (140) (2.9 mg) was established as CzrHg+O+

by observation of a pseudo-molecular ion in negative ion mode HRESIMS (349.2401

[M-H]-, A 4.8 ppm), implying five degrees of unsaturation. All 21 carbons and 33 of the

34 protons of 140 were observed in the l3C and lH NMR spectra respectively. Two

prominent stretching bands (OH stretch, 3392 cm-l, C:O stretch 1704 crnl) were

observed in the IR spectrum. The presence of a carbonyl was confirmed by a

r3C resonance observed (6c 178.8). A tetrasubstituted olefin was implied by the two

deshielded '3C NNm. resonances observed (69 144.2,127.9), combined with the absence

of any HSQC-DEPT correlations to these resonances. With no other evidence of double

bonds, the remaining degrees of unsaturation required a tricyclic structure for 140-

As with cadlinolides C (138) and D (139), analysis of COSY and HMBC correlations

from various tH resonances of 140 allowed several substructures to be constructed. In

particular, close examination of the spectra allowed the rapid establishment of a

1,3,3-trimethylcylohexyl ring, in a similar manner to that of 138 [(C-l: 6c 39.1,

6n 2.13,!.21),(C-2:6c20.1,6u 1.85, 1'49), (C-3:6c40.0,6H l'33, 1'18)' (C-4:6c31'6)'

(C-5: 6c50.8,6H 1.76,0.96), (C-10: 6641.5), (C-18: 6c26.6,5s 0'87), (C-19: 6c33'1,

6H 0.84) and (C-20: 6c 3l .6, 6H 1.03)l (see table 4.3 and figure 4.3).

A similar series of COSY and HMBC correlations as those observed for 138 allowed a

second substructure to be established. In particular, a sequence of two methylene pairs,

two methines, an oxymethylene and an acetal centre [(C-ll 6c27.6,6u2'22, 1.91),

(C-12: 8c 30.6, 6u 1.63, 1.24), (C-13: 6c 37'8, 6p 2.30), (C-14: 66 48'8, 66 2'7 1), (C-15:

6c I 11.0, 6u 4.75), (C-16: 6c74.7,5n 4.03, 3.76)l was connected from observed COSY
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correlations between their various 'H resonances. A strong HMBC correlation from

H-I5 to C-16, and a similar correlation from H-l6a to C-15, established the connectivity

of the tehahydrofuran ring, This was confirmed by observation of W-coupling between

H-15 and H-l6b as evidenced in the COSY spectrum (see figure 4.4).

Similarly, a strong COSY correlation between the lH resonances of a methyl (C-6:

6c18.8, 5H 1.21) and of a methine (C-7: 6c 41.9, 6s 4.22) was observed. Both

tH resonances also showed strong HMBC correlations to the l3C resonances of each

other, and to that of a carbonyl (C-17: 6c 178.8) to establish a third fragment (see

figure 4.5).

The final connectivity of pourewic acid A (140) was established by close examination

of its HMBC spectrum. A methyl singlet (C-21: 6c 54.9,6u 3.17) showed a strong

HMBC correlation to C-15, while a similar conelation from H-15 back to C-21,

established a methyl ether substituent on the C-15 acetal centre. The lH resonances of

CH3-6 and H-7 both showed an intense HMBC correlation to an olefinic carbon (C-8:

6c 127.8) while H-7 also showed strong correlations to both the second non-protonated

olefinic carbon (C-9: 6c 144.2) and to methine C-14, indicating the attachment of the

side chain at C-8 between C-9 and C-14. Again, a strong HMBC correlation was

observed from CH3-20 to C-9, confirming the linkage of the 1,3,3-trimethylcyclohexyl

moiety to olefin carbon C-9. Observation of HMBC correlations from the deshielded

resonance H-l1b to C-8, C-9, and C-l0, confirmed the connection of the olefin within a

six-membered ring and established the final connectivity of 140. As all the degrees of

unsaturation for the molecule had been accounted for, carbonyl C-17 must be part of a

carboxylic acid, which was consistent with the OH stretch noted in the IR spectrum (see

figure 4.14). The presence of the carboxylic acid was confirmed by the preparation of

the methyl ester of the natural product by reacting it with CHzNz. The chemical shifts of
-t20-



the methyl ester derivative of 140 compare favourably with those of C-\7 methyl ester

metabolite membranolide (l2S).15r Pourewic acid A (140) is the first exarnple of a

rearranged spongian diterpene with a free carboxylic acid at C-17. The biochemical

significance of this will be discussed later.

t^o-.,/t-r 1H-13c HMBC

Y Vy'
\,,r-ot

Figure 4.14 Selected HMBC correlations establishing the final

connectivity of pourewic acid A (f40).

The relative stereochemistry of 140 was established by analysis of vicinal homonuclear

coupling constants and by observation of NOE correlations observed in both

ID-gNOESY and ROESY experiments. A small coupling constant was measured

between H-14 and H-l5, consistent with a small dihedral angle between these protons.

NOE correlations were observed from H-14 to H-13 and H-16b, implying they are on

the same face of the molecule. A strong NOE correlation was observed between H-l6a

and H-12b indicating their spatial proximity. A l,3-diaxial NOE was observed between

H-13 and H-lla helping to confirm these assignments. These observations were

consistent with the stereochemistry shown in figure 4.15. NOE correlations were

observed between CH:-6 and H-14, placing methyl C-6 on the same face as H-14. NOE

correlations between CH:-6 and CHr-20, H-7 and H-lb, and from H-5a to H-l1b, were

consistent with this placement and allowed the relative stereochemistry of C-7 and C-l0

to be established. All these observations allowed the relative stereochemistry of

pourewic acid A (140) to be assigned as 7R*, l0,S*, l3,S*, l4,S*, l5-R* (see figure 4.16).
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$i:

X'igure 4.15 Selected NOE conelations establishing the

stereochemistry of the tetralrydrofuran ring of pourewic acid A. (140).

Hb

n NoE

Figurc 4.15 Selected NOE correlations establishing the stereochemistry of the side

chain and the 1,3,3-timethylcycloheryl ring of pourewic acid A (140).
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Table 4.3 r3C (75 MHz) and IH (300 MHz) NMR Data (cDctd of pourewic acid A (f40).
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4,12 l5-Methoxypourewic Acid B

The molecular formula of lS-methoxypourewic acid B (141) (1.2 mg) was difficult to

establish, as an obvious pseudo-molecular ion was not readily identifiable in the

HRESIMS spectrum. Two peaks were detected in the negative ion mode differing by

three Da, the former being the expected [M-H]'peak (363.2194 [M-H]-) while the latter

peak corresponded to a pseudo-molecular ion with three deuteriums exchanged

(366.2337 M(-3H+3D)-F{), caused by the exchange of a CD3O- group for a normal

CHIO- group during the screening process, where CDIOD had been used as the NMR

solvent (see figure 4.17). A corresponding deuterium exchanged peak was also observed

in the positive ion mode (368.2504 M(-3H+3D)+HI). l5-Methoxypourewic acid B

(141) is probably therefore an artefact of isolation.

Ltar@.FChr& erF.P.gl

Figure 4.17 Negative ion HRESIMS spectrum of l5-methoxypourewic acid B (141).
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The molecular formula of 141 was finally established as C21H32OsQ63.2194 [M-Hl',

A4.8 ppm; 366.2337 [M(-3H+3D)-H]-, A 5.5 ppm; 368.2504 [M(-3H+3D)+H]*,

A 2.5 ppm), requiring six degrees of unsaturation. Unfortunately, the compound

degraded before a l3C NMR spectrum could be acquired, therefore all 2l t3C resonances

of l4l were observed as correlations in either the HSQC-DEPT or HMBC spectra. All

31 protons attached to carbon were observed in the lH NMR spectrum. The IR spectrum

contained characteristic stretching bands for two carbonyls (1780 and 1707 cm-'1, and

also an OH stretching band (3347 cm-r). The frequency of one of the C=O stretches

(1780 cm-I) was consistent with a y-lactone.28 The presence of two carbonyls was

confirmed by observation of HMBC correlations from several 'H resonances to two

deshielded r3C resonances (66 179.2, 176.4), Consistent with cadlinolide C (138), a

tetrasubstituted olefin was determined from the observation of HMBC correlations to

two deshieldedr3C resonances (6c 145.8, 127.3) that did not show any correlations in

the HSQC-DEPT spectrum. With no further evidence of double bonds, the remaining

degrees of unsaturation required 141 to have a tricyclic structure.

In a similar manner to cadlinolide D (139), some spectral overlap in the 'H NMR

spectrum precluded the unequivocal assignment of a 1,3,3-trimethylcyclohexyl ring

using only COSY and HMBC correlations. As a consequence, ID-TOCSY correlations

were needed to confirm the connectivity of this ring. Analysis of these spectra allowed

establishment of a 1,3,3-trimethylcyclohexyl ring [(C-l: 6c 38.8, 6s 2.24, 1.32), (C-2:

6c 19.8, 6u 1.59), (C-3: 6c 39.7, 6u 1.40, 1.24), (C-4: 6c 31.4), (C-5: 6s 50.3,

6s 1.80, 1.07), (C-10:6s 41.6), (C-18: 6c26.9,6H 0.91), (C-19:6c32.4,6n 0.92) and

(C-20: 6c 30. I , 6H I . 1 3)l (see table 4.4 and figure 4.9).
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COSY correlations between the lH resonances of various methylenes and methines

were used to establish the second substructure of 141. In particular, a four-carbon chain

consisting of two methylenes t(C-ll'. 6c 26.3,6n 2.31, 1.63) and (C'12:6c 26.5,

6n2.02, l.4l)] adjacent to a pair of methines [(C-13: 6c 40.3, 6n 2.91) and (C-14:

6e43.7,6H 3.09)l was determined from observed COSY cross-peaks. Proton H-14 in

turn correlated to an acetal centre (C-15: 6c I10.3, 6H 5.22). The lH resonance of acetal

C-15 showed a strong HMBC correlation to a lactone carbonyl (C-16: 6c 179.2) to

finalise a y-lactone ring. The deshielded chemical shift of H-13, and the absence of

further COSY correlations from it, is consistent with other yJactone rings (see

figure 4. I 8;.ze'trz'tlo

HH9

"+''(l-\*-ri'-'(/ 
io-J

1H-lH cosY
t6-tag HMBC,,/--\

Figure 4.18 Establishment ofy-lactone substruchrre of

1S-methorypourewic acid B (141).

Finally, a strong COSY correlation was observed between a methyl (C-6: 6c 16.3,

6Hl.2l) and a methine (C-7: 6c 41.4, 6H 4.32). Both ClIr-6 and H-7 also showed strong

HMBC correlations to the ttc resonances of each other, and also to that of the

remaining carbonyl (C-17: 6c 176.4) to establish the third substructure (see figure 4.5).

Again, the final connectivity of 141 was established on the basis of several key

observed HMBC correlations to the two olefinic carbons. In particular, CI{3-6 and H-7

both correlated to an olefinic carbon (C-8: 6c 127 .3) while H-7 also correlated to C-14,

again indicating the attachment of the side chain at C-8. The tH resonance of C-20
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showed a strong HMBC correlation to the remaining olefinic carbon (C-9: 6c 145.8),

establishing the connection of the 1,3,3-trimethylcyclohexyl ring to the olefin at C-9,

whilst H-14 correlated to carbon C-8, helping to confirm the placement of the alkene.

An HMBC correlation was observed from a methyl singlet (C-21: 6c 56.7, 6n3.27) to

C-15, establishing the methyl ether attachment at, and the acetal nature of, C-15 (see

figure 4.19). The rH integration of methyl C-21 was initially the cause of some concem,

as it integrated for only two proton equivalents. This was due to a mixture of deuterated

and non-deuterated molecules, as evidenced by the mass spectrum shown in figure 4.17.

As all the degrees of unsaturationhad been accounted for, C-17 must be acarboxylic

acid, consistent with the observation of an OH stretching band in the IR spectrum.

o
{------\

/---\ tg-tsg HMBC

\o--tfra

Figure 4.19 Establishment of the final connectivity of

l5-methoxypourewic acid B (141).

The relative stereochemistry of lS-methoxypourewic acid B (141) was established on

the basis of lH-rH vicinal coupling constants and from NOE correlations observed in a

ROESY experiment. A small dihedral angle between H-14 and H-l5 was suggested by

the small coupling constant observed between their lH resonances. An NOE correlation

was observed between H-13 and H-14, indicating that these protons are on the same

face of the molecule. H-14 also correlated to the tH 
resonance of methyl C-6, implying

that C-6 is on the same face as H-13, H-14, and H-15. This was supported by NOE

correlations observed, from H-7 to both H-lb and CH3-20, and also from H-llb to H-5b
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Table 4A t3c475, MHa) and rH (300 MHz) NMR Data (CDCls + CsHsN) of l5'-

metho4pourewic acid B (141).
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Porition;(,o''t 'uo 0b;;;'1r*")- COSY .'no.t TOCSY NOE

l8 38.8 Ctir 1.72 m lb lb

b 2.24 m l42,Jb lc?
2 19.8 Clil l-S9 m,2H lb ls" lb'3q3b

3a 39.1 AH? 124 m l8
b t.4O m

4 31,4 e
5a 503 Cflr 1.07 tn 5b 5b

b 1.80 m 54 lb 5g llb, lE

5 t6;3 CHs 127 d (6.E) 7 7|8,17 7'14

7 4l/' gfd' 4's2 c(t'0) 6 6'&' 14' t7 lb" 6'r' 20

8 lnli g

9 lil5.E C

l0 41.5 C

Ita 26.3 CHr l'63 In llb, t2a' I2b llb
b 231 m lla l2a l2b 5b' tla' l2b'20

lhs 26.5 CIlr 1.41 n llq llb, !2b' 13 Ulb' 13

b L02 m I lq, I lb, I24 13 ltb, l.lE

13 &.3 C*t 2.91 m l2q l2b, 14 124 14

' 14 43,.7 €tt 3-09 dd(lo"o}D 13,15 7.8,12 613

r5i u0.3 cI{ 52l-z d(3,?) t4 8, L6 5b'?l

16 179,2 re

r7 176.4 E

l8c 26.9 cHr o:91 s 3419 3i45,I9
c19- 32.4 CtL Am s l8 3,4,5,18

20 310,1 eFlr l.l3 s l'5'9, l0 7' tlb
?l 56.1 Cfi" 327 s 15 15

I Derermincd from HSQC.DEPT (multi.pllciq, edited HS.QC) ,and HMBC experim€nts.

Carton connoctivity detsnnrined frorn an HSQC'DEPT exper,iment, muhiplicity determined frorn

rH exper,imenf,

Interolmngeab-le.

