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Abstract

The superconducting phase diagrams of amorphous multilayered Ta xGe 1−x/Ge

thin films have been studied over a large range of temperatures and magnetic

fields by means of dc electrical transport measurements. These superconducting

films belong to the class of extremely type-II superconductors, for which a mul-

titude of superconducting phases has been predicted and experimentally verified.

A thorough understanding of these phase diagrams is indispensable for future

successful applications of high-temperature superconductors since some of the ob-

served phases severely limit the zero-resistance current-carrying capacity of these

materials. The Ta xGe 1−x/Ge films in this study were prepared by vapour deposi-

tion under high vacuum conditions. The Ta-content varied between x = 0.31 and

0.37 and individual layer thicknesses ranged from about 3 to 15 nm. Tilting the

sample substrates during the deposition resulted in coplanar defects with variable

orientation and structure depending on the tilting angle. This way it was possible

to study the interplay between magnetic flux lines and the material structure and

defect morphology, respectively. Films with thin insulating Ge layers and thus

strong interlayer coupling showed three dimensional behaviour over the complete

range of fields and temperatures. The coplanar defect structure was able to ex-

tend the zero-resistance phase to significantly higher fields and temperatures for

magnetic fields co-aligned with the defects. Strong support for the existence of a

low-temperature glass phase was found in the case of aligned and misaligned mag-

netic fields. Increasing the insulating layer thickness lead to a cross-over to 2D

behaviour depending on temperature and field as well as field orientation with re-

spect to the defects. In the 2D phase regions the low-temperature zero-resistance

glass phase may have disappeared entirely. Current-voltage characteristics mea-

sured in the low-temperature glass phases showed significant differences between

the strongly and weakly coupled films. However the detailed temperature and

field dependence of these current-voltage curves at low temperatures cannot be

explained satisfactorily with existing theoretical models.
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Chapter 1

Introduction

90 years ago in 1911, H. Kamerlingh Onnes studied the resistivity of mercury

at low temperatures. After he had succeeded in liquefying helium three years

earlier he could reach temperatures below 4K and that is when he discovered a

sudden drop in resistivity over several orders of magnitude within a very narrow

temperature range [1]. He soon named the phenomenon superconductivity and

measuring the low-temperature resistance for other materials many more metals

and alloys were found since then to be superconducting below a well-defined

critical temperature Tc.

It was also noted very early that a high electric current or the application of a

magnetic field can destroy the property of zero-resistance current transport. But

it would take more than 20 years before the other hallmark of superconductivity

was discovered in 1933, the Meissner-effect1 [2]. Contrary to a perfect conductor

which would preserve the magnetic field at the moment it loses its resistance and

resist any change of the magnetic field, a superconductor actively repels a not too

large magnetic field in its superconducting state. This is independent of whether

there was a magnetic field when it turned superconducting or if the field was

switched on later. The fact that the magnetic state of the superconductor does not

depend on its history suggested that it was a new distinct thermodynamic phase

of matter, separated from the normal-conducting phase by a thermodynamic

phase-transition.

1 The effect is sometimes referred to as Meissner-Ochsenfeld effect, after the two scientists W.
Meissner and R. Ochsenfeld who made the discovery.

1
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Two years later the first successful phenomenological theory of superconduc-

tivity was published by F. and H. London [3] describing both characteristics of

a superconductor, zero resistance and the Meissner-effect. The second of the

London-equations also introduced an important length-scale, the London pene-

tration depth λL. Since the magnetic field at the surface of a superconductor

cannot vanish abruptly, it penetrates the material decaying exponentially over

a typical distance which can be as short as some ten nanometers for elemental

superconductors.

Although the London-theory is adequate to describe superconductors in the

Meissner phase, it can not describe the superconductivity usually observed in al-

loys. Their critical magnetic field is often much higher than for elemental super-

conductors, but the Meissner-effect is not observed over the whole superconduct-

ing phase. Today, these materials are usually known as type-II superconductors

and are characterised by two critical fields. The first or lower critical field marks

the phase boundary for the Meissner-effect. Above it and below the upper criti-

cal field the magnetic field can penetrate the interior of the superconductor and

form the mixed phase. The resulting mean-field phase diagram is shown in figure

1.1. But the magnetic field does not enter the superconductor homogeneously,

instead it penetrates the bulk along linear tubes surrounded by circular screening

currents which confine the field to these tubes. These magnetic field structures

are called flux lines or, synonymously, vortices. Near the center of the flux car-

rying regions the superconductivity is suppressed due to the high flux density,

but this trade-off allows the rest of the material to remain superconducting at

much higher fields than type-I superconductors for which it is all or nothing: no

resistance and Meissner-effect or normal conducting.

In 1950 V. L. Ginzburg and L. D. Landau presented a theory of the su-

perconducting phase transition based on Landau’s theory for continuous phase

transitions [4] that is applicable on both types of superconductors and it proved

itself to be especially valuable to describe the mixed phase of type-II superconduc-

tors between the lower and upper critical field. They defined a superconducting

order parameter which is finite in the superconducting phase and zero in the
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Figure 1.1: Mean-field phase dia-
gram for type-II superconductors. The
Meissner-effect exists only below the
lower critical field line Hc1(T ). Over a
large portion (for extremely type-II sc
it is almost all) of the phase diagram
the magnetic field penetrates the su-
perconductor in the form of flux lines
and forms the Shubnikov or mixed
phase.

normal phase. The squared norm of the order parameter, which is a complex

function of temperature and field, can be identified with the number density of

superconducting electrons in the material. Starting with an appropriately chosen

Hamiltonian-type of functional for the order parameter type-II superconductors

can be described in great detail, especially in magnetic fields close to the upper

critical field near the phase transition.

With the Ginzburg-Landau (GL) theory a new important parameter of super-

conductors was introduced, the coherence length ξ. It describes the length scale

over which the order parameter can vary, for example at the interface between

a superconducting and normal material. Among other things this implies that

superconductivity can leak into normal conducting or even insulating materials.

The GL-theory is also able to define and quantify the difference between type-I

and II superconductors. Defining the dimensionless Ginzburg-Landau parame-

ter κ = λ/ξ type-I superconductors are those materials for which κ . 1, and

consequently λ > ξ for type-II2.

Although the GL-theory is still very successfully applied to a wide range of

problems in superconductivity, it does not explain the microscopic mechanism

responsible for the loss of resistivity. In 1957 J. Bardeen, L. N. Cooper and J. R.

Schrieffer (BCS) showed that two electrons in a crystal lattice can overcome their

electrostatic repulsion and form a bound electron-pair [5]. These Cooper-pairs are

effectively bosons, thus the Pauli-exclusion principle is no longer applicable and

they can form a macroscopic condensate. Excitations from this ground state need

2 The GL penetration depth λ is related but not equal to the London penetration depth λL.
At zero temperature the relation is λL ≈ 1.41λ, see also section 5.1
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a minimum excitation energy equal to the pairing energy to break up the electron-

pairs. Simply speaking, this energy gap is also the reason for the dissipation-free

current transport. The BCS-theory has been verified in great detail for many

superconductors; the existence of Cooper-pairs is most convincingly shown by

the Josephson-effects, the tunneling phenomena of electron-pairs between two

superconductors separated by a thin non-superconducting barrier [6].

The way penetrating flux lines affect the superconducting state can be anal-

ysed within the GL-theory. Most importantly, it was realized that the interaction

between an applied current and the vortices can lead to the movement of the flux

lines. In turn, this movement leads to an electrical field that is oriented in such a

way that it slows down the supercurrent, thus it creates resistance. To avoid or

minimize the resistance caused by flux motion, the flux lines have to be pinned.

This can be achieved by defects in the crystal lattice or other variations of the

superconducting parameters. Although the practical critical current density is re-

duced with respect to the depairing critical current, which is the current density

when the Cooper-pairs break up, this has never been a real issue in conventional

bulk superconductors. In fact, a lot of the predicted effects of flux motion were

experimentally accessible in very thin superconducting films, only.

With the discovery of superconductivity in BaxLa5−xCu5O5(3−y) by J. G. Bed-

norz and K. A. Müller in 1986 [7] the era of high-temperature superconductivity

began. Until then Nb3Ge with Tc ≈ 23K had the highest known critical temper-

ature. Soon after the first report on high-temperature superconductivity similar

compounds were synthesized with critical temperatures well above the boiling

point of liquid nitrogen (77K)3. However, it did not take long to realize that there

are many problems, which have to be overcome before these materials could be

used for applications. One of these is the relatively low critical current density,

caused by the movement of vortices due to an external current.

The special combination of superconducting parameters makes thermal fluc-

tuations in the high-temperature cuprate superconductors much more important.

Firstly, the penetration depth λ is much larger than the coherence length ξ, and

3 An introduction to HTSC, including their crystal structure and many other aspects of these
materials can be found in reference [8].
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therefore κ � 1 (extremely type-II). This makes flux lines in these materials

much harder to pin. Furthermore, the perovskite crystal structure has a layered

nature and superconductivity is basically confined to thin CuO2 layers which are

separated by insulating charge reservoirs. This leads to a significant anisotropy of

the conductive properties and a further reduction of the pinning potential. And,

of course, the much higher temperatures further increase thermal fluctuations.

Together, these parameters are the reason for a wealth of experimentally acces-

sible effects resulting in a much more complicated phase diagram than shown in

figure 1.1 and renewed interest in the physics of vortices in superconductors [9].

As it turns out pinning by random point defects is not very effective for in-

creasing the critical current density at elevated temperatures and fields in the

cuprate superconductors and defect structures which are more adapted to the di-

mensionality of the flux lines are needed. Grain boundaries, which could be easily

produced during the manufacturing process, are not favourable either, because

they significantly reduce the intrinsic critical current. The most effective way

of improving the critical current and increasing the field and temperature range

over which HTSCs show zero resistance, is by artificial columnar defects made

by irradiation with high-energy ions. But to elucidate the role the anisotropic

crystal structure plays in the way flux lines interact with the defect structure, it

would be desirable to have full control over the crystal’s anisotropy. Although

there are a number of HTSC materials known with a range from weak to strong

anisotropy, one is bound by the available materials. Furthermore, these materials

differ from each other in more aspects than just their anisotropy.

Artificially grown superlattices of conventional or high-temperature supercon-

ductors separated by insulating or normal metallic layers can help in answering

some of the open questions. Modern film deposition techniques allow one to

make well-defined thin films with thickness ranging from single atomic layers to

micrometers. One of the key requirements to be able to observe the phenomena

associated with flux motion are a short coherence length and a much larger pene-

tration depth, which is generally fulfilled in amorphous superconductors. Finally,

the films need to have some form of extended defects which have a strong flux-
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pinning potential and, ideally, flux motion can be studied with and without the

pinning sites in effect.

In view of this background, amorphous multilayers made up of superconduct-

ing TaxGe1−x-alloy and insulating Ge are nearly ideal systems to study some of

the known vortex phases and the dynamics of vortices when subjected to an ex-

ternal force4. Both the penetration depth and the coherence length in these amor-

phous superconductors are similar to those found in the two most studied HTSCs,

YBa2Cu3O7−δ (YBCO) and Bi2Sr2CaCu2O8+δ (BSCCO)5. The multilayers can be

easily produced in a completely amorphous state and the individual layer thick-

nesses can be varied precisely over a very large range. This enables one to study

the vortex physics from strongly coupled three-dimensional to very weakly cou-

pled quasi-two-dimensional films. Furthermore, a very simple technique known as

oblique vapour deposition allows one to introduce intrinsic extended defects run-

ning across a significant part or even the complete film thickness. These defects

oriented at a well-defined angle with respect to the film normal have been proven

to be strong flux pinning sites [10]. And the fact that the defects are tilted away

from the film normal gives one the opportunity to study the conductive behaviour

with the magnetic field co-aligned with the defects and symmetrical to the film

normal at large angles to the defects, but otherwise identical circumstances. In

the first configuration the defects are able to pin the flux lines along their en-

tire length, the other field orientation, however, should render the pinning sites

ineffective.

There are many open questions when it comes to the magnetic behaviour and

superconducting phase diagram of extremely type-II superconductors [11]. One

of the most interesting problems is whether a truly superconducting phase, i.e.

zero resistance in the limit of vanishing driving currents, can exist in the mixed

phase of type-II superconductors or if the mixed phase is always characterised

by a finite, albeit sometimes very small, ohmic resistance as observed over a

4 Amorphous Ge is generally regarded a semiconductor. But at low temperatures and com-
pared to the superconducting alloy-layers, it can be taken as a good insulator.

5 For values of the superconducting parameters for these two HTSC materials see for example
[9] and references therein.
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substantial part of the phase diagram in most HTSCs. Based on an analogy

in the theoretical description of magnetic spin-glasses and superconductors M. P.

A. Fisher proposed a continuous phase transition from a high-temperature vortex

phase with finite ohmic resistance into a low-temperature phase with vanishing

linear resistance [12]. Despite intense research over the last decade many aspects

of the proposed glass transition are still not well understood. Does the vortex

glass phase really exist? If it exists, how is its nature influenced by the material

anisotropy and the pinning defect geometry? How can the transition line in the

phase diagram be moved to higher magnetic fields and temperatures? What is

the best arrangement of defect structures for the most effective flux pinning?

These are just some of the questions for which the above introduced multilayered

Ta xGe 1−x/Ge superconductors should be especially suited to help on getting a

better understanding of the underlying physics.

This report is organized as follows. After this introduction the preparation

of the multilayered Ta xGe 1−x/Ge thin films will be discussed followed by the

techniques used to characterise the microstructure and the results of these in-

vestigations will be given. The fourth chapter will deal with the experimental

apparatus and setup used to study the superconducting phase diagram. The

next chapter will present the theoretical models necessary to understand the ex-

perimental results and some background knowledge on related strongly type-II

superconductors. The experimental results obtained during this project and their

analysis will be discussed next before conclusions will be drawn in the last chapter.
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Chapter 2

Sample Preparation

As outlined in the introduction the aim of this project was to study the su-

perconducting phase-diagram of layered, strongly type-II superconductors with

deliberately introduced extended defect structures. The combined experience of

many years of research in thin amorphous films of Ge, Ta, and their alloys al-

lowed us to manufacture well-defined multilayered films of Ta xGe 1−x/Ge with

a Ta-content of approximately 30 % (x = 0.3). Previous studies [13] have found

a maximum Tc ≈ 2.8K for TaGe-alloys of this composition (see also figure 2.1),

thus allowing us to trace a good part of the superconducting phase diagram in a

4He-bath cryostat. The equipment used for the sample preparation made it pos-

sible to achieve very low pressures during the actual film manufacturing process

to reduce unwanted impurities, to control the layer thickness, and to introduce

the above mentioned correlated defects. Details of the setup and the process are

discussed in the following.

2.1 UHV vacuum system

The Varian FC-12E Ultra High Vacuum System provided the desired low pres-

sures (base pressure p . 10−7 Pa = 10−9 mbar) and the means to make well-

defined layered films of Ta xGe 1−x/Ge . It is a completely oil-free vacuum system

that uses a combination of adsorption pumps, ionisation pumps and titanium

sublimation pumps1.

1 For an explanation of the principles of those vacuum pumps and general considerations in
vacuum technology see for example [15]

9
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Figure 2.1: Transition temperature for amorphous TaxGe1−x alloys with changing Ta
concentration. For Ta concentrations of approximately 30% the alloys show a maximum
Tc of just under 3 K. The solid line is a guide to the eye. The range of Ta concentrations
for the alloy layers in multilayered samples used in this study is indicated by the vertical
dotted lines and the horizontal dotted lines give the range of transition temperatures
expected for these alloys assuming the guideline is a good approximation. Plot includes
data from reference [13] and unpublished data [14] recorded by Adrian Durham and
Kieren Newell.

A typical pump-down cycle started with a careful visual inspection of the

vacuum chamber and the installations inside the chamber, and any dust or excess

material was removed using a vacuum cleaner. The cleaned sample substrates

(see section 2.2) were placed inside the chamber. After closing the UHV-chamber,

initial rough pumping with an oil-free rotary pump was followed by pumping

with the two adsorption pumps. The entire system had been wrapped in heating

coils and insulation thus allowing for heating of the system to 80◦ C to 100◦ C.

Further pumping cycles at these elevated temperatures removed more gas from

the system to the effect that the pressure dropped down into the 10−3 Pa range

after the system had cooled to room temperature (RT), again.

At this stage the ionisation pumps could be switched on and the pressure

rapidly dropped a further 2 orders of magnitude. Then it was necessary to bake
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the system at around 100◦ C for at least 48 hours. Gaseous or other contamina-

tions trapped on the surfaces and in the bulk of the source materials could be

removed by applying low power levels to the evaporation sources during this pe-

riod. Once the whole system cooled to RT the pressure dropped to approximately

10−7 Pa or less2.

After that procedure the vacuum system was basically ready for an evapora-

tion. However, the pressure rise under evaporation conditions had to be checked,

that is both sources were heated to operational levels and the pressure rise was

monitored. The titanium sublimation pump was also checked at this time. Initial

switch-on of the sublimation pump usually led to a short but sharp pressure rise.

After these operations the pressure dropped very rapidly to its base value again

and evaporation could begin.

2.2 Oblique-Incidence Vapour Deposition

Conventional vapour deposition of thin films is made with the incoming particle

flux normal to the substrate resulting in an anisotropy of the films primarily

due to their 2D or quasi-2D character. Repositioning the source or tilting the

substrate in such a way that there is a finite angle α between the film normal and

the flux direction results in highly anisotropic thin films evident in their optical

[16–19], magnetic [20, 21], electrical [19, 20, 22] and mechanical [23] properties.

The following section will briefly discuss this phenomenon, a review of which can

be found in [24].

Figure 2.2: Schematical description of early stages of thin film growth modes.

Phenomenologically, one can distinguish between three different film growth

2 The current through the ion pumps was used as a pressure gauge. It was calibrated down
to 10−9 Torr = 1.333 ∗ 10−7 Pa and the pressure reading for the base pressure was usually
below the calibrated range.
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modes (figure 2.2): 3D island growth (Volmer-Weber), layer-by-layer growth

(Frank van der Merwe), and an intermediate mode where first a continuous layer

forms followed by island growth (Stranski-Krastanov). The growth mode is de-

pendent on the interrelation of the surface free energy of the substrate, the deposit

and the substrate-deposit interface. Except for the Frank van der Merwe-growth

mode, island formation and subsequent island growth determine the film mor-

phology.

For normal-incidence evaporation amorphous or multi-crystalline films form

with grain boundaries approximately normal to the film plane. Tilting the inci-

dent beam away from the film normal results in a shadowing effect, schematically

shown in figure 2.3 for a hard sphere model and with incoming particles sticking

to where they first impinged on the substrate. The exact film microstructure

depends on various parameters such as the sticking coefficient, the capture ra-

dius, and adatom mobility. Crucial to the formation of a leaning columnar-like

structure is a limited adatom mobility, usually given for amorphous films, that

prohibits the wandering of additional adatoms into the shadowed regions.

Figure 2.3: Shadowing-effect
for oblique vapour deposition.
On the left, the situation for a
normal-incident vapour beam
is shown; the islands grow
isotropically in all directions.
If the incident beam is off the
normal direction a shadowed
region forms (light grey in pic-
ture).

Numerous theoretical [25], experimental [21, 26], and simulation-type stud-

ies [27, 28] have been published that look at the growth and formation of the

columnar microstructure. Given appropriate and realistic parameters all these

studies show the formation of a low density or void network that surrounds an

array of nearly parallel uniformly sized rods of higher density. For the incident

vapour beam orientated at an angle α to the film normal the columns will grow

at an angle β < α in the evaporation plane (see figure 2.4). Empirical studies

suggest the following relation between those two angles:
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Figure 2.4: Definition of the evaporation angle
α and β, orientation of the columnar structure.
Note that the columnar direction C is always
closer to the film normal than the incoming flux
direction.

c× tan β = tan α, (2.1)

with c being a constant for a wide range of angles α. Originally, a value for

c = 2 was published [29], more generally c is a material-dependent parameter in

many cases roughly equal 2. In addition to the growth direction of the columnar

structure, the size and separation of the columns also depend on the evaporation

angle α, with a larger α producing smaller and better separated columns.

2.3 Vapour Deposition Setup and Procedure

The setup for the multilayer evaporation was relatively simple and the layering

could be controlled by a shutter mechanism. A schematic setup is shown in figure

2.5. For a general overview of thin film deposition see for example [30,31].

For the Ge-source, resistive heating was sufficient to achieve desired evapo-

ration rates3. High-purity (99.999%) Ge chunks of a few mm3 size were placed

in a tungsten boat, which had to be replaced frequently to avoid boat breakage

during evaporations. Because of its high melting temperature, Ta-evaporation

required the use of an electron gun (2kW Varian e-Gun). As source material a

10mm diameter Ta rod (purity 99.95%) was available from which a small disc

was cut and placed in the e-gun crucible.

Evaporation rates were controlled using two Sycon Instruments STC-200/SQ

3 For key material parameters of the raw materials see Appendix C.
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Figure 2.5: Schematic setup for oblique vapour deposition (not to scale). At the
bottom are the two vapour sources for tantalum and germanium, respectively. The
shutter in its three basic positions ”0“ (closed), ”1“ (Ge) and ”2“ (Ta xGe 1−x/Ge ) was
used to control the layering and layer thickness. At the top are the quartz-microbalances
to monitor and control evaporation rates. Above this is a perspective drawing of the
substrate holder and arrangement. Tilting angles are indicated.

Deposition Rate Controllers in conjunction with two suitable quartz crystal rate

monitors, one for each source. Geometrical constraints made it impossible to

mount the rate monitors the same distance from the sources as the substrates.

However, the Sycon deposition rate controllers allow for a correction by a tooling

factor and, therefore, read the actual deposition rate at the substrates. Details of

how to obtain the tooling factor are given in reference [32]. The short and long

term stability of the evaporation rates were typically within ±10 %.

The films were deposited onto glass substrates. Commercially available mi-

croscope slides were cut and polished to circular discs of about 18mm diameter.

To ensure smooth and well-defined films the discs were thoroughly cleaned before
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they were placed in the UHV-chamber. At first, they were immersed in acetone

and placed in an ultrasonic bath for at least 15 minutes. This was followed by

similar baths in iso-propanol and ethanol, respectively. In between the discs were

rinsed under distilled water. They were then taken from the ethanol bath and

dried under a stream of dry nitrogen gas, inspected for any visual scratches or

dust, and placed on the sample tray. The pump down cycle was then initiated as

described above.

The sample tray could hold up to 10 discs at five different evaporation an-

gles of 0◦, 30◦, 40◦, 50◦, and 60◦; two discs at each angle placed next to each

other (see also figure 2.5). No substrate cooling was necessary to obtain amor-

phous multilayered films. This way we could produce a set of 10 multilayered

films under identical vacuum conditions, having very similar layering, but dif-

ferent columnar microstructure. Of course, the layer thickness varied with the

cosine of the evaporation angle4. In addition, the substrates were all placed at

slightly different distances and angles to the evaporation sources. Most notably,

this leads to deviations in the desired chemical composition of the alloy-layers.

Törnquist [22] studied this effect for a very similar setup and found a variation

in Ta concentration of less than 10%. The chemical composition for all films

investigated was determined using Rutherford Backscattering after completing

conductance measurements (see section 3.1).

The evaporation process and consequently the layering of the films was con-

trolled by a hand-operated shutter (figure 2.5). Initially, the shutter was in its

“closed” or “0” position and was held there until evaporation rates for both

sources had stabilised to their desired value. The rates were chosen so that the

alloy-layers were made of approximately 30% Ta and 70% Ge, respectively. The

evaporation rate was maintained at a maximum in order to minimize contamina-

tion by residual gas. The limiting factor was the Ta-evaporation rate due to its

high vaporisation temperature. Best results were achieved with evaporation rates

of 1.0 Å/s for Ta and 2.5 Å/s for Ge. Once these evaporation rates were reached

a several nanometer thick bottom Ge-layer was deposited. The idea was that

4 This assumes no or negligible changes in mean density. In section 3.2, layer thicknesses and
the range of evaporation angles for which this assumption holds are discussed.
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any adsorbed gases or water would react with germanium and then be covered

by pure Ge. Thereafter, the multilayer process started by switching the shutter

between positions “1”, pure Ge, and “2”, TaGe-alloy at predefined time inter-

vals. Another relatively thick Ge-layer was put on top to protect the film with

a germanium-oxide layer once the specimens were taken out of the vacuum and

were exposed to atmospheric conditions. Exposure to atmosphere was minimized

by storing the samples under a rough vacuum at a pressure of the order of mPa.

Figure 2.6: Double-logarithmic IV curves taken for one sample (J40) at a temperature
of 1.70 K, and magnetic fields equal to 0.3 (right) and 0.5 T (left), respectively. The
red curves were first taken in Wellington and about 8 months later the measurements
were repeated in Portland (black data).

However, the films proved to be very stable over time, even when exposed to

atmospheric conditions for extended periods of time. In figure 2.6, two sets of IV -

curves taken at the same temperature and two different magnetic fields are shown.

The first set (red data in figure) was taken using the IRL-setup (see chapter 4) in

Wellington, New Zealand. Before and after the experiments the film was stored

under rough vacuum conditions as described above. Eight months later the film

was taken to Portland, USA, to extend the measurements to higher fields and
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lower temperatures. On the way to Portland, the sample had to be exposed to

atmosphere for several days, and to check consistency some of the New Zealand

measurements were repeated. The results are the two black curves in figure 2.6,

which are almost identical to the red data taken several months earlier.
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Chapter 3

Sample Characterisation

It was the purpose of this study to investigate the influence and interplay of lay-

ering and defect structure, respectively, on the Shubnikov-phase in type-II super-

conductors and the phase transition from a strongly pinned vortex glass phase to

an unpinned vortex liquid in particular. To be able to draw definite conclusions it

is, therefore, a prerequisite to have a detailed knowledge of the films’ microstruc-

ture, that is the individual layer thicknesses and in our case the orientation and

structure of the deliberately introduced extended defects. Furthermore, the su-

perconducting properties of the TaxGe1−x-alloy depend on the Ta-concentration

x, which means the chemical composition of the superconducting layers had to

be determined. The latter was done using the Rutherford Backscattering (RBS)

technique and information about the films’ microstructure was obtained from

transmission electron microscopy (TEM). Both methods will be described briefly

and the results discussed.

3.1 Rutherford Backscattering Spectroscopy

RBS is based on the famous experiment by E. Rutherford in which he observed

the scattering of alpha particles from a gold foil and through this greatly helped

to clarify the atomic structure, and which is not unlike playing pool billiard on

an atomic level. A monoenergetic beam of ions is targeted at a sample surface

and the recoil energy of the ions is analysed, thus giving information about the

elements present and their depth profile. A very detailed description of the tech-

nique and analysis of RBS spectra is given in reference [33].

19
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Because the interaction between the beam ions and the target nuclei can usu-

ally be described by a simple Coulomb interaction, the recoil energy and the

scattering cross section can be calculated from first principles. The kinetic en-

ergy of the ions after the scattering can be characterised by the kinematic factor

defined as K = E1/E0, where E0 and E1 are the energies before and after the

collision, respectively. K is only dependent on the mass ratio MP of the projectile

and MT of the target atoms and the scattering angle θ, see also figure 3.1:

K =


√

1− (MP /MT )2 sin2 θ + (MP /MT ) cos θ

1 + (MP /MT )

2

. (3.1)

From equation 3.1 can be seen that K is smallest for θ = 180◦ and increases with

increasing target mass for a given projectile mass. The θ dependence also means

that the best energy discrimination is given for angles near 180◦ and detectors

are positioned at large angles without blocking the incident beam, hence the

name backscattering spectrometry. The energy lost by the projectile during the

scattering event is of course transferred to the target atom. This can lead to

structural changes of the target material1.

Figure 3.1: Principle RBS setup. The ion beam source creates a monoenergetic parallel
beam of ions (mass MP , energy E0) that is aimed at the target. The detector is
positioned at an angle θ as close to 180◦ as possible (see text). The detector’s signal
is then determined by the target atoms’ mass MT , their density at a depth t and the
detector’s solid angle dΩ. Because the distance between detector and target is much
larger than common target thicknesses, the angle θ is well defined.

1 Though it might have been desirable to know the chemical composition before conductiv-
ity measurements, RBS spectra were taken afterwards to eliminate effects caused by the
exposure to the high energy helium ions.
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The differential scattering cross section is in addition dependent on the energy

of the incoming ions and the atomic numbers ZP and ZT of projectile and target,

respectively:

dσ

dΩ
=

(
ZP ZT e2

16πε0E0

)2
4

sin4 θ

(√
1− [(MP /MT ) sin θ]2 + cos θ

)2

√
1− [(MP /MT ) sin θ]2

. (3.2)

From this equation follows that it is favourable to use projectiles with higher

atomic number and that it is easier to detect atoms with high atomic number Z.

Furthermore, dσ/dΩ ∝ E−2
0 which leads to a higher sensitivity at lower energies.

The depth information comes from electronic scattering of the projectile ions

as they pass through the target material before and after the scattering event.

This electronic scattering leads to a gradual decrease in energy, but does not

change the direction of the ions. The stopping power is itself energy dependent

but for thin enough films it can be taken constant before and after the backscat-

tering event, respectively.

The spectra were recorded at the Institute of Geological and Nuclear Sciences

in Lower Hutt, New Zealand using a 3MV Van-de-Graaff accelerator and a stan-

dard RBS setup. 4He+-ions with an initial energy of 2.7MeV were used as pro-

jectiles, directed at the target film at normal incidence, which was placed in high

vacuum. At an angle of 165◦ a surface barrier detector (SBD, FHWM = 15keV)

was employed to measure the energy of the backscattered He-ions. The data

was digitized and stored for later analysis with standard RUMP (Rutherford

Universal Manipulation Program) software by Computer Graphics Service [34].

The program allows one to simulate the spectra by entering the composition and

thickness of the film and compare the simulated spectrum to the recorded one.

In figure 3.2 a typical spectrum together with the final simulation spectrum

is shown. The x-axis is linear in energy and could be scaled in MeV using the

kinematic factor K for Ta and Ge, respectively, but this is not necessary to

analyse the spectrum. Tantalum is the atom with the highest atomic mass in the

films, thus the broad peak at the far right corresponds to He-ions scattered at

Ta-atoms. The next peak at lower energies can thus be identified to be coming
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Figure 3.2: RBS spectrum for sample P40 (dots) and simulated spectrum (solid line).
The two broad peaks at channel numbers 750 and 850 correspond to Ge and Ta, re-
spectively, present in the multilayered film. The terraces at lower energies are due to
the glass substrate.

from scattering events at germanium. The terraces at lower energies are caused

by elements present in the glass substrate, mainly K, Si and O. There is a small

hardly visible peak in the recorded spectrum but present in the simulation that

corresponds to oxygen in the top germanium layer of the films. This topmost

layer was oxidized when the film was first exposed to atmosphere. Although

the depth-resolution was not high enough to resolve the individual layers of the

films, it was still necessary to compose the film of several sublayers (typically 5

+ substrate) in order to successfully simulate the spectra. From the simulation

data it was then possible to calculate the relative composition of the Ta/Ge-

film averaged over the film thickness. The quantity directly accessible from the

simulations are atoms per square-centimeter2. Typical values were in the range

of 1017 to 1018 atoms/cm2.

