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Abstract

It is natural to try to extend the results of Robertson and Seymour’s
Graph Minors Project to other objects. As linked tree-decompositions
(ltds) of graphs played a key role in the Graph Minors Project, establish-
ing the existence of ltds of other objects is a useful step towards such
extensions. There has been progress in this direction for both infinite
graphs and matroids. Kříž and Thomas proved that infinite graphs of
finite tree-width have ltds. More recently, Geelen, Gerards and Whit-
tle proved that matroids have linked branch-decompositions, which are
similar to ltds. These results suggest that infinite matroids of finite tree-
width should have ltds.

We answer this conjecture affirmatively for the representable case.
Specifically, an independence space is an infinite matroid, and a point
configuration (hereafter configuration) is a represented independence
space. It is shown that every configuration having tree-width k ∈ ω

has an ltd of width at most 2k.
Configuration analogues for bridges of X (also called connected com-

ponents modulo X) and chordality in graphs are introduced to prove this
result. A correspondence is established between chordal configurations
only containing subspaces of dimension at most k ∈ ω and configuration
tree-decompositions having width at most k. This correspondence is used
to characterise finite-width ltds of configurations by their local structure,
enabling the proof of the existence result. The theory developed is also
used to show compactness of configuration tree-width: a configuration
has tree-width at most k ∈ ω if and only if each of its finite subconfigu-
rations has tree-width at most k ∈ ω.

The existence of ltds for configurations having finite tree-width opens
the possibility of well-quasi-ordering (or even better-quasi-ordering) by
minors those independence spaces representable over a fixed finite field
and having bounded tree-width.
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Chapter 1

Introduction

1.1 Background

Trees are among the simplest graphs. Many results that are difficult in

general are easily established for trees—a property that makes the study

of tree-like objects very attractive. A tree-decomposition of an object is

a decomposition of that object into parts of bounded size such that the

parts fit together in a tree-like way. This thesis is primarily devoted to

establishing the existence of linked tree-decompositions of “infinite rep-

resented matroids” having finite tree-width.

Tree-decompositions and tree-width of graphs were first introduced

(under different names) by Halin in [Hal76],1 although they did not gain

widespread currency until Robertson and Seymour gave their definition

in [RS90]. Graph tree-width is an invariant that measures how tree-like

a graph is: the more tree-like the graph, the smaller its tree-width. For

example, the simple graphs having tree-width at most 1 are precisely the

forests.

Tree-decompositions of graphs play an important role in Robertson

and Seymour’s proof in [RS04] of the following deep theorem, a survey

1See p. 354 of [Die06].
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2 CHAPTER 1. INTRODUCTION

of which may be found in [Lov05].

Graph Minor Theorem (Robertson and Seymour). Finite graphs are well-

quasi-ordered under the minor relation.

Robertson and Seymour also established the existence of a cubic-time

algorithm for testing whether a finite graph G has an H-minor (see p. 66

of [RS95]). Combining this result with the Graph Minor Theorem gives

the next theorem.

Theorem 1.1.1 (Robertson and Seymour). Every minor-closed property of

finite graphs can be tested in cubic time.

Unusually, this theorem is purely existential: it does not explicitly pro-

vide algorithms for testing minor-closed properties of graphs. However,

the assurance that polynomial-time algorithms exist for testing such prop-

erties has generated widespread interest. Tree-width has proven useful

in developing good algorithms—indeed, many NP-hard graph param-

eters can be computed in polynomial time for graphs having bounded

tree-width. This has spurred investigation of related invariants, such as

branch-width, clique-width and hypertree-width. These “width parame-

ters” and their algorithmic applications are surveyed in [HOSG07].

Extensions of parts of the Graph Minors Project to other objects have

also been pursued. Thomas proved the following theorem in [Tho89a].

Theorem 1.1.2 (Thomas). Every class of graphs having bounded tree-width is

well-behaved under the minor relation.

“Well-behaved” is a technical strengthening of Nash-Williams’ con-

cept of “better-quasi-ordered” (introduced in [NW68]), which is in turn

considerably stronger than “well-quasi-ordered.” Bounded tree-width is

necessary here: Thomas also gave a counterexample in [Tho88] showing

that graphs in general are not well-quasi-ordered under the minor rela-

tion.2

2The counterexample uses uncountable graphs, and it remains open whether count-
able graphs are well-quasi-ordered or not.
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More recently, Geelen, Gerards and Whittle established the following

theorem in [GGW02].

Theorem 1.1.3 (Geelen, Gerards and Whittle). Every class of matroids repre-

sentable over a fixed finite field and having bounded branch-width is well-quasi-

ordered under the minor relation.

Branch-width is an invariant closely related to tree-width. In partic-

ular, the branch-width of a matroid is bounded if and only if its tree-

width is bounded (see pp. 1122–1123 of [HW06]), so Theorem 1.1.3 still

holds when “branch-width” is replaced by “tree-width.” Geelen, Gerards

and Whittle also demonstrated in [GGW02] that finiteness of the field is

necessary—a reflection of the greater generality of the matroidal setting.

Taken together, Theorems 1.1.2 and 1.1.3 suggest that the following

conjecture is likely to hold.

Conjecture 1.1.4. Every class of independence spaces representable over a fixed

finite field and having bounded tree-width is well-quasi-ordered under the minor

relation.

Independence spaces are one of several generalisations of matroids to

infinite sets. Unlike other generalisations, they

• generalise graphs in the same way that matroids generalise finite

graphs, and

• only have finite circuits in the same way that graphs only have finite

cycles.

These properties make independence spaces the appropriate choice of

“infinite matroid” for Conjecture 1.1.4.

The proofs of Theorems 1.1.2 and 1.1.3 each rely on the existence of

linked decompositions. A (tree- or branch-) decomposition of an object is

linked if the connectivity between any pair of the object’s parts displayed

by the decomposition is precisely the least width appearing between them
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in the decomposition. Linked decompositions certify that certain minors

exist, while bounded (tree- or branch-) width limits their number. To-

gether these conditions prevent the existence of a minor-minimal bad se-

quence, thus demonstrating that well-quasi-ordering holds.

The existence of linked tree-decompositions of graphs having finite

tree-width was established by Thomas and Kříž. Thomas closed the finite

case in [Tho90].

Theorem 1.1.5 (Thomas). Every finite graph having tree-width w has a linked

tree-decomposition of width w.

Using the Axiom of Choice and a compactness argument, Kříž and

Thomas were subsequently able to lift this result to infinite graphs in

[KT91].

Theorem 1.1.6 (Kříž and Thomas). Every graph having tree-width w ∈ ω

has a linked tree-decomposition of width w.

This thesis is primarily devoted to establishing an analogue of Theo-

rem 1.1.6 for point configurations, which are represented independence

spaces. The structure of the argument given mirrors that of Kříž and

Thomas.

1.2 Outline

This thesis is arranged as follows. Chapter 2 introduces some background

graph theory and linear algebra, as well as a combinatorially-useful form

of the Axiom of Choice.

As many of the results needed for point configurations hold for inde-

pendence spaces in general, it is sensible to establish them for indepen-

dence spaces. Chapter 3 is devoted to this.

Chapter 4 formally introduces point configurations and develops the

relationship between these and general independence spaces. This allows
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the results of Chapter 3 to be applied in the context of point configura-

tions.

Chapter 5 explores the more exotic concepts of bridges, roundness

and chordal saturation. Each motivated by an analogue in graph theory,

these concepts play a vital role in the generalisation of Theorem 1.1.6.

Tree-decompositions of point configurations are presented in Chap-

ter 6. Section 6.1 establishes some elementary properties of tree-decompo-

sitions. An analogue of Theorem 1.1.5 for point configurations is proved

in Section 6.2. Sections 6.3 and 6.4 develop the relationships between

roundness, chordal saturation and tree-decompositions, providing lem-

mas later crucial to the proof of the main theorem. Compactness of tree-

width for point configurations is established at the end of Section 6.4.

Chapter 7 is devoted to the proof of the main theorem. Finally, Chap-

ter 8 suggests possible future avenues of research.

1.3 Pre-Existing and New Material

Here we note which results are pre-existing, and which are new.

With the exceptions of Lemmas 2.2.1 and 2.2.7 (the first of which is

obvious), all results in Chapter 2 are pre-existing. While Proposition 2.1.3

was already known, we are unaware of any proof in the literature.

The results in Chapter 3 are either pre-existing or straightforward

given pre-existing results.

As Chapter 4 is devoted to configuration-specific formulations of ma-

troidal concepts, many of its results are unsurprising. The material in

Section 4.1 is all pre-existing. Most material in Sections 4.2–4.5 is well-

known in the context of matroids. However, Definition 4.2.1, Proposi-

tions 4.2.2 and 4.2.3, Definition 4.4.1 and Proposition 4.4.2, while similar

to some pre-existing work, appear to be new. Proposition 4.4.7 is new.

Chapter 5 introduces some new concepts, and thus contains new re-

sults. The “bridges” of Definition 5.1.3 are new. Consequently most of



6 CHAPTER 1. INTRODUCTION

the results of Section 5.1, while straightforward, are new. Definition 5.1.1

and Proposition 5.1.2 are as for matroids, and several other results in

this section are natural generalisations of matroid results. In Section 5.2,

both Proposition 5.2.7 and Corollary 5.2.8 are new. All other material in

this section is pre-existing for matroids, although here it is generalised to

independence spaces. Section 5.3 is entirely new.

With the exception of Definition 6.1.2, all of the material in Chapters 6

and 7 is new.



Chapter 2

Preliminaries

We shall assume a number of elementary results, but review the most

relevant material in this chapter.

2.1 Graph Theory

We first review some standard definitions and notations for graphs and

trees.

A graph G is a triple (V ,E, ι) consisting of a set V , a set E disjoint from

V and a function ι : E → {V ′ ⊆ V | 1 6 |V ′| 6 2}. The vertex set of G,

denoted V(G), is V , and the vertices of G are the elements of V . Similarly,

the edge set of G, denoted E(G), is E, and the edges of G are the elements of

E. The order of G, denoted |G|, is |V |. We denote |E(G)| by e(G). A graph

is finite if both its vertex and edge sets are finite, and empty if its vertex

set is empty.

We shall usually only refer to the incidence relation ι implicitly, writ-

ing “the graph (V ,E),” etc. Moreover, we shall identify each edge e ∈ E

with ι(e), writing vv ′ to mean e whenever ι(e) = {v, v ′} and vv to mean e

whenever ι(e) = {v}.

A vertex v ∈ V is incident on an edge e ∈ E (and vice versa) if v ∈ ι(e).

Moreover, v is incident on E ′ ⊆ E if v is incident on some e ′ ∈ E ′, and

7
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e is incident on V ′ ⊆ V if e is incident on some v ′ ∈ V ′. The set of

vertices
⋃
ι[E ′] of G incident on E ′ is denoted VG(E ′), while the set of

edges {e ∈ E | V ′ ∩ ι(e) 6= ∅} of G incident on V ′ is denoted EG(V ′).

A loop is an edge incident on only one vertex. A pair of distinct non-

loop edges are parallel if they are incident on the same pair of vertices. A

vertex v ∈ V is a neighbour of a vertex v ′ ∈ V in G if v 6= v ′ and there exists

an edge of G incident on both. The set of neighbours of v in G is denoted

NG(v).

The degree of a vertex v of G, denoted dG(v), is the number of edges of

G incident on v, with loops counting twice. This is taken to be (symboli-

cally) ∞ if it is not finite. The maximum degree of G is

∆(G) := sup{dG(v) | v ∈ V}.

A graph G ′ = (V ′,E ′, ι ′) is a subgraph of a graph G = (V ,E, ι), denoted

G ′ 6 G, if V ′ ⊆ V and E ′ ⊆ E and ι|E ′ = ι ′. A path P in a graph G is a

subgraph
(
{v1, . . . , vn}, {e1, . . . , en−1}, ι

′
)

of G having ι ′(ei) = {vi, vi+1} for

each i = 1, . . . , n− 1. Sometimes we shall identify P with the sequence

v1, e1, v2, e2, . . . , en−1, vn

of its vertices and edges. We say that P links v1 and vn, which are its

endvertices (note that some authors call an endvertex an “end”). A graph

is connected if every pair of its vertices are linked by a path.

A cycle of a graph G is a finite non-empty connected subgraph of G for

which every vertex has degree 2. A forest is an acyclic graph, and a tree

is a connected forest. If T is a tree and t, t ′ ∈ V(T), there exists a unique

path in T linking t and t ′, denoted tTt ′. A leaf is a vertex of a tree having

degree 1. The set of leaves of a tree T is denoted L(T). A tree is cubic if

each of its non-leaf vertices has degree 3.

The union of graphs G = (V ,E, ι) and G ′ = (V ′,E ′, ι ′) having V ∩ E ′ =
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V ′ ∩ E = ∅ and ι|E∩E ′ = ι ′|E∩E ′ , denoted G ∪G ′, is the graph (V ∪ V ′,E ∪

E ′, ι ∪ ι ′). A connected component of a graph G is a maximal connected

subgraph of G. The number of connected components of G is denoted

c(G). Whenever V ′ ⊆ V , the subgraph of G induced by V ′, denoted G[V ′],

is (V ′,EG(V ′), ι|EG(V ′)). Similarly, whenever E ′ ⊆ E, the subgraph of G

induced by E ′, denoted G[E ′], is (VG(E ′),E ′, ι|E ′).

Definition 2.1.1. An edge-weighting of a tree T is a map w : E(T) → ω,

and an edge-weighted tree is a pair (T ,w) consisting of a tree T and an

edge-weighting w of T . An edge-weighted tree (T ,w) is finite if T is finite.

Whenever (T ,w) is an edge-weighted tree and k ∈ ω, the subgraph of T

induced by {e ∈ E(T) | w(e) > k} is denoted T>k.

We partially order finite edge-weighted trees as in [GGW02].

Definition 2.1.2. Define a binary relation =E on the set T of finite edge-

weighted trees by (T ,w) =E (T ′,w ′) if

(1) e(T>l) = e(T ′
>l) and c(T>l) = c(T ′

>l) for every l ∈ ω.

Define a binary relation <E on T by (T ,w) <E (T ′,w ′) if there exists k ∈ ω

such that

(2) either e(T>k) < e(T
′
>k) or e(T>k) = e(T ′>k) and c(T>k) > c(T

′
>k), and

(3) e(T>l) = e(T ′
>l) and c(T>l) = c(T ′

>l) for every l ∈ Z>k.

Let 6E and 6=E be the binary relations =E ∪ <E and (T × T) − =E respec-

tively.

Proposition 2.1.3. The binary relation 6E is a partial order on the set of finite

edge-weighted trees.

Proof. Clearly 6E is reflexive, so we demonstrate that it is antisymmetric

and transitive.

Let (T ,w) 6E (T ′,w ′) 6E (T ,w) and suppose that (T ,w) 6=E (T ′,w ′).

Then as (T ,w) <E (T ′,w ′), there exists k ∈ ω such that either e(T>k) <



10 CHAPTER 2. PRELIMINARIES

e(T ′
>k) or e(T>k) = e(T ′

>k) and c(T>k) > c(T ′
>k), and such that e(T>l) =

e(T ′
>l) and c(T>l) = c(T ′

>l) for every l ∈ Z>k. Similarly, as (T ′,w ′) <E

(T ,w), there exists k ′ ∈ ω such that either e(T>k ′) > e(T
′
>k ′) or e(T>k ′) =

e(T ′
>k ′) and c(T>k ′) < c(T ′

>k ′), and such that e(T>l ′) = e(T ′
>l ′) and

c(T>l ′) = c(T ′
>l ′) for every l ′ ∈ Z>k ′ .

If k < k ′, then as (T ,w) <E (T ′,w ′), e(T>k ′) = e(T ′
>k ′) and c(T>k ′) =

c(T ′
>k ′), contradicting (T ′,w ′) <E (T ,w). Thus k ≮ k ′. Similarly, k ′ ≮ k,

so k = k ′. As e(T>k) < e(T ′
>k) < e(T>k) is impossible, e(T>k) = e(T ′

>k).

But then c(T>k) > c(T
′
>k) > c(T>k). Hence (T ,w) = (T ′,w ′), and so 6E is

antisymmetric.

Now let (T ,w) 6E (T ′,w ′) 6E (T ′′,w ′′) and suppose that (T ,w) 6=E

(T ′,w ′) 6=E (T ′′,w ′′). Then as (T ,w) <E (T ′,w ′), there exists k ∈ ω such

that either e(T>k) < e(T
′
>k) or e(T>k) = e(T ′

>k) and c(T>k) > c(T
′
>k), and

such that e(T>l) = e(T ′
>l) and c(T>l) = c(T ′

>l) for every l ∈ Z>k. Similarly,

as (T ′,w ′) <E (T ′′,w ′′), there exists k ′ ∈ ω such that either e(T ′
>k ′) <

e(T ′′
>k ′) or e(T ′

>k ′) = e(T ′′
>k ′) and c(T ′

>k ′) > c(T
′′
>k ′), and such that e(T ′

>l ′) =

e(T ′′
>l ′) and c(T ′

>l ′) = c(T ′′
>l ′) for every l ′ ∈ Z>k ′ .

Let K = max{k,k ′}. Then e(T>L) = e(T ′′>L) and c(T>L) = c(T ′′>L) for

every L ∈ Z>K.

Suppose that k < k ′. Then e(T>K) = e(T ′
>K) and c(T>K) = c(T ′

>K). If

e(T ′
>K) < e(T ′′

>K), then e(T>K) < e(T ′′
>K), so (T ,w) <E (T ′′,w ′′). Other-

wise, if e(T ′
>K) = e(T ′′

>K) and c(T ′
>K) > c(T

′′
>K), then e(T>K) = e(T ′′

>K) and

c(T>K) > c(T
′′
>K), so (T ,w) <E (T ′′,w ′′).

Now suppose that k > k ′. Then e(T ′>K) = e(T ′′>K) and c(T ′>K) = c(T ′′>K).

If e(T>K) < e(T ′>K), then e(T>K) < e(T ′′>K), so (T ,w) <E (T ′′,w ′′). Other-

wise, if e(T>K) = e(T ′>K) and c(T>K) > c(T
′
>K), then e(T>K) = e(T ′′>K) and

c(T>K) > c(T
′′
>K), so (T ,w) <E (T ′′,w ′′).

Lastly, suppose that k = k ′. If either e(T>K) < e(T ′
>K) or e(T ′

>K) <

e(T ′′
>K), then e(T>K) < e(T ′′

>K), in which case (T ,w) <E (T ′′,w ′′). Oth-

erwise, e(T>K) = e(T ′
>K) = e(T ′′

>K) and c(T>K) > c(T ′
>K) > c(T ′′

>K), so

e(T>K) = e(T ′′
>K) and c(T>K) > c(T

′′
>K), in which case (T ,w) <E (T ′′,w ′′).
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Hence 6E is transitive. �

2.2 Linear Algebra

This section reviews some elementary properties of linear subspaces and

furnishes a pair of technical lemmas for later use. We take the dimension

of a vector space to be (symbolically) ∞ if it is not finite. The set of

subspaces of a vector space V is denoted S(V). It is well-known that

(S(V), +,∩) is a modular lattice for every vector space V .

Modular Law. Let V be a vector space and let U ′, U, W 6 V be such that

U ′ ⊆ U. Then U∩ (U ′ +W) = U ′ + (U∩W).

While (S(V), +,∩) is modular for every vector space V , it is not always

distributive (consider any vector space having dimension at least 2).

The following technical lemma is used in Section 6.3.

Lemma 2.2.1. Let V be a vector space, let k ∈ ω and let U, U ′ 6 V each have

dimension at least k. Then there exists a sequence U = U1, U2, . . . , Un = U ′ of

subspaces of V such that

(1) dim(Ui ∩Ui+1) > k for each i = 1, . . . , n− 1; and

(2) dim(Ui) = k+ 1 for each i = 2, . . . , n− 1.

Proof. If U = U ′, simply take n = 1 and set U1 = U. Otherwise, choose

W 6 U and W ′ 6 U ′ each having dimension k and let {b1, . . . ,bj} be

a basis for W ∩W ′. Extend this by cj+1, . . . , ck to a basis for W and

(independently) by dj+1, . . . , dk to a basis for W ′. Let

U1 = U,

U2 = 〈b1, . . . ,bj, cj+1, . . . , ck,dj+1〉,

U3 = 〈b1, . . . ,bj, cj+1, . . . , ck−1,dj+1,dj+2〉,
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...

Uk−j+1 = 〈b1, . . . ,bj, cj+1,dj+1, . . . ,dk〉,

Uk−j+2 = U ′.

Then clearly the resulting sequence U1, . . . , Uk−j+2 satisfies (1) and (2).

�

We now consider complements and projections.

Definition 2.2.2. Let V be a vector space and let W 6 V . Then U 6 V is a

complementary subspace or complement of W in V if V = W ⊕U.

Proposition 2.2.3. Every subspace of a vector space V has a complement in V .

For completeness, we reproduce a standard argument that may be

found on p. 26 of [Gre75].

Proof. Let V be a vector space and let W 6 V . Without loss of generality,

{0} 6= W 6= V , for otherwise the result is trivial. Let B be a basis for

W. Extend this by B ′ to a basis for V and set U = 〈B ′〉. Clearly V =

W +U. Let v ∈ W ∩U. Then v is both a linear combination of elements

of B and a linear combination of elements of B ′. The difference of these

linear combinations is 0, so as B ⊔ B ′ is linearly independent, both linear

combinations are 0. Hence v = 0. The result follows. �

Definition 2.2.4. Let V = W ⊕U be a vector space. Then the projection of

V onto U along W is the map π : V → V defined by

π(w+ u) = u

for every w ∈W and every u ∈ U.

The next proposition lists some elementary properties of projections.

Proposition 2.2.5. Let V = W ⊕U be a vector space and let π be the projection

of V onto U along W. Then
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(1) π is an endomorphism of V ,

(2) ker(π) = W,

(3) im(π) = U,

(4) π[V ′] = U∩ (W + V ′) 6 V for every V ′ 6 V , and

(5) π2 = π.

Clearly complements are not always unique. However, they are always

isomorphic.

Proposition 2.2.6. Let V be a vector space and let W 6 V . Then all comple-

ments of W in V are isomorphic.

We reproduce a standard argument sketched on pp. 79–80 of [Rom05].

Proof. Let U1 and U2 be complements of W in V . For each i, let πi be the

projection of V onto Ui along W and define π ′i :
V/W → Ui by

π ′i(v+W) = πi(v)

for every v+W ∈ V/W . Then by the First Isomorphism Theorem,

V/W ∼= im(πi) = Ui

for each i. The result follows. �

We close this section with another technical lemma.

Lemma 2.2.7. Let V , V ′ be subspaces of a vector space and let V1 6 V , V2 6

V ∩ V ′ be such that V1 ∩ V
′ ⊆ V2 and dim(V1) 6 dim(V2) ∈ ω. Then there

exist finite linearly independent X ⊆ (V1 + V2) − (V1 ∪ V
′) and a complement

U > V ′ of 〈X〉 in V + V ′ such that π[V1] 6 V2 and dim(π[V1]) = dim(V1),

where π is projection of V + V ′ onto U along 〈X〉.
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V

V ′

V1

V2

X

Figure 2.1: Proof of Lemma 2.2.7.

Proof. It may be helpful to consider Figure 2.1.

Let V ′i be a complement of V1 ∩ V2 in Vi for each i. As dim(V1) 6

dim(V2) ∈ ω, necessarily dim(V ′1) 6 dim(V ′2). Let {y1, . . . ,yn} be a basis

for V ′1, let {z1, . . . , zn} ⊆ V ′2 be linearly independent and let X = {y1 −

z1, . . . ,yn− zn}. Clearly X ⊆ (V1 +V2) − (V1 ∪V
′) is linearly independent.

Let U > V ′ be a complement of 〈X〉 in V + V ′ and let π be projection of

V + V ′ onto U along 〈X〉. Then π[V1] = (V1 ∩ V2)⊕ 〈z1, . . . , zn〉 6 V2, from

which it follows that dim(π[V1]) = dim(V1). �

2.3 Rado’s Selection Lemma

We shall later utilise the Axiom of Choice, as well as the equivalent lem-

mas of Zorn and Rado, each of which is stated below. We omit the well-

known derivation of Zorn’s Lemma from the Axiom of Choice, but in-

clude Rado’s brief (and accessible) derivation of the possibly less-familiar

Selection Lemma.

Definition 2.3.1. Let X and I be sets and let X = {Xi | i ∈ I} be a collection

of non-empty subsets of X. Then a choice function for X is a function

f : I→ X such that f(i) ∈ Xi for every i ∈ I.
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Axiom of Choice. Every collection of non-empty sets has a choice function.

Zorn’s Lemma. Let (X, 6) be a non-empty poset such that every chain in X has

an upper bound in X. Then X contains a maximal element.

Rado’s Selection Lemma. Let X and I be sets and let X = {Xi | i ∈ I} be a

collection of finite non-empty subsets of X. For every finite J ⊆ I, let fJ be a

choice function for {Xj | j ∈ J}. Then there exists a choice function f for X such

that whenever J ⊆ I is finite there exists finite K ⊆ I containing J for which

f|J = fK|J.

We reproduce the argument given in [Rad71], with some additional

details included.

Proof. If I is finite, simply set f = fI. So suppose that I is infinite. Let Ω

be the set of all collections Z = {Zi | i ∈ I} such that

• Zi ⊆ Xi for every i ∈ I, and

• whenever J ⊆ I is finite, there exists finite K ⊆ I containing J such

that fK(j) ∈ Zj for every j ∈ J.

Then X ∈ Ω by hypothesis. Define Y = {Yi | i ∈ I} ∈ Ω as follows. If I

is countable, write I = ω. Then, using the finiteness of each Xi, choose a

minimal Y0 ⊆ X0 such that {Y0,X1,X2, . . .} ∈ Ω, then a minimal Y1 ⊆ X1

such that {Y0,Y1,X2, . . .} ∈ Ω, and so forth.

Otherwise, define a partial order 6 on Ω by Z = {Zi | i ∈ I} 6 Z ′ =

{Z ′i | i ∈ I} if and only if Zi ⊇ Z ′i for every i ∈ I. Let Ξ = {Zℓ | ℓ ∈ L}

be a non-empty chain in Ω with Zℓ = {Zℓi | i ∈ I} for every ℓ ∈ L, and let

Z = {Zi | i ∈ I}, where Zi =
⋂
ℓ∈L Z

ℓ
i for every i ∈ I. Then clearly Zi ⊆ Xi

for every i ∈ I and Z is an upper bound for Ξ. Let J ⊆ I be finite. If J

is empty, then fJ vacuously has fJ(j) ∈ Zj for every j ∈ J. Otherwise, as

each Zℓj is finite, for each j ∈ J there exists ℓj ∈ L such that Z
ℓj
j = Zj. So as

{Zℓj | j ∈ J} is a chain, there exists ℓ ′ ∈ L such that Zℓ
′

j = Zj for every j ∈ J.
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Then Zℓ
′

∈ Ω implies that there exists finite K ⊆ I containing J such that

fK(j) ∈ Zj for every j ∈ J. Thus Z ∈ Ω, and so Ω has a maximal element

Y by Zorn’s Lemma.

In either case, P := {(i,y) | i ∈ I,y ∈ Yi} is minimal. Fix i ′ ∈ I.

Then Yi ′ is non-empty by the definition of Ω, so let y ∈ Yi ′ . Then by the

minimality of P, there exists finite Jy ⊆ I containing i ′ such that fK(i
′) = y

whenever K ⊆ I is finite, contains Jy and fK(j) ∈ Yj for every j ∈ Jy. Now

let y, y ′ ∈ Yi ′ . As J ′ := Jy ∪ Jy ′ is a finite subset of I, it follows from

the definition of Ω that there exists finite K ′ ⊆ I containing J ′ such that

fK ′(j) ∈ Yj for every j ∈ J. It follows from the definitions of Jy and Jy ′

that y = fK ′(i ′) = y ′. Hence |Yi ′ | = 1, so define f by setting Yi = {f(i)} for

every i ∈ I.

Finally, let J ⊆ I be finite. Then there exists finite K ⊆ I containing J

such that fK(j) ∈ Yj for every j ∈ J, that is, f|J = fK|J. �



Chapter 3

Independence Spaces

This thesis is primarily concerned with point configurations, which may

be thought of as “infinite represented matroids.” These are introduced

explicitly in Chapter 4. Many results obtainable for configurations are

purely matroidal, and thus most naturally formulated and proven ma-

troidally. This chapter develops the matroid theory necessary for the

formulation and proof of such results. Despite the treatment of infinite

structures, the material covered remains very similar to basic matroid

theory as found in [Oxl04].

3.1 Definitions

Definition 3.1.1. A pre-independence space is a pair M = (E, I) consisting

of a set E and a collection I of subsets of E satisfying:

(I1) ∅ ∈ I.

(I2) I1 ∈ I whenever I1 ⊆ I2 ∈ I.

(I3) (Finite Augmentation) Whenever I1, I2 ∈ I are such that |I1| < |I2| ∈ ω,

there exists e ∈ I2 − I1 for which I1 ⊔ {e} ∈ I.

17
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The ground set of M, denoted E(M), is E, and M is a pre-independence

space on E. A subset X ⊆ E is dependent if X /∈ I and independent other-

wise. A circuit is a minimal dependent set, while a basis is a maximal

independent set. A loop is an element e ∈ E for which {e} is dependent, a

parallel pair is a 2-element circuit and a triangle is a 3-element circuit. Note

that loops are not circuits. The collections of independent sets, circuits,

bases and loops of M are denoted by I(M), C(M), B(M) and L(M) re-

spectively. A pre-independence space is simple if it has neither loops nor

parallel pairs.

An independence space or finitary matroid is a pre-independence space

(E, I) that also satisfies:

(I4) (Finite Character) X ∈ I whenever X ⊆ E has Y ∈ I for every finite

Y ⊆ X.

A matroid is a pre-independence space having a finite ground set.

It is immediate that every matroid is also an independence space, and

that every dependent set in an independence space contains a circuit,

which is necessarily finite.

To date, abstract treatments of independence have been based either

on universal algebra or on set theory (see p. 112 of [Gła03]). The alge-

braic approach rose to prominence with the introduction of “v∗-algebras”

by Marczewski in [Mar58]. This article marked the beginning of an ex-

tensive algebraic investigation of independence led by Polish researchers

during the 1960s. Chapter 5 of [Grä79] provides an introduction to this

area, while a survey and comprehensive bibliography is given in [Gła79].

A number of infinite matroid results follow from this theory, for indepen-

dence spaces can be axiomatised by closure operators (see Section 3.5),

which can in turn be obtained as the algebraic closure operators of uni-

versal algebras (see p. 300 of [BF48]).

The set-theoretic approach to independence encompasses matroids,

which were first introduced by Whitney in the seminal article [Whi35].
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Generalisations of matroids to infinite settings do not appear to be well-

represented in the literature until the late 1960s onwards. Earlier work

includes Rado’s treatment of the “independence relations” introduced

in [Rad42], which were subsequently investigated by both Lazarson and

Ingleton.

Pre-independence spaces

B-matroids

Independence spaces

Matroids

Point Configuratio
ns

Figure 3.1: Some classes of matroidal objects.

The simplest extension of matroids to infinite sets consists of allowing

infinite ground sets. This yields the pre-independence spaces. These have

received limited attention in their own right, as their weak structure fails

to capture much of the behaviour that makes matroids interesting. For

example, a pre-independence space may have neither circuits nor bases

(see p. 74 of [Oxl92]).

Such weaknesses can be avoided by “determining global structure

locally” through the imposition of (I4). This yields the independence

spaces. These are the focus of the remainder of this chapter, for they are

the appropriate objects for capturing the matroidal structure of point con-

figurations (see pp. 50–51). Nonetheless, (I4) is a very strong requirement.

Its imposition prevents the development of a reasonable theory of duality
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analogous to that of matroids.

In order to have a satisfactory theory of duality, it is necessary to

work with the “B-matroids” introduced by Higgs in [Hig69]. These may

possess infinite dependencies, suggesting that topology (perhaps in the

form of topological graph theory) may be necessary for the development

of an effective representation theory for these objects. This appears to be

a topic of current and growing interest.

Identifying point configurations with the independence spaces that

they represent, the relationships between these classes of objects are sum-

marised in Figure 3.1.

Denote the power set of a set E by P(E). We close this section by in-

troducing a class of independence spaces that shall prove revealing later.

Proposition 3.1.2. Let G be a graph having edge set E. Define I ⊆ P(E) by

X ∈ I if and only if no subset of X is the edge set of a cycle of G. Then (E, I) is

an independence space.