,Hbl36*a

,.,-'{'-f{
30 | e lcb

i-'-.-]rt=,-t--'(3_,,n-o-u 
"..."i\..r-oH

,es \" I
(141),

-r29-



4.13 MethYlPourewate B

The molecular formula of methylpourewate B (142) (3'0 mg) was established as

CzrHrzOs from observation of intense pseudo-molecular ions in both the negative and

positive ion HRESIMS modes (365.2335 [M+H]*, A 3.5 ppm;363.2185 [M-H]-' A 5'3

ppm), implying six degrees of unsaturation. All 21 carbons and 3l protons attached to

carbon were observed in the l3C and tH NMR spectra respectively. Prominent peaks in

the IR spectrum included an OH stretch (3325 cm-t; attd two C:O stretches (1762,1735

cm-r). Significant t3C NMR signals included two carbonyl (6c 178'9' 175'3), one hemi-

acetal (6c 103.8) and two tetrasubstituted olefinic (69 147.2,127.3) resonances' With no

other evidence of multiple bonds, the remaining degrees of unsaturation requiredl42to

have a tricyclic structure.

The presence of a 1,3,3-trimethylcyclohexyl in 142 was established based upon a

similar analysis of the COSY and HMBC spectra as that performed for cadlinolide C

(13S) [(C-1: 6c 39.0,6H 2.18, l.2g), (C-2:6c l9'8,6H 1'83, l'51)' (C-3:6c 39'9'

6s 1.36, I.2l), (C-4: 6s 31.6), (C-5: 6c 50.6, 6H l'77, L00), (C-10: 6s 42'l)' (C-18:

6626.8, 6s 0.85), (C-19: 6c32.9,6n 0.87), (C-20: 6c 30.6, 6H 1.05)l (see table 4.5 and

figure 4.3).

COSY correlations were used to establish a linear chain of three carbons [(C-11:

6c26.8, 6s2,34,1.47) to methylene (C-12: 6c27.5,6H 2.09, 1'30) to methine (C-13:

6c41.2, SH 2.97)1. Initially, the resonance of H-13 overlapped with that of another

methine proton at the same frequency. Addition of a small amount of Ds-CsHsN caused

these two overlapping resonances to spread apart. It was found that the two resonances

coupled to each other, as evidenced by a resolved COSY cross-peak between them,
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revealing the connection between C-l3 and a second methine (C-14: 6c 45.8, 6H2.97).

A COSY cross-peak was also observed between H-14 and a hemi-acetal resonance

(C-15: 6c 103.8, 6H 5.41). Proton H-15 showed HMBC correlations to C-14 and also to

that of a 7-lactone carbonyl [(C-16: 6c 178,9)1. As with 141, the deshielded chemical

shift o{, and the absence of any other couplings from, H-13 supports the proposal of a

y-lactone ring (see figure 4.18).

Finally, a strong COSY correlation was observed between the tH resonances of a

methyl (C-6: 6c 16.6, 6n l.2l) and a methine (C-7: 6c 41.5, 6n 4.30). Both CHr-6 and

H-7 showed strong HMBC correlations to the ttc resonances of each other and also to

that of a carbonyl (C-17: 6c 175.3). A strong HMBC correlation was also observed from

an oxygenated methyl (C-21: 6c 52.1, 6H 3.71) to C-17, implying a methyl-ester

functionality (see figure 4.21). The chemical shifts observed are comparable to those

noted for the methyl ester derivative of pourewic acid A (f40), and for membranolide

(12t).15t

/xf\
1'g-i-?v(d' ,/--\

lH-1H cosY
tH-r3c HMBC

Figure 4.2l Establishment of the side chain of methylpourewate B (f42).

All of the correlations already mentioned had accounted for all the oarbons in the

molecule except two substituted olefinic centres [(C-8: 6s 127.3), (C-9: 6c 147.2)1. As

before, the placement of the olefin and the final connectivity of the molecule were

established from key observed COSY and HMBC correlations. Strong HMBC

correlations from H-7 to C-8, C-9, and C-14, and from CH3-6 to C-8, established the

connection of the side chain at C-8 between C-9 and C-14. As with cadlinolide C (138),
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CH3-20 also showed a strong correlation to C-9, confirming the attachment of the

1,3,3-trimethylcyclohexyl moiety at C-9, and established the final connectivity of the

molecule. The connection of the olefin within a six-membered ring was confirmed by a

homo-allylic coupling between H-1lb and H-14 as observed in the COSY spectrum (see

figure 4.22).

Ha
Hbl

-11
1H-lH cosY
t6-tsg HMBC

nl | \cFt.\l I o
fl -tsr-it- /
I rt).F \| / t-n/ r)Hfl, /--\

OH

t{rg-'Yo-""u
o

Figure 4.22 Selected correlations establishing the

final connectivity of methylpourewate B (f 42).

The stereochemistry of methylpourewate B (142) was determined from both rH-rH

vicinal coupling constants, measured in the tH l.tl{R. spectrurn, and NOE correlations,

detected in a ROESY experiment. As with l3t, H-15 shows a small coupling to H-14,

consistent with a small dihedral angle between these protons. Due to overlap of their

close chemical shifts, no reliable NOE could be detected between H-13 and H-14. The

coupling constant between these two protons, however, is similar in magnitude to those

measured for 13E, therefore it is aszumed that the stereochemical relationship between

the two protons is the same. Several of the NOE correlations used to determine the

relative stereochemistry of l.3t were absent in 142, precluding a similar stereochemical

analysis. Although none were observed between H-5a and H-l lb, NOE conelations

were observed between CH3-6 and both H-14 and CH3-20, and also between H-7 and

both H-lb and CI*-20, in a similar manner to that observed for l3t, therefore the

stereochemistry for C-7 and C-10 is assumed to be the same. These observations and
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4.14 Pourewanone

Strong pseudo-molecular ions were observed for pourewanone (143) (2,2 mg) in both

positive and negative ion HRESIMS experiments, establishing a molecular formula of

C2sH3sO5 (351.2160 JM+H1*, A 1.8 ppm, 718.4527 [2M+NH4]*, A 0.3 ppm, 349.2019

[M-H]-; A 0.5 ppm) and requiring six degrees of unsaturation. All 20 carbons and 29

protons attached to carbon were observed in the l3C and lH NMR spectra. Notable

features of the IR spectrum included an OH stretch (3335 .*-'), and both a broad and a

narrow C:O stretch(1725,1665 cm-r respectively). The band at 1665 cm-r was suitable

for an o, B-unsaturated carbonyl.tuo A single peak was noted in the UV spectrum

(l,ma(:248 nm, tr*:l 4,425), characteristic of a cr,B,B-saturated-enone system.160 Th"

t3C NMR spectrum of 143 was quite different from any of the other diterpenes isolated

during this study. Notable r3C resonances included those of three carbonyls (6s 198.1,

177.2, 161.0), a polarised olefin (6s 167.3, 135.6), and an oxygenated methylene (6s

62.9). The l3C resonance at 161.0 ppm was assigned as that of a carbonyl, and not as

part of a polarised olefin, by the following reasoning. Attachment of a proton at 8.06

ppm was determined from a correlation in the HSQC-DEPT spectrum. The l-16,11

coupling constant between these resonances was found to be 225 Hz when measured in

a rH coupled HSQC-DEPT experiment. A t-ls,H coupling constant of this magnitude is

diagnostic of formate functionality, which was also consistent with both the lH and l3C

chemical shifts.l6l-l6a tnitiaily, observation of an HSQC-DEPT correlation between the

lH and l3C resonances of the formate was diffrcult, as the signal was weak due to the

inappropriate lJg,H value (140 Hz) used when running the experiment. Once this value

had been optimised (rJ6,s=190 llz), the strenglh of the formate HSQC-DEPT

conelation was enhanced, allowing for better detection.
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As with all the previous related metabolites, careful analysis of the COSY and HMBC

spectra allowed the rapid assignment of a l,3,3trimethylcyclohexyl moiety [(C-l:

6c38.3,6n 1.96, 1.29), (C-2: 6c 20.5,6s 1.61), (C-3:6c 39.5,6n 1.28), (C-4: 6c 31.8),

(C-5: 6c 49.6, 6H 1.84, 1.38), (C-10: 6c 41.0), (C-18: 69 29.0, 6n 0.83), (C-19: 6c 31.4,

6n 0.95), (C-20: 6c28.8, 6s 1.28)l for 143 (see table 4.6 and figure 4.3).

A linear chain of three methylenes and a methine was established on the basis of

observed COSY correlations. The protons of a methylene (C-l l: 6c?7 .7, 619-2.72, 2.63)

were strongly coupled to the protons of another methylene (C-12 6c 25.1,

6n2.11,1.74). These in turn showed strong COSY correlations to a methine (C-13:

6c4.7,611 2.56), which was coupled to an orygenated methylene pair (C-15: 6e62.9,

6H 4.49, 4.26) (see figure 4.24).

,_ji),i#,doAL *"1*

1H-lH cosY

Figure 4.24 Establishment of the methylene chain

zubstructure of pourewanone (143).

The final COSY correlations observed were between a methyl doublet (C-6: 6c 15.0,

6n 1.37) and a methine (C-7: 6c 39.0, 6n 3.84). As beforg both CIIr-6 and H-7 showed

HMBC correlations to the "C resonances of eaoh otheg and to that of a carbonyl

(C-17:6c 177.l) (see figure 4.5).

The COSY and HMBC correlations detailed above had accounted for 16 of the 20

carbons of 143, leaving a polarised olefin, a carbonyl, and a formate, to be assigned to

define the final connectivity of the metabolite. The final connectivity of the molecule
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was achieved after analysis of several key HMBC correlations. Both CHg-6 and H-7

showed strong HMBC conelations to the two polarised olefinic carbons [(C-9: 6c 167.3)

and (C-8: 6c 135.6)1, indicating the attachment of the side chain at C-8. As previously,

CH3-20 showed a strong correlation to C-9, linking the 1,3,3-trimethylcyclohexyl ring

with the substituted olefin at C-9. The rH resonances of methine C-7, and methylenes

C-13 and C-15, all showed strong HMBC correlations to a ketone carbonyl

(C-14:6g 198.1), establishing the position of the carbonyl within the enone system

suggested by the UV spectrum. Finally, the lH resonances of C-15 correlated to the

formate carbonyl (C-16: 6c 161.0, 6H 8.08), the rH resonance of which conelated back

to C-15 (see figure 4.25)to establish the attachment of the formate at C-15. This is, to

the best of the author's knowledge, the first formate fully characterised from the marine

environment.

,/--\ 1H-13C HMBC

Y""
o

Figure 4.25 Establishment of the final connectivity of pourewanone (143).

The obvious proximity of ketone C-14 to the tetrasubstituted olefin of 143 is the cause

of both the UV chromophore and the polarisation of the double bond. The proximity of

the enone system also accounts for the change in resonant frequency of H-7 from that

found in the other diterpenes isolated in this study. As the three stereogenic centres of

143 are quite isolated from each other, no obvious conclusions can be drawn from any

NOE correlations observed. The stereochemistry of C-7, C-l0 and C-l3 is assumed to

be the same as the other metabolites isolated. however. and therefore the three

laR\fr
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stereogenic centres of pourewanone (143) are tentatively assigned as 7R*, 10'S*, 13'S*

consistent with all other metabolites isolated during this study.
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Table 4.6 t3c(100IuHz) and rH(300 il4H2)Nh{RData(cDC13) ofpotnewanone (143).
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4.15 Biogenesis of the Isolated Spongian Diterpenes

Several of the spongian diterpenes isolated as part of this study are of biogenetic

significance. They are either suggested intermediates in previously proposed

biosynthetic pathways, or they represent a new carbon skeleton that is fomted vla a new

mechanism. Each group of metabolites will be dealt with in turn.

Cadlinolides A-D (132-133, f38-139) are structurally related to the gracilin-class of

compounds (1l&-fB) and are therefore presumably formed vla a similar mechanism to

that shown in scheme 4.7.t40't48'tso K*y steps of the biogenesis are the l,2-hydride and

I,2-methyl shifts, followed by the opening of the epoxide ring to form an alcohol. The

C-5 C-6 bond is then oxidatively cleaved to form a carborylic acid. Instead of

undergoing a decarboxylation as proposed for the gracilins, however, the C-17

carboxylic acid would undergo a lactonisation with a C-15 alcohol. The fotn members

of the class are formed by various oxidations and functionalisations of the

five-membered heterocyclic ring. This mechanism is summarised in scheme 4.11.
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Scheme 4.11 Proposed biogenesis of cadlinolides A-D (132-133n 138-139). Based upon

the proposed biogenesis of the gracilins.l50'ls2

Pourewic acid A (140), l5-methoxypourewic acid B (141) and methylpourewate B

(142) are also closely related to the gracilin family of compounds (118-18).140'148-150

The biosynthesis of the gracilin compounds involves the oxidative opening of ring B to

give various carboxylic acids that decarboxylate to give compounds 118-123.150'152 'I-he

isolation of 140-142 helps to confirm this biosynthetic pathway, as they were predicted

intermediates of these mechanisms. It is unlikely that traditional purification method

oxi.+-
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using silica gel would have allo-wed isolation of these compounds, as irreversible

binding of the metabolites to the chrromatographic subshate may occur. ln the

biosynthetic pathway proposed for the formation of 1l&-123, a leaving group (X) that

takes part in the decarboxylation reaction has been thought to be present on the original

ring C throughout the mechanism. As none of the compounds isolated during this study

have any functionality on ring C, it would appear more likely that some oxidation of

ring C takes place after the oxidative cleavage of ring B, to help facilitate the

decarboxylation suggested. A suggested biosynthesis of compounds t40-l42 is detailed

in scheme 4.12.
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Scheme 4.12 Proposed biogenesis of pourewic acid A (140), lS-methoxypourewic acid

B (141) and methylpourewate B (142). Based upon the proposed biogenesis of the

gracilins. I 50'l 52

Pourewanone (143) is the first representative of the new pourewanane carbon skeleton.

It is proposed that the oxidative opening of ring B occurs as for the cadlinolide and

pourewic acid classes. Loss of HzO leads to the formation of a Al4'15 olefin that then

undergoes an oxidative cleavage to form formate 143. This pathway is described in

scheme 4.13. Alternatively, a furanospongian diterpene could undergo oxidative

cleavage of the C-14 C-l5 bond followed by hydrogenation of the C-13 C-16 bond (or

lon.

f 

metrrvration
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hydrogenation of C-13 C-16 and then cleavage). This is summarised in scheme 4.14.

No furano-diterpenes and at least one C-15 OH diterpene were isolated from

Chelonaplysilla violacea during this study, therefore the mechanism shown in scheme

4.13 would appear more likely. As mentioned, to the best of the author's knowledge,

pourewanone is the first example of a formate from the marine environment.

