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Abstract

A focal mechanism is a geometrical representation of fdiydtdsring an earthquake. Re-
liable earthquake focal mechanism solutions are used &sgsdbe tectonic characteristics
of a region, and are required as inputs to the problem of asitig tectonic stress. We
develop a new probabilistic (Bayesian) method for estintgtihe distribution of focal mech-
anism parameters based on seismic wave polarity data. @uoagh has the advantage of
enabling us to incorporate observational errors, paditykthose arising from imperfectly
known earthquake locations, allowing exploration of theremparameter space, and leads to
natural point estimates of focal mechanism parametersn\Vésiigate the use of generalised
Matrix Fisher distributions for parameterising focal maclsm uncertainties by minimising
the Kullback-Leibler divergence.

We present here the results of our method in two situations.fik&t consider the case in
which the seismic velocity of the region of interest (ddsed by a velocity model) is pre-
sumed to be precisely known, with application to seismiadiadm the Raukumara Penin-
sula, New Zealand. We then consider the case in which theiglmodel is imperfectly
known, with application to data from the Kawerau region, Néaland.

We find that our estimated focal mechanism solutions for tbstipart are consistent with all
available polarity data, and correspond closely to sohgtiabtained using established meth-
ods. Further, the generalised Matrix Fisher distributism@sexamine provide a good fit to
our Bayesian posterior PDF of the focal mechanism parasietaabling the posterior PDF
to be succinctly summarised by reporting the estimatedhpetexs of the fitted distribution.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The focal mechanism of an earthquake describes the geoaidtiey fault on which the earth-
quake occurred using three angular parameters: the stlijxeand rake (see Section 11.2).
Reliable earthquake focal mechanism solutions can be wses$essing the tectonic char-
acteristics of a region (see e.g. Reyners & McGinty 1999, ane required as inputs to the
problem of estimating tectonic stress (see e.g. Arnold & Aemd 2007), changes in which
have been hypothesised to occur following large earthqgiake volcanic eruptions (for a
recent review see Townend 2006).

Existing methods of focal mechanism estimation (see Sedti®) make use of P-wave first
motion polarities (see Section 1.2.1) and/or S-wave infdiom (see Section 1.2.2). These
methods can be characterised as either optimisation oapiiggiic techniques.

The existing optimisation methods are, for the most parplento accommodate all of the
relevant sources of uncertainty in the underlying seisgiold data, although some studies
have applied a forward method to this problem (Hardebeck &a%tr 2002). Some of this
uncertainty stems from imprecise knowledge of the Earthisrsic velocity structure. The
probabilistic methods in the literature (see e.g. De Nagadd. 1991, Zollo & Bernard 1991)
take into account P-wave polarity uncertainties, but faibtcount for the uncertainty in
earthquake hypocentre location, and do not parameterseegulting probability distribu-
tion.

Here we propose a new, probabilistic method of focal medmarestimation, based on
Bayes’ rule; a simple probabilistic theorem that can be usegksess the degree to which
certain data support certain hypotheses (Sivia 1996). AeBiay approach allows a com-
plete probabilistic treatment of the problem, and leadsnadlyy to robust point estimates of
focal mechanism parameters based on seismological dkiag tato account the inherent
uncertainties. This is an extension of initial work undketa by Bouley (2005). Having
derived a method for calculating the posterior distribatoed the focal mechanism param-
eters, we investigate the use of directional distributifansrepresenting focal mechanism
uncertainties. We attempt to parameterise this unceytaising generalised Matrix Fisher
distributions, fitted by minimising the Kullback-Leibleiérgence.

The objectives of this project are, therefore, to:

1. Develop a probabilistic (Bayesian) model of the consteaimposed on focal mech-
anism parameters by first-motion data given imperfect hgptre parameters and an
error-free velocity model;



2. Generalise the model developed in Objective 1 to sitnaiiowhich neither the hypocen-
tre nor the velocity model are known perfectly;

3. Investigate the suitability of idealised error disttibuas (particularly generalised Ma-
trix Fisher distributions) for representing focal meclsamiuncertainties.

1.2 Focal Mechanisms

A focal mechanisfhdescribes the geometry of a fault during an earthquake.oAgh not
always the case, it is generally assumed that the fault iar@aplsurface (known as tifigult
plang across which respective sides move (Stein & Wysession)200& alternative term
fault plane solution is sometimes used (Fowler 1990).

Focal mechanisms can be described by the three asti&s, dip andrake Strike and
dip describe the orientation of the fault plane, subjectrt@mbiguity which we describe
below, while the rake describes the sense of relative mahimimg the earthquake. Here we
represent a focal mechanism by the following:

e The strike direction is the direction of a horizontal linetire fault plane, while the
strike anglé& is the angle measured clockwise from north to the strikectioa (0 <
£ < 360°).

e The dip anglé’ is the angle that the fault slants downwards from the hotaldo the
right of the strike directioni0 < § < 90°).

e The rake angle\ (also known as the slip angle) specifies the direction of amotif
the upper side of the fault (the hanging wall block) with mspto the lower side of
the fault (the foot wall block), measured in the fault plamgi-glockwise from the
direction of the strike({ < A < 360°).

(Stein & Wysession 2003, Aki & Richards 2002), whé&ye= (£, 6, A). This description can
be visualised in Figure1l.1.

/Nrorth

Strike Direction

Slip Direction Y

Figure 1.1: Visual representation of fault slip. Figuredzhen Aki & Richards (2002).

Alternatively the fault plane can equivalently be desalitby a unitnormal vectorn, and
unit slip vectora, the direction of motion of the hanging wall block with resp® the foot
wall block (Stein & Wysession 2003). These two vectors athagonal, and together with
thenull vectora = n x u constitute the orthogonal rotation mati©) = [a a nJ, which

litalics denote terms explained further in the Glossaly,® 13
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entirely describes the focal mechanism. These two equivdiefinitions are related as de-
scribed in Appendikx AT]1.

A focal mechanism is the most simple representation of &igt Another method of rep-
resenting a seismic source is by way of thement tensofsee Appendix A.8]1). The ad-
vantage of the moment tensor is that it encompasses bothgaometry and earthquake
magnitude, and it can describe more complex seismic sothiaessimply fault slip, such as
opening modes. Moment tensor inversion — estimating the embtensor using the seismo-
grams of stations that recorded an event — is only possibke&sonably large events, 3.5
local magnitude {/;) (J. Ristau, personal communication, April 4, 2008). Thesthods
are beyond the scope of this project since we assume a danlghééecsource, which can be
sufficiently described by the focal mechanism. Focal meishasican also be computed for
smaller earthquakes than a moment tensor can be computetb¥an to aroun@®.3 M, in
the New Zealand settings considered here.

The following sections outline the basics of focal mechamnestimation.

1.2.1 P-wave First Motions

P-wavesre the seismic waves that travel fastest from the eartlegg@lkrce (Stein & Wysession
2003). Afirst motionindicates the direction of motion, or polarity, of the firsiRve arrival

at aseismomete(Stein & Wysession 2003). By observing P-wave polaritiea aumber

of different seismic stations, the focal mechanism can leraened (Fowler 1990, Cox &
Hart 1986).

P-waves are an example of a longitudinal wave; the direafascillation of the wave is in

the same direction as the direction of wave propagationn(®teMVysession 2003, Fowler

1990, Aki & Richards 2002). If the movement of the materiahnthe fault is toward a

certain station (away from the earthquake source), thenfioston of the P-wave that arrives
at that station will be upwards (termedmpressional If the material moves away from the
station (toward the earthquake source), the first motioh@fR-wave arriving at that station
will be downwards dilatational) (Stein & Wysession 2003).

These first motions define four quadrants surrounding theceolAs shown in Figure 1.2,
the division of these quadrants occurs at the fault planeaapthne perpendicular to the
fault plane, known as thauxiliary plane which together are called timodal planegCox &
Hart 1986, Fowler 1990, Stein & Wysession 2003). As explaineSectiori 1.2]3, one can
generally not distinguish between these two planes.

Thefocal spheras an imaginary sphere of negligible radius centered at anodsnding the
earthquake source (Stein & Wysession 2003, Cox & Hart 1986éf 1990). Locations
of compressions and dilatations leaving the earthquakecs@an be represented as points
on the focal sphere. Because a sphere cannot be represenpaper without distortion
(Kagan 2005), a 2-dimensional stereographic projectiaim@iower hemisphere of the fo-
cal sphere, known asstereonetis commonly used (Stein & Wysession 2003, Fowler 1990).

To determine a focal mechanism, the polarities of P-waverfitions at seismometers are
first recorded. Each station corresponds to a point on thed gmhere where the P-wave left
the earthquake source en route to the seismometer. Thisipoisually defined in spherical
polar coordinates (see Appendix A.2) by d@amuth ¢, the angle measured clockwise from
north to the point, and iteake-off angled, the angle measured from the downward vertical
to the point (Stein & Wysession 2003, Fowler 1990, Udias }988ernatively, the take-off
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Epicenter

Aucxiliary
plane

Figure 1.2: First motions of P-waves provide informatiooatithe nodal planes (Stein
& Wysession 2003).

vector, the unit vector from the origin to the poiiat, ¢) on the focal sphere, given by
p = (sinf cos ¢, sin @ sin ¢, cos )

can be used. As P-wave polarity at a station depends and location on the focal sphere
(¢, 0), this relationship can be formalised as follows

FP =2(p-n)(p- 1)
= cos Asin d sin® fsin 2(¢ — &) — cos A cos 6 sin 26 cos(¢p — &)+ (1.2)
+ sin Asin 26(cos? 6 — sin® @ sin®(¢ — €)) + sin A cos 28 sin 20sin(¢p — €)  (1.2)

(Aki & Richards 2002) wherd" denotes the radiation pattern, or normalised amplitude, of
the P-wave leaving the focal sphere at pgint?).

To plot points(¢, ) onto a stereonet, we use a technique known as the Lambarii®ch
projection (see Sectidn A.3). Once all points are plottedhenstereonet, the focal sphere
is partitioned by two great circles — the nodal planes c@oesing to the focal mecha-
nism solution® — creating four quadrants (see Figlrel 1.3). AppendiX A.Zdess how
R(©) defines the nodal planes. In principle (i.e. given perfecbgerved data) each quad-
rant contains only compressional or only dilatational fimgitions (Aki & Richards 2002).
The quadrants where the first motions are compressionabévared dark, while the quad-
rants where the first motions are dilatational are colourbden(Stein & Wysession 2003).
This results in a “beachball” appearance (see Figuie hd¥g stereographic projections are
sometimes referred to as beachball diagrams.

Beachball diagrams can indicate certain types of faulttBgike-slip faulting occurs when
the two sides of the fault move horizontally past one-anofhe- 7/2 and\ = 0 or 7) (Aki

& Richards 2002). Dip-slip faulting occurs when the moveftrsrvertical ¢ = /2 and
A = m/2 or 37w /2). There are two types of dip-slip faults; reverse faultgurdng when the
hanging wall moves upwards relative to the foot wallg (0, 7)), and normal faults, occur-
ring when the hanging wall moves downwards relative to the feall (A € (7, 27)) (Aki

& Richards 2002, Stein & Wysession 2003). Figlre 1.5 showg)l beachball diagrams
corresponding to these fault types.



Figure 1.3: Stereonet showing how the nodal planes partitie focal sphere into four
guadrants, each quadrant containing only compressiohed)(br dilatational (red) first
motions.

Thrust faulting, Vanuatu Islands, July 3, 1985
Location: 17.2°S, 167.8°E. Depth: 30 km
Strike: 352°, Dip: 26°, Slip: 97°

CHTO
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e

Figure 1.4: Example of a focal mechanism, with P wave firsiomstshown, represented
on a stereonet/beachball diagram (Stein & Wysession 2003).

(@) E (b) ! (c) :
Figure 1.5: Focal mechanisms for various types of fault.steyws strike-slip faulting,

(b) shows reverse faulting, and (c) shows normal faultinggufe based on Stein &
Wysession (2003).



The dilatational quadrant of the focal sphere is bisectethbypressure (or P-) axis, which
is parallel toa — n, and the compressional quadrant is bisected by the tergmng) axis,
parallel tou + n (Arnold & Townend 2007, Aki & Richards 2002). We denote thatun
vectors in the direction of the P- and T-axgs andv” respectively.

1.2.2 S-wave Information

S-wavesor secondary waves, are so-called because they are thersibihe two types of
seismic wave to arrive at seismometers (Udias 1999). Thesesare transverse, meaning
that the direction of oscillation of the wave is perpendicub the direction of the wave’s
propagation. S-waves are commonly used in two ways to sopieP-wave information in
determining focal mechanisms; S-wave polarisation.g&né amplitude ratios.

Determination of S-wave polarisation involves analysing oscillation geometry of the S-
wave. A plane defined by two lines — the vertical and the patineating an earthquake
hypocentre to a seismometer — is identified. The S-waveiidisi two perpendicular com-
ponents, SV and SH, based on its oscillation in relation imglane. The SV displacement
is vertical, in the plane, while the SH displacement is hamital, normal to the plane (Stein
& Wysession 2003). As with P-waves, the radiation pattdrnsf SV and SH are directly
related to fault geometr§ and position on the focal sphefe, ) (Aki & Richards 2002).

F5V =sin \ cos 20 cos 260 sin(¢ — &) — cos A cos & cos 260 cos(¢ — &)
1 1
+ 5 cos Asindsin20sin2(¢p — &) — 5 sin A sin 26 sin 20(1 + sin*(¢ — &€))  (1.3)
FS = cos A cos d cos fsin(¢ — &) + cos Asin § sin 6 cos 2(¢p — &)

1
+ sin A cos 29 cos 0 cos(¢p — &) — ) sin A sin 26 sin 6 sin 2(¢ — &) (1.4)

Thus S-wave polarisation can be used to help constrain & fieeeshanism, particularly by

comparing theoretical and observed value$'df and F°¥. However, S-wave information

can be sparse, since three-component seismometers airedgqudentify SV and SH com-

ponents (Zollo & Bernard 1991), and since the S-wave ari@fes the P-wave, the S-wave
polarisation may be hard to measure.

Because P-wave amplitudes are small near nodal planeseash&-wave amplitudes are
large, S/ P amplitude ratios can be useful in constraining focal meigmrsolutions. Large
S/P amplitude ratios indicate a point near a nodal plane and wvézsa (Hardebeck &
Shearer 2003). Observetf P amplitude ratios can be compared to theoretical ratios and
the solution with the minimum misfit selected. Alternatiye$V/P and/orSH/P ratios

can be used (see, e.g. Rau et al. 1996, Snoke 2003). Log ad®liatios are often used
when comparing observed and theoretical values (see 8€LI). To see why, consider
that if A > B, thenA/B € (1,00], however ifA < B thenA/B € (0,1). This lack of
symmetry makes comparing ratios difficult. Taking the logoraestores the symmetry, i.e.
log(A/B) = —log(B/A).

The advantage of using amplitude data is the increased muwhbbservations over P-wave
data alone. One disadvantage is that, along with the focahamesm, event magnitude,
attenuation (the loss of energy, and thus amplitude, frarStwave as it propagates), geo-
metric spreading (energy dispersion due to the expansitreafiavefront as it propagates),
and site effects can all influence the observed amplituded@gteeck & Shearer 2003, Rau
et al. 1996). Using amplitude ratios eliminates geomereading and magnitude effects,
however. Another disadvantage is that S-wave arrivals argliaudes can be difficult to pick
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due to noise caused by seismic wave scatter (Hardebeck &SHG03, Nakamura 2002).

Due to the existence of these uncertainties, and the fachthave data are not as commonly
available as P-wave data, we restrict our analysis to thRtwéve first motions.

1.2.3 Focal Mechanism Ambiguities

There are two ambiguities associated with focal mechanduatisns that must be consid-
ered. The firstis the fact that a fault plane can be repredemjeally well by its fault normal
in either direction, thugi a n] is equivalenttd—a + a — n] = [ a n]A,, where

-1 0 O
A, =10 1 0
0 0 -1

Adopting the convention that the dip lies in the rafige § < 90° dictates which of the two
equivalent directions will be referred to asfor a given focal mechanism. Thus the fault
normal is an example of axial data, the treatment of whichssu$sed further in Chaptelr 2.

The second ambiguity arises because first motion and otm&rtesobservations alone are not
sufficient to infer which of the two nodal planes is the falére and which is the auxiliary
plane (Udias 1999, Stein & Wysession 2003, Aki & RichardsZ@bwler 1990). This is
because the first motions, for example, produced by slip theeof the two planes would
be the same (Stein & Wysession 2003). This is equivalent tlmgbenable to distinguish
between the slip vectar and the fault normah, so[u a n] is equivalenttd+n —a +u] =

[a a n]C,, where

0 0 1
Cy,=1(0 -1 0
1 0 0

Lastly, if both ambiguities are combined we have a fourthiegjant representation of the
focal mechanism. Hendé a n] is equivalenttg—n — a — a] = [0 a n]Cy A, (Arnold &
Townend 2007). Additional information can sometimes §attie second ambiguity, such
as when the earthquake breaks the surface of the earth @tgiérd seismicity (aftershocks)
delineates a planar structure and identifies the fault plaunehis information is usually not
available, especially for small earthquakes (Fowler 186in & Wysession 2003).

1.2.4 Solution Quality and Sources of Error
The quality of a focal mechanism solutiénis affected by a number of factors:

1. The number of seismometer stations with polarity reaglitigthere are a small num-
ber of such stations, the solution is more sensitive to idd&l station polarities
(Rabinowitz & Hofstetter 1992, Zollo & Bernard 1991).

2. Station distribution. If observations are distributegwenly over azimutk and take-
off angle d, then the focal sphere will not be well covered. This can leathrge
uncertainties in the focal mechanism soluttdUdias 1999, Rabinowitz & Hofstetter
1992, Zollo & Bernard 1991).

3. P-wave polarity readings. Measured polarities are daicedue tor,, the probability
of an incorrectly wired seismometer, and the standard deviation of the amplitudge
of the first motion at station If the ratio of A, to o, is low, incorrect polarity readings
can occur, due to instrumental or human effects (HardebeSk&arer 2002).
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4. Hypocentrdocationx. Focal mechanism estimation depends on the take-off parame
ters¢ andd corresponding to the paths to each seismometer, whichrnrdiepend on
x. The hypocentre location is uncertain duestasmic noisewhich is here parame-
terised byo;,, the P-wave arrival time error at station Seismic noise is created by
fluctuations in temperature and pressure, storms, oceaeswaulid earth tides, and
human activity (Aki & Richards 2002, Stein & Wysession 200Bhe hypocentre lo-
cation is also uncertain if the seismic velocity structuras+epresented byelocity
model— of the region of interest is unknown.

Given a large enough dataset, one can select events withradlegnimum number of po-

larity readings and good focal sphere coverage, thus miitigighe effects of Factors 1 and
2 above. Factors 3 and 4, however, are sources of error imhierany earthquake obser-
vations. Figuré_1]6 shows the effect of uncertainty in hygmiie location — the locations
of P-waves leaving the source are uncertain, creating adabdicorresponding positions
on the focal sphere. In this project we address this by coctstig a Bayesian probability
distribution for the focal mechanism parameters that tiyexccounts for these errors.

Station

Earthquake hypocentre: PDF
of different locations

Cloud of points
on the focal sphere
Different take—off angles

Figure 1.6: Diagram illustrating the problem. Uncertastin P-wave arrival times
at stations lead to different possible earthquake locafieach with its own take-off
angle. Hence, when considering take-off angles — an impbpart of estimating the
focal mechanism of an earthquake — we must take into accdyrassible hypocentre
locations.

1.3 Previous Methods

In this section we discuss published methods of focal mashaestimation, which can
be divided into two categories. The first category contaptinasation methods, in which
the number of discrepancies between the observed and tivabpmlarities (given a certain
focal mechanism solutio®) is minimised in some way. The second category containgthos
methods in which a probability distribution is used for theaj given the parameters, and
a maximum likelihood or Bayesian approach is applied toresie©. We briefly review
each method, the data used, and how uncertainties in thgosEare dealt with. Table 1.1
summarises the methods.



1.3.1 Optimisation Methods
Reasenberg and Oppenheimer (1985) — FPFIT

FPFIT is a Fortran routine developed by Reasenberg & Oppereng1985) that finds the
focal mechanisn® that best fits P-wave first motion polarities. This involvetsva stage
(coarse then fine) grid search to find the valugothat minimisesF', a weighted sum of
polarity discrepancies. There are two weights involved:

e The square root of the normalised theoretical amplitdgieat the;** station, which
down weights observations near the nodal planes.

e A weight based on assessed quality codes for polarities;hwéwie supplied by the
seismic analyst.

Uncertainties are parameterised by a one-sided 90% conédeterval forF’, and the values
of © = (¢,0, A) that result in a value fof inside this confidence interval. Also returned is
a value indicating the degree to which the observationsldisecto the nodal planes of the
solution.

Rabinowitz and Hofstetter (1992)

Rabinowitz & Hofstetter (1992) used P-wave polarities angpitudes to minimise” in a
similar manner to that used by Reasenberg & Oppenheimebj138e algorithm imposes
the constraint that the theoretical P-wave amplitddeat station: resulting from the solu-
tion, should be close to the observed amplitddeThis method uses an algorithm called the
Flexible Tolerance Method (FTM).

The FTM does not provide information on the uncertainty & #solution. The algorithm
is robust to changes in polarity, and the addition of amgétinformation provides more
reliable solutions than those found with FPFIT (RabinowitiE ofstetter 1992).

Snoke (2003) — FOCMEC

FOCMEC is another Fortran routine, published by Snoke (R0Dat uses P- and S-wave
polarities and/or amplitude ratios to determine focal naei$ms. FOCMEC reports the set
of solutions satisfying a specified number of polarity an@mplitude ratio misfits.

When using amplitude ratios, FOCMEC selects a best solbi@sed on the minimum root
mean square (RMS) error (the square root of the sum of difter® squared between the
calculated and observed log amplitude ratios).

Rau et al. (1996)

Rau et al. (1996) used P-wave polarities &d/ P amplitude ratios to calculate the focal
mechanisms of small to moderate events K M, < 5.7) recorded by the Taiwan Seismic
Network. The authors used an early version of FOCMEC (Sn@d38pRand compared 1D
and 3D velocity models using only P-wave polarity data, drehtusing both P-wave polar-
ities andS H/P amplitude ratios. They found the quality of the solutiondb&®improved
using the 3D model, and that incorporating amplitude raltmsved them to select the solu-
tion that was most consistent with the P-wave polaritiesedaon the minimum RMS error
(Rau et al. 1996).



Hardebeck and Shearer (2002) — HASH

Hardebeck & Shearer (2002) introduced a method (the HASHIrilhgn) that accounts for
uncertainties in velocity model, event location and P-waekarities. Using P-wave polarity
data from Northridge, California, take-off parameters aveomputed for a suite of 50 ran-
domly selected combinations of hypocentre locations (ugryandomly in depth) and 1D
velocity models.

The set of focal mechanism solutions from each of the 50 ruaisttad less than 10% mis-
fit polarities were identified. This set of acceptable solsi was averaged, and solutions
that were greater thas° from the average were iteratively removed. When all sohgio
lay within this tolerance, a final average was taken, terntlee most preferred solution’
(Hardebeck & Shearer 2002). The quality of the solution iole in this manner is based
on how closely the set of acceptable solutions is clustereuahal the preferred solution.

The authors elected to deal non-parametrically with uag®ies in solutions, by reporting
the set of acceptable solutions that were witbiih of the most preferred solution.

Hardebeck & Shearer (2002) tested their method using thelfatevents occurring in spa-
tial clusters should have similar focal mechanisms, as #neylikely to originate from the

same source. It was found that the method produced similati@as for tightly spaced

events, and performed better in this regard than the FPgArithm discussed above.

Hardebeck and Shearer (2003)

Hardebeck & Shearer (2003) investigated whether using wave amplitude ratios could
improve their focal mechanism solutions for the Northridgents, using two methods. Their
first method was to select the set of acceptable solutioms ffewave data using HASH
(Hardebeck & Shearer 2002), and from this choose the mestmeathiat minimised the misfit
of thelog(S/ P) observations. For clusters of similar events, they foumad titre inclusion of
S/ P ratio data reduced the similarity of the solutions; in otlerds theS/ P ratios actually
downgraded the solution quality.

The authors observed a lot of noise in #)&” amplitude data. Thus their preferred approach
is said to account for the uncertainty $ P observations, although how this is achieved is
omitted in their description. In this case th¢ P data helped constrain solutions that were
of poor quality when estimated with P-wave data alone. Théas conclude that/P
amplitude ratio data can be useful when constraining poalitysolutions ifS/ P amplitude
ratio noise is accounted for in the estimation proceduredelaeck & Shearer 2003).

Nakamura (2002)

Nakamura (2002) developed a method of using both P and S-paaeties. The motiva-

tion behind this was to use the extra information provide@hyaves, while eliminating the
S-wave amplitude noise that scattering creates. S-wawipois measured in the North—
South and East-West directions of a three component seisteom

The method compares the observed and theoretical pataritieoretical polarities for S-
waves are taken to ben () andsgn(F°"), where F5 and F'° are as defined in
Equations 14 and 1.3. A grid search o#ers performed by calculating a weighted si@n

of the difference between observed and theoretical pwart each value @.
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Uncertainties in the solution are reported by finding theo$ablutions that satisf{),,,;,, <

Q < Qmin + €, Wheree is said to account for the possibility of incorrect polanigadings.
The set of solutions is better constrained when S-wave ifieare included, but the author
notes that S-wave polarities can be difficult to measure, eanors can occur in cases in
which seismic anisotropy (when wave speed varies with tloecauses the splitting of the
wave (Nakamura 2002).

Reyners et al. (1997)

The method used by Reyners et al. (1997) and Reyners & Mc@l®999) places primary
importance on P-wave polarities and employs theoreticdladoserved log amplitude ratios
to improve the solution. The mechanism with the lowest nunolb@olarity inconsistencies
and the lowest RMS error between the observed and thedratgalitude ratios is termed
the “best” solution. This method uses the computer prograkRAT and MECHTOCOL by
Robinson & Webb (1996).

1.3.2 Probabilistic Methods
Brillinger et al. (1980)

Brillinger et al. (1980) adopted a maximum likelihood esition (MLE) approach. They
assumed that P-wave first motion polarities observed aostaare Bernoulli random vari-
ables

_ ) +1 ifthe first motion is recorded as positive (a compression)
" | -1 ifthe first motion is recorded as negative (a dilatation)

with Bernoulli probability distribution

1 )
P(Yi=y) = w2 (1 =2t (3: = ~1,1)

7

where

A*
m=PY;=1)=m,+ (1 -2m,)® (0—:) :
Herer, denotes the probability of an incorrectly wired seismometg denotes the theoret-
ical amplitude at stationando, denotes the amplitude noise. This formulation is discussed
in more depth in Section_3.347 is a function of© (see Equatiof112), which is how the
focal mechanism parameters enter the formulation. Theegadfi© that maximise the log
likelihood are found numerically.

