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Abstract

This thesis demonstrates the rich low-dimensional physics associated with

the class of organic-inorganic hybrid materials based on atomic layers of a

metal oxide separated by organic spacer molecules. Hybrid materials based

on tungsten oxide and also transition metal tungstates (with manganese,

iron, cobalt, nickel and copper) were synthesised and characterised using a

variety of techniques. The materials in question represent one example of

the huge variety of systems classed as ‘organic-inorganic hybrids’ and have

the potential to combine the high-electron mobility of the metal oxide layers

with the propensity for self-assembly of the organic layers.

The crystal structures of the compounds were investigated using powder

X-ray diffraction and electron diffraction, and compared with structural in-

formation obtained using IR, Raman, and extended X-ray absorption fine

structure (EXAFS) spectroscopies. This data confirmed the presence of a 2-

dimensional layered structure. The electronic properties of the hybrids were

studied using optical spectroscopy and confirmed via ab initio calculations.

The band gaps of the tungsten oxide hybrids were found to be independent

of interlayer spacing, and in all cases were larger than that observed in the

three dimensional WO3 ‘parent’ material. For the transition metal tungstate

hybrids there appeared to be significant interactions between the organic

amines and the transition metal ions within the inorganic layers.

The magnetic properties of the hybrids incorporating transition metal

ions were also studied in detail. Many of these metal tungstate hybrids

display magnetic transitions at low temperatures indicating a crossover from

2-dimensional to 3-dimensional behaviour. This illustrates the importance of

the low-dimensional nature of the inorganic layers in these hybrid materials
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and thus their potential in nano-structural applications.
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Conventions and Abbreviations used

Abbreviations have been used extensively throughout this thesis to represent

the chemical composition of the organic-inorganic hybrid samples. Table 1

illustrates the notation used to represent the organic part.

The most common organic molecules used are the bidentate diaminoal-

kanes, DAn. The monodentate counterparts have therefore been labelled

MAn.

When referring to the hybrid material, the metal ion(s) present are writ-

ten first, for example, W-DA6 and (Cu,W)-phen refer to tungsten oxide

diaminohexane and copper tungstate phenethylamine respectively. It is im-

plicitly assumed that the metal ion is present as an oxide species.

Many different experimental techniques have been used to characterise the

hybrid materials and measure their properties. While these are given along

with their abbreviation in the text, it is helpful to include a reference table

here (Table 2).

SI units have been used throughout, although in the sections on mag-

netism the odd CGS unit may creep in as a result of using the raw data (e.g.

applied field given in Oe (104 Oersted ≡ 1 Tesla), raw data magnetisation as

emu).

Abbreviation Name Chemical formula
MAn (n = 1, 2, . . .) methyl/ethyl/...-amine H2N(CH2)n−1CH3

DAn (n = 2, 4, . . . 1) diamino-eth/but/...-ane H2N(CH2)nNH2

phen phenethylamine (C6H5)(CH2)2NH2

DAphen phenylenediamine H2N(C6H4)NH2

Table 1: Abbreviations of organic molecules used throughout this thesis.
1 n = even only.
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Abbreviation Full name

EDX Energy Dispersive X-ray analysis
EXAFS Extended X-ray Absorption Fine Structure
IR Infrared
SAED Selected Area Electron Diffraction
SEM Scanning Electron Microscopy
SQUID Superconducting QUantum Interference Device
TEM Transmission Electron Microscopy
TGA Thermo-gravimetric analysis
UV Ultraviolet
VASP Vienna Ab initio Simulation Package
XANES X-ray Absorption Near Edge Spectroscopy
XRD X-ray diffraction

Table 2: Abbreviations of experimental techniques used throughout this the-
sis, listed in alphabetical order.
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Chapter 1

Introduction

This thesis describes the synthesis and characterisation of novel organic-

inorganic hybrid materials based on atomic layers of tungsten oxide sepa-

rated by organic amine spacer molecules. The inorganic layers are, in effect,

isolated by the insulating organic ‘spacer’ molecules, and thus are expected

to behave as a two-dimensional system with little or no electronic coupling

in the direction perpendicular to the layers (although in principle conduct-

ing organic molecules could be also utilised). This makes for an interesting

physical system, particularly if one is able to dope the inorganic layers and

induce conductivity within the two-dimensional planes.

This chapter will explore some motivations for studying the system in

question, beginning with a survey of various phenomena observed in low-

dimensional and strongly correlated electronic systems. Section Two will

provide some background on historical and recent reports in the very broad

field of organic-inorganic hybrid materials. Section Three will discuss the

physical and chemical properties of tungsten oxide systems, which form the

basis for the layered organic-inorganic materials discussed throughout this

thesis.

1
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1.1 Strongly Correlated Electronic Systems

1.1.1 Basic Electronic Theory in Solids

A systematic survey of electronic behaviour in solids given in solid state

textbooks (e.g. [9]) usually begins by considering the free electron model

with the Drude and then the Sommerfeld theories.

The Drude theory was proposed in 1900 for the electrical and thermal

conduction behaviour of metals, considering the metal as a ‘gas’ of electrons

and applying the known kinetic theory of gases to this. Positive charges were

assumed to be immobile and consisted of what is now known as the nucleus

plus the core electrons. The valence (or conduction) electrons were free to

move throughout the solid and had a compensating negative charge so the

charge on the metal is neutral overall. Electron-electron and electron-nucleus

interactions are neglected, except for collisions, which last for a negligible

amount of time and occur at an average interval, τ , which is independent

of the position and velocity of the electrons. This leads to the fundamental

relations for the frequency-dependent conductivity

σ(ω) = σ0(1 + jωτ)−1 (1.1)

where the DC conductivity σ0 is given by

σ0 = ne2τ/m

n is the volume density of electrons and m is their mass. The form of Equa-

tion 1.1 results in a so-called ‘Drude peak’ occurring in the conductivity at

low frequency. In optical spectroscopy this is interpreted as a signature of

free-carrier density, namely metallic character.

Because the Drude theory is based on the classical kinetics of gases, it uses

the Maxwell-Boltzmann distribution to describe the velocity of the electrons

at a given temperature. However, quantum theory demonstrates that elec-

trons are subject to the Pauli exclusion principle. In 1928 Sommerfeld pro-

posed that the Maxwell-Boltzmann distribution be replaced with the Fermi-

Dirac distribution to account for the quantum nature underlying the energy

of electrons in a system.
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In most real systems, electrons do not behave as a non-interacting gas

but are influenced by each other to varying degrees and by the periodic ionic

lattice of the solid itself. This consideration led to the development of Bloch’s

theorem in 1928 [28].

Bloch’s theorem states that the eigenstates ψ of the Hamiltonian H for

a single electron in a periodic potential can be chosen to have the form of a

plane wave multiplied by a function corresponding to the periodicity of the

Bravais lattice. Thus, Schrödinger’s equation

Hψ = −
(

h̄2

2m
∇2 + U(r)

)
ψ = εψ (1.2)

is satisfied by

ψnk(r) = eik·runk(r)

where both

unk(r + R) = unk(r)

and

U(r) = U(r + R)

in Equation 1.2 hold for all R in the Bravais lattice.

Bloch’s theorem also led to the concept of energy bands. Due to the Pauli

exclusion principle, electrons will occupy states ψnk of energies εnk for each

n, up to the number of electrons. When all electrons occupy their lowest

possible states, the highest occupied energy is then denoted the Fermi level

or Fermi energy, εF .

If the Fermi level lies between a completely filled valence band and a

completely empty conduction band, then the resulting material is rendered

semiconducting, with a band gap defined as the difference in energy between

the top of the highest filled band and the bottom of the lowest empty band.1

1These bands have several different names; in physics - and therefore throughout this
thesis - the highest filled band is called the valence band, and the lowest empty band is
called the conduction band. In chemistry, the former is called the HOMO (highest occupied
molecular orbital) and the latter is called the LUMO (lowest unoccupied molecular orbital).
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Electrons can be stimulated across the band gap by increasing their energy

via photons (X-rays, UV etc.), phonons (temperature), or externally applied

electric or magnetic fields.

If the Fermi level lies within a partially-filled band (or bands), the system

has conducting (or metallic) properties. In these band(s) a constant-energy

surface can be found in k-space that separates occupied and unoccupied

levels. This surface is called the Fermi surface, and the energy is the Fermi

energy.

In many ‘normal’ metals the weak repulsive electron-electron Coulombic

interactions are ‘screened’ by the presence of the positive ions in the crystal.

This results in the electron-electron repulsion being damped exponentially

so that it is negligible over distances of the order of the ionic spacing. Math-

ematical formalism describes such systems in terms of quasiparticles. These

are not physical particles like electrons, but there is a one-to-one correspon-

dence between the number of quasiparticles and electrons, and over short

distances they interact like very weak electrons.

Up until this point, the assumption has been made that the electron-

electron interaction is small and can be treated perturbationally. For ideal

systems, and some real ones, this is sufficient to describe their electronic be-

haviour. However for the vast majority of real systems the electron-electron

interaction is not just a first-order correction, and this increases the com-

plexity of the model required. Such systems where the electron-electron

interaction is significant are called strongly correlated electronic systems.

1.1.2 Examples

To fully describe strongly correlated electronic systems would require the

many-body problem to be solved exactly. The lack of any such exact solution

makes understanding these systems one of the most challenging aspects of

solid state physics.

Strong electronic interactions lead to a rich variety of possible phases,

each of which could be exemplified in the present hybrid materials, under
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suitable circumstances. Some examples of such systems and their behaviour

are as follows:

Magnetic materials

Magnetism arises, in general, from the presence of unpaired electrons asso-

ciated with a single nucleus, resulting in a net spin excess. When consid-

ering the spins of electrons, the Pauli exclusion principle is complemented

by Hund’s Rules. These allow us to determine the lowest energy magnetic

state with appropriate quantum numbers S, L, and J , describing the spin,

orbital and total angular momentum of the atom or ion, respectively. Once

again, only the valence electrons contribute to the observed behaviour (mag-

netism), because the lower-energy core electrons are paired in alternate spins

(↑↓) because of the Pauli exclusion principle. There can also be magnetic

interaction between the unpaired electrons and the nucleus, resulting in hy-

perfine magnetic field phenomena.

Within the broad scope of ‘magnetic materials’ there are many different

behaviours observed. The two most common types of magnetically ordered

systems are ferromagnetic, where all spins point in the same direction; and

antiferromagnetic, where (as the name suggests) adjacent spins alternate

direction in one or more dimensions. Magnetic correlations are discussed in

more detail in Chapter 6.

Quantum Hall effect

The Nobel Prize in Physics in 1985 was awarded to Klaus von Klitzing for

the discovery of the quantum Hall effect [269]. In the classical Hall effect,

when a magnetic field is applied perpendicular to a current flowing through a

metal, a transverse voltage is observed in the third orthogonal direction that

is proportional to the current and the applied field. At low temperatures

(O(mK)) the Hall resistance is observed to increase in discrete quanta as the

field is increased (hence, the quantum Hall effect).

The phenomenon can be explained by the formation of Landau levels

which alter the density of states. In an applied magnetic field the electrons’
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trajectories will be a series of concentric circles about the axis of the field,

and will be quantised according to the cyclotron frequency ωc = eB/m∗.

The density of states reverts to a series of discrete levels which are smeared

out with temperature, and their positions are dependent on the applied field.

As the field increases, a Landau level may pass through the Fermi energy

and only at that point is conduction possible.

Heavy Fermion compounds

The electronic heat capacity can be calculated from the free-electron Fermi

gas model. In most systems the electronic heat capacity is much lower than

the atomic heat capacity, and the electronic contribution can normally only

be observed at low temperatures. At low temperatures the heat capacity of

the total system is written as C = γ T + AT 3, namely the sum of the linear

electronic contribution and the phonon contribution. γ is expected to have a

value of 1
2
π2NkB/TF (where TF is the ‘Fermi temperature’, kBTF ≡ εF ) and

while most systems are within the correct order of magnitude, they do not

agree closely. It is common practice to assign to the electrons an effective

mass, m∗, relative to the electron mass, given by the ratio of the observed

and expected γ values.

Some metallic compounds (many including cerium) have been observed

to have effective electronic masses several orders of magnitude greater than

the electronic mass [214, 252, 253]. This effect is thought to be due to

weak overlapping of the f -electron wavefunctions on adjacent ions within the

compound, leading to strong electron-electron interactions. The free carrier

density can be changed by the application of pressure and the temperature-

pressure phase diagram is generally rich, revealing various magnetically-

ordered states as well as superconductivity [191].

Bose-Einstein condensates and Mott insulators

Atoms or particles cooled to ultra-low temperatures can exhibit one of two

ground states: Bose-Einstein condensates or Mott insulators, depending on

the strength of the atomic interactions. In a Bose-Einstein condensate the
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very weak repulsive interactions between the atoms allow all the wavefunc-

tions of the particles to overlap coherently over the entire group of particles.

Each one then behaves as a wave spread over the entire lattice [4, 221].

Mott insulators are almost the complete opposite, in that the atoms be-

have as particles confined to their appropriate lattice sites. The repulsive

interactions between them are strong enough to prevent the movement of

electrons through the lattice.

For example, cuprate high-temperature superconductors at low or zero

doping are näıvely expected to have a half-filled valence band and therefore

be metallic. (This is the t2g band, the highest band arising from crystal-

field-splitting.) But the strong Coulomb repulsion associated with an elec-

tron hopping to an adjacent site leads to a splitting of the band into an

empty upper Mott-Hubbard band and a filled lower Mott-Hubbard band.

The system is then an antiferromagnetic insulator [5].

Kondo effect

The Kondo effect refers to a phenomenon seen in the resistance of magnetic

alloys, which instead of decreasing monotonically with decreasing tempera-

ture, has been observed to decrease to a broad minimum at low temperatures

and then rise again, dependent on the concentration of magnetic species.

This was explained by J. Kondo in 1963 [141] in relation to the scatter-

ing of conduction electrons from the magnetic atoms. There is an exchange

between the two which results in a scattering event where the spin of the

electron is flipped. This behaviour dominates at the lowest temperatures as

the phonon contribution normally responsible for resistance becomes suffi-

ciently small. The temperature (or energy) scale, TK , is set by the Fermi

temperature TF , the exchange coupling constant J and the population of the

density of states at the Fermi level [265].

Colossal magneto-resistance

Colossal magnetoresistance (CMR) is a property of many perovskite man-

ganites, AxB1−xMnO3, where, at a certain temperature, the resistivity can
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be observed to increase by many orders of magnitude when a relatively small

magnetic field is applied [76, 154, 227, 238]. At this temperature a paramag-

netic to ferromagnetic transition is observed, along with an insulator to metal

transition. The composition, x, is chosen to lie close to a magnetic phase

transition boundary which is traversed by the application of a magnetic field.

Such materials have applications as magnetic recording devices.

An explanation of this effect is still being sought. There is evidence to

suggest it is due in part to interactions between Mn3+ and Mn4+ ions, the

concentrations of which are determined by the doping level x. However, this

mechanism (‘double exchange’) alone is not enough to predict the high resis-

tivities observed. There are also thought to be electron-phonon interactions

due to Jahn-Teller distortions of the manganese ions [194].

Luttinger liquids

Luttinger liquids are a theoretical low-dimensional counterpart to Fermi liq-

uids, where the particles behave in a collective manner that is different from

that of the original particles [5]. In the electronic case, electrons (which

are fermions) in a Luttinger liquid do not behave as fermions but rather as

bosons. Two systems thought to resemble Luttinger liquids are conducting

polymers and carbon nanotubes. Both of these display additional interesting

low-dimensional properties due to their 1-dimensional structure.

Carbon nanotubes in particular have a wide range of electronic properties

which vary from semiconducting to metallic depending on their chirality [11].

They have been observed to display ballistic electron transport, that is, the

conductance is free of scattering and hence does not depend on the length

of the tube [280]. This is due to the interaction of electrons in a delocalised,

coherent fashion along the nanotube.

High-temperature superconductivity

High-temperature superconductors (HTS) are perhaps the epitome of strongly

correlated electronic systems, and are certainly the most extensively stud-

ied [259]. Superconductivity arises through the formation of Cooper pairs,
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where electrons with opposing spins and momenta pair up to form a boson-

like quasiparticle. Unlike fermions, bosons are not restricted as to how many

may occupy the ground state and therefore all the Cooper pairs condense to

the lowest-lying energy state at the Fermi level, establishing phase coherence

throughout the entire sample (which may be kilometres long!). This coher-

ence allows the electrons (as Cooper pairs) to move throughout the lattice

without scattering and hence without resistance.

Most high-temperature superconductors are based on structures with

one or more corner-shared square planar copper oxygen CuO2 planes sep-

arated by (essentially) insulating layers. It is also possible in systems such

as Ru2Sr2RECu2O8 (RE = rare earth) to have magnetism present in the

RuO2 layers that competes or even co-exists with the superconductivity in

the CuO2 layers [25, 223].

In each of these cases the phenomena observed are due to the significant

interactions between electrons and electrons, electrons and ions, or electrons

and phonons. They cannot be explained by any one simple model using

standard perturbation approaches.

Another point to note is that, particularly in systems such as carbon nan-

otubes and HTS cuprates, the low-dimensionality of the system plays an im-

portant part in its observed properties. Carbon nanotubes, metal nanowires

and conducting polymers are examples of quasi-one-dimensional systems.

HTS cuprates, thin film multilayers, self-assembled monolayers (SAMs) and,

as we shall see, certain organic-inorganic layered hybrid materials, are all ex-

amples of quasi-two-dimensional systems - that is, properties such as electron

transport and magnetism operate with little or no coupling between layers,

at least in certain energy (e.g. temperature) regimes. Each layer is nearly in-

dependent and isolated from any adjacent layers. These behaviours can often

be easily explained by a 1- or 2-dimensional model with simple temperature-

dependent coupling. An alternative way of viewing such systems is to assign

an anisotropic effective mass tensor. For in-plane transport m∗ may be close

to the electronic mass, me, while for the out-of-plane transport, m∗ may be

much larger.
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One method of designing a system to have low dimensionality is to sep-

arate an inorganic material in a low-dimensional form by insulating organic

molecules. These molecules may have functionality themselves or may sim-

ply be space-filling. We will now discuss some aspects of the broad range of

compounds classed as ‘organic-inorganic hybrid materials’.

1.2 Organic-Inorganic Hybrid Materials

The concept of organic-inorganic hybrid materials is based upon combin-

ing the aspects of the two fundamental ingredients: the electrical, magnetic,

structural and thermal stability properties of the inorganic part with the

flexibility, functionality and templating ability of the organic part. An anal-

ogy can be drawn in that the properties of various alloys are often much

better than those of the individual metals of which they are composed. Dif-

ferent hybrid materials have been the subject of research in semiconducting

electronics, gas/molecule sensors, drug/biomolecule capture and delivery, su-

perconductivity, and many other areas.

In literature, the title ‘organic-inorganic hybrid material’ is used very

broadly and has been applied to systems ranging from metal-organic com-

plexes to macrostructural inorganic particles in an organic matrix. Between

these two extremes, organic-inorganic components can be found which are

comprised of molecular units in 3-dimensional networks, 2-dimensional lay-

ered structures, 1-dimensional chains or even 0-dimensional clusters. Of

these, one can find a variety of systems from examples where the organic

component is used merely as a templating agent for the inorganic layer, to

cases where several different organic species are used in a structural sense

via co-ordination to the inorganic species. The organic molecule can be cho-

sen to have a broad range of functionality, provided it can be incorporated

within the inorganic structure. The lower the dimensionality of the inorganic

framework, the greater the variety of organic molecules that can be included.

The bonding nature between the organic and inorganic species also varies in

strength from very weak van der Waals bonding to ionic and co-ordination

(or ‘direct’) bonds. The bond strength impacts upon the structure and elec-
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tronic properties of the system.

Various classes of organic molecules can be chosen to provide the result-

ing hybrid with specific functionality – for example, polymerisable species

(for structural and/or electronic cross-linking), conjugated molecules (for ex-

tra conduction and enhanced interlayer coupling), dyes, chromophores, and

luminescent species (for non-linear optical responses), and others. Organic

molecules can range in complexity from simple straight-chain (saturated)

alkanes and aromatic molecules through to organic dyes, polymers, and bio-

molecules. In some cases the organic molecule acts merely as a templating

agent and is later removed to form a porous material; such systems will not

be discussed here. Also not discussed here are “macro-scale” systems consist-

ing of inorganic nanoparticles in an organic matrix, and the many different

Si-O-based systems, which, for the most part, are structurally and chemically

similar to C-based systems.

There is a variety of synthesis methods utilised to make the various hybrid

materials, including slow crystallisation from solution, evaporation of solvent,

hydro- or solvo-thermal methods, chimie douce (“soft chemistry”), gas-phase

reactions, sol-gel precursors, electrochemical crystal growth, and solid state

reactions. A selection of hybrid systems with their dimensionality, bonding

nature and synthesis methods is shown in Appendix A. These have been

separated into several major categories, as follows:

Phosphate-based organic/inorganic hybrid materials

These are normally synthesised using hydro- or solvo-thermal methods and

typically form as networks (1-, 2- or 3-D) of metal atoms linked via the oxygen

atoms of the PO 3−
4 tetrahedra linkages [137, 249]. Aminoalkanes are the

most common organic intercalate [81]. The size of the organic molecules and

the synthesis conditions (pH, temperature, pressure, concentrations) have a

strong influence on the structure of the inorganic layer.
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Expanded perovskite-based organic/inorganic hybrid materials

Many different layered perovskites have been used as the inorganic layers in

organic-inorganic hybrids formed by chimie douce methods. These include

the perovskite Ca2Nb3O10 and its derivatives [122], the Aurivillius phases

Bi2WnO3n+3 [152], the MnO2 ’slab’ structures birnessite and buserite [88,

175], the layered double hydroxide (LDH) system, based on alumino-silicate

clays [131], and even the HTS Bi2Sr2Can−1CunO2n+4 superconductor series

[50, 52, 53, 80, 139]. The organic molecules act primarily to separate the

inorganic layers, and they may be present as neutral species or positively

charged to maintain charge balance.

Hybrids based on cluster ions

“Cluster ions” is a broad term used here to refer to heteropoly anions, in-

cluding Keggin ions and Wells-Dawson structures, which consist of clusters

of bonded MO6 octahedra (M = Mo or W). Such structures normally form at

low pH synthesis conditions [134, 254] and in hybrid materials are connected

via the organic molecules. These are essentially zero-dimensional systems

as the cluster ions for the most part do not interact with each other. The

hybrids may be produced via a range of techniques, including hydrothermal

synthesis [230], precipitation from solution [244], sol-gel method [295], or

successive layers built up by dip-coating [273].

Other miscellaneous systems

There are of course many other possible combinations for forming organic-

inorganic hybrid materials, however in literature these appear to be for the

most part individual structures that are not part of any series, in contrast to

the other ‘classes’ listed here. One system worthy of mention however is the

vanadate hybrid structures, which are able to form a variety of structures,

most of them quite complicated. Ref. [98] gives an extensive review of these

vanadate hybrids.
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Metal halide layer-based hybrids

There are a wide variety of these materials, which are comprised of MX6 oc-

tahedra which are corner-shared to form simple regular 2-dimensional sheets,

MX 2−
4 (M = M2+ metal ion, X = Cl, Br, I). The layers are then separated by

amine-terminated organic molecules. Ref [196] is an excellent review of these

materials, displaying the wide variety of inorganic species and organic amine

molecules that together can form this relatively simple structure. These sys-

tems have been studied for over 70 years [232] and have been shown to display

remarkable photoluminescence [79, 202] and have been applied as materials

in thin film transistors [130]. Their magnetic properties have also been ex-

tensively studied and represent a near-perfect 2-dimensional magnetic system

[71, 72, 206, 264].

Layered metal halide-based hybrid materials have been synthesised with

the halides Cl, Br and I, and the metal ions thus far incorporated include

the transition metals Cr, Mn, Fe, Ni, Cu, Pd, Cd [196]; Group 14 metals Ge,

Sn, Pb [195, 196]; and rare earth Eu [202]. Copper halide compounds in par-

ticular demonstrate a wide variety of possible structures due to Jahn-Teller

distortions [283]. It is also possible to vary the thickness of the inorganic

layer, and above approximately three inorganic octahedral layers the mate-

rials change from semiconducting to metallic [200].

The simplest compounds incorporate straight-chain mono- or di-amino-

alkanes as the organic component, whose primary function is to vary the

inorganic interlayer spacing. Electron-rich conjugated (aromatic and aryl)

organics can alter the electrical properties of the hybrids through doping

effects. Organic dyes may add chromogenic properties, and polymerisable

molecules provide additional cohesion, and also the possibility of introducing

conducting polymers [46, 196].

The nature of the bonding is influenced by the length of the organic

molecule (affecting charge separation), its saturation (relating to delocalised

electrons) and the terminal group used to bind to the inorganic layer (am-

monium ion, pyridinium ion etc.). The bonding nature also impacts on the

structure of the hybrid as most organics will then be oriented at a partic-
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ular angle from the normal, which is the most energetically favoured. The

metal halide hybrids are normally synthesised by dissolving stoichiometric

amounts of the metal halide MX2 salt and the organic (or organic salt) sep-

arately in the appropriate concentrated acid HX, with heating and under an

inert atmosphere. When both are dissolved the solutions are combined, and

a crystalline precipitate is formed. Thin films for device testing can be made

by dissolving the product in an appropriate solvent and spin-coating [130]

or dip-coating [171]; by melt-processing [199], or by single- or dual-source

thermal ablation [78, 205]. The desired functionality is achieved by choosing

an appropriate organic molecule.

One major limitation of the metal halide-organic amine system is that

the compounds are easily oxidised in air and therefore must be synthesised,

stored and handled under an inert atmosphere. If one were able to form

an identical structure with an appropriate metal oxide, this issue could be

overcome. Such an oxide structure in its simplest form requires a hexavalent

metal ion. This can be seen by ionic counting. The square-planar, corner-

shared assembly of WO6 octahedra has the formula MO4 to which two R-

NH +
3 groups are added. Charge balance for MO4(RNH +

3 )2 requires M6+.

Hence, this nominally limits such structures to molybdenum and tungsten

oxides.

Molybdenum and tungsten oxides can form layered hybrid materials, and

the oxide systems themselves display interesting properties. This is discussed

in detail in the following section.

1.3 Tungsten Oxide Systems

Tungsten trioxide, WO3, has long been studied for its interesting structural,

electronic, and electrochromic properties. The basic structure of tungsten

trioxide consists of a three-dimensional network of WO6 octahedra, shared

at all their corners, otherwise known as the ReO3 structure. However, unlike

ReO3 which exhibits a high degree of symmetry and hence a simple cubic

cell, the WO6 octahedra are slightly distorted in terms of W–O bond lengths
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and W–O–W bond angles, due to antiferroelectric displacement of the W

atoms and subsequent rotation of the WO6 octahedra [35, 82]. At room

temperature tungsten trioxide adopts a monoclinic cell, but exhibits phase

changes as the temperature is increased or decreased [163, 233].

The structure of WO3/ReO3 can also be described as a perovskite struc-

ture, ABO3. The basic definition of the perovskite structure is a cubic cell,

with A atoms occupying the corner sites, O atoms in a face-centred cubic ar-

rangement, and a B atom (in this case, tungsten) occupying the body centre.

When the A site is fully or partially occupied by a metal ion, as in Figure 1.1,

this is called a “tungsten bronze”. There is a wide variety of elements which

can be inserted in the A site; these include Li, Na, Mg, Al, K, Ca, Cu, Ag, Tl,

Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu [14, 15, 102, 113].

The chemical formula for such compounds is often written as MxWO3, with

x continuously variable between 0 and 1. In general, the maximum level

of intercalation is less than 50%, and in some cases less than 5%. Samples

with high x contents are quite lustrous and exhibit metallic electronic prop-

erties [89], from which the name “tungsten bronzes” is derived. However all

such compounds with x > 0 are termed “bronzes” in literature, although

they may not have metallic properties. For smaller atoms such as Na+ it

is possible for all sites to be occupied, i.e. x = 1 [255]. The majority of

work performed on such compounds has concentrated on alkali metal ion

intercalation, with Na+ in particular being the most common and the first

to be studied [285]. For NaxWO3 (x > 0.3) the cell is cubic, with a linear

increase in the cell dimension observed [33] and continuous colour change

with increasing x, from dark blue to red to golden yellow [255].

Tungsten bronze samples are often prepared by the method of Straumanis

[255] which entails placing a stoichiometric mix of WO3, Na2WO4, and W

metal inside a closed tube and firing at 950◦C. To produce samples with x

values close to 1, however, an excess of Na2WO4 is required. Brightly coloured

single crystals are formed up to 1 cm to a side. They can be cleaved along

the crystal planes and are not readily attacked by acid or alkali solutions

[31].

Even low levels of ion intercalation can cause a huge difference in the ob-
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Figure 1.1: A diagram of the cubic tungsten bronze structure, where tungsten
atoms are shown as black circles, oxygen as white circles, and the intercalated
ion as the grey circle. The octahedral co-ordination of the B-site is shown.
From [114].
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served colour of the sample [92]. This has prompted research into switchable

glazings, or “smart windows” which are quite absorbing in the ‘on’ state but

relatively transparent in the ‘off’ state. Differences of 30% to 95% transmis-

sion have been observed [1], which are completely reversible. Commercial

applications normally involve ion transfer between a WO3 layer and a layer

of another electrochromic material, such as V2O5, Ni(OH)2, Nb2O5 or In2O3

[1, 96] in a solid state reaction. The mechanism for colouring involves two

reactions, e.g. [156]:

LixV2O5(uncoloured) → x · Li+ + V2O5(coloured)

WO3(uncoloured) + x · Li+ → LixWO3(coloured)

In this case there are two colouration reactions occurring as the V2O5

species is depleted of Li+ ions which then populate the WO3 layer.

Commercial stoichiometric tungsten trioxide powder is a pale yellow col-

our, which degrades in atmospheric conditions over 1-2 days to a pale green

colour. This is indicative of a loss of oxygen, which can be regained by

storing in an oxygen atmosphere or heating in oxygen for a few hours.

An increase in oxygen partial pressure, even at room temperature, is suf-

ficient to re-oxygenate the structure. The colouration caused by oxygen

non-stoichiometry has long been studied. Thin films of tungsten trioxide

deposited by chemical vapour deposition, magnetron sputtering or electron-

beam evaporation are often transparent when stoichiometric but become

blue-coloured as oxygen is removed [93]. Their conductivity also increases,

but for the same level of colouration as a cation-inserted film, the conductiv-

ity is much less. This indicates that the mechanism for mobility is not simply

due to delocalised electrons/holes but changes in the band structure near the

Fermi level, which are different for the two types of material [92, 95].

Optical measurements and Raman studies on tungsten trioxide films [159,

161, 162] yield some insight into the electrochromic mechanism in these films:

As cations are introduced or oxygen atoms are removed, W5+ ions are formed

to maintain charge neutrality. The optical absorption is due to electron

exchange between adjacent W5+ and W6+ ions. In amorphous films there
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also exist W4+ ions due to the disordered structure, which result in a higher

colouration efficiency due to the additional W4+–W5+ transitions [160].

Stoichiometric WO3 is reported to be a semiconductor, with an indirect

band gap [19, 93]. The value of the band gap as measured on thin films varies

from 2.5 – 3.2 eV, depending on crystallite size [225]. From X-ray photoelec-

tron spectroscopy (XPS) it is found that the valence band lies solely on the

oxygen 2p states, while the conduction band comprises only tungsten 5d

states [19]. This is confirmed by computational methods [35, 114, 172, 209]

which also show an direct gap of 0.5–1 eV (not observed) and an indirect gap

at 2–3 eV. The dielectric constant of the material is temperature dependent

and changes abruptly at structural phase transitions [163]. A typical given

value for the dielectric constant at room temperature is ∼300 [174]. Stud-

ies of the optical properties of tungsten trioxide thin films yield an index

of refraction, n, between 1.9–2.6, depending on thickness, crystallinity, and

density. This is compared with the single crystal value for n of 2.5 [68].

While the ReO3-type structured WO3 is the most stable [82], it is possible

to form alternative structures under specific synthesis conditions. These all

involve different arrangements of the WO6 corner-shared octahedral building

blocks.

The tetragonal phase exhibits 4- and 5-sided rings, as shown in Figure

1.2 [14]; while the hexagonal phase exhibits 6-sided rings (Figure 1.3) [207].

These form in two-dimensional sheets which are stacked directly on top of

each other, resulting in one-dimensional channels which run throughout the

material. It is also possible to form pyrochlore structures, which are open

three-dimensional structures based on 6-membered rings (Figure 1.4) [106].

As in the ReO3 structure, it is also possible to intercalate ions into the

vacancies in these alternative structures to form bronzes [91, 106].

Bulk superconductivity has been observed in tetragonal sodium tungsten

bronzes up to 3K [243]. In cubic sodium-doped WO3 single crystals, under

strict synthesis conditions it is possible for the sodium to be diffused into

the surface (< 10 nm depth). In such samples, granular superconductivity

has been reported with a critical temperature, Tc, of around 91K [167]. This

appears to be a surface effect, indicating that if one were able to form a
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Figure 1.2: A schematic diagram of tetragonal WO3, showing how the corner-
shared octahedra arrange to form 4- and 5-sided tunnels in the structure.
From [14].



20 CHAPTER 1. INTRODUCTION

Figure 1.3: A schematic diagram of hexagonal WO3, showing the hexagonal
tunnels formed by corner-shared octahedra. From [82].

Figure 1.4: A schematic diagram of WO3 pyrochlore structure, illustrating
the network of corner-shared octahedra to form 3-dimensional tunnels. From
[82].
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material with electronically decoupled two-dimensional sheets of tungsten

oxide, similar interesting behaviour could perhaps be expected. Initially,

this was the primary motivation for the research described in this thesis.