The oxidative cleavage of the double bond proposed is similar to the synthetic cleavage

of an olefin by O:.EO Such cleavages have been proposed for the biosynthesis of retinal

and vitamin Ar from B-carotene.l3'80 More recently, similar cleavages have been

proposed for the biosynthesis of the degraded pregnanes muricenones A and B (144,

145), and for the aromatic alkaloid cyclomegistine (146) (see schemes 4.15 and

4.16;.t0s'100 Both these biosyntheses have been supported by synthetic studies.l66'16?

i::("""
';;l(o""

o

(144) R:H

(145) R=OAc

(r46)
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Schemc 4.13 Proposed biogenesis ofpourernanone (f6).
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Scheme 4.14 Altennative biogenesis of pourovanone (143).
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scheme 4.15 Proposed biogenesis of muricenones A and B (144, 14$.166

Scheme 4.16 Proposed biogenesis of cyclomegistine (146)'165

4.16 Biological Activity of the Isolated Spongian Diterpenes

Due to the small amounts of the metabolites isolated, only a few could be submitted for

biological evaluation. Cadlinolide C (138), pourewic acid A (140)' and

methylpourewate B (f42) were all submitted for evaluation in both cytotoxicity and

anti-inflammatory assays. None of the three metabolites showed any cytotoxic activity

against the HL-60 leukaemia cell line (maximum concentration 10 pM). The
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compounds did show moderate anti-inflammatory activity as measured by inhibition of

superoxide production by human peripheral blood neutrophils stimulated with either

ft\4LP or PMA.r0s The results are summarised in table 4.7. Finally, 140 was also

submitted for anti-microbial activity and was shown to be inactive.

ICso

PMA fMLP
cadlinolide C (138)

pourewic acid A (140)

methylpourewate B (f 42)

13 pM
77 p,M

58 uM

13 pM
741tM
58 uM

Table 4.7 Anti-inIlammatory activity of several isolated spongian diterpenes.

It is unfortunate that a paucity of material prevented more of the diterpenes being

assayed for anti-inflammatory activity, as this prevents a true structure-activity

relationship to be suggested. Cadlinolide C (138), which contains a C-15 C-17 lactone

ring, is the most active of all, whilst pourewic acid A (140) and methylpourewate B

(142), which do not have this lactone linkage, show comparable and reduced activity.

4.17 Other metabolites from the Genus Chelonaplysilla

Other than the diterpenes mentioned during the literatwe survey, only one other

publication regarding metabolites from the genus Chelonaplysilla could be found. The

anti-microbial aromatic alkaloids (147-f 50) were isolated from the polar fractions of an

extract of the same sponge that yielded several diterpenes. It was felt by the authors that

the plethora of diterpenes found in various species of Dendroceratid sponges had meant

that other researchers had overlooked the more polar, and generally more biologically

active, nitrogenous compounds that the sponges produce. It was also suggested that

these compounds may more important components of the animal's defensive

mechanism.l6s
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(147) R=H

(148) R=Br

(149) R1:OMe, R2:H, Rg:OH

(150) Rt:H, R2:R3:OMe

The use of NMR during this study, for the screening of sponges and the guidance of

isolation procedures, coupled with the use of reversed-phase stationary supports' has

resulted in the isolation of several nitogenous compounds (see ohapter two). It is

unlikely that polar nitrogenous compounds were present in the sample of

ahelonaplysilla violacea that yielded diterpenes 138-143. Alkaloids such as these

would have easily been noted during the screening process'
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5.1

Chapter Five

Isolation of a Marine Toxin Produced
bv the Dinoflasellate K are nia br ev is ulc ata.

Dinoflagellate Toxin Classes

The presence of a dinoflagellate toxin in the environment is often not recognised until

cases of human intoxication from eating contaminated seafood, usually shellfish, are

reported. This is because many shellfish species can bioaccumulate toxins in their

various tissues without causing harm to the animal itself. The toxin is only noticed when

higher predators consume the seafood and become sick.l0'3e'42 The toxic symptoms

elicited in humans are therefore often used to classifu the broad categories of

dinoflagellate toxin. The four main classes of dinoflagellate toxin are Paralytic Shellfish

Poisoning (PSP), Neurotoxic Shellfish Poisoning (NSP), Amnesic Shellfish Poisoning

(ASP) and Diarrhetic Shellfish Poisoning (DSP). There is also a collection of other

unique toxins that do not fall under these categories.l0'3e'a2't6e-t77

5.2 Paralytic Shellfish Poisoning (PSP)

PSP is caused by the alkaloids saxitoxin (151), neosaxitoxin (152), and their

homologues. Both the saxitoxins and neosaxitoxins are produced by marine and

freshwater dinoflagellates, including various species of Alexandrium, Karenia and

Pyrodinium. I 7 l'l 72' I 78-l 83
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(151) R:H (152) R:OH

The mode of action of both the saxitoxins and neosaxitoxins is the same; both classes

block the sodium channels of excitable nerve membranes which inhibits the propagation

of action potentials (voltages), thereby causing paralysis of muscles. Other major

symptoms in humans include hypersensitivity of the mouth and skin, ataxia, muscle

weakness, and a sensation of floating. PSP is often fatal due to paralysis of the muscles

controlling the lungs of victims.lEa

5.3 Neurotoxic Shellfish Poisoning (NSP)

NSP is caused by the brevetoxins, a class of polyether toxins produced by Karenia

brevis (syn. Gymnodinium breve) and other members of the same genus. It is blooms of

K. brevis that have led to the commonly used phrase "Red Tide", due to the

characteristic colour of large blooms of the dinoflagellate (see figure l.3). One of the

first records of a Red Tide is found in the Bible in Exodus 7 20-21: "... and the water

changed into blood. The fish died and the river stank...".6 The brevetoxin family

include brevetoxins A (153), B (154) and 82 (155;.tee'tzo'tts

(ls3)
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I

(155) R:iAv*

5.4

The mode of action of the brevetoxins is quite different to that of the sarcitoxins, even

though both classes affect the sodium channels of cell membranes. This is because

brevetoxins bind at a different site on the channel than the PSP toxins. The brevetoxins

cause sodium channels to stay open longer, by stabilising both the pre-open and open

states of the channel, allowing greater sodium ion flow into the cell. This increased ion

concentration causes neuronal membrane depolarisation, which stops nerve signal

propagation.a2 NSP can cause a wide variety of symptoms, including a reversal of

thermoreception, loss of coordination, headache, and general malaise.42't8a't86

Diarrhetic Shellfish Poisoning (DSP)

DSP is caused by several different organisms and covers a wide variety of symptoms.

The main causative agent is okadaic acid (156), which has been isolated from many

sources. Okadaic acid (156) was originally isolated from the sponges Halichondria

okadai and H. melandocia. One major producing dinoflagellate is Prorocentrum lima

although other genera, including Dinophysis, have been found to produce 156 and other

congenefs. t7 s'r7 6't 87

-152-



J.J

(1s6)

Okadaic acid (156) is a potent tumour promoter due to its ability to greatly inhibit the

serine/threonine protein phosphatases PPI and PP2A, which allows a build-up of

phosphorylated proteins in cells. This mode of action is similar to that of the well-

known tumorigenic phorbol esters, which activate protein kinases. Increased protein

phosphorylation leads to continuous o'secondary messenger" production, which irrcludes

excess fluid excretion from gut cells causing diarrhoea. Other symptoms of DSP include

gastrointestinal disorders such as nausea and abdominal pain.lsa

Amnesic Shellfish Poisoning (ASP)

ASP is caused by domoic acid (157) which was first isolated from the macro-alga

Chondria armata. Domoic acid (f5f was later identified as also being produced by

members of the diatom genus Pseudonitzschia. Lrke PSP, cases of ASP have been

fatal.tT 
3,t7 4,r 88, r 8e

) ..-cooH'',,r-.,,.r

/\
\*'/-coon

H
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The mode of action of 157 is similar to that of kainic acid (158). Both metabolites are

excitatory amino acid agonists to glutamate, a neurotransmitter in the central nervous

system.lT3'174'l8e Both are thought to bind to kainate-sensitive glutamate receptors on

nerves. This causes a depolarisation effect, followed by an influx of calcium ions into

the cell that causes eventual cell death. Some domoic acid extracts may be more toxic

than others due to possible synergy between domoate and other excitatory amino acids

such as glutamate. Symptoms of ASP intoxication include vomiting and diarrhoea,

followed by short-term memory loss, confusion, disorientation, and possible coma.lsa

5.6 Other Dinofl agellate Toxins

There are many other toxins produced by dinoflagellates that do not fall into the four

main symptom classes, many of which are still problematic for the seafood industry.

These toxins include ciguatoxin (159), the agent that causes ciguatera seafood poisoning

(CSP), found after the consumption of many species of tropical fish.a2 The earliest

report of ciguatera poisoning is believed to have been recorded in China by Ch'en

T'sang-chi sometime during the T'ang dynasty (618-907 A.D.) who claimed that the

yellowtail is o'...a large poisonous fish fatally toxic to man." leo

(lse)

Ciguatoxin (f59) is produced by the epiphytic dinoflagellate, Gambierdiscus toxicus,

which is ingested by fish and introduced into the food chain.rel-re3 Th. symptoms of
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ciguatera are similar to that of NSP and include reversal of thermoreception, joint pain,

low blood pressure, nausea, vomiting, and dianhoea. Studies have shown that 159 binds

to the same voltage-sensitive sodium channel as the brevetoxins, hence the similarity in

observed symptoms.a2 Although other congeners contribute, the major toxic component

of ciguatera is 159.42

A second class of toxin is produced by G. toxicus which is also of great interest.

Maitotoxin (f60) is a unique natural product as it is the largest, non-biopolymer, natural

product ever isolated (Cto+HzsoO5sS2Na2, 3422Da), and it may also be the most potent

non-proteinaceous toxin known (LDso - 50 ng/kg intraperitoneal [IP] versus mice).a2'1ea-

In6 Studies to determine the mode of action of 160 are still cunently being carried

out.42,r94-196

Several other toxins have until recently been included in the DSP class, as they are

extracted in a similar manner and are often found in conjunction with okadaic acid

(156), although they do not show any structural similarity to 156 nor do they appear to

possess the same mode of action. These toxins include the pectenotoxins, such as

pectenotoxin-1 (161) from Dinophysisfortii and D. acuminata, and the yessotoxin class,

exemplified by yessotoxin (162), from Protoceratium reticulatum.te7-z00 It is now

recognised that these metabolites are not true DSP toxins.20l

(l6l)
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3.7

(162)

Structural Considerations

It can be seen from the previous examples that there are two common structural features

of these natural products. First, most are highly oxygenated and they often contain other

rare functionalities (hydrates, imines, spiro centres etc). Second, the fused polycyclic-

ether carbon backbone is present in almost each toxin class and yet the modes of action

and toxic symptoms elicited in humans are all very different.

The basic polyether structure has been proposed by Shimizu to be formed by a cascade

ring closure of a polyepoxide compound. Shimizu proposed this mechanism for the

biosynthesis of brevetoxin B (154).3e The isolation of hemibrevetoxin B (163), the

exocyclic olefin portion of 154, would suggest that the cascade begins at that side of the

molecule.202 The suggested biosynthesis begins with a hydride shift, followed by the

cascade opening of the cis expoxides. The other polycyclic-ether toxins could

presumably be produced via a similar mechanism (see scheme 5.l).3e

(163)
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5.8

Scheme 5.1 Proposed biosynthesis of brevetoxin B (154).3e

Dinoflagellate Toxins and New Zealand

Shellfish harvesting forms an integral part of the seafood industry in New Zealand, with

both economic and cultural significance. In 1998, fisheries exports were worth $NZ

1,236.8 million to the national economy, with shellfish accounting for $NZ 273.9

million of that total.203 Any long-term closure of shellfish harvesting because of a toxic

dinoflagellate bloom could have a serious impact on the New Zealand economy.

In January 1993, the entire coastline of New Zealand was closed to all shellfish

harvesting after cases of human intoxication were reported. The intoxications were

found to be caused by NSP toxins produced during a large algal bloom in late 1992. The

dinoflagellates present during the bloom were Alexandrium minutum and
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Karenia brevis, reaching peak levels of I.l7 x 10' and 4.1 x l0' cells/L

respectively.204'20s The effect of this closure was the loss of several million dollars to

New Zealand's economy and over one thousand jobs during the first three months of

1993. It was fortuitous that the shellfish industry had reserved large stocks of non-

contaminated shellfish prior to Christmas 1992, and that the closure occurred while

most workers were on summer holidays. By the end of the financial year, the industry

had made almost a full recovery and most workers had been reinstated in their jobs.zffi

The results of the 1993 closure were not too serious for the New Zealand shellfish

industry, although that was due more to good fortune than good planning or

management. The New Zealand authorities have since instigated a continuous shellfish-

monitoring programme in order to better detect and respond to such situations, should

they arise again in the future. It is therefore important that new toxins are identified, and

methods to detect and quantifu any new toxins are established, in order to protect the

shellfish industry and its consumers.

Karenia brevisulcata

In the summer of 199711998, a bloom of a previously undescribed toxic dinoflagellate

species formed in the waters off the East Coast of the North Island of New Zealand,

conesponding to an unusually warm and still spring period.aa The bloom spread south

along the eastem coastline, and then across the bottom of the North Island along the

southern Wairarapa Coast and into Wellington Harbour (see figure 5.1). The

dinoflagellate was isolated and named Gymnodinium brevisulcatum (etymology: Latin

brevis : short, sulcatum : groove).43 The concentration of G. brevisulcatum peaked at

3.3 x 107 cells/L in Wellington on March l3tt', l998.aa Several toxic dinoflagellate

genera including Gymnodinium, have recently been taxonomically reclassified and the

dinoflagellate is now known as Karenia brevisulcata, a species closely related to the

5.9
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known toxic dfuroflageltates K. brevis and K mikimotoi (see figure 5.2 and

scheme 5 .21.4t4s'za7z6

Figurc 5.1 Hydrographic chart ofWellington llarbour and sotrthsn Wairampa Coast

(Courtesy ofland and InformationNew Zealand)

Figure 5.2 SEM image of l(senia brevisulcatq.

(Courtesy ofDr H. Ch8ng, NIWA 2003).
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The most notable effects of the bloom were due to the extreme biological activity

exhibited by the dinoflagellate. Almost all the fish, plant, ffid invertebrate species

within Wellington Harbour died. Most of the species not killed by the dinoflagellate

stopped eating and died of starvation instead. The biological activity of the presumed

toxin was quite unlike anything previously reported.a3'44207'208

Over 150 cases of human respiratory distress were noted during the bloom, with

symptoms including a dry cough, severe sore throat, inflamed and pufr eyes,

dermatitis, feverish influenza-like symptoms, headache, nausea, and stomach cramps.

