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Abstract

The natural product analysis of New Zealand red algae has been neglected in recent years,

and there is obvious scope for the chemical re-evaluation of New Zealand marine red

algae. This study describes the isolation and structure elucidation of 12 new and eight

known compounds from four different genera of red algae. To aid in this process, 34 red

algae were screened in order to generate a digital HSQC spectra mask, a screening tool

developed by the VUW Marine Natural Products group to identify extracts of interest

for further analysis. All 34 algal extracts were screened using the HSQC mask and four

extracts were identified as interesting and analysed in detail. Examination of extracts of

the red algae Plocamium costatum and Ballia callitricha lead to the isolation of three

known metabolites.

Eleven new oxylipins, labillarides A–K (60–70), are reported from the alga Phacelocar-

pus labillardieri. Labillarides A–H (60–67) are polyunsaturated α-pyrone macrocycles,

all of which show similarities to the previously reported compounds isolated from

southern Australian collections of the algae. Labillarides E–H (64–67) are of particular

interest as they represent the two diastereomeric pairs associated with variation at the

C-3 and C-8 chiral centres. Labillarides I (68) and J (69) are related enol macrocycles

while labillaride K (70) is a furan-3-one oxylipin, all of which have biogenic significance

to the macrocyclic α-pyrones. Labillarides A (60), B (61) and I (68) exhibit moderate

cytotoxicity while labillaride C (62) shows moderate antibacterial activity.

A new nitrogenous bromophenol, colensolide A (124), was isolated from the alga

Osmundaria colensoi along with five known bromophenols. The presence of nitrogen-

containing sidechains in bromophenols is unusual but not unprecedented. The bicyclic

nitrogenous moiety observed in colensolide A (124) is proposed to be of histidine origin.

Several of the known bromophenols exhibit antibacterial activity and one shows moderate

cytotoxicity.
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Chapter 1

Introduction

1.1 Natural Products

Throughout the millennia, humans have relied on nature for their basic needs; from

food, shelter and clothing, to flavours, fragrances and medicines.1 In particular, the

use of natural products as medicinal agents presumably predates recorded history. The

earliest known records date back to around 2600 BC and were written on clay tablets

in cuneiform, the earliest known form of written expression.1 Some of the most famous

written records include the Ebers papyrus dating from about 1500 BC, which detailed

plants and some animal organs and minerals used in Egyptian medicine, the Chinese

Materia Medica, with the first recording dating from about 1100 BC, and various

documents detailing the Indian Ayurvedic system, dating from about 1000 BC.1,2 These

early texts describe numerous plants and other natural remedies that have been sources

of extremely important modern medicines. The Ebers papyrus, for example, indicates the

use of willow leaves as an antipyretic, and early English herbalists also recommended the

use of teas made from willow bark for treatment of fever. The active compound, salicin

(1), was identified in the mid 1800s, however it was its derivatives, salicylic acid (2) and

acetylsalicylic acid (aspirin, 3), that were commercialised in the late 1800s.3 Over 100

years later, aspirin is considered the most successful drug worldwide.4
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1.2 The Golden Age of Natural Products

Following the fortuitous discovery of penicillin G (4) from the fungus Penicillium notatum

by Fleming in 1929, and the recognition of its many uses in the 1940s, a new age of

medicine and what has been referred to as the “Golden Age” of antibiotics intensified

the investigation of natural products.1 From the 1940s to the 1970s, micro-organisms

were examined in detail, and were found to be prolific sources of structurally diverse

bioactive metabolites, many of which form important parts of the pharmaceutical industry

today.1,2 From antibacterial compounds such as the penicillins, aminoglycosides and

tetracyclines, and antiparasitic drugs such as the ivermectins, to immunosuppressive

agents such as rapamycin (5), micro-organisms became, and continue to be, excellent

sources of antibiotics.1
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1.3 Modern Drug Discovery

Following the early successes in drug discovery and development programs based on

natural products, many pharmaceutical companies moved away from natural product

discovery in the 1990s and early 2000s.5 The development of high throughput screening

(HTS) put a strain on natural product programs as they struggled to provide the sheer

numbers of compounds desired for HTS. Similarly, the introduction of combinatorial

chemistry and its promotion as a better approach to creating large sets of “drug-like”

compounds led to diminishing numbers of natural product discovery programs in the
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pharmaceutical industry.5

The “chemical space” occupied by natural products is now considered both more varied

and more drug-like than that of combinatorial chemical collections.6 Despite being

the most productive source of leads for new drugs, natural products are still currently

out of fashion with the pharmaceutical industry, who continue to favour combinatorial

techniques.6 Interestingly, combinatorial chemistry has not proved very fruitful so far,

with only one de novo new compound approved for drug use. Sorafenib (Nexavar, 6) is

an anti-tumor compound produced by Bayer and was approved by the United States of

America Food and Drug Administration Agency (FDA) in 2005.7
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The authors of a recently published statistical comparison between three classes of

compounds, marketed drugs, combinatorial compounds, and natural products, suggested

that “by mimicking certain distribution properties of natural compounds, combinatorial

products might be made that are substantially more diverse and have greater biological

relevance.”8 This statement was based on the assumption that most natural products

have a function, and the biosynthetic routes which generate these metabolites have co-

evolved with the specific receptor systems which they target. It is therefore thought that

combinatorial chemistry must also evolve beyond “synthetic feasibility” to focus on the

creation of compounds with desired biological function.8

Despite the trends in the pharmaceutical industry away from natural product discovery, the

field has continued to deliver new drugs and drug leads. In the 25 years from January 1981

to June 2006, nearly two thirds of the small molecule new drugs approved world-wide

were natural products, natural product derivatives, synthetic mimics of natural product

action, or derivatives from natural product pharmacophores.7 Newman and Cragg et

al. have published several reviews on natural products as sources of new drugs.2,7,9 In

their most recent review, they summarise their findings by stating “we strongly advocate

expanding, not decreasing, the exploration of Nature as a source of novel active agents that

3



may serve as the leads and scaffolds for elaboration into desperately needed efficacious

drugs for a multitude of disease indications.”7

1.4 Marine Natural Products

Marine natural products chemistry has been described as “a child of the 1970s”.10

Following the development of the first inexpensive and reliable SCUBA apparatus by

Jacques Cousteau in the 1940s, natural products chemists and biologists began to consider

the marine environment as an untapped resource.11 More than 70% of Earth’s surface is

covered by oceans and experts estimate that marine biological diversity is higher than

that of the tropical rain forests.12 Furthermore, plants and many marine invertebrates that

lack physical forms of protection are sessile and therefore require chemical defenses that

enable an individual organism to establish a particular niche and thrive there.11 These

natural products released into the water are rapidly diluted and therefore need to be highly

potent to have any effect.12 It is this defense strategy, necessary to survive in the highly

competitive marine environment, that results in a tremendous diversity of highly toxic

compounds affecting numerous biological targets and therefore making these organisms

of great interest to natural products chemists.13

Since the 1970s, more than 15,000 structurally diverse natural products with varying

bioactivites have been reported from marine microbes, algae and invertebrates.5 A

clear indication of the potential for drug development from marine natural products,

or compounds derived from them, is the number of compounds currently in clinical or

pre-clinical trials for treatments of a large variety of diseases. As of early 2004, 44

marine-derived natural products were in clinical and pre-clinical trials, including three

in Phase III. Since then, the cone snail toxin known as Prialt (ziconotide, 7) has been

approved by the FDA, making 7 the first “direct from the sea” compound to become a

licensed pharmaceutical.7 Isolated from the venom of the marine snail Conus magus, 7 is a

very potent and highly selective blocker of mammalian neuronal N-type voltage-sensitive

calcium channels, inhibiting the activity of a subset of neurons including pain-sensing

primary nociceptors, making it an ideal treatment for severe chronic pain.14
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The isolation of the C-nucleosides spongouridine (8) and spongothymidine (9) from

the Caribbean sponge Cryptotheca crypta in the early 1950s is considered to be the

first notable discovery of biologically-active compounds from marine sources.2 Found

to exhibit antiviral activity, studies of 8 and 9 eventually led to the development

of cytosine arabinoside (Ara-C, 10) as a commercialised antileukemic agent.11 The

structurally related antiviral compound adenine arabinoside (Ara-A, 11) was synthesised

and produced commercially and later found in the Mediterranean gorgonian Eunicella

cavolini.11 Compounds 10 and 11 are argued by some to be the first drugs derived form

the marine environment,12 though Prialt (7) provided the first direct transition from a

marine organism to man.7
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New Zealand Marine Biodiversity

New Zealand has an extremely biologically diverse marine environment, influenced by

its geographical location, range and complexity of habitats, and the number of major

ocean currents that pass within its Exclusive Economic Zone (EEZ). Spanning over 30◦

of latitude from subtropical to subantarctic waters, and extending from the shallows to the

deep seas, New Zealand’s EEZ encompasses more than 4.2 million km2, around 15 times

its land area (see Figure 1.1).15

There are an estimated 22,000-23,000 species inhabiting New Zealand’s marine environ-

ment, less than 12,000 of which have been identified.15 New Zealand has a particularly
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Figure 1.1. New Zealand Exclusive Economic Zone (outlined in solid white). Image
courtesy of National Institute of Water and Atmospheric Research (NIWA).

rich diversity of marine macro-algae, supporting over 600 species from 80 families,16

making this a viable source for marine natural product evaluation.

1.5 Marine Red Algae

Algae are abundant and ancient organisms that can be found in virtually every ecosystem

on Earth.17 From tiny single-celled species 1 µm in diameter to giant kelp over 50 m

long, the term algae encompasses a diverse range of organisms which fossil records show

were living at least 500 million years ago.18 Algae are polyphyletic as they do not fall

within a single group linked by a common ancestor and therefore cannot be given a

formal unified placement within biological nomenclature.17 The taxonomic descriptions

and the relationships of major evolutionary lineages remain controversial and are subject

to ongoing research.18

The composition and amount of photosynthetic pigments give algae their wide variety of

colours and, for several algal groups, their common names such as brown, red and green

algae (Figure 1.2).17 Red algae (phylum Rhodophyta) are unicellular to multicellular
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organisms. Most red algae are pink to deep red in colour due the the presence of large

quantities of the red accessory pigment phycoerythrin, which obscures the chlorophyll a

and any other pigments present (including chlorophyll b and carotenoids).19,20 It is

generally accepted that most marine algae need a minimum irradiance of 0.05-0.1% of the

available surface light in order to survive. Red algae, however, have been found growing

on a seamount in the Bahamas 268 m deep, where the light is estimated to be as low as

0.0005% of the surface light levels.20 It is thought to be the pigment composition of red

seaweeds, in particular the phycoerythrin concentrations, that allows the absorption of the

spectrum of light which pentrates deeper waters.20

Figure 1.2. A variety of red, green and brown marine algae at low tide.

Currently, the phylum Rhodophyta is divided into two subphyla, six classes, five sub-

classes, 33 orders, 94 families and over 910 genera.21 There are over 6000 species of

Rhodophyta classified, which are common inhabitants of tropical and temperate coastal

marine waters.19 Red algae are the only algae to have a complete lack of flagellate

stages, and are also distinctive in their use of floridean starch as their food reserve.22

The taxonomy of Rhodophyta to the order level is shown in Table 1.1 with blue entries

representing the orders examined in detail in this study.

Red Algal Natural Products

Seaweeds, particularly red algae, were among the first group of marine organisms to be

investigated around the middle of the 20th century, largely due to their ease of accessibility

7



Table 1.1. Taxonomic classification of phylum Rhodophyta to the order level as
presented in AlgaeBase.21

Phylum Sub-phylum Class Sub-class Order

Rhodophyta

Cyanidophytina Cyanidiophyceae Cyanidiales

Rhodophytina

Bangiophyceae Bangiophycidae Bangiales
Goniotrichales

Compsopogonophyceae
Compsopogonales
Erythropeltidales
Rhodochaetales

Florideophyceae

Ahnfeltiophycidae Ahnfeltiales
Hildenbrandiophycidae Hildenbrandiales
Nemaliophycidae Nemaliales

Rhodymeniophycidae

Acrochaetiales
Acrosymphytales
Balbianiales
Balliales
Batrachospermales
Bonnemaisoniales
Ceramiales
Colaconematales
Corallinales
Gelidiales
Gigartinales
Gracilariales
Halymeniales
Nemastomatales
Palmariales
Pihiellales
Plocamiales
Rhodogorgonales
Rhodymeniales
Sebdeniales
Thoreales

Rhodellophyceae Porphyridiales
Rhodellales

Stylonematophyceae Stylonematales
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prior to the introduction of SCUBA. Recently, there has been a renewed interest in

seaweeds, however there is a distinct lack of work on algae from the southern hemisphere,

where there is a diverse range of algae quite different to those found in more tropical and

northerly locations.23

Marine macro-algae are known to produce a plethora of secondary metabolites, many of

which are halogenated. Common compounds include terpenoids such as the squalene-

derived polyether compounds thyrsiferol (12), thyrsiferol 23-acetate (13) and venustatriol

(14), isolated from the genus Laurencia.24–26 These compounds have a range of potent

biological activities, venustatriol (14) exhibits potent antiviral activity,26 while thyrsiferol

23-acetate (13) possesses in vitro cytotoxicity toward P388 murine leukaemia (ED50 =

0.5 nM)25 and selective inhibition of the protein serine/threonine phosphatase PP2A (IC50

= 4–16 µM).27
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Halogenated sesquiterpenes are prevalent in red algae, such as the chamigrenes 15–

17.28,29 The tribrominated chamigrene 15 is cytotoxic in the NCI 60-cell line human

tumour screen and has displayed potent activity against the NCI/ADR-RES breast cancer

cell line.28
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Nitrogen containing compounds such as indoles are also frequently reported. Recent

examples of bioactive indoles include five sulfur-containing polybromoindoles from

Laurencia brongniartii (18–22), of which 21 was active against P388 cells and HT-29
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cells, while 22 was active against P388 cells.30 A further five bisindoles (23–27) were

reported from a Japanese collection of the same alga in the same year.31 Oxylipins, such

as 28 and 29 from Rhodymenia pertusa,32 are highly prevalent and are discussed in detail

in Chapter 3. Bromophenols also represent a significant group of red algal metabolites,

such as the aldose reductase inhibitors 30–32,33 and are discussed in detail in Chapter 4.

N
H

R2

R3

Br
R1

Br
N
H

H
N

R1

Br

Br

Br

Br
R2

18 R1 = Br R2 = SMe R3 = SOMe
19 R1 = H R2 = SOMe R3 = Br
20 R1 = H R2 = SOMe R3 = SOMe

21 R1 = SMe R2 = SOMe
22 R1 = SOMe R2 = SOMe
27 R1 = SMe R2 = Br

N
H

N

SMe

Br

Br

Br

MeS Br
R2

Br
R1 ∆

O

OH

HO OH

23 R1 = H R2 = H
24 R1 = H R2 = Br
25 R1 = Br R2 = H
26 R1 = Br R2 = Br

28
29 ∆ saturated

Br
Br

HO
OH

Br

O

Br

Br
OH

OH

Br
Br

HO
OH

Br Br

R
Br

OH
OH

30 31 R = Br
32 R = H

New Zealand Red Algal Natural Products

A total of 24 new compounds have been reported from New Zealand red algae in

eight papers mainly from the University of Canterbury Marine Chemistry group, dating

from 1978 to 1994.24,34–40 The metabolites include a large number of halogenated

monoterpenes (such as 33 and 34) and sesquiterpenes (35 and 36),37,40 halogenated

furanones (such as 37 and 38),39 and C15 acetogenins (such as 39–43).36,40
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The study of natural products from New Zealand marine macro-algae, and red algae

in particular, has been neglected in recent years. When this study began, the most

recent reported new compounds from a New Zealand macro-algae was a series of C15

acetogenins and sesquiterpenes from a species of the red alga Laurencia, reported in

1994.40 In 2007, Sansom et al. reported two new compounds from the New Zealand

brown alga Pertihalia capillaris.41 With this information in hand, coupled with unusual

activity-independent screening and isolation style employed by the Victoria University of

Wellington Marine Natural Products group, there was obvious scope for the re-evaluation

of New Zealand marine red algae.
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Chapter 2

Red Algae Screening

2.1 Methods of Natural Product Screening and Isolation

The general paradigm used for identifying novel compounds from crude natural product

extracts has not significantly changed in the past few decades.5 The most common

technique employed, bioassay guided isolation, involves testing extracts of biological

material for a specific activity. Extracts with positive biological activity are iteratively

fractionated and the fractions tested in the bioassay until a pure compound is isolated. The

major advantage of this method is the isolation of a compound with guaranteed biological

activity against the desired target.

This “tried and true” technique has served the field of natural products extremely well,

however it has several disadvantages. The screening and isolation technique is, by

definition, very narrowly focused on one activity. Bioassay processing time and cost

can be significant, meaning the isolation process is often slow and expensive. The assay

process is destructive, consuming valuable quantities of the active compound at each step

of isolation and dereplication of known compounds is not possible in a purely bioassay

guided isolation. Finally, an organism may produce multiple interesting bioactive

secondary metabolites in differing quantities, and those found in higher concentrations

can “mask” the activity of the minor metabolites present in the organism.

The efficient analysis of crude extracts requires sensitive techniques. For this reason,

mass spectroscopy (MS) and LC-MS analysis are widely used.42 In contrast to MS,

NMR is a non-destructive method for mixture analysis, however it has not, until recently,

been considered a feasible technique due to its relative insensitivity. Advances in

microcoil and cryogenic technology for NMR probes, however, has significantly reduced

the sample mass requirements, making NMR screening much more viable.43 Compared

to MS analysis, 2D NMR spectroscopic investigation offers more detailed structural
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information, a great advantage in the detection of novel chemotypes. New approaches

to screening and isolating natural products entailing NMR spectroscopic analysis have

been reported, including diffusion-ordered spectroscopy (DOSY) and characterisation of

crude or semipurified extracts using routine NMR spectra.42

Taggi et al. reported the use of 1D and 2D NMR spectroscopic analysis of unpurified

spider venom in the identification and isolation of a family of unusual sulfated nucleoside

derivatives.44 It was found that sufficient data to identify some or all of the components

of interest could be acquired from 1D and 2D NMR spectra of a mixture. When this was

not the case, preliminary structural information was used to develop purification schemes

specific to the functionality of the compounds of interest. Such individualised purification

schemes increased the efficiency of fractionation and reduced the likelihood of changing

the unknown structures in vitro resulting in artefacts of isolation.

The complexity of 2D spectra has been a limiting factor in the use of NMR spectroscopy

in the characterisation of crude extracts.42 Schroeder et al. have recently developed a

screening system involving the stacking of DQF-COSY spectra of fungal extracts in an

effort to make use of this complexity.42 This technique distinguished signals present in

only one spectrum from signals common to several spectra. The multiplicative stacking

with spectra of extracts of one fungal strain derived from seven culturing protocols and

four media controls lead to the isolation of two new natural products. The results were

validated by comparison with LC-MS analysis of the the same extracts. Interestingly, it

was found that the method of ionisation (positive ESI) strongly skewed the representation

of the actual compositions, validating the NMR technique over the use of LC-MS for

semi-quantitative analysis in this instance.

There are several examples of the use of diffusion-edited NMR experiments in the derepli-

cation of known compounds.45,46 This technique “takes advantage of the variance in

translational diffusion of organic compounds as a function of their molecular size.”45 By

measuring DOSY spectra of semi-purified fractions, known components were identified

along with unknown components with a unique 1H NMR profile.46 This work led to the

isolation of two new bromopyrrole alkaloids from a marine sponge.46
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2.2 VUW Screening

Over the last 12 years, the Victoria University of Wellington (VUW) Marine Natural

Products group have developed an in-house NMR screening protocol born out of a novel

isolation procedure developed for crude extracts - cyclic loading. This protocol has

evolved from a 1D NMR-based screening system into one using a digitised 2D NMR

mask, utilising the functional information that can be obtained from an HSQC spectrum

to distinguish between correlations of interesting secondary metabolites and those of

common components within semi-purified extracts.

Cyclic Loading

Crude extracts of marine organisms contain a wide array of compounds with varying

polarity ranging from very polar salts, proteins and sugars, to non-polar fats and steroids.

This characteristic, coupled with the fact that the extract is usually saturated, makes

these mixtures problematic to work with due to their propensity to precipitate with any

adjustment of polarity or concentration. The initial fractionation of an extract is therefore

often considered the most challenging part of an isolation procedure.47

The compounds of interest to natural products chemists, biologically active secondary

metabolites, often possess a mixture of both polar and non-polar properties in order to

traverse both hydrophilic and hydrophobic environments, and are therefore generally

amphiphilic. This allows the compounds to be both partially water soluble and easily

transported across cell membranes and other biological barriers. The components of

biological extracts can therefore be thought to belong in one of three groups; the polar

salts, proteins and sugars at one extreme, the non-polar fats and steroids at the other

extreme, and the compounds of mid-polarity in between. Few primary metabolites are

found in the mid-polarity group, making this “mass window” an ideal target for the first

stage of fractionation of a crude extract.

West and Northcote developed cyclic loading in 1996 to aid in the fractionation

of an extract.48 In its initial form, this technique involves passing a crude extract
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through a column of poly(styrene-divinylbenzene) (PSDVB) resin, allowing the non-polar

metabolites to be adsorbed to the stationary phase. The eluent is then sequentially diluted

with H2O in order to increase its polarity, and is then passed through the same column,

forcing more polar compounds to adsorb to the column. This technique is repeated until

all compounds of interest have adsorbed to the stationary phase – typically achieved by

a four-fold dilution of the original solvent concentration (see Figure 2.1). The principle

behind this approach is that as the eluent is progressively made more polar by dilution

with H2O, mid-polarity compounds will have more of an affinity for the stationary phase

and will therefore adsorb to the column.49

= Polar metabolite

= Non-polar metabolite

Cyclic loading

H2O

= Medium polarity metabolite

Extract passed 
through PSDVB

Eluent diluted 
with H2O

Diluted eluent 
passed back 

through column

Repeat until all 
metabolites of 

interest are adsorbed

Figure 2.1. Cyclic loading.

Once loading has been completed, the column is eluted using a stepped or gradient

system of increasing organic solvent (MeOH or Me2CO) in H2O, such that the increasing

organic modifier concentration partitions the variety of compounds from the initial crude

extract according to polarity.48 The mid-polarity metabolites are targeted during the cyclic

loading process by first desalting the column with H2O, and then batch eluting with

mixes of increasing organic solvent modifiers, typically 30%, 75% and 100% Me2CO

in H2O. Biologically active amphiphilic metabolites tend to elute in the mid-polarity

fraction (75% Me2CO). This process is not perfect and in practice the 75% Me2CO

fraction will often contain some primary metabolites of little interest, while potentially
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interesting compounds are sometimes found in the 30% and 100% Me2CO fractions. It is,

however, a useful first step in order to provide some insight into the secondary metabolite

composition of the extract as a whole.49

A common problem encountered during reversed-phase chromatographic fractionation is

that mixtures of organic solvents and H2O are notoriously problematic to concentrate

under reduced pressure due to their propensity to froth or “bump”. This problem is

overcome by an extension of the cyclic loading method, backloading. Fractions are

cyclic loaded onto a smaller column of PSDVB which can then be eluted with a pure

organic solvent, eliminating the H2O content and therefore enabling easier concentration

by evaporation under reduced pressure.

Development of the NMR Screening Protocol

The in-house NMR screening protocol instigated by the VUW Marine Natural Products

Group has been used for the screening of sponge extracts, or more correctly semi-purified

extracts, for several years. The screening protocol was based on the search for novel

structures, and on the assumption that novel structures often have novel activities that can

be determined after isolation, rather than using a bioassay guided isolation. Also, in-house

methods are preferable to external assays with respect to speed, economy and accuracy

of results.47 However, a major problem with NMR screening is the inability to dissolve

crude marine extracts in any one solvent due to the large range of polarities observed in

the mixture of primary and secondary metabolites. This issue was overcome by the use

of cyclic loading as the first stage of fractionation.

The concept of the screening protocol was to distinguish between common and unusual

correlations present in the NMR spectra of semi-purified sponge extracts by analysing the

soluble 75% Me2CO fraction. Initial work involved only the analysis of 1H NMR spectra,

however this system was found to be rather limited as many of the semi-purified extracts

screened still contained large amounts of primary metabolites, the signals of which

obscured most of the other resonances below 5.5 ppm in the 1D 1H NMR spectrum.47

At this point, the protocol was extended to using 2D NMR spectra, specifically COSY
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and HSQC, to introduce a second dimension in which to separate the resonances.

A paper mask was generated for both the COSY and HSQC spectra by correlating a

number of screen spectra to produce a mask sheet showing positions of correlations

of common metabolite resonances. New COSY or HSQC spectra generated from a

sponge screen were overlaid on the relevant mask sheet and any unusual correlations were

marked. The individual screen was then assessed, considering signal strength, number and

uniqueness of interesting peaks, available mass and organism recollectability.

Although the principal of the paper mask was successful,47 it became evident that the

manual interpretation of the complex spectra was difficult and prone to error, especially

in crowded regions of the spectrum. Also, the effectiveness of the masks themselves

were limited as only 10-20 spectra were used to generate the mask sheets. A more robust

system was required in which the mask would continue to develop as more organisms

were screened. Such detailed analysis is better performed by a computer, and therefore a

digital mask was proposed.

HSQC Mask

A digital HSQC mask was developed by our laboratory for the screening of sponge

extracts. COSY, HSQC and HMBC experiments were considered for the NMR screening

method. The HSQC experiment was preferred to the quicker COSY experiment due to

the increase in functional information obtained from the carbon data. The HMBC was

discounted due to the complexity of the data and the time required to obtain a reasonable

spectrum, however this experiment is now being re-evaluated as a screening tool.

To construct the mask, the HSQC data is exported and added together to generate a

digital mask. Through adding the NMR data sets together, the generated mask displays

common correlations as strong peaks while the less common correlations are weak. This

is illustrated in Figure 2.2, where the common peaks are shown in white, and uncommon

peaks appear as blue. It is important to note that the intensity of the peaks in the original

HSQC spectra are not considered when the mask is generated. The mask simply adds
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“1” if a peak exists in a particular region, or adds “0” if it is absent. Once the mask is

generated, HSQC spectra of newly screened extracts are added to the mask.

The initial HSQC data of red algal extracts were screened with the existing sponge HSQC

mask. This proved unsatisfactory as all the HSQC spectra analysed appeared to be

very interesting with respect to common sponge metabolites. It became evident that the

resonances of common metabolites in red algal extracts were significantly different to

those observed in sponge extracts; the mask is phylum specific. Thirty-four red algae

were therefore screened in order to generate an algal HSQC mask. Figure 2.3 shows the

sponge HSQC mask applied to a seemingly interesting algal extract (a), and the algal mask

applied to the same data showing, in fact, very few unique correlations (b), illustrating this

phylum specificity. When the mask has been applied to an HSQC, common correlations

are displayed in green, while unusual correlations are red.

2.3 Algal Screening

A standard protocol for the screening of sponge extracts through 2D NMR experiments

was developed by our laboratory (see Appendix A).47–49 This protocol involves the

extraction of ∼100 g (wet weight) of sponge material and analysis of the 2D NMR data

of the 75% Me2CO fraction following cyclic loading. In this study, it was found that

the procedure was easily adapted to macro-algae though, with the acquisition of a more

powerful NMR instrument, less material was required in order to obtain reasonable NMR

data. This increase in sensitivity coupled with the finding that the red algal 75% fractions

were, on average, slightly richer than those of the sponge extracts meant that the screening

protocol could be applied to as little as 2 g of macro-algae.

In this study, 34 algal extracts were screened using the HSQC mask and four extracts were

analysed in detail. Two of these led to the isolation of novel compounds and are detailed

in later chapters (Phacelocarpus labillardieri, see Chapter 3, Osmundaria colensoi, see

Chapter 4). The remaining two extracts are discussed briefly here.
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(a) Common correlations in the algal HSQC mask.

(b) The full algal HSQC mask.

Figure 2.2. Algal HSQC mask showing the common correlations in white and the
uncommon correlations in blue.
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(a) Sponge HSQC mask applied to Curdiea coriacea.

(b) Algal HSQC mask applied to Curdiea coriacea.

Figure 2.3. HSQC mask of C. coriacea showing the common correlations in green and
the unusual correlations in red.
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Plocamium costatum

The spectra obtained from screening Plocamium costatum (126 g, collected from

Doubtless Bay, Northland, Figure 2.4) was recognised as being interesting using the

HSQC mask (Figure 2.5). Inspection of the screening NMR spectra revealed what

appeared to be one major compound (Figure 2.6).

One further step of purification of the 75% Me2CO fraction lead to the isolation of the

known monoterpene costatone (44). Originally isolated in 1976 from two separate South

Australian collections of P. costatum, 44 was first synthesised in 1984.50–52 The NMR

assignment of 44 is well documented in the literature, therefore it is unnecessary to give a

Figure 2.4. Plocamium costatum. Image courtesy of Malcolm Francis.

Figure 2.5. HSQC mask of P. costatum showing the common correlations in green and
the unusual correlations in red.
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(a) 1H spectrum (b) COSY spectrum

Figure 2.6. NMR spectra of the 75% Me2CO in H2O screening fraction of P. costatum.

detailed analysis of the sample isolated in this study. Full NMR data for 44 can be found

in Appendix B. The optical rotation of the isolated sample of 44 ([α]25
D −48.0 (c 1.12,

CH2Cl2)) was in excellent agreement with that reported in literature ([α]25
D −54.0 (c 1.02,

CHCl3)),51 suggesting the same absolute configuration. As costatone (44) accounted for

all the correlations of interest present in the screen spectra, further analysis of the extract

was discontinued.

O
HO

Br

Cl

Cl

Br

44

Ballia callitricha

The screen spectra of an Owhiro Bay, Wellington collection of Ballia callitricha (Figure

2.7) displayed interesting resonances attributed to aromatics and low strength resonances

in the aliphatic region (Figure 2.8).

A largescale extraction of the red algae was performed (664 g), from which the known

compounds, 1H-indole-3-carboxaldehyde (45) and (E)-N-formyl-3-(1H-indol-3-yl)prop-

2-enamide (46), were isolated. Compound 45 has long been known as a synthetic

compound, but has also been isolated from various cruciferous vegetables as well as

from the marine environment.53–56 Compound 46 was first reported in 1992 from the red
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Figure 2.7. Ballia callitricha. Image courtesy of Malcolm Francis.

Figure 2.8. HSQC mask of B. callitricha showing the common correlations in green and
the unusual correlations in red.

alga Chondria sp., along with chondriamides A (47) and B (48).56 Both 45 and 46 were

considered possible oxidation products of chondriamide A (47), as the two were formed

when a methanolic solution of 47 was left standing overnight.56

N
H

O
H

N
H

N
H

H

OO

N
H

N
H

O

H
N

R
45 46 47 R = H

48 R = OH

A detailed analysis of the NMR data obtained in this study led to the reassignment of two

olefinic methines in (E)-N-formyl-3-(1H-indol-3-yl)prop-2-enamide (46). Specifically,
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the assignment of the 1H and 13C resonances for C-10 and C-11 were interchanged. The

revised NMR data is presented in Table 2.1.