The uncertainties in the estimates@®fare quantified by 95% confidence intervals obtained
from the asymptotic properties of MLEs — the estimator®oére asymptotically normal
with covariance matrix equal to the inverse of the Fishesrimiation matrix (Brillinger et al.
1980).

Zollo and Bernard (1991)

Zollo & Bernard (1991) used P-wave polarities and S-wavapzation angles in a Bayesian
approach (see Chaptér 3) to estimateThe posterior PDF ob is given by

P(©ld) oc P(d%]©)P(8)uo(©)

where the prioiP(0) is taken to be the PDF of Brillinger et al. (1980), iR(©) = P(d”|0)
and P(d°|©) is a conditional probability function for the observed Svevgolarisations.
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Also, 14p(©) = constsin ¢ is the non-informative PDF representing the state of tagab+
rance onO. In this state, the normal vectarhas equal probability in all directions on the
focal sphere. The area of any infinitesimal patch on the yohiese created by the differen-
tial anglesd¢, do is equal tasin 6dddE. Thesin 6 term scales the area of the patcmasnds
towards either pole, where the spacing betwgbecomes very small.

Rather than giving point estimates and uncertaintiessfprcomputing the posterior PDF
allows the authors to locate regions of high probabilityni@ parameter space ©f which are
displayed graphically. Including S-wave data better a@mnss the areas of high probability,
however one must carefully analyse the stability of the Sendata before proceeding (Zollo
& Bernard 1991).

De Natale et al. (1991)

De Natale et al. (1991) used P-wave polarities, S-wave igaléons andS/P amplitude
ratios in another Bayesian approach. The posterior PB# isf

P(©]d) oc P(d;|©)P(d2|©)P(d3]©)P(©)10(O)
where
e P(d;|O©) is Brillinger et al. (1980)'s PDF;

e P(dy|©) is a PDF for the observed S-wave polarisations similar toothe used by
Zollo & Bernard (1991);

e P(d;|©) is a PDF forS/P amplitude ratios;

e the prior P(©) modifies the posterior PDF in favour of parts of the paramgpaice
that are likely to produce observable S-waves with stablarations, or measurable
amplitude ratios, at the stations where the data is availabl

e 1io(O) is the non-informative PDF as in Zollo & Bernard (1991).

Again, regions of high probability in the parameter spacelmadisplayed.

1.4 Contribution of this Thesis

While probabilistic methods of focal mechanism estimahawe a clear advantage over op-
timisation methods, in that the entire parameter space eaxplored, the methods in the
literature do not account for uncertainty in hypocentreatamn or velocity model. Addi-
tionally, the resulting probability distributions (seeeZollo & Bernard 1991, De Natale
et al. 1991) are not parameterised in any way.

In this project we develop a new probabilistic Bayesian roétbf focal mechanism estima-
tion that directly accounts for the sources of error mertcbim Section_1.2]4. We present
the resulting probability distributions visually so onenassess areas of high and low prob-
ability in the parameter space. Point estimate® oésult naturally from the distributions.

Little research has been carried out into the nature of fowthanism error distributions.
We explore directional distributions, in particular geasdesed Matrix Fisher distributions,
that can be used to parameterise the resulting probabistyitsition of ©. We investigate
whether these directional distributions provide an appat fit to the distribution 08, in
the hope of succinctly summarising the distributiortoby reporting the estimated parame-
ter(s) of the fitted distribution.

12
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Table 1.1: Summary of focal mechanism estimation methods

Optimisation Methods

Author

Data

Data errors

Method

Uncertainties ir®

penheimer (1985)

Reasenberg & Op

- P-wave polarities

Allows for uncertainty in polar-
ity via quality codes

MinimisesF', a weighted sum of polarity discrepanci

eReportsO that fit in-
side a 90% CI forr

Rabinowitz & Hof-
stetter (1992)

P-wave polarities ang
amplitudes

J Allows for polarity errors

Minimises F' while trying to match theoretical and ol
served amplitudes

bNone

Snoke (2003)

P- and S-wave polari
ties and amplitude ra
tios

- Allows for polarity and/or am-
- plitude ratio errors

Minimises RMS error of log amplitude ratios

ceptable solutions

Reports set of ac

Rau et al. (1996)

P-wave polarities ang
S H/P amplitude ratiog

J Allows for polarity and/or am-
plitude ratio errors

FOCMEC

None

Hardebeck
Shearer (2002)

&

P-wave polarities

Allows for uncertainty inx, ve-
locity model, and polarity

Find set of acceptable solutions averaged over suit
50 random combinations of hypocentre locations
1D velocity models

acdptable solutions

eRdports set of ac

Nakamura (2002)

P and S-wave polaritie

s Allows for polarity errors

Minimises(), a weighted sum of polarity discrepanci

eReports © that fit
Qmin + €

Reyners et al
(1997) and Reyner
& McGinty (1999)

P-wave polarities ang
5 P/S amplitude ratios

d Allows for polarity and/or am-
plitude ratio errors

Calculates best value 6f - that consistent with the low
est number of polarity errors and lowest amplitude ré
error

aitaeptable solutions

- Reports set of ac

Probabilistic Methods

amplitude ratios

Author Data Data errors Method Uncertainties iro
Brillinger et al.| P-wave polarities Accounts for uncertainty in po- MLE approach, assuming P-wave polarities a@5% Cls for© using
(1980) larity, and amplitude noise Bernoulli random variables properties of MLEs
Zollo & Bernard| P-wave polarities and Accounts for uncertainty in po- Bayesian approach A posterior PDF
(1991) S-wave polarisations | larity, and amplitude noise over©

De Natale et al{ P-wave polarities, St Accounts for uncertainty in po- Bayesian approach A posterior PDF
(1991) wave polarisations angdlarity, and amplitude noise over©




1.5 Outline

The structure of this thesis is as follows. Directionalistatal methods are introduced in
Chaptef 2, which explains why and how directional methodsused, and introduces vari-
ous directional probability distributions, from simpledomplex cases. Chapiér 3 introduces
Bayes’ rule, the probabilistic theorem behind the mode&lus this thesis, with some ex-
amples of its use. We then describe the formulation of oureBen probability distribu-
tion for the focal mechanism parameters in two specific gasben the seismic velocity
model is precisely known, and when it is imperfectly knowrha@tel 4 describes the var-
ious computational techniques used in this project, and th@y are used to compute the
distributions introduced in the Chaptér 2. In Chapter 5 weathe probabilistic methods
outlined in Chaptet]3, and estimation techniques describhechapter 2, to seismic data
from New Zealand. We first consider the velocity model knowase; with application to
data from the Raukumara Peninsula. This is followed by thecity model unknown case,
applied to data from the Kawerau region. Chaplter 6 contamsesconcluding statements.
Appendix[A contains some useful techniques, definitionsraathematical results that are
used throughout this project, while Appendix B containsdggntre summary information
for the earthquakes examined in Chapier 5.
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Chapter 2

Directional Statistics

In this project, we are interested in variodisectional data(directions, or unit vectors, in
space) andxial data(directions in which the positive and negative directioresequivalent).
These observations are directions or axes in space, in whe&lsample space is often a
circle or sphere, and hence special directional methodssae to analyse them (Mardia &
Jupp 2000). To see why such methods are needed, considersithefcaveraging angles, as
described in Appendix Al4. This chapter examines such tiimeal methods, and introduces
probability distributionfs used to describe the data.

2.1 Circular Data

We start with the most simple directional case — that of dacdata; directional data in 2D
space. An example of a circular datum is a compass bearingcaWweepresent such data
as points on the unit circle, or equivalently, unit vectaris the plane. Alternativelyx can
be represented by an angleotated from a reference direction on the unit circle (Mari
Jupp 2000), in which case = (cos ¢, sin ¢).

2.1.1 von Mises Distribution

Thevon Mises distributionis a probability distribution used to describe the disttid of
directions on circles. It is analogous to the Normal disititn used on lines (Mardia &
Jupp 2000).

The von Mises distributiod/ (¢, x) has PDF

(0160 %) = 5 o exp s cos(o — )] @)

whereg, is the mean directiory is the concentration parameter afdx) is the modified
Bessel function of the first kind

1

"o

Iy(k) /0 7reXp (kcos ) dp (2.2)

(Mardia & Jupp 2000). The largeris, the more concentrated the distribution is around the
mean direction. Whenr = 0 the distribution is uniform (Mardia & Jupp 2000).

We can simulate from a von Mises distribution using the tepm described by Best &
Fisher (1979), which uses a wrapped Cauchy distributioa Gauchy distribution on the
line ‘wrapped’ onto the unit circle) as an envelope for anegtance-rejection sampling
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method. Firstly, we set

— — 2 1+ b
K

then repeat the following steps until the necessary sangedssobtained.
1. Draw a samplé/;, U, Us from a Uniform(0,1) distribution;
2. Putz = cos(nlh), f = (1+7rz2)/(r+2),c=r(r—f);
3. If¢(2—¢) — Uy > 0gotostep 5, else go to step 4;
4. Ifln(c/Us) +1 — ¢ > 0 goto step 5, else return to step 1;
5. ¢ = ¢ + sgn(Us — 0.5) cos 1 (f).

Figure[2.1 shows a sample of points, drawn in the above wangubke computer softwai@
marked on the unit circle. The bell-curved shape of the derikistrates the analogy of the
von Mises distribution to the Normal distribution.

Figure 2.1: Arandom sample of size 15 drawn from a von Misssidution with¢, = 0
andx = 10. The density is also shown.

2.2 Spherical Data

Spherical data arise when the observations are directio8Bispace. Again, the data can

be directional or axial. In the directional case, these databe represented as points on
the unit sphere, or as unit vectats In the axial case, these data can be represented as an-
tipodal points on the unit sphere (Mardia & Jupp 2000). Thie wectorx can alternatively

be represented in spherical polar coordinates as(sin 6 cos ¢, sin 6 sin ¢, cos §) (see Ap-
pendixA.2).

2.2.1 von Mises-Fisher Distribution

A von Mises-Fisher distributiod(u, x) describes the distribution of a random unit vector
x on the surface of a sphere (Mardia & Jupp 2000). As in the [@ratase, the parameter

16



w is the mean direction, while is the concentration parameter (Mardia & Jupp 2000). The
probability density is given by:

f(x|p, k) =

Alternatively, if x andy are written in spherical coordinates

sinh k exp (HMTX)

x = (sin 6 cos ¢, sin 0 sin ¢, cos )"

1 = (sin By cos ¢y, sin O sin ¢y, cos by )"
thendx = ﬁ sin 0df d¢ and the probability density can be rewritten using the ckeaniy
variable technigque (see Appendix’A.5):

dx
do db

exp (k[cos 8 cos by + sin 0 sin Oy cos(¢p — ¢g)]) sin 6

F(6,0l1, %) = F(xlu, ) \

K

- 47 sinh K
(0<¢p<2m,0<6<m)

The largerx is, the more concentrated the distribution is around thenndi@@ction. When
x = 0 the distribution is again uniform (Mardia & Jupp 2000).

We can simulate from the von Mises-Fisher distribution ggime algorithm described by
Wood (1994). It uses the fact that the unit 3D vectonas von Mises-Fisher distribution
with 2 = (0,0, )T if xT = (vv/1 — W2, W) wherev is a unit 2D vector which is uniformly
distributed, andV is a random variable op-1, 1] with density

exp(kw)
5 (k)

Here I%(/@) is the modified Bessel function of the first kind and degré2 (Wood 1994).
Firstly, we set

f(w) =

b=—k+VKZ+1
then repeat the following steps until the desired sampkeisinbtained:
1. Putzy = (1 —b)/(1+b) andc = ko + 2log(1 — x3);
2. Generaté/; andU, from a Uniform(0,1) distribution and calculate

1=+l

W =
11— (1-b)U;

3. If kW + 2log(1 — W) — ¢ < log(Us) then go to Step 1, else go to Step 4;
4. Generate the uniform 2D vectbrand set” = (vy/1 — W2, W).

Thenx has aF'((0,0,1)7, k) distribution. We can convert this to a draw from a general
F(u, <) by using a rotation matrix (see Appendix_A.1). In generakkifs a draw from
F(u, k) thenx’ = Rx is a draw fromF'(y/, k), wherey’ = Rp. So in this case, where
p = (0,0,1)T, any rotation matrix in which the third column is equal to thesiredy

will convert x from F((0,0,1)%, k) to F(u, ). This can be done by taking Euler angles
(¢, 6o, 0) and setting? = R(¢o, 0y, 0), where (o, 6) are the spherical coordinates;af

Figure[2.2 shows a sample of points from the von Mises-Fidisribution, drawn in the
above way using, marked on the unit sphere, and shown in stereographicqgtiange
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Figure 2.2: Arandom sample of size 50 drawn from a von Migekét distribution with

1= (¢o,00) = (5, %) andx = 20. The contours of the density are shown.

2.2.2 Bingham Distribution

The Bingham distributions used to describe axial data on the sphere. In the casealf axi
data, angles opposite each other are equivalent. Hendeyy&cand —x cannot be distin-
guished. The 3-dimensional Bingham distribution has dgnsi

-1
L3 A) exp (XTAX)

exia) =8 (5.5

whereA is a symmetric, traceless x 3 matrix and, F} (3,3,A) is the hypergeometric
function given by

Here the integral is obtained over the surface of the spivaedia & Jupp 2000). For more
details on hypergeometric functions refer to Appendix A.Be distribution can be obtained
by conditioning the trivariate normal distribution ¢i&|| = 1. Hence ifx ~ N5(0, X) then
x| (||| = 1) has Bingham distribution with = —2%~! (Mardia & Jupp 2000). When the
Bingham distribution has rotational symmetry about somis,akis known as the Watson
distribution (Mardia & Jupp 2000).

The behaviour of the distribution can be assessed by usimgganvalue decomposition of

the parameter matriA.

Theorem 2.1. [Eigenvalue Decomposition] A symmetric matAxcan be decomposed as
A =UDU”

whereD is a diagonal matrix of eigenvalues Afand the columns di are the eigenvectors
of A, with UTU = 1. This is also known as diagonalisation.

For a proof of this theorem see Anton (2000).

Theoren{ 21l impliesA can be decomposed inth = UKU?. Varying the values irK
results in various different shapes of the distribution (§a & Jupp 2000).
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Wood (1987) describes a method with which we can simulate ftee density

f(x|k, B,7) = [2rc] " exp [kas + va3 + B(z] — 23)]

which, if we setk = 0, is a Bingham distribution of the form

ﬁ 0 0 T
f(Ex|A) ocexp [ [21 22 x3] |0 =6 O |22
0 0 | |z3

where > 0 and~y € (—oo,00) (Wood 1987). (This algorithm is very lengthy; refer to
Wood (1987) for a description). After implementing the algon in R, we can simulate
from a Bingham distribution with mean directign,, 6,) = (0, 0), from which a simulation
from a distribution with arbitrary mean can be straightfardly obtained by applying a ro-
tation (as was the case for simulating from the von-Misebkéfiglistribution).

We can assess the behaviour of the density under varioussvaft andj (see Figuré 2]3).

It can be seen that whep = ( = 0, the distribution is uniform. Meanwhiley acts as a
concentration parameter — the highgethe more concentration of points at the mean, while
with v negative, the points tend to be situated near the equatoobakrve a girdle shape
wheny =~ 3 # 0. Meanwhile, as’ increases, points are drawn away from the mean, to two
antipodal groupings on the equator.

B=0 B=10 B =50

o ‘ ’ ‘

Figure 2.3: Random samples of size 100 drawn from a Binghairilalition with mean
(¢,0) = (0,0) (the center of the stereonet) and various values of parastretend .
Values on the upper sphere have been projected onto the $plere.

2.3 Oirientation Data

The spatial orientation of an object jndimensions can be defined bydistinguishable
directions (Downs 1972). An example is brshaped object in three dimensions, the orien-
tation of which is defined by two orthogonal unit vectors giythe directions of its two arms
(Downs 1972). Ifx; andx, are the two orthogonal vectors that describe these direstio
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then the3 x 2 matrix X, with columnsx; andx,, describes the orientation completely, and
XTX =1, (Downs 1972, Khatri & Mardia 1977).

In this section we will discuss the Matrix Fisher distritmrtj which is an extension of the von
Mises distribution, and is used to deal with data of this kiBéfore discussing the Matrix
Fisher distribution, however, we introduce the concept fiafel Manifold.

2.3.1 Stiefel Manifolds
An orthonormal n-frame irR? is a set ofn vectors(xy, ..., x,,) in R? that are orthonormal,

i.e.x/x; = 0,7 # j and each vector has length 1 (Mardia & Jupp 2000).

The set of all orthonormal n-frames R is known as théstiefel ManifoldV,, (R?) (Mardia
& Jupp 2000). For our purposes we can think of the Stiefel Ktdahias the set of alb x n
matrices that describe the orientation of an objegt-timensions, defined by directions,
and for whichX”X = I, i.e.

V,(R") ={X:X"X =1,} (2.3)
(Khatri & Mardia 1977, Mardia & Jupp 2000).

A useful tool for considering distributions dn, (R?) is the polar decomposition of matrices.

Theorem 2.2. [Polar Decomposition] Any x n matrix X can be decomposed as
X =MK

whereM is thepolar partin V,,(R?), andK is theelliptical part ann x n symmetric positive
semi-definite matrix. We can obtavi and K uniquely wherX is invertible.K is given by

K = (X7X)?
and

M= XK'
(Mardia & Jupp 2000).

To prove the uniqueness of the decomposition it suffices tovdihat a positive definite
matrix A has a unique positive definite square rt= Az. If this is the case theK is
unigue. For a proof of this see Abadir & Magnus (2005, p 220).

2.3.2 Matrix Fisher distribution

The Matrix Fisher distributiondescribes the distribution of matric¥son the Stiefel Mani-
fold V,,(RP). It has PDF

FXF) = lOFl <§5 iFTF)} B exp [tr(FTX)] (2.4)

whereF is ap x n parameter matrix, anglF; (Z;

given by
oF) < FTF)
k=0 &k

:/ exp (tr(FTX)) dX
Vi (RP)

LFTF) is the hypergeometric function

F)
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(Muirhead 1982, Mardia & Jupp 2000). Hefg and(a), are as defined in AppendixA.6.

SinceF has polar decompositidi = MK andK, being symmetric, can be diagonalised as
K = UDUT for orthogonalU and diagonaD, then

F'F=K'M"MK = KTK = KK = UDUTUDU? = UD?*U”.

Now, since the zonal polynomidl,, is a function of the eigenvalues of its argument, and
since for any two matriceA andB, AB andBA have the same eigenvalues, we find

C.(UD*UT) = C(D*UUY)
= O, (D?)

and hence [ (5; 1FTF) = oF (§;4D?) = ¢(D). In other words, the hypergeometric

function depends only oD, the eigenvalues dK (Khatri & Mardia 1977).

The focal mechanism of an earthquake is an example of a 3nrdilm@al object whose ori-
entation can be described by three directions (the fauthabh, the slip vectori and null
vectora, which together form the matrik(©) = [a a n]). Since focal mechanism estima-
tion is the central focus of this project, we will considesrfr here on only the case where
p = 3 andn = 3, i.e. a 3-dimensional object whose orientation can be destiby three
directions. The relevant Stiefel Manifold 1§ (R?).

A Stiefel Manifold wheren = p, as in this case, is equivalent to theghogonal groupof

p % p orthogonal matrices, denotét(p) (Downs 1972, Khatri & Mardia 1977). If we add the
further restriction thatlet R = +1 then this becomes thepecial orthogonal groupO(p).
Special orthogonal groufO(3) contains thel x 3 matricesk(©) = [u a n] that describe
all possible orientations of the fault plane in 3 dimensions

The shape of the distribution is controlled B, U andD, whereK = UDU?”. The density
has a mode at the value & where t{F? X) is maximised. This occurs wheX = M, the
polar part ofF (Downs 1972). The larger the entries of the diagonal mdixjxhe greater
the concentration of the distribution about the vectorsnaefiby the columns a¥1. Mean-
while, U twists the shape of the distribution at the modEkis a rotation matrix, and can
hence be defined by three Euler angdles), v) whereU = B, (¢)B,(6)B.(¢). The angles

0 and directly twist the distribution at the third of the modesdqthormal vecton), while
the twisting of the other two modes is more compl®{. is also a rotation matrix; overall
therefore each of the three matrides U andD is defined by 3 parameters, which together
constitute the 9 parameters of the parameter matrix MUDU7.

Due to their aforementioned propertiéd, D andU are called thenodal matrix concen-
tration matrix (Downs 1972) andépin matrixrespectively. Whe is the zero matrix the
distribution is uniform. Figuré 214 shows the shape of tradritiution for various values of
these parameters.

A special case of the distribution, considered by Arnold &mMhend (2007), occurs when
D = kI. In this caseF = MUDU? = xMUU? = kM, and so the distribution can
be described as the Matrix Fisher distribution with scatamoentration parameter. The
concentrations around each of the three modes are equalld&mownend (2007) assumed
that the distribution of focal mechanism paramet@rsould be fitted by this distribution.
Later we explore the validity of this assumption.
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Figure 2.4: Contour plots of the Matrix Fisher density wih = R(«,5,v) =
R(%T, T ?jf) (marked as filled circles) antl and D as specified. The three modes
[a a n] are coloured green, red and blue respectively. Plot (a)lhas diag(1,1,1)
and no spin, (b) ha® = diag(10,5,2) and no spin, (c) ha® = diag(10,5,2) and
U = R(a, 3,7) = R(%Z, 25, 0), while (d) hasD = diag(0.01,0.01, 50) and no spin.

EREER

Error estimation

While D determines the concentration of the distribution®) around each of the three
modes, these values can be difficult to interpret. A mordtimeuand interpretable measure
of spread is the standard deviation of the an@les (¢, , \) for a given Matrix Fisher dis-
tribution. Here we establish an approximate relationsleipvieen the concentration matrix
D and the standard deviationg of the strike angl€.

Firstly, we apply a change of variable to represent the Md&isher PDFf(X; F) in terms
of ©, whereX = R(O):

dR(O)

o |G
x f(R(©))sind
o ¢(D) " exp [tr(FTR(O))] sind

Now,
w/2 27
- 6, \)sind d\ dé
G /O /O F(6.6,))sin
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and substitutingin 6dé = —d(cos d) gives

/ / f(&, cosd, \)d\d(cosd)

Here we integrate ovens J since we tabulaté¢(R) on a grid in, cos d, A.

As described in Appendix Al4, the mean&is
5 _y [ (siné)
= (05)

ing) = Blsing) = 7 [ siner(eps

where in this case

n

~ % n2f1 szf(fi) sin §;

2
@%@:E@%Q:%A cos £1(£)de

In the above we approximate the integrals using the traperile (see Appendik A.7.1),
with w; = w, = %, w; = 1 otherwise, withc = [ f(£)d¢ a normalisation constant. The
variance of is given by

=E[(¢-¢)]
[ nexae

n

1 2n
_cn—lz:wZ (&)X

whereX = min (|§ — &P (=€l + 27r)2, (J€ =€ - 27r)2) and again we approximate the
integral using the trapezium rule.

We can now evaluate; for different values oD and establish the relationship between these
two parameters. We firstly sBl = R(w, 7/2, ), so that we are evaluating the standard de-
viation far from the polar singularities of the coordinaystem, and also s&f = R(0, 0, 0),

i.e. no spin. We then sd = diag(d,, d», k), allow only k to vary, and evaluate, for a
range ofk values. Tablé 2]1 shows values®f(in degrees) for four different combinations
of d; andds.

Figure[2.5 shows there is a roughly linear relationship ketwog(o,) and k for various
values ofD = diag(d;, ds, k). The linear relationship is stronger for higher concerdrat
values. The overall relationship can be approximated bgessinglog(o,) on k across all
chosen values dD, and found to be:

o¢ = exp (2.73738 — 0.02645k)

Thus standard deviationsef = 1°, 5°, 10° and15° correspond t& values of approximately
100, 43, 16 and 1.1.
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Table 2.1: Table of the standard deviation of the strike @angkin degrees) for various

o¢e|D = (50, 50, k)

values ofD.

k o¢/D = (0.01,0.01, k) | o¢|D = (0.01,50, k) | o¢|D = (50,0.01, k)
0.0625 57.52 65.49
0.125 56.64 64.12

0.25 54.87 61.32
0.5 51.30 55.63

1 44.34 44.52

2 32.62 26.75

4 19.80 10.06

8 12.27 4.03

16 8.30 2.98

32 5.64 1.99

64 2.89 0.91

128 0.63 0.19
256 0.03 0.01
512 0.00 0.00

57.11
55.99
53.73
49.23
40.74
28.19
17.62
11.81
8.19
5.60
2.88
0.63
0.03
0.00

3.89
3.88
3.87
3.85
3.81
3.73
3.58
3.28
2.75
1.90
0.88
0.18
0.01
0.00

This relationship does not hold in certain cases, howeiraresiax (o) = exp(2.73738) =
15.45°. Clearlyo, can exceed this value, as shown in Tdbleé 2.1, most obvionsigses in
which two of the concentration parameters are srfxalll). Thus we regreskbg(o¢) onk
for k < 1andD # (50,50, k), and obtain the following approximate relationship

¢ = exp (4.1196 — 0.3500k)

in the case when two or more of the componentBdare< 1.

In the case of the Matrix Fisher distribution with scalar cemtration parameter, Arnold
& Townend (2007) established the following approximatatiehship betweem and the

standard deviationg of the focal mechanism parameters (in degrees):

oo = exp (3.9155 — 0.5659 log k)

(2.5)

and thusrg values of1°, 5°, 10°, 15°, 20° and30°, correspond ta values of approximately

1000, 60, 17, 8, 5 and 2.5.

Simulation

To simulate from the Matrix Fisher distribution 83(R?) with parameter matri¥, we use
the method given by Chikuse (2003). The simulation procediiarts with generating a

pseudo-random uniform matriX using the following method:

1. Generate 9 independent realisations from the standandahd/ (0, 1) distribution;

2. Arrange these into& x 3 matrix L;

3. X = L(LTL) 2 is a pseudo-random uniform matrix &5(R?).

We then generate a random uniform realisatioon (0,1). Ifu < exp [tr(FTX — D)],
whereD is the diagonal matrix of eigenvalues Kf, then we accepK as a random matrix
from the Matrix Fisher distribution with parameter matix Otherwise we rejecK and
repeat the procedure starting from Step 1 above.
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g —e— D =diag(0.01,0.01,k)
N —e— D =diag(0.01,50,k)
B —e— D =diag(50,0.01,k)
D = diag(50,50,k)
i - - Overall relationship
-~
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Figure 2.5: Plot ofo¢ (log scale) versug for various values oD = diag(di, d, k).
Lines of best fit given by regressingg(c,) on k for eachD are shown. The overall
relationship is indicated by the dotted line.

OA

Since the modal matri¥1 is orthogonal and the columns define the modal directionkeof t
distribution, we can always s&tl as the identity, simulate, and then rotate the sample to a
desired mean direction specified by three Euler angles.r&figu shows some simulations
with various parameter values.