Knowing the evaporation times for Ta and Ge it is possible to calculate the

2 1015 atoms/cm2 are roughly equivalent to one monolayer of densely packed atoms.
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Figure 3.3: The depth profile of Ta and Ge for P40 as determined from the RBS
spectrum figure 3.2. The depth scale is still given in atoms/cm2 because the mass
density is not known for sure.

chemical composition of the superconducting layers via the following equation

NTa

NGe

tGe

tTa

=
x

1− x
, (3.3)

where NTa and NGe are the number of atoms per area determined from the simu-

lations for tantalum and germanium, respectively, tTa and tGe are the evaporation

times for the two elements. tGe is the total evaporation time for Ge, including

the time needed for the bottom and top layers, and tTa is the time for the alloy

layers only. x is the atomic fraction of Ta in the superconducting alloy layers; x

values for all six principle samples in this study are given in table 3.1.

The RUMP program allows the transformation of the spectra into a depth pro-

file, showing the relative content of the film constituents at a given film depth.

Knowing the mass density of the film, this information could be given in nanome-

ters, for example, but analysis of TEM images in the following section will prove

that the density of these films may be significantly different from the bulk value.
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Thus, in figure 3.3 this information for sample P40 is still given as a function of

atoms/cm2. The film surface is at the x-axis value x = 0 and x ≈ 1600 marks

the film substrate interface. It can easily be seen that the overall Ge-thickness is

more than for Ta, reflecting the pure bottom and top Ge-layers. There is still no

evidence of the layering, in fact the concentration for Ta and Ge are relatively

constant, although there is considerable scatter in the Ge-data. Previously, a sim-

ilar Ta xGe 1−x/Ge film was checked for contaminations by other elements using

particle induced x-ray emission3. But all the trace elements found in the signal

could be tracked down to be part of the glass substrate.

3.2 Transmission Electron Microscopy

Just as well as light is used in traditional microscopes electrons can be used in

an electron microscope, but with much higher magnification, under favourable

conditions even atomic resolution is possible. The method of TEM will be briefly

introduced, for a thorough discussion of the technique see for example reference

[37]. A schematic setup of a TEM is shown in figure 3.4. The setup is very

similar to optical microscopes and the resulting images contrast areas depending

on their ‘electron absorbance4. However, the electrons are not really absorbed,

but rather lost through large-angle scattering outside the objective aperture or

through inelastic scattering being brought to focus on a plane far distant from

the image plane. Since electrons are strongly interacting with condensed matter,

the mean penetration lengths are very short of the order of 100 nm or less5 and

the specimens have to be prepared as very thin cross-sections with thicknesses

comparable to the penetration length.

3 In PIXE the x-ray spectrum emitted after inner-shell excitations by energetic ions is anal-
ysed. Every element is characterised by a unique fingerprint of x-ray wavelengths. The
technique is also sensitive at low concentrations. See for example [35,36])

4 That is for microscopes operated in the bright-field mode. Analogous to optical microscopes,
a TEM can also be operated in the dark-field mode. In the latter mode differences in the
phase of the electrons are imaged. An introduction to phase-sensitive electron microscopy
can be found in [38]

5 The penetration length is strongly energy dependent and has a minimum of < 1 nm for
low energy electrons of about 50 eV making low energy electrons a very sensitive probe for
surface effects.
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Figure 3.4: Schematic drawing of a typi-
cal setup for a TEM in bright-field mode.
The paths for the electrons are also indi-
cated. Electron lenses are realized through
magnetic fields; the coils producing the re-
quired fields are indicated. Additional an-
alyzing equipment (X-ray detectors, elec-
tron energy-spectrometer,...) are often in-
cluded, but not shown in this drawing.

The preparation of the samples in this study followed a routine suggested by

P. Munroe [39]. After a protecting gold layer was deposited on top of the film

a small piece, about 1mm long and 0.5 − 0.7mm thick was cut from the glass

disc using a diamond wire saw. In order to be able to not only see the layering

of the film, but also the columnar structure the cross-section had to be taken for

the evaporation plane and the sample had to be aligned carefully for this cutting

process. Standard grinding equipment was used to thin down the specimen to the

final thickness of ≈ 20− 25 µm. To ensure the two faces are parallel and smooth

the specimen was glued to one leg of a tripod (figure 3.5) which was constantly

leveled and a succession of ever finer diamond grinding papers ensured optically

Figure 3.5: Schematic edge-on view of the tri-
pod for grinding. The sample is glued to the
detachable front leg so that it can be put under
a microscope and the sample thickness be con-
trolled. The two back legs (only one of them is
shown) are adjustable in length to ensure the
sample faces are always parallel as it is thinned
down.
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flat surfaces. The thickness was controlled by focusing on the tripod leg and the

specimen surface in a measuring microscope, respectively. In figure 3.6 an edge-

on photo was taken through the microscope. In places the gold film obviously

chipped off, but the underlying superconducting multilayered film usually seemed

to be still intact. For comparison a 80 µm Cu-wire was laid across6.

Figure 3.6: The left photo is an edge-on view of the sample still glued to the tripod’s
leg. The relatively bright areas are the remaining gold film. Across the bottom of the
image is a 80 µm Cu-wire. The drawing on the right is a schematic view of the sample
when it is readily prepared for TEM and glued to the specimen-mount (red) . It is not
to scale, approximate dimensions are given in the figure, the overall size of the specimen
is about 1× 1 mm.

Mounted on a TEM specimen-mount it was sent to the Electron Microscope

Unit at the University of New South Wales in Australia where the final prepara-

tion and electron microscopy was done. Using a focused ion beam which can be

positioned and aimed at the target very precisely two trenches from either side

were formed and only a very thin electron transparent section left standing for the

TEM investigations. Next to the photograph in figure 3.6 a schematic drawing

of the resulting sample geometry is shown. The microscope used for the investi-

gations was a Philips CM200 field emission gun TEM operated at 200 kV with a

maximum resolution of 0.24 nm. Digital images were analysed using Image-Pro

Plus from Media Cybernetics.

In figure 3.7 digital images of all six principle samples used in this study are

reproduced. On top of all films remnants of the protective gold and additional

platinum layer deposited prior to the ion milling are identified as a dark layer.

The layering of the Ta xGe 1−x/Ge films is clearly visible in all images with the

6 Bear in mind that it appears a little bit bigger, because it is out-of-focus.
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Figure 3.7: Comparison of TEM images of the six principle samples; top row: C40
(left), C30 (right); middle row: J40, J50; bottom row: P40, P50.
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brighter layers identified as the pure Ge-layers. The columnar microstructure is

also apparent in these or similar images for all films, but for C30. In none of

the images taken from C30 was any additional structure visible except for the

layering. In all images an intensity gradient from higher intensity at the top to

lower intensity at the bottom can be seen, which is due to a slightly increasing

thickness of the cross-section towards the glass substrate. Thus in some images

the structure of the films towards the bottom end becomes less visible.

In figure 3.8 the intensity along a line perpendicular to the film P40 is plotted

versus the relative position starting at the top of the film. The individual layers

are easily recognizable as maxima and minima, respectively, as well as the reg-

ularity of the layering. Such intensity plots were used to determine the overall

thickness of the films. The thickness of the individual layers was determined by

marking the interfaces along a line perpendicular to the film and measuring the

distance between those marks using the image analysis software. For that pur-

pose contrast and intensity of the images was adjusted until the interfaces were

most easily identified. This was done for a number of lines at different positions

in the image and the results averaged. The columnar direction was determined by

drawing straight lines along clearly identifiable defects and measuring their angle

with respect to the well-defined glass surface. Numerical values are given in table

3.1. The error in the overall thickness of the films is estimated to be 1− 2 nm or

less than 1% and probably the same error margins have to be assumed for the

thickness of the individual layers. The columnar orientation is less well defined

and a distribution of angles roughly between ±3◦ from the averaged angle seems

to be reasonable.

It is very interesting to compare the film thicknesses with those expected from

the evaporation parameters and the tilting angle of the substrates. If the mate-

rial density is not significantly changed by the oblique evaporation the thickness

should simply scale proportional to the cosine of the tilting angle. For those

samples evaporated at 30◦ and 40◦ that is confirmed exactly to within our un-

certainties. The films deposited at 50◦ tilting angle, however, are much thicker

than expected from this simple assumption. P50 is even thicker than the corre-
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Figure 3.8: Intensity across multilayer P40. The intensity was measured along a line
perpendicular to the film. The measurement starts at an arbitrary position in the
protective Au/Pt layer (very low intensity) and extends into the glass substrate (very
high intensity). The insulating Ge layers are the maxima separated by the low intensity
in the TaGe-alloy layers.

sponding film P40. Therefore, the average material density must have decreased

significantly. Further evidence that the film growth process changes for tilting

angles α > 40◦ comes from a comparison of the columnar angles β. If we first

compare the columnar angles for those samples evaporated at an deposition angle

of 40◦ we have to conclude that the constant c in equation 2.1 is dependent on

the layering and possibly on the tantalum content in the alloy layers. Never-

theless, the columnar angle for the ’50◦-samples’ is expected to be significantly

larger compared to the corresponding samples prepared with smaller tilting an-

gle. However, for those samples studied there is no significant difference in the

columnar angle between samples from the same evaporation but different tilting

angles.

Unfortunately, further detailed characterisation of the defects proved to be

difficult. It can be estimated that their typical thickness is of the order of a few



30 CHAPTER 3. Sample Characterisation

nanometers, but their mean spacing (or the mean size of the columns) cannot

be determined reliably. A coarse estimate puts the typical column size for the

samples deposited at 40◦ and 50◦ tilting angle at between 10 and 100 nm. No

estimate was possible for C30, since no columnar structure was visible. A close

inspection of, for example the images for J40 and J50, reveals that not all defects

are spanning the complete film thickness, still there seems to be no significant

change in defect density between the bottom and top of the films. For all films

a general trend to increasing interface mixing and increased corrugation at the

interfaces from bottom to top can be seen. This is not unexpected, because the

films start to grow from a relatively flat glass surface. The statistical nature of

the columnar film growth will lead to more corrugated surfaces which in turn will

also favour mixing between individual layers.

3.3 Sample Characterisation Summary

x # di [nm] dsc [nm] dtot [nm] β l [mm] w [mm]

C30 0.31 12 3.4 15.6 225 — 6.81 1.64
C40 0.32 12 3.5 13.6 203 19.5◦ 6.72 1.57

J40 0.35 20 3.1 8.8 236 26.8◦ 7.34 1.94
J50 0.33 20 3.6 8.0 228 26.6◦ 6.86 1.64

P40 0.37 16 7.5 13.0 321 25.5◦ 6.97 1.67
P50 0.34 16 6.8 14.9 341 26.4◦ 6.67 1.84

Table 3.1: Summary of the physical characteristics for all six principle samples
in this study. Values were derived as described in the preceding sections on RBS
and TEM. x gives the Ta concentration in the superconducting layers and the
third column labelled ’#‘ gives the number of superconducting layers in the films.
di, dsc, and dtot are the insulating and superconducting layer thickness and the
total film thickness, respectively. β is the columnar angle measured with respect
to the film normal. Dimensions of the conduction path, l and w, were measured
using a microscope. Uncertainties are of the order of 0.04mm for the width and
0.3mm for the length; uncertainties for the other quantities are given in the text.
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Experimental Setup

The superconducting phase diagrams of the Ta 0.3Ge 0.7/Ge films were studied

by measuring DC resistances and current-voltage characteristics in magnetic

fields applied at different angles deliberately chosen with respect to the films’

anisotropies. Careful design of the experimental setup allowed us to conduct

the measurements with high sensitivity and accuracy in both temperature and

resistance.

Two very similar setups were used, one at Victoria University laboratories at

Industrial Research Ltd., Wellington, New Zealand, (IRL-setup) and the other at

Lewis &Clark College, Portland, Oregon (Portland-setup). Both setups will be

described in detail with emphasis on the differences between the two.

4.1 System Requirements

The films measured had critical temperatures in zero-applied magnetic fields Tc(0)

between approximately 2.0 and 2.7K depending on the details of the film’s mi-

crostructure and chemical composition. Therefore, the measurements were done

in two 4He-bath cryostats which could be operated down to 1.45 and 1.20K, re-

spectively. In order to trace large portions of the magnetic phase diagrams, large

magnetic fields of the order of Tesla had to be applied; a conventional electro-

magnet and a superconducting magnet system were used. Because of the large

and fundamental anisotropies of our samples it was further necessary to be able

to freely orientate the magnetic field with respect to the film’s geometry.

Because of the narrow temperature regime of only ≈ 1K the temperature

31
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had to be measured with high sensitivity and reasonable accuracy. Furthermore,

temperature stability over extended periods of time was paramount as some of the

experiments had to be done at constant T and sometimes high power inputs. High

precision and accuracy was also required for the DC conductance measurements.

A 4-point conductance bridge was used and great care was taken to reduce electro-

thermal effects and noise.

4.2 Cryostat and Magnet Setup

IRL-setup The IRL-setup consisted of an Oxford Instruments MD4 cryostat

fitted with a 40 cm long tail which was suspended in a Varian V-3603 12-INCH

Magnet (fig. 4.1). The MD4 cryostat is made of a 3.0 l liquid nitrogen reservoir

as a heat shield for the 2.8 l liquid helium reservoir and a common vacuum jacket

provides the necessary thermal isolation. The sample space inside the tail is

shielded from room temperature by a copper heat shield in good thermal contact

with the nitrogen tank. The inner diameter of the tail is just over 18mm, to fit

the 18 mm sample discs. Through a pumping line the liquid helium space was

connected to a single stage rotary pump to reach temperatures as low as ≈ 1.4K.

Three differently sized valves in parallel were used to regulate the pumping speed

and thus adjust the cooling rate and hold the temperature constant, respectively.

Later, an electrically controllable Cryo Industries Micro Valve was installed as

a fourth parallel valve. Together with a MKS Baratron Type 626A Absolute

Pressure Transducer and a personal computer it helped to maintain a constant

pressure1and thus constant temperature. Additionally, the pressure reading was

used as a secondary thermometer at temperatures below 4.2K.

Prior to cooling down, the common vacuum jacket for the liquid nitrogen and

the liquid helium reservoir was pumped to ≈ 10−3 Pa or less with an oil diffusion

pump to assure good thermal isolation. Cooling down from room temperature

was done by adding liquid nitrogen the night before. Through radiative cooling

1 Because of the limited maximum flow rate through the Micro Valve, this worked well for
a limited temperature range between approximately 1.8 and 2.1 K, only. However, the
computer program developed for that purpose had a graphical display of pressure vs time
that made any drifts in vapour pressure/temperature easily visible at any temperature.
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Figure 4.1: Schematic drawing of the Oxford cryostat and the Varian magnet (not
to scale). (1) vacuum pumping port. (2) common vacuum jacket. (3) liquid nitrogen
reservoir. (4) 77 K heat shield (5) rotatable electro-magnet. (6) sample. (7) cryostat
tail. (8) liquid helium reservoir. (9) radiation shields. (10) cryostat insert and sample
mount. (11) liquid nitrogen filling port. (12) liquid helium filling port. (13) helium
vapour pumping port.
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the sample space which held helium exchange gas reached around 100K the next

morning when liquid helium transfer started. This relatively slow cooling proce-

dure reduced the chance of cracks in the film due to thermal stresses and a dense

set of high-temperature resistance data could be obtained.

A liquid helium fill usually lasted for one day’s experiments. Three 680Ω

carbon resistors along the sample holder (see section 4.3) were used as helium

level sensors. At around 4.2K they show a sharp resistance increase to about

20 kΩ. This means that when the liquid helium level dropped lower than one

of the resistors its resistance dropped rapidly thus giving an indication of the

approximate helium level.

The V-3603 magnet is part of a Varian V-4502-15 EPR Spectrometer System

for electron spin resonance (ESR) measurements installed at IRL. The ESR ca-

pabilities of the system were never used for this study, but the system’s excellent

magnetic field stability and homogeneity made it ideal for the in-field conduc-

tance measurements. The water-cooled magnet has a maximum power-supply

limited field of 1.0T and is fully rotatable by 190◦ which is a sufficient angular

range due to sample symmetries. The field could be set with the Varian Fieldial

Magnetic Field Regulator with an accuracy of 0.1% and a sensitivity of 0.5 ppm

for ±10% line or load changes from mean. The approximately 6.5 cm air gap

between the tapered pole caps is wide enough for the cryostat’s tail to fit in to.

The magnetic field homogeneity over the sample space is better than 10 ppm for

a field of 340mT.

Portland-setup The major difference in this setup compared to the previous

one is the Janis Research Company 14CNDT Supervaritemp cryostat with a fixed

Cryomagnetics Inc. NbTi superconducting magnet; a sketch is shown in fig. 4.2.

The principle cryostat design is very similar, it also has a liquid nitrogen

reservoir as a heat shield, separated by a common vacuum from the liquid helium

dewar which also holds the superconducting magnet. Additionally, this Janis-

cryostat has a separate, 44.45mm diameter sample space connected to the main

helium reservoir by a capillary and needle valve. Because of the relatively large

heat capacity of the magnet, the cool-down procedure was a little bit different.
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Figure 4.2: Sketch of the Janis cryostat. (1) liquid helium filling port. (2) liquid
nitrogen filling port. (3) liquid nitrogen reservoirs. (4) liquid helium reservoir. (5)
optical windows. Not in use for these experiments and therefore covered to reduce heat
input. (6) needle valve and capillary connecting liquid helium reservoir and sample
space. (7) superconducting magnet submerged in liquid helium. (8) sample space. (9)
vacuum. (10) vacuum pumping port. (11) sample space pumping port. (12) needle
valve control. Not shown is the cryostat insert and sample mount.
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After thoroughly pumping the vacuum jacket, liquid nitrogen was filled into both

the nitrogen and helium reservoirs. Once the magnet was cooled down to near

77K the liquid nitrogen was blown out of the magnet space and any remaining

nitrogen gas pumped out. At this point the sample space was flushed with helium

gas and great care had to be taken that the needle valve was nitrogen-free as

well, which could otherwise block the valve once it is frozen at liquid helium

temperatures. Then liquid helium transfer started and as soon as liquid had

been collected in the magnet space the needle valve was opened to allow first

helium gas and later liquid to cool the inner space.

Liquid levels in the nitrogen and helium reservoirs were monitored electron-

ically. The helium level in the sample space was monitored by means of a set

of 4 resistors which change resistance rapidly near the boiling point of helium as

described above. The sample space can hold approximately 1 l liquid helium that

lasts for several hours under normal operating conditions.

Temperatures below 4.2K were again reached by pumping on the helium

vapour and regulating the pumping speed through a set of parallel valves. To

increase the temperature range over which automatic temperature stabilization

with the Cryo Industries Micro Valve was possible a set of 3 such valves was used.

A particularily powerful single stage Kinney rotary pump and large diameter

pipes extended the accessible temperature range down to about 1.2K.

The superconducting magnet can achieve a maximum field of 9.3T at the

center of the bore with a homogeneity better than 100 ppm over the sample area.

The magnet’s excitation current was controlled by a IPS-100 superconducting

magnet power supply. The output current has a stability of better than 50 ppm

per hour and a noise level less than 100mA peak to peak. For measurements

at constant field the magnet can be put into persistent mode where the current

circulates in the superconducting coils making full use of zero resistance. In

this mode the noise level is of course further reduced. Output current and thus

magnetic field can be set to an accuracy of about 0.1%. Of course, with this setup

the magnetic field cannot be rotated relative to the film orientation, because the

magnets orientation is fixed inside the cryostat, hence the sample holder had to
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be designed to allow free rotation of the film, see section 4.3.

4.3 Sample Holder

Figure 4.3: Photos of the IRL- (left) and Portland-sample holder (right). The bottom
end of the cryostat inserts is shown. The dimensions of the copper block onto which the
sample is glued has approximate dimensions 25 mm long and 15 mm wide (left image).
In the right image the rotatable sample mount is shown. Its dimensions are indicated
by the ruler.

IRL-sample holder The sample holder or cryostat insert is used to hold and

position the sample inside the cryostat and make the connection to the outside

world. A photograph is shown in figure 4.3. The holder had been designed to

reduce both thermal energy input and voltage noise [32].

A long thin-walled stainless steel tube connected a copper block onto which

the sample was glued using Ge 7031 varnish and the top flange. This way the

sample was directly immersed in the liquid helium which has several advantages.

First of all, it greatly improves thermal contact with the temperature bath, di-

rectly between the sample and the liquid helium and through the copper block,

a fact very important at high measurement currents when a large thermal power

input has to be dissipated. Furthermore, below Tλ = 2.17K when liquid he-

lium becomes superfluid it offered excellent temperature stability because of the

unique properties of superfluid helium.2 The temperature stability achieved be-

2 For an introduction to superfluidity and the properties of superfluid helium-3 and -4 as well
as a comparison of superfluidity versus superconductivity see for example [40].
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low Tλ was well within ±1mK and about ±3mK for T > Tλ. Because the only

soldered connections on the leads for measuring sample and thermometer voltages

(see below) are immersed in liquid helium as well, voltage noise through thermal

fluctuations is effectively minimized.

A Lakeshore carbon-glass thermometer (CGR-1-1000, serial number C16322,

calibration report 253413) was mounted to the back of the copper block. This

type of thermometer was chosen because of its high dR/dT below 4K and its

low magneto-resistance in fields up to about 1T. The temperature accuracy is

dependent on many factors; in the most interesting temperature range (1.5 –

4.0K) it is mainly limited by the accuracy of the constant current source and

varies between ±7mK (4.0K) and ±15mK (1.5K). For details see appendix A.

To reduce thermal voltage effects the sample and temperature sensor voltage

leads were continuous 80µm diameter, twisted pair copper leads all the way from

the solder pads to the voltmeter. Using copper clips at the input to the voltmeter

there were only mechanical copper to copper connections outside the helium bath.

Current contacts and the contacts to the He-level sensors, where thermo-effects

are not important, were made with 0.132mm diameter, twisted pair constantan

wire thus reducing power input through thermal conduction. The two baffles

along the stainless steel tube effectively reduced power input to the helium bath

by reducing radiative and convective heating.

Portland-sample holder In designing the sample holder for the Portland-

setup the same principles were followed in reducing heat input to the system and

reducing voltage noise and thermal effects. Thus the only real difference is the

need to be able to rotate the sample instead of the magnet.

The brass manufactured rotatable sample mount is shown in figure 4.3. It is

connected to an axle at the top of the insert via a strained stainless steel wire.

The top axle was rotated with a goniometer and allowed the sample to be oriented

relative to the magnetic field to within ±0.1◦.

Temperature measurements were done with a Lakeshore carbon-glass ther-

mometer CGR-250, serial number 11057, in conjunction with a Lakeshore DRC-

91C Temperature Controller. The temperature controller uses AC currents to



4.4. Measurement Setup 39

measure sensor resistance and internally stored calibration data to calculate

temperature. The use of the CGR-250 series thermometer ensured that the

thermometer resistance stayed at reasonable levels even below 1.4K. This way

self-heating could be avoided while still keeping a very high sensitivity (up to

±0.1mK) and overall accuracy (of the order of ±10mK).

4.4 Measurement Setup

Figure 4.4: Schematic drawing of the setup for the conductance and temperature mea-
surements. Left of the center line are the current-source (Keithley 224) and voltmeter
(Keithley 182) for the sample conductance measurements; to the right are the equip-
ment used for temperature control and monitoring. The set of valves to control the
temperature is represented by only one valve symbol and the dotted line symbolizes
the limited automatic control by PC 2. PC 1 was used to control the experiments and
collect all relevant data: sample current and voltage, temperature and helium vapour
pressure.

IRL-measurements The measurement setup can be divided into two parts:

the DC resistance measurements of the sample and the temperature measure-

ment, the latter being a DC resistance measurement with subsequent conversion

according to the calibration sheets to the corresponding temperature. Addition-
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ally, at temperatures below 4.2K the helium vapour pressure could be used as a

secondary thermometer.

The sample conductivity was measured in a 4-point geometry with the con-

ductance path about 6 − 7mm long and 2mm wide scratched into the film (see

also table 3.1). To apply the measurement current a Keithley 224 Programmable

Current Source was used. It provided very accurate and completely PC-controlled

excitation currents from as small as 100 nA up into the mA-range (for specifica-

tions see appendix B). The voltage drop along the conduction path was measured

using a Keithley 182 Sensitive Digital Voltmeter with nanovolt resolution. This

high resolution was desirable to measure very small resistances in the supercon-

ducting state.

These highly anisotropic films offer a multitude of possibilities on how to

apply current and magnetic field with respect to the sample geometry which

allow different aspects of the physics of these systems to be explored. For this

study it was chosen to apply the external current parallel to the film plane and

perpendicular to the evaporation plane, which is defined by the surface normal

and the direction of the incoming particles during evaporation. The magnetic

field was then applied in the evaporation plane and could be rotated in such

a way that it was always parallel to this plane and thus perpendicular to the

applied current. As will be discussed later in chapter 5 and 6, there were two

field directions of special interest. Firstly, field direction parallel to the columnar

microstructure, in which case the magnetic flux lines can take full advantage of

the extended defects and they are pinned effectively. This direction will later

be referred to as columnar (C) direction. The other field orientation that was

studied extensively was symmetric to C with respect to the film normal at large

angles to the defects. This way the films conductive behaviour could be studied

under identical conditions only that the defect structure was rendered ineffective

as a pinning potential. This second field orientation will be called anti-columnar

(AC). Figure 4.5 schematically visualizes the geometry with respect to the film

and defect structure.

For the temperature measurements the previously used home-made constant
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Figure 4.5: Schematical drawing of
the measurement geometry, showing
the applied current parallel to the
film and perpendicular to the magnetic
field that could be rotated in the evap-
oration plane. The two field orienta-
tions parallel to the defect structure
(C) and symmetric at large angles to
the defects (AC) are indicated as well
as the terminals V to measure the volt-
age drop along the current path.

current source was replaced by a Yokogama 7651 Programmable DC Source to

reduce current noise and offer better control. Its output current was software

controlled to avoid self-heating of the thermometer and yet to have maximum

possible temperature sensitivity and accuracy. Due to the thermometer’s high

resistance a Hewlett Packard 3478A Digital Multimeter in its DC voltage mode

offered good enough resolution for the desired temperature sensitivity (see ap-

pendix A and section 4.3).

Three different measurements were realized, that were all controlled and the

data collected by PC 1:

• resistance versus temperature at constant field magnitude
& direction (T-sweeps)

• resistance versus field direction at constant temperature
and field magnitude (Rotations)

• voltage versus current at constant temperature and field
magnitude & direction (I-sweeps)

The software performing these tasks was written in Turbo Pascal. It set the

excitation currents for the resistance measurements of sample and thermometer,

and read corresponding voltages. To eliminate voltage offsets due to thermal

effects, the current direction was reversed after the first reading and the average

of both taken as the true voltage. The helium vapour pressure (read as voltage

and converted to true pressure) was stored in a computer file together with sample

current, voltage, resistance (not for I-sweeps), temperature (calculated from the
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given Chebychev-polynomial) and field. The most important data (e.g. V vs

I and T ) were also graphically displayed on the computer screen for immediate

verification.

Field magnitude and direction had to be set manually and the respective

software variable set via the keyboard. Because automated temperature control

was very limited, this had to be done manually as well. However, PC 2 was

used to read the helium vapour pressure and display a graph pressure versus

time. This greatly helped to maintain roughly constant cooling and heating

rates and improved the temperature stability for measurements when constant

temperature was required. For T-sweeps it was important to adjust the cooling

(or heating) rate so that a dense set of data points could be obtained and to

minimize temperature gradients having sample and thermometer in good thermal

equilibrium.

Portland-measurements The Portland-measurements setup is slightly sim-

plified by the use of the Lakeshore temperature controller. It replaces the current

source and voltmeter for temperature measurements of the IRL-setup. The soft-

ware was programmed using LabVIEW but offered essentially the same control

over the experiments with the additional feature that the magnetic field magni-

tude could be read by the software. However, when the magnet was operated in

persistent mode, the field magnitude had to be entered manually.
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Theoretical Predictions and
Background

The research area of superconductivity attracts a lot of attention from theorists

and experimentalists alike, because of the many fundamental issues raised, but

not least due to the technological potential of superconducting materials. This

leads to a large and ever increasing number of publications on superconductivity

and related areas. In this chapter the theoretical background will be developed

as far as it is necessary to interpret and understand the experimental results

presented in the following chapter.

5.1 Ginzburg-Landau Theory

One of the earliest successful phenomenological descriptions of superconductivity

was given by F. and H. London in 1935 [3]. They introduced the following two

equations now known as the London equations:

~E = µ0λ
2
L

∂

∂t

(
~Js

)
, (5.1)

~B = −λ2
L

(
~O× ~Js

)
, (5.2)

with the London penetration depth

λL =

√
me

µ0nee2
, (5.3)

43



44 CHAPTER 5. Theoretical Predictions and Background

and me the mass of an electron, e the elementary charge and ne the number

density of superconducting electrons. The first of the London equations describes

perfect conductivity and the second, together with the Maxwell equation ~∇× ~B =

µ0
~Js, describes the Meissner effect, which gives λL the meaning of a penetration

depth of an applied magnetic field at the surface of the superconductor.

Although the London equations adequately describe a superconductor’s re-

sponse to electro-magnetic fields when in the Meissner phase, they fail when

dealing with type-II superconductors in the mixed phase between the lower and

upper critical fields. In 1950 Ginzburg and Landau applied Landau’s general

theory of phase transitions to superconductors. They introduced a complex su-

perconducting order parameter Ψ and expressed the free-energy functional in

terms of a series expansion of this order parameter and applied fields [4]. Orig-

inally a phenomenological theory which does not explain the microscopic origin

of superconductivity, it was later shown [41] that it is a limiting case of the mi-

croscopic theory published several years later [5]. Because it is mathematically

much simpler than the microscopic theory it has been employed very successfully

to describe a wide variety of effects associated with superconductivity. Since the

free-energy functional is a series expansion in Ψ it is strictly valid only in the

vicinity of the superconducting transition, that is Tc − T � Tc.

