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Abstract

Gaussian processes have proved to be useful and powerful constructs for the

purposes of regression. The classical method proceeds by parameterising a

covariance function, and then infers the parameters given the training data.

In this thesis, the classical approach is augmented by interpreting Gaussian

processes as the outputs of linear filters excited by white noise. This enables

a straightforward definition of dependent Gaussian processes as the outputs

of a multiple output linear filter excited by multiple noise sources. We show

how dependent Gaussian processes defined in this way can also be used for

the purposes of system identification.

One well known problem with Gaussian process regression is that the compu-

tational complexity scales poorly with the amount of training data. We review

one approximate solution that alleviates this problem, namely reduced rank

Gaussian processes. We then show how the reduced rank approximation can

be applied to allow for the efficient computation of dependent Gaussian pro-

cesses.

We then examine the application of Gaussian processes to the solution of other

machine learning problems. To do so, we review methods for the parameter-

isation of full covariance matrices. Furthermore, we discuss how improve-

ments can be made by marginalising over alternative models, and introduce

methods to perform these computations efficiently. In particular, we intro-

duce sequential annealed importance sampling as a method for calculating

model evidence in an on-line fashion as new data arrives.

Gaussian process regression can also be applied to optimisation. An algo-

rithm is described that uses model comparison between multiple models to

find the optimum of a function while taking as few samples as possible. This

algorithm shows impressive performance on the standard control problem

of double pole balancing. Finally, we describe how Gaussian processes can

be used to efficiently estimate gradients of noisy functions, and numerically

estimate integrals.
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Chapter 1

Introduction

One broad definition of machine learning is the study of algorithms that im-

prove automatically through experience [43]. Within this broad topic area,

this thesis is mainly concerned with the method and application of super-

vised learning, a form of inductive learning that learns a functional mapping

from training inputs to observed outputs. Given a set of training input vec-

tors paired with observed outputs, a supervised learning machine attempts

to build a function that summarises the input-output relationship. This sum-

mary can then be used for curve-fitting (e.g. interpolation), smoothing, or

generalisation.

This thesis examines the use of Gaussian processes for supervised learning,

specifically regression, and uses the results for the purposes of continuous

optimisation and active learning.

1.1 Regression

A regression problem is a supervised learning problem in which we wish to

learn a mapping from inputs to continuously valued outputs, given a train-

ing set of input-output pairs. We observe n training inputs X = [x1 . . .xn]

which reside in an input space X , which may be continuous or discrete. The

ith training input xi is associated with a training output, or target yi, which

in the simplest case is a real scalar value. The targets are assumed to have

arisen from some (unknown) function of the inputs, but may also have been

1



2 CHAPTER 1. INTRODUCTION

corrupted by (unknown) noise. For notational convenience, we combine the

targets into a vector y = [y1 . . . yn]
T.

Firstly, consider a form of regression known as parametric regression, where it

is assumed that the training data has been generated by an underlying func-

tion f(x;w) defined in terms of some parameters w. The functional mapping

f(x; ·) along with a particular parameter set w defines a parametric model.

Obviously, some parameter sets are better than others at explaining the ob-

served outputs. Informally, parametric regression corresponds to finding the

set of parameters that provide the “best” explanation of the data. We now

have the problem of clarifying what we mean when we say that one model is

the “best”, or one model is “better” than another.

One way of finding the “best” model is to perform regression by finding the

parameters that minimise some cost function L(w). We then say that models

are better if they have lower costs. A common cost function is the sum of

squared errors:

L(w) =
n∑

i=1

(yi − f(xi;w))2 (1.1)

which favours models that fit the outputs more closely. We find the best

model by minimising L(w) with respect to w, and call the solution the least

squares model. One famous example of this is back-propagation [62] where the

parameters are the weights of a feedforward neural network, and the gradient

of the cost is used to optimise the weights and fit the model. Another exam-

ple is least squares polynomial regression, where the functional mapping is a

polynomial and the parameters are the polynomial coefficients [17].

One problem with least squares regression is the lack of error bars on predic-

tions. That is, the regression model supplies a scalar prediction at any point,

without any measure of the confidence we should place in that prediction.

More useful models would supply error bars with each prediction, or better,

supply a full predictive distribution.

Another problem is that of overfitting. That is, least squares models (and in

general, least cost models) are only concerned with reducing the model error

at the training input points. What the model does at points between inputs

is inconsequential to the modelling process. If we have a powerful enough

model then we can come close to a zero-error model that interpolates the

data almost exactly. Typically, however, we find such overly complex models
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have poor generalisation performance - the models make poor predictions at test

points not sufficiently similar to any training input.

Overfitting can be avoided by using a simpler model. A simple model tends to

smooth out or ignore complicated features and noise. However, if the model

is too simple, its predictive performance in the training data will be poor.

Overall we have a trade-off situation where a model that is too simple inter-

polates poorly and has large predictive error at the training points. On the

other hand, a model that is too complex fits the observations (and noise) well,

but may make wildly inaccurate predictions at novel test points. The model

we would like lies somewhere in between - a model that interpolates the ob-

servations sufficiently, and has a good generalisation performance.

An alternative to specifying a cost function is to assume a noise model on the

outputs as described by the following generative model:

yi = f(xi;w) + ǫi (1.2)

where ǫi is independently and identically distributed (i.i.d) noise. In this the-

sis, it is generally assumed that this noise is Gaussian with ǫi ∼ N (0, σ2).

Now we can make use of the likelihood function, or the probability density of

the data given the parameters

p(y|X,w, σ2) =
n∏

i=1

p(yi|xi,w, σ2) (1.3)

=

n∏

i=1

1√
2πσ2

exp

(
−(yi − f(xi;w))2

2σ2

)
(1.4)

where the likelihood function is factored because of the assumption that sep-

arate noise samples are independent [61]. The regression model is then built

by finding the set of parameters w that maximise the likelihood function. The

log of the likelihood function (1.3) is proportional to the negative of the sum of

squared errors (1.1), so this maximum likelihood regression model is essentially

the same as the least squares model.
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1.2 Bayesian Regression

Bayesian parametric regression is an alternative regression method that coun-

ters the problems of overfitting. We make use of Bayes’ rule to find the poste-

rior distribution over the parameters, characterised by the probability density

of the parameters conditioned on the observations:

p(w|y,X, σ2) =
p(y|X,w, σ2) p(w)

p(y|X, σ2)
(1.5)

where p(w) is the prior probability density function (or prior density for short),

and is set according to our prior belief about the distribution of the parame-

ters. The numerator on the right consists of the likelihood function multiplied

by the prior density. The denominator is the marginal likelihood and is found

by integrating over the likelihood-prior product

p(y|X, σ2) =

∫
p(y|X,w, σ2)p(w) dw (1.6)

To make a prediction y∗ at a test point x∗, we find the predictive distribution

p(y∗|x∗,y,X, σ2) =

∫
p(y∗|x∗,w, σ2)p(w|y,X, σ2)dw (1.7)

So rather than using a single set of parameters to make predictions, we inte-

grate over the entire posterior density. This means that it is not just a single

set of parameters that contributes to predictions, but all parameters contribute

to a prediction, where the predictive contribution from a particular set of pa-

rameters is weighted by its posterior probability. The consequence of doing

so is a predictive model powerful enough to model the problem’s features,

but less prone to overfitting.

Another nice feature of Bayesian prediction is that we have access to the full

predictive distribution, rather than just a scalar prediction at each test point.

This is very useful as a measure of the model’s confidence in its prediction.

If the predictive distribution is tightly packed around a single value, then

we can be confident of the model’s predictions, assuming that the parametric

form of f(x;w) is appropriate for the data. On the other hand, if the predic-

tive distribution is spread widely over a range of values, then the model is

telling us that it has high uncertainty in what it expects to observe given this

particular test input.
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1.3 Gaussian Processes for Regression

1.3.1 Gaussian Processes

Consider a probability density function p(f) defined over a function space F .

If we were to sample functions f from F according to p(f) then we would be

generating sample paths from a stochastic process. The samples can be consid-

ered sample paths or random functions drawn from the distribution with density

function p(f).

We restrict our attention here to function spaces where each function in the

space has a domainX and range R. That is, for each f ∈ F we have f : X → R.

If we generate samples from F , and for each sample f find the value at some

fixed point x ∈ X , we will find that f(x) is a random variable with some fixed

distribution. As a simple example, consider the stochastic process defined by

f(x) = exp(w) sin(αx) with w ∼ N (0, 1
4
) and α ∼ N (1, 1). We generate func-

tions simply by sampling from p(α, w), with some examples shown in figure

1.1. The probability density of f(1) is shown by the panel on the right of the

figure. We can observe all the sample functions at n different fixed test points

to generate a random vector, f = [f(x1) . . . f(xn)]T. The joint probability den-

sity p(f) could then be found (at least empirically), which in this case has a

non-trivial form.

0 0.5 1 1.5 2
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2

x

f(
x
)

−2 0 2
0

0.2

0.4

0.6

0.8

1

f(1)

P
r(

f(
1
))

Figure 1.1: Example of a stochastic process. The panel on the left shows 10 indepen-
dent sample paths. The panel on the right shows the probability density of the sam-
ple functions evaluated at x = 1. This was produced by normalising the histogram
of 1000 sample paths evaluated at f(1).
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In this thesis, we consider a subset of all stochastic processes that have the

property that the joint distribution over any finite set of fixed test points is

a multivariate Gaussian. That is, the distribution of f ∈ Rn is a multivariate

Gaussian for all finite n and all xi ∈ X . Such a stochastic process is known as

a Gaussian process.

An example of a Gaussian process is shown in figure 1.2. The left panel shows

5 independent sample paths drawn from the Gaussian process. The samples

are independent but all have similar characteristics such as expected rate of

change and expected magnitude. The right panel shows the (theoretical) joint

probability density of the sample paths evaluated at two fixed points f(0.3)

and f(0.5). This is a bivariate Gaussian, consistent with the definition of a

Gaussian process.

−1 0 1

−2

0

2

x

f(
x
)

f(0.3)

f(
0
.5

)

−2 0 2

−2

0

2

Figure 1.2: Example of a Gaussian process. The left panel shows 5 independent sam-
ple paths from the Gaussian process. The panel on the right shows the contours of
the joint probability density function for the bivariate Gaussian distribution for the
variables f(0.3) and f(0.5).

1.3.2 Gaussian Process Models

Earlier, we saw how we could assume a particular parametric generative

model, and then use Bayes’ rule to infer the parameters. In this section we

consider an alternative, where we assume that each observation yi is depen-
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dent on a latent variable fi as follows

yi = fi + ǫi (1.8)

where ǫi ∼ N (0, σ2) is i.i.d noise.

We are thus considering n latent variables which we collect into a vector f =

[f1 . . . fn]T. In the Gaussian process for regression methodology, we place a

zero-mean multivariate Gaussian prior distribution over f . That is

f
∣∣X, θ ∼ N (0,K) (1.9)

where K is an n × n covariance matrix dependent on X and some hyperpa-

rameters θ. In particular, the (i, j)th element of K is equal to k(xi,xj) where

k(·, ·) is a positive definite function parameterised by θ. In this context k(·, ·)
is known as a covariance function1.

Given some observations and a covariance function, we wish to make a pre-

diction using the Gaussian process model. To do so we consider a test point x∗

and the associated latent variable f∗. Under the Gaussian process framework,

the joint distribution of f and f∗ is also a zero-mean multivariate Gaussian,

and is found by augmenting (1.9) with the new latent variable f∗:



 f

f∗




∣∣∣∣∣X, θ ∼ N



0,



K k

kT κ







 (1.10)

where k = [k(x∗,x1) . . . k(x∗,xn)]T is the n× 1 vector formed from the covari-

ance between x∗ and the training inputs. The scalar κ = k(x∗,x∗).

Given the Gaussian noise assumption in equation (1.8), we can express the

joint distribution over the observed targets y and unobserved (test) target y∗:



y

y∗




∣∣∣∣∣X, θ ∼ N



0,



K + σ2I k

kT κ + σ2







 (1.11)

Given that the joint distribution is Gaussian, we can condition on y using

standard formulae [61] to find

y∗
∣∣y,X, θ, σ2 ∼ N

(
m(x∗), v(x∗)

)
(1.12)

1Positive definite covariances imply a positive definite covariance matrix K which is re-

quired to make equation (1.9) normalisable
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where the predictive mean and variance are

m(x∗) = kT(K + σ2I)−1y (1.13)

v(x∗) = κ + σ2 − kT(K + σ2I)−1k (1.14)

Hence, given a covariance function defined by hyperparameters θ, we can

calculate a Gaussian predictive distribution for any test point x∗. More gen-

erally, we can calculate the multivariate Gaussian predictive distribution for

any set of m test points X∗ = [x1∗ . . .xm∗] as follows:

m(X∗) = KT
∗ (K + σ2I)−1y (1.15)

v(X∗) = K∗∗ + σ2I−KT
∗ (K + σ2I)−1K∗ (1.16)

where K∗ is an n ×m matrix of covariances between the training inputs and

test points. The m×m matrix K∗∗ consists of the covariances between the test

points.

Gaussian process regression is like Bayesian parametric regression where the

latent variables replace the parameters. Implicitly, we find a posterior den-

sity over the latent variables and then integrate over that posterior density to

make predictions. We can perform the integral analytically because the distri-

butions making up the integrand are Gaussian.

For a Gaussian process model the marginal likelihood is equal to the integral

over the product of the likelihood function and the prior density1, which are

both Gaussian in form. The product of two Gaussians is another Gaussian, so

the marginal likelihood is available in analytical form:

p(y|X, θ, σ2) =

∫
p(y|f ,X, θ, σ2)p(f |X, θ)df (1.17)

=

∫
N (f , σ2I)N (0,K)df (1.18)

=
1

(2π)
n
2 |K + σ2I| 12

exp
(
−1

2
yT(K + σ2I)−1y

)
(1.19)

For numerical reasons we usually work with the log marginal likelihood

log p(y|X, θ, σ2) = −n
2

log 2π − 1
2
log |K + σ2I| − 1

2
yT(K + σ2I)−1y (1.20)

which can be considered as the log-evidence for this particular Gaussian pro-

cess model, defined by θ and σ2.

1at this level of inference, the likelihood function is the likelihood of the latent variables f

and the prior density is over f . The marginal likelihood comes about by marginalising over f .
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1.3.3 Learning the Hyperparameters

Usually, when we use Gaussian processes for regression, we do not know

a priori the most appropriate hyperparameters and noise variance. For the

methodology to be useful, we need a principled method for inferring these

unknowns from the data. In other words, we desire a method to learn the

hyperparameters and noise variance given the observations.

The marginal likelihood (equation (1.17)) can be thought of as the likelihood

of the hyperparameters and noise variance. One way to build a Gaussian pro-

cess model is to find the values of θ and σ2 that maximise this likelihood. In

doing so, we find the maximum likelihood hyperparameters θML and max-

imum likelihood noise variance σ2
ML. Once found, we make predictions by

feeding θML and σ2
ML into equation (1.12).

In many cases we may have a prior belief about the form of the data. If we

can translate this into a prior belief about the hyperparameters and noise vari-

ance, then it is better to incorporate this information into the learning of these

values. To do so, we find the posterior density over the hyperparameters and

noise variance as follows:

p(θ, σ2|y,X) ∝ p(y|X, θ, σ2) p(θ, σ2) (1.21)

which is just the likelihood function times the prior density just discussed.

Now, instead of maximising the likelihood function, we find the hyperpa-

rameters and noise variance to maximise the posterior density. This gives us

the so called maximum a posteriori, or MAP values θMAP and σ2
MAP , which we

feed into (1.12) to make predictions. Using a prior distribution to find the

MAP values can often produce better results than simply using the maximum

likelihood values [17].

Both of the above methods make predictions using a single set of hyperpa-

rameters and a single value for the noise variance. Although these methods

work well in practise, they are in fact only approximations to the Bayesian

solution, which makes predictions by marginalising over the uncertainty in

the hyperparameters and noise variance as follows [86, 34]:

p(y∗|x∗,y,X) =

∫∫
p(y∗|x∗,y,X, θ, σ2)p(θ, σ2|y,X)dθdσ2 (1.22)

Normally, however, this integral is not analytically tractable and we are forced

to make some sort of approximation. When we use the MAP method, we
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are effectively approximating the posterior density p(θ, σ2|y,X) with a delta

function centred on (θMAP , σ2
MAP ) so the predictive distribution simplifies to

p(y∗|y,X, θMAP , σ2
MAP ). Other methods attempt to use more of the informa-

tion offered by the posterior distribution. For example, one can approximate

the posterior distribution with a Gaussian centred on the MAP solution, and

then perform the (approximated) integral analytically (similar to the Bayesian

treatment of Neural Networks by MacKay [38, 36]). However, this may pro-

duce poor results if the posterior distribution is multimodal, or if the model

has a large number of parameters (meaning the posterior distribution is de-

fined over a space with a large number of dimensions). Another solution is

to use Markov Chain Monte Carlo (MCMC) methods to simulate the posterior

distribution by numerically generating a set of samples [86, 57, 47]. The pre-

dictive distribution is then approximated as follows:

p(y∗|x∗,y,X) ≈ 1

M

M∑

m=1

p(y∗|y,X, θm, σ2
m) (1.23)

where we have M samples with (θm, σ2
m) ∼ p(θ, σ2|y,X). The advantage is

that this prediction becomes increasingly correct as the number of samples

increases. Unfortunately, drawing samples from the posterior distribution

by simulating Markov chains is not always straightforward. For instance, it

can be difficult to determine beforehand how long the simulation must run to

ensure that the generated samples are representative of the posterior distribu-

tion. Typically, the solution is to run long simulations with the consequence

that MCMC methods can be computationally demanding. For good coverage

of MCMC and these issues, refer to the work of Neal [45] and MacKay [41, 34].

1.4 History of Gaussian Processes

The study of Gaussian processes and their use for prediction is far from new

[34]. Indeed, the underlying theory dates back to Weiner-Kolmogorov pre-

diction theory and time series analysis in the 1940’s [34, 61, 33, 40]. More

recent is the introduction of kriging [42], and its subsequent development as a

method for the interpolation of geostatistical data [12]. Kriging, named after

the mining engineer D.G.Krige, is identical to Gaussian process regression,
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but is derived and interpreted somewhat differently to that above (e.g. see

[27]). Furthermore, as a geostatistical method, it is mainly concerned with

low-dimensional problems and tends to ignore any probabilistic interpreta-

tions [34]. In the wider statistical community, the use of Gaussian processes to

define prior distributions over functions dates back to 1978, where O’Hagan

[50] applied the theory to one-dimensional curve fitting.

In the machine learning community, the use of Gaussian processes for su-

pervised learning is a more recent development which traces back to intro-

duction of back-propagation for learning in neural networks [62]. This orig-

inal non-probabilistic treatment was subsequently enhanced by Buntine [9],

MacKay [35], and Neal [48] who introduced a Bayesian interpretation that

provided a consistent method for handling network complexity (see [38, 4, 28]

for reviews). Soon after, Neal [46] showed that under certain conditions these

Bayesian Neural Networks converge to Gaussian processes in the limit of an

infinite number of units. This resulted in the introduction of Gaussian pro-

cesses for regression in a machine learning context [86, 57, 47]. Briefly, this

work included a description of how to

(1) specify and parameterise a covariance function.

(2) build a covariance matrix and hence express the prior distribution over

function values.

(3) find the posterior distribution over parameters using Bayes’ Theorem.

(4) either optimise to find the most likely (ML) or maximum a posteriori

(MAP) parameters, or integrate over the posterior density using Hamil-

tonian Monte Carlo.

(5) calculate the predictive distribution at any test point.

For good introductions to Gaussian processes for regression refer to the 1997

thesis of Gibbs [17], the Gaussian processes chapter in MacKay’s book [34],

and the recent book by Williams and Rasmussen [61]. Additionally, Seeger

provides recent reviews [63, 64, 65] and relates Gaussian processes for ma-

chine learning to other kernel machine methods.

Since the original introduction of Gaussian processes for regression, there

have been numerous enhancements and applications. One of the main areas
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of interest has been on developing methods to reduce the computational cost

of Gaussian process regression, both in the training and prediction phases.

The fundamental problem is that for a training set of size n, exact calculation

of the marginal-likelihood (1.17) has complexity O(n3). This cost is a direct

result of inverting an n × n matrix, so some of the methods aim to approxi-

mate this calculation. For example, [17, 18] describe and analyse an iterative

method to approximate the inverse with complexity O(n2). Another interest-

ing approach is presented by Williams et al. [88, 87], who make use of the

Nyström method to form a rank m < n matrix approximation to the covari-

ance matrix, which can then be inverted with a cost O(m2n). There have been

many more recent developments (e.g. [71, 80, 13, 14, 15, 66]), including the re-

duced rank approximation of Quiñonero-Candela and Rasmussen [55] to be

considered in chapter 5. For a good review and summary of these methods

see [56, 61].

Other recent work has been extensive and varied. For example, Gibbs [17] and

Paciorek [52, 53] developed methods for creating non-stationary covariance

functions, and hence, models of non-stationary data. We have seen methods

to deal with input-dependent noise [20] and non-Gaussian noise [72]. Mix-

tures of Gaussian processes were introduced by [81] followed by an extension

to a tractable infinite mixture of Gaussian processes experts [59]. Interesting

machine learning applications include Gaussian processes for reinforcement

learning [60], the incorporation of derivative observations into Gaussian pro-

cess models [73], Gaussian processes to speed up the evaluation of Bayesian

integrals [58], and Gaussian process models of dynamical systems [83].

Gaussian processes have also proved useful for classification problems. How-

ever, in this case the likelihood function and evidence and hence the posterior

distribution are not Gaussian, so exact inference is not possible. As a result,

much work has gone into developing approximations. Many of the resultant

classifiers make use of the Laplace approximation [3], Markov Chain Monte

Carlo [47], and variational methods [17, 19]. Although Gaussian process clas-

sifiers are powerful and promising, this thesis is concerned only with Gaus-

sian processes for regression.
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1.5 Overview of the Thesis

Chapter 2 reviews the theory of Linear Time Invariant filters and describes how

they can be used to generate Gaussian processes. In particular, it is estab-

lished that one can specify and statistically characterise a Gaussian process

by defining a linear filter, instead of using the classical method where a Gaus-

sian process is characterised directly via a covariance function. Overall, this

chapter presents a new way to construct a parameterised Gaussian processes.

The advantage of doing so is that it is usually easier to define a stable, linear

filter than it is to define a valid, positive definite covariance function.

Chapter 3 extends the framework developed in chapter 2, by introducing the

notion of multiple output linear filters. Doing so naturally defines a set of

Gaussian processes that are dependent on one another, which are named in

this thesis as Dependent Gaussian Processes. Dependent Gaussian processes

can be used to produce multiple output models, something that until now has

been problematic. That is, a current open problem concerns the difficulty of

directly specify valid covariance and cross-covariance functions that result in

a set of dependent Gaussian processes. The problem is alleviated if instead

we construct the set of dependent Gaussian processes using multiple output

filters.

Chapter 4 shows how one can apply the dependent Gaussian processes frame-

work to the problem of system identification. That is, it is shown how to treat a

system identification problem as a dependent Gaussian processes modelling

problem. Although the system identification problem is far from new, this

chapter shows how one can approach and solve the problem using the contri-

butions from the previous chapter.

One of the problems with Gaussian processes for regression is the compu-

tational complexity of implementation. The cost of training and prediction

scales poorly with the amount of data - specifically, the complexity is O(n3)

for n training examples. There are a number of approximations that have been

developed to overcome this complexity. Chapter 5 reviews one such method,

Reduced Rank Gaussian Processes. A new method is then presented showing

how the reduced rank Gaussian processes methodology can be used to con-

struct non-stationary Gaussian processes.

Chapter 6 extends the contents of chapters 3 and 5 and introduces a new ap-
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proximation to implement dependent Gaussian processes in a computation-

ally efficient manner. These models are named Reduced Rank Dependent Gaus-

sian Processes. The framework is then extended by introducing non-stationary

reduced rank Gaussian processes.

Chapter 7 reviews some methods to increase the modelling power of Gaus-

sian processes that use squared-exponential covariance functions. In particu-

lar, this includes an examination of parameterisations capable of encoding full

covariance matrices, thereby enabling the specification of covariance func-

tions that do not necessarily align with the input space axes. In other words,

this chapter discuss methods to allow covariance functions to rotate in high

dimensional space.

Chapter 8 is concerned with improving Gaussian processes for regression by

using Bayes’ Theorem to marginalise over different covariance functions. In

its simplest form, this amounts to weighting alternate models based on the ev-

idence for each model as determined from Bayes’ Theorem. In this way, mod-

els supported by strong evidence will have more influence on the regression

model’s predictions. The method of annealed importance sampling is reviewed,

and a new heuristic is described that automatically constructs an annealing

schedule. Finally, this chapter presents a novel method, termed sequential

annealed importance sampling, which can be used calculate the evidence for a

Gaussian process model.

A current open research problem is that of continuous optimisation in a sample

efficient manner - that is, optimising a set of continuous decision variables

with a minimal number of objective function evaluations. Chapter 9, intro-

duces an approach to this problem that uses response surfaces and the expected

improvement to guide search. Following is a review of how Gaussian processes

can be used to build response surfaces and hence solve continuous optimisa-

tion problems - a method known as Gaussian Process Optimisation. This chap-

ter identifies some problems with this method. In particular, it is shown that

this method can perform poorly if the main features of the objective function

are rotated relative to the axes of the covariance function.

Chapter 10 presents novel expansions of the Gaussian Process Optimisation

algorithm presented in the previous chapter. This includes new enhance-

ments that use Gaussian process models with rotated covariance functions,

and the use multiple models with model comparison to improve performance.
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Furthermore, it is described how reduced rank Gaussian processes as pre-

sented in chapter 5 can be used to improve optimisation performance on

problems requiring many iterations. Finally, it is shown how the Gaussian

processes for optimisation algorithm can be used to solve the double pole

balancing problem in an efficient manner.

Chapter 11 continues with the application of Gaussian processes to other ma-

chine learning problems. In particular, this chapter presents new algorithms

that use Gaussian processes to address the currently open problem of effi-

ciently estimating the gradient and definite integral of a noisy function.
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Chapter 2

Gaussian Processes from Linear

Filters

The previous chapter described how Gaussian processes could be used for re-

gression. To do so required the specification of a covariance function, which

must be a positive definite function. Positive definiteness forces the covari-

ance matrix K in equation (1.9) to have positive eigenvalues, thus ensuring

that the prior density over function values p(f) is normalisable1.

This chapter examines how Gaussian processes can be constructed by stimu-

lating linear filters with noise. We find the Gaussian process so constructed

is completely characterised by the properties of the filter. Furthermore, for

regression, instead of learning a positive definite covariance function, we can

learn a filter.

2.1 Linear Time Invariant Filters

Consider a device that operates on a continuous, real valued input signal over

time x(t) and emits a continuous real valued output y(t). This device is a

1The log of a Gaussian is a negative quadratic. If this quadratic has positive eigenvalues

then it will tend to −∞ at extrema, and the Gaussian will tend to zero at extrema. However,

if any eigenvalues are negative, then the negative quadratic will tend to∞ in at least one di-

mension, and hence cannot be exponentiated to form a valid, normalised probability density

function.

17
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linear time invariant (LTI) filter [23, 2] if it has the following properties:

(1) Linearity. The output is linearly related to the input in that if we multi-

ply the input by a constant, then the output is multiplied by the same

amount. Furthermore, if the input consists of the superposition of two

signals x(t) = x1(t) + x2(t), then the output y(t) = y1(t) + y2(t), is the

sum of the two output signals that result from independent application

of the two input signals.

(2) Time Invariance. Shifting the input signal in time results in exactly the

same shift in time for the output. So, if the output is y(t) in response to

an input x(t), then the output in response to a shifted input x(t + τ) is

y(t + τ).

An LTI filter is completely characterised by its impulse response, h(t), which is

equivalent to the output when the filter is stimulated by a unit impulse δ(t).

Given the impulse response, we can find the output of the filter in response

to any finite input via convolution:

y(t) = h(t) ∗ x(t) =

∫ ∞

−∞
h(t− τ)x(τ)dτ =

∫ ∞

−∞
h(τ)x(t − τ)dτ (2.1)

with the input-output relationship shown diagrammatically in figure 2.1.

y(t)h(t)x(t)

Figure 2.1: Single-input single-output linear time invariant filter, characterised by an
impulse response h(t). The output y(t) is related to the input x(t) by equation (2.1).

So, if we apply a unit impulse to an LTI filter with impulse response h(t), the

output we observe y(t) =
∫∞
−∞ h(τ)δ(t− τ)dτ = h(t), is the impulse response, as

defined.

As an example, consider an idealised tuning fork that emits a decaying, pure

tone when struck. We idealise the input strike by defining it as a unit impulse,

and define the impulse response as h(t) = exp(−αt) sin(ωt). When this tuning
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fork is struck, the output is a pure, decaying sinusoid equal to the impulse re-

sponse. By the linearity property, if we strike the fork twice separated by time

τ , the response will be equal to the sum of two decaying sinusoids, separated

by time τ .

A filter is said to be bounded input bounded output (BIBO) stable if the out-

put is bounded for all inputs that are bounded [23]. The input is considered

bounded if there exists a positive, real finite number M such that |x(t)| ≤ M

for all t. Similarly, the output is bounded if there exists a positive, real finite

number N such that |y(t)| ≤ N for all t. A necessary and sufficient condi-

tion for BIBO stability is that the impulse response is absolutely integrable:∫∞
−∞ |h(t)|dt < ∞. In this thesis, we will only consider BIBO stable filters,

hence will only consider impulse responses that are absolutely integrable.

Stable linear filters have the property that if a Gaussian process is applied as

input, then the output is necessarily a Gaussian process [23]. Gaussian white

noise, is a particular Gaussian process in which the covariance between two

points ti and tj is δijσ
2, where δij is the Kronecker delta function, and σ2 is

the noise variance. So, if we input Gaussian white noise into an LTI filter,

we will generate a Gaussian process at the output. The covariance function

of this process is completely characterised by the input noise variance, and

the impulse response. Normally, a Gaussian process model is built by param-

eterising the covariance function, but by viewing Gaussian processes as the

outputs of LTI filters we have an alternative method. That is, we can specify

a Gaussian process model by parameterising the impulse response.

When a linear filter is excited with Gaussian white noise w(t), the covariance

function of the zero-mean output process is found as follows:

cov(y(t), y(t′)) = E{y(t)y(t′)} (2.2)

= E

{∫ ∞

−∞
h(τ)w(t− τ) dτ

∫ ∞

−∞
h(λ)w(t′ − λ) dλ

}
(2.3)

=

∫ ∞

−∞

∫ ∞

−∞
h(τ)h(λ)E{w(t− τ)w(t′ − λ)} dτdλ (2.4)

=

∫ ∞

−∞

∫ ∞

−∞
h(τ)h(λ)δ(λ− (t′ − t + τ)) dτdλ (2.5)

=

∫ ∞

−∞
h(τ)h(t′ − t + τ) dτ (2.6)
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where we can interchange the order of the expectation and integration in (2.4)

because the impulse response is absolutely integrable. The covariance func-

tion is thus found to be equivalent to the autocorrelation function of the im-

pulse response.

So now, instead of directly parameterising a positive definite covariance func-

tion, we parameterise the impulse response for a stable LTI filter. In doing so,

the covariance function is automatically implied by (2.6). The only restriction

is that the filter is stable, which we must enforce via a suitable parameterisa-

tion.

2.1.1 Filters in Higher Dimensions

We have seen how we can construct Gaussian processes over time by stim-

ulating linear filters with a Gaussian white noise process. In this section, we

generalise to Gaussian processes over continuous D dimensional input spaces

X = R
D. To do so, we need to consider multidimensional linear filters.

Just as a 1D filter is completely characterised by its impulse response, a mul-

tidimensional filter over R
D is completely characterised by it’s D dimensional

impulse response h(x),x ∈ RD. Furthermore, the output y(x) in response to

an input u(x) is found by the multidimensional convolution

y(x) =

∫

RD

u(s)h(x− s) dDs (2.7)

From appendix A.1, the covariance function between two outputs y(xi) and

y(xj) is

cov(y(xi), y(xj)) =

∫

RD

h(s)h(s + xi − xj) dDs (2.8)

which in the case of time invariant filters simplifies to the stationary form

c(τ ) = cov(y(xi), y(xj)) (2.9)

=

∫

RD

h(s)h(s + τ ) dDs (2.10)

where τ is the difference between the two input points.

