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Abstract 

 

The combination of cyclopropanes and carbohydrates functionality within a single 

molecule gives the synthetic chemist an interesting combination of reactivity and chirality 

to expand further upon.  However, until recently relatively little work has been done in this 

field.  Following the report of methodology to convert cyclopropanated carbohydrates into 

oxepines in high yields, this investigation set out to improve the selectivity of the 

rearrangement and also investigate the further utility of the subsequent products.  

 

Focused investigation of the starting substrates and reaction conditions led to a minor 

adaptation of the previously successful methodology for the ring expansion of 

cyclopropanated glycals.  This resulted in a substantial increase in the selectivity of the 

reaction to generate oxepine rings in good to excellent yields with a range of nucleophiles.  

One of the oxepines was subsequently chosen for elaboration into a range of synthons for 

further investigations.  These yielded a variety of oxepanes in good yields with well 

defined stereo- and regioselective outcomes. 

 

In the course of these reactions several unexpected products were isolated. These were 

further investigated with labelling experiments and a mechanism for their formation was 

proposed. 

 

Finally the methodology was applied to the total synthesis of a naturally occurring oxepine 

containing compound. Despite the apparent simplicity of the target, the effort was 

ultimately unsuccessful. 
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Chapter 1: Introduction 

 

The author has been both praised and abused for using carbohydrate derivatives “to do 

organic chemistry”. One friend allowed that there are aspects of sugar chemistry which 

deserve the attention of competent chemists, while another expressed amazement that 

we know how to use a drybox since sugars are water soluble. A Nobel Laureate known 

to the author declared that the stabilisation of the anomeric cation by the ring oxygen 

constitutes half of sugar chemistry. A graduate student (from another area) was amazed 

to find that many of the fabled mysteries of the hexoses garnered during that fateful two 

weeks of Org. Chem. II disappeared once he drew the structures properly. An eminent 

chemist wants to use sugars; but he finds the names annoying.1 

 

These views, expressed by Bert Fraser–Reid in July 1974 sum up the position that 

carbohydrate chemistry held 40 years ago (around the time the author of this thesis was 

born).  Since then carbohydrate chemistry has moved from a fringe area of organic 

chemistry investigated by a few dedicated researchers, to one of the central fields of 

current chemical investigation due to the vital and diverse biological importance of 

carbohydrates and their increasing utility in chemical synthesis and industry. 

 

1.1 An introduction to carbohydrates 

 

Historically, the name carbohydrate comes from the formula of this class of compounds 

which is Cn(H2O)n, quite literally a hydrate of carbon.  This generic term covers a large 

well-defined group of organic compounds, which are mostly aliphatic polyhydroxy 

aldehydes and ketones.  It is also used to cover compounds obtained from their 

reduction and oxidation, as well as replacement of one or more hydroxyl groups with 
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either a hydrogen atom, a heteroatom or other functional group.  Carbohydrates are 

synthesised in green plants by a variety of biochemical pathways collectively known as 

photosynthesis.  This process uses solar energy to ‘fix’ carbon dioxide in a form that 

can then be metabolised by plants to generate energy, with O2 as a reaction by-product 

(Figure 1.1).2,3  Without this process life on earth as we know it would not be possible. 

 

xCO2 + yH2O                  Cx(H2O)y + xO2
hν

 

Figure 1.1. Generalised equation for photosynthesis. 

 

Carbohydrates are an abundant and renewable source of feedstocks for modern 

chemical research and industry.  They are far cheaper and in many cases have 

advantages over petroleum-based products, providing a rich source of functionality, 

chirality and structural variety.4  To give an impression of how important this market is, 

in 2005 the United States used 70% of its oil in the transportation field. This had a pre-

tax value of $385 billion dollars.  In contrast only 3.4% was used in the petrochemical 

industry (plastics, cosmetics, detergents and paints etc).  However this had a pre-tax 

value of $375 billion dollars.5  With the price of oil only set to rise as the reserves 

slowly and inexorably run out the stage is set for another source of feedstocks to replace 

it. 

 

The cornerstone of the chemistry of carbohydrates was laid in the 1880s by Emil 

Fischer, one of the true giants of organic chemistry.6  In a series of experiments over a 

seven year period he elucidated the structures and stereochemistry of all the basic 

carbohydrates, or monosaccharides as they are more correctly known.7  This 

monumental achievement saw him awarded the second Nobel prize in chemistry in 

1902.8 
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Despite these major advances, subsequent progress in the field was slow.  Fischer 

himself alluded to these problems in a letter to his mentor Baeyer in January 1889. 

 

“Unfortunately, the experimental difficulties in this group are so great, that a single 

experiment takes more time in weeks than other classes of compounds take in hours, so 

only very rarely a student is found who can be used for this work.”9 

 

Many of the problems with working with these compounds were caused in large part by 

their abundance of hydrophilic groups.  Characterisation was mostly by derivatisation, 

which made further use of the compounds rather difficult.  Nonetheless a small group of 

dedicated researchers persisted in working in the field.  These workers laid a solid 

foundation for those who would come after them.  With the development of NMR10 and 

improved chromatography techniques, the characterisation of carbohydrate compounds 

became greatly simplified.  NMR in particular became a very important technique as 

carbohydrates by their nature give spectra that, while complex, are extremely well 

resolved.  Indeed, carbohydrate chemists were innovators in the field of 1D and 2D 

NMR, adopting and applying new pulse sequences and experiment types long before 

they became popular in more mainstream organic chemistry fields.  In the 1970s came 

the discovery that sugars played a central role in complex biological interactions 

particularly those at the cell surface.11,12  Interest in the field has grown exponentially 

since this time. 
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1.2 Conventions for the description of carbohydrate structure and 

conformers13 

 

The simplest monosaccharide possessing a chiral center is the compound 

glyceraldehyde, which contains three carbon atoms and is also known as a triose. This 

can exist as two enatiomers (Figure 1.2).  

 

CHO

CH2OH
OHH

(R)-glyceraldehyde

CHO

CH2OH
HO H

(S)-glyceraldehyde 

Figure 1.2. Enantiomers of glyceraldehyde. 

 

However, before the absolute configurations of carbohydrates were known, Fisher 

proposed that the enantiomers should be classified by their optical rotations, D- for 

dextrorotatory or L- for levorotatory.  Thus the enantiomers of glyceraldehyde were 

drawn and named by Fischer as shown in Figure 1.3.  This was further extended by 

Rosanoff to cover a great many other compounds using the glyceraldehydes as the 

base.14,15 

CHO

CH2OH
OHH

D-glyceraldehyde

CHO

CH2OH
HO H

L-glyceraldehyde 

Figure 1.3. Fischer projections of enantiomers of glyceraldehyde. 

 

The Fischer projection is drawn with the aldehyde at the top of the carbon backbone and 

the primary hydroxyl at the bottom. The D- and L- terms are used to refer to the 

orientation of the alcohol on the chiral carbon.  The carbohydrates with four carbons are 
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called tetroses and have two chiral centers.  This gives two enantiomeric pairs as shown 

in Figure 1.4. 

 

CH2OH
OHH

CH2OH
HO H

CHO
OHH HO H

CHO

CH2OH
HO H

H OH
CHO

CH2OH
H OH

HO H
CHO

D-erythrose L-erythrose L-threoseD-threose  

Figure 1.4. Fischer projections of the tetroses. 

 

In this case the D- and L- conventions refer to the chiral carbon furtherest from the 

aldehyde.  Continuing the series there are pentoses with three chiral centers giving four 

pairs of enantiomers and hexoses with four chiral centers giving eight pairs of 

enantiomers.  Carbohydrates with larger numbers of carbon atoms are also known.  

These are septanoses (seven carbons), octoses (eight carbons), nonoses (nine carbons) 

and decoses (ten carbons).  Pentoses and hexoses exist naturally as cyclic systems.  This 

occurs when the carbonyl reacts with one of the hydroxyls in the molecule and forms a 

cyclic hemiacetal that is more stable than the open chain form.  The cyclic form of the 

pentoses are called furanoses (with a five-membered ring).  The hexoses can exist as 

furanoses or pyranoses (with a six membered ring) depending on whether the ring is 

formed with the C-4 or C-5 hydroxyl (Figure 1.5). 

CHO

CH2OH

OHH
HHO
OHH
OHH

O

OH
OH

OH

CH2OH

OH

OH

OH
O

OH

CH2OH
OH

 

Scheme 1.1. Furanose and pyranose forms of D-glucose. 
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The 3D structures of the cyclic forms are represented here in Haworth projections.  

 

Carbohydrates with more than six carbons form pyranose rings with an exocyclic 

carbon chain and are known as extended chain carbohydrates.  Furanose and pyranose 

rings exist as two different isomers, known as anomers.  The carbon at this new center 

is known as the anomeric center.  This depends on the orientation of the hemiacetal 

formed between the hydroxyl and the aldehyde center.  If the new OH is formed on the 

same side in the Fischer projection as the the oxygen involved in the hemiacetal link 

then it is the α anomer.  If it is on the opposite side then it is the β anomer.  For the D-

carbohydrates, this translates to a Haworth projection where the anomeric hydroxyl is 

down for the α and up for the β anomer (Scheme 1.2). It is common for the lower face 

of a carbohydrate to be refered to as the α face, and the upper face the β face. 

CHO

CH2OH

OHH
HHO
OHH
OHH

O

OH

OH

OH

OH

CH2OH

O

OH
OH

OH

CH2OH

OH

β-D-glucose

α-D-glucose

CH2OH

OHH
HHO
OHH
OH

CH2OH

OHH
HHO
OHH
OH

HO

OH

 

Scheme 1.2. Hemiacetal formation leading to α and β anomeric forms. 

 

1.3 Glycosidic linkages 

Naturally occurring monosaccharides are the simplest sugars consisting of just one base 

saccharide unit of between three and six carbons, and are not hydrolysed to simpler 

compounds under acid hydrolysis.  Common examples are glucose 1.1 (grape sugar), 



 7 

galactose 1.2 and fructose 1.3 (fruit sugar) shown in Figure 1.5.  These sugars are 

broken down by enzymes through various biochemical pathways and used as energy. 

 

O
HO

OH
OH

OH

HO

O

OH
OH

OH

HO

OH

O

OH

HO

OH

HO OH

α-D-Glucose α-D-Galactose α-D-Fructose1.1 1.2 1.3  

 

Figure 1.5. Examples of monosaccharides. 

 

When two monosaccharide units are linked together by an O-glycosidic linkage they are 

called a disaccharide.  Common examples are sucrose 1.4 (cane sugar) and lactose 1.5 

(milk sugar) illustrated in Figure 1.6. 

 

O O
O

OH

OH

HO
HO

OH

OHHO

OHO
HO

OH

OH

HO
O

OH

OH
OH

OH

O

Sucrose    1.4 Lactose    1.5  

Figure 1.6. Examples of disaccharides. 

 

Three or more monosaccharide’s connected by glycosidic linkages are termed 

oligosaccharides.  The role of these in cells is not generally as a form of energy storage.  

They are commonly found on the surface of cells.  These generally consist of fewer than 

20 monosaccharide units, and are used in a vast array of biological signalling systems.  

A simple example of these oligosaccharides is found in Globo-H 1.6.16 This is a cell-

surface glycosphingolipid, which occurs in a number of tumours including breast, 

prostate and ovary (Figure 1.7). 
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O
HO

OH

O

OH

O
O

OH

AcHN

OH

O
O

OH

HO

OH

OMe

OH
OH

OH
O

HO

OH

OH

O

O O
HO

OH

OH

OR

β-D-Gal

α-L-Fuc

β-D-GalNAc

α-D-Gal

β-D-Glc

β-D-Gal

1.6  

Figure 1.7. The oligosaccharide component of Globo-H 1.6. 

 

Cyclic oligosaccharides are also known, more commonly called cyclodextrins.  These 

consist of most commonly 6-8 glucose residues linked in a (1�4) fashion, but can 

contain upwards of 30 glucose residues.  These compounds are used as energy storage 

by some bacteria that have an enzyme that can convert the rings back into glucose.  This 

process is essential as bacteria lacking the enzyme are not viable in the environment and 

die out. 

 

Finally, there are the polysaccharides; these large oligosaccharides consist of upwards 

of 500 monosaccharides. They exist in structural (e.g. cellulose and chitin) and energy 

storage (e.g. starch) forms.  In all these polysaccharides the constituent 

monosaccharides are linked to each other by glycosidic bonds.  The most prevalent in 

nature are O-, S-, and N- linkages.  These are formed between any two monosaccharide 

functional groups. This makes polysaccharides the most structurally complex 

biopolymer.  For example, only one dipeptide can be formed from two identical amino 

acids.  However with two identical hexoses the number of different possible 

disaccharides is 11 with O-linked glycosides.17  This is because not only can there be 

glycosidic bonds formed between any of the different carbon atoms, but also these 

linkages can be α or β.  Figure 1.8 shows examples of two different disaccharides, 

maltose and lactose. 
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O

OH

HO
HO

OH

O

O

OH

HO

OH

O

OH

HO
O

OH

OH

O

OH

HO

OH

OH

OH

Maltose
α-(1-4) linkage

Lactose
β-(1-4) linkage  

Figure 1.8. Linkages of two example disaccharides. 

 

The major structural difference between these two disaccharides is the orientation of the 

glycosidic linkage.  Maltose with its α (1�4) glycosidic linkage can be processed by 

the yeast Saccharomyces cerevisiae (brewers yeast) to ethanol and CO2.  However, 

S. cerevisiae cannot not process lactose in the same way as it lacks the enzyme to break 

the β (1�4) glycosidic linkage.  This can be used to the brewer’s advantage as lactose 

can be added into the wort to increase the level of final sweetness.  The biological 

importance of anomerism is also illustrated in the structures of cellulose and starch.  

Cellulose is made up of repeating β (1�4)-D-glucose units.  It makes up the cell walls 

of green plants. Starch is made up of repeating α (1�4)-D-glucose units and is used by 

plant cells to store glucose in an easily retrievable form (Figure 1.9). 

 

O

OH

HO
OH

O O

OH

HO
OH

OO

Cellulose

O

OH

HO
HO

O

O

OH

HO
HO

O

O

Starch  

Figure 1.9. The structures of cellulose and starch. 

 

Again, while starch can be broken down by enzymes present in higher animals, only 
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bacteria have enzymes to break down cellulose.  Ruminants that can digest cellulose do  

so by having the relevant bacteria present in their gut flora. 

 

A major problem with biologically-derived oligosaccharides is that they are extremely 

difficult to extract from natural systems in adequate yields and purity.  Thus much 

research has gone into the selective formation of the different types of glycosidic bonds 

and the subsequent formation of the target oligosaccharides.  There are several 

commonly used methods to form these glycosides. The first involves the activation of a 

leaving group on a glycosyl donor by an electrophilic promoter.  This is followed by 

nucleophilic attack of the glycosyl acceptor on the anomeric carbon of the glycosyl 

donor (Scheme 1.3). 

O
(RO)n

O
(RO)n

O
(RO)n

Lg Lg Nu
E

E+

Activation Substitution

Nu Hδ+

δ+  

Scheme 1.3. Glycosylation by a glycosyl donor. 

 

This reaction tolerates a wide variety of acceptors depending on the reaction conditions 

used.  With these tools it has been possible to synthesise a wide variety of 

oligosaccharides.  As well as the naturally occurring targets it is also possible to 

synthesise non-natural oligosaccharides in order to probe biological functions or attempt 

to synthesise vaccines against various infections and diseases. 

 

These glycosylations are limited to O-, N- and S- linked glycosides.  Another class of 

naturally occurring glycosides are those where the linker to the anomeric carbon is 

another carbon atom.  These are unsurprisingly known as C-glycosides.  It is only in the 

last 40 years that there has been increased interest in this type of glycoside.  This has 

been due to the discovery of biologically active molecules containing this linkage.  
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Another driver has been the increased use of carbohydrates in organic synthesis as 

chiral building blocks and related development of new synthetic methodologies to better 

employ these chirons.  A more recent field of interest has been use of these compounds 

as analogs of cell surface glycans and as inhibitors of carbohydrate processing enzymes.  

The major difference between C- and other glycosides is their inherent stability to a 

wide range of reaction conditions, including cellular metabolism, at the anomeric center 

due to the presence of the C-C bond.  

 

As with the previously mentioned glycosides, C-glycosides can be formed by attack of a 

nucleophile on a glycosyl donor with a suitable leaving group.  It is possible to perform 

any chemistry that results in the formation of a C-C bond.  This includes the use of 

organometalic reagents such as Grignard reagents and stannane chemistry.  It has even 

proved possible to do Wittig type reactions at the anomeric centre.  The most 

synthetically useful group of glycosyl donors are unsaturated monosaccharides that 

contain an alkene bond in the molecule.  Of particular note are the unsaturated 

compounds commonly known as glycals.  These compounds are characterised by 

having an alkene present between C-1 and C-2 which makes these compounds analogs 

of vinyl ethers (Figure 1.10).  Reactions with these compounds can generate products 

with excellent control over regio- and stereo-selectivity.   

 

O
HO

HO
OH

O
HO

HO
OH

Glucal Galactal  

Figure 1.10. Examples of glycals. 
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The use of glycals as glycosyl donors is well known.  As seen in Scheme 1.3, the glycal 

donor is also activated by an electrophilic promoter, followed by coupling with a 

nucleophilic glycosyl acceptor.  However, in this reaction it is also possible to introduce 

another group Z at the C-2 position at the same time as the formation of the anomeric 

bond (Scheme 1.4).  These Z groups are most commonly azides, acids, amines or 

alcohols. 

 

O
(RO)n

E+

Activation
Substitution

i) Nu HO
(RO)n

Eδ+

δ+ O
(RO)n

NuZii) Z

 

Scheme 1.4. Glycosylation involving a glycal donor. 

 

One of the more chemical useful reactions involving glycals is the Ferrier 

rearrangement.18-21  This adds a nucleophile to a glycal with a moderate to high stereo- 

and regioselectivity at the C-1 position, promoted by loss of a leaving group from C-3 

and the subsequent migration of the alkene to between C-2 and C-3 (Scheme 1.5). 

 

O

RO
L

RO
O

RO

RO
Nu

 

Scheme 1.5. Ferrier glycal rearrangement. 

 

It is most commonly proposed that this reaction proceeds through an oxonium 

intermediate; although results suggest that other mechanisms may also contribute to the 

transformation or compete to provide alternate products.  These mechanisms are 

summarised in Scheme 1.6.  With acetate as the leaving group at the C-3 position, there 

exists the possibility of A) attack by a nucleophile at C-1, or B) rearrangement of the 

leaving group to C-1 followed by nucleophilic attack at C-3. 

 



 13 

O

OAc

AcO

AcO

O

O

AcO

AcO

O
AcO

AcO

O
AcO

AcO

O
AcO

AcO

O
AcO

AcO

Nu
Nu

O
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B)

 

Scheme 1.6 Possible mechanisms involved in Ferrier rearrangements 

 

Depending on the conditions and nucleophile involved, the result of the reaction can be 

tuned to afford either C-1 or C-3 attack.  The stereochemical outcome of reaction path 

A can also be controlled depending on nucleophile and conditions.  Regioselectivity is 

mixed in reactions involving heteronucleophiles that can generate either C-1 or C-3 

substituted glycals.  Carbon nucleophiles demonstrate regioselectivity for the C-1 

position.  All nucleophilic attack at the C-1 position favours α over β stereoselectivity.   

 

Danishefsky and co-workers reported investigations into Ferrier-type reactions 

generating C-1 carbon-substituted pyranose derivatives from glycal starting materials.22  

Treatment of triacetyl glucal 1.7 with TMSallyl and TiCl4 gave the allylated product 1.8 

in 85% yield and 16:1 α/β stereoselectivity (Scheme 1.7). 

 

O

OAc
AcO

OAc
O

AcO

OAcTiCl4 1eqv
TMSallyl 1.5eqv

CH2Cl2
16:1 α:β

1.7 1.8  

Scheme 1.7. Ferrier rearrangement of tri-O-acetyl-D-glucal with TMS allyl. 
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Results were also reported comparing the selectivities of glucal, galactal and allal 

species in the Ferrier rearrangement.22  Reaction of D-galactal triacetate 1.9 with 

TMSallyl and TiCl4 in CH2Cl2 at –78 oC gave 1.8 as a 30:1 α:β mix of epimers in 93% 

yield.  D-Allal triacetate 1.10 gave 1.8 in a 95% yield but only in 6:1 α:β mix.  The 

starting materials and product ratios are shown in Figure 1.11.  No comment was made 

on the reaction times for these rearrangements. 

 

O

OAc
AcO

AcO
O

OAc
AcO

AcO
O

OAc
AcO

AcO

16:1 α:β 30:1 α:β 6:1 α:β

1.7 1.9 1.10

 

Figure 1.11. Danishefsky’s Ferrier rearrangement starting materials. 

 

The authors propose that the high selectivity is due to a combination of axial attack by 

the carbon nucleophile and anti SN2 displacement of the acetate leaving group.  The 

allal selectivity is lower due to the syn orientation of the leaving group to the 

approaching nucleophile. 

 

More recently Hanna and Wlodyka reported the similar allylation of tri-O-acetyl-D-

galactal using BF3.Et2O and TMSallyl at –50 oC which gave the α isomer exclusively in 

97% yield.23  

 

Das and coworkers reported on the microwave assisted Ferrier rearrangement on 

triacetyl glucal and triacetyl galactal using InCl3 as the catalyst.24  Their results were an 

improvement on Danishefsky’s in terms of both yield and selectivity.  Reaction of D-

galactal triacetate 1.9 with TMSallyl and InCl3 in MeCN under microwave irradiation 

gave 1.8 as a 99:1 α:β mix of epimers in 90% yield in only 40 seconds.  D-glucal 
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triacetate 1.7 gave 1.8 in a 95% yield as a 19:1 α:β mix of epimers in 30 seconds.  More 

interesting was the result with 3,4-di-O-acetyl-ribal 1.11 which gave a selectivity of 

19:1 α:β in 89% yield.  This result reveals the effect of the C-5 substituent on the 

selectivity of the rearrangement.  The starting materials and product ratios are shown in 

Figure 1.12. 

 

O

OAc
AcO

AcO
O

OAc
AcO

AcO
O

OAc
AcO

19:1 α:β 99:1 α:β 19:1 α:β

1.7 1.9 1.11

 

Figure 1.12. Das and co-worker’s InCl3 catalysed rearrangements under microwave irradiation. 

 

Hoberg reported that reaction with TMSOTf and TMSallyl in CH2Cl2 using 1.12 as the 

substrate gave 1.13 in 91% yield with an 88:1 ratio of α:β epimers (Scheme 1.8).25 

 

O
O

t-Bu2Si
O

OAc

O
O

t-Bu2Si
O

TMSOTf,
TMSallyl

CH2Cl2

1.12 1.13  

Scheme 1.8. Reaction of di-tert-butylsilyl-glucal with TMSallyl and TMSOTf. 

 

This and similar reactions extend the carbon chain of the base carbohydrate.  Thus these 

reactions are useful to produce chiral synthons for further use in the total synthesis of 

naturally occurring compounds or their analogues.  That the absolute stereochemistry of 

carbohydrates is known enables their use in asymmetric synthesis without the use of 

expensive chiral reagents.  They are the largest single group in what is known as chiral 

pool reagents.26   
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The earliest total synthesis of a complex natural product was Emil Fischer’s synthesis of 

glucose from D-mannonic acid lactone in 1890 (Scheme 1.9). 

 

O

O

OH
OHOH

HO

HO

O

OH

HO
HO

OH

D-glucoseD-mannonic acid lactone  

Scheme 1.9. Fischer’s total synthesis of glucose. 

 

At the time this was a monumental achievement given the analytical tools of the day.  

More recently, Nicolaou has used carbohydrates as starting materials for many 

syntheses of complex natural products.  For instance in 1981 Nicolaou’s group reported 

the synthesis of leucomycin A3 1.14 and carbomycin B27,28 using D-glucose as a starting 

material, as it possessed three of the required six stereocenters (Scheme 1.10). 

O
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HO
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5
6

1.14  

Scheme 1.10. Leucomycin A3 1.14 showing stereocenters derived from D-glucose starting material. 

 

Nicolaou has also reported the synthesis of amphotericin B29 and swinholide A30 using 

carbohydrates as base building blocks for the more complex structures. Carbohydrates 

were also used as the starting point for several of the cyclic ether rings in the brevetoxin 

series of syntheses reported from the same research group.31-33  Other researchers have 

also made extensive use of carbohydrates in total synthesis.34 
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1.4 Cyclopropanation of carbohydrates 

 

To further extend the utility of glycals in organic synthesis, much work has been done 

to functionalise the alkene moiety.  One of the ways to add further functionality is via 

cyclopropanation.  There are three main methods for the cyclopropanation of 1,2-

glycals.  These are the Simmons-Smith reaction, reaction with a diazo ester and reaction 

with a dihalocarbene.  The Simmons-Smith reaction uses diiodomethane and a 

zinc/copper couple to convert alkenes into unsubstituted cyclopropanes.35  This occurs 

through transfer of a methylene group from an organometallic intermediate to the 

double bond.  In the presence of an allylic alcohol or ether substituent this reaction 

becomes very stereoselective as shown in Scheme 1.11, where the cyclopropanated 

glucals were generated in high yield as one isomer.  

 

O

OBn
BnO

O

OBn
BnO

CH2I2, Zn, CuCl

AcCl, ether 89%

BnO BnO

O

OBn
BnO

O

OBn
BnO

CH2I2, Zn, CuCl

AcCl, ether 80%

BnO BnO

O

OBn

BnO

O

OBn
BnO

CH2I2, Zn, CuCl

AcCl, ether 87%

 

Scheme 1.11. Simmons-Smith cyclopropanations. 

 

The cyclopropane adds syn to the allylic alcohol.  This is because the zinc co-ordinates 

to the allylic alcohol in a so-called ‘butterfly’ intermediate and delivers the methylene 

to the syn face of the glycal producing cyclopropanes with diastereoselectivities as high 

as 300:1 (Figure 1.13).36 
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O
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CH2I
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R

R  

Figure 1.13. Allylic direction of Simmons-Smith cyclopropanation showing the ‘butterfly’ intermediate. 

  

Nagarajan etal reported an example of this reaction in 1995.37  Several benzyl protected 

glycals were cyclopropanated in high yield with excellent selectivity using acetyl 

chloride as an activator.38  It is postulated that the acetyl chloride reacts with any water 

present to “super dry” the reaction, and any HCl produced serves to remove the oxide 

layer from the zinc surface.  In these systems the C-3 substituent controls the facial 

selectivity of the cyclopropanation and overrides the steric effects from the C-4 and C-6 

substituents. 

 

An improved method for the Simmons-Smith is the Furukawa modification using 

diethylzinc instead of the metallic couple.39  This modification is now used extensively, 

as it is less harsh and more reproducible than the initial method.  A wide range of 

protected glycals have been synthesised using this methodology with excellent yields 

and stereoselectivities reported (Table 1.1).40  

 

The table shows that this reaction is compatible with a range of protecting groups, 

giving excellent selectivity and yield.  However, the authors suggest that yield decreases 

as steric effects increase (entry five), eventually leading to failure of the 

cyclopropanation in extreme cases (entry six).  This does not account for the high yield 

shown in entry four.  The low yield observed in entry five could be attributed to the 
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instability of the protecting group affecting the overall yield rather than steric 

influences.   

 

Table 1.1. Cyclopropanations of protected glucals using the Furukawa modification of the Simmons-

Smith reaction cyclopropanation. 

O

OR3

R2O

O

OR3

R2O

CH2I2, Et2Zn
R1O R1O

 

Entry R 1 R2 R3 Yield (%) α:βα:βα:βα:β    

1 Bn Bn Bn 92 β only 

2 Me Me Me 94 β only 

3 TBS H H 88 β only 

4 -Si(tBu)2 H 96 250:1a 

5 -C(Me)2 H 33 80:1 

6 TBS TBS TBS 0 - 

a measured by GC 

An unexpected result with this methodology was reported by Lorica et al who isolated 

cyclopropane 1.15 as the major product from their cyclopropanation of glucal 1.7 

(Scheme 1.12).41 

O

OAc
AcO

O

OAc
AcO

CH2I2, Zn/Cu

38%

AcO AcO

1.151.7  

Scheme 1.12. Loricas synthesis of cyclopropane 1.15. 

 

The authors suggest that the observed stereochemistry is due to the steric hindrance of 

the upper face by the acetate groups, which implies that careful selection of the 

protecting groups is required for optimal stereoselectivity.  Hoberg etal have since 
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reported a method to reverse the stereoselectivity associated with acetate protecting 

groups.40  Cyclopropanation of the diol 1.16 followed by quenching with Ac2O 

generates the diacetyl protected cyclopropane 1.17 in 85% yield and 8:1 β:α selectivity 

(Scheme 1.13). 

O

OH
HO

O

OAc
AcO

1) CH2I2, Et2Zn

2) Ac2O

1.16 1.17  

Scheme 1.13. Hobergs modified reaction scheme. 

 

The Simmons-Smith methodology has also been applied to more complex systems as 

shown in Figure 1.14.  Synthesis of cyclopropane 1.18 (Figure 1.14) occurred 

stereoselectivity in 93% yield, while that of 1.19 with no allylic alcohol gave a 1:1 mix 

of the cyclopropanes. More complex unsaturated carbohydrates have also been 

cyclopropanated.  Danishefsky and co workers synthesised cyclopropane 1.18 as an 

early stage intermediate towards epothilones A and B,42 while Boeckmann  and co-

workers synthesised cyclopropane 1.19 during the formation of (-)-calcimycin ( Figure 

1.14).43 

 

O

OH

OBnO OTBDPS

MOMO

OTBS

1.18 1.19  

Figure 1.14. Complex carbohydrate-derived cyclopropanes synthesised using Simmons-Smith 

methodology. 

 

The second method is the reaction of glycals with diazo compounds.  This approach is 

not as common as the Simmons-Smith method due to the problems associated with 

diazo compounds.  The reaction occurs by metal-catalysed decomposition of the diazo 
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compound to nitrogen and a carbene, which then adds across the alkene forming the 

cyclopropane.  The major advantage of this method is that the reaction is commonly 

done with α-diazo-esters, giving products that are doubly activated donor-acceptor 

cyclopropanes, with the ester group providing a site for future elaboration.   Initial 

studies of this cyclopropanation gave low yields and poor stereoselectivity.  More 

recent studies have improved both.  Henry and Fraser-Reid found that cyclopropanation 

of tri-O-tert-butyldimethylsilyl-D-glucal with copper powder as the catalyst gave 

exclusively β cyclopropane 1.20 in 92% yield (Scheme 1.14).44  However the tri-O-

benzyl analog gave only 34% yield with no stereoselectivity. 

   

O
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O
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∆, 92%

 

Scheme 1.14. Synthesis of cyclopropane 1.20. 

 

Hoberg and Claffey found that by using a rhodium catalyst, cyclopropanation was 

achieved in good to excellent yields with a wide variety of protecting groups (Table 

1.2).45 

 

In these examples the α diastereomer was predominantly obtained.  It was postulated by 

the authors that this is due to a steric control process, particularly in the case of larger 

protecting groups.  It is also interesting to contrast the first entry in this table with entry 

six in Table 1.1 where with identical protecting groups no cyclopropanated product was 

observed. 
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Table 1.2. Results of cyclopropation of glycals with ethyl diazoacetate. 

 

O

OR3

R2O

R1O

O

OR3

R2O

R1O
CO2Et

O

OR3

R2O

R1O
CO2Et+

N2CHCO2Et
catalyst

O

OR3

R2O

R1O
CO2Et

O

OR3

R2O

R1O
CO2Et+

A B

C D  

Product Ratio  

R1 

 

R2 

 

R3 

 

Catalysta 

 

Yield A B C D 

TBS TBS TBS CuO 92 0 100 0 0 

TBS TBS TBS Rh2(OAc)4 81 97 3 0 0 

TBS Ac Ac Rh2(OAc)4 93 94 2 2 3 

TIPS TIPS TIPS Rh2(OAc)4 66 91 3 3 3 

Bn Bn Bn Rh2(OAc)4 44 76 8 8 8 

Ac Ac Ac Rh2(OAc)4 73 81 6 4 9 

a All catalysts 1Mol% loading 

The third method is the addition of a dihalocarbene to the glycal.  This reaction is also 

sterically directed and is carried out most commonly in the appropriate haloform in the 

presence of a strong base.  The resulting dihalocyclopropane can be isolated or reduced 

by lithium aluminium hydride to the non halogenated cyclopropane.  While the reaction 

has been known for 40 years46 it is only recently that Nagarajan has developed a general 

synthetic sequence that has been applied to several protected glycals (Table 1.3).47   

 

The addition is directed by the C-3 substituent whose steric bulk directs the 

cyclopropane to the opposite face to that derivatised by the Simmons-Smith reaction.  
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Thus it is possible to control the stereochemistry of the cyclopropane formed during the 

reaction by varying the reagents and conditions. 

 

Table 1.3. Results of cyclopropanations using Nagarajan’s method. 

 

O

R3

R2

R1 O

R3

R2

R1 O

R3

R2

R1Cl

Cl

HCCl3

NaOH

LiAlH4

 

 

Entry R 1 R2 R3 Yield % Cyclopropane 

1 gluco- MeOCH2(β) MeO(α) MeO(β) 82 α 

2 gluco- BnOCH2(β) BnO(α) BnO(β) 84 α 

3 galacto- BnOCH2(β) BnO(β) BnO(β) 92 α 

4 galacto- Me(α) BnO(β) BnO(β) 95 β 

5 gluco- H BnO(α) BnO(β) 55 α 

. 

 

1.5 Reactions of cyclopropanated carbohydrates 

 

The synthetic exploitation of 1,2-cyclopropanated carbohydrates revolves around the 

control of the cyclopropane ring opening process and the generation of predictable 

reaction products.  Two main strategies have been used by several research groups.  

These are the electrophilic ring opening at the C1-C7 position (pathway A) or a Lewis 

acid assisted pyran ring expansion via a Ferrier-like rearrangement (pathway B), as 

shown in Scheme 1.15. 
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Scheme 1.15. Possible paths for opening of the cyclopropane ring. 

 

Pathway A leads to C-2 substituted glycosides.  An electrophile activates the 

cyclopropane methylene giving an oxonium ion intermediate, which is quenched by a 

nucleophile.  These reactions were initially performed with mercury (II) salt activation 

of the ring opening.  More recently, Danishefsky has used NIS in the cyclopropane 

opening to access the gem-dimethyl system present in epothilone A and B (Scheme 

1.16).42  This eliminates the need for use of toxic mercury salts. 

Transition metals have also been used to mediate this ring opening.  Madsen has 

demonstrated that reaction of the cyclopropane with the platinum species Zeise’s dimer 

leads to C-2 branched glycosides 1.21 (Scheme 1.17).48  This proceeds via an oxidative 

insertion of platinum (II) into the cyclopropane to generate a metallocyclobutane 

intermediate 1.22  
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Scheme 1.16. Installation of a gem-dimethyl moiety on the road to the epothilones. 

 

A restriction on this reaction is the inability to directly form C-1 branched  glycosides, 

as literature examples have only used Bronsted nucleophiles (mostly alcohols) as the 

glycosyl acceptors. 
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Scheme 1.17. Madsen’s platinium catalysed opening of cyclopropanated glucal. 

 



 26 

The second pathway (pathway B from Scheme 1.15) is pyran to oxepine ring expansion, 

which is also driven by a release of ring strain in the cyclopropane.  The Lewis acid 

activates the leaving group at the C-3 position, and the elimination opens the 

cyclopropane across the C-1-C-2 bond, generating an oxonium ion.  This intermediate 

can then be converted into any of 3 oxepines 1.23, 1.24, or 1.25 depending on 

protecting groups and reaction conditions (Scheme 1.18).49 

O

OR3
R2O

R1O OR1O

R2O

OR1O

R2O

Nu

OR1O

R2O

O

R2O

O

+ Nu-

LA

-R1

-H+

1.23

1.24

1.25  

Scheme 1.18.  Formation of oxepines from expansion of cyclopropanes. 

 

Sugita and co-workers have investigated ring expansions of structurally similar 

compounds.50  Their cyclopropapyranones 1.26 contain both donor and acceptor groups 

as part of the ring.  Treatment of this system with a Lewis acid leads to the formation of 

a 1,3-zwitterionic intermediate that could then be intercepted with a nucleophile to yield 

an oxepanone on workup.  The oxonium ion intermediate 1.27 was intercepted with a 

variety of silyl enol ethers to give the corresponding 4-oxepanones 1.28 (Scheme 1.19).  

Yields ranged from 24-88 % and stereoselectivities from 2:1 to 25:1.  This depended on 

the solvent and Lewis acid chosen.  The authors believed that the selectivity was due to 

an anomeric effect from the ring oxygen in the zwitterionic intermediate but did not 

elaborate further on this hypothesis. 
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Scheme 1.19. Sugita’s expansion of cyclopropapyranones. 

 

1.6 Oxepine rings in naturally occurring compounds 

 

A wide range of natural products isolated from both terrestrial and marine sources 

contain a seven-membered oxacycle as part of their molecular backbone as shown in 

Figure 1.15. 

 

Sample structures range from the monocyclic rogioloxepane 1.2951 and isolaurepinnacin 

1.3052, through the bi-cyclic lobatrienetriol 1.3153 and fused ring structures of janoxepin 

1.32,54 oxepinamide 1.33,55 and spirocyclic crambescidin acid 1.3456 to the large ladder 

polyethers brevitoxin 1.35,57 gambierol 1.3658 and ciguatoxin 1.37.59  Biochemical 

studies have revealed a wide range of biological functions for such compounds 

including ion channel blocking, antiviral and antifungal activities.  All these compounds 

share a common structural feature in that the seven-membered oxacycles all contain at 

least one carbon-carbon double bond.  IUPAC nomenclature describes saturated seven-

membered oxacycles as oxepanes, and the similar completely unsaturated oxacycles as 

oxepines.  Structures with one double bond have been referred to by a variety of names, 

but Peczuh60 has suggested that these compounds also be referred to as oxepines, and 

this term shall be used in this thesis. 
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Figure 1.15. Examples of naturally occurring compounds containing seven-membered oxacycles. 

 

Most of the research on these oxacycles has been driven by the development of methods 

leading to the synthesis of natural products, mainly in the formation of the polycyclic 

ethers 1.35-1.37. 
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1.7 Methods of formation of seven-membered rings 

 

There are two main approaches taken to the synthesis of seven-membered oxacycles: 

cyclisation via formation of a C-O bond or formation of a C-C bond.60 

 

1.7.1 Seven-membered oxacycle formation via C-O bond formation 

 

This type of approach takes advantage of the inherent nucleophilicity of oxygen in 

attacking an electrophilic carbon species. 

 

Lewis acids have been used to construct oxacycles by co-ordinating to an epoxide 

species.  This is a particularly attractive strategy as the epoxide can be formed 

enantioselectively and cyclisation gives rise to a chiral hydroxyl group.   