Variation of the GL functional with respect to the order parameter and the

vector potential leads to a set of differential equations. Solving these differential

equations gives the order parameter and vector potential for a given situation

and set of boundary conditions. The complex order parameter Ψ is commonly

interpreted as a pseudo-wave function of the superconductor and as such can be

related to the number density of superconducting charge carriers

|Ψ|2 = ns, (5.4)

where ns = ne/2, since the superconducting charge carriers are electron pairs (see

section 5.2). The differential equations mentioned above can be characterised by

two parameters. The first one describes the length scale over which the order

parameter can vary in magnitude, the GL coherence length ξ:
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ξ2(T ) = ξ2(0)
1

t
, (5.5)

with t = 1 − T/Tc(0) the reduced temperature and ξ(0) the coherence length

at T = 0K. ξ(0) has to be distinguished from the microscopic coherence length

ξBCS ≈ 1.36ξ(0). Within the GL theory the temperature dependence of the sec-

ond parameter, the penetration length λ, takes on the following form:

λ2(T ) = λ2(0)
1

t
, (5.6)

again, the extrapolated value at zero temperature λ(0) is proportional to the mi-

croscopic value λL ≈ 1.41λ(0). Equations 5.5 and 5.6 have the same temperature

dependence, therefore we can define the temperature independent GL parameter1

κ =
λ

ξ
. (5.7)

Whenever superconducting and normal regions are next to each other2 there is

a domain wall energy associated with the interface. It can be shown that the

domain wall energy changes sign from positive for κ < 1/
√

2 (type-I) to nega-

tive energies for larger κ (type-II). Because of the positive domain wall energy

in type-I superconductors the Meissner phase is always stable up to the criti-

cal field. Abrikosov [43] showed that for type-II superconductors there is a field

range between the lower Hc1 and upper critical field Hc2 in which it is energetically

favourable if an applied magnetic field penetrates the bulk of the superconductor

along tubes that are confined by circulating supercurrents. The condition that

the complex order parameter Ψ = |Ψ| exp(iφ) must be single valued leads natu-

rally to the quantization of the magnetic flux. For a complete circulation of the

flux line, the phase φ can only change by an integral multiple of 2π leading to

the following expression for the flux quantum3:

1 κ is only temperature independent within the valid temperature range for the GL-theory,
i.e. near Tc.

2 This can happen for any superconductor with non-zero demagnetising factor in a strong
enough magnetic field. This intermediate state of superconductors is discussed in e.g. [42].
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Φ0 =
h

2e
= 2.07× 10−15 Wb. (5.8)

The interactions between vortices themselves and between vortices and the un-

derlying superconducting material lead to the realization of a multitude of vortex

phases and phase transitions; some of which will be discussed in later sections.

Within the GL-theory the critical magnetic fields for type-II superconductors

can be expressed as a function of ξ and λ. The thermodynamic critical field,

which in type-I superconductors is the field at which superconductivity breaks

down, is given by:

µ0Hc =
Φ0

2
√

2πλξ
. (5.9)

In type-II superconductors the lower and upper critical field are much more rel-

evant. The lower critical field Hc1 is defined as the field value at which the first

vortex enters the bulk and the Meissner effect is destroyed:

µ0Hc1 =
Φ0

4πλ2
ln

λ

ξ
. (5.10)

The upper critical field is then the field value at which superconductivity finally

vanishes and the material turns normal. Its value is only dependent on the co-

herence length

µ0Hc2 =
Φ0

2πξ2
∝ t = 1− T

Tc(0)
, (5.11)

and the relative values of the critical fields is solely given by the GL parameter

κ:

Hc2

Hc

=
√

2κ and
Hc1

Hc

=

√
2 ln κ

2κ
. (5.12)

Since the two parameters λ and ξ are of such importance especially when it comes

3 That the denominator in equation 5.8 is 2e instead of e is a direct consequence of the
formation of electron pairs in the superconducting phase.
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Figure 5.1: Magnetisation and the structure of an isolated vortex. On the left hand
side magnetisation curves for type-I and II (κ ≈ 2.5) superconductors with the same
thermodynamic critical field Hc are compared. The graph on the right shows the
spatial variation of the order parameter |Ψ| and the microscopic magnetic field near
an isolated vortex. The magnetic field decays over a typical distance λ whereas the
superconducting electron pair density ns = |Ψ|2 goes to zero within a core radius ξ
(here: κ ≈ 8, from [42]).

to the structure of vortices, it helps to look at the right part of figure 5.1 in order

to get a better feeling for their physical meaning. This shows the situation for

an isolated vortex in a strongly type-II material. Over a typical length scale ξ

the density of superconducting electron pairs drops from its equilibrium value

far away from the vortex to zero at the vortex core. On the other hand, the

magnetic field associated with the flux line decays over a typical distance λ.

Also shown in figure 5.1 is a comparison of magnetisation curves for type-I and

II superconductors with the same thermodynamic critical field Hc. In type-II

superconductors, the Meissner-effect is destroyed at the relatively small field of

Hc1, but at the cost of penetrating flux lines superconductivity can exist up to

the much larger field value of Hc2.

Equation 5.11 implies that the upper critical field would increase linearly with

decreasing temperature all the way to T = 0K. Experimentally one finds that

the upper critical field Hc2(T ) lies below the extrapolated value from equation

5.11 for temperatures T well below Tc(0). Far more detailed microscopic theories

are needed to describe the behaviour at low temperatures, such as that given by

Werthamer et al. [44] who give a value for Hc2(0) that is a factor 0.69 below the

extrapolated value in the most simple case and compare it to measurements.

So far the discussion has been limited to isotropic superconductors to keep

the argumentation as simple as possible. Anisotropy can be included in the GL

free energy functional by replacing the scalar effective electron mass m by the
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effective mass tensor mµν . In the especially interesting case of uniaxial systems,

that is, layered materials of alternating superconducting and normal layers to

which the cuprate HTSCs belong, the effective masses along the principal axes

of the system (symmetry axis ‖ z) become mx = my = m and mz = M with a

mass anisotropy ratio defined by γ2 = m/M < 1. An immediate consequence of

the anisotropy is that λ, ξ and also the upper and lower critical fields depend on

the magnetic field orientation relative to the superconductor’s symmetry axis.

Following the convention for HTSCs the subscripts ab denote the in-plane

parameters and c the characteristic length scales perpendicular to the supercon-

ducting planes. Similarly, the symbols ⊥ and ‖ are used to distinguish between

magnetic fields applied perpendicular and parallel to the superconducting planes,

respectively. It follows that the anisotropy ratio γ can also be expressed by the

following ratios:

γ =
λab

λc

=
ξc

ξab

=
Hc2⊥

Hc2‖
. (5.13)

Qualitatively, this can be understood by considering a magnetic field applied

parallel to the superconducting layers. Since the screening currents surrounding

the flux line have to cross the insulating layers, the critical current will be reduced,

leading to an increased penetration length λc > λab. On the other hand, this also

leads to a shorter coherence length perpendicular to the layered structure ξc < ξab.

Calculating any quantity from the anisotropic GL-functional for arbitrary

field orientations is usually very tricky. Based on a scaling approach G. Blatter et

al. [45] have demonstrated a convenient method to obtain the general result for

arbitrary field orientations for quantities for which the isotropic result is already

known. Assume the quantity Q̃ is known for isotropic superconductors, and one

is interested in the corresponding Q(ϑ) as a function of magnetic field direction

for the uniaxially anisotropic case, then one has to simply apply the following

transformation:

Q(ϑ, H, T, ξ, λ, γ, fpin) = sQQ̃(εϑH, γT, ξab, λab, γfpin), (5.14)
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with ε2
ϑ = γ2 cos2 ϑ + sin2 ϑ and sQ = 1/εQ for Q ≡ H the magnetic field, and

sQ = γ for all other variables. ϑ is the angle between the applied field and the

ab-plane, and fpin is a measure of the pinning strength which will be discussed in

section 5.5.1. In the isotropic expression the in-plane values ξab and λab have to

be used. Applying relation 5.14 to the upper critical field yields

µ0Hc2(ϑ) =
1

εϑ

Φ0

2πξ2
ab

, (5.15)

=
1(

cos2 ϑ + 1
γ2 sin2 ϑ

)1/2

Φ0

2πξabξc

, (5.16)

which reduces to

µ0Hc2‖ =
Φ0

2πξabξc

, (5.17)

µ0Hc2⊥ =
Φ0

2πξ2
ab

, (5.18)

for parallel and perpendicular applied fields, respectively.

Another useful parameter within the GL-theory should be introduced here,

the Ginzburg number, which can be expressed as

Gi =
1

2

(
kBTc(0)

4πµ0H2
c (0)γξ3(0)

)2

(5.19)

≈ 10−7 κ4T 2
c (0)

γ2Hc2(0)
, (5.20)

where kB is the Boltzmann constant. It is simply defined as the ratio of thermal

energy to the superconducting condensation energy within a volume given by the

coherence length ξ3. Therefore it is a measure of the importance of thermal effects;

the larger the Ginzburg number the more important thermal fluctuations become

in determining the physical properties of the superconductor. From equation 5.19

it is obvious that Gi is strongly dependent on the critical temperature Tc(0),

but it is even more strongly dependent on the GL-parameter, with Gi ∝ κ4.
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Additionally, anisotropic superconductors (γ < 1) are more susceptible to thermal

fluctuations than isotropic. Altogether this means that the cuprate HTSCs are

influenced by thermal excitations over a very large part of their superconducting

phase diagram, but even LTSCs can show significant thermal fluctuations, given

that their GL-parameter κ is large enough.

The above discussion is valid for superconductors for which the anisotropy is

not too great, that is, they can still be treated as homogeneous materials. Other

models have been developed to treat the case of extreme anisotropy, such as the

Lawrence-Doniach (LD) model [46]. In the LD-model discrete superconducting

layers separated by insulating layers are stacked on top of each other and the

GL energy functional has to be replaced by a sum over contributions from the

individual superconducting layers. Whether the discrete LD model or the an-

isotropic GL approach has to be adopted for a certain superconductor is often

decided according to the dimensionless ratio

rcr =
2ξc(0)2

d2
, (5.21)

where d is the superconducting layer separation. For rcr � 1 the anisotropic

continuum description is always correct, for rcr � 1 on the other hand, a cross-

over from 3D to 2D-behaviour occurs at a certain temperature, which can be

estimated as Tcr = (1− rcr)Tc. However, even below this cross-over temperature

Tcr many properties can still be described adequately within the anisotropic GL-

theory. Therefore, the LD model will not be described in detail; a comprehensive

review can be found in reference [9].

One consequence of the discrete model will be mentioned however, because

of its relevance in understanding the experimental results in chapter 6. When

the superconducting layers are separated by relatively thick insulating or normal

conducting layers, the formation of an Abrikosov vortex is only possible within

the superconducting layers. These vortices are generally called pancake vortices,

due to their flat shape. Within the same layer repulsive interactions for pancake

vortices with equal orientation persist, leading to various possible configurations,

as will be discussed below in sections 5.4 and following. Pancake vortices in
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different layers will also interact with each other, but their interaction will be

attractive in general. A long-range interaction is caused by the magnetic field

associated with each pancake vortex. On short length scales of the order of the

coherence length ξc perpendicular to the layers, there is also a so called Josephson-

coupling acting as a strong attractive force lining them up as a stack of pancake

vortices [9, 47] (see also figure 5.2).

Figure 5.2: A flux line in a strongly lay-
ered superconductor is made up of pancake
vortices in the superconducting layers in-
terconnected by Josephson lines.

Josephson-coupling is due to tunneling of superconducting Cooper-pairs be-

tween superconductors in close proximity. Consider two superconductors joined

by a thin layer of insulating or normal-conducting material. This layer is equiva-

lent to an energy barrier for the superconducting electron-pairs, but the laws of

quantum mechanics allow them to penetrate a certain distance into this “forbid-

den” region, and if the layer is thin enough to tunnel through the energy barrier.

Within the GL-theory this means that the phase φ of the complex pseudo-wave

functions Ψ in the two superconductors have a well-defined relation that can be

expressed in terms of their difference ∆φ. Josephson in 1962 first theoretically

considered such a situation and came up with a number of interesting effects, now

known as the Josephson-effects [6] which have been applied in a number of very

sensitive voltage and magnetic field measuring devices (see for example [42] or for

more in depth treatment [48]). In the case of multilayered superconductors the

tunneling of electron-pairs between neighboring superconducting layers leads to

the above mentioned attractive force between pancake vortices in different layers

and their tendency to line up along the applied field direction. However, the exact
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arrangement depends on the relative strength of interactions within a layer and

between adjoining layers, magnetic field direction, temperature and disorder.

The typical length scale for Josephson-coupling is given by the coherence

length, and the above defined ratio rcr can serve to characterise the coupling

strength. For rcr � 1 the coupling is very strong, but as rcr drops below unity

for increasing layer separation, the coupling strength drops rapidly and the two

dimensional character increases.

5.2 Amorphous Superconductors

The microscopic theory of Bardeen, Cooper and Schrieffer (BCS-Theory) [5],

which can be applied very successfully to a wide range of elemental and alloy

superconductors is based on electron-phonon interactions. At low enough tem-

peratures this attractive interaction eventually overcomes the Coulomb-repulsion

between two electrons and leads to the formation of electron pairs, so called

Cooper-pairs, which are the superconducting charge carriers. A discussion of su-

perconductivity in amorphous metals can be found in [49], but some basic ideas

will be presented below.

In amorphous materials the picture of phonons as the quasi-particle excita-

tions of the lattice vibrations breaks down since the long-range order of an atomic

lattice no longer exists and only short-range order over a few interatomic distances

remains. However the atoms still vibrate around their equilibrium positions with

a broad range of frequencies, leading to the scattering of the conduction electrons

and a very strong interaction between the conduction electrons and the atomic

cores. In an atomic lattice quasi-particle momentum conservation effectively lim-

its allowed scattering events; in amorphous materials this restriction no longer

exists resulting in very short mean free paths for the conduction electrons.

These interactions between the charge carriers and the atoms can still lead to

an attractive electron-electron interaction, and hence to the formation of Cooper-

pairs. Because of the increased scattering rate amorphous superconductors often

belong to the strong-coupling superconductors, and some metals are supercon-

ductors in their amorphous state only, for example Bi [49].
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The loss of long-range order has some important implications for the super-

conducting state, most importantly the coherence length ξ and the penetration

depth λ. Inelastic scattering destroys the phase coherence between electrons and

thus limits the coherence length ξ to about the mean free path of the electrons4

which may be as little as a few interatomic distances, i.e. of the order of nanome-

ters. The penetration depth is inversely related to the normal state conductivity

resulting in an increased penetration depth for reduced conductivity. Since the

conductivity in amorphous conductors is much less than in their crystalline phase,

amorphous superconductors are generally type-II, often even extreme type-II su-

perconductors with λ � ξ.

5.3 Conductivity above Tc

In highly disordered or dirty superconductors there are several corrections to the

conductivity at low temperatures and close to, but above Tc that go beyond the

Boltzmann transport equation. Using a simple model describing current transport

in metals Boltzmann arrived at the following equation (see for example [51,52])

σ =
nee

2τ

m
, (5.22)

with ne the number density of conduction electrons, e the elementary charge,

m the electron mass and the scattering time τ = l/vF related to the mean free

path l and the Fermi velocity vF . Corrections to above formula can be divided

into two groups, those which are present in all highly disordered conductors and

others related to superconductivity5. In general, all of these corrections are more

important in conductors with reduced dimensionality, e.g. thin two-dimensional

films or quasi-2D layered materials.

The disorder related corrections to the conductivity are weak localization

4 The mean free path to be used here is the mean displacement between phase breaking
scattering events. It can be estimated to be

√
lellin, where lel and lin are the mean free

paths between elastic and inelastic scattering events, respectively. In amorphous Ta this
displacement is about 1 nm at 100 K [50] and increases with decreasing temperature.

5 However, even materials which are normal conducting at T = 0 K can have small contribu-
tions to their conductivity from superconducting corrections.
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(WL) and Coulomb contributions where one has to distinguish between contri-

butions from the particle-hole channel (CPH) and the particle-particle channel

(CPP). WL stems from quantum self-interference of the charge carriers and in

zero magnetic field gives a negative contribution to the conductivity. Random

scattering events lead to a finite probability for self-intersecting current paths. If

no inelastic scattering has occurred along this loop this can lead to constructive

interference at the intersection. The probability for intersecting electron paths is

greatly increased for conductors with reduced dimensionality, thus WL is more

important in thin films or layered conductors. However, at very low temperatures

spin-orbit scattering can lead to weak anti-localization and an overall positive con-

ductance correction. Both Coulomb interactions CPH and CPP give additional

terms which increase the resistance with decreasing temperature. Detailed de-

scriptions of these effects and their temperature and magnetic field dependence

can be found in [53, 54]. Detailed studies of conduction processes in amorphous

Ta/Ge multilayers have been carried out by Johnson [50].

Even above the critical temperature thermodynamic fluctuations give rise to

short-lived virtual Cooper-pairs which increase conductivity and lead to a round-

ing of the superconducting transition. Aslamazov and Larkin (AL) first calculated

this contribution for a thin two-dimensional film in zero magnetic field [55]. It can

be derived within the Ginzburg-Landau formalism by allowing non-interacting

Gaussian type fluctuations of the order parameter and can be generalized for

one, two, and three dimensions [56, 57]. Near Tc they take the following simple

forms in two- and three-dimensional, isotropic superconductors:

σAL
2D =

e2

16~dsc

1

t
, (5.23)

σAL
3D =

e2

32~ξ(0)

(
1

t

)1/2

, (5.24)

where σAL
x is the fluctuation conductivity in 2D and 3D respectively, giving the

total conductivity as σ = σN + σAL
x , the sum of the normal-state conductivity

and the fluctuation conductivity. In the above equations t = (T −Tc)/Tc, T > Tc

is the reduced temperature, ds the film thickness and ξ(0) the zero-temperature
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coherence length. An early verification of this kind of behaviour was for example

found in thin amorphous bismuth films [58].

There is another term contributing to the fluctuation conductivity above Tc

known as Maki-Thompson (MT) fluctuations [57,59]. Its physical interpretation

is much more difficult however, and sometimes called anomalous or indirect fluc-

tuation conductivity. Thompson [57] gives a derivation of the MT-term which in

three dimensions has the same temperature dependence as the AL-term adding

up to a total fluctuation conductivity of

σ′3D =
5e2

32~ξ(0)

(
1

t

)1/2

= 5σAL
3D . (5.25)

The result in two dimensions is much more complicated; first calculations even

resulted in infinite contributions at all temperatures. Thompson removed this

divergence by introducing an additional pair-breaking rate [57] and could then

describe experimental data for many thin film superconductors (e.g. Al [60]).

Very close to Tc the MT contribution in two dimensions is negligible but at

temperatures farther away from the superconducting transition the MT term

becomes dominant and far more important than the AL fluctuation conductivity.

A discussion of the origin of MT fluctuation conductivity and the pair-breaking

mechanism can be found in [61]. It is also a good review of other effects of

thermodynamic fluctuations on the properties of superconducting materials.

So far the focus has been on the conductivity in zero magnetic field and the

different contributions of disorder-driven effects and effects due to the virtual for-

mation of Cooper-pairs above Tc. The effects of an external magnetic field will be

briefly discussed for the case of fluctuation conductivity above Tc(H). Ullah and

Dorsey [62, 63] used the time-dependent GL-theory to calculate various thermal

and electrical transport coefficients near Tc(H). For high magnetic fields they

obtain the following scaling relation between the fluctuation conductivity in two

and three dimensions and the temperature and applied field:
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σ′2D =

(
T

H

)1/2

F2D

(
a
T − Tc(H)

(TH)1/2

)
, (5.26)

σ′3D =

(
T 2

H

)1/3

F3D

(
b
T − Tc(H)

(TH)2/3

)
, (5.27)

where a and b are material dependent constants and F2D and F3D are universal

functions. These results are derived for the case where the current is perpendic-

ular to the applied field, and in two dimensions the field is perpendicular to the

film or the conducting planes in the case of layered materials. For the universal

scaling functions F2D(x) and F3D(x), only their asymptotic behaviour for large

positive and negative values of x, that is, far from the mean-field transition tem-

perature, are known (see [63]). See section 6.4 on how these scaling relations were

used to determine Hc2(T ) for the superconductors in this study.

5.4 Vortex Physics – The Mixed Phase of Type-

II Superconductors

After this short excursion to fluctuation conductivity and the transition into the

superconducting state let us return to the mixed or Shubnikov-phase of type-II

superconductors. In section 5.1 figure 5.1 we have already seen that the magnetic

field associated with a vortex decays over a typical length-scale λ away from the

vortex. Details of the functional dependence of the field on the distance r from

the center of the vortex can be found in [42], for example. Since in the most

common situation the flux has the same direction in all vortices, the magnetic

interaction is naturally repulsive. In the case of clean6 samples this leads to the

formation of a regular triangular lattice of flux lines, the Abrikosov lattice [43]7.

6 Clean samples are those with no or only very weak pinning by impurities or other defects.
In this case the interaction between vortices is dominated by the above mentioned magnetic
interaction over much of their phase diagram.

7 In his original publication Abrikosov predicted a rectangular lattice, but it was shown later
that the triangular lattice is energetically slightly favourable. However, in some supercon-
ductors the influence of the underlying atomic structure can not be neglected, and the stable
equilibrium configuration may be other than triangular [64,65].
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The distance between adjacent vortices can be shown to be

a0 =

√
2√
3

Φ0

B
. (5.28)

It is interesting to note that the upper critical field can be interpreted as the

point at which the distance between neighboring flux lines becomes less than the

coherence length ξ, meaning that there is no continuous superconducting path

through the bulk sample anymore. For the flux line lattice (FLL), well-defined

elastic moduli (compression, tilt, and shear modulus) can be found as a function

of applied field and intervortex spacing [9].

For strongly type-II superconductors with a large Ginzburg number Gi ther-

mal fluctuations can lead to the melting of the FLL into a vortex liquid. Within

elastic theory melting is characterised by a vanishing shear modulus. In the case

of vortex matter one expects differences in the magnetic and electrical behaviour

as one crosses the melting line. Experimental evidence that the melting transi-

tion is a first order phase transition as predicted by theory came from calorimetric

measurements [66–68]. For example Schilling et al. measured the latent heat re-

quired to melt the flux line lattice into a flux liquid. The melting line itself can be

described reasonably well applying a Lindemann criterion8 [9]. Experimentally,

the melting transition has been associated with a jump in magnetisation and the

so-called peak effect in critical current density. These effects have been found

in low-Tc systems such as Nb3Ge and Mo3Si [70] and high-temperature super-

conductors, for example YBCO [71–75] and BSCCO [76]. Structural evidence

that these effects are indeed correlated with a solid-to-liquid melting transition,

has come very recently from simultaneous neutron diffraction and magnetisa-

tion experiments on niobium single crystals [77]. Figure 5.3 shows diffraction

patterns for temperatures below and above the melting transition, respectively.

At low temperatures the pattern shows the six-fold symmetry of the FLL, at

higher temperatures the long-range order is completely destroyed and a diffrac-

8 In 1910 F. Lindemann proposed that a crystalline lattice becomes unstable when the mean-
squared amplitude of thermal fluctuations of its constituents increases beyond a certain
fraction of the lattice constant: 〈u2(Tm)〉th ≈ c2

La2
0 [69]. cL ≈ 0.1 − 0.3 is the Lindemann

number.
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tion pattern unfolds that is very typical for liquids. Hysteresis effects observed in

those experiments also confirmed that the vortex lattice melting is a first-order

transition.

Figure 5.3: Small angle neutron
diffraction patterns of vortex lat-
tice (left) and liquid (right). For
the lattice the pattern reveals the
typical six-fold symmetry, which
is completely absent in the liquid
phase [77]. Reproduced with the
kind permission of X. S. Ling.

Perhaps the major motivation for research in terms of applications of su-

perconductors stems from their ability to carry electrical currents without any

dissipation. An upper limit to the maximum dissipation-free current density is

set by the depairing current density J0, which can be estimated from the condi-

tion that the self-field of the current at the surface of the superconductor cannot

exceed the thermodynamic critical field:

J0 '
Hc

λ
. (5.29)

In type-II superconductors the dissipation-free current density can be significantly

reduced due to the interaction of an applied current with the flux lines or vor-

tices. It might be expected that, as long as the vortex cores do not overlap,

there is always a continuous superconducting path through the material and the

applied current would simply avoid the normal-conducting regions. But because

the magnetic field extends a distance λ > ξ from the vortex, the current has to

flow through regions penetrated by magnetic field and there is a Lorentz force on

the current and vice versa on the flux lines9:

~fL = Φ0
~J × ~n, (5.30)

9 There is another possible derivation of the force on a vortex in a superfluid, solely based
on hydrodynamics and therefore also valid for uncharged superfluids, like superfluid liquid
helium. The force is then called Magnus force, but leads to essentially the same result [78]



5.4. Vortex Physics 59

with ~fL the Lorentz force per unit length per flux line and ~n a unit vector in

the direction of the flux line. Under the action of the Lorentz force the vortices

accelerate until they reach a steady-state and the Lorentz force is balanced by

a friction force ~Fη = −η~v with ~v the average vortex velocity. The flux motion

induces an electrical field proportional to the vortex velocity

~E = ~B × ~v, (5.31)

which is parallel to the external current and thus leads to dissipation10. The

friction coefficient can be calculated and leads to the free flux flow (FFF) resis-

tivity [79]

ρFFF = ρN
B

µ0Hc2

, (5.32)

with ρN the normal state resistivity. Thus, for a given magnetic field, the resis-

tance decreases only gradually with decreasing temperature as the upper critical

field Hc2(T ) increases. Since the electrical field is proportional to the mean vortex

velocity we can regain dissipation-free current transport in the mixed phase by

prohibiting flux motion. That this is possible is evident from superconducting

magnets used for particle accelerators, or MRI-machines in hospitals, which are

all type-II superconductors operated in their mixed phase. In these conventional

superconductors11 sufficient pinning potentials can be achieved by random point

defects, such as missing or interstitial atoms, impurities, etc., which cause lo-

cal variations in the superconducting parameters and thereby generate potential

minima which are able to counteract the Lorentz force due to the applied cur-

rent. Details of flux pinning and the problems faced in layered, extremely type-II

superconductors are discussed in more detail in the following section.

10 That the electric field must decelerate the external current rather than accelerate can be
seen easily by considering the fact that it would otherwise lead to a highly unstable and
rather unphysical situation.

11 Usually, these are niobium-alloys, like Nb3Sn or NbTi, the material used for the supercon-
ducting magnet in this study, see section 4.2.
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5.5 Flux Pinning

From the previous discussion it is clear that the useful property of dissipation-

free current transport in type-II superconductors is only possible if the vortices

can be pinned effectively, and thereby their movement due to the Lorentz force

be suppressed. Fortunately, almost any kind of defect or inhomogenity in the

crystal structure will achieve this, because this usually leads to a local suppression

of the order parameter. Since superconductivity is already suppressed in the

core of a flux line there is an attractive interaction between regions of reduced

superconductivity and the cores of flux lines. There are two ways in which defects

can alter superconductivity. One is by reducing the critical temperature (δT -

pinning) and the other is by increasing the effective mass of the electrons through

increased scattering (δl-pinning). Though the details of the flux pinning are

different, these two mechanisms will not be distinguished in the remainder of this

discussion. In fact, for most practical defects it will be a mixture of the two types

of pinning.

The dimensionality of the defects does play an important role when it comes

to their efficiency in flux pinning and magnetic field orientation. On the one hand

there are point defects, 0D objects, realized by impurity atoms or vacancies in the

crystal lattice, for example. On the other hand there are correlated defects in one

or two dimensions. Examples of one dimensional defects are screw dislocations

or columnar defects generated by high-energy ion bombardment. Examples of

2D defects are grain boundaries, twin planes12 or the defect structure caused

by the columnar growth discussed in section 2.2. In general these defects are

randomly distributed, thus point defects exhibit no preferred pinning direction,

yet one and two dimensional pinning sites are highly anisotropic. They are most

effective at preventing flux motion when the flux lines can lock into the direction

defined by the defect, i.e. when the defect structure and applied magnetic field

are co-aligned.

12 YBCO is not exactly uniaxial, the lattice parameters a and b are slightly different. In
a single crystal of YBCO the interface between two domains rotated by 90◦ thus causes a
strain field which leads to a reduction of the superconducting order parameter in the vicinity
of this interface.
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In the following, the theory of weak collective pinning developed by Larkin

and Ovchinnikov [80, 81] will be introduced and the effects of pinning on the

liquid and solid vortex phases will be discussed. One important consequence of

pinning by randomly distributed defects in three or less dimensions will be the

destruction of the long-range order of the vortex lattice, the resulting solid vortex

phase is then known as a vortex glass.

5.5.1 Weak Collective Pinning

The simplest situation to introduce the basic concepts of weak collective pinning

is an isolated vortex (a0 � λ) in an isotropic superconductor subject to pinning

by randomly distributed point defects. The free energy functional describing the

situation with the magnetic field in the z- and the current in the y-direction may

be expressed as follows:

F(~u) =

∫ (εl

2
(∂z~u)2 + εpin(z, ~u)− ~fL · ~u

)
dz, (5.33)

where ~u(z) is a displacement vector of the flux line. The last term is the free en-

ergy due to the Lorentz force acting on the flux line, εpin is the pinning potential

and the first term is the contribution from elastic deformations of the flux line,

where εl is the line tension of a flux line:

εl =
1

4πµ0

(
Φ0

λ

)2

ln κ = ε ln κ, (5.34)

where for later convenience the energy scale ε = Φ2
0/4πµ0λ

2 has been introduced.

When dealing with point defects, the size of the defects is assumed to be much

smaller than the core of the vortex, and thus the typical length scale over which

the pinning potential is resolved is given by ξ. Individual point defects within a

distance ξ from the flux line compete with each other in such a way that only

fluctuations in the defect distribution result in a net pinning force. The energy

by which a segment of length L of a flux line is pinned is given by

〈E2
pin〉1/2 '

(
f 2

pinniξ
2L

)1/2
ξ ' (γdisL)1/2 ξ, (5.35)
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where 〈. . .〉 denotes the average over the pinning volume given by ξ2L, fpin is

the average pinning force of a single defect, ni is the defect density, and the

disorder parameter is given by γdis ' f 2
pinniξ

2. Equation 5.35 shows that the

pinning energy grows only sublinearly with L, but the contribution from the

driving Lorentz force grows in direct proportion to L, which means a stiff vortex

in a three dimensional superconductor subject to pinning by random point defects

will always be unpinned by an external current.