In order to find the covariance function in closed form, we must be able to

perform the correlation integral (2.8). In general, this is intractable, but in
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certain cases we can find analytic solutions. In the following sections we will

examine two such cases.

2.1.2 Gaussian Filters

A Gaussian filter over RD is an LTI filter with a Gaussian, or squared-exponential

impulse response

h(x) = v exp
(
−1

2
(x− µ)TA−1(x− µ)

)
(2.11)

parameterised by a scale v ∈ R, an offset µ ∈ RD and a positive definite matrix

A controlling the shape of the Gaussian.

The covariance function of the Gaussian process generated by exciting this

filter with Gaussian white noise is found as in appendix A.2:

c(τ ) =
v2(2π)

D
2

√
|2A−1|

exp

(
−1

2
τT

(
A−1

2

)
τ

)
(2.12)

Therefore, the covariance function for the output of a Gaussian filter excited

by white noise is Gaussian. Furthermore, the covariance function is indepen-

dent of the offset µ, meaning that translating the impulse response has no

effect on the statistics of the output Gaussian process. The offset µ can there-

fore be set to zero in this case, simplifying the parameter set to just v and

A. In chapter 3, we see that µ becomes significant when constructing sets of

dependent Gaussian processes.

2.1.3 Ideal Low-Pass Filters

An ideal low-pass filter has an impulse response defined in terms of the sine

cardinal, or sinc function. In time, the sinc function is:

sinc(t) =





1 t = 0

sin(t)
t

otherwise
(2.13)

The impulse response for an ideal low-pass filter with cutoff frequency of fc

and unit gain is [23]:

h(t) = 2fc sinc(2fcπt) (2.14)



22 CHAPTER 2. GPS FROM LINEAR FILTERS

Note that the frequency response for this filter is given by the Fourier trans-

form of the impulse response and is equal to:

H(f) = rect

(
f

2fc

)
=





1 f ≤ fc

0 f > fc

(2.15)

This gives unit gain for frequencies less than or equal to the cutoff, but com-

pletely attenuates higher frequencies. This filter is ideal in that it has a per-

fectly rectangular frequency response.

Over RD, the unit gain impulse response is defined by a product of sinc func-

tions:

h(s) = 2fc

D∏

d=1

sinc(2fcπsd) (2.16)

where spatial frequencies in all directions s1 . . . sD are completely attenuated

above fc, meaning this filter is isotropic.

We can generate an isotropic, stationary Gaussian process by applying Gaus-

sian white noise to an ideal isotropic low-pass filter with impulse response

h(s) =
∏D

d=1 sinc(πsd). The covariance function of this process is:

c(τ ) =

∫

RD

h(s)h(s + τ )dDs (2.17)

=

D∏

d=1

∫ ∞

−∞
sinc(πsd) sinc(π(sd + τd))dsd (2.18)

=
D∏

d=1

sinc(πτi) (2.19)

where τ = [τ1 . . . τD]T is the difference between the two input points. In de-

riving 2.19 we have made use of the fact that
∫

sinc(πy) sinc(π(x − y))dy =

sinc(πx).

So the covariance function of ideal low-pass filtered Gaussian white noise is a

sinc function. From figure 2.2, we see that the sinc function is not everywhere

positive, so it differs from the stationary kernels that are most often used

in Gaussian process regression, such as the squared exponential, Matérn, γ-

exponential and rational quadratic, which are always positive. Furthermore,

the sinc function exhibits ringing, or an oscillation about zero that decays with

input distance. Ringing effects are common in situations where ideal low-pass
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filters are employed. It seems reasonable to build models based on ideal low-

pass filtered noise, but a ringing covariance function is not so palatable. There

do not seem to be many situations in which we expect correlations across

space to fall away, and then become negative correlations, and then again be-

come positive correlations in a decaying periodic fashion.

0
−0.5

0

0.5

1

input distance

co
va

ria
nc

e

Figure 2.2: Sinc covariance function (solid) compared with a squared exponential co-
variance function (dotted).

2.2 Digital Filters

The previous section introduced linear filters defined over continuous time.

Such filters are known as analog filters. In this section, we consider devices de-

fined over discrete time, known as digital filters [25, 2]. A linear digital filter

takes an input time sequence x(n), and emits an output sequence y(n). The

input-output relationship is completely determined by the filter’s impulse re-

sponse sequence h(n).
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This section considers two types of digital filters: the finite impulse response

(FIR) filter, and the infinite impulse response (IIR) filter. The following sec-

tions show how discrete Gaussian processes are constructed from each. Be-

fore we begin, we define the discrete time unit impulse

δ(n) =





1 n = 0,

0 otherwise.
(2.20)

2.2.1 FIR Filters

A FIR filter exhibits an impulse response that is non-zero for a finite number

of time steps. Over discrete time, indexed by n, the impulse response, h(n), of

the filter is the output in response to δ(n)

h(n) =

M−1∑

i=0

biδ(n− i) (2.21)

which is fully characterised by the M filter coefficients, collected into a vector

b = [b0 . . . bM−1]
T.

The output of an analog filter is a continuous convolution of the input with

the impulse response. Similarly, the output y(n) of a digital filter is a discrete

convolution of the input x(n) and the impulse response h(n)

y(n) = x(n) ∗ h(n) =
∞∑

k=−∞
x(n− k)h(k)

=

∞∑

k=−∞

(

x(n− k)

M−1∑

i=0

biδ(k − i)

)

=
∞∑

k=−∞
x(n− k)bk

=

M−1∑

k=0

x(n− k)bk (2.22)

where the final step makes use of the fact that there are only M potentially

non-zero coefficients, b0 . . . bM−1.

The FIR filter is shown diagrammatically in figure 2.3.

If the filter weights are finite, then the FIR filter is BIBO stable. Consequently,

any vector of weights b ∈ R
M defines a stable FIR filter.
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Tx(n) T T Σ. . . y(n)
bM-1

b2

b0

b1

Figure 2.3: FIR filter with M coefficients. The input feeds into a buffer of length M .
The output is a weighted sum of all of the levels in the buffer, with the ith level
weighted by coefficient bi. Each level of the buffer results in a delay of time T , corre-
sponding to the sampling period.

If an FIR filter is stimulated with discrete-time Gaussian white noise x(n) ∼
N (0, 1), then the output at any time step is a weighted sum of Gaussian ran-

dom variables, and is therefore Gaussian itself. Overall, the output forms a

Gaussian process. The covariance function of the output, between times m

and n is

cov(y(m), y(n)) = E

{
M−1∑

i=0

bix(m− i)
M−1∑

j=0

bjx(n− j)

}

=
M−1∑

i=0

M−1∑

j=0

bibjE {x(m− i)x(n− j)}

=

M−1∑

j=0

bjbj+m−n (2.23)

Note that for an FIR filter,

bj =






0 j < 0

0 j ≥M

bj otherwise

(2.24)

so its covariance function has compact support, with cov(y(m), y(n)) = 0 if

|m− n| ≥M .

Note that the covariance function (2.23) is equivalent to a discrete correlation.

That is, the covariance function is found by discretely correlating b, the vector

of filter weights. This is analogous to the continuous case, where the covari-

ance function is equal to the correlation of impulse responses.
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The FIR filter with q weights and b0 = 1 is equivalent to a moving average

model [5] of order q − 1, denoted MA(q − 1). This means that the FIR filter

simply calculates a weighted moving average of the q most recent input val-

ues. The advantage of this simplicity is unconditional stability. That is, if the

input is bounded then the output must also be bounded.

Given that we have the covariance function, we can compute the covariance

matrix and find the likelihood function of the filter weights given some data.

The vector of weights b takes on the role of the hyperparameters θ in equa-

tion (1.17) (page 8). This enables us to model a time series by finding either

the maximum likelihood (ML) or maximum a posteriori (MAP) vector of fil-

ter weights. We can then make predictions by using the standard Gaussian

process predictive distribution equation (1.12) (page 7). Alternatively, we can

make Bayesian predictions by drawing a set of weight samples from the pos-

terior distribution over weights. This approach is equivalent to a Bayesian

moving average model, and the ML approach is equivalent to fitting the mov-

ing average parameters by least squares.

The FIR filters considered thus far have all been causal filters. That is, the

impulse response is exactly zero for all time preceding the impulse onset.

Although physically unrealisable, we can consider the notion of acausal FIR

filters, defined by a set of 2M + 1 weights, {b−M . . . b0 . . . bM}. The impulse re-

sponse is h(n) =
∑M

i=−M biδ(n− i), and is potentially non-zero for −M ≤ n ≤
M . In effect, the acausal filter can respond to an impulse before it is applied.

Nevertheless, we can still pretend that a Gaussian process was generated by

an acausal filter. This is so because we can transform an acausal filter into

a causal filter by delaying the impulse response by a large enough amount

of time. When we time shift the impulse response as such, we find that the

resulting covariance function remains invariant. Overall, the covariance func-

tion for a Gaussian process produced by an acausal filter is exactly the same

as a that of a causal filter that has had its output delayed by a large enough

amount of time.
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2.2.2 IIR Filters

An IIR filter exhibits an impulse response that is potentially non-zero for an

infinite time

h(n) =

M−1∑

i=0

biδ(n− i) +

N∑

j=1

ajh(n− j) (2.25)

which is equivalent to the FIR impulse response (equation 2.20) plus a recur-

sive component which gives rise to the response’s infinite nature. The filter is

completely characterised by the M + N filter weights b0 . . . bM−1, a1 . . . aN .

The output y(n) in response to an input x(n) is again found by discrete con-

volution

y(n) = h(n) ∗ x(n) (2.26)

=
M−1∑

i=0

bix(n− i) +
N∑

j=1

ajy(n− j) (2.27)

The IIR filter is shown diagrammatically in figure 2.4.

Tx(n) T T Σ. . . y(n)
bM-1

b2

b0

b1

TT T. . . 

aN a2 a1

Figure 2.4: IIR filter with M feed-forward coefficients and N recursive coefficients.
The input feeds into a FIR filter defined by b0 . . . bM−1. The output is the sum of the
FIR output and a recursive component defined by coefficients a1 . . . aN .

If the input x(n) is discrete time Gaussian white noise, then the output is a

Gaussian process. This is so because we can think of the IIR filter as an FIR
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filter with an infinite number of weights. The stationary covariance function

for the output Gaussian process is

cov(y(m), y(n)) = E

{ ∞∑

i=−∞
x(m− i)h(i)

∞∑

j=−∞
x(n− j)h(j)

}
(2.28)

=

∞∑

i=−∞

∞∑

j=−∞
h(i)h(j)E {x(m− i)x(n− j)} (2.29)

=
∞∑

j=−∞
h(j)h(j + m− n) (2.30)

which is equal to the discrete time correlation of the impulse responses.

In general, we can not calculate equation (2.30) directly because the impulse

responses are infinite. To find a closed form for the covariance function, we

make use of the z-transform, Z[·], which transforms a discrete time signal

into the complex frequency domain. The correlation then becomes a multipli-

cation:

Z[cov(y(m), y(n))] = Z
[ ∞∑

j=−∞
h(j)h(j + m− n)

]

(2.31)

= Z[h(n) ∗ h(−n)] (2.32)

= H(z)H(z−1) (2.33)

where H(z) = Z[h(n)] and z is the complex frequency variable. The covari-

ance function can then be recovered using the two-sided1 inverse z-transform,

Z−1[·].

As a simple example, consider the IIR filter with weights b0 = 1 and a1 = α.

From equation (2.25), we find the impulse response h(n) = δ(n) + αh(n − 1)

for n ≥ 0. We then find the frequency response via the z-transform:

H(z) = Z[h(n)] = 1 + αH(z)z−1

=
1

1− αz−1
(2.34)

1The inverse z-transform is only unique when a region of convergence (ROC) is specified.

The inverse is found by performing a contour integral. A contour within one ROC may result

in a time signal defined for n > 0. We require the ROC that results in a time signal defined

for −∞ < n < ∞, so that our auto-covariance functions are even functions. That is, we use

the ROC that results in a two-sided time signal.
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Now, we z-transform the covariance function c(m) = cov(y(n + m)y(n)))

Z[c(m)] = H(z)H(z−1) (2.35)

=
z

(z − α)(1− αz)
(2.36)

Note that

Z
[

α|m|

1− α2

]
=

1

1− α2

∞∑

m=−∞
α|m|z−m (2.37)

=
1

1− α2

(
αz

1− αz
+

z

z − α

)
(2.38)

=
z

(z − α)(1− αz)
(2.39)

= Z[c(m)] (2.40)

So the covariance function is given by

c(m) =
α|m|

1− α2
(2.41)

where m is the time difference between inputs. Note that this process is a first

order stationary Gaussian Markov process, otherwise known as the Ornstein-

Uhlenbeck process [61].

For an IIR filter to be BIBO stable, the magnitudes of the system poles must

all be less than 1. The system poles are the roots of the denominator of the

transfer function H(z) = Z[h(n)]. The poles are a function of the recursive

weights a, so not all possible filter weights will result in a stable filter. To

ensure stability, we must either use known stable forms, or directly set each

pole to have a magnitude less than 1, and ensure that each complex pole is

accompanied by its conjugate to ensure a real impulse response. In the simple

example above, the system has a real pole at z = α and is therefore stable for

−1 < α < 1.

The previous section described how the moving average model is equivalent

to a special case of the FIR filter. Similarly, a special case of the IIR filter is

equivalent to a autoregressive moving average (ARMA) model. That is, an

ARMA model [5] with M moving average terms and N autoregressive terms

is equivalent to the IIR filter in equation (2.25) with b0 = 0
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2.3 Summary

A Gaussian process can be constructed by exciting a linear filter with Gaus-

sian white noise. If the filter is analog then we produce a Gaussian process

that is continuous in time or space. For digital filters, we generate discrete

time or discrete space Gaussian processes. In any case, a filter is completely

characterised by its impulse response. We have seen in this chapter that we

can directly parameterise this impulse response, rather than directly param-

eterising the Gaussian process’s covariance function. The next chapter will

make use of this result to construct sets of dependent Gaussian processes with-

out having to directly specify and parameterise valid cross-covariance func-

tions.



Chapter 3

Dependent Gaussian Processes

The previous chapter discussed the use of linear filters as generators of Gaus-

sian processes. In this chapter, this notion is extended by using linear filters

to generate sets of dependent Gaussian processes. This is an extension of the

work of Boyle and Frean [6, 7], where dependent Gaussian processes were

first defined.

3.1 Introduction

The Gaussian processes for regression implementations considered thus far

model only a single output variable. Attempts to handle multiple outputs

generally involve using an independent model for each output - a method

known as multi-kriging [86, 40] - but such models cannot capture covariance

between outputs. As an example, consider the two tightly coupled outputs

shown at the top of Figure 3.2 (page 39), in which one output is simply a

shifted version of the other. Here we have detailed knowledge of output 1,

but sampling of output 2 is sparse. A model that treats the two outputs as

independent cannot exploit their obvious similarity. Intuitively, we should

make predictions about output 2 using what we learn from both outputs 1

and 2.

Joint predictions are possible (e.g. co-kriging [12]) but are problematic in that

it is not clear how covariance functions should be defined [18, 40]. Although

there are many known positive definite auto-covariance functions (e.g. Gaus-

31
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sians and many others [1, 34]), it is difficult to define cross-covariance func-

tions that result in positive definite covariance matrices. For example, con-

sider the covariance matrix between two Gaussian processes f1(x) and f2(x):

C =



C11 C12

C21 C22



 (3.1)

It is straightforward to specify positive definite auto-covariance functions to

build the blocks C11 and C22, but it is not clear how to specify cross-covariance

functions to build the cross-covariance blocks C12 and C21 such that the over-

all matrix C remains positive definite. To elaborate, C is a positive definite

matrix if and only if zTCz > 0 for any non-zero vector zT = [zT
1 zT

2 ]. So, if the

blocks C11 and C22 are positive definite, then for C to be positive definite the

following must hold:

zTCz > 0

zT
1 C11z1 + zT

1 C12z2 + zT
2 C21z1 + zT

2 C22z2 > 0

zT
1 C12z2 > −1

2

{
zT

1 C11z1 + zT
2 C22z2

}
(3.2)

The cross covariance matrix C12 is built from a cross covariance function

cov12(·, ·) by setting the (i, j)th matrix element equal to cov12(x1,i,x2,j), where

x1,i is the ith training input for output 1 and x2,j is the jth training input for

output 2. It is not clear how to specify a non-zero cov12(·, ·) such that (3.2)

is true for any non-zero z. Simply setting cov12(·, ·) to some positive definite

function will not always satisfy the requirement in (3.2).

Contrast this situation to neural network modelling, where the handling of

multiple outputs is routine; it is simple to parameterise and train a hidden

layer network with multiple outputs. Furthermore, due to the existence of

common hidden nodes, such a network can quite simply capture the depen-

dency between outputs that covary. If the outputs are independent, then the

simplest solution is to use a separate network to model each output.

3.2 Multiple Input Multiple Output Filters

In chapter 2, we saw how Gaussian processes could be constructed by stim-

ulating linear filters with Gaussian white noise. It is also possible to charac-
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terise stable linear filters, with M-inputs and N-outputs, by a set of M × N

impulse responses. We denote the response on the nth output in response to an

impulse on the mth input as hmn(t). Such a filter is known as a multiple input

multiple output (MIMO) filter. We stimulate the filter with M independent

Gaussian white noise processes, and the resulting N outputs are by definition

dependent Gaussian processes. Dependencies exist between the output pro-

cesses because they are derived from a common set of input noise sources.

In fact, the nth output yn(t) is related to the set of M inputs u1(t) . . . uM(t) as

follows:

yn(t) =

M∑

m=1

∫ ∞

−∞
hmn(τ)um(t− τ)dτ (3.3)

Now we can model multiple dependent outputs by parameterising the set of

impulse responses for a multiple output linear filter, and inferring the param-

eter values from data that we observe. Instead of the difficult task of spec-

ifying and parameterising auto and cross-covariance functions that imply a

positive definite covariance matrix, we specify and parameterise a set of im-

pulse responses corresponding to a MIMO filter. The only restriction is that

the filter be linear and stable, and this is achieved by requiring all impulse

responses to be absolutely integrable.

In chapter 2, we defined single output linear filters over RD to generate Gaus-

sian processes over RD. In a similar way, we can define MIMO linear filters

over R
D, and stimulate them to produce multiple dependent Gaussian pro-

cesses, each defined over RD. We do this simply by replacing the convolution

in (3.3) with a multidimensional convolution, as we did with (2.7) (page 20).

Constructing GPs by stimulating linear filters with Gaussian noise is equiv-

alent to constructing GPs through kernel convolutions, as described below.

Recall from equation (2.1) (page 18), that a linear filter’s output is found by

convolving the input process with the filter’s impulse response. Similarly,

a Gaussian process v(x) can be constructed over an input space X by con-

volving a continuous white noise process w(x) with a smoothing kernel h(x),

v(x) = h(x) ∗ w(x) for x ∈ X , [24]. To this can be added a second white noise

source η(x), representing measurement uncertainty or system noise, and to-

gether this gives a model y(x) for observations y. This view of GPs is shown

in graphical form in figure 3.1(a) (page 35).

Higdon [24] extended this kernel convolution framework to multiple depen-
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dent output processes by assuming a single common latent process. For ex-

ample, two dependent processes v1(x) and v2(x) are constructed from a shared

dependence on u(x) for x ∈ X0, as follows

v1(x) =

∫

X0∪X1

h1(x− λ)u(λ)dλ and v2(x) =

∫

X0∪X2

h2(x− λ)u(λ)dλ (3.4)

where X = X0 ∪ X1 ∪ X2 is a union of disjoint subspaces. v1(x) is dependent

on u(x) when x ∈ X1 but not when x ∈ X2. Similarly, v2(x) is dependent on

u(x) when x ∈ X2 but not when x ∈ X1. This means v1(x) and v2(x) might

possess independent components.

In what follows, we assume that Gaussian processes are the outputs of linear

filters, so multiple outputs are modelled somewhat differently. Instead of as-

suming a single latent process defined over a union of subspaces, we assume

multiple latent processes each feeding to an input of a MIMO filter. Some

outputs may be dependent through a shared reliance on common latent pro-

cesses, and some outputs may possess unique, independent features through

a connection to a latent process that affects no other output.

We now examine some simple, toy examples to demonstrate how dependent

Gaussian process models can be built for outputs that are not-independent.

3.3 Two Dependent Outputs

In the first instance, we consider the two output case, where we model data

with two dependent Gaussian processes. Consider two outputs y1(x) and

y2(x) over a region RD. We have n1 observations of output 1 and n2 observa-

tions of output 2, giving us data D1 = {x1i , y1i}n1
i=1 and D2 = {x2i , y2i}n2

i=1. We

wish to learn a model from the combined data D = {D1,D2} in order to pre-

dict y1(x∗) or y2(x∗), for x∗ ∈ RD. For notational convenience, we collect the

ni inputs from the ith data set into a matrix Xi = [xi1 . . .xi ni
], and the outputs

into a vector yi = [yi1 . . . yi ni
]T.

As shown in figure 3.1(b), we can model each output as the linear sum of three

stationary Gaussian processes. One of these (v) arises from a noise source

unique to that output, under convolution with a kernel h. The second (u) is

similar, but arises from a separate noise source w0 that influences both outputs
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Figure 3.1: (a) Gaussian process prior distribution for a single output. The output y is
the sum of two Gaussian white noise processes, one of which has been convolved (∗)
with a kernel (h).
(b) The model for two dependent outputs y1 and y2. The processes w0, w1, w2, η1, η2

are independent Gaussian white noise sources. Notice that if w0 is forced to zero y1

and y2 become independent processes as in (a) - we use this as a control model.

(although via different kernels, k). The third, which we’ll label η is additive

noise as before.

Thus we have yi(x) = ui(x) + vi(x) + ηi(x), where ηi(x) is a stationary Gaus-

sian white noise process with variance, σ2
i . The input sources w0(x), w1(x)

and w2(x) are independent stationary Gaussian white noise processes. The

intermediate processes u1(x), u2(x), v1(x) and v2(x) are defined as ui(x) =

ki(x) ∗ w0(x) and vi(x) = hi(x) ∗ wi(x).

In this example, k1, k2, h1 and h2 are parameterised squared-exponential ker-

nels

k1(x) = v1 exp

(
−1

2
xTA1x

)
(3.5)

k2(x) = v2 exp

(
−1

2
(x− µ)TA2(x− µ)

)
(3.6)

hi(x) = wi exp

(
−1

2
xTBix

)
(3.7)

Note that k2(x) is offset from zero by µ to allow modelling of outputs that are

coupled and translated relative to one another. The positive definite matrices
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A1,A2,B1 and B2 parameterise the kernels.

We now wish to derive the set of functions covy
ij(d) = covij(yi(xa), yj(xb)) that

define the auto-covariance (i = j) and cross-covariance (i 6= j) between the

outputs i and j, between arbitrary inputs xa and xb separated by a vector d =

xa−xb. By performing a convolution integral, (appendix A.2), covy
ij(d) can be

expressed in a closed form , and is fully determined by the parameters of the

squared-exponential kernels and the noise variances σ2
1 and σ2

2 as follows:

covy
11(d) = covu

11(d) + covv
11(d) + δabσ

2
1 (3.8)

covy
12(d) = covu

12(d) (3.9)

covy
21(d) = covu

21(d) (3.10)

covy
22(d) = covu

22(d) + covv
22(d) + δabσ

2
2 (3.11)

where

covu
ii(d) =

π
D
2 v2

i√
|Ai|

exp

(
−1

4
dTAid

)
(3.12)

covu
12(d) =

(2π)
D
2 v1v2√

|A1 + A2|
exp

(
−1

2
(d− µ)TΣ(d− µ)

)
(3.13)

covu
21(d) =

(2π)
D
2 v1v2√

|A1 + A2|
exp

(
−1

2
(d + µ)TΣ(d + µ)

)
= covu

12(−d) (3.14)

covv
ii(d) =

π
D
2 w2

i√
|Bi|

exp

(
−1

4
dTBid

)
(3.15)

where Σ = A1(A1 + A2)
−1A2 = A2(A1 + A2)

−1A1, and D is the problem

dimensionality.

Given covy
ij(d), we can construct the covariance matrices C11,C12,C21, and

C22 as follows

Cij =





covy
ij(xi1 − xj1) · · · covy

ij(xi1 − xj nj
)

...
. . .

...

covy
ij(xi ni

− xj1) · · · covy
ij(xi ni

− xj nj
)



 (3.16)

Together these define the positive definite symmetric covariance matrix C for

the combined output data D:

C =



C11 C12

C21 C22



 (3.17)
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We define a set of hyperparameters θ that parameterise

{v1, v2, w1, w2,A1,A2,B1,B2, µ, σ1, σ2}. Now, we can calculate the log-

likelihood

L = −1
2
log
∣∣C
∣∣− 1

2
yTC−1y − n1 + n2

2
log 2π (3.18)

where y = [y11 · · · y1 n1 | y21 · · · y2n2 ]
T and C is a function of θ and D. This is

similar in form to equation (1.20) (page 8), which is the log-likelihood for a

single Gaussian process.

Learning a model now corresponds to either maximising the log-likelihood

L, or maximising the posterior probability p(θ | D). Alternatively, we could

simulate the predictive distribution for y by taking samples from the joint

distribution p(y, θ | D), using Markov Chain Monte Carlo methods [57, 86, 47].

For a single output Gaussian process model, we can make predictions using

equations (1.13) and (1.14) (page 8). Similarly, for the two output case, the

predictive distribution at a point x∗ on the ith output is Gaussian with mean

m(x∗) and variance v(x∗) given by

m(x∗) = kTC−1y (3.19)

and v(x∗) = κ− kTC−1k (3.20)

where κ = covy
ii(0) = v2

i + w2
i + σ2

i (3.21)

and

k =





covy
i1(x∗ − x11)

...

covy
i1(x∗ − x1 n1)

covy
i2(x∗ − x21)

...

covy
i2(x∗ − x2 n2)





(3.22)

3.3.1 Example 1 - Strongly dependent outputs over R

Consider two outputs, observed over a 1D input space. Let Ai = exp(fi),

Bi = exp(gi), and σi = exp(βi). Our hyperparameters become θ =

{v1, v2, w1, w2, f1, f2, g1, g2, µ, β1, β2} where each element of θ is a scalar.
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Gaussian prior distributions over hyperparameters θ were set as follows:

vi ∼ N (0, 0.52)

wi ∼ N (0, 0.52)

fi ∼ N (3.5, 12)

gi ∼ N (3.5, 12)

µ ∼ N (0, 0.52)

βi ∼ N (−4, 0.752)

Training data was generated by evaluating the two functions shown by the

dotted lines in figure 3.2 at a number of points, and then adding Gaussian

noise with σ = 0.025. Note that output 2 is simply a translated version of out-

put 1 corrupted with independent noise. n = 48 data points were generated

by taking n1 = 32 samples from output 1 and n2 = 16 samples from output 2.

The samples were taken uniformly in the interval [−1, 1] for both outputs, ex-

cept that those from −0.15 to 0.65 were missing for output 2. The model was

built by maximising p(θ|D) ∝ p(D | θ) p(θ) using a multi-start conjugate gra-

dient algorithm [54], with 5 starts, sampling from p(θ) for initial conditions.

In other words, the model was built by finding the MAP hyperparameters.

The resulting dependent model is shown in figure 3.2 along with an inde-

pendent (control) model with no coupling (as in figure 3.1(b) with w0 = 0).

Observe that the dependent model has learnt the coupling and translation be-

tween the outputs, and has filled in output 2 where samples are missing. The

control model cannot achieve such “in-filling” as it is consists of two indepen-

dent Gaussian processes.

3.3.2 Example 2 - Strongly dependent outputs over R2

Consider two outputs, observed over a 2D input space. Let

Ai =
1

α2
i

I Bi =
1

τ 2
i

I where I is the identity matrix.

Furthermore, let σi = exp(βi). In this toy example, we set µ = 0, so our hyper-

parameters become θ = {v1, v2, w1, w2, α1, α2, τ1, τ2β1, β2} where each element

of θ is a scalar.
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Figure 3.2: Strongly dependent outputs where output 2 is simply a translated version
of output 1, with independent Gaussian noise, σ = 0.025. The solid lines represent the
model, the dotted lines are the true function, and the dots are samples. The shaded
regions represent 1σ error bars for the model prediction. (top) Independent model of
the two outputs. (bottom) Dependent model.

Gaussian prior distributions were set over θ, as follows:

vi ∼ N (1, 0.52)

wi ∼ N (0, 0.52)

αi ∼ N (0.3, 0.12)

τi ∼ N (0.3, 0.12)

βi ∼ N (−3.7, 0.52)

Training data was generated by evaluating the function shown on the left

of figure 3.3 at n = 117 points, and adding Gaussian noise with σ = 0.025.

n1 = 81 samples were placed in the training set D1 and the remaining n2 = 36
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samples formed training set D2. The training inputs from these sets formed

uniform lattices over the region [−0.9, 0.9]⊗[−0.9, 0.9]. Overall, the two sets of

training data were generated from the same underlying function, and differ

only due to noise contributions and the placement of the inputs.

The model was built by maximising p(θ|D) to find the MAP hyperparameters

as before.

The dependent model is shown in Figure 3.3 along with an independent con-

trol model. The dependent model has filled in output 2 where there a no

corresponding samples. Again, the control model cannot achieve such “in-

filling” as it is consists of two independent Gaussian processes.

Figure 3.3: Strongly dependent outputs where output 2 is simply a copy of output
1, with independent Gaussian noise. (top) Independent model of the two outputs.
(bottom) Dependent model. Output 1 is modelled well by both models. Output 2 is
modelled well only by the dependent model.
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3.3.3 Example 3 - Partially Coupled Outputs

Example 1 in section 3.3.1 and example 2 in section 3.3.2 discuss Gaussian

process models of two outputs that are fully dependent on one another, apart

from a noise contribution. In example 1, output 2 is simply a translated ver-

sion of output 1 corrupted with independent noise. In example 2, the two out-

puts are identical, apart from noise. This section presents a 1D example with

two outputs that are not simply related by translation. The outputs are only

partially dependent as shown in the top panel of Figure 3.4 (page 42). Observe

that the two outputs are significantly dependent, but not fully dependent.

For the model, the hyperparameters θ are the same as those from section 3.3.1

with Gaussian prior distributions. 48 data points were generated by taking

32 samples from output 1 and 16 samples from output 2. The samples were

uniformly spaced in the interval [−1, 1] for output 1 but only in [−1, 0] for

output 2. All samples were taken with additive Gaussian noise, σ = 0.025.

As before, p(θ|D) was maximised and predictions were compared with those

from an independent model. As Figure 3.4 shows, the dependent model has

learnt the coupling between the outputs, and attempts to fill in output 2 where

samples are missing. The “in-filling” is not as striking as the previous ex-

amples because output 2 possesses an independent component, but is much

better than the default GP model.

3.4 More than two Outputs

The MIMO framework described here for constructing GPs is capable of mod-

elling N-outputs, each defined over a D-dimensional input space. In general,

for x ∈ RD, we can define a model where we assume M-independent Gaus-

sian white noise processes w1(x) . . . wM(x), N-outputs y1(x) . . . yN(x), and

M × N kernels. The kernel kmn(x) defines the connection from input m to

output n. The auto-covariance (i = j) and cross-covariance (i 6= j) functions

between output processes i and j become (appendix A.1)

covy
ij(d) =

M∑

m=1

∫

RD

kmi(x)kmj(x + d)dDx (3.23)
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Figure 3.4: Dependent but unique outputs. (top) Outputs 1 and 2 are overlaid to illus-
trate the (partial) coupling between them. Note that these outputs are not entirely de-
pendent. (middle) Independent model of the two outputs. (bottom) Dependent model.
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and the matrix defined by equation (3.17) is extended to

C =





C11 . . . C1N

...
. . .