 

This is demonstrated with the following examples as shown in Scheme 1.20 as part of 

total syntheses of the natural products isolaurepinnacin A61 and rogioloxepane A62 

which have very similar core structures and only differ in the disposition of the 

substituents across the oxepine ring oxygen (syn vs anti). 
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Zn(OTf)2

(75%)  

Scheme 1.20.  Suzuki’s syntheses of isolaurepinnacin A and rogioloxepane A. 
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In this scheme the epoxy-alcohols are treated with (Bu3Sn)2O which forms an alkyltin 

ether that increases the nucleophilicity of the hydroxyl oxygen, followed by addition of 

zinc triflate as a Lewis acid to activate the cyclisation step.  While the yields are high in 

these transformations, attempts to apply this methodology to more complex systems 

were not as successful and the authors put this down to inefficient formation of the 

alkyltin ether intermediates. 

 

1.7.2 Seven-membered oxacycle formation via C-C bond formation 

 

Nicolaou was among the first to employ this method in the synthesis of polyethers as 

part of the synthetic effort towards the total synthesis of large polycyclic ladder 

compounds.63  An olefinic ester 1.38 was methylenated using Tebbe’s reagent64 to 

produce the corresponding vinyl ether which was then further transformed with an 

additional equivalent of Tebbe’s reagent to provide the corresponding oxepine 1.39 in 

moderate yield (Scheme 1.21).  A variety of six and seven membered cyclic enol ethers 

were constructed using this methodology (more details of Tebbe’s reagent will be 

provided in Section 2.5). 
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Scheme 1.21. Oxepine formation involving Tebbe’s metathasis. 

 

While useful, the Tebbe’s reaction suffers from several problems.  The generation of the 

initial reactive species generates stoichiometric quantities of methane, which may 

preclude its use on a large scale.  The reaction itself requires excess amounts of the 

reagent to complete the methylenation.  Finally, it is difficult to remove the titanocene 
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byproduct from the reaction product.  This tends to preclude it from any form of large-

scale application.  

 

A general method for the preparation of cyclic ethers has been applied to the synthesis 

of oxepane rings as part of the total synthesis of the large ladder polycyclic ethers of the 

ciguatoxin series.  Yamamoto and co-workers applied this method, which involves an 

intramolecular attack of an allylstannane on an aldehyde, to the synthesis of 

hemibrevetoxin B.65  In Scheme 1.22 1.40 was converted to 1.41 in 94% yield and 

produced only one diastereoisomer. 
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Scheme 1.22. Formation of oxepane rings leading to synthesis of hemibrevetoxin B. 

 

Subsequent formation of another allylstannane and an aldehyde group in several steps is 

followed by conversion of 1.42 to 1.43 in 98% yield, again with only one 

diastereoisomer formed.  Other researchers have used variations of this method in the 

synthesis of similar molecules.  However, the presence of tin, which is extremely 

environmentally toxic, in these reactions also precludes their use in a scaled up 

synthesis. 
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Carbon-carbon bond formation to generate oxepines has come to be dominated by ring 

closing methasis (RCM), due to the ongoing development of organometallic catalysts 

for this type of reaction.  These advances have largely occurred since the start of this 

project.  RCM has many advantages in the formation of medium-sized rings in general 

and oxepines in particular.  The disconnections are particularly simple, have no 

stereochemical complications as a result of the ring formation, and the alkene can be 

formed at any position on the ring as a precursor to further elaboration.  The catalysts 

are compatible with a wide variety of complex functionalities, so can be used as a late 

stage synthetic step in a total synthesis strategy. 

 

Grubbs’ catalysts have been applied to the formation of medium sized cyclic enol ethers 

(including oxepines) as part of a sequence to construct large polycyclic ethers of type 

1.34-1.36.  Rainer and co-workers developed a strategy outlined in Scheme 1.23.66 
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Scheme 1.23. Formation of oxepine ring with Grubbs’ catalyst. 

 

Epoxidation of tri-O-benzyl glucal followed by addition of allyl magnesium chloride 

generates a mixture of C-glycosides.  Acetylation of the free hydroxyl group followed 

by methylenation formed the metathesis precursor 1.44.  Ring closing metathesis using 

Grubbs’ second generation catalyst gave 1.45 in a 78% yield and the bicyclic oxepine 

was now set up for subsequent iterations of epoxidation, nucleophilic attack and 

cyclisation to continue the growth of the fused polycyclic ether. 
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Similarly, Jenkins and Ghost used a chiron starting material to synthesize polycyclic 

ethers (Scheme 1.24).67  1.46 was treated with NaH and allyl bromide to give 1.47.  

Treatment with Grubbs’ second generation catalyst gave 1.48 in 87% yieldwith the 

oxepine positioned for further elaboration to give access to more complex structures. 
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Scheme 1.24. Jenkins and Ghost’s oxepine formation. 

 

Clark and co-workers have also used Grubbs’ second generation catalyst to form 

oxepines using an ene-yne system in a synthetic effort towards gamberic acid and 

gambierol 1.36 (Scheme 1.25).68  The authors also note that the success of the ene-yne 

metathesis depends on the size of the terminal group on the alkyne.  Smaller groups (H 

or Me) give good yields (70%) while the larger TMS group returned only starting 

materials. 
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Scheme 1.25. Formation of oxepine ring with Grubbs’ catalyst. 

 

Another common method for oxepine formation that has been applied to the synthesis 

of several natural products is intramolecular attack on an acetal.  Overman and co-

workers utilised a Prins cyclisation of mixed acetals as part of a synthetic route to (+)-

isolaurepinnacin (Scheme 1.26).69 
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Scheme 1.26. Formation of oxepine ring by Prins cyclisation. 

 

Treatment of 1.49 with BCl3 selectively cleaves the methoxy acetal to give an α-chloro 

enolether.  Upon warming to room temperature an oxonium intermediate is formed 

which then undergoes cyclisation and olefin formation to give oxepine 1.50 in a 90% 

yield.  Only one isomer is generated in this reaction. 

Nicolaou and co-workers have developed a photochemical coupling of thiocarbonyl 

compounds to prepare oxepine intermediates as part of the effort to synthesize 

brevitoxin B (Scheme 1.27).31  
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Scheme 1.27. Nicolaou’s photochemical generation of oxepine rings. 

 

The ester-keto starting material 1.51 was thionated using Lawesson’s reagent to 

generate the dithiono system 1.52 which upon exposure to UV light generates a bis-

diradical species 1.53 which couples to form a 1,2-dithietane 1.54.  S2 is then expelled 
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to give the oxepine 1.55 in 63% yield.  This strategy could also possibly be used in a 

late stage connection of two complex fragments in the formation of a natural product.  

Hirama and co-workers have also used a photochemical rearrangement as part of an 

investigation into the synthesis of parts of the ciguatoxin structure (Scheme 1.28).  

Photoelectrocyclic reaction of the diene 1.56 forms cyclobutene 1.57 which upon 

ozonolysis followed by reduction by PPh3 gives oxepanedione 1.58 which can be 

furthur transformed into oxepine 1.59.  This methodology can also be used to construct 

eight- and nine-membered rings. 
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Scheme 1.28. Hirama’s photochemical generation of oxepine rings. 

 

1.8 Ring expansion of cyclopropanated carbohydrates 

 

Hoberg and co-workers have reported the utilisation of the Ferrier rearrangement in 

combination with a cyclopropanated carbohydrate to generate oxepines in high yield.70  

Initial work lead to by-products with oxepines isolated as a [4.2.1] bicyclic system 1.60.  

With labile protecting groups (Ac, Bn, or smaller silyl derivatives) the C-6 alcohol was 

deprotected under the reaction conditions and competed with the external TMS 

nucleophile (Scheme 1.29).  In cases where the nucleophile had low reactivity 1.60 was 

formed in up to 78% yield.  With a more robust silyl protecting group at C-6 eg (R1=R2 

= tBu2Si, 1.61 ) oxepines of type 1.62 were formed with a wide variety of nucleophiles.  

While yields were quite high there was only moderate facial selectivity (at best 1:2 

α:β).  In all reactions elimination to the diene 1.62 competed with nucleophilic attack.   



 36 

O

OR3
R2O

R1O OR1O

R2O

O

R2O

O

OR1O

R2O

Nu

TMSNu

- R1

1.60

1.62  

Scheme 1.29. Formation of [4.1.0] bicyclic system. 

 

The results are summarised in Table 1.4. 

 

Of interest in this series of expansions was the low stereoselectivity in attachment of the 

anomeric substituent.  In fact the predominant β stereoselectivity is the opposite to that 

normally observed in the Ferrier rearrangements.  This suggested there were differences 

in the application of this particular reaction to the different sized ring systems, and that 

there needed to be more research done on the application of this rearrangement to the 

formation of oxepine systems. 
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Table 1.4. Cyclopropane expansions using TMSOTf. 

nucleophile Product Yield (%) Diastereoselectivity α:β 
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1.9 Aims and objectives 

 

The aim of this project was to investigate further the Ferrier-type rearrangement of 

cyclopropanated carbohydrates with an eventual view towards making a synthetically 

useful route to chiral oxepines. 

 

Objectives were: 

1) To optimise the synthesis of various protected glycals and the subsequent 

cyclopropanation of the glycal; 

2) Explore the Ferrier-type ring expansion while varying parts of the molecule and 

reaction conditions.  The main areas of interest were: 

a) The examination of different protecting groups at the C-4 and C-6 positions; 

b) The variation of the base sugar structure; 

c) The examination of a wider variety of nucleophiles; 

d) The investigation of different leaving groups at the C-3 position; 

These areas were to be examined with the underlying intention of increasing the 

stereoselectivity of the rearrangement; 

3) Gain an increased understanding of the underlying reaction mechanisms 

involved in the Ferrier rearrangement as applied to the cyclopropanated glycals. 

This would be achieved by: 

a) Exhaustive NMR analysis of reaction by-products; 

b) Utilisation (where possible) of isotopic labelling studies; 

4) Further functionalisation of the oxepine products providing a range of synthons 

for use in a bioactive analogue synthesis series; 

5) Extend the methodology to the synthesis of a naturally occurring compound. 
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1.10 A note about NMR assignments in this thesis. 

 

The oxepins synthesised in the course of this thesis are of two types: mono- and bicyclic 

ring systems. As such they have different IUPAC numbering conventions.  The 

numbering also can alter depending on the substituents.  However, during the course of 

this thesis the ring systems will be compared to each other.  Therefore, to simplify 

comparison of data and structures, all NMR assignments have used the numbering 

scheme shown in Figure 1.16.   
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Figure 1.16. Numbering conventions used in this thesis for the purposes of NMR assignments. 

 

This numbering scheme highlights the similarities between the oxepine rings,with the 

carbon that would be considered the ‘anomeric’ center in the starting carbohydrates 

numbered C-1 and then subsequent assignments around the ring as usual in 

carbohydrate structures.  This numbering system will also be used in the discussion of 

positions on the ring in the text. 

 

The IUPAC numbering convention will be applied to the names that appear in the 

experimental section of the thesis.  The author hopes that this will not cause confusion 

to the reader. 
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Chapter 2: Initial studies on the Ring Expansion of Cyclopropanated 

Glycals 

 

In order to build on Hoberg’s successful methodology70 discussed in Section 1.7 

(Scheme 2.1), it was decided to make some alterations to the previous initial substrate in 

the choice of main protecting group in an attempt to increase the stereoselectivity of the 

reaction.   
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Scheme 2.1. Hoberg’s ring expansion methodology. 

 

The di-tert-butylsilyl protecting group, while stable to the reaction conditions, leaves a 

1,3-diol moiety following deprotection.  To improve the general applicability, of this 

methodology it would be preferable to selectively reveal these groups independently. 

Therefore, the initial plan was to use a stable bulky protecting group at the C-6 position 

to determine whether this would alter the outcome of the ring expansion reaction.  Das 

and co-workers have demonstrated the effect a group at this C-6 position has on the 

Ferrier rearrangement.24 They showed that by making one face of the molecule less 

favourable to the approach of a nucleophile leads to an increase in the stereoselectivity 

of the ring expansion.  Previous work with a range of non-silyl protecting groups 

(acetate, dimethylacetonide and benzyl) had shown that during the ring expansion the 

protecting group was cleaved from the primary alcohol by the presence of a Lewis 

acid.40 This then acted as an intramolecular nucleophile that competed with the 

intermolecular nucleophile during the ring expansion (Scheme 2.2).  In some cases, 
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where the external nucleophile was particularly unreactive, the bicyclic oxepine was the 

major product isolated. 
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Scheme 2.2. Ring expansion with interception of oxonium intermediate by internal nucleophile. 

 

The triisopropylsilyl ether protecting group was chosen for its expected stability under 

the reaction conditions and its steric bulk.71  It was also decided to change the ring 

system from glucal to galactal as Danishefsky’s work had shown that using tri-O-acetyl-

galactal instead of tri-O-acetyl-glucal in the Ferrier rearrangement resulted in a two-fold 

increase in the stereoselectivity.22  

 

2.1 Investigations of 6-O-TIPS protected cyclopropanated galactal 

 

Synthesis of the desired cyclopropanated galactal proceeded smoothly in good yields in 

three steps from D-galactal (Scheme 2.3). 
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a) TIPS-Cl, TEA, DMF, rt, 66%.  b) CH2I2, Et2Zn, Et2O, reflux, 72%.  

 c) Ac2O, py, CH2Cl2, DMAP, 99% 

Scheme 2.3. Formation of cyclopropane 2.4. 
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To this end, galactal 2.172 was silylated giving silyl ether 2.2 in 66% yield.  Compound 

2.2 was then subjected to cyclopropanation by the Furukawa modification of the 

Simmons-Smith cyclopropanation39 to give diol 2.3 in 72% yield.  Acetylation of both  

hydroxyl groups of 2.3 proved to be problematic.  It was relatively easy to acetylate the 

C-3 hydroxyl, but the C-4 hydroxyl proved resistant to acetylation.  This is potentially 

due to its location adjacent to the TIPS group, with steric hindrance the most likely 

reason for the lack of success of this reaction. 

 

With the cyclopropane 2.4 in hand, some initial reactions were performed to probe 

possible conditions conducive to the ring expansion. 
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Scheme 2.4. Initial attempts towards a general method for ring expansion. 

 

In an initial attempt (Scheme 2.4), cyclopropane 2.4 was treated with TMSN3, using 

TMSOTf as the Lewis acid catalyst in MeCN at –40 oC.  The temperature was 

subsequently raised to –20 oC followed by stirring for six hours, however this gave no 

reaction by TLC.  Repeating the reaction at 0 oC and stirring for eight hours while 

warming to ambient temperature resulted in deprotection of the C-6 hydroxyl through 

removal of the TIPS protecting group.  A final attempt at heating the mixture to reflux 

for two hours resulted in decomposition of the starting material to unknown low Rf 

products that could not be isolated. 

 

Experiences at later stages of the investigation have revealed that having an unprotected 

alcohol in the cyclopropane molecule provides a proton source.  This decomposes the 
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catalytic TMS triflate to triflic acid, which then catalyses the deprotection of the silyl 

protecting group leading to the generation of inseparable reaction products. 

 

2.2 Investigation of alternative leaving groups 

From this work it was then postulated that a better leaving group than acetate was 

required to facilitate the initiation of the desired reaction at a temperature low enough to 

ensure the survival of the attached TIPS group.  The leaving groups chosen for this 

investigation were carbonate, triflate and mesylate. 

 

2.2.1 Carbonate as the leaving group 

 

Treatment of diol 2.3 with carbonyldiimidazole in dry THF for two hours gave 

carbonate 2.5 in 54% yield (Scheme 2.5). 
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Scheme 2.5. Formation of cyclopropanated galactal 2.5. 

 

Treatment of this substrate with TMSN3 and TMSOTf in MeCN at 0 oC only returned 

starting material.  The reaction was then repeated with AgOTf as the Lewis acid.  No 

products could definitively be identified from the complex mixture that resulted, 

although some signals consistent with oxepine formation were observed in the 1H NMR 

spectrum.  Despite the presence of some promising peaks in the 1H NMR spectrum, the 

decision was made to investigate the effectiveness of triflate as an alternative leaving 

group in the reaction. 
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2.2.2 Triflate as the leaving group 

 

Diol 2.3 was treated with triflic anhydride (Tf2O) in a 1:1 mixture of pyridine (py) and 

CH2Cl2 at ambient temperature in an attempt to generate the OTf protected galactal 2.6 

(Scheme 2.6). 
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Scheme 2.6. Attempted formation of triflate protected cyclopropane 2.6. 

 

Although none of the expected product was observed an interesting compound was 

isolated from the reaction mixture.  The 1H NMR spectrum revealed the presence of a 

methylene, indicated by a pair of multiplets at δH 2.54, and 2.08, with a δC of 34.2.  

From previous work it is known that 1H NMR signals in this region are consistant with 

the presence of an oxepine.70  Further analysis of the 1D and 2D NMR data indicated 

the presence of an oxepine with the general structure 2.7.  The HSQC-DEPT spectrum 

revealed the presence of a methylene, one oxymethylene, three oxymethine and two 

alkenyl carbons which COSY correlations confirmed were all part of the same 1H spin 

system.  The connectivity of the 1H spin system was then established from a series of 

COSY correlations from the C-2 methylene (δH 2.54 and 2.08, δC 34.2) to an 

oxymethine (C-1: δH 5.56, δC 100.7) and to an alkenic methine (C-3: δH 5.71, δC 124.2). 

The proton at C-3 couple to a second alkenic methine (C-4: δH 6.10, δC 129.1) to an 

oxymethine (C-5: δH 4.58, δC 71.6) to a second oxymethine (C-6: δH 4.19, δC 84.8) and 

finally to an oxymethylene (C-7: δH 3.51 and 3.61, δC 63.5).  This gave an oxepine ring 

structure 2.7 as shown in Scheme 2.7, where R was an as yet undetermined group. 
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Scheme 2.7. General structure of oxepine 2.7 formed from attempted triflate formation. 

 

Initially, it was thought that this compound could have a hydroxyl group at the C-1 

position, which could have been formed during the aqueous work up.  However, if this 

were a hemiacetal we would expect to see both anomers present in the NMR spectra, as 

the ring system could open and close to reach equilibrium between the α- and β- forms.  

In this case, only one isomer was observed.  Mass spectral data revealed a [M+H]+ peak 

at ~299 that indicated the presence of an oxepine ring with an attached TIPS group.  

This led us to propose a bicyclic structure for the unknown product 2.7.  If the triflate is 

formed and spontaneously ring expands, the resulting oxonium could be intercepted by 

an intramolecular nucleophile.  The logical source of this nucleophile is the hydroxyl 

group on the opposite side of the molecule.  The oxepine ring is more flexible than the 

equivalent six-membered ring and so it is possible that the C-5 hydroxyl could reach 

across the ring and intercept the oxonium ion, forming a bicyclic structure 2.7a as 

shown in Scheme 2.8. 
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Scheme 2.8. Bicyclic ring formation of 2.7a. 

 

The chemical shifts of the methylene protons in the oxepine ring at C-2 indicate that 

this could be the correct structure as the two protons are in different chemical 
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environments (δH 2.54 and 2.08), thus indicating a structure that is inflexible on the 1H 

NMR time-scale. 

 

The low yield in this reaction could be due to some deprotection of the TIPS group from 

the C-6 hydroxyl.  The low molecular weight alcohol formed would probably have a 

low boiling point and could be lost during the workup step. 

 

Some of the spectral data from compound 2.7 indicated the possible presence of a 

second TIPS group on the molecule.  For instance, the integration of the 1H resonance at 

δH 1.09 ppm was twice that expected.  It is possible that the molecule has a second 

OTIPS group present attached at the anomeric position, leading to a structure 2.7b as 

shown in Figure 2.2.  The mass spectral data also suggested that a heavier compound 

could be present.  However, this information was inconclusive because the masses 

observed did not seem to correspond to likely groups that could be attached to the 

oxepine. 
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Figure 2.1. Possible structure of product 2.7b from triflation of 2.3. 

 

It is currently considered that the more likely of these two structures is the bicyclic 

compound 2.7a.  The formation of 2.7b would require an OTIPS moiety to be generated 

and act as a nucleophile, which seems highly unlikely.  Nevertheless the alternative 

structure 2.7b does fit with some of the data obtained from the compound. 
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2.2.3 Mesylate as the leaving group 

 

An attempt was made to form a mesyl leaving group at C-3.  It was thought that it 

would be possible to isolate the desired cyclopropane product, as the mesyl group 

should be less labile than triflate during workup.  Diol 2.3 was treated with MsCl in a 

1:1 mixture of CH2Cl2 and pyridine at ambient temperature overnight followed by an 

aqueous workup.  The 1H NMR spectrum of the crude reaction mixture revealed the 

presence of the previously isolated oxepine 2.7 along with starting material, and this 

was not pursued further. 

 

2.2.4 One pot generation of the triflate leaving group and ring expansion 

 

The previous reaction had demonstrated that it was indeed possible to generate the 

triflate leaving group in solution.  Subsequent addition of a nucleophile could lead to 

the ring expansion and generation of the target oxepine. 

 

Initially, cyclopropane 2.3 was treated with Tf2O in CH2Cl2 with an excess of pyridine 

at 0 oC. After stirring for one hour to form the triflate intermediate, TMSN3 was added 

drop-wise and the reaction stirred for 12 hours at ambient temperature.  Workup of the 

mixture returned only starting material plus a small amount of oxepine 2.7.  Changing 

the solvent to MeCN under similar conditions again revealed starting material and 

oxepine 2.7.  Similarly, the employment of TMSallyl as the nucleophile source under 

identical conditions gave no indication of the formation of the target oxepine and 

resulted again in the formation of small amounts of oxepine 2.7.  An equivalent reaction 

employing MeCN as the solvent also failed to generate the desired products. 
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At this point it was decided to discontinue the use of these leaving groups.  There 

appeared to be no control over the products of the reactions, and it had proved 

impossible to introduce an external nucleophile reactive enough to out-compete the 

internal nucleophile present as a hydroxyl in the molecule at C-5. 

 

2.3 In situ generation of the leaving group 

 

The above reactions, despite being technically unsuccessful in generating the protected 

and activated cyclopropanated galactal, demonstrated the possibility of generating a 

good leaving group and ring expanding the cyclopropane in situ (Scheme 2.9).  This 

would be a useful modification of the ring expansion method requiring fewer synthetic 

steps.  However, the reaction conditions would have to be optimised so that the external 

nucleophile would react faster with the oxonium intermediate than the C-5 hydroxyl 

group. 
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Scheme 2.9. General proposed route to oxepines by in situ generation of a leaving group. 

 

2.3.1 In situ generation of leaving group under Mitsunobu conditions 

 

As the initial investigations had revealed that the reaction conditions involving Lewis 

acid species were too harsh for the TIPS protecting group, conditions were required that 

would be more conducive to its retention during the reaction.  Examination of the 

literature revealed that the Mitsunobu reaction could possibly be adapted to this 
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purpose.73  The Mitsunobu reaction is normally used to activate secondary alcohols to 

attack by nucleophiles so as to introduce other functional groups in a stereoselective 

manner (Scheme 2.10).74 This makes the Mitsunobu reaction an extremely useful tool in 

natural product synthesis.75 
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Scheme 2.10. Mitsunobu reaction for conversion of an alcohol to a different functional group. 

 

In the mechanism, PPh3 combines with DEAD to generate a phosphonium intermediate 

that subsequently is transferred to the alcohol oxygen, activating it as a leaving group 

(Scheme 2.11).  Substitution of the triphenylphosphonium alkoxide by a suitable 

nucleophile completes the reaction with inversion of stereochemistry. 
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Scheme 2.11. Proposed mechanism of the Mitsunobu reaction. 

 

 The intention was to investigate the possibility of using a modification of this reaction 

to generate a good leaving group that could in turn lead to ring expansion and 

interception by a nucleophile (Scheme 2.12). 
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Scheme 2.12. Possible products from Mitsunobu reaction. 

 

There is another product possible from this reaction.  The standard Mitsunobu product 

would be formed if the nucleophile attacks in an SN2 or SN2’-type reaction with direct 

displacement of the triphenylphosphine oxide group by the incoming nucleophile 

instead of ring expansion. It was thought that if conditions conducive to an SN1 reaction 

mechanism could be generated, this would lead to the desired opening of the 

cyclopropane upon departure of the leaving group.  The oxonium ion formed in this 

expansion could then be intercepted by the nucleophile to generate the desired oxepine.  

This would require a solvent that could stabilise the oxonium intermediate in solution.  

Hoberg’s work suggested that MeCN was an ideal solvent for this task (Section 1.7). 70 

 

The first reaction undertaken was to check that the TIPS protecting group at C-6 on 

cyclopropane 2.3 was stable under the reaction conditions that were to be employed, as 

this was considered to have been a problem in the previous section’s work.  Thus 

cyclopropane 2.3 in THF was treated with PPh3, TMSN3 and DEAD at 0 oC. This was 

allowed to stir for 12 hours warming to ambient temperature.  Work up of the reaction 

mixture followed by purification gave pyran 2.9 as one isomer in an 82% yield (Scheme 

2.13). 
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Scheme 2.13. Mitsunobu reaction in THF on 2.3 with TMSN3 as the nucleophile to generate 2.9. 

 

This result (entry 1, Table 2.1) demonstrated both the stability of the TIPS group under 

the reaction conditions, and that the nucleophile also functioned given the constraints of 

the reaction.76-78 

 

For the next reaction the solvent was altered to one that was intended to favour the 

desired ring expansion.  MeCN was chosen for the reasons listed previously, and as it is 

known to assist the stereo- and regio-selective glycosylation of carbohydrates by 

forming an ion pair with the ring oxygen and directing the incoming nucleophile.79  

Thus cyclopropane 2.3 in MeCN was treated with PPh3, TMSN3 and DEAD at 0 oC.  

Workup generated the non-rearranged product 2.9 with azide substitution at the C-3 

position in a 10% yield in a 1:1 yield of epimers, along with return of the starting 

material (Scheme 2.14).  A subsequent literature search revealed that MeCN has also 

been used as a solvent in the Mitsunobu reaction.80 
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Scheme 2.14. Mitsunobu reaction in MeCN with TMSN3 as the nucleophile. 

 

This result will be discussed later (entry 2, Table 2.1).  It was then decided to alter the 

nucleophile to TMSallyl for the next reaction to examine the effect of using a  

C-nucleophile verses an N-nucleophile.  The solvent was altered to CH2Cl2 as MeCN 
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had not yielded the desired ring expansion.  Cyclopropane 2.3 in CH2Cl2 was treated 

with PPh3, TMSallyl and DEAD at 0 oC.  The 1H NMR spectrum of the crude reaction 

mixture revealed that some oxepine had been formed.  This was purified and assigned 

using 1 and 2D NMR.  An examination of the 1H NMR spectrum revealed that there 

were two epimers present as a 1:1 mixture.  No signals indicative of an allyl group were 

observed.  However the 1H NMR spectrum indicated that the TIPS group was still 

present on the molecule.  An HSQC-DEPT revealed the presence of two epimeric 

hemiacetal 1H signals (δH 5.41 and 5.10 ppm) and the corresponding anomeric hydroxyl 

signals (δH 3.38 and 3.00 ppm).  COSY NMR confirmed the oxepine ring connectivity 

and indicated that 2.10 was the reaction product, obtained in a 17% yield (Scheme 

2.15).  
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Scheme 2.15. Reaction of 2.3 under Mitsunobu conditions with TMSallyl as nucleophile. 

 

This result indicated that while the oxonium intermediate had been formed, there was 

no observable interception by the allyl nucleophile.  The presence of the previously 

observed 2.7 was not observed.  It is thought that the formation of the bridged species is 

not facilitated by the CH2Cl2 and the hemiacetal 2.10 could be formed if the oxonium 

ion is quenched during the aqueous workup.   
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The next solvent selected to try the reaction in was DMF.  It was thought that the 

presence of the oxygen and its associated lone pairs of electrons would stabilise the 

oxonium cation in solution more effectively than MeCN assisted by the lone pair of 

electrons on the nitrogen (Scheme 2.16). 

O

HO
O

OTIPS

PPh3

O

HO

OTIPS
O

N
Me

Me+

+

DMF

 

Scheme 2.16. Stabilisation of the oxonium intermediate by DMF. 

 

Thus cyclopropane 2.3 was treated in DMF with TMSN3, PPh3 and DEAD at 0 oC and 

the reaction stirred for two hours.  Work up and purification of the reaction gave the 

desired oxepine 2.11 as the only compound recovered in a 27 % yield (Scheme 2.17).  

The selectivity was determined by GC to be 4:1, with the major epimer assumed to be 

the α anomer based on precedence from the Ferrier rearrangement with glycals. 
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Scheme 2.17. Modified Mitsunobu reaction in DMF at 0 oC with TMSN3 as the nucleophile. 

 

In an attempt to improve the selectivity and yield of the reaction, it was then decided to 

lower the temperature to –20 oC. This gave 2.11 again as the only compound recovered 

in a 45% yield with a stereoselectivity by GC of 20:1 (Scheme 2.18). 
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Scheme 2.18. Modified Mitsunobu reaction in DMF at -20 oC with TMSN3 as the nucleophile. 

 

This increase in yield and selectivity prompted a further experiment, lowering the 

temperature of the reaction to -40 oC.  Workup in this case revealed no oxepine.  Instead 

the major product isolated was the azide 2.9 in 87% yield in a 2:1 ratio of epimers by 

GC at C-3 (Scheme 2.19).  These reactions are summarised in Table 2.1. 
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Scheme 2.19. Modified Mitsunobu reaction in DMF at -40 oC with TMSN3 as the nucleophile. 

 

The results suggest that the mechanism for the reaction is temperature and solvent 

dependent.  With the reactions run in DMF at 0 oC we see the formation of the α-

oxepine, but with a substantial amount (20%) of the β-product present (entry 3).  

Decreasing the temperature to -20 oC further decreases the amount of the β-product 

formed (~5%) and increases the yield (entry 4).  At -40 oC there appears to be sufficient 

energy for the leaving group to depart but not for the opening of the cyclopropane 

(entry 5).   

 

Thus a cation is formed at C-3 that is stabilised by DMF at the lower reaction 

temperature and this is then intercepted by the nucleophile (Scheme 2.20).  The 

moderate α-selectivity observed in entry 3 is possibly due to the stabilising DMF 
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molecule weakly H-bonding to the adjacent hydroxyl at C-4 slightly hindering attack 

from the β-face.  This stabilisation effect does not appear to occur with MeCN as the 

solvent (entry 2) for either the ring expansion or the substitution at C-3. 
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Scheme 2.20. Possible mechanism for formation of azide 2.9. 

 

Table 2.1. Reaction of cyclopropane 2.3 under modified Mitsunobu conditions. 

Entry Reaction Conditions Results Yields and selectivity α:βα:βα:βα:β 

 

1 

 

TMSN3, THF, 0 oC 

 

O
OTIPS

HO

N3  

 

82% 

One product 

 

2 

 

TMSN3, MeCN, 0 oC 

 

O
OTIPS

HO

N3  

 

10% 1:1 ds 

 

3 

 

TMSN3, DMF, 0 oC 

 

O

HO

N3

OTIPS

 

 

27% 4:1 ds 

 

4 

 

TMSN3, DMF, -20 oC 

 

O

HO

N3

OTIPS

 

 

45% 20:1 ds 

 

5 

 

TMSN3, DMF, -40 oC 

 

O
OTIPS

HO

N3  

 

87% 2:1 ds 
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At this point it was decided to halt this line of investigation utilising a monotethered 

silyl protecting group due to its instability under either the Lewis acid or Mitsunobu 

expansion conditions.  While some initially promising results had been observed, the 

yields were lower than desired, and the reaction could not easily be controlled.  The 

presence of unexpected by-products was also a concern. 

 

2.4 Ring expansion of glucal 2.12 with generation of leaving group in 

situ 

 

Investigations to be discussed in Chapter six suggested the possibility that the leaving 

group at C-3 could be generated in situ.  This was previously investigated as described 

in Section 2.3, but could not be successfully controlled.  Therefore a test reaction was 

performed on cyclopropane 2.12 (as previously synthesized by Hoberg) 70 without the 

acetate present.  Excess TMSOTf was used and it was intended that trimethylsilylation 

of the hydroxyl group at C-3 would generate a sufficiently good leaving group in situ 

for the reaction to proceed.  It was thought that the di-tert-butylsilyl protecting group 

would be stable even under the acidic conditions that would result from this reaction.  

Thus cyclopropane 2.12 was treated with 1.2 equivalents of TMSOTf and five 

equivalents of TMSN3 in acetonitrile (Scheme 2.21).  
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Scheme 2.21. Attempted ring expansion of 2.12 generating the leaving group in situ. 

 

This generated three products which were separated by column chromatography on 

silica.  They were characterized in order of elution from the silica column.  All 
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structures were assigned by 1H and 13C NMR, COSY, HSQC-DEPT, and where 

avaliable HMBC and 15N experiment. 

 

The compound with the highest RF had 1H resonances that indicated the presence of the 

di-tert-butylsilyl protecting group (δH 1.07, 9H and δH 1.01, 9H).  Analysis of the 

HSQC-DEPT data indicated the presence of an oxymethylene, two oxymethines, two 

alkenic methines and a methylene group.  There was also a quaternary carbon present.  

The connectivity of the 1H spin system was constructed from a series of COSY 

correlations from the C-7 oxymethylene (δH 3.83 and δH 3.99, δC 68.5) to an 

oxymethine (C-6: δH 3.53, δC 70.5) to a second oxymethine (C-5: δH 4.50, δC 75.1,) to 

an alkenic methine (C-4: δH 5.67, δC 135.5) to a second alkenic methine  (C-3: δH 5.60, 

δC 120.2) to a methylene (C-2: δH 3.33 and δH 3.26, δC 16.7).  The quaternary carbon 

was assumed to be at C-1 (δC 118.1) as all other resonances had been identified.  The 

chemical shift indicated that C-1 was olefinic, most likely with a nitrogen from the 

azide addition. The complexity of the 1H splitting at the C-2 methylene indicated that 

the oxepine ring was intact.  A TMS group was present in the sample (δH 0.12, δC 0.14), 

which integrated for nine protons.  ES HRMS data was obtained for this compound, 

with a strong peak in the spectrum occurring at 370.2271 Da.  This suggested that the 

structure of the compound could possibly be as shown in Figure 4.1.  The calculated 

mass for the proposed structure 2.13 C18H35O3NSi2+H matched that observed.  This 

information indicated that the TMS group observed in the 1D NMR spetra was indeed 

part of the structure.  As no other moieties had been identified that could be attached to 

the sp2 hybridised nitrogen attached at C-1, the TMS was tentatively placed at this 

position.  Literature 13C chemical shift data for similar systems supported this 

assignment.81 Based on this information the structure of this compound was tentatively 

assigned as that shown in Figure 2.2. 
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Figure 2.2. Proposed structure of oxepine 2.13. 

 

Unfortunately no further information could be obtained from this compound as by the 

time more advanced NMR experiments had become available (15N and 13C HMBC, as 

well as 29Si) the stored sample had decomposed to an unidentifiable oil. 

 

The compound with the middle RF also had 1H resonances indicative of the di-tert-

butylsilyl protecting group.  Analysis of the HSQC-DEPT spectrum revealed the 

presence of an oxymethylene, a methylene, three oxymethines and two alkenic 

methines.  The connectivity of the 1H spin system was constructed from a series of 

COSY correlations from the C-7 oxymethylene (δH 4.15 and 3.86, δC 67.8) to an 

oxymethine (C-6: δH 3.58, δC 69.7) to a second oxymethine (C-5: δH 4.53, δC 74.5) to an 

alkenic methine (C-4: δH 5.67, δC 134.0) to a second alkenic methine  (C-3, δH 5.67, δC 

126.1) to a methylene (C-2: δH 2.59 δC 33.1) and finally to an oxymethine (C-1, δH 4.81, 

δC 77.3).  This gave a base structure as shown in Figure 2.3. 

O
tBu2Si

O

O XY
1

2

34

5

6
7

 

Figure 2.3. Substructure of middle RF compound generated from ring expansion with leaving group 

generated in situ. 

 

Fortunately this sample had not decomposed during storage and it was possible to run 

more advanced 2D NMR experiments.  15N HMBC experiments indicated the presence 

of an azide, which was confirmed by a peak in the IR spectrum at 2099 cm-1.  The 15N 
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shifts of the three nitrogens were successively δN = -292, -136 and -302.  Interestingly 

there was also a fourth peak present at δN -155.  However, the fact that this was coupled 

to a methine was initially rather confusing.  13C HMBC correlations indicated that there 

was no C-6 to C-1 ether linkage and hence no oxepine ring.  This was backed up by the 

resonance of the C-2 methylene in which both protons were chemically equivalent by 

1H NMR.  This had not been observed in any of the oxepine ring systems synthesised as 

part of this project, or in Hoberg’s previous work,70 and indicated that there was free 

rotation around this centre on the NMR timescale.  The chemical shift of the methine 

suggested that there was more than one heteroatom present at this centre.  The presence 

of a tetrazole was discounted, as the C-1 in the ring would give 13C NMR signals at 

approximately δC~140-170 according to literature sources,82 whereas a signal at δC 77.3 

was observed for this centre.  Another possibility was the presence of a diazide at this 

centre.  Similar compounds have previously been reported in the literature, for example 

Rydzewski and coworkers generated a diazide under similar conditions (Scheme 

2.22).83   

O
OTIPS

TIPSO
OTIPS

N3

OH

N3
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a)TMSOTf (1 eq), TMSN3 (2.2 eq), CH2Cl2, -78 oC. 

Scheme 2.22. Rydzewski’s diazide synthesis. 

 

The chemical shifts of the diazide methine in this compound (δH 4.78, δC 78.7) very 

closely matched those of C-1 in the unknown sample.  Unfortunately no ES HRMS data 

could be obtained for our compound to confirm the structure.  However, given the data 

we possessed it was possible to propose the structure 2.14 for this compound (Figure 

2.4). 
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Figure 2.4. Probable structure of diazide 2.14. 

 

More evidence for diazide 2.14 was the presence of a fourth peak in the 15N spectrum at 

δN -155.  This signal and the signal at δN -136 correspond to the chemical shift range 

expected for the second positively charged nitrogen on the azide chain.  15N data on the 

oxepine azides 3.5 and 3.17 synthesised in chapter three agrees with these chemical 

shifts, but the second nitrogen occurs at δN -135.8.  The presence of the extra peak at  

δN -155 ppm is thought to be due to a weak interaction between this central N of one 

azide group and one of the lone pairs on the alcohol attached to C-2 (Figure 2.5) 

OO
tBu2Si
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H

N
N

N

N N N  

Figure 2.5. Proposed structure of diazide 2.14 showing interaction between positively charged nitrogen 

and the free alcohol. 