The vortex is, however, an elastic object which can change its shape to find the

best pinning potential. This is limited by the line tension of the vortex given in

equation 5.34. The main idea of weak collective pinning is that the vortex can be

thought of being made up of individual line segments of collective pinning length

Lc. Lc is defined as the longitudinal length for which the transverse displacement

exceeds the coherence length ξ. Each segment is then pinned independently and

can compete with the Lorentz force. A dimensional estimate gives the pinning

length for a single vortex as

Lsv
c '

(
ε2ξ2

γdis

)1/3

, (5.36)

and by inserting this result back into equation 5.35 it gives an expression for the

pinning energy. Equating the resulting pinning force and the Lorentz force on

segments of the length Lsv
c allows one to relate the collective pinning length and

the critical current density for the case of weakly pinning point defects and small

applied fields:

Jsv
c ' J0

(
ξ

Lsv
c

)2

. (5.37)

For larger applied magnetic fields, interactions between flux lines cannot be

ignored and they form vortex bundles, structures of several vortices which are

treated as one unit subject to the various forces present. Obviously different

length and energy scales have to be considered. In the plane perpendicular to the

applied field, ξ is replaced by the lateral dimension Rc of the vortex bundle. The

collective pinning length will be dependent in some way on Rc, and the pinning
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energy will be determined by the correlation volume Vc = R2
cLc. Additionally the

elastic properties have to be expressed by the elastic moduli of the flux lattice

instead of the line tension of a single vortex. It turns out that one has to distin-

guish between two different regimes: the small bundle regime when the bundle

consists of only a few vortices, or a0 < Rc < λ, and the large bundle regime,

when the lateral correlation length becomes larger than the penetration length

Rc > λ. Using the same argument as above the critical current density can be

calculated by equating the Lorentz and pinning energies:

Jc =
Uc

BVcξ
. (5.38)

Expressing equation 5.38 as a function of the correlation length Rc it can be

shown that Jc ∝ R−2
c . Therefore, reducing Rc increases the critical current. Nat-

urally this can be achieved by increasing the pinning energy, but also by softening

the flux lattice, that is for reduced elastic constants cij. This allows the flux lines

to better accommodate themselves to the pinning potential. This softening of

the flux lattice and thereby increased critical current density is used to explain

the peak effect associated with the flux lattice melting discussed above in section

5.4. Inserting expressions for the pinning energy Uc and the correlation volume

Vc for the respective single vortex, small bundle and large bundle pinning regimes

gives the following dependence of the critical current density on the average flux

density in the bulk superconductor [9]:

Jc(B) '



Jsv
c single vortex,B < Bsb

Jsv
c

B

Bsb

exp

[
−2c̃

(
B

Bsb

)3/2
]

small bundles,Bsb < B < Blb

Jsv
c

Φ0

λ2

B2
sb

B3
large bundles,B > Blb

(5.39)

Bsb is the lower boundary of the small bundle pinning regime, c̃ a constant of

order unity and Jsv
c the single vortex critical current density from equation 5.37.

The field-dependence of the critical current is shown schematically in figure 5.4.

It is important to note that the already low critical current in the single vortex
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regime (Jsv
c � J0), drops further quickly once the small bundles region is entered

(Jc ∝ exp(−B3/2)). At even higher fields it reduces at a slower algebraic rate

∝ B−3.

Figure 5.4: Schematic field-
dependence of the critical current.
At low fields, in the single vortex
regime, Jc is field-independent. In an
intermediate field range the critical
current decays exponentially before
crossing over to an algebraic relation
at high magnetic fields. Also compare
with equations 5.39; the cross-over
fields Bsb and Blb depend on the
disorder and the GL-parameter κ [9].

The above results can be generalized for the case of anisotropic superconduc-

tors using the scaling method described above. However, the scaling approach is

only applicable for a limited range of magnetic fields. The limits of the scaling

approach and a derivation of more general results can be found in [9].

5.5.2 Vortex Creep and Thermal Depinning

Finite temperatures have two effects on the pinning of vortices. Firstly, the flux

lines will vibrate about their equilibrium positions, leading to the smoothing of

the pinning potential until eventually they will be depinned for temperatures

exceeding the depinning temperature Tdp. Secondly, thermally activated jumps

of the flux lines over the potential barriers lead to the phenomenon of flux creep.

Consider the following situation, sketched in figure 5.5, for an understanding

of flux creep: a single vortex in a local minimum of the free energy potential,

subject to pinning by randomly distributed defects and a distribution of pinning

strengths. Without any transport current applied, the probability for a thermally

activated jump over the energy barriers will be equal in any direction, on average.

Consequently no net flux flow will occur. The effect an applied current has on the

potential landscape is to tilt the whole potential in such a way that the average

gradient is proportional to the current density13. Now the probability for flux

13 This assumes that the pinning forces are independent of the current density.
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Figure 5.5: Vortex in random pinning potential for various applied current densities
J as given in graphic. For zero applied current the vortex sits in a local minimum and
the probability for a thermally activated jump in either direction is an average equal.
For increasing current densities the probability for a activated jump in the direction of
the Lorentz force increases compared with the probability for the opposite direction,
which leads to a net flux motion and consequently to electrical resistance.

jumps to occur in the direction of the gradient increases relative to jumps in the

opposite direction, which leads ultimately to a net flux motion in the direction of

the Lorentz force and therefore energy dissipation. For current densities exceed-

ing the critical current densities calculated in the previous section the potential

will effectively flatten out, so that no pinning can occur anymore and flux creep

changes into flux flow.

A more detailed investigation of the phenomenon of flux creep was first un-

dertaken by Kim and Anderson [82–84] in conventional type-II superconductors.

The Maxwell equation ~∇× ~B = µ0
~J relates a macroscopic or screening current to

a vortex density gradient that will decay due to such thermally activated jumps

over the pinning barriers. Anderson proposed the following logarithmic decay of

a transport current due to flux creep, valid near the critical current density Jc:

J(t) = Jc

[
1− kBT

Uc

ln

(
1 +

t

t0

)]
. (5.40)

Here t is the time, t0 a characteristic decay time and Uc the characteristic pinning

energy defined above. This logarithmic decay of a persistent current has been

verified experimentally, for example [82]. It has important implications for the
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operation of superconducting magnets, like the one used in this study. If the

current is close to the critical current Jc, it will drop rather rapidly over a short

period of time. But for the next time decade, the total reduction of the persistent

current due flux creep will be just the same. Thus, superconducting magnets are

operated at persistent currents sufficiently below Jc so that the magnetic field is

practically constant over a period of days or longer. M. Tinkham [42] gives an

estimate of how long it would take for a persistent current to die out completely

if the above equation would hold over the complete range of currents. He comes

up with a decay time ≈ 10390 years (!), thus for any practical application currents

not too close to the critical current for depinning are truly persistent, even though

the resistance may still be finite.

An interesting question now arises: can a true superconducting state in the

mixed phase of type-II superconductors exist, that is, does ρ → 0 in the limit of

small applied currents J → 0? For one-dimensional flux lines the pinning barrier

will depend on the current density, since not only the height of the barrier will

change with current, but also the length of a vortex segment that can jump over

the barrier into the next low-lying potential minimum. It can be seen from figure

5.5 already that the potential barrier for vortex creep decreases with increasing

current. However in this model the one-dimensional character of the flux lines

was neglected. Taking that into account, it follows that for small applied currents

the next neighboring configuration that has a similar or lower total energy will

be far away. Thus, the total length of the flux line that has to be deformed will

be large as well, and consequently the activation energy for such a jump will

be high. This is illustrated in the schematic graph 5.6, where the free energy

is plotted versus the hopping length for different applied current densities. The

optimal hopping length Lopt(J) and the necessary activation energy U(J) is also

indicated.

As the current density is increased, the next favourable pinning site will be

closer to the original position. This leads to a shorter hopping length and a

shorter section of the flux line that needs to hop over a potential barrier, thus the

necessary activation energy for the process to happen will be sharply reduced. A
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Figure 5.6: Schematic dependence of
the energy barrier for thermally acti-
vated vortex creep on the length L of
the vortex segment for different cur-
rent regimes. As the current density
increases the height of the barrier de-
creases as well as the optimal length
of the vortex segment that can go over
the barrier. This leads to a highly non-
linear resistive behaviour in the vortex
creep regime of the phase diagram.

consequence of this behaviour is that small applied currents probe large distances

of the pinning potential to find a new pinning site. On the other hand, applying

large current densities, approaching the depinning current density for which the

activation energy goes to zero, one looks at the short range pinning landscape.

Dimensional estimates for the dependence of the optimal vortex length on the

current density result in an algebraic relation between the pinning energy and

applied current

U(J) ∼ Uc

(
Jc

J

)µ

, (5.41)

and the current-voltage characteristics display the following glassy behaviour

V ∝ exp

[
− Uc

kBT

(
Jc

J

)µ]
. (5.42)

The exponent µ depends non-trivially on magnetic field and current [9,85,86]. But

in any case, µ > 0 and therefore the pinning barriers diverge and the resistance

vanishes in the limit of zero applied current, in contrast to Anderson’s original

proposal which predicted a finite ohmic resistance down to zero current density.

Whether such a glassy regime exists or not will be discussed in more detail in

section 5.6 on vortex glass theories.

As the thermal displacement 〈u2〉1/2
th grows larger than ξ due to increasing

temperature, ξ has to be replaced by the averaged thermal displacement as the

shortest relevant length scale determining the pinning potential. Most impor-

tantly, the critical current densities in the various flux pinning regimes are re-
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duced drastically according to these relations [87,88]:

Jc(T ) ∝

exp (−T 3) single vortex and small bundles

T−11/2 large bundles
(5.43)

5.5.3 Pinning in Vortex Liquids

It has already been argued above that the flux line lattice in clean superconduc-

tors eventually melts into a flux liquid via a first order phase transition at the

melting temperature Tm. Apart from the loss of long range order in the spatial

positions of the flux lines, the basic difference between the two phases is a van-

ishing shear modulus in the liquid phase, analogous to the conventional melting

transition, for example from ice to water. It is reasonable to assume that the

melting temperature Tm(H) is only weakly affected by weak disorder, and even

in the presence of a weak pinning potential thermal energy will drive a solid

vortex phase, whose nature will be discussed in the next section, into a vortex

liquid phase at some field dependent melting temperature. Strong pinning, on

the other hand, will shift the melting line to higher temperatures and fields. In

many conventional low-temperature type-II superconductors, this occurs to such

an extent that the melting transition basically coincides with the upper critical

field and the liquid phase is experimentally difficult to observe.

Because of the elastic forces in a vortex solid, it is principally enough to pin

just one flux line, although the critical current will be very small and it is desirable

to have as many vortices as possible pinned by defects. In the vortex liquid phase

this is no longer true and the unpinned vortices dominate the dynamic behaviour.

Furthermore, the flux lines sample the pinning potential over a much larger vol-

ume given by the thermal displacement 〈u2〉1/2
th & a0 � ξ, and the question arises

whether disorder plays any role at all in vortex liquids. For temperatures just

above the melting temperature, the vortex liquid can be considered to be in a

highly viscous state and the time scale τpl for plastic deformations to relax can

be much larger than the time scale τth for short-scale elastic deformations. A dy-

namic approach [9] identifies this low-temperature liquid phase, or pinned vortex
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liquid, with vortex flow dominated by large, but finite plastic barriers Upl. These

barriers are indeed affected by the disorder and the resistance shows a strong

exponential dependence on temperature:

ρ ∝ exp

(
− Upl

kBT

)
. (5.44)

The relevant barriers in this regime of thermally activated flux flow (TAFF) in-

volve plastic deformations on a length scale equal to the vortex separation a0.

For deformations of such short wavelength, all the elastic moduli are of the same

order, thus the energy barriers can be estimated as [89–91]

Upl ∼ γεa0 ∝
Tc − T√

H
. (5.45)

Only for even higher temperatures can the disorder potential be neglected. In

this case the unpinned vortex regime is entered and the result for free flux flow

is recovered (equation 5.32). In strongly layered superconductors a very different

mechanism may dominate the resistance in the thermally activated region. As

in ordinary matter flux lines may move away from their equilibrium position or

may be even completely missing, creating a vacancy. These defects are known as

dislocations and they occur in vortex systems as well. In response to an applied

current and the resulting Lorentz-force such dislocations can move, and if there

is magnetic flux associated with such a defect structure this will lead to resis-

tance. For topological reasons in 3D superconductors, only dislocations with a

net flux equaling zero are allowed. This restriction does not exist in two dimen-

sions, which results in a number of interesting phenomena in thin films or strongly

layered superconductors. Feigel’man et al. considered the effects of dislocations

on the dynamic behaviour of flux lines [92]. Without going into the details of

their theory, they found a thermally activated flux flow region for 2D or quasi-2D

superconductors that is mediated by the creation of unbound dislocations, for

which they found the following activation energy

Udis '
Φ2

0dsc

32π2µ0λ2
ab(T )

ln

(
H0

H

)
, (5.46)
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where dsc is the thickness of a superconducting layer and H0 ∼ Hc2 is a char-

acteristic magnetic field. Evidence for this kind of flux motion has been found

in thin films of a-MoGe [93, 94], very anisotropic multilayers of YBa2Cu3O7/-

PrBa2Cu3O7 [95] and also in multilayered Ta xGe 1−x/Ge films [32].

Figure 5.7 summarizes the above results for vortex pinning and the different

regimes of a three dimensional superconductor in a double logarithmic plot of

voltage versus current. For temperatures just below the mean-field transition

Figure 5.7: Theoretical IV -
characteristics in a log-log plot
summarizing the different regimes of
vortex pinning in three-dimensional
superconductors.

Hc2(T ) the flux lines are in their unpinned liquid state and the resistance is given

by the Bardeen-Stephen value, equation 5.32. As the temperature is lowered

plastic deformations become important and the TAFF-region is entered. At low

excitation currents the resistance shows an exponential dependence on temper-

ature and is well below the anticipated free flux-flow value. As the current is

increased, smaller and smaller volumes are probed by the current, which effec-

tively reduces the plastic deformation energy barriers and the resistance gradually

approaches its free flow value. For temperatures below the melting temperature,

the voltage is given by equation 5.42 for the vortex glass phase with zero resis-

tance in the limit of zero applied current. Details of the vortex glass phase, and

the transition from the liquid into the glass phase, will be discussed in the next

section. For very high applied currents, the velocities of the moving vortices can

reach relatively high values. This can lead to a smearing of the pinning potential

and experimental measured IV-curves may deviate from the theoretical expo-

nential behaviour. At even higher driving currents an instability can occur that

drives the system normal conducting [96] and that has been studied previously

for similar Ta xGe 1−x/Ge films [32,97].
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5.6 Vortex Glass Theories

So far the discussion has identified several different vortex phases with quite dif-

ferent thermodynamic and electrical properties. The central question of whether

there are vortex phases which are truly superconducting, with zero resistance in

the limit of zero applied current density, has not been fully answered, although

the possibility that flux creep may give vanishing ohmic resistance has been men-

tioned. What can been said though, is that vortex liquid phases and the flux line

lattice in very clean superconductors do have a finite resistance, which can vary

from almost normal resistance for unpinned vortices in high magnetic fields, to

resistances many orders of magnitude smaller in pinned vortex fluids in the TAFF

region. But does the resistance remain finite when the temperature is lowered

below the melting temperature and the vortices form an unordered solid phase, as

predicted by the Anderson-Kim flux creep theory? Or is this phase characterised

by a vanishing ohmic resistance caused by diverging pinning barriers and a glassy

current-voltage characteristic?

Experimentally, it is extremely difficult, if not impossible, to measure zero re-

sistance, because every real apparatus does have a finite sensitivity and resolution.

The best one can do is to give an upper limit of the resistance. Consequently,

a different approach to the problem of true superconductivity in the unordered

solid vortex phase in the presence of disorder is needed. It is worth mentioning

here that this is more a fundamental than technical issue, because the resistances

below a temperature dependent critical current, although maybe finite, are so

small that they can be neglected. From the applications point of view it is more

important to increase these critical currents.

This new approach to the vortex phase and the vortex dynamics below the

melting transition in the presence of a pinning potential was developed by Fisher

[12] and Fisher et al. [98], and is based on similarities between magnetic phases in

ordinary matter and vortex phases in superconductors [99]. In superconductors,

the phase φ of the complex order parameter Ψ = |Ψ| exp(iφ) takes the role of the

magnetic spin’s orientation in ordinary magnetic materials, and various supercon-

ducting phases can be mapped to their magnetic counterpart. In the Meissner
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phase, for example φ takes on the same time-averaged value everywhere in the

material, just as the spins in a ferromagnet all point in the same direction. In the

flux line lattice the phase φ still has long-range order, although in a non-trivial

fashion reflecting the other long-range order in the system, the translational or-

der of the positions of the flux lines. This type of long-range order in φ can be

identified with the magnetic ordering in antiferromagnetic materials.

As the temperature is increased above the Curie or Neél temperature, thermal

fluctuations destroy magnetic ordering and the paramagnetic phase is entered. In

superconductors this is the vortex fluid phase, when the long-range order of the

phase of the superconducting wave-function cannot be established and super-

conductivity is destroyed. In the presence of disorder the flux lines freeze into

a compromise configuration determined by the distribution of random pinning

sites. Because the vortices are frozen in position, the phase of the order pa-

rameter has again true long-range order, reflecting the vortex arrangement in a

complicated way. This kind of order is analogous to the magnetic order in so

called spin glasses [100, 101], where the magnetic spins are frozen in time, again

in a seemingly random way determined in detail by the microscopic interactions

of the material. By this analogy the disordered solid vortex phase is called vortex

glass phase. The ansatz of the vortex glass theory by Fisher et al. is to look

for a thermodynamic phase transition from the liquid to the glass phase. If the

transition is first order, the resistivity and other properties would change discon-

tinuously at the transition. However, it turns out that it is a continuous phase

transition and material properties, the conductivity for example, are expected to

obey universal scaling laws.

5.6.1 Point Disorder: 2D and 3D Vortex Glass Theory

The original vortex glass theory was developed for the case of weak pinning by

point-like defects with spatial extensions less than the coherence length ξ in every

direction. Furthermore, the model neglects the anisotropy introduced by the flux

lines, although it may be possible to eliminate the anisotropy by rescaling the

lengths (see [98] for details). As a measure of the long-range phase coherence the
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following vortex glass (VG) correlation function is defined:

GVG(~r) = 〈|〈Ψ∗(~r ′)Ψ(~r ′ + ~r)〉th|2〉dis, (5.47)

where Ψ is the complex order parameter, 〈. . .〉th is the thermal average, and

〈. . .〉dis the spatial average over the disorder. In the VG phase GVG takes on a

finite constant value for ~r → ∞, but decays exponentially on a length scale of

the glass correlation length ξVG in the vortex liquid phase. The theory of sec-

ond order or continuous phase transitions predicts that certain variables show

universal behaviour in the vicinity of the phase transition. Explicitly, the VG

correlation length ξVG is expected to diverge as the glass melting temperature Tg

is approached according to

ξVG(T ) ∝ |T − Tg|−ν , (5.48)

with ν being the static glass exponent. The dynamic response of the system is

given by the relaxation time τVG, which also diverges close to the glass phase

characterised by the dynamic critical exponent z

τVG(T ) ∝ ξz
VG. (5.49)

From these relations one can get scaling relations for the dynamic response func-

tions. In the following the nonlinear current-voltage characteristics will be con-

sidered in detail. Using simple dimensional arguments based on the scaling be-

haviour of the vector potential ~A, the following scaling ansatz is obtained

Eξz+1
VG = E±(JξD−1

VG ), (5.50)

with D being the dimensionality of the system, E± being universal scaling func-

tions above (+) and below (−) Tg, and E and J are the electric field and current

density, respectively. No analytical expression for the scaling functions E± are

known, nevertheless using some rather general arguments one can extract a num-
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ber of scaling relations which allow the determination of the critical exponents ν

and z, as well as the glass melting temperature Tg.

Right at the melting temperature, the correlation length ξVG diverges and for

the electrical field to remain finite, ξVG has to cancel out on both sides of equa-

tion 5.50, hence E±(x →∞) ∝ x(z+1)/(D−1), which results in a power-law relation

between current density and electric field

E ∝ J (z+1)/(D−1), for T = Tg. (5.51)

Thus, a log-log plot of the current-voltage characteristic should be a straight line

and the logarithmic gradient d ln V/d ln I a horizontal line at y = (z + 1)/2 for

D = 3. For temperatures T > Tg the system is in the vortex liquid state, showing

ohmic resistance for small applied currents. Accordingly, the scaling function is

linear in its argument E+(x → 0) ∝ x, which results in the following temperature

dependence for the resistance at temperatures above, but close to Tg:

ρ ∝ ξ
(D−z−2)
VG ∝ |T − Tg|ν(z+2−D) (T > Tg). (5.52)

Below the transition temperature glassy behaviour is expected, E−(x → 0) ∝

exp(−a/xµ), leading to an exponential dependence of the electrical field on cur-

rent density

E ∝ e−c(Jc/J)µ

(T < Tg), (5.53)

with µ . 1. As the current density is increased smaller and smaller volumes

are probed by the current. At high current densities the current-voltage curves

above and below the glass temperature are expected to show critical power-law

behaviour. The critical current density that marks the cross-over from the low

current to the high current regime scales again with the correlation length

J±
x ∝ ξ

(1−D)
VG ∝ |T − Tg|ν(D−1). (5.54)
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At small fields when the glass melting temperature Tg → Tc(0), the following

power-law behaviour should be observed

[Tc(0)− Tg(H)] ∝ H1/2ν0 , (5.55)

with ν0 ' 2/3.

For a second order phase transition critical scaling is expected to be universal,

that is, the critical exponents ν and z depend only on dimensionality and sym-

metry and not on magnetic field or temperature, not even the superconducting

material itself. If a plot is made of appropriately scaled current-voltage charac-

teristics taken at different temperatures and fields within the critical region near

Tg(H), all curves should collapse onto the scaling functions E± for temperatures

above and below the melting temperature, respectively. From equation 5.50, it is

obvious that, in order to check the scaling, plotting (E/J)|T−Tg|−ν(z−D+2) versus

J |T−Tg|ν(1−D) should result in the collapse of all IV -curves onto the two universal

functions Ẽ±, above and below the transition temperature respectively14.

Although the above vortex glass theory has been developed for general di-

mensionality, it applies primarily to 3D superconductors15. In 2D or quasi-2D

systems the motion of flux carrying unbound dislocations (compare section 5.5.3)

extend the vortex liquid phase down to zero temperature with the glass temper-

ature Tg ≡ 0K [9, 98]. This makes it difficult to distinguish vortex glass theory

from the Anderson-Kim theory of flux creep. However in VG theory, the critical

current density separating linear from nonlinear current-voltage behaviour is ex-

pected to scale as J2D
x ∝ T/ξVG ∝ T 1+ν as T = 0K is approached, compared to

a linear temperature dependence in the flux creep theory.

A mean-field analysis of the VG transition in 3D succeeded in calculating the

critical exponents and was able to verify the scaling relation for the resistance

above Tg [102]. The exponents ν = 1/2 and z = 4 are identical to those obtained

14 From equation 5.50 one would expect to plot Eξz+1
VG versus the argument of the scaling

function. However, it is common practice to plot the scaled resistivity as given in the text
versus the argument of the scaling function Ẽ±(x) = E±(x)/x.

15 It may also be applied to higher dimensional systems, but that is of rather mathematical
interest only.
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for Ising spin glasses. By analogy with real spin glasses experimental critical

exponents for vortex glasses are expected to be ν ≈ 1/2 − 1 and z ≈ 4 − 7,

respectively [98].

Early support for the VG idea came from measurements on YBCO, which were

consistent with VG predictions [103, 104]. However, these materials contained

twin-planes and the low-temperature glass phase is more appropriately described

by a derivation of the VG theory, which will be discussed below. In the meantime

many more investigations were undertaken to search for evidence of a VG transi-

tion in materials that do not have extended pinning sites like twin-planes. These

materials include the common HTSC YBCO [105] and BSCCO [106, 107], but

also Nd1.85Ce0.15CuO4±δ [108,109] and the isotropic HTSC (K,Ba)BiO3 [110,111]

as well as the low-temperature superconductor Mo3Si [112]. The reported values

for the critical exponents ν and z vary substantially, but as P. Voss-de Haan et

al. [113, 114] have shown, this can be a result of different current and voltage

ranges of the measured IV -curves and if the analysis relies solely on the scaling

collapse of them. The most reliable values suggest ν > 1 and z > 4 for most of the

systems mentioned above and in line with theoretical predictions. An experiment

in particularly strong support of a second-order phase transition below Hc2(T )

was done by M. Roulin et al. They measured specific heat steps in YBCO and

identified this transition with the VG melting line [115].

The two dimensional behaviour has been observed as well. In very thin YBCO

films [116] and highly anisotropic Tl2Ba2CaCu2O8 [117] the true 2D vortex glass

scaling with Tg = 0 has been reported, and successively deoxygenated YBCO thin

films showed a cross-over from 3D to 2D vortex glass with a quasi-2D intermediate

phase [118].

5.6.2 Extended Defects: Bose-Glass Theory

The discussion in the previous sections focused on pinning by point defects,

which is generally relatively weak, and for randomly distributed defects it is

also isotropic, apart from any anisotropy of the underlying superconductor itself.

A major problem in the application of HTSCs is their rather limited critical cur-
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rent density Jc, especially in applied magnetic fields and at high temperatures.

Although the presence of point-like defects can increase the critical current den-

sity significantly [119], they are not effective for increasing the range of magnetic

fields over which large critical current densities can be achieved, especially at

high temperatures [119, 120]. Much better pinning efficiency is expected for de-

fects whose dimensionality is better adapted to the intrinsic dimensionality of

the vortex system, that is, one or two dimensional structures that span a consid-

erable fraction of the superconductor’s thickness with typical extensions in the

other directions of the order of the coherence length ξ. Examples of 1D defect

structures are screw dislocations as observed in thin films of YBCO [121–123] or

columnar tracks artificially produced by bombardment with high-energy heavy

ions, such as Sn, Xe, Pb, and others [124–126]. Planar pinning sites are realized

for twin-planes in YBCO, for example [127, 128]. Theoretical ideas describing

pinning by correlated defects have been developed at about the same time as

these early experiments [129–132].

For magnetic fields aligned with the correlated defect structure, the pinning

force grows on average linearly with the flux line length L, compared with the

L1/2-growth for point-disorder (section 5.5.1). Furthermore, thermal reduction of

the pinning potential is expected to be much more gradual, leading to less reduced

critical currents for increased temperatures16 [9, 125, 133]. The new anisotropy

introduced by these extended defects also leads to a wealth of new effects, such

as a transverse Meissner effect. In this case a magnetic field applied transverse to

the defect orientation is perfectly screened until a critical field is reached due to

the locking of the field direction to the defects. In other words there is an infinite

tilt modulus c44 for tilting angles less than a critical angle θc [9]. Another effect is

different vortex motion along and perpendicular to the pinning planes. There has

even been the suggestion that pinning along the planes could be reduced [134].

Considerable interest exists again in the low-temperature phase of the vor-

tex system. Most importantly, does a zero-resistance phase exist in the presence

16 This is true for not too high temperatures. When the thermal displacement 〈u〉1/2
th > d

the typical distance between defects the T -dependence becomes more like that for weak
collective pinning.
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of correlated disorder, and if so, is it any different from the vortex glass phase,

which exists when point disorder dominates? Nelson and Vinokur (NV) [131]

have developed a scaling theory for correlated disorder quite similar to the VG

theory, but with some important differences. Their theory is based on a strong

analogy between vortices and 2D-bosons in the presence of a random potential as

it is realized for helium films on a rough surface. They predict a low-temperature

Bose-glass (BG) with flux lines localized on the extended defects separated from

an entangled flux fluid of delocalized vortices at higher temperatures by a contin-

uous phase transition. The original BG theory focused on pinning by columnar

defects, like those created by ion irradiation, but was extended by Marchetti and

Vinokur [132,135] to also include pinning by coplanar defects.

In the following it will be assumed that the magnetic field is parallel to the

defects. NV introduce a root-mean-square transverse wandering length l⊥(T ),

which is a measure of how far the flux line has wandered from its pinning site in

the direction transverse to the applied field. As the transition temperature TBG

is approached from below, this length scale is expected to diverge

l⊥(T ) ∝ |T − TBG|−ν ′
, (5.56)

with a static critical exponent ν ′ different from the corresponding ν in the VG

theory. Due to the intrinsic anisotropy of the defects it is necessary to also define

a longitudinal length scale l‖(T ). The simplest possible choice relates it to the

transverse length scale

l‖ ∝ l2⊥. (5.57)

The typical relaxation time is given by (compare with equation 5.49)

τBG ∝ lz
′

⊥ , (5.58)

with the new dynamic critical exponent z ′. Very similar dimensional arguments

result in the new scaling ansatz for Bose-glass scaling
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Elz
′+1

⊥ = F±(Jl⊥l‖), (5.59)

with yet another pair of scaling functions F± above and below the transition

temperature, respectively. Taking the limits x → 0 and x → ∞, where x is the

argument of the scaling function as above, one gets similar relations from which

to determine critical exponents and the transition temperature:

E = J (z ′+1)/3 for T = TBG. (5.60)

The resistance above TBG should vanish like

ρ ∝ |T − TBG|ν
′(z ′−2) (T > TBG), (5.61)

and the glassy behaviour below the transition temperature is given equal to equa-

tion 5.53

E ∝ e−c(Jc/J)µ

(T < TBG) (5.62)

with a possibly different glass exponent µ (see below section 5.6.3). The cross-

over current densities separating critical from noncritical behaviour are given by

J±
x ∝ (l⊥l‖)

−1 ∝ |T − TBG|3ν ′
. (5.63)

Comparing equations 5.60 – 5.63 with the corresponding equations 5.51 – 5.54 for

the vortex glass theory one finds that they are very similar. In fact one can get

the scaling laws for Bose-glass from the vortex glass equations by setting D = 4

and replacing the critical exponents by those for the Bose-glass. It is important,

however, to remember that the vortex glass and Bose-glass are two distinct ther-

modynamic phases. The difference becomes apparent when tilting the magnetic

field away from the defect direction. Isotropic pinning by point defects as in the

vortex glass phase will lead to a smoothly varying glass melting temperature with
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tilting angle θ, only varying due to the possible anisotropy of the superconducting

material. By contrast, the BG theory predicts the following scaling relation on

how the linear resistance vanishes, depending on temperature and angle between

the z-axis (defect direction) and magnetic field

ρ(tBG, θ) = |tBG|ν
′(z ′−2)G±(θ|tBG|−ν ′

), (5.64)

where tBG = (T −TBG)/TBG is the reduced temperature with respect to the Bose-

glass transition temperature, and θ the tilting angle. Plotting the transition

temperature versus the field perpendicular to the defects results in a sharp cusp,

compared to a slowly varying function in the VG theory. Equation 5.64 deviates

from the original proposal which had θ|tBG|−3ν ′
as the argument of the scaling

functions G±. Lidmar and Malin [136] and NV [137] have published the cor-

rected scaling relation 5.64, where a necessary distinction between the transverse

magnetic field H⊥ and flux density B⊥ is made.

Furthermore, BG theory allows one to estimate the transition temperature in

relation to the melting transition Tm of the pure system without defects, based

on a Lindemann-criterion. The BG transition temperature can be expressed as a

function of the magnetic field and the disorder [9]

TBG(B) ≈ χTm(B) + (1− χ)Tc

(
1− B

Hc2(0)

)
,

(
B >

Φ0

λ2

)
(5.65)

with χ describing the disorder, which in this notation is χ = 1 for the pure system

and χ → 0 in the presence of strong disorder when TBG(B) → Tc(B).