Parameter Estimation — Kullback-Leibler Divergence

We use here a Matrix Fisher distributigiiR(©)|F) to approximate a Bayesian posterior
P(R(©)|d) based on datd. We now briefly describe the estimation of the valu&ahat
yields the best approximation f&( R(©)|d). We use th&ullback-Leibler divergenced (9),

as a measure of the discrepancy between the true distmbbtip|d) of some parametey,
based on datd, and a model distributiorf(y|¢) that is defined by a parametefsee e.g.
Gelman et al. 1995). The Kullback-Leibler divergence foneeg value off is

o)== (v i)

fre(38)

= const.— /P(y|d) log f(y|0)dy (2.6)

The aim is to find that minimises this divergence. To fiddve minimise Equation 26
0 = argminH(0) = argmax/ P(y|d)log f(y|0)dy
0 0

Consider the case in which the model dengity |0) is the Matrix Fisher density (X; F).
The density given by Equatian 2.4 can be rewritten as

f(X;F) = (D) exp [tr(FTX)]
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Figure 2.6: Random samples of size 100 drawn from a Matrikefiglistribution with
modeM = R(a,3,v) = R(%, 7, §) (marked as filled circles) with no spin aidl as
specified. Each observation is marked (1,2,3) for (they, z) directions respectively.
Values on the upper sphere have been reversed onto the Iphenes Plot (a) hab =
diag(0, 0, 0) (the uniform case), (b) hdd = diag5, 5, 5), (c) hasD = diag 20, 10, 5)
and (d) had = diag(1000, 0.01,0.01).

so that
F = argmax / P(X|d)log [¢(D) " exp (tr(F¥X))] dX
= argmax { / P(X|d)tr (F"X) dX — / P(X|d) logc(D)dX}

= arg;nax [tr (FT/P(X|d)XdX) —logc(D)/P(X|d) dX]

If the densityP(X|d) is unnormalised we divide through ByP(X|d)dX

. tr (F7 [ P(X|d) X dX) [ P(X|d)dX
F=agmax | = rXaax ¢ Pl rpxa) dX]
_ rJ P(X]d) X dX
= arg;nax {tr <F TPX|d) X ) — log c(D)}
= argmax [tr (F'X,,) — log¢(D)] (2.7)
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whereX,, is the mean weighted by the true density. In this projecX|d) is available on a
grid {X,},—1._«. In that case the weighted mean can be approximated by

< Zf:l w; P(X;]d)X

>im wiP(X|d)
using the trapezium rule (see Appendix Al7.1). Equdiioli2equivalent to the log-likelihood
of the Matrix Fisher distribution. The maximisationin Egoal2.7 is thus exactly analogous
to Maximum Likelihood Estimation oF in the case when a random sample of matrices has
been drawn from the true density, rather than a tabulatetlagnmatrix values{X,},—;
as in our case.

.....

We now demonstrate how to solve Equationl 2.7, in which thkviehg theorem will be
useful.

Theorem 2.3.1f a matrix A commutes with a diagonal matrix with distinct diagonal gy
D,

AD =DA

then A must also be diagonal.

Proof.
D);; = Z A Dy = Z AiDyor; = Dj; Ay
k k
= Z DAy = Z DiidinAr; = DiiAyj
k k
Dj;Aij = DiAy;
(Dj; — Dii)Ai; =0
where

1 e
by=4 "7
0 77

SinceD;; = D;; only if i = j, thenA,;; = 0if i« # j, SOA is diagonal.

Given thatF can be decomposed into
F = MK = MUDU”

we can use Lagrange multipliers to maximise Equdfioh 2.jestito the constrain®1” M =
I andUTU = 1.

Firstly, note that

(M™M), XMMMJ

and similarly

(uTu), }:%w]
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and that the identity matrix can be expresselas = 4;;. Hence the constrainlel” M = |
andU”U = [ are equivalent tg_, My M,; = 6;; and>_, U,;Uy; = 4;; for the entry in the

i row and;™ column. So in the case of3ax 3 matrix, this means there are nine constraint
equations for each of the two constrai?d’M = I andU?U = I. Each constraint
equation adds a separate term given by

A (%- -> M&sz)
l

and

[ <5ij — Z UZz‘Uéj)
¢

onto the objective function, wheve; andy;; are Lagrange multipliers. Hence the objective
function to be maximised is

G(M, U, D)

=tr(F'X) + Z Aij <5Z~j - Z Mgz‘ng> + Z Hij (5@' - Z Uinej) —log ¢(D)
‘ ij ¢

ij
= tr(MTA) + Z )\ij (51] — Z MZiMéj> + Z Mij (51] - Z UZiUZj) — log C<D)
ij 14 ij ¢

whereA = X,,UDU”. Now we differentiate G with respect o/, :

G = Z Miinj + Z >\ij <5Zj — ; M&‘Méj> + Z,uij <5Zj — ; U&‘Uéj> — ]og C(D)
1] 1] ij

oG
8Mab - Aab - Z )\bjMaj - ; AibMai

J

= Auy — (MM ) — (MN)w Z0

Hence
A =MW"+ 1),
AT 4 )\ is symmetric and hendel is the polar part ofA. Thus
M=A(ATA) 2 = X, K(KX'X,K) 2.
Now if we putB = M”X,, then
tr(F'X,) = t(UDU"M”X,,) = tr(UDU’B).

Differentiating G with respect t0/,;, gives

G= Z Uij DU By + Z Aij <5z‘j — Z MéiMéj) + Z Fij <5z‘j - Z UZiUZj> — log ¢(D)
¢ ij ¢

ijke ij

oG

U ! = Z DkaZkBZa —+ Z Uz]D]bBaz — Z,UbjUaj - Z,uibUai
a kot ij j ‘

= (BTUD)ab + (BUD)ab - (UNT)ab - (UM)ab s:eto
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and hence

(BT + B)UD = U(u” + p)
(B” + B)UDU” = U(p” + p)UT
(XIM +M"X,)K = U(p" + p)U”
X'MK + M*"X,K = UHU”

whereH = (u? + p). Now recall that

which means that
M”X,K = (KXTX,K) 2KX’X, K = (KX”X,K)?
and so
X, MK + (KXTX,K)2 = UHU”

Now the second and third matrices in this expression are stnon The first matrix must
therefore also be symmetric, i.e.

XIMK = KM”X,,
XTX,K(KXTX,K) K = K(KX"X,K) :KX’X,
KX”X,K(KX"X,K) KK = KK(KX’X,K) :KX"X,K
(KX’X,K):KK = KK(KX”X,K)?
(KX’X, KKK = (KX'X,K):KK(KX’TX,K)?

Overall, therefore, the right hand side of this expresssosyimmetric, and hence so is the
left hand side, i.e.

(KXTX,K)KK = [(KX?X,K)KK]" = KK(KXZX,K). (2.8)
Now X,, has polar decomposition
X, = RS
whereR is the polar part anfl is the elliptical part. Furthe§ has eigenvalue decomposition
S =VEV’
meaning that
X'X, = VEV'R'RVEV” = VE*V7*
and Equation 218 can be written
(KVE*VTK)KK = KK(KVE?V’K)
SinceK is invertible we can cancd twice from both sides of this expression

VE’V'KK = KKVE*V”"
VE’VTUD?U” = UD*U'VE*VT
(UTVE?*VTU)D?U”U = UTUD*(UTVE*VTU)
(UTVE*VTU)D? = D*(UTVE*VTU)
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Now D? is a diagonal matrix that commutes with’ VE2V7U and hence by Theorem 2.3
UTVE?V'U is also diagonal. Sincg? is diagonal, it follows thav”U = I and hence
U = V. This means that the eigenvectordfare the same as the eigenvector$ of

Now if we collect all these results together we find that

X, =RS =RVEV?’ (polar decomposition)
K = VDV’
U=V
D must be obtained numerically (see below)
M = X, K(KX'X,K) 2
= RVEV'VDV”(VDV'VEV'R’RVEV’VDV”) 2
— RVEDV7(VDE?DVT) 2
= RVEDV?(VDEV’)™!
= RVEDV’VE'D V7T
=R
F = MK = RVDV”

.....

we first computex,,, decompose it int&’k andS, and then decomposginto S = VEVT,
We next find the valu® for which Equatioh 27 is maximised based on these valueR for
S andV, and finally form

F = RVDV?

We can carry out the maximisation owBrusing theopt i () function inR. This function
allows us to specify a lower bound of di@g0, 0) for D, to ensure that the eigenvalues of
K, and thus the concentrations of the Matrix Fisher distrdsytare non-negative.

In the case of the Matrix Fisher distribution with scalar cemtration parameter, we simply
setD = xI intheopti m() procedure to obtain the estimate of the scalar concentratio
parametek. The estimate oM remains as above.

To demonstrate this method we run the procedure using sietutiata. Note that here we
do not use a grid of matricesX; },—1 ., but a random sample, making this example one
of Maximum Likelihood estimation rather than minimisatiofithe Kullback-Leibler diver-
gence. The two are equivalent, as mentioned above.

We take a sample of size 100 of matrices, ..., Xy from the Matrix Fisher distribution
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with arbitrary parameter matrik = MUDU? where

o 0.500 0.000 —0.866
U=R(a,3,7) =R <7T, 3 0) =1 0.000 —1.000 0.000
—0.866 0.000 —0.500
8 0 0
D=0 4 0
0 0 2
o 3 0.191 0.733 —0.653

0.500 0.500 0.707

implying that,

2.367  2.930 —4.743
F = MUDU” = | -3.659 1.848 3.953
—0.087 2.000 3.297

We then calculat® given the sample meaX. As the data are sampled from a Matrix Fisher
distribution, one would exped andF to be similar:

[ 0.405 0.453 —0.794
U= | 0453 —0.854 —0.256
|—0.794 —0.256 —0.551
[8.081 0 0
D=| 0 283 0
0 0  2.342

R 0.182 0.728 —0.661
M= [-0.855 0.449 0.259
0.485 0.518 0.704

and,

R o 2498 4.282 —5.731
F = MUDU” = [ -3.012 0518 2.308
0.744 1.061 2.286

The actual and estimated mod®} matrices are very similar, while the actual and estimated
parameterk), concentrationID) and spin U) matrices are reasonably similar. In the case

of the spin matrixU, it is important to remember that the eigenvectors are defomdy up
to a constant.

We can compar# andF visually by plotting the distributions using each matrig,s®en in
Figure[2.Y. The similarity of the two contour plots indicatbe validity of the estimation
method.

2.3.3 8-Mode Matrix Fisher distribution

The Matrix Fisher distribution can be generalised to situetin which there are ambiguities
regarding the directions defined by the columns of the marike. to axial data.
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Figure 2.7: Marginal PDF plots of the Matrix Fisher disttilon givenF (left) and the
F (right) using simulated data.

Of particular interest in this project, given the two ambigs surrounding focal mechanisms
mentioned in Section 1.2.3, and one further ambiguity dised in Section 3.3.1, will be the
case in which there are eight equivalent representatioks o, X A,, XC,, XT,, XA,C,,
XA,;T,, XC,Ty andXAgCng, where

-1 0 0 0 0 1 1 0 0
A, =10 1 0 Cy,=10 -1 0 To,=10 -1 0
0 0 -1 1 0 0 0 0 1

These ambiguities can be interpreted as follows:

e A, reverses the first and third columnsXf This is due to the axial nature of the fault
normal vectom.

e C, swaps the first and third columns &f. This is due to the inability to distinguish
between the slip vectar and normal vectofi.

e T, reverses the second columnXf and reverses the sign of the determinanXof
This is due to the lack of dependence of our Bayesian postenidhe orientation of
the null vectora (see Section 3.3.1).

To fit a probability distribution to data of this nature we rhgeneralise the Matrix Fisher
distribution to account for the ambiguities. Here we introel the8-mode Matrix Fisher
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distribution, which has PDF

f(X;F) = {oﬂ (g iFTF)] _
X %{exp [tr(F"X)] + exp [tr(FTXA,)] + exp [tr(FTXCy)] +
+ exp [tr(F"XTs)] + exp [tr(FTXA,C5)] + exp [tr(F"XA,T,)]| +

+ exp [tr(F"XC,Ts)] + exp [tr(FTXA,C,T)] } (2.9)

whereg F (g; iFTF) is the hypergeometric function of matrix argument. Thisegiequal
weight to each of the eight equivalent representations.of

Figure[2.8 shows the shape of the 8-mode distribution unaows values of the concen-
tration and spin matrices. The ambiguities cause each ofdti®rsiu a n] to have multiple
modes. It can be seen that if there is no spin, the @ixaedn have identical probability
contours (e.g. the blue contours coincide exactly with, thog overplot, the green contours
in plots (a) and (b)), while if spin is present and the conaitns vary (plots (c) and (d))
then the probability contours of the two axes are distinct.

Simulation

To simulate from the 8-mode Matrix Fisher distribution witrameter matri¥' we adjust
slightly the method of Chikuse (2003) described in Sediidh2

We first generatX, a random matrix from the Matrix Fisher distribution withrpmeter ma-
trix F. Then, with uniform probability;;, we select randomly one of the 8 transformations
I, A,, Cy, Ty, A5Gy, AT, C, T, A,C,T5), and apply the selected transformatiorkio

Figure[2.9 shows some samples from the 8-mode Matrix Fiséttdition for a variety of
parameter matrices. The ambiguities are most evident i(@ighigh concentration).

Parameter Estimation — Kullback-Leibler Divergence

The procedure described in Section 2.3.2 must also be adjuidere we will adopt an iter-
ative procedure. To find the estimatelothat minimises the Kullback-Leibler divergence,
given a grid of matrice§X;};—; .k, calculate the empirical PDP(X;|d) at eachX; and
then perform the following steps:

1. FindX; : f(X;;F) > f(X,; F)Vj # 4, and sefM = X,. This is the first estimate of
M, the modal part oF';

2. For everyX; in the grid, find which of the eight possible representatiofithe matrix
X, has maximum {iM?'X) — call that representatioX;;

3. Calculate the weighted mean using the trapezium rule

< _ Xh wPXJdX;

w T k ?

Zi:l w; P(X;|d)

4. Use the mean to calculate a new estimat®¥of the polar part 0iX,,;

5. Now using these values implement the procedure as dedceabthe end of Sec-
tion[2.3.2 to gefF, an estimate oF.
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Figure 2.8: Contour plots of the 8-Mode Matrix Fisher densitth M = R(«, 5,7) =
R(%Z, 2, 3) and U andD as specified. The three ax@s a n| are coloured green,
red and blue respectively. Plot (a) h&s = diag(1,1,1) and no spin, (b) has
D = diag10,5,2) and no spin, (c) ha® = diag(10,5,2) andU = R(a,3,7) =
}B;E?:,Z?:, ; while (d) hasD = diag(0.01,0.01,50) and U = R(a,f,7) =

EREEN

From then on, repeat the process from Step 2, except thaemZtlassify each grid point
according to which representation gives maximu(@1rX). The process continues unkil
converges.

The justification for this procedure is that due to the amibigs, we cannot just use the
mean of the matrices. Instead we take a first guess at the mmadek of the distribution:
the maximum of the posterior PDF (or any maximum, if more tbae exist), which we
call M. We then look at all eight matrix representations at eachpgapoint and choose
the one which is closest to the moN&. This representatiorX*, is used to form the mean.
Using this mean we get a better estimatéVdf following which we again check which of
the eight matrices is closest to the mode, and then recéddiia average. This process will
eventually converge to a single estimatéMéf and hence oF'.

To demonstrate this method we ran the procedure using the sanulated data as was
used in Sectioh 2.3.2, with one of the eight transformatiansiomly applied to each. The
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Figure 2.9: Random samples of size 100 drawn from the 8-Moai¥Fisher distribu-
tion with modeM = R(«, 8,7) = R(}, 7, §) (marked as filled circles)) as specified
and no spin. The observations are marked (1,2,3) forthg, z) axes. Values on the
upper sphere have been reversed onto the lower sphere.apPtgD = diag0, 0, 0)
(the uniform case), (b) hdd = diag5, 5, 5), (c) hasD = diag(10, 10, 10) and (d) has
D = diag(1000, 0.01,0.01).

calculated estimates are

[ 0.473  —0.723 0.503
U= 058 0.68 0434
| —0.659  0.089 0.747

o [r169 0 0
D=| 0 3391 0
0 0 2648

R 0.219 0.736 —0.641
M= |-0.846 0.471 0.251
0.486 0.487 0.725

hence,

X o 2470 4.625 —4.524
F =MUDU” = | -3.374 0.965 1.593
1.343 1413 1.812

All four matrices are similar to the matrices used to gereethe data specified in Sec-
tion[2.3.2. We again compaié andF visually by plotting the marginal 8-mode Matrix
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Fisher distributions (see Figure 2110). The similaritytaf two plots show§ approximates
F well, and reinforces the validity of the iteration proceelur

Figure 2.10: Marginal PDF plots of the 8-Mode Matrix Fishestdbution givenF (left)
and theF (right) using simulated data.

2.3.4 Goodness of Fit Testing

Ideally, we would like to perform a test of the goodness ofidtta generalised Matrix Fisher
distribution f(R(©)|F) provides to a Bayesian posterior distributiBiR(©)|d) based on
datad. Unfortunately, as will be shown in subsequent chapterspeaation of the empirical
distribution P(R|d) is sufficiently computationally intensive that resamplimgthods such
as the bootstrap (in which the earthquake data generataoegs would be repeated using
resampledd’s from the empirical distribution) are not feasible fortgtcal testing of the
fitted parameter values.

There is no statistical test for goodness of fit in the casaevier empirical PDF is evaluated
on agrid of point{ X, };—; .. across the sample space, as in the case of the Kullbackekiebl
divergence. However, if our parameter estimate had beexinaat from a random sample of
matrices from the true probability density, the goodneskit aésts on the Stiefel Manifold
V3(R3) described by Jupp (2005) could be applied. There are twostasstics that can
be used to test the null hypothesis that the probability ithefisnction that generated the
observed data is ift', whereF' is a family of probability density functions’ = {f(-;6) :

0 € ©}. The weighted Rayleigh test statistic is

TwR = 3ntr(}_(£)_(w)

whereX,, is a weighted mean

X, =

k
X,
ZZ:; f(Xi§ A)

| =
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and the weighted Giné test statistic (based on Giné (19#%xts of uniformity) is

Eook (137 /ir(I. — XTX.
TwG:%ZZ<2 32\/r(3 i J))

i=1 j=1 f(Xz)7 é)f(Xju é)

Significance is evaluated by resampling from the fitted histion.
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Chapter 3

Bayesian Methods

3.1 Bayes’' Theorem

Bayes’ Theorens a simple rule in probability theory that forms the basishef estimation
techniques used in this project.

Theorem 3.1.[Bayes’ Theorem] For two random variables andY:

PY|X)P(X)

P(X|Y) = PIY) (3.1)
Proof. The theorem is proved by noting that X, V) = P(Y, X), and

P(X,Y) = P(X|Y)P(Y)

P(Y,X) = P(Y|X)P(X)
by the definition of conditional probability. Therefore,

P(X|Y)P(Y) = P(Y|X)P(X)
— P(X|Y) = %
O

Sivia (1996) explains the importance of the theorem for datlysis. Often we observe the
result of some event (our data), and we want to establishrnlderlying cause of this out-
come (the parameters of interest). This is not always anteaky The reverse, working out
the probability that some event occurs given we know theesagsnuch easier. For exam-
ple, suppose we flip a coin 10 times and obtain 6 heads. We #tennine the probability
that this is a fair coin, given the observations. Intuityw#iis is not simple, but if we were
to determine the probability of a fair coin producing 6 head&O0 flips, this probability is
simply determined by the binomial distribution.

If we replace X and Y in Equatidn 3.1 by parameters and dagém;:th
P(parametelglatg oc P(dataparameters’(parameters

Here, the probability of the parameters, given the dataglsted to the probability that
the data occurred given the parameters, the latter of whietare more likely to be able
to calculate (Sivia 1996).P(parametersis known as theprior probability — our prior
knowledge of the parameters. This prior knowledge is infteeiby thdikelihood function
P(datdparameters The likelihood is a function of the parameters; the dataaienfixed.
This outputs theosteriorprobability P(parametersglatg, our knowledge of the parameters
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given the data (Sivia 1996). Note that the denominator inaiqn[3.1 has been dropped,
because it does not depend on the parameters, and is simpiynalisation constant. Note
that this does require an enumeration of the parameter spade¢he specification of a set of
prior probabilities for all possible hypotheses.

3.2 Examples

In this section we will consider two examples of situationsvihich a Bayesian approach
can be applied. The first example, the lighthouse problem cegnonical problem that pro-
vides a relatively straightforward introduction to a readfld situation in which Bayesian
techniques can be used. The second example, the earthquadeehtre location problem,
is particularly relevant to this project, as it underpine #igorithm we will use to locate
earthquakes. These locations are necessary inputs to thggroblem solved in this project;
the determination of focal mechanism parameéers

3.2.1 Lighthouse Problem

We now consider an example of a situation in which a Bayespmnaach can be applied.
The problem is defined as follows: “A lighthouse is somewladfa piece of straight coast-
line at a positiorz along the shore and a distariceut at sea. It emits a series of short highly
collimated flashes at random intervals and hence at randonutis. These pulses are in-
tercepted on the coast by photo-detectors that record balfatt that a flash has occurred,
but not the angle from which it camé( flashes have so far been recorded at positjan$.
Where is the lighthouse?” (Sivia 1996). Hereafter we lelychirackets denote a set.

Lighthouse

Figure 3.1: Visual representation of the lighthouse pnoble

Given that we know nothing about the lighthouse locatiors reasonable to assume a uni-
form prior on the azimutla of the £t observation:

P(cla,b) = (3.2)

3 |

as(—3 < ¢ < 7). Trigonometry tells us thdttan(c) = x; — a. We can use the change of
variable technique (see Section A.5) to rewrite the PDF alasv

b
[0? + (z — a)?]

So the probability of thé!” flash being recorded at,, given that we know where the light-
house is, follows a Cauchy distribution. We will now assumthis example thatis known,

P<xk|a7 b) = T
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and we wish to find the posterior probability af

P(al{zx},b) o< P({xx}a, b)P(alb)

We know nothing about, so we will give it a uniform prior, which reflects our igno@n
(i.e. every possible distance along the shore is equallygiie):

A (amz’n S a S amam)
P(alb) = P(a) = 3.3
(afe) (a) {0 otherwise (33)
where A is equal tom. Now the recording of each signal is independent, so the
likelihood function is given by:
P({zx}|a,b) HP xi|a, b) (3.4)

Now we know the prior (Equatidn 3.3) and the likelihood fuant(Equatiori-3.4), which we
can put into Bayes’ Theorem to obtain an expression for tiségoior PDF:

b

(zx — a)?]

Table[3.1 illustrates how the various PDFs relate to thofiaetdin Sectiof 3]1.

Plalfarh. ) o Ax T

Table 3.1: How PDFs in the lighthouse example relate to thEsPD Sectiomn 3]1.

Prior Likelihood Posterior
In general P(parameters P(dataparameters P(parameterslatg
Lighthouse examplé P(a) P({xk}|a,b) P(a|xy,b)

To get the best estimate af we need to maximise the posterior PDF. It becomes easier to
deal with the log of the posterior PDF — the maximum will remthie same.

log[P(al{x+},b)] =log A+ ) _ [log(b) — logm — log(b” + (x4 — a)?)]

— constant— Z log(b* + (z1 — a)?)
k=1

To maximise this, we differentiate with respectitand set it equal to zero:

dlog[P a\:ck, 2Zb2 T —a s:et(J

xk—a

This equation cannot be easily rearranged to expresgerms ofx; andb, so we look at
the problem numerically. We calculate the posterior PDFiany different values af; the
largest PDF value will correspond to the best estimate &/e can perform this procedure
easily usingR, generating random azimuths using Equation 3.2, and ctngehese into
positions{z;}. We also use fixed values bf= 1, anda = 2, to generate the data. We can
then plot the posterior PDF against the lighthouse positipto find the best estimate of
(see Figure_312).

The plots of the posterior PDF begin to narrow as the numb#asifies increases, centering
ona = 2. This is the value of the estimate @f and, as mentioned, was the valuezafsed
to generate the data.
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Figure 3.2: Posterior PDF of the positian,of the lighthouse giveh = 1. The number
of flashes observed is given by

3.2.2 Earthquake Hypocentre Location

A second example of a situation in which a Bayesian approanhbe adopted is the prob-
lem of locating an earthquake’s hypocentre. This locatigoridhm is based on Tarantola
& Valette (1982)’s approach. Locating an earthquake is amgte of a Bayesian problem
in that we wish to use data (seismometer arrival times) toutale parameter values that
describe the system (the coordinates of the hypocentregr{iida 2005).

Tarantola & Valette (1982) apply the inversion approacthttypocentre location problem.
The unknown parameters are the hypocentre coordinates(z, y, z), and the origin time,
T, while the known data are the seismic wave (P-, or both P- andrBval times {t¢*}, at
stations. We assume we also know the locations ohts&tionss;, and the velocity model,
v. P-wave arrival times are the main wave type used in hypoedmtation, while S-wave
arrival times can be used to supplement the P-wave data diedl benstrain the hypocentre.
In that case two velocity models are used, but the formuldiglow is unaffected.

We seek an expression for the posterior PDF of the hypocéstegion P(x|{¢;}). This
example is slightly more complicated than the lighthoussengxle, as we have two unknown
parametersx andT.