...

CN1 . . . CNN




(3.24)

If we have ni observations of output i, then we have n =
∑N

i=1 ni obser-

vations in total and C is a n × n matrix. Our combined data set becomes

D = {D1 · · ·DN}, where Di = {(xi1 , yi1) · · · (xi ni
, yi ni

)}.

The log-likelihood becomes

L = −1

2
log
∣∣C
∣∣− 1

2
yTC−1y − n

2
log 2π (3.25)

where yT =
[
(y11 · · · y1n1) · · · (yi1 · · · yi ni

) · · · (yN1 · · · yN nN
)
]

and the predictive distribution at a point x∗ on the ith output is Gaussian with

mean m(x∗) and variance v(x∗) given by

m(x∗) = kTC−1y (3.26)

and v(x∗) = κ− kTC−1k (3.27)

where κ = covy
ii(0) = v2

i + w2
i + σ2

i

and kT =
[
kT

1 · · ·kT
j · · ·kT

N

]

and kT
j =

[
covy

ij(x∗ − xj1) . . . covy
ij(x∗ − xj nj

)
]

3.5 Time Series Forecasting

Consider the observation of multiple time series, where some of the series

lead or predict the others. For example, consider the set of three time series

simulated for 100 steps each shown in figure 3.5 where series 3 is positively

coupled to a lagged version of series 1 (lag = 0.5) and negatively coupled to a

lagged version of series 2 (lag = 0.6).

The series were generated by sampling from a dependent Gaussian process
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with the following Gaussian covariance functions (see appendix A.2):

cov11(ta, tb) = w2 exp
(
−1

4
(ta−tb)

2

r2

)
+ δabσ

2 (3.28)

cov12(ta, tb) = 0 (3.29)

cov13(ta, tb) = wv1 exp
(
−1

4
(ta−tb−µ1)2

r2

)
(3.30)

cov21(ta, tb) = 0 (3.31)

cov22(ta, tb) = w2 exp
(
−1

4
(ta−tb)

2

r2

)
+ δabσ

2 (3.32)

cov23(ta, tb) = wv2 exp
(
−1

4
(ta−tb−µ2)2

r2

)
(3.33)

cov31(ta, tb) = wv1 exp
(
−1

4
(ta−tb+µ1)2

r2

)
(3.34)

cov32(ta, tb) = wv2 exp
(
−1

4
(ta−tb+µ2)2

r2

)
(3.35)

cov33(ta, tb) = (v2
1 + v2

2) exp
(
−1

4
(ta−tb)

2

r2

)
+ δabσ

2 (3.36)

where w = 0.9, v1 = 0.5, v2 = −0.6, r = 0.15, µ1 = −0.5, µ2 = −0.6, and

σ = 0.025. The samples were evaluated at 100 input points t1 . . . t100, which

were uniformly spread over the interval [0, 7.8]. The evaluation at each input

produced 3 outputs to give a total of 300 time series data points.

Given the 300 observations, a dependent GP model of the three time series

was built and compared with three independent GP models. The dependent

model used the covariance functions above with maximum likelihood values

for w, v1, v2, r, µ1, µ2 and σ. The independent models used the same set of

covariance functions but with covij = 0 for i 6= j, and maximum likelihood

values for w, v1, v2, r and σ.

The dependent GP model incorporated a prior belief that series 3 was coupled

to series 1 and 2, but with the lags unknown. The independent GP model as-

sumed no coupling between its outputs, and consisted of three independent

GP models. The models were non-recursively queried for forecasts of 10 fu-

ture values of series 3. It is clear from figure 3.5 that the dependent GP model

does a far better job at forecasting the dependent series 3. The independent

model becomes inaccurate after just a few time steps into the future. This in-

accuracy is expected, as knowledge of series 1 and 2 is required to accurately

predict series 3. The dependent GP model performs well as it has learnt that

series 3 is positively coupled to a lagged version of series 1 and negatively

coupled to a lagged version of series 2.
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Figure 3.5: Three coupled time series, where series 1 and series 2 predict series 3.
Forecasting for series 3 begins after 100 time steps where t = 7.8. The dependent
model forecast is shown with a solid line, and the independent (control) forecast is
shown with a broken line. The dependent model does a far better job at forecasting
the next 10 steps of series 3 (black dots).

3.6 Non-stationary kernels

The kernels used in (3.23) need not be Gaussian, and need not be spatially

invariant, or stationary. To reiterate, we require kernels that are absolutely in-

tegrable,
∫∞
−∞ . . .

∫∞
−∞ |k(x)|dDx < ∞ which correspond to BIBO stable linear

filters. This provides a large degree of flexibility, as it is straightforward to

specify a kernel that is absolutely integrable. Initially, one might think that

a Gaussian process model could be built by specifying any absolutely inte-

grable kernel. However, if the resultant Gaussian process is to be used for

modelling, then a closed form of the covariance function covy
ij(d) is required

(so that the covariance matrix can be constructed and differentiated with re-

spect to the hyperparameters). Unfortunately, for some non-Gaussian or non-
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stationary kernels, the convolution integral (2.8) (page 20), may not be analyt-

ically tractable, hence a covariance function will not be available.

3.7 MIMO Digital Filters

Chapter 2, showed how to construct discrete time or space Gaussian processes

by exciting digital filters with Gaussian white noise. In a similar fashion, dis-

crete time or space dependent Gaussian processes can be constructed by stimu-

lating MIMO digital filters with Gaussian white noise. Two cases are consid-

ered below: MIMO FIR filters, and MIMO IIR filters.

3.7.1 MIMO FIR Filters

Consider two FIR filters of the same order, defined by impulse responses

h1(n) =

M−1∑

i=0

aiδ(n− i) (3.37)

h2(n) =
M−1∑

i=0

biδ(n− i) (3.38)

If both filters are stimulated with Gaussian white noise, then two depen-

dent Gaussian processes are generated with a auto/cross covariance function

cij(m) = cov(yi(n + m), yj(n)).

c11(m) =

M−1∑

j=0

ajaj+m (3.39)

c22(m) =

M−1∑

j=0

bjbj+m (3.40)

c12(m) =
M−1∑

j=0

aj+mbj =
M−1∑

j=0

ajbj−m = c21(−m) (3.41)

c21(m) =
M−1∑

j=0

ajbj+m =
M−1∑

j=0

aj−mbj = c12(−m) (3.42)

It is easy to generalise to an M-input N-output FIR filter by finding the N2

covariance functions {c11(m) . . . c1N (m)} . . .{cN1(m) . . . cNN (m)}.
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As an example, consider the impulse responses shown by the joined-dots in

figure 3.6. These impulse responses correspond to two FIR filters with 25

weights each. Each filter was excited with the same Gaussian white noise se-

quence to produce two dependent Gaussian processes, depicted in figure 3.7.

Note that filter 2 has a sharper impulse response, and this becomes evident as

a less smooth output process. Filter 1 produces a smoother output, because

it has a smoother impulse response. In the extreme, if we had the sharpest

possible impulse response, namely an impulse, then the output would be a

Gaussian white noise process. Although it is difficult to see by inspecting the

processes, they are in fact highly dependent - process 2 is negatively coupled

to a lagged version of process 1. This is because h1(n) is positive and instant,

but h2(n) is negative and lagged.

0 5 10 15 20

−0.5

0   

0.5

time, n

h1(n)

0 5 10 15 20

−0.5

0

0.5

time, n

h2(n)

Figure 3.6: Impulse responses for the two FIR filters from the generative model (dots),
and the filters that were learnt from the training data (crosses) as described in the text.
The responses are very similar except for a −1 scaling factor. All filters consist of 25
weights.

The two dependent Gaussian processes were sampled to produce two sets

of time series, each with 100 points. This data was used to find MAP filter

weights for two FIR filters with 25 weights each, and Gaussian distributions

over the weights p(ai), p(bj) ∼ N (0, 1). In other words, two filters with 25

weights each were used to produce the training data in figure 3.7, which was

then modelled using two discrete time dependent Gaussian processes, based

on FIR filters with 25 weights each.

The MAP weights for the two filters were found using multiple runs of the

conjugate gradient algorithm [54], starting from a random vector of weights,
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Figure 3.7: Discrete time dependent Gaussian processes produced from two FIR filters
stimulated with the same noise sequence. The first 100 time steps form the training
data. After 100 time steps, the bottom panel shows the continuation of series 2 (cir-
cles), along with the dependent GP prediction (solid line) and the independent GP
prediction (dotted line). The error bars show the 95% confidence interval for the de-
pendent GP’s prediction.

wi ∼ N (0, 0.12). The MAP weight vectors were used to find the auto/cross

covariance functions of the model (equations 3.39 to 3.42). These are plotted in

figure 3.8, along with the corresponding functions from the generative model.

From the similarity of the plots, we see that the model has learnt the correct

dependencies between the training series.

It is interesting to examine the form of the impulse responses of the filters

that have been learnt. These are shown together in figure 3.6, along with

the impulse responses of the filters from the generative model. Note that the

learnt impulse responses are inverted relative to the generative model. This

does not affect the covariance structure however - all that is required is that

the impulse responses are of opposite polarity, and have appropriate lags.
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Figure 3.8: Auto and cross covariance functions for a discrete time Gaussian process,
generated from the outputs of two FIR filters excited by the same noise source. The
dots show the expected covariance for input distances −24 ≤ m ≤ 24, found from
discretely correlating the appropriate impulse responses. The crosses show the co-
variance functions learnt from the data.

When the covariance functions are calculated, the −1 scaling factor between

the empirical and generative impulse response cancels out.

Consider now using the dependent GP model just inferred to forecast the fu-

ture 25 values for series 2. This forecast is shown in the bottom panel of fig-

ure 3.7. For comparison, the forecast using an independent GP model is also

shown. It is clear that the dependent model does a far better job at predicting

series 2, which is as expected given that series 2 is generated using a lagged

version of the information used to produce series 1. Note that the model un-

certainty is low for the first 16 steps of the forecast, but then increases for

subsequent predictions. This is explained by the fact that the learnt impulse

response for filter 2 lags by 16 time steps (figure 3.6). The independent model



50 CHAPTER 3. DEPENDENT GPS

forecasts well for only 6 future time steps. This is because points from series 2

that are separated by more than 6 time steps are uncorrelated, as can be seen

by examining c22(m) in figure 3.8.

3.7.2 MIMO IIR Filters

Consider two IIR filters, with impulse responses

h1(n) =





αn n ≥ 0

0 otherwise
h2(n) =





βn−k n ≥ k ≥ 0

0 otherwise
(3.43)

where |α|, |β| < 1, and filter 2 exhibits a lag of k before responding to the

impulse.

If we excite both filters with the same Gaussian white noise process, then we

generate two dependent output processes, y1(n) and y2(n). The auto/cross

covariance functions for input separation −∞ < m <∞ are:

c11(m) =
α|m|

1− α2
(3.44)

c22(m) =
β |m|

1− β2
(3.45)

c12(m) = Z−1[H1(z
−1)H2(z)] =






α|m−k|

1−αβ
m ≥ k

β|m−k|

1−αβ
m < k

(3.46)

c21(m) = Z−1[H1(z)H2(z
−1)] =






α|m+k|

1−αβ
m ≤ −k

β|m+k|

1−αβ
m > −k

(3.47)

with c21(m) = c12(−m) as required.

In general, we can assume M noise inputs, and generate N dependent Gaus-

sian processes as outputs.

A multiple output IIR filter, stimulated with Gaussian white noise, outputs a

vector of dependent Gaussian processes. Such a filter is otherwise known as

a vector autoregressive moving-average (VARMA) model [32].

3.7.3 Toeplitz Matrices

The covariance matrix of a regularly sampled stationary time series is a sym-

metric Toeplitz matrix [77, 78] - a symmetric matrix with constant diago-
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nals. For example, matrix C is a symmetric Toeplitz matrix if the (i, j)th entry

Ci,j = c(i − j) = c(j − i) where c(·) is a stationary covariance function. The

diagonals are constant because Ci+k,j+k = c(i− j) = Ci,j. An n× n symmetric

Toeplitz matrix has at most n distinct entries, c(0) . . . c(n − 1). As a result, it

is not surprising that it is easier to invert than an arbitrary covariance matrix

which may have up to 1
2
n(n + 1) distinct entries. In fact, a n × n Toeplitz

matrix can be inverted exactly using the Trench algorithm in O(n2) [79], and

approximately in O(n log n) [11]

For dependent Gaussian processes, produced from stationary FIR filters, the

covariance matrix is block-Toeplitz. For example, for 2 stationary dependent

processes the covariance matrix for all the data is

C =



C11 C12

C21 C22



 (3.48)

where C11,C12,C21,C22 are Toeplitz matrices, but in general C is not Toeplitz.

Therefore, the Trench algorithm is not applicable. Fortunately, for a set of m

dependent processes, each with n regular samples, one can use a generalisa-

tion of the Trench algorithm [84] to find an inverse in O(m3n2).

3.8 Multidimensional Digital Filters and Random

Fields

The treatment of MIMO digital filters so far has assumed that the all filters are

1D, hence filters of time signals. There may be circumstances when we wish

to produce models of higher dimensional data sets, that have been sampled

over discrete space. In such cases, we could specify our models as being the

outputs of multidimensional MIMO digital filters. In other words, our models

are Gaussian random fields.

A 2 dimensional FIR filter has an impulse response

h(n1, n2) =

M1−1∑

i=0

M2−1∑

j=0

bijδ(n1 − i)δ(n2 − j) (3.49)

The filter is fully characterised by the matrix B of M1×M2 coefficients, where

the (i, j)th coefficient is bij .
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An example of a 2D dependent Gaussian process constructed by exciting a

two output FIR filter with Gaussian white noise is shown in figure 3.9. In

this example, the impulse responses for each output are simply translated

versions of one another. The result is a set of 2D Gaussian processes that

are obviously dependent - the processes differ by a translation and a bit of

independent noise.

Figure 3.9: Dependent Gaussian processes generated by exciting a two-output 2D FIR
filter with Gaussian white noise. The processes on the left and right were generated
by FIR filters with the impulse responses differing only by a spatial translation. For
display purposes, the output variables are thresholded, such that values less than
zero are black, and greater than zero are white.

We can generalise to a D dimensional filter with the following impulse re-

sponse

h(n) =

M1−1∑

i1=0

· · ·
MD−1∑

iD=0

bi1...iD

D∏

j=1

δ(nj − ij) (3.50)

where n = [n1 . . . nD]T ∈ ZD.

Unfortunately, the number of coefficients equals
∏D

j=1 Mj , which means di-

rectly parameterising a FIR filter is difficult in high dimensions. To alleviate

such parameter growth with dimensionality, we could hyperparameterise the

impulse responses via another function fθ(i1, . . . , iD), which in turn defines

the coefficients bi1...iD = fθ(i1, . . . , iD), which can then be used in equation

(3.50) to define the FIR impulse responses. This is equivalent to defining a

continuous impulse response, and then sampling it over a regular lattice.
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The auto and cross-covariance functions (3.39) - (3.42), for two 1D discrete

time Gaussian processes generated by a FIR filter were derived in section 3.7.1

(page 46). The generalisation to the auto and cross-covariance functions for

two Gaussian processes, produced by two D-dimensional FIR filters with im-

pulse responses h1(n) and h2(n), is

c11(m) =
M−1∑

j1=0

· · ·
M−1∑

jD=0

h1(j)h1(j + m) (3.51)

c22(m) =
M−1∑

j1=0

· · ·
M−1∑

jD=0

h2(j)h2(j + m) (3.52)

c12(m) =

M−1∑

j1=0

· · ·
M−1∑

jD=0

h1(j)h2(j + m) (3.53)

c21(m) =

M−1∑

j1=0

· · ·
M−1∑

jD=0

h2(j)h1(j + m) (3.54)

where M is the order of the filters, m = [m1, . . . , mD]T ∈ ZD is the input

separation and j = [j1, . . . , jD]T is the vector of summation indices.

For multidimensional IIR filters, we can find the covariance functions via

the multidimensional z-transform (or the discrete space Fourier transform).

However, for all but the simplest impulse responses (e.g. those that are isotropic

and exponential), this becomes more challenging as the dimensionality in-

creases. If we have discretely spaced data in high dimensions, it is simpler to

model this with a FIR filter.

3.9 Multiple Output Low Pass Filters

In chapter 2, we derived the covariance function for a Gaussian process gen-

erated by stimulating a low pass filter with Gaussian white noise. In this

section, we extend the low-pass filter framework by specifying ideal MIMO

low-pass filters, with dependent Gaussian processes as outputs.

Firstly, consider a simple example with a single input noise source, and two

output processes generated from two low pass filters with cutoff frequency 1
2
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Hz:

h1(x) = sinc(πx) =

D∏

i=1

sinc(πxi) (3.55)

h2(x) = sinc(π(x− µ)) =

D∏

i=1

sinc(π(xi − µi)) (3.56)

where filter h2 translates its output by µ.

From appendix A.1, the auto/cross covariance functions for the outputs are:

covij(d) =

∫

RD

hi(x)hj(x + d)dDx (3.57)

from which we can find the two auto-covariance and two cross-covariance

functions:

cov11(d) =
D∏

i=1

∫ ∞

−∞
sinc(πxi) sinc(π(xi + di))dxi

=
D∏

i=1

sinc(πdi) (3.58)

cov22(d) =

D∏

i=1

∫ ∞

−∞
sinc(π(xi − µi)) sinc(π(xi + di − µi))dxi

=
D∏

i=1

∫ ∞

−∞
sinc(πqi) sinc(π(qi + di))dqi

= cov11(d) (3.59)

cov12(d) =
D∏

i=1

∫ ∞

−∞
sinc(πxi) sinc(π(xi + di − µi))dxi

=

D∏

i=1

sinc(π(di − µi)) (3.60)

cov21(d) =

D∏

i=1

∫ ∞

−∞
sinc(π(xi − µi)) sinc(π(xi + di))dxi

=
D∏

i=1

∫ ∞

−∞
sinc(πqi) sinc(π(qi + di + µi))dqi

=

D∏

i=1

sinc(π(di + µi)) =

D∏

i=1

sinc(π(−di − µi))

= cov12(−d) (3.61)
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Overall, output 1 is correlated to a translated version of output 2, where the

translation (or lag) is given by µ. In fact, because both outputs are derived

from the same noise source, and there are no other latent sources, outputs 2 is

exactly equal to output 1 translated by µ.

The 1-input 2-output filter above can easily be generalised to M ×N sinc im-

pulse responses, each with a cutoff frequency 1
2

Hz, but potentially different

translations. A more interesting generalisation is to consider an anisotropic

low-pass filter, with cutoff frequencies that may differ for each direction in

space. Such an anisotropic filter with low cutoff frequency in direction i and

high cutoff frequency in direction j will produce outputs that vary slowly in

direction i, but rapidly in direction j. The cutoff frequency is thus analogous

to the length scale in the squared exponential covariance function. To make

this generalisation, we need to make use of some properties of the multidi-

mensional Fourier transform (see [51]).

Informally, the multidimensional Fourier transform maps a function over space

to a function over frequency, F [g(x)] = G(f), where f is a spatial frequency

vector. For example, the Fourier transform of an LTI impulse response gives

us the frequency response for that filter. We can use the properties of the

Fourier transform to find the covariance function for the outputs of a MIMO

filter.

Firstly, consider the following property of the Fourier transform

F
[∫

RD

hi(s)hj(s + τ )dDs

]
= H∗

i (f)Hj(f) (3.62)

where ∗ denotes the complex conjugate.

If the impulse responses hi(x) and hj(x) are such that the right hand side

of equation (3.62) can be reduced to a simpler form, then it may be possible

to find the inverse Fourier transform F−1[·] without having to perform the

convolution integral. Consider a simple example over time t, with a single

input noise source, and two outputs produced by filters with sinc impulse

responses, h1(t) = sinc(2πf1t) and h2(t) = sinc(2πf2(t − µ)), where f1 and f2

are the cutoff frequencies. The Fourier transforms are

H1(f) =
1

2f1
rect

(
f

2f1

)
= H∗

1 (f) (3.63)

H2(f) =
1

2f2
rect

(
f

2f2

)
exp(−j2πfµ) (3.64)
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where we have made use of the fact that F [g(t− µ)] = exp(−j2πfµ)F [g(t)].

Let fmin = min(f1, f2) and let j =
√
−1. The cross covariance functions can

now be found from an inverse Fourier transform.

cov12(d) = F−1 [H∗
1 (f)H2(f)]

= F−1

[
1

4f1f2

rect

(
f

2f1

)
rect

(
f

2f2

)
exp(−j2πfµ)

]

=
1

4f1f2
F−1

[
rect

(
f

2fmin

)
exp(−j2πfµ)

]

=
fmin

2f1f2
sinc(2πfmin(d− µ)) (3.65)

cov21(d) = F−1 [H1(f)H∗
2(f)]

=
fmin

2f1f2

sinc(2πfmin(d + µ)) (3.66)

and the auto-covariance functions are

cov11(d) =
1

2f1
sinc(2πf1d) cov22(d) =

1

2f2
sinc(2πf2d) (3.67)

The generalisation to multidimensional anisotropic low pass filters, each with

separate lags, requires the following property of the multidimensional Fourier

transform [51]:

F [h(As− µ)] =
1

| det(A)|F
[
h(A−Tf)

]
exp

(
−j2πµA−Tf

)
(3.68)

Here, we consider only axis aligned sinc impulse responses by setting A =

diag
([

a−2
1 . . . a−2

D

]T)
, and h(x) =

∏D
i=1 sinc(πxi). A small value of ai will result

in high frequency cutoff in direction i, meaning the filter output will vary

rapidly in direction i.

So, consider two impulse responses h1(x) = h(Ax − u), and h2(x) = h(Bx −
v), where B = diag

([
b−2
1 . . . b−2

D

]T)
, and u,v are translations. The Fourier

transform of h(x) is H(f) =
∏D

i=1 rect(fi). Given equation 3.68, the frequency

responses for the filters are:

H1(f) =
1

det(A)
H(A−1f) exp

(
−j2πuA−1f

)
(3.69)

H2(f) =
1

det(B)
H(B−1f) exp

(
−j2πvB−1f

)
(3.70)
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We wish to derive the auto and cross-covariance functions for the two outputs

generated by exciting filters h1 and h2 with Gaussian white noise. We proceed

by taking the Fourier transform of the covariance function:

F [cij(d)] = F
[∫

RD

hi(x)hj(x + d)dx

]
(3.71)

= H∗
i (f)Hj(f) (3.72)

Initially, we examine the case when i = j = 1.

cov11(d) = F−1 [H1(f)H
∗
1 (f)]

= F−1

[
1

det(A)2
H(A−1f)2

]

=
1

det(A)2
F−1

[
D∏

i=1

rect(a2
i fp)

]

=
1

det(A)2

D∏

i=1

a−2
i sinc

(
πa−2

i dp

)
(3.73)

=
1

det(A)
sinc(πAd) (3.74)

Similarly,

cov22(d) =
1

det(B)
sinc(πBd) (3.75)

So the auto-covariance functions are not dependent on the translation vectors.

The cross-covariance function requires us to define a matrix

Q = diag
(
[q−2

1 . . . q−2
D ]T

)
, where q2

i = max(a2
i , b

2
i ), and a vector

µ = A−1u + B−1v. Then

cov12(d) = F−1 [H∗
1 (f)H2(f)]

= F−1

[
1

det(AB)
H(A−1f)H(B−1f) exp

(
−j2π(uA−1 + vB−1)f

)]

=
1

det(AB)
F−1

[
D∏

i=1

rect(q2
i fi) exp(−j2πµifi)

]

=
1

det(AB)

D∏

i=1

q−2
i sinc(πq−2

i di)

=
det(Q)

det(AB)
sinc(πQ(d− µ)) (3.76)

= cov21(−d)
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Therefore, we can build a set of N dependent Gaussian processes over RD,

where each process and its dependencies is characterised by sinc covariance

functions. To do so, we made use of the (multidimensional) Fourier transform

and the fact that the Fourier transform of a sinc function is a rect function.

Furthermore, instead of performing a convolution integral to find the covari-

ance functions, we made use of the fact that convolution in the spatial domain

equates to multiplication in the frequency domain. That is, we found the co-

variance function by multiplying rect functions and then taking the Fourier

inverse.

3.10 Multiple Output Gaussian Filters

The previous section showed how we could build dependent Gaussian pro-

cesses models by defining a set of impulse responses, Fourier transforming

those responses, and then finding covariance functions by an inverse Fourier

transformation. This approach is limited to those impulse responses that have

a Fourier transform of such a form that we can find the inverse Fourier trans-

form of equation 3.62.

The Fourier transform of a Gaussian is itself a Gaussian. Furthermore, the

product of Gaussians is also a Gaussian. Therefore, we can use Fourier trans-

forms to derive dependent Gaussian processes with squared-exponential co-

variance functions. We do not make this derivation here as a derivation that

achieves the same result by performing a convolution integral is given in ap-

pendix A.2.

3.11 Summary

We have shown how the Gaussian Process framework can be extended to

inference concerning multiple output variables without assuming them to be

independent. Multiple processes can be handled by inferring convolution

kernels instead of covariance functions. This makes it easy to construct the

required positive definite covariance matrices for co-varying outputs.
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One application of this work is to learn the spatial translations between out-

puts. However the framework developed here is more general than this, as

it can model data that arises from multiple sources, only some of which are

shared. Our examples show the “in-filling” of sparsely sampled regions due

to a learnt dependency between outputs. Another application is the forecast-

ing of dependent time series. Our example shows how learning couplings

between multiple time series may aid in forecasting, particularly when the

series to be forecast is dependent on previous or current values of other se-

ries.

The methodology presented here also applies to digital filters, allowing the

generation of discrete time and space dependent Gaussian processes.

Dependent Gaussian processes should be particularly valuable in cases where

one output is expensive to sample, but co-varies strongly with a second that

is cheap. By inferring both the coupling and the independent aspects of the

data, the cheap observations can be used as a proxy for the expensive ones.
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Chapter 4

Gaussian Processes for System

Identification

In the previous chapters we have seen how to extend Gaussian processes for

regression over a single output to the multiple output case. To do so, we

interpreted Gaussian processes as the outputs of analog and digital filters. In

this chapter, we show how to use this methodology for the purposes of system

identification. That is, by observing the inputs and outputs of a system over

time, we infer a model that suitably explains the observations. Here, it is

assumed that the system under observation can be modelled by a linear time

invariant system (section 2.1 (page 17)), an assumption that may be poor for

many systems of interest, such as non-linear systems or time-variant systems.

4.1 System Identification

Consider a dynamical system for which we observe the system input and

output over time, and wish to build a model of the system given those obser-

vations. The input/output data might be discrete or continuous in nature. In

the continuous time case, we wish to identify an LTI system that explains the

input/output relationship. In the discrete time case we can either treat the

data as regularly sampled continuous data and again build an LTI model, or

we can build a digital filter model that best fits the data. The models will be

inferred by using maximum likelihood or maximum a posteriori procedures.

61
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The system identification task (see [31, 30]) differs from the regression task

because of dynamics. A regression task has inputs that map to outputs in a

static fashion, such that it is assumed that there is an underlying unchanging

mapping to be identified. In system identification, the output at a given time

is assumed to be dependent not only on the input at that time, but also on

previous inputs and outputs. The system to be identified thus maps input

trajectories to output trajectories.

One way to approach system identification is to build a set of dependent

Gaussian processes that model the dependencies across the inputs, across the

outputs, and between the inputs and outputs. In what follows, we examine

the discrete time and continuous time cases separately.

4.1.1 FIR identification

The output of a FIR filter is defined by equation (2.22) (page 24). For N time

steps, this can be rewritten [70] using matrix notation as follows:

y = Xh (4.1)

where y = [y(0) . . . y(N − 1)]T is the vector of filter outputs over N time steps,

h = [b0 . . . bM−1]
T is the vector of M filter coefficients, and the N ×M matrix

X is formed from the inputs vector x = [x(0) . . . x(N − 1)]T

X =





x(0) 0 . . . 0

x(1) x(0) . . . 0
...

...
. . .

...

x(M − 1) x(M − 2) . . . x(0)

x(M) x(M − 1) . . . x(1)
...

... . . .
...

x(N − 1) x(N − 2) . . . x(N −M)





(4.2)

The system identification task here is to identify the M filter coefficients in h,

given the input-output observations over N time steps.

In general, X is not square so has no inverse. However, one can use the

Moore-Penrose pseudoinverse [85]

X+ = (XTX)−1XT (4.3)
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to recover h from y

h = (XTX)−1XTy = X+y (4.4)

which is the least-squares solution1 [31, 70] and has computational complexity

O(NM2).

Here, we generalise this to the MIMO situation. For example, consider a 2-

input 2-output system, which we wish to model with 2×2 impulse responses

h11, h12, h21, h22, each consisting of M coefficients. We have two N × 1 input

vectors x1 and x2, and two N × 1 output vectors, y1 and y2. From x1 and x2,

we construct the N ×M matrices X1 and X2, just as we constructed X from x

in equation (4.2). The generative model is then



y1

y2



 =



X1 X2 0 0

0 0 X1 X2









h11

h21

h12

h22




(4.5)

which is separable for each output

yi =
[
X1 X2

]


h1i

h2i



 (4.6)

and has least-squares solution


h1i

h2i



 =
[
X1 X2

]+
yi (4.7)

The least-squares FIR system identification is computationally efficient (rel-

ative to the dependent Gaussian processes solution to follow), although for

real-time applications O(M2N) may be considered too expensive and one

may prefer to use other methods such as recursive least squares [25]. Be-

low, we show how discrete time dependent Gaussian processes can be used

to solve for the system.

Consider a two-input two-output (2I2O) discrete time system, observed for

N time steps as shown if figure 4.1. Call the observed input sequences x1(n)

1the least-squares solution is that which minimises the sum of squared model errors across

the output observations y
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and x2(n) and the output sequences y1(n) and y2(n). We assume a generative

model where x1(n) and x2(n) are dependent Gaussian processes generated by

exciting a 2I2O FIR filter with Gaussian white noise (the latent sources). We

further assume that y1(n) and y2(n) are generated by filtering x1(n) and x2(n)

by a second 2I2O FIR filter, which we wish to identify.
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Figure 4.1: Two-input two-output discrete time filter, excited by noise sources w1 and
w2 to produce outputs y1 and y2. At the top, the filter is shown as a cascade of two
sub-filters with impulse responses g and h. The signals in between the two sub-filters
are the observed ’input’ sequences x1 and x2. The cascade can be simplified to a
single filter with impulse responses k, shown at the bottom.

The latent noise sequences w1(n) and w2(n) excite a FIR filter characterised by

impulse responses g11(n), g12(n), g21(n), g22(n), to produce the sequences x1(n)

and x2(n) so that

xj(n) =
2∑

i=1

wi(n) ∗ gij(n)

The outputs are constructed by filtering x1(n) and x2(n), with impulse re-
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sponses h11(n), h12(n), h21(n), h22(n).

yj(n) =

2∑

m=1

xm(n) ∗ hmj(n) (4.9)

=

2∑

m=1

2∑

i=1

wi(n) ∗ gim(n) ∗ hmj(n) (4.10)

=

2∑

i=1

wi(n) ∗ kij(n) (4.11)

where the FIR filter characterised by impulse responses k11(n), k12(n), k21(n),

and k22(n) is formed by cascading the two filters with impulse responses gij

and hij .

kij(n) =
2∑

m=1

gim(n) ∗ hmj(n) (4.12)

Given this generative model, and the analysis in section 3.7.1 (page 46), we

can now find the auto/cross covariance functions for the sequences x1(n),

x2(n), y1(n) and y2(n):

covxx
ij (m) = E {xi(n + m)xj(n)} (4.13)

covyy
ij (m) = E {yi(n + m)yj(n)} (4.14)

covxy
ij (m) = E {xi(n + m)yj(n)} (4.15)

covyx
ij (m) = E {yi(n + m)xj(n)} (4.16)

With these, and observations

x1 = [x1(0) . . . x1(N − 1)]T y1 = [y1(0) . . . y1(N − 1)]T

x2 = [x2(0) . . . x2(N − 1)]T y2 = [y2(0) . . . y2(N − 1)]T

we can go on to build covariance matrices and find the maximum likelihood

or maximum a posteriori impulse responses gij and hij . Of course, it is the set

hij that models, or identifies the system in question.