The situation when point disorder and extended defects are present was con-

sidered by Hwa et al. [138]. In their model, they found that the effect of point

disorder can be neglected in most cases. Only for very weak pinning by the

correlated compared to the point-like defects the latter will dominate.

As in the case of the VG, many conductivity measurements on a range of

different superconducting materials have been interpreted in favour of the ex-

istence of a BG. These include studies on ion irradiated YBCO [139, 140] and

BSCCO [141] as well as the isotropic (K,Ba)Bi03 [142]. Computer simulations
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of appropriate models have also shown a transition into a BG at low temper-

atures [143, 144]. Convincing evidence for the existence of the BG-phase came

from measurements of the characteristic cusp in the transition temperature of

twinned YBCO [145] (compare equation 5.64), and the associated screening of a

transverse magnetic field, or transverse Meissner effect [146,147].

5.6.3 Vortex Dynamics in the Glass Phase

The nonlinear dissipation in the glass phase (VG and BG) is caused by vortex ex-

citations, prominent examples being vortex loops, half loops and kinks, depending

on sample anisotropy and defect dimensions, for example. For the case of weak

collective pinning by point defects, it has been mentioned above (section 5.5.2)

that the value of the glass exponent for a given material depends nontrivially

on the relevant length scales given by magnetic field, temperature and current

density. Thus, the general expectation for the glass exponent µ in the vortex

glass is

µ . 1 (vortex glass). (5.66)

For vortex dynamics in the Bose-glass phase, more quantitative predictions

are possible and some very interesting similarities can be drawn between the

dynamics of flux lines and current transport in semiconductors. In figure 5.8

graphical illustrations of the relevant flux line excitations and some of the im-

portant length scales are given for columnar pinning [131], as well as coplanar

pinning with vortex motion transverse to the pinning planes [132, 135]. In all

cases, current densities less than the depinning current density are assumed. If

the current density is not too small, half-loop excitations are possible extending

a length ly < dr, dr being a typical distance between extended defects, perpen-

dicular to the defect and lateral extension lz, which may be larger than 2ly for

the case of anisotropic superconductors. Those half-loops with a radius larger

than a critical radius will extend due to the Lorentz-force until the flux line is

pinned by a nearby defect. The critical radius is given by the condition that the

radial outward Lorentz-force equals the inward force due to the line tension of the
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Figure 5.8: Different vortex excitations pinned to extended defects. The black vertical
lines represent columnar or cross-sections of coplanar defects with typical spacings dr.
Magnetic field is applied parallel to the defects and flux lines are represented by thick
grey lines. The applied current is perpendicular to the paper, such that the Lorentz-
force is acting to the right. Typical lengths ly and lz for the excitations are also given.

half-loop17. For radii smaller than the critical radius, the line tension dominates

and the half-loop shrinks back to zero size. The current-voltage characteristic is

then given by

E/J ≈ ρ̃ exp

[
− Ek

kBT

Jc

J

]
or µ = 1, (5.67)

in equation 5.62, where ρ̃ is a characteristic resistivity, Ek is a typical activation

energy, and Jc a current scale. For smaller currents the half-loop excitations

are replaced by double-kink or double-superkink excitations. For these excita-

tion modes segments of the flux line tunnel to a neighboring defect through the

generation of two kinks, as depicted in figure 5.8. The kink-segments will then

spread in opposite directions due to the Lorentz-force, thereby moving the flux

line to its new position. If the pinning energies of the individual defects have no

or very little dispersion, vortex motion equivalent to nearest-neighbor percolative

hopping conductivity in semiconductors is possible with a current-voltage char-

acteristic [9]

17 The same applies to loop excitations as well.
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E ∝ J exp

[
−cpEk

kBT

]
, (5.68)

which is actually ohmic. The constant cp can be obtained from percolation the-

ory [148]. For strong enough dispersion of the pinning energies, the nearest-

neighbor pinning site may not be an energetically favourable one, and excita-

tions over larger distances are necessary. The vortex transport is then similar

to quantum variable-range hopping (VRH) conductivity in doped semiconduc-

tors [148, 149]. In the case of columnar defects the vortex velocity can be calcu-

lated analogous to 2D VRH in semiconductors with

E/J ≈ ρ̃ exp

[
− Ek

kBT

(
Jc

J

)1/3
]

or µ = 1/3, (5.69)

with a different current scale Jc and resistivity ρ̃ than in equation 5.67. Vortex

dynamics in the presence of coplanar defects corresponds to current transport in

1D semiconductors with the exponent µ differing from the above equation

E/J ≈ ρ̃ exp

[
− Ek

kBT

(
Jc

J

)1/2
]

or µ = 1/2. (5.70)

The activation energy Ek is the energy associated with the creation of the kinks

and is given by (see for example [9])

Ek = dr

√
εlεr(T ), (5.71)

where εl is the line tension of the flux line, εr the pinning potential and dr the

mean spacing between defects. For samples of finite thickness, the length scale

of half-loop excitations lz or the longitudinal extension of double-kink structures

will grow beyond the sample dimension at low enough currents. As a consequence

vortex motion will proceed via rigid transformation of flux lines with a resulting

ohmic resistance [9]. A similar scenario is possible in strongly layered supercon-

ductors where a description in the form of pancake vortices is more relevant. In
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that case ohmic resistance at small currents will set in when the excitations in

the z-direction grow beyond the interlayer spacing.

Evidence of VRH processes, responsible for flux creep in the glass phase of

type-II superconductors, was found in magnetisation experiments on YBCO with

columnar defects [150], and extensive analyses of current-voltage characteristics

taken on BSCCO also containing columnar defects [141,151,152]. However, mea-

surements of the glass exponent in a YBCO thin film, probably containing twin

planes as the dominant pinning sites, revealed a significant temperature and field

as well as possibly current dependence of the exponent µ [153].



Chapter 6

Experimental Results and
Discussion

In this chapter experimental results are presented for six samples which have been

characterised in chapter 3 (see also table 3.1) and which differ from each other

in the insulating layer thickness, the pinning strength, and to a lesser extent the

superconducting layer thickness.

The detailed analysis below will show that the samples can be divided into two

groups according to the Ge-layer thickness. The samples of the first group have

thin Ge-layers, and thus strong interlayer coupling. The C-samples with thick

superconducting layers as well as the J-samples with thinner TaGe-layers belong

to this group. The two P-samples make up the other group of samples having

thicker Ge-layers, and consequently weaker interlayer coupling. These differences

in coupling between the superconducting layers are reflected in the conducting

behaviour in the superconducting mixed phase.

In sections 6.1 to 6.4 the superconducting phase boundaries in the H-T plane

will be defined, and important information about the samples anisotropy, result-

ing from the columnar structure, will be derived. The detailed analysis of the

conductivity in the superconducting mixed phase in chapters 6.5 and following

will allow us to map different vortex phases in the H-T phase diagram and explain

the samples’ differences as a consequence of their different microstructure.

The use of SI units would require to write µ0H, with µ0 = 4π × 10−7, for

all applied magnetic fields. For convenience and because it is common practice

within the scientific community, only the symbol H will be used to refer to the

85
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applied magnetic field in Tesla. Furthermore, as will be seen later, for all the

magnetic fields used in this study B = µ0H is a very good approximation for the

microscopic field inside the superconducting films.

6.1 Normal State Resistance from 300K to 4K

It is helpful and even necessary to have a good understanding of the conduction

processes in the normal state of these multilayers, in order to be able to inter-

pret the experimental data below the critical temperature conclusively. We will

therefore start by looking at the temperature dependence of the normal state

resistance between room temperature (RT) and liquid helium temperature. The

data was collected during either cool down or warm up. The cool down cycle

had the disadvantage that the cooling rate between liquid nitrogen and liquid

helium temperature was too fast to ensure thermal equilibrium. Thus, the data

sets obtained during the warm up process were preferred, except for sample C40

for which no data was recorded during warm up.

The resistance versus temperature curves, normalized to the resistance at

T = 0◦ C = 273.15 K for all six samples, are shown in figure 6.1. For sample

C40 the low temperature part is known only approximately, as explained above

and indicated by the dashed line. Data points for sample C30 between ≈ 50K

and ≈ 90K are also missing, the linear interpolation in this temperature range

is again indicated by a dashed line. All samples show a linear temperature de-

pendence between RT and ≈ 30K, which has also been measured previously for

amorphous Ta/Ge multilayers [50]. Values for the normal state resistivities at

zero temperature, linearly extrapolated from resistance data between 150 and

250K, are given in table 6.1. Comparing the normal state resistivities ρN(0) for

the samples evaporated at 40◦ and taking into account the different filling factors1

due to different layering, one finds similar conductivities for the superconducting

1 The resistivities in table 6.1 were calculated using the whole film thickness, including the
separating Ge-layers, excluding the top and bottom Ge-layers. But the Ge-layers can be
taken as insulating even at elevated temperatures, restricting conduction to the alloy layers.
The filling factor gives the relative volume content of the conducting layers with respect to
the whole film thickness.
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layers, deviating by less than ±5% from their mean value. Compared to this

mean value for the 40◦-samples, the films evaporated at 30◦ and 50◦ have approx-

imately 30% decreased and increased resistivities, respectively. The alloy layers

in the 50◦-samples have conductivities very similar to each other as well.

Figure 6.1: Normal state resistance between 300 K and 4 K normalized to the resistance
at 273.15 K. All samples show a linear temperature dependence down to ≈ 30 K. The
negative slope can be explained within the theory of weak localization due to the short
mean free paths for the conduction electrons in these amorphous films. The gradient
variations reflect differences in the layering and defect structure, and are discussed in
the text. For temperatures below 30 K, superconducting fluctuations set in and the
films have a maximum resistance for temperatures between 10 and 20K.

The different temperature gradients also reflect the different layering and de-

fect structures of the films. Let us first compare the three samples evaporated

at 40◦: C40 and P40 have nearly identical gradients down to ≈ 120K, and it

is reasonable to assume that they remain similar down to at least 30K. J40 on

the other hand exhibits a significantly larger negative gradient. Weak localiza-

tion is expected to become more important with reduced dimensionality (section

5.3 and [50, 53, 54]), explaining this change in gradient as a consequence of the

reduction of the alloy layer thickness in J40 compared to the other two samples.
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The differences between samples with similar layering is due to changes in the

defect structure. The columnar structure in C30 is much less developed than in

C40 (see TEM images in section 3.2 and rotational data in section 6.3 below),

which reduces scattering and increases the mean free path of the conduction

electrons. A similar argument may be used to explain the steeper gradients for

J50 and P50, except that the more pronounced columnar microstructure leads

to increased scattering. Analysis of the layer and film thicknesses in section 3.2

revealed a reduced mass density in the films evaporated at 50◦. This may give

rise to an additional contribution towards electron scattering. They are also

expected to have a reduced free electron density what would also contribute to

increased resistance and an increased temperature dependence. Further details

of the high-temperature conduction mechanism have not been studied.

At around 30K deviations from the linear behaviour set in, which lead to a

maximum resistance for temperatures between 10 and 20K followed by a sharp

drop as the superconducting transition is approached. We attribute the sharp

drop to the onset of superconducting fluctuations in these multilayered films. The

fluctuations are apparent even at these relatively high temperatures of roughly

10× Tc because of the high resistances and very short coherence lengths of these

materials. The superconducting fluctuations will be discussed in more detail

below. Experimental evidence that the deviations from the linear temperature

dependence of the resistances are indeed caused by superconducting fluctuations,

comes from magnetoresistance measurements by D. Smith on two multilayered

films with columnar structure very similar to J40 and P50 in the temperature

range 2 to 18K [154]. At magnetic fields of 7T the linear temperature dependence

extends smoothly to lower temperatures. Just as in the superconducting phase,

a magnetic field leads to the suppression of Cooper-pairs even in the fluctuation

regime above Tc, and the normal state behaviour is recovered. The high-field

measurements by D. Smith also showed that at temperatures T � 10K, the

resistances increase faster than linearly with decreasing temperature, an effect

which has not been explored at this stage, but which is probably due to weak

localization or electron-electron correlations at very low temperatures.
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6.2 Zero-Field Superconducting Transition and

Fluctuations

Figure 6.2: Superconducting transition in zero magnetic field for all six samples as
labelled in the individual graphs. Note the different resistance and temperature scales,
though for easier comparison, the temperature range equals 1.2 K for all graphs. The
lines are fits according to fluctuation conductivity theory (eq. 5.25) and are described
in detail in the text.
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In this section, the zero-field transition temperatures from the normal con-

ducting to the superconducting state will be determined. Despite the importance

of Tc(0) as a sample characteristic, this will give a first indication of the samples’

dimensionality, according to the fluctuation conductivity theory (section 5.3). In

figure 6.2, the low temperature part of the resistance measurements from the pre-

vious section are shown for all samples. They all show a sharp drop in resistance

at the critical temperature, preceded by significant rounding of the transition for

temperatures close to but above Tc, which can be well described within the the-

ory of superconducting fluctuations, as described below. Also, all curves show a

more or less pronounced resistive tail for very low resistances. This tail is proba-

bly caused by the remnant field of the order of 0.1− 1mT present even when the

magnet is switched off2.

Attempts were made to fit the resistance data according to superconducting

fluctuation theory for two and three dimensional systems as discussed in section

5.3. The data were fitted to the sum of normal conductance and a contribution

from superconducting fluctuations following equations 5.23 and 5.24 for 2D and

3D. In all cases the equation for 3D superconductors provided a better qualitative

description of the data, especially the rounded part near Tc. Consequently, equa-

tion 5.25, including the AL and MT contribution, was used to describe the data

with the temperature independent pre-factor, the transition temperature and the

normal state resistance as fitting parameters. Best fits are shown in figure 6.2

as solid lines. From these fits the critical temperatures Tc(0) and normal state

resistances have been extracted, as shown in table 6.1.

The normal state resistances can be compared to the values obtained from

the extrapolations of the resistance data down to zero temperature in the previ-

ous section 6.1. The results can be categorized into two groups. Samples C30,

C40 and J40 fall into the first group for which the two values conform to within

less than 2 %. For these samples, the superconducting transition could be fitted

2 The conventional electro-magnet of the IRL-setup naturally has a remnant field caused by
the remnant magnetisation of the pole caps. For the Portland-setup the remnant field was
not caused by the superconducting magnet itself, but instead by the magnetisation of the
iron used in the reinforced concrete of the floor on which the cryostat was standing.
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well by assuming a constant normal state resistance for the relevant temperature

interval. This is a very good approximation considering the small temperature

gradient, which results in a relative change in resistance of the order of 0.01 %K−1.

Contrarily, for the remaining three samples, satisfactory fits of equation 5.25 to

the data could only be achieved by assuming a positive gradient of the normal

state resistance near the critical temperature, compared to the negative gradi-

ent observed at higher temperature. For samples P40 and P50, the gradients

for which a best fit was obtained equate to relative changes in resistance of 1

and 3%K−1, respectively, and the normal state resistivities at zero temperature

deviate from those determined in section 6.1 by only 4 and 6%, respectively.

From the plot for J50 in figure 6.2, it can already be seen that the resistance

data exhibits a significant gradient in this temperature range. The determined

zero temperature normal state resistivity is about 30% lower than the value ex-

trapolated from resistances at higher temperatures. A possible explanation for

this peculiar behaviour could be a significant volume fraction with a much higher

critical temperature as would be expected for crystalline material, for example.

Having determined the normal state conductivities, one can calculate the su-

perconducting fluctuation conductivity by subtracting the former from the ex-

perimentally measured conductivities. Plotting the fluctuation conductivities ob-

tained this way in a log-log plot versus the reduced temperature, allows a check

of the relevant dimensionality of the films, since for three dimensional supercon-

ductors the data should describe a straight line with gradient −1/2 compared to

a slope equal to −1 for 2D superconductors. Such plots are shown in figure 6.3,

where the actual experimental data have been multiplied by constant factors to

separate the data sets for the different films from one another. For all samples,

the fluctuation conductivity σ′ can be fitted very well over at least one to two or-

ders of magnitude in reduced temperature t by a straight line with gradient −1/2.

This confirms the previous assumption of 3D behaviour. These fitted lines also

allow a more reliable determination of the temperature independent pre-factor in

equation 5.25 than the fitting procedure to the original resistance data. Using

these values the superconducting coherence length ξ(0) can be calculated. The
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Figure 6.3: Log-log plot of the conductivity contribution from superconducting fluc-
tuations versus the reduced temperature. The data sets are separated from each other
by multiplication or division by a constant, as indicated in the graph. The solid lines
are fits to the data with a gradient equal to −1/2 in this double logarithmic plot,
confirming the 3D characteristics of the films.

coherence lengths obtained this way are given in table 6.1. As will be shown later,

the films are definitely anisotropic and the question arises whether the determined

coherence length is in the ab- or c-direction. An independent determination of

ξab follows in section 6.4.

As mentioned above, the very short coherence lengths and relatively high

resistivities make it possible to observe superconducting fluctuations up to tem-

peratures equal to 10×Tc(0) and higher. The short coherence length ensures that

the fluctuation conductivity gives a contribution to the overall conductivity of ap-

proximately 0.1 to 1% for a reduced temperature t = 9 or T = 10Tc(0). The high

sensitivity in resistance measurements thus allows us to trace the contribution of

short-lived Cooper-pairs up to very high temperatures.
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Table 6.1: Film parameters as determined from zero-field resistance versus tempera-
ture measurements. The transition temperatures Tc(0) were determined from fitting
equation 5.25 as described in the text. The third column gives the normal state re-
sistivity ρN (0) as another parameter in the fitting procedure, compared to the same
quantity from extrapolations of the resistance data at higher temperatures down to zero
temperature. Both methods agree with each other, except for sample J50, for which
the value from the resistance data at high temperatures seems to be more reliable. The
values of the coherence length ξ(0) in the last column were derived from fitting the
conductivity due to superconducting fluctuations directly to equation 5.25, as detailed
in the text.

Tc(0) [K] ρN(0) [µΩcm] ξ(0) [nm]

C30 2.718 325.7 319.7 3.4
C40 2.395 442.0 447.2 6.5

J40 2.214 525.8 527.7 8.0
J50 2.042 450.8 632.8 5.2

P40 2.272 555.3 577.6 5.1
P50 2.121 692.3 737.5 2.7

6.3 Angular Magnetic Field Dependence of the

Resistance in the Vortex Liquid Phase

The large anisotropies of the multilayered films are expected to have significant

consequences for the conductive behaviour, especially in the mixed phase of the

superconducting phase diagram. Furthermore, the columnar microstructure gives

rise to an additional anisotropy. This should be evident in the magnetoresistance

of the samples for external magnetic fields applied at different directions with

respect to the layering and the defect structure. These anisotropies were deter-

mined by measuring the resistance as a function of the magnetic field orientation.

Although an exact description of the resistance R as a function of the magnetic

field orientation θ is very difficult due to the large number of different vortex

phases and range of phenomena which are encountered, a qualitative description

of the expected R(θ) curve is given before the experimental results are discussed.

As will be seen from results in later sections, the measurements presented below

were taken in the pinned and unpinned vortex liquid phases for magnetic fields

normal to the film, equivalent to θ = 0◦, that is R(0) is still a significant fraction
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Figure 6.4: Resistance as a function of magnetic field orientation for given
field/temperature combinations. Note the logarithmic resistance scale. Increased pin-
ning for C-aligned fields is evident in all six samples. It is not possible to draw direct
conclusions about the pinning strength from these plots, since the resistance reduction
is dependent on the exact position in the vortex phase diagram. The dotted line in
graph C30 for −60◦ ≤ θ ≤ −20◦ is a symmetric approximation used to interpolate
missing data that resulted from interference of the magnetic field with the electronic
equipment. This was avoided in later measurements by moving the equipment further
away from the magnet.
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of the normal state resistance RN . Two effects lead to a reduction in R over many

orders of magnitude when the field is rotated parallel to the film to θ = ±90◦.

In fact, in many cases a truly superconducting phase with R(±90◦) = 0 will be

entered. The first effect is a simple geometric one, which can be quantified by

the demagnetising factor η, see for example [42]. For our thin films with in-plane

dimensions much larger than the film thickness and the penetration depth λ, the

demagnetising factor is approximately 1 for the field perpendicular configuration.

Practically, this reduces the lower critical field Hc1⊥ to zero. In the field parallel

case, however, with η ≈ 0, the resulting lower critical field Hc1‖ is finite. But even

when the lower critical field is exceeded, the resistance may remain zero up to

very large fields, because of the layering of the films. The layered structure acts

as a highly effective intrinsic pinning structure which suppresses any flux motion.

Beginning at θ = −90◦ and rotating the magnetic field out of the in-plane

direction, at some angle, depending on field magnitude and temperature, a mea-

surable resistance will set in. The resistance will then rise in some fashion over

many orders of magnitude to the FFF or TAFF resistance for θ = 0◦, depending

on whether the vortices are in the unpinned or pinned fluid phase for the chosen

field and temperature combination. Without extended defects oriented at an an-

gle β to the film normal, the resistance curve would be continued symmetrically

for 0 ≤ θ ≤ 90◦. For films with extended defects, however, the resistance at

θ = β will be reduced compared to θ = −β, because of enhanced pinning as the

columnar angle is approached, resulting in a dip in the resistance curve. This

is only true as long as the vortex matter is in its pinned liquid phase: for high

enough fields and temperatures the curve is indeed expected to be symmetrical,

even in the presence of extended pinning sites.

In figure 6.4 experimental R(θ) curves are given for all films. Each curve was

taken at constant temperature and field as indicated in the graphs. Naturally, the

curves with the smallest resistances were taken at the smallest field magnitudes.

All curves follow the general expectation given in the above paragraph. For

the right choice of field and temperature, all samples show a local minimum in

resistance at some angle between approximately 10◦ and 30◦, which is identified
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as the direction of the columnar structure. Although it is not possible to draw

simple conclusions about the pinning strength of the defects from the depth of the

minimum, since the reduction in resistance is crucially dependent on the exact

position in the H-T vortex phase diagram, it will be shown later that samples

C40, J40 and J50 show much stronger pinning than the other three samples.

The minima caused by the columnar structure are relatively broad, which

is probably the consequence of a distribution of columnar orientations. Due to

the statistical film growth process, the columns are not strictly parallel. This

leads to a distribution in the orientation as well as the pinning efficiency of the

defect planes. This kind of pinning arrangement may even be beneficial in terms

of flux pinning, as comparative studies on HTSC have shown, see for example

reference [155]. For many of the curves in figure 6.4 the effects of the defects

even extend into the negative or AC angular range with the consequence that

the maximum resistance is measured for θ < 0 instead of the perpendicular

orientation.

From the minima the columnar orientation or C-direction was determined by

assuming that the curves could by fitted by a second-order polynomial for a small

angular range around the minimum. Because the “normal” resistance, that is,

the resistance that would be expected without coplanar defects, is nonlinear and

decreases with increasing |θ|, this procedure may introduce a systematic error.

That the minima are indeed non-symmetric is easily seen for the shallower ones,

where the reduction of the resistance due to the defects is comparable to the

reduction by geometric effects.

Extraction of the contribution of the columns only is not straight forward,

because no theoretical description of the R(θ) curves exists. However, the two

P-samples do suggest an alternative for determining the reduction in resistance

due solely to the extended defect structure. For these two films the influence of

the defects does not seem to extended into the negative θ-range, based on the

observation that the maximum resistance was measured at θ ≈ 0◦ for all fields.

Taking the ratio of the resistances at positive θ (the C-branch) and negative θ

(the AC-branch), RC/RAC, should result in a symmetrical minimum around the



6.3. Angular Magnetic Field Dependence 97

columnar angle. Figure 6.5 gives curves calculated in this way for samples P40 and

P50. They are indeed symmetrical to a very good approximation, and even the

relatively shallow minima allow a quite accurate determination of the columnar

direction. There is however no significant deviation from the columnar direction

determined from the absolute resistance minimum. The same procedure was also

applied to the remaining four films, still resulting in symmetrical reductions of the

resistance, although the ratios at low angles clearly deviated from the expectations

since the experimental RAC did not represent the undisturbed resistance value.

Figure 6.5: Relative reduction of the resistance due to extended defects in samples
P40 and P50. Plotted are the ratios of the resistance measured for positive θ over the
corresponding resistance for −θ. Thereby, the changes in resistance due to layering and
the changing demagnetising factor are eliminated. The black lines are smooth curves
extrapolating between the data points (filled circles).

In table 6.2 values for the columnar direction obtained from these resistance

measurements are compared to the angles obtained directly form the defect struc-

ture seen in the TEM images (section 3.2). The angles of minimum resistance are

averaged values from the resistance minima and minima in the ratios RC/RAC for

different magnetic fields, as explained above. From the variations of the angles

obtained for the individual curves and the widths of the minima, it is estimated

that the given angles are accurate to within ±2◦. Although the error bars do over-

lap, the angles determined from resistance measurements are consistently larger

than the defect angles derived from the TEM images.

Magnetisation measurements on YBCO containing columnar defects and twin-
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Table 6.2: Comparison of columnar angles deter-
mined from resistance measurements as described in
this section and TEM photographs discussed in sec-
tion 3.2. The TEM images suggest an angular dis-
tribution in the columnar direction of approximately
±3◦ and a conservative estimate of the error in the
columnar angle determined from resistance measure-
ments gives ±2◦. Although the experimental results
agree for these assumptions, the angles determined
from resistance measurements seem to be systemat-
ically larger.

β
R TEM

C30 12.0◦ —
C40 23.8◦ 19.5◦

J40 29.3◦ 26.8◦

J50 30.3◦ 26.6◦

P40 26.3◦ 25.5◦

P50 28.6◦ 26.4◦

planes at an angle of 32◦ to the c-axis gave clear evidence of vortex staircases [156].

The staircases developed due to competing pinning by the columnar defects, twin

planes parallel to the c-axis, and intrinsic pinning by the anisotropic crystal struc-

ture. Since the films in this study do not have any extended pinning sites cor-

responding to the twin planes in that YBCO single crystal, it is likely that the

minimum resistance occurs for field orientations slightly away from the colum-

nar direction, towards the film parallel direction. This assumption is based on

observations made in reference [156]. To verify the development of staircases in

these Ta xGe 1−x/Ge -films magnetisation measurements or systematic studies of

homogeneous and multilayered films with columnar structure could be helpful.

All the conductance measurements in the C- and AC-direction were done for

magnetic fields aligned according to the angles obtained from resistance mea-

surements, simply because TEM images of the films were not available before

all conductance measurements had been done and the samples could be cut and

prepared for the TEM investigations.

6.4 Upper Critical Field H c2(T)

The upper critical field Hc2(T ) will define the range of temperatures and magnetic

fields for which the samples are in the superconducting mixed phase. Informa-

tion about the upper critical field Hc2(T ) can be obtained from resistance versus

temperature measurements in the presence of an applied magnetic field. Figure

6.6 shows a typical example of a set of such resistance measurement taken from

sample C40 in fields ranging from 0.02 to 2.5T applied in the C-direction. With
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Figure 6.6: Set of in-field R vs T data taken at magnetic fields H =
0.02, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0 and 2.5 T from right to left in the
C-direction of sample C40. The highlighted, red data points mark Tc(H) determined
from fluctuation conductivity theory.

increasing field the critical temperature Tc(H) decreases, and the transition be-

comes broader and less well defined. A rough estimate of Tc can be obtained

from a 50% criterion, that is, taking the temperature at which the resistance

has dropped to RN/2 as the critical temperature. From that we already obtain

a linear relation between Tc and H. From GL theory one expects such a linear

temperature dependence (eq. 5.11).

A much more accurate determination of the upper critical field is possible

by applying the scaling relations of Ullah and Dorsey, equations 5.26 and 5.27.

Depending on the dimensionality, a set of σ′-T curves, as it can be extracted from

R-T data sets like that in figure 6.6, should collapse onto a single curve describing

the scaling function Fx for appropriately scaled x- and y-axes. Assuming a linear

relation between Hc2 and Tc of the form Tc(H) = Tc(0) + s ×H, where s is the

constant slope, leaves only one adjustable parameter, since Tc(0) and RN are

already known from the zero-field resistance data. Both the 2D and 3D scaling
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relations have been applied to the data, and again the 3D-form produced much

better scaling, similar to the zero-field measurements (compare section 6.2).

In figure 6.7, the result of such a scaling procedure applied to the set of

resistance measurements shown in figure 6.6 is shown. The rescaled fluctuation

conductivity σ′(H/T 2)1/3 is plotted versus a field-dependent reduced temperature

[T −Tc(H)]/(TH)2/3. For data above Tc(H), equivalent to reduced temperatures

larger than zero, the data sets collapse very nicely onto the scaling function F3D.

For lower temperatures the data fans out, since the measured conductivity is no

longer determined by superconducting fluctuations but instead by the motion of

flux lines.

Figure 6.7: Data sets from figure 6.6 after scaling fluctuation conductivity ac-
cording to the theory of Ullah and Dorsey, section 5.3. The rescaled fluctuation
conductivity σ′(H/T 2)1/3 is plotted versus the field dependent reduced temperature
[T − Tc(H)]/(TH)2/3. In the fluctuation dominated regime above Tc(H) the scaling is
very convincing. Below the critical temperature the curves do not collapse any longer
because conductivity is dominated by flux motion. The inset shows a blow-up of the
low conductivity part on a linear scale, demonstrating the very good scaling of the
data.

From the slope s one can calculate the upper critical field linearly extrapo-
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lated to zero temperature3. The resulting critical temperatures for the resistance

curves in figure 6.6 are marked by the highlighted red data points. Obviously,

the 50% criterion underestimates the transition temperatures in high magnetic

fields considerably. The perhaps unexpected high resistance below Tc(H) is a

consequence of flux motion, roughly given by the Bardeen-Stephen value for free

flux flow, equation 5.32.

The scaling method described above has been successfully applied to all sam-

ples for fields applied in the C- and AC-direction. The slopes s extracted from

these procedures vary from sample to sample, but are very similar for the two

field directions. Numerical values for the extrapolated Hc2(0) are given in ta-

ble 6.3. The measurements were not taken for perpendicularly aligned fields,

although the orientation was not too far from the normal direction, thus the cal-

culated upper critical fields deviate from Hc2⊥ due to the layered nature of the

films. The transformation rule, equation 5.14, allows one to estimate the devia-

tion from Hc2(0) for perpendicular fields. Even though anisotropy ratios γ have

not been determined in this study, B. Ruck measured the anisotropy for similarly

layered Ta/Ge and Ta xGe 1−x/Ge films and found anisotropy ratios in the range

1/10 < γ . 1 [32]. Figure 6.8 shows curves calculated according to equation 5.14

for γ = 1/2, 1/5 and 1/10. From this graph it can be inferred that the measured

values of Hc2(0) are no more than 15% larger than the respective Hc2⊥(0), and

in many cases the difference is probably much less than 10%.