We omit the straightforward proof of this result, which is given for

finite graphs on p. 11 of [Oxl04] (see also p. 75 of [Oxl92]).

Definition 3.1.3. Let G be a graph. Then the cycle independence space of

G, denoted M(G), is the independence space derived from G via Propo-

sition 3.1.2. An independence space M is graphic if M = M(G) for some

graph G.

Note that for every graph G,

• the circuits of M(G) are precisely the edge sets of the cycles of G,

and

• the bases of M(G) are precisely the edge sets of the spanning forests

of G.
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3.2 Circuits

The collection of circuits of an independence space satisfies the properties

listed in the next proposition.

Proposition 3.2.1. Let M = (E, I) be an independence space with collection of

circuits C. Then:

(C1) ∅ /∈ C.

(C2) C is an antichain under set inclusion.

(C3) (Weak Circuit Elimination) Whenever C1, C2 ∈ C are distinct and e ∈ E,

there exists C3 ∈ C such that C3 ⊆ (C1 ∪C2) − {e}.

(C4) Every C ∈ C is finite.

We reproduce the argument given on p. 9 of [Oxl04].

Proof. Statement (C1) follows from (I1), while (C2) is a consequence of the

minimality of circuits. Statement (C4) follows from (C2) and (I4) forcing

every infinite dependent set to contain a finite dependent set. So we

demonstrate (C3): let C1, C2 ∈ C be distinct and let e ∈ E. The result is

immediate if e /∈ C1∩C2, so suppose that e ∈ C1∩C2 and that (C1∪C2)−

{e} contains no circuit. Then (C1 ∪C2) − {e} ∈ I. It follows from (C2) that

C2 −C1 is non-empty, so let f ∈ C2 −C1. Then C2 − {f} ∈ I also. Let I be a

maximal independent subset of C1 ∪C2 containing C2 − {f}. Necessarily

f /∈ I. As C1 ∈ C, there exists g ∈ C1 such that g /∈ I. So as g 6= f,

|I| 6 |(C1 ∪C2) − {f,g}| = |C1 ∪C2| − 2 < |(C1 ∪C2) − {e}|

But then (I3) implies that there exists h ∈ (C1 ∪ C2) − (I ∪ {e}) such that

I⊔ {h} ∈ I, contradicting the choice of I. Hence (C3) holds. �

In fact, (C1)–(C4) provide an alternative axiomatisation of indepen-

dence spaces. A proof of this (for matroids) may be found on p. 10 of

[Oxl04].
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Weak Circuit Elimination may be strengthened, as shown in the next

proposition.

Proposition 3.2.2. (C1)–(C3) are equivalent to (C1), (C2) and:

(C3′) (Strong Circuit Elimination) Whenever C1, C2 ∈ C, e ∈ C1 ∩ C2 and

f ∈ C1 −C2, there exists C3 ∈ C such that f ∈ C3 ⊆ (C1 ∪C2) − {e}.

Proof. It suffices to consider the forward implication. Aiming for a con-

tradiction, suppose that (C3′) fails for some (C1,C2, e, f). Without loss of

generality, |C1∪C2| is minimal. By (C3), there exists C3 ∈ C such that C3 ⊆

(C1 ∪ C2) − {e}. By hypothesis, f /∈ C3, and necessarily e ∈ C2 − C3. As

C3 * C1, there exists g ∈ C3 ∩ (C2 −C1). So as C2 ∪C3 ⊆ (C1 ∪C2) − {f},

|C2 ∪C3| < |C1 ∪C2|. Thus (C3′) holds for (C2,C3,g, e).

Consequently there exists C4 ∈ C such that e ∈ C4 ⊆ (C2 ∪C3) − {g}.

Now, f ∈ C1 − C4 and e ∈ C1 ∩ C4. As C1 ∪ C4 ⊆ (C1 ∪ C2) − {g}, |C1 ∪

C4| < |C1 ∪C2|. So (C3′) holds for (C1,C4, e, f).

But then there exists C5 ∈ C such that f ∈ C5 ⊆ (C1 ∪C4) − {e} ⊆ (C1 ∪

C2) − {e}, contradicting the choice of (C1,C2, e, f). Hence (C3′) holds. �

Proposition 3.2.3. Let M = (E, I) be an independence space, let I ∈ I and let

e ∈ E− I be such that I ⊔ {e} /∈ I. Then there exists a unique C ∈ C(M) for

which e ∈ C ⊆ I⊔ {e}.

Proof. Let X = {C ∈ C(M) | e ∈ C ⊆ I ⊔ {e}}. Then X is non-empty by

(I4), so let C, C ′ ∈ X. If C 6= C ′, then Weak Circuit Elimination asserts

the existence of C ′′ ∈ C(M) such that C ′′ ⊆ (C ∪ C ′) − {e} ⊆ I, which is

impossible. Hence C = C ′, establishing the result. �

This result motivates the following definition.

Definition 3.2.4. Let M = (E, I) be an independence space, let B ∈ B(M)

and let e ∈ E − B. Then the fundamental circuit of e with respect to B,

denoted C(e,B), is the unique C ∈ C(M) such that e ∈ C ⊆ B⊔ {e}.



3.3. BASES AND RESTRICTION 23

3.3 Bases and Restriction

The next result is well known in the vector space context.

Proposition 3.3.1. Let M = (E, I) be an independence space and let I ⊆ X ⊆

E be such that I ∈ I. Then there exists a maximal independent subset of X

containing I. In particular, every independent set is contained in a basis.

Proof. Let X = {J ∈ I | I ⊆ J ⊆ X} be partially ordered by set inclusion. Let

Y be a chain in X and set B =
⋃

Y. Suppose that B /∈ X. As I ⊆ B ⊆ X, B /∈

I. So B contains a dependent subset {b1, . . . ,bn} by (I4). For each i there

exists Bi ∈ Y containing bi. As {B1, . . . ,Bn} is a chain, some Bj contains

each Bi. In particular, {b1, . . . ,bn} ⊆ Bj, contradicting the independence of

Bj. Hence B ∈ X is an upper bound for Y. It follows from Zorn’s Lemma

that X contains a maximal element, yielding the result. �

Definition 3.3.2. Let M = (E, I) be an independence space and let X ⊆ E.

The restriction of M to X, denoted M|X, is (X, {Y ⊆ X | Y ∈ I}). The deletion

of X from M, denoted M\X, is M|(E−X).

Observing that (I1)–(I4) are each preserved by restriction gives the

following proposition.

Proposition 3.3.3. Let M be an independence space and let X ⊆ E(M). Then

M|X and M\X are independence spaces.

Proposition 3.3.4. Let M = (E, I) be an independence space with collection of

bases B. Then:

(B1) B is non-empty.

(B2) B is an antichain under set inclusion.

(B3) (Middle Basis) Whenever X ⊆ Y ⊆ E and B1, B2 ∈ B are such that

X ⊆ B1 and B2 ⊆ Y, there exists B3 ∈ B such that X ⊆ B3 ⊆ Y.
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(B4) Whenever X ⊆ E is not contained in any B ∈ B, some finite Y ⊆ X is not

contained in any B ∈ B.

Proof. Statement (B1) is a consequence of (I1) and Proposition 3.3.1, while

(B2) is a consequence of the maximality of bases. Statement (B4) fol-

lows easily from (I4) and Proposition 3.3.1. So we show Middle Basis: let

X ⊆ Y ⊆ E and let B1, B2 ∈ B be such that X ⊆ B1 and B2 ⊆ Y. By

Proposition 3.3.1, there exists BY ∈ B(M|Y) such that X ⊆ BY . Suppose

that BY /∈ B. Then there exists f ∈ E− Y such that BY ⊔ {f} ∈ I.

As B2 ∈ B does not contain f, there exists C1 ∈ C(M) such that f ∈

C1 ⊆ BY ⊔B2⊔ {f}. Without loss of generality, |C1 −(BY ⊔ {f})| is minimum.

Suppose that |C1 − (BY ⊔ {f})| is positive. Then there exists e ∈ (C1 ∩B2) −

(BY ⊔ {f}), necessarily in Y. As BY ∈ B(M|Y), there exists C2 ∈ C(M)

such that e ∈ C2 ⊆ BY ⊔ {e}. So by Strong Circuit Elimination, there exists

C3 ∈ C(M) such that f ∈ C3 ⊆ (C1 ∪C2) − {e} ⊆ BY ⊔B2 ⊔ {f}. But then

C3 − (BY ⊔ {f}) ⊆ (C1 ∪C2) − (BY ⊔ {e, f})

⊆ C1 − (BY ⊔ {e, f})

( C1 − (BY ⊔ {f}).

So |C3 −(BY ⊔ {f})| < |C1 −(BY ⊔ {f})|, contradicting the minimality of |C1 −

(BY ⊔ {f})|. Thus |C1 − (BY ⊔ {f})| = 0, and so C1 ⊆ BY ⊔ {f}, contradicting

BY ⊔ {f} ∈ I. Hence BY ∈ B, and so Middle Basis holds. �

It can be shown that (B1)–(B4) provide an alternative axiomatisation

of independence spaces.

Proposition 3.3.5. (B1)–(B3) are equivalent to (B1), (B2) and:

(B3′) (Basis Exchange) For every B1, B2 ∈ B and every e ∈ B1, there exists

f ∈ B2 such that (B1 − {e})⊔ {f} ∈ B.

We present the argument given on pp. 30–31 of [NW86].
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Proof. In order to prove the forward implication, it is helpful to first es-

tablish the following claim.

(1) If B1, B2 ∈ B are such that |B1 −B2| = 1, then |B2 −B1| = 1.

Let B1, B2 ∈ B be such that B1 − B2 = {e} and let X = B1 ∩ B2 =

B1 − {e}. By (B2), there exists f ∈ B2 −X. Now,

B2 ⊇ X⊔ {f} ⊆ B1 ⊔ {f} ⊇ B1.

So by Middle Basis there exists B3 ∈ B such that

(B1 − {e})⊔ {f} = X⊔ {f} ⊆ B3 ⊆ B1 ⊔ {f}.

As B3 6= B1⊔ {f} by (B2), B3 = (B1 − {e})⊔ {f} ⊆ B2. It follows from (B2)

that B3 6⊂ B2, so B3 = B2. Thus |B2 − B1| = |((B1 − {e}) ⊔ {f}) − B1| =

1. �

Now let B1, B2 ∈ B be distinct and let e ∈ B1 − B2. Set X = B1 − {e} and

Y = B2 ∪ X. By Middle Basis, there exists B3 ∈ B such that X ⊆ B3 ⊆ Y.

Clearly X = X ∩ B3 = B1 ∩ B3. Consequently |B1 − B3| = |B1 − X| = 1, so

|B3 − B1| = 1 by (1). Moreover, B3 −B1 = B3 −X, so B3 = X⊔ {f} for some

f ∈ Y, necessarily in B2. Hence Basis Exchange holds.

Turning to the reverse implication, let X ⊆ Y ⊆ E and let B1, B2 ∈ B

be such that X ⊆ B1 6= B2 ⊆ Y. Choose B3 ∈ B such that X ⊆ B3 and

B2 ∩B3 is maximal. Suppose that there exists e ∈ B3 − Y ⊆ B3 −B2. Then

by Basis Exchange, there exists f ∈ B2 such that (B3 − {e})⊔ {f} ∈ B. Now,

X ⊆ (B3 − {e}) ⊔ {f} and B2 ∩ B3 ( B2 ∩ ((B3 − {e}) ⊔ {f}), for e /∈ B2 ∋ f.

This contradicts the choice of B3, so B3 − Y = ∅. Hence B3 ⊆ Y, and so

Middle Basis holds. �

Say that Y ⊆ E is an I-subset of X ⊆ E if Y ⊆ X and Y ∈ I. The next

result can be shown to hold for independence spaces in general using

Rado’s Selection Lemma—see pp. 77–78 of [Oxl92] for a proof.
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Proposition 3.3.6. Let M = (E, I) be an independence space and let X ⊆ E

have no infinite I-subset. Then the bases of M|X are equicardinal.

We reproduce the argument given on p. 17 of [Oxl04].

Proof. Suppose that the assertion fails, with BX, B ′X ∈ B(M|X) such that

|BX| > |B ′X| and |BX − B ′X| is minimum. Let e ∈ BX − B ′X. Then by

Basis Exchange, there exists f ∈ B ′X such that (BX − {e}) ⊔ {f} ∈ B(M|X).

Moreover, |(BX − {e}) ⊔ {f}| = |BX| > |B ′X| and
∣∣((BX − {e}) ⊔ {f}

)
− B ′X

∣∣ <
|BX − B ′X|, contradicting the choice of (BX,B ′X). Hence the bases of M|X

are equicardinal. �

Proposition 3.3.7. Let M = (E, I) be an independence space, let Y ⊆ X ⊆ E

and let B1, B2 ∈ B(M|(E−X)). Then B1 ⊔ Y ∈ I if and only if B2 ⊔ Y ∈ I.

Proof. It suffices by symmetry to demonstrate one direction only. So sup-

pose that B1⊔Y ∈ I and that B2⊔Y /∈ I. LetM ′ = M|((E−X)⊔Y). Clearly

B1 ⊔ Y ∈ B(M ′). There exists B ∈ B(M ′) such that B2 ⊆ B ⊆ B2 ⊔ Y

by Proposition 3.3.1. Necessarily B = B2 ⊔ Y
′ for some Y ′ ( Y. Let

y ∈ Y − Y ′. Then y ∈ (B1 ⊔ Y) − B, so by Basis Exchange there exists

b ∈ B − (B1 ⊔ Y) such that ((B1 ⊔ Y) − {y}) ⊔ {b} ∈ B(M ′). As Y ′ ⊆ Y,

b ∈ B2 −B1, so B1 ( B1 ⊔ {b} ⊆ E−X and B1 ⊔ {b} ∈ I(M|(E−X)), contra-

dicting B1 ∈ B(M|(E−X)). Hence B2 ⊔ Y ∈ I. �

3.4 Finitary Rank

Given equicardinality of the bases of M|X for every X ⊆ E(M) (a general-

isation of Proposition 3.3.6), it is possible to define a (full) rank function

for the independence spaceM by setting the rank of X to be the (common)

cardinality of its maximal I(M)-subsets.

However, as the structure of any given independence space is deter-

mined locally (by Finite Character), independence spaces can in fact be
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axiomatised by finitary rank. This section is devoted to such an axiomati-

sation. The (finitary) rank functions developed yield the necessary prop-

erties of rank without requiring a Rado’s Selection Lemma argument like

that given on pp. 77–78 of [Oxl92].

Recall that P(E) denotes the power set of a set E. The following defi-

nition is sensible as a consequence of Proposition 3.3.6.

Definition 3.4.1. Let M = (E, I) be an independence space. Then the

(finitary) rank function of M is the function rM : P(E) → ω ⊔ {∞} defined

by

rM(X) =






|BX| for any BX ∈ B(M|X) if X has no infinite I-subset, and

∞ otherwise

for every X ⊆ E. The subscript “M” is omitted when there is no ambi-

guity. The (finitary) rank of X ⊆ E is rM(X), and the (finitary) rank of M,

denoted r(M), is the rank of E.

For every set E, let

#(E) =






|E| if E is finite, and

∞ otherwise.

Recall that for every set E, a function ψ : P(E)→ R⊔ {∞} is submodular

if ψ(X∩ Y) +ψ(X∪ Y) 6 ψ(X) +ψ(Y) for every X, Y ⊆ E.

Proposition 3.4.2. Let M be an independence space. Then:

(R1) r(X) 6 #(X) for every X ⊆ E.

(R2) r(X) 6 r(Y) whenever X ⊆ Y ⊆ E.

(R3) r is submodular.

(R4) r(X) = sup{r(Y) | Y ⊆ X is finite} for every X ⊆ E.
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Proof. The statements (R1) and (R2) follow immediately from the defini-

tion of the rank function, so we demonstrate (R3) and (R4).

Let X, Y ⊆ E. Clearly r(X∩ Y) + r(X∪ Y) = ∞ forces r(X) + r(Y) = ∞,

so suppose that all four ranks are finite. Let BX∩Y ∈ B(M|X ∩ Y). By

Proposition 3.3.1, this is contained in some BX∪Y ∈ B(M|X∪ Y). It follows

from (I2) that BX∪Y ∩ X ⊆ X and BX∪Y ∩ Y ⊆ Y are each independent, so

|BX∪Y ∩X| 6 r(X) and |BX∪Y ∩ Y| 6 r(Y). Consequently

r(X) + r(Y) > |BX∪Y ∩X| + |BX∪Y ∩ Y|

= |(BX∪Y ∩X)∪ (BX∪Y ∩ Y)|

+ |(BX∪Y ∩X)∩ (BX∪Y ∩ Y)|

= |BX∪Y | + |BX∩Y |

= r(X∪ Y) + r(X∩ Y).

Hence (R3) holds.

Now let X ⊆ E. If r(X) = ∞, then X has an infinite I-subset I. Every fi-

nite Y ⊆ I has Y ∈ B(M|Y), so r(Y) = |Y|. Thus sup{r(Y) | Y ⊆ X is finite} =

∞ also. Otherwise, if r(X) ∈ ω, then r(X) = |BX| for some BX ∈ B(M|X).

As BX is finite, r(X) 6 sup{r(Y) | Y ⊆ X is finite}. It follows from (R2) that

r(X) > sup{r(Y) | Y ⊆ X is finite}, so equality holds. Consequently (R4)

holds. �

The finite independent sets of an independence space are easily char-

acterised by rank.

Lemma 3.4.3. Let M = (E, I) be an independence space and let X ⊆ E be finite.

Then X ∈ I if and only if r(X) = |X|.

Proof. Suppose that X ∈ I. Then X ∈ B(M|X), so r(X) = |X|.

Now suppose that r(X) = |X|. Let BX ∈ B(M|X). Then |BX| = r(X) =

|X|, so X = BX ∈ I. �

However, this correspondence does not extend to infinite sets.
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Example 3.4.4. Let E be an infinite set, let C ⊆ E have size 2 and let

I = {X ⊆ E | C * X}. Then it is easily seen that (E, I) is an independence

space for which E is dependent. However, as E−C ∈ I is infinite, r(E) =

∞ = #(E). �

Lemma 3.4.5. Let E be a set, let r : P(E)→ R ⊔ {∞} satisfy (R2) and (R3) and

let X, Y ⊆ E be such that |Y − X| ∈ ω and r(X ⊔ {y}) = r(X) ∈ ω for every

y ∈ Y −X. Then r(X∪ Y) = r(X).

We reproduce the proof given on p. 24 of [Oxl04].

Proof. Write Y −X = {y1, . . . ,ym}. We procede by induction on m. Clearly

the result holds if m 6 1, so suppose that it is true for all m 6 n and let

m = n+ 1. Then by the induction assumption,

2r(X) = r
(
X⊔ {y1, . . . ,yn}

)
+ r
(
X⊔ {yn+1}

)

> r
((
X⊔ {y1, . . . ,yn}

)
∪
(
X⊔ {yn+1}

))

+ r
((
X⊔ {y1, . . . ,yn}

)
∩
(
X⊔ {yn+1}

))
by (R3)

= r(X∪ Y) + r(X)

> 2r(X) by (R2).

Consequently r(X∪ Y) = r(X). �

Denote the collection of all finite subsets of a set E by Pfin(E).

Proposition 3.4.6. Let E be a set, let r : Pfin(E)→ ω satisfy (R1)–(R3) and let

I = {I ⊆ E : r(X) = |X| for every finite X ⊆ I}.

Then (E, I) is an independence space.

Proof. Statement (I1) follows from (R1), while (I2) and (I4) are conse-

quences of the definition of I. So we demonstrate (I3): let I1, I2 ∈ I be
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such that |I1| < |I2| ∈ ω and suppose that I1 ⊔ {e} /∈ I for each e ∈ I2 − I1.

Then r(I1 ⊔ {e}) < |I1 ⊔ {e}| for each e ∈ I2 − I1 by Lemma 3.4.3, so

|I1| = r(I1) 6 r(I1 ⊔ {e}) 6 |I1|

r(I1 ⊔ {e}) = |I1|.

It follows from Lemma 3.4.5 that r(I1 ∪ I2) = |I1|. But then

|I2| = r(I2) 6 r(I1 ∪ I2) = |I1| < |I2|

—a contradiction. Hence (I3) holds. �

While every function r satisifying (R1)–(R3) on Pfin(E) for some set

E yields an independence space, this may not have rank function r. In

particular, r(X) may be infinite when X ⊆ E has finite rank, making r

poor for distinguishing between finite- and infinite-rank subsets of E.

Example 3.4.7. Let E be an infinite set. Define r : P(E)→ ω⊔ {∞} by

r(X) =






0 if X is finite, and

∞ otherwise

for every X ⊆ E. It is easily seen that r satisfies (R1)–(R3). Let

I = {I ⊆ E : r(X) = |X| for every finite X ⊆ I}

= {∅}.

Then M := (E, I) is an independence space by Proposition 3.4.6. However,

rM(E) = 0 6= ∞ = r(E). �

However, additionally assuming (R4) forces equality.

Proposition 3.4.8. Let E be a set, let r : P(E)→ ω⊔ {∞} satisfy (R1)–(R4) and

let

I = {I ⊆ E : r(X) = |X| for every finite X ⊆ I}.
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Then M := (E, I) is an independence space with rM = r.

Proof. Proposition 3.4.6 shows that M is an independence space. We first

demonstrate the following claim.

(1) r = rM on Pfin(E).

Let X ⊆ E be finite and suppose that X ∈ I. Then r(X) = |X| = rM(X)

by the definition of I and Lemma 3.4.3.

Now suppose that X /∈ I. Let BX ∈ B(M|X). Then BX ∈ I is finite, so

r(X) = |BX| = rM(X) by the definitions of I and rM.

Hence r = rM on Pfin(E). �

Now let X ⊆ E be arbitrary. Then

r(X) = sup{r(Y) | Y ⊆ X is finite} by (R4)

= sup{rM(Y) | Y ⊆ X is finite} by (1)

= rM(X) by (R4). �

It follows from Propositions 3.4.2 and 3.4.8 that independence spaces

are characterised by their rank functions; that is, there exists a one-to-one

correspondence

{Independence spaces on E}

←→ {Functions r : P(E)→ ω⊔ {∞} satisfying (R1)–(R4)}.

Every independence space is completely determined by its finite inde-

pendent sets (due to Finite Character). It follows from Lemma 3.4.3 that

every independence spaceM on E is completely determined by rM|Pfin(E).

On the other hand, every function r : Pfin(E) → ω satisfying (R1)–

(R3) determines an independence space M on E. Moreover, M has rM =

r on Pfin(E) by Claim (1) in the proof of Proposition 3.4.8. It follows
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that r completely determines M. Consequently there exists a one-to-one

correspondence

{Independence spaces on E}

←→ {Functions r : Pfin(E)→ ω satisfying (R1)–(R3)},

and so (R4) is unnecessary for characterising independence spaces by

rank. However, including (R4) as a rank axiom results in a characteri-

sation under which infinite sets may easily be classified as having finite

rank or infinite rank. This distinction is crucial for establishing results

such as Proposition 5.2.7.

Lemma 3.4.9. Let M be a finite-rank independence space on E = E1 ⊔ E2 ⊔ E3,

let k ∈ ω and suppose that

r(Ei) + r(E− Ei) 6 r(M) + k

for each i = 1, 2, 3. Then

3∑

i=1

r(E− Ei) − 2r(M) 6 2k.

Proof. We simply apply the hypothesis and (R3).

3∑

i=1

r(E− Ei) − 2r(M) = r(E2 ⊔ E3) + (r(E1 ⊔ E3) − r(M))

+ (r(E1 ⊔ E2) − r(M))

6 r(E2 ⊔ E3) + (k− r(E2))

+ (k− r(E3))

6 2k. �

A short discussion of (finite) rank functions Pfin(E) → ω is given
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on pp. 100–102 of [FF00]. A nice treatment of rank functions of pre-

independence spaces is given in [PP70].

3.5 Closure and Flats

Definition 3.5.1. Let M = (E, I) be an independence space. Then the

closure operator of M is the operator clM : P(E)→ P(E) defined by

clM(X) = X∪ {e ∈ E | (∃I ∈ I) I ⊆ X and I⊔ {e} /∈ I}

for every X ⊆ E. The subscript “M” is omitted when there is no ambigu-

ity.

A flat or closed set of M is a subset F ⊆ E for which cl(F) = F. A flat F

is proper if F 6= E. A hyperplane of M is a maximal proper flat of M. The

collections of flats and hyperplanes ofM are denoted by F(M) and H(M)

respectively. A subset X ⊆ E spans Y ⊆ E if Y ⊆ cl(X), and X is spanning if

it spans E.

Proposition 3.5.2. Let M = (E, I) be an independence space. Then:

(CL1) X ⊆ cl(X) for every X ⊆ E.

(CL2) cl(X) ⊆ cl(Y) whenever X ⊆ Y ⊆ E.

(CL3) cl(cl(X)) = cl(X) for every X ⊆ E.

(CL4) Whenever X, Y ⊆ E and e ∈ cl(Y) − cl(Y − X), there exists x ∈ X such

that x ∈ cl((Y − {x})∪ {e}).

(CL5) Whenever X ⊆ E and e ∈ cl(X), there exists finite Y ⊆ X such that

e ∈ cl(Y).

Our argument closely follows that given on pp. 83–84 of [Oxl92].
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Proof. The statements (CL1) and (CL2) follow immediately from the defi-

nition of the closure operator. In order to demonstrate (CL3), it is helpful

to first establish that for every X ⊆ E and every BX ∈ B(M|X),

cl(X) =






X⊔ {e ∈ E | X⊔ {e} /∈ I} if X ∈ I, and

cl(BX) otherwise.
(3.5.1)

Clearly (3.5.1) holds when X ∈ I, so suppose otherwise. It follows from

(CL2) that cl(BX) ⊆ cl(X). If x ∈ X− BX, then BX ⊔ {x} /∈ I, so x ∈ cl(BX).

Thus X ⊆ cl(BX). Now suppose that e ∈ cl(X) − X. Then I ⊔ {e} /∈ I for

some I-subset I of X. If BX ⊔ {e} /∈ I, then e ∈ cl(BX), so suppose that

BX ⊔ {e} ∈ I. Then BX ⊔ {e} ∈ B(M|(X⊔ {e})).

Moreover, I is contained in some B ∈ B(M|(X ⊔ {e})) not containing

e. Thus e ∈ (BX ⊔ {e}) − B, so by Basis Exchange there exists b ∈ B −

(BX ⊔ {e}) such that ((BX ⊔ {e}) − {e})⊔ {b} = BX ⊔ {b} ∈ B(M|(X⊔ {e})). As

BX ⊔ {b} ⊆ X, this contradicts BX ∈ B(M|X). Hence (3.5.1) holds.

It is now easy to demonstrate (CL3): let X ⊆ E and let BX ∈ B(M|X).

Then cl(X) = cl(BX) = BX ⊔ {e ∈ E | BX ⊔ {e} /∈ I} by (3.5.1), so BX ∈

B(M| cl(X)). Consequently cl(cl(X)) = cl(BX) = cl(X), and so (CL3) holds.

Turning to (CL4), let X, Y ⊆ E and let e ∈ cl(Y) − cl(Y − X). Set

X ′ = X ∩ Y. Then e ∈ cl(Y) − cl(Y − X ′). Clearly (CL4) holds if e ∈ X ′, so

suppose otherwise. Let BY−X ′ ∈ BY−X ′ . Then BY−X ′ ⊆ BY for some BY ∈

B(M|Y), so as e ∈ cl(Y) = cl(BY), BY ⊔ {e} /∈ I. Thus BY ∈ B(M|(BY ⊔ {e})).

Now, e /∈ cl(Y −X ′) = cl(BY−X ′), so BY−X ′ ⊔ {e} ∈ I. Thus BY−X ′ ⊔ {e} ⊆

B ′Y for some B ′Y ∈ B(M|(Y ⊔ {e})). If X ′ ⊆ B ′Y , then

B ′Y ⊇ BY−X ′ ⊔X ′ ⊔ {e} ) BY−X ′ ⊔X ′ ⊇ BY

—a contradiction. So there exists x ∈ X ′ −B ′Y . Necessarily

x ∈ cl(Y) ⊆ cl(Y ∪ {e}) = cl(B ′Y) = cl((Y − {x})∪ {e})
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and so (CL4) holds.

Finally, let X ⊆ E and let e ∈ cl(X). Clearly (CL5) holds if e ∈ X, so

suppose not. Then there exists an I-subset I of X such that I ⊔ {e} /∈ I.

It follows from (I4) that I ⊔ {e} contains a (finite) circuit J ⊔ {e}, whence

e ∈ cl(J) and J ⊆ X is finite. Hence (CL5) holds. �

Lemma 3.5.3. Let M be an independence space and let X, Y ⊆ E(M). Then

cl(X∪ cl(Y)) = cl(X∪ Y).

Proof. Let BY ∈ B(M|Y) and let BX∪Y ∈ B(M|(X ∪ Y)) contain BY . Then

BX∪Y ∈ B(M|(X∪ cl(Y))), for otherwise there would exist e ∈ cl(Y) − (X∪

Y) such that BX∪Y ⊔ {e} ∈ I(M), contradicting BY ⊔ {e} /∈ I(M). It then

follows from (3.5.1) that

cl(X∪ cl(Y)) = cl(BX∪Y) = cl(X∪ Y). �

Lemma 3.5.4. Let M be an independence space and let X ⊆ E(M). Then

r(X) = r(cl(X)).

Proof. If X contains an infinite I(M)-subset, then so does cl(X) by (CL1).

Thus r(X) = ∞ = r(cl(X)). Otherwise, let BX ∈ B(M|X). Then BX ∈

B(M| cl(X)) by (3.5.1), so r(X) = |BX| = r(cl(X)). �

Proposition 3.5.5. Let M be an independence space and let Y ⊆ X ⊆ E(M).

Then clM|X(Y) = X∩ clM(Y).

Proof.

clM|X(Y) = Y ∪ {x ∈ X | (∃I ∈ I(M|X)) I ⊆ Y and I⊔ {x} /∈ I(M|X)}

= Y ∪ {x ∈ X | (∃I ∈ I(M)) I ⊆ Y and I⊔ {x} /∈ I(M)}

= X∩ clM(Y). �

Corollary 3.5.6. Let M be an independence space and let X, F ⊆ E(M). Then

F ∈ F(M|X) if and only if X∩ clM(F) ⊆ F ⊆ X.
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Proof. As F ∈ F(M|X) if and only if clM|X(F) ⊆ F ⊆ X, it follows from

Proposition 3.5.5 that F ∈ F(M|X) if and only if X∩ clM(F) ⊆ F ⊆ X. �

The next lemma follows immediately from (CL1) and (CL2).

Lemma 3.5.7. Let M be an independence space and let F, F ′ ∈ F(M). Then

F∩ F ′ ∈ F(M).

Lemma 3.5.8. Let M be an independence space on E, let X ⊆ E and let e ∈

E− cl(X). Then cl(X) ∈ H(M| cl(X⊔ {e})).

Proof. It follows from Corollary 3.5.6 that cl(X) ∈ F(M| cl(X ⊔ {e})). Let

f ∈ cl(X⊔ {e}) − cl(X). Then

X⊔ {f} ⊆ cl(X⊔ {e}) by (CL1)

cl(X⊔ {f}) ⊆ cl(cl(X⊔ {e})) by (CL2)

= cl(X⊔ {e}) by (CL3).

On the other hand, e ∈ cl(X ⊔ {f}) by (CL4), so cl(X ⊔ {e}) ⊆ cl(X ⊔ {f}) by

the argument above. It follows that

cl(X⊔ {e}) = cl(X⊔ {f})

= cl(cl(X)⊔ {f}) by Lem. 3.5.3.

Hence cl(X) ∈ H(M| cl(X⊔ {e})). �

3.6 Contraction

Definition 3.6.1. Let M = (E, I) be an independence space, let X ⊆ E

and let BX ∈ B(M|X). Then the contraction of M by X, denoted M/X, is

(E−X, {Y ⊆ E−X | Y ⊔BX ∈ I}).

Note that this definition is independent of the choice of BX by Propo-

sition 3.3.7.
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Proposition 3.6.2. Every contraction of an independence space is an indepen-

dence space.

We reproduce the argument given on pp. 76–77 of [Oxl92].

Proof. Let M = (E, I) be an independence space, let X ⊆ E and let BX ∈

B(M|X) be fixed. As the statements (I1) and (I2) clearly hold, we consider

(I3) and (I4).