Table 2.1. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for
(E)-N-formyl-3-(1H-indol-3-yl)prop-2-enamide (46).

55

66

77
88

99
44

N
H

11

22

33
1010

1111
1212 N

H
1313

12'12' H

OO

46
13C or 15N 1H HMBC

Pos δ (ppm) mult δ (ppm) mult J (Hz) COSY (1H to 13C or 15N)
1 −240.5 NH
2 133.7 CH 7.75 s 1,3,7*,8,9,10
3 114.2 C
4 121.3 CH 7.92 d 7.4 5 3,6,8,9
5 122.5 CH 7.22 td 7.2, 1.4 4,6 7,9
6 124.1 CH 7.25 td 7.2, 1.4 5,7 4,7
7 113.3 CH 7.46 d 7.3 6 5,9
8 139.4 C
9 126.5 C

10 141.7 CH 8.09 d 15.9 11 2,3,9,11,12
11 112.5 CH 6.62 d 15.1 10 3,12
12 169.5 C
13 † NH
12′ 165.2 CH 9.21 s

*Long-range correlation.
†Not observed.

Further examination of the fractions generated during this isolation indicated that all peaks

of interest were clearly related indole-containing compounds. Indoles are well studied

both as natural products and as synthetic compounds and therefore analysis of the extract

was discontinued. Full NMR data for 1H-indole-3-carboxaldehyde (45) can be found in

Appendix B.

2.4 Summary

Over the past 12 years, the VUW Marine Natural Products group have developed a unique

in-house NMR screening protocol. In this study, 34 red algal extracts were screened in

order to generate a digital algal HSQC mask which was used to analyse the extracts using

the NMR based screening protocol. Four extracts were analysed in detail, two of which

are discussed in subsequent chapters. The remaining two extracts produced three known

compounds, costatone (44), 1H-indole-3-carboxaldehyde (45) and (E)-N-formyl-3-(1H-

indol-3-yl)prop-2-enamide (46).

24



Chapter 3

Labillarides A to K: Eleven New Oxylipins from

Phacelocarpus labillardieri

3.1 Phacelocarpus labillardieri

In this study, extracts of a number of specimens of the New Zealand marine macro-algae

Phacelocarpus labillardieri [(Mertens ex Turner) J. Agardh] (Figure 3.1) were examined.

P. labillardieri, of the monotypic family Phacelocarpaceae, is found primarily in the

southern hemisphere, with a northern distribution in New Zealand waters (taxonomy see

Table 3.1). It is an erect plant and is characterised by narrow, parallel-sided fronds with

“marginal teeth of even length giving a minute saw-edge.”57

The NMR spectra obtained from screening P. labillardieri with our standard protocol

displayed a large number of clusters recognised as being of great interest using the HSQC

mask (Figure 3.2). These included two clusters of olefinic methines centred around δH 5.5

and δC 130, and δH 6.0 and δC 100, respectively.

There have been a number of compounds reported from Australian specimens of

Phacelocarpus labillardieri, most of which form a novel group of polyunsaturated

macrocycles containing α- and γ-pyrones. In 1982, the first of the macrocyclic γ-pyrone

Figure 3.1. Phacelocarpus labillardieri. Image courtesy of Malcolm Francis.
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Table 3.1. Taxonomic classification of genus Phacelocarpus from order Gigartinales as
presented by AlgaeBase.21

Order Family Genus

Gigartinales

Acrotylaceae . . .
Areschougiaceae . . .
Blinksiaceae . . .
Calosiphonaceae . . .
Catenellopsidaceae . . .
Caulacanthaceae . . .
Chondriellaceae . . .
Corynocystaceae . . .
Corynomorphaceae . . .
Crossocarpaceae . . .
Cruoriaceae . . .
Cubiculosporaceae . . .
Cystocloniaceae . . .
Dicranemataceae . . .
Dumontiaceae . . .
Endocladiaceae . . .
Furcellariaceae . . .
Gainiaceae . . .
Gigartinaceae . . .
Gloiosiphoniaceae . . .
Haemeschariaceae . . .
Hypneaceae . . .
Kallymeniaceae . . .
Mychodeaceae . . .
Mychodeophyllaceae . . .
Nizymeniaceae . . .
Peyssonneliaceae . . .
Phacelocarpaceae Phacelocarpus
Phyllophoraceae . . .
Polyidaceae . . .
Pseudoanemoniaceae . . .
Rhizophyllidaceae . . .
Rissoellaceae . . .
Sarcodiaceae . . .
Solieriaceae . . .
Sphaerococcaceae . . .
Stictosporaceae . . .
Tichocarpaceae . . .
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Figure 3.2. HSQC mask showing the common correlations in green and the unusual
correlations in red.

group were reported from southern Australian collections of P. labillardieri (49–51),

along with a straight-chain α-pyrone (52).58 The geometry of the enol-ether double bond

of 49 was not confirmed until 1986, when the NMR data reported for 49 was compared

with those of four new related compounds reported by Shin et al. from another Australian

collection of P. labillardieri. The four new compounds consisted of the (E) γ-pyrone (53)

and α-pyrone (54) enol-ether isomers of 49, a dibrominated macrocyclic α-pyrone (55)

and a hydroxylated γ-pyrone (56) macrocycle.59 In 1990, 57, the dibrominated analogue

of 50, was reported from a Tasmanian collection of P. labillardieri.60 Compound 57 was

reported along with the isolation of β-farnesene (58), a common terrestrial sesquiterpene

which is rarely reported from marine organisms. Finally, the tenth member of this class,

a macrocyclic γ-pyrone (59), was reported in 1995 from a South Australian collection

of P. peperocarpus (now considered a synonym of P. labillardieri).61 The (Z) geometry

of the enol-ether of 50 was also confirmed in this study. The geometry of the enol-ether

of 56 remains undetermined. In 2003, the use of ring closing alkyne metathesis allowed

the synthesis of a model of the core structure of the macrocyclic pyrone derivatives.62 To

date, there has been no report of a total synthesis to confirm the proposed structure of any

of these macrocyclic compounds.
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Very little biological activity has been reported for this class of compounds, though some

crude extracts of P. labillardieri were shown to exhibit neuromuscular blocking activity,

which may be due to pyrones of this type.58 Compound 49 has been shown to act as a

potent deterrent to marine herbivorous shellfish, snails and other gastropods, implying its

likely involvement in the chemical defense of the algae against predators.63 Moreover, a

study of phospholipase A2 inhibitors from marine algae revealed that 51 exhibited potent

activity (93% inhibition of bee venom PLA2 at 4.4 µM).64
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3.2 Isolation

Purification of the screen extract and two further bulk extracts of collections of P.

labillardieri from Rimariki Island, Northland, by a series of reversed-phase (PSDVB)

and normal-phase (DIOL) chromatographic steps ultimately led to the isolation of eight

new α-pyrone macrocycles, named labillarides A–H (60–67), two enol macrocycles,

labillarides I and J (68 and 69) and a furan-3-one oxylipin, labillaride K (70).

The NMR spectra of an extract of P. labillardieri obtained from the single bench-top

reversed-phase chromatographic separation (PSDVB) typical to our screening protocol

(Section 2.2), indicated the presence of one major constituent with lower levels of

structurally-related compounds (Figure 3.3).

(a) 1H spectrum (b) HSQC spectrum

Figure 3.3. NMR spectra of a semi-purified fraction of P. labillardieri.

Several different bench-top chromatographic techniques were employed in the attempts

to isolate the compounds of interest. Further reversed-phase (PSDVB) chromatography

gave poor separation, suggesting reasonably non-polar compounds. In contrast, normal-

phase media appeared to give good separation on silica gel TLC plates. However,

chromatography on silica gel led to degradation of material, suggesting acid-sensitivity. It

was therefore found that the best results were achieved on DIOL in both the early stages

of separation and in the final steps of isolation by HPLC.

The overall isolation strategy involved an initial reversed-phase (PSDVB) separation,

followed by two open column DIOL steps to yield several non-polar fractions from the

first stage (CH2Cl2) and polar fractions from the 50% MeOH in CH2Cl2 strip. Fractions
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were then either purified further by bench-top DIOL using mixtures of CH2Cl2 in pet.

ether or EtOAc in CH2Cl2 as the mobile phase, or purified directly by DIOL HPLC using

varying mixtures of IPA in hexane to yield labillarides A–K (60–70) (Scheme 3.1).

30% 75%

HP20HP20

100% Me2COH2O

P. labillardieri
Extracted twice 
in MeOH

CH2Cl2

DIOLDIOL

50% MeOH 
in CH2Cl2

Labillarides A-D and I-K

DIOL HPLC DIOL HPLC

Labillarides E-H

Scheme 3.1. Schematic of the overall isolation strategy for labillarides A–K (60–70).

After the initial purification of the screen extract and the first bulk extract, it was

discovered that pure labillarides A–D quickly degraded when stored above −20 ◦C. To

counter this instability, samples obtained during the purification of the second bulk extract

were stored in liquid nitrogen. An overview of the actual individual isolation procedures

for these 11 metabolites is presented in Scheme 3.2.
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3.3 Labillaride A

Labillaride A (60) was isolated as a colourless oil (11.8 mg in total). Positive-ion

mode HRESIMS analysis of 60 gave rise to a single pseudomolecular ion indicative

of a molecular formula of C22H30O3 (343.2280 [M + H]+, ∆ 3.6 ppm), requiring eight

double-bond equivalents. The 13C NMR spectrum contained only 21 distinct resonances

while the 1H NMR spectrum in CDCl3 accounted for all 30 protons. The absence of one

resonance in the 13C NMR spectrum suggested symmetry or overlap within the molecule.

A multiplicity-edited HSQC experiment confirmed correlations between all the observed

proton resonances and carbon resonances indicating that all protons were attached to

carbon. Identifiable features of the NMR spectra included three strongly deshielded non-

protonated carbons (δC 166.7, 165.4 and 170.0), two strongly shielded olefinic methines

[(δC 91.5, δH 5.41) and (δC 99.5, δH 5.97)], six typical olefinic methines [(δC 122.7,

δH 5.35), (δC 127.3, δH 6.39), (δC 127.3, δH 5.96), (δC 128.7, δH 5.54), (δC 134.4, δH 5.47)

and (δC 135.4, δH 5.54)], a deshielded oxymethine (δC 78.5, δH 4.78) and a methyl triplet

(δC 14.3, δH 0.98, t, 7.5 Hz).

Beginning at the methyl terminus, analysis of 1H – 1H coupling led to the construction

of the 1,5,7-triene containing substructure (C-1 to C-13) (see Figure 3.4). A series of

sequential COSY correlations starting from the methyl triplet (C-1: δC 14.3, δH 0.98)

to a methylene (C-2: δC 20.9, δH 2.06) to an olefinic methine (C-3: δC 135.4, δH 5.54)

to a second olefinic methine (C-4: δC 122.7, δH 5.35) established the first section of

the substructure. The geometry of the double bond was determined to be (Z) on the

basis of the observed coupling constants (10.3 Hz, H-3 and 10.7 Hz, H-4) and an NOE

enhancement between H2-2 and H-5. Further COSY correlations from H-4 to a methylene

(C-5: δC 33.4, δH 2.46) to a deshielded oxymethine (C-6: δC 78.5, δH 4.78) to a olefinic

methine (C-7: δC 128.7, δH 5.54) and to a further olefinic methine (C-8: δC 127.3, δH 6.39)

extended this substructure to a second double bond. The coupling constants (15.6 Hz, H-7

and 15.4 Hz, H-8) defined ∆7-8 as (E). Observed NOE enhancements between H-6 and

H-8 confirmed this assignment. Finally, a series of sequential COSY correlations starting

from H-8 to a fifth olefinic methine (C-9: δC 127.3, δH 5.96) to the final typical olefinic
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methine (C-10: δC 134.4, δH 5.47) to three methylenes in turn [(C-11: δC 26.5, δH 2.16

and 2.06), (C-12: δC 27.7, δH 1.43 and 1.24) and (C-13: δC 27.5, δH 1.35 and 1.18)]

completed the substructure. The geometry of the third double bond was defined as (Z) by

the coupling constants of 10.7 and 10.9 Hz for H-9 and H-10 respectively, and through

observed NOE enhancements between H-8 and H2-11. Observed HMBC correlations

confirmed this substructure (see Table 3.3).
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113344

5566
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NOE
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1414

HHH OH

H H H H

Figure 3.4. Selected COSY correlations and NOE enhancements establishing the
1,5,7-triene substructure of labillaride A (60).

An α-pyrone containing substructure was established from a distinctive deshielded

methylene (C-17: δC 33.0, δH 2.52) which exhibited a COSY correlation to a second

methylene (C-16: δC 26.1, δH 1.73). An HMBC correlation from H2-16 to a downfield

non-protonated carbon (C-18: δC 166.7) along with HMBC correlations from H2-17 to

C-18 and a strongly shielded olefinic methine (C-19: δC 99.5, δH 5.97) suggested the

presence of a highly-polarised double bond. Reciprocal HMBC correlations from H-19

to C-17 and C-18 confirmed this connectivity (see Figure 3.5).

1818

1919
17171616

H H H

H H

COSY
HMBC

Figure 3.5. Selected COSY and HMBC correlations establishing part of the α-pyrone
containing substructure of labillaride A (60).

Further HMBC correlations from H-19 to a second downfield non-protonated carbon

(C-20: δC 170.0) and to a second heavily shielded olefinic methine (C-21: δC 91.5,

δH 5.41) along with a pseudo-allylic COSY correlation between H-19 and H-21 suggested

a second polarised double bond. The polarised nature of the two double bonds is

consistent with oxygen attachment at C-18 and C-20. Finally, HMBC correlations from

H-21 to the third deshielded non-protonated carbon (C-22: δC 165.4) completed the

connectivity of the carbon chain. With no further olefinic carbons available to complete
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a third double bond, C-22 was assigned as a carbonyl. The upfield nature of the C-22

resonance suggested an α,β-unsaturated ester moiety, and with a precedence for α-pyrone

containing compounds from this organism, a connection was made between C-18 and

C-22 through a lactone linkage (see Figure 3.6). The γ-pyrone alternative was dismissed

due to the lack of a ketone carbonyl 13C resonance around 180 ppm, as observed in the

known γ-pyrone compounds.59
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Figure 3.6. Selected COSY and HMBC correlations establishing the α-pyrone
containing substructure of labillaride A (60).

The chemical shifts assigned to the α-pyrone moiety of 60 compare very favourably to

those of the only known compound (54) containing an equivalent α-pyrone, with the

exception of the C-21 olefinic methine (see Table 3.2). In the original isolation paper, the

authors state that a comparison of the 13C chemical shifts of 54 to 4-methoxy-6-methyl-

2-pyrone (71) “gave excellent agreement”.59 A review of the literature found that the

chemical shift of the olefinic methine at the α-position of the lactone carbonyl in 71, at

δC 87.0, is in fact considerably closer to that of 60 (δC 91.5) than 54 (δC 114.2). These

discrepancies suggest an error in tabulating the data of 54 in the original isolation paper,

and is consistent with the chemical shift assignment of labillaride A (60).

Table 3.2. Chemical shift differences of the α-pyrone moiety of the known compound
(54) and labillaride A (60).

O
1818

1919
2020

21212222

O

O1717

54* 60 Difference

Pos mult δC δH δC δH δC δH

δ (ppm) δ (ppm) δ (ppm) δ (ppm) ∆δ (ppm) ∆δ (ppm)
17 CH2 32.3 2.48 33.1 2.52 -0.8 -0.04
18 C 165.1 166.7 -1.6
19 CH 99.0 5.89 99.6 5.97 -0.6 -0.08
20 C 169.0 170.1 -1.1
21 CH 114.2 5.20 91.5 5.41 22.7 -0.21
22 C 166.9 165.3 1.6

*Shin, J.; Paul, V. J.; Fenical, W. Tetrahedron Lett. 1986, 27, 5189–5192.

Two carbons, four protons and one double-bond equivalent remained unaccounted for in

the structure. The multiplicity-edited HSQC displayed a large, unresolvable correlation
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at δC 27.1 and δH 1.23 which was initially assigned as one methylene pair. However,

closer inspection of the 13C NMR spectrum suggested this resonance may account for

both remaining carbons due to its apparent double-intensity compared to those of other

methylenes in the same region (see Figure 3.7). The intensity of a 13C signal is influenced

by such things as the nuclear Overhauser effect (NOE) and relaxation time (T1). Unlike

1H NMR spectra, the integrated peak areas are not a reliable indicator of the number

of carbons the peaks represent as relaxation times vary over a wide range and the NOE

response is not the same for all 13C nuclei.65 However, a comparison may be possible

between carbons in similar chemical environments, assuming they have similar relaxation

delays and NOE influences. Due to the high resolution of 1H broadband decoupled

carbon resonances, their relative integrations can be approximated from their relative

heights. The approximate double-intensity of the δC 27.1 resonance led us to propose

the coincidence of the 13C chemical shifts of two carbons. The unresolvable correlation

in the HSQC was therefore assigned as two methylene pairs with overlap in both the

carbon and proton dimensions. This was further supported by the relative integration of

the multiplet at ∼1.23 ppm in the 1H NMR spectrum.

Figure 3.7. Methylene region of the 13C NMR spectrum of labillaride A (60).

The overlapping of the chemical shifts for these methylenes suggested their presence in
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a short alkyl chain. COSY correlations observed from δH 1.23 to H-13a, H-13b and

H2-16 suggested that C-13 and C-16 were connected via at least one of the methylene

pairs. No further COSY correlations involving δH 1.23 were observed, suggesting that

the two methylenes were in fact next to each other. This proposal is supported by the

observation of HSQC-TOCSY correlations from H2-16 to δH 1.23, H-13a and H-13b.

Similarly, selective excitation of H2-16 in a series of 1D-TOCSY experiments with

increasing mixing times sequentially revealed [H2-15 and H2-14], H-13a , H-13b and

then H-12a and H-12b. Further support of the assignment of the alkyl chain between

C-13 and C-16 was obtained from an HMBC correlation from H2-16 to resonances at

δC 27.1, and from δH 1.23 to C-13 (see Figure 3.8). Finally, with all three oxygens of the

molecular formula accounted for in the α-pyrone substructure, an ether bridge between

C-6 and C-20 was proposed, connecting the two substructures. This was supported by an

HMBC correlation from H-6 to C-20.
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Figure 3.8. Selected TOCSY and HMBC correlations connecting the substructures of
labillaride A (60), completing the alkyl chain.

Formation of the macrocyclic ring accounted for all of the elements of the molecular

formula. The five double bonds, the ester carbonyl and the macrocycle accounted for

seven of the eight required double-bond equivalents and thus confirmed a lactone linkage,

satisfying the molecular formula. The final structure of labillaride A is therefore proposed

to be 60. NMR data for 60 is presented in Table 3.3.
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3.4 Labillaride B

A total of 17.3 mg of labillaride B (61) was isolated as a colourless oil. Positive-ion mode

HRESIMS analysis of 61 showed a characteristic pseudomolecular ion cluster ([M + H]+ :

[M + 2 + H]+; 1 : 1) indicative of the presence of bromine and consistent with a molecular

formula of C22H31O3Br (423.1522 [M + H]+, ∆ 1.7 ppm), requiring seven double-bond

equivalents. The 13C NMR spectrum contained 22 distinct carbon resonances while

the 1H NMR spectrum accounted for all 31 protons, which a multiplicity-edited HSQC

experiment confirmed were all attached to carbon. Identifiable features of the NMR

spectra again included three strongly deshielded non-protonated carbons (δC 165.0, 166.8

and 170.2), two strongly shielded olefinic methines [(δC 91.2, δH 5.49) and (δC 99.3,

δH 5.90)], four typical olefinic methines [(δC 124.7, δH 5.53), (δC 125.1, δH 5.33),

(δC 133.7, δH 5.50) and (δC 135.7, δH 5.75)], a deshielded oxymethine (δC 76.9, δH 5.08)

and a methyl triplet (δC 14.3, δH 0.99, t, 7.6 Hz).

The structure of 61 was elucidated in a similar fashion to labillaride A (60), beginning at

the methyl terminus. A COSY correlation from the methyl triplet (C-1: δC 14.3, δH 0.99)

to a methylene (C-2: δC 20.9, δH 2.10) to an olefinic methine (C-3: δC 133.7, δH 5.50)

to a second olefinic methine (C-4: δC 125.1, δH 5.33) to a methylene (C-5: δC 27.0,

δH 2.99 and 2.96) to a third olefinic methine (C-6: δC 135.7, δH 5.75) to the final typical

olefinic methine (C-7: δC 124.7, δH 5.53) to a deshielded oxymethine (C8: δC 76.9,

δH 5.08) to a deshielded methine (C-9: δC 54.1, δH 4.18) to a methylene (C-10: δC 33.3,

δH 2.02 and 1.08) to a second methylene (C-11: δC 22.0, δH 1.55 and 1.16) established a

diene substructure (Figure 3.9, substructure A). The geometry of both double bonds were

determined to be (Z) on the basis of the observed 1H – 1H coupling constants between

H-3 and H-4, and H-6 and H-7 (10.6 and 10.9 Hz, respectively). Both assignments were

supported by observed NOE enhancements from H2-5 to H2-2 and between H2-5 and H-8.

Again, a distinctive deshielded methylene (C-17: δC 34.3, δH 2.67 and 2.35) was used

to establish an α-pyrone substructure. A series of sequential COSY correlations were

observed starting from both proton resonances of CH2-17 to a second methylene (C-16:

δC 24.7, δH 1.83 and 1.61) to a third methylene (C-15: δC 27.1, δH 1.48 and 1.14). HMBC
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Figure 3.9. Selected COSY and HMBC correlations and NOE enhancements
establishing two substructures of labillaride B (61).

correlations from both proton resonances of CH2-16 to a deshielded non-protonated

carbon (C-18: δC 166.8) along with an HMBC correlation from both proton resonances of

CH2-17 to a strongly shielded olefinic methine (C-19: δC 99.3, δH 5.90) again suggested a

highly-polarised double bond. HMBC correlations from H-19 to a second downfield non-

protonated carbon (C-20: δC 170.2) and to a second strongly shielded olefinic methine

(C-21, δC 91.2, δH 5.49) along with a pseudo-allylic COSY correlation between H-19 and

H-21 established a second highly-polarised double bond. Finally, an HMBC correlation

from H-21 to the final non-protonated carbonyl carbon (C-22: δC 165.0) completed the

connectivity of the carbon chain and suggested an α-pyrone substructure the same as

labillaride A (60). The highly-polarised nature of the two double bonds is consistent with

oxygen attachment at C-18 and C-20, while the deshielded nature of the C-22 carbonyl

once again suggested a lactone moiety (Figure 3.9, substructure B). No long-range HMBC

correlations were observed from either the proton resonances of CH2-17 or CH-19 to

C-22, however the carbon and proton chemical shifts of the α-pyrone system compared

very favourably with those of labillaride A (see Table 3.4).

Table 3.4. Chemical shift differences of the α-pyrone moiety for labillarides A (60) and
B (61).

O
1818

1919
2020

21212222

O

O1717

Labillaride A (60) Labillaride B (61) Difference

Pos mult δC δH δC δH δC δH

δ (ppm) δ (ppm) δ (ppm) δ (ppm) ∆δ (ppm) ∆δ (ppm)
17a CH2 33.1 2.52 34.3 2.67 -1.2 -0.15
17b 2.35 0.17
18 C 166.7 166.8 -0.1
19 CH 99.6 5.97 99.3 5.90 0.3 0.07
20 C 170.1 170.2 -0.1
21 CH 91.5 5.41 91.2 5.49 0.3 -0.08
22 C 165.3 165.0 0.3
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An HMBC correlation from H-8 to C-20 established an enol ether oxygen bridge between

these centres, as in labillaride A (60). With only three diastereotopic methylene pairs

and a bromine left to assign, the bromine atom was tentatively assigned to position C-9

based on the somewhat downfield 13C chemical shift. One-bond carbon-proton coupling

constants are dependent on a variety of factors, including increasing with dihedral angular

distortion and substitution of electron-withdrawing groups.66 This precedence supported

the attachment of bromine, an electronegative atom, to C-9, resulting in a large 1JCH value

for this carbon (155 Hz). The value also compared favourably with that observed for the

methine position of 2-bromobutane (152 Hz).

Analysis of the HMBC spectrum of labillaride B (61), along with 1D-TOCSY and HSQC-

TOCSY experiments, led to the construction of the macrocycle connecting the alkyl

chains of the diene and α-pyrone substructures. An HMBC correlation from both proton

resonances of CH2-10 to a methylene (C-12: δC 25.9, δH 1.34 and 1.26) positioned

this carbon next to C-11. Further HMBC correlations from both proton resonances of

CH2-11 to a methylene (C-13: δC 26.4, δH 1.14 and 1.01), and from H-12a to the final

methylene (C-14: δC 26.8, δH 1.34 and 1.24) suggested the linear arrangement of C-10 to

C-14, accounting for all proton and carbon resonances. An HMBC correlation from both

proton resonances of CH2-16 to C-14 positioned this carbon next to the C-15 methylene,

completing the macrocyclic ring (Figure 3.10).

Selective excitation of H-9 in a series of 1D-TOCSY experiments with increasing mixing

times sequentially revealed H-10a,b, H-11a,b and then H-12a,b. Similarly, selective

excitation of H-17a sequentially revealed H-16a,b, H-15a,b H-14a,b and then H-13a,b.

These data supported the linear arrangement of C-11 to C-15. The assignment of this

alkyl chain was also supported by an HSQC-TOCSY experiment with a mixing time

of 80 ms. The HSQC-TOCSY experiment displays the TOCSY data differentiated

by the 13C chemical shifts of the carbons to which the excited protons are attached.

TOCSY correlations were observed from the proton resonances of CH2-10 to H-12a and

H-12b, from the proton resonances of CH2-12 to H-14a and H-14b, and from the proton

resonances of CH2-14 to H-16a and H-16b.
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Figure 3.10. Selected TOCSY and HMBC correlations connecting the substructures of
labillaride B (61).

The relative configuration of labillaride B (61) was tentatively assigned on the basis of

3JHH values and NOE enhancements observed in a series of 1D-NOESY experiments.

The 1H – 1H coupling constants of 8.7 Hz for H-8 and 8.5 Hz for H-9 implied a dihedral

angle of either approximately 0◦ or 180◦ between these vicinal protons. The eclipsed

conformation with the protons at a dihedral angle of 0◦ was discounted on the basis of the

significant steric hindrance expected due to the overlap of several large functional groups.

The anti conformer was therefore considered more reasonable (Figure 3.11).
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Figure 3.11. Steric hindrance discounting an eclipsed relationship between H-8 and H-9
in both possible relative configurations of labillaride B (61).

Similarly, the coupling constants of 4.4 Hz for H-9 to H2-10, 4.7 Hz for H-10a to H-9,

and 5.0 Hz for H-10b to H-9 suggested a dihedral angle of either approximately 45◦ or

135◦ for each vicinal relationship. Selective excitation of H-8 showed a very strong NOE

enhancement to H-11b, which could only be achieved when each of the proton resonances

of CH2-10 were in a gauche relationship to H-9 (dihedral angle of ∼45◦) (Figure 3.12).

Selective excitation of H-9 showed NOE enhancements to H-7 and H-19. With a relative
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Figure 3.12. The selected NOE enhancement establishing a gauche relationship between
H-9 and H-10a, and H-10b in both possible relative configurations of labillaride B (61).

configuration of R*, R* or R*, S*, and considering the two conformer restrictions detailed

above, these NOE enhancements force the structure into one of two configurations, shown

in Figure 3.13. The figure shows that the R*, R* diastereomer would force either the

bromine atom (as in the figure) or ∆6,7 into the macrocycle, causing considerable electron

repulsion. This diastereomer is therefore considered possible but unlikely to adopt one

of these two confirmations. In contrast, the R*, S* diastereomer is more plausible as

the structure places the bromine atom in a more favourable position outside of the ring,

while satisfying the NOE enhancements observed. The relative configuration is therefore

tentatively assigned as R*, S*, though there is not enough evidence to be conclusive. The

final structure of labillaride B is therefore tentatively determined to be 61. NMR data for

61 is presented in Table 3.5.

R*,R* R*,S*

Figure 3.13. Selected NOE enhancements suggesting the R*,S* relative configuration of
labillaride B (61).

42



Ta
bl

e
3.

5.
13

C
(1

50
M

H
z)

an
d

1 H
(6

00
M

H
z)

N
M

R
da

ta
(C

D
C

l 3
)f

or
la

bi
lla

ri
de

B
(6

1)
.

13
C

1 H
H

M
B

C
H

SQ
C

-T
O

C
SY

Po
s

δ
(p

pm
)

m
ul

t
1 J

C
H

(H
z)

δ
(p

pm
)

m
ul

t
J

(H
z)

C
O

SY
(1 H

to
13

C
)

N
O

E
(1 H

to
1 H

,8
0

m
s)

O 1818

1919
2020

2121
2222O

O
1717 1616

1515

1414

1313

1212

1111

101099
88

77

66

55

44

33

22
11

B
r

61

1
14

.3
C

H
3

12
7

0.
99

t
7.

6
2

2,
3

2,
3

2
20

.9
C

H
2

12
6

2.
10

qu
in

7.
5

1,
3

1,
3,

4
1,

3,
4

3
13

3.
7

C
H

16
2

5.
50

dt
t

10
.6

,7
.2

,1
.9

2,
4

1,
2,

5
1,

2,
4,

5
4

12
5.

1
C

H
16

3
5.

33
dt

t
10

.6
,7

.1
,1

.5
3,

5a
,5

b
2,

5
3

1,
2,

3,
5a

,5
b,

6
5a

27
.0

C
H

2
12

7
2.

99
dt

15
.6

,7
.0

4,
5b

,6
,7

3,
4,

6,
7

2,
6,

8,
21

3,
4,

6,
7

5b
12

7
2.

96
dt

15
.6

,7
.0

4,
5a

,6
,7

3,
4,

6,
7

2,
6,

8,
21

6
13

5.
7

C
H

16
5

5.
75

dt
10

.9
,7

.6
5a

,5
b,

7
4,

5,
8

7
4,

5a
,5

b,
7,

8,
9

7
12

4.
7

C
H

16
2

5.
53

dd
t

10
.9

,9
.0

,1
.8

5a
,5

b,
6,

8
5,

9
6,

8
5a

,5
b,

6,
8,

9
8

76
.9

C
H

14
5

5.
08

t
8.

7
7,

9
6,

7,
9,

10
,2

0
5a

,5
b,

7,
9,

11
b,

19
,2

1
6,

9,
10

a,
10

b
9

54
.1

C
H

15
5

4.
18

dt
8.

5,
4.

4
8,

10
a,

10
b

7,
8,

10
,1

1
7,

8,
10

a,
10

b,
19

7,
8,

10
a,

10
b,

11
a,

11
b

10
a

33
.3

C
H

2
13

0
2.