Using relation 5.18, ξab(0) can be derived approximately from these measure-

ments. Since ξab ∝ H
−1/2
c2⊥ , the systematic error, due to fields aligned in the C-

and AC-direction, are even less. The values of the coherence lengths obtained in

this section agree reasonably well with those derived from fitting zero tempera-

ture resistance measurements to the theory of fluctuation conductivity (6.2). At

most the two values deviate by a factor of ≈ 2.5 from each other. The coherence

lengths derived from measurements of the upper critical field are expected to be

much more reliable. The other important parameter characterising these films,

the penetration depth λab, can be estimated from the following equation [157]

3 Remember that the true upper critical field is less than the extrapolated value (see section
5.1).
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Figure 6.8: Theoretical Hc2(θ)/Hc2⊥(0) curves for different anisotropies as indicated
according to the transformation rule for anisotropic superconductors, equation 5.14.
The estimated maximum deviation of measured critical fields from Hc2⊥(0) is given by
the dashed lines.

λab(0) ≈ 1.05× 10−3[ρN(0)/Tc(0)]1/2. (6.1)

All the superconducting parameters characterising the superconductivity of

the multilayered films investigated are summarized in table 6.3. The large GL-

parameters κ confirm the assumption of extremely type-II superconductors. A

rough estimate of the lower critical field using relations 5.12 gives Hc1(0) ≈

0.5mT. Together with a demagnetising factor η close to 1 this justifies setting

B = µ0H for all applied fields in this study except for field orientations extremely

close to parallel to the film surface.
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Table 6.3: Summary of all the superconducting parameters characterising the films
under investigation. The errors were determined as follows: the uncertainty in Tc(0)
was estimated from the maximum accuracy of the temperature measurement setup,
for the case of Hc2(0) and ξab(0) errors were derived from differences for the C- and
AC-direction (where the analysis gave the same value for both directions, an error of
the same magnitude as for the other samples is assumed), uncertainties in λab(0) are
primarily due to uncertainties in the normal state resistances for which the extrapolated
values from high temperature measurements were used, and errors in κ are calculated
from the respective errors in ξ and λ.

Tc(0) [K] Hc2(0) [T] ξab(0) [nm] λab(0) [µm] κ

C30 2.72± 0.01 5.5± 0.1 7.8± 0.1 1.14± 0.05 146 ± 7
C40 2.40± 0.01 7.4± 0.3 6.7± 0.2 1.43± 0.05 213 ± 10

J40 2.21± 0.01 7.0± 0.4 6.9± 0.2 1.62± 0.05 235 ± 10
J50 2.04± 0.01 8.4± 0.7 6.3± 0.3 1.85± 0.25 294 ± 42

P40 2.27± 0.01 7.3± 0.1 6.7± 0.1 1.67± 0.10 249 ± 15
P50 2.12± 0.01 6.5± 0.1 7.1± 0.1 1.96± 0.15 276 ± 21

6.5 Thermally Assisted Flux Flow and Activa-

tion Energies

Having defined the field and temperature range for which the films are in their

superconducting state, information about the vortex behaviour in the supercon-

ducting mixed phase is derived from conductivity measurements. This was done

by measuring the linear resistance in the limit of small applied currents as well as

by probing the response of the vortex system to applied current densities, ranging

from small up to or even exceeding the depairing current density. In this section,

the activation energies for thermally activated flux flow are determined over a

large range of magnetic fields. Strong effects of the columnar structure and the

interlayer coupling will be deduced from these measurements.

Near Tc(H), in the fluctuation conductivity regime and the free flux flow

range, the influence of the columnar microstructure was not evident. Especially

the magnetic field orientation with respect to defect direction had no significant

influence on conductivity. As the temperature is lowered and the dynamics of

the flux lines are expected to change from free flux flow to thermally activated
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flux flow, the additional anisotropy of the inclined columnar microstructure is

expected to reflect itself in conductivity differences for the C- and AC-direction.

Qualitatively, this has already been demonstrated in section 6.3 by rotating the

magnetic field with respect to the film geometry. In this section a more quanti-

tative analysis of the differences for the two field orientations, C and AC, will be

presented.

The temperature dependence of the resistance of a vortex liquid in the pres-

ence of disorder was discussed in section 5.5.3, and from equation 5.44 a strong

exponential behaviour is expected in the TAFF-region of the vortex liquid phase.

Therefore, it is most convenient to plot the resistance data in Arrhenius-style,

that is the logarithm of R is plotted versus 1/T . Plots of this kind are shown in

figures 6.9 and 6.10 for samples C40, J40 and P40, respectively, for data taken

with magnetic fields in the C and AC-direction. Experimental results for the

three remaining samples were qualitatively similar.

Focusing on the graphs for samples C40 and J40 first, it is observed that

they exhibit almost identical behaviour. At the lowest magnetic fields4 (far left),

the curves for the C (black) and AC (red) field orientations coincide, but as

the field is increased the resistance for C-aligned fields is significantly reduced

with respect to AC-oriented fields. Not only is the absolute resistance reduced,

for medium field magnitudes the apparent gradient is steeper as well, i.e. the

resistance vanishes much faster with temperature for the black curves than for

the red. At the highest measured fields the resistance measured with magnetic

fields aligned with the columnar structure is still less than for field orientations at

large angles to it, but the gradients become similar again, as the detailed analysis

below will show. Sample J50 (not shown) behaved in very much the same way

as these two samples. Sample C30 on the other hand (also not shown), although

showing a sharp drop in resistance, provided no clear evidence of pinning by

extended defects, that is, over the whole measured field and temperature range

the resistance data for the two distinct field directions were almost identical.

4 The gap in the data for J40 at H = 0.02 T and 1/T ≈ 0.46 K−1 happens near the superfluid
transition of the liquid helium. The lambda-anomaly of liquid helium near the superfluid
transition [40] lead to difficulties controlling the temperature at the tens of mK level.
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Figure 6.9: Selected R-T data from samples C40 (top) and J40 (bottom) plotted in
Arrhenius-style for magnetic fields applied in the C (black) and AC (red) direction.
Not all data sets are shown, allowing better illustration of the changes with changing
magnetic field. The curves correspond to applied fields (from left to right) of H =
0.02, 0.4, 0.8, 1.3, 2.0 T and H = 0.02, 0.2, 0.6, 1.0, 1.6 T in the top and bottom
graph, respectively. The inset in the lower graph shows the 0.6 T data for C-alignment
together with a fitted curve according to equation 5.44.
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Figure 6.10: Similar plot as in figure 6.9 here for sample P40. The applied magnetic
fields were H = 0.02, 0.3, 0.6, 1.0, 1.3, 2.0 T from left to right in the C (black) and
AC-directions (red), respectively.

We now turn to the results for the more weakly coupled P-samples, as rep-

resented by the resistance measurements from P40, shown in figure 6.10. The

P-samples display a similar resistance reduction for fields in the C-direction as

for C40 and J40, but for a very limited field range only. At a field of 1.0T the

curves for columnar and anti-columnar orientation already coincide again, and

for even higher fields the resistance seems to be even larger when the magnetic

field is co-aligned with the defect structure.

Next, we will try to extract the field-dependence of the activation energies in

the TAFF region. All the resistance curves in these Arrhenius-plots describe a

reasonable straight line at low resistance. This suggests fitting the data with a

simple exponential function of the form

y(x) = y0 exp(−UA/x), (6.2)

with a constant y0 and the activation energy UA. The inset in the lower graph
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of figure 6.9 shows the result of fitting such a function to one particular set

of resistance data and the agreement is reasonably good over 2 − 3 orders of

magnitude. Similarly, the low resistance parts of all data sets could be described

by equation 6.2. Comparing equations 6.2 and 5.44, we can identify the fitting

parameter UA with the plastic barriers against vortex motion Upl/kB in units

of Kelvin. The fact that the experimental data can be described with such a

simple relation implies that the energy barriers Upl are approximately constant

over these relatively small temperature intervals. From equation 5.45 it follows

that the activation energies should be proportional to the inverse square-root of

the applied magnetic field, UA ∝ 1/
√

H.

The activation energies against plastic vortex creep have been studied previ-

ously for a homogeneous Ta0.27/Ge0.73-alloy film without columnar structure [32]

where the activation energies could be described very well by the above inverse

square-root dependence. In the following the results from this film are used as a

guideline to discuss the influence of the additional anisotropies in the microstruc-

tured multilayer films.

Strongly-Coupled Samples

In figure 6.11 the field dependence of the activation energies for samples C30 and

C40 for fields applied in the C and AC-directions are compared to the reference

alloy film. Any power-law dependence on the applied field results in a straight line

in this double logarithmic plot, thus the results from the alloy film are a straight

line with gradient −1/2. This power-law dependence as predicted by equation

5.45 seems to hold for C30 for the measured field range. The values obtained in

C and AC-direction are very similar and are even close in magnitude to the alloy

film. Equation 5.45 even allows us to estimate the height of the plastic barriers,

and inserting the appropriate penetration depth λ(T ) for e.g. 1T, a value Upl ≈

270± 30K is calculated for an anisotropy ratio γ = 1. Considering that certainly

γ < 1 and that equation 5.45 is only a dimensional estimate, the measured values

UA = 75 and 87K for the AC and C-direction at H = 1.0T, respectively, are a

strong indication that the resistance in this field and temperature range is indeed

a consequence of plastic deformations in the flux liquid. On the other hand,
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Figure 6.11: Activation energies for samples C30 (left) and C40 (right) for magnetic
fields applied in the C (red) and AC (green) direction respectively, compared to a
reference Ta0.27Ge0.73-alloy film [32] (straight black line). The colored lines are smooth
interpolations between the data points and serve as guidelines. The error bars were
estimated by varying the gradients of the fitting curves. Changes by ±10 % could still
describe the data reasonably well; for some data sets the errors had to be assumed to be
even larger than ±10 %. The C30-sample preserved the UA ∝ 1/

√
H dependence with

little difference between C and AC aligned fields. Sample C40, on the other hand, shows
an increase of UA(H) over a large range of applied fields, especially in the C-direction.

because the theoretical expression was derived for a weak pinning potential, it has

to be concluded that the columnar microstructure is not developed well enough to

significantly reduce dissipation through flux pinning by extended strong-pinning

defects. In fact, the only clear indication that this film has correlated disorder to

some degree has come from the rotation measurements in section 6.3.

The right graph in figure 6.11, however, gives substantial evidence for strong

pinning caused by the columnar microstructure present in sample C40. At very

low fields enhanced pinning by the coplanar defects is negligible, because the

barriers against plastic vortex motion are already high compared to additional

pinning provided by the extended defects. As the flux density increases, the plas-

tic barriers provided by point-like pinning are reduced according to equation 5.45

and the contribution from the coplanar pinning sites leads to an increased activa-

tion energy compared to the reference film or C30. Increasing the magnetic field

further means additional flux lines cannot be accommodated on planar defects

any longer. They have to find their place at interstitial sites where they are at

first still strongly pinned by the interaction with the flux lines localized at the
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defects. But with ever increasing magnetic field, the average activation energy

for flux flow falls back to the same level as for the alloy film without extended

defects or the multilayer film C30 without effective columnar structure. From the

field value at which the maximum increase in activation energy was measured, an

estimate of the typical spacing between strong-pinning defects is possible. Taking

that field as H ≈ 0.2T a spacing of d ≈ 100 nm results.

In the AC-direction when the field is directed at large angles to the defect

planes the activation energies are much more similar to those measured for C30

and the alloy film. A close inspection reveals, however, that all activation ener-

gies between applied fields of 0.2 and 2.0T are higher than what is expected for

a film without columnar structure. For the chosen geometry, the Lorentz-force

is directed in such a way with respect to the pinning planes that the flux lines

can glide along the planes, experiencing no additional pinning potential at least

in a homogeneous film (compare figure 6.12 (a)). A study of a homogeneous

Figure 6.12: Schematic drawing of the pinning situation for fields oriented at large
angles with respect to the coplanar orientation. The drawing is approximately to scale
for sample C40 (b) compared to a non-layered superconductor with otherwise similar
characteristics (a). In the homogeneous film a short section of the flux line is strongly
pinned but it will glide along the defect in response to the Lorentz-force FL. The
only effective pinning potential is due to local variations resulting in weak point-like
pinning very similar to a superconductor without coplanar pinning sites. In a layered
superconductor (b) the section of the flux line in the potential valley has to cross
the insulating layer. In a strongly-coupled superconductor a description in terms of a
continuous flux line is still relevant, the Josephson-vortex in the insulating layer will
experience much reduced pinning at the defect. Thus, the insulating layer effectively
represents a barrier the flux line has to overcome to move in response to the Lorentz-
force (see also [158]).

Ta0.35Ge0.65 film with columnar structure showed exactly this; enhanced pinning

in the C-direction, but no additional pinning for fields at large angles [10]. In a

multilayered film the situation is more like in figure 6.12 (b), which represents
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a very schematic drawing for the situation of a strongly coupled film [158]. The

drawing is approximately to scale for the situation in sample C40, only the hor-

izontal extension of the defect is unknown. A flux line crosses a defect plane at

a large angle, and the section of the flux line in the vicinity of the defect is in

a deep valley of the potential the vortex experiences. In the homogeneous film

this pinned section will just move along the defect and the only pinning force

will come from variations in the pinning potential, thus it is effectively reduced

to weak point-like pinning. In the layered sample this section has to cross the in-

sulating layers as well, but there the pinning potential is not nearly as deep as in

the superconducting layers, hence the pinned section of the flux line has to over-

come a high potential barrier. This barrier is probably comparable to the barrier

height C-aligned flux lines have to overcome. Contrary to the well-aligned case,

the flux line is not pinned along its complete length, but only those parts that

actually cross one of the defect planes. With the above estimate of the average

distance between pinning sites of ≈100 nm and an angle between pinning planes

and flux lines of ≈45◦, it follows that in about every 3rd or 4th superconducting

layer the flux line is pinned this way.

To get the additional activation energy ∆UA that is due to the coplanar de-

fects, one can subtract the result that was obtained for the alloy film as that

contribution that is due to pinning by point-like variations. To quantify the dif-

ference between C and AC-oriented fields one can look at the ratio ∆UAC
A /∆UC

A

as a function of the applied field. This is shown in figure 6.13 for fields be-

tween 0.2 and 2.0T. Although there is considerable scatter and the error bars are

large, the ratio is approximately constant and a least-squares fit gives an average

∆UAC
A /∆UC

A ≈ 0.29. This coincides surprisingly well with the above estimation

that roughly one third of the length of a flux line experiences enhanced pinning,

even when the field is oriented at large angles to the defect structure.

The other strongly coupled films are the J-samples which have very similar

interlayer-coupling to the C-samples but much thinner superconducting layers.

The derived activation energies, as shown in figure 6.14, behave in a very similar

way to C40, with no significant differences between J40 and J50. J40 shows a
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Figure 6.13: Relative increase in activation energy due to coplanar defects in C and
AC-direction. The activation energy for the alloy film was subtracted from the results
in figure 6.11, resulting in the additional contribution ∆UA caused by the microstruc-
ture. The main plot shows the ratio ∆UAC

A /∆UC
A as a function of field, which is

approximately constant. The dotted line is a least-squares fit giving the average ratio.
Errors were calculated from the errors in UA. Values for the C (square) and AC (circle)
direction as a function of field H are shown in the inset.

maximum enhancement for a field H ≈ 0.2T oriented in the C-direction while

for J50 the maximum is shifted to a somewhat higher field of around 0.45T.

For fields in the anti-columnar direction, both films show a slightly increased

activation energy compared to the reference sample for fields H > 0.1T, similar

to the increase observed in C40. In fact, these three samples C40, J40 and J50,

are so much alike in terms of their activation energy, that when all results are

plotted in the same graph, as shown in the inset of the right graph of figure 6.14,

they describe the same field dependence.

Weakly-Coupled Samples

A completely different picture emerges for the samples P40 and P50, which have

superconducting layers of similar thickness to the C-samples, but are much more
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Figure 6.14: Activation energies for samples J40 (left) and J50 (right), again compared
to the previously obtained activation energies for an unstructured alloy film (solid line).
Resistance measurements were again taken in the C (red) and AC (green) directions
for both samples. The data point represented by the open symbol in the left graph was
excluded when drawing the interpolation line. The inset of the right graph shows the
activation energies for samples C40, J40 and J50 in the same plot and C (squares) and
AC (circles) aligned fields. Within the error margins, all three samples describe the
same field dependence of the activation energies.

Figure 6.15: Activation energies for samples P40 (left) and P50 (right) here plotted
on a linear scale versus the logarithm of the applied magnetic field. This way a loga-
rithmic field dependence results in a straight line as observed for the AC-aligned fields
(green data). The black solid lines are least-squares fits according to equation 5.46.
For comparison the power-law curve which served as a guideline in the previous corre-
sponding graphs is shown as the dashed line. Above ≈0.1 T and fields co-aligned with
the defects (red data), the results can still be described approximately by a power-law
dependence. At lower fields the data deviate from a power-law behaviour and approach
the AC-data.
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weakly coupled, due to the approximately twice as thick Ge-layers. As it turns

out their activation energies do not show the same simple power-law behaviour as

seen in C30 or the alloy film for either C or AC-aligned fields. In section 5.5.3 an

alternative mechanism was presented which can also lead to a thermally activated

resistance dependence, caused by the movement of unbound dislocations. As

mentioned there, flux carrying dislocations are topologically forbidden in three

dimensions, but possible in 2D or quasi-2D layered superconductors. Following

equation 5.46 the activation energies for the P-samples in figure 6.15 are plotted

versus the logarithm of the applied field.

Focusing first on the activation energies when the magnetic field was oriented

at large angles to the defect structure (green symbols), the data describe a straight

line to a good approximation and can be successfully fitted to an equation of the

form 5.46. The fitting procedure had two fitting parameters, one of which was

the characteristic field H0 from equation 5.46 which should be of the order of

the upper critical field Hc2. Best fits were achieved for H0 = 10.0 and 8.2T for

P40 and P50, respectively, which compares relatively well to the upper critical

fields determined from the fluctuation conductivity, which are 7.3 and 6.5T, re-

spectively (compare to table 6.3). Using results given in tables 3.1 and 6.3, the

pre-factor in equation 5.46 can also be calculated, giving a value of approximately

3, which is more than one order of magnitude less than the fitting parameter 46.

Because equation 5.46 was derived for a two dimensional film and weak pinning,

it is expected that the theory underestimates the magnitude of the activation en-

ergy for a film with weakly coupled superconducting layers and significant defect

structure5. Therefore, it seems possible that the motion of unbound dislocations

causes the observed thermally activated resistance.

For C-aligned fields (red data points) above ≈ 0.1T, the field dependence of

the activation energy seems to be more like that in the previously discussed C and

J-samples, although a clear enhancement due to the pinning by extended defects

is not evident. For P40 the results are higher than what would be expected for an

unstructured film, but far less than for example in C40 and J40, and the results

5 For the AC configuration the defects are certainly not correlated, but the order parameter
is still significantly reduced in their vicinity, thus causing stronger pinning.
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for P50 follow almost exactly the same power-law dependence that was found for

the reference alloy-film. At fields below 0.1T, however, there is a clear deviation

from the 1/
√

H-dependence and it seems that the measured activation energies

approach those determined for the AC field orientation. To see if the activation

energy at very low applied fields does follow a logarithmic field dependence, the

measurements would have to be expanded to lower fields. An extension to higher

fields would be interesting as well. Because the two fitting curves almost coincide

in the range 0.5 T ≤ H ≤ 3T, it is not possible to distinguish between two and

three dimensional behaviour. For higher fields the two theoretical curves deviate

again and it would be very interesting to study the evolution of the activation

energies beyond the current field range, for fields aligned in the C- as well as

the AC-direction. For this project, studying the conductivity at higher magnetic

fields was excluded due to the temperature limit of ≈ 1.2K.

From the available data it can be concluded that at fields above 0.1T in

the C-direction samples P40 and P50 are dominated by three dimensional flux

flow dynamics. The pancake vortices in the individual superconducting layers

are pinned (most of the time) to the coplanar defects, thus they line up to form

a one dimensional flux line made up of coupled segments. At lower fields the

temperatures are higher, leading to thermally activated depinning of individual

pancake vortices. This reduces the correlations along the defects and a cross-

over to 2D-behaviour occurs. However, at temperatures even closer to Tc(0)

or slightly above, in the fluctuation conductivity regime, the resistance could be

explained within a three dimensional model (see sections 6.2 and 6.4) thus leaving

some doubt about the dimensionality in this narrow field and temperature range.

Similar recoupling effects, mediated by the presence of correlated defects, have

also been observed in HTSC. This will be discussed in more detail in conjunction

with the phase diagrams in section 6.8.

6.6 IV -Characteristics and Glass Scaling

As outlined in the theory chapter, current-voltage characteristics can give con-

siderable information about the dynamics of the vortex system. Furthermore,
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the possible second order phase transition between a pinned vortex glass and a

vortex liquid will lead to a characteristic change of the IV -curves with temper-

ature. Using a set of IV-curves taken for one sample at a particular magnetic

field magnitude and direction, but varying temperature, the information that can

be extracted will be discussed qualitatively. Thereafter, a quantitative analysis

in the form of a glass transition will be attempted for all samples, applying the

appropriate scaling equations from section 5.6. Furthermore, such a quantitative

analysis of the IV -curves will allow us to gain information about the dissipation

processes in the vortex glass phase and to construct vortex phase diagrams in

sections 6.7 and 6.8, respectively. The behaviour of the samples characterised

by strong interlayer coupling will be shown to be very much as expected from

comparable studies of weakly anisotropic HTSCs like YBCO. The weakly-coupled

P-samples on the other hand show a somewhat different behaviour, but not unlike

more anisotropic HTSCs.

Figure 6.16: Log-log plot of the IV -characteristics for sample C40 with the magnetic
field H = 0.5 T applied in the AC-direction. Temperatures range from 2.15 K for the
topmost curve down to 1.195 K for the lowest one in intervals of 50mK (55mK for the
last step). The changes with temperature are highlighted by the four bold curves and
discussed in detail in the text.
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In figure 6.16 a double logarithmic plot of IV -curves for sample C40 in an

applied field of 0.5T in the AC-direction is shown6. The temperature varies

from 2.15 to 1.195K. At the highest temperature the sample exhibits free flux

flow and ohmic resistance from the lowest measured current, 10 nA, to about

1 mA. From the upper critical field measurements it can be inferred that the

sample is indeed in its superconducting state. The critical temperature at H =

0.5T can be calculated to be Tc = 2.233K, which is significantly higher than

2.15K, the measurement temperature. Using equation 5.32 the expected free flux

flow resistance can also be calculated, and the resulting value of RFFF = 62.2 Ω

compares very well with the measured value of 63.6 Ω averaged over 5 orders of

magnitude in excitation current. As will be seen more clearly below, at about

1 mA a very gradual transition to the normal state resistance sets in.

As the temperature is reduced the resistance drops rapidly. At the next high-

lighted temperature of 1.90K the resistance has dropped by more than 2 orders

in magnitude. Now the linear region extends up to about 10 µA only, at which

point a nonlinear critical region is entered. As the current is further increased

the free flux flow resistance value is approached, but never reached. Instead, at

a second critical current the film turns normal conducting by a transition that

becomes increasingly sharp with lower temperature.

As outlined in section 5.6 the glass transition temperature is characterised

by a power-law IV -curve for all applied currents. The third emphasized curve

in figure 6.16 can be described very well with a power-law dependence up to

currents exceeding 1mA. At even larger currents, the vortex velocity becomes so

large that the pinning potential is smeared out and the curve deviates from the

power-law behaviour. The transition to the normal state proceeds by an almost

discontinuous jump to the normal state resistance. At even lower temperatures

the IV -curves exhibit glassy behaviour with downward curved characteristics and

6 Note about physical quantities: The equations derived for the glass theories are expressed
in the material-dependent quantities, current density and electric field. However, only pro-
portionalities were derived, which also hold for the sample-dependent quantities, current
and voltage. Therefore, as long as only the glass exponents ν and z and the transition
temperature Tg are of interest, it is sufficient to plot and analyse the IV -curves using the
original data without converting them to the sample-independent quantities.
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a very sharp jump to the normal state at high driving currents.

The transition into the normal state has not been investigated in detail in

this study, but a few qualitative remarks can be made here. From equation 5.29

the depairing critical current density can be estimated. For the films studied, it

is in the range J0(0) = 105 − 106 A/cm2. More specifically, using a relation that

includes the pre-factor in equation 5.29 (e.g. [9]), the critical current density at

zero temperature for sample C40 is J0 = (7.4± 0.6)× 105 A/cm2. For the power-

law curve and those taken at lower temperatures the current density at which the

discontinuity is observed is approximately Jdis ≈ 6−9×103 A/cm2, a factor of 10

or more below the depairing current density at these temperatures. Therefore, it

is likely that this discontinuity is caused by an instability calculated by Larkin and

Ovchinnikov [96]. This assumption is based on extensive analysis of the instability

in similar Ta/Ge multilayers by B. Ruck et al. [10, 32, 159]. They have also

extended the theory by Larkin and Ovchinnikov to include the effects of pinning

[97]. Even at higher temperatures the more gradual transition to the normal state

is probably dominated by this instability. Although the depairing critical current

density, J0 ∝ t3/2, decreases more rapidly with increasing temperature than the

current at which the instability occurs, it is still considerably higher for all T,

except extremely close to Tc(0).

More information about the transition from the vortex liquid to the pinned

vortex phase can be extracted from these IV -characteristics when plotting the

logarithmic gradient d(log V )/d(log I) versus the current or, as in figure 6.17,

versus log I. For this plot the line for the highest temperature is at the bottom

of the graph. Clearly, at the highest temperature the film shows linear behaviour

for all but the highest currents, which results in the horizontal line at y = 1. As

already mentioned above, at I ≈ 1mA the gradient increases, marking the onset

of the transition to normal conductivity.

In the TAFF region the ohmic behaviour is limited to low currents while

in the critical regime the gradient increases with decreasing temperature. The

transition to the normal phase becomes sharper, resulting in an increasingly pro-

nounced peak in the gradient, which is not shown in figure 6.17 to keep the graph
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Figure 6.17: Logarithmic gradient d(log V )/d(log I) plotted versus log I for the same
data set shown in figure 6.16. In this representation the temperature decreases from the
bottom to the top curve. Curves for the same temperatures as above are highlighted.

as concise as possible. According to equations 5.51 or 5.60, at the transition tem-

perature from the unpinned vortex phase to the respective vortex or Bose-glass

phase, the logarithmic gradient of the IV -curve should result in a horizontal line.

The y-value of the horizontal line determines the dynamic critical exponent via

the exponent in equation 5.51 or 5.60, depending on the glass theory applied.

Although not absolutely conclusive, the bold curve near the proposed transition

temperature has an approximately horizontal part at low currents, from which

the dynamic exponent can be estimated using the respective scaling relation.

At low temperatures the IV -characteristics definitely have a negative curva-

ture on a double-logarithmic plot, which is demonstrated by the sharply increas-

ing gradient with decreasing current. As already anticipated in this discussion,

the IV -curves show the typical temperature dependence predicted by the various

glass theories. Before a detailed scaling analysis for all samples based on this

more general description is discussed, a direct comparison for IV -curves taken in

the C- and AC-direction is made.
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Figure 6.18: Selected IV -curves for sample C40 at a field of 0.5 T applied in the C-
(black) and AC-direction (red). Temperatures were as indicated in the graph. The
influence of enhanced pinning for fields aligned with the defect structure is clearly
visible; the measured voltage for any given current and temperature is many orders of
magnitude smaller in the C-direction compared to AC-oriented fields (except when the
film is very close to its normal state resistivity).

In figure 6.18 a few selected IV -curves taken at H = 0.5T in the C- (black)

and AC-direction (red) are compared to each other. At high temperatures in

the free flux flow regime, the two directions are indistinguishable and coincide

with each other. But as the temperature is reduced the resistance drops much

faster for fields aligned with the defect structure. Furthermore, at 1.90K when

the sample is still in the TAFF region for AC-aligned fields, the curve taken for

C-orientation shows approximately power-law behaviour, indicative of the glass

transition. Consequently, when the red curve shows a power-law dependence over

a substantial range in applied currents, the black curve has negative curvature

and the sample is already deep within the glass phase (1.70K). Even at very

low temperatures the resistance in the C-direction is many orders of magnitude

smaller compared to when the field is at large angles to the defects. This very

qualitative analysis already implies that the glass transition temperature strongly
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depends on the magnetic field orientation for sample C40.

Following, a brief description of the procedure applied to analyse the IV -

characteristics will be given. Sample-specific deviations from this method will

be explained where necessary. The glass theories developed in section 5.6 offer

many possible ways to determine the critical glass exponents and the transition

temperature. Plotting the logarithmic gradient versus current as in figure 6.17,

the transition temperature and the dynamic critical exponent can be estimated

immediately. Further analysis was done using two independent methods. The

first one is based on equations 5.52, 5.54 and 5.61, 5.63 for vortex glass and

Bose-glass, respectively. The ohmic resistance at low currents was determined

directly from the IV -measurements for those curves for which the ohmic part

was accessible. The cross-over current between linear and critical behaviour was

chosen as the current when the non-linear resistance had increased to twice the

low current ohmic resistance7. The power-law scaling relations, equations 5.54 or

5.63, should then result in straight lines in a double-logarithmic plot from which

the critical exponents can be determined. In practice, the previously estimated

transition temperatures had to be adjusted to achieve successful scaling.

The other method is based on the prediction that the IV -curves taken at dif-

ferent magnetic fields and temperatures should all collapse, for the right choice

of glass parameters, onto the universal functions E± and F± for vortex glass and

Bose-glass, respectively. For this purpose a computer program was written that

allowed adjustment of all relevant parameters, i.e. ν, z, and Tg, or the corre-

sponding parameters for the Bose-glass, by increasing or decreasing them by a

variable amount. This could be done for IV -sets for a specific magnetic field and

for the complete set of IV -curves taken for one sample and magnetic field orien-

tation. The resulting collapse was then checked visually as well as by calculating

7 Of course, this definition of the cross-over current is arbitrary. However, using different cri-
teria to define deviations from the linear behaviour result in very similar critical exponents.
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a standard deviation8 for the two branches of the universal functions. The value

for the deviation should reach a global minimum for the best collapse. However,

it proved to be very difficult to minimize it for the upper and lower branch si-

multaneously. Therefore, emphasis was put on the best visual collapse and fine

adjustment of the parameters was done by trying to minimize the deviation.

If the vortex system is indeed undergoing a phase transition as proposed by

these glass theories, both methods should give consistent values for the glass

parameters and work equally well.