The cases of respiratory distress were thought to be due to aerosol effects from sea

spray containing a toxin and/or live toxic algal cells.a

Samples of K. brevisulcata were acquired, and cultures of the dinoflagellate grown. It

was decided to attempt the isolation of the causative toxin(s) from artificially grown

cultures of K. brevisulcata, in order to determine the identity of the toxin. If the toxin

proved to be a novel compound, a secondary goal was to establish detection methods for

the metabolite that could be integrated into the current national shellfish-monitoring

programme.
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Kingdom Plantae (Plants)

Phylum Chromophycota

Class Chrysophyceae

Order Dinophysiales Gymnodiniales Peridinials

Entomosigmaceae Gymnodiniaceae Polyrikaceae

Gymnodinium

brevis

5.2 Phylogenic relationship of Karenia brevisulcata. For simplicity, not all

classes, orderso families, genera or species are shown.3s'*As

Species

Scheme
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s.10 Bioassavs Used to Guide Isolation

One of the key issues relating to the isolation of the Karenia brevisulcata Toxin (KBT)

was the method used to direct isolation. Unlike the NMR based screening method

described in chapter two, no chemical signature appropriate to guide an isolation

procedure was evident for KBT. Rather, as any toxin is obviously biologically active,

bioassays would be more appropriate to guide an isolation of I(BT. After identification,

other methods including ELISA (Enzyme Linked Immuno-Sorbent Assay), LC-MS or

NMR, may be established for quantitatively identifuing toxin levels in a variety of

samples. The major requirements of a bioassay to be used were fast turnaround time,

accuracy of results, and a need to be quantitative. The last requirement was of supreme

importance. If the assay used to detect a toxin is only qualitative, and the assay is very

sensitive or the toxin highly potent, then recovery of only a small amount of toxin may

still trigger a positive response in the assay, even if most of the active material had been

lost. Loss of the active material may occur through irreversible binding to the column

substrate or by degradation of the molecule. A quantitative assay, which can accurately

calculate the total recovery of the toxin, is therefore needed.

The first assay used to monitor the isolation of KBT from cultures of K. brevisulcata

measured the death of another dinoflagellate species following exposure to KBT. The

number of cells killed and the time to death were used to estimate the amount of KBT.

This assay was used to assess the toxicity of various cultures of K. brevisulcata, and

was also initially used to direct the attempted isolation of KBT. One 300 L culture of K.

brevisulcata was semi-purified through two fractionation steps using direction by this

assay. The resulting fractions from this batch were used for various biological trials,

including some stability tests (see below). Unforrunately, the assay was slow and

difficult to use as it relied on observing the time taken for the test organisms to die,
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which could take a considerable time as samples could only be processed in batches of

five. The time taken to analyse many fractions generated from a purification step would

be prohibitive. Determining when the cells died was in itself a subjective matter as it

relied on personal experience and knowledge of the test organism. This assay was

dropped as the primary means of monitoring the isolation of KBT.

The assay used subsequently to direct isolation was a murine neuroblastoma (N2A)

assay. This assay is an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium)

based assay, originally developed for detecting the NSP or PSP toxin classer.20e'tto It

has been found, during the course of this study, that KBT has a distinctive and

reproducible activity that varies in a linear fashion with dilution in the N2A assay'

making it a quantitative system for measuring the amount of KBT.

In order to accurately quanti$ the amount of toxicity that a sample contains, a standard

must be used as a control against which the unknown samples are measured. To do this,

a measurement of arbitrary toxicity units (TUs) is used. One TU was defined as the

minimum amount of a specific sample of KBT (the "Gold Standard") required to affect

the viability of the N2A cells in the assay system. A standard aliquot of the gold

standard is added to a control well during each quantification, in order to calibrate the

results obtained from the N2A assay system by checking that the response of the N2A

cells is the same each time. Each sample is measured against the response of the cells to

the gold standard, and is quantified in terms of TUs without knowing any of the

physical characteristics of KBT (in theory, similar to determining molar concentration

without knowledge of molecular mass). It is therefore possible to note how many TUs

are loaded onto a column at any step, and then measure the recovery afterwards (see

figure 5.3).
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X'igure 5.3 N2A ce[s (Ief) unreatod" (nght)treced with KBT'

(Conrtesy of Dr P. Truman, ESR' 2003)

5.11 Culture Harverfing

Once an appropriate assay for guiding the isolation was in place' the main objective was

to quickly and quantitatively fractionate and puriff KBT. The initial step of extracting

the maximum amount of toxin from the cell culture was of major importanco, as this

would limit the maximum yield from any lrarvest. Prerrious work carricd out in our

laboratory had proven the use ofPSDVB in the foiitial extraction of dinoflagpllate to:rins

from culnrre media.6a It was asstrmed that most dinoflagellates would secrete any toxins

produced into the zurrounding media" in order to deter predation Any secreted toxins

passed through a column of PSDVB should absort to the stationary phase' The PSD\D

could then be eluted to achieve basic fractionation. The algal cells could also be

coltected (by filtration or centrifirgation) and extracted as well. An extract of the oells

cogld be cyclic loaded and eluted, with any toxic fractions combined with those

generated from the column that the media had been passed thongh' Normal

chromatographic methods could then be applied to isolate the toxin itself.n
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In this way, several batches of K. brevisulcata, from 20-320 L culture media, were

harvested throughout the course of this study, each time yielding an extractable toxin

that performed consistently in all the chromatographic separations and assay systems

used. It was noted early on, however, that the amount of toxicity yielded varied greatly

from batch to batch. This could be, in part, due to differences in the timing of harvest in

relation to the life cycle of K. brevisulcatao a facet that has not yet been explored fully'

The time of harvesting, however, was not felt to be a major factor' More likely, the

dinoflagellate itself was not secreting the same amount of toxin in each batch due to

differences in culture conditions. Batches grown with dense cell concentrations,

indicating good conditions for growth, may not yield the most toxin, as the culture may

not be stressed enough to respond by secreting as much toxin.

In order to maximise the yield of KBT from each batctr, the dinoflagellate cells were

lysed to release all toxin into the sugounding media. This was achieved by adding

MezCO until a concentration of 10% MezCOlgO% media was reached' The change in

polarity caused all the dinoflagellate cells to lyse, thereby releasing any KBT contained

within the cell itself. By harvesting in this way, the toxic yield from -320 L

K. brevisulcata was increased from 150 x 106 TU to 2,500 x 106 TU (-16 fold increase

in toxicity). In a subsequent experiment, addition of freshwater to decrease the salinity

of the culture media has successfully lysed the cells of a wild sample of Karenia sp. in a

similar manrer.2llThis may in future be a cheaper and more environmentally safe

method to maximise the yield of various toxins from batches of cultured dinoflagellates.

Stability Tests5.12

With the availability of a quantitative assay, stability tests were carried out on aliquots

of semi-purified KBT. Each sample was exposed to varying amounts of either acid or
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base over time. The activity of each fraction was then quantified by the N2A assay. It

was found that the level of activity was largely unaffected by exposure to acid, but was

highly sensitive to even small amounts of base (exposure to pH 9 for several hours

showed considerable loss of activity).t't This work was of extreme importance, as it

gave clear guidelines on the potential use of acidic or basic buffers as solvents in the

isolation of I(BT.

It was also shown that KBT remained stable in HzO/lvIeOH or HzO/lvIezCO mixtures at

4oC with no noticeable loss of activity.2r2 Finally, initial tests using the dinoflagellate

bioassay indicated that KBT is thermally unstable as most of the activity was lost after

heating to 100"C. Nonetheless, after prolonged exposure to boiling HzO for 30 minutes,

some toxic activity was still noticeable.2oT

5.13 Isolation

The isolation of KBT from cultures of K. brevisulcata is problematic. Two cultures of

KBT have been used to supply material for the purification procedure. The first was

without, and the second with, lysing of the algal cells prior to harvest. The first batch,

containing less toxic material, has been used as a pilot sample for experimental trials of

various isolation methods. Any purification steps that were shown to be effective were

performed upon the second sample that contained the larger amount of KBT.

The initial process remained the stepped elution of the HP-20 PSDVB column that the

toxic culture media had been passed through. Initially, the column was washed with

HzO and eluted with five different solvent mixtures (20, 40, 60, 80,

100%MezCO/HzO), with the bulk of the toxicity concentrated in the 60YoMezCO/HzO

fraction, although detectable amounts of toxicity were noted in both the 40% and
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80% MezCO/HzO elutions. For subsequent batches, the elution profile was changed to

maximise yield of toxin while reducing the number of fractions collected (HzO wash,

30, 70, 100% MezCO/HzO).

The next step was to cyclic load the toxic fraction onto a small amount of HP-20S or

Amberchrom that was then transferred onto a larger column of PSDVB as a slurry for

gradient MPLC elution. The toxin streaked from the column (eg. KBT eluted between

53-83% MezCO/HzO from the HP-20S MPLC column) each time this step was used.

This was assumed to be due to either overloading of the column or, more likely, from a

mixture of closely related toxic compounds eluting separately.

As a trial separation, aliquots of KBT were run on a PRP-I (PSDVB) analytical HPLC

column using a gradient from 40-70yo MezCOtHzO, pH 5, or pH 8 buffer, in order to

test the effect of acidic or basic buffers on the elution profile. Surprisingly, it was found

that under neutral conditions, two peaks of activity were detected while under both

acidic and basic conditions, only one peak was observed. Two repeat injections under

neutral conditions confirmed the original response. A fraction collected from each peak

of activity was re-injected under neutral conditions. In both cases, only one peak eluted

with the same retention time as previously, indicating that the toxicity was not from a

mixture of tautomers in equilibrium with each other. This was the first evidence

suggesting the presence of more than one toxic compound from cultures of K.

brevisulcata.

Many other chromatographic separations were attempted with the pilot KBT sample.

Column substrates used included further PSDVB (Amberchrom), LH-20 size-exclusion

gel, silica gel, and diol. Streaking of the activity was observed with most of the

substrates used. Diol was the only substrate that showed any particular promise as a
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suitable column packing material. Initial trials using silica gel had shown that KBT

almost ineversibly retained on the column and would only elute in very polar solvent

(10-20%MeOH/EtOAc), which was too polar for adequate separation. Furthermore,

only 60% of the toxicity was recovered from the silica column. Diol is much more

stable to polar solvents such as MeOH and EtOAc, and polar molecules will generally

retain less to the substrate, therefore generally eluting earlier than as compared to silica

gel. Results from an initial trial using an aliquot of KBT on a small diol column showed

that all the toxicity loaded eluted from the column in the 2S%MeOHns%ErOAc

fraction, which although no earlier than with silica, was still well within the

chromatographic range of the packing material. On the basis of the small-scale diol trial,

a larger separation using the pilot sample was performed under flash chromatographic

conditions. The sample was loaded in 1%oEtOAc/99Yo CHzClz and eluted with mixtures

of EtOAc/MeOH. Bioassay testing of the fractions generated revealed that four peaks of

activity had eluted from the column, the first being the largest in terms of total activity

eluted (see figure 5.4). Each step in an isolation procedure generates a large number of

samples. In each diol separation, either every fraction or every second fraction had to be

quantified. As a result, a substantial number of assays were perfonned to identiff the

elution profile of KBT at each stage.
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Figure 5.4 Elution profile of KBT after running the pilot sample on a diol column.
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As the pilot KBT sample had been successfully chromatographed using diol stationary

support, the major sample of KBT was processed in a similar manner. It had been noted

at each stage of the isolation procedure that KBT was only sparingly soluble in all

solvents tried, except for MeOH in which it was partially soluble. Even with MeOH,

large volumes were required to dissolve most of the sample. The column was therefore

loaded as a suspension of this sample, rather than as a solution. Again, four major peaks

of activity were eluted from this diol column.

As before, most of the fractions combined from this fractionation step still showed a

large degree of insolubility in most solvents. Unfortunately, the amount of MeOH

required to dissolve the major sample of KBT prohibited the use of HPLC as a method

for final purification. As diol is chemically stable to MeOH, it was decided to dissolve

the KBT fully in MeOH and then cyclic load the solution onto a small amount of diol by

diluting with CHzClz. Once loaded, the diol was transferred as a slurry onto a larger

MPLC diol column and run under a gradient elution profile from

10-50% MeOFVEtOAc. During the flash diol column runs, several of the later peaks of

activity eluted when a change in solvent had occuned. This may imply that the peaks of

activity were not from several different toxins, but were due to the same toxin streaking

off the column, "pulse eluting" with each new solvent front. This theory was

strengthened by the observation of the toxicity streaking from the diol MPLC column,

where a long tail was noted during elution rather than several peaks. This was similar to

what had been observed when earlier MPLC runs using HP-20S had been carried out.
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320 L Karenia brevisulcata

(CAW 82, innoculated 22112101)

30% MqCO

757o EtOAc

25% MeOH

Other peaks of activity

90% EtOAc
10% MeOH

84.5 - 78.5%EtOAc

15.5 - 21.5% MeOH

50% EtOAc

50% MeOH

Passed through HP-20 column

Stripped with MqCO
MqCO strip loaded onto small

HP-20 column

Scheme 5.3 Optimised large-scale isolation scheme for KBT.

Several samples were generated by combining fractions from running the major KBT

fraction on the diol MPLC column. Each sample was analysed by NMR. Again, each

sample was largely insoluble in the CD3OD NMR solvent. As a trial, the samples were

concentrated to dryness and re-dissolved in Do-DMSO. Each sample was fully soluble

in this solvent. It is thought that KBT becomes less soluble in most organic solvents as

it becomes more pure, a problem that has been noted previously in dinoflagellate toxin

research.sl'2tr'2ts This lack of solubility may account for the poor separation and

streaking of KBT from the chromatographic substrates used, as any metabolite needs to

be fully dissolved in order to achieve maximum chromatographic performance.

Unfortunately, DMSO is not a particularly good solvent for chromatography as it is
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viscous, difficult to remove under reduced pressrue, and its ability to pass through the

skin, possibly carrying with it any dissolved toxic material, makes it a hazardous solvent

to use in the isolation of natural toxins. It has been suggested thal KBT may be a large

molecule as this sometimes correlates with lack of solubility except in DMSO.2I6

Finally, aliquots of KBT were run through amino or CBA (carboxylic acid) ion

exchange columns to test whether they would be useful for the final purification of the

toxin. It was found that KBT irreversibly binds to the amino substrate, suggesting some

kind of acidic functionality (carboxylic or sulfamic acid, phenol etc) in the molecule.

KBT was not retained by CBA, suggesting that no basic functionality is present in the

molecule. The presence of an acidic and absence of basic functionality may be

supported by the observation that KBT is highly sensitive to the presence of bases, and

not affected by acids, as noted during the stability tests.

The use of D6-DMSO to dissolve the KBT sample for NMR analysis has highlighted

several lH resonances, the intensities of which appear to wax and wane in a manner

similar to the biological activity, as measured with the N2A assay. These resonances are

of similar size, as measured by peak integration, and may therefore be from the same

molecule. There are also several other resonances that do not follow the biological

activity noted in the N2A assay, and whose signal intensity is an order of magnitude

larger than that of many of the other resonances noted. This certainly implies that the

sample is not yet pure.