02
dd

t
14

.7
,1

0.
3,

4.
7

9,
10

b,
11

a
8,

9,
11

,1
2

8,
9,

11
a,

11
b,

12
a,

12
b

10
b

13
1

1.
80

dd
t

14
.8

,1
0.

3,
5.

0
9,

10
a,

11
b

8,
9,

11
,1

2
11

a
22

.0
C

H
2

13
1

1.
55

m
10

a,
11

b
9,

10
,1

2,
13

9,
10

a,
10

b,
11

a,
11

b
11

b
12

1
1.

16
m

10
b,

11
a

9,
10

,1
2,

13
12

a
25

.9
C

H
2

12
4

1.
34

m
10

,1
1,

13
,1

4
10

a,
10

b,
11

a,
11

b,
13

a,
13

b,
14

a,
14

b
12

b
12

2
1.

26
m

13
a

26
.4

C
H

2
13

0
1.

14
m

13
b

12
,1

5
11

a,
11

b,
12

a,
12

b,
14

a,
14

b
13

b
12

4
1.

01
m

13
a

12
,1

5
14

a
26

.8
C

H
2

12
5

1.
34

m
12

,1
3,

15
13

a,
13

b,
15

a,
15

b,
16

a,
16

b
14

b
12

8
1.

24
m

15
a

27
.1

C
H

2
13

1
1.

48
m

15
b,

16
a

14
,1

6,
17

14
a,

14
b,

16
a,

16
b,

17
a,

17
b

15
b

12
8

1.
14

m
15

a
14

,1
6,

17
16

a
24

.7
C

H
2

13
1

1.
83

m
15

a,
16

b,
17

a,
17

b
14

,1
5,

17
,1

8
15

a,
15

b,
17

a,
17

b
16

b
13

1
1.

61
m

16
a,

17
a,

17
b

14
,1

5,
17

,1
8

17
a

34
.3

C
H

2
13

0
2.

67
dd

d
14

.4
,6

.5
,3

.5
16

a,
16

b,
17

b
15

,1
6,

18
,1

9
16

a,
16

b,
17

b
15

a,
15

b,
16

a,
16

b,
19

17
b

12
8

2.
35

dd
d

14
.7

,1
0.

9,
3.

8
16

a,
16

b,
17

a
15

,1
6,

18
,1

9
16

a,
17

a,
19

18
16

6.
8

C
19

99
.3

C
H

17
3

5.
90

d
2.

4
21

17
,1

8,
20

,2
1

8
17

a,
17

b,
21

20
17

0.
2

C
21

91
.2

C
H

17
3

5.
49

d
2.

1
19

19
,2

0,
22

19
22

16
5.

0
C

43



3.5 Labillaride C

Positive-ion mode HRESIMS analysis of the colourless oil labillaride C (62) (151.2 mg

isolated in total) gave rise to a single pseudomolecular ion indicative of the molecular

formula C22H30O3 (343.2259 [M + H]+, ∆ 2.7 ppm), requiring eight double-bond

equivalents. The 1H NMR spectrum in CDCl3 accounted for all 30 protons, including

a broad singlet which integrated for one proton. The multiplicity-edited HSQC spectrum

showed no connectivity of this proton resonance to carbon, indicating an exchangeable

proton. The 13C NMR spectrum contained 22 distinct carbon resonances, including

three strongly deshielded non-protonated carbons (δC 165.6, 166.6 and 166.7), a strongly

shielded olefinic non-protonated carbon (δC 107.2), a strongly shielded olefinic methine

(δC 102.5, δH 6.45), six typical olefinic methines [(δC 127.4, δH 5.34), (δC 128.4, δH 5.40),

(δC 130.8, δH 5.19), (δC 131.0, δH 5.92), (δC 132.0, δH 5.38) and (δC 133.2, δH 5.67)] and

a methyl triplet (δC 14.5, δH 0.95, t, 7.5 Hz).

Beginning at the methyl terminus, analysis of 1H – 1H coupling led to the construction

of the 1,4,7-triene substructure (C-1 to C-17). A series of sequential COSY correlations

starting from the methyl triplet (C-1: δC 14.5, δH 0.95) to a methylene (C-2: δC 20.6,

δH 2.07) to an olefinic methine (C-3: δC 132.0, δH 5.38) to a second olefinic methine (C-4:

δC 127.4, δH 5.34) and then to a methylene (C-5: δC 25.86, δH 3.01 and 2.90) established

the first section. The geometry of the double bond was determined to be (Z) on the

basis of the observed coupling constant of 10.7 Hz for H-3, and an NOE enhancement

between H2-2 and H2-5. Further COSY correlations from both proton resonances of

CH2-5 to a third olefinic methine (C-6: δC 128.4, δH 5.40) to a fourth olefinic methine

(C-7: δC 131.0, δH 5.92) to a methine (C-8: δC 30.6, δH 4.76) to an olefinic methine (C-9:

δC 133.2, δH 5.67) to the final typical olefinic methine (C-10: δC 130.8, δH 5.19) extended

this substructure to the third double bond. Coupling constants (10.5 Hz, H-6; 10.4 Hz,

H-7; 11.0 Hz, H-9; 11.2 Hz, H-10) defined both ∆6-7 and ∆9-10 as (Z). Observed NOE

enhancements between H2-5 and H-8, and H-8 and H2-11 confirmed these assignments.

A long alkyl chain was constructed through a series of sequential COSY correlations

starting from H-10 to a linear chain of seven methylenes [(C-11: δC 26.9, δH 1.95 and

1.85), (C-12: δC 29.0, δH 1.25 and 1.13), (C-13: δC 27.3, δH 0.94), (C-14: δC 29.3,
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δH 0.86), (C-15: δC 25.91, δH 1.42 and 1.33), (C-16: δC 28.4, δH 1.87 and 1.38) and

(C-17: δC 33.6, δH 2.47 and 2.36)] to complete the triene substructure (Figure 3.14).

22
113344

55

6677

88
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1616

1717 COSY
NOEH H H H H H H

Figure 3.14. Selected COSY correlations and NOE enhancements establishing the
1,4,7-triene substructure of labillaride C (62).

An α-pyrone substructure was established from the C-16 and C-17 methylenes. HMBC

correlations from H-16a to a deshielded non-protonated carbon (C-18: δC 165.6) and from

both proton resonances of CH2-17 to a shielded olefinic methine (C-19: δC 102.5, δH 6.45)

established the first highly-polarised double bond in the now characteristic α-pyrone

substructure. HMBC correlations from H-19 to the second deshielded non-protonated

(C-20: δC 166.6) and shielded non-protonated (C-21: δC 107.3) carbons suggested

the presence of the second highly-polarised double bond, supporting the attachment of

oxygen at C-18 and C-20. HMBC correlations from H-7 and H-9 to C-21 established

the direct connection between C-8 and C-21. This connectivity was supported by HMBC

correlations from H-8 to C-21 and the final carbon resonance (C-22: δC 165.3). With no

further olefinic carbons left unaccounted for, C-22 was again assigned as a ester carbonyl

completing the α-pyrone substructure through a lactone linkage to C-18 (see Figure 3.15).
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Figure 3.15. Selected HMBC correlations establishing the α-pyrone substructure of
labillaride C (62).

Every carbon resonance was now accounted for, while the α-pyrone, triene and macro-

cyclic moieties accounted for all eight double-bond equivalents. The final remaining

proton from the molecular formula unaccounted for was satisfied by assigning position

C-20 as an alcohol. The final structure of labillaride C is therefore as proposed to be 62.

NMR data for 62 is presented in Table 3.6.
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3.6 Labillaride D

Labillaride D (63) was isolated as a colourless oil (20.4 mg isolated in total). Positive-

ion mode HRESIMS showed a single pseudomolecular ion indicative of the molecular

formula C22H30O3 (365.2093 [M + Na]+, ∆ 0.0 ppm). The structure was elucidated in

the same fashion as labillaride C (62). Again, the 1H and 13C NMR spectra in CDCl3

accounted for all 30 protons and 22 carbons respectively, while the multiplicity-edited

HSQC experiment confirmed one broad proton singlet to be exchangeable due to its lack

of connectivity to carbon. The only major difference in the NMR data of 63 compared to

62 was a larger coupling constant for two of the olefinic methines [(δC 128.9, δH 5.53) and

(δC 130.7, δH 5.86), both with a 15.3 Hz coupling constant], suggesting an (E) geometry

across a double bond.

Analysis of the 2D NMR spectra of 63 allowed the construction of the structure of

labillaride D (Figure 3.16). A series of sequential COSY correlations starting from the

methyl triplet terminus (δC 14.4, δH 0.94) constructed a 1,4,7-triene substructure (C-1 to

C-17) very similar to that of 62. The geometry of ∆3-4 and ∆9-10 were determined to be

(Z) on the basis of the observed coupling constants (10.6 Hz, H-3; 10.8 Hz, H-4; 10.5 Hz,

H-9; 10.6 Hz, H-10 ), and NOE enhancements from H2-5 to H2-2, and from H-8 to H2-11.

The coupling constants (15.3 Hz for both H-6 and H-7) defined ∆6-7 as (E), confirmed by

an observed NOE enhancement from H-8 to H-6.
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Figure 3.16. Selected COSY and HMBC correlations and NOE enhancements
establishing the structure of labillaride D (63).

HMBC correlations were used to construct an α-pyrone moiety once again. HMBC
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correlations from both proton resonances of CH2-16 to a deshielded non-protonated

carbon (C-18: δC 165.8) and from both proton resonances of CH2-17 to a shielded olefinic

methine (C-19: δC 101.5, δH 6.13) established the first highly-polarised double bond.

HMBC correlations from H-19 to the two carbons of the second highly-polarised double

bond [(C-20: δC 164.8) and (C-21: δC 106.8)] supported the attachment of oxygen at C-18

and C-20, expanding the α-pyrone to the second double bond. No HMBC correlations to

C-22 were observed, however the clear similarities to labillaride C (62) led to the confident

assignment of the α-pyrone ring. HMBC correlations were observed from H-8 into the

α-pyrone ring, indicating the same carbon bridge connectivity from the long carbon chain

as 62.

The final structure of labillaride D is therefore shown in 63, the ∆6-7 (E) isomer of

labillaride C (62). NMR data for 63 is presented in Table 3.7.

Labillarides C (62) and D (63) are the first reported macrocyclic pyrones of this nature to

exhibit a carbon-to-carbon bridge from the alkyl chain into the pyrone moiety (direct C-8

to C-21 connectivity).
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3.7 Labillaride E

Labillaride E (64) was isolated as a colourless oil (2.0 mg isolated in total). Positive-

ion mode HRESIMS analysis of 64 gave rise to two pseudomolecular ions indicative

of the molecular formula C22H30O5 (375.2163 [M + H]+, ∆ 0.7 ppm, and 397.2005

[M + Na]+, ∆ 4.8 ppm), requiring eight double-bond equivalents. The 13C NMR spectrum

contained 22 distinct resonances while the multiplicity-edited HSQC spectrum, as well as

establishing direct 1H to 13C connectivity, accounted for 28 of the 30 protons indicating

the presence of two exchangeable protons. Identifiable features of the NMR spectra in

CDCl3 included three strongly deshielded non-protonated carbons (δC 162.5, 170.2 and

171.0), a strongly shielded olefinic non-protonated carbon (δC 99.7), a strongly shielded

olefinic methine (δC 96.3, δH 5.98), four typical olefinic methines [(δC 127.0, δH 5.73),

(δC 129.5, δH 5.63), (δC 134.9, δH 5.51) and (δC 136.1, δH 5.84)], three oxymethines

[(δC 70.8, δH 4.30), (δC 73.3, δH 4.05) and (δC 89.5, δH 5.42)], an allylic methine (δC 51.3,

δH 3.15) and a methyl triplet (δC 9.8, δH 0.92, t, 7.4 Hz).

Analysis of the 1H – 1H coupling established a 17 carbon, 1,6-diene substructure (C-1 to

C-17). A series of sequential COSY correlations starting from the methyl triplet (C-1:

δC 9.8, δH 0.92) to a methylene (C-2: δC 30.0, δH 1.56) to an oxymethine (C-3: δC 73.3,

δH 4.05) to an olefinic methine (C-4: δC 136.1, δH 5.84) to a second olefinic methine

(C-5: δC 127.0, δH 5.73) established the first section of the substructure. Coupling

constants (15.4 Hz, H-4 and H-5) and observed NOE enhancements between H-3 and

H-5 defined ∆4-5 as (E). Further COSY correlations from H-5 to a deshielded oxymethine

(C-6: δC 89.5, δH 5.45) to a deshielded methine (C-7: δC 51.3, δC 3.15) to an oxymethine

(C-8: δC 70.8, δH 4.30) to an olefinic methine (C-9: δC 129.5, δH 5.63) to the fourth typical

olefinic methine (C-10: δC 134.9, δH 5.51) to a linear chain of seven methylenes [(C-11:

δC 27.2, δH 2.09 and 2.00), (C-12: δC 29.4, δH 1.22), (C-13: δC 27.5, δH 1.00 and 0.90),

(C-14: δC 29.3, δH 1.09 and 1.00), (C-15: δC 26.4, δH 1.20), (C-16: δC 26.2, δH 1.72 and

1.63) and (C-17: δC 35.2, δH 2.62 and 2.27)] completed the long alkyl-chain substructure.

Selective excitation of H-17b in a series of 1D-TOCSY experiments with increasing

mixing times sequentially revealed H-17b, H-16a and H-16b, H2-15, H-14a and H-14b,

H-13a and H-13b, H2-12 and then H-11a and H-11b, supporting the assignment of the
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C-11 to C-17 alkyl chain. Coupling constants (10.5 Hz, H-9 and 10.8 Hz, H-10) and an

observed NOE enhancement from H-8 to H-11b defined ∆9-10 as (Z) (Figure 3.17).
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Figure 3.17. Selected COSY correlations establishing the 1,6-diene substructure of
labillaride E (64).

As before, an α-pyrone substructure was constructed starting from the distinctive C-16

and C-17 methylenes. HMBC correlations from both proton resonances of CH2-16 to

a deshielded non-protonated carbon (C-18: δC 170.2) and from both proton resonances

of CH2-17 to a strongly shielded methine (C-19: δC 96.3, δH 5.98) indicated the first of

the two highly-polarised double bonds. HMBC correlations from H-19 to the second

downfield non-protonated carbon (C-20: δC 171.0) and to a strongly shielded non-

protonated carbon (C-21: δC 99.7) suggested the second highly-polarised double bond,

supporting the attachment of oxygen at C-18 and C-20. Crosspeak intensities in HMBC

experiments depend on the magnitude of long-range coupling.67 The standard HMBC

experiment employed by this group has a coherence transfer delay optimised for 8 Hz.

Here, an HMBC experiment optimised for a coherence transfer delay of 4 Hz was

performed with the hope of seeing four-bond HMBC correlations, which typically have

smaller 13C – 1H coupling constants. This spectrum revealed HMBC correlations from H-

17b and H-19 to the final deshielded non-protonated lactone carbonyl (C-22: δC 162.5).

Once again, this supported an α-pyrone moiety, with an oxygen bridge connecting C-18

and C-22 (see Figure 3.18).

nJCH = 8 Hz
nJCH = 4 Hz
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Figure 3.18. Selected HMBC correlations establishing the α-pyrone substructure of
labillaride E (64).
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HMBC correlations from both H-6 and H-8 to C-21 were observed, establishing

connectivity between C-7 and C-21. This was confirmed by HMBC correlations from

H-7 to C-20, C-21 and C-22, and a weak homo-allylic COSY correlation between H-7

and H-19. A further HMBC correlation from H-6 to C-20 indicated a second connectivity

from the alkyl chain into the pyrone ring through an oxygen bridge between C-6 and C-20,

forming a dihydrofuran (see Figure 3.19).
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Figure 3.19. Selected COSY and HMBC correlations connecting the substructures of
labillaride E (64).

The dihydrofuro[3,2-c]pyran-4-one moiety is present, though uncommon, in terrestrial

organisms. To the author’s knowledge, no such examples have been reported from the

marine environment. Phelligridimer A (72), a macrocyclic metabolite reported in 2005

from the Chinese medicinal fungus Phellinus igniarius, is one of the few compounds

of natural origin to contain this moiety.68 The 13C chemical shifts of the dihydrofuro[3,2-

c]pyran-4-one fragment of 64 compared very favourably to those of 72, with the exception

of the non-protonated carbon at positions C-18 and C-6 in 64 and 72, respectively (see

Table 3.8). This is most likely due the differing substituents at this position, specifically

an alkyl chain in 64 as opposed to a conjugated alkene in 72.

O

O

O

OHO

OH
OH

O OH

O

O

O

OH
HO

HO

HO

OH

OH

O

O

72

All detected carbon resonances were now accounted for. The presence of the dihydro-

furo[3,2-c]pyran-4-one ring system accounted for five of the eight double-bond equiva-
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Table 3.8. 13C chemical shift differences of dihydrofuro[3,2-c]pyran-4-one moiety for
labillaride E (64) and phelligridimer A (72).

O
1818

1919
2020

2121

2222

O

O

66
77

O
11

66

55
44

33

22

O

O

8'8'
7'7'

64 72
Labillaride E (65) Phelligridimer A (72)* Difference

mult Pos δC δ (ppm) Pos δC δ (ppm) δC ∆δ (ppm)
C 22 162.5 2 163.0 -0.5
C 21 99.7 3 99.3 0.4
C 20 171.0 4 170.4 0.6

CH 19 96.3 5 95.0 1.3
C 18 170.2 6 162.8 7.4

CH 7 51.2 7′ 51.4 -0.2
CH 6 89.5 8′ 89.6 -0.1

*Wang, Y.; Wang, S.-J.; Mo, S.-Y.; Li, S.; Yang, Y.-C.; Shi, J.-G. Org. Lett. 2005, 7, 47334736.

lents, while the diene chain and macrocycle completed the requirements of the molecular

formula. The final two protons from the molecular formula unaccounted for were satisfied

by assigning positions C-3 and C-8 as alcohols.

The 1H NMR spectrum of labillaride E (64) showed H-7 to be split into a doublet of

doublets of 9.2 and 1.6 Hz. The large splitting was assumed to be due to coupling to

H-8, while the very small splitting appeared to be due to vicinal coupling to H-6. The

broad doublet 1H signal of H-6 was suspected of being broadened by this small coupling

to H-7, supporting the claim. A series of homonuclear decoupled 1H NMR experiments

were performed in order to prove this assignment. Selective decoupling of H-6 caused

the doublet of doublets of H-7 to collapse into a doublet of 9.2 Hz, while selective

decoupling of H-8 caused H-7 to collapse into a broad singlet (see Figure 3.20). The

decoupled experiments therefore confirmed the allocation of the 1.6 Hz to the vicinal

coupling between H-6 and H-7.

The vicinal coupling constants for cyclopentene (3Jcis = 7.4 Hz, 3Jtrans = 4.6 Hz) and

dihydrofuran (3Jcis = 10.7 Hz, 3Jtrans = 8.3 Hz) show very little variation between the cis

and trans values.69 The vicinal coupling constant of 6.5 Hz between H-7′ and H-8′ in

phelligridimer A (72) led Shi et al. to assign a trans orientation of the two protons of

the dihydrofuro[3,2-c]pyran-4-one moiety, supported by several NOE enhancements.68

These reported coupling constants show no similarity to the 1.6 Hz observed between

H-6 and H-7 in 64, therefore further examination was required.
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Figure 3.20. 1H NMR spectrum of H-7 of labillaride E (64) (red) and homonuclear
decoupled 1H NMR spectra of H-7 selectively decoupled at H-6 (blue) and H-8 (green).

The small coupling constant observed between H-6 and H-7 (1.6 Hz) suggested a dihedral

angle close to 90◦. This could only be achieved when the protons were held reasonably

rigid in a trans relationship, with the large side-chain sitting on the opposite face of the

ring to the bulky macrocycle. NOE enhancements between H-6 and H-8 supported this

trans assignment (see Figure 3.21). The assignment of cis or trans relationships on five-

membered rings are notoriously difficult. In this case, however, the trans assignment

is fairly confidently made due to the deviation from the normal 3JHH values seen in

dihydrofuran rings. The final structure of labillaride E is therefore proposed to be 64.

NMR data for 64 is presented in both CDCl3 (Table 3.9) and C6D6 (Table 3.10).

trans cis

Figure 3.21. The selected NOE enhancement supporting the trans assignment of H-6
and H-7 in labillaride E (64).
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3.8 Isolation of Labillaride E Isomers

During the purification of the second bulk extract of Phacelocarpus labillardieri, a sample

of what was thought to be labillaride E (64) appeared to exhibit “twinning” of some

signals in the 1H NMR spectrum, as shown in Figure 3.22. Further purification by normal-

phase (DIOL) HPLC gave two separable compounds, labillarides F (65) and G (66), which

showed minor differences both to each other and to 64 in the 1H NMR spectra (see Figure

3.23 for spectra obtained in CDCl3 and Figure 3.24 for spectra obtained in C6D6). At this

point, the fractions on either side of the original labillaride E (64) sample were inspected

more closely and it was found that the later eluting fraction appeared to also contain a

mixture of very similar compounds. Purification of this fraction by normal-phase HPLC

(DIOL) produced a fourth compound (labillaride H, 67) along with additional 64.

Figure 3.22. 1H NMR spectra of labillaride E (64) (red) and the mixture of labillarides F
(65) and G (66) (cyan).

To confirm that all four samples were different compounds, several HPLC injections were

performed using various combinations of the four samples. It was found that when

injected individually under identical HPLC conditions (analytical DIOL column with

7% IPA in hexanes as the mobile phase at a flow rate of 1 mL/min), each compound

exhibited a different retention time: 32.7, 31.6, 33.4 and 30.3 min for 64, 65, 66 and

67, respectively. Interestingly, when combinations of two pure compounds of equal

concentration were injected, only one peak was observed for a combination of 64 and

66, and a combination of 65 and 67, while two peaks were observed with all four other

two-compound combinations (see Figure 3.25). When all four compounds were injected,

only two peaks were observed, supporting the idea that labillarides E (64) and G (66), and

F (65) and H (67) co-elute when co-injected.
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Figure 3.23. 1H NMR spectra of labillarides E (64) (red), F (65) (green), G (66) (blue)
and H (67) (black) (CDCl3, 1.3 mg mL-1).

Figure 3.24. 1H NMR spectra of labillarides E (64) (red), F (65) (green), G (66) (blue)
and H (67) (black) (C6D6, 1.6 mg mL-1).
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Figure 3.25. Single wavelength (300 nm) traces of HPLC injections of labillarides E
(66), F (65), G (66) and H (67).

All four compounds have exceptionally similar chromophores (see Figure 3.26), indi-

cating likely structural similarities. This fact, supported by the remarkably similar 1H

NMR spectra and identical HRESIMS data, suggested labillarides F (65), G (66) and H

(67) are very similar stereoisomers of labillaride E (64). This number of isomers was

not unreasonable, as 64 contains four chiral centres which gives rise to eight possible

diastereomeric pairs. It is important to note that had 64 originally been isolated with 66,

or had 65 been isolated with 67, their final separations would have been very challenging

due to their propensities to co-elute.
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Figure 3.26. UV traces of labillarides E (64) (red), F (65) (green), G (66) (blue) and H
(67) (black).
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3.9 Labillaride F

Positive-ion mode HRESIMS analysis of the colourless oil labillaride F (65) (0.4 mg

isolated in total) gave rise to two pseudomolecular ions indicative of the molecular

formula C22H30O5 (375.2162 [M + H]+, ∆ 1.2 ppm, and 397.1990 [M + Na]+, ∆

1.1 ppm), requiring eight double-bond equivalents. The 1H and 13C NMR spectra in

CDCl3 were almost identical to that of labillaride E (64), including identifiable features

such as three strongly deshielded non-protonated carbons (δC 161.9, 169.8 and 170.8), a

strongly shielded olefinic non-protonated carbon (δC 100.2), a strongly shielded olefinic

methine (δC 95.9, δH 5.48) and three oxymethines [(δC 71.1, δH 4.27), (δC 72.7, δH 3.79)

and (δC 90.1, δH 5.50)].

The planar structure of 65 was elucidated in an identical fashion as 64, through a series

of COSY, NOE and HMBC correlations (see Figure 3.27). A series of sequential COSY

correlations starting from a methyl triplet constructed a 17 carbon, 1,6-diene chain (C-1

to C-17). The coupling constant of 15.4 Hz between H-4 and H-5 defined ∆4-5 as

(E), supported by the observation of an NOE enhancement between H-3 and H-5. The

geometry of the second double bond was determined to be (Z) on the basis of observed

1H – 1H coupling constants (10.6 Hz, H-9 and 10.7 Hz, H-10). An NOE enhancement

from H-8 to H-11b was observed, confirming this assignment as identical to 64.

HMBC correlations from H2-16 to C-18 and H2-17 to C-19, and an allylic COSY

correlation observed between H2-17 and H-19 confirmed the presence of the first highly-

polarised double bond. HMBC correlations from H-19 to C-20 and C-21 established

the second highly-polarised double bond, while an HMBC experiment optimised for an

nJCH of 4 Hz revealed a correlation from H2-17 to C-22. Once again, this supported an

α-pyrone moiety with an ester oxygen bridge connecting C-18 and C-22. Finally, HMBC

correlations from H-6 and H-8 to C-21, from H-7 to C-20, C-21 and C-22, and from

H-6 to C-20 established the five-membered heterocycle. The final two protons from the

molecular formula unaccounted for were satisfied by assigning positions C-3 and C-8

as alcohols. Thus 65 is constitutionally related to 64 and the double bond geometry is

conserved.
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Figure 3.27. Selected COSY and HMBC correlations and NOE enhancements
establishing the structure of labillaride F (65).

As with labillaride E (64), the relative configuration of 65 was difficult to assign. A

small coupling constant observed between the vicinal protons H-6 and H-7 (1.6 Hz)

combined with observed NOE enhancements between H-5 and H-8 again suggested a

trans relationship. The final structure of labillaride F is therefore proposed to be 65.

NMR data for 65 is presented in Table 3.11.
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3.10 Labillaride G

The observation of pseudomolecular ions of the colourless oil labillaride G (66) (0.4 mg

isolated in total) by HRESIMS indicated a molecular formula of C22H30O5 (375.2158

[M + H]+, ∆ 2.1 ppm and 397.1986 [M + Na]+, ∆ 0.2 ppm), requiring eight double-bond

equivalents. As with labillaride F (65), the 1H and 13C NMR spectra of 66 were almost

identical to those of labillaride E (64).

The planar structure of 66 was elucidated in an identical fashion as 64 and 65, through a

series of COSY, NOE and HMBC correlations (see Figure 3.28). Analysis of the 1H – 1H

coupling established the 17 carbon 1,6-diene. HMBC correlations from H2-16 to C-18,

from H2-17 to C-19 and C-22, and from H-19 to C-20 and C-21 established the α-pyrone

ring. HMBC correlations from H-6 to C-20, and from H-6 and H-8 to C-21 constructed

the five-membered heterocycle. The geometry of the first double bond was determined

to be (E) on the basis of the observed 1H to 1H coupling constant between H-4 and

H-5 of 15.6 Hz. NOE enhancements between H-3 and H-5 confirmed this assignment.

Coupling constants (10.2 Hz, H-9 and 10.6 Hz, H-10) defined ∆9-10 as (Z), confirmed by

an observed NOE enhancement between H-8 and H2-11a.
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Figure 3.28. Selected COSY and HMBC correlations and NOE enhancements
establishing the structure of labillaride G (66).

Once more, the relative configuration of 66 was difficult to assign though a small vicinal

coupling constant observed between H-6 and H-7 (1.8 Hz) and NOE enhancement

between H-6 and H-8 implied a trans relationship between these protons. The final

structure of labillaride G is therefore determined to be 66. NMR data for 66 is presented

in Table 3.12.
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3.11 Labillaride H

The observation of a pseudomolecular ion of the colourless oil labillaride H (67) (1.2 mg

isolated in total) by HRESIMS once again indicated a molecular formula of C22H30O5

(397.1991 [M + Na]+, ∆ 0.0 ppm), requiring eight double-bond equivalents. As with

labillaride F (65) and G (66), the 1H and 13C NMR spectra of 67 were almost identical to

those of labillaride E (64).

For the final time, the planar structure of 67 was elucidated in an identical fashion as

64, 65 and 66, through a series of COSY, NOE and HMBC correlations (see Figure

3.28). Analysis of the 1H – 1H coupling established the 17 carbon 1,6-diene while

HMBC correlations established the α-pyrone ring and the five-membered heterocycle.

The geometry of double bonds (∆4-5 = E, ∆9-10 = Z) were determined on the basis of the

observed 1H to 1H coupling constants and NOE enhancements.
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Figure 3.29. Selected COSY and HMBC correlations and NOE enhancements
establishing the structure of labillaride H (67).

Finally, the relative configuration of 67 was again difficult to assign though a small

vicinal coupling constant observed between H-6 and H-7 (1.4 Hz) and NOE enhancement

between H-6 and H-8 implied a trans relationship between these protons. The final

structure of labillaride H is therefore determined to be 67. NMR data for 67 is presented

in Table 3.13.
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Acetylation of Labillaride H

A synthetic derivative was prepared in order to prove the two alcohol moieties in the

proposed skeleton of labillarides E–H (64–67). Labillaride H (67) was reacted with acetic

anhydride in pyridine overnight. The positive-ion HRESIMS of the reaction product gave

rise to a pseudomolecular ion indicative of a formula of C26H34O7 (481.2201 [M + Na]+,

∆ 0.1 ppm), a mass increase of 84 Da, consistent with diacetylation. The NMR spectra

of the product of the reaction were similar to that of 67 with the additional presence of

two overlapping acetate methyl signals [(C-24: δC 20.65, δH 1.63) and (C-26: δC 20.69,

δH 1.63)]. The observed change in the chemical shifts of the associated methine protons is

entirely consistent with acetylation at centres C-3 and C-8. Similarly, HMBC correlations

from H-3 to an ester carbonyl (C-23: δC 169.4) and from H-8 to a second ester carbonyl

(C-25: δC 169.6) confirmed acetylation of the C-3 and C-8 hydroxyls to form 3,8-diacetyl-

labillaride H (73). NMR data for 73 are presented in Table 3.14.
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3.12 Discussion of Isomers Labillarides E to H

Structure elucidation clearly established labillarides E–H (64–67) to be constitutionally

the same; all four compounds possessed the same atom connectivity. Analysis of the

coupling constants and NOE data showed no change in the double bond stereoisomerism.

Furthermore, the 1H and 13C chemical shifts of the pyrone and alkyl-chain part of the

macrocycle were almost identical, thus discounting the possibility of rotamers due to

restricted rotation in this portion of the molecule. This therefore leads to the conclusion

that 64–67 are diastereoisomers associated with the four chiral centres of the structures.

Furthermore, the coupling constants between H-6 and H-7 are nearly identical in all

four isomers, strongly suggesting conservation of their trans relative configuration. It is

therefore proposed that 64–67 represent the four possible relative diastereomers involving

the chiral centres C-3 and C-8, assuming the relative configuration of C-6 and C-7 is

conserved.