When the glass theories were discussed in section 5.6, it was already mentioned

that the scaling relations for vortex glass and Bose-glass are very similar, thus

it is not possible to distinguish between the two phases from the scaling of the

IV -characteristics. Finding the characteristic cusp in the transition temperature

for the Bose-glass when tilting the magnetic field from the defect direction was at-

tempted. Probably due to the substantial distribution of columnar orientation in

these films, an analysis following equation 5.64 was not conclusive. However, the

rotation data presented in section 6.3 proved the additional anisotropy present

in the films without doubt. Based on that and the structure of the films known

from the TEM investigations, it is argued that the BG-theory is the appropriate

model to describe the vortex system for fields aligned with the defect structure.

For the other configuration (magnetic field in the AC-direction) no effective ex-

tended pinning sites are present and any possible pinned vortex phase at low

temperatures should be adequately described using the VG-theory.

Sample C30

The first sample to be discussed in detail is C30, which has strongly-coupled

superconducting layers and has shown relatively weak pinning in the C- and AC-

directions, so far. In figure 6.19 the linear resistance and the cross-over current,

separating the linear from the critical region, are shown versus T−Tg in a double-

8 Because no analytical expression for the scaling functions is known, standard fitting proce-
dures could not be applied. Therefore, the scaled current range was divided into a certain
number of x-value ranges. For each range, the standard deviation of the y-values that were
falling into that range was calculated for the two branches and summed up. These sums for
the lower and upper branch quantify, to some degree, the collapse of the IV -curves.
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Figure 6.19: Double-logarithmic plot of linear resistance (squares, left axis) and critical
current (circles, right axis) above Tg versus T − Tg for sample C30. Data points are
for fields H = 0.35, 0.4, 0.45, 0.55, 0.8, 1.0, and 1.2 T applied in the AC-direction. The
straight lines are power-law fits to the data, from which the critical exponents can be
calculated.

logarithmic plot for temperatures above Tg and magnetic fields as given in the

caption of the figure. Only those magnetic fields were included in the graph and

analysis for which for at least 3 different temperatures the linear resistance and

cross-over current could be determined from the IV -curves. Initially, the field-

dependent glass temperatures Tg were estimated from plots of the logarithmic

gradient d(log V )/d(log I) versus current I, similar to the example shown in figure

6.17 above. More precise estimates for the glass temperatures were obtained from

independent efforts to collapse the IV -curves onto the universal scaling functions.

All data points can be described by just one power-law function of T −Tg for the

linear resistance and the cross-over current, respectively. From the exponents of

the respective power-laws the critical glass exponents ν and z can be calculated

applying equations 5.52 and 5.54 assuming 3D VG-behaviour.

Using the glass exponents obtained in the way described above, the IV -data

were scaled and a best possible collapse onto the scaling functions E± was at-
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Figure 6.20: Scaled IV -curves for sample C30 taken at magnetic fields H =
0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.55, 0.8, 1.0, and1.2 T (AC-direction) and various tempera-
tures above and below the glass transition temperature. Glass scaling parameters are
ν = 1.44 and z = 5.47. The inset shows the scaling for just one set of IV -curves taken
at H = 0.3 T.

tempted. All IV -curves taken in the AC-direction were included, except those

in the free flux flow region, and ν and z were kept fixed, adjusting Tg(H) only.

Data taken for very high excitation currents close to the instability or the depin-

ning current and above were not considered. If the glass temperatures had to be

changed, the scaling of the linear resistance and cross-over current was repeated

until consistent scaling could be achieved. The plot in figure 6.19 is for the final

set of parameters. The resulting collapse onto the universal functions E± of the

IV -curves, including all measured magnetic fields ranging from 0.1 to 1.2T, is

shown in graph 6.20. The achieved scaling is very good considering the range of

magnetic fields, and that for the three lowest fields from 0.1 to 0.3T the glass

exponents used were determined from the higher field values. Furthermore, look-

ing at the set of IV -curves for each magnetic field individually, the collapse is

qualitatively much better, as can be seen in the inset of figure 6.20. This kind

of collapse was usually achieved when IV -data for only one magnetic field were
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considered.

That the IV -curves taken at constant magnetic field usually scaled very well,

but when comparing the scaling functions for all measured field values there

was much less convincing scaling observed, is a general observation, holding for

all films and field orientations. The original VG or BG models do not include

any field-dependence of the critical functions. Studies on BSCCO containing

columnar defects have shown no field-dependence of the scaling functions in ac-

cordance with the BG theory [151, 152, 160]. However, other authors reported a

field-dependence of the scaling functions in YBCO films [161–163]. As pointed

out by K. Moloni et al. these measurements can still be interpreted very success-

fully within an extended VG theory [163]. A detailed analysis along this extended

VG theory is beyond the scope of the present project. But it should be kept in

mind, that a less than perfect collapse of the IV -curves when data for all mea-

sured magnetic fields are included is not necessarily contradicting the universal

character of the scaling analysis.

The situation for magnetic fields applied in the C-direction of C30 is not as

consistent as for the AC-direction. The same procedure for analyzing the IV -

curves was followed as above, only the respective equations for BG-theory were

applied. Figure 6.21 shows the scaling behaviour of the linear resistance and the

cross-over current for temperatures above TBG and a range of magnetic fields,

as given in the caption. Again, both quantities show scaling according to the

glass theory and the extracted values for the Bose-glass exponents are given in

the graph. However, the IV -curves could not be collapsed onto the BG-scaling

functions using these values.

The only way to achieve scaling for the IV -curves was by allowing very dif-

ferent glass exponents, for approximately the same field-dependent TBG(H). The

scaled IV -data and the exponents are shown in figure 6.22. The collapse was

achieved by scaling the IV -sets taken for each magnetic field individually and

finally using the averaged values for ν ′ and z ′. This approach was very success-

ful for temperatures below TBG(H). Above the transition temperature scaling of

individual sets of IV -curves at constant magnetic field was also very good. How-
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Figure 6.21: Scaling of the linear resistance and the cross-over current for C30 and
magnetic fields H = 0.4, 0.45, 0.55, 0.8, 1.0, and 1.2 T applied in the C-direction. The
straight lines are power-law fits to the data and the extracted glass exponents using
BG-theory are given in the figure.

ever, the spread of data, looking at the complete set of IV -curves, is somewhat

bigger than in the AC-case in figure 6.20. For comparison, the scaled IV -data

taken at H = 1.0T in the C-direction using the glass exponents as derived from

scaling the linear resistance and cross-over current above TBG, is shown in the

inset of figure 6.22. Although the scaling for isotherms above TBG is very good,

it fails for lower temperatures. Even for the higher temperatures when looking

at the scaling behaviour for the complete range of magnetic fields, the data are

spreading over a large range, comparable to the spread in the main graph of figure

6.22.

Since both sets of ν ′ and z ′ are in the range expected for a Bose-glass, it

is not possible to rule out either one, although the values given in the main

graph of figure 6.22 compare better with results for the other films (see below).

From the analysis of C30 in the previous sections it is known that the columnar

microstructure is very weakly developed. It is thus possible that the extended
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Figure 6.22: Scaled IV -curves for C30 taken at magnetic fields H =
0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.55, 0.8, 1.0, and 1.2 T in the C-direction. Very different
glass parameters were used to achieve scaling compared to the values given in fig-
ure 6.21. The inset shows the scaling of IV -curves taken at 1.0 T using the other set
of glass parameters, but the same TBG.

defects are comparable in pinning strength to point-like defects in this film. Using

VG-equations instead to scale the IV -curves gives qualitatively the same results,

but the resulting VG exponents would be rather unusual. It seems possible that

this film would have to be described by a theory which takes equal account of

point and extended defects.

Sample C40

Sample C40 differs from the previous sample C30 by having much stronger flux

pinning in the TAFF-region due to a more developed columnar structure. IV -

curves for sample C40 have been discussed qualitatively at the beginning of this

section, particularly in the case of AC-aligned fields. The quantitative analysis

along the lines of a glass transition is given here. Graph 6.23 summarizes the

scaling analysis for the case of AC-aligned fields. The main graph shows the

scaling of the linear resistance and the cross-over current according to equations
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Figure 6.23: Ohmic resistance in the TAFF-region and cross-over current to the critical
region for sample C40, AC-fields (0.1, 0.3, 0.5, 0.7, and 1.0 T), versus T − Tg. Again,
the data can be described by a simple power-law given by the straight lines in this
double-logarithmic plot. The inset shows the resulting scaling of the IV -curves and
the glass exponents derived from the power-law exponents in the main graph for the
magnetic field values given above, plus 0.05 and 1.3 T.

5.52 and 5.54, and the straight lines are power-law fits to the data. The resulting

scaling of the IV -curves is shown in the inset, including all measured magnetic

field values. Although scaling of the IV -curves for individual magnetic fields is

very good, the data for all 7 field values together describe rather broad bands

instead of the universal functions. However, there is a consistent trend of the data

shifting towards the lower right corner of the graph with increasing magnetic field.

Comparing the critical exponents ν and z to the results for C30 in the AC case,

the values fall within the same range.

Scaling of the IV -characteristics for fields applied in the C-direction is shown

in figure 6.24. Because of the strong pinning effect of the extended defects the

vortex liquid phase is limited to a much smaller temperature range as will be

shown later (section 6.8). Therefore, the number of data points available to check

scaling of the linear resistance and cross-over current at temperatures above TBG
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Figure 6.24: Scaling of IV -characteristics for film C40 with fields applied in the C-
direction analogous to previous graphs. Due to the relatively small vortex liquid range,
only a few data points (H = 0.3, 0.5, 0.7, and 1.0 T) are available to determine critical
exponents from the fitted straight lines. The data still leads to successful scaling of the
IV -curves, shown in the inset for the whole range of magnetic fields as in figure 6.23.

is much less than for previous examples. Nevertheless, the data was fitted to

the respective power-laws and the resulting collapse of the IV -curves, including

those for which no linear resistance data could be extracted, is reasonably good.

The values of the critical exponents also fall within the expected range for a

Bose-glass.

Sample J40

This film, which is also characterised by thin insulating layers and thus strong in-

terlayer coupling comparable to the C-samples, exhibits similar scaling behaviour

to sample C40, for which the evaporation angle of α = 40◦ was identical. The

thinner sc-layers in the J-samples do have an effect on the pinning behaviour for

AC-aligned fields and high current densities, which is, however, more pronounced

in J50 and thus will be discussed below for that sample. Figure 6.25 shows the

final outcome of the scaling analysis for fields applied in the AC-direction. The
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Figure 6.25: Scaling analysis for J40 analogous to previous samples. Magnetic fields
H = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, and 1.3 T were applied in the AC-direction.

Figure 6.26: Similar graph as figure 6.25 for J40, but fields applied parallel to the
extended pinning structure (C-direction).
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achieved collapse of the IV -curves, as well as the power-law dependence of the

linear resistance and the cross-over current on the reduced temperature T − Tg,

have very much the same deviation from the ideal behaviour as seen in C40.

However the resulting glass exponents, as given in figure 6.25 are different, al-

though they are still within the range of reported values for a VG. A close look at

the scaled IV -curves at very high current densities reveals a kink and deviation

from the scaling behaviour for some of them. As mentioned above, this will be

discussed in more detail for sample J50.

IV -curves taken for magnetic fields parallel to the extended defects can be well

described within the BG-theory. The scaling analysis is summarized in figure 6.26,

again showing the temperature dependence of resistance and cross-over current

as well as the collapse of the IV -curves onto the universal functions. In this case,

the obtained critical exponents are very similar to the BG-exponents for C40,

supporting the idea of universal scaling.

Sample J50

Figure 6.27: Bose-glass scaling of sample J50 with magnetic fields H =
0.05, 0.1, 0.3, 0.6, 0.8, 1.0, and 1.3 T applied in the C-direction.
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The discussion of the IV -characteristics and the scaling behaviour for sample

J50 will start with C-aligned fields, because for this field orientation J50 is similar

to J40 and C40. Figure 6.27 shows the scaling analysis analogous to the previous

films. Again, this film shows a considerable range of scaled linear resistances

(the horizontal part of the upper branch of the scaling function). But more

significantly, the dynamic critical exponent z ′ is very different compared to the

previous two samples for which consistent BG-scaling was found. The IV -curves

did not collapse assuming z ′ between 8 and 9, similar to the previous samples,

even for drastically changed ν ′ and TBG(H).

Figure 6.28: IV -characteristics for sample J50 at an applied magnetic
field H = 0.1 T in the AC-direction and different temperatures T =
1.70, 1.75, 1.80, 1.825, 1.85, 1.875, 1.90, 1.925, 1.95, and 2.00 K (right to left). At
high critical currents, approximately indicated by the arrows, the curves deviated from
the qualitative behaviour discussed at the beginning of this chapter. All curves are
nearly parallel with a small gradient close to 1. The logarithmic gradient as a function
of the applied current is shown in the inset, from which it can be determined to be
≈ 1.55 in this region.

J50 differs even more from the other strongly-coupled samples for AC-aligned

magnetic fields. Figure 6.28 shows a set of isothermal IV -curves taken at H =

0.1T. The first difference is a deviation from the the glassy behaviour at high
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applied currents which could be seen in J40 and AC-aligned fields as well, but

this variation is much more pronounced here.

At a high current value, indicated by the two arrows in the figure 6.28, the

IV -curves flatten significantly and are nearly parallel for all measured temper-

atures. This is even more apparent in the inset of the graph, which shows the

logarithmic gradient as a function of the applied current. All curves have a min-

imum gradient approximately equal to 1.55 before the transition to the normal

conducting state (not shown in inset). That the IV -curve taken at the highest

temperature in the free flux flow regime has a maximum also equal to 1.55 is

probably coincidence. Similar IV -curves were also measured at 0.05T, for which

the logarithmic gradient is ≈ 1.50 before the instability. At the higher field value

at 0.3T for temperatures below 1.70K this characteristic behaviour vanished,

and the minimum logarithmic gradient, just before the sample turned normal

conducting, increased with decreasing temperature just as can be seen in figure

6.17 for sample C40, but to a lesser extent. At even higher fields this behaviour

was not observed, probably because the sample is normal-conducting or at least

in the free flux flow regime at temperatures of 1.70K or above. Signs of this

behaviour have also been seen in sample J40 at small magnetic fields and high

temperatures.

Figure 6.29: Vortex core in a layered
superconductor with thin superconduct-
ing and thin insulating layers. In this
schematic drawing the magnetic field is ap-
plied at large angles to the extended de-
fect. The coherence length is large enough
so that the vortex samples the pinning po-
tential in the superconducting as well as in
the adjacent insulating layers. Also, com-
pare this graph to figure 6.12 for a super-
conductor with thick sc-layers.

The flattening of the IV -curves at a certain current value is interpreted as a

dynamic depinning transition. Because the superconducting layers are reduced in

thickness, above a certain temperature (≈ 1.70K for J50) the vortex core, given

by the temperature-dependent coherence length, will always sample defect-areas
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lying in the insulating layers as well as in the superconducting layers. This situa-

tion is schematically sketched in figure 6.29 and should be compared to figure 6.12

which gives the situation for the C-samples. Due to the thick superconducting

layers in sample C40, for example, the pinning mechanism described in detail in

section 6.5 is effective up to temperatures very close to Tc(0). In the J-samples,

however, the pinning-potential is considerably reduced at temperatures for which

the coherence length is large enough to overlap into the insulating layers. This

leads to a reduction of the depinning current density and hence to the observed

quasi-free flux flow at high currents. This difference in the AC-pinning between

sample C40 on one hand, and the samples J40 and J50 on the other hand, has

not been observed in the measurements of the activation energies for plastic flux

flow, because that method is much less sensitive to small changes in the pinning

potential compared to the measurement of IV -curves over a large range of applied

currents.

Figure 6.30: Glass scaling analysis for sample J50. Magnetic fields of H =
0.05, 0.1, 0.3, 0.6, 0.8, 1.0, and 1.3 T were applied in the AC-direction. Above the pro-
posed glass transition temperature Tg(H) scaling according to VG-theory is observed.
However, below the transition temperature, no collapse of the IV -curves was achieved,
as seen in the inset for a magnetic field H = 0.3 T.
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The depinning transition for high applied current densities should not affect

a possible glass transition, however. An analysis of the linear resistance and the

cross-over current equivalent to the other films, is shown in figure 6.30. The data

for different magnetic fields can be described by universal power-laws, comparable

to the other samples. Scaling of the IV -curves, using the critical parameters

derived from the power-law exponents, does produce a good collapse for those

isotherms above Tg(H), but fails below. Satisfactory collapse of the IV -data for

all temperatures and fields could not be achieved, even for very different scaling

exponents.

At the present stage, we have no explanation for why the scaling procedure

fails for temperatures below the glass transition temperature. There are two

points which may be important to note. Firstly, the static critical exponent ν is

quite different from those found for the vortex glass phases in the other films. In

this context, it may also be important to note the dissimilar dynamic exponent

z ′ in the Bose-glass phase. Secondly, sample J50 showed some anomalies in the

zero-field transition above Tc(0) (figure 6.2), which could point to inhomogenities

in this film. To what extent these observations are linked remains unclear.

Sample P40

Both weakly-coupled P-samples investigated in this study show some remark-

able differences in their IV -characteristics compared to the other films. These

differences are most obvious in the logarithmic gradient of the IV -curves. For

sample P40, figure 6.31 shows three sets of logarithmic gradients for IV -curves

taken at the indicated magnetic field values and oriented in the C-direction. The

temperatures range from above an anticipated glass transition to well below, in

steps of 50mK. At the lowest measured field of 0.1T, the IV -curves show the

change from positive curvature at high currents to negative curvature below a

well-defined transition temperature. Thus, from the sample geometries it is ex-

pected that the low-temperature vortex phase is a Bose-glass, analogous to the

Bose-glass in the C- and J-samples.

For applied magnetic fields in the range 0.6 to 1.3T, this defining signature

of a glass transition is completely absent, as seen for the 0.6T-data in the figure,
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Figure 6.31: Logarithmic gradient of IV -characteristics for sample P40 with magnetic
fields applied in the C-direction as given in the graphs. At 0.1 T the IV -curves show a
change from positive to negative curvature comparable to those in figure 6.17, typical for
a glass transition. At 0.6 T (and higher fields) all curves in the investigated temperature
range have positive curvature and show no sign of a glass transition. At 0.3 T the film
is in an intermediate state, where most curves exhibit power-law behaviour over an
extended range of applied currents.
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at least for the measured temperatures. The curves at high temperatures show

the sign of a vortex liquid phase with a TAFF-region for small applied currents

and the cross-over to a critical region, before turning normal conducting by the

processes described earlier. However there are no curves with a negative gradient

as in the top part of figure 6.31 or figure 6.17. At 0.3T, P40 seems to be in an

intermediate state. There are again curves following the expected behaviour of

a vortex liquid and although there are no curves with negative gradient, above

a certain temperature all the logarithmic gradients are approximately constant

over an extended range of applied currents, up to an order of magnitude or more.

From the measurements of the activation energies for flux motion in the flux

liquid phase it is known that both P-samples behave like 2D or quasi-2D super-

conductors, that is, their superconducting layers can be effectively decoupled, for

certain magnetic fields and orientations. In section 5.6.1 it was mentioned that

for truly two-dimensional superconductors no transition to a vortex glass phase

is expected, except at T = 0K. Nevertheless, a scaling law for the cross-over cur-

rent, separating the ohmic part at low current densities from the critical region

at higher currents, of the form J2D
x ∝ T 1+ν with ν = 2 should hold. Power-law

curves were fitted to the cross-over currents that could be extracted from the

IV -curves, but this resulted in unreasonably high exponents of approximately 30

or higher.

For a successful scaling analysis according to the quasi-2D or 3D vortex glass

theory given in section 5.6.1, it is important to have an estimate of the glass

transition temperature. But since this estimate cannot be obtained from the

IV -curves or their logarithmic gradients, an alternative method has to be used.

Equation 5.52 gives the scaling relation for the linear resistance in the TAFF-

region. This equation can be transformed to give the following relation:

[d (ln ρ) /dT ]−1 = ν (z + 2−D) |T − Tg|. (6.3)

Setting D = 4 and replacing Tg, ν, and z by the corresponding BG expressions

gives the respective relation for the case of a Bose-glass transition. Since the IV -

curves give only a few data points within the critical region above the transition
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Figure 6.32: [d(lnR)/dT ]−1 versus T for sample P40 at an applied magnetic field
H = 0.6 T in the C-direction. At low temperatures there is a linear part to which a
line was fitted according to equation 6.3. The intersection with the x-axis gives an
estimate for the glass transition temperature. The inset shows the original R-T curve.
The lower two arrows mark the temperature and resistance range shown in the main
graph. The upper arrow marks the critical temperature at 0.6 T.

temperature, one has to resort to resistance versus temperature measurements

from the previous sections in order to check the above expression. In figure 6.32

the resistance data for H = 0.6T applied in the C-direction, recalculated accord-

ing to equation 6.3, is plotted versus the temperature. Below 1.9K the data can

be described very well by a linear relation. The solid line is a linear fit to the

data between 1.7 and 1.9K. Extrapolation to y = 0 gives a transition tempera-

ture Tg(0.6 T) = 1.618K. Even though the IV -curves taken at lower temperatures

show no sign of negative curvature, this temperature was taken as an estimate

for a hypothetical glass transition temperature. It is important to note that IV -

curves were taken for temperatures well below the above determined transition

temperature. In the case of 0.6T aligned in the C-direction the lowest tempera-

ture for which IV -sweeps were measured was 1.41K. Similar analyses were carried

out for all magnetic fields for which IV -characteristics were taken. The data did
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not always allow the transition temperature to be determined reliably, in which

case an extrapolation or interpolation from successfully determined transition

temperatures was used. Additionally, the slope of the linear fit gives an estimate

of ν(z + 2−D). Due to large scattering of the data, it is not expected to be very

accurate and was often dependent on the range of data being fitted.

Figure 6.33: Linear resistances (squares) and cross-over currents (circles) versus |T −
Tg| in a double-logarithmic plot for sample P40 and magnetic fields parallel to the
extended defects (C). The data split into two groups: those at low fields (0.1 and 0.3 T,
filled symbols) and another set at higher fields (0.6, 0.8, 1.0, and 1.3 T, open symbols).
For both sets the resistances and currents can be described by power-laws, as shown
by the straight lines.

Despite these uncertainties, linear resistances and cross-over currents for P40

and fields in the C-direction showed good scaling when plotted versus |T −Tg| on

a double-logarithmic scale the same way as for the previous samples and using

the above determined Tg. However, the scaling resulted in two power-laws for the

linear resistance and the cross-over current. In line with the qualitative change

in the IV -characteristics observed at about 0.3T, the data for magnetic fields of

0.1 and 0.3T can be described by one set of power-laws, and the data taken at

higher fields of 0.6, 0.8, 1.0, and 1.3T show power-law behaviour as well, but with
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different exponents. The data as well as the fitted curves are plotted in figure 6.33.

Since the 0.1T IV -curves show the transition from positive to negative curvature,

it is concluded that at low fields and temperatures the vortices form a Bose-glass,

based on the geometry of the sample. The nature of the low-temperature phase

at higher fields will be discussed in greater detail below. Using the VG scaling

equations for D = 2 or 3 results in a set of critical exponents ν and z, which can

be used to check the collapse of the IV -curves. If the IV -curves collapse, this is

independent of the assumed dimensionality. On the other hand, this means that

this analysis is not able to discriminate between a quasi-2D and a 3D vortex glass

phase.

Figure 6.34: Scaled IV -curves for sample P40, C-aligned fields, in double-logarithmic
presentation. The main graph shows high-field IV -curves and the critical exponents
assuming quasi-2D VG. Alternative exponents for 3D VG are given in the text. The
inset shows scaling for the low-field curves and exponents applying BG relations.

Figure 6.34 gives the resulting IV -scaling for fields H ≥ 0.6T in the main

graph and for smaller fields in the inset. For the lower magnetic fields glass

exponents based on BG-theory are given, which compare favourably with BG-

exponents obtained for the other samples. At higher fields and temperatures



140 CHAPTER 6. Experimental Results

above the possible transition temperature the IV -curves scale as well. Even at

lower temperatures the IV -curves seem to collapse, but it is important to remem-

ber that individual data-sets did not show the negative curvature of the scaling

function E−. Nevertheless, assuming that the vortices freeze into a disordered

vortex solid, the question of the dimensionality of this vortex phase remains to

be answered. In figure 6.34 the critical exponents assuming quasi-2D behaviour

are given. These exponents would be highly unusual, compared to other pub-

lished glass exponents. For a 3D vortex glass the exponents would be ν = 2.04

and z = 4.52, well within the range of accepted critical exponents. Although this

clearly favours the 3D over the quasi-2D scenario, the most plausible mechanism

for the observed change with increasing magnetic field is a decoupling transition

of the pancake vortices in this strongly anisotropic material. Such behaviour has

been observed in the HTSC Tl2Ba2Ca2Cu3O10−δ [164]. The unusual critical ex-

ponents for a quasi-2D VG may be caused by the relatively thick sc-layers in the

P-samples.

Figure 6.35: Linear resistance and cross-over current for P40 and AC-aligned fields,
analogous to figure 6.33. The low-field phase (filled symbols) occurs for H = 0.1 T only.
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Figure 6.36: Scaled IV -curves for P40 and AC-aligned fields. The inset shows the
IV -scaling at 0.1 T.

For AC-aligned fields, a very similar behaviour emerged. The IV -curves at

high magnetic fields showed in principle the same characteristics. At 0.1T a sit-

uation comparable to 0.3T in the C-aligned case was observed, that is, below

a certain temperature all curves exhibit power-law behaviour over an extended

current range, before the instability occurs and the film turns normal. Conse-

quently, at 0.3T aligned in the AC-direction, the IV -curves showed no sign of

the glass transition anymore. The same method as above was applied to estimate

transition temperatures, anyway. Using these temperatures, scaling of the linear

resistance and cross-over current at high temperatures was achieved. This time,

only the data for the lowest field did not collapse onto the same power-laws as

did the data for all the other fields, suggesting a different vortex phase at 0.1T

compared to higher magnetic fields. The scaling of the data together with the

fitted power-laws are shown in figure 6.35.

From the power-law exponents the critical glass exponents could be retrieved.

Due to the different geometry for AC-aligned fields, 3D VG was assumed for
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the lowest field of 0.1T. The fact that there seems to be a change in the IV -

characteristics between 0.1 and 0.3T even for the case of AC-oriented fields, is

a further argument for a quasi-2D VG phase at higher fields. Consequently, in

figure 6.36 showing the scaling of the IV -curves, the resulting critical exponents

assuming quasi-two dimensionality are given. They are very similar to those

obtained for C-aligned fields. The inset shows the 3D VG scaling for the lowest

field together with the applied critical exponents. These conform very well with

expectations for the respective vortex glass phase.

Sample P50

Figure 6.37: Scaling of IV -curves for sample P50 and H = 0.1 and 0.3 T applied
in the C-direction in double-logarithmic plot. The upper inset shows scaling of IV -
curves obtained at higher fields of 0.6, 0.8, 1.0, and 1.3 T, respectively. The power-
law behaviour of the linear resistance and cross-over current employed to obtain the
critical exponents, is shown in the lower inset. The respective glass theory and critical
exponents are given with the IV -scaling curves.

Increasing the tilting angle to 50◦ during evaporation did not result in major

changes in the IV -characteristics or the derived vortex phases. In the case of

C-aligned fields the IV -characteristics show the same qualitative behaviour. At
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the lowest fields (0.1, 0.3T) there are indications of a BG transition at a field-

dependent temperature, but at higher fields the hallmark of a change in curvature

with temperature disappears. However, using true 2D VG-theory fails to describe

the measured data. Resorting to the above described approach to extract possi-

ble glass transition temperatures is successful within the same limitations. The

biggest problem is again that even those IV -curves measured below the derived

transition temperature show no sign of negative curvature. Instead, they clearly

bend upwards over the accessible voltage range.

Trying to apply BG and VG scaling laws for the low- and high-field IV -curves,

respectively, is again surprisingly successful. The scaling is summarized in figure

6.37. For the low-field BG phase the glass critical exponents are very reasonable,

assuming quasi-2D VG at higher fields leads again to an unusual combination of

ν and z, but consistent with P40.

Figure 6.38: Summary of the vortex glass scaling for sample P50 and AC-oriented
fields (magnitudes see figure 6.37). All IV -curves can be scaled assuming just one
vortex solid phase, which is taken to be a quasi-2D VG in line with the analysis of P40.
The inset shows the power-law dependence of the linear resistivity and the cross-over
current in the vortex liquid phase.
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The only difference for AC-aligned fields when compared to P40 is the absence

of the proposed 3D-phase at low fields. Even for H = 0.1T all the measured IV -

curves are curved upwards. After determining the transition temperatures by

the procedure explained above, the linear resistances and the cross-over currents

collapse onto only one power-law curve, respectively. This is shown in figure 6.38

together with the resulting collapse of the IV -curves onto universal functions.

The critical exponents point towards a common vortex phase at high fields in

P40 and P50, unaffected by the orientation of the magnetic field with respect to

the defect structure.

6.6.1 Summary IV -Characteristics

The analysis of the IV -characteristics based on the various glass models of disor-

dered vortex phases is summarized in table 6.4 for all samples investigated in this

study and the two different magnetic field orientations, parallel and at large an-

gles to the columnar microstructure. The results can be categorized into different

groups, symbolized by the different shading, based on the glass models used to

analyse the IV -curves and similarities and differences between the critical glass

exponents.

Except for J50, the C- and J-samples present a very consistent picture, with

the vortices condensing into a Bose-glass for fields parallel to the extended defects

(grey) and a corresponding 3D vortex glass phase for AC-aligned fields (blue).

The critical exponents are consistent across different samples, supporting the

idea of universality of the proposed continuous glass transition. The exponents

are even very similar to those published for comparable HTSCs (among many

others see for example [113,142,145,152,165–167]). As already mentioned above,

the reason why J50 seems to be different from these other samples is not entirely

clear. It could be due to structural differences we are not aware of. Also, the

critical exponents in the C-direction for C30 are consistent only when scaling

is optimized for the low-temperature IV -curves. The parameters obtained for

best possible scaling of the IV -curves at temperatures higher than TBG are quite

different (values in parenthesis in table 6.4).
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Table 6.4: Summary of the glass scaling exponents of IV -curves for all films in this
study. The colored shadings group the results into different vortex phases based on
the model used and the resulting values for the glass exponents. The exponents given
for the quasi-2D glass model in the C-direction are ν and z instead of ν ′ and z ′. The
errors are lower estimates, based on variations observed during the analysis. The values
given in parentheses for C30 are those which resulted in better IV -scaling above the
transition temperature. The quasi-2D phases in P40 and P50, respectively, may be
different, judged by the differences in the static critical exponents ν.