 

The last compound also appeared to have no oxepine ring.  Again 1H resonances 

confirmed the presence of the di-tert-butylsilyl protecting group.  The HSQC-DEPT 

spectrum revealed the presence of an oxymethylene, two oxymethines, two alkenic 

methines, a methylene and a quaternary carbon.  The connectivity of the 1H spin system 

was constructed from a series of COSY correlations from the C-7 oxymethylene (δH 

4.11 and 3.85, δC 68.0) to an oxymethine (C-6: δH 3.59, δC 69.6) to a second 

oxymethine (C-5:δH 4.51, δC 74.7) to an alkenic methine  (C-4: δH 5.76, δC 135.4) to a 

second alkenic methine (C-3: δH 5.63, δC 120.8) to a methylene (C-2: δH 3.30, δC 16.8).  

HMBC correlation revealed that C-2 correlatated to the quaternary carbon at C-1 (δC 
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118.0).  HMBC correlations also revealed no ring ether linkage.  1H-15N HMBC 

revealed the presence of one nitrogen in the molecule.  As C-1 was coupled to the C-2 

methylene it was then assigned as a nitrile, which was in agreement with the observed 

C-1 chemical shift data.84  A broad singlet at δH 2.35 was assigned as originating from a 

hydroxyl connected to C-6 by HMBC.  This data allowed the proposal of the structure 

2.15 (Figure 2.6).  Final conformation was provided by a peak in the IR spectrum at 

2254 cm-1 indicative of the presence of a nitrile group. 

 

OHO
tBu2Si

O
N

 

Figure 2.6. Proposed structure for the nitrile 2.15. 

 

In order to explain these products, it is postulated that the reaction proceeds through 

initial ring expansion to form the azide-substituted oxepine.  However, in the presence 

of excess TMSOTf it is then possible for subsequent reactions to occur.  It is postulated 

that the observed products 2.13, 2.14 and 2.15 are formed through two competing 

pathways (Scheme 2.23). 

 

In pathway A, it is proposed that a lone pair of electrons on the oxepine ring oxygen 

attacks the TMS group which allows tautomerisation of the azide.  This rearrangement 

is reversible.  A second azide nucleophile then attacks at C-1, breaking the C-O ether 

bond and opening the oxepine ring, generating the diazide 2.14.  In pathway B, 

elimination of N2 from the azide coupled with protonation at C-1 (possibly aided by 

triflate) generates a C-N double bond to give oxepine 2.13.  Compound 2.13 can then 

react further through protonation of the oxepine ring oxygen and ring opening with 

elimination of the N bound TMS group to give nitrile 2.15. 
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Scheme 2.23. Rearrangement of oxepine 2.12 with TMSN3 in TMSOTf to give observed reaction 

products. 

 

2.5 Investigation of intramolecular nucleophile delivery 

 

It had been observed in our previous work that an internal nucleophile reacts faster than 

an external nucleophile with the oxonium intermediate.  Therefore it might be possible 

to utilise a cyclopropanated glycal with an internal nucleophilic moiety to intercept the 

oxonium intermediate and form an oxepine.  The decision was also made to retain the 



 63 

use of the di-tert-butylsilyl protecting group due to its stability under a wide range of 

reaction conditions. 

 

2.5.1 The tandem Tebbe-Claisen rearrangement 

 

Fraser-Reid and co-workers have reported Claisen-type rearrangements of glycals in 

which the enol ether at C-3 rearranges at high temperature to effectively become the 

nucleophile at C-185 (Scheme2.21). 
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Scheme 2.24. Fraser-Reid’s Claisen approach to C-alkylation of glycals. 

 

Fairbanks and co-workers expanded on this work with substituted enol ethers in the 

synthesis of C-glycosides using a tandem Tebbe-Claisen approach (Scheme 2.25).86 
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Scheme 2.25. Tebbe-Claisen approach to formation of C-glycosides. 
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This approach involves the esterification of a suitable glycal ester.  Tebbe 

methylenation produces an enol ether that undergoes a stereoselective sigmatropic 

rearrangement to yield the desired C-glycoside.  The Tebbe reagent is formed by the 

reaction of Cp2TiCl2 with AlMe3 (Scheme 2.26).  This produces an organometallic 

species that can then react with a carbonyl group to produce an olefin by the transfer of 

a methylene group.64  

 

TiCl2 Ti

H2
C

Cl

Al
AlMe3

Tebbe's reagent

Toluene

 

Scheme 2.26. Formation of Tebbe’s reagent. 

 

The Tebbe reaction is especially useful in reactions with ester carbonyl groups that are 

unreactive under standard Wittig conditions.  The advantages of Fairbanks’ approach 

are the wide selection of acids that may be used in the initial esterification (including 

amino acids)87 and the stereoselectivity of the C-C bond formation, in which the anomer 

produced depends on the initial glycal selected.  Our interest was centred on the 

application of this methodology to the cyclopropane ring expansion.  By modifying 

Fairbanks reaction it should prove possible to access a range of ring expanded 

compounds with β-substitution that our current strategy could not produce with high 

selectivity.  It would also allow the use of a far wider range of nucleophiles than had 

been previously possible.   

 

A long-term goal would be to create oxepane nucleosides analogous to the HIV drug 

AZT (Figure 2.7) in which an oxepane replaces the furan ring. 



 65 

O

N3

N NH

O

O
OH

 

Figure 2.7. Structure of AZT. 

 

These oxepanes have very recently been reported by Damha and Sabatino.88 Ring 

expansion of glucal 1.61 with a silylated nucleoside base (thymine or  

N6-benzoyladenine) and TMSOTf in refluxing MeCN gave the desired oxepine in 

approximately 40% yield as a 1:1 mixture of anomers. The desired β-anomer was 

separated from the remainder of the mixture and converted to the desired oxepane by 

treatment with TBAF, followed by hydrogenation over Pd/C (Scheme 2.27). 
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a) TMSthymine, TMSOTf, MeCN. b)i) TBAF. ii) H2/Pd. 

Scheme 2.27. Damha and Sabatino’s formation of an oxepane nucleoside. 

 

A perceived problem with the application of this type of reaction to our system was that 

the cyclopropane was blocking access to the β-face of the C-1 carbon.  With a true 

Claisen pericyclic reaction less likely, there is a possibility that a SN1 type mechanism 

could occur leading to a mixture of epimers.  However it was felt that the potential 

benefits if the reaction was successful made it worth investigating. 
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2.5.2 Ring expansion using modified Tebbe-Claisen 

 

Using cyclopropanated glucal 1.61,70 the acetate protecting group at C-3 was 

methylenated with Tebbe’s reagent to give olefin 2.15.  This reaction was low yielding 

and it proved difficult to purify the products as there were problems removing the 

titanocene oxide by-product.  The Claisen rearrangement was attempted in several 

different solvents and various temperatures following the previously reported work.  

Rearrangment products were isolated but proved to be a 1:1 mixture of epimers of 2.16 

as determined by 1H and HSQC-DEPT NMR (Scheme 2.25) in a 45% yield. 
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a) Tebbe’s reagent, py, THF, 40 oC.  b) PhCN, reflux. 

Scheme 2.28. Rearrangement of 1.61 by tandem Tebbe-Claisen rearrangement to form 2.16. 

 

The mixture of isomer observed in the products may result from the high temperatures 

leading to an SN1 type reaction where the group at C-3 leaves and rearrangement 

occurs, which leads to the formation of the oxonium intermediate.  The so-formed 

acetone enolate then attacks from either face at C-1 (Scheme 2.29).  This had been 

considered a possible outcome at the outset of this section.   
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Scheme 2.29. Possible reaction mechanism during modified Tebbe-Claisen leading to observed products. 
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At this point, this line of research was terminated due to less than adequate yields and a 

lack of control over the stereoselectivity of the products formed in this reaction. 

Subsequent conversations with Fairbanks revealed that unless the titanocene oxide was 

rigorously excluded from the reaction, then problems arose during the Claisen re-

arrangement leading to a mixture of products.  The residual titanocene could be 

catalysing the SN1 mechanism described above by lowering the energy required for 

activation of the leaving group.  The oxonium intermediate formed is then intercepted 

by the free nucleophilic leaving group, leading to the observed results.  Therefore it 

remains possible that this approach could provide the desired stereoselectivity. 

 

2.6 Summary 

 

The effects of using D-galactal and a different O-6 protecting group under Hoberg’s 

ring expansion conditions were investigated.  The selected silyl protecting group was 

found to be unsuitable under the conditions used.  Several alternative expansion 

methods were also investigated.  These were found to be unpredictable in terms of both 

products and stereoselectivities and were also low yielding.  No firm conclusions could 

be reached on the effects of the galactal on the ring expansion stereoselectivity. 

The use of an intermolecular nucleophile was also examined. While the regioselectivity 

of the ring expansion was excellent, no stereoselectivity could be induced and the yields 

were uninspiring. 
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Chapter 3: Synthesis and ring expansions of cyclopropanated galactal 

and glucal derivatives 

 

The work described in chapter two provided robust methodology for the synthesis of 

protected glycals and their subsequent cyclopropanation.  However, further 

development of the methodology was required to achieve useful yields and 

stereoselectivities.  Results presented in Section 2.4 and ealier work by Hoberg70 both 

pointed to the value of retaining the di-tert-butylsilyl protecting group, given its proven 

stability under the required reaction conditions.  The work in this chapter explores the 

Ferrier rearrangement with a variety of nucleophiles.  It was thought that the syn C-4, 

C-5 stereochemistry of the galactal system would lead to better stereocontrol of the ring 

expansion than was evident in the corresponding anti arrangement in the previously 

explored glucals.  It was proposed that the relative stereochemistry in the galactal 

system would force the silyl protecting group into a position where it would block the 

β-face and direct the nucleophile to attack from the α face. 

 

Molecular mechanics modelling was used to test the soundness of these propositions.  

The structures of the cyclopropanated di-tert-butylsilyl derivatives of glucal (Figure 

3.1) and galactal (Figure 3.2) were modelled.  The molecular modelling indicates that 

the glucal system is held in a planar arrangement due to the di-tert-butylsilyl protecting 

group which creates a bicyclic ring system with a trans-fused ring junction (Figure 3.1). 
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Figure 3.1. Cyclopropanated glucal system 1.61. 

 

In the galactal system the di-tert-butylsilyl protecting group combined with the 

stereochemistry at C-4 creates a bicyclic ring system with a cis-fused ring junction.  

This forces the molecule to adopt a shape where the β face is sterically hindered (Figure 

3.2).  This proposed structure is supported by the 1H NMR of the cyclopropanated 

galactal 3.4.  The cyclopropane protons of this compound are in notably different 

environments unlike those observed in glucal 1.61 which indicate that one of the 

protons is in a more congested environment. 

 

 

Figure 3.2. Cyclopropanated galactal system 3.4. 

 

Possible structures for the corresponding oxonium ions were also modelled.  The 

glucal-derived oxonium intermediate adopts a planar shape with a slightly convex β-

face (Figure 3.3).  This explains the results observed by Hoberg with this system where 
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β-substitution predominated over α.70  The shape of the intermediate overrides the 

normal direction of the Ferrier rearrangement resulting in the opposite stereochemistry 

to that expected. 

 

 

Figure 3.3. Glucal derived oxonium intermediate. 

 

In contrast, the molecular modelling of the galactal oxonium intermediate suggests that 

the cis-fused bicyclic ring has a convex α face (figure 3.4).  The β face is thus hindered 

and the nucleophile should preferentially attack from the α face. 

 

 

Figure 3.4. Galactal-derived oxonium intermediate. 

 

The molecular modelling studies suggested that the strategy of using the di-tert-

butylsilyl protecting group in combination with galactal in order to improve the 

stereoselectivities was sound. 
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3.1 Synthesis and reactions of cyclopropanated di-tert-butylsilyl 

galactal  

 

Synthesis of the desired cyclopropanated galactal 3.4 proceeded smoothly over four 

steps from galactal using the same strategy as applied by Hoberg in the synthesis of the 

corresponding cyclopropanated glucal (Scheme 3.1).70  
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a) tBu2Si(OTf)2, py, DMF, 65%.  b) Et2Zn, CH2I2, Et2O.  c) Ac2O, py, DMAP, 65% over 2 steps.  

Scheme 3.1. Reaction scheme for the formation of cyclopropane 3.4. 

 

Silylation of galactal with di-tert-butylsilyl ditriflate in DMF gave glycal 3.1 in 65% 

yield along with the 3,4 di-tert-butylsilyl galactal 3.2 in 20% yield (Figure 3.5).  This 

compound was consistently present as a by-product of this reaction.  
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Figure 3.5. By-product 3.2 from formation of silyl ether 3.1. 

 

Cyclopropanation of galactal 3.1 applying the Furukawa modification of the Simmons-

Smith cyclopropanation39 using Et2Zn and CH2I2 followed by acetylation gave 

cyclopropane 3.4 in 65% yield over the two steps.   
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3.1.1 Ring expansions of cyclopropane 3.4 

 

Ring expansion with TMSOTf and a variety of TMS-substituted nucleophiles were 

explored yielding the corresponding oxepines (Scheme 3.2).  
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a) TMSR, TMSOTf, MeCN. 

Scheme 3.2. General method for the expansion of cyclopropane 3.4. 

 

The nucleophiles chosen for this initial series of reactions were TMSN3, TMSSPh, 

TMSallyl, trimethyl(propargyl)silane (TMSpropargyl), and TMSOallyl.  The results of 

these reactions are summarised in Table 3.1. 

 

In the initial ring expansion in this series, cyclopropane 3.4 was reacted with TMSN3 in 

MeCN at 0 oC for four hours, forming oxepine 3.5 in a 69% yield with a 2.5:1 mix of 

epimers as determined by GC analysis (entry one, Table 3.1).  It proved possible to 

separate the epimers by flash chromatography on silica gel.  A complete NMR analysis 

of the structure of both epimers is provided in appendix A.  NOE data for the minor 

isomer showed enhancements from H-1 to H-2α and H-6, assigning the azide group at 

C-1 as the β epimer (Figure 3.6).  This then assigns the major product as the α epimer. 
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Table 3.1. Results of initial ring expansions reactions of 3.4. 

a: determined by GC 
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Figure 3.6. Selected NOE enhancements which were used to assign the stereochemistry of the major 3.5a 

and minor 3.5b isomers. 

 

The next nucleophile in the series was TMSSPh.  Reaction with cyclopropane 3.4 in 

MeCN with TMSOTf at ambient temperature and stirring until complete by TLC (five 

hours) gave oxepine 3.6 in 85% yield (entry two, Table 3.1).  GC analysis indicated an 

improvement in stereoselectivity to 6:1. While the stereochemistry of the addidtion 
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could not be determined, based on the previous result the major epimer was assumed to 

be α. 

 

The first of the carbon nucleophiles in the series was TMSallyl.  Using the same 

conditions as used for the TMSN3 reaction but initiating the reaction at -20 oC and 

allowing to warm to 0 oC until complete by TLC (one hour) gave oxepine 3.7 in a 91% 

yield (entry three, Table 3.1).  GC analysis revealed a greater than 10-fold increase in 

selectivity to 80:1.  1H NMR could not be used to determine the major epimer and so 

precedence from the other reactions was used to assign the major product as the α 

epimer. 

 

The second carbon nucleophile was TMSpropargyl.  Reaction with cyclopropane 3.4 at 

0 oC until the reaction was complete by TLC (one hour) gave oxepine 3.8 in a 68% 

yield (entry four, Table 3.1).  GC analysis revealed a decrease in selectivity to 7:1.  An 

NOE enhancement was observed from the ring junction oxymethine of the major 

product at δH3.95 to the proton on the ketene at δH5.26 allowing the major epimer to be 

assigned as α (Figure 3.7). 

OO
tBu2Si

O

H
H

3.8  

Figure 3.7. NOE enhancement used to assign the stereochemistry of the major epimer of 3.8. 

 

Last in the initial series of reactions was that with an oxygen nucleophile, TMSOallyl 

(entry five, Table 3.1).  The equivalent reaction was unsuccessful in Hoberg’s 

expansions of 1.6170 and that also proved to be the case here with no starting materials 

or products isolated. 
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These results compare quite favourably with those obtained with the cyclopropanated 

glucal 1.61.  The significant difference is that the galactal system ring expansions 

generate excesses of the α-substituted oxepines.  This selectivity bias is also observed 

in Ferrier reactions on uncyclopropanated glycals and will be discussed in Section 3.3. 

 

The failure of the TMSOallyl nucleophile can be rationalized by examining the 

mechanism of formation of the substituted oxepines.  The reaction proceeds in two 

stages. The first is the formation of the oxonium intermediate.  This occurs with a 

concerted opening of the cyclopropane ring coupled with the departure of the leaving 

group (Figure 3.8).  
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Figure 3.8. Formation of oxonium intermediate with σ* orbitals shown in red. 

 

The oxonium ion is then intercepted by the TMS nucleophile to generate the oxepine 

product.  The final outcome of the reaction depends on both the K1 and K2 equilibria as 

shown in Scheme 3.3. 
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Scheme 3.3. Equilibria involved in the interception of the oxonium intermediate with a TMS nucleophile. 
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The equilibrium constant K1 depends on the energy required to form the bond between 

C-1 and the incoming nucleophile. The equilibrium constant K2 depends on the relative 

energies of the breaking of the newly formed bond and the breaking of the Nucleophile-

Si bond.  Provided K1 is not insignificantly small then the formation of the final oxepine 

product is determined by the value of K2.  Thus the outcome of these reactions could be 

interpreted as informative on the relative values of these two equilibrium constants.  For 

example, for the first four entries in table 3.1, K2 is large enough so that the reaction 

proceeds to generate the desired oxepine in good yields.  However when the nucleophile 

is TMSOallyl (entry five, table 3.1) the energy required to break the bond between the 

Nucleophile and C-1 is less than that required to break the Nu-TMS bond.  This would 

make K2 less than one. With K1 likely to be much less than one, the outcome will be 

similar to the situation where no nucleophile is present.  In this case no oxepine 

products are isolated and the galactal starting material decomposes to unidentifiable 

polymeric compounds.  It should be noted here that the ring expansion reaction with 

only TMS triflate (no nucleophile) present in the reaction also decomposes the starting 

cyclopropane 3.4 to unidentifiable polymeric compounds. 

 

3.1.2 Investigation of the role of sterics in the ring expansion of 

cyclopropane 3.4 

 

To investigate the role that sterics could play in the reaction, two carbon nucleophiles 

with similar structures were chosen for trials.  These were the 1-(trimethylsilyl)oxy-1-

ethoxyethene nucleophile 3.9 and its 2-methylpropene analogue 3.10 (Figure 3.9). 
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Figure 3.9. TMS nucleophiles to investigate steric constraints of the reaction. 

 

The results for these reactions are summarized in Table 3.2. 

Table 3.2. Ring expansions of cyclopropane 3.4 with nucleophiles 3.9 and 3.10. 

Entry Nucleophile Product Yield α:β ratioa 
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a: determined by GC 

 

Reacting cyclopropane 3.4 with 3.9 in MeCN as before but starting at 0oC and warming 

to room temperature until complete by TLC (four hours) gave oxepine 3.11 in a 68% 

yield (entry one, Table 3.2).  GC analysis revealed that the selectivity was only 3:1 with 

the major epimer assumed to be the α from previous work. 

 

The equivalent reaction with 3.10, stirring overnight at ambient temperature until the 

reaction was complete by TLC resulted in oxepine 3.12 in a 77% yield (entry two, 

Table 3.2).  GC analysis indicated that the selectivity had improved by an order of 

magnitude, to 80:1.  

 

Again, it was possible to assign the major epimer by examination of the NOE data.  In 

oxepine 3.12 an NOE enhancement was observed from the H-6 oxymethine at δH 4.00 
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to the H-2α methylene proton at δH 2.51 which is in an axial position on the α face.  

The H-2α methylene proton then demonstrates an NOE enhancement to the gem-

dimethyl system at δH1.16 and 1.11, assigning the major epimer as α (Figure 3.10). 

 

OO
tBu2Si

O
O

OEtH

H

H

 

Figure 3.10. NOE enhancements assigning the structure of the major epimer 3.12. 

 

3.2 Ring expansions of cyclopropanated TBDPS protected glucal 

 

Following the favourable results from section 3.1, the next logical step was to 

reinvestigate the possibility that the results could be replicated with a bulky silyl group 

that was mono-tethered to the galactal frame.  This revisits the line of investigation in 

chapter two with several important differences based on experience gained with 

cyclopropanated galactal 3.4.  Firstly, the tert-butyldiphenylsilyl protecting group was 

chosen as it had the desired bulk to direct the nucleophilic attack.  It was also more 

stable under acidic conditions than the previously investigated TIPS group.  Secondly, 

the glucal frame was chosen in order to avoid the problems acetylating the diol 2.3 

described in Section 2.1.  This should prevent the generation of triflic acid from the 

reaction of TMSOTf and the free alcohol leading to the observed de-silylation and 

decomposition during the ring expansion reactions as previously described.  Possible 

drawbacks are that the monodentate protecting group would not hold the 

cyclopropanated glucal ring in a rigid conformation and that the bulky protecting group 

would adopt a conformation well away from the ring due to the lack of structural 

constraints.  The synthetic approach is summarised in Scheme 3.4. 
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3.16  

a) TBDPSCl, Imidazole, THF, RT, 65%.  b) Et2Zn, CH2I2, Et2O reflux, 77%. c) Ac2O, Py, DMAP, 

CH2Cl2, RT, 96%.  d) 50 mol% TMSOTf, TMSNu, MeCN, 10-70% depending on Nu 

Scheme 3.4. Formation of 3.16 and its ring expansion. 

 

Synthesis of cyclopropane 3.16 proceeded smoothly over three steps.  Silylation of the 

galactal 3.13 with TBDPSCl and imidazole in THF formed silylether 3.14 in a 65% 

yield.  Simmons-Smith cyclopropanation as before gave cyclopropane 3.15 in 77% 

yield with >100:1 stereoselectivity for the expected β isomer.  In contrast to 2.3, diol 

3.15 was easily acetylated in 96% yield to give the bis-acetylated cyclopropane 3.16 in 

48% overall yield.   

 

The same nucleophiles chosen for the ring expansions of cyclopropane 3.5 were used in 

this series of expansions.  The results for this series are summarised in Table 3.3. 

 

Reaction of cyclopropane 3.16 with TMSN3 in MeCN at 0 oC for 30 minutes followed 

by warming to ambient temperature until complete by TLC (one hour) gave oxepine 

3.17 in a 62% yield as a 2.5:1 mix of epimers by GC (entry 1, Table 3.3).  This result 

indicated that the TBDPS protecting group was stable under the reaction conditions and 

the results were also remarkably similar in terms of yield and selectivity to those 

observed with oxepine 3.5. 
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Table 3.3. Results of ring expansions of cyclopropane 3.16. 

Entry Nucleophile product yield α:β ratio a 

 

1 

 

TMSN3 

 
OTBDPS

O

AcO

N3

3.17 
 

 

62% 

 

2.5:1 

 

2 

 

TMSSPh 

 
OTBDPS

O

AcO

SPh

3.18 
 

 

45% 

 

3:1 

 
3 

 
TMSallyl 

 
Complex mixture including 4.3 

 

 
0% 

 
- 

 

4 

 

TMSpropargyl 

 
OTBDPS

O

AcO 3.19 
 

 

8% 

 

7:1 

5 TMSOallyl - 0% - 

a: determined by GC 

 

The next expansion was with TMSSPh.  Reaction under similar conditions as used with 

this nucleophile and 3.4, but stirring at ambient temperature until the reaction was 

complete by TLC (five hours) gave oxepine 3.18 in a 45% yield as a 3:1 mixture of 

epimers by GC (entry two, table 3.3).  This represented a decrease in stereoselectivity 

and also in yield compared to oxepine 3.6. 

 

Reactions in the series continued with TMSallyl.  Reaction with this nucleophile at  

–40oC and subsequent warming to ambient temperature until no starting material was 

left by TLC (four hours) gave a complex mixture of products.  Separation revealed an 

unexpected product that will be further discussed in chapter four. 
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Reaction with TMS propargyl gave the expected oxepine 3.19 as the α epimer 

exclusively by 1H NMR.  However, it was only isolated in an 8% yield (entry four, table 

3.3).  As no other products could be isolated from this reaction, no further information 

could be obtained as to the fate of the rest of the starting material. 

 

TMSOallyl was used to complete the set of initial nucleophiles investigated.  As before 

no products could be isolated nor starting material recovered from the reaction (entry 

five, table 3.3). It is proposed that the product of this reaction suffers a similar fate to 

that of the cyclopropanated galactal under these conditions. 

 

From this set of results we can see that with the exception of entry one, the yields are 

inferior to those obtained with the galactal 3.4.  From this it is possible to surmise that 

while the TBDPS protecting group is more stable than the TIPS group under the ring 

expansion conditions, it still undergoes deprotection to some extent.  The yields appear 

to decrease with increasing reaction time and increasing initial temperature of the 

addition.  The higher yield observed in the TMSN3 example is most likely a function of 

the short reaction time which means deprotection of the TBDPS group has not yet 

become a major factor.  For several of the nucleophiles, however, no appreciable 

reaction occurred at lower temperatures or with shorter reaction times. 

 

3.2.1 Investigation of the role of sterics in the ring expansion of cyclopropane 3.16 

 

As in section 3.1.2 the two carbon nucleophiles 3.9 and 3.10 were used to examine the 

effect of nucleophile bulk on the selectivity of the ring expansion.  In both of these 

reactions the expected oxepines were not observed in the products. The characterisation 

of the isolated products from these reactions will be discussed in section 4.2.  
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3.3 Effect of the leaving group stereochemistry on the ring expansion  

 

Previous investigations by Danishefsky22 have shown that the stereoselectivity of the 

Ferrier rearrangement is reduced when the leaving group is in an axial conformation 

(the allal ring system) compared to when the leaving group is equatorial (the glucal or 

galactal ring system).22  This experiment was replicated in the 3R cyclopropanated 

glucal system 1.61 by inverting the stereochemistry of the leaving group at C-3 to give 

the corresponding 2S cyclopropane 3.22 (Scheme 3.5). 
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a) b) c)

1.61 3.20 3.21 3.22  

a)  Oxalyl chloride, DMSO, TEA, CH2Cl2, 90%.  b) NaBH4, EtOH, 24% c) Ac2O, Py, 89%. 

Scheme 3.5. Formation of di-tert-butyl-silyl allal cyclopropane. 

 

Oxidation of cyclopropane 1.61 using standard Swern conditions gave ketone 3.20 in 

90% yield.  Ketone 3.20 was then reduced with NaBH4 to give a mixture of the glucal 

and allal cyclopropanes.  The desired cyclopropanated allal 3.21 was isolated in 24% 

yield along with a 50% return of glucal 1.61.  Cyclopropane 3.21 was then acetylated to 

give the desired cyclopropane 3.22 in 89% yield.  This substrate was then subjected to 

the standard ring opening conditions of TMSOTf in MeCN using TMSallyl as the 

nucleophile.  This reaction was not complete by TLC until 48 hours had elapsed.  The 

corresponding reaction with the glucal system was complete in two hours (Scheme 

3.6).70  The yields and mixture of epimers were very similar in both cases ( 92%, 1.1 

ds). 
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Scheme 3.6. Effect of the stereochemistry of the leaving group on the rate of reaction. 

 

Analysis of the structures of the compounds 1.61 and 3.22 indicates that in the glucal 

1.61 the departure of the equatorial leaving group is aided by the favourable syn 

periplanar geometry of the σ* orbital associated with the leaving group bond with 

respect to the cleaved cyclopropyl σ bond.  Electrons from the breaking bond are 

pushed into the C-O σ* orbital at C-3 forming a C-C double bond.  This is assisted by 

the overlap of the ring oxygen lone pair with the σ* orbital at C-1, leading to the 

formation of the π bond of the oxonium intermediate (Figure 3.11).   

 

O

AcO

O
Si

O

 

Figure 3.11. Mechanism for the formation of the oxonium intermediate  

from cyclopropanated glucal 1.61 (σ* orbitals shown in red). 

 

In the allal 3.22, the σ* orbital of the axial leaving group is not aligned in a 

synperiplanar relationship with the breaking cyclopropane bond.  As a result, the 

formation of the oxonium intermediate is kinetically disfavoured, experimentally 20 

times longer.  This is illustrated in Figure 3.12. 
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Figure 3.12. Mechanism for the formation of the oxonium intermediate from cyclopropanated allal 3.22. 

 

3.4 Comparison with glycal glycoside rearrangements 

 

Finally the results obtained by the ring expansions of cyclopropanated glycals 3.4 and  

3.16 were compared to results for Ferrier rearrangments from the literature with glycals  

lacking a cyclopropane group.  These are summerised in Table 3.4.   

 

Table 3.4. Summary of ring expansions of cyclopropanes 3.4 and 3.16 verses glycal rearrangements. 

Base sugar Galactal 3.4 Galactal lit. Glucal 3.16 Glucal lit. 

Nucleophile ratio yield ratio yield ratio yield ratio yield 

TMSN3 2.5:1 69% 4:189 94% 2.5:1 61% 3:190 42% 

TMSSPh 6:1 85% α only91 96% 6:1 45% 9:192 80% 

TMSallyl 80:1 91% α only23 97 -a -a 88:125 91% 

TMSpropargyl 7:1 68% α only93 75% α only 8% α only93 88% 

3.9 3:1 68% β only94 70% 6:1b 81% 1:2.494 81% 

3.10 80:1 77% 1:4.394 64% α onlyc 67% 1:494 67% 

 
All ratios are α:β.  

a) generates 4.3  
b) rearranges to give diene 4.1 
c) rearranges to give diene 4.2 
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It should be noted that in most of the literature cases the reaction conditions were 

similar in terms of the use of a Lewis acid to effect the Ferrier rearrangement and are 

provided as comparative examples.   

 

This table shows that the stereoselective outcomes of the ring expansions of 

cyclopropanes 3.4 and 3.16 are comparable with those obtained from Ferrier 

rearrangements of glycal systems. The yields are generally lower or equivalent. 

An interesting result is that observed in the case of the reactions with nucleophiles 3.9 

and 3.10.  This generates good to excellent α selectivities in the ring expansion 

reactions of 3.4 and 3.16.  However in the glycal Ferrier rearrangement the predominant 

product is the β compound.  This can be explained by looking at the two possible 

products in each of these reactions.  In the ring expansions, the methylene group at C-2 

increases the flexibility of the product oxepine.  The substituent at C-1 is not forced into 

an axial orientation in either isomer and there are no destabilising interactions with 

other axial groups present in the ring.  In the rearrangement of the pyranyl system, the α 

product is destabilised by the diaxial interaction between the gem-dimethyl group and 

the axial ring hydrogen (Figure 3.13).  In the β product where the gem-dimethyl is 

equatorial these interactions are not present, and the product formation is more 

favourable. 
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Figure 3.13. Diaxial interactions in Ferrier rearrangement of glycals and nucleophiles 3.9 or 3.10. 
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3.5 Summary 

Hoberg’s work with the glucal system revealed increased β selectivity of the ring 

expansion compared to the standard Ferrier rearrangement.70  The bicyclic trans-fused 

system forces the oxonium intermediate into a slightly convex form making attack from 

the β face more facile.  This is the opposite stereochemistry to that observed for the 

normal Ferrier rearrangement, which is predominantly α.  The bicyclic cis fused 

galactal system forces the oxonium intermediate into a bowl-like structure that makes 

nucleophilic attack more facile at the α face. This improves the stereoselectivity of the 

reaction.  The yields for the oxepine formation remain high.  The presence of the 

methylene in the oxepine ring gives the structure some measure of flexibility that is 

demonstrated by the reduced selectivities of some of the nucleophiles compared to the 

analogous pyranyl ring systems.  The results from the monosilylated glucal system 

demonstrate that with no rigidity in the ring, a similar level of stereoselectivity to that of 

the hexose ring rearrangement is observed.  The ring expansion results demonstrate that 

this extension of the Ferrier rearrangement is a synthetically useful stereoselective 

method for the formation of substituted seven membered rings. 
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Chapter 4: Unexpected rearrangements obtained from ring expansions 

and mechanistic rational 

 

In the course of the ring expansion reactions of the cyclopropanes 3.4 and 3.16 several 

unexpected results occurred (these are noted in Sections 3.1 and 3.2).  In all cases it was 

possible to separate and purify the products.  These compounds were identified with the 

assistance of 1D and 2D NMR, IR and in some cases ES HRMS.  From the resulting 

structures it was then possible to postulate mechanisms to account for their formation. 

 

4.1 Unexpected reaction products from ring expansions of 

cyclopropanated glucal 3.16 

 

4.1.1 Reaction with carbon nucleophiles 3.9 and 3.10 

 

Treatment of cyclopropane 3.16 with nucleophile 3.9 at 0 oC followed by warming to 

room temperature and stirring until the reaction was complete by TLC gave a 6:1 ratio 

of epimeric products.  Analysis of the 1H NMR spectrum revealed that neither the 

methylene signals normally observed at approximately δH 2-2.5 ppm nor the acetate 

methyl resonance were present. In addition, four new olefinic protons were identified in 

the spectrum.  The connectivity of the 1H spin system for the major epimer was then 

constructed from a series of COSY correlations from the C-7 methylene (δH 3.75, δC 

65.7) to an oxymethine (C-6: δH 4.26, δC 75.4) to a alkenic methine (C-5: δH 6.16, δC 

136.2) to a second alkenic methine (C-4: δH 6.05, δC 126.7), to a third alkenic methine 

(C-3: δH 6.04, δC 126.8) to a forth alkenic methine (C-2: δH 5.98, δC 137.0) to an 
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oxymethine (C-1: δH 4.78, δC 72.7).  This suggested that as well as the ring expansion 

there had been an elimination leading to the formation of a diene species (Scheme 4.1).  
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Scheme 4.1. Ring expansion of cyclopropane 3.16 with nucleophile 3.9. 

 

 A possible mechanism is suggested in Scheme 4.2.  After the ring expansion the 

formation of the diene is facilitated by the presence of a second acetate group on the 

ring.  The departure of this leaving group leads to the observed rearrangement.   
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Scheme 4.2. Possible mechanism leading to the formation of oxepine 4.1. 

 

An analogous result is seen in the reaction with cyclopropane 3.4 and the related 

dimethylated nucleophile 3.10.  However, with the dimethylated species 4.2 (Figure 

4.1) the yield was far lower which suggests that there were other competing 

mechanisms at work in the reaction.   
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Figure 4.1. Product 4.2 from the ring expansion of cyclopropane 3.16 with nucleophile 3.10. 

 

However, as no other compounds could be isolated from the products of this reaction, 

no further information could be obtained on the outcome of this reaction. 

 

4.1.2 Reaction of cyclopropane 3.16 with allyltrimethylsilane 

 

When the nucleophile TMSallyl was used in the ring expansion with cyclopropane 3.16 

under standard conditions (5 eq TMSallyl, 0.5 eq TMSOTf in MeCN), the reaction 

resulted in a complex mixture of products.  After repeated column chromatography on 

silica gel the major compound present was isolated.  Initial analysis of the 1H NMR 

spectrum suggested that the desired product had been formed.  Closer examination of 

the 2-D NMR data revealed several inconsistencies.  The HSQC-DEPT spectrum 

suggested the possibility of a mixture of two isomers in a 1:1 ratio.  The 13C spectra 

revealed that there were only three signals in the 60-80 ppm region, which is where 

oxymethines appear in 13C NMR.  This was evidence that there was only one compound 

present in the sample.  The HSQC spectrum showed that there was a methylene at δC 

66.2 and an oxymethine at δC 69.9.  The third signal at δC 81.5 was a quaternary centre.  

A more detailed analysis of the compound’s spectral data was then undertaken.  An 

examination of the COSY data revealed the presence of three separate 1H spin systems.  

The connectivity of the largest 1H spin system was constructed from a series of COSY 

correlations from a terminal alkenic methylene (C-1: δH 5.0, δC 116.6)  to an alkenic 

methine (C-2: δH 5.82, δC 135.6) to a methylene (C-3: δH 2.10 and 2.25, δC 41.7) to an 

oxymethine (C-4: δH 4.13, δC 69.9) to a methylene (C-5: δH 2.05 and δH 2.28, δC 38.7) 
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to an alkenic methine (C-6: δH 5.51, δC 129.6) to a second alkenic methine (C-7: δH 

5.43, δC 124.5) to a methylene (C-8: δH 2.60 and 2.35, δC 32.3)  Interestingly this was 

where this substructure ended (Figure 4.2).   
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Figure 4.2. Large substructure from product of TMSallyl reaction with cyclopropane 3.16. 

 

The connectivity of the second 1H spin system was constructed from a series of COSY 

correlations from a terminal alkenic methylene (C-9: δH 5.10, δC 117.5) to an alkenic 

methine (C-10: δH 5.90, δC 134.4) to a methylene (C-11: δH 2.50 and 2.40, δC 40.4).  

This was a second allyl group (Figure 4.3). 
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Figure 4.3. Small substructure from product of TMSallyl reaction with cyclopropane 3.16. 

 

The other substructure was a lone oxymethylene (C-12: δH 3.55 and 3.47, δC 66.2). 

The connectivity between these three substructures was established by HSQC and 

HMBC correlations.  Comparing the HSQC and 13C spectra, a quaternary carbon was 

observed at δC 81.5 ppm.  This carbon exhibited HMBC correlations to two methylenes 

at C-11 and C-12 and also a weak correlation to the C-4 oxymethine.  This then 
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assigned the structure as the diallyl compound 4.3 as shown in Figure 4.4 with the 

identified substructures linked at the quaternary carbon numbered C-13. 
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Figure 4.4. Structure of diallyl oxepine 4.3 numbered for the assignment in the text. 

 

To gain more information on the possible mechanism directing this rearangement it was 

decided to repeat the reaction, but limit the amount of nucleophile present.  This should 

lead to the generation of stable reaction intermediates, which could then be isolated and 

characterised.  Repeating the reaction with 1.2 equivalents of TMSallyl using an 

identical work up followed by column chromatography on silica gel generated the 

products as shown in Figure 4.5.  Interestingly, none of the diallyl 4.6 was isolated. 
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Figure 4.5. Products from the reaction of TMSallyl with Cyclopropane 3.16. 

 

The conjugated diene 4.4 was the prevalent species isolated, along with small amounts 

of the expected ring expanded oxepine 4.5.  Also present was the bicyclic oxepine 4.6.  

This compound presumably results from deprotection of the silyl ether at C-7 prior to 

ring expansion as described in Chapter 2 (Scheme 2.2).  This particular bicylic ring 

system had not been previously observed in the course of the ring expansion reactions 

discussed in this thesis although Hoberg and Bozell had previously reported them in the 
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course of their work.40  However a similar bicyclic ether 2.7 had been observed as seen 

in Scheme 2.2. 