An attempt to determine the absolute configuration of the secondary alcohols of labillar-

ides E and H (64 and 67) using Mosher’s method was unsuccessful due to lack of material

(for experimental detail, see Chapter 6).70 Therefore, any configurational assignment was

based on NMR data alone. Examination of the 1H chemical shifts in CDCl3 showed

almost no perceivable differences. Benzene is often used as an alternative NMR solvent,

exploiting its ability to generate solvent-induced shifts of proton resonances in NMR

spectra.71 Therefore, the 1H NMR spectra were obtained in C6D6 in an attempt to

emphasize the very slight changes in the 1H chemical shifts. Initial results showed the

changes to be focussed around the four chiral centres, however most of these changes

were found to be more concentration-dependent rather than due to potential differences

in configuration. Figure 3.30 shows the 1H NMR spectra of labillaride H (67) at two

different concentrations, illustrating the major concentration effect on the chemical shifts

when the spectra were obtained in C6D6.

In order to ensure comparable data, the 1H NMR spectra of labillarides E–H (64–67) were

obtained at a standard concentration. These results are summarised in Table 3.15, showing

the chemical shift differences of selected 1H resonances of 65–67 when compared to
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Figure 3.30. 1H NMR spectra of labillaride H (67) in C6D6 at 4.8 mg mL-1 (bottom) and
1.6 mg mL-1 (top).

64, with the most significant differences in red. In CDCl3, the most notable change

occurred at C-3, with both 65 and 67 showing a 0.02 ppm shift of the 1H resonance at

this centre when compared to 64. The analysis was repeated in C6D6 and, again, the most

notable difference occurred around C-3 in 65 and 67 when compared to 64, suggesting

labillarides F (65) and H (67) to be C-3 epimers of labillarides E (64) and G (66).

Table 3.15. 1H chemical shift differences of labillarides F–H (65–67) as compared to
labillaride E (64).

CDCl3, 1.3 mg mL-1 C6D6, 1.6 mg mL-1

δH ∆δH (ppm) δH ∆δH (ppm)
Pos 64 65 66 67 64 65 66 67

O
1818

1919
2020

21212222

O

O
66

77

88

1717

1616

1313

1414

1515

99
1010

1111

1212

55

44 33

22 11

OH

OH
H

H

1 0.92 0.01 0.00 0.01 0.80 0.00 0.00 0.00
2 - - - - - - - -
3 4.05 0.02 0.00 0.02 3.68 0.04 0.00 0.02
4 5.83 0.00 0.00 0.00 5.70 0.02 0.00 0.01
5 5.74 0.00 0.00 0.00 5.61 0.01 0.00 0.00
6 5.42 0.00 0.00 0.00 5.41 0.02 0.00 0.01
7 3.15 0.00 0.00 0.00 3.25 0.01 0.00 0.00
8 4.30 0.00 0.00 0.00 4.21 0.01 0.00 0.00
9 5.63 0.00 0.00 0.00 5.80 0.01 0.00 0.00

10 5.52 0.00 0.00 0.00 5.45 0.01 0.00 0.00

Subtle chemical shift differences from labillaride E (64) were also observed around C-8

of labillaride F (65). This suggested that 65 may also be a C-8 epimer of 64, implying that
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labillaride F (65) is 3,8-epi-labillaride E. Assuming this to be true, and as labillaride H

(67) is determined to be 3-epi-labillaride E, labillaride G (66) must, by default, be 8-epi-

labillaride E, the fourth possible diastereomer.

Enantiomers are known to co-crystallise by effectively dimerising to form an achiral

space group. The significant changes observed in the 1H NMR spectra show that the

conformations of labillarides E–H (64–67) change with concentration, particularly in non-

hydrogen bonding solvents such as C6D6, potentially due to dimerisation. With this in

mind, it is interesting to note that the stereoisomers that co-elute are those that appear

to be C-8 epimers, the variable chiral centre located in the relatively rigid portion of the

molecule. It is therefore tempting to speculate that this co-elution is due to dimerisation

through hydrogen bonding of the pseudo-enantiomeric C-8 hydroxyls.

Were it not for the twinning observed in the original mixture of labillarides F (65) and

G (66), it is likely that the different compounds would never have been identified. An

interesting point to note is that the original labillaride E (64) sample, purified by bench-

top chromatography, was repeatedly found to have quite potent cytotoxic activity against

the human leukaemia cell line HL-60 (∼600 nM). It was not until the second sample of

64 was purified by normal phase (DIOL) HPLC and tested inactive in the same assay,

that the original sample was subjected to HPLC, and it was found that the activity did not

correspond to the labillaride E (64) peak. Clearly a very minor impurity, not detected

by NMR, was responsible for the high cytotoxicity, a issue which would likely have

hampered a bioassay guided isolation of the labillarides. Work is continuing in this area

in the hope of identifying the impurity responsible for this activity.
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3.13 Labillaride I

Labillaride I (68) was isolated as a colourless oil (48.2 mg in total). Positive-ion

mode HRESIMS analysis of 68 gave rise to a pseudomolecular ion indicative of the

molecular formula C23H34O4 (375.2531 [M + H]+, ∆ 0.4 ppm), requiring seven double-

bond equivalents. The 13C NMR spectrum contained 23 distinct resonances while the

the multiplicity-edited HSQC spectrum accounted for 33 of the 34 protons indicating

the presence of one exchangeable proton. Identifiable features of the NMR spectra in

CDCl3 included two ketone resonances (δC 191.2 and 192.5), an ester carbonyl resonance

(δC 170.1), six typical olefinic methines [(δC 126.9, δH 5.28), (δC 127.6, δH 5.12),

(δC 128.7, δH 5.12), (δC 130.1, δH 5.34), (δC 131.5, δH 5.30) and (δC 132.6, δH 5.42)],

a strongly shielded olefinic methine (δC 98.9, δH 5.98), a shielded methine (δC 62.6,

δH 3.19), an oxymethyl group (δC 52.5, δH 3.67) and a methyl triplet (δC 14.4, δH 0.99, t,

7.5 Hz).

Beginning at the methyl terminus, analysis of the 1H – 1H coupling led to the construction

of the 1,4,7-triene containing substructure (C-1 to C-13) (Figure 3.31). A series of

sequential COSY correlations starting from the methyl triplet (C-1: δC 14.4, δH 0.99)

to a methylene (C-2: δC 20.7, δH 2.10) to an olefinic methine (C-3: δC 132.6, δH 5.42)

to a second olefinic methine (C-4: δC 126.9, δH 5.28) established the first section of the

substructure. The geometry of the double bond was determined to be (Z) on the basis of

the observed coupling constant of 10.6 Hz for H-3 and H-4, and an NOE enhancement

from H2-5 to H2-2. Further COSY correlations from H-4 to a methylene (C-5: δC 26.1,

δH 2.95 and 2.89) to a olefinic methine (C-6: δC 130.1, δH 5.34) to further olefinic methine

(C-7: δC 128.7, δH 5.12) to a slightly deshielded methine (C-8: δC 39.4, δH 4.10) extended

this substructure through the second double bond. Coupling constants (10.7 Hz, H-6 and

10.2 Hz, H-7) defined ∆6-7 as (Z), supported by observed NOE enhancements between

H2-5 and H-8. Finally, a series of sequential COSY correlations starting from H-8 to

an olefinic methine (C-9: δC 127.6, δH 5.12) to the final typical olefinic methine (C-10:

δC 131.5, δH 5.30) to a methylene (C-11: δC 25.4, δH 2.35 and 1.86) to a methylene (C-12:

δC 26.5, δH 1.46 and 1.23) and finally to a third methylene (C-13: δC 26.6, δH 1.35)
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established the 1,4,7-triene chain. The geometry of the third double bond was defined as

(Z) on the basis of coupling constants (10.2 Hz, H-9 and 10.3 Hz, H-10) and observed

NOE enhancements between H-8 and H2-11. A further COSY correlation from H-8 to a

shielded methine (C-21: δC 62.6, δH 3.19) completed the substructure.

22
113344

55

6677

88

991010

1111

1212

1313

COSY
NOE

H H H H2121 HHaaH

Figure 3.31. Selected COSY correlations establishing the 1,4,7-triene substructure of
labillaride I (68).

A second substructure was constructed starting from a distinctive slightly deshielded

methylene (C-17: δC 35.7, δH 2.36). A series of sequential COSY correlations starting

from H2-17 to a methylene (C-16: δC 23.9, δH 1.88 and 1.55) to a third methylene (C-15:

δC 25.5, δH 1.29) to the final methylene (C-14: δC 24.4, δH 1.41 and 1.18) established

the alkyl section of the second substructure. An HMBC correlation from H2-16 to a

non-protonated carbon (C-18: δC 191.2) initially suggested a shielded ketone at this

position. However, HMBC correlations from H2-17 to C-18 and a strongly shielded

olefinic methine (C-19: δC 98.9, δH 5.98) implied a highly-polarised double bond.

Reciprocal HMBC correlations from H-19 to C-17 and C-18 confirmed this connectivity.

Interestingly, the non-protonated carbon resonance has moved significantly downfield

from the equivalent position in labillarides A–H (60–67) (from∼170 ppm to∼190 ppm),

suggesting a significant change in structure at this position. A further HMBC correlation

from H-19 to the second non-protonated carbon (C-20: δC 192.5) suggested the enol

form of a 1,3-dione, stabilised by resonance and intramolecular hydrogen bonding (see

Figure 3.32). This accounted for the ∼20 ppm downfield shift of the carbon resonances

of positions C-18 and C-20 in 68 when compared to those of 60–66.72

The substructures were joined through a series of HMBC and HSQC-TOCSY correla-

tions. HMBC correlations from H-8 to C-20 and the carbonyl resonance (C-22: δC 170.1)

suggested connectivity to these two centres through C-21. This was confirmed by an

HMBC correlation from H-19 to C-21, and HMBC correlations from H-21 to C-19, C-20

and C-22. An HMBC correlation from the oxymethyl (C-23: δC 52.3, δH 3.67) to C-22
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Figure 3.32. Selected COSY and HMBC correlations establishing the second
substructure of labillaride I (68) in its resonance forms.

accounted for the shielded nature of C-22, a methyl ester carbonyl. HMBC correlations

from both proton resonances of CH2-12 to C-14 suggested connectivity through the C-13

and C-14 methylenes. This was confirmed by the corresponding HMBC from H2-15 to

C-13 and the observation of HSQC-TOCSY correlations from H2-12 to H2-13, H2-14,

H2-15, H2-16 and finally H2-17 (Figure 3.33).

1717
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2020

O
H

2121

88

2222

H

O

1616

1515141413131212

HH

H H

TOCSY
HMBCOMe

2323H

H

Figure 3.33. Selected TOCSY and HMBC correlations connecting the substructures of
labillaride I (68).

All detected carbon resonances were now accounted for. The triene, enol form of a 1,3-

dione, ester and macrocycle moieties accounted for the molecular formula, satisfying

the seven double-bond equivalents. The relative configuration of labillaride I was not

determined as all 1H – 1H coupling constants and observed NOE enhancements could be

rationalised from both stereoisomers due to the significant flexibility of the 14-membered

macrocycle. The final structure of labillaride I is therefore proposed to be 68. NMR data

for 68 is presented in Table 3.16.

In order to determine whether labillaride I (68) was methylated in vivo or as an artefact

of isolation in MeOH, the extraction and isolation was repeated replacing MeOH by

EtOH at each stage. Neither 68 or the ethylated version of 68 was detected in the 75%

Me2CO in H2O, however the 100% Me2CO fraction appeared to contain some resonances

suggestive of labillaride I (68), suggesting the possibliity that 68 may in fact be an artefact

of methanol extraction.
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3.14 Labillaride J

Positive-ion mode HRESIMS analysis of the colourless oil labillaride J (69) (2.0 mg

isolated in total) gave rise to a pseudomolecular ion indicative of the molecular formula

C21H32O2 (317.2470 [M + H]+, ∆ 1.5 ppm). The structure of 69 was elucidated in the

same fashion as labillaride I (68). The molecular formula of 69 differs from 68 by the

loss of C2H2O2 which is consistent with the loss of MeOCO from 68. The 13C NMR

spectrum in CDCl3 contained 21 distinct resonances while the the multiplicity-edited

HSQC spectrum accounted for 31 of the 32 protons, again indicating the presence of one

exchangeable proton. The molecular formula of 69 requires six double-bond equivalents.

Again, three are accounted for by the triene chain, two by the enol form of a 1,3-dione

and finally, one by the macrocycle. Identifiable moieties included two ketone carbons

(δC 193.6 and 194.4), six typical olefinic methines [(δC 126.9, δH 5.32), (δC 127.8,

δH 5.33), (δC 130.1, δH 5.33), (δC 130.6, δH 5.16), (δC 132.0, δH 5.26) and (δC 132.5,

δH 5.43)], a strongly shielded olefinic methine (δC 100.5, δH 5.61) and a methyl triplet

(δC 14.5, δH 1.00, t, 7.5 Hz), all consistent with those observed in 68. Both the ester

carbonyl and oxymethyl groups of labillaride I (68) were absent, and a new methylene

(δC 46.0, δH 2.44 and 2.15) was observed.

Analysis of the 2D NMR spectra of 69 led to the construction of two substructures.

Beginning at the methyl terminus (C-1: δC 14.5, δH 1.00), a COSY correlation was

observed from H3-1 to a methylene (C-2: δC 20.8, δH 2.11) to an olefinic methine

(C-3: δC 132.5, δH 5.43) to a second olefinic methine at δH 5.33. Due to significant

spectral overlap at ∼δH 5.33, three olefinic methines were not distinguishable in the

COSY spectrum. HMBC correlations were therefore used to differentiate between the

three methines. An HMBC correlation from H2-2 to an olefinic methine (C-4: δC 126.9,

δH 5.32) and from H-3 to a methylene (C-5: δC 26.1, δH 2.88 and 2.84) extended the

chain through the first double bond. This connectivity was confirmed by the observation

of allylic COSY correlations from H-3 to H-5a and H-5b.

HMBC correlations from H2-5 to two olefinic methines [(C-6: δC 127.8, δH 5.33) and

(C-7: δC 132.0, δH 5.26)] established the second double bond. An HMBC from H-6 to C-4
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implied the direct connectivity between C-5 and C-6, confirming the order of the olefinic

methines. A series of sequential COSY correlations starting from H-7 to a methine (C-8:

δC 35.6, δH 3.87) to an olefinic methine (C-9: δC 130.6, δH 5.16) to the final olefinic

methine (C-10: δC 130.1, δH 5.33) to a methylene (C-11: δC 25.7, δH 2.25 and 1.84) and

finally to a second methylene (C-12: δC 27.0, δH 1.39 and 1.22) completed the triene

chain. Again, the order of the olefinic methines was confirmed by an HMBC correlation

from H2-12 to C-10. The geometry of all three double bonds were determined to be (Z)

on the basis of the observed 1H – 1H coupling constants (10.6 Hz, H-3; 10.5 Hz, H-7;

10.3 Hz, H-9) and NOE enhancements between H2-2 and H2-5, H2-5 and H-8, and finally

H-8 and H2-11. A further COSY correlation from H-8 to a methylene (C-21: δC 46.0,

δH 2.44 and 2.15) completed the substructure (Figure 3.34).
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88
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Figure 3.34. Selected COSY and HMBC correlations and NOE enhancements
establishing the 1,4,7-triene substructure of labillaride J (69).

Starting from the distinctive slightly deshielded methylene (C-17: δC 37.4, δH 2.31), the

second substructure was constructed. A series of sequential COSY correlations starting

from H2-17 to a methylene (C-16: δC 24.1, δH 1.76 and 1.59) to a third methylene (C-15:

δC 26.0, δH 1.34) established the beginning of the substructure. As before, an HMBC

correlation from H2-16 to a non-protonated carbon (C-18: δC 194.4), from H2-17 to a

strongly shielded olefinic methine (C-19: δC 100.5, δH 5.61), and from H-19 to the last

non-protonated carbon (C-20: δC 193.6), confirmed the enol form of a 1,3-dione (see

Figure 3.35).

As with 68, the substructures of 69 were joined through a series of HMBC and

HSQC-TOCSY correlations. An HMBC correlation from H-8 to C-20 suggested

direct connectivity between C-20 and C-21. This was confirmed by reciprocal HMBC

correlations from H-19 to C-21, and from H2-21 to C-19. The two alkyl chains were

connected through the final two methylenes. An HMBC correlation from H2-11 to a

methylene (C-13: δC 26.4, δH 1.34) and from H2-13 to the final methylene (C-14: δC 25.1,
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Figure 3.35. Selected COSY and HMBC correlations establishing the second
substructure of labillaride J (69), in its resonance forms.

δH 1.35 and 1.19) extended the triene substructure. HMBC correlations from both proton

resonances of CH2-16 to C-14 connected the two alkyl chains while HSQC-TOCSY

correlations from H2-11 to H2-12 and H2-13, and from H2-17 to H2-16, H2-15 and H2-14

supported this connectivity (Figure 3.36).
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Figure 3.36. Selected TOCSY and HMBC correlations connecting the substructures of
labillaride J (69).

The molecular formula was now accounted for and labillaride J was found to be the des-

methyl ester of labillaride I. The final structure of labillaride J is therefore 69. NMR data

for 69 is presented in Table 3.17.
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3.15 Labillaride K

The observation of pseudomolecular ions of the colourless oil labillaride K (70) (0.4 mg

isolated in total) by HRESIMS indicated a molecular formula of C21H32O2 (317.2475

[M + H]+, ∆ 4.5 ppm and 339.2298 [M + Na]+, ∆ 1.1 ppm), requiring six double-bond

equivalents. The 13C NMR spectrum contained 14 distinct resonances while two further

non-protonated carbons (δC 195.6 and 203.0) were observed in the HMBC spectrum. An

irresolvable cluster of signals in the 13C NMR spectrum in the region between δC 29.3 –

29.4 was assumed to contain the remaining five resonances. The 1H NMR spectrum in

CDCl3 accounted for all 32 protons, including signals in the CH2 envelope region (δH 1.27

– 1.41) integrating for 10 protons. The multiplicity-edited HSQC showed connectivity

between those protons and the carbon cluster between δC 29.3 – 29.4, indicating five

overlapping methylenes. Other identifiable features of the NMR spectra included a

strongly shielded olefinic methine (δC 104.2, δH 5.47), six typical olefinic methines

[(δC 125.5, δH 6.32), (δC 127.1, δH 5.32), (δC 128.0, δH 5.27), (δC 128.8, δH 5.96),

(δC 132.3, δH 5.41) and (δC 135.3, δH 5.68)], an oxymethylene (δC 75.4, δH 4.49) and

a methyl triplet (δC 14.4, δH 0.98, t, 7.6 Hz).

Analysis of the 1H – 1H coupling established a 10 carbon, 1,4,6-triene substructure (C-1

to C-10). A series of sequential COSY correlations starting from the methyl triplet (C-1:

δC 14.4, δH 0.98) to a methylene (δC 20.7, δH 2.08) to an olefinic methine (C-3: δC 132.3,

δH 5.41) to a second olefinic methine (C-4: δC 127.1, δH 5.32) to a methylene (C-5:

δC 26.07, δH 2.91), to a third olefinic methine (C-6: δC 128.0, δH 5.27), to a fourth olefinic

methine (C-7: δC 128.8, δH 5.96) established the first section of the triene substructure.

The geometry of both double bonds were determined to be (Z) on the basis of the observed

1H – 1H coupling constants (10.6 Hz, H-4; 10.6 Hz, H-6; 11.1 Hz, H-7). Further COSY

correlations from H-7 to a fifth olefinic methine (C-8: δC 125.5, δH 6.32), to the final

typical olefinic methine (C-9: δC 135.3, δH 5.68) to a methylene (C-10: δC 33.0, δH 2.10)

completed the first substructure (see Figure 3.37, substructure A).

A furan-3-one substructure was constructed starting from a distinctive deshielded methy-

lene (C-17: δC 30.9, δH 2.50) which exhibited a COSY correlation to a second methylene
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Figure 3.37. Selected COSY and HMBC correlations and NOE enhancements
establishing the two substructures of labillaride K (70).

(C-16: δC 26.11, δH 1.64). An HMBC correlation from H2-16 to a non-protonated carbon

(C-18: δC 195.6) along with HMBC correlations from H2-17 to C-18 and a shielded

olefinic methine (C-19: δC 104.2, δH 5.47) suggested the presence of a highly-polarised

double bond. This connectivity was supported by an allylic COSY correlation between

H2-17 and H-19, and HMBC correlations from H-19 back to C-17 and C-18. Further

HMBC correlations were observed from H-19 to the second non-protonated carbon (C-20:

δC 203.0) and to an oxymethylene (C-21: δC 75.4, δH 4.49). The highly-polarised nature

of ∆18-19 and the strongly deshielded nature of C-21 is consistent with oxygen attachment

at C-18 and C-21, while the lack of a second shielded olefinic carbon suggested a ketone

at position C-20. With only two oxygens in the molecular formula, an oxygen bridge

between C-18 and C-21 was proposed, supported by an HMBC correlation from H2-21 to

C-18, completing the furan-3-one moiety (see Figure 3.37, substructure B). The 13C and

1H chemical shifts of the five-membered ring compared favourably with 5-hexyl-furan-3-

one (74), a synthetic compound containing this furan-3-one moiety (see Table 3.18).73

Table 3.18. Chemical shift differences of the furan-3-one moiety for labillaride K (70)
and 5-hexyl-furan-3-one (74).
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70 74
Labillaride K (70) 5-Hexyl-furan-3-one (74)* Difference

mult Pos δC δH Pos δC δH δC δH

δ (ppm) δ (ppm) δ (ppm) δ (ppm) ∆δ (ppm) ∆δ (ppm)
CH2 16 26.1 1.64 7 25.9 1.67 0.2 -0.03
CH2 17 30.9 2.50 6 31.3 2.52 -0.4 -0.02

C 18 195.6 5 195.7 -0.1
CH 19 104.2 5.47 4 103.9 5.50 0.3 -0.03
C 20 203.0 3 203.0 0.0

CH2 21 75.4 4.49 2 75.2 4.51 0.2 -0.02

*Winkler, J. D.; Oh, K.; Asselin, S. M. Org. Lett. 2005, 7, 387389.
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Five methylene pairs remained unaccounted for in the structure. The chemical shifts of

each of these methylene pairs were very similar (δC 29.3 – 29.4, δH 1.27 – 1.41), indicative

of a short unresolved alkyl chain. COSY correlations observed between δH 1.27 – 1.41

and both H2-10 and H2-16 suggested that the triene and furan-3-one substructures were

connected via this alkyl chain. This proposal was supported by the observation of HMBC

correlations from H-9, H2-10, H2-16 and H2-17 to resonances at δC 29.3 – 29.4. On the

basis of this evidence C-11 – C-15 were assigned as the irresolvable clusters (δC 29.3 –

29.4, δH 1.27 – 1.41) (Figure 3.38).
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Figure 3.38. Selected COSY and HMBC correlations connecting the two substructures
of labillaride K (70).

The molecular formula was now accounted for. The final structure of labillaride K is

therefore proposed as shown in 70. NMR data for 70 is presented in Table 3.19.

Table 3.19. 13C (150 MHz) and 1H (600 MHz) NMR data (CDCl3) for labillaride K (70).
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13C 1H HMBC

Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C)
1 14.4 CH3 125 0.98 t 7.6 2 2,3
2 20.7 CH2 123 2.08 quin 7.4 1,3 1,3,4
3 132.3 CH 154 5.41 m 2,4 2,5
4 127.1 CH 158 5.32 dt 10.6,7.2 3,5 2,5,6
5 26.07 CH2 123 2.91 t 7.5 4,6,7 3,4,7,6
6 128.0 CH 160 5.27 dt 10.6,7.7 5,7 4,5,8
7 128.8 CH 154 5.96 t 11.1 5,6,8 5,8,9
8 125.5 CH 150 6.32 dd 15.0,11.0 7,9,10 6,7,10
9 135.3 CH 150 5.68 dt 15.1,7.0 8,10 7,10,11
10 33.0 CH2 125 2.10 q 7.1 9,11 8,9,11

11 – 15 29.3 – 29.4 CH2 123 1.27 – 1.41 m
16 26.11 CH2 122 1.64 quin 7.4 15,17 15,17,18
17 30.9 CH2 115 2.50 t 7.7 16,19,21* 15,16,18,19
18 195.6† C
19 104.2 CH 182 5.47 s 17 17,18,20,21
20 203.0† C
21 75.4 CH2 152 4.49 s 17* 18,20

*Long-range correlation.
†Assigned from HMBC data.
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3.16 Degradation of Labillarides A to D

As previously mentioned, it was found that labillarides A–D (60–63) quickly degraded

when stored as lyophilised oils above−20 ◦C (see Figure 3.39). Samples obtained during

the purification of the second bulk extract were therefore stored submerged in liquid

nitrogen in an effort to counter this instability.

Figure 3.39. 1H NMR spectra of labillaride D (63) pure (black) and degraded (red).

Unexpectedly, samples of labillaride B (61) stored at −196 ◦C for a little over a year

proceeded to degrade despite the precautions taken. Figure 3.40 shows the 1H NMR of

pure 61 and the degraded sample following storage in liquid nitrogen. Work is continuing

in this area in the hope of isolating the degradation product or products of labillaride B

(61).

83



Figure 3.40. 1H NMR spectra of labillaride B (61) pure (black) and degraded (red).

Degradation Product of Labillarides C and D

Labillarides C (62) and D (63) quickly degraded when stored as lyophilised oils above

−20 ◦C. Interestingly, the 1H NMR spectrum of the degraded samples of both 62 and

63 appeared to exhibit similar signals. Normal-phase chromatography of the degraded

samples led to the isolation of the same degradation product (75) (see Figure 3.41).

Positive-ion mode HRESIMS analysis of the degradation product (75) gave rise to a single

pseudomolecular ion indicative of the molecular formula C21H30O3 (353.2087 [M + H]+,

∆ 0.1 ppm), requiring seven double-bond equivalents. The 13C NMR spectrum contained

21 distinct resonances while the multiplicity-edited HSQC spectrum in CDCl3 accounted

for 29 of the 30 protons indicating the presence of one exchangeable proton. Identifiable

features of the NMR spectra included three ketone resonances (δC 195.3, 195.8 and

213.9), four typical olefinic methines [(δC 124.9, δH 5.76), (δC 129.9, δH 5.38), (δC 131.5,

δH 5.47) and (δC 131.6, δH 5.08)], a strongly shielded olefinic methine (δC 101.8, δH 5.58)

and a methyl triplet (δC 7.7, δH 1.02, t, 7.3 Hz). The two shielded ketone resonances
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Figure 3.41. 1H NMR spectra of the purified degradation product (75) from
labillarides C (62) (black) and D (63) (blue).

and the strongly shielded olefinic methine suggested the presence of the enol form of a

1,3-dione, similar to that seen in labillarides H (68) and I (69).

A series of COSY and HMBC correlations lead to the construction of a 1,4-diene

substructure. COSY correlations from the methyl triplet (C-1: δC 7.7, δH 1.02) to a

methylene (C-2: δC 35.6, δH 2.51 and 2.58) indicated the connection between these two

centres in an isolated spin system. HMBC correlations were observed from H3-1 and both

proton resonances of CH2-2 to a ketone (C-3: δC 213.9). Further analysis of the HMBC

spectrum revealed only one other correlation from the proton resonance of a methine

(C-4: δC 47.7, δH 3.21) to the C-3 ketone, which together with the downfield nature of the

1H resonance suggested its placement on the other side of the ketone. COSY correlations

from H-4 to a methylene (C-5: δC 28.2, δH 1.99 and 2.30) and from both proton resonances

of CH2-5 to two olefinic methines [(C-6: δC 124.9, δH 5.76) and (δC 129.9, δH 5.38)]

extended the substructure through to a double bond. An HMBC correlation from H-4 to

C-6 established the direct connection between C-5 and C-6, constructing the order of C-5

to C-6 to C-7 through the double bond (see Figure 3.42).
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Figure 3.42. Selected COSY and HMBC correlations establishing part of the 1,4-diene
substructure of the degradation product (75).

Detection of a series of 1H – 1H couplings extended the substructure. COSY correlations

were observed from H-7 to a methine (C-8: δC 39.1, δH 3.23), from H-8 to an olefinic

methine (C-9: δC 131.6, δH 5.08), and from H-9 to the fourth typical olefinic methine

(C-10: δC 131.5, δH 5.47). Further COSY correlations from H-10 to a methylene

(C-11: δC 25.0, δH 1.91 and 2.06) and from the proton resonances of CH2-11 to a

second methylene (C-12: δC 27.0, δC 1.33) continued the substructure. Homo-allylic

COSY correlations between both proton resonances of CH2-5 and H-8, and allylic COSY

correlations between H-9 and both proton resonances of CH2-11 were also observed. A

further COSY correlation from H-8 to a methine (C-21: δC 50.2, δH 2.49) and from H-21

to H-4 established a cyclohexene ring, completing the substructure. This connectivity was

supported by HMBC correlations from H-5 and H-7 to C-21 and from H-4 to C-8 (see

Figure 3.43). The geometry of the two double bonds were determined to be (Z) on the

basis of the observed coupling constants (9.8 Hz, H-6 and H-7; 10.6 Hz, H-9; 9.8 Hz,

H-10) and NOE enhancements between H-8 and both proton resonances of CH2-11.
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H
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1111

H H

1212

H

Figure 3.43. Selected COSY and HMBC correlations completing the 1,4-diene
substructure of the degradation product (75).

The second substructure was constructed starting from a distinctive methylene (C-17:

δC 38.6, δH 2.24). A series of sequential COSY correlations starting from H2-17 to a

methylene (C-16: δC 24.2, δH 1.63 and 1.72) to a third methylene (C-15: δC 27.9, δH 1.26,

1.42) established the beginning of the substructure. HMBC correlations from both proton
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resonances of CH2-16 to a non-protonated carbon (C-18: δC 195.3), from H2-17 to a

strongly shielded olefinic methine (C-19: δC 101.8, δH 5.58), and from H-19 to the last

non-protonated carbon (C-20: δC 195.8) confirmed the presence of an enol form of a

1,3-dione as suggested by the chemical shifts (see Figure 3.44).

1515

161617171818

O

1919

2020

O

H

H

H H

H H

COSY
HMBC

Figure 3.44. Selected COSY and HMBC correlations establishing the second
substructure of the degradation product (75).

The substructures were joined by a series of HMBC and HSQC-TOCSY correlations.

An HMBC correlation from H-19 to C-21 suggested direct connectivity between C-20

and C-21. This connectivity was confirmed by HMBC correlations from H-4 to C-20,

and from H-21 to C-19 and C-20. Two methylenes remained unaccounted for in the

structure, both exhibiting very similar carbon resonances [(δC 26.07, δH 1.18 and 1.26) and

(δC 26.09, δH 1.24 and 1.32)]. HMBC correlations from both proton resonances of one of

these methylenes (C-13: δC 26.09, δH 1.24 and 1.32) to C-11 suggested direct connectivity

between C-12 and C-13. Further HMBC correlations from both proton resonances of

CH2-13 to the final methylene (C-14: δC 26.07, δH 1.18 and 1.26) and C-15 connected

the two substructures through an alkyl chain. Similarly, HMBC correlations from both

proton resonances of CH2-14 to C-12 and C-16 supported this connectivity. Finally, this

was confirmed by the observation of HSQC-TOCSY correlations from H2-15 to H-14b

and H-13b (see Figure 3.45).