Tarantola & Valette (1982) consider two sources of error -estherrors caused by the as-
sumed velocity model, and those caused by uncertainty kingahe exact arrival times
at stations. Left¢!} = {t¢(x,T)} be the theoretical (calculated) arrival time at station
i from a hypocentre locatior given a velocity model. We assume tHag*} is normally
distributed with meadt"} and covariance matri€,, where{¢!"} represents the theoretical
arrival time at station from a hypocentre locatiox given a perfectly implemented velocity
model. We also assume the détg*} are normally distributed with meaitc*} and covari-
ance matrixC; (Tarantola & Valette 1982).
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From the above it follows that the likelihood of the daf#*}, given the parameters, is:
P({t?bSHX, T) = exp {_%[tobs o tcal]T(Ct + CT)—l[tobs _ tcal]} (35)

This encompasses both the errors caused by the velocitylmod¢he observational errors.
So, the posterior PDF of the unknown parameteasdT is given by:

P(x, TI{t"}) oc P(x, T)P({t;"}x,T) (3.6)

x P(x,T)exp {—%[t”bs — tT(C, + Cp) Mt — tc“l]} (3.7)

where P(x, T) describes our prior information about the parameters. niala & Valette
(1982) then assume a uniform prior dn since we generally have no prior information
about the origin time. Hence,

P(x,T) = P(x).P(T) (due to independence)
x P(x) (due to uniformity ofP(T)) (3.8)

We now define the theoretical travel tidé<e(x)} between a hypocentre locatianand
stationi, which is simply the difference in time between the caledigarrival time and the
origintimeT:

hetl(x) =t — T (3.9)

Since we are more interested in the location of the eartreytiedn the origin time, we wish
to obtain the posterior PDF of the hypocentre coordinateseal We do this by integrating
over the range of the origin tinie in Equatiori 3.17:

P(x|{1}) = / P, T|{£2%})dT
_ Px.T) / exp {—%[tobs _telT(C, + Cp) [0 — t“”l]}dT (by[E7)

x P(x) /exp{ ;[tobs tlT(Cy + Cp) [t — tml]}dT (by[3:8)

%

exp { tobs hcal T]T P. [tobs o hcal o T] }dT (by@)

whereP = (C,+Cy) ",

1 obs cal obs cal

OC/eXp{ 52’5 — Wi = T]- Py - 657 = hg™ = T] pdT
ij

1 2 obs cal

oc/exp{ 3 PT—2TZPij(tj —h5") +
ij
+ Z tobs hcal (tobs h;:al) }dT
ij
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Now let
a=2_ P
ij
b= ZB] . tqbs _ hc_al)
c= Z tobs hcal (tobs hzqal)'
Substituting these into the above gives:

P(x|{t?}) o / exp {—% (aT? = 2Tb+c) }dT

oc/exp —% (aT2—2Tb+ +c——)}dT

Now usmg/exp —sz? = \/79|ves
L W
X expy—=|c—— —
2 a a

We now substitute, b andc back in:

(Zz‘j Pij(t;?bs _ h;al)>2

2w 1
Zij B 2 g\ j Zij 7
27T ]_ obs cal Zkl Pkl (t;)bs _ hlcal>:|
2 b { 2 zm: l > Pl
P |:th8 o hcal . Ekl Pkl<t?bs _ hlcal):| }
ij j ] -
Ekl kl

X ZQWP exp {_% Z ([Eobs _ ﬁcal(x)]T P. [Eobs . ﬁcal(X)D } (3.10)

1] Z]
where,t* is the observed arrival time minus the weighted mean of olesearrival times
b
fqbs — tqbs _ Zkl Pkl ) t? °
' 21 P

andh¢ (x) is the computed travel time betwegrand station, minus the weighted mean

of computed travel times

jeal — peal D i Pt - hngs
' ' Ekl P
(Tarantola & Valette 1982).

To summarise, Equation 3J10 gives the posterior PDF forfihgal location of an earthquake
hypocentre, given the arrival time ddtia}. Note that this requires estimation®fnd a valid
velocity model for the region of interest.
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3.3 Application to Focal Mechanisms

We now turn our attention to the main aim of this thesis: theregion of focal mechanism
parameters from a set of P-wave first motion data measured bgray of seismometers.

3.3.1 Velocity Model Known

In this section we develop a probabilistic relationshipAmtn the focal mechanism param-
eters®© = (¢,4,\) and the available data using Bayesian methods, taking ououet the
relevant uncertainties (see Secfion 1.2.4). First we assbat the velocity model is perfectly
known.

Seismological Model

Given a focal mechanism representeddy-= (¢, 4, \), we can compute the theoretical P-
wave amplituded; at thei'" station using Equation 4.89 of Aki & Richards (2002):

Af =2(p; - n)(p; - 1) (3.11)

whereu is the slip vectorn is the fault normal, and they are both defined in terms of the
focal mechanism parameters (Aki & Richards 2002):

u(0) = (sin& cosdsin A + cos € cos A, — cos§ cos d sin A + sin & cos A, — sin d sin \)
(3.12)

n(0) = (—sin&sin J, cos € sin §, — cos 0) (3.13)

Herep; is the unit vector from the hypocentee,to the point on the focal sphere correspond-
ing to stationi. The vectomp; has azimuthy; and take-off anglé;:

pi( i, 0;) = (sin 6; cos ¢, sin 0; sin ¢;, cos 6;) (3.14)

In estimating a focal mechanism, we are more interesteddmtiarity of a P-wave first
motion than its amplitude. The approach of Brillinger et(4P80) is adopted here. L&t
define P-wave first motions as follows:

v — +1 if the first motion is recorded as positive (a compression)
~ | =1 ifthe first motion is recorded as negative (a dilatation)

Then we can treat observed polarities at#festation as Bernoulli random variables:

or alternatively
1 )
P =g)=m =m0 = —1)
To computer;, we assume that the observed amplitugdés normally distributed:

Ai|Af e~ N(AL, 02)

177 a

A Az, —c ~ N(=A7 02)

177 a

wherec indicates a correctly wired station, ané- indicates cross-wiring (meaning that
one can expect to observe the negative of the true amplitudiede that we assume, to
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be constant across stations, in the absence of previousieahgitudies. The conditional
probabilities of observing a positive amplitude, giveand—c respectively, are:

P(A4; >0|A;,c):1—c1>(0_Ai)

-0 (ﬁ)
Oq

where® is the Normal cumulative distribution function. Now lef be the probability of a
a correctly wired station. Then, to work om}, the probability of a positive observed first
motion, we note that; is equal to the probability of a positive observed amplitude

= P(A; > 0|A],c)P(c) + P(A; > 0|A], —c)P(—c¢)

o) (o ()0
A

A
=7, 4+ (1 —2m,)® <—Z (3.15)

wherer, = 1 — m, is the probability of an incorrectly wired station. Substiihg Equa-
tion[3.11 into the above gives:

T =m,+ (1 —2m,)® (2(132 ) (B ﬁ>) (3.16)

Oq

With precise datay, is large (r, small) ando, small. This model has the property that the
larger the magnitude ot?, the greater the probability of the P-wave first motion hg\been
observed correctly (Brillinger et al. 1980). To summaribe, conditional probability of an
observed polarity given the true amplitude and the relegenots, is:

PYi| A 00, m,) = 720 (1 — ) 30w (yi = —1,1) (3.17)

)

wherer; is defined in Equation 3.16.

Probabilistic Constraints

From here on, let curly brackefg denote a set of values over the seismometer diiray
1,...,n). We are interested in attaining a probabilistic relatiop&ietween the following:

e The data arrival times{¢;} and observed P-wave polariti€s; }. Let

d = ({t:},{¥i})

denote the data as a whole.
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e The unknown parameters of interest focal mechanism parametegs= (£, J, \).

e The nuisance parameters (unknown parameters that enter thanalysis but are
not of interest): the earthquake hypocentkg the probability of a correctly wired
stationr,, the amplitude noise,, and the theoretical amplitud€. Let

Y= (wlv X) = (7Tp7 Oa; Ajv X)
denote the nuisance parameters, whare- (m,, o,, A}).

e The known parameters station locationgs; }, the P-wave arrival time errofsr, },

2
the velocity modeb and the covariance matri@, = o2. exp {——D” t describing

the theoretical errors in the hypocentre location moded ection 2and4.2.1).
Let

w = ({Sz’}a{ati}7U7CT)

denote the known parameters.

Our goal is to attain an expression for the posterior prditgloiensity of the focal mecha-
nism parameters, in terms of the data and the known parasneter

P(6ld,w)
We splitd into its components and apply Bayes Rule as follows:
PO}, {Yi},w) o« P(O)P{Yi}[{t:i}, O, w) (3.18)

whereP(O) is the focal mechanism prior of our choice, aR¢{Y;}|{t;}, ©,w) is the like-
lihood function of the data. Note that the prior could be dedd(©|w), wherew is all the
background information that we use to formulate the prior.ptactice, however, we will
later adopt a non-informative parameterless prior, andesot the prioP(0). In the fol-
lowing let MR denote the use of the marginalisation rule aRdtiRe product rule. We will
now work with the likelihood function to obtain a solutiorrfihe posterior probability. The
likelihood is

P{Yi}[{t:},0,w)
@/p({y@-},w{ti},@,w) di)

';R/p({mw,{ti},@,w)P(wl{ti},@,W) dy

-

now splity into x and«; and apply the product rule

PR//

nowY; L (x,t;,0,w)|y; andx L 1,0

-/

n

I POile, 1, 0,0)

i=1

P{ti}, 0,w) di

P(Yilx, 11,1, 0,w) | P(x|¢1, {t:i}, ©,w)P(Y1[{ti}, ©,w) dipy dx

PYiln) | P(x[{ti}, @) P(¢nl{t:}, ©,w) dipy dx
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now splity; into its components and apply the product rule

:/// -f[/P(YZ-|A;f,o—a,7rp)P(A;*|aa,wp,{ti},@,w) dA7| P(x|{t;},w)
« P(o J)Pl(ﬁp) dx do, dr,
-]/ H / (VA7 00 )O(A7 = 2(py - ) (B - ) dA? | Plxl{t:}.0)

x P( a)P(?Tp) dx do, dm,

-/ i]jpmmz — 41, 00,m))

wherea; = 2(p; - n)(p; - 1), andj(-) is the Dirac delta function (see Appendix A.9). Ap-
proximating this integral we obtain

</

wherea;; = 2(p;; - n)(p;; - 1), andm is the number of hypocentre Iocations sampled. In
Equatior3.79 we have used Monte Carlo integration; theiate f(x)P(x|{t;},w)dx is
approximated by evaluating the integrand at a random sammypocentre locations (see
AppendiX/A.7.2 for details).

Px[{ti},w)P(04)P(mp) dx do, dm,

P(Yi|A; = aij, 04, 7p) | P(oa)P(mp) dog d, (3.19)

=1

Note that for seismometérp; becomes,;, as it is now evaluated at a sample of hypocentre
locationsx;, j = 1...m. Thus,

f)ij (QSZ‘j, eij) = (Sin Hz‘j COS gbij, sin Hz‘j sin ¢ij7 COS 02]) (320)

and hence the amplitudé€’, a function ofp, is evaluated at each hypocentre location and is
now denotedd;;.

Substituting Equation3.17 into Equatibn 3.19 and then Edqoatioi 3.78 we have an ex-
pression for the posterior PDF of the focal mechanism thataveevaluate, given by:

P(O|d,w) « P(© //Z [ Q(Hy' — ;)2

wherer;; is given by

P(o,)P(m,)do, dm, (3.21)

mij = my + (1 — 2m,)® (2(15”' )Py ﬁ)) (3.22)

Oq

P(0,) andP(m,) are priors of our choice for the error termsandr,, andP(©) is the focal
mechanism prior. From hereon we shall refer to Equation 82the velocity model known
posterior PDF, oMK posterior PDF

We useRto evaluate the VMK posterior PDF of the focal mechanism patars, by numer-
ical evaluation of Equation 3.21. For each earthquake wercthe entire parameter space
of © = (&,9,\) by calculating the VMK posterior PDF at every point on a gritle use
21 evenly spaced values over eaclt ofos 6 and )\, resulting in 9261 points. We uses §
rather than to correct for the fact that if we took an even spacing avewre would have
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higher node density near= 0° than neap = 90°.

We can then obtain an optimal solution férbased on the VMK posterior PDF. We find
argmaxP(0|d, w), the © value on our grid for which?(0|d, w) is a maximum, and then
©

conduct a local numerical optimisation of Equation 8.21 btdam a final© for which
P(©|d,w) is maximised. We refer to this value as tmaximum a posteriori estimater
MAP estimate) 00.

A Further Ambiguity

The posterior PDF given by Equatibn 3.21 is dependent onrtimitude A, ;, which is given
by the equation

Ay =2y 1) (by; - )

and hence the only dependence on the focal mechanism parafenh the posterior PDF

is through the vectoré andu. There is no dependence on the orientation of the null vector
a, which is used in the construction of the rotation mafx= R(©) = [a a n], the
distribution of which we are interested in. Thus as far aspbsterior PDF is concerned,
[a a n] is equivalent to

1 0 0
[+0 —a +n] =[uan|T, whereT, = [0 —1 0
0 0 1

This, combined with the two ambiguities discussed in Sedfi@.3, means that there are
8 equivalent representations &f©): R(O), R(O©)A,, R(O)C,y, R(O)T,, R(O)A,C,,
R(©)A,T,, R(©)C,T, and R(©)A,C,T,. Each will have the same posterior PDF value.
Note that the transformation iy, allowsdet X = +1.

3.3.2 Velocity Model Unknown

In this section we adapt the probabilistic relationshipssn the focal mechanism parame-
ters© = (¢, 6, \) and the available data established in the previous sedtiere we assume
that the velocity model is imperfectly known. Hardebeck &e8ter (2002) found that a
change in velocity model had more impact on focal mechan&mmation than a change in
hypocentre location.

Probabilistic Constraints

The difference from Sectidn_3.3.1 is that here the velocibdel v is unknown, and thus
becomes a nuisance parameter. The nuisance parametecsvare n

w = (wh,vux) = (Wp,Ua,A;,’U,X)
wherey;, = (m,, 0., A7). Again we apply Bayes Rule
P(O[{t:}, {Yi},w) < P(O)P({Yi}|{t:i}, O, w)
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and now work with the likelihood function to obtain a solutifor the posterior probability.
P{{Y:}{t:}, 0,w)
[ Pyiyo(n).0.0) v

"i/p({mw,{ti},G,w)P(wl{ti},@,w) dyp

now splity into x, v andvy; and apply the product rule

“JIf

x P( U|{t} O,w) dyy dx dv

n

H P(Y;|77Z)7 tia @7 w)

i=1

P}, 0,w) dip

HP Yilx, v, 1, t;,©,w) | P(x|¢n, v, {t:}, 0,w)P(tn|v, {t:}, 0, w)

nowY; L (v,x,t;,0,w), v L ({t;},0,w)andx L 1,0

I

now splity; into its components and apply the product rule

B //// H / P<Y;|A;k’ Tas Trp)P(AﬂO-aa Tps U, {ti}a @, W) dA;k
Li=1

x P(o,)P(m,)P(v)dxdo,dm,dv

//// ﬁ/PY\A o, Tp) (A} — 2(p; - 0)(P; - 1)) dA;

x P(o,)P(m,)P(v)dxdo,dm,dv

) [ETo o) 5

Li=1

P(Y;|1) | P(x|{t:},w)P(u1|v, {t;},0,w)P(v) di dx dv

P(X|U> {ti}> w)

P(X|Uv {ti}v w)

P(x|v,{t;},w)P(0,)P(m,)P(v) dx do, dm, dv

wherea; = 2(p; - n)(p; - ).

P(xy|vg, {t:i},w)P(o,)P(m,) dx do, dm,

[Pl A5 = ain, 00, 7,)
i=1

k=1
(3.23)
p m n
~ / / S Pl Asy = aijis 00, m,) | Ploa) P(my) do dr, (3.24)
k=1 j=1 Li=1

wherea;;;, = 2(pyji - 0)(Psji - ©), m is the number of hypocentre locations sampled, and
is the number of velocity models sampled.

In Equatiori-3.23 Monte Carlo integration is applied to apprate the integral o (v) by
evaluating the integrand at a random sample of velocity nsad&en from the prio(v).
Thusp; becomes,;, and P(x|v, {t;},w) becomesP (xx|vx, {t;},w) as for each sampled
velocity model the hypocentre location PDF varies.
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In Equatior 3.2W Monte Carlo integration is once again agplo approximate the integral
of P(xx|vk, {t;},w) by evaluating the integrand at a random sample of hypoctrdations.
Herep,, become®,;, as it is now evaluated fqr different samples of. hypocentre loca-
tionsx;,, 7 =1...m,k =1...p, wherep andm are as described above.

Substituting Equation 3.17 into Equation 3.24 leaves amesgion for the posterior PDF of
the focal mechanism that we can evaluate, given by:

P(0,)P(m,)do, dm,

1 1
P(©|d,w) x P(© //ZZ [ nggl—FyZ 1-— ﬁijk)ﬁ(lfyi)
=1

k=1 j=1

(3.25)

Herer,;; is given by

Oq

2P - ) By, - B
Wijk:W;Jr(l—zm’,)cI)( (Diji - 1) (Dijh U))

and againP(o,) and P(m,) are priors of our choice for the error termgandr,, andP(O)
is the focal mechanism prior.

To distinguish this case from the previously establisheddbsterior PDF, we shall from
hereon refer to Equatidn 3125 as the velocity model unknoastgsior PDF, oMU pos-

terior PDF. Note that the VMK (Equation 3.21) and VMU (Equation 3.255fmsior PDFs
are similar. In the VMU case we effectively sum ovedifferent VMK posterior PDFs,
weighted by their prior probabilitieB(v).

3.3.3 Probability Density of P- and T-axes

We can convert a PDF over focal mechanism parameéidgosone over the P- or T-axes (see
AppendixA.81)v” andv’. For a given T-axisy” || (u + n). The values ofi andn that
correspond tor? are not unique, ad +n = (4 + A) + (7 — A). In fact, for givenv’, i
andn can swing around by up ®60°, as shown in Figure_3.3.

We now define a coordinate systéimexpressed in geographic coordinates. The vector

is in thez-direction. Letm be an arbitrary vector not parallel {d. Thenb, a unit vector in
the direction ofim x v7, defines the:-direction, andt = v x b defines the/-direction of
the coordinate system. Thus the coordinate sySteexpressed in geographical coordinates,
has coordinate axis unit vectaRs,r = [b & v7].

Let ¢ be the angle from thb axis to the projection ofi onto thezy plane. Note thati and
n are a45° to thexy plane. Then

1 cos ( 1 —cos(
u=—— |sin n——|—sin a=nxnu
va | Vil



andR(¢)r = [t an]. We calculateP(v') as follows
PRT) = / P(Rg)dRg
Rg: ¥ || (a+n)
2m
- [ P
27
:/0 P(RerR(()r)d¢

where we approximate the integral oveusing the trapezium rule over a grid of( values
evenly spaced from 0 t?r. Also, ©(RgrR((;)r) denotes the angles that correspond to
the matrix R R((;)r (See Appendix/A.1]1). We obtaiR[©(RerR((;)r)] by linear inter-
polation from the grid-tabulated posterior PPFO|d, w).

The PDF over the P-axis is calculated similarly. We remaicoiordinate systerif, and now
think of the T-£-axis as the P-axis. Sinc€” || (u — n), thenR({)r = [-n a 1], and the
calculation remains otherwise the same.

We can calculate the MAP estimate of the P- and T-axes dyr&ctin our MAP estimate of
©, using the equationg” = i(u — n) andv” = 1(a + n). In general the MAP P- and
T-axes will sit close to the maxima of the 2-dimensional (osgherical coordinates, ¢)
PDFsP(v") and P(vT) respectively. However, since the MAP estimates are obdifioen
the 3-dimensional PDP(6O|d, w), there may be slight differences.

Having now developed the theoretical and numerical appremto the evaluation of the

posterior PDFs and appropriate summaries, we now turn te gpactical matters of their
implementation.
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Figure 3.3: Figure showing how vectoiisandn correspond to the T-axis. For a given
T-axis,u andn must stay locked at right angles, but can swing around asetklbiy an
angle¢ from the b-axis in thé&l coordinate system.
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Chapter 4
Computing

This is a computationally intensive project in which seVeitierent software packages are
utilised. This chapter outlines this software and deserlomv each package is used.

4.1 R

We have chosen to implement the models in this project usiagomputer package (R
Development Core Team 2008 is easy to use, and flexible due to its extensive range of
user-submitted packages and powerful graphical capabilit

4.2 NonLinLoc

Evaluation of Equations_3.21 ad 3.25 requires a sample pddsntre locations with their
corresponding take-off angles for each station. Non-Linesation, or NonLinLoc, is a
software package used “for velocity model constructicavet-time calculation and proba-
bilistic, non-linear, global-search earthquake locatio8D structures, and for visualisation
of 3D volume data and location results” (Lomax 2007). Nortda will be used in this
project to give estimates of the take-off parameters fomapda of possiblgx;} hypocen-
tre positions in a Cartesian coordinate system, and thetepior probabilities”({x; } |{;})
defined by Equation3.10.

4.2.1 Running NonLinLoc
Input data

NonLinLoc requires input phase data in one of a number ofipdéormats. In this project,
we use phase data obtained from http://www.geonet.orgum,convert it to NonLinLoc
Phase file format. GeoNet uses quality codes to describertbertainty of each arrival
time pick — from 0O for the clearest picks, to 4 for the noisipgks (Clarke 2007). As the
NonLinLoc Phase file format requires arrival time errors,coavert these quality codes into
values foro,, as shown in Table_4.1. The noisiest picks are given an err8089, which
gives zero weight to that particular phase. Station locad&ta obtained from GeoNet is also
formatted to fit the format required by NonLinLoc.

Control File

NonLinLoc includes a highly customisable control file, wélvariety of user-specified op-
tions for running the earthquake location program. Below list of noteworthy commands.
The syntax involves a keyword followed by one or more paranset
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Table 4.1: GeoNet qualities and arrival time errers

GeoNet quality| o, (sec)
0 0.1
1 0.5
2 1
3 2
4 9999

e TRANS — Set toSI MPLE, NonLinLoc will transform geographic coordinates to Carte
sian coordinates. Thel MPLE mode also means NonLinLoc will assume a flat earth,
rectangular, left-handedy, y, z) coordinate system (positive = East, positivey =
North, positivez = down). The parameters define the geographic coordinaésvtt
be taken to be the origin of the Cartesian grid (Lomax 2007).

e VGERI D— Specifies the dimensions of the velocity model grid.

e GIFI LES — Specifies input (velocity model) and output (time and taKeangle
data) files’ names and locations for use with the progamd2Ti nme (see Sec-
tion[4.2.2). Also specifies wave type (P or S).

e GTMODE — Specifies whether the velocity model is 2D or 3D, and whethlee-off
angles are to be stored.

e GTSRCE — Specifies station names and locations.

e LOCFI LES— Specifies the input (earthquake phase data, and time dat&ri d2Ti nme)
and output (location data) files’ names and locations fomitiethe program NLLoc.

¢ LOCSEARCH— Defines the search method - either a Grid-Search, a stechestropolis-
Gibbs sampling approach, or the oct-tree importance sagplgorithm.

e LOCGRI D— Defines the size, origin and distance between nodes of ttie gr

e LOCMETH — Specifies the location method - we set it to the inversionhmetof
Tarantola & Valette (1982) described in Secfion 3.2.2, Wwheto use an S-wave veloc-
ity model in the hypocentre location routine, and allowsaas data quality controls
to be implemented.

e LOCDELAY — Specifies station corrections. Only used in the velocitgelanknown
case (Section5.2).

e LOCGAU— Specifies the theoretical covariance ma@ix of the formC, = o7 exp (— 12D Z7>
whereD);; is the distance between statiarendj, o the theoretical arrival time error,
andA is the correlation length that controls covariance betwstations. Here we use
NonLinLoc default values o+ = 0.2 andA = 1.

For a more in depth overview of all the commands in the coffiteglrefer to the NonLinLoc
website (Lomax 2007).

4.2.2 Programs

The NonLinLoc package includes a range of different prografime three programs we are
interested in ar®&el 2Gi d, Gri d2Ti me andNLLoc.

56



Vel 2Gri d converts velocity model specifications into a 3D grid file indyy format, for
use withGri d2Ti nme andNLLoc.

Gr i d2Ti ne calculates the travel-times between a station and all nodasz, y, z spatial
grid — the velocity model grid — using the Eikonal finite-aéifence scheme of Podvin &
Lecomte (1991)Gr i d2Ti e can also calculate the take-off angleésd) for each point in
the grid for each station (i.e. for each nodey, z, on the grid, the take-off angles for a ray
leaving a theoretical earthquake at that point to a statigrgre calculated). This is done
by analysing the gradients of the travel-times along each (@x y and z) at the point, to
create a vector gradient of travel-times. The directionage to this vector determines the
azimuth and take-off angle (Lomax 2007).

A quality factor is also determined for each set of take-offlas. Essentially, the quality of
the take-off angle determination will be low if there may @ tays that arrive at the station
almost simultaneously, making it difficult to determine walnray’s take-off angles to report
(Lomax 2007).

Gri d2Ti ne is run with the relevant velocity model as the input file. Tbigputs two files
for each station: the travel-time grid file, and the angled fijle. P-wave {/,)) or both P- and
S-wave {/;) velocity models can be used as inputs.

Following this, theNLLoc program is runNLLoc uses Tarantola & Valette (1982)’s Bayesian
method of calculating the posterior PDF of the hypocentration outlined in Section 3.2.2.
We then specify one of three techniques availabllihoc to search the posterior PDF for
the maximum likelihood hypocentre location: a systematid<earch, a Metropolis-Gibbs
algorithm, or an Oct-tree importance sampling algorithne. W§¥e the Oct-tree search in this
project. The advantages of this method are that it is mud¢brféisan the grid search method,
more global and complete than the Metropolis sampling &lgor, and only requires us to
specify the initial grid size and the number of samples todzert (Lomax 2007).

The Oct-tree sampling method is started by defining a coaideog which to search. The
probability at the centre of each grid cell is determinedrirthe posterior PDF, Equa-
tion[3.10, and is multiplied by the volume of the cell to gitie probability that the hypocen-
tre is anywhere inside that cell. The probabilities are cedén a listZ,,. The algorithm then
runs as follows:

o Identify the cell with the largest probability frorh,. It is then divided into 8 new
smaller cells;

e The probability is calculated for these 8 cells;
e The listL, is updated by inserting these new probabilities.

These steps are then repeated until either the maximunfiggenumber of nodes to process
has been reached, or the smallest specified node size ieteiadmax 2007). Samples are
then drawn from the Oct-tree structure to give a sample fRyx|{¢; }, w).

The NonLinLoc input files are the travel-time grid files geated byGr i d2Ti e, and the
earthquake phase data provided by GeoNet. This outputs)@otber results, estimates of
the PDF for a sampléx; } of possible(z, y, z) hypocentre locations in an output file known
as a scatter file. Unfortunately, the scatter file does ndtdectake-off angle data for each
of these hypocentre locations. In the following section, skhew how to interpolate this
information from the angles grid file that was output by @ie d2Ti e program.
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4.2.3 Obtaining Take-off Parameters from NonLinLoc Output

The azimuth, take-off angle and a quality number for eactiostdor a theoretical earth-
quake occurring at each node on the velocity model grid arergéed by the program
Gi d2Ti me, and are stored in a binary file, i.e. for each point on a spgtid the az-
imuth and take-off angle are tabulated. The sample of hypoedocations{x;} output by
NLLoc do not coincide in general with the points of this grid, so wesininterpolate to
obtain an azimuth and take-off angle for each sampled hypoeein order to define the
take-off vector (Equatiopn_3.20).

Only some stations in the data have P-wave polarities-(+1, see Section 3.3.1) recorded.
While we use all stations for the earthquake location mettawded out by NonLinLoc, we
only interpolate the take-off parameters for stationstlaae polarity data. As P-wave polar-
ity dataY; is required in the formulation of our posterior PDF, we neetlaalculate take-off
parameters for stations without polarities. Additionailfythis project, S-wave information
is only used for hypocentre location purposes, and thezef@erneed not obtain S-wave take-
off parameters.

Azimuth is stored as a 16 bit integer, 0 to 3600, in tenths gfreles, measured clockwise
from north. Take-off angle is stored as a 12 bit integer, @y@ao 1800 (up), also in tenths
of degrees. Quality number is a 4 bit integer, indicatingdv(huality) to 10 (high qual-
ity). We wish to interpolate linearly the azimuth, take-afigle and quality number from
the nodes of the velocity model grid to the sampled hypoedotrations{x; } given in the
scatter file.