Let I1, I2 ∈ I(M/X) be such that |I1| < |I2| ∈ ω. Then I1 ⊔BX, I2 ⊔BX ∈

I. For every finite B0 ⊆ BX, it follows from (I3) for M|(I1 ∪ I2 ∪ B0) that

there exists e ∈ I2 − I1 such that I1 ⊔ {e}⊔B0 ∈ I, so

XB0
:= {e ∈ I2 − I1 | I1 ⊔ {e}⊔B0 ∈ I}

is both non-empty and finite. Let J ⊆ Pfin(BX) be finite, let B ′ =
⋃
J and

let eJ ∈ XB ′ . Then eJ ∈
⋂
j∈J Xj by (I2). Define a choice function fJ for {Xj |

j ∈ J} by fJ(j) = eJ for every j ∈ J. Let f be as per Rado’s Selection Lemma.

Let J = {i, j} ⊆ Pfin(BX). Then f|J = fK|J for some finite K ⊆ Pfin(BX)

containing J. As fK(i) = fK(j) by definition, it follows that f(i) = f(j).

Consequently im(f) = {e} for some e ∈ I2 − I1. But then I1 ⊔ {e} ⊔ B0 ∈ I

for every finite B0 ⊆ BX, so Z ∈ I for every finite Z ⊆ I1 ⊔ {e} ⊔ BX. It

follows from (I4) that I1 ⊔ {e} ⊔ BX ∈ I, so I1 ⊔ {e} ∈ I(M/X). Hence (I3)

holds.

Turning to (I4), let Y ⊆ E− X such that Z ∈ I(M/X) for every finite

Z ⊆ Y. Then Z ⊔ BX ∈ I for every finite Z ⊆ Y, so Z ∈ I for every finite

Z ⊆ Y ⊔BX by (I2). Thus Y ⊔BX ∈ I by (I4), so Y ∈ I(M/X). Consequently

(I4) holds. �

Proposition 3.6.3. Let M be an independence space and let X, Y ⊆ E(M) be

disjoint. Then

(1) (M\X)\Y = M\(X⊔ Y) = (M\Y)\X,

(2) (M/X)/Y = M/(X⊔ Y) = (M/Y)/X, and
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(3) (M\X)/Y = (M/Y)\X.

Proof. Write E = E(M). As (1) is trivial, we consider (2) and (3). In order

to establish (2), it suffices by symmetry to demonstrate that (M/X)/Y =

M/(X ⊔ Y). Clearly each of these independence spaces has ground set

E− (X⊔ Y). Let BX ∈ B(M|X) and let B ∈ B((M/X)|Y). Then

I((M/X)/Y) = {Z ⊆ E− (X⊔ Y) | Z⊔BX ⊔B ∈ I(M)}.

Clearly BX ⊔ B ∈ I(M|(X ⊔ Y)). Suppose that BX ⊔ B /∈ B(M|(X ⊔ Y)).

Then there exists B ′ ⊆ (X ⊔ Y) − BX such that BX ⊔ B ( BX ⊔ B
′ and

BX ⊔ B
′ ∈ I(M|(X ⊔ Y)). So B ( B ′ ⊆ Y ⊆ E − X and BX ⊔ B

′ ∈ I(M),

whence B ′ ∈ I(M/X), contradicting the choice of B. It follows that BX ⊔

B ∈ B(M|(X⊔ Y)).

Consequently I((M/X)/Y) ⊆ I(M/(X ⊔ Y)). Proposition 3.3.7 shows

that the anti-containment also holds, and so (2) follows.

We now turn to (3). Clearly E((M\X)/Y) = E((M/Y)\X) = E− (X⊔ Y).

Let B ∈ B((M\X)|Y) and let BY ∈ B(M|Y). Then

I((M\X)/Y) = {Z ⊆ E− (X⊔ Y) | Z⊔B ∈ I(M)}, and

I((M/Y)\X) = {Z ⊆ E− (X⊔ Y) | Z⊔BY ∈ I(M)}.

So it suffices to show that B((M\X)|Y) = B(M|Y). We simply note that

B ∈ B((M\X)|Y)

⇐⇒B is a maximal I(M\X)-subset of Y

⇐⇒B is a maximal I(M)-subset of Y as X∩ Y = ∅

⇐⇒B ∈ B(M|Y).

Hence (3) holds. �

Corollary 3.6.4. Let M be an independence space and let X1, . . . , Xm, Y1,

. . . , Yn ⊆ E(M) be pairwise disjoint. Then any sequence starting with M and
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involving the contraction of each Xi and the deletion of each Yj has final term

M
/⊔m

i=1 Xi
∖⊔n

j=1 Yj.

Definition 3.6.5. LetM andN be independence spaces. ThenN is a minor

of M, denoted N 4 M, if N = M\X/Y for some disjoint X, Y ⊆ E(M).

Proposition 3.6.6. Let M be an independence space and let X ⊆ E(M). Then

the circuits of M/X are precisely the minimal non-empty elements of {C− X |

C ∈ C(M)}.

Our argument follows that given on p. 107 of [Oxl04].

Proof. The result is trivial if X is empty, so suppose otherwise. Let

Y = {C−X | C ∈ C(M),C−X 6= ∅}.

We establish two claims.

(1) C(M/X) ⊆ Y.

Let C ′ ∈ C(M/X) and let BX ∈ B(M|X). Then C ′ ⊔ BX /∈ I(M) and

(C ′ − {e}) ⊔ BX ∈ I(M) for each e ∈ C ′. Consequently there exists

C ∈ C(M) such that C ′ ⊆ C ⊆ C ′ ⊔BX, whence C ′ = C−X. �

(2) {Y ∈ Y | (∀Y ′ ∈ Y − {Y}) Y ′ * Y} ⊆ C(M/X).

Let Y be a minimal element of Y. Then Y = C−X for some C ∈ C(M).

As Y is non-empty, C ∩ X ( C, so C ∩ X ∈ I(M|X). Consequently

there exists BX ∈ B(M|X) such that C ∩ X ⊆ BX. As C ⊆ C ∪ BX,

C ∪ BX /∈ I(M), so Y /∈ I(M/X). Thus there exists C ′ ∈ C(M/X)

contained in Y. It follows from (1) that C ′ ∈ Y, so the minimality of Y

forces C ′ = Y. �

Now let C ′ ∈ C(M/X). Then C ′ ∈ Y by (1). Moreover, there exists minimal

Y ∈ Y contained in C ′. It follows from (2) that Y ∈ C(M/X), so C ′ = Y by

(C2). �
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Proposition 3.6.7. Let M be an independence space, let X ⊆ E(M) be such that

rM(X) ∈ ω and let Y ⊆ E−X. Then

rM/X(Y) = rM(X⊔ Y) − rM(X).

Proof. If rM/X(Y) = ∞, then Y contains an infinite I(M/X)-subset, so X⊔Y

contains an infinite I(M)-subset. As rM(X) ∈ ω, it follows that rM/X(X ⊔

Y) − rM(X) = ∞.

Otherwise, let BX ∈ B(M|X) and let B ∈ B((M/X)|Y). Then BX ⊔ B ∈

B(M|(X⊔ Y)), so

rM/X(Y) = |B|

= |BX ⊔B| − |BX|

= rM(X⊔ Y) − rM(X). �

The next two results respectively characterise the closure operators

and flats of contractions of independence spaces.

Proposition 3.6.8. Let M be an independence space, let X ⊆ E(M) and let

Y ⊆ E(M) −X. Then clM/X(Y) = clM(X⊔ Y) −X.

Proof. Write M = (E, I), let BX ∈ B(M|X) and let B ∈ B((M/X)|Y). Then

BX ⊔B ∈ B(M|(X⊔ Y)), so by (3.5.1),

clM/X(Y) = clM/X(B)

= B⊔ {e ∈ E−X | B⊔ {e} /∈ I(M/X)}

= (BX ⊔B⊔ {e ∈ E | BX ⊔B⊔ {e} /∈ I}) −X

= clM(BX ⊔B) −X

= clM(X⊔ Y) −X. �

Corollary 3.6.9. Let M be an independence space and let X, F ⊆ E(M). Then

F ∈ F(M/X) if and only if X⊔ F ∈ F(M).
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Proof.

F ∈ F(M/X)

⇐⇒ clM/X(F) ⊆ F ⊆ E(M) −X

⇐⇒ clM(X⊔ F) −X ⊆ F by Prop. 3.6.8

⇐⇒X⊔ F ∈ F(M). �

3.7 Simplification

Definition 3.7.1. Let M be an independence space on E. Define ρM : E−

L(M)→ P(E− L(M)) by

ρM(e) = {e}⊔ {f ∈ E− L(M) | {e, f} is a parallel pair of M}

for every e ∈ E− L(M). Then ρM( · ) induces a relation ρM on E, given by

e ρM f if and only if e ∈ ρM(f). The subscript “M” is omitted when there

is no ambiguity.

Proposition 3.7.2. LetM be an independence space. Then ρM is an equivalence

relation on E(M) − L(M).

Proof. Clearly ρ is reflexive and symmetric. So suppose that e ∈ ρ(f) and

f ∈ ρ(g), where e, f, g ∈ E(M) − L(M) are distinct. Then {e, f}, {f,g} ∈

C(M), so by Weak Circuit Elimination there exists C ∈ C(M) contained in

{e,g}. As e, g /∈ L(M), necessarily C = {e,g}. Hence e ∈ ρ(g), and so ρ is

transitive. �

Definition 3.7.3. Let M be an independence space. Then a parallel class of

M is a ρM-equivalence class.

Recall that a transversal of a partition {Yi | i ∈ I} of a set Y is a set X ⊆ Y

meeting each Xi at precisely one element.
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Definition 3.7.4. Let M be an independence space. Then the simplification

of M, denoted M̃, is M|X where X is a transversal of the parallel classes

of M.

Clearly simplifications are simple, and an independence space M is

simple if and only if M = M̃ for some M̃.

Definition 3.7.5. LetM = (E, I) andM ′ = (E ′, I ′) be independence spaces.

ThenM andM ′ are isomorphic, denotedM ∼= M ′, if there exists a bijection

χ : E→ E ′ such that X ∈ I if and only if χ[X] ∈ I ′ for every X ⊆ E.

Proposition 3.7.6. Isomorphism of independence spaces is an equivalence rela-

tion.

We omit the easy proof of Proposition 3.7.6.

Proposition 3.7.7. The simplification of an independence space is defined

uniquely up to isomorphism.

Proof. Let M be an independence space on E and let X, X ′ ⊆ E determine

two simplifications of M. Let {ρi | i ∈ I} be the collection of parallel

classes of M. For every i ∈ I, let xi ∈ ρi ∩ X and let x ′i ∈ ρi ∩ X
′. Define

χ : X→ X ′ by χ(xi) = x ′i for every i ∈ I. Clearly χ is a bijection. Moreover,

for every Y ⊆ X,

Y ∈ I(M|X)⇐⇒ Y ∈ I(M)⇐⇒ χ[Y] ∈ I(M)⇐⇒ χ[Y] ∈ I(M|X ′).

Hence M|X ∼= M|X ′. �

3.8 Geometric Representations

Geometric representations provide a useful means of visualising matroids

of rank at most 4. A geometric representation of a matroid M having rank

at most 4 is a diagram having the following properties.
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(1) Each element e ofM is represented by a single point, which is labelled

by e.

(2) All loops of M are placed in a box to one side of the diagram.

(3) Elements in the same parallel class are represented by a single point,

which is labelled by the elements of the parallel class.

(4) Elements of a triangle are collinear.

(5) Elements of a 4-circuit are coplanar.

For example, consider the geometric representation given in Figure 3.2.

The matroid depicted has ground set {a,b, c,d, e, f,g,h}. The elements g

and h are loops, and {e, f} is a parallel pair. The set {a,b, c} is a circuit,

as is {a,b,d, e}. As every set of four points is coplanar, this matroid has

rank at most 3. Moreover, {a,b,d} is independent, so the matroid in fact

has rank 3. Its flats include {a,g,h}, {a,b, c,g,h} and {b,d,g,h}.

a b c

d e, f

g h

Figure 3.2: A geometric representation of a rank-3 matroid.

Geometric representations of matroids having rank 4 are viewed 3-di-

mensionally, reflecting the representation of each basis by a set of 4 non-

coplanar points. For example, consider the geometric representation of

the Escher matroid given in Figure 3.3. This is intended to be viewed such

that the convex hull of the points shown is a tetrahedron in R
3.

As the Escher matroid has no loops, the box for loops has been omitted

from Figure 3.3. We follow the convention that when this box is omitted,
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a

b

c

Figure 3.3: A geometric representation of the Escher matroid.

it is to be understood that there are no loops. Similarly, when labels are

omitted, it is to be understood that there are no non-trivial parallel classes

(so the Escher matroid has no parallel pairs).

The Escher matroid demonstrates an important property of these di-

agrams: not every diagram of this type is a geometric representation of

a matroid. For example, suppose that Figure 3.3 is redrawn so that the

points a, b and c no longer colline, but no other collineations are altered.

Then the resulting diagram is not a geometric representation of a matroid,

for if it were, then the dependencies shown, together with the matroid ax-

ioms and rule (4) for geometric representations would force a, b and c to

colline.

Further discussion of geometric representations is given on pp. 36–46

of [Oxl04].

3.9 Connectivity

In general, the connectivity between two subobjects X ′ and Y ′ of an object

Z (such as a graph, independence space or point configuration) is the least

order of a separation of X ′ and Y ′ in Z. This section examines connectivity

in independence spaces, which is similar to connectivity in graphs. To

motivate the definition given, we first comment on connectivity in graphs.
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Let G be a graph having edge set E and let X ′, Y ′ ⊆ E. Note that

X ′ ∩ Y ′ may be non-empty. Then the vertex connectivity between X ′ and Y ′

in G, denoted κG(X ′,Y ′), is

κG(X ′,Y ′) = inf{|VG(X)∩ VG(Y)| : X ′ ⊆ X,Y ′ ⊆ Y,X∪ Y = E}.

This is easily visualised, as indicated in Figure 3.4.

X ′
Y ′

X
Y

G

Figure 3.4: A graph G having κG(X ′,Y ′) = 5. This connectivity is con-
cretely realised as both a vertex cut V(X)∩V(Y) and a set of vertex-disjoint
X ′-Y ′ paths, each of size 5.

Any set of paths associated with a minimum-order vertex cut as in Fig-

ure 3.4 may be thought of as representing “units of dependency” between

X ′ and Y ′ in G. In an independence space, dependencies correspond to

circuits. Given a matroid M, a circuit C ∈ C(M) and X, Y ∈ F(M) such

that X∪ Y = E(M) and X + C * Y, it is possible for C∩X∩ Y to be empty,

as shown in Figure 3.5.

In the example of Figure 3.5, the connectivity between X and Y should

be 1. If X∩Y contained a non-loop element, the value 1 could be obtained

as r(X ∩ Y)—an analogue of the size of a minimum-order vertex cut in a

graph. However, there is no such element (unlike the graph case, in which

vertices are always present). This difficulty can be negotiated by taking a

difference of ranks, as in the following definition.
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Definition 3.9.1. Let M be a finite-rank independence space on E. Define

λM : {(X,Y) | X∪ Y = E}→ ω by

λM(X,Y) = rM(X) + rM(Y) − r(M)

whenever X, Y ⊆ E are such that X∪ Y = E, and define λM : P(E)→ ω by

λM(X) = λM(X,E−X)

for every X ⊆ E. Then define κM : P(E)×P(E)→ ω⊔ {∞} by

κM(X ′,Y ′) = inf{λM(X,Y) | X ′ ⊆ X,Y ′ ⊆ Y,X∪ Y = E}

for every X ′, Y ′ ⊆ E. The subscript “M” is omitted when there is no

ambiguity. Note that some authors define λM(X,Y) to be rM(X)+ rM(Y)−

r(M) + 1.

The following proposition notes some elementary properties of the

connectivity functions λ and κ.

X

Y

Figure 3.5: A geometric representation of a 4-circuit, which is a union of
two proper flats X and Y having empty intersection.

Proposition 3.9.2. For every finite-rank independence space,

(1) λ( · , · ), λ( · ) and κ( · , · ) are each symmetric, and



3.9. CONNECTIVITY 47

(2) κ( · , · ) is increasing in each of its arguments.

The next proposition follows readily from equality of the ranks of a

set and its closure.

Proposition 3.9.3. For every finite-rank independence space on E,

(1) λ(X,Y) = λ(cl(X),Y) whenever X, Y ⊆ E are such that X∪ Y = E,

(2) λ(X) = λ(cl(X)) for every X ⊆ E, and

(3) κ(X,Y) = κ(cl(X),Y) for every X, Y ⊆ E.

Proof. Clearly it suffices to demonstrate (1). So let M be a finite-rank

independence space on E and let X, Y ⊆ E be such that X∪ Y = E. Then

λ(X,Y) = r(X) + r(Y) − r(M)

= r(cl(X)) + r(Y) − r(M) by Lem. 3.5.4

= λ(cl(X),Y).

The result follows. �

We close this section by observing a result that is well known for ma-

troids, namely that the connectivity function λM of a finite-rank indepen-

dence space M inherits submodularity from the rank function rM.

Proposition 3.9.4. λ( · ) is submodular for every finite-rank independence space.

Proof. Let M be a finite-rank independence space on E and let X, Y ⊆ E.

Then

λ(X) + λ(Y) = r(X) + r(E−X) + r(Y) + r(E− Y) − 2r(M)

> r(X∩ Y) + r(X∪ Y) + r(E− (X∪ Y))

+ r(E− (X∩ Y)) − 2r(M) by (R3)

= λ(X∩ Y) + λ(X∪ Y). �
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Chapter 4

Configurations

The term “configuration” is used in many different, usually geomet-

ric, contexts in mathematics. The configurations examined in this the-

sis are sometimes called point configurations to distinguish them from

other types of configuration. As point configurations are the only type of

configuration concerning us, we hereafter write “configuration” to mean

“point configuration.”

Our focus is predominantly on the matroidal structure of configu-

rations. This is reflected in the purely matroidal formulation of many

results, those of Chapters 3 and 5 in particular.

The main advantages of working with configurations instead of inde-

pendence spaces in general are

• the ability to harness the methods of linear algebra for arguments,

and

• the ability to (sometimes implicitly) use any points in the ambient

vector space.

This chapter is devoted to developing configuration-specific formu-

lations of ideas introduced for independence spaces in Chapter 3. The

presence of a vector space embedding introduces some minor technical-

49
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ities, notably the requirement that some definitions be made only up to

an equivalence of configurations.

4.1 Definitions

Definition 4.1.1. Let V be a vector space. Then a V-configuration is a triple

D = (D,E, ℓ), where E and D ⊆ V are sets and ℓ : E → D is a surjective

function. We shall often write “D is a configuration” to mean that D is a

V-configuration for some vector space V .

Given a V-configuration D = (D,E, ℓ), the point set of D is D, while

the ground set of D, denoted E(D), is E. The order of D, denoted |D|, is |D|,

and the dimension of D, denoted dim(D), is dim(〈D〉). A configuration is

finite if its ground set is finite.

Clearly |D| 6 |E(D)| for every configuration D. In particular, every

finite configuration has finite order. As a point may be labelled by two

distinct elements of the ground set, it is possible for this inequality to be

strict.

The following classical proposition establishes that configurations give

rise to independence spaces, justifying the earlier use of the phrase “rep-

resented independence space.”

Proposition 4.1.2. Let D = (D,E, ℓ) be a configuration. Define I ⊆ P(E) by

X ∈ I if and only if ℓ|X is injective and ℓ[X] is linearly independent. Then (E, I)

is an independence space.

For completeness, we reproduce the argument given on p. 8 of [Oxl04].

Proof. The statements (I1) and (I2) are clear. Finiteness of linear combina-

tions gives (I4), so we demonstrate (I3).

Let I1, I2 ∈ I be such that |I1| < |I2| ∈ ω and let V = 〈ℓ[I1 ∪ I2]〉. Then

dim(V) > dim(〈ℓ[I2]〉) = |I2|. Suppose that I1⊔ {e} /∈ I for every e ∈ I2 − I1.
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Then V ⊆ 〈ℓ[I1]〉, so

|I2| 6 dim(V) 6 dim(〈ℓ[I1]〉) = |I1| < |I2|

—a contradiction. Hence there exists e ∈ I2 − I1 such that I1 ⊔ {e} ∈ I, and

so (I3) holds. �

It is now possible to make the following formal definition.

Definition 4.1.3. Let D be a configuration. Then the vector independence

space of D, denoted M[D], is the independence space derived from D via

Proposition 4.1.2. An independence space M is represented by a configu-

ration D if M = M[D].

The dependent sets of D are precisely the dependent sets of M[D]. The

notions of independent set, circuit, basis, loop, parallel pair, triangle and

flat are then inherited from independence spaces (see pp. 18 and 33 for

definitions of these concepts for independence spaces). The collections

of independent sets, circuits, bases, loops and flats of D are denoted by

I(D), C(D), B(D), L(D) and F(D) respectively.

A simple graph can always be obtained from a graph by deleting all

loops and then identifying all edges incident on the same pair of vertices.

This idea does not transfer directly to configurations: identifying all labels

of a point may still leave non-trivial parallel classes, for two distinct non-

zero points may be linearly dependent.

Example 4.1.4. Let D1 and D2 be the R
2-configurations on ground set

{a,b, c,d} given by

ℓ1(a) = ℓ1(b) = ℓ1(c) = (2, 0), ℓ1(d) = (0, 1)

and

ℓ2(a) = (1, 0), ℓ2(b) = (2, 0), ℓ2(c) = (3, 0), ℓ2(d) = (0, 1)

respectively. These are illustrated in Figure 4.1.
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1 2 3

1

0 1 2 3

1

0

a,b, c
︸ ︷︷ ︸

d

a b c

d

D1 D2

Figure 4.1: The configurations D1 and D2 of Example 4.1.4.

Both D1 and D2 consist of a parallel class of size 3 (i.e., {a,b, c}) and

a non-loop point (i.e., d), from which it is clear that they have the same

matroidal structure (i.e., M[D1] = M[D2]). Despite this, identifying the

labels of each point in each configuration eliminates the parallel class

{a,b, c} from D1, yet leaves it unchanged in D2.

4.2 Equivalence

Example 4.1.4 shows that different configurations may share the same

matroidal structure. In particular, configurations only differing “within”

parallel classes are matroidally indistinguishable. It is convenient to iden-

tify such configurations, so we introduce the following definition.

Definition 4.2.1. Let D = (D,E, ℓ) and D ′ = (D ′,E ′, ℓ ′) be configurations.

Then D and D ′ are equivalent if there exist an invertible linear transfor-

mation φ : 〈D〉 → 〈D ′〉 and a bijection χ : E → E ′ such that
〈
φ(ℓ(e))

〉
=〈

ℓ ′(χ(e))
〉

for every e ∈ E. In this case, we say that (φ,χ) is an equivalence

of D and D ′, denoted by (φ,χ) : D→ D ′ or D
(φ,χ)
−−−→ D ′.

Proposition 4.2.2. Equivalence of configurations is an equivalence relation.

Proof. We omit functional parentheses from this argument for clarity. Let

D = (D,E, ℓ)
(φ,χ)
−−−→ D ′ = (D ′,E ′, ℓ ′)

(φ ′,χ ′)
−−−−→ D ′′ = (D ′′,E ′′, ℓ ′′). Then for

every e ∈ E,

〈id〈D〉 ℓe〉 = 〈ℓe〉 = 〈ℓ idE e〉.
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Thus (id〈D〉, idE) : D → D, and so reflexivity holds. Moreover, for every

e ′ ∈ E ′,

〈ℓ ′e ′〉 = 〈ℓ ′χχ−1e ′〉 = 〈φℓχ−1e ′〉

φ−1[〈ℓ ′e ′〉] = φ−1[〈φℓχ−1e ′〉]

〈φ−1ℓ ′e ′〉 = 〈ℓχ−1e ′〉.

Thus (φ−1,χ−1) : D ′ → D, and so symmetry holds. Finally, for every

e ∈ E,

〈φℓe〉 = 〈ℓ ′χe〉

φ ′[〈φℓe〉] = φ ′[〈ℓ ′χe〉]

〈(φ ′ ◦φ)ℓe〉 = 〈φ ′ℓ ′χe〉 = 〈ℓ ′′(χ ′ ◦ χ)e〉.

Hence (φ ′ ◦φ,χ ′ ◦ χ) : D→ D ′′, and so transitivity holds. �

Proposition 4.2.3. Equivalent configurations have isomorphic vector indepen-

dence spaces.

Proof. Let (φ,χ) : D = (D,E, ℓ) → D ′ = (D ′,E ′, ℓ ′) be an equivalence of

configurations, and define a set of lines in a vector space to be independent

if none is contained in the span of the others. Then

X ∈ I(M[D])

⇐⇒ℓ|X is injective and ℓ[X] is linearly independent

⇐⇒ψ : X→ S(〈D〉) : x 7→ 〈ℓ(x)〉 is injective and

im(ψ) is independent

⇐⇒ψ : X→ S(〈D ′〉) : x 7→ 〈(φ ◦ ℓ)(x)〉 is injective and

im(ψ) is independent as φ is bijective and linear

⇐⇒ψ : X→ S(〈D ′〉) : x 7→ 〈(ℓ ′ ◦ χ)(x)〉 is injective and

im(ψ) is independent by equivalence

⇐⇒ℓ ′|χ[X] is injective and ℓ ′[χ[X]] is linearly independent
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⇐⇒χ[X] ∈ I(M[D ′]).

Hence M[D] ∼= M[D ′]. �

The converse of Proposition 4.2.3 does not hold, as configurations dif-

fering “between” parallel classes may be inequivalent but nonetheless

have isomorphic vector independence spaces. For example, consider Fig-

ure 4.2. Each of the configurations shown has 8 elements and a collection

of circuits consisting of a pair of disjoint triangles and all 4-element sets

containing neither triangle. Consequently the configurations have iso-

morphic vector matroids. However, as linear transformations preserve

incidence, there is no linear transformation mapping the triangles of the

first configuration onto those of the second that also maps the remaining

pair of points in the first configuration onto those of the second. Thus the

configurations are inequivalent.

Figure 4.2: Geometric representations of a pair of inequivalent configura-
tions having isomorphic vector matroids.

The following definition is the first of several made only up to an

equivalence of configurations.

Definition 4.2.4. Let D be a configuration having point set D. Then the

simplification of D, denoted D̃, is
(
D̃, D̃, id

D̃

)
where D̃ is a transversal of

{
〈d〉 ∩ (D− {0})

∣∣ d ∈ D− {0}
}

.
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We say that D is simple if D = D̃ for some D̃.

Proposition 4.2.5. The simplification of a configuration is defined uniquely up

to an equivalence of configurations.

Proof. Let D̃1 =
(
D̃1, D̃1, id

D̃1

)
and D̃2 =

(
D̃2, D̃2, id

D̃2

)
be simplifications

of a configuration D having point set D. Write

{
〈d〉 ∩ (D− {0})

∣∣ d ∈ D− {0}
}

= {ρi | i ∈ I}.

Let φ = id〈D〉 and define χ : D̃1 → D̃2 by χ(d1i) = d2i for every i ∈ I,

where ρi ∩ D̃j = {dji} for every i ∈ I and each j = 1, 2. Then for every

d ∈ D̃1,

〈
φ(id

D̃1
(d))〉 = 〈φ(d)

〉

= 〈d〉

= 〈χ(d)〉

=
〈

id
D̃2

(χ(d))
〉
.

Hence (φ,χ) : D̃1 → D̃2. �

The next proposition verifies that simplification in configurations cor-

responds to simplification in independence spaces.

Proposition 4.2.6. Let D be a configuration. Then M̃[D] ∼= M
[
D̃
]
.

Proof. Let D = (D,E, ℓ) be a configuration. Then D̃ =
(
D̃, D̃, id

D̃

)
, where

D̃ is a transversal of

{
〈d〉 ∩ (D− {0})

∣∣ d ∈ D− {0}
}

and M
[
D̃
]

=
(
D̃, I

)
, where

I =
{
Y ⊆ D̃

∣∣ Y is linearly independent
}

.
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Moreover, M[D] = (E, I ′), where

I ′ = {Y ⊆ E : ℓ|Y is injective and ℓ[Y] is linearly independent}.

Let χ be a choice function for
{
ℓ−1{d}

∣∣ d ∈ D̃
}

. Then X := im(χ) is

a transversal of the parallel classes of M[D]. Consequently M̃[D] ∼=

(M[D])|X by Proposition 3.7.7. Moreover,

Y ∈ I

⇐⇒Y is linearly independent

⇐⇒ℓ|χ[Y] is injective and ℓ[χ[Y]] is linearly independent

⇐⇒χ[Y] ∈ I ′.

Hence M
[
D̃
]

∼= (M[D])|X, so M̃[D] ∼= M
[
D̃
]

by Proposition 3.7.6. �

We close this section by deriving a result for configurations from

Lemma 3.4.9. This will later provide the width bound required in Theo-

rem 6.2.5.

Proposition 4.2.7. Let D = (D,E, ℓ) be a finite-dimensional configuration and

let E = E1 ⊔ E2 ⊔ E3. Let k ∈ ω and suppose that

dim(〈ℓ[Ei]〉) + dim(〈ℓ[E− Ei]〉) 6 dim(D) + k

for each i = 1, 2, 3. Then

3∑

i=1

dim(〈ℓ[E− Ei]〉) − 2 dim(D) 6 2k.

Proof. We simply observe that for each i,

rM(Ei) + rM(E− Ei) 6 r(M) + k
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where M := M[D]. It then follows from Lemma 3.4.9 that

2k >

3∑

i=1

rM(E− Ei) − 2r(M)

=

3∑

i=1

dim(〈ℓ[E− Ei]〉) − 2 dim(D). �

4.3 Restriction

This brief section is devoted to formally defining some elementary con-

cepts encountered frequently later.

Definition 4.3.1. Let D = (D,E, ℓ) be a configuration and let X ⊆ E. Then

the restriction of D to X, denoted D|X, is (ℓ[X],X, ℓ|X). The deletion of X

from D, denoted D\X, is D|(E−X).

The following definition makes use of the formal set-theoretical defi-

nition of the functions ℓi.

Definition 4.3.2. Let {Di = (Di,Ei, ℓi) | i ∈ I} be a collection of V-configu-

rations such that ℓi|(Ei ∩Ej) = ℓj|(Ei ∩Ej) for every i, j ∈ I. Then the union

of {Di | i ∈ I}, denoted
⋃
i∈IDi, is

(⋃
i∈IDi,

⋃
i∈I Ei,

⋃
i∈I ℓi

)
.

Definition 4.3.3. Let {Di = (Di,Ei, ℓi) | i ∈ I} be a collection of V-con-

figurations such that ℓj|
⋂
i∈I Ei = ℓk|

⋂
i∈I Ei for every j, k ∈ I. Then the

intersection of {Di | i ∈ I}, denoted
⋂
i∈IDi, is Dj|

⋂
i∈I Ei, where j ∈ I is

arbitrary.

Clearly

• the class of V-configurations is closed under the restriction, deletion,

union and intersection operations, and

• every intersection of V-configurations is independent of the choice

of the index j.
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As the class of V-configurations is closed under restriction, it is sensible

to define a notion of subconfiguration.

Definition 4.3.4. Let D and D ′ be configurations. Then D ′ is a subconfig-

uration of D, denoted D ′ 6 D, if D ′ = D|X for some X ⊆ E(D).

Proposition 4.3.5. The subconfiguration relation 6 is a partial order on the set

of all subconfigurations of a given configuration.

Proof. Let Di = (Di,Ei, ℓi) 6 D for each i = 1, 2, 3. Clearly 6 is reflexive,

so we consider symmetry and transitivity.

Suppose that D1 6 D2 6 D1. Then E1 ⊆ E2 ⊆ E1, so E1 = E2. Conse-

quently ℓ2 = ℓ1|E2
= ℓ1|E1

= ℓ1. Thus D1 = D2, and so 6 is symmetric.

Now suppose that D1 6 D2 6 D3. Then E1 ⊆ E2 ⊆ E3, so E1 ⊆ E3.

Consequently ℓ1 = ℓ2|E1
= (ℓ3|E2

)|E1
= ℓ3|E1

. Hence D1 6 D3, and so 6 is

transitive. �

Definition 4.3.6. Let D be a subset of a vector space. Then the configura-

tion induced by D is (D,D, idD).

We shall frequently identify D with the configuration that it induces,

saying “the configuration D,” etc. This simplifies the statements and

proofs of a number of results.