It is indeed possible to form layered tungsten oxide structures. Tungsten

oxide hydrates, WO3 · nH2O (given the term “tungstic acids” – which may

be misleading, as the hydrogen atoms do not dissociate as in a true acid),

form into layers of corner-shared WO6-like octahedra, with the apical W–O

bonds alternating between W=O and W–OH2 terminations [257]. This is

identical to the structure of MoO3·H2O, shown in Figure 1.5 [145]. For n >

1, the structure has additional H2O molecules situated between the layers.

Both molybdenum and tungsten oxide layers have been used as the inorganic

component of hybrid materials before [13, 99, 125], but not extensively. This

may be due in part to the formation of heteropolytungstate and -molybdate

ions at low pH [134]. Several other molybdenum oxide-organic hybrids have

been reported [69, 70, 157, 288] but the inorganic frameworks are not simple

corner-shared arrangements of the MoO6 octahedra. For this reason, the

scope of this work will concentrate mainly on tungsten oxide hybrids that do

exhibit this structure.

The quite considerable variety of structure and function of the tungsten

oxide system can be extended even further by the intercalation of organic

molecules. This is the subject of this thesis, as described in the following

chapters.

1.4 Thesis outline

Chapter 2 describes all of the experimental techniques and equipment used

for the experimental work undertaken in this thesis.

Chapter 3 details the synthesis and initial structural characterisation of

the ‘parent’ tungsten oxide hybrid system. A comprehensive understanding

of the structure and behaviour of the simplest system is necessary before

continuing on to more complex hybrid systems, with more complex organic

molecules, adjusting the inorganic layer, or both. Several synthesis meth-

ods are compared using x-ray diffraction, electron microscopy, and infrared
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Figure 1.5: The structure of WO3 · nH2O, where n = 2. From [145].
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spectroscopy. These techniques, along with elemental microanalysis, ther-

mogravimetric analysis, and Raman spectroscopy are used to describe the

layered structure, chemical composition, and bonding arrangement of the

hybrid materials and how these vary systematically across the series of or-

ganic molecules intercalated.

When surmising how these materials might behave upon doping, it is use-

ful to study a known, related system. Chapter 4 presents ab initio calcula-

tions of a number of tungsten oxide-based systems. An initial examination of

a previously well-studied system (both computationally and experimentally),

the alkali tungsten bronzes (MxWO3), is provided. This looks at electronic

and structural trends across the doping range and also confirms the validity

of the computations, which agree well with previous studies. This work is

then extended to another doped tungsten oxide system which has been little-

studied computationally, oxygen-deficient WO3−x. Given this background,

computations of some experimentally simple (although computationally com-

plex) tungsten oxide hybrids were performed. The electronic band structures

of the materials were compared with experimental UV-visible spectroscopy

results and are in good agreement. Thus, Chapter 3 provides the structural

and composition studies of the ‘parent’ tungsten oxide hybrids, and Chapter

4 discusses their electronic properties through computation and experiment.

Chapter 5 expounds upon Chapter 3 through the addition of transition

metal species to the inorganic layer in an attempt to dope the inorganic layer

via substitution. Each transition metal ion series forms a different structure,

and again, a variety of techniques was used to determine structure, chem-

ical composition, and bonding arrangement of the resulting hybrids. The

compounds formed display a wide variety of interesting properties, including

magnetism, which is explored in more detail for each material in Chapter 6.

Chapter 7 provides a brief exploration into an area of research which is still

in progress at the time of writing, that of using electrochemical techniques

to attempt to intercalate small metal ions into the hybrid structures. Again,

the known systems of WO3 and H2WO4 are used as comparatives.

This thesis is hardly an exhaustive treatise on tungsten oxide-based organic-

inorganic hybrid materials. There are thousands more individual compounds
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in hundreds of chemical series that could be studied, and several other tech-

niques not readily available to us that could be used for characterisation.

Chapter 8 provides some examples of future work that could be conducted,

followed by the final conclusions.



Chapter 2

Experimental

This chapter outlines the synthesis techniques that have been used to form

the tungsten oxide hybrid materials and the various methods used to char-

acterise them and measure their properties, used throughout this thesis.

2.1 Synthesis of tungsten oxide-based hybrids

Three main synthetic techniques were used to form the tungsten oxide hy-

brids [48, 49]:

- Solution based method (evaporation of solvent),

- ‘Melt method’ (intercalation via pure liquid amine),

- Chimie douce (‘soft chemistry’, soaking).

Each of these will be described in detail. We consider first the simple

tungsten oxide-based hybrid materials and discuss later the incorporation of

transition metal ions (Section 2.2).

The following chemicals were used in the syntheses with no further purifi-

cation:

Tungstic acid, H2WO4, 99%, Aldrich

Ammonia solution, 30 wt. %, BDH

1,2-diaminoethane (DA2), H2N(CH2)2NH2, 99%, BDH GPR

1,4-diaminobutane (DA4), H2N(CH2)4NH2, 99%, Aldrich

25
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1,6-diaminohexane (DA6), H2N(CH2)6NH2, 98%, Sigma

1,8-diaminooctane (DA8), H2N(CH2)8NH2, 98%, Aldrich

1,12-diaminododecane (DA12), H2N(CH2)12NH2, 98%, Aldrich

methylamine (MA1), H2NCH3, 25-30% in H2O, BDH

ethylamine (MA2), H2NCH2CH3, 70% in H2O, Aldrich

butylamine (MA4), H2N(CH2)3CH3, 99.5%, Aldrich

hexylamine (MA6), H2N(CH2)6CH3, 99%, Aldrich

dodecylamine (MA12), H2N(CH2)11CH3, 98%, Aldrich

aniline, C6H5NH2, 99%, Aldrich

benzylamine, (C6H5)CH2NH2, 99%, Aldrich

phenethylamine (phen), (C6H5)(CH2)2NH2, 99.5%, Aldrich

p-phenylenediamine/1,4-diaminobenzene (DAphen), H2N(C6H4)NH2, 97%,

Aldrich

2-amino-benzylamine, H2N(C6H4)CH2NH2, 98%, Aldrich

2.1.1 Solution-based method

Tungstic acid, H2WO4, was dissolved in aqueous ammonia solution with heat-

ing and stirring at 70−80◦C for approximately 6 hours. In a separate beaker,

a 2-fold molar excess of the desired organic was dissolved in an appropriate

solvent (see Table 2.1) with heating, and added to the hot tungstate solu-

tion. The temperature was maintained at 70− 80◦C and as the solvent was

evaporated under nitrogen flow, a white-cream coloured powder formed. In

the latter stages of evaporation the flask was transferred to a water bath to

ensure even heating. The product was washed and filtered with ethanol and

dried in air at 80◦C overnight. It is possible to remove the saturated solution

from the heat before a precipitate forms, and use this to spin- or dip-coat

films for applications.

2.1.2 ‘Melt method’

Most simple aliphatic (straight-chain) and aromatic amines melt cleanly at

temperatures in the range of −50 to 200◦C (i.e. using a bench-top labora-
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Organic Intercalate Solvent used

DA2 distilled H2O, ammonia solution, none
DA4 ammonia solution
DA6 distilled H2O, ammonia solution
DA8 ammonia solution
DA12 ethanol
MA4 heptane
MA6 heptane
benzylamine ethanol
phenethylamine ethanol
2-amino-benzylamine ethanol

Table 2.1: Solvents used to dissolve organic reagents

tory hot-plate). An excess of amine was melted and tungstic acid powder

added, followed quickly by a few drops of ammonia solution, with vigorous

stirring. An immediate colour change from yellow to white-cream was ob-

served. The product was washed and filtered with ethanol and dried in air

at 80◦C overnight.

2.1.3 Chimie douce method

Utilising the pre-existing layered structure of H2WO4, it is possible to apply

chimie douce methods to intercalate organic molecules between the WO4

layers.

Tungstic acid was stirred at room temperature for a period of days to

weeks in an appropriate solution of the organic amine1. The solvent was

chosen so that it dissolved the amine at room temperature, but not the

tungstic acid nor the hybrid product. As the reaction progressed the colour

of the powder was observed to change from yellow to white. The product

was filtered, washed with ethanol, and dried in air at 80◦C overnight.

2.1.4 Thin film preparation

Thin films of WO3 were deposited on quartz substrates 1–1.5 cm to a side

via three methods:

1Toluene for DA6, alcohol for the others.
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- Spin-coating of H2WO4 dissolved in aqueous ammonia solution, ethan-

olamine, or a mixture of the two, followed by annealing at 550–600◦C

in O2 for 1 hour;

- Sputtering of W metal films, subsequently heated in O2 at 450◦C for 6

days;

- Electron-beam deposition of WO3.

Thin films of the hybrid materials were spin-coated from a saturated solution

of H2WO4 in aqueous ammonia with the organic amine added. This was

obtained by following the same procedure for making the hybrid powders

but halting the reaction before a precipitate forms. The normal procedure

is to form the hybrid powder and then redissolve in a suitable solvent [130].

However we have been unable to find a solvent which completely dissolves

the hybrid, and from which the layered phase can be recrystallised. This is

not surprising given the low solubility of WO3 and H2WO4 in almost any

solvent.

2.2 Hybrids with transition metals

As in Section 2.1, three methods were used to synthesise the transition metal

tungstate hybrids:

- Solution based method (evaporation of solvent),

- ‘Melt method’ (intercalation via pure liquid amine),

- Chimie douce (‘soft chemistry’, soaking).

In addition to the chemicals listed in Section 2.1, the following were also

used in the syntheses (with no further purification):

Na2WO4·2H2O, 99% Ajax Chemicals

MnCl2·4H2O, 99.0% BDH AnalaR

FeCl3, 98% Ajax Chemicals

Fe(NO3)3·9H2O, 99% BDH AnalaR
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Co(NO3)2·6H2O, 99% Acros

NiSO4·6H2O, 98% Aldrich

CuCl2, 97% Aldrich

Manganese and iron tungstate hybrids could be made successfully via the

solution method as follows:

The tungsten and organic reagents were prepared in hot (80◦C) aqueous

ammonia solution as per Section 2.1.1. Nitrogen gas was bubbled at a mod-

erate rate through the stirred solution as a cold (room-temperature) aqueous

solution of the manganese or iron salt was quickly added. A precipitate

immediately formed that darkened with time. While the initial precipitates

were of the desired phase, the best quality products with greatest crystallinity

were obtained by evaporating the rest of the solvent as per the tungsten ox-

ide hybrids, with the latter stages of evaporation performed on a water bath.

The use of nitrogen gas is essential to prevent the formation of oxide species.

The products were filtered and washed with ethanol and dried under vacuum

overnight.

When cobalt, nickel, or copper solutions were added to the solution in

the above manner, they formed complexes with the ammonia rather than

hybrid materials. However, hybrids of copper and cobalt tungstate with

DA2 as the organic intercalate have been formed via a solution technique,

using Na2WO4 as the source of tungstate ions, and all reagents dissolved in

water. This is indicated in Table 5.1. However, as we shall see in Section

5.2.1 the (M,W)-DA2 compound for M = Co, Ni and Cu appears to form a

completely different structure. Syntheses of (Co,W)-DA6, (Ni,W)-DA6 and

(Cu,W)-DA6 from Na2WO4 aqueous solution were unsuccessful. Hence the

‘melt’ and chimie douce methods were used more extensively for transition

metal hybrids with Co, Ni and Cu in particular.

As the ‘melt method’ and chimie douce method both require a layered

structure to directly intercalate the organic molecules, and tungsten oxide hy-

drate was used for the W-DAn hybrids formed by these methods, we elected

to form the hydrates of the metal tungstates to use as the inorganic reagent

in these syntheses.
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Transition metal tungstate hydrates, MWO4 ·nH2O, form as precipitates

for most metal ions M2+ when an aqueous M2+ solution is added to an

aqueous tungstate (normally Na2WO4) solution at room temperature [170].

The precipitates were filtered and washed thoroughly with distilled water

to remove excess starting materials and NaCl, then dried under vacuum

overnight. They were then used as-is in either the melt or chimie douce

method to produce the hybrids. A comparison of these methods is given in

Section 5.1.1.

2.3 Preparation of hybrids for electrochemi-

cal doping

WO3, H2WO4, and hybrid material powders were mixed in a 1:6 – 1:8 ratio

with an organic polymeric binder (polypropylene carbonate, ‘qpac-40’, dis-

solved in cyclohexanone) to form a paste, which was then coated onto a gold

foil working electrode 1 cm to a side.

The electrolyte consisted of a 0.5 M solution of NaCl in distilled water.

Immediately before each experiment the solution was de-oxygenated by bub-

bling nitrogen gas through for at least ten minutes. Ag/AgCl was used as

the reference electrode.

Ramp rates of 10–50 mV·s−1 were used over a voltage range of -400 –

+400 mV. The voltage range is limited by the oxidation and reduction of the

H2O solvent.

While many samples exhibited an intense colour change (from pale yel-

low to dark blue), there was not enough material to measure their diffuse

reflectance. X-ray diffraction was used to observe any phase changes or lat-

tice expansion due to the incorporation of the additional ions.

2.4 Measurement techniques and parameters

The various experimental procedures used in the course of the project are

outlined as follows:
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X-ray Diffraction

X-ray diffraction (XRD) was used as a primary characterisation technique.

To avoid preferential alignment of the grains, samples were prepared in the

following manner: A small amount of powder was lightly ground and placed

on a custom-made quartz slide holder with negligible XRD background along

with 5–10 drops of ethanol to make a slurry. The powder particles were

spread evenly over the holder and the ethanol allowed to evaporate. Alter-

natively a small amount of grease was smeared onto the quartz holder and

the ground powder sprinkled onto it.

Diffraction patterns were obtained using a Philips PW1700 series powder

diffractometer employing Co Kα radiation (λ = 1.789 Å). Typical parameters

for initial characterisation of the powders are an angle range of 4–80◦ 2θ with

total scan time 50 minutes.

Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed on powder samples that

had been coated with carbon prior to viewing. SEM micrographs were ob-

tained using a Leo 440 microscope with up to 50,000 times magnification

capability, with an Oxford ISIS energy dispersive X-ray analysis (EDX) sys-

tem attached.

Transmission Electron Microscopy

Transmission electron microscopy (TEM) was undertaken in both imaging

and diffraction modes on two separate instruments: a Phillips EM400 with

tungsten filament operated at 120 kV, and a JEOL 2011 high-resolution

instrument with a LaB6 filament operated at 200 kV. Samples were lightly

ground with a liberal amount of isopropanol with a mortar and pestle, and a

suspension of fine particles transferred using a dropper to a standard carbon

film supported on a copper grid.
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Microanalysis

Samples of 5–10 mg were sent to the Campbell Microanalytical Laboratory

at Otago University [301] for elemental analysis of C, H and N, using a Carlo

Erba Elemental Analyser EA1108. In each case a minimum of two samples

were analysed. The absolute experimental uncertainties are estimated from

the range of results (given as percentages by weight of the total mass) and

are typically < 0.05 % for C and N and < 0.1 % for H.

Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed on 10–15 mg of sample

using a Rheometrics STA1500 TG-DTG/DSC thermogravimetric analyser

over temperature ranges up to 800◦C with a heating rate of 5◦C/min under

flowing nitrogen gas.

Infrared spectroscopy

Samples were prepared for infrared measurements using the KBr disc method:

10 mg of sample was incorporated with 0.10–0.15 g KBr, ground thoroughly

using a mortar and pestle, and pressed into discs of 15 mm diameter at a

pressure of 10 MPa. The samples, KBr, and pressed discs were kept in a

dry box at all times to minimise adsorption of atmospheric water. Infrared

spectra were collected on a Bomem DA8 FT spectrometer over the mid-IR

range (450-4000 cm−1) with a resolution of 2 cm−1.

Raman spectroscopy

Samples were prepared for Raman measurements by pressing 8-10 mm pellets

(∼ 0.2 g) of ground powder at pressures of 5-15 MPa. Raman spectra were

collected using a Jobin-Yvon LabRam HR spectrometer with an excitation

wavelength of 632.8 nm and resolution of 4 cm−1.

UV-visible spectroscopy

UV-visible spectroscopy was performed on powder samples using a diffuse re-

flectance integrating sphere, and on thin films using a simultaneous transmit-
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tance and reflectance set-up. Data were collected using a GCA/McPherson

2051 monochromate spectrometer over the range 250–1200 nm with spectral

bandwidth of 1 nm.

Finely-ground powder samples were packed in a custom-made cell with a

quartz wedged window ∼ 20 mm in diameter.

For UV-visible thin film transmittance measurements, films must be de-

posited on quartz substrates as these are transparent over the wavelength

studied.

XANES and EXAFS

Two manganese tungstate hybrids, (Mn,W)-DA2 and (Mn,W)-DA6, and

MnWO4 · nH2O were sent to the National Synchrotron Radiation Research

Centre in Taiwan for x-ray absorption near edge spectroscopy (XANES) and

extended x-ray absorption fine structure (EXAFS) measurements. Spectra

were obtained at both the Mn K-edge and W L3-edge in the hope of deter-

mining the local environment around each manganese and tungsten atom in

the structure. Fits were performed using the FEFF and FEFFIT analysis

programs.

Magnetic susceptibility

A Quantum Design MPMS XL Squid magnetometer was used to perform

various magnetisation measurements on selected materials. The instrument

can measure samples in DC fields of up to 7T and temperatures from 2–

300K, with a sensitivity of 10−8 emu. Powder samples were ground and 5–20

mg tightly sealed in a gelatin capsule with negligible magnetic susceptibility.

Both field-cooled and zero-field cooled temperature sweeps were performed

at constant applied fields. AC susceptibility was measured at frequencies of

30–900 Hz and an amplitude of 3 Oe (although the instrument frequency

range is up to 0.01–1000 Hz and amplitudes up to 4 Oe).
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Chapter 3

Composition and Basic
Structure

This chapter compares the various synthesis techniques that have been used

to form the tungsten oxide hybrid materials, and discusses the results of the

basic structural analysis using various techniques.

3.1 Synthesis

As described in Chapter 2, tungsten oxide-based hybrid materials were syn-

thesised by three main synthetic techniques: the solution-based, ‘melt’ and

chimie douce methods. While the solution method was preferred, it was not

possible to form some of the hybrids by this method and so other techniques

were explored.

First we compare the products formed by each of three methods, and

then study the characterisation results.

3.1.1 Comparison of synthesis methods

In the present studies, the solution-based evaporation of solvent method has

been the most extensively used of the three techniques, as indicated in Table

3.1. Precipitation of a product from solution generally forms larger crys-

tals than a quicker method, as the crystals nucleate relatively slowly in the

saturated solution.

35
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Chimie douce on the other hand preserves the layered structure, and

for this reason has been used to synthesise hybrids where a solution-based

method would destroy the inorganic layers (e.g. MnO2 birnessite and swelled

perovskites, see Appendix A). However, the particle size of the product is

limited by the particle size of the inorganic ingredient.

There have been reports of certain metal halide hybrids being prepared

from a melt or by a solid state reaction [199, 202]. The ‘melt method’ is

expected to give the lowest quality samples for several reasons. When the

H2WO4 powder is added to the melt, the mixture quickly solidifies and hence

the incorporation of the organic molecules within the layered structure is

hindered. The whole reaction is very quick, of the order of minutes. There is

no solvent present for the dissolution and recrystallising of the product, and in

short the reaction is very inhomogeneous. It is therefore quite surprising that

not only is the same product formed as in the other two methods, but there

are no traces of the starting material H2WO4. The hybrid structure must

therefore be quite structurally stable and diffusion rates for the intercalant

quite fast.

Figure 3.1 illustrates the difference in XRD between three samples of

W-DA6 formed by each of the three methods presented here, obtained as

described in Section 2.4.

As can clearly be seen, the signal-to-noise ratio of the sample produced

by the solution-based method is much greater than those by the melt and

chimie douce methods. The line widths are fairly similar in this instance,

however as will be seen in Chapter 5, the line widths of the samples prepared

by the solution-based method are normally much narrower than the other

two, indicating better crystallinity. Other variations in line intensity, seen in

Figure 3.1, can be due to grain alignment which may intensify some reflections

(e.g. 00`).

Figure 3.2 shows SEM micrographs of the same three samples (a, solution;

c, melt; and d, chimie douce). These were obtained as described in Section

2.4. Figure 3.2b is another sample formed by the solution method with

methylamine (H2NCH3) added as a structural templating agent. (While the
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Organic interca-
late

Solution Melt Chimie douce

DA2
√ √ √

DA4
√

– –
DA6

√ √ √
DA8

√
– –

DA12
√

–
√

MA1 × – ×
MA2 × –

√
1

MA4
√

– –
MA6

√
– –

MA12 × – –
aniline × – –
benzylamine

√
–

√
phen

√
–

√
DAphen × – –
2-amino-
benzylamine

√
–

√

Table 3.1: Synthesis methods used for various organic intercalates.
√

=
successful, × = unsuccessful, – = not attempted.
1 with heating.

Figure 3.1: XRD patterns of three samples synthesised by (a) solution, (b)
melt, and (c) chimie douce methods. The solution method pattern has been
truncated; the maximum value is 10400 on the scale.
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Figure 3.2: SEM micrographs of W-DA6 samples synthesised by (a,b) solu-
tion, (c) melt, and (d) chimie douce methods. The scale bars shown corre-
spond to 10 µm in each case.

morphology is quite different from the sample shown in Figure 3.2a, XRD

confirms the same crystal phase has been formed, and microanalysis indicates

the methylamine is not present in the final structure.)

The solution-based method produces well-defined crystals of various sizes

(Figure 3.2a) which can be quite platy under slightly different synthesis con-

ditions (Figure 3.2b). The chimie douce method produces crystals of a similar

size and morphology to the starting inorganic material, as expected, because

the inorganic material is not dissolved and recrystallised. The ‘melt’ method

produces a material with visually the lowest crystallinity of the three meth-

ods, with a high degree of disorder due to the rapid formation of the hybrid.

Despite this, the linewidths in the XRD patterns (a measure of crys-

tallinity) are fairly similar. This is probably due to the sample preparation

for XRD requiring grinding of the sample, and the larger crystallites are bro-

ken up. Manual grinding can reduce powder crystallites to 1-2 µm in size,

and it is quite conceivable that in the melt method there are crystallites of

this size.
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Figure 3.3: IR spectra of W-DA6 samples produced by (a) solution-based
method, (b) ‘melt’ method, and (c)chimie douce method.

Figure 3.3 shows the IR spectra of the same three samples. While a more

detailed IR study is given later in Section 3.3, the point to note here is the

consistency between the three spectra corresponding to the three synthesis

techniques: the peaks do not change in shape or position.

These three methods were used quite extensively in the initial character-

isation of the tungsten oxide (and later, transition metal tungstate) hybrid

samples. SEM gives a visual indication of morphology, and in the transi-

tion metal tungstates EDX can be used at the same time to determine the

transition metal to tungsten ratio. XRD gives a semi-quantitative measure

of phase purity and crystallinity. While IR is not affected by the quality of

the sample in general (provided it is of a single phase), it gives additional

structural information (as elaborated in Section 3.3).
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3.1.2 pH dependence

Early in this study an examination of pH dependence in the synthesis of the

hybrids was undertaken.1 Considering first the metal halide hybrids, these

are synthesised in acid solutions of the halide (i.e. HCl, HBr, HI), which

protonates the amines and provides the extra halide ions to convert the MX2

starting material to MX4 layers [196, 200]. The protonation of the amines is

important to retain charge balance, i.e.

MX2 + H2N(CH2)nNH2 + 2HX → MX 2−
4 · [H3N(CH2)nNH3]

2+

Slow evaporation, unseeded cooling and seeded cooling were three meth-

ods used to grow crystals of the metal halide hybrids of sizes up to ∼ 10 mm

on a side [6].

H2WO4 is soluble in alkaline solution and HF, with aqueous ammonia

solution the most common solvent (and used here). The pH was altered with

HCl, HNO3 or acetic acid and hybrid syntheses were attempted. At pH 6

crystals were formed that were large enough to perform single crystal x-ray

diffraction. It was found that instead of a tungsten oxide layered hybrid

compound, a hybrid based on [W12O42]
12− Keggin ion clusters was formed

[86]. Such hybrids have also been reported by other groups, at pH values

ranging from 2–8 [84, 124].

While the low pH protonates the amine species, it also forms W–OH

terminations on the soluble WO 2−
4 ions. These terminations preferentially

lead to the formation of polyoxotungstate cluster ions below pH ∼ 8 [134,

177].

Therefore, to avoid the formation of the polyoxotungstate ions, a high pH

(∼ 10) must be maintained. This is achieved in the solution-based method

with excess ammonia solution required to dissolve H2WO4. Aqueous ammo-

nia solution boils at ∼ 80◦C, which is less than the boiling point of water

(100◦C). Even so, during the stage where most of the ammonia is removed

and only water is being evaporated, the presence of aqueous ammonium hy-

droxide and the organic amines maintain an alkaline pH of ∼ 9.5 [27].

1This work was carried out by Natalie Robinson, Hana Robson Marsden and David
Bitauld as a student project.
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3.2 Structure

As discussed in the previous section, different microstructures can be formed

from tungstate solutions by varying the pH - the most noticeable of these

being the formation of polyoxotungstate cluster ions.

These cluster ions can also be formed in solutions containing organic

amine species which are unable to form layered hybrids due to steric hin-

drance2. This situation was encountered with several aromatic based hybrids

where the terminal –NH2 group is directly adjacent to the benzene ring (e.g.

aniline and DAphen) [87]. It is possible to synthesise copper halide hybrids

with such organic molecules, due to copper displaying a large distortion range

arising from the Jahn-Teller effect [180, 196, 283]. While distortions exist in

layered WO3 · nH2O, they are not large enough to allow the accommodation

of the bulky aromatic rings, due to steric hindrance by the terminal oxygens.

Aromatic molecules with the amine separated from the ring by at least one

–CH2– linkage (e.g. benzylamine, phenethylamine) are able to form hybrids

with tungsten oxide.

3.2.1 X-ray diffraction

X-ray diffraction (XRD) has been the primary method of characterising the

hybrid materials, and is detailed in Section 2.4. Figure 3.4a shows typical

XRD patterns for the W-DAn series (n = 2, 4, 6, 8, 12). These display a

series of 00` lines, including the intense 001 peak at low 2θ angles. This

is characteristic of layered structures and the d-spacing given by the lines

corresponds to the interlayer spacing. This is shown in Figure 3.4b plotted

versus the length of the organic diamine spacer molecule.

From the gradient and intercept of this line we can determine some basic

features of the structure. A linear fit gives the equation d = 1.26n + 4.77,

where d is the interlayer spacing and n denotes the number of carbon atoms

in the alkyl chain.

The C–C bond length is 1.54 Å and bond angle 109.4◦ [12], giving a

2While hydrothermal synthesis can force such sterically hindered molecules into the
tungsten oxide layers, this has not been pursued in the project to date.
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Figure 3.4: a) XRD patterns of W-DAn, (i) n = 2, (ii) n = 4, (iii) n = 6,
(iv) n = 8, (v) n = 12. b) Plot indicating the d-spacing as determined from
the positions of the 00` lines.



3.2. STRUCTURE 43

Figure 3.5: Diagram of W-DAn structure.

lengthwise component of 1.26 Å per carbon atom in the chain. The gra-

dient of the line is 1.26 Å per carbon and hence the organic molecules lie

perpendicular to the inorganic layers.

From the intercept we can calculate the inorganic layer spacing. There is

no physical system corresponding to a zero carbon chain; rather the expected

length is given by

d = dW−O + 2d∆N + 2dN−C + (n− 1)dC−C

as shown in Figure 3.5. Thus when n → 0, the expression becomes

d = dW−O + 2d∆N + 2dN−C − dC−C

Substituting d = 4.77, dN−C = 1.47 cos(109◦/2) and dC−C = 1.26Å, we

obtain
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dW−O + 2d∆N = 3.56Å

In WO3, the W–O layer is 3.74 Å [262] and in H2WO4 the W–O layer

is 4.03 Å [257]. d∆N is expected to be very small (i.e. the nitrogen atoms

of the ammonium groups lying in plane with the apical oxygen atoms) or

even negative. Thus the XRD results indicate that for the W-DAn system,

there is exactly one WO4 unit per inorganic layer and the organic ‘spacer’

molecules lie perpendicularly to the inorganic layers. This is also found to

be the case in Section 3.2.3.

3.2.2 Electron microscopy

SEM images shown in Figure 3.2 (obtained as detailed in Section 2.4) demon-

strate that the largest crystals are formed via the evaporation of solvent

method. The largest crystals are ∼ 20 × 10 × 5 µm in size, rendering them

too small for conventional single-crystal x-ray diffraction to elucidate their

structure. Attempts to measure the diffraction from these microcrystals us-

ing a synchrotron source (via the SCrAPS programme) were also fruitless.

Powder XRD data does not give enough information for Rietveld refinement

without being confident of the unit cell obtained. Powder samples were

also sent for neutron diffraction measurements, however the hydrogen atoms

were too highly scattering to provide useful data. At the time of writing,

fully deuterated forms of the hybrids were being prepared for additional neu-

tron powder diffraction experiments. In the absence of comprehensive X-ray

and neutron diffraction data, we performed selected area electron diffraction

(SAED) using a transmission electron microscope (TEM), as described in

Section 2.4.

Typical SAED patterns for W-DA2 and W-DA6 are shown in Figure 3.6.

These are reasoned to be directly related to the in-plane lattice parameters,

because of the crystal morphology (flat plates) and the similarity between the

two photographs - there is no evidence of lattice expansion in one direction

due to the longer DA6 instead of DA2 organic ‘spacer’ molecule. (The c-axis
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Figure 3.6: SAED patterns of W-DA2 (top) and W-DA6 (bottom), showing
the ab-plane.
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Sample % C % H % N Formula Expect I:O ratio
W-DA2 8.38 2.69 9.63 C2H7.64N1.97 C2H8−10N2 1:0.917
W-DA6 20.19 4.53 7.74 C6H16.10N1.98 C6H16−18N2 1:0.977

Table 3.2: Microanalytical results for W-DAn hybrids showing mass per-
centages, observed and expected stoichiometries, and the inorganic:organic
ratio.

lengths of W-DA2 and W-DA6, from XRD (Section 3.2.1) are 7.45 Å and

12.28 Å respectively.)

Knowing the parameters used in these photographs by calibration with

standard samples, we can calculate the two axes shown to be a = 5.62 and

b = 7.33 Å ± 10% for W-DA2 and a = 11.46 and b = 5.35 Å ± 10% for

W-DA6. While these results are not as accurate as one might have hoped,

it does give us the ratio between the two axes (1.305 and 2.143) and the

angle between them (89.4◦ and 88.3◦), which can be searched for in the list

of possible cells from the initial stages of powder XRD refinement. This task

is made difficult because of the likely possibility of supercells arising from

the tendency of tungsten oxide species to form a distorted layer structure

[35, 82, 257]. In W-DA2 there is evidence for the presence of a supercell by

the presence of weaker spots between the more intense spots in the shorter

lattice direction (spots further apart). In W-DA6 the most intense spots form

an almost square shape, but along one of these directions there are weaker

spots which indicate a supercell, doubled in the b–direction.

3.2.3 Microanalysis

Elemental microanalysis is a technique employed regularly in the character-

isation of the hybrid materials to determine the composition of the organic

species and the organic:inorganic ratio. These measurements were performed

as detailed in Section 2.4. Typical results for the W-DAn hybrids are shown

in Table 3.2, where the tungsten oxide is assumed to be present as WO4.

They confirm an essentially stoichiometric composition consistent with the

presumed two-dimensional layered structure.
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Figure 3.7: TGA scans for W-DAn, n = (a) 2, (b) 4, (c) 6, (d) 8 and (e) 12.

3.2.4 Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed as detailed in Section 2.4.

The results are shown for the W-DAn hybrid series in Figure 3.7. In each case

there are two distinct mass losses at temperatures of around 230 and 370◦C

for the samples with n > 2, and 315 and 500◦C for the n = 2 sample.

These correspond respectively to the clean deintercalation of the organic

molecules and subsequent decomposition to WO3. As shown in Table 3.3,

these temperatures are much higher than the melting points (and for the

shorter molecules, boiling points) of the organic molecules alone, indicating

that when the organic molecules are intercalated into an inorganic structure

they interact with the oxide structure more strongly than with themselves,

but inversely with respect to the alkane chain length.

W-DA2 displays quite different behaviour from the other hybrid samples,

as evidenced by a number of different experiments. The difference is most

obvious in the TGA data above, but from TGA alone no explanation can be

given. In the IR spectra of W-DA2 compared with the other W-DAn samples

(as we will see in the next section), there is evidence to suggest that this sam-
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n DAn melting
point (◦C)

DAn boiling point
(◦C)

W-DAn deintercalat-
ion temperature (◦C)

2 8.5 116.5 314
4 27 158 230
6 41 204 226
8 51 225 221
12 70 276 1 210

Table 3.3: Melting points, boiling points and decomposition temperatures
for DAn and W-DAn.
1 Estimated value.

ple has a different bonding mechanism. Analysis of the modes corresponding

to protonated alkyl-ammonium (R–NH +
3 ) and neutral alkyl-amine (R–NH2)

groups indicates that while the other hybrids display both of these, the or-

ganic molecules in W-DA2 have only neutral amine terminations. This is

also evident in the microanalysis (page 46) as the number of hydrogen atoms

is lower relative to the number expected, compared with W-DA6 for exam-

ple. However, this appears to be the only immediately obvious structural

difference across the W-DAn series.

3.3 Infrared and Raman spectroscopy

Samples of WO3, H2WO4, W-DAn (n = 2, 4, 6, 8, 12), W-MAn (n = 2, 4, 6)

and W-phen were prepared and measured as outlined in Section 2.4.