The computational complexity of building the M output dependent Gaus-

sian processes system model for N time step observations is O(M3N3), or

O(M3N2) if there is no missing data which makes the covariance matrices

block-Toeplitz (see section 3.7.3). In any case, the dependent Gaussian pro-

cesses solution is computationally more expensive than the least-squares method.

Furthermore, the dependent Gaussian processes solution assumes the input
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and output sequences are stationary Gaussian processes, which may not be a

valid assumption in some situations. Given the computational expense and

potential limitations, what is the advantage to building the dependent Gaus-

sian processes model? In doing so we can find the predictive distribution for

any time step, rather than just a point estimate. That is, we can find the pre-

dictive mean and variance for any input or output at any point in time, past

or future. This is obviously of value if we wish to make predictions as well as

identifying the underlying system.

4.1.2 Analog Filter Identification

The FIR system identification method above is useful if the system to be mod-

elled is linear with a finite memory and hence looks like a FIR filter. The FIR

method also requires data to be discretely spaced with different observations

separated in time by some integer multiple of the sampling period.

In many cases, this FIR methodology might be insufficient. For example, if the

underlying system has an infinite memory then modelling with a FIR filter ef-

fectively truncates that memory. A simple example of an infinite memory

system is an IIR filter. If the IIR filter’s impulse response decays rapidly, then

FIR modelling will suffice. On the other hand, for example, if the impulse

response is h(t) = sin(t), then a FIR model might be quite poor. Another

situation that is poorly modelled by a FIR filter is time series data that is ir-

regularly sampled over time. To build a FIR model, the sampling rate must

be increased until the observation points approximately coincide with sam-

ple points. We then interpret the data as being regularly sampled with a high

sampling rate and lots of missing data points. However, increasing the sam-

pling rate increases the number of FIR coefficients required to define impulse

responses of a certain duration. For example, if we were to double the sam-

ple rate, we would need to double the number of coefficients to maintain the

impulse response duration. In such cases, it is simpler to use an analog model.

For analog filter identification, it would be nice to use Gaussian filters, with

Gaussian impulse response. The beauty of this is that a cascade of Gaussian

filters is still a Gaussian filter1. For system identification this would mean

1A Gaussian convolved with a Gaussian is another Gaussian. Furthermore, a Gaussian

filter has a Gaussian frequency response, and the multiplication of two Gaussians is another
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that our generative model consists of white noise sources driving Gaussian

filters to produce the inputs which drive more Gaussian filters to produce

the outputs. Finally, the dependent Gaussian model would have Gaussian

auto and cross covariance functions, simplifying the analysis. Unfortunately,

Gaussian filters are acausal, and therefore unrealisable. It seems unreasonable

to identify a system as unrealisable.

Consider a single-input single-output (SISO) system where the input x(t) and

output y(t) functions are related by an ordinary linear differential equation

with constant coefficients [2]:

M∑

m=0

am
dmx(t)

dtm
=

N∑

n=0

bn
dny(t)

dtn
(4.17)

If we take the Laplace transform, L[·], of both sides and rearrange we find the

system transfer function H(s) as a real rational function of complex frequency

s,

H(s) =
Y (s)

X(s)
=

∑M
m=0 amsm

∑N
n=0 bnsn

(4.18)

where X(s) = L[x(t)] and Y (s) = L[y(t)]. The impulse response is in gen-

eral infinite in duration and is found from the inverse Laplace transform

h(t) = L
−1[H(s)]. For H(s) to be BIBO stable, the roots of the denominator

polynomial
∑N

n=0 bnsn must have negative real parts [16]. That is, the poles

of the system transfer function must lie in the left half of the s-plane. We

can enforce this by choosing a parameterisation that directly encodes the po-

sition of each pole. That is, we factorise the denominator and parameterise

it as
∏N

n=0(s − βn), where the parameters βn ∈ C are the system poles with

ℜ(βn) ≤ 0 (in the left half s-plane).

The transfer function H(s) is the ratio of two polynomials with real, constant

coefficients. If we cascade two such systems G(s) and H(s) then the com-

bined transfer function is equal to the product K(s) = G(s)H(s). This com-

bined transfer function is also the ratio of two polynomials in s, and therefore

maps the input to output via an ordinary differential equation with constant

coefficients.

We can now specify a generative model by starting with a Gaussian white

noise input w(t) filtered by G to produce the input function x(t), which is

Gaussian.
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then filtered by H to form the output function y(t). Overall, y(t) is equivalent

to the output of filter K when excited by w(t). Given observations of x(t) and

y(t), we can build a dependent Gaussian process model which has parameters

equal to the coefficients in the differential equations that describe filters G and

H . Of course, when we infer the parameters for H we are effectively building

a model of the system we are interested in.

The covariance functions for the dependent Gaussian processes model are

most easily constructed in the frequency domain. For example, for an input

separation of τ

covxy(τ) = F−1 [G∗(jω)K(jω)] (τ) (4.19)

where ω = 2πf and G∗ is the complex conjugate of G. In words, the cross co-

variance function between x(t) and y(t + τ) is found from the inverse Fourier

transform of the product of frequency response functions of the filters G∗ and

K. We find G(jω) from the Laplace transform G(s) by letting s → jω. Find-

ing F−1[H(jω)] is most easily accomplished by computing the partial fraction

expansion of H(jω), and then referring to a table of Fourier transform pairs.

As a simple example, consider a SISO system where the filters G and H are

given by

G(s) =
1

s + a
H(s) =

1

s + b
(4.20)

with a, b ≥ 0 to ensure stability. The cascade filter K is equal to the product

K(s) = G(s)H(s) =
1

(s + a)(s + b)
(4.21)

To build the dependent Gaussian processes model we require covariance func-

tions cov(x(t + τ), x(t)), cov(x(t + τ), y(t)), cov(y(t + τ), x(t)) and cov(y(t +

τ)y(t)). These are as found via the inverse Fourier transform as described

above, giving

covxx(τ) =
1

2a
exp(−a|τ |) (4.22)

covxy(τ) =
1

2a(a + b)(a− b)





2a exp(−bτ) − (a + b) exp(−aτ) τ ≥ 0

(a− b) exp(aτ) τ < 0
(4.23)

covyx(τ) =
1

2a(a + b)(a− b)





(a− b) exp(−aτ) τ ≥ 0

2a exp(bτ)− (a + b) exp(aτ) τ < 0
(4.24)
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covyy(τ) =
1

2ab(a + b)(a− b)
(a exp(−b|τ |)− b exp(−a|τ |)) (4.25)

The covariance functions are continuous, but not differentiable at τ = 0 be-

cause the underlying filters have impulse responses with a discontinuity at

t = 0. For example,

h(t) =





exp(−at) t ≥ 0

0 t < 0
(4.26)

This framework can be used to specify more complicated models, with higher

order filters and multiple inputs and outputs. However, doing so results

in increasingly complicated covariance functions and increasing numbers of

parameters. For very complicated models one would want to automate the

derivation of covariance functions given the filter transfer functions.

4.1.3 IIR Identification

If we wish to model a system with a digital IIR filter, then we can use a simi-

lar process to that of modelling with an analog filter. The difference is that we

use the z-transform in place of the Laplace transform, and the discrete-time

Fourier transform in place of the Fourier transform. In other words, we pa-

rameterise two cascaded digital filters with impulse responses g(n) and h(n).

Instead of computing the Laplace transform, we use the z-transform to find

G(z) and H(z). The z-transform of the combined cascade is K(z) = G(z)H(z).

We map z → ejωT , where T is the sampling period to find the Discrete Time

Fourier Transform (DTFT). The covariance functions can then be calculated

using the inverse DTFT.

To ensure the filters are stable, we choose a parameterisation that forces the

system poles to lie within the unit circle on the z-plane. For example, if the

transfer function of a filter is H(z) = N(z)
D(z)

, then we parameterise D(z) =
∏N

i=1(z − ci) such that the roots |ci| ≤ 1.
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4.2 Summary

This chapter, has shown how we can identify multiple output systems using

dependent Gaussian processes. To do so, we made use of the direct relation-

ship between dependent Gaussian processes and multiple output filters.



Chapter 5

Reduced Rank Gaussian Processes

Using Gaussian processes for regression requires the inversion of an n × n

covariance matrix, where n is the number of observations. Exact computation

of this matrix is an O(n3) operation, meaning that Gaussian process regres-

sion becomes infeasible for large data sets [17]. In this chapter, we exam-

ine one method for approximate Gaussian process regression that can signifi-

cantly reduce the computational cost compared to the exact implementation.

This method uses Reduced Rank Gaussian Processes and was first introduced by

Quiñonero-Candela and Rasmussen [55]. First, we review this method and

then describe an extension allowing the construction of non-stationary reduced

rank Gaussian processes.

5.1 Generalised Linear Models

To begin the analysis, firstly consider a generalised linear model, with m basis

functions, φ1(·) . . . φm(·), used to model n observations, consisting of input-

output pairs,D = {(x1, y1) . . . (xn, yn)}. Using the basis functions and data, we

can construct an m × n design matrix Φ = [φ(x1) | . . . |φ(xn)], where φ(xi) =

[φ1(xi) . . . φm(xi)]
T.

The generalised linear model is f = ΦTw and the generative model is:

y = f + ǫ (5.1)

= ΦTw + ǫ (5.2)

71
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where y = [y1 . . . yn]T is the vector of targets, w is an m vector of weights,

and ǫ ∼ N (0, σ2I) is a Gaussian noise vector. If we place a Gaussian prior

distribution over the weights, w ∼ N (0,Σp), then the Gaussian predictive

distribution at a test point x∗ can be found analytically [61] and is1

y∗|x∗, X,y ∼ N
(

1

σ2
φ(x∗)

TA−1Φy, σ2 + φ(x∗)
TA−1φ(x∗)

)
(5.3)

where A = σ−2ΦΦT + Σ−1
p .

Given the prior distribution over weights is Gaussian with a covariance ma-

trix Σp, the induced prior distribution over function values is f ∼ N (0,ΦTΣpΦ).

This is a Gaussian process prior distribution, meaning the generalised linear

model specified here is a Gaussian process model. However, as pointed out

by Quiñonero-Candela and Rasmussen [55] this Gaussian process is degener-

ate. Degenerate Gaussian process models have the undesirable feature of a

decrease in predictive variance as the test point moves away from the train-

ing data. For example, if we use Gaussian basis functions in equation (5.3),

then as the test point moves away from the basis functions (x∗ →∞), we find

that φ(x∗) → 0 and the predictive variance approaches the prior noise vari-

ance (v(x∗)→ σ2). That is, the predictive variance decreases to a minimum at

x∗ = ∞ regardless of the training data, which seems a strange prior belief to

hold.

Now consider the generalised linear model built from m = n basis functions,

with φi(x) = k(x,xi) where k(·, ·) is a positive definite kernel. This equates to

a generalised linear model with a basis function centred on each training in-

put. We set the prior distribution over weights to w ∼ N (0,K−1), where K is

the n× n Gram matrix with entries Kij = k(xi,xj). The predictive distribution

becomes:

y∗|x∗, X,y ∼ N
(
kT
∗ (K + σ2I)−1y, σ2 + σ2kT

∗ K
−1(K + σ2I)−1k∗

)
(5.4)

where kT
∗ = [k(x∗,x1) . . . k(x∗,xn)] is constructed by evaluating each basis

function at the test point.

We see that mean predictor is now equal to that of a full Gaussian process, [69]

with kernel k(·, ·). Furthermore, since n = m we find that Φ = K, resulting

1Note the dual meaning of the symbol |. In some cases it is used to concatenate elements in

a vector or matrix. In others, it means “conditioned on”. Disambiguation is usually possible

given the context.
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in a prior distribution over functions f ∼ N (0,KK−1K) = N (0,K), as is the

case with a full GP model. However, note that the predictive variance differs

from that of a full GP model. Even with this new specification, the model

remains a generalised linear model, and the resulting GP model is degenerate.

A symptom of this degeneracy is that as the test point x∗ moves away from

the training data, the predictive variance approaches σ2.

In summary, by centring a basis function k(x,xi) on each training input and

setting a prior distribution over weights, w ∼ N (0,K−1), we can construct a

Gaussian process with a predictive mean equal to that of a Gaussian process

with kernel k(·, ·), as in equation (1.12) (page 7). However, this new Gaussian

process is degenerate.

5.2 Subset of Regressors

The previous section showed how we can find the mean GP predictor by

building a generalised linear model with n basis functions and an appropri-

ate prior distribution. Predicting from generalised linear models with m basis

functions (equation (5.3)), has complexity O(m3), due the fact that we need to

invert the m×m matrix A. If we use n basis functions centred on the training

inputs, we recover the full GP mean predictor. The complexity of doing this

is O(n3) - the same as for the full GP.

As stated above, for large n, this cost is unacceptable. To reduce the compu-

tational expense, we may consider using a reduced set of m basis functions.

Without loss of generality, we can choose to centre the basis functions on the

first m training inputs x1 . . .xm. We then set a prior distribution over the

weights w ∼ N (0,K−1
mm), where Kmm is the upper-left m×m block of K. Pre-

dictions which approximate (5.4) can then be made in O(nm2). This method

is known as the subset of regressors (SR) [61], and can be used for approximate

Gaussian process regression over large data sets.

The SR mean prediction approaches the full GP prediction as m→ n, but the

predictive variance at points far removed from the training data approaches

σ2 even if m = n. One way to overcome this problem is to augment the

generalised linear model with an extra weight and basis function centred on

the test point, as described in the next section. In doing so, we produce a
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reduced rank Gaussian process.

5.3 From Linear Models to Reduced Rank GPs

This section reviews reduced rank Gaussian processes (RRGPs) as presented

by Quiñonero-Candela and Rasmussen [55].

Consider a data setD, from which we wish to make a prediction p(y∗|x∗,X,y)

at a test point x∗. To do so, we will build a generalised linear model with

m ≤ n basis functions centred on the first m data points which we will refer

to as either support points or support inputs. Furthermore, we add an extra

basis function which we centre on the test point. Overall we have m + 1 basis

functions, each with an associated weight to give a model

f =
[
Knm k∗

]


w

w∗



 (5.5)

where w∗ is the extra weight, and k∗ = [k(x1,x∗) . . . k(xn,x∗)]
T is formed by

evaluating the extra basis function over the training inputs. Knm is the upper-

left n×m block of K.

We place a prior distribution over the augmented weights vector



w

w∗



 ∼ N



0,



 Kmm k(x∗)

k(x∗)
T k∗∗




−1

 (5.6)

where the scalar k∗∗ = k(x∗,x∗), and k(x∗) = [k(x1,x∗) . . . k(xm,x∗)]
T is the

m× 1 vector of covariances between x∗ and the m support points.

For m < n, the reduced rank Gaussian process predictive distribution is

y∗|x∗, X,y ∼ N
(
f̄(x∗), v(x∗)

)
(5.7)

with f̄(x∗) =
1

σ2
q(x∗)

TΣ∗
[
Knm |k∗

]
Ty (5.8)

and v(x∗) = σ2 + q(x∗)
TΣ∗q(x∗) (5.9)

where q(x∗)
T =

[
k(x∗)

T | k∗∗
]
.
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The posterior distribution over the augmented weights vector is Gaussian


w

w∗



 ∼ N
(

1

σ2
Σ∗ [Knm |k∗]

T
y , Σ∗

)
(5.10)

The (m + 1) × (m + 1) matrix Σ∗ is the covariance matrix of the posterior

distribution over the augmented weights, and is equal to

Σ∗ =



Σ∗
11 Σ∗

12

Σ∗
21 Σ∗

22



 =



 Σ−1 k(x∗) + σ−2KT
nmk∗

k(x∗)
T + σ−2kT

∗ Knm k∗∗ + σ−2kT
∗ k∗




−1

(5.11)

where the m×m matrix Σ−1 = σ−2KT
nmKnm + Kmm

The computational cost of prediction is an initialO(nm2) to compute Σ. Then,

a prediction at each test point has a cost of O(nm), due to the most expensive

computation KT
nmk∗. For multiple predictions we calculate Σ once, and then

compute Σ∗ by inversion by partitioning [55]. i.e.

r = k(x∗) + σ−2KT
nmk∗

ρ = k∗∗ + σ−2kT
∗ k∗ − rTΣr

Σ∗
11 = Σ + ΣrrTΣ/ρ

Σ∗
12 = −Σr/ρ = Σ∗T

21

Σ∗
22 = 1/ρ

Note that the RRGP model is computed using a finite number of basis func-

tions. In fact, in computing Σ we consider only m basis functions defined by

the support points. In making a prediction at a test point, we add an extra

basis function to the model. We can query the model at an infinite number

of test points, so the model would appear to have an infinite number of basis

functions. By adding a basis function “on demand” we have effectively built

an infinite generalised linear model.

5.4 From RRGP to Full GP

It is interesting to examine what happens to the reduced rank GP if we let

m = n, the result of which is not made explicit in [55]. This section examines

this situation by using all n training inputs as support points.
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The linear model’s output at the training and test inputs becomes



 f

f∗



 =



K k∗

kT
∗ k∗∗







w

w∗



 (5.12)

and the prior distribution over weights becomes



w

w∗



 ∼ N



0,



K k∗

kT
∗ k∗∗




−1

 (5.13)

The induced prior distribution over functions is therefore



 f

f∗




∣∣∣∣∣x∗,X ∼ N



0,



K k∗

kT
∗ k∗∗




T 

K k∗

kT
∗ k∗∗




−1 

K k∗

kT
∗ k∗∗







 (5.14)

∼ N



0,



K k∗

kT
∗ k∗∗







 (5.15)

We can then find the distribution of f∗ conditioned on f

f∗|f ,x∗,X ∼ N
(
kT
∗ K

−1f , k∗∗ − kT
∗ K

−1k∗
)

(5.16)

and the predictive distribution at x∗

y∗|x∗,X,y ∼ N
(
kT
∗ (K + σ2I)−1y , σ2 + k∗∗ − kT

∗ (K + σ2I)−1k∗

)
(5.17)

which is exactly the same as the predictive distribution for the full Gaussian

process, given by equations (1.13) and (1.14) on page 8.

In summary, a reduced rank Gaussian process with n support points set equal

to all n training inputs is equivalent to a full Gaussian process.

5.5 From Linear Models to Non-stationary

Gaussian Processes

Section 5.3 showed how we could construct a (non-degenerate) reduced rank

Gaussian process by adding an extra weight and basis function for every test
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point. In section 5.4 we saw how the full GP is recovered when we use all

of the training inputs as support points, and use equation (5.13) as the prior

distribution over the augmented weights. The treatment in these sections as-

sumed that all basis functions were defined according to a single kernel k(·, ·),
where the ith basis function φi(x) = k(x,xi). In this section, we construct

non-stationary Gaussian processes, by allowing the basis functions to vary

depending on their locations. We therefore describe another method for con-

structing non-stationary Gaussian processes, which is distinct from the non-

linear mapping approach of Gibbs [17], and the spatially variable covariance

function approach described by Paciorek [52, 53].

We continue with a set of m support points, associated with m basis functions

and weights. However, we set the ith basis function φi(x) as a Gaussian with

covariance matrix Bi centred on the ith support point

φi(x) = exp
(
−1

2
(x− xi)

TB−1
i (x− xi)

)
(5.18)

For each test point x∗ we add an extra weight w∗ and basis function φ∗(x) with

covariance matrix B∗, centred on x∗. The vector φT
∗ = [φ∗(x1) . . . φ∗(xn)]T is

constructed from the new basis function evaluated at the training inputs. We

set a spherical Gaussian prior distribution over the augmented weights vector



w

w∗



 ∼ N
(
0, α2I

)
(5.19)

where α2 is the hyperparameter encoding the prior weights variance.

The predictive distribution at x∗ becomes

y∗|x∗,X,y ∼ N (f̄(x∗), v(x∗)) (5.20)

with f̄(x∗) =
1

σ2
q(x∗)

TA−1
∗ [ΦT|φ∗]

Ty (5.21)

and v(x∗) = σ2 + q(x∗)
TA−1

∗ q(x∗) (5.22)

where q(x∗)
T = [φ(x∗)

T φ∗(x∗)]
T is the vector formed by evaluating the m+1

basis functions at x∗. The posterior distribution over the augmented weights

is Gaussian with covariance matrix

A∗ =



 A σ−2Φφ∗

σ−2φT
∗ Φ

T σ−2φT
∗ φ∗ + α−2



 (5.23)
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where A = σ−2ΦΦT+α−2I is the posterior covariance over the (non-augmented)

weights w and is independent of any test point x∗. For prediction A−1 can be

precomputed and A−1
∗ can be calculated as a partitioned inverse.

As the test point moves away from the training data, x∗ → ∞, the predictive

variance v(x∗)→ σ2 + α2, which seems a sensible prior belief.

If we parameterise the basis function covariance matrices with parameters θ,

then the marginal likelihood is

y|X, θ, σ2, α2 ∼ N (0 , α2ΦTΦ + σ2I) (5.24)

which provides us with a mechanism to learn θ, σ2 and α2. That is, we learn

the basis function covariance matrices Bi, the noise variance σ2 and the prior

weight variance α2 by maximising the marginal likelihood.

Making a prediction using equation (5.20) requires us to specify a new Gaus-

sian basis function, defined by B∗. There are many ways to do this, but

we would like B∗ → Bi as x∗ → xi. One approach is to let B∗ equal the

weighted sum of the covariances of the m basis functions, with the ith weight

ui = 1
|x∗−xi|+ǫ

B∗ = lim
ǫ→0

∑M
j=1 ujBj
∑M

i=1 ui

(5.25)

So, if x∗ is coincident with xi but separate from all other training inputs then

B∗ = Bi. If x∗ is coincident with xi and xj then B∗ = 1
2
Bi + 1

2
Bj.

More generally, we could specify a parametric function gθ : RD → RD × RD,

that defines a covariance matrix for any input vector, B = gθ(x). The range of

g must be such that all B are positive definite.

A simple illustration of a non-stationary Gaussian process generated in this

way is shown in figure 5.1. This example has 24 basis functions, each cen-

tred on a training input. The ith basis function φi(x) at point xi is a squared

exponential:

φi(x) = exp

(
−1

2

(x− xi)
2

r(xi)2

)
(5.26)

r(xi) is the length scale for the ith basis function:

r(xi) = r1 +
r2 − r1

1 + exp(−5xi)
(5.27)



5.5. FROM LINEAR MODELS TO NON-STATIONARY GPS 79

where r1 = 0.75 and r2 = 0.075.

So as xi → ∞, r(xi) → 0.075, and as xi → −∞, r(xi) → 0.75. The function

is therefore smooth for x < 0 and becomes rapidly varying for x > 0. Note

that the predictive variance as x moves away from data approaches a constant

non-zero value, and does not decrease to the noise level, unlike the degenerate

Gaussian processes discussed earlier.

input space x

f
(x

)

−2 −1 0 1 2
−2  

−1  

0   

1   

Figure 5.1: Example of a non-stationary Gaussian process constructed by augmenting
a non-stationary generalised linear model with an extra weight and basis function
at every test point. Each of the 24 basis functions are centred on the training inputs
(dots). The predictive mean is shown by the black line and the 95% confidence inter-
val is shaded grey.

In summary, we have shown here how we can use the reduced rank Gaussian

processes framework to produce non-stationary GP models.
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5.6 Discrete Process Convolution Models

In the previous sections, in an effort to reduce the computational cost of GP re-

gression, we examined approximations to the full GP predictive distribution.

In this section, we consider yet another method of approximation, known as

the discrete process convolution model.

A continuous Gaussian process can be constructed by convolving a kernel

h(t), with a noise process w(t) that is non-zero at a number of discrete points

[24, 10, 29]. The result is a discrete process convolution (DPC) model. For

example, if we use the noise process w(t) =
∑m

j=1 wjδ(t− tj), the output is

y(t) = w(t) ∗ h(t) (5.28)

=
m∑

j=1

wjh(t− tj) (5.29)

where t1 . . . tm are support points and w1 . . . wm are the Gaussian distributed

weights of the latent noise process. The motivation for building such models

is that the computational cost of making a prediction is O(m2n).

Upon inspection, we see that equation (5.29) is a generalised linear model

with h(t − t1) . . . h(t − tm) as its basis functions. We have a Gaussian prior

distribution over the weights w ∼ N (0, I), so from the discussion in the pre-

vious sections, y(t) is a Gaussian process. If we set the support points equal

to m of the training inputs then the DPC model is equivalent to the SR model

in section 5.2. Like the SR method, the DPC Gaussian process is a degener-

ate Gaussian process. To make it non-degenerate, we add an extra weight w∗

when making predictions at a test point t∗. We redefine the noise process as

w(t) = w∗δ(t − t∗) +
∑m

j=1 wjδ(t − tj). The resulting model is then equivalent

to a reduced rank Gaussian process model as defined above.

5.7 Summary

A reduced rank Gaussian process can be constructed by augmenting a gen-

eralised linear model at test time. That is, before querying a RRGP model

with a test input, we add an extra weight and basis function to the model.

Using this augmentation results in a reduced rank Gaussian process that is
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non-degenerate. Furthermore, we can construct non-stationary Gaussian pro-

cesses using augmented generalised linear models with basis functions that

vary over space.

Reduced rank Gaussian processes exist as a method to reduce the computa-

tional cost of Gaussian process regression. There are of course many other

methods for doing just this, as outlined in section 1.4 on page 10. However, in

this chapter the focus has been on the reduced rank method mainly because

of the result in section 5.4, where it was shown that the full Gaussian process

predictive distribution is recovered from a reduced rank model by setting the

support set equal to the training input set. Reduced rank models are them-

selves obtained by augmenting generalised linear models with extra weights

at test time. Overall, there is a natural link between generalised linear models,

reduced rank Gaussian processes, and full rank Gaussian processes. In fact,

one might like to think of a Gaussian process as an augmented generalised

linear model with positive definite kernels centred on the training inputs as

basis functions.
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Chapter 6

Reduced Rank Dependent

Gaussian Processes

Chapter 3 showed how to construct sets of dependent Gaussian processes and

use them to perform multivariate regression. To do so required the inversion

of n × n matrices, where n was the total number of observations across all

outputs. Exact inversion of these matrices has complexityO(n3), and becomes

prohibitive for large n.

The previous chapter showed how to reduce the computational cost of Gaus-

sian process regression by using approximations known as reduced rank Gaus-

sian processes. This chapter extends this approximation to the multiple out-

put case by defining reduced rank dependent Gaussian processes.

6.1 Multiple Output Linear Models

Consider a generalised linear model over two outputs. We have nx obser-

vations of the first output Dx = {(x1, y
x
1) . . . (xnx

, yx
nx

)}, and nz observations

of the second Dz = {(z1, y
z
1) . . . (znz

, yz
nz

)}. For notational convenience, we

combine the input vectors into matrices; X = [x1 . . .xnx
],Z = [z1 . . . znz

], and

combine the targets into vectors yx = [yx
1 . . . yx

nx
]T,yz = [yz

1 . . . yz
nz

]T.

The model consists of a set of 2(mx+mz) basis functions and mx+mz weights,

where mx ≤ nx and mz ≤ nz. The basis functions are divided into two sets:

83
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2mx of these are centred on the first mx training inputs in X, and the remain-

ing 2mz basis functions are centred on the first mz training inputs in Z. Over-

all, there are mx + mz support points and each is associated with two basis

functions - one for each output.

The weights are also divided into two sets: mx weights are collected into the

vector v and control the contribution of the mx support points from X, and

the remaining mz weights in the vector w control the contribution from the

mz support points in Z.

Consider two test points, x∗ and z∗ (one for each output), and add an extra

basis function and weight for each (the extra weights are v∗ and w∗ respec-

tively). The augmented model evaluated over the training inputs produces

fx = [fx(x1) . . . fx(xnx
)]T and fz = [fz(z1) . . . fz(znz

)]T as follows:



fx

fz



 = [Φ |A]u (6.1)

= Φ



v

w



+ A



v∗

w∗



 (6.2)

where the augmented weights vector u =
[
vT wT v∗ w∗

]T
, and the remain-

ing components are defined in what follows.

The design matrix Φ is independent of the test points and is block partitioned

as:

Φ =



Φxx Φxz

Φzx Φzz



 (6.3)

where the partitions are built by evaluating the set of 2(mx + mz) basis func-

tions over the training inputs, as in equations (6.4) to (6.7) below. The set of

basis functions is: {kxx(x,x1) . . . kxx(x,xmx
), kxz(x, z1) . . . kxz(x, zmz

), kzx(z,x1)

. . . kzx(z,xmx
), kzz(z, z1) . . . kzz(z, zmz

)}.

Φxx =





kxx(x1,x1) . . . kxx(x1,xmx
)

...
. . .

...

kxx(xnx
,x1) . . . kxx(xnx

,xmx
)




(6.4)
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Φxz =





kxz(x1, z1) . . . kxz(x1, zmz
)

...
. . .

...

kxz(xnx
, z1) . . . kxz(xnx

, zmz
)




(6.5)

Φzx =





kzx(z1,x1) . . . kzx(z1,xmx
)

...
. . .

...

kzx(znz
,x1) . . . kzx(znz

,xmx
)




(6.6)

Φzz =





kzz(z1, z1) . . . kzz(z1, zmz
)

...
. . .

...

kzz(znz
, z1) . . . kzz(znz

, zmz
)




(6.7)

In general, the design matrix does not have to be built from positive definite

functions so the basis functions can be arbitrary. Nevertheless, in this section

we use valid kernel kxx(·, ·), kzz(·, ·) and cross-kernel functions kxz(·, ·), kzx(·, ·)
as basis functions. For example, the kernel functions could be set equal to

the covariance and cross-covariance functions derived from Gaussian impulse

responses as in appendix A.2.

The (nx + nz) × 2 matrix A is the contribution to the model of the two extra

weights and basis functions:

A =



 Ax

Az



 =





kxx(x1,x∗) kxz(x1, z∗)
...

...

kxx(xnx
,x∗) kxz(xnx

, z∗)

kzx(z1,x∗) kzz(z1, z∗)
...

...

kzx(znz
,x∗) kzz(znz

, z∗)





(6.8)

We define a Gaussian prior distribution over the augmented weights vector:

u
∣∣x∗, z∗,X,Z ∼ N



0 ,



 Ω B

BT Λ




−1

 (6.9)
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where Ω is formed by evaluating the basis functions at the support points,

rather than all the training inputs and is block partitioned as:

Ω =



Ωxx Ωxz

Ωzx Ωzz



 (6.10)

Ωij is the upper-most mi×mj sub-block of Φij (for i, j ∈ {x, z}), meaning that

Ω is a submatrix of Φ.

The matrix BT =
[
BT

x BT
z

]
, where Bx equals the top mx rows of Ax, and Bz

equals the top mz rows of Az.

The 2× 2 matrix Λ has the following elements:

Λ =



kxx(x∗,x∗) kxz(x∗, z∗)

kzx(z∗,x∗) kzz(z∗, z∗)



 (6.11)

and is independent of the training data.

The model assumes Gaussian noise on the outputs, where each output has

a separate noise variance, σ2
x and σ2

z . This assumption allows us to find the

likelihood function

y
∣∣u,x∗z∗,X,Z ∼ N (Fu , Ψ) (6.12)

where yT = [yT
x yT

z ], and F =
[
Φ |A

]
. The covariance matrix for this Gaus-

sian likelihood function is

Ψ =



σ2
x Ix 0

0 σ2
z Iz



 (6.13)

where Ix and Iz are nx × nx and nz × nz identity matrices.