Proposition 4.3.7. Let D be a configuration having point set D containing D ′.

Then D ′ 6 D up to an equivalence of configurations. In particular, D̃ 6 D up

to an equivalence of configurations.

Proof. Write D = (D,E, ℓ). Let χ be a choice function for {ℓ−1{d ′} | d ′ ∈

D ′} and let E ′ = im(χ). Then (D ′,E ′, ℓ|E ′) 6 D and (id〈D ′〉,χ) : D ′ →

(D ′,E ′, ℓ|E ′) is an equivalence of configurations. Consequently D ′ 6 D up

to an equivalence of configurations. As the point set of D̃ is a subset of D

by definition, it follows that D̃ 6 D up to an equivalence of configurations

also. �

Some elementary properties of subconfigurations include
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• Dj 6
⋃
i∈IDi for every j ∈ I whenever {Di | i ∈ I} is a collection of

configurations for which
⋃
i∈IDi is defined,

•
⋂
i∈IDi 6 Dj for every j ∈ I whenever {Di | i ∈ I} is a collection of

configurations for which
⋂
i∈IDi is defined, and

• D 6
⋂
i∈IDi whenever {D}⊔ {Di | i ∈ I} is a collection of configura-

tions such that D 6 Di for every i ∈ I and
⋂
i∈IDi is defined.

We close this section by noting that restriction commutes with M[ · ].

Proposition 4.3.8. Let D be a configuration and let X ⊆ E(D). Then

(
M[D]

)∣∣X = M[D|X]

and

(
M[D]

)∖
X = M[D\X].

Proof. Write D = (D,E, ℓ). Clearly is suffices to demonstrate the first

equality. We observe that

Y ∈ I((M[D])|X)

⇐⇒Y ⊆ X and Y ∈ I(M[D])

⇐⇒Y ⊆ X and ℓ|Y is injective and ℓ[Y] is linearly independent

⇐⇒Y ⊆ X and (ℓ|X)|Y is injective and ℓ|X[Y] is linearly independent

⇐⇒Y ∈ I(M[D|X]). �

4.4 Contraction

While restrictions are frequently encountered in Chapters 5 and 6, con-

tractions play a more important role in the theory developed. This section

gives a definition of contraction for configurations and derives some of its
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properties. Loops are kept rather than deleted in the definition, in con-

trast with contraction for independence spaces. In this regard, we follow

[GGW02].

Definition 4.4.1. Let D = (D,E, ℓ) be a configuration and let X ⊆ E. Then

the contraction of D by X, denoted D/X, is (π[D],E,π ◦ ℓ), where π is a

projection of 〈D〉 along 〈ℓ[X]〉 onto a complement of 〈ℓ[X]〉 in 〈D〉.

The use of 〈D〉 in this definition avoids explicit reference to the con-

figuration’s ambient vector space.

Whenever V is a vector space, W 6 V and v, v ′ ∈ V , we say that v

and v ′ are equivalent modulo W, denoted v ≡ v ′ mod W, if v = v ′ +w for

some w ∈ W. It is easily shown that equivalence modulo a subspace is

an equivalence relation that respects linear combinations.

Proposition 4.4.2. Every contraction of a V-configuration is a V-configuration

that is defined uniquely up to an equivalence of configurations.

Proof. Let D = (D,E, ℓ) be a V-configuration and let X ⊆ E. If X is empty,

the result is trivial, so suppose otherwise. Clearly every contraction of D

by X is a V-configuration, so let D1 = (D1,E, ℓ1) and D2 = (D2,E, ℓ2) be

two contractions of D by X, where Di given by πi : 〈D〉 → Ui for each i.

Taking χ = idE, we only need to demonstrate the existence of a suitable

isomorphism φ.

Let {π1(di) | i ∈ I} be a basis for 〈π1[D]〉 contained in π1[D]. We

establish two claims.

(1) {π2(di) | i ∈ I} is linearly independent.

For suppose otherwise. Then there exist distinct π2(d1), . . . , π2(dn)

and scalars µ1, . . . , µn not all zero such that
∑n
i=1 µiπ2(di) = 0. Con-

sequently
∑n
i=1 µiπ2(di) ≡ 0 mod 〈ℓ[X]〉. As π2(di) ≡ di ≡ π1(di)

mod 〈ℓ[X]〉 for each i, it follows that
∑n
i=1 µiπ1(di) ≡ 0 mod 〈ℓ[X]〉

also. So as π1[D] ⊆ U1 and U1∩〈ℓ[X]〉 = {0}, clearly
∑n
i=1 µiπ2(di) = 0,
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contradicting the linear independence of {π1(di) | i ∈ I}. Conse-

quently {π2(di) | i ∈ I} is linearly independent. �

(2) {π2(di) | i ∈ I} is a basis for 〈π2[D]〉.

Let d ∈ D. As {π1(di) | i ∈ I} is a basis for 〈π1[D]〉, there exist π1(d1),

. . . , π1(dn) and scalars µ1, . . . , µn such that π1(d) =
∑n
i=1 µiπ1(di). Re-

peating the argument of (1) shows that π2(d) =
∑n
i=1 µiπ2(di). Hence

{π2(di) | i ∈ I} is a basis for 〈π2[D]〉. �

It follows from (2) that φ : π1(di) 7→ π2(di) is a bijection from a basis

of 〈π1[D]〉 to a basis of 〈π2[D]〉. Extend φ linearly to an isomorphism

〈π1[D]〉 → 〈π2[D]〉 and let e ∈ E. Then there exist π1(d1), . . . , π1(dn) and

scalars µ1, . . . , µn such that

ℓ1(e) = π1(ℓ(e)) =

n∑

i=1

µiπ1(di)

φ(ℓ1(e)) = φ

( n∑

i=1

µiπ1(di)

)

=

n∑

i=1

µiφ(π1(di))

=

n∑

i=1

µiπ2(di).

Thus φ(ℓ1(e)) ≡ ℓ1(e) mod 〈ℓ[X]〉. As ℓ1(e) ≡ ℓ2(e) mod 〈ℓ[X]〉 also, it

follows that φ(ℓ1(e)) ≡ ℓ2(e) mod 〈ℓ[X]〉. So as φ(ℓ1(e)), ℓ2(e) ∈ U2 and

U2 ∩ 〈ℓ[X]〉 = {0}, necessarily φ(ℓ1(e)) = ℓ2(e). Hence (φ,χ) : D1 → D2 is

an equivalence of configurations. �

The following proposition is an obvious consequence of the definition

of contraction.



62 CHAPTER 4. CONFIGURATIONS

Proposition 4.4.3. Let D be a configuration and let X ⊆ E(D). Then D/X =

D/BX up to an equivalence of configurations for every BX ∈ B(D|X).

The next proposition is the analogue of Proposition 3.6.3 for configu-

rations.

Proposition 4.4.4. Let D be a configuration and let X, Y ⊆ E(D) be disjoint.

Then

(1) (D\X)\Y = D\(X⊔ Y) = (D\Y)\X,

(2) (D/X)/Y = D/(X⊔ Y) = (D/Y)/X up to an equivalence of configurations,

and

(3) (D\X)/Y = (D/Y)\X up to an equivalence of configurations.

Proof. Write D = (D,E, ℓ). The statement (1) clearly holds, so we demon-

strate (2) and (3).

In order to establish (2), it suffices by symmetry to demonstrate that

(D/X)/Y = D/(X ⊔ Y) up to an equivalence of configurations. Clearly

each has ground set E. Let π be a projection of 〈D〉 along W := 〈ℓ[X]〉 onto

some complement U of W in 〈D〉.

Clearly W ′ := 〈π[ℓ[Y]]〉 6 U. Let π ′ be a projection of U along W ′ onto

some complement U ′ of W ′ in U. Then π determines a contraction D ′ of

D by X, and π ′ determines a contraction of D ′ by Y.

Moreover, ker(π ′ ◦ π) = W ⊕W ′ = 〈ℓ[X ⊔ Y]〉 and im(π ′ ◦ π) = U ′.

Consequently π ′ ◦ π determines a contraction of D by X ⊔ Y, and so (2)

holds.

We now consider (3). Clearly (D\X)/Y and (D/Y)\X each have ground

set E − X. Let π be a projection of 〈D〉 along W := 〈ℓ[Y]〉 onto some

complement U of W in 〈D〉. Then π determines a contraction of D by Y.

Moreover, it follows from the Modular Law that π ′ := π|〈ℓ[E−X]〉 is the

projection of V := 〈ℓ[E − X]〉 along W onto U ∩ V . So π ′ determines a

contraction of D\X by Y. Finally, we observe that (π ◦ ℓ)|E−X = π ′ ◦ (ℓ|E−X).

Hence (3) holds. �
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As contraction in configurations does not involve the deletion of loops,

contraction “almost commutes” with M[ · ].

Proposition 4.4.5. Let D be a configuration and let X ⊆ E(D). Then

(
M[D/X]

)∖
X =

(
M[D]

)/
X.

Proof. Write D = (D,E, ℓ), let π determine a contraction of D by X and let

BX ∈ B(D|X). Then

Y ∈ I((M[D])/X)

⇐⇒Y ⊔BX ∈ I(M[D])

⇐⇒ℓ|Y⊔BX
is injective and ℓ[Y ⊔BX] is linearly independent

⇐⇒ℓ|Y and ℓ|BX
are injective, and ℓ[Y]⊔ ℓ[BX] is linearly independent

⇐⇒(π ◦ ℓ)|Y is injective and (π ◦ ℓ)[Y] is linearly independent

⇐⇒Y ∈ I((M[D/X])\X). �

The next proposition is a restatement of Claim 5.3 of [HW06]. It is

used in Section 6.2 for establishing the finite case of the main theorem.

Proposition 4.4.6. Let D be a finite-dimensional configuration having point set

D =
⊔n
i=0Di and let

S = 〈D0〉+

n∑

i=1

(〈Di〉 ∩ 〈D−Di〉).

Then

dim(S) =

n∑

i=1

dim(〈D−Di〉) − (n− 1) dim(D).

Our argument is a restatement of that given on p. 1125 of [HW06].
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Proof. We demonstrate by induction that

dim(S) =

n∑

i=1

rM(D−Di) − (n− 1)r(M) (4.4.1)

where M := M[D̃]. The result then follows from the correspondence

between rank in independence spaces and dimension in configurations.

When n = 1, S = 〈D0〉 = 〈D −D1〉, so dim(S) = dim(〈D −D1〉) =

rM(D−D1), and (4.4.1) holds. Now suppose that n > 1 and that (4.4.1)

holds for n− 1. Then

dim(S) = dim(S/〈Dn〉) + dim(S∩ 〈Dn〉)

=

n−1∑

i=1

r
M[D̃/Dn]

((D−Dn) −Di) − (n− 2)r(M[D̃/Dn])

+ dim(〈D−Dn〉 ∩ 〈Dn〉)

=

n−1∑

i=1

rM/Dn
((D−Dn) −Di) − (n− 2)r(M/Dn)

+ dim(〈D−Dn〉) + dim(〈Dn〉) − dim(〈D〉)

by Prop. 4.4.5

=

n−1∑

i=1

rM(D−Di) − (n− 1)rM(Dn) − (n− 2)r(M)

+ (n− 2)rM(Dn) + rM(D−Dn) + rM(Dn) − r(M)

by Prop. 3.6.7

=

n∑

i=1

rM(D−Di) − (n− 1)r(M).

Hence (4.4.1) holds. �

The following technical proposition allows the “local” replacement

of a contraction by a “finite” contraction. This result is applied in Sec-
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tions 5.3 and 6.4 and Cahpter 7.

Proposition 4.4.7. Let D = (D,E, ℓ) be a configuration, let π determine a

contraction of D by X ⊆ E and let Y ⊆ π[D] be finite. Then there exist finite

X0 ⊆ X and π ′ determining a contraction of D by X0 such that Y ⊆ π ′[D] and

π = π ′′ ◦ π ′ for some projection π ′′ fixing im(π).

Proof. Write Y = {y1, . . . ,yn}. Then for each i, there exist di ∈ D and

finite Xi ⊆ X such that yi ≡ di mod 〈ℓ[Xi]〉. Let X0 =
⋃n
i=1 Xi and let

π ′ be the projection of 〈D〉 along W := 〈ℓ[X0]〉 onto im(π) ⊕ U, where

〈ℓ[X]〉 = U⊕W. Then π ′ determines a contraction of D by X0 such that

Y ⊆ π ′[D]. Moreover, π = π ′′ ◦ π ′, where π ′′ is the projection of 〈D〉 along

U onto im(π)⊕W. �

4.5 Connectivity

This section examines connectivity in configurations. Like many concepts

for configurations, it corresponds closely to its analogue for general inde-

pendence spaces. However, it may be defined without taking a difference

of dimensions (ranks in general), making it applicable even to infinite-di-

mensional configurations. This is because a suitable subspace can always

be induced, even if the configuration itself has a paucity of points in the

region whose dimension is to be determined (see Figure 4.3).

Definition 4.5.1. Let D = (D,E, ℓ) be a configuration. Define λD : {(X,Y) |

X∪ Y = E}→ ω⊔ {∞} by

λD(X,Y) = dim(〈ℓ[X]〉 ∩ 〈ℓ[Y]〉)

whenever X, Y ⊆ E are such that X ∪ Y = E, and define λD : P(E) →

ω⊔ {∞} by

λD(X) = λD(X,E−X)
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X

Y

〈X〉 ∩ 〈Y〉

Figure 4.3: A geometric representation of a configuration D exhibiting
a “split” into two flats X and Y. Even though 〈X〉 ∩ 〈Y〉 ∩D is empty,
〈X〉 ∩ 〈Y〉 still exists as a set of points in the ambient vector space.

for every X ⊆ E. Then define κD : P(E)×P(E)→ ω⊔ {∞} by

κD(X ′,Y ′) = inf{λD(X,Y) | X ′ ⊆ X,Y ′ ⊆ Y,X∪ Y = E}.

for every X ′, Y ′ ⊆ E. The subscript “D” is omitted when there is no

ambiguity.

The following proposition lists some natural observations concerning

these connectivity functions.

Proposition 4.5.2. Let D = (D,E, ℓ) be a configuration. Then

(1) λD(X,Y) = λD(ℓ[X], ℓ[Y]) = λ
D̃

(
X∩ E

(
D̃
)
,Y ∩ E

(
D̃
))

whenever X, Y ⊆ E

are such that X∪ Y = E,

(2) λD(X) = λD(ℓ[X]) = λ
D̃

(
X∩ E

(
D̃
))

for every X ⊆ E, and

(3) κD(X,Y) = κD(ℓ[X], ℓ[Y]) = κ
D̃

(
X∩ E

(
D̃
)
,Y ∩ E

(
D̃
))

for every X, Y ⊆ E.
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So it suffices in the context of connectivity to simply view configura-

tions as subsets of their ambient vector spaces.

The next proposition is an analogue of Proposition 3.9.2 for configu-

rations.

Proposition 4.5.3. For every configuration,

(1) λ( · , · ), λ( · ) and κ( · , · ) are each symmetric, and

(2) κ( · , · ) is increasing in each of its arguments.

The following proposition says that a subset of a configuration may

be replaced by its closure without affecting either λ or κ.

Proposition 4.5.4. Let D be a configuration. Then

(1) λ(X,Y) = λ(D∩ 〈X〉,Y) whenever X, Y ⊆ D are such that X∪ Y = D,

(2) λ(X) = λ(D∩ 〈X〉) for every X ⊆ D, and

(3) κ(X,Y) = κ(D∩ 〈X〉,Y) for every X, Y ⊆ D.

We now confirm that λ and κ for configurations coincide with their

analogues for general independence spaces in the finite-dimensional case

(that is, when the latter are defined).

Proposition 4.5.5. Let D be a finite-dimensional configuration. Then λD =

λM[D] and κD = κM[D].

Proof. Write D = (D,E, ℓ) and let X, Y ⊆ E be such that X∪ Y = E. Then

λD(X,Y) = dim(〈ℓ[X]〉 ∩ 〈ℓ[Y]〉)

= dim(〈ℓ[X]〉) + dim(〈ℓ[Y]〉) − dim(D)

= rM[D](X) + rM[D](Y) − r(M[D])

= λM[D](X,Y).

Hence λD = λM[D]. The result for κ is then clear. �
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Submodularity then follows from Proposition 3.9.4.

Corollary 4.5.6. λ( · ) is submodular for every finite-dimensional configuration.



Chapter 5

Further Notions

This chapter encompasses a trio of lesser-known topics. Each arose as an

appropriate tool for the solution of a particular problem for tree-decom-

positions of configurations (see Chapter 6). While this was the original

motivation, the ideas involved also have their own intrinsic merit. Con-

sequently some further development has been given.

5.1 Bridges

The aim of this section is to develop an analogue of a concept from graph

theory. Given a graph G and a subgraph X of G, the bridges of X in G (or

the components mod X of G) are the connected components of G− X (see

Figure 5.1). Some theory of bridges in graphs may be found on pp. 27–30

of [Tut01]. Note that some authors use “bridge” to refer to an isthmus, an

edge that separates its endvertices.

The—perhaps initially surprising—difference in the matroidal setting

is the replacement of deletion by contraction. This can be understood by

considering graph G and its cycle independence space M(G). Deleting X

from G is equivalent to

(1) contracting EG[X] in G, and then

69
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(2) deleting V[X/EG[X]] from G/EG[X].

As connectivity in M(G) corresponds to 2-connectivity in G (see p. 127

of [Oxl04]), step (2) is unimportant from a matroidal perspective. So

deleting X from G effectively corresponds to contracting EG[X] in M(G).

X

G

R1

R2

R3

R4

R5

Figure 5.1: Bridges of X in a graph G.

Definition 5.1.1. Let M be an independence space on E. Define γM : E→

P(E) by

γM(e) = {e}∪ {f ∈ E | (∃C ∈ C(M)){e, f} ⊆ C}

for every e ∈ E. Then γM( · ) induces a relation γM on E, given by e γM f

if and only if e ∈ γM(f). As usual, the subscript “M” is omitted when

there is no ambiguity.

Proposition 5.1.2. LetM be an independence space. Then γM is an equivalence

relation on E(M).

For completeness, we reproduce the argument given for matroids on

pp. 124–125 of [Oxl04].
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Proof. Clearly γ is reflexive and symmetric. So we demonstrate transitiv-

ity: suppose that e ∈ γ(f) and f ∈ γ(g), where e, f, g ∈ E(M) are distinct.

Then g ∈ γ(f) by symmetry, so there exist C1, C2 ∈ C(M) such that e ∈ C1,

g ∈ C2 and C1 ∩C2 is non-empty. Without loss of generality, |C1 ∪C2| is

minimal. We wish to show that M has a circuit containing {e,g}. Aiming

for a contradiction, suppose otherwise.

Then C1 6= C2. Let h ∈ C1 ∩C2. By Strong Circuit Elimination, there

exists C3 ∈ C(M) such that e ∈ C3 ⊆ (C1 ∪ C2) − {h}. By hypothe-

sis, g /∈ C3. As C3 * C1, there exists i ∈ (C2 − C1) ∩ C3. Applying

Strong Circuit Elimination again, we see that there exists C4 ∈ C(M) such

that g ∈ C4 ⊆ (C2 ∪C3) − {i}. As C4 * C2, necessarily C4 ∩ (C3 −C2) 6= ∅,

so C1 ∩ C4 6= ∅. But C1 ∪ C4 ⊆ (C1 ∪ C2) − {i}, so |C1 ∪ C4| < |C1 ∪ C2|,

contradicting the choice of (C1,C2). Hence M has a circuit containing

{e,g}, and so γ is transitive. �

Definition 5.1.3. Let M be an independence space and let X ⊆ E(M).

Then an X-bridge of M is a γM/X-equivalence class. A connected compo-

nent of M is a ∅-bridge of M. A separator of M is a union of connected

components of M. The empty separator of M is ∅.

Let D be a configuration and let X ⊆ E(D). Then an X-bridge of D is an

X-bridge of M[D]. The notions of connected component, separator and

empty separator are then inherited from independence spaces.

It follows immediately from the definition that the connected compo-

nents of M are precisely its γ-equivalence classes.

We now give some useful characterisations of unions of X-bridges,

which are separators when X is empty. We first consider “combining

bases.”

Proposition 5.1.4. Let M be an independence space on E, let X ⊆ E, let R ⊆

E− X and let R̄ = (E− X) − R. Then R is a union of X-bridges of M if and

only if B1 ⊔ BX ⊔ B2 ∈ B(M) whenever BX ∈ B(M|X) is extended by B1 to a

basis of M|(R⊔X) and (independently) extended by B2 to a basis of M|(X⊔ R̄).
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Proof. Suppose that R is a union of X-bridges of M and let BX ∈ B(M|X).

Extend BX by B1 to a basis of M|(R ⊔ X) and (independently) by B2 to a

basis ofM|(X⊔ R̄). Let B = B1⊔BX⊔B2 and suppose that B /∈ I(M). Then

B contains some C ∈ C(M). In light of (C4), we may assume that |C−X| is

minimal without loss of generality. As R is a union of X-bridges, C cannot

properly meet both R and R̄. So either C ⊆ B1 ⊔ BX or C ⊆ BX ⊔ B2,

which is impossible. Thus B ∈ I(M). As B1 ⊔BX and BX ⊔B2 are maximal

I(M)-subsets of R⊔X and X⊔ R̄ respectively, B is a maximal I(M)-subset

of E, that is, B ∈ B(M).

Now suppose that B1 ⊔ BX ⊔ B2 ∈ B(M) whenever BX ∈ B(M|X) is

extended by B1 to a basis of M|(R ⊔ X) and (independently) extended

by B2 to a basis of M|(X ⊔ R̄), and that R is not a union of X-bridges

of M. Then there exist e ∈ R and f ∈ R̄ such that f ∈ γM/X(e). But

then there exists C ∈ C(M) containing {e, f}. Each of C ∩R and C ∩ R̄

is independent, so there exist (independent) extensions B1 ⊇ C ∩R and

B2 ⊇ C∩ R̄ of some BX ∈ B(M|X) containing C∩X to bases of M|(R⊔X)

andM|(X⊔ R̄) respectively. It follows that C ⊆ B1⊔BX⊔B2, contradicting

the independence of B1 ⊔ BX ⊔ B2. Hence R is a union of X-bridges of

M. �

Corollary 5.1.5. Let M be an independence space on E and let K ⊆ E. Then K

is a separator of M if and only if BK ⊔ BE−K ∈ B(M) whenever BK ∈ B(M|K)

and BE−K ∈ B(M|(E− K)).

In the finite-rank case we have the following rank characterisation.

Proposition 5.1.6. Let M be a finite-rank independence space on E, let X ⊆ E

and let R ⊆ E−X. Then R is a union of X-bridges of M if and only if

r(R⊔X) − r(X) + r(E− R) = r(M).

Proof. Suppose that R is a union of X-bridges of M. Let BX ∈ B(M|X).

Extend BX by B1 to a basis of M|(R ⊔ X) and (independently) by B2 to
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a basis of M|(E − R). Then B1 ⊔ BX ⊔ B2 ∈ B(M) by Proposition 5.1.4.

Consequently

|B1 ⊔BX| − |BX| + |BX ⊔B2| = r(M)

r(R⊔X) − r(X) + r(E− R) = r(M).

Now suppose that r(R ⊔ X) − r(X) + r(E− R) = r(M). Let BX ∈ B(M|X).

Extend BX by B1 to a basis of M|(R ⊔ X) and (independently) by B2 to a

basis of M|(E− R). Let B = B1 ⊔BX ⊔B2. Then

|B1 ⊔BX| − |BX| + |BX ⊔B2| = r(M)

|B| = r(M).

Moreover, R ⊔ X ⊆ cl(B1 ⊔ BX) ⊆ cl(B) and (E− R) − X ⊆ cl(BX ⊔ B2) ⊆

cl(B), so B spans E. Hence B ∈ B(M), and so R is a union of X-bridges of

M by Proposition 5.1.4. �

Corollary 5.1.7. Let M be a finite-rank independence space on E and let K ⊆ E.

Then K is a separator of M if and only if

r(K) + r(E− K) = r(M).

Similar to Corollary 5.1.5, “partitioning a basis yields bases.”

Proposition 5.1.8. Let M be an independence space on E and let K ⊆ E. Then

K is a separator ofM if and only if B∩K ∈ B(M|K) and B−K ∈ B(M|(E−K))

for every B ∈ B(M).

Proof. Recall that whenever B ∈ B(M) and e ∈ E(M) − B, the unique

circuit of M containing e and contained in B ⊔ {e} is denoted by C(e,B)

(see Proposition 3.2.3).

Suppose that K is a separator of M. Let B ∈ B(M). Then B ∩ K ⊆ K

and B− K ⊆ E− K are each independent. Suppose that B ∩ K /∈ B(M|K).

Then there exists e ∈ K − B such that (B∩K)⊔ {e} ∈ I(M). Consequently
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C(e,B) * K, so C(e,B) − K is non-empty, contradicting K being a separa-

tor. Thus B∩K ∈ B(M|K). By symmetry, B− K ∈ B(M|(E− K)).

Now suppose that B ∩ K ∈ B(M|K) and B− K ∈ B(M|(E− K)) when-

ever B ∈ B(M) and that K is not a separator of M. Then there exists

C ∈ C(M) such that C ∩ K and C− K are each non-empty. Let e ∈ C ∩ K

and extend C− {e} to a basis B of M. Then B∩K ∈ B(M|K), so C(e,B∩K)

is the unique circuit containing e that is contained in (B ∩ K) ⊔ {e}. But

C is the unique circuit containing e that is contained in B ⊔ {e} , so

C = C(e,B ∩ K) ⊆ K, contradicting C− K 6= ∅. Hence K is a separator of

M. �

In the finite-rank case, this result could easily have been derived from

Corollary 5.1.7. Combining the preceding results gives the following char-

acterisations of X-bridges.

Corollary 5.1.9. Let M be an independence space on E, let X ⊆ E and let

R ⊆ E−X. Then the following are equivalent:

(1) R is an X-bridge of M.

(2) R is a minimal non-empty union of X-bridges of M.

(3) R is non-empty and is minimal with respect to B1 ⊔BX ⊔B2 ∈ B(M) when-

ever BX ∈ B(M|X) is extended by B1 to a basis of M|(R⊔X) and (indepen-

dently) extended by B2 to a basis of M|(E− R).

If M has finite rank, these conditions are also equivalent to:

(4) R is non-empty and is minimal with respect to r(R⊔X)− r(X)+ r(E−R) =

r(M).

The next corollary is a special case of Corollary 5.1.9.

Corollary 5.1.10. Let M be an independence space on E and let K ⊆ E. Then

the following are equivalent:
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(1) K is a connected component of M.

(2) K is a minimal non-empty separator of M.

(3) K is non-empty and is minimal with respect to BK ⊔BE−K ∈ B(M) for every

BK ∈ B(M|K) and every BE−K ∈ B(M|(E−K)).

(4) K is non-empty and is minimal with respect to B∩K ∈ B(M|K) and B−K ∈

B(M|(E−K)) for every B ∈ B(M).

If M has finite rank, these conditions are also equivalent to:

(5) K is non-empty and is minimal with respect to r(K) + r(E−K) = r(M).

As B ∈ B(M[D]) if and only if ℓ[B] ∈ B(D) for every configuration

D = (D,E, ℓ), we have the following consequence of Corollary 5.1.9.(3).

Proposition 5.1.11. Let D = (D,E, ℓ) be a configuration, let X ⊆ E and let

R ⊆ E−X. Then R is an X-bridge of D if and only if ℓ[R] is an ℓ[X]-bridge of D.

So it suffices in the context of bridges to simply view configurations

as subsets of their ambient vector spaces. The next result is used in Sec-

tion 6.1.

Proposition 5.1.12. Let D be a configuration, let X ⊆ D and let R ⊆ D− X.

Then R is a union of X-bridges of D if and only if

〈R⊔X〉 ∩ 〈D− R〉 = 〈X〉.

Proof. Suppose that R is a union of X-bridges of D. Clearly 〈X〉 ⊆ 〈R ⊔

X〉 ∩ 〈D − R〉. If this containment were strict and BX ∈ B(X) were ex-

tended by B1 to a basis of R ⊔ X and (independently) extended by B2 to

a basis of D− R, then B1 ⊔ BX ⊔ B2 would be linearly dependent, contra-

dicting Proposition 5.1.4. Hence equality holds.

Noe suppose that 〈R⊔X〉 ∩ 〈D− R〉 = 〈X〉. Let BX ∈ B(X). Extend BX

by B1 to a basis of R ⊔ X and (independently) by B2 to a basis of D− R.
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Clearly B := B1 ⊔ BX ⊔ B2 spans D. If B /∈ B(D), then there would exist

non-zero y ∈ 〈BX ⊔B1〉 ∩ 〈B2〉. But then y ∈ 〈BX〉, contradicting the linear

independence of BX ⊔B2. Hence B ∈ B(D). �

Combining this result with Corollaries 5.1.9 and 5.1.10 and Proposi-

tion 5.1.11 yields the next two corollaries.

Corollary 5.1.13. LetD be a configuration, let X ⊆ D and let R ⊆ D−X. Then

the following are equivalent:

(1) R is an X-bridge of D.

(2) R is a minimal non-empty union of X-bridges of D.

(3) R is non-empty and is minimal with respect to B1 ⊔BX ⊔B2 ∈ B(D) when-

ever BX ∈ B(X) is extended by B1 to a basis of R ⊔ X and (independently)

extended by B2 to a basis of D− R.

(4) R is non-empty and is minimal with respect to 〈R⊔X〉 ∩ 〈D− R〉 = 〈X〉.

If D is finite-dimensional, these conditions are also equivalent to:

(5) R is non-empty and is minimal with respect to dim(R ⊔ X) − dim(X) +

dim(D− R) = dim(D).

Corollary 5.1.14. Let D be a configuration and let K ⊆ D. Then the following

are equivalent:

(1) K is a connected component of D.

(2) K is a minimal non-empty separator of D.

(3) K is non-empty and is minimal with respect to BK ⊔BD−K ∈ B(D) for every

BK ∈ B(K) and every BD−K ∈ B(D−K).

(4) K is non-empty and is minimal with respect to B ∩ K ∈ B(K) and B− K ∈

B(D−K) for every B ∈ B(D).
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(5) K is non-empty and is minimal with respect to 〈D〉 = 〈K〉 ⊕ 〈D−K〉.

If D is finite-dimensional, these conditions are also equivalent to:

(6) K is non-empty and is minimal with respect to dim(K) + dim(D− K) =

dim(D).

We now derive some further results concerning bridges, the first of

which follows immediately from Proposition 5.1.2.

Corollary 5.1.15. Let M be an independence space on E and let X ⊆ E. Then

the X-bridges of M partition E− X. In particular, the connected components of

M partition E.

Corollary 5.1.16. Let D be a configuration and let X ⊆ D. Then the X-bridges

of D partition D−X. In particular, the connected components of D partition D.

Proposition 5.1.17. Let M be an independence space and let X ⊆ E(M). Then

each X-bridge R of M either has the form cl(R) − cl(X) or is a singleton contain-

ing an element of cl(X) − X. In particular, each connected component K of M

either has the form cl(K) − L(M) or is a singleton consisting of a loop of M.

Proof. Let e ∈ E(M) − X. If e ∈ L(M/X), then γM/X(e) = {e} and e ∈

clM(X) − X. So suppose not. Clearly γM/X(e) ⊆ clM(γM/X(e)) − clM(X).

Let f ∈ clM(γM/X(e)) − clM(X). Then f ∈ clM/X(γM/X(e)) by (CL2) and

Proposition 3.6.8. Consequently either f ∈ γM/X(e), or by (3.5.1) there

exists C ∈ C(M/X) containing both f and some g ∈ γM/X(e). In the

latter case, f ∈ γM/X(g) by definition, so f ∈ γM/X(e) by Proposition 5.1.2.

Hence γM/X(e) = clM(γM/X(e)) − clM(X). The observation for connected

components of M follows on setting X = ∅. �

Corollary 5.1.18. Let D be a configuration and let X ⊆ D. Then each X-bridge

R ofD either has the formD∩ (〈R〉− 〈X〉) or is a singleton containing an element

of D∩ (〈X〉−X). In particular, each connected component K of D either has the

form D∩ (〈K〉− {0}) or is {0}.
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The following results involving closures are worth noting.

Proposition 5.1.19. Let M be an independence space, let X ⊆ E(M) and let R

be a union of X-bridges of M. Then

cl(R⊔X) = R∪ cl(X).

Proof. By (CL1) and Lemma 3.5.3,

R∪ cl(X) ⊆ cl(R∪ cl(X)) = cl(R⊔X).