It is possible to propose a mechanistic scheme to account for these results.  This is 

illustrated in Scheme 4.3.   
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Scheme 4.3. Possible reaction mechanism to account for the formation of oxepines 4.3 and 4.4 from 4.5. 
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The ring expansion occurs as seen in chapter three, generating the oxepine 4.5.  The 

acetate at C-5 is activated by the Lewis acid and departs generating a cation on the 

oxepane ring.  This can then further react in two different ways. In pathway A, a 

deprotonation occurs at C-6 leading to the formation of a diene.  This alkene is more 

reactive as it is also an enol ether. The enol ether is then protonated at C-5, forming an 

oxonium ion in the process.  A second TMSallyl then attacks at C-6 forming the diallyl 

oxepine 4.3.  In pathway B deprotonation at C-2, which is adjacent to the allyl cation, 

generates the observed diene 4.4. 

 

The distribution of the products from the two reactions performed gives some idea as to 

the kinetics of the reactions.  Where there is an excess of nucleophile, the diallyl 

compound 4.3 is formed exclusively and pathway A is dominant.  However when there 

is a limited amount of nucleophile present only compounds 4.4 and 4.5 are isolated and 

so pathway B is dominant.   

 

The mechanism illustrated in Scheme 4.3 shows some similarities to that known to 

occur in the degradation of some naturally occurring linear polysaccharides such as 

pectin.95,96  Pectin is a polysaccharide that gives shape to plant cells and regulates water 

in the plant.  It consists mostly of galactouronic acids with a mixture of other sugar 

moieties present as well.  It is added extensively as a gelling or thickening agent to 

foodstuffs (mostly fruit jams and jellies).  This polysaccharide can be degraded under 

both acidic and basic conditions to shorter oligosaccharides through the breaking of the 

glycosidic linkages.  This proceeds through a β-elimination mechanism of which the 

basic version is shown in Scheme 4.4. 
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Scheme 4.4. Degradation of pectin to galacturonic acid.  R is an oligosaccharide. 

 

4.2 Unexpected reaction products from ring expansions of 

cyclopropanated galactal 3.4 

 

4.2.1 Reaction of TESH with cyclopropane 3.4 

 

Hoberg had shown that treatment of cyclopropane 1.61 with TESH led to the expected 

hydride substituted oxepine as shown in Scheme 4.5.70   
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Scheme 4.5. Ring expansion of 1.61 with TESH. 

 

However the reaction between cyclopropane 3.4 and TESH under the same reaction 

conditions did not give the expected oxepine.  The product had an unusually high Rf on 

TLC compared to the other oxepines synthesised.  Furthermore, analysis of the 1H 

NMR integration ratios suggested that there was a TES group present on the molecule.  

Also present were two broad multiplets both integrating for two protons at δH 2.2 and 

2.5.  The alkene protons were overlapping at δH 5.85 suggesting that both protons were 

in a similar chemical environment.  HSQC spectral data revealed the presence of four 

methylene groups and only one oxymethine.  This data suggested that there was an 
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apparent deoxygenation, with the most likely location being at C-5 on the ring.  The 

structure was therefore assigned as 4.7 (Scheme 4.6).  High-resolution mass 

spectrometry confirmed the product had a mass of 401.29 Da consistent with this 

theory. 
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Scheme 4.6. Formation of oxepine 4.7 from cyclopropane 3.4. 

 

It was postulated that the deoxygenation occured after the initial ring expansion where a 

TES cation co-ordinates to the axial oxygen at the C-5 position.  The actvated C-O bond 

is then displaced by a hydride from the β face forming the observed product (Scheme 

4.7). 
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Scheme 4.7. Possible deoxygenation mechanism leading to oxepine 4.7. 

 

4.2.2 Investigation of the mechanism for the formation of oxepine 4.7 

 

To investigate further the mechanism for this rearrangement a deuterium labelling study 

was performed substituting TESD for TESH to provide deuteride as the nucleophile.  

Deuteride was used to obtain two pieces of information. The first was the 

stereoselectivity of the reaction as deuterium is expected to react in the same fashion as 
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a hydride.  The second is the regioselectivity of the reaction, which would confirm 

whether the mechanism postulated was correct.  Deuterium is not decoupled in the 

standard 13C NMR experiment; a carbon with a deuterium attached appears as a triplet 

with a coupling constant of ~20 Hz.  TESD was prepared according to the method of 

Doyle and coworkers.97 The reaction with cyclopropane 3.4 generated a mixture of 

compounds that made initial interpretation of the reaction results difficult.  

Unfortunately, the mixture was impossible to separate into single pure components.  

Nonetheless, examination of the NMR data of the semi-purified products established 

that there were two different compounds present.  Assignment of the major component 

of the mixture was undertaken first.  The presence of both the TES and di-tert-butylsilyl 

groups was confirmed by 29Si NMR (δSi 9.2 and -21.0).  The 13C NMR data revealed 

that the deuterium had initially intercepted the oxonium intermediate forming the ring 

expanded product.  This was established by the observation of one-bond C-D coupling 

of the carbons at δC~70 ppm. Two such signals were identified indicating that both 

epimers were present.  The integration of the proton signals associated with this carbon 

revealed the presence of deuterium and an α:β epimeric ratio of 1:1.  Analysis of the 

HSQC-DEPT spectrum proved the presence of methylene groups on either side of the 

double bond with no evidence of C-D coupling in the 13C spectrum.  There was also a 

disconnection observed in both COSY and TOCSY 2D NMR experiments between the 

methylene at C-5 and the oxymethylene at C-7.  Closer examination of the 13C spectrum 

revealed the presence of a second deuterated carbon at δC 80.2 superimposed with a 

peak from the other compound in the sample.  This corresponds to the C-6 position on 

the non-deuterated oxepine 4.7.  Deuterium in this position instead of a proton would 

explain the lack of connectivity observed in the COSY and TOCSY data.  The 

connectivity of the 1H spin system was then constructed from a series of COSY 

correlations from the C-2 methylene (δH 2.49 and 2.18, δC 35.6) to an oxymethine.  This 
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couples to two different proton resonances:  an oxymethine (C-1: δH 4.02 and 3.41, δC 

69.2) and to an alkenic methine (C-3: δH 5.81, δC 130.7).  C-3 then couples to a second 

alkenic methine (C-4: δH 5.81, δC 129.4) to a methylene (C-5: δH 2.49 and 2.16, δC 

35.6).  There is also an oxymethylene (δH 3.83 and 3.54, δC 66.3) present that is 

assumed to be at C-7.  Examination of the 13C spectrum reveals a deuterated carbon (δC 

80.2, t, J=20.5 Hz), at an appropriate chemical shift for C-6.  The HMBC spectrum 

shows correlations from C-5 and C-7 into this centre which confirmed this assignment.  

From this information we deduced that the major compound 4.8 present was as depicted 

in Figure 4.6. 
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Figure 4.6. Deuterated compound oxepine 4.8 from TESD reaction. 

 

This suggests that the mechanism that was proposed in Scheme 4.7 is incorrect, as it 

predicted the presence of the second deuterium would be at C-5 rather than the observed 

C-6.  

 

The minor component in the mixture was then assigned to gain more information about 

a possible reaction mechanism.  In the 1H NMR of the mixture there was a single proton 

multiplet at δH 6.0 that showed no COSY correlations to any methylene signals in the 

1H spectra.  However there were correlations from this proton into an ABX system at δH 

4.25, 3.95 and 3.72.  Another correlation from a proton at δH~6 ppm could be observed 

to a proton at δH 4.42 that showed no corresponding 13C correlation on the HSQC.  

There was a deuterium-coupled carbon present in the 13C spectrum in the correct region 

for a carbon attached to an ether oxygen.  Analysis of the integrations of the 1H signals 
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suggested that there were four alkenic methines, two oxymethines and an 

oxymethylene, one of the oxymethylenes had a deuterium counected to it.  The 

connectivity of the 1H spin system was then constructed from a series of COSY 

correlations from the C-7 (δH 3.97 and 3.77, δC 65.1) to an oxymethine (C-6: δH 4.25, δC 

80.4) to an alkenic methine (C-5: δH 6.01, δC 125.6) to a second alkenic methine (C-4: 

δH 5.94, δC 126.2) to a third alkenic methine (C-3: δH 5.98, δC 135.4) to a forth alkenic 

methine (C-2: δH 5.93, δC 135.3) to an oxymethine (C-1:δH 4.43). This had no 

associated signal in the HSQC spectra.  However in the 13C NMR there was a 

deuterated carbon at δC 70.2 present as a triplet with a coupling constant of 21.1 Hz).  

This assignment indicated the structure of this compound was as shown in Figure 4.7. 
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Figure 4.7. Minor product 4.9 from ring expansion with TESD. 

 

Retrospectively, a minor product of the ring expansion of cyclopropane 3.4 with TESH 

(Section 4.2.1) was identified as the analogous deuterium free product using 1H NMR 

of the crude reaction material. Its production in a far smaller ratio (approximately 6:1 vs 

the 2:1 observed here) had previously provided too little material for successful 

identification. 

 

This information suggested that the mechanism was almost identical to that observed in 

Scheme 4.3.  The expected oxepine 4.10 is formed in the initial steps (Scheme 4.8).   
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Scheme 4.8. Formation of deuterated oxepine 4.10. 

 

The mechanism then proceeds as illustrated in Scheme 4.9.  A TES cation coordinates 

to the C-5 oxygen.  Thus activated it can then act as a leaving group.  This again 

generates a cation at C-5.  As seen before this can then proceed down one of two 

pathways.  In Pathway A deprotonation at C-6 leads to the formation of an enol ether, 

that can then protonate at C-5, and form an oxonium ion, which is then intercepted by a 

second deuteride to form the major product oxepine 4.8.  In pathway B, deprotonation 

at the C-2 adjacent to the resonance form of the cation at C-3 forms the diene 4.9.  The 

intermediate oxepine 4.10 was not observed in the reaction products.  

 

This mechanism is analogous to that proposed in Scheme 4.3.  We can then propose that 

there is a unified mechanism for the reaction of this type of cyclopropanated glycal with 

an excess of the TMS nucleophile which then leads to the observed results.   
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Scheme 4.9. Possible reaction mechanism to account for the formation of oxepines 4.8 and 4.9. 
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4.3 Summary 

 

In the course of the ring expansions of cyclopropanes 3.4 and 3.16 several unexpected 

reaction products were isolated.  These were successfully characterized and 

mechanisms for their formation were postulated.  The mechanisms were then tested by 

conducting trial reactions, and the results used to either confirm or modify the proposed 

mechanisms. 

 

Ring expansion of cyclopropane 3.16 with nucleophiles 3.9 and 3.10 led to the 

generation of a diene species through a ring rearrangement initiated by the departure of 

the acetate group at C-5. 

 

It was proposed that the products of the reaction between 3.16 and TMSallyl were 

formed through one of two competing mechanistic pathways.  A further reaction to trap 

out possible reaction products indicated that the postulated mechanism was the correct 

one as all the reaction products could be accounted for.  The expansion of cyclopropane 

3.4 with either hydride or deuteride also appears to proceed through an analogous 

mechanism. 
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Chapter 5: Elaborations of oxepine 3.12 

 

Having discovered a high-yielding series of reactions that generate oxepines with high 

selectivity (Chapter 3), interest turned towards examining their utility as synthons.  A 

series of simple transformations were initiated and the stereochemical outcomes and 

conformations of the products were investigated.  Peczuh and co-workers have found 

from modelling studies and experimental observations that the underlying forces 

determining the preferred conformations of furanose and pyranose rings can generally 

be extended to the septanoses.98  The compounds synthesised in this chapter, while 

more correctly oxepanes, are in effect septanose analogues of carbohydrate derivatives.  

The conformational analysis of these compounds was intended to discover if Peczuh’s 

extension was warranted to the oxepanes synthesised in this chapter. 

 

NOE enhancements and vicinal 1H-1H coupling constants were used to determine 

relative stereochemistry and conformation on the reaction products obtained.  Based on 

the Karplus relationship and typical values observed in hexoses, large couplings (8-14 

Hz) were assumed to be due to 1,2-diaxial arrangements while axial-equatorial and 

equatorial-equatorial arrangements give rise to smaller couplings (1-7 Hz, with 2-3 Hz 

being more typical).84 

 

Seven membered rings are known to exist in four principal conformers99 as shown in 

Figure 5.1. 

 

O
O O O

Chair Boat Twist-Chair Skew  

Figure 5.1. Known conformations of septanose rings. 
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The predominant form in solution is the twist-chair, which accounts for ~80% of the 

conformations of compounds with this type of structure.98 

 

Oxepine 3.12 (Figure 5.2) was chosen as the substrate for the transformations. This 

compound was formed in the previous chapter’s work and was chosen as the starting 

material for the following reasons: it was easily synthesised in high yield from the 

starting galactal 3.4, was stereochemically pure, and had functional groups on the 

extended side-chains that would be unreactive during reactions of the alkene but would 

provide handles for further manipulation. 
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Figure 5.2. Oxepine 3.12 for elaboration showing ring-numbering system used for NMR analysis 

 

One potential use of this oxepine synthon is in the synthesis of peloruside A analogues 

in a project to investigate structure-activity relationships.  Peloruside A (Figure 5.3) is a 

novel secondary metabolite isolated from the New Zealand marine sponge Mycale 

hentscheli.100  It shows potent microtubule stabilisation activity arresting cells in the 

G2-M phase of the cell cycle and inducing apoptosis.101 
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Figure 5.3. Structure of peloruside A. 

  



 104 

Its stereochemically challenging structure has been the subject of several total synthesis 

efforts.102,103  It is also an ideal candidate for the synthesis of analogue compounds to 

improve its efficiency as an anticancer compound.  Overlaying the structure of a 

potential oxepine target on the pyranose substructure of peloruside A (Figure 5.4), it is 

apparent that there are many structural similarities which warrant the inclusion of an 

oxepane as a ring expanded analogue of the pyran ring in a synthesis program. 
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Figure 5.4. Oxepane derived from 3.12 overlayed on peloruside A. 

 

The reactions investigated in the following sections were bromination, bromohydrin 

formation, epoxidation, dihydroxylation, hydroboration and reduction of the side chain 

ester group.  These reactions were choosen as they provided a simple established set of 

transformations to probe the reactivity and elaboration potential of the oxepine ring. 

 

5.1 Halogen addition to oxepine 3.12 

 

5.1.1 Bromination 

 

This simple reaction (Scheme 5.1) was performed first to check the reactivity of the 

oxepine and also to gain some initial information about the conformation of the 

resulting oxepane ring in solution. 
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Scheme 5.1. Bromine addition to an alkene. 

 

Addition of bromine to a solution of oxepine 3.12 in CHCl3 at ambient temperature for 

30 minutes gave two products in 90% overall yield in a 2:1 ratio (entry one, table 5.1).  

Both isomers could be separated and purified by chromatography.  Mass spectrometry 

of both revealed the presence of two bromine atoms, with 1H and 13C NMR indicating 

that the alkene was no longer present.  However, the 1H NMR of both compounds was 

congested between δH 4 and 5 and it was hard to distinguish individual signals.  The 

spectral data set of the minor isomer showed better resolution in the 1H NMR, enabling 

its assignment. 

 

The structure of the minor isomer, oxepane 5.2, was assigned by 1H, 13C COSY, HSQC-

DEPT, HMBC, 1D TOCSY and NOE experiments.  The presence of the gem-dimethyl 

ester group was confirmed by 1H resonances consistent with two methyls (δH 1.19 and 

1.15) and an ethyl group (δH 4.60 and δH 1.30).  Similarly observed were 13C resonances 

consistant with a carbonyl functionality (δC 176.0) and a quaternary carbon center (δC 

47.5).  1H resonances also confirmed the presence of the di-tert-butyl silyl protecting 

group (δH 1.18, 18H).  The HSQC-DEPT experiment, as well as establishing direct 

hydrogen-carbon connectivity, revealed the presence on the main ring of three 

oxymethines, two methines, an oxymethylene and a methylene which COSY 

correlations confirmed were all part of the same 1H spin system.  An HMBC correlation 

from the gem-dimethyl quaternary carbon was observed to the C-1 oxymethine (δH 

4.41, δC 78.8).  The connectivity of the 1H spin system was then constructed from a 
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series of COSY and TOCSY correlations from the C-1 oxymethine proton to a 

methylene (C-2: δH 2.80 and 1.97, δC 28.0) to a methine (C-3: δH 4.70, δC 48.5) to a 

second methine (C-4: δH 4.74, δC 57.6) to an oxymethine (C-5: δH 4.64, δC 79.8) to a 

second oxymethine (C-6: δH 4.07, δC 66.9) and finally to an  oxymethylene (C-7: δH 

4.22 and 4.12, δC 70.4).  The conformation and relative stereochemistry around the 

oxepane ring were established from an analysis of NOE enhancements and 1H-1H 

coupling constants (Figure 5.5). The diagrams in this chapter illustrating the probable 

solution conformation are drawn with the 1H axial-axial couplings in red, and the NOE 

enhancements in green. 
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Figure 5.5. Minor isomer 5.2 from bromination showing NOE enhancements  

and 1H axial-axial interactions. 

 

H-1 on the β face of the molecule has a large coupling constant of 12.0 Hz shared with 

one of the protons at H-2 (δH 2.80) indicating the anti-relationship of these two protons 

and establishes this methylene proton’s position on the α face of the ring.  Clear NOE 

enhancements were observed from H-2α to H-6 and H-3 which assigns these protons on 

the same side of the ring (α).  These relationships establish the bromine at C-3 as being 

on the β face. The second bromine at C-4 is in an anti-relationship with its partner at C-

3 and must therefore be on the α face.  Coupling constants for H-3, H-4 and H-5 were 
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all < 7 Hz assigning them in equatorial positions, consistent with axial bromines at C-3 

and C-4.  The perhaps somewhat surprising 1,2-axial positioning of the C-3 and C-4 

bromines is consistent with a stable twist-chair conformation of the oxepane ring. This 

conformation is due to the presence of the large bulky α gem-dimethyl substituent at 

C-1 forcing the 2 bromines into axial orientations (Figure 5.5), and the structure 

stabilising effect of the di-tert-butylsilyl protecting group. 

 

The major isomer from the reaction, oxepane 5.1, was similarly assigned by 1H, 13C 

COSY, HSQC-DEPT and HMBC.  As was previously indicated, 1H NMR spectra of 

this compound were particularly congested in the 4.2-4.0 ppm area (Figure 5.6 and 5.7).   

 

Figure 5.6. 1H NMR spectrum of dibromide 5.1 in CDCl3 (500 MHz) 

 showing the congested region between 4.2 and 4.0 ppm. 
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Figure 5.7. HSQC spectrum of dibromide 5.1 in CDCl3 showing overlapping proton signals between 4.2 

and 4.0 ppm. 

 

1H and 13C NMR again confirmed the presence of the silyl ether protecting group and 

also the gem-dimethyl-containing ester sidechain. As the C-6 and C-7 positions are not 

greatly effected by the substitution of the alkene, they were not included in the analysis 

of the NMR data of this compound. As the oxymethine at C-1 was not resolved, the 1H 

spin system was constructed from COSY correlations starting with the C-2 methylene 

(δH 2.57 and 2.35, δC 38.6).  These protons couple to an oxymethine (C-1: δH ~4.1, δC 

79.2) and a methine (C-3: δH 4.45, δC 52.9). The C-3 methine proton then couples to a 

second methine (C-4: δH ~4.2, δC 62.8) which correlates to an oxymethine (C-5: δH 

4.64, δC 75.9) to a second oxymethine (C-6: δH 3.85, δC 71.9) and finally to an 

oxymethylene (C-7: δH ~4.15, δC 70.4). The conformation and relative stereochemistry 

around the oxepane ring were established from an analysis of NOE enhancements and 

1H-1H coupling constants (Figure 5.8).  The H-2α proton (δH 2.35) could be assigned 

from NOE enhancements to H-6 and the gem-dimethyl protons. The H-2α proton 
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appears as a doublet of triplets with coupling constants of 15.7 and 11.5 Hz, indicating 

that it is in an anti relationship with both H-1 and H-3 which places the bromine at C-3 

in an equatorial orientation.  H-3 also appears as a doublet of triplets with coupling 

constants of 11.0 and 1.7 Hz which place it in an anti relationship with H-2α and also 

H-4.  H-4’s axial position is confirmed by an NOE enhancement from H-2α, placing the 

bromine at C-4 also in an equatorial orientation.  Models suggested that the most 

probable conformation for this molecule was as a twist chair (Figure 5.8).  
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Figure 5.8. Major isomer 5.1 from bromination showing NOE enhancements  

and anti 1H axial-axial couplings. 

 

Dibromide 5.1 was subsequently deprotected with TBAF to give oxepane 5.3 in a 58% 

yield (Figure 5.9).  This reaction had a twofold purpose; i) to determine if the removal 

of the silyl group under normal conditions resulted in any unexpected rearrangements 

and ii) to see if any more information could be obtained about the conformation in 

solution as 5.1 and 5.2 had a substantial number of overlapping signals.  
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Figure 5.9. Diol 5.3. 

 

The structure of oxepane 5.3 was assigned by 1H, 13C COSY, HSQC-DEPT and 

NOESY.   Analysis of the 1H NMR revealed that removal of the protecting group had 

resolved most of the protons on the oxepane ring (Figures 5.10 and 5.11).  1H and 13C 

NMR confirmed the presence of the gem-dimethyl-containing ester sidechain.  The 

connectivity of the 1H spin system was then constructed from a series of COSY 

correlations from the C-1 oxymethylene (δH 4.34, δC 78.9) to a methylene (C-2: δH 2.50 

and 2.23, δC 39.7) to a methine (C-3: δH 4.51, δC 53.7) to a second methine (C-4: δH 

4.25, δC 63.5) to an oxymethine (C-5; δH 4.43, δC 76.0) to a second oxymethine (C-6: δH 

3.84, δC 74.9) and finally to an oxymethylene (C-7: δH 3.78 and 3.71, δC 65.4).  The 

conformation and relative stereochemistry around the oxepane ring were established 

from an analysis of NOE enhancements and 1H-1H coupling constants (figure 5.12).  H-

1 has a large coupling constant of 10.5 Hz with H-2α (δH 2.23) placing them in an anti 

relationship.  

H-2α then shows NOE enhancements to H-4 and H-6.  H-2α in turn has a large 

coupling constant of 12.2 Hz with H-3 placing these protons also in an anti relationship. 

Finally there is a large coupling constant of 10.7 Hz placing H-4 in an axial orientation 

as well.  This places both bromines in equatorial orientations, at C-3 α and at C-4 β, 

which confirms the structure of the parent dibromide 5.2. 
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Figure 5.10. 1H NMR spectrum of dibromide 5.3 in CDCl3 (500 MHz) demonstrating resolution of the 

previously congested area between δH 4.2 and 4.0. 

 

Figure 5.11. HSQC spectrum of dibromide 5.3 in CDCl3 showing resolution of overlapping proton 

signals. 
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Examination of ball and stick models indicate that the solution conformation is the 

twist-chair form (Figure 5.12). 
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Figure 5.12. Dibromide 5.3 showing NOESY enhancements and 1H axial-axial interactions. 

 

5.1.2 Bromohydrin formation 

 

Bromohydrins are an important precursor to several other functionalities, for instance 

epoxides.104  Reaction of oxepine 3.12 with NBS in water gave the bromohydrin 5.4 in a 

77% yield as a 4:1 mixture with its minor isomer (entry two, table 5.1).  The 1H NMR 

of the major product was too congested to allow complete structural assignment, with 

the presence of three methines and two oxymethines between δH 4.0 and 4.2 ppm.  To 

gain better 1H NMR resolution bromohydrin 5.4 was acetylated to give oxepane 5.10.  

This derivatisation improved the resolution of the 1H NMR and it was possible to assign 

the parent structure based on the 1D and 2D NMR data.  Signals in the 1H and 13C NMR 

confirmed the presence of the gem-dimethyl containing ester group, and the di-tert-

butyl silyl protecting group.  As the oxymethine at C-1 was obscured in the 1H 

spectrum, the 1H spin system was constructed from COSY correlations starting with the 

C-2 methylene (δH 1.96, δC 33.3).  These protons couple to an oxymethine (C1: δH ~4.2, 

δC 78.0) and to a second oxymethine (C-3: δH 5.14, δC 58.7).  H-3 couples to a methine 

(C-4: δH ~4.1, δC 58.7), which in turn couples to an oxymethine (C-5: δH 4.53, δC 74.3 

ppm).  These correlations confirm the substitution pattern as 3-hydroxy-4-bromo.  As 
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the C-6 and C-7 positions are not effected by the substitution of the alkene they were 

not included in subsequent analysis of the NMR data for the rest of this chapter.  The 

conformation and relative stereochemistry around the oxepane ring were established 

from an analysis of NOE enhancements and 1H-1H coupling constants (Figure 5.13).  

Only two of the protons could be clearly identified: H-3 and H-5.  H-3 appears as a 

triplet of doublets with coupling constants of 10.4 and 1.6 Hz.  The two large couplings 

indicate H-3 is in an anti relationship with both H-2α and H-4, placing both the 

hydroxyl at C-3 and the bromine at C-4 in equatorial orrientations.  An NOE 

enhancement was observed from H-3 to H-1 placing this proton on the β face.  These 

relationships establish the stereochemistry of the addition product as, with the 3-

hydroxy group on the α face and the 4-bromo on the β face. 
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Figure 5.13. Major isomer 5.10 from acetylation of bromohydrin 5.4 showing NOE enhancements and 

1H axial-axial interactions. 

 

Examination of models coupled with this data allowed assignment of the solution 

conformation as a twist-chair (Figure 5.13).  
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5.1.3 Mechanism of halogen addition to 3.12 

 

The results from the formation of 5.1, 5.2 and 5.4 were intuitively hard to explain.  At 

first glance the major isomer would be expected to be that with the initial bromine 

attack from the α face due to steric constraints precluding attack from the β face.  

However a closer investigation of the mechanism reveals that the initial bromine attack 

is electrophilic in nature.  Thus the results can be rationalised if the initial bromine 

attack is directed by the lone electron pair on the C-5 oxygen leading to an intermediate 

state where the bromine is co-ordinated to the oxygen on the β face as shown in Scheme 

5.2.  The nucleophile (Br- or OH-) is then directed to attack from the α face. 
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Scheme 5.2. Brominated intermediate co-ordinating to the C-5 oxygen followed by attack of nucleophile. 

 

5.2 Epoxidation of oxepine 3.12 and formation of derivatives 

 

5.2.1 Epoxidation of oxepine 3.12 

 

One of the most useful reactions to increase the functionality of an alkene is 

epoxidation.  Epoxides are important intermediates in many synthetic routes on the way 

to more complex molecules.  While stereoselective methods of epoxidation are now 

commonplace,105 a simple expoxidation method was chosen to examine the reactivity of 

the oxepine and to determine the stereochemical outcome of the undirected reaction.  
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Epoxidation of oxepine 3.12 with m-CPBA (the Prilezhaev reaction,106 Scheme 5.3) 

gave only one product, oxepine 5.5 in a 65% yield (entry three, table 5.1). 
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Scheme 5.3. Epoxidation mechanism with a peracid. 

 

The structure was assigned from the 1D and 2D NMR data.  Signals in the 1H and 13C 

NMR confirmed the presence of the gem-dimethyl-containing ester group, and the di-

tert-butylsilyl protecting group.  The connectivity of the 1H spin system was then 

constructed from a series of COSY correlations from the C-1 oxymethine (δH 4.23, δC 

78.3) to a methylene (C-2: δH 2.13 and 1.91, δC 27.1) to an oxymethine (C-3: δH 3.28, 

δC 55.6) to a second oxymethine (C-4: δH 3.05, δC 56.6) and finally to a third 

oxymethine (C-5: δH 4.60, δC 74.1). 

 

The conformation and relative stereochemistry around the oxepane ring were 

established from an analysis of NOESY enhancements and 1H-1H coupling constants.  

H-1 has a large coupling constant of 12.5 Hz with H-2α (δH 1.91) confirming their anti 

relationship.  H-2α shows NOE enhancements to H-6.  H-3 has coupling constants of 

8.5 and 4.7 Hz, which place it syn to H-4 and in an eclipsed relationship with H-2β (δH 

2.14).  NOE enhancements are observed from H-2β to H-3 and H-1 placing these three 

protons on the β face.  The position of H-3 indicates that the epoxide is present on the α 

face and as the mechanism of epoxide addition exclusively gives a syn product, the 

epoxide is on the α face, consistent with the observed coupling patterns and NOE data. 
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Figure 5.14. Structure of epoxide 5.5 showing NOESY enhancements and 1H axial-axial interactions. 

 

5.2.2 Addition of sodium azide to epoxide 5.5 

 

As the epoxide was considered a stepping-stone on the path to more complex 

molecules, a further simple elaboration was performed.  Treatment of epoxide 5.5 with 

sodium azide and ammonium chloride in a mixture of 8:1 MeOH:H2O heated at reflux 

overnight gave oxepine 5.6 as a single product in 63% yield (entry four, table 5.1).  The 

1H NMR spectra was very congested, with four methines and two oxymethylenes in the 

region between δH 4.2 and 4.0, which made it very difficult to assign the structure or the 

stereochemistry.  Acetylation of oxepane 5.6 to compound 5.11 resolved some of the 

ring protons and made it possible to identify the structure and stereochemistry of the 

product.  Again signals in the 1H and 13C NMR confirmed the presence of the gem-

dimethyl-containing ester group, and the di-tert-butylsilyl protecting group.  As the 

oxymethine proton of C-1 was obscured in the 1H spectrum, connectivity of the 1H spin 

system was then constructed from a series of COSY correlations from the C-2 

methylene (δH 2.17 and 1.75, δC 26.7) to an oxymethine (C-1: δH ~4.15, δC 76.7) and to 

a methine (C-3: δH 3.95, δC 58.8).  H-3 correlates to an oxymethine (C-4: δH 5.33, δC 

73.7) to a second oxymethine (C-5: δH 4.25, δC 75.9).   This assigns the regioselectivity 

of the azide addition to C-3.  The conformation and relative stereochemistry around the 
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oxepane ring were established from an analysis of NOE and NOESY enhancements and 

1H-1H coupling constants.  A clear NOE enhancement can be seen from H-6 to H-2α 

(δH 2.17) assigning this proton to the same face.  H-2α has coupling constants of 12.8 

and 3.4 Hz to H-1 and H-3 respectively.  This assigns H-1 as axial and H-3 as 

equatorial.  H-3 also has NOE enhancements to H-2α, H-2β and H-4 which positions 

this proton in a syn orientation vis these three protons.  The coupling constants of H-4 

and H5 are <6.5 Hz which places them in equatorial positions as well.  Using this 

information, models indicate that the solution configuration is a twist-chair form (Figure 

5.15).  
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Figure 5.15. Structure of actylated azide 5.11 showing NOE and NOESY enhancements and 1H axial-

axial interactions. 

 

As the hydroxyl group formed at C-4 remains α, the azide adds in an anti fashion to 

give the C-3 β substituent.  The azide addition therefore occurs at the least sterically and 

electronically hindered carbon as shown in Figure 5.16. 
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Figure 5.16. Stereochemistry of the azide addition to epoxide 5.5. 
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5.3 Dihydroxylation of oxepine 3.12 

 

Osmium tetroxide catalyses the cis dihydroxylation of alkenes in the presence of 

water107 (Scheme 5).   

 

R4

R3R2

R1

Os

O O

OO

R1 R4

R2 R3

O O

Os

O
O

H2O H2O

O O

H

H H

H

R1 R4

R2 R3

HO OH

Os

O O

HO OH

Oxidation

 

Scheme 5.4. Mechanism for osmium tetroxide dihydroxylation. 

 

The reaction can be made stereoselective by the application of the Sharpless method.108  

However, this modification was deemed unnecessary given the exploratory nature of the 

investigations.  Reaction of oxepine 3.12 with osmium tetroxide in a 1:1 mix of diethyl 

ether and water at ambient temperature for one hour gave only one product, diol 5.7, in 

a 59% yield (entry five, table 5.1).   

 

Again, the 1H NMR was too congested to allow detailed assignment of any of the 

signals with four methines and two oxymethylenes in the region δH 3.9-4.15.  

Acetylation of the diol 5.7 gave oxepane 5.12 in a 79% yield.  This derivatisation was 

successful in dispersing the oxepane ring peaks sufficiently for the stereochemistry to 

be determined.  Connectivity of the 1H spin system was then constructed from a series 

of COSY correlations from the C-2 methylene (δH 2.49, 1.67, δC 27.0).  This couples to 

an oxymethine (C-1: δH ~4.15, δC 78.5) and a second oxymethine (C-3: δH 5.19, 

δC 70.6).  C-3 then couples to an oxymethine (C-4: δH 5.24, δC 74.0) which couples to a 
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second oxymethine (C-5: δH 3.99, δC 73.5).  The conformation and relative 

stereochemistry around the oxepane ring were established from an analysis of NOE 

enhancements and 1H-1H coupling constants.  A clear NOE enhancement can be seen 

from H-6 to H-2α (δH 2.49) assigning these protons to the same face.  NOE 

enhancements can be seen from H-2α to the gem-dimethyls and both acetates that 

assign these groups to the α face as well. H-2α appears as a triplet of doublets with a 

large coupling constant of 10.5 Hz, which assigns it in an anti relationship to both H-1 

and H-3, placing these protons axial on the β face.  This then places the acetylated 

hydroxyl at C-3 in an equatorial orientation.  As the dihydroxylation produces a cis diol 

the hydroxyl at C-4 must be axial.  This is confirmed by a coupling constant between H-

3 and H-4 of 1.7 Hz which places H-4 in an equatorial orientation to the axial proton at 

H-3.  This is the expected product due to steric factors influencing the initial addition of 

the osmium tetraoxide to the alkene.  Models suggested that the most likely 

conformation of this oxidation product in solution is again twist-chair (Figure 5.17). 
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Figure 5.17. Structure of diacetate 5.12 showing NOE enhancements and 1H axial-axial interactions. 
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5.4 Hydroboration of oxepine 3.12 

 

Several attempts were made to convert the alkene to an alcohol using Browns 

hydroboration conditions.109,110  This reaction adds an alcohol group to the least 

substituted end of an alkene in an anti-Markovnikov fashion.  Addition of a 

hydroborane species across the alkene is followed by the formation of a borane, which 

is then converted to a hydroxyl group (Scheme 5.4).   

 

BH3 H BH2 H BH2 OHH

 

Scheme 5.4. Standard hydroboration reaction showing addition at the least substituted carbon center. 

 

Using more bulky boranes such as 9-BBN increases the selectivity of the addition.   

Reacting oxepine 3.12 in THF with 9-BBN at 0 oC followed by addition of NaOH and 

H2O2 then warming to ambient temperature for 12 hours only returned starting material 

despite repeated attempts.  Repeating the reaction substituting BH3
.DMS as the 

hydroboration reagent gave one product, 5.8 in 40% yield along with 26% of starting 

material (entry six, table 5.1).  1H NMR again gave a very congested spectrum with four 

methine and two oxymethylene signals between δH 3.9 and 4.2 ppm.  It also indicated 

the expected presence of two unsubstituted methylenes.  Acetylation of the alcohol to 

give 5.13 again dispersed the 1H signals enough to allow assignment of the structure.  

Connectivity of the 1H spin system was then constructed from a series of COSY 

correlations from the C-1 oxymethine (δH 3.89, δC 82.4) to a methylene (C-2: δH 2.00 

and 1.51, δC 19.7) to a second methylene (C-3: δH 1.92, δC 25.5) to an oxymethine (C-4: 

δH 4.96, δC 73.3) to a second oxymethine (C-5: δH 4.10, δC 75.7).  The COSY data 

reveals that two unsubstituted methylenes are next to each other in the oxepane, 
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suggesting that the hydroxylation has occurred at the C-4 position, rather than the 

expected C-3 position.  This is opposite to what is usually generated by the Brown 

hydroboration, which generates alcohols on the least substituted end of the starting 

alkene.109,110 

 

It is postulated that the boron reagent complexes to the C-5 oxygen and directs the 

stereo- and regioselectivity of the subsequent alcohol formation overriding the steric 

conditions that normally drive the regioselectivity.  A similar effect was observed 

previously in the formation of dibromide 5.1.  This does not explain why the more 

bulky 9-BBN failed to give any results, as the steric control would surely be favoured 

over complexation with the C-5 oxygen.  A possible reaction intermediate is shown in 

Scheme 5.5. 
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Scheme 5.5. Possible borane intermediate formation leading to the observed alcohol stereochemistry 

 

The conformation and relative stereochemistry around the oxepane ring were 

established from an analysis of NOESY enhancements and 1H-1H coupling constants of 

the acetylated product 5.13.  The H-1 proton has a large coupling constant of 12.5 Hz 

with H-2α (δH 2.00) placing it axial in an anti relationship.  H-2α shows clear NOE 

enhancements to H-3α and H-4. This places the acetylated hydroxyl at C-4 on the β-

face which is confirmed by the weak NOE to H-3β.  These correlations are consistant 

with the proposed conformation in solution being a twist-chair (Figure 5.1). 
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Figure 5.18. Structure of monoacetate 5.13 showing NOESY enhancements and 1H axial-axial 

interactions. 

 

5.5 Reduction of the ester of oxepine 3.12 

 

The chemistry of the ester was investigated with a view towards further expansion of 

the oxepane from the gem-dimethyl side-chain.  Reduction of the ester to the 

corresponding aldehyde was proposed.  It is well precendented that reduction of an ester 

with DIBAL at -78 oC generates an aldehyde selectively.  However this method is 

extremely sensitive and can result in the over reduction of the aldehyde to the 

corresponding alcohol.111  Reaction of oxepine 3.12 with one equivalent of DIBAL in 

dichloromethane at -78 oC gave one alcoholic product, oxepine 5.9 (Figure 5.19) in a 

54% yield along with 23% recovered starting material (entry seven, table 5.1).  1H and 

13C NMR revealed that the desired aldehyde was present in trace amounts, co-eluting 

with the starting material.  All other 1H and 13C data were consistent with oxepine 3.12. 
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Figure 5.19. Alcohol 5.9 from DIBAL reduction of the oxepine ester 3.12. 
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This reaction, while unsuccessful, demonstrated the oxepines stability to reducing 

conditions.  A better method to generate the desired aldehyde would be to reduce the 

ester and oxidise the resulting alcohol 5.9 over 2 steps as this would result in a higher 

overall yield. 

 

5.6 Summary 

 

The results of the reactions in this chapter are summarised in Table 5.1. 

 

All the reactions in this chapter lead to either the formation of a single product or a 

mixture of easily separable isomers with the only exception to this being the products of 

the bromohydrin addition.  The reactions all demonstrate high diastereo- and regio-

selectivity with simple non-selective reagents, and it is relatively easy to predict the 

stereochemistry of the resulting oxepanes.  While the variety of functional groups 

introduced is not great, there is potential to either displace or alter these to other 

functionalities.  Information was also obtained regarding the conformation of the 

oxepane in solution.  The preferred conformation adopted in solution was that of the 

twist-chair, with none of the other possible conformers observed.  This is in line with 

other conformations reported for seven membered rings.98  These results demonstrate 

the synthetic utility of the oxepine moiety as a synthon.   
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Table 5.1. Results of elaborations of oxepine 3.12. 