3.3.1 WO3, H2WO4 and W-DAn samples

The normalised infrared and Raman spectra of the solid samples studied are

shown in Figures 3.8 and 3.9 respectively. The peak positions are tabulated

for the region 1000–4000 cm−1 in Table 3.4 and for 0–1000 cm−1 in Table

3.5. The diaminoalkane hybrids W-DAn with alkyl lengths greater than two

carbons have virtually identical spectra [48, 120] and so are summarised in

the tables as W-DAn, in comparison with the differing W-DA2.

The infrared spectra of WO3 and its hydrate, H2WO4, have much fewer

and broader peaks than their hybrid counterparts, due to the absence of
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modes corresponding to the organic component. Both the infrared and Ra-

man spectra of WO3 and H2WO4 correspond well with those presented by

Daniel et al. [66]. The results will be presented and discussed in three

sections: the effect that the presence of the organic molecule has on the in-

organic layer, the effect of this incorporation on the organic species, and the

organic-inorganic bonding nature.

The effect on the inorganic layer

The presence of co-ordinated water molecules in H2WO4 can be seen by the

broad O–H stretching peak at 3410 (3370) cm−1 (IR and Raman respec-

tively), the H2O bending peak at 1614 cm−1 (IR only), and the W–OH2

co-ordinated water peak in the Raman spectrum at 377 cm−1. These peaks

do not occur in the WO3 spectra, as expected.

As mentioned in Section 1.3 (page 21), the structure of H2WO4 consists

of layers of corner-shared WO6 octahedra with alternate apical arrangements

of W–OH2 and W=O. In the Raman spectrum the W=O bonding is shown

clearly by a sharp band centred at about 950 cm−1. This is also present in

the IR spectrum. Surprisingly, the WO3 sample also exhibits a small peak

at this position in both the IR and Raman spectra. This is not expected as

the structure of WO3 consists only of single W–O bonds. However it can be

explained by the presence of disorder in the sample and loss of oxygen (as

noted in Chapter 4), which results in the formation of a small fraction of

W=O bonds [162] and a loss of inversion symmetry. There are also W=O

terminations on the surfaces of the powder particles. (Commercial WO3

powder is a pale yellow colour, which is reduced over 1-2 days in air to a pale

green colour. This is indicative of a loss of oxygen but can be regained by

storing in an oxygen atmosphere or heating in oxygen for a few hours.)

In the diaminoalkane hybrid compounds the characteristic W=O Raman

peak, formerly at 950 cm−1 in H2WO4, shifts to a lower frequency of 890-900

cm−1. While in several of these compounds there are peaks at 950 cm−1 they

are not as intense as the W=O peak. It is also of interest to note that the

peak at 888 cm−1 in the W-DA2 Raman spectrum is a doublet. There may

be more than one variant of the W=O bond within the structure, as is the
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Figure 3.8: Infrared spectra of tungsten oxide-related materials: (a) WO3;
(b) H2WO4; (c) W-DA2; (d) W-DA6; (e) W-DA12.

Figure 3.9: Raman spectra of tungsten oxide-related materials: (a) WO3; (b)
H2WO4; (c) W-DA2; (d) W-DA6; (e) W-DA12. The high frequency region
is displayed on a different scale to enable the important features to be seen.
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Assignment WO3 H2WO4 W-DA2 W-DAn
IR Raman IR Raman IR Raman IR Raman

ν(O–H) 3410 mb 3370 w
3302 s 3305 vw

3244 wb 3242 m 3247 w
3212 wb 3212 m

ν(NH2,NH +
3 ) 3134 wb 3135 s

2963 w 2956 s 2963 w 2960 w
2895 w 2900 s 2919 w 2924 w

ν(CH2) 2910 w 2883 m
2868 w 2870 m
2847 w 2849w

δ(NH +
3 ) 2101 mb

Organic 1762 vw 1760 vw
1700 vw 1701 vw

δ(H2O) 1614 m
1620 s 1631 s

δ(NH2/NH +
3 ) 1597 w 1602 vw 1604 w

1578 s
Sciss. CH2 1471 m 1472 w 1495 m

1467 w 1469 s 1465 w
1445 vw 1444 w

Sciss. and σ(CH2) 1403 vw 1412 vw
1382 vw 1386 vw 1393 s
1373 w

σ(CH2), ω(CH2) 1336 m 1340 vw 1310 w
1299 m 1296 vw 1298 w 1296 w
1292 m 1263 w

1213 w
1189 m 1197 w

σ(NH2, NH+
3 ) 1173 m

1144 m 1164 vw 1164 m
1128 vw
1114w

1103 w
1062 s 1070 vw 1083 m 1066 w

ν(C–N, C–C) 1059 s
1030 w 1030 vw 1027 m
1006 w 1001 m

962 w 953 vw

Table 3.4: Observed peaks in powder samples, 1000-4000 cm−1. ν stretching,
δ deformation/in-plane bending, sciss. scissoring, σ bending, ω wagging; s
strong, m medium, w weak, vw very weak, b broad.
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Assignment WO3 H2WO4 W-DA2 W-DAn
IR Raman IR Raman IR Raman IR Raman

ν(W=O) 940 mb 940 vw 950 s 947 s 951? m 900 s
885 s 888 s 905 s 890 s
857 sb 859 s
841 sb 846 m

824 sb 809 s 822 mb 816 m 813 m
ν(O–W–O) 756 sb 774 mb 7601 sb

714 m 740 sb 724 mb 732 vw
680 sb 674 sb 690 w 678 vw 679 w

614 w 638 sb 613 sb
594 vw 577 sb 576 vw
550 vw 545 sb 552 vw

Organic 537 s 519 w
487 w 490 vw

460 w 474 w
Inorganic 434 vw 467 vw 412 w 436 vw
W–OH2 377 vw 377 m

326 w 330 vw 348 w 336 vw
δ(O–W–O) 311 w 301 vw

274 m 261 m 283 vw
ν(W–O–W) 252 w 236 w 222 w 226 w

187 w 194 w 201 m 182 vw
Lattice modes 136 w 144 vw 144 vw

94 w 106 w

Table 3.5: Observed peaks in powder samples, 0-1000 cm−1. ν stretching, δ
deformation/in-plane bending, ρ rocking; s strong, m medium, w weak, vw
very weak, b broad.
1 ρ(NH +

3 ) mode.
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case in WO3·H2O [66]. This may account for the multiple peaks observed in

this region. There is a relationship between bond length (an indication of

bond strength) and the frequency of the vibrational modes(s) for the terminal

W=O bond, namely that as the bond length decreases, bond strength and

frequency increases [60, 66]. It is not therefore unlikely to observe more than

one terminal W=O vibration, especially given the presence of superlattices

and the fact that the unit cell is not just the simple 3.9 Å × 3.9 Å expected

for the simple square planar structure.

The remaining bands can be assigned as follows: 580-860 cm−1 O–W–O

stretching, 430-470 cm−1 inorganic Raman mode (W–O), 260-350 cm−1 O–

W–O bending, 220-250 cm−1 W–O–W stretching, 90-200 cm−1 lattice modes

[17]. These bands occur at similar positions in the hybrid compounds.

The effect on the organic species

Perhaps the most telling difference between W-DA2 and W-DAn (n>2) is the

presence or absence of the broad peak centred at 2100 cm−1 in the IR spectra.

This feature is due to a combination of the asymmetrical –NH +
3 bending

vibration and the torsional oscillation of the –NH +
3 group as it interacts

with the apical oxygen of the tungsten oxide framework [245]. Both –NH2

scissoring and –NH +
3 bending occurs in the region 1580-1630 cm−1, however

the latter displays three peaks (as seen in W-DAn) while the former yields

only two (as in W-DA2). Furthermore, the N–H stretching bands occur at

slightly higher energies in W-DAn compared with W-DA2 (3240-3300 cm−1,

c.f. 3135-3250 cm−1) and these peaks are also much sharper. However, an

increase in alkyl chain length should have little effect on the N–H stretching

frequency (as observed by Segal and Eggerton on mono- and diamines of

different chain lengths [241]). The observed differences are discussed in the

next section.

The presence of broad vibrational bands in the W-DAn spectra in the

range 2430-2790 cm−1 can be ascribed to NH +
3 symmetrical stretching [245,

240] and often appear as a broad, ill-defined band under the C–H stretching

modes near 2800 cm−1 [18]. In H2WO4 a small peak is observed in the

IR spectrum at 1614 cm−1, which corresponds to H2O bending. While the
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hybrid samples also exhibit peaks near this value (1600-1630 cm−1), these

peaks are sharp and well defined, and the vibrational band at ∼3400 cm−1

(indicative of O–H stretching) is absent. Thus we conclude that most of the

co-ordinated water molecules (W–OH2) have been dehydrogenated during

the organic intercalation process (a small feature at 377 cm−1 in the Raman

spectra may correspond to W–O–H). The peaks in the hybrid spectra in the

range 1600-1630 cm−1 correspond instead to NH2 or NH +
3 bending.

As only the terminal amino/ammonium group is involved in interactions

with the inorganic layer, it is no surprise that the bands corresponding to

C–H, C–N and C–C vibrations remain virtually unchanged. The peaks in the

hybrid spectra corresponding to these vibrations can be assigned as follows:

2850-2960 cm−1 C–H stretching, 1300-1500 cm−1 CH2 wagging, bending, and

scissoring, 950-1100 cm−1 C–N and C–C stretching. From 460-550 cm−1 there

are a small number of unassigned organic bands (including a sharp peak in

the IR at 537 cm−1 for W-DA2, corresponding to a bending vibration of the

N–C–C–N backbone [235]).

The organic-inorganic bonding nature

The most noticeable difference among the hybrid samples is that W-DA2

shows quite a different bonding nature from the hybrids with longer organic

chains: there is no evidence for the presence of ammonium (–NH +
3 ) terminal

groups in W-DA2. As mentioned previously, W-DA2 lacks a feature at 2100

cm−1 found in the other hybrid spectra that corresponds to deformations of

terminal –NH +
3 . Combined with the presence of the –NH +

3 rocking mode

found at 770 cm−1 [240], this implies that some or all of the amine molecules

in W-DAn appear as R–NH +
3 · · ·−O–W, while all those of W-DA2 appear

as neutral –NH2 species. This raises the question of how charge balance

is achieved in W-DA2 and also whether hydrogen bonding is the exclusive

mechanism of bonding, whereas in the longer organic molecule hybrids there

is clearly an electrostatic component as well due to the presence of terminal

ammonium groups. There are also differences in the N–H stretch region,

suggesting changes in the bonding chemistry as one progresses from DA2 to

longer DAn alkyl chains. As mentioned earlier, the N–H stretching bands
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Figure 3.10: Plot of pKa values from Ref. [174] versus the number of carbon
atoms of α,ω-diamines in aqueous solution.

for W-DA2 appear at lower wavenumbers than for the longer-chain W-DAn

species. Hydrogen bonding (which holds the DA2 molecules in place between

the layers) will cause these bands to shift to lower frequencies [245]. More-

over, DA2 is the only case where the inductive effect on the terminal amine

groups is known to be a perturbing factor to the molecular vibrations due to

the shorter alkyl chain length [241].

One possible explanation for the observed difference in structure between

DA2 and longer DAn molecules intercalated into an acidic metal oxide, arises

from examining the trend in basicity of α,ω-diamines in solution, shown by

the pKa values in Figure 3.10. The pKa of a compound is a measure of its

strength as an acid, and in this case pKa,1 and pKa,2 are related to how much

each of the following two reactions have proceeded:

pKa,1: H3N
+(CH2)nNH +

3 → H2N(CH2)nNH +
3 + H+

pKa,2: H2N(CH2)nNH +
3 → H2N(CH2)nNH2 + H+

Although the trend in basicity only changes slightly with increasing alkyl

length for the monoamines (due to combinations of solution effect, steric hin-

drance to solvation, and number of available H-bonds [8, 10, 30]), a substan-

tial increase in basicity is observed in going from DA2 to DA8. This increase
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in base strength for the diaminoalkanes is due to an increase of the inductive

effect as the number of methylene groups (–CH2–) increases. The formation

of alkylammonium (–NH +
3 ) end groups will therefore be more favourable for

the more basic diaminoalkanes (i.e. diaminobutane and above). This appar-

ent difference is also manifested in the TGA profile of these hybrids, with

W-DA2 dissociating at a higher temperature than any of the other W-DAn

compounds [48] (Section 3.2.4).

The strong Raman peak at 950 cm−1 in H2WO4 corresponds to an api-

cal W=O bond, which is characteristic of a layered structure. This peak

is present in all of the hybrid compounds although it is shifted to lower

wavenumbers of 890-900 cm−1, indicating that the apical oxygen is not as

tightly bound to the tungsten as in H2WO4. This too can be expected

as charge balance in H2WO4 is achieved by co-ordinated water molecules

binding via the oxygen atom to the tungsten layer in an alternating up-

down checkerboard arrangement, leaving the remaining apical oxygen atoms

to bind relatively strongly to the tungsten, with weaker hydrogen bonding

holding the layers together. In the hybrid materials one might expect the

influence of organic molecules on each apical oxygen to be more uniform, and

stronger compared to the W–OH2 · · ·O=W interaction, hence weakening the

W=O bond, and causing a lowering in frequency of the Raman shift.

3.3.2 W-MAn samples

Following the initial study on the inorganic parent materials WO3 and H2WO4,

and the tungsten oxide diamine hybrids (W-DAn), further IR experiments

were performed on tungsten oxide monoamine hybrids as they were synthe-

sised. The IR spectra are given for a variety of monoamine hybrids in Figure

3.11 and tabulated in Table 3.6.

The inorganic layer

While the IR spectra of the W-DAn hybrids (Figure 3.8) display strong

broad bands corresponding to stretching vibrations of the O–W–O frame-

work, a very different signal is observed from the W-MAn hybrids. Instead
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Assignment W-MA2 W-MA4 W-MA6 W-phen

ν(O–H) 3475 wb 3502 wb 3387 wb 3413 wb
3197 vw

ν(NH2,NH +
3 ) 3131 w 3057 w

3028 vw 3062 w 3030 w 3027 w
2982 w 2962 m 2958 s 3004 vw

ν(CH2) 2932 w 2935 w 2928 s 2932 vw
2875 w 2872 w 2899 vw

2859 m
2799 w 2762 w 2748 w 2749 w

NH +
3 2722 w 2653 w 2633 w 2652 w

overtones 2594 w 2522 w 2570 w 2564 w
2506 w 2410 w 2488 w 2471 w

ν(NH +
3 · · ·O−) 2050 mb 1955 vwb 2012 wb 2010 wb

δ(NH2/NH +
3 ) 1655 w

1606 s 1598 s 1605 s 1605 s
σ(CH2), 1504 s 1497 s 1498 s 1497 s
aromatic 1471 m 1471 w 1468 m 1465 w
ν(C=C) 1458 w 1454 m

1395 s 1385 w 1384 w 1386 w
sciss. CH2 1346 w 1325 w

1273 w 1262 w
ω(CH2) 1219 m 1147 m
ν(C–N) 1198 m 1165 w 1162 w 1112 w
ν(C–C) 1048 m 1075 w 1093 w 1030 m
ν(W=O) 944 w 963 w 933 m 950 m

908 w
879 w 918 s 867 w 877 s
836 w 885 w 828 m 837 m

ν(O–W–O) 796 w 789 s 794 w
728 w 737 w 732 w 745 m
680 m 690 s 698 m
654 w 659 s
579 w 591 w

δ(C–N) 490 m 530 m 494 m 486 m

Table 3.6: Observed IR peaks in W-MAn powder samples. ν stretching,
δ deformation/in-plane bending, σ bending, sciss. scissoring, ω wagging; s
strong, m medium, w weak, vw very weak, b broad.
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Figure 3.11: Infrared spectra of W-MAn hybrids: (a) W-MA2; (b) W-MA4;
(c) W-MA6; (d) W-phen.

of a single broad band, two distinct features with additional splitting are

observed. This is generally observed in well-ordered systems, indicating that

the inorganic layer in the monoamine hybrids is more ordered than in the

diamine hybrids [16]. One possible explanation is the greater degree of free-

dom for the stacking of the layers, as the organic molecules only tether to the

inorganic layers at one end instead of two, which places extra restrictions on

the inorganic structure. (One simple example is that organic diamines inter-

calated in the tungsten oxide or metal halide layered structure must have an

even number of carbons in the backbone to ensure the conformations of the

amine terminations presented to adjacent inorganic layers are symmetrical.

However, metal halide-based hybrids have been synthesised with both even

and odd numbered monoamine carbon chains [196].)

Once again, the apical W=O bonds are identified with the stretching

mode located at ∼950 cm−1 as for the other compounds, however it appears

to be occluded somewhat by the presence of the expanded O–W–O framework

features nearby.
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The organic species

In the W-DAn hybrids, the presence or absence of a broad band centred near

2100 cm−1 was an important feature, related to the presence of terminal –

NH +
3 ammonium groups. While all of the monoamine hybrids display some

feature near this frequency, it is much less pronounced than for the diamine

hybrids. Nevertheless, there are other features present in these spectra that

are attributed to –NH +
3 : the broad ‘hump’ under the C–H and N–H stretch-

ing bands around 3000 cm−1 [18] and –NH +
3 overtones in the region from

2400 – 2800 cm−1 [240, 245]. The band near 1600 cm−1 is attributed to

in-plane deformation of –NH +
3 , but also occurs at the same frequency for

–NH2. The –NH2 bands at 3400 cm−1 and 1600 cm−1 are broadened due to

hydrogen bonding.

Other prominent organic modes are assigned as follows: 2850 – 3000 cm−1

C–H stretching (aliphatic C–H occur at lower frequencies than aromatic C–

H), 1300 – 1500 cm−1 CH2 bending and scissoring, 1450 – 1500 cm−1 aromatic

C=C stretching in W-phen, 1150 – 1200 cm−1 CH2 wagging, 1100 – 1200

cm−1 C–N stretching, 1030 – 1090 cm−1 C–C stretching, 490 cm−1 C–N

bending.

Organic-inorganic interaction

As mentioned above, the broad feature at 2100 cm−1 which is normally fairly

prominent in the diamine hybrids, is relatively weak in the monoamine hy-

brids. This band was identified in Section 3.3.1 (page 53) as arising from the

bonding between the terminal –NH +
3 groups and the apical W=O oxygen.

It shifts to lower frequencies when the hydrogen bonding is weaker (as is

seen in the monoamine hybrids) and decreases in intensity when symmetry

is increased [61]. This suggests that, compared with the W-DAn hybrids,

the interaction between the –NH +
3 terminal groups and the tungsten oxide

layer is weaker but more symmetrical for the W-MAn hybrids.

Despite this, the organic molecules do not appear to interact with each

other and hence are not closely-packed. Ordered arrangements of simple

alkane-based organic molecules exhibit a series of sharp equidistant modes
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in the region 1150 – 1350 cm−1 [77], which are not observed in the W-MAn

spectra. This finding is consistent with reported crystal structures of metal

halide-monoamine hybrids, in which the methylene ‘tails’ of the organic

molecules are quite disordered [200], reflecting the much weaker bonding

there.

3.3.3 Summary

Infrared and Raman spectroscopy used together give a considerable amount

of information regarding the inorganic structure of the hybrids, the state of

the organic intercalates, and the bonding between them. The layered nature

of the compounds is clearly seen from the presence of an intense line near

890 cm−1 in the Raman spectra and a feature near 950 cm−1 in the infrared

spectra, corresponding to the apical W=O bonds. The organic modes (C–H,

N–H, C–C, C–N) are evident in the infrared spectra, and the presence of a

broad infrared band located at ∼ 2100 cm−1 corresponds to the interaction

between the terminal –NH +
3 groups of the organic and the apical oxygen

atoms of the inorganic layer. This band is quite pronounced for the W-

DAn series (n geq 4), less pronounced for the W-MAn series, and completely

absent (along with other –NH +
3 modes) in W-DA2. W-DA2 also behaved

differently in the TGA experiment. The discrepancy in the behaviour of W-

DA2 relative to the other members of the W-DAn series may be related to

changes in the basicity of the organic molecules as the carbon chain length

increases. However, this does not address the issue of ‘missing’ charge which

is required to balance the WO 2−
4 layers. It is speculated that in W-DA2 the

protons may de-localise and serve to shield the apical oxygen atoms of the

adjacent layers, although evidence has yet to been found to establish this.

3.4 Structural and composition summary

Tungsten oxide-based hybrid materials can be synthesised using various tech-

niques, the best of which is via evaporation of solvent. The materials must

be synthesised at a relatively high pH (∼ 10) to prevent the formation of

Keggin ion clusters.
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Powder XRD patterns of the W-DAn hybrids exhibit a series of intense

00` reflections, which correspond to the inter-inorganic layer separation. By

examining the trend as a function of n, the number of carbon atoms in the

organic molecule, it can be concluded that the inorganic layer consists of

a single layer of corner-shared WO6 octahedra, with the organic molecules

positioned perpendicular to it, and the terminal ammonium groups approxi-

mately in plane with the apical oxygen atoms. Elemental microanalysis also

confirms the stoichiometry WO4·H2N(CH2)nNH2.

From the combined IR and Raman spectroscopy there is again evidence

for a layered structure due to the presence of apical W=O bands. The in-

frared spectra give us additional insight into the bonding nature of the or-

ganic molecule to the inorganic layer: in virtually all of the samples, there is

a prominent band corresponding to the interaction between the –NH +
3 ter-

minal groups and the apical oxygen atoms. The only material for which this

is not the case is W-DA2, where not only is there no evidence for –NH +
3 ,

but also the clear presence of –NH2. This sample also has quite differing

behaviour in the TGA analysis: while the other W-DAn samples show dein-

tercalation of the organic molecules at 210–230◦C, W-DA2 does not do so

until 314◦C.

We have been unable to form single crystals of any of the hybrids large

enough for single crystal x-ray diffraction (by far the best way to elucidate a

crystal structure), most likely due to the harsh alkaline synthesis conditions

required. Rietveld refinement of the powder XRD data has so far proved

fruitless, as it is likely there is a larger supercell arising from distortion of

the tungsten oxide layer (as seen in H2WO4, Figure 1.5). The presence of

such a supercell is confirmed from selected area electron diffraction patterns.
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Chapter 4

Ab Initio Computations

Ab initio computation is an increasingly available tool for researchers, with

the increasing performance and availability of efficient computing resources.

As a modelling technique it can be used to estimate properties and predict

behaviours of systems, which may otherwise be difficult or impossible to do

experimentally.

In this case, we wished to explore the electronic properties of the tungsten

oxide-based hybrid materials, based on the layered structure obtained from

the experimental results. In preparation, and to test the suitability of the

code used, an initial study of the alkali tungsten bronze series (MxWO3, M =

H, Li, Na, K, Rb, and Cs) was undertaken and compared with experimental

and computational literature results.

From here a more detailed study of the variable doping of NaxWO3 (0 ≤
x ≤ 1) and oxygen-deficient WO3−x was undertaken. The trends in either

of these series could potentially be seen in the layered tungsten oxide hybrid

systems upon doping.

Finally, the same computational techniques were applied to some simple

layered organic-inorganic tungsten oxide hybrid structures to predict their

electronic properties. The computational results are then compared with ex-

periment by considering the optical spectra of WO3 and the W-DAn hybrids.

First the computational technique used will be discussed, before giving a

detailed summary of the major results.

63
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4.1 Introduction to technique

The rapid improvement of computer performance over the last decade has

enabled the development of software for performing quantum mechanical

calculations of polyatomic systems. The number of atoms in the system is

restricted only by the computer performance and memory available and at

the time of writing, is typically of the order of 50 atoms. While there are

many such programs available, this section will concentrate on the Vienna

Ab-initio Simulation Package (VASP), the particular code utilised for this

research. VASP uses a local-density approximation to the density functional

theory with ultra-soft plane wave pseudopotentials [146, 147, 148, 149].

A brief summary of these terms is as follows:

Density functional theory

Density functional theory (DFT) was developed by Hohenberg and Kohn

[116] and Kohn and Sham [140]. In short, the total energy of a system

(including exchange and correlation energies) can be written as a functional

of the electron density of that system, even in the presence of some static

ionic potential. The minimum energy of that functional is the ground-state

energy of the system and the corresponding electron density is the ground-

state density. It is then also possible to convert the many-electron problem

to an exactly equivalent set of self-consistent one-electron equations with an

effective potential, thus simplifying the mathematics considerably.

Local-density approximation

The local-density approximation (LDA) to the DFT was also developed by

Kohn and Sham [140]. By assuming that the exchange-correlation energy of

the electrons is purely local, one can express this energy at a single point

in the electron gas as if this gas was homogeneous with the same electron

density as the original. Thus the LDA ignores any inhomogeneities in the

electron density at each point, yet despite this, the LDA is often surprisingly

effective. The LDA gives a single global minimum for the energy of electrons
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in a fixed ionic potential. However for spin-polarised systems where there may

be multiple local minima, the approximation then fails. LDA is notorious

for underestimating band gaps, so care must be taken when interpreting the

resulting band structures.

Generalised gradient approximation

The generalised gradient approximation (GGA) is one further step up from

the LDA [220]. It includes the second-order (linear) terms in the expression

of the electron gas. The GGA accounts for the density inhomogeneity that

LDA ignores. The total energy calculated using the GGA is often more

accurate than that obtained using the LDA alone. In the limit where the

gradient term becomes zero, the GGA reverts to the LDA, as expected.

Ultra-soft plane-wave pseudopotentials

Bloch’s theorem (see Section 1.1.1) states that in a periodic solid each elec-

tronic wavefunction can be written as a product of a cell-periodic part and

a wavelike part. Both of these can be expressed as a sum of plane waves,

resulting in the electronic wavefunction

φi(r) =
∑

G

ci,k+G exp[i(k + G) · r]

This expression then describes an infinite, but discrete set of plane-waves.

However the set can be truncated to consider only those plane-waves with

kinetic energy less than some cut-off value, as these are the most important to

consider. While this introduces a discrepancy in the total calculated energy

of the system, this can be controlled by increasing the cut-off energy and

repeating a calculation until the energy has suitably converged.

Only the valence electrons are individually calculated; the effects of the

core electrons and nucleus are combined and expressed as a single pseudopo-

tential function. This reduces the computation time dramatically and at

little cost to the accuracy, as the core electrons rarely influence the crystal

structure of a material. Ultra-soft pseudopotentials utilise this by describing

the electronic potential for the two regions r < rcore and r > rcore. For
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r < rcore the pseudo-wavefunctions are allowed to be as soft as possible

(by removing the norm-conserving constraint and making the wavefunction

as smooth as possible) and hence do not require a large cut-off energy to

accurately describe the system. The wavefunctions in the two regions are

married together to be as smooth as possible, and for r > rcore it matches

the all-electron model exactly (as the valence electrons are the only ones in

consideration in this regime).

Each approximation made introduces a small amount of uncertainty to the

final result. DFT with the LDA is often able to predict lattice constants to

within 1%.

The input parameters VASP requires are as follows:

• Atomic type and positions within the unit cell (up to 50 atoms),

• k-space mesh to use (larger k-meshes result in longer computation times

and require more computer memory, but give more accurate results),

• Pseudopotentials for each atomic species (see Table 4.1),

• Experimental parameters: energy cut-off values, etc. ([302], Ch. 7).

Examples of each of these are given in Appendix B.

The output files from a VASP run include:

• Unit cell and atomic positions for each species,

• Charge density map,

• Wavefunction map,

• Density of states (if selected, can also break down into individual atomic

components),

• Band structure can be obtained indirectly,

• Ground state energy of the system.

More information can be found in the VASP guide [302] and references

therein.
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Atom Valence Electrons

W 6s15d5

O 2s22p4

H 1s1

Li 2s1

Na 3s1

K 4s1

Rb 5s1

Cs 6s1

C 2s22p2

N 2s22p3

Table 4.1: Valence states of the elements used in the calculations.

4.1.1 Computational details

We have used VASP with the generalised gradient approximation (GGA).

The pseudopotentials in these calculations are ultrasoft Vanderbilt type pseu-

dopotentials [267] as supplied by G. Kresse and J. Hafner [150]. The pseu-

dopotential valence states for all elements used in this work are given in Table

4.1, with a plane-wave cut-off energy of 396 eV.

k-point meshes between 4× 4× 4 and 15× 15× 15 were used to relax the

various systems, corresponding respectively to 24-36 and 120-455 k-points in

the irreducible Brillouin zone. As a general rule, the simplest bronze struc-

tures with few (1-4) formula units per cell used finer k-point meshes (more

k-points) than the larger non-metallic WO3−x (small x) and hybrid struc-

tures. In all cases the k-point mesh was varied at the end of the relaxation

and the energy was found to converge to better than 10 meV in all cases.

The cell parameters and atomic positions were allowed to relax in alternate

cycles. The atomic positions were considered relaxed when the total energy

had converged to within 10 meV between ionic steps.

To study the effect of fractional doping in the NaxWO3 system, we used a

supercell method consisting of up to eight primitive WO3 cells, with between

1-7 of these cells occupied by sodium ions in a pseudo-random fashion. Sim-

ilarly for the oxygen-deficient WO3−x system, 3-6 cells were used with one

oxygen vacancy in each case. In all cases the basis vectors of the cell were
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chosen to avoid the creation of lines or planes of dopants. In the calculations

of the hybrid structures the relative positions of the in-plane tungsten and

oxygen atoms were fixed at the origin and half-way along each planar axis,

respectively.

Finally we note that with the exception of the oxygen molecule total

energy, none of the calculations here were spin-polarised. The total energy

of the oxygen molecule in its 3ε−g ground state, used to compute energies

of formation for the WO3−x series, was computed in a 16 Å cubic cell with

convergence of the energy to within 10 meV. Our binding energy for the

oxygen molecule of 3.214 eV/atom is consistent with other calculated values

reported in the literature [213].

4.2 Previous studies

There have been several studies by different groups using different compu-

tational packages on the crystal and electronic structure of tungsten oxide

and the tungsten bronzes. The complexity of the systems has increased as

computational resources have become more elaborate.

One early report is that of Bullett in 1983 [35], where the bulk and surface

electronic states of WO3 and NaWO3 were studied using a non-relativistic

atomic orbital-based method. Density of states, band structure were reported

and compared with experimental results using UPS and XPS.

Hjelm et al. reported the electronic structure of WO3, LiWO3, NaWO3

and HWO3 in 1996 and modelled the UV-visible spectra from the density of

states calculations [114]. They used a full-potential linear muffin-tin orbital

method, which includes all of the electrons in the system instead of just the

valence electrons plus the core electrons and nucleus as a single unit. They

report density of states for all four systems, charge density for WO3 and

LiWO3, a comparison of the density of states of cubic and hexagonal WO3,

and an energy study of HWO3 where the hydrogen atom is shifted relative

to the centre of the cell. Lastly the optical properties were calculated for

LixWO3 and NaxWO3, x = 0, 1
4
, 1

2
, 3

4
, 1.

In 1997 Corà et al. used a full-potential linear muffin-tin orbital method
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with the LDA to study the electronic structures of WO3, ReO3 and NaWO3

[58]. They investigated the effect of adding sodium to WO3 compared with

changing the valence state of the tungsten (i.e. replacing W6+ with Re5+).

They report band structures and density of states of all three compounds.

Corà and Catlow also published another article in 2000 studying the dif-

ferent structures of tungsten and molybdenum oxides [57]. They used ab

initio Hartree-Fock calculations to study the stability of the different struc-

tural phases of WO3 and MoO3, namely perovskite, Mo-L layers, hexagonal,

and pyrochlore. They discuss how other polymorphs might be constructed.

Late in 2004, after the majority of our calculations were complete, a paper

was published in Phys. Rev. B by Walkingshaw et al. [271]. They used the

siesta package, which is technically quite similar to VASP in that it uses

DFT with the LDA. Like Corà et al. [58] they studied the effect of adding

dopant electrons to cubic WO3 without adding any intercalated atom, for x

in 1
16

intervals from zero to one. At each step they calculate the minimum

energy structure and use this to construct phase diagrams. Because the

calculations were performed on supercells of WO3 instead of single cells (as

was the case in the other publications), the correct ‘pseudocubic’ phases of

WO3 were identified.

4.3 Cubic and hexagonal alkali bronzes

4.3.1 Structure

The alkali elements (H, Li, Na, K, Rb and Cs) were each used as the inter-

calated species in cubic MWO3 (x = 1 bronzes) and hexagonal M0.33WO3

(full intercalation of the hexagonal tunnels). As mentioned in Section 1.3,

WO3 does not form a perfectly cubic cell at room temperature, as the WO6

octahedra are slightly distorted in terms of W–O bond lengths and W–O–W

bond angles, due to antiferroelectric displacement of the tungsten atoms and

subsequent rotation of the WO6 octahedra [35, 82]. However this is not taken

into account in the calculated system; the cell always relaxes to a cubic struc-

ture. In calculations involving supercells of tungsten trioxide the distortions
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Figure 4.1: Calculated and experimental values of the cell parameter for fully
intercalated cubic tungsten bronzes. Experimental values are obtained from
[33, 38, 94, 234] and extrapolated to x = 1.

are seen [271]. Tungsten bronzes on the other hand do form the simple cubic

structure at high intercalation levels [33]. The hexagonal structure, which

was also studied for comparison, is the same for both the oxide and bronzes.

(The term ‘cubic’ is used connotatively throughout this article of those sys-

tems that are cubic or close to it; as opposed to the hexagonal systems also

studied.)