From the likelihood function of the augmented weights and the prior distri-

bution over augmented weights, we can find the posterior distribution over

the augmented weights:

u
∣∣y,x∗z∗,X,Z ∼ N (µ,Σ∗) (6.14)

where

Σ−1
∗ = FTΨ−1F +



 Ω B

BT Λ




−1

(6.15)

µ = Σ∗F
TΨ−1y (6.16)
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To simplify, define the matrix Q as

Q =
[
BT Λ

]
(6.17)

Then, the predictive distribution at test points x∗ and z∗ is Gaussian with

predictive mean


mx(x∗)

mz(z∗)



 = Qµ (6.18)

and predictive variance

V(x∗, z∗) =



σ2
x 0

0 σ2
z



+ QΣ∗Q
T (6.19)

An illustration of a reduced-rank dependent Gaussian process is shown in

figure 6.1. This example has two outputs, with n1 = n2 = 10 and m1 =

m2 = 8, and noise variance σ2
1 = σ2

2 = 0.0252. The model was constructed

using Gaussian basis functions equivalent to the auto and cross-covariance

functions derived in appendix A.2. The training data for output 1 is restricted

to x > 0, but output 2 has training inputs spread across the whole input space.

Note that the model of output 1 gives predictions with low uncertainty at

certain points, even though there is no output 1 training data associated with

those points. Predictions at these points have low uncertainty because of a

dependency on the training data from output 2.

6.2 Reduced Rank Dependent GP for n = m

Here, we show that the predictive distribution for a reduced rank dependent

GP with all of the training inputs used as support points is equivalent to the

full dependent GP predictive distribution. (In fact we show it for the two out-

put situation, but the result trivially extends to the general case). See section

6.1 for definitions of notations if required.

Consider the model evaluated over the training data and two test points

[
fT
x fT

z fx∗ fz∗

]T
=



 Φ A

BT Λ



 .u (6.20)
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Figure 6.1: Example of a two-output reduced-rank dependent Gaussian process con-
structed by augmenting a two-output generalised linear model with an extra weight
and basis function at every test point. Each output has 10 training inputs (black dots),
and the reduced rank model is built from a subset of 8 training inputs from each out-
put. The predictive mean is shown by the black lines and the 95% confidence intervals
are shaded grey.

If we set mx = nx and mz = nz (use all of the training inputs as support

points), then B = A and Ω = Φ = K where K is the full Gram matrix pro-

duced from all nx + nz training inputs (equivalent to the Gram matrix we

would obtain if we were building the full dependent GP model). Equation

(6.20) then becomes

[
fT
x fT

z fx∗ fz∗

]T
=



K A

AT Λ



 .u = K∗u (6.21)
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The prior distribution over weights becomes

u
∣∣x∗, z∗,X,Z ∼ N



0 ,



 Ω B

BT Λ




−1

 (6.22)

∼ N



0 ,



K A

AT Λ




−1

 (6.23)

∼ N
(
0 , K−1

∗
)

(6.24)

Therefore, the prior distribution over function values is

[
fx f z fx∗ fz∗

]T∣∣x∗, z∗,X,Z ∼ N (0 , K∗) (6.25)

We can find the distribution of fx∗ and fz∗ conditioned on fx and fz

[fx∗ fz∗ ]
T
∣∣fx, fz,x∗, z∗,X,Z ∼ N

(
ATK−1

[
fx

f z

]
, Λ−ATK−1A

)
(6.26)

resulting in a predictive mean



mx(x∗)

mz(z∗)



 = AT(K + Ψ)−1



yx

yz



 (6.27)

and predictive variance

V(x∗, z∗) =



σ2
x 0

0 σ2
z



+ Λ−AT(K + Ψ)−1A (6.28)

The predictive mean and variance in equations (6.27) and (6.28) are the same

as those obtained from a dependent GP model with two outputs and covari-

ance matrix K. (Compare to equation (5.17) (page 76) and equations (3.26)

and (3.27) (page 43)).

Therefore, if we use all of the training inputs as support points, (i.e. set

mx = nx and mz = nz), then we recover the full dependent GP predictive

distribution. That is, the reduced rank dependent GP predictive distribu-

tion approximates the full dependent GP predictive distribution, and the ap-

proximation becomes exact when we use all of the training inputs as support

points.
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6.3 Multivariate DPC Models

In section 5.6 (page 80), we saw how DPC models can be defined which re-

duce the complexity of GP regression to O(m2n). The DPC framework can

be extended to the multivariate case [29], so it is possible to make predictions

across multiple dependent outputs in O(m2n). However, as discussed in sec-

tion 5.6, the DPC model is a degenerate Gaussian process, and can therefore

underestimate the predictive variance, especially at test points far removed

from the training inputs. This can be corrected by adding additional weights

to the latent noise source, which results in a model equivalent to the reduced

rank dependent Gaussian process model described above.

6.4 Non-stationary Dependent GPs

In section 5.5 we saw how we can construct non-stationary GPs from non-

stationary generalised linear models. The same methodology can be applied

to reduced rank dependent Gaussian processes. That is, we can define gen-

eralised linear models over multiple outputs with basis functions that vary

across the input space. If we add extra basis functions and weights when

making predictions we construct a set of non-stationary, reduced-rank de-

pendent Gaussian process. Of course, as in section 6.2, if we use the all of

the training inputs as support points then we recover a set of non-stationary,

full-rank dependent Gaussian process.

6.5 Summary

In this chapter, we have shown how the reduced rank Gaussian process re-

gression methodology can be extended to the multiple output case. We have

also shown that in the limit, when the support input set is equal to the train-

ing input set, the resulting reduced rank process is in fact full rank, and is

equivalent to a dependent Gaussian process as introduced in chapter 3



Chapter 7

Rotated Covariance Functions

7.1 Introduction

Thus far, this thesis has discussed and demonstrated Gaussian processes

with relatively simple (either isotropic or axis-aligned), squared-exponential

(Gaussian) covariance functions. In this chapter, we discuss and introduce

parameterisations of the squared-exponential function that provide a greater

degree of modelling power.

A simple GP model over RD is defined by the following covariance function:

cov(xi,xj) = exp(v) exp



−1
2

D∑

d=1

(
x

(d)
i − x

(d)
j

)2

exp(2rd)



 + δij exp(2β) (7.1)

where x
(d)
i is the dth component of xi. That is, xi = [x

(1)
i . . . x

(D)
i ]T.

This covariance function has a squared exponential, or Gaussian component

defined by the parameters r1 . . . rD, where exp(rd) is the length scale associ-

ated with the dth axis direction. So if rd is small, the model will vary rapidly

in the direction parallel to the dth axis since the covariance drops rapidly in

this direction. Conversely, if rd is large, the model will be very smooth in

the dth axis direction, and the dth components of the inputs xi and xj could

be said to be largely irrelevant, as in the automatic relevance determination

(ARD) method for neural networks [37, 46, 34]. This covariance function is

referred to as “axis-aligned” in the sense that the Gaussian component has

principal axes aligned with the coordinate axes.
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In this thesis, hyperparameters such as v, rd, and β usually appear in covari-

ance functions in exponentiated form. This ensures that the resulting covari-

ance function is positive definite, even if any of these hyperparameters are

negative. We are therefore free to use Gaussian prior distributions over the hy-

perparameters, meaning quantities such as exp(v), or exp(rd) are log-normal

distributed, and hence naturally positive.

Samples can be drawn from the distribution of functions defined by any GP

covariance function. To do so, we select a set of n test points, x1 . . .xn, and

generate the covariance matrix C that has its (ith, jth) entry defined by the

covariance function cov(xi,xj). A vector of function values f can then be gen-

erated by drawing a sample from a zero-mean multivariate Gaussian with

covariance matrix equal to C. If we calculate the eigen-decomposition C =

VTEV, then f can be generated simply as f = VTE
1
2Vz, where z is a nor-

mally distributed vector of length n. Alternatively, we can use the Cholesky

decomposition [91], C = LTL and generate samples f = LTz, [61].

Figure 7.1(left) shows a sample function generated by sampling from a GP

prior distribution with the above covariance function. Notice how the fea-

tures of this sample are axis aligned. We see no particular pattern as we move

in the direction that bisects the axes. Compare this to the second GP sample

shown in 7.1, which was generated by simply rotating the coordinate axis af-

ter generating a sample from the GP. Clearly, this function has features that

are not aligned to the coordinate axes. In a regression context, we could say

that the dependent (output) variables are correlated. That is, the behaviour of

one output provides information about the behaviour of the other.

If the function to be modelled contains features that are not axis aligned (the

output variables are correlated), then it makes sense to use a GP with a covari-

ance function that is capable of capturing this relationship. To do so, consider

the following covariance function defined not by a length scale in each direc-

tion, but by a full covariance matrix Σ.

cov(xi,xj) = exp(v) exp
(
−1

2
(xi − xj)

TΣ(xi − xj)
)

+ δij exp(2β) (7.2)

Σ is a positive definite matrix with eigenvalues corresponding to inverse

length scales in the directions defined by the eigenvectors. To parameterise

this rotated covariance function, we need a parameterisation that only allows

positive definite Σ. The following sections will examine various methods to
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Figure 7.1: Contours of the samples generated from a GP with an axis-aligned (left)
and rotated (right) squared-exponential covariance function

do this.

7.2 Parameterisations based on the Cholesky

Decomposition

Vivarelli and Williams [82] describe a parameterisation of Σ based on the

Cholesky decomposition, Σ = UT U, where U is an upper triangular matrix

with positive entries on the diagonal:

U =





exp(u1,1) u1,2 . . . u1,D

0 exp(u2,2) . . . u2,D

0 0 . . . u3,D

. . . . . . . . . exp(uD,D)




(7.3)

Thus we require D(D + 1)/2 parameters to fully parameterise an arbitrary

positive definite matrix Σ.

When maximising the likelihood function of hyperparameters or the posterior

density over hyperparameters, it is generally useful to make use of gradient

information. To do so requires the calculation of the derivative of the covari-
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ance function with respect to the hyperparameters. For the Cholesky decom-

position parameterisation this is relatively easy. In fact, for hyperparameter

ui,j, we find ∂U/∂ui,j is a matrix of zeroes apart from the (i, j)th element which

equals exp(ui,j) if i = j and 1 otherwise.

One problem with this parameterisation is that it is hard to specify a prior

distribution over parameters uij that reflects our prior beliefs about smooth-

ness of the objective function. We can write Σ = UT U = VTΛV, where Λ

is a diagonal matrix of eigenvalues, and the columns of V are the associated

eigenvectors. We would like to place a prior distribution over the eigenval-

ues in Λ, which are the length scales that control the function’s smoothness

in the directions contained in V. The problem is that there is no obvious way

of isolating these ’length scale components’ when we work with U. A similar

problem is that there is no obvious way of specifying a prior distribution over

covariance function rotations (angles of the eigenvectors in V). For example,

it is not clear what prior distribution over the elements of U should be used

to encode the prior belief that all covariance function rotations are equally

probable. Vivarelli and Williams do not encounter this problem as they use

maximum likelihood methods to learn the parameters, rather than maximum

a posteriori or fully Bayesian methods.

The following example illustrates the problem. A Gaussian prior distribu-

tion was placed over the elements of U for D = 2. In particular, u11 ∼
N (0, 0.52), u22 ∼ N (0, 0.52), and u12 ∼ N (0, 0.52). 5 × 106 samples of U and

hence Σ were generated by sampling from these prior distributions. For each

sample, the eigendecomposition Σ = VΛVT was calculated, and from this

the angle of rotation of the principal eigenvector (the eigenvector with the

largest eigenvalue) was found. The experiment was repeated with prior dis-

tributions set to u11 ∼ N (0, 0.252), u22 ∼ N (0, 0.252), and u12 ∼ N (0, 0.752).

Figure 7.2 shows how both prioritisations result in a non-uniform distribution

of covariance function rotations, as measured by the rotation of the principal

eigenvector. Overall, it is not clear what prior distribution over U corresponds

to a uniform prior distribution of rotations.



7.3. PARAMETERISATIONS BASED ON GIVENS ANGLES 95

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

θ π radians

p
(θ

)

Figure 7.2: Prior probability of rotation angle for a positive definite matrix parame-
terised via the Cholesky decomposition, with Gaussian prior distributions over the
elements of the Cholesky factors. Two cases are shown: the solid line shows the re-
sults when u11 ∼ N (0, 0.52), u22 ∼ N (0, 0.52), u12 ∼ N (0, 0.52), and the dotted line
is for u11 ∼ N (0, 0.252), u22 ∼ N (0, 0.252), u12 ∼ N (0, 0.752).

7.3 Parameterisations based on Givens Angles

Any positive definite matrix of real numbers Σ can be decomposed into a set

of eigenvector and eigenvalue matrices:

Σ = VΛVT (7.4)

where VTV = I (orthonormal) and Λ is a diagonal matrix of positive eigen-

values.

Following Paciorek [52], we proceed by parameterising the eigenvectors using

Givens angles [21]. V can be parameterised as a product of Givens matrices:

V =
D−1∏

i=1

D∏

j=i+1

Gij (7.5)
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where

Gij =





i j

I 0 0 0 0

i 0 cos(ρij) 0 − sin(ρij) 0

0 0 I 0 0

j 0 sin(ρij) 0 cos(ρij) 0

0 0 0 0 I





(7.6)

The parameter ρij sets the angle of rotation of the plane defined by the ith and

jth coordinate axes.

Λ can be parameterised quite simply as Λ = diag(exp(λ1) . . . exp(λD)), where

the exponential function forces the eigenvalues to be positive. We could set

a uniform prior distribution over rotations ρij together with a prior distribu-

tion over the eigenvalues λi that reflects a belief about the smoothness of the

problem.

The total number of parameters needed to fully parameterise the D×D matrix

Σ is D eigenvalues plus D(D−1)
2

rotations, which equals D(D+1)
2

, the same as the

Cholesky decomposition parameterisation. Note this is the minimum number

of parameters required to fully encode an arbitrary real and positive definite

Σ. For problems involving only a few dimensions, the total number of param-

eters required is manageable. However, as the dimensionality grows it comes

as no surprise that the situation rapidly deteriorates; the number of parame-

ters grows as O(D2). Additionally, to learn the set of angles
{{

ρij

}D−1

i=1

}D

j=i+1

efficiently, we would like to make use of gradient information. Finding the

gradient of (7.5) requires application of the product rule. Although possible,

the resulting expressions and implementation become cumbersome and com-

putationally expensive as the dimensionality grows. Ideally, we would like

to parameterise an orthonormal V directly as a single matrix, or as a sum of

matrices. Unfortunately, it is not clear if this is possible.

7.4 Factor Analysis Parameterisation

To fully parameterise an arbitrary positive definite matrix Σ requires D(D+1)
2

parameters, which for very high dimensional problems may prove an unac-
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ceptable cost. For example, encoding a 50D positive definite matrix requires

1275 parameters. If we wish to learn the values of the parameters by max-

imum likelihood methods, then we have to optimise the likelihood function

over a 1275 dimensional space. Furthermore, if we have a relatively small data

set then a huge number of hyperparameters seems excessive, and we might

consider the resulting models too complex. In such cases we might prefer to

use some intermediate parameterisation that allows Σ to vary somewhat from

the identity matrix, but is not complex enough to encode all possible positive

definite matrices.

One way to do this is with the factor analysis form Σ = RRT + Λ, where R is

a D × k matrix (D ≥ k), and Λ is a diagonal matrix with positive entries. The

first component RRT, has a rank k and is capable of defining a k dimensional

subspace over which the objective function varies significantly. Σ is made full

rank by the addition of Λ. This parameterisation uses D(k+1) parameters, so

for k ≪ D we get quite a reduction in the number of parameters required.

We could set prior distributions over Λ by setting the jth element on the di-

agonal equal to exp(λj), and setting a Gaussian prior distribution over λj.

Furthermore, we could set Gaussian prior distributions directly over the ele-

ments of R. However, it is not clear how such a “prioritisation” corresponds

to length scales in the problem space. In other words, if we wish to use the

factor analysis form for Σ, and wish to restrict the length scales to sensible val-

ues using a prior distribution, then it is not clear how to do this with Gaussian

prior distributions on R and λ1 . . . λD.

7.5 Random Rotations

Instead of attempting to learn the orthonormal matrix of eigenvectors V in

equation (7.5), we can try a few randomly generated orthonormal matrices,

and use the one that has the greatest posterior probability after the remaining

hyperparameters are learnt. For a data set X and y we use the following

method:

(1) Generate a random orthonormal matrix V

(2) Rotate the data to produce Z = VX
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(3) Find θmax that maximises p(θ|Z,y)

(4) Use the V that has the greatest p(θmax|Z,y)

In step 1 we need to generate a random orthonormal matrix. A simple way

of doing this is to generate a matrix R with normally distributed elements,

and then find the set of eigenvectors of RTR. These eigenvectors {v1 . . .vD}
are mutually orthogonal and |vi| = 1, ∀i. The required random orthonormal

matrix is V =
[
v1| . . . |vD

]
.

In step 3 we find the hyperparameters that have maximum posterior proba-

bility, given the rotated data. We use an axis-aligned covariance function, by

just learning the length scales in each direction encoded in a diagonal matrix

Λ.

If

k(xi,xj) = exp

(
−1

2
(xi − xj)

TΛ(xi − xj)

)
(7.7)

is a valid covariance function, then so is

k(Vxi,Vxj) = exp

(
−1

2
(xi − xj)

TVTΛV(xi − xj)

)
(7.8)

So rotating the data before learning is equivalent to learning a rotated covari-

ance function with principal axes determined by V. The trade off is that we

do not attempt to learn an optimal V, but simply one that is the best of many,

or at least better than the identity matrix corresponding to an axis aligned

covariance function.

We can modify this method to attempt to learn the optimal V. Instead of

generating a random orthonormal matrix at step 1, we randomly perturb the

current V and accept the perturbation if it results in greater posterior proba-

bility. A random perturbation that maintains the orthonormality of V can be

achieved by multiplication by a rotation matrix consisting of small random

angles. This rotation matrix can be generated using (7.5), with Givens angles

selected from a normal distribution with a small standard deviation (e.g. 5◦).
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7.6 Summary

In this chapter, we have discussed parameterisations of squared-exponential

covariance functions that are powerful enough to allow the covariance func-

tion to rotate and stretch in high dimensional space. The purpose of doing

so is to enable Gaussian processes to model data with features that are not

aligned to the coordinate axes. Some of these parameterisations will be fur-

ther applied in later chapters.
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Chapter 8

“Bayesian” Gaussian Processes

In this chapter, we examine Gaussian processes for regression using the meth-

ods of Bayesian inference. In earlier chapters, we decided on a single parame-

terised covariance function, and then found the most likely or most probable

hyperparameters which were then used to make predictions. In the Bayesian

methodology, we can avoid having to make predictions using just one co-

variance function, with a single set of best hyperparameters. Instead, we

marginalise over all uncertainty - uncertainty in the covariance function, and

uncertainty in the hyperparameters.

In a sense, one may consider regression with a single covariance function and

optimised hyperparameters as Bayesian regression. In fact, Gaussian process

regression is equivalent to Bayesian parametric regression using a generalised

linear model with an infinite number of basis functions (e.g. see [55]). How-

ever, this method is not considered fully Bayesian, as it does not marginalise

over uncertainty in the hyperparameters.

Overall, there are different methods that vary in the extent to which they ad-

here to the principles of Bayesian inference. At the simplest level, there is

the example just described which makes use of a single covariance function

with optimised hyperparameters. A more principled Bayesian method would

use a single covariance function, but would marginalise across uncertainty

in the hyperparameters. Strictly, however, we should express prior uncer-

tainty about the form of the covariance function and then marginalise over

this uncertainty and the uncertainty in the hyperparameters associated with

the various forms that the covariance function might take. In this chapter, we

101



102 CHAPTER 8. “BAYESIAN” GAUSSIAN PROCESSES

adopt an intermediate position where we optimise the hyperparameters of a

set of chosen covariance functions, and then marginalise over the uncertainty

within that chosen set.

Below, we briefly examine Bayesian prediction by marginalising over hyper-

parameters with a fixed covariance function, and then show how to marginalise

over multiple covariance functions.

8.1 Marginalising over Hyperparameters

To carry out Bayesian prediction using Gaussian processes, we use the follow-

ing integral which marginalises over the posterior uncertainty in the hyper-

parameters:

p(y∗|x∗,D,H) =

∫
p(y∗|x∗,D, θ,H) p(θ|D,H)dθ (8.1)

where H represents the assumed covariance function parameterised by θ.

However, in most cases this integral is intractable so we are forced to make an

approximation. If we have a lot of data relative to the number of hyperparam-

eters, then we usually expect the posterior density p(θ|D) to be concentrated

around a single value θMAP . If so, then we can make predictions using

p(y∗|x∗,D,H) ≈ p(y∗|x∗,D, θMAP ,H) (8.2)

If we have relatively few data points, or many hyperparameters, then this ap-

proximation is not expected to be as good. In such cases, the posterior prob-

ability may be spread more diffusely over θ, or there may even be multiple

isolated modes separated by regions of very small probability. If so, then we

might expect improvement by making a better approximation to the integral

in (8.1).

The standard way to approximate the integral is to use numerical Monte Carlo

methods [45, 41, 34]. More specifically, we can generate samples θ1 . . . θM

from the posterior distribution with density p(θ|D,H) and then approximate

the integral using:

p(y∗|x∗,D,H) ≈ 1

M

M∑

m=1

p(y∗|x∗,D, θm,H) (8.3)
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Monte Carlo sampling of the posterior distribution has been demonstrated

and discussed by a number of authors [86, 57, 47]. Here, we assume that the

posterior density over hyperparameters is sufficiently concentrated around

θMAP such that equation (8.2) is a good approximation. Therefore, in the re-

mainder of this chapter we focus attention on marginalising over differing

covariance functions.

8.2 Marginalising over Covariance Functions

If we attempt to model data with a Gaussian process defined by a single, rel-

atively inflexible covariance function, we may find that the predictive perfor-

mance is rather poor. In such cases, we might say that the model is too simple

or does not have enough explanatory power to capture whatever features un-

derly the observations.

Alternatively, if we model relatively simple data with a Gaussian process de-

fined by a complex covariance function, then we might expect good predic-

tive performance on the training data but poor generalisation performance.

In such cases, the Gaussian process covariance function has enough complex-

ity and flexibility to fit the data very well. However, a side effect of this is the

potential to overfit.

The performance we want from our model lies somewhere in between. That

is, we want to use a model that is simple enough to generalise well, but com-

plex enough to capture underlying trends. The remainder of this chapter will

examine methods to do this for Gaussian process models.

8.2.1 Model Comparison

In the Bayesian methodology, one way to marginalise over many Gaussian

process models (each defined by a covariance function and hyperparameters),

is to weight each model according to its posterior probability. In this way,

if a simple model models the data sufficiently, it will be that model which

is predominantly used to make a prediction. If the simple model accounts

poorly for the data, then a more complex model that provides a better fit will

be favoured.
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Consider the situation where we have multiple models H1 . . .HM , each con-

sisting of a covariance function and a set of hyperparameters. Initially, we

have prior uncertainty about the probability of each of model. The predictive

distribution for a test point x∗ is a sum over models [34]

p(y∗|x∗,D) =

M∑

i=1

p(y∗|D,Hi)p(Hi|D) (8.4)

which consists of a weighted sum of the predictive distributions from each

model, weighted by the posterior probability p(Hi|D) of each. By Bayes’ The-

orem, the posterior probability of the ith model is related to the model evidence,

p(D|Hi) as follows

p(Hi|D) =
p(D|Hi)p(Hi)

p(D)
(8.5)

If we have a prior belief that each model is equally plausible, p(Hi) = p(Hj) =
1
M

, then the posterior probability of each model is simply proportional to the

evidence for that model. In this thesis, for simplicity, it is assumed that all

models have equal prior probability, so the evidence p(D|Hi) is used to weight

models rather than the posterior probability p(Hi|D).

In a Gaussian process regression context, this method allows us to avoid hav-

ing to select a priori a single covariance function that suits a particular prob-

lem. Instead, we can use a range of covariance functions and let the evidence

for each determine their relative importance.

In cases where we have just two models (or covariance functions), we might

like to use the evidence to compare the models to decide which is best. In

this case we can calculate the Bayes factor B1/2 which is equal to the ratio of

the evidence for model 1 and 2, B1/2 = p(D|H1)/p(D|H2). Jeffreys’ scale of

evidence for Bayes’ factors [26] can then be used to interpret the result. This

scale is presented in the figure 8.1.

8.2.2 Evaluating the Evidence

The hard part of model comparison is evaluation of the evidence. The evi-

dence, or marginal likelihood, for model H is equivalent to the normalising

constant of the posterior density, p(θ|D,H):

p(D|H) =

∫
p(D|θ,H)p(θ|H)dθ (8.6)
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Figure 8.1: Jeffrey’s scale of evidence for Bayes factors

As with the predictive integral in equation (8.1), this integral cannot be cal-

culated directly for Gaussian processes. Instead, we must use numerical or

approximate methods. MacKay [34] describes how the Laplace approxima-

tion can be used if the posterior distribution is well approximated by a Gaus-

sian. Briefly, the Laplace method approximates the likelihood-prior product

p(D|θ,H)p(θ|H) as a Gaussian centred at θMAP with covariance matrix Σ,

where

Σ−1 = −∇∇ ln p(θ|D,H)
∣∣
θ=θMAP

(8.7)

The evidence is then approximated by integrating the Gaussian approxima-

tion analytically to give:

p(D|H) ≈ p(D|θMAP ,H) p(θMAP |H)(2π)
D
2 det(Σ)

1
2 (8.8)

For a Gaussian process (with covariance matrix C), we can form the approxi-

mation by noting that:

−∇∇ ln p(θ|D,H) = −∇∇ ln p(D|θ,H)−∇∇ ln p(θ|H) (8.9)

and

∂2 ln p(D|θ,H)

∂θi∂θj
= 1

2
Tr

(
C−1∂C

∂θj
C−1∂C

∂θi
− C−1 ∂2C

∂θi∂θj

)

+ 1
2
yTC−1

(
∂2C

∂θi∂θj

− 2
∂C

∂θi

C−1∂C

∂θj

)
C−1y (8.10)
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For small amounts of data and complex models with a large number of hy-

perparameters, this may not be an effective method. Informally, it is expected

that the posterior distribution will resemble a Gaussian only when the ra-

tio of data to hyperparameters is high. As a simple example, consider a 2D

isotropic, noiseless GP model with a single hyperparameter r, and covariance

function:

cov(xi,xj) = exp(−1
2
(xi − xj)

T(xi − xj) exp(−2r)) + 0.052δij (8.11)

Two sets of data were generated: D18 = {(x1, y1) . . . (x18, y18)} and D6 =

{(x1, y1) . . . (x6, y6)}, such thatD6 ⊂ D18. The input points x1 . . .x18 were sam-

pled from a bivariate normal distribution, and the ith output value was set

to yi = exp(−1
2
xT

i xi) + ǫ, where ǫ ∼ N (0, 0.052). For each data set, a Gaus-

sian process model using the above covariance function was built by finding

the maximum a posteriori value or r given a prior distribution p(r) ∼ N (0, 1).

For each model, the Laplace approximation to the evidence was calculated as

described above.

Table 8.1 shows how close the Laplace approximation is to the true evidence

for each model. With N = 6 data points, the approximation is quite inaccu-

rate, while with N = 18 data points, it is very good. Therefore, at least for this

simple case, the Laplace approximation is better with more data, as expected.

trial N = 6 N = 18

1 0.82 0.94

2 0.86 0.98

3 0.88 1.02

4 0.85 0.99

5 0.83 1.01

Table 8.1: Accuracy of the Laplace method for estimating the model evidence. The
table values are equal to the evidence estimate divided by the true evidence, so a
value close to 1 indicates a good approximation. The true evidence was estimated by
brute force numerical integration.

Alternatively, one might attempt to calculate the evidence using MCMC meth-
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ods. A Monte Carlo approximation of the evidence for modelH is

p(D|H) ≈ 1

R

R∑

r=1

p(D|θr,H) (8.12)

where θr is the rth sample drawn from the prior distribution over hyperpa-

rameters, defined by the density p(θ|H).

This looks promising initially, and may work well in cases with small amounts

of data, or few hyperparameters. However, if there is a lot of data p(D|θ,H)

will be concentrated around θMAP . Furthermore, if there are a lot of hyper-

parameters or the prior distribution is quite uninformative, then p(θ|H) will

be spread quite thinly across a high dimensional space. The overall effect is

such that a sample drawn from the prior distribution with density p(θ|H) is

very unlikely to fall within the typical set of p(D|θ,H). The resulting evidence

approximation will therefore be poor unless we take a very large number of

samples. An illustration of this problem is shown in figure 8.2.

8.2.3 Annealed Importance Sampling

If calculating the evidence for data-sparse, hyperparameter-rich problems is

non-trivial, how might we proceed? The remaining option would be to resort

to numerical methods that are designed to cope with the problems discussed

above. One such method is “Annealed Importance Sampling” introduced by

Neal [49].

Consider a (possibly unnormalised) probability distribution p(x) over a quan-

tity x, and some function a(x) of which we wish to estimate the expected value

Ep[a(x)] =

∫
a(x)p(x)dx∫

p(x)dx
(8.13)

Importance sampling (e.g. [34]) is a simple method that provides such an esti-

mate. It is not a method for generating a set of equally weighted, independent

samples from p(x), like other Monte Carlo methods such as the Metropolis-

Hastings, or Gibbs sampling algorithms.

Importance sampling requires the use of a sampler density q(x) that has non-

zero value whenever p(x) is non-zero. We proceed by generating a set of n

independent samples from q(x), and for each sample x(i) calculating a weight



108 CHAPTER 8. “BAYESIAN” GAUSSIAN PROCESSES

θMP

P (θ|H)

P (D|θ,H)

Figure 8.2: Illustration of a potential problem in calculating a MC approximation
to the model evidence. The prior density p(θ|H) has relatively high variance com-
pared to the likelihood function, p(D|θ,H) which is concentrated around θMAP and
is shown unnormalised. Samples from the prior distribution are shown as circles.
Note that even in this one dimensional case, none of the samples fall within the typi-
cal set of the likelihood function, and so the approximation in (8.12) will be poor.

w(i) = p(x(i))/q(x(i)). The estimate of E[a(x)] is then:

â =

n∑
i=1

w(i)a(x(i))

n∑
i=1

w(i)

(8.14)

If we know, or can calculate the normalisation for q(x), then importance sam-

pling also provides an estimate, Ẑp of the normalisation constant Zp =
∫

p(x)dx:

Ẑp =
1

n

n∑

i=1

w(i)

∫
q(x)dx (8.15)

The accuracy of the estimates depends on how closely the sampler density

q(x) matches the density of interest p(x). The degree of closeness between q(x)

and p(x) can be roughly measured with the ratio wrat = wmax/wmin, where

wmin and wmax are the minimum and maximum weights. If q(x) = p(x), then
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wrat = 1, and the estimates of E[a(x)] and ZP will be very good. If q(x) is very

similar to p(x) (in shape, ignoring normalisation) then wrat is close to 1, and

the estimates will be good. If q(x) is very different to p(x) then wrat ≫ 1 and

the estimates will be poor. Alternatively, the standard error of the normali-

sation estimate Ẑp is found by dividing the sample variance of w by n. So, if

the sample variance of w is high, then the expected error of our estimate is

relatively high. By keeping wrat low, we expect to reduce the variance of w.

As the problem dimensionality increases, it becomes harder to specify a sam-

pler density q(x) that closely matches p(x). In this situation, wrat will be large,

and our importance sampling estimates will be dominated by a few large

weights.

Annealed Importance Sampling [49] is a method designed to help overcome

the problem of having to find a sampler density that closely resembles the

density of interest. This method works by setting up a sequence of m possi-

bly unnormalised densities, q0(x) . . . qm−1(x) where each successive density is

’closer’ to p(x) than the previous. One possible sequence is as follows:

qj(x) = q0(x)(1−βj)p(x)βj (8.16)

where βj is defined by the annealing schedule, 0 = β0 < β1 < . . . βj < · · · <
βm = 1.

We start by generating n independent samples from q0(x) and then generate

successive sample sets from q1(x), . . . qj(x) . . . qm(x). Let x
(i)
j be the ith sample

generated from qj(x). Since in general we cannot sample from qj(x), we re-

sort to some other sampling method. For simplicity, assume the Metropolis

algorithm with spherical Gaussian proposal densities. At iteration j, we gen-

erate n samples from qj(x) using Metropolis sampling1 with the n samples

from iteration j − 1 as starting points for the Markov chains. In other words,

we maintain a set of n independent Markov chains, each corresponding to a

separate independent annealing run.