Entry Reaction conditions Products 

 

1 

 

Br2, CHCl3, rt, 1h 

 

5.1

OO
tBu2Si

O

Br Br

O

OEt

90% 2:1 ds 
 

 

2 

 

NBS, THF/H2O 1:1, 

1h 

 

5.4

OO
tBu2Si

O
O

OEt

Br OH 77% 4:1 ds 

 

3 

 

MCPBA, CH2Cl2, 

O/N 

 

5.5

OO
tBu2Si

O
O

OEt

O 65% 

 

4 

NaN3, NH4Cl, 

MeOH/H2O 8:1, 

reflux O/N 

 

5.6

OO
tBu2Si

O
O

OEt

HO N3 63% 

 

5 

OsO4, NMO, 

Et2O/H2O 1:1 2h 

 

5.7

OO
tBu2Si

O
O

OEt

HO OH 59% 
 

 

6 

BH3
.DMS, THF, 0 oC 

then NaOH, H2O2, 

O/N 

 

5.8

OO
tBu2Si

O
O

OEt

HO 40% 

 

7 

 

DIBAL, CH2Cl2, 

-78 oC, O/N 

 

5.9

OO
tBu2Si

O
OH

54% 
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Chapter 6: Synthesis of a natural compound using the developed ring 

expansion methodology 

 

‘If you’re looking to get to there, I wouldn’t be starting from here’ 

 

As a progression from the investigation of the ring expansions of cyclopropanated 

glycals, attention turned to the application of the methodology to the synthesis of a 

naturally occurring compound.   

 

 

Figure 6.1. Cydonia obolonga. 

 

The fruit of the quince Cydonia oblonga (Figure 6.1) has a very powerful and distinct 

flavour that is used in marmalade, candied fruits, sweets and brandy.  This flavour is the 

result of a large number of both saturated and unsaturated esters and ethers present in 

trace amounts in the fruit.  During the course of an in-depth investigation of the 

aromatic components several C12 compounds with a seven membered ether ring were 

identified from a sample of Swiss quince brandy.112  Two of these are shown in Figure 

6.2.  
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O O

6.1 6.2 

Figure 6.2. Seven membered ring ethers isolated from quince brandy. 

 

The compounds were identified on the basis of mass spectroscopy and 1H NMR data.  

The proposed structures were confirmed by a total synthesis of the compounds 

published in 1991 by Escher and Niclass.113 The synthetic scheme involved building up 

the carbon chain followed by C-O bond formation as the final step and gave oxepine 6.1 

in nine steps and 2% overall yield as a racemic mixture (Scheme 6.1). 
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a) PPh3=CHMe, BuLi, CH2O, 58%.  b) PBr3, py, hexane, -5 oC, 42%.  c) 2-Lithiodithiane, 65%.  d) MeI, 

CaCO3, MeCN/H2O, 87%.  e) BuLi, monoglyme, 0 oC, 99%.  f) LAH, THF, reflux.  g) 10%aq.  HCl, 

MeOH, 60%/2 steps.  h) 1.1 eq.  TsCl, Py, 0 oC, 62%.  i) 3.0 eq.  NaH, 1 eq. DMPU, monoglyme, 40%. 

Scheme 6.1. Escher and Niclass’ synthesis of oxepane 6.1. 

 

These compounds were chosen as the synthetic target because they had relatively 

simple structures which contained features similar to our previously synthesised 
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oxepines.  The previous synthesis had also been low yielding and racemic whereas our 

strategy would be stereoselective. 

 

6.1 Initial synthetic plan starting from cyclopropane 3.3. 

 

It was initially envisioned that the formation of the main oxepine ring would utilise the 

general procedure laid out in Section 3.1 in which protection of the galactal ring with 

the di-tert-butylsilyl moiety would be followed by cyclopropanation.  At this point it 

was planned to insert the methyl group into the ring corresponding to the target 

molecule that has a methyl substituent at C-4.  By harnessing the deoxygenation 

discovered in the course of the expansions of cyclopropane 3.4 (see Scheme 4.6) it 

would then prove possible to remove the hydroxyl at C-5 during the course of the ring 

expansion step.  A one pot deprotection and oxidation would be followed by a Horner-

Wadsworth-Emmons olefination to yield the desired product (Scheme 6.2). 
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a) Silyl ether formation.  b) Simmons-Smith cyclopropanation.  c) Swern oxidation.  d) Grignard 

methylation.  e) Ring expansion.  f) Oxidative desilylation.  g) Horner–Wadsworth-Emmons. 

Scheme 6.2. Projected reaction scheme for the total synthesis of quince oxepane. 
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At this point the method of cyclopropanation was altered.  This was brought about by 

problems with the local supply of Et2Zn in hexanes used for the Furukawa modification 

of the Simmons-Smith methodology.  Difficulties were experienced with shipping the 

chemical into the country from overseas, and also with its purity and longevity once it 

had arrived in the laboratory.  It was decided to perform a trial reaction with galactal 3.1 

using the method of Shank and Shechter114 with a Zinc-Copper couple.115 This gave the 

desired cyclopropane 3.3 in almost identical yield and selectivity to that experienced 

with the use of Et2Zn.  This method was then used for the remainder of the project. 
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a) Di-tert-butylsilyl bistriflate, py, DMF, -40 oC, 65%. b) Cu-Zn couple, CH2I2, Et2O, 73%.  c) Swern 

oxidation, 94%.   d) MeMgBr, Et2O, 0 oC, 86%, see text.  e) TESH, TMSOTf, MeCN. 

Scheme 6.3. Reaction scheme for the formation of oxepine 6.5. 

 

The initial synthetic route is shown in Scheme 6.3.  Cyclopropane 3.3 was synthesised 

as described previously (Section 3.1) and was then subjected to a Swern oxidation116 to 

give ketone 6.3 in a 94% yield.  Treatment of ketone 6.3 with MeMgBr in Et2O gave 

cyclopropane 6.4 in an 86% yield.  However it proved impossible to acetylate the 

tertiary alcohol at C-3 in a usable yield.  Small amounts of the acetylated product (less 

that 5%) were isolated from the protection reaction.  It is postulated that the steric 

crowding of the β face makes the introduction of the acetyl group to the C-3 alcohol 

unfavourable.   
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Despite the lack of a leaving group at C-3, cyclopropane 6.4 was then subjected to the 

ring expansion conditions. It was thought that a suitable leaving partner would be 

formed in situ.  Ring expansion followed by the standard aqueous workup gave a very 

low isolated yield of the desired oxepine 6.5.  This had also been observed at the 

analogous step by a previous worker utilising the glucal skeleton as the starting material 

instead of galactal but in an analogous reaction scheme.117 Examination of the 1H and 

13C NMR data of cyclopropane 6.4 revealed that during the Grignard addition the silyl 

protecting group had cleaved from the hydroxyl at C-4, resulting in a di-tert-butyl 

methyl protecting group at the C-6 position (Scheme 6.4).  This was confirmed by the 

presence of a methyl signal at δH 0.10 in the 1H NMR, indicative of a methyl group 

attached to a silicon atom.  
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Scheme 6.4. Mono deprotection of 6.3 to give diol 6.6. 

 

Treatment with MeMgBr is known to convert acetonides to a tert-butyl group 

selectively deprotecting a secondary hydroxyl over a primary hydroxyl.118 However it 

has not been previously reported in the case of di-tert-butylsilyl group.  Cyclopropane 

6.6 then undergoes deprotection during the ring expansion step as has been previously 

observed for non-tethered silyl protecting groups and the diol is then lost in the aqueous 

phase during workup.  In subsequent ring expansions the reaction mixture was 
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neutralised with triethylamine and then filtered through a silica plug in order to avoid 

these aqueous conditions.  Elution with hexanes removed the residual TES- and 

DTBMS- derived by-products followed by elution with EtOAc to give the oxepine diol 

6.7 in a 60% yield (Scheme 6.5).    
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Scheme 6.5. Formation of oxepine diol 6.7. 

 

Attempts were made to oxidise 6.7 to the desired aldehyde.  Several different oxidation 

methods, including Swern116, PCC119 and Dess-Martin periodane120, were tried.  Small 

amounts of aldehydes were observed in the 1H NMR from these reactions, but these 

proved impossible to purify by flash chromatography on silica gel and were not pursued 

further due to the unsatisfactory yields.  It was postulated that the presence of the 

hydroxyl group at C-5 leads to hydrogen bonding with the primary alcohol at C-7, 

thereby inhibiting oxidation (Figure 6.3).  Aqueous work ups used for the oxidation 

then removed the unreacted diol 6.7.  Thus no starting material was recovered from any 

of these reactions. 
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Figure 6.3. Possible H bonding in diol 6.7 preventing oxidation of primary alcohol. 
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6.2 Revised synthetic plan starting from cyclopropane 1.61 

 

In an attempt to circumvent the observed problems with the initial synthetic route it was 

decided to synthesise the oxepine using glucal as a starting material, as had originally 

been attempted by a co-worker.117  It was thought that it should be possible to acetylate 

the cyclopropanated glucal alcohol as there would be little or no steric interference due 

to the planar nature of the molecule.  This would then lead to retention of the silyl 

protecting group and an easier purification of the ring expansion products.  However it 

would also introduce extra steps into the synthesis as the alcohol on the oxepine ring 

would have to be removed separately, for example by Barton-McCombie 

deoxygenation (Scheme 6.6).121 
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a) Silyl ether formation.  b) Simmons-Smith cyclopropanation.  c) Swern oxidation.  d) Grignard 

methylation.  e) Acetylation.  f) Ring expansion.  g) Oxidative desylation.  h)  Horner–Wadsworth-

Emmons reaction.  i) Xanthate formation.  j) Barton-McCombie deoxygenation. 

Scheme 6.6. Revised synthetic scheme using glucal as a starting point. 
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The cyclopropane 1.61 was synthesised using Hoberg’s published method.70 This 

compound was then oxidised under Swern conditions116 to give ketone 3.20 as before.  

The Grignard addition to ketone 3.20 was performed with freshly generated MeMgI to 

give cyclopropane 6.8 in a 99% yield.  This reaction gave only one isomer by 1H NMR, 

which was not expected.  Examination of the ketone 3.20 demonstrates that Grignard 

attack is more likely from the sterically less hindered α face (Scheme 6.7). 
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Scheme 6.7. Grignard addition to ketone 3.20 showing preferred route of attack. 

 

However, it again proved impossible to actetylate the C-3 hydroxyl using standard 

conditions.  This suggested that the previous theory of steric hindrance was incorrect 

and that it is the inherent unreactivity of the tertiary alcohol that is preventing the 

acetylation.  It was again decided to proceed with the ring expansion step with 

formation of a suitable leaving group in situ as previously demonstrated in the 

expansion of cyclopropane 6.6.  No products could be isolated from the ring expansion, 

and no starting materials were recovered.  Similar results had been observed with 

cyclopropane 3.4 when no nucleophile was present in the ring expansion reaction.  This 

synthetic route was therefore discarded.  

 

6.3 Modification of the initial synthetic route. 

 

Attention then returned to the initial strategy using the galactal starting material. To 

ameliorate the problems previously experienced in the oxidation step it was decided to 
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use a recently reported one pot method for the oxidation of the oxepine primary alcohol 

followed by a Wittig reaction to attach the diene side-chain.  Vatele reported generating 

aldehydes from primary alcohols with TEMPO and BAIB and then converting them to a 

trans-alkene in situ by addition of an activated phosphine at 0 oC.122 A modification of 

reaction scheme 6.2 was then proposed.  This would see the one pot oxidation/Wittig 

followed by another Wittig reaction to complete the formation of the sidechain, and the 

final removal of the hydroxyl group at C-5 with a Barton-McCombie deoxygenation 

(Scheme 6.8).121 
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a) Oxidation/Wittig. b) Wittig.  c) Xanthate formation. d) Barton-McCombie deoxygenation. 

Scheme 6.8. Reaction scheme for installation of the side chain. 

 

In order to trial the methodology, Vatele’s one pot oxidation/Wittig was applied to diol 

6.7 using a similar stabilised methyl ester containing phosphoranylidene that was on 

hand.  The desired product 6.9 was isolated in 27% yield (Scheme 6.9).  Also isolated 

was a similar by-product in 31% yield.   
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Scheme 6.9. Products from the oxidation/wittig reaction. 

 

Initial 1H NMR of the by-product gave promising spectra with signals indicating the 

presence of a new alkene (δΗ=6.95 and δΗ=6.06) with a large coupling constant of 15.5 

Hz which suggested a trans alkene was present.  However, 13C NMR revealed that there 

were only 10 carbons present in the molecule vs. the expected 11.  HSQC and HMBC 

experiments proved that the alcohol and its adjacent carbon were missing from the 

oxepine ring.  To explain these observations structure 6.10 was proposed and confirmed 

by HRMS results.   

 

The mechanism for the formation of this compound was initially unclear.  It was 

proposed that aldehyde formed from the diol 6.7 underwent further oxidation to the 

acid, and then a radical decarboxylation.  A combination of oxonium formation and 

interception by the C-5 hydroxyl could be responsible for the ring contraction. The 

resulting aldehyde would then undergo a Wittig reaction with the methyl ester 

containing phosphoranylidene in situ to form 6.10 (Scheme 6.10).   
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Scheme 6.10. Possible mechanism formation of the pyrenyl side product. 

The reaction was then repeated at 0 oC under an inert atmosphere with the intention of 

minimising over oxidation to the carboxylic acid.  The correct phosphoranylidene with 
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the methyl group was now avaliable and was substituted for the previously used methyl 

ester containing phosphoranylidene at this point.  Reaction of oxepine 6.7 with TEMPO 

and diacetoxyiodobenzene at 0 oC followed by addition of the Wittig ylide gave 6.11 in 

a 40% yield (Scheme 6.11). 
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Scheme 6.11. Formation of oxepine 6.11. 

 

No  pyrene by-product identified in the previous reaction could be isolated from this 

reaction mixture.  It is possible that while the pyrene compound is indeed formed in the 

course of the reaction, its lower boiling point compared to 6.11 precluded isolation as it 

may have been evaporated along with the solvent during concentration.  

 

Continuing on the synthetic strategy shown in Scheme 6.8, a Wittig reaction was then 

attempted to convert the carbonyl group on the side chain to the corresponding alkene.  

Reaction of 6.11 with nBuLi and MePPh3Br in THF failed to generate the expected 

product.  Isolated from the reaction were four compounds as two pairs of 

diastereoisomers.  One pair was provisionally identified as an n-butyl addition product 

at the carbonyl to give compound 6.12 (Figure 6.4), while the other had undergone 

rearrangement that had destroyed the stereochemistry at the C-5 and C-6 positions 

followed by addition of an n-butyl group.  Further identification of these products was 

not pursued.  An attempt to use Tebbe’s reagent was made to generate the olefin.64  This 

reaction was also unsuccessful and none of the desired product was isolated. 
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Figure 6.4. Product 6.12 formed from Wittig reaction with 6.11. 

 

It was then decided to try to form a xanthate on the C-5 hydroxyl of oxepine 6.11 with 

the carbonyl present.  It was intended that this could be used as a protecting group and 

then removed as the last step in the synthesis.  Reaction of oxepine 6.11 with NaH, CS2 

and MeI led to an unidentifiable mixture of low polarity compounds that could not be 

separated.  The reaction conditions were obviously too harsh for the functional groups 

present. 

 

At this point in the synthesis there was some question as to the presence of a free 

hydroxyl at C-5 of oxepine 6.11, as a corresponding peak in the 1H NMR spectrum for 

the OH proton could not be identified (although this is not uncommon for exchangeable 

protons in 1H NMR).  The presence of the C-5 hydroxyl was demonstrated by 

acetylation of oxepine 6.11 to give the protected oxepine 6.13 in a 67% yield (Scheme 

6.12).   
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a) Ac2O, py, DMAP, CH2Cl2, 67%.  b) nBuLi, MePPh3Br, THF, 95%. c) Thiophenylorthoformate, 

imidazole, CH2Cl2, 70%. 

Scheme 6.12. Formation of sidechain diene and xanthate 6.15. 
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Reaction of 6.13 under Wittig conditions with methylene triphenylphosphonium 

bromide gave the expected diene 6.14 in a 95% yield and also resulted in the 

deprotection of the C-5 hydroxyl in the same reaction pot.  With the sidechain diene 

6.14 in hand formation of a xanthate under mild conditions with phenyl 

chlorothionoformate and imidazole proceeded smoothly to form the phenylthioformate 

6.15 in a 70% yield. 

 

The last step of the synthesis was Barton-McCombie deoxygenation which would 

provide the target oxepine 6.1 as a single compound.  Treatment of phenylthioformate 

6.15 with nBu3SnH and AIBN in refluxing toluene yielded an indecipherable mix of 

products.  The target oxepine 6.1 could not be identified by 1H NMR in the crude 

mixture of compounds.  This in itself was not entirely unexpected as the Barton-

McCombie deoxygenation is a radical process and it was possible that the radical 

formed would rearrange around the ring.  The desired intermediate required for the 

formation of the target oxepine 6.1 may not be the most stable radical intermediate 

(Scheme 6.13).  The deoxygenation reaction could lead to two possible radical centres, 

however this does not explain the complex mixture of  reaction products observed. 
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Scheme 6.13. Possible radical isomers formed during Barton-McCombie deoxygenation. 

 

Thus while these proposals explained many of the observations, a few questions 

remained unanswered. This suggested that an alternative explanation was required.
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6.4 Unexpected rearrangements during formation of diol 6.7 

 

6.4.1 Identification of unexpected products 

 

At this point a by-product isolated from the products of the ring expansion reaction 

(Scheme 6.5) provided the first evidence as to what had actually happened during the 

reaction.  An NMR sample of diol 6.7 in CDCl3 was washed back into a flask with 

acetone and left on the bench.  It was subsequently discovered that the sample had 

undergone a reaction in the flask presumably catalysed by the slightly acidic CDCl3, to 

give the acetonide protected diol 6.16.  During the NMR investigation to identify this 

product it was noticed that the acetonide carbon was present at δC 110 in the 13C 

spectrum.  A literature search revealed that the carbon chemical shift on an acetonide 

carbon is diagnostic for the size of the ring it is part of.  For six membered rings the 

chemical shift is 100 ppm and for five membered rings it is 110 ppm.123 Additional 

analysis using HMBC NMR experiments revealed that the structure of the diol was 

actually a six membered ring with an exocyclic diol (Figure 6.5).   

 

O

O

O

 

Figure 6.5. Structure of cyclohexyl pyrene 6.16. 

 

This had been missed over nearly three years of research, as HMBC experiments were 

not available in our laboratories routinely at the inception of this part of the project.  

The available spectroscopic data at the time was in agreement with other work in the 



 139 

formation of oxepines using this method, consequently the formation of a six membered 

ring had not been considered as a possible reaction product. 

 

Whilst the discovery of the ‘cuckoo in the nest’ was a surprise, it made sense of many 

earlier results, which had required convoluted explanations.  The reassignment of these 

structures revealed a far more reasonable path and also explained the failure of the final 

deoxygenation step.  The revised reaction route is shown in Scheme 6.14. 
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Scheme 6.14. Revised synthetic scheme for formation of the sidechain. 

 

The Barton-McCombie reaction on 6.15 would have formed a radical center on the 

sidechain next to a conjugated alkene system, explaining the multitude of inseperable 

nonpolar products observed. 

 

This also explains the formation of the pyrenyl 6.10 during the one pot oxidation/Wittig 

reaction shown in Scheme 6.9.  A literature search revealed that 1,2-diols when treated 
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with an aryl iodosoacetate in the presence of acetic acid cleave to give the 

corresponding aldehydes.124  In this case the acetic acid was formed from reaction of the 

iodosoacetate with small amounts of water present in the CH2Cl2 (Scheme 6.15).   
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Scheme 6.15. Diol clevage by BAIB. 

 

Thus the mixture of products from the reaction of diol 6.7 in Scheme 6.9 can be 

explained by the two possible pathways presented in Scheme 6.16. 
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Scheme 6.16. Possible reaction paths for formation of the products 6.9 and 6.10 in scheme 6.9. 

 

In pathway A the primary alcohol of the diol is oxidised to the aldehyde which then 

reacts with the added Wittig ylide to give the desired product 6.9.  In pathway B the diol 

undergoes oxidative clevage by the BAIB to give an aldehyde which then reacts with 
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the Wittig ylide giving the product 6.10.  However, products arising from pathway B 

are not observed in other reactions. 

 

A literature search revealed that the compounds synthesised were previously unknown, 

starting with the diol 6.7.  All compounds exhibited odours consistent with those 

reported previously for the structurally similar oxepines112,113 (namely a slight floral 

odour). Their flavours were not determined! 

 

6.4.2 Analysis of the mechanism of ring expansion of cyclopropane 6.6 

 

Attention now shifted to the mechanism of cyclopropane opening leading from 

cyclopropane 6.6 to diol 6.7.  The formation of the six membered ring during the 

cyclopropane opening by TESH presented an interesting problem.  The only possible 

source of the pyrene ring oxygen was from the C-5 position.  This acted as an internal 

nucleophile, attacking the oxonium intermediate after its formation faster than the 

external nucleophile.  This lead to the formation of a bicyclic system containing 

potential six and seven membered ring systems.  As the six membered ring is the more 

stable of the two possibilities, attack by the hydride-equivalent at the anomeric position 

lead to ring opening forming a pyrenyl ring with an exocyclic diol.  Subsequent 

generation of triflic acid during the reaction lead to the deprotection of the silyl ether 

(Scheme 6.17). 
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Scheme 6.17. Mechanism of formation of the cyclohexyl diol 6.7. 
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The initial steps of this particular ring expansion/contraction were also observed in the 

formation of compound 2.7a.  However in this case the presence of TESH resulted in 

further conversion of the [3,2,1] bicyclic system to the observed diol 6.7. 

To determine if this was the correct mechanism, deuteride was then substituted for 

hydride in the ring expansion step.  TESD was again synthesised according to the 

method of Doyle.97  Reaction with cyclopropane 6.4 in acetonitrile as before gave 

epimeric diols 6.17 and 6.18 as a 6:1 mixture of products with the major product being 

that shown in Figure 6.6.  13C NMR revealed that the deuterium had only substituted at 

C-1.  The C-1 carbon signal at δC 63.47 was a triplet with a coupling constant of 21.7 

Hz, indicative of an attached deuterium.   
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Figure 6.6. Major and minor products from reaction of 6.7 with TESD. 

 

The stereochemistry of the reaction was confirmed by NOESY data that revealed an 

enhancement between the C-1 and C-5 protons on the minor isomer diol 6.19 (Figure 

6.7) which, while it was not separated from the mixture, was clearly observable in the 

1H NMR.  Diol 6.19 could also be detected in the 13C NMR (δC 63.51) as a series of 3 

small peaks under the major epimer C-1 carbon with a coupling constant of 22.2 Hz. 
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Figure 6.7. NOE enhancements for minor product diol 6.19. 
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This agrees with the expected outcome of our proposed mechanism.  The major product 

from the ring expansion is the more thermodynamically stable pyran ring and steric 

effects play little role in the reaction. 

 

6.5 Summary. 

 

An attempt was made to use the ring expansion methodology as part of the synthesis of 

a natural product.  Modification of the cyclopropanated ring system was simple and 

high yielding.  However the ring expansion reaction did not proceed as planned leading 

to an unexpected product which scuttled the overall synthesis.  However a previously 

unknown series of pyrenes were synthesised and characterised.   
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Chapter 7: Conclusion 

 

At the commencement of this project a set of aims and objectives were set down. These 

objectives were met with varying degrees of success. 

 

The synthesis of the various glycals involved in the project was optimised to provide 

good to excellent yields of most starting materials in multi-gram quantities, 

demonstrating that the chemistry is both efficient and scalable. 

 

The glycals synthesised were then used to probe the application of the Ferrier 

rearrangement to the synthesis of seven-membered oxacycles with a view towards 

improving the stereoselectivity of the ring expansion compared to previous work.  

Different silyl protecting groups were investigated. It was found that the bis-tethered di-

tert-butylsilyl protecting group was superior to the mono tethered silyl protecting 

groups investigated due to the former’s higher stability under the reaction conditions 

used for the ring expansions, as the mono-tethered groups TIPS and TBDPS were prone 

to deprotection.  A variety of leaving groups were investigated, with the previously used 

acetate proving the most successful due to its reliability under the reaction conditions.  

The rest proved either too unstable to work with (triflate and mesylate) or too stable to 

be of further use (carbonate). 

 

It was found that the stereoselectivity of the ring expansion was somewhat dependent 

on the glycal used as the substrate.  Galactal in combination with the di-tert-butylsilyl 

gave the best results both in terms of yield and selectivity. Glucal in combination with 

TBDPS gave similar selectivity’s with lower yields and was prone to unexpected 

rearrangements. A range of nucleophiles were successfully used in the ring expansions, 
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with carbon nucleophiles giving the best selectivity.  Of particular note was that O-

nucleophiles failed to react. 

 

Reaction products were characterised by NMR and Mass spectrometry to further 

investigate the mechanism of the rearrangement.  This was consistant with that 

published for the Ferrier rearrangement i.e. the formation of an oxonium ion followed 

with interception by a suitable nucleophile to form the product oxepine.  Side reactions 

were investigated and yielded more information about subsequent rearrangements of the 

oxepine ring.  This was obtained with a combination of reaction condition manipulation 

and deuterium labelling experiments.  One general mechanism with two reaction 

pathways was postulated to account for the observed products.   

 

The controlled reactivity of the oxepine ring system was also examined to determine its 

suitability as a synthon in organic synthesis. A range of elaborations of the oxepine 

alkene were performed. The products were easily separated and prediction of the 

products stereo- and region-selectivity was relatively straightforward in most cases.  

The resulting oxepanes proved amenable to further elaboration, demonstrating their 

underlying stability to a range of reaction conditions. 

 

Finally, an attempt was made to synthesise a naturally occurring compound.  The 

deceptively simple target molecule proved ultimately elusive due to a previously 

unobserved rearrangement that effectively scuttled the project. 

 

Further work with these systems could look at several areas. The oxepines and 

derivatives synthesised as part of this project in Chapters 3 and 5 should be examined 

for biological activity.  Ring expansions of more complex cyclopropanes could be 
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investigated, possibly leading to stereoselective ring expansion in the later stages of a 

total synthesis to further expand upon the methodology.  This was considered at one 

point during the attempted synthesis of the quince oxepine 6.1 as described in Chapter 6 

(Figure 7.1).   
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a)  Grignard  b)  Xanthate formation.  c)  Barton-McCombie deoxygenation.  d)  Deprotection.  e)  

Oxidation/Wittig.  f)  Wittig.  g)  Ring expansion. 

Scheme 7.1. Possible alternative reaction scheme towards the formation of oxepine 6.1. 

 

Starting with cyclopropane 6.6 the Barton-McCombie deoxygenation would be 

performed first to remove the C-4 oxygen.  This would hopefully remove the main 

cause of the failure of the total synthesis of 6.1 in Chapter 6.  This would be followed 

by removal of the protecting group, followed by a one step oxidation/Wittig reaction to 

install the sidechain.  A second Wittig reaction would complete the sidechain formation, 

leaving the ring expansion as the final step.  However due to time constraints and the 

lack of vital starting materials to hand this alternate route was not attempted. 
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Finally the cyclopropanated glycals should be further investigated as substrate 

molecules of interest in their own right. These investigations could include both radical 

and transition metal catalysed rearrangements.  Some exploratory work has been done 

on radical rearrangements of simple cyclopropanes in similar systems by Gurjar and co-

workers,125  which could be extended to the investigation of more complex systems.  

Palladium insertion into the cyclopropane has been extensively investigated by Madsen 

and Skaanderup in the case of platinum,48 but other transition metal catalysts could also 

be investigated. 
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Chapter 8: Experimental 

 

General:  All melting points are uncorrected.  Reaction progress was monitored using 

aluminium backed TLC plates pre-coated with silica UV 254 and visualised by UV 

radiation (254 nm) and either i) ceric ammonium molydate dip [ (NH4)2Mo(VI).4H2O, 

12.5g; Ce(SO4)2.4H2O, 5g; 10% aq H2SO4 in H2O 500mL] or ii) [5% H2SO4 in MeOH] 

followed by heating.  Flash chromatography was performed using silica gel 60 (220-240 

mesh) with solvent systems as indicated.  NMR spectra were recorded on Varian Inova 

300, 500 and 600 MHz systems, and were referenced to the relevant solvent peaks.  

Accurate masses were recorded on a Mariner time of flight spectrometer using positive 

and negative ionisation techniques.  GC analyses of stereoselectivities were carried out 

on a Hewlett-Packard 6890 series instrument using a J&W 30 m, 0.32mm ID HP-1 

column. Conditions for the determinations were an injection temperature of 100 oC held 

for 1 minute followed by a temperature ramp of 2 oC a minute to 200 oC.  Solvents and 

reagents from stock were purified by standard methods.   Unless otherwise stated all 

reactions were performed under zero grade argon using previously dried reagents and 

solvents.  THF and Et2O were freshly distilled from sodium under argon with 

benzophenone added as an indicator of dryness.  Cold baths were generated by the use 

of dry ice slurries with appropriate solvents to generate the required temperatures. 

 

The names of the compounds were generated with the assistance of the Beilstein on line 

database. 
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6-O-Triisopropylsilyl galactal (2.2). 

To galactal 2.1 (806 mg, 5.52 mmol) and Et3N (1.677 g, 16.56 mmol) in DMF (15 mL) 

was added TIPSCl (1.166 g, 6.072 mmol) and the mixture stirred at ambient 

temperature for 3 h.  The mixture was poured onto EtOAc (120 mL) and washed with 

H2O (5 x 50 mL) and dried over MgSO4.  Concentration in vacuo followed by flash 

chromatography on silica gel with hexanes:EtOAc (5:1) gave 2.2 as a clear oil (1.104 g, 

66% yield). 

1H NMR: δH=6.39 (dd, J= 6.3, 1.5 Hz, 1H, H-1), 4.72 (m, 1H, H-2), 4.33 

(m, 1H, H-3), 4.13 (m, 1H, H-4), 4.08 (dd, J=10.6, 5.1 Hz, 1H, H-6a), 3.98 

(dd, J=10.8, 3.7 Hz, 1H, H-6b), 3.88 (m, 1H, H-5), 3.29 (d, J=4.9 Hz, 1H, -

OH), 2.64 (d, J=10.2 Hz, 1H, -OH), 1.08 (m, 21H, H-TIPS) 

 

(1S,3R,4R,5R,6S)-3-Triisopropylsilanyloxymethyl-2-oxa-bicyclo[4.1.0]heptane-4,5-diol 

(2.3). 

To silyl ether 2.2 (437 mg, 1.45 mmol) in CH2Cl2 at 0 oC was added dropwise Et2Zn 

(1M in hexanes, 7.8 mL, 7.8 mmol) and then CH2I2 (628 µL, 7.8 mmol) dropwise.  The 

mixture was stirred for 15 min and refluxed overnight.  The reaction was quenched with 

saturated NH4Cl (30 mL), extracted with Et2O (3 x 30 mL) and dried over MgSO4.  

Concentration in vacuo followed by flash chromatography on silica gel with hexanes: 

EtOAc (3:1) gave 2.3 as a white solid (331 mg, 72%). 

1H NMR: δH=4.12 (dd, J=6.6, 5.3 Hz, 1H, H-3), 4.04 (d, J=5.1 Hz, 1H, 

H-4), 3.94 (dd, J=10.5, 4.7 Hz, 1H, H-6a), 3.87 (dd, J=10.7, 3.6 Hz, 1H, 

H-6b), 3.81 (m, 1H, H-1), 3.31 (t, J=4.2 Hz, 1H, H-5), 1.25 (dd, J=10.3, 

7.1 Hz, 1H, H-2), 1.09 (m, 3H, TIPS-CH-), 1.06 (d, J=1.9 Hz, 9H, TIPS-CH3), 1.05 (d, 

J=2.2 Hz, 9H, TIPS-CH3), 0.65 (dt, J=10.0, 5.6 Hz, 2H, H-1’). 
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13C NMR: δC=76.2 (C-5), 69.4 (C-4), 65.7 (C-3), 64.3 (C-6), 54.5 (C-1), 17.9 (TIPS-

CH3), 17.8(TIPS-CH3), 16.6 (C-2), 11.8 (C-1’), 11.7 (TIPS-CH-). 

MP: 83 oC. 

 

(1S,3R,4R,5R,6S)-5-acetoxy-4-hydroxy-3-triisopropylsilanyloxymethyl-2-oxa-

bicyclo[4.1.0]heptane (2.4). 

To cyclopropane 2.3 (100 mg, 0.284 mmol) in pyridine (3 mL) was added Ac2O (55 µl, 

0.58 mmol) and DMAP (1.8 mg, cat.).  The reaction was stirred at ambient temperature 

for 2 h.  The mixture was poured onto Et2O (50 mL) and washed with water (2 x 50 

mL), dried over MgSO4 and concentrated in vacuo.  Flash chromatography on silica gel 

with hexanes:EtOAc (3:1) gave 2.4 as a clear oil (110 mg, 99% yield). 

1H NMR: δH=5.12 (dd, J=6.6, 5.1Hz, 1H, H-3), 4.08 (d, J=4.9 Hz, 1H, 

H-4), 3.84 (dd, J=10.5, 5.4 Hz, 1H, H-6a), 3.74 (dd, J=8.5, 3.9 Hz, 1H, 

H-6b), 3.72 (m, 1H, H-1), 3.27 (dd, J=4.9, 3.9 Hz, 1H, H-5), 2.95 (s, 

1H, -OH), 2.09 (s, 3H, H-Ac), 1.36 (m, 1H, H-2), 1.21 (m, 1H, H-1’), 0.96 (m, 21H, 

TIPS-CH-, TIPS-CH3), 0.60 (dt, J=9.8, 5.6 Hz, 1H, H-1’) 

 

(1aS,3R,3aR,6aR,6bR)-3-triisopropylsilanyloxymethyl-hexahydro-2,4,6-trioxa-

cyclopropa[e]inden-5-one (2.5). 

To 2.3 (100 mg, 0.284mmol) in THF (2 mL) was added carbonyldiimidazole (52 mg, 

0.32 mmol) and imidazole (1 crystal).  The reaction mixture was stirred for 30 min at 

ambient temperature and then a further portion of carbonyldiimidazole (26mg, 0.16 

mmol) added and the reaction stirred for 36 h.  The reaction was poured onto Et2O (50 

mL) and washed with water (3 x 50mL), dried over MgSO4 and concentrated in vacuo.  

Flash chromatography in hexane:EtOAc (1:1) gave 2.5 as a clear oil (58 mg, 54%) and 

recovered starting material (44 mg, 44%). 
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1H NMR: δH=5.63 (dd, J=9.4, 8.5 Hz, 1H, H-3), 4.96 (dd, J=9.1, 1.3 Hz, 

1H, H-4), 3.87 (m, 1H, H-1), 3.81 (m, 2H, H-6), 3.56 (td, J=6.0, 1.3 Hz, 

1H, H-5), 1.22 (m, 1H, H-2), 1.05 (m, 21H, TIPS-CH-, TIPS-CH3), 0.90 

(m, 2H, H-1’). 

 

(1R,5R,7R)-6,8-Dioxa-7-triisopropylsilanyloxymethyl-bicyclo[3.2.1]oct-2-ene 

(2.7). 

To cyclopropane 2.3 (150 mg, 0.43 mmol) in a 1:1 mix of CH2Cl2 and pyridine (2 mL) 

at 0 oC was added Tf2O (181 µL, 1.075 mmol) dropwise, and the reaction kept at 0 oC 

over 24 h.  The mixture was poured onto Et2O (10 mL) and washed with water (4 x 

10mL), dried (MgSO4) and concentration in vacuo.  Flash chromatography on silica gel 

with hexanes:EtOAc (3:1) gave 2.7 as a clear oil (17 mg, 12%). 

1H NMR: δH=6.10 (m, 1H, H-4), 5.71 (m, 1H, H-3), 5.56 (d, J=2 Hz, 1H, H-

1), 4.58 (d, J=4.7 Hz, 1H, H-5), 4.19 (dd, J=9.4, 5.0 Hz, 1H, H-6), 3.61 (dd, 

J=9.4, 5.0 Hz, 1H, H-7a), 3.51 (t, J=9.3 Hz, 1H, H-7b), 2.54 (dm, 1H, H-2), 

2.08 (dm, 1H, H-2b), 1.09 (m, 21H, TIPS-CH-, TIPS-CH3). 

13C NMR: δC=129.1 (C-4), 124.2 (C-3), 100.7 (C-1), 84.8 (C-6), 71.6 (C-5), 63.5 (C-7), 

34.2 (C-2), 17.9 (TIPS-CH3), 17.7 (TIPS-CH3), 12.2 (TIPS-CH-), 11.9 (TIPS-CH-). 

ES HRMS m/z: calculated for C16H30O3Si+H 299.2042.  Found 299.1821. 

 

(1S,3R,4R,5S,6S)-5-Azido-3-triisopropylsilanyloxymethyl-2-oxa-bicyclo[4.1.0]heptan-4-ol 

(2.9). 

To a mixture of cyclopropane 2.3 (80 mg, 0.25 mmol), PPh3 (73 mg, 0.28 mmol) and 

TMSN3 (145 mg, 1.265 mmol) in THF (2 mL) at 0 oC was added DEAD (48mg, 

0.28mmol).  The reaction was warmed to ambient temperature and stirred for 12 h.  The 

mixture was poured onto Et2O (10 mL), washed with saturated aq NaHCO3 (10 mL) 
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and water (3 x 10 mL) and dried over MgSO4.  Concentration in vacuo gave 2.9 as 

white solid (85%). 

1H NMR: δΗ=4.11 (t, J=5.4 Hz, 1H, H-3), 4.03 (d, J=5.1 Hz, 1H, H-4), 

3.92 (dd, J=10.5, 5.2 Hz, 1H, H-6a), 3.85 (dd, J=10.5, 4.1 Hz, 1H, H-

6b), 3.79 (ddd, J=6.8, 5.6, 2.7 Hz, 1H, H-1), 3.30 (t, J=4.4 Hz, 1H, H-5), 

1.22 (m, 1H, H-2), 1.05 (m, 21H, TIPS-CH-, TIPS-CH3), 0.63 (dt, J=10.0, 5.6 Hz, 2H, 

H-1’). 

13C NMR: δC=76.3 (C-5), 69.2 (C-4), 65.6 (C-4), 64.4 (C-6), 54.4 (C-1), 17.9 (TIPS-

CH3), 17.8 (TIPS-CH3), 16.6 (C-2), 11.8 (TIPS-CH-), 11.7 (C1’). 

MP: 85 oC. 

 

(6R,7R)-7-Triisopropylsilylanoxymethyl-2,3,6,7-tetrahydro-oxepine-2,6-diol (2.10). 