Figure 4.1 shows some experimental results for the cubic bronze system

(obtained from [33, 38, 94, 234], extrapolated to x = 1. In the case of

non-cubic WO3 a cubic cell was calculated from the volume average of the

given parameters.) Of all the intercalated alkali elements which have been

attempted experimentally, only sodium is able to form a stable structure

with x = 1 at normal temperatures and pressures. In general the calculated

cell parameters for the cubic system are larger than the experimental. It

is also noticeable that as the size of the intercalated ion increases, the cell

size increases super-linearly. The Goldschmidt tolerance factor for cubic per-

ovskites can be calculated from the formula t = rM+rO√
2(rW +RO)

[97], where rj are

the ionic radii. For a perovskite structure to be stable, t must be less than
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Compound Expt. a (Å) Calc. a (Å) Expt. c (Å) Calc. c (Å)

WO3 7.298 7.4103 3.899 3.8144
H0.33WO3 7.38 7.4173 3.78 3.8111
Li0.33WO3 7.405 7.4007 3.777 3.8219
Na0.33WO3 7.38 7.4034 3.775 3.8248
K0.33WO3 7.37 7.4010 3.77 3.8282
Rb0.33WO3 7.38 7.4163 3.78 3.8289
Cs0.33WO3 7.38 7.4507 3.785 3.8342

Table 4.2: Experimental cell parameters for hexagonal tungsten oxide and
bronzes (from [82, 14]), compared with our calculated results for hexagonal
tungsten bronzes with hexagonal sites completely occupied.

unity. The tolerance factors for NaWO3 and KWO3 are 0.909 and 1.056 re-

spectively, indicating that the potassium atom is slightly too large to form a

stable structure. Potassium bronzes have been formed with high x contents,

but only under high-pressure synthesis conditions [38]. Rubidium and cae-

sium cubic bronzes with high x content cannot be formed. The hexagonal

structure, having larger tunnels, is able to accommodate larger ions than

observed in the cubic system. In the experimental system the stability of

hydrogen is notoriously difficult to maintain, as it is quite mobile due to its

small size. Both hydrogen and lithium are small enough ions to be able to oc-

cupy sites within the small triangular tunnels between the hexagonal tunnels

[82]. Thus reported experimental results for H+- and Li+-hexagonal bronzes

may show differing behaviour from larger atoms because the occupied sites

may be different in each case. In the experimental hexagonal system, the a

parameter is observed to increase as ions are intercalated while the c param-

eter decreases. The final values are relatively consistent across the series, as

given in Table 4.2. These are generally lower than the calculated values we

have obtained, although most discrepancies are less than 0.5%.

For the hexagonal system, the changes in the lattice parameters are much

less pronounced than in the cubic system, as shown in Table 4.3. This is

due to the hexagonal tunnel spaces being much larger than the interstitial

vacancies in the cubic system and so the interactions between the inserted

ion and the WO3 lattice are smaller.
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Compound Cubic (Å3) Hexagonal (Å3)

WO3 55.4977 60.4648
HxWO3

1 55.8946 60.5278
LixWO3 58.0127 60.4270
NaxWO3 58.9116 60.5158
KxWO3 61.0457 60.6785
RbxWO3 63.1294 60.7928
CsxWO3 65.9809 61.4445

Table 4.3: Calculated cell volume per WO3 unit for cubic and hexagonal
tungsten oxide and bronzes.
1 x = 1 for cubic, x = 0.33 for hexagonal.

4.3.2 Charge-density

Charge-density plots of the cubic system taken in a plane through the centre

of the cell where the intercalated atom sits, reveal that hydrogen behaves

differently from the other intercalates. This is shown in Figure 4.2. Bearing

in mind that the charge-density plots consider only the valence electrons,

the fact that we observe some charge on the hydrogen atom but not on

any of the others indicates that hydrogen is not ionised. That larger atoms

are completely ionised is consistent with other reported experimental results

[35]. It is interesting that the same phenomenon occurs in both the cubic

and hexagonal cases. The first ionisation energy of the intercalates are as

follows: hydrogen 1.318 eV, lithium 0.526 eV, sodium 0.502 eV, potassium

0.425 eV, rubidium 0.409 eV, caesium 0.382 eV [12]. The high ionisation

energy of hydrogen with respect to the other intercalates may be responsible

for the differing behaviour.

4.3.3 Energies of formation

The energies of formation of the cubic and hexagonal tungsten bronzes are

shown in Table 4.4 and Figure 4.3. These are calculated by subtracting the

ground-state energies of the components (WO3 plus the metal cation) from

the ground-state energy of the final product (tungsten bronze). A negative

energy of formation therefore indicates that the compound formed is stable.
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Figure 4.2: Charge density maps of cubic (top) and hexagonal (bottom)
tungsten oxide and bronzes. The largest tunnels are indicated, which are
completely filled in each case. The oxygen atoms in-plane with the interca-
lated atom can be clearly seen, and only in the case of hydrogen is the charge
still associated with the intercalated atom.

Compound Cubic(eV) Hexagonal(eV)

WO3 0 -0.016
HxWO1

3 3.059 1.047
LixWO3 -2.023 -0.560
NaxWO3 -2.373 -0.813
KxWO3 -2.354 -1.132
RbxWO3 -2.039 -1.203
CsxWO3 -0.637 -1.245

Table 4.4: Calculated energies of formation per WO3 unit for cubic and
hexagonal tungsten oxide and bronzes, relative to cubic WO3.
1 x = 1 for cubic, x = 0.33 for hexagonal.
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Figure 4.3: Calculated energies of formation per WO3 unit for cubic and
hexagonal tungsten bronzes, relative to cubic WO3.

Firstly, a comparison of cubic and hexagonal WO3 shows that the hexag-

onal phase has a very similar energy to the cubic phase. Literature results

indicate that the cubic phase is preferred, although the hexagonal phase is

stable up to temperatures of 400-500◦C, indicating that the phase transition

has a high activation energy [82, 207], À50 meV. In both the cubic and

hexagonal systems, the hydrogen-intercalated bronze energy is positive and

large, indicating that the hydrogen bronzes are not stable. In the experimen-

tal system the hydrogen bronzes are easily oxidised as the protons are highly

mobile [94, 115]. This result also relates to hydrogen being the only interca-

late that does not ionise in the bronze structures, as evidenced by the charge

density plots earlier. For the hexagonal bronzes (apart from hydrogen) there

is a steady trend in the energy of formation to more negative values as the

size of the intercalated alkali metal ion increases. Therefore the larger ions

form more stable bronzes than the smaller ones, which is also indicated in

the literature [14]. In the cubic system however, the energy drops to a min-

imum and then, beyond Na, becomes less negative in the case of the larger

intercalates. This point coincides with the maximum ion size predicted by

the Goldschmidt perovskite tolerance factor. For the experimentally stable
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compounds (WO3, LiWO3, and NaWO3) there is a progression of the energy

of formation to more negative values. This supports experimental evidence

that sodium may well be the most stable of the cubic bronzes, as it is the

only one for which a fully intercalated compound has been reported [115].

More work is required on the potassium, rubidium and caesium bronzes, as

while these exhibit a negative energy of formation and are predicted from

these calculations to be stable, they cannot be formed experimentally.

4.3.4 Density of states

For both the cubic and hexagonal systems other than hydrogen, the basic

band structures of the bronzes are essentially identical to the parent oxide

of the same phase. The only difference amongst them is the position of

the Fermi level relative to the valence and conduction bands, which will be

discussed later. Hence comparing the band structure of hexagonal and cubic

WO3 will aid a great deal in describing the bronze systems. A comparison of

the density of states for cubic and hexagonal WO3 is shown in Figure 4.4. The

lowest band, situated at -18 to -16 eV, corresponds to the oxygen 2s orbitals.

This band is present in all of the tungsten-oxide-based systems studied to

date and always occurs at the same energy regardless of the structure or the

presence of intercalated atoms or molecules.

The broad valence band, from -7 to 0 eV, is comprised mainly of oxygen

2p orbitals. There is a small tungsten 5d component but this is negligible

above -2 eV. The valence band cut-off is sharp at 0 eV and coincides in

both the cubic and hexagonal case with the Fermi level, rendering the oxide

materials semiconducting. The conduction band lies from 0.5 to 5 eV in

both the cubic and hexagonal cases. In the cubic case it is solely comprised

of tungsten 5d orbitals; however in the hexagonal case there is also some

additional oxygen 2p contribution - particularly to the strong peak feature

observed at 2.5 eV. The band gap (defined as the difference in energy between

the top of the valence band and the bottom of the conduction band) is 0.4

eV in the cubic system and 0.5 eV in the hexagonal. This is much less than

the observed band gap, which is typically reported in the range of 2.5 – 3
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Figure 4.4: The density of states as calculated for cubic (a) and hexagonal
(b) WO3.

eV, and as being indirect [58, 100, 172]. However this is not too surprising as

DFT generally underestimates band gaps. The presence of peak features in

the density of states can also lead to the phenomenon where even though the

conduction band is being filled, there is a sudden increase in the population

of the conduction band at these peaks and a sharp transition in the optical

spectrum is observed. Further, the density of states above the band gap is

rather weak and would only contribute weakly to optical transitions. This is

discussed in Section 4.7.

It is worth taking pause here to point out the similarities between this

work and that of experimental results and other calculations reported on the

same structures. Similar to the present findings, X-ray photoelectron spec-

troscopy (XPS) reveals that the valence band is comprised of oxygen 2p states

only, and the conduction band of tungsten 5d states [19, 215]. The oxygen

2s state at ∼ -20 eV has also been observed by XPS [136] although, given

the precision of the measurement, this band is broadened out and appears to

extend into the oxygen 2p valence band, the distinction of which is not made

by the authors. Calculations using the local-density approximation and full-
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potential linear muffin-tin orbitals (where all electrons are considered, not

just the valence electrons as in the case of the VASP program) result in den-

sity of states spectra which are virtually identical to those we have obtained

[58, 114]. This is the case in both the cubic and hexagonal systems. An older

paper by D.W. Bullet [35], utilising a non-relativistic atomic orbital-based

method shows a very similar band structure (oxygen 2p as valence band and

tungsten 5d as conduction band).

Figure 4.5 shows a comparison of the density of states of the cubic bronzes

with the parent oxide. The hydrogen bronze system shows a large peak fea-

ture at the bottom of the conduction band, which is attributed to the non-

ionised hydrogen 1s orbital. Because only one electron is contributed from

the hydrogen, the Fermi level lies about in the middle of this sub-band. For

the other bronze systems, analysis of the density of states contribution from

each atom reveals that the intercalated atom contributes very little if at all to

the overall density of states. This is expected due to its complete ionisation,

as the single valence electron of the intercalated atom is contributed to the

W–O framework [35]. All compounds have the Fermi level located well into

the conduction band, rendering them metallic. The shape of the band struc-

ture does not change as atoms are intercalated. This is also noted in other

literature [58, 114]. Also, the magnitude of the band gap and the position of

the Fermi level is relatively constant - even for those compounds which are

known to be unstable (cubic potassium, rubidium and caesium bronzes).

We have also derived the band structure curves along lines of symmetry

in cubic WO3 and cubic NaWO3. These are compared in Figure 4.6 with the

results of Bullett [35] and Corà et al. [58] and agree extremely well with both

of these, considering that different methods were used for each calculation.

We again notice the high degree of similarity between the parent oxide and

the sodium bronze, with the only major difference being the position of the

Fermi level within a more or less rigid band structure.
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Figure 4.5: Calculated density of states for cubic tungsten bronzes, MWO3,
near the Fermi level: (a) WO3, (b) HWO3, (c) LiWO3, (d) NaWO3, (e)
KWO3, (f) RbWO3, (g) CsWO3. The Fermi level is indicated in each case.
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Figure 4.6: Band structure diagrams of cubic WO3 (top) and NaWO3 (bot-
tom). The results of (a) Bullett [35] and (b) Corà et al. [58] are compared
with our results (c).

4.4 Cubic Sodium Tungsten Bronze Series

Following the work comparing cubic and hexagonal tungsten bronzes, we set

out to explore the sodium bronze system more thoroughly. Experimentally

it is quite difficult to obtain a completely saturated sodium tungsten bronze

(i.e. x = 1), and even when an excess of sodium tungstate is used in the

reaction

3x · Na2WO4 + (6 − 4x)WO3 + x ·W → 6NaxWO3

the resulting bronze may not achieve x = 1 [33]. There is a raft of experimen-

tal results, however, on sodium bronzes with x < 1 (refs. [14, 32, 33, 89, 255],

to list but a few), all illustrating that x is a continuous quantity and not con-

fined to any series of exactly stoichiometric compounds (staging). In addition

to x = 0 and 1, which were performed as part of the cubic tungsten oxide and

alkali bronze series, we have calculated the structure and density of states for

x = n
8
; n = 1 − 8. The average cubic cell parameter was found to increase

linearly with x as shown in figure 4.7. Also shown in this figure is a series

of reported experimental results (from [33] and the ICDD database). For

higher x contents the two data sets are very close, with the calculated pa-
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Figure 4.7: Calculated and experimental values of the crystal lattice cell
parameter for cubic NaxWO3 with variable x.

rameters being about 0.8% larger than the experimental; again, a good result

given the approximations made using this method. However below x = 0.3,

the experimental results differ markedly from the calculated values, due to a

phase change to a tetragonal form at low x values in the experimental sys-

tem [31]. The structure of the tetragonal phase is a distorted version of the

cubic phase [14]. As for the undoped WO3 system, such distortions are not

accounted for in the current calculations. In the work of Walkingshaw et al.

[271] the volume versus x deviates from this linear behaviour for x as large

as 0.5.

There are no obvious changes in the appearance of the density of states

as x increases from zero to one. The Fermi level and band edge are shown

in figure 4.8. The band gap increases linearly with x, while the Fermi level

quickly moves into the conduction band. According to this plot we would

expect to see a semiconductor-metal transition at about x = 0.06, where the

Fermi level moves into the conduction band. However, in the experimental

system this transition is observed at x = 0.3, corresponding to (and perhaps

influenced by) the structural transition (see [14], and references therein).

Once again, analysis of the individual atomic contributions to the density
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Figure 4.8: Evolution of the conduction band edge and Fermi level in
NaxWO3, showing the movement of the Fermi level into the conduction band
at low x values. The lines are given as a guide.

of states indicates that each sodium atom is fully ionised, and the electron

donated to the tungsten 5d conduction band [35].

4.5 Sub-stoichiometric WO3−x

As a complement to the sodium bronze series, sub-stoichiometric WO3−x was

examined for compounds with x ranging from zero to 0.33. In the experi-

mental system, the maximum oxygen loss that can be achieved without a

drastic phase change is ∼ 0.35 ([233], and references therein). The structure

appears to ‘stage’ into distinct stoichiometric compositions for compounds

in the range WO2.65 - WO3, and for some of these the crystal structure has

been solved. They are assigned the names α-, β- and γ-phase, as shown in

Table 4.5 with their respective formulae. The crystal structures of the β-

and γ-phases were solved by Magneli [188, 187]. Booth et al. generalise the

β-phase even further by describing the existence of crystallographic shear

planes [29]. This can account for the broad range of compositional formulae.

While we are unable to calculate the properties of these phases as described
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Phase Formula Range Average

α WO3 WO2.95 – WO3 WO3

β W20O58 WO2.88 – WO2.94 WO2.90

γ W18O49 WO2.65 – WO2.76 WO2.72

δ WO2 WO1.99 – WO2.02 WO2

Table 4.5: Compositional ranges for sub-stoichiometric tungsten oxide
species. From [233].

Figure 4.9: The volume-averaged cubic cell parameter for calculated and
experimental sub-stoichiometric ‘cubic’ WO3−x systems. The curve is given
as a guide.

in literature due to the restriction on the number of atoms in the system, we

are able to observe the effect that removal of oxygen has on the simple cubic

WO3 phase.

As one might expect, removing oxygen from a site causes a local distortion

of atoms around the vacancy, and the cell ceases to be simple orthorhombic.

The cell volume results are shown in Figure 4.9 and are in good agreement

with experimental values, despite the absence of the phase change in the

calculated system.

The energies of formation for the different species studied are given in

Table 4.6. We note that a slight deficit of oxygen (x = 1
6
) is more favourable
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Formula Energy of formation (eV/unit formula)

WO3 (x = 0) 0
WO2.833 (x = 1

6
) -0.103

WO2.8 (x = 1
5
) 0.447

WO2.75 (x = 1
4
) 1.007

WO2.667 (x = 1
3
) 1.661

Table 4.6: Energies of formation of the calculated WO3−x species calculated
by the formula EF = ETOTAL − ∑

EPARTS = E(WO3−x) − (E(WO3) −
x
2
E(O2)).

energetically than stoichiometric WO3. This is observed experimentally, as

commercial WO3 powder exhibits a loss of oxygen over 1-2 days in air. Fur-

ther loss of oxygen renders WO3−x less energetically favourable than its par-

ent oxide, and once again, as was the case with sodium tungsten bronzes,

the presence of a phase change in the experimental system may explain any

discrepancies seen.

It is also of interest to look at the changes in the density of states as

oxygen is removed from WO3. As mentioned in the introduction, oxygen-

deficient WO3 exhibits an increased conductivity, but not as great as that

due solely to the presence of doped electrons. Figure 4.10 shows the density

of states for the WO3−x system in the region near the Fermi level. The

overall spectra share the same features previously detailed for WO3: the

oxygen 2s band near -18 eV; the broad valence band, comprised mainly of

oxygen 2p orbitals, from -7 to 0 eV; and the conduction band, consisting

solely of tungsten 5d orbitals, lying from roughly 0.5 to 5 eV. Naturally

the sub-stoichiometric systems appear more ‘jagged’ than the parent WO3

compound, due in part to the breaking of symmetry, rendering each atom

non-equivalent to others within the cell, and causing its contribution to be

slightly different.

The inset of Figure 4.10 shows the progression of the Fermi level into the

conduction band. There is a sharp jump between x = 0.167 and 0.2 as the

Fermi level moves up into the conduction band - not a gradual transition as

in the case of the sodium bronzes NaxWO3. While the x = 0.167 compound

has the Fermi level at zero (and therefore, still non-conducting), the band
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Figure 4.10: Density of states for the WO3−x system, all with the valence
band set at zero. Arrows show the position of the Fermi level. Inset: Position
of the Fermi level relative to the top of the valence band.
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structure of the valence band is similar to that of the conducting species. It

appears that there is a decrease in the density of states in the valence band,

followed by the Fermi level being pushed up into the conduction band. The

stoichiometry at which this insulating-conducting transition occurs is in good

agreement with the literature value of WO2.76, which coincides with the β–γ

structural phase transition [95].

4.6 Organic-Inorganic Layered Hybrids

Following on from the background studies of tungsten bronzes and the oxygen-

deficient tungsten oxides, layered organic-inorganic hybrid compounds were

studied. Three different length alkyl amines were used in the calculations,

with two, four and six carbons. The input structure of the hybrid systems is

the most conceptually simple: a single unit formula, WO4·H3N(CH2)nNH3

(n = 2, 4, 6). It is highly conceivable that the calculated structure of the

hybrid compounds is in a slightly higher energy state than that of the actual

structure, which may be a supercell of the simple input case, with possible

tilts and/or rotations of the octahedra and organic molecules. As mentioned,

WO3 does not form a simple cubic structure, but exhibits small distortions of

bond lengths and angles which render it very slightly off-cubic, with eight for-

mula units per cell. In extending the computations to the organic-inorganic

systems then, several constraints were necessary. Firstly only one cell was

used, which may affect the outcome not only due to the removal of distortion

in the inorganic layer (which apparently lowers the energy in the oxide and

hydrate compounds) but also because this does not allow for the differing ori-

entation of the organic molecules in neighbouring cells. Secondly, constraints

were placed on the inorganic atoms in order to maintain the position of the

layer. This entailed fixing the position of the tungsten and planar oxygen

atoms at the corner and edges of the cell respectively. This was sufficient to

relax the atoms to a sensible structure.
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Figure 4.11: Schematic diagrams illustrating the two bonding configurations,
‘bridging’ (left) and ‘apical’ (right), in organic-inorganic hybrid materials.
Only the first carbon atom of the organic molecule is shown for simplicity.

4.6.1 Structure

In the possibly isostructural metal halide hybrid systems, two schemes were

identified in reference [196] for the bonding of the organic ammonium group

to the inorganic layer, designated ‘bridging’ and ‘terminal’ (which we shall

call ‘apical’). In the ‘bridging’ case the organic ammonium forms hydrogen

bonds to two bridging and one apical atom while in the ‘apical’ case hydrogen

bonds are formed to two apical and one bridging atom (Figure 4.11). This

causes the alkyl chain to lie diagonally within the cell when the ammonium

group is in a bridging configuration, but parallel for the apical. When the

alkyl chain is longer than one carbon (methylamine), the second carbon in the

chain would be too close to the opposing apical (oxygen) atom if a bridging

conformation were adopted. Thus in general, apical bonding is observed for

organic-inorganic systems with organic chain lengths of two or more carbon

atoms.

Given this, calculations were initially performed on the methylamine sys-

tem in both the bridging and apical configurations, to compare the energies
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Figure 4.12: Calculated structure of methylamine in bridging (left) and apical
(right) configurations.

of each and as a starting point to construct the initial cells for the computa-

tions of the longer chain diamine hybrids. Figure 4.12 shows the calculated

relaxed structures of one methylammonium ion with respect to the tungsten

oxide layer. In both cases the calculated structure closely resembles that

expected from the diagram in Figure 4.11. In the apical case the shortest

hydrogen bonds between the ammonium hydrogen atoms and the oxygen

atoms of the inorganic layer are as expected: two short hydrogen bonds to

two apical oxygens and one to the opposing bridging oxygen. However, for

the bridging case the two hydrogens that were expected to interact with ad-

jacent bridging oxygens are actually closer to apical oxygens. In this latter

case the tilting of the organic molecule is much less than for the apical case,

and overall it appears that there is a more delocalised attraction between the

hydrogen and oxygen atoms.

The energies of the two systems were calculated to be -123.31 eV for the

apical case and -123.08 eV for the bridging. Thus the apical configuration

appears to be more stable, both from its lower energy and examination of the

structure with more localised forces. Each of the two methylamine structures

were used as a basis for the initial positions of the diaminoethane (DA2)

compound. The relaxed cell parameters are given in Table 4.7. In the apical

case the cell volume is slightly less than in the bridging case. Despite the

greater tilting expected for the apical structure, the planar axes (a and c) are

shorter and the interlayer spacing b is longer than for the bridging. The two

structures are shown in Figure 4.13. As for the methylammonium structures,
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W-DA2 bridging W-DA2 apical

a (Å) 3.9443 3.9108
b (Å) 8.7345 8.7992
c (Å) 3.9443 3.9245
α 89.98 89.99
β 90.02 90.01
γ 90.02 90.01
Volume (Å3) 135.8266 135.0498

Table 4.7: Calculated cell parameters of W-DA2 with the organic molecule
in the bridging and apical conformations.

Figure 4.13: Calculated structures of diaminoethane (DA2) in bridging (left)
and apical (right) configurations.

in the bridging conformation there are several longer bond distances from

each hydrogen to the oxygen atoms, whereas in the apical conformation for

each hydrogen there is a single bond that is distinctly shorter to one oxygen

than the others.

The energies of these two structures are calculated to be −114.709 eV

for the bridging conformation and −115.750 eV for the apical. The apical

conformation is therefore again more stable, and the difference between the

two is greater than for the methylammonium case. Two other systems were

extended from the apical W-DA2: W-DA4 (4-carbon chain) and W-DA6 (6-

carbon chain). Again the planar tungsten and oxygen atom positions were

fixed. The energies of formation are given in Table 4.8. As can be seen
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Compound Ground state en-
ergy (eV)

Ground state en-
ergy of organic
molecule (eV)

Energy of forma-
tion (eV)

W-DA2 -115.750 -64.172 -0.939
W-DA4 -148.189 -97.506 -0.044
W-DA6 -181.887 -130.714 -0.534

Table 4.8: Energies of formation of the calculated W-DAn compounds,
calculated by the formula EF = ETOTAL − ∑

EPARTS = E(WO4 ·
H3N(CH2)nNH3)− (E(H2WO4) + E(H2N(CH2)nNH2)).

from the negative values, all three compounds are stable, with W-DA4 being

the least stable of the three. This seems to be confirmed experimentally as

W-DA4 is harder to form than both W-DA2 and W-DA6.

4.6.2 Density of states

The density of states of the three compounds are all very similar. The re-

sults are shown in Figure 4.14. The main features are as follows: As in the

tungsten oxide and tungsten bronze systems, the oxygen 2s band is located

between -18 and -16 eV. There is a splitting between the planar and apical

oxygen contributions, with the planar oxygen bands being broader and lying

at slightly lower energies. The nitrogen 2s bands lie at about -18.5 eV and

the carbon 2s bands lie between -16 and -9 eV. The appearance of multiple

carbon s bands in the longer chain systems is due to the different environ-

ments in which the carbon atoms are located along the length of the chain.

Between -9 and 0 eV lie the 2p bands of N (lowest), C (middle) and O (high-

est). The hydrogen atoms associated with the carbon and nitrogen atoms

contribute their single 1s electrons to the bands of their respective atoms.

The oxygen band, from -2 to 0 eV, closely resembles that of the tungsten

oxides and bronzes. There is relatively little organic or tungsten component

to this band, so once again the valence band is comprised of oxygen 2p

orbitals. The conduction band begins at around 0.4 eV but the density of

states is very low up to a peak feature at about 2.7 eV. There is also a second

peak feature at 4.0 eV. This band is comprised mostly of tungsten 5d orbitals,
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Figure 4.14: Calculated density of states for W-DA2 (bottom), W-DA4 (mid-
dle) and W-DA6 (top). The Fermi level is located at E=0.

as in the tungsten oxides and bronzes, but in these hybrid compounds there

is an additional oxygen 2p component to this band. The apical oxygen atom

contributes to the first peak feature and the planar oxygen atoms contribute

to the second. Above 4.5 eV lie the organic anti-bonding orbitals. The

band structure in the vicinity of the Fermi level (i.e. valence and conduction

bands) is virtually identical for the three different organic intercalates. As

expected the organic molecule does not participate in electronic conduction

and the undoped compound is an insulator. These results are now compared

with UV-visible spectroscopy.

4.7 UV-visible spectroscopy

First we describe and discuss the diffuse reflectance powder results, and then

the transmittance and reflectance analysis of thin film samples.
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Figure 4.15: UV-visible spectra of tungsten oxide-based materials: (a) WO3;
(b) H2WO4; (c) WO3·2H2O; (d) W-DA2; (e) W-DA4; (f) W-DA6; (g) W-
DA8; (h) W-DA12.

4.7.1 Powder diffuse reflectance

Powder diffuse reflectance was performed on samples as detailed in Section

2.4. Figure 4.15 shows the diffuse reflectance of WO3, H2WO4 (≡WO3·H2O),

WO3·2H2O, and the W-DAn hybrid series (n = 2, 4, 6, 8, 12). In each case

there is a single absorption edge, the midpoints of which are given in Table

4.9.

There is no apparent trend in the position of the absorption edge among

the W-DAn samples, suggesting that the inorganic planes are more or less

completely electronically decoupled. However, their respective energies are

significantly higher compared with WO3 and its inorganic layered hydrates,

WO3 · nH2O. As mentioned in Section 1.3, WO3 has been reported to have

an indirect band gap of ∼ 2.6 eV [58, 100, 172], although band gaps of up

to 3.2 eV have been reported for thin films [19, 93, 225]. The obtained value

here of 2.8 eV is comparable with the common value of 2.6 eV.

As mentioned in Section 4.3.4, peak features in the density of states,

as well as band gaps, may be the cause of transitions observed in optical
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Sample Position (nm) Energy (eV)

WO3 444 2.79
H2WO4 494 2.51

WO3·2H2O 473 2.62
W-DA2 310 4.00
W-DA4 311 3.99
W-DA6 313 3.96
W-DA8 297 4.17
W-DA12 305 4.07

Table 4.9: Absorption edge mid-point values of tungsten oxide-related ma-
terials diffuse reflectance UV-visible spectra.

spectra. Indeed, in the density of states of the hybrid materials (which are

identical near the Fermi level and independent of the length of the organic

intercalate) there are peak features at 2.7 and 4.0 eV. The optical transition

may be related to the latter.

4.7.2 Spectroscopy of thin films

WO3 films produced by spin-coating and electron-beam evaporation (de-

scribed in Section 2.4) display very similar absorption coefficients upon anal-

ysis of the reflectance and transmittance spectra [121]. This indicates that

the same material has been formed by the two methods and that the films

have similar degrees of crystallinity. Figure 4.16 shows that the absorption

coefficient of WO3 films increases by about two orders of magnitude above 1

eV with the maximum value at 4.0 eV. In many other materials a feature like

this is related to a direct band gap. In the calculated band structure of WO3

(Figure 4.6 on page 79) the direct band gap is clearly seen to be around 4

eV, and corresponds to the position of the major peak feature in the density

of states of WO3 (page 76).

Optical measurements on thin films of the hybrid materials were much

more difficult than for the WO3 films above, due to the very close similarity

in refractive index between the film and the substrate. WO3 has a refractive

index of 2.5–3 [68], compared with quartz ∼ 1.5. The hybrids are expected

to have a refractive index of ∼ 1.3–1.6. The closer the two refractive indices
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Figure 4.16: Absorption coefficients of (a) WO3 and (b) W-DA12 thin films,
obtained from the reflectance and transmittance spectra. Arrows indicate
changes in gradient, corresponding to band structure features (see text).

are, the less interference there is at the boundary between them, which is

used to determine the absorption coefficient.

While analysis of most of the hybrid spectra showed no difference from a

plain quartz substrate, a long-chain W-DA12 hybrid showed a steady increase

in the absorption coefficient across the visible spectrum, with changes of

gradient at 4.2 and 4.9 eV (indicated by arrows in Figure 4.16). The refractive

index is calculated to be ∼1.52.

The calculated density of the states for the W-DAn hybrid materials

(Section 4.6.2) exhibits two peak features at 2.7 and 4.0 eV. This latter

peak may correspond to an indirect band gap as seen in the powder diffuse

reflectance. The low density of states from 1 eV up to the peak feature at

2.7 eV may account for the steady increase at lower energies seen in the

absorption coefficient plot.

While there may be a direct band gap at 4.9 eV as indicated by the

absorption coefficient analysis, it must be pointed out that these energies

are close to the detection limits of the instrument, and that the calculated

density of states is only valid for the very first few unoccupied bands. That
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is, in the hybrids case, one cannot say for certain that there is no direct band

gap at 4.9 eV.

In summary, powder diffuse reflectance gives an indication of indirect band

gaps, and absorption coefficient analysis of thin film reflectance and trans-

mittance spectra gives an indication of direct band gaps. In WO3 these are

found to be 2.8 and 4.0 eV respectively, by both experiment and calculations.

The W-DAn hybrids have identical band structures regardless of alkyl chain

length (i.e. interlayer spacing). We assign an indirect band gap of 4.0–4.1

eV from powder diffuse reflectance to the peak feature observed in the cal-

culated density of states of the same energy. Evidence is seen in the thin

film absorption coefficient analysis for a direct band gap of 4.9 eV, however

the calculated density of states cannot be relied upon up to this energy to

comment.

In any case we see an increase of the band gap values, both direct and

indirect, in going from the 3-dimensional WO3 to the 2-dimensional hybrid

materials.

Recently, we have explored the doping of some of these hybrid materi-

als using cyclic voltammetry (Chapter 7). It will be of particular interest

as to whether one sees a build-up of low energy spectral weight with the

development of free carrier density and the formation of a Drude peak.



Chapter 5

Transition Metal Hybrids

Following from the structural and compositional determination of the ‘par-

ent’ tungsten oxide hybrid species, several avenues were explored with regards

to doping these materials. The addition of dopants, as seen in the computa-

tions of the tungsten oxide and tungsten bronzes, causes changes in the band

structure and movement of the Fermi level into a partially occupied band,

inducing conduction. This was a key objective in this research. In addition,

we sought especially to introduce transition metal ions to establish strong

electronic correlations. It is clear that a combination of low-dimensionality

as well as strongly interacting electronic states will provide for the prospect

of competing electronic phases and even the possibility of superconductiv-

ity. This was the primary reason for developing this class of layered hybrid

material. Certainly, they will exhibit some degree of magnetic ordering.

The easiest way to introduce dopant species into the inorganic layer is to

add such species to the solution during synthesis. Certain transition metals

are known to have a variety of oxidation states and may easily accept or

donate additional charge to the tungsten ions.

We synthesised several samples which included the transition metal ions

Mn, Fe, Co, Ni and Cu as detailed in Section 2.2. This chapter compares

the synthesis and describes the characterisation of these new materials, and

in Chapter 6 their interesting magnetic properties are discussed.

95
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Figure 5.1: Normalised XRD patterns of two (Mn,W)-DA6 samples synthe-
sised by the solution and melt methods.

5.1 Synthesis

As described in Chapter 3, three methods were used to synthesise the tran-

sition metal tungstate hybrids: the solution-based, ‘melt’, and Chimie douce

methods.

Manganese and iron are the only two studied transition metal ions incor-

porated in the hybrids that are able to be formed by the standard H2WO4/-

ammonia solution method. A (Mn,W)-DA6 sample was synthesised by the

melt method from MnWO4 ·nH2O and compared with the solution-produced

sample, using XRD. The results are shown in Figure 5.1. There are a few

additional peaks in the melt-produced sample (at 12.5 and 21◦ 2θ) but apart

from this the positions of all the lines are virtually unchanged, indicating

that the same phase has been formed.

While the crystal structure of MnWO4 ·nH2O is not known, the structure

of MnWO4 is, so a second experiment was undertaken to try to produce

(Mn,W)-DA6 from a melt method using MnWO4 as the inorganic reagent.