So let e ∈ cl(R ⊔ X) and suppose that e /∈ R ∪ cl(X). Then there exists

C ∈ C(M) such that e ∈ C ⊆ R⊔X⊔ {e}. In light of (C4), we may assume

that |C − X| is minimal without loss of generality. If C ⊆ X ⊔ {e}, then

e ∈ cl(X), so C ∩R is non-empty. Let f ∈ C ∩R. Then e ∈ γM/X(f) by

Proposition 3.6.6, contradicting e /∈ R. Hence cl(R⊔X) ⊆ R∪ cl(X). �

Corollary 5.1.20. Let M be an independence space and let K be a separator of

M. Then

cl(K) = K∪L(M).

Corollary 5.1.21. LetD be a configuration and let X ⊆ D. Then for every union

R of X-bridges of D,

D∩ 〈R⊔X〉 = R∪ (D∩ 〈X〉).

In particular, for every separator K of D,

D∩ 〈K〉 = K∪ (D∩ {0}).

Proposition 5.1.22. Let M be an independence space, let X ⊆ E(M) and let

R1 and R2 be unions of X-bridges of M containing no common X-bridge of M.

Then

cl(R1 ⊔X)∩ cl(R2 ⊔X) = cl(X).
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Proof.

cl(R1 ⊔X)∩ cl(R2 ⊔X) = (R1 ∪ cl(X))∩ (R2 ∪ cl(X)) by Prop. 5.1.19

= (R1 ∩R2)∪ cl(X)

= cl(X) by Coroll. 5.1.15.

�

Corollary 5.1.23. Let M be an independence space and let K1 and K2 be sepa-

rators of M containing no common connected component of M. Then

cl(K1)∩ cl(K2) = L(M).

Corollary 5.1.24. Let D be a configuration and let X ⊆ D. Then whenever R1

and R2 are unions of X-bridges of D containing no common X-bridge of D,

D∩ 〈R1 ⊔X〉 ∩ 〈R2 ⊔X〉 = D∩ 〈X〉.

In particular, whenever K1 and K2 are separators of D containing no common

connected component of D,

D∩ 〈K1〉 ∩ 〈K2〉 = D∩ {0}.

Proposition 5.1.25. Let M be an independence space on E, let X ⊆ E and let R

be a union of X-bridges of M. Then

cl(R)∩ cl(E− R) ⊆ cl(X).

Proof. Immediate from Corollary 5.1.15 and Proposition 5.1.22. �

Corollary 5.1.26. LetM be an independence space on E and let K be a separator

of M. Then

cl(K)∩ cl(E− K) ⊆ L(M).
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Note that the converse of the last result does not hold (consider a

partition of a 4-circuit into two 2-element sets).

Corollary 5.1.27. LetD be a configuration and let X ⊆ D. Then for every union

R of X-bridges of D,

D∩ 〈R〉 ∩ 〈D− R〉 ⊆ D∩ 〈X〉.

In particular, for every separator K of D,

D∩ 〈K〉 ∩ 〈D− K〉 ⊆ D∩ {0}.

5.2 Roundness

This section treats round independence spaces, which generalise com-

plete graphs. While complete graphs vary only in size, round indepen-

dence spaces also vary in form—a consequence of the greater generality

of the matroidal setting.

Definition 5.2.1. A split of an independence space M on E is a set {F, F ′}

where F, F ′ ∈ F(M) − {E} are such that F ∪ F ′ = E. The order of a split

{F, F ′} is λM(F, F ′) if M has finite rank, and undefined otherwise. A split

is a k-split if it has order k. An independence space splits if it has a split,

and is non-splitting or round otherwise.

A split of a configuration D is a split ofM[D]. The order of a split {F, F ′}

of D is λD(F, F ′). The notions of k-split, splits, non-splitting and round

are then defined as for independence spaces.

The terminology “splits” first appears in [KK82], while the terminol-

ogy “round” first appears in [GW03]. As our interest is in those indepen-

dence spaces and configurations that do not split, we shall predominantly

use the positively-phrased “round.”

Clearly every independence space (configuration) having rank (di-

mension) at most 1 is trivially round. Round independence spaces may
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be characterised as in the next proposition, the first equivalence of which

was proven for matroids on pp. 11–12 of [Kab06].

Proposition 5.2.2. Let M be an independence space on E. Then the following

are equivalent:

(1) M is round.

(2) M̃ is round.

(3) E−H is spanning for every H ∈ H(M).

Proof. The equivalence of (1) and (2) follows from the fact that E = F ′ ∪ F

for some F, F ′ ∈ F(M) − {E} if and only if E
(
M̃
)

= F ∪ F ′ for some F,

F ′ ∈ F
(
M̃
)
− E
(
M̃
)
. So we demonstrate the equivalence of (1) and (3).

Suppose that M is round. Let H ∈ H(M) and let F = cl(E−H). Then

E = H ∪ F, so as H 6= E and M is round, F = E. Consequently E−H is

spanning.

Now suppose that E − H is spanning for every H ∈ H(M). Let F,

F ′ ∈ F(M) be such that F ∪ F ′ = E and suppose that F is proper. Then

there exists H ∈ H(M) containing F. But then E − H ⊆ E − F ⊆ F ′ is

spanning, so E = cl(E−H) ⊆ cl(F ′) = F ′ ⊆ E. Hence F ′ = E, and so M is

round. �

If M were a matroid, E − H in Proposition 5.2.2.(3) would be a co-

circuit—that is, a circuit of the dual matroid M∗ of M (see pp. 68–70 of

[Oxl04]). We cannot make such an identification for arbitrary M, as the

class of independence spaces does not possess a reasonable notion of du-

ality (see pp. 260–261 of [Oxl78]).

Recall that a hyperplane of a vector space U is a maximal proper sub-

space of U. Then we have the following characterisation of round config-

urations.

Corollary 5.2.3. Let D be a configuration having point set D. Then the follow-

ing are equivalent:
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(1) D is round.

(2) D is round.

(3) D̃ is round.

(4) D is not contained in the union of any pair of proper subspaces of 〈D〉.

(5) 〈D−H〉 = 〈D〉 for every hyperplane H of 〈D〉.

As a consequence of the first equivalence in Corollary 5.2.3, without

loss of generality we may simply view configurations as subsets of their

ambient vector spaces for the remainder of this section.

The next corollary follows immediately from the fact that no vector

space is contained in the union of a pair of its proper subspaces.

Corollary 5.2.4. Vector spaces are round. Additionally,M[V] is round for every

vector space V .

The following proposition provides a sufficient condition for when

roundness of a minor certifies roundness. It was proved for matroids on

pp. 11–12 of [Kab06].

Proposition 5.2.5. Every independence space having a round spanning restric-

tion is round.

Proof. Let M be an independence space on E and let X ⊆ E be spanning

and such that M|X is round. Suppose that M splits. Then E = F ∪ F ′ for

some F, F ′ ∈ F(M) − {E}. Now,

X∩ cl(F∩X) ⊆ X∩ cl(F) = X∩ F ⊆ X.

So F∩X ∈ F(M|X) by Corollary 3.5.6. If F∩X = X, then

F ⊆ E = cl(X) = cl(F∩X) ⊆ cl(F) = F
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contradicting F 6= E. Thus F ∩ X 6= X. By symmetry, F ′ ∩ X ∈ F(M|X) −

{X} also. As X = (F ∩ X) ∪ (F ′ ∩ X), it follows that M|X splits, which is

impossible. Hence M is round. �

Corollary 5.2.6. Every configuration D containing round N such that 〈N〉 =

〈D〉 is round.

In light of Proposition 5.2.5, the next result provides a condition under

which roundness of an independence space can be certified by roundness

of a submatroid. This is particularly useful when a finite certificate is

necessary.

Proposition 5.2.7. Every finite-rank round independence space has a finite

round spanning restriction.

Proof. Let M be a finite-rank round independence space on E and let

X ⊆ E be finite, spanning and lexicographically minimal with respect to

s(X) =
(
s0(X), . . . , sr(M)−2(X)

)

where sk(X) is the number of k-splits of M|X for each k.

Suppose that M|X splits. Let k be the least order for which M|X has a

split and let {X1,X2} be a k-split of M|X.

As M is round, {clM(X1), clM(X2)} is not a split of M, so there exists

e ∈ E− (clM(X1) ∪ clM(X2)). Let X ′ = X ⊔ {e}. Clearly X ′ spans M and is

finite. We argue that s(X ′) < s(X), thus establishing the result by contra-

diction.

(1) {F ′1 − {e}, F ′2 − {e}} is a split of M|X having order at most k whenever {F ′1, F ′2}

is a split of M|X ′ having order at most k.

Let {F ′1, F ′2} be a split of M|X ′ having order at most k. As F ′1 ∈ F(M|X ′),
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it follows from Corollary 3.5.6 that

X ′ ∩ clM(F ′1) ⊆ F
′
1 ⊆ X

(X ′ − {e})∩ clM(F ′1 − {e}) ⊆ F ′1 − {e} ⊆ X ′ − {e} by (CL2)

X∩ clM(F ′1 − {e}) ⊆ F ′1 − {e} ⊆ X.

Thus F ′1 − {e} ∈ F(M|X) by Corollary 3.5.6. If F ′1 − {e} = X, then

X ′ = X ′ ∩ clM(X)

= X ′ ∩ clM(F ′1 − {e})

= clM|X ′(F ′1 − {e}) by Prop. 3.5.5

⊆ clM|X ′(F ′1) by (CL2)

= F ′1

⊆ X ′

—a contradiction. Thus F ′1 − {e} 6= X. It follows by symmetry that

F ′2 − {e} ∈ F(M|X) − {X} also, and so {F ′1 − {e}, F ′2 − {e}} is a split of M|X.

Finally,

λM|X(F
′
1 − {e}, F ′2 − {e}) = rM|X(F

′
1 − {e}) + rM|X(F

′
2 − {e})

− r(M|X)

= rM(F ′1 − {e}) + rM(F ′2 − {e}) − rM(X)

6 rM(F ′1) + rM(F ′2) − rM(X ′)

= rM|X ′(F ′1) + rM|X ′(F ′2) − r(M|X ′)

= λM|X ′(F ′1, F ′2).

The claim follows. �

So as M|X has no splits having order at most k− 1, neither does M|X ′. If

M|X ′ has no k-splits, then clearly s(X ′) < s(X). So suppose otherwise.

(2) Whenever {F1, F2} is a k-split of M|X, there exists at most one k-split {F ′1, F ′2}
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of M|X ′ such that {F ′1 − {e}, F ′2 − {e}} = {F1, F2}.

For suppose that there are two distinct k-splits of M|X ′ satisfying the

hypothesis of (2). Then these are some pair of {F1, F2⊔ {e}}, {F1⊔ {e}, F2}

and {F1 ⊔ {e}, F2 ⊔ {e}}. Consequently there exists i for which Fi, Fi ⊔

{e} ∈ F(M|X ′), and so rM(Fi ⊔ {e}) = rM(Fi) + 1. But then there exists

j such that rM(F ′j) = rM(F ′j − {e}) + 1, where {F ′1, F ′2} is one of the pair

of k-splits of M|X ′. Thus

k = λM|X(F1, F2)

= rM|X(F1) + rM|X(F2) − r(M|X)

= rM(F1) + rM(F2) − rM(X)

= rM(F1) + rM(F2) − rM(X ′) as X spans M

< rM(F1) + rM(F2) − rM(X ′) + 1

6 rM(F ′1) + rM(F ′2) − rM(X ′)

= rM|X ′(F ′1) + rM|X ′(F ′2) − r(M|X ′)

= λM|X ′(F ′1, F ′2)

= k

—a contradiction. The claim follows. �

Consequently M|X ′ has at most as many k-splits as M|X. So as {X1,X2} is

a k-split of M|X not obtainable from a k-split of M|X ′ by deleting e, M|X ′

has strictly fewer k-splits than M|X. As both have no splits of order at

most k− 1, it follows that s(X ′) < s(X), completing the proof. �

Corollary 5.2.8. Every finite-dimensional round configurationD contains finite

round N such that 〈N〉 = 〈D〉.

The following result was proved for matroids on pp. 11–12 of [Kab06].

Proposition 5.2.9. Every contraction of a round independence space is round.



86 CHAPTER 5. FURTHER NOTIONS

Proof. Let M be a round independence space on E, let X ⊆ E and suppose

that M/X splits. Then E− X = F ∪ F ′ for some F, F ′ ∈ F(M/X) − {E− X}.

Consequently E = (X ⊔ F) ∪ (X ⊔ F ′). It then follows from Corollary 3.6.9

that X⊔ F, X⊔ F ′ ∈ F(M) − {E}, contradicting the roundness of M. Hence

M/X is round. �

Corollary 5.2.10. Every contraction of a round configuration is round.

Proof. LetD be a round configuration and let X ⊆ D. AsD is round,M[D]

is round. Proposition 5.2.9 shows that (M[D])/X is round, so (M[D/X])\X

is round by Proposition 4.4.5. But then M[D/X] is round by Proposi-

tion 5.2.5, so D/X is round. �

Recall that a triangle is a circuit of size 3, and for every set I, the

collection of all 2-element subsets of I is denoted by [I]2.

It is reasonable to ask which frequently encountered classes of in-

dependence spaces are round. One such class are the Dowling cliques,

which were introduced for matroids in [GK06].

Definition 5.2.11. A Dowling clique is an independence space M having

E(M) = B ⊔ X, where B = {bi | i ∈ I} ∈ B(M) and X = {xJ | J ∈ [I]2} are

such that {bi,bj, x{i,j}} is a triangle whenever i, j ∈ I are distinct. The joints

of M are the elements of B.

A configuration D is a Dowling clique if M[D] is a Dowling clique. The

joints of D are the joints of M[D].

The next proposition was proved for finite Dowling cliques on p. 13

of [Kab06].

Proposition 5.2.12. Dowling cliques are round.

Proof. Let M be a Dowling clique on E with set of joints B and let X = E−

B. Suppose that M splits. Then E = F1 ∪ F2 for some F1, F2 ∈ F(M) − {E}.

For each i, let Bi = B∩ Fi. Then as Fi 6= E, necessarily Bi 6= B. So Bi−B3−i

is non-empty. Let bi ∈ Bi − B3−i. Then there exists x ∈ X such that
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{b1,b2, x} is a triangle. If x ∈ Fi, then b3−i ∈ Fi, and thus b3−i ∈ Bi, which

is impossible. Consequently x /∈ F1 ∪ F2, contradicting F1 ∪ F2 = E. Hence

M is round. �

Dowling cliques arise from complete graphs. Recall that a graph is

complete if every distinct pair of its vertices are linked by exactly one

edge. A clique is a complete subgraph of a graph. On considering the set

of edges incident on some fixed vertex of a complete graph, it is easily

seen that:

Proposition 5.2.13. Let K be a complete graph. ThenM(K) is a Dowling clique.

In particular, it is round.

Consequently (graph) cliques give rise to Dowling cliques, and so

round subindependence spaces generalise (graph) cliques. This relation-

ship later helps motivate the formulation chosen for a matroidal notion

of chordality in Section 5.3.

Another class of round independence spaces is a subclass of the uni-

form independence spaces, which are introduced below.

Definition 5.2.14. Let m ∈ ω, let β > m be a cardinal and let E be any set

having cardinality β. Then the uniform independence space of rank m on β

elements, denoted Um,β, is (E, {X ⊆ E : |X| 6 m}).

Proposition 5.2.15. Let m ∈ ω and let β > m be a cardinal. Then Um,β is an

independence space that is defined uniquely up to isomorphism.

Proof. Let Um,E = (E, {X ⊆ E : |X| 6 m}) for every set E having cardinality

β. Clearly Um,E satisfies (I1)–(I3), so we establish (I4). Let X ⊆ E be such

that Y ∈ Im,E for every finite Y ⊆ X. Then X contains no (m+ 1)-element

subsets, so X ∈ Im,E and (I4) holds.

Whenever E and E ′ are two sets having cardinality β, there exists a

bijection φ : E → E ′, and clearly X ∈ Im,E if and only if φ[X] ∈ Im,E ′ .

Consequently Um,E
∼= Um,E ′ . �
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On allowing infinite m in Definition 5.2.14, two possibilities arise. If

m = β, a class of isomorphic free independence spaces is obtained, while

ifm < β, the definition of independence fails to satisfy (I4). Consequently

only finite values of m are considered in Definition 5.2.14.

The next result was noted for matroids in [GGW03].

Proposition 5.2.16. Let m ∈ ω and let β > m be a cardinal. Then Um,β is

round if and only if β > 2m− 1.

Proof. If m = 0, then Um,β is trivially round and clearly β > 2m − 1.

So suppose that m > 1. The hyperplanes of Um,β are precisely its (m−

1)-element sets. If β > 2m− 1, the complements of these each contain at

least m elements and thus span, while if β < 2m− 1, the complements

each contain at most m− 1 elements, and thus do not span. The result

then follows from Proposition 5.2.2.(3). �

Considering {Um+1,2m+1 | m ∈ ω}, we see that there exist round

matroids of arbitrarily high rank having no non-trivial proper round

restrictions—a consequence of the sparsity of these matroids.

Further material on round matroids may be found in [Kun86].

5.3 Chordal Saturation

This section develops an analogue of another concept from graph the-

ory. Given a graph G and a cycle C of G, a chord of C is an edge

e ∈ E(G) − E(C) such that e ⊆ V(C) (see Figure 5.2). A graph is chordal

(or triangulated) if each of its cycles has a chord.

Chordality plays a fundamental role in Kříž and Thomas’ proof of

Theorem 1.1.6 in [KT91]. They use it to formulate a locally verifiable

property certifying when a graph is globally tree-like. This is necessary

for a subsequent application of Rado’s Selection Lemma. As our aim is to

establish an analogue of Theorem 1.1.6 for configurations (namely Theo-

rem 7.1.1), it is natural to investigate chordality for configurations.
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C

e

Figure 5.2: A cycle C having chord e.

While chordality is relatively well-understood for graphs, little work

has been done on matroidal chordality. This may be partly due to the dif-

ficulty of formulating a universally applicable definition: different objec-

tives have resulted in different definitions—see [BG86, CFK04], [dMV03,

BdM04] and [Hli05] for three of these. The approach taken here is closest

to that of [Hli05], which is also motivated by tree-decompositions.

Recall that the clique number of a graph G, denoted ω(G), is

ω(G) = sup{|K| : K is a finite clique of G}.

A chordal graph having finite clique number is a tree-like union of

cliques. That is, it has a tree-decomposition in which each bag induces

a clique (see pp. 88–89 of [KT91]). As round subindependence spaces

generalise cliques, this suggests that a reasonable notion of “chordal con-

figuration” might be “a tree-like union of round subconfigurations.” For-

mally, we would define a configuration to be “chordal” if its restriction to

any bag of some fixed tree-decomposition was round.

The difficulty with this is a potential lack of density: two round sub-

configurations N and N ′ having 〈N〉 ∩ 〈N ′〉 6= {0} may share few points,

or even be disjoint (see Figure 5.3). In contrast, the intersection of two

cliques K and K ′ in a chordal graph is another clique on V(K) ∩ V(K ′)—
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there is no drop in “dimension.”

N

N ′

〈N〉 ∩ 〈N ′〉

Figure 5.3: A geometric representation of a configuration containing dis-
joint copies N and N ′ of M(K4) for which dim(〈N〉 ∩ 〈N ′〉) = 2.

The configuration’s ambient vector space can be exploited to over-

come this difficulty by imposing the requirement that all maximal round

subconfigurations be entire subspaces.

Definition 5.3.1. Let D = (D,E, ℓ) be a configuration and let:

(CS1) (Chordality) Whenever C ∈ C(D) has size at least 4, there exist dis-

tinct c, c ′ ∈ C and e ∈ E such that {c, c ′, e}, (C− {c, c ′})⊔ {e} ∈ C(D).

(CS2) (Saturation) 〈N〉 ⊆ D for every round N ⊆ D.

Then D is chordal if Chordality holds, saturated if Saturation holds and

chordally saturated if both hold.

The following proposition is easy to establish.

Proposition 5.3.2. Let D be a configuration having point set D. Then

(1) D is saturated if and only if D is saturated, and
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(2) D is chordal if and only if D is chordal.

Consequently there is no loss of generality in simply viewing configu-

rations as subsets of their ambient vector spaces for the remainder of this

section.

Proposition 5.3.3. Every chordally saturated configuration is a non-empty

union of subspaces. In particular, it contains 0.

Proof. Let D be a chordally saturated configuration and let d ∈ D. Then

{d} is round, so 〈d〉 ⊆ D by Saturation. Consequently D is a union of

subspaces. To see that this union is non-empty, observe that ∅ is round,

so 〈∅〉 = {0} ⊆ D by Saturation. �

Chordal saturation is not usually preserved by unions or intersections.

Example 5.3.4. Let {b1,b2,b3,b4} be a basis for a 4-dimensional vector

space.

(1) Let D = 〈b1〉 ∪ 〈b2〉 ∪ 〈b1 +b2〉 ∪ 〈b3〉 ∪ 〈b4〉 ∪ 〈b1 +b3 +b4〉. The maxi-

mal subspaces contained in D are trivially chordally saturated. While

D contains a Dowling clique having joints b1 and b2, 〈b1,b2〉 * D, so

D is not saturated. The circuit {b1,b3,b4,b1 + b3 + b4} certifies that D

is not chordal.

(2) Let D1 = 〈b1,b2〉 ∪ 〈b1 + b2,b3〉 and let D2 = 〈b1,b3〉 ∪ 〈b1 + b3,b2〉.

Clearly each Di is chordally saturated. However, D1 ∩D2 = 〈b1〉 ∪

〈b2〉 ∪ 〈b3〉 ∪ 〈b1 + b2 + b3〉 is not chordal for the same reason as D in

(1). �

However, Saturation is easily seen to be preserved under intersection.

Proposition 5.3.5. Every intersection of saturated V-configurations is satu-

rated.

Chordal saturation is preserved on “restricting to a vector space.”
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Proposition 5.3.6. Let D be a chordally saturated V-configuration and let U 6

V . Then D∩U is chordally saturated.

Proof. Let C ∈ C(D ∩ U) have size at least 4. Then C ∈ C(D), so by

Chordality forD there exist distinct c, c ′ ∈ C and d ∈ D such that {c, c ′,d},

(C− {c, c ′}) ⊔ {d} ∈ C(D). As d ∈ 〈{c, c ′}〉, clearly d ∈ U. Consequently

{c, c ′,d}, (C− {c, c ′})⊔ {d} ∈ C(D∩U), and so Chordality holds for D∩U.

Now let N ⊆ D ∩U be round. Then 〈N〉 ⊆ D by Saturation for D, so

〈N〉 ⊆ D∩U. Hence Saturation holds for D∩U. �

It is well known that finite chordal graphs may be characterised as

those graphs that can be constructed recursively by pasting along cliques,

starting from complete graphs (see p. 127 of [Die06]). We now work

towards a similar characterisation for finite-dimensional chordally satu-

rated configurations, starting with the following proposition.

Proposition 5.3.7. LetD be a chordally saturated configuration and let V ,W 6

〈D〉 be such that D ⊆ V ∪W, V = 〈D ∩ (V −W)〉 and W = 〈D ∩ (W − V)〉.

Then V ∩W ⊆ D.

Proof. It follows from Proposition 5.3.3 that 0 ∈ D. Consequently the

result holds if V ∩W = {0}. So suppose otherwise. Let z ∈ V ∩W and

suppose that z /∈ D. Then z is non-zero and there exists minimum-sized

X = {x1, . . . , xm} ⊆ D ∩ (V −W) such that X ⊔ {z} is linearly dependent.

Similarly, there exists minimum-sized Y = {y1, . . . ,yn} ⊆ D ∩ (W − V)

such that Y ⊔ {z} is linearly dependent. So there exist non-zero scalars µ1,

. . . , µm, ξ1, . . . , ξn such that

z =

m∑

i=1

µixi =

n∑

j=1

ξjyj.

It follows that X ⊔ Y is linearly dependent, and so it contains some C ∈

C(D). As X is independent, some yj ∈ C. If |C ∩ Y| = 1, then yj ∈
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〈C− {yj}〉 ⊆ V , contradicting yj /∈ V . Consequently |C∩ Y| > 2. Similarly,

|C∩X| > 2.

It follows that |C| > 4. So by Chordality, D contains a linear combi-

nation of a pair of distinct elements of C. The choices of V , W, X and Y

ensure that these elements both belong to V without loss of generality. It

follows from Saturation that their span is contained in D, contradicting

the minimality of m. Hence z ∈ D, and so V ∩W ⊆ D. �

Corollary 5.3.8. Let D be a chordally saturated configuration and let V , W 6

〈D〉 be such that D ⊆ V ∪W and V ∩W is minimal. Then V ∩W ⊆ D.

Proof. Let V ′ = 〈D ∩ V〉 and let W ′ = 〈D ∩W〉. Then V ′, W ′ 6 〈D〉

are such that D ⊆ V ′ ∪W ′ and V ′ ∩W ′ ⊆ V ∩W. It follows from the

minimality of V ∩W that V ′ ∩W ′ = V ∩W.

Let V ′1 = 〈D ∩ (V ′ −W ′)〉 and suppose that V ′ 6= V ′1. Then there

exists non-zero V ′2 6 〈D ∩ V ′ ∩W ′〉 such that V ′ = V ′1 ⊕ V
′
2. But then V ′1,

W ′ 6 〈D〉 are such that D ⊆ V ′1 ∪W
′ and V ′1 ∩W

′ ( V ′ ∩W ′ = V ∩W,

contradicting the minimality of V ∩W. Thus V ′ = V ′1. Similarly, W ′ =

〈D∩ (W ′ − V ′)〉, and so V ∩W = V ′ ∩W ′ ⊆ D by Proposition 5.3.7. �

Definition 5.3.9. Let D, D1 and D2 be configurations and let Di be the

point set of Di for each i. Then D arises by pasting D1 and D2 together

along D1 ∩D2 if D = D1 ∪D2 and 〈D1〉 ∩ 〈D2〉 ⊆ D1 ∩D2.

Note that whenever D arises by pasting D1 and D2 together along

D1 ∩D2, it is necessarily the case that 0 ∈ D1 ∩D2.

Proposition 5.3.10. Every finite-dimensional chordally saturated configuration

can be constructed recursively by pasting along subspaces, starting from sub-

spaces.

Proof. Let D be a finite-dimensional chordally saturated configuration.

Suppose that D is not a subspace and that all chordally saturated con-

figurations having strictly smaller dimension can be constructed recur-

sively as stated. Then by Saturation there exist V , W � 〈D〉 such that
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D ⊆ V ∪W. Without loss of generality, V ∩W is minimal. It follows from

Proposition 5.3.6 that each of D ∩ V and D ∩W is chordally saturated,

and so can be constructed recursively as stated. Moreover, V ∩W ⊆ D by

Corollary 5.3.8, so D arises by pasting D ∩ V and D ∩W together along

the subspace V ∩W. �

The converse of this result also holds. It is derived in Proposition 6.4.3.

We now examine the preservation of chordal saturation under contrac-

tion.

Proposition 5.3.11. Every contraction of a chordal configuration is chordal.

Proof. Let D be a chordal configuration, let X ⊆ D and let π determine a

contraction of D by X. Let C = {c1, . . . , cm} ⊆ D having m > 4 be such

that π[C] ∈ C(π[D]) and π(ci) 6= π(cj) whenever i 6= j. Then there exist

non-zero scalars µ1, . . . , µm such that

m∑

i=1

µiπ(ci) = 0

m∑

i=1

µici ∈ 〈X〉.

So there exists C ′ = {c ′1, . . . , c ′n} ⊆ X such that C⊔C ′ ∈ C(D) and

m∑

i=1

µici +

n∑

j=1

ξjc
′
j = 0

for some non-zero scalars ξ1, . . . , ξn. Re-indexing without loss of gener-

ality, either c∗ := µ1c1 + µ2c2 ∈ D or c ′′1 := µ1c1 + ξ1c
′
1 ∈ D by Chordality.

In the first case, π[{c1, c2, c∗}],π[{c∗, c3, . . . , cm}] ∈ C(π[D]), so Chordality

holds. In the second, as π(c ′′1 ) = π(c1), we may redefine c1 := c ′′1 , effec-

tively reducing |C ′| by 1. As |C ′| ∈ ω initially, it follows by induction that

the first case must be realised. �
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Proposition 5.3.12. Let π determine a contraction of a chordally saturated con-

figuration D some by finite-dimensional X. Then for every round N ′ ⊆ π[D],

there exists round N ⊆ D such that N ′ = π[N]. In particular, π[D] is saturated.

Proof. In light of Proposition 4.4.4.(2), it suffices to establish the result for

X = {x} ∈ I(D). So let U = 〈N ′〉 ⊕ 〈x〉. It follows from Proposition 5.3.6

thatD∩U is chordally saturated. IfD∩U is round, then the result follows

on setting N = D∩U. So suppose otherwise.

Then there exist V , W � U such that D ∩U ⊆ V ∪W. Without loss of

generality, V = 〈D ∩ (V −W)〉 and W = 〈D ∩ (W − V)〉. So as D ∩U is

chordally saturated, V ∩W ⊆ D∩U by Proposition 5.3.7.

If x ∈ V ∩W, then N ′ would split. Thus x /∈ V ∩W. Without loss

of generality, x ∈ V −W. As N ′ does not split, W is a hyperplane of

U. Consequently both W and 〈N ′〉 are complements of 〈x〉 in U (see

Figure 5.4).

V

W

〈N ′〉

x

Figure 5.4: Proof of Proposition 5.3.12.

As V ∩W ⊆ D, it follows that every point of N ′ is the π-image of some

point in D ∩W. So there exists round N ⊆ D ∩W such that N ′ = π[N].

Finally, 〈N〉 ⊆ D by Saturation, so 〈N ′〉 ⊆ π[D]. �
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Combining Propositions 5.3.11 and 5.3.12 gives the next corollary.

Corollary 5.3.13. Every contraction of a chordally saturated configuration by a

finite-dimensional set is chordally saturated.

Proposition 5.3.14. Let π determine a contraction of a chordally saturated con-

figuration D. Then for every finite-dimensional round N ′ ⊆ π[D], there exists

round N ⊆ D such that N ′ = π[N]. In particular, 〈N ′〉 ⊆ π[D].

Proof. Let π determine a contraction of D by X. If dim(X) ∈ ω, then

the result follows from Proposition 5.3.12. So suppose that dim(X) = ∞.

Then by Corollary 5.2.8 there exists finite roundN ′0 ⊆ N
′ such that 〈N ′0〉 =

〈N ′〉. It follows from Proposition 4.4.7 that there exists π ′ determining

a contraction of D by some finite X0 ⊆ X such that N ′0 ⊆ π ′[D] and

π = π ′′ ◦ π ′ for some projection π ′′ fixing im(π). So by Proposition 5.3.12,

there exists roundN0 ⊆ D such thatN ′0 = π ′[N0]. As π ′′ fixes im(π) ⊇ N ′0,

it follows that N ′0 = π[N0]. So by Saturation,

D ⊇ 〈N0〉

π[D] ⊇ π[〈N0〉]

= 〈π[N0]〉

= 〈N ′0〉

= 〈N ′〉.

Hence there exists N ⊆ 〈N0〉 containing N0 such that N ′ = π[N]. Corol-

lary 5.2.6 shows that N is round. �

Combining Propositions 5.3.11 and 5.3.14 gives the following corol-

lary.

Corollary 5.3.15. Let D be a chordally saturated configuration and let X ⊆ D

be such that every round subconfiguration of D/X is finite-dimensional. Then

D/X is chordally saturated.



Chapter 6

Tree-Decompositions of

Configurations

This chapter discusses tree-decompositions of configurations. Some ele-

mentary results are given first, and then the main theorem is established

for the special case of finite configurations. This result is lifted to in-

finite configurations after appropriate development of the relationships

between round and chordally saturated configurations and tree-decom-

positions.

6.1 Definitions and Elementary Results

Intuitively, a tree-decomposition of an object (such as a graph, hyper-

graph, matroid or configuration) is a decomposition of that object into

parts of bounded size such that the parts fit together in a tree-like way.

The size of the largest part—called the width of the decomposition—

indicates how tree-like the decomposition is. When the width is small,

the decomposition is very tree-like, and vice versa.

Given a notion of tree-decomposition for a particular class of objects,

it can be determined how tree-like an object of that class is by finding the

least width among its tree-decompositions (if any). This is the object’s

97
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tree-width.