For each sample we calculate an importance weight, with the ith weight as

follows:

w(i) =
q1(x

(i)
0 )

q0(x
(i)
0 )

q2(x
(i)
1 )

q1(x
(i)
1 )

. . .
qm(x

(i)
m−1)

qm−1(x
(i)
m−1)

p(x
(i)
m )

qm(x
(i)
m )

(8.17)

1note that qj(x) may not be normalised, so we are actually generating samples from the

distribution that has a probability density function that is proportional to qj(x).
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We then calculate â and Ẑp as in equations 8.14 and 8.15. (see [49] for proof).

Neal [49] suggests using the prior density p(θ|H) as a starting sampler den-

sity, given that it is usually has a form which is straightforward to generate

independent samples from. However, if this prior density is vague then many

annealing runs may be required before qj(θ) comes close to the posterior den-

sity p(D|θ,H). In this case it may be useful to use an initial density q0(θ) that

more closely resembles the posterior density. An example of such a density is

the Gaussian density that approximates the posterior density according to the

Laplace method described above. Thus, the evidence evaluation might start

with the Laplace approximation, and then improve upon this with annealed

importance sampling.

8.2.4 An Heuristic Annealing Schedule

In this section we introduce an heuristic method for automatically building

an annealing schedule.

One difficulty encountered when applying annealed importance sampling is

specifying an annealing schedule. Intuitively, we want a schedule that results

in qj+1(x) that closely resembles qj(x). If successive densities are very dissim-

ilar, then wrat for this iteration will be large. If successive densities are very

similar, then wrat will be close to 1. Following is a description of an heuristic

to automatically build a schedule based on a choice for a maximum tolerable

wrat at any given iteration; let this limit be wrat
max.

We start with β0 = 0, which forces sampling to start from q0(x). Then, for any

iteration we calculate:

g(i) =
p(x(i))

q0(x(i))
(8.18)

for all samples x(1) . . . x(n) and then find

grat =
max(g(1) . . . g(n))

min(g(1) . . . g(n))
(8.19)

and set

βj+1 = min(1, βj +
log(wrat

max)

log(grat)
) (8.20)

and stop when βj+1 = 1.
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By setting wrat
max to a low value we make slow but accurate progress because

qj+1(x) is not much different from qj(x). For higher values we make faster but

less accurate progress. This heuristic replaces the need to define an annealing

schedule with the selection of a single constant, wrat
max that trades off speed

versus accuracy.

Let us now return to the notion of ’closeness’ between two probability densi-

ties. One way of measuring such closeness is with the KullbackLeibler diver-

gence, or relative entropy[34]:

F̃ =

∫
q(x) ln

q(x)

p(x)
dx (8.21)

which is equal to the expected value of ln q(x)
p(x)

with respect to the density q(x).

The relative entropy is non-negative, and equals zero if and only if q(x) equals

p(x). Note that for a given sample x(i) from q(x) the ratio q(x(i))

p(x(i))
is equal to the

inverse of the weight were that sample to be used in importance sampling of

p(x) with q(x) as a sampler density.

As an example, consider the normalised Gaussian densities

q(x) = (2π)−
1
2 exp(−1

2
x2) (8.22)

p(x) = (2πσ2)−
1
2 exp(−1

2

x2

σ2
) (8.23)

We take n samples from q(x), and for various σ from 0.75 to 1.5 we calculate

the relative entropy and the value of wrat. The mean results after repeating

this process 100 times are shown in figure 8.3. Clearly, the relative entropy

increases with wrat. That is, if wrat is large, then the relative entropy between

p(x) and q(x) is large. Although this result has been generated by using Gaus-

sian densities with the same mean, it provides support to the notion that wrat

provides an approximate measure of closeness between two densities.

One may ask why we don’t just use a fixed change in relative entropy to find

βj+1 given βj . There is a problem in doing so with unnormalised densities. If

q(x) is normalised, but p(x) is not, then the relative entropy will not be min-

imised even if q(x) ∝ p(x) (in which case wrat would equal 1). For example,

if

q(x) = (2π)−
1
2 exp(−1

2
x2) (8.24)

p(x) = exp(−1
2
x2) (8.25)
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then q(x) ∝ p(x) but F̃ = 1
2
log 2π 6= 0 indicating that q(x) and p(x) are dissim-

ilar even though wrat = 1.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

logwrat

F̃

σ ≥ 1

σ ≤ 1

σ = 1

Figure 8.3: Mean relative entropy, F̃ against mean log wrat. The upper line shows the
results when σ ≥ 1. The lower plot is for σ ≤ 1. The lines converge at the origin when
σ = 1, meaning F̃ = 0 and wrat = 1

8.2.5 Sequential Evidence Evaluation

Annealed importance sampling requires the specification of a path of densi-

ties from an initial normalised density q0(x) to the final density p(x) which

is to be normalised. Consider now the case of a model with parameters

θ and n observed data points D, where we wish to calculate the evidence

p(D) =
∫

p(D|θ)p(θ)dθ. Note that the integrand can be factored as follows:

p(D|θ)p(θ) = p(Dn|D1 . . .Dn−1, θ)p(Dn−1|D1 . . .Dn−2, θ) . . . p(D1|θ)p(θ)

(8.26)

The factorisation suggests an online, or sequential method for updating the

evidence when new data arrives.
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Starting with the first data point, we estimate the model evidence p(D1) us-

ing annealed importance sampling, with the p(θ) as the initial density and

p(D1|θ)p(θ) as the integrand; call the output of this calculation Z1, which is an

estimate of the evidence p(D1). When the next datum arrives, 1
Z1

p(D1|θ)p(θ)

can be used as the initial density and Z1p(D2|D1θ)p(θ) becomes the integrand.

Annealed importance sampling gives an output of Z2, which is an estimate of

p(D1D2).

In general, after datum k arrives, we update the estimate of the evidence via

annealed importance sampling. To do so, 1
Zk−1

p(D1 . . .Dk−1|θ)p(θ) is used as

the initial density and Zk−1p(D1 . . .Dk|θ)p(θ) is the integrand. This requires a

set of importance samples from 1
Zk−1

p(D1 . . .Dk−1|θ)p(θ). These samples and

corresponding importance weights can be obtained by continuing to simulate

the set of Markov chains available from the previous iteration.

This method may have problems if for some reason p(D1 . . .Dk+1|θ)p(θ) is

very similar to p(D1 . . .Dk|θ)p(θ) apart from having an extra isolated mode.

A fictitious case is depicted in figure 8.4. If samples are taken from the initial

sampler density p(D1|θ)p(θ), it is very unlikely that any of these will “land”

on the leftmost mode of the target density p(D1,D2|θ)p(θ). In this contrived

case, the estimate of the normalisation constant of the target density will be

half the true value. The only way to overcome this problem would be to use

many intermediate densities and simulate the Markov chain samplers for a

very long time to allow transitions to occur to the leftmost mode.

If we wish to allow for the possibility of new isolated modes that appear upon

observation of new data, then we should not use the sequential method. In-

stead, we should resort to using the prior density p(θ) as the initial sampler.

Since the prior density is diffuse and data independent, we should expect to

capture information from all modes even if isolated. The disadvantage of this

is that it seems to take more time to anneal from p(θ) to p(Dk|θ)p(θ) than it

does from p(Dk−1|θ)p(θ) to p(Dk|θ)p(θ). In many cases, p(Dk−1|θ)p(θ) is very

close to p(Dk|θ)p(θ), and the sequential iteration is very quick.

8.2.6 Model Comparison Examples

Here, we examine two toy examples to demonstrate the use of annealed im-

portance sampling and sequential annealed importance sampling to calculate
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P (D1|θ)P (θ)

P (D1,D2|θ)P (θ)

Figure 8.4: Illustration of a potential problem with sequential evidence evaluation
with annealed importance sampling. The dotted line shows p(D1|θ)p(θ) and the solid
line p(D1,D2|θ)p(θ), which consists of two isolated modes.

the evidence and compare models.

Firstly, consider two GP models - one simple and isotropic Hs, and the other

more complex and anisotropic Hc. The models are defined by the following

covariance functions:

ks(xi,xj) = exp

(
−1

2

2∑

d=1

(x
(d)
i − x

(d)
j )2

exp(2r0)

)
(8.27)

kc(xi,xj) = exp

(
−1

2

2∑

d=1

(x
(d)
i − x

(d)
j )2

exp(2rd)

)
(8.28)

where r0 and r = {r1, r2} are hyperparameters controlling smoothness. Hs

has a single hyperparameter controlling smoothness in all directions (spheri-

cal covariance), whileHc has two hyperparameters controlling smoothness in

each direction aligned with the axes (axis-aligned elliptical covariance).

16 input points from R2 were generated by sampling from a bivariate nor-

mal distribution. Two data sets were generated by sampling the two Gaus-

sian processes with the covariance functions above (with r0 = log(0.5), r1 =
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log(0.1), r2 = log(1.0)) at the 16 input points to give a simple data set Ds and

a complex data set Dc. Gaussian prior distributions were set over r0 and r

such that ri ∼ N (log(0.5), 1), and their most probable values were found by

maximising the posterior density. For each data set, the Laplace method was

used to find a Gaussian approximation to the posterior distribution. These

approximations were used as the initial sampler densities for generating sam-

ples with annealed importance sampling with wrat
max = 1.5. The importance

weights were used to estimate the evidence for each model, over both data

sets. The experiment was repeated 5 times, and Bayes’ factor was calculated

for each trial. The results for the simple data are shown in table 8.2. The

evidence is mostly strongly in favour ofHs, with trial 4 giving evidence mod-

erately in favour.

trial AIS Laplace True

1 14.0 14.4 14.1

2 15.0 15.9 15.4

3 13.5 14.4 13.9

4 3.9 4.0 3.9

5 13.4 13.7 13.5

Table 8.2: Bayes’ Factor in comparison of Hs and Hc, for the simple dataset. Values
greater than 1 are in favour ofHs

The results for the complex data shown in table 8.3. The evidence is extremely

strong in favour of Hc. The table shows Bayes’ factors calculated using an-

nealed importance sampling, the Laplace approximation and brute force nu-

merical integration (true value). We see that all the results are comparable, in-

dicating that the Laplace approximation is sufficient to calculate the evidence

in this example.

Our second model comparison example consists of a simple model, Hs, with

an axis aligned covariance function defined by (7.1) (page 91), and complex

model,Hc, with a rotated covariance function defined by (7.2) where Σ is pa-

rameterised via Givens angles (section 7.3). For both models, equal prior dis-

tributions were placed over length scales, vertical scales, and noise. The com-

plex model had a uniform prior distribution over Givens angles p(ρij) = 1
2π

for −π ≤ ρij ≤ π. Two sets of 2D data were generated by stretching and
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trial AIS Laplace True

1 6.39× 10−12 6.36× 10−12 6.37× 10−12

2 5.66× 10−14 5.63× 10−14 5.52× 10−14

3 8.93× 10−13 9.24× 10−13 9.00× 10−13

4 6.44× 10−12 6.54× 10−12 6.42× 10−12

5 1.40× 10−13 1.42× 10−13 1.37× 10−13

Table 8.3: Bayes’ Factor in comparison of Hs and Hc, for the complex dataset. Values
less than 1 are in favour ofHc

rotating a set Xs of 16 samples from a spherical Gaussian distribution with

variance I. The first data set, Xa was generated by multiplying each element

in Xs by a diagonal matrix E = diag(0.12, 1.02). The second data set, Xr was

generated by multiplying the elements in Xs by a matrix VTEV with V an

orthonormal rotation matrix with Givens angles equal to π
4
. The result is that

Xa is Gaussian distributed with covariance matrix Λ = E2, and Xr has co-

variance matrix Σ = VTΛV. In other words, the first set looks like samples

from an axis aligned elliptical Gaussian distribution, and the second set looks

like samples from a rotated elliptical Gaussian distribution; the second set is

simply a rotation of the first set.

Sequential annealed importance sampling was run on both data sets,

for both the simple and complex models. 100 annealing runs were

made in parallel, using a wrat
max = 2 heuristic to design the annealing

schedule. The evidence for each model was recorded for all densities

p(θ), p(D1|θ)p(θ), . . . p(D1, . . .D16|θ)p(θ), and the posterior probability that

the model wasHs was found from:

p(H = Hs) =
p(Hs|D)

p(Hs|D) + p(Hc|D)
(8.29)

=
p(D|Hs)

p(D|Hs) + p(D|Hc)
(8.30)

given equal prior probability of each model. This process was repeated 5

times and the results are shown in figure 8.5. It is clear that once enough data

has been observed that the evidence clearly favours the simple model for the

axis aligned data set. Similarly, the evidence for the complex model is strong
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Figure 8.5: Model comparison using sequential annealed importance sampling with a
simple and complex GP model (see text). The posterior probability that the model is
simple is shown as each point was sequentially added to the evaluation. The experi-
ment was repeated 5 times and shown is the mean with 1σ error bars for axis aligned
(dotted) and rotated data (solid).

for the rotated data set. Furthermore, the extent of the 1σ error bars indicate

that, for this example at least, that sequential annealed importance sampling

is a reasonably precise tool for model comparison.

8.3 Summary

In this chapter, we have discussed and demonstrated methods to calculate

the evidence for Gaussian process models with differing covariance functions.

We have described a new method - sequential annealed importance sampling

- which can be used to produce an evidence estimate that is updated with

the addition of new data. In later chapters, we demonstrate how model com-
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parisons done in this way can be applied to enhance the performance of the

Gaussian process optimisation algorithm.



Chapter 9

Gaussian Processes for

Optimisation

9.1 Introduction

Until now, we have discussed and demonstrated basic Gaussian processes for

regression and introduced some enhancements allowing the construction of

more sophisticated models. In this chapter, we shift focus and examine the

application of some of these methods. In particular, we discuss and demon-

strate the use of Gaussian processes for the efficient solution of optimisation

problems.

9.2 Response Surface Methodology

One potentially efficient way to perform optimisation is to use the data col-

lected so far to build a predictive model, and use that model to select subse-

quent search points. In an optimisation context, this model is often referred

to as a response surface. This method is potentially efficient if data collection

is expensive relative to the cost of building and searching a response surface.

In many such cases, it can be beneficial to use relatively cheap computing re-

sources to build and search a response surface, rather than incur large costs

by directly searching in the problem space.

119
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In the response surface methodology (see [44] for an introduction), we con-

struct a response surface and search that surface for likely candidate points,

measured according to some criterion. Jones [27] provides a summary of

many such methods and discusses their relative merits. As a simple exam-

ple, consider a noiseless optimisation problem where we currently have a set

of N samples and proceed with the following method:

(1) Fit a basis function model to the data by minimising the sum of squared

errors.

(2) Find an optimum point of the model and call this point xnew

(3) Sample the problem at xnew, and add the result to the current data set.

(4) Repeat until satisfied or until is no satisfactory progress is being made.

Unfortunately, this simple method is not suitable as a general purpose optimi-

sation algorithm. In may cases it rapidly converges to suboptimal solutions.

The reason for this is that the model can be easily deceived and overly commit

to an erroneous belief about the structure of the underlying problem. If this

happens, the model will continually exploit this belief and continue to gather

sub-optimal data.

For more general purposes, we require more sophisticated search methods

that are capable of exploiting information gained from samples gathered thus

far, but also have the capability to explore unchartered territory and collect

new information about the problem’s structure. A natural way of doing this

is to use statistical models, where we do not merely have a single prediction at

each search point, but have a full predictive distribution at each search point.

Jones [27] describes kriging models and shows how they can be used to opti-

mise 1 dimensional problems. This chapter extends this work, and consists of

a discussion and demonstration of how Gaussian process models can be used

to solve problems with the response surface methodology.
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9.3 Expected Improvement

If the model we build provides a predictive distribution at any test point, then

we can use it to ask what improvement, over our current best sample, do we

expect to get from sampling at any test point. Such a measure is known as the

expected improvement (e.g. see Jones 2001, [27]). If the predictive distribution

is Gaussian, then expected improvement is straightforward to calculate.

For a Gaussian process model, at any test point x we have a predictive dis-

tribution that is Gaussian with mean y(x) = kTC−1y, and variance s2(x) =

κ − kTC−1k. Therefore, for a Gaussian process model, we can calculate the

expected improvement at any test point.

For a minimisation problem, the predicted improvement at x is defined as

I = I(x) = fbest − ŷ(x), where fbest is the current best score and ŷ(x) is the

model’s prediction at x. The prediction is Gaussian distributed as ŷ(x) ∼
N (y(x), s2(x)), as is the improvement: I ∼ N (fbest − y(x), s2(x)).

The expected improvement at x for models with Gaussian predictive distri-

butions is defined as [27]:

EImin(x) =

∫ I=∞

I=0

Ip(I)dI (9.1)

=

∫ I=∞

I=0

I

{
1√

2πs(x)
exp

[
−(I − (fbest − y(x)))2

2s2(x)

]}
dI (9.2)

= s(x) [u Φ(u) + φ(u)] (9.3)

where u = fbest−y(x)
s(x)

.

The functions Φ(·) and φ(·) are the normal cumulative distribution and nor-

mal density function respectively.

Φ(u) =
1

2
erf

(
u√
2

)
+

1

2
φ(u) =

1√
2π

exp

(
−u2

2

)
(9.4)

For a maximisation problem, the predicted improvement at x is defined as

I = I(x) = ŷ(x)− fbest, u = y(x)−fbest

s(x)
and the expected improvement is:

EImax(x) = s(x) [u Φ(u) + φ(u)] (9.5)

Figure 9.1 illustrates the concept of expected improvement for a GP model in

a maximisation context. Observe the following:
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• Expected improvement is maximum when the model’s prediction is bet-

ter than fbest and the predictive variance is high.

• When the model prediction is low and the predictive variance is low, the

expected improvement is almost zero.

• When the model prediction is low and the predictive variance is high,

the expected improvement is quite high.

Figure 9.1: Expected Improvement for a GP model in a maximisation context. Data
points are shown as black dots. The GP model’s predictive distribution has a mean
shown by the black line that fits the data, and a standard deviation shown by the
shaded region surrounding the mean. The black line at the bottom shows the ex-
pected improvement given this particular GP model.



9.4. GRADIENT OF EXPECTED IMPROVEMENT 123

9.4 Gradient of Expected Improvement

To find a new search point that maximises the expected improvement, we can

make use of gradient information. The gradient of EImax with respect to x is:

∂EImax(x)

∂x
=

[
uΦ(u) + φ(u)

]
∂s(x)

∂x
+ s(x)Φ(u)

∂u

∂x
(9.6)

where

∂s(x)

∂x
= −

(
∂kT

∂x
C−1k

)/
s(x) (9.7)

∂u

∂x
=

(
∂y(x)

∂x
− u

∂s(x)

∂x

)/
s(x) (9.8)

and

∂y(x)

∂x
=

∂kT

∂x
C−1y (9.9)

The D ×N Jacobian ∂k
T

∂x is dependent on the form of the covariance function

k(·, ·) and is constructed as follows:

∂kT

∂x
=





∂k(x,x1)
∂x1

. . . ∂k(x,xN )
∂x1

...
. . .

...

∂k(x,x1)
∂xD

. . . ∂k(x,xN )
∂xD




(9.10)

where x = [x1 . . . xD]T.

9.5 GPO

In this section, the Gaussian Processes for Optimisation (GPO) algorithm is

described. This is not the first description of GPO. Jones [27] first introduced

Kriging for optimisation using expected improvement to select the next iter-

ate. Given the near equivalence of Kriging and Gaussian process regression,

we consider this the first description of the algorithm. Büche, Schraudolph

and Koumoutsakos [8] explicitly used Gaussian processes for optimisation,

and demonstrated the algorithm’s effectiveness on a number of benchmark
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problems. This work did not make use of expected improvement, did not

place prior distributions over the hyperparameters, and did not consider the

deficiencies of using an axis-aligned covariance function to optimise objec-

tive functions with correlated output (dependent) variables. The algorithm

presented below, and enhanced in the next chapter, takes these factors into

account.

9.5.1 Standard GPO

Our goal is find an optimum xopt of a problem f ∗(·) with as few samples as

possible. GPO begins by assuming a start point x0, which in general is sam-

pled from some distribution reflecting our prior beliefs about f ∗(·). At each

iteration, the algorithm builds a GP model of the current data, and then finds

the next search point xnew that has maximum expected improvement accord-

ing to that model. A sample is taken at xnew and the result is added to the data

set. Iterations continue until some stopping criterion is met, to be discussed

below. Algorithm 9.1 describes GPO more specifically.

Algorithm 9.1: GPO for Maximisation

Input: optimisation problem f ∗( ·) , and starting point x0

xbest ← x0, ybest ← f ∗( x0) ;1

y← [ybest], X← xbest;2

repeat3

θMAP ←− arg max
θ

p(θ|X,y);4

xnew ←− arg max
x

EImax(x|X,y, θMAP );5

ynew ← f ∗( xnew) ;6

if ynew ≥ ybest then7

ybest ← ynew, xbest ← xnew;8

X← [X |xnew], y←
[
yT | ynew

]T
;9

until (stopping criteria satisfied) ;10

return xbest11

The GP model is built by maximising the posterior density1 p(θ|X,y), which

is defined as the product of the likelihood function and the prior density over

the hyperparameters. If multimodal posterior distributions are considered

1In practise, we maximise the log posterior density
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a problem, then the GP model can be built by restarting the log posterior

density maximisation multiple times from samples drawn from p(θ).

At each iteration, the resultant GP model is used to select the next search

point xnew by finding a point that maximises the expected improvement. This

can be achieved by using the gradient of the expected improvement as input

to, for example, the conjugate gradient algorithm [54, 68]. To overcome the

problem of suboptimal local maxima, multiple restarts are made starting from

randomly selected points in the current data set X. The new observation ynew

is found from f ∗(xnew) and the results are added to the current data set.

9.5.2 Standard GPO Example - Linesearch

Figure 9.2 shows the results of running standard GPO on a simple 1D toy

problem. Notice how the search initially focuses on the suboptimal maxi-

mum on the left. However, once the algorithm has sampled here a few times,

the expected improvement of sampling in this suboptimal region diminishes

quickly. At this point, the search expands into new regions. This demon-

strates the principle of exploring versus exploiting - the algorithm will ex-

ploit local knowledge to make improvement, but will also explore when the

expected returns of this exploitation reduce.

9.5.3 Bounded GPO

Standard GPO (algorithm 9.1) is has no bound on the region where the next

sample point is selected from. The next point is chosen to maximise expected

improvement, and no other constraint exists unless the particular application

limits the domain of the decision variables. Therefore, in principle, standard

GPO is capable of global optimisation. The GPO example in figure 9.2 demon-

strates this. The domain from where the next sample point is selected from is

limited only by the left and right limits, and the algorithm chooses the point

within these limits that maximises expected improvement. The result is that

the global optimum is found, even though the initial samples are in the vicin-

ity of a suboptimal solution.

Sometimes we might only be interested in performing local optimisation, or

we may have reason to believe that global optimisation would be extremely
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Figure 9.2: GPO applied to a 1D function for 9 iterations. The underlying function to
be optimised is shown as a dashed line. The sample points are shown as black dots,
along with the model’s predictive distribution (the line surrounded by the shaded
area shows the mean and standard deviation). The expected improvement is rescaled
and shown by the solid line at the bottom of each window.

costly. In such cases we would like to limit the domain from which the next

sample point can be taken. One way of doing this is to select as the next

sample point the point that maximises expected improvement within some

distance ǫ of the current best point. If we set ǫ to a small value we force GPO

to search locally and exploit the current model information. However, ex-

ploration is limited and we would not expect to make huge improvements

with each iteration. Instead, progress will be made slowly but steadily, climb-

ing toward a local optimum. If ǫ is set to a large value, then GPO will tend

to explore more and has the potential to make large gains per iteration, and

might potentially discover new areas associated with separate local optima.

Another difference is that progress tends to not be as steady, but occurs in a

series of sudden leaps.
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As an example, consider maximising a noiseless 6D elliptical Gaussian ob-

jective function with two different bounds on search: a small bound ǫ = 0.25

and a large bound ǫ = 2.5. I used an objective function with covariance matrix

Σ = diag(0.1, 0.28, 0.46, 0.64, 0.82, 1.0)−2. The starting point x0 for the optimi-

sation had a distance of 1.54 to the maximum at 0, such that f(x0) = 0.05.

Bounded GPO, with a target of f(x) ≥ 0.975 was run 50 times using both the

small and large values of ǫ. The average results are shown in figure 9.3. Note

that Bounded GPO with localised search (ǫ = 0.25) performs better than the

less localised version (ǫ = 2.5). Furthermore, by observing the extent of the

error bars, the optimisation can be seen to be less variable when ǫ = 0.25.

This result suggests that if we wish to locally optimise, then it is better to use

bounded GPO rather than global GPO. However, this raises the question of

what bound to choose. If we have some prior knowledge about the form of

the objective function, then we might have reasons for choosing a particular

ǫ. If we have little or no prior knowledge then we take a risk in setting a fixed

ǫ. That is, if ǫ is too small relative to the distance that must be covered to

reach an optimum, then many samples will be required. Conversely, if ǫ is too

large, the search might be excessively global as demonstrated in the current

example.

The experiment was repeated with ǫ = 0.25 for the first 8 samples, and then

raised to ǫ = 2.5 for the remainder of the optimisation. The results are shown

in figure 9.4, and compared with the ǫ = 0.25 case from the previous experi-

ment. Now, the average progress in both cases is not notably different. Over-

all, it seems as though the best we can do is to initially perform very local

optimisation (small ǫ), and then increase the search bound to make the search

more global.

Another method for setting ǫ is to allow the search bound to adapt accord-

ing to the recent progress of the algorithm. The search bound increases if an

improvement is made and decreases otherwise. Call the factor by which ǫ

increases or decreases ǫinc. Therefore, the search bound at iteration n + 1 is:

ǫn+1 =





ǫn × ǫinc, if f(xn) is better than fbest

ǫn/ǫinc, otherwise
(9.11)

where fbest is the best objective function value prior to f(xn).

In practise, due to domain knowledge, we might set upper (ǫmax) and lower
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Figure 9.3: Example of Bounded GPO maximising a 6D elliptical Gaussian, with ǫ =
0.25 (dotted) and ǫ = 2.5 (solid). Shown is the mean and 1σ error bars of the best
value attained at each iteration over 50 runs. Only every 4th error bar is shown for
clarity.

(ǫmin) limits to restrict ǫ to a certain range. Note that this method is not suitable

for global optimisation because the search bound ultimately decreases as the

algorithm approaches a local optimum. This method is used for many of the

local optimisation examples to follow as it seems to give good performance,

and eliminates the need to a priori set a good value of ǫ - the algorithm sets

this value as required.

9.6 Stopping Criteria

A general rule for when to stop is hard to define. Jones [27] suggests stopping

when the maximum expected improvement falls below some threshold, how-

ever, this is not sufficient in general. If the particular data at some iteration of

GPO resulted in the GP model being ’deceived’ then the algorithm might pre-



9.6. STOPPING CRITERIA 129

10 20 30 40 50
0  

0.5

1.0

Iteration

f(
x)

Figure 9.4: Example of Bounded GPO maximising a 6D elliptical Gaussian, with ǫ =
0.25 (dotted) and ǫ = 0.25 for the first 8 samples, and ǫ = 2.5 otherwise (solid). Shown
is the mean and 1σ error bars of the best value attained at each iteration over 50 runs.
Only every 4th error bar is shown for clarity.

maturely and erroneously terminate. An example of this is shown at iteration

3 of figure 9.2. Here, 3 data points exist that by chance are fitted very well by

a very smooth GP model with low noise. As a result, the predictive variance

and hence the expected improvement across the whole model becomes very

small (although it is rescaled in the figure). At this point, if we put full trust

in this model, then we might conclude that it is unlikely that we will make

any further improvement. Clearly, such a conclusion is wrong. The problem

here comes about because we use and commit to the maximum likelihood hy-

perparameters. Perhaps this problem would be alleviated if we were to take

samples from posterior distribution over hyperparameters.

Instead of a general stopping rule, it is suggested here that one devise stop-

ping rules based on problem knowledge or the particular application. For

example, we might have a optimisation target or there might be some limit

on the total number of samples that can be taken. Both of these cases implic-
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itly define stopping conditions.

9.7 Problems with standard GPO

9.7.1 The Effect of Noise

Many optimisation problems are complicated by the fact that evaluation of

the objective function is noisy. Either the underlying problem to be solved

has a stochastic component, or the problem system is deterministic but our

observations are noisy. In any case, we obviously want our underlying model

to deal gracefully with noise. The most basic way to do this is to add a

cov(xm,xn) = δmnσ2 term to a Gaussian process covariance function. Such

a model should be able to infer and account for additive, stationary, Gaussian

white noise. In many cases, the noise will be more complicated than this. For

example, the noise might be non-stationary (heteroscedastic) with a variance

that changes across input space, or the noise might be non-Gaussian. Whether

or not the simple stationary Gaussian noise model can adequately account for

such noise depends on the degree of heteroscedasticity and non-Gaussianity.

In this section, we demonstrate the effect of non-stationary Gaussian noise on

the progress of GPO, applied to a simple 3D hyperelliptical Gaussian.

The objective function is f(x) = (1 + α) exp(−1
2
xTΣx), where Σ =

diag
(

1
0.32

1
0.652

1
1.02

)
, and α is a Gaussian random variable with variance σ2 =

0.1 for the noisy problem, and σ2 = 0 for the noiseless control. The

GPO covariance function is given by (7.1) and Gaussian prior distribu-

tions are placed over the hyperparameters. The optimisation starts from

x0 =
√

1
3
log(400)[0.3 0.65 1.0]T such that f(x0) = 0.05, and iterates until

exp(−1
2
xTΣx) ≥ 0.975 (until a sample is taken within the contour defined

by f(x) = 0.975 when α = 0). At each iteration, the point of maximum ex-

pected improvement within a distance of 0.25 from the current best sample

was used as the next sample point. The optimisation was repeated 50 times

for the noisy and control problem. The control problem took an average of

15.6 ± 2.3 samples to solve, and the noisy problem took 18.0 ± 4.8 samples

(mean ± 1 standard deviation). So in this simple example, GPO takes 15%

more samples to solve the noisy problem but is 4.4 =
(

4.8
2.3

)2
times more vari-



9.7. PROBLEMS WITH STANDARD GPO 131

able.

Note that if the experiment was repeated with stationary noise, f(x) =

exp(−1
2
xTΣx) + α with α ∼ N (0, 0.12) then the optimisation initially pro-

ceeds randomly, as the initial signal level f(x0) = 0.05+α0 is swamped by the

noise.

9.7.2 Correlated Variables

Consider the optimisation of an hyperelliptical objective function, for exam-

ple a Gaussian with covariance matrix Σ = VTΛV, where Λ is a diagonal

matrix of eigenvalues, and V is the orthonormal matrix of eigenvectors. We

will examine two cases here. In the simplest case, the Gaussian is axis aligned

such that V = I, so Σ is a diagonal matrix. The more general case is where the

principal axes of the Gaussian are not aligned with the axes corresponding to

the decision variables for the objective function. In other words, the output

(dependent) variables are correlated and Σ is some arbitrary positive definite

matrix.

In this section, we will use Gaussian Process Optimisation with bounded

search (initial ǫ = 0.15 and ǫinc = 1.5, ǫmax = 1, ǫmin = 0.1) to find a point

x∗ such that f(x∗) > 0.975, where f(x) = exp(−1
2
xTΣx) and x ∈ RD. Two

cases are considered: the case when Σ = Λ, and the case when Σ = VTΛV,

where V is defined by equations (7.5) and (7.6) with a Givens angle of ρij = π
4
.

In both cases Λ = diag( 1
λ2
1
. . . 1

λ2
D

), where λ1 . . . λD are uniformly spaced from

0.1 to 1.0. The optimisations start from x0 =
√

1
D

log(400)[λ1 . . . λD]T when

Σ = Λ, and x0 =
√

1
D

log(400)VT[λ1 . . . λD]T when Σ = VTΛV. This means

that f(x0) = 0.05 in both cases.