XRD of the final product revealed that the MnWO4 was unchanged. This

is not surprising as, unlike the hydrate, MnWO4 has a closely-packed 3-
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dimensional structure [158] comprising interlocking chains of linked MnO6

and WO6 octahedra. Intercalation would require rupture of a large fraction

of these strong bonds. Hence because the hybrid was formed, the hydrate

materials are a valid starting material for synthesising other transition metal

hybrids using the melt and chimie douce methods.

The exact crystal structure of the transition metal tungstate hydrates

has not been reported, although there have been studies on a variety of their

other structures formed at low pH [151] (see also ref. [55] in relation to

MnMoO4 · nH2O). As noted in Section 3.1.2, synthesis in low pH solutions

encourages the formation of polyoxotungstate anions. The same is true of

transition metal tungstate structures. Keggin ions can have one or more

WO6 octahedra replaced by metal oxide octahedra [105, 183], or even new

structures formed based on the ‘caps’ of the Keggin ion with a spacing ‘ring’

of the metal oxide species [56, 143, 144]. However these examples are for

the most part synthesised at low pH and/or under extreme synthesis condi-

tions (e.g. hydrothermally). Our hydrate samples were synthesised at room

temperature in a pH-neutral solution.

XRD patterns of the hydrate materials are amorphous, as shown by the

broad features and low counts in Figure 5.2. This is in contrast to H2WO4,

which is crystalline [145] (see, for example, Figure 7.4a). Their low (or

nanocrystalline) crystallinity is also evident from the morphology displayed

in SEM micrographs (Figure 5.3), which appear to show the material forms

in clumps of smaller particles only a few hundred nanometres across.

The IR spectra (Figure 5.4) of these materials are similar – they display

very few peaks, including a strong broad O–H stretching mode (correspond-

ing to the water molecules) centred at ∼3400 cm−1. According to ref. [170],

the hydrates MWO4 ·nH2O of the metal tungstates studied can have n values

of 2 (M = Mn, Co, Cu), 3 (M = Fe, Ni) or 6 (M = Ni), however the value of

n is often ill-defined, which may be related to the low crystallinity.
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Figure 5.2: XRD patterns of transition metal tungstate hydrates (MWO4 ·
nH2O, M as labelled).

Figure 5.3: SEM micrographs of transition metal tungstate hydrates, MWO4·
nH2O, M = (a) Fe; (b) Co; (c) Ni; (d) Cu. The scale bar corresponds to 2
µm in each case.
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Figure 5.4: Infrared spectra of transition metal tungstate hydrates, MWO4 ·
nH2O, M as labelled.

5.1.1 Comparison of methods

Table 5.1 lists the various samples that were produced using each of the three

methods.

The XRD patterns in Figure 5.1 compared the solution and melt meth-

ods for (Mn,W)-DA6, illustrating that the same product had been formed.

However, it is clear from the improved signal-to-noise ratio, narrower peaks

and hence cleaner features of the solution-produced sample that this product

is more crystalline than that produced using the melt method.

The improved crystallinity is also evident in SEM micrographs of the

samples, as shown in Figure 5.5. In this figure, two (Mn,W)-DA6 samples

are compared, one via the solution-based method and the other by the melt

method. The scale is the same in both micrographs. While the solution-

produced sample consists of exfoliated platelets of uniform size up to 10

µm across, the sample produced via the melt method appears to have much

smaller needlelike crystallites.

Similarly, a comparison was made between the melt and chimie douce

methods. Figure 5.5(c) and (d) compare a (Co,W)-DA2 sample formed by
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Hybrid material Solution Melt Chimie douce

(Mn,W)-DA2
√

– –
(Mn,W)-DA6

√ √
–

(Mn,W)-DA8
√

– –
(Mn,W)-DA12

√
– –

(Mn,W)-MA2 × – –
(Mn,W)-MA6 × – –
(Mn,W)-MA12

√
– –

(Mn,W)-phen
√

– –
(Mn,W)-DAphen

√
– –

(Fe,W)-DA2
√

– –
(Fe,W)-DA6

√ √
–

(Fe,W)-DA12
√

– –
(Fe,W)-DAphen × – –

(Co,W)-DA2
√1 √ √

(Co,W)-DA4 – × –
(Co,W)-DA6 × √ √
(Co,W)-DA12 – – ×
(Co,W)-MA6 – –

√
(Ni,W)-DA2 – –

√
(Ni,W)-DA6 × √ √
(Ni,W)-phen –

√
–

(Ni,W)-DAphen – × –

(Cu,W)-DA2
√1 √ √

(Cu,W)-DA6 × √
–

(Cu,W)-phen –
√

–
(Cu,W)-DAphen – × –

Table 5.1: Synthesis methods for transition metal tungstate hybrids.
√

=
successful, × = unsuccessful, – = not attempted. 1 from aqueous Na2WO4

solution.
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Figure 5.5: SEM micrographs of transition metal hybrids: (Mn,W)-DA6 via
(a) solution and (b) melt methods, and (Co,W)-DA2 via (c) melt and (d)
chimie douce methods. The scale bars correspond to 10 µm in each case.

both of these methods. Blocky crystallites are formed using the melt method

which are approximately ten times larger than those formed via a chimie

douce reaction. The morphology of the starting MWO4 · nH2O material is

probably responsible for these results, and indeed the general morphology of

the chimie douce sample looks quite similar to that of the hydrate material

(Figure 5.3). As the chimie douce reaction is performed at room temperature,

the mobility of the inorganic component is not likely to be high enough to

allow recrystallisation of the hybrid material as is normally evident in the

solution-based method. Some dissolution of the inorganic hydrate material

in melted amines is observed and the subsequent recrystallisation may result

in the formation of larger crystallites, particularly if the hybrid structure

is quite stable. This appears to be the case particularly for (Co,W)-DA2

when one compares the XRD of the same two samples, shown in Figure 5.6.

The Bragg lines in the melt-produced (Co,W)-DA2 sample are much more

pronounced than those of the chimie douce. Also shown in this figure are

two (Cu,W)-DA2 samples produced via the same two methods. In this case

a number of peaks are stronger in the chimie douce sample than the melt

sample, however there are more peaks in the melt sample and on average
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Figure 5.6: XRD patterns of two samples, (Co,W)-DA2 and (Cu,W)-DA2
(as labelled), synthesised by the melt, and chimie douce methods. Black line
= melt, red line = chimie douce.

the signal-to-noise ratio is better. (The structure of both samples will be

discussed later in Section 5.2.1.)

In general then, the crystallinity of samples produced via the three meth-

ods decreases from solution to melt to chimie douce. There are also limita-

tions on whether each method can be used. As mentioned earlier, only Mn

and Fe hybrids can be formed using the solution-based method due to the

preferential formation of ammonium complexes of cobalt, nickel and copper

in the H2WO4/aqueous ammonia solution. The melt method can only be ap-

plied with organics that will melt cleanly in a particular temperature range

(-50 to 200 ◦C) without reacting with air. The chimie douce method works

best for small intercalated organics. Sometimes multiple intercalative steps

are required to successfully intercalate a larger organic molecule, for instance

by using a smaller organic intercalate as a preliminary step [175].

We now discuss structural and spectroscopic studies performed on the

transition metal tungstate hybrids, following the same procedures as for the
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tungsten oxide-only hybrids.

5.2 Results

As was the case for the tungsten oxide hybrids, a number of characterisa-

tion techniques were used to determine the basic structural properties of the

materials, including XRD, elemental analysis, electron microscopy, electron

diffraction, IR and Raman spectroscopy, X-ray absorption spectroscopy, and

optical spectroscopy.

5.2.1 X-ray diffraction

XRD is the primary method of initial characterisation of the hybrid materials.

Because most of the transition metal hybrids, in particular those including

Co, Ni and Cu ions, are synthesised via methods that do not allow large

crystallites to form, this affects the XRD patterns. In many samples the

signal is too low to use for structural characterisation (indexing of XRD

powder patterns and subsequent Rietveld refinement), other than to observe

that a layered structure is present. Layered structures are characterised in

XRD by a prominent series of 00` lines (see [51, 261, 175] for examples of

layered structures of Ti4O9, Aurivillius structure, and birnessite with organic

intercalates which form fairly disordered hybrid phases displaying 00` line

series). XRD patterns of some examples of these poorly crystalline hybrid

materials including transition metal ions are shown in Figure 5.7. In each case

the 00` lines are indicated, and the d-spacing calculated from the average of

these. Additional peaks correspond to reflections whose indices include some

a and/or b component. The (Mn,W)-MA12 sample shown in this graph

represents the longest interlayer spacing achieved in this particular system to

date. The other two samples, (Ni,W)-MA6 and (Cu,W)-phen also represent

long interlayer spacings with relatively good signal-to-noise ratios.

XRD patterns are given for the (Mn,W)-DAn series in Figure 5.8a. Again,

the 00` lines are indicated and the corresponding d-spacings are plotted in

Figure 5.8b and compared with those of the W-DAn series from Chapter 3.
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Figure 5.7: XRD patterns of three samples, as labelled, showing the series of
00` lines characteristic of layered materials.
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Figure 5.8: (a) XRD patterns of (Mn,W)-DAn hybrids, (i) n = 2, (ii) n = 6,
(iii) n = 8, (iv) n = 12. The 00` lines are indicated. (b) Plot of d-spacing
obtained from the 00` line spacing versus alkyl chain length of the organic
intercalate, compared with the same results for the W-DAn series.

We can apply the same analysis of the slope and gradient of the best fit line

as we did in Section 3.2.1.

The equation of the line is d = 1.051n + 7.893. The lengthwise compo-

nent of a C–C bond in an alkane chain is 1.26 Å per carbon atom (Section

3.2.1). As the gradient of the line is 1.051 Å per carbon, this means the

organic molecule is tilted at an angle θ of sin−1(1.051/1.026) = 56.5◦ to the

inorganic layer, as indicated in Figure 5.9.

The inorganic layer spacing is calculated by

d = doxide + 2d∆N + ((n− 1)dC−C + 2dN−C) sin(56.5◦)

as shown in Figure 5.9. Thus when n → 0, the expression becomes

d = doxide + 2d∆N + (2dN−C − dC−C) sin(56.5◦)

Substituting d = 7.893, dN−C = 1.20Å and dC−C = 1.26Å, we obtain

doxide + 2d∆N = 6.942Å.

This is almost exactly double the value of 3.56 Å obtained for the tungsten

oxide-only system in Section 3.2.1. It is not surprising that the oxide layer

thickness has increased, as there are now two metal ions present per formula
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Figure 5.9: Diagram of (Mn,W)-DAn structure.
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unit, MnWO4·DAn (as evidenced by the microanalysis discussed in Section

5.2.3).

Figure 5.10 shows the XRD pattern of (Mn,W)-DAphen. While the pattern

contains broad lines, it correlates to a layered structure of 11.18 Å. What is

unusual about this sample is that the organic molecule, phenylenediamine

(1,4-diaminobenzene), was able to be intercalated. As mentioned in Section

3.2, organic molecules with the amino group directly attached to a benzene

ring are unable to be used to form tungsten oxide hybrids presumably because

of the steric hindrance of the benzene with the apical oxygen atoms. Not only

does there appear to be less steric hindrance when manganese is incorporated

into the structure, but the additional factor of DAphen being a bidentate

molecule does not appear to adversely affect the stability of the hybrid. This

contrasts with the tungsten oxide hybrids, where this particular intercalate

is unstable. Therefore it appears that the inorganic layer structure of the

manganese tungstate hybrids is different from that of the tungsten oxide

hybrids, and/or the disposition of the organic intercalant is different. Either

way, it is likely to have a more open structure in some respect to allow the

incorporation of the bulky DAphen molecule. (This is explored further in

Section 5.2.5.)

As indicated in Table 5.1, the only transition metal incorporated for which

a substantial series of (DAn) hybrids were synthesised so far has been man-

ganese. Manganese was the first transition metal ion to be incorporated in

the tungsten oxide hybrid system. Also, the inability of the other metal

ions to form hybrids via the standard solution method restricts the scope of

organic molecules that can be included.

As mentioned in Section 5.1.1, (Co,W)-DA2, (Ni,W)-DA2 and (Cu,W)-

DA2 have nearly identical structures as indicated by XRD (shown in Figure

5.11). The copper sample displays several extra peaks that do not appear

in the other two samples, which are most likely due to symmetry breaking

due to copper ions often displaying several non-equivalent bond lengths, for
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Figure 5.10: XRD pattern of (Mn,W)-DAphen.

example, due to the Jahn-Teller effect [111, 123]. More significantly, the lack

of a distinct series of 00` lines indicates that the structure formed is possibly

non-layered.

Figure 5.12 shows the XRD patterns of the (M,W)-DAn samples, varying

the transition metal ion M and comparing these with the ‘pure’ tungsten

oxide hybrid W-DA6. The 00` lines are indicated in each case. The patterns

appear to fall into two distinct groups based on the d-spacing indicated by

the 00` lines: tungsten only, nickel and copper with a spacing of 12.2 Å, and

manganese and cobalt with a spacing of 14.5 Å. While many of the other

lines appear to be different, no inferences can be made about the structure

within the inorganic layers from this data alone.

5.2.2 Electron microscopy

SEM images showing the microstructure of several different transition metal

hybrids are given in Figure 5.13. Three (Mn,W)-DAn samples are shown

in (a), (b) and (c); and three (M,W)-DA6 samples produced by the melt

method are shown in figures (d), (e) and (f).

In Figure 5.13a and b we see the distinct platy morphology of the man-
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Figure 5.11: XRD patterns of transition metal hybrids (M,W)-DA2, M as
labelled.

Figure 5.12: XRD patterns of transition metal hybrids (M,W)-DA6, M = (a)
none; (b) Mn; (c) Co; (d) Ni; (e) Cu.
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Figure 5.13: SEM micrographs of transition metal tungstate hybrids: (a)
(Mn,W)-DA2; (b) (Mn,W)-DA6; (c) (Mn,W)-DA12; (d) (Co,W)-DA6; (e)
(Ni,W)-DA6; (f) (Cu,W)-DA6. Scale bars correspond to 10 µm for (a), (b),
(e) and (f); and 2 µm for (c) and (d).
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ganese hybrids which gives rise to the clear XRD patterns in Figure 5.8a.

In Figure 5.13b in particular, the plates appear to be clumped together, like

exfoliated spheres. At the centre of these ‘clumps’ it is conceivable that

structures such as those shown in Figure 5.13c act as nucleation points. It

is thought that due to the difficulty of forming the hybrids with long chains

such as DA12, these nucleation centres were unable to form plates during the

synthesis.

The (Co,W)-DA6 sample shown in Figure 5.13d also has the appear-

ance of exfoliated spheres, although they are much smaller than those of

the (Mn,W)-DA6 sample in Figure 5.13b. (Ni,W)-DA6 and (Cu,W)-DA6, in

Figures 5.13e and f respectively, also demonstrate the formation of platelets

of similar sizes to those of the manganese samples (up to 10 µm across).

The platy morphology of the hybrids make them ideal for preparation for

TEM studies.

A high-resolution TEM image of (Mn,W)-DA6 is shown in Figure 5.14.

Indicated in this image are two axes evident from the arrangement of bright

spots. These bright spots correspond to tungsten atoms, which have a high

electron density (the atomic number of tungsten is 74). Comparing the spaces

along each of the two axes, we observe that the spacing between tungsten

atoms in one direction is almost exactly double that of the other direction.

The manganese atoms are thought to lie in stripes between the tungsten

atoms that are double-spaced. A glancing incidence view reveals the presence

of several topological dislocations in this atomic ordering.

A SAED pattern of the same (Mn,W)-DA6 sample is shown in Figure

5.15. Evident in this diffraction pattern are two almost orthogonal axes, one

showing a four-fold superlattice (and corresponding to a spacing of 10.42 Å)

and the other showing a two-fold superlattice (with a spacing of 5.03 Å).

As in Section 3.2.2, the uncertainty in the absolute values is ± 10% but the

ratio of the two axes and the angle between them can be determined more

accurately than this. The ratio is 2.070 and the angle is 89.7◦, implying that

the ab plane is almost a square, doubled in one direction.
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Figure 5.14: High-resolution TEM image of (Mn,W)-DA6, with axes indi-
cated.
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Figure 5.15: Electron diffraction image of (Mn,W)-DA6, showing the ab-
plane.

5.2.3 Elemental microanalysis

Many of these transition metal tungstate hybrids were subjected to C, H

and N elemental analysis like their tungsten oxide-only counterparts (Section

3.2.3). These samples were also examined using the EDX system incorpo-

rated in the SEM, to determine the metal-to-tungsten ratio. Further, it is

known from XANES spectra (Section 5.2.5) that tungsten is present as W6+

and manganese as Mn2+. The results are tabulated in Table 5.2.

As can be seen from the table, the metal:tungsten:oxygen ratios are al-

ways very close to the inferred stoichiometric values of 1:1:4. For those sam-

ples synthesised from MWO4 · nH2O via the melt or chimie douce methods,

this is not surprising. However for the manganese samples produced by the

solution-based method, the stoichiometry indicated by EDX is independent

over quite a wide range of the molar ratio of starting materials (Mn0.3W0.7 –

Mn0.7W0.3). For all samples, no other elements (e.g. from starting materials)

were detected in the EDX spectra.

The organic ratios are also in good agreement with the expected values:
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Hybrid material Inorganic Organic I:O Ratio
M W O C H N

(Mn,W)-DA2 1.059 0.941 3.883 2 10.44 1.84 1:0.40
(Mn,W)-DA6 1.129 0.871 3.742 6 17.3 1.89 1:0.39
(Mn,W)-DA8 1.226 0.774 3.549 8 19.41 1.85 1:0.54
(Mn,W)-DA12 0.897 1.103 4.205 12 27.58 1.93 1:0.53
(Fe,W)-DA2 1.096 0.904 3.809 2 9.19 1.89 1:1.12
(Fe,W)-DA6 0.828 1.172 4.354 6 20.67 1.94 1:0.42
(Co,W)-DA2 0.875 1.125 4.249 2 8.84 1.86 1:0.72
(Co,W)-DA6 0.908 1.092 4.184 6 15.73 1.95 1:0.71
(Ni,W)-DA2 1.181 0.819 3.758 2 7.57 1.94 1:2.77
(Ni,W)-DA6 0.957 1.043 4.267 6 18.35 2.19 1:1.28
(Cu,W)-DA2 0.954 1.046 4.092 2 9.46 1.87 1:2.00

Table 5.2: Elemental analysis results for transition metal hybrids, showing
the inorganic results calculated from EDX analysis, organic results calcu-
lated from elemental microanalysis, and the inorganic:organic (I:O) ratio.
Calculated for M + W = 2, C = number of carbons in chain.

DA2 – C2H8−10N2

DA6 – C6H16−18N2

DA8 – C8H20−22N2

DA12 – C12H28−30N2

However, the inorganic:organic ratios are often quite different from the 1:1

seen in the tungsten oxide-only samples. In most cases the ratio is slightly

less than 1:0.5, indicating an inorganic-rich phase is consistently formed.

However for the nickel and copper samples the ratios are greater than 1:1,

indicating an organic-rich phase has formed.

5.2.4 IR and Raman spectroscopy

Infrared and Raman spectra were obtained as for the tungsten oxide hy-

brids, and the spectra for the manganese tungstate hybrid series are shown

in Figures 5.16 and 5.17.

The first point to notice in both the infrared and Raman spectra is how

similar the spectra are for the hybrids. In the infrared spectra the labelled

regions show the major organic vibrational modes: N–H stretch at 3240–3340
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Figure 5.16: Infrared spectra of manganese tungstate-based materials: (a)
MnWO4; (b) MnWO4 · nH2O; (c) (Mn,W)-DA2; (d) (Mn,W)-DA6; (e)
(Mn,W)-DA8; (f) (Mn,W)-DA12.

Figure 5.17: Raman spectra of manganese tungstate-based materials: (a)
MnWO4; (b) MnWO4 · nH2O; (c) (Mn,W)-DA2; (d) (Mn,W)-DA6.
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cm−1, C–H stretch 2840–2940 cm−1, NH2 bending 1570 cm−1. Comparing

these with the spectra of the tungsten oxide hybrids earlier, the N–H stretch-

ing lines are much sharper, there are only two NH2 bending modes, and there

are no broad features near 2100 cm−1. These factors together indicate that

the amine end-groups are neutral –NH2 terminations rather than charged

–NH +
3 as in the tungstates. At the low-frequency end, the lines correspond-

ing to inorganic vibrational modes are the same for the hybrids and the

hydrate material. However they are different from the ‘parent’ compound,

MnWO4, which is also shown for reference. These lines have been reported

previously for the hydrate compound, although no structural information

was given [151].

The Raman spectra (Figure 5.17) also appear identical for the hybrids

and hydrate system (with the exception, of course, of the organic modes

at high Raman shifts). Again, there are differences between these and the

reference compound MnWO4. As in the tungsten oxide hybrids, a strong

peak corresponding to W=O bonding is evident near 900 cm−1. However,

unlike the tungsten oxide hybrids, the frequency of this line increases from 886

cm−1 for MnWO4 to 906 cm−1 for the hydrates and hybrids. The structure

of MnWO4 consists of an interlocking network of distorted MnO6 and WO6

octahedra which align in alternating planes of Mn and W cations [158]. It

is therefore quite conceivable that when the layers form in the case of the

hybrids and hydrate, some W=O bonds are formed which are then shorter

and stronger than those in MnWO4. The inorganic structures are identical

for the hybrids and hydrates, and there is no direct interaction between the

neutral organic or water molecules and the inorganic layer, as indicated from

analysis of the infrared spectra.

As mentioned in Section 5.2.1 and indicated in Table 5.1, manganese is

the only transition metal for which a number of different hybrids have been

produced. While a select few of the other hybrids have been studied via IR

and Raman spectroscopy, it is difficult to compare them because of the lack

of data. None of the spectra show the characteristic peak at 2100 cm−1 cor-

responding to –NH +
3 · · ·−O hydrogen-bonding, indicating that like the man-
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Figure 5.18: XANES spectra of (Mn,W)-DAn at the W L1-edge.

ganese system, these too are comprised of a neutrally-charged inorganic layer

and neutral amine-terminated organic intercalate molecules. Other than this

the spectra contain the expected organic and inorganic modes similar to those

observed in the manganese series.

5.2.5 XANES and EXAFS

X-ray absoption near edge spectroscopy (XANES) and extended x-ray ab-

sorption fine structure (EXAFS) measurements were performed on MnWO4 ·
nH2O, (Mn,W)-DA2 and (Mn,W)-DA6, as described in Section 2.4.

XANES spectra are shown for the W L1-edge in Figure 5.18 and for

the Mn K-edge in Figure 5.19. The position of the edge corresponds to the

valence of the ion being probed. In the tungsten spectra, all three curves are

extremely similar to the reference curve of WO3, indicating that the tungsten

ions are present as W6+. In the manganese spectra, the curves are compared

with three reference compounds, MnO, Mn2O3 and MnO2 (Mn valences of

+2, +3 and +4 respectively). Once again, all three compounds are similar

and correspond to a manganese valence of Mn2+. This serves to validate the

EDX data, which gave stoichiometries consistent with MnWO4, a structure

in which the metal ions are present as Mn2+ and W6+.
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Figure 5.19: XANES spectra of (Mn,W)-DAn at the Mn K-edge.

Shell Length (Å) Co-ordination number

W–O 1.737 ± 0.021 2.11 ± 0.64
W–O 2.121 ± 0.022 4.82 ± 1.39
W–W 3.233 ± 0.024 6.63 ± 3.58
W–O 3.337 ± 0.033 12.21 ± 3.61
Mn–O 2.124 ± 0.007 4.76 ± 0.40

Mn–Mn 3.409 ± 0.041 1.28 ± 0.80

Table 5.3: Averaged EXAFS results from fitting analysis of manganese
tungstate hybrids.

The EXAFS spectra for all three compounds are virtually identical. Good

fits to the spectra were obtained by using the structure of the parent com-

pound MnWO4 as a starting point. A plot of the EXAFS data in R-space

with the best fits are shown in Figure 5.20 for the W L1-edge and Figure

5.21 for the Mn K-edge. The results are summarised in Table 5.3.

In the table, the co-ordination numbers are quite uncertain past the third

(W–W) shell1. This is most likely due to the presence of several shells in this

region, to which fits were also attempted without success. MnWO4 gives the

following shells: W–W 3.2813 Å, W–O 3.3594 Å, W–Mn 3.5214 Å, W–Mn

3.5823 Å, W–O 3.6018 Å. It is possible then that the W–W and W–O shells

1‘Shell’ is the terminology used in EXAFS to refer to the positions of neighbouring
atoms at increasing distances from the atom being probed.
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Figure 5.20: EXAFS spectra for (Mn,W)-DAn from the W L1-edge.

Figure 5.21: EXAFS spectra for (Mn,W)-DAn from the Mn K-edge.
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reported in the table have much higher co-ordination numbers than in the

actual system, as the other W–Mn and W–O shells have not been included

in the fit, but would contribute to the spectra in the same region. It is also

important to remember that EXAFS gives an averaged result.

The results can be summarised as follows. 2 shorter W–O bonds (1.7

Å) and 4 longer ones (2.1 Å) are observed, which most likely correspond

to the normally distorted WO6 octahedra. In MnWO4 the tungsten oxide

octahedra are edge shared, and the W–W distance is consistent with both

in-plane longer W–O bonds or if a bilayer was present, from the distance

between adjacent tungsten atoms in the two layers. The next W–O shell

observed probably corresponds to the distance from one tungsten atom to

the apical oxygen atoms of its neighbouring octahedra.

Fitting to the manganese data was more difficult, indicating that the

positions of the manganese atoms are more disordered than those of the

tungsten. In MnWO4 the MnO6 octahedra are edge-shared to one another

and corner-shared to the tungsten oxide octahedra they sit between [133,

158]. However, it appears in the hybrids that one of the oxygen atoms is

missing from the MnO6 octahedra, forming a square-based pyramid. The

next nearest atom is another manganese, and there are either one (i.e. Mn

dimers) or two (1D chains). However, only these two shells were used in

the fit and there may be other Mn–Mn bonds relatively close which would

appear in subsequent shells (as well as other Mn–W and Mn–O neighbours).

In the absence of single crystal XRD structural analysis, we combine the

results presented so far to propose a structure for the inorganic layer. Given

the results from the EXAFS analysis, XRD inorganic layer spacing (2 ×WO6

octahedra), and the tungsten atom ‘stripes’ seen in the high-resolution TEM

image, a structure is proposed in Figure 5.22 for the inorganic layer.

The proposed structure has the necessary bilayer of WO6 octahedra,

edge-shared in the direction normal to the page. In the horizontal direc-

tion the structure alternates between lines of tungsten octahedra and man-

ganese metal ions (filled circles in the diagram). The manganese ions are

co-ordinated to five oxygen atoms - two from the WO6 octahedra on each
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Figure 5.22: Proposed structure for (Mn,W)-DAn, showing a bilayer of WO6

octahedra, MnO5 inverted square pyramids, and the terminal N and first C
atoms of the organic molecule (H atoms not shown for clarity).
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side, and one between them (open circle). The bilayer structure would also

mean that if every open transition metal site was occupied by an organic

amine termination, the MWO4:organic ratio would be 2:1 (as there are two

MWO4 formula units per organic bidentate molecule), as observed in the

microanalysis results (Section 5.2.3).

Past the first two well-defined W–O shells (with the two shorter bonds cor-

responding to the vertical direction and the four longer bonds corresponding

to the horizontal), this structure would exhibit 3 W–W and 2 W–Mn shells

at approximately the same distance, which would be difficult to resolve. One

would also expect to see 6 W–O shells corresponding to the distance be-

tween a tungsten atom and an apical oxygen atom on its neighbouring WO6

octahedron or MnO5 square pyramid.

The manganese spectrum would also show Mn–Mn and Mn–W shells

at approximately the same distance for neighbours in-plane, and perhaps a

different (shorter) Mn–Mn length in the vertical direction. Hence, while only

one Mn–Mn shell is observed (at 3.41 Å), the next shell to be fitted may

correspond to the two longer Mn–Mn in-plane neighbours.

We have also performed bond-valence sums on the EXAFS data leading

to the proposed structure, following Ref. [2] and [34]. For the jth atom, its

valence Vj is given by

Vj =
∑

i

exp ((r0 − rij)/B)

where r0 is given in tables in Ref. [34] for many inorganic bonds and B takes

a relatively constant value of 0.37 for most systems [34].

For Mn in the proposed structure we calculate VMn = 2.03 ± 0.03, in good

agreement with the expected value of +2 as given by the XANES spectra.

For W we calculate VW = 5.56 ± 0.33, which is not as good, but is within

the uncertainty for W6+ of ± 0.85, as calculated from reference [2]. The

discrepancy may also be due to uncertainty in fitting the first maximum in

the EXAFS spectrum, which normally would arise from three pairs of W–

O shells at slightly different distances. Instead we have 2 short and 4 long

distances.
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Thus we conclude the proposed structure is viable from a consideration

of the bond valence sums for Mn and W.

Within the proposed structure, the most likely site for the amino terminal

group to bind to (or at least, interact with) the inorganic layer is in the open

space near the transition metal site. In MgWO4·2H2O, one of the few metal

tungstate hydrates for which a structure has been reported, the oxygen atom

of the water molecule forms one apex of each MgO6 octahedron [3, 104]. On

the other hand, MnWO4 thin films used as humidity sensors indicate that the

W site is more active for water adsorption [224]. However from our infrared

and Raman results (Section 5.2.4) it is clear that the structure formed in the

manganese tungstate hydrate and hybrids is not completely related to that

of MnWO4. If our proposed structure is correct, the bare manganese ion will

be the most reactive site for binding intercalated molecules to, rather than

the tungsten octahedra. The apical W=O bond would therefore be stronger

because it is not affected as much by the amino group as for the tungsten

oxide hybrids. This is evident in the Raman spectra (Section 5.2.4) as the

corresponding peak shifts to higher energies (higher frequencies). This will

play a large part in the other transition metal tungstates, particularly the

cobalt, nickel and copper samples, which are known to form amino complexes

relatively easily. This is explored in the next section.

5.2.6 UV-visible spectroscopy

Many transition metal compounds, especially complexes, exhibit metal-ligand

or ligand-metal charge transfer interactions which result in the absorption or

emission of visible light. This results in the bright colours often seen in tran-

sition metal compounds, and these transition metal tungstate hybrids are no

exception. Figures 5.23, 5.24 and 5.25 show the UV-visible powder diffuse

reflectance performed on lightly pressed samples as described in Chapter 2.

Reference [166] was used extensively in the interpretation of the spectra.

The manganese samples (Figure 5.23a) both display a single absorption

edge, the midpoint of which lies at 387 nm. In appearance they are quite sim-

ilar to the spectra of the W-DAn hybrids (Section 4.7.1) in that the position
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Figure 5.23: UV-visible spectra of (a) Mn tungstate hybrids: (i) (Mn,W)-
DA2, (ii) (Mn,W)-DA6; and (b) Fe tungstate hybrids: (Fe,W)-DA12

of the absorption edge appears to be independent of the alkyl length (and

hence interlayer spacing), indicating that adjacent layers are electronically

decoupled. The energy that the edge corresponds to is 3.20 eV, lower than

that of the W-DAn hybrids. Some slight changes in gradient at 480, 565 and

685 nm may correspond to charge transfer transitions [166, p.449], however

their low intensity indicates that while the manganese in the hybrid structure

may be interacting with the organic molecule in a complex-like manner, this

is much weaker than the interaction between the manganese and the tungsten

and oxygen atoms nearby, forming the inorganic layer. It behaves more like

a traditional semiconductor with a band gap than a complex incorporated

within the inorganic layer.

The manganese samples are all of a similar light brown colour, regardless

of the length of the organic intercalate. Manganese (II) compounds in the

high spin state often exhibit a weak pink colour, which is consistent with the

colouring of these samples [166, p.448].

Similarly the iron samples are all of a similar orange-brown colour and
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Figure 5.24: UV-visible spectra of (a) Co tungstate hybrids: (i) CoWO4 ·
nH2O, (ii) (Co,W)-DA2; and (b) Ni tungstate hybrids: (i) NiWO4 · nH2O,
(ii) (Ni,W)-DA6

Figure 5.25: UV-visible spectra of Cu tungstate hybrids: (i) CuWO4 ·nH2O,
(ii) (Cu,W)-DA2, (iii) (Cu,W)-DA6, (iv) (Cu,W)-phen.
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display similar UV-visible spectra to that of (Fe,W)-DA12 shown in Figure

5.23b. This spectrum shows a single broad feature, peaking at 788 nm and

remaining high to lower energies. It appears that this is an absorption edge

with a peak feature, corresponding to semiconducting behaviour with addi-

tional Fe-ligand influence. In this case the Fe-ligand interaction is stronger

than the Mn-ligand interaction. The value of 788 nm is similar to values of

710–900 nm reported for iron-diaminoalkane complexes [166, p.460].

Manganese and iron are the only two of the five transition metal hybrid

series studied which were able to be formed from aqueous ammonia solution,

using the preferred ‘solution method’. Cobalt, nickel and copper all prefer to

form ammonia complexes over the tungstate hybrid precipitate. It is not sur-

prising then, that this complex-like behaviour is observed in the UV-visible

spectra. While the metal ions are bound within the inorganic layers, the

interaction between them and the organic amine termination is significant.

This is now discussed for the three series in question.

The cobalt tungstate hybrids studied are shown in Figure 5.24a. They

show two peak features: a small sharp peak near 400 nm and a large broad

peak near 800 nm. The peaks of the (Co,W)-DA2 compound lie at lower

wavelengths (higher energies) than CoWO4 · nH2O.