Tree-decompositions and tree-width were first introduced in this sense

as part of the Graph Minors Project of Robertson and Seymour. Robert-

son and Seymour defined both for finite graphs in [RS84], the third article

in a series of 23. These definitions were subsequently generalised to fi-

nite rooted hypergraphs in [RS90]. It was only a matter of time until

tree-decompositions of infinite graphs were considered. They were first

treated in [RST91] and have subsequently been investigated by Thomas

in particular.

Given the tremendous success of the theory of tree-decompositions of

graphs, it was natural to try to develop a similar theory for matroids. It

is not immediately apparent that this is possible, as the definition of tree-

decomposition given in [RS84] relies heavily on vertices, which have no

obvious matroidal analogue. However, Geelen observed that an equiva-

lent definition could be formulated using only edges, thus opening the

way forward. As a result, definitions for both matroids and finite config-

urations were given by Hliněný and Whittle in [HW06].

The latter of these gives rise to Definition 6.1.2. It is convenient to first

introduce some further terminology. Recall that we write tt ′ for the edge

of a tree incident on vertices t and t ′ (if it exists).

Definition 6.1.1. Let U be a vector space and let T be a tree. Whenever

σ : V(T)→ S(U), we shall extend σ to V(T)⊔ E(T) by defining

σ(e) = σ(t)∩ σ(t ′)

for every e = tt ′ ∈ E(T). The subspaces displayed by t ∈ V(T) are

∑

t ′∈V(Ti)

σ(t ′) (i ∈ I)

where {Ti | i ∈ I} are the connected components of T − {t}. Similarly, the



6.1. DEFINITIONS AND ELEMENTARY RESULTS 99

subspaces displayed by e ∈ E(T) are

∑

t∈V(Ti)

σ(t) (i = 1, 2)

where T1 and T2 are the connected components of T − {e}. Finally, the

subspace associated with G 6 T is

∑

t∈V(G)

σ(t).

Replacing these sums by unions yields the sets displayed by t, the sets

displayed by e and the set associated with G respectively.

Definition 6.1.2. Let D = (D,E, ℓ) be a U-configuration. Then a tree-de-

composition of D is a pair (T ,σ), where T is a tree and σ : V(T) → S(U),

satisfying:

(TD1) D ⊆
⋃
t∈V(T) σ(t).

(TD2) (Interpolation) S1 ∩ S2 ⊆ σ(e) for every e ∈ E(T), where S1 and S2

are the subspaces displayed by e.

The vertex bags of (T ,σ) are

σ(t) (t ∈ V(T))

and the width of t ∈ V(T), denoted w(t), is dim(σ(t)). Similarly, the edge

bags of (T ,σ) are

σ(e) (e ∈ E(T))

and the width of e ∈ E(T), denoted w(e), is dim(σ(e)). The width of (T ,σ)

is

sup{w(t) | t ∈ V(T)}

and the tree-width of D, denoted tw(D), is the infimum of the widths of

the tree-decompositions of D. A tree-decomposition of D is optimal if it
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has width tw(D), and finite if its tree is finite. We denote the collection of

all tree-decompositions of D by TD(D).

Given a configuration D having point set D, it is always possible to

form a trivial tree-decomposition (T ,σ) of D by setting

(1) T = ({t}, ∅), and

(2) σ : {t}→ S(〈D〉) : t 7→ 〈D〉.

In contrast, some definitions of tree-decomposition for other classes of

object admit the possibility that an object may not have a tree-decompo-

sition. For example, the uncountable complete graph Kℵ1
has no (graph)

tree-decomposition (see p. 5 of [Adl06]).

The statement (TD1) is a non-triviality axiom requiring that a config-

uration be covered by each of its tree-decompositions. The Interpolation

axiom forces all of the connectivity between the “sides” of the configu-

ration displayed by an edge to “pass through” that edge’s bag (see Fig-

ure 6.1). This ensures that the decomposition has a tree-like structure.

Note that this requirement frequently results in a bag σ(x) being strictly

larger than the span 〈σ(x)∩D〉 of those points of the configuration that it

contains.

As a configuration’s point set contains each of its subconfigurations’

point sets, we have the following unsurprising result.

Proposition 6.1.3. Let D be a configuration and let D ′ 6 D. Then TD(D) ⊆

TD(D ′). In particular, tw(D) > tw(D ′).

Alternately taking D ′ = D and D ′ = D̃ in Proposition 6.1.3 (where D

is the point set of D) gives the next corollary.

Corollary 6.1.4. Let D be a configuration having point set D. Then TD(D) =

TD(D) = TD
(
D̃
)
. In particular, tw(D) = tw(D) = tw

(
D̃
)
.
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Figure 6.1: A sketch of a tree-decomposition of a configuration. Large
discs, squares and dashed lines are intended to suggest vertex bags, con-
figuration points and connectivity respectively.

In light of Corollary 6.1.4, without loss of generality we may simply

view configurations as subsets of their ambient vector spaces for the re-

mainder of this section.

Motivated by an observation regarding tree-decompositions of graphs,

we now derive an alternative characterisation of Interpolation. Like a

tree-decomposition of a configuration, a tree-decomposition of a graph

has an interpolation property requiring that all of the graph’s connectiv-

ity1 “pass through” the decomposition’s bags in a manner consistent with

the decomposition’s tree structure. In particular, deleting a (vertex) bag

separates the “branches” of the decomposition (see Figure 6.2). Moreover,

if it did not, there would be a path between two distinct “branches” of the

decomposition not passing through the bag of interest—that is, interpo-

1Now concretely embodied by paths.
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lation would fail. So interpolation corresponds precisely to the property

of “cracking” a tree-decomposition of a graph on a (vertex) bag always

separating the decomposition.

Figure 6.2: Deleting a (vertex) bag from a tree-decomposition of a graph
separates the decomposition.

The key difference in the configuration context is use of contraction

instead of deletion. This is necessary in order to preserve the desired

separation property (see Figure 6.3). Some further explanation of this

possibly striking correspondence is given in Section 5.1.

We first require a definition.

Definition 6.1.5. Let D be a configuration, let X ⊆ D and let {Ri | i ∈ I}

be a collection of subsets of D. Then {Ri | i ∈ I} meet properly at X if

{Ri − (D∩ 〈X〉) | i ∈ I} are pairwise disjoint unions of X-bridges of D.2

Proposition 6.1.6. Let σ : V(T) → S(U), where T is a tree and U is a vector

space. Then (T ,σ) satisfies Interpolation if and only if it satisfies:

2Bridges are discussed in Section 5.1.
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e

F1

F2

Figure 6.3: A geometric representation of a configuration in which con-
tracting e separates F1 and F2, while deleting e fails to do so.

(TD2′) (Proper Meeting) For every t ∈ V(T), the subspaces {Si | i ∈ I} dis-

played by t meet properly at σ(t) in σ(t)∪
⋃
i∈I Si.

Proof. Suppose that (T ,σ) satisfies Interpolation. Let t ∈ V(T), let {Si | i ∈

I} be the subspaces displayed by t and let j ∈ I. Then

σ(t) ⊆
〈(
Sj − σ(t)

)
⊔ σ(t)

〉

∩

〈(
σ(t)∪

⋃

i∈I

Si

)
−
(
Sj − σ(t)

)
〉

⊆

〈
σ(t)∪

⋃

i 6=j

Si

〉
∩ (σ(t) + Sj)

= σ(t) +

(
Sj ∩

〈
σ(t)∪

⋃

i 6=j

Si

〉)
by the Modular Law

= σ(t) by Interpolation.

It follows from Proposition 5.1.12 that Sj − σ(t) is a union of σ(t)-bridges

of σ(t)∪
⋃
i∈I Si. Hence Proper Meeting holds.

Now suppose that Proper Meeting holds. Let t ∈ e ∈ E(T) and let S1

and S2 be the subspaces displayed by e. Without loss of generality, S1 is a

subspace displayed by t. Let {Si | i ∈ I} be the other subspaces displayed
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by t. It follows from Proper Meeting that {Si − σ(t) | i ∈ I} ⊔ {S1 − σ(t)}

are pairwise disjoint unions of σ(t)-bridges of D := σ(t)∪ S1 ∪
⋃
i∈I S

i. So

by Proposition 5.1.12,

σ(t) =
〈(
S1 − σ(t)

)
⊔ σ(t)

〉
∩
〈
D−

(
S1 − σ(t)

)〉

⊇ S1 ∩

〈
σ(t)∪

⋃

i∈I

Si

〉

= S1 ∩ S2.

It follows by symmetry that S1 ∩ S2 ⊆ σ(e). Hence Interpolation holds.

�

Of course, it is also possible to examine the effect of contracting an

edge bag. This leads to the following separation result. Its well-known

analogue for tree-decompositions of graphs is given on p. 320 of [Die06].

Proposition 6.1.7. Let (T ,σ) be a tree-decomposition of a configuration, let

V =
∑
t∈V(T) σ(t) and let e ∈ E(T). Write V = σ(e)⊕U1 = σ(e)⊕U2 and let

πi be the projection of V onto Ui along σ(e) for each i = 1, 2. Then if S1 and S2

are the subspaces displayed by e,

π1[S1]∩ π2[S2] = {0}.

Proof. Let x ∈ π1[S1] ∩ π2[S2]. Then for each i there exist si ∈ Si and

sei ∈ σ(e) such that si = sei + x. Consequently s1 = s2 + (se1 − se2) ∈ S2, and

so s1 ∈ σ(e) by Interpolation. As π1(s1) = x, it follows that x = 0. �

The freedom to use any contractions by σ(e) in the last proposition

reflects its fundamentally matroidal character.

The next proposition provides a means of obtaining a tree-decompo-

sition of a minor from a tree-decomposition of its ambient configuration.

More prosaically, it also allows us to restrict our attention to the subspace

spanned by a configuration.
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Proposition 6.1.8. Let D be a configuration, let X, Y ⊆ D be disjoint and

let (T ,σ) be a tree-decomposition of D. Let V = 〈D − X〉, let W = 〈Y〉 and

write V = W ⊕U. Let π be the projection of V onto U along W and define

σ ′ : V(T)→ S(U) by

σ ′(t) = π[V ∩ σ(t)]

for every t ∈ V(T). Then (T ,σ ′) is a tree-decomposition of D\X/Y having

σ ′(e) = π[V ∩ σ(e)] for every e ∈ E(T) and w ′(x) 6 w(x) for every x ∈

V(T)⊔ E(T). In particular, the width of (T ,σ ′) is at most the width of (T ,σ).

Proof. Clearly π determines a contraction of D\X by Y. It follows from

(TD1) for (T ,σ) that D−X ⊆ V ∩
⋃
t∈V(T) σ(t), so π[D−X] ⊆

⋃
t∈V(T) σ

′(t).

Thus (TD1) holds for (T ,σ ′), so we verify Interpolation.

Let e ∈ E(T), let Z1 and Z2 be the sets displayed by e in (T ,σ) and let

S ′1 and S ′2 be the corresponding subspaces displayed by e in (T ,σ ′). Write

W = W1 +W2, where Wi 6 〈V ∩Zi〉 for each i. Then

S ′1 ∩ S
′
2 = 〈π[V ∩Z1]〉 ∩ 〈π[V ∩Z2]〉

= π[〈V ∩Z1〉]∩ π[〈V ∩Z2〉] as π is linear

= U∩
(
W + 〈V ∩Z1〉

)
∩
(
W + 〈V ∩Z2〉

)
by Prop. 2.2.5.(4)

= U∩
(
W +

((
W + 〈V ∩Z1〉

)
∩ 〈V ∩Z2〉

))
by the Modular Law

= U∩
(
W +

((
W2 + 〈V ∩Z1〉

)
∩ 〈V ∩Z2〉

))

= U∩
(
W +W2 +

(
〈V ∩Z1〉 ∩ 〈V ∩Z2〉

))
by the Modular Law

⊆ U∩
(
W +

(
V ∩ σ(e)

))
by Interpolation

= π[V ∩ σ(e)] by Prop. 2.2.5.(4)

⊆ σ ′(e).

Hence Interpolation holds for (T ,σ ′). In particular, σ ′(e) = π[V ∩σ(e)] for

every e ∈ E(T). The remaining observations are then clear. �

The next corollary is an immediate consequence of Proposition 6.1.8.
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Corollary 6.1.9. Let D be a configuration and let D ′ 4 D. Then tw(D ′) 6

tw(D) 6 dim(D).

One property that may be desirable of a tree-decomposition is the

absence of redundant bags. This idea leads to the following definition.

Definition 6.1.10. A tree-decomposition (T ,σ) is irredundant if σ(t) *
σ(t ′) whenever t, t ′ ∈ V(T ′) are distinct.

The idea of irredundancy appears elsewhere in different contexts,

sometimes under a different name. For example, Adler calls irredun-

dant tree-decompositions of graphs “small” (see p. 9 of [Adl06]), while

Heule and Kullmann define irredundancy more generally for forest de-

compositions of finite hypergraphs (see pp.15–16 of [HK06]).

The next proposition says that finite tree-decompositions can always

be made irredundant. This is later extended to tree-decompositions hav-

ing finite width in Proposition 6.4.12.

Proposition 6.1.11. Whenever a configuration has a finite tree-decomposition

(T ,σ) of width w, it has a finite irredundant tree-decomposition (T ′,σ ′) of width

w for which im(σ ′) ⊆ im(σ).

Proof. Let D be a configuration having a finite tree-decomposition (T ,σ)

of width w and let T be the collection of all finite tree-decompositions

(T ′,σ ′) of D having width w and im(σ ′) ⊆ im(σ). Clearly T is non-empty.

For every (T ′,σ ′) ∈ T, let

J(T ′,σ ′) =
∑

Distinct t, t ′ ∈ V(T ′)

1
(
σ(t),σ(t ′)

)

where

1(X,Y) :=






1 if X ⊆ Y, and

0 otherwise.

Then J counts the number of times that one bag of (T ′,σ ′) is contained in

another. Clearly J(T ′,σ ′) ∈ ω.
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Recall that whenever T is a tree and t, t ′ ∈ V(T), the unique path in T

linking t and t ′ is denoted tTt ′.

Let (T ′,σ ′) ∈ T have J(T ′,σ ′) minimal. Suppose that J(T ′,σ ′) > 0.

Then there exist distinct t, t ′ ∈ V(T) such that σ(t) ⊆ σ(t ′). Write N(t) =

{t1, . . . , tn}, where t1 is the neighbour of t in tTt ′. Let

T ′′ =
(
V(T ′) − {t}, (E(T ′) − {tt1, . . . , ttn})⊔ {t1t2, . . . , t1tn}

)

as shown in Figure 6.4 and set σ ′′ = σ|V(T ′′).

t

t1

t2tn

t1

t2tn

T ′

T ′′

Figure 6.4: Surgery on the tree-decomposition. The redundant vertex t is
replaced by edges incident on its neighbour t1.

Clearly (T ′′,σ ′′) ∈ T. Moreover, J(T ′′,σ ′′) < J(T ′,σ ′), contradicting the

minimality of the latter. Hence J(T ′,σ ′) = 0, and so (T ′,σ ′) is irredundant.

�

The next proposition shows that it is possible to induce a tree-decom-

position of a configuration whenever its points label the vertices of a tree.
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Proposition 6.1.12. Let T be a tree, let D be a configuration and let τ : D →

V(T). Define σ : E(T)→ S(〈D〉) by

σ(e) =
〈
τ−1V(T1)

〉
∩
〈
τ−1V(T2)

〉

for every e ∈ E(T), where T1 and T2 are the connected components of T − {e}.

Extend σ to V(T)⊔ E(T) by setting

σ(t) =
〈
τ−1{t}

〉
+

∑

t ′∈N(t)

σ(tt ′)

for every t ∈ V(T). Then
(
T ,σ|V(T)

)
is a tree-decomposition of D.

Proof. The statement (TD1) clearly holds, so we consider Interpolation.

Let e ∈ E(T), let T1 and T2 be the connected components of T − {e} and

let S1 and S2 be the corresponding subspaces displayed by e. Then as

τ−1V(Ti) ⊆
⋃
t∈V(Ti)

σ(t) for each i, clearly

〈
τ−1V(T1)

〉
∩
〈
τ−1V(T2)

〉
⊆

〈
⋃

t∈V(T1)

σ(t)

〉
∩

〈
⋃

t ′∈V(T2)

σ(t ′)

〉

σ(e) ⊆ S1 ∩ S2.

If t ∈ V(Ti), then σ(tt ′) ⊆
〈
τ−1V(Ti)

〉
for every t ′ ∈ N(t), so σ(t) ⊆〈

τ−1V(Ti)
〉
. Consequently

〈
⋃

t∈V(T1)

σ(t)

〉
∩

〈
⋃

t ′∈V(T2)

σ(t ′)

〉
⊆
〈
τ−1V(T1)

〉
∩
〈
τ−1V(T2)

〉

S1 ∩ S2 ⊆ σ(e).

Hence S1 ∩ S2 = σ(e), and so Interpolation holds. �

This result suggests the following definition.

Definition 6.1.13. Let T be a tree, let D be a configuration and let τ : D→
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V(T). Then the tree-decomposition of D induced by τ is the tree-decom-

position of D derived from τ via Proposition 6.1.12. Moreover, a tree-de-

composition (T ,σ) of D is leaf-induced if there exists τ : D → L(T) such

that (T ,σ) is the tree-decomposition of D induced by τ.

The results below investigate some properties of induced tree-decom-

positions. Several of these are used in Section 6.2 to obtain a tree-de-

composition of a finite configuration that “looks like” a branch-decom-

position. This permits the easy adaptation to tree-decompositions of an

argument for the existence of linked branch-decompositions.

Recall that a tree is cubic if each of its non-leaf vertices has degree 3.

Formally, a branch-decomposition of a matroid M is a pair (T , τ), where

T is a finite cubic tree and τ : E(M) → L(T). Each edge e ∈ E(T) is

associated with a partition of E(M), namely {τ−1V(T1), τ
−1V(T2)}, where

T1 and T2 are the connected components of T − {e}. The width of e, denoted

w(e), is λM
(
τ−1V(T1)

)
+ 1 = λM

(
τ−1V(T2)

)
+ 1. The width of (T , τ) is

max{w(e) | e ∈ E(T)}

and the branch-width of M is the maximum of the widths of its branch-

decompositions.

The next result provides the first step towards a “branch-decomposi-

tion–like” tree-decomposition by allowing the parallel classes of a config-

uration to be “injected into” the leaves of a tree-decomposition.

Proposition 6.1.14. Every tree-decomposition (T ,σ) of a configuration D may

be extended to a tree-decomposition (T ′,σ ′) of D of the same width for which

{〈d〉 | d ∈ D} ⊆ {σ ′(t) | t ∈ L(T ′)}.

Moreover, if (T ,σ) and D̃ are finite, then so is (T ′,σ ′).

Proof. Let I = {〈d〉 | d ∈ D} and let f be a choice function for
{
{t ∈ V(T) |
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i ⊆ σ(t)}
∣∣ i ∈ I

}
. Then set

T ′ = T ∪
(
ψ[I],

{
{f(i),ψ(i)}

∣∣ i ∈ I
})

where ψ is any bijection having domain I for which V(T)∩ψ[I] is empty.

Define σ ′ by σ ′|V(T) = σ and σ ′ ◦ ψ = idI. Then (TD1) clearly holds

and Interpolation follows from (σ ′ ◦ψ)(i) = i ⊆ (σ ◦ f)(i) for every i ∈

I. Consequently (T ′,σ ′) is a tree-decomposition of D. The remaining

observations are then clear. �

The next result says that a finite tree-decomposition can always be

altered so that its underlying tree has maximum degree three (in this

case the tree is said to be subcubic).

Proposition 6.1.15. Whenever a configuration has a finite tree-decomposition

(T ,σ) of width w, it has a finite tree-decomposition (T ′,σ ′) of width w such

that

(1) ∆(T ′) 6 3, and

(2) σ|L(T) = σ ′ ◦ψ for some bijection ψ : L(T)→ L(T ′).

Proof. Let D be a configuration having a finite tree-decomposition (T ,σ)

of widthw. Let T be the collection of all finite tree-decompositions (T ′,σ ′)

of D having width w for which (2) holds. Clearly T is non-empty. For

every finite tree T ′, let

J(T ′) =
∑

t∈V(T ′)

max{0,d(t) − 3}.

Then J counts the number of neighbours beyond 3 across the vertices of

T ′. Clearly J(T ′) ∈ ω.

Let (T ′,σ ′) ∈ T have J(T ′) minimal. Suppose that J(T ′) > 0. Then

there exists t ∈ V(T ′) having d(t) > 3. Write N(t) = {t1, . . . , tn} and let T ′′
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be the tree having

V(T ′′) = (V(T ′) − {t})⊔ im(ψ), and

E(T ′′) = (E(T ′) − {tt1, . . . , ttn})

⊔
{

im(ψ), {ψ(1), t1}, {ψ(1), t2}, {ψ(2), t3}, . . . , {ψ(2), tn}
}

as shown in Figure 6.5, where ψ is any bijection having domain {1, 2} for

which V(T ′)∩ im(ψ) is empty.

t

t1 t2

t3tn

ψ(1) ψ(2)

t1 t2

t3tn

T ′

T ′′

Figure 6.5: Surgery on the tree decomposition. The high-degree vertex t
is replaced by an edge im(ψ) such that d(ψ(1)) = 3.

Define σ ′′ by σ ′′|V(T ′)−{t} = σ ′|V(T ′)−{t} and (σ ′′ ◦ψ)(1) = (σ ′′ ◦ψ)(2) =

σ ′(t). Clearly (T ′′,σ ′′) ∈ T. Moreover, J(T ′′) < J(T ′), contradicting the

minimality of the latter. Hence J(T ′) = 0, and so ∆(T ′) 6 3. �

Given a tree-decomposition of a configuration, the following result es-

tablishes the existence of “smaller” induced tree-decompositions of sub-

configurations.

Proposition 6.1.16. Let (T ,σ) be a tree-decomposition of a configuration D and

let D ′ 6 D. Then whenever τ : D̃ ′ → V(T) has d ∈ (σ ◦ τ)(d) for every d ∈ D̃ ′
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and

T ′ :=
⋃

d∈D̃ ′

τ(d)Tτ(d ′)

for some fixed d ′ ∈ D̃ ′, τ induces a tree-decomposition (T ′,σ ′) of D ′ such that

(1) σ ′(t) 6 σ(t) for every t ∈ V(T ′), and

(2) σ ′(e) 6 σ(e) for every e ∈ E(T ′).

Moreover, the width of (T ′,σ ′) is at most the width of (T ,σ), and (T ′,σ ′) is

finite if D̃ ′ is finite.

Proof. The definition of T ′ ensures that τ is into V(T ′), so τ induces a

tree-decomposition (T ′,σ ′) of D̃ ′, which is a tree-decomposition of D ′ by

Corollary 6.1.4. We demonstrate (2) and then use this to establish (1).

Let e ∈ E(T ′), let T ′1 and T ′2 are the connected components of T ′ − {e},

and let T1 and T2 be the corresponding connected components of T − {e}.

Then

σ ′(e) = 〈τ−1V(T ′1)〉 ∩ 〈τ
−1V(T ′2)〉

6

〈
⋃

t∈V(T1)

σ(t)

〉
∩

〈
⋃

t ′∈V(T2)

σ(t ′)

〉

= σ(e).

Thus (2) holds. Now let t ∈ V(T ′). Then

σ ′(t) = 〈τ−1{t}〉+
∑

t ′∈NT ′(t)

σ ′(tt ′)

6 〈τ−1{t}〉+
∑

t ′∈NT (t)

σ(tt ′) by (2)

6 σ(t).

Hence (1) holds. The remaining observations are then clear. �
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Taking D ′ = D in Proposition 6.1.16 gives the next corollary, which

shows that we may often assume that a tree-decomposition is induced

without loss of generality.

Corollary 6.1.17. Let (T ,σ) be a tree-decomposition of a configuration D. Then

whenever τ : D̃→ V(T) has d ∈ (σ ◦ τ)(d) for every d ∈ D̃ and

T ′ :=
⋃

d∈D̃

τ(d)Tτ(d ′)

for some fixed d ′ ∈ D̃, τ induces a tree-decomposition (T ′,σ ′) of D such that

(1) σ ′(t) 6 σ(t) for every t ∈ V(T ′), and

(2) σ ′(e) 6 σ(e) for every e ∈ E(T ′).

Moreover, the width of (T ′,σ ′) is at most the width of (T ,σ), and (T ′,σ ′) is

finite if D̃ is finite.

The next corollary is a useful consequence of Corollary 6.1.17.

Corollary 6.1.18. Every configuration having finite simplification and a tree-

decomposition of width w has a finite tree-decomposition of width at most w.

6.2 Linked Decompositions:

The Finite Case

We open this section with a simple consequence of Interpolation. Say

that a path is non-trivial if it contains at least one edge. Then we have the

following proposition.

Proposition 6.2.1. Let (T ,σ) be a tree-decomposition of a configuration D =

(D,E, ℓ) and let P be a non-trivial path in T linking t1 and t2. Then

κ(ℓ−1X1, ℓ−1X2) 6 min{w(e) | e ∈ E(P)} (6.2.1)
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where Xi is the set associated with the component of T − E(P) containing ti for

each i.

Proof. Let D be the point set of D. Then simply observe that the set of

subspaces displayed by each e ∈ E(P) induces a split of D, one element

of which contains D∩X1 and the other of which contains D∩X2. �

Recall that whenever T is a tree and t1, t2 ∈ V(T), the unique path in

T linking t1 and t2 is denoted t1Tt2.

It is possible that (6.2.1) may be strict somewhere (or even everywhere)

in a tree-decomposition. However, if it holds with equality everywhere in

a tree-decomposition, then the decomposition can be used to certify min-

imum levels of connectivity between different “branches” of its configu-

ration. This important possibility that motivates the following definition.

Definition 6.2.2. Let (T ,σ) be a tree-decomposition of a configuration D =

(D,E, ℓ) and let e1 = t1t
′
1, e2 = t ′2t2 ∈ E(P), where P = t1Tt2. Then e1 and

e2 are D-linked if

κ(ℓ−1X1, ℓ−1X2) = min{w(e) | e ∈ E(P)}

where Xi is the set associated with the component of T − E(P) containing

ti for each i. A tree-decomposition (T ,σ) is D-linked or a linked tree-de-

composition of D if every pair of edges of T is D-linked. The collec-

tion of all linked tree-decompositions of a configuration D is denoted by

LTD(D).

This definition differs in three ways from that given for graphs on (for

example) p. 87 of [KT91], namely

• it uses the connectivity function κ instead of vertex-disjoint paths,

• it uses the associated set Xi instead of the bag σ(ti), and

• it involves a minimum over edge bags instead of a minimum over

vertex bags.



6.2. LINKED DECOMPOSITIONS: THE FINITE CASE 115

The use of κ is unsurprising, as vertex-disjoint paths are a concrete reali-

sation of connectivity in graphs. It is necessary to use the entire associated

set Xi instead of σ(ti) to allow for the possibility that σ(ti) may be entirely

or partially “induced”—that is, not spanned by the points of the configu-

ration that it contains. Finally, the use of edge bags is a convenience that

eliminates the need to subdivide tree edges to work with vertex bags. It

has the added advantage of making the definition more closely resem-

ble that of branch-decompositions. This last property is exploited in the

proof of Theorem 6.2.5.

The next proposition is a consequence of Corollary 6.1.4 and Proposi-

tion 4.5.2.

Proposition 6.2.3. Let D be a configuration with point setD. Then LTD(D) =

LTD(D) = LTD
(
D̃
)
.

So it suffices in the context of linked tree-decompositions to simply

view configurations as subsets of their ambient vector spaces.

Linked tree-decompositions were first introduced by Thomas for finite

graphs in [Tho90], where Theorem 1.1.5 was proven. Their importance

arises from their use in well-quasi-ordering proofs (see [Tho89a, RS90]):

by certifying minimum levels of connectivity between the “branches” of

a tree-like object, they demonstrate that certain minors can be formed.

These can subsequently be used to obtain a finite certificate disproving

the existence of a minimal bad sequence.

Theorem 6.2.5 below is an analogue of Theorem 1.1.5 for configura-

tions. Its proof adapts an argument of Geelen, Gerards and Whittle given

in [GGW02].

A connectivity function is a symmetric submodular function P(E)→ ω,

where E is a finite set. It is easy to define branch-decompositions for such

functions. These generalise both branch-decompositions of finite graphs

and branch-decompositions of matroids. Geelen, Gerards and Whittle

proved the following theorem.



116 CHAPTER 6. TREE-DECOMPOSITIONS OF CONFIGURATIONS

Theorem 6.2.4 (Geelen, Gerards and Whittle). Every connectivity function

having branch-width w has a linked branch-decomposition of width w.

Our proof manipulates a tree-decomposition so that it “looks like” a

branch-decomposition, allowing the application of Geelen, Gerards and

Whittle’s argument. Working primarily with edge bags in this way avoids

some technicalities intrinsic to tree-decompositions, but leads to a width

bound that, while good, is probably not tight.

Theorem 6.2.5. Every finite configuration D has a finite linked leaf-induced

tree-decomposition (T ,σ) of width at most 2 tw(D) for which ∆(T) 6 3.

Proof. Let T be the collection of all finite leaf-induced tree-decompositions

(T ,σ) of D for which ∆(T) 6 3.

(1) T contains a tree-decomposition of width tw(D).

D has a tree-decomposition of width tw(D), so it has a finite tree-

decomposition of width tw(D) by Corollary 6.1.18. It follows from

Proposition 6.1.14 that D has a finite tree-decomposition (T ,σ) of

width tw(D) for whichD ⊆
⋃
t∈L(T) σ(t). In light of Proposition 6.1.15,

∆(T) 6 3 without loss of generality. It follows from Corollary 6.1.17

that D has a finite leaf-induced tree-decomposition (T ,σ) of width

tw(D) for which ∆(T) 6 3. �

Let (T ,σ) be an element of T that is minimal with respect to the partial

order 6E defined on p. 9. Such an element exists because T is non-empty

by (1). Suppose that (T ,σ) is induced by τ.

(2) max{w(e) | e ∈ E(T)} 6 tw(D).

For suppose otherwise. Let k = max{w(e) | e ∈ E(T)}. It follows

from (1) that T contains a tree-decomposition (T ′,σ ′) of width tw(D).

Clearly e(T ′
>l) = e(T>l) and c(T ′

>l) = c(T>l) for every l ∈ Z>k. More-

over, e(T ′
>k) < e(T>k), so (T ′,w ′) <E (T ,w), contradicting the mini-

mality of (T ,σ). �
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For every subgraph G of T , let the set displayed by G be τ−1V(G). Then

let the sets displayed by e ∈ E(T) be the sets displayed by the connected

components of T − {e}.

(3) (T ,σ) has width at most 2 tw(D).

Let t ∈ V(T). If t ∈ L(T), thenw(t) = dim(〈d〉) for some d ∈ D, so nec-

essarily w(t) 6 2 tw(D). If d(t) = 2, then τ−1{t} = ∅, so σ(t) = σ(tt ′)

for each t ′ ∈ N(t). But then w(t) 6 2 tw(D) by (2). Lastly, suppose

that d(t) = 3. Then σ(t) =
∑3
i=1 σ(tti), where N(t) = {t1, t2, t3}. Then

by Proposition 4.4.6,

w(t) =

3∑

i=1

dim(〈D−Di〉) − 2 dim(D)

where Di is the set displayed by the component of T − {tti} not con-

taining t for each i. It follows from (2) that for each i,

tw(D) > w(tti)

= dim(〈Di〉 ∩ 〈D−Di〉)

= dim(〈Di〉) + dim(〈D−Di〉) − dim(D)

dim(〈Di〉) + dim(〈D−Di〉) 6 dim(D) + tw(D).

Thus w(t) 6 2 tw(D) by Proposition 4.2.7. In this case, the factor of 2

allows for the possibility of non-trivial interactions between the edge

bags σ(t1), σ(t2) and σ(t3). �

The remainder of our argument is the same as that given on pp. 273–275

of [GGW02].

Suppose that (T ,σ) is not D-linked. Then there exist e1, e2 ∈ E(T) that

are not D-linked. Necessarily e1 6= e2. For each i, let Ti be the component

of T − {ei} not containing e3−i, let Di be the set it displays and let ti be the

endvertex of ei such that ei /∈ E(t1Tt2).
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Say that X ⊆ D splits Y ⊆ D if both X ∩ Y and Y − X are non-empty.

Note that it is possible that X splits Y but not vice versa. Let A ⊆ D−D2

contain D1 and be such that λ(A) = κ(D1,D2) and such that A splits as

few sets displayed by edges of T as possible.