5.14 Spectral Analysis of KBT

Each fraction generated throughout the isolation using both the pilot and large samples

of KBT, was tested using in-house NMR and MS facilities. HRESIMS was attempted
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using both positive and negative ion modes. Many signals were observed in each

sample in both modes, although none appeared to follow the biological activity

measured in the N2A assay. As noted above, KBT shows a marked lack of solubility in

all the solvents trialled except DMSO. This may have hampered opportunities during

the early stages of isolation to identiff possible NMR signals attributable to KBT. It

may also have precluded analysis by HRESIMS, as suffrcient KBT may not have been

dissolved to allow for detection. In addition, DMSO is not useful as a solvent for

analysis by HRESIMS as it can suppress analyte signal.2rT

Extensive analysis of the NMR spectral data of the most pure sample of KBT, collected

at Victoria University, proved to be inadequate for a structural analysis. In particular,

the 300 MHz spectrometer available did not show enough sensitivity or resolution to be

able to generate adequate spectra of KBT. Several NMR experiments were therefore

carried out at the University of Canterbury using a 500 MHz spectrometer. The use of a

higher-field magnet gave better sensitivity and resolution than obtained previously,

allowing for identification of several substructures of KBT. Extensive analysis of the

rH, COSY, HSQC, and TOCSY spectra obtained at 500 MHz revealed at least 97

individual rH resonances possibly attributable to KBT, falling between 0.67 and

6.48ppm. Of these 97 resonances, g0 correlated to 8l l3C resonances between 8.5 and

129.2 ppm in an HSQC experiment. Three exchangeable lH resonances were noted

from COSY correlations, observed when the sample was dissolved in D6-DMSO. These

resonances are assigned to exchangeable protons as there is no correlation to these

resonances in the HSQC spectrum, and the COSY correlations are absent when run

using CD:OD. Finally, it is assumed that all six lH resonances between 5.88 and 6.04

ppm are attached to carbon, even though four show no direct correlations in the HSQC

spectrum (see table 5.1). It should be noted that any analysis of the NMR spectra must

be viewed with some caution, as the sample used for the NMR experiments is of an

-t73-



unlcroum purtty (there is at least ono mafor impruity in the saople). The sample rntly

also cantain several congpner$ or hornologues of a tsxin in vry concentrations, and tbe

toxin may be a sifficantly large moleculeo therefore any correlations observod in the'

TOCSY or COSY specFa may be due o ov,erlapping resonances of differeril spin

sy$ems within the sarne molecule, or even between different molecules altogether.
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To help tn the identiflcaflon o-f KE-T, a database of over l4S0 indivifual IIil-l3C one-

bond NMR oorelations was €stablished" containing data finm 30 rcported atgal toxins
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including okadaic acid (156), azaspiracid, two pectenotoxins, several brevetoxins, two

ciguatoxins, yessotoxin (162), various saxitoxins, a prymnesin, several amphidinolides

and others, as well as the zooanthid toxin palyoxin (see figure

5.51.sr'rzo'rr8,180,18s,18?.1s5,t97,2t4'2t8'234 The most important observation from analysis of

the database is that KBT is not one of these compounds. For instance, it is unlikely that

KBT is related to the prymnesins or colopsinol A as these structures contain

carbohydrate residues whilst KBT shows no evidence of any anomeric acetal or hemi-

acetal centres.2l4,2t5,227 Similarly, KBT is unlikely to be a saxitoxin derivative as it

obviously contains olefins, a functionality not seen in this class of toxins.lT8'180'22s

Finally, many common dinoflagellate toxins, including yessotoxin (162)' the

brevetoxins, amphidinolides and others, contain exocyclic olehns; there is no evidence

that KBT possesses this structural feafure.le7'22r'222228-230 Th" presence or absence of

several other functional classes precludes KBT as being one of the structures of the

other common algal toxins, the NMR data of whigh are contained within the database.

This analysis does not preclude KBT being a congener or homologue of one of these

compounds or classes.

As well as being used to establish that KBT is not a contmon dinoflagellate toxin, the

database was also used to identify chemical environments that may give rise to the

various observed correlations in the COSY, TOCSY, and HSQC spectra of I(BT. Many

of the correlations identified in the HSQC spectrum of KBT are indicative of

oxygenated methines, the majority of which are consistent with polycyclic-ether

functionality. From a chemotaxonomic perspective, this is entirely consistent with the

many toxins already isolated from dinoflagellates.
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Figure 5.5 lH-l3C one-bond correlations of common dinoflagellate toxins.
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Detailed analysis of the COSY, TOCSY and HSQC correlations of KBT have allowed

some possible substructures to be constructed. There are six 'H resonances near 6 ppm,

coupled together in three pairs of disubstituted olefins as evidenced by COSY

conelations. The chemical shifts of these lH resonances are indicative of non-polarised

olefins, as each pair of resonances do not differ significantly from each other. The

shifts, however, are de-shielded from what would be expected for an isolated olefin in

an aliphatic chain and are, in fact, more consistent with the resonances of a conjugated

diene system, or possibly an olefin within a small ring system. Conjugated diene

systems are precedented, as both the prymnesins and palytoxin (164) contain this

functionality. In particular, 164 has two pairs of conjugated dienes, one of which has

chemical shifts similar to those observed in KBT (see figure 5.6).t" Palytoxin (16a) is

not a valid candidate structure for KBT, however, as several other prominent NMR

signals from it are absent in KBT. For example, 164 contains 15 olefinic

f H-r3C correlations, including one with a tH tesonance at 6n 7.79 wltrch is significantly

less shielded than any observed in KBT.23l

133.47 130.04

s.37 'l u.oo I*',* i/, '74--zs' 5.78,i.-/-\ i
,,^tri\"r:^lk

6s.0 t2s.87 133.88

Figure 5.6 Selected NMR chemical shifts of palytoxin (164).23r

Furthermore, analysis of observed COSY cross-peaks indicates a connection between

two olefinic protons (6H 5.96, d 4.9 Hz;6s 6.04, d, 5.9 Hz), each connected to one of

two oxygenated methines (66 87.45, 5H 4.63; 6c 83.76, 6H 5.29). Each olefinic

resonance shows only one coupling, to the other, in the lH NMR spectrum (evidenced
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by the multiplicity of the tH resonances), implying a dihedral angle of approximately

90o between the olefinic and orygenated methine protons. Both the orygenated methine

tH resonances show a COSY correlation to each other. Based upon these observations,

it appears that this system may be a l,4-disubstituted A43-dihydrofuran ring although

there is no precedence for this functionality in the natural products literature. The

de-shielded chemical shift of the rH resonance at 5.29 ppm may be explained by the

proximity of another orygenated methine (6c 78.46, 6H 3.25) to which it is coupled, as

indicated by cross-peaks in both the COSY and TOCSY spectra. The rH resonance at

4.63 ppm is coupled further to another methine proton (6H 1.29). There is severe

spectral overlap in the rH spectrum at this frequency that precludes extension of this

spin systenq even though there are several other COSY and TOCSY correlations

observed from this resonant frequency (see figure 5.7).

1.29
F.f 87

3.25
H ;fl*:

n.u, 
H

rH-1H cosY
H 65.29

6.04 5.95

X'igure 5.7 Proposed NMR chemical shifts of a

l,4-disubstituted A23-dihydrofuran ring in KBT.

A similar system that may also be considered for these resonances is a substituted 1,2'

dioxene ring, formed by the Diels-Alder addition of singlet Oz to a diene to form a

peroxide. This type of functionality is precedented in the natural products literature,

although the lH and l3C chemical shifts of the resonances from these molecules do not

compare favourably with those observed for I(BT (see figure 5.8).*t
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128.0 t27.4

Figure 5.8 NMR chemical shifts of a 1,2-dioxene ring.235

The closest match for the chemical shifts of the observed resonances of KBT comes

from the ciguatoxin congeners CTX-3C (165) and C-CTX-I (166).232'236 Both 165 and

166 have the same structure from rings B to J. In particular, ring D consists of an

olefinic seven-membered oxygenated heterocycle. The chemical shifts of the olefin, and

the oxygenated methines adjacent to the olefin, are similar to those observed in KBT

(see figure 5.91.222'zs0It is unlikely, however, that KBT contains a ring similar to this, as

the COSY correlation observed between the two oxygenated methine lH resonances of

KBT is stronger (implying a stronger coupling) than what would be expected for a

purely homo-allylic coupling that would give rise to such a cross-peak in the ciguatoxin

derivatives. Also, the coupling constants of the olefinic protons measured in I(BT (5.9

H2,4.9 Hz) differ substantially from those measured in CTX-3C (165) (both 13 Hz) or

C-CTX-l (166) (13 Hz,7 Hz), indicating a different conformation of these protons from

those of KBT (see figure 5.91.232'zt0

(r6s)
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3.71

13r,0 131.0

Figure 5.9 Selected NMR chemical shifts of C-CTX- | (166).232

A second series of correlations was noted in the COSY and TOCSY spectra. Three

exchangeable rH resonances (6n 4.91, 4.84,4.77) all appear to show strong conelations

to a methine proton (6H 4.00). Although an ortho-acid functionality (R-C(OH)3) is not

without precedence in organic chemistry, there is no precedent for such a functional

group in the natural products literature. It is also unlikely that such a functional group

would show such strong 4../H,H correlations to a proton on an adjacent carbon. It is

therefore much more likely that the thnee exchangeable tH 
resonances each conelate to

a different methine proton, all of which resonate at the same frequency (6s 4.00). This

may be indicative of three repeating structural units within KBT, or may suggest that

the sample is a mixture of three or more congeners. Finally, several other isolated

substructures have been identified through COSY correlations between their attached

tH 
resonances. All these substructures are detailed below (see figure 5.10).
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Figure 5.10 Possible substructures and NMR chemical shifts of KBT.

5.15 Biologicel Activity of KBT

I(BT is a toxin and therefore has potent biological activity. Initially, after harvesting of

the oulture media by lysing of the cells and elution of the I{P-20 columr\ the toxic

sample of KBT had an N2A activity of 9.2 x 106 TU/mg. The most pure active fraction

has an N2A actMty of 2.7 x t06 TU/mg. Analysis of a semi-purified sample of KBT

from 100 L of K. brevislcata has shown that the toxin has an LDso -500 TU/mouse

when injected W.'37 The most pure sample at the current level of activity therefore has

as an LDso -2OO nglmouse IP (i.e. LDso -10 pglkEIP, KBT can kill5000 20 g mice per

ms).

The symptoms of KBT in mice are most pronounced at high levels of exposure. At IP

doses of 50,000 TU, toxic effects were noted soon after injection. The mice became

hunched and lethargig and respiration slowed with cyanosis becoming apparent. Death

occurred approximately five hours after dosing. At doses between 5,000 and 20,000 TU,

the mice were unaffected for several hours with symptoms only becoming apparent

later; the animals died between ten and thirteen hours after dosing. When dosed with

between 500 and 2,000 TU, the mice showed no symptoms for 24 hours. After this time,

similar signs of toxicity were noted as before. No recovery was made after the

tj-6
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symptoms became apparent. The mice dosed at these lower levels became progressively

more lethargic and were destroyed on humanitarian gtounds.237

Histological studies were carried out on mice killed by I(BT. Mice injected with

between 400,000-800,000 TU show significant necrosis of various tissues. KBT

appears to be a nephrotoxin (damaging kidney tissue) although the major target appears

to be striated muscle tissue, including the diaphragm and, more importantly, the heart.

Heart muscle, unlike skeletal muscle, is not able to regenerate after injury. KBT could

therefore cause ineparable damage to the heart, with repeated exposure of small doses

of KBT possibly showing cumulative damage to the organ.237 At this stage, it is

unknown whether KBT can be absorbed through the skin or lungs. Absorption of I(BT

through the respiratory tract would be of particular concern, as people were affected by

breathing salt spray'live cells during the original K. brevisulcata bloom.a'207 If KBT

does act in this way then people originally affected may have already suffered

irreparable heart damage. This type of biological activity is unique amongst

dinoflagellate toxins. In the future, another bloom of K brevisulcata could pose a major

health risk to any person exposed. If the toxin is absorbed through the respiratory tract,

then people exposed to sea spray would be at risk of heart damage. Workers in the

shellfish industry would also be exposed.

It should be noted that mice were orally dosed with up to 2,000,000 TU each of KBT

with no obvious sign of toxicity. There is therefore some barrier to absorption of KBT

in the gut. This may or may not imply that there would be barriers to adsorption through

the skin or lungs.237

The harvesting of 320 L K. brevisulcata culttxe yielded 2,500 x 106 TU. The cell

concentration of this culture peaked at 7,060,000 cellsll, (-2,260 x 106 total cells in the

- 183 -



culture) prior to harvesting.23E This implies that the toxic production is -1,1 TU/cell.

The cell concentration of K. brevisulcata peaked in Wellinglon Harbour at 33 x 106

cells/L on March l3th 1998, implying that each L of seawater contained -36.3 x 106 TU

or enough KBT to kill 72,600 mice via IP injection.aa'237

5.16 Further Work on KBT

The final isolation and structural elucidation of KBT remains incomplete. Dinoflagellate

toxins are often large and complex metabolites that require sophisticated instrumental

techniques to identify.te6'23e'243 Several reported dinoflagellate toxins constitute the

largest natural products isolated, and some have suggested that investigation of these

"middle weight" (intermediate between small secondary metabolites and biopolymers

consisting of proteins, lipids and oligosaccharides) metabolites will become a separate

area of research within natural products chemistry.ln6 Molecules of this size pose

substantial challenges in both isolation and structural elucidation, and several have

taken many years to identifu.s'le6'23t'244'246 Unfortunately, New Zealand does not possess

adequate NMR and MS facilities capable of successfully identifying the more complex

dinoflagellate toxins, be they novel or previously reported. It is therefore likely that the

current sample of KBT will be sent to an overseas research group to complete the

isolation and structural elucidation studies. Once this work is completed, and if the toxin

proves to be novel, then methods may be developed to help in the detection of this

metabolite that may be integrated into standard shellfish-monitoring programs. It is also

likely that several congeners of I(BT are produced by K. brevisulcata and once one has

been identified, strategies for the detection, isolation, and elucidation of these related

compounds can be established. The establishment of chemical methods to test for KBT

is of major importance in light of the extremely potent and possibly ineparable damage

that the toxin can cause in mammals. Chemical methods of detection would also be
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Chapter Six

Concludine Remarks

The isolation of novel secondary metabolites from marine organisms relies on natural

products chemists selecting a suitable organism to investigate, using a robust method by

which to guide them through an isolation procedure, and by applying various separation

techniques to purify the target molecules. These three concepts are all intimately linked.

In the course of this study, natwal products from two different phyla were examined,

each requiring the use of contrasting approaches. Various species of marine sponge

were examined using an NMR based screening method, in order to identifr which

sponge extracts were worthy of further investigation. The isolation of metabolites from

selected sponges was then guided by NMR analysis. As a contrast to the isolation of

sponge metabolites, an attempt was made to isolate and elucidate the structure of a

dinoflagellate toxin. The organism to be investigated was pre-selected by way of its

extreme toxicity. In order to fractionate the target metabolite, a suitable bioassay was

required to direct the isolation scheme.

The original NMR based sponge screening protocol developed by West and Northcote

was successfully used for the identification of sponges containing novel secondary

metabolites.5o This method has been extended in the present study by the use of

2D NMR experiments, and by changing the NMR solvent used. These changes have

allowed the identification of interesting metabolites within sponge extracts that do not

contain olefins, furan rings, or aromatic systems; these being the only functionalities

readily observable in the spectral window available in West's original protocol.5o

Several different classes of compounds have been isolated during the course of this

study including alkaloids, bromoindoles, steroids, and diterpenes. The use of 2D NMR

experiments in the screening protocol has been vindicated as the eight novel compounds
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isolated during this study do not possess functionality that would be observable in

West's original protocol; the majority of the lH resonances of these molecules are

masked in the lH NITIR spectrum by other resonances from coflrmon primary

metabolites.