For octahedral high spin cobalt (II) complexes, two main absorption

bands are observed at 1000–1250 nm and 500 nm [166, p.480]. In com-

plexes of cobalt (II) with ammonia or organic amines, these values decrease

in wavelength [166, p.481]. For tetrahedral cobalt (II), the absorption bands

occur at 1110–2000 nm and 550–670 nm [166, p.496-498]. This difference

is fairly strong evidence that the cobalt ions are present in the octahedral

configuration, as they are in CoWO4.

We proposed that the environment of the transition metal ion in the tran-

sition metal tungstate hybrids forms a square pyramid with 5 oxygens of the

tungsten oxide octahedra, with the apex of the pyramid within the inorganic

layer. This leaves the metal ion open to form a complex-like interaction with

the terminal amino group of the organic molecules. Hence it is not surprising
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that the optical spectra resembles that of a cobalt-amino complex, shifted to

higher energies because the cobalt is bound within the inorganic layer. The

extra binding increases the energy required for charge transfer to the ligand

to occur.

In the nickel tungstate hybrids (Figure 5.24b), three absorption bands

are observed at 370 nm, 500–530 nm and 830–930 nm. These are compara-

ble with the observed ranges for the three spin-allowed transitions in many

octahedral nickel (II) compounds: 370–520 nm, 500–910 nm and 770–1430

nm [166, p.507]. As for the cobalt samples, the observed transitions of the

nickel hybrids lie at the high-energy end of these ranges, as in fact do many of

the nickel-amine complexes (e.g. ethylenediamine, pyridine, bipyridine) [166,

p.508]. Tetrahedral nickel complexes on the other hand display one major

band near 670 nm [166, p.530]. Clearly the spectra observed correspond to

nickel (II) in an octahedral environment.

Lastly, the copper tungstate hybrids, shown in Figure 5.25, display for

the most part a single absorption band near 500 nm. In (Cu,W)-DA2 the

prominent band is shifted to higher energies (400 nm) and an additional

small peak feature is seen at 850 nm. Jahn-Teller distortion of copper ions

causes features in the optical spectra to broaden out, and most studies of

copper complexes report a single poorly-resolved broad band [166, p.555].

While copper (II) octahedral complexes are rare (copper prefers square planar

symmetry), typical values are in the range 560–670 nm [166, p.557]. Square

planar copper complexes, especially to ammonia/amino ligands, have been

observed to have absorption bands as low as 500 nm[166, p.572].

A summary of the UV-visible results is as follows: it appears the samples

can be divided into two groups based on the spectra - Mn and Fe hybrids,

and Co, Ni and Cu hybrids. The former samples are able to be formed via the

solution method, an initial indication that their covalent interaction within

the inorganic tungstate layer is greater than any affinity for the ammonia

solution or amino organic molecules. Their optical spectra show a single ab-

sorption edge as opposed to a series of bands, indicating that their electronic

properties are similar to those of the tungsten oxide hybrids, with a more or



128 CHAPTER 5. TRANSITION METAL HYBRIDS

less well-defined band gap.

The latter samples (Co, Ni and Cu hybrids) however, display optical spec-

tra reminiscent of their amino complexes. The increased affinity for these

transition metals to form such complexes is observed in the comparison of

synthesis techniques, where it was noted that these hybrid materials cannot

be formed in ammonia solution. Therefore one might expect complex-like

behaviour of the metal-organic interaction in the hybrid material itself, par-

ticularly if the bare metal ion site is the preferred site for the organic amine

to bind to. In this case the charge transfer between the metal and the termi-

nal amino groups dominates the observed optical spectra. Often the energy

is increased relative to that expected, because the metal is also bound within

the inorganic tungstate layer.

5.3 Summary

The transition metal tungstates have been characterised using a number of

techniques to probe their structural, chemical, and electronic properties.

In this work, the manganese tungstates have been the most extensively

studied of the five transition metal hybrid series, due to a number of factors.

They are able to be synthesised via the preferred solution-based method,

which results in better crystallinity of the final powder product. This in turn

gives better results in XRD and TEM, the primary means used in absence

of single crystal XRD for determining crystal structure features. As for the

‘parent’ tungsten oxide hybrids, there is evidence for a layered structure,

in this case built on a bilayer of oxide species. From TEM images and

EXAFS analysis it is inferred that the oxide structure consists of alternating

‘stripes’ of MnO5 square pyramids joined at their apices, and WO6 octahedra.

The organic molecules are tilted at an angle of 56.5◦ to the inorganic layer.

XANES spectra clearly show that manganese is present as Mn2+ and tungsten

as W6+. A combination of microanalysis and EDX confirms the stoichiometry

of this arrangement. Because of the more open nature of the structure,

particularly along the manganese stripes where there are no apical oxygen

atoms, it should in principle be possible to include somewhat more ‘bulky’
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molecules than can be included in the ‘parent’ tungsten oxide system. Indeed,

a sample was successfully synthesised using DAphen (1,4-diaminobenzene,

H2N(C6H4)NH2) as the organic molecule.

Again, as for the ‘parent’ compound, electron diffraction reveals the pres-

ence of a supercell, which has confounded efforts to solve the crystal struc-

ture directly from Rietveld refinement of the powder XRD data. Unlike the

‘parent’ compound series, the infrared spectra of the (Mn,W)-DAn series in-

dicates an absence of –NH +
3 terminal groups. This is not surprising, as the

inorganic layer, Mn2+W6+O4, has zero net charge.

Cobalt, nickel and copper hybrids on the other hand display a different

chemistry than manganese, as evidenced from their UV-visible spectra. They

each display a number of absorption bands in the visible spectrum (rather

than an absorption edge), indicating that the interaction between the organic

amino group and the transition metal ion may resemble that of an amino

complex. The (M,W)-DA2 compounds of each of these appear to form a

completely different structure altogether.



130 CHAPTER 5. TRANSITION METAL HYBRIDS



Chapter 6

Magnetic Properties

The incorporation of unpaired spins into the transition metal hybrid struc-

tures should lead to magnetically correlated states, depending upon the

strength of coupling between the spins both within the inorganic layer and

between layers. The layered organic-inorganic hybrid systems have the po-

tential, particularly using insulating saturated amino-alkanes as the organic

intercalates, to represent a nearly-perfect two-dimensional magnetic system.

Models for such low-dimensional systems have been developed in the past

(e.g. [?]), however there are relatively few experimental compounds to ap-

ply them to. Hence the magnetism of the layered organic-inorganic hybrids,

particularly those incorporating magnetic ions, represents an area of physics

where the enforced low-dimensionality causes severe anisotropy in the prop-

erties of the material.

The samples were measured with a Squid magnetometer as described in

Section 2.4.

This chapter begins by summarising the major types of magnetic be-

haviour, as outlined in Ref. [192].

6.1 Introduction to magnetic behaviour

Two means used to describe a material’s magnetic behaviour are to observe

the temperature-dependence and field-dependence of the magnetisation M

(i.e. M(T ) and M(H) respectively). The vast majority of materials display

131
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linear, reversible M(H) behaviour, which is a characteristic of paramagnetism

and arises from the moments associated with localised unpaired electrons.

As the field increases, the alignment and hence the measured moment also

increases proportionally. The ratio M/H is called the magnetic susceptibility,

χ.

If the atoms with the localised unpaired electrons do not interact with

each other, the system will obey the Curie law, χ = C/T where C is the

Curie constant. The 1/T behaviour arises as thermal motion of the electrons

disrupts the alignment of the spins parallel to the applied field. The Curie

constant is related to the number of unpaired electrons in the system.

When adjacent moments in a paramagnetic system interact, the exchange

interaction can assist to align the moments either parallel or anti-parallel.

This introduces a new term into the equation for Curie behaviour, and we

obtain the Curie-Weiss law, χ = C/(T − Θ) where the new parameter Θ is

the Weiss temperature, which is related to the strength and nature of the

exchange interaction. If Θ is positive, adjacent moments align in the same

direction, as a result of ferromagnetic (FM) correlations. If Θ is negative,

adjacent moments align in opposite directions, as a result of antiferromag-

netic (AF) correlations. While Θ is not strictly a physical property, in FM-

correlated systems there is an additional transition often near T = Θ (where

the Curie-Weiss law diverges), and the transition temperature is called the

Curie temperature, TC . In AF-correlated systems there may be a transition

near T = |Θ|, and the transition temperature in these systems is called the

Néel temperature, TN .

Pauli paramagnetism and Van Vleck paramagnetism are two examples

of temperature-independent paramagnetism. Pauli paramagnetism arises in

metals, where the conduction electrons can be aligned by the applied mag-

netic field. Van Vleck paramagnetism arises due to thermal excitations of

electrons to low-lying excited states. Both contributions are small and nor-

mally treated as a temperature-independent constant. The constancy of the

Pauli paramagnetism arises in turn from a more or less constant density of

states (DOS) near the Fermi level. If the DOS is strongly energy-dependent,

as for example near a van Hove singularity, then the pauli susceptibility will
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be temperature-dependent.

Paired electrons often give rise to diamagnetism, where the M(H) be-

haviour is linear and reversible, but has a negative slope (i.e. χ is negative).

In most systems this is very small and temperature-independent. The core

electrons can also contribute a very small diamagnetic moment.

Unlike paramagnetic and diamagnetic systems, ferromagnetic systems dis-

play non-linear, irreversible M(H) curves1. In ferromagnetic systems the

spins interact strongly with each other and align parallel to the applied field,

resulting in a large saturation magnetisation (one parameter used to describe

ferromagnetic systems). The M(T ) behaviour obeys the Curie-Weiss law at

temperatures far above the Curie temperature TC , below which the ferro-

magnetic phase is formed, and χ (= M/H) becomes field-dependent as M/H

is non-linear in this regime. Magnetic correlations lead to a departure from

linear M(H) near but above TC , where χ ∝ (T − TC)−n (for 3-dimensional

systems).

The irreversibility, or hysteresis, in the M(H) loops at T < TC is also

evident in the M(T) dependence and can be detected by performing two

temperature scans, one where the field is applied at low temperatures after

cooling in zero field (‘zero-field-cooled’ or ZFC), and one where the sample is

cooled while the field is turned on, and then measured in the same field upon

warming (‘field-cooled’ or FC). A comparison of the two curves indicates the

temperature range over which the system displays irreversible behaviour.

In antiferromagnetic systems there is also long-range ordering, however

adjacent spins align in opposite directions. While the M(H) behaviour at all

temperatures resembles that of a paramagnet, the AF behaviour is attributed

to long-range order. M(T ) plots often display a cusp-shaped feature char-

acteristic of an AF transition at the Nèel temperature, TN . Above TN they

display Curie-Weiss dependence with a negative Weiss temperature.

Ferrimagnetism is a phenomenon that occurs when spins are antiferro-

1For systems with extremely small grains (e.g. Fe nanoparticles) there are no domain
wall boundaries and the M(H) curves are reversible.
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magnetically aligned, but adjacent moments are of different magnitude, re-

sulting in a net ferromagnetic component. Ferrimagnetic materials have sim-

ilar M(H) and M(T ) behaviour to ferromagnets, although the magnetisation

is not as large. Ferrimagnetism can only occur in systems where atoms with

multiple different spins are ordered (e.g. Fe3O4, which has two ordered spin

states of iron, Fe2+ (S = 2) and Fe3+ (S = 5
2
)), or materials with two ordered

spin systems of different orientations.

Another way to observe a net ferromagnetic moment in an antiferro-

magnetically ordered system is if the spins are tilted (or canted) slightly in

an orthogonal direction. See for example reference [24]. Like ferrimagnets,

spin-canted antiferromagnets exhibit FM-like behaviour in M(T ) and M(H),

albeit with much smaller magnetisations than if the system was purely fer-

romagnetic. If the field is applied in the plane of (and aligned with) the

ordered moments, no magnetisation is observed up to a threshold field where

the AF moments then flip to an orientation orthogonal to the field, when

they may cant. This is known as a spin-flop transition and is characterised

by a magnetisation loop resembling a figure-8: the moment is zero up to the

spin-flop field, then rises sharply. On reversal the magnetisation collapses

back to zero when the field is low enough for the moments to realign. The

reverse cycle shows the same behaviour at negative moment.

As might be expected, very few materials have completely non-interacting

spins. In low-dimensional materials the exchange interactions along chains

or within planes are expected to be much stronger than between chains or

planes. These considerations give rise to a number of models, which we

describe next.

6.2 Low-dimensional models

The spin Hamiltonian is given in the general form

H = −2J
∑

i>j

[aS z
i S z

j + b(S x
i S x

j + S y
i S y

j )] (6.1)
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where i and j are nearest-neighbour spins and J is the exchange constant

[71].

When the interaction is completely isotropic (direction-independent), a =

b = 1 in equation 6.2 and we obtain the 3D Heisenberg model:

H = −2J
∑

i>j

Si · Sj = −2J
∑

i>j

S x
i S x

j + S y
i S y

j + S z
i S z

j

On the other hand, if the interaction is completely anisotropic, we obtain

the Ising model, with a = 1 and b = 0:

H = −2J
∑

i>j

S z
i S z

j

In the case where a = 0 and b = 1 we obtain the planar Heisenberg or

XY-model (providing the spins are contained within the xy-plane):

H = −2J
∑

i>j

(S x
i S x

j + S y
i S y

j )

The models can be extended further, by considering next-nearest neigh-

bours, and also by using fractional values of a and b. Different models are

obtained for different dimensionality of systems - for example, dimers and

tetramers [229], 1D chains [218, 229, 165, 190], ‘spin ladder’ chains [281],

triangular 2D lattice [117, 119], in addition to the 2-dimensional Ising and

Heisenberg models already discussed. Models exist for both antiferromagnet-

ically ordered and ferromagnetically ordered systems. It is also possible to

observe different ordering within, versus between, layers (e.g. J‖ > 0 (FM)

while J⊥ < 0 (AF), ref. [119]).

The Heisenberg and XY- models do not predict long-range ordering with

an associated phase transition at finite temperatures [250, 71]. Hence any

transitions observed in the magnetisation temperature-dependance are due

either to interplane interaction (phase transitions, extra-dimensional cou-

pling) and/or some anisotropy (Ising component).

At higher temperatures, the temperature-dependence of the magnetisa-

tion given by the models reduces to Curie-Weiss behaviour, given by
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χ =
C

T −Θ
+ TIP (6.2)

where C is the Curie constant, Θ is the Curie-Weiss temperature and TIP is

any remnant temperature-independent paramagnetic component (e.g. from

Pauli and/or Van Vleck paramagnetism and/or core diamagnetism). In gen-

eral, a material with a negative Weiss temperature orders antiferromagneti-

cally, while a material with a positive Weiss temperature orders ferromagneti-

cally. (There are some exceptions, for example in the RuSr2GdCu2O8 system,

Θ is positive but the dominant ordering is antiferromagnetic [36, 185].)

It is common practise in many journal articles reporting preliminary mag-

netisation data to determine from the Weiss temperature Θ whether the

system displays ferromagnetic (FM) or antiferromagnetic (AF) correlations.

Such magnetisation analysis is normally presented either as 1/χ vs. T or as

χT vs. T . Many of the models for 1D chains etc. give a χ vs. T plot which

closely resembles a 1/T like behaviour, however only in χT or 1/χ vs. T

plots can the differences be clearly seen.

Unfortunately it is not a trivial exercise to obtain a model for the χ(T )

dependence from the spin Hamiltonian derived from the crystal structure.

These models also do not allow for phase transitions or coupling at low

temperatures.

Most transition metal ions have relatively little anisotropy due to strong

crystal field quenching and therefore can generally be described using a

Heisenberg model. Cobalt is an exception, often displaying significant aniso-

tropy [286].

We now present and discuss the magnetisation results obtained for the

various hybrid materials.

6.3 Tungsten oxide hybrids

Tungsten oxide hybrids are not expected to exhibit any magnetism because

the tungsten is present as W6+, and hence has spin S = 0 (5d0). Figure

6.1 shows a temperature sweep of W-DA6 in a field of 1 T, along with the



6.4. TRANSITION METAL TUNGSTATE HYBRIDS 137

Figure 6.1: DC magnetisation of W-DA6, compared with the sample holder
only, measured at 1 T.

signal observed for the sample holder alone. The difference between the two

curves corresponds to the very weak diamagnetism observed in systems with

filled orbitals and hence paired electrons. Hence we can also be sure that

magnetism observed in the transition metal tungstate hybrids arises solely

from the arrangements of the transition metal ions, and not from the tungsten

or any interaction between the transition metal and tungsten ions.

6.4 Transition metal tungstate hybrids

A wide variety of different behaviours are exhibited by the various transi-

tion metal tungstate hybrids. Many samples display features corresponding

to crossovers from 2D to 3D magnetic behaviour. In all cases the high-

temperature part of the DC susceptibility can be approximated by the Curie-

Weiss Law (Eq. 6.2):

χ =
C

T −Θ
+ TIP

Typical Weiss temperatures for some of the transition metal tungstate

hybrids studied are given in Table 6.1.

From the Curie constant C, one can determine the effective moment,

P eff , contributed by the transition metal ion present, from the formula
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Mn Fe Co Ni Cu

MWO4 -72.8 -98.1
(M,W)-H2O -16.6 -23.4 -1.0 6.8 -2.8
(M,W)-DA2 -19.6 -9.5 -0.1 -0.2 -0.3
(M,W)-DA6 -19.6 -3.7 -17.6 6.3 0.3
(M,W)-DA12 -20.1 -4.4
(M,W)-phen -19.7 -0.9 3.3

Table 6.1: Weiss temperatures (in Kelvin) for transition metal tungstate
hybrids.

C =
1

3

N

V

µ 2
B µ0(P

eff )2

kB

(SI units) (6.3)

where N is the number of magnetic ions per cell, V is the cell volume,

and µB, µ0 and kB are the Bohr magneton, permeability of vacuum and

Boltzmann constants respectively. This can be compared with the expected

value calculated from the spin of the ion, P eff = g
√

S(S + 1) [9]. Figure 6.2

illustrates the good agreement between the experimental values calculated

from equation 6.4, literature values for transition metal tungstate systems

[266], and the expected theoretical values [9].

We now examine some of the more interesting samples in greater detail.

6.4.1 Manganese tungstate hybrids

The DC susceptibility of a series of (Mn,W)-DAn hybrids is shown in Figure

6.3. The field- and zero-field-cooled curves are identical, indicating that the

magnetisation is reversible. There is no field-dependence of the susceptibility

(∝ M/H) for applied fields up to 1 T.

In each case there is a transition at low temperatures, indicated by the

arrows. For (Mn,W)-DA2 and (Mn,W)-DA6 especially, the feature is cusp-

like, characteristic of an antiferromagnetic ordering transition. (The clarity

of the transition in these two samples is probably due to their increased

crystallinity compared with the longer chain alkane hybrids.)

The Néel temperature is plotted as a function of alkyl chain length in the
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Figure 6.2: Experimental values of P eff for transition metal tungstate hy-
brids, compared with literature and theoretical values.

Figure 6.3: DC susceptibility of (Mn,W)-DAn series (top to bottom: n = 2,
6, 8, 12). TN is indicated by the arrows and plotted in the insert versus alkyl
chain length.
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Figure 6.4: Diagram showing the two principle exchanges in a spin ladder:
J1, the ‘rung’, and J2, the ‘rail’.

insert. This shows a monotonic decrease in TN as the alkyl length increases.

As evidenced from the XRD results for this series of compounds (Section

5.2.1) the distance between adjacent inorganic layers is proportional to the

alkyl chain length. It is expected that as the interlayer spacing is increased

the interlayer coupling will decrease, which in turn will cause the transition

temperature to decrease. This is qualitatively what is observed.

Curie-Weiss fits to the high-temperature parts of the curves (T > 50K)

display consistent Weiss temperatures between −19 to −20 K across the DAn

series, as shown in Table 6.1. This is in contrast to the ‘parent’ MnWO4 com-

pound which has a Weiss temperature of -72 K [266]. This parent compound

is not layered and hence exhibits strong AF ordering in 3 dimensions, which

is weakened in the case of the layered hybrid materials.

From the proposed structure in Section 5.2.5, as determined from TEM,

EXAFS, and XRD, the arrangement of the manganese ions resembles that

of a spin ladder compound. Spin ladders represent one of the more ex-

otic types of 1-dimensional magnetism, with the best-known example be-

ing SrCu2O3 and its extensions, which form ladders of Cu-O linked squares

[126, 62, 63]. Examples of other spin ladders include (VO)2P2O7 [20, 64]

and (C5H12N)2CuBr4 [278, 281]. While a spin ladder model has been de-

rived computationally, it is only valid for those systems with spin = 1
2

(e.g.

Cu2+) [126]. This model has been found to fit experimental Cu2+ spin ladder

systems extremely well [281].

Figure 6.4 demonstrates that for spin ladder compounds there are two

major exchange interactions, J1 (the ‘rung’) and J2 (the ‘rail’). In the case

where J1 À J2, the model reduces to spin dimers, whereas for J1 ¿ J2 the
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Figure 6.5: DC susceptibility of (Mn,W)-DA2 with best fit curves to the
Curie-Weiss and Heisenberg AF chain models (fitted to T > TN).

model reduces to 1D chains.

A model for antiferromagnetic Heisenberg chains has been derived for

spin 5
2

systems [74, 83]. The temperature-dependence of the susceptibility is

given by the equation

χ =
C

T −Θ

(
1− u

1 + u

)
+ TIP,

u =
T

T0

− coth
T0

T
, T0 =

2JS(S + 1)

kB

This model resembles the Curie-Weiss law, with an additional temperat-

ure-dependent perturbation, where J is the coupling within the chains and

S = 5
2

is the spin of the ion.

The (Mn,W)-DA2 curve is shown in Figure 6.5, with Curie-Weiss and

AF chain fits to the data for T > TN . The differences are subtle, but the

chi-squared degree of fit for the AF chain model indicates a better fit than

the Curie-Weiss, and matches the curve almost up to the AF transition (as

shown in the insert).
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From the fit parameters, the intrachain coupling value, J , has a value of

J/kB = −1.20 K. This is comparable with similar values obtained for layered

manganese phosphate hybrids of −0.79 K [165] and −1.66 K [250].

6.4.2 Iron tungstate hybrids

While the manganese tungstate hybrids display relatively uniform behaviour

(a single AF transition with a Néel temperature that is affected by the inor-

ganic interlayer spacing), the iron tungstate hybrids’ behaviour is somewhat

more complicated.

As evidenced in Table 6.1, the (Fe,W)-DAn hybrids all display Weiss

temperatures of around −3 to −10 K, indicating the presence of weak anti-

ferromagnetic correlations. There is greater uncertainty in the Weiss temper-

atures because of the field-dependence of the DC susceptibilities2, as shown

in Figure 6.6. The Curie-Weiss fits were performed for temperatures above

where the curves at different fields converge, i.e. T > 200 K.

Also clearly evident from the M/H curves shown in Figure 6.6 is the

divergence at each field of the FC and ZFC data, indicating irreversibility

below temperatures of up to 12 K. This divergence temperature is also field-

dependent. The divergent behaviour is also slightly different for the three

compounds presented here.

In (Fe,W)-DA2, the iron hybrid with the shortest alkyl chain studied,

the ZFC data passes through an abrupt peak (which is suppressed at higher

fields) and then follows a uniform trend in what appears to be a 3D coupled

state. A similar well-defined peak is observed in (Fe,W)-DA12, but without

the uniform ZFC trend behaviour. It is thought that the convergence be-

haviour is limited by J⊥, which is overridden as the applied field is increased

(indicating that there may be some anisotropy present).

However for the sample with a 6-carbon chain, the ZFC and FC curves

separate very gradually and there is no well-defined transition temperature.

This is generally expected for compounds where there is a high degree of

disorder and hence no well-defined transition temperature.

2In actual fact, since M is not linear in H, it is more proper to call these M/H curves
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Figure 6.6: M/H curves for (Fe,W)-DAn (n = 2, 6, 12) for applied fields of
0.001 – 1 T.
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Figure 6.7: AC susceptibility for (Fe,W)-DAn (n = 2, 6, 12), at frequencies
of 33 Hz (squares), 333 Hz (circles) and 833 Hz (triangles). Closed symbols:
real part (χ′AC), open symbols: imaginary part (χ′′AC).
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In the AC susceptibility of the same three samples (Figure 6.7), there

is a significant frequency dependence of the peak feature present in both χ′

and χ′′ over quite a narrow frequency range. The relaxation time in these

systems is estimated from these plots to be of the order of 1 ms. The change

in temperature at which the χ′ maximum occurs can be plotted against the

frequency on a log scale. The quantity ∆Tf/[Tf ∆(log10 ω)] (the slope of this

graph) is often used as a measure of the frequency shift to compare with other

known systems [208]. For the (Fe,W)-DAn hybrid materials, the following

values are obtained:

(Fe,W)-DA2 0.064 ± 0.011

(Fe,W)-DA6 0.127 ± 0.023

(Fe,W)-DA12 0.084 ± 0.012

These values are similar to those reported for insulating spin glasses (0.06 –

0.28) [208].

A spin glass is the term used to describe a system in which the spins are

disordered and only slowly fluctuating. Spin glasses can be observed in ma-

terials such as metal alloys (e.g. Cu1−xMnx, 0 ≤ x ≤ 0.1) where a magnetic

impurity is introduced in small amounts and is randomly distributed through

the solid. In this case the interaction between spins is disordered. Spin glasses

can also be observed in well-ordered systems where the direction of the spins

is a random distribution (e.g. in HTS cuprates at low temperature and low

hole concentrations [217]). In a metallic spin glass the magnetoresistance

scales with the square of the magnetisation and the additional resistance

arises from spin-flip scattering [142].

While a non-zero imaginary part (χ′′) of the AC susceptibility normally

indicates the presence of a ferromagnetic component (AC loss), the effect

can be explained for the spin glass system by considering the mechanics of

the measurement technique: an AC oscillating field is applied at a particular

frequency ω, and the resulting moment is measured. The measured moment

also has frequency ω, but because of the significant relaxation times (in the

millisecond range) of spin glasses being comparable with the oscillation fre-

rather than susceptibilities.
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Figure 6.8: Hysteresis loops of (Fe,W)-DA2 (black) and (Fe,W)-DA6 (red).
Insert: detail near H = 0, showing the hysteretic behaviour.

quency, the response has a time lag. The resulting moment demonstrates a

phase shift and an imaginary component is calculated. This is why as fre-

quency decreases, the magnitude of the imaginary component also decreases,

as one approaches the DC limit.

Field-dependent irreversibility in the DC susceptibility is also observed in

spin glass systems [251]. Hence one would also expect to see hysteresis in

M(H) even though there is no long-range FM order, or FM component (from

ferro- or ferrimagnetism or spin canting) in a spin glass.

Hysteresis loops performed on the DA2 and DA6 samples at 5 K are

shown in Figure 6.8. These loops show hysteretic behaviour resembling that

observed in other spin glass systems [251]. There is a gradual pinching off

of the hysteresis at relatively high fields. The loops do not appear to be

flattening towards a saturation magnetisation, and the absolute moments

observed at much less than that expected for ferromagnetic Fe2+ (Peff/Fe =

4.90 [9]).

Magnetic hysteresis arises from the formation of domains (regions of FM-

aligned spins) within a material. In a spin glass there is no long-range order,
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so any ‘domains’ would not be strictly ferromagnetically aligned. However it

is possible that there could be regions where the average spin is aligned in a

different direction to the average spin in a neighbouring ‘domain’. Domain

boundaries normally pin to defects in the crystal or spin structure, and when

the domain size equals or exceeds the grain size, there are no longer multiple

domains and the hysteresis loops pinch off. In a spin glass where ‘domains’

might arise from an average spin direction, the domain would gradually en-

large to encompass the entire grain, causing the hysteresis loop to close. The

width of the hysteresis loop is a measure of the anisotropy [251].

The irreversibility in the (Fe,W)-DAn hybrids (in the DC susceptibility)

is suppressed at relatively low fields, indicating that the domain walls move

rapidly in these materials. Of the five transition metal ion tungstate series,

Fe appears to have the lowest crystallinity, as indicated from the quality of

the XRD powder patterns, indicating small grain sizes, or disorder within

the inorganic layer structure, or both.

It is known that manganese occurs in the present hybrid compounds as

Mn2+ (from XANES, Section 5.2.5), and the P eff values obtained from Curie-

Weiss fits agree well with the other transition metals also being present as 2+

ions. However, Fe2+ is readily oxidised to Fe3+ which would cause a change

in P eff and hence the magnitude of the Curie constant. Valence fluctuations

(such as Fe2+W6+O4 →Fe3+W5+O4) could account for this change in the

DC susceptibility, and also for the frequency-dependence observed in the AC

susceptibility.

Mössbauer measurements performed on (Fe,W)-DA2 and (Fe,W)-DA6 at

4.2 K revealed the presence of two Fe sites, each with a hyperfine magnetic

field. Broad lines are observed, which indicates there is a distribution of

magnetic fields on both sites. This could be caused by structural disorder or

an artifact of the technique, as the timescale of the Mössbauer measurement

is ∼ 10−7s, much shorter than the relaxation time of a spin glass. A static

spin arrangement with FM ordering would be observed on the Mössbauer

timescale. Therefore the hyperfine splitting would be observed, even though

no magnetic order is present. To determine the presence of a spin glass,

measurements need to be performed near the spin glass freezing temperature
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Tf , where the relaxation times are shorter. A single-line spectrum will be

observed, corresponding to the disordered spins [208].

A comparison between the manganese and iron series suggests there is

a large difference in the coupling between the magnetic ions in each case.

The DC susceptibility of the manganese samples is virtually independent of

field, and displays no irreversibility. This indicates there is strong coupling

present, described by antiferromagnetic Heisenberg chains, in combination

with larger grains and good crystallinity.

The iron samples on the other hand have very weak coupling, which is

affected by relatively small fields. It is postulated that the iron tungstate

hybrid system is an example of a spin glass. It is quite possible that the

inorganic layer structure is disordered, rather than the well-ordered ‘stripe’

structure proposed for manganese, which could result in a spin glass and the

observed magnetic phenomena in (Fe,W)-DAn.

6.4.3 Co, Ni and Cu (M,W)-DA2

As mentioned in Chapter 5, cobalt, nickel and copper tungstate hybrids with

DA2 as the organic molecule have virtually the same structure as evidenced

by XRD (accounting for the Jahn-Teller distortions in the copper system).

It is conceivable then that one might expect these samples to have similar

magnetic behaviour.

The DC susceptibility of the three samples is independent of field and ex-

hibits no transitions in the range studied (2–300 K). The ZFC and FC curves

are identical, indicating that there is no irreversibility. The DC susceptibility

curves follow the Curie law exactly (with Θ = 0 within experimental error),

indicating that the spins are non-interacting, resulting in pure localised mo-

ment paramagnetism with no phase transitions. A plot of 1/χ versus tem-

perature is shown in Figure 6.9. This is a visual means of confirming the

Curie-Weiss law - the plots are linear and pass through the origin.

The parameters from the Curie-Weiss fits are given in Table 6.2. The

Weiss temperatures are all very similar and so close to zero that it could be

said that the samples obey the Curie law (χ = C/T ). The Curie constants
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Figure 6.9: 1/χ plot for (M,W)-DA2 (M=Co,Ni,Cu).

Experimental P eff [µB] Expected P eff [µB] Θ [K]

(Co,W)-DA2 3.85 3.87 -0.23
(Ni,W)-DA2 2.90 2.83 -0.15
(Cu,W)-DA2 1.90 1.73 -0.28

Table 6.2: Curie-Weiss fit parameters for Co, Ni and Cu (M,W)-DA2 hybrid
materials.

have been obtained from the slopes of the lines in Figure 6.9 and converted

to P eff values, using Equation 6.4. These agree extremely well with the

expected P eff values calculated from the spin of the ions (3
2

for Co, 1 for Ni,
1
2

for copper).

These three samples represent a paramagnetic system with isolated mag-

netic moments, as evidenced by the almost zero Weiss temperature (no ten-

dency towards AF or FM correlations), and the excellent agreement between

the calculated and expected P eff values. It is possible that the unknown

structure of these hybrids is a 3-dimensional network or perhaps a cage struc-

ture, where the ions are separated by non-magnetic WO6 octahedra with very

little coupling between them.
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Figure 6.10: DC susceptibility of (Cu,W)-DA6 with best fit curves for the
spin dimer and spin ladder models.

6.4.4 Copper tungstate hybrid

The DC susceptibility of a (Cu,W)-DA6 sample is shown in Figure 6.10.

There is no irrevsibility and the susceptibility is independent of field. A

broad local maximum is observed near 120 K, which is not present in any of

the other samples studied.

Divalent copper has a spin of only 1
2
, in contrast with manganese with spin

5
2
. This results in a much lower signal-to-noise ratio in the copper tungstate

hybrids, requiring applied fields of H > 1000 Oe in order to observe any

definitive signal.

Reference [229] describes a CuMoO4-organic layered hybrid system in

which the structure of the CuMoO4 inorganic layers varies depending on

the shape of the organic ligand (n,m’-bipyridine (n,m = 3,4)) and hence

how it bonds to the inorganic layer. They performed single-crystal x-ray

diffraction analysis on the three samples and observed layered structures

with monomers, dimers, and tetramers of copper oxide species separated by

non-magnetic molybdenum oxide tetrahedra. Following this they developed

and adapted models to explain the χ(T ) behaviour.