To a mixture of cyclopropane 2.3 (78 mg, 0.24 mmol), PPh3 (94 mg, 0.0.36 mmol) and 

TMSallyl (76 µL, 0.48 mmol) in CH2Cl2 (2 mL) at 0 oC was added DEAD (30 mg, 

0.176 mmol) dropwise and stirred for 2 h.  The mixture was poured onto CH2Cl2 (10 

mL), washed with saturated aq NaHCO3 (10 mL) and water (4 x 10 mL), dried over 

MgSO4 and concentrated in vacuo.  Flash chromatography on silica gel with 

hexanes:EtOAc (3:1) gave 2.10 as a clear oil (13 mg, 17 %) as a 1:1 mixture of epimers 

by GC. 

1H NMR: δH=5.85 (m, 1H, H-3), 5.80 (m) and 5.72 (m) (1H, H-4), 

5.41 (s) and 5.10 (dd, J=6.2, 2.7 Hz) (1H, H-1), 4.47 (bs, 1H, H-5), 

3.75 (m, 2H, H-7), 3.68 (m, 2H, H-6), 3.38 (s) and 3.00 (s) (1H, -OH), 

2.68 (s, 1H -OH), 2.43 (m) and 2.34 (m) (1H, H-2a), 2.18 (m) and 2.12 (m) (1H, H-2b), 

1.07 (m, 21H, TIPS-CH-, TIPS-CH3). 
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(2R,3R,7S)-7-Azido-2-triisopropylsilanyloxymethyl-2,3,6,7-tetrahydro-oxepine-3-ol 

(2.11). 

a) To a mixture of cyclopropane 2.3 (50 mg, 0.16 mmol), PPh3 (46 mg, 0.176 mmol) 

and TMSN3 (91 mg, 0.8 mmol) in DMF (2 mL) at 0 oC was added DEAD (30 mg, 0.176 

mmol) dropwise and stirred for 2 h.  The mixture was poured onto Et2O (10 mL), 

washed with saturate aq NaHCO3 (10 mL) and water (4 x 10 mL), dried over MgSO4 

and concentrated in vacuo.  Flash chromatography on silica gel with hexanes:EtOAc 

(5:1) gave 2.11 as a clear oil (15 mg, 27 %) in a 4:1 mix of α and β epimers. 

Major isomer 1H NMR: δΗ=5.93 (ddd, J= 13.4, 6.7, 2.0 Hz, 1H, H-4), 

5.71 (m, 1H, H-3), 4.96 (dd, J= 8.8, 2.0 Hz, 1H, H-1), 4.37 (d, J=7.0 

Hz, 1H, H-5), 3.78 (m, 2H, H-7), 3.66 (m, 1H, H-6), 2.57 (m, 1H, H-

2a), 2.34 (ddd, J=16.5, 7.2, 2.1 Hz, 1H, H-2b), 1.07 (m, 21H, TIPS-CH-, TIPS-CH3). 

13C NMR: δC=133.5 (C-4), 128 (C-3), 91 (C-1), 82 (C-6), 68 (C-5), 62.5 (C-7), 36 (C-

2), 18.0 (TIPS-CH3), 12.0 (TIPS-CH-). 

 

b) To a mixture of 2.3 (125 mg, 0.4 mmol), PPh3 (157 mg, 0.6 mmol) and TMSN3 (228 

mg, 2 mmol) in DMF (2 mL) at –20 oC was added DEAD (104 mg, 0.6 mmol) dropwise 

and stirred for 2 h.  The mixture was poured onto Et2O (10 mL), washed with saturated 

aq NaHCO3 (10 mL) and water (4 x 10 mL), dried dried over MgSO4 and concentrated 

in vacuo.  Flash chromatography on silica gel with hexanes:EtOAc (5:1) gave 2.12 as a 

clear oil (60 mg, 44 %) as a 20:1 mix of α and β epimers.  NMR data as above. 

 

Reaction of cyclopropane 1.61 with the leaving group generated in situ. 

To a solution of cyclopropane 1.61 (100 mg, 0.29 mmol) in MeCN (2 mL) at –40 oC 

was added TMSN3 (230 µL, 1.45 mmol) and TMSOTf (60 µL, 0.35 mmol).  The 

reaction mixture was stirred and allowed to warm to 0 oC until complete by TLC (2 h).  
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The mixture was quenched with saturated aq NaHCO3 (10 mL), extracted with Et2O (2 

x 20 mL), dried over MgSO4 and concentrated in vacuo.  Flash chromatography on 

silica gel with hexanes:EtOAc (20:1) gave three compounds. 

 

[(4aR,9aS)-2,2-tert-Butyl-4,4a,7,9a-tetrahydro-1,3,5-trioxa-2-sila-benzocyclohepten 

-(6E)-ylidene]-trimethylsilanyl-amine (2.13).   

 Isolated as a clear oil (13mg, 12 %). 

1H NMR: δΗ=5.67 (m, 1H, H-4), 5.60 (m, 1H, H-3), 4.50 (t, 

J=8.3 Hz, 1H, H-5), 3.99 (dd, J=10.8, 4.9 Hz, 1H, H-7), 3.83 

(t, J=10.3Hz, 1H, H-7), 3.53 (td, J=10.0, 4.9 Hz, 1H, H-6), 3.33 (dd, J=18.3, 6.6 Hz, 

1H, H-2), 3.26 (dd, J=17.7, 6.4 Hz, 1H, H-2), 1.07 (s, 9H, H-tBu-CH3), 1.01 (s, 9H, H-

tBu-CH3), 0.12 (s, 9H, TMS-CH3). 

13C NMR: δC=135.5 (C-4), 120.2 (C-3), 118.1 (C-1), 75.1 (C-5), 70.5 (C-6), 68.5 (C-7), 

27.4 (C-tBu-CH3), 27.0 (C-tBu-CH3), 22.6 (Si-C), 19.9 (Si-C), 16.7 (C-2), 0.1 (C-TMS). 

ES HRMS m/z: calculated for C18H35NO3Si2 +NH4 387.2494.  Found (M+NH4)
+  

387.2484. 

IR: 2934, 2860, 2108, 1472, 1253, 1092, 839, 824, 733 cm-1. 

 

(4S,5R)-2,2-Di-tert-butyl-4-((Z)-4,4-diazidobut-1-enyl)-[1,3,2]dioxasilinan-5-ol 

(2.14). 

Isolated as a clear oil (28mg, 26%). 

1H NMR: δΗ=5.67 (m, 1H, H-4), 5.64 (m, 1H, H-3), 4.81 (t, 

J=6.3 Hz, 1H, H-1), 4.53 (dd, J=9.0, 6.3 Hz, 1H, H-5), 4.15 

(dd, J=10.5, 4.7 Hz, 1H, H-7), 3.86 (t, J=10.5 Hz, 1H, H-7), 3.58 (td, J=9.1, 4.7 Hz, 

1H, H-6), 2.59 (m, 2H, H-2), 2.05 (bs, 1H, -OH), 1.06 (s, 9H, H-tBu-CH3), 0.99 (s, 9H, 

H-tBu-CH3). 
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13C NMR: δC=134.8 (C-4), 126.2 (C-3), 77.3 (C-1), 74.5 (C-5), 69.7 (C-6), 67.8 (C-7), 

33.2 (C-2), 27.4 (C-tBu-CH3), 27.1 (C-tBu-CH3), 22.6 (Si-C), 20.0 (Si-C). 

IR: 3431, 2934, 2860, 2099, 1473, 1213, 1136, 1062, 908, 824, 731 cm-1. 

 

(Z)-4-((4S,5R)-2,2-Di-tert-butyl-5-hydroxy[1,3,2]dioxasilinan-4-yl)-but-3-enenitrile 

(2.15) 

Isolated as a clear oil (51mg, 59%). 

1H NMR: δΗ= 5.76 (m, 1H, H-4), 5.63 (m, 1H,. H-3), 4.51 

(ddd, J=8.8, 7.3, 1.5 Hz, 1H, H-5), 4.11 (dd, J=10.7, 4.9 Hz, 

1H, H-7), 3.85 (t, J=10.5 Hz, 1H, H-7), 3.59 (td, J=10.0, 4.7 Hz, 1H, H-6), 3.30 (d, 

J=7.1, 1.7 Hz, 2H, H-2), 2.35 (bs, 1H, -OH), 1.06 (s, 9H, H-tBu-CH3), 0.99 (s, 9H, H-

tBu-CH3). 

13C NMR: δ=135.4 (C-4), 120.8 (C-3), 118.1 (C-1), 74.7 (C-5), 69.6 (C-6), 68.0 (C-7), 

27.4 (C-tBu-CH3), 27.0 (C-tBu-CH3), 22.6 (Si-C), 20.0 (Si-C), 16.8 (C-2). 

IR: 3435, 2934, 2860, 2254, 2113, 1473, 1134, 1064, 907, 824, 729 cm-1. 

 

1-((4aR,9aS)-2,2-tert-Butyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-2-sila-benzo 

cyclohepten-6-yl)-propan-2-one (2.16) 

To a solution of 1.61 (222 mg, 0.65 mmol) in a mixture of THF (6 mL) and pyridine 

(1.5 mL) at –40 oC was added dropwise a solution of Tebbe’s reagent in toluene (1.94 

mmol, 0.5 M).  After 2 h a further portion of Tebbe’s reagent was added (1.3 mmol, 0.5 

M) and the mixture stirred for 1 h.  The reaction was quenched at –40 oC with 0.1 M 

NaOH until evolution of gas was complete.  It was then diluted with hexane (30 mL) 

and filtered through a silica plug.  Flash chromatography on silica gel with 

hexanes:EtOAc 9:1 containing 2% TEA gave a pale yellow oil that was immediately 

transferred to a RBF fitted with a condenser, purged with argon and then refluxed with 
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PhCN (2 mL).  Flash chromatography on silica gel with hexanes:EtOAc (3:1) gave the 

oxepine 2.16 (73mg, 33%) as a 1:1 mixture of epimers by NMR. 

1H NMR: δH=5.80 (m) and 5.72 (m) (1H, H-4), 5.65 (m, 1H, 

H-3), 4.76 (m) and 4.51 (m) (1H, H-5), 4.42 (m), 1H and 

3.95 (m) (1H, H-1), 3.90 (m) and 3.40 (m) (1H, H-6), 3.78 

(m, 2H, H-7), 2.70 (m) and 2.40 (m) (2H, H-8), 2.30 (m) and 2.15 (m) (2H, H-2), 2.17 

(s, 3H, H-10), 2.15 (m, 3H, H-10), 1.03 (s) and 0.98 (s) (18H, H-tBu-CH3). 

13C NMR: δC=206.6 (C-9), 138.9 and 136.1 (C-4), 124.75 and 124.70 (C-3), 78.4 and 

72.7 (C-6), 77.7 and 75.6 (C-5), 77.2 and 71.8 (C-1), 67.0 and  66.7 (C-7), 50.2 and 

49.0 (C-8), 36.3 and 34.0 (C-2), 31.0 and 30.9 (C-10), 27.4 and 27.0 (C-tBu-CH3), 19.9 

and 19.8 (C-tBu-CH3). 

 

(1aR,2R,2aS,6aR,7aS)-4,4-Di-tert-butyltetrahydro-3,5,7-trioxa-4-silacyclopropa[b] 

naphthalene-2-ol (3.3). 

To galactal 3.1 (890 mg, 3.1 mmol) in Et2O (20 mL) at 0 oC was added Et2Zn (1 M in 

hexanes, 9.3 mL, 9.33 mmol) followed by CH2I2 (750 µL, 9.33 mmol).  The solution 

was stirred at 0 oC for 5 h and then one further aliquot of Et2Zn (1 M in hexanes, 

9.33mL, 9.33 mmol) and CH2I2 (750 µL, 9.33 mmol) were added.  After a further 4 h at 

0 oC, the solution was poured onto NH4Cl (100 mL) and extracted with Et2O (2 x 75 

mL).  The combined ether layers were washed with H2O (50 mL), saturated brine (50 

mL) and dried with MgSO4.  Concentration in vacuo followed by flash chromatography 

on silica gel with hexanes:EtOAc (5:1) gave of 3.3 as a white solid (650mg, 70%) with 

traces of starting material. 

1H NMR: δΗ=4.38 (d, J=5.9 Hz, 1H, H-4), 4.20 (m, 3H, H-3, H-

6), 3.82 (ddd, J=4.1, 2.9, 1.5 Hz, 1H, H-1), 3.35, (bs, 1H H-5), 

2.95 (d, J=10.5 Hz, 1H, -OH), 1.25 (m, 1H, H-1’), 1.20 (m, 1H, 
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H-2), 1.03 (s, 9H, H-tBu-CH3), 1.01 (s, 9H, H-tBu-CH3), 0.60 (dt, J=9.7, 5.6 Hz, 1H, H-

1’). 

13C NMR δC= 74.0 (C-5), 71.2 (C-4), 68.1 (C-6), 64.5 (C-3), 54.1 (C-1), 27.7  

(C-tBu-CH3), 27.4 (C-tBu-CH3), 23.3(Si-C), 15.6 (C-2), 10.8 (C-1’). 

ES HRMS m/z: calculated for C15H28O4Si + Na: 323.1649.  Found 323.1657. 

IR: 3550, 2984, 2859, 1473, 1182, 1148, 1088, 908, 825, 788 cm-1. 

MP: 74-75 oC. 

 

(1aR,2R,2aS,6aR,7aS)-2-Acetoxy-4,4-di-tert-butyltetrahydro-3,5,7-trioxa-4-

silacyclopropa[b]naphthalene (3.4). 

Compound 3.3 from above was dissolved in CH2Cl2 (20 mL) then Ac2O (410 µL, 4.33 

mmol), py (525 µL, 6.5 mmol) and a catalytic amount of DMAP were added.  The 

solution was stirred for 2 h at ambient temperature, diluted with CH2Cl2 (20 mL), 

washed with H2O (3 x 50 mL) then dried over MgSO4.  Concentration in vacuo 

followed by flash chromatography on silica gel with hexanes:EtOAc (5:1) gave 3.4 as a 

white amorphous solid (692 mg, 93%). 

1H NMR: δH=5.17 (dd, J=7.0, 5.1 Hz, 1H, H-3), 4.70 (d, J=5.4 

Hz, 1H, H-4), 4.21 (dd, J=12.3, 1.7 Hz, 1H, H-6a), 4.14 (dd, 

J=12.4, 2.6 Hz, 1H, H-6b), 3.82 (m, 1H, H-1), 3.38 (m, 1H, H-5), 

2.15 (s, 3H, H-Ac), 1.47 (m, 1H, H-1’), 1.18 (m, 1H, H-2), 1.05 (s, 9H, H-tBu-CH3), 

1.00 (s, 9H, H-tBu-CH3), 0.76 (dt, J=10.0, 5.6 Hz, 1H, H-1’).   

13C NMR: δC=171.1 (CO), 73.4 (C-5), 68.8 (C-3), 68.6 (C-4), 67.9 (C-6), 53.7 (C-1), 

27.5 (C-tBu-CH3), 27.4(C-tBu-CH3), 23.1(C-tBu-CH3), 20.6 (C-Ac-CH3), 12.0 (C-2), 

11.7 (C1’). 

IR (neat): 2935, 2860, 1724, 1474, 1126, 1084, 825, 784 cm-1.   

ES HRMS m/z: calculated for C17H30O5Si + Na: 365.1755.   Found 365.1818. 
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6-Azido-2,2-di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-2-silabenzocyclo 

heptene (3.5).   

To a solution of 3.4 (70 mg, 0.205 mmol) in MeCN (1.0 mL) at 0 oC was added TMSN3 

(136 µL, 1.03 mmol) then TMSOTf (18 µL, 0.103 mmol).  The mixture was stirred for 

4 h at 0 oC then poured onto saturated aqueous NaHCO3 (10 mL), extracted with ether 

(2 x 20 mL) and dried over MgSO4.  Concentration in vacuo followed by flash 

chromatography on silica gel with hexanes:EtOAc (20:1) gave 3.5 as 2 epimers. 

Major isomer: (4aR,6S,9aR)-6-Azido-2,2-di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-

1,3,5-trioxa-2-silabenzocycloheptene (3.5a). 

Clear oil (30mg, 46%).  

1H NMR: δH=5.71 (ddd, J=10.2, 3.6, 2.2 Hz, 1H, H-4), 5.55 

(ddd, J=12.2, 4.1, 1.0 Hz, 1H, H-3), 5.43 (dd, J =9.3, 4.4 Hz, 

1H, H-1), 4.86 (d, J=2.2 Hz, 1H, H, H-5), 4.32 (dd, J=11.9, 1.9 Hz, 1H, H-7a), 4.20 

(dd, J=11.9, 2.2 Hz, 1H, H-7b), 4.12 (dd, J=2.2, 1.9 Hz, 1H, H-6), 2.48 (ddd, J=16.4, 

7.8, 4.4 Hz, 1H, H-2a), 2.31 (m, 1H, H-2b), 1.05 (s, 9H, H-tBu-CH3), 1.04 (s, 9H, H-

tBu-CH3). 

13C NMR: δC=134.0 (C-4), 122.4 (C-3), 90.1 (C-1), 74.7 (C-5), 70.0 (C-6), 68.1 (C-7), 

31.0 (C-2), 27.5 (C-tBu-CH3), 27.2 (C-tBu-CH3), 23.2 (Si-C), 20.7 (Si-C). 

IR (neat): 2933, 2858, 2111, 1473, 1071, 825, 738 cm-1. 

ES HRMS could not be obtained for this compound in either positive or negative  

modes. 

Minor isomer: (4aR,6R,9aR)-6-Azido-2,2-di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-

1,3,5-trioxa-2-sila-benzocycloheptene (3.5b). 

White solid (15mg, 23%).  

1H NMR: δΗ=5.95 (ddd, J=11.7, 6.3, 2.4 Hz, 1H, H-4), 5.76 

(ddd, J=11.7, 7.6, 3.4 Hz, 1H, H-3), 4.83 (dd, J=9.3, 1.9 Hz, 1H, H-1), 4.74 (dd, J=6.6, 

OO
tBu2Si

O

N31

2

34

5

6

7

OO
tBu2Si

O

N31

2

34

5

6

7



 159 

1.7 Hz, 1H, H-5), 4.27 (t, J=2.2 Hz, 2H, H-7) 3.71 (dd, J=3.3, 2.2 Hz, 1H, H-6), 2.68 

(m, 1H, H-2a), 2.42 (ddd, J=16.8, 7.7, 2.2 Hz, 1H, H-2b), 1.07 (s, 9H, H-tBu-CH3), 1.05 

(s, 9H, H-tBu-CH3). 

13C NMR: δC=131.6 (C-4), 127.2 (C-3), 90.6 (C-1), 77.3 (C-6), 72.9 (C-5), 68.3 (C-7), 

36.1 (C-2), 27.5 (C-tBu-CH3), 27.4 (C-tBu-CH3), 23.1 (Si-C), 21.1 (Si-C). 

15N NMR: δN= -300.1, -288.4, -135.8. 

IR (neat): 2933, 2859, 2108, 1473, 1246, 1117, 884, 825, 780 cm-1.   

 ES HRMS could not be obtained for this compound in either positive or negative 

modes. 

 

(4a,6,9a)-2,2-Di-tert-butyl-6-phenylsulfanyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-

2-sila-benzocycloheptene (3.6).   

To a solution of 3.4 (120 mg, 0.35 mmol) in MeCN (1.0 mL) at 0 oC was added 

TMSSPh (330 µL, 1.75 mmol) followed by TMSOTf (15 µL, 0.075 mmol).  The 

solution was stirred for 30 min at 0 oC then 5 h warming to ambient temperature.  The 

mixture was poured onto saturated aq NaHCO3 (20 mL), extracted with Et2O (2 x 20 

mL) and dried over MgSO4.  Concentration in vacuo followed by flash chromatography 

on silica gel with hexanes:EtOAc (20:1) gave 3.6 as a colourless oil (117 mg, 85% 

yield) as a 6:1 mixture of epimers by GC. 

Major isomer (4aR,6R,9aR).  1H NMR:  δΗ=7.55 (m, 2H, H-

Ar), 7.30 (m, 3H, H-Ar), 5.75 (m, 2H, H-3, H-4), 5.66 (dd, 

J=9.3, 5.9 Hz, 1H, H-1), 4.95 (s, 1H, H-5), 4.30 (dd, J=12.0, 

2.2 Hz, 1H, H-7a), 4.26 (dd, J=4.4, 2.2 Hz, 1H, H-6), 4.12 (dd, J=12.0, 2.4 Hz, 1H, H-

7b), 2.69 (m, 2H, H-H-2), 1.07 (s, 9H, H-tBu-CH3), 1.06 (s, 9H, H-tBu-CH3). 
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 13C NMR: δC= 133.6 (C-4), 130.1 (C-Ar), 128.7 (C-Ar), 126.5 (C-Ar), 123.9 (C-3), 

86.2 (C-1), 75.4 (C-5), 68.8 (C-6), 68.3 (C-7), 32.2 (C-2), 27.5 (C-tBu-CH3), 27.4 (C-

tBu-CH3), 27.3 (C-tBu-CH3), 27.2 (C-tBu-CH3), 23.5 (Si-C), 20.8 (Si-C). 

 IR (neat): 2934, 2858, 1473, 1140, 1067, 824, 729 cm-1. 

 ES HRMS m/z: calculated for C21H32O3Si +H:  (M+H) 393.1911.  Found 393.1914. 

 

(4aR,6R,9aR)-6-Allyl-2,2-di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-2-

silabenzocycloheptane (3.7). 

 To a solution of 3.4 (120 mg, 0.35 mmol) in MeCN (1 mL) at –20 oC was added 

allyltrimethylsilane (280 µL, 1.75 mmol) followed by TMSOTf (15 µL, 0.087 mmol).  

The solution was stirred for 30 min allowing it to warm to 0 oC.  After stirring an 

additional 30 min at 0 oC, the solution was poured onto saturated aq NaHCO3 (10 mL), 

extracted with Et2O (2 x 20 mL) and dried over MgSO4.  Concentration in vacuo 

followed by flash chromatography on silica gel with hexanes:EtOAc (20:1) gave 3.7 as 

a colourless oil (113 mg, 76%) as an 80:1 mix of epimers by GC. 

1H NMR:  δΗ=5.82 (bm, 3H, H-3, H-4, H-9), 5.06 (d, J=6.6 

Hz, 1H, H-10), 5.03 (s, 1H, H-10), 4.79 (d, J=5.1 Hz, 1H, H-

5), 4.18 (d, J=2.2 Hz, 2H, H-7), 4.12 (m, 1H, H-1), 3.94 (s, 

1H, H-6), 2.25 (m, 4H, H-2, H-8), 1.05 (s, 9H, H-tBu-CH3), 1.04 (s, 9H, H-tBu-CH3). 

13C NMR:  δC=135.1 (C-9), 131.9 (C-4), 130.7 (C-3), 117.3 (C-10), 76.5 (C-1), 74.3 (C-

5), 72.7 (C-6), 69.8 (C-7), 41.1 (C-8), 32.1 (C-2), 28.0 (C-tBu-CH3), 27.6 (C-tBu-CH3), 

23.3 (Si-C), 21.0 (Si-C).   

 IR (neat): 2934, 2865, 1473, 1085, 907, 825, 730 cm-1.   

ES HRMS m/z: calculated for C18H32O3Si + H: 325.2194.   Found 325.2207. 
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(4aR,6R,9aR)-2,2-Di-tert-butyl-6-propa-1,2-dienyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-

trioxa-2-silabenzocycloheptane (3.8).   

To a solution of 3.4 (70 mg, 0.205 mmol) in MeCN (1.0 mL) at 0 oC was added 2-

propynylTMS (153 µL, 1.08 mmol) followed by TMSOTf (18 µL, 0.121 mmol).  The 

mixture was stirred at 0 oC for 1 h then poured onto saturated aq NaHCO3 (20 mL), 

extracted with ether (3 x 20 mL) and dried over MgSO4.  Column chromatography on 

silica gel with hexanes:EtOAc (20:1) gave 3.7 as a colourless oil (45 mg, 68%).  

 1H NMR:  δΗ=5.7 (ddd, J=11.0, 7.3, 3.4 Hz, 1H, H-3), 5.78 

(ddd, J=11.2, 4.9, 1.9 Hz, 1H, H-4), 5.26 (dd, J=12.4, 

6.6Hz, 1H, H-8), 4.81 (m, 3H, H-5, H-10), 4.68 (m, 1H, H-

1), 4.19 (dd, J=4.4, 2.2 Hz, 2H, H-7), 3.95 (d, J=1.9 Hz, 1H, H-6), 2.6-2.3 (bm, 2H, H-

2), 1.06 (s, 9H, H-tBu-CH3), 1.05 (s, 9H, H-tBu-CH3)   

13C NMR:  δC=207.7 (C-9), 132.0 (C-4), 129.0 (C-3), 92.6 (C-8), 77.0 (C-10), 74.3 (C-

1), 74.2 (C-5), 71.7 (C-6), 69.3 (C-7), 32.2 (C-2), 27.7 (C-tBu-CH3), 27.6 (C-tBu-CH3), 

27.5 (C-tBu-CH3), 27.3 (C-tBu-CH3), 27.2 (C-tBu-CH3), 23.1 (Si-C), 20.8 (Si-C).   

IR (neat): 3312, 2933, 2859, 1954, 1472, 1077, 908, 839, 733 cm-1.    

 

(4aR,6S,9aR)-2,2-Di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-2-silabenzo 

cyclohepten-6-yl)-acetic acid ethyl ester (3.11).   

To a solution of 3.4 (57 mg, 0.167 mmol) in MeCN (1.0 mL) at 0 oC was added 1-

(trimethylsilyl)oxy-1-ethoxyethene 3.9 (181 mg, 1.17 mmol) followed by TMSOTf (15 

µL, 0.083mmol).  The solution was allowed to warm to room temperature and stirred 

for 4 h then poured onto saturated aq NaHCO3 (10 mL), extracted with Et2O (2 x 20 

mL) and dried over MgSO4.  Concentration in vacuo followed by flash chromatography 

on silica gel with hexanes:EtOAc (20:1) gave 3.11 as a colourless oil (38 mg, 68%) as a 

3:1 mixture of epimers by GC.  
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1H NMR:  δH=5.86-5.75 (m, 2H, H-3, H-4), 4.83 (m) and 

4.78 (dd, J=5.9, 1.9 Hz) (1H, H-5), 4.46 (m, 1H, H-1), 

4.19-4.08 (m, 4H, H-7, O-CH2-CH3), 3.99 (dd, J=4.5, 2.5 

Hz) and 3.67 (dd, J=5.4, 2.4 Hz) (1H, H-6), 2.60-2.39 (m, 3H, H-2a, H-8), 2.30-2.22 

(m, 1H, H-2b), 1.25 (q, J=6.1 Hz, 3H, O-CH2-CH3), 1.04 (s, 9H, H-tBu-CH3), 1.03 (s, 

9H, H-tBu-CH3).    

13C NMR:  major isomer: δC=171.0 (C-9), 132.4 (C-4), 128.4 (C-3), 74.4 (C-5), 73.5 

(C-1), 71.8 (C-6), 68.7 (C-7), 60.4 (O-CH2-CH3), 41.5 (C-8), 32.2 (C-2), 27.6 (H-tBu-

CH3), 27.3 (H-tBu-CH3), 22.9 (Si-C), 20.8 (Si-C), 14.2 (O-CH2-CH3); minor isomer: 

δC=171.3 (C-9), 130.9 (C-4), 129.9 (C-3), 78.6 (C-5), 76.0 (C-1), 73.6 (C-6), 68.4 (C-

7), 60.4 (Et-CH2-), 41.9 (C-8), 36.3 (C-2), 27.4 (C-tBu-CH3), 27.2 (C-tBu-CH3), 21.1 

(Si-C), 14.2 (Et-Me).   

IR (neat): 2934, 2858, 1731, 1473, 1095, 825, 776, 732cm-1.   

 

2-((4aR,6S,9aR)-2,2-Di-tert-butyl-4a,6,7,9a-tetrahydro-(4H)-1,3,5-trioxa-2-sila 

benzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (3.12).   

To a solution of 3.4 (70 mg, 0.205 mmol) in MeCN (1.0 mL) at 0 oC was added of 1-

(trimethylsilyl)oxy-1-ethoxy-2-methyl-1-propene 3.10 (188 mg, 1.03 mmol) followed 

by TMSOTf (18 µL, 0.134 mmol).  The solution was allowed to warm to ambient 

temperature and stirred overnight then was poured onto saturated aq NaHCO3 (10 mL), 

extracted with Et2O (3 x 20 mL) and dried over MgSO4.  Flash chromatography on 

silica gel with hexanes:EtOAc (20:1) gave 3.12 as a colourless oil (63 mg 77%). 

 1H NMR:  δΗ=5.82-5.65 (m, 2H, H-3, H-4), 4.80 (d, J=1.7 

Hz, 1H, H-5), 4.25-4.01 (m, 6H, H-1, H-6, H-7, O-CH2-

CH3), 2.51 (tdd, J=14.7, 4.5, 2.7 Hz, 1H, H-2a), 1.97 (ddd, 
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J=16.4, 8.8, 1.9 Hz, 1H, H-2b), 1.23 (t, J=7.1 Hz, 3H, O-CH2-CH3), 1.16 (s, 3H, H-13), 

1.11 (s, 3H, H-14), 1.01 (d, J=1 Hz, 18H, H-tBu-CH3).   

13C NMR: δC=176.5 (C-11), 132.7 (C-4), 126.8 (C-3), 81.3 (C-1), 75.3 (C-5), 71.9 (C-

6), 68.2 (C-7), 60.4 (O-CH2-CH3), 48.0 (C-11), 27.5 (C-tBu-CH3), 27.3 (C-tBu-CH3), 

26.1 (C-2), 22.9 (C-9), 22.0 (C-10), 20.7 (Si-C), 20.5 (Si-C), 14.1 (O-CH2-CH3). 

IR (neat): 2934, 2859, 1724, 1473, 1263, 1099, 910, 825, 775, 732 cm-1. 

ES HRMS m/z: calculated for C21H38O5Si + H: 399.2561.   Found 399.2582. 

 

(1S,3R,4S,5R,6S)-3-(tert-Butyldiphenylsilanyloxymethyl)-2-oxa-bicyclo[4.1.0] 

heptane-4,5-diol. (3.15). 

To a solution of 3.14 (1.7 g, 4.427 mmol) in Et2O (20 mL) was added CH2I2 (1.78 mL, 

22.135 mmol) and Et2Zn (1 M, 22.1 mL, 22.1 mmol).  The mixture was refluxed for 12 

h and was then treated with a further five equivalents of Et2Zn and CH2I2, then refluxed 

until the reaction was complete by 1H NMR.  The solution was poured onto saturated aq 

NH4Cl (100 mL) and extracted with Et2O (2 x 75 mL).  The combined ether layers were 

washed with H2O (50 mL), saturated brine (50 mL) and dried over MgSO4.  

Concentration in vacuo followed by flash chromatography on silica gel with 

hexanes:EtOAc (1:1) gave 3.15 as a white solid (1.34g, 76%).   

1H NMR δΗ=7.66 (m, 4H, H-Ar), 7.42 (m, 6H, H-Ar), 4.17 (dd, J=14.4, 

6.9 Hz, 1H, H-3), 3.85 (ddd, J=11.1, 4.2, 3.8 Hz, 1H, H-6a), 3.77 (m, 

1H, H-6b), 3.74 (m, 1H, H-1), 3.48 (t, J=9.3, 3.5 Hz, 1H, H-4), 3.30 (dd, 

J=9.5, 4.5 Hz, 1H, H-5), 2.93 (s, 1H, -OH), 2.30 (s, 1H, -OH), 1.42 (m, 1H, H-2), 1.07 

(s, 9H, H-tBu-CH3), 0.72 (dd, J=8.4, 4.5 Hz, 2H, H-1’).   

13C δC=135.6 (C-Ar), 132.6 (C-Ar), 129.9 (C-Ar), 127.8 (C-Ar), 77.2 (C-5), 74.1 (C-4), 

71.9 (C-3), 64.6 (C-6), 53.9 (C-1), 26.8 (C-tBu-CH3), 19.2 (Si-C), 17.9 (C-2), 

11.9 C-1’).   
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ES HRMS m/z: calculated for C23H30O4Si + NH4 416.2252.  Found 416.2252. 

MP: 123 oC.   

 

(1S,3R,4S,5R,6S)-4,5-Bis(acetoxy)-3-(tert-butyl-diphenyl-silanyloxymethyl)-2-oxa-

bicyclo[4.1.0]heptane-4,5-diol. (3.16). 

To a solution of 3.15 (1.6 g, 4.0 mmol) in CH2Cl2 (40 mL) with a catalytic amount of 

DMAP at ambient temperature was added acetic anhydride (1.52 mL, 16 mmol) and 

pyridine (1.94 mL, 24 mmol), and the reaction stirred for 12 h.  The mixture was then 

poured onto CH2Cl2 (50 mL), washed with H2O (4 x 10 mL), and dried over MgSO4.  

Concentration in vacuo followed by flash chromatography on silica gel with 

hexanes:EtOAc (5:1) gave 3.16 as a colourless oil (1.857g, 96%). 

1H NMR: δΗ=7.66 (m, 4H, H-Ar), 7.40 (m, 6H, H-Ar), 5.35 (t, J=7.6 

Hz, 1H, H-3), 4.87 (dd, J=10, 8 Hz, 1H, H-4), 3.81 (td, J=5.6, 2.6 Hz, 

1H, H-1), 3.62 (m, 2H, H-6), 3.47 (dt, J=10, 3.9 Hz, H-5), 2.06 (s, 3H, 

H-Ac), 1.88 (s, 3H, H-Ac), 1.53 (m, 1H, H-2), 1.04 (s, 9H, H-tBu-CH3), 0.86 (td, J=6.6, 

2.7 Hz, 1H, H-1’), 0.77 (dt, J=9.8, 5.8 Hz, 1H, H-1’).   

13C NMR: δC=171.1 (CO), 169.2 (CO), 135.7 (C-Ar), 135.6 (C-Ar), 133.4 (C-Ar), 

133.3 (C-Ar), 129.62 (C-Ar), 129.61 (C-Ar), 127.6 (C-Ar), 127.5 (C-Ar), 77.7 (C-5), 

72.5 (C-3), 69.9 (C-4), 62.9 (C-6), 54.3 (C-1), 26.7 (C-tBu-CH3), 21.1 (C-Ac-CH3), 20.7 

(C-Ac-CH3), 19.2 (Si-C), 16.0 (C-2), 12.5 (C-1’). 

ES HRMS m/z: calculated for C27H34O6Si + NH4.  500.2463.  Found 500.2468. 

IR: 2932, 2858, 1749, 1714, 1428, 1370, 1218, 1110, 822, 741, 702 cm-1. 

 

(2R,3S,7S)-3-Acetoxy-7-azido-2-(tert-butyldipenylsilanyloxymethyl)-2,3,6,7-

tetrahydro-oxepin-4-yl (3.17). 
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To a solution of 3.16 (99 mg, 0.205 mmol) in MeCN (1 mL) at 0 oC was added TMSN3 

(136 µL, 1.03 mmol) and TMSOTf (18 µL, 0.103 mmol).  The mixture was stirred for 

30 min at 0 oC and then warmed to ambient temperature and stirred for 1 h.  The 

mixture was poured onto saturated aq NaHCO3 (10 mL), extracted with Et2O (2 x 

20mL), dried over MgSO4 and concentrated in vacuo.  Flash chromatography on silica 

gel with hexanes:EtOAc (20:1) gave 3.17 as a clear oil (59 mg, 61%) in a 2.5:1 ratio of 

isomers by GC. 

1H NMR: δH=7.71 (m, 8H, H-Ar), 7.41 (m, 12H, H-Ar), 5.75 (m, 

1H, H-4), 5.72 (m, 1H, H-3), 5.67 (m, 1H, H-3), 5.64 (m, 1H, H-4), 

5.53 (d, J=6.8 Hz, 1H, H-5), 5.45 (d, J=10.3 Hz, 1H, H-5), 5.39 (dd, 

J=8.8, 2.9 Hz, 1H, H-1), 4.94 (dd, J=10.1, 4.9 Hz, 1H, H-1), 4.29 (dt, J=10.2, 3.4 Hz, 

1H, H-6), 3.81 (m, 1H, H-6), 3.76 (m, 4H, H-7), 2.35-2.65 (bm, 4H, H-2), 1.97 (s, 3H, 

H-Ac), 1.91 (s, 3H, H-Ac), 1.08 (s, 9H, H-tBu-CH3), 1.06 (s, 9H, H-tBu-CH3). 

13C NMR: δC=169.6 (C-Ac), 135.7 (C-Ar), 135.5 (C-Ar), 135.1 (C-Ar), 134.7 (C-Ar), 

133.1 (C-Ar), 132.0 (C-4), 129.6 (C-Ar), 129.4 (C-4), 127.7 (C-Ar), 125.1 (C-3), 125.0 

(C-3), 90.5 (C-1), 89.2 (C-1), 81.1 (C-6), 72.2 (C-6), 71.1 (C-5), 70.2 (C-5), 64.2 (C-7), 

64.0 (C-7), 36.0 (C-2), 31.4 (C-2), 26.6 (C-tBu-CH3), 26.5 (C-tBu-CH3), 20.9 (C-Ac-

CH3), 19.1 (Si-C), 19.0 (Si-C). 

 

(2R,3S,7S)-3-Acetoxy-7-phenylsulfanyl-2-(tert-butyldipenylsilanyloxymethyl)-

2,3,6,7-tetrahydro-oxepin-4-yl (3.18). 

To a solution of 3.16 (97 mg, 0.2 mmol) in MeCN (1 mL) at 0 oC was added TMSSPh 

(190 uL, 1 mmol) and TMSOTf (17 uL, 0.1 mmol), the mixture stirred for 30 min and 

then allowed to warm to ambient temperature.  The mixture was poured onto saturated 

aq  NaHCO3 (10 mL), extracted with Et2O (2 x 20 mL) and the organic layers dried over 
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MgSO4 and concentrated in vacuo.  Flash chromatography on silica gel with 

hexanes:EtOAc (20:1) gave 3.18 as a clear oil (46 mg, 45%) in a 6:1 ratio of isomers. 

1H NMR: δΗ=7.66 (m, 4H, H-Ar), 7.51 (m, 2H, H-Ar), 7.39 (m, 6H, 

H-Ar), 7.21 (m, 3H, H-Ar), 5.83 (s, 2H, H-3, H-4), 5.60 (m, 1H, H-

5), 5.53 (dd, J=9.8, 6.1 Hz, 1H, H-1), 4.39 (dt, J=9.7, 3.4 Hz, 1H, 

H-6), 3.75 (m, 2H, H-7), 2.75 (m, 2H, H-2), 1.96 (s, 3H, H-Ac-CH3), 1.03 (s, 9H, H-

tBu-CH3). 