C AC
ν ′ (±0.2) z ′ (±0.5) ν (±0.2)z (±0.5)

C30 0.88 (1.56) 8.84 (6.81) BG 1.44 5.47 3D
C40 0.97 8.69 BG 1.38 5.12 3D

J40 0.73 8.65 BG 1.07 6.91 3D
J50 0.75 11.23 BG 2.12 5.49 3D

P40 1.29 6.98 BG 1.74 5.25 3D
4.07 1.76 q-2D 4.11 1.90 q-2D

P50 1.49 6.27 BG
5.00 1.62 q-2D 5.35 1.75 q-2D

In the P-samples, which had much thicker insulating layers, the IV -character-

istics have to be further divided into those at low (green and blue) and high

magnetic fields (red). Depending on the field orientation, the low-field phases

can be interpreted as BG or 3D-VG phases below the transition temperature and

probably three-dimensional vortex liquids above. The vortex glass for fields in the

AC-direction was only observed in P40, but the derived vortex glass parameters

are quite comparable to those obtained in the C- and J-films. The Bose-glasses in

the C-aligned case have very consistent scaling parameters, although somewhat

different from the BG-phase observed in the other samples. However, this could

simply result from a systematic error in the determination of ν ′. ν ′ is determined

from the scaling behaviour of the cross-over current. z ′ on the other hand is

determined from the exponent describing the decay of the linear resistance as

TBG is approached: ν ′(z ′−2). This exponent is very similar for all BG-phases in

this study, thus the small z ′ values for P40 and P50 are a result of the relatively

large static exponent ν ′.

The high-field IV -curves of the P-samples were analysed in terms of a quasi-
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2D vortex glass, despite the absence of IV -curves with negative curvature below

the transition temperature. The resulting critical exponents are quite coherent

for both films and field directions, yet very unexpected in magnitude. Support

for this model of a decoupling transition from flux lines to pancake vortices comes

from the results of the activation energies for plastic vortex motion section 6.5,

at least for the case of C-oriented magnetic fields. Between about 0.1 and 0.5T

(0.3T for P50) the activation energy is clearly enhanced and its dependence

on the magnetic field can be interpreted within a three-dimensional model. At

higher fields activation energies for fields in the C- and AC-direction are identical

within the errors. Unfortunately, the 2D and 3D model predict very similar

activation energies in this field range. But this does not rule out the possibility

of 2D-behaviour of the vortices at these elevated field values oriented in the

C-direction. Then again, the activation energies for AC-aligned fields can be

explained within a 2D model over the whole range of applied fields, somewhat

contradictory to the observed 3D-VG in P40. While there are some arguments in

favour of the proposed decoupling transition from 3D to a quasi-2D behaviour, the

unusual critical exponents and the lack of downwards curved IV -characteristics

cast serious doubt on this scenario.

6.7 Vortex Dynamics in the Glass Phase

Careful analysis of the current-voltage characteristics taken at temperatures be-

low the glass-transition temperature can give information about the dominant

mechanism for flux creep in the glass phase. The vortex and Bose-glass theories

make very precise predictions with regards to the exponent µ in the equations

given in section 5.6.3. In order to extract the exponent µ in equations 5.67, 5.69,

and 5.70, these equations can be recast and written in the following way:

d(ln E/J)

dJ
=

µEkJ
µ
c

kBT
J−(µ+1), (6.4)

thus plotting ln[d(ln V/I)/dI] versus ln I should result in a straight line with slope

−(µ + 1). IV -curves of all samples and for both magnetic field directions were
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Figure 6.39: The glass exponent µ plotted versus the reduced temperature TBG − T
for sample C40 and magnetic fields H = 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, and 1.3 T applied
in the C-direction. The exponents were derived from plotting the IV -data according
to equation 6.4 and shown in the inset. The lines are least-squares fits to the data
enabling the derivation of µ. The lines in the main graph are guides to the eye, the
grey vertical line marks the cross-over to the low-temperature constant µ. A typical
error bar is given for the topmost data point.

analysed this way and the results can be categorized into two groups according

to the interlayer coupling strength.

The strongly coupled C- and J-samples form the first group. The IV -curves

within the glass-phase can be described by equation 6.4 over a considerable part

of the measured current range, compare inset of figure 6.39. Those curves taken

close to the transition temperature usually showed a deviation from the linear

behaviour at very low currents. The calculated data points (not shown in inset)

were below the extrapolated linear relation in the log-log plot. This could mean

a cross-over to a different flux creep mechanism characterised by a reduced ex-

ponent µ or the onset of finite-size effects for thin films, resulting in effectively

ohmic behaviour at very low current-densities, discussed briefly in section 5.6.3.

However, due to the limited voltage resolution, no conclusive analysis of these
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deviations was possible.

More importantly, the exponents µ derived from the linear parts in the inset

of figure 6.39, showed a systematic field and temperature dependence. This is

summarized for sample C40 and magnetic fields aligned in the C-direction in the

main graph of figure 6.39. A very similar behaviour was observed in the AC-

case as well as for the other strongly coupled samples. In the above figure, µ is

plotted versus the reduced temperature TBG − T for the applied magnetic fields

given in the caption. As the temperature is reduced µ increases roughly linearly,

until it reaches a reduced temperature of about 0.45 at which point the exponent

remains approximately constant. The slope of the increase, as well as the low-

temperature value of µ, decrease with increasing magnetic field. Clearly, the

IV -curves can not be identified with any of the flux creep mechanisms presented

in section 5.6.3, and it seems also not possible to explain the observed behaviour

in a simple way within the theory of elastic flux creep mentioned in section 5.5.2,

see also [9, 85, 86]. Given that the exponent µ seems to scale with the reduced

temperature TBG− T , it is likely that the glass correlation length ξBG, or ξVG for

the case of a vortex glass, plays an important part in the vortex creep mechanism

in these superconductors.

The low-temperature glass phases observed in P40 and P50 show evidence

of a very different flux creep mechanism. The derived values for µ in the Bose-

glass of P40 at an applied field of H = 0.1T are shown in figure 6.40. The

data from which µ was calculated could be fitted very well by a power-law, as

seen in the inset, and within the errors the exponent is constant with an average

µ̄ = 0.22. It is worth noting, that the temperature range shown in figure 6.40

corresponds to the same range in which the strongly coupled samples show an

undoubtedly increasing value of µ. However, the obtained averaged value for the

glass exponent µ is below the theoretically predicted ones, especially it is only

approximately half the expected value 0.5, based on the geometry of the sample

having strong coplanar pinning sites (see section 5.6.3).

Unfortunately, the available IV -data did not allow the determination of µ as

a function of magnetic field. At the next higher measured field of 0.3T, the IV -
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Figure 6.40: The glass exponent µ plotted versus the reduced temperature as in figure
6.39 for sample P40 and a C-aligned magnetic field H = 0.1 T. The inset shows the
IV -data and the best fits of a power-law in a log-log plot. The dashed horizontal line
is the average calculated from the data points. The errors give the range of µ obtained
by fitting varying data ranges.

curves displayed power-law behaviour resulting in µ = 0, although the scaling

analysis suggested BG-behaviour at that field. The same is true for the AC-

aligned field of 0.1T and the BG-phase in P50. On the other hand, a small but

positive µ would result in IV -characteristics that resemble power-law characte-

ristics over a limited current range. For even higher fields the low-temperature

IV -data can still be described by equation 6.4 over a not too large current range,

but this would result in a negative glass exponent µ implying ohmic resistance in

the limit of zero applied current, and thus no glassy behaviour.

6.8 Vortex Phase Diagrams

The preceding sections presented a thorough analysis of the conducting behaviour

of the superconducting films studied in this project. The results of this analy-

sis will be summarized in superconducting phase diagrams and the differences
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between the samples will be discussed based on their different microscopic struc-

tures.

In figure 6.41 the phase diagrams for the four strongly coupled samples are

shown next to each other for easy comparison. In order to make a quantitative

comparison possible reduced phase diagrams are shown, i.e. H/Hc2(0) is plotted

versus T/Tc(0) for each sample. In this representation the upper critical field in

the GL approximation is a straight line with slope −1 intersecting the x-axis at

x = 1, shown as the uppermost straight black line in the graphs. In all graphs,

the full circles are the experimental results for the glass transition as a function

of reduced temperature T/Tc(0), where the black circles are results for C-aligned

fields and red symbols are for the AC-case.

The discussion is begun with the well coupled, weakly pinning sample C30,

in which case the glass transition lines for C- and AC-aligned fields are almost

identical, although for C-oriented fields the transition consistently happens at

slightly higher temperatures for the same applied field. Also shown in the graph

for C30 are the results for a homogeneous Ta0.27Ge0.73-alloy film without colum-

nar structure (open triangles), which already served as a reference in previous

sections. Those results are well reproduced by the film C30, especially in the

C-direction. As in the preceding sections, the zero-resistance glass phase for AC-

aligned fields is assumed to belong to the class of 3D-vortex glasses. According

to equation 5.55 the glass transition line was fitted to a power-law (black line).

The data is described very well by a power-law relation (see also below), but the

derived exponent of 2.60 is very different from the theoretically predicted value

of 1.33. There are a number of possibilities for why the exponent deviates from

the expected value, most importantly, the value of 1.33 was calculated for small

applied fields. However, the applied fields in this study were always large enough

for vortex-vortex interactions to be important. There is also the possibility that

the exponent in equation 5.55 depends on the degree and nature of disorder in

the film.

Although there is very little difference between the two field directions, and

the data for C-aligned fields can be described by a power-law similar to the AC-
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Figure 6.41: Reduced H − T phase diagrams for C- and J-samples, in all graphs field
and temperature are scaled by the respective Hc2(0) and Tc(0). The upper critical field
is the uppermost straight line. The glass transition lines are black (C) and red (AC),
respectively. The Meissner-phase is basically identical to the x-axis on that scale. The
graphs are described in detail in the text.
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case, the experimental results in the C-direction were fitted according to equation

5.65 for the BG-transition line. Equation 5.65 relates the BG-transition to the

melting line of a flux line lattice in a clean system. However, the FLL melting

line is unknown, since we have never measured a step in resistance, reminiscent of

the transition from a flux liquid to a FLL. Therefore, the result of the transition

line in the AC-direction was used as an approximation to the melting line in the

clean system. Not surprisingly, making this assumption the resulting disorder

parameter is close to unity (see table 6.5), in other words there is very little dis-

order present in C30. This result was already suggested by the previous analysis

of the conductivity data and the TEM photograph.

The much more pronounced columnar structure in film C40 results in a clear

difference in the phase diagrams for C- and AC-aligned fields. For comparison

the transition line for C30 in AC-field direction is shown as the dashed line in the

graph for C40. As has been discussed for the activation energies in the TAFF-

region, the columnar microstructure does not only affect the vortices for parallel

applied fields, but in the case of layered superconductors, also when the magnetic

field is directed at large angles to the extended coplanar pinning sites. In the

phase diagram this is reflected by a clear shift of the transition line to higher

fields and temperatures, thus extending the range of fields and temperatures for

which this film has zero ohmic resistance. The data for the AC-aligned fields

was again fitted according to equation 5.55. This time the results can be very

well described using a parabolic relation between H and Tc − Tg. The resulting

coefficient ν0 = 1 is still quite different from the theoretical result of 2/3.

When the field is co-aligned with the defect structure the transition line moves

to even higher temperatures and fields, but now the transition line can no longer

be described using a power-law relation. Plotting the logarithm of H versus the

logarithm of Tc − Tg, the AC-data are to a good approximation linear (see figure

6.42 below), but not so the glass transition temperatures for C-fields. Using the

expression for the BG transition temperature (equation 5.65) we can however

describe the data very satisfactorily, as demonstrated by the black solid line in

the graph for C40.
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The phase diagram for sample J40 is very similar to that of C40. The dashed

black line in the graph is again the vortex glass transition line of C30, repre-

sentative of a film with no or very little disorder. The vortex glass transition

temperatures for J40 and AC-aligned fields can be described with a parabolic

relation (red solid line) just as for C40, and not only is the functional dependence

the same, but also the proportional factor within the errors. Thus, the transition

in both films is described by the same line in this reduced phase diagram. This

can be well understood within the proposed pinning mechanism for AC-aligned

fields. Because the insulating layer thickness is approximately the same in the C-

and J-samples, the barrier height and width responsible for the pinning is also

approximately the same. This results in an equal shift of the vortex glass line to

higher fields and temperatures.

For C-aligned fields, details of the microstructure, i.e. superconducting layer

thickness and structure of the defects, are expected to be more important com-

pared to AC-aligned fields. Indeed, the Bose-glass transition temperature in J40

is moved even closer to the upper critical field compared with the BG-line in

C40. Whether this difference is caused by the changes in sc-layer thickness or

differences in the columnar structure is speculative at best. However, the data

could be explained very well again using the expression 5.65 (black solid line).

A very similar phase diagram was found for J50. The VG transition line (red)

is also described very well by a quadratic relation. However, it lies in between

that found for C30 (black dashed line) and that for C40 and J40 (red dotted line).

The BG line is also lower than in J40 and comparable to that of C40. Because of

the discrepancies found in J50 in the previous sections a conclusive interpretation

of the phase diagram is not possible. It is still interesting to note that the phase

diagram is very much alike, despite some of the unusual results obtained for J50.

As already mentioned in the discussion above, the VG transition lines in

these strongly coupled samples could be well described based on equation 5.55,

although with a different exponent 2ν0. That a description using above equation

is appropriate, can be seen best when plotting the applied field versus Tc(0)− Tg

on double-logarithmic scales. This is shown in figure 6.42 together with the
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Figure 6.42: Double logarithmic plot of the applied field versus Tc−Tg, where Tg are the
field-dependent VG transition temperatures for the four strongly coupled samples and
with magnetic fields oriented in the AC-direction. For better discrimination the field
values for samples J40 and J50 have been multiplied by a factor of 2 and 4, respectively.
The error bars are estimates obtained during the analysis of the IV -characteristics. The
solid lines are power-law least-square fits to the data with an exponent equal 2.60 for
C30 and 2 for the other samples, respectively.

corresponding power-law lines obtained from a least-square fit to the respective

data set. All four data sets follow a straight line as required from above equation.

For C30 a best fit was achieved with an exponent equal to 2.60 or ν0 = 1.30.

The data for the other three samples suggested very similar slopes. Leaving the

exponent as a free parameter resulted in exponents equal 2± 5%. Consequently,

the same value of 2 as a fixed parameter was used to fit all three data sets.

In table 6.5 the disorder parameter χ obtained by fitting the BG line to the

data is listed for all samples, as well as the VG exponent ν0 discussed above. χ

quantifies how far the transition line has been shifted towards the upper critical

field. The parameter χ is defined such that a value of 1 means no shift and a

value equal to 0 would imply the BG line being equivalent to the upper critical

field. Thus, in J40 the microstructure has the most effect, extending the zero-
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Table 6.5: Results from fitting the glass transi-
tion lines. χ is the disorder parameter which de-
termines the position of the BG line (Eq. 5.65).
The parameter ν0 determines the exponent of
the VG line, equation 5.55.

χ (BG) ν0 (VG)

C30 0.93 1.3
C40 0.50 1.0

J40 0.38 1.0
J50 0.45 1.0

P40 0.64 1.3
P50 0.64 1.3

resistance glass phase to the highest fields and temperatures in these reduced

phase diagrams. Blatter et al. [9] even relate the disorder parameter to the mi-

croscopic structure of columnar defects. But because the pinning sites in these

films are expected to be coplanar and the expression for χ contains several pa-

rameters, such as average distance and size of the defects neither of which are

well known, no attempt was made to extract these quantities from the disorder

parameters.

It is interesting to compare these phase diagrams to those obtained for other

superconductors with and without strong pinning defects. Qualitatively, they are

very similar to results published for YBCO [139,140] and the isotropic (K,Ba)BiO3

superconductor [142].

The discussion turns now to the phase diagrams of the weakly-coupled P-

samples. The possible existence of a quasi-2D vortex glass phase in the P-samples

has been thoroughly discussed in section 6.6. For the phase diagrams of these

samples it will be assumed that they do undergo a continuous phase transition

into a quasi-2D glass phase at low temperatures, despite the inconsistent IV -

characteristics. Based on this conjecture the reduced phase diagrams for both

samples are basically identical and will be presented and discussed together. Fig-

ure 6.43 shows the phase diagram for AC-aligned magnetic fields. As for the

other phase diagrams the uppermost straight line is the upper critical field sep-

arating the normal from the superconducting phases. The experimental vortex

glass transition temperatures for both samples together can be described using

a power-law equivalent to that used for the C- and J-films, with an exponent

very similar to C30 (compare table 6.5). However, the data deviate significantly
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Figure 6.43: Combined reduced H−T phase diagram for samples P40 (filled symbols)
and P50 (open symbols) for fields in the AC-direction. The upper straight line is the
upper critical field, the curved solid line is a power-law fit of the VG line to the data for
both samples. The dashed lines are the VG lines of C30 and C40. The dotted straight
line is an alternative linear fit to the glass transition.

more from the theoretical curve. This may be because of the larger uncertainty

in the determination of Tg(H). Alternatively, the data can also be described by a

linear relation illustrated by the straight dotted line in the graph. To relate the

transition line to the other samples, the transition lines for C30, lower dashed

curve, and C40, upper dashed curve, are also plotted in figure 6.43. At high fields

the transition is at considerably higher reduced temperature compared to C30,

but at reduced fields ≤ 0.05 the difference is only marginal. Not shown in the

phase diagram is the possible existence of a 3D VG at low fields for sample P40.

Interpreting all the available data in favour of a multitude of vortex phases and

dimensional cross-overs, a phase diagram like that shown in figure 6.44 emerges

for samples P40 and P50 when the magnetic field is parallel to the direction of the

defect structure. This phase diagram is quite speculative however, and not all of

the proposed phases and phase transitions may be realized. The most conclusive

evidence coming from the IV -characteristics and the activation energies is for

the existence of a Bose-glass phase at reduced fields below ≈ 0.05 (hatched area).

At the BG transition line the vortex matter undergoes a continuous transition

to a 3D vortex liquid. The experimental transition temperatures can be fitted
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Figure 6.44: Speculative phase diagram for P40 and P50 for fields aligned in the C-
direction. There is good evidence for a BG phase (hatched area) and a vortex liquid
phase of 3D or quasi-2D character at high temperatures. Whether the quasi-2D vortex
phase at high fields exists is not entirely clear. Furthermore, the activation energy
results suggest a recurring 2D phase at very low magnetic fields (grey area). The
dotted curve gives the position of the glass transition line for AC-fields.

reasonably well using equation 5.65; the extracted disorder parameter χ (see table

6.5) has to be taken cautiously due to the small field range and limited number

of data points. At higher magnetic fields the temperature-dependence of the

transition line changes noticeably and the solid vortex phase may well change to

a quasi-2D vortex glass. The field-dependence of the activation energies can be

interpreted in such a way that the vortex liquid is also undergoing a dimensional

cross-over from 3D to 2D behaviour with increasing magnetic field. The transition

temperatures at these higher fields follow a power-law dependence (dashed line)

with an exponent between those obtained for C30 and C40, for example. The

resulting glass exponent ν0 was calculated to be 1.14.

The very striking deviation of the activation energies from the 3D expecta-

tion at very low magnetic fields (compare figure 6.15) suggest a recurring 2D

dominated vortex behaviour in the grey region below H/Hc2(0) ≈ 0.01. Since no

IV -characteristics were taken at such low magnetic fields, no information about a

possible transition between solid and liquid phases could be obtained. However,

from the field-dependent resistance measurements as a function of temperature

it is known that this 2D-regime does not extend all the way to the upper critical
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field line. The field-dependent fluctuation conductivity could be explained using

the 3D-model of Ullah and Dorsey for all measured fields, which extends from 0

up to ≈ 0.3 on the reduced magnetic field scale.

These phase diagrams may again be related to results obtained for other su-

perconductors, this time of course to superconductors with increased anisotropy.

Remarkable similarities can be found in the phase diagrams of moderately aniso-

tropic Bi2Sr2Ca2Cu3O10 [167] and especially Tl2Ba2Ca2Cu3O10 [164] when com-

pared to the phase diagram for C-orientation. The striking differences in the

dimensional character of the vortices when the field is C- and AC-oriented re-

spectively, can be understood as a defect-mediated recoupling of pancake vor-

tices. Due to the strong pinning by the defects, most pancake vortices are lined

up along the defects, and thus in the direction of the applied magnetic field in

the C-case. This preserves the 3D character of the vortices to higher fields than

for AC-alignment. In the AC-case the pancake vortices are still preferably in the

vicinity of strongly pinning defects, but now this does not match the direction of

the external field any more. This behaviour of recoupling pancake vortices due to

extended defects has been found in experiments on BSCCO containing columnar

defects directly probing the dimensionality of the vortices in the vortex liquid

phase [168–170]. The findings of these experiments have also been supported

recently by theoretical considerations [171]. It is thus very reasonable to assume

a similar scenario in these weakly coupled Ta xGe 1−x/Ge films.
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Conclusions

The conductivity of extremely type-II superconductors, such as the cuprate HTSC

or highly disordered amorphous superconductors, in their mixed phase is domi-

nated by the dynamic response of the penetrating flux lines to an applied trans-

port current. To make full use of the potential application of HTSC materials it

is of particular importance to gain a very good understanding of the dissipation

processes caused by the movement of magnetic flux lines when subjected to an

external current. Only then is it possible to maximize the range of tempera-

tures and magnetic fields over which these materials show zero resistance current

transport. It was the aim of this thesis to contribute to the understanding of the

diverse superconducting phase diagram of anisotropic, extremely type-II super-

conductors.

A set of six multilayered amorphous Ta xGe 1−x/Ge thin films, with x ≈ 0.31−

0.37 confirmed by RBS-measurements, was studied extensively over a considerable

part of the H − T plane in their superconducting phase diagram and close to

the superconducting transition in the normal phase. The films differed from

each other in their layering as well as in a deliberately introduced columnar

microstructure resulting in nearly parallel correlated defects running at a tilted

angle with respect to the normal direction across the films. These coplanar defects

were thought to be very effective flux pinning sites. The layering as well as the

orientation of the defects was verified and analysed employing TEM.

Critical temperatures in ambient magnetic field were determined by fitting

the conductivity above Tc(0) to the fluctuation conductivity by Aslamazov and
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Larkin. Values ranged between 2.72K for the least anisotropic and most homoge-

neous film and 2.04K for a more anisotropic film with a strong defect structure.

In this temperature range all films showed better agreement with the 3D-form of

the AL fluctuation conductivity. Resistance versus temperature measurements in

applied magnetic fields up to 2.5T were used to determine the upper critical field.

Again, all films showed 3D behaviour when using the scaling relations of Ullah

and Dorsey for the fluctuation conductivity in the presence of a magnetic field

and assuming a linear dependence of Hc2 on T . The extrapolated upper critical

field at zero temperature ranged between 5.5 and 8.4T with no clear trend based

on the films’ microstructure.

These magnetoconductivity measurements together with the extrapolated nor-

mal state resistivity at zero temperature allow an estimate of the coherence length

and the penetration depth within the GL theory. From Hc2(0) the coherence

lengths ξab were calculated to be between 6.3 and 7.8 nm at zero temperature and

the penetration depths λab(0) were determined in the range from 1.14 to 1.96 µm.

This resulted in very large GL parameters κ varying between 146 and 294. The

coherence lengths are of the same order as in HTSC; due to the high normal-state

resistivity of the Ta xGe 1−x/Ge films the penetration depth is about a factor of

10 larger compared to YBCO and BSCCO.

Although all six samples could be described very well using 3D models for

temperatures near the mean-field transition Hc2(T ), they fell into two differ-

ent groups at lower temperatures, based on their interlayer coupling strength.

The strongly coupled samples remained three dimensional for all temperatures

and fields investigated. Of these four samples one had a very weakly developed

columnar film structure which resulted in a phase diagram resembling that of a

homogeneous TaxGe1−x film studied previously. The other three strongly coupled

films showed the expected strong pinning of the flux lines by the columnar mi-

crostructure when the fields were co-aligned with the defects. This was evident

for all fields and temperatures below the very narrow free flux flow regime.

The activation energies for thermally activated plastic flux flow show a strong

dependence on the orientation of the magnetic field with respect to the defect
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structure. When the magnetic field and the defects are parallel the activation

energy for flux flow is significantly increased. But the combined effects of coplanar

defects and layering lead to a small enhancement of flux pinning even when the

magnetic field is at large angles to the defects and the layered structure. A

detailed analysis of the IV -curves gave strong support for the existence of vortex

and Bose-glasses, respectively, in the low-temperature part of the phase diagrams.

The increased pinning effects are reflected in these phase diagrams, which show

a clear enhancement of the pinned glass phases towards higher temperatures and

fields compared to an unstructured homogeneous film or the layered film with

very weak columnar structure. Again, this was observed for both film directions,

only with a much stronger effect for properly aligned fields. Further evidence

for a glass phase came from derived glass exponents µ which showed an as yet

unexplained temperature and field dependence in these 3D samples.

In the more weakly coupled samples, the activation energies for TAFF showed

a qualitatively different behaviour when the magnetic field was co-aligned with

the defect structure and at large angles to it, respectively. In the latter case the

field-dependence of the activation energies could be explained as the thermally

activated flux flow of unbound dislocations in quasi-2D superconductors. As in

the case of the 3D samples the activation energies were significantly increased

when the magnetic field was parallel to the extended pinning sites. Additionally,

the field dependence for magnetic fields in a medium range between approximately

0.1 and 1T resembled that expected for a 3D superconductor. At lower fields the

results obtained in the AC-direction were approached. To conclusively decide if

the flux lines at fields & 1T are three or two dimensional, the measurements

would have to be extended to higher fields and lower temperatures than it was

possible in the present study.

The reduced coupling between the superconductor layers had possibly even

greater consequences for the vortex phases at lower temperatures. Convincing

evidence for a low-temperature glass phase was only found when small magnetic

fields were applied in the C-direction. This pinned glass phase showed all the

signs of a Bose-glass including signatures of variable-range hopping of the vortices,
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although with an unexpectedly low glass exponent. At higher fields and for all

fields applied at large angles to the defects the IV -curves were lacking the sign of a

glassy behaviour, i.e. a negative curvature below the glass transition temperature.

Although the IV -curves taken at higher temperatures indicate a possibly quasi-

2D glass phase at low temperatures, the true nature of the low-temperature vortex

phase remains to be clarified.

In summary, this study has come up with strong support in favour of a glass

transition in disordered extremely type-II superconductors. Mainly the generally

good scaling of the IV -characteristics and the universal scaling exponents for a

range of superconductors with quite different microscopic structure strengthen

the arguments for a continuous phase transition. However, the original proposal

of universal scaling functions independent of the applied magnetic field needs

to be reconsidered. In addition, the known theories for flux creep in the glassy

phase could at best qualitatively describe the measured glass exponents. Further

insight into the intriguing physics of vortices in type-II superconductors could be

obtained by extending the present investigations into as yet unexplored regions of

the phase diagram of these Ta xGe 1−x/Ge multilayers and especially by combining

them with complimentary measurements such as the macroscopic and microscopic

magnetisation.



Appendix A

Temperature Accuracy

The overall accuracy of the temperature measurement was determined by the

accuracy of the voltmeter (HP4378A), the current source (Yokogawa7651), and

the gradient of the calibration curve dR/dT for the resistor. From the manuals

of the voltmeter and current source we get the following accuracy, respectively:

∆V = ±(0.04% + 4 µV), (A.1)

∆I = ±(0.02% + 20nA). (A.2)

The offset for the Yokogama7651 was given to be much higher. However, inde-

pendent measurements of the output current gave a offset usually at least a factor

of 2 less than the assumed value of 20 nA. The temperature-dependent dR/dT

values were taken from the calibration sheet #253413 supplied by Lake Shore

Cryotronics, Inc. for this sensor.

The temperature uncertainty can then be calculated using

∆T =
dT

dR
×∆R, with ∆R = R

√(
∆V

V

)2

+

(
∆I

I

)2

. (A.3)

Typical values for a number of temperatures are:

∆T = 15mK (1.5K)
∆T = 11mK (2.5K)
∆T = 7mK (4.0K)
∆T = 1.6K (300K)

(A.4)

A few notes at the end: Above estimate neglects the finite accuracy of the

sensor calibration, which is given by Lake Shore to be about 4mK between

T = 1− 10K. Then again, liquid helium provides two temperature check points.
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The first one is the boiling point at normal atmospheric pressure (4.222K) and

the other one is the superfluid transition at 2.177K which confirmed the above

calculated accuracy. Although the magnetoconductivity of carbon-glass resis-

tors is small, it affects the accuracy of temperature measurements in an applied

magnetic field, especially in fields & 1T.



Appendix B

Resistance Sensitivity and
Accuracy

The tables below give the specifications of the voltmeter and current source used

for the conductivity measurements.

K182 (Voltmeter)

Range Res Acc(reading + offset)

3mV 1nV (80 + 16) ppm
30mV 10nV (80 + 6) ppm
300mV 100 nV (80 + 6) ppm

3V 1 µV (40 + 6) ppm

(B.1)

K224 (Amp-source)

Range Res Acc(reading + offset)

10 µA 5nA 0.05% + 10nA
100 µA 50nA 0.05% + 100 nA
1mA 500 nA 0.05% + 1 µA
10mA 5 µA 0.05% + 10 µA
100mA 50 µA 0.1% + 50 µA

(B.2)

The noise level present during experiments limited the useful voltage resolu-

tion to several nV. The typical excitation current for resistance measurements

was 10 µA, resulting in the smallest measurable resistance of about 1 µΩ.
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Source Materials

The following data are extracted from:

CRC Handbook of Chemistry and Physics, 59th edition, 1978-79, CRC Press Inc.

and www.webelements.com.

C.1 Tantalum, Ta

atomic number 73
atomic weight 180.95 amu
melting point 3290K

(3rd highest of all elements)
boiling point ≈ 5730K
mass density 16, 654 kg/m3

crystal structure (RT) bcc
electrical conductivity (RT) 13 µΩcm
superconducting transition 4.47K
energy gap 2∆(0)/kBTc 3.6a

a data from [52], both superconducting parameters are for crystalline Ta

Its name is derived from the Greek mythological character Tanalos, the Father

of Niobe (Tantalum is chemically very similar to Niobium). It was first discovered

in 1802. Today it is widely used in special steel alloys and because of its immunity

to body fluids and the body tolerating the metal well surgical appliances are often

made using Ta-alloys. Tantalum oxide has a high index of refractivity and is

therefore used for camera lenses. The material used in this study was a 99.95%

pure rod, purchased from Princeton Scientific Corporation.
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C.2 Germanium, Ge

atomic number 32
atomic weight 72.61 amu
melting point 1211.4K
boiling point 3093K
mass density 5, 323 kg/m3

crystal structure (RT) ccp
electrical conductivity (RT) ≈ 50, 000 µΩcm
superconducting transition none

Germanium (Latin Germania for Germany) was predicted by Mendeleev in

1871 and first extracted in 1886. It is an elemental semiconductor like Si and for

example used doped with As, Ga or other elements in transistors. The source

material were 99.999% pure Ge granules, supplied by Goodfellow.
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