Initially, to make the binary files for each station easierdad intoR, they are converted to
text files using a C program written by Richard Arnold, rbuf2We then us& to carry out
the linear interpolation, weighting each azimuth and diptbyuality number, as described
below.

The azimuth and take-off angle at a hypocentre location alilated by a weighted aver-
age of the azimuth and take-off angle values at the 8 noddseofdlocity model grid that
surround that location. To calculate the weight that eadh®B points has, three values,
v andw, are calculated:

T — o Y —%Yo Z— 20
U= V= w =

T — Zo Y1 — Yo 21 — 2o

Where(z, y, z) are the coordinates of the hypocentre locat{es, v, o) are the coordinates
of the node of the velocity grid closest to the origin of théirengrid, and(x4, vy, 2;) are the
coordinates of the node of the velocity grid furthest frora tirigin. Essentiallyy gives
the proportion of the distance traveled between adjacemdes of the velocity model grid
when the hypocentre location is encountered, and simitarly andw. This is displayed in
figure[4.1.

Since interpolation is a form of weighted average, and wealaading with angles, we adopt
the averaging approach outlined in Apperidix/A.4. Thus,

1 [ (sing)y
0y = tan” << ¢>@-j>

gives the relevant interpolated azimuth value for stafi@at hypocentre location, where
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Figure 4.1: Three-dimensional linear interpolatign; y, ) marks the hypocentre lo-
cation we wish to interpolate to, while, v andw give the proportion of the distance
traveled between adjacent nodes of the velocity model ghdrevthe hypocentre loca-

tion is encountered.

(sin ¢),;; and(cos ¢);; are given by
(sin ¢)s; = Sy weighty sin(¢i,)
Y S weighty,
B 22:1 weighty, cos(q)

COS )i = .
(cos 9y Zizl weighty,

whereg,;, is the azimuth for station at thek*" of the surrounding 8 nodes of the velocity
model grid surrounding locatiax;, andweight is given by:

8
Zweightik =(1—u)(1—v)(1—w)qual; + (1 —u)(1 —v)w - quals

k=1
+ (1 —uw)v(l —w)qual;s + u(l —v)(1 — w)qualyy
+ (1 —w)v-w- quals + u(l —v)w - qualg
+u-v(l —w)qualyy +u-v-w- quals (4.1)
Further,

(cos B),;
\/<sin 0 cos ¢)7; + (sin Osin ¢)?; + (cos 0)?;

1

0;; = cos™

gives the interpolated take-off angle for staticat hypocentre locatiopn, where

B 22:1 weight;;, cos(0i,)

cosf);; =
( )i 22:1 weight;y,
8 . .
i _, weighty, sin(0;;) cos(¢;
<Sln9COS¢>ij:Zk 1 & k ( k) cos(Pir)
Y g weighty,
(sinfsin ¢);; = Zi:l weight sin(0ix) sin(Pir,)
ij —

22:1 weighty,
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whereg,, andd;, are the azimuth and take-off angle respectively for statianthek!” of
the surrounding 8 nodes of the velocity model grid, ardght is given in Equatiof 4]1.

Once the interpolation is carried out we have the pola¥jtjor station:, azimuth¢,; and
take-off angle;; for station: and sampled hypocentre locatiep along with the hypocentre
location PDFP(x,|{t;}). This leaves us with all the information needed to consttiet
Bayesian posterior PDFs (Equatidns 3.21[and]|3.25), as simovable[4.2.

Table 4.2: Sources of each element of Equdfion|3.21"andl 3.25

Parameter/Value Description Source
{Y;} Polarities at stations Data
{si} Location of stations Data
{x,} Sample of hypocentres| NonLinLoc
P(x;|{t:},w) Hypocentre PDF NonLinLoc
Pij | Dijk Ray take-off vector NonLinLoc
Oa Amplitude noise User defined
™, Probability of cross wiring User defined
4.3 \Velest

Velest is a program that usesaupled hypocentre-velocity moadeéthod to determinmini-
mum 1-dimensional velocity modelgelest is used in this project to obtain a random sample
of velocity models from a given priaP(v), as is required in Equatidn 3125.

The coupled hypocentre-velocity model method is similafacantola & Valette (1982)’s
Bayesian method of hypocentre location described in Se@i@.2 and implemented in
NonLinLoc. The difference is that here it is assumed the aiglanodel is unknown to
begin with, and a solution for the velocity model is solveahgitaneously with hypocentre
locations (Kissling 1988).

An indication of the quality of a velocity model can be giventhe difference*® between
the observed and theoretical arrival times at station

res = g9 — gl (4.2)

where the theoretical arrival times! = 5% (x, T, 0, y;), depend on an estimated hypocentre
location x, estimated origin timé, the implemented velocity modéi and station loca-
tionsy,;. The observed arrival timeg* = 2 (xo, T, vo, ¥;) depend on the true hypocen-
tre locationx,, true origin timeT,, the true velocity model, and station locationg;
(Kissling 1988).

Velest takes an initial input velocity model and hypocetdoations and uses this to calculate
arrival timest$*. The program then adjusts hypocentral and velocity modeirpaters. To

do this, a relationship betweeff* and the required adjustments is established. A first order
Taylor series expansion d@f** about the estimated parametéss = x, T = T,09 =
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A

0,y; = v;) gives

- ot; Ot; ot; .
£ (%0, To, vo, 4i) = £ (%, T, 0, ;) + 3—X(Xo —X)+ 8—T(TO -T)+ 5, (0= 0)
NECYR.
8% Yi — Yi
< ot; ot; ot;
_ obs (g z 7 _ - —
_tz (X7T y)+a ( )+8T(TO T)+8U(UO U)
Substituting this into Equatidn 4.2 gives
B ot; ot; ot; .
res obs 2 o 2 _ _ cal (5 ~ )
0 = (T 000+ O g — %)+ STy — ) + Dy ) — 1. T, 0.
o ot; ot; obs /o Cocalsn
- ox (X ) + oT (TO T) + ou (UO - U) (Slncet (X Tavayz) - tz (X7T7U7yl))
ot; ot; ot;
= SIAx+ S IAT 4 ShA (4.3)

whereAx is the required adjustment in estimated hypocentre logafid@ is the adjustment
in estimated origin time, and\v is the adjustment in the velocity model (Kissling 1988,
Kissling, Ellsworth, Eberhart-Phillips & Kradolfer 1994)

The minimum 1D velocity model is the velocity model with mimim root mean square
(RMS) misfit of {¢]**}, where RMS is defined as

RMS(#7°*) = /—Z tres)?

This minimum 1D velocity model is given by solving Equatiof84 This equation is non-
linear, and hence is solved numerically by Velest (Kisslifg8).

The iterative procedure of Velest is as follows:

1. Solve the coupled hypocentre-velocity model problentlierestimated hypocentres
and velocity model. This gives adjusted hypocentres andiprsted velocity model,

2. Recalculates based on these adjustments;
3. Check the RMS of the new velocity model — if it is lower, fiatd. Return to 1.

Due to the non-linearity of the coupled hypocentre-veloaitethod, multiple local RMS

minima may occur over the velocity model solution spacefedént input models may find
different local minima. A priori it is unknown where thesenima occur so a humber of
Velest runs are conducted using a variety of different imalcity models, resulting in a set
of minimum 1D velocity models (Kissling 1995, Clarke 200Further specific details on
how Velest was run in this project are given in Section 5.2.2.

4.4 Grid Computing

As mentioned in Sectidn 3.3.2, the VMU posterior PDF (Equd8.25) is calculated using
Monte Carlo integration; summing ovedifferent VMK posterior PDFs. Calculation of this
is particularly computationally intensive given the laggemple of velocity models used in
this project f ~ 1000). Running the required programs and models on one machin&wo
take several days. To reduce this computation time we makefithe School of Mathemat-
ics, Statistics and Computer Science’s computational gridch comprises approximately
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170 NetBSD (Unix) workstations.

The grid is particularly useful for multiple runs of the sapregram with differing parameter
values, as is the case here. We break the job down into seGwaldcity models, and have
each computer on the grid evaluate the VMK posterior PDR$met of 10 models. We then
retrieve each VMK posterior PDF from the grid and sum overall000 to obtain the VMU
posterior PDF. This reduces the computation time from day®trs.
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Chapter 5

Applications

In this chapter we discuss the application of our Bayesiathaus of focal mechanism es-
timation to earthquake phase data from New Zealand. We @ensio cases; the velocity
model known case, with data from the Raukumara Peninsuthattevelocity model un-
known case, with data from Kawerau.

5.1 Velocity model known — Raukumara Peninsula

We use data from the Raukumara Peninsula, New Zealandystrdte the case in which we
presume that the uncertainties in the hypocentre locat®oaused solely by P-wave arrival
timing errors, and that the velocity model is error-free kndwn. The Raukumara Peninsula
is particularly suitable to study this objective, as thei@@hsionall, (P-wave velocity) and
V, (S-wave velocity) structures of the area have been detedrby Reyners et al. (1999).

5.1.1 Tectonic Setting

New Zealand lies at the boundary of the Pacific and Austrdaiatonic plates. To the east
of the North Island, the Pacific plate subducts beneath tledymg Australian plate. The

two plates converge at approximately 45 mm/yr in the regibmierest; the Raukumara
Peninsula, on the East Cape of the North Island of New Zeal@he plate interface occurs
at a depth of approximately 15 km beneath the east of the RaalkeuPeninsula (Reyners
et al. 1999).

The Raukumara Peninsula (see Fidguré 5.1) lies 300 km sosthofi¢he Tonga-Kermadec
and Hikurangi subduction zone junction. At this junctionst to the north experiences
subduction along the Kermadec Trench, while to the souttstieluction is influenced by
the Hikurangi Plateau (Reyners & McGinty 1999).

5.1.2 Velocity Model

The velocity model we use here is based on a 3D velocity mdateimed by Reyners et al.
(1999), who deployed 36 seismographs over the Raukumaradedmbetween July and De-
cember 1994. This data enabled Reyners et al. (1999) tondieethel), andV; structure
of the region.

The velocity model spans an irregular grid rotadéél east relative to north (see Figlrels.1).
It has 13z-nodes over a distance of 130 km, §-hodes over 200 km, and 8nodes to a
depth of 100 km. These nodes are at non-constant distanbds,tihwe format for use with
NonLinLoc requires constant grid spacing. Hence, we cautyaolinear interpolation of
the velocities in Reyners et al. (1999)’s model, to obtailoeigies at a constant 1km grid
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spacing over the entire volume. We use both ¥hend V, velocity models for the earth-
guake location routine carried out by NonLinLoc. Althougk do not use S-wave data in
the formulation of our posterior PDFs, the velocity model is used to better constrain the
hypocentre location.

The V,, velocity structure is shown in Figufe 5.2. Velocity genrathcreases with depth.
It can be seen that at shallow deptks Z0 km) V,, is lower in the southeast, and higher in
the northwest of the model. The subducted plate dips tow@sorthwest, meaning the
plate interface is shallower in the southeast, resultinggherV,, in the southeast at depths
> 20 km (i.e. in the mantle just below the interface) (Reynerd.et299). TheV velocity
structure is shown in Figufe 5.3.

5.1.3 Data

We use GeoNet phase data in the region for the period fromuadgi 990 to 30 September
2005. Polarity data were provided by Reyners & McGinty (19880 re-analysed earth-

guakes that occurred during the July to December 1994 peaiodl read many more first

motions than were obtained by routine processing of the @edhita. These first motions

were matched to the equivalent earthquakes in the GeoNeelada catalogue. Station lo-
cation data were provided by Martin Reyners (for the locwtiof the portable seismographs
used in the Reyners & McGinty (1999) and Reyners et al. (1888)ies) and GeoNet (for

the locations of the permanent stations in the area).

It was decided, on the basis of discussion with Victoria @mity of Wellington and GNS
Science staff, that for an event to be worth analysing, amum of 10 stations with P-wave
polarity observations were required. Any fewer than 10 pids would mean that the focal
mechanism of the event would be poorly constrained. There @3 earthquakes with
10 polarities.

Reyners & McGinty (1999) calculated 117 focal mechanismtsahs for Raukumara earth-
guakes. Those solutions provide an opportunity to compard&\P estimates to an estab-
lished method of focal mechanism estimation. Thus we orcséere events for which a
solution was obtained by Reyners & McGinty (1999).

Using these criteria, 87 earthquakes were selected foysinalAll 87 events occurred be-
tween July and December 1994, the period for which Reynerc&ivty (1999) re-analysed

polarity readings. Appendix|B summarises the 87 Raukumarthguakes. Hypocentre lo-
cation and origin time are as calculated by NonLinLoc, whiggnitudes are taken from the
GeoNet catalogue.

5.1.4 Posterior PDF Particulars

Recall that the posterior probability for the velocity mb&eown case is given by Equa-
tion[3.21:

P(Old,w) o< P(O) //Z [H 2" (1 = 1) 300 | P(0,) P(my)do dr,
j=1 Li=1

We calculate this posterior PDF for all 87 events, under ¢fiewing conditions:
e a uniform prior on®: P(O) x sinf < P(R(O)) x 1
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e P(o,) = 6(0, — 04), @and P(m,) = 6(m, — m,,) Whereo denotes the Dirac delta
function ando,, andn,, are values for, andr,, assumed to be known. Due to the
properties of the delta function (see Apperldix]A.9), thet@asr PDF becomes

L 114y
Hﬂé_(uyz)(l _ ﬂ_ij)é(lyi)]

i=1

P(O|d,w) x P(©)>

J=1

wherer;; is given by

2(pyj - 1) (Pyj - ﬁ))

Oayg

Tij = Ty + (1 = 2m, )@ <

This approach is equivalent to taking fixed valuesdprandr,. For this to be valid
we require appropriate values for these parameters.

Hardebeck & Shearer (2002) found that around 20% of ambigjyaietermined polarities
were inconsistent. Thus we take a (conservative) valug, of= 0.2.

For the amplitude noise, we take a value of,,, = % based on values in Zollo & Bernard
(1991) and Brillinger et al. (1980).

5.1.5 Results

Here we present results for nine of the Raukumara eventsctedl to show three poorly
constrained solutions, three intermediately constragswdtions and three well constrained
solutions. The determinant of the concentration matrits used as a measure of constraint.
For each event, identified by its unique CUSP id, we present:

e Hypocentre summary information according to NonLinLoc.

e Stereonet showing P-wave first motion polarities, alongpwie beachball correspond-
ing to the MAP estimate foP based on our Bayesian posterior PDF, and the beachball
corresponding to the solution found by Reyners & McGintyq@p

e Posterior PDF of P- and T-axes.

e The estimates of the parameters of both the full and scalarerdration 8-Mode Ma-
trix Fisher distributions that provide the best fit to our {go®r PDF.

e Marginal plots of the posterior PDP(0|d, w), and both the full and scalar concen-
tration 8-Mode Matrix Fisher distributions.

Table[5.1 contains a summary of this information for all n@wents. A common method
of comparing two focal mechanism solutions is Hregular differencea, between the two
rotation matrices that define the solutions (see e.g. HaxaleB Shearer 2002, Arnold &
Townend 2007, Kagan 2007). Sectlon Al1.3 describes theletion of the angular differ-
ence. In Tablé5lte is given by Equation 2]5.
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Table 5.1: Summary table of results for the selected Raukaiegents.

A

CUSPID MAP © K oo Reyners & McGinty® a
1.| 646630 | (22.62°,71.94°,250.96°) | 2.66 | 28.86° | (353.43°,82.50°,202.32°) | 51.40°
2.| 672060 | (229.32°,68.49°,296.00°) | 2.55 | 29.55° | (209.60°,67.27°,277.35°) | 21.40°
3.| 668273 | (343.51°,74.54°,233.53°) | 2.75 | 28.29° | (23.23°,60.28°,232.59°) | 42.45°
4.] 640980 | (24.46°,80.72°,72.64°) | 3.52 | 24.60° | (191.71°,103.94°,305.19°) | 20.23°
5.] 636036 | (124.13°,72.01°,12.88°) | 3.63 | 24.17° | (308.00°,90.00°,337.20°) | 20.59°
6. | 635767 | (253.18°,29.80°,141.65°) | 3.85 | 23.39° | (38.04°,127.58°,254.31°) | 32.77°
7.| 669233 | (128.39°,59.81°,19.72°) | 6.13 | 17.98° | (202.83°,105.35°,217.61°) | 6.95°
8. | 665895 | (165.52°,81.30°,240.41°) | 6.55 | 17.32° | (178.24°,82.20°,240.75°) | 12.71°
9.| 675146 | (154.11°,72.14°,134.26°) | 6.50 | 17.40° | (348.02°,96.42°,218.02°) | 18.38°
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Figure 5.1: Map of the Raukumara Peninsula. Symbols showdbadary of the Reyn-

ers et al. (1999) velocity model (dark red line), temporagismometers deployed by
Reyners et al. (1999) (white triangles), and permanentrs®igeters within the velocity

model bounds as at time of the Reyners et al. (1999) studys(redres).
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Y - Distance (km)
X - Distance (km)

Figure 5.2: Cross section of thg, velocity model for the Raukumara Peninsula by
Reyners et al. (1999). The model is rotat#d clockwise of north — this perspective
is from the south. The-axis is positive to the southeast, theaxis positive to the
southwest. The colours denote velocity in km according to the colour bar,

Depth (km)
[N) =

Y - Distance (km)

X -Distance (km)

Figure 5.3: Cross section of tHé velocity model for the Raukumara Peninsula by
Reyners et al. (1999). The model is rotat#d clockwise of north — this perspective
is from the south. The-axis is positive to the southeast, theaxis positive to the
southwest. The colours denote velocity in km according to the colour bar,
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Events with a solutior] Our selected events Events with
in Reyners & >= 10 polarities

McGinty (1999) 193
117

Figure 5.4: Diagram showing our event selection criter@a. & event to be selected, it
must have> 10 polarity readings, and must have a corresponding solutyoRdyners
& McGinty (1999).
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1. EVENT 646630

Date

Time

Latitude

Longitude

Depth

Magnitude

01/09/1994

09:19:42.86

-38.467

178.098

25.879

2.8

Figure 5.5: Stereonet for event 646630 (left). The solikdexe indicates the MAP
focal mechanism solutio® = (22.62°,71.94°, 250.96°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =51.403°. Blue points are compressions, red points are dilatati®msontour
plot for event 646630 (right). Orange denotes the P-axsemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—7.748 4199 —1.669] —0.787 0.614  0.058
F=|2443 —0.853 4232 |, M= 0061 —0016 0.998 |,
| 1352 —0.603 0.629 | 0.613  0.789 —0.025
[ 0.837 —0.241 —0.241] 9.786 0 0
U= [-0433 0257 —0.864|, D=| 0 3445 0
| 0334 0936 0.111 | 0 0 0.074

8-mode Matrix Fisher Distribution with scalar concentoati

) —0.974 0.208  0.089
M= 0075 —0.074 0.994 |,k =2.657
0.213 0975 —0.025
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1. EVENT 646630
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Figure 5.6: Marginal PDF plots for Bayesian posterior PBf|d, w) (left), fitted 8-
mode Matrix Fisher distributiofr (©|F) (centre) and fitted 8-mode Matrix Fisher distri-
bution with scalar concentration parameti©|M, ) (right) for event 646630.
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2. EVENT 672060

Date

Time

Latitude

Longitude

Depth

Magnitude

16/10/1994

09:43:48.61

-37.834

178.378

10.449

2.9

@

Figure 5.7: Stereonet for event 672060 (left). The solidtkdiae indicates the MAP focal
mechanism solutiof® = (229.32°,68.49°,296.00°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =21.403°. Blue points are compressions, red points are dilatati®msontour
plot for event 672060 (right). Orange denotes the P-axmsemthe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [—2.902 —2.207 0.858 ] R —0.149 —-0.780 0.607
F=1-9267Y —-5909 -6.192], M= |-0.677 —0.367 —0.638],
_1.499 0.807 —0.870_ 0.721 —-0.506 —-0.474
A [—0.754 —0.339 —0.339] A 12.971 0 0
U= |-048 —-0.290 —-0.825], D= 0 2.916 0
_—0.443 0.895 —0.054_ 0 0 0.266
8-mode Matrix Fisher Distribution with scalar concentoati
R —0.359 —-0.760 0.542
M= 1|-0.754 —-0.106 —0.649| , &k = 2.548
0.550 —0.641 —-0474
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2. EVENT 672060
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Figure 5.8: Marginal PDF plots for Bayesian posterior PBf©|d, w) (left), fitted 8-
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mode Matrix Fisher distributio®®(©|F) (centre) and fitted 8-mode Matrix Fisher distri-

bution with scalar concentration paramel©|M, #) (right) for event 672060.
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3. EVENT 668273

Date

Time

Latitude

Longitude

Depth

Magnitude

02/10/1994

22:38:48.96

-37.866

178.084

30.957

2.9

Figure 5.9: Stereonet for event 668273 (left). The solidtkdiae indicates the MAP focal
mechanism solutiof® = (343.51°,74.54°,233.53°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =42.45°. Blue points are compressions, red points are dilatatiBfiscontour
plot for event 668273 (right). Orange denotes the P-axmsemthe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—1.809 —0.436 0.370 | —0.646 0.761 —0.056
F=| 1483 1419 3373 |, M= 0180 0.224 0.958 |,
| 7223 3799 —1.185) 0.741 0.609 —0.282
[ 0.882 —0.025 —0.025] 8.600 0 0
U= | 0467 0173 —-0.867|, D=] 0 3612 0

|—0.060 0.985  0.164 | 0 0 0.422

8-mode Matrix Fisher Distribution with scalar concentoati

—-0.432 0.902 0.017
0.220 0.087 0.972
0.875 0.424 —0.282

M = k= 2.752
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Figure 5.10: Marginal PDF plots for Bayesian posterior PBf@©|d,w) (left), fitted

1.0

8-mode Matrix Fisher distributioR (©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration paramef&©|M, ) (right) for event 668273.
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4. EVENT 640980

Date

Time

Latitude

Longitude

Depth

Magnitude

21/08/1994

13:36:52.95

-38.198

178.14

18.018

2.8

Figure 5.11: Stereonet for event 640980 (left). The solik diae indicates the MAP
focal mechanism solutiojf® = (24.46°, 80.72°, 72.64°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =20.229°. Blue points are compressions, red points are dilatati®msontour
plot for event 640980 (right). Orange denotes the P-axsemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [ 8.762 —5.091 —8.509 R 0.379 —-0.794 —-0.475
F=1]-4196 1.625 5.049 |, M= ]-0.122 —-0.552 0.825 |,
_—6.893 0.833 1.831 —0.917 —0.254 —-0.306
) [—0.725 0.689 0.689 ) 16.072 0 0
U= 0322 0.351 0.879 |, D= 0 3.599 0
i 0.609 0.634 —-0.476 0 0 1.067
8-mode Matrix Fisher Distribution with scalar concentoati
) 0.389 —0.737 —0.553
M= 1|-0.112 —-0.633 0.766 |,k = 3.524
—0.914 —-0.235 —-0.306
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4. EVENT 640980
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Figure 5.12: Marginal PDF plots for Bayesian posterior PBf@©|d,w) (left), fitted

1.0
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8-mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration paramef&©|M, £) (right) for event 640980.
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5. EVENT 636036

Date

Time

Latitude

Longitude

Depth

Magnitude

03/08/1994

15:47:23.60

-38.518

177.848

33.398

2.8

s

Figure 5.13: Stereonet for event 636036 (left). The solik diae indicates the MAP
focal mechanism solutio® = (124.13°,72.01°, 12.88°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =20.591°. Blue points are compressions, red points are dilatati®msontour
plot for event 636036 (right). Orange denotes the P-axsemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—4.127 2.514 —1.483] —0.543  0.495 —0.679
F=]10471 —-2.686 —6.978|, M= 0.796 0.045 —0.604],
| 1.732 —1.610 —1.888 —0.268 —0.868 —0.419
[ 0.833  0.353  0.353 ] 13553 0 0
U= [-0.258 —0.432 —0.864|, D= 0 3896 0

|—0.489  0.830 —0.269 0 0  1.190

8-mode Matrix Fisher Distribution with scalar concentoati

) —0.574 0.449 —0.685
M= 0791 0.087 —0.606|,k=3.635
—0.213 —-0.889 —0.419
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Figure 5.14: Marginal PDF plots for Bayesian posterior PBf@©|d,w) (left), fitted

1.0
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1.0

0.0

1.0

0.0

8-mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration paramef&©|M, ) (right) for event 636036.
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6. EVENT 635767

Date Time Latitude | Longitude | Depth | Magnitude
31/07/1994| 05:58:40.01] -38.361 | 177.872 | 23.73 3.0

Figure 5.15: Stereonet for event 635767 (left). The solitk iae indicates the MAP fo-
cal mechanism solutiof® = (253.18°,29.80°, 141.65°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =32.772°. Blue points are compressions, red points are dilatati®msontour
plot for event 635767 (right). Orange denotes the P-axmsemthe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—0.765 0.470  2.140 —0.231 0.843 (.486
F=| 7809 4612 —6472|, M= | 0877 0.397 —0.271},
| 0.995 2.659 —6.776 —0.421 0.364 —0.831
[—0.565 —0.762 —0.762 12.848 0 0
U= |-0405 —0.078 —0.911|, D= 0 4100 0

| 0.719  —0.643 —0.265 0 0 1.276

8-mode Matrix Fisher Distribution with scalar concentoati

) —0.183 0.876 0.446
M= 0897 0335 —0.289|,Rr = 3.852
—0.403 0.347 —0.831
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Figure 5.16: Marginal PDF plots for Bayesian posterior PBf@©|d,w) (left), fitted

1.0

0.0

1.0

0.0

1.0

0.0

8-mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameff©| M, #) (right) for event 635767.