The relative configuration of 75 was assigned on the basis of 3JHH values and NOE

enhancements observed in a 2D-NOESY experiment. The coupling of the proton

resonance of the methine CH-21 (t, 10.8 Hz) suggested an antiperiplanar relationship

to both H-4 and H-8, implying all three protons occupy axial positions in the cyclohexene

ring and placing the large alkyl groups in the preferred equatorial positions. Similarly, the

coupling constants of H-4 (11.6 Hz) and H-5a (11.9 Hz) again indicated an antiperiplanar

relationship between these two resonances, positioning H-5a axially. Allylic 4JHH values

are proportional to cos2φ, where φ is the dihedral angle between the C–H bond and
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Figure 3.45. Selected TOCSY and HMBC correlations connecting the degradation
product (75).

the π-orbital of the double bond.74 Therefore the considerably stronger observed allylic

COSY correlation between H-7 and H-5a compared to that of H-7 and H-5b supported

the assignment of H-5a as axial. Finally, an observed NOE enhancement between the 1,3-

diaxial protons H-5a and H-21 supported the proposed relative configuration (see Figure

3.46).

33
88

44
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6677

H

Haa

Hbb

H

2222
99

H

55
Antiperiplanar
NOE

Figure 3.46. The selected NOE enhancement and antiperiplanar relationships used to
determine the relative configuration of the degradation product (75).

All proton and carbon resonances were now accounted for. The alkene, enol form of a 1,3-

dione, ketone, cyclohexene and macrocycle moieties accounted for the molecular formula,

satisfying the seven double-bond equivalents. The final structure of the degradation

product is therefore determined to be 75. NMR data for 75 is presented in Table 3.20.
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A possible degradation pathway is proposed in Scheme 3.3. The α-pyrone ring is opened

by H2O, followed by decarboxylation, oxidative attack by O2, nucleophilic opening of the

peroxide and finally, loss of OH – to form the ketone leading to the formation of 75.
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Scheme 3.3. A proposed degradation pathway of labillarides C (62) and D (63) to the
degradation product (75).

Oxylipins in general are found to be unstable when concentrated, and storage in

toluene/ethanol solutions appears to retard this degradation,75 a much more practical

storage method than the liquid nitrogen employed during this study.
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3.17 Biological Activity of Labillarides A to K

Labillarides A–K (60–70) were evaluated for cytotoxicity against the human leukaemia

cell line HL-60 and for antibacterial activity against the MC2155 strain of Mycobacterium

smegmatis at the School of Biological Sciences, VUW. Labillarides A (60), B (61) and I

(68) all showed moderate activity against HL-6076 while labillaride C (62) was the only

metabolite to exhibit antibacterial activity (see Table 3.21).77

Table 3.21. Biological activity of labillarides A–K (60–70).

Labillaride
IC50 (µM)

HL-60* M. smegmatis MC2155†

A (60) 7.7 Inactive
B (61) 6.9 Not tested
C (62) Inactive 36.5
D (63) Inactive Inactive
E (64) Inactive Inactive
F (65) Inactive Inactive
G (66) ∼12 Inactive
H (67) Inactive Inactive
I (68) 2.5 Inactive
J (69) ∼11 Inactive
K (70) ∼12 Inactive

*Tested up to 10 µM.
†Tested up to 50 µM.

3.18 Oxylipins from Marine Macro-algae

The term oxylipin was first introduced in literature in 1991 to encompass “oxygenated

compounds which are formed from fatty acids by reaction(s) involving at least one step

of mono- or dioxygenase-catalysed oxygenation.”78 Marine flora are prolific producers of

polyunsaturated fatty acids, in particular C20 and C22 ω-3 fatty acids.79 The metabolism

of these fatty acids to oxylipins was initially thought to be exclusively among red algae

(Rhodophyta), however more recent studies have shown brown (Phaeophyta) and green

(Chlorophyta) algae also produce a wide range.80

Typical examples of oxylipins include the prostaglandins PGE2 (76) and PGF2α (77),
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and the constanolactones A (78) and B (79).81,82 The class is extensive and therefore

a detailed review of marine algal oxylipins is beyond the scope of this report. Several

reviews of oxylipins are available in literature and the focus will therefore be limited to

those containing a macrocyclic moiety.79,80,83

OHHO

O
COOH

OHHO

HO
COOH

O O
R1

R2

HO

H H

76 77 78 R1 = H R2 = OH
79 R1 = OH R2 = H

Other than the polyunsaturated α- and γ-pyrone macrocycles previously reported from

Phacelocarpus labillardieri and described in Section 3.1 (49–51, 53–57 and 59), there

are few examples of oxylipin macrocycles. Hybridalactone (80), along with an unnamed

minor oxylipin (81), was reported from a collection of the red alga Laurencia hybrida

in 1981.84 The correct enantiomer of 80 was synthesised in 1984 based on the absolute

configuration predicted by a biogenic proposal published earlier the same year.85,86 In

1989, ecklonialactones A (82) and B (83) were isolated from the brown alga Ecklonia

stolonifera.87 Although the extract of E. stolonifera showed no antifeedant activity, 82

exhibited weak activity compared with the control.87 The structures of the C18 compounds

82 and 83 are very similar to those of C20 metabolites 80 and 81, suggesting a similar

biogenic pathway.79

O

O

H

H OH

H
O

O

H O O

O

O
∆

H

H

80 81 82
83 ∆ saturated

Finally, eiseniachlorides A–C (84–86), eiseniaiodides A (87) and B (88), and three

unnamed oxylipins (89–91) were reported from a Japanese collection of the brown alga

Eisenia bicyclis in 2003.88 Compounds 84–89 each contain a chlorine or an iodine atom,

making these structures particularly unusual. Only three other chlorinated C18 oxylipins

have been reported to date.88 Possible biogenic pathways for 84–91 were postulated
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starting from octadecatetraenoic acid and involving lipoxygenase enzymes in a similar

fashion to those discussed below (Section 3.19).88
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3.19 Labillaride Biogenesis

The biogenic origins of many oxylipins have been investigated.79 Many, if not all oxylipin

biogenic pathways are proposed to involve the lipoxygenases (LPOs), dioxygenase

enzymes which incorporate molecular oxygen into unsaturated fatty acids with a (Z,Z)-

1,4-pentadiene moiety.89 The most common example of such pathways is the conversion

of arachidonic acid (92) to several different hydroperoxyeicosatetraenoic acids (HPETEs)

by the 5-, 12-, and 15-LPOs (see Scheme 3.4) as part of the Arachidonic Acid Cascade.90

Further transformations of the hydroperoxide are well documented, including conversion

to an alcohol via a peroxidase (POX) reduction, or intramolecular rearrangement to form

an alcohol and an epoxide.91 Epoxidase catalysed insertion of an oxygen across a double

bond to form an epoxide also has precedence in oxylipin biogenesis.91

COOH55

COOH

COOH

Fe3+_5-LPO_B

H

Fe3+_5-LPO_BH+

O2

COOH

Fe3+_5-LPO_BH+

Fe3+_5-LPO_B

Fe3+_5-LPO_BH+

Fe3+_5-LPO_BH+ Fe3+_5-LPO_B

O

O

POX

COOH
OH

COOH

O

HO

OOH

92

93

Scheme 3.4. The 5-LPO-catalysed oxidation of arachidonic acid (92) to 5-HPETE
(93)90 and two proposed transformations from the hydroperoxide.
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Biogenesis of Labillarides A to H

Starting from an oxylipin premise, plausible biogenic pathways for labillarides A–H

(60–67) are proposed to start from the common α-pyrone precursor (94) formed from

the fatty acid docosahexaenoic acid (95). The pathway from 95 is initiated by an

“ene” type reaction, involving reaction of singlet oxygen with an alkene,92 producing a

hydroperoxide at C-18 followed by an intramolecular rearrangement to form an epoxide.

Lactonisation followed by dehydration, oxidation and hydrogenation (shown in Scheme

3.5) yields the α-pyrone precursor 94, numbered to coincide with the numbering of the

labillarides. The order of the steps in this scheme, as with all of those proposed below, is

flexible, for instance the oxidation may occur prior to the lactonisation.

HO

O

R
"ene" HO

O

R

O

HO

O

R
OH

O
HO

R =

O

O

OH
OH

R

O

O

OHR

O

O

OR

O

O

OHR

oxidation

O
1818

1919
2020

21212222

O

OH1717

1616

1515

1414

1313

1212

1111

101099

88

7766

55

4433

22

11

2H2

-H2O

H

1Ο2

∆12,13 
∆15,16

H

H

O O
95

94

Scheme 3.5. A proposed biogenesis of the α-pyrone precursor (94).

An alternative pathway for the formation of this α-pyrone precursor (94) can be proposed

that involves polyketide synthase (PKS). The basic biochemical reactions of eukaryotic

fatty acid synthase (FAS) and polyketide synthase (PKS) are the same, although

the enzymes involved differ.93 The FAS pathway is a multi-step process initiated by

condensation of malonate (96) and a fatty acid with release of a CO2 molecule.93 Unlike

FAS, the predominant PKS pathway in eukaryotic organisms will accept a variety of

starter units, with malonate (96) as the propogator. The pathway then skips the reduction
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and dehydration steps, stopping at the condensation step, resulting in linear carbon chains

with 1,3-ketone oxidation patterns (see Scheme 3.6).

RS
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O O

S enzH
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R S

O O

enz

hydrolysis

R OH

O O

enz = enzyme or co-factor

96

96

Scheme 3.6. A simplified polyketide synthase producing polyketone products.

The chloroplast fatty acids of eukaryotic algae are largely polyenoic acids, of which the

C18 ω-3 fatty acid α-linolenic acid (97) is a major constituent.94 With 97 as the starter

unit, the 1,3,5-oxidation pattern observed in 94 can be constructed through two cycles of

PKS acetate addition followed by lactonisation and dehydration to form 94 (Scheme 3.7).
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Scheme 3.7. An alternative proposed biogenesis of the α-pyrone precursor (94).

The biogenesis of labillaride A (60) from 94 is proposed to follow the mechanism outlined

in Scheme 3.8. Oxidation at ∆6,7 of 94 by an epoxidase, followed by deprotonation at the

α-position of the diketone, nucleophilic opening of the epoxide and finally, dehydration

across the C-7–C-8 bond leads to the formation of 60.

Haloperoxidase enzymes were suggested in the biosynthesis of halogenated marine

natural products nearly 30 years ago.95 Since then, various haloperoxidases have been
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Scheme 3.8. A proposed biogenesis of labillaride A (60).

discovered in many marine organisms, of which most are the vanadium-dependent

haloperoxidases.95 Vanadium bromoperoxidases (V-BrPOs) have been isolated from all

the different classes of marine algae, including Rhodophyta. The overall reaction scheme

of V-BrPOs is summarised in Scheme 3.9, where the enzyme catalyses the oxidation of

bromide by hydrogen peroxide to produce a bromonium ion, or a biological equivalent.

This bromonium ion can then either react with an organic substrate (R), or with another

equivalent of hydrogen peroxide.95

Br + H2O2
V-BrPO "Br+" - like intermediate + 2H2O 

(i.e. HOBr, Br2, Br3, Enz-Br)

H2O2

1O2 + Br

R-H

R-Br

Scheme 3.9. Overall reaction scheme of vanadium bromoperoxidases.95

The formation of labillaride B (61) is proposed to involve an intramolecular cyclisation

catalysed by vanadium bromoperoxidase, similar to that proposed for the cyclisation of

laurediols.96–98 The α-pyrone precursor (94) undergoes a 1,3-H migration, followed by

deprotonation at the α-position of the diketone and tautomerisation resulting in an enolate.

Nucleophilic attack by the oxygen at C-8 of the double bond followed by attack of the

double bond onto the bromonium ion, or a biological equivalent, results in the formation

of 61 (Scheme 3.10).
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Scheme 3.10. A proposed biogenesis of labillaride B (61).

Labillarides C (62) and D (63) are proposed to follow a similar lipoxygenase-initiated

mechanism (Scheme 3.11). A peroxidase reduction of the hydroperoxide at C-6 results in

an alcohol which is converted to a good leaving group by substitution with a phosphate

ion, or similar moiety. Deprotonation at the α-position of the diketone followed by

nucleophilic attack by the carbanion at the C-8 double bond and loss of the leaving group

results in the formation of 62 or 63.
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Scheme 3.11. A proposed biogenesis of labillarides C (62) and D (63).
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In an analogous fashion, labillarides E–H (64–67) are proposed to follow the mechanism

outlined in Scheme 3.12. A hydroperoxide formation from a lipoxygenase at C-3 and

subsequent reduction by a peroxidase followed by a second lipoxygenase product at

C-6 which undergoes an intramolecular rearrangement to form an epoxide, establishes

the C-3 and C-8 alcohols. Deprotonation at the α-position of the diketone followed

by nucleophilic attack by the carbanion at the epoxide is followed by conversion of the

alcohol to a good leaving group. A second deprotonation at the α-position to the diketone

followed by enolisation results in nucleophilic attack by the oxygen at the C-6 position,

ejecting the leaving group, completing the formation of the 64–67 framework.
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Scheme 3.12. A proposed biogenesis of labillarides E–H (64–67).

Biogenesis of Labillarides I and J

A possible biogenic pathway for labillarides I (68) and J (69), which could alternatively

be artifacts of isolation, can also be proposed starting from labillaride C (62). The α-
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pyrone ring is opened by H2O, resulting in the common precursor which can undergo

either methylation to form 68, or decarboxylation and tautomerisation to form 69 (see

Scheme 3.13).

methylation

-CO2

tautomerisation

OO
H

O

O

H

OO
H

O

OMe
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OH OH

HO

O
HO
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62

68 69

Scheme 3.13. A proposed biogenesis of labillarides I (68) and J (69).

Biogenesis of Labillaride K

There are very few natural products with a furanone moiety reported in the literature.

Interestingly, all organisms that reportedly produce furan-3-one metabolites also produce

4-hydroxy-α-pyrones.99 During the isolation of pseudopyronines A (98) and B (99), Kong

et al. found 99 to be unstable, degrading to 100 when left sitting in CDCl3 in an NMR

tube for 10 days.99

O

O

OHn

98 n = 4
99 n = 6

O

O

HO

100

A possible mechanism for the formation of a furan-3-one from an α-pyrone was proposed
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by Kong et al. (Scheme 3.14). The pyrone is oxidised by oxygen from the air to

form a peroxide, which was observed in the NMR tube of the degraded sample of 99.

The unstable peroxide intermediate is then proposed to be hydrolysed during HPLC

purification, followed by oxidative decarboxylation and cyclisation.

O
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O2 O

O

R1 O

H2O

O
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O
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R2
OH

R2

O
R2

OH O
R2

OH

R1 =

R2 =

99

100

Scheme 3.14. A possible mechanism for the formation of a furan-3-one from a
α-pyrone, as proposed by Kong et al.99

By analogy, a plausible biogenesis of labillaride K (70) can be proposed assuming Nature

could exploit such a process with a final biological reduction of the hemiacetal (see

Scheme 3.15). Once more, a lipoxygenase initiated pathway from the α-pyrone precursor

(94) produces a hydroperoxide at C-21 followed by an ester hydrolysis, decarboxylation

and loss of H2O. Cyclisation is followed by reduction of the hemiacetal and, finally, a

1,3-H migration to form 70.
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Scheme 3.15. A proposed biogenesis of labillaride K (70).
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Scheme 3.16 shows an overview of the proposed biogenic pathways of labillarides A–

K (60–70) from the fatty acids docosahexaenoic acid (95) or α-linolenic acid (97).

Similar schemes could be proposed for the known pyrones 49–57 and 59 from either

docosahexaenoic acid (95) or eicosapentaenoic acid, the C20 ω-3 fatty acid equivalent.
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Scheme 3.16. An overview of the proposed biogenic pathways of labillarides A–K
(60–70).
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3.20 Summary

Oxylipins are wide-spread in red algae, however macrocyclic versions are rather unusual.

In particular, the nine novel polyunsaturated α- and γ-pyrone macrocycles reported

from southern Australian specimens of Phacelocarpus labillardieri between 1982 and

1995 represent a unique group of metabolites.58–61 In this study, several collections of

P. labillardieri from the northern coastal regions of the North Island of New Zealand

led to the isolation of 11 new compounds, eight of which are related α-pyrone containing

macrocyclic metabolites (labillarides A–H, 60–67), adding to this repertoire. Of particular

interest are labillarides C (62) and D (63), which introduce the first examples of direct

carbon-to-carbon bridged macrocycles into this family of compounds, and the unusual

tricyclic labillarides E–H (64–67), which possess the rare dihydrofuro[3,2,-c]pyran-4-one

moiety. Also isolated were two enol macrocycles (labillarides I and J, 68 and 69) and

a new furan-3-one (labillaride K, 70), which are biogenically related to the macrocyclic

pyrones. It is interesting to note that a small Wellington collection of P. labillardieri

was examined by NMR spectroscopy and found to contain lower concentrations of the

labillarides isolated from the Northland collections, and again with no sign of the known

compounds previously isolated from southern Australian sources. These differences

between the Australian and New Zealand studies of what has been reported as the same

species may indicate a different taxonomic status.

The stability of several of the labillarides was problematic. It was found that though

frozen collections of the alga, as well as extracts and crude mixtures of compounds,

were quite stable, once purified some of the labillarides are remarkably unstable when

stored as a solid or in an oil. This issue has been noted for oxylipins and a solution

is to store such compounds in toluene/ethanol solutions.75 Interestingly, the tricyclic

oxylipins labillarides E–H (64–67) did not exhibit the same instability, showing no

obvious degradation by NMR analysis following over two years of storage in a 4 ◦C

fridge.

All labillarides were tested for biological activity against the human leukaemia cell

line HL-60 and for antibacterial activity against the MC2155 strain of Mycobacterium
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smegmatis. Labillarides A (60), B (61) and I (68) exhibit moderate cytotoxicity while

labillaride C (62) shows moderate antibacterial activity. Initial tests of labillaride E

(64) showed repeatable potent cytotoxicity (∼600 nM), however this activity was not

observed when a second sample was purified by a slightly different isolation route.

Upon re-purification of the original sample, despite no detection of another major

constituent by HPLC, the activity did not track with 64. Such issues are not restricted

to NMR guided isolation. In 1995, a P-388 bioassay guided separation lead to the

isolation of phakellistatin 11 (101) (ED50 0.2 µg mL-1) from the Micronesian sponge

Phakellia sp., however a synthetic sample of 102 did not exhibit this potent activity (ED50

>10 µg mL-1).100,101 It was found that the natural sample carried trace amounts (too small

for usual NMR and chromatographic detection) of an unidentified exceptionally potent

impurity.

Finally, Labillarides E–H (64–67) display significant changes in their 1H NMR spectra

with changes in either concentration or solvent. Were it not for the HPLC results showing

different retention times and only two examples of co-elution, it would have been very

easy to dismiss the subtle chemical shift variations observed between the samples, as

considerably larger changes could be induced by changing the concentration or solvent.

This demonstrates the need for more than a single method to determine if samples are

identical, with HPLC being crucial in this case.
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Chapter 4

Colensolide A: A New Nitrogenous Bromophenol from

Osmundaria colensoi

4.1 Osmundaria colensoi

In this study, an extract of the New Zealand marine red alga Osmundaria colensoi [(J.D.

Hooker & Harvey) R.E. Norris] (Figure 4.1, taxonomy see Table 4.1) was examined. The

spectra obtained from screening O. colensoi with our standard protocol was recognised

as being extremely interesting using the HSQC mask (Figure 4.2). Of particular note was

the cluster of shielded aromatic methines centred around δH 7 and δC 115.

There have been no compounds reported to date specifically from Osmundaria colensoi,

though there has been a variety of compounds isolated from different species of

Osmundaria and Vidalia, which is now considered a synonym of Osmundaria.21,102 Sterol

distribution studies of several species of Osmundaria and Vidalia have been reported on

two occasions.103,104 Similarly, the free protein amino acid profiles of V. volubilis were

reported in 1977,105 and the carotenoid content of a New Zealand collection of V. colensoi

was summarised in 1987.106 In 1982 an S-methyl compound (103) was reported from

several red algae, including V. volubilis.107 Re-examination of the hydrophilic fraction of

Figure 4.1. Osmundaria colensoi. Image courtesy of Malcolm Francis.
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Table 4.1. Taxonomic classification of genus Osmundaria from order Ceramiales as
presented by AlgaeBase.21

Order Family Sub-family Tribe Genus

Ceramiales

Ceramiaceae

Callithamnioideae

Callithamnieae . . .
Gymnothamnieae . . .
Ptiloteae . . .
Rhodocallideae . . .

Ceramioideae

Antithamnieae . . .
Bornetieae . . .
Ceramieae . . .
Ceramioideae . . .
Crouanieae . . .
Dasyphileae . . .
Dohrnielleae . . .
Griffithsieae . . .
Heterothamnieae . . .
Pterothamnieae . . .
Scagelieae . . .
Scagelothamnieae . . .
Sphondylothamnieae . . .
Wrangelieae . . .

Compsothamnioideae

Compsothamnieae . . .
Delesseriopseae . . .
Halosieae . . .
Lasiothalieae . . .
Monosporeae . . .
Rhodothamnieae . . .
Spermothamnieae . . .
Spongoclonieae . . .
Warrenieae . . .
Liagorothamnieae . . .
Skeletonelleae . . .

. . .
Dasyaceae . . .

Delesseriaceae

Delesserioideae

Apoglosseae . . .
Claudeae . . .
Delesserieae . . .
Grinnellieae . . .
Hemineureae . . .
Hypoglosseae . . .

. . .

Nitophylloideae Martensieae . . .
Nitophylleae . . .

Phycodryoideae

Cryptopleureae . . .
Myriogrammeae . . .
Phycodryeae . . .
Schizoserideae . . .
Dicroglosseae . . .

. . .

Rhodomelaceae

Amansieae

Adamsiella
Amansia
Aneurianna
Enantiocladia
Epiglossum
Halopithys
Kentrophora
Kuetzingia
Lenormandia
Nanopera
Neurymenia
Osmundaria
Protokuetzingia
Rytiphlaea
Vidalia

Brongniartelleae . . .
Lophothalieae . . .
Neotenophyceae . . .

. . .

Sarcomeniaceae Sarcomenioidea Sarcomenieae . . .
. . .

Spyridiaceae Spyrideae . . .
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Figure 4.2. HSQC mask showing the common correlations in green and the unusual
correlations in red.

this alga by the same group lead to the isolation of two N-methyl compounds (104 and

105), reported in 1992.108 In 1982 the halogenated cyclopentene 106 was reported from a

Western Australian collection of V. spiralis.109 Vidalol A (107) and B (108) were reported

in 1991 from the Caribbean red alga Vidalia obtusaloba, and were found to have anti-

inflammatory activity.110 Vidalenolone (109), a novel phenolic compound, was reported

along with the known compounds lanosol (110) and 4-hydroxybenzyl alcohol (111) from

the tropical red alga Vidalia sp. in 2002.111 In 2006 two new sulfated bromophenols (112

and 113) were reported along with three known lanosol derivatives (114, 115 and 116), a

sterol (117) and a glycoside (118).112 Finally, in 2006, the known lanosol derivative 119

was reported from Osmundaria serrata.113
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4.2 Isolation

A large-scale extraction of approximately 500 g of Northland collections of O. colensoi

was performed. Following two steps of bench-top reversed-phase chromatography

(PSDVB), four fractions were examined by 1H, COSY, HSQC and HMBC NMR

experiments in an attempt to identify functional groups and fragments of molecules.

Analysis of the NMR spectra revealed deshielded aromatic non-protonated carbons and

shielded aromatic singlet protons, suggesting highly substituted phenols. Examination of

the more recent Marine Natural Products reviews, published yearly in Natural Products

Reports, revealed a similarity to a series of bromophenols isolated from various red

algae.114–117

Known Bromophenols

Further purification by HPLC (C18) lead to the isolation of the common bromophenol

lanosol (110), the methyl ether of lanosol (114), an aldehyde derivative (120), a butenone

derivative (121) and rhodomelol (122). Compounds 110 and 114 have been previously

reported from species of Vidalia and Osmundaria respectively, while 120 has only been

reported from other genera of red algae.111,112 Both 121 and 122 have been reported once

each from Polysiphonia lanosa and Rhodomela confervoides respectively.118,119

The NMR assignments of lanosol and many of its derivatives are well documented in the

literature, therefore it is unnecessary to give a detailed structural elucidation of lanosol

(110) and its derivatives 114 and 120 isolated during this study. Full NMR data for these

compounds can be found in Appendix B.

The butenone derivative 121 was reported in 2004 along with several other bromophe-

nols.118 A detailed analysis of the NMR data obtained in this study led to the reassignment

of several 13C resonances. Specifically, the assignment of the 13C resonances for C-6 and

C-8 were interchanged, as were that of C-4 and C-5. The revised NMR data is presented

in both CD3OD (Table 4.2) and (CD3)2CO (Table 4.3).
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Table 4.2. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for
(3E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (121).

13C 1H HMBC
Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C)
1 127.6 C
2 119.6 C
3 114.8 C
4 149.0 C
5 146.6 C
6 113.0 CH 161 7.18 s 2,3*,4,5,7
7 145.1 CH 158 7.95 d 16.1 8 2,5*,6,8,9
8 128.1 CH 159 6.52 d 16.1 7 1,7,9,10
9 200.8 C

10 27.3 CH3 127 2.37 s 7,8,9

*Long-range correlation.

Table 4.3. 13C (150 MHz) and 1H (600 MHz) NMR data ((CD3)2CO) for
(3E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (121).

13C 1H HMBC
Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C)
1 127.9 C
2 118.9 C
3 114.3 C
4 147.9 C
5 146.0 C
6 113.3 CH 159 7.33 s 2,3,4,5,7
7 142.7 CH 159 7.86 d 16.1 8 1*,2,5*,6,8,9
8 128.8 CH 159 6.54 d 16.1 7 1,2*,7,9,10
9 197.6 C

10 27.7 CH3 126 2.33 s 7,8,9

*Long-range correlation.

Rhodomelol (122) was reported along with its methyl ester, methylrhodomelol (123), in

1985.119 The only NMR assignments of 122 and 123 were reported on semi-synthetic

derivatives. As a result, the NMR data reported for rhodomelol was incomplete and

therefore a detailed analysis of the NMR spectra obtained in this study was performed.

The full NMR assignment of 122 is presented in CD3OD (Table 4.4) and (CD3)2CO (Table

4.5). The position of the diastereotopic proton resonances of CH2-10 were assigned based

on both their chemical shift and the 3JHH coupling constants observed with H-11. The

chemical shift of H-10a is expected to be slightly higher upfield than H-10b due to the

shielding effect of the hydroxyl group on C-11. In addition, the dihedral angle of the

vicinal protons H-10a and H-11 is closer to 90◦ than that of H-10b and H-11, therefore a

smaller coupling constant is expected.
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Table 4.4. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for rhodomelol (122).

13C 1H HMBC
Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C) NOE
1 128.2 C
2 117.9 C
3 113.6 C
4 144.9 C
5 145.7 C
6 119.2 CH 165 7.03 s 2,3,4,5,8 7a,7b,12
7a 41.7 CH2

128 3.37 d 14.9 7b 4,2,5*,6,8,9,13 6,7b,12
7b 133 3.11 d 14.7 7a 4,2,5*,6,8,9,13 6,7a
8 79.4 C
9 109.0 C

10a 76.6 CH2
151 4.09 dd 9.7,3.1 10b,11 9,11,12 10b,11

10b 151 4.24 dd 9.8,5.9 10a,11 9,12 10a,11
11 75.5 CH 166 4.41 dd 5.6,3.4 10a,10b 9,10,12 10a,10b,12
12 88.2 CH 154 4.59 s 9,10,11,13 6,7a,11
13 176.5 C

*Long-range correlation.

Table 4.5. 13C (150 MHz) and 1H (600 MHz) NMR data ((CD3)2CO) for rhodomelol
(122).

13C 1H HMBC
Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C)
1 128.4 C
2 117.8 C
3 112.8 C
4 144.3 C
5 144.7 C
6 119.1 CH 164 7.12 s 1,2,3,4,5,7
7a 41.1 CH2

127 3.39 d 14.8 7b 1,2,5,6,8,9,13
7b 132 3.18 d 15.0 7a 1,2,6,8,9,13
8 78.7 C
9 108.6 C

10a 76.3 CH2
150 4.18 dd 9.8,5.6 10b,11 9,12

10b 150 4.09 dd 9.7,3.1 10a,11 9,11,12
11 75.2 CH 154 4.45 dd 5.5,3.2 10a,10b 9,10,12
12 87.1 CH 165 4.65 s 9,10,11,13
13 174.2 C

A New Bromophenol

A more detailed review of the bromophenols was performed and the known structures

compared to the NMR data obtained from the semi-purified fractions with a particular

emphasis on analysing fragments of molecules in the semi-purified fractions. The aim of

this technique was to look for fragments that did not appear to be present in compounds

reported in the literature. The HMBC experiment in particular is a very useful tool, as it
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allows the identification of non-protonated carbons. By examining features such as methyl

splitting patterns in the 1H NMR spectrum, and the positioning of diagnostic functional

groups such as ketones through HMBC correlations, structural fragments were identified.

This analysis lead to the identification in the semi-purified fractions of the known bro-

mophenol compounds described previously. But, more interestingly, it also highlighted

the presence of a compound that appeared to display different spectral characteristics to all

previously reported bromophenols. Specifically, an isolated diastereotopic methylene pair

was found to connect with several carbon environments that did not appear in any of the

known compounds. Figure 4.3 shows the 1H, COSY, HSQC and HMBC NMR spectra

of the fraction. Of particular interest were the HMBC correlations from the methylene

pair (red) to the deshielded methylene pair (green) and the strongly deshielded methine

(blue). Further purification by HPLC (C18) lead to the isolation of a novel bromophenol,

colensolide A (124).