We will use a squared-exponential covariance function with a length scale

exp(rd) associated with each axis:

cov(xi,xj) = exp(v) exp

(
−1

2

D∑

d=1

(x
(d)
i − x

(d)
j )2

exp(2rd)

)
+ δij exp(2β) (9.12)

Figure 7.1(left), (page 93), showed a sample GP generated from this covari-

ance function. Notice how the features of this sample are axis aligned. We

see no particular pattern as we move in the direction that bisects the axes.
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Compare this to the second GP sample shown in figure 7.1. Clearly, this func-

tion has features that are not aligned to the variable axes. Here, we examine

whether an axis-aligned covariance function is suitable for modelling and op-

timising objective functions with correlated output variables.

GPO was run 10 times for both problems (aligned and rotated) across problem

dimensionalities D = 2, 3, 4, 5, 6. Figure 9.5 clearly shows that GPO perfor-

mance (with covariance function (9.12)) is worse when the objective function

contains correlated variables. Overall, optimising an axis-aligned hyperellip-

tical Gaussian with an axis-aligned Gaussian process model is at least 2 times

easier than optimising the same objective when it has been significantly ro-

tated relative to the decision variable axes.

2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Dimensionality

N
um

be
r 

of
 It

er
at

io
ns

Figure 9.5: Results of running GPO with an axis-aligned covariance function on an
axis-aligned (solid) and rotated (dotted) objective function. For each dimensionality,
the mean number of iterations required to find a solution is shown along with the 1σ
error bars.
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9.7.3 Computational Complexity

Directly building a GP model of n observations has a computational cost of

O(n3), corresponding to inversion of the covariance matrix. The degree to

which this is a problem depends on the optimisation application. If samples

are very expensive to obtain, and optimisation is offline, then this cost may

be acceptable. However, if the optimisation runs on-line, in real time, and

requires thousands of samples, then standard GPO may be too expensive.

Section 10.4 discusses one method to potentially offset the problem of com-

putational cost.

9.7.4 Non-stationarity

The covariance function employed by most practitioners is stationary. That is,

cov(xi,xi +δ) = cov(xj ,xj +δ), ∀i, j. This presents no problem if the objective

function has characteristics that do nat vary over the input space. Informally,

if the statistics that describe the behaviour of the objective function are in-

dependent of x, then the objective function can be modelled and optimised

with a stationary covariance function. If, however, the objective function has

characteristics that vary significantly over the input space, then a stationary

Gaussian process model may be inadequate.

Some objective functions have an unbounded range - either unbounded above,

below or both. Many such problems also possess statistics that vary across in-

put space. A simple example is the quadratic f(x) = xTx, which has a mini-

mum at zero but is unbounded above. The quadratic has a rate of change that

increases as one moves away from the origin, and therefore, the local character

of the quadratic changes depending on where it is observed. Such a function

cannot be adequately globally modelled with a stationary covariance func-

tion.

9.8 Summary

In this chapter, we have described and demonstrated a basic algorithm that

uses Gaussian process inference for optimisation. The work presented here
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differs from that of Jones [27] and Büche et al. [8] in the following ways.

(1) We use a Gaussian process regression model, rather than Jones’ Kriging

model for the response surface.

(2) We use the expected improvement to select the next iterate rather than

the merit functions presented by Büche et al.

(3) We place prior distributions over the model parameters (i.e. the covari-

ance function hyperparameters).

(4) We identify a number of problems with the GPO algorithm, in particu-

lar, the detrimental effect of correlated decision variables.

In the next chapter, we introduce enhancements to the algorithm that go some

way toward dealing with the problems outlined in section 9.7.



Chapter 10

Enhanced GPO

10.1 Introduction

This chapter describes some enhancements to the basic GPO algorithm. These

enhancements are introduced to help solve optimisation problems with cor-

related variables, and problems that may take many iterations to solve. We

demonstrate these enhancements and show how GPO can be used to effi-

ciently solve the double pole balancing task. Finally, we introduce and discuss

the use of Bayesian neural networks for optimisation.

10.2 Rotated Covariance Functions

Section 9.7.2 suggested that GP models with axis aligned covariance functions

perform poorly if the data to be modelled has features that are rotated relative

to the coordinate axes. One way to overcome this is to use a parameterisation

that allows for rotated covariance functions. There are a number of possible

parameterisations, as discussed in chapter 7. Remember that the aim is to pa-

rameterise Σ = VTΛV, such that V is not forced to equal the identity matrix

I, and that any values of the parameters must result in a positive definite Σ.

We repeat the optimisations of section 9.7.2, but use a GP model with a co-

variance function defined by a full covariance matrix, repeated here for con-

135
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venience:

cov(xm,xn) = exp(v) exp
(
−1

2
(xm − xn)TΣ(xm − xn)

)
+ δmn exp(2β) (10.1)

where Σ is parameterised with Givens angles, as described in section 7.3

(page 95).

The results are shown in figure 10.1 and show that using a rotated covari-

ance function can speed the optimisation of a rotated objective function, when

compared to optimisation using an axis-aligned covariance function. On the

other hand, use of the rotated covariance function on the axis-aligned objec-

tive function leads to slower optimisation, especially as the problem dimen-

sionality increases.

These results suggest that the most efficient optimisation is achieved by using

a model that is well matched to the underlying objective function. A simple

objective function (e.g. axis-aligned) is optimised faster with a simple (axis-

aligned) model. A complex objective function (e.g. rotated) is optimised faster

with a complex (rotated) model. Therefore, if the goal is to minimise the num-

ber of samples required for optimisation across a number of varying objective

functions, then we cannot use a single model and hope to get good results.

These results suggest that if we wish to use a single model to guide optimisa-

tion, then the best performance will be attained if that model is tuned to the

properties of the objective function.

The situation here is consistent with the No Free Lunch Theorem [89, 90],

which states, “All algorithms that search for an extremum of a cost function per-

form exactly the same, when averaged over all possible cost surfaces”. A specialised

algorithm, tuned to a particular objective function will perform well when

searching for the optimum of that function. However, that same algorithm

will perform relatively poorly on some other problems that a general pur-

pose algorithm might solve quite easily. In the current context, the GP model

with the fully parameterised covariance matrix creates a specialised algorithm

that is tuned to perform well on optimising rotated hyperelliptical Gaussian

functions. The cost of such specialisation is a poorer performance on an axis-

aligned function.
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Figure 10.1: Results of running GPO, on an axis-aligned (top) and rotated (bottom)
objective function, with an axis-aligned covariance function (dotted line) and a ro-
tated covariance function (solid line). For each dimensionality, the mean number of
iterations required to find a solution is shown along with the 1σ error bars.
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10.3 Bayesian GPO

Section 10.2 showed how a more complex GP model may speed optimisation.

However, we also saw how more complicated models can impede optimi-

sation, particularly when the underlying objective function can be modelled

sufficiently with a simpler model. This is reminiscent of the problems of over-

fitting. That is, a model that is too complex can fit data very well, but has a

poor generalisation performance. For optimisation purposes with GPO, we

certainly want to fit data well to maintain a reliable memory of what is good.

However, if we overfit we risk making bad choices about where to go next.

We want our models to generalise well and to make good predictions in unex-

plored space. The following sections explore the potential improvements that

can be made to GPO by reducing overfitting and improving generalisation.

For regression problems, a principled way of reducing overfitting is to use

Bayesian methods rather than the maximum likelihood or maximum a poste-

riori probability parameters for a single model. In the full Bayesian treatment,

we don’t commit to a single best model, and we attempt to retain as much in-

formation as we can about the posterior distribution over hyperparameters.

That is, there are two distinct levels of inference. The first is where we make

predictions by integrating over the posterior density, rather than using a sin-

gle maximum a posteriori set of hyperparameters. The second level is where

we deal with uncertainty over models. Here, we have the option of weight-

ing various model types based on the evidence for those models and hence

the posterior probability of each model. In this way, simple models that fit the

data just as well as complex models are favoured.

10.3.1 Bayesian Expected Improvement

As discussed in section 8.1, for a single GP model H, defined by a single pa-

rameterised covariance function, the predictive distribution for a new input

vector x∗ is:

p(y∗|x∗,D,H) =

∫
p(y∗|x∗, θ,D,H)p(θ|D,H)dθ (10.2)

≈ 1

R

R∑

r=1

p(y∗|x∗, θr,D,H) (10.3)
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where θr are samples drawn from the posterior distribution with density

p(θ|D,H), for example, by using MCMC methods.

Given a set of such samples we can calculate an approximation to the ’Bayesian

expected improvement’, EIBayes:

EIBayes(x) =
1

R

R∑

r=1

sr(x) [ur Φ(ur) + φ(ur)] (10.4)

where ur = yr(x)−fbest

sr(x)
(for maximisation), yr(x) is the model prediction and

s2
r(x) is the predictive variance at test point x for the Gaussian process corre-

sponding to the rth hyperparameter sample, θr.

Figure 10.2 shows an example of EIBayes calculated from 50 Metropolis sam-

ples and compares this to the expected improvement calculated from the MAP

hyperparameters, EIMAP . Note that the mean prediction for both the MAP

and Bayesian methods are very similar, but that EIBayes and EIMAP vary quite

substantially. The EI peaks are almost at the same point which means that

the next sample taken in both the Bayes and MAP cases would be very sim-

ilar. However, the Bayesian method seems to have more “optimistic” expec-

tations. That is, EIBayes is always greater than EIMAP , and expects significant

improvement in regions that EIMAP considers less worthwhile.

If the posterior density over hyperparameters is approximated well by θMAP

then Bayesian GPO is not expected to significantly outperform MAP GPO.

This can happen when we have large data sets, which can tend to make the

posterior density unimodal, and concentrated around θMAP . In what follows,

rather than calculating Bayesian expected improvement in the way above, we

will instead focus our efforts on using Bayes’ theorem to compare and weight

different models to be used in the GPO algorithm.

10.3.2 Model Comparison

To recap, section 10.2 demonstrated a problem with GPO when optimising

objective functions of differing complexity. A simple model produces good

results on a simple objective function, but poor results on a complex objective

function. A complex model, however, performs well on the complex problem,

but is worse than the simple model optimising the simple problem.

We now reintroduce the notion of model comparison as discussed in section
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EI

mean

Figure 10.2: Expected Improvement for MAP (dotted) and Bayesian (solid) versions
of GPO. The mean predictions from each method are at the top, while the rescaled EI
is shown at the bottom.

8.2.1 (page 103). In that section, we saw how one could evaluate the model

evidence, either to rank different models, or to weight their predictions ap-

propriately. Roughly, the evidence for a simple model should be higher than

that of a complex model in cases where they both fit the data sufficiently.

Given that, consider incorporating the evaluation of model evidence into our

optimisation algorithm. In particular, consider an algorithm consisting of two

models, one simple, the other complex. So when a new sample is taken, in-

stead of building a single model, we build two models. We decide on the next

sample point by using predictions from both models, but weight the predic-

tions according to the probability of each model.

To demonstrate the idea we repeat the optimisations from section 10.2. That is,

we test the algorithm on two problems. The first is ’simple’, and consists of an

axis-aligned hyperelliptical Gaussian. The second is ’complex’, consisting of a

rotated hyperelliptical Gaussian. The algorithm uses two GP models to guide

its search. The first has an axis-aligned covariance function, and the second

a rotated covariance function with a fully parameterised covariance matrix.
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At each iteration, sequential annealed importance sampling (section 8.2.5 on

page 112) is used to evaluate the evidence for each model, and the posterior

probability of each model is calculated. The next sample point is found by

maximising the sum of the weighted expected improvement from each model,

where each model is weighted according to its posterior probability. For M

models we would maximise the following:

EI(x)comp =
M∑

m=1

p(Hm|D)EI(x)m (10.5)

where EI(x)m is the expected improvement from model m at x.

The results are shown in figure 10.3, where it is clear that the algorithm using

model comparison performs as well as both the simple and complex algo-

rithms on the objective functions that they are specialised to optimise. In fact,

it seems as though the new algorithm performs slightly better on both prob-

lems. Overall, at least in the case of optimising hyperelliptical Gaussians, we

have overcome the problem of having to choose a priori which model to use.

Note that this performance is achieved even though the algorithm takes a

number of iterations to form a useful belief about the form of the objective

function. Obviously, it makes no sense to use just 1 or 2 samples as evi-

dence for a decision either way. How many samples might be required to

form an accurate belief? We can answer this question qualitatively with the

results in figure 10.4. This figure shows the average posterior probability of

the axis-aligned model (which is related to the posterior probability of the ro-

tated model by p(aligned|D) = 1 − p(rotated|D)), over 10 runs, for various

dimensionalities. On average, when the objective function is axis-aligned, the

algorithm shows a high posterior probability of the aligned model. On the

other hand, the rotated model is far more plausible when the objective func-

tion is rotated. Note however, that it takes a significant number of samples to

form these beliefs, and the number of samples required increases with prob-

lem dimensionality.

The example above shows the potential advantages to be gained by evaluat-

ing the evidence for multiple models at each iteration, and using the posterior

probability to weight the importance of each model when searching for subse-

quent sample points. The cost of this improvement is increased computation,

in particular, the cost of evaluating the evidence. For example, with an AMD

Athlon XP 2400+ running MATLAB, it took 7 days to repeat the 6 dimensional
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Figure 10.3: Results of running GPO with model comparison at each iteration (heavy
solid line), compared with GPO with an axis-aligned (dotted line) and a rotated co-
variance function (solid line). All algorithms were run 10 times on an axis-aligned
objective function (top), and rotated objective function (bottom). For each dimen-
sionality, the mean number of samples required to find a solution is shown along
with the 1σ error bars. The GPO with model comparison plot (heavy solid line) is
offset slightly to the right for clarity.
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Figure 10.4: Average posterior probability of the axis-aligned model at each iteration
(number of samples taken) across 10 runs for various problem dimensionalities. The
curves at the top show the probability when the objective function is axis-aligned.
The lower curves correspond to a rotated objective function. The numbers associated
with each curve show the problem dimensionality.

optimisations (both axis aligned and rotated) using sequential annealed im-

portance sampling with wrat
max = 2.0 and 200 annealing runs. To speed the

method up, the evidence for each model could be evaluated separately, and

hence in parallel. Furthermore, the Markov chains for annealed importance

sampling could also be run in parallel. So, given enough parallel resources,

GPO with model comparison could be sped up significantly.

According to the No Free Lunch Theorem as discussed in section 10.2, the

GPO with model comparison (MGPO) algorithm must perform exactly the

same as the axis-aligned and the rotated algorithms, when averaged over all

possible cost surfaces. So, even though the MGPO has better performance

on hyperelliptical Gaussians, there must exist some problems where better

performance would be observed from the axis-aligned or rotated algorithms.

Consider now defining a battery of models, where each model is specialised
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for some particular class of problems, and provides a measure of expected

improvement at any point of interest. By having a big enough battery, suffi-

cient parallel computational resources, and good prior knowledge about the

types of problems we wish to solve, then we can begin to challenge the some-

what gloomy limitations of the NFLT. We cannot defeat NFLT, but at least we

can search for an algorithm that performs well on problems of interest. We

may not be concerned if our algorithm is absolutely hopeless at finding the

optimum of a random landscape.

10.4 Reduced Rank Gaussian Processes for

Optimisation

Basic GP regression scales asO(n3) due to the cost of inverting the covariance

matrix. The inverse, C−1, is required both for training (in calculating the log-

likelihood), and for making predictions (mean and variance). Calculating the

inverse exactly is acceptable for problems with relatively small n, but as n

grows large (e.g. n > 10000) exact inverses become far too expensive. In this

section we consider speeding up basic GPO by using an approximation that

reduce the O(n3) cost.

Gaussian processes optimisation with expected improvement requires a model

that provides a predictive mean and variance at any input point. Therefore,

any approximate model we use to speed up optimisation needs to provide a

predictive mean and variance. One such model is a reduced rank Gaussian

process (RRGP) model [55], as discussed in chapter 5.

To reiterate, an RRGP model of n data points Xn is formed by considering

a set of m ≤ n support points Xm. In this thesis, the support points form

a subset of Xn although this is not necessary in general. To simplify, let the

support points be the first m points in Xn. That is, Xn = [Xm|xm+1 . . .xn].

Given a training input set Xn, and covariance function k(xi,xj), we form the

matrices Knm and Kmm where Kab is an a × b matrix, with the (i, j)th entry

defined by k(xi,xj). At any test point x∗ we find the predictive mean m(x∗)

and variance v(x∗) as follows:

m(x∗) = q(x∗)
Tµ∗ (10.6)
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v(x∗) = σ2 + q(x∗)
TΣ∗q(x∗) (10.7)

where q(x∗)
T =

[
k(x∗)

T | k∗∗
]
.

The scalar k∗∗ = k(x∗,x∗), and k(x∗) = [k(x∗,x1) . . . k(x∗,xm)] is the m × 1

vector of covariances between x∗ and the m support points.

The (m + 1) × 1 vector µ∗ is the mean of the posterior distribution over the

augmented weights, and is equal to

µ∗ = σ−2Σ∗ [Knm | k∗]
T
y (10.8)

where k∗ = [k(x∗,x1) . . . k(x∗,xn)] is the n × 1 vector of covariances between

x∗ and the n training inputs.

The (m + 1) × (m + 1) matrix Σ∗ is the covariance matrix of the posterior

distribution over the augmented weights, and is equal to

Σ∗ =



Σ∗
11 Σ∗

12

Σ∗
21 Σ∗

22



 =



 Σ−1 k(x∗) + σ−2KT
nmk∗

k(x∗)
T + σ−2kT

∗ Knm k∗∗ + σ−2kT
∗ k∗




−1

(10.9)

where the m×m matrix Σ−1 = σ−2KT
nmKnm + Kmm

The computational cost of prediction is an initialO(nm2) to compute Σ. Then,

each test point has a cost of O(nm), due to the most expensive computation

KT
nmk∗. Once Σ has been calculated, it is best to calculate Σ∗ by inversion by

partitioning. Firstly, let r = k(x∗) + σ−2KT
nmk∗.

Then Σ∗
11 = Σ + ΣrrTΣ/ρ, Σ∗

12 = −Σr/ρ = Σ∗T
21 , and Σ∗

22 = 1/ρ where

ρ = k∗∗ + σ−2kT
∗ k∗ − rTΣr.

10.4.1 Reduced Rank GP Training

To construct a reduced rank GP model, we require a covariance function, usu-

ally parameterised with a set of hyperparameters, θ and σ2, and a set of sup-

port inputs. For training, we wish to use Bayes’ theorem to infer the most

likely or most probable hyperparameters and support subset.

Recall that the support subset is equal to the first m training inputs. This

means a different support set simply corresponds to reordering of the train-

ing inputs. One such reordering is described as follows. Let z be a vec-

tor of indices that reorders the original data X and y to form the training
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data Xn and yn. That is, given z = [z1 . . . zn]T, we reorder the original data

X = [x1 . . .xn],y = [y1 . . . yn]T to form the training data Xn = [xz1 . . .xzn
],yn =

[yz1 . . . yzn
]T. Note that only the first m elements of z are relevant, and their or-

dering is arbitrary – these are the elements that define the support subset. The

remainder of the training set can be ordered arbitrarily.

The marginal likelihood of the hyperparameters given a support set is

p(yn|Xn, z, θ, σ2) = N (0,Q) where Q = σ2In + KnmK−1
mmKT

nm. The log of

this is [55]:

L = −n
2

log(2π)− 1
2
log |Q| − 1

2
yT

nQ−1yn (10.10)

where we can use the matrix inversion lemma to efficiently calculate

Q−1 = σ−2In − σ−4Knm(Kmm + σ−2KT
nmKnm)−1KT

nm (10.11)

which requires inversion of an m×m matrix, rather than an n× n matrix.

Given a support set, we can maximise L to find the maximum likelihood hy-

perparameters. If we wish, we incorporate prior beliefs about the hyperpa-

rameters and a log prior term to equation (10.10). We can then find the maxi-

mum a posteriori (MAP) hyperparameters.

To learn the support set, ideally one would like to find the support set that

maximises L. Unfortunately, the number of possible support sets is combina-

torial, nCm [55], which is obviously prohibitive for large n (e.g. 32C5 = 201376).

Instead, we examine just a fixed number of the possible subsets, and use the

best for RRGP predictions.

10.4.2 Reduced Rank GP Optimisation

Given a support set and hyperparameters, the RRGP model can be queried

for a predictive mean and variance at any input point. This prediction can

then be used to find the expected improvement EIrrgp(x), and its maximum,

resulting in reduced rank GP optimisation (RRGPO).

Note that RRGPO is the same as basic GPO, except that we use a reduced rank

approximation to the full GP. Furthermore, the derivatives of 10.6 and 10.7 can

be found, enabling the evaluation of
∂EIrrgp(x)

∂xi
. However, this derivative is
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complicated, and is not evaluated in the example to follow. Instead, EIrrgp(x)

is maximised by random search.

In this example, RRGPO is used to maximise a noiseless 36D hyperellipti-

cal Gaussian f(x) = exp(−1
2
xTΣx), where Σ = diag( 1

λ2
1
. . . 1

λ2
36

), and λ1 . . . λ36

are uniformly spaced from 0.3 to 1.0. The optimsation starts from x0 =
√

log 400
6

[λ1 . . . λ36]
T, (such that f(x0) = 0.05), and proceeds until f(x∗) ≥ 0.975.

At each iteration of the optimisation, a RRGP is built by finding hyperparam-

eters and a support set that maximises the joint posterior density p(θ, σ2, z|D).

At iteration n, if n ≤ 36, then a full GP model is used (m = n), and the support

set is equivalent to the training inputs. In this case, we simply maximise the

posterior density over hyperparameters. For n > m, we use a reduced rank

of m = 36. In this case, the support set is not equivalent to the training input

set. We examined a random selection of 10 support subsets, and the support

set that resulted in the maximum posterior probability (after optimising the

hyperparameters) was chosen as the support set for predictions. This is sub-

optimal, but as mentioned above, it is too expensive to examine all possible

support sets.

Results are shown in figure 10.5, along with an 18D example with m = 36.

The 18D problem was solved in 69 iterations, and the 36D problem took 147

iterations. Note that this performance was attained even though a maximum

of 36 support points were included in the support set for training and predic-

tion, showing that GPO using a reduced rank approximation is feasible, and

useful at least for this noiseless toy example.

10.5 Double Pole Balancing with GPO

This section describes the double pole balancing task and shows how it can

be solved efficiently using GPO.

10.5.1 The Double Pole Balancing Task

The double pole balancing task consists of two upright poles (or inverted pen-

dulums), attached by hinges to a cart. The goal is to keep the two poles bal-
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Figure 10.5: Reduced Rank Gaussian Processes Optimisation of a 18 and 36 dimen-
sional hyperelliptical Gaussian. Both optimisations had a reduced rank of m = 36.

anced by applying a [−10, 10]N force to the cart. Balanced poles are defined as

within±36 ◦ from vertical, and the cart is limited to a track which is 4.8m long.

The controller is supplied with inputs from sensors measuring the cart’s po-

sition and velocity x, ẋ and the angle and angular velocity of each pole with

respect to the cart θ1, θ̇1, θ2, θ̇2. The poles have different lengths and masses

(pole 1 is 0.1m and 0.01kg; pole 2 is 1.0m and 0.1kg) and the system is noise-

less with initial state vector s = [x ẋ θ1 θ̇1 θ2 θ̇2]
T = [0 0 0 0 π

180
0]T, where

angles are measured in rad from vertical, and angular velocities are measured

in rad /s. The centre of the track is defined as x = 0, and is the position of

the cart at the beginning of the task. Note that this task is Markovian as the

full system state vector s is available to the controller and is the same as the

“double pole balancing with velocity information” problem as presented by

Stanley and Miikkulainen [76, 75, 74].

If the goal is to keep the poles balanced for as long as possible, one solution

is to wiggle the poles back and forth about a central position. To prevent

this, Gruau [22] defined a fitness function that penalises such solutions. This

Gruau fitness is equal to the weighted sum of two fitness components, fgruau =
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0.1f1 + 0.9f2, [76, 74]. The two components are defined over 1000 time steps

(10 seconds of simulated time):

f1 = t/1000 (10.12a)

f2 =





0 if t < 100,

0.75∑t
i=t−100(|xi|+|ẋi|+|θ1|+|θ̇1|)

otherwise.
(10.12b)

where t is the number of time steps both poles remained balanced during the

10s trial. fgruau can be maximised by keeping both poles balanced, and by

maintaining the cart steady at the centre of the track during the final 1s of

the trial. Effectively, to maximise fgruau the controller must balance the poles

without ‘wiggling’.

As the denominator of (10.12b) approaches zero, f2 approaches infinity. For

this reason, fgruau was non-linearly rescaled into the range [0, 1] to give:

fgpo = tanh

(
fgruau

2

)
(10.13)

Controllers were considered successful solutions when fgpo ≥ tanh
(

5
2

)
.

10.5.2 Feedforward Neural Network Controllers

The double pole balancing task described above is a non-linear, unstable con-

trol problem. However, because the poles have different lengths and masses,

the system is controllable. In addition, the task is Markovian. Overall, full

knowledge of the system state is sufficient to balance the poles, and this can

be achieved with a mapping from s to u, our control force. In other words,

there exists at least one mapping fsolution(·) : s 7→ u that is capable of balanc-

ing the poles. A successful controller must functionally approximate such a

mapping.

In this section, controllers are implemented by feedforward neural networks

with a single hidden layer. The control force from a network with H units is:

u = 10 tanh
(
wT

o tanh
(
WT

i s + b
))

(10.14)

where wo is an H × 1 vector of output weights, b is an H × 1 vector of biases,

Wi is a 6×H matrix of input weights, s is the 6×1 state vector. The controller

output force is limited to [−10, 10]N .
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10.5.3 Optimisation and Incremental Network Growth

The optimisation started with a single unit in the network, H = 1. Initially,

therefore, there were 8 parameters that need optimising. GPO, with an axis

aligned covariance function as in equation (7.1), and data rotation (section 7.5)

prior to training was used to optimise these weights until either there had

been no improvement in the best fitness for 64 consecutive samples, or 250

samples had been taken. When either of these conditions were met, the cur-

rent optimised parameters were frozen, and a new unit with zeroed weights

was added to the network. The cycle repeated until a solution was found, or 5

units and their weights had been optimised. Note that the initial weights for

the first iteration were zero, meaning that the algorithm started from the same

place every time it was run. Further note that at all stages of the optimisation,

only 8 parameters were being optimised.

10.5.4 Optimisation Results

The optimisation described above was run 100 times, as shown in figure 10.6.

96 of these runs found a successful controller solution with fgruau ≥ tanh
(

5
2

)
.

The median number of evaluations required to find a successful controller

was 151, and the mean was 194.

Table 10.1 shows that the majority (78%) of successful controllers used only 1

unit in their solution (i.e. 6 input weights, 1 bias and 1 output weight).

Number of Units % of Controllers

1 75

2 12

3 4

4 2

5 3

Table 10.1: Number of units per successful controller on the double pole balancing
task.
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Figure 10.6: Double Pole Balancing with Gruau fitness, optimised using GPO. The
figure shows 100 separate optimisations (grey) and the average (black).

10.5.5 Comparison with NEAT

Stanley and Miikkulainen [76, 75, 74] introduced “Neuroevolution of Aug-

menting Topologies” (NEAT), and applied it to a number of pole balancing

tasks, including the double pole balancing with velocity information task,

which is the same as the double pole balancing problem as presented above.

The NEAT method is a genetic algorithm with mutation and crossover opera-

tions specially crafted to enhance the evolution of neural network controllers.

The details of NEAT are not important here, we simply use the NEAT results

for comparison with GPO.

The NEAT method produced impressive results in solving the double pole

balancing task with velocity information. On average, NEAT required on av-

erage 3578 network evaluations before finding a controller solution, which

compared favourably with other results from literature. GPO produced suc-
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cessful controllers in 96 out of 100 trials, and did so with a mean of 194 evalu-

ations. This is a significant improvement over NEAT.

10.6 Bayesian Neural Networks for Optimisation

In this section we examine the use of neural network models for optimisation

purposes. That is, instead of using a GP model to build a response surface,

we use a Bayesian neural network (BNN). A BNN model, after MacKay [36,

39, 38] and Neal [48, 46] and reviewed by Lampinen [28], provides not only a

prediction at any given input point, but also a measure of model uncertainty

at that point. We can therefore use a BNN model to calculate the expected

improvement at any input point, and use the point of maximum expected

improvement as the next sample point.

One advantage in using a neural network model over a GP model is that neu-

ral networks can naturally model non-stationary objective functions. For a GP

model, it is quite hard to define a covariance function that is capable of deal-

ing with significant non-stationarity. As an example, consider a model that

consists of a sum of two single-hidden-layer neural-networks. The first net-

work has small weights and makes non-zero predictions in a limited region,

X1. The second network has large weights and makes non-zero predictions in

a second, disjoint region X2. The sum of the networks will make predictions

that vary across the input space, depending on whether the test point resides

in X1 or X2. In other words, this model can represent non-stationarity.

Another advantage in using neural network models is that the cost of eval-

uating the log-likelihood scales as O(n). Compare this to a basic GP model,

where the complexity isO(n3). This means we could use Bayesian neural net-

work models for optimisation problems requiring many thousands, perhaps

millions of evaluations. With basic GPO, we might be limited to a 1000 or so

evaluations.

Consider a feedforward network with a single hidden layer, and a single out-

put unit. We assume additive Gaussian noise with variance σ2 on the ob-

served targets and wish to model data D = {(x1, y1) . . . (xn, yn)}. The network

output as a function of input is f(x ;w) where w are the networks parame-

ters, or weights. Consider the case where we have prior knowledge of σ2, and
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derive the posterior density of weights given the data, p(w|D, σ2) as follows.

p(yi|xi,w, σ2) = N
(
f(xi ;w), σ2)

)
(10.15)

p(D|w, σ2) =

n∏

i=1

p(yi|xi,w, σ2) (10.16)

p(w|D, σ2) =
p(D|w, σ2)p(w|σ2)

p(D)
(10.17)

We would like to make a prediction at some point x∗ by integrating over the

weights w. However, such an integral is intractable, so we resort to approxi-

mate predictions.

p(y∗|x∗,D, σ2) =

∫
p(y∗|x∗,w, σ2)p(w|D, σ2)dw (10.18)

≈ 1

m

m∑

i=1

p(y∗|x∗,wi, σ
2) (10.19)

(10.20)

where wi is the ith sample from the posterior distribution with density p(w|D, σ2)

typically acquired from a numerical method. For example, Neal [48] uses

Hamiltonian Monte Carlo (HMC) for this purpose, whereas MacKay [36, 39,

38] uses the Laplace approximation to approximate p(w, σ2|D) by a Gaussian

centred on the most probable parameters.

In the simplest case, let us set a Gaussian prior distribution over w. For a

given data set, we can then use HMC to generate m weight samples to make

predictions and estimate the expected improvement over the current maxi-

mum, fmax, at any input point, x.

EIBNN (x) =
1

m

m∑

i=1

si(x) [ui Φ(ui) + φ(ui)] (10.21)

where Φ(·) and φ() are defined in equation 9.4. s2
i (x) is the output variance of

the ith sample network f̂i(x), and ui = f̂i(x)−fmax

si(x)
.

As an example, consider figure 10.7. The dashed line shows an objective

function, sampled at the points shown as dots. The sampled data is mod-

elled with a Bayesian neural network with 16 hidden units. σ was set to

0.01 and Gaussian prior distributions were placed over the weights, such that
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p(wij) = N (0, 32), p(ui) = N (0, 12), p(bj) = N (0, 32), p(c) = N (0, 12). The net-

work output is defined by

f(x) = c +

16∑

i=1

ui tanh (wix + bi) (10.22)

The weights were sampled using HMC with τ = 20, ǫ = 0.0015 (see [34] pages

387-390). Ten Markov chains were simulated, and each was run in for 200

iterations after which 5 samples were taking every 15 iterations to give a total

of 50 samples. These samples were used to calculate EIBNN which is plotted

as the solid black line. The network output for each sample f̂m(x) is shown

by the grey lines.

Note that the network samples produce outputs that are more variable away

from data points. This means the Bayesian neural network is more uncertain

in its prediction at these points. The result is that some areas have regions of

high expected improvement. In this simple case, the peaks of the expected

improvement function are good guides as to where to sample next to make

an improvement.