13C NMR: δC=169.7 (CO), 135.7 (C-Ar), 130.4 (C-4), 129.7 (C-Ar), 128.6 (C-Ar), 

127.7 (C-Ar), 126.9 (C-Ar), 126.3 (C-3), 85.1 (C-1), 71.0 (C-5), 70.9 (C-6), 64.5 (C-7), 

32.6 (C-2), 26.7 (C-tBu-CH3), 20.9 (Si-C), 19.2 (C-Ac-CH3). 

ES HRMS m/z: calculated for C31H36O4SSi + NH4 550.2442.  Found 550.2422. 

 

(2R,3S,7S)-3-Acetoxy-7-propa-1,2-dienyl-2-(tert-butyldipenylsilanyloxymethyl)-

2,3,6,7-tetrahydro-oxepin-4-yl (3.19). 

To a solution of 3.16 (84 mg, 0.174 mmol) in MeCN (1 mL) at 0 oC was added 2-

propynyltrimethylsilane (129 µL, 0.87 mmol) and TMSOTf (15 µL, 0.087 mmol).  The 

reaction was stirred at 0 oC for 4 h and then poured onto saturated aq NaHCO3 (10 mL), 

extracted with Et2O (2 x 20 mL), and the extracts dried over MgSO4.  Concentration in 

vacuo followed by flash chromatography on silica gel with hexanes:EtOAc (20:1) gave 

3.19 as a clear oil (8mg, 10%) as one detectable isomer. 

1H NMR: δH=7.69 (m, 4H, Ar-H), 7.39 (m, 6H, Ar-H), 5.81 (m, 

1H, H-3), 5.65 (m, 1H, H-4), 5.48 (m, 1H, H-5), 5.39 (dt, J=6.5, 

5.4 Hz, 1H, H-8), 4.82 (dd, J=6.6, 3.9, Hz, 2H, H-10), 4.58 (m, 

1H, H-1), 4.04 (m, 1H, H-6), 3.71 (m, 2H, H-7), 2.63 (m, 1H, H-2a), 2.35 (m, 1H, H-

2b), 1.93 (s, 3H, H-Ac-CH3), 1.06 (s, 9H, H-tBu-CH3). 
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13C NMR: δC=207.8 (C-9), 169.8 (CO), 135.7 (C-Ar), 133.4 (C-Ar), 129.6 (C-Ar), 

128.7 (C-4), 128.0 (C-3), 127.6 (C-Ar), 92.7 (C-8), 77.0 (C-10), 74.0 (C-6), 71.6 (C-1), 

71.0 (C-5), 64.8 (C-7), 32.6 (C-2), 26.8 (C-tBu-CH3), 26.7 (C-tBu-CH3), 21.0 (C-Ac-

CH3), 19.2 (Si-C). 

 

(1aR,2aR,6aR,7aS)-4,4-Di-tert-butyltetrahydro-3,5,7-trioxa-4-silacyclopropa[b] 

naphthalene-2-one (3.20) 

 To a solution of oxalyl chloride (197 µL, 2.28 mmol) in CH2Cl2 (8 mL) at –78 oC was 

added dropwise DMSO (324 µL, 4.56 mmol) and stirred 15 minutes.  Glucal 1.61 (570 

mg, 1.9 mmol) in CH2Cl2 (3 mL) was added dropwise and the mixture stirred for 30 

min.  Et3N (1.06 mL, 7.6 mmol) was then added dropwise and the mixture was stirred 

for 90 min.  The mixture was warmed to room temperature, poured onto saturated aq 

NaHCO3 (30 mL) and extracted with CH2Cl2 (2 x 30 mL).  The combined organic 

washings were then washed with aq Na2SO3 (2 x 30 mL) and saturated brine (3 x 20 

mL) and concentrated in vacuo to give 3.20 as a white solid (5.14 g, 90%). 

1H NMR: δH=4.25 (m, 1H, H-4), 4.16 (m, 2H, H-1, H-6a), 3.87 

(m, 2H, H-5, H-6b), 1.94 (m, 1H, H-2), 1.34 (m, 2H, H-1’), 1.04 

(s, 9H, H-tBu-CH3), 0.98 (s, 9H, H-tBu-CH3). 

13C NMR: δC= 201.6 (C-3), 77.9 (C-5), 77.7 (C-4), 65.6 (C-7), 58.7 (C-1), 27.3 (C-tBu-

CH3), 26.8 (C-tBu-CH3), 25.6 (C-2), 22.7 (C-1’), 20.2 (Si-C), 20.1 (Si-C). 

ES HRMS m/z: calculated for C15H26O4Si + Na 321.1493.  Found 321.1477. 

IR: 2933, 2858, 1711, 1472, 1145, 1058, 824, 763, 652cm-1. 

Mp: 137 oC. 

 

(1aR,2S,2aS,6aR,7aS)-4,4-Di-tert-butyltetrahydro-3,5,7-trioxa-4-silacyclopropa[b] 

naphthalene-2-ol (3.21). 
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To a mixture of 3.20 (400 mg, 1.34 mmol) in EtOH (5 mL) was added NaBH4 (56 mg, 

1.47 mmol) and the reaction stirred overnight at ambient temperature.  The resulting 

mixture was poured onto Et2O (30 mL) and washed with H2O (3 x 30 mL).  The organic 

phase was dried over MgSO4 and concentrated in vacuo.  Flash chromatography on 

silica gel with hexanes:EtOAc (5:1) gave the desired product 3.21 as a clear oil (95 mg, 

24%) along with starting material (200 mg, 50%). 

1H NMR: δ=4.40 (d, J=3.6Hz, 1H, H-3), 4.12 (dd, J=10.5, 4.9 Hz, 

1H, H-6a), 3.73 (m, 1H, H-5), 3.67 (m, 2H, H-1, H-4), 3.64 (m, 

1H, H-6b), 2.83 (s, 1H, -OH), 1.34 (dt, J= 11, 7.3 Hz, 1H, H-2), 

1.03 ( s, 9H, H-tBu-CH3), 1.00, (s, 9H, H-tBu-CH3), 0.74 ( dt, J=11, 5.8 Hz, H-1’a), 

0.39 (ddd, J=7.6, 6.4, 2.4 Hz, 1H, H-1’b). 

13C NMR: δC=74.6 (C-4), 66.4 (C-5), 66.3 (C-6), 65.0 (C-3), 51.0 (C-1), 27.5 (C-tBu-

CH3), 27.1 (C-tBu-CH3), 22.8 (Si-C), 20.2 (Si-C), 18.0 (C-2), 10.6 (C-1’). 

Mp: 86 oC. 

 

(1aR,2S,2aS,6aR,7aS)-2-Acetoxy-4,4-di-tert-butyltetrahydro-3,5,7-trioxa-4-

silacyclopropa[b]naphthalene (3.22). 

To a mixture of 3.21  (95 mg, 0.32 mmol) in CH2Cl2 (5 mL) was added py (78 µL, 0.95 

mmol) and Ac2O (63 mL, 0.64 mmol) and a catalytic amount of DMAP.  The reaction 

was stirred at ambient temperature until complete by TLC (12 h).  The mixture was 

poured onto saturated aq NaHCO3 (20 mL) and washed with H2O (3 x 10 mL).  The 

organic phase was dried over MgSO4 and concentrated in vacuo.  Column 

chromatography on silica gel with hexanes:EtOAc (1:1) gave 3.22 as a colourless oil 

(101 mg, 89%).   

1H NMR: δΗ= 5.61 (d, J=3.5 Hz, 1H, H-3), 4.08 (dd, J=10.5, 4.9 

Hz, 1H, H-6a), 3.78 (dd, J= 9.9, 4.8 Hz, 1H, H-5), 3.71 (dd, J= 
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9.7, 5.7 Hz, 1H, H-4), 3.63 (m, 1H, H-1), 3.61 (m, 1H, H-6b), 2.11 (s, 3H, H-Ac-CH3), 

1.21 (m, 1H, H-2), 0.99 (s, 9H, H-tBu-CH3), 0.97 (s, 9H, H-tBu-CH3), 0.75 (m, 1H, H-

1’a), 0.47 (ddd, J=7.4, 6.6, 2.5 Hz, 1H, H-1’b). 

13C NMR: δC=170.6 (C-Ac), 72.8 (C-4), 67.9 (C-3), 67.4 (C-5), 66.2 (C-6), 50.6 (C-1), 

27.4 (C-tBu-CH3), 26.8 (C-tBu-CH3) 22.7 (C-Ac), 21.5 (Si-C), 20.1 (Si-C), 17.4 (C-2), 

12.0 (H-1’). 

ES HRMS m/z: calculated for C15H27O3Si+H (parent ion – OAc group) 284.18076.  

Found 284.0307. 

 

7-(Ethyl-2’-ethanoate)-2,7-dihydro-oxepin-2-methoxy-tert-butyldimethylsilane 

(4.1) 

To a solution of glucal 3.16 (87 mg, 0.18 mmol) in acetonitrile (1 mL) at 0 oC was 

added 3.9 (300 µL, 1.44 mmol) and TMSOTf (15 µL, 0.09 mmol).  The reaction 

warmed to ambient temperature and stirred for 5 h.  The mixture was poured onto 

saturated aq NaHCO3 (10 mL), extracted with Et2O (2 x 20 mL), and the extracts dried 

over MgSO4.  Concentration in vacuo followed by flash chromatography on silica gel 

with hexanes:EtOAc (50:1) gave 4.1 as a clear oil (46 mg, 57%) as a 6:1 mixture of 

products by GC. 

Major isomer: (2S,7R)-7-(Ethyl-2’-ethanoate)-2,7-dihydro-oxepin-2-methoxy-tert-

butyldiphenylsilane (4.1a). 

1H NMR: δΗ=7.65 (m, 4H, H-Ar), 7.39 (m, 6H, H-Ar), 6.16 (m, 

1H, H-5), 6.05 (m, 1H, H-4), 6.04 (m, 1H, H-3), 5.98 (m, 1H, H-

2), 4.78 (m, 1H, H-1), 4.26 (m, 1H, H-6), 4.05 (q, J=7 Hz, 2H, O-

CH2-CH3), 3.75 (dd, J=6.1, 4.4 Hz, 2H, H-7), 2.63 (t, J=6.6 Hz, 2H, H-8), 1.17 (t, 

J=6.1 Hz, 3H, O-CH2-CH3), 1.05 (s, 9H, H- tBu-CH3). 
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13C NMR: δC=170.7 (C-9), 137.0 (C-2), 136.2 (C-5), 135.6 (C-Ar), 133.4 (C-Ar), 129.7 

(C-Ar), 127.7 (C-Ar), 126.8 (C-3), 126.7 (C-4), 75.4 (C-6), 72.7 (C-1), 65.7 (C-7), 60.5 

(O-CH2-CH3), 40.9 (C-8), 26.8 (C- tBu-CH3), 19.2 (Si-C), 14.1 (O-CH2-CH3). 

ES HRMS m/z: calculated for C27H34O4Si + NH4 468.2565.  Found 468.2556. 

IR: 2931, 2858, 1734, 1427, 1109, 910, 823, 734, 701 cm-1. 

 

Minor isomer: (2S,7S)-7-(Ethyl-2’-ethanoate)-2,7-dihydro-oxepin-2-methoxy-tert-

butyldiphenylsilane (4.1b). 

1H NMR: δΗ=7.65 (m, 4H, H-Ar), 7.39 (m, 6H, H-Ar),  6.02 (m, 

1H, H-5), 5.91 (m, 1H, H-4), 5.87 (m, 1H, H-3), 5.82 (m, 1H, H-

2), 4.83 (m, 1H, H-1), 4.56 (m, 1H, H-6), 4.10 (q, J=7.1 Hz, 2H, 

O-CH2-CH3), 3.81 ( dd, J=6.4, 9.8 Hz, 1H, H-7), 3.60 (dd, J=6.9, 10.0 Hz, 1H, H-7), 

2.70 (dd, J=8.8, 15.6 Hz, 1H, H-8), 2.51 (dd, J=5.6, 15.6 Hz, 1H, H-8), 1.17 (t, J=6.1 

Hz, 3H, O-CH2-CH3), 1.05 (s, 9H, H- tBu-CH3). 

13C NMR: δC=170.9 (C-9), 136.7 (C-Ar), 135.61 (C-2), 135.59 (C-5), 133.5 (C-Ar), 

129.6 (C-Ar), 127.6 (C-Ar), 126.0 (C-3), 125.3 (C-4), 80.9 (C-6), 76.0 (C-1), 60.5 (O-

CH2-CH3), 40.3 (C-8), 26.7 (C- tBu-CH3), 19.2 (Si-C), 14.1 (O-CH2-CH3). 

ES HRMS m/z: calculated for C27H34O4Si + NH4 486.2565.  Found 468.2556. 

IR: 2931, 2858, 1734, 1427, 1110, 1028, 909, 823, 733, 701 cm-1. 

 

(2S,7R)-7-(Ethyl-1’,1’-dimethyl-2’-ethanoate)-2,7-dihydro-oxepin-2-methoxy-tert-

butyldiphenylsilane (4.2) 

 To a solution of cyclopropanated glucal 3.16 (90 mg, 0.187 mmol) in MeCN (1 mL) at 

0 oC was added 3.10 (195 µL, 0.96 mmol) and TMSOTf (16 µL, 0.094 mmol).  The 

reaction was stirred overnight warming to ambient temperature and then poured onto 

saturated aq NaHCO3 (10 mL), extracted with Et2O (2 x 20 mL), and the extracts dried 
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over MgSO4.  Concentration in vacuo followed by flash chromatography on silica gel 

with hexanes:EtOAc (50:1) gave 4.2 as a clear oil (13 mg, 10%) as one isomer. 

1H NMR: δΗ=7.67 (m, 4H, H-Ar), 7.42 (m, 6H, H-Ar), 6.13 ( m, 

1H, H-5), 6.07 (s, 2H, H-3, H-4), 6.05 (m, 1H, H-2), 4.42 (t, J=5.9 

Hz, 1H, H-6), 4.33 (dd, J=4.2, 2.0 Hz, 1H, H-1), 4.06 (dq, J=11.0, 

7.1Hz, 1H, O-CH2-CH3), 3.93 (dq, J=10.7, 7.1 Hz, 1H, O-CH2-CH3), 3.73 (dd, J=6.1, 

0.9 Hz, 2H, C-7), 1.27 (s, 3H, H-9), 1.20 (s, 3H, H-10), 1.13 (t, J=7.1 Hz, 3H, H-Ac), 

1.06 (s, 9H, H- tBu-CH3). 

13C NMR: δC=176.5 (C-11), 136.3 (C-4), 135.6( C-Ar), 135.6 (C-Ar), 134.9 (C-2), 

129.7 (C-Ar), 129.7 (C-Ar), 128.8 (C-5), 127.7 (C-Ar), 126.3 (C-3), 78.8 (C-6), 77.0 

(C-1), 66.3 (C-7), 60.4 (O-CH2-CH3), 46.3 (C-8), 26.8 (C- tBu-CH3), 21.9 (C-9), 20.5 

(C-10), 19.2 (Si-C), 14.1 (O-CH2-CH3). 

 

2,7-Diallyl-2,3,6,7-tetrahydro-oxepin-2-methoxy-tert-butyldiphenylsilane (4.3) 

a) To a solution of cyclopropane 3.16 (102 mg, 0.212 mmol) in MeCN (1 mL) at –40 oC 

was added TMSallyl (157 µL, 1.06 mmol) and TMSOTf (11.5 µL, 0.64 mmol).  The 

reaction was stirred for 4 h while warming to room temperature.  Excess solid NaHCO3 

was added to the mixture and stirred for 5 min.  The mixture was then poured onto a 

silica plug, eluted with hexanes (100 mL) and concentrated in vacuo to give 4.3 as a 

clear oil (51mg, 54%). 

 1H NMR: δH =7.69 (m, 4H, Ar-H), 7.39 (m, 6H, Ar-H), 5.92 

(m, 1H, H-9), 5.82 (m, 1H, H-12), 5.51 (m, 1H, H-4), 5.43 (m, 

1H, H-3), 5.12 (m, 2H, H-10), 5.03 (m, 2H, H13), 4.12 (m, 1H, 

H1), 3.56 (d, J=9.5 Hz, H-7), 3.47 (d, J=9.5 Hz, H-7), 2.55 (m, 1H, H-2), 2.45 (m, 1H, 

H-8), 2.41 (m, 1H, H-8), 2.30 (m, 1H, H-2), 2.25 (m, 1H, H-5), 2.23 (m, 1H, H-11), 

2.10 (m, 1H, H-11), 2.05 (m, 1H, H-5), 1.05 (s, 9H, H- tBu-CH3). 
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13C NMR: δC = 135.7 (C-12), 135.6 (C-9), 134.5 (C-Ar), 134.4 (C-Ar), 134.3 (C-Ar), 

133.6 (C-Ar), 133.5 (C-Ar), 130.2 (C-4), 129.6 (C-Ar), 129.5 (C-Ar), 127.9 (C-Ar), 

127.6 (C-Ar), 127.5 (C-Ar), 124.5 (C-3), 117.4 (C-10), 116.6 (C-13), 81.5 (C-6), 69.9 

(C-1), 66.2 (C-7), 41.7 (C-11), 40.4 (C-8), 38.7 (C-5), 32.3 (C-2), 26.9 (C- tBu-CH3), 

19.3 (Si-C). 

 

b) To a solution of cyclopropane 3.16 (100 mg, 0.207 mmol) in MeCN (1 mL) at –40 oC 

was added TMSallyl (40 µL, 0.248 mmol) and TMSOTf (11 µL, 0.62 mmol).  The 

reaction was stirred for 1 h while warming to room temperature then poured onto 

saturates aq NaHCO3 (10 mL), extracted with Et2O (2 x 20 mL), and the combined 

extracts dried over MgSO4.  Concentration in vacuo followed by flash chromatography 

on silica gel with hexanes:EtOAc (25:1) gave 3 compounds with some recovered 

starting material (23 mg, 23%) 

 

(2S,7R)-7-Allyl-2,7-dihydro-oxepin-2-methoxy-tert-butyldiphenylsilane (4.4) 

Isolated as a clear oil (34 mg, 41%).  

1H NMR: δH=7.67 (m, 4H, H-Ar), 7.40 (m, 6H, H-Ar), 6.13 (m, 1H, 

H-5), 6.07 (m, 1H, H-3), 6.01 (m, 1H, H-4), 6.00 (m, 1H, H-2), 5.87 

(m, 1H, H-9), 5.07 (m, 1H, H-10), 5.03 (m, 1H, H-10), 4.39 (td, J=7.3, 2.7 Hz, 1H, H-

1), 4.35 (m, 1H, H-6), 3.80 (dd, J=10.5, 6.4 Hz, 1H, H-7a), 3.72 (dd, J=10.4, 6.1 Hz, 

1H, H-7b), 2.40 (m, 2H, H-8), 1.08 (s, 9H, H- tBu-CH3). 

13C NMR: δC=138.1 (C-2), 136.1 (C-5), 136.0 (C-Ar), 135.6 (C-9), 134.6 (C-Ar), 133.4 

(C-Ar), 129.7 (C-Ar), 129.6 (C-Ar), 127.7 (C-Ar), 126.8 (C-3), 126 9C-4), 117 (C-10), 

75.3 9C-6), 75.2 (C-1), 65.9 (C-7), 40.0 (C-8), 26.7 (C- tBu-CH3), 19.2 (Si-C). 
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(2R,3S,7R)-7-Allyl-3-acetate-2-(tert-butyldiphenylsilanyloxymethyl)-2,3,6,7-

tetrahydro-oxepin-4-ene (4.5) 

Isolated as a clear oil (3 mg, 3%). 

1H NMR: δC=7.62 (m, 4H, H-Ar), 7.32 (m, 6H, H-Ar), 5.81 (m, 

1H, H-9), 5.70 (m, 1H, H-3), 5.52 (m, 1H, H-4), 5.48 (m, 1H, H-

5), 5.00 (m, 1H, H-10a), 4.96 (m, 1H, H-10b), 3.99 (m, 1H, H-1), 3.95 (m, 1H, H-6), 

3.64 (d, J= 3.9 Hz, 1H, H-7), 2.50 (m, 1H, H-8a), 2.40 (m, 1H, H-2a), 2.30 (m, 1H, H-

2b), 2.20 (m, 1H, H-8b), 1.84 (s, 3H, H-Ac-CH3), 0.99 (s, 9H, H- tBu-CH3). 

 

(1R,2S,6R)-2-Acetate-7,9-dioxa-bicyclo[4.2.1]non-3-ene (4.6) 

Isolated as a clear oil (5 mg, 13%). 

1H NMR: δH= 5.72 (m, 1H, H-4), 5.66 (d, J=2.2 Hz, 1H, H-1), 5.61 (m, 

1H, H-3), 5.29 (d, J=5.8 Hz, H-5), 4.69 (m, 1H, H-6), 4.01 (t, J=7.3 

Hz, 1H, H-7a), 3.88 (dd, J=7.8, 2.2 Hz, 1H, H-7b), 2.62 (dd, J=10.4, 2.2 Hz, 1H, H-2a), 

2.58 (dd, J=10.8, 5.8 Hz, 1H, H-2b), 2.10 (s, 3H, H-Ac-CH3). 

13C NMR: δC= 131 (C-4), 12 (C-3), 104 (C-1), 78 (C-6), 75 ((C-5), 68 (C-7), 39 (C-2), 

21 (C-Ac-CH3). 

 

2(S)-2-O-(Di-tert-butyl-O-triethylsilyl)silyl-2-hydroxymethyl-2,3,6,7-tetrahydro-

oxepin-4-ene(4.7). 

 To a solution of 3.4 (155 mg, 0.45 mmol) in MeCN (1.0 mL) at 0 oC was added Et3SiH 

(720 µL, 4.5 mmol) then TMSOTf (20 µL, 0.113 mmol).  The solution was allowed to 

warm to ambient temperature and stirred 4 h then poured onto saturates aq NaHCO3 (10 

mL), extracted with Et2O (3 x 20 mL) and dried over MgSO4.  Concentration in vacuo 

followed by flash chromatography on silica gel with hexanes:EtOAc (100:1) gave 4.7 as 

a colourless oil (111 mg, 86%). 
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1H NMR: δΗ= 5.84 (d, J=3.4 Hz, 1H, H-4), 5.83 (d, J=3.9 Hz, 1H, 

H-3), 4.06 (dt, J=11.9, 3.9 Hz, 1H, H-7), 3.86 (dd, J=9.5, 4.9 Hz, 

1H, H-6), 3.56 (dt, J=9.5, 7.6 Hz, 1H, H-6), 3.46 (m, 2H, H-2, H-8), 2.50 (bm, 2H, H-2, 

H-5), 2.20 (bm, 2H, H-2, H-5), 0.9 (m, 27H, H-tBu-CH3, H-CH2-CH3), 0.66 (q, 

J=8.1Hz, 6H, Si-CH2-CH3). 

13CNMR:δC=130.7 (C-4), 129.5 (C-3), 80.7 (C-6), 69.6 (C-1), 66.4 (C-7), 33.7 (C-2), 

32.4 (C-5), 27.6 (C-tBu-CH3), 27.4 (C-tBu-CH3), 20.7 (Si-C), 6.9 (Si-CH2-CH3), 6.5 

(Si-CH2-CH3). 

 IR (neat): 2934, 2859, 1472, 1068, 826, 731 cm-1.   

ES HRMS m/z: calculated for C21H44O3Si2 + H: 401.2902.   Found 401.2892. 

 

Deuterium Labelling Experiment. 

To a solution of oxepane 3.4 (100 mg, 0.29 mmol) in MeCN (1 mL) at 0 oC was added 

TESD (226 µL, 1.46 mmol) and TMSOTf (26 µL, 0.146 mmol).  The reaction mixture 

was allowed to warm to ambient temperature and stirred until TLC revealed no starting 

material was left.  The reaction mixture was poured onto saturates aq NH4Cl (10 mL), 

and extracted with Et2O (2 x 10 mL).  The combined organic extracts were dried over 

MgSO4 and concentrated in vacuo to give a colourless oil (99 mg).  Repeated flash 

chromatography on silica gel with hexanes to remove TES impurities gave a colourless 

oil (10 mg) containing two compounds.  As the 1H and 13C NMR of these compounds 

were congested in the area where the protecting groups’ signals appear, only the 

oxepine rings were definitively assigned. 
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Major component:  2,7-Deutero-2-O-(di-tert-butyl-O-triethylsilyl)silyl-2-

hydroxymethyl-2,3,6,7-tetrahydro-oxepin-4-ene (4.8) as a 1:1 mixture of epimers. 

1H NMR: δΗ=5.81 (m, 2H, H-3, H-4), 4.02 (s, 1H) and 3.41 (d, J=10.7 

Hz, 1H, H-1), 3.83 (d, J=9.8 Hz, 1H, H-7a), 3.54 (d, J=10.0 Hz, 1H, 

H-7b), 2.49 (m, 1H, H-5a), 2.44 (m, 1H, H-2a), 2.18 (m, 1H, H-2b), 

2.16 (m, 1H, H-5b). 

13C NMR: δC=130.7 (C-3), 129.4 (C-4), 80.2 (C-6, t, J=20.5 Hz), 69.3 (C-1, t, J=21.9 

Hz), 69.2 (C-1, t, J=21.4 Hz), 66.3 (C-7), 33.6 (C-5), 32.3 (C-2). 

 

Minor component:  7-deutero-2-O-(di-tert-butylsilyl- O-triethylsilyl)-2-hydroxy 

methyl-2,7-dihydro-oxepin-4-ene (4.9). 

1H NMR: δΗ=6.01 (m, 1H, H-5), 5.98 (m, 1H, H-3), 5.94 (m, 1H, H-

4), 5.93 (m, 1H, H-2), 4.43 (d, J=2.2 Hz, 1H, H-1), 4.25 (s, 1H, H-6), 

3.97 (dd, J=10.0, 6.6 Hz, 1H, H-7), 3.77 (m, 1H, H-7). 

 13C NMR: δC= 135.4 (C-3), 135.3 (C-2), 126.2 (C-4), 125.6 (C-5), 80.4 (C-6), 70.2 (C-

1, t, J=21.6 Hz), 65.1 (C-7). 

 
2-((4aR,6S,8,9,9aS)-8,9-Dibromo-2,2-di-tert-butylhexahydro-1,3,5-trioxa-2-sila 

benzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester. 

To a solution of oxepine 3.12 (101 mg, 0.25 mmol) in CHCl3 (1 mL) at ambient 

temperature was added bromine (19 µL, 0.38 mmol, 1.5 eq) and stirred for 30 min.  The 

mixture was poured onto Et2O (20 mL) and washed with H2O (2 x 20 mL) and brine (1 

x 20 mL).  The organic layer was dried over MgSO4 and the solvent removed in vacuo.  

Flash chromatography on silica with hexanes:EtOAc (9:1) gave 5.1 and 5.2 as a 2:1 mix 

of epimers as a clear oil in 90% overall yield. 

O

OtBu2SiOTES

D
D

1

2

34

5

67

O

OtBu2SiOTES

D1

2

34

5

67



 176 

Major fraction (85 mg, 60%) (5.1) –8S,9S-: 1H NMR: 

δH =4.64 (d, J=3.2 Hz, 1H, H-5), 4.45 (td, J=11.0, 1.7 Hz, 

1H, H-3), 4.23-4.0 (m, 6H, H-1, H-4, H-7, O-CH2-CH3), 

3.85 (s, 1H, H-6), 2.57 (dt, J=15.4, 2.2 Hz, 1H, H-2a), 2.35 (dt, J=15.4, 11.5 Hz, 1H, 

H-2b), 1.27 (t, J=7.1 Hz, 3H, O-CH2-CH3), 1.19 (s, 3H, H-9), 1.15 (s, 3H, H-10), 1.08 

(s, 18H, H-tBu-CH3). 

13C NMR: δC =175.8 (C-11), 79.2 (C-1), 75.9 (C-5), 71.9 (C-6), 70.4 (C-7), 62.8 (C-4), 

60.7 (O-CH2-CH3), 52.9 (C-3), 47.9 (C-8), 38.6 (C-2), 27.6 (C-tBu-CH3), 23.5 (C-9), 

20.9 (C-10), 20.6 (Si-C), 14.1 (O-CH2-CH3).   

ES HRMS m/z: calculated for C21H38O5BR2Si + H 557.0928. Found 557.0945. 

 

Minor fraction (42 mg, 30%) (5.2) –8R,9R-: 1H NMR: 

δΗ =4.74 (t, J=2.8 Hz, 1H, H-4), 4.70 (d, J=6.5 Hz, 1H, H-

3), 4.64 (d, J=1.5 Hz, 1H, H-5), 4.41 (dd, J=12.0, 3.7 Hz, 

1H, H-1), 4.22 (dd, J=11.4, 1.9 Hz, 1H, H-7a), 4.18 (dd, J=10.7, 7.0 Hz, 1H, O-CH2-

CH3), 4.12 (dd, J=11.4, 1.9 Hz, 1H, H-7b), 4.07 (m, 1H, H-6), 4.06 (dd, J=10.7, 7.0 Hz, 

1H, O-CH2-CH3), 2.80 (ddd, 1H, J= 15.6, 12.2, 1.2 Hz, H-2a), 1.97 (dt, 1H, J= 16.6, 

1.2 Hz, H-2b), 1.30 (t, 3H, J=7.1 Hz, O-CH2-CH3), 1.25 (s, 3H, H-9), 1.24 (s, 3H, H-

10), 1.09 (s, 9H, H-tBu-CH3), d1.04 (s, 9H, H-tBu-CH3).   

13C NMR:  δC =176 (C-11), 79.8 (C-5), 78.9 (C-1), 70.4 (C-7), 66.9 (C-6), 60.7 (O-

CH2-CH3), 57.6 (C-4), 48.6 (C-3), 47.5 (C-8), 28.0 (C-2), 27.6 (C-tBu-CH3), 27.3 (C-

tBu-CH3), 22.5 (C-10), 22.3 (C-9), 20.9 (Si-C), 14.1 (O-CH2-CH3).   

ES HRMS m/z: calculated for C21H38O5BR2Si + (NH4Na) 597.1091. Found 597.0825. 
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2-((2S,4S,5S,6S,7R)-4,5-Dibromo-6-hydroxy-7-hydroxymethyloxepan-2-yl)-2-

methylpropionic acid ethyl ester (5.3). 

 To a solution of dibromide 5.1 (32 mg, 0.057 mmol) in THF (1 mL) at ambient 

temperature was added TBAF (1 M in hexanes, 171 µL, 0.17 mmol, 3 eq) and the 

reaction stirred for 2 h.  The resulting mixture was poured onto Et2O (20 mL) and 

washed with H2O (3 x 20 mL).  The organic phase was dried over MgSO4 and 

concentrated in vacuo.  Flash chromatography on silica with hexanes:EtOAc (9:1) gave 

5.3 as a colourless oil (14 mg, 58%). 

1H NMR: δΗ =4.51 (dt, J=11.0, 3.7 Hz, 1H, H-3), 4.43 (t, J=1.7 

Hz, 1H, H-5), 4.34 (dd, J=10.5, 1.0 Hz, 1H, H-1), 4.25 (dd, 

J=10.7, 1.9 Hz, 1H, H-4), 4.18 (t, J=7.3 Hz, 2H, O-CH2-CH3), 

3.84 (td, J=4.1, 1.7 Hz, 1H, H-6), 3.78 (dd, J=11.7, 4.1 Hz, 1H, 

H-7), 3.71 (dd, J=11.7, 4.1 Hz, 1H, H-7), 2.50 (ddd, J=15, 3.7, 1.2 Hz, 1H, H-2a), 2.23 

(ddd, J=15.1, 12.2, 10.5 Hz, 1H, H2b), 1.28 (t, J 7.1 Hz, 3H, O-CH2-CH3), 1.18, (s, 3H, 

H-9), 1.15 9s, 3H, H-10). 

13C NMR: δC =177.2 (C-11), 78.9 (C-1), 76.0 (C-5), 74.9 (C-6), 65.4 (C-7), 63.5 (C-4), 

61.2 (O-CH2-CH3), 53.7 (C-3), 47.8 (C-8), 39.7 (C-2), 22.4 (C-9), 18.8 (C-10), 14.1 (O-

CH2-CH3). 

 

2-((4aR,6S,8S,9R,9aS)-9-Bromo-2,2-di-tert-butyl-8-hydroxy-hexahydro-1,3,5-

trioxa-2-silabenzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.4). 

To a solution of oxepine 3.12 (103 mg, 0.26 mmol) in a miture of 1:1 THF:H2O (2 mL) 

at ambient temperature, was added NBS (55 mg, 0.31 mmol, 1.2 eq) with vigorous 

stirring.  After 1 h, H2O (2 mL) was added and the mixture stirred a further 5 minutes.  

The resulting mixture was poured onto Et2O (20 mL) and washed with H2O (2 x 20 

mL).  The organic phase was dried over MgSO4 and concentrated in vacuo.  Flash 
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chromatography on silica with hexanes:EtOAc (9:1) gave 5.4 as a colourless oil (99 mg, 

77%) in a 4:1 mix of isomers by NMR. 

1H NMR major isomer: δΗ =4.50 (s, 1H, H-5), 4.25-4.0 (m, 

7H, H-1, H-3, H-4, H-7, O-CH2-CH3), 3.80 (s, 1H, H-6), 

2.39 (s, 1H, -OH), 2.18 (dd, J=15.6, 3.2  Hz, 1H, H-2a), 

1.83 (m, 1H, H-2b), 1.25 (t, J=7.1 Hz, 3H, O-CH2-CH3), 1.18 (s, 3H, H-9), 1.15 (s, 3H, 

H-10), 1.07 (s, 9H, H-tBu-CH3), 1.05 (s, 9H, H-tBu-CH3). 

13C NMR: δC =176.1 (C-8), 77.7 (C-1), 74.5 (C-5), 71.3 (C-6), 70.7 (C-7), 69.8 (C-3), 

67.6 (C-4), 60.7 (O-CH2-CH3), 48.0 (C-8), 33.2 (C-2), 27.6 (C-tBu-CH3), 27.5 (C-tBu-

CH3), 21.8 (C-9), 21.5 (C-10), 20.7 (Si-C), 14.1 (O-CH2-CH3). 

 

2-((1aS,3S,4aR,8aS,8bS)-7,7-di-tert-butylhexahydro-1,4,6,8-trioxa-7-silabenzo[a] 

cyclopropa[c]cyclohepten-3-yl)-2-methylpropionic acid ethyl ester (5.5). 

To a solution of oxepine 3.12 (230 mg, 0.58 mmol) in CH2Cl2 (10 mL) at ambient 

temperature was added 75% m-CPBA (1.78 mg, 0.75 mmol, 1.5 eq) and the reaction 

stirred overnight.  The resulting mixture was poured onto Et2O (20 mL) and washed 

with H2O (3 x 20 mL).  The organic phase was dried over MgSO4 and concentrated in 

vacuo.  Flash chromatography on silica with 9:1 hexanes: EtOAc (9:1) gave 5.5 as a 

colourless oil (198 mg, 83%). 

1H NMR: δΗ =4.60 (s, 1H, H-5), 4.23 (dd, J=12.5, 1.9 Hz, 

1H, H-1), 4.16 (q, J=7.0 Hz, 2H, O-CH2-CH3), 4.14 (s, 2H, 

H-7), 3.58 (s, 1H, H-6), 3.28 (dt, J=8.5, 4.5 Hz, 1H, H-3), 

3.05 (dd, J=4.1, 1.2 Hz, 1H, H-4), 2.14 (ddd, J=15.9, 7.8, 1.9  Hz, 1H, H-2a), 1.91 

(ddd, J=15.9, 12.4, 5.1 Hz, 1H, H-2b), 1.24 (t, J=7.2 Hz, 3H, O-CH2-CH3), 1.15 (s, 3H, 

H-9), 1.08 (s, 3H, H-10), 1.03 (s, 18H, H-tBu-CH3). 
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 13C NMR δC =176.2 (C-11), 78.3 (C-1), 74.1 (C-5), 69.2 (C-7), 68.0 (C-6), 60.5 (O-

CH2-CH3), 56.6 (C-4), 55.6 (C-3), 47.7 (C-8), 27.6 (C-tBu-CH3), 27.3 (C-tBu-CH3), 

27.1 (C-2), 23.3 (C-Si), 22.5 (C-9), 22.4 (Si-C), 20.0 (C-10), 14.2 (O-CH2-CH3). 

 

2-((4aR,6S,8R,9S,9aR)-8-Azido-2,2-di-tert-butyl-9-hydroxy-hexahydro-1,3,5-trioxa-

2-silabenzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.6). 

To a solution of epoxide 5.5 (108 mg, 0.26 mmol) in a mixture of 8:1 MeOH: H2O (1 

mL) was added NaN3 (89 mg, 1.31 mmol) and NH4Cl (31 mg, 0.57 mmol) and the 

mixture heated at reflux overnight.  The mixture was poured onto Et2O (30 mL), 

washed with H2O (2 x 20mL) and saturated brine (1 x 20mL) and dried over MgSO4.  

Concentration in vacuo followed by flash chromatography on silica in hexanes:EtOAc 

(9:1) gave 5.6 as a colourless oil (76 mg, 63%). 

 

1H NMR: δΗ =4.25-3.95 (m, 8H, H-1, H-3, H-4, H-5, H-7, 

O-CH2-CH3), 3.8 (m, 1H, H-6), 3.01, (s, 1H, -OH), 2.05 

(ddd, J=15.9, 12.7, 3.6 Hz, 1H, H-2), 1.73 (ddd, J=15.9, 

5.2, 3.2 Hz, 1H, H-2), 1.27 (t, J=7.1 Hz, 3H, O-CH2-CH3), 1.18 (s, 3H, H-9), 1.16 (s, 

3H, H-10), 1.04 (s, 9H, H-tBu-CH3), 1.02 (s, 9H, H-tBu-CH3).   

13C NMR: δC =175.9 (C-11), 76.9 (C-1), 74.5 (C-4), 69.7 (C-3), 64.6 (C-7), 61.5 (C-6), 

60.7 (O-CH2-CH3), 47.4 (C-8), 28.5 (C-2), 27.4 (C-tBu-CH3), 27.2 (C-tBu-CH3), 

22.1(C-9), 21.9 (C-10), 21.6 (Si-C), 21.2 (Si-C), 14.1 (O-CH2-CH3). 

 

2-((4aR,6S,8S,9S,9aR)-2,2-Di-tert-butyl-8,9-dihydroxyhexahydro-1,3,5-trioxa-2-

silabenzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.7). 

To a solution of oxepine 3.12 ( 99 mg, 0.25 mmol) in a 1:1 mix of Et2O:H2O (2 mL) at 

ambient temperature was added a 2.5% solution of OsO4 in water (126 µL, 3.2 mg, 
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0.026 mmol) and NMO (118 mg, 0.27 mmol).  After 1 h the mixture was poured onto 

Et2O (20 mL), washed with H2O (20 mL) and dried over MgSO4.  Concentration in 

vacuo followed by flash chromatography on silica in hexanes:EtOAc (9:1) gave 5.7 as a 

colourless oil (64 mg, 59%). 