81



7. EVENT 669233

Date

Time

Latitude

Longitude

Depth

Magnitude

03/10/1994

20:51:10.99

-38.544

177.814

26.123

3.0

WL

Figure 5.17: Stereonet for event 669233 (left). The solik diae indicates the MAP
focal mechanism solutio® = (128.39°,59.81°,19.72°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =6.946°. Blue points are compressions, red points are dilatatiBfiscontour
plot for event 669233 (right). Orange denotes the P-axmsemthe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

T

(-

[—6.597 5.783 —13.371 —0.466 0.655 —0.595
8.347 3.209 —7.075|, M=]0829 0087 —0.553],

| —4.443 0.706 —4.934 —0.310 —0.751 —0.583

[ 0.284  0.958 0.958 17.661 0 0

—0.359 0.154 0920, D= 0 10.842 0

| 0.889 —0.243 0.388 0 0 1.177

8-mode Matrix Fisher Distribution with scalar concentoati

) —0.461 0.615 —0.640
M= 0829 0.042 —0.557|,~k=6.130
—-0.316 —0.787 —0.583
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7. EVENT 669233
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Figure 5.18: Marginal PDF plots for Bayesian posterior PB@©|d,w) (left), fitted
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8-mode Matrix Fisher distributio (O|F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramef&©|M, ) (right) for event 669233.
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8. EVENT 665895

Date Time Latitude | Longitude | Depth | Magnitude
09/10/1994| 11:34:02.22] -38.549 | 178.062 | 20.898 3.0

A

Figure 5.19: Stereonet for event 665895 (left). The solitk tiae indicates the MAP fo-
cal mechanism solutiof® = (165.52°, 81.30°, 240.41°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =12.709°. Blue points are compressions, red points are dilatati®msontour
plot for event 665895 (right). Orange denotes the P-axsemithe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[11.004 —6.181 —6.035 0.486 —0.835 —0.258
F=|-3.193 —0.8908 —9477|, M= [-0306 0.114 —0.945],
| 9.127  —2.334 —1.959 0.819  0.538 —0.200
[ 0.822 0.474 0.474 16.815 0 0
U= [-0.387 0.056 —0.921|, D= 0 10206 0

|—0.418 0.879  0.229 0 0  1.485

8-mode Matrix Fisher Distribution with scalar concentoati

) 0.512 —-0.814 —-0.275
M= |-0310 0.123 —-0.943|,~ =6.551
0.801  0.568 —0.200
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Figure 5.20: Marginal PDF plots for Bayesian posterior PB@©|d,w) (left), fitted
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8-mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration paramef&©|M, ) (right) for event 665895.
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9. EVENT 675146

Date Time Latitude | Longitude | Depth | Magnitude
24/10/1994| 01:18:43.58 -38.539 | 178.098 | 25.488 2.9

Figure 5.21: Stereonet for event 675146 (left). The solitk iae indicates the MAP fo-
cal mechanism solutiof® = (154.11°,72.14°,134.26°)] while the dotted line indicates
the solution given by Reyners & McGinty (1999). Angular diftnce between the two
solutions =18.377°. Blue points are compressions, red points are dilatati®msontour
plot for event 675146 (right). Orange denotes the P-axmsemthe T-axis. The circle
denotes the MAP estimate, while the triangle denotes thdisalgiven by Reyners &
McGinty (1999).

Parameter Estimates

8-mode Matrix Fisher Distribution:

[15.673  5.546 —1.024 0.741  0.554 —0.381
F=|-6.887 —5436 —11.816|, M = [—0.137 —0.430 —0.892] ,
|—7.719 —1.964 —1.827 —0.658 0.713 —0.243
[0.873 —0.372 —0.372 20.998 0 0
U= (0375 0.099 —0922|, D= 0 10892 0

0.312 0923 0.226 0 0 1.124

8-mode Matrix Fisher Distribution with scalar concentoati

) 0.775 0521 —0.357
M= |-0.162 —0.382 —0.910|, & = 6.500
—-0.610 0.763 —0.243
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Figure 5.22: Marginal PDF plots for Bayesian posterior PB@©|d,w) (left), fitted
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8-mode Matrix Fisher distributio®(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameff©| M, ) (right) for event 675146.
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The first event (CUSPID 646630, our first poorly constrainezhé) shows a large disparity
between the MAP solution @& and that of Reyners & McGinty (1999, RM99), indicated
by the angular difference &fl.403° and the fairly large disparity between the sets of nodal
planes on the stereonet (Figlre]5/5,1p70). The nodal pldmmegdseparate completely the
compressions (blue) and dilatations (red), as the MAP wwluwdoes. The probability con-
tours of the P-axis appear bimodal, with a mode near both AP Ektimate and the RM99
estimate ofr”. The 8-mode Matrix Fisher distribution approximates faivell the Bayesian
posterior PDF (Figure 5.6[ pl71), while the Matrix Fishertid®ition with scalar concentra-
tion parameter is a slightly poorer approximation of the giogl distribution, e.g. it cannot
reproduce the bimodal maxima in the distribution of the rake

The second event (CUSPID 672060) shows reasonable agreeetareen the MAP and

RM99 solutions. The MAP estimate completely separatesahgcessions and dilatations
(see Figuré 5]7,[pT2) whereas the RM99 solution does not.8fhede Matrix Fisher ap-

proximation is again close to the empirical distributiomg(i¥e[5.8, p7B). The third event
(CUSPID 668273) again has a large disparity between the Mihate and that of RM99,

and a misfit polarity is evident on the stereonet, ngat) = (7/2,7/2) (see Figure 519,

[@74). The location of this dilatational point (red) amongsiroup of compressions (blue)
indicates it may have been an incorrectly read polarity.

In general for these three poorly constrained events, we bagn large disparity between
the MAP estimates and the RM99 estimate®ofFurther, the P- and T-axis contours are
poorly constrained and can cross the nodal planes. The & ladrix Fisher distribution
provides a reasonable approximation to the empiricaliligion, and the Matrix Fisher dis-
tribution with scalar concentration parameter providelghsy poorer approximation. The
low values ofx (2.66, 2.55, and 2.75, for Events 1, 2 and 3 respectivelyge gnh overall
indication of the poor constraint on the posterior PDFs.

The first intermediately constrained event (CUSPID 64033@ws reasonable agreement
between the MAP and RM99 solutions ©f There is one polarity reading that crosses a
nodal plane boundary (see Figlre 5.11,]p76). The P- andsTeaxitour plots appear better
constrained than the previous three events, as demomksbwathe narrower spread around
the modes. The 8-mode PDF provides a good fit to the empiristillition (Figurd 5.112,
[@71). The second (CUSPID 636036) intermediately constthgvent exhibits a similarly
constrained posterior PDF, and here the scalar concemtrBDF appears to be almost as
good an approximation as the full Matrix Fisher (Figure 5.449). The third (CUSPID
635767) intermediately constrained event shows less agmetebetween the MAP solution
of © and that of RM99 (see Figure 5|15, p80), but again the P- aadsIplots are fairly well
constrained, and the Matrix Fisher approximations showlgmyeement with the Bayesian
posterior PDF (Figure 5.16[_p81).

The first well constrained solution (CUSPID 669233) showy g®od agreement between
the MAP and RM99 solutions oP, with an angular difference of ju$t946° (see Fig-
ure[5.17, p8R). Both Matrix Fisher approximations are vdoge to the Bayesian posterior
PDF (Figurd 5.188,[p5.18). The same is true of both the seddb&PID 665895) and third
(CUSPID 675146) well constrained events. In the third obéhevents there appears to be
one misfit polarity (see the upper left quadrant of Fidurell5@B6). The well constrained
events are characterised by higlf6.13, 6.55 and 6.50) compared to the poorer constrained
events. The P- and T-axis contours of all three events anéytigonstrained. In general the
well constrained events have a higher number of polaritdiregs and better focal sphere
coverage than the poorly and intermediately constrainedtsy
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The better constrained events agree closely the estathlfsisal mechanism solutions of
RM99. The Matrix Fisher approximation tends to match we#l Bayesian posterior PDF,
with the match appearing better for well constrained evehite full 8-mode Matrix Fisher
distribution with parameter matrik generally provides a better fit than the scalar concen-
tration version, at the cost of longer computation time amateased complexity, although
the difference in quality of fit is small for the better corétred events.

Figure[5.28 shows a map of all 87 MAP focal mechanism estisnali¢ained in this study.
The map corresponds closely to Figlire 5.24, the solutiotaimdd in the RM99 study, ex-
cept for some small discrepancies which we discuss below.

Figure[5.2b shows a histogram of angular differences betwee solutions and those of
RM99. For 75% of events, the solutions are within3° of each other, indicating that solu-
tions obtained by our method are generally similar to thdsained by RM99. The angular
differences between the two sets may be partly explainetidgifferent focal mechanism
estimation methodology used and the hypocentral uncéigaisonsidered here, but may
also be partly explained by differences in hypocentre iocatesulting from our interpola-
tion of the Reyners et al. (1999) velocity model to a conggaidtspacing. Figure 5.26 shows
a plot of angular difference between solutions versus thdce between the epicentres as
located by RM99 and NonLinLoc in this study. There is no obgicelationship evident.
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Figure 5.23: Map of Raukumara showing MAP focal mechanistimases obtained
using our method. Hypocentre locations are as calculateddm}tinLoc. Beachballs
are scaled relative to their magnitudes. The dark red lidee@tes the boundary of the

velocity model.
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Figure 5.24: Map of Raukumara showing focal mechanismsimddaby Reyners &
McGinty (1999). Hypocentre locations also from Reyners &Qilaty (1999). Beach-
balls are scaled relative to their magnitudes. The darkinedhdicates the boundary of

the velocity model.
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Figure 5.25: Histogram af = 87 angular differences between our MAP focal mecha-
nism estimates and the focal mechanisms of Reyners & McGl999).

5.2 Velocity model unknown — Kawerau

In this Section the Bayesian model is applied in the situatiovhich neither the hypocentre
location of the earthquake nor the velocity model is knowithwapplications to data from
the Kawerau region of New Zealand.

5.2.1 Tectonic Setting

The Kawerau geothermal field is situated in the eastern T&ofmanic Zone (TVZ), in the
North Island of New Zealand. The field, a roughly circularsacé 19-35 kni, is in the
most seismically active part of the TVZ, where many shall@astlequakes occur. The age
of the field has been estimated at around 200,000 years, @aedetgy output estimated at
100 MW (Bibby et al. 1995). The Kawerau geothermal field lieshe east of the Taupo
fault belt, and to the west of the North Island dextral fadltlfClarke 2007). As with the
Raukumara Peninsula, seismicity here is caused by the ®plafe subducting underneath
the Australian plate beneath the region. Previous focaha@sm studies in the TVZ have
found mechanisms that are predominantly normal or norméd aistrike-slip component,
with large variation in strike (Hurst et al. 2002).

5.2.2 \elocity Models

The velocity models used in this section were obtained byk@lg2007) using Velest (Kissling
1995) (see Sectidn 4.3) and phase data from GeoNet (seeS8BAi3).
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Figure 5.26: Plot of angular difference versus distance/éen epicentres for our MAP
focal mechanism estimates and the focal mechanisms of RegdcGinty (1999).

We drew a random sample of velocity models using a methoditbescby Clarke (2007),
which we take as our prioP(v) for the velocity model. Twelve layer boundaries were
selected at -3, 0, 2, 4, 6, 8, 10, 15, 20, 25, 30 and 40 km demlestdoes not adjust the
position of the boundaries in its procedure. The procedareas$signing initial velocities
was:

e Picku; ~ Uniform(1, 6) - the velocity in km/s for the top (-3km) layer.
e Pickuy ~ Uniform(6, 10) - the velocity in km/s for the bottom (40km) layer.
e Pickug ~ Uniform(u, uz) - an intermediate velocity in km/s for the 10km layer.

e Pick a sample of size 5 from Uniforfa,, u3), order from lowest to highest, and assign
as velocities in km/s to the 0, 2, 4, 6 and 8km layers respagtiv

e Pick a sample of size 4 from Uniforfas, u), order from lowest to highest, and assign
as velocities in km/s to the 15, 20, 25 and 30km layers res@et

Selection of the intermediate velocity third means the naell have different gradi-
ents in the upper and lower parts. This ensures a wide ranggof models are selected
(Clarke 2007).

Clarke (2007) generated approximately 1000 P-wave veglooitdels in this manner, and
used these as a basis for joint P- and S-wave velocity modetsions using Velest. Initial
P-wave velocities for this joint procedure were randomliested within 1 standard devi-
ation of the mean in each layer from the P-wave only modelgtialr5-wave velocities
were chosen randomly, in a similar manner as the initial oam&-wave models, except that
uy ~ Uniform(0, 3), us ~ Uniform(3,9), andV,, > V in every layer. For our hypocentre
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location routine we use the models output from the joint R¥ Savave inversion. These
1000 models are shown in Figure 5.28.

Velest also outputs station corrections for each modelclwhare values of;“* for a given
velocity model and statiot) averaged over all events (Kissling 1995). These statioreco
tions adjust for the true 3D variation in velocity that a 1Daebcannot account for.

We convert the 1D velocity models to 3D for use with NonLinlLosing theVel 2G'i d
program. This requires us to select the bounds for the madel,1D velocity model inher-
ently has none. As stations must be inside the model boumda fod2Ti ne to calculate
their take-off angles, we use the tightest constraints ttutke and longitude such that all
stations for which polarities are recorded are encompasgéte model. This gives us lati-
tude bounds 0f-37.73° to —38.92°, and longitude bounds df76.26° to 177.12°, while we
take a depth of 50 km as a lower boundary.

5.2.3 Data

As the velocity models we will use are based on the researdblarke (2007), we use
here the same phase data that was used in that study to atrtb&welocity models. Us-
ing GeoNet phase data, Clarke (2007) selected earthquakibe iKawerau region, with
hypocentre latitudes betweer38° and —38.2°, longitudes betweem75.55° and 176.85°,
and depths shallower than 20 km. From this set of 1875 eaal®p,) the most reliable
events were selected. The selection criteria were:

e The event must have a minimum of 8 P-wave phases and 3 S-wagepto ensure it
is able to be located reliably.

e Seismic stations receiving waves from the event must havaxamum azimuthal gap
of less thanl80° to guard against epicentral bias.

e The nearest station to the event must be maximum of 10km aweay the epicen-
tre (as determined by the GeoNet hypocentre location) tarerdepth is determined
accurately.

Meanwhile, we apply a further criterion that an event mustehseven or more polarity
readings to ensure adequate coverage of the focal sphere.ndimber is slightly relaxed
from the value of 10 used in Sectibnb.1, as the GeoNet dataicsrelatively few polarity
readings. This selection criterion narrows our set of eprdkes to seven.

5.2.4 Posterior PDF Particulars

We assign equal prior weight to each of the1000 velocity models, and these together
constitute our prior for the velocity modét(v). Further work can and should be put into
establishing a better motivated prior for the velocity mipdewever for the purposes of this
project we have simply used the results of Clarke (2007)doide P(v). Thus our posterior
PDF becomes

P(O]d,w) o P(© ZZ [H fjgﬁyl (1 — i) 279

k=1 j=1 Li=1

where

2(Pijk - 1) (Pijk - U
Wijk:W;/ooJr(l—Qﬂ;O)fb( (i - 1) (Piji u))

Oay
and we adopt here the same set valuesrfoando, that were used for the velocity model
known casex!, = 0.2 ando,, = .
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5.2.5 Results

We present here results in the same format as in Section %ot &l seven events that meet
our selection criteria. For each event we present first thecitg model known results,
followed by the results in the velocity model unknown casethe velocity model known
case, we use here the mean velocity model (see Table 5.2)lgjvbie mean velocity in each
layer over the set of 1000 models. The results of this will beduas a basis to which we
can compare the effect of adding uncertainty over the vglatiucture into our probability
model.

Table 5.2: Mean P- and S-wave velocity models with corredpanstandard deviations
for Kawerau.

Depth P-wave velocity| Standard deviat S-wave velocity] Standard deviat
(km) V, (km/s) tion (km/s) V; (km/s) tion (km/s)
-3 4.254 0.275 2.481 0.297

0 4.485 0.372 2.620 0.247

2 4.973 0.153 2.756 0.232

4 5.335 0.147 3.124 0.131

6 5.808 0.074 3.396 0.126

8 5.918 0.068 3.530 0.111

10 6.073 0.040 3.627 0.074

15 6.113 0.055 3.744 0.107

20 6.228 0.123 3.828 0.121

25 6.649 0.253 3.956 0.151

30 7.389 0.228 4.097 0.176

40 7.980 0.422 4.477 0.350

We do not have previously published focal mechanism soistior our selected events,
although there have been previous focal mechanism studiéisei TVZ (see e.g. Hurst
et al. 2002), to which we may compare the fault types of ouutsms. In addition we
use HASH by Hardebeck & Shearer (2002) as a means of compswlagons from an es-
tablished focal mechanism estimation method to our MAPtg®Dis for the selected events.
Table[5.8 contains a summary of the results for our severtteelevents: the estimates
of © for the VMK and VMU cases, the HASH estimate ©f and the angular differences
between the VMU MAP estimates (our maximal model) and the Vahid HASH estimates.

In the velocity model unknown case we slightly alter the ebeets, as we have sampled
hypocentre locations from 1000 runs of NonLinLoc. This means that duplicate hypocentre
locations, and therefore points on the focal sphere, camrobtstead of simply overplotting,
we take a grid of points over spherical coordingied)), and count the number of points in
each cell. This gives a probability of a first motion for eaeli,drom which we can plot the
contours of the first motions.
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176° 177°

176° 177°

Figure 5.27: Map of the Kawerau area. Lines show the boundbiarke (2007)'s
selected earthquakes (yellow line) and the boundary inthosehe velocity models in
this study (dark red line). Symbols show the national segmayoh network (red squares),
strong motion network (yellow squares), Rotorua networkedg triangles), temporary
stations (white triangles), and other networks (blue glas).
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Velocity (km/s)

Figure 5.28: Plot of 1000 P- (black) and S-wave (blue) véyoeiodels for Kawerau, as
obtained by (Clarke 2007) using Velest. The solid red linek®dhe mean velocity in
each layer, while the dashed lines mark one standard davittom the mean.
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Table 5.3: Summary table of results for the selected Kawevauts.

Velocity Model Unknown | Velocity Model Known | HASH | Angular difference a |
CUSPID MAP O k| oo MAP O k| oo 0 HASH — VMU | VMK « VMU
1.731019 | (127.20°, 46.83°,357.70°) | 2.64| 20.62° | (130.88°,46.28°,1.28°) | 2.54| 29.57° | (205°,57°, —161°) 39.16° 2.92°
2.745516 | (219.13°,70.46°,213.00°) | 2.58| 29.35° | (219.60°,71.43°,214.61°) | 2.71| 28.52° | (212°,83°, —172°) 27.34° 1.81°
3.788921 | (250.38°,95.81°,170.73°) | 2.30| 31.34° | (71.99°,77.54°,200.30°) | 2.69| 28.65° | (78°,67°, —167°) 18.78° 12.75°
4.802105 | (225.16°,62.10°,154.55°) | 2.30| 31.32° | (327.83°,67.96°,31.52°) | 3.14| 26.25° | (48°,82° —155°) 36.01° 1.12°
5.802106 | (224.40°,65.06°,181.43°) | 2.32| 31.18° | (132.93°,87.61°,334.19°) | 2.59| 29.28° (39°,78°,172°) 37.98° 1.63°
6.1697233| (233.93°,29.02°,264.41°) | 2.10| 32.95° | (60.65°,62.05°,273.25°) | 2.75| 28.29° | (62°,20°, —106°) 45.75° 0.96°
7.1728730| (273.08°,32.38°,312.36°) | 2.00| 33.86° | (278.70°,35.65°,317.51°) | 2.36| 30.89° | (31°,84°,145°) 99.01° 4.55°




1. EVENT 731019 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

06/02/1995

11:50:25.69

-38.101

176.689

-3.000

2.9

Figure 5.29: Stereonet for event 731019 (left). The solitk iae indicates the MAP fo-
cal mechanism solutiol® = (130.88°,46.28°,1.28°)] while the dotted line indicates the
solution given by HASH. Angular difference between the twlusons =41.852°. Blue
points are compressions, red points are dilatations. PTooomplot for event 731019
(right). Orange denotes the P-axis, green the T-axis. Tiotealenotes the MAP esti-
mate, while the triangle denotes the solution given by HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

) [—2.458 4.127 —6.982] A —0.542  0.557 —0.630
F=12044 2162 —-3.319(, M= 0840 0.390 —0.378],
| —0.235 0.632 —1.818] 0.035 —0.734 —0.679
[ 01s8 098 098] [9326 0 0
U= [-0501 0.126 0.856|, D=1 0 283 0
| 0.851  —0.109 0.514] 0 0 0.390
8-mode Matrix Fisher Distribution with scalar concentati
A —0.552 0.340 —0.761
M= 0832 028 —0476| ,% = 2.545
0.055 —0.896 —0.679
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cos(dip) (cos(3))

1. EVENT 731019 — Velocity model known

100 150 200 250 300 350 : 100 150 200 250 300 350

strike (§) strike (&)

_ o : } e
100 150 200 250 300 350 100 150 200 250 300 350 100 150 200 250 300 350
strike (§) strike (§) strike (§)

Figure 5.30: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

10

8-mode Matrix Fisher distributio?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\7[, ) (right) for event 731019.
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1. EVENT 731019 — Velocity model unknown

Date

Time

Latitude

Longitude

Depth

Magnitude

06/02/1995

11:50:25.69

-38.101

176.689

0.000

2.9

Figure 5.31: Stereonet for event 731019 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (127.20°,46.83°,357.70°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
39.156°. Blue points are compressions, red points are dilatati®iscontour plot for

event 731019 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[—2.363 4.081 —6.857] —0.543 0.557 —0.629
F= 2075 2188 —3.334|, M=10839 0399 —0.371],
| —0.186 0.646 —1.820 0.045 —0.729 —0.683
[ 0.145  0.988 0.988] 9.205 0 0
U= |-0505 0.119 0.855|, D=| 0 2889 0

| 0.851  —0.098 0.516 0 0  0.387

8-mode Matrix Fisher Distribution with scalar concentati

R —-0.552  0.340 —0.761
M= 1083 0295 —-0471|,~k=2.538
0.064 —0.893 —0.683
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1. EVENT 731019 — Velocity model unknown

o

o
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Figure 5.32: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

10

8-mode Matrix Fisher distributio?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\7[, ) (right) for event 731019.

102



2. EVENT 745516 — Velocity model known

Date Time

Latitude

Longitude | Depth | Magnitude

18/02/1995| 03:48:27.91

-38.102

176.707 | 2.000 2.5

Figure 5.33: Stereonet for event 745516 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (219.60°,71.43°,214.61°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
28.398°. Blue points are compressions, red points are dilatati®iscontour plot for

event 745516 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

- [7.350 —3.352  2.966 ] - [0.748 —0.298 0.593
F= 14250 —3.585 —3211|, M = [0.346 —0.588 —0.731],
0.954 —0.405 —0.309 0.567 0.752  —0.336
~ [o0s871 0068 00687] [9.806 0 0
U= |-0486 0276 —0829|, D=| 0 4500 0
| 0.078  0.959 0.273 | 0 0 0215
8-mode Matrix Fisher Distribution with scalar concentati
~ [0.824 —0.117 0.555
M= 10507 —0.284 —0.814|,&=2713
0.253 0952 —0.336
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2. EVENT 745516 — Velocity model known
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Figure 5.34: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©[F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 745516.
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2. EVENT 745516 — Velocity model unknown

Date Time

Latitude

Longitude | Depth | Magnitude

18/02/1995| 03:48:27.91

-38.102

176.707 | 4.000 2.5

Figure 5.35: Stereonet for event 745516 (left). The solik diae indicates the MAP
focal mechanism solutiof® = (219.13°,70.46°,213.00°)] while the dotted line in-
dicates the solution given by HASH. Angular difference bedw the two solutions =
27.341°. Blue points are compressions, red points are dilatati®iscontour plot for
event 745516 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

- [6162 —3302 18407 [0.686 —0.425 0.590
F= 14067 —3.188 —2.859], M= 10.365 —0.501 -0.785{,
_1.299 —0.392 —0.033_ 0.629 0.754 —0.189
~ [0853 0133 0133]  [8766 0 0
U= [-0.521 0.164 -—-0.83%8], D= 0 3.468 0
_—0.029 0.978 0.209_ 0 0 0.337
8-mode Matrix Fisher Distribution with scalar concentati
R 0.792 —0.254 0.555
M= (0486 —0.290 —-0.825|,4A = 2.580
0.371 0.923 —-0.189

105



cos(dip) (cos(3))

2. EVENT 745516 — Velocity model unknown
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Figure 5.36: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

10

8-mode Matrix Fisher distributio?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\7[, ) (right) for event 745516.
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3. EVENT 788921 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

01/04/1995

11:28:04.73

-38.178

176.599

6.000

24

Figure 5.37: Stereonet for event 788921 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (71.99°,77.54°,200.30°)] while the dotted line indi-

cates the solution given by HASH. Angular difference betwé®e two solutions =

15.068°. Blue points are compressions, red points are dilatati®iscontour plot for

event 788921 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [—3.783 —5.117 —10.223 R —0.276 —0.532 —0.800
F=[-3.307 0.314 —0.500 |, M= 1-0.825 0558 —0.0806],
i 0.996 —-0.716 —1.052 0.492 0.637 —0.594
R [—0.334 0.931 0.931 R 12.150 0 0
U= [-0419 -0.289 —-0.861], D= 0 3.358 0
_—0.845 —0.225 0.486 0 0 0.047
8-mode Matrix Fisher Distribution with scalar concentati
R —0.237 —-0.144 —-0.961
M= |-0.893 0.421 0.157 | , k= 2.691
0.382 0.896 —0.594
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3. EVENT 788921 — Velocity model known
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Figure 5.38: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©[F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 788921.