Consider now, using BNN’s and EIBNN for optimisation purposes. We opti-

mise the 1D function shown as the dashed line in figure 10.8. At each iteration,

we use HMC to take samples from the posterior distribution over weights.

We use the same HMC settings as above, but only simulate 5 Markov chains,

and take 10 samples from each. The 50 samples are used to find the point of

maximum expected improvement within the left and right limits of x.

For more complex or higher dimensional optimisation problems the ba-

sic BNN optimisation algorithm described above needs some improvement.

Firstly, if we do not have prior knowledge of the noise variance, then this

would need to be inferred. We could add a parameter representing σ, place a

prior distribution over this parameter, and take samples from the new poste-

rior distribution. Alternatively, we could use the method presented by Neal

[48] and integrate out this parameter analytically. This is done by setting a

Gamma prior distribution over τ = σ−2, and integrating to find

p(D|w) =

∫ ∞

0

p(τ)p(D|w, τ)dτ (10.23)

where the integral is analytically tractable.
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Figure 10.7: Bayesian Neural Network predictions, shown as samples from the pos-
terior distribution over networks (grey lines). The objective function is shown as the
dashed line, and has been sampled at the dots to form a data set. The expected im-
provement calculated from these samples is shown rescaled by the solid black line at
the bottom of the window.

Secondly, in many cases we do not have good prior knowledge about the

behaviour, or form, of the objective function. If the objective function is rela-

tively simple, (e.g. smooth with a single optimum) then the neural network

model might have just a few hidden units, and the weights might have small

values. On the other hand, if the objective function is complicated with many

local optima, then more hidden units and larger weights will be required to

form an adequate neural network model. So without good prior knowledge, it

is difficult to decide on how many hidden units are sufficient, and what prior

distributions should be set over the weights. One solution to this problem

is to examine a range of models and calculate the model evidence for each.
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Figure 10.8: Bayesian Neural Network Optimisation applied to a 1D function for 9
iterations. The function to be optimised is shown as a dashed line. The sample points
are shown as black dots. The predictive mean for all HMC samples from the posterior
distribution over networks is shown by the grey lines. The expected improvement is
rescaled and shown at the bottom of each window.

We then either use the best model, or weight the predictions and expected

improvement by the posterior probability of each model. Alternatively, we

might simply “flood” the model with an excessive number of hidden units,

set a vague prior distribution over the weights, and let the Bayesian method

and the data decide what is best. The latter sounds good in principle, but may

be too computationally demanding to implement in practise.

Whether the Bayesian neural networks for optimisation method as described
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here is efficient or not remains to be determined. The method is introduced

simply as a possible alternative to GPO, and as a method that may be capable

of optimising non-stationary objective functions.

10.7 Summary

This chapter has introduced and demonstrated some enhancements to the

basic GPO algorithm. We have shown that this algorithm can be used to ef-

ficiently find a solution to the non-trivial problem of double pole balancing.

Additionally, we have shown how the use of Bayesian model comparison

methods can lead to improved GPO performance when it is not known a priori

what the most suitable model is. Furthermore, we have introduced reduced

rank GPO, which reduces the computational complexity of the optimisation

while maintaining a reasonable performance. Finally, we introduced Bayesian

neural networks for optimisation as a possibly alternative to GPO.
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Chapter 11

GPs for Gradient and Integral

Estimation

11.1 Introduction

Chapters 9 and 10 examined methods to efficiently perform optimisations us-

ing Gaussian process models. This chapter introduces and discusses methods

to efficiently estimate gradients and integrals of noisy functions using Gaus-

sian process models.

11.2 Gradient Estimation

Consider the situation where we can query a function f ∗(x) with any in-

put xi ∈ R
D, and receive back a noisy evaluation yi = f ∗(xi) + ǫi where ǫi

is a zero mean Gaussian random variable with a variance σ2. By taking a

set of samples, D = {(x1, y1), . . . , (xn, yn)} we wish to estimate the gradient

g∗(x0) =
∂f ∗(x)

∂x

∣∣∣
x=x0

at a point x0. If sampling from f ∗(x) incurs some cost,

then we might wish to minimise the number of samples required to get an

acceptable gradient estimate.

159
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11.2.1 Derivative Processes

Consider a Gaussian process over RD, constructed as the output of a linear

filter excited by Gaussian white noise (see section 2.1 page 17). The filter is

defined by an impulse response h(x),x ∈ RD, which is convolved with a noise

process u(x) to produce the output Gaussian process y(x) = u(x) ∗h(x). Now

define zi(x) as the partial derivative of y(x) with respect to xi. Differentiation

is a linear operation, so zi(x) is also a Gaussian process, which is clear from

the following:

zi(x) =
∂y(x)

∂xi

(11.1)

=
∂

∂xi

{u(x) ∗ h(x)} (11.2)

=
∂

∂xi

{∫ ∞

−∞
u(s)h(x− s)ds

}
(11.3)

=

∫ ∞

−∞
u(s)

{
∂

∂xi
h(x− s)

}
ds (11.4)

= u(x) ∗ gi(x) (11.5)

where gi(x) =
∂h(x)

∂xi
is the impulse response of the filter that produces zi(x)

when excited by the noise process u(x). In other words, we generate the

partial derivative process zi(x) by exciting a linear filter gi(x) with Gaussian

white noise u(x).

By extension, we can generate higher-order and mixed partial-derivatives of

the process y(x) by convolving the same input noise sequence with partial

derivatives of the impulse response

∂n+my(x)

∂xn
i ∂xm

j

= u(x) ∗ ∂n+mh(x)

∂xn
i ∂xm

j

(11.6)

assuming that all the partial derivatives exist, which is so if the impulse re-

sponse h(x) is Gaussian.

The derivative processes, z1(x) . . . zD(x), are derived from the same noise source

as the original process y(x). Therefore, the derivative processes and the orig-

inal processes form a set of dependent Gaussian processes and we can use

the results of chapter 3 for their analysis. In particular, we can find the co-

variance function between the process and first-derivative processes. To do

so, define the covariance function covij(a,b) as the covariance between zi(a)
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and zj(b), with i, j > 0, and a,b ∈ X (the input space). Furthermore, let the

auto-covariance function for the process y(x) be k(a,b). Therefore,

covij(a,b) =

∫

RD

gi(a− r)gj(b− r)dDr (11.7)

=

∫

RD

∂h(a− r)

∂ai

∂h(b− r)

∂bj
dDr (11.8)

=
∂2

∂ai∂bj

{∫

RD

h(a− r)h(b− r)dDr

}
(11.9)

=
∂2k(a,b)

∂ai∂bj

(11.10)

In a similar fashion, we can show that the covariance function between y(a)

and zj(b) is

cj(a,b) =
∂k(a,b)

∂bj
(11.11)

Equations (11.10) and (11.11) are the same as those presented by Solak et al.

[73], albeit with different notations.

11.2.2 Gaussian Process Gradient Estimation

For input vectors xi and xj, consider the squared-exponential covariance func-

tion as a function of input separation s = xi − xj

k(s) = exp(v) exp
(
−1

2
sTAs

)
+ δij exp(2β) (11.12)

where A is a D ×D symmetric, positive definite matrix.

Given data D, and hyperparameters θ = {A, v, β} define f(x) as the mean

prediction of a Gaussian process model

f(x) = kT(x)C−1 y (11.13)

where kT(x) = [k(x− x1) . . . k(x− xn)] and y = [y1 . . . yn]T. C is the covari-

ance matrix built from D and k(s).

f(x) can be differentiated to find the model gradient at x0

g(x0) =
∂f(x)

∂x

∣∣∣
x=x0

(11.14)

= JTC−1 y (11.15)
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where JT is the D × n transpose of the Jacobian

JT =

[
∂k(x0 − x1)

∂x0
. . .

∂k(x0 − xn)

∂x0

]
(11.16)

which has columns defined by differentiating equation (11.12)

∂k(x0 − xi)

∂x0
= − exp(v) exp

(
−1

2
(x0 − xi)

TA(x0 − xi)
)
A(x0 − xi) (11.17)

Differentiation is a linear operation, so g(x0) is a Gaussian process . In partic-

ular, g = g(x0) is a vector with components g1 . . . gD, with Gaussian statistics

defined by a D ×D covariance matrix B, where

B =





cov(g1, g1) . . . cov(g1, gD)
...

. . .
...

cov(gD, g1) . . . cov(gD, gD)




(11.18)

=
∂2k(xi,xj)

∂xi ∂xj

∣∣∣∣
xi,xj=x0

(11.19)

= exp(v)A (11.20)

The D×n matrix of the covariance between our n observations and D gradient

components is




cov(y1, g1) . . . cov(yn, g1)
...

. . .
...

cov(y1, gD) . . . cov(yn, gD)




=

[
∂k(x0, x1)

∂x0
. . .

∂k(x0, xj)

∂x0

]
(11.21)

= JT (11.22)

The Gaussian process prior distribution over y and g is


y

g



 ∼ N



0 ,



C J

JT B







 (11.23)

Using standard formulae [61], we condition on D to find the distribution

g
∣∣D ∼ N

(
JTC−1y , B− JTC−1J

)
(11.24)

where the mean is equal to that in equation (11.15).

In summary, given data D, we can estimate the gradient g at x0 and find the

covariance matrix given by B− JTC−1J.
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11.2.3 Sample Minimisation

When we estimate g using a Gaussian process model, equation (11.24) tells

us that there is uncertainty in this estimate. Intuitively, we desire a gradient

estimate with low uncertainty. This section describes a method to sequentially

select sample points so as to systematically reduce the uncertainty in g.

One way to reduce the uncertainty in the gradient estimate is to take a new

sample x∗ placed so as to minimise the entropy of p(g|D,x∗). We call this

entropy S∗ and derive it as follows, noting that the entropy of a multivariate

Gaussian probability density with covariance matrix Ψ is [67]:

S = D
2

log(2πe) + 1
2
log(|Ψ|) (11.25)

The gradient g, conditional on sampling at x∗ is

g
∣∣D,x∗ ∼ N

(
JTC−1 y , F

)
(11.26)

where F is derived as follows.

Firstly, define Σ as the covariance matrix for the multivariate Gaussian joint

probability density function p(y1, . . . , yn, y∗, g1, . . . , gD)

Σ =





C k J

kT κ bT

JT b B





which is the same as the covariance matrix in equation (11.23) augmented by

covariance entries for the test point x∗, namely, k = k(x∗), κ = cov(y∗, y∗) =

exp(v) + exp(2β), and

b =





cov(g1,x∗)
...

cov(gD,x∗)





=
∂k(x0,x∗)

∂x0

= − exp(v) exp
(
−1

2
(x0 − x∗)

TA(x0 − x∗)
)
A(x0 − x∗)
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Define a block partitioning of Σ as

Σ =



Σ11 Σ12

Σ21 Σ22





where

Σ11 =



C k

kT κ



 Σ12 =



 J

bT



 = ΣT
21 Σ22 = B

Given that the Schur complement [92] is Σ2/1 = Σ22 −Σ21Σ
−1
11 Σ12, the covari-

ance matrix F to fit into equation (11.26) is

F = B−
[
JT b

]


C k

kT κ




−1 

 J

bT





The entropy given x∗ is therefore

S∗ = D
2

log(2πe) + 1
2
log(|F|) (11.27)

We can now attempt to find a x∗ that minimises S∗. Sampling at such a point

is expected to maximally decrease the entropy of the gradient distribution.

Hence we will maximally increase our “certainty” about the model gradient

at x0. If the model is accurate, then we expect the gradient g to be a good

approximation of the problem gradient g∗(x0).

A simple illustrative example is shown in figure 11.1. The top panel shows

a Gaussian process model of 4 samples, taken from a function with additive

Gaussian noise. The bottom panel shows the conditional entropy of the esti-

mate of the gradient at x = 0, as a function of the next sample point x∗. The

entropy has two major local minima, either side of x∗ = 0, indicating the best

places to take the next sample. These minima are neither too close nor too far

from the point at which the gradient is to be estimated. This makes sense, as a

sample that is too close cannot offer much information about the gradient be-

cause it is easily swamped by noise. A point that is too far away ’loses sight’

of the local trend, and cannot contribute either. The most valuable point for

contributing to the gradient estimate lies somewhere in between the two ex-

tremes, and ultimately depends on the model prior distributions and training

data.
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Figure 11.1: (Top) Gaussian process model (solid line) of 4 samples (dots) from a noisy
function. The 95% confidence interval is shaded. (Bottom) Conditional entropy of the
model’s estimate of the gradient at x = 0, as a function of the next sample point.

11.2.4 Gradient of Entropy

Note that we can differentiate (11.27) with respect to the j th component of x∗

to aid in the minimisation.

∂S∗

∂x
j
∗

= 1
2
Tr

(
F−1 ∂F

∂x
j
∗

)
(11.28)

where

∂F

∂x
j
∗

= −∂Σ21

∂x
j
∗

Σ−1
11 Σ12 + Σ21Σ

−1
11

∂Σ11

∂x
j
∗

Σ−1
11 Σ11 −Σ21Σ

−1
11

∂Σ21

∂x
j
∗

To further reduce this, observe that

∂Σ21

∂x
j
∗

=

[
∂JT

∂x
j
∗

∂b

∂x
j
∗

]
=

[
0D×n

∂b

∂x
j
∗

]
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where
∂b

∂x
j
∗

is the jth column of
∂b

∂x∗

∂b

∂x∗
=

[
∂b

∂x1
∗

. . .
∂b

∂xD
∗

]

= exp(v) exp
(
−1

2
(x0 − x∗)

TA(x0 − x∗)
)

×
[
A−A(x0 − x∗)(x0 − x∗)

TA
]

Finally,

∂Σ11

∂x
j
∗

=




0n×n

∂k

∂x
j
∗

∂kT

∂x
j
∗

0





where

∂k

∂x
j
∗

= jth column of J

11.2.5 Gradient Estimation Algorithm

We can use algorithm 11.1 to estimate the gradient g∗(x0), using n samples

from f ∗(x) by modelling f ∗(x) with a Gaussian process model parameterised

by θ. We specify a prior density p(θ) which represents our prior beliefs about

θ. For example, the covariance function in equation (11.12) has hyperparame-

ters θ = {v, β, α1, . . . αD}with A = diag(α1 . . . αD). In this case we might spec-

ify a Gaussian prior distribution for θ.

Figure 11.2 shows the results of estimating the gradient at a point for a 6 di-

mensional hyperelliptical Gaussian surface, using the gradient estimation al-

gorithm (Algorithm 11.1). Samples of the surface were corrupted by Gaussian

noise with σ = 0.02, and the surface range was bounded to [0, 1].

11.3 GPs for Integral Estimation

We have seen how Gaussian process models can be used to efficiently estimate

the gradient of a noisy function. Here, we briefly examine how we can do a

similar thing with definite integral estimation.
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Algorithm 11.1: Estimate gradient of f ∗(x) at x0 using Gaussian pro-

cess model over n samples.

Input: f ∗(·), x0, n, p(θ)

y0 ← f ∗(x0);1

for i = 1 to n do2

D ← {(x0, y0) . . . (xi−1, yi−1)};3

θmax ← arg max
θ

log p(θ|D) ;4

xi ← arg min
x∗

S∗(x∗|D, θmax);5

yi ← f ∗(xi);6

y← {y1 . . . yn};7

g← JTC−1y;8

return g9

11.3.1 GPs for Definite Integration over Rectangles

Consider a Gaussian process F (x) generated as the output of a filter with

impulse response H(x), when stimulated with Gaussian white noise w(x) as

in section 2.1. Call F (x) the antiderivative process, and take the derivative to

find the process f(x), as follows:

f(x) =
dF (x)

dx
=

d

dx
{w(x) ∗H(x)} (11.29)

= w(x) ∗H ′(x) (11.30)

= w(x) ∗ h(x) (11.31)

where H ′(x) is the derivative of the impulse response H(x).

Consider an interval [xl, xr] over which we wish to integrate f(x). We know

the antiderivative of f(x) is F (x) so by the fundamental theorem of calculus

the integral is

I =

∫ xr

xl

f(x)dx = F (xr)− F (xl) (11.32)

F is a Gaussian process, so the integral I is a Gaussian random variable of

which we wish to find the mean and variance.

F (x) and f(x) are generated from same the noise process w(x), so form a set

of two dependent Gaussian processes. Further, we assume Gaussian noise is
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Figure 11.2: Six dimensional gradient estimation from a Gaussian process model. 30
samples were taken and the figure shows the error at each iteration, which is the ratio
of the magnitude of the error vector to the magnitude of the actual gradient vector.
20 runs were averaged to produce the solid line and 1σ error bars.

added to the processes F (x) and f(x) with variances σ2
F and σ2

f respectively.

Using the result in appendix A.1 the covariance functions for inputs xi and xj ,

separated by s = xj − xi are

cov(F (xi), F (xj)) = H(s) ∗H(−s) + σ2
F δij (11.33)

cov(F (xi), f(xj)) = H(s) ∗ h(−s) (11.34)

cov(f(xi), f(xj)) = h(s) ∗ h(−s) + σ2
fδij (11.35)

This means that if one observes f(x) at n points to create a vector of observa-

tions y (where yi ∼ N (f(xi), σ
2
f )), then one can construct a covariance matrix

Σ∗ for the joint Gaussian distribution p(y, y∗, F (xl), F (xr)). The scalars F (xl)

and F (xr) are the (unobserved) values of the antiderivative at the limits xl

and xr. The (yet unobserved) value of the process at a test point x∗ is y∗. The
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covariance matrix is:

Σ∗ =





C k a

kT κ bT

aT b B



 (11.36)

where the (i, j)th element of C is Cij = cov(f(xi), f(xj)). The vector k has as

its jth element kj = cov(f(xj), f(x∗)). The scalar κ = cov(f(x∗), f(x∗)). The jth

row of the n × 2 matrix a is [cov(f(xj), F (xl)) cov(f(xj), F (xr))]. The vector

b = [cov(F (xl), f(x∗)) cov(F (xr), f(x∗)]
T, and the matrix

B =



cov(F (xl), F (xl)) cov(F (xl), F (xr))

cov(F (xr), F (xl)) cov (F (xr), F (xr))



 (11.37)

Using standard formulae for conditioning on a multivariate Gaussian [61],

the predictive distribution for F (xl) and F (xr) conditioned on y and x∗ is

Gaussian 

F (xl)

F (xr)




∣∣∣∣∣y, x∗ ∼ N (m(x∗) , V(x∗)) (11.38)

where m(x∗) is the mean and V(x∗) is the covariance matrix

V(x∗) = B−
[
aT b

]


C k

kT κ




−1 

 a

bT



 (11.39)

which is dependent on the test input x∗, but not the test output observation

y∗. That is, we can calculate V(x∗) before observing y∗.

The integral I = F (xr)− F (xl), and has a conditional distribution

I|y, x∗ ∼ N
(
zTm(x∗), z

TV(x∗)z
)

(11.40)

where z = [−1 1]T. The entropy of this can be minimised by minimising the

variance zTV(x∗)z. So, to minimise the entropy of the integral estimate I , we

take the next sample point at the x∗ that minimises zTV(x∗)z. Once the next

sample has been taken (y∗ is observed) we can calculate the predictive mean

m(x∗) =
[
aT b

]


C k

kT κ




−1 

y

y∗



 (11.41)
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The concept is illustrated by the simple example in figures 11.3 and 11.4. This

example estimates the integral over the interval [−2.5, 2.5] using a Gaussian

process model, and selects samples at each iteration by finding the point of

minimum entropy. The top panel of figure 11.3 shows the situation after 3

samples, where the model is rather vague over the interval. The bottom panel

shows the entropy of the estimate given the next sample point, which has a

minimum near the left-most integration limit. The situation after 10 samples

is shown at the top of figure 11.4 where the model is more confident over the

integration interval. In the bottom panel, it can be seen that the minimum

entropy point still lies within the integration interval, even though there is

large model uncertainty outside the interval. Additionally, at no stage does

the algorithm select sample points too far out of the integration interval. In-

tuitively, this is to be expected as points outside the interval do not contribute

to the value of the integral.

There are two problems with estimating the integral in this way. Firstly, H(x),

which is the antiderivative of h(x), must correspond to a stable linear filter’s

impulse response. This is a problem if h(x) is Gaussian, meaning H(x) is the

error-function, which is not a finite energy impulse response. Instead, we

must set H(x) as the Gaussian, which forces the process we are interested

in to have a covariance function that may not be desirable. For example, if

H(x) = exp(−1
2
x2) then the covariance function for f(x) is

cov(τ) = −1

4

√
π(τ 2 − 2) exp(−1

4
τ 2) (11.42)

which may or may not be useful depending on the underlying function to be

modelled.

The second problem is that the estimation of the integral gets more compli-

cated as the dimensionality of the input space grows. Consider estimating

the integral over a rectangular region when the input space has dimension-

ality D = 2. The process in question is f(x) where x = [x1 x2]
T. Define the

processes F (x1, x2) and G(x1, x2), which are related to f(x) as follows:

G(x1, x2) =
∂F (x1, x2)

∂x2
(11.43)

f(x) =
∂G(x1, x2)

∂x1

(11.44)

f(x) =
∂2F (x1, x2)

∂x1∂x2

(11.45)
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Figure 11.3: (Top) Gaussian process model of 3 training points (dots) showing mean
prediction (solid line) with 95% confidence intervals. (Bottom) Conditional entropy
of the model’s estimate of the integral over [−2.5, 2.5] (dotted line) as a function of
the next sample point. The point of minimum entropy determines the next sample
point (star) which will be sampled and added to the training set.

The impulse response for the filter that generates f(x) is
∂2H(x)

∂x1∂x2
, where H(x)

is the impulse response for the filter generating the antiderivative process

F (x).

f(x) can be integrated over a rectangular region R with limits ai ≤ xi ≤ bi

using iterated integration

∫ b2

a2

∫ b1

a1

f(x)dx1dx2 =

∫ b2

a2

[G(b1, x2)−G(a1, x2)] dx2 (11.46)

= F (b1, b2)− F (b1, a2)− F (a1, b2) + F (a1, a2) (11.47)

which means V(x∗) is a 4× 4 matrix. In general, V(x∗), will be a 2D × 2D ma-

trix, which presents a problem if for example D = 16. However, this method

may be quite useful for low dimensional integrals especially if we note that
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Figure 11.4: (Top) Gaussian process model of 10 training points (dots) showing mean
prediction (solid line) with 95% confidence intervals. (Bottom) Conditional entropy
of the model’s estimate of the integral over [−2.5, 2.5] (dotted line) as a function of
the next sample point. The point of minimum entropy determines the next sample
point (star) which will be sampled and added to the training set.

in equation (11.39), a and B remain fixed for varying x∗ and can be precom-

puted. The vector b has 2D elements and each of these change as x∗ varies.

The vector k varies but it only has N elements, regardless of D. For example,

if D = 8 then B is a 256×256 matrix, and a is a 256×N matrix, which can eas-

ily be precomputed. We then find x∗ to minimise the entropy, which requires

recalculating k ∈ RN , κ ∈ R and b ∈ R256 many times.

It remains to be determined if this method would actually prove useful and

estimate integrals efficiently. It is presented here simply to introduce the con-

cept and provide another example of Gaussian process regression being used

to solve other machine learning problems.
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11.4 Summary

This chapter has introduced mechanisms for estimating gradients and (defi-

nite) integrals of noisy functions using Gaussian process models. Both meth-

ods use an iterative method, where samples are taken at input points that

minimise the uncertainty in the resulting estimate. The methods are presented

with no claims as to their efficiency, but simply as examples of how Gaussian

process regression can be applied to other areas of machine learning, in this

case, active learning.
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Chapter 12

Conclusions

In general, this thesis has introduced some extensions to the Gaussian pro-

cesses for regression methodology, and shown how those extensions can be

applied to other areas in machine learning.

Chapter 2 introduced an alternative view of Gaussian processes and their

specification. Instead of parameterising a covariance function in such a way

as to ensure that it is positive definite, it was shown that a Gaussian process

can be constructed by parameterising a stable, linear filter. Doing so auto-

matically implies a positive definite covariance function that can be found by

performing a convolution integral. The limitation is that the filter must be sta-

ble, hence defined by an impulse response that is absolutely integrable. One

caveat is that it is not possible to perform the convolution integral for all sta-

ble filters. This chapter also extended the linear filtering framework to define

discrete time and discrete space Gaussian processes, generated by exciting

digital filters with noise.

Chapter 3 extended the linear filtering method, introducing and demonstrat-

ing a method to build sets of dependent Gaussian processes. It was shown

that a set of dependent Gaussian processes is generated by stimulating an ana-

log or digital multiple-input multiple-output filter with Gaussian white noise

sources. Doing so automatically implies auto and cross covariance functions

that result in positive definite covariance models. This overcomes a previous

difficulty with multiple output Gaussian process models, where it has been

difficult to define valid cross-covariance functions.

Chapter 4, discussed the problem of system identification. Although system

175
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identification is a well studied problem, this chapter is the first demonstration

of how dependent Gaussian processes can be used for this purpose.

Chapter 5 reviewed the reduced rank approximation for lowering the com-

putational cost of Gaussian process regression. This chapter also provided

an extension, using the same underlying theory, enabling reduced-rank non-

stationary Gaussian processes to be constructed.

In order to reduce the computational cost of dependent Gaussian process

modelling, chapter 6 extended the reduced rank method to the case of de-

pendent Gaussian processes by introducing reduced-rank dependent Gaus-

sian processes. Furthermore, this work was extended to define non-stationary

reduced-rank dependent Gaussian processes.

Chapter 7 reviewed some existing methods for parameterising arbitrary pos-

itive definite covariance matrices, hence providing a mechanism to build ro-

tated and stretched covariance functions.

Chapter 8 extended annealed importance sampling by introducing the sequential

annealed importance sampling method for calculating Bayesian evidence in an

on-line fashion. This method allows one to update an evidence estimate with

the arrival of new data, and was demonstrated on some toy problems. Fur-

thermore, a new heuristic was described allowing the automatic construction

of an annealing schedule for use in these methods.

Chapter 9 reviewed an algorithm, Gaussian process optimisation, for the ef-

ficient solution of continuous optimisation problems. At each iteration, the

algorithm builds a Gaussian process model of all the training data. The model

is used to select the next iterate by finding the input that has the greatest ex-

pected improvement over the best solution examined thus far. Problems with

this algorithm were discussed, in particular, the problem of optimisation ob-

jective functions that have their main features rotated relative to the axes of

the covariance function.

Chapter 10 extended the basic Gaussian process optimisation algorithm by

using more complicated covariance function parameterisations, capable of

modelling features not aligned to the coordinate axes. It was shown that these

more complex models could optimise objective functions with rotated fea-

tures more quickly than the basic, simple algorithm. However, the complex

algorithm performed less well than the simple algorithm on an axis-aligned
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objective function. Next, the algorithm was extended to use multiple under-

lying Gaussian process models, with the optimisation being guided by an ev-

idence weighted combination of these. The results showed that using the evi-

dence created a more general purpose algorithm, capable of efficiently solving

both the simple and complex problems. Finally, a method was described that

reduces the computational cost of Gaussian process optimisation by using re-

duced rank Gaussian processes.

Finally, chapter 11 introduced two more applications of Gaussian process re-

gression. Firstly, it was shown how Gaussian process models can be used

to efficiently estimate the gradient of a noisy function. Secondly, a method

was introduced to efficiently estimate definite integrals using an underlying

Gaussian process model.

Overall, this thesis has presented many new ideas, and introduced some new

algorithms based on these. In many cases, the new algorithms would be better

described as “pseudo-algorithms”, or “algorithm skeletons”, as this thesis has

not fully developed or rigorously tested them against existing best methods.

Instead, where we have introduced a new method, we have simply presented

the background theory and then “proved the concept” with a simple demon-

stration on a toy problem. Therefore, one criticism of this work is that it fails

to formally compare the new algorithms against current benchmarks. This is

something that must be done, if these algorithms are to develop into trusted

methods. However, we have left this work for the future, focusing here in-

stead on the exploration of new ideas.
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Appendix A

Dependent GP Covariance

Function Derivations

A.1 Auto-Covariance and Cross-Covariance

Functions

Consider M independent, stationary, Gaussian white noise processes,

x1(s) . . . xM(s) , s ∈ RD, producing N-outputs, y1(s) . . . yN(s), with the nth de-

fined as follows:

yn(s) = un(s) + wn(s)

where wn(s) is stationary Gaussian white noise, and un(s) is defined by a sum

of convolutions:

un(s) =
M∑

m=1

hmn(s) ∗ xm(s)

=

M∑

m=1

∫

RD

hmn(α)xm(s−α)dDα

where hmn is the kernel connecting latent input m to output n.

The function covy
ij(sa, sb) defines the auto (i = j) and cross covariance (i 6= j)

between yi(sa) and yj(sb), and is derived as follows:

covy
ij(sa, sb) = covu

ij(sa, sb) + σ2
i δij δab
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where σ2
i is the variance of wi(s), and

covu
ij(sa, sb) = E {ui(sa)uj(sb)} (ui(s), uj(s) are zero mean processes)

= E

{
M∑

m=1

∫

RD

hmi(α)xm(sa −α)dDα

M∑

n=1

∫

RD

hnj(β)xn(sb − β)dDβ

}

=
M∑

m=1

M∑

n=1

∫

RD

∫

RD

hmi(α)hnj(β)E
{
xm(sa −α)xn(sb − β)dDα dDβ

}

where we have changed the order of expectation and integration because∫
RD |hmn(s)|2dDs < ∞ ∀m, n, i.e. hmn(s) are finite energy kernels (corre-

sponding to stable linear filters).

Now, xm(s1) and xm(s2) are Gaussian random variables that are independent

unless m = n and s1 = s2, so

covu
ij(sa, sb) =

M∑

m=1

∫

RD

∫

RD

hmi(α)hnj(β)δ
(
α− [sa − sb + β]

)
dDα dDβ

=

M∑

m=1

∫

RD

hmj(β)hmi(β + (sa − sb))d
Dβ

which is the sum of kernel correlations.

If the kernels are stationary, then we can define a stationary covu
ij(·) in terms

of a separation vector ds = sa − sb.

covu
ij(ds) =

M∑

m=1

∫

RD

hmj(β)hmi(β + ds)d
Dβ (A.1)

A.2 Covariance functions for Gaussian Kernels

Equation A.1 defines the auto and cross covariance for the outputs y1(s) . . .

yn(s). Here, we set the kernels to parameterised Gaussians and perform the

integral.

Let

hmn(s) = vmn exp

(
−1

2
(s− µmn)TAmn(s− µmn)

)
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where vmn ∈ R , s, µmn ∈ RD, and Amn is a D ×D positive definite matrix.

Now let a,b ∈ RD and A,B be D ×D positive definite matrices. Define

f(s, a,b,A,B) =

∫

RD

exp

(
−1

2
(s− a)TA(s− a)

)
exp

(
−1

2
(s− b)TB(s− b)

)
dDs

= exp

(
−1

2
c

)∫

RD

exp

(
−1

2
(s− µ)TG(s− µ)

)
dDs

= exp

(
−1

2
c

)
(2π)

D
2

√
|G|

where G = A + B , µ = G−1(Aa + Bb), and

c = aTAa + bTBb− µTGµ

= (b− ǫ)TΣ(b− ǫ) + g

where Σ = A−AG−1A = AG−1B and ǫ = Σ−1BG−1Aa = a and

g = −ǫTΣǫ + aTAa− aTAG−1Aa = 0 so,

f(s, a,b,A,B) =
(2π)

D
2

√
|A + B|

exp

(
−1

2
(b− a)TΣ (b− a)

)

We can now write

covu
ij(ds) =

M∑

m=1

∫

RD

{
vmj exp

(
−1

2
(β − µmj)

TAmj(β − µmj)

)

× vmi exp

(
−1

2
(β + ds − µmi)

TAmi(β + ds − µmi)

)}
dDβ

=
M∑

m=1

vmivmjf(β, µmj ,ds − µmi,Amj ,Ami)

=

M∑

m=1

(2π)
D
2 vmivmj√

|Amj + Ami|
exp

(
−1

2
(ds − [µmi − µmj ])

TΣ (ds − [µmi − µmj ])

)

where Σ = Ami(Ami + Amj)
−1Amj .
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