Of the eight compounds that West isolated using the original protocol, one exhibited

anti-inflammatory activity whilst the remaining seven were inactive in the assays

used.so Of the novel compounds isolated during this study that were submitted for

bioassay, all exhibited moderate anti-inflammatory activity. The isolation of these

compounds validates the use of reversed-phase stationary supports for the initial pre-

screen fractionation, and also the use of CD3OD, rather than CDCI3, 4s the NMR

solvent of choice in the screening process. Reversed-phase supports are better suited

than silica gel for isolating mid-polarity molecules, which will often be biologically

active, therefore they are more applicable for a pre-screen purification. Although

CDIOD is much more expensive than CDCI3, it is also more polar and therefore its use

as the NMR solvent in the screening process increases the likelihood of dissolving the

various intermediate polarity compounds present in a semi-purified extract.

The use of reversed-phase solid supports has also been instrumental in the isolation of

several spongian diterpenes of a more polar nature than those that have been previously

reported. Several of these compounds represent likely intermediates in proposed

biogenetic sequences, strengthening the suggested pathways. It is doubtful that these

metabolites would have been isolated using naditional silica gel based isolation

techniques.

The attempted isolation of KBT has been a long and diffrcult project. The isolation

process has been complicated at various stages by lack of quantitative assays, the time
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taken to receive assay results, and the insolubility of the toxin itself. However, a semi-

purified toxin has been isolated which does not appear to be a common, previously

reported, metabolite. The potent biological activity and possible unique structure of this

molecule make it an important candidate for further investigation.

The biological (bioassay) and chemical (spectral) approaches to organism selection and

isolation guidance have both inherent strengths and weaknesses. Neither is better or

worse than the other. The NMR based system allows for all testing to be carried out in-

house and is also useful for the possible dereplication of known metabolites. It suflers,

however, in being a relatively insensitive technique requiring milligram quantities of

material, and there is no guarantee that molecules isolated using this strategy will be

biologically active. Conversely, bioassays will often need to be performed off-site and

may slow an isolation procedure dramatically. There is also limited possibility of

structure dereplication of known compounds. The advantages of a bioassay system are

that it is much more sensitive than an NMR based method and the molecules targeted

will always be biologically active. Both methods have been utilised successfully in this

study.
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7.1

Chapter Seven

Exnerimental

General Methods

Unless otherwise noted, all NMR spectra were recorded using a Varian Unity-Inova 300

spectrometer operating at 300 MHz for rH and 75 MHz for r3C. The r3C NMR spectra

of clathriol B (33), cadlinolide C (138) and methylpourewate B (142) were recorded

using a Briiker Avance 300 spectrometer operating at75 MHz. The r3C NMR spectrum

of pourewanone (143) was recorded using a Briiker Avance 400 spectrometer operating

at 100 MHz, while the rH, COSY, TOCSY and HSQC spectra of KBT were recorded

using a Varian Unity-lnova 500 spectrometer operating at 500 MHz for rH and

125 MHzfor l3C. All chemical shifts (6) were referenced to the residual solvent peak.toT

HRESIMS were obtained using a PE Biosystem Mariner 5158 TOF mass spectrometer.

Infrared spectra were recorded using a Biorad FTS-7 spectrometer or a Brtiker

Tensor 27 spectrometer to t 2 cm-1. Uv/vis spectra were recorded using a Hewlett-

Packard 8452A diode array spectrometer or a Varian Cary 100 spectrometer to + I nm.

Optical rotations were recorded using a Perkin-Elmer 241polarimeter.

MPLC and HPLC were performed using a Rainin Dynamax SD-200 HPLC system

coupled to a Rainin UV-l detector. All solvents for MPLC either were analytical

reagent grade or glass distilled before use. Solvents for HPLC were all analytical

reagent grade. HzO for MPLC and HPLC was glass distilled and deionised using a

MilliQ system. All solvent mixtures are reported as %o vol/vol. Reversed-phase HPLC

was performed using either a Hamilton PRP-I PSDVB column or a Phenomenex

Prodigy ODS column [analytical (0.46 x 25 cm) or semi-preparative (1.0 x 25 cm)].

189 -



TLC analyses were performed using Merck Kieselgel (Alufoilen) 60 Fzs+

(normal-phase) or Macherey-Nagel (Alugram) RP-18 WAJV25a (reversed-phase). TLC

plates were visualised by (l) fluorescence quenching under W light (X.:254 nm),

(2) spraying with 50% MeOtVHzSO+ and then heating, or (3) spraying with

50% MeOH/FIzSO+, dipping in l% vanillin/EtOH, and then heating. Molecular

size-exclusion chromatography was performed using Sephadex LH-20. Reversed-phase

chromatography on PSDVB was performed using HP-20 (Mitsubishi), HP-20S

(Supelco), or Amberchrom CG-161M (Tosohaas). Kieselgel 60 (230-400 mesh ASTM)

or International Sorbent Technologies Diol was used for normal-phase chromatography.

7.2 Revised Sponge-Screening Protocol

Extraction and Cyclic Loading: The sample of sponge (-100 g) was cut into small

cubes (-2 cm per side) and was extracted twice with MeOH (2 x250 mL) for 12 h. The

second extract was passed through an HP-20 column (2.5 x 13 cm) pre-equilibrated

with 50% MeOFVHzO (300 mL). The first extract was then passed through the same

column and its eluent was combined with that from the second extract. The combined

eluants were diluted with H2O (l L) and were passed back through the same column.

Finally, the eluent was diluted further with HzO (2 L) and was passed again through the

same column.

Elution and Backloading: The column was then washed with HzO (150 mL) and was

eluted with 150 mL fractions of (1) 30% MezCO/FIzO, (2) 75%o MezCO/H2O and

(3) Me2CO. Fraction (2) was diluted with H2O (150 mL) and was passed through an

HP-20 column (1.8 x 15 cm) which had been pre-equilibrated with 35o/o MezCO/HrO

(150 mL). The eluent was further diluted with HzO (200 mL) and was then passed again
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through the sarne column. This column was washed with H2O (150 mL) and then eluted

with MezCO (150 mL).

NMR: The MezCO fraction was evaporated to dryness and was then analysed by rH,

COSY, and HSQC NMR (CD3OD, 750 pL).

rH NIrvfR: Spectrum narrowed -0.5 to 15.0 ppm

32 scans

Time0h02min

COSY NMR: Spectrum narrowed 0.5 to 8.5 ppm

dl relaxation:2 sec

I scan

512 increments per scan

Time0h21 min

HSQC NMR: Spectrum narrowed 0.5 to 8.5 ppm in IH dimension

Spectrum narrowed I to 161 ppm in l3C dimension

dl relaxation:I.5 sec

8 scans

512 increments per scan

Time4h0Smin

7.3 Sponges and Amounts Screened Using the Above Protocol that were

Found to Contain Interesting Secondary Metabolites

MNP0090 Clathria lissosclera (13a g)

MNP0I96 (l15 e)

MNP024I (r32 e)

MNP0352 Biemna sp. (103 g)

MNP0355 Zyzzya sp. (162 g)
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7.4

MNP0707 Axinella sp. (93 g)

MNP0979 Chelonaplysilla violacea (110 g)

Isolation of 5cr,8o-epidioxy-6-ene-24-R-ethylcholesta-3p-ol (7) and a

Sphingolipid from Biemna sp. (MNP0352)

MNP0352 (971 g) was extracted with MeOH (2 x 2 L). The two extracts were cyclic

loaded to25Yo MeOH/HzO onto a large column of HP-20 (6.3 x 15 cm). The column

was washed with HzO (l L) and then eluted with 1.5 L fractions of

(l) 30% Me2CO/H2O, (2) 50% MezCO/FIzO, (3) 70% MezCO/FIzO,

(4) 80% MezCO/FIzO, and (5) Me2CO. Fractions (1) and (2) were combined and cyclic

loaded onto a small amount of HP-20S (-20 mL) which was transferred onto an HP-20S

MPLC column (2.5 x 45 cm) as a slurry. This column was eluted using a gradient

profile from 0-100% MezCOlHzO.The fractions from 60-80% MezCO/HzO were

combined, on the basis of TLC chars, and then chromatographed on a Sephadex LH-20

column (1.8 x 90 cm) using 90% MeOH/HzO as the eluting solvent. Fractions with

similar TLC chars were combined to yield an impure sample of a sphingolipid (11.8

mg).

Fraction (5) (493 mg) from the initial HP-20 column was loaded onto a silica gel

column (2.5 x 20 cm) using petroleum ether and was then chromatographed using a

stepped elution profile with 150 mL portions of (1) petroleum ether,

(2) 50% CHzClzlpetroleum ether, (3) CHzClz, (4) 5% EtOAc/CHzClz,

(5) 10% EtOAc/CH2Cl2, (6) 25% EtOAc/CHzClz, Q) 50% EtOAc/CHzClz, and

(8) EtOAc. Several fractions eluted with portion (7) were combined (72.I mg) on the

basis of TLC chars. The combined fraction was loaded onto a second silica gel column

(2.5 x l0 cm) in petroleum ether. The column was eluted using a stepped elution profile
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with (1) l0% El2Olpetroleum ether (50 mL), (2) 20% Et2Olpetroleum ether (50 mL),

(3) 50% Et2O/petroleum ether (100 mL), and (a) EtzO (150 mL). The fractions eluted

with EtzO were combined (31.9 mg) and then chromatographed on a Sephadex LH-20

column (1.8 x 90 cm) using 50% MeOH lCHzClz as the eluting solvent. Several fractions

that had similar TLC chars were combined to give 54,8o-epidioxy-6-ene-24-R-

ethylcholesta-38-ol (7) (23.8 mg).

Sphingolipid: Pale yellow solid; NMR data, rH NMR (D6-DMSO, 300 MHz) 6 5.74,

4.59, 4.01, 3.94, 3.91, 3.86, 3.71, 3.17, 2.96, 2.91, 2.57, 2.30, 1.51, 1.23, 0.87, 0.85;

r3c NMR (D6-DMSO , 75 MHz) 6 98.3, 74.1, 73.4, 73.r, 7r.8, 69.0, 69.3, 67.1, 6s.7,

62.2, 5g.g. 55.0, 54.3, 44.8, 36.3, 34.g, 33.5, 31.2, 26.4:} 24.5, 23.2, 22.0, 13.8;

HRESIMS. obsd. m/z 555.8756.

5cr,8a-epidiory-6-ene-24-fi-ethylcholesta-3p-ol (7)t Pale yellow solid; all

spectroscopic data were in agreement with those previously reported.6s'tr

Isolation of a Tribromobisindole Compound from Zyz4ya sp.

(MNP03ss)

MNP0355 (82 g) was extracted with MeOH (3 x 400 mL). The three extracts were

cyclic loaded onto an HP-20 column (2.5 x 13 cm). The column was washed with HzO

(200 mL) and then eluted with 200 mL portions of (1) 15% Me2CO/H2O,

(2)75%MezCO/FIzO, and (3) Me2CO. Fraction (2) was combined with the screen

sample (extracted from 162 g of sponge). This combined sample was cyclic loaded onto

Amberchrom (l mL) which was transferred onto an Amberchrom MPLC column

(1.1x25 cm) as a slurry. This column was eluted using a gradient profile from

7.5
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7.6

l0-100% MezCO/HzO. Fractions collected from 50-63Yo MezCO,/H2O were combined

on the basis of TLC chars to give a tribromobisindole compound (3 1.6 mg).

Tribromobisindole: Pale yetlow solid; NMR data, rH NMR (D6-DMSO + TFA, 300

MHz) 6 11.60 (br s), 10.70 (br s), 8.00 (s),7.70 (d, 1.6 Hz),7.68 (d,2.3 Hz),7.50

(d, 1.8 Hz),7.34 (d,8.5 Hz),7.17 (dd,8.1, 1.4 Hz),6.92 (dd 8.5, 1.8 Hz),6.73 (s),6.59

(d, 8.5 Hz);tsCNMR (D6-DMSO + TFA, 75MHz) 6 153.8, 141.1, 137.4,130.3, 126.2,

122.3, 121..7, 121.4, 120.7, I 15.8, I 13.9, I 1 3.3, I 1 1.0, 108.3, I 04.1 ; HRESIMS, obsd.

nt/z 749.9301:751.9287:753.9327:755.9298 in a 7:4:4:1 ratio, (indicating three Br

atoms).

Isolation of (l0Z)- and (10.8)-hymenialdisine (12) and (13), and a

refated compound from Axinella sp. (MNP0707)

A sample of MNP0707 (93.4 g) was extracted with MeOH (2 x 400 mL). The two

extracts were cyclic loaded onto an HP-20 column (2.5 x 13 cm). The column was

washed with HzO (200 mL) then eluted with 200 mL fractions of (l) 30o/oMezCO/FI2O,

(2) 75% MezCO/FIzO, and (3) MezCO. Fraction (1) (159 mg) was cyclic loaded onto

Ambercbrom (6 mL) which was transferred onto an MPLC Amberchrom column

(1,1 x 25 cm) as a slurry. This column was eluted using a gradient profile from 0-100%

MeOH/HzO. The fractions eluted from 68-78% MeOWH2O were combined (88.0 mg)

on the basis of TLC chars. This sample was chromatographed on an LH-20 column (1.8

x 90 cm) using 90% MeOH19.5%HzOl}.5% TFA as the eluting solvent. Fractions from

this column were combined on the basis of TLC chars for NMR analysis. One such

fraction (62 mg) was dissolved in D6-DMSO. The NMR solvent that was not transferred

to the NMR tube slowly evaporated to leave crystals of (10^O)-hymenialdisine (13) (l l.l

mg). The solvent that was transferred into the NMR tube was removed after analysis
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and was filtered through a 0.45 pm PTFE filter. The filter was washed with 5070

MeOH/45% HzOlS% AcOH. The filtrate was then left to slowly evaporate to give

(llQ-hymenialdisine (12) (a. I mg).

An extract (2 x 300 mL) of a second sample of MNP0707 (59 g) was cyclic loaded onto

a small column of HP-20 (2.5 x 7 mL). This column was washed with HzO (200 mL)

and then eluted with 200 mL fractions of (l) 20% MezCO/HzO, (2) 40%o MezCO/FIzO,

(3) 60% MezCO/HzO, (4) 80% MezCO/FIzO, and (5) MezCO. Fraction (2) 64.7 me)

was combined on the basis of TLC chars with another fraction (7.a mg) from the

original Amberchrom MPLC separation. This combined sample was chromatographed

on an LH-20 column (1.8 x 90 cm) using 90% MeO[YH2O as the eluting solvent.