(a) 1H NMR spectrum (b) COSY spectrum

(c) HSQC spectrum (d) HMBC spectrum

Figure 4.3. NMR spectra of a semi-purified fraction of O. colensoi showing correlations
of interest.
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4.3 Colensolide A

Colensolide A (124) was isolated as a colourless oil (3.5 mg in total). The observation

of characteristic pseudomolecular ion clusters ([M + H]+ : [M + 2 + H]+ : [M + 4 + H]+;

1 : 2 : 1) by HRESIMS indicated a molecular formula of C13H15N3O4Br2 (417.9386

[M − H2O + H]+, ∆ 2.6 ppm and 435.9496 [M + H]+, ∆ 1.5 ppm), requiring seven

double-bond equivalents. The 13C NMR spectrum contained 13 distinct resonances while

the multiplicity-edited HSQC spectrum in CD3OD, as well as establishing direct 1H to

13C connectivity, accounted for 11 of the 15 protons indicating the likely presence of

four exchangeable protons. This was partially confirmed by the observation of 13 of

the 15 protons when the 1H spectrum was recorded in d6-DMSO. Identifiable features

in the CD3OD NMR spectra included one carbonyl resonance (δC 163.9), two strongly

deshielded aromatic resonances [(δC 145.2) and (δC 146.4)], four aromatic resonances

[(δC 114.4), (δC 116.2), (δC 116.4, δH 6.98) and (δC 130.9)], a strongly deshielded methine

(δC 77.7, δH 4.74), two slightly deshielded methylenes [(δC 55.1, δH 3.86 and 3.68) and

(δC 49.0, δH 2.79 and 2.67)], an aliphatic methylene (δC 38.6, δH 2.12 and 2.00) and an

oxymethyl group (δC 51.0, δH 3.28).

Construction of the Bromophenol Substructure

Analysis of the HMBC spectrum of 124 led to the construction of the 2,3-dibromo-

4,5-dihydroxybenzyl substructure. HMBC correlations from the aromatic methine (C-6:

δC 116.4, δH 6.98) to five aromatic non-protonated carbons (C-1: δC 130.9, C-2: δC 116.2,

C-3: δC 114.4, C-4: δC 146.4 and C-5: δC 145.2) established a penta-substituted benzene

moiety. The strongly deshielded nature of C-4 and C-5 is consistent with oxygen

attachment at both these carbons. This is supported by the relatively shielded nature

of the carbon resonances of positions C-2, C-3 and C-6. Strong HMBC correlations from

both proton resonances of a deshielded methylene (C-7: δC 55.1, δH 3.86 and 3.68) to the

aromatic non-protonated carbons C-1 and C-2 and the aromatic methine C-6 indicated the

attachment of this methylene to C-1. Weak allylic COSY correlations between H-6 and

both proton resonances of CH2-7 supported this attachment. This assignment partially
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accounts for the deshielded nature of C-7 although the observed 1H and 13C shifts could

not be entirely explained on this basis. Weak, long-range HMBC correlations from

H-7a to C-3 and C-5 established the order of the carbon chain around the aromatic ring,

indicating C-4 to be para to the methylene attachment.

Crosspeak intensities in HMBC experiments depend in part on the magnitude of the long-

range coupling.120 In aromatic systems, two- and four-bond couplings (2JCH and 4JCH

respectively) tend to be small, while three-bond couplings (3JCH) are large.121 However,

hydroxy substitution at the carbon involved increases the magnitude of the 2JCH value.67

This precedent supports the order of the carbon resonances around the aromatic ring.

HMBC correlations from H-6 to C-1 and C-3 were weak (two- and four-bond coupling,

respectively), while strong correlations were observed to C-2 and C-4 (both three-bond

couplings), and to C-5, a large two-bond coupling due to hydroxyl substitution. The

relatively shielded chemical shifts of the remaining non-protonated aromatic carbon

resonances (C-2: δC 114.4 and C-3: δC 116.2) suggested bromine attachment at these

two positions (Figure 4.4).

COSY
HMBC

33

44
55

66

11
22Br

Br

O

O

H

77

H H

Figure 4.4. Selected COSY and HMBC correlations establishing bromophenol
substructure of colensolide A (124).

Finally, the 13C chemical shifts of the benzene ring compared favourably with the

known compounds containing this 2,3-dibromo-4,5-dihydroxybenzyl moiety isolated in

this study (see Table 4.6).

Construction of the Bicyclic Substructure

COSY correlations from a slightly deshielded methylene (C-14: δC 38.6, δH 2.12 and

2.00) to a more strongly deshielded methylene (C-15: δC 49.0, δH 2.79 and 2.67) indicated
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Table 4.6. A comparison of 13C chemical shifts of positions 1-6 in colensolide A (124),
lanosol (110), lanosol methyl ether (114) and rhodomelol (122).

55
44

33

22

11

66

OH
HO

Br
Br

77

13C [δ (ppm)]
Pos mult 124 110 114 122
1 C 131.2 134.1 131.0 128.2
2 C 116.2 114.1 115.3 117.9
3 C 114.4 114.2 114.5 113.6
4 C 146.5 146.2 145.3 144.9
5 C 145.2 144.6 146.3 145.7
6 CH 116.4 114.8 115.8 119.2

the connection between these two centres in an isolated spin system. The high 1JCH values

H-15a: 143 Hz, H-15b: 133 Hz and deshielded chemical shift of C-15 was indicative of

nitrogen attachment. This was confirmed by the observation of a downfield shift of the

carbon and proton resonances and significant increase in the 1JCH values H-15a: 151 Hz,

H-15b: 148 Hz when colensolide A (124) was exposed to TFA in an NMR tube to form

acidified colensolide A (125). NMR data for 125 are presented in Table 4.10.

The deshielded nature of the carbon and proton resonances of the C-7 methylene and the

relatively large 1JCH values of H-7a and H-7b (136 and 135 Hz, respectively) again were

indicative of nitrogen attachment at this position. Once more, the NMR spectrum of the

acidified derivative 125 showed a downfield shift of the carbon and proton resonances

and significant increase in the 1JCH values (H2-7: 147 Hz), supporting this assignment.

HMBC correlations from H-15a to a nitrogen (N-8: δN −319.3), from H-15b to C-7,

and from both proton resonances of CH2-7 to C-15 indicated that C-7 and C-15 were

connected through the same nitrogen. Selective excitation of the methylene protons H-7a

and H-7b showed NOE enhancements to H-15a and H-15b, confirming this connectivity

(Figure 4.5).

77
1414

1515

N
88

Hbb Haa

H

H

H H
COSY
HMBC
NOE

Figure 4.5. Selected COSY and HMBC correlations and NOE enhancements
establishing part of the bicyclic substructure of colensolide A (124).

HMBC correlations from both proton resonances of CH2-7 to a strongly deshielded

methine (C-9: δC 77.7, δH 4.74) completed the substitution around the tertiary amine.

This was confirmed by a significant increase in the 1JCH value for C-9 in the NMR
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spectrum of the acidified derivative (164 Hz in 124 increased to 175 Hz in 125), and

HMBC correlations from H-9 to C-7, N-8 and C-15. The strongly deshielded nature of

C-9 along with the very large 1JCH value indicated connectivity to another heteroatom.

An HMBC correlation from H-9 to a second nitrogen (N-10: δN −291.1), along with

a COSY correlation between H-9 and H-10 when the spectrum was recorded in d6-

DMSO, supported this aminal assignment (Figure 4.6). Table 4.7 shows the chemical shift

differences observed around the tertiary amine when colensolide A (124) was acidified to

125.

77

99

1414
1515

N
88

N
1010

H H

H

H

H

H

H H

COSY
HMBC

Figure 4.6. Selected COSY and HMBC correlations establishing more of the bicyclic
substructure of colensolide A (124).

Table 4.7. Chemical shift differences of colensolide A (124) and acidified colensolide A
(125).

77

99

1515N88

77

99

1515N88

H

124 125
Colensolide A (124) Acidified colensolide A (125) Difference

δH δC or δN δH δC or δN δH δC or δN

Pos mult δ (ppm) δ (ppm) 1JCH (Hz) δ (ppm) δ (ppm) 1JCH (Hz) δ∆ (ppm) δ∆ (ppm) ∆1JCH (Hz)
7a CH2

3.86 55.1 136 4.50 56.7 146 0.64 1.6 10
7b 3.68 135 0.82 11
8 N or NH+ −319.3 −298.9 20.4
9 CH 4.74 77.7 164 5.39 81.4 175 0.65 3.7 11

15a CH2
2.79 49.0 143 3.48 50.9 151 0.69 1.9 9

15b 2.67 133 3.40 148 0.73 15

Further HMBC correlations from H-9 to a shielded carbonyl (C-11: δC 163.9) suggested

an amide moiety. HMBC correlations from both proton resonances of CH2-15 to a

strongly deshielded non-protonated carbon (C-13: δC 99.7) positioned this carbon next

to the C-14 methylene. An HMBC correlation from the oxymethyl (C-16: δC 51.0,

δH 3.28) to C-13 and HMBC correlations from both proton resonances of CH2-14 to a

third nitrogen (N-12: δN −280.5) accounted for the strongly deshielded nature of C-13,

as a hemi-aminal ether.
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The 15N HSQC spectra recorded in d6-DMSO showed that both N-10 and N-12 were

secondary amides [(N-10: δN −290.6, δH 7.12) and (N-12: δN −279.6, δH 7.32)]. HMBC

correlations were observed from H-10 to C-9 and C-11 and from H-12 to C-11 and C-13,

suggested a urea moiety connecting N-10 and N-12 through the C-11 carbonyl. This

assignment was supported by the observed chemical shifts of both N-10 and N-12 being

consistent with amides, which generally occur in the range −210 to −300 ppm; urea

occurs at−302.8 ppm.122 Finally, an HMBC correlation between H-9 and C-13 completed

the connectivity of these two centres and created the bicyclic substructure containing an

imidazolone moiety (Figure 4.7).
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33

44

55

66

Br

Br

HO

OH

Figure 4.7. Selected HMBC correlations establishing the bicyclic substructure of
colensolide A (124).

All detected carbon and nitrogen resonances were now accounted for. The observed

chemical shift of N-8 (δN −319.3) is consistent with an alkylamine which generally occurs

in the range of −310 to −380 ppm,122 while the acidified counterpart (δH −298.9) is

consistent with an ammonium ion (−290 to −360).123 The presence of the benzene ring

and the bicyclic system accounted for six double-bond equivalents and the seventh was

accounted for by the presence of the carbonyl carbon of the imidazolone moiety. The

final two protons from the molecular formula unaccounted for were satisfied by assigning

positions C-4 and C-5 as hydroxyls, assigning the ring as an orthohydroquinone.

The relative configuration of colensolide A (124) was assigned on the basis of NOE

enhancements observed in a series of 1D-NOESY experiments. Selective excitation of the

methine proton H-9 showed NOE enhancements to H-14a, H-15a and H3-16. Selective

excitation of H-14a showed NOE enhancements to its geminal partner H-14b, H-9, H-15a

and H3-16, while selective excitation of H-14b showed NOE enhancements to its geminal

partner H-14a and H-15b. This series of NOE enhancements determined the cis-fused
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bicyclic ring system with H-9, H3-16, H-14a and H-15a on the same face of the five

membered ring (Figure 4.8).

1515

N
99

Haa Haa

HN
NH

H
O

CH31616

H
bb

Hbb

O

1414

Figure 4.8. Selected NOE enhancements used to determine the relative configuration of
colensolide A (124).

Selective excitation of the methyl protons H3-16 showed expected NOE enhancements to

H-9 and H-14a, and interestingly, weakly to H-14b. This is not unreasonable due to the

free rotation of the C-13–OMe bond and the relative angles of the two methylene protons

in the five membered ring. Optical rotation measurements were negligible ([α]25
D −2 to

−6 (c 0.35, MeOH)), which may imply a racemic mixture of the two enantiomers. The

final structure of colensolide A is therefore shown in 124. NMR data for 124 is presented

in both CD3OD (Table 4.8) and d6-DMSO (Table 4.9).

4.4 Synthetic Derivatives of Colensolide A

Methylation of Colensolide A (124)

The exchangeable hydroquinone protons of 124 were not observed when the 1H NMR

spectrum was acquired in d6-DMSO so synthetic derivatives were prepared to confirm

the proposed structure. Colensolide A (124) was subjected to TMSCHN2 for 45 min.

The NMR spectra of the product of the reaction were similar to those of 124 with the

additional presence of a second oxymethyl signal (C-17: δC 60.7, δH 3.80) and the upfield

shift of C-1, C-3, C-4, C-5 and C-6 (δC 136.9, δC 122.3, δC 151.6, δC 146.7 and δC 118.3

respectively), all consistent with the formation of a methyl ether on an aromatic ring.

An HMBC correlation from H3-17 to C-5 confirmed methylation of the C-5 hydroxyl to

form 5-0-methylcolensolide A (126). The unexpected mono-methylation was attributed to
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steric hindrance. It is proposed that the TMS group on the reactive diazomethane group

was blocked from the C-4 hydroxyl by the the adjacent bromine atom and previously

methylated C-5 phenol. NMR data for 126 are presented in Table 4.11.
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126

Methylation of 5-O-Methylcolensolide A (126)

Following the failure to exhaustively methylate the hydroxy groups of colensolide A,

further methylation was attempted. 5-O-Methylcolensolide A (126) was exposed to MeI

for several hours. The NMR spectra of the product of the reaction were similar to those of

126 with the additional presence of a third oxymethyl signal (C-18: δC 56.7, δH 3.88) and

the further upfield shift of C-4 (δC 154.0) consistent with the formation of a methyl ether.

An HMBC correlation from H3-18 to C-4 confirmed methylation of the C-4 hydroxyl to

form 4,5-di-O-methylcolensolide A (127). NMR data for 127 are presented in Table 4.12.
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4.5 Biological Activity

Colensolide A (124), 4,5-di-O-methylcolensolide A (127), lanosol (110), lanosol methyl

ether (114), lanosol aldehyde (120), lanosol butenone (121) and rhodomelol (122)

were evaluated for cytotoxicity against the human leukaemia cell line HL-60 and for

antibacterial activity against the MC2155 strain of Mycobacterium smegmatis at the

School of Biological Sciences, VUW. Lanosol butenone (121) was the only metabolite

tested to show activity against HL-6076 while lanosol methyl ether (114), lanosol

butenone (121) and rhodomelol (122) all exhibited antibacterial activity (see Table

4.13).77

Table 4.13. Biological activity of colensolide A (124), 4,5-di-O-methylcolensolide A
(127), lanosol (110), lanosol methyl ether (114), lanosol aldehyde (120), lanosol

butenone (121) and rhodomelol (122).

Compound
IC50 (µM)

HL-60* M. smegmatis MC2155†

124 Inactive Inactive
127 Inactive Inactive
110 Inactive Inactive
114 Inactive 7.8
120 Inactive Inactive
121 8.0 26.1
122 Inactive 28.1

*Tested up to 10 µM.
†Tested up to 100 µM.
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4.6 Bromophenols

In the 1970s, the scientific community generally considered the some 200 natural

organohalogen compounds reported to date to be isolation artifacts or abnormalities

in nature. Over thirty years later and with numbers now exceeding 3800, opinions

have changed.124 The single largest source of biogenic organohalogens are marine

organisms,124 which synthesise a wide range of compounds, from simple haloalkanes

to complex phenols, terpenes, pyrroles and indoles.114–117,124 In many cases, these

halogenated marine metabolites possess biological activities of pharmacological interest,

including antifungal, antibacterial, antiviral, and anti-inflammatory activities.95

The marine environment is a rich source of various important anions, including sulfate,

chloride, bromide and iodide, in concentrations of 885, 19 000, 65 and 0.06 mg L−1

respectively.125 Despite the obvious excess of chloride over bromide, marine plants and

animals make use of the facile oxidation of bromide to bromine (or hypobromite) and

biobromination processes to produce an impressive array of organobromine metabolites.

The main enzymes responsible for the incorporation of halogen atoms in organic

compounds in nature are haloperoxidases, which catalyse the formation of halogenated

organic compounds at the expense of hydrogen peroxide. The bromoperoxidase enzymes

responsible for bromide oxidation have been isolated from nearly 100 species of terrestrial

and marine organisms, and chloroperoxidase and other peroxidases also have the ability

to oxidise bromide.126 Rhodophyta in particular have been known to be a rich source of

bromine for many years, and by the 1920s many algae were known to concentrate it.127

This fact was exploited during World War II when bromine was extracted on an industrial

scale from Rhodomela larix for use in chemical warfare agents.125

Examples of such brominated compounds are the simple phenols that have been isolated

from taxonomically diverse seaweeds such as the brown algae Fucus vesiculosus128

and Leathesia nana,129–131 and the red algae Lenormandia prolifera,132 Odonthalia

corymbifera,133 Polysiphonia lanosa,134 and Rhodomela larix.135 Bromophenols are

widespread in the marine environment, which has been attributed to the phenol moiety’s

propensity to undergo electrophilic bromination.126
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Lanosol (110) is the most abundant and widely distributed of the bromophenols.136

Found in low levels in fungi, 110 is more common in the Rhodomelaceae (Rhodophyta),

particularly in the genera Polysiphonia, Rhodomela and Osmundaria.113,125 Weinstein

et al. suggested that lanosol and some of its derivatives are artifacts of the extraction

procedure, where the solvents H2O, MeOH and EtOH produce lanosol, and the methyl

(114) and ethyl ether (119) forms respectively.133 The potassium disulfate salt of lanosol

(115) is thought to be the natural component in the seaweed.133,134 It was proposed

that lanosol accumulates in nature as the moderately labile disulfate ester and thus

may be readily converted to the toxic, free lanosol.134 Antialgal activity experiments

using lanosol disulfate showed no influence of growth rate or the cell density of test

organisms compared to the highly toxic lanosol.134 Etherification or esterification of

phenolic hydroxyl groups is a common biological method of detoxification and it was

proposed that this would explain the inactivity of lanosol disulfate in the antialgal tests.134

Similarly, the sulfate groups may have the role of stabilising the hydroxyl groups, as

proposed for phenols and nitriles.125

There is significant variation in the bromination and hydroxylation of natural bromophe-

nols. This review will focus on those bromophenols containing the 2,3-dibromo-4,5-

dihydroxybenzyl moiety, of which there are 49 reported to date. The first reported

bromophenol was dipotassium 2,3-dibromobenzyl alcohol 4,5-disulfate (128) which

was isolated from the red alga Polysiphonia lanosa in 1966.137 Lanosol (110) was

reported in the same paper as an acid hydrolysis product of 128. In 1972 this disulfate

was re-isolated from an extract of a French collection of P. lanosa, although the

positioning of the sulfate groups was revised to the 4,7-disulfate (115).138 Three further

isolations of 115 from three different red algae genera have been reported.112,133,139

The author could not find an original paper reporting the first isolation of lanosol

(110), though a 1953 paper reported antibacterial activity from U.S.A. sources of

Rhodomela larix in which a bromophenolic compound was reported to be the likely

source.140 Lanosol has since been reported from a further 11 species of red algae

(eight genera),111,134,136,139,141–146 and two brown algae.128,129,131 A variety of activities

have been reported, including antialgal,134 antifeedant,139 α-glucosidase inhibition,143

cytotoxicity145 and isocitrate lyase (ICL) inhibitory.146 In 1967, two lanosol derivative
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(114 and 120) were reported from R. larix.135 Compound 114 has since been reported

from a further 12 species of red algae (seven genera),112,133,136,139,142,144–149 and two

brown algae.128,129,131 Various activities have been reported including potent growth

stimulatory activity,148 potent feeding deterrent activity,139 cytotoxicity145 and ICL

inhibitory activity.146 Compound 120 has since been reported from a further five

species of red algae (four genera),136,142,144,145 and a brown alga.129,131 A third lanosol

derivative (129) was isolated from P. lanosa in 1972.150 The structure was confirmed

in 1974, following the isolation from another red alga.151 The cytotoxic activity of

129 was reported in 2004.145 In 1977, two diphenols (116 and 130) were reported

from the Japanese red alga Rhodomela larix.142 Compound 116 has since been reported

from a further four species of red algae (three genera),112,129,131,139,144,152 and a brown

alga,129,131 while 130 has been reported from a further three species of red algae (two

genera),139,144,146,147,152 and one brown alga.129,131 Both 116 and 130 have been reported

to have antifeedant and cytotoxic activity.129,139,152 The diphenol ether 131, a cytotoxic,

antifeedant and α-glucosidase inhibiting compound, was reported from the Japanese

red alga R. larix in 1980 and has since been reported from two other species of red

algae (two genera),143,144,152 and a brown alga.129,131 In 1985, rhodomelol (122) and

methylrhodomelol (123) were reported from Polysiphonia lanosa.119 Rhodomelol was

reported to have anti-HIV-1 integrase activity in a 1997 study.153 Vidalol A (107) and B

(108) were reported in 1991 from the Caribbean red alga Vidalia obtusaloba, and were

found to have anti-inflammatory activity.110 In 1997 the antifeedant diphenol 132 was

reported from the Japanese red alga Odonthalia corymbifera.139
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A resurgence of bromophenol isolation started in 2003. A study of the Chinese red

alga Rhodomela confervoides resulted in five new compounds (133–137).144,152,154,155

Surprisingly, several of these metabolites were reported as novel compounds in as

many as three different papers by the same authors.144,152,154,155 Bromophenols 133

and 134 are both reported to have antibacterial activity.152 Compound 133 has since

been reported from the red alga Odonthalia corymbifera, and is reported to have ICL

inhibitory activity,146 while 134 has also been isolated from a brown alga and was

found to have cytotoxic activity.129,131 In 2004, the same group reported six more

bromophenols from the same extract of R. confervoides (121, 138–142),118 and also

reported the isolation of eight bromophenols from the Chinese brown alga Leathesia

nana (143–150).129–131 Compound 145 was reported to have cytotoxic activity. Again,

three of the compounds were reported in as many as three separate papers.129–131

In 2005, this Chinese group reported the isolation of the first nitrogen-containing

compounds in this class of bromophenols, once again from the R. confervoides extract,

including three pyrodeoxyguanosine acid derivatives (151–153) and one deoxyguanosine

derivative (154).156 All were found to be inactive against several human cancer cell

lines at 10 µg/mL.156 Further nitrogen-containing compounds, this time γ-ureidobutyrate
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derivatives (155–158), were reported from the R. confervoides extract in 2006, along with

the simple bromophenol 159 and bromophenol sulfates 160 and 161.157 Compounds 159–

161 were found to be cytotoxic against several human cancer cell lines, whilst 155–158

were found to be inactive.157 The most recent paper from this Chinese group in 2007

reported the isolation of three nucleoside base bromophenol derivatives (162–164) from

the R. confervoides extract.158 Finally, two sulfated bromophenols (112 and 113) were

reported in 2006 from the Brazilian red alga Osmundaria obtusiloba.112
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4.7 Biogenesis of Colensolide A

The presence of nitrogen-containing sidechains in bromophenols is not unprecedented,

though it is only a recent discovery. Ten such compounds have been reported to date, all

from an extract of the red alga Rhodomela confervoides as detailed in Section 4.6.156–158

Attempts to mimic these compounds semi-synthetically by known alkylation methods

were unsuccessful, leading to the hypothesis that there is an unprecedented enzymatic

catalysed nitrogen alkyation process in the biosynthesis of these metabolites.158

The nitrogen-containing moiety of colensolide A (124) may have its origins from

oxygenated histidine. A study reported in 2006 on sensitiser-mediated photo-oxidation of

histidine (165) proposes a reaction scheme for the formation of the bicyclic sidechain via

oxidation by singlet oxygen (molecular oxygen in its 1∆g state; 1O2).159 It is suggested

that these reactions occur via the formation of short-lived peroxide species that decay
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to give complex mixtures of products. The study reported that these compounds are

believed to arise via internal nucleophilic cyclisation of the amine function onto the

oxidised imidazole ring formed from the decomposition of the initial peroxide species

(see Scheme 4.2). Previous studies have demonstrated that both free histidine residues

and those in proteins, are major targets for oxidation by 1O2. The sequence of reactions

is similar to those proposed to account for the formation of cyclised products during the

1O2-mediated oxidation of tyrosine and tryptophan, where a similar internal cyclisation

of the free amine group onto the oxygenated ring system has also been characterised.160
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Scheme 4.2. Simplified reaction scheme for formation of histidine photo-product as
proposed by Agon et al.159

NMR analysis of crude reaction mixtures of free histidine photo-oxidation products

illuminated for 20 min in phosphate-buffered D2O showed production of the two cis-

fused isomers of the bicyclic ring.159 Decarboxylation of the bicyclic product observed

by Agon et al. would give the desired bicyclic moiety observed in colensolide A (124).

The inclusion of the bromophenol ring could occur before or after the histidine oxidation.
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4.8 Summary

A novel technique was used to identify potentially novel compounds in semi-purified

mixtures using 1D and 2D NMR spectroscopy. This strategy is useful if a series of known

compounds are present in an extract as it helps identify leads in an organism that would

otherwise likely be discarded. In this case, analysis of semi-purified mixtures led to the

identification of a class of known bromophenols. By considering these known structures

and analysing the 1H, COSY, HSQC and HMBC NMR spectra of the mixtures, it was

possible to highlight and guide isolation of the novel nitrogenous bromophenol compound

colensolide A (124).

Colensolide A was a minor constituent of the algal extract, and therefore any bioassay

guided isolation would have been misled by the mild activity of the known major

metabolites. This method is clearly useful in the search for novel compounds, especially

in the presence of biologically active, well known, major constituents.
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Chapter 5

Conclusion

The challenge for natural product chemists is to find new and novel secondary metabolites

through informed selection of a suitable organism and use of a robust system to guide

isolation and purification. Over the course of this study, a recently neglected phylum,

Rhodophyta, was re-examined using the unique NMR based screening and isolation

technique employed by the VUW Marine Natural Products group. It was found that

the spectroscopic comparison is very much phylum specific, suggesting that the power

of the method is enhanced by restricting the analysis to related organisms. This is an

important point to note if the technique is to be applied to other natural systems. An

interesting extension of this work would be to examine a second seaweed phylum, such as

the brown algae (Phaeophyta), to compare any chemical similarities between the primary

metabolites of two phyla. Several efforts are underway to improve the spectroscopic

screening technique utilised in this study, including the potential use of HMBC NMR

spectroscopy and the possibility of employing a more sophisticated comparison method

such as principal component analysis instead of simple averaging.

Several challenges were faced during the structural elucidation of the new compounds

isolated during this study, which required the use of advanced NMR techniques. The use

of HSQC-TOCSY experiments and 3JHH coupling constants were essential with respect to

the labillaride compounds, while the 1H to 15N HMBC experiment and 1JCH values were

crucial in the elucidation of colensolide A (124).

Organisms can sometimes be found to contain a well-known class of compounds not

previously reported from the specific genus or species being examined. In such cases,

the challenge for the natural product chemist is to detect potentially new and novel

compounds in mixtures containing a plethora of structurally similar, known metabolites.

In this study, a novel technique was used to identify potentially novel compounds in semi-

purified mixtures using NMR spectroscopy. The HMBC experiment was found to be

particularly suited to such analysis through identification of diagnostic functional groups
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and structural fragments.

There has recently been a change in attitude with regard to natural product chemistry, with

Nature as a source for potential pharmaceuticals coming back into favour in the form of

libraries of purified metabolites as opposed to the crude extracts previously assembled

for single assay analysis. The use of narrowly focused bioassay guided isolation is

not particularly appropriate in the quest to create such libraries, and new methods of

isolation such as the unbiased spectroscopic based technique are required to produce new

compounds of structural diversity. However, caution must be taken, even when using

such spectroscopic techniques, in order to ensure that the metabolite in question is in fact

responsible for any subsequent activity detected from such a library. The false activity

observed for the seemingly pure sample of labillaride E (64) illustrates the potential of this

problem. As libraries of metabolites are assembled, no matter what the method guiding

isolation, the problem remains that the novel activity may be associated with an impurity.

One possible solution may be to test the fractions around that of the natural product to act

as a control, however this would become impractical with the larger libraries.

Throughout the course of this study it was found that having a range of structurally related

compounds can be incredibly beneficial. The initial bioassay results for labillaride E (64)

could easily have been accepted as an effect of the significant change in structure with

respect to the other labillarides, were it not for the isolation of three other exceptionally

similar structures with seemingly massive differences in biological activity. The sole

isolation of the tainted sample of 64 would likely have led to a detailed synthesis only to

find that the activity was in fact not associated with 64, as was found with phakellistatin 11

(101),100,101 a less than ideal method to confirm biological activity.
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Chapter 6

Experimental

6.1 General Experimental

NMR spectra were recorded using a Varian Unity Inova 300 (300 MHz for 1H and 75 MHz

for 13C), Inova 500 (500 MHz for 1H and 125 MHz for 13C), or DirectDrive 600 (600 MHz

for 1H, 150 MHz for 13C and 60 MHz for 15N) spectrometers. Spectra recorded using the

Varian DirectDrive 600 were collected with a Varian inverse-detected triple resonance

HCN cold probe operating at 25 K. Both the 300 and 500 MHz instruments had both

inverse-detected and normal-detected broadband probes available. All directly-detected

1H and 13C chemical shifts (δ) were internally referenced to the residual solvent peak.161

Indirectly-detected 15N shifts were referenced to the unified TMS scale with a Ξ ratio

of 10.136767.162 All HRESIMS data was obtained using either a PE Biosystem Mariner

5158 TOF mass spectrometer or a Micromass Q-TOF Premier mass spectrometer. Optical

rotations were recorded on a Perkin-Elmer 241 polarimeter.

MPLC and HPLC purifications were performed with a Rainin Dynamax SD-200 HPLC

system or a Varian SD-1 HPLC system. UV detection for HPLC runs was obtained with

a Varian Prostar 335 Diode Array detector. MPLC solvents were either HPLC grade

or glass-distilled prior to use. All solvents used in HPLC were HPLC grade. H2O

used for MPLC and HPLC was glass-distilled and deionised using a MilliQ system.

All solvent mixtures are reported as % vol in vol. Normal-phase HPLC was performed

using a custom-packed Phenomenex DIOL column [analytical (4 × 250 mm, 5 µm) or

semi-preperative (10 × 250 mm, 5 µm)]. Reversed-phase HPLC was performed using a

Phenomenex Prodigy C18 column [analytical (4.6 × 250 mm, 5 µm) or semi-preperative

(10 × 250 mm, 10 µm)]. TLC analysis were performed using Macherey-Nagal Alufoilen

SIL G/UV254 plates. TLC plates were visualised by one or more of (1) absorbance under

UV light (λ = 254 nm), (2) fluorescence under UV light (λ = 350 nm), (3) dipping in

5% H2SO4 in MeOH then heating, (3) dipping in 5% H2SO4 in MeOH then dipping
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in 0.1% vanillin in EtOH then heating. Reversed-phase chromatography on PSDVB

was performed using HP20 (Mitsubishi), HP20S or HP20SS (Supelco), or Amberchrom

CG-161M (Tosohaas). Normal-phase chromatography was performed using YMC S-50

gel DIOL or Kieselgel 60 (230-400 mesh ASTM). All solvents used for bench-top

chromatography were glass distilled. All reagents used were obtained commercially (at

least reagent grade) and distilled where necessary.

All red algae analysed in the study were identified by Dr. Joe Zuccarello, Senior Lecturer,

School of Biological Sciences, Victoria University of Wellington.

6.2 Isolation of Costatone from Plocamium costatum

The seaweed identified as Plocamium costatum was collected by hand using SCUBA

from Albert Reef, Doubtless Bay, New Zealand (34◦ 25.2′ S, 173◦ 31.2′ E) in December

2003. The sample was frozen immediately and kept at−18 ◦C until extraction. A voucher

specimen has been deposited at the School of Chemical and Physical Sciences, Victoria

University of Wellington, New Zealand.