Define a new tree T̂ as follows: for each i, let T i be a copy of the

component of T − {e3−i} containing ei. We adopt a convention of denoting

the copy of x ∈ V(T) ⊔ E(T) appearing in T i (if any) by xi. Connect T1

with T2 by a new edge t12t
2
1 joining t12 to t21 as shown in Figure 6.6. Clearly

∆
(
T̂
)

6 3.

t1

t2

t11

t12

t21

t22

e1
e2

e1
1

t12t
2
1

e2
2

T

T̂

D1

D2

Figure 6.6: Surgery on the tree-decomposition. Black squares and white
squares are intended to suggest points in A and D−A respectively.
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Define τ̂ : D→ L
(
T̂
)

by

τ̂(d) =






(τ(d))1 if d ∈ A, and

(τ(d))2 otherwise

for every d ∈ D. Then τ̂ induces a tree-decomposition
(
T̂ , σ̂

)
∈ T. We

shall argue that
(
T̂ , σ̂

)
<E (T ,σ), contradicting the choice of (T ,σ). To do

so, we first establish the following claim.

(4) Let e ∈ E
(
T̂
)
. Then ŵ(ei) 6 w(e) for each i, with equality holding only if

e has at most one copy in T̂>λ(A)+1.

We may assume that i = 1 by symmetry. Let B be the set displayed

by the component of T − {e} not containing t2. Then

w(e) = dim(〈B〉 ∩ 〈D−B〉) = λ(B)

and

ŵ(e1) = dim(〈A∩B〉 ∩ 〈D− (A∩B)〉) = λ(A∩B).

So by the submodularity of λ( · ),

ŵ(e1) + λ(A∪B) 6 w(e) + λ(A)

= w(e) + κ(D1,D2)

6 w(e) + λ(A∪B)

ŵ(e1) 6 w(e)

with equality holding only if λ(A ∪ B) = λ(A). Now suppose that

ŵ(e1) = w(e). Then λ(A∪B) = λ(A) and λ(A∩B) = λ(B).

We argue that A does not split B. Suppose otherwise. Then the choice

of A ensures that A∪B splits at least as many sets displayed by edges

of T as A does. As A∪B does not split B, there exists a set C displayed

by an edge of T that is split by A ∪ B but not by A. It follows that B
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splits C and A ∩ C is empty. As A splits B, clearly B − C is non-

empty. As B and C are both displayed by edges of T and B splits

C, necessarily B ∪ C = D. So as A ∩ C is non-empty, A ⊆ B. Thus

D1 ⊆ B. Moreover, B ⊆ D −D2 as i = 1. So as e1 and e2 are not

D-linked,

κ(D1,D2) < λ(B)

= λ(A∩B)

= λ(A) as A ⊆ B

= κ(D1,D2) by the choice of A

—a contradiction. Hence A does not split B.

So at least one of A ∩ B and B − A is empty. As λ(∅) = 0, either

λ(A ∩ B) 6 λ(A) or λ(B−A) 6 λ(A). Now, ŵ(e1) = λ(A ∩ B), and if

e2 exists, then

ŵ(e2) =






λ(A∪B) if e ∈ E(t1Tt2), and

λ(B−A) otherwise

=






λ(A) if e ∈ E(t1Tt2), and

λ(B−A) otherwise.

Consequently e has at most one copy in T̂>λ(A)+1. �

Let

K = min{k ∈ Z>λ(A) | (∀l ∈ Z>k) e(T>l) = e(T̂>l)}.

It follows from (4) that for every l ∈ Z>K, each edge of T>l has at most one

copy in T̂>l. As ŵ(t12t
2
1) = λ(A), clearly t12t

2
1 /∈ E

(
T̂>K

)
, so e(T>K) > e

(
T̂>K

)
.

The choice of K ensures that e(T>l) = e
(
T̂>l
)

for every l ∈ Z>K. Moreover,

c(T>l) 6 c
(
T̂>l
)

whenever l ∈ Z>K has e(T>l) = e
(
T̂>l
)
.

As
(
T̂ , ŵ

)
≮E (T ,w), it follows that e(T>l) = e

(
T̂>l
)

and c(T>l) =

c
(
T̂>l
)

for every l ∈ Z>K. In particular, e(T>K) = e
(
T̂>K

)
, so K = λ(A) + 1
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by definition.

As c(T>λ(A)+1) = c
(
T̂>λ(A)+1

)
, each connected component of T>λ(A)+1

is copied entirely and as one connected component in T̂>λ(A)+1. In par-

ticular, this is true of the connected component of T>λ(A)+1 containing

t1Tt2. But this is impossible, as ei has a copy only in T i for each i, and

t12t
2
1 /∈ E

(
T>λ(A)+1

)
. Hence (T ,σ) is D-linked. �

Although this theorem would provide an adequate foundation upon

which to well- (or even better-) quasi-order matroids representable over

a fixed finite field, it seems unlikely that it is “best possible.” As the

property of being linked concerns edge bags, while width concerns vertex

bags, it is possible that every finite configuration has an optimal linked

tree-decomposition (Conjecture 8.1.1). In particular, a more direct proof

than that given (perhaps similar to those of [Tho90, BD02]) should be

obtainable.

6.3 Roundness and Tree-Decompositions

This section focuses on the interactions between round configurations and

tree-decompositions. Its results represent the first steps towards the lift-

ing of Theorem 6.2.5 to infinite configurations in Chapter 7. The structure

of our argument coincides with that of the proof of Theorem 1.1.6 given

in [KT91]. Indeed, the next result is an analogue of (1.4) in [KT91].

Proposition 6.3.1. LetD be a configuration, letN be a finite-dimensional round

subconfiguration of D and let (T ,σ) be a tree-decomposition of D. Then 〈N〉 6

σ(t) for some t ∈ V(T).

Proof. Let {b1, . . . ,bn} ⊆ N be a basis for 〈N〉. Define σ ′ : V(T) → S(〈N〉)

by σ ′(t) = σ(t) ∩ 〈N〉 for every t ∈ V(T). Then (T ,σ ′) is a tree-decompo-

sition of N by Proposition 6.1.8. Let

Ti = T
[{
t ∈ V(T)

∣∣ b1, . . . ,bi ∈ σ
′(t)

}]
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for each i. Interpolation ensures that each Ti is a (possibly empty) subtree

of T .

We argue inductively that |Tn| > 1. As V(T1) =
{
t ∈ V(T)

∣∣ b1 ∈ σ
′(t)

}
,

(TD1) ensures that |T1| > 1. Suppose that |Tn−1| > 1. Then if |Tn| = 0,

V(Tn−1) ∩ V(T ′) is empty, where T ′ = T
[{
t ∈ V(T)

∣∣ bn ∈ S ′(t)
}]

. Let e

be the edge incident on V(T ′) in the (unique) shortest path in T between

V(Tn−1) and V(T ′), as shown in Figure 6.7.

t1 t2
e

Tn−1 T ′

Figure 6.7: Proof of Proposition 6.3.1.

Let T1 > Tn−1 and T2 > T ′ be the connected components of T − {e}.

Let tj ∈ e∩ V(Tj) and let Sj =
∑
t∈V(T j) σ

′(t) for each j.

Clearly N ⊆ S1 ∪ S2. If bn ∈ S1, then Interpolation would imply that

bn ∈ σ
′(t1), contradicting t1 /∈ V(T ′). Thus bn /∈ S1, and so S1 � 〈N〉.

Similarly, if b1, . . . , bn−1 ∈ S2, then Interpolation would imply that b1,

. . . , bn−1 ∈ σ
′(t2), contradicting t2 /∈ V(Tn−1). Thus bi /∈ S2 for some

i < n, and so S2 � 〈N〉, contradicting the roundness of N. It follows that

|Tn| > 1, and so 〈N〉 6 σ ′(t) 6 σ(t) for some t ∈ V(T). �

The next corollary is a special case of Proposition 6.3.1 that follows

from Corollary 5.2.4.

Corollary 6.3.2. Let D be a configuration, let U ⊆ D be a finite-dimensional

vector space and let (T ,σ) be a tree-decomposition ofD. Then U 6 σ(t) for some

t ∈ V(T).

The following example shows that Proposition 6.3.1 does not extend

to infinite-dimensional round subconfigurations.
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Example 6.3.3. Let V = {ψ | (∃n ∈ ω)ψ : n → R}, let B = {bi | i ∈ ω}

be a basis for V and let D = B ⊔ X, where X = {bi + bj | i, j ∈ ω, i 6= j}.

Then D is an infinite-dimensional Dowling clique, and thus round by

Proposition 5.2.12.

Let T be the ray
(
ω,

{
{i, i+ 1} | i ∈ ω

})
and define σ : ω → S(V) by

σ(i) = 〈b0, . . . ,bi〉 for every i ∈ ω. Then (T ,σ) is clearly a tree-decompo-

sition of D having D * σ(t) for every t ∈ V(T). �

Proposition 6.3.1 gives rise to following description of the tree-width

of round configurations.

Proposition 6.3.4. Let D be a round configuration. Then tw(D) = dim(D).

Proof. Corollary 6.1.9 shows that tw(D) 6 dim(D). Let B ⊆ D be a basis

for 〈D〉. It follows from Proposition 5.2.10 that D/(B− B0) 4 D is round

for every finite B0 ⊆ B, so

tw(D) > tw(D/(B−B0)) by Coroll. 6.1.9

> dim(D/(B−B0)) by Prop. 6.3.1

= |B0|.

Hence:

tw(D) > sup{|B0| : B0 ⊆ B is finite} = #(B) = dim(D). �

Proposition 6.3.4 provides a natural lower bound on the tree-width of

a configuration:

Proposition 6.3.5. Let D be a configuration. Then

tw(D) > sup{dim(N) | N 4 D is round}.

In particular, tw(D) = ∞ if D has an infinite-dimensional round minor.

Proof. Combine Corollary 6.1.9 and Proposition 6.3.4. �
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The following corollary is a special case of Proposition 6.3.5.

Corollary 6.3.6. Let D be a configuration. Then

tw(D) > sup{dim(U) | U ⊆ D is a subspace}.

In particular, tw(D) = ∞ if D contains an infinite-dimensional vector space.

The next proposition is an analogue of (1.5) in [KT91] (see also Propo-

sition 6.4.6).

Proposition 6.3.7. Let (T ,σ) be a finite-width tree-decomposition of a configu-

ration and let D =
⋃
t∈V(T) σ(t). Let U, U ′ ⊆ D be vector spaces and let k ∈ ω.

Then the following are equivalent:

(1) κD(U,U ′) > k.

(2) There exists a finite sequence U = U1, . . . , Un = U ′ ⊆ D of finite-dimen-

sional subspaces such that dim(Ui ∩Ui+1) > k for each i = 1, . . . , n− 1.

Proof. Suppose that (1) holds. As (T ,σ) has finite width, U is finite-dimen-

sional by Corollary 6.3.6. It follows from Corollary 6.3.2 that U 6 σ(t) for

some t ∈ V(T). Similarly, U ′ 6 σ(t ′) for some t ′ ∈ V(T).

As κ(U,U ′) > k,

min
({

dim(U), dim(U ′)
}
∪

{
w(e)

∣∣ e ∈ E(tTt ′)
})

> k.

Write tTt ′ = t, e1, t1, e2, . . . , em, t ′. For each i, choose Si 6 σ(ei)

having dimension k. Applying Lemma 2.2.1 to each of the pairs (U,S1),

(S1,S2), . . . , (Sm,U ′) yields m+ 1 finite sequences of subspaces, whose

concatenation clearly satisfies (2).

Now suppose that (2) holds. Aiming for a contradiction, suppose that

κ(U,U ′) < k. Then there is a split {F, F ′} of D having U ⊆ F, U ′ ⊆ F ′

and dim(〈F〉 ∩ 〈F ′〉) < k. Consequently there is a least i < n such that

Ui ⊆ F and Ui+1 ⊆ F ′. But then Ui ∩ Ui+1 6 〈F〉 ∩ 〈F ′〉, contradicting

dim(Ui ∩Ui+1) > k. Hence (1) holds. �
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6.4 Chordal Saturation and

Tree-Decompositions

This section investigates the relationships between chordally saturated

configurations and tree-decompositions. In particular, it establishes a cor-

respondence (Theorem 6.4.10) used in Chapter 7 to “locally encode” tree

structure. This is a key ingredient in the proof of the main theorem.

Lemma 6.4.1. Let D be a finite-dimensional configuration that can be con-

structed recursively by pasting across subspaces, starting from subspaces. Then

D has a finite tree-decomposition (T ,σ) such that

(1)
⋃
t∈V(T) σ(t) = D, and

(2) Width of (T ,σ) = tw(D) = max{dim(U) | U ⊆ D is a subspace}.

Proof. It suffices to demonstrate that the following algorithm terminates

and yields a finite tree-decomposition (T ,σ) of D satisfying (1) and (2).

Input: A finite-dimensional configuration D which can be constructed

recursively by pasting across subspaces, starting from subspaces.

Algorithm:

〈1〉 Let T = ({t0}, ∅), let σ : V(T) → S(〈D〉) : t0 7→ 〈D〉 and let ψ : V(T) →

2 : t0 7→ 0.

〈2〉 If ψ−1{0} is non-empty, choose t ∈ V(T) such that ψ(t) = 0. Otherwise

stop.

〈3〉 If σ(t) ⊆ D, redefine ψ(t) = 1 and go to 〈2〉. Otherwise, D∩ σ(t) can

be obtained by pasting some D1 and D2 together across the subspace

D1 ∩D2. In this case, modify (T ,σ,ψ) as follows.

(1) V(T) := V(T)⊔ {t1, t12, t2}
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(2) For every tt ′ ∈ E(T),

(2.1) if 〈D1〉 ⊇ σ(tt ′) * 〈D2〉, redefine E(T) = E(T)⊔ {t1t
′}. Other-

wise, if σ(tt ′) ⊆ 〈D1〉 ∩ 〈D2〉, redefine E(T) = E(T) ⊔ {t12t
′}.

Otherwise, redefine E(T) = E(T)⊔ {t2t
′}.

(2.2) E(T) := E(T) − {tt ′}

(3) V(T) := V(T) − {t}

(4) E(T) := E(T)⊔ {t1t12, t12t2}

(5) σ(t1) := 〈D1〉 and σ(t12) := D1 ∩D2 and σ(t2) := 〈D2〉.

(6) ψ(t1) := 0 and ψ(t12) := 1 and ψ(t2) := 0.

Output: A finite tree-decomposition (T ,σ) of D satisfying (1) and (2).

It is easy to see that if the algorithm terminates, then T is a finite tree,

σ : V(T) → S(〈D〉) and (TD1) holds. Given that the algorithm terminates

and that Interpolation holds, (1) and (2) clearly hold. So we demonstrate

termination of the algorithm and Interpolation.

The algorithm begins with a single finite-dimensional subspace la-

belled by 0. At each iteration, it either changes a 0-label to 1 or replaces

a 0-labelled subspace by two 0-labelled subspaces each having strictly

smaller dimension. Consequently the algorithm terminates.

Clearly it suffices to demonstrate that Interpolation is preserved in 〈3〉.

So suppose that T is modified in 〈3〉 as shown in Figure 6.8, the left-hand

side of which represents a tree-decomposition (T ,σ) of D.

Then with the possible exceptions of d1 and d2, Interpolation holds

for every edge of the new pair (T ,σ) represented by the right-hand side

of Figure 6.8. It suffices by symmetry to demonstrate that Interpolation

holds for d1.

Let Ai be the subspace associated with Tai for each i = 1, . . . , l. Define
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t t12

t1

t2

Ta1 Tal

Tb1

Tbm

T c1T cn

Ta1 Tal

Tb1

Tbm

T c1T cn

a1 al
b1

bm
c1cn

a1 al

b1

bm

c1cn

d1

d2

Figure 6.8: Surgery on the tree decomposition. The vertex t is replaced
by a 2-path, thus revealing a split of D∩ σ(t).

B1, . . . , Bm and C1, . . . , Cn similarly, and let

x ∈

〈 l⋃

i=1

Ai ∪D1

〉
∩

〈 m⋃

j=1

Bj ∪

n⋃

k=1

Ck ∪D2

〉
.

Then

x =

l∑

i=1

xi +w1 =

m∑

j=1

yj +

n∑

k=1

zk +w2 (6.4.1)

where xi ∈ Ai, yj ∈ Bj, zk ∈ Ck and wh ∈ 〈Dh〉 for every i, j, k and

h. As Interpolation holds for each bj, (6.4.1) shows that yj ∈ σ(bj) ⊆

〈D1〉 ∩ 〈D2〉 ⊆ 〈D2〉 for each j.

Moreover, as Interpolation holds for each ai, (6.4.1) shows that xi ∈
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σ(ai) ⊆ 〈D1〉 for each i. Symmetrically, zk ∈ 〈D2〉 for each k. Conse-

quently x ∈ 〈D1〉 ∩ 〈D2〉 = D1 ∩D2 ⊆ σ(d1), and so Interpolation holds

for d1. �

Lemma 6.4.2. The configuration
⋃
t∈V(T) σ(t) is chordal for every tree-decom-

position (T ,σ).

Proof. Let (T ,σ) be a tree-decomposition, let D =
⋃
t∈V(T) σ(t) and let

C ∈ C(D) have size at least 4. Let T be the collection of all finite subtrees

of T whose associated sets each contain C. Then whenever f is a choice

function for
{
{t ∈ V(T) | c ∈ σ(t)}

∣∣ c ∈ C
}

,

⋃

Distinct c, c ′ ∈ C

f(c)Tf(c ′) ∈ T.

Consequently T is non-empty. Let T ′ ∈ T be such that |T ′| is minimal.

In order to establish the result, it suffices to show that |C∩σ(t)| > 2 for

some t ∈ V(T ′). Clearly this is true if T ′ has only one vertex, so suppose

otherwise. Then L(T ′) is non-empty. Let t ∈ L(T ′). If |C ∩ σ(t)| 6 1, then

T ′ − {t} ∈ T by Interpolation, contradicting the minimality of |T ′|. Hence

|C∩ σ(t)| > 2. �

Proposition 6.4.3. Let D be a finite-dimensional configuration and let w ∈ ω.

Then the following are equivalent:

(1) D is chordally saturated and w = max{dim(U) | U ⊆ D is a subspace}.

(2) D can be constructed recursively by pasting along subspaces, starting from

subspaces, and w = max{dim(U) | U ⊆ D is a subspace}.

(3) D has a finite tree-decomposition (T ,σ) of widthw for which
⋃
t∈V(T) σ(t) =

D.

Proof. Proposition 5.3.10 shows that (1) implies (2). Lemma 6.4.1 shows

that (2) implies (3). Finally, Lemma 6.4.2 and Proposition 6.3.1 show that

(3) implies (1). �
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Lemma 6.4.4. Let D be a chordally saturated configuration, let π determine a

contraction of D by a finite linearly independent I ⊆ D and let U, U ′ ⊆ D be

subspaces such that dim(π[U] ∩ π[U ′]) > k ∈ ω. Then there exist subspaces

U = U1, . . . , Un = U ′ ⊆ D such that dim(Ui ∩Ui+1) > k for each i = 1,

. . . , n− 1.

Proof. Let V ′ 6 π[U]∩ π[U ′] have dimension k and let V = V ′ ⊕ 〈I〉. Then

dim(V) 6 k+ |I| ∈ ω, so D ′ := D ∩ V is a finite-dimensional chordally

saturated configuration by Proposition 5.3.6.

Let (T ,σ) be a tree-decomposition of D ′ as per Proposition 6.4.3.(3).

Let W1 = V ∩U and let W2 = V ∩U ′. Then

π[W1] = im(π)∩
(
〈I〉+W1

)
by Prop. 2.2.5.(4)

= im(π)∩
(
〈I〉+

((
V ′ ⊕ 〈I〉

)
∩U

))

= im(π)∩
((
V ′ ⊕ 〈I〉

)
∩
(
〈I〉+U

))
by the Modular Law

= π[V ′]∩ π[U]

= V ′ as V ′ ⊆ π[U].

Similarly, π[W2] = V ′.

As Wj ⊆ D ′ for each j, there exists tj ∈ V(T) such that Wj 6 σ(tj)

by Corollary 6.3.2. Let e ∈ E(t1Tt2) and for each j let Sj be the subspace

associated with the connected component of T − {e} containing tj. Then

Wj 6 Sj, so π[Wj] 6 π[Sj]. Consequently V ′ 6 π[S1] ∩ π[S2], and so

k 6 dim(π[S1]∩ π[S2]) 6 w(e) by Proposition 6.1.8.

Thus every edge of t1Tt2 has weight at least k. Write t1Tt2 = t ′2, t ′2t
′
3,

. . . , t ′n−1. Let U1 = U, let Ui = σ(ti) for each i = 2, . . . , n− 1 and let Un =

U ′. Then U1, . . . , Un ⊆ D are subspaces such that dim(Ui ∩Ui+1) > k for

each i < n. �

Lemma 6.4.5. Let D be a chordally saturated configuration, let k ∈ ω and let

U1, . . . , Un ⊆ D be subspaces such that dim(Ui ∩Ui+1) > k for each i = 1,
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. . . , n− 1. Then there exists π determining a contraction ofD by a finite linearly

independent I ⊆ D such that dim(π[U1]∩ π[Un]) > k.

Proof. Let U ′i 6 Ui ∩Ui+1 have dimension k for each i < n. Let V1 = U ′1,

let Vn = U ′n−1 and let Vi = U ′i−1 + U ′i for each i = 2, . . . , n − 1. Set

V =
∑n
i=1 Vi. Then dim(V) 6 2kn ∈ ω, so D ′ := D ∩ V is a finite-dimen-

sional chordally saturated configuration by Proposition 5.3.6.

Let (T ,σ) be a tree-decomposition of D ′ as per Proposition 6.4.3.(3).

Then for each i, as Vi ⊆ D
′, there exists ti ∈ V(T) such that Vi 6 σ(ti) by

Corollary 6.3.2. If t1 = tn, then Lemma 2.2.7 shows that there exists a π

as described. So suppose that t1 6= tn.

Let e ∈ E(t1Ttn) and let S1 and S2 be the subspaces displayed by e.

Clearly each Vi is contained in at least one Sj. Suppose that w(e) < k.

Then each Vi is contained in exactly one Sj by Interpolation. As V1 6 S1

and Vn 6 S2, there exists a least i for which Vi 6 S1 and Vi+1 6 S2. But

then dim(Vi ∩ Vi+1) 6 dim(S1 ∩ S2) = w(e) < k, contradicting dim(Vi ∩

Vi+1) > k. Consequently every edge of t1Ttn has weight at least k.

We argue inductively that there exists a finite sequence of projections

whose application reduces this case to that of t1 = tn. Let e = t1t
′
1 ∈

E(t1Ttn). If V1 6 σ(e), simply replace t1 by t ′1 and let π = id〈D〉 determine

a contraction of D by ∅.

Otherwise, let T1 be the component of T − {e} containing t1 and let T2

be the other component of T − {e}. Let Sj =
∑
t∈V(Tj)

σ(t) for each j and let

V ′1 6 σ(e) contain V1 ∩ σ(e) and have dimension k. Then (S1,S2,V1,V ′1)

satisfies the hypotheses of Lemma 2.2.7, so there exist finite X ⊆ D∩σ(t1)

and a complement U > S2 of 〈X〉 in 〈D〉 such that π[V1] 6 σ(e) and

dim(π[V1]) = k, where π is projection of 〈D〉 onto U along 〈X〉. Conse-

quently we may replace t1 by t ′1.

It follows that there exists π determining a contraction of D by some

finite X ⊆ D such that π[V1] = π[Vn] 6 σ(tn) ⊆ π[D] and dim(π[V1]) = k.

Finally, we note that contracting a finite set X is the same as contracting

a maximal independent subset of X, and that as V1 6 U1 and Vn 6 Un,
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necessarily dim(π[U1]∩ π[Un]) > k. �

Combining Lemmas 6.4.4 and 6.4.5 yields the next proposition, an

analogue of (1.5) in [KT91] (see also Proposition 6.3.7).

Proposition 6.4.6. Let D be a chordally saturated configuration, let k ∈ ω and

let U, U ′ ⊆ D be subspaces. Then the following are equivalent:

(1) There exist subspaces U = U1, . . . , Un = U ′ ⊆ D such that dim(Ui ∩

Ui+1) > k for each i = 1, . . . , n− 1.

(2) There exists π determining a contraction of D by a finite independent set

such that dim(π[U]∩ π[U ′]) > k.

We now require a weaker form of interpolation that behaves more like

that of tree-decompositions of graphs. Consequently we introduce the

following notion.

Definition 6.4.7. Let T be a tree, let U be a vector space and let σ : V(T)→

S(U). Set:

(PI) (Path Interpolation) σ(t1) ∩ σ(t2) ⊆ σ(t) for every t1, t2 ∈ V(T) and

each t ∈ V(t1Tt2).

Clearly Interpolation is (strictly) stronger than Path Interpolation. The

next lemma is a direct analogue of (2.1) in [KT91].

Lemma 6.4.8. Let D be an infinite-dimensional chordally saturated configura-

tion for which sup{dim(U) | U ⊆ D is a subspace} ∈ ω. Then there exist a

tree T and a bijection σ : V(T)→ {Maximal subspaces contained in D} such that

(T ,σ) satisfies Path Interpolation.

Proof. Let V = {Si | i ∈ I} be the collection of maximal subspaces con-

tained in D and let K be the complete graph having vertex set V . Define

the weight of SiSj ∈ E(K) to be w(SiSj) = dim(Si ∩ Sj). We construct a

maximum-weight spanning tree T of K using the Axiom of Choice.

Let w = sup{dim(U) | U ⊆ D is a subspace} and let Ew = ∅. Given

Ew ⊆ · · · ⊆ Ei+1, choose Ei ⊆ E(K) such that
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(1) Ei is obtained from Ei+1 by adding a (possibly empty) set of edges of

weight i,

(2) Ei contains no subset inducing a cycle, and

(3) Ei is maximal with respect to (1) and (2).

As every edge of K has weight at most w− 1, it follows that E0 is the edge

set of a spanning tree T of K.

Let σ = idV and suppose that Path Interpolation fails for (T ,σ). Then

it fails for a minimal path P = t1, t1t2, t2, . . . , tm. Let x ∈
(
σ(t1)∩σ(tm)

)
−⋃m−1

i=2 σ(ti) and let k = min{w(e) | e ∈ E(P)}.

Let π be a projection of 〈D〉 along 〈x〉 onto some complement U of 〈x〉

in 〈D〉. Then π determines a contraction of D by x. As x /∈
⋃m−1
i=2 σ(ti),

min
{

dim
(
π[σ(ti)]∩ π[σ(ti+1)]

) ∣∣ i < m
}

= k.

It follows from Proposition 6.4.6 that there exists finite linearly indepen-

dent I ⊆ π[D] such that if π ′ is a projection of 〈D〉 along 〈I〉 onto U ′ ⊕ 〈x〉

for some complement U ′ of 〈I〉 in U, then

k 6 dim
(
(π ′ ◦ π)[σ(t1)]∩ (π ′ ◦ π)[σ(tm)]

)

= dim
(
(π ◦ π ′)[σ(t1)]∩ (π ◦ π ′)[σ(tm)]

)

= dim
(
π
[
π ′[σ(t1)]∩ π

′[σ(tm)]
])

where the last step follows from x ∈ π ′[σ(t1)]∩ π
′[σ(tm)]. Consequently

dim
(
π ′[σ(t1)]∩ π

′[σ(tm)]
)

> k+ 1.

Now, π ′ determines a contraction of D by a finite linearly independent

subset of π|−1
D I. So by Proposition 6.4.6, there exists a sequence of sub-

spaces σ(t1) = U1, . . . , Un = σ(tm) ⊆ D such that dim(Ui ∩Ui+1) > k+ 1

for each i < n, contradicting the choice of T . Hence Path Interpolation

holds. �
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The properties of chordal saturation can be harnessed to strengthen

this result, as shown by the next proposition.

Proposition 6.4.9. Let D be an infinite-dimensional chordally saturated con-

figuration for which sup{dim(U) | U ⊆ D a subspace} ∈ ω. Then D has an

irredundant tree-decomposition whose vertex bags are (precisely) the maximal

subspaces contained in D.

Proof. Let (T ,σ) be as per Lemma 6.4.8. Suppose that Interpolation fails

for (T ,σ). Then as linear combinations are finite, it fails for (T ′,σ|V(T ′))

for some finite subtree T ′ of T . We may assume without loss of generality

that |T ′| is minimal.

Write L(T ′) = {t1, . . . , tn} and let t ′1 be the neighbour of t1 in T ′. As

Path Interpolation holds, necessarily n > 3 (see Figure 6.9).

t1 t ′1

t2

t3

tn−1

tn

...

Figure 6.9: Proof of Proposition 6.4.9.

For each i, there exists xi ∈ σ(ti) such that

x1 =

n∑

i=2

µixi /∈ σ(t ′1)

for some non-zero scalars µ2, . . . , µn. Without loss of generality, µ2x2 +

µ3x3 ∈ D by Chordality. It follows by Saturation that U := 〈x2, x3〉 ⊆ D,

so U ⊆ σ(t) for some t ∈ V(T).

If t ∈ V(T ′), then Path Interpolation in T ′ shows that Interpolation

fails for (T ′′,σ|V(T ′′)) for some proper subtree T ′′ of T ′, contradicting the
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minimality of |T ′|. Consequently t /∈ V(T ′), so there exists a minimal path

P in T linking t to some t ′ ∈ V(T ′). But then Path Interpolation in T ′ ∪ P

shows that Interpolation fails for (T ′′,σ|V(T ′′)) for some proper subtree

T ′′ of T ′, again contradicting the minimality of |T ′|. Hence Interpolation

holds for (T ,σ). �

The following theorem establishs that chordally saturated configura-

tions having finite tree-width have a “natural” tree structure. It is this

ability to “locally encode” the global tree structure of a configuration that

makes the argument of Theorem 7.1.5 possible. This role is fulfilled by

(2.1) in [KT91].

Theorem 6.4.10. Let D be a configuration and let w ∈ ω. Then the following

are equivalent:

(1) D is chordally saturated and w = sup{dim(U) | U ⊆ D is a subspace}.

(2) D is chordally saturated and w = tw(D).

(3) D has a tree-decomposition (T ,σ) of width w for which
⋃
t∈V(T) σ(t) = D.

(4) D has an optimal irredundant tree-decomposition of width w whose vertex

bags are (precisely) the maximal subspaces contained in D.

If D is finite-dimensional, these conditions are also equivalent to:

(5) D can be constructed recursively by pasting along subspaces, starting from

subspaces, and w = sup{dim(U) | U ⊆ D is a subspace}.

(6) D can be constructed recursively by pasting along subspaces, starting from

subspaces, and w = tw(D).

Proof. Let D be a configuration and let w ∈ ω. We first show that (1) ⇒

(4)⇒ (3)⇒ (1).
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Suppose that (1) holds and that dim(D) ∈ ω. Then D has a finite tree-

decomposition (T ,σ) of width w for which
⋃
t∈V(T) σ(t) = D by Proposi-

tion 6.4.3. It follows from Proposition 6.1.11 that D has a finite irredun-

dant tree-decomposition (T ′,σ ′) of width w for which
⋃
t∈V(T ′) σ

′(t) = D.

Clearly tw(D) 6 w, and tw(D) > w by Corollary 6.3.6, so (T ′,σ ′) is opti-

mal. As every vertex bag of (T ′,σ ′) is a subspace contained in D, Corol-

lary 6.3.2 shows that the vertex bags of (T ′,σ ′) are precisely the maximal

subspaces contained in D.

Now suppose that dim(D) = ∞. Then D has an irredundant tree-

decomposition (T ,σ) whose vertex bags are (precisely) the maximal sub-

spaces contained in D by Proposition 6.4.9. Necessarily (T ,σ) has width

w > tw(D), and tw(D) > w by Corollary 6.3.6, so (T ′,σ ′) is optimal. Thus

(4) holds.

It is obvious that (4) ⇒ (3), so suppose that (3) holds. Let N ⊆ D

be round. Then dim(N) ∈ ω by Proposition 6.3.5, so 〈N〉 ⊆ σ(t) ⊆ D

for some t ∈ V(T) by Proposition 6.3.1. Consequently D is saturated.

Proposition 6.4.2 shows that D is chordal.

As every vertex bag of (T ,σ) is a subspace contained in D, neces-

sarily w 6 sup{dim(U) | U ⊆ D is a subspace}. Corollary 6.3.6 shows

that sup{dim(U) | U ⊆ D is a subspace} 6 tw(D). It follows that w =

sup{dim(U) | U ⊆ D is a subspace}, and so (1) holds.