108

o
o
o
(2]

o
~
=}
ES



3. EVENT 788921 — Velocity model unknown

Date

Time Latitude | Longitude | Depth | Magnitude

01/04/1995

176.599 | 8.000 2.4

11:28:04.73 -38.178

Figure 5.39: Stereonet for event 788921 (left). The solik diae indicates the MAP
focal mechanism solutiof® = (250.38°,95.81°,170.73°)] while the dotted line in-
dicates the solution given by HASH. Angular difference bedw the two solutions =
18.778°. Blue points are compressions, red points are dilatati®iscontour plot for
event 788921 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate,

while the triangle denotes the solutiormgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

A [2.008 —2.388 4.271 ) 0.673 —0.211 0.709
F= 11091 1425 -—2277]|, M= 10.693 —0.156 —-0.704] ,
_0.604 2279 —2.130 0.259 0.965 0.041
- [0.154 0.960 0.960 - [6410 0 0
U= [-0.546 0.280 0.789] , D= 0 2.320 0
_0.823 0.006 0.568 0 0 0.619
8-mode Matrix Fisher Distribution with scalar concentati
R 0.678 —0.118 0.726
M= [0.715 —0.124 —-0.688] , &~ = 2.297
0.171  0.985 0.041
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3. EVENT 788921 — Velocity model unknown
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Figure 5.40: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 788921.
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4. EVENT 802105 — Velocity model known

Date Time Latitude | Longitude | Depth | Magnitude
03/05/1995| 16:10:22.26/ -38.174 | 176.645 | 10.000 2.5

Figure 5.41: Stereonet for event 802105 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (327.83°,67.96°,31.52°)] while the dotted line indi-

cates the solution given by HASH. Angular difference betwé®e two solutions =

37.105°. Blue points are compressions, red points are dilatati®iscontour plot for

event 802105 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[ 2.452 —3.531 5.088 0.645 —0.667 0.373
F=|-3806 —3.843 7.715 |, M= |-0.620 —0.173 0.765 |,
| —1.575 —0.132 —0.743 —0.446 —0.725 —0.525
[—0.178 0.978 0.978 10.746 0 0
U= |{-0476 —0.186 0.860|, D= 0 4495 0
| 0.861  0.100 0.499 0 0 0.707

8-mode Matrix Fisher Distribution with scalar concentati

R 0.642 —0.609 0.466
M= |-0.620 —0.055 0.782 |,k = 3.141
—0.450 —0.792 —0.525
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cos(dip) (cos(3))

4. EVENT 802105 - Velocity model known
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Figure 5.42: Marginal PDF plots for Bayesian posterior PB@®|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©[F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 802105.
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4. EVENT 802105 — Velocity model unknown

Date Time Latitude | Longitude | Depth | Magnitude
03/05/1995| 16:10:22.26/ -38.174 | 176.645 | 15.000 2.5

Figure 5.43: Stereonet for event 802105 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (225.16°,62.10°,154.55°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
36.007°. Blue points are compressions, red points are dilatati®Tscontour plot for

event 802105 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[2.346 —3.011 5.193 ] 0.659 —0.273 0.701
F= 11022 1588 —2.882|, M = |0.718 —0.048 —0.694],
0.207  1.596 —1.742] 0.223 0.961  0.164
[ 0.209  0.977 0.977] 7375 0 0
U= |-0505 0.152 0.850|, D=1| 0 2100 0

| 0.837  —0.153 0.525] 0 0  0.485

8-mode Matrix Fisher Distribution with scalar concentati

R 0.677 —0.078 0.731
M= {0721 —-0.123 —-0.681], A~ = 2.299
0.143 0.989 0.164
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4. EVENT 802105 - Velocity model unknown
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Figure 5.44: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 802105.
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5. EVENT 802106 — Velocity model known

Date Time Latitude

Longitude | Depth | Magnitude

03/05/1995| 16:13:44.42) -38.174

20.000 2.4

176.645

Figure 5.45: Stereonet for event 802106 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (132.93°,87.61°,334.19°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
38.563°. Blue points are compressions, red points are dilatati®iscontour plot for

event 802106 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

~ [-0.507 3.145 —5.190] ~ [-0.624 0.596 —0.505
F=| 4740 4235 —8225|, M= 0678 0.090 —-0.730],
| 1220 0.485 —0.775] 0.390 0.798 0.461
- [-0344 0933 0933]  [11.767 0 0
U= |-0445 —0.257 0858, D=| 0 2994 0
| 0827 0.250  0.504] 0 0 0155
8-mode Matrix Fisher Distribution with scalar concentati
- [-0.633 —0.339 —0.696
M=1068 0176 —0.708 % =2.591
0.362 —0.924 0.461
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5. EVENT 802106 — Velocity model known
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Figure 5.46: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

10

8-mode Matrix Fisher distributio?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\7[, ) (right) for event 802106.
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5. EVENT 802106 — Velocity model unknown

Date Time Latitude

Longitude

Depth | Magnitude

03/05/1995| 16:13:44.42) -38.174

176.645

25.000 2.4

Figure 5.47: Stereonet for event 802106 (left). The solik diae indicates the MAP

focal mechanism solutiof® = (224.40°,65.06°,181.43°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
37.975°. Blue points are compressions, red points are dilatati®iscontour plot for

event 802106 (right). Orange denotes the P-axis, green-thesT The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [2.423 —3.058 5.097 | R 0.667 —0.287 0.688
F=|1.157 1.525 -—-3.044], M= 10711 —-0.032 -0.703{,
0.094 1.395 —1.624] 0.224 0.957  0.183
~[0216 0975 0975]  [7.320 0 0
U= [-0.501 0.060 0.863], D= 0 2.227 0
| 0.838  —0.216 0.502] 0 0 0424
8-mode Matrix Fisher Distribution with scalar concentati
R 0.686 —0.055 0.726
M= [0.715 —-0.135 —-0.686| , A = 2.318
0.135 0.989 0.183
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5. EVENT 802106 — Velocity model unknown
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Figure 5.48: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramet&©|M., ) (right) for event 802106.
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6. EVENT 1697233 — Velocity model known

Date

Time

Latitude

Longitude | Depth | Magnitude

27/02/2001

11:51:15.60

-38.124

176.701 | 30.000 2.6

Figure 5.49: Stereonet for event 1697233 (left). The sddikdine indicates the MAP
focal mechanism solutiof® = (60.65°,62.05°, 273.25°)] while the dotted line indicates
the solution given by HASH. Angular difference between tlve solutions =46.511°.
Blue points are compressions, red points are dilatations.cdhtour plot for event
1697233 (right). Orange denotes the P-axis, green thesl-a¢ie circle denotes the
MAP estimate, while the triangle denotes the solution givgHASH.

8-mode Matrix Fisher Distribution:

[—4.707 3.198 —3.708]
F=| 0267 048 1.380 |,
| 5479 —3.001 —0.394
[ 0.817 —0.271 —0.271]
U= |—0.497 0.113 —0.860],
| 0291 0.956  —0.042

Parameter Estimates

8-mode Matrix Fisher Distribution with scalar concentati

~ [-0.378 0.448
M= |0246 0.892
0.892  —0.056

o [-0.292 0562 —0.774
M= |0388 0809 0441 |,
0.874 —0.172 —0.454
8769 0 0
D=| 0 319 0
0 0 0671
~0.810
0.379 | , & = 2.752
~0.454
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6. EVENT 1697233 — Velocity model known
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Figure 5.50: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

8-mode Matrix Fisher distributio?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\7[, ) (right) for event 1697233.
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6. EVENT 1697233 — Velocity model unknown

Date Time Latitude | Longitude | Depth | Magnitude
27/02/2001| 11:51:15.60 -38.124 | 176.701 | 40.000 2.6

Figure 5.51: Stereonet for event 1697233 (left). The sddikdine indicates the MAP

focal mechanism solutiof® = (233.93°,29.02°,264.41°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
45.754°. Blue points are compressions, red points are dilatati®Tscontour plot for

event 1697233 (right). Orange denotes the P-axis, greeiréxés. The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[5.432 —3.776  2.941 0.705 —0.355 0.614
F= (2514 —1.757 —0.806|, M = |0.393 —0.525 —0.755|,
0.040 0223 —0.549 0.591 0.773 —0.230
[ 0.776  —0.281 —0.281 7.684 0 0
U= |-0541 0166 —0.825|, D=| 0 1932 0

| 0326 0.945 —0.023 0 0  0.201

8-mode Matrix Fisher Distribution with scalar concentati

R 0.752 —0.027 0.659
M= 10.645 —0.179 —-0.743|,~ = 2.102
0.138  0.983 —0.230
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6. EVENT 1697233 — Velocity model unknown
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Figure 5.52: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

1.0

8-mode Matrix Fisher distributio® (6| F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\71, ) (right) for event 1697233.
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7. EVENT 1728730 — Velocity model known

Date

Time

Latitude

Longitude

Depth

Magnitude

01/05/2001

09:53:26.68

-38.152

176.695

-3.000

2.3

Figure 5.53: Stereonet for event 1728730 (left). The sddikdine indicates the MAP
focal mechanism solutiof® = (278.70°,35.65°,317.51°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
95.427°. Blue points are compressions, red points are dilatati®iscontour plot for

event 1728730 (right). Orange denotes the P-axis, greeiréxés. The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

R [ 2.963 —3.600 5.780 R 0.650 —0.680 0.338
F=]-1582 -0.375 0.022 |, M= |-0.627 —-0.732 —-0.267] ,
_—0.215 2.923 —4.952 0.429 —-0.039 —-0.902
R [ 0.273 0.960 0.960 R 9.244 0 0
U= [-0.500 0.193 0.844] , D= 0 2.315 0
i 0.822 —0.202 0.533 0 0 0.296
8-mode Matrix Fisher Distribution with scalar concentati
R 0.699 —-0.507 0.504
M= 1|-0564 —-0.824 —-0.047|, % = 2.356
0.439 —-0.251 —-0.902
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7. EVENT 1728730 — Velocity model known
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Figure 5.54: Marginal PDF plots for Bayesian posterior PB@©|d, w) (left), fitted

10

10

8-mode Matrix Fisher distributio® (6| F) (centre) and fitted 8-mode Matrix Fisher dis-

tribution with scalar concentration parameté(r@|1\71, ) (right) for event 1728730.
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7. EVENT 1728730 — Velocity model unknown

Date Time Latitude | Longitude | Depth | Magnitude
01/05/2001] 09:53:26.68 -38.152 | 176.695 | 0.000 2.3

Figure 5.55: Stereonet for event 1728730 (left). The sddikdine indicates the MAP
focal mechanism solutiof® = (273.08°,32.38°,312.36°)] while the dotted line in-

dicates the solution given by HASH. Angular difference bedw the two solutions =
99.014°. Blue points are compressions, red points are dilatati®iscontour plot for

event 1728730 (right). Orange denotes the P-axis, greeiréxés. The circle denotes
the MAP estimate, while the triangle denotes the solutioemgby HASH.

Parameter Estimates

8-mode Matrix Fisher Distribution:

[ 4807 —3.504 2.717 ] 0.751 —0.294 0.592
F=2076 —1757 —1.118|, M = |0.494 —0.344 —0.798],
|—1.086  0.920 —0.404 0.438 0.892 —0.113
[ 0.759 —0.202 —0.202] 7.028 0 0
U= |-0568 0262 —0.780|, D=] 0 2050 0

| 0320 0.944  0.084 | 0 0  0.081

8-mode Matrix Fisher Distribution with scalar concentati

R 0.832 —0.054 0.552
M= 10458 —0.494 —-0.739| , Rk = 2.004
0.313 0.868 —0.113
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7. EVENT 1728730 — Velocity model unknown
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Figure 5.56: Marginal PDF plots for Bayesian posterior PB@|d,w) (left), fitted
8-mode Matrix Fisher distributiof?(©|F) (centre) and fitted 8-mode Matrix Fisher dis-
tribution with scalar concentration paramef&©|M, #) (right) for event 1728730.
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For the first event (CUSPID 731019) there is very little difiece between the VMK and
VMU results. In both cases the HASH solution is somewhatdisG0° — 40°) from our
MAP solution, but our MAP solution again fits the first motiamsll (see Figures 5.29[ pP9
and5.31, p10d1). There is an angular difference of Ju&t° degrees between the VMK and
VMU MAP solutions. The posterior and Matrix Fisher PDFs areitar for both cases (Fig-
ures 5,30, [p100 arid 534, p102), with the concentratiompeters in the VMU case being
slightly lower — presumably caused by the added uncertamiyelocity model. In both
cases the full Matrix Fisher distribution provides a beftethan the scalar concentration
version.

The second event (CUSPID 745516) again exhibits very liifference between the VMK
and VMU results (pp_108-106). The HASH estimate®of-” andv’ are reasonably close
to the corresponding MAP solutions, and again there is ortipyadifference (.81°) be-
tween the MAP estimates 6f in the VMK and VMU cases (see Figules 5.33 p103[and]5.35
[a108). The concentration parameters of the posterior POeivVMU case are again lower.
The Matrix Fisher fit is good for both cases, but appears 8slidgietter for the VMK case
(Figure[5.34, p104).

In the third event (CUSPID 788921) we see some differenctsdam the VMK and VMU
results. The MAP solutions are similar in the two cases (sgar&s[5.3F7 [p107 arld 5.39
d109), however the parameter estimates, P- and T-axis want@nd posterior PDFs are all
strikingly different. Notably the modes of the posteriorPEnift slightly from the VMK to
VMU case (FigureE5.3§ p108 and 5.40 p110), and the cont¢@mtzarameters are reduced.
The fourth and fifth events (CUSPIDs 802105 and 802106) dlew slifferences between
their respective VMK and VMU results, characterised by dtshithe modes and reduced
constraint on the posterior PDFs, however the MAP estimratesin similar. For all three
of these events the Matrix Fisher PDFs fit reasonably welldwer this fit appears better
for the VMK cases. As the fourth and fifth events occurred @ dhme location just three
minutes (in time) apart, we would expect them to have the dans mechanism. The pos-
terior PDFs and fitted parameters for the VMK case for botmtsvare reasonably similar
(see Figures 5.42[ pIN2 and 5.46, §116), while the VMU pmsteDFs (Figures 5.44[ p1i4
and5.48, p118) and parameter estimates are almost identica

The sixth event (CUSPID 1697233) exhibits a rather largpatisy between the VMK and
VMU posterior PDFs (Figurds 5.50 p120 dnd 5.562 p122), mastiipin the\ versuscos §
marginal plot. Here, adding the uncertainty in velocity reldaas resulted in a change from
a single mode in the VMK case to a bimodal plot in the VMU casih whe modes being
either side of the original single mode. In the VMU case thdriMdisher fit is not partic-
ularly good. The seventh event (CUSPID 1728730) exhibite@gr constrained posterior
PDF in the VMU case compared to the VMK case, evident in thésgleigure$ 5.54[p124
and[5.56 p126) and the lower concentration parameters. RA&HEstimate o is very
different from our MAP estimate in both cases, and the P- aadi3 contours are poorly
constrained, reflecting the poor focal sphere coverageeofitst motions in this event (see
Figured 5.58[p123 and 556 p125).

In general the MAP estimate 6f did not change much between our VMK and VMU cases.
Adding uncertainty in velocity model has resulted in pastePDFs of© that tend to have
broader maxima which constraé less tightly. Some events showed very little difference
between the VMK and VMU PDFs, while others showed large tiffiees. We can only
conjecture over what causes the posterior PDF of an evehtatoge dramatically when we
add uncertainty in velocity model into the formulation. Guane Figure§ 5.50 and 5]52. In
the posterior PDF (particularly thevs cos ¢ marginal plot) the single modes in Figure 5.50
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are split in two in Figuré 5.52. This could indicate a postethat is bimodal in velocity
modelsv: with models where the velocity remains low for most deptémg as favoured
as models where the velocity is uniformly high, but modelgwsirong gradients in velocity
not being favoured by the data. Future work into a bettervated prior forv would better
inform us of how the velocity model uncertainty affects tlosterior PDFs 0.

The Matrix Fisher distribution, though fitting reasonablglivn the VMU case, provides a
better fit in the VMK case. This corresponds to what we obskmeSectiori 5.1J5, in that
the fit was better for the more well constrained events. Agaithe events seen here, the
full distribution is a more accurate fit than the simplifiedlse concentration version.

It should be noted that the data quality for Kawerau is pober€ are relatively few P-wave
polarity data compared to the Raukumara data, and due tdh#ilew depth of the events,
only the outer region of the focal sphere is well covered.sTtas resulted in poorly con-
strained posterior PDFs 61, as demonstrated by the plots and the fact that all the egtgma
of  lie in the range~ (2,3.1), similar or more poorly constrained than the most poorly
constrained of our chosen Raukumara events. A deploymesgisfnometers in the region
could resolve these data issues, but this is beyond the sxfdpes project. Note that the
HASH focal mechanism solutions are all of poor quality, asaded by a quality code (“*D”
for each of the seven mechanisms), and the RMS differendeecd¢ceptable nodal planes
from the preferred solutions given in the results talb9°).

A map of focal mechanism solutions obtained using the aeevapcity model is shown in
Figurel5.57. Our estimated focal mechanisms are predotfyasrmal (i.e. the dilatational

guadrant is in the centre of the focal sphere), with somengaai strike-slip component.
However, the most south-westerly located events appeaaue btrike-slip mechanisms.
These results are consistent with the earlier focal meshastudy in the TVZ by Hurst
et al. (2002), which found mechanisms that were predomiynatrmal, or normal with a

strike-slip component.
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Figure 5.57: Map of Kawerau showing MAP focal mechanisrmestées obtained using
our method. Hypocentre locations are as calculated by Ndmd. Beachballs are
scaled relative to their magnitudes.
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Chapter 6

Conclusions

In this project we have introduced a new probabilistic (Bage) method of focal mecha-
nism estimation that directly accounts for uncertaintyypdcentre location, seismic veloc-
ity structure, and P-wave polarities. We have examined déise gvhen the velocity model is
assumed to be precisely known (VMK), with application tcedabm the Raukumara Penin-
sula, and the case when the velocity model is imperfectlysn@/MU), with application to
data from Kawerau. Introducing uncertainty over the veiosiructure had the effect of re-
ducing the concentration of the resulting posterior PDR&ieffocal mechanism parameters
(©).

Our MAP estimates 0® have been shown to accurately divide the compressional and d
latational first motions. Given reasonable data qualitg, MAP estimates of focal mech-
anism parameters that result from our method have also emmsto be consistent with
established methods of focal mechanism estimation, wetattvantage of providing a full
posterior distribution o® values.

We have explored the use of two generalised Matrix Fisheribligions — the 8-mode Ma-
trix Fisher distribution, and the 8-mode Matrix Fisher disition with scalar concentration
parameter — for approximating the posterior PDF of the focathanism parameters. The
full 8-mode Matrix Fisher distribution provides a superiibito the empirical distributions,
although, interestingly, for well-constrained eventsshalar concentration distribution also
fits well. This appears to justify the approach taken by Adn&l Townend (2007), who
assumed that focal mechanism errors follow a Matrix Fisleridution with scalar concen-
tration parameter, in their work on estimating tectoniesst It would be interesting to know
if the additional information of the full Matrix Fisher drédvution has a significant impact on
the outputs of the stress estimation procedure, or whetbealar representation is sufficient.

The advantages of our method over previously published odethre, therefore, that it (1)
models the data generation process and incorporates abiseal errors, particularly those
arising from imperfectly known earthquake locations; (Rpvas exploration of the entire
parameter space; (3) leads to natural point estimates af foechanism parameters; and
(4) that the resulting posterior PDF can be well approximhétg generalised Matrix Fisher
distributions.

This work suggests a number of possible avenues for furésrarch. As mentioned in
Section 5.2.4, the approach taken here would benefit frothdumork into establishing a
well motivated prior for the velocity model in the VMU casehieh would better inform us
of how the velocity model uncertainty affects the posteR@Fs of©. Future work could
also investigate the formulation and use of more infornegpitiors for the focal mechanism
parameter$), as we have only considered the state of total ignoranceifaromprior) here.
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Additionally, we have not examined the effect of varying éimeplitude noise, and polarity
error m,, parameters, and have not focused on robustly estimatirsg tharameters. Sensi-
tivity analysis could be conducted, in order to assess hevptsterior PDF changes as the
parameters are varied. Establishing a well motivated foiothese parameters, rather than
using fixed values as in this project, could also be invettdjaFurthermore, future work
could address the effect of varying other parameters thatave assumed known in this
project —a,,, which we obtained from GeoNet quality codes as describdale{4.1, and
Cr, for which we have used the NonLinLoc default values.

The Kawerau case study described in Sedtioh 5.2 demordstreteffect of poor data quality,
specifically that the low number of P-wave polarity readiregsd in routine CUSP processing
resulted in poorly constrained posterior PDF$0ofin future, P-wave data could perhaps be
supplemented with S-wave polarisation data or amplitutiesavhich would help constrain
the solutions when P-wave polarities are scarce. An adequatins of incorporating the
S-wave data and its inherent uncertainties into the fortimnlaf the posterior PDF would
need to be established, but this would not affect the unhgrlgayesian framework of our
method.

To conclude, we have developed here a robust new method aif feechanism estimation
by directly accounting for the relevant uncertainties. &ibfocal mechanism estimates
are important tools in assessing the tectonic charadterief a region, and are inputs to
the problem of estimating tectonic stress — changes in wimai place constraints on the
processes involved in earthquake occurrence and volcanidmas the method developed
here can be seen as addressing one component of the widéemprobearthquake source
characterisation and tectonic interpretation.
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Glossary

The glossary contains a list of symbols used in this projedttheir meanings, followed by
a list of terms used in this project and their definitions.

Symbols

) dip angle

a null vector

n fault normal vector

p; unit vector from the hypocentre, to the point on the focal
sphere corresponding to statibn

u slip vector

vF unit vector in the direction of the P-axis

vT unit vector in the direction of the T-axis

A rake angle

D concentration matrix of a Matrix Fisher distribution

d the data

F parameter matrix of a Matrix Fisher distribution

M modal matrix of a Matrix Fisher distribution

U spin matrix of a Matrix Fisher distribution

X hypocentre location

w known parameters

o) azimuth

™, probability of an incorrect polarity

T probability of a positive observed first motion at station

Y nuisance parameters

Oq the standard deviation of the amplitude of the first motion

oy, P-wave arrival time error at statian

Cr covariance matrix of ¢}

C, covariance matrix of 2"}
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Terms

the set of focal mechanism paramet&s), \)
take-off angle

velocity model

strike angle

amplitude of the first motion at statian
theoretical P-wave amplitude at station
The Kullback-Leibler divergence

calculated travel time between a hypocentre locakocend
stationi

rotation matrix with columnéa a n|, used to define the focal
mechanism

location of seismic statioh

calculated seismic wave arrival time at statiagiven the im-
plemented velocity model

observed seismic wave arrival time at station

the difference between the observed and theoretical &rriva
times at station

P-wave polarity at station

earthquake origin time

8-Mode Matrix Fisher distributiona generalisation of the Matrix Fisher distribution to sit-

angular difference

auxiliary plane

axial data

azimuth

Bingham distribution

circular data

compression

uations in which there is a two-fold ambiguity in the direc-
tion defined by each column of the orthogonal matrix random
variable

minimum rotation about any axis needed to make two rotation
matrices coincide

one of two nodal planes of a focal mechanism, and perpen-
dicular to the fault plane

directional data in which the positive and negative diatsi
are equivalent

angle measured clockwise from north

probability distribution for axial data in 3D space, see Mar
& Jupp (2000)

directional data in 2D space

an upwards first motion
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coupled hypocentre-velocity modsblving simultaneously for the hypocentre location and

dilatation

dip angle

directional data

epicentre

equivalent body forces

fault normal vector
fault plane

first motion

focal mechanism

focal sphere

force couple

hypocentre

velocity model
a downwards first motion

the angle that the fault slants downwards from the horidonta
to the right looking along the strike direction

observations that are directions, or unit vectors, in space

the point on the earth’s surface directly above the hypaeent
of an earthquake

a model of the faulting process; the forces that would yield
the observed seismic wave radiation pattern

vector normal to the fault plane
planar surface on which an earthquake occurs

the direction of motion, or polarity, of the first P-wave aali
at a seismic station

geometrical representation of fault slip during an earéhgu

imaginary sphere of negligible radius surrounding theheart
guake source

two forces acting together

the location of an earthquake

Kullback-Leibler divergence a measure of discrepancy between two probability distribu-

likelihood

Matrix Fisher distribution

tions
function of the parameters of interest given the observéa da

probability distribution for matrices on the Stiefel Mawid,
see Downs (1972)

minimum 1D velocity model velocity model with minimum root mean square (RMS) misfit

moment tensor

nodal planes

NonLinLoc

null vector

orientation data

orthogonal group

of {t;*°}

a quantity that depends on source strength and fault orienta
tion

the fault plane and the auxiliary plane

a software package used “for velocity model construction,
travel-time calculation and probabilistic, non-lineaiplgal-
search earthquake location”

vector defined bya x u, i.e. perpendicular to the slip and
normal vectors

observations made up af directions describing @ dimen-
sional object

A Stiefel Manifold where: = p; the group ofp x p orthogonal
matrices
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P-wave

posterior

prior

rake angle

S-wave polarisation

S-wave

seismic moment

seismic noise

seismometer

slip vector

special orthogonal group
spherical data

stereonet

Stiefel manifold

strike angle

strike direction

take-off angle

velocity model

VMK posterior PDF

VMU posterior PDF

von Mises distribution

longitudinal seismic wave that travels fastest from thetear
guake source

probability density function describing our knowledge loé t
parameters given the data

probability density function describing our prior knowtgl
of the parameters

the direction of motion of the upper side of the fault with
respect to the lower side of the fault, measured in the fault
plane anti-clockwise from the direction of the strike

splitting the S-wave into two perpendicular components, SV
and SH

transverse seismic wave that travels more slowly than the P-
wave from the earthquake source

a measure of the magnitude of an earthquake

fluctuations in the seismic wave signal caused by exteroal fa
tors such as human activity

instruments that measure and record ground motions
vector in the direction the fault slipped during the eartkgi
The group ofp x p orthogonal matrices with determinant 1
directional data in 3D space

a 2D projection of the lower hemisphere of the focal sphere

the set of allp x n matrices that describe the orientation of
an object inp-dimensions, defined by directions, and for
whichX*X = I,

the angle measured clockwise from north to the strike direc-
tion

the direction of a horizontal line in the fault plane

angle measured from the downward vertical to the point on
the focal sphere where a P-wave left the earthquake source

a simplified representation of the seismic velocity struetf
the earth

velocity model known posterior PDF of the focal mechanism
parameters

velocity model unknown posterior PDF of the focal mecha-
nism parameters

probability distribution for circular data, see Mardia &pju
(2000)

136



von Mises-Fisher distributiorprobability distribution for spherical data, see Mardiagpp
(2000)

G i d2Ti ne program that calculates travel-times and take-off angées b
tween a station and all nodes of ary, = spatial grid

NLLoc program that implements Tarantola & Valette (1982)’s Bagyes
method of hypcentre location

Vel 2Gri d program that converts velocity model specifications into a
3D grid file in binary format for use witlex i d2Ti me and
NLLoc

Vel est a program that determines minimum 1-dimensional velocity
models
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Appendix A

Useful Definitions and Results

This appendix contains some useful definitions and redudiisatre used in this project.

A.1 Rotation

A.1.1 Euler Angles
Euler Anglesb = (¢, 0, ) are used to describe a rotation in three dimensions, where
0<¢<2r, 0<60<m 0<¢<2r

There are various definitions of Euler Angles, determineavhich axes are rotated around
and in which order. Here we will use the definition provideddmold & Townend (2007),
who use a zyz convention. (&, y, z) are the coordinates of an initial coordinate system, the
Euler Angles are used to rotate the system as follows:

¢ Rotate the initial system anticlockwise byabout thez axis to obtain(z’, v/, 2’)
e Rotate(x’,y/, ') anticlockwise by) about they’ axis to obtainz”, y”, 2").

e Rotate(z”,y", 2”) anticlockwise by about the:” axis to obtain the final coordinate
Yy
SyStem(l‘m, y///’ Z///) .

These rotations can be expressed as matrices

cosae 0 sina cosae —sina 0
By(a) = 0 1 0 B.(a) = |sina cosa 0
—sina 0 cosa 0 0 1

where B;(«) describes a rotation of angte about axisi (Arnold & Townend 2007). A
rotation matrix formed from the Euler Angles is given by

cos ¢ cosf cos 1 — sin psinyy  — cos ¢ cos fsin1) — sin pcostp cos ¢ sin @
= |sin ¢ cosf cos) + cospsiny —sin ¢ cosfsin + cos pcosty  sin ¢ sin b
—sin 6 cos Y sin @ sin 1 cos ¢

Rotation matrices are orthogon@{ R = I) and have ddt = 1. Any rotation matrixRk has
equivalent Euler angles, given by

_ R23) —1 —1 < R32 )
=tan ' | == ], 6 =cos ! Rss, = tan
¢ ( Ris 53, Y "R
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(Arnold & Townend 2007).