P. costatum (126 g wet weight) was extracted for 18 h in 400 mL MeOH. The extract

was filtered and the algal material re-extracted for 18 h with a further 400 mL MeOH.

The extracts were combined and cyclic loaded∗ to 25% of the original volume on to a

reversed-phase PSDVB column (HP20, 160 mL). The column was successively eluted

with 500 mL volumes of H2O, 30% and 75% Me2CO in H2O and Me2CO. The 75%

Me2CO in H2O elution was backloaded on to a reversed-phase PSDVB column (HP20,

80 mL) and successively eluted with 300 mL volumes of H2O and MeOH. The MeOH

eluent was concentrated to dryness under reduced pressure to yield 1.1 g of material.

Approximately one tenth of this material was passed through a normal-phase column

(silica, 30 mL) eluted successively with 90 mL volumes of 20%, 30%, 40% and 50%

CH2Cl2 in pet. ether, CH2Cl2 and 50% MeOH in CH2Cl2. A total of 10 fractions were

collected. Fraction 4 (30% CH2Cl2 in pet. ether) was concentrated to dryness under

reduced pressure to yield costatone (44) (51 mg).
∗For a detailed discussion of cyclic loading, please see page 14.
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Costatone (44)

Amorphous white solid; [α]25
D −48.0 (c 1.12, CH2Cl2); NMR data see Table B.1;

HRESIMS, obsd. m/z 390.8499 : 392.8437 : 394.8438 : 396.8445 : 398.8486 (9 : 24 : 22 :

8 : 1) [M − H]−, C10H11O2Br2Cl –
2 requires 390.8508 : 392.8486 : 394.8463 : 396.8438 :

398.8415, ∆ 2.4 ppm.

6.3 Isolation of Indoles from Ballia callitricha

The seaweed identified as Ballia callitricha was collected by hand using SCUBA from

Owhiro Bay, Wellington, New Zealand in January 2005. The sample was frozen

immediately and kept at−18 ◦C until extraction. A voucher specimen has been deposited

at the School of Chemical and Physical Sciences, Victoria University of Wellington, New

Zealand.

B. callitricha (664 g wet weight) was extracted for 18 h in 2.5 L MeOH. The extract

was filtered and the algal material re-extracted for 18 h with a further 2.5 L MeOH. The

extracts were combined and cyclic loaded to 10% of the original volume on to a reversed-

phase PSDVB column (HP20, 400 mL). The column was eluted successively with 1.2 L

volumes of H2O, 20%, 40%, 60% and 80% Me2CO in H2O and Me2CO. The 40%

Me2CO in H2O elution was backloaded on to a reversed-phase PSDVB column (HP20,

150 mL) and eluted successively with 500 mL volumes of H2O and MeOH. The MeOH

eluent was concentrated to dryness under reduced pressure to yield 136 mg of material.

Approximately half (62 mg) of this material was passed through a normal-phase column

(silica, 25 mL) eluted successively with 100 mL volumes of 50% pet. ether in CH2Cl2,

CH2Cl2, 1%, 2%, 5%, 10% and 20% EtOAc in CH2Cl2 and 50% MeOH in CH2Cl2.

The 1% EtOAc in CH2Cl2 fraction was concentrated to dryness under reduced pressure.

The resulting material was passed through a normal phase column (DIOL, 10 mL) eluted

successively with 30 mL volumes of pet. ether, 10%, 25%, 50% and 75% CH2Cl2 in pet.

ether, CH2Cl2 and 50% MeOH in CH2Cl2. A total of 53 fractions were collected.
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Fractions 41-43 (75% CH2Cl2 in pet. ether to CH2Cl2) were combined and concentrated

to dryness under reduced pressure to yield 1H-indole-3-carboxaldehyde (45) (0.4 mg).

Fraction 53 was concentrated to dryness under reduced pressure. The resulting material

was separated on a semi-preparative C18 reversed-phase HPLC column with 50% CH3CN

in H2O as the mobile phase at a flow rate of 4.6 mL/min to yield (E)-N-formyl-3-(1H-

indol-3-yl)prop-2-enamide (46) (0.3 mg) with a retention time of 4.1 min.

1H-indole-3-carboxaldehyde (45)

Yellow oil; NMR data see Table B.2; HRESIMS, obsd. m/z 168.0424 [M + Na]+,

C9H7NONa+ requires 168.0420, ∆ 2.4 ppm.

(E)-N-formyl-3-(1H-indol-3-yl)prop-2-enamide (46)

Amorphous yellow solid; NMR data see Table 2.1; HRESIMS, obsd. m/z 237.0634

[M + Na]+, C12H10N2O2Na+ requires 237.0635, ∆ 0.2 ppm.

6.4 Isolation of Labillarides A to K from Phacelocarpus

labillardieri

Initial Extraction of P. labillardieri

The seaweed identified as Phacelocarpus labillardieri was collected by hand using

SCUBA from Rimariki Island, New Zealand (35◦ 25.2′ S, 174◦ 26.9′ E) in December

2003. The sample was frozen immediately and kept at−18 ◦C until extraction. A voucher

specimen has been deposited at the School of Chemical and Physical Sciences, Victoria

University of Wellington, New Zealand.
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P. labillardieri (98 g wet weight) was extracted for 18 h in 400 mL MeOH. The extract

was filtered and cyclic loaded on to a reversed-phase PSDVB column (HP20, 80 mL).

The column was eluted successively with 250 mL volumes of H2O, 30% and 75%

Me2CO in H2O and Me2CO. The 75% Me2CO in H2O elution was backloaded on to

a PSDVB column (HP20, 40 mL) and eluted successively with 150 mL volumes of H2O

and Me2CO. The Me2CO eluent was concentrated to dryness under reduced pressure

to yield 1.2 g of material. Approximately one sixth (200 mg) of this material was passed

through a normal phase column (DIOL, 30 mL) eluted successively with 100 mL volumes

of CH2Cl2, 1%, 2%, 5%, 10% and 50% EtOAc in CH2Cl2, and 50% MeOH in CH2Cl2.

A total of 47 fractions were collected. Fraction 2 (CH2Cl2) was concentrated to dryness

under reduced pressure and passed through a normal phase column (DIOL, 30 mL). The

column was eluted successively with 100 mL volumes of pet. ether, 10%, 25% and 50%

CH2Cl2 in pet. ether, CH2Cl2 and 50% MeOH in CH2Cl2. A total of 41 fractions were

collected. Fraction 31 (50% CH2Cl2 in pet. ether) was concentrated to dryness under

reduced pressure to yield labillaride C (62) (19.5 mg).

The remainder of the original Me2CO fraction was divided into six equal portions which

were each passed through a normal phase column (DIOL, 8 mL). The columns were

eluted with 30 mL of CH2Cl2, followed by 50 mL 50% MeOH in CH2Cl2. Two of

the CH2Cl2 fractions were combined and reduced to dryness under reduced pressure and

passed through a normal phase MPLC column (DIOL, 250 mL). The column was eluted

at a flow rate of 5 mL/min with pet. ether for 150 min, from pet. ether to 25% CH2Cl2 in

pet. ether at a solvent gradient of 25.0%/min, 25% CH2Cl2 in pet. ether for 149 min, from

25% CH2Cl2 in pet. ether to 50% CH2Cl2 in pet. ether at a solvent gradient of 25.0%/min,

50% CH2Cl2 in pet. ether for 149 min, from 50% CH2Cl2 in pet. ether to CH2Cl2 at a

solvent gradient of 50.0%/min, CH2Cl2 for 149 min, from CH2Cl2 to 50% CH2Cl2 in

EtOAc at a solvent gradient of 50%/min and 50% CH2Cl2 in EtOAc for 149 min. A total

of 22 fractions were collected over 750 min.

Fractions 17-18 (CH2Cl2 to 50% CH2Cl2 in EtOAc) were combined and concentrated to

dryness under reduced pressure. The resulting material was passed through a normal

phase column (DIOL, 30 mL) and the column was eluted successively with 100 mL
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volumes of 20%, 40%, 60% and 80% CH2Cl2 in pet. ether, CH2Cl2 and 50% MeOH in

CH2Cl2. A total of 75 fractions were collected. Fractions 14-18 (20% to 40% CH2Cl2 in

pet. ether) were combined and concentrated under reduced pressure to yield labillaride A

(60) (4.6 mg).

Fraction 19 (50% CH2Cl2 in EtOAc) was concentrated to dryness under reduced pressure

and the resulting material was passed through a normal phase column (DIOl, 250 mL).

The column was eluted at a flow rate of 5 mL/min with 70% CH2Cl2 in pet. ether for

200 min, from 70% CH2Cl2 in pet. ether to CH2Cl2 at a solvent gradient of 30.0%/min

and CH2Cl2 for 100 min. A total of 31 fractions were collected over 300 min. Fractions

29-31 (CH2Cl2) were combined and concentrated to dryness under reduced pressure

and the resulting material was passed through a normal phase column (DIOL, 30 mL).

The column was eluted successively with 100 mL volumes of 50% and 70% CH2Cl2 in

pet. ether, CH2Cl2 and 50% MeOH in CH2Cl2. A total of 44 fractions were collected.

Fractions 6-7 (50% CH2Cl2 in pet. ether) were combined and concentrated to dryness

under reduced pressure to yield labillaride A (60) (19.6 mg). Fractions 36-38 (CH2Cl2)

were combined and concentrated to dryness under reduced pressure to yield a mixture of

labillaride C (62) and labillaride D (63) (2.6 mg).

The 50% MeOH in CH2Cl2 fractions from the original six DIOL columns were combined

and concentrated to dryness under reduced pressure. The resulting material was divided

into two equal portions which were each passed through a normal phase column (DIOL,

30 mL). The columns were eluted successively with 30 mL volumes of CH2Cl2, 1%, 2%,

5%, 10% and 50% EtOAc in CH2Cl2 and 50% MeOH in CH2Cl2. A total of 81 fractions

were collected for each run.

Fractions 12-25 and 23-31 from each of the runs respectively were combined and

concentrated to dryness under reduced pressure. The resulting material was backloaded

on to 5 mL Amberchrom and the column was eluted successively with 15 mL volumes

of 20%, 30%, 40%, 50%, 60%, 70% and 80% MeOH in H2O, MeOH and Me2CO. The

80% MeOH in H2O fraction was concentrated to dryness under reduced pressure and

the resulting material was passed through a normal phase column (DIOL, 30 mL). The
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column was eluted successively with 90 mL volumes of CH2Cl2, 1%, 2%, 5%, 10%,

20% and 50% THF in CH2Cl2 and 50% MeOH in CH2Cl2. A total of 92 fractions were

collected. Fractions 27-35 (1-2% THF in CH2Cl2) were combined and concentrated to

dryness under reduced pressure. The resulting material was separated on an analytical

DIOL normal phase HPLC column with 7% IPA in hexanes as the mobile phase at a flow

rate of 1 mL/min to yield labillaride E (64) (1.6 mg) a retention time of 37.5 min.

Fractions 26-40 and 32-43 from each of the runs respectively were combined and

concentrated to dryness under reduced pressure. The resulting material was passed

through a normal phase column (DIOL, 30 mL) eluted successively with 90 mL volumes

of CH2Cl2, 1%, 2%, 5%, 10%, 20% and 50% THF in CH2Cl2 and 50% MeOH in CH2Cl2.

A total of 64 fractions were collected. Fractions 26-40 were combined and concentrated

to dryness under reduced pressure. The resulting material was cyclic loaded on to 1.5 mL

Amberchrom which was transferred to the top of a prepacked Amberchrom column (300

× 11 mm internal diameter). The column was eluted at a flow rate of 5 mL/min with

40% MeOH in H2O for 10 min, from 40% to 80% MeOH in H2O at a solvent gradient

of 0.67%/min, 80% MeOH in H2O for 10 min, from 80% MeOH in H2O to MeOH at

a solvent gradient of 2.00%/min and MeOH for 10 min. A total of 110 fractions were

collected at a rate of 5 mL/fraction. Fractions 76-85 were combined and concentrated to

dryness under reduced pressure. The resulting material was separated on an analytical

DIOL normal phase HPLC column with 7% IPA in hexanes as the mobile phase at a flow

rate of 1 mL/min to yield labillaride H (67) (1.2 mg) and a labillaride E (64) (0.4 mg) with

retention times of 33.2 and 36.0 min respectively.

Large-scale Extraction of P. labillardieri

The remainder of the collection of Phacelocarpus labillardieri screened above (268 g

wet weight) was extracted for 18 h in 2 L MeOH. The extract was filtered and the algal

material re-extracted for 18 h with a further 2 L MeOH. The second extract was filtered

and the algal material re-extracted for 18 h with a third 2 L MeOH. The extracts were

combined and cyclic loaded to 25% of the original volume on to a reversed-phase PSDVB

144



column (HP20, 1 L). The column was eluted successively with 3 L volumes of H2O, 20%,

40%, 60% and 80% Me2CO in H2O and Me2CO. The 80% Me2CO in H2O elution was

backloaded on to a PSDVB column (HP20, 500 mL) and eluted successively with 1.5 L

volumes of H2O and Me2CO. The Me2CO eluent was concentrated to dryness under

reduced pressure and the material was passed through a normal phase column (DIOL,

250 mL). The column was eluted at a flow rate of 8 mL/min with CH2Cl2 for 110 mins,

from CH2Cl2 to 50% MeOH in CH2Cl2 at a solvent gradient of 50%/min, and 50% MeOH

in CH2Cl2 for 94 min. A total of five fractions were collected over 205 min. Fractions

3-4 (CH2Cl2) were combined and concentrated to dryness under reduced pressure and

the resulting material was passed through a normal phase column (DIOL, 250 mL). The

column was eluted at a flow rate of 16 mL/min with 25% CH2Cl2 in pet. ether for 36 mins,

from 25% CH2Cl2 in pet. ether to CH2Cl2 at a solvent gradient of 1%/min, and CH2Cl2

for 36 min. A total of 18 fractions of 128 mL were collected.

Fraction 2 (25% CH2Cl2 in pet. ether) was concentrated to dryness under reduced

pressure. The resulting material was passed through a normal phase column (DIOL,

30 mL) eluted successively with 100 mL volumes of 5% CH2Cl2 in pet. ether and CH2Cl2.

A total of 33 fractions were collected. Fractions 12-14 (25% CH2Cl2 in pet. ether) were

combined and concentrated to dryness under reduced pressure. The resulting material was

separated on an analytical DIOL normal phase HPLC column with 1% IPA in hexanes as

the mobile phase at a flow rate of 1 mL/min to yield labillaride B (61) (3.6 mg) and a

labillaride A (60) (1.5 mg) with retention times of 7.2 and 10.5 min respectively.

Fractions 4-5 were combined and concentrated to dryness under reduced pressure. The

resulting material was separated repeatedly on a semi-preparative DIOL normal phase

HPLC column with 10% IPA in hexanes as the mobile phase at a flow rate of 6.25 mL/min

to yield labillaride D (63) (7.6 mg) and a labillaride C (62) (53.0 mg) with retention times

of 10.2 and 11.7 min respectively.
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Second Large-scale Extraction of P. labillardieri

The seaweed identified as Phacelocarpus labillardieri was collected by hand using

SCUBA from Rimariki Island, New Zealand (35◦ 25.5′ S, 174◦ 26.9′ E) in November

2006. The sample was frozen immediately and kept at−18 ◦C until extraction. A voucher

specimen has been deposited at the School of Chemical and Physical Sciences, Victoria

University of Wellington, New Zealand.

P. labillardieri (245 g wet weight) was extracted for 18 h in 1.8 L MeOH. The extract

was filtered and the algal material re-extracted for 18 h with a further 1.8 L MeOH. The

extracts were combined and cyclic loaded to 25% of the original volume on to a reversed-

phase PSDVB column (HP20, 500 mL). The column was eluted successively with 2 L

volumes of H2O, 30% and 75% Me2CO in H2O and Me2CO. The 75% Me2CO in H2O

elution was backloaded on to a PSDVB column (HP20, 240 mL) and eluted successively

with 750 mL volumes of H2O and Me2CO. The Me2CO eluent was concentrated to

dryness under reduced pressure and the resulting material was passed through a normal

phase column (DIOL, 250 mL). The column was eluted at a flow rate of 4.5 mL/min

with CH2Cl2 for 220 mins, from CH2Cl2 to 50% MeOH in CH2Cl2 at a solvent gradient

of 10%/min, and 50% MeOH in CH2Cl2 for 220 min. A total of eight fractions were

collected over 445 min.

Fraction 1 (CH2Cl2) was concentrated to dryness under reduced pressure to yield 268 mg

of material of which approximately one fifth was passed through a normal phase column

(DIOL, 25 mL). The column was eluted at a flow rate of 3 mL/min with pet. ether for

8 min, from pet. ether to 5% CH2Cl2 in pet. ether at a solvent gradient of 0.12%/min, 5%

CH2Cl2 in pet. ether for 17 min, from 5% CH2Cl2 in pet. ether to CH2Cl2 at a solvent

gradient of 11.9%/min, and CH2Cl2 for 25 min. A total of 62 fractions were collected

over 100 min. Fraction 6 was concentrated to dryness under reduced pressure. The

resulting material was separated on an analytical C18 reversed-phase HPLC column with

90% MeCN in H2O as the mobile phase at a flow rate of 1 mL/min to yield labillaride J

(69) (2.0 mg) with a retention time of 17.3 min. Fractions 7-10 were combined and

concentrated to dryness under reduced pressure to yield labillaride I (68) (9.1 mg).
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Fractions 33-37 were combined and concentrated to dryness under reduced pressure to

yield labillaride B (61) (2.9 mg).

The remainder of the original fraction 1 was divided into four equal portions which were

each passed through a normal phase column (DIOL, 25 mL). The first column was eluted

at a flow rate of 3 mL/min with pet. ether for 100 min, from pet. ether to 10% CH2Cl2 in

pet. ether at a solvent gradient of 0.15%/min, 10% CH2Cl2 in pet. ether for 16 min, from

10% CH2Cl2 in pet. ether to CH2Cl2 at a solvent gradient of 5.63%/min, and CH2Cl2

for 25 min. The second and third columns were eluted at a flow rate of 3 mL/min with

pet. ether for 16 mins, from pet. ether to 10% CH2Cl2 in pet. ether at a solvent gradient

of 0.15%/min, 10% CH2Cl2 in pet. ether for 16 min, from 10% CH2Cl2 in pet. ether to

CH2Cl2 at a solvent gradient of 5.63%/min, and CH2Cl2 for 25 min. The fourth column

was eluted at a flow rate of 2 mL/min with pet. ether for 24 mins, from pet. ether to 10%

CH2Cl2 in pet. ether at a solvent gradient of 0.10%/min, 10% CH2Cl2 in pet. ether for

24 min, from 10% CH2Cl2 in pet. ether to CH2Cl2 at a solvent gradient of 3.75%/min,

and CH2Cl2 for 38 min. A total of 133, 86, 99 and 86 fractions for each run respectively

were collected at a rate of 5 mL/fraction.

Fractions 11-18, 12-23, 12-23 and 13-24 (pet. ether, 0.6% to 3.3%, 0.6% to 3.3% and

0.9% to 3.6% CH2Cl2 in pet. ether respectively) from each of the runs respectively were

combined and concentrated to dryness under reduced pressure to yield labillaride I (68)

(33.7 mg).

Fractions 86-93, 49-61, 50-61 and 50-60 (5.6% to 7.3%, 9.4% to 10.0%, 9.6% to 10.0%

and 9.9% to 10.0% CH2Cl2 in pet. ether respectively) from each of the runs respectively

were combined and concentrated to dryness under reduced pressure. The resulting

material was separated repeatedly on a semi-preparative DIOL normal phase HPLC

column with 2% Me2CO in hexanes as the mobile phase at a flow rate of 6.25 mL/min to

yield labillaride K (70) (0.4 mg) with a retention time of 13.9 min.

Fractions 110-133, 67-86, 70-99 and 67-86 (55.0% to 100%, 50.5% to 100%, 77.6%

to 100% and 75.6% to 100% CH2Cl2 in pet. ether respectively) from each of the runs

respectively were combined and concentrated to dryness under reduced pressure. The
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resulting material was passed through a normal phase column (DIOL, 5 mL) eluted

successively with 100 mL volumes of 5% CH2Cl2 in pet. ether and CH2Cl2. The 5%

CH2Cl2 in pet. ether fraction was concentrated to dryness under reduced pressure and was

separated repeatedly on a semi-preparative DIOL normal phase HPLC column with 1%

IPA in hexanes as the mobile phase at a flow rate of 6.25 mL/min to yield labillaride A

(60) (0.8 mg) with a retention time of 10.6 min.

Fractions 3 and 4 (CH2Cl2 to 50% MeOH in CH2Cl2) of the original DIOL column were

combined and reduced to dryness under reduced pressure to yield 1.3 g of material of

which approximately one quarter was passed through a normal phase column (DIOL,

250 mL). The column was eluted at a flow rate of 10 mL/min with 10% IPA in pet. ether

for 100 min. A total of two fractions were collected over 100 min. Fraction 2 with a

retention time of 46 to 86 min was separated on a semi-preperative DIOL normal phase

HPLC column with 5% IPA in hexanes as the mobile phase at a flow rate of 6.25 mL/min

to yield labillaride C (62) (69.6 mg) and a mixture of labillaride C (62) and labillaride D

(63) with retention times of 17.1 and 14.6 min respectively. The mixture was separated

repeatedly on a semi-preperative DIOL normal phase HPLC column with 10% IPA in

hexanes as the mobile phase at a flow rate of 6.25 mL/min to yield labillaride D (63)

(3.2 mg) with a retention time of 7.9 min.

Fraction 7 (50% MeOH in CH2Cl2) of the original DIOL column was divided into four

equal portions which were each passed through a normal phase column (DIOL, 25 mL).

The columns were eluted successively with 100 mL volumes of CH2Cl2, 2% and 10%

EtOAc in CH2Cl2 and 50% MeOH in CH2Cl2. The 2% EtOAc in CH2Cl2 fractions were

combined and concentrated to dryness under reduced pressure. The resulting material

was separated on a semi-preparative DIOL normal phase HPLC column with 10% IPA in

hexanes as the mobile phase at a flow rate of 6.25 mL/min. A total of four fractions were

collected over 20 min. Fraction 4 with a retention time of 13.8 to 15.3 min was separated

on an analytical DIOL normal phase HPLC column with 7% IPA in hexanes as the mobile

phase at a flow rate of 1 mL/min to yield labillaride F (65) (0.5 mg) and labillaride G (66)

(0.4 mg) with retention times of 26.7 and 28.0 min respectively.
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Ethanol Extraction of P. labillardieri

Phacelocarpus labillardieri (24 g wet weight) was extracted for 18 h in 150 mL EtOH.

The extract was filtered and the algal material re-extracted for 18 h with a further 150 mL

EtOH. The extracts were combined and cyclic loaded to 25% of the original volume on

to a reversed-phase PSDVB column (HP20, 20 mL). The column was eluted successively

with 60 mL volumes of H2O, 30% and 75% Me2CO in H2O and Me2CO. The 75%

Me2CO in H2O elution was backloaded on to a reversed-phase PSDVB column (HP20,

20 mL) and eluted successively with 100 mL volumes of H2O and Me2CO. The Me2CO

eluent was concentrated to dryness under reduced pressure and the resulting material was

passed through a normal phase column (DIOL, 25 mL). The column was eluted at a flow

rate of 5 mL/min with CH2Cl2 for 20 mins, from CH2Cl2 to 50% EtOH in CH2Cl2 at a

solvent gradient of 10%/min, and 50% EtOH in CH2Cl2 for 20 min. A total of 10 fractions

were collected over 45 min.

Fraction 1 (CH2Cl2) was concentrated to dryness under reduced pressure and the resulting

material was passed through a normal phase column (DIOL, 25 mL). The column was

eluted at a flow rate of 5 mL/min with pet. ether for 5 min, from pet. ether to 5% CH2Cl2

in pet. ether at a solvent gradient of 0.17%/min, 5% CH2Cl2 in pet. ether for 10 min, from

5% CH2Cl2 in pet. ether to CH2Cl2 at a solvent gradient of 19.0%/min, and CH2Cl2 for

15 min. A total of 69 fractions were collected over 65 min. No labillaride I (68), or its

ethyl ester equivalent, was detected.

Acetylation of Labillaride H (67) to 3,8-Diacetyl-labillaride H (73)

A solution of 67 (100 µg, 0.3 µmol) in 500 µL of freshly distilled Ac2O and 500 µL

of freshly distilled pyridine was stirred under argon at RT overnight. The reaction

was quenched with H2O (1 mL) and the resulting mixture was cyclic loaded on to

2 mL Amberchrom and eluted with 100 mL H2O, followed by 10 mL Me2CO. The

Me2CO fraction was concentrated to dryness under reduced pressure to yield 3,8-diacetyl-

labillaride H (73) (0.1 mg).
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Attempted Preparation of Mosher’s esters of Labillarides E (64) and

H (67)

To a solution of 64 or 67 (150 µg, 0.4 µmol) in 1 mL 0.02 M DMAP in CH2Cl2 (0.6 mg,

24.5 µmol), either (R)- or (S)-MPTACl (1.5 µL, 8.1 µmol) was added under argon and the

mixture stirred at RT overnight. The reaction mixture was concentrated to dryness under

reduced pressure, then 1 mL Me2CO added and the reaction was quenched with 1mL of

H2O. The resulting mixture was cyclic loaded on to 2 mL Amberchrom and washed with

10 mL of 1 M HCl, 1 M NaOH, and finally brine. The column was then eluted with 6 mL

Me2CO and this fraction was concentrated to dryness under reduced pressure. The NMR

spectra of reaction products showed complex mixtures of several products which, due to

the small sample mass, was too complex to interpret.

Labillaride A (60)

Colourless oil; [α]25
D −15.4 (c 0.07, MeOH); UV (hexanes) λmax 236 nm, 290 nm;

NMR data see Table 3.3; HRESIMS, obsd. m/z 343.2280 [M + H]+, C22H31O3 requires

343.2268, ∆ 3.6 ppm.

Labillaride B (61)

Colourless oil; UV (hexanes) λmax 290 nm; NMR data see Table 3.5; HRESIMS, obsd.

m/z 423.1522 : 425.1503 (1 : 1) [M + H]+, C22H32O3Br+ requires 423.1529 : 425.1512,

∆ 1.7 ppm.

Labillaride C (62)

Colourless oil; [α]25
D +268.0 (c 0.10, MeOH); UV (hexanes) λmax 295 nm; NMR data

see Table 3.6; HRESIMS, obsd. m/z 343.2259 [M + H]+, C22H31O3 requires 343.2268, ∆

2.7 ppm.
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Labillaride D (63)

Colourless oil; [α]25
D −93.0 (c 0.31, MeOH); UV (hexanes) λmax 295 nm; NMR data see

Table 3.7; HRESIMS, obsd. m/z 365.2093 [M + Na]+, C22H30O3Na requires 365.2093, ∆

0.0 ppm.

Labillaride E (64)

Colourless oil; [α]25
D +135.2 (c 0.04, MeOH); UV (hexanes) λmax 300 nm; NMR data see

Tables 3.9 (CDCl3) and 3.10 (C6D6); HRESIMS, obsd. m/z 375.2163 [M + H]+, C22H31O5

requires 375.2166, ∆ 0.7 ppm, obsd. m/z 397.2005 [M + Na]+, C22H30O5Na requires

397.1986, ∆ 4.8 ppm.

Labillaride F (65)

Colourless oil; [α]25
D +111.7 (c 0.04, MeOH); UV (hexanes) λmax 300 nm; NMR data see

Table 3.11; HRESIMS, obsd. m/z 375.2162 [M + H]+, C22H31O5 requires 375.2166, ∆

1.2 ppm, obsd. m/z 397.1990 [M + Na]+, C22H30O5Na requires 397.1986, ∆ 1.1 ppm.

Labillaride G (66)

Colourless oil; [α]25
D +99.7 (c 0.03, MeOH); UV (hexanes) λmax 300 nm; NMR data see

Table 3.12; HRESIMS, obsd. m/z 375.2158 [M + H]+, C22H31O5 requires 375.2166, ∆

2.1 ppm, obsd. m/z 397.1986 [M + Na]+, C22H30O5Na requires 397.1986, ∆ 0.2 ppm.

Labillaride H (67)

Colourless oil; [α]25
D +93.5 (c 0.10, MeOH); UV (hexanes) λmax 300 nm; NMR data see

Table 3.13; HRESIMS, obsd. m/z 397.1991 [M + Na]+, C22H30O5Na requires 397.1991,

∆ 0.0 ppm.
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Labillaride I (68)

Colourless oil; [α]25
D −7.3 (c 0.79, MeOH); UV (pet. ether) λmax 280 nm; NMR data see

Table 3.16; HRESIMS, obsd. m/z 375.2531 [M + H]+, C23H35O+
4 requires 375.2530, ∆

0.4 ppm.

Labillaride J (69)

Colourless oil; [α]25
D −55.3 (c 0.19, MeOH); UV (CH3CN) λmax 278 nm; NMR data see

Table 3.17; HRESIMS, obsd. m/z 317.2470 [M + H]+, C21H33O+
2 requires 317.2475, ∆

1.5 ppm.

Labillaride K (70)

Colourless oil; [α]25
D −15.4 (c 0.03, MeOH); UV (hexanes) λmax 237 nm, 300 nm;

NMR data see Table 3.19; HRESIMS, obsd. m/z 317.2489 [M + H]+, C21H33O+
2 requires

317.2475, ∆ 4.5 ppm, obsd. m/z 339.2298 [M + Na]+, C21H32O2Na+ requires 339.2295,

∆ 1.1 ppm.

Degradation product (75)

Colourless oil; UV (hexanes) λmax 280 nm; NMR data see Table 3.20; HRESIMS, obsd.

m/z 353.2087 [M + Na]+, C21H30O3Na+ requires 353.2087, ∆ 0.1 ppm.

6.5 Isolation of Bromophenols from Osmundaria colensoi

The seaweed identified as Osmundaria colensoi was collected by hand using SCUBA

from Taheke Reef, Cavalli Island, New Zealand (34◦ 57.8′ S, 173◦ 59.0′ E) in December

2003, and Rimariki Island and Cape Brett, New Zealand (35◦ 25.4′ S, 174◦ 26.9′ E)
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in November 2006. The samples were frozen immediately and kept at −18 ◦C until

extraction. A voucher specimen has been deposited at the School of Chemical and

Physical Sciences, Victoria University of Wellington, New Zealand.