We now demonstrate the equivalence of (1) and (2). First, suppose

that (1) holds. Then D has an optimal tree-decomposition of width w by

the equivalence (1)⇔ (4), so w = tw(D). Thus (2) holds.

Now suppose that (2) holds. Then it follows from Corollary 6.3.6 that

sup{dim(U) | U ⊆ D is a subspace} ∈ ω. So D has an optimal tree-de-

composition of width sup{dim(U) | U ⊆ D is a subspace} by the equiva-

lence (1)⇔ (4), and thus w = sup{dim(U) | U ⊆ D is a subspace}. Conse-

quently (1) holds.

Now additionally suppose that D is finite-dimensional. Then the

equivalence (1)⇔ (5) follows immediately from Proposition 6.4.3, and the
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equivalence (5)⇔ (6) follows from the equivalences (2)⇔ (1)⇔ (5). �

It is now easy to describe the tree-width of chordally saturated config-

urations.

Corollary 6.4.11. Let D be a chordally saturated configuration. Then

tw(D) = sup{dim(U) | U ⊆ D is a subspace}.

Proof. If tw(D) ∈ ω, this is immediate from Theorem 6.4.10. If tw(D) =

∞, then dim(D) = ∞ by Corollary 6.1.9. It then follows from Proposi-

tion 6.4.9 that sup{dim(U) | U ⊆ D is a subspace} = ∞ also. �

The following proposition extends Proposition 6.1.11 to tree-decom-

positions having finite width.

Proposition 6.4.12. Whenever a configuration has a tree-decomposition (T ,σ)

of width w ∈ ω, it has an irredundant tree-decomposition (T ′,σ ′) of width w

for which im(σ ′) ⊆ im(σ). Moreover, if (T ,σ) is finite, then so is (T ′,σ ′).

Proof. If (T ,σ) is finite, this is precisely Proposition 6.1.11. So let D be a

configuration having an infinite tree-decomposition (T ,σ) of width w ∈

ω. Clearly (T ,σ) is also a tree-decomposition of D ′ :=
⋃
t∈V(T) σ(t), so it

follows from Theorem 6.4.10 that D ′ has an irredundant tree-decomposi-

tion (T ′,σ ′) of width w whose bags are (precisely) the maximal subspaces

contained in D ′. Necessarily im(σ ′) ⊆ im(σ), so the result follows from

Proposition 6.1.3. �

We close this section with an analogue of a compactness result for

graphs discovered by Thomas, a proof of which is given by Thomassen

on p. 410 of [Tho89b].

Theorem 6.4.13. Let D be a configuration and let w ∈ ω. Then tw(D) 6 w if

and only if tw(D0) 6 w for every finite D0 ⊆ D.
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Proof. The forward implication follows immediately from Corollary 6.1.9,

so we consider the reverse implication. LetD be a configuration for which

every finite subconfiguration has tree-width at most w ∈ ω and let

X = {D ′ ⊆ 〈D〉 | D ⊆ D ′ and tw(D ′0) 6 w for every finite D ′0 ⊆ D
′}.

Clearly X is partially ordered by set inclusion. Let Y ⊆ X be totally

ordered by set inclusion and let D ′ =
⋃

Y. Suppose that D ′ /∈ X. Then

there exists finite D ′0 ⊆ D
′ such that tw(D ′0) > w. As D ′0 is finite and Y is

totally ordered, there exists D ′′ ∈ Y containing D ′0, contradicting D ′′ ∈ X.

Thus D ′ ∈ X, and so Y has an upper bound in X. It then follows from

Zorn’s Lemma that X has a maximal element D̄.

(1) D̄ is chordally saturated.

Let N ⊆ D̄ be round and at most w-dimensional, let x ∈ 〈N〉 and let

D ′ = D̄ ∪ {x}. Clearly D ⊆ D ′ ⊆ 〈D〉. Let D ′0 ⊆ D
′ be finite. There

exists finite round N0 ⊆ N such that 〈N0〉 = 〈N〉 by Corollary 5.2.8.

As N0 ∪ (D ′0 − {x}) ⊆ D̄ is finite, clearly tw
(
N0 ∪ (D ′0 − {x})

)
6 w. It

follows from Proposition 6.3.1 that tw(N0∪D
′
0) 6 w also, so tw(D ′0) 6

w by Corollary 6.1.9. Hence D ′ ∈ X, so D̄ = D ′ ∋ x by the maximality

of D̄. As the choice of x was arbitrary, 〈N〉 ⊆ D̄.

Now suppose that N ⊆ D̄ is round and at least (w+ 1)-dimensional.

Let B1 ⊆ N be linearly independent with |B1| = w+ 1. Extend B1 by

B2 ⊆ D̄ to a basis for
〈
D̄
〉

and let π be the projection of
〈
D̄
〉

onto 〈B1〉

along 〈B2〉. Then π determines a contraction of D̄ by B2.

π[N] is round by Corollary 5.2.10 and (w+ 1)-dimensional. It follows

from Corollary 5.2.8 that there exists finite round N0 ⊆ π[N] having

dimension w+ 1. So by Proposition 4.4.7, N0 ⊆ π
′[N] for some pro-

jection π ′ determining a contraction of D̄ by some finite B ′2 ⊆ B2.

Let X ⊆ N be finite and such that π ′[X] = N0. Then X ∪ B ′2 is a

finite subset of D̄. Corollary 6.1.9 and Proposition 6.3.4 imply that
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tw(X ∪ B ′2) > tw(N0) = dim(N0) = w + 1, contradicting D̄ ∈ X.

Consequently D̄ contains no round subsets having dimension at least

w+ 1, and so Saturation holds.

Suppose that D̄ is not chordal. Then there exists C = {c1, . . . , cn} ∈

C
(
D̄
)

having size at least 4 such that ci + cj /∈ D̄ whenever i 6= j.

It follows from the maximality of D̄ that D̄ ⊔ {ci + cj} /∈ X, so there

exists finite Dij ⊆ D̄ ⊔ {ci + cj} such that tw(Dij) > w. Necessarily

ci + cj ∈ Dij. Consequently D ′ij := Dij ∪C ⊆ D̄⊔ {ci + cj} is finite and

has tree-width at least w+ 1 by Corollary 6.1.9.

Let D ′ =
⋃
i 6=j(D

′
ij − {ci + cj}). It follows from D ′ being a finite subset

of D̄ that tw(D ′) 6 w. So there exists chordally saturated D ′′ ⊇ D ′

such that tw(D ′′) 6 w by Proposition 6.4.3. As C ⊆ D ′ij whenever

i 6= j, C ⊆ D ′ ⊆ D ′′, so C ∈ C(D ′′). It follows from the Chordality

of D ′′ that µci + ξcj ∈ D
′′ for some i 6= j and some non-zero scalars

µ and ξ. So ci + cj ∈ 〈ci, cj〉 ⊆ D ′′ by the Saturation of D ′′. Thus

D ′ij ⊆ D
′′, so tw(D ′′) > tw(D ′ij) > w by Corollary 6.1.9, contradicting

tw(D ′′) 6 w. Hence Chordality holds. �

As D̄ contains no round subsets having dimension at least w+ 1, it con-

tains no subspaces having dimension at least w + 1 by Corollary 5.2.4.

Hence tw(D) 6 tw(D̄) 6 w by Corollaries 6.1.9 and 6.4.11. �

Combining Corollary 6.1.9 with this result gives the following corol-

lary.

Corollary 6.4.14. For every configuration D,

tw(D) = sup{tw(D0) | D0 ⊆ D is finite}.



Chapter 7

Linked Decompositions:

The Infinite Case

In this chapter we finally establish the following theorem, which corre-

sponds to (1.2) in [KT91].

Theorem 7.1.1. Every configuration having tree-width w ∈ ω has a linked

tree-decomposition of width at most 2w.

We prove Theorem 7.1.1 by using Rado’s Selection Lemma to “paste

together” linked tree-decompositions of finite subconfigurations, yield-

ing a linked tree-decomposition of the ambient configuration. As this

approach cannot be applied directly to linked tree-decompositions, we

begin by defining an equivalent object whose structure is “determined

locally.” This definition is an analogue of that given on p. 89 of [KT91].

Definition 7.1.2. Let D = (D,E, ℓ) be a configuration having tree-width

w ∈ ω. Then an M-closure of D is a configuration D̂ =
(
D̂, Ê, ℓ̂

)
> D

satisfying:

(MC1) D̂ is chordally saturated.

(MC2) D̂ contains no (2w+ 1)-dimensional subspace.
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(MC3) Whenever S1 and S2 are distinct maximal subspaces contained in

D̂ and Ri is the union of those ℓ̂−1Si-bridges of D̂ disjoint from

ℓ̂−1S3−i for each i,

κD

(
ℓ−1
(
S1 ⊔ ℓ̂ [R1]

)
, ℓ−1

(
S2 ⊔ ℓ̂ [R2]

))
> κ

D̂

(
ℓ̂−1S1, ℓ̂−1S2

)
.

In this definition, (MC1) encodes tree structure, (MC2) bounds width

and (MC3) encodes the property of being linked. Note that (MC2) is

chosen to correspond to the width bound in Theorem 6.2.5—were Con-

jecture 8.1.1 known to be true, “w+ 1” would be used.

Unsurprisingly, it suffices in the context of M-closures to simply view

configurations as subsets of their ambient spaces.

Proposition 7.1.3. Let D be a configuration having finite tree-width and point

set D. Then D̂ having point set D̂ is an M-closure of D if and only if D̂ is an

M-closure of D.

Proof. Combine Propositions 5.3.2, 5.1.11 and 4.5.2. �

Of course, the last proposition does not encompass simplifications be-

cause (MC1) in principle forces the existence of subspaces having non-

trivial parallel classes.

The next proposition establishes the equivalence of finite-width linked

tree-decompositions and M-closures for configurations having finite tree-

width. It corresponds to (2.2) in [KT91].

Proposition 7.1.4. Let D be a configuration having tree-width w ∈ ω. Then

D has a linked tree-decomposition of width at most 2w if and only if it has an

M-closure.

Proof. Let (T ,σ) be a linked tree-decomposition ofD having width at most

2w and let D̂ =
⋃
t∈V(T) σ(t) > D. It follows from Theorem 6.4.10 that D̂

is chordally saturated and contains no (2w + 1)-dimensional subspace.

Consequently statements (MC1) and (MC2) hold.



141

Let S1 and S2 be distinct maximal subspaces contained in D̂. Then

S1 = σ(t1) and S2 = σ(t2) for some distinct t1, t2 ∈ V(T) by Corol-

lary 6.3.2. Let P = t1Tt2. For each i, let Ri be the union of the Si-bridges

of D̂ disjoint from S3−i and let Xi be the set associated with the connected

component of T −E(P) containing ti. Then it follows from Corollary 5.1.13

and Interpolation that Ri = Xi − Si. Consequently

κD
(
D∩ (S1 ⊔R1),D∩ (S2 ⊔R2)

)
= κD(D∩X1,D∩X2)

= min{w(e) | e ∈ E(P)}

as (T ,σ) is D-linked

> κ
D̂
(S1,S2)

where the last step follows from the fact that each e ∈ E(P) displays

subspaces that form a split of S1 and S2 in D̂. Hence (MC3) holds, and so

D̂ is an M-closure of D.

Now let D̂ be an M-closure of D. Then D̂ has a tree-decomposition

(T ,σ) of width at most 2w for which
⋃
t∈V(T) σ(t) = D̂ by Theorem 6.4.10.

Moreover, (T ,σ) is a tree-decomposition of D by Proposition 6.1.3. We

verify that it is D-linked.

Let t1, t2 ∈ V(T) be distinct, let P = t1Tt2 and let Xi be the set as-

sociated with the component of T − E(P) containing ti for each i. Write

P = t1, t1t2, t2, . . . , tn and let k = min{w(e) | e ∈ E(P)}. Then σ(t1),

. . . , σ(tn) is a sequence of finite-dimensional subspaces contained in D̂

such that dim(σ(tj) ∩ σ(tj+1)) > k for each j < n. It follows from Propo-

sition 6.3.7 that

κ
D̂

(
σ(t1),σ(tn)

)
> k.

So as D̂ is an M-closure of D,

κD
(
D∩ (σ(t1)⊔R1),D∩ (σ(t2)⊔R2)

)
> k

where Ri is the union of the σ(ti)-bridges of D̂ disjoint from σ(t3−i)
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for each i. As
⋃
t∈V(T) σ(t) = D̂, it follows from Corollary 5.1.13 and

Interpolation that σ(ti)⊔Ri = Xi for each i, so in fact

κD(X1,X2) > k.

Hence (T ,σ) is D-linked. �

The next theorem establishes the existence of M-closures for configu-

rations having finite tree-width. It corresponds to (2.4) in [KT91].

Theorem 7.1.5. Every configuration having finite tree-width has an M-closure.

Proof. Let D be a configuration having tree-width w ∈ ω. For every finite

X ⊆ 〈D〉, let D̂X be an M-closure of DX := D∩X. Define fX : X→ 2 by

fX(x) =






1 if x ∈ D̂X, and

0 otherwise

for every x ∈ X. Then by Rado’s Selection Lemma, there exists f : 〈D〉 → 2

such that for every finite X ⊆ 〈D〉 there exists finite Y ⊆ 〈D〉 containing X

such that f|X = fY |X. Let D̂ = f−1{1}. Clearly D̂ > D.

We first demonstrate Saturation. Let N ⊆ D̂ be round and at most

2w-dimensional. Then there exists finite round N0 ⊆ N such that 〈N0〉 =

〈N〉 by Corollary 5.2.8. Let x ∈ 〈N〉. Then N0 ∪ {x} ⊆ 〈D〉 is finite, so there

exists finite Y ⊆ 〈D〉 containing N0 ∪ {x} such that f|N0∪{x} = fY |N0∪{x}.

Consequently N0 ⊆ D̂Y . It follows from the Saturation of D̂Y that 〈N0〉 ⊆

D̂Y , so x ∈ D̂Y . Thus x ∈ D̂. As the choice of x was arbitrary, 〈N〉 ⊆ D̂.

Now suppose that N ⊆ D̂ is round and at least (2w+ 1)-dimensional.

Let B1 ⊆ N be linearly independent with |B1| = 2w+ 1. Extend B1 by

B2 ⊆ D̂ to a basis for
〈
D̂
〉

and let π be the projection of
〈
D̂
〉

onto 〈B1〉

along 〈B2〉. Then π determines a contraction of D̂ by B2.

π[N] is round by Corollary 5.2.10 and (2w+ 1)-dimensional. It follows

from Corollary 5.2.8 that there exists finite round N0 ⊆ π[N] having di-
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mension 2w+ 1. So by Proposition 4.4.7, N0 ⊆ π
′[N] for some projection

π ′ determining a contraction of D̂ by some finite B ′2 ⊆ B2.

Let X ⊆ N be finite and such that π ′[X] = N0. As X∪B ′2 ⊆ 〈D〉 is finite,

there exists finite Y ⊆ 〈D〉 containing X ∪ B ′2 such that f|X∪B ′

2
= fY |X∪B ′

2
.

Consequently X∪B ′2 ⊆ D̂Y . Clearly π ′′ := π ′|
〈D̂Y〉

determines a contraction

of D̂Y by B ′2, and N0 ⊆ π
′′
[
D̂Y
]
. So there exists round N ′ ⊆ D̂Y such that

N0 = π ′′[N ′]by Proposition 5.3.12.

Clearly dim(N ′) > dim(N0) = 2w + 1, so Saturation for D̂Y shows

that D̂Y contains a (2w+ 1)-dimensional subspace. Proposition 6.1.3 and

(MC2) then imply that tw(D) > tw(DY) > w+ 1, contradicting tw(D) =

w. Consequently D̂ contains no round subsets having dimension at least

2w+ 1, and so Saturation holds.

We now establish Chordality. Let C ∈ C
(
D̂
)

have size at least 4 and let

X = C∪ {c+ c ′ | {c, c ′} ∈ [C]2}.

Clearly X ⊆ 〈D〉 is finite, so there exists finite Y ⊆ 〈D〉 containing X such

that f|X = fY |X. Consequently C ∈ C
(
D̂Y
)
. It follows from the Chordality

of D̂Y that there exist distinct c, c ′ ∈ C and d ∈ D̂Y −C such that {c, c ′,d},

(C − {c, c ′}) ⊔ {d} ∈ C
(
D̂Y
)
. As {c, c ′,d} is round, 〈{c, c ′}〉 ⊆ D̂Y by the

Saturation of D̂Y , so c+ c ′ ∈ D̂Y . Thus c+ c ′ ∈ D̂. So as {c, c ′, c+ c ′} is

round, 〈{c, c ′}〉 ⊆ D̂ by the Saturation of D̂. Thus d ∈ D̂. Consequently

{c, c ′,d}, (C − {c, c ′}) ⊔ {d} ∈ C
(
D̂
)
, and so D̂ is Chordal. Thus (MC1)

holds.

The statement (MC2) follows from the Saturation argument by the

roundness of subspaces (see Corollary 5.2.4).

So we turn to (MC3). Let S1 and S2 be distinct maximal subspaces

contained in D̂ and for each i let Ri be the union of those Si-bridges of

D̂ disjoint from S3−i. As (MC1) and (MC2) hold, it follows from Theo-

rem 6.4.10 that D̂ has a tree-decomposition (T ,σ) of finite width whose

vertex bags are precisely the maximal subspaces contained in D̂.
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Thus S1 = σ(t1) and S2 = σ(t2) for some distinct t1, t2 ∈ V(T). Let P =

t1Tt2. For each t ∈ V(P), let Bt be a basis for σ(t) and let Nt = Bt ⊔ {b+

b ′ | {b,b ′} ∈ [Bt]
2}. ClearlyNt is a finite Dowling clique spanning σ(t). Let

X =
⋃
t∈V(P)Nt. As X ⊆ 〈D〉 is finite, there exists finite Y ⊆ 〈D〉 containing

X such that f|X = fY |X, so X ⊆ D̂Y . It follows from Proposition 5.2.12 and

the Saturation of D̂Y that
⋃
t∈V(P) σ(t) ⊆ D̂Y . Consequently

κ
D̂
(S1,S2) 6 min{w(e) | w ∈ E(P)} by Prop. 6.2.1

6 κ
D̂Y

(S1,S2) by Prop. 6.3.7

6 κDY
(DY ∩ (S1 ⊔R1),DY ∩ (S2 ⊔R2)) by (MC3)

6 κD(DY ∩ (S1 ⊔R1),DY ∩ (S2 ⊔R2))

6 κD(D∩ (S1 ⊔R1),D∩ (S2 ⊔R2)) by Prop. 4.5.3.(2).

Hence (MC3) holds for D̂. �

Theorem 7.1.1 is now easily derived.

Proof of Theorem 7.1.1. Let D be a configuration having tree-width w ∈ ω.

Then D has an M-closure by Theorem 7.1.5 and thus has a linked tree-

decomposition of width at most 2w by Proposition 7.1.4. �

If Theorem 6.2.5 were strengthened to show that every finite config-

uration has an optimal linked tree-decomposition, this stronger result

would easily lift to infinite configurations (see Conjecture 8.1.2).



Chapter 8

Discussion

This thesis focused on linked tree-decompositions of configurations. We

discuss some possible avenues of future research motivated by the results

obtained.

Our main result (Theorem 7.1.1) is that every configuration having

tree-width w ∈ ω has a linked tree-decomposition of width at most 2w.

The proof given uses a finite version of this result (Theorem 6.2.5), new

notions of bridges and chordality for configurations and a compactness

argument. As the property of being linked concerns edge bags, while

width concerns vertex bags, the factor of 2 in the width bound may be

unnecessary.

Conjecture 8.1.1. Every finite configuration has an optimal linked tree-decom-

position.

If Conjecture 8.1.1 were answered affirmatively, then the next conjec-

ture would follow on replacing “2w” by “w” in Definition 7.1.2 and the

subsequent arguments.

Conjecture 8.1.2. Every configuration having finite tree-width has an optimal

linked tree-decomposition.

It is natural to ask whether representability is necessary for the ex-

istence of linked tree-decompositions. As the proof of Theorem 6.2.5 is

145
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essentially matroidal, it should be easy to show that every matroid having

tree-width w has a tree-decomposition of width at most 2w (see p. 1120

of [HW06] for the definition of “tree-decomposition of a matroid”). How-

ever, answering the following conjecture would yield greater insight.

Conjecture 8.1.3. Every matroid has an optimal linked tree-decomposition.

As short proofs of Theorems 1.1.5 and 6.2.4 were given in [BD02] and

[GGW02] respectively, there is probably a short proof answering Con-

jecture 8.1.3 affirmatively. Unfortunately, this does not appear to be a

straightforward generalisation of the argument for finite graphs. A key

difficulty is that the latter relies heavily on the use of paths, which have

no matroidal analogue.

This may be an instance of a more general phenomenon: some ma-

troidal results are first established for graphs via proofs relying on strictly

graphic structure. Subsequent matroidal proofs can reveal enough struc-

ture to make further abstraction possible. For example, Theorem 6.2.4 is

stated for connectivity functions. This suggests the following question.

Question 8.1.4.

(1) Are there notions of “connectivity function” and “tree-decomposition of a

connectivity function” such that tree-decompositions of connectivity func-

tions generalise both tree-decompositions of finite graphs and tree-decompo-

sitions of matroids?

(2) If so, is there a notion of “linked tree-decomposition of a connectivity func-

tion” for which the existence of linked tree-decompositions of connectivity

functions can be established?

(3) If so, does this imply the existence of linked tree-decompositions of finite

graphs and/or matroids?

Progress on this question might considerably further understanding of

tree-decompositions. Certainly, unification of some of the various notions

of “tree-decomposition” for different objects seems a worthwhile goal.
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Many questions about tree-decompositions remain open in the infinite

case. In fact, no definition has yet been given for independence spaces.

Question 8.1.5. Is there a notion of “tree-decomposition of an independence

space” such that tree-decompositions of independence spaces generalise tree-de-

compositions of matroids?

A suitable definition would have to avoid taking a difference of infinite

ranks. It might be possible to achieve this by using some combination of

bases, closure, restriction and contraction to reduce reliance on the rank

function.

We demonstrated compactness of tree-width for configurations (Theo-

rem 6.4.13). Given a positive answer to Question 8.1.5, it would be natural

to ask whether this result extends to independence spaces in general.

Question 8.1.6. Is the tree-width of an independence space always the supre-

mum of the tree-widths of its submatroids?

Answering Question 8.1.6 might require a notion of chordality for in-

dependence spaces (see Question 8.1.8).

Given positive answers to both Question 8.1.5 and Conjecture 8.1.3, it

might be possible to answer the following question affirmatively using

the proof strategy common to [KT91] and this thesis.

Question 8.1.7. Does every independence space having finite tree-width have

an optimal linked tree-decomposition?

This would require purely matroidal formulations of the concepts de-

veloped in this thesis. While some of these (such as roundness) are al-

ready stated matroidally, others are not. In particular, a suitable substitute

for chordal saturation would be required. This is an interesting question

in its own right.

Question 8.1.8. Is there a notion of “chordal independence space” such that

chordal matroids canonically correspond to tree-decompositions of matroids?
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That is, does Proposition 6.4.3 generalise to matroids? While a defi-

nition of chordality for independence spaces should clearly include the

matroidal statement of (CS1), it is not immediately apparent what the

second statement should be (or even whether one is necessary). If a den-

sity requirement is necessary, a suitable statement might involve modular

pairs of flats. In this case, the ability to freely add points to a separation in

a matroid until a modular pair is obtained might be useful for obtaining

chordal closures.

It should be noted that a positive answer to Question 8.1.7 would be

of little more use than Theorem 7.1.1 from the perspective of well-quasi-

ordering. This is because finite certificates are necessary for a standard

minimal bad sequence argument. In the case of independence spaces

representable over a fixed finite field, these would arise from bounded

tree-width forcing each vertex bag of a tree-decomposition to contain

only finitely many points. Otherwise, there are no obvious alternative

assumptions furnishing finite certificates. Note that finiteness of the field

is necessary for well-quasi-ordering in the representable case (see p. 271

of [GGW02]).

However, Theorem 7.1.1 should make it possible to establish Conjec-

ture 1.1.4. In fact, it is reasonable to expect that the following (stronger)

conjecture could be established using Theorem 7.1.1 and an argument

similar to that given in [Tho89a].

Conjecture 8.1.9. Every class of independence spaces representable over a fixed

finite field and having bounded tree-width is well-behaved under the minor rela-

tion.

“Well-behaved” is a technical strengthening of better-quasi-ordered

(and thus a strengthening of well-quasi-ordered) defined on p. 294 of

[Tho89a].



Bibliography

[Adl06] Isolde Adler. Width Functions for Hypertree Decompositions. PhD
thesis, University of Freiburg, Jan 2006. 100, 106

[BD02] Patrick Bellenbaum and Reinhard Diestel. Two short proofs
concerning tree-decompositions. Combin. Probab. Comput., 11:
541–547, 2002. DOI: 10.1017/S0963548302005369. 121, 146

[BdM04] Joseph Bonin and Anna de Mier. T -uniqueness of some fami-
lies of k-chordal matroids. Adv. in Appl. Math., 32:10–30, 2004.
DOI: 10.1016/S0196-8858(03)00075-7. 89

[BF48] Garrett Birkhoff and Orrin Frink, Jr. Representations of lat-
tices by sets. Trans. Amer. Math. Soc., 64:299–316, 1948. DOI:
10.2307/1990504. 18

[BG86] F. Barahona and M. Grötschel. On the cycle polytope of a
binary matroid. J. Combin. Theory Ser. B, 40:40–62, 1986. DOI:
10.1016/0095-8956(86)90063-8. 89

[CFK04] Raul Cordovil, David Forge, and Sulamita Klein. How is a
chordal graph like a supersolvable binary matroid? Discrete
Math., 288:167–172, 2004. DOI: 10.1016/j.disc.2004.08.004. 89

[Die06] Reinhard Diestel. Graph Theory. Number 173 in Graduate
Texts in Mathematics. Springer–Verlag, Berlin, third edition,
2006. ISBN: 3-540-26183-4. 1, 92, 104

[dMV03] Anna de Mier Vinué. Graphs and matroids determined by their
Tutte polynomials. PhD thesis, Universitat Politécnica de Cata-
lunya, 2003. 89

149



150 BIBLIOGRAPHY

[FF00] Claude-Alain Faure and Alfred Froölicher. Modern Projective
Geometry. Number 521 in Mathematics and Its Applications.
Kluwer, Dordrecht, The Netherlands, 2000. ISBN: 0-7923-6525-
9. 33

[GGW02] James F. Geelen, A. M. H. Gerards, and Geoff Whittle.
Branch-width and well-quasi-ordering in matroids and
graphs. J. Combin. Theory Ser. B, 84:270–290, 2002. DOI:
10.1006/jctb.2001.2082. 3, 9, 60, 115, 117, 146, 148

[GGW03] James F. Geelen, A. M. H. Gerards, and Geoff Whittle. Disjoint
cocircuits in matroids with large rank. J. Combin. Theory Ser. B,
87:270–279, 2003. DOI: 10.1016/S0095-8956(02)00010-2. 88

[GK06] Jim Geelen and Kasper Kabell. The Erdős–Pósa property for
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Notation

D ′ 6 D, 58
G ′ 6 G, 8
(T ′,w ′) 6E (T ,w), 9
N 4 M, 39
[X]2, 86

B(D), 51
B(M), 18

C(D), 51
C(e,B), 22
c(G), 9
C(M), 18
clM, 33

D/X, 60
D\X, 57
∆(G), 8
dG(v), 8
dim(D), 50

D̃, 54

E(D), 50
E(G), 7
e(G), 7
E(M), 18
EG(V ′), 8

F(D), 51
F(M), 33

G[E ′], 9

G[V ′], 9
γM, 70

H(M), 33

I(D), 51
I(M), 18

κD(X,Y), 65
κG(X,Y), 45
κM(X,Y), 45

L(D), 51
L(M), 18
L(T), 8
λD(X), 65
λD(X,Y), 65
λM(X), 45
λM(X,Y), 45
LTD(D), 114

M ∼= M ′, 42
M(G), 20
M/X, 36
M[D], 51
M\X, 23
mod, 60
M̃, 42
M|X, 23

NG(v), 8

ω(G), 89
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P(E), 20
Pfin(E), 29

r(M), 27
ρM, 41
rM, 27
rM(X), 27

S(V), 11

TD(D), 100
T>k, 9
tTt ′, 8
tw(D), 99

Um,β, 87

V(G), 7
VG(E ′), 8

w(e), 99, 109
w(t), 99
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Axiom of choice, 15, 131
axioms

basis, 23, 24
chordal saturation, 90
circuit, 21
closure, 33
independent set, 17
M-closure, 139
rank, 27, 30
tree-decomposition, 99

bag (edge or vertex), 99
bases

of configurations, 51
of independence spaces, 18

basis exchange axiom, 24
branch-decomposition, 109
branch-width, 109
bridges, 71

characterisation of, 74, 76

choice function, 14
chord, 88
chordal, 88, 90
chordality axiom, 90
chordally saturated, 90
circuits

of configurations, 51
of independence spaces, 18

clique, 87, 92
number, 89

closed set, 33
closure operator, 33
complement, 12
complete graph, 87, 92
configuration, 50
connected, 8

components
characterisation of, 74, 76
of configurations, 71
of graphs, 9
of independence spaces, 71

connectivity functions, 115
of configurations, 65
of independence spaces, 45

contractions
of configurations, 60
of independence spaces, 36

cubic tree, 8
cycle, 8

independence space, 20

degree/maximum degree, 8
deletions

of configurations, 57
of independence spaces, 23

dependent sets
of configurations, 51
of independence spaces, 18

dimension, 50
Dowling clique, 86, 91

joints of, 86
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edge set, 7
edge-weighted tree, 9
edge-weighting, 9
edges, 7
empty

graph, 7
separator, 71

endvertices, 8
equivalence

modulo a subspace, 60
of configurations, 52

finite
augmentation axiom, 17
character axiom, 18
configuration, 50
edge-weighted tree, 9
graph, 7
tree-decomposition, 100

flats
of configurations, 51
of independence spaces, 33

forest, 8
fundamental circuit, 22

geometric representation, 42
graph, 7
ground sets

of configurations, 50
of independence spaces, 18

hyperplanes
of independence spaces, 33
of vector spaces, 81, 95

I-subset, 25
incident, 7, 8
independence space, 18

graphic, 20
independent sets

of configurations, 51
of independence spaces, 18

induced
configuration, 58
subgraph, 9
tree-decomposition, 109

interpolation axiom, 99
intersection of configurations, 57
irredundant tree-decomposition,

106
isomorphic

complements, 13
independence spaces, 42

leaf, 8
leaf-induced

tree-decomposition, 109
linked

D-, 114
tree-decomposition, 114
vertices, 8

loops
of configurations, 51
of graphs, 8
of independence spaces, 18

M-closure, 139
matroid, 18
meet properly, 102
middle basis axiom, 23
minor, 39

neighbour, 8
non-splitting, 80
non-trivial path, 113

optimal tree-decomposition, 99
order

of a configuration, 50
of a graph, 7
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of a split, 80

parallel
class, 41
edges, 8
pairs

of configurations, 51
of independence spaces, 18

pasting, 93
path, 8

interpolation axiom, 131
point set, 50
power set, 20
pre-independence space, 17
projection, 12
proper

flat, 33
meeting axiom, 103

Rado’s selection lemma, 15, 25,
27, 37, 88, 139, 142

rank/rank function, 27
represented independence

space, 51
restrictions

of configurations, 57
of independence spaces, 23

round, 80

saturated, 90
saturation axiom, 90
separator, 71
set

associated with, 99
displayed by, 99

simple
configuration, 55
pre-independence space, 18

simplifications
of configurations, 54

of independence spaces, 42
spanning/spans, 33
split/splits, 80
strong circuit elimination axiom,

22
subconfiguration, 58
subgraph, 8
submodular function, 27
subspace

associated with, 99
displayed by, 98

transversal, 41
tree, 8
tree-decomposition, 99
tree-width, 99
triangles

of configurations, 51
of independence spaces, 18,

87
triangulated, 88

uniform independence space, 87
union

of configurations, 57
of graphs, 8

vector independence space, 51
vertex

connectivity, 45
set, 7

vertices, 7

weak circuit elimination axiom,
21

width, 99, 109

Zorn’s lemma, 15, 16, 23, 137
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