The dimer model (Equation 6.4.4) suggested in Ref. [229] is as follows:
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χ =
2Ng2µ 2

B

3kBT

[
1 +

1

3
exp(−2J/kBT )

]−1

+
C

T −Θ
+ TIP (6.4)

It fits the (Cu,W)-DA6 data extremely well, with the following fit param-

eters:

g = 0.413± 0.001

J/kB = −102.9± 0.2K

C = 0.0277± 0.0003K

Θ = 0.17± 0.08K

TIP = −0.00022± 0.000007

(χ2/DoF = 4.437× 10−11)

If the copper tungstate hybrid has the same inorganic structure as the

manganese tungstate hybrids, a spin ladder may be formed. For this reason

a spin ladder model was also fitted to the data. Due to the good agreement

between the spin dimer model and the experimental data, we assume that

in the spin ladder model (Section 6.4.1, page 140) the ‘rung’ exchange (J1)

is much larger than the ‘rail’ exchange (J2) and all other exchanges (Jdiag,

Jinterchain, etc.) are negligible. We used the fit in reference [126] for isolated

chains with J ′/J ≥ 1 (J ′ ≡ J2 ≡ Jrung):

χ(T ) =
NAg2µ 2

B

J ′
χ ∗ (t) +

C

T −Θ
+ TIP ; (6.5)

χ ∗ (t) =
exp(−∆∗

fit/t)

4t
Pp

q (t);

t ≡ kBT

J ′
,

Pp
q (t) =

1 +
∑p

n=1 Nn/T
n

1 +
∑q

n=1 Dn/tn
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where the coefficients ∆∗
fit, Nn and Dn are given in an appendix of ref. [126].

The fitting parameters are given as follows:

g = 1.920± 0.008

J1/kB = −0.3± 1.4K

J2/kB = 213.6± 1.1K

C = 0.0268± 0.0003K

Θ = −0.0015± 0.0004K

TIP = −0.0003± 0.00001

(χ2/DoF = 2.3718× 10−11)

The two fits are compared in Figure 6.10 with the experimental data.

The ladder model is shown as the solid red line and the dimer model as the

dotted blue line. Comparing the two fits, we note firstly that the assumption

J2 À J1 is valid and therefore the spin dimer model should be sufficient to

describe the (Cu,W)-DA6 system. However, the spin dimer model does not

give an accurate g factor - the expected value is ∼ 2, whereas the dimer

model yields g = 0.413. However the spin ladder model gives g = 1.920,

in good agreement with the expected value and consistent with other Cu2+

S = 1
2

systems [229]. The exchange constant J2 between the two Cu atoms

of the dimer in the ladder model is roughly double that obtained for the

dimer model; this is probably due to a difference of notation in the two

models. In the exponential term of the dimer model (Equation 6.4.4), one

has a factor of 2 that is not present in the exponential term of the spin ladder

fit (Equation 6.4.4). The values of C and TIP are virtually identical, and

while Θ has different signs in each of the two models it has a small value so

can be essentially treated as zero.

Structural analysis would assist greatly in determining the correct mag-

netic model to be used to analyse this compound. The fact that the spin

ladder model gives a more reasonable value of g, and has a better χ2/DoF

value than the dimer model, indicates that the spin ladder model probably

has some validity.
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Figure 6.11: DC M/H curves for (Ni,W)-DA6 for applied fields of 10 Oe –
1000 Oe. Insert: Curie-Weiss temperature Θ and TC = maximum of ZFC
curves for the various fields studied.

6.4.5 Nickel tungstate hybrid

As shown in Table 6.1, the (Ni,W)-DA6 sample is one of the few to have

a positive Weiss temperature, indicating the presence of ferromagnetic cor-

relations. The DC M/H curves of this sample also display a sharp ferro-

magnetic transition at around 12.5 K, shown in Figure 6.11. As for the iron

tungstate hybrids, the M/H curves show significant field-dependence for rel-

atively small applied fields, indicating either that the exchange is weak and

easily disrupted by an external field or that the magnetic domains are quite

small.

Despite the apparent ferromagnetic ordering, the absolute value of the

saturation magnetisation of the sample is much less than that expected per

Ni2+ ion for pure ferromagnetism, indicating that the sample is in fact either

a ferrimagnet or canted antiferromagnet. Hysteresis loops were performed

on this sample at temperatures from 2–15 K and fields from -6 to +6 T. A

selection of these hysteresis loops is shown in figure 6.12. The hysteresis loops

resemble a paramagnet at high fields plus a small region of irreversibility up

to ±700 Oe at 5 K. The linear part indicates that the phenomenon is not



154 CHAPTER 6. MAGNETIC PROPERTIES

Figure 6.12: Hysteresis loops of (Ni,W)-DA6 at various temperatures.

due to ferrimagnetism but rather to antiferromagnetism with spin canting.

This is also more likely because only one magnetic species is expected (Ni2+,

S = 1) and ferrimagnetism requires a regular arrangement of two different

moments, ordered antiferromagnetically.

From analysis of hysteresis loops at different temperatures we can de-

termine the canting angle [24]. At each temperature the non-compensated

magnetisation was estimated by extrapolating the linear part of each curve

to H = 0. These values are plotted in Figure 6.13. Extrapolating this curve

to T = 0, we can obtain an estimate for the canting angle α of 0.46◦, from

the formula

tan α =
Mnc(T = 0)

gµBS

(taking S = 1 for Ni2+) [24].

The canting may result from distortion in the crystal structure. In Figure

6.13 we also notice the pinching-off of the curve at 15 K, which is slightly

above the apparent transition in the DC susceptibility.

A comparison of the (Fe,W)-DAn series with (Ni,W)-DA6 indicates that

the behaviour of the two systems is quite different. The hysteresis loops

of (Fe,W)-DAn do not pinch off as rapidly as in (Ni,W)-DA6. (Ni,W)-DA6
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Figure 6.13: Non-compensated magnetisation Mnc versus temperature for
(Ni,W)-DA6, taken from the H = 0 extrapolation of the high-field parts of
the hysteresis loops in Figure 6.12.

displays no frequency-dependence in the AC susceptibility (Figure 6.14), and

χ′ and χ′′ are quite similar in appearance. The apparent temperature of

this transition as determined from the AC susceptibility and canting angle

analysis is higher that that determined by the DC susceptibility, which is

observed to occur in other spin-canted systems [284]. The sudden change in

both the DC and AC susceptibilities of (Ni,W)-DA6 also indicates a definite

magnetic phase transition.

6.5 Summary

Several examples of the variety of magnetic behaviour observed in the transi-

tion metal tungstate hybrids have been discussed. Without concrete crystal

structures of any of the compounds it is difficult to provide models to com-

pare with experiment. However we have been able to determine the basic

magnetic characteristics of the materials:

The manganese tungstate hybrids have the same inorganic layer structure

and very similar magnetic behaviour arising from this. In each case a fit to



156 CHAPTER 6. MAGNETIC PROPERTIES

Figure 6.14: AC susceptibility of (Ni,W)-DA6, compared with the DC M/H
curve at 50 Oe.

the Curie-Weiss law at high temperatures results in a Weiss temperature

of ∼ −20 K. The high-temperature part of the curves can be fitted very

well by an AF Heisenberg spin 5
2

chain. There is a single antiferromagnetic

transition which appears to be related to the interlayer distance, as the Néel

temperature decreases with increasing interlayer spacing.

The iron tungstate hybrids exhibit characteristics in the DC and AC

susceptibility and M(H) hysteresis curves that are indicative of a spin glass,

the most notable of these being the strong frequency dependence of the AC

susceptibility. This may arise due to the apparent disorder in the inorganic

structure as evidenced by XRD.

Cobalt, nickel and copper (M,W)-DA2 samples have the same inorganic

structure according to XRD, and also have the same magnetic behaviour.

They obey the Curie law, indicating that the magnetism in these materials

arises from non-interacting free spins. From the slope of the 1/χ versus T

plot, we calculated effective moments per magnetic ion that agree extremely

well with the predicted values, P eff = g
√

S(S + 1).

(Cu,W)-DA6 displays a DC susceptibility curve that resembles a spin

dimer system, but can be fitted equally well by a spin ladder model with

very weak coupling along the length of the ladder.
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(Ni,W)-DA6 is unusual among the hybrid materials because it displays

a ferromagnetic-like transition at low temperatures. This FM behaviour is

attributed to AF spin canting with a small canting angle of α = 0.46◦.

The strong field-dependence of some of the systems may result from their

small grain sizes (which limits the magnetic domain size).

Examining the transition metal tungstate hybrids as a whole, we notice

that the transition temperatures TC are all very similar (10-15 K), regardless

of the spin of the transition metal ion. It is thought that TC is governed

by J⊥ and any weak anisotropy [222], which in turn will be affected by

the interlayer spacing. This is especially observed to be the case in the

(Mn,W)-DAn series, demonstrating how the physical properties can be tuned

by altering the interlayer spacing of this low-dimensional structure. Thus

the inherent low-dimensional nature of the hybrids is observed to affect the

physical (namely, magnetic) properties of all the samples presented in this

chapter.



158 CHAPTER 6. MAGNETIC PROPERTIES



Chapter 7

Doping

Doping is a fundamental concept in semiconducting, metallic and strongly

correlated electronic materials. The introduction of charge carriers (elec-

trons and/or holes) causes changes to the electronic structure, shifts the

Fermi level and may thus induce metallic conducting behaviour. The tung-

sten oxide-hybrid materials, as synthesised, are electrically insulating, and

hence in order to use them effectively in a device, doping is necessary. In

this chapter, possible experimental doping techniques are discussed and the

results obtained for the tungsten oxide-based hybrid system and related ma-

terials are presented.

7.1 Background

In many solid state chemical systems such as the high-temperature super-

conducting cuprates or the colossal magnetoresistance manganites (described

in Chapter 1), doping is easily achieved by controlling the stoichiometry of

the starting materials. One can replace a fraction of a higher valence species

by a lower valence species of roughly the same atomic radius (e.g. Ca2+ for

Y3+ in YBa2Cu3O7) to induce hole-doping, or vice-versa to induce electron-

doping [118]. Superconductivity is observed in HTS cuprates in the hole-

doped regime at doping levels of 0.06–0.25 [236], while other systems such as

the CMR manganites exhibit a rich and varied phase behaviour across the

entire doping range 0 ≤ x ≤ 1, for La1−xCaxMnO3 [237].

159
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Silicon technology is also reliant on doping via replacing a certain propor-

tion of silicon atoms by an aliovalent species, normally boron (hole-doping,

positive carriers, ‘p-type’) or phosphorous (electron-doping, negative carri-

ers, ‘n-type’). For example, boron doping levels of only 10−5 are required

to increase the conductivity of silicon by a factor of 103 [138, p. 221]. Such

doping in silicon effectively introduces defects in the crystal structure, which

causes changes in the band structure near the Fermi level, allowing increased

conduction to occur.

The tungsten bronze system, already discussed at length in Section 1.3,

is another example of a solid state doped system exhibiting a wide solid

solution range. Intercalation of a fraction of alkali metal ions with 1+ charge

causes the tungsten ions to reduce from 6+ to 5+, resulting in electron-

doping of the system. As mentioned earlier these systems exhibit drastic

colour changes and their electrical properties change from semiconducting

to metallic. Similar effects are observed when oxygen is removed from the

system, again reducing W6+ to W5+.

A similar experiment was attempted by adding selected transition metal

ion solutions in the synthesis of the tungsten oxide hybrids (Chapter 5),

however it was found that regardless of the stoichiometry of the starting ma-

terials, a product with 1:1 ratio of transition metal to tungsten was formed.

X-ray absorption near-edge spectroscopy (XANES) studies show that the

metal ions are present as 2+ species and the tungsten as 6+. Instead of

doping, the transition metal hybrids form a completely different structure

that is interesting in its own right.

Attempts were made to substitute W6+ by Re5+, Ru4+ and Ta5+ with no

apparent success. We further investigated the possible intercalation of small

monovalent metal ions. Addition of solutions of such metal ions (e.g. Li+,

Na+) in the course of synthesis produced samples identical to the tungsten-

only synthesis, with no evidence that the extra ions had been incorporated.

Hence a more effective method of including extra ions is required.

Ion bombardment is a possible way to implant small metal ions, and is

commonly used in the silicon industry. However for some materials, there

are more cost-effective ways of achieving doping for commercial applications.
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For the organic-inorganic hybrids, there is also the danger of destroying the

organic molecules due to the high kinetic energy of the incoming atoms, thus

causing irreversible structural changes.

Another method of inducing doping in such a system is through fabrica-

tion of thin-film field-effect devices. These devices essentially use the thin-

film material as the doping component in a thin-film transistor. A conduct-

ing substrate acts as a gate electrode, next an insulating layer (e.g. SiO2),

then a film of the desired material is deposited, and finally source and drain

electrodes are deposited to complete the arrangement. An electric field is

generated within the insulating layer by applying a DC voltage between the

gate and source electrodes. This injects either electrons or holes, depending

on the sign of the field, into the thin film under study. The current-voltage

characteristics of the thin film material are then examined using the source

and drain electrodes. This method has been successfully used with the metal

halide hybrids [130, 129, 199], and we have had some preliminary success in

fabricating and testing field-effect devices using the tungsten oxide hydrate.

Similar efforts with the hybrid materials have not yet been successful, but

this is nonetheless worth pursuing as it is not only as a means of doping the

material but also for potential applications.

One relatively simple laboratory technique to set up and execute, using

readily available equipment, is insertion of ions using an electrochemical cell.

Another major benefit of the technique is that the reaction rate and doping

level can in principle be well-controlled, through controlling the applied po-

tential difference and the ramp rate. In this the ionic intercalant, and the

resultant electronic carrier concentration, can be titrated with precision.

Two electrochemical doping techniques were explored: cyclovoltammetry,

and constant potential electrochemistry.

Cyclovoltammetry is particularly useful for identifying redox processes,

which give insight into the kinetics of oxidation or reduction. In a cyclo-

voltammetry experiment, the potential is swept several times at a constant

rate over a certain voltage range while the current is measured. The result-

ing I-V curves are loops consisting of a cathodic and anodic branch. The
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cathodic branch is measured as the potential is driven in the negative direc-

tion and reductive processes will be observed in the form of inverted peak

features. The anodic branch is measured when the potential is swept in the

positive direction, and oxidation processes will be observed. If the potential

range being swept is wide enough, each reduction peak feature will have an

associated oxidation peak feature. These are called redox couples and the

absolute potential values of these, relative to the reference electrode, and the

potential difference between them, give insight into the kinetics of each redox

process.

Once the potentials for the desired oxidative or reductive reaction have

been determined with cyclovoltammetry, one can perform constant potential

electrochemistry to alter the oxidation state of the system. In a constant

potential experiment, the voltage is fixed at a static value, and the current

measured as a function of time to ensure that the system has come to equi-

librium. The sample retains its new oxidation state when is removed from

the solution, even though this may be short-lived.

7.2 Previous studies

Because of the ability of tungsten trioxide to incorporate small alkali metal

ions, it has been extensively investigated as a possible material for elec-

trochromic applications (see Section 1.3). Alkali metal ions can be incorpo-

rated into WO3 in the past by solid state synthesis [33, 14], ion bombardment

[19], or via electrochemistry. More detail of the latter is as follows.

WO3 films are deposited by sol-gel methods from tungsten peroxide so-

lutions [212, 164], by electron-beam deposition [164], or by RF-sputtering

[132]. They may then be annealed to improve the crystallinity.

H2SO4 was used as an electrolyte solution in Ref. [132] to electrochem-

ically intercalate hydrogen ions into amorphous and crystalline WO3 films.

The transmittance of the films was observed to decrease from 80% to 30%

upon colouration.

Lithium is another common electrochemical intercalate for both WO3 and

MoO3 films [212, 260]. It displays a characteristic redox curve as illustrated
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in the experimental results presented later in this thesis. In addition, WO3

can also be intercalated with H+, Li+, and Na+ using an appropriate solid

state electrolyte [67, 101].

Hydrated tungsten and molybdenum oxides have also been studied via

electrochemical intercalation of lithium [108, 127, 128, 164]. These are ob-

served to be less stable over many cycles than WO3 films, due to the lithium

ions replacing the hydrated protons [164]. Both Li+ and H+ are more mobile

in the layered hydrate structure than WO3, allowing them to leach out over

time [127].

In this work, we examine the possibility of intercalating Na+ (using aque-

ous NaCl as the electrolyte) into WO3 and H2WO4 particulate films via

electrochemistry in more detail. Most previous studies focused on the inser-

tion of Li+ using LiClO4 in propylene carbonate, a non-aqueous electrolyte.

To the best of our knowledge, the equivalent insertion of Na+ (either in an

aqueous or non-aqueous electrolyte) has not yet been reported. The present

studies on WO3 and H2WO4 form the basis for comparing the hybrid films

with a known reference material.

7.3 Electrochemical Doping

We have investigated electrochemical doping of WO3, H2WO4 and the hybrid

materials W-DA2 and W-DA6, as described in Section 2.3. This should

enable us to compare the results for WO3 and H2WO4 with those for different

ionic species and electrolytes in literature, and then use these as base systems

with which to compare the two hybrid materials.

7.3.1 WO3

The redox curve of WO3 is shown in Figure 7.1. It is qualitatively identical to

the redox curves reported for WO3 thin films prepared by various techniques,

with intercalated H+ and Li+ species from various electrolyte solutions [26,

40, 127, 212].

A scan rate of 20 mV/s was chosen for the experiments, as faster scan

rates (e.g. 50 mV/s) cause the curves to flatten out somewhat and the area
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Figure 7.1: Cyclic voltammetry curves of WO3 with aqueous Na+. The red
curve shows the initial loop.

enclosed by the curves decreases. This corresponds to a chemical equilibrium

imbalance, indicating the presence of a limiting factor on the mobility of Na+

ions within the WO3 structure.

As the potential tends towards more negative values in each cycle, an

increasing cathodic current is observed, along with a corresponding blue

colouration of the sample. Along this part of the cycle Na+ is being in-

corporated within the WO3 structure, corresponding to reduction according

to the formula:

WO3 + xNa+ + xe− → NaxWO3

As the ramping direction changes and the applied voltage tends towards

positive values, the current is observed to pass through a broad maximum

on the anodic (positive) side. This is the oxidation peak, corresponding to

the outflow of electrons as Na+ is removed from the structure. As a result

the blue colouration is observed to fade continuously up to the maximum

positive voltage, where the cycle begins again. The area within the loop,
∫

IdV , represents the dissipation per cycle associated with work done against

the lattice and the associated change in unit cell volume.

It was observed that the first cycle evidences completely reversible coloura-

tion from yellow to blue and back, however in later cycles the blue colour

remains even after cycling to the maximum positive voltage. This could be
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Figure 7.2: XRD patterns of (a) triclinic WO3 and (b) cubic NaxWO3 ob-
tained after electrochemical intercalation.

due to the degrading effect of water on the WO3 structure [164]. Another

contributing factor could be the formation of a stable phase of NaxWO3,

from which a significant fraction of the Na+ ions are not dislodged during

the anodic (oxidation) leg.

XRD patterns of WO3 and an electrochemically doped sample are shown

in Figure 7.2. The triclinic cell of WO3 converts to the cubic cell of NaxWO3.

From the d-spacing obtained from the XRD pattern, (3.767 Å) we can es-

timate the doping level x in NaxWO3 to be around 0.1, by comparing this

d-spacing value to literature results (as detailed in Section 4.4).

7.3.2 H2WO4

A cyclic voltammogram of H2WO4 with aqueous NaCl as the electrolyte is

shown in Figure 7.3. The shape of the curve is very similar to that of WO3

(Figure 7.1), as observed in literature also [128].

However, unlike the WO3 curve, there is some irreversibility evident from

the steadily reducing cathodic current at negative voltages. A visual inspec-

tion while the experiment was underway provided additional confirmation
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Figure 7.3: Cyclic voltammetry curves of H2WO4 with aqueous Na+. The
red curve shows the initial loop.

that the cycle is irreversible, as the sample did not regain its original yellow

colour during the anodic leg of the cycle. This irreversibility is described

in literature and attributed to the substitution of H (on terminal W–OH2

groups) by the intercalated ion. The released H then participates in the

subsequent redox cycles, but its colouration is much less efficient than the

substituted ion [164].

The magnitude of the current is much larger than in WO3, suggesting that

intercalation of Na+ is easier within H2WO4 than WO3. However this can

be affected by a number of factors unrelated to electronic or ionic mobility,

such as the material:binder ratio, grain size and quality of adhesion to the

gold electrode.

XRD patterns of three H2WO4 samples electrochemically intercalated

with Li+, Na+ and K+ from their respective aqueous chloride solutions are

compared with H2WO4 in Figure 7.4. The corresponding cell parameters are

given in Table 7.1 for an orthorhombic cell.

As shown in Table 7.1, both Li and Na cause similar increases in the cell

volume of H2WO4 (although the amount of each is unknown, and the ions

themselves are of different sizes). K does not appear to change the volume

much, which in view of its significantly larger ionic radius, implies that in-

tercalation was not as successful as for Li and Na. K may be too bulky to

intercalate within the structure to the same doping levels as the smaller ions
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Figure 7.4: XRD patterns of (a) H2WO4, and intercalated with (b) Li, (c)
Na, (d) K.

Sample Cell parameters Volume
a [Å] b [Å] c [Å] [Å3]

H2WO4 5.249 10.711 5.133 288.588
LixH2WO4 5.263 10.622 5.281 295.540
NaxH2WO4 5.249 10.870 5.221 297.906
KxH2WO4 5.241 10.684 5.158 288.830

Table 7.1: Cell parameters of electrochemically intercalated H2WO4.
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Figure 7.5: Cyclic voltammetry curves of (a) W-DA2 and (b) W-DA6 with
aqueous Na+. The red curves show the initial loop.

(a similar result was obtained computationally and experimentally for potas-

sium tungsten bronzes, see Chapter 4). By visual inspection, the colouration

observed is also less, as the blue colour is not as intense as for the Li- and

Na-intercalated samples.

7.3.3 W-DA2 and W-DA6 hybrids

Cyclic voltammograms of W-DA2 and W-DA6 hybrids, with aqueous NaCl

as the electrolyte, are shown in Figure 7.5. The curves are qualitatively

similar to each other, displaying no peaks or other features related to redox

processes. The difference between the cathodic and anodic legs is small, as

are the absolute magnitude of the currents, indicating that no intercalation

is taking place. In addition there is no change in the colouration observed

visually, and XRD displays no lattice expansion to indicate the incorporation

of additional ions.

There are a number of possible reasons for the lack of any electrochemical

effect:
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Figure 7.6: Cyclic voltammetry curves of (a) W-DA2 and (b) W-DA6 in 0.5
M aqueous H2SO4. The red curve shows the initial loop.

- It is thought that the terminal amine group has occupied all the possible

sites for Na+, so for Na+ to be intercalated would require significant

disruption of the organic molecules.

- The presence of the amine molecule within the hybrid structure is very

stable, and cannot be replaced by Na+. This could also explain why

we were unable to form hybrids including Na+ via the solution-based

synthesis technique.

While this may appear to be a negative result, it is further testimony to

the stability of the W-DAn structure. This was further tested by additional

electrochemical experiments using aqueous H2SO4 to investigate the stability

of the hybrids in an acidic medium. The cyclic voltammograms of the two

samples are shown in Figure 7.6.

Figure 7.6a, showing the results for W-DA2, indicates that no reaction

takes place. There is no obvious change in the shape of the curve over many

cycles. This indicates that W-DA2 is chemically stable in an acidic medium.
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On the other hand, cyclic voltammograms of W-DA6 (Figure 7.6b) show

a rapid progression from the characteristic W-DA6 curve (Figure 7.5b) to

become more like those of H2WO4 (Figure 7.3). XRD of the product obtained

at the end of this experiment indicated that WO3 · nH2O had been formed,

thus the DA6 organic had been leached out. This was also observed in a

separate experiment, where W-DA6 was placed in an aqueous solution of

HCl (1 molL−1) overnight. The W-DA6 powder developed the characteristic

yellow colour of WO3·2H2O and XRD confirmed the complete conversion of

W-DA6 to WO3·2H2O.

Anomalies in the behaviour of W-DA2 to W-DA6 (and other W-DAn

hybrids) were also observed in TGA and IR (Sections 3.2.4 and 3.3 respec-

tively), namely that DA2 appears not to adopt the protonated ammonium

form in the hybrid, whereas the other DAn molecules do. This indicates that

a different bonding mechanism may be active in the W-DA2 sample, which

appears to be more resistant to temperature (from the higher decomposition

temperature in TGA) and chemical attack (from the acid studies here) than

the other W-DAn materials.

A possible chemical reaction for acid leaching of the W-DAn hybrids

(using HCl as an example) is

WO 2−
4 ·DAnH 2+

2 + 2H+Cl− + nH2O → WO4 · (n + 1)H2O + DAn · 2HCl

i.e. a chloride salt of the DAn molecule is formed. However, for W-DA2 the

amines are not protonated so therefore they do not react with the Cl− ions

to form a salt.

The lack of any redox features in the voltammetry curves indicates that

not only is the WO4 · · ·DA2 bond not affected, but there is also no interca-

lation of H+ within the structure to protonate the terminal –NH2 groups to

–NH +
3 in W-DA2.

Preliminary electrochemical doping experiments were also performed on

(Mn,W)-DA2 and (Mn,W)-DA6 samples. These also exhibit very small cur-

rents in the I-V curves, like their tungsten hybrid counterparts, however there

were indications of a redox couple in the region from -200 to +200 mV. This
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may correspond to the successful intercalation and deintercalation of Na+

ions within the manganese tungstate hybrid structure. In Section 5.2.5 a

structure was proposed for these materials based on an inorganic layer of

alternating Mn and W ‘stripes’, with the organic molecules interacting with

the Mn sites. Such a structure may exhibit vacant sites between the api-

cal oxygens of the tungsten atoms where sodium could be intercalated. As

for WO3 and H2WO4, intercalation of Na+ would result in the reduction of

tungsten from W6+ to W5+.

While no difference in structure or colour of the manganese tungstate

samples was observed after electrochemical treatment, changes in the mag-

netisation at low temperatures was observed in samples held for a period of

time at a positive potential (+400 mV). This may be due to disruption of the

magnetic structure in the AF-ordered state at T < TN . These preliminary

results suggest that this is a promising area for future work.

7.4 Summary

Comparing the electrochemical doping results for WO3 and H2WO4, we ob-

serve several differences in the behaviour in the 2-dimensional as opposed

to the 3-dimensional system. WO3 doping with Na+ is much more rate-

dependent than H2WO4, indicating that the diffusion limits of WO3 are lower

(i.e. more difficult for Na+ to migrate within the 3-dimensional structure).

The increased mobility of Na+ in H2WO4 is further seen in the time de-

pendence of the colouration, where Na+ is observed to leach out over time

[127].

In the tungsten oxide hybrids we observe no significant electrochemical

effect when aqueous Na+ was used as the electrolyte. This indicates that

the possible intercalation sites for Na+ are occupied. However there was

an indication in preliminary experiments in the manganese tungstate hybrid

equivalents that such sites may exist and a limited amount of Na+ is pre-

sumed to have been incorporated because of the observation of a redox couple

in the cyclovoltammograms.

A bilayer compound, W2O7-DAn, if synthesised, would be an interesting
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material of which to examine the electrochemical behaviour. Such a com-

pound combines the structures of WO3 (between the two linked WO4 layers)

and the W-DAn hybrid materials. There are many other such possibilities

for doping these materials to alter their physical properties.



Chapter 8

Outlook and Conclusion

Throughout this thesis a number of research areas have been identified which

would benefit from further in-depth study. This includes possible new ma-

terials and additional experiments which could be performed on promising

materials already synthesised. Here, the possibilities are organised concern-

ing tungsten oxide hybrids, transition metal hybrids, magnetisation stud-

ies, doping, and soft-mode behaviour, before providing the conclusion of the

work.

8.1 Tungsten oxide hybrids

So far only one chemical variant of the tungsten oxide-organic hybrid sys-

tem has been explored, that of a monolayer WO4 unit separated by organic

amines. Both the inorganic and the organic components can be altered.

In the metal halide-amine hybrid systems, hybrids with multiple inor-

ganic layers (bilayers, trilayers etc.) were synthesised by simply altering the

stoichiometries of the starting materials [196, 200]. We attempted this with

the tungsten oxide system, however multiple layers were not formed, and in

fact it was found that better crystalline samples were formed with an excess

of the amine.

Layered bilayers of tungsten oxide hydrate, H2W2O7, can be formed by

soaking the Aurivillius phase material Bi2W2O9 in HCl for several days to

remove the BiO2 zig-zag sheets [152]. Dissolving this in solution and recrys-

173
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tallising would form the monolayer structure, so this material was used in a

melt method experiment in an attempt to form the equivalent bilayer hybrid.

This experiment was unsuccessful, also forming the monolayer hybrid. We

have yet to attempt chimie douce reactions on this material.

The wide variety of possible organic intercalates is one of the attractive

features of the organic-inorganic hybrid system. So far we have only in-

vestigated simple aliphatic mono- and di-amines and a few simple aromatic

amines. Functional organic molecules such as dyes [46, 196] have been suc-

cessfully intercalated into metal halide hybrids, so one would expect similar

molecules could also be intercalated in the tungsten oxide system. Vari-

ous functionalities could be included via the incorporation of luminescent

molecules, conducting molecules or polymers, metal complexes (e.g. por-

phyrins), and so forth.

There is also the possibility of altering the terminal group from the amine

terminations used throughout this work to groups such as sulphates, phos-

phates, and carboxylates. The strength of the interaction between the or-

ganic terminal group and the inorganic layer is observed to affect the struc-

ture and the physical properties (one example being the changes in the op-

tical spectra of the transition metal tungstate hybrids as the metal–amine

interaction strengthens).

Other synthetic techniques could also be used to attempt to produce the

hybrids, for example, hydrothermal techniques at high temperatures and/or

pressures. Extreme synthesis conditions like this may be what is required

to ‘force’ bulkier molecules (e.g. DAphen) into the tungsten oxide layer

structure, which are not able to be formed with the standard techniques

used so far. Layer-by-layer assembly could also provide an excellent means

for fabricating thin epitaxial films on lattice-matched substrates.

A major obstacle of the project to date is the absence of any definite

crystal structure. The best method for determining crystal structures is via

single crystal X-ray diffraction, which requires crystals of ≥ 200µm to a

side. Smaller crystals (down to 50 µm to a side) can also be examined using

synchrotron techniques, although the X-rays involved are more energetic and

potentially damaging to samples with organic components.
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The lack of suitably large single crystals prompted the experiments in

electron diffraction to combine the results with those from powder XRD.

The presence of a supercell suggests that the initial indexing of the unit cell

is probably more complex than anticipated. Neutron diffraction is another

avenue of exploration, and while this requires deuterated organic species (as
1H is a negative scatterer, resulting in spectra with very low signal-to-noise

ratios), work is underway to produce such samples for analysis.

One of the questions that arose primarily from the IR and Raman analysis

(but was also alluded to in the microanalysis and TGA) was the disposition

of the protons in W-DA2 compared with the longer chain W-DAn hybrids.

It is assumed that two extra protons per WO 2−
4 unit would be required for

charge balance. In the longer chain DAn molecules the amine terminations

are protonated but in the shortest DA2 case they are not. One suggestion

is that because of the short interlayer distance in W-DA2, the protons dis-

sociate from the terminal amine groups and relocate to the space between

facing apical oxygens, thus ‘shielding’ the electrostatic repulsion. At the

time of writing, samples have been sent to ANSTO for solid state 1H NMR

experiments. It is hoped that the results will enable us to determine the

environment of each proton. If the protons are delocalised then the system

could represent a 2-dimensional ionic proton conductor, with doping.

Ab initio calculations could also be performed for protons in various lo-

cations and configurations to explore the possibility of proton mobility in

W-DA2. Work along this vein was begun but not completed in the time

available. Calculations of energy barriers in hopping from one site to another

are quite time-intensive, and combined with the uncertainty of the hydrogen

wavefunction used (as VASP handles hydrogen poorly) it was decided not to

pursue these calculations at the time.

Calculations were also attempted on W-DAphen, without success due to

apparent charge imbalance from the saturated bonds of the benzene ring.

These problems could be resolved by using another ab initio program.
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8.2 Transition metal tungstates

The synthesis and characterisation of the transition metal tungstates began

quite late in the project, with the first manganese samples synthesised in

August 2003 and the other transition metal ions studied beginning in May

2004. Each of the systems have different chemistries and optimisation is

required for each one. The limitation on some of the hybrids (in particular,

cobalt, nickel and copper) with regards to synthetic techniques is a major

factor to be explored. There are many parameters that can be altered to

affect the quality of the final outcome using the chimie douce and ‘melt’

methods, such as stoichiometry, pH, temperature, solvents, and washing and

drying procedures. Other synthetic techniques, in particular hydrothermal

techniques, could be attempted to try to force the formation of metastable

phases (e.g. spin ladder compounds).

The transition metal tungstate inorganic layer can also be combined with

the functional organic molecules suggested for the ‘pure’ tungsten oxide hy-

brids - chromophores, luminescent molecules, conducting molecules and poly-

mers, metal complexes, and so on. (The apparent ‘stripe’ spacing in the TEM

results is comparable with that of polyaniline (∼ 10 Å) which would create an

interesting system with the possibility of two-band conduction, self-doping

and stronger electronic coupling between the layers. A similar structure was

obtained for a vanadium oxide hybrid [98].)

Ab initio calculations on the proposed transition metal tungstate struc-

tures could also be performed, and to measure the difference in the metal–

amino group interaction strength as the metal ion is altered.

Once again, determination of the crystal structure is of utmost impor-

tance and so far unsuccessful due to the small size of the crystals produced.

Fully deuterated samples will be prepared in the near future for powder neu-

tron diffraction studies. Some optimisation of crystal size was attempted by

varying the pH of synthesis (the optimal pH was found to be 9-10).

Of the transition metal hybrids, (Mn,W)-DA6 is observed to form the

largest crystals (under certain synthesis conditions) of platelets up to 10 µm

across. These may be large enough to attempt single crystal XRD using a
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synchrotron source. If successful, the same inorganic structure is known to

be present in the other (Mn,W)-DAn hybrids and MnWO4 · nH2O.