Several fractions from this separation were combined (3.8 mg) on the basis of TLC

chars. These fractions were then combined with another sample, with a similar TLC

char, from the Amberchrom separation (19.3 mg). This combined sample was

chromatographed on a further LH-20 column (1.8 x 90 cm) using 90% MeOH/CH2CI2

as the eluting solvent. This yielded a brominated alkaloid compound (8.6 mg), related to

12 and 13, which could not be identified.

(102)-Hymenialdisine (12): Pale yellow solid; all spectroscopic data were in

agreement with those previously reported.T6

(10^E)-Hymenialdisine (13): Pale yellow solid; all spectroscopic data were in

agreement with those previously reported.TT

Related compound: Pale yellow solid; NMR data, rH NMR (D6-DMSO, 300 MHz)

6 11.60, 7.96,7.11, 7.00, 6.99,6.93,6.80,6.71, 5.42,L88, 1.23; T3CNMR (D6-DMSO,
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75 MHz) 6 172.2,156.5, 138.4, 134.6,131.5, 118.6, 110.4, 104.0, 95.5,28.9,21'3;

HRESIMS, obsd. m12278.0028:280.0019 in a l:l ratio, (indicating one Br atom)'

7.7 Isolation of Clathriot A (32) and Clathriol B (33) from Clathtia

lissosclera (MNP0090)

MNP0090 (610 g) was extracted with MeOH (2 x L 5 L). The two extracts were cyclic

loaded onto an HP-20 column (2.5 x 20 cm). The column was washed with HzO

(300 mL) and eluted with 300 mL fractions of (l) 40% MezCO/HzO,

(2) S0%MezCO/HzO, and (3) MezCO. Fraction (2) (452 mg) was cyclic loaded onto

Amberchrom (10 mL) which was transferred onto an Amberchrom MPLC column

(l.l x 25 cm) as a slurry. The column was eluted using a gradient profile from 0-100%

MezCOlHzO. The 4g4l% MezCO/HzO fractions were combined on the basis of TLC

chars, and concentrated to dryness to give a pale yellow solid (l l7 mg) that was

re-chromatogfaphed in a similar manner, using a slower gradient. The 5l'53o/o

MezCO/FIzO fractions were combined on the basis of TLC chars to give clathriol A (32)

(26.2 mg). The 48-50%o MezCO/FIzO fractions were combined on the basis of TLC

chars to give a mixture of sterols (17.1 mg). Repeated normal-phased chromatography

on silica gel (0-10% MeOH/CH2CI2) yielded clathriol B (33) (1'3 mg)'

Clathriot A (32): White solid; [o]too +22.6 (c. l.4,MeOH); IR (KBr) v,n* 3410,2958'

2872,1734,1584, 1055 cm-l; NMR data see Table 3.1; HRESIMS, obsd. rulz 479'4754

[M+H]+, 477.3592 [M-H]-, CzqHsoOs requires 479.4736 A 3.7 ppm, 477.3575

A 1.5 ppm.
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7.8

Clathriol B (33): White solid; lo]too -2g.4" (c. 0.71, CHzClz); IR (KBr) v'* 3376,

2928,1728,1602,1461,1206,1153, 1056 cm-r; NMR data see Table 3'2; HRESMS'

obsd. m/z 463.3423 [M+H]*, 461.3299 M-Hl-, CzrFIqoOs requires 463.3418 A l'0 ppm,

46t.3273 A 4.7 PPm.

Per-acetylation of Clathriol A (32)

Acetic anhydride (0.5 mL) was added to clathriol A (32) (3'0 mg) dissolved in pyridine

(0.5 mL). The reaction mixture was stirred at room temperature for 17 h. The mixture

was cyclic loaded onto a small glass column prepacked with Amberchrom resin (l mL)'

The column was washed with HzO (20 mL) and then eluted with (1) MeOH (5 mL) and

(2) MezCO (5 mL). Fraction (2) was concentrated to yield clathriol tetra-acetate (2.4

mg).

Clathriol tetra-acetate: White amorphous powder; IR (KBr film) v'o 2938,2875,

1736, 136g, 1247,1031 cm-r; tH NMR data (CDCI:, 300 MHz) 6 5.86 (lH, dd, 10.5, 9

Hz,H-7),4.99 (lH quin, 6 Hz,H-28),4.81 (1H, dd, l0'5, 9 Hz, H-6), 4'61 (lH' dddd'

13.5, 10,4.5, 3 Hz, H-3), 2.32 (lH,dd, 3, 2Hz,H-14),2'30 (lH, dd,20, 10 Hz' H-l6p)'

2.17 (lH,m, H-l6cr),2.02 (3H, s, C:O),2.01 (6H, s,2 x C:O), l'94 (3H, s, C:O), 1'88

(lH, ddd, 12, 10.5, 3 Hz,H-8), 1.85 (lH, m, H-20), 1.84 (1H, br d, I l'5 Hz,H-4u),l'77

(1H, m, H-Zo,),l.l2 (lH, ll Hz, H-lp), 1.69 (1H, m, H-17), 1'51 (1H, m, H-5), 1'50

(1H, m, H-llcr), 1.45 (lH, m, H-4B), 1.40 (1H, m,H'22a). l'39 (1H, m, H-23a), 1'35

(lH, m, H-t2p), 1.30 (1H, m, H-2p), 1.24 (lH, m, H-25), l'20 (1H, m, H-llp)' 1'17

(1H, m, H-24),1.16 (1H, m, H-9), 1.15 (3H, d,6-5 Hz,CHr29), l'14 (1H, m, H-l2a)'

1.12 (3H, s, CHr-l8), L12 (1H, m, H-23b), 1.03 (lH, dd 13.5, 10 Hz, H-lcr,), 0.94 (lH,

m,H-22b),0.90 (3H, s, CH3-19), 0.90 (3H, d, 6.5, CHt-21), 0'87 (3H, d, 6'5 Hz, CHr-
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26), 0.87 (3H, d, 6.5 Hz, CHfl7);'3C NMR data (CDC\, 75 MHz) 6 217.8 (C-15),

1 7 I .0 (C=OCH:), 170.1 (2 X C:OCHj , 169 .9 (C:OCH3) , 73 .9 (C-7), 73 .9 (C-6), 72.4

(c-3), 71.3 (C-28),51.2 (C-14), 45.6 (C-24),47.6 (C-17),44.6 (C-5), 44.6 (C-9).41.0

(c-13), 37.1 (c-tz),36.5 (C-8),36.5 (C-16), 35.8 (C-l), 33.6 (C-20),31.3 (C-22),29.2

(C-25), 27.8 (C-2),26.4 (C-4),23.1 (2 x CHrC=O),22.7 (CH3:O), 22.4 (CH3:O),21.2

(c-11), 2t.0 (c-27), 18.9 (C-2t), r8.7 (C-26), 18.6 (C-18), 17.0 (C-29), 12.7 (C-19);

HRESIMS, obsd. m/z 645.4006 [M-H]', C37H57Oe requires 645.3997 A 1.4 ppm.

7.9 Base Induced Epimerisation of Clathriol A (32)

A catalytic amount of hexane washed Na metal was added to clathriol A (32) (3.5 mg)

dissolved in MeOH (1 mL). After refluxing for 6:45 h, the reaction was quenched by

addition of HzO (l mL). The reaction mixture was cyclic loaded onto Amberchrom

resin (l mL) that was then washed with HzO (3 mL). The column was stripped with

MezCO (3 mL) which was evaporated to dryness to give a mixture of products (4.6 mg).

7.10 NaBHr Reduction of Clathriol A (32)

NaBH4 (2.5 mg) was dissolved in MeOH (1 mL, 65 nM). This solution was added to

clathriol A (32) (2.0 mg). The solution was stined at room temperature for 5:40 h after

which the reaction was quenched by addition of H2O (l mL). The reaction mixture was

cyclic loaded onto a column of Amberchrom resin (l mL) that was then washed with

H2O (3 mL). The column was then stripped with MezCO (3 mL) which was evaporated

to dryness to give a mixture of products (2.2 mg}
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7.tl Isolation of Diterpene Metabolites

(MNP097e)

from ChelonaPlYsilla violacea

MNP0979 (1S2 g) was extracted with MeoH (2 x 400 mL). Both extracts were cyclic

loaded onto a column of HP-20 (2.5 x 10cm). The column was then washed with HzO

(300 mL) and eluted with 300 mL portions of (1) 20% MezCO/FIzO,

(2) 40%MezCO/HzO, (3) 60% MezCO/HzO, (4) S0% MezCO/HzO and (5) MezCO'

Fraction (2) (176 mg) was cyclic loaded onto HP-20S (5 mL)' The loaded stationary

phase was transferred onto an HP-20S MPLC column (2.5 X 45 cm) as a slurry' The

MpLC column was eluted using a gradient elution profile from 10-100% MeOFVHzO'

The fractions eluting from the column in MeOH were combined and chromatographed

isocratically on a Phenomenex Prodigy ODS semi-preparative HPLC column (75%

MeOHl25% 0.1 mol/L AcOH, 4.75 ml/min flow-rate, L=230 nm)' The first

unidentified diterpene (6.3 mg) eluted with a retention time of 7.16 min' A compound

with a retention time of 17.00 min was reinjected isocratically (67% MeOFV33%

0.1 mol/L ACOH, 4.75 mLlmin flow-rate,L:230 nm) on the same HPLC column. The

second unidentified diterpene Q.a mg eluted with a retention time of 52.90 min.

Fraction (3) from the HP-20 column was combined with the screen sample (197 mg)'

This sample was cyclic loaded onto HP-20S (10 mL) which was transferred onto a large

Hp-20S MPLC column (2.5 x 45 cm) as a slurry. This column was eluted using a

gradient profile from 10-100% MezCO/HzO. The fractions that eluted from the column

in MezCO were combined into two samples, based upon TLC chars. The first (40.7 mg)

was chromatographed isocratically on a Phenomenex Prodigy semi-preparative ODS

column (S0% MeCN/H2O,4.50 ml/min flow-rate, ?':230 nm). Cadlinolide C (138) (2.4

mg) eluted with a retention time of 12.23 min. Two other fractions (retention times of

7.41 (4.2 mg) and 13.02 (1.4 mg) min respectively) were reinjected. The first was
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chromatographed using the same column (60% MeCN/HzO, 4.50 ml/min flow-rate,

L:230 nm). Cadlinolide B (133) (1.4 mg) eluted with a retention time of 17.42min

while lS-methoxypourewic acid B (141) (1 .2 mg) eluted with a retention time of

19.91 min. The fraction collected with a retention time of 13.02 min from the 80%

MeCN/FIzO separation was reinjected on the same column (70% MeCN/IIzO,

4.50 ml/min flow-rate, l":230 nm). Cadlinolide D (139) (0.8 mg) eluted with a

retention time of 24.62 min.

The second sample from the combination of the MezCO fractions from the HP-20S

MPLC column (27.9 mg) was chromatographed on an LH-20 column (1.8 x 90 cm)

using 90% MeOH/HzO as the eluting solvent. Fractions generated by this separation

were combined on the basis of TLC chars. One such sample (20.9 mg) was

chromatographed on a silica gel column (1.6 x 7.5 cm) using 100 mL portions of

(l) CH2CI2, (2) 2% MeOH/CH2CI2, (3) 3% MeOHlCHzCLz, (4) 4% MeOFVCHzClz,

(5) 5% MeOFVCH2CI2, (6) l0% MeO[VCHzClz, and (7) 50% MeOFVCHzClz. The

fractions eluted using portions (l) and (2) were combined (10.a mg) on the basis of

TLC chars.

Fraction (4) from the original HP-20 column (80% MezCO/FIzO) (227.3 mg) was

chromatogtaphed on a silica gel column (2.5 x 14 cm) using 250 mL portions of

(1) CH2CI2, (2) 2% MeOFVCH2CI2, (3) 4%6 MeOWCH2CI2, (4) 6% MeOH/CHzClz,

(5) l0% MeOH/CH2CI2, and (6) 50% MeOFVCHzClz. All the fractions collected when

eluting with portions (l), (2) and (3) were combined (80.7 mg) on the basis of TLC

chars. This sample was combined with the sample from the silica gel column of the

second MezCO fraction generated from the HP-20S MPLC separation. This combined

sample was chromatographed on a further silica gel column using 200 mL portions of

(l) 50% cHzcl2/petroleum ether, (2) 75% cH2Cl2/petroleum ether, (3) cHzclz,
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(4) l%MeOFVCHzClz, (5) 2% MeOFVCHzClz, (6) 3% MeOFVCHzCIz'

(7) 4%MeOFVCH2CI2, and (8) 10% MeOH/CHzClz. several fractions eluted using

portion (5) were combined (48.4 mg) on the basis of TLC chars and were

chromatographed on a further silica gel column (2.5 x 10 cm) using 400 mL portions of

(l) 75% CH2Cl2/petroleum ether, (2) l0% CHzClz/petroleum ether, (3) CHzClz, g) l%

MeOH/CH2CI2, (5) 2% MeOWCHzClz, 6) 3% MeOFVCHzCIz and 200 mL portions of

(7)  %MeOH/CHzClz and (8) l0% MeoFVCHzClz. The fractions generated by eluting

with portions (5) to (8) were combined (24'5 mg) on the basis of TLC chars, and were

chromatogtaphed isocratically on the same Phenomenex semi-preparative column as

before (50% MeCN/HzO, 4.50 ml/min, )":230 nm). Pourewanone (143) (2'2 mg),

methylpourewate B (142) (3.0 mg) and tetrahydroaplysulphurin-l (124) (1'8 mg) eluted

with retention times of 5.61, 8.11, and l0'98 min respectively.

A sample was generated by the combination of fractions, with similar TLC chars, from

one of the previous silica gel column separations. The 80% MezCO/HzO fraction from

the HP-20 column had been combined with the second sample eluted with

100% MezCO from the HP-20S MPLC column. This combined sample had already

been chromatographed twice on silica gel. Those fractions eluted using 3% and

4%MeOH/CHzClz from the second separation were combined (10.0 mg) and were

chromatographed on the same Phenomenex semi-preparative column(7}% MeCN/HzO,

4.50 ml,/min, l.:230 nm). Pourewic acid A (140) (2.9 mg) eluted with a retention time

of 19.69 min.