O. colensoi (496 g wet weight) was extracted for 18 h in 2.5 L MeOH. The extract was

filtered and the algal material re-extracted for 18 h with a further 2.5 L MeOH. The

extracts were combined and cyclic loaded to 10% of the original volume on to a reversed-

phase PSDVB column (HP20, 400 mL). The column was eluted successively with 1.2 L

volumes of H2O, 20%, 40%, 60% and 80% Me2CO in H2O and Me2CO. The 40% Me2CO

in H2O elution was backloaded on to a reversed-phase PSDVB column (HP20, 160 mL)

and eluted successively with 500 mL volumes of H2O and MeOH. The MeOH eluent was

concentrated to dryness under reduced pressure to yield 860 mg of material. The resulting

material was triturated in MeOH (80 mL) and the soluble fraction was cyclic loaded on to

20 mL of HP20SS which was transferred to the top of a reversed-phase PSDVB column

(HP20S, 250 mL). The column was eluted at a flow rate of 10 mL/min with 40% MeOH

in H2O for 55 mins, from 40% to 80% MeOH in H2O at a solvent gradient of 0.32%/min,

80% MeOH in H2O for 50 mins, from 80% MeOH in H2O to MeOH at a solvent gradient

of 0.4%/min, and MeOH for 80 min. A total of 43 fractions were collected over 360 min.

Fractions 5-11 (47% to 64% MeOH in H2O) were combined and backloaded on to a

reversed-phase PSDVB column (HP20SS, 20 mL) and eluted successively with 100 mL

volumes of H2O and MeOH. The MeOH eluent was concentrated to dryness under

reduced pressure. The resulting material was separated on an analytical C18 reversed-

phase HPLC column with 50% MeOH in 0.1 M HCOOH as the mobile phase at a flow

rate of 1 mL/min to yield rhodomelol (122) (1.8 mg) with a retention time of 4.9 min

Fractions 12-16 (64% to 76% MeOH in H2O) were combined and backloaded on

to a reversed-phase PSDVB column (HP20SS, 20 mL) and eluted successively with

100 mL volumes of H2O and MeOH. The MeOH eluent was concentrated to dryness

under reduced pressure. The resulting material was separated on a semi-preparative C18

reversed-phase HPLC column with 60% MeOH in 0.2 M HCOOH as the mobile phase at

a flow rate of 5 mL/min. A total of five fractions were collected over 15 min. Fraction 4
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with a retention time of 4.6 min was backloaded on to a reversed-phase PSDVB column

(Amberchrom, 2 mL) and eluted with 50 mL of H2O, followed by 10 mL of MeOH. The

MeOH eluent was concentrated to dryness under reduced pressure to yield lanosol (110)

(46.3 mg). Fractions 1-2 with retention times 0 to 2.9 and 2.9 to 3.3 min respectively

were combined and backloaded on to a reversed-phase PSDVB column (Amberchrom,

2 mL) and eluted with 50 mL H2O, followed by 10 mL of MeOH. The MeOH eluent was

concentrated to dryness under reduced pressure. The resulting material was separated

on a semi-preparative C18 reversed-phase HPLC column with 50% MeOH in 0.2 M

HCOOH as the mobile phase at a flow rate of 4.75 mL/min. A total of four fractions

were collected over 12.5 min. Fraction 2 with a retention time of 4.0 min was backloaded

on to a reversed-phase PSDVB column (Amberchrom, 2 mL) and eluted with 50 mL

H2O, followed by 10 mL of MeOH. The MeOH eluent was concentrated to dryness under

reduced pressure and the resulting material was combined with a subsequent fraction as

described below.

Fractions 17-20 (76% to 80% MeOH in H2O) were combined and backloaded on

to a reversed-phase PSDVB column (HP20SS, 20 mL) and eluted successively with

100 mL volumes of H2O and MeOH. The MeOH eluent was concentrated to dryness

under reduced pressure. The resulting material was separated on a semi-preparative C18

reversed-phase HPLC column with 60% MeOH in 0.2 M HCOOH as the mobile phase at

a flow rate of 5 mL/min. A total of four fractions were collected over 15 min.

Fraction 1 with a retention time of 0 to 7.5 min was backloaded on to a reversed-phase

PSDVB column (Amberchrom, 2 mL) and eluted with 50 mL H2O, followed by 10 mL of

MeOH. The MeOH eluent was concentrated to dryness under reduced pressure. The

resulting material was separated repeatedly on a semi-preparative C18 reversed-phase

HPLC column with 50% MeOH in 0.2 M HCOOH as the mobile phase at a flow rate

of 4.75 mL/min. A total of six fractions were collected over 15 min. Fraction 2 with

a retention time of 4.9 min was backloaded on to a reversed-phase PSDVB column

(Amberchrom, 2 mL) and eluted with 50 mL H2O, followed by 10 mL of MeOH. The

MeOH eluent was concentrated to dryness under reduced pressure. The resulting material

was combined with the fraction detailed above and was separated on a semi-preparative
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C18 reversed-phase HPLC column with 40% MeOH in 0.2 M HCOOH as the mobile

phase at a flow rate of 4.75 mL/min to yield colensolide A (124) (3.5 mg) with a retention

time of 5.4 min.

Fraction 3 with a retention time of 9.6 to 10.3 min was backloaded on to a reversed-phase

PSDVB column (Amberchrom, 2 mL) and eluted with 50 mL H2O, followed by 10 mL

of MeOH. The MeOH eluent was concentrated to dryness under reduced pressure. The

resulting material was separated on a semi-preparative C18 reversed-phase HPLC column

with 60% MeOH in 0.2 M HCOOH as the mobile phase at a flow rate of 5 mL/min to

yield 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (114) (1.5 mg) and 2,3-dibromo-

4,5-dihydroxybenzaldehyde (120) (1.4 mg) with retention times of 10.1 and 11.1 min

respectively.

Fractions 26-30 (82% to 97% MeOH in H2O) of the original HP20S column were

combined and backloaded on to a reversed-phase PSDVB column (HP20SS, 20 mL) and

eluted successively with 100 mL volumes of H2O and MeOH. The MeOH eluent was

concentrated to dryness under reduced pressure. The resulting material was separated

on a semi-preparative DIOL normal phase HPLC column with 20% IPA in hexanes

as the mobile phase at a flow rate of 5 mL/min to yield (3E)-4-(2,3-dibromo-4,5-

dihydroxyphenyl)-3-butene-2-one (121) (4.6 mg) with a retention time of 7.5 min.

Acidification of colensolide A (124)

To a sample of 124 (1.7 mg, 3.9 µmol) in CD3OD (250 µL) in a 3 mm NMR tube, TFA

(0.5 µL, 6.7 µmol) was added to yield acidified colensolide A (125) (1.7 mg).

Methylation of Colensolide A (124) to 5-O-Methylcolensolide A (126)

To a sample of 124 (1.1 mg, 2.5 µmol) in 500 µL of dry CH3CN, 2.0 M TMSCHN2 in

diethyl ether (50 µL, 100 µmol) was added. The reaction was left to stir under argon

at RT for 45 min and then quenched with 2% AcOH (2 mL) and left overnight. The
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resulting mixture was cyclic loaded on to 2 mL Amberchrom and eluted with 100 mL

H2O, followed by 10 mL aliquots of 20%, 40%, 60% and 80% Me2CO in H2O and

Me2CO. The 80% Me2CO in H2O fraction was concentrated to dryness under reduced

pressure to yield 5-O-methylcolensolide A (126) (0.7 mg).

Methylation of 5-O-Methylcolensolide A (126) to 4,5-Di-O-methyl-

colensolide A (127)

To a sample of 126 (0.7 mg, 1.6 µmol) in 500 µL of dry CH3CN with K2CO3 (2.1 mg,

15.2 µmol), MeI (10 µL, 160.6 µmol) was added. The reaction was left to stir under

argon at RT for 24 h and then quenched with H2O (2 mL). The resulting mixture was

cyclic loaded on to 2 mL Amberchrom and eluted with 100 mL H2O, followed by 10 mL

MeOH. The MeOH fraction was concentrated to dryness under reduced pressure and the

resulting material was separated on a analytical DIOL normal phase HPLC column with

20% IPA in hexanes as the mobile phase at a flow rate of 1 mL/min to yield 4,5-di-O-

methylcolensolide A (127) (0.2 mg) with a retention time of 7.7 min.

Lanosol (110)

Amorphous brown solid; NMR data see Tables B.3 (CD3OD) and B.4 ((CD3)2CO);

HRESIMS, obsd. m/z 278.8646 : 280.8626 : 282.8600 (1 : 2 : 1) [M − H2O + H]+,

C7H5O2Br+
2 requires 278.8651 : 280.8631 : 282.8611, ∆ 1.6 ppm.

2,3-Dibromo-4,5-dihydroxybenzyl methyl ether (114)

Yellow oil; NMR data see Tables B.5 (CD3OD) and B.6 ((CD3)2CO).

2,3-Dibromo-4,5-dihydroxybenzaldehyde (120)

Yellow oil; NMR data see Tables B.7 (CD3OD) and B.8 ((CD3)2CO).
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(3E)-4-(2,3-Dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (121)

Yellow amorphous solid; NMR data see Tables 4.2 (CD3OD) and 4.3 ((CD3)2CO).

Rhodomelol (122)

Brown oil; NMR data see Tables 4.4 (CD3OD) and 4.5 ((CD3)2CO).

Colensolide A (124)

Yellow oil; [α]25
D −2 to −6 (c 0.35, MeOH); UV (MeOH) λmax 293 nm; NMR data see

Tables 4.8 (CD3OD) and 4.9 (d6-DMSO); HRESIMS, obsd. m/z 417.9386 : 419.9374 :

421.9368 (1 : 2 : 1) [M − H2O + H]+, C13H14N3O3Br+
2 requires 417.9396 : 419.9377 :

421.9358, ∆ 2.6 ppm, obsd. m/z 435.9496 : 437.9468 : 439.9474 (1 : 2 : 1) [M + H]+,

C13H16N3O4Br+
2 requires 435.9502 : 437.9482 : 439.9464, ∆ 1.5 ppm.

5-O-Methylcolensolide A (126)

Colourless oil; NMR data see Table 4.11; HRESIMS, obsd. m/z 449.9666 : 451.9641 :

453.9628 (1 : 2 : 1) [M + H]+, C14H18N3O4Br+
2 requires 449.9659 : 451.9639 : 453.9621,

∆ 1.7 ppm.

4,5-Di-O-methyloxycolensolide A (127)

Colourless oil; NMR data see Table 4.12; HRESIMS, obsd. m/z 463.9824 : 465.9803 :

467.9762 (1 : 2 : 1) [M + H]+, C15H20N3O4Br+
2 requires 463.9821 : 465.9801 : 467.9783,

∆ 0.6 ppm.
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Appendix A

Existing Sponge Screening Protocol∗

Preparation

Equipment Needed (per Screen)

• 1 x Screen column loaded with 80 mL of HP20 equilibrated in distilled MeOH

• 1 x Backloading column loaded with 40 mL of HP20 equilibrated in distilled MeOH

NMR Standard

Prepare a standard of 1,3,5-tribromobenzene in CDCl3 by dissolving 78.9 mg of 1,3,5-

tribromobenzene in 5 mL of CDCl3.

Procedure

1. Voucher Sample Preparation

• Take a voucher specimen of ca. 10 g of sponge material ensuring that both the

ectoderm and the endoderm are represented.

• Label and store the voucher sample in 75% IPA in H2O.

2. Extraction

• Extract ca. 100 g of sponge material in 400 mL of distilled MeOH overnight.

• Filter the first extract and set aside. Re-extract the sponge material (and any

filter paper/celite as necessary) in 400 mL of distilled MeOH overnight.

∗Last updated: 13/11/06
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• Filter the second extract.

• Keep all sponge material (and any filter paper/celite as necessary) until the

screen is complete at which time it may be discarded.

3. Cyclic Loading

• Pass the second extract through the screen column with a flow rate of ca.

10 mL/min.

• Pass the first extract through the screen column with a flow rate of ca.

10 mL/min. Combine the eluent with that of the second extract.

• Dilute the combined eluents with 800 mL of distilled H2O. Pass the diluted

eluents back through the screen column at a flow rate of ca. 10 mL/min.

• Dilute the eluent with 1.6 L of distilled H2O. Pass the diluted eluent back

through the screen column at a flow rate of ca. 10 mL/min.

• The eluent should be kept until the screen is complete at which time it may be

discarded.

4. Elution

• Elute the screen column with 250 mL of distilled H2O at a flow rate of ca.

10 mL/min. The H2O eluent can be discarded immediately.

• Elute the screen column with 250 mL of 30% distilled Me2CO in distilled

H2O (75 mL Me2CO to 175 mL H2O) at a flow rate of ca. 10 mL/min.

• Elute the screen column with 250 mL of 75% distilled Me2CO in distilled

H2O (187.5 mL Me2CO to 62.5 mL H2O) at a flow rate of ca. 10 mL/min.

• Elute the screen column with 250 mL of distilled Me2CO at a flow rate of ca.

10 mL/min.

5. Backloading the 75% Acetone Fraction

• Dilute the 75% Me2CO fraction with 250 mL of distilled H2O. Pass the diluted

eluent through the backloading column at a flow rate of ca. 8 mL/min.

• Dilute the eluent with 500 mL of distilled H2O. Pass the diluted eluent back

through the backloading column at a flow rate of ca. 8 mL/min.
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• The eluent should be kept until the screen is complete at which time it may be

discarded.

• Elute the backloading column with 150 mL of distilled Me2CO.

6. Processing the 75% Acetone Fraction

• Evaporate the Me2CO eluent of the backloading column to dryness and

transfer to a pre-weighed sample vial. Evaporate to dryness and record the

mass.

• Sub-sample approximately 30 mg of material for NMR analysis if necessary.

• Prepare an NMR sample in ca. 700 µL of CD3OD in a 5 mm NMR tube.

• Add 10 µL of the 1,3,5-tribromobenzene standard (representing 507 nmol of

1,3,5-tribromobenzene) to the NMR tube.

7. NMR Analysis of the 75% Acetone Fraction

• Run a 1H spectrum of the sample on the 600 MHz instrument using the

standard Screen1H parameter set. (Experiment time: ca. 4 min)

• Make a note “Standard Added” in the sample text.

• Run a COSY spectrum of the sample using the standard ScreenCOSY

parameter set. (Experiment time: ca. 20 min)

• Run an HSQC spectrum of the sample using the standard ScreenHSQC

parameter set. (Experiment time: ca. 4 h)

• Process appropriately and export HSQC phasefile.

• Add HSQC phasefile to HSQC mask.

• Apply HSQC mask to HSQC phasefile.

8. Assigning Hit Values to the Screen

• Threshold set at 3%.

• Signal strength

– An arbitrary value indicating how the strength of the interesting peaks.
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– Weak – 1. Medium – 2. Strong – 3 (remember to consider the sub-

sampling factor if necessary).

• Number of interesting peaks

– Indicates how many red peaks in the HSQC. Something exhibiting more

than 20 non-masked peaks will score a 10.

• Uniqueness of interesting peaks

– An arbitrary value indicating whether non-masked peaks represent some-

thing interesting (1-10).

• Available mass

– The total mass of the available sponge material (including that used for

the screen) in kg is multiplied by 10 and rounded to the nearest integer. If

more than 1 kg of sponge material is available the score is 10.

• Recollectability

– Collected locally – 3. Collected from Northland – 2. Other – 1.

• Sum all 5 hit values. A score of 20 would be considered average.

9. Backloading the 30% Acetone Fraction

• Dilute the 30% Me2CO fraction with 250 mL of distilled H2O. Pass the diluted

eluent through the backloading column at a flow rate of ca. 8 mL/min.

• Dilute the eluent with 500 mL of distilled H2O. Pass the diluted eluent back

through the backloading column at a flow rate of ca. 8 mL/min.

• The eluent should be kept until the screen is complete at which time it may be

discarded.

• Elute the backloading column with 150 mL of distilled MeOH.

10. Processing the 30% Acetone Fraction

• Evaporate the MeOH eluent of the backloading column to dryness and transfer

to a pre-weighed sample vial. Evaporate to dryness and record the mass.

• Sub-sample approximately 30 mg of material for NMR analysis if necessary.
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• Prepare an NMR sample in ca. 700 µL of CD3OD in a 5 mm NMR tube.

11. NMR Analysis of the 30% Acetone Fraction

• Run a 1H spectrum of the sample on the 600 MHz instrument using the

standard Screen1H parameter set. (Experiment time: ca. 4 min)

12. Processing the 100% Acetone Fraction

• Evaporate the Me2CO eluent of the screen column to dryness and transfer to

a pre-weighed sample vial. Evaporate to dryness and the record mass.

• Sub-sample approximately 30 mg of material for NMR analysis if necessary.

• Prepare an NMR sample in ca. 700 µL of CDCl3 in a 5 mm NMR tube.

13. NMR Analysis of the 100% Acetone Fraction

• Run a 1H spectrum of the sample on the 600 MHz instrument using the

standard Screen1H parameter set. (Experiment time: ca. 4 min)
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Standard NMR Parameter Sets for Screening

Screen1H (Standard Pulse-acquire)

Acquisition: acquisition delay 10 ms

nutation angle 60◦

acquisition time 4 s (38462 complex points)

steady-state scans none

number of transients 64

temperature 20 ◦C

spectral width 14 ppm to −2 ppm

total time ca. 4 min

Processing: fourier number 65536 complex points

weighting none

ScreenCOSY (Absolute Value Gradient COSY)

Acquisition: acquisition delay 2 s

gradient strength 10 Gcm−1

gradient duration 1 ms

gradient stabilisation delay 500 µs

number of increments 512

acquisition time 213 ms (1153 complex points)

steady state scans 16

number of transients 1

temperature 20 ◦C

spectral width (F2 & F1) 9 ppm to 0 ppm

total time ca. 20 min

Processing: fourier number (F2 & F1) 2048 complex points

weighting (F2 & F1) sinebell
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ScreenHSQC (Adiabatic Gradient-enhanced HSQC)

Acquisition: steady-state gradient strength 13 Gcm−1

steady-state gradient duration 2 ms

acquisition delay 1.5 s

TANGO gradient strength 10 Gcm−1

TANGO gradient duration 2 ms

adiabatic sweep pulse bandwidth 300 ppm

encoding gradient strength 10 Gcm−1

encoding gradient time 4 ms

decoding gradient strength −6 Gcm−1

decoding gradient time 2.4 ms

number of increments 512

acquisition time 213 ms (1153 complex points)

broadband 13C decoupling shape WURST40

broadband 13C decoupling bandwidth 200 ppm

steady state scans 64

number of transients 8

temperature 20 ◦C

spectral width in F2 9 ppm to 0 ppm

spectral width in F1 160 ppm to 0 ppm

1JCH selection 140 Hz

total time ca. 4 h

Processing: fourier number in F2 2048 complex points

fourier number in F1 1024 complex points

weighting (F2 & F1) gaussian
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Appendix B

NMR Data for the Known Compounds

Costatone

Table B.1. 13C (150 MHz) and 1H (600 MHz) NMR data (CDCl3) for costatone (44).

13C 1H HMBC
Pos δ (ppm) mult 1JCH (Hz) δ (ppm) mult J (Hz) COSY (1H to 13C)

O
22

33
44

55
66

77

11

HO
Br

1010 88

Cl

Cl

99Br

bb

aa

44

1 51.7 CH 176 5.81 s 2,3,6
2 97.1 C

OH 3.17 s 1,2,3,4
3 125.7 C
4 132.2 C
5a 35.1 CH2

137 2.61 ddq 17.0,11.6,2.5 5b,6,9 3,4,6,7
5b 134 2.36 dq 16.9,1.6 5a,6,9 3,4
6 67.7 CH 150 5.22 ddq 11.2,3.3 5a,5b 2,4,5,7,8,10
7 137.2 C
8 113.5 CH 201 5.90 br.s 10 6,7,10
9 14.0 CH3 125 1.89 m 5a,5b 2,3,4

10 16.2 CH3 128 1.87 m 8 6,7,8

1H-Indole-3-carboxaldehyde

Table B.2. 13C (150 MHz) and 1H (600 MHz) NMR data (CDCl3) for
1H-indole-3-carboxaldehyde (45).

13C or 15N 1H HMBC
Pos δ (ppm) mult δ (ppm) mult J (Hz) COSY (1H to 13C)

55

66

77
88

99
44

N
H

11

22

33

3'3'

O
H

45

1 * NH 8.73 br.s 2
2 135.3 CH 7.86 d 3.1 1 3,3′,8,9
3 119.9 C
4 122.2 CH 8.33 d 8.8 5 3,6,8
5 123.2 CH 7.33 td 7.1, 1.6 4,6 7,9
6 124.6 CH 7.34 td 7.2, 1.9 5,7 4,8
7 111.6 CH 7.45 m 6 5,9
8 136.7 C
9 124.5 C
3′ 185.3 CH 10.08 s 2,3,9

*Not observed.
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Lanosol

33

44
55

66

11

22Br

HO
OH

77

OH

Br

110

Table B.3. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for lanosol (110).

13C 1H HMBC
Pos δ (ppm) mult δ (ppm) mult (1H to 13C)
1 134.1 C
2 114.1 C
3 114.2 C
4 146.2 C
5 144.6 C
6 114.8 CH 7.01 s 1,2,4,5,7
7 65.6 CH2 4.56 s 1,2,5*,6

*Long-range correlation.

Table B.4. 13C (150 MHz) and 1H (600 MHz) NMR data ((CD3)2CO) for lanosol (110).

13C 1H HMBC
Pos δ (ppm) mult 1JCH δ (ppm) mult (1H to 13C)
1 134.6 C
2 113.3 C
3 113.4 C
4 145.5 C
5 143.8 C
6 114.5 CH 163 7.18 s 1,2,4,5,7
7 65.0 CH2 144 4.56 s 1,2,5*,6

*Long-range correlation.
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2,3-Dibromo-4,5-dihydroxybenzyl methyl ether

33

44
55

66

11

22Br

HO
OH

77

OMe
88

Br

114

Table B.5. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for
2,3-dibromo-4,5-dihydroxybenzyl methyl ether (114).

13C 1H HMBC
Pos δ (ppm) mult δ (ppm) mult (1H to 13C)
1 131.0 C
2 115.3 C
3 114.5 C
4 145.3 C
5 146.3 C
6 115.8 CH 6.92 s 1,2,3*,4,5,7
7 74.5 CH2 4.42 s 6,8
8 58.5 CH3 3.39 s 7

*Long-range correlation.

Table B.6. 13C (150 MHz) and 1H (600 MHz) NMR data ((CD3)2CO) for
2,3-dibromo-4,5-dihydroxybenzyl methyl ether (114).

13C 1H HMBC
Pos δ (ppm) mult 1JCH δ (ppm) mult (1H to 13C)
1 131.3 C
2 114.5 C
3 113.7 C
4 145.7 C
5 144.7 C
6 115.6 CH 164 7.05 s 1,2,3*,4,5,7
7 75.1 CH2 144 4.39 s 1,2,3*,5*,6,8
8 58.4 CH3 139.9 3.38 s 7

*Long-range correlation.
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2,3-Dibromo-4,5-dihydroxybenzaldehyde

33

44
55

66

11

22Br

HO
OH

77 H

Br O

120

Table B.7. 13C (150 MHz) and 1H (600 MHz) NMR data (CD3OD) for
2,3-dibromo-4,5-dihydroxybenzaldehyde (120).

13C 1H HMBC
Pos δ (ppm) mult δ (ppm) mult (1H to 13C)
1 128.3 C
2 122.2 C
3 114.8 C
4 152.5 C
5 146.6 C
6 114.4 CH 7.34 s 1,2,3*,4,5,7
7 192.7 CH 10.13 s 1,5,6

*Long-range correlation.

Table B.8. 13C (150 MHz) and 1H (600 MHz) NMR data ((CD3)2CO) for
2,3-dibromo-4,5-dihydroxybenzaldehyde (120).

13C 1H HMBC
Pos δ (ppm) mult 1JCH δ (ppm) mult (1H to 13C)
1 128.3 C
2 121.6 C
3 114.4 C
4 151.4 C
5 145.8 C
6 114.5 CH 166 7.42 s 1,2,3*,4,5,7
7 191.3 CH 184 10.15 s 1,5,6

*Long-range correlation.
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Appendix C

1H NMR Spectra of the Known Compounds

Costatone

1H NMR spectrum of costatone (44) (600 MHz, CDCl3)
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1H-Indole-3-carboxaldehyde

1H NMR spectrum of 1H-indole-3-carboxaldehyde (45) (600 MHz, CDCl3)
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(E)-N-Formyl-3-(1H-indol-3-yl)prop-2-enamide

1H NMR spectrum of (E)-N-formyl-3-(1H-indol-3-yl)prop-2-enamide (46)
(600 MHz, CD3OD)
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Lanosol

1H NMR spectrum of lanosol (110) (600 MHz, CD3OD)
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2,3-Dibromo-4,5-dihydroxybenzyl methyl ether

1H NMR spectrum of 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (114)
(600 MHz, (CD3)2CO)
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2,3-Dibromo-4,5-dihydroxybenzaldehyde

1H NMR spectrum of 2,3-dibromo-4,5-dihydroxybenzaldehyde (120)
(600 MHz, (CD3)2CO)
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(3E)-4-(2,3-Dibromo-4,5-dihydroxyphenyl)-3-butene-2-one

1H NMR spectrum of (3E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (121)
(600 MHz, CD3OD)

175



Rhodomelol

1H NMR spectrum of rhodomelol (122) (600 MHz, CD3OD)
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Appendix D

NMR Spectra of Labillaride A

1H NMR spectrum of labillaride A (60) (600 MHz, CDCl3)

177



13C NMR spectrum of labillaride A (60) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride A (60) (600 MHz, CDCl3)

179



HSQC NMR spectrum of labillaride A (60) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride A (60) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride A (60) (600 MHz, CDCl3)
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Appendix E

NMR Spectra of Labillaride B

1H NMR spectrum of labillaride B (61) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride B (61) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride B (61) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride B (61) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride B (61) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride B (61) (600 MHz, CDCl3)
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Appendix F

NMR Spectra of Labillaride C

1H NMR spectrum of labillaride C (62) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride C (62) (150 MHz, CDCl3)

190



COSY NMR spectrum of labillaride C (62) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride C (62) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride C (62) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride C (62) (600 MHz, CDCl3)
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Appendix G

NMR Spectra of Labillaride D

1H NMR spectrum of labillaride D (63) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride D (63) (75 MHz, CDCl3)
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COSY NMR spectrum of labillaride D (63) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride D (63) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride D (63) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride D (63) (600 MHz, CDCl3)
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Appendix H

NMR Spectra of Labillaride E

1H NMR spectrum of labillaride E (64) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride E (64) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride E (64) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride E (64) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride E (64) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride E (64) (600 MHz, CDCl3)
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1H NMR spectrum of labillaride E (64) (600 MHz, C6D6)
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Appendix I

NMR Spectra of Labillaride F

1H NMR spectrum of labillaride F (65) (600 MHz, C6D6)
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13C NMR spectrum of labillaride F (65) (150 MHz, C6D6)

209



COSY NMR spectrum of labillaride F (65) (600 MHz, C6D6)

210



HSQC NMR spectrum of labillaride F (65) (600 MHz, C6D6)

211



HMBC NMR spectrum of labillaride F (65) (600 MHz, C6D6)
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HSQC-TOCSY NMR spectrum of labillaride F (65) (600 MHz, C6D6)

213



Appendix J

NMR Spectra of Labillaride G

1H NMR spectrum of labillaride G (66) (600 MHz, C6D6)
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13C NMR spectrum of labillaride G (66) (150 MHz, C6D6)
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COSY NMR spectrum of labillaride G (66) (600 MHz, C6D6)
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HSQC NMR spectrum of labillaride G (66) (600 MHz, C6D6)
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HMBC NMR spectrum of labillaride G (66) (600 MHz, C6D6)
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HSQC-TOCSY NMR spectrum of labillaride G (66) (600 MHz, C6D6)
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Appendix K

NMR Spectra of Labillaride H

1H NMR spectrum of labillaride H (67) (600 MHz, C6D6)
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13C NMR spectrum of labillaride H (67) (150 MHz, C6D6)
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COSY NMR spectrum of labillaride H (67) (600 MHz, C6D6)
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HSQC NMR spectrum of labillaride H (67) (600 MHz, C6D6)
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HMBC NMR spectrum of labillaride H (67) (600 MHz, C6D6)
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HSQC-TOCSY NMR spectrum of labillaride H (67) (600 MHz, C6D6)
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Appendix L

1H NMR Spectrum of 3,8-Diacetyl-labillaride H

1H NMR spectrum of 3,8-diacetyl-labillaride H (73) (600 MHz, C6D6)
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Appendix M

NMR Spectra of Labillaride I

1H NMR spectrum of labillaride I (68) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride I (68) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride I (68) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride I (68) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride I (68) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride I (68) (600 MHz, CDCl3)
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Appendix N

NMR Spectra of Labillaride J

1H NMR spectrum of labillaride J (69) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride J (69) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride J (69) (600 MHz, CDCl3)
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HSQC NMR spectrum of labillaride J (69) (600 MHz, CDCl3)

236



HMBC NMR spectrum of labillaride J (69) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of labillaride J (69) (600 MHz, CDCl3)
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Appendix O

NMR Spectra of Labillaride K

1H NMR spectrum of labillaride K (70) (600 MHz, CDCl3)
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13C NMR spectrum of labillaride K (70) (150 MHz, CDCl3)
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COSY NMR spectrum of labillaride K (70) (600 MHz, CDCl3)

241



HSQC NMR spectrum of labillaride K (70) (600 MHz, CDCl3)
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HMBC NMR spectrum of labillaride K (70) (600 MHz, CDCl3)
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Appendix P

NMR Spectra of the Degradation Product

1H NMR spectrum of the degradation product (75) (600 MHz, CDCl3)
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13C NMR spectrum of the degradation product (75) (150 MHz, CDCl3)
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COSY NMR spectrum of the degradation product (75) (600 MHz, CDCl3)
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HSQC NMR spectrum of the degradation product (75) (600 MHz, CDCl3)

247



HMBC NMR spectrum of the degradation product (75) (600 MHz, CDCl3)
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HSQC-TOCSY NMR spectrum of the degradation product (75) (600 MHz, CDCl3)
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Appendix Q

NMR Spectra of Colensolide A

1H NMR spectrum of colensolide A (124) (600 MHz, CD3OD)
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13C NMR spectrum of colensolide A (124) (150 MHz, CD3OD)
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COSY NMR spectrum of colensolide A (124) (600 MHz, CD3OD)
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HSQC NMR spectrum of colensolide A (124) (600 MHz, CD3OD)
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HMBC NMR spectrum of colensolide A (124) (600 MHz, CD3OD)
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1H to 15N HMBC NMR spectrum of colensolide A (124) (600 MHz, CD3OD)
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Appendix R

1H NMR Spectrum of Acidified Colensolide A

1H NMR spectrum of acidified colensolide A (125) (600 MHz, CD3OD)

256



Appendix S

1H NMR Spectrum of 5-O-Methylcolensolide A

1H NMR spectrum of 5-O-methylcolensolide A (126) (600 MHz, CD3OD)
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Appendix T

1H NMR Spectrum of 4,5-Di-O-methylcolensolide A

1H NMR spectrum of 4,5-di-O-methylcolensolide A (127) (600 MHz, CD3OD)
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