Euler anglesb = (¢, 0, 1) are equivalent to focal mechanism parame&ers (&, 9, \):

v ™
=&+ 3 £=¢— 5
Q=m—90 d=m—0
™ ™
—A— = \ = T
(8 5 vt
So the rotation matrix that describes the an@ds
™ T
R(6) = B.(6 + 3)By(m — 8)B.\ — 3)
sin € cos d sin A + cos & cos A sin£cosdcos A —cos&sin A\ —sinésind
= |—cos€cosdsin A +sinfcos A —cosécosdcos A —sin€sin A cossind
—sindsin A sin d cos A —cosd

— [a 4

(Arnold & Townend 2007). From this it can be seen tRat= (&, 4, A), Euler anglesb =
(¢,0,), and the rotation matri?(©) = [a a n| are all equivalent ways of describing a
focal mechanism.

A.1.2 Passive and Active Rotation

Given a coordinate system and a vector, a rotation matrixoeamterpreted in two ways.
Passive rotations the case when the rotation matrix is thought of as rotatiegcoordinate
system while the vector remains fixed - this was the methodrites! in Section A.1]1.

Let the vectoxg be the representation of the veciom coordinate syster. Then
xp = RapXp

gives the representation &fin coordinate system. The columns ofR, are the unit vec-
tors of the axes of coordinate syst@expressed in coordinate systém

Active rotationis the case when the rotation matrix is thought of as rotatiegzector while
keeping the coordinate system fixed. A rotation of a vegtabout an axis to obtair’ can
be performed by putting

X' = R(¢,0,1)x

for Euler anglego, 0, v).

A.1.3 Rotation Angles and Angular Difference

A rotation matrixR rotates a coordinate system or vector about an axis by ae agglen

by
b=cos™! (%) .

The matrixR has one real eigenvalue, and the eigenvector correspotalihgs represents
the axis about which the rotation takes place (Arnold & Tomth2007).
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If R, and R, are two rotation matrices, then the angular differemdeetween them is the
minimum rotation about any axis needed to make the two cdécihis angle is given by

o= COSil <tr(R{R2) — 1)

(Arnold & Townend 2007). This is a means of comparing two fanachanism solutions
obtained by different methods. Due to the existence of fquialent focal mechanisms for
a given solution (see Section 1.2.3), angular differencesalculated betweeR, and the
four equivalent representations Bf, or vice versa. By convention the minimum of these
four angles, ming), is taken (Kagan 2007).

Whena is zero, the matrices are identical. The maximum value far(@ivaries between
90° and120° depending on the axis about which the rotation occurs (K26&T).

A.2 Spherical Coordinates

The spherical coordinate system can be used to locate poitiisee dimensions. This coor-
dinate system is useful due to the importance of directidatd in this project.

Under this coordinate system, a point P in space is locaied two angles and one distance.
This description is based on that of Weir et al. (2005).

e pis the distance from P to the origin.

e ¢ isthe angle clockwise from the positive x-axis toP< ¢ < 2r). In this project we
take x to be positive northwards.

e 0 is the angle from the positive z-axis to® < ¢ < ). In this project we take z to be
positive downwards.

All points we are interested in are located on the unit sph&rpoint P is therefore able to
be located using just the two anglesndé. This is shown in Figure Al1.

Spherical coordinates can be converted to Cartesian caiedi by the equations:

x = sinfcos ¢
y = sinfsin ¢

z = cosf

Cartesian coordinates can be converted to Spherical cwiedi by rearranging the above
equations:

¢ = atan2(y, x)

~ Jtan™! () y>0
|7+ tan™! (L) y<o0

0 = cos(2)

A.3 Lambert-Schmidt Projection

The stereographic projection of the focal sphere onto all@rarea can be constructed us-
ing an equal-area Lambert-Schmidt projection. As mentianeésectiori 1.2]1, the stereonet

145



Figure A.1: Spherical polar coordinates. A point P on thesspltan be located by two
angles:p, the clockwise angle from the positive x-axis, ahthe angle from the positive
z-axis.

represents the lower hemisphere of the focal sphere. loisepol using the usual mapping
convention; North is upwards, East is to the right.

A point on a sphere has an azimuthand a take-off anglé@. This point is plotted on the
stereonet at a distangefrom the origin, at an angle measured clockwise from north,
wherer is given by:

r=+2sin Q
2
This method is known as the Lambert-Schmidt projection &gare[A.2), and is used to
plot stereonets in this project.

We useR to construct the stereographic projections for each easke; We reverse the
points on the upper focal sphere (points Witk 7) and plot them on the lower focal sphere,
to enable every ray to be shown. If a point is on the upper fsphére with azimutlp and
take-off angle), we can transform it to a point on the lower focal sphere wzimaith ¢’ and
take-off angle?’ as follows:

¢ =+
O =m—0

Compressional points are coloured blue, while dilatatemesred.

Because the azimuth and take-off angle vary for each pesbygpocentre location, there
are multiple points to mark (creating a cloud) for each stgtcorresponding to the different
possible hypocentre locations. The colour scale variesrdot to the value of the hypocen-
tre PDF at the point - varying from white for zero probability dark blue or red for high
probability.

Given a focal mechanism solutid®(®) = [a a n], the nodal planes can be identified and
plotted on a stereonet as follows. The points where theipesihd negative directions of
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Figure A.2: Stereonet projection. (a) A point P on a spheth azimuth¢ and take-off
angled. A point P on the lower half of the sphere is transformed asvsha (b) to the
point Q which is plotted on the stereonet in (c). (d) The photiposition of the point
under the Wulff Q and Lambert-Schmidt Q‘ conventions.

the vectora, a andu intersect the focal sphere are marked. Two great circles passing
throughdn and=+a, the other passing throughi and+4a, give the nodal planes. Figure A.3
shows this procedure visually.

A.4 Averaging Angles

One must take care when averaging angles that are scatitredsédde of27. If we take the
average of such angle values, the result will incorrectlglose tor, since around half the
angles are just 0 and half are jusk 27 (Arnold & Townend 2007). In this section we give
formulae for averaging directional and axial data of vasi&inds.
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Figure A.3: Beachball diagram of a focal mechanism with ditieary strike, dip and
rake of €,0,\) = (154°,52°,22°). The direction of the fault normal and slip vectors are
shown by small circles, while the direction of the null veasshown by the square.

A.4.1 Circular Data

When averaging angles{¢;},i = 1,...,n, the necessary adjustment is

—()

where(...) represents an average or a weighted average. If the datali$reen the necessary

adjustment is
-1 (sin 2¢)
¢= EatanQ ((cos ng))

(Arnold & Townend 2007).
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A.4.2 Spherical Data

When averaging directions specified in spherical polar coordinategdy6,},i = 1,...,n,
the necessary adjustment is

¢ = atan2 ( (sin (b))

(cos ¢)

and

0 = cos! {cos 6)
V/ (sin @ cos )2 + (sin 0 sin ¢)2 + (cos 0)2
(Arnold & Townend 2007). If the data are axial then
r = (sin @ cos ¢, sin f sin ¢, cos §)”

is the unit vector in the mean direction (Arnold & Townend ZR0

A.5 Change of Variable Technique

Here we will consider the change of variable technique wivgl a single variable. This
method is based on that described by Hogg & Tanis (2001).

Given that a variabl&” with pdf g(y) is a function of another variabl® with pdf f(x), i.e.
Y = h(X), andh is monotonic, how is the pdf(y) related tof (x)?

The functionh maps a point onto a pointy. Hence the support of, sayz,..;, < = < Tues
maps onto the support &f, 2 (zmin) = Ymin < Y < Ymaz = A(Tmaz)- Thus the distribution
function ofY” can be written,

P(Y <y) = P(h(X) <vy)
= P(X <h7'(y))
h=(y)
= / f(z)dz

Tmin

h=(y)
= /h f(z)dz. (A.1)

71(ymin)
Now, integration by substitution tells us that:
(0)
f(x)dx

/ F(o(0)6 (1)t =
a ¢(‘1)

So, ifwe putp = =1, b = vy, a = ymin, andt = y, we can express Equatibn’A.1 as:

R (y) Yy -1
/h fade— [ f(h*@))%—;”dy

-1 (ymzn) Ymin

¢

Therefore,
Py <y = [ fla)d (A2)
y yZLin
— [ swdy= [ sy (a3
Ymin Ymin d_x

= 9() = () |, (A4)

149



So we now have a relationship betwegy) and f(z). The reason for taking the absolute

value of £ is to ensure(y) is non-negative when h(X) is monotonically decreasing.sThi
L dy . y

term is known as dacobian(Sivia 1996).

A.5.1 Lighthouse Example

We can now apply this method to the lighthouse example ini@e&2.1. Here we had a
uniform prior onc: P(cla,b) = 1, and a relationship betweermndz specified by tan(c) =
x — a. We want to obtain an expression B(z|a, b), so we apply Equatidn Al4

dc

P(zg|a,b) = P(cla,b) dazk

If we rearrangé tan(c) = x; — a, to makec the subject we get:

_ T — Q
= tan~!
o (222

Deriving with respect ta;, we get:

de 1

doi b |1+ (552)]
Now we can transforn®(c|a, b) into P(xy|a,b):

P(zy|a,b) = P(c|a,b) x don

dc)

Which is the Cauchy pdf.

A.6 Hypergeometric Functions of a Matrix Argument

The general form of a hypergeometric function of a positefrdte symmetrien x m matrix
argumentX is given by Muirhead (1982):

- 1) - (ap)r Cu(X
qu(a1,...,ap;bl,...,bq;X):ZZ((b; Eb) ]s! )

il CISRRCOR

wherex is a partition oft up to lengthm, i.ex = (ki,..., k) wherek; > ke > -+ > k,,,
the k; are non-negative integers ahd. k; = k£ (Muirhead 1982). If sayn = 3, some exam-
ples of such partitions are:

1: There is only one partitions = (1) = (1,0, 0).

2: There are two partitiong2) = (2, 0, 0) and( 1) =(1,1,0).

3: There are three partitior{8) = (3,0, 0), (2, )E .1 ) and(1,1,1).
= 4: There are four partition§l) = (4 0,0), (3 1) = (3,1,0), (2, ) (2,2,0) and
(2,1,1), however(1, 1, 1, 1) would not be included as its Iength is greater thag= 3.

k=
k=
k=
k

IRl
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Further,C\.(X) is known as aonal polynomiala function of the eigenvalues of, which

can be expressed in termsrobnomial symmetric functiond,, (X) = 2% ... z¥» -+ (all distinct reorc

where ther; are the eigenvalues &. For example,

Mq)(X) = w9y + 2Vryad 4+ 292929
=21+ X9+ T3
M)(X) = 2} + a3 + 3
Ma 1y (X) = 2129 + 2123 + T273.

Now,
2k k|
Cu(X) = X[zﬁ](l)mZn(X) (A.5)
where
Zo(X) =) euMu(X) (A.6)
and

szj(kz - kj _i+j>
H;nﬂ(ki +m —i)!

X[n}(l) = ]{}' (A?)

(McLaren 1976, James 1964).

Finally, (a), is known as thgeneralised hypergeometric coefficiethefined as

m

(@ = [Jta= 56— 1)

where(a), = a(a+1)...(a+ k — 1) (Muirhead 1982).

The hypergeometric function of a matrix argument can beutaled inMATLAB using an
algorithm by Koev & Edelman (2006). We can evaluate this fiomcfrom R using the
R.matlab package fdR (Bengtsson 2007).

A.7 Numerical Integration

Numerical integration methods are used to calculate anoappate solution to a definite
integralfab f(x)dx. Numerical integration is particularly useful in this pzof for evaluating
the integral of functions for which we cannot find the antidative.

A.7.1 Trapezium Rule

The trapezium rule is a means of of approximating a defintmgitalf: f(z)dz by calculat-
ing the area of a number of trapezia formed by splitting thggore of integrationa, b] into
n — 1 subintervals of equal widthx = H Figure[A.4 indicates how the method works.
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Figure A.4: Diagram illustrating the trapezium rule. Théidéne is the functionf(z),
which is evaluated at a number of points The dotted lines indicate the trapezia, the
areas of which approximate the area unfer).

The approximation is given by

/abf(:c AxZ F@) + f (o))

zii% [f($1)+f($n) +2z_:f(x1>]

where

: i=1lori=n
w; = .
1 otherwise

This can be generalised to higher dimensions, e.g.

d b n o m
a
J A T D D) DN

i=1 j=1

while the weight function becomes;; = (1/2)?, wherep;; is the number of grid edges
that point;;j sits on.

A.7.2 Monte Carlo Integration

Monte Carlo integration is a means of approximating a defimtegral by evaluating the
integrand at a random sample of points, as described in R&easella (1999).

Theorem A.1. [Monte Carlo integration] The integral

/ h(z)f(z)dx

xT
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wheref is the pdf ofr, can be approximated by

%Zh(f’fj)

j=1

where{z;} arem points generated from the densjty

Proof. The proof is simply:

1 m
7j=1

[
So in the case of Equatign 3]19, we apply Monte Carlo integrab the following integral:

/

n

[T PilA; = 2(p; - 8)(p: - 1), 04, )

i=1

P(x|{t;},w) dx

Here,

h(x) =

[T PilA; =2(p: - 2)(ps - 1), 0, 7Tp)]
i=1

f(x) = P(x|{t:},w)

whereh(x) is a function ofx throughp;. The random sample from the densjtyare ran-
domly sampled hypocentre locations. Therefore,

h(x;) =

HP(WAZ‘ = 2(py; - 1) (Pi; - ﬁ),aa,wp)]

i=1

wherep;; is the take-off vector for the ray traveling to statioffom hypocentre locatiop.
Hence the approximation is:
=1

/m

3

J=1

n

[T Pil4; = 2(p; - 2)(B: - 0), 00, m,) | P(x[{t:}, w) dx

=1

[T PYilA; =2(b; - 2)(Dy; - ﬁ),aa,wp)]

Wherem is the number of hypocentre points sampled from thep@f|{¢;},w). Here we
have dropped}ﬁ into the normalisation constant, which we do not need touatalexactly.

A.8 Tensors

A tensorcan be thought of as a generalisation of the concept of \&atat matrices. Multi-
plying a vector by a scalar changes the magnitude but leheaditection unchanged. If we
wish to change the direction of the vector as well we neediliseifa different type of entity
(Kolecki 2002).
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Tensors can be classified by their rank - the number of arrdiges used to describe the
object. For example, a tensor of rank O is a scalar, a tensoardf 1 is a vector, and a
tensor of rank 2 is a matrix (Arfken 1985). However, the casgas not true, not all scalars
are tensors of rank 0, not all vectors are tensors of rankd saron — only those that are
coordinate independerare tensors (Kolecki 2002). For example, for any two co@tdin
systems whose origins differ, the position vectoerandv* from the origin in the respective
systems to a poinP will be different — thus a position vector is not a tensor. teger if
there are two point®; and P, with position vectors/; andvs in the first coordinate system
and position vectorg] andv; in the second, them, — v, = v} — v, and thus the difference
between two position vectors is a tensor of rank 1 (Kolecki20

A.8.1 Moment Tensor

The seismic moment tensdd is a quantity that depends on source strength and fault ori-
entation (Aki & Richards 2002). The moment tensor is a regmetion of the earthquake
source byequivalent body forceghat is, the forces that would yield the observed seismic
wave radiation pattern. Thus equivalent body forces are @detraf the real faulting process
(Stein & Wysession 2003).

These forces are described by foomipleswhich are two forces acting together. These two
forces are offset by a distandeeither in the direction of the force or normal to the direnti

of the force. In 3D space and with three possible force doastthere are nine possible
couples, and these make up the components of the moment {&ks@& Richards 2002,
Stein & Wysession 2003).

M:m: Mmy M:cz
M= My, My, M,
sz sz Mzz

The equivalent body forces that describe an earthquakeaarglelcouples, so if the fault
and slip directions are oriented along the coordinate akesnoment tensor will be of the
form

0 My O 010
0o 0 0 000

where M, is theseismic momena measure of the magnitude of the earthquake. However,
in general, the fault will not be oriented along the axes, ti@dmoment tensor is given in
terms of the fault normal and slip vector,

Mij = Mo(’I’LZ'Uj + TL]‘UZ‘)
and thus the tensor is symmetric.

The pressure (or P-) axis, which is parallefite- n, and the tensional (or T-) axis, parallel to
u + n (Arnold & Townend 2007, Aki & Richards 2002), are the eigertees of the moment
tensor.
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A.9 Dirac Delta Function
The Dirac delta functio(x) is defined by the following three properties:

o(z) =0 x#0
/00 d(z)dr =1

— 00

/ " f(@)d(a)de = £(0)

Thusd(z) is an infinite spike at = 0, and only makes sense as part of an integrand (Arfken
1985). An important property used in this project is

/_00 f(z)do(x — zo)dx = f(x0)

(Arfken 1985).
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Appendix B

Raukumara earthquake hypocentres

Table B.1: Raukumara earthquake hypocentres, as locatsdlyinLoc
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CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M)
635146 | 25/07/1994| 15:23:56.63 -38.22 | 178.12 26.66 3.5
635767 | 31/07/1994| 05:58:40.01] -38.36 | 177.87 23.73 3.0
636036 | 03/08/1994| 15:47:23.60 -38.52 | 177.85 33.40 2.8
636120 | 07/08/1994| 22:28:12.33 -38.18 | 177.46 51.46 3.3
636149 | 09/08/1994| 09:53:27.12 -38.30 | 177.68 35.84 3.7
637373 | 16/08/1994| 20:19:24.35 -38.48 | 177.83 35.06 3.2
642468 | 19/08/1994| 00:27:22.18 -38.60 177.88 21.00 2.9
640980 | 21/08/1994| 13:36:52.95/ -38.20 | 178.14 18.02 2.8
642506 | 21/08/1994| 23:23:15.60 -38.95 | 177.70 20.80 3.2
642225 | 22/08/1994| 03:17:20.45 -38.66 | 177.38 34.28 2.9
639865 | 22/08/1994| 03:19:45.99 -38.95 | 177.71 20.61 4.1
658523 | 24/08/1994| 07:54:36.18 -38.85 | 177.32 33.40 2.8
644710 | 24/08/1994| 11:25:24.56 -38.26 178.22 21.97 2.8
659187 | 25/08/1994| 01:47:20.93 -38.04 | 177.93 32.13 3.1
644854 | 25/08/1994| 04:31:14.37| -37.88 | 178.32 18.85 3.2
646569 | 25/08/1994| 10:14:00.77| -37.97 | 177.96 34.28 2.9
641198 | 25/08/1994| 13:56:26.21] -37.90 177.79 46.29 3.0
642627 | 30/08/1994| 18:06:26.47| -38.41 | 177.55 36.82 3.5
646630 | 01/09/1994| 09:19:42.86 -38.47 | 178.10 25.88 2.8
646638 | 01/09/1994| 17:05:10.03 -38.22 | 178.18 20.61 2.9
639642 | 01/09/1994| 20:27:02.49 -37.94 | 178.05 28.42 2.9
645188 | 02/09/1994| 07:01:22.55 -38.61 | 177.90 19.78 2.9
645191 | 03/09/1994| 10:46:50.14| -38.15 | 178.36 18.26 3.0
645987 | 05/09/1994| 07:05:40.39 -37.77 | 178.32 27.54 2.9
653977 | 07/09/1994| 08:08:38.69 -38.62 | 177.79 30.66 2.8
652423 | 08/09/1994| 01:25:23.77| -38.12 | 178.28 24.90 3.2
653984 | 09/09/1994| 16:17:08.41] -38.69 | 177.97 27.54 2.8
652892 | 14/09/1994| 01:14:32.50 -38.39 | 177.88 21.83 3.0
656806 | 15/09/1994| 18:37:50.02] -38.42 | 177.84 29.74 4.9
653020 | 15/09/1994| 18:42:45.48 -38.42 | 177.84 29.15 3.1
654104 | 16/09/1994| 09:11:51.33 -37.96 | 178.02 30.96 2.8
652903 | 17/09/1994| 15:55:53.38 -37.78 | 178.29 28.42 3.0
653521 | 18/09/1994| 02:23:56.78 -38.27 | 178.13 24.37 3.0
653233 | 19/09/1994| 02:17:21.79 -38.47 | 177.85 33.50 2.9
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CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M)
655865 | 21/09/1994 14:17:40.82] -38.52 178.11 23.93 2.9
655881 | 22/09/1994 13:12:22.13 -38.80 | 177.84 9.33 2.8
658508 | 23/09/1994 07:46:53.00 -37.79 178.11 32.91 2.9
660226 | 24/09/1994 03:52:03.05 -37.88 177.88 41.31 3.6
660234 | 24/09/1994 08:24:09.37| -37.90 | 177.87 38.38 3.0
660254 | 24/09/1994 18:21:08.84] -38.60 | 177.87 19.04 2.8
660615 | 25/09/1994) 15:40:31.14 -38.67 178.04 22.56 3.0
660625 | 26/09/1994 06:57:47.16| -37.86 177.80 76.17 3.5
655486 | 26/09/1994) 14:55:08.83 -38.04 | 177.98 20.95 2.8
655951 | 26/09/1994 14:59:41.39 -38.12 178.05 35.64 2.8
654658 | 28/09/1994 04:21:49.82] -38.23 178.59 28.42 3.7
667323 | 29/09/1994) 01:18:27.86| -38.52 177.83 28.81 2.8
668273 | 02/10/1994 22:38:48.96| -37.87 178.08 30.96 2.9
669233 | 03/10/1994) 20:51:10.99 -38.54 | 177.81 26.12 3.0
667842 | 04/10/1994| 04:48:30.11 -38.41 177.83 31.35 2.8
675244 | 05/10/1994 22:03:53.16| -38.35 177.99 24.41 3.1
665887 | 06/10/1994 02:16:48.18 -38.69 177.89 12.55 3.2
665710 | 06/10/1994 10:44:18.11 -38.69 177.89 12.84 3.3
674383 | 06/10/1994 18:30:33.25 -38.35 178.03 25.73 3.1
668637 | 08/10/1994 02:42:06.54) -38.42 178.16 23.54 2.9
668882 | 08/10/1994 12:02:51.74 -38.43 178.18 25.68 2.8
665895 | 09/10/1994 11:34:02.22] -38.55 178.06 20.90 3.0
668888 | 09/10/1994) 14:18:11.18 -38.63 177.81 32.23 2.8
671614 | 10/10/1994 23:33:05.53 -38.50 | 178.01 20.56 3.2
671618 | 13/10/1994| 02:14:17.54) -38.42 177.84 29.59 3.0
672299 | 14/10/1994| 08:36:42.06/ -38.34 | 178.20 14.89 3.2
672060 | 16/10/1994 09:43:48.61 -37.83 178.38 10.45 2.9
673014 | 20/10/1994 06:44:09.59 -38.03 177.94 28.22 2.9
672690 | 21/10/1994) 14:31:06.11 -38.16 178.29 16.75 3.2
672691 | 22/10/1994 03:39:16.27| -38.10 | 178.22 13.48 2.9
671833 | 22/10/1994 04:50:16.83 -38.35 177.72 48.54 3.3
675146 | 24/10/1994| 01:18:43.58 -38.54 | 178.10 25.49 2.9
679082 | 25/10/1994 03:07:15.74) -38.52 177.92 24.71 2.8
679409 | 25/10/1994) 07:29:49.47| -38.52 177.91 23.63 2.8
679418 | 26/10/1994 23:45:51.21 -38.59 177.90 18.41 2.9
689619 | 29/10/1994 20:51:33.63 -38.67 178.05 22.46 3.8
693503 | 29/10/1994 20:53:11.54) -38.68 178.02 22.85 2.9
678369 | 29/10/1994 22:17:06.97| -38.51 177.83 29.25 3.8
680800 | 04/11/1994 22:40:47.84) -38.38 177.42 5.37 3.1
680829 | 05/11/1994 13:56:53.33 -38.50 | 177.87 45.02 3.4
683290 | 10/11/1994 06:43:55.66| -38.35 178.14 16.11 2.8
689175 | 11/11/1994| 16:10:47.68 -38.10 | 177.94 4.05 2.6
683331 | 13/11/1994 05:59:38.99 -38.51 177.84 37.70 2.8
683333 | 13/11/1994 18:35:26.71 -38.54 | 177.85 26.22 3.6
688300 | 15/11/1994 10:53:47.71 -37.71 177.59 80.37 3.7
694887 | 21/11/1994| 04:47:38.10 -38.18 178.16 16.94 2.8
695581 | 23/11/1994 15:11:39.25 -38.23 178.19 20.85 3.0
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CUSPID Date Origin time | Latitude | Longitude| Depth (km)| Mag. (M})
694945 | 25/11/1994 16:37:47.73 -38.33 | 177.97 24.27 2.8
694964 | 28/11/1994| 17:14:45.21 -38.51 | 177.91 24.76 2.8
696995 | 30/11/1994| 03:36:49.75 -38.54 | 177.97 25.10 3.7
697029 | 05/12/1994 08:37:07.84] -38.88 | 177.55 34.08 3.5
703722 | 06/12/1994 18:08:59.09 -38.23 | 178.19 21.14 3.3
704459 | 14/12/1994 03:36:37.98 -37.88 | 178.00 62.89 3.8

159




	Abstract
	Acknowledgments
	Introduction
	Motivation and Objectives
	Focal Mechanisms 
	P-wave First Motions 
	S-wave Information 
	Focal Mechanism Ambiguities 
	Solution Quality and Sources of Error 

	Previous Methods 
	Optimisation Methods
	Probabilistic Methods

	Contribution of this Thesis
	Outline

	Directional Statistics 
	Circular Data
	von Mises Distribution

	Spherical Data 
	von Mises-Fisher Distribution 
	Bingham Distribution 

	Orientation Data
	Stiefel Manifolds
	Matrix Fisher distribution 
	8-Mode Matrix Fisher distribution 
	Goodness of Fit Testing


	Bayesian Methods 
	Bayes' Theorem 
	Examples
	Lighthouse Problem 
	Earthquake Hypocentre Location 

	Application to Focal Mechanisms 
	Velocity Model Known 
	Velocity Model Unknown 
	Probability Density of P- and T-axes


	Computing 
	R 
	NonLinLoc 
	Running NonLinLoc
	Programs 
	Obtaining Take-off Parameters from NonLinLoc Output 

	Velest 
	Grid Computing 

	Applications 
	Velocity model known --- Raukumara Peninsula 
	Tectonic Setting
	Velocity Model
	Data
	Posterior PDF Particulars
	Results 

	Velocity model unknown --- Kawerau 
	Tectonic Setting
	Velocity Models 
	Data 
	Posterior PDF Particulars 
	Results


	Conclusions 
	Glossary
	References
	Useful Definitions and Results 
	Rotation 
	Euler Angles 
	Passive and Active Rotation
	Rotation Angles and Angular Difference 

	Spherical Coordinates 
	Lambert-Schmidt Projection 
	Averaging Angles 
	Circular Data
	Spherical Data

	Change of Variable Technique 
	Lighthouse Example

	Hypergeometric Functions of a Matrix Argument 
	Numerical Integration
	Trapezium Rule 
	Monte Carlo Integration 

	Tensors 
	Moment Tensor 

	Dirac Delta Function 

	Raukumara earthquake hypocentres 