1H NMR: δΗ =4.15-3.95 (m, 8H, H-1, H-3, H-4, H-5, H-7, 

O-CH2-CH3), 3.80 (s, 1H, H-6), 2.7 (bs, 2H, -OH), 2.34 (m, 

1H, H-2a), 1.51 (dd, J=14.4, 1.3 Hz, 1H, H-2b), 1.19 (t, 

J=7.1 Hz, 3H, O-CH2-CH3), 1.12 (s, 3H, H-9), 1.07 (s, 3H, H-10), 0.96 (s, 9H, H-tBu-

CH3), 0.95 (s, 9H, H-tBu-CH3). 

13C NMR: δC =176.6 (C-8), 78.3 (C-1), 75.5 (C-3), 75.0 (C-4), 70.1 (C-7), 70.0 (C-5), 

68.2 (C-6), 60.7 (O-CH2-CH3), 47.9 (C-8), 28.3 (C-2), 27.6 (C-tBu-CH3), 27.5 (C-tBu-

CH3), 21.9 (C-9), 21.2 (C-10), 20.7 (Si-C), 14.1 (O-CH2-CH3). 

 

2-((4aR,6S,9R,9aR)-2,2-Di-tert-butyl-9-hydroxyhexahydro-1,3,5-trioxa-2-silabenzo 

cyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.8). 

To a solution of oxepine 3.12 (78 mg, 0.20 mmol) in THF (1 mL) at 0 oC was added 

2M BH3-DMS complex (198 µL, 0.39 mmol).  After stirring 1 h at 0 oC the reaction 

was quenched by the addition of H2O (100 µL) and stirred for 5 min.  To the mixture 

was added 3 M NaOH (0.2 mL) and 3 M H2O2 (0.2 mL).  This was warmed to ambient 

temperature and stirred overnight. The mixture was poured onto Et2O (20 mL), washed 

with H2O (2 x 20 mL) and dried over MgSO4.  Concentration in vacuo followed by 

flash chromatography on silica in hexanes:EtOAc (9:1) gave 5.8 as a colourless oil (32 

mg, 40%) and recovered starting material (20 mg, 26%) 
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1H NMR: δΗ =4.2-3.95 (m, 7H, H-4, H-5, H-6, H-7, O-

CH2-CH3), 3.89 (dd, J=12.5, 4.0 Hz, 1H, H-1), 2.05-1.8 

(m, 3H, H-2, H-3), 1.48 (m, 1H, H-3), 1.25 (t, J=7.1 Hz, 

3H, O-CH2-CH3), 1.18 (s, 3H, H-9), 1.12 (s, 3H, H-10), 1.03 (s, 9H, H-tBu-CH3), 1.02 

(s, 9H, H-tBu-CH3). 

13C NMR: δC =176.7 (C-11), 81.7 (C-1), 78.6 (C-6), 70.9 (C-5), 69.7 (C-7), 68.8 (C-4), 

60.5 (O-CH2-CH3), 48.1 (C-8), 28.0 (C-2), 27.5 (C-tBu-CH3), 23.2 (C-tBu-CH3), 

21.7(C-9), 21.4 (C-10), 20.9 (Si-C), 19.3 (Si-C), 14.1 (O-CH2-CH3). 

 

2-((4aR,6S,9aR)-Di-tert-butyl-4a,6,7,9a-tetrahydro-4H-1,3,5-trioxa-2-silabenzo 

cyclohepten-6-yl)-2-methylpropan-1-ol (5.9). 

To a solution of the oxepine 3.12 (65 mg, 0.163 mmol) in CH2Cl2 (1 mL) at –78 oC was 

added 1M DIBAL in CH2Cl2 (163 µL, 0.163 mmol).  After stirring for 2 h, H2O (500 

µL) was added and the reaction warmed to ambient temperature.  The mixture was 

poured onto Et2O (20 mL), washed with H2O (2 x 20 mL) and dried over MgSO4.  

Concentration in vacuo followed by flash chromatography on silica in hexanes:EtOAc 

(9:1) gave 5.9 as a colourless oil (13 mg, 54%) and recovered starting material (15 mg, 

23%). 

1H NMR: δΗ =5.87 (m, 1H, H-3), 5.74 (ddd, J=11.2, 4.4, 2.6 

Hz, 1H, H-4), 4.85 (m, 1H, H-5), 4.26 (s, 2H, H-11), 4.06 (s, 

1H, H-6), 4.01 (dd, J=11.5, 1.7 Hz, 1H, H-1), 3.56 (d, J=9.0 

Hz, 1H, H-7a), 3.37 (d, J=9.0 Hz, 1H, H-7b), 2.52 (dddd, J=16.4, 10.5, 5.4, 2.7 Hz, 1H, 

H-2a), 2.14 (ddd, J=16.9, 9.1, 1.7 Hz, 1H, H-2b), 1.08 (s, 9H, H-tBu-CH3), 1.07 (s, 9H, 

H-tBu-CH3), 0.97 (s, 3H, H-9), 0.82 (s, 3H, H-10). 

OO
tBu2Si

O
O

OEt

HO

OO
tBu2Si

O
OH

1

2

34

5

6
7

8

9
10

11



 182 

13C NMR: δC =132.1 (C-4), 128.0 (C-3), 86.1 (C-1), 75.0 (C-5), 72.8 (C-7), 72.2 (C-6), 

68.7 (C-11), 39.0 (C-8), 27.7 (C-tBu-CH3), 27.2 (C-tBu-CH3), 25.7 (C-2), 22.7 (C-9), 

20.6 (C-10), 18.2 (Si-C). 

 

General method for acetylation of oxepanes: to the oxepane (1 eq.) in CH2Cl2 (1 mL) 

was added Ac2O (2 eq. per hydroxyl), py (3 eq. per hydroxyl) and a catalytic amount of 

DMAP.  The reaction was stirred till complete by TLC, poured onto Et2O (10 mL) and 

washed with H2O (3 x 10 mL).  The mixture was dried over MgSO4 and concentrated in 

vacuo followed by flash chromatography on silica with hexanes: EtOAc (25:1) to give 

the acetylated oxepane product. 

 

2-((4aR,6S,8S,9R,9aS)-8-Acetoxy-9-bromo-2,2-di-tert-butylhexahydro-1,3,5-trioxa-

2-silabenzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.10). 

Bromohydrin 5.4 (54mg, 0.11 mmol) was acetylated using the general procedure to give 

5.10 as a clear oil (50 mg, 85%). 

1H NMR: δΗ =5.14 (td, J=10.4, 1.6 Hz, 1H, H-3), 4.53 (d, 

1H, J=3.3 Hz, 1H, H-5), 4.2-4.0 (m, 6H, H-1, H-4, H-7, O-

CH2-CH3), 3.80 (s, 1H, H-6), 2.09 (s, 3H, H-Ac-CH3), 1.96 

(m, 2H, H-2), 1.24 (t, 3H, J=7.0 Hz, 3H, O-CH2-CH3), 1.15 (s, 3H, H-9), 1.12 (s, 3H, 

H-10), 1.06 (s, 18H, H-tBu-CH3).   

13C NMR: δC =176.0 (C-11), 169.6 (C-Ac-CO), 78.0 (C-1), 74.3 (C-5), 72.1 (C-3), 70.5 

(C-7), 60.8 (O-CH2-CH3), 58.7 (C-4), 47.8 (C-8), 33.3 (C-2), 27.6 (C-tBu-CH3), 23.7 

(Si-C), 21.7 (C-9), 21.0 (C-10), 20.7 (C-Ac-CH3), 14.1 (O-CH2-CH3). 

ES HRMS m/z: calculated for C23H42O7BrSi + NH4 554.21485.  Found 554.75042. 
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2-((4aR,6S,8R,9S,9aR)-9-Acetoxy-8-azido-2,2-di-tert-butylhexahydro-1,3,5-trioxa-

2-silabenzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.11). 

Aza alcohol 5.6 (37 mg, 0.08 mmol) was acetylated using the general procedure to give 

5.11 as a clear oil (28 mg, 70%). 

1H NMR: δΗ =5.33 (t, J=6.2 Hz, 1H, H-4), 4.2-4.05 (m, 

6H, H-1, H-5, H-7, O-CH2-CH3), 3.95 (ddd, J=6.6, 5.1, 3.4 

Hz, 1H, H-3), 3.88 (dd, J=6.6, 3.7 Hz, 1H, H-6), 2.17 (ddd, 

J=15.7, 12.8, 3.4 Hz, 1H, H-2a), 2.10 (s, 3H, H-Ac-CH3), 

1.75 (ddd, J=15.7, 3.7, 3.0, 1H, H-2b) 1.24 (t, 3H, J 7.1 Hz, O-CH2-CH3), 1.17 (s, 3H, 

H-9), 1.15 (s, 3H, H-10), 1.02 (s, 9H, H-tBu-CH3), 1.00 (s, 9H, H-tBu-CH3). 

13C NMR: δC =176.1 (C-11), 169.5 (C-Ac-CO), 76.7 (C-1), 75.9 (C-5), 73.7 (C-4), 69.3 

(C-6), 67.6 (C-7), 60.7 (O-CH2-CH3), 58.8 (C-3), 47.8 (C-8), 27.5 (C-tBu-CH3), 27.1 

(C-tBu-CH3), 26.7 (C-2), 22.9 (Si-C), 22.2 (C-9), 21.7 (C-10), 14.1 (O-CH2-CH3). 

 

 2-((4aR,6S,8S,9S,9aRS)-8,9-Acetoxy-2,2-di-tert-butylhexahydro-1,3,5-trioxa-2-sila 

benzocyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.12) 

Diol 5.7 (17mg, 0.04 mmol) was acetylated using the general procedure to give 5.12 as 

a clear oil (16 mg, 79%). 

1H NMR: δΗ =5.24 (d, J=1.7 Hz, 1H, H-4), 5.19 (d, J=10.5 

Hz, 1H, H-3), 4.2-4.05 (m, 5H, H-1, H-7, O-CH2-CH3), 

3.99 (d, J=3.7 Hz, 1H, H-5), 3.81 (s, 1H, H-6), 2.49 (td, 

J=12.5, 10.5 Hz, 1H, H-2a), 2.14 (s, 3H, H-Ac-CH3), 2.02 (s, 3H, H-Ac-CH3), 1.67 (dd, 

J=13.4, 3.0 Hz, H-2b), 1.27 (t, J=7.1 Hz, 3H, O-CH2-CH3), 1.19 (s, 3H, H-9), 1.17 (s, 

3H, H-10), 1.03 (s, 9H, H-tBu-CH3), 1.01 (s, 9H, H-tBu-CH3). 

13C NMR: δC =176.1 (C-11), 169.9 (C-Ac-CO), 167.7 (C-AcCO), 78.5 (C-1), 74.0 (C-

4), 73.5 (C-5), 70.6 (C-3), 70.4 (C-7), 68.6 (C-6), 60.7 (O-CH2-CH3), 47.7 (C-8), 27.5 
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(C-tBu-CH3), 27.4 (C-tBu-CH3), 27.0 (C-2), 23.5 (Si-C), 22.4 (Si-C), 21.5 (C-9), 21.2 

(C-10), 21.1 (C-Ac-CH3), 20.8 (C-Ac-CH3), 14.1 (O-CH2-CH3). 

 

2-((4aR,6S,9R,9aR)-9-Acetoxy-2,2-di-tert-butylhexahydro-1,3,5-trioxa-2-silabenzo 

cyclohepten-6-yl)-2-methylpropionic acid ethyl ester (5.13). 

Alcohol 5.8 (28 mg, 0.07 mmol) was acetylated using the general procedure to give 

5.13 (19 mg, 68%). 

1H NMR: δΗ =4.96 (t, J=3.4 Hz, 1H, H-4), 4.2-4.0 (m, 5H, 

H-5, H-7, O-CH2-CH3), 3.89 (dd, J=12.5, 4.4 Hz, 1H, H-

1), 3.82 (t, J=2.0 Hz, 1H, H-6), 2.08 (s, 3H, H-Ac-CH3), 

2.00 (m, 1H, H-2), 1.92 (m, 2H, H-3), 1.51 (m, 1H, H-2), 1.26 (t, J=7.0 Hz, 3H, O-

CH2-CH3), 1.19 (s, 3H, H-9), 1.15 (s, 3H, H-10), 1.03 (s, 9H, H-tBu-CH3), 1.02 (s, 9H, 

H-tBu-CH3). 

13C NMR: δC =176.6 (C-11), 169.7 (C-Ac-CO), 82.4 (C-1), 75.7 (C-5), 73.3 (C-4), 70.6 

(C-7), 68.9 (C-6), 60.5 (O-CH2-CH3), 48.0 (C-8), 27.6 (C-tBu-CH3), 27.4 (C-tBu-CH3), 

25.5 (C-3), 22.0 (Si-C), 21.7 (C-9), 21.3 (C-10), 20.8 (C-Ac-CH3), 19.7 (C-2), 14.1 (O-

CH2-CH3). 

 

 (1aR,2aS,6aR,7aS)-4,4-Di-tert-butyltetrahydro-3,5,7-trioxa-4-silacyclopropa[b] 

naphthalene-2-one (6.3). 

To a solution of oxalyl chloride (490 µL, 5.66 mmol) in CH2Cl2 (22 mL) at –78 oC was 

added dropwise DMSO (800 µL, 11.33 mmol) and stirred for 15 min.  Cyclopropane 

3.3 (1.417 g, 4.72 mmol) in CH2Cl2 (8 mL) was added dropwise and the mixture stirred 

for 30 minutes.  Et3N (2.63 mL, 18.88 mmol) was then added dropwise and the mixture 

was stirred for 90 min.  The mixture was warmed to ambient temperature, poured onto 

saturated aq NaHCO3 (30 mL) and extracted with CH2Cl2 (2 x 30 mL).  The combined 
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organic layers were then washed with saturated aq Na2SO3 (2 x 30 mL), saturated brine 

(3 x 30 mL), dried over MgSO4 and concentrated in vacuo to give 6.3 as a white solid 

(1.325 g, 94%) which was considered pure enough by 1H NMR to use without 

purification. 

1H NMR: δΗ=4.36 (s, 1H, H-4), 4.25 (d, J=1.5 Hz, 1H, H-6a), 

4.22 (d, J=2.2 Hz, 1H, H-6b), 4.18 (td, J=5.4, 3.2 Hz, 1H, H-1), 

3.79 (s, 1H, H-5), 1.99 (td, J=5.9, 3.4 Hz, 1H, H-1’a), 1.74 (m, 

1H, H-2), 1.31 (m, 1H, H-1’b), 1.03 (s, 18H, H- tBu-CH3). 

13C NMR: δC=200.6 (C-3), 77.9 (C-5), 77.4 (C-4), 66.9 (C-6), 57.6 (C-1), 27.5 (C- tBu-

CH3), 27.4 (C- tBu-CH3), 23.4 (C-2), 22.0 (Si-C), 20.7 (Si-C), 18.2 (C-1’). 

IR: 2935, 2859, 1700, 1203, 1130, 912, 733, 650 cm-1. 

MP 112o. 

 

(1S,3R,4R,5R,6R)-6-(tert-Butyldiphenylsilanyloxymethyl)-5-methyl-2-oxa-bicyclo 

[4.1.0]heptane-4,5-diol (6.4). 

To a solution of ketone 6.3 (1.325 g, 4.43 mmol) in THF (20 mL) at 0 oC was added 3 

M MeMgBr in hexanes (2.27 mL, 6.81 mmol).  The mixture was allowed to warm to 

ambient temperature and stirred for 4 h.  The reaction mixture was diluted with Et2O 

(50 mL) and washed with H2O (3 x 30 mL).  The organic phase was dried over MgSO4 

and concentrated in vacuo.  Flash chromatography on silica gel with hexanes: EtOAc 

(5:1) gave 6.4 as a colourless oil (1.20 g, 86%). 

1H NMR: δΗ =3.89 (dd, J=10.5, 5.1 Hz, 1H, H-6a), 3.82 (dd, J= 10.6, 

3.9 Hz, 1H, H-6b), 3.77 (m, 1H, H-1), 3.62 (s, 1H, H-4), 3.47 (t, 

J=4.4 Hz, 1H, H-5), 1.44 (s, 3H, H-7), 1.07 (m, 1H, H-1’a), 1.01 (m, 

1H, H-2), 0.97 (s, 9H, H- tBu-CH3), 0.96 (s, 9H, H- tBu-CH3), 0.65 (dt, J=10.0, 5.8 Hz, 

1H, H-1’b), 0.10 (s, 3H, Si-CH3). 
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13C NMR: δC= 75.2 (C-5), 74.9 (C-4), 67.5 (C-3), 65.5 (C-6), 54.3 (C-1), 27.7 (C-C-7), 

27.6 (C- tBu-CH3), 27.5 (C- tBu-CH3), 22.6 (C-2), 20.7 (Si-C), 20.6 (Si-C), 12.1 (C-1’), 

-9.5 (Si-CH3). 

ES HRMS m/z: calculated for C17H34O4Si-H 329.2154.  Found 329.2141.   

IR: 2934, 1254, 910, 735, 648 cm-1. 

 

(1S,3R,4S,5R,6R)-6-(tert-Butyldiphenylsilanyloxymethyl)-5-methyl-2-oxa-bicyclo 

[4.1.0]heptane-4,5-diol (6.8). 

To a solution of ketone 3.20 (0.98 g, 3.28 mmol) in THF (40 mL) at 0 oC was added 3 

M MeMgI in Et2O (2.19 mL, 6.57 mmol).  The mixture was allowed to warm to 

ambient temperature and stirred for 4 h.  The reaction mixture was poured onto Et2O 

(50 mL) and washed with H2O (3 x 30 mL).  The organic phase was dried over MgSO4 

and concentrated in vacuo.  Flash chromatography on silica gel with hexanes:EtOAc 

(5:1) gave diol 6.8 as a colourless oil (1.036 g, 99%). 

1H NMR: δΗ=4.26 (d, J=1.7 Hz, 1H, -OH), 3.94 (dd, J=9.8, 3.9 Hz, 1H, 

H-6a), 3.67 (m, 2H, H-1, H-6b), 3.61 (td, J=9.1, 3.9 Hz, 1H, H-5), 3.30 

(dd, J=9.0, 1.6 Hz, 1H, H-4), 2.98 (s, 1H, -OH), 1.44 (s, 3H, H-7), 1.23 

(m, 1H, H-2), 0.97 (s, 9H, H- tBu-CH3), 0.96 (s, 9H, H- tBu-CH3), 0.72 (dt, J=11.0, 6.3 

Hz, 1H, H-1’a), 0.29 (m, 1H, H-1’b), 0.10 (s, 3H, H-Si-CH3). 

13C NMR: δC= 76.0 (C-5), 70.3 (C-4), 68.6(C-6), 67.1(C-3), 52.1 (C-1), 27.6 (C- tBu-

CH3), 27.5 (C-tBu-CH3), 26.0 (C-7), 23.1 (C-2), 20.7 (Si-C), 20.5 (Si-C), 11.5 (C-1’), -

9.6 (Si-CH3). 

 

(2S)-((1S)-1,2-dihydroxy)ethyl-3-methyl-5,6-dihydro-(2H)-pyran (6.7). 

To a mixture of 6.4 (1.2 g, 3.81 mmol) and TESH (3.037 mL, 19.05 mmol) in MeCN 

(20 mL) at 0 oC was added dropwise TMSOTf (345 µL, 1.905 mmol) and the reaction 
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stirred for 2 h.  The reaction was quenched with Et3N (530 µL, 3.81 mmol) and poured 

onto a silica plug.  The silica plug was washed with hexanes (100 mL) to remove excess 

TESH, and then washed with EtOAc (2 x 100 mL).  The EtOAc washings were 

concentrated in vacuo to give 6.7 as a colourless oil (365 mg, 60%). 

1H NMR: δΗ=5.75 (d, J=5.9 Hz, 1H, H-3), 4.13 (s, 1H, H-5), 4.00 (dd, 

J=11.0, 5.8 Hz, 1H, H-1a), 3.89 (d, J=4.7 Hz, 1H, H-7a), 3.87 (m, 1H, 

H-6), 3.77 (m, 1H, H-7b), 3.58 (td, J=10.8, 3.5 Hz, 1H, H-1b), 2.53 (bs, 

1H, -OH), 2.37 (bd, J=7.0 Hz, 1H, -OH), 2.32 (m, 1H, H-2a), 1.90 (m, 1H, H-2b), 1.70 

(s, 3H, H-8). 

13C NMR: δC=132.6 (C-4), 122.8 (C-3), 79.2 (C-5), 69.9 (C-6), 65.5 (C-7), 63.7 (C-1), 

25.1 (C-2), 19.0 (C-8). 

ES HRMS m/z: calculated for C8H14O3 + H 159.1016.  Found 159.1015. 

 

(2S)-((1S)-1,2-dihydroxy)ethyl)-3-methyl-5,6-dihydro-(2H)-pyran (6.17). 

Method as described in text (page 138). 

1H NMR: δΗ= 5.73 (s, 1H, H-3), 4.33 (td, J=7.3, 4.1 Hz, 1H, H-5), 

4.07 (m, 2H, H-1a, H-7a), 4.00 (m, 1H, H-1b), 3.97 (s, 1H, H-6), 

3.63 (ddd, J=11.0, 7.4, 4.4 Hz, H-7b), 2.14 (bd, J=19.1 Hz, 1H, 

H-2a), 2.00 (bd, J=17.1 Hz, 1H, H-2b), 1.71 (d, J=0.5 Hz, 3H, H-8), 1.45 (s, 3H, H-10), 

1.35 (s, 3H, H-11). 

13C NMR: δC= 132.2 (C-4), 122.9 (C-3), 109.1 (C-9), 76.2 (C-5), 75.2 (C-6), 65.5 

(C-7), 62.9 (C-1), 26.1 (C-11), 25.4 (C-10), 25.2 (C-2), 19.7 (C-8). 

 

 (2S)-(2-methoxycabonyl-E-ethylene)-3-methyl-5,6-dihydro-(2H)-pyran (6.10). 

To a solution of diol 6.7 (100 mg, 0.63 mmol) in wet CH2Cl2 (2 mL) at ambient 

temperature was added BAIB (243 mg, 0.756 mmol) and TEMPO (10 mg, 0.063 
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mmol).  The mixture was stirred until no starting material remained by TLC (4 h) and 

then was added 1-methyltriphenylphosphoranylidene-2-propanoate (274mg, 0.82 mmol) 

and the reaction stirred for 12 h.  The mixture was loaded onto a silica gel column and 

eluted with hexanes:EtOAc (5:1) to give 6.9 as a colourless oil (37 mg, 28%) along with 

byproduct 6.10 as a colourless oil (42 mg, 31%). 

6.9. 1H NMR: δΗ=7.06 (dd, J=15.6, 4.1 Hz, 1H, H-7), 6.17 (td, 

J=15.9, 2.2 Hz, 1H, H-8), 5.77 (m, 1H, H-3), 4.46 (m, 1H, H-6), 

4.11(m, 1H, H-5), 3.97 (ddd, J=10.9, 5.3, 1.0 Hz, 1H, H-1a), 3.73 

(s, 3H, H-10), 3.56 (td, J=10.8, 3.4 Hz, 1H, H-1b), 2.28 (m, 1H, H-2a), 1.90 (m, 1H, H-

2b), 1.70 (m, 3H, H-11). 

13C NMR: δC=166.8 (C-9), 148.9 (C-7), 131.9 (C-4), 123.9 (C-3), 121.1 (C-8), 78.9 (C-

5), 70.3 (C-6), 63.6 (C-1), 51.6 (C-10), 25.7 (C-2), 19.0 (C-11). 

6.10. 1H NMR: δΗ=6.95 (dd, J=15.5, 5.9Hz, 1H, H-6), 6.06 (dd, 

J=15.7, 1.5Hz, 1H, H-7), 5.65 (s, 1H, H-3), 4.55 (d, J=3.7Hz, 1H, 

H-5), 3.82 (dd, J=11.2, 5.5Hz, 1H, H-1a), 3.74 (s, 3H, H-10), 3.70 

(dd, J=11.2, 5.7Hz, 1H, H-1b), 2.10 (m, 2H, H-2), 1.64 (s, 3H, H-9). 

13C NMR: δC=166.8 (C-8), 145.3 (C-6), 132.4 (C-4), 121.9 (C-7), 121.5 (C-3), 75.8 (C-

5), 61.4 (C-1), 51.6 (C-10), 25.2 (C-2), 19.6 (C-9). 

IR: 2953, 1721, 1658, 1435, 1267, 1169, 1048, 980, 913, 731 cm-1. 

 

(2S)-(pen-2-E-ene-1-hydroxy-4-one)-3-methyl-5,6-dihydro-(2H)-pyran (6.11). 

To a solution of 6.7 (97 mg, 0.61 mmol) in wet CH2Cl2 (10 mL) at ambient temperature 

was added BAIB (236 mg, 0.73 mmol) and TEMPO (10 mg, 0.063 mmol).  The mixture 

was stirred until no starting material remained by TLC (4 h) and then was added 1-

(triphenylphosphoranylidene)-2-propane (274 mg, 0.819 mmol) and the reaction stirred 
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for 12 h.  The resulting mixture was loaded onto a silica gel column and eluted with 

hexanes:EtOAc (5:1) to give 6.11 as a colourless oil (47 mg, 39%). 

1H NMR: δΗ=6.73 (dd, J=16.1, 4.6 Hz, 1H, H-7), 6.23 (dd, 

J=15.9, 1.7 Hz, 1H, H-8), 5.63 (d, J=5.2 Hz, 1H, H-3), 4.31 (m, 

1H, H-6), 3.96 (s, 1H, H-5), 3.82 (dd, J=11.0, 5.4Hz, 1H, H-1a), 

3.41 (td, J=11.0, 3.7 Hz, 1H, H-1b), 2.25 (bs, 1H, -OH), 2.13 (m, 1H, H-2a), 2.13 (s, 

3H, H-10), 1.75 (m, 1H, H-2b), 1.56 (s, 3H, H-11). 

13C NMR: δC=198.3 (C-9), 147.3 (C-7), 131.9 (C-4), 130.3 (C-8), 124.0 (C-3), 79.0 (C-

5), 70.5 (C-6), 63.6 (C-1), 27.5 (C-10), 25.1 (C-2), 19.0 (C-11). 

 

(2S)-(1-acetyl-pen-2-E-ene-1-hydroxy-4-one)-3-methyl-5,6-dihydro-(2H)-pyran 

(6.13). 

To a solution of 6.11 (33 mg, 0.168 mmol) in CH2Cl2 (1mL) at ambient temperature 

was added Ac2O (32 µL, 0.336 mmol) and pyridine (41 µL, 0.504 mmol) and the 

mixture stirred for 12 h.  The resulting mixture was poured onto Et2O (10 mL) and 

washed with H2O (2 x 10mL).  The organic layer was dried over MgSO4 and 

concentrated in vacuo.  Flash chromatography on silica gel with hexanes: EtOAc (5:1) 

gave 6.13 as a colourless oil (27 mg, 67%). 

1H NMR: δΗ=6.80 (dd, J=16.1, 4.9 Hz, 1H, H-7), 6.20 (dd, J=16.1, 

1.4 Hz, 1H, H-8), 5.72 (m, 1H, H-3), 5.70 (m, 1H, H-6), 4.20 (s, 

1H, H-5), 3.99 (m, 1H, H-1a), 3.57 (m, 1H, H-1b), 2.27 (s, 3H, H-10), 2.23 (m, 1H, H-

2a), 2.11 (s, 3H, H-Ac-CH3), 1.94 (m, 1H, H-2b), 1.61 (s, 3H, H-11). 

13C NMR: δC=197.8 (C-Ac-CH3), 169.8 (C-9), 142.2 (C-7), 131.1 (C-4), 131.0 (C-8), 

123.8 (C-3), 77.4 (C-5), 72.2 (C-6), 63.4 (C-1), 27.1 (C-10), 25.0 (C-2), 20.8 (C-Ac), 

19.0 (C-11). 

IR: 2924, 1743, 1678, 1473, 1372, 1228, 1114, 1047, 977, 915, 731 cm-1. 
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(2S)-(4-methyl-2,4-E-dipenten-1-ol)-3-methyl-5,6-dihydro-(2H)-pyran (6.14). 

To a solution of MePPh3Br (105mg, 0.295 mmol) in THF (1 mL) at 0 oC was added 1.5 

M BuLi in hexanes (160 µL, 0.24 mmol) and the mixture stirred for 1 h.  The mixture 

was cooled to –78 oC and 6.13 (14 mg, 0.059 mmol) in THF (1mL) added dropwise.  

The mixture was allowed to warm to ambient temperature and stirred for 3 h.  Five 

drops of water were added to the mixture and stirred for 5 minutes.  The reaction 

mixture was poured onto Et2O (10 mL), washed with saturated aq NaHCO3 (10 mL) 

and water (10 mL), dried over MgSO4 and concentrated in vacuo.  Flash 

chromatography on silica gel with hexanes: EtOAc (5:1) gave 6.14 as a colourless oil 

(11 mg, 95%). 

1H NMR: δΗ=6.42 (dd, J=15.9, 0.8 Hz, 1H, H-8), 5.86 (dd, 

J=15.9, 6.6 Hz, 1H, H-7), 5.76 (m, 1H, H-3), 5.00, (s, 2H, H-11), 

4.34 (m, 1H, H-6), 4.02 (m, 1H, H-1a), 4.01 (m, 1H, H-5), 3.61 

(ddd, J=11.0, 10.0, 3.9 Hz, 1H, H-1b), 2.28 (m, 1H, H-2a), 2.27 (d, J=7.3 Hz, 1H, -OH), 

1.95 (m, 1H, H-2b), 1.88 (t, J=1.0 Hz, 3H, H-12), 1.72 (m, 3H, H-10). 

IR: 3448, 2919, 2857, 1736, 1609, 1436, 1376, 1235, 1115, 1048, 967, 910, 732 cm-1. 

 

(2S)-(1-phenylxanthate-4-methyl-2,4-dipentene-1-ol)-3-methyl-5,6-dihydro-(2H)-

pyran (6.15) 

To a mixture of 6.14 (18 mg, 0.093 mmol) in CH2Cl2 (1mL) at 0 oC was added DMAP 

(13mg, 0.93 mmol) and phenylchlorothionoformate (73mg, 0.465 mmol) and the 

reaction stirred for 12 h at ambient temperature.  The mixture was poured onto Et2O 

(10mL), washed with H2O (3 x 10 mL), dried over MgSO4 and concentrated in vacuo.  

Flash chromatography on silica gel with hexanes: EtOAc (25:1) gave 6.15 as a 

colourless oil (19 mg, 70%). 
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1H NMR: δΗ= 7.37 (m, 2H, H-Ar), 7.23 (m, 1H, H-Ar), 7.14, (m, 

2H, H-Ar), 5.87 (dd, J=14.6, 6.9 Hz, 1H, H-8), 5.79 (dd, J=15.4, 

6.9 Hz, 1H, H-7), 5.62 (m, 1H, H-6), 5.09 (d, J=0.7 Hz, 1H, H-

11), 4.98 (m, 1H, H-11), 4.60 (d, J=7.3 Hz, 1H, H-6), 4.42 (d, J=7.1 Hz, 1H, H-5), 3.85 

(m, 1H, H-1a), 3.65 (m, 1H, H-1b), 2.10 (m, 2H, H-2), 1.87 (m, 3H, H-10), 1.58 (s 3H, 

H-12). 

 

(2S)-((1S)-1,2-dihydroxy)ethyl)-3-methyl-5-hydro-6-deuetro-(2H)-pyran. 

To a mixture of 6.7 (42mg, 0.13 mmol) and TESD (106 µL, 0.6 mmol) in MeCN 

(1 mL) at 0 oC was added dropwise TMSOTf (12 µL, 0.06 mmol). The mixture was 

allowed to warm to ambient temperature and stirred for 4 h.  The reaction was quenched 

with Et3N (100 µL, 0.72 mmol) and poured onto a silica plug.  The silica plug was 

washed with hexanes (150 mL) to remove excess TESD, and then washed with EtOAc 

(2 x 50 mL).  The EtOAc washings were concentrated in vacuo to give a mixture of 

6.17 and 6.18 as a colourless oil (10 mg, 48%) in a 6:1 ratio by GC. 

Major isomer 6.17.  1H NMR: δΗ=5.76 (d, J=4.1 Hz, 1H, H-3), 4.14 

(s, 1H, H-5), 3.99 (d, J=2.2 Hz, 1H, H-1), 3.90 (m, 1H, H-7a), 3.88 (s, 

1H, H-6), 3.74 (m, 1H, H-7b), 2.61 (d, J=7.8 Hz, 1H, -OH), 2.43 (d, 

J=8.6 Hz, 1H, -OH), 2.29 (m, 1H, H-2a), 1.90, (m, 1H, H-2b), 1.71 (s, 3H, H-8). 

13C NMR: δC= 132.6 (C-4), 122.8 (C-3), 79.1 (C-5), 70.4 (C-6), 65.5 (C-7), 63.3 (t, 

J=21.6 Hz, C-1), 25.1 (C-2), 19.2 (C-8). 
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Appendix A 
 

To confirm that the reactions lead to the postulated oxepine products, an example was 

assigned from first principles.  The example chosen was (4aR,9aR)-6-Azido-2,2-di-tert-

butyl-4a,6,7,9a-tetrahydro-4H-1,3,5-trioxa-2-silabenzocycloheptene (3.5a & 3.5b) as 

shown in Figure A.1. 
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Figure A.1. Major 3.5a and minor 3.5b oxepines showing NMR numbering scheme. 

 

This example was chosen as both isomers were separable and thus the stereochemistry 

of the major and minor isomer could be individually established.  This information 

could then be extrapolated to the other products.  Unfortunately with this example it 

was not possible to get any high resolution mass spectrometry data.  However, all 15 

carbons, 27 protons, three nitrogens and one silicon could be accounted for.  Presence 

of an azide group was suggested by IR, which showed a strong peak at 2103 cm-1 in the 

major epimer 3.5a and 2109 cm-1 in the minor epimer 3.5b. 

The minor component 3.5b was assigned first as there were no overlapping signals in 

the 1H NMR spectrum, and a more complete NMR experiment set was available 

including NOE and HMBC data.  The presence of a di-tert-butylsilyl protecting group 

was indicated by 1H and 13C NMR resonances for the tert-butyl methyl groups (δH 1.06,  

δC 27.5 and δH 1.08, δC 27.4) and the quaternary carbons (δC 23.1 and δC 21.1).  HMBC 

correlations were observed between the tert-butyl methyl groups and also to the tert-

butyl quaternary carbons.  Integration of the 1H resonances gave approximately 18 

protons.  29Si NMR gave one peak at δSi -8.74.  HSQC-DEPT revealed the presence of 
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three oxymethines, two alkenic methines, an oxymethylene group and a methylene.  

The COSY spectrum revealed the presence of a single 1H spin system.  The 

connectivity of the 1H spin system was then constructed from a series of COSY 

correlations from the C-1 azamethine (δH 4.82, δC 90.6 ) to a methylene (C-2: δH 2.67, 

δC 36.0) to an alkenic methine (C-3: δH 5.75, δC 122.4) to a second alkenic methine 

(C-4; δH 5.94, δC 133.9) to an oxymethine (C-5: δH 4.74, δC 72.9) to a second 

oxymethine (C-6: δH 3.70, δC 77.4) to an oxymethylene (C-7: δH 4.26, δC 68.3). This 

spin system is illustrated in Figure A.2. 
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Figure A.2. COSY assignment of the C7 backbone of the minor isomer 3.5b. 

 

An HMBC correlation from the proton resonances of C1 to C6 clearly established the 

presence of the seven membered ring by established an oxygen bridge between these 

two centres.  Finally to establish the stereochemistry NOESY data gave clear 

correlations between H-1 and H-6, conclusively assigning the minor isomer as the β-

substituted azido oxepine.  The relative stereochemistry of C-5 and C-6 was taken to be 

the same as in the starting galactal and was assigned as such.  Finally the presence of 

the azide group was confirmed by 15N-1H HMBC measurements.  This gave 3 signals at 

δN –135.8, -288.4 and -300.1.  The nitrogen at δN–288.4 had correlations from the 

protons at C-1, C-2 and C-3.  The nitrogen at δN –135.8 showed correlations from the 
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protons of C-1 and C-2.  The third nitrogen at δN –300.1showed a single correlation 

from the proton at C-1.  These could thus be assigned as N-1, N-2 and N-3 respectively.   

 

Moving to the major isomer, again no HRMS data could be obtained for the compound. 

However all 15 carbon and 27 protons could be accounted for. 13C and 1H resonances 

consistent with a di-tert-butylsilyl protecting group were found and assigned as before.  

HSQC-DEPT revealed the presence of three oxymethines, two alkenic methines, an 

oxymethylene and a methylene.  COSY correlations again revealed the presence of one 

1H spin system.  The connectivity of the 1H spin system was then constructed from a 

series of COSY correlations from the C-1 azamethine (δH 5.42, δC 90.1) to a methylene 

(C-2; δH 2.48 and δH 2.30, δC 31.0) to an alkenic methine (C-3: δH 5.61, δC 122.4) to a 

second alkenic methine (C-4: δH 5.71, δC 133.9) to an oxymethine (C-5: δH 4.86, δC 

74.9) to a second oxymethine (C-6: δH 4.13, δC 70.0) to an oxymethylene (C-7: δH 4.32, 

δC 68.1) as shown in Figure A.3. 
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Figure A.3. COSY assignment of the C7 backbone of the major isomer 3.5a. 

 

Unfortunately no HMBC data was available for this compound and so the ring 

linkage could not be positively determined between C-1 and C-6.  As the link has been 

assigned in the minor epimer it was extrapolated to be present in the major epimer. 
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1H NMR spectrum of azide 3.5a In CDCl3 (500 MHz). 
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13C NMR spectrum of azide 3.5a In CDCl3 (500 MHz). 



 197 

 

COSY NMR spectrum of azide 3.5a In CDCl3 (500 MHz). 
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HSQC NMR spectrum of azide 3.5a In CDCl3 (500 MHz). 
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1H NMR spectrum of azide 3.5b In CDCl3 (500 MHz). 
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13C NMR spectrum of azide 3.5b In CDCl3 (500 MHz).
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COSY NMR spectrum of azide 3.5b in CDCl3 (500 MHz) 
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HSQC NMR spectrum of azide 3.5b In CDCl3 (500 MHz). 
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HMBC NMR spectrum of azide 3.5b In CDCl3 (500 MHz). 
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29Si NMR spectrum of azide 3.5b In CDCl3 (500 MHz). 
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15N HMBC NMR spectrum of azide 3.5b In CDCl3 (600 MHz). 
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