Tetrahydroaplysulphurin-l (124)z White solid; all spectroscopic data were in

agreement with those previously reported.tt''a' t 5n
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cadlinolide B (133): white solid; all spectroscopic data were in agreement with those

previously reported.2s

cadlinolide c (138): Pale yellow solid; [o]'oo +27.3" (c. 0.68, CHzClz); IR (film)

v^^2945, 1739, 1455, 1228,1026 cm-r; NMR data see Table 4.1; HRESIMS, obsd'

m/z 319.2260 [M+H]+, CzoHgoOs requires 319'2268, A 2'6 ppm'

Cadlinolide D (139): Off-white solid; lo]too Na. as diastereomeric mixture; IR (film)

v,n 2946, 1744, 1456, 1206, 1028 crn-r; NMR data see Table 4.2; HRESIMS, obsd'

m/2349.2399 [M+H]*, 371.2201 [M+Na]+, 791.4483 [2M+Na]+, CzrH:zO+ requires

349.2373,A 7.5 ppm, 371.2193,A 2.1 ppm, 719.4501, A 2'5 ppm'

pourewic acid A (1a0): white solid; lo]too -10.8' (c. 0.86, CHzClz); IR (film)

v,n*3392,2927, 1704, 1455, 1221, 1096, 1060 cm-r; NMR data see Table 4.3;

HRESIMS, obsd. m/2349.2401 [M-H]-, C21H3aOa requires 349.2384, A 4.8 ppm.

lS-methoxypourewic acid B (l4r): Pale yellow solid; lo]too -368.6' (c. 0.23,CHzClz);

IR (film) v^*3347,2927,1778, 1707,1456,1204 cm-r; NMR data see Table 4.4;

HRESIMS, obsd. m/z 363.2194 [M-H]-, 366.2337 [M(-3H+3D)-HI-, 368.2504

[M(-3H+3D)+H]*, CzrHgzOs requires 363.2177 A4.8 ppm, 366.2365 A7.9 ppm,

368.2504 A 3.7 ppm.

Methytpourewate B (142): Pale yellow solid; lo]too -81.8" (c. 0.70, cHzclz);

IR(film) v* 2947,1762, 1735. 1455, 1206, 1124 cm-r; NMR data see Table 4.5;

HRESIMS, obsd. m/z 365.2335 [M+H]*,363.2185 [M-H]-, CzrHrzOs requires 365.2323

A 3.5 ppm, 363.2166 A 5.3 ppm.
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pourewanone (143): White solid; [o]'oo +22.6" (c. 0.35, CHzCb); w (cH2cl2)

^.^*248nm 
(t 14,425);IR (film) vn,* 3335, 2929,1725,1665' 1456' 1366' 1307' 1186

cm'r; NMR data see Table 4.6; HRESIMS, obsd. m/z 351.2160 [M+H]+, 349.2019

[M-H]-, C2sH3eO5 requires 351.2166 A l '8 ppm, 349'2021 A 0'5 ppm'

7.12 Methylation of Pourewic Acid A (140)

Diazald (N-methyl-N-nitroso-p-toluenesulfonamide) (1 g) was reacted with KOH

(5gdissolved in 18 mL44Yo HzO/EIOH) to generate cH2N2, which was dissolved in

EtzO. A solution of pourewic acid A (140) (0.8 mg dissolved in 1 mL CHzClz) was

treated with excess CHzNz for 4 h. The solvent was removed under vacuum to yield a

mixture of compounds. The mixture was dissolved in 50% CH2Clz/IvIeOH (l mL)

which was passed through an amino column (0.5 X 1.5 cm) that had been

pre-equilibrated with 50o/o CHzClz/MeOH (5 mL). The column was washed with

50% CHzClz/lvIeOH (4 mL) which was collected together with the eluent of loading.

The column was then eluted with 5% AIOW47.5YoCHzClzl47.5%MeOH (5 mL). The

sample containing the eluent of loading and the column washings was evaporated to

dryness under reduced pressgre to yield methyl pourewate A (0.7 mg).

Methyt pourewate A: White amorphous powder; IR (film) v^u* 2928, 1732, 1455,

1366, 1096, 909, 732 cm-t;rH NMR data (CDClg, 300 MHz) 6 4.62 (1H, d, 2.4 H4

H-15), 4.18 (1H, q., 4.4 Hz, H-7), 4.02 (lH, dd, 8.5, 6.4 Hz, H-16b), 3'76 (1H' dd,

8.8,3.4 Hz, H-l6a),3.67 (3H, s, methyl esterH-22),3.24 (3H, s, methoxy H'21),2.65

(1H, dd, 8.1,2.4H2,H-14),2.34 (IH, q.,7.6 Hz, H-13), 2'20 (lH, m, H-l lb), 2'18 (lH'

m, H-lb), 1.94 (1H, m, H-2a), 1.86 (lH, ffi,H-lla), 1.84 (lH, m, H-5b), 1'65 (lH, m'

H-12b), 1.49 (1H, m, H-2b), 1.38 (1H, m, H-3b), 1.26 (lH, m, H-la), 1'24 (lH, m'
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H-12a),1.20(3H,d6.8Hz,H-6),1.18(1H,m,H-3all'02(3H's'H-20)'0'97(1H'm'

H-5a), 0.92 (3H, s, H-18), 0.88 (3H, s, H-I9); t'C NMR data (CDCI3' 75 MHz) 6174'7

(C-17), |43.g (C-9), 128.2 (C-s), 110.8 (C-15),74.9 (Cil6),54.6 (c-21),5|,7 (C-22),

50.9 (C-5),49.0 (c-14), 42.0 (C-7),41.6 (C-10), 40.1 (c-3),39'2 (C-l), 38'0 (c-13)',

33.3 (C-19), 31.6 (C-4), 31.2 (C-12),30.9 (C-20), 27.7 (C-ll),26.2 (C-18),20'0 (c-2)'

16.l (C-6); HRESIMS, obsd. m/z 333.2417 [M-OM']*, C21H33O3 requires 333.2424

A 2.1 ppm.

7.13 Basic Harvesting of Karenia brevisulcata

337 L of K. brevisulcata (Cawthron organism number CAWD 82) was filtered through

glass fibre filters (3 x large pre-filter tubes, 6 x filter pads) to isolate the algal cells. The

culture filtrate was passed through a column of HP-20 (5.2 x 36 cm). This column was

washed with Hzo (1.5 L) and then eluted with Mezco (2.1 L). The filters retaining the

cells of K. brevisulcatawere also extracted (pre-filters: 3 X 3.5 LMeOH, filter pads:

3 x 800 mL). Each sample was analysed by N2A assay. The majority of the activity was

concentrated in the cell extracts. The extracts from both the pre-filters and the filter pads

were cyclic loaded onto individual HP-20 columns (2.5 x 20 cm). Each column was

washed with HzO (300 mL) and then eluted with 300 mL portions of

(t) 20% Mezco/Hzo, (2) 40% Mezco/Hzo, (3) 60% Me2CO/H2O,

(4) S0% MezCO/HzO, and (5) Me2CO. In both cases, fraction (3) showed significant

N2A activity. The MezCO elution of the HP-20 column showed no significant activity.

The two 60Yo MezCO/HzO fractions were combined and gave a total activity of

150 x 106 TU. (Note: This combined 60% MezCO/HzO sample was sub-sampled and

submitted for N2A assay. The sub-sample was serial diluted until no activity was noted.

The addition of I pL of this sub-sample was then defined as the effect of one TU).
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7.14 Improved Harvesting of Karenia brevisulcata

MezCO (3ZL) was added to a320 L culture of K. brevisulcata (Cawthron organism

number CAWD 82), which was allowed to stand for 12 h. The culture was then filtered

through glass fibre filters as before. The culture filtrate was passed through a column of

HP-20 (5.2 x36 cm), which was washed with H2o (1.5 L), and then eluted with Mezco

(2.1 L). The MezCO elution was cyclic loaded onto a smaller column of HP-20

(2.5 x 17 cm). This column was washed with H2o (250 mL) and eluted with 250 mL

portions of (1) 30% MezCO/HzO (2) 70% MezCO/HzO, and (3) MezCO' A sub-sample

of fraction (2) was taken for N2A assay. Fraction (2) was quantified as containing

2,500 x 106 TU.

7.15 Optimised Isolation of KBT

A culture of K. brevisulcata (Cawthron organism number CAWD 82) was harvested

using the improved protocol, to generate a fraction (273 mg)containing 2,500 x 106 TU

(9.2 x 106 TU/mg) (see above). This fraction was cyclic loaded onto 15 mL of I{P-20S

which was transferred as a slurry onto a large HP-20S MPLC column (2.5 x 45 cm).

The Hp-20S MPLC column was eluted using a gradient profile from 20-100o/oMezCO,

collecting 100 fractions. Every second fraction was sub-sampled and tested using the

N2A assay. On the basis of the N2A assay results forty fractions, from 53'83%

MezCO/FIzO, were combined (175 mg, 77.8x 106 TU, 0.44x l06TU/mg). This sample

was dissolved in 50% EtOAclCHzClz (2 mL) and was chromatographed on a diol

column (2.2 x 20 cm) using 500 mL portions of (1) 5% MeO[VEtOAc,

(2) I0%MeoH/EtOAc, (3) 25%MeOH/EtOAc, (4) 50% MeOFVEtOAc and (5) MeOH.

Each of the l2l fractions was sub-sampled for N2A assay. On the basis of the N2A

assay results, 16 fractions collected when eluting with portion (3) were combined
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(54.3 mg, cumulative toxicity 41.9 x 106 TU, 0.76x 106 TU/mg) (see figure 7'1)' This

sample was dissolv ed in}SYo MeOH/EtOAc (2 mL). Half was cyclic loaded onto diol

(1 mL) by diluting with cHzclz until a final concentration of 5.5% MeOHll6'6%

EIOAclTT.g% cH2cl2 wrrs achieved. This was transferred onto an MPLC diol column

(1.1 x 25 cm) as a slurry. The MPLC diol column was eluted using a gradient profile

from 10-50% MeOH/EtOAc. During the course of the diol separation, 105 fractions

were collected. Every second tube was sub-sampled for N2A assay' Initial results

indicated adequate separation, so the second half of the sample from the first diol

column was cyclic loaded onto diol and processed in a similar manner (see figure 7'2)'

Twelve fractions from 15.5-21.5% MeOFVEtOAc were combined (12.7 rgo

25 x 106 TU, 2.0 x 106 TU/mg) to generate the most pure sample of KBT' Side fractions

from this separation were used to test the behaviour of KBT on amino and CBA ion

exchange columns.

F1

7

400
350
300
250
200
150
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0

Fraction number

a I
a -l .'i a2 r flbl oo ilb

'- II I ) 515] L-.
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o 25 50 75 100 125150175200225250

Figure 7.1 Elution profile from the large diol column.
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X'igure 7.2 Comparison of toxicity recovered from the diol MPLC separations'

7.L6 Stebility of KBT to Acids and Bases

Five zub-samples (250 x 103 TU each) were exposed to various acidic and basic

conditions (5% HCl, HCOOTL PH 8 buffer, pH g buffer, and one neutral control) for

l2h. Each sample was then cyclic loaded onto I mL AmberchronU washed with H'zO

(10 mL), and eluted with MezCO (5 mL). Each sample was zubmitted for N2A a$say'

The acidic, neutral, and pH 8 samples were all of comparable activity whilst the pH 9

sample showed substantial loss of activity (125 x 103 TI'I)'

7.17 Effect of Acid or Basc on Elution from PSDVB

Three injections of KBT (15,000 TU) were performed on an analyticat PRP-I PSDVB

column using a gradient elution profile from 40'70o/o Me2CO/aqueous solvent

(1 ml/min) over a period of 15 minutes, collecting 30 fractions p€r nrn. Neutral, acidic

(pH 5 buffer), or basic (pH 8 buffer) were used as the aqueous solvent component ofthe

system. Buffers were prepared by adding AcoH orNH3 to a 0.2 M solution ofNIIroAc
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until the desiredpH was obtained. Each fraction collected was submitted forN2A assay'

As the neutral injection had resulted in two sepafate peaks of activity, two more

injections were performed under identical conditions which confirmed the original

observation (see figure 7.3). Two samples from the original neutral injection were

concentrated and reinjected under the same conditions (see figure 7'4)'

Figure 7.3 Graph oftwo repeat injections of KBT

under neutral conditions using PSDVB.

Figure 7.4 Graph of the re-injection of a fraction from

each peak of activity under neutral conditions using PSDVB'
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7.18 Use of the Amino Ion Exchange Column

An unquantified semi-purified sample of KBT (22.7 mg) (a side fraction combined from

the two diol MPLC separations) was dissolved in DMSO (0.3 mL), to which MeoH

(2.7 mL)was added. The resulting solution was passed through an amino column (0'5 x

2.0 cm) that had been pre-equilibrated with MeOH (5 mL). The column was washed

with MeOH (2 mL) which was collected together with the eluent of loading' The

column was then eluted with 5 mL portions of (1) 2% AcOHllvIeOH, (2) DMSO' (3)

5% ACOH/DMSO, (4) 5% HCOOHIDMSO, and (5) 5% NHg/DMSO. None of the

samples exhibited any significant cytotoxicity in the N2A assay, indicating that the

I(BT had irreversibly bound to the column substrate.

7.19 Use of the CBA Ion Exchange Column

An unquantified semi-purified sample of KBT (7.9 mg) (a side fraction combined from

the two diol MPLC separations) was dissolved in DMSO (0.3 mL), to which MeoH

(Z.i mL) was added. The resulting solution was passed through a CBA column

(0.5 x 2.0 cm) that had been pre-equilibrated with MeOH (5 mL). The column was then

washed with MeOH (2 mL) which was collected together with the eluent of loading.

The column was then eluted with 5 mL portions of (1) 2% NH/lvIeOH, (2) DMSO, and

(3) S% NH:/DMSO. All three samples were tested using the N2A assay with all the

toxicity concentrated in fraction (1) (8.7 mg, 12.5 x 106 TU, 1.44 x t06 tU/mg).
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lH spectr,nar o,,f clathriol A(3?) (300 MHz, CDIOD)
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r3C spectrum of clathriol A (32) (75 MlIz, CD3OD)
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Appendix Two

I\MR Spectra of Clathriol B (33)
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rH spectmm of clathriol B (32) (300 MHz, CDCI3)
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r3C spectrum of clathriol B (32) (75MHz,CDCI3, Note Ds-CsHsN added)
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Appendix Three

I\MR Spectra of Cadlinolide C (138)

lH spectum of cadlinolide C (13S) (300 MHz, CDCIt
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Appendix Four

NMR Snectra of Cadlinolide D (139)

\

rH spectrum of cadlinolide D (139) (300 MHz, CDCIr)
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r3C spectrum of pourewic acid A (140) (75N{tIz" CDCI3)
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tH spectnrm ofmcthylpourewate B (142) (300 MHa CDCI3)
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r3C spectrum of methylpourewate B (142) (75MHz'CDCI3)
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APPendtx Eight

NMR Spectra of Fourewanone (143)

tH spunmrro of pourew'anone (143) (300 Nfltu' CDel3)
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l3C spectrum of pourewanone (f43) (100 MHz, CDCI3)
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Optimised HSQC-DEPT spectrum of pourewanone (143)' ('Jc.u: 190H2,300 MHz' CDCI3)

-244 -



- ill

t;
foI

a
I

I

tnArl

[.tEq"-**t peolffum of poureutanone (143) (nole'n-- 140 Hz' 300 MIIzt GDctrs)

-245.



ta .t'l€'-
o

rro-. tt

aa. a

eo

e^
eE
do,

ct

a
N

HMBC spectrum of pourewanone (143) (300 MHz, CDCI3)

-246-



E
EL
CI

ROESY spectrum of pourewanone (143) (300 MHz, CDCI3)

-247 -



NMR Spectra af Karcnia braisulcata Toxin (KBT)

rH speetrum of I(BT (500 MElz, D6-DMSO)

App.endix Nine
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