For the other samples, the (M,W)-DAn series are still incomplete. This

has been limited mostly by the inability to form longer chain hybrids using

the melt and chimie douce methods. The (M,W)-DAn series was used in the

manganese tungstate and tungsten oxide hybrid cases to determine structural

information about the packing angle of the organic molecules between the

layers and the thickness of the inorganic layers.

High-resolution TEM images on the (Mn,W)-DAn samples provided a

key to proposing a structure. High-resolution TEM only became available

late in this project with the commissioning of the MacDiarmid Institute in-

strument. This tool should also be applied to the other transition metal

tungstate hybrids if possible, along with electron diffraction which gives in-

formation specific to the ab plane, for instance, not immediately discernable

from the powder XRD spectra. All of these techniques can then be used

simultaneously to build up a reasonable structural model, as demonstrated

in Chapter 5 for the manganese hybrid.

Other experiments were begun but not completed for the transition metal

hybrids, such as IR and Raman spectroscopy and TGA, which give indica-

tions of the bonding strength within the samples and their structural and

thermal stability.

It would also be worthwhile to perform conductivity experiments on the

transition metal tungstate hybrids and/or thermopower. An initial attempt

was made to measure the conductance of pressed pellets of the manganese

tungstate hybrids, however the conductance was too low to measure with the

equipment available to us. This would be an important physical property to

measure especially when doping is achieved in the samples.

8.3 Magnetism

The magnetic measurements on the transition metal tungstate hybrids dem-

onstrate how rich the physical behaviour of supposedly related systems can

be. The measurements presented in Chapter 6 provide a starting point for
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future experiments - not excluding future magnetic characterisation of ma-

terials with more exotic functional organic intercalates.

The proposed structure of the manganese tungstate hybrids indicates it

may form a spin ladder compound (although the high-temperature part of

the DC susceptibility can be fitted very well by a Heisenberg AF S = 5
2

chain model). Spin ladder cuprates are the focus of much recent attention

because these compounds, when properly doped, exhibit superconductivity.

They also form a conceptual template for understanding HTS cuprates which

appear to spontaneously charge-segregate into stripe-like structures. Such

a model reproduces the full ε(q) dispersion for the magnetic excitations in

HTS cuprates probed by inelastic neutron scattering. The present spin-ladder

hybrids would exhibit 2-magnon scattering peaks in low-temperature Raman

experiments. This would also be a unique compound among spin ladder

materials, which mostly have S = 1
2

(Cu2+, V3+). Interesting magnetic

behaviour may also be observed if the other transition metals could also

be forced (e.g. through hydrothermal synthesis) to adopt this spin ladder

structure.

Magnetic alignment of the grains is another area of research which would

provide additional information, through measuring the magnetisation parallel

to and perpendicular to the layers, essentially independently. One would

expect to see differences due to the different exchange interactions J‖ and J⊥
respectively. Standard commercial resin uses an amine-based curing agent

which disrupts the hybrid structure. Therefore a medium such as a wax or

silicone polymer with a relatively low melting point (30–40◦C) would be a

better material to use. In this way one might observe a spin-flop transition

when the field is applied in the plane of orientation of the spins.

NMR is another technique that could be applied to all of the transi-

tion metal tungstate hybrids to obtain additional information about any net

magnetic order. Below the transition temperature one would expect to see

a zero-field NMR signal, indicative of net magnetic order. If the feature is

broad, this corresponds to different sites with different hyperfine fields. If it

is a sharp peak, then the material is of a single phase and is well-ordered.
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8.4 Doping

Although Chapter 7 on doping is the shortest chapter here, this actually rep-

resents the largest obstacle to overcome in order to use the organic-inorganic

hybrid materials in electronic applications. As mentioned in Chapter 7, elec-

trochemistry is only one of several possible means of doping the samples.

This technique is not yet fully optimised, and preliminary results on the

manganese tungstate hybrids indicate that this may well be successful in

these samples.

Measuring the change in conductance of doped samples is an obvious first

step to characterise their new properties. This can be done either in situ

or afterwards. IR reflectance measured over a wide frequency range would

be a priority, as at low frequencies one ought to see the development of a

Drude peak corresponding to increased conduction. Measurements of photo-

induced conductivity would help further characterise the electronic structure

and provides another way of injecting mobile carriers.

Preliminary work has begun on the fabrication and testing of thin-film

field-effect transistor devices to simultaneously dope and measure conduction

of the hybrid materials. This has proven to be more difficult than anticipated,

however, field-effect behaviour has been observed in a thin film device based

on a tungsten oxide hydrate material.

8.5 Soft-mode behaviour

The fact that the organic molecule has several available modes of packing ad-

jacent to the structural units of the inorganic layer, both in the positioning of

the amine groups and the orientation of the molecule, indicates the possibil-

ity of local activation and the occurrence of order/disorder transitions. If the

energy barriers between different configurations are as small, as we expect,

then one should observe a low-temperature ordered state with a transition

to the disordered state at elevated temperature. In such a scenario one may

observe soft-mode behaviour as a vibrational mode associated with the low-

temperature symmetry slows and softens. Such behaviour could be observed
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using an ultrasonic probe and the reduction in symmetry observed in x-ray

diffraction as well as by the demise of specific phonon modes observed by IR

or Raman spectroscopy. The magnitude of these barriers could be estimated

using ab initio computations.

8.6 Conclusion

This thesis presents a thorough study of the synthesis and characterisation

of the chemical, structural, and physical properties of a novel class of hybrid

material based on atomic layers of a metal oxide separated by organic amine

spacer molecules. The hybrid materials can be produced via evaporation of

solvent, chimie douce, and the so-called ‘melt’ methods. For the synthesis of

tungsten oxide and manganese tungstate hybrids the evaporation of solvent

method was favoured, although for cobalt, nickel and copper tungstate hy-

brids the other two methods are necessary due to the formation of ammonia

complexes with the transition metal ions.

For the majority of the compounds studied (the cobalt, nickel and copper

tungstate hybrids with 1,2-diaminoethane as the only exceptions), a series of

intense 00` lines was evident in powder X-ray diffraction patterns, indicative

of the presence of layered structures. For the tungsten oxide-diaminoalkane

hybrid series, the structure was determined to comprise of single atomic layers

of corner-shared WO6 octahedra, with the organic molecules aligning perpen-

dicular to the inorganic layers. For the manganese tungstate-diaminoalkane

hybrid series, the organic molecules were found to lie at an angle of 56.5◦

to the inorganic layer, while the inorganic layer itself is thought to be com-

prised of alternating ‘stripes’ of manganese and tungsten oxide in a bilayer

formation. IR and Raman spectroscopy of these two systems indicate that

within each series the compounds are isostructural, which assists greatly in

comparing their physical properties.

Ab initio calculations were performed on the tungsten oxide and tungsten

bronze series, which agreed extremely well with both experimental results and

computational results obtained by other researchers. This was extended to

the tungsten oxide hybrids and the optimal structure obtained. The density
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of states for the hybrids near the Fermi level was found to be independent of

the interlayer spacing, and was related to the direct and indirect optical tran-

sitions observed in powder and thin-film UV-visible spectroscopy. Optical

spectroscopy performed on tungsten oxide hybrids incorporating transition

metal ions appeared to indicate strong interactions between the transition

metal ions and the amine terminations of the organic molecules.

The transition metal tungstate hybrids also exhibit magnetism due to the

presence of unpaired electrons. The manganese tungstate hybrid series with

diaminoalkanes exhibited an antiferromagnetic transition at low tempera-

tures (T < 12 K) that decreased as the interlayer spacing increased. This

corresponds to the reduced coupling expected as the layers are separated.

The iron tungstate hybrid series shows all the features of a spin glass, in

particular strong frequency-dependence of the AC susceptibility. A copper

tungstate hybrid with 1,6-diaminohexane as the organic intercalate displayed

a DC susceptibility curve that was described well by a spin-ladder model with

very weak coupling along the ladder. A nickel tungstate hybrid, also with

1,6-diaminohexane as the organic spacer, displayed a ferromagnetic transi-

tion which was subsequently attributed to a spin-canted antiferromagnetic

phase with a small canting angle of 0.46◦.

These materials have been shown to offer a wide range of interesting

structural, optical, electronic and magnetic behaviours that arise from the

presence of essentially isolated inorganic layers. They represent a model

system that is easily manipulated by the selection of the organic molecule to

exploit the low-dimensional physics associated with the layered structures.

The present work provides a ‘first look’ at this rich and fascinating system,

and there is much that can yet be done to develop a full understanding of

their properties, and to exploit these properties to expose new physics and

applications.
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Appendix A

Literature Examples of Hybrid
Systems

Abbreviation Name
evap evaporation
evap solv evaporation of solvent
ppt precipitate
cryst sol crystallisation from solution
el-chem cryst grow electrochemical crystal growth
SSTA single-source thermal evaporation
DSTA double-source thermal evaporation

Table A.1: Abbreviations of techniques used in this section
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Abbreviation Name Chemical formula
MAn (n=1,2,. . . ) methyl/ethyl/. . . -amine H2N(CH2)n−1CH3

DAn (n=2,3,4,. . . ) diamino-eth/prop/. . . -ane H2N(CH2)nNH2

bipy bipyridine (NC5H4)2
Py pyridine NC5H5

AEQT bis(aminoethyl)quaterthiophene H2N(CH2)2(C4SH2)4CH2NH2

AETH aminoethylthienylhexane H2N(CH2)2(C4SH2)(CH2)6-
(C4SH2)(CH2)2NH2

EDT-TTF ethylenedithiotetrathiafulvalene
tmeda tetramethylethylenediamine (CH3)2N(CH2)2N(CH3)2
phen phenethylamine (C6H5)(CH2)2NH2

5FPEA pentafluorophenethylammonium (C6F5)(CH2)2NH3

NEA 2-napththyleneethylammonium (C10H7)(CH2)2NH3

BAESBT bis(ammoniumethylsulfanyl)-
bithiophene

H3N(CH2)2S(C4SH2)2-
S(CH2)2NH3

pip piperazine (C4N2)H4

Table A.2: Abbreviations of organic molecules used in this section.
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System Dim. Bonding Synthesis Ref.
Inorganic Organic

Phosphates
Ga4(HPO4)(PO4)4 DA4,5 3 H-bonding solvothermal [45, 137]
Sb{CH3C(O)(PO3)2} DA4,5 1 H-bonding hydrothermal [294]
Al4P6O20(C2O4) 1,2-DA3 3 ionic hydrothermal [226]
Fe2O(PO4)2 DA2 2 H-bonding hydrothermal [249]
Fe(HPO4)2(OH) DA2 1 H-bonding hydrothermal [249]
Fe4O(PO4)4 DA2 3 H-bonding hydrothermal [249]
Mn3(HPO3)4 DAn (n = 3− 8) 2 ionic hydrothermal [81]
Mn2(PO4)2 DA2 2 H-bonding hydrothermal [250]
Mn2(H2PO4)2 C2O4 2 direct hydrothermal [165]
NbOF(PO4) H3N-Py 2 H-bonding hydrothermal [277]
Ga(HPO4)(H2PO4) 2,2’-bipy 2 direct hydrothermal [173]
Ni[O2CCH2N-
(CH2PO3H)2]

DA2 2 H-bonding hydrothermal [247]

(Co,Zn)[O2CCH2N-
(CH2PO3H)2]

4,4’-bipy 2 direct hydrothermal [248]

(V,Fe)3(C2O4)2-
(HPO4)3(PO4)H2O

1,4-bis(3-aminopropyl)-
piperazine

2 ionic hydrothermal [258]

[Zn3Cl(HPO4)3(PO4)] H2N(CH2)2NH2(CH2)2-
NH2(CH2)2NH3

2 H-bonding hydrothermal [189]

Fe3(HPO3)4 DA2 2 ionic hydrothermal [54]
(UO)2(PO4) UO2–piperazinium 3 H-bonding hydrothermal [178]
In4(PO4)4(H2O)4F2 C6H14N2 3 ionic hydrothermal [300]
Fe(HPO4)(H2PO4) 1,10-phenanthroline 1 direct hydrothermal [168]
Cu-PO4 C6H9 0 direct hydrothermal [293]
(V,Mn)-Ga-ox-PO4 DA3,

NH3(CH2)2NH(CH2)2NH3

2 ionic hydrothermal [39]

Cluster ions
SiW12O40 DA10 0 ionic dip-coating layers [273]
Mo8O26 Ni/Cu-picolylamine 0 ionic hydrothermal [230]
W12O42 DA6 0 ionic evap of solvent [86]
W12O42 C12H25N(CH3)3 0 ionic cryst sol [124]
Mo6O18 Cu(2,2’-bipy) 0 direct ppt from solution [244]
Mo4O12(OH)2 Cu(2,2’-bipy)+Cu-

isonicotinate
3 direct hydrothermal [181]

Mo9O30 H3N(CH2)2NH2(CH2)2NH3 1 ionic hydrothermal [288]
(Mo,W)12O40 DA6 0 ionic hydrothermal [84]
PW12O40 H2N(CH2)3SiO2 (SiO2

‘polymer’ chain)
0 ionic sol-gel [295]

W6O19 Co(4,4’-bipy)3 0 direct hydrothermal [296]
(Mo,W)12O40 5-phenyl-2-(4-pyridinyl)Py 0 H-bonding hydrothermal [112]
(Mo6O19)+(Mo8O26) Co(bpy)3 0 ionic hydrothermal [276]
Perovskite layer swelling
Ca2Nan−3NbnO3n+1

(n = 3− 7)
MA8 2 ionic chimie douce [122]

Ca2Nb3O10 H3N(CH2)10COOH 2 ionic chimie douce [50]
TiNbO5 MAn (n = 1− 8) 2 ionic chimie douce [231]
Ti4O9 MAn (n = 8− 18) 2 ionic chimie douce [51]
TiO2 N(C4H9)4 2 ionic chimie douce [50]
Aurivillius
(Bi2SrTa2O9)

MAn (n = 4, 8, 12, 18) 2 H-bonding chimie douce [261]

Bi-2212 HgX2 (X = Br,I) 2 van der Waals gas phase [53, 52, 210]
Bi-2212 HgI2Py2 2 van der Waals gas phase [155]
Bi-2212 Py-CnH2n+1I 2 van der Waals chimie douce [50]
MnO2 N(C4H9)4 2 ionic chimie douce [211]
MnO2 birnessite N(CnH2n+1)4 (n = 1 −

−4)
2 ionic chimie douce [88]

MnO2 birnessite DAn (n = 2, 6, 10) 2 ionic chimie douce [175]
MnO2 buserite MA12 2 ionic chimie douce [219]
MnO2 Al13 polyoxocation 2 van der Waals chimie douce [274]
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System Bonding Synthesis Ref.
Inorganic Organic

LDHs/anionic clays: Dim. = 2
Al-Si-O clay poly-diallylammonium species ionic dip-coat layer [270]
Al-Si-O clay biomolecules (DNA, vit. C, . . .) ionic chimie douce [50]
Ni0.7M0.3 (M = Fe,
Co, Mn)

polyacrylate ionic ppt from solution [268]

M2Al(OH)6 (M = Zn,
Mg)

M-oxalate (M = Co,Cu,Mn,Ga) ionic hydrothermal [22]

Zn2.9Al2(OH)9.8 bipy(COO2),
bipy(COO2)+MoO2

van der Waals ppt from solution [85]

M2Al(OH)6 (M = Zn,
Mg, Cu)

[M’Cl6]3− (M’ = Ir, Pt, Ru) ionic hydrothermal [23]

Mg-Al-NO3 Eu(EDTA) ionic ppt from solution [168]
Other 1D chains
Cd2(SCN)6 (Me/cyclohexane)2-

imidazolium
ionic cryst sol [42]

CuCl2 o-phenanthroline direct hydrothermal [256]
CuX (X = Cl,Br,I) 4-acetylpyridine direct cryst sol [37]
Pb3X9 (X = Cl,Br)
(edge shared)

(C2H5)2NH2 ionic cryst sol [282]

V2SeO4 2,2’-bipy, 4,4’-bipy direct hydrothermal [65]
Mo4O13 Cu(2,2’-bipy) + terephthalate direct hydrothermal [184]
Mo3O10 anilinium ionic ? [157]
WO2F4 Cu(Py)2(H2O)2 direct solvothermal [110]
MoO4 Mn-o-phenanthroline direct hydrothermal [297]
(MoO3)3SO4 2-methylpiperazine (C5N2H14) H-bonding hydrothermal [107]
MO5 (M = Ce,Sm) HOOC(CH2)2COOH (succinic

acid)
direct hydrothermal [242]

Cu2(IO3)3 2,2’-bipy direct hydrothermal [169]
Zn3(OH)2 OOC(C6H4)COO direct hydrothermal [179]
Other 2D layers
V6O14 DA4 H-bonding hydrothermal [239]
(Pb,Ag)I3 EDT-TTF-I2 van der Waals el-chem crys grow [73]
(tmeda)Cu[Hg(CN)2]2[HgCl4] direct ppt from solution [75]
(ZnO)2-
(UO2)3(acetic)2

nicotinic acid direct hydrothermal [43]

Co-W(CN)8 cyanopyridine direct ppt from solution [7]
Cr[(H3N(CH2)2PO3)(Cl)(H2O)] direct ppt from solution [21]
SnI3 (c.f. MoO3) MA12 H-bonding evap of solvent [289]
Co5(OH)8 cyclohexanedicarboxylate direct hydrothermal [153]
V4O12 M(2,2’-bipy) (M=Cu,Zn) direct hydrothermal [109]
MoO4 Cu(n,m’-bipy) (n, m = 3, 4) direct hydrothermal [229]
Ag2SbS3, Ag5Sb3S8 DA2 H-bonding solvothermal [263]
V3O7, V4O10 MA1 ionic hydrothermal [41]
V10O26 Co(phenanthroline)3 ionic hydrothermal [182]
Fe1.5F3SO4 DA6 H-bonding solvothermal [228]
VxOy conducting polymers ionic hydrothermal [98]
(UO2)(AsO4) triethylenediammonium H-bonding hydrothermal [178]
(UO2)2(AsO4)(AsO3OH) NH(C2H5)3 H-bonding hydrothermal [178]
V2O6, V4O12 Co(4,4’-bipy) direct hydrothermal [135]
U2F10 N(CH2CH2NH3)3 ionic hydrothermal [272]
Other 3D networks
ZrGe3O9 DA2 ionic hydro/solvotherm [176]

Table A.3: Examples of organic-inorganic hybrids of various dimensionality.
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System Dim. Bonding Synthesis Ref.
Inorganic Organic

SnnI3n+1, n = 1− 5 DA4 2 H-bonding cryst sol [200]
SnI3 NH2CH=NH2 3 H-bonding cryst sol [203]
MI5 (M = Sn,Pb) NH2C(I)=NH2 1 H-bonding cryst sol [275]
SnI3 MA1 3 H-bonding cryst sol [201]
MI4 (M = Ge,Sn,Pb) MA4 2 H-bonding cryst sol [195]
M 2

3
I4 (M = Bi,Sb) AEQT dye 2 H-bonding cryst sol [197, 46]

PbI4 phen, MAn (n = 4, 6, 10) 2 H-bonding DSTA [78]
MX4 various phen, MA4 2 H-bonding SSTA [205]
PbX4 (X = Br,I) AETH 2 H-bonding SSTA [47]
MnI3n+1 (M = Pb,Sn;
n = 1, 2,∞)

DA4, phen 2 H-bonding 2 step dip [171]

PbX3 (X = Cl,Br,I) MA1 3 H-bonding cryst sol [186, 279]
EuI4 MA4 2 H-bonding solid state [202]
CuX4 (X = Cl,Br) H3N-pyridinium/morpholinium 2 H-bonding cryst sol [283]
CuX4 (X = Cl,Br) N3N-picolinium 2 H-bonding cryst sol [180]
MnCl4 MA2, MA9 2 H-bonding solid state [287]
SnI4 〈330〉 DA5 2 H-bonding cryst sol [103]
CuX4 (X = Cl,Br) DA4,5 2 H-bonding cryst sol [90]
MCl4 (M = Ni, Pd ,Cu,
Cd, Mn)

DA2 2 H-bonding cryst sol [246]

SnI4 5FPEA, NEA 2 H-bonding cryst sol [290, 204]
SnI4 (CH3)3N(CH2)2NH3 2 H-bonding evap solv [292]
SnI4 2-Xphen (X = F,Cl,Br) 2 H-bonding cryst sol [291]
PbI4 BAESBT 2 H-bonding hydrothermal [299]
PbX4 (X = Cl,Br) piperazinium (Cl), Me2-pip

(Cl,Br)
2 H-bonding cryst sol [59]

BiI5 AETH, DA12, DA6 1 H-bonding cryst sol [198]
PbCl4 H2N(CH2)3SiO2 (SiO2 ‘poly-

mer’ chain)
2 H-bonding ppt from sol [44]

PbI5 BAESBT 1 H-bonding cryst sol [298]
CuCl4 MA1 2 H-bonding cryst sol [216]
PbX4 (X = Br,I) HO(CH2)2NH3 2 H-bonding ppt from sol [193]

Table A.4: Examples of metal halide organic-inorganic hybrids.
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Appendix B

VASP Input Files

These are the actual input files for an ab initio relaxation, using VASP, of

the W-DA4 system using a single unit cell.

POSCAR

The atomic positions are given as follows, in the format:

• System: - a comment line;

• Unit cell multiplication factor;

• Unit cell basis vectors (each as (x, y, z));

• The number of atoms of each species as listed in the POTCAR file;

• Selective dynamics - optional. This allows one to vary or fix the

position of certain atoms, if desired;

• Direct - direct, as opposed to reciprocal, co-ordinate system;

• Atomic positions, as fractions of the unit cell basis vectors. If Selective

dynamics is selected, each co-ordinate must be specified as to whether

it is allowed to vary (‘T’) or remain fixed (‘F’).
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System: WO4-DA4 single cell, terminal
3.937256000000000
1.0017983395056560 -0.0003952000493081 0.0000834421981564

-0.0011295670591459 2.8639602762709550 0.0012995157463463
0.0000833769576506 0.0004582493508579 1.0009946034456180

4 2 14 1 4
Selective dynamics
Direct

0.6243605412157436 0.3323433567902825 0.4969553656839381 T T T
0.3764915036686958 0.6638525836721527 0.5003575134924105 T T T
0.6021454597081402 0.5552109454410044 0.4983663555382591 T T T
0.3972100340530247 0.4405334336655287 0.4998042004666772 T T T
0.4414292644498232 0.2185203690990178 0.4965748819565263 T T T
0.5594312623738347 0.7778810794278641 0.4993641643899593 T T T
0.2820933524270117 0.2052294135958732 0.2800348900693947 T T T
0.2797722622929228 0.2051479976316344 0.7123877832720140 T T T
0.6145554510235272 0.1501346846160700 0.4978301846778663 T T T
0.7893609199975202 0.3307991520295701 0.7200110169246656 T T T
0.7869051395585771 0.3317253904940998 0.2720043638308098 T T T
0.7217668433961961 0.7918226361883853 0.7149516189173681 T T T
0.7178693865818460 0.7919064901466228 0.2823761575541894 T T T
0.3854043422815749 0.8459564696080051 0.5014584611095003 T T T
0.2108396333215268 0.6651005523005935 0.2776976877106563 T T T
0.2141559619677125 0.6649098133017333 0.7255112501595278 T T T
0.2284041321530026 0.4391139444652197 0.2785909630245840 T T T
0.2324753124973142 0.4386388273506938 0.7241680240923074 T T T
0.7708912020194205 0.5564681526170645 0.7196644893021613 T T T
0.7671703562760541 0.5566623986051553 0.2741720837994066 T T T
0.0000000000000000 0.0000000000000000 0.0000000000000000 F F F
0.5000000000000000 0.0000000000000000 0.0000000000000000 F F F
0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F
0.0137196548325491 0.1679299773996945 0.9943843582116898 T T T
0.9858666455670857 0.8318736045744259 0.9949415123907031 T T T

KPOINTS

The KPOINTS file specifies the size of the k-point mesh VASP is to use.

VASP creates a system file, IBZKPT, which includes the list of all k-points.

This can be done manually but normally it is completely sufficient to just

use KPOINTS with automatic mesh generation, as follows:

11x11x11
0

Gamma
11 11 11
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where

• the first line is a comment line;

• the second line is normally the number of k-points, a value of 0 triggers

automatic k-point mesh generation;

• Gamma includes the Γ-point, the alternative is Monkhorst for Monkhorst-

Pack k-point mesh. For odd numbers of k-points along each side the

Γ-point is included in the Monkhorst-Pack mesh anyway;

• finally, the number of k-point divisions along each unit vector basis

direction.

POTCAR

POTCAR files for each element are supplied with VASP, a POTCAR file for

each run is constructed by concatenating the appropriate individual element

files in the order that the positions are given in the POSCAR file.

A POTCAR file takes the following format (given for oxygen):

US O
6.00000000000000000
parameters from PSCTR are:

VRHFIN =O: s2p4
LEXCH = 91
EATOM = 429.1268 eV, 31.5399 Ry
TITEL = US O
LULTRA = T use ultrasoft PP ?
IUNSCR = 0 unscreen: 0-lin 1-nonlin 2-no
RPACOR = .000 partial core radius
POMASS = 16.000; ZVAL = 6.000 mass and valenz
RCORE = 1.550 outmost cutoff radius
RWIGS = 1.400; RWIGS = .741 wigner-seitz radius (au A)
ENMAX = 395.994; ENMIN = 296.995 eV
EAUG = 700.000

ICORE = 2 local potential
LCOR = T correct aug charges
RMAX = 2.317 core radius for proj-oper
QCUT = -5.395; QGAM = 10.790 optimization parameters
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Description
l E TYP RCUT TYP RCUT
0 .000 15 1.130 23 1.400
0 .000 15 1.130 23 1.400
1 .000 15 1.130 23 1.550
1 .000 15 1.130 23 1.550
2 .000 7 1.550 7 1.550

Error from kinetic energy argument (eV)
NDATA = 100
STEP = 20.000 1.050

157. 154. 152. 149. 147. 144. 141. 139.
136. 132. 131. 127. 123. 120. 116. 112.
109. 105. 102. 96.2 92.7 89.2 84.0 80.7
77.4 72.6 67.9 64.9 60.6 56.4 52.4 48.6
44.9 41.5 38.2 35.1 31.3 28.6 25.3 23.1
20.3 17.7 15.4 13.3 11.5 9.86 8.41 6.84
5.75 4.60 3.63 2.98 2.31 1.76 1.25 .925
.672 .447 .289 .181 .111 .678E-01 .424E-01 .273E-01
.218E-01 .197E-01 .194E-01 .192E-01 .182E-01 .165E-01 .139E-01 .109E-01
.815E-02 .579E-02 .383E-02 .272E-02 .204E-02 .178E-02 .172E-02 .171E-02
.163E-02 .145E-02 .120E-02 .901E-03 .646E-03 .471E-03 .379E-03 .342E-03
.333E-03 .319E-03 .282E-03 .233E-03 .175E-03 .134E-03 .110E-03 .101E-03
.957E-04 .873E-04 .725E-04 .578E-04

END of PSCTR-controll parameters
local part
120.942463269051089

.......

followed by the wavefunctions themselves, in both reciprocal and real-space

co-ordinates.
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INCAR

The INCAR input file for the initial relaxation of a system in VASP would

typically include the following parameters:

System = 1,4-diaminobutane tungstate, single cell

LWAVE = .FALSE.
LCHARG = .FALSE.
ISTART = 0 ! new job (don’t read WAVECAR)
LREAL = .TRUE.

ISMEAR = 0 ! Gaussian smearing, change to -5 for final DOS
SIGMA = 0.3

NSW = 10 ! no of ionic steps
ISIF = 2 ! relaxation 2=ions only, 3=ions and cell, 6=cell only
IBRION = 2 ! use CG algorithm
POTIM = 0.1
EDIFFG = 1e-3 ! stopping force difference in ionic iterations
IALGO = 48 ! 8=CG (default) 48=RMM (faster)

LPLANE = .TRUE.
NPAR = 12
NSIM = 4
LSCALU = .TRUE.
LASYNC = .TRUE.
ISYM = 2

In the case above, the WAVECAR and CHGCAR files (wavefunctions

and charge density) are very large and it is chosen not to write them to disk,

and real space co-ordinates are used as the cell is too large to use reciprocal

space. Gaussian smearing (commonly used for insulating and semiconduct-

ing systems) with a smearing parameter σ of 0.3 is used. (For conducting

systems, i.e. the tungsten bronzes, Fermi smearing (ISMEAR = -1) is used

with σ = 0.15.) Only the ions are relaxed, up to a maximum of 10 steps,

using the conjugate-gradient algorithm. The electrons are relaxed using the

residual minimisation method and are considered relaxed when the energy

difference between electronic iterations is less than 1×10−3 eV. The final six

parameters are necessary for parallelisation, in this case on 12 processors.

While ISIF = 3 is the most intuitive parameter to use as it allows both

the ions and the lattice to relax, there are cases where it can cause the cal-
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culations to diverge. This was a problem particularly when calculating the

hybrid systems and so relaxations using the above INCAR file with alternat-

ing ISIF = 2 and ISIF = 6 were performed, until each had converged.

Once relaxed, the following parameters would be changed to obtain an

accurate ground state energy and partial density-of-states:

System = 1,4-diaminobutane tungstate, single cell

LWAVE = .FALSE.
LCHARG = .FALSE.
ISTART = 0 ! new job (don’t read WAVECAR)
LREAL = .TRUE.

ISMEAR = -5

NSW = 0 ! no of ionic steps
ISIF = 6 ! relaxation 2=ions only, 3=ions and cell, 6=cell only
IBRION = -1 ! no relaxation
POTIM = 0.1
EDIFFG = 1e-3 ! stopping force difference in ionic iterations
IALGO = 48 ! 8=CG (default) 48=RMM (faster)

NEDOS = 1000
RWIGS = 0.7836 0.7320 0.3189 0.5699 1.3758

The changes from the INCAR files used for relaxation are summarised as

follows:

• Smearing is changed from Fermi to tetrahedral to allow an accurate

ground state energy to be calculated;

• NSW is set to zero and IBRION is set to -1 so no relaxation steps are

permitted (as the tetrahedral smearing can sometimes cause divergent

behaviour);

• The number of points in the density-of-states curve, and the Wigner-

Seitz radius for each atomic species is listed (once again in the order

the elements appear in the POTCAR file);

• Density-of-states calculations cannot be performed in parallelisation

mode, so these parameters are removed.
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Output

Several files are created by VASP:

• CONTCAR gives the revised atomic positions and is of the same format

as POSCAR, enabling the user to simply copy overwrite POSCAR with

CONTCAR and continue the relaxation if required;

• WAVECAR, if written, contains the complete wavefunctions. This is

useful to save time in repeated relaxation steps, however the WAVE-

CAR files are very large;

• CHGCAR, if written, gives the charge density, with a more concise

version in the CHG file;

• DOSCAR, if written, the density-of-states;

• OUTCAR gives the full details for each electronic and ionic iteration;

• OSZICAR gives the energy after each electronic and ionic step, similar

to what one sees printed to the screen during a calculation. A sample

OSZICAR file for a converged system is as follows:

N E dE d eps ncg rms rms(c)

RMM: 1 0.756552945980E+03 0.75655E+03 -0.22119E+04 31968 0.941E+02

RMM: 2 0.136813827545E+03 -0.61974E+03 -0.63448E+03 31968 0.288E+02

RMM: 3 -0.310527341651E+02 -0.16787E+03 -0.16882E+03 31968 0.201E+02

RMM: 4 -0.110542140654E+03 -0.79489E+02 -0.56728E+02 31968 0.149E+02

RMM: 5 -0.139088062063E+03 -0.28546E+02 -0.25431E+02 31968 0.107E+02

RMM: 6 -0.153035069861E+03 -0.13947E+02 -0.12814E+02 31968 0.647E+01

RMM: 7 -0.159853589416E+03 -0.68185E+01 -0.63856E+01 31968 0.495E+01

RMM: 8 -0.163401649797E+03 -0.35481E+01 -0.33365E+01 31968 0.306E+01

RMM: 9 -0.165222476168E+03 -0.18208E+01 -0.17247E+01 31968 0.244E+01

RMM: 10 -0.167318388587E+03 -0.20959E+01 -0.20444E+01 97467 0.150E+01

RMM: 11 -0.167332341079E+03 -0.13952E-01 -0.42603E-01 91969 0.118E+00

RMM: 12 -0.167333158382E+03 -0.81730E-03 -0.12712E-02 74467 0.549E-01 0.246E+01

RMM: 13 -0.179212345695E+03 -0.11879E+02 -0.27802E+02 80148 0.647E+01 0.364E+01

RMM: 14 -0.150249746063E+03 0.28963E+02 -0.91688E+01 72649 0.433E+01 0.783E+00

RMM: 15 -0.149080415141E+03 0.11693E+01 -0.10802E+01 80089 0.163E+01 0.345E+00

RMM: 16 -0.148865177182E+03 0.21524E+00 -0.12453E+00 78017 0.621E+00 0.148E+00

RMM: 17 -0.148828453652E+03 0.36724E-01 -0.33512E-01 83633 0.224E+00 0.839E-01

RMM: 18 -0.148819768147E+03 0.86855E-02 -0.46802E-02 79536 0.113E+00 0.293E-01

RMM: 19 -0.148819684280E+03 0.83867E-04 -0.13404E-02 81100 0.487E-01 0.206E-01

RMM: 20 -0.148818886306E+03 0.79797E-03 -0.25664E-03 78255 0.235E-01 0.436E-02

RMM: 21 -0.148818936651E+03 -0.50344E-04 -0.58843E-04 64549 0.105E-01

1 F= -.14881894E+03 E0= -.14881894E+03 d E =0.000000E+00

More details can be found in the VASP guide, Ref. [302].
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